code
stringlengths
1
13.8M
NAME <- "atomic" source(file.path('_helper', 'init.R')) all.equal(as.character(diffPrint(chr.1, chr.2)), rdsf(100)) all.equal( as.character(diffPrint(chr.1, chr.2, mode="unified")), rdsf(200) ) all.equal( as.character(diffPrint(chr.1, chr.2, mode="context")), rdsf(400) ) all.equal( as.character(diffPrint(chr.1[2:3], chr.2[2], mode="sidebyside")), rdsf(500) ) all.equal( as.character( diffPrint(chr.1, chr.2, mode="unified", extra=list(quote=FALSE)) ), rdsf(600) ) all.equal( as.character(diffPrint(chr.3, chr.4)), rdsf(700) ) all.equal( as.character(diffPrint(chr.3, chr.4, mode="unified")), rdsf(800) ) A <- A.1 <- B <- c(letters, LETTERS) B[15] <- "Alabama" A.1[5] <- "Ee" C <- A[-15] D <- C E <- B[-45] all.equal(as.character(diffPrint(A[-(1:8)], A)), rdsf(900)) all.equal(as.character(diffPrint(A, A[-(1:8)])), rdsf(1000)) all.equal(as.character(diffPrint(A[-1], A[-2])), rdsf(1100)) all.equal(as.character(diffPrint(A, B)), rdsf(1200)) all.equal(as.character(diffPrint(B, A)), rdsf(1250)) all.equal( as.character(diffPrint(A, B, word.diff=FALSE)), rdsf(1300) ) all.equal( as.character(diffPrint(A, B, unwrap.atomic=FALSE)), rdsf(1400) ) all.equal( as.character(diffPrint(A, A.1[-(13:18)])), rdsf(1425) ) all.equal(as.character(diffPrint(C, B)), rdsf(1450)) all.equal(as.character(diffPrint(D, E)), rdsf(1500)) all.equal(as.character(diffPrint(E, D)), rdsf(1600)) state.abb.2 <- state.abb state.abb.2[38] <- "Pennsylvania" all.equal( as.character(diffPrint(state.abb, state.abb.2)), rdsf(1700) ) all.equal(as.character(diffPrint(1:100, 2:101)), rdsf(1800)) all.equal(as.character(diffPrint(2:101, 1:100)), rdsf(1900)) all.equal( as.character(diffPrint(2:101, (1:100)[-9])), rdsf(2000) ) all.equal( as.character(diffPrint((2:101)[-98], (1:100)[-9])), rdsf(2100) ) int.1 <- int.2 <- 1:100 int.2[c(8, 20, 60)] <- 99 int.2 <- c(50:1, int.2) all.equal(as.character(diffPrint(int.1, int.2)), rdsf(2200)) rand.chrs <- do.call(paste0, expand.grid(LETTERS, LETTERS)) F <- F1 <- F2 <- (2:105)[-98] G <- G2 <- G3 <- G4 <- G5 <- (1:100)[-9] nm.1 <- rand.chrs[seq_along(F)] nm.2 <- rand.chrs[seq_along(G)] names(F1) <- names(F2) <- nm.1 names(G3) <- names(G2) <- names(G3) <- names(G4) <- names(G5) <- nm.2 names(G3)[c(5, 25, 60)] <- c("XXXXX", rand.chrs[c(300, 350)]) names(G4)[c(5, 25, 60)] <- names(G5)[c(5, 25, 60)] <- c("XX", rand.chrs[c(300, 350)]) attr(F2, "blah") <- 1:5 attr(G5, "blah") <- 3:8 all.equal(as.character(diffPrint(F, G)), rdsf(2300)) all.equal(as.character(diffPrint(F1, G2)), rdsf(2400)) all.equal(as.character(diffPrint(F1, G3)), rdsf(2500)) all.equal(as.character(diffPrint(F1, G4)), rdsf(2520)) all.equal(as.character(diffPrint(F2, G5)), rdsf(2530)) all.equal(as.character(diffPrint(F1, G5)), rdsf(2540)) set.seed(2) w1 <- sample( c( "carrot", "cat", "cake", "eat", "rabbit", "holes", "the", "a", "pasta", "boom", "noon", "sky", "hat", "blah", "paris", "dog", "snake" ), 25, replace=TRUE ) w4 <- w3 <- w2 <- w1 w2[sample(seq_along(w1), 5)] <- LETTERS[1:5] w3 <- w1[8:15] w4 <- c(w1[1:5], toupper(w1[1:5]), w1[6:15], toupper(w1[1:5])) all.equal(as.character(diffPrint(w1, w2)), rdsf(2600)) all.equal(as.character(diffPrint(w1, w3)), rdsf(2700)) all.equal(as.character(diffPrint(w1, w4)), rdsf(2800)) a <- c("a", "b", "c", "d") b <- c("b", "c", "d", "e") all.equal(as.character(diffPrint(a, b)), rdsf(2900)) a <- c("x", "a", "b", "c", "d", "z") b <- c("x", "b", "c", "d", "e", "z") all.equal(as.character(diffPrint(a, b)), rdsf(3000)) a <- c("x", "a", "b", "c", "d", "z") b <- c("z", "b", "c", "d", "e", "x") all.equal(as.character(diffPrint(a, b)), rdsf(3100)) all.equal( as.character(diffPrint(20:50, 30:62)), rdsf(3200) ) all.equal( as.character(diffPrint(c(1:24,35:45), c(1:8, 17:45))), rdsf(3400) )
fitEM <- function(y, X.t, Z.t, K = NULL, Vg = NULL, Ve = NULL, cov.error = TRUE, stop.if.significant = FALSE, null.dev = NULL, alpha = 0.01, max.iter = 100, Vg.start = NULL, Ve.start = NULL, cov.gen = TRUE) { if (stop.if.significant == TRUE & is.null(null.dev)) {stop('No null.dev given')} if (!is.null(Vg.start) & !is.null(Vg)) { warning('Vg set to NULL') Vg <- NULL } if (!is.null(Ve.start) & !is.null(Ve)) { warning('Ve set to NULL') Ve <- NULL } na.X <- apply(X.t, 1, function(x) any(is.na(x))) na.Z <- apply(Z.t, 1, function(z) any(is.na(z))) is.na <- is.na(y[1:nrow(X.t)]) | is.na(y[(nrow(X.t)+1):(2*nrow(X.t))]) | na.X | na.Z y <- y[rep(!is.na,2)] X.t <- X.t[!is.na,] Z.t <- Z.t[!is.na,] Ve.aux <- Ve Vg.aux <- Vg X.t <- Matrix(X.t) if(!is.null(K)) { eig <- eigen(K) U <- eig$vectors d <- eig$values K.trans <- U %*% diag(1/sqrt(d)) Z.t <- Matrix(Z.t%*% K.trans) } else { Z.t <- Matrix(Z.t) } Z <- Diagonal(2)%x%Z.t X <- Diagonal(2)%x%X.t ngeno <- ncol(Z.t) N <- nrow(Z.t) MM <- cbind(X,Z) XtX. <- crossprod(X.t) XtZ. <- crossprod(X.t, Z.t) ZtZ. <- crossprod(Z.t) w <- rep(1, length(y)) np <- c(ncol(X), ngeno, ngeno) devold <- 1e10 thr <- 1e-3 if (is.null(Vg)) { est.Vg <- TRUE est.Vg.var <- TRUE if (is.null(Vg.start)) { Vg <- c(1,1,0.1) } else { Vg <- Vg.start } } else { if (length(Vg.aux) == 2) { est.Vg <- TRUE est.Vg.var <- FALSE Vg <- c(Vg.aux[1], Vg.aux[2], 0.1) } else { if (length(Vg.aux) == 3) { est.Vg <- FALSE } else { stop('The specified variance/covariance matrix for the error component is not correct') } } } if (is.null(Ve)) { est.Ve <- TRUE est.Ve.var <- TRUE if (cov.error) { if (is.null(Ve.start)) { Ve <- c(1,1,0.1) } else { Ve <- Ve.start } } else { if (is.null(Ve.start)) { Ve <- c(1,1,0) } else { Ve <- Ve.start Ve[3] <- 0 } } } else { if (length(Ve.aux) == 2) { est.Ve <- TRUE cov.error <- TRUE est.Ve.var <- FALSE Ve <- c(Ve.aux[1], Ve.aux[2], 0.1) } else if (length(Ve.aux) == 3) { est.Ve <- FALSE } else { stop('The specified variance/covariance matrix for the error component is not correct') } } g1 <- rep(c(Vg[1], 0), each = ngeno) g2 <- rep(c(0, Vg[2]), each = ngeno) for (it in 1:max.iter) { Gi <- matrix(c(Vg[1], Vg[3], Vg[3], Vg[2]), ncol = 2) G <- Gi%x%Diagonal(ngeno) Giinv <- solve(Gi) Ginv <- Giinv%x%Diagonal(ngeno) Ri <- matrix(c(Ve[1], Ve[3], Ve[3], Ve[2]), ncol = 2) R <- Ri%x%Diagonal(N) Riinv <- solve(Ri) Rinv <- Riinv%x%Diagonal(N) XtRinvX. <- Riinv%x%XtX. XtRinvZ. <- Riinv%x%XtZ. ZtRinvZ. <- Riinv%x%ZtZ. XtRinvy. <- ((Riinv%x%t(X.t))%*%y)[,1] ZtRinvy. <- ((Riinv%x%t(Z.t))%*%y)[,1] u <- c(XtRinvy.,ZtRinvy.) V <- construct.block(XtRinvX., XtRinvZ., t(XtRinvZ.), ZtRinvZ.) D <- bdiag(diag(rep(0,np[1])), Ginv) H <- V + D Hinv <- try(solve(H)) if(class(Hinv) == "try-error") { Hinv <- ginv(as.matrix(H)) } b <- Hinv%*%u b.fixed <- b[1:np[1]] b.random <- b[-(1:np[1])] res <- (y - MM%*%b) dev <- deviance2(H, Gi, ngeno, Ri, N, Rinv, res, t(b.random)%*%Ginv%*%b.random)[1] if(!est.Ve & !est.Vg) { break } if (est.Vg) { Ak <- Hinv[-(1:np[1]),-(1:np[1])] if (est.Vg.var) { aux <- diag(G) - diag(Hinv[-(1:np[1]),-(1:np[1])]) g.inv.d <- (1/Vg[1])*g1 ed1 <- sum(aux*g.inv.d) ssv1 <- sum(b.random^2*g1) tau1 <- ssv1/ed1 g.inv.d <- (1/Vg[2])*g2 ed2 <- sum(aux*g.inv.d) ssv2 <- sum(b.random^2*g2) tau2 <- ssv2/ed2 } else { tau1 <- Vg[1] tau2 <- Vg[2] } if (cov.gen) { A <- Ak[1:ngeno, (ngeno+1):(2*ngeno)] tau3 <- (1/ngeno)*(sum(diag(A)) + sum(b.random[1:ngeno]*b.random[(ngeno+1):(2*ngeno)])) } else { tau3 <- 0 } Vg.new <- c(tau1, tau2, tau3) } else { Vg.new = Vg } if (est.Ve) { resm <- matrix(res, ncol = 2) ress <- t(resm)%*%resm aux <- MM%*%Hinv if(est.Ve.var) { diag.var <- rowSums(aux*MM) aux1 <- sum(diag.var[1:N]) aux2 <- ress[1,1] sig21 <- (1/N)*(aux1 + aux2) aux1 <- sum(diag.var[(N+1):(2*N)]) aux2 <- ress[2,2] sig22 <- (1/N)*(aux1 + aux2) } else { sig21 <- Ve[1] sig22 <- Ve[2] } if (cov.error) { diag.covar <- rowSums(aux[1:N,]*MM[(N+1):(2*N),]) aux1 <- sum(diag.covar) aux2 <- ress[1,2] sig212 = (1/N)*(aux1 + aux2) } else { sig212 = 0 } Ve.new <- c(sig21, sig22, sig212) } else { Ve.new <- Ve } dla <- abs(devold - dev) Ve <- Ve.new Vg <- Vg.new devold <- dev if (stop.if.significant) { loglik_Full <- -0.5 * dev loglik_Reduced <- -0.5 * null.dev REMLLRT <- 2 * max(loglik_Full - loglik_Reduced, 0) pvalue <- (1 - pchisq(REMLLRT, df = 1)) if (pvalue < alpha) break if (it > 20 & pvalue > 0.1) break } if (dla < thr) break } if(!is.null(K)) { b.random <- (Diagonal(2)%x%K.trans)%*%b.random } res <- list() res$coeff <- list(fixed = b.fixed, random = b.random) res$variances <- list(Ve = Ve, Vg = Vg) res$deviance <- dev res$it <- it if (stop.if.significant) {res$pvalue <- pvalue} res }
DAISIE_loglik_rhs_precomp <- function(pars,lx) { lac = pars[1] mu = pars[2] K = pars[3] gam = pars[4] laa = pars[5] kk = pars[6] ddep = pars[7] nn = -2:(lx+2*kk+1) lnn = length(nn) nn = pmax(rep(0,lnn),nn) if(ddep == 0) { laavec = laa * rep(1,lnn) lacvec = lac * rep(1,lnn) muvec = mu * rep(1,lnn) gamvec = gam * rep(1,lnn) } else if(ddep == 1) { laavec = laa * rep(1,lnn) lacvec = pmax(rep(0,lnn),lac * (1 - nn/K)) muvec = mu * rep(1,lnn) gamvec = gam * rep(1,lnn) } else if(ddep == 2) { laavec = laa * rep(1,lnn) lacvec = pmax(rep(0,lnn),lac * exp(-nn/K)) muvec = mu * rep(1,lnn) gamvec = gam * rep(1,lnn) } else if(ddep == 11) { laavec = laa * rep(1,lnn) lacvec = pmax(rep(0,lnn),lac * (1 - nn/K)) muvec = mu * rep(1,lnn) gamvec = pmax(rep(0,lnn),gam * (1 - nn/K)) } else if(ddep == 21) { laavec = laa * rep(1,lnn) lacvec = pmax(rep(0,lnn),lac * exp(-nn/K)) muvec = mu * rep(1,lnn) gamvec = pmax(rep(0,lnn),gam * exp(-nn/K)) } else if(ddep == 3) { laavec = laa * rep(1,lnn) lacvec = lac * rep(1,lnn) muvec = mu * (1 + nn/K) gamvec = gam * rep(1,lnn) } return(c(laavec, lacvec, muvec, gamvec, nn, kk)) } DAISIE_loglik_rhs <- function(t, x, parsvec) { kk <- parsvec[length(parsvec)] lx <- (length(x) - 1)/2 lnn <- lx + 4 + 2 * kk laavec <- parsvec[1:lnn] lacvec <- parsvec[(lnn + 1):(2 * lnn)] muvec <- parsvec[(2 * lnn + 1):(3 * lnn)] gamvec <- parsvec[(3 * lnn + 1):(4 * lnn)] nn <- parsvec[(4 * lnn + 1):(5 * lnn)] xx1 = c(0,0,x[1:lx],0) xx2 = c(0,0,x[(lx + 1):(2 * lx)],0) xx3 = x[2 * lx + 1] nil2lx = 3:(lx + 2) il1 = nil2lx+kk-1 il2 = nil2lx+kk+1 il3 = nil2lx+kk il4 = nil2lx+kk-2 in1 = nil2lx+2*kk-1 in2 = nil2lx+1 in3 = nil2lx+kk ix1 = nil2lx-1 ix2 = nil2lx+1 ix3 = nil2lx ix4 = nil2lx-2 dx1 = laavec[il1 + 1] * xx2[ix1] + lacvec[il4 + 1] * xx2[ix4] + muvec[il2 + 1] * xx2[ix3] + lacvec[il1] * nn[in1] * xx1[ix1] + muvec[il2] * nn[in2] * xx1[ix2] + -(muvec[il3] + lacvec[il3]) * nn[in3] * xx1[ix3] + -gamvec[il3] * xx1[ix3] dx1[1] = dx1[1] + laavec[il3[1]] * xx3 * (kk == 1) dx1[2] = dx1[2] + 2 * lacvec[il3[1]] * xx3 * (kk == 1) dx2 = gamvec[il3] * xx1[ix3] + lacvec[il1 + 1] * nn[in1] * xx2[ix1] + muvec[il2 + 1] * nn[in2] * xx2[ix2] + -(muvec[il3 + 1] + lacvec[il3 + 1]) * nn[in3 + 1] * xx2[ix3] + -laavec[il3 + 1] * xx2[ix3] dx3 = -(laavec[il3[1]] + lacvec[il3[1]] + gamvec[il3[1]] + muvec[il3[1]]) * xx3 return(list(c(dx1,dx2,dx3))) } DAISIE_loglik_rhs2 <- function(t, x, parsvec) { kk <- parsvec[length(parsvec)] lx <- (length(x))/3 lnn <- lx + 4 + 2 * kk laavec <- parsvec[1:lnn] lacvec <- parsvec[(lnn + 1):(2 * lnn)] muvec <- parsvec[(2 * lnn + 1):(3 * lnn)] gamvec <- parsvec[(3 * lnn + 1):(4 * lnn)] nn <- parsvec[(4 * lnn + 1):(5 * lnn)] xx1 = c(0,0,x[1:lx],0) xx2 = c(0,0,x[(lx + 1):(2 * lx)],0) xx3 = c(0,0,x[(2 * lx + 1):(3 * lx)],0) nil2lx = 3:(lx + 2) il1 = nil2lx+kk-1 il2 = nil2lx+kk+1 il3 = nil2lx+kk il4 = nil2lx+kk-2 in1 = nil2lx+2*kk-1 in2 = nil2lx+1 in3 = nil2lx+kk in4 = nil2lx-1 ix1 = nil2lx-1 ix2 = nil2lx+1 ix3 = nil2lx ix4 = nil2lx-2 dx1 = (laavec[il3] * xx3[ix3] + 2 * lacvec[il1] * xx3[ix1]) * (kk == 1) + laavec[il1 + 1] * xx2[ix1] + lacvec[il4 + 1] * xx2[ix4] + muvec[il2 + 1] * xx2[ix3] + lacvec[il1] * nn[in1] * xx1[ix1] + muvec[il2] * nn[in2] * xx1[ix2] + -(muvec[il3] + lacvec[il3]) * nn[in3] * xx1[ix3] - gamvec[il3] * xx1[ix3] dx2 <- gamvec[il3] * xx1[ix3] + lacvec[il1 + 1] * nn[in1] * xx2[ix1] + muvec[il2 + 1] * nn[in2] * xx2[ix2] + -(muvec[il3 + 1] + lacvec[il3 + 1]) * nn[in3 + 1] * xx2[ix3] + -laavec[il3 + 1] * xx2[ix3] dx3 <- lacvec[il1] * nn[in4] * xx3[ix1] + muvec[il2] * nn[in2] * xx3[ix2] + -(lacvec[il3] + muvec[il3]) * nn[in3] * xx3[ix3] + -(laavec[il3] + gamvec[il3]) * xx3[ix3] return(list(c(dx1,dx2,dx3))) } checkprobs <- function(lv, loglik, probs, verbose) { probs <- probs * (probs > 0) if (is.na(sum(probs[1:lv])) || is.nan(sum(probs))) { loglik <- -Inf } else if (sum(probs[1:lv]) <= 0) { loglik <- -Inf } else { loglik <- loglik + log(sum(probs[1:lv])) probs[1:lv] <- probs[1:lv] / sum(probs[1:lv]) } if (verbose) { cat("Numerical issues encountered \n") } return(list(loglik, probs)) } checkprobs2 <- function(lx, loglik, probs, verbose) { probs <- probs * (probs > 0) if (is.na(sum(probs)) || is.nan(sum(probs))) { loglik <- -Inf } else if (sum(probs) <= 0) { loglik <- -Inf } else { loglik = loglik + log(sum(probs)) probs = probs/sum(probs) } if (verbose) { cat("Numerical issues encountered \n") } return(list(loglik, probs)) } divdepvec <- function(lacgam, pars1, lx, k1, ddep, island_ontogeny = NA) { if (!is.na(island_ontogeny)) { lacgamK <- divdepvec_time(lacgam, pars1, lx, k1, ddep, island_ontogeny) lacgam <- lacgamK[1] K <- lacgamK[2] } else { K <- pars1[1] } return(divdepvec1(lacgam, K, lx, k1, ddep)) } divdepvec1 <- function(lacgam, K, lx, k1, ddep) { if (ddep == 1 | ddep == 11) { vec <- pmax(rep(0, lx + 1), lacgam * (1 - ( (0:lx) + k1) / K)) } else { if (ddep == 2 | ddep == 21) { vec <- pmax(rep(0, lx + 1), lacgam * exp(-((0:lx) + k1) / K)) } else { if (ddep == 0 | ddep == 3) { vec <- lacgam * rep(1, lx + 1) } } } return(vec) } DAISIE_loglik_CS_M1 <- DAISIE_loglik <- function(pars1, pars2, brts, stac, missnumspec, methode = "lsodes", abstolint = 1E-16, reltolint = 1E-10, verbose) { if (any(is.infinite(pars1)) ) { if (verbose) { message('One of the parameters is infinite.') } } if(is.na(pars2[4])) { pars2[4] = 0 } ddep <- pars2[2] cond <- pars2[3] island_ontogeny <- pars2[5] if (cond > 0) { cat("Conditioning has not been implemented and may not make sense. Cond is set to 0.\n") } if (is.na(island_ontogeny)) { lac <- pars1[1] mu <- pars1[2] K <- pars1[3] if (ddep == 0) { K <- Inf } gam <- pars1[4] laa <- pars1[5] pars1_in_divdepvec_call <- K } else { pars1[11] <- island_ontogeny if (pars1[11] == 0 && pars1[6] != pars1[7]) { warning("mu_min and mu_max are not equal! Setting mu_max = mu_min") pars1[7] <- pars1[6] } lac <- as.numeric(pars1[5]) K <- as.numeric(pars1[8]) gam <- as.numeric(pars1[9]) pars1_in_divdepvec_call <- pars1 } brts = -sort(abs(as.numeric(brts)),decreasing = TRUE) if(length(brts) == 1 & sum(brts == 0) == 1) { stop('The branching times contain only a 0. This means the island emerged at the present which is not allowed.'); loglik = -Inf return(loglik) } if (sum(brts == 0) == 0) { brts[length(brts) + 1] <- 0 } S <- 0 * (stac == 0) + (stac == 1 || stac == 4 || stac == 5 || stac == 8 || stac == 9) + (length(brts) - 2) * (stac == 2) + (length(brts) - 1) * (stac == 3) + (length(brts) - 2) * (stac == 6) + (length(brts) - 1) * (stac == 7) S2 <- S - (stac == 1) - (stac == 3) - (stac == 4) - (stac == 7) loglik <- -lgamma(S2 + missnumspec + 1) + lgamma(S2 + 1) + lgamma(missnumspec + 1) if (min(pars1) < 0) { message("One or more parameters are negative.") loglik <- -Inf return(loglik) } if ((ddep == 1 | ddep == 11) & ceiling(K) < (S + missnumspec)) { if (verbose) { message('The proposed value of K is incompatible with the number of species in the clade. Likelihood for this parameter set will be set to -Inf. \n') } loglik <- -Inf return(loglik) } N <- length(brts) - 1 if(lac == Inf & missnumspec == 0 & length(pars1) == 5 & N > 1) { loglik <- DAISIE_loglik_high_lambda(pars1, -brts, stac) } else { if (ddep == 1 | ddep == 11) { lx <- min( 1 + max(missnumspec, ceiling(K)), DDD::roundn(pars2[1]) + missnumspec ) } else { lx <- DDD::roundn(pars2[1]) + missnumspec } if(loglik > -Inf) { probs = rep(0,2 * lx + 1) probs[1] = 1 k1 = 0 y = DAISIE_integrate(probs,brts[1:2],DAISIE_loglik_rhs,c(pars1,k1,ddep),rtol = reltolint,atol = abstolint,method = methode) probs = y[2,2:(2 * lx + 2)] cp = checkprobs(lv = 2 * lx, loglik, probs, verbose); loglik = cp[[1]]; probs = cp[[2]] if(stac == 0) { loglik = loglik + log(probs[1 + missnumspec]) } else { if (stac == 1 || stac == 5 || stac == 8 || stac == 9) { probs[(lx + 1):(2 * lx)] = 0 y = DAISIE_integrate(probs,brts[2:3],DAISIE_loglik_rhs,c(pars1,k1,ddep),rtol = reltolint,atol = abstolint,method = methode) probs = y[2,2:(2 * lx + 2)] cp = checkprobs(lv = 2 * lx, loglik, probs, verbose); loglik = cp[[1]]; probs = cp[[2]] if (stac == 1 || stac == 5) { loglik = loglik + log(probs[(stac == 1) * lx + (stac == 5) + 1 + missnumspec]) } else { probs[(2 * lx + 1):(3 * lx)] = probs[1:lx] probs[1:(2 * lx)] = 0 k1 = 1 y = DAISIE_integrate(probs,c(brts[3:4]),DAISIE_loglik_rhs2,c(pars1,k1,ddep),rtol = reltolint,atol = abstolint,method = methode) probs = y[2,2:(3 * lx + 1)] cp = checkprobs2(lx,loglik,probs, verbose); loglik = cp[[1]]; probs = cp[[2]] loglik = loglik + log(probs[(stac == 8) * lx + (stac == 9) + 1 + missnumspec]) } } else { if (stac == 6 || stac == 7) { probs[(lx + 1):(2 * lx)] = 0 y = DAISIE_integrate(probs,brts[2:3],DAISIE_loglik_rhs,c(pars1,k1,ddep),rtol = reltolint,atol = abstolint,method = methode) probs = y[2,2:(2 * lx + 2)] cp = checkprobs(lv = 2 * lx, loglik, probs, verbose); loglik = cp[[1]]; probs = cp[[2]] k1 = 1 } if (stac == 2 || stac == 3 || stac == 4) { t <- brts[2] gamvec = divdepvec(gam,c(pars1_in_divdepvec_call,t,0),lx,k1,ddep * (ddep == 11 | ddep == 21),island_ontogeny) probs[(2 * lx + 1):(3 * lx)] = gamvec[1:lx] * probs[1:lx] probs[1:(2 * lx)] = 0 k1 = 1 y = DAISIE_integrate(probs,c(brts[2:3]),DAISIE_loglik_rhs2,c(pars1,k1,ddep),rtol = reltolint,atol = abstolint,method = methode) probs = y[2,2:(3 * lx + 1)] cp = checkprobs2(lx,loglik,probs, verbose); loglik = cp[[1]]; probs = cp[[2]] } if (stac == 4) { loglik = loglik + log(probs[2 * lx + 1 + missnumspec]) } else { S1 = length(brts) - 1 startk = 3 if(S1 >= startk) { t <- brts[startk] lacvec <- divdepvec( lac, c(pars1_in_divdepvec_call, t, 1), lx, k1, ddep, island_ontogeny ) if (stac == 2 || stac == 3) { probs[1:lx] <- lacvec[1:lx] * (probs[1:lx] + probs[(2 * lx + 1):(3 * lx)]) probs[(lx + 1):(2 * lx)] <- lacvec[2:(lx + 1)] * probs[(lx + 1):(2 * lx)] probs <- probs[-c((2 * lx + 2):(3 * lx))] probs[2 * lx + 1] <- 0 } if(stac == 6 || stac == 7) { probs2 = rep(0,2 * lx + 1) probs2[(1:(lx - 1))] = probs[(2:lx)] + 1/(2:lx) * probs[(lx + 1):(2 * lx - 1)] probs2[lx] = 1/(lx + 1) * probs[2 * lx] probs2[(lx + 1):(2 * lx - 1)] = (1:(lx - 1))/(2:lx) * probs[(lx + 2):(2 * lx)] probs = probs2 rm(probs2) probs[1:lx] = lacvec[1:lx] * probs[1:lx] probs[(lx + 1):(2 * lx)] = lacvec[2:(lx + 1)] * probs[(lx + 1):(2 * lx)] } for(k in startk:S1) { k1 = k - 1 y = DAISIE_integrate(probs,brts[k:(k+1)],DAISIE_loglik_rhs,c(pars1,k1,ddep),rtol = reltolint,atol = abstolint,method = methode) probs = y[2,2:(2 * lx + 2)] cp = checkprobs2(lx, loglik, probs, verbose); loglik = cp[[1]]; probs = cp[[2]] if(k < S1) { t <- brts[k + 1] lacvec <- divdepvec( lac, c(pars1_in_divdepvec_call, t, 1), lx, k1, ddep, island_ontogeny ) probs[1:(2 * lx)] <- c(lacvec[1:lx], lacvec[2:(lx + 1)]) * probs[1:(2 * lx)] } } } loglik = loglik + log(probs[(stac == 3 || stac == 7) * lx + 1 + missnumspec]) } } } } } if(pars2[4] >= 1) { if (length(pars1) == 11) { s1 = sprintf('Status of colonist: %d, Parameters: %f %f %f %f %f %f', stac, pars1[5], pars1[6], pars1[7], pars1[8], pars1[9], pars1[10]) } else { s1 <- sprintf( "Status of colonist: %d, Parameters: %f %f %f %f %f ", stac, pars1[1], pars1[2], pars1[3], pars1[4], pars1[5] ) } s2 <- sprintf(", Loglikelihood: %f", loglik) cat(s1, s2, "\n", sep = "") utils::flush.console() } if (is.na(loglik)) { cat("NA in loglik encountered. Changing to -Inf.") loglik <- -Inf } loglik <- as.numeric(loglik) return(loglik) } DAISIE_loglik_CS_choice = function( pars1, pars2, brts, stac, missnumspec, methode = "lsodes", CS_version = 1, abstolint = 1E-16, reltolint = 1E-10, verbose = FALSE ) { if (CS_version[[1]] == 1) { loglik <- DAISIE_loglik( pars1 = pars1, pars2 = pars2, brts = brts, stac = stac, missnumspec = missnumspec, methode = methode, abstolint = abstolint, reltolint = reltolint, verbose = verbose ) } else if (CS_version[[1]] == 2) { loglik <- DAISIE_loglik_integrate( pars1 = pars1, pars2 = pars2, brts = brts, stac = stac, missnumspec = missnumspec, methode = methode, CS_version = CS_version, abstolint = abstolint, reltolint = reltolint, verbose = verbose ) } else if (CS_version[[1]] == 0) { loglik <- DAISIE_loglik_IW_M1( pars1 = pars1, pars2 = pars2, brts = brts, stac = stac, missnumspec = missnumspec, methode = methode, abstolint = abstolint, reltolint = reltolint, verbose = verbose ) } return(loglik) } DAISIE_loglik_CS <- DAISIE_loglik_all <- function(pars1, pars2, datalist, methode = "lsodes", CS_version = 1, abstolint = 1E-16, reltolint = 1E-10) { pars1 = as.numeric(pars1) cond = pars2[3] endpars1 <- 5 if(length(pars1) == 5 | !is.na(pars2[5])) { if(!is.na(pars2[5])) { endpars1 <- length(pars1) } logp0 <- DAISIE_loglik_CS_choice( pars1 = pars1, pars2 = pars2, brts = datalist[[1]]$island_age, stac = 0, missnumspec = 0, methode = methode, CS_version = CS_version, abstolint = abstolint, reltolint = reltolint ) if (is.null(datalist[[1]]$not_present)) { loglik <- (datalist[[1]]$not_present_type1 + datalist[[1]]$not_present_type2) * logp0 numimm <- (datalist[[1]]$not_present_type1 + datalist[[1]]$not_present_type2) + length(datalist) - 1 } else { loglik <- datalist[[1]]$not_present * logp0 numimm <- datalist[[1]]$not_present + length(datalist) - 1 } logcond <- (cond == 1) * log(1 - exp(numimm * logp0)) if (length(datalist) > 1) { for (i in 2:length(datalist)) { datalist[[i]]$type1or2 <- 1 } } } else { numimm <- datalist[[1]]$not_present_type1 + datalist[[1]]$not_present_type2 + length(datalist) - 1 numimm_type2 <- length( which(unlist(datalist)[which(names(unlist(datalist)) == "type1or2")] == 2) ) numimm_type1 <- length(datalist) - 1 - numimm_type2 if (is.na(pars1[11]) == FALSE) { if (pars1[11] < numimm_type2 / numimm | pars1[11] > (1 - numimm_type1 / numimm)) { return(-Inf) } datalist[[1]]$not_present_type2 <- max( 0, round(pars1[11] * numimm) - numimm_type2 ) datalist[[1]]$not_present_type1 <- numimm - (length(datalist) - 1) - datalist[[1]]$not_present_type2 } logp0_type1 <- DAISIE_loglik_CS_choice( pars1 = pars1[1:5], pars2 = pars2, brts = datalist[[1]]$island_age, stac = 0, missnumspec = 0, methode = methode, CS_version = CS_version, abstolint = abstolint, reltolint = reltolint ) logp0_type2 <- DAISIE_loglik_CS_choice( pars1 = pars1[6:10], pars2 = pars2, brts = datalist[[1]]$island_age, stac = 0, missnumspec = 0, methode = methode, CS_version = CS_version, abstolint = abstolint, reltolint = reltolint ) loglik <- datalist[[1]]$not_present_type1 * logp0_type1 + datalist[[1]]$not_present_type2 * logp0_type2 logcond <- (cond == 1) * log(1 - exp((datalist[[1]]$not_present_type1 + numimm_type1) * logp0_type1 + (datalist[[1]]$not_present_type2 + numimm_type2) * logp0_type2)) } loglik = loglik - logcond if(length(datalist) > 1) { for(i in 2:length(datalist)) { if(datalist[[i]]$type1or2 == 1) { pars = pars1[1:endpars1] } else { pars <- pars1[6:10] } loglik <- loglik + DAISIE_loglik_CS_choice( pars1 = pars, pars2 = pars2, brts = datalist[[i]]$branching_times, stac = datalist[[i]]$stac, missnumspec = datalist[[i]]$missing_species, methode = methode, CS_version = CS_version, abstolint = abstolint, reltolint = reltolint ) } } return(loglik) } DAISIE_integrate <- function(initprobs, tvec, rhs_func, pars, rtol, atol, method) { if (length(pars) <= 7) { return(DAISIE_integrate_const( initprobs, tvec, rhs_func, pars, rtol, atol, method) ) } else { return(DAISIE_integrate_time( initprobs, tvec, rhs_func, pars, rtol, atol, method) ) } } DAISIE_integrate_const <- function(initprobs,tvec,rhs_func,pars,rtol,atol,method) { function_as_text <- as.character(body(rhs_func)[3]) do_fun_1 <- grepl(pattern = "lx <- \\(length\\(x\\) - 1\\)/2", x = function_as_text) do_fun_2 <- grepl(pattern = "lx <- \\(length\\(x\\)\\)/3", x = function_as_text) if (do_fun_1) { lx <- (length(initprobs) - 1)/2 parsvec <- c(DAISIE_loglik_rhs_precomp(pars,lx)) y <- DAISIE_ode_FORTRAN(initprobs,tvec,parsvec,atol,rtol,method,runmod = "daisie_runmod") } else if (do_fun_2) { lx <- (length(initprobs))/3 parsvec <- c(DAISIE_loglik_rhs_precomp(pars,lx)) y <- DAISIE_ode_FORTRAN(initprobs,tvec,parsvec,atol,rtol,method,runmod = "daisie_runmod2") } else { stop( "The integrand function is written incorrectly. ", "Value of 'function_as_text':", function_as_text ) } return(y) } DAISIE_ode_FORTRAN <- function( initprobs, tvec, parsvec, atol, rtol, methode, runmod = "daisie_runmod") { N <- length(initprobs) kk <- parsvec[length(parsvec)] if (runmod == "daisie_runmod") { lx <- (N - 1) / 2 } else if (runmod == "daisie_runmod2") { lx <- N / 3 } probs <- deSolve::ode(y = initprobs, parms = c(lx + 0.,kk + 0.), rpar = parsvec[-length(parsvec)], times = tvec, func = runmod, initfunc = "daisie_initmod", ynames = c("SV"), dimens = N + 2, nout = 1, outnames = c("Sum"), dllname = "DAISIE",atol = atol, rtol = rtol, method = methode)[,1:(N + 1)] return(probs) }
