code
stringlengths
1
13.8M
setMethod(f="monoisotopicPeaks", signature=signature(object="MassPeaks"), definition=function(object, minCor=0.95, tolerance=1e-4, distance=1.00235, size=3L:10L) { object[.monoisotopic(x=mass(object), y=intensity(object), minCor=minCor, tolerance=tolerance, distance=distance, size=size)] }) setMethod(f="monoisotopicPeaks", signature=signature(object="list"), definition=function(object, ...) { .stopIfNotIsMassPeaksList(object) .lapply(object, monoisotopicPeaks, ...) })
logitBvs <- function(y, N, X, model = list(), prior = list(), mcmc = list(), start = NULL, BVS = TRUE){ starttime <- proc.time()[3] cl <- match.call() if (is.null(y) || is.null(X)) stop("need 'y' and 'X' argument") if (!is.matrix(X)) stop("'X' must be a matrix") if (!is.vector(y)) stop("'y' must be a vector") if (!is.vector(N)) stop("'N' must be a vector") if (any(is.na(X))) stop("NA values in 'X' not allowed") if (any(is.na(y))) stop("NA values in 'y' not allowed") if (any(is.na(N))) stop("NA values in 'N' not allowed") if (any(y < 0)) stop("'y' must be positive") if (any(N < 0)) stop("'N' must be positive") if (length(y) != length(N)) stop("'y' and 'N' must have same length") if (length(y) != nrow(X)) stop("'y' and 'nrow(X)' must have same length") y <- as.integer(y) N <- as.integer(N) if (!all(X[, 1] == 1)) X <- cbind(rep(1, dim(X)[1]), X) if (any((N - y < 0))) stop("number of trials 'N' < number of binomial counts 'y'") if (any(N==0)){ iN0 <- which(N==0) X <- X[-iN0, , drop = FALSE] y <- y[-iN0] N <- N[-iN0] } n <- length(y) d <- ncol(X) - 1 W <- X colnames(W) <- paste("W", seq(0,d), sep = "") defaultModel <- list( deltafix = matrix(0,1,d), gammafix = 0, ri = FALSE, clusterID = NULL ) model <- modifyList(defaultModel, as.list(model)) model$deltafix <- as.matrix(model$deltafix) model$gammafix <- as.matrix(model$gammafix) model$ri <- as.integer(model$ri) model$d <- d model$family <- "logit" model$Zl <- seq_len(n) if (model$d > 0){ if (length(model$deltafix) != model$d || !all(model$deltafix %in% c(0, 1))){ stop("invalid specification of effects subject to selection") } } else { if (length(model$deltafix) != model$d){ stop("invalid 'deltafix' argument") } } if (length(model$gammafix)>1 || !(model$gammafix %in% c(0, 1)) || !(model$ri %in% c(0, 1))) stop("invalid specification of random intercept selection") if (model$ri == 1){ if (!is.vector(model$clusterID)){ stop("you must specify a cluster ID for random intercept selection") } if (min(model$clusterID) != 1 || !(is.numeric(model$clusterID))){ stop("specify the cluster ID as c = 1,...,C") } if (any(N == 0)) model$clusterID <- model$clusterID[-iN0] if (length(model$clusterID) != n){ stop("'y' and 'clusterID' must have same length") } model$Zl <- model$clusterID nC <- max(model$Zl) atilde <- rnorm(nC, 0, 1) H <- matrix(0, n, nC) for (i in 1:nC){ H[which(model$Zl == i), i] <- 1 } } else { atilde <- H <- NULL } df <- d + 1 deff <- d + model$ri dall <- deff + 1 defaultPrior <- list( slab = "Student", psi.nu = 5, m0 = 0, M0 = 100, aj0 = rep(0, deff), V = 5, w = c(wa0=1,wb0=1), pi = c(pa0=1,pb0=1) ) prior <- modifyList(defaultPrior, as.list(prior)) if (!all(prior$aj0 == 0)){ prior$slab <- "Normal" if (BVS){ warning(simpleWarning(paste(strwrap(paste("BVS is not performed if prior information on the regression parameters is available:\n", "'BVS' was set to FALSE", sep = ""), exdent = 1), collapse = "\n"))) BVS <- FALSE } } if (prior$slab == "Normal"){ prior$psi.Q <- prior$V prior$psi.nu <- NULL } else { prior$psi.Q <- prior$V*(prior$psi.nu - 1) } prior$a0 <- matrix(c(prior$m0, prior$aj0), ncol = 1) prior$invM0 <- solve(prior$M0) with(prior, stopifnot(all(w > 0), all(pi > 0), V > 0, M0 > 0, psi.Q > 0, slab %in% c("Student", "Normal") ) ) if (prior$slab == "Student") with(prior, stopifnot(psi.nu > 0)) if (length(prior$aj0) != deff) stop("invalid specification of prior means for regression effects") if (model$ri==1) prior$invB0 <- diag(nC) defaultMCMC <- list( M = 8000, burnin = 2000, startsel = 1000, thin = 1, verbose = 500, msave = FALSE ) mcmc <- modifyList(defaultMCMC, as.list(mcmc)) mcmc$M <- as.integer(mcmc$M) mcmc$burnin <- as.integer(mcmc$burnin) mcmc$startsel <- as.integer(mcmc$startsel) mcmc$thin <- as.integer(mcmc$thin) mcmc$verbose <- as.integer(mcmc$verbose) mcmc$nmc <- with(mcmc, M + burnin) with(mcmc, stopifnot(all(c(M, burnin, startsel, thin, verbose) >= c(1, 0, 1, 1, 0)), typeof(msave) == "logical") ) if (typeof(BVS) != "logical") stop("invalid 'BVS' argument") if (BVS && mcmc$startsel > mcmc$nmc){ warning(simpleWarning(paste("invalid 'BVS' or 'startsel' argument:\n", "'startsel' was set to ", mcmc$burnin/2, sep = ""))) mcmc$startsel <- mcmc$burnin/2 } if (BVS && sum(sum(model$deltafix) + sum(model$gammafix)) == sum(model$d + model$ri)){ warning(simpleWarning(paste("invalid 'BVS' argument:\n", "'BVS' was set to ", FALSE, sep=""))) BVS <- FALSE } if (!BVS){ mcmc$startsel <- mcmc$M + mcmc$burnin + 1 model$deltafix <- matrix(1, 1, model$d) if (model$ri) model$gammafix <- 1 txt.verbose <- "" mcmc$msave <- FALSE } else { txt.verbose <- " with variable selection" } if (is.null(start)){ start <- list(alpha = rep(0, model$d + 1)) } else { start <- list(alpha = start) } if(length(start$alpha) != (model$d + 1) || !(is.numeric(c(start$alpha)))){ stop("invalid specification of starting values") } start$delta <- start$pdelta <- matrix(1, 1, model$d) start$psi <- matrix(prior$V, 1, deff) start$omega <- 1 if(model$ri==1){ start$gamma <- start$pgamma <- matrix(1, 1, model$ri) start$theta <- rnorm(model$ri, 0, 0.1) start$pi <- matrix(1, 1, model$ri) } else { start$gamma <- start$pgamma <- start$theta <- start$pi <- NULL } par.logit <- list( alpha = start$alpha, delta = start$delta, pdelta = start$pdelta, omega = start$omega, psi = start$psi, atilde = atilde, theta = start$theta, gamma = start$gamma, pgamma = start$pgamma, pi = start$pi) compmix.bin <- dataug_binom_dRUM1(y, N) alpha <- matrix(0, mcmc$nmc, model$d + 1) colnames(alpha) <- paste("alpha", seq(0, model$d), sep = ".") if (model$d > 0){ pdeltaAlpha <- matrix(0, mcmc$nmc, model$d) colnames(pdeltaAlpha) <- paste("pdeltaA", seq_len(model$d), sep = ".") } else { pdeltaAlpha <- NULL } if (model$d > 0 && prior$slab=="Student"){ psiAlpha <- matrix(0, mcmc$nmc, deff) colnames(psiAlpha) <- paste("psiA", seq_len(deff), sep = ".") } else { psiAlpha <- NULL } if (mcmc$msave && model$d > 0){ omegaAlpha <- matrix(0, mcmc$nmc, 1) colnames(omegaAlpha) <- "omega" deltaAlpha <- matrix(0, mcmc$nmc, model$d) colnames(deltaAlpha) <- paste("deltaA", seq_len(model$d), sep = ".") } if (model$ri == 1){ pgammaAlpha <- thetaAlpha <- matrix(0, mcmc$nmc, model$ri) colnames(pgammaAlpha) <- "pgammaA" colnames(thetaAlpha) <- "theta" ai <- matrix(0, mcmc$nmc, nC) colnames(ai) <- paste("a", seq_len(nC), sep = ".") if (mcmc$msave){ piAlpha <- gammaAlpha <- matrix(0, mcmc$nmc, model$ri) colnames(piAlpha) <- "piA" colnames(gammaAlpha) <- "gammaA" } else piAlpha <- gammaAlpha <- NULL } else { pgammaAlpha <- thetaAlpha <- ai <- piAlpha <- gammaAlpha <- NULL } for (imc in 1:mcmc$nmc){ if (mcmc$verbose > 0){ if (imc == 1) cat(paste("\nMCMC for the binomial logit model", txt.verbose, ":\n\n", sep = "")) if (is.element(imc, c(1:5, 10, 20, 50, 100, 200, 500))){ cat("it =", imc, "/--- duration of MCMC so far:", round(timediff <- proc.time()[3] - starttime, 2), "sec., expected time to end:", round((timediff/(imc - 1) * mcmc$nmc - timediff)/60, 2), " min. \n") flush.console() } else if (imc %% mcmc$verbose == 0 && imc < mcmc$nmc){ cat("it =", imc, "/--- duration of MCMC so far:", round(timediff <- proc.time()[3] - starttime, 2), "sec., expected time to end:", round((timediff/(imc - 1) * mcmc$nmc - timediff)/60, 2), " min. \n") flush.console() } else if (imc == mcmc$nmc) { cat("it =", imc, "/--- duration of MCMC (total):", round(timediff <- proc.time()[3] - starttime, 2), "sec. \n \n") flush.console() } } if (imc == (mcmc$burnin + 1)) starttimeM <- proc.time()[3] par.logit <- select_logit(y, N, W, H, compmix.bin, model, prior, mcmc, par.logit, imc) alpha[imc,] <- par.logit$alpha if (model$d > 0){ pdeltaAlpha[imc,] <- par.logit$pdelta if (prior$slab=="Student") psiAlpha[imc,] <- par.logit$psi } if (mcmc$msave && model$d > 0){ omegaAlpha[imc,] <- par.logit$omega deltaAlpha[imc,] <- par.logit$delta } if (model$ri == 1){ pgammaAlpha[imc] <- par.logit$pgamma thetaAlpha[imc] <- par.logit$theta ai[imc,] <- t(par.logit$atilde*par.logit$theta) if (mcmc$msave){ piAlpha[imc] <- par.logit$pi gammaAlpha[imc] <- par.logit$gamma } } } finish <- proc.time()[3] durT <- finish - starttime durM <- finish - starttimeM dur <- list(total = durT, durM = durM) samplesL <- if (mcmc$msave){ list(alpha = alpha, pdeltaAlpha = pdeltaAlpha, psiAlpha = psiAlpha, omegaAlpha = omegaAlpha, deltaAlpha = deltaAlpha, thetaAlpha = thetaAlpha, pgammaAlpha = pgammaAlpha, ai = ai, piAlpha = piAlpha, gammaAlpha = gammaAlpha) } else { list(alpha = alpha, pdeltaAlpha = pdeltaAlpha, psiAlpha = psiAlpha, thetaAlpha = thetaAlpha, pgammaAlpha = pgammaAlpha, ai = ai) } ret <- list(samplesL = samplesL, data = list(y = y, N = N, X = W), model.logit = model, mcmc=mcmc, prior.logit = prior, dur = dur, BVS = BVS, start = start, family = model$family, call = cl) class(ret) <- "pogit" return(ret) }
setup.model <- function(model,nocc,mixtures=1) { fdir=system.file(package="RMark") fdir=file.path(fdir,"models.txt") model_definitions=read.delim(fdir,header=TRUE, colClasses=c("numeric","character","character",rep("logical",4),rep("numeric",3),"logical")) model_def=model_definitions[model_definitions$model==model,] if(nrow(model_def)==0) stop("Invalid type of model = ",model," Valid types are\n", paste(model_definitions$model,collapse="\n")) if(mixtures==1) model_def$mixtures=model_def$default.mixtures else model_def$mixtures=mixtures model_def$default.mixtures=NULL model_def$nocc=nocc/model_def$divisor if(model_def$derived) { fdir=system.file(package="RMark") fdir=file.path(fdir,"DerivedPar.txt") deriv_pars=read.delim(fdir,header=TRUE, colClasses=c("numeric","character")) model_def$derived_labels=list(deriv_pars$dpar_label[deriv_pars$MarkNumber==model_def$MarkNumber]) } return(as.list(model_def)) }
context("Constructor Objects") library(rai) checkPosition = function(object, value) { expect_equal(object$state()$position, value) } checkPrevPosition = function(object, value) { expect_equal(object$state()$prevPosition, value) } rawSource = makeRawSource(10) test_that("extracting/dropping features works", { checkPosition(rawSource, 10) expect_equal(rawSource$feature(), 10) checkPosition(rawSource, 9) checkPrevPosition(rawSource, 10) rawSource$dropLastFeature() expect_true(is.na(rawSource$state()$active[11])) expect_equal(rawSource$feature(), 9) checkPosition(rawSource, 8) checkPrevPosition(rawSource, 9) rawSource$ud_pass() checkPosition(rawSource, 9) expect_true(is.na(rawSource$state()$prevPosition)) }) TheModelFeatures = list(1,2,3,4,5,6) scavSource = makeLocalScavenger(TheModelFeatures, "test") test_that("scavenger tests interactions", { checkPosition(scavSource, 6) expect_equal(scavSource$feature(), list(6,6)) checkPosition(scavSource, 5) checkPrevPosition(scavSource, 6) scavSource$dropLastFeature() expect_true(is.na(scavSource$state()$active[7])) expect_equal(scavSource$feature(), list(5, 6)) checkPosition(scavSource, 4) checkPrevPosition(scavSource, 5) scavSource$ud_pass() checkPosition(scavSource, 5) expect_true(is.na(scavSource$state()$prevPosition)) })
track_alignments <- function(track_data, assembly) { type <- "AlignmentsTrack" name <- get_name(track_data) assembly_name <- get_assembly_name(assembly) track_id <- stringr::str_c(assembly_name, "_", name) adapter <- get_alignment_adapter(track_data, assembly) as.character( stringr::str_glue( "{{", '"type": "{type}", ', '"name": "{name}", ', '"assemblyNames": ["{assembly_name}"], ', '"trackId": "{track_id}", ', "{adapter} ", "}}" ) ) } get_alignment_adapter <- function(track_data, assembly) { track_non_gz <- strip_gz(track_data) if (stringr::str_ends(track_non_gz, ".bam")) { index <- stringr::str_c(track_data, ".bai") as.character( stringr::str_glue( '"adapter": {{ ', '"type": "BamAdapter", ', '"bamLocation": {{ ', '"uri": "{track_data}" ', "}}, ", '"index": {{ "location": {{ "uri": "{index}" }} }} ', "}}" ) ) } else if (stringr::str_ends(track_non_gz, ".cram")) { index <- stringr::str_c(track_data, ".crai") sequence_adapter <- get_assembly_adapter(assembly) as.character( stringr::str_glue( '"adapter": {{ ', '"type": "CramAdapter", ', '"cramLocation": {{ ', '"uri": "{track_data}" ', "}}, ", '"craiLocation": {{ "uri": "{index}" }}, ', '"sequenceAdapter": {sequence_adapter} ', "}}" ) ) } else { stop("alignment data must be either BAM or CRAM") } }
CGGPpred <- function(CGGP, xp, theta=NULL, outdims=NULL) { if (!inherits(CGGP, "CGGP")) { stop("First argument to CGGP must be an CGGP object") } if (is.null(CGGP$supplemented)) { stop("You must run CGGPfit on CGGP object before using CGGPpredict") } if (CGGP$supplemented && (is.null(CGGP[["Y"]]) || length(CGGP$Y)==0)) { return(CGGP_internal_predwithonlysupp(CGGP=CGGP, xp=xp, theta=theta, outdims=outdims)) } predgroupsize <- 100 if (nrow(xp) >= predgroupsize*2) { ngroups <- floor(nrow(xp) / predgroupsize) list_preds <- lapply(1:ngroups, function(i) { inds.i <- if (i < ngroups) {1:predgroupsize + (i-1)*predgroupsize} else {((i-1)*predgroupsize+1):(nrow(xp))} CGGPpred(CGGP=CGGP, xp=xp[inds.i, , drop=FALSE], theta=theta, outdims=outdims) }) outlist <- list(mean=do.call(rbind, lapply(list_preds, function(ll) ll$mean)), var= do.call(rbind, lapply(list_preds, function(ll) ll$var )) ) if (nrow(outlist$mean)!=nrow(xp) || nrow(outlist$var)!=nrow(xp)) { stop("Error with CGGPpred predicting many points") } return(outlist) } if (!is.null(theta) && length(theta)!=length(CGGP$thetaMAP)) {stop("Theta is wrong length")} if (!is.null(theta) && all(theta==CGGP$thetaMAP)) { theta <- NULL } if (is.null(theta)) { thetaMAP <- CGGP$thetaMAP recalculate_pw <- FALSE } else { thetaMAP <- theta rm(theta) recalculate_pw <- TRUE } separateoutputparameterdimensions <- is.matrix(CGGP$thetaMAP) nopd <- if (separateoutputparameterdimensions) { ncol(CGGP$y) } else { 1 } if (nopd > 1) { meanall2 <- matrix(0, nrow(xp), ncol=ncol(CGGP$Y)) tempvarall <- matrix(0, nrow(xp), ncol=ncol(CGGP$Y)) } if (!is.null(outdims) && nopd==1) { stop("outdims can only be given when multiple outputs and separate correlation parameters") } opd_values <- if (is.null(outdims)) {1:nopd} else {outdims} for (opdlcv in opd_values) { thetaMAP.thisloop <- if (nopd==1) thetaMAP else thetaMAP[, opdlcv] if (!recalculate_pw) { pw.thisloop <- if (nopd==1) CGGP$pw else CGGP$pw[,opdlcv] sigma2MAP.thisloop <- CGGP$sigma2MAP cholS.thisloop <- if (nopd==1) CGGP$cholSs else CGGP$cholSs[[opdlcv]] } else { y.thisloop <- if (nopd==1) CGGP$y else CGGP$y[,opdlcv] lik_stuff <- CGGP_internal_calc_cholS_lS_sigma2_pw(CGGP=CGGP, y=y.thisloop, theta=thetaMAP.thisloop ) cholS.thisloop = lik_stuff$cholS sigma2MAP.thisloop <- lik_stuff$sigma2 pw.thisloop = lik_stuff$pw sigma2MAP.thisloop <- as.vector(sigma2MAP.thisloop) rm(y.thisloop) } mu.thisloop <- if (nopd==1) CGGP$mu else CGGP$mu[opdlcv] Cp = matrix(0,dim(xp)[1],CGGP$ss) GGGG = list(matrix(1,dim(xp)[1],length(CGGP$xb)),CGGP$d) for (dimlcv in 1:CGGP$d) { V = CGGP$CorrMat(xp[,dimlcv], CGGP$xb[1:CGGP$sizest[max(CGGP$uo[,dimlcv])]], thetaMAP.thisloop[(dimlcv-1)*CGGP$numpara+1:CGGP$numpara], returnlogs=TRUE) GGGG[[dimlcv]] = exp(V) Cp = Cp+V[,CGGP$designindex[,dimlcv]] } Cp = exp(Cp) ME_t = matrix(1,dim(xp)[1],1) MSE_v = list(matrix(0,dim(xp)[1],2),(CGGP$d+1)*(CGGP$maxlevel+1)) Q = max(CGGP$uo[1:CGGP$uoCOUNT,]) for (dimlcv in 1:CGGP$d) { for (levellcv in 1:max(CGGP$uo[1:CGGP$uoCOUNT,dimlcv])) { Q = max(CGGP$uo[1:CGGP$uoCOUNT,]) gg = (dimlcv-1)*Q INDSN = 1:CGGP$sizest[levellcv] INDSN = INDSN[sort(CGGP$xb[1:CGGP$sizest[levellcv]], index.return = TRUE)$ix] MSE_v[[(dimlcv)*CGGP$maxlevel+levellcv]] = CGGP_internal_postvarmatcalc_fromGMat(GGGG[[dimlcv]], c(), as.matrix( cholS.thisloop[[gg+levellcv]] ), c(), INDSN, CGGP$numpara, returndiag=TRUE) } } for (blocklcv in 1:CGGP$uoCOUNT) { if(abs(CGGP$w[blocklcv]) > 0.5){ ME_s = matrix(1,nrow=dim(xp)[1],1) for (dimlcv in 1:CGGP$d) { levelnow = CGGP$uo[blocklcv,dimlcv] ME_s = ME_s*MSE_v[[(dimlcv)*CGGP$maxlevel+levelnow]] } ME_t = ME_t-CGGP$w[blocklcv]*ME_s } } if (!CGGP$supplemented) { if(is.vector(pw.thisloop)){ if (nopd == 1) { mean = (mu.thisloop+Cp%*%pw.thisloop) var=sigma2MAP.thisloop*ME_t } if (nopd > 1) { meanall2[,opdlcv] <- c(Cp%*%pw.thisloop) tempM <- diag(nopd) tempM[-opdlcv,] <- 0 tempsigma2.thisloop <- sigma2MAP.thisloop tempsigma2.thisloop[-opdlcv] <- 0 tempvar <- (as.vector(ME_t)%*%t(diag(t(tempM)%*%diag(tempsigma2.thisloop)%*%(tempM)))) } }else{ if(length(sigma2MAP.thisloop)==1){ stop("When is it a matrix but sigma2MAP a scalar???") }else{ mean = (matrix(rep(mu.thisloop,each=dim(xp)[1]), ncol=ncol(CGGP$Y), byrow=FALSE) + (Cp%*%pw.thisloop)) var=as.vector(ME_t)%*%t(sigma2MAP.thisloop) } } } else { if (!recalculate_pw) { pw_uppad.thisloop <- if (nopd==1) CGGP$pw_uppad else CGGP$pw_uppad[,opdlcv] supppw.thisloop <- if (nopd==1) CGGP$supppw else CGGP$supppw[,opdlcv] Sti.thisloop <- if (nopd==1) CGGP$Sti else CGGP$Sti[,,opdlcv] } else { stop("Give theta in not implemented in CGGPpred. Need to fix sigma2MAP here too!") } Cps = matrix(0,dim(xp)[1],dim(CGGP$Xs)[1]) GGGG2 = list(matrix(0,nrow=dim(xp)[1],ncol=dim(CGGP$Xs)[1]),CGGP$d) for (dimlcv in 1:CGGP$d) { V = CGGP$CorrMat(xp[,dimlcv], CGGP$Xs[,dimlcv], thetaMAP.thisloop[(dimlcv-1)*CGGP$numpara+1:CGGP$numpara], returnlogs=TRUE) Cps = Cps+V V = CGGP$CorrMat(CGGP$Xs[,dimlcv], CGGP$xb[1:CGGP$sizest[max(CGGP$uo[,dimlcv])]], thetaMAP.thisloop[(dimlcv-1)*CGGP$numpara+1:CGGP$numpara], returnlogs=TRUE) GGGG2[[dimlcv]] = exp(V) } Cps = exp(Cps) yhatp = Cp%*%pw_uppad.thisloop + Cps%*%supppw.thisloop MSE_ps = matrix(NaN,nrow=dim(CGGP$Xs)[1]*dim(xp)[1],ncol=(CGGP$d)*(CGGP$maxlevel)) Q = max(CGGP$uo[1:CGGP$uoCOUNT,]) for (dimlcv in 1:CGGP$d) { gg = (dimlcv-1)*Q for (levellcv in 1:max(CGGP$uo[1:CGGP$uoCOUNT,dimlcv])) { INDSN = 1:CGGP$sizest[levellcv] INDSN = INDSN[sort(CGGP$xb[1:CGGP$sizest[levellcv]],index.return = TRUE)$ix] REEALL= CGGP_internal_postvarmatcalc_fromGMat_asym(GGGG[[dimlcv]], GGGG2[[dimlcv]], as.matrix(cholS.thisloop[[gg+levellcv]]), INDSN) MSE_ps[,(dimlcv-1)*CGGP$maxlevel+levellcv] = as.vector(REEALL) } } Cps2 = as.vector(Cps) rcpp_fastmatclcr(CGGP$uo[1:CGGP$uoCOUNT,], CGGP$w[1:CGGP$uoCOUNT], MSE_ps, Cps2,CGGP$maxlevel) Cps = matrix(Cps2,ncol=dim(CGGP$Xs)[1] , byrow = FALSE) ME_adj = rowSums((Cps%*%Sti.thisloop)*Cps) ME_t = ME_t-ME_adj if(is.vector(pw.thisloop)){ if (nopd == 1) { mean = (CGGP$mu+ yhatp) if (length(CGGP$sigma2MAP)>1) {warning("If this happens, you should fix var here")} var=CGGP$sigma2MAP[1]*ME_t } if (nopd > 1) { meanall2[,opdlcv] <- yhatp leftvar <- if (is.null(CGGP$leftover_variance)) {0} else {CGGP$leftover_variance} tempM <- diag(nopd) tempM[-opdlcv,] <- 0 tempsigma2.thisloop <- sigma2MAP.thisloop tempsigma2.thisloop[-opdlcv] <- 0 tempvar <- (as.vector(ME_t)%*%t( leftvar + diag(t(tempM)%*%diag(tempsigma2.thisloop)%*%(tempM)))) } }else{ if(length(CGGP$sigma2MAP)==1){ stop("This should never happen }else{ leftvar <- if (is.null(CGGP$leftover_variance)) {0} else {CGGP$leftover_variance} mean = matrix(rep(CGGP$mu,each=dim(xp)[1]), ncol=ncol(CGGP$Y), byrow=FALSE)+ yhatp var=as.vector(ME_t)%*%t(leftvar+CGGP$sigma2MAP) } } } rm(Cp,ME_t, MSE_v, V) if (nopd > 1) {tempvarall <- tempvarall + tempvar} } if (nopd > 1) {meanall2 <- sweep(meanall2, 2, CGGP$mu, `+`)} if (nopd > 1) { GP <- list(mean=meanall2, var=tempvarall) } else { GP <- list(mean=mean, var=var) } GP$var <- pmax(GP$var, .Machine$double.eps) return(GP) } CGGP_internal_MSEpredcalc <- function(xp,xl,theta,CorrMat) { S = CorrMat(xl, xl, theta) n = length(xl) cholS = chol(S) Cp = CorrMat(xp, xl, theta) CiCp = backsolve(cholS,backsolve(cholS,t(Cp), transpose = TRUE)) MSE_val = 1 - rowSums(t(CiCp)*((Cp))) return(MSE_val) } CGGP_internal_postvarmatcalc_fromGMat_asym <- function(GMat1,GMat2,cholS,INDSN) { CoinvC1o = backsolve(cholS, backsolve(cholS,t(GMat1[,INDSN]), transpose = TRUE)) Sigma_mat = (t(CoinvC1o)%*%(t(GMat2[,INDSN]))) return(Sigma_mat) }
countryname <- function(sourcevar, destination = 'cldr.short.en', warn = TRUE) { out <- countrycode(sourcevar = sourcevar, origin = 'country.name.alt', destination = 'country.name.en', custom_dict = countrycode::countryname_dict, warn = FALSE) idx <- is.na(out) out[idx] <- countrycode(sourcevar = sourcevar[idx], origin = 'country.name.en', destination = 'country.name.en', warn = warn) if (destination != 'country.name.en') { out <- countrycode(sourcevar = out, origin = 'country.name.en', destination = destination, custom_dict = countrycode::codelist, nomatch = NULL, warn = warn) } return(out) }
plot.pcoxsurvfit <- function(x, ..., type = c("surv", "cumhaz"), lsize = 0.3, lcol = "black", compare = FALSE) { type <- match.arg(type) if (inherits(x, "pcoxbasehaz")){ cumhaz <- x$hazard } else { cumhaz <- x$cumhaz } surv <- x$surv time <- x$time plot_df <- data.frame(id = 1, time = time, surv = surv, cumhaz = cumhaz) if (NCOL(surv) > 1){ nindivs <- NCOL(surv) individ <- as.factor(rep(1:nindivs, each = length(time))) surv <- as.vector(surv) cumhaz <- as.vector(cumhaz) time <- rep(time, nindivs) plot_df <- data.frame(id = individ, time = time, surv = surv, cumhaz = cumhaz) } id <- NULL p0 <- (ggplot(plot_df, aes(x = time, group = id), colour = "grey") + labs(x = "Time") + theme_bw() + theme(panel.spacing = grid::unit(0,"lines"), legend.position = "bottom") ) if (type == "surv"){ p1 <- p0 + geom_step(aes(y = surv), size = lsize, colour=lcol) + labs(y = "Survival probability") if (compare){ p1 <- p0 + geom_step(aes(y = surv, col = "pcoxtime"), size = lsize) + labs(y = "Survival probability") } } else { p1 <- p0 + geom_step(aes(y = cumhaz), size = lsize) + labs(y = "Cumulative hazard") if (compare){ p1 <- p0 + geom_step(aes(y = cumhaz, col = "pcoxtime"), size = lsize) + labs(y = "Cumulative hazard") } } return(p1) } plot.pcoxtimecv <- function(x, ..., type = c("cve", "fit"), xvar = c("lambda", "l1"), show_nzero = FALSE, seed = 1234, geom=c("point","line"), g.size = 0.2, g.col = "red", bar.col = g.col, scales = "free_x", show_min_cve = TRUE) { geom <- match.arg(geom) gm <- getExportedValue("ggplot2", paste0("geom_",geom)) mcall <- match.call() type <- match.arg(type) set.seed(seed) lambda <- cvm <- cvlo <- cvup <- NULL lambda.min <- lambda.1se <- NULL estimate <- term <- l1_norm <- NULL xvar_breaks <- nzero <- NULL sec_axisLabs <- function(var){ lamb_tmp_df <- beta_df[, c(var, "nzero")] lamb_tmp_df <- lamb_tmp_df[!duplicated(lamb_tmp_df[[var]]), ] lamb_tmp_df <- lamb_tmp_df[order(-lamb_tmp_df$nzero),] if (var=="lambda"){ lambdavals <- log(lamb_tmp_df[[var]]) } else { lambdavals <- lamb_tmp_df[[var]] } nzero_breaks <- base::pretty(lambdavals, 5) closest_lambda_breaks <- unlist(lapply(nzero_breaks, function(x)which.min(abs(lambdavals - x)))) closest_lambda_to_breaks <- lambdavals[closest_lambda_breaks] nzero_labels <- lamb_tmp_df[lambdavals %in% closest_lambda_to_breaks, ] return(data.frame(xvar_breaks = nzero_labels[[var]], nzero = nzero_labels$nzero)) } if (type == "cve") { cvm_df <- x$dfs$cvm_df min_df <- x$dfs$min_metrics_df if (length(unique(min_df$alpha))==1) show_min_cve <- FALSE cvm_df$optimal <- ifelse(cvm_df$alpha==x$alpha.optimal & show_min_cve, " (Min.~CV-PLD)", "") min_df$optimal <- ifelse(min_df$alpha==x$alpha.optimal & show_min_cve, " (Min.~CV-PLD)", "") cvm_df$alpha <- as.factor(cvm_df$alpha) cvm_df$alpha_labels <- paste0("alpha== ", cvm_df$alpha, cvm_df$optimal) min_df$alpha_labels <- paste0("alpha== ", min_df$alpha, min_df$optimal) cvm_plot <- (ggplot(cvm_df, aes(x = log(lambda), y = cvm)) + gm(colour = g.col, size = g.size) + geom_errorbar(aes(ymin = cvlo, ymax = cvup) , width = 0.01 , colour = bar.col , alpha = 0.4 ) + facet_wrap(~alpha_labels, labeller = label_parsed, scales = scales) + geom_vline(data = min_df, aes(xintercept = log(lambda.min)), lty = 2, size = 0.2) + geom_vline(data = min_df, aes(xintercept = log(lambda.1se)), lty = 2, size = 0.2) + labs(x = expression(log(lambda)), y = "Partial Likelihood Deviance") ) if (show_nzero){ beta_df <- x$dfs$beta lamb_tmp_df <- beta_df[, c("lambda", "alpha", "nzero")] lamb_tmp_df <- lamb_tmp_df[!duplicated(lamb_tmp_df[c("lambda","alpha", "nzero")]), ] labels_df <- lapply(split(lamb_tmp_df, lamb_tmp_df$alpha), function(dd){ df <- sec_axisLabs("lambda") df$alpha <- unique(dd$alpha) df$optimal <- ifelse(df$alpha==x$alpha.optimal & show_min_cve, " (Min.~CV-PLD)", "") df$alpha_labels <- paste0("alpha== ", df$alpha, df$optimal) return(df) }) labels_df <- do.call("rbind", labels_df) cvm_plot <- (cvm_plot + geom_text(data = labels_df, aes(y = Inf, x = log(xvar_breaks), label = nzero) , hjust = 0, vjust = 1 ) ) } return(cvm_plot) } else { xvar <- match.arg(xvar) beta_df <- x$fit$beta facet <- FALSE if (is.null(beta_df)){ facet <- TRUE beta_df = x$dfs$beta if (is.null(beta_df))stop("Run pcoxtimecv with refit = TRUE to plot coefficients!!!") rand_fold <- sample(unique(beta_df$fold), 1) beta_df <- beta_df[beta_df$fold==rand_fold, ] } base_plot <- (ggplot(beta_df, aes(y = estimate, group = term, colour = term)) + scale_colour_viridis_d(option = "inferno") + labs(y = "Coefficient estimate", colour = "Predictor") + theme(legend.position = "none") ) if (xvar == "lambda"){ coef_plot <- (base_plot + geom_line(aes(x = log(lambda))) + scale_x_continuous(sec.axis = sec_axis(~. , breaks = log(sec_axisLabs("lambda")$xvar_breaks) , labels = sec_axisLabs("lambda")$nzero ) ) + labs(x = expression(log(lambda))) ) if (!facet){ coef_plot <- (coef_plot + geom_vline(xintercept = log(x$lambda.min), lty = 2, size = 0.2) + geom_vline(xintercept = log(x$lambda.1se), lty = 2, size = 0.2) ) } } else { coef_plot <- (base_plot + geom_line(aes(x = l1_norm)) + scale_x_continuous(sec.axis = sec_axis(~. , breaks = sec_axisLabs("l1_norm")$xvar_breaks , labels = sec_axisLabs("l1_norm")$nzero ) ) + labs(x = "L1 Norm") ) } if (facet) { coef_plot <- coef_plot + facet_wrap(~alpha, scales = scales) message("These are CV coefficient plots. \nSet refit = TRUE to plot estimates based on whole dataset") } attr(coef_plot, "call") <- mcall return(coef_plot) } } plot.Score <- function(x, ..., type = c("roc", "auc", "brier"), pos = 0.3){ type <- match.arg(type) if (type == "roc"){ df <- x$ROC$plotframe df$times <- as.factor(df$times) FPR <- TPR <- model <- AUC <- lower <- upper <- Brier <- NULL model_cols <- unique(df$model) p1 <- (ggplot(df, aes(x = FPR, y = TPR, color = model)) + geom_line(size = 1) + geom_abline(size = 1, colour = "grey") + facet_wrap(~times) + labs(x = "1-Specificity", y = "Sensitivity", colour = "Time") + scale_color_manual(breaks = model_cols , values = rainbow(n = length(model_cols)) ) + theme(legend.position = "right") ) } else if (type == "auc"){ df <- x$AUC$score model_cols <- unique(df$model) df$times <- as.factor(df$times) p1 <- (ggplot(df, aes(x = times, y = AUC, group = model, colour = model)) + geom_point(position = position_dodge(pos)) + geom_pointrange(aes(ymin = lower, ymax = upper, colour = model), position = position_dodge(pos)) + scale_color_manual(breaks = model_cols , values = rainbow(n = length(model_cols)) ) + labs(x = "Time", y = "AUC", colour = "Model") + theme(legend.position = "right") ) } else { df <- x$Brier$score df$times <- as.factor(df$times) model_cols <- unique(df$model) p1 <- (ggplot(df, aes(x = times, y = Brier, group = model, colour = model)) + geom_point(position = position_dodge(pos)) + geom_pointrange(aes(ymin = lower, ymax = upper, colour = model), position = position_dodge(pos)) + scale_color_manual(breaks = model_cols , values = rainbow(n = length(model_cols)) ) + labs(x = "Time", y = "Brier", colour = "Model") + theme(legend.position = "right") ) } return(p1) } plot.varimp <- function(x, ..., pos = 0.5, drop_zero = TRUE){ xsign <- x$sign if (!is.null(xsign)) { x$sign <- ifelse(xsign==1, "+", ifelse(xsign==-1, "-", "0")) } else { xsign <- 1 } est <- attr(x, "estimate") if (est=="quantile") { x[ "Overall"] <- x$estimate } x <- x[order(x$Overall), ] if (drop_zero){ x <- x[x$Overall!=0, ] x <- droplevels(x) } Overall <- NULL lower <- NULL upper <- NULL nsigns <- unique(xsign) pos <- position_dodge(width = pos) p0 <- ggplot(x, aes(x = reorder(terms, Overall), y = Overall)) if (est=="quantile") { if (length(nsigns)>1) { p0 <- (p0 + geom_point(aes(shape=sign), position = pos) + scale_shape_manual(name = "Sign", values=c(1,16, 15)) + geom_linerange(aes(ymin=lower, ymax=upper, lty = sign), position = pos) + labs(linetype = "Sign") ) } else { p0 <- (p0 + geom_point(position = pos) + geom_linerange(aes(ymin=lower, ymax=upper), position=pos) ) } } else { if (length(nsigns)>1) { p0 <- (p0 + geom_point(aes(shape=sign), position = pos) + scale_shape_manual(name = "Sign", values=c(1,16, 15)) + geom_linerange(aes(ymin = 0, ymax = Overall, lty = sign), position = pos) + labs(linetype = "Sign") ) } else { p0 <- (p0 + geom_point(position = pos) + geom_linerange(aes(ymin=0, ymax=Overall), position=pos) ) } } p1 <- (p0 + scale_colour_viridis_d(option = "inferno") + labs(x = "", y = "Importance") + coord_flip(clip = "off", expand = TRUE) + theme_minimal() ) return(p1) }
VeneerRunSource<-function(StartDate=NULL,EndDate=NULL,InputSet=NULL,baseURL="http://localhost:9876") { X<-list() if(!is.null(StartDate)) X[["StartDate"]]<-StartDate if(!is.null(EndDate)) X[["EndDate"]]<-EndDate if(!is.null(InputSet)) X[["SelectedInputSet"]]<-InputSet X<-jsonlite::toJSON(X,auto_unbox = TRUE) A<-httr::POST(paste0(baseURL,"/runs"),body=X,httr::content_type_json()) if(substr(rawToChar(A[[6]]),3,9)=="Message"){ return(substr(strsplit(rawToChar(A[[6]]),",")[[1]][1],13,1000)) }else{ return("Run Successful") } } VeneerSetFunction<-function(Name,Expression,baseURL="http://localhost:9876") { X<-list("Expression"=as.character(Expression),"Name"=paste0("$",Name)) X<-jsonlite::toJSON(X,auto_unbox = TRUE) httr::PUT(paste0(baseURL,"/functions/",Name),body=X,httr::content_type_json()) } VeneerSetPiecewise<-function(data,pw_table,baseURL="http://localhost:9876") { if(ncol(data)!=2) { stop("Data for piecewise linear must have 2 columns") } X<-list() X[["Entries"]]<-as.matrix(data) X[["XName"]]<-"Lookup" X[["YName"]]<-"Result" X<-jsonlite::toJSON(X,auto_unbox = TRUE) httr::PUT(paste0(baseURL,"/variables/",pw_table,"/Piecewise"),body=X,httr::content_type_json()) } VeneerGetPiecewise<-function(pw_table,baseURL="http://localhost:9876") { D<-jsonlite::fromJSON(URLencode(paste0(baseURL,"/variables/",pw_table,"/Piecewise")))$Entries return(D) } VeneerGetTS<-function(TSURL,baseURL="http://localhost:9876") { D<-jsonlite::fromJSON(URLencode(paste0(baseURL,TSURL))) B<-zoo::zoo(D$Events$Value,zoo::as.Date(D$Events$Date,format="%m/%d/%Y")) if(D$Units=="m\U00B3/s") B <- B*86.4 if(D$Units == "m\U00B3") B <- B / 1000 if(D$Units == "m\U00B2") B <- B / 10000 if(D$Units == "kg/m\U00B3") B <- B * 1000 return(B) } VeneerGetTSbyVariable<-function(variable="Flow",run="latest",baseURL="http://localhost:9876") { Results<-jsonlite::fromJSON(paste0(baseURL,"/runs/",run)) X<-Results$Results %>% dplyr::filter(.data$RecordingVariable==variable) TS<-lapply(X$TimeSeriesUrl,function(x) VeneerGetTS(x,baseURL)) if(length(TS)>0) { TS<-zoo::zoo(matrix(unlist(TS),ncol=length(TS)),zoo::index(TS[[1]])) if(ncol(TS)>1){ colnames(TS)<-X$NetworkElement }else { names(TS)<-X$NetworkElement } return(TS) }else { stop(paste("No results for variable",variable,"found for run",run,"\n", "Recorded variables are:",paste(unique(Results$Results$RecordingVariable)))) } } VeneerGetTSVariables<-function(run="latest",baseURL="http://localhost:9876") { Results<-jsonlite::fromJSON(paste0(baseURL,"/runs/",run)) return(unique(Results$Results$RecordingVariable)) } VeneerGetTSbyNode<-function(Node,run="latest",baseURL="http://localhost:9876") { Results<-jsonlite::fromJSON(paste0(baseURL,"/runs/",run)) X<-Results$Results %>% dplyr::filter(.data$NetworkElement==Node) TS<-lapply(X$TimeSeriesUrl,function(x) VeneerGetTS(x,baseURL)) if(length(TS)>0) { TS<-zoo::zoo(matrix(unlist(TS),ncol=length(TS)),zoo::index(TS[[1]])) if(ncol(TS)>1) colnames(TS)<-X$RecordingVariable return(TS) }else { stop(paste("No results for node",Node,"found for run",run,"\n", "Recorded Nodes are:",paste(unique(Results$Results$NetworkElement)))) } } VeneerGetInputSets<-function(baseURL="http://localhost:9876") { return(jsonlite::fromJSON(paste0(baseURL,"/InputSets"))) } VeneerGetNodesbyType<-function(NodeType,baseURL="http://localhost:9876") { A<-jsonlite::fromJSON(paste0(baseURL,"/network")) iconname<-A$features$properties$icon[grep(NodeType,A$features$properties$icon)[1]] if(length(iconname)==1 & is.na(iconname)){ stop(paste(NodeType,"not found in the model. Try a different name, capitalisation matters. Search http://localhost:9876/network to see options, look for \"icon\"")) }else{ return(A$features$properties %>% dplyr::filter(.data$icon == iconname) %>% dplyr::select(.data$name)) } } VeneerlatestRunNumber<-function(baseURL="http://localhost:9876") { A<-jsonlite::fromJSON(paste0(baseURL,"/Runs")) return(as.integer(strsplit(A[nrow(A),]$RunUrl,"/")[[1]][3])) }
"boa.chain.del" <- function(lnames, pnames) { master <- boa.chain("master") master.support <- boa.chain("master.support") if(!missing(lnames)) { lnames <- intersect(lnames, names(master)) for(i in lnames) { master[[i]] <- NULL master.support[[i]] <- NULL } } if(!missing(pnames)) { lnames <- names(master) for(i in lnames) { keep <- setdiff(boa.pnames(master[[i]]), pnames) master[[i]] <- master[[i]][, keep] master.support[[i]] <- master.support[[i]][, keep] } } if(boa.chain("work.sync")) { boa.chain(master = master, master.support = master.support, work = master, work.support = master.support) } else { boa.chain(master = master, master.support = master.support) } invisible() }
combine_into_paired <- function(repertoire_heavy,repertoire_light){ repertoire_light <- repertoire_light[,c(1:5,7:10,13,14,16)] names(repertoire_light) <- c("sequence_L", "sequence_aa_L", "junction_L", "junction_aa_L", "v_call_L", "j_call_L", "np1_L", "np2_L", "del_v_L","del_j_L", "v_sequence_alignment_L", "j_sequence_alignment_L") repertoire_paired <- cbind(repertoire_heavy,repertoire_light) return(repertoire_paired) }
knitr::opts_chunk$set( echo = TRUE, message = FALSE, warning = FALSE, collapse = TRUE, comment = " error = TRUE, purl = FALSE, fig.width = 6, fig.asp = 1 / 1.6, out.width = "70%", fig.align = "center", fig.path = "../man/figures/put-workspace-" ) knitr::knit_hooks$set(inline = function(x) { if (!is.numeric(x)) { x } else if (x >= 10000) { prettyNum(round(x, 2), big.mark = ",") } else { prettyNum(round(x, 2)) } }) options(tibble.print_min = 8L, tibble.print_max = 8L)
