code
stringlengths
1
13.8M
test_that("error handling works", { chr <- letters[1:10] lgc <- rep(c(TRUE, FALSE), 5) nmr <- 1:10 nmr2 <- 1 expect_error( percent_change(chr, nmr), "`baseline` must be numeric; not character.", class = "error_argument_type" ) expect_error( percent_change(lgc, nmr), "`baseline` must be numeric; not logical.", class = "error_argument_type" ) expect_error( percent_change(nmr, chr), "`followup` must be numeric; not character.", class = "error_argument_type" ) expect_error( percent_change(nmr, lgc), "`followup` must be numeric; not logical.", class = "error_argument_type" ) expect_error( percent_change(nmr, nmr2), "`baseline` and `followup` must have the same length.", class = "error_argument_diff_length" ) }) test_that("percent_change() works", { set.seed(20200525) change <- c( 1, 1.005, 1.05, 1.5, 2, 0.995, 0.95, 0.5, 0, 1 ) baseline <- sample(1:10) baseline[10] <- NA followup <- baseline * change out <- percent_change(baseline, followup) expect_s3_class(out, c("lvmisc_percent", "vctrs_vctr"), exact = TRUE) expected <- vec_c(0, 0.005, 0.05, 0.5, 1, - 0.005, - 0.05, - 0.5, - 1, NA) expected <- as_percent(expected) expect_equal(out, expected) })
print.qunormtrain <- function(x, ...) { cat("Quantile normalized data with documentation by value.", "\n") cat(paste("Number of observations: ", nrow(x$xnorm), sep=""), "\n") cat(paste("Number of variables: ", ncol(x$xnorm), sep=""), "\n") }
plot_scatterbar_sd_sc <- function(data, xcol, ycol, colour = "ok_orange", symsize = 2.5, symthick = 1, bwid = 0.7, ewid = 0.3, jitter = 0, b_alpha = 1, s_alpha = 1, TextXAngle = 0, fontsize = 20){ ifelse(grepl(" a <- colour, a <- get_graf_colours({{ colour }})) ggplot2::ggplot(data, aes(x = factor({{ xcol }}), y = {{ ycol }}))+ stat_summary(geom = "bar", colour = "black", width = {{ bwid }}, fun = "mean", alpha = {{ b_alpha }}, size = 1, fill = a)+ geom_point(size = {{ symsize }}, alpha = {{ s_alpha }}, shape = 21, position = position_jitter(width = {{ jitter }}), stroke = {{ symthick }}, fill = a)+ stat_summary(geom = "errorbar", size = 1, fun.data = "mean_sdl", fun.args = list(mult = 1), width = {{ ewid }} )+ labs(x = enquo(xcol))+ theme_classic(base_size = {{ fontsize }})+ theme(strip.background = element_blank())+ guides(x = guide_axis(angle = {{ TextXAngle }})) }
library(qrmtools) n <- 2e5 th <- 3 set.seed(271) X <- rPar(n, shape = th) stopifnot(th > 1) Xn <- cumsum(X)/(1:n) plot(1:n, Xn, type = "l", log = "x", ylab = "", xlab = expression("Number n of iid random variables"~(X[i])[i == 1]^n), main = substitute(bold("Strong Law of Large Numbers for Par("*th.*") data"), list(th. = th))) mu <- 1/(th-1) abline(h = mu, col = "royalblue3") legend("bottomright", lty = c(1,1), col = c("black", "royalblue3"), bty = "n", y.intersp = 1.2, legend = c(expression((bar(X)[n])[n]), substitute("true mean"~mu == mu., list(mu. = mu)))) m <- 500 X. <- split(X, f = rep(1:m, each = floor(n/m))) stopifnot(th > 2) mu <- 1/(th-1) sig2 <- 2/((th-2)*(th-1)^2) Z <- sapply(X., function(x) (sum(x) - length(x) * mu) / (sqrt(length(x) * sig2))) dens <- density(Z) hist(Z, probability = TRUE, ylim = c(0, max(dnorm(0), dens$y)), breaks = 20, main = substitute(bold("Central Limit Theorem for Par("*th.*") data"), list(th. = th)), xlab = expression("Realizations of"~sqrt(n)*(bar(X)[n]-mu)/sigma)) lines(dens, col = "royalblue3") curve(dnorm, from = min(Z), to = max(Z), add = TRUE, col = "darkorange2") box() legend("topright", lty = c(1,1), col = c("royalblue3", "darkorange2"), bty = "n", legend = c("Density estimate", "N(0,1) density")) qq_plot(Z, FUN = qnorm, main = "Central Limit Theorem") M <- sapply(X., function(x) (max(x) - 0) / qPar(1-1/length(x), shape = th)) dens <- density(M, adjust = 2) x <- seq(0, max(M), length.out = 257) true.dens <- dGEV(x, shape = 1/th, loc = 1, scale = 1/th) hist(M, probability = TRUE, ylim = c(0, max(dens$y, true.dens)), breaks = 60, main = substitute(bold("Gnedenko's Theorem for Par("*th.*") data"), list(th. = th)), xlab = expression("Realizations of"~(M[n]-d[n])/c[n]~~ "(for"~c[n] == {F^{-1}}(1-1/n)*";"~~d[n] == 0*")")) lines(dens, col = "royalblue3") lines(x, true.dens, col = "darkorange2") box() legend("topright", lty = c(1,1), col = c("royalblue3", "darkorange2"), bty = "n", legend = c("Density estimate", expression("Limiting GEV density"~h[list(xi,mu,sigma)]))) qq_plot(M, FUN = function(p) qGEV(p, shape = 1/th, loc = 1, scale = 1/th), main = substitute(bold("Gnedenko's Theorem for Par("*th.*") data"), list(th. = th))) u <- quantile(X, 0.9) Y <- X[X>u] - u dens <- density(Y) x <- seq(0, max(Y), length.out = 257) true.dens <- dGPD(x, shape = 1/th, scale = (1/th)*(1+u)) hist(Y, probability = TRUE, ylim = c(0, max(dens$y, true.dens)), breaks = 60, main = substitute(bold("Pickands-Balkema-de Haan Theorem for Par("*th.*") data"), list(th. = th)), xlab = "Realizations of excesses Y over the threshold u (90% quantile)") lines(dens, col = "royalblue3") lines(x, true.dens, col = "darkorange2") box() legend("topright", lty = c(1,1), col = c("royalblue3", "darkorange2"), bty = "n", legend = c("Density estimate", expression("Limiting GPD density"~g[list(xi,beta(u))]))) x <- 10^seq(-2, 2, length.out = 65) true.dens <- dGPD(x, shape = 1/th, scale = (1/th)*(1+u)) ii <- dens$x > 0 plot(dens$x[ii], dens$y[ii], type = "l", log = "x", col = "royalblue3", ylim = c(0, max(dens$y[ii], true.dens)), xlab = "x", ylab = "Density") lines(x, true.dens, col = "darkorange2") legend("topright", lty = c(1,1), col = c("royalblue3", "darkorange2"), bty = "n", legend = c("Density estimate", expression("Limiting GPD density"~g[list(xi,beta(u))]))) qq_plot(Y, FUN = function(p) qGPD(p, shape = 1/th, scale = (1/th)*(1+u)), main = substitute(bold("Pickands-Balkema-de Haan Theorem for Par("*th.*") data"), list(th. = th)))
mod_dispersion_ui <- function(id) { ns <- NS(id) titulo_disp <- tags$div( class = "multiple-select-var", selectizeInput( ns("sel_disp"), NULL, multiple = T, choices = c(""), options = list(maxItems = 3)) ) opc_disp <- tabsOptions( heights = c(50, 40), tabs.content = list( list(options.base(), tags$hr(style = "margin-top: 0px;"), colourpicker::colourInput( ns("col_disp"), labelInput("selcolor"), value = "steelblue", allowTransparent = T)), list(col_12(codigo.monokai(ns("fieldCodeDisp"), height = "25vh")) ) ) ) tagList( tabBoxPrmdt( id = ns("BoxDisp"), opciones = opc_disp, title = titulo_disp, tabPanel( title = labelInput("dispersion"), value = "tabDisp", echarts4rOutput(ns("plot_disp"), height = "75vh") ) ) ) } mod_dispersion_server <- function(input, output, session, updateData) { ns <- session$ns observeEvent(updateData$datos, { datos <- var.numericas(updateData$datos) updateSelectInput(session, "sel_disp", choices = colnames(datos)) }) output$plot_disp <- renderEcharts4r({ datos <- updateData$datos vars <- input$sel_disp color <- input$col_disp if(length(vars) == 2) { cod <- code.disp.2d(vars, color) updateAceEditor(session, "fieldCodeDisp", value = cod) datos <- data.frame(x = datos[[vars[1]]], y = datos[[vars[2]]], id = row.names(datos)) datos |> e_charts(x) |> e_scatter(y, bind = id, symbol_size = 10) |> e_x_axis(x) |> e_y_axis(y) |> e_datazoom(show = F) |> e_color(color) |> e_axis_labels(x = vars[1], y = vars[2]) |> e_tooltip(formatter = e_JS(paste0( "function(params) { return('<b>' + params.name + ' </b><br/>", vars[1], ": ' + params.value[0] + '<br />", vars[2], ": ' + params.value[1]) }")) ) |> e_legend(F) |> e_show_loading() } else if (length(vars) == 3) { cod <- code.disp.3d(vars, color) updateAceEditor(session, "fieldCodeDisp", value = cod) id <- row.names(datos) datos <- data.frame( x = datos[[vars[1]]], y = datos[[vars[2]]], z = datos[[vars[3]]], id = id ) datos |> e_charts(x) |> e_scatter_3d(y, z, bind = id) |> e_color(color) |> e_x_axis_3d(name = vars[1], axisLine = list(lineStyle = list(color = "white"))) |> e_y_axis_3d(name = vars[2], axisLine = list(lineStyle = list(color = "white"))) |> e_z_axis_3d(name = vars[3], axisLine = list(lineStyle = list(color = "white"))) |> e_tooltip(formatter = e_JS(paste0( "function(params) { return('<b>' + params.name + ' </b><br/>", vars[1], ": ' + params.value[0] + '<br/>", vars[2], ": ' + params.value[1] + '<br/>", vars[3], ": ' + params.value[2]) }")) ) |> e_theme("dark") |> e_show_loading() } }) }
binned.kernel.est <- function(data, kernel = "normal", bandwidth = NULL, canonical = FALSE, scalest = "minim", level = 2L, gridsize = 401L, range.data = range(data), truncate = TRUE) { if(is.null(bandwidth)){ bandwidth.estimate <- KernSmooth::dpik( x = data, scalest = scalest, level = level, kernel = kernel, gridsize = gridsize, range.x = range.data, truncate = truncate ) } else { bandwidth.estimate <- bandwidth } est <- KernSmooth::bkde(x = data, kernel = kernel, canonical = canonical, bandwidth = bandwidth.estimate, gridsize = gridsize, range.x = range.data, truncate = truncate ) return(est) }
setMethod("rowMeans", signature(x = "magpie"), function(x, na.rm = FALSE, dims = 1, ...) { out <- rowMeans(as.array(x), na.rm = na.rm, dims = dims, ...) out <- as.magpie(as.array(x)) return(out) } )
"murders"
optim.disp.pl = function(disp, counts, eff.lib.sizes, x, method="L-BFGS-B", ...) { y = counts[disp$subset, ,drop=FALSE]; mustart = irls.nb(y, eff.lib.sizes, x, phi=0.1, beta0 = rep(NA, dim(x)[2]))$mu; nll = function(par) { phi = disp$fun(par)[disp$subset,,drop=FALSE]; mu.hat = irls.nb(y, eff.lib.sizes, x, phi=phi, beta0 = rep(NA, dim(x)[2]), mustart=mustart)$mu; - ll.nb(1/phi, mu.hat, y); } if (is.null(disp$lower) | is.null(disp$upper)) { res = optim(disp$par.init, nll, method=method, ...); } else { res = optim(disp$par.init, nll, lower=disp$lower, upper=disp$upper, method=method, ...); } res } optim.disp.apl = function(disp, counts, eff.lib.sizes, x, method="L-BFGS-B", print.level=1, ...) { y = counts[disp$subset, ,drop=FALSE]; mustart = irls.nb(y, eff.lib.sizes, x, phi=0.1, beta0 = rep(NA, dim(x)[2]))$mu; adj = function(y, mu.hat, phi) { kappa = 1/phi; v.hat = drop(mu.hat + phi * mu.hat^2); j.hat = t(x) %*% diag(mu.hat^2 * (y/mu.hat^2 - (y + kappa)/(mu.hat + kappa)^2) - (y - mu.hat) * mu.hat/v.hat) %*% x; d = det(j.hat); if (d > 0) { return (-0.5 * log(d)) } else { print(y); print(mu.hat); print(phi); return (0) } } nll = function(par) { phi = disp$fun(par)[disp$subset,,drop=FALSE]; mu.hat = irls.nb(y, eff.lib.sizes, x, phi=phi, beta0 = rep(NA, dim(x)[2]), mustart=mustart)$mu; l.hat = ll.nb(1/phi, mu.hat, y); m = dim(mu.hat)[1]; for (i in (1:m)) { l.hat = l.hat + adj(y[i,], mu.hat[i,], phi[i,]); } -l.hat } if (is.null(disp$lower) | is.null(disp$upper)) { res = optim(disp$par.init, nll, method=method, ...); } else { res = optim(disp$par.init, nll, lower=disp$lower, upper=disp$upper, method=method, ...); } res }
library(testthat) library(merTools) test_check("merTools", filter = "^[a-m]")
test_that("ggplotly doesn't leave a new device open", { devList1 <- dev.list() p <- ggplotly(ggplot(mtcars) + geom_point(aes(wt, mpg))) devList2 <- dev.list() expect_true(length(devList1) == length(devList2)) })
WRMF = R6::R6Class( inherit = MatrixFactorizationRecommender, classname = "WRMF", public = list( initialize = function(rank = 10L, lambda = 0, dynamic_lambda = TRUE, init = NULL, preprocess = identity, feedback = c("implicit", "explicit"), solver = c("conjugate_gradient", "cholesky", "nnls"), with_user_item_bias = FALSE, with_global_bias = FALSE, cg_steps = 3L, precision = c("double", "float"), ...) { stopifnot(is.null(init) || is.matrix(init)) solver = match.arg(solver) feedback = match.arg(feedback) private$non_negative = ifelse(solver == "nnls", TRUE, FALSE) if (private$non_negative && with_global_bias == TRUE) { logger$warn("setting `with_global_bias=FALSE` for 'nnls' solver") with_global_bias = FALSE } private$with_user_item_bias = with_user_item_bias private$with_global_bias = with_global_bias self$global_bias = 0 solver_codes = c("cholesky", "conjugate_gradient", "nnls") private$solver_code = match(solver, solver_codes) - 1L private$precision = match.arg(precision) private$feedback = feedback private$lambda = as.numeric(lambda) private$dynamic_lambda = as.logical(dynamic_lambda)[1L] stopifnot(is.integer(cg_steps) && length(cg_steps) == 1) private$cg_steps = cg_steps n_threads = getOption("rsparse_omp_threads", 1L) private$solver = function(x, X, Y, is_bias_last_row, XtX = NULL, cnt_X=NULL, avoid_cg = FALSE) { solver_use = ifelse(avoid_cg && private$solver_code == 1L, 0L, private$solver_code) if (private$lambda && dynamic_lambda && is.null(cnt_X)) { if (private$precision == "double") { cnt_X = numeric(ncol(X)) } else { cnt_X = float::float(ncol(X)) } } if(feedback == "implicit") { als_implicit( x, X, Y, lambda = private$lambda, n_threads = n_threads, solver_code = solver_use, cg_steps = private$cg_steps, precision = private$precision, with_user_item_bias = private$with_user_item_bias, is_bias_last_row = is_bias_last_row, global_bias = self$global_bias, initialize_bias_base = !avoid_cg, XtX = XtX, global_bias_base = self$global_bias_base) } else { als_explicit( x, X, Y, cnt_X, lambda = private$lambda, n_threads = n_threads, solver_code = solver_use, cg_steps = private$cg_steps, dynamic_lambda = private$dynamic_lambda, precision = private$precision, with_user_item_bias = private$with_user_item_bias, is_bias_last_row = is_bias_last_row) } } private$init_user_item_bias = function(c_ui, c_iu, user_bias, item_bias) { FUN = ifelse(private$precision == 'double', initialize_biases_double, initialize_biases_float) FUN(c_ui, c_iu, user_bias, item_bias, private$lambda, private$dynamic_lambda, private$non_negative, private$with_global_bias, feedback == "explicit") } self$components = init if (private$with_user_item_bias) { private$rank = as.integer(rank) + 2L } else { private$rank = as.integer(rank) } stopifnot(is.function(preprocess)) private$preprocess = preprocess }, fit_transform = function(x, n_iter = 10L, convergence_tol = ifelse(private$feedback == "implicit", 0.005, 0.001), ...) { if (private$feedback == "implicit" ) { logger$trace("WRMF$fit_transform(): calling `RhpcBLASctl::blas_set_num_threads(1)` (to avoid thread contention)") blas_threads_keep = RhpcBLASctl::blas_get_num_procs() RhpcBLASctl::blas_set_num_threads(1) on.exit({ logger$trace("WRMF$fit_transform(): on exit `RhpcBLASctl::blas_set_num_threads(%d)", blas_threads_keep) RhpcBLASctl::blas_set_num_threads(blas_threads_keep) }) } c_ui = MatrixExtra::as.csc.matrix(x) c_ui = private$preprocess(c_ui) c_iu = MatrixExtra::t_shallow(MatrixExtra::as.csr.matrix(x)) private$item_ids = colnames(c_ui) if ((private$feedback != "explicit") || private$non_negative) { stopifnot(all(c_ui@x >= 0)) } n_user = nrow(c_ui) n_item = ncol(c_ui) logger$trace("initializing U") if (private$precision == "double") { private$U = large_rand_matrix(private$rank, n_user) if (private$with_user_item_bias) { private$U[1L, ] = rep(1.0, n_user) } } else { private$U = flrnorm(private$rank, n_user, 0, 0.01) if (private$with_user_item_bias) { private$U[1L, ] = float::fl(rep(1.0, n_user)) } } if (is.null(self$components)) { if (private$solver_code == 1L) { if (private$precision == "double") { self$components = matrix(0, private$rank, n_item) if (private$with_user_item_bias) { self$components[private$rank, ] = rep(1.0, n_item) } } else { self$components = float::float(0, private$rank, n_item) if (private$with_user_item_bias) { self$components[private$rank, ] = float::fl(rep(1.0, n_item)) } } } else { if (private$precision == "double") { self$components = large_rand_matrix(private$rank, n_item) if (private$with_user_item_bias) { self$components[private$rank, ] = rep(1.0, n_item) } } else { self$components = flrnorm(private$rank, n_item, 0, 0.01) if (private$with_user_item_bias) { self$components[private$rank, ] = float::fl(rep(1.0, n_item)) } } } } else { stopifnot(is.matrix(self$components) || is.float(self$components)) stopifnot(ncol(self$components) == n_item) stopifnot(nrow(self$components) == private$rank) } if (private$non_negative) { self$components = abs(self$components) private$U = abs(private$U) } stopifnot(ncol(private$U) == ncol(c_iu)) stopifnot(ncol(self$components) == ncol(c_ui)) if (private$with_user_item_bias) { logger$debug("initializing biases") if (private$feedback == "explicit" && private$with_global_bias) c_ui@x = deep_copy(c_ui@x) if (private$precision == "double") { user_bias = numeric(n_user) item_bias = numeric(n_item) } else { user_bias = float(n_user) item_bias = float(n_item) } global_bias = private$init_user_item_bias(c_ui, c_iu, user_bias, item_bias) self$components[1L, ] = item_bias private$U[private$rank, ] = user_bias if(private$with_global_bias) self$global_bias = global_bias } else if (private$with_global_bias) { if (private$feedback == "explicit") { self$global_bias = mean(c_ui@x) c_ui@x = c_ui@x - self$global_bias c_iu@x = c_iu@x - self$global_bias } else { s = sum(c_ui@x) self$global_bias = s / (s + as.numeric(nrow(c_ui))*as.numeric(ncol(c_ui)) - length(c_ui@x)) } } if (private$feedback == "implicit") { size_global_bias_base = ifelse(private$with_user_item_bias, 0L, private$rank-1L) if (private$precision == "double") self$global_bias_base = numeric(size_global_bias_base) else self$global_bias_base = float(size_global_bias_base) } logger$info("starting factorization with %d threads", getOption("rsparse_omp_threads", 1L)) loss_prev_iter = Inf cnt_u = numeric() cnt_i = numeric() if (private$dynamic_lambda) { cnt_u = as.numeric(diff(c_ui@p)) cnt_i = as.numeric(diff(c_iu@p)) } if (private$precision == "float") { cnt_u = float::fl(cnt_u) cnt_i = float::fl(cnt_i) } private$cnt_u = cnt_u for (i in seq_len(n_iter)) { loss = private$solver(c_ui, private$U, self$components, is_bias_last_row = TRUE, cnt_X = cnt_i) logger$info("iter %d (items) loss = %.4f", i, loss) loss = private$solver(c_iu, self$components, private$U, is_bias_last_row = FALSE, cnt_X = cnt_u) logger$info("iter %d (users) loss = %.4f", i, loss) if (loss_prev_iter / loss - 1 < convergence_tol) { logger$info("Converged after %d iterations", i) break } loss_prev_iter = loss } if (private$precision == "double") data.table::setattr(self$components, "dimnames", list(NULL, colnames(x))) else data.table::setattr(self$components@Data, "dimnames", list(NULL, colnames(x))) rank_ = ifelse(private$with_user_item_bias, private$rank - 1L, private$rank) ridge = fl(diag(x = private$lambda, nrow = rank_, ncol = rank_)) XX = if (private$with_user_item_bias) self$components[-1L, , drop = FALSE] else self$components private$XtX = tcrossprod(XX) + ridge self$transform(x) }, transform = function(x, ...) { stopifnot(ncol(x) == ncol(self$components)) if (inherits(x, "RsparseMatrix")) { x = MatrixExtra::t_shallow(x) x = MatrixExtra::as.csc.matrix(x) } else if (inherits(x, "CsparseMatrix")) { x = MatrixExtra::t_deep(x) x = MatrixExtra::as.csc.matrix(x) } else { x = MatrixExtra::as.csr.matrix(x) x = MatrixExtra::t_shallow(x) } if (private$feedback == "implicit" ) { logger$trace("WRMF$transform(): calling `RhpcBLASctl::blas_set_num_threads(1)` (to avoid thread contention)") blas_threads_keep = RhpcBLASctl::blas_get_num_procs() RhpcBLASctl::blas_set_num_threads(1) on.exit({ logger$trace("WRMF$transform(): on exit `RhpcBLASctl::blas_set_num_threads(%d)", blas_threads_keep) RhpcBLASctl::blas_set_num_threads(blas_threads_keep) }) } x = private$preprocess(x) if (self$global_bias != 0. && private$feedback == "explicit") x@x = x@x - self$global_bias if (private$precision == "double") { res = matrix(0, nrow = private$rank, ncol = ncol(x)) } else { res = float(0, nrow = private$rank, ncol = ncol(x)) } if (private$with_user_item_bias) { res[1, ] = if(private$precision == "double") 1.0 else float::fl(1.0) } loss = private$solver( x, self$components, res, is_bias_last_row = FALSE, XtX = private$XtX, cnt_X = private$cnt_u, avoid_cg = TRUE ) res = t(res) if (private$precision == "double") setattr(res, "dimnames", list(colnames(x), NULL)) else setattr(res@Data, "dimnames", list(colnames(x), NULL)) res } ), private = list( solver_code = NULL, cg_steps = NULL, scorers = NULL, lambda = NULL, dynamic_lambda = FALSE, rank = NULL, non_negative = NULL, cnt_u = NULL, U = NULL, I = NULL, preprocess = NULL, feedback = NULL, precision = NULL, XtX = NULL, solver = NULL, with_user_item_bias = NULL, with_global_bias = NULL, init_user_item_bias = NULL ) ) als_implicit = function( x, X, Y, lambda, n_threads, solver_code, cg_steps, precision, with_user_item_bias, is_bias_last_row, initialize_bias_base, global_bias = 0., XtX = NULL, global_bias_base = NULL) { solver = ifelse(precision == "float", als_implicit_float, als_implicit_double) if(is.null(XtX)) { rank = ifelse(with_user_item_bias, nrow(X) - 1L, nrow(X)) ridge = fl(diag(x = lambda, nrow = rank, ncol = rank)) if (with_user_item_bias) { index_row_to_discard = ifelse(is_bias_last_row, nrow(X), 1L) XX = X[-index_row_to_discard, , drop = FALSE] } else { XX = X } XtX = tcrossprod(XX) + ridge } if (is.null(global_bias_base)) { global_bias_base = numeric() if (precision == "float") global_bias_base = float::fl(global_bias_base) } loss = solver(x, X, Y, XtX, lambda, n_threads, solver_code, cg_steps, with_user_item_bias, is_bias_last_row, global_bias, global_bias_base, initialize_bias_base) } als_explicit = function( x, X, Y, cnt_X, lambda, n_threads, solver_code, cg_steps, dynamic_lambda, precision, with_user_item_bias, is_bias_last_row) { solver = ifelse(precision == "float", als_explicit_float, als_explicit_double) loss = solver(x, X, Y, cnt_X, lambda, n_threads, solver_code, cg_steps, dynamic_lambda, with_user_item_bias, is_bias_last_row) } solver_explicit = function(x, X, Y, lambda = 0, non_negative = FALSE) { res = vector("list", ncol(x)) ridge = diag(x = lambda, nrow = nrow(X), ncol = nrow(X)) for (i in seq_len(ncol(x))) { p1 = x@p[[i]] p2 = x@p[[i + 1L]] j = p1 + seq_len(p2 - p1) x_nnz = x@x[j] ind_nnz = x@i[j] + 1L X_nnz = X[, ind_nnz, drop = F] XtX = tcrossprod(X_nnz) + ridge if (non_negative) { res[[i]] = c_nnls_double(XtX, X_nnz %*% x_nnz, 10000L, 1e-3) } else { res[[i]] = solve(XtX, X_nnz %*% x_nnz) } } res = do.call(cbind, res) res } solver_explicit_biases = function(x, X, Y, bias_index = 1L, lambda = 0, non_negative = FALSE) { ones = rep(1.0, ncol(Y)) y_bias_index = bias_index x_bias_index = setdiff(c(1, 2), y_bias_index) biases = X[x_bias_index, ] res = vector("list", ncol(x)) ridge = diag(x = lambda, nrow = nrow(X) - 1L, ncol = nrow(X) - 1L) for (i in seq_len(ncol(x))) { p1 = x@p[[i]] p2 = x@p[[i + 1L]] j = p1 + seq_len(p2 - p1) ind_nnz = x@i[j] + 1L x_nnz = x@x[j] - biases[ind_nnz] X_nnz = X[-x_bias_index, ind_nnz, drop = F] XtX = tcrossprod(X_nnz) + ridge if (non_negative) { res[[i]] = c_nnls_double(XtX, X_nnz %*% x_nnz, 10000L, 1e-3) } else { res[[i]] = solve(XtX, X_nnz %*% x_nnz) } } res = do.call(cbind, res) if (y_bias_index == 1) { res = rbind(res[1, ], ones, res[-1, ], deparse.level = 0 ) } else { res = rbind(ones, res, deparse.level = 0 ) } res }
use_logger <- function( pkg = desc::desc_get("Package", rprojroot::find_package_root_file("DESCRIPTION"))[[1]] ){ code <- sprintf( '.onLoad <- function(...){ assign( "lg", lgr::get_logger("%s"), envir = parent.env(environment()) ) }', pkg ) msg <- sprintf( "Add the following to any R file in your package (usually '%s-package.R' or 'zzz.R'):", pkg ) message("\n", msg, "\n") cat(code) invisible(code) }
context("util_tibble2raster") maptib <- util_raster2tibble(fractal_landscape) mapras <- util_tibble2raster(maptib) test_that("basic functionality", { expect_error(util_tibble2raster(maptib), NA) }) test_that("nlm_edgegradient behaves like it should", { expect_that(mapras, is_a("RasterLayer")) })
plot.QTLprof <- function(x, gen.eff = FALSE, mppData, Q.eff, QTL = NULL, type = "l", main = "QTL profile", threshold = 3, text.size = 18, ...) { if(!inherits(x, "QTLprof")){stop("'x' is not of class ", dQuote("QTLprof"))} if(!gen.eff){ chr <- x$chr pos.cM <- x$pos.cM log10pval <- x$log10pval Qprof <- data.frame(chr, pos.cM, log10pval) if(!is.null(QTL)){ if(inherits(QTL, "QTLlist")){ pos.Q <- QTL[, c(2, 4)] } else{ if(!((is.matrix(QTL)) & (dim(QTL)[2] == 2) & (is.numeric(QTL)))){ stop("'QTL' must be a two columns numeric matrix with ", "chromosome, and marker position") } pos.Q <- data.frame(QTL) colnames(pos.Q) <- c("chr", "pos.cM") } } if(is.null(QTL)){ if (type == "l") { ggplot(Qprof, aes(x = pos.cM, y = log10pval, group = chr)) + geom_line() + facet_wrap(nrow = 1, ~ chr, scales = "free_x") + geom_hline(yintercept = threshold, colour = "red") + theme_bw() + xlab("position [cM]") + ylab("-log10(p.val)") + ggtitle(main) + theme(axis.title.x = element_text(size=text.size), axis.title.y = element_text(size=text.size), axis.text.x = element_text(size=text.size), axis.text.y = element_text(size = text.size), plot.title = element_text(size=(text.size + 4)), strip.text.x = element_text(size=text.size)) } else if (type == "h") { ggplot(Qprof, aes(x = pos.cM, xend = pos.cM, y = 0, yend = log10pval, group = chr)) + geom_segment() + facet_wrap(nrow = 1, ~ chr, scales = "free_x") + geom_hline(yintercept = threshold, colour = "red") + theme_bw() + xlab("position [cM]") + ylab("-log10(p.val)") + ggtitle(main) + theme(axis.title.x = element_text(size=text.size), axis.title.y = element_text(size=text.size), axis.text.x = element_text(size=text.size), axis.text.y = element_text(size = text.size), plot.title = element_text(size=(text.size + 4)), strip.text.x = element_text(size=text.size)) } } else { if (type == "l") { ggplot(Qprof, aes(x = pos.cM, y = log10pval, group = chr)) + geom_line() + facet_wrap(nrow = 1, ~ chr, scales = "free_x") + geom_vline(aes(xintercept = pos.cM), pos.Q, linetype = "longdash", colour = "black") + geom_hline(yintercept = threshold, colour = "red") + theme_bw() + xlab("position [cM]") + ylab("-log10(p.val)") + ggtitle(main) + theme(axis.title.x = element_text(size=text.size), axis.title.y = element_text(size=text.size), axis.text.x = element_text(size=text.size), axis.text.y = element_text(size = text.size), plot.title = element_text(size=(text.size + 4)), strip.text.x = element_text(size=text.size)) } else if (type == "h") { ggplot(Qprof, aes(x = pos.cM, xend = pos.cM, y = 0, yend = log10pval, group = chr)) + geom_segment() + facet_wrap(nrow = 1, ~ chr, scales = "free_x") + geom_vline(aes(xintercept = pos.cM), pos.Q, linetype = "longdash", colour = "black") + geom_hline(yintercept = threshold, colour = "red") + theme_bw() + xlab("position [cM]") + ylab("-log10(p.val)") + ggtitle(main) + theme(axis.title.x = element_text(size=text.size), axis.title.y = element_text(size=text.size), axis.text.x = element_text(size=text.size), axis.text.y = element_text(size = text.size), plot.title = element_text(size=(text.size + 4)), strip.text.x = element_text(size=text.size)) } } } else { if(!(Q.eff %in% c("cr", "par", "anc"))){ stop("'Q.eff' must be ", dQuote("cr"), ', ', dQuote("par"), ', ', dQuote("anc"), ' or ', dQuote("biall")) } n.eff <- dim(x)[2] - 5 if(n.eff == 0) { stop("'x' does not contain any QTL p-value information. ", "Use plot.gen.eff = TRUE, when you compute the QTL profile") } if((Q.eff == "par") || (Q.eff == "anc")){ con.part <- design_connectivity(par_per_cross = mppData$par.per.cross, plot_des = FALSE) len.con <- unlist(lapply(X = con.part, FUN = function(x) length(x))) con.part <- con.part[names(sort(len.con, decreasing = FALSE))] allele_order <- c() pval <- data.frame(row.names = 1:dim(x)[1]) ref.ind <- length(con.part) + 1 for(i in seq_along(con.part)){ con.part_i <- con.part[[i]] pval_i <- x[, con.part_i] all.ref <- apply(X = pval_i, MARGIN = 2, FUN = function(x) sum(x == 1)) pval <- cbind.data.frame(pval, pval_i[, names(sort(all.ref))]) allele_ord_i <- names(sort(all.ref)) allele_ord_i <- c(paste(allele_ord_i, paste0("(c", (ref.ind-i),")"), sep = "\n")) allele_order <- c(allele_order, allele_ord_i) } x <- cbind(x[, 1:5], pval) y.names <- allele_order } if(!is.null(QTL)){ stopifnot(inherits(QTL, "QTLlist")) pos.Q <- QTL[, c(2, 4)] } z <- c(apply(X = x[, 6:dim(x)[2]], MARGIN = c(1, 2), FUN = color.code)) y <- factor(rep(1:n.eff, each = dim(x)[1])) chr <- rep(x$chr, n.eff) x.pos <- rep(x$pos.cM, n.eff) w <- tapply(X = x$pos.cM, INDEX = x$chr, FUN = function(x) c(diff(x), 1)) w <- unlist(w) w <- rep(w, n.eff) pos.cM <- x$pos.cM y_lab <- "parents" if(Q.eff == "cr") { cross.names <- unique(mppData$cross.ind) par.cross.names <- paste0("(", mppData$par.per.cross[, 2], "x", mppData$par.per.cross[, 3], ")") y.names <- paste(cross.names, par.cross.names, sep = "\n") y_lab <- "crosses" } data <- data.frame(x.pos, y, z, chr, w) if(is.null(QTL)){ pl <- ggplot(data, aes(x.pos, y, z = z)) pl + geom_tile(aes(fill = z, width = w)) + facet_wrap(nrow = 1, ~ chr, scales = "free_x") + scale_fill_gradient2(limits = c(-6, 6), low = "blue", mid = "white", high = "red") + theme_bw() + xlab("position [cM]") + ylab(y_lab) + scale_y_discrete(labels = y.names) + ggtitle(main) + theme(axis.title.x = element_text(size=text.size), axis.title.y = element_text(size=text.size), axis.text.x = element_text(size=text.size), axis.text.y = element_text(size = text.size), plot.title = element_text(size=(text.size+4)), strip.text.x = element_text(size=text.size), legend.title = element_text(size=(text.size-2)), legend.text = element_text(size=(text.size-2))) } else { pl <- ggplot(data, aes(x.pos, y, z = z)) pl + geom_tile(aes(fill = z, width = w)) + facet_wrap(nrow = 1, ~ chr, scales = "free_x") + scale_fill_gradient2(limits = c(-6, 6), low = "blue", mid = "white", high = "red") + geom_vline(aes(xintercept = pos.cM), pos.Q, linetype = "longdash") + theme_bw() + xlab("position [cM]") + ylab(y_lab) + scale_y_discrete(labels = y.names) + ggtitle(main) + theme(axis.title.x = element_text(size=text.size), axis.title.y = element_text(size=text.size), axis.text.x = element_text(size=text.size), axis.text.y = element_text(size = text.size), plot.title = element_text(size=(text.size+4)), strip.text.x = element_text(size=text.size), legend.title = element_text(size=(text.size-2)), legend.text = element_text(size=(text.size-2))) } } }
TestSet_TMTI <- function ( pvals, subset, alpha = 0.05, tau = NULL, K = NULL, earlyStop = FALSE, verbose = FALSE, gammalist = NULL, ... ) { m <- length(pvals) m2 <- length(subset) pSub <- sort(pvals[subset]) pRest <- sort(pvals[-subset]) out <- list() if (!is.null(K) & length(K) < m) { K <- rep(K, length.out = m) } pfirst <- TMTI(pSub, tau = tau, K = K[m2], gamma = gammalist[[m2]], ...) out[[1]] <- c( "p" = pfirst, "layer" = 0, "Accept" = (pfirst >= alpha) ) if (earlyStop & out[[1]][3]) { return(out[[1]][1]) } stepCounter <- 0 for (i in length(pRest):1) { stepCounter <- stepCounter + 1 if (verbose) { cat("\rStep", stepCounter, " of ", length(pRest)) } ptilde <- c(pSub, pRest[length(pRest):i]) pp <- TMTI ( ptilde, tau = tau, K = K[length(ptilde)], gamma = gammalist[[length(ptilde)]], ... ) out[[stepCounter + 1]] <- c ( "p" = pp, "layer" = stepCounter, "Accept" = (pp >= alpha) ) if (earlyStop & out[[stepCounter + 1]][3]) break } out <- do.call("rbind", out) max(out[, 1]) }
r2d <- function(radian) radian*180/pi
instRemPiFun <- function(p){ M <- nrow(p) J <- ncol(p) pi <- matrix(NA, M, J) p[,1] <- pi[,1] <- 1 - (1 - p[,1])^2 p[,2] <- 1 - (1 - p[,2])^3 p[,3] <- 1 - (1 - p[,3])^5 for(i in 2:J) { pi[,i] <- pi[, i - 1]/p[, i - 1] * (1 - p[, i - 1]) * p[, i] } return(pi) } crPiFun <- function(p) { p1 <- p[,1] p2 <- p[,2] p3 <- p[,3] cbind("001" = (1 - p1) * (1 - p2) * p3, "010" = (1 - p1) * p2 * (1 - p3), "011" = (1 - p1) * p2 * p3, "100" = p1 * (1 - p2) * (1 - p3), "101" = p1 * (1 - p2) * p3, "110" = p1 * p2 * (1 - p3), "111" = p1 * p2 * p3) } crPiFun.Mb <- function(p) { pNaive <- p[,1] pWise <- p[,3] cbind("001" = (1 - pNaive) * (1 - pNaive) * pNaive, "010" = (1 - pNaive) * pNaive * (1 - pWise), "011" = (1 - pNaive) * pNaive * pWise, "100" = pNaive * (1 - pWise) * (1 - pWise), "101" = pNaive * (1 - pWise) * pWise, "110" = pNaive * pWise * (1 - pWise), "111" = pNaive * pWise * pWise) } MhPiFun <- function(p) { mu <- qlogis(p[,1]) sig <- exp(qlogis(p[1,2])) J <- ncol(p) M <- nrow(p) il <- matrix(NA, nrow=M, ncol=7) dimnames(il) <- list(NULL, c("001","010","011","100","101","110","111")) for(i in 1:M) { il[i,1] <- integrate( function(x) { (1-plogis(mu[i]+x))*(1-plogis(mu[i]+x))*plogis(mu[i]+x)*dnorm(x,0,sig) }, lower=-Inf, upper=Inf, stop.on.error=FALSE)$value il[i,2] <- integrate( function(x) { (1-plogis(mu[i]+x))*plogis(mu[i]+x)*(1-plogis(mu[i]+x))*dnorm(x,0,sig) }, lower=-Inf, upper=Inf, stop.on.error=FALSE)$value il[i,3] <- integrate( function(x) { (1-plogis(mu[i]+x))*plogis(mu[i]+x)*plogis(mu[i]+x)*dnorm(x,0,sig) }, lower=-Inf, upper=Inf, stop.on.error=FALSE)$value il[i,4] <- integrate( function(x) { plogis(mu[i]+x)*(1-plogis(mu[i]+x))*(1-plogis(mu[i]+x))*dnorm(x,0,sig) }, lower=-Inf, upper=Inf, stop.on.error=FALSE)$value il[i,5] <- integrate( function(x) { plogis(mu[i]+x)*(1-plogis(mu[i]+x))*plogis(mu[i]+x)*dnorm(x,0,sig) }, lower=-Inf, upper=Inf, stop.on.error=FALSE)$value il[i,6] <- integrate( function(x) { plogis(mu[i]+x)*plogis(mu[i]+x)*(1-plogis(mu[i]+x))*dnorm(x,0,sig) }, lower=-Inf, upper=Inf, stop.on.error=FALSE)$value il[i,7] <- integrate( function(x) { plogis(mu[i]+x)*plogis(mu[i]+x)*plogis(mu[i]+x)*dnorm(x,0,sig) }, lower=-Inf, upper=Inf, stop.on.error=FALSE)$value } return(il) }