library(hamcrest) Sys.setlocale('LC_COLLATE', 'C') as.name.foo <- function(...) 41L as.vector.foo <- function(...) 99 as.vector.bar <- function(...) 98 Math.bar <- function(...) 44 Summary.bar <- function(...) 45 Ops.bar <- function(...) 46 test.as.name.1 <- function() assertThat(as.name(NULL), throwsError()) test.as.name.2 <- function() assertThat(as.name(logical(0)), throwsError()) test.as.name.3 <- function() assertThat(as.name(c(TRUE, TRUE, FALSE, FALSE, TRUE)), identicalTo(as.name("TRUE"))) test.as.name.4 <- function() assertThat(as.name(structure(c(TRUE, FALSE), .Names = c("a", ""))), identicalTo(as.name("TRUE"))) test.as.name.5 <- function() assertThat(as.name(c(TRUE, FALSE, NA)), identicalTo(as.name("TRUE"))) test.as.name.6 <- function() assertThat(as.name(integer(0)), throwsError()) test.as.name.7 <- function() assertThat(as.name(structure(integer(0), .Names = character(0))), throwsError()) test.as.name.8 <- function() assertThat(as.name(1:3), identicalTo(as.name("1"))) test.as.name.9 <- function() assertThat(as.name(c(1L, NA, 4L, NA, 999L)), identicalTo(as.name("1"))) test.as.name.10 <- function() assertThat(as.name(c(1L, 2L, 1073741824L, 1073741824L)), identicalTo(as.name("1"))) test.as.name.11 <- function() assertThat(as.name(numeric(0)), throwsError()) test.as.name.12 <- function() assertThat(as.name(c(3.14159, 6.28319, 9.42478, 12.5664, 15.708)), identicalTo(as.name("3.14159"))) test.as.name.13 <- function() assertThat(as.name(c(-3.14159, -6.28319, -9.42478, -12.5664, -15.708)), identicalTo(as.name("-3.14159"))) test.as.name.14 <- function() assertThat(as.name(structure(1:2, .Names = c("a", "b"))), identicalTo(as.name("1"))) test.as.name.15 <- function() assertThat(as.name(structure(c(1.5, 2.5), .Names = c("a", "b"))), identicalTo(as.name("1.5"))) test.as.name.16 <- function() assertThat(as.name(c(1.5, 1.51, 0, 1.49, -30)), identicalTo(as.name("1.5"))) test.as.name.17 <- function() assertThat(as.name(c(1.5, 1.51, 0, 1.49, -30, NA)), identicalTo(as.name("1.5"))) test.as.name.18 <- function() assertThat(as.name(c(1.5, 1.51, 0, 1.49, -30, NaN)), identicalTo(as.name("1.5"))) test.as.name.19 <- function() assertThat(as.name(c(1.5, 1.51, 0, 1.49, -30, Inf)), identicalTo(as.name("1.5"))) test.as.name.20 <- function() assertThat(as.name(c(1.5, 1.51, 0, 1.49, -30, -Inf)), identicalTo(as.name("1.5"))) test.as.name.21 <- function() assertThat(as.name(character(0)), throwsError()) test.as.name.22 <- function() assertThat(as.name(c("4.1", "blahh", "99.9", "-413", NA)), identicalTo(as.name("4.1"))) test.as.name.23 <- function() assertThat(as.name(complex(0)), throwsError()) test.as.name.24 <- function() assertThat(as.name(list(1, 2, 3)), throwsError()) test.as.name.25 <- function() assertThat(as.name(list(1, 2, NULL)), throwsError()) test.as.name.26 <- function() assertThat(as.name(list(1L, 2L, 3L)), throwsError()) test.as.name.27 <- function() assertThat(as.name(list(1L, 2L, NULL)), throwsError()) test.as.name.28 <- function() assertThat(as.name(list(1, 2, list(3, 4))), throwsError()) test.as.name.29 <- function() assertThat(as.name(list(1, 2, numeric(0))), throwsError()) test.as.name.30 <- function() assertThat(as.name(list(3, "a", structure(list("b", list(TRUE, "c")), .Names = c("", "z")))), throwsError()) test.as.name.31 <- function() assertThat(as.name(structure(list(1, 2, 3), .Names = c(NA, "", "b"))), throwsError()) test.as.name.32 <- function() assertThat(as.name(pairlist(41, "a", 21L)), throwsError()) test.as.name.33 <- function() assertThat(as.name(structure(pairlist(a = 41, 42))), throwsError()) test.as.name.34 <- function() assertThat(as.name(structure(pairlist(a = 41, NULL))), throwsError()) test.as.name.35 <- function() assertThat(as.name(structure(1:12, .Dim = 3:4)), identicalTo(as.name("1"))) test.as.name.36 <- function() assertThat(as.name(structure(1:12, .Dim = 3:4, .Dimnames = structure(list( c("a", "b", "c"), c("d", "e", "f", "g")), .Names = c("x", "y")))), identicalTo(as.name("1"))) test.as.name.37 <- function() assertThat(as.name(structure(1:3, rando.attrib = 941L)), identicalTo(as.name("1"))) test.as.name.38 <- function() assertThat(as.name(structure(1:3, .Dim = 3L, .Dimnames = list(c("a", "b", "c")))), identicalTo(as.name("1"))) test.as.name.39 <- function() assertThat(as.name(structure(1:3, .Dim = 3L, .Dimnames = structure(list( c("a", "b", "c")), .Names = "z"))), identicalTo(as.name("1"))) test.as.name.40 <- function() assertThat(as.name(structure(list("foo"), class = "foo")), identicalTo(99)) test.as.name.41 <- function() assertThat(as.name(structure(list("bar"), class = "foo")), identicalTo(99)) test.as.name.42 <- function() assertThat(as.name(quote(xyz)), identicalTo(as.name("xyz"))) test.as.name.43 <- function() assertThat(as.name(quote(sin(3.14))), throwsError()) test.as.name.44 <- function() assertThat(as.name("NaN"), identicalTo(as.name("NaN"))) test.as.name.45 <- function() assertThat(as.name("NABOOM!"), identicalTo(as.name("NABOOM!"))) test.as.name.46 <- function() assertThat(as.name("NaNaNabooboo"), identicalTo(as.name("NaNaNabooboo"))) test.as.name.47 <- function() assertThat(as.name("-Inf"), identicalTo(as.name("-Inf"))) test.as.name.48 <- function() assertThat(as.name("+Infinity"), identicalTo(as.name("+Infinity"))) test.as.name.49 <- function() assertThat(as.name("Infinity and beyond!"), identicalTo(as.name("Infinity and beyond!"))) test.as.name.50 <- function() assertThat(as.name("Infi"), identicalTo(as.name("Infi"))) test.as.name.51 <- function() assertThat(as.name("0.03f"), identicalTo(as.name("0.03f"))) test.as.name.52 <- function() assertThat(as.name(" 0.0330 "), identicalTo(as.name(" 0.0330 "))) test.as.name.53 <- function() assertThat(as.name(structure("foo", class = "foo")), identicalTo(99)) test.as.name.54 <- function() assertThat(as.name(structure(list(1L, "bar"), class = "bar")), identicalTo(98))
source("ESEUR_config.r") library(car) pal_col=rainbow(3) loc_hour=read.csv(paste0(ESEUR_dir, "regression/10.1.1.157.6206.csv.xz"), as.is=TRUE) loc_hour=subset(loc_hour, !is.na(KLoC)) loc_hour=loc_hour[order(loc_hour$Hours), ] row.names(loc_hour)=1:nrow(loc_hour) x_bounds=range(loc_hour$Hours) y_bounds=range(loc_hour$KLoC) Hours_KLoC=function(df) { plot(df$Hours, df$KLoC, col=pal_col[2], xaxs="i", yaxs="i", xlim=x_bounds, ylim=y_bounds, xlab="Effort (hours)", ylab="Lines of code (Kloc)\n") plh_mod=glm(KLoC ~ I(Hours^0.5), data=df) plh_pred=predict(plh_mod, type="response", se.fit=TRUE) lines(df$Hours, plh_pred$fit, col=pal_col[1]) lines(df$Hours, plh_pred$fit+plh_pred$se.fit*1.96, col=pal_col[3]) lines(df$Hours, plh_pred$fit-plh_pred$se.fit*1.96, col=pal_col[3]) return(plh_mod) } plot_cutoff=function(df, model) { cutoff=4/(nrow(df)+1+1) plot(model, which=4, cook.levels=cutoff, caption="") abline(h=cutoff, lty=2, col="red") } s1_loc_hour=loc_hour[-c(21,25), ] s2_loc_hour=s1_loc_hour[-c(24), ] s1_loc_hour=loc_hour[-c(21,25,29),] s2_loc_hour=s1_loc_hour[-c(23,24,26),] s3_loc_hour=s2_loc_hour[-c(19,23),] s4_loc_hour=s3_loc_hour[-c(4,19,20),] s5_loc_hour=s4_loc_hour[-c(17),] s6_loc_hour=s5_loc_hour[-c(17),] s7_loc_hour=s6_loc_hour[-c(12,14),] s8_loc_hour=s7_loc_hour[-c(12),] s9_loc_hour=s8_loc_hour[-c(12),] s10_loc_hour=s9_loc_hour[-c(12),] subset10_mod=Hours_KLoC(s10_loc_hour)
nomis_content_type <- function(content_type, id = NULL) { if (missing(content_type)) { stop("content_type must be specified", call. = FALSE) } if (is.null(id)) { id_query <- "" } else { id_query <- paste0("/id/", id) } content_query <- paste0(content_url, content_type, id_query, ".json") content_query2 <- jsonlite::fromJSON(content_query, flatten = TRUE) df <- tibble::as_tibble(data.frame(content_query2$contenttype$item)) df }
FinTS.url <- "http://faculty.chicagogsb.edu/ruey.tsay/teaching/fts2" localDir <- "~/TsayFiles/" Tsay.webPage <- scan(FinTS.url, what=character(0), sep="\n") n.webLines <- length(Tsay.webPage) (Ch <- paste("Chapter ", 1:12, ":", sep="")) (twelve <- c(paste("0", 1:9, sep=""), 10:12)) (ch <- paste("ch", twelve, sep="")) names(Ch) <- ch ch. <- rep(NA, 12) names(ch.) <- ch for(i in 1:12) ch.[i] <- grep(Ch[i], Tsay.webPage) Tsay.webPage[ch.] (ex <- grep("Exercise", Tsay.webPage)) chEnd <- c(ch.[-1]-1, n.webLines) names(chEnd) <- ch ex. <- chEnd i <- 1 for(ich in 1:12){ if(ex[i] < chEnd[ich]){ ex.[ich] <- ex[i] i <- i+1 } } (ChEx <- cbind(ch=ch., ex=ex., end=chEnd)) Tsay.http <- grep("http://", Tsay.webPage) Tsay.http. <- Tsay.webPage[Tsay.http] http.start <- regexpr("http://", Tsay.http.) Tsay.ht1 <- substring(Tsay.http., http.start) http.stop <- regexpr("\"", Tsay.ht1) Tsay.ht2 <- substring(Tsay.ht1, 1, http.stop-1) Tsay.ht2. <- strsplit(Tsay.ht2[-1], "/") Tsay.ht3 <- sapply(Tsay.ht2., function(x)x[length(x)]) Tsay.ht4 <- Tsay.ht2[-(1:10)] names(Tsay.ht4) <- Tsay.ht3[-(1:9)] Tsay.ht4. <- Tsay.http[-(1:10)] last4 <- substring(Tsay.ht4, nchar(Tsay.ht4)-3) table(last4) fileTypes <- c("dat", "txt", "sor", "rats", "f") kTypes <- length(fileTypes) filesByType <- vector("list", length=kTypes) names(filesByType) <- fileTypes for(i in 1:kTypes){ fti <- paste(".", fileTypes[i], "$", sep="") filesByType[[i]] <- grep(fti, Tsay.ht4) } (fileLineNums <- sort(unlist(filesByType))) fLNm <- Tsay.http[-(1:10)][fileLineNums] TsayFiles <- vector("list", length=12) names(TsayFiles) <- ch for(ich in 1:12){ sel <- ((ChEx[ich, 1]<=fLNm) & (fLNm<=ChEx[ich, 2])) TsayFiles[[ich]]$text <- url2dat(Tsay.ht4[sel]) sel2 <- ((ChEx[ich, 2]<=fLNm) & (fLNm<=ChEx[ich, 3])) TsayFiles[[ich]]$exercises <- url2dat(Tsay.ht4[sel2]) } readSum <- array(0, dim=c(12, 2, 2), dimnames=list( ch, c("text", "exercises"), c("FALSE", "TRUE") ) ) for(ich in 1:12)for(j in 1:2){ TFij <- TsayFiles[[ich]][[j]] { if(dim(TFij)[1]>0){ tij <- table(TFij[, 4]) readSum[ich, j, names(tij)] <- tij } else readSum[ich, j, ] <- 0 } } sum(readSum[,,"FALSE"]) sum(readSum[,,"TRUE"]) TsayFiles$ch01$exercises[, 2] TsayFileNames <- sapply(TsayFiles, function(x) sapply(x, function(x2)x2[, 2])) uniqueFileNames <- table(unlist(TsayFileNames)) duplicatedFiles <- uniqueFileNames[uniqueFileNames>1] sort(duplicatedFiles) save(TsayFiles, file="TsayFiles.rda")
this_week <- function(x = Sys.Date(), part = getOption("timeperiodsR.parts"), week_start = 1) { if ( ! "Date" %in% class(x) ) { x <- as.Date(x) } start <- floor_date( x, unit = "week", week_start) stop <- start + days(6) out <- custom_period(start, stop) part <- match.arg(part, getOption("timeperiodsR.parts")) if ( part == "all" ) { return(out) } else { return(out[[part]]) } }
`write.tucson` <- function(rwl.df, fname, header=NULL, append=FALSE, prec=0.01, mapping.fname="", mapping.append=FALSE, long.names=FALSE, ...) { line.term <- "\x0D\x0A" if (!is.data.frame(rwl.df)) { stop("'rwl.df' must be a data.frame") } if (!is.numeric(prec) || length(prec) != 1 || is.na(prec) || !(prec == 0.01 || prec == 0.001)) { stop("'prec' must equal 0.01 or 0.001") } header2 <- header if (append) { if (!file.exists(fname)) { stop(gettextf("file %s does not exist, cannot append", fname)) } if (length(header2) > 0) { stop("bad idea to append with 'header'") } } if (length(header2) > 0) { if (!is.list(header2)) { stop("'header' must be a list") } header.names <- c("site.id", "site.name", "spp.code", "state.country", "spp", "elev", "lat", "long", "first.yr", "last.yr", "lead.invs", "comp.date") if (!all(header.names %in% names(header2))) { stop("'header' must be a list with the following names: ", paste(dQuote(header.names), collapse = ", ")) } header2 <- lapply(header2, as.character) site.id <- header2$site.id[1] site.name <- header2$site.name[1] spp.code <- header2$spp.code[1] state.country <- header2$state.country[1] spp <- header2$spp[1] elev <- header2$elev[1] lat <- header2$lat[1] long <- header2$long[1] lead.invs <- header2$lead.invs[1] comp.date <- header2$comp.date[1] lat.long <- if (isTRUE(nchar(long) > 5)) { paste0(lat, long) } else { paste(lat, long, sep=" ") } yrs <- paste(header2$first.yr[1], header2$last.yr[1], sep=" ") field.name <- c("site.id", "site.name", "spp.code", "state.country", "spp", "elev", "lat.long", "yrs", "lead.invs", "comp.date") field.width <- c(6, 52, 4, 13, 18, 5, 10, 9, 63, 8) for (i in seq_along(field.name)) { this.name <- field.name[i] this.width <- field.width[i] this.var <- get(this.name) this.nchar <- nchar(this.var) if (this.nchar > this.width) { assign(this.name, substr(this.var, 1, this.width)) } else if (this.nchar < this.width) { assign(this.name, encodeString(this.var, width = this.width)) } } hdr1 <- paste0(site.id, " ", site.name, spp.code) hdr2 <- paste0(site.id, " ", state.country, spp, " ", elev, " ", lat.long, " ", yrs) hdr3 <- paste0(site.id, " ", lead.invs, comp.date) } nseries <- ncol(rwl.df) yrs.all <- as.numeric(row.names(rwl.df)) col.names <- names(rwl.df) stopifnot(is.character(col.names), !is.na(col.names), Encoding(col.names) != "bytes") yrs.order <- sort.list(yrs.all) yrs.all <- yrs.all[yrs.order] rwl.df2 <- rwl.df[yrs.order, , drop=FALSE] first.year <- yrs.all[1] last.year <- yrs.all[length(yrs.all)] long.years <- FALSE if (first.year < -999) { long.years <- TRUE if (first.year < -9999) { stop("years earlier than -9999 (10000 BC) are not supported") } } if (last.year > 9999) { long.years <- TRUE if (last.year > 99999) { stop("years later than 99999 are not possible") } } name.width <- 7 if (long.names) { exploit.short <- TRUE use.space <- FALSE } else { exploit.short <- FALSE use.space <- TRUE } if (exploit.short && !long.years) { name.width <- name.width + 1 } if (use.space) { name.width <- name.width - 1 opt.space <- " " } else { opt.space <- "" } name.width <- as.integer(name.width) year.width <- as.integer(12 - name.width - nchar(opt.space)) col.names <- fix.names(col.names, name.width, mapping.fname, mapping.append) if (append) { rwl.out <- file(fname, "a") } else { rwl.out <- file(fname, "w") } on.exit(close(rwl.out)) if (length(header2) > 0) { cat(hdr1, line.term, file=rwl.out, sep="") cat(hdr2, line.term, file=rwl.out, sep="") cat(hdr3, line.term, file=rwl.out, sep="") } if (prec == 0.01) { na.str <- 9.99 missing.str <- -9.99 prec.rproc <- 100 } else { na.str <- -9.999 missing.str <- 0 prec.rproc <- 1000 } format.year <- sprintf("%%%d.0f", year.width) for (l in seq_len(nseries)) { series <- rwl.df2[[l]] idx <- !is.na(series) yrs <- yrs.all[idx] series <- series[idx] series <- c(series, na.str) yrs <- c(yrs, max(yrs) + 1) decades.vec <- yrs %/% 10 * 10 decades <- seq(from=min(decades.vec), to=max(decades.vec), by=10) n.decades <- length(decades) rwl.df.name <- col.names[l] rwl.df.name <- str_pad(rwl.df.name, name.width, side = "right") for (i in seq_len(n.decades)) { dec <- decades[i] dec.idx <- decades.vec %in% dec dec.yrs <- yrs[dec.idx] dec.rwl <- series[dec.idx] neg.match <- dec.rwl < 0 if (prec == 0.001 && i == n.decades) { neg.match[length(neg.match)] <- FALSE } dec.rwl[neg.match] <- missing.str if (n.decades == 1) { all.years <- dec.yrs[1]:dec.yrs[length(dec.yrs)] } else if (i == 1) { all.years <- dec.yrs[1]:(dec + 9) } else if (i == n.decades) { all.years <- dec:dec.yrs[length(dec.yrs)] } else { all.years <- dec:(dec + 9) } if (length(all.years) > length(dec.yrs)) { missing.years <- setdiff(all.years, dec.yrs) dec.yrs <- c(dec.yrs, missing.years) dec.rwl <- c(dec.rwl, rep(missing.str, times=length(missing.years))) dec.order <- sort.list(dec.yrs) dec.yrs <- dec.yrs[dec.order] dec.rwl <- dec.rwl[dec.order] } dec.year1 <- sprintf(format.year, dec.yrs[1]) dec.rwl <- round(dec.rwl * prec.rproc) if (prec == 0.01) { end.match <- dec.rwl == 999 if (i == n.decades) { end.match[length(end.match)] <- FALSE } dec.rwl[end.match] <- sample(c(998, 1000), sum(end.match), replace=TRUE) } dec.rwl <- sprintf("%6.0f", dec.rwl) cat(rwl.df.name, opt.space, dec.year1, dec.rwl, line.term, file = rwl.out, sep="") } } fname }
context("isScalarValue") test_that("isScalarValue", { expect_true(isScalarValue(1)) expect_true(isScalarValue(1L)) expect_true(isScalarValue("a")) expect_true(isScalarValue(factor("a"))) expect_true(isScalarValue(as.complex(1))) expect_true(isScalarValue(NA)) expect_true(isScalarNumeric(1)) expect_true(isScalarInteger(1L)) expect_true(isScalarCharacter("a")) expect_true(isScalarFactor(factor("a"))) expect_true(isScalarComplex(as.complex(1))) expect_true(isScalarLogical(NA)) expect_false(isScalarComplex(1L)) expect_false(isScalarInteger(1)) expect_false(isScalarFactor("a")) expect_false(isScalarCharacter(factor("a"))) expect_false(isScalarNumeric(as.complex(1))) expect_false(isScalarInteger(NA)) expect_false(isScalarValue(NULL)) expect_false(isScalarValue(iris)) expect_false(isScalarValue(1:2)) expect_false(isScalarValue(list(1))) expect_true(isScalarValue(NULL, null.ok=TRUE)) expect_false(isScalarValue(NULL, na.ok=FALSE)) })
pairs.lavaan <- function(x, group=1L, ...) { X <- x@Data@X[[group]] colnames(X) <- x@[email protected][[group]] pairs(X, ...) }
NULL docnames.spacyr_parsed <- function(x) { unique(x$doc_id) } ndoc.spacyr_parsed <- function(x) { length(docnames(x)) } ntoken.spacyr_parsed <- function(x, ...) { lengths(split(x$token, x$doc_id)) } ntype.spacyr_parsed <- function(x, ...) { vapply(split(x$token, x$doc_id), function(y) length(unique(y)), integer(1)) } nsentence.spacyr_parsed <- function(x, ...) { sapply(split(x, x$doc_id), function(y) length(unique(y$sentence_id))) }
knitr::opts_chunk$set(echo = TRUE) knitr::opts_chunk$set(cache= FALSE) library(rangeModelMetadata) library(raster) rmm <- rmmTemplate(family=c('base')) rmm$authorship$rmmName <- 'Owens_2015_Gadids' rmm$authorship$names <- 'Owens, Hannah' rmm$authorship$contact <- '[email protected]' rmm$authorship$relatedReferences <- '@article{, title={Evolution of codfishes (Teleostei: Gadinae) in geographical and ecological space: evidence that physiological limits drove diversification of subarctic fishes},author={Owens, Hannah},journal={Journal of Biogeography}, year={2015}, publisher={Wiley-Blackwell}}' rmm$data$occurrence$taxon <- c("Arctogadus borisovi", "Arcogadus glacialis", "Boreogadus saida", "Eleginus gracilis", "Gadus macrocephalus", "Gadus morhua", "Gadus ogac", "Melanogrammus aeglefinus", "Merlangius merlangus", "Microgadus proximus", "Microgadus tomcod", "Pollachius pollachius", "Pollachius virens", "Gadus chalcogrammus", "Trisopterus esmarkii", "Trisopterus luscus", "Trisopterus minutus") rmm$data$occurrence$dataType <- c("Presence only") rmm$data$occurrence$sources <- c("Global Biodiversity Information Facility (GBIF)", "Ocean Biogeographic Information System (OBIS)", "Zoological Institute at the Russian Academy of Sciences (ZIN)", "Natural History Museum in London (NHMUK)") rmm$data$occurrence$presenceSampleSize <- c(16, 41, 534, 121, 249, 448, 116, 273, 151, 46, 25, 68, 200, 282, 4, 5, 128) rmm$data$occurrence$backgroundSampleSizeSet <- 10000 rmm$data$environment$variableNames <- c("Minimum Sea Ice Concentration", "Maximum Sea Ice Concentration", "Mean Mixed Layer Depth", "Minimum Mixed Layer Depth", "Maximum Mixed Layer Depth", "Mean Bottom Salinity", "Minimum Bottom Salinity", "Maximum Bottom Salinity", "Mean Surface Salinity", "Minimum Surface Salinity", "Maximum Surface Salinity", "Mean Bottom Temperature", "Minimum Bottom Temperature", "Maximum Bottom Temperature", "Mean Surface Temperature", "Minimum Surface Temperature", "Maximum Surface Temperature") rmm$data$environment$extentSet <- list( extent(-180,180,50.06732,90.06732), extent(-180,180,54.77051,89.77051), extent(-180,180,36.77808,89.77808), extent(-180,180,39.46948,81.46948), extent(-180,180,23.25928 ,74.25928), extent(-80.8255,52.1745,32.15668,84.15668), extent( -169.2665,-31.26648,35.74249,82.74249), extent(-77.09869,56.90131,35.9895,82.9895), extent(-27.11713,42.88287,29.41553 ,72.41553), extent(-180,-115,31.06689 ,67.06689), extent(-74.711,-54.711,38.268,52.268), extent(-25.20459,34.79541,41.92908,75.92908), extent(-79.63971,33.36029,32.28247,84.28247), extent(-180,180,28.88068,75.88068), extent(-26.31464,28.68536,42.62609,79.62609), extent(-20.26068,26.73932,23.31372,64.31372), extent(-20.40668,39.593,25.8183,71.8183)) rmm$data$environment$resolution <- "1 X 1 degree" rmm$data$environment$sources <- c("NOAA National Geophysical Data Center", "NOAA World Ocean Atlas", "NOAA National Snow and Ice Data Center") rmm$data$transfer$environment1$resolution <- "1 X 1 degree" rmm$data$transfer$environment1$sources <- c("NOAA National Geophysical Data Center", "NOAA World Ocean Atlas", "NOAA National Snow and Ice Data Center") rmm$dataPrep$duplicateRemoval$rule <- "coordinate" rmm$dataPrep$questionablePointRemoval$notes <- "Points outside known distribution of species removed." rmm$dataPrep$pointInPolygon$rule <- "Remove points outside training region of species." rmm$dataPrep$spatialThin$rule <- "Reduced spatial resolution of points to match resolution of environmental data (1 X 1 resolution)." rmm$modelFit$algorithm <- "maxent" rmm$modelFit$algorithmCitation <- '@inproceedings{phillips2004maximum, title={A maximum entropy approach to species distribution modeling}, author={Phillips, Steven J and Dudik, Miroslav and Schapire, Robert E}, booktitle={Proceedings of the twenty-first international conference on Machine learning},pages={83},year={2004},organization={ACM}}' rmm$modelFit$maxent$featureSet <- "LQP" rmm$modelFit$maxent$notes <- "Ten bootstrap replicates trained with 50% of occurrence points chosen using random seed, maximum of 10000 iterations" rmm$prediction$continuous$units <- "absolute probability" rmm$prediction$transfer$environment1$units <- "absolute probability" rmm$prediction$transfer$environment1$extrapolation <- "No clamping or extrapolation" rmm$evaluation$notes <- "Inferred distribution congruent with known ranges for all species." rmmClean <- rmmCleanNULLs(rmm) rmmCheckFinalize(rmmClean)
help.map.name <- function(x) { if(is.null(x)) return("") x <- splitme(x) if(resplit(x[1L:2L]) == "s(") { x <- resplit(c("sfoofun", x[2L:length(x)])) x <- eval(parse(text = x), envir = parent.frame()) if(is.null(x)) x <- "bayesxmap" } else x <- "bayesxmap" return(x) }
context("AdjustmentService") skip("Reduce Total Test Runtime") rdfp_options <- readRDS("rdfp_options.rds") options(rdfp.network_code = rdfp_options$network_code) options(rdfp.httr_oauth_cache = FALSE) options(rdfp.application_name = rdfp_options$application_name) options(rdfp.client_id = rdfp_options$client_id) options(rdfp.client_secret = rdfp_options$client_secret) dfp_auth(token = "rdfp token.rds") test_that("dfp_getTrafficAdjustmentsByStatement", { request_data <- list(filterStatement=list('query'="WHERE status='ACTIVE'")) dfp_getTrafficAdjustmentsByStatement_result <- dfp_getTrafficAdjustmentsByStatement(request_data) expect_is(dfp_getTrafficAdjustmentsByStatement_result, "list") }) test_that("dfp_updateTrafficAdjustments", { skip() })
library("permutations") jj <- array(c( 010,012,014,016,018, 011,013,015,017,019, 021,033,045,057,069, 022,034,046,058,060, 023,035,047,059,061, 020,022,024,026,028, 021,023,025,027,029, 015,067,091,081,035, 016,068,092,082,036, 017,069,093,083,037, 030,032,034,036,038, 031,033,035,037,039, 017,029,089,079,047, 018,020,080,070,048, 019,021,081,071,049, 040,042,044,046,048, 041,043,045,047,049, 010,032,078,118,050, 011,033,079,119,051, 019,031,077,117,059, 050,052,054,056,058, 051,053,055,057,059, 011,043,115,105,061, 012,044,116,106,062, 013,045,117,107,063, 060,062,064,066,068, 061,063,065,067,069, 013,055,103,093,023, 014,056,104,094,024, 015,057,105,095,025, 070,072,074,076,078, 071,073,075,077,079, 030,088,120,110,040, 031,089,121,111,041, 039,087,129,119,049, 080,082,084,086,088, 081,083,085,087,089, 027,099,121,071,037, 028,090,122,072,038, 029,091,123,073,039, 090,092,094,096,098, 091,093,095,097,099, 025,065,101,123,083, 026,066,102,124,084, 027,067,103,125,085, 100,102,104,106,108, 101,103,105,107,109, 053,113,125,095,063, 054,114,126,096,064, 055,115,127,097,065, 110,112,114,116,118, 111,113,115,117,119, 041,075,127,107,051, 042,076,128,108,052, 043,077,129,109,053, 120,122,124,126,128, 121,123,125,127,129, 073,085,097,109,111, 074,086,098,100,112, 075,087,099,101,113 ),c(5,5,12)) megaminx <- rep(id,12) chosen <- seq_len(5) for(i in seq_len(12)){ for(j in chosen){ megaminx[i] <- megaminx[i] + as.cycle(jj[,j,i]) } } rm(i,j,jj) names(megaminx) <- c("White", "Purple", "DarkYellow", "DarkBlue", "Red", "DarkGreen", "LightGreen", "Orange", "LightBlue", "LightYellow", "Pink", "Grey") "W" <- megaminx[01] "Pu" <- megaminx[02] "DY" <- megaminx[03] "DB" <- megaminx[04] "R" <- megaminx[05] "DG" <- megaminx[06] "LG" <- megaminx[07] "O" <- megaminx[08] "LB" <- megaminx[09] "LY" <- megaminx[10] "Pi" <- megaminx[11] "Gy" <- megaminx[12] megaminx_colours <- noquote(rep("Black",126)) megaminx_colours[010:019] <- "White" megaminx_colours[020:029] <- "Purple" megaminx_colours[030:039] <- "DarkYellow" megaminx_colours[040:049] <- "DarkBlue" megaminx_colours[050:059] <- "Red" megaminx_colours[060:069] <- "DarkGreen" megaminx_colours[070:079] <- "LightGreen" megaminx_colours[080:089] <- "Orange" megaminx_colours[090:099] <- "LightBlue" megaminx_colours[100:109] <- "LightYellow" megaminx_colours[110:119] <- "Pink" megaminx_colours[120:129] <- "Grey"
biasCorrectionBernoulli <- function(object){ zeroLessModel <- deleteZeroComponents(object) if (inherits(zeroLessModel, "glm")) { return(zeroLessModel$rank) } signCor <- - 2 * zeroLessModel@resp$y + 1 muHat <- zeroLessModel@resp$mu workingEta <- numeric(length(muHat)) for(i in 1:length(muHat)){ workingData <- zeroLessModel@resp$y workingData[i] <- 1 - workingData[i] workingModel <- refit(zeroLessModel, nresp = workingData) workingEta[i] <- log(workingModel@resp$mu[i] / (1 - workingModel@resp$mu[i])) - log(muHat[i] / (1 - muHat[i])) } bc <- sum(muHat * (1 - muHat) * signCor * workingEta) if (identical(object, zeroLessModel)) { newModel <- NULL new <- FALSE } else { newModel <- zeroLessModel new <- TRUE } return(list(bc = bc, newModel = newModel, new = new)) }
context("Benchmark against Touw and Hoogduin (2011)") test_that(desc = "(id: f14-v0.5.1-t1) Test Sample sizes on page 17", { SR <- c(0.05, 0.10, 0.25, 0.40, 0.50) materiality <- 0.01 n <- numeric(length(SR)) for (i in 1:length(SR)) { n[i] <- jfa::planning(conf.level = 1 - SR[i], materiality = materiality, likelihood = "poisson")$n } expect_equal(n, c(300, 230 + 1, 140 - 1, 90 + 2, 70)) }) test_that(desc = "(id: f14-v0.5.1-t2) Test Sample sizes on page 23", { n <- jfa::planning(conf.level = 1 - 0.05, materiality = 100000 / 5000000, likelihood = "poisson")$n expect_equal(n, 150) n <- jfa::planning(conf.level = 1 - 0.125, materiality = 100000 / 5000000, likelihood = "poisson")$n expect_equal(n, 104) })