FRTCI <- function(Y, Z, X = NULL, test.stat = SKS.stat, B=500, gamma=0.0001, grid.gamma=100*gamma, grid.size=151, te.vec=NULL, return.matrix=FALSE, n.cores=1, verbose=TRUE, ... ) { if ( is.null(te.vec) ) { if ( grid.size %% 2 == 0 ) { grid.size <- grid.size+1 } if( is.null(X) ){ te.vec <- get.tau.vector( Y, Z, gamma=gamma, grid.size=grid.size, grid.gamma=grid.gamma ) }else{ te.vec <- get.tau.vector( Y, Z, X, gamma=gamma, grid.size=grid.size, grid.gamma=grid.gamma ) } } else { grid.size = length( te.vec ) } te.hat <- attr( te.vec, "te.hat" ) te.se <- attr( te.vec, "te.se" ) te.MOE <- attr( te.vec, "te.MOE" ) Y1.mat <- sapply(te.vec, function(te) ifelse(Z, Y, Y + te) ) Y0.mat <- sapply(te.vec, function(te) ifelse(Z, Y - te, Y) ) if( is.null(X) ){ res <- generate.permutations( Y, Z=Z, test.stat=test.stat, Y0.mat=Y0.mat, Y1.mat=Y1.mat, B=B, n.cores, verbose=verbose, ... ) }else{ res <- generate.permutations( Y, Z=Z, test.stat=test.stat, Y0.mat=Y0.mat, Y1.mat=Y1.mat, B=B, n.cores, verbose=verbose, X=X, ... ) } ci.p = res$ci.p + gamma t = res$ks.obs p.value = max( ci.p ) n=length(Y) method = "FRT CI Test for Treatment Effect Heterogeneity" DAT = paste( n, " observations", sep="") if ( !return.matrix ) { ks.mat=NULL } else { ks.mat = res$ks.mat } structure(list(statistic = t, p.value = p.value, p.value.plug = ci.p[(grid.size+1)/2], method=method, data.name = DAT, Y=Y, Z=Z, n=n, ci.p=ci.p, te.vec=te.vec, te.hat=te.hat, te.SE=te.se, te.MOE = te.MOE, B=B, gamma=gamma, ks.mat=ks.mat ), class = "FRTCI.test") } FRTplug <- function( Y, Z, test.stat=SKS.stat, tau.hat=mean(Y[Z == 1]) - mean(Y[Z == 0]), ... ){ mth = FRTCI( Y, Z, test.stat=test.stat, te.vec=c(tau.hat), n.cores = 1, ...) mth$method = "FRT Plug-in Test for Treatment Effect Heterogeneity" mth } FRTCI.interact <- function( Y, Z, W, X=NULL, test.stat = SKS.stat.int.cov, B=500, gamma=0.0001, grid.gamma=100*gamma, grid.size=151, return.matrix=FALSE, n.cores=1, verbose=TRUE, ... ) { grid.info = get.testing.grid( Y, Z, W=W, X=X, gamma, grid.size ) te.MOE = NA te.grid = grid.info$te.grid Y1.mat <- grid.info$Y1.mat Y0.mat <- grid.info$Y0.mat if( is.null(X) ){ res <- generate.permutations( Y, Z, test.stat, Y0.mat, Y1.mat, B=B, n.cores=n.cores, verbose=verbose, W=W, ... ) }else{ res <- generate.permutations( Y, Z, test.stat, Y0.mat, Y1.mat, B=B, n.cores=n.cores, verbose=verbose, X=X, W=W, ... ) } t = res$ks.obs ci.p = res$ci.p + gamma p.value = max( ci.p ) n=length(Y) method = "FRT CI Test for Tx Effect Heterogeneity Beyond a Systematic Model" DAT = paste( n, " observations", sep="") if ( !return.matrix ) { ks.mat=NULL } else { ks.mat = res$ks.mat } structure(list(statistic = t, p.value = p.value, p.value.plug = ci.p[1], method=method, data.name = DAT, Y=Y, Z=Z, n=n, ci.p=ci.p, te.grid=te.grid, B=B, gamma=gamma, ks.mat=ks.mat, W=W, X=X ), class = "FRTCI.test") }
hotspot_to_ignition <- function(lon, lat, obsTime, timeUnit, membership, ignition) { if (all(membership == -1)) { return(list(distToIgnition = NA, timeFromIgnition = NA)) } tb <- list(s = "secs", m = "mins", h = "hours", d = "days", n = "numeric") timeUnit <- tb[[timeUnit]] fin_vec <- rep(0, length(lon)) if (timeUnit != "numeric") { time_vec <- difftime(rep(obsTime[1], length(lon)), obsTime[2], units = timeUnit) } else { time_vec <- rep(0, length(lon)) } for (i in 1:max(membership)){ indexes <- membership == i vlon <- lon[indexes] vlat <- lat[indexes] indexes2 <- ignition$membership == i plon <- ignition$lon[indexes2] plat <- ignition$lat[indexes2] dist_vec <- dist_point_to_vector(plon, plat, vlon, vlat) fin_vec[indexes] <- dist_vec if (timeUnit != "numeric") { time_vec[indexes] <- difftime(obsTime[indexes], ignition$obsTime[indexes2], units = timeUnit) } else { time_vec[indexes] <- obsTime[indexes] - ignition$obsTime[indexes2] } } indexes <- membership == -1 if (length(indexes) > 0) { fin_vec[indexes] <- 0 if (timeUnit != "numeric") { time_vec[indexes] <- difftime(obsTime[1], obsTime[1], units = timeUnit) } else { time_vec[indexes] <- 0 } } list(distToIgnition = fin_vec, timeFromIgnition = time_vec) }
context("main function") test_that("main function", { set.seed(314) x <- generate_train_data() fit <- sGMRFmix(x, K = 7, rho = 100) expected <- c("1"=0.5156696, "2"=0.4843304) expect_equal(fit$pi, expected, tolerance = 1e-7) }) test_that("compute anomaly", { set.seed(314) x <- generate_train_data() fit <- sGMRFmix(x, K = 7, rho = 100) anomaly_score <- compute_anomaly_score(fit, generate_test_data()) expect_equal(anomaly_score[1, 1], 0.7737825, tolerance = 1e-7) })
context("interact_plot lm") states <- as.data.frame(state.x77) states$HSGrad <- states$`HS Grad` states$o70 <- 0 states$o70[states$`Life Exp` > 70] <- 1 states$o70n <- states$o70 states$o70 <- factor(states$o70) states$o70l <- states$`Life Exp` > 70 states$o70c <- ifelse(states$o70l, yes = "yes", no = "no") set.seed(3) states$wts <- runif(50, 0, 3) fit <- lm(Income ~ HSGrad*Murder*Illiteracy + o70 + Area, data = states) fit2 <- lm(Income ~ HSGrad*o70, data = states) fit2n <- lm(Income ~ HSGrad*o70n, data = states) fitw <- lm(Income ~ HSGrad*Murder*Illiteracy + o70 + Area, data = states, weights = wts) fitl <- lm(Income ~ HSGrad*o70l, data = states) fitc <- lm(Income ~ HSGrad*Murder + o70c, data = states) library(vdiffr) Sys.setenv("VDIFFR_RUN_TESTS" = FALSE) if (requireNamespace("survey")) { suppressMessages(library(survey, quietly = TRUE)) data(api) dstrat <- svydesign(id = ~1, strata = ~stype, weights = ~pw, data = apistrat, fpc = ~fpc) regmodel <- svyglm(api00 ~ ell * meals * both + sch.wide, design = dstrat) } test_that("interact_plot works for lm", { plma <- interact_plot(model = fit, pred = Murder, modx = Illiteracy, mod2 = HSGrad, centered = "all") expect_doppelganger("plma", plma) expect_warning( plmm <- interact_plot(model = fit, pred = Murder, modx = Illiteracy, mod2 = HSGrad, centered = "HSGrad") ) expect_doppelganger("plmm", plmm) plm1 <- interact_plot(model = fit, pred = Murder, modx = Illiteracy, mod2 = HSGrad, centered = "Area") expect_doppelganger("plm1", plm1) plm0 <- interact_plot(model = fit, pred = Murder, modx = Illiteracy, mod2 = HSGrad, centered = "none") expect_doppelganger("plm0", plm0) }) test_that("interact_plot: robust standard errors work", { plmrob <- interact_plot(model = fit, pred = Murder, modx = Illiteracy, mod2 = HSGrad, centered = "all", robust = TRUE) expect_doppelganger("plmrob", plmrob) }) test_that("rug plots work", { plmrugb <- interact_plot(model = fit, pred = Murder, modx = Illiteracy, mod2 = HSGrad, centered = "all", rug = TRUE) expect_doppelganger("plmrugb", plmrugb) plmruglb <- interact_plot(model = fit, pred = Murder, modx = Illiteracy, mod2 = HSGrad, centered = "all", rug = TRUE, rug.sides = "lb") expect_doppelganger("plmruglb", plmruglb) }) test_that("interact_plot works for weighted lm", { plmw <- interact_plot(model = fitw, pred = Murder, modx = Illiteracy, mod2 = HSGrad, modx.values = c(1, 1.5, 2), centered = "all") expect_doppelganger("plmw", plmw) }) test_that("interact_plot works for lm w/ logical", { plmtf <- interact_plot(model = fitl, pred = HSGrad, modx = o70l) expect_doppelganger("plmtf", plmtf) }) test_that("interact_plot works for lm w/ non-focal character", { plmnfchar <- interact_plot(model = fitc, pred = HSGrad, modx = Murder) expect_doppelganger("plmnfchar", plmnfchar) }) test_that("interact_plot accepts user-specified values and labels", { plmlabelsc <- interact_plot(model = fit, pred = Murder, modx = Illiteracy, mod2 = HSGrad, centered = "all", modxvals = c(1.5, 2, 2.5), modx.labels = c("None","Low","High"), mod2vals = c(58, 60, 62), mod2.labels = c("Low","Average","High")) expect_doppelganger("plmlabelsc", plmlabelsc) plmlabelsc2 <- interact_plot(model = fit, pred = Murder, modx = Illiteracy, mod2 = HSGrad, centered = "all", modxvals = c("None" = 1.5, "Low" = 2, "High" = 2.5), mod2vals = c("Low" = 58, "Average" = 60, "High" = 62)) expect_doppelganger("plmlabelsc2", plmlabelsc2) expect_error(interact_plot(model = fit2, pred = o70, modx = HSGrad, pred.labels = c("Under","Over"))) plmlabelscpred <- interact_plot(model = fit2n, pred = o70n, modx = HSGrad, pred.labels = c("Under","Over")) expect_doppelganger("plmlabelscpred", plmlabelscpred) plmlabelscs <- interact_plot(model = fit, pred = Murder, modx = Illiteracy, mod2 = HSGrad, centered = "all", modxvals = c(2.5, 2, 1.5), modx.labels = c("High","Low","None"), mod2vals = c(62, 60, 58), mod2.labels = c("High","Average","Low")) expect_doppelganger("plmlabelscs", plmlabelscs) }) test_that("interact_plot terciles modxval/mod2val works", { expect_message( plmtercs <- interact_plot(model = fit, pred = Murder, modx = Illiteracy, mod2 = HSGrad, modxvals = "terciles", mod2vals = "terciles", centered = "none") ) expect_doppelganger("plmtercs", plmtercs) }) test_that("interact_plot linearity.check works", { plmlinearchp <- interact_plot(model = fit, pred = Murder, modx = Illiteracy, modxvals = "terciles", linearity.check = TRUE, plot.points = TRUE, jitter = 0) expect_doppelganger("plmlinearchp", plmlinearchp) plmlinearchnp <- interact_plot(model = fit, pred = Murder, modx = Illiteracy, modxvals = "terciles", linearity.check = TRUE) expect_doppelganger("plmlinearchnp", plmlinearchnp) }) context("interact_plot svyglm") if (requireNamespace("survey")) { test_that("interact_plot works for svyglm", { psvya <- interact_plot(regmodel, pred = ell, modx = meals, mod2 = both, centered = "all") expect_doppelganger("psvya", psvya) expect_warning( psvy1 <- interact_plot(regmodel, pred = ell, modx = meals, mod2 = both, centered = "ell") ) expect_doppelganger("psvy1", psvy1) }) } context("interact_plot merMod") if (requireNamespace("lme4")) { library(lme4, quietly = TRUE) data(VerbAgg) VerbAgg$mode_numeric <- as.numeric(VerbAgg$mode) mve <- lmer(Anger ~ Gender * mode + btype + (1 | item), data = VerbAgg) mv <- lmer(Anger ~ Gender * mode_numeric + btype + (1 | item), data = VerbAgg) gm <- glmer(incidence ~ period + (1 | herd), family = poisson, data = cbpp, offset = log(size)) test_that("interact_plot works for lme4", { expect_error(interact_plot(mve, pred = mode, modx = Gender)) plme4 <- interact_plot(mv, pred = mode_numeric, modx = Gender) expect_doppelganger("plme4", plme4) plme4i <- interact_plot(mv, pred = mode_numeric, modx = Gender, interval = TRUE) expect_doppelganger("plme4i", plme4i) }) } context("interact_plot offsets") set.seed(100) exposures <- rpois(50, 50) counts <- exposures - rpois(50, 25) money <- (counts/exposures) + rnorm(50, sd = 1) talent <- counts*.5 + rnorm(50, sd = 3) poisdat <- as.data.frame(cbind(exposures, counts, talent, money)) pmod <- glm(counts ~ talent*money, offset = log(exposures), data = poisdat, family = poisson) test_that("interact_plot handles offsets", { expect_message( pglmoff <- interact_plot(pmod, pred = talent, modx = money) ) expect_doppelganger("pglmoff", pglmoff) }) test_that("interact_plot handles offsets with robust SE", { expect_message( pglmrob <- interact_plot(pmod, pred = talent, modx = money, robust = TRUE) ) expect_doppelganger("pglmrob", pglmrob) }) test_that("sim_slopes handles offsets", { expect_s3_class(sim_slopes(pmod, pred = talent, modx = money), "sim_slopes") }) if (requireNamespace("brms")) { context("brmsfit plots 2") bfit <- readRDS("brmfit.rds") test_that("brmsfit objects are supported", { pbfcat <- cat_plot(bfit, pred = "Trt", interval = TRUE) expect_doppelganger("pbfcat", pbfcat) pbfcont <- interact_plot(bfit, pred = "log_Base4_c", modx = "Trt", interval = TRUE) expect_doppelganger("pbfcont", pbfcont) }) } if (requireNamespace("rstanarm") & requireNamespace("lme4")) { context("stanreg plots") rsfit <- readRDS("rsafit.rds") library(lme4) data(cbpp) test_that("stanreg objects are supported", { prsacont <- interact_plot(rsfit, pred = "size", modx = "period", interval = TRUE, data = cbpp) expect_doppelganger("prsacont", prsacont) }) }
null.LGRF<-function(Y,time,X=NULL) { Y<-as.matrix(Y);n<-nrow(Y);index.cluster<-unique(time[,1]) if(length(X)==0){is.naX<-0;nrowX<-nrow(Y)}else{ is.naX<-is.na(X);nrowX<-nrow(X) } N_MISS<-sum(is.naX+sum(is.na(Y))+sum(is.na(time))) if(N_MISS>0){ msg<-sprintf("X, Y or time has missing values") stop(msg) } if((nrow(Y)-nrow(time))^2+(nrow(Y)-nrowX)^2>0){ msg<-sprintf("Number of observations in Y, X and time does not match") stop(msg) } X1<-cbind(rep(1,n),X);p<-ncol(X1)-1 step.error<-Inf;beta<-rep(0,p+1);eta<-0;iter<-0 while (step.error>0.00001) { A<-0;B<-0;x.field<-NULL for (i in index.cluster) { index<-which(time[,1]==i);ni<-length(index) S.subject<-matrix(1,ni,ni);diag(S.subject)<-0 V<-diag(1,length(index))-eta*S.subject X.temp<-X1[index,];Y.temp<-Y[index,] if (ni==1) {X.temp<-t(X.temp)} A<-A+t(X.temp)%*%V%*%X.temp;B<-B+t(X.temp)%*%V%*%Y.temp } beta.new<-solve(A)%*%B;Y.res<-Y-X1%*%beta.new if(length(index.cluster)==nrow(time)) { eta.new<-0 } if(length(index.cluster)!=nrow(time)) { for (i in index.cluster) { index<-which(time[,1]==i);ni<-length(index) S.subject<-matrix(1,ni,ni);diag(S.subject)<-0 x.field<-rbind(x.field,S.subject%*%Y.res[index,]) } eta.new<-lm(Y.res~0+x.field)$coefficients } step.error<-sum(c(beta.new-beta,eta.new-eta)^2);iter<-iter+1 beta<-beta.new;eta<-eta.new } return(list(Y.res=Y.res,time=time,X1=X1,eta=eta)) } test.LGRF<-function(Z,result.null,Gsub.id=NULL,interGXT=FALSE,similarity='GR',impute.method="fixed") { Y.res<-result.null$Y.res;time<-result.null$time X1<-result.null$X1;eta<-result.null$eta if(length(Gsub.id)==0){Gsub.id<-unique(time[,1])} Z<-as.matrix(Z[match(unique(time[,1]),Gsub.id),]) N_MISS<-sum(is.na(Z)) if(N_MISS>0){ msg<-sprintf("The missing genotype rate is %f. Imputation is applied.", N_MISS/nrow(Z)/ncol(Z)) warning(msg,call.=F) Z<-Impute(Z,impute.method) } ID_G<-unique(time[,1]);Z<-as.matrix(Z[match(time[,1],ID_G),]) if (interGXT==FALSE) { if (similarity=='IBS'){G<-IBS_pseudo(Z)} if (similarity=='GR'){G<-apply(Z,2,center)} dimY<-nrow(Y.res);m<-length(unique(time[,1]));dimX<-ncol(X1);dimG<-ncol(G) index.cluster<-unique(time[,1]) dS<-matrix(0,2*dimG+dimX,dimX); S1<-matrix(0,2*dimG,1);S0<-matrix(0,dimX,1);D<-matrix(0,2*dimG+dimX,2*dimG+dimX) for (i in index.cluster) { index<-which(time[,1]==i);ni<-length(index) S.subject<-matrix(1,ni,ni);diag(S.subject)<-0 Vi<-diag(1,ni)-eta*S.subject Gi<-G[index,];Xi<-X1[index,];Yi<-as.matrix(Y.res[index,]) if (ni==1) {Gi<-t(Gi);Xi<-t(Xi)} G.temp<-cbind(Vi%*%Gi,Gi,Xi) Si<-t(G.temp)%*%Yi;dSi<--t(G.temp)%*%Xi;Di<-Si%*%t(Si) S1<-S1+Si[1:(2*dimG),];dS<-dS+dSi;D<-D+Di } D<-D/m;S1<-S1/sqrt(m);dS<-dS/sqrt(m) Q<-t(S1[(dimG+1):(2*dimG),])%*%S1[1:dimG,] P<-dS[1:(2*dimG),]%*%solve(dS[(2*dimG+1):(2*dimG+dimX),]) D11<-D[1:(2*dimG),1:(2*dimG)];D10<-D[1:(2*dimG),(2*dimG+1):(2*dimG+dimX)];D00<-D[(2*dimG+1):(2*dimG+dimX),(2*dimG+1):(2*dimG+dimX)] M<-D11-P%*%t(D10)-D10%*%t(P)+P%*%D00%*%t(P) M.rotate<-cbind(M[,(dimG+1):(2*dimG)],M[,1:dimG]) eigen.M<-Re(eigen(M.rotate,symmetric=FALSE,only.values=TRUE)$values) p.value<-davies(2*Q,eigen.M)$Qq } else { if (similarity=='IBS'){G<-IBS_pseudo(Z)} if (similarity=='GR'){G<-apply(Z,2,center)} Gt<-apply(Z*time[,2],2,center) dimY<-nrow(Y.res);m<-length(unique(time[,1]));dimX<-ncol(X1);dimG<-(ncol(G)+ncol(Gt))/2 index.cluster<-unique(time[,1]) K.g<-t(G)%*%G;K.gt<-t(Gt)%*%Gt s2.g<-2*sum(diag(K.g%*%K.g));s2.gt<-2*sum(diag(K.gt%*%K.gt)) alpha.g<-sqrt(s2.gt/(s2.g+s2.gt));alpha.gt<-sqrt(s2.g/(s2.g+s2.gt)) dS<-matrix(0,4*dimG+dimX,dimX); S1<-matrix(0,4*dimG,1);S0<-matrix(0,dimX,1);D<-matrix(0,4*dimG+dimX,4*dimG+dimX) for (i in index.cluster) { index<-which(time[,1]==i);ni<-length(index) S.subject<-matrix(1,ni,ni);diag(S.subject)<-0 Vi<-diag(1,ni)-eta*S.subject Gi<-G[index,];Gti<-Gt[index,];Xi<-X1[index,];Yi<-as.matrix(Y.res[index,]) if (ni==1) {Gi<-t(Gi);Gti<-t(Gti);Xi<-t(Xi)} G.temp<-cbind(sqrt(alpha.g)*Vi%*%Gi,sqrt(alpha.gt)*Vi%*%Gti,sqrt(alpha.g)*Gi,sqrt(alpha.gt)*Gti,Xi) Si<-t(G.temp)%*%Yi;dSi<--t(G.temp)%*%Xi;Di<-Si%*%t(Si) S1<-S1+Si[1:(4*dimG),];dS<-dS+dSi;D<-D+Di } D<-D/m;S1<-S1/sqrt(m);dS<-dS/sqrt(m) Q<-t(S1[(2*dimG+1):(4*dimG),])%*%S1[1:(2*dimG),] P<-dS[1:(4*dimG),]%*%solve(dS[(4*dimG+1):(4*dimG+dimX),]) D11<-D[1:(4*dimG),1:(4*dimG)];D10<-D[1:(4*dimG),(4*dimG+1):(4*dimG+dimX)];D00<-D[(4*dimG+1):(4*dimG+dimX),(4*dimG+1):(4*dimG+dimX)] M<-D11-P%*%t(D10)-D10%*%t(P)+P%*%D00%*%t(P) M.rotate<-cbind(M[,(2*dimG+1):(4*dimG)],M[,1:(2*dimG)]) eigen.M<-Re(eigen(M.rotate,symmetric=FALSE,only.values=TRUE)$values) p.value<-davies(2*Q,eigen.M)$Qq } return(list(p.value=p.value,n.marker=dimG)) } IBS_pseudo<-function(x) { pseudo1<-(0<=x & x<0.5)*sqrt(2)+(0.5<=x & x<1.5)*sqrt(2)/2 pseudo2<-(0.5<=x & x<1.5)*sqrt(2)/2+(1.5<=x & x<2.5)*sqrt(2) pseudo3<-(0.5<=x & x<1.5) pseudo<-cbind(pseudo1,pseudo2,pseudo3) return(pseudo) } test.MinP<-function(Z,result.null,Gsub.id=NULL,corstr="exchangeable",MinP.adjust=0.95,impute.method="fixed"){ Y.res<-result.null$Y.res;time<-result.null$time X1<-result.null$X1;eta<-result.null$eta;dimG<-ncol(Z) if(length(Gsub.id)==0){Gsub.id<-unique(time[,1])} Z<-as.matrix(Z[match(unique(time[,1]),Gsub.id),]) N_MISS<-sum(is.na(Z)) if(N_MISS>0){ msg<-sprintf("The missing genotype rate is %f. Imputation is applied.", N_MISS/nrow(Z)/ncol(Z)) warning(msg,call.=F) Z<-Impute(Z,impute.method) } if((length(unique(time[,1]))-nrow(Z))^2>0){ msg<-sprintf("Number of subjects in Y, X, time and Z does not match") stop(msg) } MAF<-apply(Z,2,mean)/2 if(min(MAF)<0.01){ msg<-sprintf("There are rare variants with MAF<0.01. MinP by GEE might be unstable", N_MISS/nrow(Z)/ncol(Z)) warning(msg,call.=F) } ID_G<-unique(time[,1]);Z<-Z[match(time[,1],ID_G),] temp.pvalue<-rep(0,ncol(Z)) for (k in 1:ncol(Z)){ if(ncol(X1)!=1){temp.fit<-geeglm(Y.res~X1[,-1]+Z[,k],id=time[,1],corstr=corstr)}else{ temp.fit<-geeglm(Y.res~Z[,k],id=time[,1],corstr=corstr) } temp.pvalue[k]<-summary(temp.fit)$coefficient[nrow(summary(temp.fit)$coefficient),4] } eigen.G<-eigen(cor(Z),only.values=TRUE)$values me.G<-effect.n(eigen.G,MinP.adjust) p.value<-min(1,min(temp.pvalue)*me.G) return(list(p.value=p.value,n.marker=dimG)) } effect.n<-function(x,MinP.adjust){ temp<-0;sum.EV<-sum(x) for (i in 1:length(x)){ temp<-temp+x[i];if (temp>sum.EV*MinP.adjust){break} } return(i) } Get.sqrt<-function(A){ a.eig <- eigen(A,symmetric=TRUE) ID1<-which(a.eig$values > 0) if(length(ID1)== 0){ stop("Error to obtain matrix square!") } a.sqrt <- a.eig$vectors[,ID1] %*% diag(sqrt(a.eig$values[ID1])) %*% t(a.eig$vectors[,ID1]) return(a.sqrt) } Check.same<-function(x,y) {return(as.numeric(x==y))} Check.near<-function(x,y) {return(as.numeric(abs(x-y)==1))} center<-function(x) {return(x-mean(x))} Impute<-function(Z, impute.method){ p<-dim(Z)[2] if(impute.method =="random"){ for(i in 1:p){ IDX<-which(is.na(Z[,i])) if(length(IDX) > 0){ maf1<-mean(Z[-IDX,i])/2 Z[IDX,i]<-rbinom(length(IDX),2,maf1) } } } else if(impute.method =="fixed"){ for(i in 1:p){ IDX<-which(is.na(Z[,i])) if(length(IDX) > 0){ maf1<-mean(Z[-IDX,i])/2 Z[IDX,i]<-2 * maf1 } } } else if(impute.method =="bestguess") { for(i in 1:p){ IDX<-which(is.na(Z[,i])) if(length(IDX) > 0){ maf1<-mean(Z[-IDX,i])/2 Z[IDX,i]<-round(2 * maf1) } } } else { stop("Error: Imputation method shoud be \"fixed\", \"random\" or \"bestguess\" ") } return(as.matrix(Z)) }
weightedMad <- function(x, w = NULL, idxs = NULL, na.rm = FALSE, constant = 1.4826, center = NULL, ...) { if (is.null(w)) { if (is.null(center)) center <- median(x, na.rm = na.rm) return(mad(x, center = center, constant = constant, na.rm = na.rm, ...)) } n <- length(x) if (length(w) != n) { stop(sprintf("The number of elements in arguments '%s' and '%s' does not match: %.0f != %.0f", "w", "x", length(w), n)) } else if (!is.null(idxs)) { w <- w[idxs] } if (length(constant) != 1L) stop(sprintf("Argument '%s' is not a scalar: %.0f", "constant", length(constant))) if (!is.numeric(constant)) stop(sprintf("Argument '%s' is not numeric: %s", "constant", mode(constant))) if (!is.null(center) && length(center) != 1L) stop(sprintf("Argument '%s' is not a scalar or NULL: %.0f", "center", length(center))) if (!is.null(idxs)) { x <- x[idxs] n <- length(x) } na_value <- NA storage.mode(na_value) <- storage.mode(x) tmp <- (is.na(w) | w > 0) if (!all(tmp)) { x <- .subset(x, tmp) w <- .subset(w, tmp) n <- length(x) } tmp <- NULL if (na.rm) { keep <- which(!is.na(x)) x <- .subset(x, keep) w <- .subset(w, keep) n <- length(x) keep <- NULL } else if (anyMissing(x)) { return(na_value) } if (anyMissing(w)) return(na_value) tmp <- is.infinite(w) if (any(tmp)) { keep <- tmp x <- .subset(x, keep) n <- length(x) w <- rep(1, times = n) keep <- NULL } tmp <- NULL if (n == 0L) { return(na_value) } else if (n == 1L) { zero_value <- 0 storage.mode(zero_value) <- storage.mode(x) return(zero_value) } if (is.null(center)) { center <- weightedMedian(x, w = w, na.rm = NA) } else { centerOnUse("weightedMad") } x <- abs(x - center) sigma <- weightedMedian(x, w = w, na.rm = NA) x <- w <- NULL sigma <- constant * sigma sigma } rowWeightedMads <- function(x, w = NULL, rows = NULL, cols = NULL, na.rm = FALSE, constant = 1.4826, center = NULL, ..., useNames = NA) { if (length(constant) != 1L) stop(sprintf("Argument '%s' is not a scalar: %.0f", "constant", length(constant))) if (!is.numeric(constant)) stop(sprintf("Argument '%s' is not numeric: %s", "constant", mode(constant))) if (!is.null(center)) { if (length(center) != nrow(x)) { if (length(center) == 1L && is.null(rows)) { validateScalarCenter(center, nrow(x), "rows") center <- rep(center, times = nrow(x)) } else { stop(sprintf("Argument '%s' should be of the same length as number of %s of '%s': %d != %d", "center", "rows", "x", length(center), nrow(x))) } } if (!is.null(rows)) center <- center[rows] } if (!is.null(rows) && !is.null(cols)) x <- x[rows, cols, drop = FALSE] else if (!is.null(rows)) x <- x[rows, , drop = FALSE] else if (!is.null(cols)) x <- x[, cols, drop = FALSE] if (!is.null(w) && !is.null(cols)) w <- w[cols] y <- numeric(nrow(x)) for (kk in seq_along(y)) { y[kk] <- weightedMad(x[kk, , drop = TRUE], w = w, na.rm = na.rm, constant = constant, center = center[kk], ...) } if (is.na(useNames) || useNames) { names(y) <- rownames(x) } else { names(y) <- NULL } y } colWeightedMads <- function(x, w = NULL, rows = NULL, cols = NULL, na.rm = FALSE, constant = 1.4826, center = NULL, ..., useNames = NA) { if (length(constant) != 1L) stop(sprintf("Argument '%s' is not a scalar: %.0f", "constant", length(constant))) if (!is.numeric(constant)) stop(sprintf("Argument '%s' is not numeric: %s", "constant", mode(constant))) if (!is.null(center)) { if (length(center) != ncol(x)) { if (length(center) == 1L && is.null(cols)) { validateScalarCenter(center, ncol(x), "cols") center <- rep(center, times = ncol(x)) } else { stop(sprintf("Argument '%s' should be of the same length as number of %s of '%s': %d != %d", "center", "columns", "x", length(center), ncol(x))) } } if (!is.null(cols)) center <- center[cols] } if (!is.null(rows) && !is.null(cols)) x <- x[rows, cols, drop = FALSE] else if (!is.null(rows)) x <- x[rows, , drop = FALSE] else if (!is.null(cols)) x <- x[, cols, drop = FALSE] if (!is.null(w) && !is.null(rows)) w <- w[rows] y <- numeric(ncol(x)) for (kk in seq_along(y)) { y[kk] <- weightedMad(x[, kk, drop = TRUE], w = w, na.rm = na.rm, constant = constant, center = center[kk], ...) } if (is.na(useNames) || useNames) { names(y) <- colnames(x) } else { names(y) <- NULL } y }
add_water = function(hillshade, watermap, color="imhof1") { watermap = t(flipud(watermap)) if (color == "imhof1") { color = col2rgb(" } else if (color == "imhof2") { color = col2rgb(" } else if (color == "imhof3") { color = col2rgb(" } else if (color == "imhof4") { color = col2rgb(" } else if (color == "desert") { color = col2rgb(" } else if (color == "bw") { color = col2rgb(" } else if (color != "unicorn") { color = col2rgb(color) } if (length(dim(hillshade)) != 3) { if (length(dim(hillshade)) == 2) { if(any(hillshade > 1 | hillshade < 0)) { stop("Error: Not a shadow matrix. Intensities must be between 0 and 1. Pass your elevation matrix to ray_shade/lamb_shade/ambient_shade/sphere_shade first.") } temp = array(0,dim = c(ncol(hillshade),nrow(hillshade),3)) temp[,,1] = t(flipud(hillshade)) temp[,,2] = t(flipud(hillshade)) temp[,,3] = t(flipud(hillshade)) hillshade = temp } } if(missing(watermap)) { stop("User must provide matrix indicating locations of bodies of water") } if(all(dim(watermap) != dim(hillshade)[1:2])) { stop("`hillshade` and `watermap` dimensions must be the same; hillshade is ", paste0(dim(hillshade)[1:2],collapse="x"),", watermap is ", paste0(dim(watermap)[1:2],collapse="x")) } for(i in 1:3) { tempmat = hillshade[,,i] if(color[1] != "unicorn") { tempmat[watermap >= 1] = color[i]/256 } else { unicolors = col2rgb(rainbow(256)) for(row in 1:nrow(watermap)) { for(col in 1:ncol(watermap)) { if(watermap[row,col] >= 1) { tempmat[row,col] = unicolors[i,col %% 256+1]/256 } } } } hillshade[,,i] = tempmat } hillshade }
setMethod("dissimilarity", signature(x = "binaryRatingMatrix"), function(x, y = NULL, method = NULL, args = NULL, which = "users") { args <- getParameters(list(alpha = .5), args) which <- match.arg(tolower(which), c("users", "items")) if (!is.null(method)) method <- tolower(method) else method <- "jaccard" if (method == "karypis") { if (!is.null(y) || which != "items") stop( "Kaypis dissimilarities are not implemented between users or as a cross-dissimilarity!" ) return(.karypis(as(x, "dgCMatrix"), dist = TRUE, args)) } if (method == "conditional") { if (!is.null(y) || which != "items") stop( "Conditional dissimilarities are not implemented between users or as a cross-dissimilarity!" ) return(.conditional(as(x, "dgCMatrix"), dist = TRUE, args)) } if (which == "users") which <- "transactions" x <- x@data if (!is.null(y)) y <- y@data d <- arules::dissimilarity(x, y, method, args, which) if (!is.null(y)) d <- structure(as(d, "matrix"), method = method) d }) setMethod("dissimilarity", signature(x = "realRatingMatrix"), function(x, y = NULL, method = NULL, args = NULL, which = "users") { args <- getParameters(list(na_as_zero = FALSE, alpha = .5), args) which <- match.arg(tolower(which), c("users", "items")) if (!is.null(method)) method <- tolower(method) else method <- "cosine" if (method == "karypis") { if (!is.null(y) || which != "items") stop( "Kaypis dissimilarities are not implemented between users or as a cross-dissimilarity!" ) return(.karypis(as(x, "dgCMatrix"), dist = TRUE, args)) } if (method == "conditional") { if (!is.null(y) || which != "items") stop( "Conditional dissimilarities are not implemented between users or as a cross-dissimilarity!" ) return(.conditional(as(x, "dgCMatrix"), dist = TRUE, args)) } x <- as(x, "matrix") if (which == "items") x <- t(x) if (args$na_as_zero) x[is.na(x)] <- 0 if (!is.null(y)) { y <- as(y, "matrix") if (which == "items") y <- t(y) if (args$na_as_zero) y[is.na(y)] <- 0 } if (method == "pearson") { if (!is.null(y)) y <- t(y) pc <- suppressWarnings(cor(t(x), y, method = "pearson", use = "pairwise.complete.obs")) pc[pc < 0] <- 0 if (is.null(y)) pc <- as.dist(pc) return(1 - pc) } proxy::dist(x = x, y = y, method = method) }) setMethod("similarity", signature(x = "ratingMatrix"), function(x, y = NULL, method = NULL, args = NULL, which = "users", min_matching = 0, min_predictive = 0) { which <- match.arg(tolower(which), c("users", "items")) if (!is.null(method)) method <- tolower(method) else method <- "cosine" if (method == "karypis") { if (!is.null(y) || which != "items") stop("Kaypis similarities are not implemented between users or as a cross-similarity!") if (min_matching > 0 || min_predictive > 0) warning("min_matching and min_predictive for this method not implemented yet.") return(.karypis(as(x, "dgCMatrix"), dist = FALSE, args)) } if (method == "conditional") { if (!is.null(y) || which != "items") stop( "Conditional similarities are not implemented between users or as a cross-similarity!" ) if (min_matching > 0 || min_predictive > 0) warning("min_matching and min_predictive for this method not implemented yet.") return(.conditional(as(x, "dgCMatrix"), dist = FALSE, args)) } d <- dissimilarity(x, y, method, args, which) if (!is.null(attr(d, "method")) && tolower(attr(d, "method")) %in% c("jaccard", "cosine")) { sim <- 1 - d } else{ sim <- 1 / (1 + d) } attr(sim, "type") <- "simil" if (min_matching > 0 || min_predictive > 0) { x_has_r <- hasRating(x) y_has_r <- if (!is.null(y)) hasRating(y) else x_has_r if (which == "items") { x_has_r <- t(x_has_r) y_has_r <- t(y_has_r) } if (min_matching > 0) { shared <- as.matrix(tcrossprod(as(x_has_r, "dgCMatrix"), as(y_has_r, "dgCMatrix"))) if (is.matrix(sim)) sim[shared < min_matching] <- NA else sim[as.dist(shared) < min_matching] <- NA } if (min_predictive > 0) { predictive <- as.matrix(rowSums(x_has_r) - shared) if (is.matrix(sim)) sim[predictive < min_predictive] <- NA else sim[as.dist(predictive) < min_predictive] <- NA } } sim }) .conditional <- function(x, dist = TRUE, args = NULL) { n <- ncol(x) uv <- crossprod(x) v <- matrix(colSums(x), nrow = n, ncol = n, byrow = FALSE) sim <- uv / v sim[is.na(sim)] <- 0 if (dist) sim <- as.dist(1 / (1 + sim)) else attr(sim, "type") <- "simil" attr(sim, "method") <- "conditional" sim } .karypis <- function(x, dist, args = NULL) { args <- getParameters(list(na_as_zero = NULL, alpha = .5), args) n <- ncol(x) x <- x / rowSums(x) x[is.na(x)] <- 0 uv <- crossprod(x, x > 0) v <- matrix(colSums(x), nrow = n, ncol = n, byrow = FALSE) u <- t(v) sim <- uv / v / u ^ args$alpha sim[is.na(sim)] <- 0 if (dist) sim <- as.dist(1 / (1 + sim)) else attr(sim, "type") <- "simil" attr(sim, "method") <- "karypis" sim }
makeRoundUp <- function(int, modulus) { int + modulus - int %% modulus }
factor_scores_mfa <- function (Y, g, q, pivec, B, mu, D, sigma_type, D_type, tau = NULL, clust = NULL, ...) { if (!is.matrix(Y)) Y <- as.matrix(Y) p <- ncol(Y) n <- nrow(Y) U <- array(0, c(n, q, g)) if (sigma_type == "common") { gamma <- matrix(0, nrow = p, ncol = q) for (i in 1 : g) { inv_D <- diag(1 / diag(D)) B_inv_D <- B * diag(inv_D) gamma <- (inv_D - B_inv_D %*% (chol.inv(diag(q) + t(B_inv_D) %*% B)) %*% t(B_inv_D)) %*% B U[,, i] <- sweep(Y, 2, mu[, i, drop = FALSE], '-') %*% gamma } } else { gamma <- array(0, c(p, q)) for (i in 1 : g) { if (D_type == 'common') { inv_D <- diag(1 / diag(D)) } else { inv_D <- diag(1 / diag(D[,, i])) } B_inv_D <- B[,, i] * diag(inv_D) gamma <- (inv_D - B_inv_D %*% (chol.inv(diag(q) + t(B_inv_D) %*% B[,, i])) %*% t(B_inv_D)) %*% B[,, i] U[,, i] <- sweep(Y, 2, mu[, i, drop = FALSE], '-') %*% gamma } } if (is.null(tau)) { tau <- tau.mfa(Y = Y, g = g, q = q, pivec = pivec, B = B, mu = mu, D = D, sigma_type = sigma_type, D_type = D_type) } if (is.null(clust)) { clust <- apply(tau, 1, which.max) } UC <- array(0, c(n, q)) Umean <- array(0, c(n, q)) for (i in 1 : n) { UC[i, ] <- U[i,, clust[i]] Umean[i, ] <- tau[i, ] %*% t(matrix(U[i,, ], c(q, g))) } return(list(Uscores = U, Uclust = UC, Umean = Umean)) }
