code
stringlengths
1
13.8M
tar_test("tar_make_clustermq() works", { skip_on_os("windows") skip_on_os("solaris") skip_if_not_installed("clustermq") skip_on_covr() tar_script({ options(clustermq.scheduler = "multiprocess") list(tar_target(x, "x")) }) tar_make_clustermq( callr_arguments = list(show = FALSE), reporter = "silent" ) expect_equal(tar_read(x), "x") }) tar_test("tar_make_clustermq() can use tidyselect", { skip_on_os("windows") skip_on_os("solaris") skip_if_not_installed("clustermq") skip_on_covr() tar_script({ options(clustermq.scheduler = "multiprocess") list( tar_target(y1, 1 + 1), tar_target(y2, 1 + 1), tar_target(z, y1 + y2) ) }) suppressWarnings( tar_make_clustermq( names = starts_with("y"), reporter = "silent", callr_arguments = list(show = FALSE) ) ) out <- sort(list.files(file.path("_targets", "objects"))) expect_equal(out, sort(c("y1", "y2"))) }) tar_test("custom script and store args", { skip_on_cran() skip_if_not_installed("clustermq") skip_on_covr() skip_on_os("windows") expect_equal(tar_config_get("script"), path_script_default()) expect_equal(tar_config_get("store"), path_store_default()) old_option <- getOption("clustermq.scheduler") on.exit(options(clustermq.scheduler = old_option)) tar_script({ tar_option_set(packages = character(0)) options(clustermq.scheduler = "multiprocess") tar_target(x, TRUE) }, script = "example/script.R") tar_make_clustermq( script = "example/script.R", store = "example/store", callr_arguments = list(show = FALSE), reporter = "silent" ) expect_false(file.exists("_targets.yaml")) expect_equal(tar_config_get("script"), path_script_default()) expect_equal(tar_config_get("store"), path_store_default()) expect_false(file.exists(path_script_default())) expect_false(file.exists(path_store_default())) expect_true(file.exists("example/script.R")) expect_true(file.exists("example/store")) expect_true(file.exists("example/store/meta/meta")) expect_true(file.exists("example/store/objects/x")) expect_equal(readRDS("example/store/objects/x"), TRUE) tar_config_set(script = "x") expect_equal(tar_config_get("script"), "x") expect_true(file.exists("_targets.yaml")) }) tar_test("custom script and store args with callr function", { skip_on_cran() skip_if_not_installed("clustermq") skip_on_covr() skip_on_os("windows") expect_equal(tar_config_get("script"), path_script_default()) expect_equal(tar_config_get("store"), path_store_default()) tar_script({ options(clustermq.scheduler = "multiprocess") tar_target(x, TRUE) }, script = "example/script.R") tmp <- utils::capture.output( suppressMessages( tar_make_clustermq( script = "example/script.R", store = "example/store", reporter = "silent" ) ) ) expect_false(file.exists("_targets.yaml")) expect_equal(tar_config_get("script"), path_script_default()) expect_equal(tar_config_get("store"), path_store_default()) expect_false(file.exists(path_script_default())) expect_false(file.exists(path_store_default())) expect_true(file.exists("example/script.R")) expect_true(file.exists("example/store")) expect_true(file.exists("example/store/meta/meta")) expect_true(file.exists("example/store/objects/x")) expect_equal(readRDS("example/store/objects/x"), TRUE) tar_config_set(script = "x") expect_equal(tar_config_get("script"), "x") expect_true(file.exists("_targets.yaml")) }) tar_test("bootstrap builder for shortcut", { skip_on_cran() skip_on_os("windows") skip_if_not_installed("clustermq") skip_on_covr() tar_script({ options(clustermq.scheduler = "multiprocess") list( tar_target(w, 1L), tar_target(x, w), tar_target(y, 1L), tar_target(z, x + y) ) }) suppressWarnings( tar_make_clustermq(callr_function = NULL) ) expect_equal(tar_read(z), 2L) tar_script({ options(clustermq.scheduler = "multiprocess") list( tar_target(w, 1L), tar_target(x, w), tar_target(y, 1L), tar_target(z, x + y + 1L) ) }) suppressWarnings( tar_make_clustermq(names = "z", shortcut = TRUE, callr_function = NULL) ) expect_equal(tar_read(z), 3L) progress <- tar_progress() expect_equal(nrow(progress), 1L) expect_equal(progress$name, "z") expect_equal(progress$progress, "built") })
hero.prepared_starray = function(x, ...) { lambda = exp(x$loglambda) parts = lapply(seq_along(lambda), function(i) { x$Q[[i]] %*% x$U[[i]] %*% diag(1/(1 + lambda[i]*x$s[[i]])) }) coeffs = rh.seq(parts, x$Ytilde) fitted = as.matrix(x$B[[1]] %*% Matrix::tcrossprod(coeffs, x$B[[2]])) out = list(fitted = fitted, coefficients = coeffs, x = x$x) class(out) = c("hero_starray", "hero") return(out) }
rcbsubset <- function(distance.structure, near.exact = NULL, fb.list = NULL, treated.info = NULL, control.info = NULL, exclude.penalty = NULL, penalty = 2, tol = 1e-3){ exclude.treated = TRUE target.group <- NULL k = 1 if(is.null(exclude.penalty)){ return(rcbalance::rcbalance(distance.structure, near.exact, fb.list, treated.info, control.info, exclude.treated, target.group, k, penalty, tol)) } if(!(penalty > 1)){ stop("penalty argument must be greater than 1") } if(!is.null(near.exact)){ if(!(!is.null(treated.info) && !is.null(control.info))){ stop('treated.info and control.info must both be specified when near.exact is used') } if(ncol(treated.info) != ncol(control.info)){ stop('treated.info and control.info must have the same number of columns') } if(!all(colnames(treated.info) == colnames(control.info))){ stop('treated.info and control.info must have identical column names') } treated.control.info <- rbind(treated.info, control.info) if(class(distance.structure) %in% c('matrix', 'InfinitySparseMatrix', 'BlockedInfinitySparseMatrix')){ if(nrow(treated.info) != nrow(distance.structure)){ stop('Dimensions of treated.info and distance.structure do not agree') } if(nrow(control.info) != ncol(distance.structure)){ stop('Dimensions of control.info and distance.structure do not agree') } }else{ if(nrow(treated.info) != length(distance.structure)){ stop('treated.info and distance.structure specify different numbers of treated units') } if(nrow(control.info) < max(laply(distance.structure, function(x) max(c(as.numeric(names(x)),0))))){ stop('Not all control units in distance.structure have information in control.info') } } if(!(all(near.exact %in% colnames(treated.info)))){ stop('near.exact contains variable names not present in colnames(treated.info)') } } if(!is.null(fb.list)){ if(is.null(target.group) && !is.null(near.exact)){ target.group <- treated.info target.control.info <- treated.control.info }else{ if(is.null(target.group)){ target.group <- treated.info } if(!(!is.null(treated.info) && !is.null(control.info))){ stop('treated.info and control.info must both be specified when fb.list is used') } if(ncol(treated.info) != ncol(control.info)){ stop('treated.info and control.info must have the same number of columns') } if(!all(colnames(treated.info) == colnames(control.info))){ stop('treated.info and control.info must have identical column names') } target.control.info <- rbind(target.group, control.info) if(class(distance.structure) %in% c('matrix', 'InfinitySparseMatrix', 'BlockedInfinitySparseMatrix')){ if(nrow(target.group) != nrow(distance.structure)){ stop('target.group and distance.structure dimensions do not agree') } if(nrow(control.info) != ncol(distance.structure)){ stop('control.info and distance.structure dimensions do not agree') } }else{ if(nrow(target.group) != length(distance.structure)){ stop('target.group and distance.structure specify different numbers of treated units') } if(nrow(control.info) < max(laply(distance.structure, function(x) max(c(as.numeric(names(x)),0))))){ stop('Not all control units in distance.structure have information in control.info') } } if(!all(unlist(fb.list) %in% colnames(target.group))){ stop('fb.list contains variable names not given in column names of other arguments') } if(length(fb.list) > 1){ for(i in c(1:(length(fb.list)-1))) if(!all(fb.list[[i]] %in% fb.list[[i+1]])){ stop('Elements of fb.list must contain all variables listed in previous elements') } } } } if (inherits(distance.structure, c('matrix', 'InfinitySparseMatrix'))) { match.network <- dist2net.matrix(distance.structure,k, exclude.treated = exclude.treated, exclude.penalty, tol) } else if (!is.null(fb.list)){ match.network <- dist2net(distance.structure,k, exclude.treated = exclude.treated, exclude.penalty, ncontrol = nrow(control.info), tol) }else{ match.network <- dist2net(distance.structure,k, exclude.treated = exclude.treated, exclude.penalty) } if(!is.null(fb.list)){ for(my.layer in fb.list){ interact.factor <- apply(target.control.info[,match(my.layer, colnames(target.control.info)), drop = FALSE],1, function(x) paste(x, collapse ='.')) match.network <- add.layer(match.network, interact.factor) } } if(!is.null(near.exact)){ interact.factor <- apply(treated.control.info[,match(near.exact, colnames(treated.control.info)), drop = FALSE],1, function(x) paste(x, collapse ='.')) match.network <- penalize.near.exact(match.network, interact.factor) } cost <- match.network$cost if(any(cost != round(cost))){ intcost <- round(cost/tol) searchtol <- 10^(-c(1:floor(log10(.Machine$integer.max)))) searchtol <- searchtol[searchtol > tol] for (newtol in searchtol){ new.intcost <- round(intcost*tol/newtol) if (any(new.intcost != intcost*tol/newtol)) break tol <- newtol intcost <- new.intcost } cost <- intcost } if(any(is.na(as.integer(cost)))){ stop('Integer overflow in penalties! Run with a higher tolerance or fewer balance and near-exact constraints.') } match.network$cost <- cost o <- callrelax(match.network) if(o$feasible == 0 || o$crash == 1){ stub.message <- 'Match is infeasible or penalties are too large for RELAX to process! Consider raising tolerance or using fewer balance and near-exact constraints' if(k > 1){ stop(paste(stub.message, 'or reducing k.')) } if(!exclude.treated){ stop('Match is infeasible or penalties are too large for RELAX to process! Try setting exclude.treated=TRUE, or raising tolerance or using fewer balance and near-exact constraints') } stop(paste(stub.message, '.', sep ='')) } if('no.optmatch' %in% names(o)){ return(NULL) } x <- o$x[1:match.network$tcarcs] if(all(x == 0)) warning('No matched pairs formed. Try using a higher exclusion penalty?') match.df <- data.frame('treat' = as.factor(match.network$startn[1:match.network$tcarcs]), 'x' = x, 'control' = match.network$endn[1:match.network$tcarcs]) matched.or.not <- daply(match.df, .(match.df$treat), function(treat.edges) c(as.numeric(as.character(treat.edges$treat[1])), sum(treat.edges$x)), .drop_o = FALSE) if(any(matched.or.not[,2] == 0)){ match.df <- match.df[-which(match.df$treat %in% matched.or.not[which(matched.or.not[,2] == 0),1]),] } match.df$treat <- as.factor(as.character(match.df$treat)) matches <- daply(match.df, .(match.df$treat), function(treat.edges) treat.edges$control[treat.edges$x == 1], .drop_o = FALSE) if(is.null(fb.list)){ fb.tables <- NULL }else{ matched.info <- rbind(treated.info[as.numeric(rownames(matches)),,drop = FALSE], control.info[as.vector(matches) - sum(match.network$z),,drop = FALSE]) treatment.status <- c(rep(1, nrow(as.matrix(matches))), rep(0, k*nrow(as.matrix(matches)))) interact.factors.matched = llply(fb.list, function(my.layer) as.factor(apply(matched.info[,match(my.layer, colnames(matched.info)), drop = FALSE],1, function(x) paste(x, collapse ='.')))) fb.tables <- llply(interact.factors.matched, function(inter.fact) table('balance.variable' = inter.fact, treatment.status)) } final.matches <- matrix(matches - sum(match.network$z), ncol =k, dimnames = list(rownames(matches),1:k)) final.matches <- final.matches[order(as.numeric(rownames(final.matches))), , drop=FALSE] return(list('matches' = final.matches, 'fb.tables' = fb.tables)) }
library(act) mysearch <- act::search_new(x=examplecorpus, pattern= "yo", runSearch=FALSE) df <- act::search_transcript_content(t=examplecorpus@transcripts[[3]], s=mysearch) nrow(df)
string.help <- function(string, star = " ") { str.len <- nchar(star) str.loc <- NULL for (i in 1:nchar(string)) { if (substring(string,i,(i+str.len-1)) == star) { str.loc <- c(str.loc, i) } } no <- length(str.loc)+1 output <- rep(0,no) if(no == 1) output[1] <- string else { output[1] <- substring(string,1,(str.loc[1] - 1)) if (no > 2) { for(i in 2:(no-1)) { output[i] <- substring(string,(str.loc[i-1]+str.len), (str.loc[i]-1)) } } output[no] <- substring(string, (str.loc[no - 1] +str.len), nchar(string)) } return(output) }
setMethod("contaminate", signature(x = "data.frame", control = "ContControl"), function(x, control, i = 1) { epsilon <- getEpsilon(control)[i] if(epsilon == 0 || nrow(x) == 0) { x$.contaminated <- rep.int(FALSE, nrow(x)) return(x) } else if(ncol(x) == 0) return(x) target <- getTarget(control) if(is.null(target)) target <- getNames(x) grouping <- getGrouping(control) if(length(grouping) > 1) { stop("'grouping' must not specify more than one variable") } aux <- getAux(control) if(length(aux) > 1) { stop("'aux' must not specify more than one variable") } useGroup <- as.logical(length(grouping)) useAux <- as.logical(length(aux)) if(useGroup) { groups <- x[, grouping] if(useAux) { Ntotal <- nrow(x) split <- split(1:Ntotal, getFactor(groups)) N <- length(split) } else { uniqueGroups <- unique(groups) N <- length(uniqueGroups) } } else N <- nrow(x) n <- ceiling(epsilon * N) if(useAux) { aux <- x[, aux] if(useGroup) { aux <- sapply(split, function(i) mean(aux[i])) } ind <- ups(N, n, prob=aux) } else ind <- srs(N, n) if(useGroup) { if(useAux) ind <- unlist(split[ind]) else ind <- which(groups %in% uniqueGroups[ind]) } if(is(control, "DCARContControl")) { values <- do.call(getDistribution(control), c(n, getDots(control))) if(useGroup) { rep <- unsplit(1:n, getFactor(groups[ind])) values <- if(is.null(dim(values))) values[rep] else values[rep,] } } else if(is(control, "DARContControl")) { dots <- c(list(x[ind, target]), getDots(control)) values <- do.call(getFun(control), dots) } else { stop("for user defined contamination control classes, a ", "method 'contaminate(x, control, i)' needs to be defined") } values <- as.data.frame(values) x[ind, target] <- values if(is.null(x$.contaminated)) { contaminated <- logical(nrow(x)) contaminated[ind] <- TRUE x$.contaminated <- contaminated } else x[ind, ".contaminated"] <- TRUE x }) setMethod("contaminate", signature(x = "data.frame", control = "character"), function(x, control, ...) { if(length(control) != 1) { stop("'control' must specify exactly one ", "class extending \"VirtualContControl\"") } if(!extends(control, "VirtualContControl")) { stop(gettextf("\"%s\" does not extend \"VirtualContControl\"", control)) } contaminate(x, new(control, ...)) }) setMethod("contaminate", signature(x = "data.frame", control = "missing"), function(x, control, ...) { contaminate(x, DCARContControl(...)) })
NULL meanWt <- function(x, ...) UseMethod("meanWt") meanWt.default <- function(x, weights, na.rm=TRUE, ...) { na.rm <- isTRUE(na.rm) if(missing(weights)) mean(x, na.rm=na.rm) else weighted.mean(x, w=weights, na.rm=na.rm) } meanWt.dataObj <- function(x, vars, na.rm=TRUE, ...) { dat <- x@data if ( is.null(dat) ) { return(NULL) } else { if ( length(vars) > 1 ) { stop("only one variable can be specified!\n") } ii <- match(vars, colnames(dat)) if ( any(is.na(ii)) ) { stop("please provide valid variables that exist in the input object!\n") } tmpdat <- dat[[vars]] if ( !is.null(x@weight) ) { return(meanWt.default(tmpdat, weights=dat[[x@weight]], na.rm=na.rm)) } else { return(meanWt.default(tmpdat, na.rm=na.rm)) } } } varWt <- function(x, ...) UseMethod("varWt") varWt.default <- function(x, weights, na.rm=TRUE, ...) { na.rm <- isTRUE(na.rm) if(missing(weights)) var(x, na.rm=na.rm) else { x <- as.numeric(x) weights <- as.numeric(weights) if(length(weights) != length(x)) { stop("'weights' must have the same length as 'x'") } if(na.rm) { select <- !is.na(x) x <- x[select] weights <- weights[select] } if(length(x) <= 1 || sum(weights > 0) <= 1) NA else sum((x - meanWt(x, weights))^2 * weights) / (sum(weights) - 1) } } varWt.dataObj <- function(x, vars, na.rm=TRUE, ...) { dat <- x@data if ( is.null(dat) ) { return(NULL) } else { if ( length(vars) > 1 ) { stop("only one variable can be specified!\n") } ii <- match(vars, colnames(dat)) if ( any(is.na(ii)) ) { stop("please provide valid variables that exist in the input object!\n") } tmpdat <- dat[[vars]] if ( !is.null(x@weight) ) { return(varWt.default(tmpdat, weights=dat[[x@weight]], na.rm=na.rm)) } else { return(varWt.default(tmpdat, na.rm=na.rm)) } } } covWt <- function(x, ...) UseMethod("covWt") covWt.default <- function(x, y, weights, ...) { if(missing(y)) y <- x else if(length(x) != length(y)) { stop("'x' and 'y' must have the same length") } if(missing(weights)) cov(x, y, use = "complete.obs") else { if(length(weights) != length(x)) { stop("'weights' must have the same length as 'x' and 'y'") } select <- !is.na(x) & !is.na(y) x <- x[select] y <- y[select] weights <- weights[select] sum((x-meanWt(x, weights)) * (y-meanWt(y, weights)) * weights) / (sum(weights)-1) } } covWt.matrix <- function(x, weights, ...) { if(missing(weights)) cov(x, use = "pairwise.complete.obs") else { if(length(weights) != nrow(x)) { stop("length of 'weights' must equal the number of rows in 'x'") } center <- apply(x, 2, meanWt, weights=weights) x <- sweep(x, 2, center, check.margin = FALSE) crossprodWt(x, weights) } } covWt.data.frame <- function(x, weights, ...) covWt(as.matrix(x), weights) covWt.dataObj <- function(x, vars, ...) { dat <- x@data if ( is.null(dat) ) { return(NULL) } else { ii <- match(vars, colnames(dat)) if ( any(is.na(ii)) ) { stop("please provide valid variables that exist in the input object!\n") } tmpdat <- dat[,vars,with=F] if ( !is.null(x@weight) ) { return(covWt.matrix(as.matrix(tmpdat), weights=dat[[x@weight]])) } else { return(covWt.matrix(as.matrix(tmpdat))) } } } corWt <- function(x, ...) UseMethod("corWt") corWt.default <- function(x, y, weights, ...) { if(missing(y)) y <- x else if(length(x) != length(y)) { stop("'x' and 'y' must have the same length") } if(missing(weights)) cor(x, y, use = "complete.obs") else covWt(x, y, weights) / sqrt(varWt(x, weights) * varWt(y, weights)) } corWt.matrix <- function(x, weights, ...) { if(missing(weights)) cor(x, use = "pairwise.complete.obs") else { if(length(weights) != nrow(x)) { stop("length of 'weights' must equal the number of rows in 'x'") } cen <- apply(x, 2, meanWt, weights=weights) sc <- sqrt(apply(x, 2, varWt, weights=weights)) x <- scale(x, center=cen, scale=sc) crossprodWt(x, weights) } } corWt.data.frame <- function(x, weights, ...) corWt(as.matrix(x), weights) corWt.dataObj <- function(x, vars, ...) { dat <- x@data if ( is.null(dat) ) { return(NULL) } else { ii <- match(vars, colnames(dat)) if ( any(is.na(ii)) ) { stop("please provide valid variables that exist in the input object!\n") } tmpdat <- dat[,vars,with=F] if ( !is.null(x@weight) ) { return(corWt.matrix(as.matrix(tmpdat), weights=dat[[x@weight]])) } else { return(corWt.matrix(as.matrix(tmpdat))) } } } crossprodWt <- function(x, weights) { ci <- 1:ncol(x) sapply(ci, function(j) sapply(ci, function(i) { select <- !is.na(x[, i]) & !is.na(x[, j]) xi <- x[select, i] xj <- x[select, j] w <- weights[select] sum(xi*xj*w) / (sum(w)-1) })) }
glossaryCaPO4Ui <- function(id) { ns <- NS(id) shinydashboardPlus::box( id = ns("boxGlossary"), solidHeader = TRUE, width = 12, height = "50%", style = "overflow-x: scroll;", DT::dataTableOutput(ns("glossary")) ) } glossaryCaPO4 <- function(input, output, session) { glossary <- data.frame( "abreviation" = c("Ca", "Pi", "PTH", "D3", "FGF23", "PTHg", "CaSR", "VDR", "PHP1"), "full name" = c( "Ionized plasma calcium concentration", "Total plasma phosphate concentration", "Parathyroid hormone", "1,25 dihydroxy vitamin D3 (calcitriol)", "Fibroblast growth factor 23", "Parathyroid glands", "Calcium sensing receptor", "Vitamin D receptor", "Primary hyperparathyroidism"), "units" = c("mM (mmol/l)", "mM", "ng/l", rep("", 6)) ) glossary <- DT::datatable( glossary, escape = c(rep(FALSE, 3), TRUE), options = list(dom = 't') ) %>% DT::formatStyle( 'full.name', color = 'black', backgroundColor = 'orange', fontWeight = 'bold' ) output$glossary <- DT::renderDataTable(glossary) }
plot.hhsmmdata <- function (x, ...) { opar <- par(mfrow=c(1,1),no.readonly = TRUE) N = x$N Ns = c(0,cumsum(N)) xx = as.matrix(x$x) d = ncol(xx) if(anyNA(xx) | any(is.nan(xx))){ allmiss = which(apply(xx,1,function(t) all(is.na(t)|is.nan(t)))) notallmiss = which(!apply(xx,1,function(t) all(is.na(t)|is.nan(t)))) for(ii in allmiss){ neigh = notallmiss[order(abs(ii-notallmiss))[1:2]] xx[ii,] = (xx[neigh[1],]+xx[neigh[2],])/2 } if(ncol(xx)>1) xx = complete(mice(xx,printFlag=FALSE)) } for(j in 1:d){ for(i in 1:length(N)){ if(d * length(N) <= 9){ q1 = trunc(sqrt(d * length(N))) tmp = d * length(N) / q1 q2 = trunc(tmp) if(tmp > q2) q2 = q2 + 1 if(i ==1 & j==1){ dev.new(width = 70*q2, height = 35*q1, unit = "px") par(mfrow = c(q1,q2)) on.exit(par(opar)) } } else{ dev.new(width=10, height=5, unit="in") } xxx = xx[(Ns[i]+1):Ns[i+1],j] sc = 1 if(!is.null(x$s)) sc = 1.2 plot(ts(xxx), xlab = "Time", ylab = "Observations", main = paste("Sequence ", i," variable ",j), ylim = c(min(xxx)/sc , max(xxx)), ...) if (!is.null(x$s)) .add.states(x$s[(Ns[i]+1):Ns[i+1]], ht = axTicks(2)[1], time.scale = 1) } } }
`qq_plot` <- function(model, ...) { UseMethod("qq_plot") } `qq_plot.default` <- function(model, ...) { stop("Unable to produce a Q-Q plot for <", class(model)[[1L]], ">", call. = FALSE) } `qq_plot.gam` <- function(model, method = c("uniform", "simulate", "normal", "direct"), type = c("deviance", "response", "pearson"), n_uniform = 10, n_simulate = 50, level = 0.9, ylab = NULL, xlab = NULL, title = NULL, subtitle = NULL, caption = NULL, ci_col = "black", ci_alpha = 0.2, point_col = "black", point_alpha = 1, line_col = "red", ...) { method <- match.arg(method) if (identical(method, "direct")) { message("`method = \"direct\"` is deprecated, use `\"uniform\"`") method <- "uniform" } if (identical(method, "uniform") && is.null(fix.family.qf(family(model))[["qf"]])) { method <- "simulate" } if (identical(method, "simulate") && is.null(fix.family.rd(family(model))[["rd"]])) { method <- "normal" } if (level <= 0 || level >= 1) { stop("Level must be 0 < level < 1. Supplied level <", level, ">", call. = FALSE) } type <- match.arg(type) df <- switch(method, uniform = qq_uniform(model, n = n_uniform, type = type), simulate = qq_simulate(model, n = n_simulate, type = type, level = level), normal = qq_normal(model, type = type, level = level)) df <- as_tibble(df) if (is.null(ylab)) { ylab <- paste(toTitleCase(type), "residuals") } if (is.null(xlab)) { xlab <- "Theoretical quantiles" } if (is.null(title)) { title <- "QQ plot of residuals" } if (is.null(subtitle)) { subtitle <- paste("Method:", method) } plt <- ggplot(df, aes_string(x = "theoretical", y = "residuals")) qq_intercept <- 0 qq_slope <- 1 if (method == "normal") { qq_intercept <- median(df[["residuals"]]) qq_slope <- IQR(df[["residuals"]]) / 1.349 } plt <- plt + geom_abline(slope = qq_slope, intercept = qq_intercept, col = line_col) if (isTRUE(method %in% c("simulate", "normal"))) { plt <- plt + geom_ribbon(aes_string(ymin = "lower", ymax = "upper", x = "theoretical"), inherit.aes = FALSE, alpha = ci_alpha, fill = ci_col) } plt <- plt + geom_point(colour = point_col, alpha = point_alpha) plt <- plt + labs(title = title, subtitle = subtitle, caption = caption, y = ylab, x = xlab) plt } `qq_plot.glm` <- function(model, ...) { if (is.null(model[["sig2"]])) { model[["sig2"]] <- summary(model)$dispersion } qq_plot.gam(model, ...) } `qq_plot.lm` <- function(model, ...) { r <- residuals(model) r.df <- df.residual(model) model[["sig2"]] <- sum((r- mean(r))^2) / r.df if (is.null(weights(model))) { model$prior.weights <- rep(1, nrow(model.frame(model))) } if (is.null(model[["linear.predictors"]])) { model[["linear.predictors"]] <- model[["fitted.values"]] } qq_plot.gam(model, ...) } `qq_simulate` <- function(model, n = 50, type = c("deviance","response","pearson"), level = 0.9, detrend = FALSE) { type <- match.arg(type) family <- family(model) family <- fix.family.rd(family) rd_fun <- family[["rd"]] alpha <- (1 - level) / 2 if (is.null(rd_fun)) { stop("Random deviate function for family <", family[["family"]], "> not available.") } dev_resid_fun <- family[["dev.resids"]] if (is.null(dev_resid_fun)) { dev_resid_fun <- family$residuals if (is.null(dev_resid_fun)) { stop("Deviance residual function for family <", family[["family"]], "> not available.") } } var_fun <- family[["variance"]] fit <- fitted(model) prior_w <- weights(model, type = "prior") sigma2 <- model[["sig2"]] na_action <- na.action(model) sims <- replicate(n = n, qq_simulate_data(rd_fun, fit = fit, weights = prior_w, sigma2 = sigma2, dev_resid_fun = dev_resid_fun, var_fun = var_fun, type = type, na_action = na_action)) n_obs <- NROW(fit) out <- quantile(sims, probs = (seq_len(n_obs) - 0.5) / n_obs) int <- apply(sims, 1L, quantile, probs = c(alpha, 1 - alpha)) r <- sort(residuals(model, type = type)) if (isTRUE(detrend)) { r <- r - out int[1L, ] <- int[1L, ] - out int[2L, ] <- int[2L, ] - out } out <- tibble(theoretical = out, residuals = r, lower = int[1L, ], upper = int[2L, ]) out } `qq_simulate_data` <- function(rd_fun, fit, weights, sigma2, dev_resid_fun, var_fun, type, na_action) { ysim <- rd_fun(fit, weights, sigma2) r <- compute_residuals(ysim, fit = fit, weights = weights, type = type, dev_resid_fun = dev_resid_fun, var_fun = var_fun, na_action = na_action) sort(r) } `qq_normal` <- function(model, type = c("deviance", "response", "pearson"), level = 0.9, detrend = FALSE) { se_zscore <- function(z) { n <- length(z) pnorm_z <- pnorm(z) sqrt(pnorm_z * (1 - pnorm_z) / n) / dnorm(z) } type <- match.arg(type) r <- residuals(model, type = type) nr <- length(r) ord <- order(order(r)) sd <- IQR(r) / 1.349 theoretical <- qnorm(ppoints(nr)) med <- median(r) + theoretical * sd se <- sd * se_zscore(theoretical) crit <- coverage_normal(level) crit_se <- crit * se r <- sort(r) if (isTRUE(detrend)) { r <- r - med med <- med * 0 } out <- tibble(theoretical = theoretical, residuals = r, lower = med - crit_se, upper = med + crit_se) out } `qq_uniform` <- function(model, n = 10, type = c("deviance","response","pearson"), level = 0.9, detrend = FALSE) { type <- match.arg(type) family <- family(model) family <- fix.family.qf(family) dev_resid_fun <- family[["dev.resids"]] var_fun <- family[["variance"]] q_fun <- family[["qf"]] if (is.null(q_fun)) { stop("Quantile function for family <", family[["family"]], "> not available.") } r <- residuals(model, type = type) fit <- fitted(model) weights <- weights(model, type = "prior") sigma2 <- model[["sig2"]] na_action <- na.action(model) nr <- length(r) unif <- (seq_len(nr) - 0.5) / nr sims <- matrix(0, ncol = n, nrow = nr) for (i in seq_len(n)) { unif <- sample(unif, nr) sims[, i] <- qq_uniform_quantiles(unif, q_fun, fit = fit, weights = weights, sigma2 = sigma2, dev_resid_fun = dev_resid_fun, var_fun = var_fun, type = type, na_action = na_action) } out <- rowMeans(sims) r <- sort(r) if (isTRUE(detrend)) { r <- r - out } out <- tibble(theoretical = out, residuals = r) out } `qq_uniform_quantiles` <- function(qs, q_fun, fit, weights, sigma2, dev_resid_fun, var_fun, type, na_action) { qq <- q_fun(qs, fit, weights, sigma2) r <- compute_residuals(qq, fit = fit, weights = weights, type = type, dev_resid_fun = dev_resid_fun, var_fun = var_fun, na_action = na_action) sort(r) } `compute_residuals` <- function(y, fit, weights, type = c("deviance","response","pearson"), dev_resid_fun, var_fun, na_action) { type <- match.arg(type) r <- switch(type, deviance = deviance_residuals(y, fit, weights, dev_resid_fun), response = response_residuals(y, fit), pearson = pearson_residuals(y, fit, weights, var_fun) ) naresid(na_action, r) } `response_residuals` <- function(y, fit) { y - fit } `deviance_residuals` <- function(y, fit, weights, dev_resid_fun) { if ("object" %in% names(formals(dev_resid_fun))) { r <- dev_resid_fun(list(y = y, fitted.values = fit, prior.weights = weights), type = "deviance") } else { r <- dev_resid_fun(y, fit, weights) posneg <- attr(r, "sign") if (is.null(posneg)) { posneg <- sign(y - fit) } r <- sqrt(pmax(r, 0)) * posneg } r } `pearson_residuals` <- function(y, fit, weights, var_fun) { if (is.null(var_fun)) { stop("Pearson residuals are not available for this family.") } (y - fit) * sqrt(weights) / sqrt(var_fun(fit)) } `residuals_linpred_plot` <- function(model, type = c("deviance", "pearson","response"), ylab = NULL, xlab = NULL, title = NULL, subtitle = NULL, caption = NULL, point_col = "black", point_alpha = 1, line_col = "red") { type <- match.arg(type) r <- residuals(model, type = type) eta <- model[["linear.predictors"]] na_action <- na.action(model) if (is.matrix(eta) && !is.matrix(r)) { eta <- eta[, 1] } eta <- napredict(na_action, eta) df <- data.frame(eta = eta, residuals = r) plt <- ggplot(df, aes_string(x = "eta", y = "residuals")) + geom_hline(yintercept = 0, col = line_col) plt <- plt + geom_point(colour = point_col, alpha = point_alpha) if (is.null(xlab)) { xlab <- "Linear predictor" } if (is.null(ylab)) { ylab <- paste(toTitleCase(type), "residuals") } if (missing(title)) { title <- "Residuals vs linear predictor" } if (missing(subtitle)) { subtitle <- paste("Family:", family(model)[["family"]]) } plt <- plt + labs(x = xlab, y = ylab, title = title, subtitle = subtitle, caption = caption) plt } `observed_fitted_plot` <- function(model, ylab = NULL, xlab = NULL, title = NULL, subtitle = NULL, caption = NULL, point_col = "black", point_alpha = 1) { fit <- fitted(model) if (NCOL(fit) > 1L) { fit <- fit[, 1] } obs <- model[["y"]] df <- data.frame(observed = obs, fitted = fit) plt <- ggplot(df, aes_string(x = "fitted", y = "observed")) plt <- plt + geom_point(colour = point_col, alpha = point_alpha) if (is.null(xlab)) { xlab <- "Fitted values" } if (is.null(ylab)) { ylab <- "Response" } if (missing(title)) { title <- "Observed vs fitted values" } if (missing(subtitle)) { subtitle <- paste("Family:", family(model)[["family"]]) } plt <- plt + labs(x = xlab, y = ylab, title = title, subtitle = subtitle, caption = caption) plt } `residuals_hist_plot` <- function(model, type = c("deviance", "pearson", "response"), n_bins = c("sturges", "scott", "fd"), ylab = NULL, xlab = NULL, title = NULL, subtitle = NULL, caption = NULL) { type <- match.arg(type) df <- data.frame(residuals = residuals(model, type = type)) if (is.character(n_bins)) { n_bins <- match.arg(n_bins) n_bins <- switch(n_bins, sturges = nclass.Sturges(df[["residuals"]]), scott = nclass.scott(df[["residuals"]]), fd = nclass.FD(df[["residuals"]])) n_bins <- n_bins + 2 } if (!is.numeric(n_bins)) { stop("'n_bins' should be a number or one of: ", paste(dQuote(c("sturges", "scott", "fd")), collapse = ", ")) } plt <- ggplot(df, aes_string(x = "residuals")) plt <- plt + geom_histogram(bins = n_bins, colour = "black", fill = "grey80") if (is.null(xlab)) { xlab <- paste(toTitleCase(type), "residuals") } if (is.null(ylab)) { ylab <- "Frequency" } if (missing(title)) { title <- "Histogram of residuals" } if (missing(subtitle)) { subtitle <- paste("Family:", family(model)[["family"]]) } plt <- plt + labs(x = xlab, y = ylab, title = title, subtitle = subtitle, caption = caption) plt } `appraise` <- function(model, ...) { UseMethod("appraise") } `appraise.gam` <- function(model, method = c("uniform", "simulate", "normal", "direct"), n_uniform = 10, n_simulate = 50, type = c("deviance", "pearson", "response"), n_bins = c("sturges", "scott", "fd"), ncol = NULL, nrow = NULL, guides = "keep", level = 0.9, ci_col = "black", ci_alpha = 0.2, point_col = "black", point_alpha = 1, line_col = "red", ...) { method <- match.arg(method) if (identical(method, "direct")) { message("`method = \"direct\"` is deprecated, use `\"uniform\"`") method <- "uniform" } type <- match.arg(type) if (is.character(n_bins)) { n_bins <- match.arg(n_bins) } if (!is.character(n_bins) && !is.numeric(n_bins)) { stop("'n_bins' should be a number or one of: ", paste(dQuote(c("sturges", "scott", "fd")), collapse = ", ")) } plt1 <- qq_plot(model, method = method, type = type, n_uniform = n_uniform, n_simulate = n_simulate, level = level, ci_alpha = ci_alpha, point_col = point_col, point_alpha = point_alpha, line_col = line_col) plt2 <- residuals_linpred_plot(model, type = type, point_col = point_col, point_alpha = point_alpha, line_col = line_col) plt3 <- residuals_hist_plot(model, type = type, n_bins = n_bins, subtitle = NULL) plt4 <- observed_fitted_plot(model, subtitle = NULL, point_col = point_col, point_alpha = point_alpha) n_plots <- 4 if (is.null(ncol) && is.null(nrow)) { ncol <- ceiling(sqrt(n_plots)) nrow <- ceiling(n_plots / ncol) } wrap_plots(plt1, plt2, plt3, plt4, byrow = TRUE, ncol = ncol, nrow = nrow, guides = guides, ...) } `appraise.lm` <- function(model, ...) { r <- residuals(model) r.df <- df.residual(model) model[["sig2"]] <- sum((r- mean(r))^2) / r.df if (is.null(weights(model))) { model$prior.weights <- rep(1, nrow(model.frame(model))) } if (is.null(model[["linear.predictors"]])) { model[["linear.predictors"]] <- model[["fitted.values"]] } if (is.null(model[["y"]])) { model[["y"]] <- model.response(model.frame(model)) } appraise.gam(model, ...) } `worm_plot` <- function(model, ...) { UseMethod("worm_plot") } `worm_plot.default` <- function(model, ...) { stop("Unable to produce a worm plot for <", class(model)[[1L]], ">", call. = FALSE) } `worm_plot.gam` <- function(model, method = c("uniform", "simulate", "normal", "direct"), type = c("deviance", "response", "pearson"), n_uniform = 10, n_simulate = 50, level = 0.9, ylab = NULL, xlab = NULL, title = NULL, subtitle = NULL, caption = NULL, ci_col = "black", ci_alpha = 0.2, point_col = "black", point_alpha = 1, line_col = "red", ...) { method <- match.arg(method) if (identical(method, "direct")) { message("`method = \"direct\"` is deprecated, use `\"uniform\"`") method <- "uniform" } if (identical(method, "uniform") && is.null(fix.family.qf(family(model))[["qf"]])) { method <- "simulate" } if (identical(method, "simulate") && is.null(fix.family.rd(family(model))[["rd"]])) { method <- "normal" } if (level <= 0 || level >= 1) { stop("Level must be 0 < level < 1. Supplied level <", level, ">", call. = FALSE) } type <- match.arg(type) df <- switch(method, uniform = qq_uniform(model, n = n_uniform, type = type, level = level, detrend = TRUE), simulate = qq_simulate(model, n = n_simulate, type = type, level = level, detrend = TRUE), normal = qq_normal(model, type = type, level = level, detrend = TRUE)) df <- as_tibble(df) if (is.null(ylab)) { ylab <- paste(toTitleCase(type), "residuals (Deviation)") } if (is.null(xlab)) { xlab <- "Theoretical quantiles" } if (is.null(title)) { title <- "Worm plot of residuals" } if (is.null(subtitle)) { subtitle <- paste("Method:", method) } plt <- ggplot(df, aes_string(x = "theoretical", y = "residuals")) plt <- plt + geom_hline(yintercept = 0, col = line_col) if (isTRUE(method %in% c("simulate", "normal"))) { plt <- plt + geom_ribbon(aes_string(ymin = "lower", ymax = "upper", x = "theoretical"), inherit.aes = FALSE, alpha = ci_alpha, fill = ci_col) } plt <- plt + geom_point(colour = point_col, alpha = point_alpha) plt <- plt + labs(title = title, subtitle = subtitle, caption = caption, y = ylab, x = xlab) plt } `worm_plot.glm` <- function(model, ...) { if (is.null(model[["sig2"]])) { model[["sig2"]] <- summary(model)$dispersion } worm_plot.gam(model, ...) } `worm_plot.lm` <- function(model, ...) { r <- residuals(model) r.df <- df.residual(model) model[["sig2"]] <- sum((r- mean(r))^2) / r.df if (is.null(weights(model))) { model$prior.weights <- rep(1, nrow(model.frame(model))) } if (is.null(model[["linear.predictors"]])) { model[["linear.predictors"]] <- model[["fitted.values"]] } worm_plot.gam(model, ...) } `weights.lm` <- function(object, type = c("prior", "working"), ...) { type <- match.arg(type) wts <- if (type == "prior") { object$prior.weights } else { object$weights } if (is.null(object$na.action)) { wts } else { naresid(object$na.action, wts) } }