csmk.test <- function(x, alternative = c("two.sided", "greater", "less")) { if(!is.ts(x)){ stop("'x' must be objects of class 'ts'") } p <- frequency(x) if (p < 2){ stop("'x' must have at least 2 seasons") } na.fail(x) alternative = match.arg(alternative) n <- length(x) dat <- matrix(NA, ncol = p, nrow = n / p) for (i in 1:p) { dat[,i] <- x[cycle(x) == i] } inp <- list( x = ts(dat), alternative = alternative) out <- do.call("mult.mk.test", inp) DNAME <- deparse(substitute(x)) METHOD <- "Correlated Seasonal Mann-Kendall Test" out$method <- METHOD out$data.name <- DNAME return(out) }
define <- function(x,...)UseMethod('define') define.character<- function( x, stem = 'define', tag = names(x), description = basename(x), title = dirname(x[[1]]), short = title, protocol = '~', sponsor = '~', program = '~', author = '~', date = '\\mydate \\today', logo = NULL, logoscale = 1, dir = './define', subdir = '.', clear = TRUE, units = FALSE, ... ){ if(clear)unlink(dir, recursive = TRUE,force = TRUE) if(!file.exists(dir)) dir.create(dir,recursive = TRUE) stopifnot(file.exists(dir)) stopifnot( length(description) == length(x), length(tag) == length(x), length(dir) == 1, is.null(subdir) | length(subdir) %in% c(1,length(x)), length(title) == 1, length(short) == 1, length(protocol) == 1, length(sponsor) == 1, length(program) == 1, length(author) == 1, length(date) == 1 ) description <- as.character(description) title <- as.character(title) short <- as.character(short) protocol <- as.character(protocol) sponsor <- as.character(sponsor) program <- as.character(program) author <- as.character(author) date <- as.character(date) y <- as.submission( x = x, tag = tag, description = description, dir = dir, subdir = subdir, ... ) z <- as.document( y, title = title, short = short, protocol = protocol, sponsor = sponsor, program = program, author = author, date = date, logo = logo, logoscale = logoscale, units = units, ... ) as.pdf(z,stem = stem,dir = dir,...) }
best_roster <- function(leagueId = ffl_id(), useScore = c("actualScore", "projectedScore"), scoringPeriodId = NULL, ...) { useScore <- match.arg(useScore, c("actualScore", "projectedScore")) dat <- ffl_api( leagueId = leagueId, view = c("mRoster", "mSettings", "mTeam"), scoringPeriodId = scoringPeriodId, ... ) set <- out_roster_set(dat) slot_count <- set$lineupSlotCounts[[1]] do_slot <- as.integer(slot_count$position[slot_count$limit > 0]) do_slot <- pos_ids$slot[pos_ids$slot %in% do_slot] rosters <- lapply( X = seq_along(dat$teams$roster$entries), FUN = function(i) { out_roster( entry = dat$teams$roster$entries[[i]], tid = dat$teams$id[i], wk = dat$scoringPeriodId, yr = dat$seasonId, tm = out_team(dat$teams, trim = TRUE), es = TRUE ) } ) names(rosters) <- dat$teams$abbrev lapply(rosters, out_best, do_slot, slot_count, score_col = useScore) } out_best <- function(r, do_slot, slot_count, score_col) { most_elig <- names(sort(table(unlist(r$eligibleSlots)))) most_elig <- most_elig[most_elig %in% do_slot] most_elig <- most_elig[most_elig != "21" & most_elig != "25"] best <- data.frame() for (s in most_elig) { n_max <- slot_count$limit[slot_count$position == s] is_elig <- sapply(r$eligibleSlots, has_slot, s) n_elig <- sum(is_elig) if (n_elig < n_max) { if (s != "20") { warning( sprintf("Slot %s has %i maximum but %i eligible", s, n_max, n_elig), call. = FALSE ) } if (n_elig == 0) { next } n_max <- n_elig } can_max <- r[is_elig, ] if (n_elig > 1) { can_max <- can_max[order(can_max[[score_col]], decreasing = TRUE), ] } can_max <- can_max[seq(n_max), ] can_max$actualSlot <- can_max$lineupSlot can_max$lineupSlot <- slot_abbrev(s) best <- rbind(best, can_max) r <- r[!(r$playerId %in% best$playerId), ] } if (nrow(r) > 0) { n_ir <- slot_count$limit[slot_count$position == 21] if (nrow(r) == n_ir & all(r$lineupSlot == "IR")) { r$actualSlot <- r$lineupSlot best <- rbind(best, r) } } best <- move_col(best, "actualSlot", 6) best$eligibleSlots <- NULL best[order(best$lineupSlot), ] } has_slot <- function(eligibleSlots, slot) { slot %in% eligibleSlots }
checkJacobian <- function(x, f = psychonetrics_fitfunction_cpp, jac = psychonetrics_gradient_cpp, transpose = FALSE, plot = TRUE, perturbStart = FALSE){ start <- parVector(x) if (perturbStart){ start <- start + runif(length(start),0,0.25) } analytic <- jac(start, x) if (!is.matrix(analytic)){ analytic <- matrix(analytic) } numeric <- numDeriv::jacobian(f,start,model=x) if (!is.matrix(numeric)){ numeric <- matrix(numeric) } if (transpose){ numeric <- t(numeric) } if (plot){ plot(Vec(analytic),Vec(numeric),xlab="analytic",ylab="numeric") abline(0,1) } return(list( analytic = as.vector(analytic), numeric = as.vector(numeric) )) } checkFisher <- function(x, f = psychonetrics_gradient_cpp, fis = psychonetrics_FisherInformation_cpp, transpose = FALSE, plot = TRUE, perturbStart = FALSE){ analytic <- fis(x) if (!is.matrix(analytic)){ analytic <- matrix(analytic) } numeric <- psychonetrics_FisherInformation(x, analytic = FALSE) if (!is.matrix(numeric)){ numeric <- matrix(numeric) } if (transpose){ numeric <- t(numeric) } if (plot){ plot(Vec(analytic),Vec(numeric),xlab="analytic",ylab="numeric") abline(0,1) } return(list( analytic = as.matrix(analytic), numeric = as.matrix(numeric) )) }
targets::tar_test("knitr_deps() on a bad report", { writeLines(c("```{r}", "1 <-", "```"), "report.Rmd") expect_error(knitr_deps("report.Rmd"), class = "tar_condition_validate") }) targets::tar_test("knitr_deps()", { path <- system.file("example_rmd.Rmd", package = "tarchetypes") expect_equal( sort(knitr_deps(path)), sort(c("analysis", "data", "data2", "string1", "string2", "string3")) ) }) targets::tar_test("walk_call_knitr() finds function dependencies", { f <- function() tar_load(x) expect_equal(walk_ast(f, walk_call_knitr), "x") }) targets::tar_test("walk_call_knitr() warns on empty tar_load()", { expr <- quote(tar_load()) expect_warning( out <- walk_ast(expr, walk_call_knitr), class = "tar_condition_validate" ) expect_equal(out, character(0)) }) targets::tar_test("walk_call_knitr() warns on empty tar_read()", { expr <- quote(tar_read()) expect_warning( out <- walk_ast(expr, walk_call_knitr), class = "tar_condition_validate" ) expect_equal(out, character(0)) }) targets::tar_test("walk_call_knitr() warns on tidyselect", { expr <- quote(tar_load(starts_with("xyz"))) expect_warning( out <- walk_ast(expr, walk_call_knitr), class = "tar_condition_validate" ) expect_equal(out, character(0)) })
r1 = aggregate(sr_MI, 5) r2 = projectRaster(d2h_lrNA, r1) r3 = isoStack(r1, r2) dpts = sampleRandom(stack(r1, r2), 20, sp = TRUE) dpts$weathered.mean = dpts$weathered.mean + rnorm(20, 0, 0.0005) dpts$mean = dpts$mean + rnorm(20, 0, 8) dpts$Site_ID = letters[1:20] d1 = dpts[,1:2] d2 = dpts d3 = suppressWarnings(subOrigData(group = c("Raptor", "Passerine", "Water bird"), mask = states[states$STATE_ABBR == "MI",], ref_scale = NULL)) qa1 = suppressWarnings(QA(d1, r1, valiStation = 1, valiTime = 2, by = 25, name = "Sr", bySite = FALSE)) qa2 = suppressWarnings(QA(d2, r3, valiStation = 1, valiTime = 2, by = 25, name = "Multi", setSeed = F)) qa3 = suppressWarnings(QA(d3, r2, valiStation = 1, valiTime = 2, by = 25, name = "SOD", setSeed = F)) test_that("QA and plot.QA work",{ expect_is(qa1, "QA") expect_is(qa2, "QA") expect_silent(plot(qa1, qa2)) expect_silent(plot(qa3)) expect_error(plot.QA(d1)) expect_error(plot.QA(qa1, outDir = 2)) expect_silent(plot.QA(qa1, qa2)) expect_silent(plot.QA(qa1, outDir = tempdir())) })
library(dplyr) RandomlyAugmentDataBaseline <- function(Data) { order <- sample(1:5, 1) valuestosample <- c(-100:-1, 1:100) if(order == 1) Data*sample(valuestosample, 1)+sample(valuestosample, 1) else if(order == 2) sample(valuestosample, 1)*Data^2 + sample(valuestosample, 1)*Data +sample(valuestosample, 1) else if(order == 3) sample(valuestosample, 1)*Data^3 + sample(valuestosample, 1)* Data^2 + sample(valuestosample, 1)*Data+sample(valuestosample, 1) else if(order == 4) sample(valuestosample, 1)* Data^4 + sample(valuestosample, 1)* Data^3 + sample(valuestosample, 1)* Data^2 + sample(valuestosample, 1)*Data + sample(valuestosample, 1) else sample(valuestosample, 1)* Data^5 +sample(valuestosample, 1)*Data^4 + sample(valuestosample, 1)*Data^3 + sample(valuestosample, 1)*Data^2 + sample(valuestosample, 1)*Data+sample(valuestosample, 1) } augment_full <- function(Data){ Data %>% select(-group) %>% dplyr::group_by(sample_name) %>% dplyr::arrange(wavenumber) %>% dplyr::mutate(intensity_og = minmax(intensity)) %>% dplyr::mutate(intensity_aug1 = minmax(intensity_og + rnorm(length(wavenumber), mean = 0, sd = 1/sample(c(30:300), 1)))) %>% dplyr::mutate(intensity_aug2 = minmax(intensity_aug1 + minmax(RandomlyAugmentDataBaseline(wavenumber)))) %>% ungroup() } get_lib() spec_lib <- load_lib() raman_subset <- unique(spec_lib$raman$library$sample_name)[sample(1:length(unique(spec_lib$raman$library$sample_name)), 100, replace = F)] ftir_subset <- unique(spec_lib$ftir$library$sample_name)[sample(1:length(unique(spec_lib$ftir$library$sample_name)), 100, replace = F)] augmented_raman <- augment_full(spec_lib$raman$library %>% filter(sample_name %in% raman_subset)) %>% mutate(intensity = intensity_aug2) augmented_ftir <- augment_full(spec_lib$ftir$library %>% filter(sample_name %in% ftir_subset))%>% mutate(intensity = intensity_aug2) raman_proc <- augmented_raman %>% group_by(sample_name) %>% smooth_intens(p = 3) subtr_bg(degree = 8) %>% mutate() ftir_proc <- augmented_ftir %>% group_by(sample_name) %>% smooth_intens() %>% subtr_bg() spectrum = raman_subset[100] ggplot() + geom_line(data = augmented_raman %>% filter(sample_name == spectrum), aes(x = wavenumber, y = intensity) ) + geom_line(data = augmented_raman %>% filter(sample_name == spectrum) %>% smooth_intens(p = 3) %>% subtr_bg(degree = 8), aes(x = wavenumber, y = intensity)) augmented_raman %>% filter(sample_name == spectrum) %>% smooth_intens(p = 3) %>% subtr_bg(degree = 8) %>% match_spec(library = spec_lib, which = "raman") spectrum raman_identities <- c() for(spectrum in raman_subset){ identity <- unlist(spec_lib$raman$metadata[sample_name == spectrum, "spectrum_identity"]) topmatch <- augmented_raman %>% filter(sample_name == spectrum) %>% smooth_intens(p = 3) %>% subtr_bg(degree = 8) %>% match_spec(library = spec_lib, which = "raman", top_n = 1) %>% select(spectrum_identity) %>% unlist() raman_identities <- c(raman_identities, identity == topmatch) } sum(raman_identities)/length(raman_identities) ftir_identities <- c() for(spectrum in ftir_subset){ identity <- unlist(spec_lib$ftir$metadata[sample_name == spectrum, "spectrum_identity"]) topmatch <- augmented_ftir %>% filter(sample_name == spectrum) %>% smooth_intens(p = 3) %>% subtr_bg(degree = 8) %>% match_spec(library = spec_lib, which = "ftir", top_n = 1) %>% select(spectrum_identity) %>% unlist() ftir_identities <- c(ftir_identities, identity == topmatch) } sum(ftir_identities)/length(ftir_identities)
context("rpbdb query functions and uri generation") test_that("Param with several (as list) values joins to csv ok", { expect_equal(.implode_to_string(list("aa","bb")), 'aa,bb') }) test_that("Param with several (as character vector) values joins to csv ok", { expect_equal(.implode_to_string(c("aa","bb")), 'aa,bb') }) test_that("Param with one value remains", { expect_equal(.implode_to_string("aa"), "aa") })
"plotSpectraSuper" <- function(multimodel, multitheta, plotoptions) { if(dev.cur() != 1) dev.new() m <- multimodel@modellist t <- multitheta res <- multimodel@fit@resultlist superimpose <- plotoptions@superimpose if(length(superimpose) < 1 || any(superimpose > length(m))) superimpose <- 1:length(m) divdrel <- plotoptions@divdrel allx2 <- allx <- vector() for(i in superimpose) { allx2 <- append(allx2, m[[i]]@x2) allx <- append(allx, m[[i]]@x) } if(length(plotoptions@xlim) == 0) { x2max <- max(allx2) x2min <- min(allx2) } allx <- sort(unique(allx)) par(plotoptions@paropt) par(mgp = c(2, 1, 0), mar=c(0,2,3,0), oma = c(1,0,4,0)) if(length(plotoptions@selectedtraces) > 0 ) { seltraces <- plotoptions@selectedtraces xx <- vector() for(i in superimpose) { xx <- append(m[[i]]@x[seltraces],xx) } lensel <- length(unique(xx)) } else { seltraces <- 1:length(allx) lensel <- length(seltraces) } ymax <- ymin <- rep(0,length(allx)) for (j in 1:length(allx)) { for(i in 1:length(m)) { k <- which(m[[i]]@x == allx[j])[1] if(i %in% superimpose && k %in% seltraces) { data <- m[[i]]@psi.df[k,] fitted <- res[[i]]@fitted[[k]] if(divdrel && length(t[[i]]@drel)!=0){ if(length(m[[i]]@dscalspec$perclp)!=0) if(m[[i]]@dscalspec$perclp) { data <- data/t[[i]]@drel[k] fitted <- fitted/t[[i]]@drel[k] } else { data <- data/t[[i]]@drel fitted <- fitted/t[[i]]@drel } } if(m[[i]]@weight) fitted <- fitted/m[[i]]@weightM[, k] ymax[j] <- max(fitted,data,ymax[j]) ymin[j] <- min(fitted,data,ymin[j]) } } } par(mfrow = n2mfrow(lensel)) for (j in 1:length(allx)) { plotted <- FALSE for(i in 1:length(m)) { k <- which(m[[i]]@x == allx[j])[1] if(i %in% superimpose && k %in% seltraces) { data <- m[[i]]@psi.df[k,] fitted <- res[[i]]@fitted[[k]] if(divdrel && length(t[[i]]@drel)!=0) if(length(m[[i]]@dscalspec$perclp)!=0) if(m[[i]]@dscalspec$perclp) { data <- data/t[[i]]@drel[k] fitted <- fitted/t[[i]]@drel[k] } else { data <- data/t[[i]]@drel fitted <- fitted/t[[i]]@drel } if(m[[i]]@weight) fitted <- fitted/m[[i]]@weightM[k,] cold <- if(length(plotoptions@coldata) == 0) i else plotoptions@coldata[i] ltd <- if(length(plotoptions@ltydata) == 0) 1 else plotoptions@ltydata colf <- if(length(plotoptions@colfit) == 0) if(length(m) > 1) i else 2 else plotoptions@colfit[i] ltf <- if(length(plotoptions@ltyfit) == 0) 3 else plotoptions@ltyfit if(!plotted){ plot(m[[i]]@x2, data, type = "l", ylim=c(ymin[j],ymax[j]), xlab = plotoptions@xlab, ylab ="amplitude", col = cold, lty = ltd) title(signif(m[[i]]@x[k]), line=0) plotted <- TRUE } else lines(m[[i]]@x2, data, type = "l", col = cold, lty = ltd) lines(m[[i]]@x2, fitted, type = "l", col = colf, lty = ltf) } } } if(length(plotoptions@title) != 0){ tit <- plotoptions@title if(plotoptions@addfilename) tit <- paste(tit,m[[i]]@datafile) } else { tit <- "" if(plotoptions@addfilename) tit <- paste(tit, m[[i]]@datafile) } mtext(tit, side = 3, outer = TRUE, line = 1) par(las = 2) if(dev.interactive() && length(plotoptions@makeps) != 0) { if(plotoptions@output == "pdf") pdev <- pdf else pdev <- postscript dev.print(device=pdev, file=paste(plotoptions@makeps, "_selectedtraces.", plotoptions@output, sep="")) } }
xabmerge <- function(df1, df2, leff, step, k, type) { if(is.null(k)) { h.safe <- as.numeric(hsafe(df2[1,2], leff)) hdwy <- as.numeric(df1[3] - df2[3]) if(hdwy < h.safe) { tlen <- dim(df2)[1] for(i in 1:tlen) df2[i,3] <- df2[i,3]- h.safe } k <- 0 } df3 <- cbind(df1,df2)[,-4] if(type == TRUE) lines(df3[,1],df3[,5], lty = 2, lwd = 2, col = "yellow") tseq <- df3[,1] tlen <- length(tseq) h.safe <- hdwy <- violation <- score <- rep(NA,tlen) for(i in 1:tlen) { h.safe[i] <- hsafe(df3[i,4], leff) hdwy[i] <- df3[i,3] - df3[i,5] score[i] <- h.safe[i] - hdwy[i] } df3 <- cbind(df3, hdwy, h.safe, violation, score) for(i in 1:tlen) { if(round(df3[i,6],2) >= round(df3[i,7],2)) df3[i,8] = 0 else df3[i,8] = 1 } maxviol <- max(df3[,9]) tmaxviol <- df3[df3[,9] == maxviol,1] xmaxviol <- df3[df3[,9] == maxviol,5] umaxviol <- df3[df3[,9] == maxviol,4] if(maxviol > 0 & type == TRUE) { points(tmaxviol, xmaxviol, pch = 16) text(tmaxviol, xmaxviol, labels = k, pos = 4) } browser() for(i in 1:(tlen-2)) { if(df3[i,8] == 0 & df3[i+1,8] == 1 & df3[i+2,8] == 1) { k <- k + 1 break } else { k <- 0 } } if(k == 1) { tstart <- tend <- ustart <- uend <- xstart <- xend <- {} for(i in 1:(tlen-2)) { if(df3[i,8] == 0 & df3[i+1,8] == 1 & df3[i+2,8] == 1) tstart <- as.numeric(df3[i,1]) if(df3[i,8] == 1 & df3[i+1,8] == 0) tend <- as.numeric(df3[i,1]) if(df3[i,8] == 0 & df3[i+1,8] == 1 & df3[i+2,8] == 1) ustart <- as.numeric(df3[i,4]) if(df3[i,8] == 1 & df3[i+1,8] == 0) uend <- as.numeric(df3[i,4]) if(df3[i,8] == 0 & df3[i+1,8] == 1 & df3[i+2,8] == 1) xstart <- as.numeric(df3[i,5]) if(df3[i,8] == 1 & df3[i+1,8] == 0) xend <- as.numeric(df3[i,5]) if(!is.null(tstart) & !is.null(tend)) { break } } if(is.null(tend)) { tend <- as.numeric(df3[tlen,1]) uend <- as.numeric(df3[tlen,4]) xend <- as.numeric(df3[tlen,3]) - as.numeric(df3[tlen,7]) } dfab <- data.frame(tstart, tend, ustart, uend, xstart, xend, step) trj <- trajectoryab( tstart = tstart, tend = tend, ustart = ustart, uend = uend, xstart = xstart, xend = xend, step = step) u.fix <- as.numeric(trj[[3]]) x.fix <- as.numeric(trj[[4]]) u <- c(df3[df3[,1] < tstart,4], u.fix, df3[df3[,1] > tend,4]) x <- c(df3[df3[,1] < tstart,5], x.fix, df3[df3[,1] > tend,5]) df3[,4] <- u df3[,5] <- x if(type == TRUE) lines(df3[,1], df3[,5], lwd = 3, col = "orange") return(list(df3, k, dfab)) } if(k == 0) { tstart <- tend <- ustart <- uend <- xstart <- xend <- NA dfab <- data.frame(tstart, tend, ustart, uend, xstart, xend, step) return(list(df3, k, dfab)) } if(k == 2) { tstart <- tend <- ustart <- uend <- xstart <- xend <- {} for(i in 1:(tlen-2)) { if(df3[i,8] == 0 & df3[i+1,8] == 1 & df3[i+2,8] == 1) tstart <- as.numeric(df3[i,1]) if(df3[i,8] == 1 & df3[i+1,8] == 0) tend <- as.numeric(df3[i,1]) if(df3[i,8] == 0 & df3[i+1,8] == 1 & df3[i+2,8] == 1) ustart <- as.numeric(df3[i,4]) if(df3[i,8] == 1 & df3[i+1,8] == 0) uend <- as.numeric(df3[i,4]) if(df3[i,8] == 0 & df3[i+1,8] == 1 & df3[i+2,8] == 1) xstart <- as.numeric(df3[i,5]) if(df3[i,8] == 1 & df3[i+1,8] == 0) xend <- as.numeric(df3[i,5]) if(!is.null(tstart) & !is.null(tend)) break } dfab <- data.frame(tstart, tend, ustart, uend, xstart, xend, step) tstart1 <- as.numeric(dfab[1]) ustart1 <- as.numeric(dfab[3]) xstart1 <- as.numeric(dfab[5]) tend1 <- as.numeric(tmaxviol) uend1 <- as.numeric(umaxviol) umn1 <- 3600/5280*uend1 xend1 <- as.numeric(xmaxviol) - hsafe(umn1,leff) if(type == TRUE) { points(tend1,xend1, pch = 16) text(tend1,xend1, label = k, pos = 4) } trj1 <- trajectoryab( tstart = tstart1, tend = tend1, ustart = ustart1, uend = uend1, xstart = xstart1, xend = xend1, step = step) t.fix1 <- as.numeric(trj1[[2]]) u.fix1 <- as.numeric(trj1[[3]]) x.fix1 <- as.numeric(trj1[[4]]) if(type == TRUE) lines(t.fix1,x.fix1, lwd = 2, col = "wheat") tend2 <- as.numeric(dfab[2]) uend2 <- as.numeric(dfab[4]) xend2 <- as.numeric(dfab[6]) tstart2 <- as.numeric(tmaxviol) ustart2 <- as.numeric(umaxviol) umn2 <- 3600/5280*ustart1 xstart2 <- as.numeric(xmaxviol) - hsafe(umn1,leff) if(type == TRUE) { points(tend2,xend2, pch = 16) text(tend2,xend2, label = k, pos = 2) } tstart <- tstart2 ustart <- ustart2 xstart <- xstart2 tend <- tend2 ustart <- ustart2 xstart <- xstart2 df3. <- df3[df3[,1] >= tstart,] tlen. <- dim(df3.)[1] tend <- {} for(i in 1:tlen.) { if(df3.[i,8] == 1 & df3.[i+1,8] == 0) tend <- as.numeric(df3.[i,1]) if(df3.[i,8] == 1 & df3.[i+1,8] == 0) uend <- as.numeric(df3.[i,4]) if(df3.[i,8] == 1 & df3.[i+1,8] == 0) xend <- as.numeric(df3.[i,5]) if(type == TRUE) points(as.numeric(df3.[i,1]), as.numeric(df3.[i,5])) if(!is.null(tend)) break } trj2 <- trajectoryab( tstart = tstart, tend = tend, ustart = ustart, uend = uend, xstart = xstart, xend = xend, step = step) t.fix2 <- as.numeric(trj2[[2]]) u.fix2 <- as.numeric(trj2[[3]]) x.fix2 <- as.numeric(trj2[[4]]) u <- c(df3[df3[,1] < tstart1,4], u.fix1, u.fix2[-1], df3[df3[,1] > tend,4]) x <- c(df3[df3[,1] < tstart1,5], x.fix1, x.fix2[-1], df3[df3[,1] > tend,5]) df3[,4] <- u df3[,5] <- x if(type == TRUE) { lines(t.fix2,x.fix2, lwd = 2, col = "tan") lines(df3[,1], df3[,5], lwd = 2) } return(list(df3, k, dfab)) } }
library(dplyr) library(stringr) library(statar) context("ascii table") test_that("format_fixedwidth gives a number with w character", { expect_equal(format_fixedwidth(-2.3820093234*10^(-10), 8), "-2.4e-10") expect_equal(format_fixedwidth(-2.3820093234*10^(-9), 8), "-2.4e-09") expect_equal(format_fixedwidth(-2.3820093234*10^(-8), 8), "-2.4e-08") expect_equal(format_fixedwidth(-2.3820093234*10^(-7), 8), "-2.4e-07") expect_equal(format_fixedwidth(-2.3820093234*10^(-6), 8), "-2.4e-06") expect_equal(format_fixedwidth(-2.3820093234*10^(-5), 8), "-2.4e-05") expect_equal(format_fixedwidth(-2.3820093234*10^(-4), 8), "-0.00024") expect_equal(format_fixedwidth(-2.3820093234*10^(-3), 8), "-0.00238") expect_equal(format_fixedwidth(-2.3820093234*10^(-2), 8), "-0.02382") expect_equal(format_fixedwidth(-2.3820093234*10^(-1), 8), " -0.2382") expect_equal(format_fixedwidth(-2.3820093234*10^(0), 8), "-2.38201") expect_equal(format_fixedwidth(-2.3820093234*10^(1), 8), "-23.8201") expect_equal(format_fixedwidth(-2.3820093234*10^(2), 8), "-238.201") expect_equal(format_fixedwidth(-2.3820093234*10^(3), 8), "-2382.01") expect_equal(format_fixedwidth(-2.3820093234*10^(4), 8), "-23820.1") expect_equal(format_fixedwidth(-2.3820093234*10^(5), 8), " -238201") expect_equal(format_fixedwidth(-2.3820093234*10^(6), 8), "-2.4e+06") expect_equal(format_fixedwidth(-2.3820093234*10^(7), 8), "-2.4e+07") expect_equal(format_fixedwidth(-2.3820093234*10^(8), 8), "-2.4e+08") expect_equal(format_fixedwidth(-2.3820093234*10^(9), 8), "-2.4e+09") expect_equal(format_fixedwidth(-2.3820093234*10^(10), 8), "-2.4e+10") }) test_that("format_fixedwidth gives a number with w character", { expect_equal(format_fixedwidth(-2.3824633234*10^(-10), 8), "-2.4e-10") expect_equal(format_fixedwidth(-2.3824633234*10^(-9), 8), "-2.4e-09") expect_equal(format_fixedwidth(-2.3824633234*10^(-8), 8), "-2.4e-08") expect_equal(format_fixedwidth(-2.3824633234*10^(-7), 8), "-2.4e-07") expect_equal(format_fixedwidth(-2.3824633234*10^(-6), 8), "-2.4e-06") expect_equal(format_fixedwidth(-2.3824633234*10^(-5), 8), "-2.4e-05") expect_equal(format_fixedwidth(-2.3824633234*10^(-4), 8), "-0.00024") expect_equal(format_fixedwidth(-2.3824633234*10^(-3), 8), "-0.00238") expect_equal(format_fixedwidth(-2.3824633234*10^(-2), 8), "-0.02382") expect_equal(format_fixedwidth(-2.3824633234*10^(-1), 8), "-0.23825") expect_equal(format_fixedwidth(-2.3824633234*10^(0), 8), "-2.38246") expect_equal(format_fixedwidth(-2.3824633234*10^(1), 8), "-23.8246") expect_equal(format_fixedwidth(-2.3824633234*10^(2), 8), "-238.246") expect_equal(format_fixedwidth(-2.3824633234*10^(3), 8), "-2382.46") expect_equal(format_fixedwidth(-2.3824633234*10^(4), 8), "-23824.6") expect_equal(format_fixedwidth(-2.3824633234*10^(5), 8), " -238246") expect_equal(format_fixedwidth(-2.3824633234*10^(6), 8), "-2.4e+06") expect_equal(format_fixedwidth(-2.3824633234*10^(7), 8), "-2.4e+07") expect_equal(format_fixedwidth(-2.3824633234*10^(8), 8), "-2.4e+08") expect_equal(format_fixedwidth(-2.3824633234*10^(9), 8), "-2.4e+09") expect_equal(format_fixedwidth(-2.3824633234*10^(10), 8), "-2.4e+10") }) test_that("format_fixedwidth does not have trailing zeros", { expect_equal(format_fixedwidth(50.5, 8), " 50.5") }) test_that("format_fixedwidth works with 0", { expect_equal(format_fixedwidth(0), " 0") }) test_that("format_fixedwidth works with NA", { expect_equal(format_fixedwidth(NA, 8), " NA") }) test_that("format_fixedwidth works with factors", { expect_equal(format_fixedwidth(as.factor("month")), " month") }) test_that("format_fixedwidth works with factors", { expect_equal(format_fixedwidth(as.factor("month")), " month") }) test_that("format_fixedwidth correctly abbreviates", { expect_equal(format_fixedwidth("very long string"), "very l~g") }) df <- tibble( check_rightalign = as.factor(c("Lorem ipsum dolor", "sit amet, consectetur adipiscing elit,", "sed do eiusmod tempor")), longvarname = c(0, 1, 2) ) tab(df, check_rightalign) tab(df, longvarname)
blues9 <- c(" " .smoothScatterCalcDensity <- function(x, nbin, bandwidth, range.x) { if (length(nbin) == 1) nbin <- c(nbin, nbin) if (!is.numeric(nbin) || length(nbin) != 2) stop("'nbin' must be numeric of length 1 or 2") if (missing(bandwidth)) { bandwidth <- diff(apply(x, 2, stats::quantile, probs = c(0.05, 0.95), na.rm = TRUE, names = FALSE)) / 25 bandwidth[bandwidth==0] <- 1 } else { if(!is.numeric(bandwidth)) stop("'bandwidth' must be numeric") if(any(bandwidth <= 0)) stop("'bandwidth' must be positive") } if(requireNamespace("KernSmooth", quietly=TRUE)) rv <- KernSmooth::bkde2D(x, bandwidth=bandwidth, gridsize=nbin, range.x=range.x) else stop("Must have the ('Recommended') package \"KernSmooth\" installed") rv$bandwidth <- bandwidth rv } densCols <- function(x, y = NULL, nbin = 128, bandwidth, colramp = colorRampPalette(blues9[-(1:3)])) { xy <- xy.coords(x, y, setLab = FALSE) select <- is.finite(xy$x) & is.finite(xy$y) x <- cbind(xy$x, xy$y)[select, ] map <- .smoothScatterCalcDensity(x, nbin, bandwidth) mkBreaks <- function(u) u - diff(range(u))/(length(u)-1)/2 xbin <- cut(x[,1], mkBreaks(map$x1), labels = FALSE) ybin <- cut(x[,2], mkBreaks(map$x2), labels = FALSE) dens <- map$fhat[cbind(xbin, ybin)] dens[is.na(dens)] <- 0 colpal <- cut(dens, length(dens), labels = FALSE) cols <- rep(NA_character_, length(select)) cols[select] <- colramp(length(dens))[colpal] cols }
