code
stringlengths
1
13.8M
library(hpiR) library(testthat) sales <- get(data(seattle_sales)) sales_df <- dateToPeriod(trans_df = sales, date = 'sale_date', periodicity = 'monthly') hed_df <- hedCreateTrans(trans_df = sales, prop_id = 'pinx', trans_id = 'sale_id', price = 'sale_price', date = 'sale_date', periodicity = 'monthly') rt_df <- rtCreateTrans(trans_df = sales_df, prop_id = 'pinx', trans_id = 'sale_id', price = 'sale_price') hed_index <- hedIndex(trans_df = hed_df, estimator = 'weighted', log_dep = FALSE, dep_var = 'price', ind_var = c('tot_sf', 'beds', 'baths'), weights = runif(nrow(hed_df), 0, 1), smooth = TRUE) rt_index <- rtIndex(trans_df = rt_df, estimator = 'base', log_dep = TRUE, periodicity = 'monthly', smooth = TRUE) context('createSeries()') test_that('Index Series works', { expect_is(hed_series <- createSeries(hpi_obj = hed_index, train_period = 24), 'serieshpi') expect_is(rt_series <- createSeries(hpi_obj = rt_index, train_period = 24, max_period = 50), 'serieshpi') expect_true(length(rt_series$hpis) == 27) }) test_that('Parameter arguments work',{ expect_true(length(hed_series <- createSeries(hpi_obj = hed_index, train_period = 12, max_period = 150)$hpis) == 73) }) test_that('Bad arguments create errors',{ expect_error(hed_series <- createSeries(hpi_obj = hed_index$index, train_period = 24, max_period = 50)) expect_error(hed_series <- createSeries(hpi_obj = hed_index, train_period = 'x', max_period = 50)) expect_error(hed_series <- createSeries(hpi_obj = hed_index, train_period = 99, max_period = 50)) }) context('smoothSeries()') rt_series <- createSeries(hpi_obj = rt_index, train_period = 24) test_that('smoothSeries() works as intended', { expect_is(rt_series <- smoothSeries(series_obj = rt_series, order = 5), 'serieshpi') expect_is(rt_series$hpis[[1]]$index$smooth, 'indexsmooth') expect_is(rt_series$hpis[[1]]$index, 'hpiindex') }) test_that('smoothSeries() breaks with bad arguments.',{ expect_error(rt_sseries <- smoothSeries(series_obj = rt_series[[1]], order = 5)) expect_error(rt_sseries <- smoothSeries(series_obj = rt_series, order = -1)) }) hed_series <- createSeries(hpi_obj = hed_index, train_period = 24, max_period = 30) rt_series <- createSeries(hpi_obj = rt_index, train_period = 24) rt_series <- smoothSeries(rt_series) context('calcVolatility()') test_that('Volatility Function works with a variety of inputs',{ expect_is(index_vol <- calcVolatility(index = hed_index$index$value, window = 3), 'indexvolatility') expect_is(index_vol <- calcVolatility(index = hed_index$index, window = 3), 'indexvolatility') expect_is(index_vol <- calcVolatility(index = hed_index, window = 3), 'indexvolatility') }) test_that('Volatility Function works for smoothed indexes',{ expect_is(index_vol <- calcVolatility(index = hed_index$index$smooth, window = 3), 'indexvolatility') expect_is(index_vol <- calcVolatility(index = hed_index$index, window = 3, smooth = TRUE), 'indexvolatility') ex_index <- hed_index ex_index$index$smooth <- NULL expect_error(calcVolatility(index = ex_index, window = 3, smooth = TRUE), 'No smoothed') expect_error(calcVolatility(index = ex_index$index, window = 3, smooth = TRUE), 'No smoothed') expect_is(index_vol <- calcVolatility(index = hed_index, window = 3, smooth = TRUE), 'indexvolatility') }) test_that('Errors are given when index is bad',{ expect_error(index_vol <- calcVolatility(index = 'abc', window = 3)) expect_error(index_vol <- calcVolatility(index = hed_index$index, window = -1)) expect_error(index_vol <- calcVolatility(index = hed_index$index, window = 'x')) expect_error(index_vol <- calcVolatility(index = hed_index$index, window = NA_integer_, smooth = TRUE)) }) test_that('Returning in place works',{ expect_is(index_vol <- calcVolatility(index = hed_index$index$value, window = 3, in_place = TRUE), 'indexvolatility') expect_is(hed_index$index <- calcVolatility(index = hed_index$index, window = 3, in_place = TRUE), 'hpiindex') expect_is(hed_index$index <- calcVolatility(index = hed_index$index, window = 3, in_place = TRUE, smooth = TRUE), 'hpiindex') expect_is(hed_index$index$volatility_smooth, 'indexvolatility') expect_is(hed_index <- calcVolatility(index = hed_index, window = 3, in_place = TRUE), 'hpi') expect_is(hed_index <- calcVolatility(index = hed_index, window = 3, in_place = TRUE, smooth = TRUE), 'hpi') expect_is(hed_index$index$volatility_smooth, 'indexvolatility') expect_is(hed_index <- calcVolatility(index = hed_index, window = 3, in_place = TRUE, in_place_name = 'xxx'), 'hpi') expect_is(hed_index$index$xxx, 'indexvolatility') }) context('calcSeriesVolatility()') test_that('Volatility Function works with a variety of inputs',{ expect_is(series_vol <- calcSeriesVolatility(series_obj = rt_series, window = 3), 'serieshpi') expect_is(series_vol <- calcSeriesVolatility(series_obj = rt_series, window = 3, smooth = TRUE), 'serieshpi') expect_true('volatility' %in% names(series_vol)) }) test_that('Fails if bad arguments', { expect_error(series_vol <- calcSeriesVolatility(series_obj = index, window = 3)) }) context('calcAccuracy() before error functions') test_that('bad arguments fail',{ expect_error(calcAccuracy(hpi_obj = 'xxx')) expect_error(calcAccuracy(hpi_obj = hed_index$data)) expect_error(calcAccuracy(hpi_obj = hed_index, test_type = 'rt')) expect_error(calcAccuracy(hpi_obj = rt_index, test_type = 'hed')) expect_error(calcAccuracy(hpi_obj = hed_index, test_type = 'rt', pred_df = hed_index$data)) expect_error(calcAccuracy(hpi_obj = rt_index, test_type = 'hed', pred_df = rt_index$data)) expect_error(calcAccuracy(hpi_obj = rt_index, test_type = 'rt', test_method = 'x')) expect_error(calcAccuracy(hpi_obj = rt_index, test_type = 'x', test_method = 'insample')) }) context('calcInSampleError()') test_that('in sample error fails with bad arguments',{ expect_error(rt_error <- calcInSampleError(pred_df = hed_index, index = hed_index$index$value)) expect_error(rt_error <- calcInSampleError(pred_df = rt_index$data, index = hed_index$index)) }) test_that('in sample error works',{ expect_is(rt_error <- calcInSampleError(pred_df = rt_index$data, index = hed_index$index$value), 'hpiaccuracy') expect_is(rt_error <- calcInSampleError(pred_df = rt_index$data, index = hed_index$index$smooth), 'hpiaccuracy') expect_is(rt_error <- calcInSampleError(pred_df = rt_index$data[1:4, ], index = hed_index$index$value), 'hpiaccuracy') expect_is(rt_error <- calcInSampleError(pred_df = rt_index$data[0, ], index = hed_index$index$value), 'hpiaccuracy') }) context('calcKFoldError()') test_that('kFold error fails with bad arguments',{ expect_error(rt_error <- calcKFoldError(hpi_obj = hed_index$index, pred_df = rt_index$data)) expect_error(rt_error <- calcKFoldError(hpi_obj = hed_index, pred_df = rt_index)) expect_error(rt_error <- calcKFoldError(hpi_obj = hed_index, pred_df = rt_index$data, k = 'a')) expect_error(rt_error <- calcKFoldError(hpi_obj = hed_index, pred_df = rt_index$data, seed = 'x')) }) test_that('kfold works',{ expect_is(rt_error <- calcKFoldError(hpi_obj = hed_index, pred_df = rt_index$data), 'hpiaccuracy') expect_true(ncol(rt_error) == 6) expect_is(rt_error <- calcKFoldError(hpi_obj = hed_index, pred_df = rt_index$data, smooth = TRUE), 'hpiaccuracy') expect_is(rt_error <- calcKFoldError(hpi_obj = hed_index, pred_df = rt_index$data[1:40, ]), 'hpiaccuracy') expect_is(rt_error <- calcKFoldError(hpi_obj = hed_index, pred_df = rt_index$data[0, ]), 'hpiaccuracy') }) context('calcAccuracy() after error functions') test_that('calcAccuracy works with insample errors',{ expect_is(rt_error <- calcAccuracy(hpi_obj = rt_index, test_type = 'rt', test_method = 'insample', pred_df = rt_index$data), 'hpiaccuracy') expect_true(ncol(rt_error) == 6) expect_is(hed_index <- calcAccuracy(hpi_obj = hed_index, test_type = 'rt', test_method = 'insample', pred_df = rt_index$data, in_place = TRUE, in_place_name ='acc'), 'hpi') expect_is(hed_index$index$acc, 'hpiaccuracy') expect_true(attr(hed_index$index$acc, 'test_method') == 'insample') }) test_that('calcAccuracy works with kfold errors',{ expect_is(rt_error <- calcAccuracy(hpi_obj = rt_index, test_type = 'rt', test_method = 'kfold', pred_df = rt_index$data), 'hpiaccuracy') expect_true(ncol(rt_error) == 6) expect_is(hed_index <- calcAccuracy(hpi_obj = hed_index, test_type = 'rt', test_method = 'kfold', pred_df = rt_index$data, in_place = TRUE, in_place_name = 'errors'), 'hpi') expect_is(hed_index$index$errors, 'hpiaccuracy') expect_true(attr(hed_index$index$errors, 'test_method') == 'kfold') }) context('calcSeriesAccuracy()') test_that('calcSeriesAccuracy() fails with bad arguments',{ expect_error(rt_series <- calcSeriesAccuracy(series_obj = rt_series$data, test_method = 'insample', test_type = 'rt')) expect_error(rt_series <- calcSeriesAccuracy(series_obj = rt_series, test_method = 'xxx', test_type = 'rt', smooth = TRUE)) expect_error(rt_series <- calcSeriesAccuracy(series_obj = rt_series, test_method = 'kfold', test_type = 'rtx', smooth = TRUE)) expect_error(hed_series <- calcSeriesAccuracy(series_obj = hed_series, test_method = 'insample', test_type = 'rt')) }) test_that('calcSeriesAccuracy() insample works',{ expect_is(rt_series <- calcSeriesAccuracy(series_obj = rt_series, test_method = 'insample', test_type = 'rt', smooth = TRUE, in_place = TRUE), 'serieshpi') expect_true('accuracy_smooth' %in% names(rt_series)) expect_is(rt_series$accuracy_smooth, 'seriesaccuracy') expect_error(hed_series <- calcSeriesAccuracy(series_obj = hed_series, test_method = 'insample', test_type = 'rt', smooth = TRUE, pred_df = rt_series$data)) }) test_that('calcSeriesAccuracy() kfold works',{ expect_error(hed_series <- calcSeriesAccuracy(series_obj = hed_series, test_method = 'kfold', test_type = 'rt', smooth = TRUE, pred_df = rt_series$data)) }) test_that('calcSeriesAccuracy() summarize works',{ expect_true(nrow(calcSeriesAccuracy(series_obj = rt_series, test_method = 'insample', test_type = 'rt', summarize = TRUE, in_place = TRUE)$accuracy) == 5102) }) context('buildForecastIDs()') test_that('buildForecastIDs works', { expect_true(length(is_data <- buildForecastIDs(time_cut = 33, hpi_df = hed_index$data, train = TRUE)) == 11863) expect_true(length(is_data <- buildForecastIDs(time_cut = 33, hpi_df = rt_index$data, train = TRUE)) == 287) expect_true(length(is_data <- buildForecastIDs(time_cut = 33, hpi_df = hed_index$data, forecast_length = 2, train = FALSE)) == 960) expect_true(length(is_data <- buildForecastIDs(time_cut = 33, hpi_df = rt_index$data, train = FALSE)) == 21) }) test_that('buildForecastIDs() does not work with bad arguments',{ expect_error(is_data <- buildForecastIDs(time_cut = 33, hpi_df = hed_index, train = TRUE)) expect_error(is_data <- buildForecastIDs(time_cut = -1, hpi_df = hed_index$data, train = TRUE)) expect_error(is_data <- buildForecastIDs(time_cut = 33, forecast_length = 'x', hpi_df = hed_index$data, train = TRUE)) }) context('calcForecastError()') test_that('forecast fails with bad arguments',{ expect_error(rt_acc <- calcForecastError(is_obj = hed_index, pred_df = rt_index$data)) expect_error(rt_acc <- calcForecastError(is_obj = hed_series, pred_df = rt_index)) expect_error(hed_acc <- calcForecastError(is_obj = hed_series, pred_df = rt_index$data, smooth = TRUE)) expect_error(hed_acc <- calcForecastError(is_obj = hed_series, pred_df = rt_index$data, forecast_length = 'x')) }) test_that('Forecast works',{ expect_is(hed_acc <- calcForecastError(is_obj = hed_series, pred_df = rt_index$data), 'hpiaccuracy') expect_is(hed_acc <- calcForecastError(is_obj = hed_series, pred_df = rt_index$data, forecast_length = 3), 'seriesaccuracy') expect_is(rt_acc <- calcForecastError(is_obj = rt_series, pred_df = rt_index$data, smooth = TRUE), 'hpiaccuracy') expect_is(rt_acc <- calcForecastError(is_obj = rt_series, pred_df = rt_index$data[1:40, ]), 'hpiaccuracy') expect_is(rt_acc <- calcForecastError(is_obj = rt_series, pred_df = rt_index$data[0, ], smooth=TRUE), 'hpiaccuracy') }) test_that('calcSeriesAccuracy works with forecast',{ expect_is(rt_series <- calcSeriesAccuracy(series_obj = rt_series, test_type = 'rt', test_method = 'forecast', pred_df = rt_series$data, smooth = TRUE, in_place = TRUE), 'serieshpi') expect_is(rt_series$accuracy_smooth, 'seriesaccuracy') }) context('calcRevision()') test_that('calcRevision() works',{ expect_is(hed_rev <- calcRevision(series_obj = hed_series), 'seriesrevision') expect_is(hed_series <- calcRevision(series_obj = hed_series, in_place = TRUE), 'serieshpi') expect_is(hed_series$revision, 'seriesrevision') expect_is(rt_rev_s <- calcRevision(series_obj = rt_series, smooth = TRUE), 'seriesrevision') expect_is(rt_series <- calcRevision(series_obj = rt_series, smooth = TRUE, in_place = TRUE), 'serieshpi') expect_is(rt_series$revision_smooth, 'seriesrevision') }) test_that('Bad arguments create errors',{ expect_error(hed_rev <- calcRevision(series_obj = hed_series$data)) expect_error(hed_rev <- calcRevision(series_obj = hed_series, smooth = TRUE)) })
"TrepDF"
tripSplit <- function( dataGroup, colony, innerBuff = NULL, returnBuff = NULL, duration = NULL, gapLimit = NULL, nests=FALSE, rmNonTrip=FALSE, verbose=TRUE) { if (is.null(gapLimit)) {gapLimit <- 365 * 24} if (!"data.frame" %in% class(dataGroup)) { stop("dataGroup must be data.frame") } if (is.null(duration)) { message( "No duration specified, trips splitting will be done using only innerBuff and returnBuff.") } if (nrow(colony) > 1 & nests == FALSE) { stop( "colony object has multiple locations. Did you mean to set nests=TRUE") } dataGroup <- dataGroup %>% mutate(DateTime = lubridate::ymd_hms(.data$DateTime)) %>% mutate(tripID = .data$ID) %>% arrange(.data$ID, .data$DateTime) dup_check <- dataGroup %>% group_by(.data$ID) %>% mutate(duplicates = duplicated(.data$DateTime)) %>% ungroup() %>% dplyr::summarise(duplicates = sum(.data$duplicates)) if (dup_check$duplicates > 0) {message( "WARNING:dataset may contain duplicated data, this will affect trip-splitting" )} DataGroup <- SpatialPointsDataFrame( SpatialPoints( data.frame(dataGroup$Longitude, dataGroup$Latitude), proj4string=sp::CRS("+proj=longlat +datum=WGS84 +no_defs") ), data = dataGroup, match.ID=FALSE) DataGroup.Projected <- DataGroup for(nid in seq_len(length(unique(dataGroup$ID)))) { TrackIn <- base::subset( DataGroup.Projected, DataGroup.Projected$ID == unique(DataGroup.Projected$ID)[nid]) TrackOut <- splitSingleID( Track=TrackIn, colony=colony, innerBuff = innerBuff, returnBuff = returnBuff, duration = duration, gapLimit = gapLimit, nests=nests, verbose = verbose) if (nid == 1) {Trips <- TrackOut} else { Trips <- maptools::spRbind(Trips, TrackOut) } } if (rmNonTrip==TRUE) { Trips <- Trips[Trips$tripID != "-1",] } return(Trips) } splitSingleID <- function( Track, colony, innerBuff = 15, returnBuff = 45, duration = 12, gapLimit = gapLimit, nests = FALSE, verbose = verbose){ if (!"Latitude" %in% colnames(colony) | !"Longitude" %in% colnames(colony)){ stop("colony missing Latitude or Longitude field: add or rename.")} if (nests == TRUE) { if (!"ID" %in% names(colony)) stop("colony missing ID field") nest <- colony[match(unique(Track$ID), colony$ID),] colonyWGS <- SpatialPoints( data.frame(nest$Longitude, nest$Latitude), proj4string = CRS("+proj=longlat +datum=WGS84 +no_defs") ) } else { colonyWGS <- SpatialPoints( data.frame(colony$Longitude, colony$Latitude), proj4string = CRS("+proj=longlat +datum=WGS84 +no_defs") ) } Track$X <- Track@coords[,1] Track$Y <- Track@coords[,2] Track$Returns <- "" Track$StartsOut <- "" Track$tripID <- 0 Track$ColDist <- spDistsN1(Track, colonyWGS, longlat = TRUE) * 1000 steptime <- c(abs(as.numeric( difftime(Track$DateTime[seq_len(nrow(Track)) - 1], Track$DateTime[seq.int(2, nrow(Track))], units = "hours"))), NA) Trip.Sequence <- 0 trip_dur <- 0 Max.Dist <- 0 returnBuff <- returnBuff * 1000 innerBuff <- innerBuff * 1000 if (is.null(duration)) {duration <- 0.0001} i <- 0 while (i < base::nrow(Track)) { i <- i + 1 if (Track$ColDist[i] < innerBuff) {Track$tripID[i] <- "-1"} else { k <- i Dist <- Track$ColDist[i] if (i == nrow(Track)) {Track$tripID[i] <- "-1" break } if (i > 1 & Track$tripID[i] == "-1") {i <- i - 1} while ((Dist >= innerBuff)) { if (k == nrow(Track) & Dist < returnBuff) {break} else { if (k == nrow(Track)) { if (verbose == TRUE) { message( paste("track ", Track$ID[1], Trip.Sequence + 1, " does not return to the colony", sep = "") ) } Track$Returns[i:k] <- "No" break } else if (steptime[k] > gapLimit) { if (Dist > returnBuff) { Track$Returns[i:k] <- "No" } else {Track$Returns[i:k] <- "Yes"} break } } k <- k + 1 Dist <- Track$ColDist[k] } trip_dur <- as.numeric( difftime(Track$DateTime[k], Track$DateTime[i], units = "hours") ) Max.Dist <- max(Track$ColDist[i:k]) if (trip_dur < duration | Max.Dist < innerBuff) { Track$tripID[i:k] <- "-1" i <- k next } Trip.Sequence <- Trip.Sequence + 1 if (i == 1) { if (verbose == TRUE) { message( paste0("track ", Track$ID[1], sprintf("%02d", Trip.Sequence), " starts out on trip", sep = "") ) } Track$StartsOut[i:k] <- "Yes" Track$tripID[i:k] <- paste(Track$ID[1], sprintf("%02d", Trip.Sequence), sep = "_") } else { Track$tripID[i:k] <- paste(Track$ID[1], sprintf("%02d", Trip.Sequence), sep = "_") } i <- k } } Track$Returns <- ifelse( Track$Returns != "No" & Track$tripID != "-1", "Yes", Track$Returns ) return(Track) }
package_delete <- function(id, url = get_default_url(), key = get_default_key(), ...) { id <- as.ckan_package(id, url = url, key = key) tmp <- ckan_POST(url, 'package_delete', body = list(id = id$id), key = key, opts = list(...)) jsonlite::fromJSON(tmp)$success }
getMinorMajorCopyNumbers <- function(region) { pattern <- "\\(([0-9]+),([0-9]+)\\)" C1 <- gsub(pattern, "\\1", region) C2 <- gsub(pattern, "\\2", region) mat <- cbind(C1=as.numeric(C1), C2=as.numeric(C2)) rownames(mat) <- region mat }
run.pc.tsne <- function (x = NULL, dims = 1:10, my.seed = 0,add.3d = TRUE, initial_dims = 50, perplexity = 30, theta = 0.5, check_duplicates = FALSE, pca = TRUE, max_iter = 1000, verbose = FALSE, is_distance = FALSE, Y_init = NULL, pca_center = TRUE, pca_scale = FALSE, stop_lying_iter = ifelse(is.null(Y_init), 250L, 0L), mom_switch_iter = ifelse(is.null(Y_init), 250L, 0L), momentum = 0.5, final_momentum = 0.8, eta = 200, exaggeration_factor = 12) { if ("iCellR" != class(x)[1]) { stop("x should be an object of class iCellR") } set.seed(my.seed) DATA <- [email protected] TransPosed <- DATA[dims] tsne <- Rtsne(TransPosed, dims = 2, initial_dims = initial_dims, perplexity = perplexity, theta = theta, check_duplicates = check_duplicates, pca = pca, max_iter = max_iter, verbose = verbose, is_distance = is_distance, Y_init = Y_init, pca_center = pca_center, pca_scale = pca_scale, stop_lying_iter = stop_lying_iter, mom_switch_iter = mom_switch_iter, momentum = momentum, final_momentum = final_momentum, eta = eta, exaggeration_factor = exaggeration_factor) tsne.data = as.data.frame(tsne$Y) tsne.data = cbind(cells = row.names(TransPosed),tsne.data) rownames(tsne.data) <- tsne.data$cells tsne.data <- tsne.data[,-1] attributes(x)$tsne.data <- tsne.data if (add.3d == TRUE) { tsne <- Rtsne(TransPosed, dims = 3, initial_dims = initial_dims, perplexity = perplexity, theta = theta, check_duplicates = check_duplicates, pca = pca, max_iter = max_iter, verbose = verbose, is_distance = is_distance, Y_init = Y_init, pca_center = pca_center, pca_scale = pca_scale, stop_lying_iter = stop_lying_iter, mom_switch_iter = mom_switch_iter, momentum = momentum, final_momentum = final_momentum, eta = eta, exaggeration_factor = exaggeration_factor) tsne.data = as.data.frame(tsne$Y) tsne.data = cbind(cells = row.names(TransPosed),tsne.data) rownames(tsne.data) <- tsne.data$cells tsne.data <- tsne.data[,-1] attributes(x)$tsne.data.3d <- tsne.data } return(x) }
cusumSq <- function(model, alpha = 0.05){ table <- matrix( c(NA, 0.1 , 0.05, 0.025, 0.01, 0.005, 1 , 0.4 , 0.45 , 0.475 , 0.49 , 0.495 , 2 , 0.35044 , 0.44306 , 0.50855 , 0.56667 , 0.59596 , 3 , 0.35477 , 0.41811 , 0.46702 , 53456 , 0.579 , 4 , 0.33435 , 0.39075 , 0.44641 , 0.50495 , 0.5421 , 5 , 0.31556 , 0.37359 , 0.42174 , 0.47692 , 0.51576 , 6 , 0.30244 , 0.35522 , 0.40045 , 0.4544 , 0.48988 , 7 , 0.28991 , 33905 , 0.38294 , 0.43337 , 0.46761 , 8 , 0.27828 , 0.32538 , 0.36697 , 0.41522 , 0.44819 , 9 , 0.26794 , 0.31325 , 0.35277 , 0.39922 , 0.43071 , 10 , 0.25884 , 0.30221 , 0.34022 , 0.38481 , 0.41517 , 11 , 0.25071 , 0.29227 , 0.32894 , 0.37187 , 0.40122 , 12 , 0.24325 , 0.2833 , 0.31869 , 0.36019 , 0.38856 , 13 , 0.23639 , 0.27515 , 0.30935 , 0.34954 , 0.37703 , 14 , 0.2301 , 0.26767 , 0.30081 , 0.3398 , 0.36649 , 15 , 0.2243 , 0.26077 , 0.29296 , 0.33083 , 0.35679 , 16 , 0.21895 , 0.25439 , 0.2857 , 0.32256 , 0.34784 , 17 , 0.21397 , 0.24847 , 0.27897 , 0.31489 , 0.33953 , 18 , 0.20933 , 0.24296 , 0.2727 , 0.30775 , 0.33181 , 19 , 0.20498 , 23781 , 0.26685 , 0.30108 , 0.32459 , 20 , 0.20089 , 0.23298 , 0.26137 , 0.29484 , 0.31784 , 21 , 0.19705 , 0.22844 , 0.25622 , 0.28898 , 0.31149 , 22 , 0.19343 , 0.22416 , 0.25136 , 0.28346 , 0.30552 , 23 , 0.19001 , 0.22012 , 0.24679 , 0.27825 , 0.29989 , 24 , 18677 , 0.2163 , 0.24245 , 0.27333 , 0.29456 , 25 , 18370 , 0.21268 , 0.23835 , 0.26866 , 0.28951 , 26 , 0.18077 , 0.20924 , 0.23445 , 0.26423 , 0.28472 , 27 , 0.17799 , 20596 , 0.23074 , 0.26001 , 0.28016 , 28 , 0.17533 , 0.20283 , 0.22721 , 0.256 , 0.27582 , 29 , 0.1728 , 19985 , 0.22383 , 0.25217 , 0.27168 , 30 , 0.17037 , 0.197 , 0.22061 , 0.24851 , 0.26772 , 31 , 0.16805 , 0.19427 , 0.21752 , 0.24501 , 0.26393 , 32 , 0.16582 , 19166 , 0.21457 , 0.24165 , 0.2603 , 33 , 0.16368 , 0.18915 , 0.21173 , 0.23843 , 0.25683 , 34 , 0.16162 , 0.18674 , 0.20901 , 0.23534 , 0.25348 , 35 , 0.15964 , 0.18442 , 0.20639 , 0.23237 , 0.25027 , 36 , 0.15774 , 18218 , 0.20387 , 0.22951 , 0.24718 , 37 , 0.1559 , 0.18003 , 0.20144 , 0.22676 , 0.24421 , 38 , 0.15413 , 0.17796 , 0.1991 , 0.2241 , 0.24134 , 39 , 0.15242 , 17595 , 0.19684 , 0.22154 , 0.23857 , 40 , 0.15076 , 0.17402 , 0.19465 , 0.21906 , 0.23589 , 42 , 0.14761 , 0.17034 , 0.1905 , 0.21436 , 0.23081 , 43 , 0.14611 , 0.16858 , 0.18852 , 0.21212 , 0.22839 , 44 , 0.14466 , 0.16688 , 0.18661 , 0.20995 , 0.22605 , 45 , 0.14325 , 0.16524 , 0.18475 , 20785 , 0.22377 , 46 , 0.14188 , 0.16364 , 0.18295 , 0.20581 , 0.22157 , 47 , 0.14055 , 0.16208 , 0.1812 , 0.20383 , 0.21943 , 48 , 0.13926 , 0.16058 , 0.1795 , 0.2019 , 0.21735 , 49 , 0.138 , 0.15911 , 0.17785 , 0.20003 , 0.21534 , 50 , 13678 , 0.15769 , 0.17624 , 0.19822 , 0.21337 , 51 , 0.13559 , 0.1563 , 0.17468 , 0.19645 , 0.21146 , 52 , 0.13443 , 0.15495 , 0.17316 , 0.19473 , 0.20961 , 53 , 0.1333 , 0.15363 , 0.17168 , 0.19305 , 0.2078 , 54 , 0.13221 , 0.15235 , 0.17024 , 0.19142 , 0.20604 , 55 , 0.13113 , 0.1511 , 0.16884 , 0.18983 , 0.20432 , 56 , 0.13009 , 0.14989 , 0.16746 , 0.18828 , 0.20265 , 57 , 0.12907 , 0.1487 , 0.16613 , 0.18677 , 0.20101 , 58 , 0.12807 , 0.14754 , 0.16482 , 0.18529 , 0.19942 , 59 , 0.1271 , 0.14641 , 0.16355 , 0.18385 , 0.19786 , 60 , 0.12615 , 0.1453 , 0.1623 , 0.18245 , 0.19635 , 62 , 0.12431 , 0.14316 , 0.1599 , 0.17973 , 0.19341 , 64 , 0.12255 , 0.14112 , 0.1576 , 0.17713 , 0.19061 , 66 , 0.12087 , 0.13916 , 0.1554 , 0.17464 , 0.18792 , 68 , 0.11926 , 0.13728 , 0.15329 , 0.17226 , 0.18535 , 70 , 0.11771 , 0.13548 , 0.15127 , 0.16997 , 0.18288 , 72 , 0.11622 , 0.13375 , 0.14932 , 0.16777 , 0.18051 , 74 , 0.11479 , 0.13208 , 0.14745 , 0.16566 , 0.17823 , 76 , 0.11341 , 0.13048 , 0.14565 , 0.16363 , 0.17604 , 78 , 0.11208 , 0.12894 , 0.14392 , 16167 , 0.17392 , 80 , 0.11079 , 0.12745 , 0.14224 , 0.15978 , 0.17188 , 82 , 0.10955 , 0.12601 , 0.14063 , 0.15795 , 0.16992 , 84 , 0.10835 , 0.12462 , 0.13907 , 0.15619 , 0.16802 , 86 , 0.10719 , 0.12327 , 0.13756 , 0.15449 , 0.16618 , 88 , 10607 , 0.12197 , 0.1361 , 15284 , 0.1644 , 90 , 0.10499 , 0.12071 , 0.13468 , 0.15124 , 0.16268 , 92 , 0.10393 , 0.11949 , 0.13331 , 0.1497 , 0.16101 , 94 , 0.10291 , 0.11831 , 0.13198 , 0.1482 , 0.594 , 96 , 0.10192 , 0.11716 , 0.1307 , 0.14674 , 0.15783 , 98 , 0.10096 , 0.11604 , 0.12944 , 0.14533 , 0.15631 , 100 , 0.10002 , 0.11496 , 0.12823 , 0.14396 , 0.15483 ), nrow = 80, ncol = 6, byrow = TRUE) Wr <- recresid(model, data = model$model, type = "Rec-CUSUM") k <- start(Wr)[1] - 1 t <- end(Wr)[1] + 1 if (((t-k) %% 2) != 0){ n1 <- min( 0.5 * (t-k) - 1.5, 100) n2 <- min( 0.5 * (t-k) - 0.5, 100) c01 <- table[which((table[,1] == n1)), which(table[1,] == alpha/2)] c02 <- table[which((table[,1] == n2)), which(table[1,] == alpha/2)] c0 <- mean(c(c01,c02)) } else { n <- min ( 0.5 * (t-k)-1, 100) c0 <- table[which((table[,1] == n)), which(table[1,] == alpha/2)] } WrSq <- array(NA, length(Wr)) lb <- array(NA, length(Wr)) ub <- array(NA, length(Wr)) for (i in 1:length(Wr)){ WrSq[i] <- sum(Wr[1:i]^2)/sum(Wr^2) lb[i] <- -c0 + (start(Wr)[1] + i - 1 - k)/(t-k) ub[i] <- c0 + (start(Wr)[1] + i - 1 - k)/(t-k) } plot(ts(WrSq, start = start(Wr)), ylim = c(min(lb)-0.1,max(ub)+0.1), ylab="CUSUM of squared residuals", main ="Recursive CUSUM of squares test") lines(ts(lb, start = start(Wr)), col = "red") lines(ts(ub, start = start(Wr)), col = "red") abline(h=0) } appendList <- function(list1, list2){ for (i in names(list1)[which(names(list1) == names(list2))]){ list1[[i]] = sort(c(list1[[i]], list2[[i]])) } for (i in names(list2)[which(names(list2) != names(list1))]){ list1[[i]] = list2[[i]] } return(list1) } ardlBound <- function(data = NULL , formula = NULL , case = 3 , p = NULL , remove = NULL, autoOrder = FALSE , HAC = FALSE, ic = c("AIC", "BIC", "MASE", "GMRAE") , max.p = 15, max.q = 15, ECM = TRUE, stability = TRUE){ if (is.null(data)) stop("Enter data by data argument.") if (is.null(formula)) stop("A formula object showing the dependent and indepdenent series must be entered.") vars <- all.vars(formula) NumVar <- length(vars) if ( NumVar < ncol(data)){ data <- data[,vars] } if (is.null(p) | (autoOrder == TRUE) ){ cat(" ", "\n") cat("Orders being calculated with max.p =", max.p , "and max.q =", max.q, "...\n\n") orders <- ardlBoundOrders(data = data , formula = formula, ic = "AIC" , max.p = max.p, max.q = max.q ) cat("Autoregressive order:" , orders$q + 1, "and p-orders:" , unlist(orders$p) + 1 , "\n") cat("------------------------------------------------------", "\n") p <- data.frame(orders$q , orders$p ) + 1 } if (!is.data.frame(p)){ p <- array(p , NumVar) p <- data.frame(t(p)) colnames(p) <- vars } else { colnames(p) <- vars if (length(p) < NumVar) stop("Enter an integer or and array of lenght equal to the number of variables in the formula!") } caseType <- switch(case, "no intercept, no trend", "restricted intercert, no trend (not supported)", "unrestricted intercert, no trend", "unrestricted intercept, restricted trend (not supported)", "unrestricted intercept, unrestricted trend") diffData <- apply(data , 2 , diff) colnames(diffData) <- paste0("d" , colnames(diffData)) data <- cbind(data[2:nrow(data),],diffData) if (max(p[2:NumVar]) == 1){ max.p <- 2 } else { max.p <- max(p[2:NumVar]) } rem.p <- list() for (i in 1:NumVar){ if (max.p > 2){ rem.p[[vars[i] ]] <- c(0,2:(max.p-1)) }else { rem.p[[vars[i] ]] <- c(0) } } if (sum((p[2:NumVar] - max.p) == 0) == (NumVar-1)){ removeP <- NULL if (ECM == TRUE) { remP <- list() if ((max.p-1) >= 2){ remP[["ec"]] <- c(0, 2:(max.p-1)) } else if ((max.p-1) == 1){ remP[["ec"]] <- c(0) } removeP = list(p = remP ) } } else { remP <- list() reduce <- which((p[2:NumVar] - max.p) != 0) + 1 for ( j in reduce){ remP[[paste0("d" ,vars[j])]] <- c((max.p-1):p[[j]]) rem.p[[paste0("d" ,vars[j])]] <- c((max.p-1):p[[j]]) } if (ECM == TRUE) { if ((max.p-1) >= 2){ remP[["ec"]] <- c(0, 2:(max.p-1)) } else if ((max.p-1) == 1){ remP[["ec"]] <- c(0) } } removeP = list(p = remP ) } removeP$p <- appendList(removeP$p, remove$p) removeP$q <- remove$q rem.p <- appendList(rem.p, remove$p) removeP2 <- list(p = rem.p, q = remove$q ) formula1 <- as.formula(paste0("d" , vars[1] , " ~ " , paste(c(vars , paste0("d" , vars[2:NumVar] )) , collapse=" + ") )) if (case == 1){ formula1 <- update(formula1, ~. -1) formula2 <- as.formula(paste0("d" , vars[1] , " ~ - 1 + " , paste(c(paste0("d" , vars[2:NumVar] )) , collapse=" + ") )) if (p[[vars[1]]] == 1){ p[[vars[1]]] <- 2 removeP <- appendList(removeP, list( q = c(1))) removeP2$q <- c(1) } modelFull <- ardlDlm(formula = formula1, data = data.frame(data) , p = (max.p-1) , q = (p[[vars[1]]]-1) , remove = removeP2) modelNull <- ardlDlm(formula = formula2, data = data.frame(data) , p = (max.p-1) , q = (p[[vars[1]]]-1) , remove = removeP ) if (length(modelFull$model$residuals) != length(modelNull$model$residuals)){ strt <- nrow(data) - length(modelNull$model$residuals) modelNull <- ardlDlm(formula = formula2, data = data.frame(tail(data,(length(modelFull$model$residuals) + strt))) , p = (max.p-1) , q = (p[[vars[1]]]-1) , remove = removeP ) } if ( ECM == TRUE){ mult <- as.vector(modelFull$model$coefficients[2:NumVar] / modelFull$model$coefficients[1]) ec <- data[,1] + as.vector(mult %*% t(data[,2:NumVar])) data.ecm <- data.frame(cbind(data, ec)) formula3 <- as.formula(paste0("d" , vars[1] , " ~ - 1 + ec + " , paste(c(paste0("d" , vars[2:NumVar] )) , collapse=" + ") )) modelECM <- ardlDlm(formula = formula3, data = data.ecm , p = (max.p-1) , q = (p[[vars[1]]]-1) , remove = removeP ) ecm.beta <- modelECM$model$coefficients["ec.1"] } } else if (case == 2){ formula1 <- update(formula1, ~. +1) formula2 <- as.formula(paste0("d" , vars[1] , " ~ - 1 + " , paste(c(paste0("d" , vars[2:NumVar] )) , collapse=" + ") )) if (p[[vars[1]]] == 1){ p[[vars[1]]] <- 2 removeP <- appendList(removeP, list( q = c(1))) removeP2$q <- c(1) } modelFull <- ardlDlm(formula = formula1, data = data.frame(data) , p = (max.p-1) , q = (p[[vars[1]]]-1) , remove = removeP2) modelNull <- ardlDlm(formula = formula2, data = data.frame(data) , p = (max.p-1) , q = (p[[vars[1]]]-1) , remove = removeP ) if (length(modelFull$model$residuals) != length(modelNull$model$residuals)){ strt <- nrow(data) - length(modelNull$model$residuals) modelNull <- ardlDlm(formula = formula2, data = data.frame(tail(data,(length(modelFull$model$residuals) + strt))) , p = (max.p-1) , q = (p[[vars[1]]]-1) , remove = removeP ) } if ( ECM == TRUE){ mult <- as.vector(modelFull$model$coefficients[3:(NumVar+1)] / modelFull$model$coefficients[2]) ec <- data[,1] + as.vector(mult %*% t(data[,2:NumVar])) + (modelFull$model$coefficients[1] / modelFull$model$coefficients[2]) data.ecm <- data.frame(cbind(data, ec)) formula3 <- as.formula(paste0("d" , vars[1] , " ~ - 1 + ec + " , paste(c(paste0("d" , vars[2:NumVar] )) , collapse=" + ") )) modelECM <- ardlDlm(formula = formula3, data = data.ecm , p = (max.p-1) , q = (p[[vars[1]]]-1) , remove = removeP ) ecm.beta <- modelECM$model$coefficients["ec.1"] } } else if (case == 3){ formula2 <- as.formula(paste0("d" , vars[1] , " ~ +1 + " , paste(c(paste0("d" , vars[2:NumVar] )) , collapse=" + ") )) if (p[[vars[1]]] == 1){ p[[vars[1]]] <- 2 removeP <- appendList(removeP, list( q = c(1))) removeP2$q <- c(1) } modelFull <- ardlDlm(formula = formula1, data = data.frame(data) , p = (max.p-1) , q = (p[[vars[1]]]-1) , remove = removeP2) modelNull <- ardlDlm(formula = formula2, data = data.frame(data) , p = (max.p-1) , q = (p[[vars[1]]]-1) , remove = removeP ) if (length(modelFull$model$residuals) != length(modelNull$model$residuals)){ strt <- nrow(data) - length(modelNull$model$residuals) modelNull <- ardlDlm(formula = formula2, data = data.frame(tail(data,(length(modelFull$model$residuals) + strt))) , p = (max.p-1) , q = (p[[vars[1]]]-1) , remove = removeP ) } if ( ECM == TRUE){ mult <- as.vector(modelFull$model$coefficients[3:(NumVar+1)] / modelFull$model$coefficients[2]) ec <- data[,1] + as.vector(mult %*% t(data[,2:NumVar])) data.ecm <- data.frame(cbind(data, ec)) formula3 <- as.formula(paste0("d" , vars[1] , " ~ +1 + ec + " , paste(c(paste0("d" , vars[2:NumVar] )) , collapse=" + ") )) modelECM <- ardlDlm(formula = formula3, data = data.ecm , p = (max.p-1) , q = (p[[vars[1]]]-1) , remove = removeP ) ecm.beta <- modelECM$model$coefficients["ec.1"] } } else if (case == 4){ trend <- c(1:nrow(data)) data <- cbind(data , trend) formula1 <- as.formula(paste0(formula1 , " + trend")) formula2 <- as.formula(paste0("d" , vars[1] , " ~ " , paste(c(paste0("d" , vars[2:NumVar] )) , collapse=" + ") )) if (p[[vars[1]]] == 1){ p[[vars[1]]] <- 2 removeP <- appendList(removeP, list( q = c(1))) removeP2$q <- c(1) } rem.p[["trend"]] <- c(1:(max.p-1)) modelFull <- ardlDlm(formula = formula1, data = data.frame(data) , p = (max.p-1) , q = (p[[vars[1]]]-1) , remove = removeP2) modelNull <- ardlDlm(formula = formula2, data = data.frame(data) , p = (max.p-1) , q = (p[[vars[1]]]-1) , remove = removeP ) if (length(modelFull$model$residuals) != length(modelNull$model$residuals)){ strt <- nrow(data) - length(modelNull$model$residuals) modelNull <- ardlDlm(formula = formula2, data = data.frame(tail(data,(length(modelFull$model$residuals) + strt))) , p = (max.p-1) , q = (p[[vars[1]]]-1) , remove = removeP ) } if ( ECM == TRUE){ mult <- as.vector(modelFull$model$coefficients[3:(NumVar+1)] / modelFull$model$coefficients[2]) ec <- data[,1] + as.vector(mult %*% t(data[,2:NumVar])) + modelFull$model$coefficients["trend.t"] * trend / modelFull$model$coefficients[2] data.ecm <- data.frame(cbind(data, ec)) formula3 <- as.formula(paste0("d" , vars[1] , " ~ ec + " , paste(c(paste0("d" , vars[2:NumVar] )) , collapse=" + ") )) modelECM <- ardlDlm(formula = formula3, data = data.ecm , p = (max.p-1) , q = (p[[vars[1]]]-1) , remove = removeP ) ecm.beta <- modelECM$model$coefficients["ec.1"] } } else if (case == 5){ trend <- c(1:nrow(data)) data <- cbind(data , trend) formula1 <- as.formula(paste0(formula1 , " + trend")) formula2 <- as.formula(paste0("d" , vars[1] , " ~ " , paste(c(paste0("d" , vars[2:NumVar] )) , collapse=" + ") , " + trend" )) if (p[[vars[1]]] == 1){ p[[vars[1]]] <- 2 removeP <- appendList(removeP, list( q = c(1))) removeP2$q <- c(1) } removeP$p[["trend"]] <- c(1:(max.p-1)) removeP2$p[["trend"]] <- c(1:(max.p-1)) rem.p[["trend"]] <- c(1:(max.p-1)) modelFull <- ardlDlm(formula = formula1, data = data.frame(data) , p = (max.p-1) , q = (p[[vars[1]]]-1) , remove = removeP2 ) modelNull <- ardlDlm(formula = formula2, data = data.frame(data) , p = (max.p-1) , q = (p[[vars[1]]]-1) , remove = removeP ) if (length(modelFull$model$residuals) != length(modelNull$model$residuals)){ strt <- nrow(data) - length(modelNull$model$residuals) modelNull <- ardlDlm(formula = formula2, data = data.frame(tail(data,(length(modelFull$model$residuals) + strt))) , p = (max.p-1) , q = (p[[vars[1]]]-1) , remove = removeP ) } if ( ECM == TRUE){ mult <- as.vector(modelFull$model$coefficients[3:(NumVar+1)] / modelFull$model$coefficients[2]) ec <- data[,1] + as.vector(mult %*% t(data[,2:NumVar])) data.ecm <- data.frame(cbind(data, ec)) formula3 <- as.formula(paste0("d" , vars[1] , " ~ ec + " , paste(c(paste0("d" , vars[2:NumVar] )) , collapse=" + ") , " + trend" )) modelECM <- ardlDlm(formula = formula3, data = data.ecm , p = (max.p-1) , q = (p[[vars[1]]]-1) , remove = removeP ) ecm.beta <- modelECM$model$coefficients["ec.1"] } } bg <- NULL bg <- lmtest::bgtest(modelFull$model, type = "F") cat("\n Breusch-Godfrey Test for the autocorrelation in residuals:\n") print(bg) if (!is.na(bg$p.value)){ if (bg$p.value < 0.05){ cat("The p-value of Breusch-Godfrey test for the autocorrelation in residuals: ", bg$p.value , "< 0.05!\n" ) } } cat("------------------------------------------------------", "\n") res <- modelFull$model$residuals cat("\n Ljung-Box Test for the autocorrelation in residuals:\n") lb <- Box.test(res, type = c("Ljung-Box")) print(lb) if (!is.na(lb$p.value)){ if (lb$p.value < 0.05){ cat("The p-value of Ljung-Box test for the autocorrelation in residuals: ", lb$p.value , "< 0.05!\n" ) } } cat("------------------------------------------------------", "\n") bp <- NULL bp <- lmtest::bptest(modelFull$model) cat("\n Breusch-Pagan Test for the homoskedasticity of residuals:\n") print(bp) if (!is.na(bp$p.value)){ if (bp$p.value < 0.05){ cat("The p-value of Breusch-Pagan test for the homoskedasticity of residuals: ", bp$p.value , "< 0.05!\n" ) } } cat("------------------------------------------------------", "\n") sp <- NULL sp <- shapiro.test(modelFull$model$residual) cat("\n Shapiro-Wilk test of normality of residuals:\n") print(sp) if (!is.na(sp$p.value)){ if (sp$p.value < 0.05){ cat("The p-value of Shapiro-Wilk test normality of residuals: ", sp$p.value , "< 0.05!\n" ) } } cat("------------------------------------------------------", "\n") tryCatch( {if (HAC == TRUE) { cat("Newey-West HAC covariance matrix estimators are used for testing.", "\n") neweyCM <- NeweyWest(modelFull$model) Fvalue <- lmtest::waldtest( modelNull$model , modelFull$model, vcov = neweyCM)$F[2] } else { Fvalue <- lmtest::waldtest( modelNull$model , modelFull$model)$F[2] } }, error = function(e) { Fvalue <<- anova( modelNull$model , modelFull$model)$F[2] } ) k = (NumVar - 1) pssbounds(obs = nrow(data) , fstat = Fvalue , case = case, k = k ) if ((stability == TRUE) & (ECM == TRUE)){ cat("------------------------------------------------------", "\n") reset <- NULL reset <- lmtest::resettest(modelECM$model) cat("\n Ramsey's RESET Test for model specification:\n") print(reset) if (reset$p.value < 0.05){ cat("the p-value of RESET test: ", reset$p.value , "< 0.05!\n" ) } cat("------------------------------------------------------", "\n") cusum.test <- efp(modelECM$model, data = modelECM$model$model, type = "Rec-CUSUM") mosum.test <- efp(modelECM$model, data = modelECM$model$model, type = "Rec-MOSUM") graphics.off() plot.new() par(oma = c(4, 1, 1, 1)) two <- FALSE if (sum(c(any(is.nan(cusum.test$process)), any(is.nan(mosum.test$process)))) >0){ par(mfrow = c(1,2)) two <- TRUE } else { par(mfrow = c(2,2)) } if (!any(is.nan(cusum.test$process))){ plot(cusum.test) } cusumSq(modelECM$model) if(!any(is.nan(mosum.test$process))){ plot(mosum.test) } if (two){ par(fig = c(0, 1, 0, 1), oma = c(0, 0, 0, 0), mar = c(0, 0, 0, 0), new = TRUE) plot.new() legend("bottom", c("Recursive residuals", "5% limits"), xpd = TRUE, horiz = TRUE, inset = 0, bty = "n", col = c("black" , "red"), lwd=2, cex = 1) } else { plot.new() legend("top", c("Recursive residuals", "5% limits"), col = c("black" , "red"), xpd = TRUE, bty = "o", lwd = 2, cex = 1) } } if (ECM){ cat("------------------------------------------------------", "\n") cat("Error Correction Model Output: \n") summary(modelECM) cat("------------------------------------------------------", "\n") cat("Long-run coefficients: \n") if (case == 1){ print(modelFull$model$coefficients[1:NumVar]) } else { print(modelFull$model$coefficients[2:(NumVar+1)]) } cat(" ", "\n") } if (ECM){ return(list(model = list(modelNull = modelNull, modelFull = modelFull), F.stat = Fvalue , p = p , k = k, bg = bg, lb = lb , bp = bp, sp = sp, ECM = list(EC.t = ec, EC.model = modelECM$model , EC.beta = ecm.beta, EC.data = data.ecm), ARDL.model = modelFull$model ) ) } else { return(list(model = list(modelNull = modelNull, modelFull = modelFull), ARDL.model = modelFull$model, F.stat = Fvalue , p = p , k = k, bg = bg, lb = lb , bp = bp, sp = sp ) ) } }