NULL Person <- R6::R6Class("Person", public = list( fitbit_daily = NULL, fitbit_intraday = NULL, util = NULL, target_steps = NULL, start_date = NA, end_date = NA, user_info = NULL, groupings = NULL, apple = NULL, addl_data = NULL, addl_data2 = NULL, initialize = function(fitbit_user_email = NA, fitbit_user_pw = NA, user_info = NA, apple_data_file = NA, target_steps = 10000, addl_data = NA, addl_data2 = NA, group_assignments = NA, start_date = NA, end_date = NA) { self$addl_data <- addl_data self$addl_data2 <- addl_data2 if (is.na(start_date)) { start_date = "1990-01-01" } if (is.na(end_date)) { end_date = Sys.Date() } self$start_date <- as.Date(strptime(start_date, format="%Y-%m-%d")) self$end_date <- as.Date(strptime(end_date, format="%Y-%m-%d")) self$target_steps <- target_steps self$user_info <- user_info self$util <- private$create_util_data(self$start_date, self$end_date) if (!is.na(apple_data_file)){ self$apple <- private$load_apple_data(apple_data_file) } if (!is.na(fitbit_user_email) && !is.na(fitbit_user_pw)){ self$fitbit_intraday <- private$get_fitbit_intraday(fitbit_user_email, fitbit_user_pw) self$fitbit_daily <- private$get_fitbit_daily(fitbit_user_email, fitbit_user_pw) } else { self$fitbit_intraday <- NA self$fitbit_daily <- NA } self$groupings <- group_assignments }), private = list( load_apple_data = function(apple_data_file) { raw_df <- readr::read_csv(apple_data_file) cleaned <- tibble::as_tibble(raw_df) if(!is.null(cleaned$Finish)) { cleaned$Finish <- NULL } if("Start" %in% names(cleaned)) { cleaned <- dplyr::rename(cleaned, datetime = Start) } if("Steps (count)" %in% names(cleaned)) { cleaned <- dplyr::rename(cleaned, steps = `Steps (count)`) cleaned <- dplyr::mutate(cleaned, steps = steps / 4) } if("Flights Climbed (count)" %in% names(cleaned)) { cleaned <- dplyr::rename(cleaned, floors = `Flights Climbed (count)`) cleaned <- dplyr::mutate(cleaned, floors = floors / 4) } if("Heart Rate (count/min)" %in% names(cleaned)) { cleaned <- dplyr::rename(cleaned, bpm = `Heart Rate (count/min)`) } if("Distance (mi)" %in% names(cleaned)) { cleaned <- dplyr::rename(cleaned, distance = `Distance (mi)`) cleaned <- dplyr::mutate(cleaned, distance = distance / 4, distanceKm = distance * MI_TO_KM) } if("Respiratory Rate (count/min)" %in% names(cleaned)) { cleaned <- dplyr::rename(cleaned, resp_rate = `Respiratory Rate (count/min)`) } if("Active Calories (kcal)" %in% names(cleaned)) { cleaned <- dplyr::rename(cleaned, active_cal = `Active Calories (kcal)`) } cleaned$datetime <- lubridate::dmy_hm(cleaned$datetime, tz = Sys.timezone()) return(cleaned) }, create_util_data = function(start_date, end_date) { df <- tibble::data_frame(date = lubridate::ymd(as.Date(as.POSIXct( seq(from = start_date, to = end_date, by = 1))))) df$datetime <- lubridate::make_datetime(year = lubridate::year(df$date), month = lubridate::month(df$date), day = lubridate::day(df$date), hour = 0L, min = 0L, sec = 0, tz = Sys.timezone()) df$day_of_week <- lubridate::wday(df$date, label = TRUE) weekend <- c('Sat', 'Sun') df$day_type <- factor((df$day_of_week %in% weekend), levels = c(FALSE, TRUE), labels = c('weekday', 'weekend')) df$month <- lubridate::month(df$date, label = TRUE) return(tibble::as_data_frame(df)) }, get_fitbit_intraday = function(fitbit_user_email, fitbit_user_pw) { cookie <- fitbitScraper::login(email = fitbit_user_email, password = fitbit_user_pw) start <- self$start_date end <- self$end_date char_start <- as.character(start) char_end <- as.character(end) intraday <- list() intraday$isteps <- NULL intraday$idist <- NULL intraday$ifloors <- NULL intraday$iactive_min <- NULL intraday$ical_burn <- NULL intraday$ihr <- NULL for (indiv_date in format(seq.Date(from = as.Date(start), to = as.Date(end), by = "day"), format = "%Y-%m-%d")){ char_date <- as.character(indiv_date) intraday$isteps <- rbind(intraday$isteps, fitbitScraper::get_intraday_data( cookie, what = "steps", date = char_date)) intraday$idist <- rbind(intraday$idist, fitbitScraper::get_intraday_data( cookie, what = "distance", date = char_date)) intraday$ifloors <- rbind(intraday$ifloors, fitbitScraper::get_intraday_data( cookie, what = "floors", date = char_date)) intraday$iactive_min <- rbind(intraday$iactive_min, fitbitScraper::get_intraday_data( cookie, what = "active-minutes", date = char_date)) intraday$ical_burn <- rbind(intraday$ical_burn, fitbitScraper::get_intraday_data( cookie, what = "calories-burned", date = char_date)) intraday$ihr <- rbind(intraday$ihr, fitbitScraper::get_intraday_data( cookie, what = "heart-rate", date = char_date)) } intraday$weight <- fitbitScraper::get_weight_data(cookie, start_date = char_start, end_date = char_end) joined <- tibble::as_data_frame(Reduce(function(x, y) merge(x, y, all = TRUE, by = "time"), intraday) ) joined <- dplyr::select(joined, -dateTime) joined$datetime <- lubridate::ymd_hms(joined$time, tz = Sys.timezone()) joined$date <- lubridate::ymd(as.Date(as.POSIXct(joined$datetime, Sys.timezone()))) joined$time <- lubridate::make_datetime(year = "1970", month = "01", day = "01", hour = lubridate::hour(joined$datetime), min = lubridate::minute(joined$datetime), sec = lubridate::second(joined$datetime)) joined <- plyr::rename(joined, replace = c("active-minutes" = "activeMin")) joined <- dplyr::mutate(joined, distanceKm = distance * MI_TO_KM, weightKg = weight * MI_TO_KM) joined$`calories-burned` <- NULL joined <- dplyr::select(joined, date, time, datetime, steps, distance, distanceKm, floors, activeMin, activityLevel, bpm, confidence, caloriesBurned, defaultZone, customZone, weight, weightKg, dplyr::everything()) return(joined) }, get_fitbit_daily = function(fitbit_user_email, fitbit_user_pw) { cookie <- fitbitScraper::login(email = fitbit_user_email, password = fitbit_user_pw) start <- self$start_date end <- self$end_date char_start <- as.character(start) char_end <- as.character(end) daily <- list() daily$steps <- fitbitScraper::get_daily_data(cookie, what = "steps", start_date = char_start, end_date = char_end) daily$distance <- fitbitScraper::get_daily_data(cookie, what = "distance", start_date = char_start, end_date = char_end) daily$floors <- fitbitScraper::get_daily_data(cookie, what = "floors", start_date = char_start, end_date = char_end) daily$minsVery <- fitbitScraper::get_daily_data(cookie, what = "minutesVery", start_date = char_start, end_date = char_end) daily$cal_ratio <- fitbitScraper::get_daily_data(cookie, what = "caloriesBurnedVsIntake", start_date = char_start, end_date = char_end) daily$rest_hr <- fitbitScraper::get_daily_data(cookie, what = "getRestingHeartRateData", start_date = as.character(start), end_date = as.character(end)) daily$sleep <- fitbitScraper::get_sleep_data(cookie, start_date = char_start, end_date = char_end)[[2]] daily$sleep$time <- as.POSIXct(daily$sleep$date) joined <- tibble::as_data_frame(Reduce(function(x, y) merge(x, y, all = TRUE, by = "time"), daily)) joined$date <- lubridate::ymd(as.Date(as.POSIXct(joined$time, tz = Sys.timezone()))) joined <- dplyr::select(joined, -time) joined$datetime <- lubridate::make_datetime(year = lubridate::year(joined$date), month = lubridate::month(joined$date), day = lubridate::day(joined$date), hour = 0L, min = 0L, sec = 0, tz = Sys.timezone()) joined <- dplyr::mutate(joined, minRestlessAwake = joined$sleepDuration - joined$minAsleep, sleepDurationHrs = sleepDuration / 60, minAsleepHrs = minAsleep / 60, restlessProp = (sleepDurationHrs - minAsleepHrs) / sleepDurationHrs * 100, distanceKm = distance * MI_TO_KM) joined <- dplyr::select(joined, date, datetime, dateInForJavascriptLocalFormatting, steps, distance, distanceKm, floors, minutesVery, caloriesBurned, caloriesIntake, restingHeartRate, startTime, endTime, startDateTime, endDateTime, sleepDuration, sleepDurationHrs, minAsleep, minAsleepHrs, minRestlessAwake, awakeCount, restlessCount, awakeDuration, restlessDuration, restlessProp, dplyr::starts_with("sleepQuality"), dplyr::starts_with("sleepBucket"), clusters, breaks, dplyr::everything()) return(joined) } ))
REandar<-function(custo,nand){ resultado = custo/nand return(data.frame(andar=1:nand,custo=resultado)) }
data(sample_matrix) sample.matrix <- sample_matrix sample.xts <- as.xts(sample.matrix) test.convert_matrix_to_xts <- function() { checkIdentical(sample.xts,as.xts(sample.matrix)) } test.convert_matrix_to_xts_j1 <- function() { checkIdentical(sample.xts[,1],as.xts(sample.matrix)[,1]) } test.convert_matrix_to_xts_i1 <- function() { checkIdentical(sample.xts[1,],as.xts(sample.matrix)[1,]) } test.convert_matrix_to_xts_i1j1 <- function() { checkIdentical(sample.xts[1,1],as.xts(sample.matrix)[1,1]) } test.matrix_reclass <- function() { checkIdentical(sample.matrix,reclass(try.xts(sample.matrix))) } test.matrix_reclass_subset_reclass_j1 <- function() { checkIdentical(sample.matrix[,1],reclass(try.xts(sample.matrix))[,1]) } test.matrix_reclass_subset_as.xts_j1 <- function() { checkIdentical(sample.matrix[,1,drop=FALSE],reclass(try.xts(sample.matrix)[,1])) checkIdentical(sample.matrix[,1],reclass(try.xts(sample.matrix))[,1]) } test.matrix_reclass_subset_matrix_j1 <- function() { checkIdentical(sample.matrix[,1,drop=FALSE],reclass(try.xts(sample.matrix[,1,drop=FALSE]))) } test.zero_width_xts_to_matrix <- function() { x <- .xts(,1) xm <- as.matrix(x) zm <- as.matrix(as.zoo(x)) checkIdentical(xm, zm) } test.dimless_xts_to_matrix <- function() { ix <- structure(1:3, tclass = c("POSIXct", "POSIXt"), tzone = "") x <- structure(1:3, index = ix, class = c("xts", "zoo")) m <- matrix(1:3, 3, 1, dimnames = list(format(.POSIXct(1:3)), "x")) checkIdentical(as.matrix(x), m) }
mainNetFunction <- function(counts, adjMat, nchips, plotPath = "", tfList = NULL){ message("Evaluating Mutual Estimate Methods") miMLTime <- system.time(miML <- parMIEstimate(counts, method = "ML", unit = "nat", nchips = nchips, tfList = tfList)) print(paste("ML Estimate Time:", round(miMLTime["elapsed"], 2))) miMMTime <- system.time(miMM <- parMIEstimate(counts, method = "MM", unit = "nat", nchips = nchips, tfList = tfList)) print(paste("MM Estimate Time:", round(miMMTime["elapsed"], 2))) miBJTime <- system.time(miBJ <- parMIEstimate(counts, method = "Bayes", unit = "nat", nchips = nchips, priorHyperParam = "Jeffreys", tfList = tfList)) print(paste("BJ Estimate Time:", round(miBJTime["elapsed"], 2))) miBBTime <- system.time(miBB <- parMIEstimate(counts, method = "Bayes", unit = "nat", nchips = nchips, priorHyperParam = "BLUnif", tfList = tfList)) print(paste("BB Estimate Time:", round(miBBTime["elapsed"], 2))) miBPTime <- system.time(miBP <- parMIEstimate(counts, method = "Bayes", unit = "nat", nchips = nchips, priorHyperParam = "Perks", tfList = tfList)) print(paste("BP Estimate Time:", round(miBPTime["elapsed"], 2))) miBMTime <- system.time(miBM <- parMIEstimate(counts, method = "Bayes", unit = "nat", nchips = nchips, priorHyperParam = "MiniMax", tfList = tfList)) print(paste("BM Estimate Time:", round(miBMTime["elapsed"], 2))) miCSTime <- system.time(miCS <- parMIEstimate(counts, method = "CS", unit = "nat", nchips = nchips, tfList = tfList)) print(paste("CS Estimate Time:", round(miCSTime["elapsed"], 2))) miSHTime <- system.time(miSH <- parMIEstimate(counts, method = "Shrink", unit = "nat", nchips = nchips, tfList = tfList)) print(paste("SH Estimate Time:", round(miSHTime["elapsed"], 2))) miKDTime <- system.time(miKD <- parMIEstimate(counts, method = "KD", nchips = nchips, tfList = tfList)) print(paste("KD Estimate Time:", round(miKDTime["elapsed"], 2))) miKNNTime <- system.time(miKNN <- parMIEstimate(counts, method = "KNN", unit = "nat", k = 3, nchips = nchips, tfList = tfList)) print(paste("KNN Estimate Time:", round(miKNNTime["elapsed"], 2))) miEst <- list(miML = miML, miMM = miMM, miBJ = miBJ, miBB = miBB, miBP = miBP, miBM = miBM, miCS = miCS, miSH = miSH, miKD = miKD, miKNN = miKNN) message("Calculating Performance Indexes") valML <- performanceIndex(miML, adjMat) valMM <- performanceIndex(miMM, adjMat) valBJ <- performanceIndex(miBJ, adjMat) valBB <- performanceIndex(miBB, adjMat) valBP <- performanceIndex(miBP, adjMat) valBM <- performanceIndex(miBM, adjMat) valCS <- performanceIndex(miCS, adjMat) valSH <- performanceIndex(miSH, adjMat) valKD <- performanceIndex(miKD, adjMat) valKNN <- performanceIndex(miKNN, adjMat) valMet <- list(valML = valML, valMM = valMM, valBJ = valBJ, valBB = valBB, valBP = valBP, valBM = valBM, valCS = valCS, valSH = valSH, valKD = valKD, valKNN = valKNN) message("Generating ROC and PR Curves") png(paste(plotPath, "allROC.png", sep = ""), width = 855, height = 543) ccol <- c("red", "blue", "green", "black", "gray", "yellow", "aquamarine3", "darkmagenta", "burlywood4", "orange") plot(c(0, valML[, "FPR"], 1), c(0, valML[, "Recall"], 1), type = "l", col = ccol[1], xlab = "FP rate", ylab = "TP rate", main = "ROC Curve", xlim = 0:1, ylim = 0:1) lines(c(0, valMM[, "FPR"], 1), c(0, valMM[, "Recall"], 1), type = "l", col = ccol[2]) lines(c(0, valBJ[, "FPR"], 1), c(0, valBJ[, "Recall"], 1), type = "l", col = ccol[3]) lines(c(0, valBB[, "FPR"], 1), c(0, valBB[, "Recall"], 1), type = "l", col = ccol[4]) lines(c(0, valBP[, "FPR"], 1), c(0, valBP[, "Recall"], 1), type = "l", col = ccol[5]) lines(c(0, valBM[, "FPR"], 1), c(0, valBM[, "Recall"], 1), type = "l", col = ccol[6]) lines(c(0, valCS[, "FPR"], 1), c(0, valCS[, "Recall"], 1), type = "l", col = ccol[7]) lines(c(0, valSH[, "FPR"], 1), c(0, valSH[, "Recall"], 1), type = "l", col = ccol[8]) lines(c(0, valKD[, "FPR"], 1), c(0, valKD[, "Recall"], 1), type = "l", col = ccol[9]) lines(c(0, valKNN[, "FPR"], 1), c(0, valKNN[, "Recall"], 1), type = "l", col = ccol[10]) lines(0:1, 0:1, col = "black") legend("bottomright", inset = .05, legend = c("ML", "MM", "BJ", "BB", "BP", "BM", "CS", "SH", "KD", "KNN"), title = "MI Estimators:", fill = ccol) dev.off() png(paste(plotPath, "allPR.png", sep = ""), width = 855, height = 543) ccol <- c("red", "blue", "green", "black", "gray", "yellow", "aquamarine3", "darkmagenta", "burlywood4", "orange") plot(c(0, valML[, "Recall"]), c(0, valML[, "Precision"]), type = "l", col = ccol[1], xlab = "recall", ylab = "precision", main = "PR Curve", xlim = 0:1, ylim = 0:1) lines(c(0, valMM[, "Recall"]), c(0, valMM[, "Precision"]), type = "l", col = ccol[2]) lines(c(0, valBJ[, "Recall"]), c(0, valBJ[, "Precision"]), type = "l", col = ccol[3]) lines(c(0, valBB[, "Recall"]), c(0, valBB[, "Precision"]), type = "l", col = ccol[4]) lines(c(0, valBP[, "Recall"]), c(0, valBP[, "Precision"]), type = "l", col = ccol[5]) lines(c(0, valBM[, "Recall"]), c(0, valBM[, "Precision"]), type = "l", col = ccol[6]) lines(c(0, valCS[, "Recall"]), c(0, valCS[, "Precision"]), type = "l", col = ccol[7]) lines(c(0, valSH[, "Recall"]), c(0, valSH[, "Precision"]), type = "l", col = ccol[8]) lines(c(0, valKD[, "Recall"]), c(0, valKD[, "Precision"]), type = "l", col = ccol[9]) lines(c(0, valKNN[, "Recall"]), c(0, valKNN[, "Precision"]), type = "l", col = ccol[10]) legend("topright", inset = .05, legend = c("ML", "MM", "BJ", "BB", "BP", "BM", "CS", "SH", "KD", "KNN"), title = "MI Estimators:", fill = ccol) dev.off() message("Creating Result Table") resTable <- rbind(valML[which(valML$Fscore == max(valML$Fscore))[1], ], valMM[which(valMM$Fscore == max(valMM$Fscore))[1], ], valBJ[which(valBJ$Fscore == max(valBJ$Fscore))[1], ], valBB[which(valBB$Fscore == max(valBB$Fscore))[1], ], valBP[which(valBP$Fscore == max(valBP$Fscore))[1], ], valBM[which(valBM$Fscore == max(valBM$Fscore))[1], ], valCS[which(valCS$Fscore == max(valCS$Fscore))[1], ], valSH[which(valSH$Fscore == max(valSH$Fscore))[1], ], valKNN[which(valKD$Fscore == max(valKD$Fscore))[1], ], valKNN[which(valKNN$Fscore == max(valKNN$Fscore))[1], ]) rownames(resTable) <- c("ML", "MM", "BJ", "BB", "BP", "BM", "CS", "SH", "KD", "KNN") AUROC <- c(aucDisc(valML[, "FPR"], valML[, "Recall"]), aucDisc(valMM[, "FPR"], valMM[, "Recall"]), aucDisc(valBJ[, "FPR"], valBJ[, "Recall"]), aucDisc(valBB[, "FPR"], valBB[, "Recall"]), aucDisc(valBP[, "FPR"], valBP[, "Recall"]), aucDisc(valBM[, "FPR"], valBM[, "Recall"]), aucDisc(valCS[, "FPR"], valCS[, "Recall"]), aucDisc(valSH[, "FPR"], valSH[, "Recall"]), aucDisc(valKD[, "FPR"], valKD[, "Recall"]), aucDisc(valKNN[, "FPR"], valKNN[, "Recall"])) AUPR <- c(aucDisc(valML[, "Recall"], valML[, "Precision"]), aucDisc(valMM[, "Recall"], valMM[, "Precision"]), aucDisc(valBJ[, "Recall"], valBJ[, "Precision"]), aucDisc(valBB[, "Recall"], valBB[, "Precision"]), aucDisc(valBP[, "Recall"], valBP[, "Precision"]), aucDisc(valBM[, "Recall"], valBM[, "Precision"]), aucDisc(valCS[, "Recall"], valCS[, "Precision"]), aucDisc(valSH[, "Recall"], valSH[, "Precision"]), aucDisc(valKD[, "Recall"], valKD[, "Precision"]), aucDisc(valKNN[, "Recall"], valKNN[, "Precision"])) resTable <- cbind(resTable, AUROC, AUPR) ans <- list(miEst = miEst, valMet = valMet, resTable = resTable) return(ans) }
print.QmethodRes <- function(x, length=10, digits=2, ...) { old.dig <- getOption("digits") options(digits=digits) nn <- c("Summary", "Original data", "Q-sort factor loadings", "Flagged Q-sorts", "Statement z-scores", "Statement factor scores", "Factor characteristics", "Distinguishing and consensus statements") names(nn) <- c("brief", "dataset", "loa", "flagged", "zsc", "zsc_n", "f_char", "qdc") ll <- length(x) nl <- nn[1:ll] dimsorts <- min(length, x$brief$nqsorts) dimstats <- min(length, x$brief$nstat) cat(x$brief$info, sep="\n") cat("\n") cat(nl[2], ":\n") print(x$dataset[1:dimstats, 1:dimsorts]) if (dimstats < x$brief$nstat) cat(" (...) See item '...$dataset' for the full data.\n") nxt <- c("loa", "flagged") for (i in nxt) { cat("\n") cat(nl[i], ":\n") print(x[[i]][1:dimsorts, ]) if (dimsorts < x$brief$nqsorts) cat(" (...) See item '...$", i, "' for the full data.\n", sep="") } cat("\n") cat(nl["zsc"], ":\n") print(round(x[["zsc"]][1:dimstats, ], digits=2)) if (dimstats < x$brief$nstat) cat(" (...) See item '...$", "zsc", "' for the full data.\n", sep="") cat("\n") cat(nl["zsc_n"], ":\n") print(x[["zsc_n"]][1:dimstats, ]) if (dimstats < x$brief$nstat) cat(" (...) See item '...$", "zsc_n", "' for the full data.\n", sep="") cat("\n", nl[7], ":\n", sep="") fcl <- c(" General factor characteristics:", " Correlation between factor z-scores:", " Standard error of differences between factors:") for (i in 1:length(x$f_char)) { cat(fcl[[i]], "\n") print(round(x$f_char[[i]], digits=2)) cat("\n") } if (ll == 8) { cat(nl[8], ":\n") print(x$qdc[1:dimstats, ]) if (dimstats < x$brief$nstat) cat(" (...) See item '...$qdc' for the full data.\n") } options(digits=old.dig) invisible(x) }
neighbors.vertex <- function(vertex, Matrix, num.neig) { dist <- dist.vect.matrix(t(vertex), Matrix) index <- order(dist, decreasing = FALSE) neighbors <- Matrix[index[1:num.neig], ] return(list(neighbors = neighbors, order = index, distance = dist)) }
timetaken = function(started.at) { if (!inherits(started.at,"proc_time")) stop("Use started.at=proc.time() not Sys.time() (POSIXt and slow)") format = function(secs) { if (secs > 60.0) { secs = as.integer(secs) sprintf("%02d:%02d:%02d", secs%/%3600L, (secs%/%60L)%%60L, secs%%60L) } else { sprintf(if (secs >= 10.0) "%.1fs" else "%.3fs", secs) } } tt = proc.time()-started.at paste0(format(tt[3L])," elapsed (", format(tt[1L]), " cpu)") }
get_advanced_match_stats <- function(match_url, stat_type, team_or_player) { main_url <- "https://fbref.com" get_each_match_statistic <- function(match_url) { pb$tick() match_page <- tryCatch(xml2::read_html(match_url), error = function(e) NA) if(!is.na(match_page)) { match_report <- .get_match_report_page(match_page = match_page) league_url <- match_page %>% rvest::html_nodes(" rvest::html_node("a") %>% rvest::html_attr("href") %>% paste0(main_url, .) all_tables <- match_page %>% rvest::html_nodes(".table_container") if(stat_type == "summary") { stat_df <- all_tables[which(stringr::str_detect(all_tables %>% rvest::html_attr("id"), "summary$"))] %>% rvest::html_nodes("table") } else if(stat_type == "passing") { stat_df <- all_tables[which(stringr::str_detect(all_tables %>% rvest::html_attr("id"), "passing$"))] %>% rvest::html_nodes("table") } else if(stat_type == "passing_types") { stat_df <- all_tables[which(stringr::str_detect(all_tables %>% rvest::html_attr("id"), "passing_types"))] %>% rvest::html_nodes("table") } else if(stat_type == "defense") { stat_df <- all_tables[which(stringr::str_detect(all_tables %>% rvest::html_attr("id"), "defense$"))] %>% rvest::html_nodes("table") } else if(stat_type == "possession") { stat_df <- all_tables[which(stringr::str_detect(all_tables %>% rvest::html_attr("id"), "possession$"))] %>% rvest::html_nodes("table") } else if(stat_type == "misc") { stat_df <- all_tables[which(stringr::str_detect(all_tables %>% rvest::html_attr("id"), "misc$"))] %>% rvest::html_nodes("table") } else if(stat_type == "keeper") { stat_df <- all_tables[which(stringr::str_detect(all_tables %>% rvest::html_attr("id"), "keeper_stats"))] %>% rvest::html_nodes("table") } if(length(stat_df) != 0) { if(!stat_type %in% c("shots")) { Team <- match_page %>% rvest::html_nodes("div:nth-child(1) div strong a") %>% rvest::html_text() %>% .[1] home_stat <- stat_df[1] %>% rvest::html_table() %>% data.frame() %>% .clean_match_advanced_stats_data() Home_Away <- "Home" home_stat <- cbind(Team, Home_Away, home_stat) Team <- match_page %>% rvest::html_nodes("div:nth-child(1) div strong a") %>% rvest::html_text() %>% .[2] away_stat <- stat_df[2] %>% rvest::html_table() %>% data.frame() %>% .clean_match_advanced_stats_data() Home_Away <- "Away" away_stat <- cbind(Team, Home_Away, away_stat) stat_df_output <- dplyr::bind_rows(home_stat, away_stat) if(any(grepl("Nation", colnames(stat_df_output)))) { if(!stat_type %in% c("keeper", "shots")) { if(team_or_player == "team") { stat_df_output <- stat_df_output %>% dplyr::filter(stringr::str_detect(.data$Player, " Players")) %>% dplyr::select(-.data$Player, -.data$Player_Num, -.data$Nation, -.data$Pos, -.data$Age) } else { stat_df_output <- stat_df_output %>% dplyr::filter(!stringr::str_detect(.data$Player, " Players")) } } } else { if(!stat_type %in% c("keeper", "shots")) { if(team_or_player == "team") { stat_df_output <- stat_df_output %>% dplyr::filter(stringr::str_detect(.data$Player, " Players")) %>% dplyr::select(-.data$Player, -.data$Player_Num, -.data$Pos, -.data$Age) } else { stat_df_output <- stat_df_output %>% dplyr::filter(!stringr::str_detect(.data$Player, " Players")) } } } stat_df_output <- cbind(match_report, stat_df_output) } else if(stat_type == "shots") { } } else { print(glue::glue("NOTE: Stat Type '{stat_type}' is not found for this match. Check {match_url} to see if it exists.")) stat_df_output <- data.frame() } } else { print(glue::glue("Stats data not available for {match_url}")) stat_df_output <- data.frame() } return(stat_df_output) } pb <- progress::progress_bar$new(total = length(match_url)) suppressWarnings( final_df <- match_url %>% purrr::map_df(get_each_match_statistic) ) seasons <- read.csv("https://raw.githubusercontent.com/JaseZiv/worldfootballR_data/master/raw-data/all_leages_and_cups/all_competitions.csv", stringsAsFactors = F) seasons <- seasons %>% dplyr::filter(.data$seasons_urls %in% final_df$League_URL) %>% dplyr::select(League=.data$competition_name, Gender=.data$gender, Country=.data$country, Season=.data$seasons, League_URL=.data$seasons_urls) final_df <- seasons %>% dplyr::left_join(final_df, by = "League_URL") %>% dplyr::select(-.data$League_URL) %>% dplyr::distinct(.keep_all = T) return(final_df) }
print.orcutt <- function (x, ...){ cat("Cochrane-orcutt estimation for first order autocorrelation \n \n") cat("Call:\n") print(x$call) cat("\n number of interaction:" , x$number.interaction) cat("\n rho" , round(x$rho,6)) cat("\n\nDurbin-Watson statistic \n(original): ", format(round(x$DW[1],5), nsmall=5),", p-value:", format(x$DW[2], scientific=TRUE, digits = 4)) cat("\n(transformed):", format(round(x$DW[3],5), nsmall=5),", p-value:", format(x$DW[4], scientific=TRUE, digits = 4)) cat("\n \n coefficients: \n" ) print(round(x$coefficients,6)) }
pbgtest <- function (x, ...) { UseMethod("pbgtest") } pbgtest.panelmodel <- function(x, order = NULL, type = c("Chisq", "F"), ...) { model <- describe(x, "model") effect <- describe(x, "effect") theta <- x$ercomp$theta demX <- model.matrix(x, model = model, effect = effect, theta = theta, cstcovar.rm = "all") demy <- pmodel.response(model.frame(x), model = model, effect = effect, theta = theta) Ti <- pdim(x)$Tint$Ti if(is.null(order)) order <- min(Ti) auxformula <- demy ~ demX - 1 lm.mod <- lm(auxformula) bgtest <- bgtest(lm.mod, order = order, type = type, ...) bgtest$method <- "Breusch-Godfrey/Wooldridge test for serial correlation in panel models" bgtest$alternative <- "serial correlation in idiosyncratic errors" bgtest$data.name <- data.name(x) names(bgtest$statistic) <- if(length(bgtest$parameter) == 1) "chisq" else "F" return(bgtest) } pbgtest.formula <- function(x, order = NULL, type = c("Chisq", "F"), data, model=c("pooling", "random", "within"), ...) { cl <- match.call(expand.dots = TRUE) if (names(cl)[3L] == "") names(cl)[3L] <- "data" if (is.null(cl$model)) cl$model <- "pooling" names(cl)[2L] <- "formula" m <- match(plm.arg, names(cl), 0) cl <- cl[c(1L, m)] cl[[1L]] <- quote(plm) plm.model <- eval(cl,parent.frame()) pbgtest(plm.model, order = order, type = type, data = data, ...) } pwtest <- function(x, ...){ UseMethod("pwtest") } pwtest.formula <- function(x, data, effect = c("individual", "time"), ...) { effect <- match.arg(effect, choices = c("individual", "time")) cl <- match.call(expand.dots = TRUE) if (names(cl)[3] == "") names(cl)[3] <- "data" if (is.null(cl$model)) cl$model <- "pooling" if (cl$model != "pooling") stop("pwtest only relevant for pooling models") names(cl)[2] <- "formula" m <- match(plm.arg, names(cl), 0) cl <- cl[c(1L, m)] cl[[1L]] <- quote(plm) plm.model <- eval(cl,parent.frame()) pwtest.panelmodel(plm.model, effect = effect, ...) } pwtest.panelmodel <- function(x, effect = c("individual", "time"), ...) { if (describe(x, "model") != "pooling") stop("pwtest only relevant for pooling models") effect <- match.arg(effect, choices = c("individual", "time")) data <- model.frame(x) xindex <- unclass(attr(data, "index")) if (effect == "individual"){ index <- xindex[[1L]] tindex <- xindex[[2L]] } else{ index <- xindex[[2L]] tindex <- xindex[[1L]] } n <- length(unique(index)) X <- model.matrix(x) k <- ncol(X) nT <- nrow(X) t <- max(tapply(X[ , 1L], index, length)) u <- x$residuals tres <- vector("list", n) unind <- unique(index) for(i in 1:n) { ut <- u[index == unind[i]] tres[[i]] <- ut %o% ut } sum.uptri <- vapply(tres, function(x) sum(x[upper.tri(x, diag = FALSE)]), FUN.VALUE = 0.0, USE.NAMES = FALSE) W <- sum(sum.uptri) seW <- sqrt(as.numeric(crossprod(sum.uptri))) Wstat <- W/seW names(Wstat) <- "z" pW <- 2*pnorm(abs(Wstat), lower.tail = FALSE) RVAL <- list(statistic = Wstat, parameter = NULL, method = paste("Wooldridge's test for unobserved", effect, "effects"), alternative = "unobserved effect", p.value = pW, data.name = paste(deparse(substitute(formula)))) class(RVAL) <- "htest" return(RVAL) } pwartest <- function(x, ...) { UseMethod("pwartest") } pwartest.formula <- function(x, data, ...) { cl <- match.call(expand.dots = TRUE) if (is.null(cl$model)) cl$model <- "within" if (cl$model != "within") stop("pwartest only relevant for within models") if (names(cl)[3L] == "") names(cl)[3L] <- "data" names(cl)[2L] <- "formula" m <- match(plm.arg, names(cl), 0) cl <- cl[c(1L, m)] cl[[1L]] <- quote(plm) plm.model <- eval(cl, parent.frame()) pwartest(plm.model, ...) } pwartest.panelmodel <- function(x, ...) { if (describe(x, "model") != "within") stop("pwartest only relevant for within models") FEres <- x$residuals data <- model.frame(x) attr(FEres, "data") <- NULL N <- length(FEres) FEres.1 <- c(NA, FEres[1:(N-1)]) xindex <- unclass(attr(data, "index")) id <- xindex[[1L]] time <- xindex[[2L]] lagid <- as.numeric(id) - c(NA, as.numeric(id)[1:(N-1)]) FEres.1[lagid != 0] <- NA data <- data.frame(id, time, FEres = unclass(FEres), FEres.1 = unclass(FEres.1)) names(data)[c(1L, 2L)] <- c("id", "time") data <- na.omit(data) auxmod <- plm(FEres ~ FEres.1, data = data, model = "pooling", index = c("id", "time")) t. <- pdim(x)$nT$T rho.H0 <- -1/(t.