test_that("NIFTI v1 files with FreeSurfer hack can be read.", { testthat::skip_on_cran(); skip_if(rversion.less.than(vmajor=3, vminor=5), message = "Skipping under R < 3.5."); skip_if(tests_running_on_cran_under_macos(), message = "Skipping on CRAN under MacOS, required test data cannot be downloaded."); freesurferformats::download_opt_data(); subjects_dir = freesurferformats::get_opt_data_filepath("subjects_dir"); morph_file_curv = file.path(subjects_dir, "subject1", "surf", "lh.thickness"); morph_file_nii = file.path(subjects_dir, "subject1", "surf", "lh.thickness.nii.gz"); morph_data_curv = read.fs.morph(morph_file_curv); morph_data_nii = read.nifti1.data(morph_file_nii); testthat::expect_equal(morph_data_curv, morph_data_nii); }) test_that("NIFTI v1 files with FreeSurfer hack can be read using read.fs.morph.", { skip_if(rversion.less.than(vmajor=3, vminor=5), message = "Skipping under R < 3.5."); skip_if(tests_running_on_cran_under_macos(), message = "Skipping on CRAN under MacOS, required test data cannot be downloaded."); testthat::skip_on_cran(); freesurferformats::download_opt_data(); subjects_dir = freesurferformats::get_opt_data_filepath("subjects_dir"); morph_file_curv = file.path(subjects_dir, "subject1", "surf", "lh.thickness"); morph_file_nii = file.path(subjects_dir, "subject1", "surf", "lh.thickness.nii.gz"); morph_data_curv = read.fs.morph(morph_file_curv); morph_data_nii = read.fs.morph(morph_file_nii); testthat::expect_equal(morph_data_curv, morph_data_nii); testthat::expect_true(nifti.file.uses.fshack(morph_file_nii)); }) test_that("NIFTI v1 file headers with FreeSurfer hack can be read.", { skip_if(rversion.less.than(vmajor=3, vminor=5), message = "Skipping under R < 3.5."); skip_if(tests_running_on_cran_under_macos(), message = "Skipping on CRAN under MacOS, required test data cannot be downloaded."); testthat::skip_on_cran(); freesurferformats::download_opt_data(); subjects_dir = freesurferformats::get_opt_data_filepath("subjects_dir"); morph_file_nii = file.path(subjects_dir, "subject1", "surf", "lh.thickness.nii.gz"); nh = read.nifti1.header(morph_file_nii); testthat::expect_equal(nh$endian, 'little'); testthat::expect_equal(nh$glmin, 149244L); testthat::expect_equal(nh$vox_offset, 352L); testthat::expect_equal(nh$dim_raw, c(3, -1, 1, 1, 1, 1, 1, 1)); testthat::expect_equal(nh$dim, c(3, 149244, 1, 1, 1, 1, 1, 1)); }) test_that("The NIFTI version can be determined for a file.", { skip_if(rversion.less.than(vmajor=3, vminor=5), message = "Skipping under R < 3.5."); skip_if(tests_running_on_cran_under_macos(), message = "Skipping on CRAN under MacOS, required test data cannot be downloaded."); testthat::skip_on_cran(); freesurferformats::download_opt_data(); subjects_dir = freesurferformats::get_opt_data_filepath("subjects_dir"); nii1_file = file.path(subjects_dir, "subject1", "surf", "lh.thickness.nii.gz"); data_dir = freesurferformats::get_opt_data_filepath("nifti2"); nii2_file = file.path(data_dir, 'avg152T1_LR_nifti2.nii.gz'); testthat::expect_equal(nifti.file.version(nii1_file), 1L); testthat::expect_equal(nifti.file.version(nii2_file), 2L); not_a_nifti_file = system.file("extdata", "cube.off", package = "freesurferformats", mustWork = TRUE); testthat::expect_true(is.null(nifti.file.version(not_a_nifti_file))); }) test_that("It can be determined whether a NIFTI file uses the FreeSurfer hack.", { skip_if(rversion.less.than(vmajor=3, vminor=5), message = "Skipping under R < 3.5."); skip_if(tests_running_on_cran_under_macos(), message = "Skipping on CRAN under MacOS, required test data cannot be downloaded."); testthat::skip_on_cran(); freesurferformats::download_opt_data(); subjects_dir = freesurferformats::get_opt_data_filepath("subjects_dir"); nii1_file_with_hack = file.path(subjects_dir, "subject1", "surf", "lh.thickness.nii.gz"); nii1_file_without_hack = system.file("extdata", "vol27int.nii.gz", package = "freesurferformats", mustWork = TRUE); data_dir = freesurferformats::get_opt_data_filepath("nifti2"); nii2_file = file.path(data_dir, 'avg152T1_LR_nifti2.nii.gz'); testthat::expect_true(nifti.file.uses.fshack(nii1_file_with_hack)); testthat::expect_false(nifti.file.uses.fshack(nii1_file_without_hack)); testthat::expect_false(nifti.file.uses.fshack(nii2_file)); not_a_nifti_file = system.file("extdata", "cube.off", package = "freesurferformats", mustWork = TRUE); testthat::expect_error(nifti.file.uses.fshack(not_a_nifti_file)); })
clip.data <- function(data, lower=0.05, upper=0.95){ if(is.hemilist(data)) { return(lapply(data, clip.data, lower, upper)); } else { quantiles = stats::quantile(data, c(lower, upper), na.rm = TRUE, names = FALSE); data[ data < quantiles[1] ] = quantiles[1]; data[ data > quantiles[2] ] = quantiles[2]; } return(data); } clip_fun <- function(lower=0.05, upper=0.95) { res_fun <- function(data) { quantiles = stats::quantile(data, c(lower, upper), na.rm = TRUE, names = FALSE); data[ data < quantiles[1] ] = quantiles[1]; data[ data > quantiles[2] ] = quantiles[2]; return(data); }; return(res_fun); } shift.hemis.rglactions <- function(coloredmeshes, rglactions) { if(rglactions.has.key(rglactions, 'shift_hemis_apart')) { shift_hemis = rglactions$shift_hemis_apart; if(is.logical(shift_hemis)) { if(shift_hemis) { return(shift.hemis.apart(coloredmeshes, hemi_order_on_axis='lr')); } } else if(is.list(shift_hemis)) { return(do.call(shift.hemis.apart, utils::modifyList(list(coloredmeshes), shift_hemis))); } else if(is.character(shift_hemis)) { if(shift_hemis == 'lr' | shift_hemis == 'lhrh') { return(shift.hemis.apart(coloredmeshes, hemi_order_on_axis='lr')); } else if(shift_hemis == 'rl' | shift_hemis == 'rhlh') { return(shift.hemis.apart(coloredmeshes, hemi_order_on_axis='rl')); } else if(shift_hemis == 'auto' | shift_hemis == 'auto_flipped') { return(shift.hemis.apart(coloredmeshes, hemi_order_on_axis=shift_hemis)); } else { warning("Value in rglactions$shift_hemis_apart is not supported, ignored. Not shifting hemis."); } } else { warning("Value in rglactions$shift_hemis_apart is not supported, ignored. Not shifting hemis."); } } return(coloredmeshes); } rglactions.transform <- function(measure_data, rglactions) { if(is.null(rglactions)) { return(measure_data); } if(is.hemilist(measure_data)) { return(lapply(measure_data, rglactions.transform, rglactions=rglactions)); } if(hasIn(rglactions, list('clip_data'))) { clip_range = rglactions$clip_data; measure_data = clip.data(measure_data, lower=clip_range[1], upper=clip_range[2]); } if(hasIn(rglactions, list('trans_fun'))) { trans_fun = rglactions$trans_fun; if(! is.function(trans_fun)) { stop("The value of rglactions entry 'trans_fun' must be a function."); } measure_data = trans_fun(measure_data); } return(measure_data); } limit_fun <- function(vmin, vmax) { limit_fun <- function(data) { data[data < vmin] = vmin; data[data > vmax] = vmax; return(data); }; return(limit_fun); } limit_fun_na <- function(vmin, vmax) { limit_fun <- function(data) { data[data < vmin] = NA; data[data > vmax] = NA; return(data); }; return(limit_fun); } limit_fun_na_inside <- function(vmin, vmax) { limit_fun <- function(data) { data[which(data > vmin & data < vmax)] = NA; return(data); }; return(limit_fun); } rglactions.has.key <- function(rglactions, key) { if(is.list(rglactions)) { return(key %in% names(rglactions)); } return(FALSE); } perform.rglactions <- function(rglactions, at_index=NULL, silent=TRUE, ignore = c()) { if(is.list(rglactions)) { if("text" %in% names(rglactions)) { if(!("text" %in% ignore)) { do.call(rgl::text3d, rglactions$text); } } if("snapshot_png" %in% names(rglactions)) { if(!("snapshot_png" %in% ignore)) { if(length(rglactions$snapshot_png) == 1 || is.null(at_index)) { output_image = path.expand(rglactions$snapshot_png); } else { if(length(rglactions$snapshot_png) < at_index) { warning(sprintf("Requested rglaction at_index '%d' but only %d entries exist for action 'snapshot_png'.\n", at_index, length(rglactions$snapshot_png))); } output_image = path.expand(rglactions$snapshot_png[[at_index]]); } rgl::rgl.snapshot(output_image, fmt="png"); if(! silent) { message(sprintf("Bitmap screenshot written to '%s' (current working dir is '%s').\n", output_image, getwd())); } } } if("snapshot_vec" %in% names(rglactions)) { if(!("snapshot_vec" %in% ignore)) { snapshot_vec_format = "eps"; if("snapshot_vec_format" %in% names(rglactions)) { supported_formats = c("ps", "eps", "tex", "pdf", "svg", "pgf"); if(rglactions$snapshot_vec_format %in% supported_formats) { snapshot_vec_format = rglactions$snapshot_vec_format; } else { stop(sprintf("rglactions: invalid snapshot_vec_format '%s'. Must be one of ''.", rglactions$snapshot_vec_format, paste(supported_formats, collapse = ", "))); } } if(length(rglactions$snapshot_vec) == 1 || is.null(at_index)) { output_image = path.expand(rglactions$snapshot_vec); } else { if(length(rglactions$snapshot_vec) < at_index) { warning(sprintf("Requested rglaction at_index '%d' but only %d entries exist for action 'snapshot_vec'.\n", at_index, length(rglactions$snapshot_vec))); } output_image = path.expand(rglactions$snapshot_vec[[at_index]]); } rgl::rgl.postscript(output_image, fmt = snapshot_vec_format); if(! silent) { message(sprintf("Vector graphics screenshot written to '%s' in format '%s' (current working dir is '%s').\n", output_image, snapshot_vec_format, getwd())); } } } if("highlight_points" %in% names(rglactions)) { if(!("highlight_points" %in% ignore)) { hp = rglactions$highlight_points; highlight.points.spheres(hp$coords, color = hp$color, radius = hp$radius); } } } } rglactions <- function() { return(list('snapshot_png'='fsbrain_out.png')); }
lattice.t.trellis <- function (x) { stopifnot(length(dim(x)) == 2) update(x, perm.cond = rev(x$perm.cond)) } grid.make.yaxis.major <- function (at, main) { if (main) x <- c(0, 0) else x <- c(1, 1) linesGrob(unit(x, "npc"), unit(c(min(at), max(at)), "native"), name = "major") } grid.make.yaxis.ticks <- function (at, main) { if (main) { tick.x0 <- unit(0, "npc") tick.x1 <- unit(-0.5, "lines") } else { tick.x0 <- unit(1, "npc") tick.x1 <- unit(1, "npc") + unit(0.5, "lines") } segmentsGrob(tick.x0, unit(at, "native"), tick.x1, unit(at, "native"), name = "ticks") } grid.make.xaxis.major <- function (at, main) { if (main) y <- c(0, 0) else y <- c(1, 1) linesGrob(unit(c(min(at), max(at)), "native"), unit(y, "npc"), name = "major") } grid.make.xaxis.ticks <- function (at, main) { if (main) { tick.y0 <- unit(0, "npc") tick.y1 <- unit(-0.5, "lines") } else { tick.y0 <- unit(1, "npc") tick.y1 <- unit(1, "npc") + unit(0.5, "lines") } segmentsGrob(unit(at, "native"), tick.y0, unit(at, "native"), tick.y1, name = "ticks") } multcomp.meanslinfct <- function (model, focus, mmm.data = model$model, formula.in = terms(model), contrasts.arg = NULL) { mmm.factor <- sapply(mmm.data, inherits, "factor") mmm.levels <- lapply(mmm.data[mmm.factor], levels) mmm.rows <- sapply(mmm.levels, length) n.mmm.rows <- prod(mmm.rows) mmm.new <- mmm.data[1:n.mmm.rows, ] mmm.factor.names <- names(mmm.data)[mmm.factor] mmm.rows.forward <- cumprod(mmm.rows) mmm.rows.forward.prev <- c(1, mmm.rows.forward) names(mmm.rows.forward.prev) <- c(names(mmm.rows.forward), "all") for (i in mmm.factor.names) mmm.new[[i]] <- gl(mmm.rows[i], mmm.rows.forward.prev[i], n.mmm.rows, labels = mmm.levels[[i]]) mmm.numeric.names <- names(mmm.data)[!mmm.factor] for (i in mmm.numeric.names) mmm.new[[i]][] <- mean(mmm.data[[i]]) none.data <- model.matrix(formula.in, data = mmm.new, contrasts.arg = contrasts.arg) none.linfct <- aggregate(none.data, by = mmm.new[focus], FUN = mean)[, -1] rownames(none.linfct) <- levels(mmm.new[[focus]]) data.matrix(none.linfct) } lattice.lattice.setStatus <- function (..., prefix = NULL, clean.first = FALSE) { dots <- list(...) if (is.null(names(dots)) && length(dots) == 1 && is.list(dots[[1]])) dots <- dots[[1]] if (length(dots) == 0) return() .LatticeEnv <- get(".LatticeEnv", envir=environment(lattice.options)) lattice.status <- if (clean.first) list() else get("lattice.status", envir = .LatticeEnv) if (is.null(prefix)) lattice.status[names(dots)] <- dots else lattice.status[[prefix]][names(dots)] <- dots assign("lattice.status", lattice.status, envir = .LatticeEnv) invisible() } lattice.hist.constructor <- function (x, breaks, include.lowest = TRUE, right = TRUE, ...) { if (is.numeric(breaks) && length(breaks) > 1) hist(as.numeric(x), breaks = breaks, plot = FALSE, include.lowest = include.lowest, right = right) else hist(as.numeric(x), breaks = breaks, right = right, plot = FALSE) } lattice.extend.limits <- function (lim, length = 1, axs = "r", prop = if (axs == "i") 0 else lattice.getOption("axis.padding")$numeric) { if (all(is.na(lim))) NA_real_ else if (is.character(lim)) { c(1, length(lim)) + c(-1, 1) * if (axs == "i") 0.5 else lattice.getOption("axis.padding")$factor } else if (length(lim) == 2) { if (lim[1] > lim[2]) { ccall <- match.call() ccall$lim <- rev(lim) ans <- eval.parent(ccall) return(rev(ans)) } if (!missing(length) && !missing(prop)) stop("'length' and 'prop' cannot both be specified") if (length <= 0) stop("'length' must be positive") if (!missing(length)) { prop <- (as.numeric(length) - as.numeric(diff(lim)))/(2 * as.numeric(diff(lim))) } if (lim[1] == lim[2]) lim + 0.5 * c(-length, length) else { d <- diff(as.numeric(lim)) lim + prop * d * c(-1, 1) } } else { print(lim) stop("improper length of 'lim'") } } lattice.chooseFace <- function (fontface = NULL, font = 1) { if (is.null(fontface)) font else fontface } lattice.lattice.getStatus <- function (name, prefix = NULL) { .LatticeEnv <- get(".LatticeEnv", envir=environment(lattice.options)) if (is.null(prefix)) get("lattice.status", envir = .LatticeEnv)[[name]] else get("lattice.status", envir = .LatticeEnv)[[prefix]][[name]] }
corrRect = function(corrRes = NULL, index = NULL, name = NULL, namesMat = NULL, col = 'black', lwd = 2, ...) { if((as.integer(!is.null(index)) + as.integer(!is.null(name)) + as.integer(!is.null(namesMat))) > 1) { stop('You should just input one of index, name and namesMat!') } if(is.null(corrRes)|!is.list(corrRes)) { stop('List \'corrRes\' must be inputted!') } corr = corrRes$corr corrPos = corrRes$corrPos type = corrRes$arg$type cName = colnames(corr) rName = rownames(corr) if(!is.null(name)) { if(any(cName != rName)) { stop('colnames and rownames must be same when index or name is inputted!') } if(!all(name %in% cName)) { stop('Non-existent name found!') } index = unlist(lapply(name, function(n) which(cName==n))) } if(!is.null(index)) { if(any(cName != rName)) { stop('colnames and rownames must be same when index or name is inputted!') } n = length(index) index[-n] = index[-n] - 1 x1 = index[-n] + 0.5 y1 = nrow(corr) - index[-n] + 0.5 x2 = index[-1] + 0.5 y2 = nrow(corr) - index[-1] + 0.5 St = S = cbind(c(x1, x1, x2, x2), c(y1, y1, y2, y2), c(x2, x1, x2, x1), c(y1, y2, y1, y2)) St[, 2] = abs(St[, 2] - nrow(corr) - 1) St[, 4] = abs(St[, 4] - nrow(corr) - 1) if(type=='upper') { i = which((St[, 1] - St[, 2]) > -0.1 & (St[, 3] - St[, 4]) > -0.1) S = S[i, ] } if(type=='lower') { i = which((St[, 2] - St[, 1]) > -0.1 & (St[, 4] - St[, 3]) > -0.1) S = S[i, ] } segments(S[, 1], S[, 2], S[, 3], S[, 4], col = col, lwd = lwd, ...) } if(!is.null(namesMat)) { if(is.vector(namesMat)) { namesMat = matrix(namesMat, ncol = 4, nrow = 1) } xy1 = getCharXY(namesMat[, 1:2, drop=FALSE], corrPos) xy2 = getCharXY(namesMat[, 3:4, drop=FALSE], corrPos) xy = cbind(xy1, xy2) x1 = apply(xy[, c(1, 3), drop=FALSE], 1, min) - 0.5 y1 = apply(xy[, c(2, 4), drop=FALSE], 1, min) - 0.5 x2 = apply(xy[, c(1, 3), drop=FALSE], 1, max) + 0.5 y2 = apply(xy[, c(2, 4), drop=FALSE], 1, max) + 0.5 rect(x1, y1, x2, y2, border = col, lwd = lwd, ...) } invisible(corrRes) } getCharXY = function(x, dat) { res = apply(x, 1, function(n, d=dat) d[d[, 1]==n[1]&d[, 2]==n[2], 3:4]) f = which(unlist(lapply(res, nrow))==0) if(length(f) > 0) { error = paste(toString(unique(x[f, ])), 'paired X-Y names were not found!') stop(error) } return(matrix(unlist(res), byrow = TRUE, ncol = 2)) }
lagthemats<-function(data,lag){ if (lag>0){ for (i in 1:lag){ N<-nrow(data) mats.temp<-data[-1,] laggeddata<-rbind(mats.temp,rep(NA,ncol(data))) data=laggeddata } }else if (lag==0){ laggeddata=data } laggeddata }
context("Reading from workbook is identical to reading from file") test_that("Reading from loaded workbook", { wb <- createWorkbook() for(i in 1:4) addWorksheet(wb, sprintf('Sheet %s', i)) writeData(wb, sheet = 1, x = mtcars, colNames = TRUE, rowNames = TRUE, startRow = 10, startCol = 5, borders = "all") writeData(wb, sheet = 2, x = mtcars, colNames = TRUE, rowNames = FALSE, startRow = 10, startCol = 5, borders = "rows") writeData(wb, sheet = 3, x = mtcars, colNames = FALSE, rowNames = TRUE, startRow = 2, startCol = 2, borders = "columns") writeData(wb, sheet = 4, x = mtcars, colNames = FALSE, rowNames = FALSE, startRow = 12, startCol = 1, borders = "surrounding") tempFile <- file.path(tempdir(), "temp.xlsx") saveWorkbook(wb, tempFile, overwrite = TRUE) wb <- loadWorkbook(tempFile) x <- read.xlsx(wb, 1, colNames = TRUE, rowNames = TRUE) expect_equal(object = mtcars, expected = x, check.attributes = TRUE) x <- read.xlsx(wb, sheet = 2, colNames = TRUE, rowNames = FALSE) expect_equal(object = mtcars, expected = x, check.attributes = FALSE) expect_equal(object = colnames(mtcars), expected = colnames(x), check.attributes = FALSE) x <- read.xlsx(wb, sheet = 3, colNames = FALSE, rowNames = TRUE) expect_equal(object = mtcars, expected = x, check.attributes = FALSE) expect_equal(object = rownames(mtcars), expected = rownames(x)) x <- read.xlsx(wb, sheet = 4, colNames = FALSE, rowNames = FALSE) expect_equal(object = mtcars, expected = x, check.attributes = FALSE) unlink(tempFile, recursive = TRUE, force = TRUE) })
myTarGetCampaignList <- function(auth = NULL, login = getOption('rmytarget.login'), token_path = myTarTokenPath(), request_speed = 1.2){ if (is.null(auth)) { auth <- myTarAuth(login = login, token_path = token_path) } if ( request_speed %in% c("slow", "normal", "fast")) { request_speed <- switch(EXPR = request_speed, "slow" = 2, "normal" = 1.2, "fast" = 0.8) } limit <- 50 offset <- 0 count <- NULL result <- list() packageStartupMessage("Loading |",appendLF = F) while ( is.null(count) || count > offset ) { camp <- GET(stringr::str_interp("${getOption('rmytarget.url')}api/v2/campaigns.json?fields=id,name,status,mixing,created,date_start,date_end,utm&limit=${limit}&offset=${offset}"),add_headers(Authorization = paste0("Bearer ",auth$access_token))) stop_for_status(camp) campRaw <- content(camp, "parsed", "application/json") if ( ! myTarCheckLimits(campRaw) ) stop("Limit error") result <- append(result, campRaw$items) packageStartupMessage("=",appendLF = F) Sys.sleep(request_speed) count <- campRaw$count offset <- offset + limit } campList <- map_df(result, flatten) packageStartupMessage("| Done",appendLF = T) return(campList) }
setConstructorS3("MatSmoothing", function(..., design=NULL, probeWindow=300, nProbes=10, meanTrim=0.1) { if (!is.null(design)) { if (!is.matrix(design)) { throw("Argument 'design' is not a matrix: ", class(design)[1]) } probeWindow <- Arguments$getNumeric(probeWindow, range=c(0,Inf)) nProbes <- Arguments$getInteger(nProbes, range=c(1,Inf)) meanTrim <- Arguments$getNumeric(meanTrim, range=c(0,0.5)) } this <- extend(ProbeLevelTransform(...), "MatSmoothing", .design = design, .probeWindow = probeWindow, .nProbes = nProbes, .meanTrim = meanTrim ) ds <- getInputDataSet(this) if (!is.null(ds)) { nbrOfFiles <- length(ds) design <- this$.design dim <- dim(design) if (dim[1] != nbrOfFiles) { throw("The number of rows in the 'design' matrix, does not match the number of arrays in the input data set: ", dim[1], " != ", nbrOfFiles) } for (cc in seq_len(ncol(design))) { if (!any(design[,cc] != 0)) { throw("Column } } outputNames <- colnames(design) if (is.null(outputNames)) { throw("Matrix 'design' does not have column names.") } outputNames <- Arguments$getCharacters(outputNames) if (any(duplicated(outputNames))) { throw("Argument 'design' contains duplicated column names: ", paste(outputNames[duplicated(outputNames)]), collapse=", ") } fullnames <- lapply(outputNames, FUN=function(fullname) { Arguments$getFilename(fullname) }) } this }) setMethodS3("getAromaCellPositionFile", "MatSmoothing", function(this, ..., force=FALSE) { acp <- this$.acp if (force || is.null(acp)) { dataSet <- getInputDataSet(this) cdf <- getCdf(dataSet) chipType <- getChipType(cdf, fullname=FALSE) nbrOfCells <- nbrOfCells(cdf) acp <- AromaCellPositionFile$byChipType(chipType, nbrOfCells=nbrOfCells, ...) this$.acp <- acp } acp }, protected=TRUE) setMethodS3("getParameters", "MatSmoothing", function(this, ...) { params <- NextMethod("getParameters") params2 <- list( design = this$.design, probeWindow = this$.probeWindow, nProbes = this$.nProbes, meanTrim = this$.meanTrim ) params <- c(params, params2) params }, protected=TRUE) setMethodS3("getExpectedOutputFullnames", "MatSmoothing", function(this, ..., verbose=FALSE) { verbose <- Arguments$getVerbose(verbose) if (verbose) { pushState(verbose) on.exit(popState(verbose)) } verbose && enter(verbose, "Match to the column names of the design matrix") params <- getParameters(this) design <- params$design verbose && cat(verbose, "Expected result names:") fullnames <- colnames(design) verbose && str(verbose, fullnames) stopifnot(!is.null(fullnames)) verbose && exit(verbose) fullnames }, protected=TRUE) setMethodS3("process", "MatSmoothing", function(this, ..., units=NULL, force=FALSE, verbose=FALSE) { requireNamespace("gsmoothr") || throw("Package not loaded: gsmoothr") tmeanC <- gsmoothr::tmeanC gsmoothr_tmeanC <- gsmoothr::tmeanC calcSmoothed <- function(posVector, dataMatrix, probeWindow, nProbes, meanTrim) { nc <- ncol(dataMatrix) posM <- matrix(posVector, nrow=length(posVector), ncol=nc) o <- order(posM); smoothedScore <- gsmoothr_tmeanC(posM[o], dataMatrix[o], probeWindow=probeWindow, nProbes=nProbes*nc, trim=meanTrim) subsetInd <- seq(from=1, to=length(o), by=nc) return(smoothedScore[subsetInd]) } calcNullDist0 <- function(ch, ps, x) { MIN <- -999999 y <- rep(MIN, times=length(x)) n <- length(ch) indices <- split(seq_len(n), ch) nChr <- length(indices) count <- 0 for (ii in seq_len(nChr)) { ind <- indices[[ii]] nInd <- length(ind) pos <- ind[1] for (jj in seq_len(nInd)) { pp <- ps[ ind[jj] ] if ( (pp-pos) > (probeWindow*2) ) { count <- count + 1 y[count] <- x[ ind[jj] ] pos <- pp } } } y <- y[y > MIN] md <- median(y) y <- y[y <= md] list( m=md, sd = sd( c(y,-y+2*md) ) ) } calcNullDist <- function(chr, pos, x) { dblProbeWindow <- 2*probeWindow n <- length(chr) indices <- split(seq_len(n), chr) nbrOfChromosomes <- length(indices) yList <- list() for (ii in seq_len(nbrOfChromosomes)) { ind <- indices[[ii]] nInd <- length(ind) posII <- pos[ind] xII <- x[ind] o <- order(posII) posII <- posII[o] xII <- xII[o] yII <- rep(-Inf, times=nInd) lastPos <- posII[1] for (jj in seq_len(nInd)) { posJJ <- posII[jj] if (posJJ-lastPos > dblProbeWindow) { yII[jj] <- xII[jj] lastPos <- posJJ } } yList[[ii]] <- yII } y <- unlist(yList, use.names=FALSE) y <- y[y > -Inf] md <- median(y) y <- y[y <= md] list(m=md, sd=sd(c(y,-y+2*md))) } calcNullDists <- function(chr, pos, X) { dblProbeWindow <- 2*probeWindow K <- ncol(X) names <- colnames(X) n <- length(chr) idxList <- split(seq_len(n), chr) YList <- list() for (ii in seq_along(idxList)) { idxs <- idxList[[ii]] posII <- pos[idxs] o <- order(posII) idxs <- idxs[o] posII <- posII[o] XII <- X[idxs,,drop=FALSE] J <- length(idxs) YII <- matrix(-Inf, nrow=J, ncol=K) lastPos <- posII[1] for (jj in seq_len(J)) { posJJ <- posII[jj] if (posJJ-lastPos > dblProbeWindow) { YII[jj,] <- XII[jj,] lastPos <- posJJ } } YList[[ii]] <- YII } m <- sd <- double(K) names(m) <- names(sd) <- names res <- list() for (kk in seq_len(K)) { yList <- lapply(YList, FUN=function(Y) Y[,kk, drop=TRUE]) y <- unlist(yList, use.names=FALSE) y <- y[y > -Inf] m[kk] <- median(y, na.rm=TRUE) y <- y[y <= m[kk]] sd[kk] <- sd(c(y,-y+2*m[kk]), na.rm=TRUE) } list(m=m, sd=sd) } if (!is.null(units)) { units <- Arguments$getIndices(units, max=nbrOfUnits(cdf)) } verbose <- Arguments$getVerbose(verbose) if (verbose) { pushState(verbose) on.exit(popState(verbose)) } verbose && enter(verbose, "MAT smoothing according to design matrix") if (!force && isDone(this)) { verbose && cat(verbose, "Already smoothed") verbose && exit(verbose) outputDataSet <- getOutputDataSet(this) return(invisible(outputDataSet)) } ds <- getInputDataSet(this) outputPath <- getPath(this) cdf <- getCdf(ds) if (is.null(units)) { units <- seq_len(nbrOfUnits(cdf)) } verbose && enter(verbose, "Locating probe position data") acp <- getAromaCellPositionFile(this, verbose=less(verbose, 5)) verbose && exit(verbose) params <- getParameters(this, verbose=less(verbose, 50)) probeWindow <- params$probeWindow design <- params$design nProbes <- params$nProbes meanTrim <- params$meanTrim params <- NULL nbrGroupsPerUnit <- nbrOfGroupsPerUnit(cdf) stopifnot(all(nbrGroupsPerUnit == 1)) verbose && enter(verbose, "Loading cell PM indices structured according to the CDF") cdfCellsList <- getCellIndices(cdf, units=units, stratifyBy="pm") unitNames <- names(cdfCellsList) names(cdfCellsList) <- NULL verbose && exit(verbose) cellsList <- lapply(cdfCellsList, FUN=function(unit) { unit$groups[[1]]$indices }) nRows <- sapply(cellsList, FUN=length) allInds <- unlist(cellsList, use.names=FALSE) nbrOfUnits <- length(units) fullnamesOut <- colnames(design) stopifnot(!is.null(fullnamesOut)) verbose && cat(verbose, "Result/output names:") verbose && str(verbose, fullnamesOut) verbose && enter(verbose, "Preloading genomic positions for all cells") acpData <- acp[,1:2,drop=FALSE] verbose && exit(verbose) for (ii in seq_len(ncol(design))) { fullname <- fullnamesOut[ii] verbose && enter(verbose, sprintf("Result file ii, fullname, ncol(design))) filename <- sprintf("%s.CEL", fullname) pathname <- Arguments$getWritablePathname(filename, path=outputPath, ...) if (!force && isFile(pathname)) { verbose && cat(verbose, "Already processed.") verbose && exit(verbose) next } isFile <- (force && isFile(pathname)) pathnameT <- pushTemporaryFile(pathname, isFile=isFile, verbose=verbose) matScoreNeg <- matScorePos <- outputList <- vector("list", nbrOfUnits) names(outputList) <- unitNames sampsKeep <- which(design[,ii] != 0) stopifnot(length(sampsKeep) > 0) posOrNeg <- design[sampsKeep,ii] verbose && enter(verbose, "Reading probe data for the samples needed") dsII <- extract(ds, sampsKeep) dataList <- readUnits(dsII, units=cdfCellsList, verbose=verbose) dsII <- NULL verbose && exit(verbose) dataList <- lapply(dataList, FUN=function(u) { matrix(log2(u[[1]]$intensities), ncol=length(sampsKeep)) }) verbose && enter(verbose, "Computing trimmed means for all units") for (jj in seq_len(nbrOfUnits)) { if (is.null(outputList[[jj]])) { zeroes <- rep(0, times=nRows[jj]) matScorePos[[jj]] <- zeroes matScoreNeg[[jj]] <- zeroes outputList[[jj]] <- zeroes } if (jj %% 1000 == 0) { verbose && cat(verbose, sprintf("Completed %d out of %d units...", jj, nbrOfUnits)) } sampPos <- which(posOrNeg > 0) sampNeg <- which(posOrNeg < 0) nPos <- length(sampPos) nNeg <- length(sampNeg) cells <- cellsList[[jj]] pos <- acpData[cells,2,drop=TRUE] if (nPos > 0) { matScorePos[[jj]] <- calcSmoothed(pos, dataList[[jj]][,sampPos,drop=FALSE], probeWindow=probeWindow, nProbes=nProbes, meanTrim=meanTrim) } if (nNeg > 0) { matScoreNeg[[jj]] <- calcSmoothed(pos, dataList[[jj]][,sampNeg,drop=FALSE], probeWindow=probeWindow, nProbes=nProbes, meanTrim=meanTrim) } } dataList <- NULL verbose && exit(verbose) matScorePos <- unlist(matScorePos, use.names=FALSE) matScoreNeg <- unlist(matScoreNeg, use.names=FALSE) if (length(sampNeg) > 0) { verbose && enter(verbose, "Calculating scale factor via null distributions") verbose && enter(verbose, "Gathering common info for calculating null distributions") chr <- acpData[allInds,1,drop=TRUE] pos <- acpData[allInds,2,drop=TRUE] verbose && exit(verbose) verbose && enter(verbose, "Calculating null distributions for controls and treatments in parallel") nullX <- cbind(neg=matScoreNeg, pos=matScorePos) nullDists <- calcNullDists(chr, pos, nullX) chr <- pos <- nullX <- NULL verbose && str(verbose, nullDists) verbose && exit(verbose) scaleFactor <- nullDists$sd["pos"] / nullDists$sd["neg"] verbose && printf(verbose, "Scale factor: %.4g\n", scaleFactor) stopifnot(is.finite(scaleFactor)) nullDists <- NULL verbose && exit(verbose) } else { scaleFactor <- 1 } verbose && enter(verbose, "Calculating MAT scores (on intensity scale)") matScores <- matScorePos - scaleFactor*matScoreNeg matScoreNeg <- matScorePos <- NULL matScores <- 2^matScores verbose && str(verbose, matScores) verbose && summary(verbose, matScores) verbose && exit(verbose) stopifnot(length(matScores) == length(allInds)) verbose && enter(verbose, "Storing results") pathnameT <- Arguments$getWritablePathname(pathnameT, mustNotExist=!force) verbose && enter(verbose, "Creating CEL file for results, if missing") df <- getOneFile(ds) createFrom(df, filename=pathnameT, path=NULL, verbose=less(verbose)) verbose && exit(verbose) verbose && enter(verbose, "Updating data file") verbose2 <- isVisible(verbose, -50) .updateCel(pathnameT, indices=allInds, intensities=matScores, verbose=verbose2) verbose && exit(verbose) popTemporaryFile(pathnameT, verbose=verbose) dfZ <- getChecksumFile(pathname) filename <- pathnameT <- NULL verbose && exit(verbose) matScores <- NULL gc <- gc() verbose && print(verbose, gc) verbose && exit(verbose) } cellsList <- allInds <- acpData <- NULL outputDataSet <- getOutputDataSet(this, force=TRUE) stopifnot(length(outputDataSet) == ncol(design)) verbose && exit(verbose) invisible(outputDataSet) })