MHRM.group <- function(pars, constrain, Ls, Data, PrepList, list, random = list(), lrPars = list(), lr.random = list(), DERIV, solnp_args, control) { if(is.null(random)) random <- list() correction <- 0 itemtype <- sapply(pars[[1]], class) has_graded <- any(itemtype == 'graded') RAND <- length(random) > 0L; LR.RAND <- length(lr.random) > 0L RANDSTART <- list$RANDSTART LRPARS <- length(lrPars) > 0L verbose <- list$verbose nfact <- list$nfact NCYCLES <- list$NCYCLES no_stage_3 <- FALSE if(is.na(NCYCLES)){ NCYCLES <- 1L no_stage_3 <- TRUE } BURNIN <- list$BURNIN MHDRAWS <- list$MHDRAWS stopifnot(BURNIN >= RANDSTART) SEMCYCLES <- list$SEMCYCLES KDRAWS <- list$KDRAWS TOL <- list$TOL CUSTOM.IND <- list$CUSTOM.IND USE.FIXED <- nrow(pars[[1L]][[1L]]@fixed.design) > 1L gain <- list$gain itemloc <- list$itemloc ngroups <- length(pars) J <- length(itemloc) - 1L prodlist <- PrepList[[1L]]$prodlist nfullpars <- 0L estpars <- c() gtheta0 <- gstructgrouppars <- vector('list', ngroups) for(g in seq_len(ngroups)){ gstructgrouppars[[g]] <- ExtractGroupPars(pars[[g]][[J+1L]]) gtheta0[[g]] <- matrix(0, nrow(Data$fulldata[[g]]), nfact) for(i in seq_len(J+1L)){ nfullpars <- nfullpars + length(pars[[g]][[i]]@par) estpars <- c(estpars, pars[[g]][[i]]@est) } } if(RAND){ for(i in seq_len(length(random))){ nfullpars <- nfullpars + length(random[[i]]@par) estpars <- c(estpars, random[[i]]@est) } } if(LRPARS){ nfullpars <- nfullpars + length(lrPars@par) estpars <- c(estpars, lrPars@est) } if(LR.RAND){ for(i in seq_len(length(lr.random))){ nfullpars <- nfullpars + length(lr.random[[i]]@par) estpars <- c(estpars, lr.random[[i]]@est) } } if(all(!estpars) && list$SE) stop('Computing ACOV matrix is meaningless when no parameters are estimated', call.=FALSE) index <- 1L:nfullpars N <- nrow(gtheta0[[1L]]) if(LRPARS){ lrPars@beta[] <- lrPars@par lrPars@mus <- lrPars@X %*% lrPars@beta gstructgrouppars[[1L]]$gmeans <- lrPars@mus } cand.t.var <- if(is.null(list$cand.t.var)) 1 else list$cand.t.var[1L] tmp <- .1 OffTerm <- matrix(0, 1, J) for(g in seq_len(ngroups)){ PAs <- CTVs <- rep(NA, 25L) for(i in seq_len(31L)){ gtheta0[[g]] <- draw.thetas(theta0=gtheta0[[g]], pars=pars[[g]], fulldata=Data$fulldata[[g]], itemloc=itemloc, cand.t.var=cand.t.var, CUSTOM.IND=CUSTOM.IND, prior.t.var=gstructgrouppars[[g]]$gcov, OffTerm=OffTerm, prior.mu=gstructgrouppars[[g]]$gmeans, prodlist=prodlist) if(is.null(list$cand.t.var)){ if(i > 5L){ pa <- attr(gtheta0[[g]],"Proportion Accepted") PAs[i-5L] <- pa CTVs[i-5L] <- cand.t.var cand.t.var <- update_cand.var(PAs, CTVs) } } } } if(RAND) OffTerm <- OffTerm(random, J=J, N=N) if(list$plausible.draws > 0L){ ret <- vector('list', list$plausible.draws) for(i in seq_len(length(ret))){ for(j in seq_len(MHDRAWS)) gtheta0[[1L]] <- draw.thetas(theta0=gtheta0[[1L]], pars=pars[[1L]], fulldata=Data$fulldata[[1L]], itemloc=itemloc, cand.t.var=cand.t.var, CUSTOM.IND=CUSTOM.IND, prior.t.var=gstructgrouppars[[g]]$gcov, OffTerm=OffTerm, prior.mu=gstructgrouppars[[g]]$gmeans, prodlist=prodlist) ret[[i]] <- gtheta0[[1L]] } ret <- lapply(ret, function(x){ attr(x, "Proportion Accepted") <- attr(x, "log.lik") <- attr(x, "log.lik_full") <- NULL x }) return(ret) } SEM.stores <- matrix(0, SEMCYCLES, nfullpars) SEM.stores2 <- vector('list', SEMCYCLES) conv <- 0L k <- 1L gamma <- .2 longpars <- rep(NA,nfullpars) for(g in seq_len(ngroups)){ for(i in seq_len(J+1L)) longpars[pars[[g]][[i]]@parnum] <- pars[[g]][[i]]@par if(RAND){ for(i in seq_len(length(random))) longpars[random[[i]]@parnum] <- random[[i]]@par } if(LRPARS) longpars[lrPars@parnum] <- lrPars@par if(LR.RAND){ for(i in seq_len(length(lr.random))) longpars[lr.random[[i]]@parnum] <- lr.random[[i]]@par } } names(longpars) <- names(estpars) stagecycle <- 1L converge <- TRUE L <- Ls$L redun_constr <- Ls$redun_constr estindex_unique <- index[estpars & !redun_constr] if(any(attr(L, 'diag')[!estpars] > 0L)){ redindex <- index[!estpars] stop('Constraint applied to fixed parameter(s) ', paste(paste0(redindex[attr(L, 'diag')[!estpars] > 0L]), ''), ' but should only be applied to estimated parameters. Please fix!', call.=FALSE) } tmp <- Matrix::rowSums(L) tmp[tmp == 0L] <- 1L check <- as.numeric(L %*% longpars) / tmp longpars[estpars] <- check[estpars] LBOUND <- UBOUND <- c() for(g in seq_len(ngroups)){ for(i in seq_len(J+1L)){ LBOUND <- c(LBOUND, pars[[g]][[i]]@lbound) UBOUND <- c(UBOUND, pars[[g]][[i]]@ubound) } } if(RAND){ for(i in seq_len(length(random))){ LBOUND <- c(LBOUND, random[[i]]@lbound) UBOUND <- c(UBOUND, random[[i]]@ubound) } } if(LRPARS){ LBOUND <- c(LBOUND, lrPars@lbound) UBOUND <- c(UBOUND, lrPars@ubound) } if(LR.RAND){ for(i in seq_len(length(lr.random))){ LBOUND <- c(LBOUND, lr.random[[i]]@lbound) UBOUND <- c(UBOUND, lr.random[[i]]@ubound) } } aveAR <- vector('list', NCYCLES) control$fnscale <- -1 if(is.null(control$maxit)) control$maxit <- 15 if(list$Moptim == 'BFGS') if(any(is.finite(LBOUND[estindex_unique]) | is.finite(UBOUND[estindex_unique]))) list$Moptim <- 'L-BFGS-B' for(g in seq_len(ngroups)) for(i in seq_len(J)) pars[[g]][[i]]@dat <- Data$fulldata[[g]][, c(itemloc[i]:(itemloc[i+1L] - 1L))] Draws.time <- Mstep.time <- 0 for(cycles in seq_len(NCYCLES + BURNIN + SEMCYCLES)) { if(cycles == BURNIN + 1L) stagecycle <- 2L if(stagecycle == 3L) gamma <- gain_fun(gain, t = cycles - SEMCYCLES - BURNIN - 1L) if(cycles == (BURNIN + SEMCYCLES + 1L)){ stagecycle <- 3L longpars <- colMeans(SEM.stores) if(!no_stage_3){ Tau <- SEM.stores2[[1L]]/SEMCYCLES if(SEMCYCLES > 1L){ for(i in 2L:SEMCYCLES) Tau <- Tau + SEM.stores2[[i]]/SEMCYCLES } } k <- KDRAWS gamma <- 0 } if(list$SE) longpars <- list$startlongpars tmp <- MHRM.reloadPars(longpars=longpars, pars=pars, gstructgrouppars=gstructgrouppars, ngroups=ngroups, J=J, has_graded=has_graded, cycles=cycles, LRPARS=LRPARS, LR.RAND=LR.RAND, RANDSTART=RANDSTART, RAND=RAND, lrPars=lrPars, lr.random=lr.random, random=random) pars <- with(tmp, pars) gstructgrouppars <- with(tmp, gstructgrouppars) lr.random <- with(tmp, lr.random) random <- with(tmp, random) lrPars <- with(tmp, lrPars) if(cycles == (BURNIN + SEMCYCLES + 1L) && no_stage_3){ cycles <- cycles + SEMCYCLES - 1L break } start <- proc.time()[3L] tmp <- MHRM.draws(pars=pars, lrPars=lrPars, lr.random=lr.random, random=random, gstructgrouppars=gstructgrouppars, RAND=RAND, LR.RAND=LR.RAND, RANDSTART=RANDSTART, gtheta0=gtheta0, OffTerm=OffTerm, J=J, N=N, cycles=cycles, itemloc=itemloc, CUSTOM.IND=CUSTOM.IND, Data=Data, nfact=nfact, prodlist=prodlist, ngroups=ngroups, MHDRAWS=MHDRAWS, BURNIN=BURNIN, SEMCYCLES=SEMCYCLES, cand.t.var=cand.t.var, list=list, verbose=verbose) lr.random <- with(tmp, lr.random) random <- with(tmp, random) gtheta0 <- with(tmp, gtheta0) OffTerm <- with(tmp, OffTerm) printmsg <- with(tmp, printmsg) if(stagecycle == 3L) aveAR[[cycles - SEMCYCLES - BURNIN]] <- tmp$AR cand.t.var <- with(tmp, cand.t.var) gthetatmp <- gtheta0 if(length(prodlist)) gthetatmp <- lapply(gtheta0, function(x, prodlist) prodterms(x, prodlist), prodlist=prodlist) if(all(!estpars)) break Draws.time <- Draws.time + proc.time()[3L] - start start <- proc.time()[3L] longpars0 <- longpars tmp <- MHRM.Mstep(pars=pars, gtheta=gthetatmp, lrPars=lrPars, OffTerm=OffTerm, longpars=longpars, USE.FIXED=USE.FIXED, list=list, ngroups=ngroups, LR.RAND=LR.RAND, DERIV=DERIV, gstructgrouppars=gstructgrouppars, nfact=nfact, CUSTOM.IND=CUSTOM.IND, RAND=RAND, cycles=cycles, lr.random=lr.random, RANDSTART=RANDSTART, random=random, J=J, LRPARS=LRPARS, L=L, has_graded=has_graded, constrain=constrain, estpars=estpars, redun_constr=redun_constr, estindex_unique=estindex_unique,LBOUND=LBOUND, UBOUND=UBOUND, gfulldata=Data$fulldata, itemloc=itemloc, control=control) grad <- tmp$grad ave.h <- tmp$hess correction <- tmp$correction if(stagecycle < 3L){ correction[correction > 1] <- 1 correction[correction < -1] <- -1 longpars[estindex_unique] <- longpars[estindex_unique] + gamma*correction if(any(longpars < LBOUND)) longpars[longpars < LBOUND] <- (longpars0[longpars < LBOUND] + LBOUND[longpars < LBOUND])/2 if(any(longpars > UBOUND)) longpars[longpars > UBOUND] <- (longpars0[longpars > UBOUND] + UBOUND[longpars > UBOUND])/2 if(length(constrain)) for(i in seq_len(length(constrain))) longpars[constrain[[i]][-1L]] <- longpars[constrain[[i]][1L]] if(verbose) cat(printmsg, sprintf(", Max-Change = %.4f", max(abs(gamma*correction))), sep='') if(stagecycle == 2L){ SEM.stores[cycles - BURNIN, ] <- longpars if(!no_stage_3) SEM.stores2[[cycles - BURNIN]] <- ave.h } Mstep.time <- Mstep.time + proc.time()[3L] - start next } Tau <- Tau + gamma*(ave.h - Tau) if(list$Moptim == 'NR1'){ correction <- try(solve(Tau, grad), TRUE) if(is(correction, 'try-error')){ Tau.inv <- MPinv(Tau) correction <- as.vector(grad %*% Tau.inv) } } else correction <- tmp$correction longpars[estindex_unique] <- longpars0[estindex_unique] + gamma*correction if(any(longpars < LBOUND)) longpars[longpars < LBOUND] <- (longpars0[longpars < LBOUND] + LBOUND[longpars < LBOUND])/2 if(any(longpars > UBOUND)) longpars[longpars > UBOUND] <- (longpars0[longpars > UBOUND] + UBOUND[longpars > UBOUND])/2 if(length(constrain)) for(i in seq_len(length(constrain))) longpars[constrain[[i]][-1L]] <- longpars[constrain[[i]][1L]] if(verbose) cat(printmsg, sprintf(", gam = %.4f, Max-Change = %.4f", gamma, max(abs(gamma*correction))), sep='') if(hasConverged(longpars0, longpars, TOL)) conv <- conv + 1L else conv <- 0L if(!list$SE && conv >= 3L) break if(list$SE.type == 'MHRM' && list$SE && cycles >= (400L + BURNIN + SEMCYCLES) && conv >= 3L) break if(cycles == (BURNIN + SEMCYCLES + 1L)){ if(list$SE.type == 'MHRM'){ phi <- grad Phi <- ave.h } else phi <- Phi <- 0 } if(list$SE.type != 'none' && list$SE){ if(list$SE.type == 'MHRM'){ phi <- phi + gamma*(grad - phi) Phi <- Phi + gamma*(ave.h - outer(grad,grad) - Phi) } else if(list$SE.type == 'FMHRM'){ phi <- phi + 1/NCYCLES * grad Phi <- Phi + 1/NCYCLES * (ave.h - outer(grad,grad)) } } Mstep.time <- Mstep.time + proc.time()[3L] - start } if(verbose) cat('\r\n') if(cycles == NCYCLES + BURNIN + SEMCYCLES && !list$SE && !no_stage_3){ if(list$message) message('MHRM terminated after ', NCYCLES, ' iterations.') converge <- FALSE } if(list$SE) longpars <- list$startlongpars tmp <- MHRM.reloadPars(longpars=longpars, pars=pars, gstructgrouppars=gstructgrouppars, ngroups=ngroups, J=J, has_graded=has_graded, cycles=cycles, LRPARS=LRPARS, LR.RAND=LR.RAND, RANDSTART=RANDSTART, RAND=RAND, lrPars=lrPars, lr.random=lr.random, random=random) pars <- with(tmp, pars) gstructgrouppars <- with(tmp, gstructgrouppars) lr.random <- with(tmp, lr.random) random <- with(tmp, random) lrPars <- with(tmp, lrPars) fail_invert_info <- TRUE if(list$SE){ info <- Phi + outer(phi,phi) acov <- try(solve(info), TRUE) if(is(acov, 'try-error')){ if(list$warn) warning('Could not invert information matrix; may not be identified.', call.=FALSE) } else { fail_invert_info <- FALSE SEtmp <- diag(acov) if(any(SEtmp < 0)) SEtmp[SEtmp < 0 ] <- NaN SEtmp <- sqrt(SEtmp) SE <- rep(NA, length(longpars)) SE[estindex_unique] <- SEtmp if(length(constrain) > 0L) for(i in seq_len(length(constrain))) SE[constrain[[i]][-1L]] <- SE[constrain[[i]][1L]] for(g in seq_len(ngroups)){ for(i in seq_len(J+1L)) pars[[g]][[i]]@SEpar <- SE[pars[[g]][[i]]@parnum] } if(RAND){ for(i in seq_len(length(random))) random[[i]]@SEpar <- SE[random[[i]]@parnum] } if(LRPARS){ lrPars@SEpar <- SE[lrPars@parnum] } if(LR.RAND){ for(i in seq_len(length(lr.random))) lr.random[[i]]@SEpar <- SE[lr.random[[i]]@parnum] } } } if(any(estpars)){ names(correction) <- names(estpars)[estindex_unique] if(list$SE) info <- nameInfoMatrix(info=info, correction=correction, L=L, npars=ncol(L)) else info <- matrix(0, 1L, 1L) } else { info <- matrix(0, 1L, 1L) cycles <- BURNIN + SEMCYCLES } ret <- list(pars=pars, cycles = cycles-BURNIN-SEMCYCLES, info=if(list$expl) matrix(0) else as.matrix(info), correction=correction, longpars=longpars, converge=converge, SElogLik=0, cand.t.var=cand.t.var, L=L, random=random, lrPars=lrPars, lr.random=lr.random, aveAR=colMeans(do.call(rbind, aveAR)), time=c(MH_draws = as.numeric(Draws.time), Mstep=as.numeric(Mstep.time)), estindex_unique=estindex_unique, shortpars=longpars[estpars & !redun_constr], fail_invert_info=fail_invert_info, Prior=vector('list', ngroups), collectLL=NaN) ret }
compute_stepdownmaxT = function (distribution, alternative) { alternative <- match.arg(alternative, c("two.sided","greater","less")) switch (alternative, "greater" = { test_rank <- rank(-distribution[1,]) test_order <- sort(unique(test_rank)) p_corrected <- lapply(seq_along(test_order),function(testi){ ri <- test_order[testi] coltesti <- which(test_rank==ri) coldistri <-which(test_rank>=ri) pvali <- sapply(distribution[1,coltesti], function(stati){ di = apply(distribution[,which(test_rank>=ri),drop=F],1,max) compute_pvalue(di, stat = stati,alternative= alternative)}) cbind(cols = coltesti, pvalues = pvali) }) }, "less" = { test_rank <- rank(distribution[1,]) test_order <- sort(unique(test_rank)) p_corrected <- lapply(seq_along(test_order),function(testi){ ri <- test_order[testi] coltesti <- which(test_rank==ri) coldistri <-which(test_rank>=ri) pvali <- sapply(distribution[1,coltesti], function(stati){ di = apply(distribution[,which(test_rank>=ri),drop=F],1,min) compute_pvalue(di, stat = stati,alternative= alternative)}) cbind(cols = coltesti, pvalues = pvali) }) }, "two.sided" = { test_rank <- rank(-abs(distribution[1,])) test_order <- sort(unique(test_rank)) p_corrected <- lapply(seq_along(test_order),function(testi){ ri <- test_order[testi] coltesti <- which(test_rank==ri) coldistri <-which(test_rank>=ri) pvali <- sapply(distribution[1,coltesti], function(stati){ di = apply(abs(distribution[,which(test_rank>=ri),drop=F]),1,max) compute_pvalue(di, stat = stati,alternative= alternative)}) cbind(cols = coltesti, pvalues = pvali) }) } ) p_corrected = do.call("rbind",p_corrected) p_corrected = cbind(p_corrected,cummax = cummax(p_corrected[,2])) p_corrected = p_corrected[order(p_corrected[,1]),] out <- list(main = cbind(statistic = distribution[1, ], pvalue = p_corrected[,3])) return(out) }
context("Auxiliary functions") test_that("Output is as expected", { expect_equal(currentGitHubRef("GuangchuangYu/badger"), "GuangchuangYu/badger") expect_equal(assembleBadgeOutput("X", "Y", "Z"), "[![Z](https://X)](https://Y)") })
'small_vgm'
l_navgraph <- function(data, separator=":", graph=NULL, ...) { if(!is.data.frame(data)) { data <- as.data.frame(data) } tt <- l_toplevel() if (is.null(graph)) { G <- completegraph(nodes=names(data)) LG <- linegraph(G, sep=separator) LGnot <- loon::complement(LG) cmb <- utils::combn(names(data),2) CompG <- completegraph(nodes=apply(cmb[,cmb[1,]!=cmb[2,]],2, FUN=function(x)paste(x, collapse=separator))) g <- l_graph(LG, parent=tt) } else { g <- l_graph(graph, parent=tt) } tktitle(tt) <- paste("loon navigation graph", "--path:", g) gs <- l_graphswitch(activewidget=g, parent=tt) if (is.null(graph)) { l_graphswitch_add(gs, graph=LG, label="3d transition") l_graphswitch_add(gs, graph=LGnot, label="4d transition") l_graphswitch_add(gs, graph=CompG, label="3d and 4d transition") } else { gid <- l_graphswitch_add(gs, graph=graph, label="user specified") } tkpack(gs, side='right', fill='y') tkpack(g, side='right', fill='both', expand=TRUE) navigator <- l_navigator_add(g, label="default navgraph") context <- l_context_add_geodesic2d(navigator, data=data, separator=separator) plot <- strsplit(context['command'], " ", fixed = TRUE)[[1]][1] class(plot) <- c("l_plot", "loon") args <- list(...) if (length(args)>0) { l_configure(plot, ...) } navgraph <- list(graph=g, plot=plot, graphswitch=gs, navigator=navigator, context=context) class(navgraph) <- c("l_navgraph", "l_compound", "loon") navgraph } l_getPlots.l_navgraph <- function(target){ list(graph = target$graph, plot = target$plot) }
knitr::opts_chunk$set( collapse = TRUE, comment = " ) library(rviewgraph) oldgui = rViewGraph(sample(1:10,10,TRUE),sample(1:10,10,TRUE)) is.null(oldgui) if (interactive() && !is.null(oldgui)) { oldgui.stop() oldgui.hide() } v = vg() is.null(v) edges = function(g) { dim(g$getEdges())[1] / 2 } logProb = function(g,a) { -edges(g)*a } flip = function(g,x,y) { if (g$connects(x,y)) g$disconnect(x,y) else g$connect(x,y) } step = function(g, a, t = 1) { delta = logProb(g,a) x = sample(g$getVertices(),2,replace=FALSE) g$colour(x,"red") Sys.sleep(t/3) flip(g,x[1],x[2]) Sys.sleep(t/3) delta = logProb(g,a) - delta if (log(runif(1)) > delta) flip(g,x[1],x[2]) g$colour(x) Sys.sleep(t/3) } set.seed(1) n = 20 v$add(1:n) pen = 0 if (interactive()) { wait = 1 s = 50 } else { wait = 0 s = 1000 for (i in 1:s) step(v,pen,wait) } medge = 0 for (i in 1:s) { step(v,pen,wait) medge = medge + edges(v) } c(medge/s, n*(n-1)/4) pen = 1 medge = 0 for (i in 1:s) { step(v,pen,wait) medge = medge + edges(v) } medge/s pen = -1 medge = 0 for (i in 1:s) { step(v,pen,wait) medge = medge + edges(v) } medge/s
bbd_prob <- function(t, a0, b0, lambda1, lambda2, mu2, gamma, A, B, nblocks=256, tol=1e-12, computeMode=0, nThreads=4, maxdepth=400) { if (a0 < 0) stop("a0 cannot be negative.") if (a0 > A) stop("a0 cannot be bigger than A.") if (b0 < 0) stop("b0 cannot be negative.") if (b0 > B) stop("b0 cannot be bigger than B.") if (t < 0) stop("t cannot be negative.") if (t < tol) { res = matrix(0, nrow=A-a0+1, ncol=B+1) res[1,b0+1] = 1 colnames(res) = 0:B rownames(res) = a0:A return(res) } grid = expand.grid(a0:A,0:(B+maxdepth)) l1 = matrix(mapply(lambda1, grid[,1], grid[,2]), ncol=B+1+maxdepth) l2 = matrix(mapply(lambda2, grid[,1], grid[,2]),ncol=B+1+maxdepth) m2 = matrix(mapply(mu2, grid[,1], grid[,2]), ncol=B+1+maxdepth) g = matrix(mapply(gamma, grid[,1], grid[,2]), ncol=B+1+maxdepth) xf <- function(a,b){ if (b==0) x = 1 else x = - l2[a-a0+1,b]*m2[a-a0+1,b+1] return(x) } x = matrix(mapply(xf, grid[,1], grid[,2]), nrow=B+1+maxdepth, byrow=TRUE) yf <- function(a,b) { y = l1[a-a0+1,b+1] + l2[a-a0+1,b+1] + m2[a-a0+1,b+1] + g[a-a0+1,b+1] return(y) } y = matrix(mapply(yf, grid[,1], grid[,2]), nrow=B+1+maxdepth, byrow=TRUE) res = matrix(bbd_lt_invert_Cpp(t, a0, b0, l1, l2, m2, g, x, y, A, B+1, nblocks, tol, computeMode, nThreads, maxdepth), nrow=(A-a0+1), byrow=T) colnames(res) = 0:B rownames(res) = a0:A return(abs(res)) }
context("`dat` object getters and setters") test_that("`dat` getters and setter", { dat <- list( attr = list( active = rbinom(100, 1, 0.9) ), epi = list(), param = list(), init = list(), control = list( nsteps = 150 ) ) dat <- add_attr(dat, "age") expect_equal(dat$attr$age, rep(NA, length(dat$attr$active))) expect_error(dat <- add_attr(dat, "age")) expect_error(set_attr(dat, "age", 4)) new_ages <- runif(length(dat$attr$active)) dat <- set_attr(dat, "age", new_ages) expect_equal(dat$attr$age, new_ages) dat <- set_attr(dat, "age2", new_ages) expect_silent(dat <- set_attr(dat, "age2", rep(new_ages, 2), override.length.check = TRUE)) expect_length(get_attr(dat, "age2"), 2 * length(new_ages)) expect_equal(get_attr(dat, "age"), new_ages) expect_equal(get_attr(dat, "age", c(1, 5)), new_ages[c(1, 5)]) expect_equal(get_attr(dat, "age", new_ages > 0.5), new_ages[new_ages > 0.5]) expect_error(get_attr(dat, "age_absent")) expect_null(get_attr(dat, "age_absent", override.null.error = TRUE)) expect_error(get_attr(dat, "age", c(1, 1000))) expect_error(get_attr(dat, "age", c(TRUE, FALSE))) expect_silent( dat <- set_attr(dat, "status", rbinom(length(dat$attr$active), 1, 0.4)) ) expect_silent(dat <- set_attr(dat, "age", 2, posit_ids = 1:4)) expect_equal(get_attr(dat, "age", 1:4), rep(2, 4)) posit_ids <- c(rep(TRUE, 4), rep(FALSE, length(dat$attr$active) - 4)) expect_silent(dat <- set_attr(dat, "age", 6, posit_ids = posit_ids)) expect_equal(get_attr(dat, "age", 1:4), rep(6, 4)) expect_error(dat <- set_attr(dat, "age", c(1, 2), posit_ids = 1:4)) expect_error(dat <- set_attr(dat, "age", 1, posit_ids = c(1, 1000))) expect_error(dat <- set_attr(dat, "age", 1, posit_ids = c("a", "b"))) expect_error(dat <- set_attr(dat, "age", c(1, 2), posit_ids = c(TRUE, FALSE))) expect_equal(get_attr_list(dat), dat$attr) expect_equal(get_attr_list(dat, c("age", "status")), dat$attr[c("age", "status")]) expect_error(get_attr_list(dat, "sex")) expect_error(dat <- append_attr(dat, "status", rbinom(length(dat$attr$active), 10))) expect_error(dat <- append_attr(dat, "status", 1, -1)) dat <- append_attr(dat, "active", 1, 10) expect_length(get_attr(dat, "active"), 110) dat <- append_attr(dat, "status", sample(0:1, 10, TRUE), 10) expect_length(get_attr(dat, "status"), 110) dat <- add_epi(dat, "i") expect_equal(dat$epi$i, rep(NA, dat$control$nsteps)) expect_error(set_epi(dat, "i", c(1, 4), 4)) dat <- set_epi(dat, "i", 150, 10) expect_equal(dat$epi$i[150], 10) dat <- set_epi(dat, "s", 110, 10) expect_equal(dat$epi$s[110], 10) expect_equal(get_epi(dat, "i", c(1, 100)), dat$epi$i[c(1, 100)]) expect_equal(get_epi(dat, "i", dat$epi$i > 0.5), dat$epi$i[dat$epi$i > 0.5]) expect_error(get_epi(dat, "age_absent")) expect_null(get_epi(dat, "age_absent", override.null.error = TRUE)) expect_error(get_epi(dat, "i", c(1, 300))) expect_error(get_epi(dat, "i", c(TRUE, FALSE))) dat$control$nsteps <- 200 dat <- set_epi(dat, "i", 160, 8) expect_length(dat$epi$i, 200) expect_equal(get_epi_list(dat), dat$epi) expect_equal(get_epi_list(dat, c("i", "s")), dat$epi[c("i", "s")]) expect_error(get_epi_list(dat, "r")) dat <- add_param(dat, "x") dat <- add_init(dat, "x") dat <- add_control(dat, "x") expect_equal(dat$param$x, NA) expect_equal(dat$init$x, NA) expect_equal(dat$control$x, NA) expect_silent(dat <- set_param(dat, "y", 4)) expect_silent(dat <- set_init(dat, "y", 4)) expect_silent(dat <- set_control(dat, "y", 4)) dat <- set_param(dat, "y", 5) dat <- set_init(dat, "y", 5) dat <- set_control(dat, "y", 5) expect_equal(dat$param$y, 5) expect_equal(dat$init$y, 5) expect_equal(dat$control$y, 5) expect_equal(get_param(dat, "y"), 5) expect_equal(get_init(dat, "y"), 5) expect_equal(get_control(dat, "y"), 5) expect_error(get_param(dat, "z")) expect_error(get_init(dat, "z")) expect_error(get_control(dat, "z")) expect_null(get_param(dat, "z", override.null.error = TRUE)) expect_null(get_init(dat, "z", override.null.error = TRUE)) expect_null(get_control(dat, "z", override.null.error = TRUE)) expect_equal(get_param_list(dat), dat$param) expect_equal(get_init_list(dat), dat$init) expect_equal(get_control_list(dat), dat$control) expect_equal(get_param_list(dat, "x"), dat$param["x"]) expect_equal(get_init_list(dat, "x"), dat$init["x"]) expect_equal(get_control_list(dat, "x"), dat$control["x"]) expect_error(get_param_list(dat, "z")) expect_error(get_init_list(dat, "z")) expect_error(get_control_list(dat, "z")) }) test_that("Net core attributes", { dat <- list( attr = list(), epi = list(), param = list(), init = list(), control = list( nsteps = 150 ) ) dat <- append_core_attr(dat, at = 1, n.new = 100) expect_equal(get_attr(dat, "active"), rep(1, 100)) expect_equal(get_attr(dat, "unique_id"), 1:100) dat <- delete_attr(dat, 21:30) dat <- append_core_attr(dat, at = 2, n.new = 100) expect_equal(get_attr(dat, "active"), rep(1, 190)) expect_equal(get_attr(dat, "unique_id"), c(1:20, 31:200)) expect_type(get_attr(dat, "unique_id"), "integer") expect_equal( get_attr(dat, "unique_id"), get_unique_ids(dat, seq_along(get_attr(dat, "active"))) ) expect_equal( seq_along(get_attr(dat, "active")), get_posit_ids(dat, get_attr(dat, "unique_id")) ) expect_warning(get_posit_ids(dat, 25:35)) })
plot.multicut <- function(x, which = NULL, cut, sort, las, ylab="Relative abundance", xlab="Strata", show_I=TRUE, show_S=TRUE, hr=TRUE, tick=TRUE, theme, mar=c(5, 4, 4, 4) + 0.1, bty="o", lower=0, upper=1, pos=0, horizontal=TRUE, ...) { if (missing(las)) las <- if (horizontal) 1 else 2 if (pos < -1 || pos > 1) stop("BTW, pos must be in [-1, 1]") if (lower < 0 || lower > 1) stop("BTW, lower must be in [0, 1]") if (upper < lower || lower > 1) stop("BTW, upper must be in [lower, 1]") if (missing(cut)) cut <- getOption("ocoptions")$cut if (missing(sort)) sort <- getOption("ocoptions")$sort if (is.logical(sort)) { sort_r <- sort[1L] sort_c <- sort[1L] } else { sort_r <- 1 %in% sort sort_c <- 2 %in% sort } if (!is.null(which)) { x$species <- x$species[which] } ss <- summary(x) xx <- ss$summary bp <- ss$mu bp <- t(apply(bp, 1, function(z) (z-min(z)) / max(z-min(z)))) bp01 <- ss$bestpart if (!any(xx$logLR >= cut)) { warning("All logLR < cut: cut ignored") rkeep <- rep(TRUE, nrow(xx)) } else { rkeep <- xx$logLR >= cut } if (sort_r) { bp <- bp[attr(ss$bestpart, "row.order")[rkeep],,drop=FALSE] bp01 <- bp01[attr(ss$bestpart, "row.order")[rkeep],,drop=FALSE] xx <- xx[attr(ss$bestpart, "row.order")[rkeep],,drop=FALSE] } if (sort_c) { dm <- diag(1, ncol(bp), ncol(bp)) for (i in seq_len(ncol(bp))) { for (j in i:ncol(bp)) { dm[i,j] <- dm[j,i] <- sum(bp[,i] * bp[,j]) / nrow(bp) } } corder <- hclust(as.dist(1 - dm), method = "ward.D2")$order bp <- bp[,corder,drop=FALSE] bp01 <- bp01[,corder,drop=FALSE] } n <- nrow(bp) p <- ncol(bp) Cols <- occolors(theme)(100) lower <- min(max(lower, 0), 1) op <- par(las=las, mar=mar) on.exit(par(op)) if (horizontal) { plot(0, xlim=c(0, p), ylim=c(n, 0), type="n", axes=FALSE, ann=FALSE, ...) title(ylab=ylab, xlab=xlab) axis(1, at=seq_len(p)-0.5, lwd=0, lwd.ticks=1, labels=colnames(bp), tick=tick, ...) axis(2, at=seq_len(n)-0.5, lwd=0, lwd.ticks=1, labels=rownames(bp), tick=tick, ...) if (show_S) axis(3, at=seq_len(ncol(bp))-0.5, labels=colSums(bp01), tick=FALSE, ...) if (show_I) axis(4, at=seq_len(n)-0.5, labels=format(round(xx$I, 2), nsmall=2), tick=FALSE, ...) if (hr) abline(h=1:n-0.5, col=Cols[1L], lwd=0.45) } else { plot(0, ylim=c(0, p), xlim=c(n, 0), type="n", axes=FALSE, ann=FALSE, ...) title(ylab=xlab, xlab=ylab) axis(2, at=seq_len(p)-0.5, lwd=0, lwd.ticks=1, labels=colnames(bp), tick=tick, ...) axis(1, at=seq_len(n)-0.5, lwd=0, lwd.ticks=1, labels=rownames(bp), tick=tick, ...) if (show_S) axis(4, at=seq_len(ncol(bp))-0.5, labels=colSums(bp01), tick=FALSE, ...) if (show_I) axis(3, at=seq_len(n)-0.5, labels=format(round(xx$I, 2), nsmall=2), tick=FALSE, ...) if (hr) abline(v=1:n-0.5, col=Cols[1L], lwd=0.45) } for (i in seq_len(n)) { for (j in seq_len(p)) { Max <- 0.5*xx$I[i]+0.5 Min <- 0.5*(1-xx$I[i]) h0 <- bp[i,j] * (Max - Min) + Min h <- h0 * c(1 - lower) + lower ColID <- as.integer(pmin(pmax(1, floor(h0 * 100) + 1), 100)) adj <- h * -pos if (horizontal) { polygon( c(0, 1, 1, 0) + j - 1, upper * 0.5 * (adj + c(-h, -h, h, h)) + i - 0.5, col=Cols[ColID], border=Cols[ColID], lwd=0.5) } else { polygon( upper * 0.5 * (adj + c(-h, -h, h, h)) + i - 0.5, c(0, 1, 1, 0) + j - 1, col=Cols[ColID], border=Cols[ColID], lwd=0.5) } } } box(col="grey", bty=bty) invisible(list(summary=xx, bestpart=bp01, mu=bp)) }
NULL NULL setMethod("t", signature(x="madness"), function(x) { xtag <- x@xtag val <- t(x@val) dvdx <- .do_commutator(val,x@dvdx) vtag <- paste0('t(',x@vtag,')') varx <- x@varx new("madness", val=val, dvdx=dvdx, vtag=vtag, xtag=xtag, varx=varx) }) setMethod("tril", signature(x="madness"), function(x,k=0) { xtag <- x@xtag val <- x@val takeus <- row(val) >= col(val) - k val[!takeus] <- 0 dvdx <- x@dvdx dvdx[which(!takeus),] <- 0 vtag <- paste0('tril(',x@vtag,', ',k,')') varx <- x@varx new("madness", val=val, dvdx=dvdx, vtag=vtag, xtag=xtag, varx=varx) }) setMethod("triu", signature(x="madness"), function(x,k=0) { xtag <- x@xtag val <- x@val takeus <- row(val) <= col(val) - k val[!takeus] <- 0 dvdx <- x@dvdx dvdx[which(!takeus),] <- 0 vtag <- paste0('triu(',x@vtag,', ',k,')') varx <- x@varx new("madness", val=val, dvdx=dvdx, vtag=vtag, xtag=xtag, varx=varx) }) setMethod("dim<-", signature(x="madness",value="ANY"), function(x,value) { xtag <- x@xtag val <- x@val dim(val) <- value dvdx <- x@dvdx vtag <- paste0('reshape(',x@vtag,', ', as.character(enquote(value))[2], ')') varx <- x@varx new("madness", val=val, dvdx=dvdx, vtag=vtag, xtag=xtag, varx=varx) }) setMethod("[", signature(x="madness",i="ANY",j="ANY"), function(x,i,j,...,drop) { getidx <- vector(length=length(x@val)) dim(getidx) <- dim(x@val) getidx[i,j,...] <- TRUE val <- x@val[i,j,...,drop=FALSE] dvdx <- x@dvdx[which(getidx),,drop=FALSE] retv <- new("madness", val=val, dvdx=dvdx, xtag=x@xtag, vtag=paste0(x@vtag,'[...]'), varx=x@varx) }) setMethod("[", signature(x="madness",i="ANY",j="missing"), function(x,i,j,...,drop) { getidx <- vector(length=length(x@val)) dim(getidx) <- dim(x@val) getidx[i,...] <- TRUE val <- x@val[i,...,drop=FALSE] dvdx <- x@dvdx[which(getidx),,drop=FALSE] retv <- new("madness", val=val, dvdx=dvdx, xtag=x@xtag, vtag=paste0(x@vtag,'[...]'), varx=x@varx) }) aperm.madness <- function(a, perm=NULL, resize=TRUE, ...) { xtag <- a@xtag val <- aperm(a@val,perm=perm,resize=resize) oldids <- array(1:length(a@val),dim=dim(a@val)) prmids <- aperm(oldids,perm=perm,resize=resize) dvdx <- a@dvdx[as.numeric(prmids),,drop=FALSE] vtag <- paste0('aperm(',a@vtag,', ',as.character(enquote(perm))[2],')') varx <- a@varx new("madness", val=val, dvdx=dvdx, vtag=vtag, xtag=xtag, varx=varx) }
context("METAR cloud coverage") x1 <- "EPWA 281830Z 18009KT 140V200 9999 SCT037 03/M01 Q1008 NOSIG" x2 <- "CYUL 281800Z 13008KT 30SM BKN240 01/M06 A3005 RMK CI5 SLP180" x3 <- "201711271930 METAR LEMD 271930Z 02002KT CAVOK 04/M03 Q1025 NOSIG= NOSIG=" x4 <- "201905121244 METAR KDCA 121244Z 05010KT 1 3/4SM R01/6000VP6000FT -RA BR OVC007 14/12 A2978 RMK AO2 P0002 T01390122" x5 <- "201905121244 SPECI KDCA 121244Z 05010KT 2 1/4SM R01/6000VP6000FT -RA BR OVC007 14/12 A2978 RMK AO2 P0002 T01390122" x6 <- "CYWG 172000Z 30015G25KT 3/4SM R36/4000FT/D -SN BLSN BKN008 OVC040 M05/M08 A2992 REFZRA WS RWY36 RMK SF5NS3 SLP134" x7 <- "METAR KJFK 282355Z AUTO 13009KT 10SM -RA SCT028 SCT035 BKN079 23/20 A2972 RMK T02300200 LTG DSNT SE-SW! MADISHF" x8 <- "RJTT 192000Z 36009KT 9999 FEW025 BKN/// 23/19 Q1013 NOSIG RMK 1SC025 A2993" x <- c(x1, x2, x3, x4, x5, x6, x7, x8) dx <- data.frame(metar = x) test_that("Check cloud coverage output", { expect_equal(metar_cloud_coverage("EPWA 281830Z 18009KT 140V200 9999 SCT037 03/M01 Q1008 NOSIG"), "Scattered (3-4 oktas) at 3700 ft (1127.76 m)") expect_equal(metar_cloud_coverage("CYUL 281800Z 13008KT 30SM BKN240 01/M06 A3005 RMK CI5 SLP180"), "Broken (5-7 oktas) at 24000 ft (7315.2 m)") expect_equal(metar_cloud_coverage("METAR CYUL 281800Z 13008KT 30SM BKN240 01/M06 A3005 RMK CI5 SLP180"), "Broken (5-7 oktas) at 24000 ft (7315.2 m)") expect_equal(metar_cloud_coverage("SPECI CYUL 281800Z 13008KT 30SM BKN240 01/M06 A3005 RMK CI5 SLP180"), "Broken (5-7 oktas) at 24000 ft (7315.2 m)") expect_equal(metar_cloud_coverage(x7), "Scattered (3-4 oktas) at 2800, 3500 ft (853.44, 1066.8 m), Broken (5-7 oktas) at 7900 ft (2407.92 m)") expect_equal(metar_cloud_coverage(x8), "Few (1-2 oktas) at 2500 ft (762 m), Broken clouds at NaN ft ( m)") expect_equal(metar_cloud_coverage("201711271930 METAR LEMD 271930Z 02002KT CAVOK 04/M03 Q1025 NOSIG= NOSIG="), "") expect_equal(metar_cloud_coverage("201711271930 SPECI LEMD 271930Z 02002KT CAVOK 04/M03 Q1025 NOSIG= NOSIG="), "") expect_is(metar_cloud_coverage(x), "character") expect_is(metar_cloud_coverage(dx$metar), "character") }) x8 <- "SPECI CYUL 281800Z 13008KT 30SM BKN24 01/M06 A3005 RMK CI5 SLP180" x9 <- "METAR CYUL 281800Z 13008KT 30SM BKN24 BKN300 01/M06 A3005 RMK CI5 SLP180" x10 <- "SPECI CYUL 281800Z 13008KT 30SM BKNBKN 01/M06 A3005 RMK CI5 SLP180" test_that("Incorrect METAR reports", { expect_equal(metar_cloud_coverage(x8), "") expect_equal(metar_cloud_coverage(x9), "Broken (5-7 oktas) at 30000 ft (9144 m)") expect_equal(metar_cloud_coverage(x10), "") }) dx <- data.frame(metar = c(x1, x2, x3, x4, x5, x6, x7, x8, x9, x10)) test_that("Correct and incorrect METAR reports", { expect_is(metar_cloud_coverage(dx$metar), "character") expect_equal(metar_cloud_coverage(dx$metar)[2], "Broken (5-7 oktas) at 24000 ft (7315.2 m)") expect_equal(metar_cloud_coverage(dx$metar)[10], "") }) dxt <- tibble::as_tibble(dx) test_that("Check invalid input format", { expect_error(metar_cloud_coverage(dx)) expect_error(metar_cloud_coverage(dxt)) })
plot.plsreg1 <- function(x, what = "variables", comps = c(1,2), where=c("t","t"), cex = 1, col.xlabels = " yfont=2, pos=NULL, offset=0.1, col.xarrows = " lwd=3, length = 0, angle = 0, col.points = " show.names = FALSE, xpd=TRUE, xlab = NULL, ylab = NULL, main = NULL, col.main="gray35", cex.main=1.2, col.axis = "gray40", show.grid = TRUE, col.grid = "gray95", ...) { if (!is.numeric(comps) || length(comps)>2) comps = 1:2 nc = ncol(x$x.scores) if (!comps[1] %in% 1:nc || !(comps[2] %in% 1:nc)) stop("\nInvalid vector of components") k1 = comps[1] k2 = comps[2] p = nrow(x$cor.xyt) if (what == "variables") { z = seq(0, 2*pi, l=100) op = par(oma = rep(0,4), mar = c(4,3,3,2), pty = "s", xpd=xpd) plot.new() plot.window(xlim=c(-1.1,1.1), ylim=c(-1.1,1.1), asp=1) axis(side=1, labels=FALSE, lwd=0, lwd.ticks=1, col="gray75") mtext(seq(-1, 1, 0.5), side=1, at=seq(-1, 1, 0.5), line=0.5, col=col.axis, cex=0.8) axis(side=2, labels=FALSE, lwd=0, lwd.ticks=1, col="gray75") mtext(seq(-1, 1, 0.5), side=2, at=seq(-1, 1, 0.5), line=0.7, col=col.axis, cex=0.8, las=2) box(col="gray70") if (show.grid) abline(h=seq(-1, 1, 0.5), v=seq(-1, 1, 0.5), col=col.grid, xpd=FALSE) if (is.null(xlab)) xlab = paste("axis", k1) if (is.null(ylab)) ylab = paste("axis", k2) mtext(xlab, side=1, at=0, line=2.5, col=col.axis) mtext(ylab, side=2, at=0, line=2.5, col=col.axis) lines(cos(z), sin(z), lwd=2, col="gray90") segments(-1, 0, 1, 0, col="gray90") segments(0, -1, 0, 1, col="gray90") col.arrows = c(rep(col.xarrows, p-1), col.yarrows) arrows(x0=rep(0,p), y0=rep(0,p), x1=x$cor.xyt[,k1], y1=x$cor.xyt[,k2], length=length, angle=angle, lwd=lwd, col=col.arrows) if (is.null(pos)) { neg <- x$cor.xyt[,k1] < 0 pos = rep(4, p) pos[neg] = 2 } col.labels = c(rep(col.xlabels, p-1), col.ylabel) fonts = c(rep(1,p-1), yfont) text(x$cor.xyt[,k1], x$cor.xyt[,k2], labels=rownames(x$cor.xyt), font=fonts, col=col.labels, cex=cex, pos=pos, offset=offset, ...) if (is.null(main)) main = "Circle of Correlations" mtext(main, side=3, at=par("usr")[1], line=1, adj=0, cex=cex.main, col=col.main) par(op) } else { if (!is.character(where) || length(where)>2) where = c("t","t") waux = paste(where, collapse="") tmp = grep(waux, c("tt", "tu", "uu")) if (length(tmp) == 0) stop("\nInvalid argument 'where'") ws = switch(as.character(tmp), '1' = cbind(x$x.scores[,k1], x$x.scores[,k2]), '2' = cbind(x$x.scores[,k1], x$y.scores[,k2]), '3' = cbind(x$y.scores[,k1], x$y.scores[,k2])) axlabs = switch(as.character(tmp), '1' = c("t","t"), '2' = c("t","u"), '3' = c("u","u")) if (is.null(xlab)) xlab = paste(axlabs[1], k1, sep="_") if (is.null(ylab)) ylab = paste(axlabs[2], k2, sep="_") plot(ws[,1], ws[,2], type="n", axes=FALSE, xlab=xlab, ylab=ylab, col.lab=col.axis) axis(side=1, col.axis=col.axis, col=col.axis, lwd=0.5, cex.axis=0.9) axis(side=2, las=2, col.axis=col.axis, col=col.axis, lwd=0.5, cex.axis=0.9) abline(h=0, v=0, col="gray90", lwd=2) box(col="gray70") if (!show.names) { points(ws[,1], ws[,2], col=col.points, pch=pch, bg=pt.bg, lwd=1.5, cex=cex) } else { text(ws[,1], ws[,2], labels=rownames(x$x.scores), col=col.xlabels, cex=cex, pos=pos, offset=offset, ...) } if (is.null(main)) main = "Map of Observations" mtext(main, side=3, at=par("usr")[1], line=1, adj=0, cex=cex.main, col=col.main) } }
library(testthat) library(rlang) context("MARS models") data("two_class_dat", package = "modeldata") test_that('check mars opt', { set.seed(36323) check_pruning <- function(x, ...) { rlang::eval_tidy(x$call$pmethod) == "backward" } mod_1 <- bagger( mpg ~ ., data = mtcars, base_model = "MARS", control = control_bag(var_imp = FALSE, extract = check_pruning), pmethod = "backward" ) expect_true(all(unlist(mod_1$model_df$extras))) expect_true(is.null(mod_1$imp)) check_folds <- function(x, ...) { rlang::eval_tidy(x$call$pmethod) == "backward" & rlang::eval_tidy(x$call$nfold) == "5" & is.null(x$glm.coefficients) } mod_2 <- bagger( mpg ~ ., data = mtcars, base_model = "MARS", control = control_bag(var_imp = TRUE, extract = check_folds), nfold = 5, pmethod = "backward" ) expect_true(all(unlist(mod_2$model_df$extras))) expect_true(inherits(mod_2$imp, "tbl_df")) check_classif <- function(x, ...) { !is.null(x$glm.coefficients) } if (compareVersion(as.character(getRversion()), "3.6.0") > 0) { expect_warning(RNGkind(sample.kind = "Rounding")) } set.seed(2234) expect_warning( mod_3 <- bagger( Class ~ ., data = two_class_dat, base_model = "MARS", control = control_bag(var_imp = TRUE, extract = check_classif) ), "fitted probabilities numerically 0" ) expect_true(all(unlist(mod_3$model_df$extras))) expect_true(inherits(mod_3$imp, "tbl_df")) }) test_that('check model reduction', { set.seed(36323) reduced <- bagger( mpg ~ ., data = mtcars, base_model = "MARS", times = 3 ) expect_false(is.matrix(reduced$model_df$model[[1]]$fit$y)) expect_equal(reduced$model_df$model[[1]]$fit$call, rlang::call2("dummy_call")) expect_equal(reduced$model_df$model[[1]]$fit$residuals, numeric(0)) set.seed(36323) full <- bagger( mpg ~ ., data = mtcars, base_model = "MARS", times = 3, control = control_bag(reduce = FALSE) ) expect_true(is.matrix(full$model_df$model[[1]]$fit$y)) expect_true(is.call(full$model_df$model[[1]]$fit$call)) expect_true(is.matrix(full$model_df$model[[1]]$fit$residuals)) }) test_that('check MARS parsnip interface', { set.seed(4779) expect_error( reg_mod <- bag_mars(num_terms = 5, prod_degree = 2) %>% set_engine("earth", times = 3) %>% set_mode("regression") %>% fit(mpg ~ ., data = mtcars), regexp = NA ) expect_true( all(purrr::map_lgl(reg_mod$fit$model_df$model, ~ inherits(.x, "model_fit"))) ) expect_true( all(purrr::map_lgl(reg_mod$fit$model_df$model, ~ inherits(.x$fit, "earth"))) ) expect_error( reg_mod_pred <- predict(reg_mod, mtcars[1:5, -1]), regexp = NA ) expect_true(tibble::is_tibble(reg_mod_pred)) expect_equal(nrow(reg_mod_pred), 5) expect_equal(names(reg_mod_pred), ".pred") set.seed(4779) expect_error( reg_class <- bag_mars(num_terms = 5, prod_degree = 2) %>% set_engine("earth", times = 3) %>% set_mode("classification") %>% fit(Class ~ ., data = two_class_dat), regexp = NA ) expect_true( all(purrr::map_lgl(reg_class$fit$model_df$model, ~ inherits(.x, "model_fit"))) ) expect_true( all(purrr::map_lgl(reg_class$fit$model_df$model, ~ inherits(.x$fit, "earth"))) ) expect_error( reg_class_pred <- predict(reg_class, two_class_dat[1:5, -3]), regexp = NA ) expect_true(tibble::is_tibble(reg_class_pred)) expect_equal(nrow(reg_class_pred), 5) expect_equal(names(reg_class_pred), ".pred_class") expect_error( reg_class_prob <- predict(reg_class, two_class_dat[1:5, -3], type = "prob"), regexp = NA ) expect_true(tibble::is_tibble(reg_class_prob)) expect_equal(nrow(reg_class_prob), 5) expect_equal(names(reg_class_prob), c(".pred_Class1", ".pred_Class2")) expect_output(print(bag_mars(num_terms = 3))) expect_equal(update(bag_mars(), num_terms = 3), bag_mars(num_terms = 3)) expect_equal(update(bag_mars(), prod_degree = 1), bag_mars(prod_degree = 1)) expect_equal(update(bag_mars(), prune_method = "none"), bag_mars(prune_method = "none")) })
ir_df_us <- function(quandlkey = quandlkey, ir.sens = 0.01) { if (!requireNamespace("Quandl", quietly = TRUE)) { stop("Package \"Quandl\" needed for this function to work. Please install it.", call. = FALSE ) } Quandl::Quandl.api_key(quandlkey) fedsfund <- tidyquant::tq_get("FED/RIFSPFF_N_D", get = "quandl", from = Sys.Date() - 30) %>% stats::na.omit() %>% dplyr::transmute(date = date, FedsFunds0 = log((1 + value / (360))^365)) zero_1yrplus <- Quandl::Quandl("FED/SVENY") %>% dplyr::rename(date = Date) zero_tb <- c("FED/RIFLGFCM01_N_B", "FED/RIFLGFCM03_N_B", "FED/RIFLGFCM06_N_B") %>% tidyquant::tq_get(get = "quandl", from = Sys.Date() - 30) %>% stats::na.omit() %>% tidyr::pivot_wider(names_from = symbol, values_from = value) x <- dplyr::inner_join(fedsfund, zero_tb, c("date")) %>% dplyr::inner_join(zero_1yrplus, c("date")) x <- x %>% dplyr::filter(date == dplyr::last(date)) %>% dplyr::select(-date) x <- x %>% t() %>% as.data.frame() %>% dplyr::transmute(yield = V1 / 100, maturity = readr::parse_number(colnames(x))) x$maturity[1] <- 1 / 365 x$maturity[2:4] <- x$maturity[2:4] / 12 x <- dplyr::add_row(x, yield = x$yield[1], maturity = 0, .before = 1) x <- x %>% dplyr::mutate( discountfactor = exp(-yield * maturity), discountfactor_plus = exp(-(yield + ir.sens) * maturity), discountfactor_minus = exp(-(yield - ir.sens) * maturity) ) return(x) }