-1) myH0 <- paste("FEres.1 = ", as.character(rho.H0), sep="") myvcov <- function(x) vcovHC(x, method = "arellano", ...) FEARstat <- ((coef(auxmod)["FEres.1"] - rho.H0)/sqrt(myvcov(auxmod)["FEres.1", "FEres.1"]))^2 names(FEARstat) <- "F" df1 <- c("df1" = 1) df2 <- c("df2" = df.residual(auxmod)) pFEARstat <- pf(FEARstat, df1 = df1, df2 = df2, lower.tail = FALSE) RVAL <- list(statistic = FEARstat, parameter = c(df1, df2), p.value = pFEARstat, method = "Wooldridge's test for serial correlation in FE panels", alternative = "serial correlation", data.name = paste(deparse(substitute(x)))) class(RVAL) <- "htest" return(RVAL) } pbsytest <- function (x, ...) { UseMethod("pbsytest") } pbsytest.formula <- function(x, data, ..., test = c("ar", "re", "j"), re.normal = if (test == "re") TRUE else NULL) { if (length(test) == 1L) test <- tolower(test) test <- match.arg(test) cl <- match.call(expand.dots = TRUE) if (is.null(cl$model)) cl$model <- "pooling" if (cl$model != "pooling") stop("pbsytest only relevant for pooling models") names(cl)[2L] <- "formula" if (names(cl)[3L] == "") names(cl)[3L] <- "data" m <- match(plm.arg, names(cl), 0) cl <- cl[c(1, m)] cl[[1L]] <- as.name("plm") plm.model <- eval(cl, parent.frame()) pbsytest(plm.model, test = test, re.normal = re.normal, ...) } pbsytest.panelmodel <- function(x, test = c("ar", "re", "j"), re.normal = if (test == "re") TRUE else NULL, ...) { test <- match.arg(test) if (describe(x, "model") != "pooling") stop("pbsytest only relevant for pooling models") if (test != "re" && !is.null(re.normal)) { stop("argument 're.normal' only relevant for test = \"re\", set re.normal = NULL for other tests")} poolres <- x$residuals data <- model.frame(x) index <- attr(data, "index") iindex <- index[[1L]] tindex <- index[[2L]] oo <- order(iindex,tindex) ind <- iindex[oo] tind <- tindex[oo] poolres <- poolres[oo] pdim <- pdim(x) n <- max(pdim$Tint$n) T_i <- pdim$Tint$Ti N_t <- pdim$Tint$nt t <- max(T_i) N_obs <- pdim$nT$N S1 <- as.numeric(crossprod(tapply(poolres,ind,sum))) S2 <- as.numeric(crossprod(poolres)) A <- 1 - S1/S2 unind <- unique(ind) uu <- rep(NA, length(unind)) uu1 <- rep(NA, length(unind)) for(i in 1:length(unind)) { u.t <- poolres[ind == unind[i]] u.t.1 <- u.t[-length(u.t)] u.t <- u.t[-1L] uu[i] <- crossprod(u.t) uu1[i] <- crossprod(u.t, u.t.1) } B <- sum(uu1)/sum(uu) a <- as.numeric(crossprod(T_i)) switch(test, "ar" = { stat <- (B + (((N_obs - n)/(a - N_obs)) * A))^2 * (((a - N_obs)*N_obs^2) / ((N_obs - n)*(a - 3*N_obs + 2*n))) df <- c(df = 1) names(stat) <- "chisq" pstat <- pchisq(stat, df = df, lower.tail = FALSE) tname <- "Bera, Sosa-Escudero and Yoon locally robust test" myH0_alt <- "AR(1) errors sub random effects" }, "re" = { if(re.normal) { stat <- -sqrt( (N_obs^2) / (2*(a - 3*N_obs + 2*n))) * (A + 2*B) names(stat) <- "z" df <- NULL pstat <- pnorm(stat, lower.tail = FALSE) tname <- "Bera, Sosa-Escudero and Yoon locally robust test (one-sided)" myH0_alt <- "random effects sub AR(1) errors" } else { stat <- ((N_obs^2) * (A + 2*B)^2) / (2*(a - 3*N_obs + 2*n)) names(stat) <- "chisq" df <- c(df = 1) pstat <- pchisq(stat, df = df, lower.tail = FALSE) tname <- "Bera, Sosa-Escudero and Yoon locally robust test (two-sided)" myH0_alt <- "random effects sub AR(1) errors" } }, "j" = { stat <- N_obs^2 * ( ((A^2 + 4*A*B + 4*B^2) / (2*(a - 3*N_obs + 2*n))) + (B^2/(N_obs - n))) df <- c(df = 2) names(stat) <- "chisq" pstat <- pchisq(stat, df = df, lower.tail = FALSE) tname <- "Baltagi and Li AR-RE joint test" myH0_alt <- "AR(1) errors or random effects" } ) dname <- paste(deparse(substitute(formula))) balanced.type <- if(pdim$balanced) "balanced" else "unbalanced" tname <- paste(tname, "-", balanced.type, "panel", collapse = " ") RVAL <- list(statistic = stat, parameter = df, method = tname, alternative = myH0_alt, p.value = pstat, data.name = dname) class(RVAL) <- "htest" return(RVAL) } pdwtest <- function (x, ...) { UseMethod("pdwtest") } pdwtest.panelmodel <- function(x, ...) { model <- describe(x, "model") effect <- describe(x, "effect") theta <- x$ercomp$theta demX <- model.matrix(x, model = model, effect = effect, theta = theta, cstcovar.rm = "all") demy <- pmodel.response(model.frame(x), model = model, effect = effect, theta = theta) dots <- list(...) order.by <- if(is.null(dots$order.by)) NULL else dots$order.by alternative <- if(is.null(dots$alternative)) "greater" else dots$alternative iterations <- if(is.null(dots$iterations)) 15 else dots$iterations exact <- if(is.null(dots$exact)) NULL else dots$exact tol <- if(is.null(dots$tol)) 1e-10 else dots$tol demy <- remove_pseries_features(demy) auxformula <- demy ~ demX - 1 lm.mod <- lm(auxformula) ARtest <- dwtest(lm.mod, order.by = order.by, alternative = alternative, iterations = iterations, exact = exact, tol = tol) ARtest$method <- "Durbin-Watson test for serial correlation in panel models" ARtest$alternative <- "serial correlation in idiosyncratic errors" ARtest$data.name <- data.name(x) return(ARtest) } pdwtest.formula <- function(x, data, ...) { cl <- match.call(expand.dots = TRUE) if (is.null(cl$model)) cl$model <- "pooling" names(cl)[2L] <- "formula" if (names(cl)[3L] == "") names(cl)[3L] <- "data" m <- match(plm.arg, names(cl), 0) cl <- cl[c(1L, m)] cl[[1L]] <- quote(plm) plm.model <- eval(cl, parent.frame()) pdwtest(plm.model, ...) } pbnftest <- function (x, ...) { UseMethod("pbnftest") } pbnftest.panelmodel <- function(x, test = c("bnf", "lbi"), ...) { test <- match.arg(test) model <- describe(x, "model") if (model == "random") x <- update(x, model = "within") consec <- all(is.pconsecutive(x)) balanced <- is.pbalanced(x) if (!inherits(residuals(x), "pseries")) stop("pdwtest internal error: residuals are not of class \"pseries\"") ind <- unclass(index(x))[[1L]] obs1 <- !duplicated(ind) obsn <- !duplicated(ind, fromLast = TRUE) res_crossprod <- as.numeric(crossprod(residuals(x))) res_diff <- diff(residuals(x), shift = "time") d1.1 <- sum(res_diff^2, na.rm = T) / res_crossprod d1.2_contrib <- as.logical(is.na(res_diff) - obs1) d1.2 <- as.numeric(crossprod(residuals(x)[d1.2_contrib])) / res_crossprod d1 <- d1.1 + d1.2 if (test == "bnf") { stat <- d1 names(stat) <- "DW" method <- "Bhargava/Franzini/Narendranathan Panel Durbin-Watson Test" if (!consec || !balanced) method <- paste0("modified ", method) } if (test == "lbi") { d2_contrib <- as.logical(is.na(lead(residuals(x), shift = "time")) - obsn) d2 <- as.numeric(crossprod(residuals(x)[d2_contrib])) / res_crossprod d3 <- as.numeric(crossprod(residuals(x)[obs1])) / res_crossprod d4 <- as.numeric(crossprod(residuals(x)[obsn])) / res_crossprod stat <- d1 + d2 + d3 + d4 names(stat) <- "LBI" method <- "Baltagi/Wu LBI Test for Serial Correlation in Panel Models" } result <- list(statistic = stat, method = method, alternative = "serial correlation in idiosyncratic errors", data.name = data.name(x)) class(result) <- "htest" return(result) } pbnftest.formula <- function(x, data, test = c("bnf", "lbi"), model = c("pooling", "within", "random"), ...) { test <- match.arg(test) model <- match.arg(model) cl <- match.call(expand.dots = TRUE) if (is.null(model)) model <- "pooling" names(cl)[2L] <- "formula" if (names(cl)[3L] == "") names(cl)[3L] <- "data" m <- match(plm.arg, names(cl), 0) cl <- cl[c(1L, m)] cl[[1L]] <- quote(plm) plm.model <- eval(cl, parent.frame()) pbnftest(plm.model, test = test) } pbltest <- function (x, ...) { UseMethod("pbltest") } pbltest.formula <- function(x, data, alternative = c("twosided", "onesided"), index = NULL, ...) { X <- model.matrix(x, data = data) data <- data[which(row.names(data) %in% row.names(X)), ] if (! inherits(data, "pdata.frame")) data <- pdata.frame(data, index = index) gindex <- dimnames(attr(data, "index"))[[2L]][1L] rformula <- NULL eval(parse(text = paste("rformula <- ~1|", gindex, sep = ""))) mymod <- lme(x, data = data, random = rformula, method = "ML") nt. <- mymod$dims$N n. <- as.numeric(mymod$dims$ngrps[1]) t. <- nt./n. Jt <- matrix(1, ncol = t., nrow = t.)/t. Et <- diag(1, t.) - Jt G <- matrix(0, ncol = t., nrow = t.) for(i in 2:t.) { G[i-1, i] <- 1 G[i, i-1] <- 1 } uhat <- residuals(mymod, level = 0) uhat.i <- vector("list", n.) for(i in 1:n.) { uhat.i[[i]] <- uhat[t.*(i-1)+1:t.] } s2e <- rep(NA, n.) s21 <- rep(NA, n.) for(i in 1:n.) { u.i <- uhat.i[[i]] s2e[i] <- as.numeric(crossprod(u.i, Et) %*% u.i) s21[i] <- as.numeric(crossprod(u.i, Jt) %*% u.i) } sigma2.e <- sum(s2e) / (n.*(t.-1)) sigma2.1 <- sum(s21) / n. star1 <- (Jt/sigma2.1 + Et/sigma2.e) %*% G %*% (Jt/sigma2.1 + Et/sigma2.e) star2 <- rep(NA, n.) for(i in 1:n.) { star2[i] <- as.numeric(crossprod(uhat.i[[i]], star1) %*% uhat.i[[i]]) } star2 <- sum(star2) Drho <- (n.*(t.-1)/t.) * (sigma2.1-sigma2.e)/sigma2.1 + sigma2.e/2 * star2 a <- (sigma2.e - sigma2.1)/(t.*sigma2.1) j.rr <- n. * (2 * a^2 * (t.-1)^2 + 2*a*(2*t.-3) + (t.-1)) j.12 <- n.*(t.-1)*sigma2.e / sigma2.1^2 j.13 <- n.*(t.-1)/t. * sigma2.e * (1/sigma2.1^2 - 1/sigma2.e^2) j.22 <- (n. * t.^2) / (2 * sigma2.1^2) j.23 <- (n. * t.) / (2 * sigma2.1^2) j.33 <- (n./2) * (1/sigma2.1^2 + (t.-1)/sigma2.e^2) Jmat <- matrix(nrow = 3L, ncol = 3L) Jmat[1L, ] <- c(j.rr, j.12, j.13) Jmat[2L, ] <- c(j.12, j.22, j.23) Jmat[3L, ] <- c(j.13, j.23, j.33) J11 <- n.^2 * t.^2 * (t.-1) / (det(Jmat) * 4*sigma2.1^2 * sigma2.e^2) switch(match.arg(alternative), "onesided" = { LMr.m <- Drho * sqrt(J11) pval <- pnorm(LMr.m, lower.tail = FALSE) names(LMr.m) <- "z" method1 <- "one-sided" method2 <- "H0: rho = 0, HA: rho > 0" parameter <- NULL }, "twosided" = { LMr.m <- Drho^2 * J11 pval <- pchisq(LMr.m, df = 1, lower.tail = FALSE) names(LMr.m) <- "chisq" parameter <- c(df = 1) method1 <- "two-sided" method2 <- "H0: rho = 0, HA: rho != 0" } ) dname <- paste(deparse(substitute(x))) method <- paste("Baltagi and Li", method1, "LM test") alternative <- "AR(1)/MA(1) errors in RE panel model" res <- list(statistic = LMr.m, p.value = pval, method = method, alternative = alternative, parameter = parameter, data.name = dname) class(res) <- "htest" res } pbltest.plm <- function(x, alternative = c("twosided", "onesided"), ...) { if (describe(x, "model") != "random") stop("Test is only for random effects models.") pbltest.formula(formula(x$formula), data=cbind(index(x), x$model), index=names(index(x)), alternative = alternative, ...) } pwfdtest <- function(x, ...) { UseMethod("pwfdtest") } pwfdtest.formula <- function(x, data, ..., h0 = c("fd", "fe")) { cl <- match.call(expand.dots = TRUE) if (is.null(cl$model)) cl$model <- "fd" names(cl)[2L] <- "formula" if (names(cl)[3L] == "") names(cl)[3L] <- "data" m <- match(plm.arg, names(cl), 0) cl <- cl[c(1L, m)] cl[[1L]] <- quote(plm) plm.model <- eval(cl, parent.frame()) pwfdtest(plm.model, ..., h0 = h0) } pwfdtest.panelmodel <- function(x, ..., h0 = c("fd", "fe")) { model <- describe(x, "model") if (model != "fd") stop(paste0("input 'x' needs to be a \"fd\" model (first-differenced model), but is \"", model, "\"")) FDres <- x$residuals xindex <- unclass(attr(model.frame(x), "index")) time <- as.numeric(xindex[[2L]]) id <- as.numeric(xindex[[1L]]) pdim <- pdim(x) n <- pdim$nT$n Ti_minus_one <- pdim$Tint$Ti-1 red_id <- integer() for(i in 1:n) { red_id <- c(red_id, rep(i, Ti_minus_one[i])) } if(length(red_id) == 0L) stop("only individuals with one observation in original data: test not feasible") auxdata <- pdata.frame(as.data.frame(cbind(red_id, FDres)), index = "red_id") auxdata[["FDres.1"]] <- lag(auxdata[["FDres"]], shift = "row") auxmod <- plm(FDres ~ FDres.1, data = auxdata, model = "pooling") switch(match.arg(h0), "fd" = {h0des <- "differenced" rho.H0 <- 0}, "fe" = {h0des <- "original" rho.H0 <- -0.5}) myH0 <- paste("FDres.1 = ", as.character(rho.H0), sep="") myvcov <- function(x) vcovHC(x, method = "arellano", ...) FDARstat <- ((coef(auxmod)["FDres.1"] - rho.H0)/sqrt(myvcov(auxmod)["FDres.1", "FDres.1"]))^2 names(FDARstat) <- "F" df1 <- c(df1 = 1) df2 <- c(df2 = df.residual(auxmod)) pFDARstat <- pf(FDARstat, df1 = df1, df2 = df2, lower.tail = FALSE) RVAL <- list(statistic = FDARstat, parameter = c(df1, df2), p.value = pFDARstat, method = "Wooldridge's first-difference test for serial correlation in panels", alternative = paste("serial correlation in", h0des, "errors"), data.name = paste(deparse(substitute(x)))) class(RVAL) <- "htest" return(RVAL) }
pocket_tag <- function(action_name = c("tags_replace", "tags_remove", "tags_add", "tags_clear", "tag_rename", "tag_delete"), item_ids = NULL, tags = NULL, consumer_key = Sys.getenv("POCKET_CONSUMER_KEY"), access_token = Sys.getenv("POCKET_ACCESS_TOKEN")) { if (consumer_key == "") usethis::ui_stop(error_message_consumer_key()) if (access_token == "") usethis::ui_stop(error_message_access_token()) stop_for_invalid_tag_action_(item_ids = item_ids, action_name = action_name, tags = tags) tags <- paste(tags, collapse = ",") if (action_name %in% c("tags_replace", "tags_remove", "tags_add")) { action_results <- pocket_modify_bulk_(item_ids, action_name, consumer_key, access_token, tags = tags) return(invisible(action_results)) } if (action_name == "tags_clear") { action_results <- pocket_modify_bulk_(item_ids, action_name, consumer_key, access_token) return(invisible(action_results)) } if (action_name == "tag_rename") { action_list <- action_name %>% purrr::map( old_tag = tags[1], new_tag = tags[2], .f = gen_tag_action_ ) actions_json <- jsonlite::toJSON(action_list, auto_unbox = TRUE) res <- pocket_post_("send", consumer_key, access_token, actions = actions_json ) pocket_stop_for_status_(res) usethis::ui_done(glue::glue("Successfully renamed tag '{tags[1]}' for '{tags[2]}'.")) } if (action_name == "tag_delete") { action_list <- action_name %>% purrr::map( tag = tags, .f = gen_tag_action_ ) action_list <- action_name %>% purrr::map( tag = tags, .f = gen_tag_action_ ) actions_json <- jsonlite::toJSON(action_list, auto_unbox = TRUE) res <- pocket_post_("send", consumer_key, access_token, actions = actions_json ) pocket_stop_for_status_(res) usethis::ui_done(glue::glue("Successfully removed tag '{tags}'.")) } } gen_tag_action_ <- function(action_name, ...) { return(list( action = action_name, time = as.POSIXct(Sys.time()), ... )) } stop_for_invalid_tag_action_ <- function(item_ids, action_name, tags) { actions <- c("tags_add", "tags_remove", "tags_replace", "tags_clear", "tag_rename", "tag_delete") if (!action_name %in% actions) { usethis::ui_stop("Tag actions can be only be: 'tags_add', 'tags_remove', 'tags_replace', 'tags_clear', 'tag_rename', or 'tag_delete'.") } if (is.null(item_ids) & !action_name %in% c("tag_delete", "tag_rename")) { usethis::ui_stop("If your action_name is not 'tag_delete' or 'tag_rename', you need to provide at least one item_id.") } if (action_name == "tag_delete") { if (length(tags) > 1) { usethis::ui_stop("For 'tag_delete', you can only specify an atomic vector of one tag.") } if (is.null(tags)) { usethis::ui_stop("For 'tag_delete', you need to specify an atomic vector of one tag.") } } if (action_name == "tag_rename" & length(tags) != 2) { usethis::ui_stop("If your action is 'tag_rename', your tags vector must be of length 2, format: c('old tag', 'new tag').") } if (action_name == "tags_clear" & !is.null(tags)) { usethis::ui_stop("If your action is 'tags_clear', you must not provide tags.") } if (action_name == "tags_replace" & is.null(tags)) { usethis::ui_stop("For 'tags_replace', you need to specify the tags argument.") } }
github_api_branch_get_ref = function(repo, branch) { ghclass_api_v3_req( endpoint = "GET /repos/:owner/:repo/commits/:ref", owner = get_repo_owner(repo), repo = get_repo_name(repo), ref = paste0("heads/", branch) ) } get_branch_ref = function(repo, branch) { arg_is_chr_scalar(repo, branch) res = purrr::safely(github_api_branch_get_ref)(repo, branch) repo_txt = format_repo(repo, branch) if (failed(res)) cli_stop("Unable to locate branch {.val {repo_txt}}.") result(res) } github_api_branch_create = function(repo, branch, new_branch) { head = get_branch_ref(repo, branch) ghclass_api_v3_req( "POST /repos/:owner/:repo/git/refs", owner = get_repo_owner(repo), repo = get_repo_name(repo), ref = paste0("refs/heads/", new_branch), sha = head[["sha"]] ) } branch_create = function(repo, branch, new_branch) { arg_is_chr(repo, branch, new_branch) invisible( purrr::pmap( list(repo, branch, new_branch), function(repo, branch, new_branch) { cur_repo = format_repo(repo, branch) new_repo = format_repo(repo, new_branch) branches = repo_branches(repo) if (!branch %in% branches) { cli::cli_alert_danger("Failed to create branch, {.val {cur_repo}} does not exist.") return() } if (new_branch %in% branches) { cli::cli_alert_danger("Skipping creation of branch {.val {new_repo}}, it already exists.") return() } res = purrr::safely(github_api_branch_create)(repo, branch, new_branch) status_msg( res, "Created branch {.val {new_branch}} in repo {.val {repo}}.", "Failed to create branch {.val {new_branch}} in repo {.val {repo}}." ) res } ) ) }
get_desc <- function (sourcevar, origin) { if (length(sourcevar) == 0) {return(character(0))} origin <- toupper(origin) if (origin == "NAICS2017") { desc.df <- concordance::naics2017_desc } else if (origin == "NAICS2012"){ desc.df <- concordance::naics2012_desc } else if (origin == "NAICS2007"){ desc.df <- concordance::naics2007_desc } else if (origin == "NAICS2002"){ desc.df <- concordance::naics2002_desc } else if (origin == "HS"){ desc.df <- concordance::hs_desc } else if (origin == "HS0"){ desc.df <- concordance::hs0_desc } else if (origin == "HS1"){ desc.df <- concordance::hs1_desc } else if (origin == "HS2"){ desc.df <- concordance::hs2_desc } else if (origin == "HS3"){ desc.df <- concordance::hs3_desc } else if (origin == "HS4"){ desc.df <- concordance::hs4_desc } else if (origin == "HS5"){ desc.df <- concordance::hs5_desc } else if (origin == "ISIC2"){ desc.df <- concordance::isic2_desc } else if (origin == "ISIC3"){ desc.df <- concordance::isic3_desc } else if (origin == "ISIC4"){ desc.df <- concordance::isic4_desc } else if (origin == "SITC1"){ desc.df <- concordance::sitc1_desc } else if (origin == "SITC2"){ desc.df <- concordance::sitc2_desc } else if (origin == "SITC3"){ desc.df <- concordance::sitc3_desc } else if (origin == "SITC4"){ desc.df <- concordance::sitc4_desc } else if (origin == "BEC"){ desc.df <- concordance::bec_desc } else { stop("Conversion dictionary not available.") } digits <- unique(nchar(sourcevar)) if (length(digits) > 1) {stop("'sourcevar' has codes with different number of digits. Please ensure that input codes are at the same length.")} if (origin == "HS" | origin == "HS0" | origin == "HS1" | origin == "HS2" | origin == "HS3" | origin == "HS4" | origin == "HS5"){ origin.digits <- c(2, 4, 6) if (!(digits %in% origin.digits)) {stop("'sourcevar' only accepts 2, 4, 6-digit inputs for HS codes.")} } else if (origin == "NAICS2002" | origin == "NAICS2007" | origin == "NAICS2012" | origin == "NAICS2017") { origin.digits <- c(2, 3, 4, 5, 6) if (!(digits %in% origin.digits)) {stop("'sourcevar' only accepts 2, 3, 4, 5, 6-digit inputs for NAICS codes.")} } else if (origin == "SITC1" | origin == "SITC2" | origin == "SITC3" | origin == "SITC4") { origin.digits <- c(1, 2, 3, 4, 5) if (!(digits %in% origin.digits)) {stop("'sourcevar' only accepts 1, 2, 3, 4, 5-digit inputs for SITC codes.")} } else if (origin == "BEC") { origin.digits <- c(1, 2, 3) if (!(digits %in% origin.digits)) {stop("'sourcevar' only accepts 1, 2, 3-digit inputs for BEC codes.")} } else if (origin == "ISIC2" | origin == "ISIC3" | origin == "ISIC4") { origin.digits <- c(1, 2, 3, 4) if (!(digits %in% origin.digits)) {stop("'sourcevar' only accepts 1, 2, 3, 4-digit inputs for ISIC codes.")} } else { stop("Concordance not supported.") } all.origin.codes <- desc.df$code if (!all(sourcevar %in% all.origin.codes)){ no.code <- sourcevar[!sourcevar %in% all.origin.codes] no.code <- paste0(no.code, collapse = ", ") warning(paste(str_extract(origin, "[^_]+"), " code(s): ", no.code, " not found and returned NA. Please double check input code and classification.\n", sep = "")) } matches <- which(all.origin.codes %in% sourcevar) dest.var <- desc.df[matches, c("code", "desc")] out <- dest.var[match(sourcevar, dest.var$code),] %>% pull(desc) return(out) }
spmd.hostinfo <- function(comm = .pbd_env$SPMD.CT$comm){ if(spmd.comm.size(comm) == 0){ stop(paste("It seems no members running on comm", comm)) } HOST.NAME <- spmd.get.processor.name() COMM.RANK <- spmd.comm.rank(comm) COMM.SIZE <- spmd.comm.size(comm) cat("\tHost:", HOST.NAME, "\tRank(ID):", COMM.RANK, "\tof Size:", COMM.SIZE, "on comm", comm, "\n") invisible() } spmd.comm.print <- function(x, all.rank = .pbd_env$SPMD.CT$print.all.rank, rank.print = .pbd_env$SPMD.CT$rank.source, comm = .pbd_env$SPMD.CT$comm, quiet = .pbd_env$SPMD.CT$print.quiet, flush = .pbd_env$SPMD.CT$msg.flush, barrier = .pbd_env$SPMD.CT$msg.barrier, con = stdout(), ...){ COMM.RANK <- spmd.comm.rank(comm) if (!exists(deparse(substitute(x)))) quiet <- TRUE if(barrier){ spmd.barrier(comm) } if(all.rank){ for(i.rank in 0:(spmd.comm.size(comm) - 1)){ if(i.rank == COMM.RANK){ if(! quiet){ cat("COMM.RANK = ", COMM.RANK, "\n", sep = "") if(flush){ flush(con) } } print(x, ...) if(flush){ flush(con) } } if(barrier){ spmd.barrier(comm) } } } else{ for(i.rank in rank.print){ if(i.rank == COMM.RANK){ if(! quiet){ cat("COMM.RANK = ", COMM.RANK, "\n", sep = "") if(flush){ flush(con) } } print(x, ...) if(flush){ flush(con) } } if(barrier){ spmd.barrier(comm) } } } invisible() } comm.print <- spmd.comm.print spmd.comm.cat <- function(..., all.rank = .pbd_env$SPMD.CT$print.all.rank, rank.print = .pbd_env$SPMD.CT$rank.source, comm = .pbd_env$SPMD.CT$comm, quiet = .pbd_env$SPMD.CT$print.quiet, sep = " ", fill = FALSE, labels = NULL, append = FALSE, flush = .pbd_env$SPMD.CT$msg.flush, barrier = .pbd_env$SPMD.CT$msg.barrier, con = stdout()){ COMM.RANK <- spmd.comm.rank(comm) if(barrier){ spmd.barrier(comm) } if(all.rank){ for(i.rank in 0:(spmd.comm.size(comm) - 1)){ if(i.rank == COMM.RANK){ if(! quiet){ cat("COMM.RANK = ", COMM.RANK, "\n", sep = "") if(flush){ flush(con) } } cat(..., sep = sep, fill = fill, labels = labels, append = append) if(flush){ flush(con) } } if(barrier){ spmd.barrier(comm) } } } else{ for(i.rank in rank.print){ if(i.rank == COMM.RANK){ if(! quiet){ cat("COMM.RANK = ", COMM.RANK, "\n", sep = "") if(flush){ flush(con) } } cat(..., sep = sep, fill = fill, labels = labels, append = append) if(flush){ flush(con) } } if(barrier){ spmd.barrier(comm) } } } invisible() } comm.cat <- spmd.comm.cat
changes <- function(offset = 0, limit = 31,url = get_default_url(), key = get_default_key(), as ='list', ...) { args <- cc(list(offset = offset, limit = limit)) res <- ckan_GET(url, 'recently_changed_packages_activity_list', args, key = key, opts = list(...)) switch(as, json = res, list = jsl(res), table = jsd(res)) }
library(metaBMA) library(testthat) set.seed(123) params <- list( "norm" = c(mean = 0, sd = .3), "t" = c(location = 0, scale = .3, nu = 1), "beta" = c(1, 2), "invgamma" = c(shape = 1, scale = 1), "gamma" = c(shape = 1, rate = 1), "cauchy" = c(location = 0, scale = 0.707) ) priors <- names(params) test_that("prior returns vectorized function", { for (i in seq_along(priors)) { for (lower in c(-Inf, 0)) { for (upper in c(1, Inf)) { if (!(priors[i] == "beta" & (lower == -Inf || upper == Inf))) { suppressWarnings(pp <- prior(priors[i], params[[i]], lower = lower, upper = upper)) plot(pp) plot(pp, from = -1, to = 1.5) expect_s3_class(pp, "prior") expect_true(is.function(pp)) expect_length(pp(1:10), 10) expect_equal(pp(1:3, log = TRUE), log(pp(1:3))) aa <- attributes(pp) expect_true(all(c( "family", "param", "label", "lower", "upper" ) %in% names(aa))) expect_is(aa$lower, "numeric") expect_is(aa$upper, "numeric") expect_lt(aa$lower, aa$upper) expect_silent(x <- metaBMA:::rprior(3, pp)) expect_length(x, 3) } } } } }) test_that("prior crashes for non-vectorized/negative functions", { expect_error(prior("norm", c(0), "xx")) expect_error(prior("cauchy", NULL, "xx")) expect_error(prior("custom", 1, "xx")) expect_error(prior("custom", function(x) x, "xx")) expect_error(prior("custom", function(x) -dunif(x), "xx")) }) test_that("expected value in truncnorm_mean() is correct", { x <- metaBMA:::rtrunc(5e5, "norm", 0, Inf, mean = .14, sd = .5) expect_silent(avg <- metaBMA:::truncnorm_mean(.14, .5, 0, Inf)) expect_equal(mean(x), avg, tolerance = .001) expect_length(metaBMA:::truncnorm_mean(0:1, c(.3, .4), 0, 4), 2) }) test_that("log_diff_exp() correctly implemented", { x <- c(-3.2, -4.5) expect_silent(lde <- metaBMA:::log_diff_exp(x[1], x[2])) expect_equal(lde, log(exp(x)[1] - exp(x)[2])) })
library(testthat) library(recipes) library(dplyr) set.seed(1234) context("ROSE") test_that("minority_prop value", { rec <- recipe(~., data = circle_example) rec21 <- rec %>% step_rose(class, minority_prop = 0.1) rec22 <- rec %>% step_rose(class, minority_prop = 0.2) rec21_p <- prep(rec21, training = circle_example) rec22_p <- prep(rec22, training = circle_example) tr_xtab1 <- table(bake(rec21_p, new_data = NULL)$class, useNA = "no") tr_xtab2 <- table(bake(rec22_p, new_data = NULL)$class, useNA = "no") expect_equal(sum(tr_xtab1), sum(tr_xtab2)) expect_lt(tr_xtab1[["Circle"]], tr_xtab2[["Circle"]]) }) test_that("tunable", { rec <- recipe(~., data = iris) %>% step_rose(all_predictors(), under_ratio = 1) rec_param <- tunable.step_rose(rec$steps[[1]]) expect_equal(rec_param$name, c("over_ratio")) expect_true(all(rec_param$source == "recipe")) expect_true(is.list(rec_param$call_info)) expect_equal(nrow(rec_param), 1) expect_equal( names(rec_param), c("name", "call_info", "source", "component", "component_id") ) }) test_that("row matching works correctly expect_error( recipe(class ~ ., data = circle_example) %>% step_rose(class, over_ratio = 1.2) %>% prep(), NA ) expect_error( recipe(class ~ ., data = circle_example) %>% step_rose(class, over_ratio = 0.8) %>% prep(), NA ) expect_error( recipe(class ~ ., data = circle_example) %>% step_rose(class, over_ratio = 1.7) %>% prep(), NA ) }) test_basic_usage(step_rose) test_printing(step_rose) test_bad_data(step_rose) test_no_skipping(step_rose) test_character_error(step_rose) test_na_response(step_rose) test_seed(step_rose) test_tidy(step_rose) test_2_class_only(step_rose) test_factor_level_memory(step_rose) test_id_variables_are_ignores(step_rose)
CalculateContributions <- function(X, A, B){ I=dim(X)[1] J=dim(X)[2] I1=dim(A)[1] S=dim(A)[2] J1=dim(B)[1] S1=dim(B)[2] if (!I==I1) stop("Number of rows of the data and coordinates must be the same") if (!J==J1) stop("Number of columns of the data and coordinates must be the same") if (!S==S1) stop("Number of columns of both coordinate matrices must be the same") CumRowContributions=matrix(0,I,S) CumColContributions=matrix(0,J,S) CumFit=matrix(0,S,1) for (i in 1:S){ Xesp= A[,1:i] %*% t(B[,1:i]) CumFit[i]=sum(Xesp^2)/sum(X^2) CumRowContributions[,i] = apply(Xesp^2,1,sum)/apply(X^2,1,sum) CumColContributions[,i] = apply(Xesp^2,2,sum)/apply(X^2,2,sum) } RowContributions=CumRowContributions ColContributions=CumColContributions Fit=CumFit for (i in 2:S){ Fit[i]=CumFit[i]-CumFit[i-1] RowContributions[,i] = CumRowContributions[,i] - CumRowContributions[,(i-1)] ColContributions[,i] = CumColContributions[,i] - CumColContributions[,(i-1)] } RowContributions[which(RowContributions<0)]=0 ColContributions[which(RowContributions<0)]=0 RowContributions=round(RowContributions,digits=4)*100 ColContributions=round(ColContributions,digits=4)*100 rownames(RowContributions)=rownames(X) colnames(RowContributions)=colnames(A) rownames(ColContributions)=colnames(X) colnames(ColContributions)=colnames(A) colnames(Fit)="Percentage" rownames(Fit)=colnames(A) Structure=round(cor(X,A),digits=4) result=list(Fit=Fit, RowContributions=RowContributions, ColContributions=ColContributions, Structure=Structure) return(result) }
NULL .onLoad <- function(libname, pkgname) { if (is.null(getOption("gu.API.key"))) { key <- Sys.getenv("GU_API_KEY") if (key != "") options("gu.API.key" = key) } invisible() }
re2p <- re2_regexp("hello world") stopifnot(mode(re2p) == "externalptr") x <- "fa\xE7ile" Encoding(x) <- "latin1" re2_detect(x, re2_regexp("fa\xE7", encoding = "Latin1")) re2_detect("fOobar ", re2_regexp("Foo", case_sensitive = FALSE)) re2_detect("foo\\$bar", re2_regexp("foo\\$b", literal = TRUE)) re2_detect("foo\\$bar", re2_regexp("foo\\$b", literal = FALSE)) re <- re2_regexp("(abc(.|\n)*def)", never_nl = FALSE) re2_match("abc\ndef\n", re) re <- re2_regexp("(abc(.|\n)*def)", never_nl = TRUE) re2_match("abc\ndef\n", re)
cat("test_diff.R:\n") locinfile <- genepopExample('sample.txt') outfile <- test_diff(locinfile,outputFile="sample.txt.GE") testthat::expect_equal(readLines(outfile)[116],"mtDNA 0.2106 ") outfile <- test_diff(locinfile,pairs=TRUE,outputFile="sample.txt.GE2") testthat::expect_equal(readLines(outfile)[157],"Tertre Rotebo & last pop 14.52354 12 0.268532") testthat::expect_equal(readLines(outfile)[158],"Bonneau 05 & last pop 48.07912 12 3.03e-006") outfile <- test_diff(locinfile,genic=FALSE,outputFile="sample.txt.G") nums <- as.numeric(unlist(strsplit(readLines(outfile)[112], "[^0-9e.-]+"))[c(3,4,7)]) testthat::expect_equal(nums,c(81.0679,10,3.09949e-013)) outfile <- test_diff(locinfile,genic=FALSE,pairs=TRUE,outputFile="sample.txt.2G2") testthat::expect_equal(readLines(outfile)[146],"Bonneau 05 & last pop 32.50364 10 0.000330")
PhasesGap <- function(Phase1Max_chain, Phase2Min_chain, level=0.95){ if(length(Phase1Max_chain) != length(Phase2Min_chain)) { stop('Error : the parameters do not have the same length')} else{ if( sum(ifelse(Phase1Max_chain <=Phase2Min_chain, 1, 0)) != length(Phase2Min_chain) ) { stop('Error : Phase1Max_chain should be older than Phase2Min_chain') } else { interval <- function(epsilon, P1Max, P2Min, level) { q1 = quantile(P1Max ,probs = 1-epsilon) ; indz = (P1Max < q1) q2 = quantile(P2Min[indz],probs= (1-level-epsilon)/(1-epsilon)) c(q1,q2) } hia = Vectorize(interval,"epsilon") epsilon = seq(0,1-level,.001) p = hia(epsilon, Phase1Max_chain, Phase2Min_chain, level) rownames(p)<- c("HiatusIntervalInf", "HiatusIntervalSup") D<- p[2,]-p[1,] DD = D[D>0] if (length(DD) > 0){ I = which(D==max(DD)) interval2 = round( p[,I], 0) if (p[2,I] != p[1,I]) { c(level=level, interval2[1], interval2[2]) } else { c(level=level, HiatusIntervalInf='NA',HiatusIntervalSup='NA') } } else { c(level=level, HiatusIntervalInf='NA',HiatusIntervalSup='NA') } } } } phases_gap <- function(a_chain, b_chain, level = 0.95) { chain_len <- length(a_chain) if (chain_len != length(b_chain)) stop('Chains are not the same length') if (sum(a_chain <= b_chain) != chain_len) stop("One chain should be strictly older than the other") no_hiatus <- list(hiatus = c(inf = 'NA', sup = 'NA'), duration = 'NA', level = level) interval <- function(epsilon, p1, p2, level) { prob <- 1 - epsilon q1 <- quantile(p1, probs = prob) ind <- (p1 < q1) q2 <- quantile(p2[ind], probs = (prob - level) / prob) c(q1, q2) } hia = Vectorize(interval, "epsilon") epsilon = seq(0, 1 - level, .001) p = hia(epsilon, a_chain, b_chain, level) d <- p[2, ] - p[1, ] dd <- d[d > 0] if (length(dd) < 1) return(no_hiatus) i <- which(d == max(dd)) i2 = round(p[, i], 0) if (p[2, i] == p[1, i]) return(no_hiatus) inf <- unname(i2[1]) sup <- unname(i2[2]) list(hiatus = c(inf = inf, sup = sup), level = level, call = match.call()) }
rmultinomial<-function(n=5, pr=c(0.5,0.5), long=FALSE) { k<-length(pr) if (abs(1-sum(pr))>0.000001) stop("(rmultinomial): parameter pr must be the k probabilities (summing to 1)") if(long) { y<-runif(n, 0, 1) p<-cumsum(pr) Seq<-1:n x<-sapply(y, function(y, Seq, p) {Seq[y <= p][1]}, Seq=Seq, p=p) } else { x<-rep(NA,k) p<-pr/c(1,(1-cumsum(pr[1:(k-1)]))) for (i in 1:(k-1)) { if (n==0) { x[i]<-0 if (i==k-1) x[k]<-0 next } y<-rbinom(1,n,p[i]) x[i]<-y if (i==k-1) x[k]<-n-y n<-n-y } } return(x) } rdirich<-function(n,alphavec) { k<-length(alphavec) p<-matrix(rgamma(n*k,alphavec),n,k,byrow=T) sm<-matrix(apply(p,1,sum),n,k) return(p/sm) }