removeMultiArcs <- function(arcs, directed = TRUE) { new.arcs <- matrix(ncol = 3)[-1, ] i <- 1 if (directed) { while (nrow(arcs) > 0) { arc <- arcs[i, ] if (any(arc[1] == arcs[-i, 1] & arc[2] == arcs[-i, 2])) { coincidence <- which(arc[1] == arcs[, 1] & arc[2] == arcs[, 2]) coincidence.arcs <- arcs[coincidence, ] k <- which(coincidence.arcs[, 3] == min(coincidence.arcs[, 3]))[1] min.arc <- coincidence.arcs[k, ] new.arcs <- rbind(new.arcs, min.arc) arcs <- matrix(arcs[-coincidence, ], ncol = 3) } else { new.arcs <- rbind(new.arcs, arc) arcs <- matrix(arcs[-i, ], ncol = 3) } } colnames(new.arcs) <- c("head", "tail", "weight") } else { while (nrow(arcs) > 0) { arc <- arcs[i, ] if (any(arc[1] == arcs[-i, 1] & arc[2] == arcs[-i, 2]) | any(arc[1] == arcs[-i, 2] & arc[2] == arcs[-i, 1])) { coincidence <- which(arc[1] == arcs[, 1] & arc[2] == arcs[, 2] | arc[1] == arcs[, 2] & arc[2] == arcs[, 1]) coincidence.arcs <- arcs[coincidence, ] k <- which(coincidence.arcs[, 3] == min(coincidence.arcs[, 3]))[1] min.arc <- coincidence.arcs[k, ] new.arcs <- rbind(new.arcs, min.arc) arcs <- matrix(arcs[-coincidence, ], ncol = 3) } else { new.arcs <- rbind(new.arcs, arc) arcs <- matrix(arcs[-i, ], ncol = 3) } } colnames(new.arcs) <- c("ept1", "ept2", "weight") } rownames(new.arcs) <- NULL return(new.arcs) }
mnlfa_mstep_item_loglike_2pl_update_parameters <- function(y, y_resp, theta, parms, Xdes_int, Xdes_slo, post, b_index, a_index, parms_indices, h, N_item, regular_type, regular_lam, center_group_parms, eps=1E-15, L_max=.25 ) { res <- mnlfa_mstep_item_loglike_2pl_deriv( y=y, y_resp=y_resp, theta=theta, parms=parms, Xdes_int=Xdes_int, Xdes_slo=Xdes_slo, post=post, b_index=b_index, a_index=a_index, parms_indices=parms_indices, h=h, N_item=N_item, eps=eps ) incr <- res$incr L <- max( res$D2_max, L_max) ll <- res$ll parms[ parms_indices ] <- parms[ parms_indices ] + incr parms <- mnlfa_parameter_regularization( parms=parms, parms_indices=parms_indices, L=L, regular_type=regular_type, regular_lam=regular_lam, regular_tau=NULL, regular_alpha=NULL, center_group_parms=center_group_parms ) res <- list( parms=parms, ll=ll) return(res) }
allele.name <- function(x,nr=1) { lx <- length(x) vec <- NULL for (i in 1:lx) { fa <- substr(x[i],nr,nr) vec <- c(vec,fa) } return(vec) }
if(all(sapply(c("testthat", "glmnet", "cvAUC", "rpart", "quadprog", "nloptr"), requireNamespace))){ testthat::context("Meta methods") set.seed(1) N <- 200 X <- matrix(rnorm(N * 6), N, 6) X <- as.data.frame(X) Y <- rbinom(N, 1, plogis(.2*X[, 1] + .1*X[, 2] + 2*X[, 3] + .1*X[, 3]*X[, 4] - .2*abs(X[, 4]))) table(Y) SL.library <- c("SL.rpart", "SL.glmnet", "SL.mean") test.NNLS <- SuperLearner(Y = Y, X = X, SL.library = SL.library, verbose = F, cvControl = list(V = 2), method = "method.NNLS", family = binomial()) print(test.NNLS) testthat::expect_gte(min(test.NNLS$SL.predict), 0) testthat::expect_lte(max(test.NNLS$SL.predict), 1) pred = predict(test.NNLS) summary(pred$pred) testthat::expect_gte(min(pred$pred), 0) testthat::expect_lte(max(pred$pred), 1) SL.bad_algorithm = function(Y, X, newX, ...) { stop("bad algorithm") } sl_bad <- SuperLearner(Y = Y, X = X, verbose = T, SL.library = c(SL.library, "SL.bad_algorithm"), cvControl = list(V = 2), method = "method.NNLS", family = binomial()) print(sl_bad) testthat::expect_gte(min(sl_bad$SL.predict), 0) testthat::expect_lte(max(sl_bad$SL.predict), 1) pred = predict(sl_bad) summary(pred$pred) testthat::expect_gte(min(pred$pred), 0) testthat::expect_lte(max(pred$pred), 1) rm(sl_bad) test.NNLS2 <- SuperLearner(Y = Y, X = X, SL.library = SL.library, verbose = F, cvControl = list(V = 2), method = "method.NNLS2", family = binomial()) print(test.NNLS2) testthat::expect_gte(min(test.NNLS2$SL.predict), 0) testthat::expect_lte(max(test.NNLS2$SL.predict), 1) if (FALSE) { sl_bad <- SuperLearner(Y = Y, X = X, verbose = T, SL.library = c(SL.library, "SL.bad_algorithm"), cvControl = list(V = 2), method = "method.NNLS2", family = binomial()) print(sl_bad) testthat::expect_gte(min(sl_bad$SL.predict), 0) testthat::expect_lte(max(sl_bad$SL.predict), 1) pred = predict(sl_bad) summary(pred$pred) testthat::expect_gte(min(pred$pred), 0) testthat::expect_lte(max(pred$pred), 1) rm(sl_bad) } test.NNloglik <- SuperLearner(Y = Y, X = X, SL.library = SL.library, verbose = F, cvControl = list(V = 2), method = "method.NNloglik", family = binomial()) print(test.NNloglik) testthat::expect_gte(min(test.NNloglik$SL.predict), 0) testthat::expect_lte(max(test.NNloglik$SL.predict), 1) sl_bad <- SuperLearner(Y = Y, X = X, verbose = T, SL.library = c(SL.library, "SL.bad_algorithm"), cvControl = list(V = 2), method = "method.NNloglik", family = binomial()) print(sl_bad) summary(sl_bad$SL.predict) testthat::expect_gte(min(sl_bad$SL.predict), 0) testthat::expect_lte(max(sl_bad$SL.predict), 1) pred = predict(sl_bad) summary(pred$pred) testthat::expect_gte(min(pred$pred), 0) testthat::expect_lte(max(pred$pred), 1) rm(sl_bad) test.CC_LS <- SuperLearner(Y = Y, X = X, SL.library = SL.library, verbose = F, cvControl = list(V = 2), method = "method.CC_LS", family = binomial()) print(test.CC_LS) testthat::expect_gte(min(test.CC_LS$SL.predict), 0) testthat::expect_lte(max(test.CC_LS$SL.predict), 1) if (FALSE) { sl_bad <- SuperLearner(Y = Y, X = X, verbose = T, SL.library = c(SL.library, "SL.bad_algorithm"), cvControl = list(V = 2), method = "method.CC_LS", family = binomial()) print(sl_bad) summary(sl_bad$SL.predict) testthat::expect_gte(min(sl_bad$SL.predict), 0) testthat::expect_lte(max(sl_bad$SL.predict), 1) pred = predict(sl_bad) summary(pred$pred) testthat::expect_gte(min(pred$pred), 0) testthat::expect_lte(max(pred$pred), 1) rm(sl_bad) } test.CC_nloglik <- SuperLearner(Y = Y, X = X, SL.library = SL.library, verbose = F, cvControl = list(V = 2), method = "method.CC_nloglik", family = binomial()) print(test.CC_nloglik) testthat::expect_gte(min(test.CC_nloglik$SL.predict), 0) testthat::expect_lte(max(test.CC_nloglik$SL.predict), 1) sl_bad <- SuperLearner(Y = Y, X = X, verbose = T, SL.library = c(SL.library, "SL.bad_algorithm"), cvControl = list(V = 2), method = "method.CC_nloglik", family = binomial()) print(sl_bad) summary(sl_bad$SL.predict) testthat::expect_gte(min(sl_bad$SL.predict), 0) testthat::expect_lte(max(sl_bad$SL.predict), 1) pred = predict(sl_bad) summary(pred$pred) testthat::expect_gte(min(pred$pred), 0) testthat::expect_lte(max(pred$pred), 1) rm(sl_bad) test.AUC <- SuperLearner(Y = Y, X = X, SL.library = SL.library, verbose = FALSE, cvControl = list(V = 2), method = "method.AUC", family = binomial()) print(test.AUC) testthat::expect_gte(min(test.AUC$SL.predict), 0) testthat::expect_lte(max(test.AUC$SL.predict), 1) sl_bad <- SuperLearner(Y = Y, X = X, verbose = TRUE, SL.library = c(SL.library, "SL.bad_algorithm"), cvControl = list(V = 2), method = "method.AUC", family = binomial()) print(sl_bad) summary(sl_bad$SL.predict) testthat::expect_gte(min(sl_bad$SL.predict), 0) testthat::expect_lte(max(sl_bad$SL.predict), 1) pred = predict(sl_bad) summary(pred$pred) testthat::expect_gte(min(pred$pred), 0) testthat::expect_lte(max(pred$pred), 1) rm(sl_bad) }
mail_merge <- function(data, message, to_col = "email", send = c("preview", "draft", "immediately"), confirm = FALSE, sleep_preview = 1, sleep_send = 0.1 ){ send <- match.arg(send) preview <- identical(send, "preview") draft <- identical(send, "draft") if (send != "preview" && !gmailr::gm_has_token()) { stop( "You must authenticate with gmailr first. Use `gmailr::gm_auth()", call. = FALSE ) } if(nrow(data) == 0) { warning("nothing to email") return(invisible(data)) } if(is.null(data[[to_col]])) { stop("'data' must contain an 'email' column, or specify a 'to_col'") } msg <- mm_read_message(message) if(!preview && !confirm) { confirm_msg <- paste0("Send ", nrow(data), " emails (", send, ")?") cat(confirm_msg) if (yesno()) { return(invisible()) } } z <- data %>% purrr::pmap(list) %>% purrr::map(function(x) { glued_data <- glue_mail(x, msg) args <- list( to = x[[to_col]], body = glued_data[["body"]], subject = glued_data[["subject"]], cc = glued_data[["cc"]] ) if (preview) { do.call(mm_preview_mail, args) } else { Sys.sleep(sleep_send) args <- append(args, list(draft = draft)) if (draft) { do.call(mm_send_draft, args) } else { do.call(mm_send_mail, args) } } }) if (preview) { base::message("Sent preview to viewer") class(z) <- "mailmerge_preview" attr(z, "sleep") <- sleep_preview } else { n_messages <- vapply(z, function(x) isTRUE(x$success), FUN.VALUE = logical(1)) %>% sum() if (draft) { base::message("Sent ", n_messages, " messages to your draft folder") } else { base::message("Sent ", n_messages, " messages to email") } } z } print.mailmerge_preview <- function(x, ...) { purrr::walk(x, function(xx){ in_viewer(xx) Sys.sleep(attr(x, "sleep")) } ) }
options(expressions = 5e+05) preaverage <- function(X, scal = 3) { if (!(is.numeric(X))) { stop("The input in `X' should be a numeric matrix which has at each column the time series that we want to pre-average.") } if ((scal <= 0)) { stop("The scaling constant which is used to define the way we preaverage the data should be a positive number.") } if (abs(scal - round(scal)) > .Machine$double.eps^0.5) { warning("The input for `scal' should be a positive integer. If it is a positive real number then the integer part of the given number is used as the value of `scal'.") } scal <- as.integer(scal) l <- nrow(X) d <- ncol(X) l1 <- ceiling(l / scal) res <- matrix(NA, l1, d) if (l1 == 1) { res <- apply(X[((l1 - 1) * scal + 1):l, , drop = FALSE], 2, mean) } else { for (i in 1:(l1 - 1)) { res[i, ] <- apply(X[((i - 1) * scal + 1):(i * scal), , drop = FALSE], 2, mean) } res[l1, ] <- apply(X[((l1 - 1) * scal + 1):l, , drop = FALSE], 2, mean) } return(res) } match.cpt.ts <- function(X, cpt, thr_const = 1, thr_fin = thr_const * sqrt(2 * log(nrow(X))), scales = -1, count = 5) { if (missing(cpt)) { cpt <- thr_L2(X) } lsc <- length(scales) s_cpt <- sort(cpt) lx <- nrow(X) lc <- ncol(X) lc_i <- lc /lsc count <- min(lc_i, count) pdim <- (- lsc + sqrt((lsc^2) + 8 * lc * lsc)) /( 2 * lsc) if (round(pdim) != pdim){ stop("The input in X of the function match.cpt.ts does not seem to be the result of a wavelet transformation on the original time series since the dimensionality does not match") } lcpt <- length(cpt) if (lcpt == 0){ return(list(time_series_indicator = "Matching the time series with the change-points is not possible when no change-points are given.")) } else{ seb_set <- c(1, s_cpt, lx) lseb_set <- length(seb_set) Res <- list() Res$matches <- list() Res$most.important <- list() for (j in 1:lsc){ Res$matches[[j]] <- list() Res$most.important[[j]] <- list() CS <- matrix(NA, lc_i, lcpt) ts1 <- matrix(0, lc_i, 2*lcpt) ts1[,seq(1, 2*lcpt, 2)] <- seq(1:(lc_i)) X_temp <- X[,((j-1)*lc_i + 1) : (j*lc_i)] for (i in 1:lc_i) { CS[i, ] <- cusum_one_multi(X_temp[,i], seb_set[1:(lseb_set - 2)], seb_set[3:(lseb_set)], seb_set[2:(lseb_set - 1)]) } ts1[, seq(2,2*lcpt,2)] <- CS[, 1:lcpt] ord <- list() for(i in 1:lcpt){ ord[[i]] <- order(CS[,i], decreasing=T) ts1[,(2*i - 1):(2*i)] <- ts1[ord[[i]],(2*i - 1):(2*i)] } indic2 <- integer() for (i in 1:(lcpt)) { indic2[i] <- which(ts1[,2*i] <= thr_fin)[1] } mind <- max(indic2) if (is.na(mind)){ ts <- ts1[1:(lc_i), ,drop = FALSE] } else{ if (mind == 1){ ts <- matrix(0,0,2*lcpt) } else{ ts <- ts1[1:(mind - 1), ,drop = FALSE] } } res <- list() A <- matrix(0, pdim, pdim) gdata::upperTriangle(A, diag = TRUE, byrow = T) <- 1:lc_i B <- list() B$matches <- list() for (i in 1:lcpt){ res[[i]] <- list() res[[i]] <- ts[which(ts[,2*i] != 0),(2*i - 1)] M_temp <- matrix(0,count,2) for(k in 1:count){ M_temp[k,] <- which(A == ts1[k,(2*i -1)], arr.ind = TRUE) } M_temp <- cbind(M_temp,ts1[1:count,(2*i)]) B$most.important[[i]] <- M_temp if (length(res[[i]]) == 0) { B$matches[[i]] <- matrix(0,0,2) } else{ B$matches[[i]] <- matrix(0,length(res[[i]]),2) for(k in 1:length(res[[i]])){ B$matches[[i]][k,] <- which(A == res[[i]][k], arr.ind = TRUE) } } } Res$matches[[j]] <- B$matches Res$most.important[[j]] <- B$most.important } Res_fin <- list() Res_fin$matches <- list() Res_fin$most.important <- list() for (i in 1:lcpt){ Res_fin$matches[[i]] <- matrix(0,1,2) Res_fin$most.important[[i]] <- matrix(0,1,3) for (j in 1:lsc){ Res_fin$matches[[i]] <- rbind(Res_fin$matches[[i]], Res$matches[[j]][[i]]) Res_fin$most.important[[i]] <- rbind(Res_fin$most.important[[i]], Res$most.important[[j]][[i]]) } Res_fin$matches[[i]] <- Res_fin$matches[[i]][-1,] Res_fin$most.important[[i]] <- Res_fin$most.important[[i]][-1,] Res_fin$matches[[i]] <- unique(Res_fin$matches[[i]]) ord.temp <- order(Res_fin$most.important[[i]][,3], decreasing=T) Res_fin$most.important[[i]] <- unique(Res_fin$most.important[[i]][ord.temp,1:2]) Res_fin$most.important[[i]] <- Res_fin$most.important[[i]][1:count,] } return(list(time_series_indicator = Res_fin$matches, most_important = Res_fin$most.important)) } } detect.th <- function(X, approach = c("euclidean", "infinity"), th_max = 2.25, th_sum = 0.65, pointsgen = 10, scales = -1, preaverage_gen = FALSE, scal_gen = 3, min_dist = 1) { approach = as.character(approach) sgn <- sign(stats::cor(X)) if (!is.null(scales)) { stopifnot(sum(scales < 0) == length(scales)) scales <- sort(scales, decreasing = TRUE) } if (ncol(X) <= 4) { approach[1] <- "infinity" } input <- t(hdbinseg::gen.input(t(X), scales, TRUE, diag = FALSE, sgn)) if (approach[1] == "infinity") { cpt <- cpt_ts_Linf(input, thr_const_m = th_max, points_m = pointsgen, preproc = preaverage_gen, scl = scal_gen, scale = scales) } else { cpt <- cpt_ts_L2(input, thr_const_s = th_sum, points_s = pointsgen, preproc = preaverage_gen, scl = scal_gen, scale = scales) } no.of.cpt <- length(cpt$changepoints) d_cpt <- diff(cpt$changepoints) if ((min_dist <= 1) | (no.of.cpt <= 1) | (all(d_cpt > min_dist))) { return(list(changepoints = cpt$changepoints, no.of.cpts = no.of.cpt, time_series = cpt$time_series)) } else { return(prune_cpt(input, cpts = cpt$changepoints, distance = min_dist)) } } detect.ic <- function(X, approach = c("euclidean", "infinity"), th_max = 2.1, th_sum = 0.5, pointsgen = 10, scales = -1, alpha_gen = 0.1, preaverage_gen = FALSE, scal_gen = 3, min_dist = 1) { if (!(is.numeric(X))) { stop("The input in `X' should be a numeric matrix.") } sgn <- sign(stats::cor(X)) if (!is.null(scales)) { stopifnot(sum(scales < 0) == length(scales)) scales <- sort(scales, decreasing = TRUE) } if (ncol(X) <= 4) { approach[1] <- "infinity" } input <- t(hdbinseg::gen.input(t(X), scales, TRUE, diag = FALSE, sgn)) input <- input + 10 ^ (-100) if (approach[1] == "infinity") { cpt <- ic_Linf(input, th_const = th_max, points = pointsgen, alpha = alpha_gen, preproc = preaverage_gen, scl = scal_gen) } else { cpt <- ic_L2(input, th_const = th_sum, points = pointsgen, alpha = alpha_gen, preproc = preaverage_gen, scl = scal_gen) } no.of.cpt <- cpt$no.of.cpts d_cpt <- diff(cpt$changepoints) if ((min_dist <= 1) | (no.of.cpt <= 1) | (all(d_cpt > min_dist))) { return(cpt) } else { return(prune_cpt(input, cpt$changepoints, distance = min_dist)) } }
sylcount <- function(s, counts.only=TRUE) { .Call(R_sylcount, s, counts.only) }
interactiveTable <- function(x, ..., txt.maxlen = 20, button = getOption("htmlTable.interactiveTable.button", default = FALSE), minimized.columns, js.scripts = c()) { UseMethod("interactiveTable") } getButtonDiv <- function(sign = "-") { template <- system.file("html_components/button.html", package = "htmlTable") if (template == "") { stop("Could not find the button template file") } template <- readChar(template, nchars = file.info(template)$size) gsub("%sign%", sign, template) %>% gsub("[\n\r]", " ", .) } interactiveTable.default <- function(x, ..., txt.maxlen = 20, button = getOption("htmlTable.interactiveTable.button", default = FALSE), minimized.columns = NULL, js.scripts = c()) { if ("data.frame" %in% class(x)) { x <- prConvertDfFactors(x) } if (!is.null(minimized.columns)) { if (is.character(minimized.columns)) { if (minimized.columns != "last") { stop( "If you want to provide a character for columns you must", " provide 'last' - '", minimized.columns, "' has not yet", " been implemented." ) } minimized.columns <- ncol(x) } else if (is.logical(minimized.columns)) { minimized.columns <- which(minimized.columns) } else if (!is.numeric(minimized.columns)) { stop("Expecting the minimized columns to either be numbers or logical parameters") } else if (max(minimized.columns) > ncol(x)) { stop( "You can't minimize columns larger than the number of columns available.", "I.e. ", paste(minimized.columns[minimized.columns > ncol(x)], collapse = ", "), " > ", ncol(x) ) } if (!is.null(dim(minimized.columns))) { stop("Can only handle column vectors for minimization") } addon_elements <- paste( "... ", "<span class='hidden' style='display: none'>%span_inner_text%</span>" ) if (button) { addon_elements <- paste( addon_elements, getButtonDiv("+") ) } for (col_no in minimized.columns) { for (row_no in 1:nrow(x)) { if (nchar(x[row_no, col_no]) > txt.maxlen) { x[row_no, col_no] <- paste0( substr(x[row_no, col_no], 1, txt.maxlen), gsub("%span_inner_text%", x[row_no, col_no], addon_elements) ) } } } minimized.columns <- FALSE } tbl <- htmlTable(x, escape.html = FALSE, ...) return(interactiveTable(tbl, txt.maxlen = 20, button = button, minimized.columns = minimized.columns, js.scripts = js.scripts )) } interactiveTable.htmlTable <- function(tbl, txt.maxlen = 20, button = getOption("htmlTable.interactiveTable.button", default = FALSE), minimized.columns = NULL, js.scripts = c()) { if (!is.null(minimized.columns) && all(minimized.columns != FALSE)) { stop( "Can't minimize columns after creating the htmlTable.", " Try calling the function directly with the input data that you used for htmlTable" ) } class(tbl) <- c("interactiveTable", class(tbl)) if (button) { template <- system.file("javascript/button.js", package = "htmlTable") if (template == "") { stop("Could not find the javascript button template file") } template <- readChar(template, nchars = file.info(template)$size) attr(tbl, "javascript") <- c( js.scripts, template %>% gsub("%txt.maxlen%", txt.maxlen, .) %>% gsub("%btn%", getButtonDiv(), .) ) } else { template <- system.file("javascript/toggler.js", package = "htmlTable") if (template == "") { stop("Could not find the javascript toggler template file") } template <- readChar(template, nchars = file.info(template)$size) attr(tbl, "javascript") <- c( js.scripts, template %>% gsub("%txt.maxlen%", txt.maxlen, .) ) } return(tbl) } knit_print.interactiveTable <- function(x, ...) { if (getOption("interactiveTable_knitprint", FALSE)) { asis_output(x) } else { options(interactiveTable_knitprint = TRUE) asis_output(paste( x, attr(x, "javascript") )) } } prGetScriptString <- function(x) { scripts <- attr(x, "javascript") if (is.null(scripts)) { stop("You have provided an object of class ", class(x), " that does not contain a javascript attribute") } sapply(scripts, USE.NAMES = FALSE, FUN = function(s) { if (s == "") { return("") } paste( "<script type = \"text/javascript\" language = \"javascript\">", s, "</script>" ) } ) %>% paste(collapse = "\n\n <!-- *** Next script group *** !-->\n") } print.interactiveTable <- function(x, useViewer, ...) { args <- attr(x, "...") print_args <- list(...) for (n in names(print_args)) { args[[n]] <- print_args[[n]] } if (missing(useViewer)) { if ("useViewer" %in% names(args) && (is.logical(args$useViewer) || is.function(args$useViewer))) { useViewer <- args$useViewer args$useViewer <- NULL } else { useViewer <- TRUE } } if (interactive() && !getOption("htmlTable.cat", FALSE) && (is.function(useViewer) || useViewer != FALSE)) { if (is.null(args$file)) { args$file <- tempfile(fileext = ".html") } htmlPage <- paste("<html>", "<head>", "<meta http-equiv=\"Content-type\" content=\"text/html; charset=UTF-8\">", "<script src=\"https://ajax.googleapis.com/ajax/libs/jquery/2.1.4/jquery.min.js\"></script>", "</head>", "<body>", "<div style=\"margin: 0 auto; display: table; margin-top: 1em;\">", x, "</div>", prGetScriptString(x), "</body>", "</html>", sep = "\n" ) cat_args <- args cat_args <- cat_args[names(cat_args) %in% names(formals(cat))[-1]] do.call(cat, c(htmlPage, cat_args)) if (is.function(useViewer)) { useViewer(args$file) } else { viewer <- getOption("viewer") if (!is.null(viewer) && is.function(viewer)) { viewer(args$file) } else { utils::browseURL(args$file) } } } else { cat_args <- args cat_args <- cat_args[names(cat_args) %in% names(formals(cat))[-1]] do.call(cat, c(x, cat_args)) cat(prGetScriptString(x)) } invisible(x) }