po.tutorial <- function(tutorial="") { tutorials <- c("101", "compare", "13030", "scenario") tutorial_files <- c("1-po101", "2-compare", "3-13030", "4-scenario") if(!tutorial %in% tutorials) { print(paste0("Available tutorials: ", paste(tutorials, collapse=", "))) } else { tutorial_pos <- which(tutorials == tutorial) return(paste0(path.package("portfolio.optimization"), "/", tutorial_files[tutorial_pos], ".R")) } }
context("test-augmentation") test_that("augmentation method works with speedglm and glm", { xf <- matrix(runif(100 * 2), nrow = 100, ncol = 2) theta <- c(2, -2) log_odd <- apply(xf, 1, function(row) theta %*% row) yf <- rbinom(100, 1, 1 / (1 + exp(-log_odd))) xnf <- matrix(runif(100 * 2), nrow = 100, ncol = 2) modele_rejected <- augmentation(xf, xnf, yf) expect_s4_class(modele_rejected, "reject_infered") expect_equal(modele_rejected@method_name, "augmentation") expect_s3_class(modele_rejected@financed_model, "glmORlogicalORspeedglm") expect_true(is.na(modele_rejected@acceptance_model)) expect_s3_class(modele_rejected@infered_model, "glmORlogicalORspeedglm") with_mock( "scoringTools:::is_speedglm_installed" = function() FALSE, { expect_warning(modele_rejected <- augmentation(xf, xnf, yf)) expect_s4_class(modele_rejected, "reject_infered") expect_equal(modele_rejected@method_name, "augmentation") expect_s3_class(modele_rejected@financed_model, "glmORlogicalORspeedglm") expect_true(is.na(modele_rejected@acceptance_model)) expect_s3_class(modele_rejected@infered_model, "glmORlogicalORspeedglm") } ) })
get_afltables_stats <- function(start_date = "1897-01-01", end_date = Sys.Date()) { .Deprecated("fetch_player_stats_afltables") seasons <- lubridate::year(start_date):lubridate::year(end_date) fetch_player_stats_afltables(season = seasons) }
HMM_simulation <- function(size, m, delta = rep(1 / m, times = m), gamma = 0.8 * diag(m) + rep(0.2 / m, times = m), distribution_class, distribution_theta, obs_range=c(NA,NA), obs_round=FALSE, obs_non_neg = FALSE, plotting = 0) { if (!exists('delta')) { delta <- rep(1 / m, times = m) } if (!exists('gamma')) { gamma <- 0.8 * diag(m) + rep(0.2 / m, times = m) } markov_chain <- sample(x = seq(1, m, by = 1), 1, prob = delta) for (i in 2:size) { last_state <- markov_chain[i - 1] markov_chain <- c(markov_chain, sample(x = seq(1, m, by=1), 1, prob = gamma[last_state, ])) } observations <- rep(NA, times = size) if (distribution_class == "pois") { obs_dist_means <- distribution_theta$lambda means_along_markov_chain <- NULL for (i in 1:size) { means_along_markov_chain <- c(means_along_markov_chain, distribution_theta$lambda[markov_chain[i]]) } for (i in 1:size) { observations[i] <- rpois(n = 1, lambda = distribution_theta$lambda[markov_chain[i]]) if (any(!is.na(obs_range))) { if (!is.na(obs_range[1]) & !is.na(obs_range[2])) { while(observations[i] < obs_range[1] | observations[i] > obs_range[2]) { observations[i] <- rpois(n = 1, lambda = distribution_theta$lambda[markov_chain[i]]) } } if (!is.na(obs_range[1]) & is.na(obs_range[2])) { while(observations[i] < obs_range[1]) { observations[i] <- rpois(n = 1, lambda = distribution_theta$lambda[markov_chain[i]]) } } if (is.na(obs_range[1]) & is.na(obs_range[2])) { while(observations[i] > obs_range[2]) { observations[i] <- rpois(n = 1, lambda = distribution_theta$lambda[markov_chain[i]]) } } } } } if (distribution_class == "norm") { obs_dist_means <- distribution_theta$mean means_along_markov_chain <- NULL for(i in 1:size) { means_along_markov_chain <- c(means_along_markov_chain, distribution_theta$mean[markov_chain[i]]) } for (i in 1:size) { observations[i] <- rnorm(n = 1, mean = distribution_theta$mean[markov_chain[i]], sd = distribution_theta$sd[markov_chain[i]]) if (any(!is.na(obs_range))) { if (!is.na(obs_range[1]) & !is.na(obs_range[2])) { while(observations[i] < obs_range[1] | observations[i] > obs_range[2]) { observations[i] <- rnorm(n = 1, mean = distribution_theta$mean[markov_chain[i]], sd = distribution_theta$sd[markov_chain[i]]) } } if (!is.na(obs_range[1]) & is.na(obs_range[2])) { while(observations[i] < obs_range[1]) { observations[i] <- rnorm(n = 1, mean = distribution_theta$mean[markov_chain[i]], sd = distribution_theta$sd[markov_chain[i]]) } } if (is.na(obs_range[1]) & is.na(obs_range[2])) { while(observations[i] > obs_range[2]) { observations[i] <- rnorm(n = 1, mean = distribution_theta$mean[markov_chain[i]], sd = distribution_theta$sd[markov_chain[i]]) } } } if (obs_non_neg == TRUE) { if (observations[i] < 0) { observations[i] <- 0 } } } } if (distribution_class == "genpois") { obs_dist_means <- distribution_theta$lambda1 / (1 - distribution_theta$lambda2) means_along_markov_chain <- NULL for (i in 1:size) { means_along_markov_chain <- c(means_along_markov_chain, (distribution_theta$lambda1[markov_chain[i]]) / (1 - distribution_theta$lambda2[markov_chain[i]])) } for (i in 1:size) { observations[i] <- rgenpois(n = 1, lambda1 = distribution_theta$lambda1[markov_chain[i]], lambda2 = distribution_theta$lambda2[markov_chain[i]]) if (any(!is.na(obs_range))) { if (!is.na(obs_range[1]) & !is.na(obs_range[2])) { while(observations[i] < obs_range[1] | observations[i] > obs_range[2]) { observations[i] <- rgenpois(n = 1, lambda1 = distribution_theta$lambda1[markov_chain[i]], lambda2 = distribution_theta$lambda2[markov_chain[i]]) } } if (!is.na(obs_range[1]) & is.na(obs_range[2])) { while(observations[i] < obs_range[1]) { observations[i] <- rgenpois(n = 1, lambda1 = distribution_theta$lambda1[markov_chain[i]], lambda2 = distribution_theta$lambda2[markov_chain[i]]) } } if(is.na(obs_range[1]) & is.na(obs_range[2])) { while(observations[i] > obs_range[2]) { observations[i] <- rgenpois(n = 1, lambda1 = distribution_theta$lambda1[markov_chain[i]], lambda2 = distribution_theta$lambda2[markov_chain[i]]) } } } } } if (distribution_class == "geom") { obs_dist_means <- distribution_theta$prob means_along_markov_chain <- NULL for (i in 1:size) { means_along_markov_chain <- c(means_along_markov_chain, distribution_theta$prob[markov_chain[i]]) } for (i in 1:size) { observations[i] <- rgeom(n = 1, prob = distribution_theta$prob[markov_chain[i]]) if (any(!is.na(obs_range))) { if (!is.na(obs_range[1]) & !is.na(obs_range[2])) { while(observations[i] < obs_range[1] | observations[i] > obs_range[2]) { observations[i] <- rgeom(n = 1,prob = distribution_theta$prob[markov_chain[i]]) } } if (!is.na(obs_range[1]) & is.na(obs_range[2])) { while(observations[i] < obs_range[1]) { observations[i] <- rgeom(n = 1,prob = distribution_theta$prob[markov_chain[i]]) } } if (is.na(obs_range[1]) & is.na(obs_range[2])) { while(observations[i] > obs_range[2]) { observations[i] <- rgeom(n = 1, prob = distribution_theta$prob[markov_chain[i]]) } } } } } if (!is.na(plotting)) { if (plotting == 0) { par(mfrow=c(2,2)) plot(markov_chain, xlab ='t', main ='simulated (hidden) Markov chain', col = "green", type = 'o', ylab = "states") plot(means_along_markov_chain, xlab = 't', main = 'means along Markov chain', col = "green", type = 'o', ylab = 'observation') plot(observations, xlab = 't', main = 'observations along Markov chain') abline(h = obs_dist_means, col = "grey50", lty = "dashed") lines(means_along_markov_chain, xlab = 'time', main = 'simulation data', type = "l", col = "green") plot(observations, xlab = 't', main = 'simulated observations') par(mfrow=c(1,1)) plot(markov_chain, xlab = 't', main = 'simulated (hidden) Markov chain', col = "green", type = 'o', ylab = "states") plot(means_along_markov_chain, xlab = 't', main = 'means along Markov chain', col = "green", type = 'o', ylab = 'observation') plot(observations, xlab = 't', main = 'observations along Markov chain') abline(h = obs_dist_means, col = "grey50", lty = "dashed") lines(means_along_markov_chain, xlab = 'time', main = 'simulation data', type = "l", col = "green") plot(observations, xlab = 't', main = 'simulated observations') par(mfrow=c(1,1)) } if (plotting == 1) { par(mfrow=c(2,2)) plot(markov_chain, xlab = 't', main = 'simulated (hidden) Markov chain', col = "green", type = 'o', ylab = "states") plot(means_along_markov_chain, xlab = 't', main = 'means along Markov chain', col = "green", type = 'o', ylab = 'observation') plot(observations, xlab = 't', main = 'observations along Markov chain') abline(h = obs_dist_means, col = "grey50", lty = "dashed") lines(means_along_markov_chain, xlab = 'time', main = 'simulation data', type = "l", col = "green") plot(observations, xlab = 't', main = 'simulated observations') par(mfrow=c(1,1)) } if (plotting == 2) { plot(markov_chain, xlab = 't', main = 'simulated (hidden) Markov chain', col = "green", type = 'o', ylab = "states") } if (plotting == 3) { plot(means_along_markov_chain, xlab = 't', main = 'means along Markov chain', col = "green", type = 'o', ylab = 'observation') } if (plotting == 4) { plot(observations, xlab = 't', main = 'observations along Markov chain') abline(h = obs_dist_means, col = "grey50", lty = "dashed") lines(means_along_markov_chain, xlab = 'time', main = 'simulation data', type = "l", col = "green") } if (plotting == 5) { plot(observations, xlab = 't', main = 'simulated observations') } } if(obs_round == TRUE) { observations <- round(observations) } return(list(size = size, m = m, delta = delta, gamma = gamma, distribution_class = distribution_class, distribution_theta = distribution_theta, markov_chain = markov_chain, means_along_markov_chain = means_along_markov_chain, observations = observations)) }
get_apsimx_json <- function(model = "Wheat", wrt.dir = ".", cleanup = FALSE){ st0 <- "https://raw.githubusercontent.com/APSIMInitiative/ApsimX/master/Models/Resources" str <- paste0(st0, "/", model, ".json") dst <- file.path(wrt.dir, paste0(model, ".json")) utils::download.file(url = str, destfile = dst) ans <- jsonlite::read_json(dst) if(cleanup) unlink(dst) invisible(ans) } insert_replacement_node <- function(file, src.dir, wrt.dir, rep.node, rep.node.position = 1, new.core.position = rep.node.position + 1, edit.tag = "-edited", overwrite = FALSE, verbose = TRUE, root){ .check_apsim_name(file) if(missing(wrt.dir)) wrt.dir <- src.dir file.names <- dir(path = src.dir, pattern=".apsimx$", ignore.case=TRUE) if(length(file.names) == 0){ stop("There are no .apsimx files in the specified directory to edit.") } file <- match.arg(file, file.names) if(apsimx_filetype(file = file, src.dir = src.dir) != "json") stop("This function only edits JSON files") apsimx_json <- jsonlite::read_json(file.path(src.dir, file)) wcore <- grep("Core.Simulation", apsimx_json$Children) wdatastore <- grep("Models.Storage.DataStore", apsimx_json$Children) if(verbose){ cat("Simulation(s) is/are in node(s)", wcore, "\n") cat("Datastore(s) is/are in node(s)", wdatastore, "\n") } if(rep.node.position == wdatastore) warning("Replacement node will overwrite DataStore") if(new.core.position == wdatastore) warning("Simulations node will overwrite DataStore") rep.node$ExplorerWidth <- NULL rep.node$Version <- NULL rep.node$Name <- "Replacements" rep.node$`$type` <- "Models.Core.Replacements, Models" if(length(wcore) != length(new.core.position)) stop("length of new.core.position should be equal to the number of core simulations") for(i in seq_along(new.core.position)){ apsimx_json$Children[[new.core.position[i]]] <- apsimx_json$Children[[wcore[i]]] } apsimx_json$Children[[rep.node.position]] <- rep.node if(overwrite == FALSE){ wr.path <- paste0(wrt.dir, "/", tools::file_path_sans_ext(file), edit.tag, ".apsimx") }else{ wr.path <- paste0(wrt.dir, "/", file) } jsonlite::write_json(apsimx_json, path = wr.path, pretty = TRUE, digits = NA, auto_unbox = TRUE, null = "null") if(verbose){ cat("Created: ", wr.path,"\n") } }
knitr::opts_chunk$set(echo = TRUE) library(RColorBrewer) library(rnpn) library(rgdal) library(raster) knitr::include_graphics("figures/7-plot.png")
output$amBullet0 <- rAmCharts::renderAmCharts({ amBullet(value = 65) }) output$code_amBullet0 <- renderText({ " amBullet(value = 65) " }) output$amBullet0 <- rAmCharts::renderAmCharts({ amBullet(value = 65) }) output$code_amBullet0 <- renderText({ " amBullet(value = 65) " }) output$amBullet1 <- rAmCharts::renderAmCharts({ amBullet(value = 65, val_color = "purple", limit_color = " }) output$code_amBullet1 <- renderText({ " amBullet(value = 65, val_color = 'purple', limit_color = ' " }) output$amBullet2 <- rAmCharts::renderAmCharts({ amBullet(value = 65, main = 'Bullet chart 1', mainSize = 15) }) output$code_amBullet2 <- renderText({ " amBullet(value = 65, main = 'Bullet chart 1', mainSize = 15) " })
context("Testing the Group Sequential and Inverse Normal Design Functionality") test_that("'getDesignInverseNormal' with default parameters: parameters and results are as expected", { x0 <- getDesignInverseNormal() expect_equal(x0$alphaSpent, c(0.00025917372, 0.0071600594, 0.02499999), tolerance = 1e-07) expect_equal(x0$criticalValues, c(3.4710914, 2.4544323, 2.0040356), tolerance = 1e-07) expect_equal(x0$stageLevels, c(0.00025917372, 0.0070553616, 0.022533125), tolerance = 1e-07) if (isTRUE(.isCompleteUnitTestSetEnabled())) { invisible(capture.output(expect_error(print(x0), NA))) expect_output(print(x0)$show()) invisible(capture.output(expect_error(summary(x0), NA))) expect_output(summary(x0)$show()) x0CodeBased <- eval(parse(text = getObjectRCode(x0, stringWrapParagraphWidth = NULL))) expect_equal(x0CodeBased$alphaSpent, x0$alphaSpent, tolerance = 1e-05) expect_equal(x0CodeBased$criticalValues, x0$criticalValues, tolerance = 1e-05) expect_equal(x0CodeBased$stageLevels, x0$stageLevels, tolerance = 1e-05) expect_type(names(x0), "character") df <- as.data.frame(x0) expect_s3_class(df, "data.frame") expect_true(nrow(df) > 0 && ncol(df) > 0) mtx <- as.matrix(x0) expect_true(is.matrix(mtx)) expect_true(nrow(mtx) > 0 && ncol(mtx) > 0) } }) test_that("'getDesignInverseNormal' with type of design = 'asHSD', 'bsHSD', 'asKD', and 'bsKD'", { .skipTestIfDisabled() x1 <- getDesignInverseNormal(kMax = 3, informationRates = c(0.2, 0.4, 1), alpha = 0.03, sided = 1, beta = 0.14, typeOfDesign = "asHSD", gammaA = 0) expect_equal(x1$alphaSpent, c(0.006, 0.012, 0.02999999), tolerance = 1e-07) expect_equal(x1$criticalValues, c(2.5121443, 2.4228747, 2.0280392), tolerance = 1e-07) expect_equal(x1$stageLevels, c(0.006, 0.0076991189, 0.021278125), tolerance = 1e-07) if (isTRUE(.isCompleteUnitTestSetEnabled())) { invisible(capture.output(expect_error(print(x1), NA))) expect_output(print(x1)$show()) invisible(capture.output(expect_error(summary(x1), NA))) expect_output(summary(x1)$show()) x1CodeBased <- eval(parse(text = getObjectRCode(x1, stringWrapParagraphWidth = NULL))) expect_equal(x1CodeBased$alphaSpent, x1$alphaSpent, tolerance = 1e-05) expect_equal(x1CodeBased$criticalValues, x1$criticalValues, tolerance = 1e-05) expect_equal(x1CodeBased$stageLevels, x1$stageLevels, tolerance = 1e-05) expect_type(names(x1), "character") df <- as.data.frame(x1) expect_s3_class(df, "data.frame") expect_true(nrow(df) > 0 && ncol(df) > 0) mtx <- as.matrix(x1) expect_true(is.matrix(mtx)) expect_true(nrow(mtx) > 0 && ncol(mtx) > 0) } y1 <- getDesignCharacteristics(x1) expect_equal(y1$nFixed, 8.7681899, tolerance = 1e-07) expect_equal(y1$shift, 9.4594102, tolerance = 1e-07) expect_equal(y1$inflationFactor, 1.0788327, tolerance = 1e-07) expect_equal(y1$information, c(1.891882, 3.7837641, 9.4594102), tolerance = 1e-07) expect_equal(y1$power, c(0.12783451, 0.34055165, 0.86), tolerance = 1e-07) expect_equal(y1$rejectionProbabilities, c(0.12783451, 0.21271713, 0.51944835), tolerance = 1e-07) expect_equal(y1$futilityProbabilities, c(9.8658765e-10, 9.7584074e-10), tolerance = 1e-07) expect_equal(y1$averageSampleNumber1, 0.83081135, tolerance = 1e-07) expect_equal(y1$averageSampleNumber01, 1.0142116, tolerance = 1e-07) expect_equal(y1$averageSampleNumber0, 1.0697705, tolerance = 1e-07) if (isTRUE(.isCompleteUnitTestSetEnabled())) { invisible(capture.output(expect_error(print(y1), NA))) expect_output(print(y1)$show()) invisible(capture.output(expect_error(summary(y1), NA))) expect_output(summary(y1)$show()) y1CodeBased <- eval(parse(text = getObjectRCode(y1, stringWrapParagraphWidth = NULL))) expect_equal(y1CodeBased$nFixed, y1$nFixed, tolerance = 1e-05) expect_equal(y1CodeBased$shift, y1$shift, tolerance = 1e-05) expect_equal(y1CodeBased$inflationFactor, y1$inflationFactor, tolerance = 1e-05) expect_equal(y1CodeBased$information, y1$information, tolerance = 1e-05) expect_equal(y1CodeBased$power, y1$power, tolerance = 1e-05) expect_equal(y1CodeBased$rejectionProbabilities, y1$rejectionProbabilities, tolerance = 1e-05) expect_equal(y1CodeBased$futilityProbabilities, y1$futilityProbabilities, tolerance = 1e-05) expect_equal(y1CodeBased$averageSampleNumber1, y1$averageSampleNumber1, tolerance = 1e-05) expect_equal(y1CodeBased$averageSampleNumber01, y1$averageSampleNumber01, tolerance = 1e-05) expect_equal(y1CodeBased$averageSampleNumber0, y1$averageSampleNumber0, tolerance = 1e-05) expect_type(names(y1), "character") df <- as.data.frame(y1) expect_s3_class(df, "data.frame") expect_true(nrow(df) > 0 && ncol(df) > 0) mtx <- as.matrix(y1) expect_true(is.matrix(mtx)) expect_true(nrow(mtx) > 0 && ncol(mtx) > 0) } x2 <- getDesignInverseNormal(kMax = 3, informationRates = c(0.2, 0.4, 1), alpha = 0.07, sided = 1, beta = 0.14, typeOfDesign = "asHSD", gammaA = -1, typeBetaSpending = "bsHSD", gammaB = -2) expect_equal(x2$power, c(0.12038954, 0.32895265, 0.86), tolerance = 1e-07) expect_equal(x2$futilityBounds, c(-1.1063623, -0.35992438), tolerance = 1e-07) expect_equal(x2$alphaSpent, c(0.0090195874, 0.020036136, 0.06999999), tolerance = 1e-07) expect_equal(x2$betaSpent, c(0.010777094, 0.026854629, 0.14), tolerance = 1e-07) expect_equal(x2$criticalValues, c(2.364813, 2.1928805, 1.5660474), tolerance = 1e-07) expect_equal(x2$stageLevels, c(0.0090195874, 0.014157994, 0.058668761), tolerance = 1e-07) if (isTRUE(.isCompleteUnitTestSetEnabled())) { invisible(capture.output(expect_error(print(x2), NA))) expect_output(print(x2)$show()) invisible(capture.output(expect_error(summary(x2), NA))) expect_output(summary(x2)$show()) x2CodeBased <- eval(parse(text = getObjectRCode(x2, stringWrapParagraphWidth = NULL))) expect_equal(x2CodeBased$power, x2$power, tolerance = 1e-05) expect_equal(x2CodeBased$futilityBounds, x2$futilityBounds, tolerance = 1e-05) expect_equal(x2CodeBased$alphaSpent, x2$alphaSpent, tolerance = 1e-05) expect_equal(x2CodeBased$betaSpent, x2$betaSpent, tolerance = 1e-05) expect_equal(x2CodeBased$criticalValues, x2$criticalValues, tolerance = 1e-05) expect_equal(x2CodeBased$stageLevels, x2$stageLevels, tolerance = 1e-05) expect_type(names(x2), "character") df <- as.data.frame(x2) expect_s3_class(df, "data.frame") expect_true(nrow(df) > 0 && ncol(df) > 0) mtx <- as.matrix(x2) expect_true(is.matrix(mtx)) expect_true(nrow(mtx) > 0 && ncol(mtx) > 0) } y2 <- getDesignCharacteristics(x2) expect_equal(y2$nFixed, 6.5337002, tolerance = 1e-07) expect_equal(y2$shift, 7.1015943, tolerance = 1e-07) expect_equal(y2$inflationFactor, 1.0869177, tolerance = 1e-07) expect_equal(y2$information, c(1.4203189, 2.8406377, 7.1015943), tolerance = 1e-07) expect_equal(y2$power, c(0.12038953, 0.32895265, 0.86), tolerance = 1e-07) expect_equal(y2$rejectionProbabilities, c(0.12038953, 0.20856311, 0.53104735), tolerance = 1e-07) expect_equal(y2$futilityProbabilities, c(0.010777094, 0.016077535), tolerance = 1e-07) expect_equal(y2$averageSampleNumber1, 0.82636428, tolerance = 1e-07) expect_equal(y2$averageSampleNumber01, 0.91614201, tolerance = 1e-07) expect_equal(y2$averageSampleNumber0, 0.79471657, tolerance = 1e-07) if (isTRUE(.isCompleteUnitTestSetEnabled())) { invisible(capture.output(expect_error(print(y2), NA))) expect_output(print(y2)$show()) invisible(capture.output(expect_error(summary(y2), NA))) expect_output(summary(y2)$show()) y2CodeBased <- eval(parse(text = getObjectRCode(y2, stringWrapParagraphWidth = NULL))) expect_equal(y2CodeBased$nFixed, y2$nFixed, tolerance = 1e-05) expect_equal(y2CodeBased$shift, y2$shift, tolerance = 1e-05) expect_equal(y2CodeBased$inflationFactor, y2$inflationFactor, tolerance = 1e-05) expect_equal(y2CodeBased$information, y2$information, tolerance = 1e-05) expect_equal(y2CodeBased$power, y2$power, tolerance = 1e-05) expect_equal(y2CodeBased$rejectionProbabilities, y2$rejectionProbabilities, tolerance = 1e-05) expect_equal(y2CodeBased$futilityProbabilities, y2$futilityProbabilities, tolerance = 1e-05) expect_equal(y2CodeBased$averageSampleNumber1, y2$averageSampleNumber1, tolerance = 1e-05) expect_equal(y2CodeBased$averageSampleNumber01, y2$averageSampleNumber01, tolerance = 1e-05) expect_equal(y2CodeBased$averageSampleNumber0, y2$averageSampleNumber0, tolerance = 1e-05) expect_type(names(y2), "character") df <- as.data.frame(y2) expect_s3_class(df, "data.frame") expect_true(nrow(df) > 0 && ncol(df) > 0) mtx <- as.matrix(y2) expect_true(is.matrix(mtx)) expect_true(nrow(mtx) > 0 && ncol(mtx) > 0) } x3 <- getDesignInverseNormal(kMax = 3, informationRates = c(0.3, 0.7, 1), alpha = 0.03, sided = 1, beta = 0.34, typeOfDesign = "asKD", gammaA = 2.2, typeBetaSpending = "bsKD", gammaB = 3.2) expect_equal(x3$power, c(0.058336437, 0.39824601, 0.66), tolerance = 1e-07) expect_equal(x3$futilityBounds, c(-1.1558435, 0.72836893), tolerance = 1e-07) expect_equal(x3$alphaSpent, c(0.0021222083, 0.013687904, 0.02999999), tolerance = 1e-07) expect_equal(x3$betaSpent, c(0.0072155083, 0.1085907, 0.34), tolerance = 1e-07) expect_equal(x3$criticalValues, c(2.8594012, 2.2435708, 1.9735737), tolerance = 1e-07) expect_equal(x3$stageLevels, c(0.0021222083, 0.012430015, 0.02421512), tolerance = 1e-07) if (isTRUE(.isCompleteUnitTestSetEnabled())) { invisible(capture.output(expect_error(print(x3), NA))) expect_output(print(x3)$show()) invisible(capture.output(expect_error(summary(x3), NA))) expect_output(summary(x3)$show()) x3CodeBased <- eval(parse(text = getObjectRCode(x3, stringWrapParagraphWidth = NULL))) expect_equal(x3CodeBased$power, x3$power, tolerance = 1e-05) expect_equal(x3CodeBased$futilityBounds, x3$futilityBounds, tolerance = 1e-05) expect_equal(x3CodeBased$alphaSpent, x3$alphaSpent, tolerance = 1e-05) expect_equal(x3CodeBased$betaSpent, x3$betaSpent, tolerance = 1e-05) expect_equal(x3CodeBased$criticalValues, x3$criticalValues, tolerance = 1e-05) expect_equal(x3CodeBased$stageLevels, x3$stageLevels, tolerance = 1e-05) expect_type(names(x3), "character") df <- as.data.frame(x3) expect_s3_class(df, "data.frame") expect_true(nrow(df) > 0 && ncol(df) > 0) mtx <- as.matrix(x3) expect_true(is.matrix(mtx)) expect_true(nrow(mtx) > 0 && ncol(mtx) > 0) } y3 <- getDesignCharacteristics(x3) expect_equal(y3$nFixed, 5.2590265, tolerance = 1e-07) expect_equal(y3$shift, 5.5513711, tolerance = 1e-07) expect_equal(y3$inflationFactor, 1.0555891, tolerance = 1e-07) expect_equal(y3$information, c(1.6654113, 3.8859597, 5.5513711), tolerance = 1e-07) expect_equal(y3$power, c(0.058336437, 0.39824601, 0.66), tolerance = 1e-07) expect_equal(y3$rejectionProbabilities, c(0.058336437, 0.33990957, 0.26175399), tolerance = 1e-07) expect_equal(y3$futilityProbabilities, c(0.0072155083, 0.10137519), tolerance = 1e-07) expect_equal(y3$averageSampleNumber1, 0.86740735, tolerance = 1e-07) expect_equal(y3$averageSampleNumber01, 0.87361708, tolerance = 1e-07) expect_equal(y3$averageSampleNumber0, 0.75480974, tolerance = 1e-07) if (isTRUE(.isCompleteUnitTestSetEnabled())) { invisible(capture.output(expect_error(print(y3), NA))) expect_output(print(y3)$show()) invisible(capture.output(expect_error(summary(y3), NA))) expect_output(summary(y3)$show()) y3CodeBased <- eval(parse(text = getObjectRCode(y3, stringWrapParagraphWidth = NULL))) expect_equal(y3CodeBased$nFixed, y3$nFixed, tolerance = 1e-05) expect_equal(y3CodeBased$shift, y3$shift, tolerance = 1e-05) expect_equal(y3CodeBased$inflationFactor, y3$inflationFactor, tolerance = 1e-05) expect_equal(y3CodeBased$information, y3$information, tolerance = 1e-05) expect_equal(y3CodeBased$power, y3$power, tolerance = 1e-05) expect_equal(y3CodeBased$rejectionProbabilities, y3$rejectionProbabilities, tolerance = 1e-05) expect_equal(y3CodeBased$futilityProbabilities, y3$futilityProbabilities, tolerance = 1e-05) expect_equal(y3CodeBased$averageSampleNumber1, y3$averageSampleNumber1, tolerance = 1e-05) expect_equal(y3CodeBased$averageSampleNumber01, y3$averageSampleNumber01, tolerance = 1e-05) expect_equal(y3CodeBased$averageSampleNumber0, y3$averageSampleNumber0, tolerance = 1e-05) expect_type(names(y3), "character") df <- as.data.frame(y3) expect_s3_class(df, "data.frame") expect_true(nrow(df) > 0 && ncol(df) > 0) mtx <- as.matrix(y3) expect_true(is.matrix(mtx)) expect_true(nrow(mtx) > 0 && ncol(mtx) > 0) } }) test_that("'getDesignInverseNormal' with binding futility bounds", { x4 <- getDesignInverseNormal(kMax = 4, alpha = 0.035, futilityBounds = rep(0.5244, 3), bindingFutility = TRUE, typeOfDesign = "WT", deltaWT = 0.4) expect_equal(x4$alphaSpent, c(0.0099446089, 0.020756912, 0.029001537, 0.03499999), tolerance = 1e-07) expect_equal(x4$criticalValues, c(2.3284312, 2.1725031, 2.0861776, 2.0270171), tolerance = 1e-07) expect_equal(x4$stageLevels, c(0.0099446089, 0.014908866, 0.018481267, 0.021330332), tolerance = 1e-07) if (isTRUE(.isCompleteUnitTestSetEnabled())) { invisible(capture.output(expect_error(print(x4), NA))) expect_output(print(x4)$show()) invisible(capture.output(expect_error(summary(x4), NA))) expect_output(summary(x4)$show()) x4CodeBased <- eval(parse(text = getObjectRCode(x4, stringWrapParagraphWidth = NULL))) expect_equal(x4CodeBased$alphaSpent, x4$alphaSpent, tolerance = 1e-05) expect_equal(x4CodeBased$criticalValues, x4$criticalValues, tolerance = 1e-05) expect_equal(x4CodeBased$stageLevels, x4$stageLevels, tolerance = 1e-05) expect_type(names(x4), "character") df <- as.data.frame(x4) expect_s3_class(df, "data.frame") expect_true(nrow(df) > 0 && ncol(df) > 0) mtx <- as.matrix(x4) expect_true(is.matrix(mtx)) expect_true(nrow(mtx) > 0 && ncol(mtx) > 0) } }) test_that("'getDesignGroupSequential' with type of design = 'asUser'", { .skipTestIfDisabled() x5 <- getDesignGroupSequential(typeOfDesign = "asUser", userAlphaSpending = c(0.01, 0.02, 0.03, 0.05)) expect_equal(x5$alphaSpent, c(0.01, 0.02, 0.03, 0.04999999), tolerance = 1e-07) expect_equal(x5$criticalValues, c(2.3263479, 2.2192994, 2.1201347, 1.8189562), tolerance = 1e-07) expect_equal(x5$stageLevels, c(0.01, 0.01323318, 0.016997342, 0.034459058), tolerance = 1e-07) if (isTRUE(.isCompleteUnitTestSetEnabled())) { invisible(capture.output(expect_error(print(x5), NA))) expect_output(print(x5)$show()) invisible(capture.output(expect_error(summary(x5), NA))) expect_output(summary(x5)$show()) x5CodeBased <- eval(parse(text = getObjectRCode(x5, stringWrapParagraphWidth = NULL))) expect_equal(x5CodeBased$alphaSpent, x5$alphaSpent, tolerance = 1e-05) expect_equal(x5CodeBased$criticalValues, x5$criticalValues, tolerance = 1e-05) expect_equal(x5CodeBased$stageLevels, x5$stageLevels, tolerance = 1e-05) expect_type(names(x5), "character") df <- as.data.frame(x5) expect_s3_class(df, "data.frame") expect_true(nrow(df) > 0 && ncol(df) > 0) mtx <- as.matrix(x5) expect_true(is.matrix(mtx)) expect_true(nrow(mtx) > 0 && ncol(mtx) > 0) } }) test_that("'getDesignGroupSequential' with type of design = 'asOF' and 'bsUser'", { x6 <- getDesignGroupSequential(kMax = 3, alpha = 0.03, typeOfDesign = "asOF", typeBetaSpending = "bsUser", bindingFutility = FALSE, userBetaSpending = c(0.01, 0.05, 0.3)) expect_equal(x6$power, c(0.014685829, 0.33275272, 0.7), tolerance = 1e-07) expect_equal(x6$futilityBounds, c(-0.92327973, 0.29975473), tolerance = 1e-07) expect_equal(x6$alphaSpent, c(0.00017079385, 0.0078650906, 0.03), tolerance = 1e-07) expect_equal(x6$betaSpent, c(0.01, 0.05, 0.3), tolerance = 1e-07) expect_equal(x6$criticalValues, c(3.5815302, 2.417863, 1.9175839), tolerance = 1e-07) expect_equal(x6$stageLevels, c(0.00017079385, 0.0078059773, 0.027581894), tolerance = 1e-07) if (isTRUE(.isCompleteUnitTestSetEnabled())) { invisible(capture.output(expect_error(print(x6), NA))) expect_output(print(x6)$show()) invisible(capture.output(expect_error(summary(x6), NA))) expect_output(summary(x6)$show()) x6CodeBased <- eval(parse(text = getObjectRCode(x6, stringWrapParagraphWidth = NULL))) expect_equal(x6CodeBased$power, x6$power, tolerance = 1e-05) expect_equal(x6CodeBased$futilityBounds, x6$futilityBounds, tolerance = 1e-05) expect_equal(x6CodeBased$alphaSpent, x6$alphaSpent, tolerance = 1e-05) expect_equal(x6CodeBased$betaSpent, x6$betaSpent, tolerance = 1e-05) expect_equal(x6CodeBased$criticalValues, x6$criticalValues, tolerance = 1e-05) expect_equal(x6CodeBased$stageLevels, x6$stageLevels, tolerance = 1e-05) expect_type(names(x6), "character") df <- as.data.frame(x6) expect_s3_class(df, "data.frame") expect_true(nrow(df) > 0 && ncol(df) > 0) mtx <- as.matrix(x6) expect_true(is.matrix(mtx)) expect_true(nrow(mtx) > 0 && ncol(mtx) > 0) } }) test_that("'getDesignGroupSequential' with type of design = 'asOF' and 'bsKD' and binding futility bounds", { .skipTestIfDisabled() x7 <- getDesignGroupSequential(kMax = 3, alpha = 0.03, typeOfDesign = "asOF", typeBetaSpending = "bsKD", informationRates = c(0.4, 0.75, 1), gammaB = 2.5, bindingFutility = TRUE) expect_equal(x7$power, c(0.068966747, 0.55923121, 0.8), tolerance = 1e-07) expect_equal(x7$futilityBounds, c(-0.29391761, 1.0736333), tolerance = 1e-07) expect_equal(x7$alphaSpent, c(0.00060088601, 0.012217314, 0.03), tolerance = 1e-07) expect_equal(x7$betaSpent, c(0.020238577, 0.097427858, 0.2), tolerance = 1e-07) expect_equal(x7$criticalValues, c(3.2384592, 2.2562378, 1.905812), tolerance = 1e-07) expect_equal(x7$stageLevels, c(0.00060088601, 0.012027871, 0.0283373), tolerance = 1e-07) if (isTRUE(.isCompleteUnitTestSetEnabled())) { invisible(capture.output(expect_error(print(x7), NA))) expect_output(print(x7)$show()) invisible(capture.output(expect_error(summary(x7), NA))) expect_output(summary(x7)$show()) x7CodeBased <- eval(parse(text = getObjectRCode(x7, stringWrapParagraphWidth = NULL))) expect_equal(x7CodeBased$power, x7$power, tolerance = 1e-05) expect_equal(x7CodeBased$futilityBounds, x7$futilityBounds, tolerance = 1e-05) expect_equal(x7CodeBased$alphaSpent, x7$alphaSpent, tolerance = 1e-05) expect_equal(x7CodeBased$betaSpent, x7$betaSpent, tolerance = 1e-05) expect_equal(x7CodeBased$criticalValues, x7$criticalValues, tolerance = 1e-05) expect_equal(x7CodeBased$stageLevels, x7$stageLevels, tolerance = 1e-05) expect_type(names(x7), "character") df <- as.data.frame(x7) expect_s3_class(df, "data.frame") expect_true(nrow(df) > 0 && ncol(df) > 0) mtx <- as.matrix(x7) expect_true(is.matrix(mtx)) expect_true(nrow(mtx) > 0 && ncol(mtx) > 0) } }) test_that("'getDesignGroupSequential' with binding futility bounds ", { .skipTestIfDisabled() x8 <- getDesignGroupSequential(kMax = 4, alpha = 0.025, futilityBounds = rep(0.5244, 3), bindingFutility = TRUE, typeOfDesign = "WT", deltaWT = 0.4) expect_equal(x8$alphaSpent, c(0.0062828133, 0.013876673, 0.02015684, 0.02499999), tolerance = 1e-07) expect_equal(x8$criticalValues, c(2.4958485, 2.328709, 2.2361766, 2.1727623), tolerance = 1e-07) expect_equal(x8$stageLevels, c(0.0062828133, 0.0099372444, 0.012670104, 0.014899106), tolerance = 1e-07) if (isTRUE(.isCompleteUnitTestSetEnabled())) { invisible(capture.output(expect_error(print(x8), NA))) expect_output(print(x8)$show()) invisible(capture.output(expect_error(summary(x8), NA))) expect_output(summary(x8)$show()) x8CodeBased <- eval(parse(text = getObjectRCode(x8, stringWrapParagraphWidth = NULL))) expect_equal(x8CodeBased$alphaSpent, x8$alphaSpent, tolerance = 1e-05) expect_equal(x8CodeBased$criticalValues, x8$criticalValues, tolerance = 1e-05) expect_equal(x8CodeBased$stageLevels, x8$stageLevels, tolerance = 1e-05) expect_type(names(x8), "character") df <- as.data.frame(x8) expect_s3_class(df, "data.frame") expect_true(nrow(df) > 0 && ncol(df) > 0) mtx <- as.matrix(x8) expect_true(is.matrix(mtx)) expect_true(nrow(mtx) > 0 && ncol(mtx) > 0) } }) test_that("'getDesignGroupSequential' with Haybittle Peto boundaries ", { .skipTestIfDisabled() x9 <- getDesignGroupSequential(kMax = 4, alpha = 0.025, typeOfDesign = "HP") expect_equal(x9$alphaSpent, c(0.001349898, 0.0024617416, 0.0033695882, 0.025), tolerance = 1e-07) expect_equal(x9$criticalValues, c(3, 3, 3, 1.9827514), tolerance = 1e-07) expect_equal(x9$stageLevels, c(0.001349898, 0.001349898, 0.001349898, 0.023697604), tolerance = 1e-07) if (isTRUE(.isCompleteUnitTestSetEnabled())) { invisible(capture.output(expect_error(print(x9), NA))) expect_output(print(x9)$show()) invisible(capture.output(expect_error(summary(x9), NA))) expect_output(summary(x9)$show()) x9CodeBased <- eval(parse(text = getObjectRCode(x9, stringWrapParagraphWidth = NULL))) expect_equal(x9CodeBased$alphaSpent, x9$alphaSpent, tolerance = 1e-05) expect_equal(x9CodeBased$criticalValues, x9$criticalValues, tolerance = 1e-05) expect_equal(x9CodeBased$stageLevels, x9$stageLevels, tolerance = 1e-05) expect_type(names(x9), "character") df <- as.data.frame(x9) expect_s3_class(df, "data.frame") expect_true(nrow(df) > 0 && ncol(df) > 0) mtx <- as.matrix(x9) expect_true(is.matrix(mtx)) expect_true(nrow(mtx) > 0 && ncol(mtx) > 0) } }) test_that("'getDesignGroupSequential' with Pampallona Tsiatis boundaries ", { .skipTestIfDisabled() x10 <- getDesignGroupSequential(kMax = 3, alpha = 0.035, beta = 0.1, informationRates = c(0.3, 0.8, 1), typeOfDesign = "PT", sided = 1, bindingFutility = TRUE, deltaPT1 = 0.2, deltaPT0 = 0.3) expect_equal(x10$power, c(0.19834666, 0.83001122, 0.9), tolerance = 1e-07) expect_equal(x10$futilityBounds, c(-0.042079551, 1.4407359), tolerance = 1e-07) expect_equal(x10$alphaSpent, c(0.0038332428, 0.024917169, 0.035), tolerance = 1e-07) expect_equal(x10$betaSpent, c(0.031375367, 0.080734149, 0.099999999), tolerance = 1e-07) expect_equal(x10$criticalValues, c(2.6664156, 1.9867225, 1.8580792), tolerance = 1e-07) expect_equal(x10$stageLevels, c(0.0038332428, 0.023476576, 0.031578886), tolerance = 1e-07) if (isTRUE(.isCompleteUnitTestSetEnabled())) { invisible(capture.output(expect_error(print(x10), NA))) expect_output(print(x10)$show()) invisible(capture.output(expect_error(summary(x10), NA))) expect_output(summary(x10)$show()) x10CodeBased <- eval(parse(text = getObjectRCode(x10, stringWrapParagraphWidth = NULL))) expect_equal(x10CodeBased$power, x10$power, tolerance = 1e-05) expect_equal(x10CodeBased$futilityBounds, x10$futilityBounds, tolerance = 1e-05) expect_equal(x10CodeBased$alphaSpent, x10$alphaSpent, tolerance = 1e-05) expect_equal(x10CodeBased$betaSpent, x10$betaSpent, tolerance = 1e-05) expect_equal(x10CodeBased$criticalValues, x10$criticalValues, tolerance = 1e-05) expect_equal(x10CodeBased$stageLevels, x10$stageLevels, tolerance = 1e-05) expect_type(names(x10), "character") df <- as.data.frame(x10) expect_s3_class(df, "data.frame") expect_true(nrow(df) > 0 && ncol(df) > 0) mtx <- as.matrix(x10) expect_true(is.matrix(mtx)) expect_true(nrow(mtx) > 0 && ncol(mtx) > 0) } x11 <- getDesignGroupSequential(kMax = 3, alpha = 0.035, beta = 0.05, informationRates = c(0.3, 0.8, 1), typeOfDesign = "PT", sided = 2, bindingFutility = TRUE, deltaPT1 = 0.2, deltaPT0 = 0.3) expect_equal(x11$power, c(0.16615376, 0.88013007, 0.94999991), tolerance = 1e-07) expect_equal(x11$futilityBounds, c(NA_real_, 1.671433), tolerance = 1e-07) expect_equal(x11$alphaSpent, c(0.0019236202, 0.022017713, 0.035), tolerance = 1e-07) expect_equal(x11$betaSpent, c(0, 0.035025978, 0.05), tolerance = 1e-07) expect_equal(x11$criticalValues, c(3.1017782, 2.3111074, 2.1614596), tolerance = 1e-07) expect_equal(x11$stageLevels, c(0.00096181012, 0.010413463, 0.015329928), tolerance = 1e-07) if (isTRUE(.isCompleteUnitTestSetEnabled())) { invisible(capture.output(expect_error(print(x11), NA))) expect_output(print(x11)$show()) invisible(capture.output(expect_error(summary(x11), NA))) expect_output(summary(x11)$show()) x11CodeBased <- eval(parse(text = getObjectRCode(x11, stringWrapParagraphWidth = NULL))) expect_equal(x11CodeBased$power, x11$power, tolerance = 1e-05) expect_equal(x11CodeBased$futilityBounds, x11$futilityBounds, tolerance = 1e-05) expect_equal(x11CodeBased$alphaSpent, x11$alphaSpent, tolerance = 1e-05) expect_equal(x11CodeBased$betaSpent, x11$betaSpent, tolerance = 1e-05) expect_equal(x11CodeBased$criticalValues, x11$criticalValues, tolerance = 1e-05) expect_equal(x11CodeBased$stageLevels, x11$stageLevels, tolerance = 1e-05) expect_type(names(x11), "character") df <- as.data.frame(x11) expect_s3_class(df, "data.frame") expect_true(nrow(df) > 0 && ncol(df) > 0) mtx <- as.matrix(x11) expect_true(is.matrix(mtx)) expect_true(nrow(mtx) > 0 && ncol(mtx) > 0) } x12 <- getDesignGroupSequential(kMax = 3, alpha = 0.035, beta = 0.05, informationRates = c(0.3, 0.8, 1), typeOfDesign = "PT", sided = 2, bindingFutility = FALSE, deltaPT1 = 0.2, deltaPT0 = 0.3) expect_equal(x12$power, c(0.15712278, 0.87874666, 0.94999995), tolerance = 1e-07) expect_equal(x12$futilityBounds, c(NA_real_, 1.7090472), tolerance = 1e-07) expect_equal(x12$alphaSpent, c(0.0015647742, 0.019435851, 0.035), tolerance = 1e-07) expect_equal(x12$betaSpent, c(0, 0.034947415, 0.05), tolerance = 1e-07) expect_equal(x12$criticalValues, c(3.1623945, 2.356272, 2.2036998), tolerance = 1e-07) expect_equal(x12$stageLevels, c(0.00078238708, 0.009229697, 0.013772733), tolerance = 1e-07) if (isTRUE(.isCompleteUnitTestSetEnabled())) { invisible(capture.output(expect_error(print(x12), NA))) expect_output(print(x12)$show()) invisible(capture.output(expect_error(summary(x12), NA))) expect_output(summary(x12)$show()) x12CodeBased <- eval(parse(text = getObjectRCode(x12, stringWrapParagraphWidth = NULL))) expect_equal(x12CodeBased$power, x12$power, tolerance = 1e-05) expect_equal(x12CodeBased$futilityBounds, x12$futilityBounds, tolerance = 1e-05) expect_equal(x12CodeBased$alphaSpent, x12$alphaSpent, tolerance = 1e-05) expect_equal(x12CodeBased$betaSpent, x12$betaSpent, tolerance = 1e-05) expect_equal(x12CodeBased$criticalValues, x12$criticalValues, tolerance = 1e-05) expect_equal(x12CodeBased$stageLevels, x12$stageLevels, tolerance = 1e-05) expect_type(names(x12), "character") df <- as.data.frame(x12) expect_s3_class(df, "data.frame") expect_true(nrow(df) > 0 && ncol(df) > 0) mtx <- as.matrix(x12) expect_true(is.matrix(mtx)) expect_true(nrow(mtx) > 0 && ncol(mtx) > 0) } }) test_that("'getDesignInverseNormal': illegal arguments throw exceptions as expected", { expect_error(getDesignInverseNormal(typeOfDesign = C_TYPE_OF_DESIGN_AS_USER, userAlphaSpending = c(0.01, 0.02, 0.023, 0.023, 0.025), kMax = 4), paste0("Conflicting arguments: length of 'userAlphaSpending' (5) ", "must be equal to 'kMax' (4)"), fixed = TRUE) expect_error(getDesignInverseNormal(typeOfDesign = C_TYPE_OF_DESIGN_AS_USER, userAlphaSpending = c(0.01, 0.02, 0.023, 0.023, 