iRafNet_network <- function(out.iRafNet,out.perm,TH) { M<-dim(out.perm)[2]; j.np<-sort(out.iRafNet[,3],decreasing=TRUE) FDR<-rep(0,dim(out.perm)[1]); for (s in 1:length(j.np)){ FP<-sum(sum(out.perm>=j.np[s]))/M FDR[s]<-FP/s; if (FDR[s]>TH) {th<-j.np[s]; break;} } return(out.iRafNet[out.iRafNet[,3]>th,seq(1,2)]) }
rasch.copula3.covariance <- function( f.qk.yi, Sigma, theta.k, N, mu.fixed, variance.fixed, D, est.corr, irtmodel, freqwgt ){ Sigma.cov <- Sigma delta.theta <- 1 indD <- rep( 1:nrow(f.qk.yi), freqwgt ) hwt <- f.qk.yi[ indD, ] N <- sum( freqwgt) thetabar <- hwt%*%theta.k mu <- rep(0,D) theta.k.adj <- theta.k for (dd1 in 1:D){ for (dd2 in dd1:D){ tk <- theta.k.adj[,dd1]*theta.k.adj[,dd2] h1 <- ( hwt %*% tk ) * delta.theta Sigma.cov[dd1,dd2] <- sum( h1 ) / N if (dd1 < dd2 ){ Sigma.cov[dd2,dd1] <- Sigma.cov[dd1,dd2] } } } Sigma.cov0 <- Sigma.cov if ( est.corr ){ Sigma.cov <- stats::cov2cor(Sigma.cov ) } if ( ! is.null(variance.fixed ) ){ Sigma.cov[ variance.fixed[,1:2,drop=FALSE] ] <- variance.fixed[,3] Sigma.cov[ variance.fixed[,c(2,1),drop=FALSE] ] <- variance.fixed[,3] } diag(Sigma.cov) <- diag(Sigma.cov) + 10^(-10) pi.k <- sirt_dmvnorm_discrete( theta.k, mean=mu, sigma=Sigma.cov, as_matrix=TRUE ) res <- list( "mu"=mu, "Sigma"=Sigma.cov, "pi.k"=pi.k, "Sigma0"=Sigma.cov0) return(res) }
selection_table <- function(X, max.dur = 10, path = NULL, whole.recs = FALSE, extended = FALSE, confirm.extended = TRUE, mar = 0.1, by.song = NULL, pb = TRUE, parallel = 1, ...) { on.exit(pbapply::pboptions(type = .Options$pboptions$type), add = TRUE) argms <- methods::formalArgs(selection_table) opt.argms <- if(!is.null(getOption("warbleR"))) getOption("warbleR") else SILLYNAME <- 0 names(opt.argms)[names(opt.argms) == "wav.path"] <- "path" opt.argms <- opt.argms[!sapply(opt.argms, is.null) & names(opt.argms) %in% argms] call.argms <- as.list(base::match.call())[-1] opt.argms <- opt.argms[!names(opt.argms) %in% names(call.argms)] if (length(opt.argms) > 0) for (q in 1:length(opt.argms)) assign(names(opt.argms)[q], opt.argms[[q]]) if (is.null(path)) path <- getwd() else if (!dir.exists(path)) stop("'path' provided does not exist") if (!is.null(by.song)) if (!any(names(X) == by.song)) stop("'by.song' column not found") if (!is.numeric(parallel)) stop("'parallel' must be a numeric vector of length 1") if (any(!(parallel %% 1 == 0),parallel < 1)) stop("'parallel' should be a positive integer") if (whole.recs){ sound.files <- list.files(path = path, pattern = "\\.wav$", ignore.case = TRUE) if (length(sound.files) == 0) stop("No sound files were found") X <- data.frame(sound.files, selec = 1, channel = 1, start = 0, end = duration_wavs(files = sound.files, path = path)$duration) } if (pb) write(file = "", x ="checking selections (step 1 of 2):") check.results <- warbleR::check_sels(X, path = path, wav.size = TRUE, pb = pb, ...) if (any(check.results$check.res != "OK")) stop("Not all selections can be read (use check_sels() to locate problematic selections)") X <- check.results[ , names(check.results) %in% names(X)] class(X) <- unique(append("selection_table", class(X))) check.results <- check.results[, names(check.results) %in% c("sound.files", "selec", by.song, "check.res", "duration", "min.n.sample", "sample.rate", "channels", "bits", "wav.size", "sound.file.samples")] if (extended) { exp.size <- sum(round(check.results$bits * check.results$sample.rate * (check.results$duration + (mar * 2)) / 4) / 1024 ) if (confirm.extended){ cat(crayon::magenta(paste0("Expected 'extended_selection_table' size is ~", ifelse(round(exp.size) == 0, round(exp.size, 2), round(exp.size)), "MB (~", round(exp.size/1024, 5), " GB) \n Do you want to proceed? (y/n): \n"))) answer <- readline(prompt = "") } else answer <- "yeah dude!" if (substr(answer, 1, 1) %in% c("y", "Y")) { check.results$orig.start <- X$start check.results$orig.end <- X$end check.results$mar.after <- check.results$mar.before <- rep(mar, nrow(X)) dur <- duration_wavs(files = as.character(X$sound.files), path = path)$duration for(i in 1:nrow(X)) { if (X$start[i] < mar) check.results$mar.before[i] <- X$start[i] if (X$end[i] + mar > dur[i]) check.results$mar.after[i] <- dur[i] - X$end[i] } if (!is.null(by.song)) { Y <- song_analysis(X = as.data.frame(X), song_colm = by.song, pb = FALSE) Y <-Y[, names(Y) %in% c("sound.files", by.song, "start", "end")] check.results$song <- X[, by.song] check.results$song.TEMP <- paste(X$sound.files, X[, by.song], sep = "-") Y$song.TEMP <- paste(Y$sound.files, Y[, by.song], sep = "-") Y$mar.before <- sapply(unique(Y$song.TEMP), function(x) check.results$mar.before[which.min(check.results$orig.start[check.results$song.TEMP == x])]) Y$mar.after <- sapply(unique(Y$song.TEMP), function(x) check.results$mar.after[which.max(check.results$orig.end[check.results$song.TEMP == x])]) check.results$song.TEMP <- NULL } else { Y <- X Y$mar.before <- check.results$mar.before Y$mar.after <- check.results$mar.after } pbapply::pboptions(type = ifelse(pb, "timer", "none")) if (Sys.info()[1] == "Windows" & parallel > 1) cl <- parallel::makePSOCKcluster(getOption("cl.cores", parallel)) else cl <- parallel if (pb) write(file = "", x ="saving wave objects into extended selection table (step 2 of 2):") attributes(X)$wave.objects <- pbapply::pblapply(1:nrow(Y), cl = cl, function(x) warbleR::read_wave(X = Y, index = x, from = Y$start[x] - Y$mar.before[x], to = Y$end[x] + Y$mar.after[x], path = path)) check.results$start <- X$start <- check.results$mar.before check.results$end <- X$end <- check.results$mar.before + check.results$duration names(check.results)[names(check.results) == "sound.files"] <- "orig.sound.files" names(check.results)[names(check.results) == "selec"] <- "orig.selec" if (!is.null(by.song)) { names(attributes(X)$wave.objects) <- paste0(Y$sound.files, "-song_", Y[ , by.song]) X$sound.files <- check.results$sound.files <- paste0(X$sound.files, "-song_", as.data.frame(X)[ , names(X) == by.song,]) for(i in unique(X$sound.files)) check.results$selec[check.results$sound.files == i] <- X$selec[X$sound.files == i] <- 1:nrow(X[X$sound.files == i, drop = FALSE]) check.results$n.samples <- NA durs <- X$end - X$start for(w in unique(X$sound.files)) { check.results$start[check.results$sound.files == w] <- X$start[X$sound.files == w] <- X$start[X$sound.files == w][which.min(check.results$orig.start[check.results$sound.files == w])] + (check.results$orig.start[check.results$sound.files == w] - min(check.results$orig.start[check.results$sound.files == w])) check.results$n.samples[check.results$sound.files == w] <- length(attr(X, "wave.objects")[[which(names(attr(X, "wave.objects")) == w)]]@left) } check.results$end <- X$end <- X$start + durs } else { names(attributes(X)$wave.objects) <- check.results$sound.files <- X$sound.files <- paste(basename(as.character(X$sound.files)), X$selec, sep = "_") check.results$selec <- X$selec <- 1 check.results$n.samples <- as.vector(sapply(attr(X, "wave.objects"), function(x) length(x@left))) } class(X)[class(X) == "selection_table"] <- "extended_selection_table" } } else check.results$n.samples <- check.results$sound.file.samples check.results <- check.results[,na.omit(match(c("orig.sound.files", "orig.selec", "orig.start", "orig.end", "sound.files", "selec", "start", "end", "check.results", "duration", "sample.rate", "channels", "bits", "wav.size", "mar.before", "mar.after", "n.samples"), names(check.results)))] attributes(X)$check.results <- check.results if (is_extended_selection_table(X) & !is.null(by.song)) attributes(X)$by.song <- list(by.song = TRUE, song.column = by.song) else attributes(X)$by.song <- list(by.song = FALSE, song.column = by.song) attributes(X)$warbleR.version <- packageVersion("warbleR") if (extended & confirm.extended & !is_extended_selection_table(X)) cat(crayon::silver(crayon::bold("'extended_selection_table' was not created"))) return(X) } make.selection.table <- selection_table is_selection_table <- function(x) inherits(x, "selection_table") is_extended_selection_table <- function(x) inherits(x, "extended_selection_table") `[.selection_table` <- function(X, i = NULL, j = NULL, drop = TRUE) { if (is.character(i)) i <- which(row.names(X) %in% i) if (is.character(j)) j <- which(names(X) %in% j) if (is.null(i)) i <- 1:nrow(X) if (is.null(j)) j <- 1:ncol(X) Y <- as.data.frame(X)[i, j, drop = drop] if (is.data.frame(Y)) { attributes(Y)$check.results <- attributes(X)$check.results[i, ,] attributes(Y)$by.song <- attributes(X)$by.song class(Y) <- class(X) } return(Y) } `[.extended_selection_table` <- function(X, i = NULL, j = NULL, drop = TRUE) { if (is.character(i)) i <- which(row.names(X) %in% i) if (is.character(j)) j <- which(names(X) %in% j) if (is.null(i)) i <- 1:nrow(X) if (is.null(j)) j <- 1:ncol(X) Y <- as.data.frame(X)[i, j, drop = drop] if (is.data.frame(Y)) { attributes(Y)$wave.objects <- attributes(X)$wave.objects[names(attributes(X)$wave.objects) %in% Y$sound.files] attributes(Y)$check.results <- attributes(X)$check.results[paste(attributes(X)$check.results$sound.files, attributes(X)$check.results$selec) %in% paste(Y$sound.files, Y$selec), ] attributes(Y)$by.song <- attributes(X)$by.song class(Y) <- class(X) } return(Y) } print.extended_selection_table <- function(x, ...) { cat(crayon::cyan(paste("Object of class", crayon::bold("'extended_selection_table' \n")))) cat(crayon::silver(paste(crayon::bold("Contains:"), "\n* A selection table data frame with"), nrow(x), "rows and", ncol(x), "columns: \n")) cols <- if (ncol(x) > 6) 1:6 else 1:ncol(x) kntr_tab <- knitr::kable(head(x[, cols]), escape = FALSE, digits = 4, justify = "centre", format = "pipe") for(i in 1:length(kntr_tab)) cat(crayon::silver(paste0(kntr_tab[i], "\n"))) if (ncol(x) > 6) cat(crayon::silver(paste0("... ", ncol(x) - 6, " more column(s) (", paste(colnames(x)[7:ncol(x)], collapse = ", "), ")"))) if (nrow(x) > 6) cat(crayon::silver(paste0(if (ncol(x) <= 6) "..." else "", " and ", nrow(x) - 6, " more row(s) \n"))) cat(crayon::silver(paste0("\n* ", length(attr(x, "wave.objects"))," wave objects (as attributes): "))) cat(crayon::silver(head(names(attr(x, "wave.objects"))))) if (length(attr(x, "wave.objects")) > 6) cat(crayon::silver(paste0("... and ", length(attr(x, "wave.objects")) - 6, " more"))) cat("\n ") cat(crayon::silver("\n* A data frame (check.results) generated by check_sels() (as attribute) \n")) if (attr(x, "by.song")[[1]]) cat(crayon::silver(paste0( crayon::bold("\nAdditional information:"), "\n* The selection table was created", crayon::italic(crayon::bold(" by song ")), "(see 'class_extended_selection_table') \n"))) else cat(crayon::silver(paste0("\nThe selection table was created", crayon::italic(crayon::bold(" by element ")), "(see 'class_extended_selection_table') \n"))) smp.rts <- unique(attr(x, "check.results")$sample.rate) if (length(smp.rts) == 1) cat(crayon::silver(paste0("* ", length(smp.rts), " sampling rate(s) (in kHz): ", paste(crayon::bold(smp.rts), collapse = "/"), " \n"))) else cat(crayon::red(paste0("* ", length(smp.rts), " sampling rate(s): ", paste(crayon::bold(smp.rts), collapse = "/"), " \n"))) bt.dps <- unique(attr(x, "check.results")$bits) if (length(bt.dps) == 1) cat(crayon::silver(paste0("* ", length(bt.dps), " bit depth(s): ", paste(crayon::bold(bt.dps), collapse = "/"), " \n"))) else cat(crayon::red(paste0("* ", length(bt.dps), " bit depth(s): ", paste(crayon::bold(bt.dps), collapse = "/"), " \n"))) if (!is.null(attr(x, "warbleR.version"))) cat(crayon::silver(paste0("* Created by warbleR ", attr(x, "warbleR.version")))) else cat(crayon::silver("* Created by warbleR < 1.1.21")) } print.selection_table <- function(x, ...) { cat(crayon::cyan(paste("Object of class", crayon::bold("'selection_table' \n")))) cat(crayon::silver(paste(crayon::bold("\nContains:"), "\n* A selection table data frame with"), nrow(x), "rows and", ncol(x), "columns: \n")) cols <- if (ncol(x) > 6) 1:6 else 1:ncol(x) kntr_tab <- knitr::kable(head(x[, cols]), escape = FALSE, digits = 4, justify = "centre", format = "pipe") for(i in 1:length(kntr_tab)) cat(crayon::silver(paste0(kntr_tab[i], "\n"))) if (ncol(x) > 6) cat(crayon::silver(paste0("... ", ncol(x) - 6, " more column(s) (", paste(colnames(x)[7:ncol(x)], collapse = ", "), ")"))) if (nrow(x) > 6) cat(crayon::silver(paste0(if (ncol(x) <= 6) "..." else "", " and ", nrow(x) - 6, " more row(s) \n"))) cat(crayon::silver("\n * A data frame (check.results) generated by check_sels() (as attribute) \n")) if (!is.null(attr(x, "warbleR.version"))) cat(crayon::silver(paste0("created by warbleR ", attr(x, "warbleR.version")))) else cat(crayon::silver("created by warbleR < 1.1.21")) } fix_extended_selection_table <- function(X, Y){ if (!is_extended_selection_table(Y)) stop("Y must be a extended selection table") attributes(X)$wave.objects <- attributes(Y)$wave.objects[names(attributes(Y)$wave.objects) %in% X$sound.files] attributes(X)$check.results <- attributes(Y)$check.results[attributes(Y)$check.results$sound.files %in% X$sound.files, ] xtr.attr <- setdiff(names(attributes(Y)[!sapply(attributes(Y), is.null)]), c("names", "row.names", "check.results", "wave.objects", "dim", "dimnames")) if (length(xtr.attr) > 0) for(i in xtr.attr) attr(X, i) <- attr(Y, i) return(X) } rbind.selection_table <- function(..., deparse.level = 1) { mcall <- list(...) X <- mcall[[1]] Y <- mcall[[2]] if (!is_selection_table(X) | !is_selection_table(Y)) stop("both objects must be of class 'selection_table'") if (any(paste(X$sound.files, X$selec) %in% paste(Y$sound.files, Y$selec))) stop("Some sound files/selec are found in both selection tables") cl.nms <- intersect(names(X), names(Y)) W <- rbind(as.data.frame(X[ , cl.nms, drop = FALSE]), as.data.frame(Y[ , cl.nms, drop = FALSE]), make.row.names = TRUE, stringsAsFactors = FALSE) cl.nms.cr <- intersect(names(attr(X, "check.results")), names(attr(Y, "check.results"))) attr(W, "check.results") <- rbind(attr(X, "check.results")[ , cl.nms.cr, drop = FALSE], attr(Y, "check.results")[ , cl.nms.cr, drop = FALSE], make.row.names = TRUE, stringsAsFactors = FALSE) attr(W, "by.song") <- attr(X, "by.song") class(W) <- class(X) return(W) } rbind.extended_selection_table <- function(..., deparse.level = 1) { mcall <- list(...) X <- mcall[[1]] Y <- mcall[[2]] if (!is_extended_selection_table(X) | !is_extended_selection_table(Y)) stop("both objects must be of class 'selection_table'") if (attr(X, "by.song")[[1]] != attr(Y, "by.song")[[1]]) stop("both objects should have been created either 'by song' or by element' (see 'by.song' argument in selection_table())") if (any(paste(X$sound.files, X$selec) %in% paste(Y$sound.files, Y$selec))) stop("Some sound files/selec are found in both extended selection tables") waves.X <- names(attr(X, "wave.objects")) waves.Y <- names(attr(Y, "wave.objects")) if (any(waves.X %in% waves.Y)) cat("Some wave object names are found in both extended selection tables, they are assumed to refer to the same wave object and only one copy will be kept (use rename_est_waves() to change sound file/wave objetc names if needed)") cl.nms <- intersect(names(X), names(Y)) W <- rbind(as.data.frame(X[ , cl.nms, drop = FALSE]), as.data.frame(Y[ , cl.nms, drop = FALSE]), make.row.names = TRUE) cl.nms.cr <- intersect(names(attr(X, "check.results")), names(attr(Y, "check.results"))) attr(W, "check.results") <- rbind(attr(X, "check.results")[ , cl.nms.cr, drop = FALSE], attr(Y, "check.results")[ , cl.nms.cr, drop = FALSE], make.row.names = TRUE) attr(W, "wave.objects") <- c(attr(X, "wave.objects"), attr(Y, "wave.objects")) attr(W, "by.song") <- attr(X, "by.song") class(W) <- class(X) attr(W, "wave.objects") <- attr(W, "wave.objects")[!duplicated(names(attr(W, "wave.objects")))] attributes(W)$warbleR.version <- packageVersion("warbleR") return(W) }
app <- ShinyDriver$new("../", seed = 1) app$snapshotInit("basicCreateDOE") app$setInputs(tabs = "spotConfig") try(app$setInputs(tabs = "runMode"), silent = T) try(app$setInputs(runCreateDOE = "click"), silent = T) try(app$setInputs(evaluateData = "click"), silent = T) app$snapshot(list(output = "resultTable"))
`traj.stats` <- function(infolist, morestats, pvallist, cboxes=c(1:length(infolist$box)), showbounds=TRUE,style=style){ dimsum <- vector(length=length(cboxes)) for (i in 1:length(cboxes)){ dimsum[i] <- sum(infolist$dimlist[[cboxes[i]]]$either) } statmat <- cbind(cboxes,infolist$y.mean[cboxes],infolist$marcoverage[cboxes],infolist$mass[cboxes],dimsum) colnames(statmat) <- c("box index", "density", "coverage", "support","dims") cat("\n") cat(" Summary statistics for candidate boxes","\n") cat("\n") print(statmat) cat("\n") ire <- 0 if(showbounds){ for (i in cboxes){ ire <- ire+1 cat(paste(" Box",i, " Remove Variable Stats"),"\n") mat <- boxformat(infolist$box[[i]],infolist$dimlist[[i]],morestats[[ire]],pvallist[[i]],style=style) print(mat[,-4]) cat("\n") } } return(list(statmat,mat)) }
fread_bib <- function(file.bib, check.dup.keys = TRUE, strip.braces = TRUE, check.unescaped.percent = TRUE, .bib_expected = TRUE, halt = TRUE, rstudio = FALSE, .report_error) { stopifnot(length(file.bib) == 1L) check_TF(check.dup.keys) check_TF(strip.braces) check_TF(check.unescaped.percent) check_TF(.bib_expected) if (is.null(halt)) { halt <- getOption("TeXCheckR.halt_on_error") } check_TF(halt) check_TF(rstudio) if (XOR(.bib_expected, endsWith(file.bib, ".bib"))) { warning("File extension is not '.bib'.") } if (missing(.report_error)) { .report_error <- report2console } bib <- read_lines(file.bib) %>% stri_trim_both %>% .[!startsWith(., "@Comment")] is_at <- startsWith(bib, "@") is_closing <- bib == "}" if (!any(is_at) || !any(is_closing)) { message("`file.bib = ", file.bib, "` had no bib entries. ", "Returning empty data.table.") return(data.table()) } sep <- NULL for (sep_candidate in c("\t", "^", "|")){ if (!any(grepl(sep_candidate, bib, fixed = TRUE))){ sep <- sep_candidate break } } if (is.null(sep)){ stop("No suitable separator found for bibliography file. That is, all candidates tried already appeared in the file") } bib_just_key_and_fields <- bib bib_just_key_and_fields[is_closing] <- "" bib_just_key_and_fields[is_at] <- sub("@", "key = ", bib_just_key_and_fields[is_at], fixed = TRUE) bib_just_key_and_fields <- sub("={", "= {", bib_just_key_and_fields, fixed = TRUE) bib_just_key_and_fields <- sub(" = ", sep, bib_just_key_and_fields, fixed = TRUE) used_line_nos <- which(nzchar(bib_just_key_and_fields)) bib_just_key_and_fields <- bib_just_key_and_fields[used_line_nos] x <- line_no <- NULL bibDT <- setDT(list(line_no = used_line_nos, x = bib_just_key_and_fields)) field <- value <- NULL bibDT[, c("field", "value") := tstrsplit(x, sep, fixed = TRUE)] is_key <- NULL bibDT[, is_key := field == "key"] key_value <- NULL bibDT[(is_key), key_value := tolower(sub("^.*\\{", "", value, perl = TRUE))] if (check.dup.keys && anyDuplicated(stats::na.omit(bibDT[["key_value"]]))) { duplicates <- duplicated_rows(bibDT, by = "key_value", na.rm = TRUE) if (getOption("TeXCheckR.messages", TRUE)) { print(duplicates[, "bib_file" := file.bib]) } .report_error(file = file.bib, line_no = if (!is.null(duplicates[["line_no"]])) first(duplicates[["line_no"]]), context = first(duplicates[["value"]]), error_message = "Duplicate bib key used.", advice = paste0("Compare the two entries above. If they are identical, delete one. ", "If they are distinct, choose a different bib key. ", "(Note: keys are case-insensitive.)"), halt = halt, rstudio = rstudio) } bibDT[, key_value := NULL] key_line <- entry_type <- NULL bibDT[(is_key), key_line := value] bibDT[, key_line := zoo::na.locf(key_line, na.rm = FALSE)] bibDT <- bibDT[(!is_key)] bibDT[, x := NULL] bibDT[, lapply(.SD, stri_trim_both)] bibDT[, key_line := sub(",$", "", key_line, perl = TRUE)] bibDT[, c("entry_type", "key") := tstrsplit(key_line, "{", fixed = TRUE)] bibDT[, field := tolower(stri_trim_both(field))] if (strip.braces) { bibDT[, value := gsub("[{}]", "", value, perl = TRUE)] } bibDT[, value := sub(",$", "", value, perl = TRUE)] dups <- NULL duplicate_fields <- bibDT[, .(dups = anyDuplicated(field)), by = key] if (any(duplicate_fields[["dups"]])){ keys <- duplicate_fields %>% .[as.logical(dups)] %>% .[["key"]] n_keys <- length(keys) if (n_keys <= 5L){ top_keys <- keys stop("Duplicate fields found in ", paste0(keys, collapse = " "), ".") } else { top_keys <- keys[1:5] if (n_keys == 6L){ stop("Duplicate fields found in ", paste0(keys, collapse = " "), ".") } else { stop("Duplicate fields found in ", paste0(keys, collapse = " "), " and ", n_keys - 5L, " others.") } } } if (check.unescaped.percent) { unescaped_percent <- bibDT[field != "url"][grep("(?<!(?:\\\\))[%]", value, perl = TRUE)] if (nrow(unescaped_percent)) { orig_file.bib <- read_lines(file.bib) first_line_no <- unescaped_percent[1L][["line_no"]] first_bad_text <- orig_file.bib[first_line_no] column <- first_bad_text %>% stri_locate_all_regex_no_stri("(?<!(?:\\\\))[%]") %>% .[[1L]] %>% .[1, "start"] %>% as.vector first_bad_field <- unescaped_percent[1L][["field"]] first_bad_key <- unescaped_percent[1L][["key"]] .report_error(file = file.bib, line_no = first_line_no, column = column, error_message = paste0("Field <", first_bad_field, "> ", "in entry <", first_bad_key, "> ", "contains unescaped %."), advice = "Insert a backslash before this %.", context = first_bad_text, halt = halt, caret = 2L, rstudio = rstudio) } } bibDT[, .(line_no, entry_type, key, field, value)] } bib2DT <- function(file.bib, to_sort = FALSE){ stopifnot(length(file.bib) == 1L) if (!grepl("\\.bib$", file.bib)){ warning("File extension is not '.bib'.") } bib <- read_lines(file.bib) %>% stri_trim_both %>% .[!grepl("@Comment", ., fixed = TRUE)] is_at <- substr(bib, 0L, 1L) == "@" is_closing <- bib == "}" entry_no <- cumsum(is_at) n_ats <- sum(is_at) n_closing_braces <- sum(is_closing) if (n_ats != n_closing_braces){ cat("@'s: ", n_ats, "\n", "}'s: ", n_closing_braces, "\n") stop("Unable to parse: Braces to close a bib entry should be on their own line.") } if (any(grepl("{,", bib[is_at], fixed = TRUE))){ cat("At line: ", grep("{,", bib[is_at], fixed = TRUE)[[1]]) stop("All bib entries must have a non-empty key.") } line_by_entry_no <- cumsum(is_at) keys <- gsub("^.*\\{(.*),$", "\\1", bib[is_at], perl = TRUE) if (uniqueN(keys) != n_ats){ stop("Number of unique keys not equal to number of key entries.") } is_field <- !(is_at | is_closing | bib == "") extract_field_from <- function(field, from){ pattern <- sprintf("%s%s%s", "^", field, "\\s+[=]\\s+[{](.*)[}],?$") if_else(grepl(pattern, from, perl = TRUE), gsub(pattern = pattern, "\\1", from), NA_character_) } Line_no <- Surname <- Year <- annote <- author <- booktitle <- chapter <- crossref <- edition <- editor <- endyear <- howpublished <- institution <- intra_key_line_no <- line_no <- note <- number <- organization <- pages <- publisher <- related <- school <- series <- title <- type <- volume <- Year_as_date <- Date <- NULL bib_orig <- field_name <- NULL data.table(line_no = seq_along(bib), bib = bib, line_by_entry_no = line_by_entry_no, is_field = is_field, is_closing = is_closing) %>% .[, key := if_else(is_at, gsub("^@[A-Za-z]+\\{(.*),$", "\\1", bib, perl = TRUE), NA_character_)] %>% .[, key := zoo::na.locf(key, na.rm = FALSE)] %>% .[, author := extract_field_from("author", bib)] %>% .[, title := extract_field_from("title", bib)] %>% .[, year := extract_field_from("year", bib)] %>% .[, date := extract_field_from("date", bib)] %>% { dot <- . if (!to_sort){ out <- dot %>% .[, address := extract_field_from("address", bib)] %>% .[, annote := extract_field_from("annote", bib)] %>% .[, booktitle := extract_field_from("booktitle", bib)] %>% .[, booktitle := extract_field_from("booktitle", bib)] %>% .[, chapter := extract_field_from("chapter", bib)] %>% .[, crossref := extract_field_from("crossref", bib)] %>% .[, options := extract_field_from("options", bib)] %>% .[, related := extract_field_from("related", bib)] %>% .[, edition := extract_field_from("edition", bib)] %>% .[, editor := extract_field_from("editor", bib)] %>% .[, howpublished := extract_field_from("howpublished", bib)] %>% .[, institution := extract_field_from("institution", bib)] %>% .[, month := extract_field_from("month", bib)] %>% .[, note := extract_field_from("note", bib)] %>% .[, number := extract_field_from("number", bib)] %>% .[, organization := extract_field_from("organization", bib)] %>% .[, pages := extract_field_from("pages", bib)] %>% .[, publisher := extract_field_from("publisher", bib)] %>% .[, school := extract_field_from("school", bib)] %>% .[, series := extract_field_from("series", bib)] %>% .[, type := extract_field_from("type", bib)] %>% .[, volume := extract_field_from("volume", bib)] %>% .[, url := extract_field_from("url", bib)] %>% .[, edition := extract_field_from("edition", bib)] } else { out <- dot } out } %>% .[, date := if_else(grepl("/", date, fixed = TRUE), substr(date, 0, 4), date)] %>% .[, Year_as_date := if_else(grepl("[0-9]{4}", year), paste0(year, "-01-01"), year)] %>% .[, Date := coalesce(date, Year_as_date)] %>% .[, Surname := if_else(!is.na(author), if_else(grepl("^[{]", author, perl = TRUE), gsub("[{}]", "", author, perl = TRUE), if_else(grepl("^[A-Z][a-z]+,", author, perl = TRUE), author, rev_forename_surname_bibtex(author)) ), NA_character_)] %>% .[, intra_key_line_no := seq_len(.N), by = "key"] %>% .[, Line_no := line_no] %>% .[, field_name := gsub("[^a-z]", "", gsub("[=].*$", "", bib, perl = TRUE), perl = TRUE)] %>% .[, field_name := if_else(is_at, "AT", field_name)] %>% .[, field_name := if_else(is_closing, "}", field_name)] %>% .[, field_name := factor(field_name, levels = c("AT", "author", "title", "year", "date", "address", "annote", "booktitle", "chapter", "crossref", "options", "related", "edition", "editor", "howpublished", "institution", "month", "note", "number", "organization", "pages", "publisher", "school", "series", "type", "volume", "url", "Year_as_date", "Date", "Surname", "intra_key_line_no", "Line_no", "}"), ordered = TRUE)] %>% .[, bib_orig := bib] %>% .[, lapply(.SD, zoo::na.locf, na.rm = FALSE, fromLast = FALSE), by = "key", .SDcols = author:bib_orig] %>% .[, lapply(.SD, zoo::na.locf, na.rm = FALSE, fromLast = TRUE) , by = "key", .SDcols = author:bib_orig] %>% setorder(Surname, Date, title, field_name, Line_no) %>% .[] } reorder_bib <- function(file.bib, outfile.bib = file.bib){ out_no <- bib2DT(file.bib, to_sort = TRUE)[["Line_no"]] y <- readLines(file.bib, encoding = "UTF-8") writeLines(y[out_no], outfile.bib, useBytes = TRUE) }
mlcc.reps <- function(X, numb.clusters = 2, numb.runs = 30, stop.criterion = 1, max.iter = 30, initial.segmentations = NULL, max.dim = 4, scale = TRUE, numb.cores = NULL, estimate.dimensions = TRUE, flat.prior = FALSE, show.warnings = FALSE) { if (is.data.frame(X)) { warning("X is not a matrix. Casting to matrix.") X <- as.matrix(X) } if (any(is.na(X))) { warning("Missing values are imputed by the mean of the variable") X[is.na(X)] = matrix(apply(X, 2, mean, na.rm = TRUE), ncol = ncol(X), nrow = nrow(X), byrow = TRUE)[is.na(X)] } if (any(!sapply(X, is.numeric))) { auxi <- NULL for (j in 1:ncol(X)) if (!is.numeric(X[, j])) { auxi <- c(auxi, j) } stop(paste("\nThe following variables are not quantitative: ", auxi)) } if (is.null(numb.cores)) { numb.cores <- max(1, detectCores() - 1) } cl <- makeCluster(numb.cores) registerDoParallel(cl) if (scale) { X <- scale(X) } i <- NULL BICs <- NULL segmentations <- NULL if (is.null(initial.segmentations)) { segmentations <- foreach(i = (1:numb.runs)) %dorng% { MLCC.res <- mlcc.kmeans(X = X, number.clusters = numb.clusters, max.subspace.dim = max.dim, max.iter = max.iter, estimate.dimensions = estimate.dimensions, show.warnings = show.warnings) current.segmentation <- MLCC.res$segmentation current.pcas <- MLCC.res$pcas list(current.segmentation, cluster.pca.BIC(X, current.segmentation, sapply(current.pcas, ncol), numb.clusters, max.dim = max.dim, flat.prior = flat.prior), current.pcas) } } else { segmentations <- foreach(i = (1:length(initial.segmentations))) %dorng% { MLCC.res <- mlcc.kmeans(X = X, number.clusters = numb.clusters, max.subspace.dim = max.dim, max.iter = max.iter, initial.segmentation = initial.segmentations[[i]], estimate.dimensions = estimate.dimensions, show.warnings = show.warnings) current.segmentation <- MLCC.res$segmentation current.pcas <- MLCC.res$pcas list(current.segmentation, cluster.pca.BIC(X, current.segmentation, sapply(current.pcas, ncol), numb.clusters, max.dim = max.dim, flat.prior = flat.prior), current.pcas) } } stopCluster(cl) BICs <- unlist(lapply(segmentations, function(x) x[2])) basis <- lapply(segmentations, function(x) x[3]) segmentations <- lapply(segmentations, function(x) x[[1]]) result <- list(segmentation = segmentations[[which.max(BICs)]], BIC = BICs[which.max(BICs)], basis = basis[[which.max(BICs)]][[1]]) class(result) <- "mlcc.reps.fit" return(result) }
abort_nomatch <- function(nodes_names, ests_names) { rlang::abort( paste0("The node names in the semPaths graph: \n", paste(nodes_names, collapse = ", "), "\ndo not match the variable names in the fitted object: \n", paste(ests_names, collapse = ", "), "\nIf the `nodeLabels` argument was used", "in the original `semPaths()` call, please remove it, ", "and use the semptools::change_node_label() function", "to change node labels.") ) } check_match_labels <- function(names_in, names_graph) { if (!all(names_in %in% names_graph)) { rlang::abort( paste0("One or more nodes in label_list: \n", paste(names_in, collapse = ", "), "\ndo not match the node names in the semPaths graph: \n", paste(names_graph, collapse = ", ")) ) } }
a <- 3 dd <- 33 c()
ALEPlot <- function(X, X.model, pred.fun, J, K = 40, NA.plot = TRUE) { N = dim(X)[1] d = dim(X)[2] if (length(J) == 1) { if (class(X[,J]) == "factor") { X[,J] <- droplevels(X[,J]) x.count <- as.numeric(table(X[,J])) x.prob <- x.count/sum(x.count) K <- nlevels(X[,J]) D.cum <- matrix(0, K, K) D <- matrix(0, K, K) for (j in setdiff(1:d, J)) { if (class(X[,j]) == "factor") { A=table(X[,J],X[,j]) A=A/x.count for (i in 1:(K-1)) { for (k in (i+1):K) { D[i,k] = sum(abs(A[i,]-A[k,]))/2 D[k,i] = D[i,k] } } D.cum <- D.cum + D } else { q.x.all <- quantile(X[,j], probs = seq(0, 1, length.out = 100), na.rm = TRUE, names = FALSE) x.ecdf=tapply(X[,j], X[,J], ecdf) for (i in 1:(K-1)) { for (k in (i+1):K) { D[i,k] = max(abs(x.ecdf[[i]](q.x.all)-x.ecdf[[k]](q.x.all))) D[k,i] = D[i,k] } } D.cum <- D.cum + D } } D1D <- cmdscale(D.cum, k = 1) ind.ord <- sort(D1D, index.return = T)$ix ord.ind <- sort(ind.ord, index.return = T)$ix levs.orig <- levels(X[,J]) levs.ord <- levs.orig[ind.ord] x.ord <- ord.ind[as.numeric(X[,J])] row.ind.plus <- (1:N)[x.ord < K] row.ind.neg <- (1:N)[x.ord > 1] X.plus <- X X.neg <- X X.plus[row.ind.plus,J] <- levs.ord[x.ord[row.ind.plus]+1] X.neg[row.ind.neg,J] <- levs.ord[x.ord[row.ind.neg]-1] y.hat <- pred.fun(X.model=X.model, newdata = X) y.hat.plus <- pred.fun(X.model=X.model, newdata = X.plus[row.ind.plus,]) y.hat.neg <- pred.fun(X.model=X.model, newdata = X.neg[row.ind.neg,]) Delta.plus <- y.hat.plus-y.hat[row.ind.plus] Delta.neg <- y.hat[row.ind.neg]-y.hat.neg Delta <- as.numeric(tapply(c(Delta.plus, Delta.neg), c(x.ord[row.ind.plus], x.ord[row.ind.neg]-1), mean)) fJ <- c(0, cumsum(Delta)) fJ = fJ - sum(fJ*x.prob[ind.ord]) x <- levs.ord barplot(fJ, names=x, xlab=paste("x_", J, " (", names(X)[J], ")", sep=""), ylab= paste("f_",J,"(x_",J,")", sep=""), las =3) } else if (class(X[,J]) == "numeric" | class(X[,J]) == "integer") { z= c(min(X[,J]), as.numeric(quantile(X[,J],seq(1/K,1,length.out=K), type=1))) z = unique(z) K = length(z)-1 fJ = numeric(K) a1=as.numeric(cut(X[,J], breaks=z, include.lowest=TRUE)) X1 = X X2 = X X1[,J] = z[a1] X2[,J] = z[a1+1] y.hat1 = pred.fun(X.model=X.model, newdata = X1) y.hat2 = pred.fun(X.model=X.model, newdata = X2) Delta=y.hat2-y.hat1 Delta = as.numeric(tapply(Delta, a1, mean)) fJ = c(0, cumsum(Delta)) b1 <- as.numeric(table(a1)) fJ = fJ - sum((fJ[1:K]+fJ[2:(K+1)])/2*b1)/sum(b1) x <- z plot(x, fJ, type="l", xlab=paste("x_",J, " (", names(X)[J], ")", sep=""), ylab= paste("f_",J,"(x_",J,")", sep="")) } else print("error: class(X[,J]) must be either factor or numeric or integer") } else if (length(J) == 2) { if (class(X[,J[2]]) != "numeric" & class(X[,J[2]]) != "integer") { print("error: X[,J[2]] must be numeric or integer. Only X[,J[1]] can be a factor") } if (class(X[,J[1]]) == "factor") { X[,J[1]] <- droplevels(X[,J[1]]) x.count <- as.numeric(table(X[,J[1]])) x.prob <- x.count/sum(x.count) K1 <- nlevels(X[,J[1]]) D.cum <- matrix(0, K1, K1) D <- matrix(0, K1, K1) for (j in setdiff(1:d, J[1])) { if (class(X[,j]) == "factor") { A=table(X[,J[1]],X[,j]) A=A/x.count for (i in 1:(K1-1)) { for (k in (i+1):K1) { D[i,k] = sum(abs(A[i,]-A[k,]))/2 D[k,i] = D[i,k] } } D.cum <- D.cum + D } else { q.x.all <- quantile(X[,j], probs = seq(0, 1, length.out = 100), na.rm = TRUE, names = FALSE) x.ecdf=tapply(X[,j], X[,J[1]], ecdf) for (i in 1:(K1-1)) { for (k in (i+1):K1) { D[i,k] = max(abs(x.ecdf[[i]](q.x.all)-x.ecdf[[k]](q.x.all))) D[k,i] = D[i,k] } } D.cum <- D.cum + D } } D1D <- cmdscale(D.cum, k = 1) ind.ord <- sort(D1D, index.return = T)$ix ord.ind <- sort(ind.ord, index.return = T)$ix levs.orig <- levels(X[,J[1]]) levs.ord <- levs.orig[ind.ord] x.ord <- ord.ind[as.numeric(X[,J[1]])] z2 = c(min(X[,J[2]]), as.numeric(quantile(X[,J[2]],seq(1/K,1,length.out=K), type=1))) z2 = unique(z2) K2 = length(z2)-1 a2 = as.numeric(cut(X[,J[2]], breaks=z2, include.lowest=TRUE)) row.ind.plus <- (1:N)[x.ord < K1] X11 = X X12 = X X21 = X X22 = X X11[row.ind.plus,J[2]] = z2[a2][row.ind.plus] X12[row.ind.plus,J[2]] = z2[a2+1][row.ind.plus] X21[row.ind.plus,J[1]] = levs.ord[x.ord[row.ind.plus]+1] X22[row.ind.plus,J[1]] = levs.ord[x.ord[row.ind.plus]+1] X21[row.ind.plus,J[2]] = z2[a2][row.ind.plus] X22[row.ind.plus,J[2]] = z2[a2+1][row.ind.plus] y.hat11 = pred.fun(X.model=X.model, newdata = X11[row.ind.plus,]) y.hat12 = pred.fun(X.model=X.model, newdata = X12[row.ind.plus,]) y.hat21 = pred.fun(X.model=X.model, newdata = X21[row.ind.plus,]) y.hat22 = pred.fun(X.model=X.model, newdata = X22[row.ind.plus,]) Delta.plus=(y.hat22-y.hat21)-(y.hat12-y.hat11) row.ind.neg <- (1:N)[x.ord > 1] X11 = X X12 = X X21 = X X22 = X X11[row.ind.neg,J[1]] = levs.ord[x.ord[row.ind.neg]-1] X12[row.ind.neg,J[1]] = levs.ord[x.ord[row.ind.neg]-1] X11[row.ind.neg,J[2]] = z2[a2][row.ind.neg] X12[row.ind.neg,J[2]] = z2[a2+1][row.ind.neg] X21[row.ind.neg,J[2]] = z2[a2][row.ind.neg] X22[row.ind.neg,J[2]] = z2[a2+1][row.ind.neg] y.hat11 = pred.fun(X.model=X.model, newdata = X11[row.ind.neg,]) y.hat12 = pred.fun(X.model=X.model, newdata = X12[row.ind.neg,]) y.hat21 = pred.fun(X.model=X.model, newdata = X21[row.ind.neg,]) y.hat22 = pred.fun(X.model=X.model, newdata = X22[row.ind.neg,]) Delta.neg=(y.hat22-y.hat21)-(y.hat12-y.hat11) Delta = as.matrix(tapply(c(Delta.plus, Delta.neg), list(c(x.ord[row.ind.plus], x.ord[row.ind.neg]-1), a2[c(row.ind.plus, row.ind.neg)]), mean)) NA.Delta = is.na(Delta) NA.ind = which(NA.Delta, arr.ind=T, useNames = F) if (nrow(NA.ind) > 0) { notNA.ind = which(!NA.Delta, arr.ind=T, useNames = F) range1 =K1-1 range2 = max(z2)-min(z2) Z.NA = cbind(NA.ind[,1]/range1, (z2[NA.ind[,2]] + z2[NA.ind[,2]+1])/2/range2) Z.notNA = cbind(notNA.ind[,1]/range1, (z2[notNA.ind[,2]] + z2[notNA.ind[,2]+1])/2/range2) nbrs <- ann(Z.notNA, Z.NA, k=1, verbose = F)$knnIndexDist[,1] Delta[NA.ind] = Delta[matrix(notNA.ind[nbrs,], ncol=2)] } fJ = matrix(0,K1-1,K2) fJ = apply(t(apply(Delta,1,cumsum)),2,cumsum) fJ = rbind(rep(0,K2),fJ) fJ = cbind(rep(0,K1),fJ) b=as.matrix(table(x.ord,a2)) b2=apply(b,2,sum) Delta = fJ[,2:(K2+1)]-fJ[,1:K2] b.Delta = b*Delta Delta.Ave = apply(b.Delta,2,sum)/b2 fJ2 = c(0, cumsum(Delta.Ave)) b.ave=matrix((b[1:(K1-1),]+b[2:K1,])/2, K1-1, K2) b1=apply(b.ave,1,sum) Delta =matrix(fJ[2:K1,]-fJ[1:(K1-1),], K1-1, K2+1) b.Delta = matrix(b.ave*(Delta[,1:K2]+Delta[,2:(K2+1)])/2, K1-1, K2) Delta.Ave = apply(b.Delta,1,sum)/b1 fJ1 = c(0,cumsum(Delta.Ave)) fJ = fJ - outer(fJ1,rep(1,K2+1)) - outer(rep(1,K1),fJ2) fJ0 = sum(b*(fJ[,1:K2] + fJ[,2:(K2+1)])/2)/sum(b) fJ = fJ - fJ0 x <- list(levs.ord, z2) K <- c(K1, K2) image(1:K1, x[[2]], fJ, xlab=paste("x_",J[1], " (", names(X)[J[1]], ")", sep=""), ylab= paste("x_",J[2], " (", names(X)[J[2]], ")", sep=""), ylim = range(z2), yaxs = "i") contour(1:K1, x[[2]], fJ, add=TRUE, drawlabels=TRUE) axis(side=1, labels=x[[1]], at=1:K1, las = 3, padj=1.2) if (NA.plot == FALSE) { if (nrow(NA.ind) > 0) { NA.ind = which(b==0, arr.ind=T, useNames = F) rect(xleft = NA.ind[,1]-0.5, ybottom = z2[NA.ind[,2]], xright = NA.ind[,1]+0.5, ytop = z2[NA.ind[,2]+1], col="black") } } } else if (class(X[,J[1]]) == "numeric" | class(X[,J[1]]) == "integer") { z1 = c(min(X[,J[1]]), as.numeric(quantile(X[,J[1]],seq(1/K,1,length.out=K), type=1))) z1 = unique(z1) K1 = length(z1)-1 a1 = as.numeric(cut(X[,J[1]], breaks=z1, include.lowest=TRUE)) z2 = c(min(X[,J[2]]), as.numeric(quantile(X[,J[2]],seq(1/K,1,length.out=K), type=1))) z2 = unique(z2) K2 = length(z2)-1 fJ = matrix(0,K1,K2) a2 = as.numeric(cut(X[,J[2]], breaks=z2, include.lowest=TRUE)) X11 = X X12 = X X21 = X X22 = X X11[,J] = cbind(z1[a1], z2[a2]) X12[,J] = cbind(z1[a1], z2[a2+1]) X21[,J] = cbind(z1[a1+1], z2[a2]) X22[,J] = cbind(z1[a1+1], z2[a2+1]) y.hat11 = pred.fun(X.model=X.model, newdata = X11) y.hat12 = pred.fun(X.model=X.model, newdata = X12) y.hat21 = pred.fun(X.model=X.model, newdata = X21) y.hat22 = pred.fun(X.model=X.model, newdata = X22) Delta=(y.hat22-y.hat21)-(y.hat12-y.hat11) Delta = as.matrix(tapply(Delta, list(a1, a2), mean)) NA.Delta = is.na(Delta) NA.ind = which(NA.Delta, arr.ind=T, useNames = F) if (nrow(NA.ind) > 0) { notNA.ind = which(!NA.Delta, arr.ind=T, useNames = F) range1 = max(z1)-min(z1) range2 = max(z2)-min(z2) Z.NA = cbind((z1[NA.ind[,1]] + z1[NA.ind[,1]+1])/2/range1, (z2[NA.ind[,2]] + z2[NA.ind[,2]+1])/2/range2) Z.notNA = cbind((z1[notNA.ind[,1]] + z1[notNA.ind[,1]+1])/2/range1, (z2[notNA.ind[,2]] + z2[notNA.ind[,2]+1])/2/range2) nbrs <- ann(Z.notNA, Z.NA, k=1, verbose = F)$knnIndexDist[,1] Delta[NA.ind] = Delta[matrix(notNA.ind[nbrs,], ncol=2)] } fJ = apply(t(apply(Delta,1,cumsum)),2,cumsum) fJ = rbind(rep(0,K2),fJ) fJ = cbind(rep(0,K1+1),fJ) b=as.matrix(table(a1,a2)) b1=apply(b,1,sum) b2=apply(b,2,sum) Delta =fJ[2:(K1+1),]-fJ[1:K1,] b.Delta = b*(Delta[,1:K2]+Delta[,2:(K2+1)])/2 Delta.Ave = apply(b.Delta,1,sum)/b1 fJ1 = c(0,cumsum(Delta.Ave)) Delta = fJ[,2:(K2+1)]-fJ[,1:K2] b.Delta = b*(Delta[1:K1,]+Delta[2:(K1+1),])/2 Delta.Ave = apply(b.Delta,2,sum)/b2 fJ2 = c(0, cumsum(Delta.Ave)) fJ = fJ - outer(fJ1,rep(1,K2+1)) - outer(rep(1,K1+1),fJ2) fJ0 = sum(b*(fJ[1:K1,1:K2] + fJ[1:K1,2:(K2+1)] + fJ[2:(K1+1),1:K2] + fJ[2:(K1+1), 2:(K2+1)])/4)/sum(b) fJ = fJ - fJ0 x <- list(z1, z2) K <- c(K1, K2) image(x[[1]], x[[2]], fJ, xlab=paste("x_",J[1], " (", names(X)[J[1]], ")", sep=""), ylab= paste("x_",J[2], " (", names(X)[J[2]], ")", sep=""), xlim = range(z1), ylim = range(z2), xaxs = "i", yaxs = "i") contour(x[[1]], x[[2]], fJ, add=TRUE, drawlabels=TRUE) if (NA.plot == FALSE) { if (nrow(NA.ind) > 0) { rect(xleft = z1[NA.ind[,1]], ybottom = z2[NA.ind[,2]], xright = z1[NA.ind[,1]+1], ytop = z2[NA.ind[,2]+1], col="black") } } } else print("error: class(X[,J[1]]) must be either factor or numeric/integer") } else print("error: J must be a vector of length one or two") list(K=K, x.values=x, f.values = fJ) }