extract.local.NLDAS <- function(outfolder, in.path, start_date, end_date, lat.in, lon.in, overwrite = FALSE, verbose = FALSE, ...){ start_date <- as.POSIXlt(start_date, tz = "GMT") end_date <- as.POSIXlt(end_date, tz = "GMT") start_year <- lubridate::year(start_date) end_year <- lubridate::year(end_date) lat.in = as.numeric(lat.in) lon.in = as.numeric(lon.in) dir.create(outfolder, showWarnings=FALSE, recursive=TRUE) ylist <- seq(start_year,end_year,by=1) rows = length(ylist) results <- data.frame(file=character(rows), host=character(rows), mimetype=character(rows), formatname=character(rows), startdate=character(rows), enddate=character(rows), dbfile.name = "NLDAS", stringsAsFactors = FALSE ) var = data.frame(NLDAS.name = c("air_temperature","surface_downwelling_longwave_flux_in_air","air_pressure","downwelling_shortwave_flux_in_air","eastward_wind","northward_wind","specific_humidity","precipitation_amount"), CF.name = c("air_temperature","surface_downwelling_longwave_flux_in_air","air_pressure","surface_downwelling_shortwave_flux_in_air","eastward_wind","northward_wind","specific_humidity","precipitation_flux"), units = c('Kelvin',"W/m2","Pascal","W/m2","m/s","m/s","g/g","kg/m2/s") ) for (i in 1:rows){ y.now = ylist[i] if(rows>1 & i!=1 & i!=rows){ nday = ifelse(lubridate::leap_year(y.now), 366, 365) day1 = 1 day2 = nday days.use = day1:day2 } else if(rows==1){ nday = ifelse(lubridate::leap_year(y.now), 366, 365) day1 <- lubridate::yday(start_date) day2 <- lubridate::yday(end_date) days.use = day1:day2 nday=length(days.use) } else if(i==1) { nday = ifelse(lubridate::leap_year(y.now), 366, 365) day1 <- lubridate::yday(start_date) day2 = nday days.use = day1:day2 nday=length(days.use) } else if(i==rows) { nday = ifelse(lubridate::leap_year(y.now), 366, 365) day1 = 1 day2 <- lubridate::yday(end_date) days.use = day1:day2 nday=length(days.use) } ntime = nday*24 loc.file = file.path(outfolder, paste("NLDAS",y.now,"nc",sep=".")) dim.lat <- ncdf4::ncdim_def(name='latitude', units='degree_north', vals=lat.in, create_dimvar=TRUE) dim.lon <- ncdf4::ncdim_def(name='longitude', units='degree_east', vals=lon.in, create_dimvar=TRUE) dim.time <- ncdf4::ncdim_def(name='time', units="sec", vals=seq((min(days.use)+1-1/24)*24*360, (max(days.use)+1-1/24)*24*360, length.out=ntime), create_dimvar=TRUE, unlim=TRUE) nc.dim=list(dim.lat,dim.lon,dim.time) var.list = list() dat.list = list() for(j in 1:nrow(var)){ var.list[[j]] = ncdf4::ncvar_def(name=as.character(var$CF.name[j]), units=as.character(var$units[j]), dim=nc.dim, missval=-999, verbose=verbose) dat.list[[j]] <- array(NA, dim=c(length(lat.in), length(lon.in), ntime)) } names(var.list) <- names(dat.list) <- var$CF.name print("") print(y.now) pb <- utils::txtProgressBar(min=1, max=nday, style=3) pb.index=1 for(j in 1:length(days.use)){ utils::setTxtProgressBar(pb, pb.index) date.now <- as.Date(days.use[j], origin=as.Date(paste0(y.now-1,"-12-31"))) mo.now <- stringr::str_pad(lubridate::month(date.now), 2, pad="0") day.mo <- stringr::str_pad(lubridate::day(date.now), 2, pad="0") doy <- stringr::str_pad(days.use[j], 3, pad="0") dap_file <- ncdf4::nc_open(file.path(in.path,y.now,mo.now,paste0("NLDAS_FORA0125_H.A",y.now, mo.now,day.mo,".nc"))) lats <- ncdf4::ncvar_get(dap_file, "lat") lons <- ncdf4::ncvar_get(dap_file, "lon") x.inc <- mean(abs(diff(lons))) y.inc <- mean(abs(diff(lats))) lat.use <- which(lats-y.inc/2<=lat.in & lats+y.inc/2>=lat.in) lon.use <- which(lons-x.inc/2<=lon.in & lons+x.inc/2>=lon.in) for (v in 1:nrow(var)) { v.nldas <- paste(var$NLDAS.name[v]) v.cf <- paste(var$CF.name [v]) if(!v.nldas %in% names(dap_file$var) & v.cf %in% names(dap_file$var)) v.nldas <- v.cf if(dap_file$var[[v.nldas]]$ndims == 4){ dat.list[[v.cf]][,,(j*24-23):(j*24)] <- ncdf4::ncvar_get(dap_file, v.nldas, start=c(lon.use,lat.use,1,1), count=c(1,1,1,24) ) } else { dat.list[[v.cf]][,,(j*24-23):(j*24)] <- ncdf4::ncvar_get(dap_file, v.nldas, start=c(lon.use,lat.use,1), count=c(1,1,24) ) } } ncdf4::nc_close(dap_file) pb.index=pb.index+1 } dat.list[["precipitation_flux"]] = dat.list[["precipitation_flux"]]/(60*60) loc <- ncdf4::nc_create(filename=loc.file, vars=var.list, verbose=verbose) for(j in 1:nrow(var)){ ncdf4::ncvar_put(nc=loc, varid=as.character(var$CF.name[j]), vals=dat.list[[j]]) } ncdf4::nc_close(loc) results$file[i] <- loc.file results$startdate[i] <- paste0(as.Date(paste(y.now, day1, sep="-"), format = "%Y-%j"), " 00:00:00") results$enddate[i] <- paste0(as.Date(paste(y.now, day2, sep="-"), format = "%Y-%j"), " 00:00:00") results$mimetype[i] <- 'application/x-netcdf' results$formatname[i] <- 'CF Meteorology' } }
context("to_epochtime") test_that("to_epochtime with numeric works", { expect_equal(to_epochtime(1496587909), 1496587909L) expect_equal(to_epochtime(1496587909L), 1496587909L) }) test_that("to_epochtime with POSIXct and POSIXlt works", { x <- structure(1496587909, class = c("POSIXct", "POSIXt"), tzone = "UTC") expect_equal(to_epochtime(x), 1496587909L) x <- as.POSIXct(x) expect_equal(to_epochtime(x), 1496587909L) }) test_that("to_epochtime with Date works", { x <- as.Date("2017-06-04", "%Y-%m-%d", tz = "UTC") expect_equal(to_epochtime(x), 1496534400L) }) test_that("to_epochtime with character works", { testthat::skip_if_not(Sys.timezone() == "Asia/Tokyo") x <- "1970-01-01" y <- as.integer(lubridate::ymd(x, tz = Sys.timezone())) expect_equal(to_epochtime(x), to_epochtime(y)) x2 <- "1970-01-01 00:00:00" expect_equal(to_epochtime(x), to_epochtime(x2)) }) test_that("to_epochtime with NULL throws error", { expect_error(to_epochtime(NULL)) }) test_that("to_epochtime with elements more than 1 length throws error", { expect_error(to_epochtime(1:2)) })
FKM.pf.noise <- function (X, k, b, delta, RS, stand, startU, index,alpha,conv, maxit, seed = NULL) { if (missing(X)) stop("The data set must be given") if (is.null(X)) stop("The data set X is empty") X=data.matrix(X) n=nrow(X) p=ncol(X) if(p==1){ stop("Dataset X must contain more than one dimension") } if (is.null(rownames(X))) rn=paste("Obj",1:n,sep=" ") else rn=rownames(X) if (is.null(colnames(X))) cn=paste("Var",1:p,sep=" ") else cn=colnames(X) if (any(is.na(X))) stop("The data set X must not contain NA values") if (!is.numeric(X)) stop("The data set X is not a numeric data.frame or matrix") if ((missing(startU)) || (is.null(startU))) { check=1 checkMiss = missing(k) || is.null(k) || !is.numeric(k) if (checkMiss) { k= 2:6 cat("The default value k=2:6 has been set",fill=TRUE) } nk <- length(k) if(nk != 1){ if(!checkMiss){ checkK = any(k <= 1) | any((k-as.integer(k)) != 0) if(checkK) { k = 2:6 nk <- length(k) cat("The number of clusters k must be greter than 1, integer and numeric: the default value k=2:6 will be used ",fill=TRUE) }else{ k <- sort(unique(k)) nk <- length(k) } } if (missing(index)) { index = "SIL.F" cat("The default index SIL.F has been set ",fill=TRUE) }else{ if(length(index) != 1) { index = "SIL.F" cat("The index must be a single value: SIL.F will be used ",fill=TRUE) }else{ if(all(index!=c("PC","PE","MPC","SIL","SIL.F","XB"))){ index = "SIL.F" cat("No match found for the index name: SIL.F will be used ", fill = TRUE) } } } if(index == "SIL.F"){ if (missing(alpha)) { alpha=1 cat("The default value alpha=1 has been set for computing SIL.F ",fill=TRUE) }else{ if (!is.numeric(alpha)) { alpha=1 cat("The weighting coefficient alpha is not numeric: the default value alpha=1 will be used for computing SIL.F ",fill=TRUE) } if (alpha<0) { alpha=1 cat("The number of clusters k must be non negative: the value alpha=1 will be used for computing SIL.F ",fill=TRUE) } } }else{ alpha = 1 } }else{ nk <- 1 if (missing(index)) { index = "SIL.F" }else{ if(length(index) != 1) { index = "SIL.F" cat("The index must be a single value: SIL.F will be used ",fill=TRUE) }else{ if(!any(index==c("PC","PE","MPC","SIL","SIL.F","XB"))){ index = "SIL.F" cat("No match found for the index name: SIL.F will be used ", fill = TRUE) } } } if(index == "SIL.F"){ if (missing(alpha)) { alpha=1 }else{ if (!is.numeric(alpha)) { alpha=1 cat("The weighting coefficient alpha is not numeric: the default value alpha=1 will be used for computing SIL.F ",fill=TRUE) } if (alpha<0) { alpha=1 cat("The number of clusters k must be non negative: the value alpha=1 will be used for computing SIL.F ",fill=TRUE) } } }else{ alpha = 1 } if (!is.numeric(k)) { k=2 cat("The number of clusters k is not numeric: the default value k=2 will be used ",fill=TRUE) } if ((k>ceiling(n/2)) || (k<2)) { k=2 cat("The number of clusters k must be an integer in {2, 3, ..., ceiling(n/2)}: the default value k=2 will be used ",fill=TRUE) } if (k%%ceiling(k)>0) { k=ceiling(k) cat("The number of clusters k must be an integer in {2, 3, ..., ceiling(nrow(X)/2)}: the value ceiling(k) will be used ",fill=TRUE) } } }else { startU=as.matrix(startU) ns=nrow(startU) k=ncol(startU) check=0 nk = 1 if (any(is.na(startU))) { k=2 cat("The rational start must not contain NA values: the default value k=2 and a random start will be used ",fill=TRUE) check=1 } if (!is.numeric(startU)) { k=2 cat("The rational start is not a numeric data.frame or matrix: the default value k=2 and a random start will be used ",fill=TRUE) check=1 } if ((k>ceiling(n/2)) || (k<2)) { k=2 cat("The number of clusters k must be an integer in {2, 3, ..., ceiling(n/2)}: the default value k=2 and a random start will be used ",fill=TRUE) check=1 } if ((ns!=n) && (check=0)) { cat("The number of rows of startU is different from that of X: k=ncol(startU) and a random start will be used ",fill=TRUE) check=1 } if (any(apply(startU,1,sum)!=1)) { startU=startU/apply(startU,1,sum) cat("The sums of the rows of startU must be equal to 1: the rows of startU will be normalized to unit row-wise sum ",fill=TRUE) } if (missing(index)) { index = "SIL.F" }else{ if(length(index) != 1) { index = "SIL.F" cat("The index must be a single value: SIL.F will be used ",fill=TRUE) }else{ if(!any(index==c("PC","PE","MPC","SIL","SIL.F","XB"))){ index = "SIL.F" cat("No match found for the index name: SIL.F will be used ", fill = TRUE) } } } if(index == "SIL.F"){ if (missing(alpha)) { alpha=1 }else{ if (!is.numeric(alpha)) { alpha=1 cat("The weighting coefficient alpha is not numeric: the default value alpha=1 will be used for computing SIL.F ",fill=TRUE) } if (alpha<0) { alpha=1 cat("The number of clusters k must be non negative: the value alpha=1 will be used for computing SIL.F ",fill=TRUE) } } }else{ alpha = 1 } } if (missing(b)) { b=0.5 } if(length(b) != 1){ b = b cat("The parameter of the polynomial fuzzifier beta must be a single value: the default value beta=0.5 will be used",fill=TRUE) } if (!is.numeric(b)) { b=0.5 cat("The parameter of the polynomial fuzzifier beta is not numeric: the default value beta=0.5 will be used ",fill=TRUE) } if ((b>1) || (b<0)) { b=0.5 cat("The parameter of the polynomial fuzzifier beta must be in [0,1]: the default value beta=0.5 will be used ",fill=TRUE) } if (missing(RS)) { RS=1 } if (!is.numeric(RS)) { cat("The number of starts RS is not numeric: the default value RS=1 will be used ",fill=TRUE) RS=1 } if (RS<1) { cat("The number of starts RS must be an integer >=1: the default value RS=1 will be used ",fill=TRUE) RS=1 } if (RS%%ceiling(RS)>0) { cat("The number of starts RS must be an integer >=1: the value ceiling(RS) will be used ",fill=TRUE) RS=ceiling(RS) } if (missing(conv)) conv=1e-9 if (conv<=0) { cat("The convergence criterion conv must be a (small) value >0: the default value conv=1e-9 will be used ",fill=TRUE) conv=1e-9 } if (!is.numeric(conv)) { cat("The convergence criterion conv is not numeric: the default value conv=1e-9 will be used ",fill=TRUE) conv=1e-9 } if (missing(maxit)) maxit=1e+6 if (!is.numeric(maxit)) { cat("The maximum number of iterations maxit is not numeric: the default value maxit=1e+6 will be used ",fill=TRUE) maxit=1e+6 } if (maxit<=0) { cat("The maximum number of iterations maxit must be an integer >0: the default value maxit=1e+6 will be used ",fill=TRUE) maxit=1e+6 } if (maxit%%ceiling(maxit)>0) { cat("The maximum number of iterations maxit must be an integer >0: the value ceiling(maxit) will be used ",fill=TRUE) maxit=ceiling(maxit) } if(!is.null(seed)) { if (!is.numeric(seed)) { cat("The seed value is not numeric: set.seed(NULL) will be used ",fill=TRUE) set.seed(NULL) }else{ set.seed(seed) } } Xraw=X rownames(Xraw)=rownames(X) colnames(Xraw)=colnames(X) if (missing(stand)) stand=0 if (!is.numeric(stand)) stand=0 if (stand==1) X=scale(X,center=TRUE,scale=TRUE)[,] checkDelta = FALSE if(missing(delta)) { delta = rep(1,nk) checkDelta = TRUE }else{ if(length(delta) != 1) { if(is.numeric(delta)) { if(any(delta < 0)){ cat("The noise distance delta must be non negative: the default value (see ?FKM.noise) will be used ",fill=TRUE) checkDelta = TRUE delta = rep(1,nk) } if(length(delta) != nk) {cat("The number of elements of delta is different from the number of elements of k: the default value (see ?FKM.noise) will be used" ,fill=TRUE) checkDelta = TRUE delta = rep(1,nk) } if (any(delta==0)) {stop("When delta=0, the standard algorithm is applied: run the function FKM")} }else{ checkDelta = TRUE delta = rep(1,nk) cat("The noise distance delta must is not numeric: the default value (see ?FKM.noise) will be used ",fill=TRUE) } }else{ if (delta==0) stop("When delta=0, the standard algorithm is applied: run the function FKM") if (!is.numeric(delta)) { cat("The noise distance delta must is not numeric: the default value (see ?FKM.noise) will be used ",fill=TRUE) checkDelta = TRUE delta = rep(1,nk) } if (delta<0) { cat("The noise distance delta must be non negative: the default value (see ?FKM.noise) will be used ",fill=TRUE) checkDelta = TRUE delta = rep(1,nk) } if(nk != 1 && !checkDelta) { delta = rep(delta,nk) } } } crit.f <- rep(NA,nk) crit = 0 for(c in 1:nk) { if ((check!=1)) { if(checkDelta) { Hd=FKM.pf(X,k[c],b = b,RS=1,stand = stand,conv=1e-6,seed = seed)$H Dd = euclidean_distance(data = X,H = Hd,n = n,k = k[c]) delta[c] <- sqrt(mean(Dd)) } main.temp <- mainFKM_pf_noise_U(data = X, b = b, delta = delta[c], n = n, p = p, k = k[c],index = index, alpha = alpha, U = startU, conv = conv, maxit = maxit) }else{ if(checkDelta) { Hd=FKM.pf(X,k[c],b = b,RS=1,stand = stand,conv=1e-6,seed = seed)$H Dd = euclidean_distance(data = X,H = Hd,n = n,k = k[c]) delta[c] <- sqrt(mean(Dd)) } main.temp <- mainFKM_pf_noise(data = X, b = b, delta = delta[c], n = n, p = p, k = k[c], index = index,alpha = alpha,rs = RS, conv = conv, maxit = maxit) } crit.temp = main.temp$index_max crit.f[c] = main.temp$index if(c == 1 | crit < crit.temp) { main = main.temp crit = crit.temp } } value = as.vector(main$value) it = as.vector(main$iter) U.opt = main$U H.opt = main$H names(crit.f) = paste(index," ","k=",k,sep="") names(delta) = paste("Noise distance k=",k) k = main$k rownames(H.opt)=paste("Clus",1:k,sep=" ") colnames(H.opt)=cn rownames(U.opt)=rn colnames(U.opt)=rownames(H.opt) names(value)=paste("Start",1:RS,sep=" ") names(it)=names(value) names(k)=c("Number of clusters") names(b)=c("Parameter of polynomial fuzzifier") if (stand!=1) stand=0 names(stand)=c("Standardization (1=Yes, 0=No)") clus=cl.memb(U.opt) out = list( U=U.opt, H=H.opt, F=NULL, clus=clus, medoid=NULL, value=value, criterion = crit.f, iter=it, k=k, m=NULL, ent=NULL, b=b, vp=NULL, delta=delta, stand=stand, Xca=X, X=Xraw, D=NULL, call=match.call()) class(out)=c("fclust") return(out) }
decorate<-function(func, content_type="text/html", strict_params=FALSE){ args_allowed<- names(formals(func)) function(req, res, err){ res$content_type(content_type) passed_params<- modifyList(req$params, req$headers) passed_params$req<-req passed_params$res<-res passed_params$err<-err if(strict_params){ args_present <- sapply(args_allowed, function(p) p %in% names(passed_params)) if(!all(args_present)){ err$set(paste0("Requested arguments not provided: ", paste(args_allowed[!args_present], collapse=", "))) return(NULL) } } if(!"..." %in% args_allowed){ passed_params<- passed_params[names(passed_params) %in% args_allowed] } do.call(func, passed_params) } }
library(hamcrest) tanpi.foo <- function(...) 41 Math.bar <- function(...) 44 test.tanpi.1 <- function() assertThat(tanpi(-0.01), identicalTo(-0.0314262660433512, tol = 0.000100)) test.tanpi.2 <- function() assertThat(tanpi(-0.1), identicalTo(-0.324919696232906, tol = 0.000100)) test.tanpi.3 <- function() assertThat(tanpi(-1), identicalTo(0)) test.tanpi.4 <- function() assertThat(tanpi(-1.5), identicalTo(NaN)) test.tanpi.5 <- function() assertThat(tanpi(-2), identicalTo(0)) test.tanpi.6 <- function() assertThat(tanpi(-2.5), identicalTo(NaN)) test.tanpi.7 <- function() assertThat(tanpi(-4), identicalTo(0)) test.tanpi.8 <- function() assertThat(tanpi(-10), identicalTo(0)) test.tanpi.9 <- function() assertThat(tanpi(-100), identicalTo(0)) test.tanpi.10 <- function() assertThat(tanpi(-0.785398), identicalTo(0.799100239047378, tol = 0.000100)) test.tanpi.11 <- function() assertThat(tanpi(-1.5708), identicalTo(4.42151507004952, tol = 0.000100)) test.tanpi.12 <- function() assertThat(tanpi(-3.14159), identicalTo(-0.47667991524202, tol = 0.000100)) test.tanpi.13 <- function() assertThat(tanpi(-6.28319), identicalTo(-1.23376080666909, tol = 0.000100)) test.tanpi.14 <- function() assertThat(tanpi(0.01), identicalTo(0.0314262660433512, tol = 0.000100)) test.tanpi.15 <- function() assertThat(tanpi(0.1), identicalTo(0.324919696232906, tol = 0.000100)) test.tanpi.16 <- function() assertThat(tanpi(1), identicalTo(0)) test.tanpi.17 <- function() assertThat(tanpi(1.5), identicalTo(NaN)) test.tanpi.18 <- function() assertThat(tanpi(2), identicalTo(0)) test.tanpi.19 <- function() assertThat(tanpi(2.5), identicalTo(NaN)) test.tanpi.20 <- function() assertThat(tanpi(4), identicalTo(0)) test.tanpi.21 <- function() assertThat(tanpi(10), identicalTo(0)) test.tanpi.22 <- function() assertThat(tanpi(100), identicalTo(0)) test.tanpi.23 <- function() assertThat(tanpi(0.785398), identicalTo(-0.799100239047378, tol = 0.000100)) test.tanpi.24 <- function() assertThat(tanpi(1.5708), identicalTo(-4.42151507004952, tol = 0.000100)) test.tanpi.25 <- function() assertThat(tanpi(3.14159), identicalTo(0.47667991524202, tol = 0.000100)) test.tanpi.26 <- function() assertThat(tanpi(6.28319), identicalTo(1.23376080666909, tol = 0.000100)) test.tanpi.27 <- function() assertThat(tanpi(NULL), throwsError()) test.tanpi.28 <- function() assertThat(tanpi(c(0.01, 0.1, 1, 1.5)), identicalTo(c(0.0314262660433512, 0.324919696232906, 0, NaN), tol = 0.000100)) test.tanpi.29 <- function() assertThat(tanpi(integer(0)), identicalTo(numeric(0))) test.tanpi.30 <- function() assertThat(tanpi(numeric(0)), identicalTo(numeric(0))) test.tanpi.31 <- function() assertThat(tanpi(NaN), identicalTo(NaN)) test.tanpi.32 <- function() assertThat(tanpi(NA_real_), identicalTo(NA_real_)) test.tanpi.33 <- function() assertThat(tanpi(Inf), identicalTo(NaN)) test.tanpi.34 <- function() assertThat(tanpi(-Inf), identicalTo(NaN)) test.tanpi.35 <- function() assertThat(tanpi(c(1L, 4L)), identicalTo(c(0, 0))) test.tanpi.36 <- function() assertThat(tanpi(structure(1, class = "foo")), identicalTo(41)) test.tanpi.37 <- function() assertThat(tanpi(structure(1, class = "bar")), identicalTo(44)) test.tanpi.38 <- function() assertThat(tanpi(structure(list("a"), class = "foo")), identicalTo(41)) test.tanpi.39 <- function() assertThat(tanpi(structure(list("b"), class = "bar")), identicalTo(44)) test.tanpi.40 <- function() assertThat(tanpi(structure(c(1, 2, 3), .Names = c("a", "b", "c"))), identicalTo(structure(c(0, 0, 0), .Names = c("a", "b", "c")))) test.tanpi.41 <- function() assertThat(tanpi(structure(c(1, 2), .Names = c("x", ""))), identicalTo(structure(c(0, 0), .Names = c("x", "")))) test.tanpi.42 <- function() assertThat(tanpi(structure(1:12, .Dim = 3:4)), identicalTo(structure(c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), .Dim = 3:4))) test.tanpi.43 <- function() assertThat(tanpi(structure(0, rando.attr = 4L)), identicalTo(structure(0, rando.attr = 4L))) test.tanpi.44 <- function() assertThat(tanpi(structure(0, class = "zinga")), identicalTo(structure(0, class = "zinga")))
ggsimrelplot <- function(obj, ncomp = min(obj$p, obj$n, 20), which = 1L:3L, layout = NULL, print.cov = FALSE, use_population = TRUE) { nx <- obj$p ny <- ncol(obj$Y) xticks <- 1:nx if (is.null(which)) which <- 1L:3L if (is.null(layout) & length(which) == 3) layout <- matrix(c(2, 1, 3, 1), 2) plt1 <- expression({ beta <- `dimnames<-`( obj$beta, list(c(1:nx), c(paste0("Y", 1:ny)))) beta_stk <- `names<-`( reshape2::melt(beta), c("Predictor", "Response", "BetaCoef")) plt1 <- ggplot( beta_stk, aes(Predictor, BetaCoef, color = Response, group = Response)) + geom_hline(yintercept = 0, color = "grey2", linetype = 2) + geom_line() + geom_point() + scale_x_continuous(breaks = xticks) + labs(x = "Variable Number", y = expression(paste("Regression Coefficients (", beta, ")"))) + ggtitle("True Regression Coefficients") + theme(legend.position = if (ny == 1) "none" else "bottom") + scale_color_brewer(palette = 'Set1') }) plt2 <- expression({ idx <- if (obj$type == "univariate") 1 else ny covs <- obj$Sigma[-c(1:idx), 1:idx, drop = FALSE] if (obj$type == "multivariate") { covs <- obj$SigmaWZ[-c(1:idx), 1:idx, drop = FALSE] } covs.sc <- abs(covs)/max(abs(covs)) covs.dt <- as.data.frame( cbind( 1:ncomp, obj$lambda[1:ncomp], covs.sc[1:ncomp, ] ), 1 ) names(covs.dt) <- c("comp", "lambda", paste0("W", 1:ny)) covs.stk <- reshape2::melt( covs.dt, 1:2, variable.name = "response", value.name = "covariance" ) pjtr <- position_dodge(0.5) plt2 <- ggplot( covs.stk, aes(comp, covariance, color = response, group = response)) + geom_bar(data = covs.dt, aes(x = comp, y = lambda), inherit.aes = FALSE, stat = "identity", fill = "lightgrey") + geom_line(position = pjtr) + geom_point(position = pjtr) + labs(x = "Components", y = "Covariance (absolute value)/ Eigenvalue") + theme(legend.position = if (ny == 1) "none" else "bottom") + ggtitle("Relevant Components Plot") + scale_x_continuous(breaks = xticks) + coord_cartesian(xlim = c(1, ncomp)) + scale_color_brewer(ifelse(obj$type == "multivariate", "Response Component", "Response"), palette = 'Set1') }) est.covs <- expression({ covs <- if (use_population) { eigval <- obj$lambda eigval.sc <- eigval/eigval[1] covs <- switch( obj$type, univariate = { m <- 1 rot <- obj$Rotation covs <- obj$Sigma[-c(1:m), 1:m, drop = FALSE] covs <- abs(rot %*% covs) }, bivariate = { m <- 2 covs <- obj$Sigma[-c(1:m), c(1:m), drop = FALSE] covs <- abs(covs) }, multivariate = abs(t(obj$SigmaYZ)) ) } else { X <- scale(obj$X, center = TRUE, scale = FALSE) Y <- scale(obj$Y, center = TRUE, scale = FALSE) svdres <- svd(X) eigval <- (svdres$d ^ 2)/(obj$n - 1) eigval.sc <- eigval/eigval[1] Z <- X %*% svdres$v covs <- t(abs(cov(Y, Z))) } }) plt3 <- expression({ eval(est.covs) covs.sc <- abs(covs)/max(abs(covs)) covs.dt <- as.data.frame( cbind(1:ncomp, eigval.sc[1:ncomp], covs.sc[1:ncomp, ]), 1) names(covs.dt) <- c("comp", "lambda", paste0("Y", 1:ny)) covs.stk <- reshape2::melt( covs.dt, 1:2, variable.name = "response", value.name = "covariance" ) pjtr <- position_dodge(0.5) plt3 <- ggplot( covs.stk, aes(comp, covariance, color = response, group = response)) + geom_bar(data = covs.dt, aes(x = comp, y = lambda), inherit.aes = FALSE, stat = "identity", fill = "lightgrey") + geom_line(position = pjtr) + geom_point(position = pjtr) + labs(x = "Components", y = "Covariance (absolute value)/ Eigenvalue") + theme(legend.position = if (ny == 1) "none" else "bottom") + ggtitle("Estimated relevant components plot") + scale_x_continuous(breaks = xticks) + coord_cartesian(xlim = c(1, ncomp)) + scale_color_brewer("Response", palette = 'Set1') }) est.covs.xy <- expression({ covs <- if (use_population) { covs <- if(obj$type == "multivariate") { abs(t(obj$SigmaYX)) } else { m <- ifelse(obj$type == 'univariate', 1, 2) p <- obj$p covs <- obj$Sigma[-c(1:m), c(1:m), drop = FALSE] covs <- abs(covs) } } else { X <- scale(obj$X, center = TRUE, scale = FALSE) Y <- scale(obj$Y, center = TRUE, scale = FALSE) covs <- t(abs(cov(Y, X))) } }) plt4 <- expression({ eval(est.covs.xy) covs.sc <- abs(covs)/max(abs(covs)) covs.dt <- as.data.frame(cbind(1:obj$p, covs.sc[1:ncomp, ]), 1) names(covs.dt) <- c("predictors", paste0("Y", 1:ny)) covs.stk <- reshape2::melt( covs.dt, 1, variable.name = "response", value.name = "covariance" ) pjtr <- position_dodge(0.5) plt4 <- ggplot( covs.stk, aes(predictors, covariance, color = response, group = response)) + geom_line(position = pjtr) + geom_point(position = pjtr) + labs(x = "Predictors", y = "abs(covariance) between Predictor & Response") + theme(legend.position = if (ny == 1) "none" else "bottom") + ggtitle("Estimated Covariance plot") + scale_x_continuous(breaks = xticks) + coord_cartesian(xlim = c(1, ncomp)) + scale_color_brewer("Response", palette = 'Set1') }) plt <- list( TrueBeta = plt1, RelComp = plt2, EstRelComp = plt3, EstCov = plt4 ) if (length(which) == 1) { out <- eval(plt[[which]]) } else { plts <- lapply(which, function(i) eval(plt[[i]])) names(plts) <- names(plt)[which] if (length(which) == 2 & is.null(layout)) layout <- matrix(c(1, 2), 2) if (length(which) > length(layout)) layout <- matrix(1:length(which), length(which)) plts$layout_matrix <- layout out <- do.call(gridExtra::grid.arrange, plts) } if (print.cov) { eval(est.covs) covs <- covs[1:min(ncomp, nx), ] dimnames(covs) <- list( paste0("Component", 1:min(ncomp, nx)), paste0("Response", 1:ny) ) attr(out, "covariance") <- covs cat("Absolute values of estimated covariances\n") print(covs) } if (length(which) == 1) return(out) else return(invisible(out)) }
abplotUI = function(){ tagList( fluidRow( column(width = 12, imgSelect("abp_plotbar")) ), fluidRow( br(), column(width = 8, tags$style(type = "text/css", ".shiny-output-error { visibility: hidden; }", ".shiny-output-error:before { visibility: hidden; }"), plotOutput(outputId = "abp_plot") ), column(width = 4, hidden(selectInput(inputId = "abp_group", label = "Grouping Variable", choices=c('none'), width='100%')), hidden(multiToggleButton(id = 'abp_stackfacet', choices = c(stacked= 'Stacked', facetted='Facetted', joy='Joy'), selected = 'stacked')), hidden(selectInput(inputId = "abp_xvar", label = "x-variable", choices = c(), width='100%')), hidden(checkboxInput(inputId = "abp_fill", label = "Fill", value = TRUE)), hidden(checkboxInput(inputId = "abp_grid", label = "Grid", value = TRUE)), hidden(tags$input(id = "abp_color", type = 'color', value = ' hidden(checkboxInput(inputId = "abp_linetype", label = "Varying line types", value = FALSE)), hidden(sliderInput(inputId = "abp_bins", label = "Number of bins", min = 5, max = 60, value = 30, step = 1, round = TRUE, ticks = FALSE, width='100%')), hidden(sliderInput(inputId = "abp_trans", label = "Transparency", min = 0.2, max = 1, value = 0.5, step = 0.05, ticks = FALSE, width='100%')), hidden(checkboxInput(inputId = "abp_err", label = "Error Bars")), hidden(checkboxInput(inputId = "abp_dodge", label = "Dodge")), hidden(checkboxInput(inputId = "abp_marg", label = "Marginal plots")), hidden(checkboxInput(inputId = "abp_fitlines", label = "Fitline(s)")), hidden(textInput(inputId = "abp_main", label = "Title", width='100%')), fluidRow( column(width = 6, hidden(textInput(inputId = "abp_xlab", label = "Label x-axis"))), column(width = 6, hidden(textInput(inputId = "abp_ylab", label = "Label y-axis"))) ), conditionalPanel( condition = "$(' tags$h4('Save plot'), tagAppendAttributes(numericInput('abp_download_width', 'Width (cm)', value = 14, min = 2, max = 50, width='6em'),style='display:inline-block;'), tagAppendAttributes(numericInput('abp_download_height', 'Height (cm)', value=8, min = 2, max = 50, width='6em'),style='display:inline-block;'), downloadButton('abp_download', 'Download')) ) )) }