.extentMatrix <- function(x) { xy <- matrix(NA, nrow=5, ncol=2) xy[c(1,4),1] <- x@xmin xy[2:3,1] <- x@xmax xy[1:2,2] <- x@ymax xy[3:4,2] <- x@ymin xy[5,] <- xy[1,] return(xy) } setMethod("plot", signature(x='Extent', y='missing'), function(x, y, type='l', add=FALSE, ...) { xy <- .extentMatrix(x) if (add) { lines(xy, ...) } else { plot(xy, type=type, ...) } } )
flexrsurv.ll <- function(formula=formula(data), data=parent.frame(), knots.Bh=NULL, degree.Bh=3, Spline=c("b-spline","tp-spline","tpi-spline"), log.Bh=FALSE, bhlink=c("log", "identity"), Min_T=0, Max_T=NULL, model=c("additive","multiplicative"), rate=NULL, weights=NULL, na.action=NULL, int_meth=c("GL", "CAV_SIM", "SIM_3_8", "BOOLE", "GLM", "BANDS"), npoints=20, stept=NULL, bands=NULL, init=NULL, optim.control=list(trace=100, REPORT=1, fnscale=-1, maxit=25), optim_meth=c("BFGS", "CG", "Nelder-Mead", "L-BFGS-B", "SANN", "Brent"), vartype = c("oim", "opg", "none"), debug=FALSE ){ debug.gr <- debug.ll <- FALSE if( debug > 100000){ debug.gr <- debug%%1000 + debug%/%100000 * 1000 } if( debug > 10000){ debug.ll <- debug%%1000 + (debug%/%10000)%%10 * 1000 } debug <- debug%%1000 + (debug%/%1000)%%10 * 1000 optim.control$fnscale <- -1 vartype <- match.arg(vartype) optim_meth <- match.arg(optim_meth) int_meth <- match.arg(int_meth) if (int_meth == "BANDS" ){ int_meth = "GLM" } call <- match.call() mf <- match.call(expand.dots = FALSE) m <- match(c("formula", "data", "rate", "weights"), names(mf), 0L) if (m[1]==0) stop ("The formula argument is required.") mf <- mf[c(1L, m)] mf$drop.unused.levels <- TRUE mf[[1L]] <- quote(stats::model.frame) special <- c("NPH","NLL", "NPHNLL", "nl", "td", "nltd") Terms <- if (missing(data)){ terms(formula, specials=special) } else { terms(formula, specials=special, data = data) } mf$formula <- Terms mf <- eval(mf, sys.parent()) mt <- attr(mf, "terms") na.act <- attr(m, "na.action") if( !is.null( na.act )) { data <- data[na.act,] } intercept <- attr(mt, "intercept") Y <- model.extract(mf, "response") if (!inherits(Y, "Surv")) { stop("Response must be a survival object") } type <- attr(Y, "type") if ((ncol(Y) == 2) && (type != "right") ) { stop(gettextf("flexrsurv does not support %s type of censoring with (0, end] survival data", dQuote(type), domaine=NA)) } else if ((ncol(Y) == 3) && (type != "counting") ) { stop(gettextf("flexrsurv does not support %s type of censoring with (start, end] survival data", dQuote(type), domaine=NA)) } weights <- as.vector(model.weights(mf)) if (!is.null(weights) && !is.numeric(weights)) stop("'weights' must be a numeric vector") if (!is.null(weights) && any(weights < 0)) stop("negative weights not allowed") rate <- as.vector(model.extract(mf, "rate")) if(!is.null(rate) && !is.numeric(rate)) stop("'rate' must be a numeric vector") if (is.null(rate)){ data$rate <- 0 } else { data$rate <- rate } if(is.null(Max_T)){ Max_T <- max(Y[,1:(ncol(Y)-1)]) } if(is.null(Min_T)){ Min_T <- 0 } if(Spline=="b-spline"){ Spline_t0 <- BSplineBasis(knots=c(Min_T, knots.Bh, Max_T), degree=degree.Bh, keep.duplicates=TRUE, log=log.Bh) Spline_t<- BSplineBasis(knots=c(Min_T, knots.Bh, Max_T), degree=degree.Bh, keep.duplicates=TRUE, log=FALSE) } else if(Spline=="tp-spline" || Spline=="tpi-spline"){ Spline_t0 <-TPSplineBasis(knots=knots.Bh, degree=degree.Bh, min=Min_T, max=Max_T, log=log.Bh, type="standard") Spline_t <-TPSplineBasis(knots=knots.Bh, degree=degree.Bh, min=Min_T, max=Max_T, log=FALSE, type="standard") } list_var_LIN <- all_LIN_vars(Terms) list_var_NLL <- all_specials_vars(Terms, specials="NLL", unique = FALSE, order="formula") list_var_NPH <- all_specials_vars(Terms, specials="NPH", unique = FALSE, order="formula") list_var_NPHNLL <- all_specials_vars(Terms, specials="NPHNLL", unique = FALSE, order="formula") var_LIN_NPHNLL <- list_var_LIN %in% c(list_var_NLL, list_var_NPH, list_var_NPHNLL) var_NPH_NLL <- list_var_NPH %in% list_var_NLL var_NLL_NPHNLL <- list_var_NLL %in% list_var_NPHNLL var_NPH_NPHNLL <- list_var_NPH %in% list_var_NPHNLL des <- ReadDesignFlexrsurv(Terms=Terms, modframe=mf, data=data, rate=rate, Spline_t0=Spline_t0) if(!is.null(des$X) | !is.null(des$Z)){ allSpline_T <- c(des$Spline_XT, des$Spline_ZT) if(length(allSpline_T) > 1){ for(sb in allSpline_T){ if(!identical(sb, allSpline_T[[1]])){ stop("flexrsurv cannot handle different spline basis for time dependent effects") } } } Spline_t <-allSpline_T[[1]] } therate<-des$rate X0<-des$X0 if(!is.null(des$X)){ X<-as.matrix(des$X) Intercept_t_NPH <- rep(TRUE, length(des$XVars)) for (i in attr(des$TermsX, "specials")[["NPH"]]){ thecall <- match.call(NPH, attr(des$TermsX,"variables")[[i+1]]) Intercept_t_NPH[i] <- ifelse( length(thecall[["Intercept.t"]]) == 0 , formals(NPH)[["Intercept.t"]], thecall[["Intercept.t"]] ) } } else { X <- NULL Intercept_t_NPH <- NULL } Spline_Z <- des$Spline_Z if( !is.null(des$Z) ){ Z<-DesignMatrixNPHNLL(Z=des$Z, listsplinebasis=Spline_Z, timesplinebasis=Spline_t) } else { Z <- NULL } listinit<- list(gamma0 = init[des$coef2param$gamma0], alpha0 = init[des$coef2param$alpha0], beta0 = init[des$coef2param$beta0], alpha = init[des$coef2param$alpha], beta = init[des$coef2param$beta]) if( int_meth=="GLM" ){ if (is.null(bands)){ bands <- default_bands(Spline_t) } method <- list(int_meth=int_meth, bands=bands, optim_meth=optim_meth) } else if( int_meth == "GL"){ if (is.null(npoints)){ npoints <- 20 } method <- list(int_meth="Gauss-Legendre", npoints=npoints, optim_meth=optim_meth) } else { if (is.null(stept)){ stept <- Max_T /500 } method <- list(int_meth=int_meth, stept=stept, optim_meth=optim_meth) } if(ncol(Y)==2){ fit<-flexrsurv.ll.fit(X0=X0, X=X, Z=Z, Y=Y, expected_rate=rate, weights=weights, Spline_t0=Spline_t0, Intercept_t0=TRUE, Spline_t = Spline_t, Intercept_t_NPH=Intercept_t_NPH, bhlink=bhlink, init=listinit, optim.control=optim.control, method=method, vartype = vartype, debug=debug, debug.ll=debug.ll, debug.gr=debug.gr) } else { fit<-flexrsurv.ll.fromto.fit(X0=X0, X=X, Z=Z, Y=Y, expected_rate=rate, weights=weights, Spline_t0=Spline_t0, Intercept_t0=TRUE, Spline_t = Spline_t, Intercept_t_NPH=Intercept_t_NPH, bhlink=bhlink, init=listinit, optim.control=optim.control, method=method, vartype = vartype, debug=debug, debug.ll=debug.ll, debug.gr=debug.gr) } objfit <- fit objfit$coefficients <- fit$coefficients[des$param2coef] names(objfit$coefficients)[-(1:des$df.T0)] <- des$names_coef_XZ if( !is.null(dim(fit$var))){ objfit$var <- (fit$var[des$param2coef, ])[,des$param2coef] dimnames(objfit$var)[[1]] <- names(objfit$coefficients) dimnames(objfit$var)[[2]] <- names(objfit$coefficients) attr(objfit$var, "type") <- vartype } if( !is.null(dim(fit$informationMatrix))){ objfit$informationMatrix <- (fit$informationMatrix[des$param2coef, ])[,des$param2coef] dimnames(objfit$informationMatrix)[[1]] <- names(objfit$coefficients) dimnames(objfit$informationMatrix)[[2]] <- names(objfit$coefficients) attr(objfit$informationMatrix, "type") <- vartype } objfit$des <- des objfit$terms <- Terms objfit$mt <- mt objfit$assign <- des$assign objfit$assignList <- des$assignList objfit$na.action <- attr(m, "na.action") objfit$optim.control <- optim.control objfit$converged <- objfit$conv objfit$conv <- NULL class(objfit) <- "flexrsurv.mle" return(objfit) }
Return <- MINIF(iris$Species,"virginica",iris$Sepal.Length) expect_equal(Return,4.9)
gmult <- function(x, splits, fact) { if(!is.spam(x)) { x <- as.spam(x) } splits <- sort.int(unique(as.integer(splits))) if(splits[length(splits)] < max(dim(x))+1) { splits <- c(splits, max(dim(x))+1) } fact <- as.matrix(fact) stopifnot(dim(fact) == (length(splits)-1)) ll <- length(x@entries) if(.format.spam(x)$package == "spam64" || getOption("spam.force64")) { SS <- .format64() } else { SS <- .format32 } x@entries <- dotCall64::.C64("gmult_f", SIGNATURE = c("double", SS$signature, SS$signature, SS$signature, SS$signature, "double", SS$signature, "double"), a = x@entries, ia = x@colindices, ja = x@rowpointers, na = ll, splits = splits, fact = fact, nfact = dim(fact)[2], out = dotCall64::numeric_dc(ll), INTENT = c( "r", "r", "r", "r", "r", "r", "r", "rw"), NAOK=getOption("spam.NAOK"), PACKAGE = SS$package)$out return(x) }
rigidTransform <- function( theta, p0, N, cen ) { if(missing(N)) N <- dim(p0)[1] p0cen <- p0 - cen r <- theta[ 3 ] p0cen <- cbind(cos(r) * p0cen[, 1] - sin(r) * p0cen[, 2], sin(r) * p0cen[, 1] + cos(r) * p0cen[, 2]) res <- p0cen + matrix(theta[1:2], N, 2, byrow = TRUE) + cen return(res) } rigider <- function(x1, x0, p0, init = c(0, 0, 0), type = c("regular", "fast"), translate = TRUE, rotate = FALSE, loss, loss.args = NULL, interp = "bicubic", stages = TRUE, verbose = FALSE, ...) { if(stages && !(translate & rotate)) stages <- FALSE if(!translate && !rotate) stop("rigider: one of translate or rotate must be true.") if(verbose) begin.tiid <- Sys.time() theCall <- match.call() out <- list() out$call <- theCall if(missing(x1)) stop("rigider: x1 argument is missing.") if(missing(x0)) stop("rigider: x0 argument is missing.") if(missing(p0)) stop("rigider: p0 argument is missing.") if(missing(loss)) loss <- "QlossRigid" type <- tolower(type) type <- match.arg(type) bigN <- dim(p0)[ 1 ] field.center <- matrix(colMeans(p0[x1 > 0,], na.rm = TRUE), bigN, 2, byrow = TRUE) if(type == "regular") { xdim <- dim(x1) if(any(xdim != dim(x0))) stop("rigider: x1 and x0 must have the same dimension.") outpar <- numeric(0) if(missing(init)) { if(verbose) cat("Initial values not passed. Determining good starting values now.\n") hold1 <- imomenter(x1, loc = p0) hold0 <- imomenter(x0, loc = p0) tr <- hold1$centroid - hold0$centroid if(rotate) init <- c(tr, hold1$orientation.angle - hold0$orientation.angle) else init <- c(tr, 0) if(verbose) { cat( "initial values:\n" ) print( init ) } } if(!stages && (!translate || !rotate)) stages <- TRUE if(stages) { if(translate) { ofun <- function(theta, p0, x1, x0, loss, loss.args, interp, N, cen, xdim, tr, ...) { if(missing(tr)) tr <- NULL if(any(c(theta[ 1 ] > xdim[ 1 ] / 2 + 1, theta[ 2 ] > xdim[ 2 ] / 2 + 1))) return(1e16) p1 <- rigidTransform(theta = c(theta, 0), p0 = p0, N = N, cen = cen) y1 <- Fint2d( X = x1, Ws = p1, s = p0, method = interp ) res <- do.call(loss, c(list(y1 = y1, x0 = x0, p1 = p1, p0 = p0), loss.args)) return(res) } if(verbose) cat("Optimizing translation.\n") res = nlminb( init[ 1:2 ], ofun, p0 = p0, x1 = x1, x0 = x0, loss = loss, loss.args = loss.args, interp = interp, N = bigN, cen = field.center, xdim = xdim, ... ) if(verbose) cat("Optimal translation found to be: ", res$par, "\nwhere loss value is: ", res$value, "\n") p1 <- rigidTransform(theta = c(res$par, init[ 3 ]), p0 = p0, N = bigN, cen = field.center) y1 <- Fint2d( X = x1, Ws = p1, s = p0, method = interp ) res$p1 <- p1 out$x1.translated <- y1 outpar <- res$par outval = res$objective } if(rotate) { if(translate) init2 <- c(res$par, init[ 3 ]) else init2 <- init ofun <- function(theta, p0, x1, x0, loss, loss.args, interp, N, cen, xdim, tr, ...) { if((theta > pi / 2) || (theta < - pi / 2)) return(1e16) p1 <- rigidTransform(theta = c(tr, theta), p0 = p0, N = N, cen = cen) y1 <- Fint2d(X = x1, Ws = p1, s = p0, method = interp) res <- do.call(loss, c(list(y1 = y1, x0 = x0, p1 = p1, p0 = p0), loss.args)) return(res) } if(verbose) cat("Optimizing rotation.\n") res2 = nlminb( init2[ 3 ], ofun, p0 = p0, x1 = x1, x0 = x0, loss = loss, loss.args = loss.args, interp = interp, N = bigN, cen = field.center, xdim = xdim, tr = init2[ 1:2 ], ... ) if(verbose) cat("Optimal rotation found to be: ", res2$par, "\nwhere loss value is: ", res2$value, "\n") p1 <- rigidTransform(theta = c(init2[ 1:2 ], res2$par), p0 = p0, N = bigN, cen = field.center) y1 <- Fint2d(X = x1, Ws = p1, s = p0, method = interp) outpar <- c(outpar, res2$par) outval <- res2$objective } } else { ofun <- function(theta, p0, x1, x0, loss, loss.args, interp, N, cen, xdim, tr, ...) { if(missing(tr)) tr <- NULL if(any(c(theta[ 1 ] > xdim[ 1 ] / 2 + 1, theta[ 2 ] > xdim[ 2 ] / 2 + 1))) return(1e16) if((theta > pi / 2) || (theta < - pi / 2)) return(1e16) p1 <- rigidTransform(theta = theta, p0 = p0, N = N, cen = cen) y1 <- Fint2d(X = x1, Ws = p1, s = p0, method = interp) res <- do.call(loss, c(list(y1 = y1, x0 = x0, p1 = p1, p0 = p0), loss.args)) return(res) } if(verbose) cat("Optimizing rigid transformation.\n") res <- optim(init, ofun, p0 = p0, x1 = x1, x0 = x0, loss = loss, loss.args = loss.args, interp = interp, N = bigN, cen = field.center, xdim = xdim, ...) res = nlminb( init, ofun, p0 = p0, x1 = x1, x0 = x0, loss = loss, loss.args = loss.args, interp = interp, N = bigN, cen = field.center, xdim = xdim, ... ) if(verbose) cat("Optimal transformation found to be: ", res$par, "\nwhere loss value is: ", res$value, "\n") p1 <- rigidTransform(theta = res$par, p0 = p0, N = bigN, cen = field.center) outpar <- res$par outval <- res$val } if(translate && !rotate) names(outpar) <- c("x", "y") else if(!translate && rotate) names(outpar) <- "angle" else names(outpar) <- c("x", "y", "angle") if(stages) { if(translate) out$translation.only <- res if(rotate) out$rotate <- res2 } else out$optim.object <- res } else if(type == "fast") { hold1 <- imomenter(x1, loc = p0) hold0 <- imomenter(x0, loc = p0) if(translate) tr <- hold1$centroid - hold0$centroid if(rotate) rot <- hold1$orientation.angle - hold0$orientation.angle if(translate && rotate) { outpar <- inpar <- c(tr, rot) names(outpar) <- c("x", "y", "theta") } else if(!translate && rotate) { outpar <- rot inpar <- c(0, 0, rot) names(outpar) <- "theta" } else if(translate && !rotate) { outpar <- tr names(outpar) <- c("x", "y") inpar <- c(tr, 0) } if(stages) { p1.tr <- rigidTransform(theta = tr, p0 = p0, N = bigN, cen = field.center) y1.tr <- Fint2d(X = x1, Ws = p1.tr, s = p0, method = interp) out$x1.translated <- y1.tr } p1 <- rigidTransform(theta = inpar, p0 = p0, N = bigN, cen = field.center) } y1 <- Fint2d(X = x1, Ws = p1, s = p0, method = interp) out$type <- type if(type == "regular") { out$initial <- init out$value <- outval out$optim.args <- list(...) out$loss <- list(name = loss, args = loss.args) } out$interp.method <- interp out$par <- outpar out$x0 <- x0 out$x1 <- x1 out$p0 <- p0 out$p1 <- p1 out$x1.transformed <- y1 class(out) <- "rigided" if(verbose) print(Sys.time() - begin.tiid) return(out) } plot.rigided <- function(x, ...) { zl <- range(c(c(x$x0), c(x$x1)), finite = TRUE) par(mfrow = c(2, 3)) image(x$x0, col = c("gray", tim.colors(64)), zlim = zl, main = "x0", ...) image(x$x1, col = c("gray", tim.colors(64)), zlim = zl, main = "x1", ...) image.plot(x$x1.transformed, col = c("gray", tim.colors(64)), zlim = zl, main = "x1 Rigidly Transformed", ...) plot(1, type = "n", axes = FALSE, xlab = "", ylab = "") image.plot(x$x1 - x$x0, col = c("gray", tim.colors(64)), main = "x1 - x0", ...) image.plot(x$x1.transformed - x$x0, col = c("gray", tim.colors(64)), main = "x1 rigidly transformed - x0", ...) invisible() } print.rigided <- function(x, ...) { print(x$call) cat("\n\n") cat("Optimal rigid transformation: ", x$par, "\n") cat("Objective function value = ", x$value, "\n") cat("\n\n") if(!is.null(x$translation.only)) cat("Translation convergence code (see ?nlminb for details): ", x$translation.only$convergence, "\n") if(!is.null(x$rotate)) cat("Rotation convergence code (see ?nlminb for details): ", x$rotate$convergence, "\n") if(!is.null(x$optim.object)) cat("Convergence code (see ?nlminb for details): ", x$optim.object$convergence, "\n") invisible() } summary.rigided <- function(object, ...) { print(object) cat("\n\n") MSE0 <- sum(colSums((object$x1 - object$x0)^2, na.rm = TRUE), na.rm = TRUE) MSE1 <- sum(colSums((object$x1.transformed - object$x0)^2, na.rm = TRUE), na.rm = TRUE) res <- ((MSE0 - MSE1) / MSE0) * 100 out <- c(MSE0, MSE1, res) names(out) <- c("MSE0", "MSE1", "% error reduction") print(out) invisible(out) }
erptest <- function (dta, design, design0 = NULL, method = c("BH", "holm", "hochberg","hommel", "bonferroni", "BY", "fdr", "none"), alpha = 0.05, pi0 = 1,nbs=NULL) { method = match.arg(method,choices=c("BH", "holm", "hochberg","hommel", "bonferroni", "BY", "fdr", "none")) if (is.null(design0)) design0 = matrix(1, nrow = nrow(design), ncol = 1) erpdta = as.matrix(dta) design = as.matrix(design) design0 = as.matrix(design0) if (typeof(erpdta) != "double") stop("ERPs should be of type double") if (nrow(erpdta) != nrow(design)) stop("dta and design should have the same number of rows") if (nrow(erpdta) != nrow(design0)) stop("dta and design0 should have the same number of rows") if (ncol(design) <= ncol(design0)) stop("design0 should have fewer columns than design") idsignal = NULL for (j in 1:ncol(design)) { cj = apply(design0, 2, function(x, y) all(x == y), y = design[,j]) if (all(!cj)) idsignal = c(idsignal, j) } if (length(idsignal) < (ncol(design) - ncol(design0))) stop("the null model design0 should be nested into the non-null model design") if (typeof(alpha) != "double") stop("alpha should be of type double") if ((alpha <= 0) | (alpha >= 1)) stop("alpha should be in ]0,1[, typically 0.05") if (typeof(pi0) != "double") stop("pi0 should be of type double") if ((pi0 <= 0) | (pi0 > 1)) stop("pi0 should be in ]0,1]") n = nrow(erpdta) T = ncol(erpdta) if (!is.null(nbs)) if ((nbs <= 2) | (nbs > T)) stop("The number nbs of B-splines should be an integer value in [3,T[") if (is.null(nbs)) nbs=0 svd.design = fast.svd(design) if (ncol(design)==1) itxx = (svd.design$v%*%t(svd.design$v))/(svd.design$d[1]^2) if (ncol(design)>1) itxx = svd.design$v%*%diag(1/svd.design$d^2)%*%t(svd.design$v) svd.design0 = fast.svd(design0) Proj = svd.design$u%*%t(svd.design$u) Proj0 = svd.design0$u%*%t(svd.design0$u) if (ncol(design)==1) pdesign = (svd.design$v%*%t(svd.design$u))/(svd.design$d[1]) if (ncol(design)>1) pdesign = svd.design$v%*%diag(1/svd.design$d)%*%t(svd.design$u) rdf1 = nrow(design) - length(svd.design$d) rdf0 = nrow(design0) - length(svd.design0$d) coeff = pdesign %*% erpdta rownames(coeff) = colnames(design) if (nbs==0) { beta = coeff[idsignal, ,drop=FALSE] rownames(beta) = colnames(design)[idsignal] res1 = erpdta - Proj %*% erpdta rss1 = as.vector(t(rep(1, n)) %*% res1^2) res0 = erpdta - Proj0 %*% erpdta rss0 = as.vector(t(rep(1, n)) %*% res0^2) fstat = ((rss0 - rss1)/(rdf0 - rdf1))/(rss1/rdf1) pval = pf(fstat, df1 = rdf0 - rdf1, df2 = rdf1, lower.tail = FALSE) sigma2 = mean((rss1/rdf1)) if (length(idsignal)>1) sdsignal = sqrt(sigma2)*sqrt(diag(itxx[idsignal,idsignal]))%*%t(rep(1,T)) if (length(idsignal)==1) sdsignal = sqrt(sigma2)*sqrt(itxx[idsignal,idsignal])*t(rep(1,T)) } if (nbs>0) { if (ncol(design0)==1) pdesign0 = (svd.design0$v%*%t(svd.design0$u))/(svd.design0$d[1]) if (ncol(design0)>1) pdesign0 = svd.design0$v%*%diag(1/svd.design0$d)%*%t(svd.design0$u) phi = bs(1:T,df=nbs) beta = coeff svd.phi = fast.svd(phi) pphi = svd.phi$v%*%diag(1/svd.phi$d)%*%t(svd.phi$u) b = beta%*%t(pphi) fit = design%*%b%*%t(phi) rdf1 = n-length(svd.design$d) res1 = erpdta-fit beta0 = (pdesign0 %*% erpdta) b0 = beta0%*%t(pphi) fit0 = design0%*%b0%*%t(phi) rdf0 = n-length(svd.design0$d) res0 = erpdta-fit0 rss1 = as.vector(t(rep(1,n))%*%res1^2) rss0 = as.vector(t(rep(1,n))%*%res0^2) fstat = ((rss0 - rss1)/(rdf0 - rdf1))/(rss1/rdf1) pval = pf(fstat, df1 = rdf0 - rdf1, df2 = rdf1, lower.tail = FALSE) trSm = nbs*length(svd.design$d) trSm2 = nbs*length(svd.design$d) rdf = (T*n-2*trSm+trSm2)/T sigma2 = mean((rss1/rdf)) beta = (b%*%t(phi))[idsignal,,drop=FALSE] itphiphi = svd.phi$v%*%diag(1/svd.phi$d^2)%*%t(svd.phi$v) vbeta = sigma2*kronecker(itphiphi,itxx) lvb = lapply(1:ncol(design),function(i,phi,vbeta,nbs,d) phi%*%vbeta[seq(i,d*nbs,d),seq(i,d*nbs,d)]%*%t(phi), phi=phi,vbeta=vbeta,nbs=nbs,d=ncol(design)) lsdsignal = lapply(lvb,function(vb) sqrt(diag(vb))) sdsignal = matrix(unlist(lsdsignal),nrow=ncol(design),byrow=TRUE) sdsignal = sdsignal[idsignal,,drop=FALSE] } rownames(beta) = colnames(design)[idsignal] rownames(sdsignal) = colnames(design)[idsignal] if (is.null(pi0)) pi0 = pval.estimate.eta0(pval, diagnostic.plot = FALSE) correctedpval = pi0 * p.adjust(pval, method = method) significant = which(correctedpval <= alpha) test = fstat r2 = (1 - 1/(1 + fstat * ((rdf0 - rdf1)/rdf1))) if (length(idsignal)==1) test = sign(beta[1,])*sqrt(fstat) return(list(pval = pval, correctedpval = correctedpval, significant = significant, pi0 = pi0, test = test, df1 = rdf1, df0 = rdf0, signal = beta,sd=sqrt(rss1/rdf1), r2 = r2,sdsignal=sdsignal,residuals=res1,coef=coeff)) }
derRegPIV <- function(Pvv, Pvz, Pvy){ dPvv <- derPvv(Pvv, Pvz, Pvy) dPvz <- derPvz(Pvv, Pvz, Pvy) dPvy <- derPvy(Pvv, Pvz, Pvy) return(list( deriv = rbind(dPvv$deriv, dPvz$deriv, dPvy$deriv), names = rbind(dPvv$names, dPvz$names, dPvy$names)) ) } derPvv <- function(Pvv, Pvz, Pvy){ if(dim(Pvv)[1] == 1){ deriv = NULL names = NULL } else { U1 <- solve(t(Pvz) %*% solve(Pvv) %*% Pvz) U2 <- t(Pvz) %*% solve(Pvv) %*% Pvy TERM1 <- kronecker(t(solve(Pvv)%*%Pvz%*%U1 %*%U2),U1 %*% t(Pvz)%*%solve(Pvv)) TERM2 <- kronecker(t(solve(Pvv)%*%Pvy),U1 %*% t(Pvz)%*%solve(Pvv)) deriv <- t((TERM1 - TERM2) %*% buildDuplicator(nrow(Pvv))) names <- t(utils::combn(colnames(Pvv), 2)) } return(list(deriv = deriv, names = names)) } derPvz <- function(Pvv, Pvz, Pvy){ if(identical(Pvv,Pvz)){ deriv = NULL names = NULL } else { U <- solve(t(Pvz) %*% solve(Pvv) %*% Pvz) TH <- U %*% t(Pvz) %*% solve(Pvv) %*% Pvy ER <- (Pvy) - (Pvz %*% TH) deriv <- t(kronecker(U, t(solve(Pvv) %*% ER)) - kronecker(t(TH), U %*% t(Pvz) %*% solve(Pvv))) names <- as.matrix(expand.grid(rownames(Pvz),colnames(Pvz))) } return(list(deriv = deriv, names = names)) } derPvy <- function(Pvv, Pvz, Pvy){ deriv <- t(solve(t(Pvz) %*% solve(Pvv) %*% Pvz) %*% t(Pvz) %*% solve(Pvv)) names <- as.matrix(expand.grid(rownames(Pvy),colnames(Pvy))) return(list(deriv = deriv, names = names)) } buildCategoricalK <- function(eq, mat){ eq$regDerivatives <- derRegPIV( mat[eq$MIIVs, eq$MIIVs, drop = FALSE], mat[eq$MIIVs, eq$IVobs, drop = FALSE], mat[eq$MIIVs, eq$DVobs, drop = FALSE] ) acmPos <- apply(t(utils::combn(colnames(mat), 2)), 2, function(x){ match(x, colnames(mat)) }) acmPos <- cbind(acmPos, c(1:nrow(acmPos))) reg.varID <- rbind(apply(eq$regDerivatives$names, 2, function(x){ match(x, colnames(mat)) })) Var1 <- NULL; Var2 <- NULL reg.varID <- transform(reg.varID, min = pmin(Var1, Var2), max = pmax(Var1, Var2))[,-c(1:2)] reg.varID$order <- seq(1:nrow(reg.varID)) posInfo <- merge(reg.varID, acmPos, by=c(1,2)) posInfo <- posInfo[order(posInfo$order), ] rowK <- matrix(0, ncol(eq$regDerivatives$deriv), ncol(utils::combn(colnames(mat), 2))) rowK[,posInfo[,4]] <- t(eq$regDerivatives$deriv) rowK }
person_external_ids <- function(api_key, id){ url <- fromJSON(GET(url=paste("http://api.themoviedb.org/3/person/", id, "/external_ids?api_key=", api_key, sep=""))$url) return(url) }
simgraph_graph <- function(result, nsims = 10, labls = TRUE, steps = TRUE, moves = TRUE, shadows = TRUE, kinship = NULL, show_area = TRUE, centred = FALSE, pinwheel = FALSE, scattered = FALSE, lengths = TRUE, lengthlabs = TRUE, histogram = FALSE, binwidth = posigma / 5, freqpoly = FALSE) { posigma <- result[1,]$posigma dims <- result[1,]$dims if (is.null(kinship)) kinship <- result[1,]$kinship if (nsims > nrow(result)){ message(paste0("Too few families in datasource; reducing nsims to datasource maximum (", nrow(result), ").")) nsims <- nrow(result) } if (pinwheel == TRUE | scattered == TRUE) { centred <- TRUE } if (centred == TRUE) { show_area <- FALSE } if (pinwheel == TRUE & nsims > 50) { labls <- FALSE } result <- slice_head(result, n = nsims) f0x <- result$f0x f0y <- result$f0y f1ax <- result$f1ax f1ay <- result$f1ay f1bx <- result$f1bx f1by <- result$f1by f1cx <- result$f1cx f1cy <- result$f1cy f2ax <- result$f2ax f2ay <- result$f2ay f2bx <- result$f2bx f2by <- result$f2by f3ax <- result$f3ax f3ay <- result$f3ay f3bx <- result$f3bx f3by <- result$f3by if (centred == TRUE) { f1ax <- f1ax - f0x f1ay <- f1ay - f0y f1bx <- f1bx - f0x f1by <- f1by - f0y f1cx <- f1cx - f0x f1cy <- f1cy - f0y f2ax <- f2ax - f0x f2ay <- f2ay - f0y f2bx <- f2bx - f0x f2by <- f2by - f0y f3ax <- f3ax - f0x f3ay <- f3ay - f0y f3bx <- f3bx - f0x f3by <- f3by - f0y f0x <- f0x - f0x f0y <- f0y - f0y } if (kinship == "PO") { k1x <- f0x k1y <- f0y k2x <- f1ax k2y <- f1ay } if (kinship == "FS" | kinship == "HS") { k1x <- f1ax k1y <- f1ay k2x <- f1bx k2y <- f1by } if (kinship == "AV" | kinship == "HAV") { k1x <- f2ax k1y <- f2ay k2x <- f1bx k2y <- f1by } if (kinship == "GG") { k1x <- f0x k1y <- f0y k2x <- f2ax k2y <- f2ay } if (kinship == "1C") { k1x <- f2ax k1y <- f2ay k2x <- f2bx k2y <- f2by } if (kinship == "GGG") { k1x <- f0x k1y <- f0y k2x <- f3ax k2y <- f3ay } if (kinship == "GAV") { k1x <- f3ax k1y <- f3ay k2x <- f1bx k2y <- f1by } if (kinship == "1C1") { k1x <- f3ax k1y <- f3ay k2x <- f2bx k2y <- f2by } if (kinship == "2C") { k1x <- f3ax k1y <- f3ay k2x <- f3bx k2y <- f3by } if (pinwheel == TRUE | scattered == TRUE) { k1x <- k1x - k1x k1y <- k1y - k1y k2x <- k2x - k1x k2y <- k2y - k1y } if (pinwheel == TRUE & nsims > 50) { labls <- FALSE } kindist <- round(sqrt((k1x - k2x)^2 + (k1y - k2y)^2), digits = 1) kinmidx <- (k1x + k2x) / 2 kinmidy <- (k1y + k2y) / 2 result <- tibble( f0x = f0x, f0y = f0y, f1ax = f1ax, f1ay = f1ay, f1bx = f1bx, f1by = f1by, f1cx = f1cx, f1cy = f1cy, f2ax = f2ax, f2ay = f2ay, f2bx = f2bx, f2by = f2by, f3ax = f3ax, f3ay = f3ay, f3bx = f3bx, f3by = f3by, kindist = kindist, kinmidx = kinmidx, kinmidy = kinmidy, k1x = k1x, k1y = k1y, k2x = k2x, k2y = k2y ) arr <- arrow(length = unit(0.05, "inches"), type = "closed") rectgrid <- tibble(x = c(0, 0, dims, dims), xend = c(0, dims, dims, 0), y = c(0, dims, dims, 0), yend = c(dims, dims, 0, 0)) ggp <- ggplot(result[1:nsims, ]) + aes(x = .data$f0x, y = .data$f0y, xend = .data$f1ax, yend = .data$f1ay) if (histogram == TRUE) { ggp <- ggplot(result[1:nsims, ]) + aes(x = .data$kindist) if (freqpoly == FALSE) { ggp <- ggp + geom_histogram(fill = "white", colour = "black", binwidth = binwidth) } if (freqpoly == TRUE) { ggp <- ggp + geom_freqpoly(colour = "grey10", size = 0.75, binwidth = binwidth) } ggp <- ggp + theme_bw() + xlab("Separation (metres)") + ylab("Count") + ggtitle("Kin Dispersal Histogram", subtitle = paste0("S=", posigma, " N=", nsims, " Category: ", kinship)) ggp <- ggp + theme( axis.title = element_text(size = 16), plot.title = element_text(hjust = 0.5, size = 20), legend.title = element_text(size = 14), legend.text = element_text(size = 12), legend.box.background = element_rect(color = "black", linetype = 1, colour = "black") ) return(ggp) } if (pinwheel == TRUE) { ggp <- ggp + geom_segment( mapping = aes(x = .data$k1x, y = .data$k1y, xend = .data$k2x, yend = .data$k2y), colour = "black", linetype = 1, alpha = 0.7 ) if (labls != FALSE & lengthlabs != FALSE) { ggp <- ggp + geom_label_repel( mapping = aes(x = .data$k2x, y = .data$k2y, label = paste(.data$kindist, "m")), colour = "black", size = 3, hjust = 0.5, vjust = 0.5, alpha = 1, box.padding = unit(0.01, "lines"), label.padding = unit(0.1, "line"), fontface = "bold" ) } ggp <- ggp + coord_fixed() + theme_bw() + xlab("Metres (x)") + ylab("Metres (y)") + ggtitle(paste0("Kin Dispersal: sigma ", posigma, "m (pinwheel)"), subtitle = paste("Kin Category:", kinship)) ggp <- ggp + theme( axis.title = element_text(size = 16), plot.title = element_text(hjust = 0.5, size = 20), legend.title = element_text(size = 14), legend.text = element_text(size = 12), legend.box.background = element_rect(color = "black", linetype = 1, colour = "black") ) return(ggp) } if (scattered == TRUE) { ggp <- ggp + geom_point( mapping = aes(x = .data$k2x, y = .data$k2y), colour = "black", alpha = 0.7 ) ggp <- ggp + coord_fixed() + theme_bw() + xlab("Metres (x)") + ylab("Metres (y)") + ggtitle(paste0("Kin Dispersal: sigma ", posigma, "m (scatter)"), subtitle = paste("Kin Category:", kinship)) ggp <- ggp + theme( axis.title = element_text(size = 16), plot.title = element_text(hjust = 0.5, size = 20), legend.title = element_text(size = 14), legend.text = element_text(size = 12), legend.box.background = element_rect(color = "black", linetype = 1, colour = "black") ) return(ggp) } if (show_area == TRUE) { ggp <- ggp + geom_segment(data = rectgrid, mapping = aes(x = .data$x, y = .data$y, xend = .data$xend, yend = .data$yend), linetype = 1, alpha = 0.5) } if (steps == TRUE) { if (shadows == TRUE) { ggp <- ggp + geom_segment(colour = "black", alpha = 0.5, linetype = 3) if (kinship %in% c("FS", "HS", "AV", "HAV", "1C", "1C1", "2C", "GAV")) { ggp <- ggp + geom_segment(mapping = aes(xend = .data$f1bx, yend = .data$f1by), colour = "black", alpha = 0.5, linetype = 3) } if (kinship %in% c("AV", "GG", "HAV", "GGG", "1C", "1C1", "2C", "GAV")) { ggp <- ggp + geom_segment( mapping = aes(x = .data$f1ax, y = .data$f1ay, xend = .data$f2ax, yend = .data$f2ay), alpha = 0.5, linetype = 3 ) } if (kinship %in% c("1C", "1C1", "2C")) { ggp <- ggp + geom_segment( mapping = aes(x = .data$f1bx, y = .data$f1by, xend = .data$f2bx, yend = .data$f2by), alpha = 0.5, linetype = 3 ) } if (kinship %in% c("GGG", "1C1", "2C", "GAV")) { ggp <- ggp + geom_segment( mapping = aes(x = .data$f2ax, y = .data$f2ay, xend = .data$f3ax, yend = .data$f3ay), alpha = 0.5, linetype = 3 ) } if (kinship %in% c("2C")) { ggp <- ggp + geom_segment( mapping = aes(x = .data$f2bx, y = .data$f2by, xend = .data$f3bx, yend = .data$f3by), linetype = 3, alpha = 0.5 ) } } if (moves == TRUE) { ggp <- ggp + geom_curve(mapping = aes(colour = "black"), alpha = 0.7, linetype = 1, arrow = arr) if (kinship %in% c("FS", "HS", "AV", "HAV", "1C", "1C1", "2C", "GAV")) { ggp <- ggp + geom_curve(mapping = aes(xend = .data$f1bx, yend = .data$f1by, colour = "black"), alpha = 0.7, linetype = 1, arrow = arr) } if (kinship %in% c("AV", "GG", "HAV", "GGG", "1C", "1C1", "2C", "GAV")) { ggp <- ggp + geom_curve( mapping = aes(x = .data$f1ax, y = .data$f1ay, xend = .data$f2ax, yend = .data$f2ay, colour = "green4"), alpha = 0.9, arrow = arr, linetype = 1 ) } if (kinship %in% c("1C", "1C1", "2C")) { ggp <- ggp + geom_curve( mapping = aes(x = .data$f1bx, y = .data$f1by, xend = .data$f2bx, yend = .data$f2by, colour = "green4"), alpha = 0.9, linetype = 1, arrow = arr ) } if (kinship %in% c("GGG", "1C1", "2C", "GAV")) { ggp <- ggp + geom_curve( mapping = aes(x = .data$f2ax, y = .data$f2ay, xend = .data$f3ax, yend = .data$f3ay, colour = "purple"), arrow = arr, linetype = 1, alpha = 0.9 ) } if (kinship %in% c("2C")) { ggp <- ggp + geom_curve( mapping = aes(x = .data$f2bx, y = .data$f2by, xend = .data$f3bx, yend = .data$f3by, colour = "purple"), linetype = 1, alpha = 0.9, arrow = arr ) } } ggp <- ggp + geom_point(alpha = 1, size = 2) } if (lengths == TRUE) { if (centred == TRUE) { kls <- 0.75 klt <- 5 } if (centred == FALSE) { kls <- 0.5 klt <- 2 } ggp <- ggp + geom_segment( mapping = aes(x = .data$k1x, y = .data$k1y, xend = .data$k2x, yend = .data$k2y), colour = "black", linetype = klt, size = kls ) } if (labls == TRUE & steps == TRUE) { if (centred != TRUE) { ggp <- ggp + geom_label_repel( label = "0", size = 2, label.padding = unit(0.1, "lines"), box.padding = unit(0.01, "lines") ) } if (centred == TRUE) { ggp <- ggp + geom_label_repel( data = result[1, ], label = "0", size = 2, label.padding = unit(0.1, "lines"), box.padding = unit(0.01, "lines") ) } if (kinship %in% c("PO", "FS", "HS", "AV", "GG", "HAV", "GGG", "1C", "1C1", "2C", "GAV")) { ggp <- ggp + geom_label_repel( mapping = aes(x = .data$f1ax, y = .data$f1ay), alpha = 0.7, colour = "black", label = "1", size = 2, label.padding = unit(0.1, "lines"), box.padding = unit(0.01, "lines") ) } if (kinship %in% c("FS", "HS", "AV", "HAV", "1C", "1C1", "2C", "GAV")) { ggp <- ggp + geom_label_repel( mapping = aes(x = .data$f1bx, y = .data$f1by), alpha = 0.7, colour = "black", label = "1", size = 2, label.padding = unit(0.1, "lines"), box.padding = unit(0.01, "lines") ) } if (kinship %in% c("AV", "GG", "HAV", "GGG", "1C", "1C1", "2C", "GAV")) { ggp <- ggp + geom_label_repel( mapping = aes(x = .data$f2ax, y = .data$f2ay), alpha = 0.7, colour = "green4", label = "2", size = 2, label.padding = unit(0.1, "lines"), box.padding = unit(0.01, "lines") ) } if (kinship %in% c("1C", "1C1", "2C")) { ggp <- ggp + geom_label_repel( mapping = aes(x = .data$f2bx, y = .data$f2by), alpha = 0.7, colour = "green4", label = "2", size = 2, label.padding = unit(0.1, "lines"), box.padding = unit(0.01, "lines") ) } if (kinship %in% c("GGG", "1C1", "2C", "GAV")) { ggp <- ggp + geom_label_repel( mapping = aes(x = .data$f3ax, y = .data$f3ay), alpha = 0.7, colour = "purple", label = "3", size = 2, label.padding = unit(0.1, "lines"), box.padding = unit(0.1, "lines") ) } if (kinship %in% c("2C")) { ggp <- ggp + geom_label_repel( mapping = aes(x = .data$f3bx, y = .data$f3by), alpha = 0.7, colour = "purple", label = "3", size = 2, label.padding = unit(0.1, "lines"), box.padding = unit(0.01, "lines") ) } } if (lengths == TRUE & lengthlabs == TRUE) { ggp <- ggp + geom_label_repel( mapping = aes(x = .data$kinmidx, y = .data$kinmidy, label = paste(.data$kindist, "m")), colour = "black", size = 3, hjust = 0.5, vjust = 0.5, alpha = 1, box.padding = unit(0.01, "lines"), label.padding = unit(0.1, "line"), fontface = "bold" ) } ggp <- ggp + coord_fixed() + theme_bw() + xlab("Metres (x)") + ylab("Metres (y)") + ggtitle(paste0("Kin Dispersal: sigma ", posigma, "m"), subtitle = paste("Kin Category:", kinship)) if (steps == TRUE & (labls == TRUE | moves == TRUE)) { ggp <- ggp + scale_colour_identity( labels = c("F0 -> F1", "F1 -> F2", "F2 -> F3"), breaks = c("black", "green4", "purple"), guide = guide_legend(title = "Dispersal Generation", override.aes = list(size = 1)) ) } ggp <- ggp + theme( axis.title = element_text(size = 16), plot.title = element_text(hjust = 0.5, size = 20), legend.title = element_text(size = 14), legend.text = element_text(size = 12), legend.box.background = element_rect(color = "black", linetype = 1, colour = "black") ) return(ggp) } simgraph_basic <- function(result, nsims = 10, labls = F, steps = T, moves = T, shadows = F, show_area = T, kinship = "2C", lengths = T, lengthlabs = T) { return(simgraph_graph(result, nsims = nsims, labls = labls, steps = steps, moves = moves, shadows = shadows, show_area = show_area, kinship = kinship, lengths = lengths, lengthlabs = lengthlabs )) } simgraph_centred_graph <- function(result, nsims = 5, labls = F, steps = T, moves = T, shadows = F, show_area = T, kinship = "2C", lengths = T, lengthlabs = F) { return(simgraph_graph(result, nsims = nsims, labls = labls, steps = steps, moves = moves, shadows = shadows, show_area = show_area, kinship = kinship, lengths = lengths, lengthlabs = lengthlabs, centred = T )) } simgraph_pinwheel <- function(result, nsims = 25, labls = T, kinship = "2C") { return(simgraph_graph(result, nsims = nsims, labls = labls, kinship = kinship, pinwheel = TRUE)) } simgraph_scatter <- function(result, nsims = 500, kinship = "2C") { return(simgraph_graph(result, nsims = nsims, kinship = kinship, scattered = TRUE)) } simgraph_indv <- function(result, scalefactor = 4, scaled = T, labls = F, steps = T, moves = T, shadows = F, show_area = T, kinship = "2C", lengths = T, lengthlabs = T) { posigma <- result[1,]$posigma newtitle <- paste0(kinship, " Dispersal") newsubtitle <- paste0("Sigma: ", posigma, "m") if (scaled == TRUE) { return(simgraph_graph(result, nsims = 1, labls = labls, steps = steps, moves = moves, shadows = shadows, show_area = show_area, kinship = kinship, lengths = lengths, lengthlabs = lengthlabs, centred = T ) + coord_fixed( xlim = c(-scalefactor * posigma, scalefactor * posigma), ylim = c(-scalefactor * posigma, scalefactor * posigma) ) + ggtitle(newtitle, newsubtitle)) } return(simgraph_graph(result, nsims = 1, labls = labls, steps = steps, moves = moves, shadows = shadows, show_area = show_area, kinship = kinship, lengths = lengths, lengthlabs = lengthlabs, centred = T ) + ggtitle(newtitle, newsubtitle)) } simgraph_histogram <- function(result, nsims = 500, kinship = "2C", binwidth = posigma / 3) { return(simgraph_graph(result, nsims = nsims, kinship = kinship, histogram = TRUE, binwidth = binwidth)) } simgraph_freqpoly <- function(result, nsims = 5000, kinship = "2C", binwidth = posigma / 3) { return(simgraph_graph(result, nsims = nsims, kinship = kinship, histogram = TRUE, binwidth = binwidth, freqpoly = TRUE)) }
SSR_h <- function (formula, data, coord, fixed_vars,kernels, H, Model, control=list(),Penalized) { model <- MGWRSAR(formula, data, coord, fixed_vars, kernels, H, Model,control) if(Penalized) corpen=ifelse(Model %in% c('MGWRSAR_1_0_kv','MGWRSAR_1_kc_kv','MGWRSAR_1_kc_0'),sum(abs(model$Betav[,ncol(model$Betav)])>1),0) else corpen=0 SSR(model)*(1+corpen) }
rcopula.gauss <- function(n, Sigma){ d <- dim(Sigma)[1] diagvals <- diag(Sigma) if(!(all(diagvals == 1))) stop("\n'Sigma' should be correlation matrix.\n") mnorm <- rmnorm(n, Sigma = Sigma, mu = 0) matrix(pnorm(mnorm), ncol = d) } dcopula.gauss <- function(Udata, Sigma, log = FALSE){ d <- dim(Udata)[2] Qdata <- apply(Udata, 2, qnorm) out <- dmnorm(Qdata, rep(0, d), Sigma, log = TRUE) - apply(log(apply(Qdata, 2, dnorm)), 1, sum) if(!(log)) out <- exp(out) out } fit.gausscopula <- function(Udata, ...){ negloglik <- function(theta, data){ Sigma <- Pconstruct(theta) -sum(dcopula.gauss(data, Sigma, log = TRUE)) } theta <- Pdeconstruct(Spearman(Udata)) fit <- nlminb(theta, negloglik, data = Udata, ...) theta <- fit$par Sigma <- Pconstruct(theta) ifelse(fit$convergence == 0, conv <- TRUE, conv <- FALSE) list(P = Sigma, converged = conv, ll.max = -fit$objective, fit = fit) }
updateSliderInput <- function(session, inputId, label = NULL, value = NULL) { message <- dropNulls(list(label=label, value=value)) session$sendInputMessage(inputId, message) } updateInputOptions <- function(session, inputId, label = NULL, choices = NULL, selected = NULL, inline = FALSE, type = 'checkbox') { choices <- choicesWithNames(choices) if (!is.null(selected)) selected <- validateSelected(selected, choices, inputId) options <- if (length(choices)) format(tagList( generateOptions(inputId, choices, selected, inline, type = type) )) message <- dropNulls(list(label = label, options = options, value = selected)) session$sendInputMessage(inputId, message) } updateCheckboxGroupInput <- function(session, inputId, label = NULL, choices = NULL, selected = NULL, inline = FALSE) { updateInputOptions(session, inputId, label, choices, selected, inline) } updateRadioButtons <- function(session, inputId, label = NULL, choices = NULL, selected = NULL, inline = FALSE) { if (is.null(selected) && !is.null(choices)) selected <- choices[[1]] updateInputOptions(session, inputId, label, choices, selected, inline, type = 'radio') }
substractMatBfromA <- function(A, B) { namesA <- rownames(A) namesB <- rownames(B) namesA2 <- colnames(A) namesB2 <- colnames(B) namesAinB <- namesA[namesA %in% namesB] namesAinB2 <- namesA2[namesA2 %in% namesB2] A[namesA %in% namesB, namesA2 %in% namesB2] <- A[namesA %in% namesB, namesA2 %in% namesB2] - B[match(namesAinB, namesB), match(namesAinB2, namesB2)] return(A) }
dat <- 1:3 named_dat <- `names<-`(1:3, letters[1:3]) res <- c(1:3, (1:3) * 2L, (1:3) * 3L) mat <- matrix(res, nrow = 3) arr <- array(c(res, res * 2, res * 3), dim = rep(3, 3)) names <- list(letters[1:3], letters[1:3]) autonames <- list(format(1:3), format(1:3)) test_that("xmap_mat()", { expect_equivalent(xmap_mat(list(dat, dat), `*`), mat) expect_equal(dimnames(xmap_mat(list(dat, dat), `*`)), autonames) expect_equal(dim(xmap_mat(list(dat, dat), `*`)), c(3, 3)) expect_equivalent(xmap_mat(list(named_dat, named_dat), `*`), mat) expect_equal(dimnames(xmap_mat(list(named_dat, named_dat), `*`)), names) expect_equal(dim(xmap_mat(list(named_dat, named_dat), `*`)), c(3, 3)) expect_equivalent(xmap_mat(list(dat, dat), `*`, .names = FALSE), mat) expect_equal(dimnames(xmap_mat(list(dat, dat), `*`, .names = FALSE)), NULL) expect_equal(dim(xmap_mat(list(dat, dat), `*`, .names = FALSE)), c(3, 3)) }) test_that("xmap_arr()", { expect_equivalent(xmap_arr(list(dat, dat), `*`, .names = FALSE), mat) expect_equal(dim(xmap_arr(list(dat, dat), `*`, .names = FALSE)), c(3, 3)) expect_equal(dimnames(xmap_arr(list(dat, dat), `*`, .names = FALSE)), NULL) expect_equal(xmap_arr(list(dat, dat, dat), prod, .names = FALSE), arr) expect_equal( dim(xmap_arr(list(dat, dat, dat), prod, .names = FALSE)), c(3, 3, 3) ) expect_equal( dimnames(xmap_arr(list(dat, dat, dat), prod, .names = FALSE)), NULL ) }) test_that("warn when xmap_mat() returns an array", { expect_warning(xmap_mat(list(dat, dat, dat), prod, .names = FALSE)) expect_equal( suppressWarnings(xmap_mat(list(dat, dat, dat), prod, .names = FALSE)), arr ) })
eapEst <- function( resp, params, range = c(-6, 6), mod = c("brm", "grm"), ddist = dnorm, quad = 33, ... ) { params <- rbind(params) resp <- { if( dim(params)[1] > 1 ) rbind(resp) else cbind(resp) } class(params) <- c(mod, "matrix") if( mode(params) != "numeric" ) stop( "params need to be numeric" ) if( !is.null(resp) & mode(resp) != "numeric" ) stop( "resp needs to be numeric" ) if( !is.null(resp) & ( dim(resp)[2] != dim(params)[1] ) ) stop( "number of params does not match the length of resp" ) if( is.null(range) ) range <- c(-6, 6) l <- range[1]; u <- range[2] tmp.x <- seq(l, u, by = .01) tmp.y <- ddist(x = tmp.x, ... ) l <- min( tmp.x[signif(tmp.y) != 0 & !is.na(tmp.y)] ) u <- max( tmp.x[signif(tmp.y) != 0 & !is.na(tmp.y)] ) est <- NULL sem <- NULL LikFun <- function( ... ) exp( get(paste("logLik.", mod, sep = "") )( ... ) ) for( i in 1:dim(resp)[1] ){ resp_i <- resp[i, ] eap.den <- function( theta ) LikFun(u = resp_i, theta = theta, params = params) * ddist(x = theta, ... ) eap.num <- function( theta ) theta * LikFun(u = resp_i, theta = theta, params = params) * ddist(x = theta, ... ) sem.num <- function( theta ) theta^2 * LikFun(u = resp_i, theta = theta, params = params) * ddist(x = theta, ... ) integrate.eap <- function(f) integrate.s(f, min = l, max = u, quad = quad, method = "S2") est[i] <- ( integrate.eap(eap.num) / ( const <- integrate.eap(eap.den) ) ) sem[i] <- ( integrate.eap(sem.num) / const ) - est[i]^2 } est <- round(est, digits = 4) sem <- sqrt(sem) info <- get(paste("FI.", mod, sep = ""))( params = params, theta = est, type = "observed", resp = resp )$test return( list( theta = est, info = info, sem = sem ) ) }
simRes <- function(Q, target, capacity, surface_area, max_depth, evap, double_cycle = FALSE, plot = TRUE, S_initial = 1, policy) { frq <- frequency(Q) if(length(target)==1){ target <- rep(target, length(Q)) } if(length(target) != length(Q)) stop("target must be numerical constant or time series of length Q") target <- ts(target, start = start(Q), frequency = frequency(Q)) if (double_cycle) { Q <- ts(c(Q, Q), start = start(Q), frequency = frq) target <- c(target, target) } if (missing(evap)) { evap <- rep(0, length(Q)) } if(length(evap) == 1) { evap <- rep(evap, length(Q)) } if (length(evap) != length(Q)){ stop("Evaporation must be either a vector (or time series) length Q, or a single numeric constant") } if (missing(surface_area)) { surface_area <- 0 } if (missing(max_depth)){ c <- sqrt(2) / 3 * (surface_area * 10 ^ 6) ^ (3/2) / (capacity * 10 ^ 6) GetLevel <- function(c, V){ y <- (6 * V / (c ^ 2)) ^ (1 / 3) return(y) } GetArea <- function(c, V){ Ay <- (((3 * c * V) / (sqrt(2))) ^ (2 / 3)) return(Ay) } } else { c <- 2 * capacity / (max_depth * surface_area) GetLevel <- function(c, V){ y <- max_depth * (V / (capacity * 10 ^ 6)) ^ (c / 2) return(y) } GetArea <- function(c, V){ Ay <- ((2 * (capacity * 10 ^ 6)) / (c * max_depth * (V / (capacity * 10 ^ 6)) ^ (c / 2))) * ((V / (capacity * 10 ^ 6)) ^ (c / 2)) ^ (2 / c) Ay[which(is.nan(Ay) == TRUE)] <- 0 return(Ay) } } GetEvap <- function(s, q, r, ev){ e <- GetArea(c, V = s * 10 ^ 6) * ev / 10 ^ 6 n <- 0 repeat{ n <- n + 1 s_plus_1 <- max(min(s + q - r - e, capacity), 0) e_x <- GetArea(c, V = ((s + s_plus_1) / 2) * 10 ^ 6) * ev / 10 ^ 6 if (abs(e_x - e) < 0.001 || n > 20){ break } else { e <- e_x } } return(e) } S <- vector("numeric", length = length(Q) + 1); S[1] <- capacity * S_initial R <- vector("numeric", length = length(Q)) E <- vector("numeric", length(Q)) y <- vector("numeric", length(Q)) Spill <- vector("numeric", length(Q)) if (missing(policy)){ for (t in 1:length(Q)) { E[t] <- GetEvap(s = S[t], q = Q[t], r = target[t], ev = evap[t]) y[t] <- GetLevel(c, S[t] * 10 ^ 6) if ( (S[t] - target[t] + Q[t] - E[t]) > capacity) { S[t + 1] <- capacity Spill[t] <- S[t] - target[t] + Q[t] - capacity - E[t] R[t] <- target[t] } else { if (S[t] - target[t] + Q[t] - E[t] < 0) { S[t + 1] <- 0 R[t] <- max(0, S[t] + Q[t] - E[t]) } else { S[t + 1] <- S[t] + Q[t] - target[t] - E[t] R[t] <- target[t] } } } } if (!missing(policy)){ if (is.list(policy) == FALSE) stop("The policy must be the full output returned by the sdp_supply function") Q_month_mat <- matrix(Q, byrow = TRUE, ncol = frq) if (length(dim(policy$release_policy)) == 2){ S_disc <- length(policy$release_policy[,1]) - 1 } else { S_disc <- length(policy$release_policy[,1,1]) - 1 } S_states <- seq(from = 0, to = capacity, by = capacity / S_disc) Q.probs <- diff(policy$flow_disc) Q_class_med <- apply(Q_month_mat, 2, quantile, type = 8, probs = policy$flow_disc[-1] - (Q.probs / 2)) for (yr in 1:nrow(Q_month_mat)) { for (month in 1:frq) { t_index <- (frq * (yr - 1)) + month S_state <- which.min(abs(S_states - S[t_index])) Qx <- Q_month_mat[yr, month] if (length(dim(policy$release_policy)) == 2){ Rx <- target[t_index] * policy$release_policy[S_state, month] } else { Q_class <- which.min(abs(as.vector(Q_class_med[,month] - Qx))) Rx <- target[t_index] * policy$release_policy[S_state, Q_class, month] } E[t_index] <- GetEvap(s = S[t_index], q = Qx, r = R, ev = evap[t_index]) y[t_index] <- GetLevel(c, S[t_index] * 10 ^ 6) if ( (S[t_index] - Rx + Qx - E[t_index]) > capacity) { S[t_index + 1] <- capacity R[t_index] <- Rx Spill[t_index] <- S[t_index] - Rx + Qx - capacity - E[t_index] }else{ if ( (S[t_index] - Rx + Qx - E[t_index]) < 0) { S[t_index + 1] <- 0 R[t_index] <- max(0, S[t_index] + Qx - E[t_index]) }else{ S[t_index + 1] <- S[t_index] - Rx + Qx - E[t_index] R[t_index] <- Rx } } } } } S <- ts(S[1:length(S) - 1], start = start(Q), frequency = frequency(Q)) R <- ts(R, start = start(Q), frequency = frequency(Q)) E <- ts(E, start = start(Q), frequency = frequency(Q)) y <- ts(y, start = start(Q), frequency = frequency(Q)) Spill <- ts(Spill, start = start(Q), frequency = frequency(Q)) results <- list(S, R, E, y, Spill) names(results) <- c("storage", "releases", "evaporation", "water_level", "spill") if (plot) { plot(R, ylab = "Release", ylim = c(0, max(target))); lines(target, lty = 3) plot(S, ylab = "Storage", ylim = c(0, capacity)) plot(Spill, ylab = "Spill") } return(results) }
visr <- function(x, ...){ UseMethod("visr", x) } visr.default <- function(x, ...){ if (length(class(x)) > 1) { stop("Objects of type `", paste0(class(x), collapse = "` / `"), "` not supported by visr.") } else if (length(class(x)) == 1) { stop(paste0("Objects of type `", class(x), "` not supported by visr.")) } } visr.survfit <- function( x = NULL ,x_label = NULL ,y_label = NULL ,x_units = NULL ,x_ticks = NULL ,y_ticks = NULL ,fun = "surv" ,legend_position = "right" ,... ){ if (!(is.null(x_label) | is.character(x_label) | is.expression(x_label))) { stop("Invalid `x_label` argument, must be either `character` or `expression`.") } if (!(is.null(y_label) | is.character(y_label) | is.expression(y_label))) { stop("Invalid `y_label` argument, must be either `character` or `expression`.") } if (!(is.null(x_units) | is.character(x_units))) { stop("Invalid `x_units` argument, must be `character`.") } if (!(is.null(x_ticks) | is.numeric(x_ticks))) { stop("Invalid `x_ticks` argument, must be `numeric`.") } if (!(is.null(y_ticks) | is.numeric(y_ticks))) { stop("Invalid `y_ticks` argument, must be `numeric`.") } if (is.character(legend_position) && !legend_position %in% c("top", "bottom", "right", "left", "none")) { stop( "Invalid legend position given. Must either be [\"top\", \"bottom\", \"right\", \"left\", \"none\"] or a vector with two numbers indicating the position relative to the axis. For example c(0.5, 0.5) to place the legend in the center of the plot." ) } else if (is.numeric(legend_position) && length(legend_position) != 2) { stop( "Invalid legend position given. Must either be [\"top\", \"bottom\", \"right\", \"left\", \"none\"] or a vector with two numbers indicating the position relative to the axis. For example c(0.5, 0.5) to place the legend in the center of the plot." ) } valid_funs <- c("surv", "log", "event", "cloglog", "pct", "logpct", "cumhaz") if (is.character(fun)) { if (!(fun %in% valid_funs)) { stop( "Unrecognized `fun` argument, must be one of [\"surv\", \"log\", \"event\", \"cloglog\", \"pct\", \"logpct\", \"cumhaz\"] or a user-defined function." ) } } if (is.null(y_label) & is.character(fun)){ y_label <- base::switch( fun, surv = "survival probability", log = "log(survival probability)", event = "failure probability", cloglog = "log(-log(survival probability))", pct = "percentage survival", logpct = "log(percentage survival)", cumhaz = "cumulative hazard", stop("Unrecognized fun argument") ) } else if (is.null(y_label) & is.function(fun)) { stop("No Y label defined. No default label is available when `fun` is a function.") } if (is.character(fun)){ .transfun <- base::switch( fun, surv = function(y) y, log = function(y) log(y), event = function(y) 1 - y, cloglog = function(y) log(-log(y)), pct = function(y) y * 100, logpct = function(y) log(y *100), cumhaz = function(y) - log(y) ) } else if (is.function(fun)) { .transfun <- function(y) fun(y) } else { stop("Error in visr: fun should be a character or a user-defined function.") } correctme <- NULL tidy_object <- tidyme(x) if ("surv" %in% colnames(tidy_object)) { tidy_object[["est"]] <- .transfun(tidy_object[["surv"]]) correctme <- c(correctme, "est") } if (base::all(c("upper", "lower") %in% colnames(tidy_object))) { tidy_object[["est.upper"]] <- .transfun(tidy_object[["upper"]]) tidy_object[["est.lower"]] <- .transfun(tidy_object[["lower"]]) correctme <- c(correctme, "est.lower", "est.upper") } if (nrow(tidy_object[tidy_object$est == "-Inf",]) > 0) { warning("NAs introduced by y-axis transformation.") } tidy_object[ , correctme] <- sapply(tidy_object[, correctme], FUN = function(x) { x[which(x == -Inf)] <- min(x[which(x != -Inf)], na.rm = TRUE) return(x) } ) ymin = min(sapply(tidy_object[, correctme], function(x) min(x[which(x != -Inf)], na.rm = TRUE)), na.rm = TRUE) ymax = max(sapply(tidy_object[, correctme], function(x) max(x[which(x != -Inf)], na.rm = TRUE)), na.rm = TRUE) if (is.null(x_label)){ if ("PARAM" %in% names(x)) x_label = x[["PARAM"]] if (! "PARAM" %in% names(x)) x_label = "time" if (!is.null(x_units)) x_label = paste0(x_label, " (", x_units, ")") } if (is.null(x_ticks)) x_ticks = pretty(x$time, 10) if (is.null(y_ticks) & is.character(fun)){ y_ticks <- base::switch( fun, surv = pretty(c(0, 1), 5), log = pretty(round(c(ymin, ymax), 0), 5), event = pretty(c(0, 1), 5), cloglog = pretty(round(c(ymin, ymax), 0), 5), pct = pretty(c(0, 100), 5), logpct = pretty(c(0, 5), 5), cumhaz = pretty(round(c(ymin, ymax), 0), 5), stop("Unrecognized fun argument") ) } else if (is.null(y_ticks) & is.function(fun)) { y_ticks = pretty(round(c(ymin, ymax), 0), 5) } yscaleFUN <- function(x) sprintf("%.2f", x) gg <- ggplot2::ggplot(tidy_object, ggplot2::aes(x = time, group = strata)) + ggplot2::geom_step(ggplot2::aes(y = est, col = strata)) + ggplot2::scale_x_continuous(name = x_label, breaks = x_ticks, limits = c(min(x_ticks), max(x_ticks))) + ggplot2::scale_y_continuous(name = y_label, breaks = y_ticks, labels = yscaleFUN, limits = c(min(y_ticks), max(y_ticks))) + ggplot2::theme(legend.position = legend_position) + NULL class(gg) <- append(class(gg), "ggsurvfit") return(gg) } visr.attrition <- function(x, description_column_name = "Criteria", value_column_name = "Remaining N", complement_column_name="", box_width = 50, font_size = 12, fill="white", border="black", ...){ if (!description_column_name %in% names(x)) { stop(paste0("Column \"", description_column_name, "\" cannot be found in the input data. ", "Please provide the column name as string in the input ", "data containing the inclusion descriptions.")) } if (!value_column_name %in% names(x)) { stop(paste0("Column \"", value_column_name, "\" cannot be found in the input data. ", "Please provide the column name as string in the input data containing", "the sample size after applying inclusion criteria.")) } if (complement_column_name != "" & !complement_column_name %in% names(x)) { stop(paste0("Column \"", complement_column_name, "\" cannot be found in the input data. ", "Please provide a valid column name as string in the input data containing", "complement description or omit this argument for default labels.")) } if (!is.numeric(box_width)) { warning("An invalid input was given for `box_width`, must be `numeric` value. Setting it to 50.") box_width <- 50 } if (!is.numeric(font_size)) { warning("An invalid input was given for `font_size`, must be `numeric` value. Setting it to 12.") font_size <- 12 } if (!is.character(fill)) { warning("An invalid input was given for `fill`, must be `character` string. Setting it to \"white\".") fill <- "white" } if (!is.character(border)) { warning("An invalid input was given for `border`, must be `character` string. Setting it to \"black\".") border <- "black" } label <- complement_label <- NULL y <- down_ystart <- down_yend <- side_xstart <- side_xend <- side_y <- NULL cx <- cy <- NULL field_height <- 100/nrow(x) box_height <- 0.75 * field_height plotting_data <- x %>% .get_labels(description_column_name, value_column_name, complement_column_name, wrap_width = box_width) %>% .get_labelsizes(label, complement_label) %>% .get_coordinates(box_width, box_height, field_height) gg <- plotting_data %>% ggplot2::ggplot() + ggplot2::geom_tile(data=plotting_data, ggplot2::aes(x = x, y = y, width=box_width, height=box_height), color=border, fill=fill) + ggplot2::geom_text(data=plotting_data, ggplot2::aes(x = x, y = y, label = label), size = font_size / ggplot2::.pt) + ggplot2::geom_segment(data=plotting_data, ggplot2::aes(x=x, xend=x, y=down_ystart, yend=down_yend), arrow = ggplot2::arrow(length = 0.5 * ggplot2::unit(font_size, "pt")), size = .2, na.rm=TRUE) + ggplot2::geom_segment(data=plotting_data, ggplot2::aes(x=side_xstart, xend=side_xend, y=side_y, yend=side_y), arrow = ggplot2::arrow(length = 0.5 * ggplot2::unit(font_size, "pt")), size = .2, na.rm=TRUE) + ggplot2::geom_tile(data=plotting_data, ggplot2::aes(x = cx, y = cy, width=box_width, height=box_height), color=border, fill=fill, na.rm=TRUE) + ggplot2::geom_text(data=plotting_data, ggplot2::aes(x = cx, y = cy, label = complement_label), size = font_size / ggplot2::.pt, na.rm=TRUE) + ggplot2::theme_void() + ggplot2::theme(legend.position = "none") return(gg) }
context("Get precision of number") test_that("get_precision() works", { a <- c("1512313.", "13.423", "13.42345", "13.1300014134100") expect_equal(get_precision(a), c(0, 3, 5, 11)) expect_equal(get_precision(as.numeric(a)), c(0, 3, 5, 11)) b <- c("1512313.", "13.423", NA, NA, "13.42345", NA, "13.1300014134100") expect_equal(get_precision(b), c(0, 3, NA, NA, 5, NA, 11)) expect_equal(get_precision(as.numeric(b)), c(0, 3, NA, NA, 5, NA, 11)) })
labkey.getSchemas <- function(baseUrl=NULL, folderPath) { baseUrl=labkey.getBaseUrl(baseUrl) if (missing(folderPath)) stop (paste("A value must be specified for folderPath.")) folderPath <- encodeFolderPath(folderPath) myurl <- paste(baseUrl,"query",folderPath,"getSchemas.view?apiVersion=9.3", sep="") mydata <- labkey.get(myurl) decode <- fromJSON(mydata, simplifyVector=FALSE, simplifyDataFrame=FALSE) cn<-names(decode) newdata<- as.data.frame(cn) names(newdata)[1]<-"schemaName" return(newdata) }
context('circular dependencies') test_that('cyclic dependencies load in finite time', { box::use(mod/cyclic_a) expect_true(TRUE) }) test_that('cyclic import fully loads dependencies', { box::use(a = mod/cyclic_a) box::use(b = mod/cyclic_b) expect_equal(a$name, 'a') expect_equal(b$name, 'b') expect_equal(a$b_name(), 'b') expect_equal(b$a_name(), 'a') expect_equal(a$b$name, 'b') expect_equal(b$a$name, 'a') expect_equal(a$b$a$b_name(), 'b') expect_equal(a$b$a$name, 'a') expect_equal(b$a$b$a_name(), 'a') expect_equal(b$a$b$name, 'b') })
E.PPS<-function(y,pk){ y<-cbind(1,y) y<-as.data.frame(y) names(y)[1] <- "N" Total<-matrix(NA,nrow=4,ncol=dim(y)[2]) rownames(Total)=c("Estimation", "Standard Error","CVE","DEFF") colnames(Total)<-names(y) m<-length(pk) for(k in 1:dim(y)[2]){ ty<-sum(y[,k]/pk)/m Vty<-(1/m)*(1/(m-1))*sum((y[,k]/pk-ty)^2) CVe<-100*sqrt(Vty)/ty N<-(1/m)*sum(1/pk) VMAS<-(N^2)*(1-(m/N))*var(y[,k])/(m) DEFF<-Vty/VMAS Total[,k]<-c(ty,sqrt(Vty),CVe,DEFF) } return(Total) }
get_provinces <- function(geo_only = TRUE) { base_url <- "https://api.covid19tracker.ca/provinces" if (geo_only) { api_params <- "?geo_only=true" } else { api_params <- "" } url <- paste0(base_url, api_params) content_parsed <- get_content_parsed(url) dplyr::bind_rows(content_parsed) %>% dplyr::mutate( geographic = .data$geographic == 1, updated_at = as.POSIXct(.data$updated_at) ) }
library(scclust) context("nng_clustering") source("config.R", local = TRUE) source("../replica/replica_findseed.R", local = TRUE) source("../replica/replica_make_nng.R", local = TRUE) source("../replica/replica_nng.R", local = TRUE) source("utils_nng.R", local = TRUE) test_that("`nng_clustering` returns correct output", { skip_if_not(!compiled_with_stable_nng, "Only run this when scclust is *not* compiled with the -DSCC_STABLE_NNG flag.") skip_if_not(!compiled_with_stable_findseed, "Only run this when scclust is *not* compiled with the -DSCC_STABLE_FINDSEED flag.") test_nng_against_replica(test_distances1, 2L, "lexical", "ignore", NULL, NULL, "ignore", NULL) test_nng_against_replica(test_distances1, 3L, "lexical", "ignore", NULL, NULL, "ignore", NULL) test_nng_against_replica(test_distances1, 10L, "lexical", "ignore", NULL, NULL, "ignore", NULL) test_nng_against_replica(test_distances1, 3L, "inwards_order", "ignore", NULL, NULL, "ignore", NULL) test_nng_against_replica(test_distances1, 2L, "inwards_updating", "ignore", NULL, NULL, "ignore", NULL) test_nng_against_replica(test_distances1, 2L, "inwards_updating", "ignore", NULL, NULL, "ignore", NULL) test_nng_against_replica(test_distances1, 3L, "exclusion_order", "ignore", NULL, NULL, "ignore", NULL) test_nng_against_replica(test_distances1, 2L, "exclusion_updating", "ignore", NULL, NULL, "ignore", NULL) test_nng_against_replica(test_distances1, 3L, "inwards_order", "ignore", NULL, which(primary_data_points), "ignore", NULL) test_nng_against_replica(test_distances1, 2L, "inwards_updating", "ignore", NULL, which(primary_data_points), "ignore", NULL) test_nng_against_replica(test_distances1, 3L, "inwards_order", "ignore", NULL, primary_data_points, "ignore", NULL) test_nng_against_replica(test_distances1, 2L, "inwards_updating", "ignore", NULL, primary_data_points, "ignore", NULL) test_nng_against_replica(test_distances1, 2L, "inwards_updating", "ignore", NULL, primary_data_points, "ignore", NULL) test_nng_against_replica(test_distances1, 3L, "exclusion_order", "ignore", NULL, primary_data_points, "ignore", NULL) test_nng_against_replica(test_distances1, 2L, "exclusion_updating", "ignore", NULL, primary_data_points, "ignore", NULL) test_nng_against_replica(test_distances1, 2L, "lexical", "any_neighbor", NULL, NULL, "ignore", NULL) test_nng_against_replica(test_distances1, 3L, "lexical", "closest_assigned", NULL, NULL, "ignore", NULL) test_nng_against_replica(test_distances1, 3L, "lexical", "closest_seed", NULL, NULL, "ignore", NULL) test_nng_against_replica(test_distances1, 3L, "lexical", "estimated_radius_closest_seed", NULL, NULL, "ignore", NULL) test_nng_against_replica(test_distances1, 3L, "lexical", "ignore", test_radius, NULL, "ignore", NULL) test_nng_against_replica(test_distances1, 2L, "lexical", "any_neighbor", test_radius, NULL, "ignore", NULL) test_nng_against_replica(test_distances1, 3L, "lexical", "closest_assigned", test_radius, NULL, "ignore", NULL) test_nng_against_replica(test_distances1, 3L, "lexical", "closest_seed", test_radius, NULL, "ignore", NULL) test_nng_against_replica(test_distances1, 3L, "lexical", "estimated_radius_closest_seed", test_radius, NULL, "ignore", NULL) test_nng_against_replica(test_distances1, 3L, "lexical", "ignore", NULL, primary_data_points, "ignore", NULL) test_nng_against_replica(test_distances1, 3L, "lexical", "ignore", NULL, primary_data_points, "closest_assigned", NULL) test_nng_against_replica(test_distances1, 3L, "lexical", "ignore", NULL, primary_data_points, "closest_seed", NULL) test_nng_against_replica(test_distances1, 3L, "lexical", "ignore", NULL, primary_data_points, "estimated_radius_closest_seed", NULL) test_nng_against_replica(test_distances1, 3L, "lexical", "ignore", NULL, primary_data_points, "ignore", test_radius) test_nng_against_replica(test_distances1, 3L, "lexical", "ignore", NULL, primary_data_points, "closest_assigned", test_radius) test_nng_against_replica(test_distances1, 3L, "lexical", "ignore", NULL, primary_data_points, "closest_seed", test_radius) test_nng_against_replica(test_distances1, 3L, "lexical", "ignore", NULL, primary_data_points, "estimated_radius_closest_seed", test_radius) }) test_that("`nng_clustering` returns correct output (combinations)", { skip_on_cran() skip_if_not(run_slow_tests) skip_if_not(!compiled_with_stable_nng, "Only run this when scclust is *not* compiled with the -DSCC_STABLE_NNG flag.") skip_if_not(!compiled_with_stable_findseed, "Only run this when scclust is *not* compiled with the -DSCC_STABLE_FINDSEED flag.") for (seed_method in c("lexical", "inwards_order", "inwards_updating", "exclusion_order", "exclusion_updating")) { for (unassigned_method in c("ignore", "any_neighbor", "closest_assigned", "closest_seed", "estimated_radius_closest_seed")) { sc_to_test <- c(2L, 3L, 6L) if (seed_method %in% c("inwards_updating", "exclusion_updating")) { sc_to_test <- 2L } for (size_constraint in sc_to_test) { radius_to_use <- c(0, 0.1, 0.2) if (size_constraint == 6L) { radius_to_use <- c(0, 0.3) } for (radius in radius_to_use) { for (secondary_unassigned_method in c("ignore", "ignore_withmain", "closest_assigned", "closest_seed", "estimated_radius_closest_seed")) { for (secondary_radius in radius_to_use) { use_primary_data_points <- NULL if (secondary_unassigned_method != "ignore") use_primary_data_points <- primary_data_points use_secondary_unassigned_method <- secondary_unassigned_method if (use_secondary_unassigned_method == "ignore_withmain") use_secondary_unassigned_method <- "ignore" use_radius <- radius if (use_radius == 0) use_radius <- NULL use_secondary_radius <- secondary_radius if (use_secondary_radius == 0) use_secondary_radius <- NULL test_nng_against_replica(test_distances1, size_constraint, seed_method, unassigned_method, use_radius, use_primary_data_points, use_secondary_unassigned_method, use_secondary_radius) } } } } } } })