kp_trends <- function(){ tryCatch( expr = { if (!has_kp_user_and_pw()) stop("This function requires a KenPom subscription e-mail and password combination, set as the system environment variables KP_USER and KP_PW.", "\n See ?kp_user_pw for details.", call. = FALSE) browser <- login() url <- "https://kenpom.com/trends.php" page <- rvest::session_jump_to(browser, url) header_cols <- c("Season","Efficiency","Tempo","eFG.Pct","TO.Pct", "OR.Pct","FTRate","FG_2.Pct","FG_3.Pct","FG_3A.Pct",'FT.Pct', "A.Pct","Blk.Pct","Stl.Pct","NonStl.Pct","Avg.Hgt", "Continuity","HomeWin.Pct","PPG") x <- (page %>% xml2::read_html() %>% rvest::html_elements("table"))[[1]] %>% rvest::html_table() %>% as.data.frame() colnames(x) <- header_cols suppressWarnings( x <- x %>% dplyr::filter(!is.na(as.numeric(.data$eFG.Pct))) ) kenpom <- x %>% dplyr::mutate_at(c("Season","Efficiency","Tempo","eFG.Pct","TO.Pct", "OR.Pct","FTRate","FG_2.Pct","FG_3.Pct","FG_3A.Pct",'FT.Pct', "A.Pct","Blk.Pct","Stl.Pct","NonStl.Pct","Avg.Hgt", "Continuity","HomeWin.Pct","PPG"), as.numeric) %>% janitor::clean_names() }, error = function(e) { message(glue::glue("{Sys.time()}: Invalid arguments or no trends data available!")) }, warning = function(w) { }, finally = { } ) return(kenpom) } kp_officials <- function(year = most_recent_mbb_season()){ tryCatch( expr = { if (!has_kp_user_and_pw()) stop("This function requires a KenPom subscription e-mail and password combination, set as the system environment variables KP_USER and KP_PW.", "\n See ?kp_user_pw for details.", call. = FALSE) browser <- login() if(!(is.numeric(year) && nchar(year) == 4 && year>=2016)) { cli::cli_abort("Enter valid year as a number (YYYY), data only goes back to 2016") } url <- paste0("https://kenpom.com/officials.php?y=",year) page <- rvest::session_jump_to(browser, url) header_cols <- c("Rk","OfficialName","RefRating","Gms","Last.Game", "Last.Game.1","Last.Game.2") x <- (page %>% xml2::read_html() %>% rvest::html_elements("table"))[[1]] %>% rvest::html_table() %>% as.data.frame() colnames(x) <- header_cols x <- x %>% dplyr::select(-.data$Last.Game.2) %>% suppressWarnings( x <- x %>% dplyr::filter(!is.na(as.numeric(.data$RefRating))) ) x <- dplyr::mutate(x, "Year" = year) suppressWarnings( x <- x %>% dplyr::mutate_at(c("Year","RefRating","Gms"), as.numeric) %>% as.data.frame() ) kenpom <- x %>% janitor::clean_names() }, error = function(e) { message(glue::glue("{Sys.time()}: Invalid arguments or no officials data for {year} available!")) }, warning = function(w) { }, finally = { } ) return(kenpom) } kp_referee <- function(referee, year){ tryCatch( expr = { if (!has_kp_user_and_pw()) stop("This function requires a KenPom subscription e-mail and password combination, set as the system environment variables KP_USER and KP_PW.", "\n See ?kp_user_pw for details.", call. = FALSE) browser <- login() if(!(is.numeric(year) && nchar(year) == 4 && year>=2016)) { cli::cli_abort("Enter valid year as a number (YYYY), data only goes back to 2016") } url <- paste0("https://kenpom.com/referee.php?", "r=",referee, "&y=",year) page <- rvest::session_jump_to(browser, url) header_cols <- c("GameNumber","Date","Time (ET)","Game","Location", "Venue","Conference", "ThrillScore") x <- (page %>% xml2::read_html() %>% rvest::html_elements("table"))[[1]] %>% rvest::html_table() %>% as.data.frame() colnames(x) <- header_cols rk <- page %>% xml2::read_html() %>% rvest::html_element(".rank") %>% rvest::html_text() name <- page %>% xml2::read_html() %>% rvest::html_element("h5") %>% rvest::html_text() x$RefereeName <- stringr::str_remove(name,"\\d+ ") x$RefRank <- as.numeric(rk) x <- dplyr::mutate(x, "Year" = year) kenpom <- x %>% janitor::clean_names() }, error = function(e) { message(glue::glue("{Sys.time()}: Invalid arguments or no referee data for {referee} in {year} available!")) }, warning = function(w) { }, finally = { } ) return(kenpom) } kp_hca <- function(){ tryCatch( expr = { if (!has_kp_user_and_pw()) stop("This function requires a KenPom subscription e-mail and password combination, set as the system environment variables KP_USER and KP_PW.", "\n See ?kp_user_pw for details.", call. = FALSE) browser <- login() url <- paste0("https://kenpom.com/hca.php") page <- rvest::session_jump_to(browser, url) header_cols <- c("Team", "Conf", "HCA","HCA.Rk", "PF","PF.Rk", "Pts","Pts.Rk", "NST","NST.Rk", "Blk","Blk.Rk", "Elev","Elev.Rk") x <- (page %>% xml2::read_html() %>% rvest::html_elements("table"))[[1]] %>% rvest::html_table() %>% as.data.frame() colnames(x) <- header_cols suppressWarnings( x <- x %>% dplyr::filter(!is.na(as.numeric(.data$HCA))) ) kenpom <- x %>% dplyr::mutate_at(c("HCA","HCA.Rk", "PF","PF.Rk", "Pts","Pts.Rk", "NST","NST.Rk", "Blk","Blk.Rk", "Elev","Elev.Rk"), as.numeric) %>% janitor::clean_names() }, error = function(e) { message(glue::glue("{Sys.time()}: Invalid arguments or no home court advantage data available!")) }, warning = function(w) { }, finally = { } ) return(kenpom) } kp_arenas <- function(year=most_recent_mbb_season()){ tryCatch( expr = { if (!has_kp_user_and_pw()) stop("This function requires a KenPom subscription e-mail and password combination, set as the system environment variables KP_USER and KP_PW.", "\n See ?kp_user_pw for details.", call. = FALSE) browser <- login() if(!(is.numeric(year) && nchar(year) == 4 && year>=2010)) { cli::cli_abort("Enter valid year as a number (YYYY), data only goes back to 2010") } url <- paste0("https://kenpom.com/arenas.php?y=",year) page <- rvest::session_jump_to(browser, url) header_cols <- c("Rk","Team", "Conf", "Arena", "Alternate") x <- (page %>% xml2::read_html() %>% rvest::html_elements("table"))[[1]] %>% rvest::html_table() %>% as.data.frame() colnames(x) <- header_cols x <- dplyr::mutate(x, "Rk" = as.numeric(.data$Rk), "Year" = as.numeric(year)) kenpom <- x %>% janitor::clean_names() }, error = function(e) { message(glue::glue("{Sys.time()}: Invalid arguments or no arenas data available!")) }, warning = function(w) { }, finally = { } ) return(kenpom) } kp_game_attrs <- function(year=most_recent_mbb_season(), attr = "Excitement"){ tryCatch( expr = { if (!has_kp_user_and_pw()) stop("This function requires a KenPom subscription e-mail and password combination, set as the system environment variables KP_USER and KP_PW.", "\n See ?kp_user_pw for details.", call. = FALSE) browser <- login() if(!(is.numeric(year) && nchar(year) == 4 && year>=2010)) { cli::cli_abort("Enter valid year as a number (YYYY), data only goes back to 2010") } url <- paste0("https://kenpom.com/game_attrs.php?", "y=", year, "&s=", attr) page <- rvest::session_jump_to(browser, url) header_cols <- c("Rk","Data","Game", "col","Location","Conf", attr) x <- (page %>% xml2::read_html() %>% rvest::html_elements("table"))[[1]] %>% rvest::html_table() colnames(x) <- header_cols x <- dplyr::mutate(x, "Year" = year)%>% as.data.frame() kenpom <- x %>% dplyr::select(-.data$col) %>% janitor::clean_names() }, error = function(e) { message(glue::glue("{Sys.time()}: Invalid arguments or no game attributes data for {attr} available!")) }, warning = function(w) { }, finally = { } ) return(kenpom) } kp_fanmatch <- function(date="2020-02-12"){ tryCatch( expr = { if (!has_kp_user_and_pw()) stop("This function requires a KenPom subscription e-mail and password combination, set as the system environment variables KP_USER and KP_PW.", "\n See ?kp_user_pw for details.", call. = FALSE) browser <- login() url <- paste0("https://kenpom.com/fanmatch.php?", "d=", date) page <- rvest::session_jump_to(browser, url) header_cols <- c("Game","Prediction","Time(ET)", "Location","ThrillScore","Comeback","Excitement") x <- (page %>% xml2::read_html() %>% rvest::html_elements(" rvest::html_table() colnames(x) <- header_cols suppressWarnings( x <- x %>% tidyr::separate(.data$Game, into = c("Winner","col"), sep = ",", extra = "merge")) x <- x %>% dplyr::mutate( WinRk = stringr::str_extract( stringr::str_extract(.data$Winner,"[\\w]+"),"\\d{1,3}+"), WinTeam = stringr::str_extract( stringr::str_extract(.data$Winner,'[^\\d]+'),".+"), WinScore = stringr::str_extract( stringi::stri_extract_last_regex(.data$Winner,'[\\d]+'),"\\d{1,3}+"), Loser = stringr::str_extract( stringr::str_extract(.data$col,'[^\\[]+'),".+"), LossRk = stringr::str_extract( stringr::str_extract(.data$Loser,"[\\w]+"),"\\d{1,3}+"), LossTeam = stringr::str_match(.data$Loser,'\\d{1,3}\\s(.*?)\\s\\d{1,3}')[,2], LossScore = stringr::str_extract( stringi::stri_extract_last_regex(.data$Loser,'[\\d]+'),"\\d{1,3}+"), Poss = stringr::str_match(.data$col,'\\[(.*?)\\]')[,2], MVP = stringr::str_match(.data$col,'MVP\\:(.*)')[,2], Event = stringr::str_match(.data$col,'\\](.*)')[,2] ) x <- dplyr::mutate(x, "Date" = date) suppressWarnings( x <- x %>% dplyr::filter(!is.na(as.numeric(.data$Poss))) ) x <- x %>% dplyr::select(-.data$col,-.data$Winner,-.data$Loser, .data$WinRk, .data$WinTeam, .data$WinScore, .data$LossRk, .data$LossTeam, .data$LossScore, .data$Poss, .data$Prediction, .data$ThrillScore, .data$Comeback, .data$Excitement, .data$MVP, .data$Location, "Time(ET)", .data$Event, .data$Date) suppressWarnings( kenpom <- x %>% dplyr::mutate_at(c("WinScore","LossScore","Poss","ThrillScore","Comeback", "Excitement"), as.numeric) %>% janitor::clean_names() ) }, error = function(e) { message(glue::glue("{Sys.time()}: Invalid arguments or no Fan Match data for {date} available!")) }, warning = function(w) { }, finally = { } ) return(kenpom) }
plot_trends <- function(rotated_modelfit, years = NULL, highlight_outliers = FALSE, threshold = 0.01) { rotated <- rotated_modelfit df <- dfa_trends(rotated, years = years) p1 <- ggplot(df, aes_string(x = "time", y = "estimate")) + geom_ribbon(aes_string(ymin = "lower", ymax = "upper"), alpha = 0.4) + geom_line() + facet_wrap("trend_number") + xlab("Time") + ylab("") if (highlight_outliers) { swans <- find_swans(rotated, threshold = threshold) df$outliers <- swans$below_threshold p1 <- p1 + geom_point(data = df[which(df$outliers), ], color = "red") } p1 }
HTstrata<-function (y, pik, strata, description=FALSE) { str <- function(st, h, n) .C("str", as.double(st), as.integer(h), as.integer(n), s = double(n), PACKAGE = "sampling")$s if(any(is.na(pik))) stop("there are missing values in pik") if(any(is.na(y))) stop("there are missing values in y") if(length(y)!=length(pik)) stop("y and pik have different sizes") if (is.matrix(y)) sample.size <- nrow(y) else sample.size <- length(y) h <- unique(strata) s1 <- 0 for (i in 1:length(h)) { s <- str(strata, h[i], sample.size) est<-HTestimator(y[s == 1], pik[s == 1]) s1 <- s1 + est if(description) cat("For stratum",i,",the Horvitz-Thompson estimator is:",est,"\n") } if(description) cat("The Horvitz-Thompson estimator is:\n") s1 }
form_form <- function(object, control, env, ...) { check_outcome(eval_tidy(env$formula[[2]], env$data), object) y_levels <- levels_from_formula(env$formula, env$data) object <- check_mode(object, y_levels) if (requires_descrs(object)) { data_stats <- get_descr_form(env$formula, env$data) scoped_descrs(data_stats) } object <- check_args(object) object <- translate(object, engine = object$engine) fit_call <- make_form_call(object, env = env) res <- list( lvl = y_levels, spec = object ) if (control$verbosity > 1L) { elapsed <- system.time( res$fit <- eval_mod( fit_call, capture = control$verbosity == 0, catch = control$catch, env = env, ... ), gcFirst = FALSE ) } else { res$fit <- eval_mod( fit_call, capture = control$verbosity == 0, catch = control$catch, env = env, ... ) elapsed <- list(elapsed = NA_real_) } res$preproc <- list(y_var = all.vars(env$formula[[2]])) res$elapsed <- elapsed res } xy_xy <- function(object, env, control, target = "none", ...) { if (inherits(env$x, "tbl_spark") | inherits(env$y, "tbl_spark")) rlang::abort("spark objects can only be used with the formula interface to `fit()`") object <- check_mode(object, levels(env$y)) check_outcome(env$y, object) encoding_info <- get_encoding(class(object)[1]) %>% dplyr::filter(mode == object$mode, engine == object$engine) remove_intercept <- encoding_info %>% dplyr::pull(remove_intercept) if (remove_intercept) { env$x <- env$x[, colnames(env$x) != "(Intercept)", drop = FALSE] } if (requires_descrs(object)) { data_stats <- get_descr_xy(env$x, env$y) scoped_descrs(data_stats) } object <- check_args(object) object <- translate(object, engine = object$engine) fit_call <- make_xy_call(object, target) res <- list(lvl = levels(env$y), spec = object) if (control$verbosity > 1L) { elapsed <- system.time( res$fit <- eval_mod( fit_call, capture = control$verbosity == 0, catch = control$catch, env = env, ... ), gcFirst = FALSE ) } else { res$fit <- eval_mod( fit_call, capture = control$verbosity == 0, catch = control$catch, env = env, ... ) elapsed <- list(elapsed = NA_real_) } if (is.vector(env$y)) { y_name <- character(0) } else { y_name <- colnames(env$y) } res$preproc <- list(y_var = y_name) res$elapsed <- elapsed res } form_xy <- function(object, control, env, target = "none", ...) { encoding_info <- get_encoding(class(object)[1]) %>% dplyr::filter(mode == object$mode, engine == object$engine) indicators <- encoding_info %>% dplyr::pull(predictor_indicators) remove_intercept <- encoding_info %>% dplyr::pull(remove_intercept) data_obj <- .convert_form_to_xy_fit( formula = env$formula, data = env$data, ..., composition = target, indicators = indicators, remove_intercept = remove_intercept ) env$x <- data_obj$x env$y <- data_obj$y check_outcome(env$y, object) res <- xy_xy( object = object, env = env, control = control, target = target ) data_obj$y_var <- all.vars(env$formula[[2]]) data_obj$x <- NULL data_obj$y <- NULL data_obj$weights <- NULL data_obj$offset <- NULL res$preproc <- data_obj res } xy_form <- function(object, env, control, ...) { check_outcome(env$y, object) encoding_info <- get_encoding(class(object)[1]) %>% dplyr::filter(mode == object$mode, engine == object$engine) remove_intercept <- encoding_info %>% dplyr::pull(remove_intercept) data_obj <- .convert_xy_to_form_fit( x = env$x, y = env$y, weights = NULL, y_name = "..y", remove_intercept = remove_intercept ) env$formula <- data_obj$formula env$data <- data_obj$data res <- form_form( object = object, env = env, control = control, ... ) if (is.vector(env$y)) { data_obj$y_var <- character(0) } else { data_obj$y_var <- colnames(env$y) } res$preproc <- data_obj[c("x_var", "y_var")] res }
SRM_PARTABLE_EXTEND <- function(parm.table, var_positive, optimizer, method="ml") { symm_matrices <- c("PHI_U", "PSI_U", "PHI_D", "PSI_D") npar <- attr(parm.table, "npar") parm.table$est <- parm.table$starts parm.table$est[ is.na(parm.table$starts) ] <- parm.table$fixed[ is.na(parm.table$starts) ] parm.table$starts[ ! is.na(parm.table$fixed) ] <- parm.table$fixed[ ! is.na(parm.table$fixed) ] parm.table$est[ ! is.na(parm.table$fixed) ] <- parm.table$fixed[ ! is.na(parm.table$fixed) ] parm.table$lower <- -Inf if (var_positive>=0){ ind1 <- union( grep("PHI", parm.table$mat), grep("PSI", parm.table$mat) ) ind2 <- which(parm.table$row == parm.table$col) parm.table$lower[ intersect(ind1,ind2)] <- var_positive if (optimizer=="srm"){ optimizer <- "nlminb" } } parm_table_free <- parm.table[ ! is.na(parm.table$index), ] parm_table_free <- parm_table_free[ order(parm_table_free$index), ] lower <- parm_table_free[ parm_table_free$unid > 0, 'lower'] NOP <- nrow(parm_table_free) optim_avai <- c("srm", "nlminb", "spg") if (! (optimizer %in% optim_avai) ){ stop(paste0("Choose among following optimizers:\n", paste0(optim_avai, collapse=" "), "\n" )) } if (method=="uls"){ optimizer <- "nlminb" } res <- list(parm.table=parm.table, parm_table_free=parm_table_free, lower=lower, upper=NULL, NOP=NOP, npar=npar, symm_matrices=symm_matrices, optimizer=optimizer) return(res) }
f7Timeline <- function(..., sides = FALSE, horizontal = FALSE, calendar = FALSE, year = NULL, month = NULL) { if (sides & horizontal) { stop("Choose either sides or horizontal. Not compatible together.") } timelineCl <- "timeline" if (sides) timelineCl <- paste0(timelineCl, " timeline-sides") if (horizontal) timelineCl <- paste0(timelineCl, " timeline-horizontal col-50 tablet-20") if (calendar) timelineCl <- paste0(timelineCl, " timeline-horizontal col-33 tablet-15") timelineTag <- shiny::tags$div( class = timelineCl, ... ) timelineWrapper <- if (calendar) { shiny::tags$div( class = "timeline-year", shiny::tags$div( class = "timeline-year-title", shiny::span(year) ), shiny::tags$div( class = "timeline-month", shiny::tags$div( class = "timeline-month-title", shiny::span(month) ), timelineTag ) ) } else { timelineTag } timelineWrapper } f7TimelineItem <- function(..., date = NULL, card = FALSE, time = NULL, title = NULL, subtitle = NULL, side = NULL) { itemCl <- "timeline-item" if (!is.null(side)) itemCl <- paste0(itemCl, " timeline-item-", side) shiny::tags$div( class = itemCl, if (!is.null(date)) shiny::tags$div(class = "timeline-item-date", date), shiny::tags$div(class = "timeline-item-divider"), shiny::tags$div( class = "timeline-item-content", if (card) { shiny::tags$div( class = "timeline-item-inner", if (!is.null(time)) shiny::tags$div(class = "timeline-item-time", time), if (!is.null(title)) shiny::tags$div(class = "timeline-item-title", title), if (!is.null(subtitle)) shiny::tags$div(class = "timeline-item-subtitle", subtitle), if (!is.null(...)) shiny::tags$div(class = "timeline-item-text", ...) ) } else { shiny::tagList( if (!is.null(time)) shiny::tags$div(class = "timeline-item-time", time), if (!is.null(title)) shiny::tags$div(class = "timeline-item-title", title), if (!is.null(subtitle)) shiny::tags$div(class = "timeline-item-subtitle", subtitle), if (!is.null(...)) shiny::tags$div(class = "timeline-item-text", ...) ) } ) ) }
bsubset <- function(file = NULL, head = NULL, tail = NULL, first_row = NULL, last_row = NULL, ...){ args = list(...) if(.Platform$OS.type == "windows"){ qfile <- shQuote(file, type = "cmd2") } else if(.Platform$OS.type == "unix"){ qfile <- shQuote(file) } meta_output <- list() meta_output$colnames <- bcolnames(file, ...) unixCmdStr <- bsubsetStr(file = file, head = head, tail = tail, first_row = first_row, last_row = last_row, ...) %>% paste(qfile) args <- c(cmd = unixCmdStr, args) df <- do.call(data.table::fread, args) colnames(df) <- meta_output$colnames return(df) }
library(shiny) library(shinydashboard) library(shinyBS) library(shinyjs) library(DT) library(ggplot2) library(shinycssloaders) ui <- dashboardPage( dashboardHeader(title = "Diamonds Explorer - Modal demo using shinyBS package" , titleWidth = 600), dashboardSidebar( sidebarMenu( menuItem("Data", tabName = "tab1", icon = icon("th")) ) ), dashboardBody( shinyjs::useShinyjs(), tabItems( tabItem( tabName = "tab1", box( width = 5, title = "Input Data", status = "primary", solidHeader = TRUE, fileInput("file", "Upload Data"), shinyjs::hidden( div(id = "data_b",style="display:inline-block", actionButton("data", "View Data", icon=icon('table')) )), shinyjs::hidden( div(id = "plot_b", style="display:inline-block", actionButton("plot", "View Plot", icon=icon("bar-chart")) )) ))), bsModal(id="dataset", title = "Diamonds Dataset", trigger = "data", size="large", withSpinner(dataTableOutput("data_set"))), bsModal(id= "Plot", title = "Plot", trigger = "plot", size="large", sliderInput(inputId = "b", label = "Select the bin width value" , min = 50 , max = 500, value = 100), br(), withSpinner(plotOutput("plot_gg")) ))) server <- function(input, output) { observeEvent(input$file, shinyjs::show("data_b")) observeEvent(input$file, shinyjs::show("plot_b")) data_uploaded <- reactive({ file1 <- input$file if(is.null(file1)){return()} read.table(file=file1$datapath, sep=",", header = T, stringsAsFactors = T) }) output$data_set <- renderDataTable( data_uploaded(),options=list(scrollX = TRUE)) output$plot_gg <- renderPlot( ggplot(data=data_uploaded()) + geom_histogram(binwidth=input$b, aes(x=price)) + ggtitle("Diamond Price Distribution") + xlab(paste("Diamond Price & binwidth as ", input$b)) + ylab("Frequency") + theme_minimal() + xlim(0,2500) ) } shinyApp(ui=ui, server = server)
reflect <- function(rf, wv) { return((colSums(rf) / nrow(rf)) + ((colSums(rf) / nrow(rf)) - wv)) } expandV <- function(rf, wv) { return((colSums(rf) / nrow(rf)) + 2 * ((colSums(rf) / nrow(rf)) - wv)) } contrRS <- function(rf, wv) { return((colSums(rf) / nrow(rf)) + 0.5 * ((colSums(rf) / nrow(rf)) - wv)) } contrWS <- function(rf, wv) { return((colSums(rf) / nrow(rf)) - 0.5 * ((colSums(rf) / nrow(rf)) - wv)) } checkMain <- function(simplex) { if (class(simplex) != 'smplx') { stop("Argument simplex is expected to be 'smplx' class. Provided: ", class(simplex), ". ", "Use labsimplex() to generate a 'smplx'", "class object") } } checkCrit <- function(crit, lastQF, transf = FALSE) { if (class(crit) == "character") { if (crit == "max") { pos <- order(lastQF) qft <- lastQF } else { if (crit == "min") { pos <- order(lastQF ^ 2, decreasing = TRUE) qft <- 1 / (lastQF ^ 2) } else { stop("If criteria is not numeric, only 'max' or min' are accepted") } } } if (class(crit) == "numeric") { pos <- order((lastQF - crit) ^ 2, decreasing = TRUE) qft <- 1 / ((lastQF - crit) ^ 2) } if (transf) return(qft) else return(pos) } shape <- function(x, simplex){ if (is.null(x)) x <- NA if (length(x) < nrow(simplex$coords)){ x <- c(x, rep(NA, nrow(simplex$coords) - length(x))) } return(x) } AssignQF <- function(simplex, qflv){ if (class(qflv) != "numeric") stop("Argument qflv must be numeric") simplex$qual.fun <- c(simplex$qual.fun, qflv) if (length(simplex$qual.fun) > nrow(simplex$coords)) { stop("The amount of vertices can not be smaller than the size of", " response vector.") } return(simplex) } redundant <- function(simplex, NV, counter) { }
library(PerformanceAnalytics) Rdec <- R / 100 Pret <- apply(W, 2, function(x) Rdec %*% x / 100) SD <- apply(Pret, 2, sd) * 100 ES95 <- apply(Pret, 2, function(x) abs(ES(R = x, method = "modified") * 100)) DR <- apply(W, 2, dr, Sigma = V) CR <- apply(W, 2, cr, Sigma = V) Res <- rbind(SD, ES95, DR, CR)
surv_c30 <- function(x){ covariates <- c('QL','PF','RF','EF','CF','SF','FA','NV','PA','DY','SL','AP','CO','DI','FI') arm1_qol <- qol(x[x$arm==1,]) arm2_qol <- qol(x[x$arm==2,]) univ_formulas <- sapply(covariates,function(y) as.formula(paste('Surv(time, event)~', y))) univ_arm1 <- lapply(univ_formulas,function(y){coxph(y, data = arm1_qol)}) univ_arm2 <- lapply(univ_formulas,function(y){coxph(y, data = arm2_qol)}) univ_results <- mapply(function(x1,x2){ x1 <- summary(x1) x2 <- summary(x2) HR <- signif(x2$coef[2]/x1$coef[2], digits=3); HR.confint.lower <- signif(x2$conf.int[,"lower .95"]/x1$conf.int[,"lower .95"], 3) HR.confint.upper <- signif(x2$conf.int[,"upper .95"]/x1$conf.int[,"upper .95"],3) res<-c(HR,HR.confint.lower,HR.confint.upper) names(res) <- c('HR','Lower 95% CI','Upper 95% CI') return(res)}, univ_arm1,univ_arm2) relative.HR <- t(as.data.frame(univ_results, check.names = FALSE)) return(relative.HR) }
scale_color_grafify <- function(palette = "all_grafify", reverse = FALSE, ...){ pal <- graf_col_palette(palette = palette, reverse = reverse) discrete_scale("colour", paste0("graf_", palette), palette = pal, ...) }
context("PCRE to Java regex") sc <- testthat_spark_connection() as_utf8 <- function(ascii) { invoke_static( sc, "org.apache.spark.unsafe.types.UTF8String", "fromString", ascii ) } to_string <- function(utf8) { invoke(utf8, "toString") } expect_split <- function(x, sep, expected) { sep <- sep %>% pcre_to_java() %>% as_utf8() actual <- x %>% as_utf8() %>% invoke("split", sep, -1L) %>% lapply(to_string) expect_equal(actual, expected) } test_that("pcre_to_java converts [:alnum:] correctly", { test_requires_version("2.0.0") for (delim in c(letters, LETTERS, as.character(seq(0, 9)))) { expect_split(sprintf("^%s$", delim), "[[:alnum:]]", list("^", "$")) expect_split(sprintf("^%s@|$", delim), "[|[:alnum:]]", list("^", "@", "$")) } }) test_that("pcre_to_java converts [:alpha:] correctly", { test_requires_version("2.0.0") for (delim in c(letters, LETTERS)) { expect_split(sprintf("1%s2", delim), "[[:alpha:]]", list("1", "2")) expect_split(sprintf("1%s2|3", delim), "[|[:alpha:]]", list("1", "2", "3")) } }) test_that("pcre_to_java converts [:ascii:] correctly", { test_requires_version("2.0.0") for (x in c("\u00A9", "\u00B1")) { for (delim in c("~", " ", "\033", "a", "Z", "$")) { expect_split(sprintf("%s%s%s", x, delim, x), "[[:ascii:]]", list(x, x)) } } }) test_that("pcre_to_java converts [:blank:] correctly", { test_requires_version("2.0.0") for (delim in c(" ", "\t")) { expect_split(sprintf("^%s$", delim), "[[:blank:]]", list("^", "$")) expect_split(sprintf("^%s@|$", delim), "[|[:blank:]]", list("^", "@", "$")) } }) test_that("pcre_to_java converts [:cntrl:] correctly", { test_requires_version("2.0.0") for (delim in c("\x01", "\x1F", "\x7F")) { expect_split(sprintf("^%s$", delim), "[[:cntrl:]]", list("^", "$")) expect_split(sprintf("^%s@|$", delim), "[|[:cntrl:]]", list("^", "@", "$")) } }) test_that("pcre_to_java converts [:digit:] correctly", { test_requires_version("2.0.0") for (delim in as.character(seq(0, 9))) { expect_split(sprintf("^%s$", delim), "[[:digit:]]", list("^", "$")) expect_split(sprintf("^%s@|$", delim), "[|[:digit:]]", list("^", "@", "$")) } }) test_that("pcre_to_java converts [:graph:] correctly", { test_requires_version("2.0.0") for (delim in c("A", "Z", "a", "z", "0", "9", "\"", "&", "@", "[", "]", "^", "~")) { expect_split( sprintf("\x02%s\x03%s ", delim, delim), "[[:graph:]]", list("\x02", "\x03", " ") ) expect_split( sprintf("\x02%s\x03\x01\x04%s ", delim, delim), "[\x01[:graph:]]", list("\x02", "\x03", "\x04", " ") ) } }) test_that("pcre_to_java converts [:lower:] correctly", { test_requires_version("2.0.0") for (delim in letters) { expect_split(sprintf("A%sB", delim), "[[:lower:]]", list("A", "B")) expect_split(sprintf("A%sB|C", delim), "[|[:lower:]]", list("A", "B", "C")) } }) test_that("pcre_to_java converts [:print:] correctly", { test_requires_version("2.0.0") for (delim in c("A", "Z", "a", "z", "0", "9", "\"", "&", "@", "[", "]", "^", "~")) { expect_split( sprintf("\x01%s\x19%s\x7F", delim, delim), "[[:print:]]", list("\x01", "\x19", "\x7F") ) expect_split( sprintf("\x02%s\x19\x01\x7F%s\x10", delim, delim), "[\x01[:print:]]", list("\x02", "\x19", "\x7F", "\x10") ) } }) test_that("pcre_to_java converts [:punct:] correctly", { test_requires_version("2.0.0") for (delim in c( "!", "\"", " ")", "*", "+", ",", "-", ".", "/", ":", ";", "<", "=", ">", "?", "@", "[", "\\", "]", "^", "_", "'", "{", "|", "}", "~" ) ) { expect_split( sprintf("a%sb%sc", delim, delim), "[[:punct:]]", list("a", "b", "c") ) expect_split( sprintf("a%sb%scAd", delim, delim), "[A[:punct:]]", list("a", "b", "c", "d") ) } }) test_that("pcre_to_java converts [:space:] correctly", { test_requires_version("2.0.0") for (delim in c(" ", "\t", "\r", "\n", "\v", "\f")) { expect_split( sprintf("a%sb%sc", delim, delim), "[[:space:]]", list("a", "b", "c") ) expect_split( sprintf("a%sb%sc&d", delim, delim), "[&[:space:]]", list("a", "b", "c", "d") ) } }) test_that("pcre_to_java converts [:upper:] correctly", { test_requires_version("2.0.0") for (delim in LETTERS) { expect_split(sprintf("a%sb", delim), "[[:upper:]]", list("a", "b")) expect_split(sprintf("a%sb|c", delim), "[|[:upper:]]", list("a", "b", "c")) } }) test_that("pcre_to_java converts [:word:] correctly", { test_requires_version("2.0.0") for (delim in c(letters, LETTERS, "_")) { expect_split(sprintf("^%s$", delim), "[[:word:]]", list("^", "$")) expect_split(sprintf("^%s@|$", delim), "[|[:word:]]", list("^", "@", "$")) } }) test_that("pcre_to_java converts [:xdigits:] correctly", { test_requires_version("2.0.0") for (delim in c( as.character(seq(0, 9)), "a", "b", "c", "d", "e", "f", "A", "B", "C", "D", "E", "F" ) ) { expect_split(sprintf("g%sh", delim), "[[:xdigit:]]", list("g", "h")) expect_split(sprintf("G%sH|I", delim), "[|[:xdigit:]]", list("G", "H", "I")) } })
"volatility" <- function(OHLC, n=10, calc="close", N=260, mean0=FALSE, ...) { OHLC <- try.xts(OHLC, error=as.matrix) calc <- match.arg(calc, c("close","garman.klass","parkinson", "rogers.satchell","gk.yz","yang.zhang")) if( calc=="close" ) { if( NCOL(OHLC) == 1 ) { r <- ROC(OHLC[, 1], 1, ...) } else { r <- ROC(OHLC[, 4], 1, ...) } if( isTRUE(mean0) ) { s <- sqrt(N) * sqrt(runSum(r^2, n-1) / (n-2)) } else { s <- sqrt(N) * runSD(r, n-1) } } if( calc=="garman.klass" ) { s <- sqrt( N/n * runSum( .5 * log(OHLC[,2]/OHLC[,3])^2 - (2*log(2)-1) * log(OHLC[,4]/OHLC[,1])^2 , n ) ) } if( calc=="parkinson" ) { s <- sqrt( N/(4*n*log(2)) * runSum( log(OHLC[,2]/OHLC[,3])^2, n ) ) } if( calc=="rogers.satchell" ) { s <- sqrt( N/n * runSum( log(OHLC[,2]/OHLC[,4]) * log(OHLC[,2]/OHLC[,1]) + log(OHLC[,3]/OHLC[,4]) * log(OHLC[,3]/OHLC[,1]), n ) ) } if( calc=="gk.yz" ) { if(is.xts(OHLC)) { Cl1 <- lag.xts(OHLC[,4]) } else { Cl1 <- c( NA, OHLC[-NROW(OHLC),4] ) } s <- sqrt( N/n * runSum( log(OHLC[,1]/Cl1)^2 + .5 * log(OHLC[,2]/OHLC[,3])^2 - (2*log(2)-1) * log(OHLC[,4]/OHLC[,1])^2 , n) ) } if( calc=="yang.zhang" ) { if(is.xts(OHLC)) { Cl1 <- lag.xts(OHLC[,4]) } else { Cl1 <- c( NA, OHLC[-NROW(OHLC),4] ) } dots <- list(...) if(is.null(dots$alpha)) { alpha <- 1.34 } if(is.null(dots$k)) { k <- (alpha-1) / ( alpha + (n+1)/(n-1) ) } s2o <- N * runVar(log(OHLC[,1] / Cl1), n=n) s2c <- N * runVar(log(OHLC[,4] / OHLC[,1]), n=n) s2rs <- volatility(OHLC=OHLC, n=n, calc="rogers.satchell", N=N, ...) s <- sqrt(s2o + k*s2c + (1-k)*(s2rs^2)) } reclass(s,OHLC) }
"print.variogramModel" = function (x, ...) { df = data.frame(x) shape.models = c("Mat", "Exc", "Cau", "Ste") if (!any(match(df[, "model"], shape.models, nomatch=0))) df$kappa = NULL if (!any(df[, "anis2"] != 1)) { df$anis2 = NULL df$ang2 = NULL df$ang3 = NULL if (!any(df[, "anis1"] != 1)) { df$anis1 = NULL df$ang1 = NULL } } if (any(match(df[, "model"], "Tab", nomatch=0))) { df$maxdist = df$range df$range = NULL print(df, ...) cat("covariance table:\n") tab = attr(x, "table") idx = round(seq(1, length(tab), length=6)) print(tab[idx]) } else print(df, ...) invisible(x) }
setGeneric( "decrease_key", function(obj, from, to, handle) { standardGeneric("decrease_key") }, package = "datastructures" )
trendline_summary <- function(x,y,model="line2P", Pvalue.corrected=TRUE, summary=TRUE, eDigit=5) { model=model OK <- complete.cases(x, y) x <- x[OK] y <- y[OK] z<-data.frame(x,y) z<-na.omit(z) nrow = nrow(z) if (model== c("line2P")) { Pvalue.corrected=TRUE formula = 'y = a*x + b' fit<- lm(y~x) sum.line2P <- summary(fit) ss.res<-sum((residuals(fit))^2) if (summary==TRUE){ print(sum.line2P,digits=eDigit) }else{} coeff<-sum.line2P$coefficients a<-coeff[2,1] b<-coeff[1,1] n<-length(x) pval <- coeff[2,4] pval<-unname(pval) r2 <- sum.line2P$r.squared adjr2<- sum.line2P$adj.r.squared a = format(a, digits = eDigit) b = format(b, digits = eDigit) r2 = format(r2, digits = eDigit) adjr2 = format(adjr2, digits = eDigit) pval = format(pval, digits = eDigit) a=as.numeric(a) b=as.numeric(b) param.out<- c(list("a"=a,"b"=b)) } if (model== c("line3P")) { Pvalue.corrected=TRUE formula = 'y = a*x^2 + b*x + c' fit<-lm(y~I(x^2)+x) sum.line3P <- summary(fit) ss.res<-sum((residuals(fit))^2) if (summary==TRUE){ print(sum.line3P,digits=eDigit) }else{} coeff<-coef(sum.line3P) a<-coeff[2,1] b<-coeff[3,1] c<-coeff[1,1] n<-length(x) r2<-sum.line3P$r.squared adjr2 <- sum.line3P$adj.r.squared fstat<-sum.line3P$fstatistic pval<-pf(fstat[1], fstat[2], fstat[3], lower.tail=FALSE) pval<-unname(pval) a = format(a, digits = eDigit) b = format(b, digits = eDigit) c = format(c, digits = eDigit) r2 = format(r2, digits = eDigit) adjr2 = format(adjr2, digits = eDigit) pval = format(pval, digits = eDigit) a=as.numeric(a) b=as.numeric(b) c=as.numeric(c) param.out<- c(list("a"=a,"b"=b,"c"=c)) } if (model== c("log2P")) { Pvalue.corrected=TRUE formula = 'y = a*ln(x) + b' yadj<-y-min(y) if (min(x)>0) { if (summary==TRUE){ fit0<-lm(y~log(x)) sum.log0<-summary(fit0) ss.res<-sum((residuals(fit0))^2) print(sum.log0, digits = eDigit) }else{} fit<-lm(yadj~log(x)) sum.log<-summary(fit) ss.res<-sum((residuals(fit))^2) a<-sum.log$coefficients[2,1] b<-sum.log$coefficients[1,1] b=b+min(y) fstat<-sum.log$fstatistic pval<-pf(fstat[1], fstat[2], fstat[3], lower.tail=FALSE) pval<-unname(pval) n<-length(x) r2<-sum.log$r.squared adjr2 <- sum.log$adj.r.squared a = format(a, digits = eDigit) b = format(b, digits = eDigit) r2 = format(r2, digits = eDigit) adjr2 = format(adjr2, digits = eDigit) pval= format(pval, digits = eDigit) a=as.numeric(a) b=as.numeric(b) param.out<- c(list("a"=a,"b"=b)) }else{ stop(" 'log2P' model need ALL x values greater than 0. Try other models.") } } if (model== c("exp2P")) { formula = 'y = a*exp(b*x)' n=length(x) k = 2 fit<-nls(y~SSexp2P(x,a,b),data=z) sum.exp2P <- summary(fit) ss.res<-sum((residuals(fit))^2) ss.total.uncor<-sum(y^2) ss.total.cor<-sum((y-mean(y))^2) if (Pvalue.corrected==TRUE){ ss.reg <- ss.total.cor - ss.res dfR= k-1 }else{ ss.reg <- ss.total.uncor - ss.res dfR= k } dfE= n-k Fval=(ss.reg/dfR)/(ss.res/dfE) pval=pf(Fval,dfR,dfE,lower.tail = F) pval<-unname(pval) RSE<-sum.exp2P$sigma SSE<-(RSE^2)*(n-1) adjr2 <- 1-SSE/((var(y))*(n-1)) r2<-1-(1-adjr2)*((n-k)/(n-1)) if (summary==TRUE){ coeff = coef(sum.exp2P) cat("\nNonlinear regression model\n") cat("\nFormula: y = a*exp(b*x)","\n") df <- sum.exp2P$df rdf <- df[2L] cat("\nParameters:\n") printCoefmat(coeff, digits = eDigit) cat("\nResidual standard error:", format(sum.exp2P$sigma, digits = eDigit), "on", rdf, "degrees of freedom","\n") convInfo = fit$convInfo iterations<-convInfo$finIter tolerance<-convInfo$finTol cat("\nNumber of iterations to convergence:", format(iterations, digits = eDigit)) cat("\nAchieved convergence tolerance:",format(tolerance, digits = eDigit),"\n") cat("\nMultiple R-squared:", format(r2, digits = eDigit), ", Adjusted R-squared: ", format(adjr2, digits = eDigit)) cat("\nF-statistic:", format(Fval, digits = eDigit), "on", dfR, "and", dfE, "DF, ", "p-value:", format(pval, digits = eDigit), "\n") }else{} coeffs<-sum.exp2P$coefficients a<-coeffs[1,1] b<-coeffs[2,1] a = format(a, digits = eDigit) b = format(b, digits = eDigit) r2 = format(r2, digits = eDigit) adjr2 = format(adjr2, digits = eDigit) pval= format(pval, digits = eDigit) a=as.numeric(a) b=as.numeric(b) param.out<- c(list("a"=a,"b"=b)) } if (model== c("exp3P")) { formula = 'y = a*exp(b*x) + c' yadj<-y-min(y)+1 zzz<-data.frame(x,yadj) n=length(x) k = 3 fit<-nls(yadj~SSexp3P(x,a,b,c),data=zzz) sum.exp3P <- summary(fit) ss.res<-sum((residuals(fit))^2) ss.total.uncor<-sum(y^2) ss.total.cor<-sum((y-mean(y))^2) if (Pvalue.corrected==TRUE){ ss.reg <- ss.total.cor - ss.res dfR= k-1 }else{ ss.reg <- ss.total.uncor - ss.res dfR= k } dfE= n-k Fval=(ss.reg/dfR)/(ss.res/dfE) pval=pf(Fval,dfR,dfE,lower.tail = F) pval<-unname(pval) RSE<-sum.exp3P$sigma SSE<-(RSE^2)*(n-1) adjr2 <- 1-SSE/((var(y))*(n-1)) r2<-1-(1-adjr2)*((n-k)/(n-1)) if (summary==TRUE){ coeffadj = coef(sum.exp3P) ab.param<-coeffadj[1:2,] c.param<-coeffadj[3,] c.p1<-c.param[1] c.p1 = c.p1 + min(y)-1 c.se<-c.param[2] c.tval<-c.p1/c.se c.pval<-2 * pt(abs(c.tval), n-k, lower.tail = FALSE) c<-c(c.p1,c.se,c.tval,c.pval) coeff.re.adj<- rbind(ab.param,c) cat("\nNonlinear regression model\n") cat("\nFormula: y = a*exp(b*x) + c","\n") df <- sum.exp3P$df rdf <- df[2L] cat("\nParameters:\n") printCoefmat(coeff.re.adj, digits = eDigit) cat("\nResidual standard error:", format(sum.exp3P$sigma, digits = eDigit), "on", rdf, "degrees of freedom","\n") convInfo = fit$convInfo iterations<-convInfo$finIter tolerance<-convInfo$finTol cat("\nNumber of iterations to convergence:", format(iterations, digits = eDigit)) cat("\nAchieved convergence tolerance:",format(tolerance, digits = eDigit),"\n") cat("\nMultiple R-squared:", format(r2, digits = eDigit), ", Adjusted R-squared: ", format(adjr2, digits = eDigit)) cat("\nF-statistic:", format(Fval, digits = eDigit), "on", dfR, "and", dfE, "DF, ", "p-value:", format(pval, digits = eDigit), "\n") }else{} coeff<-sum.exp3P$coefficients a<-coeff[1,1] b<-coeff[2,1] c<-coeff[3,1]+min(y)-1 a = format(a, digits = eDigit) b = format(b, digits = eDigit) c = format(c, digits = eDigit) r2 = format(r2, digits = eDigit) adjr2 = format(adjr2, digits = eDigit) pval= format(pval, digits = eDigit) a=as.numeric(a) b=as.numeric(b) c=as.numeric(c) param.out<- c(list("a"=a,"b"=b,"c"=c)) } if (model== c("power2P")) { formula = 'y = a*x^b' n<-length(x) k = 2 if (min(x)>0){ fit<-nls(y ~ SSpower2P(x,a,b),data=z) sum.power2P <- summary(fit) ss.res<-sum((residuals(fit))^2) ss.total.uncor<-sum(y^2) ss.total.cor<-sum((y-mean(y))^2) if (Pvalue.corrected==TRUE){ ss.reg <- ss.total.cor - ss.res dfR= k-1 }else{ ss.reg <- ss.total.uncor - ss.res dfR= k } dfE = n-k Fval = (ss.reg/dfR)/(ss.res/dfE) pval = pf(Fval,dfR,dfE,lower.tail = F) pval <- unname(pval) RSE<-sum.power2P$sigma SSE<-(RSE^2)*(n-1) adjr2 <- 1-SSE/((var(y))*(n-1)) r2 <- 1-(1-adjr2)*((n-k)/(n-1)) if (summary==TRUE){ coeff = coef(sum.power2P) ab.param<-coeff[1:2,] cat("\nNonlinear regression model\n") cat("\nFormula: y = a*x^b","\n") df <- sum.power2P$df rdf <- df[2L] cat("\nParameters:\n") printCoefmat(coeff, digits = eDigit) cat("\nResidual standard error:", format(sum.power2P$sigma, digits = eDigit), "on", rdf, "degrees of freedom","\n") convInfo = fit$convInfo iterations<-convInfo$finIter tolerance<-convInfo$finTol cat("\nNumber of iterations to convergence:", format(iterations, digits = eDigit)) cat("\nAchieved convergence tolerance:",format(tolerance, digits = eDigit),"\n") cat("\nMultiple R-squared:", format(r2, digits = eDigit), ", Adjusted R-squared: ", format(adjr2, digits = eDigit)) cat("\nF-statistic:", format(Fval, digits = eDigit), "on", dfR, "and", dfE, "DF, ", "p-value:", format(pval, digits = eDigit), "\n") }else{} coeffs<-sum.power2P$coefficients a<-coeffs[1,1] b<-coeffs[2,1] a = format(a, digits = eDigit) b = format(b, digits = eDigit) r2 = format(r2, digits = eDigit) adjr2 = format(adjr2, digits = eDigit) pval = format(pval, digits = eDigit) a=as.numeric(a) b=as.numeric(b) param.out<- c(list("a"=a,"b"=b)) }else{ stop(" 'power2P' model need ALL x values greater than 0. Try other models.") } } if (model== c("power3P")) { formula = 'y = a*x^b + c' yadj<-y-min(y)+1 zzz<-data.frame(x,yadj) n<-length(x) k = 3 if (min(x)>0){ fit<-nls(yadj~SSpower3P(x,a,b,c),data=zzz) sum.power3P <- summary(fit) ss.res<-sum((residuals(fit))^2) ss.total.uncor<-sum(y^2) ss.total.cor<-sum((y-mean(y))^2) if (Pvalue.corrected==TRUE){ ss.reg <- ss.total.cor - ss.res dfR= k-1 }else{ ss.reg <- ss.total.uncor - ss.res dfR= k } dfE= n-k Fval=(ss.reg/dfR)/(ss.res/dfE) pval=pf(Fval,dfR,dfE,lower.tail = F) pval<-unname(pval) RSE<-sum.power3P$sigma SSE<-(RSE^2)*(n-1) adjr2 <- 1-SSE/((var(y))*(n-1)) r2<-1-(1-adjr2)*((n-k)/(n-1)) if (summary==TRUE){ coeffadj = coef(sum.power3P) ab.param<-coeffadj[1:2,] c.param<-coeffadj[3,] c.p1<-c.param[1] c.p1 = c.p1 + min(y)-1 c.se<-c.param[2] c.tval<-c.p1/c.se c.pval<-2 * pt(abs(c.tval), n-k, lower.tail = FALSE) c<-c(c.p1,c.se,c.tval,c.pval) coeff.re.adj<- rbind(ab.param,c) cat("\nNonlinear regression model\n") cat("\nFormula: y = a*x^b + c","\n") df <- sum.power3P$df rdf <- df[2L] cat("\nParameters:\n") printCoefmat(coeff.re.adj, digits = eDigit) cat("\nResidual standard error:", format(sum.power3P$sigma, digits = eDigit), "on", rdf, "degrees of freedom","\n") convInfo = fit$convInfo iterations<-convInfo$finIter tolerance<-convInfo$finTol cat("\nNumber of iterations to convergence:", format(iterations, digits = eDigit)) cat("\nAchieved convergence tolerance:",format(tolerance, digits = eDigit),"\n") cat("\nMultiple R-squared:", format(r2, digits = eDigit), ", Adjusted R-squared: ", format(adjr2, digits = eDigit)) cat("\nF-statistic:", format(Fval, digits = eDigit), "on", dfR, "and", dfE, "DF, ", "p-value:", format(pval, digits = eDigit), "\n") }else{} coeff<-sum.power3P$coefficients a<-coeff[1,1] b<-coeff[2,1] c<-coeff[3,1] c<-c+min(y)-1 a = format(a, digits = eDigit) b = format(b, digits = eDigit) c = format(c, digits = eDigit) r2 = format(r2, digits = eDigit) adjr2 = format(adjr2, digits = eDigit) pval = format(pval, digits = eDigit) a=as.numeric(a) b=as.numeric(b) c=as.numeric(c) param.out<- c(list("a"=a,"b"=b,"c"=c)) }else{ stop(" 'power3P' model need ALL x values greater than 0. Try other models.") } }else{ Check<-c("line2P","line3P","log2P","exp2P","exp3P","power2P","power3P") if (!model %in% Check) stop(" \"model\" should be one of c(\"lin2P\",\"line3P\",\"log2P\",\"exp2P\",\"exp3P\",\"power2P\",\"power3P\".") } nrow = as.numeric(nrow) r2=as.numeric(r2) adjr2=as.numeric(adjr2) pval=as.numeric(pval) AIC = as.numeric(format(AIC(fit), digits = eDigit)) BIC = as.numeric(format(BIC(fit), digits = eDigit)) ss.res=as.numeric(format(ss.res, digits = eDigit)) if (summary==TRUE){ cat("\nN:", nrow, ", AIC:", AIC, ", BIC: ", BIC, "\nResidual Sum of Squares: ", ss.res,"\n") }else{} invisible(list(formula=formula, parameter=param.out, R.squared=r2, adj.R.squared=adjr2, p.value = pval, N = nrow, AIC=AIC, BIC=BIC, RSS=ss.res)) }