setAs("nMatrix", "dMatrix", function(from) { cld <- getClassDef(cl <- MatrixClass(class(from))) isSp <- extends(cld, "sparseMatrix") sNams <- slotNames(cld) r <- copyClass(from, sub("^n", "d", cl), if(isSp) sNams else sNams[sNams != "x"]) r@x <- if(isSp) rep.int(1., nnzSparse(from)) else as.double(from@x) r }) setAs("dMatrix", "nMatrix", function(from) { if(anyNA(from@x) && ((.w <- isTRUE(getOption("Matrix.warn"))) || isTRUE(getOption("Matrix.verbose")))) { (if(.w) warning else message)( "\"dMatrix\" object with NAs coerced to \"nMatrix\": NA |-> TRUE") from@x[is.na(from@x)] <- 1 } cld <- getClassDef(cl <- MatrixClass(class(from))) if(extends(cld, "diagonalMatrix")) return(di2nMat(from)) isSp <- extends(cld, "sparseMatrix") if(isSp && any(from@x == 0)) { from <- drop0(from) if(cl != (c. <- class(from))) cld <- getClassDef(cl <- c.) } sNams <- slotNames(cld) r <- copyClass(from, sub("^d", "n", cl), sNams[sNams != "x"]) if(!isSp) r@x <- as.logical(from@x) r }) setMethod("zapsmall", signature(x = "dMatrix"), function(x, digits = getOption("digits")) { x@x <- zapsmall(x@x, digits) x })
`unique.splineMatrix` <- function(list.of.splineMatrices) { tmp.list.1 <- lapply(list.of.splineMatrices, function(x) list(Data = [email protected], Content_Areas=x@Content_Areas, Grade_Progression=x@Grade_Progression, Time=x@Time, Time_Lags=x@Time_Lags, Version=x@Version)) if (any(duplicated(tmp.list.1))) { list.of.splineMatrices <- list.of.splineMatrices[!duplicated(tmp.list.1)] } tmp.list.1 <- lapply(list.of.splineMatrices, function(x) list(Data = [email protected], Content_Areas=x@Content_Areas, Grade_Progression=x@Grade_Progression, Time=x@Time, Time_Lags=x@Time_Lags)) tmp.list.2 <- lapply(list.of.splineMatrices, function(x) list(Data = [email protected], Content_Areas=x@Content_Areas, Grade_Progression=x@Grade_Progression, Time=x@Time, Time_Lags=x@Time_Lags, Version=x@Version)) if (any(duplicated(tmp.list.1))) { list.of.splineMatrices[!duplicated(tmp.list.1[order(as.character(unlist(sapply(tmp.list.2, function(x) x$Version[1]))), decreasing=TRUE)])] } else { list.of.splineMatrices } }
setGeneric("corridor", function(x, ...) { standardGeneric("corridor") }) setMethod( "corridor", signature = "goc", definition = function(x, whichThresh, coords, weight = "meanWeight", ...) { dots <- list(...) if (!is.null(dots$doPlot)) { warning("Argument 'doPlot' is deprecated and will be ignored.") } if ((length(whichThresh) > 1) || (!(whichThresh %in% 1:length(x@th)))) { stop("whichThresh must index a single threshold existing in the GOC object") } if (inherits(coords, c("SpatialPoints", "SpatialPointsDataFrame"))) { coords <- coordinates(coords) } if (ncol(coords) != 2) { stop("coords must be a SpatialPoints object or a matrix of two columns", "giving X and Y coordinates") } if (nrow(coords) > 2) { warning("using only first two sets of coordinates for corridor start and end points") coords <- coords[1:2, ] } if (!(weight %in% names(edge_attr(x@th[[1]]$goc)))) { stop("link weight attribute with this name doesn't exist in GOC object") } edges <- as_edgelist(x@th[[whichThresh]]$goc) edges <- cbind(edgeNum = 1:nrow(edges), v1 = sapply(edges[, 1], function(z) { which(V(x@th[[whichThresh]]$goc)$name == z) }), v2 = sapply(edges[, 2], function(z) { which(V(x@th[[whichThresh]]$goc)$name == z) })) edgesGOC <- apply(edges, 1, function(i) { cbind(c(V(x@th[[whichThresh]]$goc)$centroidX[i["v1"]], V(x@th[[whichThresh]]$goc)$centroidX[i["v2"]]), c(V(x@th[[whichThresh]]$goc)$centroidY[i["v1"]], V(x@th[[whichThresh]]$goc)$centroidY[i["v2"]])) %>% Line() %>% Lines(ID = as.character(i["edgeNum"])) }) %>% SpatialLines() %>% SpatialLinesDataFrame( data = data.frame( edgeNum = 1:nrow(edges), weight = edge_attr(x@th[[whichThresh]]$goc, weight) ) ) verticesGOC <- SpatialPoints(cbind(V(x@th[[whichThresh]]$goc)$centroidX, V(x@th[[whichThresh]]$goc)$centroidY)) startEndPolygons <- point(x, coords)$pointPolygon[, whichThresh] pths <- shortest_paths( x@th[[whichThresh]]$goc, which(V(x@th[[whichThresh]]$goc)$polygonId == na.omit(startEndPolygons[1])), which(V(x@th[[whichThresh]]$goc)$polygonId == na.omit(startEndPolygons[2])), weights = V(x@th[[whichThresh]]$goc)$meanWeight) startEndPath <- if (length(pths$vpath) > 0) { pths %>% `[[`(1) %>% `[[`(1) %>% as.numeric() } else { stop("corridor: all 'coords' correspond to cells of value 'NA'.") } shortestPathEdges <- cbind(V(x@th[[whichThresh]]$goc)$centroidX[startEndPath], V(x@th[[whichThresh]]$goc)$centroidY[startEndPath]) %>% Line() %>% Lines(ID = "1") %>% list() %>% SpatialLines() shortestPathVertices <- SpatialPoints(cbind( V(x@th[[whichThresh]]$goc)$centroidX[startEndPath], V(x@th[[whichThresh]]$goc)$centroidY[startEndPath])) pathDist <- distances( x@th[[whichThresh]]$goc, v = V(x@th[[whichThresh]]$goc)[na.omit(startEndPath[1])], weights = edge_attr(x@th[[whichThresh]]$goc, weight) )[na.omit(startEndPath[length(startEndPath)])] voronoiBound <- boundaries(grain(x, whichThresh = whichThresh)@voronoi, classes = TRUE) result <- new("corridor", voronoi = voronoiBound, linksSP = edgesGOC, nodesSP = verticesGOC, shortestLinksSP = shortestPathEdges, shortestNodesSP = shortestPathVertices, corridorLength = pathDist) return(result) })
context("Checking misc: formula() function") source("settings.r") dat <- escalc(measure="RR", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat.bcg) test_that("formula() works correctly for 'rma.uni' objects.", { res <- rma(yi, vi, data=dat, method="DL") expect_null(formula(res, type="mods")) expect_null(formula(res, type="yi")) res <- rma(yi, vi, mods = ~ ablat, data=dat, method="DL") expect_equal(~ablat, formula(res, type="mods")) expect_null(formula(res, type="yi")) res <- rma(yi ~ ablat, vi, data=dat, method="DL") expect_null(formula(res, type="mods")) expect_equal(yi~ablat, formula(res, type="yi")) expect_error(formula(res, type="scale")) }) rm(list=ls())
epane<-function(x,h){ d<-length(x) val<-1 for (i in 1:d){ val<-val*3*(1-(x[i]/h)^2)/2 } return(val) }
lsodes <- function(y, times, func, parms, rtol = 1e-6, atol = 1e-6, jacvec = NULL, sparsetype = "sparseint", nnz = NULL, inz = NULL, rootfunc = NULL, verbose = FALSE, nroot = 0, tcrit = NULL, hmin = 0, hmax = NULL, hini = 0, ynames = TRUE, maxord = NULL, maxsteps = 5000, lrw = NULL, liw = NULL, dllname = NULL, initfunc = dllname, initpar = parms, rpar = NULL, ipar = NULL, nout = 0, outnames = NULL, forcings = NULL, initforc = NULL, fcontrol = NULL, events = NULL, lags = NULL, ...) { if (is.list(func)) { if (!is.null(jacvec) & "jacvec" %in% names(func)) stop("If 'func' is a list that contains jacvec, argument 'jacvec' should be NULL") if (!is.null(rootfunc) & "rootfunc" %in% names(func)) stop("If 'func' is a list that contains rootfunc, argument 'rootfunc' should be NULL") if (!is.null(initfunc) & "initfunc" %in% names(func)) stop("If 'func' is a list that contains initfunc, argument 'initfunc' should be NULL") if (!is.null(dllname) & "dllname" %in% names(func)) stop("If 'func' is a list that contains dllname, argument 'dllname' should be NULL") if (!is.null(initforc) & "initforc" %in% names(func)) stop("If 'func' is a list that contains initforc, argument 'initforc' should be NULL") if (!is.null(events$func) & "eventfunc" %in% names(func)) stop("If 'func' is a list that contains eventfunc, argument 'events$func' should be NULL") if ("eventfunc" %in% names(func)) { if (! is.null(events)) events$func <- func$eventfunc else events <- list(func = func$eventfunc) } if (!is.null(func$jacvec)) jacvec <- func$jacvec if (!is.null(func$rootfunc)) rootfunc <- func$rootfunc if (!is.null(func$initfunc)) initfunc <- func$initfunc if (!is.null(func$dllname)) dllname <- func$dllname if (!is.null(func$initforc)) initforc <- func$initforc func <- func$func } hmax <- checkInput (y, times, func, rtol, atol, jacvec, tcrit, hmin, hmax, hini, dllname,"jacvec") n <- length(y) if (is.null (maxord)) maxord <- 5 if (maxord > 5 ) stop ("'maxord' too large: should be <= 5") if (maxord < 1 ) stop ("`maxord' must be >1") if (sparsetype=="sparseusr" && is.null(inz)) stop("'inz' must be specified if 'sparsetype' = 'sparseusr'") if (sparsetype=="sparsejan" && is.null(inz)) stop("'inz' must be specified if 'sparsetype' = 'sparsejan'") if (sparsetype=="1D" && ! is.null(jacvec)) stop("cannot combine 'sparsetype=1D' and 'jacvec'") if (sparsetype %in% c("2D", "2Dmap") && ! is.null(jacvec)) stop("cannot combine 'sparsetype=2D' and 'jacvec'") if (sparsetype %in% c("3D", "3Dmap") && ! is.null(jacvec)) stop("cannot combine 'sparsetype=3D' and 'jacvec'") if (! is.null(jacvec) && sparsetype %in% c("sparseusr", "sparsejan")) imp <- 21 else if (! is.null(jacvec) && !sparsetype=="sparseusr") imp <- 121 else if (is.null(jacvec) && sparsetype%in%c("sparseusr","1D","2D","2Dmap","3D","3Dmap","sparsejan")) imp <- 22 else imp <- 222 if (sparsetype == "1D") { nspec <- nnz[1] bandwidth <- 1 Type <- c(2,nnz) nnz <- n*(2+nspec*bandwidth)-2*nspec } else if (sparsetype %in% c("2D","2Dmap")) { nspec <- nnz[1] dimens <- nnz[2:3] bandwidth <- 1 maxdim <- max(dimens) if (sparsetype == "2D") { Type <- c(3, nnz) nnz <- n*(4+nspec*bandwidth)-2*nspec*(sum(dimens)) } else { Type <- c(30, nnz) nnz <- (nspec*prod(dimens))*(4+nspec*bandwidth)-2*nspec*(sum(dimens)) } if (Type[5]==1) { nnz <- nnz + 2*maxdim*nspec*bandwidth } if (Type[6] ==1) { nnz <- nnz + 2*maxdim*nspec*bandwidth } } else if (sparsetype %in% c("3D","3Dmap")) { nspec <- nnz[1] dimens <- nnz[2:4] bandwidth <- 1 if (sparsetype == "3D") { Type <- c(4,nnz) nnz <- n*(6+nspec*bandwidth)-2*nspec*(sum(dimens)) } else { Type <- c(40, nnz) nnz <- (nspec*prod(dimens))*(6+nspec*bandwidth)-2*nspec*(sum(dimens)) } if (Type[6]== 1) { nnz <- nnz + 2*dimens[2]*dimens[3]*nspec } if (Type[7] == 1) { nnz <- nnz + 2*dimens[1]*dimens[3]*nspec } if (Type[8] == 1) { nnz <- nnz + 2*dimens[1]*dimens[2]*nspec } } else if (sparsetype == "sparseusr") { Type <- 0 nnz <- nrow(inz) } else if (sparsetype == "sparsejan") { Type <- 0 nnz <- length(inz) - n } else { Type <- 1 if (is.null(nnz)) nnz <- n*n } if (nnz < 1) stop ("Jacobian should at least contain one non-zero value") JacFunc <- NULL Ynames <- attr(y,"names") RootFunc <- NULL flist <- list(fmat=0,tmat=0,imat=0,ModelForc=NULL) ModelInit <- NULL Eventfunc <- NULL events <- checkevents(events, times, Ynames, dllname,TRUE) if (! is.null(events$newTimes)) times <- events$newTimes if (is.character(func) | inherits(func, "CFunc")) { DLL <- checkDLL(func,jacvec,dllname, initfunc,verbose,nout, outnames, JT=2) if (!is.null(rootfunc)) { if (!is.character(rootfunc) & !inherits(rootfunc, "CFunc")) stop("If 'func' is dynloaded, so must 'rootfunc' be") rootfuncname <- rootfunc if (inherits(rootfunc, "CFunc")) RootFunc <- body(rootfunc)[[2]] else if (is.loaded(rootfuncname, PACKAGE = dllname)) { RootFunc <- getNativeSymbolInfo(rootfuncname, PACKAGE = dllname)$address } else stop(paste("root function not loaded in DLL",rootfunc)) if (nroot == 0) stop("if 'rootfunc' is specified in a DLL, then 'nroot' should be > 0") } ModelInit <- DLL$ModelInit Func <- DLL$Func JacFunc <- DLL$JacFunc Nglobal <- DLL$Nglobal Nmtot <- DLL$Nmtot if (! is.null(forcings)) flist <- checkforcings(forcings,times,dllname,initforc,verbose,fcontrol) if (is.null(ipar)) ipar<-0 if (is.null(rpar)) rpar<-0 Eventfunc <- events$func if (is.function(Eventfunc)) rho <- environment(Eventfunc) else rho <- NULL } else { if(is.null(initfunc)) initpar <- NULL rho <- environment(func) if (ynames) { Func <- function(time,state) { attr(state,"names") <- Ynames unlist(func (time,state,parms,...)) } Func2 <- function(time,state) { attr(state,"names") <- Ynames func (time,state,parms,...) } JacFunc <- function(time,state,J){ attr(state,"names") <- Ynames jacvec(time,state,J,parms,...) } RootFunc <- function(time,state) { attr(state,"names") <- Ynames rootfunc(time,state,parms,...) } if (! is.null(events$Type)) if (events$Type == 2) Eventfunc <- function(time,state) { attr(state,"names") <- Ynames events$func(time,state,parms,...) } } else { Func <- function(time,state) unlist(func (time,state,parms,...)) Func2 <- function(time,state) func (time,state,parms,...) JacFunc <- function(time,state,J) jacvec(time,state,J,parms,...) RootFunc <- function(time,state) rootfunc(time,state,parms,...) if (! is.null(events$Type)) if (events$Type == 2) Eventfunc <- function(time,state) events$func(time,state,parms,...) } FF <- checkFunc(Func2,times,y,rho) Nglobal<-FF$Nglobal Nmtot <- FF$Nmtot if (! is.null(events$Type)) if (events$Type == 2) checkEventFunc(Eventfunc,times,y,rho) if (! is.null(rootfunc)) { tmp2 <- eval(rootfunc(times[1],y,parms,...), rho) if (!is.vector(tmp2)) stop("root function 'rootfunc' must return a vector\n") nroot <- length(tmp2) } else nroot = 0 } moss <- imp%/%100 meth <- imp%%100%/%10 miter <- imp%%10 lenr = 2 if (is.null(lrw)) { lrw = 20+n*(maxord+1)+3*n +20 if(miter == 1) lrw = lrw + 2*nnz + 2*n + (nnz+9*n)/lenr if(miter == 2) lrw = lrw + 2*nnz + 2*n + (nnz+10*n)/lenr if(miter == 3) lrw = lrw + n + 2 if (sparsetype == "1D") lrw <- lrw*1.2 } if (moss == 0 && miter %in% c(1,2)) liw <- max(liw, 31+n+nnz +30) else liw <- max(liw, 30) lrw <- max(20, lrw) + 3*nroot rwork <- vector("double",20) rwork[] <- 0. if(sparsetype=="sparseusr") { iwork <- vector("integer",liw) iwork[] <- 0 iw <- 32+n iwork[31]<- iw rr <- inz[,2] if (min(rr[2:nnz]-rr[1:(nnz-1)])<0) stop ("cannot proceed: column indices (2nd column of inz) should be sorted") for(i in 1:n) { ii <- which (rr==i) il <- length(ii) i1 <- iwork[i+30] i2 <- iwork[i+30]+il-1 iwork[i+31] <- i2+1 if (il>0) iwork[i1:i2] <- inz[ii,1] } iwork[31:(31+n)] <- iwork[31:(31+n)]-31-n } else if(sparsetype=="sparsejan") { iwork <- vector("integer",liw) iwork[] <- 0 iw <- 32+n linz <- 30 + length(inz) iwork[31:linz] <- inz } else { iwork <- vector("integer",30) iwork[] <- 0 } iwork[5] <- maxord iwork[6] <- maxsteps if(! is.null(tcrit)) rwork[1] <- tcrit rwork[5] <- hini rwork[6] <- hmax rwork[7] <- hmin if (! is.null(times)) itask <- ifelse (is.null (tcrit), 1,4) else itask <- ifelse (is.null (tcrit), 2,5) if(is.null(times)) times <- c(0,1e8) if (verbose) { printtask(itask,func,jacvec) printM("\n--------------------") printM("Integration method") printM("--------------------\n") txt <- "" if (imp == 21) txt <- " The user has supplied indices to nonzero elements of Jacobian, and a Jacobian function" else if (imp == 22) { if (sparsetype %in% c("sparseusr","sparsejan")) txt <-" The user has supplied indices to nonzero elements of Jacobian, the Jacobian will be estimated internally, by differences" if (sparsetype=="1D") txt <-" The nonzero elements are according to a 1-D model, the Jacobian will be estimated internally, by differences" if (sparsetype %in% c("2D", "2Dmap")) txt <-" The nonzero elements are according to a 2-D model, the Jacobian will be estimated internally, by differences" if (sparsetype %in% c("3D","3Dmap")) txt <-" The nonzero elements are according to a 3-D model, the Jacobian will be estimated internally, by differences" } else if (imp == 122) txt <-" The user has supplied the Jacobian, its structure (indices to nonzero elements) will be obtained from NEQ+1 calls to jacvec" else if (imp == 222) txt <-" The Jacobian will be generated internally, its structure (indices to nonzero elements) will be obtained from NEQ+1 calls to func" printM(txt) } storage.mode(y) <- storage.mode(times) <- "double" IN <- 3 if (!is.null(rootfunc)) IN <- 7 lags <- checklags(lags, dllname) on.exit(.C("unlock_solver")) out <- .Call("call_lsoda",y,times,Func,initpar, rtol, atol, rho, tcrit, JacFunc, ModelInit, Eventfunc, as.integer(verbose), as.integer(itask), as.double(rwork), as.integer(iwork), as.integer(imp),as.integer(Nglobal), as.integer(lrw),as.integer(liw),as.integer(IN), RootFunc, as.integer(nroot), as.double (rpar), as.integer(ipar), as.integer(Type),flist, events, lags, PACKAGE="deSolve") if (nroot>0) iroot <- attr(out, "iroot") out <- saveOut(out, y, n, Nglobal, Nmtot, func, Func2, iin=c(1,12:20), iout=c(1:3,14,5:9,17)) if (nroot>0) attr(out, "iroot") <- iroot attr(out, "type") <- "lsodes" if (verbose) diagnostics(out) out }
as.data.frame.SpatialArray <- function(x, row.names=NULL, optional=FALSE,...){ df <- as.data.frame(proxy(x)) if(ncol(df)==1) colnames(df) <- "X0" if(!is.null(row.names)){ rownames(df)<- row.names } if(optional){ rownames(df) <- NULL colnames(df) <- NULL } return(df) } setGeneric("as.SpatialArray", function(from) standardGeneric("as.SpatialArray")) setMethod(as.SpatialArray, signature=c("SpatialPoints"), definition=function(from){ SpatialArray(SpatialStack(from), index=1) }) setMethod(as.SpatialArray, signature=c("SpatialPointsDataFrame"), definition=function(from){ SpatialArray(SpatialStack(from), index=1) }) setMethod(as.SpatialArray, signature=c("SpatialLines"), definition=function(from){ SpatialArray(SpatialStack(from), index=1) }) setMethod(as.SpatialArray, signature=c("SpatialLinesDataFrame"), definition=function(from){ SpatialArray(SpatialStack(from), index=1) }) setMethod(as.SpatialArray, signature=c("SpatialPolygons"), definition=function(from){ SpatialArray(SpatialStack(from), index=1) }) setMethod(as.SpatialArray, signature=c("SpatialPolygonsDataFrame"), definition=function(from){ SpatialArray(SpatialStack(from), index=1) }) setMethod("as.list","SpatialArray", function(x,...){ x@stack@Spatials })
expect_equal( construct_CovBlk(c(3,3,3),c(0,0,0)), diag(3) *9 ) expect_equal( construct_CovBlk(c(3,3,3),c(1,2,3)), matrix(c(10,2,3,2,13,6,3,6,18),nrow=3) ) expect_equal( construct_CovBlk(c(3,3,3),c(1,1,2),c(1,2,3)), matrix(c(11,3,5,3,14,8,5,8,22),nrow=3) )
upper.dir <- function(dir,end.slash=TRUE){ (dir <- formal_dir(dir,TRUE)) last_slash <- stringr::str_locate_all(dir,'/')[[1]][,1] |> last(2) if (length(last_slash)==0 | is.na(last_slash)) return(dir) left(dir,last_slash) |> formal_dir(end.slash) } formal_dir <- function(dir,end.slash=FALSE){ if (end.slash){ Trim_right(dir,c('\\\\','/')) |> Replace('\\\\','/') |> paste0('/') }else{ Trim_right(dir,c('\\\\','/')) |> Replace('\\\\','/') } }
options(digits = 3) data(aq.trans) data(aq.census) head(aq.trans) aq.trans$survived <- aq.trans$fate != "dead" aq.trans$flowered <- aq.trans$fate == "flower" head(aq.trans, 1) caption <- function(x) { cat("Press <Enter> to continue...") readline() invisible() } surv <- subset(aq.trans, stage %in% c("flower", "large", "small") & !is.na(rose)) table(surv$rose) table(cut(surv$rose, c(-1:7, 45))) z <- table(cut(surv$rose, c(0:7, 45), labels = c(1:7, "8+")), surv$stage == "flower", surv$survived, dnn = c("State", "Flower", "Alive")) ftable(z, row.vars = c(2, 1), col.vars = c(3)) caption("Transition frequency table with initial state (flowering and rosette number) and fate (dead or alive)") y <- table(cut(surv$rose, c(0:7, 45), labels = c(1:7, "8+")), cut(surv$rose2, c(0:7, 48), labels = c(1:7, "8+")), surv$stage == "flower", surv$flowered, dnn = c("State", "Fate", "Flower", "Flower") ) ftable(y, row.vars = c(3, 1), col.vars = c(4, 2)) caption("Transition frequency table with initial state and fate of live plants") a <- subset(aq.trans, leaf < 50 & stage != "recruit", c(leaf, survived)) logi.hist.plot(a$leaf, a$survived, type = "hist", boxp = FALSE, counts = TRUE, las.h = 0, int = 10, ylabel = "Survival probability", ylabel2 = "Number of plants", xlab = "Number of leaves", main = "Logistic regression leaf vs. survival" ) flwr <- subset(surv, rose > 0 & rose <= 7 & stage == "flower" & year > 1997) non.flwr <- subset(surv, rose > 0 & rose <= 7 & stage != "flower" & year > 1997) rbind(flower = table(flwr$rose), vegetative = table(non.flwr$rose)) a <- table(flwr$year, cut(flwr$rose, c(0, 1, 3, 10), labels = c("rose1", "rose2-3", "rose3+"))) a table(flwr$year, cut(flwr$rose, c(0, 2, 10), labels = c("rose1-2", "rose3+"))) caption("Potential stage class boundaries and sample sizes of flowering plants using cut") tapply(flwr$survived, flwr$rose, mean) tapply(non.flwr$survived, non.flwr$rose, mean) x.flwr <- table(flwr$rose, flwr$survived) x.flwr x.non.flwr <- table(non.flwr$rose, non.flwr$survived) rose <- 1:7 glm.flwr <- glm(x.flwr ~ rose, binomial) glm.non.flwr <- glm(x.non.flwr ~ rose, binomial) summary(glm.flwr) xrange <- c(.5, 7.5) plot(rose, prop.table(x.flwr, 1)[, 2], ylim = c(0.45, 1), xlim = xrange, pch = 1, col = "royalblue", las = 1, ylab = expression(paste("Proportion surviving (year ", italic("t+1"), ")")), xlab = expression(paste("Rosette number (year ", italic("t"), ")")), main = "Survival rates by flowering state" ) points(rose, prop.table(x.non.flwr, 1)[, 2], pch = 3, col = "darkgreen") xp <- seq(1, max(rose), .1) lines(xp, 1 - predict(glm.flwr, list(rose = xp), type = "response"), col = "royalblue", lwd = 2) lines(xp, 1 - predict(glm.non.flwr, list(rose = xp), type = "response"), col = "darkgreen", lwd = 2) legend(.5, 1, c("Flowering", "Vegetative "), pch = c(1, 3), col = c("royalblue", "darkgreen")) x.flwr <- table(flwr$rose, flwr$flowered) x.non.flwr <- table(non.flwr$rose, non.flwr$flowered) glm.flwr <- glm(x.flwr ~ rose, binomial) glm.non.flwr <- glm(x.non.flwr ~ rose, binomial) plot(rose, prop.table(x.flwr, 1)[, 2], ylim = c(0, 1), xlim = xrange, pch = 1, col = "royalblue", las = 1, ylab = expression(paste("Proportion flowering (year ", italic("t+1"), ")")), xlab = expression(paste("Rosette number (year ", italic("t"), ")")), main = "Growth into reproductive stage" ) points(rose, prop.table(x.non.flwr, 1)[, 2], pch = 3, col = "darkgreen") lines(xp, 1 - predict(glm.flwr, list(rose = xp), type = "response"), col = "royalblue", lwd = 2) lines(xp, 1 - predict(glm.non.flwr, list(rose = xp), type = "response"), col = "darkgreen", lwd = 2) legend(.5, 1, c("Flowering", "Vegetative "), pch = c(1, 3), col = c("royalblue", "darkgreen")) flwr$growth <- flwr$rose2 - flwr$rose non.flwr$growth <- non.flwr$rose2 - non.flwr$rose table(flwr$growth) x.flwr <- table(flwr$rose, cut(flwr$growth, c(-10, -.5, .5, 10), labels = c("regress", "stasis", "growth"))) x.non.flwr <- table(non.flwr$rose, cut(non.flwr$growth, c(-15, -.5, .5, 15), labels = c("regress", "stasis", "growth"))) x.flwr caption("Growth rates of flowering plants by rosette number") a1.f <- cbind(regress = x.flwr[, 1], b = x.flwr[, 2] + x.flwr[, 3]) a2.f <- cbind(stasis = x.flwr[, 2], b = x.flwr[, 1] + x.flwr[, 3]) a3.f <- cbind(grow = x.flwr[, 3], b = x.flwr[, 1] + x.flwr[, 2]) a1.nf <- cbind(regress = x.non.flwr[, 1], b = x.non.flwr[, 2] + x.non.flwr[, 3]) a2.nf <- cbind(stasis = x.non.flwr[, 2], b = x.non.flwr[, 1] + x.non.flwr[, 3]) a3.nf <- cbind(grow = x.non.flwr[, 3], b = x.non.flwr[, 1] + x.non.flwr[, 2]) m1.f <- glm(a1.f ~ rose, binomial) m2.f <- glm(a2.f ~ rose, binomial) m3.f <- glm(a3.f ~ rose, binomial) p.flwr <- prop.table(x.flwr, 1) p.non.flwr <- prop.table(x.non.flwr, 1) plot(rose, p.flwr[, 1], type = "n", ylim = c(0, 1), xlim = xrange, las = 1, ylab = expression(paste("Proportion (year ", italic("t+1"), ")")), xlab = expression(paste("Rosette number (year ", italic("t"), ")")), main = paste("Growth, stasis, and regression\nof flowering plants") ) points(rose, p.flwr[, 1], pch = 1, col = "darkgreen") lines(xp, predict(m1.f, list(rose = xp), type = "response"), col = "darkgreen", lwd = 2) points(rose, p.flwr[, 2], pch = 3, col = "red") lines(xp, predict(m2.f, list(rose = xp), type = "response"), col = "red", lwd = 2) points(rose, p.flwr[, 3], pch = 6, col = "royalblue") lines(xp, predict(m3.f, list(rose = xp), type = "response"), col = "royalblue", lwd = 2) legend(2.5, 1, c("Growth", "Stasis", "Regress "), pch = c(6, 3, 1), col = c("royalblue", "red", "darkgreen")) m1.nf <- glm(a1.nf ~ rose, binomial) m2.nf <- glm(a2.nf ~ rose, binomial) m3.nf <- glm(a3.nf ~ rose, binomial) plot(rose, p.non.flwr[, 1], type = "n", ylim = c(0, 1), xlim = xrange, las = 1, ylab = expression(paste("Proportion (year ", italic("t+1"), ")")), xlab = expression(paste("Rosette number (year ", italic("t"), ")")), main = paste("Growth, stasis, and regression\nof vegetative plants") ) points(rose, p.non.flwr[, 1], pch = 1, col = "darkgreen") lines(xp, predict(m1.nf, list(rose = xp), type = "response"), col = "darkgreen", lwd = 2) points(rose, p.non.flwr[, 2], pch = 3, col = "red") lines(xp, predict(m2.nf, list(rose = xp), type = "response"), col = "red", lwd = 2) points(rose, p.non.flwr[, 3], pch = 6, col = "royalblue") lines(xp, predict(m3.nf, list(rose = xp), type = "response"), col = "royalblue", lwd = 2) legend(2, 1, c("Growth", "Stasis", "Regress "), pch = c(6, 3, 1), col = c("royalblue", "red", "darkgreen")) fruit <- subset(aq.trans, stage == "flower" & fruits >= 0 & rose <= 7 & rose > 0, select = c(plant, year, rose, leaf, fruits)) table(fruit$rose) fruit1 <- glm(fruits ~ rose, poisson, data = fruit) summary(fruit1) caption("glm using poisson family") fruit1 <- glm(fruits ~ rose, quasipoisson, data = fruit) summary(fruit1) caption("glm using quasipoisson to correct for overdispersion") boxplot(fruit$fruits ~ fruit$rose, xlab = "Rosette number", ylab = "Mature fruits", col = "green", ylim = c(0, 12), main = paste("Side-by-side boxplots of\nmature fruits by plant size")) lines(xp, exp(predict(fruit1, list(rose = xp))), col = "red", lwd = 2)
bivariate <- function(db, target) { if (!is.data.frame(db)) { stop("db is not a data frame.") } if (!target%in%names(db)) { stop("Target variable does not exist in supplied db.") } y <- db[, target] cond.00 <- !sum(y[!is.na(y)]%in%c(0, 1)) == length(y[!is.na(y)]) if (cond.00) { stop("Target is not 0/1 variable.") } rf <- names(db)[!names(db)%in%target] rfl <- length(rf) if (rfl == 0) { stop("There are no risk factors in supplied db.") } res <- vector("list", rfl) info <- vector("list", rfl) for (i in 1:rfl) { xl <- rf[i] x <- db[, xl] cond.01 <- !(is.character(x) | is.factor(x) | is.logical(x)) cond.02 <- length(unique(x)) > 10 if (cond.01) { info[[i]] <- data.frame(rf = xl, reason.code = 1, comment = "Inappropriate class. It has to be one of: character, factor or logical.") next } if (cond.02) { info[[i]] <- data.frame(rf = xl, reason.code = 2, comment = "More than 10 categories.") next } woe.res <- woe.tbl(tbl = db, x = xl, y = target) mod.formula <- paste0(target, " ~ ", "`", xl, "`") lr <- try(glm(mod.formula, family = "binomial", data = db), silent = TRUE) if ("try-error"%in%class(lr)) { auc <- NA } else { auc <- auc.model(predictions = unname(predict(lr, type = "response", newdata = db)), observed = y) } woe.res$auc <- auc woe.res <- cbind.data.frame(rf = xl, woe.res) res[[i]] <- woe.res } res <- data.frame(bind_rows(res)) info <- data.frame(bind_rows(info)) return(list(results = res, info = info)) } woe.tbl <- function(tbl, x, y, y.check = TRUE) { if (!is.data.frame(tbl)) { stop("tbl is not a data frame.") } if (!y%in%names(tbl)) { stop("y (target variable) does not exist in supplied tbl.") } if (!x%in%names(tbl)) { stop("x (risk factor) does not exist in supplied tbl.") } if (!is.logical(y.check)) { stop("y.check has to be of logical type.") } target <- tbl[, y] if (y.check) { cond.00 <- !sum(target[!is.na(target)]%in%c(0, 1)) == length(target[!is.na(target)]) if (cond.00) { stop("y (target variable) is not 0/1 variable.") } } res <- tbl %>% group_by_at(c("bin" = x)) %>% summarise(no = n(), ng = sum(1 - !!sym(y)), nb = sum(!!sym(y))) %>% ungroup() %>% mutate(pct.o = no / sum(no), pct.g = ng / sum(ng), pct.b = nb / sum(nb), dr = nb / no, so = sum(no), sg = sum(ng), sb = sum(nb), dist.g = ng / sg, dist.b = nb / sb, woe = log(dist.g / dist.b), iv.b = (dist.g - dist.b) * woe, iv.s = sum(iv.b)) return(data.frame(res)) } auc.model <- function(predictions, observed) { cc <- complete.cases(predictions, observed) predictions <- predictions[cc] observed <- observed[cc] n1 <- sum(observed == 0) n2 <- sum(observed == 1) u <- sum(rank(predictions)[observed == 0]) - n1 * (n1 + 1) / 2 auc <- 1 - u / n1 / n2 return(auc) } replace.woe <- function(db, target) { if (!is.data.frame(db)) { stop("db is not a data frame.") } if (!target%in%names(db)) { stop("Target variable does not exist in supplied db.") } y <- db[, target] cond.00 <- !sum(y[!is.na(y)]%in%c(0, 1)) == length(y[!is.na(y)]) if (cond.00) { stop("Target is not 0/1 variable.") } rf <- names(db)[!names(db)%in%target] rfl <- length(rf) if (rfl == 0) { stop("There are no risk factors in supplied db.") } res <- vector("list", rfl) info <- vector("list", rfl) for (i in 1:rfl) { xl <- rf[i] x <- db[, xl] cond.01 <- !(is.character(x) | is.factor(x) | is.logical(x)) cond.02 <- length(unique(x)) > 10 if (cond.01) { info[[i]] <- data.frame(rf = xl, reason.code = 1, comment = "Inappropriate class. It has to be one of: character, factor or logical.") res[[i]] <- data.frame(x) names(res[[i]]) <- xl next } if (cond.02) { info[[i]] <- data.frame(rf = xl, reason.code = 2, comment = "More than 10 categories.") } woe.res <- woe.tbl(tbl = db, x = xl, y = target) cond.03 <- any(woe.res$woe%in%c(NA, NaN, Inf)) if (cond.03) { info[[i]] <- data.frame(rf = xl, reason.code = 3, comment = "Problem with WoE calculation (NA, NaN, Inf)") res[[i]] <- data.frame(x) names(res[[i]]) <- xl next } woe.val <- woe.res$woe names(woe.val) <- woe.res$bin woe.rep <- unname(woe.val[x]) res[[i]] <- data.frame(woe.rep) names(res[[i]]) <- xl } res <- data.frame(bind_cols(res), check.names = FALSE) res <- cbind.data.frame(db[, target, drop = FALSE], res) info <- data.frame(bind_rows(info)) return(list(results = res, info = info)) }
NULL isList <- function(x) { class(x)[1] == "list" } isBoot <- function(x) { "boot" %in% class(x) } isMod <- function(x) { any(c("lm", "glm", "lmerMod", "glmerMod", "lmerModLmerTest", "gls", "betareg") %in% class(x)) } rMapply <- function(FUN, ..., MoreArgs = NULL, SIMPLIFY = TRUE, USE.NAMES = TRUE) { l <- list(...) n <- length(l) i <- if (n > 0) l[[1]] else l j <- if (n > 1) l[[2]] else i if (!isList(i) || !isList(j)) { do.call(FUN, c(l, MoreArgs)) } else { a <- list(FUN = FUN, MoreArgs = MoreArgs, SIMPLIFY = SIMPLIFY, USE.NAMES = USE.NAMES) mapply(rMapply, ..., MoreArgs = a, SIMPLIFY = SIMPLIFY, USE.NAMES = USE.NAMES) } } pSapply <- function(X, FUN, parallel = c("snow", "multicore", "no"), ncpus = NULL, cl = NULL, add.obj = NULL, ...) { parallel <- match.arg(parallel); nc <- ncpus; ao <- add.obj; a <- list(...) if (parallel == "multicore") a$simplify <- NULL else a$SIMPLIFY <- NULL if (parallel != "no") { if (is.null(nc)) nc <- parallel::detectCores() if (parallel == "snow") { if (is.null(cl)) { cl <- parallel::makeCluster(getOption("cl.cores", nc)) } P <- function(...) { paste(..., collapse = " ") } xc <- P(unlist(rMapply(function(i) { if (isMod(i) || isBoot(i)) P(getCall(i)) }, X))) fa <- P(sapply(match.call(expand.dots = FALSE)$..., deparse)) fc <- P(xc, enquote(FUN)[2], fa) o <- unlist(lapply(search(), ls)) o <- o[sapply(o, function(i) grepl(i, fc, fixed = TRUE))] o <- c("X", o, ao) parallel::clusterExport(cl, o, environment()) out <- do.call(parallel::parSapply, c(list(cl, X, FUN), a)) parallel::stopCluster(cl) } else { out <- parallel::mcmapply(FUN, X, mc.cores = nc, MoreArgs = a) } } else { out <- do.call(sapply, c(list(X, FUN), a)) } return(out) }