magaxis = function(side=1:2, majorn=5, minorn='auto', tcl=0.5, ratio=0.5, labels=TRUE, unlog='auto', mgp=c(2,0.5,0), mtline=2, xlab=NULL, ylab=NULL, crunch=TRUE, logpretty=TRUE, prettybase=10, powbase=10, hersh=FALSE, family='sans', frame.plot=FALSE, usepar=FALSE, grid=FALSE, grid.col='grey', grid.lty=1, grid.lwd=1, axis.lwd=1, ticks.lwd=axis.lwd, axis.col='black', do.tick=TRUE, ...){ dots=list(...) dotskeepaxis=c('cex.axis', 'col.axis', 'font.axis', 'xaxp', 'yaxp', 'tck', 'las', 'fg', 'xpd', 'xaxt', 'yaxt', 'col.ticks') dotskeepmtext=c('cex.lab', 'col.lab', 'font.lab') if(length(dots)>0){ dotsaxis=dots[names(dots) %in% dotskeepaxis] dotsmtext=dots[names(dots) %in% dotskeepmtext] }else{ dotsaxis={} dotsmtext={} } if(length(mtline)==1){mtline=rep(mtline,2)} majornlist=majorn minornlist=minorn labelslist=labels unloglist=unlog crunchlist=crunch logprettylist=logpretty prettybaselist=prettybase powbaselist=powbase gridlist=grid if(length(majorn)==1 & length(side)>1){majornlist=rep(majorn,length(side))} if(length(minorn)==1 & length(side)>1){minornlist=rep(minorn,length(side))} if(length(labels)==1 & length(side)>1){labelslist=rep(labels,length(side))} if(length(unlog)==1 & length(side)>1 & (unlog[1]==T | unlog[1]==F | unlog[1]=='auto')){unloglist=rep(unlog,length(side))} if(length(crunch)==1 & length(side)>1){crunchlist=rep(crunch,length(side))} if(length(logpretty)==1 & length(side)>1){logprettylist=rep(logpretty,length(side))} if(length(prettybase)==1 & length(side)>1){prettybaselist=rep(prettybase,length(side))} if(length(powbase)==1 & length(side)>1){powbaselist=rep(powbase,length(side))} if(length(grid)==1 & length(side)>1){gridlist=rep(grid,length(side))} if(!all(is.logical(unlog)) & unlog[1]!='auto'){ unlogsplit = strsplit(unlog[1],'')[[1]] unloglist=rep(FALSE,length(side)) if(unlog[1]==''){unloglist=rep(FALSE,length(side))} if('x' %in% unlogsplit){unloglist[side %in% c(1,3)]=TRUE} if('y' %in% unlogsplit){unloglist[side %in% c(2,4)]=TRUE} } if(length(majornlist) != length(side)){stop('Length of majorn vector mismatches number of axes!')} if(length(minornlist) != length(side)){stop('Length of minorn vector mismatches number of axes!')} if(length(labelslist) != length(side)){stop('Length of labels vector mismatches number of axes!')} if(length(unloglist) != length(side)){stop('Length of unlog vector mismatches number of axes!')} if(length(crunchlist) != length(side)){stop('Length of crunch vector mismatches number of axes!')} if(length(logprettylist) != length(side)){stop('Length of logpretty vector mismatches number of axes!')} if(length(prettybaselist) != length(side)){stop('Length of prettybase vector mismatches number of axes!')} if(length(powbaselist) != length(side)){stop('Length of powbase vector mismatches number of axes!')} if(length(gridlist) != length(side)){stop('Length of grid vector mismatches number of axes!')} currentfamily=par('family') if(hersh & family=='serif'){par(family='HersheySerif')} if(hersh & family=='sans'){par(family='HersheySans')} if(hersh==F & family=='serif'){par(family='serif')} if(hersh==F & family=='sans'){par(family='sans')} if(missing(axis.lwd)){axis.lwd=par()$lwd} if(missing(ticks.lwd)){ticks.lwd=par()$lwd} if(usepar){ if(missing(tcl)){tcl=par()$tcl} if(missing(mgp)){mgp=par()$mgp} } for(i in 1:length(side)){ currentside=side[i] majorn=majornlist[i] minorn=minornlist[i] labels=labelslist[i] unlog=unloglist[i] crunch=crunchlist[i] logpretty=logprettylist[i] prettybase=prettybaselist[i] powbase=powbaselist[i] grid=gridlist[i] lims=par("usr") if(currentside %in% c(1,3)){ lims=lims[1:2];if(par('xlog')){logged=T}else{logged=F} }else{ lims=lims[3:4];if(par('ylog')){logged=T}else{logged=F} } lims=sort(lims) if(unlog=='auto'){if(logged){unlog=T}else{unlog=F}} if((logged | unlog) & powbase==10){usemultloc=(10^lims[2])/(10^lims[1])<50}else{usemultloc=F} if(unlog){ sci.tick=maglab(10^lims,n=majorn,log=T,exptext=T,crunch=crunch,logpretty=logpretty,usemultloc=usemultloc,prettybase=prettybase, powbase=powbase, hersh=hersh) major.ticks = log(sci.tick$tickat,powbase) uselabels = sci.tick$exp labloc = log(sci.tick$labat,powbase) if(usemultloc==F){ if(minorn=='auto'){ splitmin=(powbase^major.ticks[2])/(powbase^major.ticks[1]) }else{ splitmin=minorn+1 } if(splitmin>10){ minors = seq(major.ticks[1], major.ticks[2])-major.ticks[1] }else{ minors = log(seq(powbase^major.ticks[1],powbase^major.ticks[2],len=splitmin),powbase)-major.ticks[1] } } } if(logged & unlog==F){ sci.tick=maglab(10^lims, n=majorn, log=T, exptext=F, crunch=crunch, logpretty=logpretty,usemultloc=usemultloc, prettybase=prettybase, powbase=powbase, hersh=hersh) major.ticks = log(sci.tick$tickat,powbase) uselabels = sci.tick$exp labloc = log(sci.tick$labat,powbase) if(usemultloc==F){ if(minorn=='auto'){ splitmin=(powbase^major.ticks[2])/(powbase^major.ticks[1]) }else{ splitmin=minorn+1 } if(splitmin>10){ minors = seq(major.ticks[1], major.ticks[2])-major.ticks[1] }else{ minors = log(seq(powbase^major.ticks[1],powbase^major.ticks[2],len=splitmin),powbase)-major.ticks[1] } } } if(logged==F & unlog==F){ sci.tick=maglab(lims,n=majorn,log=F,exptext=F,prettybase=prettybase, hersh=hersh) major.ticks = sci.tick$tickat uselabels = sci.tick$exp labloc = sci.tick$labat if(minorn=='auto'){splitmin=length(pretty(major.ticks[1:2]))}else{splitmin=minorn+1} minors = seq(major.ticks[1],major.ticks[2],len=splitmin)-major.ticks[1] } if(grid){ if(currentside==1){ if(logged){ abline(v=powbase^labloc, col=grid.col, lty=grid.lty, lwd=grid.lty) }else{ abline(v=labloc, col=grid.col, lty=grid.lty, lwd=grid.lty) } } if(currentside==2){ if(logged){ abline(h=powbase^labloc, col=grid.col, lty=grid.lty, lwd=grid.lty) }else{ abline(h=labloc, col=grid.col, lty=grid.lty, lwd=grid.lty) } } } if(logged){ do.call("axis", c(list(side=currentside,at=powbase^major.ticks,tcl=tcl,labels=FALSE,tick=do.tick,mgp=mgp,lwd=axis.lwd,lwd.ticks=ticks.lwd,col=axis.col),dotsaxis)) }else{ do.call("axis", c(list(side=currentside,at=major.ticks,tcl=tcl,labels=FALSE,tick=do.tick,mgp=mgp,lwd=axis.lwd,lwd.ticks=ticks.lwd,col=axis.col),dotsaxis)) } if(labels){ if(logged){ do.call("axis", c(list(side=currentside,at=powbase^labloc,tick=F,labels=uselabels,mgp=mgp,lwd=axis.lwd,lwd.ticks=ticks.lwd,col=axis.col),dotsaxis)) }else{ do.call("axis", c(list(side=currentside,at=labloc,tick=F,labels=uselabels,mgp=mgp,lwd=axis.lwd,lwd.ticks=ticks.lwd,col=axis.col),dotsaxis)) } } if(usemultloc==F & minorn>1){ minors = minors[-c(1,length(minors))] minor.ticks = c(outer(minors, major.ticks, `+`)) if(logged){ do.call("axis", c(list(side=currentside,at=powbase^minor.ticks,tcl=tcl*ratio,labels=FALSE,tick=do.tick,mgp=mgp,lwd=axis.lwd,lwd.ticks=ticks.lwd,col=axis.col),dotsaxis)) }else{ do.call("axis", c(list(side=currentside,at=minor.ticks,tcl=tcl*ratio,labels=FALSE,tick=do.tick,mgp=mgp,lwd=axis.lwd,lwd.ticks=ticks.lwd,col=axis.col),dotsaxis)) } } } if(length(dotsmtext)>0){ names(dotsmtext)=c('cex', 'col', 'font')[match(names(dotsmtext), dotskeepmtext)] } if(is.null(xlab)==FALSE){ do.call("mtext", c(list(text=xlab, side=ifelse(side[1] %in% c(1,3), side[1], side[2]), line=mtline[1]), dotsmtext)) } if(is.null(ylab)==FALSE){ do.call("mtext", c(list(text=ylab, side=ifelse(side[2] %in% c(2,4), side[2], side[1]), line=mtline[2]), dotsmtext)) } if(frame.plot){box()} par(family=currentfamily) }
context("test-SC-sanity") x <- SC(minimal_mesh) test_that("SC round trip suite works", { skip_on_cran() expect_silent({ SC(x) SC0(x) plot(SC(x)) plot(SC0(x)) sc_vertex(x) sc_coord(x) sc_node(x) sc_edge(x) sc_segment(x) sc_start(x) sc_end(x) sc_object(x) }) }) test_that("errors when SC0 round trip unsupported", { expect_error(sc_arc(x)) expect_error(sc_path(x)) expect_error(TRI(x)) expect_error(TRI0(x)) expect_error(ARC(x)) expect_error(ARC0(x)) expect_error(PATH(x)) expect_error(PATH0(x)) })
context("testing runSurvReg") test_that("runSurvReg returns expected values with defaults", { i <- c(23, 51, 86, 3) yrestpts <- sample_orig_Ar$DecYear[i] logqestpts <- sample_orig_Ar$LogQ[i] yrstart <- min(sample_orig_Ar$DecYear) yrend <- max(sample_orig_Ar$DecYear) surv <- runSurvReg(yrestpts, logqestpts, yrstart, yrend, sample_orig_Ar) expect_equal(dim(surv), c(4,3)) expect_null(names(surv)) expect_is(surv, "matrix") expect_equal(surv[1,1], -2.8592687416) expect_equal(surv[3,2], 0.7004624715) expect_equal(surv[4,3], 0.1019059051) }) test_that("runSurvReg returns expected values with user args", { i <- c(19, 171, 512, 303, 11) yrestpts <- sample_orig_Ch$DecYear[i] logqestpts <- sample_orig_Ch$LogQ[i] yrstart <- min(sample_orig_Ch$DecYear) yrend <- max(sample_orig_Ch$DecYear) surv <- runSurvReg(yrestpts, logqestpts, yrstart, yrend, sample_orig_Ch, windowQ = 0.5, minNumObs = 150) expect_equal(dim(surv), c(5,3)) expect_null(names(surv)) expect_is(surv, "matrix") expect_equal(surv[5,1], 0.0155175200) expect_equal(surv[2,2], 0.1936220144) expect_equal(surv[3,3], 0.6526830391) })
dsal <- function(x,alpha,sig,mu){ x <- as.matrix(x) talpha <- as.matrix(alpha,nrow=1,ncol=2); alpha <- t(talpha); n <- nrow(x); p <- ncol(x); nu <- (2-p)/2; log.det.sig <- log(det(sig)) if(log.det.sig == "NaN") stop('Degenerate Solution Reached - The Determinate of this matrix is Zero'); ty.t <- sweep(x,2,mu,"-"); inv.sig <- solve(sig) t1.num <- sweep(ty.t%*%inv.sig%*%talpha,2,log(2),"+"); t1.den <- (p/2)*log(2*pi)+0.5*log.det.sig; t1 <- sweep(t1.num,2,t1.den,"-"); maha <- mahalanobis(x=x,center=mu,cov=inv.sig,inverted=TRUE); ata <- 2 + alpha%*%inv.sig%*%talpha; l.t2.num <- log(maha) l.t2.den <- log(ata) l.t2.den <- rep(l.t2.den,n) t2 <- 0.5*nu*(l.t2.num-l.t2.den) u <- exp( 0.5*(l.t2.den + l.t2.num) ) t3 <- log(besselK(u,nu,expon.scaled=TRUE)) - u val1 <- t1+t2+t3 val <- exp(val1) return(c(val)) }
.reDate <- function(datedOccs, dateScale){ long=lat=date=parse_date_time=ymd=year=month=day=NULL if(dateScale == "year"){ out=datedOccs %>% dplyr::select(long,lat,date) %>% dplyr::mutate(date = as.Date(paste0(date, "-01-01"))) %>% dplyr::mutate(years = lubridate::year(date)) } if(dateScale == "month"){ out=datedOccs %>% dplyr::select(long,lat,date) %>% dplyr::mutate(date = lubridate::parse_date_time(date, "ym")) %>% dplyr::mutate(months = lubridate::month(date)) %>% dplyr::mutate(years = lubridate::year(date)) } if(dateScale == "day"){ out=datedOccs %>% dplyr::select(long,lat,date) %>% dplyr::mutate(date = lubridate::ymd(date)) %>% dplyr::mutate(years = lubridate::year(date)) %>% dplyr::mutate(months = lubridate::month(date)) %>% dplyr::mutate(days = lubridate::day(date)) } return(out) } .uniDates<-function(occ1, dateScale){ years=days=NULL if (dateScale == "year"){ out=dplyr::arrange(unique(dplyr::select(occ1, years)), years) } if (dateScale == "month"){ out=dplyr::arrange(unique(dplyr::select(occ1, years, months)), years) } if (dateScale == "day"){ out=dplyr::arrange(unique(dplyr::select(occ1, years, months, days)), years) } return(out) } .parseDate <- function(dateScale, occ1, uniqueDates){ years=days=NULL t1 <- NULL if (dateScale == "year"){ for (i in 1:nrow(uniqueDates)){ t1[[i]] = dplyr::filter(occ1, years == as.list(uniqueDates)$years[[i]]) }} if (dateScale == "month"){ t1 <- NULL for (i in 1:nrow(uniqueDates)){ t1[[i]] = dplyr::filter(occ1, months == as.list(uniqueDates)$years[[i]]) }} if (dateScale == "day"){ t1 <- NULL for (i in 1:nrow(uniqueDates)){ t1[[i]] = dplyr::filter(occ1, days == as.list(uniqueDates)$years[[i]]) }} return(t1) }
NULL read <- function(path) { path <- normalizePath(path, mustWork = TRUE) .Call("sourcetools_read", path, PACKAGE = "sourcetools") } read_lines <- function(path) { path <- normalizePath(path, mustWork = TRUE) .Call("sourcetools_read_lines", path, PACKAGE = "sourcetools") } read_bytes <- function(path) { path <- normalizePath(path, mustWork = TRUE) .Call("sourcetools_read_bytes", path, PACKAGE = "sourcetools") } read_lines_bytes <- function(path) { path <- normalizePath(path, mustWork = TRUE) .Call("sourcetools_read_lines_bytes", path, PACKAGE = "sourcetools") } tokenize_file <- function(path) { path <- normalizePath(path, mustWork = TRUE) .Call("sourcetools_tokenize_file", path, PACKAGE = "sourcetools") } tokenize_string <- function(string) { .Call("sourcetools_tokenize_string", as.character(string), PACKAGE = "sourcetools") } tokenize <- function(file = "", text = NULL) { if (is.null(text)) text <- read(file) tokenize_string(text) } print.RTokens <- function(x, ...) { print.data.frame(x, ...) }
generate.mirt_object <- function(parameters, itemtype, latent_means = NULL, latent_covariance = NULL, key = NULL, min_category = rep(0L, length(itemtype))){ if(missing(itemtype)) stop('Must define an itemtype argument', call.=FALSE) if(missing(parameters)) stop('Must define parameters argument', call.=FALSE) parameters <- as.matrix(parameters) if(length(itemtype) == 1L) itemtype <- rep(itemtype, nrow(parameters)) if(nrow(parameters) != length(itemtype)) stop('nrow(parameters) not equal to length(itemtype)', call.=FALSE) nitems <- length(itemtype) K <- integer(nitems) names <- colnames(parameters) itemtype[itemtype %in% c('3PL', '3PLu', '4PL')] <- '2PL' itemtype[itemtype %in% c('3PLNRM', '3PLuNRM', '4PLNRM')] <- '2PLNRM' itemtype[itemtype == 'PC3PL'] <- 'PC2PL' for(i in seq_len(nitems)){ pick <- parameters[i, !is.na(parameters[i,]), drop=FALSE] nms <- colnames(pick) if(itemtype[i] == 'Rasch'){ itemtype[i] <- if(any(nms == 'd')) '2PL' else 'gpcm' } if(itemtype[i] %in% c('2PL', 'ideal', 'PC2PL')){ K[i] <- 2L } else if(itemtype[i] %in% c('graded', 'grsm', 'gpcm', 'nominal', '2PLNRM')){ K[i] <- max(sapply(strsplit(nms[grepl('d', nms)], 'd'), function(x) as.numeric(x[2]))) + 1 } else { stop(sprintf('%s is an invalid itemtype argument. Please fix!', itemtype[i]), call.=FALSE) } } dat <- matrix(c(0,1), 2L, nitems) colnames(dat) <- dnames <- paste0('Item.', 1:nitems) nfact <- max(which(paste0('a', 1:250) %in% names)) tmp <- parameters[,paste0('a', 1:nfact), drop=FALSE] tmp[is.na(tmp)] <- 0 parameters[, paste0('a', 1:nfact)] <- tmp model <- character(nfact) for(i in seq_len(nfact)) model[i] <- paste0('F', i, ' = 1-', ncol(dat)) model <- mirt.model(paste0(model, collapse = '\n')) sv <- mirt(dat, model, itemtype=itemtype, key=key, technical=list(customK=K), pars='values') for(i in seq_len(nitems)){ pick <- parameters[i, !is.na(parameters[i,]), drop=FALSE] nms <- colnames(pick) wch <- which(sv$item == dnames[i]) for(j in seq_len(ncol(pick))){ wch2 <- which(sv[wch, ]$name == nms[j]) sv[wch[wch2], ]$value <- pick[,j] } } if(!is.null(latent_means)) sv$value[sv$item == 'GROUP' & grepl('MEAN', sv$name)] <- as.numeric(latent_means) if(!is.null(latent_covariance)){ if(!is.matrix(latent_covariance)) stop('latent_covariance input must be a matrix', call.=FALSE) vals <- latent_covariance[lower.tri(latent_covariance, TRUE)] sv$value[sv$item == 'GROUP' & grepl('COV', sv$name)] <- vals } dat <- t(t(dat) + min_category) ret <- mirt(dat, model, itemtype=itemtype, technical=list(customK=K, warn=FALSE, message=FALSE), TOL=NA, pars=sv, quadpts = 1, key=key, rotate = 'none') ret@Options$exploratory <- FALSE ret }
context("gni_details") test_that("gni_details returns the correct value", { skip_on_cran() vcr::use_cassette("gni_details", { x <- gni_details(id = 17802847) }) expect_is(x, "data.frame") expect_match(as.character(x[,3]), "none") })
library(dplyr) library(freqtables) data(mtcars) testthat::context("test-freq_test.R") testthat::test_that("Group n is returned as expected", { n <- mtcars %>% get_group_n(cyl == 4) testthat::expect_match(n, "N = 11") }) rm(mtcars, df) detach("package:dplyr", unload=TRUE) detach("package:freqtables", unload=TRUE)
context("buildSemanticArgumentName") test_that("buildSemanticArgumentName", { expect_equal(buildSemanticArgumentName('s'), 'x_s') expect_equal(buildSemanticArgumentName('i', 'numberOfItems'), 'numberOfItems_i') expect_equal(buildSemanticArgumentName('i', 'numberOfItems_'), 'numberOfItems_i') expect_equal(buildSemanticArgumentName('i_7', 'numberOfItems'), 'numberOfItems_i_7') expect_equal(buildSemanticArgumentName('_', 'numberOfItems'), 'numberOfItems_') expect_equal(buildSemanticArgumentName('_', 'numberOfItems_'), 'numberOfItems_') expect_equal(buildSemanticArgumentName('_'), 'x_') })
weirddate<-function(x){ bad<-NULL fy<-as.numeric(substring(x[1,1],1,4)) ly<-as.numeric(substring(x[nrow(x),1],1,4)) x$year<-as.numeric(substring(x[,1],1,4));x$month<-as.numeric(substring(x[,1],5,6));x$day<-as.numeric(substring(x[,1],7,8)) k1<-which(x$year < fy | x$year > ly) k2<-which(x$day > 31) k3<-which(x$day > 30 & x$month %in% c(4,6,9,11)) k4<-which(x$day > 29 & x$month ==2) k5<-which(x$day > 28 & x$month == 2 & x$year%%4 !=0 ) k6<-which(x$day > 28 & x$month == 2 & x$year == 1900 ) k7<-which(x$month < 1 | x$month > 12) bad<-c(k1,k2,k3,k4,k5,k6,k7) return(bad) }
if (Sys.getenv("RunAllRcppTests") != "yes") exit_file("Set 'RunAllRcppTests' to 'yes' to run.") Rcpp::sourceCpp("cpp/na.cpp") expect_identical( R_IsNA_(NA_real_), Rcpp_IsNA(NA_real_) ) expect_identical( R_IsNA_(NA_real_+1), Rcpp_IsNA(NA_real_+1) ) expect_identical( R_IsNA_(NA_real_+NaN), Rcpp_IsNA(NA_real_+NaN) ) expect_identical( R_IsNA_(NaN+NA_real_), Rcpp_IsNA(NaN+NA_real_) ) expect_identical( R_IsNaN_(NA_real_), Rcpp_IsNaN(NA_real_) ) expect_identical( R_IsNaN_(NaN), Rcpp_IsNaN(NaN) ) expect_identical( R_IsNaN_(NaN+1), Rcpp_IsNaN(NaN+1) )
lav_model_efa_rotate <- function(lavmodel = NULL, lavoptions = NULL) { if(lavmodel@nefa == 0L || lavoptions$rotation == "none") { return(lavmodel) } x.orig <- lav_model_get_parameters(lavmodel, type = "free", extra = FALSE) tmp <- lav_model_efa_rotate_x(x = x.orig, lavmodel = lavmodel, lavoptions = lavoptions, extra = TRUE) extra <- attr(tmp, "extra"); attr(tmp, "extra") <- NULL lavmodel@H <- extra$H [email protected] <- extra$lv.order lavmodel@GLIST <- extra$GLIST lavmodel } lav_model_efa_rotate_x <- function(x, lavmodel = NULL, lavoptions = NULL, init.rot = NULL, extra = FALSE, type = "free") { method <- lavoptions$rotation if(method == "none") { return(x) } ropts <- lavoptions$rotation.args lavmodel.orig <- lav_model_set_parameters(lavmodel, x = x) GLIST <- lavmodel.orig@GLIST H <- vector("list", lavmodel@ngroups) ORDER <- vector("list", lavmodel@ngroups) for(g in seq_len(lavmodel@ngroups)) { mm.in.group <- seq_len(lavmodel@nmat[g]) + cumsum(c(0,lavmodel@nmat))[g] MLIST <- GLIST[ mm.in.group ] H[[g]] <- Hg <- diag( ncol(MLIST$lambda) ) lv.order <- seq_len( ncol(MLIST$lambda) ) LAMBDA.g <- computeLAMBDA.LISREL(MLIST = MLIST, ov.y.dummy.ov.idx = [email protected][[g]], ov.x.dummy.ov.idx = [email protected][[g]], ov.y.dummy.lv.idx = [email protected][[g]], ov.x.dummy.lv.idx = [email protected][[g]], remove.dummy.lv = TRUE) THETA.g <- computeTHETA.LISREL(MLIST = MLIST, ov.y.dummy.ov.idx = [email protected][[g]], ov.x.dummy.ov.idx = [email protected][[g]], ov.y.dummy.lv.idx = [email protected][[g]], ov.x.dummy.lv.idx = [email protected][[g]]) for(set in seq_len(lavmodel@nefa)) { ov.idx <- [email protected][[g]][[set]] lv.idx <- [email protected][[g]][[set]] if(length(ov.idx) == 0L) { next } if(length(lv.idx) < 2L) { next } A <- LAMBDA.g[ov.idx, lv.idx, drop = FALSE] if(ropts$std.ov) { THETA <- THETA.g[ov.idx, ov.idx, drop = FALSE] Sigma <- tcrossprod(A) + THETA this.ov.var <- diag(Sigma) } else { this.ov.var <- NULL } if(!is.null(init.rot) && lavoptions$rotation.args$jac.init.rot) { init.ROT <- init.rot[[g]][lv.idx, lv.idx, drop = FALSE] rstarts <- 0 } else { init.ROT <- NULL rstarts <- ropts$rstarts } res <- lav_matrix_rotate(A = A, orthogonal = ropts$orthogonal, method = method, method.args = list( geomin.epsilon = ropts$geomin.epsilon, orthomax.gamma = ropts$orthomax.gamma, cf.gamma = ropts$orthomax.gamma, oblimin.gamma = ropts$oblimin.gamma, target = ropts$target, target.mask = ropts$target.mask), init.ROT = init.ROT, init.ROT.check = FALSE, rstarts = rstarts, row.weights = ropts$row.weights, std.ov = ropts$std.ov, ov.var = this.ov.var, verbose = ropts$verbose, warn = ropts$warn, algorithm = ropts$algorithm, reflect = ropts$reflect, order.lv.by = ropts$order.lv.by, gpa.tol = ropts$gpa.tol, tol = ropts$tol, max.iter = ropts$max.iter) H.efa <- res$ROT Hg[lv.idx, lv.idx] <- H.efa lv.order[ lv.idx ] <- lv.idx[res$order.idx] } MLIST$lambda <- t(solve(Hg, t(MLIST$lambda))) MLIST$psi <- t(Hg) %*% MLIST$psi %*% Hg if(!is.null(MLIST$beta)) { MLIST$beta <- t(Hg) %*% t(solve(Hg, t(MLIST$beta))) } if(!is.null(MLIST$alpha)) { MLIST$alpha <- t(Hg) %*% MLIST$alpha } GLIST[ mm.in.group ] <- MLIST H[[g]] <- Hg ORDER[[g]] <- lv.order } x.rot <- lav_model_get_parameters(lavmodel, GLIST = GLIST, type = type) if(extra) { attr(x.rot, "extra") <- list(GLIST = GLIST, H = H, lv.order = ORDER) } x.rot } lav_model_efa_rotate_border_x <- function(x, lavmodel = NULL, lavoptions = NULL, lavpartable = NULL) { method <- lavoptions$rotation ropts <- lavoptions$rotation.args method.args <- list( geomin.epsilon = ropts$geomin.epsilon, orthomax.gamma = ropts$orthomax.gamma, cf.gamma = ropts$orthomax.gamma, oblimin.gamma = ropts$oblimin.gamma, target = ropts$target, target.mask = ropts$target.mask ) lavmodel <- lav_model_set_parameters(lavmodel, x = x) GLIST <- lavmodel@GLIST res <- numeric(0L) for(g in seq_len(lavmodel@ngroups)) { mm.in.group <- seq_len(lavmodel@nmat[g]) + cumsum(c(0,lavmodel@nmat))[g] MLIST <- GLIST[ mm.in.group ] LAMBDA.g <- computeLAMBDA.LISREL(MLIST = MLIST, ov.y.dummy.ov.idx = [email protected][[g]], ov.x.dummy.ov.idx = [email protected][[g]], ov.y.dummy.lv.idx = [email protected][[g]], ov.x.dummy.lv.idx = [email protected][[g]], remove.dummy.lv = TRUE) THETA.g <- computeTHETA.LISREL(MLIST = MLIST, ov.y.dummy.ov.idx = [email protected][[g]], ov.x.dummy.ov.idx = [email protected][[g]], ov.y.dummy.lv.idx = [email protected][[g]], ov.x.dummy.lv.idx = [email protected][[g]]) set.names <- lav_partable_efa_values(lavpartable) for(set in seq_len(lavmodel@nefa)) { ind.idx <- which(lavpartable$op == "=~" & lavpartable$group == g & lavpartable$efa == set.names[set]) if(!any(lavpartable$user[ind.idx] == 7L)) { next } ov.idx <- [email protected][[g]][[set]] lv.idx <- [email protected][[g]][[set]] if(length(ov.idx) == 0L) { next } if(length(lv.idx) < 2L) { next } A <- LAMBDA.g[ov.idx, lv.idx, drop = FALSE] P <- nrow(A); M <- ncol(A) if(!ropts$orthogonal) { PSI <- MLIST$psi[lv.idx, lv.idx, drop = FALSE] } if(ropts$std.ov) { THETA <- THETA.g[ov.idx, ov.idx, drop = FALSE] Sigma <- tcrossprod(A) + THETA this.ov.var <- diag(Sigma) } else { this.ov.var <- rep(1, P) } method <- tolower(method) if(method %in% c("cf-quartimax", "cf-varimax", "cf-equamax", "cf-parsimax", "cf-facparsim")) { method.fname <- "lav_matrix_rotate_cf" method.args$cf.gamma <- switch(method, "cf-quartimax" = 0, "cf-varimax" = 1 / P, "cf-equamax" = M / (2 * P), "cf-parsimax" = (M - 1) / (P + M - 2), "cf-facparsim" = 1) } else { method.fname <- paste("lav_matrix_rotate_", method, sep = "") } check <- try(get(method.fname), silent = TRUE) if(inherits(check, "try-error")) { stop("lavaan ERROR: unknown rotation method: ", method.fname) } if(ropts$std.ov) { A <- A * 1/sqrt(this.ov.var) } if(ropts$row.weights == "none") { weights <- rep(1.0, P) } else if(ropts$row.weights == "kaiser") { weights <- lav_matrix_rotate_kaiser_weights(A) } else if(ropts$row.weights == "cureton-mulaik") { weights <- lav_matrix_rotate_cm_weights(A) } else { stop("lavaan ERROR: row.weights can be none, kaiser or cureton-mulaik") } A <- A * weights Q <- do.call(method.fname, c(list(LAMBDA = A), method.args, list(grad = TRUE))) Gq <- attr(Q, "grad"); attr(Q, "grad") <- NULL Z <- crossprod(A, Gq) if(ropts$orthogonal) { tmp <- Z - t(Z) this.res <- lav_matrix_vech(tmp, diagonal = FALSE) } else { PSI.z <- PSI * diag(Z) tmp <- Z - PSI.z out1 <- lav_matrix_vech( tmp, diagonal = FALSE) out2 <- lav_matrix_vechu(tmp, diagonal = FALSE) this.res <- c(out1, out2) } res <- c(res, this.res) } } res }
par(ask=TRUE) opar <- par(no.readonly=TRUE) attach(mtcars) plot(wt, mpg, main="Basic Scatterplot of MPG vs. Weight", xlab="Car Weight (lbs/1000)", ylab="Miles Per Gallon ", pch=19) abline(lm(mpg ~ wt), col="red", lwd=2, lty=1) lines(lowess(wt, mpg), col="blue", lwd=2, lty=2) detach(mtcars) library(car) scatterplot(mpg ~ wt | cyl, data=mtcars, lwd=2, main="Scatter Plot of MPG vs. Weight by xlab="Weight of Car (lbs/1000)", ylab="Miles Per Gallon", id.method="identify", legend.plot=TRUE, labels=row.names(mtcars), boxplots="xy") pairs(~ mpg + disp + drat + wt, data=mtcars, main="Basic Scatterplot Matrix") library(car) library(car) scatterplotMatrix(~ mpg + disp + drat + wt, data=mtcars, spread=FALSE, smoother.args=list(lty=2), main="Scatter Plot Matrix via car Package") set.seed(1234) n <- 10000 c1 <- matrix(rnorm(n, mean=0, sd=.5), ncol=2) c2 <- matrix(rnorm(n, mean=3, sd=2), ncol=2) mydata <- rbind(c1, c2) mydata <- as.data.frame(mydata) names(mydata) <- c("x", "y") with(mydata, plot(x, y, pch=19, main="Scatter Plot with 10000 Observations")) with(mydata, smoothScatter(x, y, main="Scatter Plot colored by Smoothed Densities")) library(hexbin) with(mydata, { bin <- hexbin(x, y, xbins=50) plot(bin, main="Hexagonal Binning with 10,000 Observations") }) library(scatterplot3d) attach(mtcars) scatterplot3d(wt, disp, mpg, main="Basic 3D Scatter Plot") scatterplot3d(wt, disp, mpg, pch=16, highlight.3d=TRUE, type="h", main="3D Scatter Plot with Vertical Lines") s3d <-scatterplot3d(wt, disp, mpg, pch=16, highlight.3d=TRUE, type="h", main="3D Scatter Plot with Vertical Lines and Regression Plane") fit <- lm(mpg ~ wt+disp) s3d$plane3d(fit) detach(mtcars) library(rgl) attach(mtcars) plot3d(wt, disp, mpg, col="red", size=5) library(car) with(mtcars, scatter3d(wt, disp, mpg)) attach(mtcars) r <- sqrt(disp/pi) symbols(wt, mpg, circle=r, inches=0.30, fg="white", bg="lightblue", main="Bubble Plot with point size proportional to displacement", ylab="Miles Per Gallon", xlab="Weight of Car (lbs/1000)") text(wt, mpg, rownames(mtcars), cex=0.6) detach(mtcars) opar <- par(no.readonly=TRUE) par(mfrow=c(1,2)) t1 <- subset(Orange, Tree==1) plot(t1$age, t1$circumference, xlab="Age (days)", ylab="Circumference (mm)", main="Orange Tree 1 Growth") plot(t1$age, t1$circumference, xlab="Age (days)", ylab="Circumference (mm)", main="Orange Tree 1 Growth", type="b") par(opar) Orange$Tree <- as.numeric(Orange$Tree) ntrees <- max(Orange$Tree) xrange <- range(Orange$age) yrange <- range(Orange$circumference) plot(xrange, yrange, type="n", xlab="Age (days)", ylab="Circumference (mm)" ) colors <- rainbow(ntrees) linetype <- c(1:ntrees) plotchar <- seq(18, 18+ntrees, 1) for (i in 1:ntrees) { tree <- subset(Orange, Tree==i) lines(tree$age, tree$circumference, type="b", lwd=2, lty=linetype[i], col=colors[i], pch=plotchar[i] ) } title("Tree Growth", "example of line plot") legend(xrange[1], yrange[2], 1:ntrees, cex=0.8, col=colors, pch=plotchar, lty=linetype, title="Tree" ) options(digits=2) cor(mtcars) library(corrgram) corrgram(mtcars, order=TRUE, lower.panel=panel.shade, upper.panel=panel.pie, text.panel=panel.txt, main="Corrgram of mtcars intercorrelations") corrgram(mtcars, order=TRUE, lower.panel=panel.ellipse, upper.panel=panel.pts, text.panel=panel.txt, diag.panel=panel.minmax, main="Corrgram of mtcars data using scatter plots and ellipses") cols <- colorRampPalette(c("darkgoldenrod4", "burlywood1", "darkkhaki", "darkgreen")) corrgram(mtcars, order=TRUE, col.regions=cols, lower.panel=panel.shade, upper.panel=panel.conf, text.panel=panel.txt, main="A Corrgram (or Horse) of a Different Color") ftable(Titanic) library(vcd) mosaic(Titanic, shade=TRUE, legend=TRUE) library(vcd) mosaic(~Class+Sex+Age+Survived, data=Titanic, shade=TRUE, legend=TRUE) x <- c(1:5) y <- c(1:5) par(mfrow=c(2,4)) types <- c("p", "l", "o", "b", "c", "s", "S", "h") for (i in types){ plottitle <- paste("type=", i) plot(x,y,type=i, col="red", lwd=2, cex=1, main=plottitle) }
Mstep.nh.ARfix.MSAR <- function(data,theta,FB,covar=NULL,method=method) { order=attributes(theta)$order d=dim(data)[3] if(is.na(d) | is.null(d)){d=1} M=attributes(theta)$NbRegimes if (length(covar)==1) { Lag = covar covar = array(data[(1):(T-Lag+1),,],c(T-Lag+1,N.samples,d)) data = array(data[Lag:T,,],c(T-Lag+1,N.samples,d)) } N.samples = dim(covar)[2] ncov.trans = dim(covar)[3] par.hh = Mstep.hh.MSAR(data,theta,FB) theta$transmat[which(theta$transmat<1e-15)] = 1e-15 theta$transmat = mk_stochastic(theta$transmat) trans = para_trans(theta$transmat) par.trans = theta$par.trans nh_transition = attributes(theta)$nh.transitions par.init = plie2(trans,par.trans) lxi = dim(FB$probSS)[3] if (order>0) {deb = order+1} else {deb = 1} if (is.null(method)) {method="ucminf"} if (method=="ucminf") {resopt = ucminf(par.init,fn=loglik_nh_inp,gr=NULL,covar=array(covar[deb+(1:(lxi)),,],c(lxi,N.samples,ncov.trans)),xi=FB$probSS,nh_transition=nh_transition,hessian=0,control = list(trace=FALSE))} else if (method=="L-BFGS-B"){resopt = optim(par.init,fn=loglik_nh_inp,gr=NULL,covar=array(covar[deb+(1:(lxi)),,],c(lxi,N.samples,ncov.trans)),xi=FB$probSS,nh_transition=nh_transition,hessian=0,control = list(trace=FALSE),method="L-BFGS-B")} else if (method=="BFGS"){resopt = optim(par.init,fn=loglik_nh_inp,gr=NULL,covar=array(covar[deb+(1:(lxi)),,],c(lxi,N.samples,ncov.trans)),xi=FB$probSS,nh_transition=nh_transition,hessian=0,control = list(trace=FALSE),method="BFGS")} res = deplie2(resopt$par); trans = res$trans ; par.trans = res$par ; transmat=para_trans_inv(trans); if (order>0) { list(A=par.hh$A,sigma=par.hh$sigma,A0=par.hh$A0,prior=par.hh$prior,transmat=transmat,par.trans=par.trans) } else { list(sigma=par.hh$sigma,A0=par.hh$A0,prior=par.hh$prior,transmat=transmat,par.trans=par.trans) } }
library(oompaBase) mat <- matrix(1:1024, ncol=1) opar <- par(mfrow=c(8, 1), mai=c(0.3, 0.5, 0.2, 0.2)) image(mat, col=jetColors(128), main='jetColors') image(mat, col=wheel(64, 0.5), main='wheel, half saturation') image(mat, col=redgreen(64), main='redgreen') image(mat, col=blueyellow(32), main='blueyellow') image(mat, col=cyanyellow(32), main='cyanyellow') image(mat, col=redscale(64), main='redscale') image(mat, col=bluescale(64), main='bluescale') image(mat, col=greyscale(64), main='greyscale') par(opar) ng <- 10000 ns <- 50 dat <- matrix(rnorm(ng*ns, 0, rep(c(1, 2), each=25)), ncol=ns, byrow=TRUE) dat[1:500, 1:25] <- dat[1:500, 1:25] + 2 clas <- factor(rep(c('Good', 'Bad'), each=25)) a0 <- proc.time() myMean <- matrixMean(dat) used0 <- proc.time() - a0 a1 <- proc.time() mm <- apply(dat, 1, mean) used1 <- proc.time() - a1 summary(as.vector(myMean-mm)) used0 used1 a0 <- proc.time() myVar <- matrixVar(dat, myMean) a1 <- proc.time() vv <- apply(dat, 1, var) a2 <- proc.time() summary(as.vector(myVar - vv)) a1 - a0 a2 - a1 t0 <- proc.time() myT <- matrixT(dat, clas) t1 <- proc.time() tt <- sapply(1:nrow(dat), function(i) { t.test(dat[i,clas=="Bad"], dat[i, clas=="Good"], var.equal=T)$statistic }) t2 <- proc.time() summary(as.vector(tt - myT)) t1 - t0 t2 - t1 x <- matrix(rnorm(100*3), nrow=100, ncol=3) class1 <- class2<- rep(FALSE, 100) class1[sample(100, 20)] <- TRUE class2[sample(100, 20)] <- TRUE class3 <- !(class1 | class2) codes <- list(ColorCoding(class1, "red", 16), ColorCoding(class2, "blue", 15), ColorCoding(class3, "black", 17)) par(mfrow=c(2,1)) plot(ColorCodedPair(x[,1], x[,2], codes), xlab="Coord1", ylab="Coord2") plot(ColorCodedPair(x[,1], x[,3], codes), xlab="Coord1", ylab="Coord3") par(mfrow=c(1,1))