0.021)), paste0("'userAlphaSpending' = c(0.01, 0.02, 0.023, 0.023, 0.021) must be a vector that ", "satisfies the following condition: 0 <= alpha_1 <= .. <= alpha_5 <= alpha = 0.021"), fixed = TRUE) expect_error(getDesignInverseNormal(typeOfDesign = "asUser", userAlphaSpending = c(0.01, 0.02, 0.023), alpha = 0.02), paste0("'userAlphaSpending' = c(0.01, 0.02, 0.023) must be a vector that ", "satisfies the following condition: 0 <= alpha_1 <= .. <= alpha_3 <= alpha = 0.02"), fixed = TRUE) expect_error(getDesignInverseNormal(typeOfDesign = C_TYPE_OF_DESIGN_WT, deltaWT = NA_real_), "Missing argument: parameter 'deltaWT' must be specified in design", fixed = TRUE) expect_error(getDesignInverseNormal(typeOfDesign = C_TYPE_OF_DESIGN_WT_OPTIMUM, optimizationCriterion = "x"), "Illegal argument: optimization criterion must be one of the following: 'ASNH1', 'ASNIFH1', 'ASNsum'", fixed = TRUE) expect_error(getDesignInverseNormal(typeOfDesign = C_TYPE_OF_DESIGN_AS_KD, gammaA = NA_real_), "Missing argument: parameter 'gammaA' must be specified in design", fixed = TRUE) expect_error(getDesignInverseNormal(typeOfDesign = C_TYPE_OF_DESIGN_AS_HSD, gammaA = NA_real_), "Missing argument: parameter 'gammaA' must be specified in design", fixed = TRUE) expect_error(getDesignInverseNormal(typeOfDesign = C_TYPE_OF_DESIGN_AS_USER), "Missing argument: parameter 'userAlphaSpending' must be specified in design", fixed = TRUE) expect_error(getDesignInverseNormal(typeOfDesign = C_TYPE_OF_DESIGN_AS_USER, userAlphaSpending = c(0.01, 0.02, 0.025), typeBetaSpending = "x"), "Illegal argument: type of beta spending must be one of the following: 'none', 'bsP', 'bsOF', 'bsKD', 'bsHSD', 'bsUser'", fixed = TRUE) expect_error(getDesignInverseNormal(typeOfDesign = C_TYPE_OF_DESIGN_AS_USER, userAlphaSpending = c(0.01, 0.02, 0.025), typeBetaSpending = C_TYPE_OF_DESIGN_BS_USER), "Missing argument: parameter 'userBetaSpending' must be specified in design", fixed = TRUE) expect_error(getDesignInverseNormal(typeOfDesign = C_TYPE_OF_DESIGN_AS_USER, userAlphaSpending = c(0.01, 0.02, 0.025), typeBetaSpending = C_TYPE_OF_DESIGN_BS_USER, userBetaSpending = c(0.1, 0.2)), paste0("Conflicting arguments: length of 'userBetaSpending' (2) must ", "be equal to length of 'informationRates' (3)"), fixed = TRUE) expect_error(getDesignInverseNormal(typeOfDesign = C_TYPE_OF_DESIGN_AS_USER, userAlphaSpending = c(0.01, 0.02, 0.025), typeBetaSpending = C_TYPE_OF_DESIGN_BS_USER, userBetaSpending = c(0.2, 0.1, 0.05)), paste0("'userBetaSpending' = c(0.2, 0.1, 0.05) must be a vector that satisfies the ", "following condition: 0 <= beta_1 <= .. <= beta_3 <= beta = 0.05"), fixed = TRUE) expect_error(getDesignInverseNormal(typeOfDesign = C_TYPE_OF_DESIGN_AS_USER, userAlphaSpending = c(0.01, 0.02, 0.025), typeBetaSpending = C_TYPE_OF_DESIGN_BS_USER, userBetaSpending = c(0.1, 0.2, 0.3), beta = 0.2), paste0("'userBetaSpending' = c(0.1, 0.2, 0.3) must be a vector that satisfies the ", "following condition: 0 <= beta_1 <= .. <= beta_3 <= beta = 0.2"), fixed = TRUE) expect_error(getDesignInverseNormal(kMax = Inf), paste0("Argument out of bounds: 'kMax' (Inf) is out of bounds [1; ", C_KMAX_UPPER_BOUND, "]"), fixed = TRUE) expect_error(getDesignInverseNormal(kMax = -Inf), paste0("Argument out of bounds: 'kMax' (-Inf) is out of bounds [1; ", C_KMAX_UPPER_BOUND, "]"), fixed = TRUE) expect_error(getDesignInverseNormal(kMax = -Inf), "Argument out of bounds: 'kMax' (-Inf) is out of bounds [1; 20]", fixed = TRUE) expect_error(getDesignInverseNormal(kMax = -10), "Argument out of bounds: 'kMax' (-10) is out of bounds [1; 20]", fixed = TRUE) expect_error(getDesignInverseNormal(kMax = -9), "Argument out of bounds: 'kMax' (-9) is out of bounds [1; 20]", fixed = TRUE) expect_error(getDesignInverseNormal(kMax = -8), "Argument out of bounds: 'kMax' (-8) is out of bounds [1; 20]", fixed = TRUE) expect_error(getDesignInverseNormal(kMax = -7), "Argument out of bounds: 'kMax' (-7) is out of bounds [1; 20]", fixed = TRUE) expect_error(getDesignInverseNormal(kMax = -6), "Argument out of bounds: 'kMax' (-6) is out of bounds [1; 20]", fixed = TRUE) expect_error(getDesignInverseNormal(kMax = -5), "Argument out of bounds: 'kMax' (-5) is out of bounds [1; 20]", fixed = TRUE) expect_error(getDesignInverseNormal(kMax = -4), "Argument out of bounds: 'kMax' (-4) is out of bounds [1; 20]", fixed = TRUE) expect_error(getDesignInverseNormal(kMax = -3), "Argument out of bounds: 'kMax' (-3) is out of bounds [1; 20]", fixed = TRUE) expect_error(getDesignInverseNormal(kMax = -2), "Argument out of bounds: 'kMax' (-2) is out of bounds [1; 20]", fixed = TRUE) expect_error(getDesignInverseNormal(kMax = -1), "Argument out of bounds: 'kMax' (-1) is out of bounds [1; 20]", fixed = TRUE) expect_error(getDesignInverseNormal(kMax = 0), "Argument out of bounds: 'kMax' (0) is out of bounds [1; 20]", fixed = TRUE) expect_error(getDesignInverseNormal(kMax = 21), "Argument out of bounds: 'kMax' (21) is out of bounds [1; 20]", fixed = TRUE) expect_error(getDesignInverseNormal(kMax = 22), "Argument out of bounds: 'kMax' (22) is out of bounds [1; 20]", fixed = TRUE) expect_error(getDesignInverseNormal(kMax = 23), "Argument out of bounds: 'kMax' (23) is out of bounds [1; 20]", fixed = TRUE) expect_error(getDesignInverseNormal(kMax = 24), "Argument out of bounds: 'kMax' (24) is out of bounds [1; 20]", fixed = TRUE) expect_error(getDesignInverseNormal(kMax = 25), "Argument out of bounds: 'kMax' (25) is out of bounds [1; 20]", fixed = TRUE) expect_error(getDesignInverseNormal(kMax = 26), "Argument out of bounds: 'kMax' (26) is out of bounds [1; 20]", fixed = TRUE) expect_error(getDesignInverseNormal(kMax = 27), "Argument out of bounds: 'kMax' (27) is out of bounds [1; 20]", fixed = TRUE) expect_error(getDesignInverseNormal(kMax = 28), "Argument out of bounds: 'kMax' (28) is out of bounds [1; 20]", fixed = TRUE) expect_error(getDesignInverseNormal(kMax = 29), "Argument out of bounds: 'kMax' (29) is out of bounds [1; 20]", fixed = TRUE) expect_error(getDesignInverseNormal(kMax = 30), "Argument out of bounds: 'kMax' (30) is out of bounds [1; 20]", fixed = TRUE) expect_error(getDesignInverseNormal(kMax = Inf), "Argument out of bounds: 'kMax' (Inf) is out of bounds [1; 20]", fixed = TRUE) expect_error(getDesignInverseNormal(kMax = 2, futilityBounds = c(0, 0, 1, 2)), "Conflicting arguments: length of 'futilityBounds' (4) must be equal to 'kMax' (2) - 1", fixed = TRUE) expect_error(getDesignInverseNormal(kMax = 3, futilityBounds = c(0, 0, 1, 2)), "Conflicting arguments: length of 'futilityBounds' (4) must be equal to 'kMax' (3) - 1", fixed = TRUE) expect_error(getDesignInverseNormal(kMax = 4, futilityBounds = c(0, 0, 1, 2)), "Conflicting arguments: length of 'futilityBounds' (4) must be equal to 'kMax' (4) - 1", fixed = TRUE) expect_error(getDesignInverseNormal(kMax = 6, futilityBounds = c(0, 0, 1, 2)), "Conflicting arguments: length of 'futilityBounds' (4) must be equal to 'kMax' (6) - 1", fixed = TRUE) expect_error(getDesignInverseNormal(kMax = 7, futilityBounds = c(0, 0, 1, 2)), "Conflicting arguments: length of 'futilityBounds' (4) must be equal to 'kMax' (7) - 1", fixed = TRUE) expect_error(getDesignInverseNormal(kMax = 8, futilityBounds = c(0, 0, 1, 2)), "Conflicting arguments: length of 'futilityBounds' (4) must be equal to 'kMax' (8) - 1", fixed = TRUE) expect_error(getDesignInverseNormal(kMax = 9, futilityBounds = c(0, 0, 1, 2)), "Conflicting arguments: length of 'futilityBounds' (4) must be equal to 'kMax' (9) - 1", fixed = TRUE) expect_error(getDesignInverseNormal(kMax = 10, futilityBounds = c(0, 0, 1, 2)), "Conflicting arguments: length of 'futilityBounds' (4) must be equal to 'kMax' (10) - 1", fixed = TRUE) expect_warning(expect_error(getDesignInverseNormal(kMax = 11, futilityBounds = c(0, 0, 1, 2)), "Conflicting arguments: length of 'futilityBounds' (4) must be equal to 'kMax' (11) - 1", fixed = TRUE)) expect_warning(expect_error(getDesignInverseNormal(kMax = 12, futilityBounds = c(0, 0, 1, 2)), "Conflicting arguments: length of 'futilityBounds' (4) must be equal to 'kMax' (12) - 1", fixed = TRUE)) expect_warning(expect_error(getDesignInverseNormal(kMax = 13, futilityBounds = c(0, 0, 1, 2)), "Conflicting arguments: length of 'futilityBounds' (4) must be equal to 'kMax' (13) - 1", fixed = TRUE)) expect_warning(expect_error(getDesignInverseNormal(kMax = 14, futilityBounds = c(0, 0, 1, 2)), "Conflicting arguments: length of 'futilityBounds' (4) must be equal to 'kMax' (14) - 1", fixed = TRUE)) expect_warning(expect_error(getDesignInverseNormal(kMax = 15, futilityBounds = c(0, 0, 1, 2)), "Conflicting arguments: length of 'futilityBounds' (4) must be equal to 'kMax' (15) - 1", fixed = TRUE)) expect_warning(expect_error(getDesignInverseNormal(kMax = 16, futilityBounds = c(0, 0, 1, 2)), "Conflicting arguments: length of 'futilityBounds' (4) must be equal to 'kMax' (16) - 1", fixed = TRUE)) expect_warning(expect_error(getDesignInverseNormal(kMax = 17, futilityBounds = c(0, 0, 1, 2)), "Conflicting arguments: length of 'futilityBounds' (4) must be equal to 'kMax' (17) - 1", fixed = TRUE)) expect_warning(expect_error(getDesignInverseNormal(kMax = 18, futilityBounds = c(0, 0, 1, 2)), "Conflicting arguments: length of 'futilityBounds' (4) must be equal to 'kMax' (18) - 1", fixed = TRUE)) expect_warning(expect_error(getDesignInverseNormal(kMax = 19, futilityBounds = c(0, 0, 1, 2)), "Conflicting arguments: length of 'futilityBounds' (4) must be equal to 'kMax' (19) - 1", fixed = TRUE)) expect_warning(expect_error(getDesignInverseNormal(kMax = 20, futilityBounds = c(0, 0, 1, 2)), "Conflicting arguments: length of 'futilityBounds' (4) must be equal to 'kMax' (20) - 1", fixed = TRUE)) expect_error(getDesignInverseNormal(futilityBounds = c(-7, 5)), "Illegal argument: 'futilityBounds' (-7, 5) too extreme for this situation", fixed = TRUE) expect_error(getDesignInverseNormal(futilityBounds = c(1, 7)), "Argument out of bounds: 'futilityBounds' (1, 7) is out of bounds [-Inf; 6]", fixed = TRUE) }) test_that("'getDesignGroupSequential': illegal arguments throw exceptions as expected", { expect_error(getDesignGroupSequential(typeOfDesign = C_TYPE_OF_DESIGN_AS_USER, userAlphaSpending = c(0.01, 0.02, 0.023, 0.023, 0.025), kMax = 4), paste0("Conflicting arguments: length of 'userAlphaSpending' (5) ", "must be equal to 'kMax' (4)"), fixed = TRUE) expect_error(getDesignGroupSequential(typeOfDesign = C_TYPE_OF_DESIGN_AS_USER, userAlphaSpending = c(0.01, 0.02, 0.023, 0.023, 0.021)), paste0("'userAlphaSpending' = c(0.01, 0.02, 0.023, 0.023, 0.021) must be a vector that ", "satisfies the following condition: 0 <= alpha_1 <= .. <= alpha_5 <= alpha = 0.021"), fixed = TRUE) expect_error(getDesignGroupSequential(typeOfDesign = "asUser", userAlphaSpending = c(0.01, 0.02, 0.023), alpha = 0.02), paste0("'userAlphaSpending' = c(0.01, 0.02, 0.023) must be a vector that ", "satisfies the following condition: 0 <= alpha_1 <= .. <= alpha_3 <= alpha = 0.02"), fixed = TRUE) expect_equal(getDesignGroupSequential(typeOfDesign = "asUser", userAlphaSpending = c(0.01, 0.02, 0.023))$alpha, 0.023) expect_error(getDesignGroupSequential(typeOfDesign = C_TYPE_OF_DESIGN_WT, deltaWT = NA_real_), "Missing argument: parameter 'deltaWT' must be specified in design", fixed = TRUE) expect_error(getDesignGroupSequential(typeOfDesign = C_TYPE_OF_DESIGN_WT_OPTIMUM, optimizationCriterion = "x"), "Illegal argument: optimization criterion must be one of the following: 'ASNH1', 'ASNIFH1', 'ASNsum'", fixed = TRUE) expect_error(getDesignGroupSequential(typeOfDesign = C_TYPE_OF_DESIGN_AS_KD, gammaA = NA_real_), "Missing argument: parameter 'gammaA' must be specified in design", fixed = TRUE) expect_error(getDesignGroupSequential(typeOfDesign = C_TYPE_OF_DESIGN_AS_HSD, gammaA = NA_real_), "Missing argument: parameter 'gammaA' must be specified in design", fixed = TRUE) expect_error(getDesignGroupSequential(typeOfDesign = C_TYPE_OF_DESIGN_AS_USER), "Missing argument: parameter 'userAlphaSpending' must be specified in design", fixed = TRUE) expect_error(getDesignGroupSequential(typeOfDesign = C_TYPE_OF_DESIGN_AS_USER, userAlphaSpending = c(0.01, 0.02, 0.025), typeBetaSpending = "x"), paste0("Illegal argument: type of beta spending must be one of the following: ", "'none', 'bsP', 'bsOF', 'bsKD', 'bsHSD', 'bsUser'"), fixed = TRUE) expect_error(getDesignGroupSequential(typeOfDesign = C_TYPE_OF_DESIGN_AS_USER, userAlphaSpending = c(0.01, 0.02, 0.025), typeBetaSpending = C_TYPE_OF_DESIGN_BS_USER), "Missing argument: parameter 'userBetaSpending' must be specified in design", fixed = TRUE) expect_error(getDesignGroupSequential(typeOfDesign = C_TYPE_OF_DESIGN_AS_USER, userAlphaSpending = c(0.01, 0.02, 0.025), typeBetaSpending = C_TYPE_OF_DESIGN_BS_USER, userBetaSpending = c(0.1, 0.2)), paste0("Conflicting arguments: length of 'userBetaSpending' (2) must ", "be equal to length of 'informationRates' (3)"), fixed = TRUE) expect_error(getDesignGroupSequential(typeOfDesign = C_TYPE_OF_DESIGN_AS_USER, userAlphaSpending = c(0.01, 0.02, 0.025), typeBetaSpending = C_TYPE_OF_DESIGN_BS_USER, userBetaSpending = c(0.2, 0.1, 0.05)), paste0("'userBetaSpending' = c(0.2, 0.1, 0.05) must be a vector that satisfies the ", "following condition: 0 <= beta_1 <= .. <= beta_3 <= beta = 0.05"), fixed = TRUE) expect_error(getDesignGroupSequential(typeOfDesign = C_TYPE_OF_DESIGN_AS_USER, userAlphaSpending = c(0.01, 0.02, 0.025), typeBetaSpending = C_TYPE_OF_DESIGN_BS_USER, userBetaSpending = c(0.1, 0.2, 0.3), beta = 0.2), paste0("'userBetaSpending' = c(0.1, 0.2, 0.3) must be a vector that satisfies the ", "following condition: 0 <= beta_1 <= .. <= beta_3 <= beta = 0.2"), fixed = TRUE) expect_error(getDesignGroupSequential(kMax = Inf), paste0("Argument out of bounds: 'kMax' (Inf) is out of bounds [1; ", C_KMAX_UPPER_BOUND, "]"), fixed = TRUE) expect_error(getDesignGroupSequential(kMax = -Inf), paste0("Argument out of bounds: 'kMax' (-Inf) is out of bounds [1; ", C_KMAX_UPPER_BOUND, "]"), fixed = TRUE) expect_error(getDesignInverseNormal(kMax = -5), "Argument out of bounds: 'kMax' (-5) is out of bounds [1; 20]", fixed = TRUE) expect_error(getDesignInverseNormal(kMax = 0), "Argument out of bounds: 'kMax' (0) is out of bounds [1; 20]", fixed = TRUE) expect_error(getDesignInverseNormal(kMax = 21), "Argument out of bounds: 'kMax' (21) is out of bounds [1; 20]", fixed = TRUE) expect_error(getDesignInverseNormal(kMax = 2, futilityBounds = c(0, 0, 1, 2)), "Conflicting arguments: length of 'futilityBounds' (4) must be equal to 'kMax' (2) - 1", fixed = TRUE) expect_error(getDesignInverseNormal(kMax = 3, futilityBounds = c(0, 0, 1, 2)), "Conflicting arguments: length of 'futilityBounds' (4) must be equal to 'kMax' (3) - 1", fixed = TRUE) expect_error(getDesignInverseNormal(kMax = 4, futilityBounds = c(0, 0, 1, 2)), "Conflicting arguments: length of 'futilityBounds' (4) must be equal to 'kMax' (4) - 1", fixed = TRUE) expect_error(getDesignInverseNormal(kMax = 6, futilityBounds = c(0, 0, 1, 2)), "Conflicting arguments: length of 'futilityBounds' (4) must be equal to 'kMax' (6) - 1", fixed = TRUE) expect_error(getDesignInverseNormal(kMax = 7, futilityBounds = c(0, 0, 1, 2)), "Conflicting arguments: length of 'futilityBounds' (4) must be equal to 'kMax' (7) - 1", fixed = TRUE) expect_error(getDesignInverseNormal(kMax = 8, futilityBounds = c(0, 0, 1, 2)), "Conflicting arguments: length of 'futilityBounds' (4) must be equal to 'kMax' (8) - 1", fixed = TRUE) expect_error(getDesignInverseNormal(kMax = 9, futilityBounds = c(0, 0, 1, 2)), "Conflicting arguments: length of 'futilityBounds' (4) must be equal to 'kMax' (9) - 1", fixed = TRUE) expect_error(getDesignInverseNormal(kMax = 10, futilityBounds = c(0, 0, 1, 2)), "Conflicting arguments: length of 'futilityBounds' (4) must be equal to 'kMax' (10) - 1", fixed = TRUE) expect_warning(expect_error(getDesignInverseNormal(kMax = 11, futilityBounds = c(0, 0, 1, 2)), "Conflicting arguments: length of 'futilityBounds' (4) must be equal to 'kMax' (11) - 1", fixed = TRUE)) expect_warning(expect_error(getDesignInverseNormal(kMax = 12, futilityBounds = c(0, 0, 1, 2)), "Conflicting arguments: length of 'futilityBounds' (4) must be equal to 'kMax' (12) - 1", fixed = TRUE)) expect_warning(expect_error(getDesignInverseNormal(kMax = 13, futilityBounds = c(0, 0, 1, 2)), "Conflicting arguments: length of 'futilityBounds' (4) must be equal to 'kMax' (13) - 1", fixed = TRUE)) expect_warning(expect_error(getDesignInverseNormal(kMax = 14, futilityBounds = c(0, 0, 1, 2)), "Conflicting arguments: length of 'futilityBounds' (4) must be equal to 'kMax' (14) - 1", fixed = TRUE)) expect_warning(expect_error(getDesignInverseNormal(kMax = 15, futilityBounds = c(0, 0, 1, 2)), "Conflicting arguments: length of 'futilityBounds' (4) must be equal to 'kMax' (15) - 1", fixed = TRUE)) expect_warning(expect_error(getDesignInverseNormal(kMax = 16, futilityBounds = c(0, 0, 1, 2)), "Conflicting arguments: length of 'futilityBounds' (4) must be equal to 'kMax' (16) - 1", fixed = TRUE)) expect_warning(expect_error(getDesignInverseNormal(kMax = 17, futilityBounds = c(0, 0, 1, 2)), "Conflicting arguments: length of 'futilityBounds' (4) must be equal to 'kMax' (17) - 1", fixed = TRUE)) expect_warning(expect_error(getDesignInverseNormal(kMax = 18, futilityBounds = c(0, 0, 1, 2)), "Conflicting arguments: length of 'futilityBounds' (4) must be equal to 'kMax' (18) - 1", fixed = TRUE)) expect_warning(expect_error(getDesignInverseNormal(kMax = 19, futilityBounds = c(0, 0, 1, 2)), "Conflicting arguments: length of 'futilityBounds' (4) must be equal to 'kMax' (19) - 1", fixed = TRUE)) expect_warning(expect_error(getDesignInverseNormal(kMax = 20, futilityBounds = c(0, 0, 1, 2)), "Conflicting arguments: length of 'futilityBounds' (4) must be equal to 'kMax' (20) - 1", fixed = TRUE)) expect_error(getDesignGroupSequential(futilityBounds = c(-7, 5)), "Illegal argument: 'futilityBounds' (-7, 5) too extreme for this situation", fixed = TRUE) expect_error(getDesignGroupSequential(futilityBounds = c(1, 7)), "Argument out of bounds: 'futilityBounds' (1, 7) is out of bounds [-Inf; 6]", fixed = TRUE) })
"Cats"
step.lmRob <- function(object, scope, scale, direction = c("both", "backward", "forward"), trace = TRUE, keep = NULL, steps = 1000, fast = FALSE, ...) { if(missing(direction)) direction <- "backward" else direction <- match.arg(direction) if(direction != "backward") stop("Presently step.lmRob only supports backward model selection.") re.arrange <- function(keep) { namr <- names(k1 <- keep[[1]]) namc <- names(keep) nc <- length(keep) nr <- length(k1) array(unlist(keep, recursive = FALSE), c(nr, nc), list(namr, namc)) } make.step <- function(models, fit, scale, object) { change <- sapply(models, "[[", "change") rdf <- sapply(models, "[[", "df.resid") ddf <- c(NA, diff(rdf)) RFPE <- sapply(models, "[[", "RFPE") heading <- c("Stepwise Model Path \nAnalysis of Deviance Table", "\nInitial Model:", deparse(as.vector(formula(object))), "\nFinal Model:", deparse(as.vector(formula(fit))), "\n") aod <- data.frame(Step = change, Df = ddf, "Resid. Df" = rdf, RFPE = RFPE, check.names = FALSE) attr(aod, "heading") <- heading oldClass(aod) <- c("anova", "data.frame") fit$anova <- aod fit } backward <- direction == "both" || direction == "backward" forward <- direction == "both" || direction == "forward" if(missing(scope)) { fdrop <- numeric(0) fadd <- NULL } else { if(is.list(scope)) { fdrop <- if(!is.null(fdrop <- scope$lower)) attr(terms( update.formula(object, fdrop)), "factor") else numeric(0) fadd <- if(!is.null(fadd <- scope$upper)) attr(terms( update.formula(object, fadd)), "factor") } else { fadd <- if(!is.null(fadd <- scope)) attr(terms(update.formula(object, scope)), "factor") fdrop <- numeric(0) } } if(is.null(fadd)) { backward <- TRUE forward <- FALSE } m <- model.frame(object) obconts <- object$contrasts objectcall <- object$call robust.control <- object$robust.control if(forward) { add.rhs <- paste(dimnames(fadd)[[2]], collapse = "+") add.rhs <- eval(parse(text = paste("~ . +", add.rhs))) new.form <- update.formula(object, add.rhs, evaluate = FALSE) fc <- objectcall Terms <- terms(new.form) fc$formula <- Terms fobject <- list(call = fc) oldClass(fobject) <- oldClass(object) m <- model.frame(fobject) x <- model.matrix(Terms, m, contrasts = obconts) } else { Terms <- object$terms x <- model.matrix(Terms, m, contrasts = obconts) } Asgn <- attr(x, "assign") term.labels <- attr(Terms, "term.labels") a <- attributes(m) y <- model.extract(m, "response") w <- model.extract(m, "weights") if(is.null(w)) w <- rep(1, nrow(m)) models <- vector("list", steps) if(!is.null(keep)) { keep.list <- vector("list", steps) nv <- 1 } n <- length(object$fitted) scale <- object$scale fit <- object bRFPE <- lmRob.RFPE(fit) nm <- 1 Terms <- fit$terms if(trace) cat("Start: RFPE=", format(round(bRFPE, 4)), "\n", deparse(as.vector(formula(fit))), "\n\n") models[[nm]] <- list(df.resid = fit$df.resid, change = "", RFPE = bRFPE) if(!is.null(keep)) keep.list[[nm]] <- keep(fit, bRFPE) RFPE <- bRFPE + 1 while(bRFPE < RFPE & steps > 0) { steps <- steps - 1 RFPE <- bRFPE bfit <- fit ffac <- attr(Terms, "factor") scope <- factor.scope(ffac, list(add = fadd, drop = fdrop)) aod <- NULL change <- NULL if(backward && (ndrop <- length(scope$drop))) { aod <- drop1.lmRob(fit, scope$drop, scale) if(trace) print(aod) change <- rep("-", ndrop + 1) } if(forward && (nadd <- length(scope$add))) { aodf <- add1.lmRob(fit, scope$add, scale, x = x) if(trace) print(aodf) change <- c(change, rep("+", nadd + 1)) if(is.null(aod)) aod <- aodf else { ncaod <- dim(aod)[1] aod[seq(ncaod + 1, ncaod + nadd + 1), ] <- aodf } } if(is.null(aod)) break o <- order(aod[, "RFPE"])[1] if(o[1] == 1) break change <- paste(change[o], dimnames(aod)[[1]][o]) Terms <- terms(update(formula(fit), eval(parse(text = paste("~ .", change))))) attr(Terms, "formula") <- new.formula <- formula(Terms) newfit <- lmRob(new.formula, data = m, control = robust.control) bRFPE <- aod[, "RFPE"][o] if(trace) cat("\nStep: RFPE =", format(round(bRFPE, 4)), "\n", deparse(as.vector(formula(Terms))), "\n\n") if(bRFPE >= RFPE) break nm <- nm + 1 models[[nm]] <- list(df.resid = newfit$df.resid, change = change, RFPE = bRFPE) fit <- c(newfit, list(formula = new.formula)) oc <- objectcall oc$formula <- as.vector(fit$formula) fit$call <- oc oldClass(fit) <- oldClass(object) if(!is.null(keep)) keep.list[[nm]] <- keep(fit, bRFPE) } if(!is.null(keep)) fit$keep <- re.arrange(keep.list[seq(nm)]) make.step(models = models[seq(nm)], fit, scale, object) } add1.lmRob <- function(u, v, w, x) stop("add1.lmRob is not implemented")
context("ml feature tokenizer") skip_databricks_connect() test_that("ft_tokenizer() param setting", { test_requires_latest_spark() sc <- testthat_spark_connection() test_args <- list( input_col = "foo", output_col = "bar" ) test_param_setting(sc, ft_tokenizer, test_args) }) test_that("ft_tokenizer.tbl_spark() works as expected", { sc <- testthat_spark_connection() test_requires("janeaustenr") austen <- austen_books() austen_tbl <- testthat_tbl("austen") spark_tokens <- austen_tbl %>% na.omit() %>% dplyr::filter(length(text) > 0) %>% head(10) %>% ft_tokenizer("text", "tokens") %>% sdf_read_column("tokens") %>% lapply(unlist) r_tokens <- austen %>% dplyr::filter(nzchar(text)) %>% head(10) %>% `$`("text") %>% tolower() %>% strsplit("\\s") expect_identical(spark_tokens, r_tokens) })
rm(list = ls()) s <- search()[-1] s <- s[-match(c("package:base", "package:stats", "package:graphics", "package:grDevices", "package:utils", "package:datasets", "package:methods", "Autoloads"), s)] if (length(s) > 0) sapply(s, detach, character.only = TRUE) if (!file.exists("tables")) dir.create("tables") if (!file.exists("figures")) dir.create("figures") set.seed(290875) options(prompt = "R> ", continue = "+ ", width = 63, show.signif.stars = FALSE, SweaveHooks = list(leftpar = function() par(mai = par("mai") * c(1, 1.05, 1, 1)), bigleftpar = function() par(mai = par("mai") * c(1, 1.7, 1, 1)))) HSAURpkg <- require("HSAUR3") if (!HSAURpkg) stop("cannot load package ", sQuote("HSAUR3")) rm(HSAURpkg) a <- Sys.setlocale("LC_ALL", "C") book <- TRUE refs <- cbind(c("AItR", "DAGD", "SI", "CI", "ANOVA", "MLR", "GLM", "DE", "RP", "GAM", "SA", "ALDI", "ALDII", "SIMC", "MA", "PCA", "MDS", "CA"), 1:18) ch <- function(x) { ch <- refs[which(refs[,1] == x),] if (book) { return(paste("Chapter~\\\\ref{", ch[1], "}", sep = "")) } else { return(paste("Chapter~", ch[2], sep = "")) } } if (file.exists("deparse.R")) source("deparse.R") setHook(packageEvent("lattice", "attach"), function(...) { lattice.options(default.theme = function() standard.theme("pdf", color = FALSE)) }) book <- FALSE
setGeneric(name = ".VerifyTieMethod", def = function(tieMethod, ...) { standardGeneric(".VerifyTieMethod") }) setMethod(f = ".VerifyTieMethod", signature = c(tieMethod = "ANY"), definition = function(tieMethod, ...) { stop("tieMethod must be one of {'random', 'first'}", call. = FALSE) }) setMethod(f = ".VerifyTieMethod", signature = c(tieMethod = "character"), definition = function(tieMethod, ...) { tieMethod <- tolower(x = tieMethod) if (!{tieMethod %in% c("random", "first")}) { stop("tieMethod must be one of {'random', 'first'}", call. = FALSE) } return( tieMethod ) })
etaisrec<-function(point,rec) { d<-length(rec)/2 res<-0 for (i in 1:d){ if (point[i]>rec[2*i]) res<-res+(point[i]-rec[2*i])^2 else if (point[i]<rec[2*i-1]) res<-res+(point[i]-rec[2*i-1])^2 } return(res) }
impute.ltrcrfsrc <- function(formula, data, ntree = 500, nodesize = 1, nsplit = 10, nimpute = 2, fast = FALSE, blocks, mf.q, max.iter = 10, eps = 0.01, ytry = NULL, always.use = NULL, verbose = TRUE, ...) { if (missing(data)) { stop("data is missing") } which.na <- is.na(data) if (!any(which.na) || all(which.na)) { return(invisible(data)) } rfnames <- c("mtry", "splitrule", "bootstrap", "sampsize", "samptype") dots <- list(...) dots <- dots[names(dots) %in% rfnames] p <- ncol(data) n <- nrow(data) all.r.na <- rowSums(which.na) == p all.c.na <- colSums(which.na) == n data <- data[!all.r.na, !all.c.na, drop = FALSE] which.na <- which.na[!all.r.na, !all.c.na, drop = FALSE] if (!any(which.na)) { return(data) } p <- ncol(data) n <- nrow(data) all.var.names <- colnames(data) if (missing(mf.q)) { mforest <- FALSE } else { mforest <- TRUE } if (!missing(blocks)) { blocks <- cv.folds(nrow(data), max(1, blocks)) } else { blocks <- list(1:nrow(data)) } if (!mforest) { if (missing(formula)) { if (is.null(ytry)) { ytry <- min(p - 1, max(25, ceiling(sqrt(p)))) } dots$formula <- as.formula(paste("Unsupervised(", ytry, ") ~ .")) dots$splitrule <- NULL } else { dots$formula <- formula } nullBlocks <- lapply(blocks, function(blk) { dta <- data[blk,, drop = FALSE] retO <- tryCatch({do.call("generic.impute.ltrcrfsrc", c(list(data = dta, ntree = ntree, nodesize = nodesize, nsplit = nsplit, nimpute = nimpute, fast = fast), dots))}, error = function(e) {NULL}) if (!is.null(retO)) { if (!is.null(retO$missing$row)) { blk <- blk[-retO$missing$row] } if (!is.null(retO$missing$col)) { ynames <- all.var.names[-retO$missing$col] } else { ynames <- all.var.names } data[blk, ynames] <<- retO$data[, ynames, drop = FALSE] } NULL }) rm(nullBlocks) } if (mforest) { x.na <- lapply(1:p, function(k) { if (sum(which.na[, k]) > 0) { as.numeric(which(which.na[, k])) } else { NULL } }) which.x.na <- which(sapply(x.na, length) > 0) names(x.na) <- all.var.names <- colnames(data) var.names <- all.var.names[which.x.na] if (!is.null(always.use)) { always.use <- is.element(all.var.names, always.use) if (sum(always.use) > 0) { always.use <- which(always.use) } } p0 <- length(which.x.na) if (mf.q == 0) { stop("mf.q must be greater than zero") } if (mf.q >= 1) { mf.q <- min(p0 - 1, mf.q) / p0 } K <- max(1 / mf.q, 2) dots.rough <- dots dots.rough$mtry <- dots.rough$splitrule <- NULL data <- do.call("generic.impute.ltrcrfsrc", c(list(data = data, ntree = 250, nodesize = nodesize, nsplit = nsplit, nimpute = 3, fast = fast), dots.rough))$data diff.err <- Inf check <- TRUE nullWhile <- lapply(1:max.iter, function(m) { if (!check) { return(NULL) } if (verbose && max.iter > 1) { cat("\t iteration", m, "\n") } data.old <- data nullBlocks <- lapply(blocks, function(blk) { var.grp <- cv.folds(p0, K) nullObj <- lapply(var.grp, function(grp) { ynames <- unique(c(var.names[grp], all.var.names[always.use])) dots$formula <- as.formula(paste("Multivar(", paste(ynames, collapse = ","), paste(") ~ ."), sep = "")) dta <- data[blk,, drop = FALSE] dta[, ynames] <- lapply(ynames, function(nn) { xk <- data[, nn] xk[unlist(x.na[nn])] <- NA xk[blk] }) retO <- tryCatch({do.call("generic.impute.ltrcrfsrc", c(list(data = dta, ntree = ntree, nodesize = nodesize, nsplit = nsplit, nimpute = 1, fast = fast), dots))}, error = function(e) {NULL}) if (!is.null(retO)) { if (!is.null(retO$missing$row)) { blk <- blk[-retO$missing$row] } if (!is.null(retO$missing$col)) { ynames <- ynames[-retO$missing$col] } data[blk, ynames] <<- retO$data[, ynames, drop = FALSE] rm(dta) } NULL }) NULL }) diff.new.err <- mean(sapply(var.names, function(nn) { xo <- data.old[unlist(x.na[nn]), nn] xn <- data[unlist(x.na[nn]), nn] if (!is.numeric(xo)) { sum(xn != xo, na.rm = TRUE) / (.001 + length(xn)) } else { var.xo <- var(xo, na.rm = TRUE) if (is.na(var.xo)) { var.xo <- 0 } sqrt(mean((xn - xo)^2, na.rm = TRUE) / (.001 + var.xo)) } }), na.rm = TRUE) if (verbose) { err <- paste("err = " , format(diff.new.err, digits = 3), sep = "") drp <- paste("drop = ", format(diff.err - diff.new.err, digits = 3), sep = "") cat(" >> ", err, ", ", drp, "\n") } check <<- ((diff.err - diff.new.err) >= eps) diff.err <<- diff.new.err rm(data.old) NULL }) } invisible(data) }
knitr::opts_chunk$set( collapse = TRUE, comment = " ) library(causaloptim) knitr::include_graphics("TwoIVs.png") library(causaloptim) library(igraph) b <- graph_from_literal(Z1 -+ X, Z2 -+ X, Z2 -+ Z1, Ul -+ Z1, Ul -+ Z2, X -+ Y, Ur -+ X, Ur -+ Y) V(b)$leftside <- c(1, 0, 1, 1, 0, 0) V(b)$latent <- c(0, 0, 0, 1, 0, 1) V(b)$nvals <- c(2, 2, 2, 2, 2, 2) E(b)$rlconnect <- c(0, 0, 0, 0, 0, 0, 0, 0) E(b)$edge.monotone <- c(0, 0, 0, 0, 0, 0, 0, 0) obj <- analyze_graph(b, constraints = NULL, effectt = "p{Y(X = 1) = 1} - p{Y(X = 0) = 1}") oldbnds <- readRDS("MIV-bounds-result.RData") newbnds <- optimize_effect_2(obj) eval_newbnds <- interpret_bounds(newbnds$bounds, obj$parameters) eval_oldbnds <- interpret_bounds(oldbnds$bounds, obj$parameters) sim.qs <- rbeta(length(obj$variables), .05, 1) sim.qs <- sim.qs / sum(sim.qs) names(sim.qs) <- obj$variables inenv <- new.env() for(j in 1:length(sim.qs)) { assign(names(sim.qs)[j], sim.qs[j], inenv) } res <- lapply(as.list(obj$constraints[-1]), function(x){ x1 <- strsplit(x, " = ")[[1]] x0 <- paste(x1[1], " = ", x1[2]) eval(parse(text = x0), envir = inenv) }) params <- lapply(obj$parameters, function(x) get(x, envir = inenv)) names(params) <- obj$parameters do.call(eval_newbnds, params) do.call(eval_oldbnds, params) knitr::include_graphics("User_Input_DAG.png") knitr::include_graphics("Causal_Graph.png") knitr::include_graphics("Canonical_Partitions.png")
tVaRFigure <- function(...){ if (nargs() < 4) { stop("Too few arguments") } if (nargs() > 5) { stop("Too many arguments") } args <- list(...) if (nargs() == 5) { mu <- args$mu cl <- args$cl sigma <- args$sigma hp <- args$hp df <- args$df } if (nargs() == 4) { mu <- mean(args$returns) cl <- args$cl sigma <- sd(args$returns) hp <- args$hp df <- args$df } mu <- as.matrix(mu) mu.row <- dim(mu)[1] mu.col <- dim(mu)[2] if (max(mu.row, mu.col) > 1) { stop("Mean must be a scalar") } sigma <- as.matrix(sigma) sigma.row <- dim(sigma)[1] sigma.col <- dim(sigma)[2] if (max(sigma.row, sigma.col) > 1) { stop("Standard deviation must be a scalar") } cl <- as.matrix(cl) cl.row <- dim(cl)[1] cl.col <- dim(cl)[2] if (min(cl.row, cl.col) > 1) { stop("Confidence level must be a scalar or a vector") } hp <- as.matrix(hp) hp.row <- dim(hp)[1] hp.col <- dim(hp)[2] if (min(hp.row, hp.col) > 1) { stop("Holding period must be a scalar or a vector") } df <- as.matrix(df) df.row <- dim(df)[1] df.col <- dim(df)[2] if (max(df.row, df.col) > 1) { stop("Number of degrees of freedom must be a scalar") } if (cl.row > cl.col) { cl <- t(cl) } if (hp.row > hp.col) { hp <- t(hp) } if (sigma < 0) { stop("Standard deviation must be non-negative") } if (df < 3) { stop("Number of degrees of freedom must be at least 3 for first two moments of distribution to be defined") } if (max(cl) >= 1){ stop("Confidence level(s) must be less than 1") } if (min(cl) <= 0){ stop("Confidence level(s) must be greater than 0") } if (min(hp) <= 0){ stop("Holding Period(s) must be greater than 0") } if (max(cl.row, cl.col) > 1 & max(hp.row, hp.col) > 1) { print('VaR results with confidence level varying across row and holding period down column') } cl.row <- dim(cl)[1] cl.col <- dim(cl)[2] VaR <- - sigma[1,1] * sqrt(hp) %*% qnorm(1 - cl, 0, 1) - mu[1,1] * hp %*% matrix(1,cl.row,cl.col) x.min <- -mu - 5 * sigma x.max <- -mu + 5 * sigma delta <- (x.max-x.min) / 100 x <- seq(x.min, x.max, delta) p <- dt((x-mu)/sigma, df) plot(x, p, type = "l", xlim = c(x.min, x.max), ylim = c(0, max(p)*1.1), xlab = "Loss (+) / Profit (-)", ylab = "Probability", main = "t- VaR") u <- c(VaR, VaR) v <- c(0, .6*max(p)) lines(0,0,2,.6,type="l") lines(u, v, type = "l", col = "blue") cl.for.label <- 100*cl text(1,.95*max(p), pos = 1, 'Input parameters', cex=.75, font = 2) text(1, .875*max(p),pos = 1, paste('Daily mean L/P = ', round(mu,2)), cex=.75) text(1, .8*max(p),pos = 1, paste('St. dev. of daily L/P = ',round(sigma,2)), cex=.75) text(1, .725*max(p),pos = 1, paste('Holding period = ', hp,' day(s)'), cex=.75) text(VaR, .7*max(p),pos = 2, paste('VaR at ', cl.for.label,'% CL'), cex=.75) text(VaR, .64 * max(p),pos = 2, paste('= ',VaR), cex=.75) }
eMixMargDen= function(grid,probdraw,compdraw) { den=matrix(0,nrow(grid),ncol(grid)) for(i in 1:length(compdraw)) den=den+mixDen(grid,probdraw[i,],compdraw[[i]]) return(den/length(compdraw)) }
plotDIFLogistic <- function(x, item = 1, item.name, group.names = c("Reference", "Focal"), Data, group, match, draw.empirical = TRUE) { res <- x i <- ifelse(is.character(item) | is.factor(item), (1:length(res$names))[res$names == item], item ) if (missing(item.name)) { if (is.character(item) | is.factor(item)) { item.name <- paste(item) } else { item.name <- paste("Item", item) } } if (any(is.na(res$logitPar[i, ]))) { stop("Selected item is an anchor item!", call. = FALSE ) } coef <- res$logitPar[i, ] if (missing(Data) & draw.empirical) { stop("'Data' needs to be specified! ", .call = FALSE) } if (missing(group) & draw.empirical) { stop("'group' needs to be specified! ", .call = FALSE) } if (missing(match)) { match <- res$match } if (res$purification & res$DIFitems[1] != "No DIF item detected") { ANCHOR <- c(1:nrow(res$logitPar))[-res$DIFitems] } else { ANCHOR <- c(1:nrow(res$logitPar)) } if (match[1] == "score") { xlab <- "Total score" if (draw.empirical) { MATCHCRIT <- rowSums(Data[, ANCHOR]) } else { MATCHCRIT <- c(0, nrow(res$logitPar)) } } else if (match[1] == "zscore") { xlab <- "Standardized total score" if (draw.empirical) { MATCHCRIT <- scale(apply(as.data.frame(Data[, ANCHOR]), 1, sum)) } else { MATCHCRIT <- c(0, nrow(res$logitPar)) } } else if (length(match) != nrow(Data)) { stop("'match' needs to be either 'score', 'zscore' or numeric vector of the same length as number of observations in 'Data'. ", .call = FALSE) } else { MATCHCRIT <- match xlab <- "Observed score" } LR_plot <- function(x, group, b0, b1, b2, b3) { return(1 / (1 + exp(-(b0 + b1 * x + b2 * group + b3 * x * group)))) } if (draw.empirical) { score_R <- MATCHCRIT[group == 0] score_F <- MATCHCRIT[group == 1] empirical_R <- data.frame( score = as.numeric(levels(as.factor(score_R))), probability = tapply(Data[group == 0, i], as.factor(score_R), mean) ) empirical_F <- data.frame( score = as.numeric(levels(as.factor(score_F))), probability = tapply(Data[group == 1, i], as.factor(score_F), mean) ) empirical <- data.frame(rbind( cbind(empirical_R, Group = "gr1"), cbind(empirical_F, Group = "gr2") )) empirical$size <- c(table(score_R), table(score_F)) colnames(empirical) <- c("Score", "Probability", "Group", "Count") } max_score <- max(MATCHCRIT, na.rm = TRUE) + 0.1 min_score <- min(MATCHCRIT, na.rm = TRUE) - 0.1 col <- c("dodgerblue2", "goldenrod2") alpha <- .5 shape <- 21 size <- .8 linetype <- c("solid", "dashed") g <- ggplot() + xlim(min_score, max_score) + stat_function(aes(colour = "gr1", linetype = "gr1"), fun = LR_plot, args = list( group = 0, b0 = coef[1], b1 = coef[2], b2 = coef[3], b3 = coef[4] ), size = size, geom = "line" ) + stat_function(aes(colour = "gr2", linetype = "gr2"), fun = LR_plot, args = list( group = 1, b0 = coef[1], b1 = coef[2], b2 = coef[3], b3 = coef[4] ), size = size, geom = "line" ) + scale_colour_manual( values = col, breaks = c("gr1", "gr2"), labels = group.names ) + scale_linetype_manual( values = linetype, breaks = c("gr1", "gr2"), labels = group.names ) + guides(colour = guide_legend(title = "Group", order = 2)) + guides(linetype = guide_legend(title = "Group", order = 2)) + xlab(xlab) + ylab("Probability of correct answer") + scale_y_continuous(limits = c(0, 1)) + theme_app() + theme( legend.box.just = "top", legend.position = c(0.01, 0.98), legend.justification = c(0, 1), legend.key.width = unit(1, "cm"), legend.box = "horizontal" ) + ggtitle(item.name) if (draw.empirical) { g <- g + geom_point( data = empirical, aes_string(x = "Score", y = "Probability", colour = "Group", fill = "Group", size = "Count"), alpha = alpha, shape = shape ) + guides(size = guide_legend(title = "Count", order = 1)) + scale_fill_manual( values = col, breaks = c("gr1", "gr2"), labels = group.names ) + guides(fill = guide_legend(title = "Group", order = 2)) } return(g) }
setMethod("summary", signature(object="kRp.corpus"), function( object, missing=NA, ... ){ available_rdb <- nullToList(unlist(corpusMeta(object, "readability", fail=FALSE)[["index"]]), entry="index") available_lex_div <- nullToList(unlist(corpusMeta(object, "lex_div", fail=FALSE)[["index"]]), entry="index") summary.info <- meta(corpusTm(object))[, c("doc_id", names(corpusHierarchy(object))), drop=FALSE] if(hasFeature(object, "stopwords")){ summary.info[["stopwords"]] <- corpusStopwords(object)[["sum"]] } else {} summary.rdb <- summary.lexdiv <- NULL if(!is.null(available_rdb)){ if(length(available_rdb[["index"]]) > 0){ summary.rdb <- t(as.data.frame(sapply(names(corpusReadability(object)), function(thisText){ thisSummary <- summary(corpusReadability(object)[[thisText]], flat=TRUE) return(fixMissingIndices(have=thisSummary, want=available_rdb[["index"]], missing=missing)) }, simplify=FALSE))) summary.info <- cbind( summary.info, getRdbDesc(object), summary.rdb ) } else {} } else {} if(!is.null(available_lex_div)){ if(length(available_lex_div[["index"]]) > 0){ summary.lexdiv <- t(as.data.frame(sapply(names(corpusLexDiv(object)), function(thisText){ thisSummary <- summary(corpusLexDiv(object)[[thisText]], flat=TRUE) return(fixMissingIndices(have=thisSummary, want=available_lex_div[["index"]], missing=missing)) }, simplify=FALSE))) if("TTR" %in% colnames(summary.info) & "TTR" %in% colnames(summary.lexdiv)){ summary.lexdiv <- summary.lexdiv[, !(names(summary.lexdiv) %in% "TTR")] } else {} summary.info <- cbind( summary.info, summary.lexdiv ) } else {} } if(!is.null(summary.info)){ rownames(summary.info) <- as.character(summary.info[["doc_id"]]) } else { summary.info <- data.frame() } corpusSummary(object) <- summary.info return(object) } ) setGeneric("corpusSummary", function(obj) standardGeneric("corpusSummary")) setMethod("corpusSummary", signature=signature(obj="kRp.corpus"), function (obj){ return(feature(obj, "summary")) } ) setGeneric("corpusSummary<-", function(obj, value) standardGeneric("corpusSummary<-")) setMethod("corpusSummary<-", signature=signature(obj="kRp.corpus"), function (obj, value){ feature(obj, "summary") <- value return(obj) } )