format_data <- function(data, y, X, time, lon = "lon", lat = "lat", station = NULL, nknots = 25L, covariance = c("squared-exponential", "exponential", "matern"), fixed_intercept = FALSE, cluster = c("pam", "kmeans")) { data <- as.data.frame(data) cluster <- match.arg(cluster) covariance <- match.arg(covariance) if (is.null(time)) { data$time <- 1 time <- "time" } yearID <- as.numeric(data[, time, drop = TRUE]) yearID <- yearID - min(yearID) + 1 if (is.null(station)) { stationID <- seq_len(nrow(data)) } else { stationID <- as.numeric(forcats::as_factor(data[, station, drop = TRUE])) } data$stationID <- stationID if (length(unique(stationID)) < length(stationID)) { first_instance <- which(!duplicated(stationID)) if (cluster == "pam") { knots <- cluster::pam(data[first_instance, c(lon, lat), drop = FALSE], nknots)$medoids } else { if (cluster == "kmeans") { knots <- stats::kmeans(data[first_instance, c(lon, lat), drop = FALSE], nknots)$centers } else { knots <- data[first_instance, c(lon, lat)] } } distKnots <- as.matrix(dist(knots)) ix <- sort(data[first_instance, "stationID"], index.return = TRUE)$ix distAll <- as.matrix(stats::dist(rbind(data[first_instance, c(lon, lat)][ix, ], knots))) nLocs <- length(first_instance) } else { if (cluster == "pam") { knots <- cluster::pam(data[, c(lon, lat), drop = FALSE], nknots)$medoids } else { if (cluster == "kmeans") { knots <- stats::kmeans(data[, c(lon, lat), drop = FALSE], nknots)$centers } else { knots <- data[, c(lon, lat), drop = FALSE] } } distKnots <- as.matrix(dist(knots)) distAll <- as.matrix(stats::dist(rbind(data[, c(lon, lat), drop = FALSE], knots))) nLocs <- nrow(data) } if (covariance == "squared-exponential") { distKnots <- distKnots^2 distAll <- distAll^2 } distKnots21 <- t(distAll[-seq_len(nLocs), -seq(nLocs + 1, ncol(distAll))]) spatglm_data <- list( nKnots = nknots, nLocs = nLocs, nT = max(yearID), N = length(y), stationID = stationID, yearID = yearID, y = y, distKnots = distKnots, distKnots21 = distKnots21, X = X, nCov = if(fixed_intercept) 0 else ncol(X) ) list(spatglm_data = spatglm_data, knots = knots) }
source("utils.R") wml_is_italic <- function(doc_){ !inherits(xml_find_first(doc_, "/w:document/w:rPr/w:i"), "xml_missing") } wml_is_bold <- function(doc_){ !inherits(xml_find_first(doc_, "/w:document/w:rPr/w:b"), "xml_missing") } wml_is_underline <- function(doc_){ !inherits(xml_find_first(doc_, "/w:document/w:rPr/w:u"), "xml_missing") } test_that("wml - font size", { fp <- fp_text(font.size = 10) xml_ <- format(fp, type = "wml") doc <- read_xml( wml_str(xml_) ) sz <- xml_find_first(doc, "/w:document/w:rPr/w:sz") szCs <- xml_find_first(doc, "/w:document/w:rPr/w:szCs") expect_false(inherits( szCs, "xml_missing") ) expect_false(inherits( sz, "xml_missing") ) expect_equal(xml_attr(sz, "val"), xml_attr(szCs, "val")) expect_equal(xml_attr(sz, "val"), expected = "20") }) test_that("wml - bold italic underlined", { fp_bold <- fp_text(bold = TRUE) fp_italic <- update(fp_bold, bold = FALSE, italic = TRUE) fp_bold_italic <- update(fp_bold, italic = TRUE) fp_underline <- fp_text(underlined = TRUE ) xml_bold_ <- format(fp_bold, type = "wml") xml_italic_ <- format(fp_italic, type = "wml") xml_bolditalic_ <- format(fp_bold_italic, type = "wml") xml_underline_ <- format(fp_underline, type = "wml") doc_bold_ <- read_xml( wml_str(xml_bold_) ) doc_italic_ <- read_xml( wml_str(xml_italic_) ) doc_bolditalic_ <- read_xml( wml_str(xml_bolditalic_) ) doc_underline_ <- read_xml( wml_str(xml_underline_) ) expect_equal(wml_is_bold(doc_bold_), TRUE) expect_equal( xml_attr(xml_find_first(doc_bold_, "/w:document/w:rPr/w:i"), "val"), "false") expect_equal( xml_attr(xml_find_first(doc_italic_, "/w:document/w:rPr/w:b"), "val"), "false") expect_equal( xml_attr(xml_find_first(doc_italic_, "/w:document/w:rPr/w:i"), "val"), "true") expect_equal( xml_attr(xml_find_first(doc_italic_, "/w:document/w:rPr/w:b"), "val"), "false") expect_equal( xml_attr(xml_find_first(doc_italic_, "/w:document/w:rPr/w:i"), "val"), "true") expect_equal(wml_is_bold(doc_bolditalic_), TRUE) expect_equal(wml_is_italic(doc_bolditalic_), TRUE) expect_equal( xml_attr(xml_find_first(doc_bold_, "/w:document/w:rPr/w:u"), "val"), "none") expect_equal( xml_attr(xml_find_first(doc_underline_, "/w:document/w:rPr/w:u"), "val"), "single") }) test_that("wml - font name", { fontname = "Arial" fp_ <- fp_text(font.family = fontname) xml_ <- format(fp_, type = "wml") doc_ <- read_xml( wml_str(xml_) ) node <- xml_find_first(doc_, "/w:document/w:rPr/w:rFonts") expect_false(inherits(node, "xml_missing")) expect_equal( xml_attr(node, "ascii"), fontname ) expect_equal( xml_attr(node, "hAnsi"), fontname ) expect_equal( xml_attr(node, "cs"), fontname ) }) test_that("wml - font color", { fp_ <- fp_text(color = grDevices::rgb(.8, .2, .1, .6)) xml_ <- format(fp_, type = "wml") doc_ <- read_xml( wml_str(xml_) ) node <- xml_find_first(doc_, "/w:document/w:rPr/w:color") expect_false(inherits(node, "xml_missing")) expect_equal( xml_attr(node, "val"), "CC331A" ) node <- xml_find_first(doc_, "/w:document/w:rPr/w14:textFill") expect_false(inherits(node, "xml_missing")) expect_equal( xml_attr(xml_child(node, "w14:solidFill/w14:srgbClr"), "val"), "CC331A" ) expect_equal( xml_attr(xml_child(node, "w14:solidFill/w14:srgbClr/w14:alpha"), "val"), "60000" ) }) test_that("wml - shading color", { fp_ <- fp_text(shading.color = rgb(1,0,1)) xml_ <- format(fp_, type = "wml") doc_ <- read_xml( wml_str(xml_) ) node <- xml_find_first(doc_, "/w:document/w:rPr/w:shd") expect_false(inherits(node, "xml_missing")) expect_equal( xml_attr(node, "fill"), "FF00FF" ) }) pml_has_true_attr <- function(doc_, what = "b"){ rpr <- xml_find_first(doc_, "/a:document/a:rPr") val <- xml_attr(rpr, what) !is.na( val ) && val == "1" } pml_attr <- function(doc_, what = "u"){ rpr <- xml_find_first(doc_, "/a:document/a:rPr") xml_attr(rpr, what) } test_that("pml - font size", { fp <- fp_text(font.size = 10) xml_ <- format(fp, type = "pml") doc_ <- read_xml( pml_str(xml_) ) rpr <- xml_find_first(doc_, "/a:document/a:rPr") expect_equal(xml_attr(rpr, "sz"), "1000") }) test_that("pml - bold italic underlined", { fp_bold <- fp_text(bold = TRUE) fp_italic <- update(fp_bold, bold = FALSE, italic = TRUE) fp_bold_italic <- update(fp_bold, italic = TRUE) fp_underline <- fp_text(underlined = TRUE ) xml_bold_ <- format(fp_bold, type = "pml") xml_italic_ <- format(fp_italic, type = "pml") xml_bolditalic_ <- format(fp_bold_italic, type = "pml") xml_underline_ <- format(fp_underline, type = "pml") doc_bold_ <- read_xml( pml_str(xml_bold_) ) doc_italic_ <- read_xml( pml_str(xml_italic_) ) doc_bolditalic_ <- read_xml( pml_str(xml_bolditalic_) ) doc_underline_ <- read_xml( pml_str(xml_underline_) ) expect_equal(pml_has_true_attr(doc_bold_, "b"), TRUE) expect_equal(pml_has_true_attr(doc_bold_, "i"), FALSE) expect_equal(pml_has_true_attr(doc_bold_, "u"), FALSE) expect_equal(pml_has_true_attr(doc_italic_, "b"), FALSE) expect_equal(pml_has_true_attr(doc_italic_, "i"), TRUE) expect_equal(pml_has_true_attr(doc_italic_, "u"), FALSE) expect_equal(pml_has_true_attr(doc_bolditalic_, "b"), TRUE) expect_equal(pml_has_true_attr(doc_bolditalic_, "i"), TRUE) expect_equal(pml_has_true_attr(doc_bolditalic_, "u"), FALSE) expect_equal(pml_has_true_attr(doc_underline_, "b"), FALSE) expect_equal(pml_has_true_attr(doc_underline_, "i"), FALSE) expect_equal(pml_attr(doc_underline_, "u"), "sng") }) test_that("pml - font name", { fontname = "Arial" fp_ <- fp_text(font.family = fontname) xml_ <- format(fp_, type = "pml") doc_ <- read_xml( pml_str(xml_) ) node <- xml_find_first(doc_, "/a:document/a:rPr/a:latin") expect_false(inherits(node, "xml_missing")) expect_equal( xml_attr(node, "typeface"), fontname ) node <- xml_find_first(doc_, "/a:document/a:rPr/a:cs") expect_false(inherits(node, "xml_missing")) expect_equal( xml_attr(node, "typeface"), fontname ) }) test_that("pml - font color", { fp_ <- fp_text(color= rgb(1, 0, 0, .5 )) xml_ <- format(fp_, type = "pml") doc_ <- read_xml( pml_str(xml_) ) node <- xml_find_first(doc_, "/a:document/a:rPr/a:solidFill/a:srgbClr") expect_false(inherits(node, "xml_missing")) expect_equal( xml_attr(node, "val"), "FF0000" ) node <- xml_find_first(doc_, "/a:document/a:rPr/a:solidFill/a:srgbClr/a:alpha") expect_equal( xml_attr(node, "val"), "50196" ) }) test_that("css", { fp <- fp_text(font.size = 10, color = " expect_true(has_css_color(fp, "color", "rgba\\(0,255,255,0.20\\)")) expect_true(has_css_attr(fp, "font-family", "'Arial'")) expect_true(has_css_attr(fp, "font-size", "10.0pt")) expect_true(has_css_attr(fp, "font-style", "normal")) expect_true(has_css_attr(fp, "font-weight", "normal")) expect_true(has_css_attr(fp, "text-decoration", "none")) expect_true(has_css_color(fp, "background-color", "rgba\\(0,255,255,0.80\\)")) fp <- fp_text(bold = TRUE, italic = TRUE, underlined = TRUE) expect_true(has_css_attr(fp, "font-style", "italic")) expect_true(has_css_attr(fp, "font-weight", "bold")) expect_true(has_css_attr(fp, "text-decoration", "underline")) })
cdf.ensembleBMAgamma <- function(fit, ensembleData, values, dates = NULL, ...) { powfun <- function(x,power) x^power powinv <- function(x,power) x^(1/power) weps <- 1.e-4 matchITandFH(fit,ensembleData) ensembleData <- ensembleData[,matchEnsembleMembers(fit,ensembleData)] M <- !dataNA(ensembleData,observations=FALSE) if (!all(M)) ensembleData <- ensembleData[M,] fitDates <- modelDates(fit) M <- matchDates( fitDates, ensembleValidDates(ensembleData), dates=dates) if (!all(M$ens)) ensembleData <- ensembleData[M$ens,] if (!all(M$fit)) fit <- fit[fitDates[M$fit]] if (is.null(dates)) dates <- modelDates(fit) nObs <- nrow(ensembleData) if (!nObs) stop("no data") Dates <- ensembleValidDates(ensembleData) nForecasts <- ensembleSize(ensembleData) CDF <- matrix( NA, nrow = nObs, ncol = length(values)) dimnames(CDF) <- list(dataObsLabels(ensembleData), as.character(values)) ensembleData <- ensembleForecasts(ensembleData) l <- 0 for (d in dates) { l <- l + 1 WEIGHTS <- fit$weights[,d] if (all(Wmiss <- is.na(WEIGHTS))) next I <- which(as.logical(match(Dates, d, nomatch = 0))) for (i in I) { f <- ensembleData[i,] M <- is.na(f) | Wmiss VAR <- (fit$varCoefs[1,d] + fit$varCoefs[2,d]*f)^2 fTrans <- sapply(f, powfun, power = fit$power) MEAN <- apply(rbind(1, fTrans) * fit$biasCoefs[,d], 2, sum) W <- WEIGHTS if (any(M)) { W <- W + weps W <- W[!M]/sum(W[!M]) } CDF[i,] <- sapply( sapply( values, powfun, power = fit$power), cdfBMAgamma, WEIGHTS = W, MEAN = MEAN[!M], VAR = VAR[!M]) } } CDF }
source("tinytest-settings.R") using("ttdo") expect_identical_xl( faviconDuckDuckGo("address.domain"), "https://icons.duckduckgo.com/ip3/address.domain.ico" ) expect_identical_xl( faviconPlease("https://address.domain/path", functions = NULL), "https://icons.duckduckgo.com/ip3/address.domain.ico" )
survDataCheck <- function(data, diagnosis.plot = FALSE) { if (!("data.frame" %in% class(data))) { return(msgTableSingleton("dataframeExpected", "A dataframe is expected.")) } ref.names <- c("replicate","conc","time","Nsurv") missing.names <- ref.names[which(is.na(match(ref.names, names(data))))] if (length(missing.names) != 0) { msg <- paste("The column ", missing.names, " is missing.", sep = "") return(msgTableSingleton("missingColumn",msg)) } errors <- msgTableCreate() subdata <- split(data, list(data$replicate), drop = TRUE) if (any(unlist(lapply(subdata, function(x) x$time[1] != 0)))) { msg <- "Data are required at time 0 for each replicate." errors <- msgTableAdd(errors, "firstTime0", msg) } if (!is.double(data$conc) && !is.integer(data$conc)) { msg <- "Column 'conc' must contain only numerical values." errors <- msgTableAdd(errors, "concNumeric", msg) } if (!is.numeric(data$time)) { msg <- "Column 'time' must contain only numerical values." errors <- msgTableAdd(errors, "timeNumeric", msg) } if (!is.integer(data$Nsurv)) { msg <- "Column 'Nsurv' must contain only integer values." errors <- msgTableAdd(errors, "NsurvInteger", msg) } table <- subset(data, select = -c(replicate)) if (any(table < 0.0, na.rm = TRUE)) { msg <- "Data must contain only positive values." errors <- msgTableAdd(errors, "tablePositive", msg) } datatime0 <- data[data$time == 0, ] if (any(datatime0$Nsurv == 0)) { msg <- "Nsurv should be different to 0 at time 0 for each concentration and each replicate." errors <- msgTableAdd(errors, "Nsurv0T0", msg) } ID <- idCreate(data) if (any(duplicated(ID))) { msg <- paste("The (replicate, time) pair ", ID[duplicated(ID)], " is duplicated.", sep = "") errors <- msgTableAdd(errors, "duplicatedID", msg) } df_variation <- data %>% filter(!is.na(Nsurv)) %>% group_by(replicate) %>% arrange(time) %>% mutate(Nprec = ifelse(time == min(time), Nsurv, lag(Nsurv))) %>% mutate(decrease = Nsurv <= Nprec) %>% summarise(decreasing = all(decrease)) if (! all(df_variation$decreasing)) { replicates <- df_variation$replicate[! df_variation$decreasing] msg <- paste( "'Nsurv' increases at some time points in replicate(s) ", paste(replicates, collapse=", "), ".", sep = "") errors <- msgTableAdd(errors, "NsurvIncrease", msg) } df_checkMaxTimeSurv <- data %>% filter(!is.na(Nsurv)) %>% group_by(replicate) %>% filter(time == max(time)) df_checkMaxTimeConc <- data %>% filter(!is.na(conc)) %>% group_by(replicate) %>% filter(time == max(time)) if(!all(df_checkMaxTimeConc$time >= df_checkMaxTimeSurv$time) ){ msg <- "In each 'replicate', maximum time for concentration record should be greater or equal to maximum time in survival data observation." errors <- msgTableAdd(errors, "maxTimeDiffer", msg) } if (diagnosis.plot && "NsurvIncrease" %in% errors$id) { survDataPlotFull(data, ylab = "Number of surviving individuals") } return(errors) }
skip_if_no_token <- function() { if (identical(Sys.getenv("TOKEN_PATH"), "")) { skip("No authentication available") } else { tokens <- readRDS(Sys.getenv("TOKEN_PATH")) tokens[[length(tokens)]] } } token <- skip_if_no_token() testthat::test_that("create, update, upload file, delete", { skip_if_no_token() board <- trelloR::add_board( name = paste0("trelloR testing: ", Sys.Date()), body = list(defaultLists = TRUE, desc = "Test trelloR with testthat"), token = token ) testthat::expect_is(board, "list") testthat::expect_equal(board$desc, "Test trelloR with testthat") updated <- trelloR::update_resource( "board", id = board$id, body = list(desc = "Updated description"), token = token ) testthat::expect_is(updated, "list") testthat::expect_equal(updated$desc, "Updated description") list_ <- trelloR::add_list( board$id, name = "Testing", pos = 1L, token = token ) testthat::expect_is(list_, "list") testthat::expect_equal(list_$name, "Testing") card <- trelloR::add_card( list_$id, body = list( name = "Testing", desc = "A testing card." ), token = token ) testthat::expect_is(card, "list") testthat::expect_equal(card$desc, "A testing card.") attachment <- trelloR::create_resource( resource = "card", path = "attachments", id = card$id, body = list( name = "A dog in yellow tuque", file = httr::upload_file("attachment.jpg"), setCover = TRUE ), token = token ) cover <- get_resource("card", id = card$id, token = token) testthat::expect_is(attachment, "list") testthat::expect_equal(cover$idAttachmentCover, attachment$id) deleted <- trelloR::delete_resource("board", board$id, token = token) testthat::expect_is(deleted, "list") testthat::expect_null(deleted[["_value"]]) })
gaussianKernel <- function(size,sig){ x = seq(-(size-1)/2, (size-1)/2, length=size) x = matrix(x, size, size) z = exp(- (x^2 + t(x)^2) / (2*sig^2)) z = z / sum(z) return(z) } utils::globalVariables(".") gaussianFilter <- function(surfaceMat, res, wavelength, filtertype = "bp", filterSize = NULL){ if(filtertype %in% c("lp","hp")){ sig <- (wavelength/res)/(2*pi) if(is.null(filterSize)){ filterSize <- {2*ceiling(2.6*sig) + 1} %>% magrittr::add(. %% 2) } kern <- gaussianKernel(size = filterSize, sig = sig) surfaceMatP <- surfaceMat if((filterSize - dim(surfaceMat)[1]) %% 2 == 1){ surfaceMatP <- surfaceMatP %>% rbind(rep(0,times = ncol(.))) } if((filterSize - dim(surfaceMat)[2]) %% 2 == 1){ surfaceMatP <- surfaceMatP %>% cbind(rep(0,times = nrow(.))) } dimPadded <- dim(surfaceMatP) + filterSize imPadded <- surfaceMatP %>% imager::as.cimg() %>% imager::pad(nPix = dimPadded[1] - dim(surfaceMatP)[1], axes = "y", pos = 0) %>% imager::pad(nPix = dimPadded[2] - dim(surfaceMatP)[2], axes = "x", pos = 0) %>% as.matrix() kernPadded <- kern %>% imager::as.cimg() %>% imager::pad(nPix = {dimPadded[1] - filterSize} %>% magrittr::add(. %% 2), axes = "x", pos = 0) %>% imager::pad(nPix = {dimPadded[2] - filterSize} %>% magrittr::add(. %% 2), axes = "y", pos = 0) %>% as.matrix() } if(filtertype == "lp"){ imFiltered <- imPadded %>% fft() %>% magrittr::multiply_by(fft(kernPadded)) %>% fft(inverse = TRUE) %>% magrittr::divide_by(prod(dimPadded)) %>% fftshift() imFiltered <- Re(imFiltered) %>% imager::as.cimg() %>% imager::crop.borders(nx = {dimPadded[1] - dim(surfaceMatP)[1]} %>% magrittr::add(-1*(. %% 2)) %>% magrittr::divide_by(2), ny = {dimPadded[2] - dim(surfaceMatP)[2]} %>% magrittr::add(-1*(. %% 2)) %>% magrittr::divide_by(2)) %>% as.matrix() } else if(filtertype == "hp"){ imFilteredLP <- imPadded %>% fft() %>% magrittr::multiply_by(fft(kernPadded)) %>% fft(inverse = TRUE) %>% magrittr::divide_by(prod(dimPadded)) %>% fftshift() imFiltered <- imPadded - imFilteredLP imFiltered <- Re(imFiltered) %>% imager::as.cimg() %>% imager::crop.borders(nx = {dimPadded[1] - dim(surfaceMatP)[1]} %>% magrittr::add(-1*(. %% 2)) %>% magrittr::divide_by(2), ny = {dimPadded[2] - dim(surfaceMatP)[2]} %>% magrittr::add(-1*(. %% 2)) %>% magrittr::divide_by(2)) %>% as.matrix() } else if(filtertype == "bp"){ imFiltered <- gaussianFilter(surfaceMat = surfaceMat %>% gaussianFilter(res = res, wavelength = max(wavelength), filtertype = "hp"), res = res, wavelength = min(wavelength), filtertype = "lp") } if((dim(imFiltered)[1] - dim(surfaceMat)[1]) %% 2 == 1){ imFiltered <- imFiltered[1:(nrow(imFiltered) - 1),1:ncol(imFiltered)] } if((dim(imFiltered)[2] - dim(surfaceMat)[2]) %% 2 == 1){ imFiltered <- imFiltered[1:nrow(imFiltered),1:(ncol(imFiltered) - 1)] } return(imFiltered) }
findRmd <- function(path = ".", pattern = "Hello World", case.sensitive = TRUE, show.results = TRUE, copy = FALSE, folder = "findRmd", overwrite = TRUE) { fls <- list.files(path, pattern = "\\.rmd$", full.names = T, recursive = T, ignore.case = T) if (length(fls) > 0) { hits <- NULL for (i in 1:length(fls)) { if (case.sensitive == FALSE) { pattern <- tolower(pattern) a <- tolower(readLines(fls[i], warn = F)) } else { a <- readLines(fls[i], warn = F) } if (length(grep(pattern, a)) > 0) { path_to_file <- fls[i] line <- which(grepl(pattern, a)) hit <- cbind.data.frame(path_to_file, line) hits <- rbind.data.frame(hits, hit) rm(hit) } } if (copy == TRUE) { dir.create(folder) if (!is.null(hits)) { for (i in 1:nrow(hits)) { file.copy(hits$path_to_file[i], folder, overwrite = overwrite) } } } message(paste0("Number of R markdown files scanned: ", length(fls))) if (!is.null(hits)) { message(paste0("Number of R markdown files with matching content: ", length(unique(hits$path_to_file)))) message(paste0("Total number of matches: ", nrow(hits))) if (show.results == TRUE) hits } else { message("Number of R markdown files with matching content: 0") message("Total number of matches: 0") } } else { message(paste0("No R markdown files found!")) } }
context("dplyr do") skip_databricks_connect() sc <- testthat_spark_connection() test_requires("ggplot2") diamonds_tbl <- testthat_tbl("diamonds") test_that("the (serial) implementation of 'do' functions as expected", { test_requires("dplyr") R <- diamonds %>% filter(color == "E" | color == "I", clarity == "SI1") %>% group_by(color, clarity) %>% do(model = lm(price ~ x + y + z, data = .)) S <- diamonds_tbl %>% filter(color == "E" | color == "I", clarity == "SI1") %>% group_by(color, clarity) %>% do(model = ml_linear_regression(., price ~ x + y + z)) R <- arrange(R, as.character(color), as.character(clarity)) S <- arrange(S, as.character(color), as.character(clarity)) expect_identical(nrow(R), nrow(S)) for (i in seq_len(nrow(R))) { lhs <- R$model[[i]] rhs <- S$model[[i]] expect_equal(lhs$coefficients, rhs$coefficients) } })
require(OneStep) require(actuar) n <- 1e3 x <- rexp(n) try( benchonestep(x, "exp", "jaimeleraisindetable") ) try( benchonestep(x, "exp") ) try( benchonestep(x, "exp2", "mle") ) try( benchonestep(matrix(x, 2, n/2), "exp2", "mle") )
poped.choose(2,5) poped.choose("foo",66) poped.choose(NULL,"hello")
rp.tkrplot <- function(panel, name, plotfun, action = NA, mousedrag = NA, mouseup = NA, hscale = 1, vscale = 1, pos = NULL, foreground = NULL, background = NULL, margins=c(0, 0, 0, 0), parentname = deparse(substitute(panel)), mar = par()$mar, ...) { if (!requireNamespace("tkrplot", quietly = TRUE)) stop("the tkrplot package is not available.") panelname <- panel$panelname name <- deparse(substitute(name)) if (is.null(pos) && length(list(...)) > 0) pos <- list(...) pf <- function() { panel <- rp.control.get(panelname) panel <- plotfun(panel) rp.control.put(panelname, panel) } if (is.function(action)) fa <- function(x, y) { panel <- rp.control.get(panelname) panel <- action(panel, x ,y) rp.control.put(panelname, panel) } else fa <- NA if (is.function(mousedrag)) fd <- function(x, y) { panel <- rp.control.get(panelname) panel <- mousedrag(panel, x, y) rp.control.put(panelname, panel) } else fd <- NA if (is.function(mouseup)) fu <- function(x, y) { panel <- rp.control.get(panelname); panel <- mouseup(panel, x ,y) rp.control.put(panelname, panel) } else fu <- NA if (rp.widget.exists(panelname, parentname)) parent <- rp.widget.get(panelname, parentname) else parent <- panel if (is.list(pos) && !is.null(pos$grid)) parent <- rp.widget.get(panelname, pos$grid) widget <- w.tkrplot(parent, plotfun = pf, action = fa, mousedrag = fd, mouseup = fu, hscale, vscale, pos, foreground, background, margins, name, mar) rp.widget.put(panelname, name, widget) if (.rpenv$savepanel) rp.control.put(panelname, panel) invisible(panelname) } .w.tkrplot <- function (parent, fun, hscale = 1, vscale = 1, foreground = NULL, background = NULL, margins=c(0, 0, 0, 0)) { image <- paste("Rplot", .make.tkindex(), sep = "") handshakereverse(.my.tkdev, hscale, vscale) foreground <- handshake(tkimage.create, 'photo', file = foreground) w <- as.numeric(handshake(tcl, "image","width", foreground)) h <- as.numeric(handshake(tcl, "image","height", foreground)) pw <- par("pin")[1]; par(pin=c(pw,(h/w)*pw)) try(fun()) handshake(.Tcl, paste("image create Rplot", image)) lab <- handshake(tkcanvas, parent, width=w+margins[1]+margins[3], height=h+margins[2]+margins[4]) handshake(tkcreate, lab, 'image', margins[1], margins[2], image=foreground, anchor="nw") lab$margins <- margins w.setbackground(lab, background) handshake(tkbind, lab, "<Destroy>", function() handshake(.Tcl, paste("image delete", image))) lab$image <- image; lab$fun <- fun; lab$hscale <- hscale; lab$vscale <- vscale lab$foreground <- foreground; lab$w <- w; lab$h <- h lab } .w.coords <- function(plot, x, y, parplt, parusr) { xClick <- x yClick <- y width <- as.numeric(handshake(tclvalue, handshake(tkwinfo, "reqwidth",plot))) height <- as.numeric(handshake(tclvalue, handshake(tkwinfo, "reqheight",plot))) xMin <- parplt[1] * width; xMax <- parplt[2] * width yMin <- parplt[3] * height; yMax <- parplt[4] * height rangeX <- parusr[2] - parusr[1] rangeY <- parusr[4] - parusr[3] xClick <- as.numeric(xClick)+0.5 yClick <- as.numeric(yClick)+0.5 yClick <- height - yClick xPlotCoord <- parusr[1]+(xClick-xMin)*rangeX/(xMax-xMin) yPlotCoord <- parusr[3]+(yClick-yMin)*rangeY/(yMax-yMin) c(xPlotCoord, yPlotCoord, width, height, xClick, yClick) } w.tkrplot <- function(parent, plotfun, action = NA, mousedrag = NA, mouseup = NA, hscale = 1, vscale = 1, pos = NULL, foreground = NULL, background = NULL, margins=c(0, 0, 0, 0), name = paste("plot", .nc(), sep = ""), mar) { if (requireNamespace("tkrplot", quietly = TRUE)) { widget <- w.createwidget(parent, pos, NULL, tkrplottype = TRUE) widget$.type <- "tkrplot" plotter <- function() { par(mar = mar) plotfun() assign(paste(name, ".plt", sep = ""), par('plt'), envir = .rpenv) assign(paste(name, ".usr", sep = ""), par('usr'), envir = .rpenv) } if (is.null(foreground)) { widget$.widget <- handshake(tkrplot::tkrplot, parent$.handle, plotter, hscale = hscale, vscale = vscale) w.setbackground(widget$.widget, background) } else { widget$.widget <- .w.tkrplot(parent$.handle, plotter, hscale = hscale, vscale = vscale, foreground = foreground, background = background, margins = c(deparse(margins[1]), deparse(margins[2]), deparse(margins[3]),deparse(margins[4]))) } fdown <- function(x, y) { coords <- .w.coords(widget$.widget, x, y, eval(parse(text = paste(name, ".plt", sep = "")), envir=.rpenv), eval(parse(text = paste(name, ".usr", sep = "")), envir=.rpenv)) action(coords[1], coords[2]) } fdrag <- function(x, y) { coords <- .w.coords(widget$.widget, x, y, eval(parse(text = paste(name, ".plt", sep = "")), envir = .rpenv), eval(parse(text = paste(name, ".usr", sep = "")), envir = .rpenv)) mousedrag(coords[1], coords[2]) } fup <- function(x, y) { coords <- .w.coords(widget$.widget, x, y, eval(parse(text = paste(name, ".plt", sep = "")), envir = .rpenv), eval(parse(text = paste(name, ".usr", sep = "")), envir = .rpenv)) mouseup(coords[1], coords[2]) } if (is.function(action)) handshake(tkbind, widget$.widget, "<Button-1>", fdown) if (is.function(mousedrag)) handshake(tkbind, widget$.widget, "<B1-Motion>", fdrag) if (is.function(mouseup)) handshake(tkbind, widget$.widget, "<ButtonRelease-1>", fup) handshake(tkconfigure, widget$.widget, cursor = "hand2") w.appearancewidget(widget, NULL, NULL, NULL) } else widget <- warning("Package TkRplot is not installed.") widget } rp.tkrreplot <- function(panel, name) { if (!exists(panel$panelname, .rpenv, inherits = FALSE)) panelname <- deparse(substitute(panel)) else panelname <- panel$panelname name <- deparse(substitute(name)) img <- rp.widget.get(panelname, name) handshake(tkrplot::tkrreplot, img$.widget) invisible(panelname) } w.tkrreplot <- function(img) { handshake(tkrplot::tkrreplot, img$.widget) }
expected <- eval(parse(text="c(3L, 3L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 3L, 3L)")); test(id=0, code={ argv <- eval(parse(text="list(c(\"\\\"a\\\"\", \"\\\"b\\\"\", NA, NA, NA, \"\\\"f\\\"\", \"\\\"g\\\"\", \"\\\"h\\\"\", \"\\\"i\\\"\", \"\\\"j\\\"\", \"\\\"k\\\"\", \"\\\"l\\\"\"), \"w\", FALSE)")); (nchar(argv[[1]], argv[[2]], argv[[3]])); }, o=expected);