library(testthat) library(synthACS) context("macroACS methods") test_that("fetch - age_by_sex - estimates work", { options(warn=-1) age_sex_vector_all <- fetch_data(ca_dat, geography= "*", dataset= "estimate", choice= "age_by_sex") age_sex_vector_some <- fetch_data(ca_dat, geography= c("Alameda", "Amador", "Los Angeles"), dataset= "estimate", choice= "age_by_sex") age_sex_vector_one <- fetch_data(ca_dat, geography= "San Bernardino", dataset= "estimate", choice= "age_by_sex") options(warn=0) expect_true(exists("age_sex_vector_all")) expect_true(exists("age_sex_vector_some")) expect_true(exists("age_sex_vector_one")) expect_true(is.data.frame(age_sex_vector_all)) expect_true(is.data.frame(age_sex_vector_some)) expect_true(is.data.frame(age_sex_vector_one)) expect_equal(nrow(age_sex_vector_all), nrow(ca_dat$geography)) expect_equal(names(age_sex_vector_all), names(ca_dat$estimates$age_by_sex)) expect_equal(rownames(age_sex_vector_all), ca_dat$geography$NAME) expect_equal(age_sex_vector_all, ca_dat$estimates$age_by_sex) expect_equal(nrow(age_sex_vector_some), 3L) expect_equal(names(age_sex_vector_some), names(ca_dat$estimates$age_by_sex)) expect_equal(rownames(age_sex_vector_some), c("Alameda County, California", "Amador County, California", "Los Angeles County, California")) expect_equal(age_sex_vector_some, ca_dat$estimates$age_by_sex[c(1,3,19),]) expect_equal(nrow(age_sex_vector_one), 1L) expect_equal(names(age_sex_vector_one), names(ca_dat$estimates$age_by_sex)) expect_equal(rownames(age_sex_vector_one), "San Bernardino County, California") expect_equal(age_sex_vector_one, ca_dat$estimates$age_by_sex[36,]) }) test_that("fetch - age_by_sex - SE work", { options(warn=-1) age_sex_vector_all <- fetch_data(ca_dat, geography= "*", dataset= "st.err", choice= "age_by_sex") age_sex_vector_some <- fetch_data(ca_dat, geography= c("Alameda", "Amador", "Los Angeles"), dataset= "st.err", choice= "age_by_sex") age_sex_vector_one <- fetch_data(ca_dat, geography= "San Bernardino", dataset= "st.err", choice= "age_by_sex") options(warn=0) expect_true(exists("age_sex_vector_all")) expect_true(exists("age_sex_vector_some")) expect_true(exists("age_sex_vector_one")) expect_true(is.data.frame(age_sex_vector_all)) expect_true(is.data.frame(age_sex_vector_some)) expect_true(is.data.frame(age_sex_vector_one)) expect_equal(nrow(age_sex_vector_all), nrow(ca_dat$geography)) expect_equal(names(age_sex_vector_all), names(ca_dat$standard_error$age_by_sex)) expect_equal(rownames(age_sex_vector_all), ca_dat$geography$NAME) expect_equal(age_sex_vector_all, ca_dat$standard_error$age_by_sex) expect_equal(nrow(age_sex_vector_some), 3L) expect_equal(names(age_sex_vector_some), names(ca_dat$standard_error$age_by_sex)) expect_equal(rownames(age_sex_vector_some), c("Alameda County, California", "Amador County, California", "Los Angeles County, California")) expect_equal(age_sex_vector_some, ca_dat$standard_error$age_by_sex[c(1,3,19),]) expect_equal(nrow(age_sex_vector_one), 1L) expect_equal(names(age_sex_vector_one), names(ca_dat$standard_error$age_by_sex)) expect_equal(rownames(age_sex_vector_one), "San Bernardino County, California") expect_equal(age_sex_vector_one, ca_dat$standard_error$age_by_sex[36,]) }) test_that("fetch - pop_by_race - estimates work", { options(warn=-1) vector_all <- fetch_data(ca_dat, geography= "*", dataset= "estimate", choice= "pop_by_race") vector_some <- fetch_data(ca_dat, geography= c("Alameda", "Amador", "Los Angeles"), dataset= "estimate", choice= "pop_by_race") vector_one <- fetch_data(ca_dat, geography= "San Bernardino", dataset= "estimate", choice= "pop_by_race") options(warn=0) expect_true(exists("vector_all")) expect_true(exists("vector_some")) expect_true(exists("vector_one")) expect_true(is.data.frame(vector_all)) expect_true(is.data.frame(vector_some)) expect_true(is.data.frame(vector_one)) expect_equal(nrow(vector_all), nrow(ca_dat$geography)) expect_equal(names(vector_all), names(ca_dat$estimates$pop_by_race)) expect_equal(rownames(vector_all), ca_dat$geography$NAME) expect_equal(vector_all, ca_dat$estimates$pop_by_race) expect_equal(nrow(vector_some), 3L) expect_equal(names(vector_some), names(ca_dat$estimates$pop_by_race)) expect_equal(rownames(vector_some), c("Alameda County, California", "Amador County, California", "Los Angeles County, California")) expect_equal(vector_some, ca_dat$estimates$pop_by_race[c(1,3,19),]) expect_equal(nrow(vector_one), 1L) expect_equal(names(vector_one), names(ca_dat$estimates$pop_by_race)) expect_equal(rownames(vector_one), "San Bernardino County, California") expect_equal(vector_one, ca_dat$estimates$pop_by_race[36,]) }) test_that("fetch - pop_by_race - SE work", { options(warn=-1) vector_all <- fetch_data(ca_dat, geography= "*", dataset= "st.err", choice= "pop_by_race") vector_some <- fetch_data(ca_dat, geography= c("Alameda", "Amador", "Los Angeles"), dataset= "st.err", choice= "pop_by_race") vector_one <- fetch_data(ca_dat, geography= "San Bernardino", dataset= "st.err", choice= "pop_by_race") options(warn=0) expect_true(exists("vector_all")) expect_true(exists("vector_some")) expect_true(exists("vector_one")) expect_true(is.data.frame(vector_all)) expect_true(is.data.frame(vector_some)) expect_true(is.data.frame(vector_one)) expect_equal(nrow(vector_all), nrow(ca_dat$geography)) expect_equal(names(vector_all), names(ca_dat$standard_error$pop_by_race)) expect_equal(rownames(vector_all), ca_dat$geography$NAME) expect_equal(vector_all, ca_dat$standard_error$pop_by_race) expect_equal(nrow(vector_some), 3L) expect_equal(names(vector_some), names(ca_dat$standard_error$pop_by_race)) expect_equal(rownames(vector_some), c("Alameda County, California", "Amador County, California", "Los Angeles County, California")) expect_equal(vector_some, ca_dat$standard_error$pop_by_race[c(1,3,19),]) expect_equal(nrow(vector_one), 1L) expect_equal(names(vector_one), names(ca_dat$standard_error$pop_by_race)) expect_equal(rownames(vector_one), "San Bernardino County, California") expect_equal(vector_one, ca_dat$standard_error$pop_by_race[36,]) }) test_that("span, endyear, geography, dataset names", { sp <- get_span(ca_dat) expect_equal(sp, ca_dat$span) end <- get_endyear(ca_dat) expect_equal(end, ca_dat$endyear) g <- get_geography(ca_dat) expect_equal(g, ca_dat$geo_title) nn <- get_dataset_names(ca_dat) expect_equal(nn, names(ca_dat$estimates)) expect_equal(nn, names(ca_dat$standard_error)) }) test_that("split macroACS works", { ca_split <- split(ca_dat, n_splits= 7) split_idx <- parallel::splitIndices(nrow(ca_dat$geography), 7) expect_equal(unlist(lapply(ca_split, class)), rep("macroACS", 7)) expect_equal(unlist(lapply(ca_split, names)), rep(names(ca_dat), 7)) expect_equal(unlist(lapply(ca_split, get_span)), rep(get_span(ca_dat), 7)) expect_equal(unlist(lapply(ca_split, get_endyear)), rep(get_endyear(ca_dat), 7)) expect_equal(unlist(lapply(ca_split, function(l) return(l$geo_title))), rep(NULL, 7)) expect_equal(nrow(ca_split[[1]]$estimates[[1]]), length(split_idx[[1]])) expect_equal(nrow(ca_split[[2]]$estimates[[7]]), length(split_idx[[2]])) expect_equal(nrow(ca_split[[3]]$estimates[[8]]), length(split_idx[[3]])) expect_equal(nrow(ca_split[[4]]$estimates[[5]]), length(split_idx[[4]])) expect_equal(nrow(ca_split[[5]]$standard_error[[2]]), length(split_idx[[5]])) expect_equal(nrow(ca_split[[6]]$standard_error[[6]]), length(split_idx[[6]])) expect_equal(nrow(ca_split[[7]]$standard_error[[10]]), length(split_idx[[7]])) expect_equal(ca_split[[1]]$geography, ca_dat$geography[ split_idx[[1]], ]) expect_equal(ca_split[[4]]$geography, ca_dat$geography[ split_idx[[4]], ]) expect_equal(ca_split[[7]]$geography, ca_dat$geography[ split_idx[[7]], ]) expect_equal(ca_split[[2]]$estimates, lapply(ca_dat$estimates, function(l, idx) return(l[idx, ]), idx= split_idx[[2]])) expect_equal(ca_split[[3]]$estimates, lapply(ca_dat$estimates, function(l, idx) return(l[idx, ]), idx= split_idx[[3]])) expect_equal(ca_split[[5]]$estimates, lapply(ca_dat$estimates, function(l, idx) return(l[idx, ]), idx= split_idx[[5]])) expect_equal(ca_split[[6]]$standard_error, lapply(ca_dat$standard_error, function(l, idx) return(l[idx, ]), idx= split_idx[[6]])) })
plotFluxPred<-function(eList, fluxUnit = 3, fluxMax = NA, printTitle = TRUE, oneToOneLine=TRUE, customPar=FALSE,col="black", lwd=1, cex=0.8, cex.axis=1.1,cex.main=1.1, tinyPlot=FALSE, usgsStyle=FALSE,logScale=FALSE,randomCensored = FALSE,...){ localINFO <- getInfo(eList) localSample <- getSample(eList) if(!all((c("SE","yHat") %in% names(eList$Sample)))){ stop("This function requires running modelEstimation on eList") } if(sum(c("paStart","paLong") %in% names(localINFO)) == 2){ paLong <- localINFO$paLong paStart <- localINFO$paStart } else { paLong <- 12 paStart <- 10 } possibleGoodUnits <- c("mg/l","mg/l as N", "mg/l as NO2", "mg/L", "mg/l as NO3","mg/l as P","mg/l as PO3","mg/l as PO4","mg/l as CaCO3", "mg/l as Na","mg/l as H","mg/l as S","mg/l NH4" ) allCaps <- toupper(possibleGoodUnits) localUnits <- toupper(localINFO$param.units) if(!(localUnits %in% allCaps)){ warning("Expected concentration units are mg/l, \nThe INFO dataframe indicates:",localINFO$param.units, "\nFlux calculations will be wrong if units are not consistent") } localSample <- if(paLong == 12) localSample else selectDays(localSample,paLong,paStart) title2<-if(paLong==12) "" else setSeasonLabelByUser(paStartInput=paStart,paLongInput=paLong) if (is.numeric(fluxUnit)){ fluxUnit <- fluxConst[shortCode=fluxUnit][[1]] } else if (is.character(fluxUnit)){ fluxUnit <- fluxConst[fluxUnit][[1]] } fluxFactor <- fluxUnit@unitFactor*86.40 x<-localSample$ConcHat*localSample$Q*fluxFactor Uncen<-localSample$Uncen if (tinyPlot) { xLab <- fluxUnit@unitEstimateTiny yLab <- substitute(a ~ b, list(a="Obs.",b= fluxUnit@unitExpressTiny[[1]])) } else { if(usgsStyle){ xLab <- paste("Estimated", tolower(fluxUnit@unitUSGS)) yLab <- paste("Observed", tolower(fluxUnit@unitUSGS)) } else { xLab <- substitute(a ~ b, list(a = "Estimated" , b = fluxUnit@unitEstimate[[1]])) yLab <- substitute(a ~ b, list(a ="Observed", b = fluxUnit@unitEstimate[[1]])) } } if(logScale){ logText <- "xy" minX <- NA minY <- NA } else { logText <- "" minX <- 0 minY <- 0 } plotTitle<-if(printTitle) paste(localINFO$shortName,"\n",localINFO$paramShortName,"\n","Observed vs Estimated Flux") else "" xInfo <- generalAxis(x=x, minVal=minX, maxVal=NA, logScale=logScale, tinyPlot=tinyPlot,padPercent=5) if(!randomCensored){ yLow<-localSample$ConcLow*localSample$Q*fluxFactor yHigh<-localSample$ConcHigh*localSample$Q*fluxFactor yInfo <- generalAxis(x=yHigh, minVal=minY, maxVal=fluxMax, logScale=logScale, tinyPlot=tinyPlot,padPercent=5) genericEGRETDotPlot(x=x, y=yHigh, xTicks=xInfo$ticks, yTicks=yInfo$ticks, xlim=c(xInfo$bottom,xInfo$top), ylim=c(yInfo$bottom,yInfo$top), xlab=xLab, ylab=yLab,log=logText, customPar=customPar, plotTitle=plotTitle,oneToOneLine=oneToOneLine, cex=cex,col=col, tinyPlot=tinyPlot,cex.axis=cex.axis,cex.main=cex.main,... ) censoredSegments(yBottom=yInfo$bottom, yLow=yLow, yHigh=yHigh, x=x, Uncen=Uncen,col=col,lwd=lwd) } else { if(!("rObserved" %in% names(localSample))){ eList <- makeAugmentedSample(eList) localSample <- eList$Sample } yLow<-localSample$rObserved*localSample$Q*fluxFactor yHigh<-localSample$rObserved*localSample$Q*fluxFactor yInfo <- generalAxis(x=yHigh, minVal=minY, maxVal=fluxMax, logScale=logScale, tinyPlot=tinyPlot,padPercent=5) genericEGRETDotPlot(x=x[Uncen == 1], y=yHigh[Uncen == 1], xTicks=xInfo$ticks, yTicks=yInfo$ticks, xlim=c(xInfo$bottom,xInfo$top), ylim=c(yInfo$bottom,yInfo$top), xlab=xLab, ylab=yLab,log=logText, customPar=customPar, plotTitle=plotTitle,oneToOneLine=oneToOneLine, cex=cex,col=col, tinyPlot=tinyPlot,cex.axis=cex.axis,cex.main=cex.main,... ) points(x=x[Uncen == 0], y=yHigh[Uncen == 0], pch=1,cex=cex,col=col) } if (!tinyPlot) mtext(title2,side=3,line=-1.5) }
handeval <- function(num1,suit1){ a1 = strflsh1(num1,suit1) if(a1>0.5) return(8000000+a1) a1 = four1(num1) if(a1>0.5) return(7000000+a1) a1 = full1(num1) if(a1>0.5) return(6000000+a1) a1 = flush1(num1,suit1) if(a1>0.5) return(5000000+a1) a1 = straight1(num1) if(a1>0.5) return(4000000+a1) a1 = trip1(num1) if(a1>0.5) return(3000000+a1) a1 = twopair1(num1) if(a1>0.5) return(2000000+a1) a1 = onepair1(num1) if(a1>0.5) return(1000000+a1) a1 = nothing1(num1) return(a1) }
test_that("wkt_draw_* works", { x <- "POLYGON ((0 0, 10 0, 10 10, 0 10, 0 0))" expect_identical(wkt_plot_new(x, main = "wkt_draw_*()"), x) expect_identical(wkt_draw_polypath(x, col = "grey90"), x) expect_identical(wkt_draw_lines(x, col = "red"), x) expect_identical(wkt_draw_points(x, pch = 16), x) }) test_that("wkb_draw_* works", { x <- wkt_translate_wkb("POLYGON ((0 0, 10 0, 10 10, 0 10, 0 0))") expect_identical(wkb_plot_new(x, main = "wkb_draw_*()"), x) expect_identical(wkb_draw_polypath(x, col = "grey90"), x) expect_identical(wkb_draw_lines(x, col = "red"), x) expect_identical(wkb_draw_points(x, pch = 16), x) })
snowdepth<-function(element='SD',maxseq=20,blocksizeround=20,blockmanymonth=20,blockmanyyear=200,large=5000,exclude=0,inisia=FALSE){ blend <- getOption("blend") homefolder <- getOption("homefolder") if(inisia){inithome()} tx<-lister(element) ene<-length(tx) if(ene==0){return()} for(i in 1:ene){ name<-paste(homefolder,'raw/',tx[i],sep='') print(paste(name,i,'of',ene),quote=FALSE) x<-readecad(input=name) ; print(paste(Sys.time(),'Ended readecad'),quote=FALSE) if(!'STAID' %in% colnames(x) & ncol(x)==4){x<-cbind(STAID=as.numeric(substring(tx[i],9,14)),x)} x<-x[,1:4];colnames(x)<-c('STAID','SOUID','date','value') bad<-duplas(x$date);x$dupli<-0;if(length(bad)!=0){x$dupli[bad]<-1} ; print(paste(Sys.time(),'Ended duplas'),quote=FALSE) bad<-weirddate(x[,3:4]);x$weirddate<-0;if(length(bad)!=0){x$weirddate[bad]<-1}; print(paste(Sys.time(),'Ended weirddate'),quote=FALSE) bad<-toomany(x[,3:4],blockmanymonth,1,exclude=0);x$toomanymonth<-0;if(length(bad)!=0){x$toomany[bad]<-1}; print(paste(Sys.time(),'Ended toomany, month'),quote=FALSE) bad<-toomany(x[,3:4],blockmanyyear,2,exclude=0);x$toomanyyear<-0;if(length(bad)!=0){x$toomany[bad]<-1}; print(paste(Sys.time(),'Ended toomany, year'),quote=FALSE) bad<-roundprecip(x[,3:4],blocksizeround,exclude =0);x$rounding<-0;if(length(bad)!=0){x$rounding[bad]<-1}; print(paste(Sys.time(),'Ended roundsnow'),quote=FALSE) bad<-physics(x$value,large,1);x$large<-0;if(length(bad)!=0){x$large[bad]<-1}; print(paste(Sys.time(),'Ended physics, large'),quote=FALSE) bad<-physics(x$value,0,3);x$small<-0;if(length(bad)!=0){x$small[bad]<-1}; print(paste(Sys.time(),'Ended physics, small'),quote=FALSE) bad<-flat(x$value,maxseq,exclude=0);x$flat<-0;if(length(bad)!=0){x$flat[bad]<-1}; print(paste(Sys.time(),'Ended flat for values'),quote=FALSE) consolidator(tx[i],x) } }
if (x) {1 + 1 + +1} else {3} test_that("x", { my_test(call) }) a =3 data_frame(a = 3) a <- function(x) x + 1;b;c a %>% b %>% c
"_PACKAGE" NULL utils::globalVariables(c("id", "r", "n"))
library(tidyverse) library(wesanderson) s <- round(runif(1, 0, 100000)) set.seed(s) n = 10000 pnts <- data.frame(r = 1:n, x = rep(0, n), y = rep(0, n), a = rep(0, n)) for (i in 2:n) { l = rnorm(1, 3, 1) b = runif(1, 0, 30) * pi / 180 c = -runif(1, 60, 120) * pi / 180 a = sample(c(b, c), 1) pnts$a[i] <- pnts$a[i-1] + a pnts$x[i] <- pnts$x[i-1] + l * cos(pnts$a[i]) pnts$y[i] <- pnts$y[i-1] + l * sin(pnts$a[i]) } pal = wes_palette("Zissou1", 9, type = "continuous") ggplot(pnts) + geom_path(aes(x, y, color = factor(r %% 9)), size = 0.2) + scale_color_manual(values = pal) + coord_fixed(expand = FALSE) + xlim(-150, 150) + ylim(-150, 150) + theme_void() + theme( legend.position = "none", plot.background = element_rect(fill = "grey95", color = NA) ) ggsave(here::here("genuary", "2021", "2021-17", paste0("2021-17-", s, ".png")), dpi = 320, width = 7, height = 7)
generate.subsamples <- function(number.of.occurrences, fold, loocv.limit){ if (number.of.occurrences < loocv.limit){ subsamples <- matrix(0,number.of.occurrences, number.of.occurrences-1) for (i in 1:number.of.occurrences){ if ((i > 1)&&(i < number.of.occurrences)){ subsamples[i,] <- c(1:(i-1),(i+1):number.of.occurrences) } if (i==1){ subsamples[i,] <- (i+1):number.of.occurrences } if (i == number.of.occurrences){ subsamples[i,] <- 1:(number.of.occurrences-1) } } } else { members <- 1:number.of.occurrences number.of.members <- ceiling(number.of.occurrences/fold) groups <- matrix(0, fold, number.of.members) for (i in 1:fold){ for (j in 1:number.of.members){ if (length(members)==0){ break } chosen <- round(runif(1,0,length(members))) if (chosen == 0){ chosen <- length(members) } groups[i,j] <- members[chosen] members <- members[which(members != members[chosen])] } groups[i,] <- sort(groups[i,]) } if (length(which(groups[fold,]!=0))==0){ groups <- groups[1:(fold-1),] } subsamples <- matrix(0, dim(groups)[1], (dim(groups)[1]-1)*number.of.members) for (i in 1:dim(groups)[1]){ subsample <- c() for (j in 1:dim(groups)[1]){ if (j != i){ subsample <- c(subsample, groups[j,]) } } subsamples[i,] <- sort(subsample) } } return(subsamples) }
context("overflow()") test_that("adds class", { div() %>% overflow("auto") %>% expect_s3_class("shiny.tag") %>% expect_html_class("cas-overflow-auto") div(.style %>% overflow("hidden")) %>% expect_s3_class("shiny.tag") %>% expect_html_class("cas-overflow-hidden") }) test_that("argument scroll shortcuts", { div() %>% overflow(FALSE) %>% expect_html_class("cas-overflow-hidden") div() %>% overflow(TRUE) %>% expect_html_class("cas-overflow-scroll") })
NULL mask_non_DE_genes_basic <- function(infercnv_obj, p_val_thresh = 0.05, test.use="wilcoxon", center_val=mean([email protected]), require_DE_all_normals="any" ) { tumor_groupings = infercnv_obj@observation_grouped_cell_indices all_DE_results = get_DE_genes_basic(infercnv_obj, p_val_thresh=p_val_thresh, test.use=test.use) infercnv_obj <- .mask_DE_genes(infercnv_obj, all_DE_results=all_DE_results, mask_val=center_val, require_DE_all_normals=require_DE_all_normals) return(infercnv_obj) } .mask_DE_genes <- function(infercnv_obj, all_DE_results, mask_val, require_DE_all_normals, min_cluster_size_mask=5) { all_DE_genes_matrix = matrix(data=0, nrow=nrow([email protected]), ncol=ncol([email protected]), dimnames = list(rownames([email protected]), colnames([email protected]) ) ) num_normal_types = length(names(infercnv_obj@reference_grouped_cell_indices)) all_DE_genes_matrix[, unlist(infercnv_obj@reference_grouped_cell_indices)] = num_normal_types for (DE_results in all_DE_results) { if (length(DE_results$tumor_indices) < min_cluster_size_mask) { all_DE_genes_matrix[, DE_results$tumor_indices] = num_normal_types } } for (DE_results in all_DE_results) { genes = DE_results$de_genes gene_idx = rownames(all_DE_genes_matrix) %in% genes cell_idx = DE_results$tumor_indices if (length(cell_idx) >= min_cluster_size_mask) { all_DE_genes_matrix[gene_idx, cell_idx] = all_DE_genes_matrix[gene_idx, cell_idx] + 1 } } if (require_DE_all_normals == "all") { [email protected][ all_DE_genes_matrix != num_normal_types ] = mask_val } else if ( require_DE_all_normals == "most") { [email protected][ all_DE_genes_matrix < num_normal_types/2 ] = mask_val } else if ( require_DE_all_normals == "any") { [email protected][ all_DE_genes_matrix == 0 ] = mask_val } else { stop(sprintf("Error, not recognizing require_DE_all_normals=%s", require_DE_all_normals)) } return(infercnv_obj) } get_DE_genes_basic <- function(infercnv_obj, p_val_thresh = 0.05, test.use="wilcoxon" ) { all_DE_results = list() statfxns = list() statfxns[[ "t" ]] <- function(x, idx1, idx2) { vals1 = x[idx1] vals2 = x[idx2] res = try(t.test(vals1, vals2), silent=TRUE) if (is(res, "try-error")) return(NA) else return(res$p.value) } statfxns[[ "perm" ]] <- function(x, idx1, idx2) { vals1 = x[idx1] vals2 = x[idx2] allvals = c(vals1, vals2) facts = factor(rep(c("A","B"), c(length(vals1), length(vals2)))) perm = coin::oneway_test(allvals ~ facts) pval = coin::pvalue(perm) return(pval) } statfxns[[ "wilcoxon" ]] <- function(x, idx1, idx2) { vals1 = x[idx1] vals2 = x[idx2] vals1 = vals1 + rnorm(n=length(vals1), mean=0.0001, sd=0.0001) vals2 = vals2 + rnorm(n=length(vals2), mean=0.0001, sd=0.0001) w = wilcox.test(vals1, vals2) return(w$p.value) } statfxn = statfxns[[ test.use ]] normal_types = names(infercnv_obj@reference_grouped_cell_indices) tumor_groupings = infercnv_obj@observation_grouped_cell_indices for (tumor_type in names(tumor_groupings)) { indices = infercnv_obj@tumor_subclusters[["subclusters"]][[ tumor_type ]] if(is.list(indices)) { tumor_indices_list = indices } else { tumor_indices_list = list(indices) } for (tumor_indices_name in names(tumor_indices_list)) { tumor_indices = tumor_indices_list[[ tumor_indices_name ]] for (normal_type in normal_types) { flog.info(sprintf("Finding DE genes between %s and %s", tumor_indices_name, normal_type)) normal_indices = infercnv_obj@reference_grouped_cell_indices[[ normal_type ]] pvals = apply([email protected], 1, statfxn, idx1=normal_indices, idx2=tumor_indices) pvals = unlist(pvals) pvals = p.adjust(pvals, method="BH") names(pvals) = rownames([email protected]) genes = names(pvals)[pvals<p_val_thresh] flog.info(sprintf("Found %d genes / %d total as DE", length(genes), length(pvals))) condition_pair = paste(tumor_indices_name, normal_type, sep=",") all_DE_results[[condition_pair]] = list(tumor_indices=tumor_indices, normal=normal_type, pvals=pvals, de_genes=genes) } } } return(all_DE_results) }
summary.mcemGLMM <- function(object, ...) { coef0 <- tail(object$mcemEST, n = 1)[1:ncol(object$x)] names(coef0) <- colnames(object$mcemEST)[1:ncol(object$x)] ran.eff0 <- colMeans(object$randeff) var.est0 <-tail(object$mcemEST, n = 1)[-(1:ncol(object$x))] names(var.est0) <- colnames(object$mcemEST)[-(1:ncol(object$x))] cmat0 <- solve(object$iMatrix) std.err0 <- sqrt(diag(cmat0)) std.err1 <- std.err0[-(1:ncol(object$x))] std.err0 <- std.err0[1:ncol(object$x)] zval0 <- coef0/std.err0[1:ncol(object$x)] zval1 <- var.est0/std.err1 pval0 <- 2 * pnorm(-abs(zval0)) pval1 <- pnorm(-abs(zval1)) resultsFixed <- matrix(0, length(coef0), 4) resultsFixed[, 1] <- coef0 resultsFixed[, 2] <- std.err0[1:ncol(object$x)] resultsFixed[, 3] <- zval0 resultsFixed[, 4] <- round(pval0, 8) rownames(resultsFixed) <- names(coef0) colnames(resultsFixed) <- c("Estimate", "Std. Error", "z value", "Pr(>|z|)") resultsVar <- matrix(0, length(var.est0), 4) resultsVar[, 1] <- var.est0 resultsVar[, 2] <- std.err1 resultsVar[, 3] <- zval1 resultsVar[, 4] <- pval1 rownames(resultsVar) <- names(var.est0) colnames(resultsVar) <- c("Estimate", "Std. Error", "z value", "Pr(>z)") cat("Call:\n ") print(object$call) cat("\n Two sided Wald tests for fixed effects coefficients:\n\n") print(resultsFixed) if (object$call$family %in% c("bernoulli", "poisson")) { cat("\n\n One sided Wald tests for variance components:\n\n") print(resultsVar) } else { resultsAlpha <- matrix(resultsVar[1, 1:2], 1, 2) colnames(resultsAlpha) <- c("Estimate", "Std. Error") rownames(resultsAlpha) <- "alpha" cat("\n Overdispersion parameter alpha:\n\n") print(resultsAlpha) resultsVar <- matrix(resultsVar[-1, ], length(names(var.est0)[-1]), 4) rownames(resultsVar) <- names(var.est0)[-1] colnames(resultsVar) <- c("Estimate", "Std. Error", "z value", "Pr(>z)") cat("\n\n One sided Wald tests for variance components:\n\n") print(resultsVar) } tbr <- list(coefficients = list(fixed = coef0, random = ran.eff0), var.est = var.est0, std.err = c(std.err0, std.err1), z.val = c(zval0, zval1)) invisible(tbr) }
PI_2 <- function(t, all_times, gamma_vec, U){ t <- c(-1,t) time_mat <- matrix(rep(t, length(all_times)), length(all_times), length(t), byrow = T) event_time_mat <- matrix(rep(all_times, length(t)), length(all_times), length(t)) indexes <- matrix(rep(1:length(all_times), length(t)), length(all_times), length(t))*(event_time_mat >= time_mat) l <- ncol(as.matrix(U)) simplified_mat <- matrix(U[indexes, rep(1:l, l)]*U[indexes, rep(1:l, rep(l,l))], ncol = l^2) almost_res <- apply(as.vector(exp(as.matrix(U[indexes, ])%*%gamma_vec))*(simplified_mat), 2, cumsum)[cumsum(colSums(event_time_mat >= time_mat)), ] almost_res <- as.matrix(almost_res, ncol = l^2) res <- almost_res - rbind(0, as.matrix(almost_res[-dim(almost_res)[1], , drop = F])) return(matrix(res[-1,], ncol = l^2)) }
load(file = "helper_data.rda") dfSAV <- import_spss(file = "helper_spss_missings.sav") test_that("Drop missing labels from meta", { expect_equal(drop_missing_labels(df1$labels[df1$labels$varName == "ID1", ]), df1$labels[df1$labels$varName == "ID1", ]) out <- dfSAV$labels[3, ] row.names(out) <- NULL expect_equal(drop_missing_labels(dfSAV$labels[dfSAV$labels$varName == "VAR1", ]), out) expect_equal(drop_missing_labels(dfSAV$labels[dfSAV$labels$varName == "VAR3", ]), data.frame(varName = "VAR3", varLabel = "Variable 3", format = "F8.2", display_width = NA_real_, labeled = "no", value = NA_real_, valLabel = NA_character_, missings = NA_character_, stringsAsFactors = FALSE)) }) test_that("Transfer meta information from one GADSdat to another", { dat2 <- import_DF(dfSAV$dat) dat3 <- reuseMeta(dat2, varName = "VAR1", dfSAV) dat3 <- reuseMeta(dat3, varName = "VAR2", dfSAV) dat3 <- reuseMeta(dat3, varName = "VAR3", dfSAV) expect_equal(dfSAV, dat3) dat4 <- changeVarNames(dat2, oldNames = "VAR1", newNames = "v1") dat5 <- reuseMeta(dat4, varName = "v1", dfSAV, other_varName = "VAR1") expect_silent(check_GADSdat(dat5)) }) test_that("Use reuseMeta for combining value labels, including adapting meta data on variable level", { df <- dfSAV$dat[, 2, drop = FALSE] new_dfSAV <- updateMeta(dfSAV, df) new_dfSAV$labels <- new_dfSAV$labels[1, ] new_dfSAV$labels[, "value"] <- 5 test <- reuseMeta(dfSAV, varName = "VAR1", other_GADSdat = new_dfSAV, other_varName = "VAR2", addValueLabels = TRUE) test_labels <- test$labels[test$labels$varName == "VAR1", ] expect_equal(test_labels$value, c(-99, -96, 1, 5)) expect_equal(unique(test_labels$varLabel), "Variable 1") test2 <- reuseMeta(dfSAV, varName = "VAR1", other_GADSdat = new_dfSAV, other_varName = "VAR2", addValueLabels = FALSE) test2_labels <- test2$labels[test2$labels$varName == "VAR1",] expect_equal(test2_labels$value, c(5)) expect_equal(unique(test2_labels$varLabel), "Variable 2") }) test_that("Reuse meta with special missing treatment", { dat2 <- import_DF(dfSAV$dat) expect_error(reuseMeta(dat2, varName = "VAR1", dfSAV, missingLabels = "drp"), "Invalid input for argument missingLabels.") dat3 <- reuseMeta(dat2, varName = "VAR1", dfSAV, missingLabels = "drop") expect_equal(nrow(dat3$labels), 3) expect_equal(dat3$labels[1, "value"], 1) dat2 <- import_DF(dfSAV$dat) dat3 <- reuseMeta(dfSAV, varName = "VAR1", dat2, missingLabels = "leave") expect_equal(nrow(dat3$labels), 6) expect_equal(dat3$labels[1, "value"], -99) dat3 <- reuseMeta(dfSAV, varName = "VAR1", dat2, missingLabels = "only") expect_equal(nrow(dat3$labels), 5) expect_equal(dat3$labels[1, "value"], NA_real_) dat5 <- reuseMeta(dat2, varName = "VAR1", dfSAV, missingLabels = "only") expect_equal(nrow(dat5$labels), 4) expect_equal(dat5$labels[1:2, "value"], c(-99, -96)) expect_equal(dat5$labels[1:2, "valLabel"], c("By design", "Omission")) expect_equal(dat5$labels[1:2, "missings"], c("miss", "miss")) }) test_that("Reuse meta adding value labels to an unlabeled variable", { out <- reuseMeta(df1, varName = "V1", other_GADSdat = dfSAV, other_varName = "VAR1", addValueLabels = TRUE) expect_equal(out$labels[2, "labeled"], "yes") expect_equal(out$labels[2, "valLabel"], "By design") }) test_that("Bugfix if only missing rows and missingLabels = leave", { out <- reuseMeta(dfSAV, varName = "VAR3", other_GADSdat = dfSAV, other_varName = "VAR1", missingLabels = "leave") expect_equal(nrow(out$labels), 8) })
estimate_mode <- function(x) { d <- density(x) d$x[which.max(d$y)] } printSummary<-function(m){ summary<-t(apply(m,2,function(x) round(c(mean=mean(x), sd=sd(x), quantile(x, probs=c(0.025, 0.5, 0.975)),HPDLow95=HPDinterval(mcmc(cbind(reduction=x)), 0.95)[1,1],mode=estimate_mode(x),HPDHigh95=HPDinterval(mcmc(cbind(reduction=x)), 0.95)[1,2]),4))) rownames(summary)<-colnames(m) print(summary) return(summary) }
label_pos_values <- c("hidden", "visible", "topleft") setMethod("c", "SplitVector", function(x, ...) { arglst = list(...) stopifnot(all(sapply(arglst, is, "Split"))) tmp = c(unclass(x), arglst) SplitVector(lst = tmp) }) setGeneric("split_rows", function(lyt = NULL, spl, pos, cmpnd_fun = AnalyzeMultiVars) standardGeneric("split_rows")) setMethod("split_rows", "NULL", function(lyt, spl, pos, cmpnd_fun = AnalyzeMultiVars) { .Deprecated(msg = "Initializing layouts via NULL is deprecated, please use basic_table() instead") rl = PreDataRowLayout(SplitVector(spl)) cl = PreDataColLayout() PreDataTableLayouts(rlayout = rl, clayout = cl) }) setMethod("split_rows", "PreDataRowLayout", function(lyt, spl, pos, cmpnd_fun = AnalyzeMultiVars) { stopifnot(pos >0 && pos <= length(lyt) + 1) tmp = if (pos <= length(lyt)) { split_rows(lyt[[pos]], spl, pos, cmpnd_fun) } else { SplitVector(spl) } lyt[[pos]] = tmp lyt }) is_analysis_spl = function(spl) is(spl, "VAnalyzeSplit") || is(spl, "AnalyzeMultiVars") setMethod("split_rows", "SplitVector", function(lyt, spl, pos, cmpnd_fun = AnalyzeMultiVars) { tmp = c(unclass(lyt), spl) SplitVector(lst = tmp) }) setMethod("split_rows", "PreDataTableLayouts", function(lyt, spl, pos){ rlyt <- rlayout(lyt) addtl <- FALSE split_label <- obj_label(spl) if(is(spl, "Split") && identical(label_position(spl), "topleft") && length(split_label) == 1 && nzchar(split_label)) { addtl <- TRUE label_position(spl) <- "hidden" } rlyt <- split_rows(rlyt, spl, pos) rlayout(lyt) <- rlyt if(addtl) { lyt <- append_topleft(lyt, indent_string(split_label, .tl_indent(lyt))) } lyt }) setMethod("split_rows", "ANY", function(lyt, spl, pos) stop("nope. can't add a row split to that (", class(lyt), "). contact the maintaner.") ) setGeneric("cmpnd_last_rowsplit", function(lyt, spl, constructor) standardGeneric("cmpnd_last_rowsplit")) setMethod("cmpnd_last_rowsplit", "NULL", function(lyt, spl, constructor) { stop("no existing splits to compound with. contact the maintainer") }) setMethod("cmpnd_last_rowsplit", "PreDataRowLayout", function(lyt, spl, constructor) { pos = length(lyt) tmp = cmpnd_last_rowsplit(lyt[[pos]], spl, constructor) lyt[[pos]] = tmp lyt }) setMethod("cmpnd_last_rowsplit", "SplitVector", function(lyt, spl, constructor) { pos = length(lyt) lst = lyt[[pos]] tmp = if(is(lst, "CompoundSplit")) { spl_payload(lst) = c(.uncompound(spl_payload(lst)), .uncompound(spl)) obj_name(lst) <- make_ma_name(spl = lst) lst } else { constructor(.payload = list(lst, spl)) } lyt[[pos]] = tmp lyt }) setMethod("cmpnd_last_rowsplit", "PreDataTableLayouts", function(lyt, spl, constructor){ rlyt = rlayout(lyt) rlyt = cmpnd_last_rowsplit(rlyt, spl, constructor) rlayout(lyt)= rlyt lyt }) setMethod("cmpnd_last_rowsplit", "ANY", function(lyt, spl, constructor) stop("nope. can't do cmpnd_last_rowsplit to that (", class(lyt), "). contact the maintaner.") ) setGeneric("split_cols", function(lyt = NULL, spl, pos) standardGeneric("split_cols")) setMethod("split_cols", "NULL", function(lyt, spl, pos) { .Deprecated(msg = "Initializing layouts via NULL is deprecated, please use basic_table() instead") cl = PreDataColLayout(SplitVector(spl)) rl = PreDataRowLayout() PreDataTableLayouts(rlayout = rl, clayout = cl) }) setMethod("split_cols", "PreDataColLayout", function(lyt, spl, pos) { stopifnot(pos > 0 && pos <= length(lyt) + 1) tmp = if (pos <= length(lyt)) { split_cols(lyt[[pos]], spl, pos) } else { SplitVector(spl) } lyt[[pos]] = tmp lyt }) setMethod("split_cols", "SplitVector", function(lyt, spl, pos) { tmp = c(lyt, spl) SplitVector(lst = tmp) }) setMethod("split_cols", "PreDataTableLayouts", function(lyt, spl, pos){ rlyt = lyt@col_layout rlyt = split_cols(rlyt, spl, pos) lyt@col_layout = rlyt lyt }) setMethod("split_cols", "ANY", function(lyt, spl, pos) stop("nope. can't add a col split to that (", class(lyt), "). contact the maintaner.") ) setGeneric("cmpnd_last_colsplit", function(lyt, spl, constructor) standardGeneric("cmpnd_last_colsplit")) setMethod("cmpnd_last_colsplit", "NULL", function(lyt, spl, constructor) { stop("no existing splits to compound with. contact the maintainer") }) setMethod("cmpnd_last_colsplit", "PreDataColLayout", function(lyt, spl, constructor) { pos = length(lyt) tmp = cmpnd_last_colsplit(lyt[[pos]], spl, constructor) lyt[[pos]] = tmp lyt }) setMethod("cmpnd_last_colsplit", "SplitVector", function(lyt, spl, constructor) { pos = length(lyt) lst = lyt[[pos]] tmp = if(is(lst, "CompoundSplit")) { spl_payload(lst) = c(spl_payload(lst), spl) lst } else { constructor(.payload = list(lst, spl)) } lyt[[pos]] = tmp lyt }) setMethod("cmpnd_last_colsplit", "PreDataTableLayouts", function(lyt, spl, constructor){ clyt = clayout(lyt) clyt = cmpnd_last_colsplit(clyt, spl, constructor) clayout(lyt)= clyt lyt }) setMethod("cmpnd_last_colsplit", "ANY", function(lyt, spl, constructor) stop("nope. can't do cmpnd_last_colsplit to that (", class(lyt), "). contact the maintaner.") ) split_cols_by = function(lyt, var, labels_var = var, split_label = var, split_fun = NULL, format = NULL, nested = TRUE, child_labels = c("default", "visible", "hidden"), extra_args = list(), ref_group = NULL) { if(is.null(ref_group)) { spl = VarLevelSplit(var = var, split_label = split_label, labels_var = labels_var, split_format = format, child_labels = child_labels, split_fun = split_fun, extra_args = extra_args) } else { spl = VarLevWBaselineSplit(var = var, ref_group = ref_group, split_label = split_label, split_fun = split_fun, labels_var = labels_var, split_format = format) } pos = next_cpos(lyt, nested) split_cols(lyt, spl, pos) } setGeneric(".tl_indent_inner", function(lyt) standardGeneric(".tl_indent_inner")) setMethod(".tl_indent_inner", "PreDataTableLayouts", function(lyt) .tl_indent_inner(rlayout(lyt))) setMethod(".tl_indent_inner", "PreDataRowLayout", function(lyt) { if(length(lyt) == 0 || length(lyt[[1]]) == 0) 0L else .tl_indent_inner(lyt[[length(lyt)]]) }) setMethod(".tl_indent_inner", "SplitVector", function(lyt) length(lyt) - 1L) .tl_indent <- function(lyt, nested = TRUE) { if(!nested) 0L else .tl_indent_inner(lyt) } split_rows_by = function(lyt, var, labels_var = var, split_label = var, split_fun = NULL, format = NULL, nested = TRUE, child_labels = c("default", "visible", "hidden"), label_pos = "hidden", indent_mod = 0L) { label_pos <- match.arg(label_pos, label_pos_values) child_labels = match.arg(child_labels) spl = VarLevelSplit(var = var, split_label = split_label, label_pos = label_pos, labels_var = labels_var, split_fun = split_fun, split_format = format, child_labels = child_labels, indent_mod = indent_mod) addtl <- identical(label_pos, "topleft") pos <- next_rpos(lyt, nested) ret <- split_rows(lyt, spl, pos) ret } split_cols_by_multivar = function(lyt, vars, varlabels = vars, varnames = NULL, nested = TRUE) { spl = MultiVarSplit(vars = vars, split_label = "", varlabels =varlabels, varnames = varnames) pos = next_cpos(lyt, nested) split_cols(lyt, spl, pos) } split_rows_by_multivar = function(lyt, vars, split_label, varlabels, format = NULL, nested = TRUE, child_labels = c("default", "visible", "hidden"), indent_mod = 0L) { child_labels = match.arg(child_labels) spl = MultiVarSplit(vars = vars, split_label = split_label, varlabels, split_format = format, child_labels = child_labels, indent_mod = indent_mod) pos = next_rpos(lyt, nested) split_rows(lyt, spl, pos) } split_cols_by_cuts = function(lyt, var, cuts, cutlabels = NULL, split_label = var, nested = TRUE, cumulative = FALSE) { spl = VarStaticCutSplit(var, split_label, cuts, cutlabels) if(cumulative) spl = as(spl, "CumulativeCutSplit") pos = next_cpos(lyt, nested) split_cols(lyt, spl, pos) } split_rows_by_cuts = function(lyt, var, cuts, cutlabels = NULL, split_label = var, nested = TRUE, cumulative = FALSE, label_pos = "hidden") { label_pos <- match.arg(label_pos, label_pos_values) spl = VarStaticCutSplit(var, split_label, cuts = cuts, cutlabels = cutlabels, label_pos = label_pos) if(cumulative) spl = as(spl, "CumulativeCutSplit") pos = next_rpos(lyt, nested) split_rows(lyt, spl, pos) } split_cols_by_cutfun = function(lyt, var, cutfun = qtile_cuts, cutlabelfun = function(x) NULL, split_label = var, format = NULL, nested = TRUE, extra_args = list(), cumulative = FALSE ) { spl = VarDynCutSplit(var, split_label, cutfun = cutfun, cutlabelfun = cutlabelfun, split_format = format, extra_args = extra_args, cumulative = cumulative, label_pos = "hidden") pos = next_cpos(lyt, nested) split_cols(lyt, spl, pos) } split_cols_by_quartiles = function(lyt, var, split_label = var, format = NULL, nested = TRUE, extra_args = list(), cumulative = FALSE) { spl = VarDynCutSplit(var, split_label, cutfun = qtile_cuts, cutlabelfun = function(x) c("[min, Q1]", "(Q1, Q2]", "(Q2, Q3]", "(Q3, max]"), split_format = format, extra_args = extra_args, cumulative = cumulative, label_pos = "hidden") pos = next_cpos(lyt, nested) split_cols(lyt, spl, pos) } split_rows_by_quartiles = function(lyt, var, split_label = var, format = NULL, nested = TRUE, child_labels = c("default", "visible", "hidden"), extra_args = list(), cumulative= FALSE, indent_mod = 0L, label_pos = "hidden") { label_pos <- match.arg(label_pos, label_pos_values) spl = VarDynCutSplit(var, split_label, cutfun = qtile_cuts, cutlabelfun = function(x) c("[min, Q1]", "(Q1, Q2]", "(Q2, Q3]", "(Q3, max]"), split_format = format, child_labels = child_labels, extra_args = extra_args, cumulative = cumulative, indent_mod = indent_mod, label_pos = label_pos) pos = next_rpos(lyt, nested) split_rows(lyt, spl, pos) } qtile_cuts = function(x) { ret = quantile(x) levels(ret) = c("1st qrtile", "2nd qrtile", "3rd qrtile", "4th qrtile") ret } split_rows_by_cutfun = function(lyt, var, cutfun = qtile_cuts, cutlabelfun = function(x) NULL, split_label = var, format = NULL, nested = TRUE, child_labels = c("default", "visible", "hidden"), extra_args = list(), cumulative = FALSE, indent_mod = 0L, label_pos = "hidden") { label_pos <- match.arg(label_pos, label_pos_values) child_labels = match.arg(child_labels) spl = VarDynCutSplit(var, split_label, cutfun = cutfun, cutlabelfun = cutlabelfun, split_format = format, child_labels = child_labels, extra_args = extra_args, cumulative = cumulative, indent_mod = indent_mod, label_pos = label_pos) pos = next_rpos(lyt, nested) split_rows(lyt, spl, pos) } NULL analyze = function(lyt, vars, afun = simple_analysis, var_labels = vars, table_names = vars, format = NULL, nested = TRUE, inclNAs = FALSE, extra_args = list(), show_labels = c("default", "visible", "hidden"), indent_mod = 0L) { show_labels = match.arg(show_labels) subafun = substitute(afun) if(is.name(subafun) && is.function(afun) && identical(mget(as.character(subafun), mode = "function", ifnotfound = list(NULL), inherits = TRUE )[[1]], afun)) { defrowlab = as.character(subafun) } else { defrowlab = var_labels } spl = AnalyzeMultiVars(vars, var_labels, afun = afun, split_format = format, defrowlab = defrowlab, inclNAs = inclNAs, extra_args = extra_args, indent_mod = indent_mod, child_names = table_names, child_labels = show_labels) if(nested && (is(last_rowsplit(lyt), "VAnalyzeSplit") || is(last_rowsplit(lyt), "AnalyzeMultiVars"))) { cmpnd_last_rowsplit(lyt, spl, AnalyzeMultiVars) } else { pos = next_rpos(lyt, nested) split_rows(lyt, spl, pos) } } get_acolvar_name <- function(lyt) { paste(c("ac", get_acolvar_vars(lyt)), collapse = "_") } get_acolvar_vars <- function(lyt) { clyt <- clayout(lyt) stopifnot(length(clyt) == 1L) vec = clyt[[1]] vcls = vapply(vec, class, "") pos = which(vcls == "MultiVarSplit") if(length(pos) > 0) spl_payload(vec[[pos]]) else "non_multivar" } analyze_colvars = function(lyt, afun, format = NULL, nested = TRUE, extra_args = list(), indent_mod = 0L, inclNAs = FALSE) { if(is.function(afun)) { subafun = substitute(afun) if(is.name(subafun) && is.function(afun) && identical(mget(as.character(subafun), mode = "function", ifnotfound = list(NULL), inherits = TRUE )[[1]], afun)) { defrowlab = as.character(subafun) } else { defrowlab = "" } afun = lapply(get_acolvar_vars(lyt), function(x) afun) } else { defrowlab = "" } spl = AnalyzeColVarSplit(afun = afun, defrowlab = defrowlab, split_format = format, split_name = get_acolvar_name(lyt), indent_mod = indent_mod, extra_args = extra_args, inclNAs = inclNAs) pos = next_rpos(lyt, nested, for_analyze = TRUE) split_rows(lyt, spl, pos) } analyze_against_ref_group = function(lyt, var = NA_character_, afun, label = if(is.na(var)) "" else var, compfun = `-`, format = NULL, nested = TRUE, indent_mod = 0L, show_labels = c("default", "hidden", "visible")) { .Defunct("analyze", msg = "use analyze with a function that takes .ref_group and .in_ref_col params instead.") } add_overall_col = function(lyt, label) { spl = AllSplit(label) split_cols(lyt, spl, next_cpos(lyt, FALSE)) } setGeneric(".add_row_summary", function(lyt, label, cfun, child_labels = c("default", "visible", "hidden"), cformat = NULL, indent_mod = 0L, cvar = "", extra_args = list()) standardGeneric(".add_row_summary")) setMethod(".add_row_summary", "PreDataTableLayouts", function(lyt, label, cfun, child_labels = c("default", "visible", "hidden"), cformat = NULL, indent_mod = 0L, cvar = "", extra_args = list()) { child_labels = match.arg(child_labels) tmp = .add_row_summary(rlayout(lyt), label, cfun, child_labels = child_labels, cformat = cformat, indent_mod = indent_mod, cvar = cvar, extra_args = extra_args) rlayout(lyt) = tmp lyt }) setMethod(".add_row_summary", "PreDataRowLayout", function(lyt, label, cfun, child_labels = c("default", "visible", "hidden"), cformat = NULL, indent_mod = 0L, cvar = "", extra_args = list()) { child_labels = match.arg(child_labels) if(length(lyt) == 0 || (length(lyt) == 1 && length(lyt[[1]]) == 0)) { rt = root_spl(lyt) rt = .add_row_summary(rt, label, cfun, child_labels = child_labels, cformat = cformat, cvar = cvar, extra_args = extra_args) root_spl(lyt) = rt } else { ind = length(lyt) tmp = .add_row_summary(lyt[[ind]], label, cfun, child_labels = child_labels, cformat = cformat, indent_mod = indent_mod, cvar = cvar, extra_args = extra_args) lyt[[ind]] = tmp } lyt }) setMethod(".add_row_summary", "SplitVector", function(lyt, label, cfun, child_labels = c("default", "visible", "hidden"), cformat = NULL, indent_mod = 0L, cvar = "", extra_args = list()) { child_labels = match.arg(child_labels) ind = length(lyt) if(ind == 0) stop("no split to add content rows at") spl = lyt[[ind]] tmp = .add_row_summary(spl, label, cfun, child_labels = child_labels, cformat = cformat, indent_mod = indent_mod, cvar = cvar, extra_args = extra_args) lyt[[ind]] = tmp lyt }) setMethod(".add_row_summary", "Split", function(lyt, label, cfun, child_labels = c("default", "visible", "hidden"), cformat = NULL, indent_mod = 0L, cvar = "", extra_args = list()) { child_labels = match.arg(child_labels) content_fun(lyt) = cfun content_indent_mod(lyt) = indent_mod content_var(lyt) = cvar content_format(lyt) <- cformat if(!identical(child_labels, "default") && !identical(child_labels, label_kids(lyt))) label_kids(lyt) = child_labels content_extra_args(lyt) = extra_args lyt }) .count_raw_constr = function(var, format, label_fstr) { function(df, labelstr = "") { if(grepl("%s", label_fstr, fixed = TRUE)) label <- sprintf(label_fstr, labelstr) else label <- label_fstr if(is(df, "data.frame")) { if(!is.null(var) && nzchar(var)) cnt <- sum(!is.na(df[[var]])) else cnt <- nrow(df) } else { cnt <- sum(!is.na(df)) } ret <- rcell(cnt, format = format, label = label) ret } } .count_wpcts_constr = function(var, format, label_fstr) { function(df, labelstr = "", .N_col) { if(grepl("%s", label_fstr, fixed = TRUE)) label <- sprintf(label_fstr, labelstr) else label <- label_fstr if(is(df, "data.frame")) { if(!is.null(var) && nzchar(var)) cnt <- sum(!is.na(df[[var]])) else cnt <- nrow(df) } else { cnt <- sum(!is.na(df)) } ret <- rcell(c(cnt, cnt/.N_col), format = format, label = label) ret } } .validate_cfuns <- function(fun) { if(is.list(fun)) return(unlist(lapply(fun, .validate_cfuns))) frmls <- formals(fun) ls_pos <- match("labelstr", names(frmls)) if(is.na(ls_pos)) { ls_pos <- grep("lbl_{0,1}str", names(frmls)) if(length(ls_pos) == 0) stop("Invalid content function - does not accept the required labelstr argument") .Deprecated(old = "Use of content functions which do not accept a named 'labelstr' argument", new = "content functions which explicitly accept 'labelstr'") names(formals(fun))[ls_pos] <- "labelstr" } list(fun) } summarize_row_groups = function(lyt, var = "", label_fstr = "%s", format = "xx (xx.x%)", cfun = NULL, indent_mod = 0L, extra_args = list()){ if(is.null(cfun)) { if(length(gregexpr("xx", format)[[1]]) == 2) cfun = .count_wpcts_constr(var, format, label_fstr) else cfun = .count_raw_constr(var,format, label_fstr) } cfun <- .validate_cfuns(cfun) .add_row_summary(lyt, cfun = cfun, cformat = format, indent_mod = indent_mod, cvar = var, extra_args = extra_args) } add_colcounts = function(lyt, format = "(N=xx)") { if(is.null(lyt)) lyt <- PreDataTableLayouts() disp_ccounts(lyt) <- TRUE colcount_format(lyt) <- format lyt } add_existing_table = function(lyt, tt, indent_mod = 0) { indent_mod(tt) = indent_mod lyt = split_rows(lyt, tt, next_rpos(lyt, nested = FALSE)) lyt } takes_coln = function(f) { stopifnot(is(f, "function")) forms = names(formals(f)) res = ".N_col" %in% forms res } takes_totn = function(f) { stopifnot(is(f, "function")) forms = names(formals(f)) res = ".N_total" %in% forms res } setGeneric("fix_dyncuts", function(spl, df) standardGeneric("fix_dyncuts")) setMethod("fix_dyncuts", "Split", function(spl, df) spl) setMethod("fix_dyncuts", "VarDynCutSplit", function(spl, df) { var = spl_payload(spl) varvec = df[[var]] cfun = spl_cutfun(spl) cuts = cfun(varvec) cutlabels <- spl_cutlabelfun(spl)(cuts) if(length(cutlabels) != length(cuts) - 1 && !is.null(names(cuts))) { cutlabels <- names(cuts)[-1] } ret = VarStaticCutSplit(var = var, split_label = obj_label(spl), cuts = cuts, cutlabels = cutlabels) if(spl_is_cmlcuts(spl)) ret = as(ret, "CumulativeCutSplit") ret }) setMethod("fix_dyncuts", "VTableTree", function(spl, df) spl) .fd_helper = function(spl, df) { lst = lapply(spl, fix_dyncuts, df = df) [email protected] = lst spl } setMethod("fix_dyncuts", "PreDataRowLayout", function(spl, df) { ret = .fd_helper(spl, df) ret }) setMethod("fix_dyncuts", "PreDataColLayout", function(spl, df) { ret = .fd_helper(spl, df) ret }) setMethod("fix_dyncuts", "SplitVector", function(spl, df) { .fd_helper(spl, df) }) setMethod("fix_dyncuts", "PreDataTableLayouts", function(spl, df) { rlayout(spl) = fix_dyncuts(rlayout(spl), df) clayout(spl) = fix_dyncuts(clayout(spl), df) spl }) manual_cols = function(..., .lst = list(...)) { if(is.null(names(.lst))) names(.lst) = paste("colsplit", seq_along(.lst)) splvec = SplitVector(lst = mapply(ManualSplit, levels = .lst, label = names(.lst))) ctree = splitvec_to_coltree(data.frame(), splvec=splvec, pos = TreePos()) InstantiatedColumnInfo(treelyt = ctree) } list_wrap_x = function(f) { function(x,...) { vs = as.list(f(x, ...)) ret = mapply(function(v, nm) { rcell(v, label = nm) }, v = vs, nm = names(vs)) ret } } list_wrap_df = function(f) { function(df,...) { vs = as.list(f(df,...)) ret = mapply(function(v, nm) { rcell(v, label = nm) }, v = vs, nm = names(vs)) ret } } basic_table <- function(title = "", subtitles = character(), main_footer = character(), prov_footer = character(), show_colcounts = FALSE) { ret <- PreDataTableLayouts(title = title, subtitles = subtitles, main_footer = main_footer, prov_footer = prov_footer) if(show_colcounts) ret <- add_colcounts(ret) ret } append_topleft <- function(lyt, newlines) { stopifnot(is(lyt, "PreDataTableLayouts"), is(newlines, "character")) lyt@top_left <- c(lyt@top_left, newlines) lyt }
svc <- paws::cognitoidentityprovider()
test_calc_warnings <- function() { d <- data.frame( x = 1:3, y = 4:6 ) expect_error({ ops <- local_td(d) %.>% project(., x := 1, x := 2) }) expect_error({ ops <- local_td(d) %.>% project(., x := 1, y := x) }) invisible(NULL) } test_calc_warnings()
.getResTypeAndMethod <- function(fam){ type <- switch(fam, "shash" = "tnormal", "gaulss" = "deviance", "deviance") method <- switch(fam, "shash" = "tnormal", "gaulss" = "normal", "simul1") return( list("type" = type, "method" = method) ) }
cutSpace <- function(pointcloud,v1, v2=NULL, v3=NULL,normal=NULL, upper=TRUE) { orthopro <- points2plane(pointcloud,v1=v1,v2=v2,v3=v3,normal=normal) diff <- pointcloud-orthopro if (is.null(normal)) { e1 <- v2-v1 e1 <- e1/norm(e1,"2") e2 <- v3-v1 e2 <- e2/norm(e2,"2") normal <- crossProduct(e1,e2) } ins <- t(normal)%*%t(diff) if (upper) upside <- ins > 0 else upside <- ins <= 0 return(upside) } cutMeshPlane <- function(mesh, v1, v2=NULL, v3=NULL, normal=NULL,keep.upper=TRUE) { pointcloud <- vert2points(mesh) upper <- cutSpace(pointcloud, v1=v1,v2=v2,v3=v3,normal=normal,upper=keep.upper) outmesh <- list() lremain <- length(which(upper)) if (lremain) { if (lremain < ncol(mesh$vb)) outmesh <- rmVertex(mesh,which(upper),keep = TRUE) else outmesh <- mesh } else { warning("nothing left") } return(outmesh) }
add_tile_suffix <- function(paths, suffix) { if (missing(suffix)) { for (sel_upath in names(table(paths))[table(paths)>1]) { n_paths <- sum(paths==sel_upath) paths[paths==sel_upath] <- sapply(seq_len(n_paths), function(i) { gsub( "(S2[AB][12][AC]\\_[0-9]{8}\\_[0-9]{3})\\_([0-9]{2}[A-Z]{3})\\_([^\\_\\.]+\\_[126]0\\.?[^\\_]*$)", paste0("\\1_\\2",letters[i],"_\\3"), sel_upath ) }) } paths } else { if (is.na(suffix)) {suffix <- ""} gsub( "(S2[AB][12][AC]\\_[0-9]{8}\\_[0-9]{3})\\_([0-9]{2}[A-Z]{3})\\_([^\\_\\.]+\\_[126]0\\.?[^\\_]*$)", paste0("\\1_\\2",suffix,"_\\3"), paths ) } } remove_tile_suffix <- function(paths) { accepted_suffixes <- "[a-z]?" sapply(paths, function(p) { gsub( paste0( "(S2[AB][12][AC]\\_[0-9]{8}\\_[0-9]{3})\\_([0-9]{2}[A-Z]{3})", accepted_suffixes, "\\_([^\\_\\.]+\\_[126]0\\.?[^\\_]*$)" ), "\\1_\\2_\\3", p ) }, simplify = TRUE, USE.NAMES = FALSE) } extract_tile_suffix <- function(paths) { accepted_suffixes <- "[a-z]?" sapply(paths, function(p) { gsub( paste0( "^.*S2[AB][12][AC]\\_[0-9]{8}\\_[0-9]{3}\\_[0-9]{2}[A-Z]{3}", "(",accepted_suffixes,")", "\\_[^\\_\\.]+\\_[126]0\\.?[^\\_]*$" ), "\\1", p ) }, simplify = TRUE, USE.NAMES = FALSE) }
est_multi_poly_between <- function (S, yv = rep(1, ns), k, X = NULL, start = c("deterministic","random","external"), link = c("global","local"), disc = FALSE, difl = FALSE, multi = 1:J, Phi = NULL, gat = NULL, De = NULL, fort = FALSE, tol = 10^-10, maxitc = 10^4, disp = FALSE, output = FALSE, out_se = FALSE, glob = FALSE, Zth=NULL,zth=NULL, Zbe=NULL,zbe=NULL,Zga=NULL,zga=NULL){ if (k == 1) stop("--> use est_multi_poly") if (max(S, na.rm = TRUE) == 1 & difl) { warning("with binary data put difl=FALSE\n") difl = FALSE } link = match.arg(link) start = match.arg(start) J = ncol(S) if(is.vector(multi)) multi = t(multi) if(!is.null(Zth)){ if(is.vector(Zth)) Zth = t(Zth) if(is.null(zth)) zth = rep(0,nrow(Zth)) constr.th = TRUE }else{ constr.th = FALSE } if(!is.null(Zbe)){ if(is.vector(Zbe)) Zbe = t(Zbe) if(is.null(zbe)) zbe = rep(0,nrow(Zbe)) constr.be = TRUE }else{ constr.be = FALSE } if(!is.null(Zga)){ if(is.vector(Zga)) Zga = t(Zga) if(is.null(zga)) zga = rep(0,nrow(Zga)) constr.ga = TRUE }else{ constr.ga = FALSE } cov = !is.null(X) if(cov){ X = as.matrix(X) namesX = colnames(X) if (glob) logit_cov = "g" else logit_cov = "m" }else logit_cov = "m" miss = any(is.na(S)) ns = nrow(S) if(miss) { cat("Missing data in the dataset, units and items without responses are removed\n") ind = which(apply(is.na(S), 1, all)) if (length(ind) > 0) { S = S[-ind, ] yv = yv[-ind] if (!is.null(X)) X = as.matrix(X[-ind, ]) ind = which(apply(is.na(S), 2, all)) if (length(ind) > 0) { S = S[, -ind] miss = any(is.na(S)) } } } if (miss){ R = 1*(!is.na(S)) S[is.na(S)] = 0 } lv = apply(S,2,max) + 1 if(difl & max(lv)>min(lv)) stop("Option difl=TRUE not allowed in the presence of items with a different number of response categories within the same dimension") lm = max(lv) ns = nrow(S) J = ncol(S) n = sum(yv) if (cov) { ncov = ncol(X) out = aggr_data(X, fort = fort) Xdis = as.matrix(out$data_dis) Xlabel = out$label Xndis = max(out$label) if (glob) { XXdis = array(0, c(k - 1, k - 1 + ncov, Xndis)) for (i in 1:Xndis) XXdis[, , i] = cbind(diag(k - 1), rep(1, k - 1) %o% Xdis[i, ]) }else{ XXdis = array(0, c(k - 1, (k - 1) * (ncov + 1),Xndis)) if (k == 2) II = 1 else II = diag(k - 1) for (i in 1:Xndis) XXdis[, , i] = II %x% t(c(1,Xdis[i, ])) } }else{ ncov = 0 XXdis = array(diag(k - 1), c(k - 1, k - 1, 1)) Xlabel = rep(1, ns) } if(link=="global") ltype = "g" else if (link == "local") ltype = "l" items = sort(as.vector(multi)) if(any(items == 0)) items = items[items > 0] Jitems = length(items) rm = nrow(multi) fv = multi[, 1] fve = NULL count = 0 for(j in 1:J){ if (j %in% fv) fve = c(fve, count + 1) count = count + lv[j] - 1 } indgat = setdiff(items,fv) if(constr.th){ if(ncol(Zth)==0) indtht = NULL else indtht = 1:ncol(Zth) }else indtht = 1:(k*rm) indth = 1:(k*rm) if(constr.be){ if(ncol(Zbe)==0) indbet = NULL else{ if(is.null(indth)) tmp = 0 else tmp = max(indth) indbet = tmp+(1:ncol(Zbe)) } }else{ if(is.null(indth)) tmp = 0 else tmp = max(indth) if(difl) indbet = tmp+(1:(J-rm+lm-2)) else indbet = tmp+1:(sum(lv - 1)-rm) } indbe = k*rm + (1:sum(lv - 1)) abils = rep(0, J) if (rm == 1) abils[multi] = 1 else{ for(h in 1:rm){ ind = multi[h, ] ind = ind[ind > 0] abils[ind] = h } } ZZ = array(NA, c(lm - 1, k * rm + sum(lv - 1), J * k)) cont = 0 refitem = matrix(0, J * k, 1) for (c in 1:k){ u1 = matrix(0, 1, k) u1[c] = 1 for(j in 1:J){ u2 = matrix(0, 1, rm) u2[abils[j]] = 1 v = matrix(0, 1, J) v[j] = 1 cont = cont + 1 Te = matrix(0, lv[j] - 1, sum(lv - 1)) if (j == 1) Te[, 1:(lv[j] - 1)] = diag(lv[j] - 1) else Te[, sum(lv[1:(j - 1)] - 1) + (1:(lv[j] - 1))] = diag(lv[j] - 1) ZZ[1:(lv[j] - 1), , cont] = cbind(rep(1, lv[j] - 1) %*% (u1 %x% u2), -Te) refitem[cont] = j } } ZZ0 = ZZ if (glob) { II = diag(k - 1) II = cbind(0, II) - cbind(II, 0) if (rm > 1) II = II %x% matrix(c(1, rep(0, rm - 1)), 1, rm) Dis = cbind(II, matrix(0, k - 1, dim(ZZ)[2] - (k * rm))) }else Dis = NULL if(!constr.th){ Zth = diag(k*rm); zth = rep(0,k*rm) } if(!constr.be){ if(difl){ if(lm-1==2) Tmp = matrix(c(0,1),2,1) else Tmp = diag(lm-1)[,-1] Zbe = cbind(diag(J)[,-fv]%x%matrix(1,lm-1,1),matrix(1,J,1)%x%Tmp) }else{ Zbe = diag(sum(lv - 1))[,-fve] } zbe = rep(0,sum(lv - 1)) } Zpar = blkdiag(Zth,Zbe) zpar = c(zth,zbe) if(!constr.ga){ Zga = diag(Jitems)[,-which(items%in%fv)] zga = rep(0,Jitems); zga[which(items%in%fv)] = 1 } if(start=="deterministic") { if(cov){ de = NULL Piv = matrix(1/k, ns, k) piv = NULL }else{ de = NULL piv = rep(1, k)/k } if (k == 1) grid = 0 else grid = seq(-k, k, length.out = k) Phi = array(NA, c(lm, J, k)) for (j in 1:J) { dist = rep(0, lv[j]) for (y in 0:(lv[j] - 1)) dist[y + 1] = (sum(yv[S[,j] == y]) + 0.5)/n out = matr_glob(lv[j]) Co = out$Co Ma = out$Ma eta = Co %*% log(Ma %*% dist) count = 0 for (c in 1:k){ count = count + 1 Phi[1:lv[j], j, count] = inv_glob(eta + grid[c])$p } } } if(start=="random") { if (cov) { if (glob){ de = NULL Piv = matrix(runif(ns * k), ns, k) Piv = Piv * (1/rowSums(Piv)) piv = NULL }else { de = rnorm((k - 1) * (ncov + 1))/rep(c(1, apply(X, 2, sd)), (k - 1)) if (k > 1) Piv = prob_multi_glob(XXdis, logit_cov, de, Xlabel)$P piv = NULL } }else { de = NULL piv = runif(k) piv = piv/sum(piv) } Phi = array(runif(lm * J * k), c(lm, J, k)) for (c in 1:k) for (j in 1:J) { Phi[1:lv[j], j, c] = Phi[1:lv[j], j, c]/sum(Phi[1:lv[j], j, c]) if (lv[j] < lm) Phi[(lv[j] + 1):lm, j, c] = NA } if(glob){ if(runif(1) > 0.5) for (j in 1:J){ mPhi = (0:(lv[j] - 1)) %*% Phi[1:lv[j], j,] ind = order(mPhi) Phi[, j, ] = Phi[, j, ind] } } } if(start=="external"){ de = as.vector(De) if(cov){ Piv = prob_multi_glob(XXdis, logit_cov, de, Xlabel)$P piv = NULL }else{ piv = c(1,exp(de)) piv = piv/sum(piv) } } if (start=="deterministic" || start=="random" || (start=="external" & is.null(gat))){ if(is.null(Zga)) gat = rep(1,0) else gat = rep(1, ncol(Zga)) } ga = Zga%*%gat+zga gac = rep(0,J); gac[items] = ga Psi = matrix(1, ns, k) if(miss) for (j in 1:J) for (c in 1:k) Psi[, c] = Psi[, c] * (Phi[S[, j] + 1, j, c] * R[, j] + (1 - R[, j])) else for (j in 1:J) for (c in 1:k) Psi[, c] = Psi[,c] * Phi[S[, j] + 1, j, c] if(cov){ if (start=="external") { if (k > 1) Piv = prob_multi_glob(XXdis, logit_cov, de, Xlabel)$P } }else Piv = rep(1, ns) %o% piv if (k == 1) Pj = Psi else Pj = Psi * Piv pm = rowSums(Pj) lk = sum(yv * log(pm)) cat("*-------------------------------------------------------------------------------*\n") cat(c("Model with multidimensional structure\n")) names1 = NULL for (j in 1:rm) names1 = c(names1, paste("Dimension", j)) rownames(multi) = names1 print(multi) cat("\n") cat(c("Number of classes = ", k, "\n")) cat(c("Link of type = ", link, "\n")) cat(c("Discrimination index = ", disc, "\n")) cat(c("Constraints on the difficulty =", difl, "\n")) cat(c("Type of initialization = ", start, "\n")) cat("*-------------------------------------------------------------------------------*\n\n") if (disp) { if(!disc || length(ga) == 0){ cat("------------|-------------|-------------|-------------|-------------|-------------|\n") cat(" iteration | lk | lk-lko | dis | min(par) | max(par) |\n") cat("------------|-------------|-------------|-------------|-------------|-------------|\n") } if (disc) { cat("------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|\n") cat(" iteration | lk | lk-lko | dis | min(ga) | max(ga) | min(par) | max(par) |\n") cat("------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|\n") } cat(sprintf("%11g", c(0, lk)), "\n", sep = " | ") } it = 0 lko = lk - 10^10 dis = 0 part = par = dga = lkv = NULL while (((abs(lk - lko)/abs(lko) > tol) && it < maxitc) || it < 2){ it = it + 1 paro = par gao = ga pivo = piv deo = de lko = lk V = ((yv/pm) %o% rep(1, k)) * Piv * Psi sV = colSums(V) YY = matrix(NA, J * k, lm) count = 0 for (c in 1:k) for (j in 1:J) { count = count + 1 for (y in 1:lv[j]) { ind = (S[, j] == (y - 1)) if (miss) YY[count, y] = sum(V[ind, c] * R[ind, j]) else YY[count, y] = sum(V[ind, c]) } } if(disc){ if(it > 1 & rm < J){ ZZ = array(NA, c(lm - 1, J, J * k)) count = 0 for(c in 1:k) for(j in 1:J){ count = count + 1 ZZ[1:(lv[j] - 1), , count] = 0 ZZ[1:(lv[j] - 1), j, count] = ZZ0[1:(lv[j] - 1), 1:(k * rm), count] %*% par[1:(k*rm)] } ZZ = ZZ[, items, ] ind = k * rm + 1:sum(lv - 1) ZZInt = array(NA, c(lm - 1, J * k)) count = 0 for (c in 1:k) for (j in 1:J) { count = count + 1 ZZInt[1:(lv[j] - 1), count] = ZZ0[1:(lv[j] - 1), ind, count] %*% par[ind] ZZ0[1:(lv[j] - 1), ind, count] %*% par[ind] } if(constr.ga || constr.th){ gat = est_multi_glob_genZ(YY, ZZ, ltype, de = gat, Int = ZZInt,Z=Zga,z=zga)$de ga = Zga%*%gat+zga; gac = rep(1,J); gac[items] = ga }else{ gac[items] = est_multi_glob_genZ(YY,ZZ, ltype, de = gac[items], Int = ZZInt)$be for(j in 1:rm){ tmp = gac[multi[j,1]] gac[multi[j,]] = gac[multi[j,]]/tmp ind = seq(j,k*rm,rm) part[ind] = part[ind]*tmp } ga = gac[items]; gat = gac[indgat] } par = Zpar%*%part+zpar } ZZ = ZZ0 for (j in 1:J) { ind = (refitem == j) ZZ[, 1:(k * rm), ind] = ZZ[, 1:(k * rm), ind] * gac[j] } } if(start=="external" & it==1) maxit = 250 else maxit = 10 out = est_multi_glob_genZ(YY,ZZ,ltype,de=part,Z=Zpar,z=zpar,Dis=Dis,maxit=maxit) part = out$de; par = Zpar%*%part+zpar P = out$P Phi = array(t(P), c(lm, J, k)) if (cov) { if (k > 1) { out = est_multi_glob(V, XXdis, logit_cov, Xlabel, de) de = out$be Pdis = out$Pdis Piv = out$P } }else { piv = sV/n Piv = rep(1, ns) %o% piv } Psi = matrix(1, ns, k) if (miss) for (j in 1:J) for (c in 1:k) Psi[, c] = Psi[,c] * (Phi[S[, j] + 1, j, c] * R[, j] + (1 - R[,j])) else for (j in 1:J) for (c in 1:k) Psi[, c] = Psi[,c] * Phi[S[, j] + 1, j, c] if (k == 1) Pj = Psi else Pj = Psi * Piv pm = rowSums(Pj) lk = sum(yv * log(pm)) if (it > 1) dis = max(c(abs(par - paro), abs(ga - ga), abs(piv - pivo))) if (disp) { if (it/10 == floor(it/10)) { if (!disc || length(ga) == 0 ) cat(sprintf("%11g", c(it, lk, lk - lko, dis, min(par), max(par))), "\n", sep = " | ") if (disc) cat(sprintf("%11g", c(it, lk, lk - lko, dis, min(ga), max(ga), min(par), max(par))), "\n", sep = " | ") } } lkv = c(lkv, lk) } if (disp) { if (it/10 > floor(it/10)) { if (!disc || length(ga) == 0) cat(sprintf("%11g", c(it, lk, lk - lko, dis, min(par), max(par))), "\n", sep = " | ") if (disc) cat(sprintf("%11g", c(it, lk, lk - lko, dis, min(ga), max(ga), min(par), max(par))), "\n", sep = " | ") } if (!disc || length(ga) == 0) cat("------------|-------------|-------------|-------------|-------------|-------------|\n") if (disc) cat("------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|\n") } np = length(part) if (disc==1) np=np+length(gat) if (cov) { if (glob) np = np + k - 1 + ncov else np = np + (k-1) * (ncov + 1) }else np = np + k - 1 aic = -2 * lk + 2 * np bic = -2 * lk + np * log(n) tht = part[indtht] th = par[indth] bet = part[indbet] be = par[indbe] if (difl){ bec1 = rep(0, J) bec1[(1:J)[-fv]] = bet[1:(J - rm)] bec2 = rep(0, lm - 1) bec2[2:(lm - 1)] = bet[J - rm + (1:(lm - 2))] Bec = list(difficulties = bec1, cutoffs = bec2) }else{ Bec = matrix(NA, J, lm - 1) count = 0 for (j in 1:J) { Bec[j, (1:lv[j] - 1)] = be[count + (1:(lv[j] - 1))] count = count + lv[j] - 1 } dimnames(Bec) = list(item = 1:J, cutoff = 1:(lm-1)) } gac[setdiff(1:J,items)] = NA Th = matrix(th, rm, k) dimnames(Th) = list(dimension = 1:rm,class=1:k) Pp = ((1/pm) %o% rep(1, k)) * Piv * Psi ent = -sum(V * log(pmax(Pp, 10^-100))) dimnames(Phi) = list(category = 0:(lm - 1), item = 1:J, class = 1:k) if (cov) { if (glob) { if (k == 1) De = NULL else { De = matrix(de, ncov + k - 1, 1) names_cutoff = paste("cutoff", 1:(k - 1), sep = "") if (is.null(namesX)) namesX1 = c(names_cutoff, paste("X", 1:ncov, sep = "")) else namesX1 = c(names_cutoff, namesX) rownames(De) = namesX } }else { if (is.null(namesX)) namesX = c("intercept", paste("X", 1:ncov, sep = "")) else namesX = c("intercept", namesX) if (k == 1) De = NULL else { De = matrix(de, ncov + 1, k - 1) dimnames(De) = list(namesX, logit = 2:k) } } piv = drop(t(Piv)%*%yv/n) }else{ de = log(piv[-1]/piv[1]) De = t(de); dimnames(De) = list("intercept",logit = 2:k) } if (out_se) { lde = length(de) lpar = length(par); lpart = length(part) lga = 0 part_comp = c(de, part) if (disc) { lga = length(ga); lgat = length(gat) part_comp = c(part_comp, gat) } if (disp) { cat("computation of derivatives\n") cat(length(part_comp), "parameters\n") } out = lk_obs_score_between(part_comp, lde, lpart, lgat, S, R, yv, k, rm, lv, J, fv, disc, glob, refitem, miss, ltype, XXdis, Xlabel, ZZ0, fort, Zpar, zpar,Zga,zga,items) scn = rep(0, length(part_comp)) Jn = NULL for (j in 1:length(part_comp)) { part_comp1 = part_comp part_comp1[j] = part_comp1[j] + 10^-6 out1 = lk_obs_score_between(part_comp1, lde, lpart, lgat, S, R, yv, k, rm, lv, J, fv, disc, glob, refitem, miss, ltype, XXdis, Xlabel, ZZ0, fort, Zpar, zpar, Zga,zga,items) scn[j] = (out1$lk - lk) * 10^6 Jn = cbind(Jn, (out1$sc - out$sc) * 10^6) if (disp){ if (j/10 > floor(j/10)) cat(".") else cat(round(j/10)) } if (disp) if (j/100 == floor(j/100)) cat("\n") } if (disp) cat("\n") Jn = -(Jn + t(Jn))/2 Vnt = ginv(Jn) ZZZ = blkdiag(diag(lde),Zpar) if(disc) ZZZ = blkdiag(ZZZ,Zga) Vn = ZZZ%*%Vnt%*%t(ZZZ) set = sqrt(abs(diag(Vnt))) se = sqrt(abs(diag(Vn))) if (k > 1) sede = se[1:lde] separt = se[lde + (1:lpart)] setht = separt[indtht] sebet = separt[indbet] separ = se[lde + (1:lpar)] if(disc){ segat = set[lde + lpart + (1:lgat)] sega = se[lde + lpar + (1:lga)] segac = rep(NA, J); segac[items] = sega }else{ segat = sega = segac = NULL } setht = separ[indtht] seth = separ[indth] seTh = matrix(seth, rm, k) dimnames(seTh) = list(dimension = 1:rm,class=1:k) sebe = separ[indbe] if (difl) { sebec1 = rep(0, J) sebec1[(1:J)[-fv]] = sebe[1:(J - rm)] sebec2 = rep(0, lm - 1) sebec2[2:(lm - 1)] = sebe[J - rm + (1:(lm - 2))] seBec = list(difficulties = sebec1, cutoffs = sebec2) }else{ seBec = matrix(NA, J, lm - 1) count = 0 for (j in 1:J) { seBec[j, (1:lv[j] - 1)] = sebe[count + (1:(lv[j] - 1))] count = count + lv[j] - 1 } dimnames(seBec) = list(item = 1:J, cutoff = 1:(lm-1)) } if (glob){ if (k == 1) seDe = NULL else{ if(cov){ seDe = matrix(sede, ncov + k - 1, 1) rownames(seDe) = namesX }else seDe = sede } }else{ if (k == 1) seDe = NULL else{ if(cov){ seDe = matrix(sede, ncov + 1, k - 1) rownames(seDe) = namesX }else seDe = sede } } } mu = drop(Th%*%piv) sd = drop(sqrt((Th-mu)^2%*%piv)) ind = order(Th[1,]) Ths = (Th[,ind]-mu)/sd pivs = piv[ind] Becs = Bec gacs = gac for(j in 1:rm){ tmp = multi[j,]; tmp = tmp[tmp>0] gacs[tmp] = gac[tmp]*sd[j] if(difl) Becs$difficulties[tmp] = Becs$difficulties[tmp]-gac[tmp]*mu[j] else Becs[tmp,] = Becs[tmp,]-gac[tmp]*mu[j] } out = list(piv = piv, fv = fv, tht = tht, Th = Th, bet=bet, Bec = Bec, gat=gat, gac = gac, De = De, Phi = Phi, lk = lk, np = np, aic = aic, bic = bic, ent = ent, pivs=pivs, Ths=Ths, Becs=Becs, gacs = gacs, call = match.call()) if (output) { out$Pp = Pp out$lkv = lkv if(cov){ out$Xlabel = Xlabel out$XXdis = XXdis out$Piv = Piv } } if (out_se) { out$setht = setht out$seTh = seTh out$sebet = sebet out$seBec = seBec out$segat = segat out$segac = segac out$seDe = seDe out$Vnt = Vnt out$Vn = Vn } class(out) = "est_multi_poly_between" return(out) }