library("LINselect") set.seed(15) ex <- simulData(p=25,n=25,r=0.5,rSN=10) resVARselect <- VARselect(ex$Y,ex$X,exhaustive.dmax=4) resVARselect$summary resVARselect <- VARselect(ex$Y,ex$X,normalize=FALSE,dmax=15,exhaustive.dmax=4,verbose=FALSE) resVARselect$summary
optim.relatedness <- function(obs, theta0 = 0, theta1 = 0.03, theta.tol = 10^(-7), theta.step = NULL, max.bisect = 15, probs, var.list = NULL, init.alpha = 10^c(-4, -6, -8, -10), init.keep = FALSE, objFunction = c("T2", "T1", "C3", "C2", "C1"), collapse = FALSE, trace = FALSE, solnp.ctrl = list(tol = 10^(-9), rho = 10, delta = min(init.alpha) * 0.01, trace = FALSE)) { if (!any(objFunction == c("T2", "T1", "C3", "C2", "C1"))) stop("Wrong objFunction is supplied. Use any of: \"T2\", \"T1\", \"C3\", \"C2\" or \"C1\")") if (sum(init.alpha) > 1 | any(init.alpha < 0) | any(init.alpha > 1)) stop("init.alpha is a probability vector, i.e. 0<=alpha[i]<=1 and sum(alpha)<=1") objFunction <- objFunction[1] n <- (1 + sqrt(1 + 8 * sum(obs, na.rm = TRUE)))/2 if (is.matrix(obs)) obs <- t(obs)[up.tri(obs)] if (collapse) { warning("attempt to 'collapse' observations into mathcing alleles ignored. The options is not yet implemented.") } C1 <- function(x, expected, observed, variance = NULL) { EE <- x[1] * expected[[1]] for (r in 2:length(expected)) EE <- EE + x[r] * expected[[r]] sum(((observed - EE)^2/EE), na.rm = TRUE) } C2 <- function(x, expected, observed, variance = NULL) { EE <- x[1] * expected[[1]] for (r in 2:length(expected)) EE <- EE + x[r] * expected[[r]] sqrt(sum((observed - EE)^2, na.rm = TRUE)) } C3 <- function(x, expected, observed, variance = NULL) { EE <- x[1] * expected[[1]] for (r in 2:length(expected)) EE <- EE + x[r] * expected[[r]] sum(abs(observed - EE)/EE, na.rm = TRUE) } T1 <- function(x, expected, observed, variance = NULL) { EE <- x[1] * expected[[1]] for (r in 2:length(expected)) EE <- EE + x[r] * expected[[r]] sum((EE - observed)^2/diag(variance)) } T2 <- function(x, expected, observed, variance = NULL) { EE <- x[1] * expected[[1]] for (r in 2:length(expected)) EE <- EE + x[r] * expected[[r]] gginv <- eigen(variance, T, F, T) ivariance <- gginv$vec %*% diag(c(1/gginv$val[-length(gginv$val)], 0)) %*% t(gginv$vec) as.numeric(t(EE - observed) %*% ivariance %*% (EE - observed)) } objFun <- get(objFunction) tgrid <- seq(from = theta0, to = theta1, len = 3) val.df <- data.frame(theta = NA, value = NA)[0, ] min.t <- rep(tgrid[2], 2) if (!is.null(theta.step)) { tgrid <- seq(from = theta0, to = theta1, by = theta.step) grid.search <- TRUE } else grid.search <- FALSE bb <- 0 min.val <- Inf min.id <- 1 if (sum(init.alpha) != 1) init.alpha <- c(1 - sum(init.alpha), init.alpha) min.res <- init.alpha if (trace) { if (grid.search) cat("Grid search... ") else cat("Bisectional search...\n") } while (bb < max.bisect) { bb <- bb + 1 if (trace & !grid.search) cat(paste("Iteration: ", format(bb, width = 2), "\n", sep = "")) if (diff(range(tgrid)) < theta.tol & !grid.search) { if (trace) { if (solnp.ctrl$trace) cat("\n") cat("Interval converged\n") } break } if (length(min.t) > 10) { if (abs(diff(min.t[length(min.t) - c(0, 5)])) < (theta.tol)^2 & !grid.search) { if (trace) cat("No change in theta for several iterations\n") break } } if (grepl("T", objFunction)) { if (is.null(var.list)) { if (trace) cat("Variances are being computed... Please wait") var.list <- dbVariance(probs = probs, theta = tgrid, n = 1) names(var.list) <- paste(tgrid) if (trace) cat(" Done..!\n") } else { if (all(is.element(paste(tgrid), names(var.list))) & trace) cat("All needed variances are provided in the input...\n") else { if (trace) cat(paste("Missing variances (", sum(!is.element(paste(tgrid), names(var.list))), ") are being computed... Please wait", sep = "")) ttgrid <- tgrid[!is.element(paste(tgrid), names(var.list))] vvar.list <- dbVariance(probs, theta = ttgrid, n = 1) if (length(ttgrid) == 1) vvar.list <- list(vvar.list) names(vvar.list) <- ttgrid var.list <- c(var.list, vvar.list) var.list <- var.list[sort.list(names(var.list))] if (trace) cat(" Done..!\n") } } variances <- lapply(var.list, function(x, n) choose(n, 2) * x$V1 + 6 * choose(n, 3) * x$V2 + 6 * choose(n, 4) * x$V3, n = n) variances <- variances[paste(tgrid)] } else { var.list <- NULL variances <- replicate(length(tgrid), NULL, simplify = FALSE) } expects <- lapply(tgrid, function(t, n) list(UN = dbExpect(probs = probs, theta = t, n = n, vector = TRUE, k = c(0, 0, 1)), FC = dbExpect(probs = probs, theta = t, n = n, vector = TRUE, k = c(0, 1, 3)/4), AV = dbExpect(probs = probs, theta = t, n = n, vector = TRUE, k = c(0, 1, 1)/2), PC = dbExpect(probs = probs, theta = t, n = n, vector = TRUE, k = c(0, 1, 0)), FS = dbExpect(probs = probs, theta = t, n = n, vector = TRUE, k = c(1, 2, 1)/4)), n = n) for (i in 1:length(tgrid)) { t <- tgrid[i] solnpObjFun <- function(x) objFun(x, expected = expects[[i]], observed = obs, variance = variances[[i]]) alpha <- min.res if (init.keep) alpha <- init.alpha est <- try(Rsolnp::solnp(pars = alpha, fun = solnpObjFun, eqfun = sum, eqB = 1, LB = rep(0, 5), UB = rep(1, 5), control = solnp.ctrl), silent = TRUE) if (length(est) == 1) { est <- list(pars = init.alpha, values = NA) val.df <- rbind(val.df, data.frame(theta = t, value = NA)) warn.message <- paste("NAs were returned for theta =", format(t, digits = 5), "by the solnp procedure. This could indicate numerical problems with the identified solution.", sep = " ") if (!grid.search) warn.message <- paste(warn.message, "\n An attempt to overcome or approximate/solve the problem is to use a grid search instead using 'theta.step' to set step size.") warning(warn.message) } else { step.val <- est$values[length(est$values)] if (step.val <= min.val) { min.val <- step.val min.res <- est$pars min.id <- i min.t <- c(min.t, t) } val.df <- rbind(val.df, data.frame(theta = t, value = step.val)) } } if (grid.search) { if (trace) cat("\n") break } if (min.id == 1) tgrid <- seq(from = tgrid[1], to = tgrid[2], len = 3) else if (min.id == length(tgrid)) tgrid <- seq(from = tgrid[min.id - 1], to = tgrid[min.id], len = 3) else { tgrid.length <- c(tgrid[min.id] - min(tgrid), max(tgrid) - tgrid[min.id]) tgrid <- sort(c(tgrid[1], tgrid[min.id], tgrid[length(tgrid)], tgrid[min.id] + 0.25^bb * tgrid.length[1], tgrid[min.id] - 0.25^bb * tgrid.length[2])) } } names(min.res) <- c("Unrelated", "First-Cousins", "Avuncular", "Parent-child", "Full-siblings") val.df <- val.df[!duplicated(val.df$theta), ] res <- list(value = val.df[order(val.df$theta), ], solution = c(theta = tgrid[min.id], min.res), var.list = var.list) attributes(res)$objFun <- objFunction attributes(res)$class <- "dbOptim" res } plot.dbOptim <- function(x, type = "l", ...) { objFun <- attributes(x)$objFun ylabel <- switch(objFun, C1 = expression(C[1](theta)), C2 = expression(C[2](theta)), C3 = expression(C[3](theta)), T1 = expression(T[1](theta)), T2 = expression(T[2](theta))) graphics::plot(value ~ theta, x$value, xlab = expression(theta), ylab = ylabel, type = type, ...) } points.dbOptim <- function(x, type = "p", ...) { graphics::points(value ~ theta, x$value, type = type, ...) } lines.dbOptim <- function(x, type = "l", ...) { graphics::points(value ~ theta, x$value, type = type, ...) } print.dbOptim <- function(x, var.list = FALSE, ...) { if (var.list) print(x[c("value", "solution", "var.list")]) else print(x[c("value", "solution")]) }
test_that("broc", { skip_if_not_installed("ggplot2") expect_s3_class(scale_edge_colour_broc(midpoint = 10), "ggproto") expect_s3_class(scale_edge_colour_broc(midpoint = 10), "ScaleContinuous") expect_s3_class(scale_edge_colour_broc(), "ggproto") expect_s3_class(scale_edge_colour_broc(), "ScaleContinuous") expect_s3_class(scale_edge_color_broc(), "ggproto") expect_s3_class(scale_edge_color_broc(), "ScaleContinuous") expect_s3_class(scale_edge_fill_broc(midpoint = 10), "ggproto") expect_s3_class(scale_edge_fill_broc(midpoint = 10), "ScaleContinuous") expect_s3_class(scale_edge_fill_broc(), "ggproto") expect_s3_class(scale_edge_fill_broc(), "ScaleContinuous") }) test_that("cork", { skip_if_not_installed("ggplot2") expect_s3_class(scale_edge_colour_cork(midpoint = 10), "ggproto") expect_s3_class(scale_edge_colour_cork(midpoint = 10), "ScaleContinuous") expect_s3_class(scale_edge_colour_cork(), "ggproto") expect_s3_class(scale_edge_colour_cork(), "ScaleContinuous") expect_s3_class(scale_edge_color_cork(), "ggproto") expect_s3_class(scale_edge_color_cork(), "ScaleContinuous") expect_s3_class(scale_edge_fill_cork(midpoint = 10), "ggproto") expect_s3_class(scale_edge_fill_cork(midpoint = 10), "ScaleContinuous") expect_s3_class(scale_edge_fill_cork(), "ggproto") expect_s3_class(scale_edge_fill_cork(), "ScaleContinuous") }) test_that("vik", { skip_if_not_installed("ggplot2") expect_s3_class(scale_edge_colour_vik(midpoint = 10), "ggproto") expect_s3_class(scale_edge_colour_vik(midpoint = 10), "ScaleContinuous") expect_s3_class(scale_edge_colour_vik(), "ggproto") expect_s3_class(scale_edge_colour_vik(), "ScaleContinuous") expect_s3_class(scale_edge_color_vik(), "ggproto") expect_s3_class(scale_edge_color_vik(), "ScaleContinuous") expect_s3_class(scale_edge_fill_vik(midpoint = 10), "ggproto") expect_s3_class(scale_edge_fill_vik(midpoint = 10), "ScaleContinuous") expect_s3_class(scale_edge_fill_vik(), "ggproto") expect_s3_class(scale_edge_fill_vik(), "ScaleContinuous") }) test_that("lisbon", { skip_if_not_installed("ggplot2") expect_s3_class(scale_edge_colour_lisbon(midpoint = 10), "ggproto") expect_s3_class(scale_edge_colour_lisbon(midpoint = 10), "ScaleContinuous") expect_s3_class(scale_edge_colour_lisbon(), "ggproto") expect_s3_class(scale_edge_colour_lisbon(), "ScaleContinuous") expect_s3_class(scale_edge_color_lisbon(), "ggproto") expect_s3_class(scale_edge_color_lisbon(), "ScaleContinuous") expect_s3_class(scale_edge_fill_lisbon(midpoint = 10), "ggproto") expect_s3_class(scale_edge_fill_lisbon(midpoint = 10), "ScaleContinuous") expect_s3_class(scale_edge_fill_lisbon(), "ggproto") expect_s3_class(scale_edge_fill_lisbon(), "ScaleContinuous") }) test_that("tofino", { skip_if_not_installed("ggplot2") expect_s3_class(scale_edge_colour_tofino(midpoint = 10), "ggproto") expect_s3_class(scale_edge_colour_tofino(midpoint = 10), "ScaleContinuous") expect_s3_class(scale_edge_colour_tofino(), "ggproto") expect_s3_class(scale_edge_colour_tofino(), "ScaleContinuous") expect_s3_class(scale_edge_color_tofino(), "ggproto") expect_s3_class(scale_edge_color_tofino(), "ScaleContinuous") expect_s3_class(scale_edge_fill_tofino(midpoint = 10), "ggproto") expect_s3_class(scale_edge_fill_tofino(midpoint = 10), "ScaleContinuous") expect_s3_class(scale_edge_fill_tofino(), "ggproto") expect_s3_class(scale_edge_fill_tofino(), "ScaleContinuous") }) test_that("berlin", { skip_if_not_installed("ggplot2") expect_s3_class(scale_edge_colour_berlin(midpoint = 10), "ggproto") expect_s3_class(scale_edge_colour_berlin(midpoint = 10), "ScaleContinuous") expect_s3_class(scale_edge_colour_berlin(), "ggproto") expect_s3_class(scale_edge_colour_berlin(), "ScaleContinuous") expect_s3_class(scale_edge_color_berlin(), "ggproto") expect_s3_class(scale_edge_color_berlin(), "ScaleContinuous") expect_s3_class(scale_edge_fill_berlin(midpoint = 10), "ggproto") expect_s3_class(scale_edge_fill_berlin(midpoint = 10), "ScaleContinuous") expect_s3_class(scale_edge_fill_berlin(), "ggproto") expect_s3_class(scale_edge_fill_berlin(), "ScaleContinuous") }) test_that("roma", { skip_if_not_installed("ggplot2") expect_s3_class(scale_edge_colour_roma(midpoint = 10), "ggproto") expect_s3_class(scale_edge_colour_roma(midpoint = 10), "ScaleContinuous") expect_s3_class(scale_edge_colour_roma(), "ggproto") expect_s3_class(scale_edge_colour_roma(), "ScaleContinuous") expect_s3_class(scale_edge_color_roma(), "ggproto") expect_s3_class(scale_edge_color_roma(), "ScaleContinuous") expect_s3_class(scale_edge_fill_roma(midpoint = 10), "ggproto") expect_s3_class(scale_edge_fill_roma(midpoint = 10), "ScaleContinuous") expect_s3_class(scale_edge_fill_roma(), "ggproto") expect_s3_class(scale_edge_fill_roma(), "ScaleContinuous") }) test_that("bam", { skip_if_not_installed("ggplot2") expect_s3_class(scale_edge_colour_bam(midpoint = 10), "ggproto") expect_s3_class(scale_edge_colour_bam(midpoint = 10), "ScaleContinuous") expect_s3_class(scale_edge_colour_bam(), "ggproto") expect_s3_class(scale_edge_colour_bam(), "ScaleContinuous") expect_s3_class(scale_edge_color_bam(), "ggproto") expect_s3_class(scale_edge_color_bam(), "ScaleContinuous") expect_s3_class(scale_edge_fill_bam(midpoint = 10), "ggproto") expect_s3_class(scale_edge_fill_bam(midpoint = 10), "ScaleContinuous") expect_s3_class(scale_edge_fill_bam(), "ggproto") expect_s3_class(scale_edge_fill_bam(), "ScaleContinuous") }) test_that("vanimo", { skip_if_not_installed("ggplot2") expect_s3_class(scale_edge_colour_vanimo(midpoint = 10), "ggproto") expect_s3_class(scale_edge_colour_vanimo(midpoint = 10), "ScaleContinuous") expect_s3_class(scale_edge_colour_vanimo(), "ggproto") expect_s3_class(scale_edge_colour_vanimo(), "ScaleContinuous") expect_s3_class(scale_edge_color_vanimo(), "ggproto") expect_s3_class(scale_edge_color_vanimo(), "ScaleContinuous") expect_s3_class(scale_edge_fill_vanimo(midpoint = 10), "ggproto") expect_s3_class(scale_edge_fill_vanimo(midpoint = 10), "ScaleContinuous") expect_s3_class(scale_edge_fill_vanimo(), "ggproto") expect_s3_class(scale_edge_fill_vanimo(), "ScaleContinuous") }) test_that("batlow", { skip_if_not_installed("ggplot2") expect_s3_class(scale_edge_colour_batlow(), "ggproto") expect_s3_class(scale_edge_colour_batlow(), "ScaleContinuous") expect_s3_class(scale_edge_colour_batlow(discrete = TRUE), "ScaleDiscrete") expect_s3_class(scale_edge_color_batlow(), "ggproto") expect_s3_class(scale_edge_color_batlow(), "ScaleContinuous") expect_s3_class(scale_edge_fill_batlow(), "ggproto") expect_s3_class(scale_edge_fill_batlow(), "ScaleContinuous") expect_s3_class(scale_edge_fill_batlow(discrete = TRUE), "ScaleDiscrete") }) test_that("batlowW", { skip_if_not_installed("ggplot2") expect_s3_class(scale_edge_colour_batlowW(), "ggproto") expect_s3_class(scale_edge_colour_batlowW(), "ScaleContinuous") expect_s3_class(scale_edge_colour_batlowW(discrete = TRUE), "ScaleDiscrete") expect_s3_class(scale_edge_color_batlowW(), "ggproto") expect_s3_class(scale_edge_color_batlowW(), "ScaleContinuous") expect_s3_class(scale_edge_fill_batlowW(), "ggproto") expect_s3_class(scale_edge_fill_batlowW(), "ScaleContinuous") expect_s3_class(scale_edge_fill_batlowW(discrete = TRUE), "ScaleDiscrete") }) test_that("batlowK", { skip_if_not_installed("ggplot2") expect_s3_class(scale_edge_colour_batlowK(), "ggproto") expect_s3_class(scale_edge_colour_batlowK(), "ScaleContinuous") expect_s3_class(scale_edge_colour_batlowK(discrete = TRUE), "ScaleDiscrete") expect_s3_class(scale_edge_color_batlowK(), "ggproto") expect_s3_class(scale_edge_color_batlowK(), "ScaleContinuous") expect_s3_class(scale_edge_fill_batlowK(), "ggproto") expect_s3_class(scale_edge_fill_batlowK(), "ScaleContinuous") expect_s3_class(scale_edge_fill_batlowK(discrete = TRUE), "ScaleDiscrete") }) test_that("devon", { skip_if_not_installed("ggplot2") expect_s3_class(scale_edge_colour_devon(), "ggproto") expect_s3_class(scale_edge_colour_devon(), "ScaleContinuous") expect_s3_class(scale_edge_colour_devon(discrete = TRUE), "ScaleDiscrete") expect_s3_class(scale_edge_color_devon(), "ggproto") expect_s3_class(scale_edge_color_devon(), "ScaleContinuous") expect_s3_class(scale_edge_fill_devon(), "ggproto") expect_s3_class(scale_edge_fill_devon(), "ScaleContinuous") expect_s3_class(scale_edge_fill_devon(discrete = TRUE), "ScaleDiscrete") }) test_that("lajolla", { skip_if_not_installed("ggplot2") expect_s3_class(scale_edge_colour_lajolla(), "ggproto") expect_s3_class(scale_edge_colour_lajolla(), "ScaleContinuous") expect_s3_class(scale_edge_colour_lajolla(discrete = TRUE), "ScaleDiscrete") expect_s3_class(scale_edge_color_lajolla(), "ggproto") expect_s3_class(scale_edge_color_lajolla(), "ScaleContinuous") expect_s3_class(scale_edge_fill_lajolla(), "ggproto") expect_s3_class(scale_edge_fill_lajolla(), "ScaleContinuous") expect_s3_class(scale_edge_fill_lajolla(discrete = TRUE), "ScaleDiscrete") }) test_that("bamako", { skip_if_not_installed("ggplot2") expect_s3_class(scale_edge_colour_bamako(), "ggproto") expect_s3_class(scale_edge_colour_bamako(), "ScaleContinuous") expect_s3_class(scale_edge_colour_bamako(discrete = TRUE), "ScaleDiscrete") expect_s3_class(scale_edge_color_bamako(), "ggproto") expect_s3_class(scale_edge_color_bamako(), "ScaleContinuous") expect_s3_class(scale_edge_fill_bamako(), "ggproto") expect_s3_class(scale_edge_fill_bamako(), "ScaleContinuous") expect_s3_class(scale_edge_fill_bamako(discrete = TRUE), "ScaleDiscrete") }) test_that("davos", { skip_if_not_installed("ggplot2") expect_s3_class(scale_edge_colour_davos(), "ggproto") expect_s3_class(scale_edge_colour_davos(), "ScaleContinuous") expect_s3_class(scale_edge_colour_davos(discrete = TRUE), "ScaleDiscrete") expect_s3_class(scale_edge_color_davos(), "ggproto") expect_s3_class(scale_edge_color_davos(), "ScaleContinuous") expect_s3_class(scale_edge_fill_davos(), "ggproto") expect_s3_class(scale_edge_fill_davos(), "ScaleContinuous") expect_s3_class(scale_edge_fill_davos(discrete = TRUE), "ScaleDiscrete") }) test_that("bilbao", { skip_if_not_installed("ggplot2") expect_s3_class(scale_edge_colour_bilbao(), "ggproto") expect_s3_class(scale_edge_colour_bilbao(), "ScaleContinuous") expect_s3_class(scale_edge_colour_bilbao(discrete = TRUE), "ScaleDiscrete") expect_s3_class(scale_edge_color_bilbao(), "ggproto") expect_s3_class(scale_edge_color_bilbao(), "ScaleContinuous") expect_s3_class(scale_edge_fill_bilbao(), "ggproto") expect_s3_class(scale_edge_fill_bilbao(), "ScaleContinuous") expect_s3_class(scale_edge_fill_bilbao(discrete = TRUE), "ScaleDiscrete") }) test_that("nuuk", { skip_if_not_installed("ggplot2") expect_s3_class(scale_edge_colour_nuuk(), "ggproto") expect_s3_class(scale_edge_colour_nuuk(), "ScaleContinuous") expect_s3_class(scale_edge_colour_nuuk(discrete = TRUE), "ScaleDiscrete") expect_s3_class(scale_edge_color_nuuk(), "ggproto") expect_s3_class(scale_edge_color_nuuk(), "ScaleContinuous") expect_s3_class(scale_edge_fill_nuuk(), "ggproto") expect_s3_class(scale_edge_fill_nuuk(), "ScaleContinuous") expect_s3_class(scale_edge_fill_nuuk(discrete = TRUE), "ScaleDiscrete") }) test_that("oslo", { skip_if_not_installed("ggplot2") expect_s3_class(scale_edge_colour_oslo(), "ggproto") expect_s3_class(scale_edge_colour_oslo(), "ScaleContinuous") expect_s3_class(scale_edge_colour_oslo(discrete = TRUE), "ScaleDiscrete") expect_s3_class(scale_edge_color_oslo(), "ggproto") expect_s3_class(scale_edge_color_oslo(), "ScaleContinuous") expect_s3_class(scale_edge_fill_oslo(), "ggproto") expect_s3_class(scale_edge_fill_oslo(), "ScaleContinuous") expect_s3_class(scale_edge_fill_oslo(discrete = TRUE), "ScaleDiscrete") }) test_that("grayC", { skip_if_not_installed("ggplot2") expect_s3_class(scale_edge_colour_grayC(), "ggproto") expect_s3_class(scale_edge_colour_grayC(), "ScaleContinuous") expect_s3_class(scale_edge_colour_grayC(discrete = TRUE), "ScaleDiscrete") expect_s3_class(scale_edge_color_grayC(), "ggproto") expect_s3_class(scale_edge_color_grayC(), "ScaleContinuous") expect_s3_class(scale_edge_fill_grayC(), "ggproto") expect_s3_class(scale_edge_fill_grayC(), "ScaleContinuous") expect_s3_class(scale_edge_fill_grayC(discrete = TRUE), "ScaleDiscrete") }) test_that("hawaii", { skip_if_not_installed("ggplot2") expect_s3_class(scale_edge_colour_hawaii(), "ggproto") expect_s3_class(scale_edge_colour_hawaii(), "ScaleContinuous") expect_s3_class(scale_edge_colour_hawaii(discrete = TRUE), "ScaleDiscrete") expect_s3_class(scale_edge_color_hawaii(), "ggproto") expect_s3_class(scale_edge_color_hawaii(), "ScaleContinuous") expect_s3_class(scale_edge_fill_hawaii(), "ggproto") expect_s3_class(scale_edge_fill_hawaii(), "ScaleContinuous") expect_s3_class(scale_edge_fill_hawaii(discrete = TRUE), "ScaleDiscrete") }) test_that("lapaz", { skip_if_not_installed("ggplot2") expect_s3_class(scale_edge_colour_lapaz(), "ggproto") expect_s3_class(scale_edge_colour_lapaz(), "ScaleContinuous") expect_s3_class(scale_edge_colour_lapaz(discrete = TRUE), "ScaleDiscrete") expect_s3_class(scale_edge_color_lapaz(), "ggproto") expect_s3_class(scale_edge_color_lapaz(), "ScaleContinuous") expect_s3_class(scale_edge_fill_lapaz(), "ggproto") expect_s3_class(scale_edge_fill_lapaz(), "ScaleContinuous") expect_s3_class(scale_edge_fill_lapaz(discrete = TRUE), "ScaleDiscrete") }) test_that("tokyo", { skip_if_not_installed("ggplot2") expect_s3_class(scale_edge_colour_tokyo(), "ggproto") expect_s3_class(scale_edge_colour_tokyo(), "ScaleContinuous") expect_s3_class(scale_edge_colour_tokyo(discrete = TRUE), "ScaleDiscrete") expect_s3_class(scale_edge_color_tokyo(), "ggproto") expect_s3_class(scale_edge_color_tokyo(), "ScaleContinuous") expect_s3_class(scale_edge_fill_tokyo(), "ggproto") expect_s3_class(scale_edge_fill_tokyo(), "ScaleContinuous") expect_s3_class(scale_edge_fill_tokyo(discrete = TRUE), "ScaleDiscrete") }) test_that("buda", { skip_if_not_installed("ggplot2") expect_s3_class(scale_edge_colour_buda(), "ggproto") expect_s3_class(scale_edge_colour_buda(), "ScaleContinuous") expect_s3_class(scale_edge_colour_buda(discrete = TRUE), "ScaleDiscrete") expect_s3_class(scale_edge_color_buda(), "ggproto") expect_s3_class(scale_edge_color_buda(), "ScaleContinuous") expect_s3_class(scale_edge_fill_buda(), "ggproto") expect_s3_class(scale_edge_fill_buda(), "ScaleContinuous") expect_s3_class(scale_edge_fill_buda(discrete = TRUE), "ScaleDiscrete") }) test_that("acton", { skip_if_not_installed("ggplot2") expect_s3_class(scale_edge_colour_acton(), "ggproto") expect_s3_class(scale_edge_colour_acton(), "ScaleContinuous") expect_s3_class(scale_edge_colour_acton(discrete = TRUE), "ScaleDiscrete") expect_s3_class(scale_edge_color_acton(), "ggproto") expect_s3_class(scale_edge_color_acton(), "ScaleContinuous") expect_s3_class(scale_edge_fill_acton(), "ggproto") expect_s3_class(scale_edge_fill_acton(), "ScaleContinuous") expect_s3_class(scale_edge_fill_acton(discrete = TRUE), "ScaleDiscrete") }) test_that("turku", { skip_if_not_installed("ggplot2") expect_s3_class(scale_edge_colour_turku(), "ggproto") expect_s3_class(scale_edge_colour_turku(), "ScaleContinuous") expect_s3_class(scale_edge_colour_turku(discrete = TRUE), "ScaleDiscrete") expect_s3_class(scale_edge_color_turku(), "ggproto") expect_s3_class(scale_edge_color_turku(), "ScaleContinuous") expect_s3_class(scale_edge_fill_turku(), "ggproto") expect_s3_class(scale_edge_fill_turku(), "ScaleContinuous") expect_s3_class(scale_edge_fill_turku(discrete = TRUE), "ScaleDiscrete") }) test_that("imola", { skip_if_not_installed("ggplot2") expect_s3_class(scale_edge_colour_imola(), "ggproto") expect_s3_class(scale_edge_colour_imola(), "ScaleContinuous") expect_s3_class(scale_edge_colour_imola(discrete = TRUE), "ScaleDiscrete") expect_s3_class(scale_edge_color_imola(), "ggproto") expect_s3_class(scale_edge_color_imola(), "ScaleContinuous") expect_s3_class(scale_edge_fill_imola(), "ggproto") expect_s3_class(scale_edge_fill_imola(), "ScaleContinuous") expect_s3_class(scale_edge_fill_imola(discrete = TRUE), "ScaleDiscrete") })
CombineSplits <- function(cml.result, metric = "enhancement", m = NA, thresh = 0.5) { out <- Performance(cml.result, metric, m, thresh) names(out)[4] <- "Model.Acc" methods <- as.character(unique(out$Method)) descriptors <- as.character(unique(out$Descriptor)) num.enhs <- dim(out)[1] out$Trmt <- vector(mode = "logical", length = num.enhs) for (i in 1:num.enhs) { out$Trmt[i] <- which(methods == out$Method[i]) } for (i in 1:num.enhs) { out$Trmt[i] <- out$Trmt[i] + 100 * (which(descriptors == out$Descriptor[i])) } out$Trmt <- factor(out$Trmt) for (i in 1:nrow(out)) { if (is.na(out$Model.Acc[i])) { index <- out$Trmt == out$Trmt[i] out$Model.Acc[i] <- mean(out$Model.Acc[index], na.rm = T) } if (is.na(out$Model.Acc[i])) { out$Model.Acc[i] <- 0 } } SplitAnova(out, metric) } Performance <- function(cml.result, metrics = "enhancement", m = NA, thresh = 0.5) { y <- cml.result$responses if (is.na(m) && "enhancement" %in% metrics) { at <- min(300, ceiling(length(y)/4)) } else if (is.na(m)) { at <- length(y) } else if (m > length(y)) { stop("'at' needs to be smaller than the number of responses") } else { at <- m } abbrev.names <- c() num.desc <- length(cml.result$des.names) des.names <- cml.result$des.names if (grepl("Descriptor Set", des.names[1])) { for (i in 1:num.desc) { abbrev.names <- c(abbrev.names, paste0("Des", i)) } } else { for (i in 1:num.desc) { abbrev.names <- c(abbrev.names, substr(des.names[i], 1, 4)) } } for (k in seq_along(metrics)) { metric <- metrics[k] if (!cml.result$classify) { if (exists("sp", inherits = FALSE)) rm(sp) if (exists("ds", inherits = FALSE)) rm(ds) if (exists("me", inherits = FALSE)) rm(me) if (exists("ma", inherits = FALSE)) rm(ma) for (split in 1:length(cml.result$all.preds)) { pred <- cml.result$all.preds[[split]] for (i in 1:length(pred)) { desc <- abbrev.names[i] for (j in 2:ncol(pred[[i]])) { if (metric == "enhancement") { model.acc <- EnhancementCont(pred[[i]][, j], y, at) } else if (metric == "R2") { pred.order <- order(pred[[i]][, j], decreasing = TRUE) model.acc <- (cor(y, pred[[i]][, j]))^2 } else if (metric == "RMSE") { model.acc <- sqrt(mean((y - pred[[i]][, j])^2)) } else if (metric == "rho") { model.acc <- cor(y, pred[[i]][, j], method = "spearman") } else { stop("y is continuous. 'metrics' should be model accuracy measures implemented for continuous response in ChemModLab") } meth <- names(pred[[i]])[j] if (!exists("sp", inherits = FALSE)) sp <- split else sp <- c(sp, split) if (!exists("ds", inherits = FALSE)) ds <- desc else ds <- c(ds, desc) if (!exists("me", inherits = FALSE)) me <- meth else me <- c(me, meth) if (!exists("ma", inherits = FALSE)) ma <- model.acc else ma <- c(ma, model.acc) } } } } else { if (exists("sp", inherits = FALSE)) rm(sp) if (exists("ds", inherits = FALSE)) rm(ds) if (exists("me", inherits = FALSE)) rm(me) if (exists("ma", inherits = FALSE)) rm(ma) for (split in 1:length(cml.result$all.preds)) { prob <- cml.result$all.probs[[split]] pred <- cml.result$all.preds[[split]] for (i in 1:length(prob)) { desc <- abbrev.names[i] if (ncol(prob[[i]]) > 1) { for (j in 2:ncol(prob[[i]])) { yhat <- prob[[i]][, j] > thresh if (metric == "enhancement") { model.acc <- Enhancement(prob[[i]][, j], y, at) } else if (metric == "auc") { model.acc <- BackAUC(prob[[i]][, j], yhat, y, at) } else if (metric == "error rate") { model.acc <- BackErrorRate(prob[[i]][, j], yhat, y, at) } else if (metric == "specificity") { model.acc <- BackSpecificity(prob[[i]][, j], yhat, y, at) } else if (metric == "sensitivity") { model.acc <- BackSensitivity(prob[[i]][, j], yhat, y, at) } else if (metric == "ppv") { model.acc <- BackPPV(prob[[i]][, j], yhat, y, at) } else if (metric == "fmeasure") { model.acc <- BackFMeasure(prob[[i]][, j], yhat, y, at) } else { stop("y is binary. 'metrics' should be model accuracy measures implemented for binary response in ChemModLab") } meth <- names(prob[[i]])[j] if (!exists("sp", inherits = FALSE)) sp <- split else sp <- c(sp, split) if (!exists("ds", inherits = FALSE)) ds <- desc else ds <- c(ds, desc) if (!exists("me", inherits = FALSE)) me <- meth else me <- c(me, meth) if (!exists("ma", inherits = FALSE)) ma <- model.acc else ma <- c(ma, model.acc) } } } for (i in 1:length(pred)) { desc <- abbrev.names[i] if (ncol(pred[[i]]) > 1) { for (j in 2:ncol(pred[[i]])) { yhat <- pred[[i]][, j] > thresh if (metric == "enhancement") { model.acc <- Enhancement(pred[[i]][, j], y, at) } else if (metric == "auc") { model.acc <- as.numeric(pROC::auc(y, pred[[i]][, j])) } else if (metric == "error rate") { model.acc <- BackErrorRate(pred[[i]][, j], yhat, y, at) } else if (metric == "specificity") { model.acc <- BackSpecificity(pred[[i]][, j], yhat, y, at) } else if (metric == "sensitivity") { model.acc <- BackSensitivity(pred[[i]][, j], yhat, y, at) } else if (metric == "ppv") { model.acc <- BackPPV(pred[[i]][, j], yhat, y, at) } else if (metric == "fmeasure") { model.acc <- BackFMeasure(pred[[i]][, j], yhat, y, at) } else { stop("y is binary. 'metric' should be a model accuracy measure implemented for binary response in ChemModLab") } meth <- names(pred[[i]])[j] if (!exists("sp", inherits = FALSE)) sp <- split else sp <- c(sp, split) if (!exists("ds", inherits = FALSE)) ds <- desc else ds <- c(ds, desc) if (!exists("me", inherits = FALSE)) me <- meth else me <- c(me, meth) if (!exists("ma", inherits = FALSE)) ma <- model.acc else ma <- c(ma, model.acc) } } } } } if (k == 1) { out <- data.frame(sp, ds, me, ma) } else { out <- data.frame(out, ma) } } names(out) <- c("Split", "Descriptor", "Method", metrics) out <- out[!duplicated(out[, 1:3]), ] out$Split <- factor(out$Split) out } SplitAnova <- function(splitdata, metric) { single.desc <- (length(unique(splitdata$Descriptor)) == 1) out <- glm(Model.Acc ~ Split + Trmt, data = splitdata) mod.df <- out$df.null - out$df.residual mod.dev <- out$null.deviance - out$deviance mod.ms <- mod.dev/mod.df err.df <- out$df.residual err.dev <- out$deviance err.ms <- err.dev/err.df tot.df <- out$df.null tot.dev <- out$null.deviance f.stat <- mod.ms/err.ms p.val <- df(f.stat, mod.df, err.df) if (p.val < 1e-04) p.val <- "<.0001" form.df <- format(c("DF", mod.df, err.df, tot.df), width = 3, justify = "right") form.dec.num <- format(c(mod.dev, err.dev, tot.dev, mod.ms, err.ms, f.stat), digits = 4, nsmall = 3) form.dec <- format(c("SS", "MS", "F", form.dec.num), digits = 4, nsmall = 3, justify = "right") form.p <- format(c("p-value", if (is.numeric(p.val)) round(p.val, digits = 4) else p.val), digits = 1, nsmall = 4, justify = "right") cat(paste0(" Analysis of Variance on: '",metric,"'\n")) if (single.desc) cat(paste(" Using factors: Split and Method\n")) else cat(paste(" Using factors: Split and Descriptor/Method combination\n")) cat(paste("Source", form.df[1], form.dec[1], form.dec[2], form.dec[3], form.p[1], "\n", sep = " ")) cat(paste("Model ", form.df[2], form.dec[4], form.dec[7], form.dec[9], form.p[2], "\n", sep = " ")) cat(paste("Error ", form.df[3], form.dec[5], form.dec[8], "\n", sep = " ")) cat(paste("Total ", form.df[4], form.dec[6], "\n", sep = " ")) root.mse <- sqrt(err.ms) all.mean <- mean(splitdata$Model.Acc) coef.var <- root.mse/all.mean * 100 r.sq <- mod.dev/tot.dev form.stat.num <- format(c(r.sq, coef.var, root.mse, all.mean), digits = 3, nsmall = 4) form.stat <- format(c("R-Square", "Coef Var", "Root MSE", "Mean", form.stat.num), digits = 3, nsmall = 4, justify = "right") cat(paste(" ", form.stat[1], form.stat[2], form.stat[3], form.stat[4], "\n", sep = " ")) cat(paste(" ", form.stat[5], form.stat[6], form.stat[7], form.stat[8], "\n", sep = " ")) aout <- anova(out) f.df <- aout$Df[2] f.dev <- aout$Deviance[2] f.ms <- f.dev/f.df f.f.stat <- f.ms/err.ms t.df <- aout$Df[3] t.dev <- aout$Deviance[3] t.ms <- t.dev/t.df t.f.stat <- t.ms/err.ms f.p.val <- df(f.f.stat, f.df, t.df) if (f.p.val < 1e-04) f.p.val <- "<.0001" t.p.val <- df(t.f.stat, t.df, err.df) if (t.p.val < 1e-04) t.p.val <- "<.0001" form.df <- format(c("DF", f.df, t.df), width = 3, justify = "right") form.dec.num <- format(c(f.dev, f.ms, f.f.stat, t.dev, t.ms, t.f.stat), digits = 3, nsmall = 3) form.dec <- format(c("SS", "MS", "F", form.dec.num), digits = 3, nsmall = 3, justify = "right") form.p <- format(c("p-value", f.p.val, t.p.val), digits = 1, nsmall = 4, justify = "right") form.p <- format(c("p-value", if (is.numeric(f.p.val)) round(f.p.val, digits = 4) else f.p.val, if (is.numeric(t.p.val)) round(t.p.val, digits = 4) else t.p.val), digits = 1, nsmall = 4, justify = "right") cat(paste("Source ", form.df[1], form.dec[1], form.dec[2], form.dec[3], form.p[1], "\n", sep = " ")) cat(paste("Split ", form.df[2], form.dec[4], form.dec[5], form.dec[6], form.p[2], "\n", sep = " ")) if (single.desc) cat(paste("Method ", form.df[3], form.dec[7], form.dec[8], form.dec[9], form.p[3], "\n", sep = " ")) else cat(paste("Desc/Meth", form.df[3], form.dec[7], form.dec[8], form.dec[9], form.p[3], "\n", sep = " ")) lsmeans <- c() fit <- fitted.values(out) for (i in levels(splitdata$Trmt)) lsmeans <- c(lsmeans, mean(fit[splitdata$Trmt == i])) aov.out <- aov(Model.Acc ~ Split + Trmt, data = splitdata) tout <- TukeyHSD(aov.out, "Trmt") n <- length(levels(splitdata$Trmt)) pval <- matrix(NA, nrow = n, ncol = n) for (i in 1:(n - 1)) { for (j in (i + 1):n) { pval[i, j] <- tout$Trmt[n * (i - 1) - i * (i - 1)/2 + j - i, 4] pval[j, i] <- pval[i, j] } } McsPlot(lsmeans, pval, as.numeric(levels(splitdata$Trmt)), as.character(unique(splitdata$Descriptor)), as.character(unique(splitdata$Method)), single.desc, metric) }
findCodeType <- function(code, date = NULL, regex = TRUE, full = FALSE) { types <- getCodeTypeList(date) code <- tolower(code) if (!regex) code <- paste0("^", code, "$") select <- c(unlist(lapply(code, grep, tolower(types$LongDescription))), unlist(lapply(code, grep, tolower(types$Description))), unlist(lapply(code, grep, tolower(types$Key)))) select <- sort(unique(select)) types <- types[select,] if (full) { types } else { types$Key } }
create_null_distribution<-function(sample_data, extreme, rand_matrix, permutation_null_function,test_stat, variable,iterations){ perm_samples<-permutation_null_function(rand_matrix,variable,iterations) null_hist<-hist(perm_samples,breaks=100,col = "gold", main=paste("Null Distribution"), xlab="Test Statistics") abline(v=test_stat,col="black",lty=2, lwd=5) if (extreme==0){ pvalue<-sum(perm_samples<=(test_stat))/iterations } else { pvalue<-sum(perm_samples>=(test_stat))/iterations } print(test_stat) print(pvalue) return(invisible(perm_samples)) }
simSP <- function(ref, qw, gtype_distMat = sim2dist(grainSimilarity_evaluate(triag = FALSE)), verbose = FALSE, returnDF = FALSE) { refNL <- nrow(ref$layers) qwNL <- nrow(qw$layers) id <- suppressWarnings(which(ref$layers$height == qw$layers$height)) n_id <- length(id) if (n_id == 0) { id <- suppressWarnings(which(unique(rev(ref$layers$height)) == unique(rev(qw$layers$height)))) cref <- length(which(ref$layers$height == ref$layers$height[refNL])) - 1 id <- rev(refNL + 1 - cref - id) seq_qw <- suppressWarnings(which(unique(rev(qw$layers$height)) == unique(rev(ref$layers$height)))) cqw <- length(which(qw$layers$height == qw$layers$height[qwNL])) - 1 seq_qw <- rev(qwNL + 1 - cqw - seq_qw) if (seq_qw[1] > 1) { ref$layers[seq_qw, ] <- ref$layers[id, ] ref$layers[seq(seq_qw[1] - 1), ] <- NA ref$layers[seq(seq_qw[1] - 1), "height"] <- seq(from = 0, to = qw$layers$height[seq_qw[1]], length.out = seq_qw[1] + 1)[-c(1, seq_qw[1] + 1)] ref$layers[seq(seq_qw[1] - 1), "hardness"] <- 0 id <- seq_qw } else if (id[1] > 1) { qw$layers[id, ] <- qw$layers[seq_qw, ] qw$layers[seq(id[1] - 1), ] <- NA qw$layers[seq(id[1] - 1), "height"] <- seq(from = 0, to = ref$layers$height[id[1]], length.out = id[1] + 1)[-c(1, id[1] + 1)] qw$layers[seq(id[1] - 1), "hardness"] <- 0 } n_id <- length(id) } if (n_id > 0) { if (any(diff(id) == 0)) { warning(paste0("Profiles don't seem to be on the same depth grid! queryWarped: ", paste0(qw$layers$height, collapse = " "), " ref: ", paste0(ref$layers$height, collapse = " "))) verbose <- TRUE } } else { warning(paste0("Profiles have no single layer interface at the same height! queryWarped: ", paste0(qw$layers$height, collapse = " "), " ref: ", paste0(ref$layers$height, collapse = " "), " returning 'NA'..")) return(NA) } RES <- resampleSPpairs(qw$layers[id,], ref$layers[id,], mergeBeforeResampling = TRUE, dims = c("gtype", "hardness")) rl <- RES$ref qwl <- RES$query refGrains <- as.character(rl$gtype) qwGrains <- as.character(qwl$gtype) matchedGrid <- rep(rl$height, times = 2) nGrains <- length(refGrains) nonMatchedIn <- which(c(refNL, qwNL) > n_id) nMI <- length(nonMatchedIn) if (nMI == 1) { suppressWarnings(missingLayers <- mergeIdentLayers(list(ref, qw)[[nonMatchedIn]]$layers[-(id), ])) toDel <- which(missingLayers$height %in% rl$height) if (length(toDel) > 0) missingLayers <- missingLayers[-(toDel), ] if (nrow(missingLayers) == 0) missingLayers <- NA } else if (nMI == 0) { missingLayers <- NA } else if (nMI == 2) { if (all(ref$layers[-(id), 'height'] %in% rl$height)) nonMatchedIn <- nonMatchedIn[!nonMatchedIn == 1] if (all(qw$layers[-(id), 'height'] %in% qwl$height)) nonMatchedIn <- nonMatchedIn[!nonMatchedIn == 2] missingLayers <- data.frame() for (nM in nonMatchedIn) { suppressWarnings(missingLayers <- rbind(missingLayers, mergeIdentLayers(list(ref, qw)[[nM]]$layers[-(id), ]))) } if (length(nonMatchedIn) > 1) { print("simSP: non-matched layers in both profiles:") print(missingLayers) } } dGT <- extractFromScoringMatrix(ScoringFrame = gtype_distMat, grainType1 = qwGrains, grainType2 = refGrains) simGT <- sim2dist(dGT) dHHI <- hardnessDistance(qwl$hardness, rl$hardness, normalize = TRUE, absDist = TRUE) simHHI <- sim2dist(dHHI) pen_offset <- 0 sim <- (simGT * simHHI)[, 1] - pen_offset if (is.data.frame(missingLayers)) { missingDF <- data.frame(grains = as.factor(as.character(missingLayers[, "gtype"])), sim = 0.5) } else { missingDF <- data.frame() } matchedDF <- data.frame(grains = as.factor(c(as.character(refGrains), as.character(qwGrains))), sim = sim) if (any(is.na(matchedDF$sim))) warning("simSP: NAs produced in similarity assessment of matched layers. Investigate why!") cat_wls <- c("SH", "DH") cat_cr <- c("MFcr", "IF") cat_pps <- c("PP", "DF") cat_special <- c(cat_wls, cat_cr, cat_pps) iNoHHI <- which(matchedDF$grains %in% c(cat_wls, cat_cr)) iExc <- which(iNoHHI > nGrains) iNoHHI_trans <- iNoHHI iNoHHI_trans[iExc] <- iNoHHI[iExc] - nGrains matchedDF[iNoHHI, "sim"] <- simGT[iNoHHI_trans, 1] - pen_offset nWLs <- max(c(length(which(matchedDF$grains[1:nGrains] %in% cat_wls)), length(which(matchedDF$grains[(nGrains+1):(2*nGrains)] %in% cat_wls)))) if (nWLs > 1) { maxMatchedGrid <- max(matchedGrid) gridBoundsStep <- maxMatchedGrid/(nWLs+1) gridBounds <- seq(gridBoundsStep, maxMatchedGrid+1, length.out = nWLs) gridBounds <- matrix(c(0, gridBounds[1:(nWLs-1)], gridBounds), ncol = 2) iMatchedWLs <- c(which(matchedDF$grains %in% cat_wls)) matchedWLs <- matrix(c(matchedGrid[iMatchedWLs], matchedDF[iMatchedWLs, "sim"]), ncol = 2) simWLs <- sapply(seq(nWLs), function(i) { mean(matchedWLs[which(matchedWLs[, 1] >= gridBounds[i, 1] & matchedWLs[, 1] < gridBounds[i, 2]), 2], na.rm = T) }) } else { simWLs <- mean(matchedDF[matchedDF$grains %in% cat_wls, "sim"]) } nCRs <- max(c(length(which(matchedDF$grains[1:nGrains] %in% cat_cr)), length(which(matchedDF$grains[(nGrains+1):(2*nGrains)] %in% cat_cr)))) if (nCRs > 1) { maxMatchedGrid <- max(matchedGrid) gridBoundsStep <- maxMatchedGrid/(nCRs+1) gridBounds <- seq(gridBoundsStep, maxMatchedGrid+1, length.out = nCRs) gridBounds <- matrix(c(0, gridBounds[1:(nCRs-1)], gridBounds), ncol = 2) iMatchedCRs <- c(which(matchedDF$grains %in% cat_cr)) matchedCRs <- matrix(c(matchedGrid[iMatchedCRs], matchedDF[iMatchedCRs, "sim"]), ncol = 2) simCRs <- sapply(seq(nCRs), function(i) { mean(matchedCRs[which(matchedCRs[, 1] >= gridBounds[i, 1] & matchedCRs[, 1] < gridBounds[i, 2]), 2], na.rm = T) }) } else { simCRs <- mean(matchedDF[matchedDF$grains %in% cat_cr, "sim"]) } simDF <- data.frame( wl = mean(c(simWLs, suppressWarnings(mean(missingDF[missingDF$grains %in% cat_wls, "sim"]))), na.rm = TRUE), cr = mean(c(simCRs, suppressWarnings(mean(missingDF[missingDF$grains %in% cat_cr, "sim"]))), na.rm = TRUE), pp = mean(c(matchedDF[matchedDF$grains %in% cat_pps, "sim"], rep(missingDF[missingDF$grains %in% cat_pps, "sim"], times = 1))), bulk = mean(c(matchedDF[!matchedDF$grains %in% cat_special, "sim"], rep(missingDF[!missingDF$grains %in% cat_special, "sim"], times = 1))) ) simDF <- simDF + pen_offset rownames(simDF) <- "sim [0, 1]: " simSP <- mean(as.double(simDF[1, ]), na.rm = TRUE) if (length(simSP) == 0) { simSP <- NA warning("simSP: problem in calculating similarity score, returning NA") } simDF <- round((simDF)*100)/100 if (verbose) { print(simDF) cat(paste("simple similarity =", round(simSP*1000)/1000, "\n")) } ifelse(returnDF, return(list(sim = simSP, simDF = simDF)), return(simSP)) }