require(lavaan) require(SEMsens) set.seed(1) smith10.use <- data(smith19.use, package = "SEMsens") factornames <- c("P2BEPARN", "P2CHDOES","P2HRDWRM","P2FLTRAP","P2FEELAN","P2CHHARD", "P2MOREWK", "P2HITCHO","P2HITAPO","P2HITPRV","P2HITWAR","P2ATTENB", "P2ATTENP", "P2PARADV","P2PARGRP","P2ATTENS","P2VOLUNT","P2FUNDRS", "P2TVRULE", "P2TVRUL3","P2TVRUL2","P1TELLST","P1SINGSO","P1HELPAR", "P1CHORES", "P1GAMES","P1NATURE","P1BUILD","P1SPORT","P2LIBRAR", "P2CONCRT", "P2MUSEUM","P2ZOO") model1 <- " C2RSCALE~T2LEARN+T2EXTERN+T2INTERN+T2CONTRO+T2INTERP+f1+f2+f3+f4+f5+f6 T2LEARN~f1 +f2 +f3 +f4 +f5 +f6 T2EXTERN~f1 +f2 +f3 +f4 +f5 +f6 T2INTERN~f1 +f2 +f3 +f4 +f5 +f6 T2CONTRO~f1 +f2 +f3 +f4 +f5 +f6 T2INTERP~f1 +f2 +f3 +f4 +f5 +f6 f1=~P2BEPARN+P2CHDOES+P2HRDWRM+P2FLTRAP+P2FEELAN+P2CHHARD+P2MOREWK f2=~P2HITCHO+P2HITAPO+P2HITPRV+P2HITWAR f3=~P2ATTENB+P2ATTENP+P2PARADV+P2PARGRP+P2ATTENS+P2VOLUNT+P2FUNDRS f4=~P2TVRULE+P2TVRUL3+P2TVRUL2 f5=~P1TELLST+P1SINGSO+P1HELPAR+P1CHORES+P1GAMES+P1NATURE+P1BUILD+P1SPORT f6=~P2LIBRAR+P2CONCRT+P2MUSEUM+P2ZOO T2LEARN ~~ T2EXTERN+T2INTERN+T2CONTRO+T2INTERP T2EXTERN ~~ T2INTERN+T2CONTRO+T2INTERP T2INTERN ~~ T2CONTRO+T2INTERP T2CONTRO ~~ T2INTERP f1 ~~ f2+f3+f4+f5+f6 f2 ~~ f3+f4+f5+f6 f3 ~~ f4+f5+f6 f4 ~~ f5+f6 f5 ~~ f6 " sens.model1 <- ' C2RSCALE~T2LEARN+T2EXTERN+T2INTERN+T2CONTRO+T2INTERP+f1+f2+f3+f4+f5+f6 T2LEARN~f1 +f2 +f3 +f4 +f5 +f6 T2EXTERN~f1 +f2 +f3 +f4 +f5 +f6 T2INTERN~f1 +f2 +f3 +f4 +f5 +f6 T2CONTRO~f1 +f2 +f3 +f4 +f5 +f6 T2INTERP~f1 +f2 +f3 +f4 +f5 +f6 f1=~P2BEPARN+P2CHDOES+P2HRDWRM+P2FLTRAP+P2FEELAN+P2CHHARD+P2MOREWK f2=~P2HITCHO+P2HITAPO+P2HITPRV+P2HITWAR f3=~P2ATTENB+P2ATTENP+P2PARADV+P2PARGRP+P2ATTENS+P2VOLUNT+P2FUNDRS f4=~P2TVRULE+P2TVRUL3+P2TVRUL2 f5=~P1TELLST+P1SINGSO+P1HELPAR+P1CHORES+P1GAMES+P1NATURE+P1BUILD+P1SPORT f6=~P2LIBRAR+P2CONCRT+P2MUSEUM+P2ZOO T2LEARN ~~ T2EXTERN+T2INTERN+T2CONTRO+T2INTERP T2EXTERN ~~ T2INTERN+T2CONTRO+T2INTERP T2INTERN ~~ T2CONTRO+T2INTERP T2CONTRO ~~ T2INTERP f1 ~~ f2+f3+f4+f5+f6 f2 ~~ f3+f4+f5+f6 f3 ~~ f4+f5+f6 f4 ~~ f5+f6 f5 ~~ f6 T2LEARN ~ phantom1*phantom T2EXTERN ~ phantom2*phantom C2RSCALE ~ phantom3*phantom f3 ~ phantom4*phantom f4 ~ phantom5*phantom f5 ~ phantom6*phantom phantom =~ 0 phantom ~~ 1*phantom ' old.model = model1 old.out = sem(model = model1, data = smith19.use, estimator="WLSMV",ordered = factornames) summary(old.out, standardized=TRUE) old.model.par <- standardizedSolution(old.out,type = "std.all") old.model.par load("smith19_6_my.sa.table.rdata") my.sa.table$sens.summary my.sa.table$phan.paths my.sa.table$phan.min my.sa.table$phan.max my.sa.table$p.paths
"employee_performance"
isZeroOrNanScalar <- function(argument, default = NULL, stopIfNot = FALSE, message = NULL, argumentName = NULL) { checkarg(argument, "N", default = default, stopIfNot = stopIfNot, nullAllowed = FALSE, n = 1, zeroAllowed = TRUE, negativeAllowed = FALSE, positiveAllowed = FALSE, nonIntegerAllowed = TRUE, naAllowed = FALSE, nanAllowed = TRUE, infAllowed = FALSE, message = message, argumentName = argumentName) }
sample_sd <- function(x, na.rm = FALSE) { sqrt(sample_var(x,na.rm=na.rm)) }
context('Check theme objects') test_that('gg_themes objects were properly created', { expect_true(is.theme(theme_readable())) expect_true(is.theme(theme_bw2())) }) test_that('xp_themes objects were properly created', { expect_true(is.list(theme_xp_default())) expect_true(is.list(theme_xp_xpose4())) expect_true(inherits(theme_xp_default(), 'xpose_theme')) expect_true(inherits(theme_xp_xpose4(), 'xpose_theme')) })
CatDynExp <- function(x,...) UseMethod("CatDynExp")
new_model <- function(fit = NULL, model, data, response, transformation){ structure(list(fit = fit, model = model, data = data, response = response, transformation = transformation), class = "mdl_ts") } format.mdl_ts <- function(x, ...){ model_sum(x) } type_sum.mdl_ts <- function(x){ model_sum(x[["fit"]]) } is_model <- function(x){ inherits(x, "mdl_ts") } model_sum <- function(x){ UseMethod("model_sum") } model_sum.default <- function(x){ tibble::type_sum(x) } model_sum.mdl_ts <- function(x){ model_sum(x[["fit"]]) }
dcosw<-function(x,alpha,lambda){ (pi/2)*alpha*(lambda^(alpha))*(x^(alpha-1))*exp(-(lambda*x)^alpha)*cos((pi/2)*exp(-(lambda*x)^alpha)) }
hypo.surf <- function(threeD.out=NULL, PC=1, flim=c(0, 4), tlim=c(0, 0.8), x.length=70, y.length=47, log.scale=TRUE, f=44100, wl=512, ovlp=70, plot.exp=FALSE, plot.as="jpeg", store.at = NULL, rotate.Xaxis=60, rotate.Yaxis=40, cex.axis=0.5, cex.lab=0.9, cex.main=1.1, lwd=0.1, xlab="Time coordinates", ylab="Frequency coordinates", zlab="Amplitude", colkey = list(plot = TRUE, cex.clab = 0.9, cex.axis = 0.8, side = 4, length = 0.5, width = 0.7, labels = TRUE, tick = TRUE, lty = 1, lwd = 1, lwd.ticks = 1)) { if(is.null(threeD.out)) {stop('Please define threeD.out as an object containing the output of eigensound function with analysis.type="threeDshape')} if(is.null(PC)) {stop('Choose a Principal Component or "mean" shape configuration to generate hypothetical semilandmark configurations. See help(hypo.surf) for details.')} if(plot.exp == TRUE && is.null(store.at)){ stop("Use 'store.at' to specify folder path where plots of hypothetical sound surfaces will be stored")} ref = geomorph::mshape(threeD.out) e <- seewave::spectro(SoundShape::cuvieri, f=f, wl=wl, ovlp=ovlp, flim=flim, tlim=tlim, plot=F) freq.seq <- seq(1, length(e$freq), length=y.length) ifelse(isTRUE(log.scale), time.seq <- 10^(seq(log10(1), log10(length(e$time)), length.out = x.length)), time.seq <- seq(1, length(e$time), length.out = x.length)) time.sub <- e$time[time.seq] freq.sub <- e$freq[freq.seq] if(is.character(PC)){ if(PC=="mean"){ mean.hPC <- matrix(ref[,3], nrow=y.length, ncol=x.length, byrow = T) if(plot.exp==TRUE){ oldpar <- graphics::par(no.readonly = TRUE) base::on.exit(graphics::par(oldpar)) if(plot.as == "jpeg"){ grDevices::jpeg(width=4000,height=3500,units="px",res=500, filename=paste(store.at,"/", "Hypothetical surfaces - Mean shape", ".jpg", sep=""))} if(plot.as=="tiff"|plot.as=="tif"){ grDevices::tiff(width=4000, height=3500, units="px", res=500, filename=paste(store.at,"/", "Hypothetical surfaces - Mean shape",".tif", sep=""))} } graphics::par(mar=c(1,2,2,2)) plot3D::persp3D(x=time.sub, y=freq.sub, z=t(mean.hPC), theta=rotate.Xaxis, phi=rotate.Yaxis, resfac=1, r=3, expand=0.5, scale=T, axes=T, ticktype="detailed", nticks=4, cex.axis=cex.axis, cex.lab=cex.lab, cex.main=cex.main, border="black", lwd=lwd, col=seewave::spectro.colors(n=100), xlab=xlab, ylab=ylab, zlab=zlab, main="Mean shape", clab=expression('Amplitude'), colkey=colkey) if(plot.exp==TRUE){grDevices::dev.off()} } else{stop('Invalid or misspelled PC argument. Please choose between "mean" (for mean shape configuration) or a number representing the intended Principal Component. See help(hypo.surf) for details.')} } if(is.numeric(PC)){ PCmax <- PC*2 PCmin <- (PC*2)-1 PCA.out = stats::prcomp(geomorph::two.d.array(threeD.out)) pcdata = PCA.out$x p = dim(threeD.out)[1] k = dim(threeD.out)[2] shapes <- shape.names <- NULL for (i in 1:ncol(pcdata)) { pcaxis.min <- min(pcdata[, i]) pcaxis.max <- max(pcdata[, i]) pc.min <- pc.max <- rep(0, dim(pcdata)[2]) pc.min[i] <- pcaxis.min pc.max[i] <- pcaxis.max pc.min <- as.matrix(pc.min %*% (t(PCA.out$rotation))) + as.vector(t(ref)) pc.max <- as.matrix(pc.max %*% (t(PCA.out$rotation))) + as.vector(t(ref)) shapes <- rbind(shapes, pc.min, pc.max) shape.names <- c(shape.names, paste("PC", i, "min", sep = ""), paste("PC", i, "max", sep = "")) } shapes <- geomorph::arrayspecs(shapes, p, k) shapes <- lapply(seq(dim(shapes)[3]), function(x) shapes[, , x]) names(shapes) <- shape.names if(PC > (length(shapes)/2)){ stop('Invalid number of Principal Components')} min.hPC <- matrix(shapes[[PCmin]][,3], nrow=y.length, ncol=x.length, byrow = T) max.hPC <- matrix(shapes[[PCmax]][,3], nrow=y.length, ncol=x.length, byrow = T) if(plot.exp==TRUE){ if(plot.as == "jpeg"){ grDevices::jpeg(width=8000,height=3500,units="px",res=500, filename=paste(store.at,"/", "Hypothetical surfaces - PC", PC, ".jpg", sep=""))} if(plot.as=="tiff"|plot.as=="tif"){ grDevices::tiff(width=8000, height=3500, units="px", res=500, filename=paste(store.at,"/", "Hypothetical surfaces - PC", PC,".tif", sep=""))} } graphics::par(mfrow=c(1,2), mar=c(0,2,2,2)) plot3D::persp3D(x=time.sub, y=freq.sub, z=t(min.hPC), theta=rotate.Xaxis, phi=rotate.Yaxis, resfac=1, r=3, expand=0.5, scale=T, axes=T, ticktype="detailed", nticks=4, cex.axis=cex.axis, cex.lab=cex.lab, cex.main=cex.main, border="black", lwd=lwd, col=seewave::spectro.colors(n=100), xlab=xlab, ylab=ylab, zlab=zlab, clab=expression('Amplitude'), main=paste("PC", PC, " - Minimum", sep=""), colkey=colkey) plot3D::persp3D(x=time.sub, y=freq.sub, z=t(max.hPC), theta=rotate.Xaxis, phi=rotate.Yaxis, resfac=1, r=3, expand=0.5, scale=T, axes=T, ticktype="detailed", nticks=4, cex.axis=cex.axis, cex.lab=cex.lab, cex.main=cex.main, border="black", lwd=lwd, col=seewave::spectro.colors(n=100), xlab=xlab, ylab=ylab, zlab=zlab, clab=expression('Amplitude'), main=paste("PC", PC, " - Maximum", sep=""), colkey=colkey) if(plot.exp==TRUE){grDevices::dev.off()} } }
create_Wlong_mats <- function (model_data, model_info, initial_values, priors, control) { betas <- initial_values$betas b <- initial_values$b gammas <- initial_values$gammas bs_gammas <- initial_values$bs_gammas alphas <- initial_values$alphas Time_right <- model_data$Time_right Time_left <- model_data$Time_left Time_start <- model_data$Time_start delta <- model_data$delta which_event <- model_data$which_event which_right <- model_data$which_right which_left <- model_data$which_left which_interval <- model_data$which_interval W0_H <- model_data$W0_H W_H <- model_data$W_H X_H <- model_data$X_H Z_H <- model_data$Z_H U_H <- model_data$U_H W0_h <- model_data$W0_h W_h <- model_data$W_h X_h <- model_data$X_h Z_h <- model_data$Z_h U_h <- model_data$U_h W0_H2 <- model_data$W0_H2 W_H2 <- model_data$W_H2 X_H2 <- model_data$X_H2 Z_H2 <- model_data$Z_H2 U_H2 <- model_data$U_H2 n <- model_data$n idT <- model_data$idT log_Pwk <- model_data$log_Pwk log_Pwk2 <- model_data$log_Pwk2 FunForms_per_outcome <- model_info$FunForms_per_outcome Funs_FunsForms <- model_info$Funs_FunsForms id_H <- rep(list(rep(unclass(idT), each = control$GK_k)), length(X_H)) eta_H <- linpred_surv(X_H, betas, Z_H, b, id_H) Wlong_H <- create_Wlong(eta_H, FunForms_per_outcome, U_H, Funs_FunsForms) if (length(which_event)) { id_h <- rep(list(unclass(idT)), length(X_h)) eta_h <- linpred_surv(X_h, betas, Z_h, b, id_h) Wlong_h <- create_Wlong(eta_h, FunForms_per_outcome, U_h, Funs_FunsForms) } else { Wlong_h <- rep(list(matrix(0.0, length(Time_right), 1)), length(Wlong_H)) } if (length(which_interval)) { id_H2 <- lapply(X_H2, function (i, n) rep(seq_len(n), each = control$GK_k), n = n) eta_H2 <- linpred_surv(X_H2, betas, Z_H, b, id_H2) Wlong_H2 <- create_Wlong(eta_H2, FunForms_per_outcome, U_H2, Funs_FunsForms) } else { Wlong_H2 <- rep(list(matrix(0.0, control$GK_k * n, 1)), length(Wlong_H)) } list(Wlong_H = Wlong_H, Wlong_h = Wlong_h, Wlong_H2 = Wlong_H2) }
set.seed(1234) subject1 = trunc(rnorm(30, mean=60, sd=15)) range(subject1) subject1 marks = data.frame(subject1) head(marks) marks sort(marks$subject1) k2 = kmeans(marks, centers=2) k2 k2$size k2$iter cbind(marks, k2$cluster) length(marks[k2$cluster==1,]) marks[k2$cluster==2,] marks[k2$cluster==1,] mean(marks[k2$cluster==1,]) mean(marks[k2$cluster==2,]) k2$centers k2a = kmeans(marks, centers=c(50,70)) k2a k2a$centers head(iris) head(mtcars) marks subject subject1 = trunc(rnorm(30, mean=60, sd=15)) subject1 scale(subject1) cbind(subject1, scale(subject1)) ?scale scale(mtcars)
context("Dissolution Profile Tolerance Intervals") test_that("mztia_succeeds_CAPABILITY", { m_alpha_P <- matrix(c(rep(c(0.01, 0.05, 0.1), each = 3), 1 - rep(c(0.1, 0.05, 0.01), times = 3)), ncol = 2, byrow = FALSE) ll <- apply(m_alpha_P, MARGIN = 1, FUN = function(x) mztia(data = dip5, shape = "long", tcol = 1, grouping = "type", reference = "reference", response = "weight", alpha = x[1], P = x[2], cap = FALSE, bounds = c(0, 100), QS = c(5, 15)) [["Data"]][102, "weight"]) ul <- apply(m_alpha_P, MARGIN = 1, FUN = function(x) mztia(data = dip5, shape = "long", tcol = 1, grouping = "type", reference = "reference", response = "weight", alpha = x[1], P = x[2], cap = FALSE, bounds = c(0, 100), QS = c(5, 15)) [["Data"]][103, "weight"]) expect_equal(signif(ll, 4), c(11.92, 11.90, 11.86, 11.92, 11.90, 11.87, 11.92, 11.91, 11.88)) expect_equal(signif(ul, 4), c(12.10, 12.12, 12.15, 12.10, 12.11, 12.15, 12.09, 12.11, 12.14)) }) test_that("mztia_succeeds_with_df_shape_long", { tmp <- mztia(data = dip5, shape = "long", tcol = 1, grouping = "type", reference = "reference", response = "weight", alpha = 0.05, P = 0.99, cap = FALSE, bounds = c(0, 100), QS = c(5, 15))[["Data"]] expect_equal(signif(tmp[101, "weight"], 9), 12.0093000) expect_equal(signif(tmp[102, "weight"], 9), 11.8715203) expect_equal(signif(tmp[103, "weight"], 9), 12.1470797) expect_equal(signif(tmp[104, "weight"], 9), 6.871520286) expect_equal(signif(tmp[105, "weight"], 9), 17.1470797) expect_equal(signif(tmp[106, "weight"], 9), -3.1284797) expect_equal(signif(tmp[107, "weight"], 9), 27.1470797) }) test_that("mztia_succeeds_with_df_shape_wide", { tmp1 <- mztia(data = dip1, shape = "wide", tcol = 3:10, grouping = "type", reference = "R", response = NULL, alpha = 0.05, P = 0.99, cap = FALSE, bounds = c(0, 100), QS = c(5, 15))[["Data"]] tmp2 <- mztia(data = dip1, shape = "wide", tcol = 3:10, grouping = "type", reference = "R", response = NULL, alpha = 0.05, P = 0.99, cap = TRUE, bounds = c(0, 100), QS = c(5, 15))[["Data"]] expect_equal( signif(tmp1[tmp1$type1 == "Mean" & tmp1$type2 == "Mean", "response"], 9), c(46.7716667, 60.1333333, 67.2750000, 71.9866667, 78.0700000, 84.8166667, 89.0933333, 91.4383333)) expect_equal( signif(tmp1[tmp1$type1 == "TL" & tmp1$type2 == "LTL", "response"], 9), c(27.2264050, 46.1548274, 56.9041726, 65.4435423, 69.5425900, 77.2027513, 76.2458801, 80.2932086)) expect_equal( signif(tmp1[tmp1$type1 == "TL" & tmp1$type2 == "UTL", "response"], 9), c(66.3169283, 74.1118393, 77.6458274, 78.5297910, 86.5974100, 92.4305820, 101.940787, 102.583458)) expect_equal( signif(tmp1[tmp1$type1 == "TL.S1" & tmp1$type2 == "LTL", "response"], 9), c(22.2264050, 41.1548274, 51.9041726, 60.4435423, 64.5425900, 72.2027513, 71.2458801, 75.2932086)) expect_equal( signif(tmp1[tmp1$type1 == "TL.S1" & tmp1$type2 == "UTL", "response"], 9), c(71.3169283, 79.1118393, 82.6458274, 83.5297910, 91.5974100, 97.4305820, 106.940787, 107.583458)) expect_equal( signif(tmp1[tmp1$type1 == "TL.S2" & tmp1$type2 == "LTL", "response"], 9), c(12.2264050, 31.1548274, 41.9041726, 50.4435423, 54.5425900, 62.2027513, 61.2458801, 65.2932086)) expect_equal( signif(tmp1[tmp1$type1 == "TL.S2" & tmp1$type2 == "UTL", "response"], 9), c(81.3169283, 89.1118393, 92.6458274, 93.5297910, 101.5974100, 107.430582, 116.940787, 117.583458)) expect_equal( signif(tmp2[tmp2$type1 == "TL" & tmp2$type2 == "UTL", "response"], 9), c(66.3169283, 74.1118393, 77.6458274, 78.5297910, 86.5974100, 92.4305820, 100.000000, 100.000000)) expect_equal( signif(tmp2[tmp2$type1 == "TL.S1" & tmp2$type2 == "UTL", "response"], 9), c(71.3169283, 79.1118393, 82.6458274, 83.5297910, 91.5974100, 97.4305820, 105.000000, 105.000000)) expect_equal( signif(tmp2[tmp2$type1 == "TL.S2" & tmp2$type2 == "UTL", "response"], 9), c(81.3169283, 89.1118393, 92.6458274, 93.5297910, 101.5974100, 107.430582, 115.000000, 115.000000)) }) test_that("mztia_fails", { tmp0 <- dip1 tmp0$t.5 <- as.factor(tmp0$t.5) tmp1 <- dip1 tmp1$type <- as.character(tmp1$type) expect_error( mztia(data = as.matrix(dip1[, 3:10]), shape = "wide", tcol = 3:10, grouping = "type", reference = "R", response = NULL, alpha = 0.05, P = 0.99, cap = FALSE, bounds = c(0, 100), QS = c(5, 15)), "data must be provided as data frame") expect_error( mztia(data = dip1, shape = 1, tcol = 3:10, grouping = "type", reference = "R", response = NULL, alpha = 0.05, P = 0.99, cap = FALSE, bounds = c(0, 100), QS = c(5, 15)), "shape must be a string") expect_error( mztia(data = dip1, shape = "weit", tcol = 3:10, grouping = "type", reference = "R", response = NULL, alpha = 0.05, P = 0.99, cap = FALSE, bounds = c(0, 100), QS = c(5, 15)), "specify shape") expect_error( mztia(data = dip1, shape = "wide", tcol = "tico", grouping = "type", reference = "R", response = NULL, alpha = 0.05, P = 0.99, cap = FALSE, bounds = c(0, 100), QS = c(5, 15)), "tcol must be an integer") expect_error( mztia(data = dip1, shape = "wide", tcol = 3:10 + 0.1, grouping = "type", reference = "R", response = NULL, alpha = 0.05, P = 0.99, cap = FALSE, bounds = c(0, 100), QS = c(5, 15)), "tcol must be an integer") expect_error( mztia(data = dip1, shape = "wide", tcol = 7:11, grouping = "type", reference = "R", response = NULL, alpha = 0.05, P = 0.99, cap = FALSE, bounds = c(0, 100), QS = c(5, 15)), "Some columns specified by tcol were not found") expect_error( mztia(data = dip1, shape = "wide", tcol = 7, grouping = "type", reference = "R", response = NULL, alpha = 0.05, P = 0.99, cap = FALSE, bounds = c(0, 100), QS = c(5, 15)), "Did you provide a data frame") expect_error( mztia(data = dip1, shape = "wide", tcol = 2:6, grouping = "type", reference = "R", response = NULL, alpha = 0.05, P = 0.99, cap = FALSE, bounds = c(0, 100), QS = c(5, 15)), "Some names of columns specified by tcol") expect_error( mztia(data = tmp0, shape = "wide", tcol = 3:10, grouping = "type", reference = "R", response = NULL, alpha = 0.05, P = 0.99, cap = FALSE, bounds = c(0, 100), QS = c(5, 15)), "Some columns specified by tcol are not numeric") expect_error( mztia(data = dip1, shape = "wide", tcol = 3:10, grouping = 5, reference = "R", response = NULL, alpha = 0.05, P = 0.99, cap = FALSE, bounds = c(0, 100), QS = c(5, 15)), "grouping must be a string") expect_error( mztia(data = dip1, shape = "wide", tcol = 3:10, grouping = "lot", reference = "R", response = NULL, alpha = 0.05, P = 0.99, cap = FALSE, bounds = c(0, 100), QS = c(5, 15)), "grouping variable was not found") expect_error( mztia(data = tmp1, shape = "wide", tcol = 3:10, grouping = "type", reference = "R", response = NULL, alpha = 0.05, P = 0.99, cap = FALSE, bounds = c(0, 100), QS = c(5, 15)), "grouping variable's column in data") expect_error( mztia(data = dip1, shape = "wide", tcol = 3:10, grouping = "type", reference = 1, response = NULL, alpha = 0.05, P = 0.99, cap = FALSE, bounds = c(0, 100), QS = c(5, 15)), "reference must be a string") expect_error( mztia(data = dip1, shape = "wide", tcol = 3:10, grouping = "type", reference = "REF", response = NULL, alpha = 0.05, P = 0.99, cap = FALSE, bounds = c(0, 100), QS = c(5, 15)), "The reference variable was not found") expect_error( mztia(data = dip1, shape = "wide", tcol = 3:10, grouping = "type", reference = "type", response = NULL, alpha = 0.05, P = 0.99, cap = FALSE, bounds = c(0, 100), QS = c(5, 15)), "The reference variable was not found") expect_error( mztia(data = dip5, shape = "long", tcol = 3, grouping = "type", reference = "reference", response = NULL, alpha = 0.05, P = 0.99, cap = FALSE, bounds = c(0, 100), QS = c(5, 15)), "data frame provided via data is in long format" ) expect_error( mztia(data = dip5, shape = "long", tcol = 3, grouping = "type", reference = "reference", response = 5, alpha = 0.05, P = 0.99, cap = FALSE, bounds = c(0, 100), QS = c(5, 15)), "response must be a string of length 1" ) expect_error( mztia(data = dip5, shape = "long", tcol = 3, grouping = "type", reference = "reference", response = c("type", "batch"), alpha = 0.05, P = 0.99, cap = FALSE, bounds = c(0, 100), QS = c(5, 15)), "response must be a string of length 1" ) expect_error( mztia(data = dip5, shape = "long", tcol = 3, grouping = "type", reference = "reference", response = "assay", alpha = 0.05, P = 0.99, cap = FALSE, bounds = c(0, 100), QS = c(5, 15)), "response variable was not found" ) expect_error( mztia(data = dip5, shape = "long", tcol = 3, grouping = "type", reference = "reference", response = "type", alpha = 0.05, P = 0.99, cap = FALSE, bounds = c(0, 100), QS = c(5, 15)), "column specified by response is not numeric" ) expect_error( mztia(data = dip1, shape = "wide", tcol = 3:10, grouping = "type", reference = "R", response = NULL, alpha = -1, P = 0.99, cap = FALSE, bounds = c(0, 100), QS = c(5, 15)), "specify alpha") expect_error( mztia(data = dip1, shape = "wide", tcol = 3:10, grouping = "type", reference = "R", response = NULL, alpha = 9, P = 0.99, cap = FALSE, bounds = c(0, 100), QS = c(5, 15)), "specify alpha") expect_error( mztia(data = dip1, shape = "wide", tcol = 3:10, grouping = "type", reference = "R", response = NULL, alpha = 0.05, P = -1, cap = FALSE, bounds = c(0, 100), QS = c(5, 15)), "specify P") expect_error( mztia(data = dip1, shape = "wide", tcol = 3:10, grouping = "type", reference = "R", response = NULL, alpha = 0.05, P = 9, cap = FALSE, bounds = c(0, 100), QS = c(5, 15)), "specify P") expect_error( mztia(data = dip1, shape = "wide", tcol = 3:10, grouping = "type", reference = "R", response = NULL, alpha = 0.05, P = 0.99, cap = 0, bounds = c(0, 100), QS = c(5, 15)), "cap must be a logical") expect_error( mztia(data = dip1, shape = "wide", tcol = 3:10, grouping = "type", reference = "R", response = NULL, alpha = 0.05, P = 0.99, cap = FALSE, bounds = c("l", "u"), QS = c(5, 15)), "bounds must be a numeric vector") expect_error( mztia(data = dip1, shape = "wide", tcol = 3:10, grouping = "type", reference = "R", response = NULL, alpha = 0.05, P = 0.99, cap = FALSE, bounds = c(5, 50, 90), QS = c(5, 15)), "bounds must be a numeric vector") expect_error( mztia(data = dip1, shape = "wide", tcol = 3:10, grouping = "type", reference = "R", response = NULL, alpha = 0.05, P = 0.99, cap = FALSE, bounds = c(100, 0), QS = c(5, 15)), "specify bounds in the form") expect_error( mztia(data = dip1, shape = "wide", tcol = 3:10, grouping = "type", reference = "R", response = NULL, alpha = 0.05, P = 0.99, cap = FALSE, bounds = c(0, 100), QS = c("l", "u")), "QS must be a numeric vector") expect_error( mztia(data = dip1, shape = "wide", tcol = 3:10, grouping = "type", reference = "R", response = NULL, alpha = 0.05, P = 0.99, cap = FALSE, bounds = c(0, 100), QS = c(5, 15, 30)), "QS must be a numeric vector") expect_error( mztia(data = dip1, shape = "wide", tcol = 3:10, grouping = "type", reference = "R", response = NULL, alpha = 0.05, P = 0.99, cap = FALSE, bounds = c(0, 100), QS = c(-5, 15)), "specify QS in the range") expect_error( mztia(data = dip1, shape = "wide", tcol = 3:10, grouping = "type", reference = "R", response = NULL, alpha = 0.05, P = 0.99, cap = FALSE, bounds = c(0, 100), QS = c(5, 105)), "specify QS in the range") expect_error( mztia(data = dip1, shape = "wide", tcol = 3:10, grouping = "type", reference = "R", response = NULL, alpha = 0.05, P = 0.99, cap = FALSE, bounds = c(0, 100), QS = c(15, 5)), "Q S1 must be smaller Q S2") })
getPDF <- function(x) { txtfiles <- character(length(x)) for (i in 1:length(x)) { system(paste('pdftotext -q -enc "ASCII7" "', x[i], '"', sep = "")) if (file.exists(gsub("\\.pdf$", "\\.txt", x[i]))) { fileName <- gsub("\\.pdf$", "\\.txt", x[i]) txtfiles[i] <- readChar(fileName, file.info(fileName)$size) } else{ warning(paste("Failure in file", x[i])) txtfiles[i] <- "" } } return(txtfiles) } checkPDFdir <- function(dir, subdir = TRUE, ...) { if (missing(dir)) dir <- tk_choose.dir() all.files <- list.files(dir, pattern = "\\.pdf", full.names = TRUE, recursive = subdir) files <- all.files[grepl("\\.pdf$", all.files)] if (length(files) == 0) stop("No PDF found") txts <- character(length(files)) message("Importing PDF files...") pb <- txtProgressBar(max = length(files), style = 3) for (i in 1:length(files)) { txts[i] <- getPDF(files[i]) setTxtProgressBar(pb, i) } close(pb) names(txts) <- gsub("\\.pdf$", "", basename(files)) return(statcheck(txts, ...)) } checkPDF <- function(files, ...) { if (missing(files)) files <- tk_choose.files() txts <- sapply(files, getPDF) names(txts) <- gsub("\\.pdf$", "", basename(files), perl = TRUE) return(statcheck(txts, ...)) }
library(testthat) test_that("check truncation constructor", { expect_silent(truncate(Binomial$new(), lower = 1, upper = 5)) expect_silent(truncate(Binomial$new(), upper = 5)) expect_silent(truncate(Binomial$new(), lower = 1)) expect_equal(truncate(Binomial$new())$inf, 1) expect_equal(truncate(Binomial$new())$sup, 10) expect_equal(truncate(Binomial$new(), lower = -Inf, upper = Inf)$inf, 1) expect_equal(truncate(Binomial$new(), lower = -Inf, upper = Inf)$sup, 10) expect_error(TruncatedDistribution$new(MultivariateNormal$new()), "multivariate") expect_error(truncate(MixtureDistribution$new(list(Binomial$new(), Normal$new())), 1, 2), "mixed") }) t <- truncate(Binomial$new(), lower = 1, upper = 5) test_that("pdf", { expect_equal(t$pdf(6), 0) expect_equal(t$pdf(0), 0) expect_equal( t$pdf(4), dbinom(4, prob = 0.5, size = 10) / ((pbinom(5, prob = 0.5, size = 10) - pbinom(1, prob = 0.5, size = 10))) ) expect_equal( t$pdf(4, log = TRUE), log(dbinom(4, prob = 0.5, size = 10) / ((pbinom(5, prob = 0.5, size = 10) - pbinom(1, prob = 0.5, size = 10)))) ) }) test_that("cdf", { expect_equal(t$cdf(5), 1) expect_equal(t$cdf(6), 1) expect_equal(t$cdf(0), 0) expec <- (pbinom(4, prob = 0.5, size = 10) - pbinom(1, prob = 0.5, size = 10)) / (pbinom(5, prob = 0.5, size = 10) - pbinom(1, prob = 0.5, size = 10)) expect_equal(t$cdf(4, log.p = FALSE, lower.tail = TRUE), expec) expect_equal(t$cdf(4, log.p = TRUE, lower.tail = TRUE), log(expec)) expect_equal(t$cdf(4, log.p = FALSE, lower.tail = FALSE), 1 - expec) expect_equal(t$cdf(4, log.p = TRUE, lower.tail = FALSE), log(1 - expec)) }) test_that("quantile", { expect_equal(t$.__enclos_env__$private$.quantile(-20), 1) expect_equal(t$.__enclos_env__$private$.quantile(20), 5) expect_equal(t$quantile(0.1), 3) r <- expect_silent({t$rand(5)}) expect_length(r, 5) expect_true(all(r >= 1) & all(r <= 5)) }) test_that("strprint", { expect_equal(t$properties$support$strprint(), Interval$new(2, 5, class = "integer")$strprint()) expect_equal( truncate(Exponential$new(), lower = 2, upper = 3)$properties$support$strprint(), Interval$new(2, 3, type = "(]")$strprint() ) }) test_that("check missing", { expect_error(truncate(Distribution$new("Test", pdf = dnorm), 1, 2)) expect_error(truncate(Distribution$new("Test", cdf = pnorm), 1, 2)) }) test_that("check truncation parameters", { x <- truncate(Binomial$new(), lower = 1, upper = 5) expect_equal(x$inf, 2) expect_equal(x$sup, 5) expect_equal(x$getParameterValue("trunc__lower"), 1) expect_equal(x$getParameterValue("trunc__upper"), 5) expect_silent(x$setParameterValue(trunc__lower = 2)) expect_silent(x$setParameterValue(trunc__upper = 10)) expect_equal(x$inf, 3) expect_equal(x$sup, 10) expect_equal(x$getParameterValue("trunc__lower"), 2) expect_equal(x$getParameterValue("trunc__upper"), 10) expect_error(x$setParameterValue(trunc__upper = 1)) expect_error(x$setParameterValue(trunc__lower = 12)) expect_error(x$setParameterValue(trunc__lower = 4, trunc__upper = 3)) x <- truncate(Exponential$new(), lower = 1, upper = 5) expect_silent(x$setParameterValue(trunc__lower = 2, trunc__upper = 10)) expect_equal(x$inf, 2) expect_equal(x$sup, 10) expect_true(testInterval(x$properties$support)) }) test_that("missing pdf/cdf", { expect_error(truncate(Distribution$new("a", pdf = function(x) x, type = Reals$new())), "pdf and cdf") })
test_that("match-param", { foo <- function(x = NULL, y = c(1, 2, 3)) { y <- match_param(y) x } expect_null(foo()) expect_null(foo(y = 1)) expect_error( foo(y = 4), '`match_param(y)` failed in `foo(y = 4)`: `y` [4] must be one of the following: "1", "2", "3"', fixed = TRUE ) foo2 <- function(y = 1:3) { match_param(y) } expect_equal(foo2(1), 1) expect_equal(foo2(1L), 1L) expect_equal(foo2("1"), 1) foo <- function(x = NULL) { match_param(tolower(x), c("a", "b", "c")) } expect_error( foo(), '`match_param(tolower(x))` failed in `foo()`: `tolower(x)` [character(0)] must be one of the following: "a", "b", "c"', fixed = TRUE ) foo <- function(x = c("a", "b")) { match_param(x) } expect_error(foo(NULL), "non-NULL") }) test_that("match_arg() works", { foo <- function(x = c("a", "b"), table) { match_arg(x, table) } expect_null(foo(NULL)) expect_identical(foo(), "a") expect_identical(foo(table = "a"), "a") expect_error(foo(table = "c")) })
is_dir <- function(x, .xname = get_name_in_parent(x)) { x <- coerce_to(x, "character", .xname) call_and_name( function(x) { ok <- file.info(x)$isdir causes <- ifelse( is.na(ok), "nonexistent", ifelse(ok, "", "file") ) ok <- is_true(ok) set_cause(ok, causes) }, x ) } is_existing_file <- function(x, .xname = get_name_in_parent(x)) { x <- coerce_to(x, "character", .xname) x <- sub("[\\/]+$", "", x) call_and_name( function(x) { ok <- file.exists(x) set_cause(ok, ifelse(ok, "", "nonexistent")) }, x ) } is_executable_file <- function(x, warn_about_windows = TRUE, .xname = get_name_in_parent(x)) { if(warn_about_windows) { warn_about_file.access_under_windows() } x <- coerce_to(x, "character", .xname) call_and_name( function(x) { ok <- file.access(x, mode = 1) == 0L set_cause( ok, ifelse(file.exists(x), "unexecutable", "nonexistent") ) }, x ) } is_ex_file <- function(x) { .Defunct("is_executable_file") is_executable_file(x) } is_library <- function(x, .xname = get_name_in_parent(x)) { x <- coerce_to(x, "character", .xname) call_and_name( function(x) { std_x <- normalizePath(path.expand(x), winslash = "/", mustWork = FALSE) set_cause(std_x %in% .libPaths(), "not a lib") }, x ) } is_readable_file <- function(x, warn_about_windows = TRUE, .xname = get_name_in_parent(x)) { if(warn_about_windows) { warn_about_file.access_under_windows() } x <- coerce_to(x, "character", get_name_in_parent(x)) call_and_name( function(x) { ok <- file.access(x, mode = 4) == 0L set_cause( ok, ifelse(file.exists(x), "unreadable", "nonexistent") ) }, x ) } is_writable_file <- function(x, warn_about_windows = TRUE, .xname = get_name_in_parent(x)) { if(warn_about_windows) { warn_about_file.access_under_windows() } x <- coerce_to(x, "character", .xname) call_and_name( function(x) { ok <- file.access(x, mode = 2) == 0L set_cause( ok, ifelse(file.exists(x, "unwritable", "nonexistent")) ) }, x ) } warn_about_file.access_under_windows <- function() { if(.Platform$OS.type == "windows") { warning( "This function depends on file.access, which can give unexpected results under Windows." ) } }
test_that("only valid types can be passed to functions", { expect_error(trajectory() %>% set_attribute("test", "string_value")) expect_error(trajectory() %>% set_attribute("test", NA)) expect_error(trajectory() %>% set_attribute(NA, 1)) expect_error(trajectory() %>% set_attribute("test", 1, mod="asdf")) t0 <- trajectory() %>% set_attribute(c("a", "b", "c"), c(1, 2)) env <- simmer(verbose = TRUE) %>% add_generator("entity", t0, at(0)) expect_error(run(env)) }) test_that("an arrival attribute is correctly set and returned to a function", { t0 <- trajectory() %>% set_attribute( c("att1", "att2"), c(1, 2) ) %>% timeout(1) %>% set_global( function() c("glb1", "glb2"), c(1, 2) ) %>% timeout(1) %>% set_attribute( c("att3", "att4"), function() get_attribute(env, c("att1", "att2")) ) %>% timeout(1) %>% set_global( function() c("glb3", "glb4"), function() get_global(env, c("glb1", "glb2")) ) %>% log_(function() paste0(get_attribute(env, "att1"), get_attribute(env, "asdf"), get_global(env, "glb1"), get_global(env, "asdf"))) %>% timeout(1) %>% set_attribute( c("att3", "att4"), c(5, 5), mod="+" ) %>% timeout(1) %>% set_global( function() c("glb3", "glb4"), c(5, 5), mod="*" ) env <- simmer(verbose = TRUE) %>% add_generator("entity", t0, at(0), mon=2) expect_output(run(env), ".*1NA1NA") attributes <- env %>% get_mon_attributes() expect_equal(nrow(attributes), 12) expect_equal(attributes$time, rep(0:5, each=2)) expect_equal(attributes$name, rep(c("entity0", ""), each=2, times=3)) keys <- c(1, 2, 1, 2, 3, 4, 3, 4, 3, 4, 3, 4) values <- c(1, 2, 1, 2, 1, 2, 1, 2, 6, 7, 5, 10) expect_equal(attributes$key, paste0(rep(c("att", "glb"), each=2, times=2), keys)) expect_equal(attributes$value, values) }) test_that("the attribute dataframe is returned with the expected columns", { t0 <- trajectory() %>% set_attribute("test", 123) %>% set_global("test", 456) env <- simmer(verbose = TRUE) %>% add_generator("entity", t0, at(0), mon = 1) %>% run() attributes <- env %>% get_mon_attributes() expect_true(all(sapply(colnames(attributes), function(x) x %in% colnames(attributes)))) }) test_that("arrival attributes are returned empty when mon level is < 2", { t0 <- trajectory() %>% set_attribute("test", 123) %>% set_global("test", 456) env <- simmer(verbose = TRUE) %>% add_generator("entity", t0, at(0), mon = 1) %>% run() attributes <- env %>% get_mon_attributes() expect_equal(nrow(attributes), 1) expect_equal(attributes[1, ]$name, "") expect_equal(attributes[1, ]$key, "test") expect_equal(attributes[1, ]$value, 456) }) test_that("attributes are automatically initialised with modifiers", { t <- trajectory() %>% set_attribute("asdf", 1, mod="+") %>% set_global("fdsa", 2, mod="+", init=3) attr <- simmer() %>% add_generator("dummy", t, at(0), mon=2) %>% run() %>% get_mon_attributes() expect_equal(attr$value, c(1, 5)) }) test_that("get_global works outside a trajectory", { expect_equal(get_global(simmer(), "test"), NA_real_) })