dualpathTrendX <- function(y, pos, X, D, ord, approx=FALSE, maxsteps=2000, minlam=0, rtol=1e-7, btol=1e-7, eps=1e-4, verbose=FALSE, object=NULL) { if (is.null(object)) { m = nrow(D) p = ncol(D) n = length(y) y0 = y X0 = X if (eps>0) { y = c(y,rep(0,p)) X = rbind(X,diag(sqrt(eps),p)) n = n+p } if (is.null(pos)) pos = 1:p Pos = matrix(rep(pos,each=ord),ord,p) basis = matrix(0,p,ord+1) basis[,1] = rep(1,p) for (i in Seq(2,ord+1)) { ii = Seq(1,i-1) basis[,i] = apply(pmax(Pos[ii,,drop=FALSE]-pos[ii],0), 2,prod)/factorial(i-1) } xy = t(X)%*%y A = X%*%basis z = t(basis)%*%xy R = qr.R(qr(A)) e = backsolve(R,forwardsolve(R,z,upper.tri=TRUE,transpose=TRUE)) g = xy-t(X)%*%(A%*%e) x = qr(t(D)) uhat = backsolveSparse(x,g) betahat = basis%*%e ihit = which.max(abs(uhat)) hit = abs(uhat[ihit]) s = sign(uhat[ihit]) if (verbose) { cat(sprintf("1. lambda=%.3f, adding coordinate %i, |B|=%i...", hit,ihit,1)) } buf = min(maxsteps,1000) lams = numeric(buf) h = logical(buf) df = numeric(buf) u = matrix(0,m,buf) beta = matrix(0,p,buf) lams[1] = hit h[1] = TRUE df[1] = ncol(basis) u[,1] = uhat beta[,1] = betahat newbv = apply(pmax(Pos-pos[Seq(ihit+1,ihit+ord)],0), 2,prod)/factorial(ord) newbv[Seq(1,ihit+ord)] = 0 basis = cbind(basis,newbv) r = 1 B = ihit I = Seq(1,m)[-ihit] D1 = D[-ihit,,drop=FALSE] D2 = D[ihit,,drop=FALSE] k = 2 } else { lambda = NULL for (j in 1:length(object)) { if (names(object)[j] != "pathobjs") { assign(names(object)[j], object[[j]]) } } y0 = y X0 = X for (j in 1:length(object$pathobjs)) { assign(names(object$pathobjs)[j], object$pathobjs[[j]]) } lams = lambda if (eps>0) X = rbind(X,diag(sqrt(eps),p)) } tryCatch({ while (k<=maxsteps && lams[k-1]>=minlam) { if (k > length(lams)) { buf = length(lams) lams = c(lams,numeric(buf)) h = c(h,logical(buf)) df = c(df,numeric(buf)) u = cbind(u,matrix(0,m,buf)) beta = cbind(beta,matrix(0,p,buf)) } x = qr(t(D1)) Ds = as.numeric(t(D2)%*%s) A = X%*%basis z = t(basis)%*%cbind(xy,Ds) R = qr.R(qr(A)) e = backsolve(R,forwardsolve(R,z,upper.tri=TRUE,transpose=TRUE)) ea = e[,1] eb = e[,2] ga = xy-t(X)%*%(A%*%ea) gb = Ds-t(X)%*%(A%*%eb) fa = basis%*%ea fb = basis%*%eb if (r==m) { hit = 0 } else { a = backsolveSparse(x,ga) b = backsolveSparse(x,gb) shits = Sign(a) hits = a/(b+shits) hits[hits>lams[k-1]+btol] = 0 hits[hits>lams[k-1]] = lams[k-1] ihit = which.max(hits) hit = hits[ihit] shit = shits[ihit] } if (r==0 || approx) { leave = 0 } else { c = as.numeric(s*(D2%*%fa)) d = as.numeric(s*(D2%*%fb)) leaves = c/d leaves[c>=0] = 0 leaves[leaves>lams[k-1]+btol] = 0 leaves[leaves>lams[k-1]] = lams[k-1] ileave = which.max(leaves) leave = leaves[ileave] } if (hit<=0 && leave<=0) break if (hit > leave) { lams[k] = hit h[k] = TRUE df[k] = ncol(basis) uhat = numeric(m) uhat[B] = hit*s uhat[I] = a-hit*b betahat = fa-hit*fb newbv = apply(pmax(Pos-pos[Seq(I[ihit]+1,I[ihit]+ord)],0), 2,prod)/factorial(ord) newbv[Seq(1,I[ihit]+ord)] = 0 basis = cbind(basis,newbv) r = r+1 B = c(B,I[ihit]) I = I[-ihit] s = c(s,shit) D2 = rbind(D2,D1[ihit,]) D1 = D1[-ihit,,drop=FALSE] if (verbose) { cat(sprintf("\n%i. lambda=%.3f, adding coordinate %i, |B|=%i...", k,hit,B[r],r)) } } else { lams[k] = leave h[k] = FALSE df[k] = ncol(basis) uhat = numeric(m) uhat[B] = leave*s uhat[I] = a-leave*b betahat = fa-leave*fb basis = basis[,-(ord+1+ileave)] r = r-1 I = c(I,B[ileave]) B = B[-ileave] s = s[-ileave] D1 = rbind(D1,D2[ileave,]) D2 = D2[-ileave,,drop=FALSE] if (verbose) { cat(sprintf("\n%i. lambda=%.3f, deleting coordinate %i, |B|=%i...", k,leave,I[m-r],r)) } } u[,k] = uhat beta[,k] = betahat k = k+1 } }, error = function(err) { err$message = paste(err$message,"\n(Path computation has been terminated;", " partial path is being returned.)",sep="") warning(err)}) lams = lams[Seq(1,k-1)] h = h[Seq(1,k-1)] df = df[Seq(1,k-1)] u = u[,Seq(1,k-1),drop=FALSE] beta = beta[,Seq(1,k-1),drop=FALSE] if (k>maxsteps) { if (verbose) { cat(sprintf("\nReached the max number of steps (%i),",maxsteps)) cat(" skipping the rest of the path.") } completepath = FALSE } else if (lams[k-1]<minlam) { if (verbose) { cat(sprintf("\nReached the min lambda (%.3f),",minlam)) cat(" skipping the rest of the path.") } completepath = FALSE } else completepath = TRUE bls = NULL if (completepath) bls = fa if (verbose) cat("\n") pathobjs = list(type="trend.x", r=r, B=B, I=I, Q1=NA, approx=approx, Q2=NA, k=k, df=df, D1=D1, D2=D2, Ds=Ds, ihit=ihit, m=m, n=n, p=p, q=q, h=h, q0=NA, rtol=rtol, btol=btol, eps=eps, s=s, y=y, ord=ord, pos=pos, Pos=Pos, basis=basis, xy=xy) colnames(u) = as.character(round(lams,3)) colnames(beta) = as.character(round(lams,3)) return(list(lambda=lams,beta=beta,fit=X0%*%beta,u=u,hit=h,df=df,y=y0,X=X0, completepath=completepath,bls=bls,pathobjs=pathobjs)) }
rename_jags_columns <- function(data) { colnames(data)[colnames(data) %in% c("greenhouse", "ghs")] <- c("ghs", "greenhouse") colnames(data)[colnames(data) %in% c("site_id", "site")] <- c("site", "site_id") stat <- NULL n <- NULL trt_id <- NULL citation_id <- NULL transformed <- transform(data, Y = mean, se = stat, obs.prec = 1 / (sqrt(n) * stat) ^2, trt = trt_id, cite = citation_id) selected <- subset(transformed, select = c('Y', 'n', 'site', 'trt', 'ghs', 'obs.prec', 'se', 'cite', "greenhouse", "site_id", "treatment_id", "trt_name", "trt_num")) return(selected) }
GumbelVaR<- function(mu, sigma, n, cl, hp){ if (!length(mu) == 1) { stop("Mean must be a scalar") } if (!length(sigma) == 1) { stop("Standard Deviation must be a scalar") } if (!is.vector(cl)) { stop("cl must be a vector") } if (!length(hp) == 1) { stop("hp must be a scalar") } cl <- t(as.matrix(cl)) if (sigma < 0) { stop("Standard deviation must be non-negative") } if (max(cl) >= 1) { stop("Confidence levels must be less than 1") } if (min(cl) <= 0) { stop("Confidence levels must be less than 1") } if (min(hp) <= 0) { stop("Holding period must be greated than 0") } y <- mu * matrix(1, dim(cl)[1], dim(cl)[2]) - sigma * log(- n * log(cl)); return(y) }
c2=function(n) { lines(m, 1-(2^n-m-1)/2^n, type="b") } Pnm=function(n, m) { return(1-(2^(2^n-m)-1)/2^2^n) } p_disting=function(n) { lines(m, Pnm(n, m), type="b") } mc_dc_false_prob=function(max_n) { lines(1:max_n, Pnm(1:max_n, 2:(max_n+1)), type="b") } m=1:10 plot(0, type="n", yaxs="i", xlim=c(1, 10), ylim=c(0, 1.02), xlab="Number of tests", ylab="Probability of false positive\n") c2(3) p_disting(2) p_disting(3) p_disting(7) plot(0, type="n", yaxs="i", xlim=c(1, 10), ylim=c(0.93, 1.01), xlab="Number of tests", ylab="Probability of false positive\n") mc_dc_false_prob(9)
pcaser2 <- function(veg,plotlabels,y=1) { nrel<- length(veg[,1]) nser<-length(table(plotlabels)) ser<- as.integer(plotlabels) vegt<- veg^y out.pca<- pca(vegt) E<- out.pca$sdev^2/out.pca$totdev*100 o.pcas<- list(nrel=nrel,nser=nser,scores=out.pca$scores,plotlab=ser,plotlabels=plotlabels,Eigv=E) }
getOrientacoesMestrado <- function(curriculo) { if (!any(class(curriculo) == 'xml_document')) { stop("The input file must be XML, imported from `xml2` package.", call. = FALSE) } dados_basicos <- xml2::xml_find_all(curriculo, ".//ORIENTACOES-CONCLUIDAS-PARA-MESTRADO") |> purrr::map(~ xml2::xml_find_all(., ".//DADOS-BASICOS-DE-ORIENTACOES-CONCLUIDAS-PARA-MESTRADO")) |> purrr::map(~ xml2::xml_attrs(.)) |> purrr::map(~ dplyr::bind_rows(.)) |> purrr::map(~ janitor::clean_names(.)) detalhamento <- xml2::xml_find_all(curriculo, ".//ORIENTACOES-CONCLUIDAS-PARA-MESTRADO") |> purrr::map(~ xml2::xml_find_all(., ".//DETALHAMENTO-DE-ORIENTACOES-CONCLUIDAS-PARA-MESTRADO")) |> purrr::map(~ xml2::xml_attrs(.)) |> purrr::map(~ dplyr::bind_rows(.)) |> purrr::map(~ janitor::clean_names(.)) purrr::map2(dados_basicos, detalhamento, dplyr::bind_cols) |> dplyr::bind_rows() |> dplyr::mutate(id = getId(curriculo)) }
CopulaTestTable = function(){ copula = c("normal", "t", "clayton", "gumbel", "frank", "joe", "amh", "galambos", "huslerReiss", "tawn", "tev", "fgm", "plackett") tests = c("gofCvM", "gofKS", "gofKendallCvM", "gofKendallKS", "gofRosenblattSnB", "gofRosenblattSnC","gofRosenblattGamma", "gofRosenblattChisq", "gofKernel", "gofWhite", "gofPIOSTn", "gofPIOSRn", "gofArchmSnB", "gofArchmSnC", "gofArchmGamma", "gofArchmChisq") tbl = matrix(rbind(c(">=2", ">=2", ">=2", ">=2", ">=2", ">=2", "2", "2", "2", "2", "2", "2", "2"), c(">=2", ">=2", ">=2", ">=2", ">=2", ">=2", "2", "2", "2", "2", "2", "2", "2"), c(">=2", ">=2", ">=2", ">=2", ">=2", ">=2", "2", "2", "2", "2", "2", "2", "2"), c(">=2", ">=2", ">=2", ">=2", ">=2", ">=2", "2", "2", "2", "2", "2", "2", "2"), c(">=2", ">=2", ">=2", ">=2", ">=2", ">=2", "2", "2", "-", "-", "-", "2", "2"), c(">=2", ">=2", ">=2", ">=2", ">=2", ">=2", "2", "2", "-", "-", "-", "2", "2"), c(">=2", ">=2", ">=2", ">=2", ">=2", ">=2", "2", "2", "-", "-", "-", "2", "2"), c(">=2", ">=2", ">=2", ">=2", ">=2", ">=2", "2", "2", "-", "-", "-", "2", "2"), c("2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2"), c("2", "2", "2", "2", "2", "2", "-", "-", "-", "-", "-", "-", "-"), c("3", "2", "3", "3", "3", "3", "2", "2", "-", "-", "-", "2", "2"), c("3", "2", "3", "3", "3", "3", "2", "2", "-", "-", "-", "2", "2"), c("-", "-", ">=2", ">=2", ">=2", ">=2", "2", "-", "-", "-", "-", "-", "-"), c("-", "-", ">=2", ">=2", ">=2", ">=2", "2", "-", "-", "-", "-", "-", "-"), c("-", "-", ">=2", ">=2", ">=2", ">=2", "2", "-", "-", "-", "-", "-", "-"), c("-", "-", ">=2", ">=2", ">=2", ">=2", "2", "-", "-", "-", "-", "-", "-")), dimnames = list(tests, copula), nrow = length(tests), ncol = length(copula)) return(data.frame(tbl)) }
levelling.resources<-function(duration,prec1and2=matrix(0),prec3and4=matrix(0),resources,int=1){ or1<-order(organize(prec1and2,prec3and4)$Order[,2]) or2<-organize(prec1and2,prec3and4)$Order[,2] precedence<-organize(prec1and2,prec3and4)$Precedence durations<-duration[or2] costes<-resources[or2] n<-length(durations) activities<-1:n early.times<-rep(0,n) ii<-as.logical(colSums(precedence)) iii<-activities[ii] nn<-length(iii) if(nn>0){ prec<-matrix(0,nrow=nn,ncol=n-1) for(j in 1:nn){ prec[j,1:length(which(precedence[,iii[j]]==1))]<-which(precedence[,iii[j]]==1) } prec<-prec[,as.logical(colSums(prec)),drop=FALSE] for(i in 1:nn) { early.times[iii[i]]=max(early.times[prec[i,]]+durations[prec[i,]]); } } tiempo.last<-rep(0,n) ii<-as.logical(rowSums(precedence)) iii<-activities[ii] tiempo.last[activities[ii==FALSE]]<-max(early.times+durations) nn<-length(iii) if(nn>0){ prec<-matrix(0,nrow=nn,ncol=n-1) for(j in 1:nn){ prec[j,1:length(which(precedence[iii[j],]==1))]<-which(precedence[iii[j],]==1) } prec<-prec[,as.logical(colSums(prec)),drop=FALSE] for(i in length(iii):1) { tiempo.last[iii[i]]=min(tiempo.last[prec[i,]]-durations[prec[i,]]); } } prec<-matrix(0,nrow=n,ncol=n-1) for(j in 1:n){ if(sum(which(precedence[j,]==1))!=0){prec[j,1:length(which(precedence[j,]==1))]<-which(precedence[j,]==1)} } D.T<-max(early.times+durations) holguras<-round(tiempo.last-early.times-durations,5) periods<-seq(int,D.T,by=int) cost.period<-numeric(length(periods)) X<-function(y){ sum((y-mean(y))^2) } for(i in 1:n){ cost.period[(early.times[i]*(1/int)+1):((early.times[i]+durations[i])*(1/int))]<-cost.period[(early.times[i]*(1/int)+1):((early.times[i]+durations[i])*(1/int))]+costes[i] } cost.period0<-cost.period for(i in n:1){ if(holguras[i]!=0){ { if(sum(prec[i,])==0){times<-seq(early.times[i],early.times[i]+holguras[i],by=int)} else{times<-seq(early.times[i],min(early.times[prec[i,]])-durations[i],by=int)} } new.periods<-numeric(length(times)) cost.periods<-matrix(0,nrow=length(times),ncol=length(periods)) for(j in 1:length(times)){ early.times1<-early.times early.times1[i]<-times[j] for(z in 1:n){ cost.periods[j,(early.times1[z]*(1/int)+1):((early.times1[z]+durations[z])*(1/int))]<-cost.periods[j,(early.times1[z]*(1/int)+1):((early.times1[z]+durations[z])*(1/int))]+costes[z] } } minimos<-apply(cost.periods,1,X) early.times[i]<-times[max(which(minimos==min(minimos)))] } } cost.period<-numeric(length(periods)) for(i in 1:n){ cost.period[(early.times[i]*(1/int)+1):((early.times[i]+durations[i])*(1/int))]<-cost.period[(early.times[i]*(1/int)+1):((early.times[i]+durations[i])*(1/int))]+costes[i] } cat("Early times = ", "\n") print(early.times[or1]) cat("Resources by period= ", "\n") print(cost.period) z<-seq(int,D.T,int)-int/2 zz<-seq(0,D.T,int) { plot(z,cost.period0,type="b",pch=18,lwd=2,axes=F,xlab="Periods",ylab="Resources") axis(side=1,at=zz) axis(side=2,at=1:20) lines(z,cost.period,type="b",pch=1,lwd=2,col="red") legend(D.T-4, max(cost.period0), legend=c("First solution", "Readjusted solution"), col=c("black", "red"), lwd=c(2,2),pch=c(18,1), cex=1.1) } }
par(ask=TRUE) opar <- par(no.readonly=FALSE) data(nutrient, package="flexclust") head(nutrient, 2) d <- dist(nutrient) as.matrix(d)[1:4,1:4] data(nutrient, package="flexclust") row.names(nutrient) <- tolower(row.names(nutrient)) nutrient.scaled <- scale(nutrient) d <- dist(nutrient.scaled) fit.average <- hclust(d, method="average") plot(fit.average, hang=-1, cex=.8, main="Average Linkage Clustering") library(NbClust) nc <- NbClust(nutrient.scaled, distance="euclidean", min.nc=2, max.nc=15, method="average") par(opar) table(nc$Best.n[1,]) barplot(table(nc$Best.n[1,]), xlab="Numer of Clusters", ylab="Number of Criteria", main="Number of Clusters Chosen by 26 Criteria") clusters <- cutree(fit.average, k=5) table(clusters) aggregate(nutrient, by=list(cluster=clusters), median) aggregate(as.data.frame(nutrient.scaled), by=list(cluster=clusters), median) plot(fit.average, hang=-1, cex=.8, main="Average Linkage Clustering\n5 Cluster Solution") rect.hclust(fit.average, k=5) wssplot <- function(data, nc=15, seed=1234){ wss <- (nrow(data)-1)*sum(apply(data,2,var)) for (i in 2:nc){ set.seed(seed) wss[i] <- sum(kmeans(data, centers=i)$withinss)} plot(1:nc, wss, type="b", xlab="Number of Clusters", ylab="Within groups sum of squares")} data(wine, package="rattle") head(wine) df <- scale(wine[-1]) wssplot(df) library(NbClust) set.seed(1234) nc <- NbClust(df, min.nc=2, max.nc=15, method="kmeans") par(opar) table(nc$Best.n[1,]) barplot(table(nc$Best.n[1,]), xlab="Numer of Clusters", ylab="Number of Criteria", main="Number of Clusters Chosen by 26 Criteria") set.seed(1234) fit.km <- kmeans(df, 3, nstart=25) fit.km$size fit.km$centers aggregate(wine[-1], by=list(cluster=fit.km$cluster), mean) ct.km <- table(wine$Type, fit.km$cluster) ct.km library(flexclust) randIndex(ct.km) library(cluster) set.seed(1234) fit.pam <- pam(wine[-1], k=3, stand=TRUE) fit.pam$medoids clusplot(fit.pam, main="Bivariate Cluster Plot") ct.pam <- table(wine$Type, fit.pam$clustering) ct.pam randIndex(ct.pam) library(fMultivar) set.seed(1234) df <- rnorm2d(1000, rho=.5) df <- as.data.frame(df) plot(df, main="Bivariate Normal Distribution with rho=0.5") wssplot(df) library(NbClust) nc <- NbClust(df, min.nc=2, max.nc=15, method="kmeans") par(opar) barplot(table(nc$Best.n[1,]), xlab="Numer of Clusters", ylab="Number of Criteria", main ="Number of Clusters Chosen by 26 Criteria") library(ggplot2) library(cluster) fit <- pam(df, k=2) df$clustering <- factor(fit$clustering) ggplot(data=df, aes(x=V1, y=V2, color=clustering, shape=clustering)) + geom_point() + ggtitle("Clustering of Bivariate Normal Data") plot(nc$All.index[,4], type="o", ylab="CCC", xlab="Number of clusters", col="blue")
mnl_RW_once <- function(int1, Obs, n_cat, mu_int_bar1, V_int1, scalar, candcov1) { oldloglike <- llmnl_int(int = int1, Obs = Obs, n_cat = n_cat) oldpostlike <- oldloglike + dmvnorm(int1, mu_int_bar1, V_int1, log = TRUE) probold <- int_to_prob(int1) int_new <- int1 + rmvnorm(1, rep(0, (n_cat - 1)), scalar^2 * candcov1, method = "svd") newloglike <- llmnl_int(int = int_new, Obs = Obs, n_cat = n_cat) newpostlike <- newloglike + dmvnorm(int_new, mu_int_bar1, V_int1, log = TRUE) probnew <- int_to_prob(int_new) acc <- min(log(1), (newpostlike - oldpostlike)) if(acc < log(1)) { unif <- log(runif(1)) } else { unif <- log(1) } if (unif <= acc) { draw_int <- int_new accept <- 1 prob <- probnew } else { draw_int <- int1 accept <- 0 prob <- probold } return(list(draw_int = draw_int, accept = accept, prob = prob)) }
if (requiet("testthat") && requiet("insight") && requiet("parameters") && requiet("metaBMA") && getRversion() >= "3.6.0") { data(towels) set.seed(1234) m <- suppressWarnings(meta_random( logOR, SE, study, data = towels, ci = 0.95, iter = 100, logml_iter = 200 )) test_that("model_parameters.meta_random", { params <- model_parameters(m) expect_equal(params$Parameter, c( "Goldstein, Cialdini, & Griskevicius (2008), Exp. 1", "Goldstein, Cialdini, & Griskevicius (2008), Exp. 2", "Schultz, Khazian, & Zaleski (2008), Exp. 2", "Schultz, Khazian, & Zaleski (2008), Exp. 3", "Mair & Bergin-Seers (2010), Exp. 1", "Bohner & Schluter (2014), Exp. 1", "Bohner & Schluter (2014), Exp. 2", "Overall", "tau" )) expect_equal( params$Coefficient, c(0.3806, 0.30494, 0.20554, 0.25084, 0.28768, -0.12154, -1.45792, 0.2004, 0.12107), tolerance = 1e-3 ) expect_equal( params$CI_low, c(-0.00686, 0.03816, -0.16998, -0.0825, -1.32685, -0.60772, -2.94785, 0.00824, 0.01884), tolerance = 1e-3 ) expect_equal( colnames(params), c( "Parameter", "Coefficient", "SE", "CI", "CI_low", "CI_high", "Weight", "BF", "Rhat", "ESS", "Component", "Prior_Distribution", "Prior_Location", "Prior_Scale", "Method" ) ) }) set.seed(1234) m2 <- meta_fixed( logOR, SE, study, data = towels, ci = 0.95 ) test_that("model_parameters.meta_fixed", { params <- model_parameters(m2) expect_equal(params$Parameter, c( "Goldstein, Cialdini, & Griskevicius (2008), Exp. 1", "Goldstein, Cialdini, & Griskevicius (2008), Exp. 2", "Schultz, Khazian, & Zaleski (2008), Exp. 2", "Schultz, Khazian, & Zaleski (2008), Exp. 3", "Mair & Bergin-Seers (2010), Exp. 1", "Bohner & Schluter (2014), Exp. 1", "Bohner & Schluter (2014), Exp. 2", "Overall" )) expect_equal(params$Coefficient, c(0.3806, 0.30494, 0.20554, 0.25084, 0.28768, -0.12154, -1.45792, 0.22141), tolerance = 1e-3 ) expect_equal(params$CI_low, c(-0.00686, 0.03816, -0.16998, -0.0825, -1.32685, -0.60772, -2.94785, 0.06638), tolerance = 1e-3 ) expect_equal( colnames(params), c( "Parameter", "Coefficient", "SE", "CI", "CI_low", "CI_high", "Weight", "BF", "Rhat", "ESS", "Component", "Prior_Distribution", "Prior_Location", "Prior_Scale", "Method" ) ) }) set.seed(1234) m3 <- suppressWarnings(meta_random( logOR, SE, study, data = towels, ci = 0.99, iter = 100, logml_iter = 200 )) test_that("model_parameters.meta_random", { params <- model_parameters(m3) expect_equal(params$Parameter, c( "Goldstein, Cialdini, & Griskevicius (2008), Exp. 1", "Goldstein, Cialdini, & Griskevicius (2008), Exp. 2", "Schultz, Khazian, & Zaleski (2008), Exp. 2", "Schultz, Khazian, & Zaleski (2008), Exp. 3", "Mair & Bergin-Seers (2010), Exp. 1", "Bohner & Schluter (2014), Exp. 1", "Bohner & Schluter (2014), Exp. 2", "Overall", "tau" )) expect_equal(params$Coefficient, c(0.3806, 0.30494, 0.20554, 0.25084, 0.28768, -0.12154, -1.45792, 0.2004, 0.12107), tolerance = 1e-3) expect_equal(params$CI_low, c(-0.00686, 0.03816, -0.16998, -0.0825, -1.32685, -0.60772, -2.94785, -0.15334, 0.01884), tolerance = 1e-3) expect_equal( colnames(params), c( "Parameter", "Coefficient", "SE", "CI", "CI_low", "CI_high", "Weight", "BF", "Rhat", "ESS", "Component", "Prior_Distribution", "Prior_Location", "Prior_Scale", "Method" ) ) }) }
logLik.HatchingSuccess <- function(object, ...) { L <- -object$value attributes(L) <- list(df=length(object$par), nobs=nrow(object$data)) return(L) }
setGeneric("alphaInterval", function(object, ...) standardGeneric("alphaInterval")) setMethod( f="alphaInterval", signature(object="FuzzyNumber"), definition=function(object, ...) { if (is.na(object@lower(0)) || is.na(object@upper(0))) return(c(NA_real_, NA_real_)) return(c( integrateAlpha(object, "lower", 0, 1, weight=identity, ...), integrateAlpha(object, "upper", 0, 1, weight=identity, ...) )) } ) setMethod( f="alphaInterval", signature(object="TrapezoidalFuzzyNumber"), definition=function(object) { return(c( object@a1*0.5+(object@a2-object@a1)/3, object@a3*0.5+(object@a4-object@a3)/6 )) } ) setMethod( f="alphaInterval", signature(object="PiecewiseLinearFuzzyNumber"), definition=function(object) { xl <- c(object@a1, [email protected], object@a2) xr <- c(object@a3, [email protected], object@a4) al <- c(0, [email protected], 1) ar <- c(1, rev([email protected]), 0) dxl <- diff(xl) dxr <- diff(xr) dal <- diff(al) dar <- diff(ar) return(c( sum( diff(al^2)*(xl[[email protected]]-al[[email protected]]*dxl/dal)/2+diff(al^3)*dxl/dal/3 ), -sum( diff(ar^2)*(xr[[email protected]]-ar[[email protected]]*dxr/dar)/2+diff(ar^3)*dxr/dar/3 ) )) } ) setMethod( f="alphaInterval", signature(object="PowerFuzzyNumber"), definition=function(object) { return(c( (2*object@a2*[email protected]+object@a1)/(4*[email protected]+2), (2*object@a3*[email protected]+object@a4)/(4*[email protected]+2) )) } )
lpmin.setup = function(optvars, cdimn){ Data = optvars$Data n = NROW(Data) m = NCOL(Data) colnames(Data) = NULL rownames(Data) = NULL index = optvars$index if(index[3] == 1){ .ineqx = parma.ineq.lpmin(ineq = rbind(optvars$mu, optvars$ineq.mat), ineqLB = c(optvars$mutarget, optvars$ineq.LB), ineqUB = c(Inf, optvars$ineqUB), cdim = cdimn) } else{ .ineqx = parma.ineq.lpmin(ineq = optvars$ineq.mat, ineqLB = optvars$ineq.LB, ineqUB = optvars$ineq.UB, cdim = cdimn) } ineqcon = .ineqx$ineqcon ineqB = .ineqx$ineqB ineqn = .ineqx$ineqn ineqm = .ineqx$ineqm if(index[3] == 1){ .eqx = parma.eq.lpmin(optvars$eq.mat, optvars$eqB, reward = NULL, rewardB = NULL, cdim = cdimn, optvars$budget, m) } else{ .eqx = parma.eq.lpmin(optvars$eq.mat, optvars$eqB, reward = optvars$mu, rewardB = optvars$mutarget, cdim = cdimn, optvars$budget, m) } eqcon = .eqx$eqcon eqB = .eqx$eqB eqn = .eqx$eqn eqm = .eqx$eqm return(list(ineqcon = ineqcon, ineqB = ineqB, ineqn = ineqn, ineqm = ineqm, eqcon = eqcon, eqB = eqB, eqn = eqn, eqm = eqm)) } lpopt.setup = function(optvars, cdimn){ Data = optvars$Data n = NROW(Data) m = NCOL(Data) colnames(Data) = NULL rownames(Data) = NULL index = optvars$index .ineqx = parma.ineq.lpopt(ineq = optvars$ineq.mat, ineqLB = optvars$ineq.LB, ineqUB = optvars$ineq.UB, LB = optvars$LB, UB = optvars$UB, cdim = cdimn) ineqcon = .ineqx$ineqcon ineqB = .ineqx$ineqB ineqn = .ineqx$ineqn ineqm = .ineqx$ineqm .eqx = parma.eq.lpopt(optvars$eq.mat, optvars$eqB, reward = NULL, rewardB = NULL, cdim = cdimn, optvars$budget, m) eqcon = .eqx$eqcon eqB = .eqx$eqB eqn = .eqx$eqn eqm = .eqx$eqm return(list(ineqcon = ineqcon, ineqB = ineqB, ineqn = ineqn, ineqm = ineqm, eqcon = eqcon, eqB = eqB, eqn = eqn, eqm = eqm)) } lplpm1.minrisk = function(optvars) { Data = optvars$Data n = NROW(Data) m = NCOL(Data) colnames(Data) = NULL rownames(Data) = NULL probability = optvars$probability if(is.null(probability)) probability = rep(1/n, n) cons = lpmin.setup(optvars, cdimn = n+1) ineqcon = cons$ineqcon ineqB = cons$ineqB ineqn = cons$ineqn ineqm = cons$ineqm eqcon = cons$eqcon eqB = cons$eqB eqn = cons$eqn eqm = cons$eqm LB = optvars$LB UB = optvars$UB Amat = cbind( -Data, -diag(n), matrix(optvars$threshold, nrow = n, ncol = 1)) Amat = as.simple_triplet_matrix( rbind( Amat, ineqcon, eqcon ) ) rhs = rep(0, n) rhs = c( rhs, as.numeric(ineqB), as.numeric(eqB) ) dir = c( rep("<=", n), rep("<=", ineqn), rep("==", eqn) ) objL = c( rep(0, m), probability, 1 ) bounds = list( lower = list( ind = 1L:(m + n + 1), val = c(LB, rep(0, n), 1 ) ), upper = list( ind = 1L:(m + n + 1), val = c( UB, rep(Inf, n), 1 ) ) ) ans = list(objL = objL, Amat = Amat, dir = dir, rhs = rhs, bounds = bounds, problem.max = FALSE, reward = optvars$mu, dataidx = c(n, m), widx = 1:m) rm(Amat) rm(Data) gc() return( ans ) } lplpm1.optrisk = function(optvars) { Data = optvars$Data n = NROW(Data) m = NCOL(Data) colnames(Data) = NULL rownames(Data) = NULL probability = optvars$probability if(is.null(probability)) probability = rep(1/n, n) cons = lpopt.setup(optvars, cdimn = n+1) ineqcon = cons$ineqcon ineqB = cons$ineqB ineqn = cons$ineqn ineqm = cons$ineqm eqcon = cons$eqcon eqB = cons$eqB eqn = cons$eqn eqm = cons$eqm Amat = cbind( -Data, -diag(n), matrix(optvars$threshold, ncol = 1, nrow = n) ) Amat = rbind( Amat, cbind( matrix(optvars$mu, ncol = m, nrow = 1), matrix(0, ncol = n, nrow = 1), matrix(0, ncol = 1, nrow = 1) ) ) Amat = rbind( Amat, ineqcon, eqcon ) Amat = as.simple_triplet_matrix(Amat) rhs = rep(0, n) rhs = c( rhs, 1, as.numeric(ineqB), as.numeric(eqB) ) dir = c( rep("<=", n), "==", rep("<=", ineqn), rep("==", eqn) ) objL = c( rep(0, m), probability, 0 ) bounds = list( lower = list( ind = 1L:(m + n + 1), val = c( rep(-10000, m), rep(0, n), 0.05 ) ), upper = list( ind = 1L:(m + n + 1), val = c( rep(10000, m), rep(Inf, n), 10000*m ) ) ) ans = list(objL = objL, Amat = Amat, dir = dir, rhs = rhs, bounds = bounds, problem.max = FALSE, reward = optvars$mu, dataidx = c(n, m), widx = 1:m, midx = length(objL)) rm(Amat) rm(Data) gc() return( ans ) } lpmad.minrisk = function(optvars) { Data = optvars$Data n = NROW(Data) m = NCOL(Data) colnames(Data) = NULL rownames(Data) = NULL probability = optvars$probability if(is.null(probability)) probability = rep(1/n, n) cons = lpmin.setup(optvars, cdimn = 2*n + 1) ineqcon = cons$ineqcon ineqB = cons$ineqB ineqn = cons$ineqn ineqm = cons$ineqm eqcon = cons$eqcon eqB = cons$eqB eqn = cons$eqn eqm = cons$eqm LB = optvars$LB UB = optvars$UB Amat = cbind( -Data, matrix(optvars$benchmark, nrow = n, ncol = 1), diag(n), -diag(n) ) Amat = as.simple_triplet_matrix( rbind( Amat, ineqcon, eqcon ) ) rhs = rep(0, n) rhs = c( rhs, as.numeric(ineqB), as.numeric(eqB) ) dir = c( rep("==", n), rep("<=", ineqn), rep("==", eqn) ) objL = c( rep(0, m), 0, probability, probability ) bounds = list( lower = list( ind = 1L:(m + 2 * n + 1), val = c(LB, 1, rep(0, 2 * n) ) ), upper = list( ind = 1L:(m + 2 * n + 1), val = c( UB, 1, rep(Inf, 2 * n) ) ) ) ans = list(objL = objL, Amat = Amat, dir = dir, rhs = rhs, bounds = bounds, problem.max = FALSE, reward = optvars$mu, dataidx = c(n, m), widx = 1:m) rm(Amat) rm(Data) gc() return( ans ) } lpmad.optrisk = function(optvars) { Data = optvars$Data n = NROW(Data) m = NCOL(Data) colnames(Data) = NULL rownames(Data) = NULL probability = optvars$probability if(is.null(probability)) probability = rep(1/n, n) cons = lpopt.setup(optvars, cdimn = 2*n + 1) ineqcon = cons$ineqcon ineqB = cons$ineqB ineqn = cons$ineqn ineqm = cons$ineqm eqcon = cons$eqcon eqB = cons$eqB eqn = cons$eqn eqm = cons$eqm LB = optvars$LB UB = optvars$UB Amat = cbind( -Data, diag(n) , -diag(n), matrix(optvars$benchmark, ncol = 1, nrow = n) ) Amat = rbind( Amat, cbind( matrix(optvars$mu, ncol = m, nrow = 1), matrix(0, ncol = n, nrow = 1), matrix(0, ncol = n, nrow = 1), matrix(0, ncol = 1, nrow = 1) ) ) Amat = rbind( Amat, ineqcon, eqcon ) Amat = as.simple_triplet_matrix(Amat) rhs = rep(0, n) rhs = c( rhs, 1, as.numeric(ineqB), as.numeric(eqB) ) dir = c( rep("==", n), "==", rep("<=", ineqn), rep("==", eqn) ) objL = c( rep(0, m), probability, probability, 0 ) bounds = list( lower = list( ind = 1L:(m + 2 * n + 1), val = c( rep(-10000, m), rep(0, 2 * n), 0.05 ) ), upper = list( ind = 1L:(m + 2 * n + 1), val = c( rep(10000, m), rep(Inf, 2 * n), 10000*m ) ) ) ans = list(objL = objL, Amat = Amat, dir = dir, rhs = rhs, bounds = bounds, problem.max = FALSE, reward = optvars$mu, dataidx = c(n, m), widx = 1:m, midx = length(objL)) rm(Amat) rm(Data) gc() return( ans ) } lpminmax.minrisk = function(optvars) { Data = optvars$Data n = NROW(Data) m = NCOL(Data) colnames(Data) = NULL rownames(Data) = NULL cons = lpmin.setup(optvars, cdimn = 2) ineqcon = cons$ineqcon ineqB = cons$ineqB ineqn = cons$ineqn ineqm = cons$ineqm eqcon = cons$eqcon eqB = cons$eqB eqn = cons$eqn eqm = cons$eqm LB = optvars$LB UB = optvars$UB Amat = cbind( -Data, matrix(optvars$benchmark, nrow = n, ncol = 1), matrix(1, nrow = n, ncol = 1) ) Amat = rbind( Amat, ineqcon, eqcon ) Amat = as.simple_triplet_matrix(Amat) rhs = rep(0, n) rhs = c( rhs, as.numeric(ineqB), as.numeric(eqB) ) dir = c( rep("<=", n), rep("<=", ineqn), rep("==", eqn) ) objL = c( rep(0, m), 0, -1 ) bounds = list( lower = list( ind = 1L:(m + 2), val = c(LB, 1, -Inf ) ), upper = list( ind = 1L:(m + 2), val = c( UB, 1, Inf ) ) ) ans = list(objL = objL, Amat = Amat, dir = dir, rhs = rhs, bounds = bounds, problem.max = FALSE, reward = optvars$mu, dataidx = c(n, m), widx = 1:m, vidx = length(objL)) rm(Amat) rm(Data) gc() return( ans ) } lpminmax.optrisk = function(optvars) { Data = optvars$Data n = NROW(Data) m = NCOL(Data) colnames(Data) = NULL rownames(Data) = NULL cons = lpopt.setup(optvars, cdimn = 2) ineqcon = cons$ineqcon ineqB = cons$ineqB ineqn = cons$ineqn ineqm = cons$ineqm eqcon = cons$eqcon eqB = cons$eqB eqn = cons$eqn eqm = cons$eqm LB = optvars$LB UB = optvars$UB Amat = cbind( -Data, matrix(1, ncol = 1, nrow = n), matrix(optvars$benchmark, ncol = 1, nrow = n) ) Amat = rbind( Amat, cbind( matrix(optvars$mu, ncol = m, nrow = 1), matrix(0, nrow = 1, ncol = 1), matrix(0, nrow = 1, ncol = 1) ) ) Amat = rbind( Amat, ineqcon, eqcon ) Amat = as.simple_triplet_matrix(Amat) rhs = rep(0, n) rhs = c( rhs, 1, as.numeric(ineqB), as.numeric(eqB) ) dir = c( rep("<=", n), "==", rep("<=", ineqn), rep("==", eqn) ) objL = c( rep(0, m), -1, 0 ) bounds = list( lower = list( ind = 1L:(m + 2), val = c(rep(-10000, m), -Inf, 0.05 ) ), upper = list( ind = 1L:(m + 2), val = c( rep(10000, m), Inf, 10000*m ) ) ) ans = list(objL = objL, Amat = Amat, dir = dir, rhs = rhs, bounds = bounds, problem.max = FALSE, reward = optvars$mu, dataidx = c(n, m), widx = 1:m, midx = m+2, vidx = m+1) rm(Amat) rm(Data) gc() return( ans ) } lpcvar.minrisk = function(optvars) { Data = optvars$Data n = NROW(Data) m = NCOL(Data) colnames(Data) = NULL rownames(Data) = NULL probability = optvars$probability if(is.null(probability)) probability = rep(1/n, n) cons = lpmin.setup(optvars, cdimn = n+2) ineqcon = cons$ineqcon ineqB = cons$ineqB ineqn = cons$ineqn ineqm = cons$ineqm eqcon = cons$eqcon eqB = cons$eqB eqn = cons$eqn eqm = cons$eqm LB = optvars$LB UB = optvars$UB Amat = cbind( -Data, matrix(-1, nrow = n, ncol = 1), -diag(n), matrix(optvars$benchmark, nrow = n, ncol = 1) ) Amat = as.simple_triplet_matrix( rbind( Amat, ineqcon, eqcon ) ) rhs = rep(0, n) rhs = c( rhs, as.numeric(ineqB), as.numeric(eqB) ) dir = c( rep("<=", n), rep("<=", ineqn), rep("==", eqn) ) objL = c( rep(0, m), 1, probability/optvars$alpha, 0) bounds = list( lower = list( ind = 1L:(m + n + 2), val = c(LB, -1, rep(0, n), 1 ) ), upper = list( ind = 1L:(m + n + 2), val = c( UB, 1, rep(Inf, n), 1 ) ) ) ans = list(objL = objL, Amat = Amat, dir = dir, rhs = rhs, bounds = bounds, problem.max = FALSE, reward = optvars$mu, dataidx = c(n, m), widx = 1:m, vidx = m+1) rm(Data) rm(Amat) gc() return( ans ) } lpcvar.optrisk = function(optvars) { Data = optvars$Data n = NROW(Data) m = NCOL(Data) colnames(Data) = NULL rownames(Data) = NULL probability = optvars$probability if(is.null(probability)) probability = rep(1/n, n) cons = lpopt.setup(optvars, cdimn = n+2) ineqcon = cons$ineqcon ineqB = cons$ineqB ineqn = cons$ineqn ineqm = cons$ineqm eqcon = cons$eqcon eqB = cons$eqB eqn = cons$eqn eqm = cons$eqm LB = optvars$LB UB = optvars$UB Amat = cbind( -Data, matrix(-1, nrow = n, ncol = 1), -diag(n) , matrix(optvars$benchmark, ncol = 1, nrow = n) ) Amat = rbind( Amat, cbind( matrix(optvars$mu, ncol = m, nrow = 1), matrix(0, ncol = 1, nrow = 1), matrix(0, ncol = n, nrow = 1), matrix(0, ncol = 1, nrow = 1) ) ) Amat = rbind( Amat, ineqcon, eqcon ) Amat = as.simple_triplet_matrix(Amat) rhs = rep(0, n) rhs = c( rhs, 1, as.numeric(ineqB), as.numeric(eqB) ) dir = c( rep("<=", n), "==", rep("<=", ineqn), rep("==", eqn) ) objL = c( rep(0, m), 1, probability/optvars$alpha, 0 ) bounds = list( lower = list( ind = 1L:(m + n + 2), val = c( rep(-10000, m), 0, rep(0, n), 0.05 ) ), upper = list( ind = 1L:(m + n + 2), val = c( rep(10000, m), 100000, rep(Inf, n), 10000*m ) ) ) ans = list(objL = objL, Amat = Amat, dir = dir, rhs = rhs, bounds = bounds, problem.max = FALSE, reward = optvars$mu, dataidx = c(n, m), widx = 1:m, vidx = m+1, midx = length(objL)) rm(Data) rm(Amat) gc() return( ans ) } lpcdar.minrisk = function(optvars) { Data = optvars$Data n = NROW(Data) m = NCOL(Data) colnames(Data) = NULL rownames(Data) = NULL probability = optvars$probability if(is.null(probability)) probability = rep(1/n, n) cons = lpmin.setup(optvars, cdimn = 2*n+2) ineqcon = cons$ineqcon ineqB = cons$ineqB ineqn = cons$ineqn ineqm = cons$ineqm eqcon = cons$eqcon eqB = cons$eqB eqn = cons$eqn eqm = cons$eqm LB = optvars$LB UB = optvars$UB xm = as.matrix( -diag(n) ) idx = which(xm == -1, arr.ind = TRUE) xrow = idx[,1] xcol = idx[,2] xcol[2:length(xcol)] = xcol[2:length(xcol)] - 1 diag(xm[ xrow[2:length(xrow)], xcol[2:length(xcol)] ]) = 1 Amat = cbind( -Data, matrix(0, nrow = n, ncol = 1), matrix(0, nrow = n, ncol = n), as.matrix(xm), matrix(optvars$benchmark, nrow = n, ncol = 1)) Amat = rbind( Amat, cbind( matrix(0, nrow = n, ncol = m), matrix(-1, nrow = n, ncol = 1), -1 * diag(n), diag(n), matrix(0, nrow = n, ncol = 1)) ) Amat = rbind( Amat, ineqcon, eqcon) Amat = as.simple_triplet_matrix(Amat) rhs = rep(0, 2 * n) rhs = c( rhs, as.numeric(ineqB), as.numeric(eqB) ) dir = c( rep("<=", 2 * n), rep("<=", ineqn), rep("==", eqn) ) objL = c( rep(0, m), 1, probability/optvars$alpha, rep(0, n), 0) bounds = list( lower = list( ind = 1L:(m + 2 * n + 2), val = c( LB, -1, rep(0, 2 * n), 1) ), upper = list( ind = 1L:(m + 2 * n + 2), val = c( UB, 1, rep(Inf, 2 * n), 1 ) ) ) ans = list(objL = objL, Amat = Amat, dir = dir, rhs = rhs, bounds = bounds, problem.max = FALSE, reward = optvars$mu, dataidx = c(n, m), widx = 1:m, vidx = m+1) rm(Data) rm(Amat) gc() return( ans ) } lpcdar.optrisk = function(optvars) { Data = optvars$Data n = NROW(Data) m = NCOL(Data) colnames(Data) = NULL rownames(Data) = NULL probability = optvars$probability if(is.null(probability)) probability = rep(1/n, n) cons = lpopt.setup(optvars, cdimn = 2*n+2) ineqcon = cons$ineqcon ineqB = cons$ineqB ineqn = cons$ineqn ineqm = cons$ineqm eqcon = cons$eqcon eqB = cons$eqB eqn = cons$eqn eqm = cons$eqm LB = optvars$LB UB = optvars$UB xm = as.matrix( -diag(n) ) idx = which(xm == -1, arr.ind = TRUE) xrow = idx[,1] xcol = idx[,2] xcol[2:length(xcol)] = xcol[2:length(xcol)] - 1 diag(xm[ xrow[2:length(xrow)], xcol[2:length(xcol)] ]) = 1 Amat = cbind( -Data, matrix(0, nrow = n, ncol = 1), matrix(0, nrow = n, ncol = n), as.matrix(xm), matrix(optvars$benchmark, nrow = n, ncol = 1) ) Amat = rbind( Amat, cbind( matrix(0, nrow = n, ncol = m), matrix(-1, nrow = n, ncol = 1), -1 * diag(n), diag(n), matrix(0, nrow = n, ncol = 1) ) ) Amat = rbind( Amat, cbind( matrix(optvars$mu, nrow = 1, ncol = m), matrix(0, nrow = 1, ncol = 1), matrix(0, nrow = 1, ncol = n), matrix(0, nrow = 1, ncol = n), matrix(0, nrow = 1, ncol = 1) ) ) Amat = rbind( Amat, ineqcon, eqcon) Amat = as.simple_triplet_matrix(Amat) rhs = c(rep(0, 2 * n), 1) rhs = c( rhs, as.numeric(ineqB), as.numeric(eqB) ) dir = c( rep("<=", 2 * n), "==", rep("<=", ineqn), rep("==", eqn) ) objL = c( rep(0, m) , 1, probability/optvars$alpha, rep(0, n), 0) bounds = list( lower = list( ind = 1L:(m + 2 * n + 2), val = c( rep(-10000, m), -100000, rep(0, 2 * n), 1e-12 ) ), upper = list( ind = 1L:(m + 2 * n + 2), val = c( rep( 10000, m), 100000, rep(Inf, 2 * n), 10000*m ) ) ) ans = list(objL = objL, Amat = Amat, dir = dir, rhs = rhs, bounds = bounds, problem.max = FALSE, reward = optvars$mu, dataidx = c(n, m), widx = 1:m, vidx = m+1, midx = length(objL)) rm(Data) rm(Amat) gc() return( ans ) } lpport = function(optvars, solver, ...) { valid.solvers = c("glpk", "symphony") solver = match.arg(tolower(solver), valid.solvers) risk = c("mad", "minimax", "cvar", "cdar", "ev", "lpm", "lpmupm")[optvars$index[4]] if(optvars$index[5] == 1){ setup = switch(risk, "mad" = lpmad.minrisk(optvars), "minimax" = lpminmax.minrisk(optvars), "cvar" = lpcvar.minrisk(optvars), "cdar" = lpcdar.minrisk(optvars), "lpm" = lplpm1.minrisk(optvars)) sol = lpminsolver(setup, solver, optvars, ...) } else{ setup = switch(risk, 'mad' = lpmad.optrisk(optvars), 'minimax' = lpminmax.optrisk(optvars), 'cvar' = lpcvar.optrisk(optvars), 'cdar' = lpcdar.optrisk(optvars), 'lpm' = lplpm1.optrisk(optvars)) sol = lpoptsolver(setup, solver, optvars, ...) } rm(setup) gc() return( sol ) } lpminsolver = function(setup, solver, optvars, ...) { if( is.null(list(...)