knitr::opts_chunk$set(fig.width = 7, fig.height = 5) library(MazamaSpatialUtils) longitude <- c(-122.3, -73.5, 21.1, 2.5) latitude <- c(47.5, 40.75, 52.1, 48.5) getCountry(longitude, latitude) getCountryCode(longitude, latitude) getCountry(longitude, latitude, allData = TRUE) getTimezone(longitude, latitude) countryCodes <- getCountryCode(longitude, latitude) getTimezone(longitude, latitude, countryCodes = countryCodes) getTimezone(longitude, latitude, allData = TRUE, countryCodes = countryCodes) library(sp) colorIndices <- .bincode(SimpleTimezones@data$UTC_offset, breaks = seq(-12.5,12.5,1)) plot(SimpleTimezones, col = rainbow(25)[colorIndices]) title(line = 0, 'Timezone Offsets from UTC') library(sp) prod <- read.csv(url('http://mazamascience.com/OilExport/BP_2016_oil_production_bbl.csv'), skip = 6, stringsAsFactors = FALSE, na.strings = 'na') cons <- read.csv(url('http://mazamascience.com/OilExport/BP_2016_oil_consumption_bbl.csv'), skip = 6, stringsAsFactors = FALSE, na.strings = 'na') prodCountryCodes <- names(prod)[ stringr::str_length(names(prod)) == 2 ] consCountryCodes <- names(cons)[ stringr::str_length(names(cons)) == 2 ] lastRow <- nrow(prod) year <- prod$YEAR[lastRow] sharedCountryCodes <- intersect(prodCountryCodes,consCountryCodes) net <- prod[lastRow, sharedCountryCodes] - cons[lastRow, sharedCountryCodes] netExportCodes <- sharedCountryCodes[net > 0] netImportCodes <- sharedCountryCodes[net <= 0] exportOnlyCodes <- setdiff(prodCountryCodes,consCountryCodes) importOnlyCodes <- setdiff(consCountryCodes,prodCountryCodes) netExportMask <- SimpleCountries@data$countryCode %in% netExportCodes netImportMask <- SimpleCountries@data$countryCode %in% netImportCodes onlyExportMask <- SimpleCountries@data$countryCode %in% exportOnlyCodes onlyImportMask <- SimpleCountries@data$countryCode %in% importOnlyCodes color_export = ' color_import = ' color_missing = 'gray90' notAQ <- SimpleCountries@data$countryCode != 'AQ' plot(SimpleCountries[notAQ,], col = color_missing) plot(SimpleCountries[netExportMask,], col = color_export, add = TRUE) plot(SimpleCountries[onlyExportMask,], col = color_export, add = TRUE) plot(SimpleCountries[netImportMask,], col = color_import, add = TRUE) plot(SimpleCountries[onlyImportMask,], col = color_import, add = TRUE) legend( 'bottomleft', legend = c('Net Exporters','Net Importers'), fill = c(color_export,color_import) ) title(line = 0, paste('World Crude Oil in', year))
R.home <- function(component="home") { rh <- .Internal(R.home()) switch(component, "home" = rh, "bin" = if(.Platform$OS.type == "windows" && nzchar(p <- .Platform$r_arch)) file.path(rh, component, p) else file.path(rh, component), "share" = if(nzchar(p <- Sys.getenv("R_SHARE_DIR"))) p else file.path(rh, component), "doc" = if(nzchar(p <- Sys.getenv("R_DOC_DIR"))) p else file.path(rh, component), "include" = if(nzchar(p <- Sys.getenv("R_INCLUDE_DIR"))) p else file.path(rh, component), "modules" = if(nzchar(p <- .Platform$r_arch)) file.path(rh, component, p) else file.path(rh, component), file.path(rh, component)) } file.show <- function (..., header = rep("", nfiles), title = "R Information", delete.file = FALSE, pager = getOption("pager"), encoding = "") { files <- path.expand(c(...)) nfiles <- length(files) if(nfiles == 0L) return(invisible(NULL)) if(l10n_info()[["UTF-8"]] && encoding == "UTF-8") encoding <- "" if(l10n_info()[["Latin-1"]] && encoding == "latin1") encoding <- "" if(!is.na(encoding) && nzchar(encoding)) { for(i in seq_along(files)) { f <- files[i] tf <- tempfile() tmp <- readLines(f, warn = FALSE) tmp2 <- try(iconv(tmp, encoding, "", "byte")) if(inherits(tmp2, "try-error")) file.copy(f, tf) else writeLines(tmp2, tf) files[i] <- tf if(delete.file) unlink(f) } delete.file <- TRUE } if(is.function(pager)) pager(files, header = header, title = title, delete.file = delete.file) else .Internal(file.show(files, header, title, delete.file, pager)) } file.append <- function(file1, file2) .Internal(file.append(file1, file2)) file.remove <- function(...) .Internal(file.remove(c(...))) file.rename <- function(from, to) .Internal(file.rename(from, to)) list.files <- function(path = ".", pattern = NULL, all.files = FALSE, full.names = FALSE, recursive = FALSE, ignore.case = FALSE, include.dirs = FALSE, no.. = FALSE) .Internal(list.files(path, pattern, all.files, full.names, recursive, ignore.case, include.dirs, no..)) dir <- list.files list.dirs <- function(path = ".", full.names = TRUE, recursive = TRUE) .Internal(list.dirs(path, full.names, recursive)) file.path <- function(..., fsep=.Platform$file.sep) .Internal(file.path(list(...), fsep)) file.exists <- function(...) .Internal(file.exists(c(...))) file.create <- function(..., showWarnings = TRUE) .Internal(file.create(c(...), showWarnings)) file.choose <- function(new=FALSE) .Internal(file.choose(new)) file.copy <- function(from, to, overwrite = recursive, recursive = FALSE, copy.mode = TRUE, copy.date = FALSE) { if (!(nf <- length(from))) return(logical()) if (!(nt <- length(to))) stop("no files to copy to") if (nt == 1 && dir.exists(to)) { if (recursive && to %in% from) stop("attempt to copy a directory to itself") if(.Platform$OS.type == "windows") { from <- gsub("/", "\\", from, fixed = TRUE) to <- gsub("/", "\\", to, fixed = TRUE) } return(.Internal(file.copy(from, to, overwrite, recursive, copy.mode, copy.date))) } else if (nf > nt) stop("more 'from' files than 'to' files") else if (recursive) warning("'recursive' will be ignored as 'to' is not a single existing directory") if(nt > nf) from <- rep_len(from, length.out = nt) okay <- file.exists(from) if (!overwrite) okay[file.exists(to)] <- FALSE if (any(from[okay] %in% to[okay])) stop("file can not be copied both 'from' and 'to'") if (any(okay)) { okay[okay] <- file.create(to[okay]) if(any(okay)) { okay[okay] <- file.append(to[okay], from[okay]) if(copy.mode || copy.date) { fi <- file.info(from[okay], extra_cols = FALSE) if(copy.mode) Sys.chmod(to[okay], fi$mode, TRUE) if(copy.date) Sys.setFileTime(to[okay], fi$mtime) } } } okay } file.symlink <- function(from, to) { if (!(length(from))) stop("no files to link from") if (!(nt <- length(to))) stop("no files/directory to link to") if (nt == 1 && file.exists(to) && file.info(to, extra_cols = FALSE)$isdir) to <- file.path(to, basename(from)) .Internal(file.symlink(from, to)) } file.link <- function(from, to) { if (!(length(from))) stop("no files to link from") if (!length(to)) stop("no files to link to") .Internal(file.link(from, to)) } file.info <- function(..., extra_cols = TRUE) { res <- .Internal(file.info(fn <- c(...), extra_cols)) res$mtime <- .POSIXct(res$mtime) res$ctime <- .POSIXct(res$ctime) res$atime <- .POSIXct(res$atime) class(res) <- "data.frame" attr(res, "row.names") <- fn res } file.mode <- function(...) file.info(..., extra_cols = FALSE)$mode file.mtime <- function(...) file.info(..., extra_cols = FALSE)$mtime file.size <- function(...) file.info(..., extra_cols = FALSE)$size file.access <- function(names, mode = 0) { res <- .Internal(file.access(names, mode)) names(res) <- names res } dir.exists <- function(paths) .Internal(dir.exists(paths)) dir.create <- function(path, showWarnings = TRUE, recursive = FALSE, mode = "0777") .Internal(dir.create(path, showWarnings, recursive, as.octmode(mode))) system.file <- function(..., package = "base", lib.loc = NULL, mustWork = FALSE) { if(nargs() == 0L) return(file.path(.Library, "base")) if(length(package) != 1L) stop("'package' must be of length 1") packagePath <- find.package(package, lib.loc, quiet = TRUE) ans <- if(length(packagePath)) { FILES <- file.path(packagePath, ...) present <- file.exists(FILES) if(any(present)) FILES[present] else "" } else "" if (mustWork && identical(ans, "")) stop("no file found") ans } getwd <- function() .Internal(getwd()) setwd <- function(dir) .Internal(setwd(dir)) basename <- function(path) .Internal(basename(path)) dirname <- function(path) .Internal(dirname(path)) Sys.info <- function() .Internal(Sys.info()) Sys.sleep <- function(time) .Internal(Sys.sleep(time)) path.expand <- function(path) .Internal(path.expand(path)) Sys.glob <- function(paths, dirmark = FALSE) .Internal(Sys.glob(path.expand(paths), dirmark)) unlink <- function(x, recursive = FALSE, force = FALSE) .Internal(unlink(as.character(x), recursive, force)) Sys.chmod <- function(paths, mode = "0777", use_umask = TRUE) .Internal(Sys.chmod(paths, as.octmode(mode), use_umask)) Sys.umask <- function(mode = NA) .Internal(Sys.umask(if(is.na(mode)) NA_integer_ else as.octmode(mode))) Sys.readlink <- function(paths) .Internal(Sys.readlink(paths)) readRenviron <- function(path) .Internal(readRenviron(path)) normalizePath <- function(path, winslash = "\\", mustWork = NA) .Internal(normalizePath(path.expand(path), winslash, mustWork)) Sys.setFileTime <- function(path, time) { if (!is.character(path) || length(path) != 1L) stop("invalid 'path' argument") time <- as.POSIXct(time) if (is.na(time)) stop("invalid 'time' argument") .Internal(setFileTime(path, time)) }
calculSeSp <- function (matSeSp, seuilSeSp){ if(length(colnames(matSeSp)[colnames(matSeSp)=="score"])==0){ matSeSp <- cbind(matSeSp, score=round(apply(matSeSp[,3:ncol(matSeSp)], MARGIN=1, FUN=sum), 7)) } matSeSp <- cbind(matSeSp, risque=0) idx <- which(matSeSp[, "score"] >= seuilSeSp) matSeSp[, "risque"][idx] <- 1 vp <- length(which(matSeSp[,"ETAT"]==1 & matSeSp[,"risque"]==1)) fp <- length(which(matSeSp[,"ETAT"]==0 & matSeSp[,"risque"]==1)) vn <- length(which(matSeSp[,"ETAT"]==0 & matSeSp[,"risque"]==0)) fn <- length(which(matSeSp[,"ETAT"]==1 & matSeSp[,"risque"]==0)) if (vp == 0){fn <- 1} if (vn == 0){fp <- 1} Se <- vp / (vp + fn) * 100 Sp <- vn / (vn + fp) * 100 return(c(Sens=Se, Spec=Sp, VP=vp, FP=fp, VN=vn, FN=fn)) }
IRT.factor.scores.xxirt <- function( object, type="EAP", ... ) { if ( ! ( type %in% c("EAP") ) ){ stop("Requested type is not supported!\n") } if ( type=="EAP"){ ll <- object$EAP } attr(ll,"type") <- type return(ll) }
issue_close = function(repo, number) { arg_is_chr(repo) res = purrr::map2( repo, number, function(repo, number) { res = purrr::safely(github_api_issue_edit)( repo, number, state = "closed" ) num_text = paste0(" status_msg( res, "Closed issue {.val {num_text}} for repo {.val {repo}}.", "Failed to close issue {.val {num_text}} for repo {.val {repo}}." ) res } ) invisible(res) }
expected <- eval(parse(text="c(NaN, 9.51350769866873, 4.5908437119988, 2.99156898768759, 2.21815954375769, 1.77245385090552, 1.48919224881282, 1.29805533264756, 1.1642297137253, 1.06862870211932, 1)")); test(id=0, code={ argv <- eval(parse(text="list(c(NaN, 9.51350769866873, 4.5908437119988, 2.99156898768759, 2.21815954375769, 1.77245385090552, 1.48919224881282, 1.29805533264756, 1.1642297137253, 1.06862870211932, 1))")); do.call(`as.double`, argv); }, o=expected);
rowSplit <- function(x,f,tran=F) { if(tran) { stopifnot(ncol(x)==length(f)) } else{ stopifnot(nrow(x)==length(f)) } if(tran) x <- t(x) idx <- split(1:nrow(x),f) if(tran){ r <- lapply(idx,function(elmt) t(x[elmt,,drop=FALSE])) } else{ r <- lapply(idx,function(elmt) x[elmt,,drop=FALSE]) } r }
tCorpus$set('public', 'annotate_rsyntax', function(column, ..., block=NULL, fill=TRUE, overwrite=NA, block_fill=FALSE, verbose=FALSE) { if (column %in% self$names && is.na(overwrite)) stop(sprintf('The specified column (%s) already exists. Set overwrite argument to TRUE to overwrite the column or FALSE to consider existing annotations as a chain.', column)) cnames = paste0(column, c('','_id','_fill')) ti = rsyntax::annotate_tqueries(self$tokens, column = column, ..., block = block, fill = fill, overwrite = overwrite, block_fill = block_fill, copy=T, verbose=verbose) ti = subset(ti, select = c('doc_id','token_id',cnames)) for (cn in cnames) if (cn %in% self$names) self$set(cn, NULL) self$tokens = merge(self$tokens, ti, by=c('doc_id','token_id')) self$validate_tokens() invisible(self$tokens[]) }) tCorpus$set('public', 'fold_rsyntax', function(annotation, by_label, ..., txt=F, rm_by=T, copy=F) { if (copy) { selfcopy = self$copy()$fold_rsyntax(annotation=annotation, by_label=by_label, ..., txt=txt, rm_by=rm_by, copy=F) return(selfcopy) } .annotation = annotation .annotation_id = paste0(annotation, '_id') if (!all(c(.annotation,.annotation_id) %in% self$names)) stop('annotation does not refer to a valid rsyntax annotation column (see annotate_rsyntax)') .by_label = by_label .is_label = self$tokens[list(.by_label),,on=.annotation, which=T] agg_cols = self$tokens[.is_label, eval(substitute(list(...))), by = c('doc_id', 'sentence', .annotation_id)] if (txt) { txt_col = paste0(paste(.by_label, collapse='_'), '_txt') if (nrow(agg_cols) == 0) { agg_cols = tokens[.is_label, list(.txt = paste(token, collapse=' ')), by = c('doc_id', 'sentence', .annotation_id)] data.table::setnames(agg_cols, '.txt', txt_col) } else agg_cols[[txt_col]] = tokens[.is_label, list(.txt = paste(token, collapse=' ')), by = c('doc_id', 'sentence', .annotation_id)]$.txt } if (rm_by) self$tokens = self$tokens[!1:nrow(self$tokens) %in% .is_label,] self$tokens = merge(self$tokens, agg_cols, by=c('doc_id', 'sentence', .annotation_id), all=T, sort = F) self$validate_tokens() invisible(self) }) fold_rsyntax <- function(tc, annotation, by_label, ..., txt=F, rm_by=T) { tc$fold_rsyntax(annotation=annotation,by_label=by_label, ..., txt=txt, rm_by=rm_by, copy=T) } agg_label <- function(label, ...) { list(label=label, agg_list = substitute(list(...))) } aggregate_rsyntax <- function(tc, annotation, ..., by_col=NULL, txt=F, labels=NULL, rm_na=T) { token = NULL tokens = if (inherits(tc, 'tCorpus')) tc$tokens else tc .annotation = annotation .annotation_id = paste0(.annotation, '_id') if (!all(c(.annotation,.annotation_id) %in% colnames(tokens))) stop('annotation does not refer to a valid rsyntax annotation column (see annotate_rsyntax)') l = list(...) lname = sapply(l, function(x) x$label) if (is.null(labels)) labels = unique(tokens[[.annotation]]) if (is.logical(txt)) { txt = if (txt) labels else c() } out = unique(tokens[,c('doc_id','sentence', .annotation_id,by_col),with=F]) if (!is.null(by_col)) .drop = Matrix::rowSums(is.na(out[,c(.annotation_id,by_col),with=F])) == (length(by_col) + 1) else .drop = is.na(out[[.annotation_id]]) out = out[!.drop,] for (.label in labels) { if (is.na(.label)) next .is_label = tokens[list(.label),,on=.annotation, which=T] if (length(.is_label) == 0) next if (.label %in% lname) { .by = l[[which(lname == .label)]] agg_cols = tokens[.is_label, eval(.by$agg_list), by = c('doc_id', 'sentence', .annotation_id, by_col)] } else agg_cols = NULL if (.label %in% txt) { txt_col = paste0(paste(.label, collapse='_'), '_txt') if (is.null(agg_cols)) { agg_cols = tokens[.is_label, list(.txt = paste(token, collapse=' ')), by = c('doc_id', 'sentence', .annotation_id, by_col)] data.table::setnames(agg_cols, '.txt', txt_col) } else agg_cols[[txt_col]] = tokens[.is_label, list(.txt = paste(token, collapse=' ')), by = c('doc_id', 'sentence', .annotation_id, by_col)]$.txt } if (!is.null(agg_cols)) out = merge(out, agg_cols, by=c('doc_id', 'sentence',.annotation_id, by_col), all=T, allow.cartesian = T, nomatch=0) } out } transform_rsyntax <- function(tc, f, ...) { tokens = as_tokenindex(tc$tokens) tokens = f(tokens, ...) tokens_to_tcorpus(tokens, meta=tc$meta, model=paste(tc$model)) }
context("VaR stressed") library("SWIM") set.seed(0) x <- as.data.frame(cbind( "normal" = rnorm(1000), "gamma" = rgamma(1000, shape = 2))) alpha <- c(0.8, 0.9) q_ratio <- 1.05 s_ratio <- 1.1 k <- 1 res <- stress(type = "VaR ES", x = x, alpha = alpha, q_ratio = q_ratio, s_ratio = s_ratio, k = k) levels <- seq(0.1, 0.9, by = 0.1) .ES.stressed1 <- ES_stressed(res, alpha = levels, xCol = k, wCol = 1, base = TRUE) .ES.stressed2 <- ES_stressed(res, alpha = levels, xCol = k, wCol = 2, base = TRUE) test_that("names", { expect_equal(colnames(.ES.stressed1), colnames(.ES.stressed2)) expect_equal(colnames(.ES.stressed1), c(colnames(x)[k], paste("base", colnames(x)[k]))) expect_equal(rownames(.ES.stressed1), paste(100 * levels, "%", sep = "")) }) x1 <- x[, 1] .VaR.stressed1 <- VaR_stressed(res, alpha = levels, xCol = k, wCol = 1, base = TRUE) .VaR.stressed2 <- VaR_stressed(res, alpha = levels, xCol = k, wCol = 2, base = TRUE) w <- get_weights(res) ES1 <- rep( 0, length(levels)) ES2 <- rep( 0, length(levels)) for(i in 1:length(levels)){ ES1[i] <- mean(w[, 1] * (x1 - .VaR.stressed1[i, 1]) * (x1 > .VaR.stressed1[i, 1])) / (1 - levels[i]) + .VaR.stressed1[i, 1] ES2[i] <- mean(w[, 2] * (x1 - .VaR.stressed2[i, 1]) * (x1 > .VaR.stressed2[i, 1])) / (1 - levels[i]) + .VaR.stressed2[i, 1] } test_that("stressed", { expect_equal(as.numeric(.ES.stressed1[, 1]), ES1) expect_equal(as.numeric(.ES.stressed2[, 1]), ES2) expect_true(all(as.numeric(.ES.stressed1) > as.numeric(.VaR.stressed1))) expect_true(all(as.numeric(.ES.stressed2) > as.numeric(.VaR.stressed2))) }) x2 <- x[, 2] .VaR.stressed1 <- VaR_stressed(res, alpha = levels, xCol = 2, wCol = 1, base = FALSE) .VaR.stressed2 <- VaR_stressed(res, alpha = levels, xCol = 2, wCol = 2, base = FALSE) w <- get_weights(res) ES1 <- rep( 0, length(levels)) ES2 <- rep( 0, length(levels)) for(i in 1:length(levels)){ ES1[i] <- mean(w[, 1] * (x2 - .VaR.stressed1[i]) * (x2 > .VaR.stressed1[i])) / (1 - levels[i]) + .VaR.stressed1[i] ES2[i] <- mean(w[, 2] * (x2 - .VaR.stressed2[i]) * (x2 > .VaR.stressed2[i])) / (1 - levels[i]) + .VaR.stressed2[i] } .ES.stressed1 <- ES_stressed(res, alpha = levels, xCol = 2, wCol = 1, base = FALSE) .ES.stressed2 <- ES_stressed(res, alpha = levels, xCol = 2, wCol = 2, base = TRUE) test_that("stressed", { expect_equal(as.numeric(.ES.stressed1[, 1]), ES1) expect_equal(as.numeric(.ES.stressed2[, 1]), ES2) expect_true(all(as.numeric(.ES.stressed1) > as.numeric(.VaR.stressed1))) expect_true(all(as.numeric(.ES.stressed2) > as.numeric(.VaR.stressed2))) }) x <- x .VaR.base <- VaR_stressed(res, alpha = levels, xCol = "all", wCol = 1, base = TRUE)[, 3:4] ES1 <- rep( 0, length(levels)) ES2 <- rep( 0, length(levels)) for(i in 1:length(levels)){ ES1[i] <- mean((x[, 1] - .VaR.base[i, 1]) * (x[, 1] > .VaR.base[i, 1])) / (1 - levels[i]) + .VaR.base[i, 1] ES2[i] <- mean((x[, 2] - .VaR.base[i, 2]) * (x[, 2] > .VaR.base[i, 2])) / (1 - levels[i]) + .VaR.base[i, 2] } .ES.stressed1 <- ES_stressed(res, alpha = levels, xCol = "all", wCol = 1, base = TRUE)[, 3:4] .ES.stressed2 <- ES_stressed(res, alpha = levels, xCol = "all", wCol = 2, base = TRUE)[, 3:4] test_that("stressed", { expect_equal(as.numeric(.ES.stressed1[, 1]), ES1) expect_equal(as.numeric(.ES.stressed2[, 1]), ES1) expect_equal(as.numeric(.ES.stressed1[, 2]), ES2) expect_equal(as.numeric(.ES.stressed2[, 2]), ES2) expect_true(all(as.numeric(.ES.stressed1) > as.numeric(.VaR.base))) expect_true(all(as.numeric(.ES.stressed2) > as.numeric(.VaR.base))) })
listFinCenter <- function(pattern = ".*") { FinCenterList = c( "Europe/Andorra", "Asia/Dubai", "Asia/Kabul", "America/Antigua", "America/Anguilla", "Europe/Tirane", "Asia/Yerevan", "America/Curacao", "Africa/Luanda", "Antarctica/McMurdo", "Antarctica/South_Pole", "Antarctica/Rothera", "Antarctica/Palmer", "Antarctica/Mawson", "Antarctica/Davis", "Antarctica/Casey", "Antarctica/Vostok", "Antarctica/DumontDUrville", "Antarctica/Syowa", "America/Argentina/Buenos_Aires", "America/Argentina/Cordoba", "America/Argentina/Jujuy", "America/Argentina/Tucuman", "America/Argentina/Catamarca", "America/Argentina/La_Rioja", "America/Argentina/San_Juan", "America/Argentina/Mendoza", "America/Argentina/Rio_Gallegos", "America/Argentina/Ushuaia", "Pacific/Pago_Pago", "Europe/Vienna", "Australia/Lord_Howe", "Australia/Hobart", "Australia/Currie", "Australia/Melbourne", "Australia/Sydney", "Australia/Broken_Hill", "Australia/Brisbane", "Australia/Lindeman", "Australia/Adelaide", "Australia/Darwin", "Australia/Perth", "Australia/Eucla", "America/Aruba", "Europe/Mariehamn", "Asia/Baku", "Europe/Sarajevo", "America/Barbados", "Asia/Dhaka", "Europe/Brussels", "Africa/Ouagadougou", "Europe/Sofia", "Asia/Bahrain", "Africa/Bujumbura", "Africa/Porto-Novo", "America/St_Barthelemy", "Atlantic/Bermuda", "Asia/Brunei", "America/La_Paz", "America/Noronha", "America/Belem", "America/Fortaleza", "America/Recife", "America/Araguaina", "America/Maceio", "America/Bahia", "America/Sao_Paulo", "America/Campo_Grande", "America/Cuiaba", "America/Porto_Velho", "America/Boa_Vista", "America/Manaus", "America/Eirunepe", "America/Rio_Branco", "America/Nassau", "Asia/Thimphu", "Africa/Gaborone", "Europe/Minsk", "America/Belize", "America/St_Johns", "America/Halifax", "America/Glace_Bay", "America/Moncton", "America/Goose_Bay", "America/Blanc-Sablon", "America/Montreal", "America/Toronto", "America/Nipigon", "America/Thunder_Bay", "America/Iqaluit", "America/Pangnirtung", "America/Resolute", "America/Atikokan", "America/Rankin_Inlet", "America/Winnipeg", "America/Rainy_River", "America/Regina", "America/Swift_Current", "America/Edmonton", "America/Cambridge_Bay", "America/Yellowknife", "America/Inuvik", "America/Dawson_Creek", "America/Vancouver", "America/Whitehorse", "America/Dawson", "Indian/Cocos", "Africa/Kinshasa", "Africa/Lubumbashi", "Africa/Bangui", "Africa/Brazzaville", "Europe/Zurich", "Africa/Abidjan", "Pacific/Rarotonga", "America/Santiago", "Africa/Douala", "Asia/Shanghai", "Asia/Harbin", "Asia/Chongqing", "Asia/Urumqi", "Asia/Kashgar", "America/Bogota", "America/Costa_Rica", "America/Havana", "Atlantic/Cape_Verde", "Indian/Christmas", "Asia/Nicosia", "Europe/Prague", "Europe/Berlin", "Africa/Djibouti", "Europe/Copenhagen", "America/Dominica", "America/Santo_Domingo", "Africa/Algiers", "America/Guayaquil", "Pacific/Galapagos", "Europe/Tallinn", "Africa/Cairo", "Africa/El_Aaiun", "Africa/Asmara", "Europe/Madrid", "Africa/Ceuta", "Atlantic/Canary", "Africa/Addis_Ababa", "Europe/Helsinki", "Pacific/Fiji", "Atlantic/Stanley", "Pacific/Truk", "Pacific/Ponape", "Pacific/Kosrae", "Atlantic/Faroe", "Europe/Paris", "Africa/Libreville", "Europe/London", "America/Grenada", "Asia/Tbilisi", "America/Cayenne", "Europe/Guernsey", "Africa/Accra", "Europe/Gibraltar", "America/Godthab", "America/Danmarkshavn", "America/Scoresbysund", "America/Thule", "Africa/Banjul", "Africa/Conakry", "America/Guadeloupe", "Africa/Malabo", "Europe/Athens", "Atlantic/South_Georgia", "America/Guatemala", "Pacific/Guam", "Africa/Bissau", "America/Guyana", "Asia/Hong_Kong", "America/Tegucigalpa", "Europe/Zagreb", "America/Port-au-Prince", "Europe/Budapest", "Asia/Jakarta", "Asia/Pontianak", "Asia/Makassar", "Asia/Jayapura", "Europe/Dublin", "Asia/Jerusalem", "Europe/Isle_of_Man", "Asia/Calcutta", "Indian/Chagos", "Asia/Baghdad", "Asia/Tehran", "Atlantic/Reykjavik", "Europe/Rome", "Europe/Jersey", "America/Jamaica", "Asia/Amman", "Asia/Tokyo", "Africa/Nairobi", "Asia/Bishkek", "Asia/Phnom_Penh", "Pacific/Tarawa", "Pacific/Enderbury", "Pacific/Kiritimati", "Indian/Comoro", "America/St_Kitts", "Asia/Pyongyang", "Asia/Seoul", "Asia/Kuwait", "America/Cayman", "Asia/Almaty", "Asia/Qyzylorda", "Asia/Aqtobe", "Asia/Aqtau", "Asia/Oral", "Asia/Vientiane", "Asia/Beirut", "America/St_Lucia", "Europe/Vaduz", "Asia/Colombo", "Africa/Monrovia", "Africa/Maseru", "Europe/Vilnius", "Europe/Luxembourg", "Europe/Riga", "Africa/Tripoli", "Africa/Casablanca", "Europe/Monaco", "Europe/Chisinau", "Europe/Podgorica", "America/Marigot", "Indian/Antananarivo", "Pacific/Majuro", "Pacific/Kwajalein", "Europe/Skopje", "Africa/Bamako", "Asia/Rangoon", "Asia/Ulaanbaatar", "Asia/Hovd", "Asia/Choibalsan", "Asia/Macau", "Pacific/Saipan", "America/Martinique", "Africa/Nouakchott", "America/Montserrat", "Europe/Malta", "Indian/Mauritius", "Indian/Maldives", "Africa/Blantyre", "America/Mexico_City", "America/Cancun", "America/Merida", "America/Monterrey", "America/Mazatlan", "America/Chihuahua", "America/Hermosillo", "America/Tijuana", "Asia/Kuala_Lumpur", "Asia/Kuching", "Africa/Maputo", "Africa/Windhoek", "Pacific/Noumea", "Africa/Niamey", "Pacific/Norfolk", "Africa/Lagos", "America/Managua", "Europe/Amsterdam", "Europe/Oslo", "Asia/Katmandu", "Pacific/Nauru", "Pacific/Niue", "Pacific/Auckland", "Pacific/Chatham", "Asia/Muscat", "America/Panama", "America/Lima", "Pacific/Tahiti", "Pacific/Marquesas", "Pacific/Gambier", "Pacific/Port_Moresby", "Asia/Manila", "Asia/Karachi", "Europe/Warsaw", "America/Miquelon", "Pacific/Pitcairn", "America/Puerto_Rico", "Asia/Gaza", "Europe/Lisbon", "Atlantic/Madeira", "Atlantic/Azores", "Pacific/Palau", "America/Asuncion", "Asia/Qatar", "Indian/Reunion", "Europe/Bucharest", "Europe/Belgrade", "Europe/Kaliningrad", "Europe/Moscow", "Europe/Volgograd", "Europe/Samara", "Asia/Yekaterinburg", "Asia/Omsk", "Asia/Novosibirsk", "Asia/Krasnoyarsk", "Asia/Irkutsk", "Asia/Yakutsk", "Asia/Vladivostok", "Asia/Sakhalin", "Asia/Magadan", "Asia/Kamchatka", "Asia/Anadyr", "Africa/Kigali", "Asia/Riyadh", "Pacific/Guadalcanal", "Indian/Mahe", "Africa/Khartoum", "Europe/Stockholm", "Asia/Singapore", "Atlantic/St_Helena", "Europe/Ljubljana", "Arctic/Longyearbyen", "Europe/Bratislava", "Africa/Freetown", "Europe/San_Marino", "Africa/Dakar", "Africa/Mogadishu", "America/Paramaribo", "Africa/Sao_Tome", "America/El_Salvador", "Asia/Damascus", "Africa/Mbabane", "America/Grand_Turk", "Africa/Ndjamena", "Indian/Kerguelen", "Africa/Lome", "Asia/Bangkok", "Asia/Dushanbe", "Pacific/Fakaofo", "Asia/Dili", "Asia/Ashgabat", "Africa/Tunis", "Pacific/Tongatapu", "Europe/Istanbul", "America/Port_of_Spain", "Pacific/Funafuti", "Asia/Taipei", "Africa/Dar_es_Salaam", "Europe/Kiev", "Europe/Uzhgorod", "Europe/Zaporozhye", "Europe/Simferopol", "Africa/Kampala", "Pacific/Johnston", "Pacific/Midway", "Pacific/Wake", "America/New_York", "America/Detroit", "America/Kentucky/Louisville", "America/Kentucky/Monticello", "America/Indiana/Indianapolis", "America/Indiana/Vincennes", "America/Indiana/Knox", "America/Indiana/Winamac", "America/Indiana/Marengo", "America/Indiana/Vevay", "America/Chicago", "America/Indiana/Tell_City", "America/Indiana/Petersburg", "America/Menominee", "America/North_Dakota/Center", "America/North_Dakota/New_Salem", "America/Denver", "America/Boise", "America/Shiprock", "America/Phoenix", "America/Los_Angeles", "America/Anchorage", "America/Juneau", "America/Yakutat", "America/Nome", "America/Adak", "Pacific/Honolulu", "America/Montevideo", "Asia/Samarkand", "Asia/Tashkent", "Europe/Vatican", "America/St_Vincent", "America/Caracas", "America/Tortola", "America/St_Thomas", "Asia/Saigon", "Pacific/Efate", "Pacific/Wallis", "Pacific/Apia", "Asia/Aden", "Indian/Mayotte", "Africa/Johannesburg", "Africa/Lusaka", "Africa/Harare") if (pattern == "*") pattern = "\\\\*" sort(as.character(FinCenterList[grep(pattern = pattern, x = FinCenterList)])) } .FinCenterList <- listFinCenter()
"print.varsum" <- function(x, digits = max(3, getOption("digits") - 3), signif.stars = getOption("show.signif.stars"), ...){ dim <- length(x$names) text1 <- "\nVAR Estimation Results:\n" cat(text1) row <- paste(rep("=", nchar(text1)), collapse = "") cat(row, "\n") cat(paste("Endogenous variables:", paste(colnames(x$covres), collapse = ", "), "\n", collapse = " ")) cat(paste("Deterministic variables:", paste(x$type, collapse = ", "), "\n", collapse = " ")) cat(paste("Sample size:", x$obs, "\n")) cat(paste("Log Likelihood:", round(x$logLik, 3), "\n")) cat("Roots of the characteristic polynomial:\n") cat(formatC(x$roots, digits = digits)) cat("\nCall:\n") print(x$call) cat("\n\n") for (i in 1:dim) { result <- x$varresult[[x$names[i]]] text1 <- paste("Estimation results for equation ", x$names[i], ":", sep = "") cat(text1, "\n") row <- paste(rep("=", nchar(text1)), collapse = "") cat(row, "\n") text2 <- paste(x$names[i], " = ", paste(rownames(result$coef), collapse = " + "), sep = "") cat(text2, "\n\n") printCoefmat(result$coef, digits = digits, signif.stars = signif.stars, na.print = "NA", ...) cat("\n") cat("\nResidual standard error:", format(signif(result$sigma, digits)), "on", result$df[2L], "degrees of freedom\n") if (!is.null(result$fstatistic)) { cat("Multiple R-Squared:", formatC(result$r.squared, digits = digits)) cat(",\tAdjusted R-squared:", formatC(result$adj.r.squared, digits = digits), "\nF-statistic:", formatC(result$fstatistic[1], digits = digits), "on", result$fstatistic[2], "and", result$fstatistic[3], "DF, p-value:", format.pval(pf(result$fstatistic[1L], result$fstatistic[2L], result$fstatistic[3L], lower.tail = FALSE), digits = digits), "\n") } cat("\n\n") } cat("\nCovariance matrix of residuals:\n") print(x$covres, digits = digits, ...) cat("\nCorrelation matrix of residuals:\n") print(x$corres, digits = digits, ...) cat("\n\n") invisible(x) }
summary.CV_Result <- function(object,...){ cat("\nContaining the cross validation result. \n"); if (!is.null(object$r_optimal)) cat(paste0("Selected r parameter is:",object$r_optimal, "\n")); if (!is.null(object$s_optimal)) cat(paste0("Selected s parameter is:",object$s_optimal, "\n")); }
set.seed(23479) knitr::opts_chunk$set( collapse = TRUE, comment = " ) library(santoku) x <- runif(10, 0, 10) (chopped <- chop(x, breaks = 0:10)) data.frame(x, chopped) chopped <- chop(x, breaks = 3:7) data.frame(x, chopped) x_fives <- x x_fives[1:5] <- 5 chopped <- chop(x_fives, c(2, 5, 5, 8)) data.frame(x_fives, chopped) tab(1:10, c(2, 5, 8)) chopped <- chop_width(x, 2) data.frame(x, chopped) chopped <- chop_evenly(x, intervals = 3) data.frame(x, chopped) chopped <- chop_n(x, 4) table(chopped) chopped <- chop_equally(x, groups = 5) table(chopped) chopped <- chop_quantiles(x, c(0.25, 0.5, 0.75)) data.frame(x, chopped) chopped <- chop_mean_sd(x) data.frame(x, chopped) tab_n(x, 4) tab_width(x, 2) tab_evenly(x, 5) tab_mean_sd(x) library(lubridate) y2k <- as.Date("2000-01-01") + 0:365 months <- chop_width(y2k, months(1)) table(months) chopped <- chop(x, c(2, 5, 8), labels = c("Lowest", "Low", "Higher", "Highest")) data.frame(x, chopped) chopped <- chop(x, c(2, 5, 8), lbl_dash()) data.frame(x, chopped) chopped <- chop(x, c(2, 5, 8), lbl_seq()) data.frame(x, chopped) chop(x, c(2, 5, 8), lbl_seq("(1)")) chop(x, c(2, 5, 8), lbl_seq("i.")) chopped <- chop(x, c(2, 5, 8), lbl_format("%s to %s")) data.frame(x, chopped) library(scales) r <- runif(10) chopped <- chop(r, c(.3, .5, .7), lbl_intervals(fmt = label_percent(0.1))) data.frame(r, chopped) chopped <- chop(x, c(3, 5, 7), extend = FALSE) data.frame(x, chopped) y <- 1:5 data.frame( y = y, left_closed = chop(y, 1:5), right_closed = chop(y, 1:5, left = FALSE) ) data.frame( y = y, rightmost_open = chop(y, 1:5), rightmost_closed = chop(y, 1:5, close_end = TRUE) )
match.data.frame = function(x1, x2, ...){ match(do.call("paste", c(x1, sep = "\r")), do.call("paste", c(x2, sep = "\r")), ...) } ballgownrsem = function(dir="", samples, gtf, UCSC=TRUE, tfield='transcript_id', attrsep='; ', bamout='transcript', pData=NULL, verbose=TRUE, meas='all', zipped=FALSE){ bamout = match.arg(bamout, c('transcript', 'genome', 'none')) meas = match.arg(meas, c('all', 'TPM', 'FPKM')) if('all' %in% meas & length(meas) > 1){ stop(.makepretty('when meas is "all", all types of measurements are included by default.')) } if(verbose){ message(date()) } f = paste0(dir, '/', samples[1], '.isoforms.results') if(zipped){ f = paste0(f, '.gz') } t2g = read.table(f, header=TRUE, colClasses=c('character', 'character', rep("NULL", 6))) names(t2g) = c('t_id', 'g_id') if(verbose){ message(paste0(date(), ': reading annotation')) } tgtf = gffRead(gtf) tgtf$t_name = getAttributeField(tgtf$attributes, tfield, attrsep) if(UCSC){ tgtf$t_name = substr(tgtf$t_name, 2, nchar(tgtf$t_name)-1) } tgtf = tgtf[tgtf$feature == "exon",] if(verbose){ message(paste0(date(), ': handling exons')) } estrand = as.character(tgtf$strand) estrand[estrand=="."] = "*" e_id = match.data.frame(tgtf[,c(1,4,5,7)], unique(tgtf[,c(1,4,5,7)])) t_id = tgtf$t_name e2t = data.frame(e_id, t_id) tgtf$e_id = e_id exons_unique = subset(tgtf, !duplicated(tgtf[,c(1,4,5,7)])) exon = data.frame(e_id=exons_unique$e_id, chr=exons_unique$seqname, strand=exons_unique$strand, start=exons_unique$start, end=exons_unique$end) exon = exon[order(exon$e_id),] tnamesex = split(as.character(e2t$t_id), e2t$e_id) tnamesex_ord = as.character(tnamesex)[match(exon$e_id, names(tnamesex))] exongr = GRanges(seqnames=Rle(as.character(exon$chr)), ranges=IRanges(start=exon$start, end=exon$end), strand=Rle(exon$strand), id=exon$e_id, transcripts = tnamesex_ord) if(verbose){ message(paste0(date(), ': handling introns')) } mm = match(e2t$e_id, mcols(exongr)$id) if(any(is.na(mm))){ warning(paste('the following exon(s) did not appear in the data:', paste(e2t$e_id[which(is.na(mm))], collapse=", "))) } tgrl = split(exongr[mm[!is.na(mm)]], as.character(e2t$t_id)[!is.na(mm)]) unltrans = unlist(tgrl) transcriptIDs = rep(names(tgrl), times=elementNROWS(tgrl)) notLast = rev(duplicated(rev(transcriptIDs))) introngr = GRanges(seqnames=seqnames(unltrans)[notLast], ranges=IRanges(start=end(unltrans)[notLast]+1, end=start(unltrans)[which(notLast)+1]-1), strand=strand(unltrans)[notLast]) idf = as.data.frame(introngr) i_id = match.data.frame(idf, unique(idf)) mcols(introngr)$id = i_id i2t = data.frame(i_id, t_id=transcriptIDs[notLast]) tnamesin = split(as.character(i2t$t_id), i2t$i_id) mcols(introngr)$transcripts = as.character(tnamesin)[match(i_id, names(tnamesin))] introngr = unique(introngr) dftmp = IRanges::as.data.frame(introngr) stopifnot(all(names(dftmp) == c('seqnames', 'start', 'end', 'width', 'strand', 'id', 'transcripts'))) intron = data.frame(i_id=dftmp$id, chr=dftmp$seqnames, strand=dftmp$strand, start=dftmp$start, end=dftmp$end) intron = intron[order(intron$i_id),] if(verbose){ message(paste0(date(), ': handling transcripts')) } isofiles = paste0(dir, '/', samples, '.isoforms.results') if(zipped){ isofiles = paste0(isofiles, '.gz') } isodata = lapply(isofiles, function(x){ read.table(x, header=TRUE) }) gene = isodata[[1]]$gene_id[match(names(tgrl), isodata[[1]]$transcript_id)] trans = data.frame(t_id=names(tgrl), chr=unlist(runValue(seqnames(tgrl))), strand=unlist(runValue(strand(tgrl))), start=sapply(start(tgrl), min), end=sapply(end(tgrl), max), t_name=names(tgrl), num_exons=elementNROWS(tgrl), length=sapply(width(tgrl), sum), gene_id=gene, gene_name=gene) for(i in seq_along(isodata)){ data_order = match(names(tgrl), isodata[[i]]$transcript_id) if(meas == 'all' | meas == 'TPM'){ trans[,paste('TPM', samples[i], sep='.')] = isodata[[i]]$TPM[data_order] } if(meas == 'all' | meas == 'FPKM'){ trans[,paste('FPKM', samples[i], sep='.')] = isodata[[i]]$FPKM[data_order] } } stopifnot(is.null(pData) | class(pData) == 'data.frame') if(verbose){ message(paste0(date(), ': handling pData')) } if(!is.null(pData)){ if(!all(pData[,1] == samples)){ msg = 'Rows of pData did not seem to be in the same order as the columns of the expression data. Attempting to rearrange pData...' warning(.makepretty(msg)) tmp = try(pData <- pData[,match(samples, pData[,1])], silent=TRUE) if(class(tmp) == "try-error"){ msg = 'first column of pData does not match the names of the folders containing the ballgown data.' stop(.makepretty(msg)) }else{ message('successfully rearranged!') } } } if(bamout == 'none'){ bamfiles=NULL }else{ bamfiles = paste0(dir, '/', samples, '.', bamout, '.bam') } genefiles = paste0(dir, '/', samples, '.genes.results') if(zipped){ genefiles = paste0(genefiles, '.gz') } genedata = lapply(genefiles, function(x){ read.table(x, header=TRUE) }) g = data.frame(gene_id=sort(genedata[[1]]$gene_id)) for(i in seq_along(genedata)){ data_order = match(g$gene_id, genedata[[i]]$gene_id) if(meas == 'all' | meas == 'TPM'){ g[,paste('TPM', samples[i], sep='.')] = genedata[[i]]$TPM[data_order] } if(meas == 'all' | meas == 'FPKM'){ g[,paste('FPKM', samples[i], sep='.')] = genedata[[i]]$FPKM[data_order] } } gm = as.matrix(g[,-1]) rownames(gm) = as.character(g$gene_id) colnames(gm) = names(g)[-1] rm(g) result = new("ballgown", expr=list(intron=intron, exon=exon, trans=trans, gm=gm), indexes=list(e2t=e2t, i2t=i2t, t2g=t2g, bamfiles=bamfiles, pData=pData), structure=list(intron=introngr, exon=exongr, trans=tgrl), dirs=paste0(normalizePath(dir), '/', samples), mergedDate=date(), meas=meas, RSEM=TRUE) if(verbose) message(paste0(date(), ': done!')) return(result) }
1 + 2 (1 + 2) / 3 7^2 1 - Inf class(7^2) log(1) > 0 log(1) >= 0 log(1) == 0 log(1) != 1 1 + log10(1e7) == 8 * exp(1)^0 class(1 > 1) "Hello R World!" paste("Hello", "R", "World", "!") cat("Hello", "R", "World", "!\n") class("some text") 1:3 sum(1:3) prod(1:3) sum(1:3) == prod(1:3) print(Hello World!) print("Hello World") install.packages("ggplot2") library(ggplot2) library("ggplot2") require(ggplot2) require("ggplot2") require('ggplot2') paste0("Hello World! Today is ", date(), ".")