apollo_cnl <- function(cnl_settings, functionality){ modelType = "CNL" if(is.null(cnl_settings[["componentName"]])){ cnl_settings[["componentName"]] = ifelse(!is.null(cnl_settings[['componentName2']]), cnl_settings[['componentName2']], modelType) test <- functionality=="validate" && cnl_settings[["componentName"]]!='model' && !apollo_inputs$silent if(test) apollo_print(paste0('Apollo found a model component of type ', modelType, ' without a componentName. The name was set to "', cnl_settings[["componentName"]],'" by default.')) } if(functionality=="validate"){ apollo_modelList <- tryCatch(get("apollo_modelList", envir=parent.frame(), inherits=FALSE), error=function(e) c()) apollo_modelList <- c(apollo_modelList, cnl_settings$componentName) if(anyDuplicated(apollo_modelList)) stop("Duplicated componentName found (", cnl_settings$componentName, "). Names must be different for each component.") assign("apollo_modelList", apollo_modelList, envir=parent.frame()) } if(!is.null(cnl_settings[["utilities"]])) names(cnl_settings)[which(names(cnl_settings)=="utilities")]="V" apollo_inputs = tryCatch(get("apollo_inputs", parent.frame(), inherits=FALSE), error=function(e) return( list(apollo_control=list(cpp=FALSE)) )) if( !is.null(apollo_inputs[[paste0(cnl_settings$componentName, "_settings")]]) && (functionality!="preprocess") ){ tmp <- apollo_inputs[[paste0(cnl_settings$componentName, "_settings")]] if(is.null(tmp$V) ) tmp$V <- cnl_settings$V if(is.null(tmp$cnlNests) ) tmp$cnlNests <- cnl_settings$cnlNests if(is.null(tmp$cnlStructure)) tmp$cnlStructure <- cnl_settings$cnlStructure cnl_settings <- tmp rm(tmp) } else { cnl_settings <- apollo_preprocess(inputs = cnl_settings, modelType, functionality, apollo_inputs) if(apollo_inputs$apollo_control$cpp) if(!apollo_inputs$silent) apollo_print("No C++ optimisation available for CNL") cnl_settings$probs_CNL <- function(cnl_settings, all=FALSE){ cnl_settings$choiceNA = FALSE if(all(is.na(cnl_settings$choiceVar))){ cnl_settings$choiceVar = cnl_settings$alternatives[1] cnl_settings$choiceNA = TRUE } cnl_settings$V <- mapply(function(v,a) apollo_setRows(v, !a, 0), cnl_settings$V, cnl_settings$avail, SIMPLIFY=FALSE) if(!all) VSubs <- Reduce('+', mapply("*", cnl_settings$Y, cnl_settings$V, SIMPLIFY=FALSE)) else VSubs <- do.call(pmax, cnl_settings$V) cnl_settings$V <- lapply(cnl_settings$V, "-", VSubs) rm(VSubs) cnl_settings$V <- mapply('*', cnl_settings$V, cnl_settings$avail, SIMPLIFY = FALSE) cnl_settings$V = lapply(X=cnl_settings$V, FUN=exp) cnl_settings$V <- mapply('*', cnl_settings$V, cnl_settings$avail, SIMPLIFY = FALSE) denom_within = list() nests = nrow(cnl_settings$cnlStructure) for(t in 1:nests){ denom_within[[t]]=0 for(j in 1:cnl_settings$nAlt){ denom_within[[t]] = denom_within[[t]] + (cnl_settings$cnlStructure[t,j]*cnl_settings$V[[cnl_settings$altnames[j]]])^(1/cnl_settings$cnlNests[[t]]) } } Pwithin = list() for(j in 1:cnl_settings$nAlt){ Pwithin[[j]] = list() for(t in 1:nests){ Pwithin[[j]][[t]] = (cnl_settings$cnlStructure[t,j]*cnl_settings$V[[cnl_settings$altnames[j]]])^(1/cnl_settings$cnlNests[[t]])/(denom_within[[t]]+(denom_within[[t]]==0)) } } Pnest = list() denom_nest = 0 for(t in 1:nests) denom_nest = denom_nest + denom_within[[t]]^cnl_settings$cnlNests[[t]] for(t in 1:nests) Pnest[[t]] = (denom_within[[t]]^cnl_settings$cnlNests[[t]])/denom_nest Palts = list() for(j in 1:cnl_settings$nAlt){ Palts[[j]]=0 for(t in 1:nests) Palts[[j]] = Palts[[j]] + Pnest[[t]]*Pwithin[[j]][[t]] } names(Palts) <- names(cnl_settings$V) if(!(all && cnl_settings$choiceNA)) Palts[["chosen"]] <- Reduce('+', mapply('*', cnl_settings$Y, Palts, SIMPLIFY=FALSE)) if(!all) Palts <- Palts[["chosen"]] return(Palts) } apollo_beta <- tryCatch(get("apollo_beta", envir=parent.frame(), inherits=TRUE), error=function(e) return(NULL)) test <- !is.null(apollo_beta) && functionality %in% c("preprocess", "gradient") test <- test && all(sapply(cnl_settings$V, is.function)) test <- test && apollo_inputs$apollo_control$analyticGrad cnl_settings$gradient <- FALSE if(test){ cnl_settings$dV <- apollo_dVdB(apollo_beta, apollo_inputs, cnl_settings$V) cnl_settings$gradient <- !is.null(cnl_settings$dV) }; rm(test) if(functionality=="preprocess"){ cnl_settings$V <- NULL cnl_settings$cnlNests <- NULL cnl_settings$cnlStructure <- NULL return(cnl_settings) } } if(any(sapply(cnl_settings$V, is.function))){ cnl_settings$V = lapply(cnl_settings$V, function(f) if(is.function(f)) f() else f ) } if(any(sapply(cnl_settings$cnlNests, is.function))){ cnl_settings$cnlNests = lapply(cnl_settings$cnlNests, function(f) if(is.function(f)) f() else f ) } if(is.function(cnl_settings$cnlStructure)) cnl_settings$cnlStructure <- cnl_settings$cnlStructure() cnl_settings$V <- lapply(cnl_settings$V, function(v) if(is.matrix(v) && ncol(v)==1) as.vector(v) else v) cnl_settings$V <- cnl_settings$V[cnl_settings$altnames] if(!all(cnl_settings$rows)){ cnl_settings$V <- lapply(cnl_settings$V, apollo_keepRows, r=cnl_settings$rows) } if(functionality=="validate"){ if(!apollo_inputs$apollo_control$noValidation) apollo_validate(cnl_settings, modelType, functionality, apollo_inputs) if(!apollo_inputs$apollo_control$noDiagnostics) apollo_diagnostics(cnl_settings, modelType, apollo_inputs) testL <- cnl_settings$probs_CNL(cnl_settings) if(any(!cnl_settings$rows)) testL <- apollo_insertRows(testL, cnl_settings$rows, 1) if(all(testL==0)) stop('All observations have zero probability at starting value for model component "', cnl_settings$componentName,'"') if(any(testL==0) && !apollo_inputs$silent && apollo_inputs$apollo_control$debug) apollo_print(paste0('Some observations have zero probability at starting value for model component "', cnl_settings$componentName,'"')) return(invisible(testL)) } if(functionality=="zero_LL"){ for(i in 1:cnl_settings$nAlt) if(length(cnl_settings$avail[[i]])==1) cnl_settings$avail[[i]] <- rep(cnl_settings$avail[[i]], cnl_settings$nObs) nAvAlt <- rowSums(matrix(unlist(cnl_settings$avail), ncol=cnl_settings$nAlt)) P = 1/nAvAlt if(any(!cnl_settings$rows)) P <- apollo_insertRows(P, cnl_settings$rows, 1) return(P) } if(functionality=="shares_LL"){ for(i in 1:length(cnl_settings$avail)) if(length(cnl_settings$avail[[i]])==1) cnl_settings$avail[[i]] <- rep(cnl_settings$avail[[i]], cnl_settings$nObs) nAvAlt <- rowSums(do.call(cbind, cnl_settings$avail)) Y = do.call(cbind,cnl_settings$Y) if(var(nAvAlt)==0){ Yshares = colSums(Y)/nrow(Y) P = as.vector(Y%*%Yshares) } else { mnl_ll = function(b, A, Y) as.vector(Y%*%c(b,0) - log(rowSums( A%*%exp(c(b,0)) ))) A = do.call(cbind, cnl_settings$avail) b = maxLik::maxLik(mnl_ll, start=rep(0, cnl_settings$nAlt - 1), method='BFGS', finalHessian=FALSE, A=A, Y=Y)$estimate P = exp(mnl_ll(b, A, Y)) } if(any(!cnl_settings$rows)) P <- apollo_insertRows(P, cnl_settings$rows, 1) return(P) } if(functionality %in% c("estimate","conditionals", "output", "components")){ P <- cnl_settings$probs_CNL(cnl_settings, all=FALSE) if(any(!cnl_settings$rows)) P <- apollo_insertRows(P, cnl_settings$rows, 1) return(P) } if(functionality %in% c("prediction","raw")){ P <- cnl_settings$probs_CNL(cnl_settings, all=TRUE) if(any(!cnl_settings$rows)) P <- lapply(P, apollo_insertRows, r=cnl_settings$rows, val=NA) return(P) } if(functionality=='report'){ P <- list() apollo_inputs$silent <- FALSE P$data <- utils::capture.output(apollo_diagnostics(cnl_settings, modelType, apollo_inputs, param=FALSE)) P$param <- utils::capture.output(apollo_diagnostics(cnl_settings, modelType, apollo_inputs, data =FALSE)) return(P) } }
tar_test("aws_fst_tbl packages", { target <- tar_target(x, "x_value", format = "aws_fst_tbl") out <- sort(store_get_packages(target$store)) exp <- sort(c("paws", "fst", "tibble")) expect_equal(out, exp) }) tar_test("inherits from tar_external", { store <- tar_target(x, "x_value", format = "aws_fst_tbl")$store expect_true(inherits(store, "tar_external")) }) tar_test("store_row_path()", { store <- tar_target(x, "x_value", format = "aws_fst_tbl")$store store$file$path <- "path" expect_equal(store_row_path(store), "path") }) tar_test("store_path_from_record()", { store <- tar_target(x, "x_value", format = "aws_fst_tbl")$store record <- record_init(path = "path", format = "aws_fst_tbl") expect_equal(store_path_from_record(store, record), "path") }) tar_test("validate aws_fst_tbl", { skip_if_not_installed("paws") skip_if_not_installed("fst") skip_if_not_installed("tibble") tar_script(list(tar_target(x, "x_value", format = "aws_fst_tbl"))) expect_silent(tar_validate(callr_function = NULL)) })
plot.mixdata <- function(x, mixpar = NULL, dist = "norm", root = FALSE, ytop = NULL, clwd = 1, main, sub, xlab, ylab, bty, ...) { mixdataobj<-x plot.mix(mixdataobj, mixpar, dist, root, ytop, clwd, main, sub, xlab, ylab, bty, ...) invisible() }
create_tool_overrides <- function(tool_name, params) { if (tool_name == "export_geotiff" | tool_name == "export_raster") { params$file$io <- "Output" } else if (tool_name == "export_shapes" | tool_name == "export_shapes_to_kml") { params$file$io <- "Output" } else if (tool_name == "clip_grid_with_rectangle") { params$output$feature <- "Grid" } else if (tool_name == "tiling") { params$tiles_path$io <- "Output" } else if (tool_name == "tpi_based_landform_classification") { if (!"radius_a_min" %in% names(params)) { names(params)[names(params) == "radius_a"] <- "radius_a_min" params$radius_a_min$alias <- "radius_a_min" params$radius_a_min$identifier <- "RADIUS_A_MIN" params$radius_a_min$default <- 0 names(params)[names(params) == "radius_b"] <- "radius_b_min" params$radius_b_min$alias <- "radius_b_min" params$radius_b_min$identifier <- "RADIUS_B_MIN" params$radius_b_min$default <- 0 params$radius_a_max <- params$radius_a_min params$radius_a_max$alias <- "radius_a_max" params$radius_a_max$identifier <- "RADIUS_A_MAX" params$radius_a_max$default <- 100 params$radius_b_max <- params$radius_b_min params$radius_b_max$name <- "Large Scale" params$radius_b_max$alias <- "radius_b_max" params$radius_b_max$identifier <- "RADIUS_B_MAX" params$radius_b_max$default <- 1000 } } else if (tool_name == "topographic_position_index_tpi") { if (!"radius_min" %in% names(params)) { names(params)[names(params) == "radius"] <- "radius_min" params$radius_min$alias <- "radius_min" params$radius_min$identifier <- "RADIUS_MIN" params$radius_min$default <- 0 params$radius_max <- params$radius_min params$radius_max$alias <- "radius_max" params$radius_max$identifier <- "RADIUS_MAX" params$radius_max$default <- 100 } } params }
Compute_log_likelihood_given_params <- function(fit_, it_retained, parallel, ncores) { if (is_censored(fit_$data)) { censor_code <- censor_code_rl(fit_$data$left, fit_$data$right) censor_code_filters <- lapply(0:3, FUN = function(x) censor_code == x) names(censor_code_filters) <- 0:3 dpred <- function(iter) { log(dmixcens( xlefts = fit_$data$left, xrights = fit_$data$right, c_code_filters = censor_code_filters, locations = fit_$means[[iter]], scales = fit_$sigmas[[iter]], weights = fit_$weights[[iter]], distr.k = fit_$distr.k )) } } else { dpred <- function(iter) { log(dmix(fit_$data, locations = fit_$means[[iter]], scales = fit_$sigmas[[iter]], weights = fit_$weights[[iter]], distr.k = fit_$distr.k )) } } unlist(parallel::mclapply( X = it_retained, FUN = function(it) sum(dpred(it)), mc.cores = ifelse(test = parallel, yes = ncores, no = 1) )) } Convert_to_matrix_list <- function(fitlist, thinning_to = 1000, parallel = TRUE, ncores = parallel::detectCores()) { if (Sys.info()[["sysname"]] == "Windows") parallel <- FALSE if (is_semiparametric(fitlist[[1]])) { fitlist <- lapply(fitlist, function(fit) { fit$sigmas <- fill_sigmas(fit) fit }) } Nit <- length(fitlist[[1]]$means) it_retained <- compute_thinning_grid(Nit, thinning_to = thinning_to) if (is_semiparametric(fitlist[[1]])) { lapply(X = fitlist, function(fit_i) { cbind( ncomp = fit_i$R[it_retained], Sigma = fit_i$S[it_retained], Latent_variable = fit_i$U[it_retained], log_likelihood = Compute_log_likelihood_given_params(fit_i, it_retained, parallel, ncores) ) }) } else { lapply(X = fitlist, function(fit_i) { cbind( ncomp = fit_i$R[it_retained], Latent_variable = fit_i$U[it_retained], log_likelihood = Compute_log_likelihood_given_params(fit_i, it_retained, parallel, ncores) ) }) } } convert_to_mcmc <- function(fitlist, thinning_to = 1000, ncores = parallel::detectCores()) { coda::as.mcmc.list(coda::as.mcmc(lapply(Convert_to_matrix_list(fitlist, thinning_to = thinning_to, ncores = ncores), coda::mcmc))) }
Agg.Sim = function(x,min,max,s,w,b){ PMax = x A = x B = x for (j in 1:ncol(x)) { for (i in 1:nrow(x)) { PMax[i,j] = (integrate(Vectorize(function(x) {prod(ppert(x,min[j],A[,j][-i],max[j],s))*dpert(x,min[j],B[,j][[i]],max[j],s)}),min[j],max[j])) $value }} PMax = PMax[,] PMin = x max = apply(x,2,max) min = apply(x,2,min) for (j in 1:ncol(x)) { for (i in 1:nrow(x)) { PMin[i,j] = (integrate(Vectorize(function(x) {prod(1-ppert(x,min[j],A[,j][-i],max[j],s))*dpert(x,min[j],B[,j][[i]],max[j],s)}),min[j],max[j])) $value }} PMin = PMin[,] NrEsp = nrow(x) A = x B = x PMax = vector("list", ncol(x)) PMin = vector("list", ncol(x)) for (k in 1:(ncol(x))) { PMax[[k]] = matrix(0,nrow=NrEsp,ncol=NrEsp) PMin[[k]] = matrix(0,nrow=NrEsp,ncol=NrEsp) for (j in 1:(NrEsp)) { for (i in 1:(NrEsp)) { PMax[[k]][i,j] = (integrate(Vectorize(function(x) {(ppert(x,min[k],A[i,k],max[k],s))*dpert(x,min[k],B[j,k],max[k],s)}),min[k],max[k]))$value PMin[[k]][i,j] = (integrate(Vectorize(function(x) {(1-ppert(x,min[k],A[i,k],max[k],s))*dpert(x,min[k],B[j,k],max[k],s)}),min[k],max[k]))$value }}} S = vector("list", ncol(x)) for (k in 1:(ncol(x))) { S[[k]] = PMax[[k]]/PMin[[k]] S[[k]] = ifelse(S[[k]]>1,1/S[[k]],S[[k]]) S[[k]] = ifelse(S[[k]]>0.999,1,S[[k]]) rownames(S[[k]]) = paste0("Exp",1:NrEsp) colnames(S[[k]]) = paste0("Exp",1:NrEsp) } names(S) = paste0("Crit",1:ncol(x)) AE = vector("list", ncol(x)) for (k in 1:(ncol(x))) { AE[[k]] = apply(S[[k]],1,sum) AE[[k]] = (AE[[k]]-1)/(NrEsp-1) } names(AE) = paste0("Crit",1:ncol(x)) Soma = vector("list", ncol(x)) RAD = vector("list", ncol(x)) CDC = vector("list", ncol(x)) for (k in 1:(ncol(x))) { Soma[[k]] = sum(AE[[k]]) RAD[[k]] = AE[[k]]/Soma[[k]] CDC[[k]] = b*w+(1-b)*RAD[[k]] } names(CDC) = paste0("Crit",1:ncol(x)) CDC = t(matrix(unlist(CDC),ncol(x),NrEsp)) rownames(CDC) = paste0("Exp",1:NrEsp) colnames(CDC) = paste0("Crit",1:ncol(x)) A.mode = vector("list", ncol(x)) for (k in 1:(ncol(x))) { A.mode[[k]] = sum(CDC[[k]]*A[,k]) } names(A.mode) = paste0("Crit",1:ncol(x)) A.mode = unlist(A.mode) Result = list(SM = S, CDC = CDC, Agg.value = A.mode) Result }
plotweights <- function(dataset, cw1 = 0.95, cw2 = 0.5, cw3 = 0.25, arrow = FALSE, plotall = FALSE, plotallenv, ThreeD = FALSE){ a <- c(cw1, cw2, cw3) b <- a[order (-a)] cw <- cw1 cw1 <- b[1] cw2 <- b[2] cw3 <- b[3] WeightDist <- ceiling(100*mean(as.numeric(cumsum(dataset$ModWeight) <= cw1))) ConfidenceSet <- dataset[which(cumsum(dataset$ModWeight) <= cw1), ] if(nrow(ConfidenceSet) == 0){ ConfidenceSet <- dataset[1, ] } dataset <- dataset[order(-dataset$ModWeight), ] dataset$cw1 <- as.numeric(cumsum(dataset$ModWeight) <= cw1) dataset$cw2 <- as.numeric(cumsum(dataset$ModWeight) <= cw2) dataset$cw3 <- as.numeric(cumsum(dataset$ModWeight) <= cw3) if(all(dataset$cw3 == 0)){ dataset$cw3[1] <- 1 } if(all(dataset$cw2 == 0)){ dataset$cw2[1] <- 1 } if(all(dataset$cw1 == 0)){ dataset$cw1[1] <- 1 } dataset$cw.full <- dataset$cw1 + dataset$cw2 + dataset$cw3 if(ThreeD == TRUE){ stop("3D plotting temporarily disabled due to issues with the rgl package.") } else { dataset$cw.full[which(dataset$cw.full == 3)] <- cw3 dataset$cw.full[which(dataset$cw.full == 2)] <- cw2 dataset$cw.full[which(dataset$cw.full == 1)] <- cw1 dataset$cw.full[which(dataset$cw.full == 0)] <- 1 with(dataset, { if(arrow == FALSE){ ARR <- ggplot(dataset, aes(x = WindowClose, y = WindowOpen, z = cw.full))+ geom_tile(aes(fill = cw.full))+ scale_fill_gradientn(colours = c("black", "white"), breaks=c(b[1], b[2], b[3]), limits = c(0, 1), name = "")+ theme_climwin()+ theme(legend.position = c(0.75, 0.3))+ ggtitle(paste(WeightDist, "% of models fall within the \n", 100*cw, "% confidence set", sep = ""))+ ylab("Window open")+ xlab("Window close") if(plotall == TRUE){ plotallenv$cw <- ARR } else { ARR } } else if(arrow == TRUE){ CIRC <- circle(centre = c(dataset$WindowClose[1], dataset$WindowOpen[1]), diameter = 5, npoints = 100) colnames(CIRC) <- c("WindowClose", "WindowOpen") CIRC$cw.full <- 0 ARR <- ggplot(dataset, aes(x = WindowClose, y = WindowOpen, z = cw.full))+ geom_tile(aes(fill = cw.full))+ scale_fill_gradientn(colours = c("black", "white"), breaks=c(b[1], b[2], b[3]), limits = c(0, 1), name = "")+ theme_climwin()+ theme(legend.position = c(0.75, 0.3))+ ggtitle(paste(WeightDist, "% of models fall within the \n", 100*cw, "% confidence set", sep = ""))+ ylab("Window open")+ xlab("Window close")+ geom_path(data = CIRC, aes(x = WindowClose, y = WindowOpen), size = 1.2, colour = "black")+ geom_segment(aes(x = WindowClose[1], y = 0, xend = WindowClose[1], yend = (WindowOpen[1] - 2.5)), size = 1, linetype = "dashed") + geom_segment(aes(x = 0, y = WindowOpen[1], xend = (WindowClose[1] - 2.5), yend = WindowOpen[1]), size = 1, linetype = "dashed") if(plotall == TRUE){ plotallenv$cw <- ARR } else { ARR } } } ) } }
test_that("FSelectorGeneticSearch", { test_fselector("genetic_search", term_evals = 10, real_evals = 10) })
skip_if_not(exists("token")) if (!exists("verifyFields", mode = "function")) source("global.R") context("01. Locations Discovery Service") expectedFields = list( locationCode = "character", locationName = "character", description = "character", deployments = "integer", hasDeviceData = "logical", hasPropertyData = "logical", bbox = "list", lon = "double", lat = "double", depth = "double", dataSearchURL = "character" ) expectedTreeFields = list( locationCode = "character", locationName = "character", description = "character", hasDeviceData = "logical", hasPropertyData = "logical", children = "list" ) test_that("01. Get all locations", { result = onc$getLocations() expect_true(verifyFields(result[[1]], expectedFields)) expect_gt(length(result), 500) }) test_that("02. Get locations hierarchy", { result = onc$getLocationHierarchy(list(locationCode = "SAAN")) row1 = result[[1]] expect_true(verifyFields(row1, expectedTreeFields)) expect_equal(length(result), 1) expect_true("children" %in% names(row1)) expect_gt(length(row1$children), 2) }) test_that("03. Filter locationCode", { result = onc$getLocations(list(locationCode = "CQSBG")) expect_true(verifyFields(result[[1]], expectedFields)) expect_equal(length(result), 1) expect_equal(result[[1]]$locationName, "Bubbly Gulch") }) test_that("04. Filter locationName", { result = onc$getLocations(list(locationName = "Bubbly Gulch")) expect_true(verifyFields(result[[1]], expectedFields)) expect_equal(length(result), 1) expect_equal(result[[1]]$locationCode, "CQSBG") }) test_that("05. Filter deviceCategoryCode", { result = onc$getLocations(list(deviceCategoryCode = "CTD")) expect_true(verifyFields(result[[1]], expectedFields)) expect_gt(length(result), 50) }) test_that("06. Filter deviceCode", { result = onc$getLocations(list(deviceCode = "NORTEKADCP9917")) expect_true(verifyFields(result[[1]], expectedFields)) expect_gte(length(result), 1) }) test_that("07. Filter propertyCode", { result = onc$getLocations(list(propertyCode = "co2concentration")) expect_true(verifyFields(result[[1]], expectedFields)) expect_gte(length(result), 1) }) test_that("08. Filter dataProductCode", { result = onc$getLocations(list(dataProductCode = "MP4V")) expect_true(verifyFields(result[[1]], expectedFields)) expect_gte(length(result), 20) }) test_that("09. Filter includeChildren", { result = onc$getLocations(list(includeChildren = "true", locationCode = "SAAN")) expect_true(verifyFields(result[[1]], expectedFields)) expect_gte(length(result), 30) }) test_that("10. ISO Date Range", { result = onc$getLocations(list(dateFrom = "2014-02-24T00:00:01.000Z", dateTo = "2014-03-24T00:00:01.000Z")) expect_true(verifyFields(result[[1]], expectedFields)) expect_gte(length(result), 100) }) test_that("11. Wrong locationCode", { result = onc$getLocations(list(locationCode = "CQS34543BG")) expect_equal(length(result$errors), 1) expect_true(isErrorResponse(result)) }) test_that("12. No locations found", { result = onc$getLocations(list(locationCode = "SAAN", dateTo = "1995-03-24T00:00:01.000Z")) expect_equal(typeof(result), "list") expect_equal(length(result), 0) })
gni_search <- function(sci, per_page = NULL, page = NULL, justtotal = FALSE, parse_names = FALSE, search_term = NULL, ...) { pchk(search_term, "sci") query <- tc(list(search_term = sci, per_page = per_page, page = page)) cli <- crul::HttpClient$new(paste0(gni_base(), "name_strings.json"), headers = tx_ual, opts = list(...)) tt <- cli$get(query = argsnull(query)) tt$raise_for_status() out <- jsonlite::fromJSON(tt$parse("UTF-8"), FALSE) if (justtotal) { out$name_strings_total } else { df <- dt2df(lapply(out$name_strings, function(x) data.frame(t(data.frame(c( checknull(x[["name"]]), checknull(x[["id"]]), checknull(x[["lsid"]]), checknull(x[["uuid_hex"]]), checknull(x[["resource_url"]]) ))))), idcol = FALSE) df <- colClasses(df, "character") if (NROW(df) != 0) { names(df) <- c("name","id","lsid","uuid_hex","resource_url") } if (parse_names) { data.frame(df, gni_parse(as.character(df$name)), stringsAsFactors = FALSE) } else { df } } }
library(difR) library(ltm) data(GMAT, package = "difNLR") data <- GMAT[, 1:20] group <- GMAT[, "group"] (fit1PL <- difLord( Data = data, group = group, focal.name = 1, model = "1PL", p.adjust.method = "none", purify = FALSE )) (fit2PL <- difLord( Data = data, group = group, focal.name = 1, model = "2PL", p.adjust.method = "none", purify = FALSE )) guess <- itemParEst(data, model = "3PL")[, 3] (fit3PL <- difLord( Data = data, group = group, focal.name = 1, model = "3PL", c = guess, p.adjust.method = "none", purify = FALSE ))
Opt1=function(X,Y,alpha,K,nk){ n=nrow(X) p=ncol(X) nk=n/K L1=c(1:K) Rm=matrix(rep(0, nk*K),ncol=K) mr=matrix(rep(0,K*nk), ncol=nk) for(i in 1:K ) { mr[i, ]=sample(1:n,nk,replace=T) r=matrix(c(1:nk,mr[i, ]),ncol=nk,byrow=T) Rm[,i]=r[2,] R=matrix(rep(0, nk*n),ncol=n) R[t(r)]=1 X1=R%*%X Y1=R%*%Y Hr=X1%*%solve(crossprod(X1))%*%t(X1) I1=diag(rep(1,nk)) SX=(t(Y1)%*%(I1-Hr)%*%Y1)/(nk-p) SY=sqrt(t(Y1)%*%(I1-Hr)%*%Y1)/(nk-p) C1=sum(diag(X1%*%solve(crossprod(X1))%*%t(X1)))/nk L1[i]=2*SY*C1*qt(1-alpha/2,nk-p) } opt1=Rm[,which.min(L1)] Yopt1=Y[opt1] Xopt1=X[opt1,] Bopt1=solve(crossprod(Xopt1))%*%t(Xopt1)%*%Yopt1 MUopt1=Xopt1%*%Bopt1 Nopt1=length(Yopt1) E3=(t(Yopt1-MUopt1)%*%(Yopt1-MUopt1))/Nopt1 A3=sum(abs(Yopt1-MUopt1))/Nopt1 return(list(MUopt1=MUopt1,Bopt1=Bopt1,MAEMUopt1=A3,MSEMUopt1=E3,opt1=opt1,Yopt1=Yopt1)) }
test_that("as_factor", { x = as_factor(c("a", "b"), c("a", "b")) y = as_factor(c("a", "b"), c("b", "a")) expect_factor(x, levels = c("a", "b")) expect_factor(y, levels = c("b", "a")) expect_equal(levels(x), c("a", "b")) expect_equal(levels(y), c("b", "a")) z = as_factor(x, levels(y)) expect_factor(z, levels = c("a", "b")) expect_equal(levels(z), levels(y)) })
biomasse <- function(input , climdata, annee=3) { if(class(input)=="numeric"){input <- as.data.frame(as.list(input))} Eb <- input[1,1] Eimax <- input[1,2] K <- input[1,3] Lmax <- input[1,4] A <- input[1,5] B <- input[1,6] TI <- input[1,7] if (is.null(annee)){ annee <- input[1,8] } PAR<-0.5*0.01*climdata$RG[climdata$ANNEE==annee] Tmoy<-(climdata$Tmin[climdata$ANNEE==annee]+ climdata$Tmax[climdata$ANNEE==annee])/2 Tmoy[Tmoy<0]<-0 ST<-Tmoy for (i in (2:length(Tmoy))) { ST[i]<-ST[i-1]+Tmoy[i] } Tr<-(1/B)*log(1+exp(A*TI)) LAI<-Lmax*((1/(1+exp(-A*(ST-TI))))-exp(B*(ST-(Tr)))) LAI[LAI<0]<-0 U<-Eb*Eimax*(1-exp(-K*LAI))*PAR BIOMASSE<-sum(U) U <- cumsum(U) U }
get_ned <- function(template, label, res = "1", raw.dir = "./RAW/NED", extraction.dir = paste0("./EXTRACTIONS/", label, "/NED"), raster.options = c("COMPRESS=DEFLATE", "ZLEVEL=9", "INTERLEAVE=BAND"), force.redo = F) { raw.dir <- normalizePath(paste0(raw.dir,"/."), mustWork = FALSE) extraction.dir <- normalizePath(paste0(extraction.dir,"/."), mustWork = FALSE) dir.create(raw.dir, showWarnings = FALSE, recursive = TRUE) dir.create(extraction.dir, showWarnings = FALSE, recursive = TRUE) template <- sp::spTransform(polygon_from_extent(template), sp::CRS("+proj=longlat +ellps=WGS84")) extent.latlon <- raster::extent(template) if (file.exists(paste0(extraction.dir, "/", label, "_NED_", res, ".tif")) & !force.redo) { extracted.DEM <- raster::raster(paste0(extraction.dir, "/", label, "_NED_", res, ".tif")) return(extracted.DEM) } wests <- seq(ceiling(abs(extent.latlon@xmax)), ceiling(abs(extent.latlon@xmin))) norths <- seq(ceiling(abs(extent.latlon@ymin)), ceiling(abs(extent.latlon@ymax))) tilesLocations <- as.matrix(expand.grid(norths, wests, stringsAsFactors = FALSE)) message("Area of interest includes ", nrow(tilesLocations), " NED tiles.") loc = NULL tiles <- foreach::foreach(loc = 1:nrow(tilesLocations)) %do% { return(tryCatch(get_ned_tile(template = template, res = res, tileNorthing = tilesLocations[loc,1], tileWesting = tilesLocations[loc,2], raw.dir = raw.dir), error = function(e) { message("WARNING: ",e$message) return(NULL)}, warning = function(w) NULL)) } if(all(sapply(tiles, is.null))){ stop("No NED tiles are available for your study area. Please check your input data and internet connection.") } tiles <- tiles[which(!sapply(tiles, is.null))] if (length(tiles) > 1) { message("Mosaicking NED tiles.") utils::flush.console() tiles$fun <- mean names(tiles)[1:2] <- c("x", "y") tiles <- do.call(raster::mosaic, tiles) gc() } else { tiles <- tiles[[1]] } tiles <- tryCatch(tiles %>% raster::crop(y = template %>% sp::spTransform(CRSobj = tiles %>% raster::projection()), snap = "out"), error = function(e) { tiles %>% raster::crop(y = template %>% sp::spTransform(CRSobj = tiles %>% raster::projection())) }) raster::writeRaster(tiles, paste(extraction.dir, "/", label, "_NED_", res, ".tif", sep = ""), datatype = "FLT4S", options = raster.options, overwrite = T, setStatistics = FALSE) return(tiles) } download_ned_tile <- function(res = "1", tileNorthing, tileWesting, raw.dir) { destdir <- paste(raw.dir, "/", res, "/", sep = "") dir.create(destdir, showWarnings = FALSE, recursive = TRUE) tileWesting <- formatC(tileWesting, width = 3, format = "d", flag = "0") tileNorthing <- formatC(tileNorthing, width = 2, format = "d", flag = "0") url <- paste0("https://prd-tnm.s3.amazonaws.com/StagedProducts/Elevation/", res, "/ArcGrid/USGS_NED_",res,"_n", tileNorthing, "w", tileWesting, "_ArcGrid.zip") if(httr::http_error(url)) url <- paste0("https://prd-tnm.s3.amazonaws.com/StagedProducts/Elevation/", res, "/ArcGrid/n", tileNorthing, "w", tileWesting, ".zip") download_data(url = url, destdir = destdir) return(normalizePath(paste0(destdir, basename(url)))) } get_ned_tile <- function(template = NULL, res = "1", tileNorthing, tileWesting, raw.dir) { tmpdir <- tempfile() if (!dir.create(tmpdir)) stop("failed to create my temporary directory") message("(Down)Loading NED tile for ", tileNorthing, "N and ", tileWesting, "W.") file <- download_ned_tile(res = res, tileNorthing = tileNorthing, tileWesting = tileWesting, raw.dir = raw.dir) tryCatch(utils::unzip(file, exdir = tmpdir), warning = function(w){ if(grepl("extracting from zip file",w$message)){ stop("NED file ",file," corrupt or incomplete. Please delete the file and try again.") } }) dirs <- list.dirs(tmpdir, full.names = TRUE, recursive = F) dirs <- dirs[grepl("grdn", dirs)] tile <- raster::raster(dirs) if (!is.null(template)) { tile <- tryCatch(tile %>% raster::crop(y = template %>% sp::spTransform(CRSobj = tile %>% raster::projection()), snap = "out"), error = function(e) { tile %>% raster::crop(y = template %>% sp::spTransform(CRSobj = tile %>% raster::projection())) }) } tile <- tile * 1 unlink(tmpdir, recursive = TRUE) return(tile) }
rlnormMix <- function (n, meanlog1 = 0, sdlog1 = 1, meanlog2 = 0, sdlog2 = 1, p.mix = 0.5) { ln <- length(n) if (ln == 0) stop("'n' must be a non-empty scalar or vector.") if (ln > 1) n <- ln else { if (is.na(n) || n <= 0 || n != trunc(n)) stop("'n' must be a positive integer or a vector.") } if (length(p.mix) != 1 || is.na(p.mix) || p.mix < 0 || p.mix > 1) stop("'p.mix' must be a single number between 0 and 1.") arg.mat <- cbind.no.warn(dum = rep(1, n), meanlog1 = as.vector(meanlog1), sdlog1 = as.vector(sdlog1), meanlog2 = as.vector(meanlog2), sdlog2 = as.vector(sdlog2))[, -1, drop = FALSE] if (n < nrow(arg.mat)) arg.mat <- arg.mat[1:n, , drop = FALSE] na.index <- is.na.matrix(arg.mat) if (all(na.index)) return(rep(NA, n)) else { r <- numeric(n) r[na.index] <- NA r.no.na <- r[!na.index] for (i in c("meanlog1", "sdlog1", "meanlog2", "sdlog2")) assign(i, arg.mat[!na.index, i]) if (any(c(sdlog1, sdlog2) < .Machine$double.eps)) stop("All non-missing values of 'sdlog1' and 'sdlog2' must be positive.") n.no.na <- sum(!na.index) index <- rbinom(n.no.na, 1, 1 - p.mix) n1 <- sum(index) n2 <- n.no.na - n1 if (n1 > 0) r.no.na[index == 1] <- rlnorm(n1, meanlog1, sdlog1) if (n2 > 0) r.no.na[index == 0] <- rlnorm(n2, meanlog2, sdlog2) r[!na.index] <- r.no.na return(r) } }
NULL normalizeGaussian_severalstations <- function(x, data=x, cpf=NULL,mean=0, sd=1, inverse=FALSE, step=NULL, prec=10^-4, type=3, extremes=TRUE, sample=NULL, origin_x=NULL, origin_data=NULL ) { out <- x*NA if (is.null(sample)) { for (i in 1:ncol(x)) { out[,i] <- normalizeGaussian(x=x[,i],data=data[,i],cpf=cpf,mean=mean,sd=sd,inverse=inverse,step=step,prec=prec,type=type,extremes=extremes,sample=sample) } } else if (sample=="monthly") { months <- months_f((0.5:11.5)*365/12,abbreviate=TRUE) for (m in 1:length(months)) { i_months_x <- extractmonths(data=1:nrow(x),when=months[m],origin=origin_x) i_months_data <- extractmonths(data=1:nrow(data),when=months[m],origin=origin_data) for (i in 1:ncol(x)) { out[i_months_x,i] <- normalizeGaussian(x=x[i_months_x,i],data=data[i_months_data,i],cpf=cpf,mean=mean,sd=sd,inverse=inverse,step=step,prec=prec,type=type,extremes=extremes,sample=NULL) } } } else if (sample=="monthly_year"){ } else { print("Error in normalizaGaussian_sevaralStation: sample option not yet implemented!!") } names(out) <- names(x) return(out) }
QI <- function(map1=map1,map2=map2){ R <- length(map1) levels(map1) <- as.character(1:length(levels(map1))) map1 <- as.numeric(map1) levels(map2) <- as.character(1:length(levels(map2))) map2 <- as.numeric(map2) k=max(map1) map12=10*map1+map2 symb <- numeric() h <- 0 for (i in 1:k){ for (j in 1:k){ if (i!=j){ h <- h+1 symb[h] <- 10*i+j} } } nusi=length(symb) nsk <- numeric() for (s in 1:nusi){ nsk[s] <- sum(map12==symb[s]) } nsx <- table(map1) nsy <- table(map2) lns <- log((nsk>0)*nsk) lnsX <- log((nsx>0)*nsx) lnsY <- log((nsy>0)*nsy) hXY <- -sum((nsk/R)*lns) hX <- -sum((nsx/R)*lnsX) hY <- -sum((nsy/R)*lnsY) QI <- hXY-hX-hY }
return_codeLPSOLVE <- function(code) { if (code == 0) { return( "optimal solution found" ) } else if (code == 1) { return( "the model is sub-optimal" ) } else if (code == 2) { return( "the model is infeasible" ) } else if (code == 3) { return( "the model is unbounded" ) } else if (code == 4) { return( "the model is degenerate" ) } else if (code == 5) { return( "numerical failure encountered" ) } else if (code == 6) { return( "process aborted" ) } else if (code == 7) { return( "timeout" ) } else if (code == 9) { return( "the model was solved by presolve" ) } else if (code == 10) { return( "the branch and bound routine failed" ) } else if (code == 11) { return( paste("the branch and bound was stopped", "because of a break-at-first", "or break-at-value" ) ) } else if (code == 12) { return( paste("a feasible branch and bound", "solution was found" ) ) } else if (code == 13) { return( paste("no feasible branch and bound", "solution was found" ) ) } else { return(paste("Failed to obtain solution", "unknown error code:", code ) ) } } loadMatrixPerColumnLPSOLVE <- function(lpmod, constMat) { stopifnot(is(constMat, "Matrix")) x <- constMat@x p <- constMat@p + 1 i <- constMat@i + 1 k <- 1 while (k <= ncol(constMat)) { lpSolveAPI::set.column(lpmod, column = k, x = x[(p[k]):(p[k+1]-1)], indices = i[(p[k]):(p[k+1]-1)]) k <- k + 1 } }