library(testthat) context("PeakSegFPOP") library(PeakSegOptimal) data.vec <- as.integer(c(1, 10, 14, 13)) fit <- PeakSegFPOP(data.vec, rep(1L, 4), 0) test_that("no penalty is OK", { best.cost <- min(fit$cost.mat[2,4]) mean.vec <- c(1, rep(37/3, 3)) exp.cost <- PoissonLoss(data.vec, mean.vec) expect_equal(best.cost, exp.cost) }) data.vec <- as.integer(c(1, 10, 14, 5)) weight.vec <- rep(1L, 4) pdpa <- PeakSegPDPA(data.vec, weight.vec, 3L) fpop <- PeakSegFPOP(data.vec, weight.vec, 0) test_that("FPOP computes same model as PDPA", { pdpa.cost <- min(pdpa$cost.mat) fpop.cost <- min(fpop$cost.mat) expect_equal(fpop.cost, pdpa.cost) }) fit <- PeakSegFPOP(data.vec, rep(1L, 4), 1e6) test_that("huge penalty recovers no changes", { exp.mean <- mean(data.vec) exp.mean.vec <- c(exp.mean, Inf, Inf, Inf) expect_equal(fit$mean.vec, exp.mean.vec) exp.loss <- PoissonLoss(data.vec, exp.mean) expect_equal(min(fit$cost.mat), exp.loss) }) data(H3K4me3_XJ_immune_chunk1) H3K4me3_XJ_immune_chunk1$count <- H3K4me3_XJ_immune_chunk1$coverage by.sample <- split( H3K4me3_XJ_immune_chunk1, H3K4me3_XJ_immune_chunk1$sample.id) one.name <- "McGill0004" one <- by.sample[[one.name]] one$bases <- with(one, chromEnd-chromStart) wmean <- function(df){ with(df, sum(bases*count)/sum(bases)) } max.peaks <- as.integer((nrow(one)-1)/2) pdpa <- PeakSegPDPAchrom(one, max.peaks) segs.by.peaks <- split(pdpa$segments, pdpa$segments$peaks) test_that("PDPA segment means are feasible", { for(peaks.str in names(segs.by.peaks)){ pdpa.segs <- segs.by.peaks[[peaks.str]] rownames(pdpa.segs) <- NULL sign.diff <- sign(diff(pdpa.segs$mean))*c(1,-1) right.sign <- sign.diff %in% c(0, 1) expect_true(all(right.sign)) } }) some.models <- pdpa$modelSelection.decreasing test_that("FPOP recovers the same models as PDPA", { model.i <- 147 for(model.i in 1:nrow(some.models)){ model.row <- some.models[model.i,] lambda <- with(model.row, if(max.lambda==Inf){ min.lambda+1 }else{ (min.lambda+max.lambda)/2 }) exp.segs <- segs.by.peaks[[paste(model.row$peaks)]] rownames(exp.segs) <- NULL fpop <- PeakSegFPOPchrom(one, lambda) fpop.mean.vec <- with(fpop$segments, rep(mean, last-first+1)) pdpa.mean.vec <- with(exp.segs, rep(mean, last-first+1)) if(sum(abs(fpop.mean.vec-pdpa.mean.vec)) > 1e-6){ print(model.row) print(sum(abs(fpop.mean.vec-pdpa.mean.vec))) } expect_equal(fpop.mean.vec, pdpa.mean.vec) } }) test_that("error for less than 3 data points", { expect_error({ PeakSegFPOP(data.vec[1:2], weight.vec[1:2], 0) }) expect_error({ PeakSegFPOPchrom(one[1:2,]) }) }) test_that("error for negative data", { count <- as.integer(c(1, 2, -3)) expect_error({ PeakSegFPOP(count, penalty=0) }) df <- data.frame(count,chromStart=0:2, chromEnd=1:3) expect_error({ PeakSegFPOPchrom(df, 0) }) })
crwPredict=function(object.crwFit, predTime=NULL, return.type="minimal", ...) { data <- object.crwFit$data tn <- object.crwFit$Time.name driftMod <- object.crwFit$random.drift mov.mf <- object.crwFit$mov.mf activity <- object.crwFit$activity err.mfX <- object.crwFit$err.mfX err.mfY <- object.crwFit$err.mfY rho = object.crwFit$rho par <- object.crwFit$par n.errX <- object.crwFit$n.errX n.errY <- object.crwFit$n.errY n.mov <- object.crwFit$n.mov fixPar = object.crwFit$fixPar theta = object.crwFit$par[is.na(fixPar)] return_posix <- ifelse((inherits(predTime,"POSIXct") | inherits(predTime, "character")) & inherits(data[,tn],"POSIXct"), TRUE, FALSE) if(!return_posix) { if(inherits(predTime,"numeric") && inherits(data[, tn], "POSIXct")) { stop("predTime provided as numeric and original time data was POSIX!") } if(inherits(predTime,"POSIXct") && inherits(data[, tn], "numeric")) { stop("predTime provided as POSIX and original data was numeric!") } } if(!is.null(predTime)){ if(inherits(predTime,"character")) { if(!inherits(data[,tn],"POSIXct")) stop("Character specification of predTime can only be used with POSIX times in the original data!") t_int <- unlist(strsplit(predTime, " ")) if(t_int[2] %in% c("min","mins","hour","hours","day","days")) { min_dt <- min(data[,tn],na.rm=TRUE) max_dt <- max(data[,tn],na.rm=TRUE) min_dt <- lubridate::ceiling_date(min_dt,t_int[2]) max_dt <- lubridate::floor_date(max_dt,t_int[2]) predTime <- seq(min_dt, max_dt, by = predTime) } else { stop("predTime not specified correctly. see documentation for seq.POSIXt") } } if(inherits(predTime, "POSIXct")){ ts = attr(object.crwFit, "time.scale") predTime = as.numeric(predTime)/ts } if(min(predTime) < min(data$TimeNum)) { warning("Predictions times given before first observation!\nOnly those after first observation will be used.") predTime <- predTime[predTime>=data$TimeNum] } origTime <- data$TimeNum if (is.null(data$locType)) { data$locType <- "o" } predData <- data.frame(predTime, "p") names(predData) <- c("TimeNum", "locType") data <- merge(data, predData, by=c("TimeNum", "locType"), all=TRUE) dups <- duplicated(data$TimeNum) data <- data[!dups, ] mov.mf <- as.matrix(expandPred(x=mov.mf, Time=origTime, predTime=predTime)) if (!is.null(activity)) activity <- as.matrix(expandPred(x=activity, Time=origTime, predTime=predTime)) if (!is.null(err.mfX)) err.mfX <- as.matrix(expandPred(x=err.mfX, Time=origTime, predTime=predTime)) if (!is.null(err.mfY)) err.mfY <- as.matrix(expandPred(x=err.mfY, Time=origTime, predTime=predTime)) if (!is.null(rho)) rho <- as.matrix(expandPred(x=rho, Time=origTime, predTime=predTime)) } data$locType[data$TimeNum%in%predTime] <- 'p' delta <- c(diff(data$TimeNum), 1) y = as.matrix(data[,object.crwFit$coord]) noObs <- as.numeric(is.na(y[,1]) | is.na(y[,2])) y[noObs==1,] = 0 N = nrow(y) argslist = par2arglist(theta, fixPar, y, noObs, delta, mov.mf, err.mfX, err.mfY, rho, activity, n.errX, n.errY, n.mov, driftMod) if (driftMod) { out = CTCRWPREDICT_DRIFT(y, argslist$Hmat, argslist$b, argslist$b.drift, argslist$sig2, argslist$sig2.drift, delta, noObs, argslist$active, argslist$a, argslist$P) } else { out=CTCRWPREDICT(y, argslist$Hmat, argslist$b, argslist$sig2, delta, noObs, argslist$active, argslist$a, argslist$P) } pred <- data.frame(t(out$pred)) if (driftMod) { names(pred) <- c("mu.x", "theta.x", "gamma.x","mu.y", "theta.y", "gamma.y") } else names(pred) <- c("mu.x", "nu.x", "mu.y","nu.y") var <- zapsmall(out$predVar) speed = sqrt(apply(as.matrix(pred[,2:(2+driftMod)]), 1, sum)^2 + apply(as.matrix(pred[,(4+driftMod):(4+2*driftMod)]), 1, sum)^2) obsFit <- data.frame(predObs.x=out$predObs[1,], predObs.y=out$predObs[2,]) obsFit$outlier.chisq <- as.vector(out$chisq) obsFit$naive.p.val <- 1 - pchisq(obsFit$outlier.chisq, 2) out <- list(originalData=fillCols(data), alpha.hat=pred, V.hat=var, speed=speed, loglik=out$ll) if(return_posix){ out$originalData[,tn] = lubridate::as_datetime(out$originalData$TimeNum*ts) } else out$originalData[,tn] = out$originalData$TimeNum if (return.type == "flat") { out <- fillCols(crawl::flatten(out)) attr(out, "flat") <- TRUE attr(out, "coord") <- c(x=object.crwFit$coord[1], y=object.crwFit$coord[2]) attr(out, "random.drift") <- driftMod attr(out, "activity.model") <- !is.null(object.crwFit$activity) attr(out, "Time.name") <- tn attr(out, "time.scale") = ts attr(out,"epsg") <- attr(object.crwFit,"epsg") attr(out,"proj4") <- attr(object.crwFit,"proj4") } else if (return.type == "list") { out <- append(out, list(fit.test=obsFit)) attr(out, "flat") <- FALSE attr(out, "coord") <- c(x=object.crwFit$coord[1], y=object.crwFit$coord[2]) attr(out, "random.drift") <- driftMod attr(out, "activity.model") <- !is.null(object.crwFit$activity) attr(out, "Time.name") <- tn attr(out, "time.scale") = ts attr(out,"epsg") <- attr(object.crwFit,"epsg") attr(out,"proj4") <- attr(object.crwFit,"proj4") } else if (return.type == "minimal") { out <- fillCols(out$originalData) out <- cbind(out, pred) attr(out, "flat") <- TRUE attr(out, "coord") <- c(x=object.crwFit$coord[1], y=object.crwFit$coord[2]) attr(out, "random.drift") <- driftMod attr(out, "activity.model") <- !is.null(object.crwFit$activity) attr(out, "Time.name") <- tn attr(out, "time.scale") = ts attr(out,"epsg") <- attr(object.crwFit,"epsg") attr(out,"proj4") <- attr(object.crwFit,"proj4") } class(out) <- c(class(out),"crwPredict") return(out) }
vmd_colors <- function(n=33, picker=FALSE, ...){ red <- c(0, 1, 0.35, 1, 1, 0.5, 0.6, 0, 1, 1, 0.25, 0.65, 0.5, 0.9, 0.5, 0.5, 0, 0.88, 0.55, 0, 0, 0, 0, 0.02, 0.01, 0.27, 0.45, 0.9, 1, 0.98, 0.81, 0.89, 0.96) green <- c(0, 0, 0.35, 0.50, 1, 0.5, 0.6, 1, 1, 0.6, 0.75, 0, 0.9, 0.4, 0.3, 0.5, 0, 0.97, 0.9, 0.9, 0.9, 0.88, 0.76, 0.38, 0.04, 0, 0, 0, 0, 0, 0, 0.35, 0.72) blue <- c(1, 0, 0.35, 0, 0, 0.2, 0.6, 0, 1, 0.6, 0.75, 0.65, 0.4, 0.7, 0, 0.75, 0, 0.02, 0.02, 0.04, 0.5, 1, 1, 0.67, 0.93, 0.98, 0.9, 0.9, 0.66, 0.23, 0, 0, 0) max.col <- length(red) inds <- (1:n) if( n > max.col ) { inds <- inds %% max.col inds[inds==0] <- max.col warning( paste("Colors will be recycled: input 'n' >", max.col) ) } cols <- rgb(red[inds], green[inds], blue[inds], ...) names(cols) <- c(1:n) if(picker) { if(n > 50) { warning("Chart will likely be crowded, set n=33 to see all colors") } pie(rep(1, length(cols)), labels=paste(inds, cols), col=cols, cex=0.75) } return(cols) }
extract_fond_leaflet_joignantes <- function(map) { idx_carte <- NULL idx_fleche <- NULL idx_titre <- NULL idx_source <- NULL idx_legende <- NULL for(i in 1:length(map$x$calls)) { if(map$x$calls[[i]]$method %in% "addPolygons") { if(any(map$x$calls[[i]]$args[3][[1]] %in% c("carte_joignantes_init","carte_joignantes"))) idx_carte <- c(idx_carte,i) } if(map$x$calls[[i]]$method %in% "addControl") { if(map$x$calls[[i]]$args[4]=="map-title") idx_titre <- i if(map$x$calls[[i]]$args[4]=="map-source") idx_source <- i } if(map$x$calls[[i]]$method %in% "addPolygons") { if(any(map$x$calls[[i]]$args[3][[1]] %in% c("legende_joignantes"))) idx_legende <- c(idx_legende,i) } if(!is.null(idx_legende)) { if(map$x$calls[[i]]$method %in% "addMarkers") { if(any(map$x$calls[[i]]$args[5][[1]] %in% c("legende_joignantes"))) idx_legende <- c(idx_legende,i) } } } if(is.null(idx_legende)) { return(NULL) }else { idx_fleche <- idx_carte[length(idx_carte)] idx_carte <- idx_carte[-length(idx_carte)] var_flux <- map$x$calls[[idx_fleche]]$args[[2]]$var_flux code_epsg <- map$x$calls[[idx_fleche]]$args[[2]]$code_epsg emprise <- map$x$calls[[idx_fleche]]$args[[2]]$emprise max_var <- map$x$calls[[idx_fleche]]$args[[2]]$max_var list_fonds <- list() nom_fonds <- c() l <- 1 for(i in 1:length(idx_carte)) { fond <- map$x$calls[[idx_carte[i]]]$args[[2]][1][[1]] fond <- st_transform(fond,crs=as.numeric(code_epsg)) list_fonds[[l]] <- fond rm(fond) nom_fonds <- c(nom_fonds,map$x$calls[[idx_carte[i]]]$args[[2]]$nom_fond) l <- l+1 } if(!is.null(idx_fleche)) { fond <- map$x$calls[[idx_fleche]]$args[[2]]$analyse_WGS84 fond <- st_transform(fond,crs=as.numeric(code_epsg)) list_fonds[[l]] <- fond rm(fond) nom_fonds <- c(nom_fonds,map$x$calls[[idx_fleche]]$args[[2]]$nom_fond) l <- l+1 } if(!is.null(idx_titre)) { titre <- substr(map$x$calls[[idx_titre]]$args[1],505,nchar(map$x$calls[[idx_titre]]$args[1])-7) }else { titre <- "" } if(!is.null(idx_source)) { source <- substr(map$x$calls[[idx_source]]$args[1],379,nchar(map$x$calls[[idx_source]]$args[1])-7) }else { source <- "" } if(!is.null(idx_legende)) { large <- map$x$calls[[idx_fleche]]$args[[2]]$distance long <- large * 1.5 gf <- st_sf(geometry=st_sfc(st_polygon(list(as.matrix(map$x$calls[[idx_legende[2]]]$args[[1]][[1]][[1]][[1]]))),crs=4326)) x <- st_bbox(gf)$xmin y <- st_bbox(gf)$ymin flux_leg_pl <- fleche_legende(x,y,long,large,max_var,code_epsg)[[5]] flux_leg_pl <- cbind(ETI_VAL=c(max_var,max_var/3),flux_leg_pl) list_fonds[[l]] <- flux_leg_pl nom_fonds <- c(nom_fonds,map$x$calls[[idx_legende[[2]]]]$args[[2]]$nom_fond) l <- l+1 } colFleche <- map$x$calls[[idx_fleche]]$args[4][[1]]$fillColor colBorder <- map$x$calls[[idx_fleche]]$args[4][[1]]$color return(list(list_fonds,nom_fonds,titre,source,colFleche,colBorder,emprise)) } }
segments.greffe <- function(cple, bord) { ind <- which(bord$id == cple[1] | bord$id == cple[2]) X1 <- bord$X1[ind] Y1 <- bord$Y1[ind] X2 <- bord$X2[ind] Y2 <- bord$Y2[ind] ind.cl <- c(length(which(bord$id == cple[1])), length(ind)) grf <- rep(0, 4*length(which(bord$id == cple[1]))*length(which(bord$id == cple[2]))) res <- .C("sgmtsGrf", as.integer(ind.cl), as.double(X1), as.double(Y1), as.double(X2), as.double(Y2), as.double(grf) ) grf <- t(matrix(res[[6]], nrow=4)) grf <- grf[which(grf[,1]!=grf[,3] & grf[,2]!=grf[,4]), ] bord$id[ind] <- rep(max(bord$id)+2, length(ind)) bord <- rbind.data.frame(bord)[c(which(!(1:nrow(bord)%in%ind)), ind),] return(list(grf=grf, bord=bord)) }
simulate_trials <- function(selector_factory, num_sims, true_prob_tox, true_prob_eff = NULL, ...) { sim_func <- simulation_function(selector_factory) if(is.null(true_prob_eff)) { l <- lapply( 1:num_sims, function(x) sim_func(selector_factory, true_prob_tox, ...) ) } else { l <- lapply( 1:num_sims, function(x) sim_func(selector_factory, true_prob_tox, true_prob_eff = true_prob_eff, ...) ) } simulations(fits = l, true_prob_tox = true_prob_tox, true_prob_eff = true_prob_eff, ...) }
removeDatabase <- function(pps, index=NULL) { if(is.null(index)) { choices <- pps@db if(length(choices) > 20) { warning('Only showing first 20 databases.') choices <- choices[1:20] } index <- menu(title = 'Choose a database to remove:', choices = choices) if(index==0) return(pps) } if(max(index) > length(pps@db)) warning('Index too large, no database to remove.') pps@db <- pps@db[-index] pps }
is_one_dim <- function(x) { one_dim = TRUE if (lacks_dim(x)) { if (is.list(x)) one_dim = FALSE } else { if (dim(x)[1L] > 1 && dim(x)[2L] > 1) one_dim = FALSE } one_dim }
require(testthat) context("read ESDFL") options(width = 500) options(useFancyQuotes=FALSE) source("REF-2-esdfl.R") test_that("read ESDFL",{ sdf <<- readNAEP(system.file("extdata/data", "M36NT2PM.dat", package = "NAEPprimer")) sdfA <<- subset(sdf, scrpsu %in% c(5,45,56)) sdfB <- subset(sdf, scrpsu %in% c(75,76,78)) sdfC <- subset(sdf, scrpsu %in% 100:200) sdfD <<- subset(sdf, scrpsu %in% 201:300) sdfB$year <- 2002 sdfC$year <- 2003 sdfB <<- sdfB sdfC <<- sdfC sdfl <<- edsurvey.data.frame.list(list(sdfA, sdfB, sdfC, sdfD), labels=c("A locations", "B locations", "C locations", "D locations")) expect_is(sdfl, "edsurvey.data.frame.list") }) i <- "invalid level: outside" context("ESDFL subset and scope") test_that("ESDFL subset and scope", { yes <- "Yes" g1 <- subset(sdfl, ell3 == "Yes") g2 <- subset(sdfl, ell3 == yes) expect_equal(dim(g1), dim(g2)) i <- "invalid level: inside" ssfun <- function(data) { i <- "Yes" subset(data, ell3 == i) } g3 <- ssfun(sdfl) expect_equal(dim(g1), dim(g3)) }) context("ESDFL achievementLevels") test_that("ESDFL achievementLevels", { expect_known_value(test8 <- achievementLevels(data=sdfl), file="aLevels_test8.rds", update=FALSE) }) context("ESDFL cor") test_that("ESDFL cor", { c1 <- cor.sdf("b017451", "b003501", sdfA, method="Pearson", weightVar="origwt") c3 <- cor.sdf("b017451", "b003501", sdfC, method="Pearson", weightVar="origwt") c1234 <- cor.sdf("b017451", "b003501", sdfl, method="Pearson", weightVar="origwt") expect_equal(c1,c1234[[1]]) expect_equal(c3,c1234[[3]]) }) skip_on_cran() context("ESDFL edsurveyTable") test_that("ESDFL edsurveyTable",{ et1 <- edsurveyTable(composite ~ b017451 + dsex, sdfl) et1c <- withr::with_options(list(digits=7), capture.output(et1)) expect_equal(et1c, et1REF) etB <- edsurveyTable(composite ~ b017451+ dsex, sdfB) row.names(et1$data) <- paste(rep(LETTERS[1:4], each=nrow(etB$data)), rep(1:nrow(etB$data), 4)) row.names(etB$data) <- paste("B", 1:nrow(etB$data)) ss <- subset(et1$data, labels=="B locations")[,2:ncol(et1$data)] for(i in 1:ncol(ss)) { mostattributes(ss[,i]) <- attributes(et1$data[,i+1]) } coetB <- withr::with_options(list(digits=7), capture.output(etB$data)) coss <- withr::with_options(list(digits=7), capture.output(ss)) expect_equal(coetB, coss) }) context("ESDFL edsurveyTable error handling") test_that("ESDFL error handling",{ skip_on_cran() expect_warning(edsurveyTable(composite ~ b017451, sdfl, returnMeans=TRUE, returnSepct=FALSE, pctAggregationLevel=6), paste0("Warnings from datasets \"A locations\"")) sdfE <- "String" sdfl_error <- edsurvey.data.frame.list(list(sdfE, sdfB, sdfC, sdfE), labels=c("first E locations", "B locations", "C locations", "second E locations")) expect_warning(edsurveyTable(composite ~ b017451, sdfl_error, returnMeans=FALSE, returnSepct=FALSE), "E locations") suppressWarnings(et2 <- edsurveyTable(composite ~ b017451, sdfl_error, returnMeans=FALSE, returnSepct=FALSE)) withr::with_options(list(digits=0), et2c <- capture.output(et2) ) expect_message(expect_error(g1 <- gap("composite", sdfl_error, groupA= dsex=="Male"), "reference"), "E locations") sdfl_errorB <- edsurvey.data.frame.list(list(sdfA, sdfB, sdfE, sdfC), labels=c("A locations", "B locations", "E locations", "C locations")) expect_message(g2 <- gap("composite", sdfl_errorB, groupA= dsex=="Male"), "An error occurred while working on a dataset \"E locations\". The results from that dataset will be excluded. Error message:") g3 <- gap("composite", sdfl, groupA= dsex=="Male") expect_equivalent(g2$results[2,], g3$results[2,]) expect_equal(et2c, et2REF) }) context("ESDFL gap") test_that("ESDFL gap",{ skip_on_cran() g1 <- gap("composite", sdfl, dsex=="Male", dsex=="Female", returnSimpleDoF=TRUE) mle <- "Male" g1p <- gap("composite", sdfl, dsex==mle, dsex=="Female", returnSimpleDoF=TRUE) expect_equal(g1$results, g1p$results) g2 <- gap("composite", sdfC, dsex=="Male", dsex=="Female", returnSimpleDoF=TRUE) mnames <- names(g2$results) mnames <- mnames[mnames %in% names(g1$results)] expect_equal(unlist(g2$results[mnames]), unlist(g1$results[3,mnames])) expect_known_value(g1, "gap_esdfl_mean.rds", update=FALSE) expect_known_value(g_pct <- gap("composite", sdfl, dsex=="Male", percentiles=c(2,50), pctMethod="symmetric"), "gap_esdfl_pct.rds", update=FALSE) expect_known_value(g_al <- gap("composite", sdfl, dsex=="Male", achievementLevel="Proficient"), "gap_esdfl_al.rds", update=FALSE) expect_known_value(g_per <- gap("dsex", sdfl, dsex=="Male", targetLevel="Male"), "gap_esdfl_perct.rds", update=FALSE) }) context("ESDFL helper functions") test_that("ESDFL helper functions",{ d1 <- dim(sdfl) expect_equal(d1$nrow[1], nrow(sdfA)) expect_equal(d1$ncol[3], ncol(sdfC)) pv1 <- getPlausibleValue("composite", sdfl) expect_equal(pv1[[2]], getPlausibleValue("composite", sdfB)) wr1 <- getWeightJkReplicates("origwt", sdfl) expect_equal(wr1[[4]], getWeightJkReplicates("origwt", sdfD)) hpv1 <- hasPlausibleValue("algebra", sdfl) expect_equal(hpv1[[1]], hasPlausibleValue("algebra", sdfA)) hpv2 <- hasPlausibleValue("dsex", sdfl) expect_equal(hpv2[[2]], hasPlausibleValue("dsex", sdfB)) iw1 <- isWeight("origwt", sdfl) expect_equal(iw1[[3]], TRUE) iw2 <- isWeight("composite", sdfl) expect_equal(iw2[[4]], FALSE) l1 <- levelsSDF("sdracem", sdfl) expect_equal(l1[[1]], levelsSDF("sdracem", sdfA)) l2 <- levelsSDF("dsex", sdfl) expect_equal(l2[[2]], levelsSDF("dsex", sdfB)) n1 <- colnames(sdfl) expect_equal(n1[[3]], colnames(sdfC)) spvo1 <- capture.output(showPlausibleValues(sdfl)) spvoD <- capture.output(showPlausibleValues(sdfD)) expect_equal(rev(spvo1)[1:length(spvoD)], rev(spvoD)) sw1 <- capture.output(showWeights(sdfl, verbose=TRUE)) swA <- capture.output(showWeights(sdfA, verbose=TRUE)) swB <- capture.output(showWeights(sdfB, verbose=TRUE)) swC <- capture.output(showWeights(sdfC, verbose=TRUE)) swD <- capture.output(showWeights(sdfD, verbose=TRUE)) expect_equal(sw1, c(swA, swB, swC, swD)) }) context("ESDFL cor") test_that("ESDFL cor", { skip_on_cran() c1 <- cor.sdf("b017451", "b003501", sdfA, method="Pearson", weightVar="origwt") c3 <- cor.sdf("b017451", "b003501", sdfC, method="Pearson", weightVar="origwt") c1234 <- cor.sdf("b017451", "b003501", sdfl, method="Pearson", weightVar="origwt") expect_equal(c1,c1234[[1]]) expect_equal(c3,c1234[[3]]) }) context("ESDFL subset and print") test_that("ESDFL subset and print",{ sdfl2 <- subset(sdfl, dsex=="Male") expect_equal(capture.output(print(sdfl2)), printREF) d1 <- dim(sdfl2) expect_equal(d1$nrow[1], nrow(subset(sdfA, dsex=="Male"))) expect_equal(d1$ncol[3], ncol(subset(sdfC, dsex=="Female"))) expect_equal(d1, dim(subset(sdfl, eval("dsex == \"Male\""), inside = TRUE))) expect_warning(sdfl_e <- subset(sdfl, dsex1 == "Male")) expect_equal(sdfl_e, NULL) sdfE <- "String" sdfl_error <- edsurvey.data.frame.list(list(sdfE, sdfB, sdfC, sdfE), labels=c("first E locations", "B locations", "C locations", "second E locations")) sdfl_ref <- subset(edsurvey.data.frame.list(list(sdfB,sdfC), labels = c("B locations","C locations")), dsex == "Male") expect_warning(sdfl_error_subset <- subset(sdfl_error, dsex == 'Male')) expect_equal(dim(sdfl_error_subset), dim(sdfl_ref)) expect_equal(sdfl_error_subset$covs, sdfl_ref$covs) }) context("ESDFL lm.sdf") test_that("ESDFL lm.sdf",{ et1 <- lm.sdf(composite ~ b017451 + dsex, sdfl, jrrIMax=Inf) et1D <- lm.sdf(composite ~ b017451 + dsex, sdfD, jrrIMax=Inf) et1s <- capture.output(summary(et1)) et1Ds <- capture.output(summary(et1D)) expect_equal(rev(et1s)[1:length(et1Ds)], rev(et1Ds)) expect_equal(coef(et1)[,4], coef(et1D)) et1p <- capture.output(print(et1)) et1Dp <- capture.output(print(et1D)) expect_equal(rev(et1p)[1:2], rev(et1Dp)) }) context("ESDFL percentile") test_that("ESDFL percentile",{ expect_known_value(pct3 <- percentile("composite", 50, sdfl, pctMethod = 'unbiased'), "pct3.rds", update=FALSE) pct3C <- percentile("composite", 50, sdfC, pctMethod = 'unbiased') expect_equal(unlist(pct3C[,,drop=TRUE]), unlist(pct3[3,names(pct3C),drop=TRUE])) }) context("ESDFL same survey") test_that("ESDFL same survey",{ expect_true(!EdSurvey:::sameSurvey(sdfA, sdfB)) expect_true(EdSurvey:::sameSurvey(sdf, sdfA)) expect_true(EdSurvey:::sameSurvey(sdfl[[1]][[4]], sdfD)) }) context("ESDFL append") test_that("ESDFL append", { sdfl1a <- edsurvey.data.frame.list(list(sdfA, sdfB), labels=c("A locations", "B locations")) sdfl1b <- edsurvey.data.frame.list(list(sdfC, sdfD), labels=c("C locations", "D locations")) sdfl1a_rev<- edsurvey.data.frame.list(list(sdfB, sdfA), labels=c("B locations", "A locations")) sdfl1b_rev <- edsurvey.data.frame.list(list(sdfD, sdfC), labels=c("D locations", "C locations")) sdfl2 <- edsurvey.data.frame.list(list(sdfA, sdfB, sdfC, sdfD), labels=c("A locations", "B locations", "C locations", "D locations")) sdfl2_rev <- edsurvey.data.frame.list(list(sdfD, sdfC, sdfB, sdfA), labels=c("D locations", "C locations", "B locations", "A locations")) sdfl3 <- append.edsurvey.data.frame.list( append.edsurvey.data.frame.list(sdfl1a, sdfC, labelsB = "C locations"), sdfD, labelsB = "D locations") sdfl4 <- append.edsurvey.data.frame.list(sdfl1a, sdfl1b) sdfl5 <- append.edsurvey.data.frame.list(sdfl1b_rev, sdfl1a_rev) expect_true(identical(sdfl2, sdfl3)) expect_true(identical(sdfl2, sdfl4)) expect_true(identical(sdfl2_rev, sdfl5)) })
harvard.dir <- '//mdabam1/bioinfo/Public/prostate-meta/Harvard' harvard.data <- read.table(file.path(harvard.dir, 'HarvardUpdatedDataAndAnnotation.txt'), header=TRUE, sep='\t', row.names=2) harvard.genes <- harvard.data[, 2:3] harvard.data <- harvard.data[, 4:ncol(harvard.data)] harvard.clin <- read.table(file.path(harvard.dir, 'Harvard-clinical-new.txt'), header=TRUE, sep='\t', row.names=NULL, comment='', quote='') dimnames(harvard.clin)[[1]] <- as.character(harvard.clin$Sample.ID) tumor <- dimnames(harvard.data)[[2]][51:102] harvard.info <- data.frame(sample=factor(dimnames(harvard.data)[[2]]), status=factor(rep(c('normal', 'cancer'), times=c(50,52))), gleason=factor(paste('G', c(rep(0, 50), as.character(harvard.clin[tumor, 'GS'])), sep=''))) rm(tumor) plot(t(harvard.data[1,])) harvard.tr2 <- TailRankTest(logb(harvard.data, 2), harvard.info$status=='normal', direction='two') summary(harvard.tr2) x <- gene.info$Cluster.ID[as.logical(tr2)] y1 <- as.character(gene.info$Cluster.ID) z1 <- is.element(y1,x) & y1 != '' y <- as.character(harvard.genes[,1]) z <- is.element(y, x) & y != '' w <- harvard.genes[as.logical(harvard.tr2), 1] z2 <- is.element(y1,w) & y1 != ''
svc <- paws::mturk()