NOT_CRAN <- identical(tolower(Sys.getenv("NOT_CRAN")),"true") knitr::opts_chunk$set(purl = NOT_CRAN) library(insee) library(tidyverse) embed_png <- function(path, dpi = NULL) { meta <- attr(png::readPNG(path, native = TRUE, info = TRUE), "info") if (!is.null(dpi)) meta$dpi <- rep(dpi, 2) knitr::asis_output(paste0( "<img src='", path, "'", " width=", round(meta$dim[1] / (meta$dpi[1] / 96)), " height=", round(meta$dim[2] / (meta$dpi[2] / 96)), " />" ))} embed_png("inflation.png") library(kableExtra) library(magrittr) library(htmltools) library(prettydoc)
LoadVisJS <- function(){ if(!any(list.files() =='vizjs.js')){ try({ Hash<-downloader::sha_url('http://vizjs.org/viz.v1.1.0.min.js') if(Hash == "295e915d475fdf1c0d7db13668b6b0b526a8e910"){ downloader::download('http://vizjs.org/viz.v1.1.0.min.js', 'vizjs.js' ) }else{ warning("Hash of http://vizjs.org/viz.v1.1.0.min.js doesn't match stored hash, so not downloading in case it has been modified. Please save an up-to-date version of the viz.js library as vizjs.js library in the working directory" ) } } ) } }
library(lpSolve) f.obj <- c(1, 1) f.con <- matrix (c(50, 24, 30, 33, 1, 0, 0, 1, 1, 1), ncol=2, byrow=TRUE) f.con f.dir <- c("<=", "<=", ">=", ">=", ">=") f.rhs <- c(2400, 2100, 45, 5,50) cbind(f.con, f.dir, f.rhs) lp ("max", f.obj, f.con, f.dir, f.rhs) lp ("max", f.obj, f.con, f.dir, f.rhs)$solution library(lpSolveAPI) lprec <- make.lp(0, 2) lprec set.objfn(lprec, c(1, 1)) lprec lp.control(lprec, sense="max") lprec set.type(lprec, c(1,2), type = c("integer")) lprec add.constraint(lprec, c(50,24), "<=", 2400) lprec add.constraint(lprec, c(30,33), "<=", 2100) lprec add.constraint(lprec, c(1,1), ">=", 50) lprec set.bounds(lprec, lower = c(45, 5), columns = c(1, 2)) lprec RowNames <- c("MachineA", "MachineB","TotalInitial") ColNames <- c("ProductX", "ProductY") dimnames(lprec) <- list(RowNames, ColNames) lprec solve(lprec) get.objective(lprec) get.variables(lprec) get.constraints(lprec) plot(lprec) print(lprec)
`covStruct.create` <- function(covtype, d, known.covparam, var.names, coef.cov=NULL, coef.var=NULL, nugget=NULL, nugget.estim=FALSE, nugget.flag=FALSE, iso=FALSE, scaling=FALSE, knots=NULL, kernel=NULL) { if (covtype=="matern5_2add0") { weight <- coef.cov[(d+1):(2*d)] covStruct <- new("covAdditive0", d = as.integer(d), name = "matern5_2add0", var.names = as.character(var.names), sd2 = as.numeric(sum(weight)), known.covparam = as.character(known.covparam), range.val = as.numeric(coef.cov[1:d]), range.names = paste("range", var.names, sep="."), weight = as.numeric(weight), weight.names = paste("weight", var.names, sep="."), nugget = as.numeric(nugget), nugget.flag = TRUE, nugget.estim = nugget.estim, param.n = as.integer(2*d+1) ) return(covStruct) } if( covtype=="covUser" ){ covStruct <- new("covUser", kernel=kernel, nugget.flag=length(nugget)>0, nugget=as.double(nugget)) return(covStruct) } if (scaling & iso) { iso <- FALSE warning("At this stage no isotropic version is available, regular scaling is applied.") } covsetI <- c("gauss", "exp", "matern3_2", "matern5_2") covsetII <- c("powexp") classType <- "covTensorProduct" if (iso) classType <- "covIso" if (scaling) classType <- "covScaling" covStruct <- new(classType, d=as.integer(d), name=as.character(covtype), sd2 = as.numeric(coef.var), var.names=as.character(var.names), nugget = as.double(nugget), nugget.flag=nugget.flag, nugget.estim=nugget.estim, known.covparam=known.covparam) if (!scaling) { [email protected] = "theta" if (is.element(covtype, covsetI)) { [email protected] <- as.integer(1) if (iso) { [email protected] <- as.integer(1) } else { [email protected] <- as.integer(d) [email protected] <- as.integer(d) } } else { [email protected] <- as.integer(2) [email protected] <- as.integer(2*d) [email protected] <- as.integer(d) [email protected] <- as.integer(d) [email protected] <- "p" } if (length(coef.cov)>0) covStruct <- vect2covparam(covStruct, coef.cov) } else { eta.flag <- (length(coef.cov)>0) if (eta.flag) eta <- coef.cov for (i in 1:length(knots)) { if (is.unsorted(knots[[i]])) { ordKnots <- sort(knots[[i]], index.return = TRUE) knots[[i]] <- ordKnots$x if (eta.flag) { if (length(eta[[i]]) != length(knots[[i]])) stop("mismatch between number of knots and number of values at knots") eta[[i]] <- eta[[i]][ordKnots$ix] } } } names(knots) <- var.names covStruct@knots <- knots [email protected] <- sum(sapply(knots, length)) [email protected] <- as.integer(1) if (eta.flag) covStruct@eta <- eta } validObject(covStruct) return(covStruct) }
assessfit <- function(params, DEdata, fit=gamtable1(), simple=TRUE) { if (length(params) != 2 | !is.numeric(params)) { stop("params must be a numeric vector of length 2") } if (!is.data.frame(DEdata)) stop("DEdata must be a data frame.") if (any(is.na(match(c("dose", "ntot", "pfx", "fxcateg"), names(DEdata))))) { stop("DEdata must include at least four variables:", "dose, ntot, pfx, fxcateg.") } if (length(simple) != 1 | !is.logical(simple)) { stop("simple must be a logical scalar") } expected <- invprobit(params[1] + params[2]*log10(DEdata$dose)) sel <- (!is.na(expected) & expected >= 0.00005 & expected <= 0.99995) | (!is.na(DEdata$fxcateg) & DEdata$fxcateg==50) n <- sum(sel) cor.obs <- rep(NA, length(sel)) cor.obs[sel & DEdata$fxcateg==0] <- correctval(pmin(expected[sel & DEdata$fxcateg==0], 0.495), fit) cor.obs[sel & DEdata$fxcateg==50] <- DEdata$pfx[sel & DEdata$fxcateg==50] cor.obs[sel & DEdata$fxcateg==100] <- correctval(pmax(expected[sel & DEdata$fxcateg==100], 0.505), fit) if (n < 0.5) { chilist <- list(chi=c(chistat=NA, df=NA, pval=NA), contrib=NA) } else { chilist <- LWchi2((cor.obs*DEdata$ntot)[sel], (expected*DEdata$ntot)[sel], DEdata$ntot[sel]) } stepB <- matrix(NA, nrow=length(expected), ncol=3, dimnames=list(NULL, c("exp", "obscorr", "contrib"))) stepB[, "exp"] <- expected stepB[, "obscorr"] <- cor.obs stepB[sel, "contrib"] <- chilist$contrib if (simple) { y <- chilist$chi["chistat"] } else { y <- list(chi=chilist$chi, contrib=stepB) } y }
mixture.design <- function(nfactors=NULL, nlevels, randomize=TRUE, seed=NULL, replications=1, repeat.only=FALSE, factor.names=if (!is.null(nfactors)) paste("X",1:nfactors,sep="") else NULL, ...){ cat("This does not work yet.\n") }
isbfReg <- function(X,Y,epsilon=0.05,K=1,impmin=1/100,favgroups=0,centX=TRUE,centY=TRUE,s=NULL,v=NULL) { D = dim(X) n = D[1] p = D[2] dimension = K*p - K*(K-1)/2 if (n!=length(Y)) { print("ERROR: The dimension of X should be (n,p) and the dimension of Y (n,1)") return(NULL) } if (is.null(v)) v = var(Y)/2 if (K>p) { print("Error: K>p") return(NULL) } if (is.null(s)) s = -sqrt(v)*qnorm(epsilon/(2*dimension)) if (centX==TRUE) for (cptcent in 1:p) X[,cptcent] = X[,cptcent] - mean(X[,cptcent]) if (centY==TRUE) Y = Y-mean(Y) beta = rep(0,p) COV = rep(0,dimension) RESULT=.C("isbfRegC",X=as.double(X),Y=as.double(Y),COV=as.double(COV),beta=as.double(beta),s=as.double(s),impmin=as.double(impmin),fgroups=as.double(favgroups),p=as.integer(p),n=as.integer(n),K=as.integer(K),PACKAGE="ISBF") return(list(beta=RESULT$beta,s=RESULT$s,impmin=RESULT$impmin,K=RESULT$K)) }
"nlrq.control" <- function (maxiter=100, k=2, InitialStepSize = 1, big=1e+20, eps=1.0e-07, beta=0.97) { list(maxiter=maxiter, k=k, InitialStepSize = InitialStepSize, big=big, eps=eps, beta=beta) } "nlrqModel" <- function (form, tau, data, start) { thisEnv <- environment() env <- new.env(parent = environment(form)) for (i in names(data)) { assign(i, data[[i]], envir = env) } ind <- as.list(start) parLength <- 0 for (i in names(ind)) { temp <- start[[i]] storage.mode(temp) <- "double" assign(i, temp, envir = env) ind[[i]] <- parLength + seq(along = start[[i]]) parLength <- parLength + length(start[[i]]) } useParams <- rep(TRUE, parLength) lhs <- eval(form[[2]], envir = env) rhs <- eval(form[[3]], envir = env) resid <- lhs - rhs tau <- tau dev <- sum(tau * pmax(resid, 0) + (tau - 1) * pmin(resid, 0)) if (is.null(attr(rhs, "gradient"))) { getRHS.noVarying <- function() numericDeriv(form[[3]], names(ind), env) getRHS <- getRHS.noVarying rhs <- getRHS() } else { getRHS.noVarying <- function() eval(form[[3]], envir = env) getRHS <- getRHS.noVarying } dimGrad <- dim(attr(rhs, "gradient")) marg <- length(dimGrad) if (marg > 0) { gradSetArgs <- vector("list", marg + 1) for (i in 2:marg) gradSetArgs[[i]] <- rep(TRUE, dimGrad[i - 1]) useParams <- rep(TRUE, dimGrad[marg]) } else { gradSetArgs <- vector("list", 2) useParams <- rep(TRUE, length(attr(rhs, "gradient"))) } npar <- length(useParams) gradSetArgs[[1]] <- (~attr(ans, "gradient"))[[2]] gradCall <- switch(length(gradSetArgs) - 1, call("[", gradSetArgs[[1]], gradSetArgs[[2]]), call("[", gradSetArgs[[1]], gradSetArgs[[2]], gradSetArgs[[2]]), call("[", gradSetArgs[[1]], gradSetArgs[[2]], gradSetArgs[[2]], gradSetArgs[[3]]), call("[", gradSetArgs[[1]], gradSetArgs[[2]], gradSetArgs[[2]], gradSetArgs[[3]], gradSetArgs[[4]])) getRHS.varying <- function() { ans <- getRHS.noVarying() attr(ans, "gradient") <- eval(gradCall) ans } QR <- qr(attr(rhs, "gradient")) qrDim <- min(dim(QR$qr)) if (QR$rank < qrDim) stop("singular gradient matrix at initial parameter estimates") getPars.noVarying <- function() unlist(setNames(lapply(names(ind), get, envir = env), names(ind))) getPars.varying <- function() unlist(setNames(lapply(names(ind), get, envir = env), names(ind)))[useParams] getPars <- getPars.noVarying internalPars <- getPars() setPars.noVarying <- function(newPars) { assign("internalPars", newPars, envir = thisEnv) for (i in names(ind)) { assign(i, unname(newPars[ind[[i]]]), envir = env) } } setPars.varying <- function(newPars) { internalPars[useParams] <- newPars for (i in names(ind)) { assign(i, unname(internalPars[ind[[i]]]), envir = env) } } setPars <- setPars.noVarying on.exit(remove(i, data, parLength, start, temp)) m <- list(resid = function() resid, fitted = function() rhs, formula = function() form, tau = function() tau, deviance = function() dev, gradient = function() attr(rhs, "gradient"), incr = function() qr.coef(QR, resid), setVarying = function(vary = rep(TRUE, length(useParams))) { assign("useParams", if (is.character(vary)) { temp <- logical(length(useParams)) temp[unlist(ind[vary])] <- TRUE temp } else if (is.logical(vary) && length(vary) != length(useParams)) stop("setVarying : vary length must match length of parameters") else { vary }, envir = thisEnv) gradCall[[length(gradCall)]] <<- useParams if (all(useParams)) { assign("setPars", setPars.noVarying, envir = thisEnv) assign("getPars", getPars.noVarying, envir = thisEnv) assign("getRHS", getRHS.noVarying, envir = thisEnv) assign("npar", length(useParams), envir = thisEnv) } else { assign("setPars", setPars.varying, envir = thisEnv) assign("getPars", getPars.varying, envir = thisEnv) assign("getRHS", getRHS.varying, envir = thisEnv) assign("npar", length((1:length(useParams))[useParams]), envir = thisEnv) } }, changeTau = function(newTau) { assign("tau", newTau, envir = thisEnv) assign("dev", sum(tau * pmax(resid, 0) + (tau - 1) * pmin(resid, 0)), envir = thisEnv) return(dev) }, setPars = function(newPars) { setPars(newPars) assign("resid", lhs - assign("rhs", getRHS(), envir = thisEnv), envir = thisEnv) assign("dev", sum(tau * pmax(resid, 0) + (tau - 1) * pmin(resid, 0)), envir = thisEnv) assign("QR", qr(attr(rhs, "gradient")), envir = thisEnv) return(QR$rank < min(dim(QR$qr))) }, getPars = function() getPars(), getAllPars = function() getPars(), getEnv = function() env, trace = function() cat(format(dev), ": ", format(getPars()), "\n"), Rmat = function() qr.R(QR), predict = function(newdata = list(), qr = FALSE) { Env <- new.env() for (i in objects(envir = env)) { assign(i, get(i, envir = env), envir = Env) } newdata <- as.list(newdata) for (i in names(newdata)) { assign(i, newdata[[i]], envir = Env) } eval(form[[3]], envir = Env) }) class(m) <- "nlrqModel" m } nlrq_m <- function (formula, data=parent.frame(), start, tau=0.5, control, trace=FALSE, method = "L-BFGS-B") { mf <- match.call() formula <- as.formula(formula) varNames <- all.vars(formula) if (length(formula) == 2) { formula[[3]] <- formula[[2]] formula[[2]] <- 0 } if (missing(start)) { if (!is.null(attr(data, "parameters"))) { pnames <- names(attr(data, "parameters")) } else { cll <- formula[[length(formula)]] func <- get(as.character(cll[[1]])) pnames <- as.character(as.list(match.call(func, call = cll))[-1][attr(func, "pnames")]) } } else { pnames <- names(start) } varNames <- varNames[is.na(match(varNames, pnames, nomatch = NA))] varIndex <- sapply(varNames, function(varName, data, respLength) { length(eval(as.name(varName), data))%%respLength == 0 }, data, length(eval(formula[[2]], data))) mf$formula <- parse(text = paste("~", paste(varNames[varIndex], collapse = "+")))[[1]] mf$start <- mf$tau <- mf$control <- mf$algorithm <- mf$trace <- mf$method <- NULL mf[[1]] <- as.name("model.frame") mf <- as.list(eval(mf, parent.frame())) if (missing(start)) { start <- getInitial(formula, mf) } for (var in varNames[!varIndex]) mf[[var]] <- eval(as.name(var), data) ctrl <- nlrq.control() if (!missing(control)) { control <- as.list(control) ctrl[names(control)] <- control } m <- nlrqModel(formula, tau, mf, start) nlrq.calc <- function (model, ctrl, trace) { meketon <- function(x, y, w, tau, ctrl) { yw <- ctrl$big k <- 1 while(k <= ctrl$k & yw - crossprod(y, w) > ctrl$eps) { d <- pmin(tau - w, 1 - tau + w) z <- lsfit(x, y, d^2, intercept=FALSE) yw <- sum(tau * pmax(z$resid, 0) + (tau - 1) * pmin(z$resid, 0)) k <- k + 1 s <- z$resid * d^2 alpha <- max(ctrl$eps, pmax(s/(tau - w), -s/(1 - tau + w))) w <- w + (ctrl$beta/alpha) * s } coef <- z$coef return(list(coef=coef, w=w, d = d)) } model.step <- function(lambda, Step, model, pars) { model$setPars(pars + lambda * Step) model$deviance() } w <- rep(0, length(model$resid())) snew <- model$deviance() sold <- ctrl$big nit <- 0 if (trace) { model$trace() optim.ctrl <- list(trace=1) } else { optim.ctrl <- list(trace=0) } lam0 <- ctrl$InitialStepSize D <- list() while(sold - snew > ctrl$eps & nit < ctrl$maxiter) { z <- meketon(model$gradient(),as.vector(model$resid()), w, tau=tau, ctrl=ctrl) Step <- z$coef Pars <- model$getPars() lam <- try(optim(par=lam0, fn=model.step, method=method, lower=0, upper=1, Step=Step, model=model, pars=Pars, control=optim.ctrl)$par) if(inherits(lam,"try.error") || !is.finite(lam)) stop("optim unable to find valid step size") if (trace) {cat("lambda =", lam, "\n")} model$setPars(Pars + lam * Step) sold <- snew snew <- model$deviance() w <- qr.resid(qr(model$gradient()), z$w) w1 <- max(pmax(w, 0)) if(w1 > tau) {w <- (w * tau)/(w1 + ctrl$eps)} w0 <- max(pmax( - w, 0)) if(w0 > 1 - tau) {w <- (w * (1 - tau))/(w0 + ctrl$eps)} if (trace) {model$trace()} if (R.Version()$os == "Win32") {flush.console()} nit <- nit + 1 D[[nit]] <- z$d } Rho <- function(u,tau) u * (tau - (u < 0)) model$rho <- sum(Rho(model$resid(),tau)) model$D <- D model } nlrq.out <- list(m=nlrq.calc(m, ctrl, trace), data=substitute(data), call=match.call(), PACKAGE = "quantreg") nlrq.out$call$control <- ctrl nlrq.out$call$trace <- trace class(nlrq.out) <- "nlrq" nlrq.out }
imageMBF<-function(img,zlim=NULL,reverse=TRUE) { Z=dim(img)[3] if (is.null(zlim)) zlim=c(0,max(img,na.rm=TRUE)) img[img>zlim[2]]=zlim[2] img[img<zlim[1]]=zlim[1] sum.na<-function(x)return(sum(x,na.rm=TRUE)) yrange=range(which(apply(img[,,],2,sum,na.rm=TRUE)!=0)) xrange=range(which(apply(img[,,1],1,sum,na.rm=TRUE)!=0)) drange=max(diff(xrange)-diff(yrange),0)/2 yrange=yrange+floor(c(-1,1)*drange) fullimg=img[xrange[1]:xrange[2],yrange[1]:yrange[2],1] for (i in 2:Z) { fullimg=rbind(fullimg,rep(NA,diff(yrange)+1)) fullimg=rbind(fullimg,rep(NA,diff(yrange)+1)) xrange=range(which(apply(img[,,i],1,sum.na)!=0)) fullimg=rbind(fullimg,img[xrange[1]:xrange[2],yrange[1]:yrange[2],i]) } farbe=fields::tim.colors(64) if(reverse)farbe=rev(farbe) fields::image.plot(fullimg,zlim=zlim,legend.width=1.8, axes=FALSE) }
NULL print.hreal <- function(x, n=20, ...){ options(digits=4) cat("------------------------------------------\n") cat("Simulation result of marked Hawkes model.\n") print(x$hspec) cat("Realized path (with right continuous representation):\n") mtrx <- as.matrix(x) dimens <- x$hspec@dimens name_N <- paste0("N", 1:dimens) name_lambda <- paste0("lambda", 1:dimens) name_lambda_component <- colnames(x$lambda_component) len <- min(n, length(mtrx[,"arrival"])) print(mtrx[1:len, c("arrival", name_N, name_lambda, name_lambda_component)]) if ( length(mtrx[,"arrival"]) > len){ remaning <- length(mtrx[,"arrival"]) - len cat("... with ") cat(remaning) cat(" more rows \n") } cat("------------------------------------------\n") options(digits=7) } summary.hreal <- function(object, n=20, ...){ options(digits=5) cat("------------------------------------`------\n") cat("Simulation result of marked Hawkes model.\n") cat("Realized path (with right continuous representation):\n") mtrx <- as.matrix(object) dimens <- object$hspec@dimens name_N <- paste0("N", 1:dimens) name_lambda <- paste0("lambda", 1:dimens) len <- min(n, length(mtrx[,"arrival"])) print(mtrx[1:len, c("arrival", name_N, name_lambda)]) if ( length(mtrx[,"arrival"]) > len){ remaning <- length(mtrx[,"arrival"]) - len cat("... with ") cat(remaning) cat(" more rows \n") } cat("------------------------------------------\n") options(digits=7) } as.matrix.hreal <- function(x, ...){ mtrx <- numeric() for (i in 2:length(x)){ mtrx <- cbind(mtrx, x[[i]]) if(is.vector(x[[i]])){ colnames(mtrx)[i-1] <- names(x)[i] } } mtrx }
simulate_iid_brownian_motion <- function(N, v = seq(from = 0, to = 1, length.out = 100), sig = 1){ dv <- length(v) b_motion <- matrix(0, ncol = dv, nrow = N) b_motion[,2:dv] <- t(apply(matrix(stats::rnorm( (dv-1) *N, sd = sig), ncol = dv-1, nrow = N), 1, cumsum)) return(b_motion) } simulate_iid_brownian_bridge <- function(N, v = seq(from = 0, to = 1, length.out = 100), sig = 1){ dv <- length(v) b_bridge <- matrix(0, ncol = dv, nrow = N) b_bridge[,2:dv] <- simulate_iid_brownian_motion(N, v = v[1:dv-1], sig) b_bridge <- b_bridge - b_bridge[,dv]*matrix(rep(v, times = N),ncol = dv, nrow = N, byrow = T) return(b_bridge) }
bridge_sampler.varstan <- function(samples, ...) { if(!is.varstan(samples)) stop("The current object is not a varstan class") out = try(bridge_sampler(samples$stanfit, ...)) return(out) } bayes_factor.varstan <- function(x1, x2, log = FALSE, ...) { bridge1 = bridge_sampler(x1, ...) bridge2 = bridge_sampler(x2, ...) out = bayes_factor(bridge1, bridge2, log = log) attr(out, "model_names") = c("model1", "model2") return(out) }
logPretty1 <- function(xMin, xMax) { xFirst <- floor(log(xMin, 10)) xLast <- ceiling(log(xMax, 10)) xTicks <- seq(xFirst, xLast) xTicks <- 10 ^ xTicks return(xTicks) } logPretty3<-function(xMin,xMax) { xMin <- xMin * 1.00001 xFirst <- floor(log(xMin, 10)) xLast <- ceiling(log(xMax, 10)) cycles <- xLast - xFirst + 1 trio <- c(0, log(2, 10), log(5, 10)) xTicks <- xFirst + trio top <- cycles - 2 for(icycle in 1:top) { newTrio<-xFirst+icycle+trio xTicks<-c(xTicks,newTrio) } xTicks<-c(xTicks,xLast) numTicks<-length(xTicks) shortTicks<-numTicks-4 xTicks<-if(cycles<=2) xTicks[1:shortTicks] else xTicks keepLow <- ifelse(log(xMin, 10) < xTicks, 1, 0) keepHigh <- ifelse(log(xMax, 10) > xTicks, 1, 0) top <- length(keepLow) - 1 kLow <- keepLow kHigh <- keepHigh for(i in 1:top) { kLow[i] <- keepLow[i + 1] } for(i in 1:top) { kHigh[i + 1] <- keepHigh[i] } keep <- kLow * kHigh trim <- data.frame(xTicks, keep) trim <- subset(trim, keep > 0) xTicks <- 10 ^ trim$xTicks return(xTicks) }
NULL eval_cost_summary <- function(x, solution) UseMethod("eval_cost_summary") eval_cost_summary.default <- function(x, solution) { stop("argument to x must be a ConservationProblem object") } eval_cost_summary.ConservationProblem <- function(x, solution) { assertthat::assert_that(inherits(x, "ConservationProblem")) solution <- planning_unit_solution_status(x, solution) cost_data <- x$planning_unit_costs() costs <- unname(c(colSums(cost_data * solution, na.rm = TRUE))) total_cost <- sum(costs) if (x$number_of_zones() > 1) { out <- tibble::tibble( summary = c("overall", zone_names(x)), cost = c(total_cost, costs)) } else { out <- tibble::tibble(summary = "overall", cost = total_cost) } out }
maxcovar <- function(x, k=1) { }
HELPrct %>% summarise(x.bar = mean(age), s = sd(age))
grid.brackets <- function(x1, y1, x2, y2, h=NULL, ticks=0.5, curvature=0.5, type=1, col=1, lwd=1, lty='solid') { if(is.null(h)) h <- 0.05 if(!is.unit(x1) | !is.unit(y1) | !is.unit(x2) | !is.unit(y2) | !is.unit(h)){ x1 <- unit(x1, 'native') x2 <- unit(x2, 'native') y1 <- unit(y1, 'native') y2 <- unit(y2, 'native') h <- unit(h, 'npc') } if(!is.numeric(curvature)) stop('curvature must be numeric') if(!is.numeric(type)) stop('type must be a integer, 1 to 5') if(length(ticks)==1) if(is.na(ticks)) ticks<- NULL if(!is.numeric(ticks) & !is.null(ticks)) stop('ticks must be numeric or NULL') if(length(ticks)>1){ if(any(duplicated(abs(ticks)))) stop('duplicated ticks') } if(curvature<0) curvature<- 0 if(curvature>1) curvature<- 1 myangle <- 180*atan2((convertY(y2, unitTo='inches', valueOnly = TRUE)-convertY(y1, unitTo='inches', valueOnly = TRUE)),(convertX(x2, unitTo='inches', valueOnly = TRUE)-convertX(x1, unitTo='inches', valueOnly = TRUE)))/pi mywidth <- sqrt((convertX(x2, unitTo='inches', valueOnly = TRUE)-convertX(x1, unitTo='inches', valueOnly = TRUE))^2+(convertY(y2, unitTo='inches', valueOnly = TRUE)-convertY(y1, unitTo='inches', valueOnly = TRUE))^2) mywidth <- convertWidth(unit(mywidth, units='inches'), unitTo='npc', valueOnly = TRUE) myheight <- convertHeight(h, unitTo='npc', valueOnly = TRUE) x1<-convertX(x1, unitTo='npc', valueOnly = TRUE) x2<-convertX(x2, unitTo='npc', valueOnly = TRUE) y1<-convertY(y1, unitTo='npc', valueOnly = TRUE) y2<-convertY(y2, unitTo='npc', valueOnly = TRUE) xd <- (x2-x1) yd <- (y2-y1) v1 <- viewport(x=x1, y=y1, width=mywidth, height=myheight, angle=myangle, just=c("left", "bottom")) pushViewport(v1) brackets<- a_cb_brackets(phi=curvature, ticks=ticks, type=type) grid.lines(brackets[1,], brackets[2,], gp=gpar(col=col, lwd=lwd, lty=lty)) popViewport() }
lapply(c( "shiny", "leaflet", "RPostgreSQL" ),function(pkg){ if (!(pkg %in% installed.packages()[,1])){ install.packages(pkg) } library(pkg,character.only = TRUE,quietly = TRUE) } ) lapply(c( "PEcAn.DB", "PEcAn.visualization" ),function(pkg){ library(pkg,character.only = TRUE,quietly = TRUE) } ) server <- shinyServer(function(input, output, session) { output$typeSelector <- renderUI({ data.atmosphere.registration <- system.file("registration", package="PEcAn.data.atmosphere") datatype <- list.files(data.atmosphere.registration) datatype <- gsub("register.", "", datatype) datatype <- gsub(".xml", "", datatype) selectInput("type", "Type", datatype) }) output$modelSelector <- renderUI({ bety <- betyConnect("../../web/config.php") on.exit(db.close(bety), add = TRUE) models <- db.query("SELECT name FROM modeltypes;", bety) selectInput("model", "Model", models) }) output$agreementUI <- renderUI({ if (is.null(input$type)) { return() } switch( input$type, "Ameriflux" = checkboxInput( "agreement", HTML( "I agree to <a href='http://ameriflux.lbl.gov/data/data-policy/'>AmeriFlux license</a>." ), value = FALSE, width = NULL ), "NARR" = checkboxInput( "agreement", HTML( "I agree to <a href='http://www.esrl.noaa.gov/psd/data/gridded/data.narr.html'>NARR license</a>." ), value = FALSE, width = NULL ), "Fluxnet2015" = checkboxInput( "agreement", HTML("I agree to FLUXNET license."), value = FALSE, width = NULL ) ) }) observeEvent(input$type, { bety <- betyConnect("../../web/config.php") on.exit(db.close(bety), add = TRUE) sites <- db.query( paste0( "SELECT sitename, ST_X(ST_CENTROID(geometry)) AS lon, ST_Y(ST_CENTROID(geometry)) AS lat FROM sites, sitegroups_sites where sites.geometry IS NOT NULL AND sites.id = sitegroups_sites.site_id and sitegroups_sites.sitegroup_id in ( select id from sitegroups where sitegroups.name like '", input$type, "');" ), bety ) if(length(sites) > 0){ ids <- sites$sitename latitude <- sites$lat longitude <- sites$lon map = createLeafletMap(session, 'map') session$onFlushed(once = TRUE, function() { map$clearMarkers() map$addMarker(lat = latitude, lng = longitude, layerId = ids) }) } else{ map = createLeafletMap(session, 'map') session$onFlushed(once = TRUE, function() { map$clearMarkers() }) } observe({ click <- input$map_marker_click if (is.null(click)) { click <- list(id = "US-Dk3", lat = 35.9782, lng = -79.0942) } else{ text <- paste(click$id) map$clearPopups() map$showPopup(click$lat, click$lng, text) } selectedsite <- reactive({ if ( !(input$type %in% c("Ameriflux", "NARR", "Fluxnet2015")) || input$agreement) { paste( c( "<input>", paste0(" <type>", input$type, "</type>"), paste0(" <site>", click$id, "</site>"), paste0(" <lat>", click$lat, "</lat>"), paste0(" <lon>", click$lng, "</lon>"), paste0( " <start_date>", if (input$start_date != "") input$start_date else "2001", "-01-01 00:00:00</start_date>" ), paste0( " <end_date>", if (input$end_date != "") input$end_date else "2001", "-12-31 23:59:59</end_date>" ), "</input>" ), collapse = "\n" ) } else{ "Please check the agreement. " } }) output$xmltext <- renderText({ selectedsite() }) output$downloadXML <- downloadHandler( filename = function() { "example.xml" }, content = function(file) { if (!(input$type %in% c("Ameriflux", "NARR", "Fluxnet2015")) || input$agreement) { writeLines( c( "<input>", paste0(" <type>", input$type, "</type>"), paste0(" <site>", click$id, "</site>"), paste0(" <lat>", click$lat, "</lat>"), paste0(" <lon>", click$lng, "</lon>"), paste0( " <start_date>", if (input$start_date != "") input$start_date else "2001", "-01-01 00:00:00</start_date>" ), paste0( " <end_date>", if (input$end_date != "") input$end_date else "2001", "-12-31 23:59:59</end_date>" ), "</input>" ), file ) } } ) output$downloadData <- downloadHandler( filename = function() { paste0("example.met.", input$model) }, content = function(file) { xml_filename <- tempfile("pecan", fileext = ".xml") fileConn <- file(xml_filename) writeLines(selectedsite(), fileConn) bds <- "https://bd-api-dev.ncsa.illinois.edu" output_path <- "/tmp/" url <- BrownDog::convert_file( bds, xml_filename, paste0("met.", input$model), output_path, input$token, download = FALSE ) BrownDog::download(url, file, input$token) } ) }) }) })
conv_o2 = function(o2 = 100, from = "percent_a.s.", to = "all", temp = 25, sal = 35, atm_pres = 1013.25){ air_pres = measurements::conv_unit(atm_pres, 'mbar', 'bar') all_units = c('percent_a.s.', 'percent_o2', 'hPa', 'kPa', 'torr', 'mmHg', 'inHg', 'mg_per_l', 'ug_per_l', 'umol_per_l', 'mmol_per_l', 'ml_per_l', 'mg_per_kg', 'ug_per_kg', 'umol_per_kg', 'mmol_per_kg', 'ml_per_kg', 'volumes_percent') if(!(from %in% all_units)) stop('the \'from\' argument is not an acceptable unit.') if(!(to %in% c(all_units, 'all'))) stop('the \'to\' argument is not an acceptable unit.') if(from == 'percent_a.s.') perc_a.s. = o2 if(from == 'percent_o2') perc_a.s. = o2 / marelac::atmComp('O2') if(from == 'hPa') perc_a.s. = measurements::conv_unit(o2, 'hPa', 'atm') * 100 / (air_pres - marelac::vapor(S = sal, t = temp)) / marelac::atmComp('O2') if(from == 'kPa') perc_a.s. = measurements::conv_unit(o2, 'kPa', 'atm') * 100 / (air_pres - marelac::vapor(S = sal, t = temp)) / marelac::atmComp('O2') if(from == 'torr') perc_a.s. = measurements::conv_unit(o2, 'torr', 'atm') * 100 / (air_pres - marelac::vapor(S = sal, t = temp)) / marelac::atmComp('O2') if(from == 'mmHg') perc_a.s. = measurements::conv_unit(o2, 'mmHg', 'atm') * 100 / (air_pres - marelac::vapor(S = sal, t = temp)) / marelac::atmComp('O2') if(from == 'inHg') perc_a.s. = measurements::conv_unit(o2, 'inHg', 'atm') * 100 / (air_pres - marelac::vapor(S = sal, t = temp)) / marelac::atmComp('O2') if(from == 'mg_per_l') perc_a.s. = o2 * 100 / marelac::gas_satconc(S = sal, t = temp, P = air_pres, species = 'O2') / 1e-6 / marelac::molweight('O2') / 1e3 if(from == 'ug_per_l') perc_a.s. = o2 * 100 / marelac::gas_satconc(S = sal, t = temp, P = air_pres, species = 'O2') / 1e-6 / marelac::molweight('O2') / 1e6 if(from == 'umol_per_l') perc_a.s. = o2 * 100 / marelac::gas_satconc(S = sal, t = temp, P = air_pres, species = 'O2') if(from == 'mmol_per_l') perc_a.s. = o2 * 1000 * 100 / marelac::gas_satconc(S = sal, t = temp, P = air_pres, species = 'O2') if(from == 'ml_per_l') perc_a.s. = measurements::conv_unit(o2, 'ml', 'l') / marelac::molvol(t = temp, P = air_pres, species = 'O2', quantity = 1 / measurements::conv_unit(100 / marelac::gas_satconc(S = sal, t = temp, P = air_pres, species = 'O2'), 'mol', 'umol')) if(from == 'mg_per_kg') perc_a.s. = o2 * 100 / marelac::gas_satconc(S = sal, t = temp, P = air_pres, species = 'O2') / 1e-6 / marelac::molweight('O2') / 1e3 * (as.numeric(seacarb::rho(S = sal, T = temp)) / 1000) if(from == 'ug_per_kg') perc_a.s. = o2 * 100 / marelac::gas_satconc(S = sal, t = temp, P = air_pres, species = 'O2') / 1e-6 / marelac::molweight('O2') / 1e3 * (as.numeric(seacarb::rho(S = sal, T = temp)) / 1e6) if(from == 'umol_per_kg') perc_a.s. = o2 * 100 / marelac::gas_satconc(S = sal, t = temp, P = air_pres, species = 'O2') * (as.numeric(seacarb::rho(S = sal, T = temp)) / 1000) if(from == 'mmol_per_kg') perc_a.s. = o2 * 100 / marelac::gas_satconc(S = sal, t = temp, P = air_pres, species = 'O2') * (as.numeric(seacarb::rho(S = sal, T = temp))) if(from == 'ml_per_kg') perc_a.s. = measurements::conv_unit(o2, 'ml', 'l') / marelac::molvol(t = temp, P = air_pres, species = 'O2', quantity = 1 / measurements::conv_unit(100 / marelac::gas_satconc(S = sal, t = temp, P = air_pres, species = 'O2'), 'mol', 'umol')) * (as.numeric(seacarb::rho(S = sal, T = temp)) / 1000) if(from == 'volumes_percent') perc_a.s. = measurements::conv_unit(o2, 'ml', 'l') / marelac::molvol(t = temp, P = air_pres, species = 'O2', quantity = 1 / measurements::conv_unit(100 / marelac::gas_satconc(S = sal, t = temp, P = air_pres, species = 'O2'), 'mol', 'umol')) * 10 x = list() if(to == 'percent_a.s.' | to == 'all') x$percent_a.s. = perc_a.s. if(to == 'percent_o2' | to == 'all') x$percent_o2 = marelac::atmComp('O2') * perc_a.s. if(to == 'hPa' | to == 'all') x$hPa = measurements::conv_unit((air_pres - marelac::vapor(S = sal, t = temp)) * marelac::atmComp('O2') * perc_a.s. / 100, 'atm', 'hPa') if(to == 'kPa' | to == 'all') x$kPa = measurements::conv_unit((air_pres - marelac::vapor(S = sal, t = temp)) * marelac::atmComp('O2') * perc_a.s. / 100, 'atm', 'kPa') if(to == 'torr' | to == 'all') x$torr = measurements::conv_unit((air_pres - marelac::vapor(S = sal, t = temp)) * marelac::atmComp('O2') * perc_a.s. / 100, 'atm', 'torr') if(to == 'mmHg' | to == 'all') x$mmHg = measurements::conv_unit((air_pres - marelac::vapor(S = sal, t = temp)) * marelac::atmComp('O2') * perc_a.s. / 100, 'atm', 'mmHg') if(to == 'inHg' | to == 'all') x$inHg = measurements::conv_unit((air_pres - marelac::vapor(S = sal, t = temp)) * marelac::atmComp('O2') * perc_a.s. / 100, 'atm', 'inHg') if(to == 'mg_per_l' | to == 'all') x$mg_per_l = marelac::gas_satconc(S = sal, t = temp, P = air_pres, species = 'O2') * 1e-6 * marelac::molweight('O2') * 1e3 * perc_a.s. / 100 if(to == 'ug_per_l' | to == 'all') x$ug_per_l = marelac::gas_satconc(S = sal, t = temp, P = air_pres, species = 'O2') * 1e-6 * marelac::molweight('O2') * 1e6 * perc_a.s. / 100 if(to == 'umol_per_l' | to == 'all') x$umol_per_l = marelac::gas_satconc(S = sal, t = temp, P = air_pres, species = 'O2') * perc_a.s. / 100 if(to == 'mmol_per_l' | to == 'all') x$mmol_per_l = marelac::gas_satconc(S = sal, t = temp, P = air_pres, species = 'O2') * perc_a.s. / 100 / 1000 if(to == 'ml_per_l' | to == 'all') x$ml_per_l = measurements::conv_unit(as.numeric(marelac::molvol(t = temp, P = air_pres, species = 'O2', quantity = measurements::conv_unit(marelac::gas_satconc(S = sal, t = temp, P = air_pres, species = 'O2') * perc_a.s. / 100, 'umol', 'mol'))), 'l', 'ml') if(to == 'mg_per_kg' | to == 'all') x$mg_per_kg = marelac::gas_satconc(S = sal, t = temp, P = air_pres, species = 'O2') * 1e-6 * marelac::molweight('O2') * 1e3 * perc_a.s. / 100 / (as.numeric(seacarb::rho(S = sal, T = temp)) / 1000) if(to == 'ug_per_kg' | to == 'all') x$ug_per_kg = marelac::gas_satconc(S = sal, t = temp, P = air_pres, species = 'O2') * 1e-6 * marelac::molweight('O2') * 1e3 * perc_a.s. / 100 / (as.numeric(seacarb::rho(S = sal, T = temp)) / 1e6) if(to == 'umol_per_kg' | to == 'all') x$umol_per_kg = marelac::gas_satconc(S = sal, t = temp, P = air_pres, species = 'O2') * perc_a.s. / 100 / (as.numeric(seacarb::rho(S = sal, T = temp)) / 1000) if(to == 'mmol_per_kg' | to == 'all') x$mmol_per_kg = marelac::gas_satconc(S = sal, t = temp, P = air_pres, species = 'O2') * perc_a.s. / 100 / 1000 / (as.numeric(seacarb::rho(S = sal, T = temp)) / 1000) if(to == 'ml_per_kg' | to == 'all') x$ml_per_kg = measurements::conv_unit(as.numeric(marelac::molvol(t = temp, P = air_pres, species = 'O2', quantity = measurements::conv_unit(marelac::gas_satconc(S = sal, t = temp, P = air_pres, species = 'O2') * perc_a.s. / 100, 'umol', 'mol'))), 'l', 'ml') / (as.numeric(seacarb::rho(S = sal, T = temp)) / 1000) if(to == 'volumes_percent' | to == 'all') x$volumes_percent = measurements::conv_unit(as.numeric(marelac::molvol(t = temp, P = air_pres, species = 'O2', quantity = measurements::conv_unit(marelac::gas_satconc(S = sal, t = temp, P = air_pres, species = 'O2') * perc_a.s. / 100, 'umol', 'mol'))), 'l', 'ml') / 10 attr(x$percent_o2, 'names') = NULL attr(x$hPa, 'names') = NULL attr(x$kPa, 'names') = NULL attr(x$torr, 'names') = NULL attr(x$mmHg, 'names') = NULL attr(x$inHg, 'names') = NULL attr(x$mg_per_l, 'names') = NULL attr(x$ug_per_l, 'names') = NULL attr(x$umol_per_l, 'names') = NULL attr(x$mmol_per_l, 'names') = NULL attr(x$ml_per_l, 'names') = NULL attr(x$mg_per_kg, 'names') = NULL attr(x$ug_per_kg, 'names') = NULL attr(x$umol_per_kg, 'names') = NULL attr(x$mmol_per_kg, 'names') = NULL attr(x$ml_per_kg, 'names') = NULL attr(x$volumes_percent, 'names') = NULL if(to != 'all') x = unlist(x, use.names = FALSE) return(x) }
library("tram") library("tbm") library("partykit") source("setup.R") myFUN <- function(ldata, lweights, model = c("normal", "logistic", "minextrval"), order) { bctrl <- boost_control(mstop = 100, risk = "oob", nu = 0.01) model <- match.arg(model) m0 <- switch(model, "normal" = BoxCox(y ~ 1, data = ldata, order = order, support = sup, bounds = bds), "logistic" = Colr(y ~ 1, data = ldata, order = order, support = sup, bounds = bds), "minextrval" = Coxph(y ~ 1, data = ldata, order = order, support = sup, bounds = bds)) fm <- "y ~ x1 + x2" nm <- colnames(ldata) nx <- nm[grep("^nx", nm)] if (length(nx) > 0) fm <- paste(fm, "+", paste(nx, collapse = "+")) fm <- as.formula(fm) tctrl <- ctree_control(minsplit = 4, minbucket = 2, mincriterion = 0, maxdepth = 6, splittest = FALSE, testtype = "Teststatistic") l1 <- stmboost(m0, formula = fm, data = ldata, method = quote(mboost::blackboost), weights = lweights, control = bctrl, tree_control = tctrl) while(!(which.min(risk(l1)) < mstop(l1)) && mstop(l1) < 2000) l1 <- l1[2 * mstop(l1)] mstop <- which.min(risk(l1)) l1 <- stmboost(m0, formula = fm, data = ldata, method = quote(mboost::blackboost), control = bctrl, tree_control = tctrl)[mstop] return(l1) } ret <- c() for (NOBS in tNOBS) { for (PNON in tPNON) { for (TD in tTD) { for (OR in tOR * order) { FUN <- function(...) myFUN(..., model = TD, order = OR) source("run.R", echo = TRUE) res$model <- "tram_tree" res$PNON <- PNON res$NOBS <- NOBS res$order <- OR res$todistr <- TD ret <- rbind(ret, res) } } } } save(ret, file = "tram_tree.rda") sessionInfo()
is.prim <- function(y){ starten <- 1 enden <- length(y)+1 while(starten<enden){ x <- y[starten] error <- 0 test <- is.negative(x) if(test==TRUE){ x <- x*(-1) } test <- is.whole(x) if(test==FALSE) { error <- error+1 } if(x==0){ error <- error+1 } test <- is.even(x) if(test==TRUE & x!=2){ error <- error+1 } test <- is.whole(sqrt(x)) if(test==TRUE & x!=1){ error <- error+1 } if(error>0){ if (starten==1){ result=FALSE }else{ result <- c(result, FALSE) } }else{ if(x==1 |x==2|x==3|x==5|x==7){ if (starten==1){ result=TRUE }else{ result <- c(result, TRUE) } }else{ anfang <- 3 ende <- ceiling(sqrt(x)) while(anfang<ende){ test1 <- x/anfang test2 <- floor(test1) if(test1==test2){ error <- error+1 } anfang <- anfang+2 } if(error==0){ if (starten==1){ result=TRUE }else{ result <- c(result, TRUE) } } else{ if (starten==1){ result=FALSE }else{ result <- c(result, FALSE) } } } } starten <- starten+1 } return(result) }
fname <- fxfer("show4calls.R") file.edit(fname)
logit <- function(p) { log(p / (1 - p)) } inv_logit <- function(x) { 1 / (1 + exp(-x)) } cloglog <- function(x) { log(-log(1 - x)) } inv_cloglog <- function(x) { 1 - exp(-exp(x)) } Phi <- function(x) { pnorm(x) } incgamma <- function(a, x) { pgamma(x, shape = a) * gamma(a) } square <- function(x) { x^2 } cbrt <- function(x) { x^(1/3) } exp2 <- function(x) { 2^x } pow <- function(x, y) { x^y } inv <- function(x) { 1/x } inv_sqrt <- function(x) { 1/sqrt(x) } inv_square <- function(x) { 1/x^2 } hypot <- function(x, y) { stopifnot(all(x >= 0)) stopifnot(all(y >= 0)) sqrt(x^2 + y^2) } log1m <- function(x) { log(1 - x) } step <- function(x) { ifelse(x > 0, 1, 0) } logm1 <- function(x, base = exp(1)) { log(x - 1, base = base) } expp1 <- function(x) { exp(x) + 1 } logit_scaled <- function(x, lb = 0, ub = 1) { logit((x - lb) / (ub - lb)) } inv_logit_scaled <- function(x, lb = 0, ub = 1) { inv_logit(x) * (ub - lb) + lb } multiply_log <- function(x, y) { ifelse(x == y & x == 0, 0, x * log(y)) } log1p_exp <- function(x) { log(1 + exp(x)) } log1m_exp <- function(x) { ifelse(x < 0, log(1 - exp(x)), NaN) } log_diff_exp <- function(x, y) { stopifnot(length(x) == length(y)) ifelse(x > y, log(exp(x) - exp(y)), NaN) } log_sum_exp <- function(x, y) { max <- pmax(x, y) max + log(exp(x - max) + exp(y - max)) } log_mean_exp <- function(x) { max_x <- max(x) max_x + log(sum(exp(x - max_x))) - log(length(x)) } expm1 <- function(x) { exp(x) - 1 } log_expm1 <- function(x) { log(expm1(x)) } log_inv_logit <- function(x) { log(inv_logit(x)) } log1m_inv_logit <- function(x) { log(1 - inv_logit(x)) } scale_unit <- function(x, lb = min(x), ub = max(x)) { (x - lb) / (ub - lb) } fabs <- function(x) { abs(x) } softmax <- function(x) { ndim <- length(dim(x)) if (ndim <= 1) { x <- matrix(x, nrow = 1) ndim <- length(dim(x)) } x <- exp(x) dim_noncat <- dim(x)[-ndim] marg_noncat <- seq_along(dim(x))[-ndim] catsum <- array(apply(x, marg_noncat, sum), dim = dim_noncat) sweep(x, marg_noncat, catsum, "/") } log_softmax <- function(x) { ndim <- length(dim(x)) if (ndim <= 1) { x <- matrix(x, nrow = 1) ndim <- length(dim(x)) } dim_noncat <- dim(x)[-ndim] marg_noncat <- seq_along(dim(x))[-ndim] catsum <- log(array(apply(exp(x), marg_noncat, sum), dim = dim_noncat)) sweep(x, marg_noncat, catsum, "-") } inv_odds <- function(x) { x / (1 + x) }