context("Monotherapy fitting") test_that('marginals', { dataM <- data[data$d1 < 1e-12 | data$d2 < 1e-12,] fit1 <- fitMarginals(data, method = "nls") fit2 <- fitMarginals(data, method = "nlslm") fit3 <- fitMarginals(data, method = "optim") expect_true(inherits(fit1, "MarginalFit")) expect_true(inherits(fit2, "MarginalFit")) expect_true(inherits(fit3, "MarginalFit")) expect_equal(coef(fit1), coef(fit2)) expect_equal(fitted(fit1), fitted(fit2)) expect_equal(residuals(fit1), residuals(fit2), tolerance = 1e-1) expect_equal(fitted(fit1), predict(fit1, newdata = dataM)) expect_equal(fitted(fit2), predict(fit2, newdata = dataM)) expect_true(all(abs(vcov(fit1) - vcov(fit2)) < 1e-1)) expect_equal(df.residual(fit1), df.residual(fit2)) expect_equal(df.residual(fit1), df.residual(fit3)) expect_equal(dataM[["effect"]], fitted(fit1) + residuals(fit1)) expect_equal(dataM[["effect"]], fitted(fit2) + residuals(fit2)) expect_equal(dataM[["effect"]], fitted(fit3) + residuals(fit3)) expect_equal(fitMarginals(data, start = initPars, method = "nls")$coef, fitMarginals(data, start = initPars, method = "nlslm")$coef) }) test_that('marginals-constraints', { constraintsA <- list("matrix" = c(0, 0, 0, 1, -1, 0, 0), "vector" = 0) constraintsB <- list("matrix" = c(0, 0, 1, 0, 0, 0, 0), "vector" = 13000) constraints2 <- list( "matrix" = rbind(c(0, 0, 1, 0, 0, 0, 0), c(0, 0, 0, 1, -1, 0, 0)), "vector" = c(13000, 0) ) constraints <- list( "matrix" = rbind(c(2, -2, 0, 0, 0, 0, 0), c(0, 0, 0, 1, -1, 0, 0), c(0, 0, 0, 0, 0, pi, -pi)), "vector" = rep(0, 3) ) fit1 <- fitMarginals(data, method = "nls", fixed = c("b" = 13000, "h2" = 2)) fit2 <- fitMarginals(data, method = "nlslm", fixed = c("h2" = 2, "b" = 13000)) fit3 <- fitMarginals(data, method = "optim", fixed = c("b" = 13000, "h2" = 2)) expect_equal(fit1$coef[["b"]], 13000) expect_equal(fit2$coef[["b"]], 13000) expect_equal(fit3$coef[["b"]], 13000) expect_equal(fit1$coef[["h2"]], 2) expect_equal(fit2$coef[["h2"]], 2) expect_equal(fit3$coef[["h2"]], 2) expect_error(fitMarginals(data, method = "optim", fixed = c("ABC" = 1))) expect_error(fitMarginals(data, method = "optim", fixed = c("b" = 13000, "ABC" = 1))) expect_warning(fit1 <- fitMarginals(data, method = "nlslm", fixed = c("b" = 12000, "h2" = 1.5), constraints = constraints2)) expect_equal(fit1$coef[["b"]], 12000) expect_equal(fit1$coef[["h2"]], 1.5) fit1 <- fitMarginals(data, method = "nls", constraints = constraintsB) fit2 <- fitMarginals(data, method = "nlslm", constraints = constraintsB) fit3 <- fitMarginals(data, method = "optim", constraints = constraintsB) expect_equal(fit1$coef[["b"]], 13000) expect_equal(fit2$coef[["b"]], 13000) expect_equal(fit3$coef[["b"]], 13000) expect_equal(length(coef(fit1)), 7) expect_equal(length(coef(fit2)), 7) expect_equal(length(coef(fit3)), 7) expect_true(all(abs(fit1$coef - fit2$coef) < 1e-1)) fit1 <- fitMarginals(data, method = "nls", constraints = constraintsA) fit2 <- fitMarginals(data, method = "nlslm", constraints = constraintsA) fit3 <- fitMarginals(data, method = "optim", constraints = constraintsA) expect_equal(fit1$coef[["m1"]], fit1$coef[["m2"]]) expect_equal(fit2$coef[["m1"]], fit2$coef[["m2"]]) expect_equal(fit3$coef[["m1"]], fit3$coef[["m2"]]) expect_equal(length(coef(fit1)), 7) expect_equal(length(coef(fit2)), 7) expect_equal(length(coef(fit3)), 7) expect_true(all(abs(fit1$coef - fit2$coef) < 1e-4)) fit1 <- fitMarginals(data, method = "nls", constraints = constraints2) fit2 <- fitMarginals(data, method = "nlslm", constraints = constraints2) fit3 <- fitMarginals(data, method = "optim", constraints = constraints2) expect_equal(fit1$coef[["m1"]], fit1$coef[["m2"]]) expect_equal(fit2$coef[["m1"]], fit2$coef[["m2"]]) expect_equal(fit3$coef[["m1"]], fit3$coef[["m2"]]) expect_equal(fit1$coef[["b"]], 13000) expect_equal(fit2$coef[["b"]], 13000) expect_equal(fit3$coef[["b"]], 13000) expect_equal(length(coef(fit1)), 7) expect_equal(length(coef(fit2)), 7) expect_equal(length(coef(fit3)), 7) expect_true(all(abs(fit1$coef - fit2$coef) < 1e-4)) fit1 <- fitMarginals(data, method = "nls", constraints = constraints) fit2 <- fitMarginals(data, method = "nlslm", constraints = constraints) fit3 <- fitMarginals(data, method = "optim", constraints = constraints) expect_equal(length(coef(fit1)), 7) expect_equal(length(coef(fit2)), 7) expect_equal(length(coef(fit3)), 7) expect_equal(fit1$coef[["h1"]], fit1$coef[["h2"]]) expect_equal(fit2$coef[["h1"]], fit2$coef[["h2"]]) expect_equal(fit3$coef[["h1"]], fit3$coef[["h2"]]) expect_equal(fit1$coef[["m1"]], fit1$coef[["m2"]]) expect_equal(fit2$coef[["m1"]], fit2$coef[["m2"]]) expect_equal(fit3$coef[["m1"]], fit3$coef[["m2"]]) expect_equal(fit1$coef[["e1"]], fit1$coef[["e2"]]) expect_equal(fit2$coef[["e1"]], fit2$coef[["e2"]]) expect_equal(fit3$coef[["e1"]], fit3$coef[["e2"]]) }) test_that('marginals-transforms', { dataM <- data[data$d1 < 1e-12 | data$d2 < 1e-12,] fit1 <- fitMarginals(data, transforms = transforms, method = "nls") fit2 <- fitMarginals(data, transforms = transforms, method = "nlslm") fit3 <- fitMarginals(data, transforms = transforms, method = "optim") expect_equal(length(coef(fit1)), 7) expect_equal(length(coef(fit2)), 7) expect_equal(length(coef(fit3)), 7) expect_true(all(abs(fit1$coef - fit2$coef) < 1e-4)) expect_true(all(abs(fitted(fit1) - fitted(fit2)) < 1e-4)) expect_true(all(abs(residuals(fit1) - residuals(fit2)) < 1e-4)) expect_equal(fitted(fit1), predict(fit1, newdata = dataM)) expect_equal(fitted(fit2), predict(fit2, newdata = dataM)) expect_true(all(abs(vcov(fit1) - vcov(fit2)) < 3e-2)) expect_equal(df.residual(fit1), df.residual(fit2)) expect_equal(df.residual(fit1), df.residual(fit3)) expect_equal(transforms$PowerT(dataM[["effect"]], transforms$compositeArgs), fitted(fit1) + residuals(fit1)) expect_equal(transforms$PowerT(dataM[["effect"]], transforms$compositeArgs), fitted(fit2) + residuals(fit2)) expect_equal(transforms$PowerT(dataM[["effect"]], transforms$compositeArgs), fitted(fit3) + residuals(fit3)) fit1 <- fitMarginals(data, start = initParsT, transforms = transforms, method = "nls") fit2 <- fitMarginals(data, start = initParsT, transforms = transforms, method = "nlslm") expect_true(all(abs(fit1$coef - fit2$coef) < 1e-4)) constraints <- list( "matrix" = rbind(c(2, -2, 0, 0, 0, 0, 0), c(0, 0, 0, 1, -1, 0, 0), c(0, 0, 0, 0, 0, pi, -pi)), "vector" = rep(0, 3) ) fit1 <- fitMarginals(data, method = "nls", constraints = constraints, transforms = transforms) fit2 <- fitMarginals(data, method = "nlslm", constraints = constraints, transforms = transforms) fit3 <- fitMarginals(data, method = "optim", constraints = constraints, transforms = transforms) expect_equal(length(coef(fit1)), 7) expect_equal(length(coef(fit2)), 7) expect_equal(length(coef(fit3)), 7) expect_equal(fit1$coef[["h1"]], fit1$coef[["h2"]]) expect_equal(fit2$coef[["h1"]], fit2$coef[["h2"]]) expect_equal(fit3$coef[["h1"]], fit3$coef[["h2"]]) expect_equal(fit1$coef[["m1"]], fit1$coef[["m2"]]) expect_equal(fit2$coef[["m1"]], fit2$coef[["m2"]]) expect_equal(fit3$coef[["m1"]], fit3$coef[["m2"]]) expect_equal(fit1$coef[["e1"]], fit1$coef[["e2"]]) expect_equal(fit2$coef[["e1"]], fit2$coef[["e2"]]) expect_equal(fit3$coef[["e1"]], fit3$coef[["e2"]]) }) test_that('marginals-extraArgs', { lowerBounds <- rep(0, 7) upperBounds <- c(1, rep(Inf, 6)) fit1 <- fitMarginals(data, method = "nls", algorithm = "port", lower = lowerBounds, upper = upperBounds) fit2 <- fitMarginals(data, method = "nlslm", lower = lowerBounds, upper = upperBounds) expect_true(all(coef(fit1) >= 0)) expect_true(all(coef(fit2) >= 0)) expect_equal(coef(fit1)[[1]], 1) expect_equal(coef(fit2)[[1]], 1) }) test_that('marginals-plots', { fit <- fitMarginals(data) fitT <- fitMarginals(data, transforms = transforms) expect_silent(plot(fit)) expect_silent(plot(fit, smooth = FALSE)) expect_silent(plot(fitT)) expect_silent(plot(fitT, smooth = FALSE)) expect_silent(plot(fitT, dataScale = TRUE)) })
modpower <- function(n, k, m) { stopifnot(is.numeric(n), floor(n) == ceiling(n), n >= 0, is.numeric(k), floor(k) == ceiling(k), k >= 0, is.numeric(m), floor(m) == ceiling(m), m >= 0) if (m^2 > 2^53-1) stop("Modulus 'm' too big for integer arithmetic in R.") if (k == 0) return(1) if (n == 0) return(0) b <- n %% m r <- 1 while (k != 0) { if (k %% 2 == 1) { r <- (b * r) %% m k <- k - 1 } k <- k / 2 b <- (b * b) %% m } return(r) } modorder <- function(n, m) { stopifnot(is.numeric(n), floor(n) == ceiling(n), n >= 0, is.numeric(m), floor(m) == ceiling(m), m >= 0) if (!coprime(n, m)) return(0) r <- n %% m; k <- 1 if (r == 0) return(NA) while (r != 1) { r <- (n*r) %% m; k <- k + 1 } return(k) } primroot <- function (m, all = FALSE) { stopifnot(is.numeric(m), floor(m) == ceiling(m), m >= 0) if (!isPrime(m)) return(NA) if (m == 2) return(1) if (all) { res <- c() for (r in 2:(m-1)) { k <- modorder(r, m) if (k == m-1) res <- c(res, r) } } else { for (r in 2:(m-1)) { k <- modorder(r, m) if (k == m - 1) break } res <- r } return(res) }
context("translator") test_that("test Translator csv", { i18n <- Translator$new(translation_csvs_path = "data") expect_equal(i18n$t("Hello Shiny!"), "Hello Shiny!") i18n$set_translation_language("pl") expect_equal(i18n$t("Hello Shiny!"), "Witaj Shiny!") i18n$set_translation_language("it") expect_equal(i18n$t("Hello Shiny!"), "Ciao Shiny!") i18n$set_translation_language("en") expect_equal(i18n$t("Hello Shiny!"), "Hello Shiny!") expect_error(i18n$set_translation_language("es"), "'es' not in Translator") }) test_that("test Translator json", { i18n <- Translator$new(translation_json_path = "data/translation.json") expect_equal(i18n$t("Hello Shiny!"), "Hello Shiny!") i18n$set_translation_language("pl") expect_equal(i18n$t("Hello Shiny!"), "Witaj Shiny!") i18n$set_translation_language("en") expect_equal(i18n$t("Hello Shiny!"), "Hello Shiny!") expect_error(i18n$set_translation_language("it"), "'it' not in Translator") }) test_that("test Translator general", { expect_error(Translator$new()) expect_error(Translator$new(translation_json_path = "data/translation.json", translation_csvs_path = "data"), "mutually exclusive") }) test_that("test vector translations", { i18n <- Translator$new(translation_json_path = "data/translation.json") expect_equal(i18n$t(c("Hello Shiny!")), "Hello Shiny!") i18n$set_translation_language("pl") expect_equal(i18n$t(c("Hello Shiny!")), "Witaj Shiny!") expect_warning(i18n$t(c("Hello Shiny!", "Text"))) expect_equal(i18n$t(c("Hello Shiny!", "Text")), c("Witaj Shiny!", "Text")) expect_equal(i18n$t(c("Hello Shiny!", "Text", "Frequency")), c("Witaj Shiny!", "Text", "Częstotliwość")) expect_warning(i18n$t(c("Hello Shiny!", "X")), regexp = "'X' translation does not exist.") })
plot.HPWmapSphere <- function(x, lon, lat, plotWhich = "Both", color = c("firebrick1", "gainsboro", "dodgerblue3"), turnOut = FALSE, title, ...) { if (length(color) != 3) { stop("'color' must be a vector containing exactly three colors!") } if (length(lon) * length(lat) != dim(x[[1]]$pw)[1] * dim(x[[1]]$pw)[2]) { stop("Longitude and latitude are non-comformable to the dimension of x") } if (methods::hasArg(title) == TRUE && length(title) != length(x)) { stop("Number of titles must be equal to the number of plots") } if (methods::hasArg(title) == FALSE) { namesVec <- names(x) namesVec <- sapply(strsplit(namesVec, "_"), "[", 1) namesVec <- gsub("NA", "infinity", namesVec) } if(plotWhich == "HPW") { graphics::par(mfrow = c(ceiling(length(x) / 2), 2)) graphics::par(mar = c(2, 2, 2, 2), oma = c(2, 2, 2, 2)) for(i in 1:length(x)){ if (methods::hasArg(title) == FALSE) { if (i < length(x)) { mainTxt <- as.expression( substitute( paste("HPW-Map for ", z[y], " with ", lambda, "-range = [", x, " - ", w, "]"), list(x = as.name(namesVec[i]), y = i, w = as.name(namesVec[i + 1])) ) ) } else { mainTxt <- as.expression( substitute( paste("HPW-Map for ", z[y], " with ", lambda, "-range = [", x, "]"), list(x = as.name(namesVec[i]), y = i) ) ) } } else { mainTxt <- title[i] } if(turnOut) { tmp <- turnmat(x[[i]]$hpw) lon.tmp <- lat lat.tmp <- lon } else { tmp <- x[[i]]$hpw lon.tmp <- lon lat.tmp <- lat } graphics::image(lon.tmp, lat.tmp, tmp, col = color, main = mainTxt, xaxt = "n", yaxt = "n", cex.main = 1, bty = "n", ...) maps::map("world", add = TRUE) } } if(plotWhich == "PW") { graphics::par(mfrow = c(ceiling(length(x) / 2), 2)) graphics::par(mar = c(2, 2, 2, 2), oma = c(2, 2, 2, 2)) for(i in 1:length(x)){ if (methods::hasArg(title) == FALSE) { if (i < length(x)) { mainTxt <- as.expression( substitute( paste("PW-Map for ", z[y], " with ", lambda, "-range = [", x, " - ", w, "]"), list(x = as.name(namesVec[i]), y = i, w = as.name(namesVec[i + 1])) ) ) } else { mainTxt <- as.expression( substitute( paste("PW-Map for ", z[y], " with ", lambda, "-range = [", x, "]"), list(x = as.name(namesVec[i]), y = i) ) ) } } else { mainTxt <- title[i] } if(turnOut) { tmp <- turnmat(x[[i]]$pw) lon.tmp <- lat lat.tmp <- lon } else { tmp <- x[[i]]$pw lon.tmp <- lon lat.tmp <- lat } graphics::image(lon.tmp, lat.tmp, tmp, col = color, main = mainTxt, xaxt = "n", yaxt = "n", cex.main = 1, bty = "n", ...) maps::map("world", add = TRUE) } } if(plotWhich == "Both") { graphics::par(mfrow = c(ceiling(length(x) / 2), 2)) graphics::par(mar = c(2, 2, 2, 2), oma = c(2, 2, 2, 2)) for(i in 1:length(x)){ if (methods::hasArg(title) == FALSE) { if (i < length(x)) { mainTxt <- as.expression( substitute( paste("HPW-Map for ", z[y], " with ", lambda, "-range = [", x, " - ", w, "]"), list(x = as.name(namesVec[i]), y = i, w = as.name(namesVec[i + 1])) ) ) } else { mainTxt <- as.expression( substitute( paste("HPW-Map for ", z[y], " with ", lambda, "-range = [", x, "]"), list(x = as.name(namesVec[i]), y = i) ) ) } } else { mainTxt <- title[i] } if(turnOut) { tmp <- turnmat(x[[i]]$hpw) lon.tmp <- lat lat.tmp <- lon } else { tmp <- x[[i]]$hpw lon.tmp <- lon lat.tmp <- lat } graphics::image(lon.tmp, lat.tmp, tmp, col = color, main = mainTxt, xaxt = "n", yaxt = "n", cex.main = 1, bty = "n", ...) maps::map("world", add = TRUE) } readline(prompt = "Press [enter] for the PW maps!") graphics::par(mfrow = c(ceiling(length(x) / 2), 2)) graphics::par(mar = c(2, 2, 2, 2), oma = c(2, 2, 2, 2)) for(i in 1:length(x)){ if (methods::hasArg(title) == FALSE) { if (i < length(x)) { mainTxt <- as.expression( substitute( paste("PW-Map for ", z[y], " with ", lambda, "-range = [", x, " - ", w, "]"), list(x = as.name(namesVec[i]), y = i, w = as.name(namesVec[i + 1])) ) ) } else { mainTxt <- as.expression( substitute( paste("PW-Map for ", z[y], " with ", lambda, "-range = [", x, "]"), list(x = as.name(namesVec[i]), y = i) ) ) } } else { mainTxt <- title[i] } if(turnOut) { tmp <- turnmat(x[[i]]$pw) lon.tmp <- lat lat.tmp <- lon } else { tmp <- x[[i]]$pw lon.tmp <- lon lat.tmp <- lat } graphics::image(lon.tmp, lat.tmp, tmp, col = color, main = mainTxt, xaxt = "n", yaxt = "n", cex.main = 1, bty = "n", ...) maps::map("world", add = TRUE) } } }
"clothing"
par(mai=c(0.1,0.1,0.1,0.1)) plot.new() rect(0,0.6,1/3,0.867, col="indianred1") rect(1/3,0.6,2/3,0.867, col="steelblue2") rect(2/3,0.6,3/3,0.867, col="springgreen3") text(0.5,0.9, "Metabolomics Data Processing", cex=1.5) text(1/6,0.85, "Raw Signal Filtering\nand Peak Calling\n(ChromaTOF)", pos=1,cex=0.8) text(3/6,0.85, "Multi-sample Peak\nAlignment and\nMetabolite Identification\n(R2DGC)", cex=0.8, pos=1) text(5/6,0.85, "Data Normalization\nand Statistical\nInference\n(Metaboanalyst)", pos=1,cex=0.8) arrows(0.17,0.63,0.85,0.63,length = 0.1 ,lwd=3) points(seq(0,0.2,(0.2-0)/8),(c(0,0.08,0.12,0.15,0.16,0.15,0.13,0.09,0)*0.5)+0.45,type="l", lwd=3) points(seq(0.1,0.3,(0.3-0.1)/8),(c(0,0.08,0.12,0.15,0.16,0.15,0.13,0.09,0)*0.5)+0.45,type="l", lwd=3) points(seq(0,0.15,(0.15-0)/8),(c(0,0.08,0.12,0.15,0.16,0.15,0.13,0.09,0)*0.5)+0.22,type="l", lwd=3) points(seq(0.16,0.3,(0.3-0.16)/8),(c(0,0.08,0.12,0.15,0.16,0.15,0.13,0.09,0)*0.5)+0.22,type="l", lwd=3) points(seq(0,0.13,(0.13-0)/8)+(0.36),(c(0.0,0.08,0.12,0.15,0.16,0.15,0.13,0.09,0)/3)+0.26,type="l", lwd=3) points(seq(0.17,0.3,(0.3-0.17)/8)+(0.34),(c(0,0.08,0.12,0.15,0.16,0.15,0.13,0.09,0)/3)+0.26,type="l", lwd=3) points(seq(0,0.13,(0.13-0)/8)+(0.36),(c(0,0.08,0.12,0.15,0.16,0.15,0.13,0.09,0)/3)+0.32,type="l", lwd=3) points(seq(0.17,0.3,(0.3-0.17)/8)+(0.34),(c(0,0.08,0.12,0.15,0.16,0.15,0.13,0.09,0)/3)+0.32,type="l", lwd=3) points(seq(0,0.13,(0.13-0)/8)+(0.36),(c(0,0.08,0.12,0.15,0.16,0.15,0.13,0.09,0)/3)+0.38,type="l", lwd=3) points(seq(0.17,0.3,(0.3-0.17)/8)+(0.34),(c(0,0.08,0.12,0.15,0.16,0.15,0.13,0.09,0)/3)+0.38,type="l", lwd=3) points(seq(0,0.13,(0.13-0)/8)+(0.36),(c(0,0.08,0.12,0.15,0.16,0.15,0.13,0.09,0)/3)+0.44,type="l", lwd=3) points(seq(0.17,0.3,(0.3-0.17)/8)+(0.34),(c(0,0.08,0.12,0.15,0.16,0.15,0.13,0.09,0)/3)+0.44,type="l", lwd=3) points(seq(0,0.13,(0.13-0)/8)+(0.7),(c(0.0,0.08,0.12,0.15,0.16,0.15,0.13,0.09,0)/3)+0.2,type="l", lwd=3) points(seq(0.17,0.3,(0.3-0.17)/8)+(0.69),(c(0,0.08,0.12,0.15,0.16,0.15,0.13,0.09,0)/3)+0.2,type="l", lwd=3) points(seq(0,0.13,(0.13-0)/8)+(0.7),(c(0,0.08,0.12,0.15,0.16,0.15,0.13,0.09,0)/3)+0.26,type="l", lwd=3) points(seq(0.17,0.3,(0.3-0.17)/8)+(0.69),(c(0,0.08,0.12,0.15,0.16,0.15,0.13,0.09,0)/3)+0.26,type="l", lwd=3) points(seq(0,0.13,(0.13-0)/8)+(0.7),(c(0,0.08,0.12,0.15,0.16,0.15,0.13,0.09,0)/3)+0.42,type="l", lwd=3) points(seq(0.17,0.3,(0.3-0.17)/8)+(0.69),(c(0,0.08,0.12,0.15,0.16,0.15,0.13,0.09,0)/3)+0.42,type="l", lwd=3) points(seq(0,0.13,(0.13-0)/8)+(0.7),(c(0,0.08,0.12,0.15,0.16,0.15,0.13,0.09,0)/3)+0.48,type="l", lwd=3) points(seq(0.17,0.3,(0.3-0.17)/8)+(0.69),(c(0,0.08,0.12,0.15,0.16,0.15,0.13,0.09,0)/3)+0.48,type="l", lwd=3) rect(xleft = 0.69,ybottom = 0.19,xright = 1,0.325, lwd = 3) rect(xleft = 0.69,ybottom = 0.41,xright = 1,0.546, lwd = 3) text(0.85, 0.57, "Group A") text(0.85, 0.35, "Group B") arrows(1/3,0.2,1/3,0.6,code = 0,lty=2) arrows(2/3,0.2,2/3,0.6,code = 0,lty=2) arrows(1/6.5,0.28,1/6.5,0.45,code = 1, length=0.1,lwd=2) par(mai=c(0.1,0.1,0,0.1)) plot.new() text(0.5,1,"Input Sample\nChromatof File Paths", cex=0.8) arrows(0.5,0.96,0.5,0.905,length=0.1, lwd=2) rect(0.3,0.75,0.7,0.9, col="springgreen3") text(0.5,0.83,"Optional: Ion Filtering\n(FindProblemIons)", cex=0.8) arrows(0.5,0.745,0.5,0.705,length=0.1, lwd=2) rect(0.3,0.55,0.7,0.7, col="steelblue2") text(0.5,0.63,"Optional: Intra-Sample\nPeak Compression\n(PrecompressFiles)", cex=0.8) arrows(0.5,0.545,0.5,0.505,length=0.1, lwd=2) rect(0.3,0.3,0.7,0.5, col="indianred1") text(0.5,0.4,"Multi-Sample Peak\nAlignment and\nMetabolite Identification\n(ConsensusAlign)", cex=0.8) rect(0.8,0.5,1,0.65, col="plum3") text(0.9,0.58,"Standard Library\nCreation\n(MakeReference)", cex=0.69) text(0.9,0.77,"Input Metabolite\nStandard\nChromatof File Paths", cex=0.8) arrows(0.9,0.71,0.9,0.655,length=0.1, lwd=2) arrows(0.9,0.495,0.705,0.4,length=0.1, lwd=2) arrows(0.5,0.295,0.5,0.255,length=0.1, lwd=2) rect(-0.02,0.03,1.02,0.25,col="snow2") text(0.5,0.225,"Output List") rect(0,0.05,0.3,0.2, col="wheat1") text(0.15,0.13,"Peak Alignment Table", cex=0.8) rect(0.35,0.05,0.65,0.2, col="khaki2") text(0.5,0.13,"Peak Info Table", cex=0.8) rect(0.7,0.05,1,0.2, col="lightgoldenrod") text(0.85,0.13,"Incongruent Quant\nMass List", cex=0.8) library(R2DGC) ProblemIons<-FindProblemIons(inputFile=system.file("extdata", "SampleA.txt", package="R2DGC")) head(ProblemIons) library(parallel) detectCores() SampleC<-system.file("extdata", "SampleC.txt", package="R2DGC") CompressionInfo<-PrecompressFiles(inputFileList=SampleC) CompressionInfo<-PrecompressFiles(inputFileList=SampleC, commonIons = ProblemIons[,1]) Standard1<-system.file("extdata", "Alanine_150226_1.txt", package="R2DGC") Standard2<-system.file("extdata", "Serine_022715_1.txt", package="R2DGC") StandardLibrary<-MakeReference(inputFileList = c(Standard1, Standard2), RT1_Standards=paste0("FAME_", seq(8,24,2))) plot.new() points(c(.1,.35,.5,.8),rep(0.8,4), pch=16, col=c("black","red","black","black")) text(c(.1,.35,.5,.8),rep(0.85,5), labels = c("Std1","Analyte","Std2","Std3")) arrows(x0 = 0, y0 = 0.7,x1 = 1,y1 = 0.7, code=0, lwd=3) arrows(x0 = c(0,0.2,0.4,0.6,0.8,1), y0 = rep(0.7,6),x1 = c(0,0.2,0.4,0.6,0.8,1),y1 = rep(0.65,6), code=0, lwd=3) text(c(0,0.2,0.4,0.6,0.8,1),rep(0.62,6), labels = c(seq(0,10,2))) text(0.5,0.73, labels = "Retention Time",cex=0.75) arrows(x0 = .1, y0 = 0.5,x1 = .8,y1 = 0.5, code=0, lwd=2) text(0.45,0.52, labels = substitute(paste(italic("L"),"=7"))) arrows(x0 = c(.1,.8), y0 = rep(0.49,2),x1 = c(.1,.8),y1 = rep(0.51,2), code=0, lwd=2) arrows(x0 = .1, y0 = 0.4,x1 = .35,y1 = 0.4, code=0, lwd=2) text(.225,0.43, labels = expression(italic("d"[1])*"= -2.5")) arrows(x0 = c(.1,.35), y0 = rep(0.39,2),x1 = c(.1,.35),y1 = rep(0.41,2), code=0, lwd=2) arrows(x0 = .5, y0 = 0.3,x1 = .35,y1 = 0.3, code=0, lwd=2) text(.425,0.33, labels = expression(italic("d"[2])*"= 1.5")) arrows(x0 = c(.5,.35), y0 = rep(0.29,2),x1 = c(.5,.35),y1 = rep(0.31,2), code=0, lwd=2) arrows(x0 = .8, y0 = 0.2,x1 = .35,y1 = 0.2, code=0, lwd=2) text(.575,0.23, labels = expression(italic("d"[3])*"= 4.5")) arrows(x0 = c(.8,.35), y0 = rep(0.19,2),x1 = c(.8,.35),y1 = rep(0.21,2), code=0, lwd=2) par(mai=rep(0.1,4)) plot.new() rect(xleft = 0.25,ybottom = 0.9,xright = 0.75,ytop = 1, col="springgreen3") text(0.5,0.95,"Read in sample files", cex=0.75) arrows(x0 = 0.5,y0 = 0.9,x1 = 0.5,y1 = 0.875,length=0.05, lwd=2) rect(0.25,0.775,0.75,0.875, col="wheat1") text(0.5,0.825,"Optional: Compute retention indices", cex=0.75) arrows(x0 = 0.5,y0 = 0.775,x1 = 0.5,y1 = 0.75,length=0.05, lwd=2) rect(0.25,0.65,0.75,.75, col="indianred1") text(0.5,0.7,"Compute pairwise sample-seed\npeak similarity scores", cex=0.75) arrows(x0 = 0.5,y0 = 0.65,x1 = 0.5,y1 = 0.625,length=0.05, lwd=2) rect(0.25,0.525,0.75,.625, col="khaki2") text(0.5,0.575,"Optional: compute optimal\npeak similarity threshold", cex=0.75) arrows(x0 = 0.5,y0 = 0.525,x1 = 0.5,y1 = 0.5,length=0.05, lwd=2) rect(0.25,0.4,0.75,.5, col="steelblue2") text(0.5,0.45,"Find best peak pairs above\npeak similarity threshold", cex=0.75) arrows(x0 = 0.5,y0 = 0.4,x1 = 0.5,y1 = 0.375,length=0.05, lwd=2) rect(0.25,0.275,0.75,.375, col="plum3") text(0.5,0.325,"Optional: Relaxed threshold search\nfor high likelihood missing peaks", cex=0.75) arrows(x0 = 0.5,y0 = 0.275,x1 = 0.5,y1 = 0.25,length=0.05, lwd=2) rect(0.25,0.15,0.75,.25, col="lightgoldenrod") text(0.5,0.2,"Optional: Identify aligned\npeaks with reference library", cex=0.75) arrows(x0 = 0.5,y0 = 0.15,x1 = 0.5,y1 = 0.125,length=0.05, lwd=2) arrows(x0 = 0.1,y0 = 0.325,x1 = 0.1,y1 = 0.7, lwd=2, code=0) arrows(x0 = 0.25,y0 = 0.325,x1 = 0.1,y1 = 0.325, lwd=2, code=0) arrows(x0 = 0.25,y0 = 0.7,x1 = 0.1,y1 = 0.7, lwd=2, length=0.05, code=1) rect(0,0.45,0.2,0.575, col="coral") text(0.1,0.515, "Optional: repeat\nalignment with\nmultiple seeds", cex=0.7) rect(0,0,0.3,0.09, col="cadetblue2") text(0.15,0.045,"Peak Alignment Table", cex=0.8) rect(0.35,0.0,0.65,0.09, col="navajowhite") text(0.5,0.045,"Peak Info Table", cex=0.8) rect(0.7,0.0,1,0.09, col="pink2") text(0.85,0.045,"Incongruent Quant\nMass List", cex=0.8) text(0.5,.105, "Outputs", cex=0.8) rect(0,0,1,0.09) SampleA<-system.file("extdata", "SampleA.txt", package="R2DGC") SampleB<-system.file("extdata", "SampleB.txt", package="R2DGC") Alignment<-ConsensusAlign(c(SampleA,SampleB), standardLibrary = StandardLibrary, commonIons = ProblemIons) colnames(Alignment$Alignment_Matrix)<-gsub("^.+/","",colnames(Alignment$Alignment_Matrix)) head(Alignment$Alignment_Matrix, n=3) Alignment$Unmatched_Quant_Masses
newtool_template <- function(toolname="",methodname="",toolhelp="",grid.config=grid.config,grid.rows=grid.rows,new.frames){ method_result <- gsub(" ","",methodname,fixed=TRUE) method_result <- gsub("-","",method_result,fixed=TRUE) window.temp <- paste0(toolname,method_result) .update.biclustering.object(window.temp,where="envir",ENVIR=environment()) method_result <- gsub(" ","",methodname,fixed=TRUE) method_result <- gsub("-","",method_result,fixed=TRUE) initializeDialog(title = gettextRcmdr(paste(toolname," - ",methodname,sep="")), use.tabs=FALSE) plotdiagFrame <- tkframe(top) Tab <- 2 if(length(new.frames[[Tab]])!=0){ if(length(grid.rows[[Tab]])!=0){ for(i in 1:length(grid.rows[[Tab]])){ if(Tab==2){ row.command <- paste("plotdiagFrame_row",i," <- .make.correct.frame(grid.rows[[2]][[",i,"]]$title,grid.rows[[2]][[",i,"]]$border,plotdiagFrame)",sep="") .eval.command(row.command) if(grid.rows[[2]][[i]]$title!="" & grid.rows[[2]][[i]]$border==FALSE){ temp.command <- paste("tkgrid(labelRcmdr(plotdiagFrame_row",i ,",fg=getRcmdr('title.color'),font='RcmdrTitleFont',text=gettextRcmdr(grid.rows[[2]][[",i,"]]$title)),sticky='nw')" ,sep="") .eval.command(temp.command) } } } } for(ii in 1:length(new.frames[[Tab]])){ current.frame <- new.frames[[Tab]][[ii]] frame.name <- current.frame$frame.name if(length(grid.rows[[Tab]])!=0){ temp.names <- lapply(grid.rows[[Tab]],FUN=function(x){return(x$name.frames)}) boolean <- sapply(temp.names,FUN=function(x){return( frame.name %in% x )}) if(sum(boolean)==1){ if(Tab==2){ window <- paste("plotdiagFrame_row",which(boolean==TRUE),sep="") } } else{ if(Tab==2){ window <- "plotdiagFrame" } } }else { if(Tab==2){ window <- "plotdiagFrame" } } frame.command <- paste("current.frame$frame <- .make.correct.frame(current.frame$title,current.frame$border,",window,")") .eval.command(frame.command) if(current.frame$type=="entryfields"){ number.entries <- length(current.frame$arguments) arguments <- current.frame$arguments argument.names <- current.frame$argument.names initial.values <- current.frame$initial.values current.frame$entry.frames <- list() current.frame$entry.vars <- list() current.frame$entry.fields <- list() if(current.frame$title!="" & current.frame$border==FALSE){ tkgrid(labelRcmdr( current.frame$frame,fg=getRcmdr("title.color"),font="RcmdrTitleFont" ,text=gettextRcmdr(current.frame$title)),sticky="nw") } for(j in 1:number.entries){ current.frame$entry.frames[[j]] <- tkframe(current.frame$frame) current.frame$entry.vars[[j]] <- tclVar(paste(initial.values[j])) current.frame$entry.fields[[j]] <- ttkentry(current.frame$entry.frames[[j]],width=current.frame$entry.width[j],textvariable=current.frame$entry.vars[[j]]) tkgrid(labelRcmdr(current.frame$entry.frames[[j]],text=gettextRcmdr(paste(argument.names[j],": ",sep=""))),current.frame$entry.fields[[j]],sticky="nw") tkgrid(current.frame$entry.frames[[j]],sticky="ne") } new.frames[[Tab]][[ii]] <- current.frame } if(current.frame$type=="radiobuttons"){ current.frame$argument.values <- sapply(current.frame$argument.values,FUN=function(x){return(paste("BUTTONSTART",x,sep=""))}) current.frame$initial.values <- paste("BUTTONSTART",current.frame$initial.values,sep="") radioButtons(current.frame$frame,name=frame.name,buttons=current.frame$argument.values,values=current.frame$argument.values,labels=gettextRcmdr(current.frame$argument.names),initialValue=current.frame$initial.values,title="") if(current.frame$title!="" & current.frame$border==FALSE){ tkgrid(labelRcmdr( current.frame$frame,fg=getRcmdr("title.color"),font="RcmdrTitleFont" ,text=gettextRcmdr(current.frame$title)),sticky="nw") } eval(parse(text=paste("current.frame$radioVar <-",frame.name,"Variable",sep="" ))) radio.command <- paste("tkgrid(",frame.name,"Frame,sticky='nw')",sep="") .eval.command(radio.command) new.frames[[Tab]][[ii]] <- current.frame } if(current.frame$type=="checkboxes"){ checkBoxes(current.frame$frame,frame=frame.name,boxes=paste(current.frame$arguments),initialValues=current.frame$initial.values,labels=sapply(current.frame$argument.names,FUN=gettextRcmdr)) if(current.frame$title!="" & current.frame$border==FALSE){ tkgrid(labelRcmdr( current.frame$frame,fg=getRcmdr("title.color"),font="RcmdrTitleFont" ,text=gettextRcmdr(current.frame$title)),sticky="nw") } current.frame$checkVar <- list() arguments <- current.frame$arguments for(j in 1:length(arguments)){ temp.arg <- arguments[j] eval(parse(text=paste("current.frame$checkVar[[",j,"]] <- ",temp.arg,"Variable" ,sep=""))) } check.command <- paste("tkgrid(",frame.name,",sticky='nw')",sep="") .eval.command(check.command) new.frames[[Tab]][[ii]] <- current.frame } if(current.frame$type=="valuesliders"){ number.sliders <- length(current.frame$arguments) arguments <- current.frame$arguments argument.names <- current.frame$argument.names initial.values <- current.frame$initial.values current.frame$slider.frames <- list() current.frame$slider.vars <- list() current.frame$slider <- list() if(current.frame$title!="" & current.frame$border==FALSE){ tkgrid(labelRcmdr( current.frame$frame,fg=getRcmdr("title.color"),font="RcmdrTitleFont" ,text=gettextRcmdr(current.frame$title)),sticky="nw") } for( j in 1:number.sliders){ current.frame$slider.frames[[j]] <- tkframe(current.frame$frame) current.frame$slider.vars[[j]] <- tclVar(as.character(initial.values[j])) current.frame$slider[[j]] <- tkscale(current.frame$slider.frames[[j]],variable=current.frame$slider.vars[[j]],showvalue=TRUE,from=current.frame$from[j],to=current.frame$to[j],length=current.frame$length[j],resolution=current.frame$by[j],orient="horizontal") tkgrid(labelRcmdr(current.frame$slider.frames[[j]],text=gettextRcmdr(current.frame$argument.names[j])), current.frame$slider[[j]] ,sticky="sw") tkgrid(current.frame$slider.frames[[j]],sticky="nw") } new.frames[[Tab]][[ii]] <- current.frame } if(current.frame$type=="spinboxes"){ number.spins <- length(current.frame$arguments) arguments <- current.frame$arguments argument.names <- current.frame$argument.names initial.values <- current.frame$initial.values current.frame$spin.frames <- list() current.frame$spin.vars <- list() current.frame$spin <- list() if(current.frame$title!="" & current.frame$border==FALSE){ tkgrid(labelRcmdr( current.frame$frame,fg=getRcmdr("title.color"),font="RcmdrTitleFont" ,text=gettextRcmdr(current.frame$title)),sticky="nw") } for(j in 1:number.spins){ current.frame$spin.frames[[j]] <- tkframe(current.frame$frame) current.frame$spin.vars[[j]] <- tclVar(as.character(initial.values[j])) current.frame$spin[[j]] <- tkspinbox(current.frame$spin.frames[[j]],from=current.frame$from[j],to=current.frame$to[j],width=current.frame$entry.width,textvariable=current.frame$spin.vars[[j]] ,state="readonly",increment=current.frame$by[j]) tkgrid(labelRcmdr(current.frame$spin.frames[[j]],text=gettextRcmdr(current.frame$argument.names[j])),current.frame$spin[[j]],sticky='nw') tkgrid(current.frame$spin.frames[[j]],sticky='nw') } new.frames[[Tab]][[ii]] <- current.frame } if(current.frame$type=="buttons"){ method_result <- gsub(" ","",methodname,fixed=TRUE) method_result <- gsub("-","",method_result,fixed=TRUE) button_result <- gsub(" ","",current.frame$button.name,fixed=TRUE) button_result <- gsub("&","",button_result,fixed=TRUE) function.command <- paste(current.frame$button.function,"(",sep="") first.arg=TRUE if(current.frame$button.data!=""){ input.data <- ActiveDataSet() if(current.frame$button.data.transf=="matrix"){input.data <- paste("as.matrix(",input.data,")",sep="")} if(current.frame$button.data.transf=="ExprSet"){input.data <- paste0("as.ExprSet(",input.data,")")} function.command <- paste(function.command,current.frame$button.data,"=",input.data ,sep="") first.arg=FALSE } if(current.frame$button.biclust!=""){ if(first.arg==TRUE){ function.command <- paste(function.command,current.frame$button.biclust,"=",method_result,sep="") } else{ function.command <- paste(function.command,",",current.frame$button.biclust,"=",method_result,sep="") } } if(current.frame$button.data=="" & current.frame$button.biclust=="" & current.frame$button.otherarg==""){ function.command <- paste(function.command,"...",sep="") } if(current.frame$button.otherarg!=""){ function.command <- paste(function.command,current.frame$button.otherarg,sep="") } arg.names <- .transform.vector2text(current.frame$arg.frames) save <- current.frame$save show <- current.frame$show temp.command <- paste("function(){ biclustering.objects <- .GetEnvBiclustGUI(\"biclustering.objects\") if(is.null(biclustering.objects)){ .rcmdr.warning('Apply Show Results first') } else{ if(!('",method_result,"' %in% biclustering.objects$all)){ .rcmdr.warning('Apply Show Results first') } if('",method_result,"' %in% biclustering.objects$all){ function.command <- .build.button.function(\"",function.command,"\",",arg.names,",\"",button_result,"\",new.frames,",save,") if(",show,"==TRUE){ doItAndPrint(function.command) } if(",show,"!=TRUE){ justDoIt(function.command) } if(",save,"==TRUE){ doItAndPrint('",button_result,"') } .checkplotgridpref() } } }",sep="") eval(parse(text=paste("button.command <- ",temp.command,sep=""))) current.frame$button.command <- button.command current.frame$buttonRcmdr <- buttonRcmdr(current.frame$frame,command=current.frame$button.command,text=gettextRcmdr(current.frame$button.name),foreground="darkgreen",default="active",width=current.frame$button.width,borderwidth=3) tkgrid(current.frame$buttonRcmdr,sticky="s") new.frames[[Tab]][[ii]] <- current.frame } } if(length(grid.rows[[Tab]])!=0){ special.rows <- lapply(grid.rows[[Tab]],FUN=function(x){return(x$rows)}) special.rows.vector <- sort(unlist(special.rows))} else {special.rows.vector <- c()} row.index <- 1 while(row.index <= dim(grid.config[[Tab]])[1]){ if((length(grid.rows[[Tab]])!=0) & (row.index %in% special.rows.vector) ){ rowframe.index <- which(lapply(special.rows,FUN=function(x){return(row.index %in% x)}) ==TRUE) for(i in special.rows[[rowframe.index]]){ grid.command <- paste("tkgrid(") for(column.index in 1:dim(grid.config[[Tab]])[2]){ if(is.na(grid.config[[Tab]][i,column.index])){} else {grid.command <- paste(grid.command,"new.frames[[",Tab,"]][[",.find.frame(new.frames[[Tab]],grid.config[[Tab]][i,column.index]) ,"]]$frame,",sep="")} } grid.command <- paste(grid.command,"sticky='nw',padx=6,pady=6)") .eval.command(grid.command) } if(Tab==2){ grid.command <- paste("tkgrid(plotdiagFrame_row",rowframe.index,",sticky='nw')",sep="") } .eval.command(grid.command) row.index <- i+1 } else{ grid.command <- "tkgrid(" for(column.index in 1:dim(grid.config[[Tab]])[2]){ if(is.na(grid.config[[Tab]][row.index,column.index])){} else {grid.command <- paste(grid.command,"new.frames[[",Tab,"]][[",.find.frame(new.frames[[Tab]],grid.config[[Tab]][row.index,column.index]) ,"]]$frame,",sep="")} } grid.command <- paste(grid.command,"sticky='nw',padx=6,pady=6)",sep="") .eval.command(grid.command) row.index <- row.index + 1 } } } onOK <- function(){} onCancel <- function() { if (GrabFocus()) tkgrab.release(top) tkdestroy(top) tkfocus(CommanderWindow()) } onHelp <- function() { tkgrab.release(window) print(help(toolhelp)) } exithelpFrame <- tkframe(top) exitButton2 <- buttonRcmdr(exithelpFrame, text = gettextRcmdr("Exit"), foreground = "red", width = "12", command = onCancel, borderwidth = 3) helpButton2 <- buttonRcmdr(exithelpFrame, text=gettextRcmdr("Help"),foreground="red",width="12",command=onHelp,borderwidth=3) tkgrid(exitButton2,helpButton2) tkgrid(plotdiagFrame,padx=5,pady=5,sticky="nw") tkgrid(exithelpFrame,sticky="e",padx=5,pady=6) dialogSuffix(use.tabs=FALSE,onOK=onOK,preventGrabFocus=TRUE) }