$verbose) ) verbose = FALSE else verbose = as.logical( list(...)$verbose ) m = setup$dataidx[2] sol = switch(solver, glpk = try( Rglpk_solve_LP(obj = setup$objL, mat = setup$Amat, dir = setup$dir, rhs = setup$rhs, bounds = setup$bounds, max = setup$problem.max, verbose = verbose), silent = FALSE ), symphony = try( Rsymphony::Rsymphony_solve_LP(obj = setup$objL, mat = setup$Amat, dir = setup$dir, rhs = setup$rhs, bounds = setup$bounds, max = setup$problem.max), silent = FALSE )) if( inherits(sol, "try-error") ){ status = "non-convergence" weights = rep(NA, m) risk = NA reward = NA VaR = NA DaR = NA } else{ status = sol$status weights = sol$solution[setup$widx] risk = switch(solver, glpk = sol$optimum, symphony = sol$objval) if( !is.null(setup$reward) ){ reward = sum(optvars$mu * weights) } else { reward = NULL } if(optvars$index[4]==6) risk = risk - 1 if(optvars$index[4]==3) VaR = sol$solution[setup$vidx] else VaR = NA if(optvars$index[4]==4) DaR = sol$solution[setup$vidx] else DaR = NA } rm(setup) gc() return( list(status = status, weights = weights, risk = risk, reward = reward, multiplier = 1, VaR = VaR, DaR = DaR) ) } lpoptsolver = function(setup, solver, optvars, ...) { if( is.null(list(...)$verbose) ) verbose = FALSE else verbose = as.logical( list(...)$verbose ) m = setup$dataidx[2] sol = switch(solver, glpk = try( Rglpk_solve_LP(obj = setup$objL, mat = setup$Amat, dir = setup$dir, rhs = setup$rhs, bounds = setup$bounds, max = setup$problem.max, verbose = verbose), silent = FALSE ), symphony = try( Rsymphony::Rsymphony_solve_LP(obj = setup$objL, mat = setup$Amat, dir = setup$dir, rhs = setup$rhs, bounds = setup$bounds, max = setup$problem.max), silent = FALSE )) ans = list() if( inherits(sol, "try-error") ){ status = "non-convergence" weights = rep(NA, m) risk = NA reward = NA optimum = NA multiplier = NA VaR = NA DaR = NA } else{ status = sol$status multiplier = sol$solution[setup$midx] tmp = sol$solution/multiplier weights = tmp[setup$widx] risk = sum(setup$objL * sol$solution)/multiplier reward = sum(optvars$mu * weights) optimum = switch(solver, glpk = sol$optimum, symphony = sol$objval) if(optvars$index[4]==3) VaR = sol$solution[setup$vidx]/multiplier else VaR = NA if(optvars$index[4]==4) DaR = sol$solution[setup$vidx]/multiplier else DaR = NA } rm(setup) return( list(status = status, weights = weights, risk = risk, reward = reward, optimum = optimum, multiplier = multiplier, VaR = VaR, DaR = DaR) ) }
accept_rate <- function(object){ rj<-object$rj_acc mh<-object$mh_acc est<-list(rj_ar=100*mean(rj),mh_ar=100*mean(mh)) class(est)<-"acceptrate" est}
context("nltts_plot") test_that("use", { set.seed(42) n_tips <- 10 phylos <- c(ape::rcoal(n = n_tips)) testthat::expect_silent(nltts_plot(phylos)) }) test_that("abuse", { testthat::expect_error( nltts_plot(NULL), "there must be at least one phylogeny supplied" ) testthat::expect_error( nltts_plot("nonsense"), "phylogenies must be of class 'multiPhylo' or 'list'" ) })
go2term <- function(goid) { GO2TERM <- get_GO2TERM_table() res <- GO2TERM[GO2TERM[,1] %in% goid, ] rownames(res) <- NULL return(res) } go2ont <- function(goid) { GO2Ontology <- get_GO2Ontology_table() res <- GO2Ontology[GO2Ontology[,1] %in% goid,] rownames(res) <- NULL return(res) } get_GOTERM <- function() { pos <- 1 envir <- as.environment(pos) if (!exists(".GOTERM_Env", envir=envir)) { assign(".GOTERM_Env", new.env(), envir) } GOTERM_Env <- get(".GOTERM_Env", envir = envir) if (exists("GOTERM.df", envir = GOTERM_Env)) { GOTERM.df <- get("GOTERM.df", envir=GOTERM_Env) } else { GOTERM.df <- toTable(GOTERM) assign("GOTERM.df", GOTERM.df, envir = GOTERM_Env) } return(GOTERM.df) } get_GO2TERM_table <- function() { GOTERM.df <- get_GOTERM() GOTERM.df[, c("go_id", "Term")] %>% unique } get_GO2Ontology_table <- function() { GOTERM.df <- get_GOTERM() GOTERM.df[, c("go_id", "Ontology")] %>% unique } excludeGOlevel <- function(x, ont, level) { lv <- unlist(lapply(level, getGOLevel, ont=ont)) x <- excludeGOterm(x, lv) return(x) } excludeGOterm <- function(x, term) { if ( is(x, "enrichResult") ) { x@result <- x@result[! x@result[, "ID"] %in% term, ] } else if ( is(x, "compareClusterResult") ) { x@compareClusterResult <- x@compareClusterResult[! x@compareClusterResult[, "ID"] %in% term, ] } else { stop("x should be one of enrichResult of compareClusterResult...") } return(x) } keepGOlevel <- function(x, ont, level) { lv <- unlist(lapply(level, getGOLevel, ont=ont)) x <- keepGOterm(x, lv) return(x) } keepGOterm <- function(x, term) { if ( is(x, "enrichResult") ) { x@result <- x@result[x@result[, "ID"] %in% term, ] } else if ( is(x, "compareClusterResult") ) { x@compareClusterResult <- x@compareClusterResult[x@compareClusterResult[, "ID"] %in% term, ] } else { stop("x should be one of enrichResult of compareClusterResult...") } return(x) } getGOLevel <- function(ont, level) { switch(ont, MF = { topNode <- "GO:0003674" Children <- GOMFCHILDREN }, BP = { topNode <- "GO:0008150" Children <- GOBPCHILDREN }, CC = { topNode <- "GO:0005575" Children <- GOCCCHILDREN } ) max_level <- max(level) if (any(level == 1)) { all_nodes <- topNode } else { all_nodes <- c() } Node <- topNode for (i in seq_len(max_level-1)) { Node <- mget(Node, Children, ifnotfound=NA) Node <- unique(unlist(Node)) Node <- as.vector(Node) Node <- Node[!is.na(Node)] if ((i+1) %in% level) { all_nodes <- c(all_nodes, Node) } } return(all_nodes) } add_GO_Ontology <- function(obj, GO_DATA) { if (is(obj, 'gseaResult')) { obj@setType <- "GOALL" } else if (is(obj, 'enrichResult')) { obj@ontology <- 'GOALL' } df <- obj@result GO2ONT <- get("GO2ONT", envir=GO_DATA) df <- cbind(ONTOLOGY=GO2ONT[df$ID], df) obj@result <- df return(obj) } get_go_ontology <- function(x) { if (is(x, "compareClusterResult")) { if (x@fun != "enrichGO" && x@fun != "groupGO" && x@fun != "gseGO") { stop("simplify only work for GO...") } ont <- [email protected]$ont if (is.null(ont) || class(ont) != "character") { ont <- x@compareClusterResult$ID[1] %>% GOTERM[[.]] %>% Ontology } } else if (is(x, "enrichResult")) { if (!x@ontology %in% c("BP", "MF", "CC")) stop("ontology should be one of 'MF', 'BP', 'CC'...") ont <- x@ontology } else { stop("x should be an instance of 'enrichResult' or 'compareClusterResult'...") } return(ont) }
setPredictThreshold = function(learner, predict.threshold) { learner = checkLearner(learner, type = "classif") if (learner$predict.type != "prob") { stopf("predict.type = 'prob' must hold to set a predict.threshold!") } assertNumeric(predict.threshold, any.missing = FALSE) learner$predict.threshold = predict.threshold return(learner) }
xgb.max_mcc <- function(pred, dtrain) { y_true <- getinfo(dtrain, "label") DT <- data.table(y_true = y_true, y_prob = pred, key = "y_prob") cleaner <- !duplicated(DT[, "y_prob"], fromLast = TRUE) nump <- sum(y_true) numn <- length(y_true) - nump DT[, tn_v := as.numeric(cumsum(y_true == 0))] DT[, fp_v := cumsum(y_true == 1)] DT[, fn_v := numn - tn_v] DT[, tp_v := nump - fp_v] DT <- DT[cleaner, ] DT[, mcc := (tp_v * tn_v - fp_v * fn_v) / sqrt((tp_v + fp_v) * (tp_v + fn_v) * (tn_v + fp_v) * (tn_v + fn_v))] best_row <- which.max(DT$mcc) if (length(best_row) > 0) { return(list(metric = "mcc", value = DT$mcc[best_row[1]])) } else { return(list(metric = "mcc", value = -1)) } }
predict_new <- function(model, ...) { UseMethod("predict_new") } process.data.predict.new <- function(model, obj, X=NULL, weight=NULL, U=NULL, U_bin=NULL, items=NULL, rows=NULL, exact=FALSE) { if (obj$info$only_prediction_info) stop("Cannot use this function after dropping non-essential matrices.") exact <- check.bool(exact) if (!NROW(items)) stop("'items' cannot be empty.") if (NROW(obj$info$item_mapping)) items <- as.integer(factor(items, obj$info$item_mapping)) if (inherits(items, c("numeric", "character", "matrix"))) items <- as.integer(items) if (!inherits(items, "integer")) stop("Invalid 'items'.") items <- items - 1L inputs <- process.data.factors(model, obj, X=X, weight=weight, U=U, U_bin=U_bin, exact=exact, matched_shapes=FALSE) m_max <- max(c(inputs$processed_X$m, inputs$processed_U$m, inputs$processed_U_bin$m)) if (m_max == 1L) rows <- rep(1L, NROW(items)) if (!is.null(rows)) { if (NROW(obj$info$item_mapping)) rows <- as.integer(factor(rows, obj$info$user_mapping)) if (inherits(rows, c("numeric", "character", "matrix"))) rows <- as.integer(rows) if (!inherits(rows, "integer")) stop("Invalid 'rows'.") if (NROW(rows) != NROW(items)) { if (NROW(rows) == 1L) { rows <- rep(rows, NROW(items)) } else { stop("'rows' and 'item' must have the same number of entries.") } } } else { if (NROW(items) != m_max) stop("Number of entries from 'X'/'U' does not match with entries in 'item'.") rows <- seq(1L, NROW(items)) } rows <- rows - 1L return(list( rows = rows, items = items, m_max = m_max, exact = exact, processed_X = inputs$processed_X, processed_U = inputs$processed_U, processed_U_bin = inputs$processed_U_bin )) } predict_new.CMF <- function(model, items, rows=NULL, X=NULL, U=NULL, U_bin=NULL, weight=NULL, ...) { inputs <- process.data.predict.new("CMF", model, X = X, weight = weight, U = U, U_bin = U_bin, items = items, rows = rows) n_predict <- NROW(inputs$rows) scores <- numeric(length = n_predict) ret_code <- .Call(call_predict_X_new_collective_explicit, inputs$m_max, inputs$rows, inputs$items, scores, model$info$nthreads, as.logical(NROW(model$matrices$user_bias)), inputs$processed_U$Uarr, inputs$processed_U$m, inputs$processed_U$p, model$info$NA_as_zero_user, model$info$NA_as_zero, model$info$nonneg, inputs$processed_U$Urow, inputs$processed_U$Ucol, inputs$processed_U$Uval, inputs$processed_U$Ucsr_p, inputs$processed_U$Ucsr_i, inputs$processed_U$Ucsr, inputs$processed_U_bin$Uarr, inputs$processed_U_bin$m, inputs$processed_U_bin$p, model$matrices$C, model$matrices$Cb, model$matrices$glob_mean, model$matrices$item_bias, model$matrices$U_colmeans, inputs$processed_X$Xval, inputs$processed_X$Xrow, inputs$processed_X$Xcol, inputs$processed_X$Xcsr_p, inputs$processed_X$Xcsr_i, inputs$processed_X$Xcsr, inputs$processed_X$Xarr, inputs$processed_X$n, inputs$processed_X$Warr, inputs$processed_X$Wsp, model$matrices$B, model$matrices$Bi, model$info$add_implicit_features, model$info$k, model$info$k_user, model$info$k_item, model$info$k_main, model$info$lambda, model$info$l1_lambda, model$info$scale_lam, model$info$scale_lam_sideinfo, model$info$scale_bias_const, model$matrices$scaling_biasA, model$info$w_main, model$info$w_user, model$info$w_implicit, NCOL(model$matrices$B), model$info$include_all_X, model$precomputed$BtB, model$precomputed$TransBtBinvBt, model$precomputed$BtXbias, model$precomputed$BeTBeChol, model$precomputed$BiTBi, model$precomputed$TransCtCinvCt, model$precomputed$CtC, model$precomputed$B_plus_bias, model$precomputed$CtUbias) check.ret.code(ret_code) return(scores) } predict_new.CMF_implicit <- function(model, items, rows=NULL, X=NULL, U=NULL, ...) { inputs <- process.data.predict.new("CMF_implicit", model, X = X, U = U, items = items, rows = rows) n_predict <- NROW(inputs$rows) scores <- numeric(length = n_predict) lambda <- ifelse(NROW(model$info$lambda) == 6L, model$info$lambda[3L], model$info$lambda) l1_lambda <- ifelse(NROW(model$info$l1_lambda) == 6L, model$info$l1_lambda[3L], model$info$l1_lambda) ret_code <- .Call(call_predict_X_new_collective_implicit, inputs$m_max, inputs$rows, inputs$items, scores, model$info$nthreads, inputs$processed_U$Uarr, inputs$processed_U$m, inputs$processed_U$p, model$info$NA_as_zero_user, model$info$nonneg, inputs$processed_U$Urow, inputs$processed_U$Ucol, inputs$processed_U$Uval, inputs$processed_U$Ucsr_p, inputs$processed_U$Ucsr_i, inputs$processed_U$Ucsr, inputs$processed_X$Xval, inputs$processed_X$Xrow, inputs$processed_X$Xcol, inputs$processed_X$Xcsr_p, inputs$processed_X$Xcsr_i, inputs$processed_X$Xcsr, model$matrices$B, NCOL(model$matrices$B), model$matrices$C, model$matrices$U_colmeans, model$info$k, model$info$k_user, model$info$k_item, model$info$k_main, lambda, l1_lambda, model$info$alpha, model$info$w_main, model$info$w_user, model$info$w_main_multiplier, model$info$apply_log_transf, model$precomputed$BeTBe, model$precomputed$BtB, model$precomputed$BeTBeChol, model$precomputed$CtUbias) check.ret.code(ret_code) return(scores) } predict_new.OMF_explicit <- function(model, items, rows=NULL, X=NULL, U=NULL, weight=NULL, exact=FALSE, ...) { inputs <- process.data.predict.new("OMF_explicit", model, X = X, weight = weight, U = U, items = items, rows = rows, exact = exact) n_predict <- NROW(inputs$rows) scores <- numeric(length = n_predict) ret_code <- .Call(call_predict_X_new_offsets_explicit, inputs$m_max, as.logical(NROW(model$matrices$user_bias)), inputs$rows, inputs$items, scores, model$info$nthreads, inputs$processed_U$Uarr, inputs$processed_U$p, inputs$processed_U$Urow, inputs$processed_U$Ucol, inputs$processed_U$Uval, inputs$processed_U$Ucsr_p, inputs$processed_U$Ucsr_i, inputs$processed_U$Ucsr, inputs$processed_X$Xval, inputs$processed_X$Xrow, inputs$processed_X$Xcol, inputs$processed_X$Xcsr_p, inputs$processed_X$Xcsr_i, inputs$processed_X$Xcsr, inputs$processed_X$Xarr, NCOL(model$matrices$Bm), inputs$processed_X$Warr, inputs$processed_X$Wsp, model$matrices$Bm, model$matrices$C, model$matrices$C_bias, model$matrices$glob_mean, model$matrices$item_bias, model$info$k, model$info$k_sec, model$info$k_main, model$info$w_user, model$info$lambda, inputs$exact, model$precomputed$TransBtBinvBt, model$precomputed$BtB, model$precomputed$Bm_plus_bias) check.ret.code(ret_code) return(scores) } predict_new.OMF_implicit <- function(model, items, rows=NULL, X=NULL, U=NULL, ...) { inputs <- process.data.predict.new("OMF_implicit", model, X = X, U = U, items = items, rows = rows) n_predict <- NROW(inputs$rows) scores <- numeric(length = n_predict) ret_code <- .Call(call_predict_X_new_offsets_implicit, inputs$m_max, inputs$rows, inputs$items, scores, NCOL(model$matrices$Bm), model$info$nthreads, inputs$processed_U$Uarr, inputs$processed_U$p, inputs$processed_U$Urow, inputs$processed_U$Ucol, inputs$processed_U$Uval, inputs$processed_U$Ucsr_p, inputs$processed_U$Ucsr_i, inputs$processed_U$Ucsr, inputs$processed_X$Xval, inputs$processed_X$Xrow, inputs$processed_X$Xcol, inputs$processed_X$Xcsr_p, inputs$processed_X$Xcsr_i, inputs$processed_X$Xcsr, model$matrices$Bm, model$matrices$C, model$matrices$C_bias, model$info$k, model$info$lambda, model$info$alpha, model$info$apply_log_transf, model$precomputed$BtB) check.ret.code(ret_code) return(scores) } predict_new.ContentBased <- function(model, items=NULL, rows=NULL, U=NULL, I=NULL, ...) { if (!NROW(U)) stop("'U' cannot be empty") if (!NROW(items) && !NROW(I)) stop("Must pass at least one of 'items' or 'I'.") items_pass <- items rows_pass <- rows if (is.null(items)) items_pass <- 1L if (is.null(rows)) rows_pass <- seq(1L, NROW(items_pass)) inputs <- process.data.predict.new("ContentBased", model, U = U, items = items_pass, rows = rows_pass) if (!is.null(items)) items <- inputs$items if (!is.null(rows)) rows <- inputs$rows if (!is.null(I)) { processed_I <- process.new.U(I, model$info$I_cols, NCOL(model$matrices$D), allow_sparse=TRUE, allow_null=FALSE, allow_na=FALSE, exact_shapes=TRUE) if (!processed_I$m) stop("'I' is empty.") if (is.null(items)) { if (is.null(rows)) { if (processed_I$m != inputs$m_max) stop("Number of rows in 'U' and 'I' do not match.") n_predict <- inputs$m_max } else { items <- seq(1L, NROW(rows)) - 1L n_predict <- NROW(rows) } } else { if (NROW(rows) != NROW(items)) stop("'items' and 'rows' must have the same number of entries.") n_predict <- NROW(rows) } if (is.null(items)) items <- integer() if (is.null(rows)) rows <- integer() scores <- numeric(length = n_predict) ret_code <- .Call(call_predict_X_new_content_based, scores, inputs$processed_U$m, processed_I$m, model$info$k, rows, items, inputs$processed_U$Uarr, inputs$processed_U$p, inputs$processed_U$Urow, inputs$processed_U$Ucol, inputs$processed_U$Uval, inputs$processed_U$Ucsr_p, inputs$processed_U$Ucsr_i, inputs$processed_U$Ucsr, processed_I$Uarr, processed_I$p, processed_I$Urow, processed_I$Ucol, processed_I$Uval, processed_I$Ucsr_p, processed_I$Ucsr_i, processed_I$Ucsr, model$matrices$C, model$matrices$C_bias, model$matrices$D, model$matrices$D_bias, model$matrices$glob_mean, model$info$nthreads) } else { if (is.null(rows)) { if (inputs$processed_U$m == 1L) { rows <- rep(0L, NROW(items)) } else { rows <- seq(1L, inputs$processed_U$m) - 1L } } n_predict <- NROW(items) scores <- numeric(length = n_predict) ret_code <- .Call(call_predict_X_new_offsets_explicit, inputs$processed_U$m, FALSE, rows, items, scores, model$info$nthreads, inputs$processed_U$Uarr, inputs$processed_U$p, inputs$processed_U$Urow, inputs$processed_U$Ucol, inputs$processed_U$Uval, inputs$processed_U$Ucsr_p, inputs$processed_U$Ucsr_i, inputs$processed_U$Ucsr, numeric(), integer(), integer(), raw(), integer(), numeric(), numeric(), NCOL(model$matrices$Bm), numeric(), numeric(), model$matrices$Bm, model$matrices$C, model$matrices$C_bias, model$matrices$glob_mean, model$matrices$item_bias, 0L, model$info$k, 0L, 1., model$info$lambda, FALSE, numeric(), numeric(), numeric()) } check.ret.code(ret_code) return(scores) }
terms.Rchoice <- function(x, ...){ terms(x$formula) } model.matrix.Rchoice <- function(object, ...){ X <- model.matrix(object$formula, object$mf) if (has.intercept(object$formula, rhs = 1)) { namesX <- colnames(X) namesX[1L] <- "constant" colnames(X) <- namesX } X } vcov.Rchoice <- function(object, what = c('coefficient', 'ranp'), type = c('cov', 'cor', 'sd'), se = FALSE, digits = max(3, getOption("digits") - 2), ...) { what <- match.arg(what) type <- match.arg(type) if (what == 'coefficient') { H <- object$logLik$hessian if (object$family == "ordinal"){ bhat <- coef(object) ahat <- attr(object$coefficients, "alphas") J <- length(ahat) A <- diag(length(bhat)) z.id <- seq(1, J, 1) Jacob <- jacobian(ahat) A[z.id, z.id] <- Jacob result <- A %*% solve(-H) %*% t(A) rownames(result) <- colnames(result) <- names(bhat) } else { result <- (solve(-H)) rownames(result) <- colnames(result) <- names(coef(object)) } return(result) } if (what == 'ranp') { if (se) { if (type == 'cov') se.cov.Rchoice(object, sd = FALSE, digits = digits) if (type == 'sd') se.cov.Rchoice(object, sd = TRUE, digits = digits) if (type == 'cor') stop("standard error for correlation coefficients not implemented yet") } else { if (type == 'cov') print(cov.Rchoice(object)) if (type == 'cor') print(cor.Rchoice(object)) if (type == 'sd') print(sqrt(diag(cov.Rchoice(object)))) } } } coef.Rchoice <- function(object, ...){ result <- object$coefficients return(result) } fitted.Rchoice <- function(object, ...){ result <- object$probabilities return(result) } residuals.Rchoice <- function(object, ...){ result <- object$residuals result } df.residual.Rchoice <- function(object, ...){ n <- length(residuals(object)) K <- length(coef(object)) return(n - K) } update.Rchoice <- function(object, new, ...){ call <- object$call if (is.null(call)) stop("need an object with call component") extras <- match.call(expand.dots = FALSE)$... if (!missing(new)) call$formula <- update(formula(object), new) if (length(extras) > 0) { existing <- !is.na(match(names(extras), names(call))) for (a in names(extras)[existing]) call[[a]] <- extras[[a]] if (any(!existing)) { call <- c(as.list(call), extras[!existing]) call <- as.call(call) } } eval(call, parent.frame()) } AIC.Rchoice <- function(object, ..., k = 2) { return(-2 * object$logLik$maximum[[1]] + k * length(coef(object))) } BIC.Rchoice <- function(object, ...) { return(AIC(object, k = log(object$logLik$nobs)) ) } logLik.Rchoice <- function(object,...){ structure(object$logLik$maximum[[1]], df = length(object$coefficients), nobs = object$logLik$nobs, class = "logLik") } bread.Rchoice <- function(x, ... ) { return( vcov( x ) * x$logLik$nobs) } estfun.Rchoice <- function(x, ... ) { return(x$logLik$gradientObs ) } print.Rchoice <- function(x, digits = max(3,getOption("digits") - 3), width = getOption("width"), ...) { cat("\nCall:\n", deparse(x$call),"\n\n", sep = "") cat("\nCoefficients:\n") print.default(format(coef(x), digits = digits), print.gap = 2, quote = FALSE) cat("\n") invisible(x) } summary.Rchoice <- function(object, ...){ b <- object$coefficients std.err <- sqrt(diag(vcov(object))) z <- b / std.err p <- 2 * (1 - pnorm(abs(z))) CoefTable <- cbind(b, std.err, z, p) colnames(CoefTable) <- c("Estimate", "Std. Error", "z-value", "Pr(>|z|)") object$CoefTable <- CoefTable class(object) <- c("summary.Rchoice","Rchoice") return(object) } print.summary.Rchoice <- function(x, digits = max(3, getOption("digits") - 3), width = getOption("width"), ...) { cat(paste("\nModel:", x$family)) cat(paste("\nModel estimated on:", format(Sys.time(), "%a %b %d %X %Y"), "\n")) cat("\nCall:\n") cat(paste(deparse(x$call), sep = "\n", collapse = "\n"), "\n\n", sep = "") if (!(x$family == "poisson")) { cat("\nFrequencies of categories:\n") print(prop.table(x$freq), digits = digits) } cat(paste("The estimation took:", make.time(x) ,"\n")) cat("\nCoefficients:\n") printCoefmat(x$CoefTable, digits = digits) cat(paste("\nOptimization of log-likelihood by", x$logLik$type)) cat(paste("\nLog Likelihood:", signif(x$logLik$maximum, digits))) cat(paste("\nNumber of observations:", x$logLik$nobs)) cat(paste("\nNumber of iterations:" , x$logLik$iterations)) cat(paste("\nExit of MLE:", x$logLik$message)) if (x$R.model) { if (is.null(x$draws)) { cat(paste("\nSimulation based on", x$R, "pseudo-random draws")) }else { cat(paste("\nSimulation based on", x$R, "Halton draws")) } } invisible(x) } getSummary.Rchoice <- function(obj, alpha = 0.05, ...){ smry <- summary(obj) coef <- smry$CoefTable lower <- coef[, 1] - coef[, 2] * qnorm(alpha/2) upper <- coef[, 1] + coef[, 2] * qnorm(alpha/2) coef <- cbind(coef, lower, upper) colnames(coef) <- c("est", "se", "stat", "p", "lwr", "upr") N <- obj$logLik$nobs ll <- logLik(obj) sumstat <- c(logLik = ll, deviance = NA, AIC = AIC(obj), BIC = BIC(obj), N = N, LR = NA, df = NA, p = NA, Aldrich.Nelson = NA, McFadden = NA, Cox.Snell = NA, Nagelkerke = NA) list(coef = coef, sumstat = sumstat, contrasts = obj$contrasts, xlevels = NULL, call = obj$call) } plot.Rchoice <- function(x, par = NULL, effect = c("ce", "cv"), wrt = NULL, type = c("density", "histogram"), adjust = 1, main = NULL, col = "indianred1", breaks = 10, ylab = NULL, xlab = NULL, ind = FALSE, id = NULL, ...){ if (!x$R.model) stop("the plot method is only relevant for random parameters") if (is.null(par)) stop("Must specified the name of the random parameters") type <- match.arg(type) effect <- match.arg(effect) if (is.null(xlab)) { xlab <- switch(effect, "cv" = expression(E(hat(cv[i]))), "ce" = expression(E(hat(beta[i])))) } if (!ind) { if (is.null(main)) main <- paste("Conditional Distribution for", par) if (is.null(ylab)) { ylab <- switch(type, "density" = "Density", "histogram" = "Frequency") } rpar <- effect.Rchoice(x, par, effect = effect, wrt = wrt)$mean if (type == "density") { pdens <- density(rpar, adjust = adjust) plot(pdens, ylab = ylab, xlab = xlab, main = main, col = col) has.pos <- any(pdens$x > 0) if (has.pos) { x1 <- min(which(pdens$x >= 0)) x2 <- max(which(pdens$x < max(pdens$x))) with(pdens, polygon(x = c(x[c(x1, x1:x2, x2)]), y = c(0, y[x1:x2], 0), col = col, border = NA)) } } else { minb <- round(min(rpar), 2) maxb <- round(max(rpar), 2) hist(rpar, xlab = xlab, main = main, col = col, breaks = breaks, xaxs = "i", yaxs = "i", las = 1, xaxt = 'n', ylab = ylab) axis(1, at = seq(minb, maxb, (maxb - minb) * .05)) } } else{ if (is.null(main)) main <- paste("95% Probability Intervals for ", par) if (is.null(id)) id <- seq(1, 10, 1) if (is.null(ylab)) ylab <- "Individuals" f.bran <- effect.Rchoice(x, par, effect = effect, wrt = wrt)$mean f.sran <- effect.Rchoice(x, par, effect = effect, wrt = wrt)$sd.est lower <- f.bran - qnorm(0.975) * f.sran upper <- f.bran + qnorm(0.975) * f.sran plotrix::plotCI(as.numeric(id), f.bran[id], ui = upper[id], li = lower[id], xlab = ylab, ylab = xlab, lty = 2, main = main, pch = 21, col = col) } } cov.Rchoice <- function(x){ if (!inherits(x, "Rchoice")) stop("not a \"Rchoice\" object") if (is.null(x$ranp)) stop('\"cov.Rchoice\" only relevant for random coefficient model') beta.hat <- coef(x) K <- length(x$ranp) nr <- names(x$ranp) if (x$correlation) { names.stds <- c() for (i in 1:K) names.stds <- c(names.stds, paste('sd', nr[i], nr[i:K], sep = '.')) v <- beta.hat[names.stds] V <- tcrossprod(makeL(v)) colnames(V) <- rownames(V) <- nr } else{ names.stds <- paste("sd", nr, sep = ".") sv <- beta.hat[names.stds] V <- matrix(0, K, K) diag(V) <- sv ^ 2 colnames(V) <- rownames(V) <- nr } V } cor.Rchoice <- function(x){ if (!x$correlation) stop('\"cor.Rchoice\" only relevant for correlated random coefficient model') V <- cov.Rchoice(x) nr <- names(x$ranp) D <- diag(sqrt(diag(V))) Rho <- solve(D) %*% V %*% solve(D) colnames(Rho) <- rownames(Rho) <- nr Rho } effect.Rchoice <- function(x, par = NULL, effect = c("cv", "ce"), wrt = NULL, ... ){ if (!inherits(x, "Rchoice")) stop("not a \"Rchoice\" object") type <- match.arg(effect) ranp <- x$ranp if (!is.null(par) && !(par %in% names(ranp))) stop("This parameter is not random: ", par) bi <- x$bi Qir <- x$Qir R <- ncol(Qir) N <- nrow(Qir) K <- dim(bi)[[3]] mean <- mean.sq <- array(NA, dim = c(N, R, K)) for (j in 1:K) { if (type == "cv") { if (is.null(wrt)) stop("you need to specify wrt") is.ran <- any(names(ranp) %in% wrt) gamma <- if (is.ran) bi[, , wrt] else coef(x)[wrt] mean[, , j] <- (bi[, , j] / gamma) * Qir mean.sq[, , j] <- ((bi[, , j] / gamma) ^ 2 ) * Qir } else { mean[, , j] <- bi[, , j] * Qir mean.sq[, , j] <- (bi[, , j] ^ 2) * Qir } } mean <- apply(mean, c(1,3), sum) mean.sq <- apply(mean.sq, c(1,3), sum) sd.est <- suppressWarnings(sqrt(mean.sq - mean ^ 2)) colnames(mean) <- colnames(mean.sq) <- colnames(sd.est) <- dimnames(bi)[[3]] rownames(mean) <- rownames(mean.sq) <- rownames(sd.est) <- dimnames(bi)[[1]] if (!is.null(par)) { mean <- mean[, par] sd.est <- sd.est[, par] } effe <- list(mean = mean, sd.est = sd.est) return(effe) } se.cov.Rchoice <- function(x, sd = FALSE, digits = max(3, getOption("digits") - 2)){ if (!inherits(x, "Rchoice")) stop("not a \"Rchoice\" object") if (!x$correlation) stop('se.cov.Rchoice only relevant for correlated random coefficient') beta.hat <- x$coefficients Ka <- length(x$ranp) nr <- names(x$ranp) names.stds <- c() for (i in 1:Ka) names.stds <- c(names.stds, paste('sd', nr[i], nr[i:Ka], sep = '.')) stds.hat <- beta.hat[names.stds] sel.vcov <- vcov(x)[names.stds, names.stds] form <- c() if (sd) { for (i in 1:Ka) { k <- i if (i == 1) { form <- paste("~ sqrt(", c(form, paste(paste("x", i, sep = ""), paste("x", k, sep = ""), sep = "*")), ")") } else { temp <- paste(paste("x", i, sep = ""), paste("x", k, sep = ""), sep = "*") j <- 2 while (j <= i) { temp <- paste(temp, make.add(row = j, col = k, Ka = Ka)[1], sep = "+") j <- j + 1 } form <- c(form, paste("~ sqrt(", temp, ")")) } } b <- sqrt(diag(cov.Rchoice(x))) names(b) <- colnames(cov.Rchoice(x)) } else { for (i in 1:Ka) { if (i == 1) { form <- paste("~", c(form, paste(paste("x", i:Ka, sep = ""), paste("x", i, sep = ""), sep = "*"))) } else { temp <- paste(paste("x", i:Ka, sep = ""), paste("x", i, sep = ""), sep = "*") j <- 2 while (j <= i) { temp <- paste(temp, make.add(row = j, col = i, Ka = Ka), sep = "+") j <- j + 1 } form <- c(form, paste("~", temp)) } } names.vcov <- c() for (i in 1:Ka) names.vcov <- c(names.vcov, paste('v', nr[i], nr[i:Ka], sep = '.')) b <- drop(cov.Rchoice(x)[lower.tri(cov.Rchoice(x), diag = TRUE)]) names(b) <- names.vcov } std.err <- c() for (i in 1:length(form)) { std.err <- c(std.err, msm::deltamethod(as.formula(form[i]), stds.hat, sel.vcov, ses = TRUE)) } z <- b / std.err p <- 2 * (1 - pnorm(abs(z))) tableChol <- cbind(b, std.err, z, p) if (!sd) cat(paste("\nElements of the variance-covariance matrix \n\n")) else cat(paste("\nStandard deviations of the random parameters \n\n")) colnames(tableChol) <- c("Estimate", "Std. Error", "z-value", "Pr(>|z|)") printCoefmat(tableChol, digits = digits) }