library(glmmTMB) salamander1 <- glmmTMB(count ~ mined + (1|site), zi=~mined, family=poisson, data=Salamanders) saveRDS(salamander1,"salamander1.rds",version=2)
plot.PVE <- function(x,xlab="Number of Features",ylab="PVE",...) { if (!inherits(x,"PVE")) { stop("'x' must be of class 'PVE'") } plot(x=x$J,y=x$PVEs,xlab=xlab,ylab=ylab,...) }
fitted_LB <- function(object, type = c("link", "response")){ type <- match.arg(type[1], c("link","response")) n = nrow(object$Ahat) theta = as.matrix(cbind(rep(1,n),object$Ahat))%*%t(object$Bhat) P = plogis(theta) if (type == "link") { return(theta) } else if (type == "response") { return(P) } }
context("checkstyle_output") test_that("return lint report as checkstyle xml", { lints <- structure( list( Lint(filename = "test_file", line_number = 1, column_number = 2, type = "error", line = "a line", message = "foo"), Lint(filename = "test_file", line_number = 2, column_number = 1, type = "style", line = "another line", message = "bar"), Lint(filename = "test_file2", line_number = 1, column_number = 1, type = "warning", line = "yet another line", message = "baz") ), class = "lints") tmp <- tempfile() checkstyle_output(lints, tmp) expect_equal(readLines(tmp), readLines("checkstyle.xml")) })
test_that("path.dist called safely", { library("TreeTools") expect_equal(c(5.66, 6, 6, 6.32, 6.32, 5.74), PathDist(as.phylo(0:5, 6), BalancedTree(6)), tolerance = 2) expect_equal(c(5.66, 6, 6, 6.32, 6.32, 5.74), PathDist(BalancedTree(6), as.phylo(0:5, 6)), tolerance = 2) expect_equal(PathDist(BalancedTree(6), PectinateTree(6)), PathDist(list(BalancedTree(6), PectinateTree(6)))[1], ignore_attr = TRUE) })
N <- 20000 M <- 2000 K <- 5 S <- tcrossprod(matrix(rnorm(M * K), M)) + 5 * diag(M) X <- MASS::mvrnorm(N, mu = rep(0, M), Sigma = S) X <- scale(X) k <- 10 L <- k + 50 n <- nrow(X) m <- ncol(X) I <- 5 tol <- 1e-3 true <- svd(X, nu = k, nv = k) diffPCs <- function(test, rot) { k <- ncol(test) diff1 <- 2 * abs(test - rot[, 1:k]) / (abs(test) + abs(rot[, 1:k])) diff2 <- 2 * abs(test + rot[, 1:k]) / (abs(test) + abs(rot[, 1:k])) diff <- pmin(diff1, diff2) mean(diff) } set.seed(1) G <- list(matrix(rnorm(n * L), n, L)) R <- list(crossprod(X, G[[1]])) conv <- FALSE it <- 0 while (!conv && it < 5) { print(it <- it + 1) for (i in 1:I) { G[[i + 1]] <- X %*% (crossprod(X, G[[i]])) / m R[[i + 1]] <- crossprod(X, X %*% R[[i]]) / n } U1 <- svd(do.call(cbind, G), nv = 0)$u U2 <- svd(do.call(cbind, R), nv = 0)$u T1.t <- crossprod(X, U1) T2.t <- X %*% U2 T1.svd <- svd(T1.t, nu = L, nv = L) T2.svd <- svd(T2.t, nu = L, nv = L) u1 = U1 %*% T1.svd$v v1 = T1.svd$u u2 = T2.svd$u v2 = U2 %*% T2.svd$v diff1 <- diffPCs(u1[, 1:k], u2) diff2 <- diffPCs(v1[, 1:k], v2) print(m1 <- max(diff1, diff2)) conv <- (m1 < tol) G <- list(u2) R <- list(v2) } test <- list(d = T2.svd$d[1:k], u = u2[, 1:k], v = v2[, 1:k]) print(all.equal(test$d, true$d[1:k])) plot(test$u, true$u) plot(test$v, true$v) require(foreach) R2 <- foreach(i = 1:k, .combine = 'cbind') %do% { R2.1 <- summary(lm(true$u[, i] ~ test$u[, i] - 1))$r.squared R2.2 <- summary(lm(true$v[, i] ~ test$v[, i] - 1))$r.squared c(R2.1, R2.2) } print(R2) print(diffPCs(true$u, test$u)) print(diffPCs(test$v, true$v))
"big_word_club"
context("generateDesignOfDefaults") test_that("generateDesignOfDefaults", { ps = makeParamSet( makeNumericParam("x", lower = 1, upper = 5, default = 1), makeIntegerParam("y", lower = 2, upper = 6, default = 3) ) d = generateDesignOfDefaults(ps) e = data.frame(x = 1, y = 3) attr(e, "trafo") = FALSE expect_equal(d, e) ps = makeParamSet( makeNumericParam("u", lower = 1, upper = 5, default = 1), makeIntegerParam("v", lower = 2, upper = 6, default = 3), makeLogicalParam("w", default = TRUE), makeDiscreteParam("x", values = c("a", "b"), default = "a") ) d = generateDesignOfDefaults(ps) e = data.frame(u = 1, v = 3, w = TRUE, x = factor("a", levels = c("a", "b"))) attr(e, "trafo") = FALSE expect_equal(d, e) ps = makeParamSet( makeNumericVectorParam("x", len = 2L, lower = 1, upper = 2, default = c(1, 2)), makeIntegerVectorParam("y", len = 2L, lower = 3, upper = 4, default = c(3, 3)), makeLogicalVectorParam("z", len = 2L, default = c(TRUE, FALSE)) ) d = generateDesignOfDefaults(ps) e = data.frame(x1 = 1, x2 = 2, y1 = 3, y2 = 3, z1 = TRUE, z2 = FALSE) attr(e, "trafo") = FALSE expect_equal(d, e) ps = makeParamSet( makeNumericParam("x", lower = 0, upper = 1, default = 0), makeNumericParam("y", lower = 3, upper = 4, trafo = function(x) 2 * x, default = 3) ) d = generateDesignOfDefaults(ps, trafo = TRUE) e = data.frame(x = 0, y = 6) attr(e, "trafo") = TRUE expect_equal(d, e) ps = makeParamSet( makeNumericParam("x", lower = 1, upper = 5), makeIntegerParam("y", lower = 2, upper = 6, default = 3) ) expect_error(generateDesignOfDefaults(ps), regexp = "No default parameter setting for: x") ps = makeParamSet( makeNumericParam("x", lower = 1, upper = 3, default = 2), makeNumericParam("y", lower = 1, upper = 3, default = 1, requires = quote(x > 2)) ) d = generateDesignOfDefaults(ps) e = data.frame(x = 2, y = NA_real_) attr(e, "trafo") = FALSE expect_equal(d, e) ps = makeParamSet( makeIntegerParam("x", lower = 1L, upper = 3L, default = 2) ) d = generateDesignOfDefaults(ps) e = data.frame(x = 2L) attr(e, "trafo") = FALSE expect_identical(class(d[, 1]), class(e[, 1])) ps = makeParamSet( makeNumericParam(id = "x1", lower = 0, upper = 2, default = "BLA", special.vals = list("BLA")), makeNumericParam(id = "x2", lower = 0, upper = 2, default = iris, special.vals = list(iris)) ) expect_error(generateDesignOfDefaults(ps), regexp = "special.vals as default for Parameter(s): x1,x2", fixed = TRUE) }) test_that("generateDesignOfDefaults works with discrete params and complex values", { ps = makeParamSet( makeDiscreteParam("p", values = c("a", "b"), default = "b") ) d = generateDesignOfDefaults(ps) expect_equal(d, data.frame(p = factor("b", levels = c("a", "b"))), check.attributes = FALSE) ps = makeParamSet( makeDiscreteParam("p", values = c(ir = "ir", foo = "bar"), default = "ir") ) d = generateDesignOfDefaults(ps) expect_equal(d, data.frame(p = factor("ir", levels = c("ir", "foo"))), check.attributes = FALSE) p = makeDiscreteParam("p", values = c(ir = "ir", foo = "bar"), default = "bar") ps = makeParamSet(p) d = generateDesignOfDefaults(ps) expect_equal(d, data.frame(p = factor("foo", levels = c("ir", "foo"))), check.attributes = FALSE) p = makeDiscreteParam("p", values = list(ir = "ir", foo = iris), default = iris) ps = makeParamSet(p) d = generateDesignOfDefaults(ps) expect_equal(d, data.frame(p = factor("foo", levels = c("ir", "foo"))), check.attributes = FALSE) })
fieldRotate <- function(mosaic, theta = NULL, clockwise = TRUE, h = FALSE, n.core = NULL, extentGIS = FALSE, DSMmosaic = NULL, plot = TRUE, type = "l", lty = 2, lwd = 3, fast.plot = FALSE) { mosaic <- raster::stack(mosaic) num.band<-length(mosaic@layers) print(paste(num.band," layers available", sep = "")) par(mfrow=c(1,2)) if(!is.null(DSMmosaic)){ par(mfrow=c(1,3)) if(raster::projection(DSMmosaic)!=raster::projection(mosaic)){stop("DSMmosaic and RGBmosaic must have the same projection CRS")}} if(plot|is.null(theta)){ if(fast.plot){ raster::plot(mosaic[[1]], col=grey(1:100/100), axes=FALSE, box=FALSE, legend=FALSE)} if(!fast.plot){ if(num.band>2){plotRGB(RGB.rescale(mosaic,num.band=3), r = 1, g = 2, b = 3)} if(num.band<3){raster::plot(mosaic, axes=FALSE, box=FALSE)}}} rotate <- function(x, angle=0, resolution=res(x)) { y <- x raster::crs(y) <- "+proj=aeqd +ellps=sphere +lat_0=90 +lon_0=0" projectRaster(y, res=resolution, crs=paste0("+proj=aeqd +ellps=sphere +lat_0=90 +lon_0=", -angle))} if(is.null(theta)){ print("Select 2 points from left to right on image in the plots space. Use any horizontal line in the field trial of interest as a reference.") c1.a <- locator(type="p",n = 1, col="red",pch=19) c1.b <- locator(type="p",n = 1, col="red",pch=19) c1<-as.data.frame(mapply(c, c1.a, c1.b)) colnames(c1)<-c("x","y") lines(c1, col= "red", type=type, lty=lty, lwd=lwd) if((c1$y[1]>=c1$y[2])&(c1$x[2]>=c1$x[1])){theta = (atan2((c1$y[1] - c1$y[2]), (c1$x[2] - c1$x[1])))*(180/pi)} if((c1$y[2]>=c1$y[1])&(c1$x[2]>=c1$x[1])){theta = (atan2((c1$y[2] - c1$y[1]), (c1$x[2] - c1$x[1])))*(180/pi)} if((c1$y[1]>=c1$y[2])&(c1$x[1]>=c1$x[2])){theta = (atan2((c1$y[1] - c1$y[2]), (c1$x[1] - c1$x[2])))*(180/pi)} if((c1$y[2]>=c1$y[1])&(c1$x[1]>=c1$x[2])){theta = (atan2((c1$y[2] - c1$y[1]), (c1$x[1] - c1$x[2])))*(180/pi)} if(!h){theta=90-theta} if(clockwise){theta=-theta} theta=round(theta,3) print(paste("Theta rotation: ",theta,sep = "")) } if (is.null(n.core)) { r<-rotate(mosaic,angle = theta) } if (!is.null(n.core)) { if (n.core > detectCores()) { stop(paste(" 'n.core' must be less than ", detectCores(),sep = "")) } cl <- parallel::makeCluster(n.core, output = "", setup_strategy = "sequential") registerDoParallel(cl) r <- foreach(i=1:length(mosaic@layers), .packages = c("raster")) %dopar% {rotate(mosaic[[i]], angle = theta)} parallel::stopCluster(cl) } r <- raster::stack(r) if(extentGIS){ m11<-apply(matrix(as.numeric(as.matrix(raster::extent(mosaic))),2),1,function(x){mean(x)}) m22<-apply(matrix(as.numeric(as.matrix(raster::extent(r))),2),1,function(x){abs(diff(c(x[2],x[1]))/2)}) raster::extent(r)<-c(as.numeric(c(m11[1]-m22[1])), as.numeric(c(m11[1]+m22[1])), as.numeric(c(m11[2]-m22[2])), as.numeric(c(m11[2]+m22[2]))) raster::crs(r)<-raster::crs(mosaic) } Out<-r if(plot){ if(fast.plot){ raster::plot(r[[1]], col=grey(1:100/100), axes=FALSE, box=FALSE, legend=FALSE)} if(!fast.plot){ if(num.band > 2){ X_GB <- RGB.rescale(r,num.band=3) raster::plotRGB(X_GB, r = 1, g = 2, b = 3) } if(num.band<3){raster::plot(r, axes=FALSE, box=FALSE)}}} if(!is.null(DSMmosaic)){ DSMmosaic <- raster::stack(DSMmosaic) DSMmosaic <- rotate(DSMmosaic,angle = theta) raster::plot(DSMmosaic, axes=FALSE, box=FALSE) if(extentGIS){ raster::extent(DSMmosaic)<-c(as.numeric(c(m11[1]-m22[1])), as.numeric(c(m11[1]+m22[1])), as.numeric(c(m11[2]-m22[2])), as.numeric(c(m11[2]+m22[2]))) raster::crs(DSMmosaic)<-raster::crs(mosaic) } Out<-list(rotatedMosaic=r,rotatedDSM=DSMmosaic) } par(mfrow=c(1,1)) return(Out) }
expected <- eval(parse(text="structure(c(FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE), .Dim = c(20L, 5L), .Dimnames = list(NULL, c(\" test(id=0, code={ argv <- eval(parse(text="list(structure(c(FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE), .Dim = c(5L, 20L), .Dimnames = list(c(\" .Internal(aperm(argv[[1]], argv[[2]], argv[[3]])); }, o=expected);
testthat::test_that("FinalPred: initialize function works", { testthat::expect_is(FinalPred$new(), "FinalPred") }) testthat::test_that("FinalPred: set function works", { prob <- data.frame(c(0.2, 0.5, 0.6), c(0.8, 0.5, 0.4)) raw <- factor(c("Negative", "Positive", "Positive")) class.values <- c("Positive", "Negative") positive.class <- "Positive" testthat::expect_silent(FinalPred$new()$set(prob = prob, raw = raw, class.values = class.values, positive.class = positive.class)) prob <- data.frame(c(0.2, 0.5, 0.6), c(0.8, 0.5, 0.4)) raw <- c("Negative", "Positive", "Positive") class.values <- c("Positive", "Negative") positive.class <- "Positive" testthat::expect_silent(FinalPred$new()$set(prob = prob, raw = raw, class.values = class.values, positive.class = positive.class)) }) testthat::test_that("FinalPred: set function checks parameter type", { prob <- data.frame(c(0.2, 0.5, 0.6), c(0.8, 0.5, 0.4)) raw <- factor(c("Negative", "Positive", "Positive")) class.values <- c("Positive", "Negative") positive.class <- "wrong" testthat::expect_error(FinalPred$new()$set(prob = prob, raw = raw, class.values = class.values, positive.class = positive.class), "[FinalPred][FATAL] Positive class is invalid. Must be one of (Positive, Negative). Aborting...", fixed = TRUE) prob <- NULL raw <- c("Negative", "Positive", "Positive") class.values <- c("Positive", "Negative") positive.class <- "Positive" testthat::expect_error(FinalPred$new()$set(prob = prob, raw = raw, class.values = class.values, positive.class = positive.class), "[FinalPred][FATAL] Predictions were not computed. Aborting...", fixed = TRUE) prob <- data.frame(c(0.2, 0.5, 0.6), c(0.8, 0.5, 0.4)) raw <- data.frame(c("Negative", "Positive", "Positive")) class.values <- c("Positive", "Negative") positive.class <- "Positive" testthat::expect_error(FinalPred$new()$set(prob = prob, raw = raw, class.values = class.values, positive.class = positive.class), "[FinalPred][FATAL] Class values contains NA's. Aborting...", fixed = TRUE) }) testthat::test_that("FinalPred: getProb function works", { testthat::expect_null(FinalPred$new()$getProb()) }) testthat::test_that("FinalPred: getRaw function works", { testthat::expect_null(FinalPred$new()$getRaw()) }) testthat::test_that("FinalPred: getClassValues function works", { testthat::expect_null(FinalPred$new()$getClassValues()) }) testthat::test_that("FinalPred: getPositiveClass function works", { testthat::expect_null(FinalPred$new()$getPositiveClass()) }) testthat::test_that("FinalPred: getNegativeClass function works", { testthat::expect_null(FinalPred$new()$getNegativeClass()) })
declare_rs <- function(N = NULL, strata = NULL, clusters = NULL, n = NULL, n_unit = NULL, prob = NULL, prob_unit = NULL, strata_n = NULL, strata_prob = NULL, simple = FALSE, check_inputs = TRUE) { all_args <- mget(names(formals(sys.function()))) if (check_inputs) { input_check <- check_samplr_arguments_new(all_args) for (i in names(input_check)) all_args[[i]] <- input_check[[i]] all_args$check_inputs <- FALSE } is_strata <- is.vector(strata) || is.factor(strata) is_clust <- is.vector(clusters) || is.factor(clusters) if (is_strata && is_clust) { rs_type <- "stratified_and_clustered" } else if (is_clust) { rs_type <- "clustered" } else if (is_strata) { rs_type <- "stratified" } else if (simple == FALSE) { rs_type <- "complete" } else { rs_type <- "simple" } return_object <- list2env(all_args, parent = emptyenv()) return_object$rs_function <- function() { .Deprecated("draw_rs") rs_function(return_object) } delayedAssign("rs_type", { warning("rs_type is deprecated; check the class attribute instead.") rs_type }, assign.env = return_object) delayedAssign("cleaned_arguments", { warning("cleaned_arguments is deprecated") input_check }, assign.env = return_object) delayedAssign("probabilities_vector", rs_probabilities(return_object), assign.env = return_object) delayedAssign("probabilities_matrix", cbind((1 - rs_probabilities(return_object)), rs_probabilities(return_object)), assign.env = return_object) class(return_object) <- c("rs_declaration", paste0("rs_", rs_type)) attr(return_object, "call") <- match.call() return(return_object) } draw_rs <- function(declaration = NULL) { if (is.null(declaration)) { all_args <- mget(names(formals(declare_rs))) declaration <- do.call(declare_rs, all_args) } rs_function(declaration) } formals(draw_rs) <- c(formals(draw_rs), formals(declare_rs)) obtain_inclusion_probabilities <- function(declaration = NULL) { if (is.null(declaration)) { all_args <- mget(names(formals(declare_rs))) declaration <- do.call(declare_rs, all_args) } else if (!inherits(declaration, "rs_declaration")) { stop("You must provide a random sampling declaration created by declare_rs().") } declaration$probabilities_vector } formals(obtain_inclusion_probabilities) <- c(formals(obtain_inclusion_probabilities), formals(declare_rs)) summary.rs_declaration <- function(object, ...) { print(object, ... = ...) } print.rs_declaration <- function(x, ...) { S <- draw_rs(x) n <- length(S) cat("Random sampling procedure:", switch( class(x)[2], "rs_stratified" = "Stratified", "rs_clustered" = "Cluster", "rs_simple" = "Simple", "rs_stratified_and_clustered" = "Stratified and clustered", "rs_complete" = "Complete" ), "random sampling", "\n") cat("Number of units:", n, "\n") if (!is.null(x$strata)) { cat("Number of strata:", length(unique(x$strata)), "\n") } if (!is.null(x$clusters)) { cat("Number of clusters:", length(unique(x$clusters)), "\n") } if (is_constant(x$probabilities_vector)) { cat("The inclusion probabilities are constant across units.") } else{ cat( "The inclusion probabilities are NOT constant across units.", "Your analysis strategy must account for differential inclusion probabilities,", "typically by employing inverse probability weights." ) } invisible(x) }
t1 <- read.table(text = "ID1 Name1 Type1 Name2 1 A1 T1 B1 2 A2 T2 B2 3 A3 T1 B3_a 4 A4 T3 B4_a", header = T) t1 t2 <- read.table(text = "NameBank TypeBank A1 T1 A2 T2 A3 T1 A4 T3 B1 T1 B2 T4 B3 T2 B4 T3", header = T) t2 t1;t2 library(dplyr) t2[1,] t1[1,] chrs <- charmatch(t2$NameBank, t1$Name2) chrs cbind( t1[chrs[!is.na(chrs)],], t2[which(!is.na(chrs)),] ) t1$Type2 <- NA_character_ t1 library(stringr) for( row in seq_len( nrow( t2 ) ) ) { t1$Type2[ substr( t1$Name2, 0, nchar( t2$NameBank[row] ) ) == t2$NameBank[row] ] <- t2$TypeBank[row] }
lama_write <- function(x, yaml_path) { err_handler <- composerr("Error while calling 'lama_write'") tryCatch( yaml::write_yaml(dictionary_to_yaml(x), yaml_path), error = function(e) err_handler(e), warning = function(w) err_handler(w) ) }
kc_s2 = function(doy, RG, Ta, a, b){ b2 <- raster("B2.tif") b3 <- raster("B3.tif") b4 <- raster("B4.tif") b8 <- raster("B8.tif") mask <- readOGR("mask.shp") b2_crop <- crop(b2, extent(mask)) b2_mascara <- mask(b2_crop, mask) b3_crop <- crop(b3, extent(mask)) b3_mascara <- mask(b3_crop, mask) b4_crop <- crop(b4, extent(mask)) b4_mascara <- mask(b4_crop, mask) b8_crop <- crop(b8, extent(mask)) b8_mascara <- mask(b8_crop, mask) b2_mascara <- b2_mascara/10000 b3_mascara <- b3_mascara/10000 b4_mascara <- b4_mascara/10000 b8_mascara <- b8_mascara/10000 Alb_Top = b2_mascara*0.32+b3_mascara*0.26+b4_mascara*0.25+b8_mascara*0.17 Alb_sur = 0.6054*Alb_Top + 0.0797 Alb_24 = 1.0223*Alb_sur + 0.0149 writeRaster(Alb_24, "Alb_24", format = "GTiff", overwrite=TRUE) NDVI =(b8_mascara-b4_mascara)/(b8_mascara+b4_mascara) writeRaster(NDVI, "NDVI", format = "GTiff", overwrite=TRUE) lati <- long <- b2_mascara xy <- coordinates(b2_mascara) long[] <- xy[, 1] long <- crop(long, extent(mask)) lati[] <- xy[, 2] lati <- crop(lati, extent(mask)) map1 <- (long/long)*((2*pi)/365)*(doy-1) Et <- (0.000075+0.001868*cos(map1)-0.032077*sin(map1)-0.014615*cos(2*map1)-0.04089*sin(2*map1)) LAT <- (13+(4*long/60)+(Et/60)) Dec <- 0.006918-0.399912*cos(map1)+0.070257*sin(map1)+0.006758*cos(2*map1)+0.000907*sin(2*map1)-0.002697*cos(3*map1)+0.00148*sin(3*map1) W <- 15*(LAT-12)*(pi/180) cos_zwn <- sin(lati*pi/180)*sin(Dec)+cos(lati*pi/180)*cos(Dec)*cos(W) E0 <- (1.00011+0.034221*cos(map1)+0.00128*sin(map1)+0.000719*cos(2*map1)+0.000077*sin(2*map1)) Ws = acos(((-1)*tan(lati*pi/180))*tan(Dec)) R =(Ws*sin(lati*pi/180)*sin(Dec))+(cos(lati*pi/180)*cos(Dec)*sin(Ws)) RsTOP_aux =(1367/pi)*E0*R RsTOP = resample(RsTOP_aux, b2_mascara, method="bilinear") Transm =(RG*11.6)/RsTOP Rn_coeff =6.99*Ta-39.99 Rn =((1-Alb_24)*(RG*11.6))-(Rn_coeff*Transm) Rn_MJ =Rn/11.6 writeRaster(Rn_MJ, "Rn_MJ", format = "GTiff", overwrite=TRUE) slope =(4098*(0.6108*exp((17.27*(Ta))/((Ta)+237.3)))/((Ta)+237.3)^2) LEeq = (slope*Rn)/(slope+0.066) rm(b2, b3, b4, b8, b2_mascara, b3_mascara, b4_mascara, b8_mascara, slope, Rn_coeff, RsTOP, RsTOP_aux, R, Ws, E0, cos_zwn, W, Dec, LAT, Et, map1, lati, long) RR =Alb_24*RG Emiss_atm = 0.9364*(((-1)*log(Transm))^0.1135) Emiss_atm[Emiss_atm > 1] <- 1 RLdown_wm2 =(Emiss_atm*5.67*(10^(-8))*((Ta +273.15)^4)) RL_down =RLdown_wm2/11.6 RL_up =(RG-RR+RL_down-Rn_MJ) Esurf_r1 <- NDVI Esurf_r1[NDVI < 0] <- 1 Esurf_r1[NDVI >= 0] <- NA Esurf_r2 <- 1.0035+0.0589*log(NDVI) Esurf <- merge(Esurf_r1, Esurf_r2) TS24 =((RL_up*11.6)/((Esurf*5.67)*(10^(-8))))^(0.25) TS24[TS24 < 273.15] = NA writeRaster(TS24, "LST", format = "GTiff", overwrite=TRUE) NDVI[NDVI <= 0] = NA kc=exp((a)+(b*((TS24-273.15)/(Alb_24*NDVI)))) writeRaster(kc, "kc", format = "GTiff", overwrite=TRUE) } evapo_s2 = function(doy, RG, Ta, ET0, a, b){ b2 <- raster("B2.tif") b3 <- raster("B3.tif") b4 <- raster("B4.tif") b8 <- raster("B8.tif") mask <- readOGR("mask.shp") b2_crop <- crop(b2, extent(mask)) b2_mascara <- mask(b2_crop, mask) b3_crop <- crop(b3, extent(mask)) b3_mascara <- mask(b3_crop, mask) b4_crop <- crop(b4, extent(mask)) b4_mascara <- mask(b4_crop, mask) b8_crop <- crop(b8, extent(mask)) b8_mascara <- mask(b8_crop, mask) b2_mascara <- b2_mascara/10000 b3_mascara <- b3_mascara/10000 b4_mascara <- b4_mascara/10000 b8_mascara <- b8_mascara/10000 Alb_Top = b2_mascara*0.32+b3_mascara*0.26+b4_mascara*0.25+b8_mascara*0.17 Alb_sur = 0.6054*Alb_Top + 0.0797 Alb_24 = 1.0223*Alb_sur + 0.0149 writeRaster(Alb_24, "Alb_24", format = "GTiff", overwrite=TRUE) NDVI =(b8_mascara-b4_mascara)/(b8_mascara+b4_mascara) writeRaster(NDVI, "NDVI", format = "GTiff", overwrite=TRUE) lati <- long <- b2_mascara xy <- coordinates(b2_mascara) long[] <- xy[, 1] long <- crop(long, extent(mask)) lati[] <- xy[, 2] lati <- crop(lati, extent(mask)) map1 <- (long/long)*((2*pi)/365)*(doy-1) Et <- (0.000075+0.001868*cos(map1)-0.032077*sin(map1)-0.014615*cos(2*map1)-0.04089*sin(2*map1)) LAT <- (13+(4*long/60)+(Et/60)) Dec <- 0.006918-0.399912*cos(map1)+0.070257*sin(map1)+0.006758*cos(2*map1)+0.000907*sin(2*map1)-0.002697*cos(3*map1)+0.00148*sin(3*map1) W <- 15*(LAT-12)*(pi/180) cos_zwn <- sin(lati*pi/180)*sin(Dec)+cos(lati*pi/180)*cos(Dec)*cos(W) E0 <- (1.00011+0.034221*cos(map1)+0.00128*sin(map1)+0.000719*cos(2*map1)+0.000077*sin(2*map1)) Ws = acos(((-1)*tan(lati*pi/180))*tan(Dec)) R =(Ws*sin(lati*pi/180)*sin(Dec))+(cos(lati*pi/180)*cos(Dec)*sin(Ws)) RsTOP_aux =(1367/pi)*E0*R RsTOP = resample(RsTOP_aux, b2_mascara, method="bilinear") Transm =(RG*11.6)/RsTOP Rn_coeff =6.99*Ta-39.99 Rn =((1-Alb_24)*(RG*11.6))-(Rn_coeff*Transm) Rn_MJ =Rn/11.6 writeRaster(Rn_MJ, "Rn_MJ", format = "GTiff", overwrite=TRUE) slope =(4098*(0.6108*exp((17.27*(Ta))/((Ta)+237.3)))/((Ta)+237.3)^2) LEeq = (slope*Rn)/(slope+0.066) rm(b2, b3, b4, b8, b2_mascara, b3_mascara, b4_mascara, b8_mascara, slope, Rn_coeff, RsTOP, RsTOP_aux, R, Ws, E0, cos_zwn, W, Dec, LAT, Et, map1, lati, long) RR =Alb_24*RG Emiss_atm = 0.9364*(((-1)*log(Transm))^0.1135) Emiss_atm[Emiss_atm > 1] <- 1 RLdown_wm2 =(Emiss_atm*5.67*(10^(-8))*((Ta +273.15)^4)) RL_down =RLdown_wm2/11.6 RL_up =(RG-RR+RL_down-Rn_MJ) Esurf_r1 <- NDVI Esurf_r1[NDVI < 0] <- 1 Esurf_r1[NDVI >= 0] <- NA Esurf_r2 <- 1.0035+0.0589*log(NDVI) Esurf <- merge(Esurf_r1, Esurf_r2) TS24 =((RL_up*11.6)/((Esurf*5.67)*(10^(-8))))^(0.25) TS24[TS24 < 273.15] = NA writeRaster(TS24, "LST", format = "GTiff", overwrite=TRUE) NDVI[NDVI <= 0] = NA kc=exp((a)+(b*((TS24-273.15)/(Alb_24*NDVI)))) writeRaster(kc, "kc", format = "GTiff", overwrite=TRUE) ET=kc*ET0 writeRaster(ET, "evapo", format = "GTiff", overwrite=TRUE) } radiation_s2 = function(doy, RG, Ta, ET0, a, b){ b2 <- raster("B2.tif") b3 <- raster("B3.tif") b4 <- raster("B4.tif") b8 <- raster("B8.tif") mask <- readOGR("mask.shp") b2_crop <- crop(b2, extent(mask)) b2_mascara <- mask(b2_crop, mask) b3_crop <- crop(b3, extent(mask)) b3_mascara <- mask(b3_crop, mask) b4_crop <- crop(b4, extent(mask)) b4_mascara <- mask(b4_crop, mask) b8_crop <- crop(b8, extent(mask)) b8_mascara <- mask(b8_crop, mask) b2_mascara <- b2_mascara/10000 b3_mascara <- b3_mascara/10000 b4_mascara <- b4_mascara/10000 b8_mascara <- b8_mascara/10000 Alb_Top = b2_mascara*0.32+b3_mascara*0.26+b4_mascara*0.25+b8_mascara*0.17 Alb_sur = 0.6054*Alb_Top + 0.0797 Alb_24 = 1.0223*Alb_sur + 0.0149 writeRaster(Alb_24, "Alb_24", format = "GTiff", overwrite=TRUE) NDVI =(b8_mascara-b4_mascara)/(b8_mascara+b4_mascara) writeRaster(NDVI, "NDVI", format = "GTiff", overwrite=TRUE) lati <- long <- b2_mascara xy <- coordinates(b2_mascara) long[] <- xy[, 1] long <- crop(long, extent(mask)) lati[] <- xy[, 2] lati <- crop(lati, extent(mask)) map1 <- (long/long)*((2*pi)/365)*(doy-1) Et <- (0.000075+0.001868*cos(map1)-0.032077*sin(map1)-0.014615*cos(2*map1)-0.04089*sin(2*map1)) LAT <- (13+(4*long/60)+(Et/60)) Dec <- 0.006918-0.399912*cos(map1)+0.070257*sin(map1)+0.006758*cos(2*map1)+0.000907*sin(2*map1)-0.002697*cos(3*map1)+0.00148*sin(3*map1) W <- 15*(LAT-12)*(pi/180) cos_zwn <- sin(lati*pi/180)*sin(Dec)+cos(lati*pi/180)*cos(Dec)*cos(W) E0 <- (1.00011+0.034221*cos(map1)+0.00128*sin(map1)+0.000719*cos(2*map1)+0.000077*sin(2*map1)) Ws = acos(((-1)*tan(lati*pi/180))*tan(Dec)) R =(Ws*sin(lati*pi/180)*sin(Dec))+(cos(lati*pi/180)*cos(Dec)*sin(Ws)) RsTOP_aux =(1367/pi)*E0*R RsTOP = resample(RsTOP_aux, b2_mascara, method="bilinear") Transm =(RG*11.6)/RsTOP Rn_coeff =6.99*Ta-39.99 Rn =((1-Alb_24)*(RG*11.6))-(Rn_coeff*Transm) Rn_MJ =Rn/11.6 writeRaster(Rn_MJ, "Rn_MJ", format = "GTiff", overwrite=TRUE) slope =(4098*(0.6108*exp((17.27*(Ta))/((Ta)+237.3)))/((Ta)+237.3)^2) LEeq = (slope*Rn)/(slope+0.066) rm(b2, b3, b4, b8, b2_mascara, b3_mascara, b4_mascara, b8_mascara, slope, Rn_coeff, RsTOP, RsTOP_aux, R, Ws, E0, cos_zwn, W, Dec, LAT, Et, map1, lati, long) RR =Alb_24*RG Emiss_atm = 0.9364*(((-1)*log(Transm))^0.1135) Emiss_atm[Emiss_atm > 1] <- 1 RLdown_wm2 =(Emiss_atm*5.67*(10^(-8))*((Ta +273.15)^4)) RL_down =RLdown_wm2/11.6 RL_up =(RG-RR+RL_down-Rn_MJ) Esurf_r1 <- NDVI Esurf_r1[NDVI < 0] <- 1 Esurf_r1[NDVI >= 0] <- NA Esurf_r2 <- 1.0035+0.0589*log(NDVI) Esurf <- merge(Esurf_r1, Esurf_r2) TS24 =((RL_up*11.6)/((Esurf*5.67)*(10^(-8))))^(0.25) TS24[TS24 < 273.15] = NA writeRaster(TS24, "LST", format = "GTiff", overwrite=TRUE) NDVI[NDVI <= 0] = NA kc=exp((a)+(b*((TS24-273.15)/(Alb_24*NDVI)))) ET=kc*ET0 LE_MJ =ET*2.45 writeRaster(LE_MJ, "LE_MJ", format = "GTiff", overwrite=TRUE) G_Rn =3.98*exp(-25.47*Alb_24) G_MJ =G_Rn*Rn_MJ writeRaster(G_MJ, "G_MJ", format = "GTiff", overwrite=TRUE) H_MJ =Rn_MJ-LE_MJ-G_MJ writeRaster(H_MJ, "H_MJ", format = "GTiff", overwrite=TRUE) } albedo_s2 = function(){ b2 <- raster("B2.tif") b3 <- raster("B3.tif") b4 <- raster("B4.tif") b8 <- raster("B8.tif") mask <- readOGR("mask.shp") b2_crop <- crop(b2, extent(mask)) b2_mascara <- mask(b2_crop, mask) b3_crop <- crop(b3, extent(mask)) b3_mascara <- mask(b3_crop, mask) b4_crop <- crop(b4, extent(mask)) b4_mascara <- mask(b4_crop, mask) b8_crop <- crop(b8, extent(mask)) b8_mascara <- mask(b8_crop, mask) b2_mascara <- b2_mascara/10000 b3_mascara <- b3_mascara/10000 b4_mascara <- b4_mascara/10000 b8_mascara <- b8_mascara/10000 Alb_Top = b2_mascara*0.32+b3_mascara*0.26+b4_mascara*0.25+b8_mascara*0.17 Alb_sur = 0.6054*Alb_Top + 0.0797 Alb_24 = 1.0223*Alb_sur + 0.0149 writeRaster(Alb_24, "Alb_24", format = "GTiff", overwrite=TRUE) }
load("claytonRho.rda") load("gumbelRho.rda") load("plackettTau.rda") load("galambos.rda") load("huslerReiss.rda") load("tev.rda") save(.claytonRhoNeg, .claytonRhoPos, .gumbelRho, .plackettTau, .galambosTau, .galambosRho, .huslerReissTau, .huslerReissRho, .tevTau, .tevRho, file = "sysdata.rda", compress=TRUE)
library(BayesianFROC) data.example <- list( c=c(3,2,1), h=c(97,32,31), f=c(1,14,74), NL=259, NI=57, C=3) data.example <- give_name_srsc_data(data.example) viewdata(data.example) draw.CFP.CTP.from.dataList(data.example) fit <- fit_Bayesian_FROC(data.example,cha = 3) fit.stanfit <- as(fit, "stanfit") summary(fit.stanfit) print(fit.stanfit) rstan::traceplot(fit.stanfit,par=c("A")) rstan::stan_dens(fit.stanfit,par=c("A")) check_divergences(fit.stanfit) check_hmc_diagnostics(fit.stanfit) pairs(fit.stanfit,pars=c("A","lp__","m")) get_posterior_mean(fit.stanfit) check_rhat(fit.stanfit) rstan::stan_hist(fit.stanfit) rstan::stan_rhat(fit.stanfit) message(" ", crayon::bgBlack$cyan$bold$italic$underline("data.example <- list( ")," ", crayon::bgBlack$cyan$bold$italic$underline(" c=c(3,2,1), ", crayon::bgBlack$cyan$bold$italic$underline("h=c(97,32,31), ", crayon::bgBlack$cyan$bold$italic$underline("f=c(1,14,74), ", crayon::bgBlack$cyan$bold$italic$underline(" NL=259, ", crayon::bgBlack$cyan$bold$italic$underline(" NI=57, ", crayon::bgBlack$cyan$bold$italic$underline(" C=3) ", crayon::bgBlack$cyan$bold$italic$underline("data.example <- give_name_srsc_data(data.example)")," ", crayon::bgBlack$cyan$bold$italic$underline("viewdata(data.example)")," ", crayon::bgBlack$cyan$bold$italic$underline("draw.CFP.CTP.from.dataList(data.example)")," ", crayon::bgBlack$cyan$bold$italic$underline("fit <- fit_Bayesian_FROC(data.example,cha = 3)")," ", crayon::bgBlack$cyan$bold$italic$underline("fit.stanfit <- as(fit, \"stanfit\")")," ", crayon::bgBlack$cyan$bold$italic$underline("summary(fit.stanfit)")," ", crayon::bgBlack$cyan$bold$italic$underline("print(fit.stanfit)")," ", crayon::bgBlack$cyan$bold$italic$underline("rstan::traceplot(fit.stanfit,par=c(\"A\"))")," ", crayon::bgBlack$cyan$bold$italic$underline("rstan::stan_dens(fit.stanfit,par=c(\"A\"))")," ", crayon::bgBlack$cyan$bold$italic$underline("check_divergences(fit.stanfit)")," ", crayon::bgBlack$cyan$bold$italic$underline("check_hmc_diagnostics(fit.stanfit)")," ", crayon::bgBlack$cyan$bold$italic$underline("pairs(fit.stanfit,pars=c(\"A\",\"lp__\",\"m\"))")," ", crayon::bgBlack$cyan$bold$italic$underline("get_posterior_mean(fit.stanfit)")," ", crayon::bgBlack$cyan$bold$italic$underline("check_rhat(fit.stanfit)")," ", crayon::bgBlack$cyan$bold$italic$underline("rstan::stan_hist(fit.stanfit)")," ", crayon::bgBlack$cyan$bold$italic$underline("rstan::stan_rhat(fit.stanfit)")," ")
BY <- function(x, ...) UseMethod("BY") BY.default <- function(x, g, FUN, ..., use.g.names = TRUE, sort = TRUE, expand.wide = FALSE, parallel = FALSE, mc.cores = 1L, return = c("same", "vector", "list")) { if(!is.atomic(x)) stop("x needs to be an atomic vector") if(is.matrix(x) && !inherits(x, "matrix")) return(UseMethod("BY", unclass(x))) if(!(is.function(FUN) || is.character(FUN))) stop("FUN needs to be a function") aplyfun <- if(parallel) function(...) mclapply(..., mc.cores = mc.cores) else lapply simplify <- switch(return[1L], same = 1L, vector = 2L, list = 3L, stop("BY.default only supports same, vector and list output!")) g <- GRP(g, return.groups = use.g.names, sort = sort, call = FALSE) res <- aplyfun(gsplit(x, g), FUN, ...) if(use.g.names) names(res) <- GRPnames(g, FALSE) if(simplify == 3L) return(res) if(expand.wide) return(do.call(rbind, res)) if(use.g.names) { res <- unlist(res, recursive = FALSE) if(simplify == 1L) return(copyMostAttributes(res, x)) } else { if(simplify == 1L) { res <- unlist(res, FALSE, FALSE) if(length(res) == length(x) && typeof(res) == typeof(x) && isTRUE(g$ordered[2L])) return(duplAttributes(res, x)) return(copyMostAttributes(res, x)) } ll <- length(res) nr1 <- names(res[[1L]]) res <- unlist(res, FALSE, FALSE) if(length(res) != ll && length(nr1) && length(res) == length(nr1)*ll) names(res) <- rep(nr1, ll) } res } copysplaplfun <- function(x, g, FUN, ...) copyMostAttributes(unlist(lapply(gsplit(x, g), FUN, ...), FALSE, FALSE), x) splaplfun <- function(x, g, FUN, ...) unlist(lapply(gsplit(x, g), FUN, ...), FALSE, FALSE) BY.data.frame <- function(x, g, FUN, ..., use.g.names = TRUE, sort = TRUE, expand.wide = FALSE, parallel = FALSE, mc.cores = 1L, return = c("same", "matrix", "data.frame", "list")) { if(!is.list(x)) stop("x needs to be a list") if(!(is.function(FUN) || is.character(FUN))) stop("FUN needs to be a function") aplyfun <- if(parallel) function(...) mclapply(..., mc.cores = mc.cores) else lapply return <- switch(return[1L], same = 1L, matrix = 3L, data.frame = 2L, list = 0L, stop("Unknown return option!")) g <- GRP(g, return.groups = use.g.names, sort = sort, call = FALSE) if(return != 0L) { ax <- attributes(x) if(expand.wide) { if(return < 3L) { splitfun <- function(y) .Call(Cpp_mctl, do.call(rbind, lapply(gsplit(y, g), FUN, ...)), TRUE, 0L) res <- unlist(aplyfun(x, splitfun), recursive = FALSE, use.names = TRUE) if(return == 1L) { isDTl <- inherits(x, "data.table") ax[["names"]] <- names(res) ax[["row.names"]] <- if(use.g.names && !inherits(x, "data.table") && length(gn <- GRPnames(g))) gn else .set_row_names(length(res[[1L]])) } else { isDTl <- FALSE ax <- list(names = names(res), row.names = if(use.g.names && length(gn <- GRPnames(g))) gn else .set_row_names(length(res[[1L]])), class = "data.frame") } } else { attributes(x) <- NULL splitfun <- function(y) do.call(rbind, lapply(gsplit(y, g), FUN, ...)) res <- do.call(cbind, aplyfun(x, splitfun)) cn <- dimnames(res)[[2L]] namr <- rep(ax[["names"]], each = ncol(res)/length(x)) dimnames(res) <- list(if(use.g.names) GRPnames(g) else NULL, if(length(cn)) paste(namr, cn, sep = ".") else namr) return(res) } } else { matl <- return == 3L isDTl <- !matl && return != 2L && inherits(x, "data.table") attributes(x) <- NULL if(return == 2L) ax <- list(names = ax[["names"]], row.names = ax[["row.names"]], class = "data.frame") if(use.g.names && !isDTl && length(gn <- GRPnames(g))) { res <- vector("list", length(x)) res1 <- lapply(gsplit(x[[1L]], g), FUN, ...) names(res1) <- gn res[[1L]] <- unlist(res1, FALSE, TRUE) namres1 <- names(res[[1L]]) if(matl) dn <- list(namres1, ax[["names"]]) else if(length(namres1)) ax[["row.names"]] <- namres1 else if(length(res[[1L]]) != length(x[[1L]])) ax[["row.names"]] <- .set_row_names(length(res[[1L]])) if(length(namres1)) names(res[[1L]]) <- NULL if(matl) { if(length(res) > 1L) res[-1L] <- aplyfun(x[-1L], splaplfun, g, FUN, ...) res <- do.call(cbind, res) dimnames(res) <- dn return(res) } else { copyMostAttributes(res[[1L]], x[[1L]]) if(length(res) > 1L) res[-1L] <- aplyfun(x[-1L], copysplaplfun, g, FUN, ...) } } else { if(matl) { res <- do.call(cbind, aplyfun(x, splaplfun, g, FUN, ...)) sl <- isTRUE(g$ordered[2L]) && nrow(res) == length(x[[1L]]) if(sl) rn1 <- ax[["row.names"]][1L] dimnames(res) <- list(if(sl && length(rn1) && is.character(rn1) && rn1 != "1") ax[["row.names"]] else NULL, ax[["names"]]) return(res) } else { res <- aplyfun(x, copysplaplfun, g, FUN, ...) if(length(res[[1L]]) != length(x[[1L]]) || !isTRUE(g$ordered[2L])) ax[["row.names"]] <- .set_row_names(length(res[[1L]])) } } } return(condalcSA(res, ax, isDTl)) } if(expand.wide) return(aplyfun(x, function(y) do.call(rbind, lapply(gsplit(y, g, use.g.names), FUN, ...)))) return(aplyfun(x, function(y) lapply(gsplit(y, g, use.g.names), FUN, ...))) } BY.list <- function(x, ...) BY.data.frame(x, ...) BY.matrix <- function(x, g, FUN, ..., use.g.names = TRUE, sort = TRUE, expand.wide = FALSE, parallel = FALSE, mc.cores = 1L, return = c("same", "matrix", "data.frame", "list")) { if(!is.matrix(x)) stop("x needs to be a matrix") if(!(is.function(FUN) || is.character(FUN))) stop("FUN needs to be a function") aplyfun <- if(parallel) function(...) parallel::mclapply(..., mc.cores = mc.cores) else lapply return <- switch(return[1L], same = 3L, matrix = 2L, data.frame = 1L, list = 0L, stop("Unknown return option!")) g <- GRP(g, return.groups = use.g.names, sort = sort, call = FALSE) if(return != 0L) { if(expand.wide) { if(return == 1L) { splitfun <- function(y) .Call(Cpp_mctl, do.call(rbind, lapply(gsplit(y, g), FUN, ...)), TRUE, 0L) res <- unlist(aplyfun(.Call(Cpp_mctl, x, TRUE, 0L), splitfun), recursive = FALSE, use.names = TRUE) ax <- list(names = names(res), row.names = if(use.g.names && length(gn <- GRPnames(g))) gn else .set_row_names(length(res[[1L]])), class = "data.frame") } else { splitfun2 <- function(y) do.call(rbind, lapply(gsplit(y, g), FUN, ...)) res <- do.call(cbind, aplyfun(.Call(Cpp_mctl, x, FALSE, 0L), splitfun2)) cn <- dimnames(res)[[2L]] namr <- rep(dimnames(x)[[2L]], each = ncol(res)/ncol(x)) dn <- list(if(use.g.names) GRPnames(g) else NULL, if(length(cn)) paste(namr, cn, sep = ".") else namr) if(return == 2L) return(`dimnames<-`(res, dn)) ax <- attributes(x) ax[["dim"]] <- dim(res) ax[["dimnames"]] <- dn } } else { if(use.g.names && length(gn <- GRPnames(g))) { res <- vector("list", ncol(x)) res1 <- lapply(gsplit(`names<-`(x[, 1L], NULL), g), FUN, ...) names(res1) <- gn res[[1L]] <- unlist(res1, FALSE, TRUE) namres1 <- names(res[[1L]]) if(length(namres1)) names(res[[1L]]) <- NULL if(length(res) > 1L) res[-1L] <- aplyfun(.Call(Cpp_mctl, x[, -1L, drop = FALSE], FALSE, 0L), splaplfun, g, FUN, ...) if(return > 1L) { res <- do.call(cbind, res) dn <- list(namres1, dimnames(x)[[2L]]) if(return == 2L) return(`dimnames<-`(res, dn)) ax <- attributes(x) ax[["dim"]] <- dim(res) ax[["dimnames"]] <- dn } else { ax <- list(names = dimnames(x)[[2L]], row.names = if(length(namres1)) namres1 else .set_row_names(length(res[[1L]])), class = "data.frame") } } else { res <- aplyfun(.Call(Cpp_mctl, x, TRUE, 0L), splaplfun, g, FUN, ...) if(return > 1L) { res <- do.call(cbind, res) if(return == 2L) return(res) ax <- attributes(x) if(length(dimnames(x)[[1L]]) && !(isTRUE(g$ordered[2L]) && nrow(res) == nrow(x))) { ax[["dimnames"]][1L] <- list(NULL) ax[["dim"]] <- dim(res) } } else { lr1 <- length(res[[1L]]) ax <- list(names = names(res), row.names = if(lr1 == nrow(x) && length(rn <- dimnames(x)[[1L]]) && isTRUE(g$ordered[2L])) rn else .set_row_names(lr1), class = "data.frame") } } } return(setAttributes(res, ax)) } if(expand.wide) return(aplyfun(.Call(Cpp_mctl, x, TRUE, 0L), function(y) do.call(rbind, lapply(gsplit(y, g, use.g.names), FUN, ...)))) return(aplyfun(.Call(Cpp_mctl, x, TRUE, 0L), function(y) lapply(gsplit(y, g, use.g.names), FUN, ...))) } BY.grouped_df <- function(x, FUN, ..., keep.group_vars = TRUE, use.g.names = FALSE) { g <- GRP.grouped_df(x, call = FALSE) gn <- which(attr(x, "names") %in% g[[5L]]) res <- BY.data.frame(if(length(gn)) fcolsubset(x, -gn) else x, g, FUN, ..., use.g.names = use.g.names) if(!is.data.frame(res)) return(res) nrr <- fnrow2(res) same_size <- nrr == fnrow2(x) if(!keep.group_vars) return(if(same_size && isTRUE(g$ordered[2L])) res else fungroup(res)) if(!((same_size && isTRUE(g$ordered[2L])) || nrr == g[[1L]])) return(fungroup(res)) if(same_size) { ar <- attributes(res) ar[["names"]] <- c(g[[5L]], ar[["names"]]) return(condalcSA(c(.subset(x, gn), res), ar, any(ar$class == "data.table"))) } ar <- attributes(fungroup2(res, oldClass(res))) attributes(res) <- NULL ar[["names"]] <- c(g[[5L]], ar[["names"]]) condalcSA(c(g[[4L]], res), ar, any(ar$class == "data.table")) }