mcmc.fmem <- function(params){ rmvnorm.l <- function(mean, sigma){ d <- length(mean) sigma2 <- chol(sigma) t(mean + t(sigma2)%*%rnorm(d)) } Wishart <- function(df,Omega){ p <- ncol(Omega) x <- matrix(rnorm(df*p),df,p) chole <- chol(Omega) t(chole)%*%(t(x)%*%x)%*%chole } burn.in <- params$burn.in post.sam.s <- params$post.sam.s thin <- params$thin y <- params$y p <- params$p q <- params$q ks <- params$ks u <- params$u pdf <- params$pdf cdf <- params$cdf n <- params$n kappa <- params$kappa omeg <- 1/params$omeg family <- params$family homo <- params$homo if(homo == 0) heter <- params$heter total <- burn.in + post.sam.s*thin ancho <- floor(seq(2, total, length=10)) bar <- txtProgressBar(min=0, max=ancho[10], initial=0, width=50, char="+", style=3) mu_m0 <- rep(0,q) sigma2_mu0 <- diag(q)*1000 sigma2_mu0.I <- solve(sigma2_mu0) nu_m <- q omega_m <- diag(q)*1000 a.sigma2_y <- 0.0001/2 b.sigma2_y <- 0.0001/2 rho.a <- matrix(0,total,q) rho0 <- rep(0,q) S.rho <- diag(q)*1000 S.rho.I <- solve(S.rho) rho.a[1,] <- params$rho.i M <- params$M params$rho0 <- rho0 params$S.rho <- S.rho sigma2_m.a <- array(0,c(q,q,total)) sigma2_m.a2 <- array(0,c(q,q,total)) mu_m.a <- matrix(0,total,q) m_i.a <- matrix(0,n,q) sigma2_y.a <- matrix(0,total,1) sigma2_m.a[,,1] <- as.matrix(var(M)) mu_m.a[1,] <- apply(M,2,mean) m_i.a <- M sigma2_y.a[1] <- params$sigma2_y beta.a <- matrix(0,total,p) beta0 <- rep(0,p) S.beta <- diag(p)*1000 S.beta.II <- matrix(0,p+q,p+q) S.beta.II[1:p,1:p] <- solve(S.beta) S.beta.II[(p+1):(p+q),(p+1):(p+q)] <- S.rho.I beta_rho0 <- matrix(0,p+q,1) beta_rho0[1:p] <- beta0 beta_rho0[(p+1):(q+p)] <- rho0 beta.a[1,] <- params$beta.i X <- params$X params$beta0 <- beta0 params$S.beta <- S.beta tau.a <- matrix(0,total,length(ks)) a.tau <- 0.001 b.tau <- 0.001 if(sum(ks) > 0){ alpha.a <- matrix(0,total,sum(ks)) alpha.a[1,] <- params$alpha.i B <- params$B } else{alpha.a <- matrix(0,total,1) B <- matrix(1,n,1) } cont <- 1 uii <- matrix(0,n,1) inv.omega_m <- solve(omega_m) if(family!="Normal" && family!="Laplace" && attr(params$eta,"know")==0){ extra.parameter <- params$extra.parameter nu0 <- params$nu0 nu.a <- matrix(0,total,length(nu0)) nu.a[1,] <- nu0 }else{ nu.a <- kronecker(matrix(1,total,length(params$eta)),t(params$eta)) } for(l in 2:total){ M_m <- 0 omega_m.a <- matrix(0,ncol(M),ncol(M)) if(homo == 1){ ss <- (y - X%*%beta.a[l-1,] - m_i.a%*%rho.a[l-1,]- B%*%alpha.a[l-1,])^2/sigma2_y.a[l-1] + apply((M - m_i.a)^2,1,sum)/(sigma2_y.a[l-1]*omeg) + diag((m_i.a-kronecker(t(mu_m.a[l-1,]),matrix(1,n,1)))%*%tcrossprod(sigma2_m.a[,,l-1],(m_i.a-kronecker(t(mu_m.a[l-1,]),matrix(1,n,1))))) } else{ ss <- (y - X%*%beta.a[l-1,] - m_i.a%*%rho.a[l-1,]- B%*%alpha.a[l-1,])^2/heter$sigma2y + apply((M - m_i.a)^2/(heter$sigma2xi),1,sum) + diag((m_i.a-kronecker(t(mu_m.a[l-1,]),matrix(1,n,1)))%*%tcrossprod(sigma2_m.a[,,l-1],(m_i.a-kronecker(t(mu_m.a[l-1,]),matrix(1,n,1))))) } if(family!="Hyperbolic" && family!="Laplace") uii <- u(ss,nu.a[l-1,]) if(homo == 1){ sig.m_i.a1 <- solve((omeg*sigma2_y.a[l-1])^(-1)*diag(ncol(M)) + sigma2_m.a[,,l-1] + rho.a[l-1,]%*%t(rho.a[l-1,])/(sigma2_y.a[l-1])) chole <- chol(sig.m_i.a1) } for(i in 1:n){ if(family=="Hyperbolic" || family=="Laplace") uii[i] <- u(ss[i],nu.a[l-1,]) if(homo == 1){ sig.m_i.a <- kappa(uii[i])*sig.m_i.a1 mu.m_i.a <- sig.m_i.a%*%(sigma2_m.a[,,l-1]%*%mu_m.a[l-1,]/kappa(uii[i]) + (kappa(uii[i])*omeg*sigma2_y.a[l-1])^(-1)*diag(ncol(M))%*%M[i,] + rho.a[l-1,]*(y[i]-X[i,]%*%beta.a[l-1,] - B[i,]%*%alpha.a[l-1,])/(sigma2_y.a[l-1]*kappa(uii[i]))) m_i.a[i,] <- mu.m_i.a + sqrt(kappa(uii[i]))*crossprod(chole,rnorm(q)) }else{ dfg <- diag(q) diag(dfg) <- 1/heter$sigma2xi[i,] sig.m_i.a <- kappa(uii[i])*solve( dfg + sigma2_m.a[,,l-1] + rho.a[l-1,]%*%t(rho.a[l-1,])/(heter$sigma2y[i])) chole <- chol(sig.m_i.a) mu.m_i.a <- sig.m_i.a%*%(sigma2_m.a[,,l-1]%*%mu_m.a[l-1,]/kappa(uii[i]) + M[i,]/(heter$sigma2xi[i,]*kappa(uii[i])) + rho.a[l-1,]*(y[i]-X[i,]%*%beta.a[l-1,] - B[i,]%*%alpha.a[l-1,])/(heter$sigma2y[i]*kappa(uii[i]))) m_i.a[i,] <- mu.m_i.a + crossprod(chole,rnorm(q)) } omega_m.a <- omega_m.a + tcrossprod((m_i.a[i,]-mu_m.a[l-1,]),(m_i.a[i,]-mu_m.a[l-1,]))/kappa(uii[i]) M_m <- M_m + crossprod((M[i,]- m_i.a[i,]),(M[i,] - m_i.a[i,]))/kappa(uii[i]) } if(family!="Normal" && family!="Laplace" && attr(params$eta,"know")==0){ nu.a[l,] <- extra.parameter(nu.a[l-1,], uii, ss) } if(homo ==1){ MX <- cbind(X,m_i.a) sig.beta.a <- solve(S.beta.II + crossprod(MX,matrix(1/(sigma2_y.a[l-1] * kappa(uii)),n,(p+q))*MX)) mu.beta.a <- sig.beta.a%*%(S.beta.II%*%beta_rho0 + crossprod(MX,matrix(1/(sigma2_y.a[l-1]*kappa(uii)),n,1)*(y-B%*%alpha.a[l-1,]))) temp <- rmvnorm.l(mean=mu.beta.a, sigma=sig.beta.a) beta.a[l,] <- temp[1:p] rho.a[l,] <- temp[(p+1):(q+p)] if(sum(ks) > 0){ alpha.a[l,] <- alpha.a[l-1,] if(length(ks)==1){ alpha0 <- rep(0,ks) scale.tau <- 2*b.tau + crossprod(alpha.a[l-1,],alpha.a[l-1,]) tau.a[l,1] <- 1/rgamma(1, shape= (ks/2 + a.tau), scale= 2/scale.tau) sig.alpha.a <- solve(diag(ks)/tau.a[l,1] + crossprod(B,matrix(1/(sigma2_y.a[l-1]*kappa(uii)),n,ks)*B)) mu.alpha.a <- sig.alpha.a%*%(crossprod(B,(1/(sigma2_y.a[l-1]*kappa(uii)))*(y-X%*%beta.a[l,]-m_i.a%*%rho.a[l,] ))) alpha.a[l,] <- rmvnorm.l(mean=mu.alpha.a,sigma=sig.alpha.a) } else{ lmi <- 1 for(i in 1:length(ks)){ alpha0 <- rep(0,ks[i]) B.i <- B[,lmi:(lmi+ks[i]-1)] scale.tau <- 2*b.tau + crossprod(alpha.a[l-1,lmi:(lmi+ks[i]-1)],alpha.a[l-1,lmi:(lmi+ks[i]-1)]) tau.a[l,i] <- 1/rgamma(1, shape= (ks[i]/2 + a.tau), scale= 2/scale.tau) sig.alpha.a <- solve(diag(ks[i])/tau.a[l,i] + crossprod(B.i,matrix(1/(sigma2_y.a[l-1]*kappa(uii)),n,ks[i])*B.i)) mu.alpha.a <- sig.alpha.a%*%(crossprod(B.i,(1/(sigma2_y.a[l-1]*kappa(uii)))*(y-X%*%beta.a[l,]-m_i.a%*%rho.a[l,] - B[,-c(lmi:(lmi+ks[i]-1))]%*%alpha.a[l,-c(lmi:(lmi+ks[i]-1))]))) alpha.a[l,lmi:(lmi+ks[i]-1)] <- rmvnorm.l(mean=mu.alpha.a,sigma=sig.alpha.a) lmi <- lmi + ks[i] } } }else{tau.a[l] <- 0 alpha.a[l,] <- 0} }else{ MX <- cbind(X,m_i.a) sig.beta.a <- solve(S.beta.II + crossprod(MX,matrix(1/(heter$sigma2y*kappa(uii)),n,(p+q))*MX)) mu.beta.a <- sig.beta.a%*%(S.beta.II%*%beta_rho0 + crossprod(MX,matrix(1/(heter$sigma2y*kappa(uii)),n,1)*(y-B%*%alpha.a[l-1,]))) temp <- rmvnorm.l(mean=mu.beta.a, sigma=sig.beta.a) beta.a[l,] <- temp[1:p] rho.a[l,] <- temp[(p+1):(q+p)] if(sum(ks) > 0){ alpha.a[l,] <- alpha.a[l-1,] if(length(ks)==1){ alpha0 <- rep(0,ks) scale.tau <- 2*b.tau + crossprod(alpha.a[l-1,],alpha.a[l-1,]) tau.a[l,1] <- 1/rgamma(1, shape= (ks/2 + a.tau), scale= 2/scale.tau) sig.alpha.a <- solve(diag(ks)/tau.a[l,1] + crossprod(B,matrix(1/(heter$sigma2y*kappa(uii)),n,ks)*B)) mu.alpha.a <- sig.alpha.a%*%(crossprod(B,(1/(heter$sigma2y*kappa(uii)))*(y-X%*%beta.a[l,]-m_i.a%*%rho.a[l,] ))) alpha.a[l,] <- rmvnorm.l(mean=mu.alpha.a,sigma=sig.alpha.a) } else{ lmi <- 1 for(i in 1:length(ks)){ alpha0 <- rep(0,ks[i]) B.i <- B[,lmi:(lmi+ks[i]-1)] scale.tau <- 2*b.tau + crossprod(alpha.a[l-1,lmi:(lmi+ks[i]-1)],alpha.a[l-1,lmi:(lmi+ks[i]-1)]) tau.a[l,i] <- 1/rgamma(1, shape= (ks[i]/2 + a.tau), scale= 2/scale.tau) sig.alpha.a <- solve(diag(ks[i])/tau.a[l,i] + crossprod(B.i,matrix(1/(heter$sigma2y*kappa(uii)),n,ks[i])*B.i)) mu.alpha.a <- sig.alpha.a%*%(crossprod(B.i,(1/(heter$sigma2y*kappa(uii)))*(y-X%*%beta.a[l,]-m_i.a%*%rho.a[l,] - B[,-c(lmi:(lmi+ks[i]-1))]%*%alpha.a[l,-c(lmi:(lmi+ks[i]-1))]))) alpha.a[l,lmi:(lmi+ks[i]-1)] <- rmvnorm.l(mean=mu.alpha.a,sigma=sig.alpha.a) lmi <- lmi + ks[i] } } }else{tau.a[l] <- 0 alpha.a[l,] <- 0} } sig.mu_m.a <- solve(sigma2_mu0.I + sigma2_m.a[,,l-1]*n*mean(1/kappa(uii))) mu.mu_m.a <- sig.mu_m.a%*%(sigma2_mu0.I%*%mu_m0 + n*(sigma2_m.a[,,l-1])%*%apply(as.matrix(m_i.a)/matrix(kappa(uii),n,q),2,mean)) mu_m.a[l,] <- rmvnorm.l(mean=mu.mu_m.a, sigma=sig.mu_m.a) sigma2_m.a[,,l] <- Wishart(n+q, solve(inv.omega_m + omega_m.a)) sigma2_m.a2[,,l] <- solve(sigma2_m.a[,,l]) if(homo==1){ scale.sigma2_y <- sum((y-X%*%beta.a[l,]-m_i.a%*%rho.a[l,]-B%*%alpha.a[l,])^2/kappa(uii)) + (1/omeg)*M_m + b.sigma2_y sigma2_y.a[l] <- 1/rgamma(1,shape= ((n*(1+q) + a.sigma2_y)/2), scale=2/scale.sigma2_y) } if(l==ancho[cont]){ Sys.sleep(0.5); setTxtProgressBar(bar,ancho[cont]) cont <- cont + 1 } l <- l + 1 } close(bar) size <- seq(burn.in+thin,total,length=post.sam.s) if(attr(params$eta,"know")==0){ aa <- matrix(0,post.sam.s,p+3*q+sum(ks)+1+length(nu0)+length(ks))} else{aa <- matrix(0,post.sam.s,p+3*q+sum(ks)+1+length(ks))} cad <- as.vector(" ") aa[,1:p] <- beta.a[size,] cad <- cbind(cad,t(paste("beta",1:p))) aa[,(p+1):(p+q)] <- rho.a[size,] cad <- cbind(cad,t(paste("rho",1:q))) aa[,(p+q+1):(p+2*q)] <- mu_m.a[size,] cad <- cbind(cad,t(paste("mu_m",1:q))) for(i in 1:q){ aa[,(p+2*q+i)] <- as.vector(sigma2_m.a2[i,i,size]) } cad <- cbind(cad,t(paste("sigma2_m",1:q))) if(homo==1){ aa[,(p+3*q+1)] <- sigma2_y.a[size] cad <- cbind(cad,t(paste("sigma2_y"))) } if(sum(ks) > 0){ aa[,(p+3*q+2):(p+3*q+1+sum(ks))] <- alpha.a[size,] aa[,(p+3*q+sum(ks)+2):(p+3*q+sum(ks)+1+length(ks))] <- tau.a[size,] cad <- cbind(cad,t(colnames(B))) } if(attr(params$eta,"know")==0){ if(ncol(nu.a)==1) { cond <- var(nu.a[size]) if(cond==0) nu.a[size[1]] <- 1.1*mean(nu.a[size]) } if(ncol(nu.a)==2){ cond <- diag(var(nu.a[size,])) if(cond[1]==0) nu.a[size[1],1] <- 0.98*mean(nu.a[size,1]) if(cond[2]==0) nu.a[size[1],2] <- 0.98*mean(nu.a[size,2]) } aa[,(p+3*q+sum(ks)+1+length(ks)+1):(p+3*q+sum(ks)+1+length(ks)+length(nu0))] <- nu.a[size,] } if(sum(ks)>0) cad <- cbind(cad,t(paste("tau_alpha",1:length(ks)))) if(family!="Normal" && family!="Laplace" && attr(params$eta,"know")==0){ cad <- cbind(cad,t(paste("eta",1:length(nu0)))) } haver <- apply(aa,2,var) aa2 <- aa[,haver!=0] cad <- cad[2:length(cad)] colnames(aa2) <- cad mi <- matrix(0,n,post.sam.s) D_bar <- 0 sigma_mp <- matrix(0,q+1,q+1) for(i in 1:post.sam.s){ sigma_mp[1,2:(q+1)] <- rho.a[(burn.in+i),]%*%sigma2_m.a2[,,(burn.in+i)] sigma_mp[2:(q+1),1] <- t(sigma_mp[1,2:(q+1)]) if(homo==1){ sigma_mp[1,1] <- sigma2_y.a[(burn.in+i)] + crossprod(rho.a[(burn.in+i),],sigma2_m.a2[,,(burn.in+i)]%*%rho.a[(burn.in+i),]) sigma_mp[2:(q+1),2:(q+1)] <- omeg*sigma2_y.a[(burn.in+i)] + sigma2_m.a2[,,(burn.in+i)] inv.sigma_mp <- solve(sigma_mp) det_sigma_mp <- det(sigma_mp) } comp_s <- X%*%beta.a[(burn.in+i),] + B%*%alpha.a[(burn.in+i),] + sum(rho.a[(burn.in+i),]*mu_m.a[(burn.in+i),]) zz <- matrix(0,q+1,1) for(j in 1:n){ if(homo==0){ dfg <- diag(q) diag(dfg) <- heter$sigma2xi[j,] sigma_mp[1,1] <- heter$sigma2y[j] + crossprod(rho.a[(burn.in+i),],sigma2_m.a2[,,(burn.in+i)]%*%rho.a[(burn.in+i),]) sigma_mp[2:(q+1),2:(q+1)] <- dfg + sigma2_m.a2[,,(burn.in+i)] inv.sigma_mp <- solve(sigma_mp) det_sigma_mp <- det(sigma_mp) } zz[1] <- y[j]- comp_s[j] zz[2:(q+1)] <- M[j,] - mu_m.a[(burn.in+i),] ss <- sqrt(crossprod(zz,inv.sigma_mp)%*%zz) D_bar <- D_bar - 2*log(pdf(ss,nu.a[(burn.in+i),])) + log(det_sigma_mp) mi[j,i] <- det_sigma_mp^(1/2)/pdf(ss,nu.a[(burn.in+i),]) } D_bar <- D_bar } D_bar <- D_bar/post.sam.s D_theta <- 0 if(q >1){ comp_s <- X%*%apply(as.matrix(beta.a[size,]),2,mean) + B%*%apply(as.matrix(alpha.a[size,]),2,mean) + sum(apply(as.matrix(rho.a[size,]),2,mean)*apply(as.matrix(mu_m.a[(size),]),2,mean)) sigma_mp[1,1] <- crossprod(apply(as.matrix(rho.a[size,]),2,mean),apply(sigma2_m.a2[,,size],1:2,mean))%*%apply(as.matrix(rho.a[size,]),2,mean) sigma_mp[1,2:(q+1)] <- crossprod(apply(as.matrix(rho.a[size,]),2,mean),apply(sigma2_m.a2[,,size],1:2,mean)) sigma_mp[2:(q+1),1] <- t(sigma_mp[1,2:(q+1)]) sigma_mp[2:(q+1),2:(q+1)] <- apply(sigma2_m.a2[,,size],1:2,mean) }else{ comp_s <- X%*%apply(as.matrix(beta.a[size,]),2,mean) + B%*%apply(as.matrix(alpha.a[size,]),2,mean) + sum(apply(as.matrix(rho.a[size,]),2,mean)*apply(as.matrix(mu_m.a[(size),]),2,mean)) sigma_mp[1,1] <- crossprod(apply(as.matrix(rho.a[size,]),2,mean),mean(as.vector(sigma2_m.a2[,,size])))%*%apply(as.matrix(rho.a[size,]),2,mean) sigma_mp[1,2:(q+1)] <- crossprod(apply(as.matrix(rho.a[size,]),2,mean),mean(as.vector(sigma2_m.a2[,,size]))) sigma_mp[2:(q+1),1] <- t(sigma_mp[1,2:(q+1)]) sigma_mp[2:(q+1),2:(q+1)] <- mean(as.vector(sigma2_m.a2[,,size])) } if(homo==1){ sigma_mp[1,1] <- sigma_mp[1,1] + mean(sigma2_y.a[size]) sigma_mp[2:(q+1),2:(q+1)] <- sigma_mp[2:(q+1),2:(q+1)] + omeg*mean(sigma2_y.a[size]) inv.sigma_mp <- solve(sigma_mp) det_sigma_mp <- det(sigma_mp) } zz <- matrix(0,q+1,1) mu_M.mean <- apply(as.matrix(mu_m.a[size,]),2,mean) nu.mean <- apply(as.matrix(nu.a[size,]),2,mean) for(j in 1:n){ if(homo==0){ dfg <- diag(q) diag(dfg) <- heter$sigma2xi[j,] sigma_mp[1,1] <- sigma_mp[1,1] + heter$sigma2y[j] sigma_mp[2:(q+1),2:(q+1)] <- sigma_mp[2:(q+1),2:(q+1)] + dfg inv.sigma_mp <- solve(sigma_mp) det_sigma_mp <- det(sigma_mp) } zz[1] <- y[j]- comp_s[j] zz[2:(q+1)] <- M[j,] - mu_M.mean ss <- sqrt(crossprod(zz,inv.sigma_mp)%*%zz) D_theta <- D_theta - 2*log(pdf(ss,nu.mean)) + log(det_sigma_mp) } D_theta <- D_theta if(homo==1) res_q <- cdf((y-comp_s)/sqrt(sigma_mp[1,1]), nu.mean) else res_q <- cdf((y-comp_s)/sqrt(heter$sigma2y), nu.mean) res_q <- ifelse(res_q < 1e-15, 1e-15, res_q) res_q <- ifelse(res_q > (1-1e-15), (1-1e-15), res_q) res_q <- qnorm(res_q) DIC <- 2*D_bar - D_theta LMPL <- -sum(log(apply(mi,1,mean))) KL <- log(apply(mi,1,mean))+ apply(-log(mi),1,mean) X_2 <- apply(mi^2,1,mean)/(apply(mi,1,mean))^2- 1 list(chains=aa2, DIC=DIC, LMPL=LMPL, residuos=res_q, KL=KL, X_2=X_2) }
context("cbind and rbind for scan1 objects") grav2 <- read_cross2(system.file("extdata", "grav2.zip", package="qtl2")) grav2 <- grav2[1:20,1:3] map <- insert_pseudomarkers(grav2$gmap, step=1) probs <- calc_genoprob(grav2, map, error_prob=0.002) k <- calc_kinship(probs) kloco <- calc_kinship(probs, "loco") test_that("cbind.scan1() works for scan1() results", { out1 <- scan1(probs, grav2$pheno[,1,drop=FALSE]) out2 <- scan1(probs, grav2$pheno[,2,drop=FALSE]) out12 <- scan1(probs, grav2$pheno[,1:2]) expect_equal(cbind(out1, out2), out12) }) test_that("cbind.scan1() works for scan1/LMM results", { out1 <- scan1(probs, grav2$pheno[,1,drop=FALSE], k) out2 <- scan1(probs, grav2$pheno[,2,drop=FALSE], k) out12 <- scan1(probs, grav2$pheno[,1:2], k) expect_equal(cbind(out1, out2), out12, tolerance=1e-6) out1 <- scan1(probs, grav2$pheno[,1,drop=FALSE], kloco) out2 <- scan1(probs, grav2$pheno[,2,drop=FALSE], kloco) out12 <- scan1(probs, grav2$pheno[,1:2], kloco) expect_equal(cbind(out1, out2), out12, tolerance=1e-6) }) test_that("rbind.scan1() works for scan1() results", { skip_on_cran() phe <- grav2$pheno[,1,drop=FALSE] out1 <- scan1(probs[,1], phe) out2 <- scan1(probs[,2:3], phe) out3 <- scan1(probs[,3], phe) out12 <- scan1(probs[,1:3], phe) out123 <- scan1(probs[,c(1:3,3)], phe) out2123 <- scan1(probs[,c(2:3,1,2:3,3)], phe) expect_equal(rbind(out1, out2), out12) expect_equal(rbind(out1, out2, out3), out123) expect_equal(rbind(out2, out1, out2, out3), out2123) }) test_that("rbind.scan1() works for scan1() results with multiple columns", { skip_on_cran() phe <- grav2$pheno[,15:18,drop=FALSE] out1 <- scan1(probs[,1], phe) out2 <- scan1(probs[,2:3], phe) out3 <- scan1(probs[,3], phe) out12 <- scan1(probs[,1:3], phe) out123 <- scan1(probs[,c(1:3,3)], phe) out2123 <- scan1(probs[,c(2:3,1,2:3,3)], phe) expect_equal(rbind(out1, out2), out12) expect_equal(rbind(out1, out2, out3), out123) expect_equal(rbind(out2, out1, out2, out3), out2123) }) test_that("rbind.scan1() works for scan1() results", { skip_on_cran() phe <- grav2$pheno[,1,drop=FALSE] out1 <- scan1(probs[,1], phe, k) out2 <- scan1(probs[,2:3], phe, k) out3 <- scan1(probs[,3], phe, k) out12 <- scan1(probs[,1:3], phe, k) attr(out12, "hsq") <- rbind(attr(out1, "hsq"), attr(out2, "hsq")) out123 <- scan1(probs[,c(1:3,3)], phe, k) attr(out123, "hsq") <- rbind(attr(out1, "hsq"), attr(out2, "hsq"), attr(out3, "hsq")) out2123 <- scan1(probs[,c(2:3,1,2:3,3)], phe, k) attr(out2123, "hsq") <- rbind(attr(out2, "hsq"), attr(out1, "hsq"), attr(out2, "hsq"), attr(out3, "hsq")) expect_equal(rbind(out1, out2), out12) expect_equal(rbind(out1, out2, out3), out123) expect_equal(rbind(out2, out1, out2, out3), out2123) out1 <- scan1(probs[,1], phe, kloco[1]) out2 <- scan1(probs[,2:3], phe, kloco[2:3]) out3 <- scan1(probs[,3], phe, kloco[3]) out12 <- scan1(probs[,1:3], phe, kloco[1:3]) out123 <- scan1(probs[,c(1:3,3)], phe, kloco[c(1:3,3)]) out2123 <- scan1(probs[,c(2:3,1,2:3,3)], phe, kloco[c(2:3,1,2:3,3)]) expect_equal(rbind(out1, out2), out12) expect_equal(rbind(out1, out2, out3), out123) expect_equal(rbind(out2, out1, out2, out3), out2123) }) test_that("rbind.scan1() works for scan1() results with multiple columns", { skip_on_cran() phe <- grav2$pheno[,15:18,drop=FALSE] out1 <- scan1(probs[,1], phe, k) out2 <- scan1(probs[,2:3], phe, k) out3 <- scan1(probs[,3], phe, k) out12 <- scan1(probs[,1:3], phe, k) attr(out12, "hsq") <- rbind(attr(out1, "hsq"), attr(out2, "hsq")) out123 <- scan1(probs[,c(1:3,3)], phe, k) attr(out123, "hsq") <- rbind(attr(out1, "hsq"), attr(out2, "hsq"), attr(out3, "hsq")) out2123 <- scan1(probs[,c(2:3,1,2:3,3)], phe, k) attr(out2123, "hsq") <- rbind(attr(out2, "hsq"), attr(out1, "hsq"), attr(out2, "hsq"), attr(out3, "hsq")) expect_equal(rbind(out1, out2), out12) expect_equal(rbind(out1, out2, out3), out123) expect_equal(rbind(out2, out1, out2, out3), out2123) out1 <- scan1(probs[,1], phe, kloco[1]) out2 <- scan1(probs[,2:3], phe, kloco[2:3]) out3 <- scan1(probs[,3], phe, kloco[3]) out12 <- scan1(probs[,1:3], phe, kloco[1:3]) out123 <- scan1(probs[,c(1:3,3)], phe, kloco[c(1:3,3)]) out2123 <- scan1(probs[,c(2:3,1,2:3,3)], phe, kloco[c(2:3,1,2:3,3)]) expect_equal(rbind(out1, out2), out12) expect_equal(rbind(out1, out2, out3), out123) expect_equal(rbind(out2, out1, out2, out3), out2123) })
context("RTF parsing") test_that("bookmark ends only", { expect_equal( .rtf_strip( paste( "{\\*\\bkmkend 200.05}{\\*\\bkmkend 200.06}{\\*\\bkmkend 200.07}{\\*\\bkmkend 200.08}", "{\\*\\bkmkend 200.0}\\hich\\af1\\dbch\\af31505\\loch\\f1 200.0\\tab Reticulosarcoma" ) ), "200.0 Reticulosarcoma" ) }) test_that(".rtf_strip bug case with combined line", { expect_equal( .rtf_strip( paste( sep = "", "\\rtlch\\fcs1 \\af1\\afs20\\alang1025 \\ltrch\\fcs0 \\fs20\\cf1", "\\lang1033\\langfe1033\\loch\\af1\\hich\\af1\\dbch\\af31505\\cgrid", "\\langnp1033\\langfenp1033 {\\rtlch\\fcs1 \\af1 \\ltrch\\fcs0 ", "\\insrsid2429293 0\\tab \\hich\\af1\\dbch\\af31505\\loch\\f1 not ", "stated as uncontrolled\\par }\\pard\\plain \\ltrpar\\s30\\ql \\fi-360", "\\li1440\\ri0\\widctlpar\\tx180\\tx360\\tx540\\tx720\\tx900\\tx1080\\tx1260", "\\tx1440\\tx1620\\tx1800\\tx1980\\tx2160\\tx2340\\tx2520\\tx2700\\tx2880\\tx3060", "\\tx3240\\tx3420\\tx3600\\tx3780\\tx3960\\tx4140\\wrapdefault", "\\faauto\\rin0\\lin1440\\itap0" ) ), "0 not stated as uncontrolled" ) }) test_that(".rtf_strip does what it says on the tin", { expect_equal( .rtf_strip( paste( sep = "", "\\rtlch\\fcs1 \\af1\\afs20\\alang1025 \\ltrch\\fcs0 ", "\\fs20\\cf1\\lang1033\\langfe1033\\loch\\af1\\hich\\af1\\dbch\\af31505", "\\cgrid\\langnp1033\\langfenp1033 {\\rtlch\\fcs1 \\ab\\af1 \\ltrch\\fcs0 ", "\\b\\insrsid2429293 0\\tab \\hich\\af1\\dbch\\af31505\\loch\\f1 unspecified" ) ), "0 unspecified" ) expect_equal( .rtf_strip( paste( "The following fifth-digit subclassification is for use with categories", "67\\hich\\af1\\dbch\\af31505\\loch\\f1 8-679 to denote the current episode of care:" ) ), paste( "The following fifth-digit subclassification is for use with categories 678-679", "to denote the current episode of care:" ) ) expect_equal( .rtf_strip( paste( "The following fifth-digit subclassification is for use with", "category 711; valid digits are in [brackets] under each code.", "see list at beginning of chapter for definitions:" ) ), paste( "The following fifth-digit subclassification is for use with", "category 711; valid digits are in [brackets] under each code.", "see list at beginning of chapter for definitions:" ) ) expect_equal( .rtf_strip( "229.8\\tab Othe\\hich\\af1\\dbch\\af31505\\loch\\f1 r specified sites" ), "229.8 Other specified sites" ) expect_equal( .rtf_strip( paste( sep = "", "\\lsdsemihidden0 \\lsdunhideused0 \\lsdpriority71 ", "\\lsdlocked0 Colorful Shading Accent 6;", "\\lsdsemihidden0 \\lsdunhideused0 \\lsdpriority72 ", "\\lsdlocked0 Colorful List Accent 6;", "\\lsdsemihidden0 \\lsdunhideused0 \\lsdpriority73 ", "\\lsdlocked0 Colorful Grid Accent 6;" ) ), "" ) expect_equal( .rtf_strip( paste( sep = "", "\\par }\\pard\\plain \\ltrpar\\s82\\ql \\fi-1080\\li2160\\ri0", "\\widctlpar\\tx180\\tx360\\tx540\\tx720\\tx900\\tx1080\\tx1260", "\\tx1440\\tx1620\\tx1800\\tx1980\\tx2160\\tx2340\\tx2520\\tx2700", "\\tx2880\\tx3060\\tx3240\\tx3420\\tx3600\\tx3780\\tx3960\\tx4140", "\\wrapdefault\\faauto\\rin0\\lin2160\\itap0 " ) ), "" ) }) test_that("extraction from qualifier subset works", { all2015 <- c( "[0-6]", "[0-3]", "[0-5,9]", "[0-8]", "[0-2]", "[0-1]", "[0-5]", "[0,1,3]", "[0-4]", "[0,3]", "[0-1,3]", "[1-2]", "[0, 1, 3]", "[0,1,4]", "[0,1]", "[0,2,4]", "[0-2,4]", "[0-9]", "[0,4,9]", "[0,9]", "[0-5,7-9]", "[5]", "[0-7,9]", "[0-6,9]", "[0-3,9]", "[0-4,9]", "[0-6, 9]", "[0]", "[0-7]", "[0,2-4,8,9]", "[0,2,4,8,9]", "[0,4,8,9]", "[6-9]", "[0,8,9]" ) expect_equal( .rtf_parse_qualifier_subset("[0-6]"), as.character(c(0, 1, 2, 3, 4, 5, 6)) ) expect_equal( .rtf_parse_qualifier_subset("[0,2-4,8,9]"), as.character(c(0, 2, 3, 4, 8, 9)) ) expect_equal( .rtf_parse_qualifier_subset("[0]"), "0" ) expect_true( all(vapply(all2015, FUN = function(f) length(.rtf_parse_qualifier_subset(f)) > 0, FUN.VALUE = logical(1) )) ) }) context("RTF tests") test_year <- "2014" skip_slow() skip_no_icd_data_cache() if (rtf_year_ok(test_year)) { rtf_dat <- .icd9cm_sources[.icd9cm_sources$f_year == test_year, ] f_info_short <- .unzip_to_data_raw( url = rtf_dat$rtf_url, file_name = rtf_dat$rtf_filename ) rtf <- .rtf_parse_lines( rtf_lines = readLines(f_info_short$file_path, warn = FALSE), year = "2014" ) nrtf <- names(rtf) test_that("all parsed codes are valid decimals", { expect_true(all(icd::is_valid(nrtf, short_code = FALSE)), info = paste( "invalid codes are :", paste(icd::get_invalid(nrtf), collapse = ", " ) ) ) }) test_that("no rtf formatting left in descriptions", { expect_false(any(grepl("[\\\\{}]", rtf)), info = paste( "rtf codes in descriptions:", paste(grep("[\\\\{}]", rtf, value = TRUE)) ) ) }) test_that("all defined codes from csv are in rtf extract", { missing_from_rtf <- setdiff( icd::short_to_decimal(icd9cm_hierarchy[["code"]]), nrtf ) expect_equal( length(missing_from_rtf), 0, info = paste( "missing codes are:", paste(missing_from_rtf, collapse = ", ") ) ) }) test_that("majors extracted from web page are the same as those from RTF", { webmajors <- unlist(icd9_majors) work <- .swap_names_vals(rtf) rtfmajors <- work[is_major(work)] expect_identical( setdiff(rtfmajors, webmajors), character(0), info = paste( "these majors are from RTF but not retrieved from web: ", paste(setdiff(rtfmajors, webmajors), collapse = ", ") ) ) expect_identical( setdiff(webmajors, rtfmajors), character(0), info = paste( "these majors are on web but not retrieved from RTF: ", paste(setdiff(webmajors, rtfmajors), collapse = ", ") ) ) }) test_that("all leaf codes from TXT are in flat file extract", { skip_flat_icd9_avail(year = "2014") skip_if_not_installed("icd", "4.0") v32 <- .parse_icd9cm_leaf_year( year = "2014", ) leaves <- icd::short_to_decimal(v32$code) expect_true(all(leaves %in% nrtf)) rtf_leaves <- sort( .swap_names_vals( rtf[nrtf %in% icd::short_to_decimal(v32$code)] ) ) }) test_that("RTF extract has no duplicates", { expect_false( anyDuplicated(nrtf) > 0, info = paste( "first few duplicates: ", paste(nrtf[duplicated(nrtf)][1:10], collapse = ", ") ) ) }) test_that("mid-level descriptions are in RTF extract", { skip_on_no_rtf(test_year) expect_identical(rtf[["611"]], "Other disorders of breast") expect_identical(rtf[["611.7"]], "Signs and symptoms in breast") expect_identical(rtf[["611.8"]], "Other specified disorders of breast") }) test_that("at this early stage, hotfix failures are present", { expect_identical(rtf[["038.1"]], "Staphylococcal septicemia") expect_identical(rtf[["737"]], "Curvature of spine") expect_identical(rtf[["345.1"]], "Generalized convulsive epilepsy") expect_identical(rtf[["414.0"]], "Coronary atherosclerosis") expect_identical(rtf[["414.1"]], "Aneurysm and dissection of heart") expect_identical(rtf[["291"]], "Alcohol-induced mental disorders") expect_identical(rtf[["361"]], "Retinal detachments and defects") expect_identical( rtf[["414"]], "Other forms of chronic ischemic heart disease" ) expect_identical( rtf[["780.6"]], "Fever and other physiologic disturbances of temperature regulation" ) expect_identical( rtf[["294"]], "Persistent mental disorders due to conditions classified elsewhere" ) }) test_that("correct assignment of undefined last digit codes", { expect_false("640.02" %in% nrtf) }) test_that("some rtf wierdness single codes should be missing", { bad_ones <- c( paste0("010.", 2:7), paste0("854.", 2:7), NULL ) expect_true(all(bad_ones %nin% nrtf)) expect_true(all(icd::children(bad_ones) %nin% nrtf)) expect_true("012.4" %nin% nrtf) expect_true("012.40" %nin% nrtf) expect_true("012.46" %nin% nrtf) }) } test_that("get chap and subchap for numeric, V, E", { df <- data.frame(code = c("V201", "E9990", "0101")) res <- .lookup_icd9_hier(df, short_code = TRUE) expect_true(res[1, "chapter"] == "Infectious And Parasitic Diseases") })
NULL utils::globalVariables(c("."))
"allDomain"
read_dssbatch <- function(file_name='DSSBatch.V47'){ batch_file <- read_dssat(file_name,left_justified = 'FILEX') %>% as_DSSAT_tbl() return(batch_file) }
test.combinations <- function(SpA, SpB){ max.alleles<-length(SpA) SpA<-SpA[!is.na(SpA)] SpB<-SpB[!is.na(SpB)] total.alleles<-length(SpA) max.delta<-0 obs.delta<-delta(SpA, SpB) search.complete<-FALSE spa.alleles<-which(SpA > 0) spb.alleles<-which(SpB > 0) if(length(spa.alleles) <= length(spb.alleles)){ nalleles <- length(spa.alleles) working.alleles<-spa.alleles } else{ nalleles<- length(spb.alleles) working.alleles<-spb.alleles } if(nalleles == 1){ focalset<-working.alleles combo1<-focalset combo2<-(1:total.alleles)[-focalset] group.a<-c(sum(SpA[focalset]), sum(SpA[-focalset])) group.b<-c(sum(SpB[focalset]), sum(SpB[-focalset])) max.delta<-delta(group.a, group.b) } else if (abs(obs.delta - 1) < 0.000001 ){ focalset<-working.alleles combo1<-focalset combo2<-(1:total.alleles)[-focalset] max.delta<-obs.delta } else { my.levels<-nalleles:1 for(i in 1:length(my.levels)){ if(search.complete==TRUE){ break } working<-utils::combn(nalleles, my.levels[i]) for (x in 1:ncol(working) ){ focalset<-working.alleles[working[,x]] group.a<-c(sum(SpA[focalset]), sum(SpA[-focalset])) group.b<-c(sum(SpB[focalset]), sum(SpB[-focalset])) new.delta<-delta(group.a, group.b) if ( abs(new.delta - obs.delta) < 0.00001 || abs(max.delta -obs.delta) < 0.00001 ){ combo1<-focalset combo2<-(1:total.alleles)[-focalset] search.complete<-TRUE max.delta<- new.delta break } else if( new.delta > max.delta ){ max.delta<- new.delta combo1<-focalset combo2<-(1:total.alleles)[-focalset] } } } } class.freq<-matrix(data=c(sum(SpA[combo1]), sum(SpA[combo2]), sum(SpB[combo1]), sum(SpB[combo2])), dimnames=list(c("spa", "spb"), c("c1", "c2")), byrow=TRUE, ncol=2) padding1<-rep(NA,max.alleles-length(combo1)) padding2<-rep(NA,max.alleles-length(combo2)) return(c(obs.delta, max.delta, combo1, padding1, combo2, padding2, as.vector(class.freq))) }
read_gff <- function(file) { suppressWarnings( gff.input <- readr::read_delim( file = file, delim = "\t", col_names = FALSE, comment = " ) ) if (!file.exists(file)) stop("The file path you specified does not seem to exist: '", file,"'.", call. = FALSE) if (ncol(gff.input) > 9) stop("The gff file format can not store more than 9 columns!", call. = FALSE) gffNames <- c("seqid", "source", "type", "start", "end", "score", "strand", "phase", "attribute") names(gff.input)[seq_len(ncol(gff.input))] <- gffNames[seq_len(ncol(gff.input))] return(gff.input) }
BIFIE_lavaan_summary <- function(object) { requireNamespace("lavaan") lavaan_summary <- methods::getMethod("summary","lavaan") lavaan_summary(object) }
download_data <- function(dest) { write.csv(mtcars, dest) } process_data <- function(filename) { x <- read.csv(filename) x$kmpl <- x$mpg * 1.609344 / 3.78541 x } myplot <- function(dat) { plot(kmpl ~ disp, dat) }
.BP_threshold <- function(bone, analysis=1) { if (is.null(RM_get(x=bone, RMname=analysis, valuename = "bg")) | is.null(RM_get(x=bone, RMname=analysis, valuename = "fg"))) { stop("You must first setup background and foreground colors") } bg <- RM_get(x=bone, RMname=analysis, valuename = "bg") fg <- RM_get(x=bone, RMname=analysis, valuename = "fg") Distance_bg <- sqrt((bone[, , 1, 1]-col2rgb(bg)["red", 1]/255)^2+ (bone[, , 1, 2]-col2rgb(bg)["green", 1]/255)^2+ (bone[, , 1, 3]-col2rgb(bg)["blue", 1]/255)^2) Distance_fg <- sqrt((bone[, , 1, 1]-col2rgb(fg)["red", 1]/255)^2+ (bone[, , 1, 2]-col2rgb(fg)["green", 1]/255)^2+ (bone[, , 1, 3]-col2rgb(fg)["blue", 1]/255)^2) return(Distance_bg>Distance_fg) }
"print.Krig" <- function(x, digits = 4, ...) { c1 <- "Number of Observations:" c2 <- length(x$residuals) if (!is.null(x$args.null$m)) { c1 <- c(c1, "Degree of polynomial null space ( base model):") c2 <- c(c2, x$m - 1) } c1 <- c(c1, "Number of parameters in the null space") c2 <- c(c2, x$nt) c1 <- c(c1, "Parameters for fixed spatial drift") c2 <- c(c2, sum(x$ind.drift)) c1 <- c(c1, "Model degrees of freedom:") c2 <- c(c2, format(round(x$eff.df, 1))) c1 <- c(c1, "Residual degrees of freedom:") c2 <- c(c2, format(round(length(x$residuals) - x$eff.df, 1))) c1 <- c(c1, "GCV estimate for tau:") c2 <- c(c2, format(signif(x$tauHat.GCV, digits))) c1 <- c(c1, "MLE for tau:") c2 <- c(c2, format(signif(x$tauHat.MLE, digits))) c1 <- c(c1, "MLE for sigma:") c2 <- c(c2, format(signif(x$sigma.MLE, digits))) c1 <- c(c1, "lambda") c2 <- c(c2, format(signif(x$lambda, 2))) c1 <- c(c1, "User supplied sigma") c2 <- c(c2, format(signif(x$sigma, digits))) c1 <- c(c1, "User supplied tau^2") c2 <- c(c2, format(signif(x$tau2, digits))) sum <- cbind(c1, c2) dimnames(sum) <- list(rep("", dim(sum)[1]), rep("", dim(sum)[2])) cat("Call:\n") dput(x$call) print(sum, quote = FALSE) cat("Summary of estimates: \n") print( x$lambda.est) invisible(x) }
getKmers <- function(.data, .k, .col = c("aa", "nt"), .coding = TRUE) { seq_col <- switch_type(.col[1]) if (.coding) { .data <- coding(.data) } if (has_class(.data, "list")) { res <- data.table(split_to_kmers(collect(select(.data[[1]], seq_col), n = Inf)[[1]], .k = .k)) colnames(res)[2] <- names(.data)[1] for (i in 2:length(.data)) { tmp <- data.table(split_to_kmers(collect(select(.data[[i]], seq_col), n = Inf)[[1]], .k = .k)) res <- merge(res, tmp, by = "Kmer", all = TRUE, suffixes = c("", "")) colnames(res)[ncol(res)] <- names(.data)[i] } } else { res <- split_to_kmers(collect(select(.data, seq_col), n = Inf)[[1]], .k = .k) } add_class(as_tibble(as.data.frame(res)), "immunr_kmer_table") } split_to_kmers <- function(.data, .k) { max_len <- max(nchar(.data)) tab <- table(unlist(lapply(1:(max_len - .k + 1), function(i) substr(.data, i, i + .k - 1)))) tab <- tab[nchar(names(tab)) == .k] tab <- as_tibble(as.data.frame(tab, stringsAsFactors = FALSE)) names(tab) <- c("Kmer", "Count") add_class(tab, "immunr_kmers") } kmer_profile <- function(.data, .method = c("freq", "prob", "wei", "self"), .remove.stop = TRUE) { .method <- .method[1] if (!(.method %in% c("freq", "prob", "wei", "self"))) { stop('Error: wrong name for the .method argument. Please provide one of the following: "freq", "prob", "wei" or "self".') } if (has_class(.data, "immunr_kmer_table")) { if (ncol(.data) > 2) { stop("Error: currently we are not supporting sequence profiles from more than one sample. Will support it soon!") } seq_vec <- .data$Kmer cnt_vec <- .data$Count } else if (length(table(nchar(.data))) > 1) { stop("Not all kmers in the input data have the same length.") } else { seq_vec <- .data cnt_vec <- rep.int(1, length(.data)) } k <- nchar(seq_vec[1]) aas <- sort(unique(AA_TABLE)) if (.remove.stop) { aas <- aas[3:length(aas)] cnt_vec <- cnt_vec[grep("[*~]", seq_vec, invert = TRUE)] seq_vec <- seq_vec[grep("[*~]", seq_vec, invert = TRUE)] } res <- matrix(0, length(aas), k) row.names(res) <- aas bad_symbols <- c() for (i in 1:k) { tab <- tapply(cnt_vec, substr(seq_vec, i, i), sum, simplify = FALSE) for (aa in names(tab)) { if (aa %in% row.names(res)) { res[aa, i] <- res[aa, i] + tab[[aa]] } else { bad_symbols <- c(bad_symbols, aa) } } if (.method == "freq") { } else if (.method == "prob") { res[, i] <- res[, i] / sum(res[, i]) } else if (.method == "wei") { res[, i] <- res[, i] / nrow(res) res[, i] <- log2(res[, i]) } else { res[, i] <- res[, i] / sum(res[, i]) res[, i] <- -res[, i] * log2(res[, i]) } } if (length(bad_symbols)) { warning( "Warning: removed ", length(bad_symbols), " non-amino acid symbol(s): ", unique(bad_symbols), "\nPlease make sure your data doesn't have them in the future." ) } if (.method == "freq") { add_class(res, "immunr_kmer_profile_pfm") } else if (.method == "prob") { add_class(res, "immunr_kmer_profile_ppm") } else if (.method == "wei") { add_class(res, "immunr_kmer_profile_pwm") } else { add_class(res, "immunr_kmer_profile_self") } }