context("OpenAPI") test_that("plumberToApiType works", { expect_equal(plumberToApiType("bool"), "boolean") expect_equal(plumberToApiType("logical"), "boolean") expect_equal(plumberToApiType("double"), "number") expect_equal(plumberToApiType("numeric"), "number") expect_equal(plumberToApiType("int"), "integer") expect_equal(plumberToApiType("character"), "string") expect_equal(plumberToApiType("df"), "object") expect_equal(plumberToApiType("list"), "object") expect_equal(plumberToApiType("data.frame"), "object") expect_warning({ expect_equal(plumberToApiType("flargdarg"), defaultApiType) }, "Unrecognized type:") }) test_that("response attributes are parsed", { lines <- c( " " " " " b <- plumbBlock(length(lines), lines) expect_length(b$responses, 4) expect_equal(b$responses$`201`, list(description="This is response 201")) expect_equal(b$responses$`202`, list(description="Here's second")) expect_equal(b$responses$`203`, list(description="Here's third")) expect_equal(b$responses$default, list(description="And default")) b <- plumbBlock(1, "") expect_null(b$responses) }) test_that("params are parsed", { lines <- c( " " " " " b <- plumbBlock(length(lines), lines) expect_length(b$params, 4) expect_equal(b$params$another, list(desc="Another docs", type="integer", required=FALSE, isArray = FALSE)) expect_equal(b$params$test, list(desc="Test docs", type=defaultApiType, required=FALSE, isArray = FALSE)) expect_equal(b$params$required, list(desc="Required param", type="string", required=TRUE, isArray = FALSE)) expect_equal(b$params$multi, list(desc="Required array param", type="integer", required=TRUE, isArray = TRUE)) b <- plumbBlock(1, "") expect_null(b$params) }) test_that("getApiSpec works with mounted routers", { pr1 <- pr() pr1$handle("GET", "/nested/:path/here", function(){}) pr1$handle("POST", "/nested/:path/here", function(){}) stat <- PlumberStatic$new(".") pr2 <- pr() pr2$handle("GET", "/something", function(){}) pr2$handle("POST", "/something", function(){}) pr2$handle("GET", "/", function(){}) pr3 <- pr() pr3$filter("filter1", function(){}) pr3$handle("POST", "/else", function(){}, "filter1") pr3$handle("PUT", "/else", function(){}) pr3$handle("GET", "/", function(){}) pr4 <- pr() pr4$handle("GET", "/completely", function(){}) pr5 <- pr() pr5$handle("GET", "/trailing_slash/", function(){}) pr1$mount("/static", stat) pr2$mount("/sub3", pr3) pr1$mount("/sub2", pr2) pr1$mount("/sub4", pr4) pr4$mount("/", pr5) paths <- names(pr1$getApiSpec()$paths) expect_length(paths, 7) expect_equal(paths, c("/nested/:path/here", "/sub2/something", "/sub2/", "/sub2/sub3/else", "/sub2/sub3/", "/sub4/completely", "/sub4/trailing_slash/" )) }) test_that("responsesSpecification works", { r <- responsesSpecification(NULL) expect_equal(r, defaultResponse) r <- responsesSpecification(NA) expect_equal(r, defaultResponse) customResps <- list("400" = list()) endpts <- plumber::PlumberEndpoint$new( path = "/a", responses = customResps, verbs = "GET", expr = function() {}, envir = new.env(parent = globalenv())) r <- responsesSpecification(endpts) expect_length(r, 4) expect_equal(r$default, defaultResponse$default) expect_equal(r$`400`, customResps$`400`) }) test_that("parametersSpecification works", { ep <- list(id=list(desc="Description", type="integer", required=FALSE), id2=list(desc="Description2", required=FALSE), make=list(desc="Make description", type="string", required=FALSE), prices=list(desc="Historic sell prices", type="numeric", required = FALSE, isArray = TRUE), claims=list(desc="Insurance claims", type="object", required = FALSE)) pp <- data.frame(name=c("id", "id2", "owners"), type=c("int", "int", "chr"), isArray = c(FALSE, FALSE, TRUE), stringsAsFactors = FALSE) params <- parametersSpecification(ep, pp) expect_equal(params$parameters[[1]], list(name="id", description="Description", `in`="path", required=TRUE, schema = list( type="integer", format="int64", default=NULL))) expect_equal(params$parameters[[2]], list(name="id2", description="Description2", `in`="path", required=TRUE, schema = list( type="integer", format="int64", default=NULL))) expect_equal(params$parameters[[3]], list(name="make", description="Make description", `in`="query", required=FALSE, schema = list( type="string", format=NULL, default=NULL))) expect_equal(params$parameters[[4]], list(name="prices", description="Historic sell prices", `in`="query", required=FALSE, schema = list( type="array", items= list( type="number", format="double"), default = NULL), style="form", explode=TRUE)) expect_equal(params$parameters[[5]], list(name="owners", description=NULL, `in`="path", required=TRUE, schema = list( type="array", items= list( type="string", format=NULL), default = NULL), style="simple", explode=FALSE)) expect_equal(params$requestBody, list(content = list( `application/json` = list( schema = list( type = "object", properties = list( claims = list( type = "object", format = NULL, example = NULL, description = "Insurance claims"))))))) params <- parametersSpecification(ep, NULL) idParam <- params$parameters[[which(vapply(params$parameters, `[[`, character(1), "name") == "id")]] expect_equal(idParam$required, FALSE) expect_equal(idParam$schema$type, "integer") for (param in params$parameters) { if (param$schema$type != "array") { expect_equal(length(param), 5) } else { expect_equal(length(param), 7) } } params <- parametersSpecification(NULL, pp[3,]) expect_equal(params$parameters[[1]], list(name="owners", description=NULL, `in`="path", required=TRUE, schema = list( type="array", items= list( type="string", format=NULL), default=NULL), style="simple", explode=FALSE)) params <- parametersSpecification(NULL, NULL) expect_equal(sum(sapply(params, length)), 0) }) test_that("api kitchen sink", { skip_on_cran() skip_on_bioc() skip_on_os(setdiff(c("windows", "mac", "linux", "solaris"), c("mac", "linux"))) skip_if_not(nzchar(Sys.which("node")), "node not installed") skip_if_not(nzchar(Sys.which("npm")), "`npm` system dep not installed") for_each_plumber_api(validate_api_spec, verbose = FALSE) }) test_that("multiple variations in function extract correct metadata", { dummy <- function(var0 = 420.69, var1, var2 = c(1L, 2L), var3 = rnorm, var4 = NULL, var5 = FALSE, var6 = list(name = c("luke", "bob"), lastname = c("skywalker", "ross")), var7 = new.env(parent = .GlobalEnv), var8 = list(a = 2, b = mean, c = new.env(parent = .GlobalEnv))) {} funcParams <- getArgsMetadata(dummy) expect_identical(sapply(funcParams, `[[`, "required"), c(var0 = FALSE, var1 = TRUE, var2 = FALSE, var3 = FALSE, var4 = FALSE, var5 = FALSE, var6 = FALSE, var7 = FALSE, var8 = FALSE)) expect_identical(lapply(funcParams, `[[`, "default"), list(var0 = 420.69, var1 = NA, var2 = 1L:2L, var3 = NA, var4 = NA, var5 = FALSE, var6 = list(name = c("luke", "bob"), lastname = c("skywalker", "ross")), var7 = NA, var8 = NA)) expect_identical(lapply(funcParams, `[[`, "example"), list(var0 = 420.69, var1 = NA, var2 = 1L:2L, var3 = NA, var4 = NA, var5 = FALSE, var6 = list(name = c("luke", "bob"), lastname = c("skywalker", "ross")), var7 = NA, var8 = NA)) expect_identical(lapply(funcParams, `[[`, "isArray"), list(var0 = defaultIsArray, var1 = defaultIsArray, var2 = TRUE, var3 = defaultIsArray, var4 = defaultIsArray, var5 = defaultIsArray, var6 = TRUE, var7 = defaultIsArray, var8 = defaultIsArray)) expect_identical(lapply(funcParams, `[[`, "type"), list(var0 = "number", var1 = defaultApiType, var2 = "integer", var3 = defaultApiType, var4 = defaultApiType, var5 = "boolean", var6 = "object", var7 = defaultApiType, var8 = defaultApiType)) }) test_that("priorize works as expected", { expect_identical("abc", priorizeProperty(structure("zzz", default = TRUE), NULL, "abc")) expect_identical(NULL, priorizeProperty(NULL, NULL, NULL)) expect_identical(structure("zzz", default = TRUE), priorizeProperty(structure("zzz", default = TRUE), NULL, NA)) expect_identical(NULL, priorizeProperty()) }) test_that("custom spec works", { pr <- pr() pr$handle("POST", "/func1", function(){}) pr$handle("GET", "/func2", function(){}) pr$handle("GET", "/func3", function(){}) customSpec <- function(spec) { custom <- list(info = list(description = "My Custom Spec", title = "This is only a test")) return(utils::modifyList(spec, custom)) } pr$setApiSpec(customSpec) spec <- pr$getApiSpec() expect_equal(spec$info$description, "My Custom Spec") expect_equal(spec$info$title, "This is only a test") expect_equal(class(spec$openapi), "character") }) test_that("no params plumber router still produces spec when there is a func params", { pr <- pr() handler <- function(num) { sum(as.integer(num)) } pr$handle("GET", "/sum", handler, serializer = serializer_json()) spec <- pr$getApiSpec() expect_equal(spec$paths$`/sum`$get$parameters[[1]]$name, "num") }) test_that("Response content type set with serializer", { a <- pr() pr_get(a, "/json", function() {"OK"}, serializer = serializer_json) pr_get(a, "/csv", function() {"OK"}, serializer = serializer_csv()) spec <- a$getApiSpec() expect_equal(spec$paths$`/json`$get$responses$`200`$content, list("application/json" = list(schema = list(type = "object")))) expect_equal(spec$paths$`/csv`$get$responses$`200`$content, list("text/csv" = list(schema = list(type = "string")))) }) test_that("Api spec can be set using a file path", { pr <- pr() %>% pr_set_api_spec(test_path("files/openapi.yaml")) expect_equal(pr$getApiSpec()$paths$`/health-check`$get$summary, " Determine if the API is running and listening as expected") })
wrcc_createMetaDataframe <- function( tbl, unitID = as.character(NA), pwfslDataIngestSource = 'WRCC', existingMeta = NULL, addGoogleMeta = FALSE, addEsriMeta = FALSE ) { logger.debug(" ----- wrcc_createMetaDataframe() ----- ") if ( !'monitorType' %in% names(tbl) ) { logger.error("No 'monitorType' column found in 'tbl' tibble with columns: %s", paste0(names(tbl), collapse=", ")) stop(paste0("No 'monitorType' column found in 'tbl' tibble.")) } monitorType <- unique(tbl$monitorType) if ( length(monitorType) > 1 ) { logger.error("Multilpe monitor types found in 'tbl' tibble: %s", paste0(monitorType, collapse=", ")) stop(paste0("Multiple monitor types found in 'tbl' tibble.")) } monitorType <- monitorType[1] if ( !'deploymentID' %in% names(tbl) ) { logger.error("No 'deploymentID' column found in 'tbl' tibble with columns: %s", paste0(names(tbl), collapse=", ")) stop(paste0("No 'deploymentID' column found in 'tbl' tibble. Have you run addClustering()?")) } tbl <- tbl[!duplicated(tbl$deploymentID),] logger.trace("Tibble contains %d unique deployment(s)", nrow(tbl)) meta <- createEmptyMetaDataframe(nrow(tbl)) meta$longitude <- as.numeric(tbl$medoidLon) meta$latitude <- as.numeric(tbl$medoidLat) meta$elevation <- as.numeric(NA) meta$timezone <- as.character(NA) meta$countryCode <- as.character(NA) meta$stateCode <- as.character(NA) meta$siteName <- as.character(NA) meta$countyName <- as.character(NA) meta$msaName <- as.character(NA) meta$agencyName <- as.character(NA) meta$monitorType <- as.character(tbl$monitorType) meta$siteID <- as.character(tbl$deploymentID) meta$instrumentID <- paste0('wrcc.',unitID) meta$aqsID <- as.character(NA) meta$pwfslID <- as.character(tbl$deploymentID) meta$pwfslDataIngestSource <- as.character(pwfslDataIngestSource) meta$telemetryAggregator <- paste0('wrcc') meta$telemetryUnitID <- as.character(unitID) meta$monitorID <- paste(meta$siteID, meta$instrumentID, sep='_') meta <- addMazamaMetadata(meta, existingMeta=existingMeta) NPSMask <- stringr::str_detect(tbl$monitorName,'^Smoke NPS') USFSMask <- stringr::str_detect(tbl$monitorName,'^Smoke USFS') meta$agencyName[NPSMask] <- 'National Park Servsice' meta$agencyName[USFSMask] <- 'United States Forest Service' if ( addGoogleMeta ) { result <- try( meta <- addGoogleElevation(meta, existingMeta=existingMeta), silent=TRUE ) if ( "try-error" %in% class(result) ) { logger.warn("Unable to add Google elevations: %s", geterrmessage()) } } if ( addEsriMeta ) { result <- try( meta <- addEsriAddress(meta, existingMeta=existingMeta), silent=TRUE ) if ( "try-error" %in% class(result) ) { logger.warn("Unable to add ESRI addresses: %s", geterrmessage()) } } rownames(meta) <- meta$monitorID logger.trace("Created 'meta' dataframe with %d rows and %d columns", nrow(meta), ncol(meta)) return(meta) }
nobs.kspm <- function(object, ...) { return(object$n) }
download_files <- function(dllist, overwrite = FALSE) { assert_that(is_list_of_df(dllist)) assert_that(is_logical(overwrite)) dl_files <- function(dir, file, url) { if (!dir.exists(dir)) { pretty_message(paste0("Creating directory: ", dir)) chk <- dir.create(dir, recursive = TRUE) stopifnot(chk) } pretty_message(paste0("Downloading binary: ", url), "\n") wd <- httr::write_disk(file.path(dir, file), overwrite = TRUE) res <- httr::GET(url, wd) httr::stop_for_status(res) res } dlfiles <- lapply(names(dllist), function(platform) { platformDF <- dllist[[platform]] if (!overwrite) { platformDF <- platformDF[!platformDF[["exists"]], ] } if (identical(nrow(platformDF), 0L)) { return(data.frame( platform = character(), file = character(), processed = logical(), stringsAsFactors = FALSE )) } res <- Map(dl_files, dir = platformDF[["dir"]], file = platformDF[["file"]], url = platformDF[["url"]], USE.NAMES = FALSE ) res <- vapply(res, class, character(1)) == "response" data.frame( platform = platform, file = file.path( platformDF[["dir"]], platformDF[["file"]] ), processed = res, stringsAsFactors = FALSE ) }) invisible(do.call(rbind.data.frame, dlfiles)) }
context('stored data') test_that('storedData',{ data(leroy) expect_true(validObject(leroy)) data(fishers) expect_true(validObject(fishers)) data(dbbmmstack) expect_true(validObject(dbbmmstack)) data(leroydbbmm) expect_true(validObject(leroydbbmm)) })
NULL NULL CoefQuartVarCI <- R6::R6Class( classname = "CoefQuartVarCI", inherit = CoefQuartVar, public = list( x = NA, na.rm = FALSE, digits = 1, R = 1000, alpha = 0.05, zzz = NA, f1square = NA, f3square = NA, D = NA, S = NA, v = NA, ccc = NA, bootcqv = NA, initialize = function( x = NA, na.rm = FALSE, digits = 1, R = 1000, alpha = 0.05, ... ) { if (missing(x) || is.null(x)) { stop("object 'x' not found") } else if (!missing(x)) { self$x <- x } if (!missing(na.rm)) { self$na.rm <- na.rm } if (self$na.rm == TRUE) { self$x <- x[!is.na(x)] } else if (anyNA(x) & self$na.rm == FALSE) { stop( "missing values and NaN's not allowed if 'na.rm' is FALSE" ) } if (!is.numeric(x)) { stop("argument is not a numeric vector") } if (!missing(digits)) { self$digits <- digits } if (!missing(R)) { self$R <- R } if (!missing(alpha)) { self$alpha <- alpha } self$zzz = function(...) { qnorm((1 - ((1 - super$alphastar())/2))) } self$f1square = function(...) { (3 * (self$zzz())^2)/( 4 * length(self$x) * ((super$Yb() - super$Ya())^2)) } self$f3square = function(...) { (3 * (self$zzz())^2)/( 4 * length(self$x) * ((super$Yd() - super$Yc())^2)) } self$D = function(...) { super$super_$super_$initialize( x = self$x, na.rm = self$na.rm, probs = 0.75, names = FALSE ) - super$super_$super_$initialize( x = self$x, na.rm = self$na.rm, probs = 0.25, names = FALSE ) } self$S = function(...) { super$super_$super_$initialize( x = self$x, na.rm = self$na.rm, probs = 0.75, names = FALSE ) + super$super_$super_$initialize( x = self$x, na.rm = self$na.rm, probs = 0.25, names = FALSE ) } self$v = function(...) { ( (1/(16 * length(self$x))) * ( (((3/self$f1square()) + (3/self$f3square()) - ( 2/sqrt(self$f1square() * self$f3square()))) / self$D()^2) + (((3/self$f1square()) + (3/self$f3square()) + (2/sqrt(self$f1square() * self$f3square()))) / self$S()^2) - ((2 * ((3/self$f3square()) - (3/self$f1square()))) / (self$D()*self$S())) ) ) } self$ccc = function(...) {length(self$x)/(length(self$x) - 1)} self$bootcqv = function(...) { return( super$super_$initialize( x = self$x, na.rm = self$na.rm, R = self$R, alpha = self$alpha )) } self$bootcqv() }, bonett_ci = function(...) { return( list( method = "cqv with Bonett CI", statistics = data.frame( est = round(super$est(), digits = self$digits), lower = ( round( (100 * exp( ((SciViews::ln((self$D()/self$S())) * self$ccc())) - (self$zzz() * (self$v()^(0.5))) )), digits = self$digits ) ), upper = ( round( (100 * exp( ((SciViews::ln((self$D()/self$S())) * self$ccc())) + (self$zzz() * (self$v()^(0.5))) )), digits = self$digits ) ), row.names = c(" ") ) ) ) }, norm_ci = function(...) { return( list( method = "cqv with normal approximation bootstrap CI", statistics = data.frame( est = round(super$est(), digits = self$digits), lower = round( self$boot_norm_ci()$normal[2], digits = self$digits), upper = round( self$boot_norm_ci()$normal[3], digits = self$digits), row.names = c(" ") ) ) ) }, basic_ci = function(...) { return( list( method = "cqv with basic bootstrap CI", statistics = data.frame( est = round(super$est(), digits = self$digits), lower = round( self$boot_basic_ci()$basic[4], digits = self$digits), upper = round( self$boot_basic_ci()$basic[5], digits = self$digits), row.names = c(" ") ) ) ) }, perc_ci = function(...) { return( list( method = "cqv with bootstrap percentile CI", statistics = data.frame( est = round(super$est(), digits = self$digits), lower = round( self$boot_perc_ci()$percent[4], digits = self$digits), upper = round( self$boot_perc_ci()$percent[5], digits = self$digits), row.names = c(" ") ) ) ) }, bca_ci = function(...) { return( list( method = "cqv with adjusted bootstrap percentile (BCa) CI", statistics = data.frame( est = round(super$est(), digits = self$digits), lower = round( self$boot_bca_ci()$bca[4], digits = self$digits), upper = round( self$boot_bca_ci()$bca[5], digits = self$digits), row.names = c(" ") ) ) ) }, all_ci = function(...) { return( list( method = "All methods", statistics = data.frame( row.names = c( "bonett", "norm", "basic", "percent", "bca" ), est = c( round(super$est(), digits = self$digits), round(super$est(), digits = self$digits), round(super$est(), digits = self$digits), round(super$est(), digits = self$digits), round(super$est(), digits = self$digits) ), lower = c( round( (100 * exp( ((SciViews::ln((self$D()/self$S())) * self$ccc())) - (self$zzz() * (self$v()^(0.5))) )), digits = self$digits ), round( self$boot_norm_ci()$normal[2], digits = self$digits), round( self$boot_basic_ci()$basic[4], digits = self$digits), round( self$boot_perc_ci()$percent[4], digits = self$digits), round( self$boot_bca_ci()$bca[4], digits = self$digits) ), upper = c( round( (100 * exp( ((SciViews::ln((self$D()/self$S())) * self$ccc())) + (self$zzz() * (self$v()^(0.5))) )), digits = self$digits ), round( self$boot_norm_ci()$normal[3], digits = self$digits), round( self$boot_basic_ci()$basic[5], digits = self$digits), round( self$boot_perc_ci()$percent[5], digits = self$digits), round( self$boot_bca_ci()$bca[5], digits = self$digits) ), description = c( "cqv with Bonett CI", "cqv with normal approximation CI", "cqv with basic bootstrap CI", "cqv with bootstrap percentile CI", "cqv with adjusted bootstrap percentile (BCa) CI" ) ) ) ) } ) )
thetafun <- function(theta, WfdList, U, itermax = 20, crit = 1e-3, itdisp=FALSE) { if (!inherits(WfdList,"list")) stop("Arguments WfdList is not list object.") N <- nrow(U) n <- ncol(U) if (length(theta) != N) { stop("Length of theta not equal to nrow(U).") } if (any(theta < 0) || any(theta > 100)) stop('Values of theta out of bounds.') if (length(WfdList) != n) stop("Length of WfdList not equal to ncol(U).") Hval <- Hfun(theta, WfdList, U) DHList <- DHfun(theta, WfdList, U) DHval <- DHList$DH D2Hval <- DHList$D2H ngrid <- 26 jneg <- which(D2Hval <= 0) if (length(jneg) > 0) { if (itdisp) { print(paste("Number of nonpositive D2H =",length(jneg))) } thetatry <- seq(0,100,length.out=ngrid) for (j in 1:length(jneg)) { jind <- jneg[j] Uj <- matrix(U[jind,], 1)[rep(1,ngrid), ] Htry <- Hfun(thetatry, WfdList, Uj) Hmin <- min(Htry) kmin <- which(Htry == Hmin) theta[jind] <- thetatry[kmin[1]] } Hvalnonpos <- Hfun(theta[jneg], WfdList, U[jneg,]) result <- DHfun(theta[jneg], WfdList, U[jneg,]) DHvalnonpos <- result$DH D2Hvalnonpos <- result$D2H Hval[jneg] <- Hvalnonpos DHval[jneg] <- DHvalnonpos D2Hval[jneg] <- D2Hvalnonpos } if (itdisp) { print(paste("mean adjusted values =",round(mean(theta[jneg]),2))) } if (itermax == 0) { theta_out <- theta return(theta_out) } active <- ActiveTestFn(theta, DHval, D2Hval, crit) nactive <- sum(active) thetaa <- theta[active] Ha <- Hval[active] DHa <- DHval[active] D2Ha <- D2Hval[active] iter <- 0 while(nactive > 0 && iter < itermax) { iter <- iter + 1 if (itdisp) { print(paste("iter",iter,", nactive = ",nactive)) } step <- DHa/D2Ha step[step < -10] <- -10 step[step > 10] <- 10 stepind0 <- which(thetaa - step <= 0) stepindn <- which(thetaa - step >= 100) if (length(stepind0) > 0) { step[stepind0] <- (thetaa[stepind0] - 0) } if (length(stepindn) > 0) { step[stepindn] <- -(100 - thetaa[stepindn]) } thetaanew <- theta[active] Uanew <- as.matrix(U[active,]) Hanew <- Hval[active] fac <- 1 stepiter <- 0 failindex <- 1:nactive while(length(failindex) > 0 && stepiter < 10) { stepiter <- stepiter + 1 stepnew <- fac * step[failindex] thetaanew[failindex] <- thetaa[failindex] - stepnew if (nactive == 1) { Uanewfail <- Uanew } else { Uanewfail <- as.matrix(Uanew[failindex,]) } Hanew[failindex] <- Hfun(thetaanew[failindex], WfdList, Uanewfail) failindex <- which((Hval[active] - Hanew) < -crit) fac <- fac/2 } theta[active] <- thetaanew Ha <- Hanew DHLista <- DHfun(theta[active], WfdList, as.matrix(U[active,])) DHa <- DHLista$DH D2Ha <- DHLista$D2H jneg <- which(D2Ha <= 0) Hval[active] <- Ha DHval[active] <- DHa D2Hval[active] <- D2Ha active <- ActiveTestFn(thetaanew, DHa, D2Ha, crit, active) nactive <- length(which(active == TRUE)) if (nactive > 0) { thetaa <- theta[active] DHa <- DHval[active] D2Ha <- D2Hval[active] } } theta_out <- theta return(list(theta_out=theta_out, Hval=Hval, DHval=DHval, D2Hval=D2Hval, iter=iter)) } ActiveTestFn <- function(theta, DHval, D2Hval, crit = 1e-3, activeold = NULL) { if (is.null(activeold)) { N <- length(theta) activenew <- rep(FALSE, N) for (j in 1:N) { thetaj <- theta[j] test <- (thetaj > 0 && thetaj < 100) | (thetaj == 0 && DHval[j] < 0) | (thetaj == 100 && DHval[j] > 0) if (test) activenew[j] <- TRUE } } else { nactive <- length(theta) N <- length(activeold) activenew <- rep(FALSE,N) activeind <- which(activeold) for (j in 1:nactive) { thetaj <- theta[j] DHaj <- DHval[j] D2Haj <- D2Hval[j] test1 <- thetaj > 10 && abs(DHaj) > 10 * crit && D2Haj > 0 && thetaj > 0 && thetaj < 100 test2 = thetaj <= 10 && abs(DHaj) > 50 * crit && D2Haj > 0 && thetaj > 0 && thetaj < 100 test3 <- thetaj == 0 && DHaj < 0 test4 <- thetaj == 100 && DHaj > 0 if (test1 || test2 || test3 || test4) activenew[activeind[j]] <- TRUE } } return(activenew) }
expected <- eval(parse(text="structure(list(c(\"1\", \"2\", NA)), .Names = \"\")")); test(id=0, code={ argv <- eval(parse(text="list(structure(c(1L, 2L, 1L), .Dim = 3L, .Dimnames = structure(list(c(\"1\", \"2\", NA)), .Names = \"\"), class = \"table\"))")); do.call(`dimnames`, argv); }, o=expected);
mathmlPlot <- function(node) { UseMethod("mathmlPlot",node) } mathmlPlot.XMLDocument <- function(doc) { return(mathmlPlot(doc$doc$children)) } mathmlPlot.default <- function(children) { expr <- expression() i <- 1 ok <- (i <= length(children)) while(ok) { child <- children[[i]] if(is.null(child)) { i <- i+1 ok <- (i <= length(children)) next } if(!is.null(class(child)) && class(child) == "XMLComment") { i <- i+1 ok <- (i <= length(children)) next } if(xmlName(child) == "mo") { op <- child$children[[1]]$value if(op == "sum") { tmp <- c(as.name(op), quote(x[i]),mathmlPlot(children[[i+1]]), mathmlPlot(children[[i+2]])) expr <- c(expr, tmp) i <- i+2 } else { expr <- c(mathmlPlot(child), expr , mathmlPlot(children[[i+1]])) } mode(expr) <- "call" i <- i+1 } else { expr <- c(expr, mathmlPlot(child)) } i <- i+1 ok <- (i <= length(children)) } return(expr) } mathmlPlot.XMLEntityRef <- function(node) { nm <- xmlName(node) val <- switch(nm, PlusMinus=as.name("%+-%"), InvisibleTimes=as.name("*"), int=as.name("integral"), infty = as.name("infinity"), NULL ) if(is.null(val)) { val <- as.name(nm) } return(val) } mathmlPlot.XMLNode <- function(node) { nm <- name(node) if(nm == "mi" || nm == "ci") { val <- c(as.name("italic"),mathmlPlot(node$children)) mode(val) <- "call" } else if(nm == "msqrt") { val <- c(as.name("sqrt"), mathmlPlot(node$children)) mode(val) <- "call" } else if(nm == "msubsup") { tmp <- c(as.name("^"), mathmlPlot(node$children[[1]]),mathmlPlot(node$children[[2]])) mode(tmp) <- "call" val <- c(as.name("["), tmp, mathmlPlot(node$children[[3]])) mode(val) <- "call" } else if(nm == "mrow") { val <- mathmlPlot(node$children) } else if(nm == "text") { val <- node$value } else if(nm == "mo") { if(inherits(node$children[[1]],"XMLEntityRef")) val <- mathmlPlot(node$children[[1]]) else { op <- node$children[[1]]$value tmp <- switch(op, "=" = "==", op) val <- as.name(tmp) } } else if(nm == "mfrac") { val <- list(as.name("frac"), mathmlPlot(node$children[[1]]), mathmlPlot(node$children[[2]])) mode(val) <- "call" } else if(nm == "msup" || nm == "msub") { op <- switch(nm, "msup" = "^", "msub"="[") val <- c(as.name(op), mathmlPlot(node$children[[1]]), mathmlPlot(node$children[[2]])) mode(val) <- "call" } else if(nm == "mn" || nm == "cn") { val <- as.numeric(node$children[[1]]$value) } else if(nm == "mstyle") { val <- mathmlPlot(node$children) } else if(nm == "munderover") { val <- mathmlPlot(node$children) } else if(nm == "mroot") { val <- c(as.name("sqrt"), mathmlPlot(node$children[[1]]), mathmlPlot(node$children[[2]])) mode(val) <- "call" } else if(nm == "reln") { val <- mathmlPlot(node$children) mode(val) <- "call" } else if(nm == "eq") { val <- as.name("==") } else if(nm == "geq") { val <- as.name(">=") } else if(nm == "set") { n <- min( (1:length(node$children))[sapply(node$children, xmlName) == "condition"]) cat("Condition @",n,"\n") args <- c(mathmlPlot(node$children[1:(n-1)]), "|", mathmlPlot(node$children[n:length(node$children)])) args <- c(as.name("paste"), args) mode(args) <- "call" val <- list(as.name("group"),"{", args,"}") mode(val) <- "call" } else if(nm == "bvar") { val <- mathmlPlot(node$children) } else if(nm == "condition") { val <- mathmlPlot(node$children) } else if(nm == "interval") { sep <- xmlAttrs(node)[["closure"]] sep <- switch(sep, open=c("(",")"), closed=c("[","]"), "closed-open"=c("[",")"), "open-closed"=c("(","]"), ) els <- mathmlPlot(node$children) els <- c(as.name("paste"), els[[1]],",",els[[2]]) mode(els) <- "call" val <- list(as.name("group"),sep[1], els ,sep[2]) mode(val) <- "call" } else if(nm == "power") { val <- c(as.name("^"), mathmlPlot(node$children[[1]]), mathmlPlot(node$children[[2]])) } else if(nm == "plus") { val <- as.name("+") } else if(nm == "apply") { val <- mathmlPlot.apply(node) } return(val) } mathmlPlot.apply <- function(node) { sub <- mathmlPlot(node$children) nm <- xmlName(node$children[[1]]) print(node$children[[1]]) if(nm == "plus" || nm == "minus" || nm == "times" || nm == "div" ) { print(sub[[1]]) val <- c(mathmlPlot(node$children[[1]]), sub[[2]], sub[[3]]) mode(val) <- "call" for(i in 4:length(sub)) { tmp <- c(mathmlPlot(node$children[[1]]), val, sub[[i]]) mode(tmp) <- "call" val <- tmp } } else { val <- sub mode(val) <- "call" } return(val) }
DCCSWA <- function(Data, Group, ncomp=NULL, Scale=FALSE, graph=FALSE){ check(Data, Group) if (is.data.frame(Data) == TRUE) { Data=as.matrix(Data) } if(is.null(ncomp)) {ncomp=2} if(is.null(colnames(Data))) { colnames(Data) = paste('V', 1:ncol(Data), sep='') } Group = as.factor(Group) rownames(Data)=Group M=length(levels(Group)) P=dim(Data)[2] n=as.vector(table(Group)) N=sum(n) split.Data=split(Data,Group) for(m in 1:M){ split.Data[[m]]=matrix(split.Data[[m]],nrow=n[m]) split.Data[[m]]<-scale(split.Data[[m]],center=TRUE,scale=Scale) } Con.Data = split.Data[[1]] for(m in 2:M) { Con.Data = rbind(Con.Data, split.Data[[m]]) } rownames(Con.Data) = Group colnames(Con.Data) = colnames(Data) cov.Group=vector("list", M) for(m in 1:M){ cov.Group[[m]] = t(split.Data[[m]]) %*% split.Data[[m]] / n[m] } Itot = 0 for (m in 1:M) { Itot = Itot + sum(cov.Group[[m]]^2) } saliences = matrix(0,M,ncomp) A = matrix(0,nrow=P,ncol=ncomp) explained = matrix(0,ncomp) res <- list( Data = Data, Con.Data = Con.Data, split.Data = split.Data, Group=Group) for (h in 1:ncomp) { salience= c(rep(1,M)) threshold = 1e-10 deltafit = 1000000; previousfit = Itot; while(deltafit > threshold){ Vc = 0 for(m in 1:M){ Vc = salience[m] * cov.Group[[m]] + Vc } a = eigen(Vc)$vectors[,1] for(m in 1:M){ salience[m] = t(a) %*% cov.Group[[m]] %*% a } def=0 for(m in 1:M){ def = sum(cov.Group[[m]] - salience[m] * as.matrix(a) %*% t(as.matrix(a)))^2 + def } deltafit = previousfit-def previousfit = def } explained[h,1] = 100 * sum(salience ^2) / Itot saliences[,h] = salience; A[,h] = a; aux = diag(1,P)- matrix(a,ncol=1) %*% matrix(a,nrow=1); for (m in 1:M) { split.Data[[m]] = split.Data[[m]] %*% aux cov.Group[[m]] = t(split.Data[[m]]) %*% split.Data[[m]] } } res$loadings.common=A rownames(res$loadings.common)=colnames(Data) colnames(res$loadings.common)=paste("Dim", 1:ncomp, sep="") res$saliences= saliences rownames(res$saliences) = levels(Group) colnames(res$saliences) = paste("Dim", 1:ncomp, sep="") expl = matrix(0, nrow=ncomp, ncol=2) expl[,1] = c(explained) expl[,2] = cumsum(expl[,1]) res$exp.variance = expl rownames(res$exp.variance) = paste("Dim", 1:ncomp, sep="") colnames(res$exp.variance) = c("%Total Var expl", "Cumul % total Var") Y<-scale(Data,center=TRUE,scale=FALSE) Datam=split(Y, Group) for(m in 1:M){ Datam[[m]] = matrix(Datam[[m]], nrow=n[m]) Datam[[m]] = scale(Datam[[m]], center=TRUE, scale=FALSE) } for(m in 1:M) { cov.Group[[m]] = t(Datam[[m]]) %*% Datam[[m]] / n[m] } lambda = matrix(0, nrow=M, ncol=ncomp) for(m in 1:M){ lambda[m,]=round(diag(t(A) %*% (cov.Group[[m]]) %*% A),3) } res$lambda = lambda rownames(res$lambda) = levels(Group) colnames(res$lambda) = paste("Dim", 1:ncomp, sep="") exp.var = matrix(0,M,ncomp) for(m in 1:M){ exp.var[m,] = 100 * lambda[m,]/ sum(diag(cov.Group[[m]])) } res$exp.var = exp.var rownames(res$exp.var) = levels(Group) colnames(res$exp.var) = paste("Dim", 1:ncomp, sep="") if(graph) {plot.mg(res)} class(res) = c("DCCSWA", "mg") return(res) } print.DCCSWA <- function(x, ...) { cat("\nDual Common Component and Specific Weights Analysis\n") cat(rep("-",43), sep="") cat("\n$loadings.common ", "common loadings") cat("\n$Data ", "Data set") cat("\n") invisible(x) }
library(testthat) source("../helpers.R") library(datasets) data("iris") test_that("it fails for invalid arguments", { expect_does_throw({ mmb::bayesRegress(df = data.frame(), features = data.frame(), targetCol = "foo", numBuckets = 1) }) m <- mmb::getMessages() mmb::setMessages(TRUE) w <- mmb::getWarnings() mmb::setWarnings(FALSE) expect_message({ mmb::bayesRegress( df = iris[1:100, ], features = mmb::sampleToBayesFeatures(iris[101, ], "Sepal.Length"), targetCol = "Sepal.Length", numBuckets = 2) }, "No explicit feature selection") mmb::setWarnings(w) mmb::setMessages(m) }) test_that("we can also sample from the most likely range only", { w <- mmb::getWarnings() mmb::setWarnings(TRUE) res <- expect_warning({ mmb::bayesRegress( df = iris[1:100, ], features = mmb::sampleToBayesFeatures(iris[101, ], "Petal.Width"), targetCol = "Petal.Width", selectedFeatureNames = c("Species", "Sepal.Length"), sampleFromAllBuckets = FALSE, numBuckets = NA) }, "Segmenting stopped prematurely") expect_false(is.nan(res)) expect_gt(res, 0) }) test_that("custom regressor errors are handled properly", { w <- mmb::getWarnings() mmb::setWarnings(TRUE) res <- expect_warning({ mmb::bayesRegress( df = iris[1:5, ], features = mmb::sampleToBayesFeatures(iris[101, ], "Petal.Width"), targetCol = "Petal.Width", selectedFeatureNames = c("Species", "Sepal.Length"), sampleFromAllBuckets = FALSE) }, "Regressor returned NaN") expect_true(is.nan(res)) res <- expect_warning({ mmb::bayesRegress( df = iris[1:100, ], features = mmb::sampleToBayesFeatures(iris[101, ], "Petal.Width"), targetCol = "Petal.Width", selectedFeatureNames = c("Species", "Sepal.Length"), sampleFromAllBuckets = FALSE, regressor = function(vec) stop("--42--")) }, "--42--") expect_true(is.nan(res)) rd <- mmb::getDefaultRegressor() mmb::setDefaultRegressor(function(data) paste(ceiling(data), collapse = "-")) res <- expect_warning({ mmb::bayesRegress( df = iris[1:100, ], features = mmb::sampleToBayesFeatures(iris[101, ], "Petal.Width"), targetCol = "Petal.Width", selectedFeatureNames = c("Species", "Sepal.Length"), sampleFromAllBuckets = FALSE) }, "Segmenting stopped") expect_equal(grep("^\\d+?(\\-\\d+?)*?$", res), 1) mmb::setDefaultRegressor(rd) mmb::setWarnings(w) }) test_that("we can do regression for multiple values", { w <- mmb::getWarnings() mmb::setWarnings(FALSE) df <- iris[, ] set.seed(84735) rn <- base::sample(rownames(df), 150) dfTrain <- df[1:120, ] dfValid <- df[121:150, ] res <- mmb::bayesRegressAssign( dfTrain, dfValid[, !(colnames(dfValid) %in% "Sepal.Length")], "Sepal.Length", sampleFromAllBuckets = TRUE, doEcdf = TRUE) c <- cov(res, iris[121:150,]$Sepal.Length)^2 expect_true(all(c >= 0) && all(c <= 1)) mmb::setWarnings(w) }) test_that("regression for multiple values works in simple and online, too", { w <- mmb::getWarnings() mmb::setWarnings(FALSE) df <- iris[, ] set.seed(84735) rn <- base::sample(rownames(df), 150) dfTrain <- df[1:120, ] dfValid <- df[121:150, ] res <- mmb::bayesRegressAssign( dfTrain, dfValid[, !(colnames(dfValid) %in% "Sepal.Length")], "Sepal.Length", sampleFromAllBuckets = FALSE, doEcdf = FALSE, online = 100, numBuckets = NA) c <- cov(res, iris[121:150,]$Sepal.Length)^2 expect_true(all(c >= 0) && all(c <= 1)) res <- mmb::bayesRegressAssign( dfTrain, dfValid[, ], "Sepal.Length", sampleFromAllBuckets = TRUE, doEcdf = FALSE, simple = TRUE) c <- cov(res, iris[121:150,]$Sepal.Length)^2 expect_true(all(c >= 0) && all(c <= 1)) mmb::setWarnings(w) })