rue_no_split <- function(x_train, x_test, num_trees = 500L, response_name = "label") { rue_args <- classifier_args( data = x_train, num_trees = num_trees, response_name = response_name ) rue_model <- do.call(what = ranger::ranger, args = rue_args) rue_train <- se_predicted(rue_model, x_train, is_training = TRUE) rue_test <- se_predicted(rue_model, x_test, is_training = FALSE) return(list(test = rue_test, train = rue_train)) } rue_pt <- function(x_train, x_test, R = 1e3, sub_ratio = 1 / 2, num_trees = 500L, response_name = "label") { scorer <- function(x_train, x_test) { rue_no_split( x_train = x_train, x_test = x_test, response_name = response_name, num_trees = num_trees ) } result <- exchangeable_null(x_train, x_test, scorer, R = R, is_oob = TRUE) return(result) }
expected <- eval(parse(text="102:112")); test(id=0, code={ argv <- eval(parse(text="list(102L, 112L, 1L)")); do.call(`seq.int`, argv); }, o=expected);
iorder <- function(obj = NULL, var_name = NULL) { styler::cache_deactivate(verbose = FALSE) recoding_styles <- c( "factor" = "factor", "fct_relevel (forcats)" = "forcats" ) selected_recoding_style <- "factor" if (exists("fct_relevel")) { selected_recoding_style <- "forcats" } run_as_addin <- ifunc_run_as_addin() if (is.null(obj)) { if (ifunc_run_as_addin()) { context <- rstudioapi::getActiveDocumentContext() obj <- context$selection[[1]]$text if (obj == "") obj <- NULL } obj_name <- NULL var_name <- NULL } if (!is.null(obj)) { if (is.character(obj) && length(obj) == 1) { obj_name <- obj try( { obj <- get(obj_name, envir = .GlobalEnv) }, silent = TRUE ) } else { obj_name <- deparse(substitute(obj)) } if (grepl("\\$", obj_name)) { s <- strsplit(obj_name, "\\$") obj_name <- gsub("^\\s*", "", s[[1]][1]) var_name <- gsub("\\s*$", "", s[[1]][2]) var_name <- gsub("`", "", var_name) obj <- get(obj_name, envir = .GlobalEnv) } if (inherits(obj, "tbl_df") || inherits(obj, "data.table")) obj <- as.data.frame(obj) if (!is.data.frame(obj) && !is.vector(obj) && !is.factor(obj)) { stop(sQuote(paste0(obj_name, " must be a vector, a factor or a data frame."))) } if (is.data.frame(obj)) { is_char <- FALSE is_null <- FALSE try( { if (is.character(var_name)) is_char <- TRUE if (is.null(var_name)) is_null <- TRUE }, silent = TRUE ) if (!is_char && !is_null) { var_name <- deparse(substitute(var_name)) } if (!is.null(var_name) && !(var_name %in% names(obj))) { stop(sQuote(paste0(var_name, " must be a column of ", obj_name, "."))) } } } jquery.ui.file <- system.file(file.path("shiny", "js", "jquery-ui.js"), package = "questionr") jquery.ui.content <- paste(readLines(jquery.ui.file), collapse = "\n") js.file <- system.file(file.path("shiny", "js", "iorder.js"), package = "questionr") js.content <- paste(readLines(js.file), collapse = "\n") ui <- miniUI::miniPage( tags$head( tags$script(HTML(jquery.ui.content)), tags$script(HTML(js.content)), tags$style(ifunc_get_css()) ), miniUI::gadgetTitleBar(gettext("Interactive levels ordering", domain = "R-questionr")), miniUI::miniTabstripPanel( miniUI::miniTabPanel( gettext("Variable and settings", domain = "R-questionr"), icon = icon("sliders-h"), miniUI::miniContentPanel( ifunc_show_alert(run_as_addin), tags$h4(icon("columns"), gettext("Variable to be recoded", domain = "R-questionr")), wellPanel( fluidRow( column( 6, selectizeInput( "obj_name", gettext("Data frame or vector to recode from", domain = "R-questionr"), choices = Filter( function(x) { inherits(get(x, envir = .GlobalEnv), "data.frame") || is.vector(get(x, envir = .GlobalEnv)) || is.factor(get(x, envir = .GlobalEnv)) }, ls(.GlobalEnv) ), selected = obj_name, multiple = FALSE ) ), column(6, uiOutput("varInput")) ) ), uiOutput("nblevelsAlert"), tags$h4(icon("sliders-h"), gettext("Recoding settings", domain = "R-questionr")), wellPanel( fluidRow( column(4, uiOutput("newvarInput")), column(4, selectInput("recstyle", gettext("Recoding style", domain = "R-questionr"), recoding_styles, selected = selected_recoding_style )), ) ), uiOutput("alreadyexistsAlert"), uiOutput("loadedforcatsAlert") ) ), miniUI::miniTabPanel( gettext("Ordering", domain = "R-questionr"), icon = icon("arrows-alt"), miniUI::miniContentPanel( wellPanel(htmlOutput("levelsInput")) ) ), miniUI::miniTabPanel( gettext("Code and result", domain = "R-questionr"), icon = icon("code"), miniUI::miniContentPanel( tags$h4(icon("code"), gettext("Code", domain = "R-questionr")), htmlOutput("codeOut"), tags$h4(icon("table"), gettext("Check", domain = "R-questionr")), p( class = "header", gettext("Old variable as rows, new variable as columns.", domain = "R-questionr") ), tableOutput("tableOut") ) ) ) ) server <- function(input, output) { robj <- reactive({ obj <- get(req(input$obj_name), envir = .GlobalEnv) if (inherits(obj, "tbl_df") || inherits(obj, "data.table")) obj <- as.data.frame(obj) obj }) rvar <- reactive({ invisible(input$obj_name) if (is.data.frame(robj())) { return(robj()[[req(input$var_name)]]) } if (is.vector(robj()) || is.factor(robj())) { return(robj()) } return(NULL) }) src_var <- reactive({ if (is.data.frame(robj())) { result <- ifelse(grepl(" ", req(input$var_name)), sprintf('%s[,"%s"]', req(input$obj_name), req(input$var_name)), sprintf("%s$%s", req(input$obj_name), req(input$var_name)) ) } if (is.vector(robj()) || is.factor(robj())) { result <- req(input$obj_name) } return(result) }) output$levelsInput <- renderText({ out <- "<ol id='sortable' class='sortable'>" if (is.factor(rvar())) { levs <- levels(rvar()) } else { levs <- sort(stats::na.omit(unique(rvar()))) } for (l in levs) { out <- paste0( out, '<li><span class="glyphicon glyphicon-move"> </span>&nbsp; <span class="level">', htmltools::htmlEscape(l), "</span></li>" ) } out <- paste0(out, "</ol>") HTML(out) }) output$varInput <- renderUI({ if (is.data.frame(robj())) { selectizeInput("var_name", gettext("Data frame column to recode", domain = "R-questionr"), choices = names(robj()), selected = var_name, multiple = FALSE ) } }) output$newvarInput <- renderUI({ new_name <- NULL if (is.data.frame(robj())) { new_name <- req(input$var_name) } if (is.vector(robj()) || is.factor(robj())) { new_name <- req(input$obj_name) } if (!is.null(new_name)) { textInput( "newvar_name", gettext("New variable name", domain = "R-questionr"), new_name ) } }) output$nblevelsAlert <- renderUI({ if (length(unique(rvar())) > 50) { div( class = "alert alert-warning alert-dismissible", HTML('<button type="button" class="close" data-dismiss="alert" aria-label="Close"><span aria-hidden="true">&times;</span></button>'), HTML(gettext("<strong>Warning :</strong> The variable to be recoded has more than 50 levels.", domain = "R-questionr")) ) } }) output$loadedforcatsAlert <- renderUI({ if (input$recstyle == "forcats" && !exists("fct_recode")) { div( class = "alert alert-warning alert-dismissible", HTML('<button type="button" class="close" data-dismiss="alert" aria-label="Close"><span aria-hidden="true">&times;</span></button>'), HTML(gettext("<strong>Warning :</strong> The <tt>forcats</tt> package must be installed and loaded for the generated code to be run.", domain = "R-questionr")) ) } }) output$alreadyexistsAlert <- renderUI({ exists <- FALSE if (is.data.frame(robj()) && req(input$newvar_name) %in% names(robj())) { exists <- TRUE orig_name <- req(input$var_name) } if (is.vector(robj()) && exists(req(input$newvar_name), envir = .GlobalEnv)) { exists <- TRUE orig_name <- req(input$obj_name) } if (exists && req(input$newvar_name) != orig_name) { div( class = "alert alert-warning alert-dismissible", HTML('<button type="button" class="close" data-dismiss="alert" aria-label="Close"><span aria-hidden="true">&times;</span></button>'), HTML(gettext("<strong>Warning :</strong> This new variable already exists.", domain = "R-questionr")) ) } }) generate_code_factor <- function(dest_var) { newlevels <- paste0(utils::capture.output(dput(input$sortable)), collapse = "\n") sprintf("%s <- factor(%s,\n levels=%s)", dest_var, src_var(), newlevels) } generate_code_forcats <- function(dest_var) { out <- sprintf("%s <- %s %%>%%\n ", dest_var, src_var()) if (is.numeric(rvar())) { out <- paste0(out, "as.character() %>%\n ") } newlevels <- paste0(utils::capture.output(dput(input$sortable)), collapse = "\n") newlevels <- gsub("(^c\\(|\\)$)", "", newlevels) paste0(out, sprintf("fct_relevel(\n %s\n )", newlevels)) } generate_code <- function(check = FALSE) { if (is.data.frame(robj())) { dest_var <- ifelse(grepl(" ", req(input$newvar_name)), sprintf('%s[,"%s"]', req(input$obj_name), req(input$newvar_name)), sprintf("%s$%s", req(input$obj_name), req(input$newvar_name)) ) } if (is.vector(robj()) || is.factor(robj())) { dest_var <- req(input$newvar_name) } if (check) dest_var <- ".iorder_tmp" out <- gettextf(" if (src_var() != dest_var) out <- paste0(out, gettextf(" into %s", dest_var, domain = "R-questionr")) out <- paste0(out, "\n") recstyle <- input$recstyle if (recstyle == "factor") out <- paste0(out, generate_code_factor(dest_var)) if (recstyle == "forcats") out <- paste0(out, generate_code_forcats(dest_var)) return(out) } output$codeOut <- renderText({ if (is.data.frame(robj())) { header <- HTML(gettextf("<p class='header'>Reordering <tt>%s</tt> from <tt>%s</tt> of class <tt>%s</tt>.</p>", req(input$var_name), req(input$obj_name), class(rvar()), domain = "R-questionr" )) } if (is.vector(robj()) || is.factor(robj())) { header <- HTML(gettextf("<p class='header'>Reordering <tt>%s</tt> of class <tt>%s</tt>.</p>", req(input$obj_name), class(rvar()), domain = "R-questionr" )) } out <- generate_code() out <- styler::style_text(out) out <- paste(highr::hi_html(out), collapse = "\n") out <- paste0(header, "<pre class='r'><code class='r' id='codeout'>", out, "</code></pre>") out }) observeEvent(input$done, { out <- generate_code() out <- styler::style_text(out) out <- paste(out, collapse = "\n") if (run_as_addin) { rstudioapi::insertText(text = out) } else { out <- paste0( gettext("\n-------- Start recoding code --------\n\n", domain = "R-questionr"), out, gettext("\n--------- End recoding code ---------\n", domain = "R-questionr") ) cat(out) } stopApp() }) observeEvent(input$cancel, { invisible(stopApp()) }) output$tableOut <- renderTable( { code <- generate_code(check = TRUE) if (!exists("fct_relevel") && input$recstyle == "forcats") { return(NULL) } eval(parse(text = code), envir = .GlobalEnv) tab <- freq(get(".iorder_tmp")) tab }, rownames = TRUE ) } runGadget(ui, server, viewer = dialogViewer("iorder", width = 800, height = 700)) }
bigGP.init <- function(P = NULL, parallelRNGpkg = "rlecuyer", seed = 0){ if(.bigGP$P == 0) { cat("Initializing processes:") if(mpi.comm.size() == 0){ if(is.null(P)){ stop("bigGP.init: You must specify the number of worker processes to initiate (potentially each having multiple cores to allow for threading) and which should be equal to D(D+1)/2 for some integer D.") } else{ mpi.spawn.Rslaves(nslaves = P) } } else{ if(!is.null(P) && P != mpi.comm.size() - 1) warning(paste("bigGP.init: Number of worker processes requested, ", P, " does not match number of active MPI slave processes, ", mpi.comm.size()-1, "; ignoring 'P' argument.", sep = "")) } .bigGP.fill() if(sum(unlist(mpi.remote.exec(require, "bigGP", ret = TRUE))) != .bigGP$P) stop("bigGP.init: error in loading bigGP on slaves.") mpi.remote.exec(.Call("init_comms", as.integer(mpi.comm.c2f()), PACKAGE="bigGP"), ret = FALSE) out <- .Call("init_comms", as.integer(mpi.comm.c2f()), PACKAGE="bigGP") if(out != .bigGP$D) stop("bigGP.init: number of processes may not be consistent with the partition number, D.") mpi.bcast.cmd(.bigGP.fill()) cat("... Done.\n") cat("Using ", .bigGP$P, " processes with a partition size (D) of ", .bigGP$D, ".\n", sep = "") if(is.null(parallelRNGpkg) || parallelRNGpkg == ""){ warning("bigGP.init: Initializing process seeds sequentially; not guaranteed to give independent streams; please use rlecuyer or rsprng to be certain.") mpi.bcast.Robj2slave(seed) mpi.bcast.cmd(set.seed(mpi.comm.rank() + seed)) } else{ if(parallelRNGpkg == "rlecuyer"){ if(sum(unlist(mpi.remote.exec(requireNamespace, "rlecuyer", ret = TRUE))) != .bigGP$P) stop("bigGP.init: error in using rlecuyer on slaves.") RNGkind("L'Ecuyer-CMRG") mpi.setup.rngstream(iseed = seed) } else{ if(parallelRNGpkg == "rsprng"){ stop("bigGP.init: the rsprng package is no longer available on CRAN. Advanced users who install rsprng from the CRAN archived packages can uncomment the appropriate lines in bigGP.init() below this stop() call and rebuild the bigGP package.") } else { warning('bigGP.init: parallelRNGpkg ', parallelRNGpkg, ' not recognized. Initializing process seeds sequentially; not guaranteed to give independent streams; please use rlecuyer or rsprng to be certain.') mpi.bcast.Robj2slave(seed) mpi.bcast.cmd(set.seed(mpi.comm.rank() + seed)) } } } } invisible(NULL) } calcIJ <- function(D) { 'Finds row and column indices of subblock assigned to the process within the h=1th part of the overall matrix' rank <- mpi.comm.rank() if( rank < 1 || rank > D * (D + 1) / 2 ) warning(paste("calcIJ: Invalid rank", rank, ".", sep = " ")) I <- 0 J <- 0 Dd <- D rd <- rank - 1 while( rd >= Dd ) { J <- J + 1 rd <- rd - Dd Dd <- Dd - 1 } I <- J+rd return(list(I = as.integer(I), J = as.integer(J))) } calcD <- function(P){ ' Calculates the partition number D given number of processes P; i.e., D such that D*(D+1)/2 <= P ' D <- floor((sqrt(1+8*P) - 1) / 2) if(P != D*(D+1)/2) stop(paste("calcD: Number of slave processes, ", P, " is not equal to D(D+1)/2 for integer D.", sep = "")) return(as.integer(D)) } getDistributedVectorLength <- function(n, h = 1){ if(.bigGP$I == .bigGP$J) return(h * ceiling(n / (.bigGP$D * h))) else return(0) } getDistributedTriangularMatrixLength <- function(n, h = 1){ if(.bigGP$I == .bigGP$J){ return(h * (h+1) / 2 * (ceiling(n / (.bigGP$D * h)))^2) } else{ return(h^2 * (ceiling(n / (.bigGP$D * h)))^2) } } getDistributedRectangularMatrixLength <- function(n1, n2, h1 = 1, h2 = 1){ len <- h1 * h2 * ceiling(n1 / (.bigGP$D * h1)) * ceiling(n2 / (.bigGP$D * h2)) if(.bigGP$I == .bigGP$J) return(len) else return(2*len) } remoteGetIndices <- function(type = "vector", objName, objPos = ".GlobalEnv", n1, n2 = NULL, h1 = 1, h2 = 1) { if(!is.element(type, c("vector", "triangular", "symmetric", "rectangular"))) stop("remoteGetIndices: type must be one of 'vector', 'triangular', 'symmetric', 'rectangular'.") .n1 <- n1; .n2 <- n2; .h1 <- h1; .h2 <- h2 mpi.bcast.Robj2slave(.n1) mpi.bcast.Robj2slave(.n2) mpi.bcast.Robj2slave(.h1) mpi.bcast.Robj2slave(.h2) if(type == "vector") mpi.bcast.cmd(.tmp <- localGetVectorIndices(.n1, .h1)) if(type == "symmetric" || type == "triangular") mpi.bcast.cmd(.tmp <- localGetTriangularMatrixIndices(.n1, .h1)) if(type == "rectangular") mpi.bcast.cmd(.tmp <- localGetRectangularMatrixIndices(.n1, .n2, .h1, .h2)) mpi.remote.exec(localAssign, objName, ".tmp", objPos) remoteRm(.tmp) return(NULL) } localGetVectorIndices <- function(n, h = 1){ ' Finds the indices of the entries this processor owns of a vector' if(.bigGP$I == .bigGP$J){ bs <- (n + .bigGP$D * h - 1)%/%(.bigGP$D *h) ind <- matrix(nrow = bs*h, ncol = 1) for( JJ in 0:(h-1) ) { ind[JJ*bs+(0:(bs-1))+1, 1] <- JJ*bs*.bigGP$D + .bigGP$J*bs + (0:(bs-1)) } ind[ind >= n] <- 0 } else{ ind <- numeric(0) } return(ind + 1) } localGetTriangularMatrixIndices <- function(n, h = 1){ ' Finds the indices of the entries this processor owns of a lower-triangular matrix, as a two-column matrix' bs <- (n+.bigGP$D*h-1) %/% (.bigGP$D*h) if( .bigGP$I == .bigGP$J ) { ind <- matrix(nrow = bs*bs*h*(h+1)/2, ncol = 2) } else { ind <- matrix(nrow = bs*bs*h*h, ncol = 2) } start <- 1 for( JJ in 0:(h-1) ) { for( II in JJ:(h-1) ) { if( (II == JJ) || (.bigGP$I == .bigGP$J) ) { ind[start:(start+(bs*bs-1)), 1] <- II*bs*.bigGP$D+.bigGP$I*bs + rep(0:(bs-1), bs) ind[start:(start+(bs*bs-1)), 2] <- JJ*bs*.bigGP$D+.bigGP$J*bs + rep(0:(bs-1), each = bs) start <- start + bs*bs } else { ind[start:(start+(bs*bs-1)), 1] <- II*bs*.bigGP$D+.bigGP$I*bs + rep(0:(bs-1), bs) ind[start:(start+(bs*bs-1)), 2] <- JJ*bs*.bigGP$D+.bigGP$J*bs + rep(0:(bs-1), each = bs) start <- start + bs*bs ind[start:(start+(bs*bs-1)), 1] <- II*bs*.bigGP$D+.bigGP$J*bs + rep(0:(bs-1), bs) ind[start:(start+(bs*bs-1)), 2] <- JJ*bs*.bigGP$D+.bigGP$I*bs + rep(0:(bs-1), each = bs) start <- start + bs*bs } } } ind[ind >= n] <- 0 return(ind + 1) } localGetRectangularMatrixIndices <- function(n1, n2, h1 = 1, h2 = 1) { bsr <- (n2 + .bigGP$D*h2 - 1) %/% (.bigGP$D*h2) bsc <- (n1 + .bigGP$D*h1 - 1) %/% (.bigGP$D*h1) if( .bigGP$I == .bigGP$J ) { ind <- matrix(nrow=bsr*bsc*h2*h1,ncol=2) } else { ind <- matrix(nrow=2*bsr*bsc*h2*h1,ncol=2) } start <- 1 for( JJ in 0:(h1-1) ) { for( II in 0:(h2-1) ) { if( (.bigGP$I == .bigGP$J) ) { ind[start:(start+bsc*bsr-1),2] = II*bsr*.bigGP$D+.bigGP$I*bsr + rep(0:(bsr-1) , bsc) ind[start:(start+bsc*bsr-1),1] = JJ*bsc*.bigGP$D+.bigGP$J*bsc + rep(0:(bsc-1) , each = bsr) start = start + bsc*bsr } else { ind[start:(start+bsc*bsr-1),2] = II*bsr*.bigGP$D+.bigGP$I*bsr + rep(0:(bsr-1) , bsc) ind[start:(start+bsc*bsr-1),1] = JJ*bsc*.bigGP$D+.bigGP$J*bsc + rep(0:(bsc-1) , each = bsr) start = start + bsc*bsr ind[start:(start+bsc*bsr-1),2] = II*bsr*.bigGP$D+.bigGP$J*bsr + rep(0:(bsr-1) , bsc) ind[start:(start+bsc*bsr-1),1] = JJ*bsc*.bigGP$D+.bigGP$I*bsc + rep(0:(bsc-1) , each = bsr) start = start + bsc*bsr } } } ind[ind[ , 2] >= n2, ] <- 0 ind[ind[ , 1] >= n1, ] <- 0 return(ind + 1) } alloc <- function(input, inputPos = '.GlobalEnv'){ if(is.numeric(input)){ tmp <- 0; length(tmp) <- input return(tmp) } else{ if(is.character(input)){ return(1*get(input, pos = eval(as.name(inputPos)))) } else stop("alloc: 'input' must be a numeric value or character string.") } } .bigGP.fill <- function(init = FALSE) { 'initializes .bigGP object holding the information on the distributed setup' if(init) { .bigGP$P <- 0 .bigGP$D <- 0 .bigGP$I <- -1 .bigGP$J <- -1 } else { .bigGP$P <- mpi.comm.size() - 1 .bigGP$D <- calcD(.bigGP$P) if(mpi.comm.rank()) { tmp <- calcIJ(.bigGP$D) .bigGP$I <- tmp$I .bigGP$J <- tmp$J } } invisible(NULL) } ".bigGP" <- new.env() .bigGP.fill(init = TRUE) ".onAttach" <- function (lib, pkg) { packageStartupMessage(" ========================================================================================= Loading bigGP.\n Warning: before using bigGP, you must initialize the slave processes using bigGP.init() \n (which can also be done indirectly via initializing a krigeProblem object).\n If R was started through mpirun/orterun/mpiexec, please quit by using bigGP.quit(). =========================================================================================\n ") } bigGP.quit <- function(save = "no"){ if (is.loaded("mpi_initialize")){ if (mpi.comm.size(1) > 0) { mpi.close.Rslaves() } mpi.quit(save) } } bigGP.exit <- function(){ if (is.loaded("mpi_initialize")){ if (mpi.comm.size(1) > 0) { mpi.close.Rslaves() } mpi.exit() detach(package:bigGP, unload = TRUE) } } if(FALSE) { .Last.lib <- function(libpath){ if (is.loaded("mpi_initialize")){ if (mpi.comm.size(1) > 0) { print("Please use mpi.close.Rslaves() to close slaves.") mpi.close.Rslaves() } print("Please use mpi.quit() to quit R") .Call("mpi_finalize") } } }
check.graph <- function(){ if(requireNamespace("graph", quietly=TRUE)){ TRUE }else{ FALSE } } make.graph <- function(){ if (!check.graph()){ skip("graph package cannot be loaded"); } V <- LETTERS[1:10]; edL <- vector("list", length=length(V)); names(edL) <- V; edL[[1]] <- list(edges=c(2,3,7,5)); edL[[2]] <- list(edges=c(4,6)); edL[[3]] <- list(edges=c(6,8)); edL[[4]] <- list(edges=c(6,9)); edL[[5]] <- list(edges=c(8)); edL[[6]] <- list(edges=c(8,9,10)); edL[[7]] <- list(edges=c(8,5)); edL[[8]] <- list(edges=c()); edL[[9]] <- list(edges=c()); g <- graph::graphNEL(nodes=V, edgeL=edL, edgemode="directed"); return(g); } make.scores <- function(){ set.seed(12345); S <- matrix(round(runif(40),2), nrow=4); dimnames(S) <- list(paste0("pr",1:4), LETTERS[1:ncol(S)]); return(S); } make.spec.ann <- function(){ pr1 <- c(1,0,0); pr2 <- c(0,1,0); pr3 <- c(0,0,1); pr4 <- c(1,0,0); spec.ann <- rbind(pr1,pr2,pr3,pr4); colnames(spec.ann) <- c("I","H","J"); return(spec.ann); } make.ann <- function(){ g <- make.graph(); spec.ann <- make.spec.ann(); anc <- build.ancestors(g); ann <- transitive.closure.annotations(spec.ann, anc); return(ann); }
tk_get_row_and_columns <- function(widget, ...) { UseMethod("tk_get_row_and_columns", widget) } tk_get_row_and_columns.loon <- function(widget, ...) { list( row = 20, column = 20 ) } tk_get_row_and_columns.l_pairs <- function(widget, ...) { args <- list(...) span <- args$span histspan <- args$histspan histAdjust <- args$histAdjust row_column <- extract_num(names(widget)) column <- max(vapply(row_column, function(x) x[1L], as.numeric(1L)) * span, na.rm = TRUE) - span + histspan row <- max((vapply(row_column, function(x) x[2L], as.numeric(2L)) + histAdjust) * span, na.rm = TRUE) - span + histspan list( row = row, column = column ) } tk_get_row_and_columns.l_facet_wrap <- function(widget, ...) { args <- list(...) by <- args$by title <- args$title loc <- l_getLocations(widget) nrow <- loc$nrow ncol <- loc$ncol if(is.atomic(by)) len_by <- 1 else len_by <- length(by) span <- 10 column <- ncol * span + 1 row <- nrow * (span + len_by) + if(is.null(title)) 0 else 1 + 1 list( row = row, column = column ) } tk_get_row_and_columns.l_facet_grid <- function(widget, ...) { args <- list(...) by <- args$by title <- args$title loc <- l_getLocations(widget) nrow <- loc$nrow ncol <- loc$ncol n <- nrow * ncol if(is.atomic(by)) len_by <- 1 else len_by <- length(by) span <- 10 column <- ncol * span + 1 + floor(len_by/2) row <- nrow * span + (floor(len_by/2) + len_by %% 2) + if(is.null(title)) 0 else 1 + 2 list( row = row, column = column ) }
mlnormal_equal_list_matrices <- function( list_mat1, list_mat2, dim_list, eps=1E-30) { if ( is.null(dim_list) ){ dim_list <- length(list_mat1) } v1 <- 1 for ( dd in 1:dim_list ){ v1 <- v1 * mlnormal_equal_matrix( mat1=list_mat1[[dd]], mat2=list_mat2[[dd]], eps=eps ) } res <- if ( v1==1 ){ TRUE } else { FALSE } return(res) }
writeRmd <- function(..., file = "", append = TRUE, sep = " ", end = "\n", dump = FALSE, start = FALSE, stop = FALSE, options = NULL) { if(!is.character(file)) {return(warning("the parameter 'file' has to be a character chain giving the name of the .Rmd file to write in"))} if(!is.logical(append)) {return(warning("the argument 'append' must be logical"))} if(!is.logical(dump)) {return(warning("the argument 'dump' must be logical"))} if(!is.logical(start)) {return(warning("the argument 'start' must be logical"))} if(!is.logical(stop)) {return(warning("the argument 'stop' must be logical"))} if(!is.character(options) & !is.null(options)) {return(warning("the argument 'options' must be a character chain"))} cat(file = file, append = append) if(start) { cat("```", file = file, append = TRUE) if(!is.null(options)) {cat("{", options, "}", sep = "", file = file, append = TRUE)} cat("\n", file = file, append = TRUE) } if(dump) { dump(..., file = file, append = TRUE) } else { cat(..., file = file, append = TRUE, sep = sep) } if(stop) {cat("\n```", file = file, append = TRUE)} cat(end, file = file, append = TRUE) }
context("Testing project_to_curve") test_projection <- function(x, s, stretch, fit) { expect_equal(names(fit), c("s", "ord", "lambda", "dist_ind", "dist")) expect_equal(rownames(fit$s), rownames(x)) expect_equal(colnames(fit$s), colnames(x)) expect_equal(names(fit$lambda), rownames(x)) expect_equal(names(fit$dist_ind), rownames(x)) expect_equal(names(fit$ord), NULL) expect_equal(names(fit$dist), NULL) sord <- fit$s[fit$ord,] slam <- cumsum(c(0, sqrt(rowSums((sord[-nrow(sord),] - sord[-1,])^2)))) expect_lte(sum((slam - fit$lambda[fit$ord])^2), 1e-10) dist_ind <- rowSums((fit$s - x)^2) expect_lte(sum((dist_ind - fit$dist_ind)^2), 1e-10) dist <- sum(dist_ind) expect_lte(sum((dist - fit$dist)^2), 1e-10) fit2 <- project_to_curve(fit$s, fit$s, stretch = 0) expect_lte(sum((fit2$s - fit$s)^2), 1e-10) } z <- seq(-1, 1, length.out = 100) s <- cbind(z, z^2, z^3, z^4) x <- s + rnorm(length(s), mean = 0, sd = .005) ord <- sample.int(nrow(x)) test_that("Verify s is not modified", { s_orig <- s + 0 fit <- project_to_curve( x = x, s = s, stretch = 2 ) expect_equal(s, s_orig, tolerance = 1e-5) }) test_that("Testing project_to_curve", { fit <- project_to_curve( x = x, s = s, stretch = 0 ) test_projection(x, s, stretch = 0, fit) expect_gte(cor(as.vector(fit$s), as.vector(s)), .99) expect_gte(cor(fit$ord, seq_len(100)), .99) }) test_that("Checking whether project_to_curve retains dimnames", { colnames(x) <- paste0("Comp", seq_len(ncol(x))) fit <- project_to_curve(x = x, s = s, stretch = 0) test_projection(x, s, stretch = 0, fit) rownames(x) <- paste0("Sample", seq_len(nrow(x))) fit <- project_to_curve(x = x, s = s, stretch = 0) test_projection(x, s, stretch = 0, fit) colnames(x) <- NULL fit <- project_to_curve(x = x, s = s, stretch = 0) test_projection(x, s, stretch = 0, fit) }) test_that("Testing project_to_curve with shuffled order", { fit <- project_to_curve( x = x[ord,], s = s, stretch = 0 ) test_projection(x[ord,], s, stretch = 0, fit) expect_gte(cor(as.vector(fit$s[fit$ord,]), as.vector(s)), .99) expect_gte(cor(order(fit$ord), ord), .99) }) test_that("Values are more or less correct", { constant_s <- matrix(c(-1, 1, .1, .1, .2, .2, .3, .3), nrow = 2, byrow = FALSE) x[,1] <- z fit <- project_to_curve( x = x, s = constant_s, stretch = 0 ) test_projection(x, constant_s, stretch = 0, fit) expect_true(all(abs(fit$s[,1] - x[,1]) < 1e-6)) expect_true(all(abs(fit$s[,2] - .1) < 1e-6)) expect_true(all(abs(fit$s[,3] - .2) < 1e-6)) expect_true(all(abs(fit$s[,4] - .3) < 1e-6)) expect_equal(fit$ord, seq_along(z)) expect_true(all(abs(fit$lambda - seq(0, 2, length.out = 100)) < 1e-6)) dist_ind <- (x[,2] - .1)^2 + (x[,3] - .2)^2 + (x[,4] - .3)^2 expect_true(all(abs(fit$dist_ind - dist_ind) < 1e-10)) expect_true(abs(sum(dist_ind) - fit$dist) < 1e-10) }) test_that("Values are more or less correct, with stretch = 2 and a given ord", { constant_s <- matrix(c(-.9, .9, .1, .1, .2, .2, .3, .3), nrow = 2, byrow = FALSE) x[,1] <- z fit <- project_to_curve( x = x, s = constant_s, stretch = 2 ) test_projection(x, constant_s, stretch = 0, fit) expect_true(all(abs(fit$s[,1] - x[,1]) < 1e-6)) expect_true(all(abs(fit$s[,2] - .1) < 1e-6)) expect_true(all(abs(fit$s[,3] - .2) < 1e-6)) expect_true(all(abs(fit$s[,4] - .3) < 1e-6)) expect_equal(fit$ord, seq_along(z)) expect_true(all(abs(fit$lambda - seq(0, 2, length.out = 100)) < 1e-3)) dist_ind <- (x[,2] - .1)^2 + (x[,3] - .2)^2 + (x[,4] - .3)^2 expect_true(all(abs(fit$dist_ind - dist_ind) < 1e-10)) expect_true(abs(sum(dist_ind) - fit$dist) < 1e-10) }) test_that("Values are more or less correct, without stretch", { cut <- 0.89898990 constant_s <- matrix(c(-cut, cut, .1, .1, .2, .2, .3, .3), nrow = 2, byrow = FALSE) x[,1] <- z fit <- project_to_curve( x = x, s = constant_s, stretch = 0 ) test_projection(x, constant_s, stretch = 2, fit) f <- z < -cut | z > cut expect_true(all(abs(fit$s[!f,1] - x[!f,1]) < 1e-6)) expect_false(any(abs(fit$s[f,1] - x[f,1]) < 1e-6)) expect_true(all(abs(fit$s[,2] - .1) < 1e-6)) expect_true(all(abs(fit$s[,3] - .2) < 1e-6)) expect_true(all(abs(fit$s[,4] - .3) < 1e-6)) expect_true(cor(fit$ord, seq_along(z)) > cut) lambda <- apply(fit$s, 1, function(x) sqrt(sum((x - constant_s[1,])^2))) expect_true(all(abs(fit$lambda - lambda) < 1e-8)) dist_ind <- ifelse(f, (abs(z) - cut)^2, 0) + (x[,2] - .1)^2 + (x[,3] - .2)^2 + (x[,4] - .3)^2 expect_true(all(abs(fit$dist_ind - dist_ind) < 1e-10)) expect_true(abs(sum(dist_ind) - fit$dist) < 1e-10) }) test_that("Expect project_to_curve to error elegantly", { expect_error(project_to_curve(x, s, stretch = -1), "larger than or equal to 0") expect_error(project_to_curve(x, cbind(s, s)), "must have an equal number of columns") }) test_that("Projecting to random data produces correct results", { for (i in seq_len(10)) { s <- matrix(runif(100), ncol = 2) x <- matrix(runif(100), ncol = 2) fit <- project_to_curve( x = x, s = s, stretch = 0 ) test_projection(x, s, stretch = 0, fit) } })
setClass("CFunc", representation( code="character" ), contains="function" ) setClass( "CFuncList", contains = "list" ) cfunction <- function(sig=character(), body=character(), includes=character(), otherdefs=character(), language=c("C++", "C", "Fortran", "F95", "ObjectiveC", "ObjectiveC++"), verbose=FALSE, convention=c(".Call", ".C", ".Fortran"), Rcpp=FALSE, cppargs=character(), cxxargs=character(), libargs=character(), dim = NULL, implicit = NULL, module = NULL, name = NULL) { if (missing (convention) & !missing(language)) convention <- switch (EXPR = language, "Fortran" = ".Fortran", "F95" = ".Fortran", ".C" = ".C", ObjectiveC = ".Call", "ObjectiveC++" = ".Call", "C++" = ".Call") convention <- match.arg(convention) if ( missing(language) ) language <- ifelse(convention == ".Fortran", "Fortran", "C++") else language <- match.arg(language) language <- switch(EXPR=tolower(language), cpp="C++", f="Fortran", f95="F95", objc="ObjectiveC", objcpp= ,"objc++"="ObjectiveC++", language) f <- basename(tempfile()) if (is.null(name)) { name <- f } if ( !is.list(sig) ) { sig <- list(sig) names(sig) <- name names(body) <- name } if( length(sig) != length(body) ) stop("mismatch between the number of functions declared in 'sig' and the number of function bodies provided in 'body'") if (is.null(dim)) dim <- as.list(rep("(*)", length(sig))) else { if (!is.list(dim)) dim <- list(dim) if (length(dim) != length(sig)) stop("mismatch between the number of functions declared in 'sig' and the number of dimensions declared in 'dim'") } if (Rcpp) { if (!requireNamespace("Rcpp", quietly=TRUE)) stop("Rcpp cannot be loaded, install it or use the default Rcpp=FALSE", call.=FALSE) rcppdir <- system.file("include", package="Rcpp") if (.Platform$OS.type == "windows") rcppdir <- utils::shortPathName(normalizePath(rcppdir)) cxxargs <- c(paste("-I", rcppdir, sep=""), cxxargs) } if (length(cppargs) != 0) { args <- paste(cppargs, collapse=" ") if (verbose) cat("Setting PKG_CPPFLAGS to", args, "\n") Sys.setenv(PKG_CPPFLAGS=args) } if (length(cxxargs) != 0) { args <- paste(cxxargs, collapse=" ") if (verbose) cat("Setting PKG_CXXFLAGS to", args, "\n") Sys.setenv(PKG_CXXFLAGS=args) } if (length(libargs) != 0) { args <- paste(libargs, collapse=" ") if (verbose) cat("Setting PKG_LIBS to", args, "\n") Sys.setenv(PKG_LIBS=args) } types <- vector(mode="list", length=length(sig)) for ( i in seq_along(sig) ) { if ( convention == ".Call" ) { if (i == 1) { code <- ifelse(Rcpp, " paste(" " code <- paste(c(code, includes, ""), collapse="\n") code <- paste(c(code, otherdefs, ""), collapse="\n") } if ( length(sig[[i]]) > 0 ) { funCsig <- paste("SEXP", names(sig[[i]]), collapse=", " ) } else funCsig <- "" funCsig <- paste("SEXP", names(sig)[i], "(", funCsig, ")", sep=" ") if ( language == "C++" || language == "ObjectiveC++") code <- paste( code, "extern \"C\" {\n ", funCsig, ";\n}\n\n", sep="") code <- paste( code, funCsig, " {\n", sep="") code <- paste( code, paste(body[[i]], collapse="\n"), sep="") code <- paste(code, "\n ", ifelse(Rcpp, "Rf_warning", "warning"), "(\"your C program does not return anything!\");\n return R_NilValue;\n}\n", sep=""); } else if ( convention == ".C" ) { if (i == 1) { code <- ifelse(Rcpp," code <- paste(c(code, includes, ""), collapse="\n") code <- paste(c(code, otherdefs, ""), collapse="\n") } if ( length(sig[[i]]) > 0 ) { types[[i]] <- pmatch(sig[[i]], c("logical", "integer", "double", "complex", "character", "raw", "numeric"), duplicates.ok = TRUE) if ( any(is.na(types[[i]])) ) stop( paste("Unrecognized type", sig[[i]][is.na(types[[i]])]) ) decls <- c("int *", "int *", "double *", "Rcomplex *", "char **", "unsigned char *", "double *")[ types[[i]] ] funCsig <- paste(decls, names(sig[[i]]), collapse=", ") } else funCsig <- "" funCsig <- paste("void", names(sig)[i], "(", funCsig, ")", sep=" ") if ( language == "C++" || language == "ObjectiveC++" ) code <- paste( code, "extern \"C\" {\n ", funCsig, ";\n}\n\n", sep="") code <- paste( code, funCsig, " {\n", sep="") code <- paste( code, paste(body[[i]], collapse="\n"), sep="") code <- paste( code, "\n}\n", sep="") } else { lead <- ifelse (language == "Fortran", " ","") if (i == 1) { code <- paste(includes, collapse="\n") code <- paste(c(code, otherdefs, ""), collapse="\n") } if ( length(sig[[i]]) > 0 ) { types[[i]] <- pmatch(sig[[i]], c("logical", "integer", "double", "complex", "character", "raw", "numeric"), duplicates.ok = TRUE) if ( any(is.na(types[[i]])) ) stop( paste("Unrecognized type", sig[[i]][is.na(types[[i]])]) ) if (6 %in% types[[i]]) stop( "raw type unsupported by .Fortran()" ) decls <- c("INTEGER", "INTEGER", "DOUBLE PRECISION", "DOUBLE COMPLEX", "CHARACTER*255", "Unsupported", "DOUBLE PRECISION")[ types[[i]] ] decls <- paste(lead, decls, " ", names(sig[[i]]), dim[[i]], sep="", collapse="\n") funCsig <- paste(names(sig[[i]]), collapse=", ") } else { decls <- "" funCsig <- "" } funCsig <- paste(lead,"SUBROUTINE", names(sig)[i], "(", funCsig, ")\n", sep=" ") if (language == "Fortran") { if ((cl <- nchar(funCsig)) >= 72) { fstring <- substr(funCsig, 72, cl) funCsig <- substr(funCsig, 1, 71) while ((cf <- nchar(fstring)) > 66) { funCsig <- paste(funCsig, "\n &", substr(fstring, 1, 66), sep = "") fstring <- substr(fstring, 67, cf) } if (cf > 0) funCsig <- paste(funCsig, "\n &", fstring, sep = "") funCsig <- paste(funCsig, "\n") } } if (is.character(module)) funCsig <- paste(funCsig, lead, "USE ", module, "\n", sep = "") if (is.character(implicit)) funCsig <- paste(funCsig, lead, "IMPLICIT ", implicit, "\n", sep = "") code <- paste( code, funCsig, decls, "\n", collapse="\n", sep="") code <- paste( code, paste(body[[i]], collapse="\n"), sep="") code <- paste( code, "\n", lead, "RETURN\n", lead, "END\n\n", sep="") } } libLFile <- compileCode(f, code, language, verbose) libLFile_orig <- libLFile cleanup <- function(env) { if ( f %in% names(getLoadedDLLs()) ) dyn.unload(libLFile_orig) unlink(libLFile_orig) } reg.finalizer(environment(), cleanup, onexit=TRUE) res <- vector("list", length(sig)) names(res) <- names(sig) for ( i in seq_along(sig) ) { res[[i]] <- new("CFunc", code = code) fn <- function(arg) { NULL } DLL <- dyn.load( libLFile ) args <- formals(fn)[ rep(1, length(sig[[i]])) ] names(args) <- names(sig[[i]]) formals(fn) <- args if (convention == ".Call") { body <- quote( CONVENTION("EXTERNALNAME", ARG) )[ c(1:2, rep(3, length(sig[[i]]))) ] for ( j in seq_along(sig[[i]]) ) body[[j+2]] <- as.name(names(sig[[i]])[j]) } else { body <- quote( CONVENTION("EXTERNALNAME", as.logical(ARG), as.integer(ARG), as.double(ARG), as.complex(ARG), as.character(ARG), as.raw(ARG), as.double(ARG)) )[ c(1:2,types[[i]]+2) ] names(body) <- c( NA, "", names(sig[[i]]) ) for ( j in seq_along(sig[[i]]) ) body[[j+2]][[2]] <- as.name(names(sig[[i]])[j]) } body[[1]] <- get(convention) body[[2]] <- getNativeSymbolInfo( names(sig)[i], DLL )$address body(fn) <- body res[[i]]@.Data <- fn } if ( verbose ) { cat("Program source:\n") lines <- strsplit(code, "\n") for ( i in 1:length(lines[[1]]) ) cat(format(i,width=3), ": ", lines[[1]][i], "\n", sep="") } remove(list = c("args", "body", "fn", "funCsig", "i", "includes", "j")) if (length(res) == 1 && names(res) == name) return( res[[1]] ) else return( new( "CFuncList", res ) ) } compileCode <- function(f, code, language, verbose) { wd = getwd() on.exit(setwd(wd)) extension <- switch(language, "C++"=".cpp", C=".c", Fortran=".f", F95=".f95", ObjectiveC=".m", "ObjectiveC++"=".mm") libCFile <- file.path(tempdir(), paste0(f, extension)) libLFile <- file.path(tempdir(), paste0(f, .Platform$dynlib.ext)) write(code, libCFile) if ( file.exists(libLFile) ) file.remove( libLFile ) setwd(dirname(libCFile)) errfile <- paste( basename(libCFile), ".err.txt", sep = "" ) cmd <- paste0(R.home(component="bin"), "/R") if ( verbose ) system2(cmd, args = paste(" CMD SHLIB --dry-run", basename(libCFile))) compiled <- system2(cmd, args = paste(" CMD SHLIB", basename(libCFile)), stdout = FALSE, stderr = errfile) errmsg <- readLines( errfile ) unlink( errfile ) if ( !file.exists(libLFile) ) { cat("\nERROR(s) during compilation: source code errors or compiler configuration errors!\n") if ( !verbose ) system2(cmd, args = paste(" CMD SHLIB --dry-run --preclean", basename(libCFile))) cat("\nProgram source:\n") code <- strsplit(code, "\n") for (i in 1:length(code[[1]])) cat(format(i,width=3), ": ", code[[1]][i], "\n", sep="") cat("\nCompilation ERROR, function(s)/method(s) not created!\n") if ( sum(nchar(errmsg)) > getOption("warning.length") ) stop(tail(errmsg)) else stop(errmsg) } return( libLFile ) }