plot.gGeneric <- function(x, CL = 0.90, ...){ ghat <- x$ghat hwid <- 0.2 cells <- names(ghat) ncell <- length(cells) npred <- min(which(grepl("CellNames", colnames(x$predictors)))) - 1 preds <- colnames(x$predictors)[1:npred] if (ncell == 1){ g <- sort(ghat[[1]]) qtls <- quantile(g, probs = c(0.005, (1 - CL)/2, 0.25, 0.5, 0.75, 1 - (1 - CL)/2, 0.995)) names(qtls) <- c("bot", "lwr", "Q1", "med", "Q3", "upr", "top") gmin <- min(g) gmax <- max(g) nstep <- 11 steps <- seq(gmin, gmax, length.out = nstep) stepSize <- steps[2] - steps[1] nrect <- nstep - 1 rectL <- rep(NA, nrect) rectR <- rep(NA, nrect) rectY <- rep(NA, nrect) for (recti in 1:nrect){ rectL[recti] <- steps[recti] rectR[recti] <- steps[recti + 1] rectY[recti] <- sum(g >= steps[recti] & g < steps[recti + 1]) } rectY <- rectY / sum(rectY) par(mar = c(4, 5, 2, 2), fig = c(0, 1, 0, 1)) ms <- MASS::fitdistr(logit(g), "normal")$estimate xx <- seq(gmin, gmax, length.out = length(g)) yy <- dnorm(logit(xx), mean = ms[1], sd = ms[2])/(xx - xx^2) * (xx[2] - xx[1]) * length(xx)/nstep plot(rectL, rectY, type = "n", xlab = "", ylab = "", las = 1, cex.axis = 1.1, xlim = c(rectL[1], rectR[nrect]), ylim = c(0, max(yy, max(rectY)))) imin <- min(which(xx >= qtls["lwr"])) imax <- min(which(xx >= qtls["upr"])) polygon(x = c(xx[imin], xx[imax], xx[imax:imin]), y = c(0, 0, yy[imax:imin]), col = colors()[520], border = NA) lines(xx, yy) for (ri in 1:nrect) rect(rectL[ri], 0, rectR[ri], rectY[ri]) adj <- ifelse(qtls["med"] <= mean(par("usr")[1:2]), 0.97, 0.03) cex = 0.9 mtext(side = 3, line = -1, adj = adj, cex = cex, paste0("Median: ", sprintf("%.2f", qtls["med"]))) mtext(side = 3, line = -2, adj = adj, cex = cex, paste0(CL * 100, "% CI: [", sprintf("%.1f", qtls["lwr"]), ", ", sprintf("%.1f", qtls["upr"]), "]")) mtext(side = 3, line = -3, adj = adj, cex = cex, paste0("IQR = [", sprintf("%.3f", qtls["Q1"]), ", ", sprintf("%.3f", qtls["Q3"]), "]" ) ) } else { par(mar = c(8, 4, 3, 1), oma = c(2, 0, 0, 0)) plot (0, xlab = "", ylab = "", xlim = c(0.5, ncell + 0.5), ylim = c(0, 1.03), xaxs = "i", type = "n", axes = FALSE) title(main = "Estimated Detection Probability (g)", line = 2.2) if (npred == 2){ mtext(side = 3, text = preds[2], cex = 1.2) mtext(side = 1, line = 4, text = preds[1], cex = 1.2) ngroup <- length(unique(x$predictors[ , preds[2]])) nper <- length(unique(x$predictors[ , preds[1]])) for (gi in 1:ngroup){ if (!gi %% 2){ rect((gi - 1) * nper + 0.5, par("usr")[3], (gi - 1) * nper + nper + 0.5, par("usr")[4], col = colors()[25], border = NA ) } mtext(side = 3, line = -1, at = (gi - 1) * nper + nper/2 + 0.5, text = unique(x$predictors[ , preds[2]])[gi]) } } else if (npred == 1){ mtext(side = 1, line = 4, text = preds[1], cex = 1.2) } else if (npred > 2){ mtext(side = 3, text = paste("Labels = ", paste(preds, collapse = ".")), adj = 0) } axis(2, at = seq(0, 1, 0.2), las = 1, cex.axis = 1) axis(2, at = seq(0.1, 0.9, by = 0.2), labels = FALSE) axis(2, at = seq(0.05, 0.95, by = 0.1), labels = FALSE, tck = -0.012) mtext(side = 2, line = 2.75, "Detection Probability", cex = 1.25) if (npred %in% 1:2){ text(x = 1:ncell, y = -0.08, labels = x$predictors[ , 1], srt = 25, adj = 0.9, xpd = TRUE, cex = 1) axis(1, at = 1:ncell, labels = FALSE) } else { axis(1, at = 1:ncell, labels = FALSE) if (ncell < 10) { cex = 1 srt = 25 y = -0.08 adj = 0.8 shift = 0.1 } else if (ncell < 16){ cex = 0.9 srt = 45 adj = 0.8 y = -0.1 shift = 0.3 } else { cex = 0.8 srt = 60 adj = 0.8 y = -0.12 shift = 0.6 } text(x = 1:ncell - shift, y = y, labels = x$predictors$CellNames, srt = srt, adj = adj, xpd = TRUE, cex = cex) } mtext(side = 1, outer = T, cex = 0.9, line = 1, adj = 0.05, text = paste0("Box plots show median, IQR, and 99% & ", 100 * CL, "% CIs")) box() probs <- c(0.005, (1 - CL)/2, 0.25, 0.5, 0.75, 1 - (1 - CL)/2, 0.995) for (xi in 1:ncell){ y <- quantile(ghat[[xi]], probs) med <- hwid * c(-1, 1) tb <- med/2 rect(xi - hwid, y[3], xi + hwid, y[5], border = 1, col = colors()[520]) lines(xi + med, rep(y[4], 2), lwd = 2) lines(xi + tb, rep(y[2], 2)) lines(xi + tb, rep(y[6], 2)) lines(rep(xi, 3), y[1:3]) lines(rep(xi, 3), y[5:7]) } } par(.par_default) } plot.gGenericSize <- function(x, CL = 0.90, ...){ nsizeclass <- length(x) if (nsizeclass == 1){ return(plot(x[[1]], CL = CL, ...)) } sizeclasses <- names(x) increm <- 1 / nsizeclass y1 <- seq(0, 1, by = increm) y1 <- y1[-length(y1)] y2 <- seq(0, 1, by = increm) y2 <- y2[-1] names(y1) <- sizeclasses names(y2) <- sizeclasses par(fig = c(0, 1, 0, 1)) par(mar = c(3, 3, 1, 1)) plot(1, 1, type = "n", ylab= "", xlab = "", xaxt = "n", yaxt = "n", bty = "n" ) mtext(side = 2, line = 2, "Detection Probability", cex = 1) for (sci in sizeclasses){ par(fig = c(0, 0.9, y1[sci], y2[sci]), new = TRUE) ghats <- x[[sci]]$ghat cells <- names(ghats) ncell <- length(cells) predsByCell <- strsplit(cells, "\\.") npred <- length(predsByCell[[1]]) colNames <- colnames(x[[sci]]$predictors) predNames <- colNames[-grep("CellNames", colNames)] labelText <- paste("Labels = ", paste(predNames, collapse = ".")) par(mar = c(3, 4, 3, 1)) plot (1, 1, type = "n", xlab = "", ylab = "", xaxt = "n", yaxt = "n", bty = "o", xlim = c(0.5, ncell + 0.5), ylim = c(0, 1) ) axis(2, at = seq(0, 1, 0.25), las = 1, cex.axis = 0.5) axis(1, at = 1:ncell, labels = FALSE, tck = -0.05) ang <- 0 offx <- NULL if (ncell > 3){ ang <- 45 offx <- 1 } text(1:ncell, -0.2, srt = ang, adj = offx, labels = cells, xpd = TRUE, cex = 0.5 ) if (predNames[1] == "group" & length(predNames) == 1 & cells[1] == "all"){ labelText <- NULL } text(0.5, 1.15, labelText, xpd = TRUE, cex = 0.5, adj = 0) if (!is.null(sci)){ text_sc <- paste("Carcass class: ", sci, sep = "") text(x = 0.5, y = 1.25, xpd = TRUE, text_sc, adj = 0, cex = 0.5) } probs <- c(0, (1 - CL) / 2, 0.25, 0.5, 0.75, 1 - (1 - CL) / 2, 1) for (celli in 1:ncell){ xx <- celli yy <- quantile(ghats[[celli]], probs) med <- c(-0.1, 0.1) tb <- c(-0.07, 0.07) rect(xx - 0.1, yy[3], xx + 0.1, yy[5], lwd = 2, border = 1) points(xx + med, rep(yy[4], 2), type = 'l', lwd = 2, col = 1) points(xx + tb, rep(yy[2], 2), type = 'l', lwd = 2, col = 1) points(xx + tb, rep(yy[6], 2), type = 'l', lwd = 2, col = 1) points(rep(xx, 3), yy[1:3], type = 'l', lwd = 2, col = 1) points(rep(xx, 3), yy[5:7], type = 'l', lwd = 2, col = 1) } } par(mar = c(2,0,2,0)) par(fig = c(0.9, 1, 0, 1), new = TRUE) plot(1,1, type = "n", bty = "n", xaxt = "n", yaxt = "n", xlab = "", ylab = "", ylim = c(0, 1), xlim = c(0, 1) ) x_s <- 0.1 CL_split <- (1 - CL) / 2 probs_y <- c(0, CL_split, 0.25, 0.5, 0.75, 1 - CL_split, 1) set.seed(12) y_s <- quantile(rnorm(1000, 0.5, 0.1), probs = probs_y) med <- c(-0.1, 0.1) tb <- c(-0.07, 0.07) rect(x_s - 0.1, y_s[3], x_s + 0.1, y_s[5], lwd = 2, border = 1) points(x_s + med, rep(y_s[4], 2), type = 'l', lwd = 2, col = 1) points(x_s + tb, rep(y_s[2], 2), type = 'l', lwd = 2, col = 1) points(x_s + tb, rep(y_s[6], 2), type = 'l', lwd = 2, col = 1) points(rep(x_s, 3), y_s[1:3], type = 'l', lwd = 2, col = 1) points(rep(x_s, 3), y_s[5:7], type = 'l', lwd = 2, col = 1) num_CL <- c(CL_split, 1 - CL_split) * 100 text_CL <- paste(num_CL, "%", sep = "") text_ex <- c("min", text_CL[1], "25%", "50%", "75%", text_CL[2], "max") text(x_s + 0.2, y_s, text_ex, cex = 0.65, adj = 0) }
cv.spcrglm <- function(x, y, k, family=c("binomial","poisson","multinomial"), w=0.1, xi=0.01, nfolds=5, adaptive=FALSE, q=1, center=TRUE, scale=FALSE, lambda.B.length=10, lambda.gamma.length=10, lambda.B=NULL, lambda.gamma=NULL){ if( !is.matrix(x) ) stop("x must be a matrix.") if( mode(x)!="numeric" ) stop("x must be numeric.") if ( !is.vector(y) ) stop("y must be a vector.") if( mode(y)!="numeric" ) stop("y must be numeric.") if( k < 1 ) stop("k is an integer and larger than one.") n <- nrow(x) ini.lambda.beta <- ini.lambda.gamma <- ini.lambda( x=x, y=y, k=k, w=w, xi=xi ) lambda.beta.candidate <- rev( seq( n*0.005, ini.lambda.beta, length=lambda.B.length ) ) lambda.gamma.candidate <- rev( seq(n* 0.005, ini.lambda.gamma, length=lambda.gamma.length ) ) if( is.null(lambda.B) != TRUE ) lambda.beta.candidate <- sort(lambda.B, decreasing=TRUE) if( is.null(lambda.gamma) != TRUE ) lambda.gamma.candidate <- sort(lambda.gamma, decreasing=TRUE) if( family=="binomial" ){ if( adaptive==FALSE ){ spcr.object <- CV.SPCRLoG( x, y, k, xi, w, nfolds=nfolds, lambda.beta.candidate=lambda.beta.candidate, lambda.gamma.candidate=lambda.gamma.candidate, center=center, scale=scale, adaptive=adaptive, q=q ) } if( adaptive==TRUE ){ spcr.object <- CV.SPCRLoG( x, y, k, xi, w, nfolds=nfolds, lambda.beta.candidate=lambda.beta.candidate, lambda.gamma.candidate=lambda.gamma.candidate, center=center, scale=scale, adaptive=adaptive, q=q ) } } if( family=="poisson" ){ if( adaptive==FALSE ){ spcr.object <- CV.SPCRPoi( x, y, k, xi, w, nfolds=nfolds, lambda.beta.candidate=lambda.beta.candidate, lambda.gamma.candidate=lambda.gamma.candidate, center=center, scale=scale, adaptive=adaptive, q=q ) } if( adaptive==TRUE ){ spcr.object <- CV.SPCRPoi( x, y, k, xi, w, nfolds=nfolds, lambda.beta.candidate=lambda.beta.candidate, lambda.gamma.candidate=lambda.gamma.candidate, center=center, scale=scale, adaptive=adaptive, q=q ) } } if( family=="multinomial" ){ Y = y unique.Y = unique(Y) y = matrix(0, nrow(x), length(unique.Y)) for(i in 1:nrow(x)) for(j in 1:length(unique.Y)) if( Y[i] == unique.Y[j] ) y[i,j] <- 1 if( adaptive==FALSE ){ spcr.object <- CV.SPCRMultiLoG( x, y, k, xi, w, nfolds=nfolds, lambda.beta.candidate=lambda.beta.candidate, lambda.gamma.candidate=lambda.gamma.candidate, center=center, scale=scale, adaptive=adaptive, q=q ) } if( adaptive==TRUE ){ spcr.object <- CV.SPCRMultiLoG( x, y, k, xi, w, nfolds=nfolds, lambda.beta.candidate=lambda.beta.candidate, lambda.gamma.candidate=lambda.gamma.candidate, center=center, scale=scale, adaptive=adaptive, q=q ) } } ans <- list( lambda.gamma.seq = spcr.object$lambda.gamma.candidate, lambda.B.seq = spcr.object$lambda.beta.candidate, CV.mat = - spcr.object$CV.mat, lambda.gamma.cv = spcr.object$lambda.gamma.cv, lambda.B.cv = spcr.object$lambda.beta.cv, cvm = - spcr.object$cvm, call=match.call() ) class(ans) <- "cv.spcrglm" return( ans ) }
have_packages <- require(ggformula) && require(dplyr) && require(ggplot2) && require(mosaicData) && require(maps) && require(palmerpenguins) && requireNamespace("mosaic") have_extra_packages <- require(maps) && require(sf) && require(purrr) knitr::opts_chunk$set( fig.show = "asis", fig.align = "center", fig.width = 6, fig.height = 4, out.width = "60%", eval = have_packages ) theme_set(theme_light()) library(ggformula) gf_point(mpg ~ hp, data = mtcars) mtcars %>% gf_point(mpg ~ hp) gf_point(mpg ~ hp, color = ~ cyl, size = ~ carb, alpha = 0.50, data = mtcars) library(dplyr) gf_point(mpg ~ hp, color = ~ factor(cyl), size = ~ carb, alpha = 0.75, data = mtcars) mtcars %>% mutate(cylinders = factor(cyl)) %>% gf_point(mpg ~ hp, color = ~ cylinders, size = ~ carb, alpha = 0.75) data(penguins, package = "palmerpenguins") gf_density( ~ bill_length_mm, data = penguins) gf_density( ~ bill_length_mm, fill = ~ species, alpha = 0.5, data = penguins) gf_dens( ~ bill_length_mm, color = ~ species, alpha = 0.7, data = penguins) gf_dens2( ~ bill_length_mm, fill = ~ species, data = penguins, color = "gray50", alpha = 0.4) penguins %>% gf_dens( ~ bill_length_mm, color = ~ species, alpha = 0.7, adjust = 0.25) penguins %>% gf_dens( ~ bill_length_mm, color = ~ species, alpha = 0.7, adjust = 4)
effectsize.htest <- function(model, type = NULL, verbose = TRUE, ...) { if (grepl("t-test", model$method)) { .effectsize_t.test(model, type = type, verbose = verbose, ...) } else if (grepl("Pearson's Chi-squared", model$method) || grepl("Chi-squared test for given probabilities", model$method)) { .effectsize_chisq.test(model, type = type, verbose = verbose, ...) } else if (grepl("One-way", model$method)) { .effectsize_oneway.test(model, type = type, verbose = verbose, ...) } else if (grepl("McNemar", model$method)) { .effectsize_mcnemar.test(model, type = type, verbose = verbose, ...) } else if (grepl("Wilcoxon", model$method)) { .effectsize_wilcox.test(model, type = type, verbose = verbose, ...) } else if (grepl("Kruskal-Wallis", model$method)) { .effectsize_kruskal.test(model, type = type, verbose = verbose, ...) } else if (grepl("Friedman", model$method)) { .effectsize_friedman.test(model, type = type, verbose = verbose, ...) } else { if (verbose) warning("This 'htest' method is not (yet?) supported.\n", "Returning 'parameters::model_parameters(model)'.", call. = FALSE) parameters::model_parameters(model, verbose = verbose, ...) } } .effectsize_t.test <- function(model, type = NULL, verbose = TRUE, ...) { data <- insight::get_data(model) approx <- is.null(data) dots <- list(...) if (is.null(type)) type <- "d" dots$alternative <- model$alternative dots$ci <- attr(model$conf.int,"conf.level") dots$mu <- model$null.value if (type == "cles") { .fail_if_approx(approx, "cles") } if (approx) { if (verbose) { warning("Unable to retrieve data from htest object. Using t_to_d() approximation.") } f <- t_to_d args <- list( t = unname(model$statistic), df_error = unname(model$parameter), paired = !grepl("Two", model$method) ) } else { if (grepl(" by ", model$data.name, fixed = TRUE)) { data[[2]] <- factor(data[[2]]) } f <- switch(tolower(type), d = , cohens_d = cohens_d, g = , hedges_g = hedges_g, cles = cles ) args <- list( x = data[[1]], y = if (ncol(data) == 2) data[[2]], paired = !grepl("Two", model$method), pooled_sd = !grepl("Welch", model$method), verbose = verbose ) if (type == "cles") { if (args$paired || !args$pooled_sd) { stop("Common language effect size only applicable to 2-sample Cohen's d with pooled SD.") } args$pooled_sd <- args$paired <- NULL } } out <- do.call(f, c(args, dots)) attr(out, "approximate") <- approx out } .effectsize_chisq.test <- function(model, type = NULL, verbose = TRUE, ...) { data <- insight::get_data(model) approx <- is.null(data) dots <- list(...) if (is.null(type)) type <- "cramers_v" if (grepl("(c|v|w|phi)$", tolower(type))) { f <- switch(tolower(type), v = , cramers_v = chisq_to_cramers_v, w = , cohens_w = , phi = chisq_to_phi, c = , pearsons_c = chisq_to_pearsons_c ) Obs <- model$observed Exp <- model$expected if (!is.null(dim(Exp))) { if (any(c(colSums(Obs), rowSums(Obs)) == 0L)) { stop("Cannot have empty rows/columns in the contingency tables.", call. = FALSE) } nr <- nrow(Obs) nc <- ncol(Obs) } else { nr <- length(Obs) nc <- 1 } out <- f( chisq = .chisq(Obs, Exp), n = sum(Obs), nrow = nr, ncol = nc, ... ) attr(out, "approximate") <- FALSE return(out) } else { f <- switch(tolower(type), or = , oddsratio = oddsratio, rr = , riskratio = riskratio, h = , cohens_h = cohens_h ) } out <- f(x = model$observed, ...) out } .effectsize_oneway.test <- function(model, type = NULL, verbose = TRUE, ...) { data <- insight::get_data(model) approx <- is.null(data) dots <- list(...) if ((approx <- grepl("not assuming", model$method, fixed = TRUE)) && verbose) { warning("`var.equal = FALSE` - effect size is an approximation.", call. = FALSE) } if (is.null(type)) type <- "eta" f <- switch(tolower(type), eta = , eta2 = , eta_squared = F_to_eta2, epsilon = , epsilon2 = , epsilon_squared = F_to_epsilon2, omega = , omega2 = , omega_squared = F_to_omega2, f = , cohens_f = F_to_f, f2 = , f_squared = , cohens_f2 = F_to_f2 ) out <- f( f = model$statistic, df = model$parameter[1], df_error = model$parameter[2], ... ) colnames(out)[1] <- sub("_partial", "", colnames(out)[1]) attr(out, "approximate") <- approx out } .effectsize_mcnemar.test <- function(model, type = NULL, verbose = TRUE, ...) { data <- insight::get_data(model) approx <- is.null(data) dots <- list(...) .fail_if_approx(approx, "cohens_g") if (inherits(data, "table")) { out <- cohens_g(data, ...) } else { out <- cohens_g(data[[1]], data[[2]], ...) } out } .effectsize_wilcox.test <- function(model, type = NULL, verbose = TRUE, ...) { data <- insight::get_data(model) approx <- is.null(data) dots <- list(...) if (is.null(type)) type <- "rb" dots$alternative <- model$alternative dots$ci <- attr(model$conf.int,"conf.level") dots$mu <- model$null.value .fail_if_approx(approx, ifelse(type=="cles", "cles", "rank_biserial")) f <- switch(tolower(type), r = , rb = , rbs = , r_rank_biserial = , rank_biserial = rank_biserial, cles = cles ) args <- list( x = data[[1]], y = if (ncol(data) == 2) data[[2]], paired = grepl("signed rank", model$method, fixed = TRUE) ) if (type == "cles") { if (args$paired) { stop("Common language effect size only applicable to 2-sample rank-biserial correlation.") } args$paired <- NULL args$parametric <- FALSE } out <- do.call(f, c(args, dots)) out } .effectsize_kruskal.test <- function(model, type = NULL, verbose = TRUE, ...) { data <- insight::get_data(model) approx <- is.null(data) dots <- list(...) .fail_if_approx(approx, "rank_epsilon_squared") if (inherits(data, "list")) { out <- rank_epsilon_squared(data, ...) } else { out <- rank_epsilon_squared(data[[1]], data[[2]], ...) } out } .effectsize_friedman.test <- function(model, type = NULL, verbose = TRUE, ...) { data <- insight::get_data(model) approx <- is.null(data) dots <- list(...) .fail_if_approx(approx, "kendalls_w") if (inherits(data, "table")) { data <- as.data.frame(data)[c("Freq", "Var2", "Var1")] } out <- kendalls_w(data[[1]], data[[2]], data[[3]], ...) out } .chisq <- function(Obs, Exp) { sum(((Obs - Exp)^2) / Exp) } .fail_if_approx <- function(approx, esf_name) { if (approx) { stop("Unable to retrieve data from htest object.", "\nTry using '", esf_name, "()' directly.", call. = FALSE ) } invisible(NULL) }
delete_files_grm <- function(file) { delete_files_generic(file, exts_grm) }
test_that("Test fairness_check_regression", { data <- data.frame( x = c(rnorm(500, 500, 100), rnorm(500, 500, 200)), pop = c(rep("A", 500), rep("B", 500)) ) data$y <- rnorm(length(data$x), 1.5 * data$x, 100) model <- lm(y ~ ., data = data) exp <- explain(model, data = data, y = data$y) protected <- data$pop privileged <- "A" fobject <- fairness_check_regression(exp, protected = data$pop, privileged = "A") expect_equal(fobject$privileged, "A") expect_equal( fobject$fairness_check_data, fairness_check_regression(exp, protected = data$pop, privileged = "A", colorize = FALSE )$fairness_check_data ) expect_equal(fobject$protected, as.factor(data$pop)) expect_equal(fobject$label, "lm") expect_equal(sort(as.character(fobject$fairness_check_data$metric)), c("independence", "separation", "sufficiency")) expect_equal(fobject$epsilon, 0.8) fobject <- fairness_check_regression(exp, protected = data$pop, privileged = "A", label = "test", epsilon = 0.45 ) expect_equal(fobject$epsilon, 0.45) expect_equal(fobject$label, "test") expect_error(fairness_check_regression(exp, fobject, protected = data$pop, privileged = "A", label = "test" )) expect_error(fairness_check_regression(exp, fobject, protected = data$x, privileged = "A" )) expect_error(fairness_check_regression(exp, fobject, protected = data$pop, privileged = "not existing" )) expect_error(fairness_check_regression(exp, fobject, epsilon = 10)) expect_error(fairness_check_regression(exp, fobject, epsilon = c(0.1, 0.2))) exp2 <- exp exp2$model_info$type <- "classification" expect_error(fairness_check_regression(exp2, fobject, protected = data$pop )) exp$y <- seq(-15, 15, length.out = 1000) exp$y_hat <- c(rep(-4000, 500), rep(5000, 500)) expect_equal( capture.output(fairness_check_regression(exp, protected = data$pop, privileged = "A"))[6], "-> Metric calculation\t\t: 3/3 metrics calculated for all models ( \033[33mapproximation algotithm did not coverage \033[39m )" ) exp <- explain(model, data = data, y = data$y) fobject <- fairness_check_regression(exp, protected = data$pop, privileged = "A") fobject <- fairness_check_regression(exp, fobject, label = "lm2") plt <- plot(fobject) expect_equal(plt$labels$subtitle, "Created with lm2, lm") expect_equal(plt$labels$title, "Fairness check regression") expect_s3_class(plt, "ggplot") })
CreateCalibOptions <- function(FUN_MOD, FUN_CALIB = Calibration_Michel, FUN_TRANSFO = NULL, IsHyst = FALSE, IsSD = FALSE, FixedParam = NULL, SearchRanges = NULL, StartParamList = NULL, StartParamDistrib = NULL) { ObjectClass <- NULL FUN_MOD <- match.fun(FUN_MOD) FUN_CALIB <- match.fun(FUN_CALIB) if(!is.null(FUN_TRANSFO)) { FUN_TRANSFO <- match.fun(FUN_TRANSFO) } if (!is.logical(IsHyst) | length(IsHyst) != 1L) { stop("'IsHyst' must be a logical of length 1") } if (!is.logical(IsSD) | length(IsSD) != 1L) { stop("'IsSD' must be a logical of length 1") } BOOL <- FALSE if (identical(FUN_MOD, RunModel_GR4H)) { ObjectClass <- c(ObjectClass, "GR4H") BOOL <- TRUE } if (identical(FUN_MOD, RunModel_GR5H)) { ObjectClass <- c(ObjectClass, "GR5H") BOOL <- TRUE } if (identical(FUN_MOD, RunModel_GR4J)) { ObjectClass <- c(ObjectClass, "GR4J") BOOL <- TRUE } if (identical(FUN_MOD, RunModel_GR5J)) { ObjectClass <- c(ObjectClass, "GR5J") BOOL <- TRUE } if (identical(FUN_MOD, RunModel_GR6J)) { ObjectClass <- c(ObjectClass, "GR6J") BOOL <- TRUE } if (identical(FUN_MOD, RunModel_GR2M)) { ObjectClass <- c(ObjectClass, "GR2M") BOOL <- TRUE } if (identical(FUN_MOD, RunModel_GR1A)) { ObjectClass <- c(ObjectClass, "GR1A") BOOL <- TRUE } if (identical(FUN_MOD, RunModel_CemaNeige)) { ObjectClass <- c(ObjectClass, "CemaNeige") BOOL <- TRUE } if (identical(FUN_MOD, RunModel_CemaNeigeGR4H)) { ObjectClass <- c(ObjectClass, "CemaNeigeGR4H") BOOL <- TRUE } if (identical(FUN_MOD, RunModel_CemaNeigeGR5H)) { ObjectClass <- c(ObjectClass, "CemaNeigeGR5H") BOOL <- TRUE } if (identical(FUN_MOD, RunModel_CemaNeigeGR4J)) { ObjectClass <- c(ObjectClass, "CemaNeigeGR4J") BOOL <- TRUE } if (identical(FUN_MOD, RunModel_CemaNeigeGR5J)) { ObjectClass <- c(ObjectClass, "CemaNeigeGR5J") BOOL <- TRUE } if (identical(FUN_MOD, RunModel_CemaNeigeGR6J)) { ObjectClass <- c(ObjectClass, "CemaNeigeGR6J") BOOL <- TRUE } if (identical(FUN_MOD, RunModel_Lag)) { ObjectClass <- c(ObjectClass, "Lag") if (IsSD) { stop("RunModel_Lag should not be used with 'isSD=TRUE'") } BOOL <- TRUE } if (IsHyst) { ObjectClass <- c(ObjectClass, "hysteresis") } if (IsSD) { ObjectClass <- c(ObjectClass, "SD") } if (!BOOL) { stop("incorrect 'FUN_MOD' for use in 'CreateCalibOptions'") return(NULL) } BOOL <- FALSE if (identical(FUN_CALIB, Calibration_Michel)) { ObjectClass <- c(ObjectClass, "HBAN") BOOL <- TRUE } if (!BOOL) { stop("incorrect 'FUN_CALIB' for use in 'CreateCalibOptions'") return(NULL) } if (is.null(FUN_TRANSFO)) { if (identical(FUN_MOD, RunModel_GR4H) | identical(FUN_MOD, RunModel_CemaNeigeGR4H)) { FUN_GR <- TransfoParam_GR4H } if (identical(FUN_MOD, RunModel_GR5H) | identical(FUN_MOD, RunModel_CemaNeigeGR5H)) { FUN_GR <- TransfoParam_GR5H } if (identical(FUN_MOD, RunModel_GR4J) | identical(FUN_MOD, RunModel_CemaNeigeGR4J)) { FUN_GR <- TransfoParam_GR4J } if (identical(FUN_MOD, RunModel_GR5J) | identical(FUN_MOD, RunModel_CemaNeigeGR5J)) { FUN_GR <- TransfoParam_GR5J } if (identical(FUN_MOD, RunModel_GR6J) | identical(FUN_MOD, RunModel_CemaNeigeGR6J)) { FUN_GR <- TransfoParam_GR6J } if (identical(FUN_MOD, RunModel_GR2M)) { FUN_GR <- TransfoParam_GR2M } if (identical(FUN_MOD, RunModel_GR1A)) { FUN_GR <- TransfoParam_GR1A } if (identical(FUN_MOD, RunModel_CemaNeige)) { if (IsHyst) { FUN_GR <- TransfoParam_CemaNeigeHyst } else { FUN_GR <- TransfoParam_CemaNeige } } if (identical(FUN_MOD, RunModel_Lag)) { FUN_GR <- TransfoParam_Lag } if (is.null(FUN_GR)) { stop("'FUN_GR' was not found") return(NULL) } if (IsHyst) { FUN_SNOW <- TransfoParam_CemaNeigeHyst } else { FUN_SNOW <- TransfoParam_CemaNeige } if (IsSD) { FUN_LAG <- TransfoParam_Lag } if (sum(ObjectClass %in% c("GR4H", "GR5H", "GR4J", "GR5J", "GR6J", "GR2M", "GR1A", "CemaNeige", "Lag")) > 0) { if (!IsSD) { FUN_TRANSFO <- FUN_GR } else { FUN_TRANSFO <- function(ParamIn, Direction) { Bool <- is.matrix(ParamIn) if (!Bool) { ParamIn <- rbind(ParamIn) } ParamOut <- NA * ParamIn NParam <- ncol(ParamIn) ParamOut[, 2:NParam] <- FUN_GR(ParamIn[, 2:NParam], Direction) ParamOut[, 1 ] <- FUN_LAG(as.matrix(ParamIn[, 1]), Direction) if (!Bool) { ParamOut <- ParamOut[1, ] } return(ParamOut) } } } else { if (IsHyst & !IsSD) { FUN_TRANSFO <- function(ParamIn, Direction) { Bool <- is.matrix(ParamIn) if (!Bool) { ParamIn <- rbind(ParamIn) } ParamOut <- NA * ParamIn NParam <- ncol(ParamIn) ParamOut[, 1:(NParam - 4) ] <- FUN_GR(ParamIn[, 1:(NParam - 4)], Direction) ParamOut[, (NParam - 3):NParam] <- FUN_SNOW(ParamIn[, (NParam - 3):NParam], Direction) if (!Bool) { ParamOut <- ParamOut[1, ] } return(ParamOut) } } if (!IsHyst & !IsSD) { FUN_TRANSFO <- function(ParamIn, Direction) { Bool <- is.matrix(ParamIn) if (!Bool) { ParamIn <- rbind(ParamIn) } ParamOut <- NA * ParamIn NParam <- ncol(ParamIn) if (NParam <= 3) { ParamOut[, 1:(NParam - 2)] <- FUN_GR(cbind(ParamIn[, 1:(NParam - 2)]), Direction) } else { ParamOut[, 1:(NParam - 2)] <- FUN_GR(ParamIn[, 1:(NParam - 2)], Direction) } ParamOut[, (NParam - 1):NParam] <- FUN_SNOW(ParamIn[, (NParam - 1):NParam], Direction) if (!Bool) { ParamOut <- ParamOut[1, ] } return(ParamOut) } } if (IsHyst & IsSD) { FUN_TRANSFO <- function(ParamIn, Direction) { Bool <- is.matrix(ParamIn) if (!Bool) { ParamIn <- rbind(ParamIn) } ParamOut <- NA * ParamIn NParam <- ncol(ParamIn) ParamOut[, 2:(NParam - 4) ] <- FUN_GR(ParamIn[, 2:(NParam - 4)], Direction) ParamOut[, (NParam - 3):NParam] <- FUN_SNOW(ParamIn[, (NParam - 3):NParam], Direction) ParamOut[, 1 ] <- FUN_LAG(as.matrix(ParamIn[, 1]), Direction) if (!Bool) { ParamOut <- ParamOut[1, ] } return(ParamOut) } } if (!IsHyst & IsSD) { FUN_TRANSFO <- function(ParamIn, Direction) { Bool <- is.matrix(ParamIn) if (!Bool) { ParamIn <- rbind(ParamIn) } ParamOut <- NA * ParamIn NParam <- ncol(ParamIn) if (NParam <= 3) { ParamOut[, 2:(NParam - 2)] <- FUN_GR(cbind(ParamIn[, 2:(NParam - 2)]), Direction) } else { ParamOut[, 2:(NParam - 2)] <- FUN_GR(ParamIn[, 2:(NParam - 2)], Direction) } ParamOut[, (NParam - 1):NParam] <- FUN_SNOW(ParamIn[, (NParam - 1):NParam], Direction) ParamOut[, 1 ] <- FUN_LAG(as.matrix(ParamIn[, 1]), Direction) if (!Bool) { ParamOut <- ParamOut[1, ] } return(ParamOut) } } } } if (is.null(FUN_TRANSFO)) { stop("'FUN_TRANSFO' was not found") return(NULL) } if ("GR4H" %in% ObjectClass) { NParam <- 4 } if ("GR5H" %in% ObjectClass) { NParam <- 5 } if ("GR4J" %in% ObjectClass) { NParam <- 4 } if ("GR5J" %in% ObjectClass) { NParam <- 5 } if ("GR6J" %in% ObjectClass) { NParam <- 6 } if ("GR2M" %in% ObjectClass) { NParam <- 2 } if ("GR1A" %in% ObjectClass) { NParam <- 1 } if ("CemaNeige" %in% ObjectClass) { NParam <- 2 } if ("CemaNeigeGR4H" %in% ObjectClass) { NParam <- 6 } if ("CemaNeigeGR5H" %in% ObjectClass) { NParam <- 7 } if ("CemaNeigeGR4J" %in% ObjectClass) { NParam <- 6 } if ("CemaNeigeGR5J" %in% ObjectClass) { NParam <- 7 } if ("CemaNeigeGR6J" %in% ObjectClass) { NParam <- 8 } if ("Lag" %in% ObjectClass) { NParam <- 1 } if (IsHyst) { NParam <- NParam + 2 } if (IsSD) { NParam <- NParam + 1 } if (is.null(FixedParam)) { FixedParam <- rep(NA, NParam) } else { if (!is.vector(FixedParam)) { stop("FixedParam must be a vector") } if (length(FixedParam) != NParam) { stop("Incompatibility between 'FixedParam' length and 'FUN_MOD'") } if (all(!is.na(FixedParam))) { stop("At least one parameter must be not set (NA)") } if (all(is.na(FixedParam))) { warning("You have not set any parameter in 'FixedParam'") } } if (is.null(SearchRanges)) { ParamT <- matrix(c(rep(-9.99, NParam), rep(+9.99, NParam)), ncol = NParam, byrow = TRUE) SearchRanges <- TransfoParam(ParamIn = ParamT, Direction = "TR", FUN_TRANSFO = FUN_TRANSFO) } else { if (!is.matrix(SearchRanges)) { stop("'SearchRanges' must be a matrix") } if (!is.numeric(SearchRanges)) { stop("'SearchRanges' must be a matrix of numeric values") } if (sum(is.na(SearchRanges)) != 0) { stop("'SearchRanges' must not include NA values") } if (nrow(SearchRanges) != 2) { stop("'SearchRanges' must have 2 rows") } if (ncol(SearchRanges) != NParam) { stop("Incompatibility between 'SearchRanges' ncol and 'FUN_MOD'") } } if (("HBAN" %in% ObjectClass & is.null(StartParamList) & is.null(StartParamDistrib))) { if ("GR4H" %in% ObjectClass) { ParamT <- matrix(c(+5.12, -1.18, +4.34, -9.69, +5.58, -0.85, +4.74, -9.47, +6.01, -0.50, +5.14, -8.87), ncol = 4, byrow = TRUE) } if (("GR5H" %in% ObjectClass) & ("interception" %in% ObjectClass)) { ParamT <- matrix(c(+3.46, -1.25, +4.04, -9.53, -9.34, +3.74, -0.41, +4.78, -8.94, -3.33, +4.29, +0.16, +5.39, -7.39, +3.33), ncol = 5, byrow = TRUE) } if (("GR5H" %in% ObjectClass) & !("interception" %in% ObjectClass)) { ParamT <- matrix(c(+3.28, -0.39, +4.14, -9.54, -7.49, +3.62, -0.19, +4.80, -9.00, -6.31, +4.01, -0.04, +5.43, -7.53, -5.33), ncol = 5, byrow = TRUE) } if ("GR4J" %in% ObjectClass) { ParamT <- matrix(c(+5.13, -1.60, +3.03, -9.05, +5.51, -0.61, +3.74, -8.51, +6.07, -0.02, +4.42, -8.06), ncol = 4, byrow = TRUE) } if ("GR5J" %in% ObjectClass) { ParamT <- matrix(c(+5.17, -1.13, +3.08, -9.37, -7.45, +5.55, -0.46, +3.75, -9.09, -4.69, +6.10, -0.11, +4.43, -8.60, -0.66), ncol = 5, byrow = TRUE) } if ("GR6J" %in% ObjectClass) { ParamT <- matrix(c(+3.60, -1.00, +3.30, -9.10, -0.90, +3.00, +3.90, -0.50, +4.10, -8.70, +0.10, +4.00, +4.50, +0.50, +5.00, -8.10, +1.10, +5.00), ncol = 6, byrow = TRUE) } if ("GR2M" %in% ObjectClass) { ParamT <- matrix(c(+5.03, -7.15, +5.22, -6.74, +5.85, -6.37), ncol = 2, byrow = TRUE) } if ("GR1A" %in% ObjectClass) { ParamT <- matrix(c(-1.69, -0.38, +1.39), ncol = 1, byrow = TRUE) } if ("CemaNeige" %in% ObjectClass) { ParamT <- matrix(c(-9.96, +6.63, -9.14, +6.90, +4.10, +7.21), ncol = 2, byrow = TRUE) } if ("CemaNeigeGR4H" %in% ObjectClass) { ParamT <- matrix(c(+5.12, -1.18, +4.34, -9.69, -9.96, +6.63, +5.58, -0.85, +4.74, -9.47, -9.14, +6.90, +6.01, -0.50, +5.14, -8.87, +4.10, +7.21), ncol = 6, byrow = TRUE) } if (("CemaNeigeGR5H" %in% ObjectClass) & ("interception" %in% ObjectClass)) { ParamT <- matrix(c(+3.46, -1.25, +4.04, -9.53, -9.34, -9.96, +6.63, +3.74, -0.41, +4.78, -8.94, -3.33, -9.14, +6.90, +4.29, +0.16, +5.39, -7.39, +3.33, +4.10, +7.21), ncol = 7, byrow = TRUE) } if (("CemaNeigeGR5H" %in% ObjectClass) & !("interception" %in% ObjectClass)) { ParamT <- matrix(c(+3.28, -0.39, +4.14, -9.54, -7.49, -9.96, +6.63, +3.62, -0.19, +4.80, -9.00, -6.31, -9.14, +6.90, +4.01, -0.04, +5.43, -7.53, -5.33, +4.10, +7.21), ncol = 7, byrow = TRUE) } if ("CemaNeigeGR4J" %in% ObjectClass) { ParamT <- matrix(c(+5.13, -1.60, +3.03, -9.05, -9.96, +6.63, +5.51, -0.61, +3.74, -8.51, -9.14, +6.90, +6.07, -0.02, +4.42, -8.06, +4.10, +7.21), ncol = 6, byrow = TRUE) } if ("CemaNeigeGR5J" %in% ObjectClass) { ParamT <- matrix(c(+5.17, -1.13, +3.08, -9.37, -7.45, -9.96, +6.63, +5.55, -0.46, +3.75, -9.09, -4.69, -9.14, +6.90, +6.10, -0.11, +4.43, -8.60, -0.66, +4.10, +7.21), ncol = 7, byrow = TRUE) } if ("CemaNeigeGR6J" %in% ObjectClass) { ParamT <- matrix(c(+3.60, -1.00, +3.30, -9.10, -0.90, +3.00, -9.96, +6.63, +3.90, -0.50, +4.10, -8.70, +0.10, +4.00, -9.14, +6.90, +4.50, +0.50, +5.00, -8.10, +1.10, +5.00, +4.10, +7.21), ncol = 8, byrow = TRUE) } if (IsHyst) { ParamTHyst <- matrix(c(-7.00, -7.00, -0.00, -0.00, +7.00, +7.00), ncol = 2, byrow = TRUE) ParamT <- cbind(ParamT, ParamTHyst) } if (IsSD) { ParamTSD <- matrix(c(+1.25, +2.50, +5.00), ncol = 1, byrow = TRUE) ParamT <- cbind(ParamTSD, ParamT) } StartParamList <- NULL StartParamDistrib <- TransfoParam(ParamIn = ParamT, Direction = "TR", FUN_TRANSFO = FUN_TRANSFO) } if ("HBAN" %in% ObjectClass & !is.null(StartParamList)) { if (!is.matrix(StartParamList)) { stop("'StartParamList' must be a matrix") } if (!is.numeric(StartParamList)) { stop("'StartParamList' must be a matrix of numeric values") } if (sum(is.na(StartParamList)) != 0) { stop("'StartParamList' must not include NA values") } if (ncol(StartParamList) != NParam) { stop("Incompatibility between 'StartParamList' ncol and 'FUN_MOD'") } } if ("HBAN" %in% ObjectClass & !is.null(StartParamDistrib)) { if (!is.matrix(StartParamDistrib)) { stop("'StartParamDistrib' must be a matrix") } if (!is.numeric(StartParamDistrib[1, ])) { stop("'StartParamDistrib' must be a matrix of numeric values") } if (sum(is.na(StartParamDistrib[1, ])) != 0) { stop("'StartParamDistrib' must not include NA values on the first line") } if (ncol(StartParamDistrib) != NParam) { stop("Incompatibility between 'StartParamDistrib' ncol and 'FUN_MOD'") } } CalibOptions <- list(FixedParam = FixedParam, SearchRanges = SearchRanges, FUN_TRANSFO = FUN_TRANSFO) if (!is.null(StartParamList)) { CalibOptions <- c(CalibOptions, list(StartParamList = StartParamList)) } if (!is.null(StartParamDistrib)) { CalibOptions <- c(CalibOptions, list(StartParamDistrib = StartParamDistrib)) } class(CalibOptions) <- c("CalibOptions", ObjectClass) return(CalibOptions) }
test_that("unique values returned for strings with duplicate values", { expect_equal(str_unique(c("a", "a", "a")), "a") expect_equal(str_unique(c(NA, NA)), NA_character_) })
zgamma <- setRefClass("Zelig-gamma", contains = "Zelig-glm") zgamma$methods( initialize = function() { callSuper() .self$name <- "gamma" .self$family <- "Gamma" .self$link <- "inverse" .self$authors <- "Kosuke Imai, Gary King, Olivia Lau" .self$year <- 2007 .self$category <- "bounded" .self$description <- "Gamma Regression for Continuous, Positive Dependent Variables" .self$outcome <- "continous" .self$wrapper <- "gamma" } ) zgamma$methods( param = function(z.out, method="mvn") { shape <- MASS::gamma.shape(z.out) if(identical(method, "mvn")){ simalpha <- rnorm(n = .self$num, mean = shape$alpha, sd = shape$SE) simparam.local <- mvrnorm(n = .self$num, mu = coef(z.out), Sigma = vcov(z.out)) simparam.local <- list(simparam = simparam.local, simalpha = simalpha) return(simparam.local) } else if(identical(method,"point")){ return(list(simparam = t(as.matrix(coef(z.out))), simalpha = shape$alpha )) } } ) zgamma$methods( qi = function(simparam, mm) { coeff <- simparam$simparam eta <- (coeff %*% t(mm) ) * simparam$simalpha theta <- matrix(1 / eta, nrow = nrow(coeff), ncol=1) ev <- theta * simparam$simalpha pv<- matrix(rgamma(nrow(ev), shape = simparam$simalpha, scale = theta), nrow=nrow(ev), ncol=1) return(list(ev = ev, pv = pv)) } ) zgamma$methods( mcfun = function(x, b0=0, b1=1, alpha=1, sim=TRUE){ lambda <- 1/(b0 + b1 * x) if(sim){ y <- rgamma(n=length(x), shape=alpha, scale = lambda) return(y) }else{ return(alpha * lambda) } } )
ensure_docx <- function(docx) { if (!inherits(docx, "docx")) stop("Must pass in a 'docx' object", call.=FALSE) if (!(all(purrr::map_lgl(c("docx", "ns", "tbls", "path"), exists, where=docx)))) stop("'docx' object missing necessary components", call.=FALSE) } has_header <- function(tbl, rows, ns) { look <- try(xml2::xml_find_first(tbl, "./w:tblPr/w:tblLook", ns), silent=TRUE) if (inherits(look, "try-error")) { return(NA) } else { look_attr <- xml2::xml_attrs(look) if ("firstRow" %in% names(look_attr)) { if (look_attr["firstRow"] == "0") { return(NA) } else { return(paste0(xml2::xml_text(xml_find_all(rows[[1]], "./w:tc", ns)), collapse=", ")) } } else { return(NA) } } } is_url <- function(path) { grepl("^(http|ftp)s?://", path) } is_docx <- function(path) { tolower(tools::file_ext(path)) == "docx" } is_pptx <- function(path) { tolower(tools::file_ext(path)) == "pptx" } is_doc <- function(path) { tolower(tools::file_ext(path)) == "doc" } file_copy <- function(from, to) { fc <- file.copy(from, to) if (!fc) stop(sprintf("file copy failure for file %s", from), call.=FALSE) } convert_doc_to_docx <- function(docx_dir, doc_file) { lo_path <- getOption("path_to_libreoffice") if (is.null(lo_path)) { stop(lo_path_missing, call. = FALSE) } if (Sys.info()["sysname"] == "Windows") { convert_win(lo_path, docx_dir, doc_file) } else { convert_osx(lo_path, docx_dir, doc_file) } } convert_win <- function(lo_path, docx_dir, doc_file, convert_to = 'docx:"MS Word 2007 XML"') { cmd <- sprintf('"%s" --convert-to %s -headless -outdir "%s" "%s"', lo_path, convert_to, docx_dir, doc_file) system(cmd, show.output.on.console = FALSE) } convert_osx <- function(lo_path, docx_dir, doc_file, convert_to = 'docx:"MS Word 2007 XML"') { cmd <- sprintf('"%s" --convert-to %s --headless --outdir "%s" "%s"', lo_path, convert_to, docx_dir, doc_file) res <- system(cmd, intern = TRUE) } set_libreoffice_path <- function(path) { stopifnot(is.character(path)) if (!file.exists(path)) stop(sprintf("Cannot find '%s'", path), call.=FALSE) options("path_to_libreoffice" = path) } lo_assert <- function() { lo_path <- getOption("path_to_libreoffice") if (is.null(lo_path)) { lo_path <- lo_find() set_libreoffice_path(lo_path) } } lo_find <- function() { user_os <- Sys.info()["sysname"] if (!user_os %in% names(lo_paths_to_check)) { stop(lo_path_missing, call. = FALSE) } lo_path <- NULL for (path in lo_paths_to_check[[user_os]]) { if (file.exists(path)) { lo_path <- path break } } if (is.null(lo_path)) { stop(lo_path_missing, call. = FALSE) } lo_path } lo_paths_to_check <- list( "Linux" = c("/usr/bin/soffice", "/usr/local/bin/soffice"), "Darwin" = c("/Applications/LibreOffice.app/Contents/MacOS/soffice", "~/Applications/LibreOffice.app/Contents/MacOS/soffice"), "Windows" = c("C:\\Program Files\\LibreOffice\\program\\soffice.exe", "C:\\progra~1\\libreo~1\\program\\soffice.exe") ) lo_path_missing <- paste( "LibreOffice software required to read '.doc' files.", "Cannot determine file path to LibreOffice.", "To download LibreOffice, visit: https://www.libreoffice.org/ \n", "If you've already downloaded the software, use function", "'set_libreoffice_path()' to point R to your local 'soffice.exe' file" )
priorlevels = function(levelvector) { sum = 0 priors = c(0) for (x in 1:length(levelvector)) { sum = sum + levelvector[x] priors = c(priors, sum) } return(priors) }
ebirdtaxonomy <- function(cat=NULL, locale=NULL, key = NULL, ...){ cats <- c("domestic", "form", "hybrid", "intergrade", "issf", "slash", "species", "spuh") if (!all(vapply(cat, function(x) x %in% cats, FUN.VALUE = logical(1)))) { stop("You have supplied an invalid species category") } cat <- if(!is.null(cat)) cat <- paste0(cat, collapse = ",") args <- list(fmt='json', cat=cat, locale=locale) if (is.null(key) && !nzchar(Sys.getenv("EBIRD_KEY"))) { key <- "" } ebird_GET(paste0(ebase(), 'ref/taxonomy/ebird'), args, key = key, ...) }