hasFileSuffix = function(filepath, suffix) { if (substr(suffix,1,1) != '.') suffix = paste0('.', suffix) filepath = tolower(filepath) suffix = tolower(suffix) return(suffix == substring(filepath, first = nchar(filepath) - nchar(suffix) + 1)) } removeSuffix = function(filepath) { gsub("(.*)\\..*$", "\\1", filepath) } longestCommonPrefix = function(strings) { strings = as.character(strings) if (length(strings) == 0) return("") if (length(strings) == 1) return(strings[1]) min_len = min(sapply(strings, nchar)) if (min_len == 0) return ("") i = 2 for(i in 1:(min_len+1)) { if (i > min_len) next; chars = substring(strings, i, i) if (length(unique(chars)) > 1) { break; } } if (i==1) return("") return(substr(strings[1], 1, i-1)) } longestCommonSuffix = function(strings) { strings_rev = sapply(lapply(strsplit(strings, NULL), rev), paste, collapse="") r = longestCommonPrefix(strings_rev) r_rev = sapply(lapply(strsplit(r, NULL), rev), paste, collapse="") return (r_rev) } delLCP <- function(x, min_out_length = 0, add_dots = FALSE) { x = as.character(x) lcp = nchar(longestCommonPrefix( x )) if (min_out_length > 0) { minLen = min(nchar(x)) if (lcp >= minLen - min_out_length) { lcp = max(minLen - min_out_length, 0) if (lcp <= 2 & add_dots) return(x) } } x = sapply(x, substring, lcp+1) if (add_dots) x = paste0("..", x) return (x) } delLCS <- function(x) { lcs = nchar(longestCommonSuffix( x )) x = sapply(x, function(v) substr(v, 1, nchar(v)-lcs)) return (x) } lcpCount <- function(x) { lcp = nchar(longestCommonPrefix( x )) return (lcp) } lcsCount <- function(x) { lcs = nchar(longestCommonSuffix( x )) return(lcs) } LCS <- function(s1, s2) { if (nchar(s1)==0 || nchar(s2)==0) return("") v1 <- unlist(strsplit(s1,split="")) v2 <- unlist(strsplit(s2,split="")) num <- matrix(0, nchar(s1), nchar(s2)) maxlen <- 0 pstart = 0 for (i in 1:nchar(s1)) { for (j in 1:nchar(s2)) { if (v1[i] == v2[j]) { if ((i==1) || (j==1)) { num[i,j] <- 1 } else { num[i,j] <- 1+num[i-1,j-1] } if (num[i,j] > maxlen) { maxlen <- num[i,j] pstart = i-maxlen+1 } } } } return (substr(s1, pstart, pstart+maxlen-1)) } LCSn = function(strings, min_LCS_length = 0) { if (min(nchar(strings)) < min_LCS_length) return(""); if (length(strings) <= 1) return (strings) idx_ref = which(nchar(strings)==min(nchar(strings)))[1] strings_other = strings[-idx_ref] candidates = unique(sapply(strings_other, LCS, strings[idx_ref])) candidates if (length(candidates) == 1) { if (nchar(candidates[1]) < min_LCS_length) return("") else return (candidates[1]) } cand_short = candidates[nchar(candidates) == min(nchar(candidates))] solutions = unique(sapply(cand_short, function(cand) LCSn(c(cand, strings_other)))) idx_sol = which(nchar(solutions)==max(nchar(solutions)))[1]; return (solutions[idx_sol]) } simplifyNames = function(strings, infix_iterations = 2, min_LCS_length = 7, min_out_length = 7) { if (min_LCS_length<6) stop( "simplifyNames(): param 'min_LCS_length' must be 6 at least.") for (it in 1:infix_iterations) { lcs = LCSn(strings, min_LCS_length=min_LCS_length) if (nchar(lcs)==0) return (strings) strings_i = sub(paste0("(.*)", gsub("([.|()\\^{}+$*?]|\\[|\\])", "\\\\\\1", lcs), "(.*)"), paste0("\\1" , ifelse(substring(lcs,1,2) == "..", "", substring(lcs,1,2)) , ".." , ifelse(substring(lcs, nchar(lcs)-1) == "..", "", substring(lcs, nchar(lcs)-1)) , "\\2"), strings) if (min(nchar(strings_i)) < min_out_length) return(strings) strings = strings_i } return (strings) } shortenStrings = function(x, max_len = 20, verbose = TRUE, allow_duplicates = FALSE) { if (any(duplicated(x)) & !allow_duplicates) stop("Duplicated input given to 'shortenStrings'!\n ", paste(x, collapse="\n ")) idx = nchar(x) > max_len xr = x xr[idx] = paste0(substr(x[idx], 1, max_len-2), "..") if (!allow_duplicates & any(duplicated(xr))) { xr[idx] = paste0("..", sapply(x[idx], function(s) substr(s, nchar(s)-max_len+2, nchar(s)))) if (any(duplicated(xr))) { warning("Duplicated output produced by 'shortenStrings'!\n ", paste(xr, collapse="\n "), "\nPlease rename your items (make them shorter and less similar)") return(x) } } if (verbose & any(idx)) { cat("The following labels will be shortened to ease plotting:\n") cat(paste0(" ", paste(x[idx], collapse="\n "))) cat("\n") } return (xr) } supCount <- function(x, prefix_l=1) { max_length = max(nchar(x)) while (prefix_l < max_length) { dups = duplicated(sapply(x, substr, 1, prefix_l), NA) if (sum(dups)==0) { break; } prefix_l = prefix_l + 1 } return (prefix_l) } correctSetSize = function(item_count, initial_set_size) { blocks = seq(from = 1, to = item_count, by = initial_set_size) blockcount = length(blocks) lastblocksize = item_count - tail(blocks, n = 1) + 1 if (lastblocksize < initial_set_size * 0.5 & blockcount > 1) { blockcount = blockcount - 1 } set_size = ceiling(item_count / blockcount) return (set_size) } byX <- function(data, indices, subset_size = 5, FUN, sort_indices = TRUE, ...) { stopifnot(subset_size > 0) stopifnot(nrow(data) == length(indices)) groups = unique(indices) if (sort_indices) { groups = sort(groups) } blocks = seq(from = 1, to = length(groups), by = subset_size) result = lapply(blocks, function(x) { range = x:(min(x+subset_size-1, length(groups))) lns = indices %in% groups[range]; subset = droplevels(data[lns, , drop = FALSE]) rownames(subset) = rownames(data)[lns] r = FUN(subset, ...) flush.console() return (r) }) return (result) } byXflex <- function(data, indices, subset_size = 5, FUN, sort_indices = TRUE, ...) { stopifnot(subset_size>0) groups = unique(indices) subset_size = correctSetSize(length(groups), subset_size) return (byX(data, indices, subset_size, FUN, sort_indices, ...)) } assignBlocks = function(values, set_size = 5, sort_values = TRUE) { groups = unique(values) set_size = correctSetSize(length(groups), set_size) if (sort_values) { groups = sort(groups) } blocks = seq(from=1, to=length(groups), by=set_size) result = rep(NA, length(values)) for (x in 1:length(blocks)) { range = blocks[x]:(min(blocks[x]+set_size-1, length(groups))) lns = values %in% groups[range]; result[lns] = x } return (result) } grepv = function(reg, data, ...) { return (grep(reg, data, value = TRUE, ...)) } pastet = function(...) { paste(..., sep="\t") } pasten = function(...) { paste(..., sep="\n") } CV = function(x){sd(x) / mean(x)} RSD = function(x){CV(x)*100} del0 = function(x) { x[x==0] = NA return(x) } repEach = function(x, n) { stopifnot(length(x) == length(n)) r = unlist( sapply(1:length(x), function(i) rep(x[i], each=n[i])) ) return(r) } getMaxima = function(x, thresh_rel = 0.2) { pos = rep(FALSE, length(x)) thresh_abs = max(x, na.rm = TRUE) * thresh_rel x_noNA = na.omit(x) if (length(x_noNA) == 0) return(pos) last = x_noNA[1] i = which(last == x)[1] last_nonNA_i = i up = TRUE while (i < length(x)) { i = i + 1; if (is.na(x[i])) next; if (last < x[i] && !up) { up = !up } else if (last > x[i] && up) { up = !up if (x[last_nonNA_i]>=thresh_abs) pos[last_nonNA_i] = TRUE } last = x[i] last_nonNA_i = i } if (up) pos[last_nonNA_i] = TRUE return (pos) } mosaicize = function(data) { stopifnot(ncol(data)==2) lev_var1 = length(unique(data[, 1])) ct.data = as.data.frame(prop.table(table(data[, 1], data[, 2]))) ct.data$Margin_var1 = prop.table(table(data[, 1])) ct.data$Var2_height = ct.data$Freq / ct.data$Margin_var1 ct.data$Var1_center = c(0, cumsum(ct.data$Margin_var1)[(1:lev_var1) -1]) + ct.data$Margin_var1 / 2 return (ct.data) } `%+%` = function(a, b) { return (paste(a, b, sep="")) } renameFile = function(f_names, mapping) { if (all(f_names %in% mapping$from)) { f_new = mapping$to[match(f_names, mapping$from)] f_new = factor(f_new, levels=mapping$to) } else if (all(f_names %in% mapping$to)) { f_new = mapping$from[match(f_names, mapping$to)] f_new = factor(f_new, levels=mapping$from) } else { stop("Error in renameFile: filenames cannot be found in mapping!") } return (f_new) } appendEnv = function(env_name, v, v_name = NULL) { e = eval.parent(as.name(env_name), n=3) e$.counter <- e$.counter + 1 e[[sprintf("%04d",e$.counter)]] <- v return(TRUE) } thinOut = function(data, filterColname, binsize) { nstart = nrow(data) data = data[!duplicated(data[, filterColname]), ] if (is.unsorted(data[, filterColname])) data = data[order(data[, filterColname]), ] local_deltas = c(0, diff(data[, filterColname])) ld_cs = cumsum(local_deltas) data = data[!duplicated(round(ld_cs / binsize)),] return(data) } thinOutBatch = function(data, filterColname, batchColname, binCount = 1000) { binsize = (max(data[, filterColname], na.rm=TRUE) - min(data[, filterColname], na.rm=TRUE)) / binCount r = plyr::ddply(data, batchColname, thinOut, filterColname, binsize) return (r) } getAbundanceClass = function(x) { r = data.frame(x = x) r$x_diff = round(r$x - min(r$x)) r$x_diff_fac = as.numeric(factor(r$x_diff)) cc = length(unique(r$x_diff)) if (cc==1) lvls = "mid" if (cc==2) lvls = c("low", "high") if (cc==3) lvls = c("low", "mid", "high") if (cc==4) lvls = c("low", "low-mid", "mid-high", "high") if (cc>4) { lvls = 1:max(r$x_diff_fac) lvls[1] = "low" lvls[length(lvls)] = "high" } r$x_cl = lvls[r$x_diff_fac] r$x_cl = factor(r$x_cl, levels=lvls, ordered=TRUE) r return(r$x_cl) } getReportFilenames = function(folder, report_name_has_folder = TRUE, mzTab_filename = NULL) { pv = try(utils::packageVersion("PTXQC")) if (inherits(pv, "try-error")) pv = "_unknown" report_version = paste0("v", pv) extra_folderRef = "" folders = rev(unlist(strsplit(normalizePath(folder, winslash = .Platform$file.sep), split=.Platform$file.sep))) while (length(folders)){ if (!grepl(":", folders[1]) & folders[1]!="txt") { extra_folderRef = paste0("_", folders[1]) break; } else folders = folders[-1] } report_file_simple = paste0(folder, .Platform$file.sep, "report_", report_version) if (!is.null(mzTab_filename) && nchar(mzTab_filename) > 0) { report_file_simple = paste0(report_file_simple, "_", gsub("\\.mzTab$", "", basename(mzTab_filename), ignore.case = TRUE)) } if (report_name_has_folder) report_file_prefix = paste0(report_file_simple, extra_folderRef) else report_file_prefix = report_file_simple fh = list(yaml_file = paste0(report_file_prefix, ".yaml"), heatmap_values_file = paste0(report_file_prefix, "_heatmap.txt"), R_plots_file = paste0(report_file_prefix, "_plots.Rdata"), filename_sorting = paste0(report_file_prefix, "_filename_sort.txt"), mzQC_file = paste0(report_file_prefix, ".mzQC"), log_file = paste0(report_file_prefix, ".log"), report_file_prefix = report_file_prefix, report_file_PDF = paste0(report_file_prefix, ".pdf"), report_file_HTML = paste0(report_file_prefix, ".html") ) return (fh) } getProteinCounts = function(df_evd) { required_cols = c("protein.group.ids", "fc.raw.file", "is.transferred") if (!all(required_cols %in% colnames(df_evd))) { stop("getProteinCounts(): Missing columns!") } reportMTD = any(df_evd$is.transferred) prot_counts = plyr::ddply(df_evd, "fc.raw.file", .fun = function(x, reportMTD) { x$group_mtdinfo = paste(x$protein.group.ids, x$is.transferred, sep="_") xpro = x[!duplicated(x$group_mtdinfo),] p_groups = lapply(as.character(xpro$protein.group.ids), function(x) { return (strsplit(x, split=";", fixed=TRUE)) }) pg_set_genuineUnique = unique(unlist(p_groups[!xpro$is.transferred])) pg_set_allMBRunique = unique(unlist(p_groups[xpro$is.transferred])) pg_count_GenAndMBR = length(intersect(pg_set_allMBRunique, pg_set_genuineUnique)) pg_count_newMBR = length(pg_set_allMBRunique) - pg_count_GenAndMBR pg_count_onlyGenuine = length(pg_set_genuineUnique) - pg_count_GenAndMBR if (reportMTD) { df = data.frame(counts = c(pg_count_onlyGenuine, pg_count_GenAndMBR, pg_count_newMBR), category = c("genuine (exclusive)", "genuine + transferred", "transferred (exclusive)"), MBRgain = c(NA, NA, pg_count_newMBR / (pg_count_onlyGenuine + pg_count_GenAndMBR) * 100)) } else { df = data.frame(counts = c(pg_count_onlyGenuine), category = c("genuine"), MBRgain = NA) } return (df) }, reportMTD = reportMTD) return (prot_counts) } getPeptideCounts = function(df_evd) { required_cols = c("fc.raw.file", "modified.sequence", "is.transferred") if (!all(required_cols %in% colnames(df_evd))) { stop("getPeptideCounts(): Missing columns!") } reportMTD = any(df_evd$is.transferred) pep_counts = plyr::ddply(df_evd, "fc.raw.file", .fun = function(x, reportMTD) { x <<- x pep_set_genuineUnique = unique(x$modified.sequence[!x$is.transferred]) pep_set_allMBRunique = unique(x$modified.sequence[x$is.transferred]) pep_count_GenAndMBR = length(intersect(pep_set_genuineUnique, pep_set_allMBRunique)) pep_count_newMBR = length(pep_set_allMBRunique) - pep_count_GenAndMBR pep_count_onlyGenuine = length(pep_set_genuineUnique) - pep_count_GenAndMBR if (reportMTD) { df = data.frame(counts = c(pep_count_onlyGenuine, pep_count_GenAndMBR, pep_count_newMBR), category = c("genuine (exclusive)", "genuine + transferred", "transferred (exclusive)"), MBRgain = c(NA, NA, pep_count_newMBR / (pep_count_onlyGenuine + pep_count_GenAndMBR) * 100)) } else { df = data.frame(counts = c(pep_count_onlyGenuine), category = c("genuine"), MBRgain = NA) } return (df) }, reportMTD = reportMTD) return (pep_counts) } wait_for_writable = function(filename, prompt_text = paste0("The file '", filename, "' is not writable. Please close all applications using this file. Press '", abort_answer, "' to abort!"), abort_answer = "n") { while(TRUE) { is_writeable = try({ f = file(filename, open="a"); close(f) }, silent = TRUE ) if (inherits(is_writeable, "try-error")) { if (interactive()) { r = invisible(readline(prompt = prompt_text)) if (r == abort_answer) { return (FALSE) } } else { return(FALSE) } } else { return (TRUE) } } return (FALSE) } getECDF = function(samples, y_eval = (1:100)/100) { inv_ecdf <- function(f){ x <- environment(f)$x y <- environment(f)$y approxfun(y, x) } ec = ecdf(samples) iec = inv_ecdf(ec) x_eval = iec(y_eval) r = data.frame(x = x_eval, y = y_eval) return (r) } peakWidthOverTime = function(data, RT_bin_width = 2) { r = range(data$retention.time, na.rm = TRUE) brs = seq(from = r[1], to = r[2] + RT_bin_width, by = RT_bin_width) data$bin = findInterval(data$retention.time, brs, all.inside = TRUE) retLStats = plyr::ddply(data, "bin", .fun = function(xb) { data.frame(RT = brs[xb$bin[1]], peakWidth = median(xb$retention.length, na.rm = TRUE)) }) return(retLStats) } getMetricsObjects = function(DEBUG_PTXQC = FALSE) { if (DEBUG_PTXQC) { lst_qcMetrics_str = ls(sys.frame(which = 0), pattern="qcMetric_") } else { lst_qcMetrics_str = ls(name = getNamespace("PTXQC"), pattern="qcMetric_") } if (length(lst_qcMetrics_str) == 0) stop("getMetricsObjects(): No metrics found! Very weird!") lst_qcMetrics = sapply(lst_qcMetrics_str, function(m) { q = get(m) if (class(q) %in% "refObjectGenerator"){ return(q$new()) } return(NULL) }) return(lst_qcMetrics) } darken = function(color, factor=0.8){ dark_col = grDevices::rgb(t(grDevices::col2rgb(color) * factor), maxColorValue=255) return(dark_col) } checkEnglishLocale = function(df_evd) { if (!checkInput(c("charge"), df_evd)) return(TRUE) if (any(df_evd$charge < 0)){ return (FALSE) } else return (TRUE) }
GMerrorsar <- function( formula, data = list(), listw, na.action=na.fail, zero.policy=NULL, method="nlminb", arnoldWied=FALSE, control=list(), pars=NULL, scaleU=FALSE, verbose=NULL, legacy=FALSE, se.lambda=TRUE, returnHcov=FALSE, pWOrder=250, tol.Hcov=1.0e-10) { if (is.null(verbose)) verbose <- get("verbose", envir = .spatialregOptions) stopifnot(is.logical(verbose)) if (is.null(zero.policy)) zero.policy <- get("zeroPolicy", envir = .spatialregOptions) stopifnot(is.logical(zero.policy)) if (!inherits(formula, "formula")) formula <- as.formula(formula) mt <- terms(formula, data = data) mf <- lm(formula, data, na.action=na.action, method="model.frame") na.act <- attr(mf, "na.action") if (!is.null(na.act)) { subset <- !(1:length(listw$neighbours) %in% na.act) listw <- subset(listw, subset, zero.policy=zero.policy) } if (!inherits(listw, "listw")) stop("No neighbourhood list") y <- model.extract(mf, "response") if (any(is.na(y))) stop("NAs in dependent variable") x <- model.matrix(mt, mf) if (any(is.na(x))) stop("NAs in independent variable") if (NROW(x) != length(listw$neighbours)) stop("Input data and neighbourhood list have different dimensions") lm.base <- lm(y ~ x - 1) aliased <- is.na(coefficients(lm.base)) cn <- names(aliased) names(aliased) <- substr(cn, 2, nchar(cn)) if (any(aliased)) { nacoef <- which(aliased) x <- x[,-nacoef] } ols <- lm(y ~ x - 1) ukp <- residuals(ols) vvo <- .kpwuwu(listw, ukp, zero.policy=zero.policy, arnoldWied=arnoldWied, X=x) if (is.null(pars)) { scorr <- c(crossprod(lag.listw(listw, ukp, zero.policy=zero.policy), ukp) / crossprod(ukp, ukp)) scorr <- scorr / (sum(unlist(listw$weights)) / length(ukp)) if (scaleU) ukp <- scale(ukp) pars <- c(scorr, var(ukp)) } if (length(pars) !=2L || !is.numeric(pars)) stop("invalid starting parameter values") vv <- .kpwuwu(listw, ukp, zero.policy=zero.policy, arnoldWied=arnoldWied, X=x) if (method == "nlminb") optres <- nlminb(pars, .kpgm, v=vv, verbose=verbose, control=control) else optres <- optim(pars, .kpgm, v=vv, verbose=verbose, method=method, control=control) if (optres$convergence != 0) warning(paste("convergence failure:", optres$message)) lambda <- optres$par[1] names(lambda) <- "lambda" GMs2 <- optres$par[2] lambda.se <- NULL wy <- lag.listw(listw, y, zero.policy=zero.policy) if (any(is.na(wy))) stop("NAs in lagged dependent variable") n <- NROW(x) m <- NCOL(x) xcolnames <- colnames(x) K <- ifelse(xcolnames[1] == "(Intercept)", 2, 1) if (any(is.na(wy))) stop("NAs in lagged dependent variable") if (m > 1) { WX <- matrix(nrow=n,ncol=(m-(K-1))) for (k in K:m) { wx <- lag.listw(listw, x[,k], zero.policy=zero.policy) if (any(is.na(wx))) stop("NAs in lagged independent variable") WX[,(k-(K-1))] <- wx } } if (K == 2) { wx1 <- as.double(rep(1, n)) wx <- lag.listw(listw, wx1, zero.policy=zero.policy) if (m > 1) WX <- cbind(wx, WX) else WX <- matrix(wx, nrow=n, ncol=1) } colnames(WX) <- xcolnames rm(wx) lm.target <- lm(I(y - lambda*wy) ~ I(x - lambda*WX) - 1) coef.lambda <- coefficients(lm.target) names(coef.lambda) <- xcolnames if (legacy) { SSE <- deviance(lm.target) s2 <- SSE/n p <- lm.target$rank rest.se <- (summary(lm.target)$coefficients[,2])*sqrt((n-p)/n) r <- as.vector(residuals(lm.target)) fit <- as.vector(y - r) vcov <- vcov(lm.target) } else { fit <- as.vector(x %*% coef.lambda) r <- as.vector(y - fit) e <- residuals(ols) et <- e - lambda*lag.listw(listw, e, zero.policy=zero.policy) SSE <- c(crossprod(et)) s2 <- SSE/n Bx <- x - lambda*WX Qr <- qr(Bx/(sqrt(s2))) invxpx <- chol2inv(Qr$qr) rest.se <- sqrt(diag(invxpx)) vcov <- invxpx } W <- as(listw, "CsparseMatrix") lambda.se <- NULL if (!arnoldWied && se.lambda) { KP04a <- (1/n) * vvo$trwpw KP04c <- sqrt(1/(1+(KP04a*KP04a))) KP04se <- vvo$wu KP04de <- vvo$wwu KP04eo <- residuals(ols) J <- matrix(0.0, ncol=2, nrow=2) J[1,1] <- 2*KP04c*(crossprod(KP04de, KP04se) - KP04a*crossprod(KP04se, KP04eo)) J[2,1] <- crossprod(KP04de, KP04eo) + crossprod(KP04se) J[1,2] <- - KP04c*(crossprod(KP04de) - KP04a*crossprod(KP04se)) J[2,2] <- - crossprod(KP04de, KP04se) J <- (1/n)*J J1 <- J %*% matrix(c(1, 2*lambda), ncol=1) A2N <- crossprod(W) A1N <- KP04c*(A2N - KP04a*as_dsCMatrix_I(n)) A1NA1Np <- A1N+t(A1N) A2NA2Np <- A2N+t(A2N) trA1A1 <- sum(colSums(t(A1NA1Np)*A1NA1Np)) trA1A2 <- sum(colSums(crossprod(A2NA2Np, A1NA1Np))) trA2A2 <- sum(colSums(crossprod(A2NA2Np, A2NA2Np))) sigh <- s2*s2 phihat <- matrix(0.0, ncol=2, nrow=2) phihat[1,1] <- (sigh)*trA1A1/(2*n) phihat[1,2] <- (sigh)*trA1A2/(2*n) phihat[2,1] <- (sigh)*trA1A2/(2*n) phihat[2,2] <- (sigh)*trA2A2/(2*n) JJI <- 1/crossprod(J1) omega <- JJI * t(J1) %*% phihat %*% J1 * JJI lambda.se <- sqrt(omega/n) } call <- match.call() names(r) <- names(y) names(fit) <- names(y) Hcov <- NULL if (returnHcov) { pp <- ols$rank p1 <- 1L:pp R <- chol2inv(ols$qr$qr[p1, p1, drop = FALSE]) B <- tcrossprod(R, x) B <- as(powerWeights(W=W, rho=lambda, order=pWOrder, X=B, tol=tol.Hcov), "matrix") C <- x %*% R C <- as(powerWeights(W=t(W), rho=lambda, order=pWOrder, X=C, tol=tol.Hcov), "matrix") Hcov <- B %*% C attr(Hcov, "method") <- "Matrix" } ret <- structure(list(type= "ERROR", lambda=lambda, coefficients=coef.lambda, rest.se=rest.se, s2=s2, SSE=SSE, parameters=(m+2), lm.model=ols, call=call, residuals=r, lm.target=lm.target, fitted.values=fit, formula=formula, aliased=aliased, zero.policy=zero.policy, vv=vv, optres=optres, pars=pars, Hcov=Hcov, legacy=legacy, lambda.se=lambda.se, arnoldWied=arnoldWied, GMs2=GMs2, scaleU=scaleU, vcov=vcov), class=c("Gmsar")) if (zero.policy) { zero.regs <- attr(listw$neighbours, "region.id")[which(card(listw$neighbours) == 0)] if (length(zero.regs) > 0L) attr(ret, "zero.regs") <- zero.regs } if (!is.null(na.act)) ret$na.action <- na.act ret } residuals.Gmsar <- function(object, ...) { if (is.null(object$na.action)) object$residuals else napredict(object$na.action, object$residuals) } deviance.Gmsar <- function(object, ...) { deviance(object$lm.target) } coef.Gmsar <- function(object, ...) { ret <- c(object$coefficients, object$lambda) ret } fitted.Gmsar <- function(object, ...) { if (is.null(object$na.action)) object$fitted.values else napredict(object$na.action, object$fitted.values) } print.Gmsar <- function(x, ...) { cat("\nCall:\n") print(x$call) cat("\n") cat("\nCoefficients:\n") print(coef(x)) invisible(x) } summary.Gmsar <- function(object, correlation = FALSE, Hausman=FALSE, ...) { object$coeftitle <- "(GM standard errors)" object$Coef <- cbind(object$coefficients, object$rest.se, object$coefficients/object$rest.se, 2*(1-pnorm(abs(object$coefficients/object$rest.se)))) colnames(object$Coef) <- c("Estimate", "Std. Error", "z value", "Pr(>|z|)") rownames(object$Coef) <- names(object$coefficients) if (Hausman && !is.null(object$Hcov)) { object$Haus <- Hausman.test(object) } structure(object, class=c("summary.Gmsar", class(object))) } coef.summary.Gmsar <- function(object, ...) object$Coef print.summary.Gmsar<-function (x, digits = max(5, .Options$digits - 3), signif.stars = FALSE, ...) { cat("\nCall:", deparse(x$call), sep = "", fill = TRUE) cat("\nResiduals:\n") resid <- residuals(x) nam <- c("Min", "1Q", "Median", "3Q", "Max") rq <- if (length(dim(resid)) == 2L) structure(apply(t(resid), 1, quantile), dimnames = list(nam, dimnames(resid)[[2]])) else structure(quantile(resid), names = nam) print(rq, digits = digits, ...) if(x$type=="SARAR") cat("\nType: GM SARAR estimator") else cat("\nType: GM SAR estimator") if (x$arnoldWied) cat(" (Arnold and Wied (2010) moment definitions)\n") else cat("\n") if (x$zero.policy) { zero.regs <- attr(x, "zero.regs") if (!is.null(zero.regs)) cat("Regions with no neighbours included:\n", zero.regs, "\n") } cat("Coefficients:", x$coeftitle, "\n") coefs <- x$Coef if (!is.null(aliased <- x$aliased) && any(x$aliased)) { cat(" (", table(aliased)["TRUE"], " not defined because of singularities)\n", sep = "") cn <- names(aliased) coefs <- matrix(NA, length(aliased), 4, dimnames = list(cn, colnames(x$Coef))) coefs[!aliased, ] <- x$Coef } printCoefmat(coefs, signif.stars = signif.stars, digits = digits, na.print = "NA") cat("\nLambda:", format(signif(x$lambda, digits))) if (!is.null(x$lambda.se)) { cat(" (standard error):", format(signif(x$lambda.se, digits))) cat(" (z-value):", format(signif(x$lambda/x$lambda.se, digits))) } cat("\n") cat("Residual variance (sigma squared): ", format(signif(x$s2, digits)), ", (sigma: ", format(signif(sqrt(x$s2), digits)), ")\n", sep = "") if (x$scaleU) cat("(scaled) ") cat("GM argmin sigma squared: ", format(signif(x$GMs2, digits)), "\n", sep = "") cat("Number of observations:", length(x$residuals), "\n") cat("Number of parameters estimated:", x$parameters, "\n") if (!is.null(x$Haus)) { cat("Hausman test: ", format(signif(x$Haus$statistic, digits)), ", df: ", format(x$Haus$parameter), ", p-value: ", format.pval(x$Haus$p.value, digits), "\n", sep = "") } cat("\n") invisible(x) } Hausman.test.Gmsar <- function(object, ..., tol=NULL) { if (!inherits(object, "Gmsar")) stop("not a Gmsar object") if (is.null(object$Hcov)) stop("Vo not available") fmeth <- "(approximate)" s2 <- object$s2 Vo <- s2 * object$Hcov Vs <- s2 * summary.lm(object$lm.target, correlation = FALSE)$cov.unscaled d <- coef(object$lm.model) - coef(object$lm.target) if (!is.null(tol)) VV <- try(solve((Vo - Vs), tol=tol)) else VV <- try(solve(Vo - Vs)) if (inherits(VV, "try-error")) { warning("(Vo - Vs) inversion failure") return(NULL) } statistic <- t(d) %*% VV %*% d attr(statistic, "names") <- "Hausman test" parameter <- length(d) attr(parameter, "names") <- "df" p.value <- 1 - pchisq(abs(statistic), parameter) method <- paste("Spatial Hausman test", fmeth) data.name <- strwrap(deparse(object$formula), exdent=4) if (length(data.name) > 1L) data.name <- paste(data.name, collapse="\n ") res <- list(statistic = statistic, parameter = parameter, p.value = p.value, method = method, data.name=data.name) class(res) <- "htest" res } impacts.Gmsar <- function(obj, ..., n=NULL, tr=NULL, R=NULL, listw=NULL, evalues=NULL, tol=1e-6, empirical=FALSE, Q=NULL) { stopifnot(obj$type == "SARAR") if (is.null(listw) && !is.null(obj$listw_style) && obj$listw_style != "W") stop("Only row-standardised weights supported") rho <- obj$coefficients[1] beta <- obj$coefficients[-1] icept <- grep("(Intercept)", names(beta)) iicept <- length(icept) > 0 if (iicept) { P <- matrix(beta[-icept], ncol=1) bnames <- names(beta[-icept]) } else { P <- matrix(beta, ncol=1) bnames <- names(beta) } p <- length(beta) if (is.null(n)) n <- length(obj$residuals) stopifnot(is.integer(n)) stopifnot(length(n) == 1) stopifnot(is.finite(n)) mu <- c(rho, beta) Sigma <- obj$secstep_var irho <- 1 drop2beta <- 1 res <- intImpacts(rho=rho, beta=beta, P=P, n=n, mu=mu, Sigma=Sigma, irho=irho, drop2beta=drop2beta, bnames=bnames, interval=NULL, type="lag", tr=tr, R=R, listw=listw, evalues=evalues, tol=tol, empirical=empirical, Q=Q, icept=icept, iicept=iicept, p=p, zero_fill=NULL, dvars=NULL) attr(res, "iClass") <- class(obj) res } .kpgm <- function(rhopar,v,verbose=FALSE) { vv <- v$bigG %*% c(rhopar[1],rhopar[1]^2,rhopar[2]) - v$litg value <- sum(vv^2) if (verbose) cat("function:", value, "lambda:", rhopar[1], "sig2:", rhopar[2], "\n") value } .kpwuwu <- function(listw, u, zero.policy=FALSE, arnoldWied=FALSE, X=NULL) { if (arnoldWied) { stopifnot(!is.null(X)) invXtX <- chol2inv(qr.R(qr(X))) W <- as(listw, "CsparseMatrix") WX <- W %*% X } n <- length(u) trwpw <- sum(unlist(listw$weights)^2) wu <- lag.listw(listw, u, zero.policy=zero.policy) wwu <- lag.listw(listw, wu, zero.policy=zero.policy) uu <- crossprod(u,u) uwu <- crossprod(u,wu) uwpuw <- crossprod(wu,wu) uwwu <- crossprod(u,wwu) wwupwu <- crossprod(wwu,wu) wwupwwu <- crossprod(wwu,wwu) bigG <- matrix(0,3,3) if (arnoldWied) { k <- ncol(X) uwpX <- crossprod(wu, X) upWX <- crossprod(u, WX) uwpWX <- crossprod(wu, WX) iXpXXpwu <- invXtX %*% t(uwpX) c22 <- wwu - WX %*% iXpXXpwu XiXpX <- X %*% invXtX WXpW <- t(WX) %*% W c23 <- trwpw - sum(diag(WXpW %*% XiXpX)) c32 <- crossprod(wu, wwu) - t(wu) %*% WX %*% iXpXXpwu c32 <- c32 - ((t(wu) %*% XiXpX %*% crossprod(X, wwu)) - (t(wu) %*% XiXpX %*% crossprod(X, WX) %*% iXpXXpwu)) bigG[,1] <- c(2*uwu, 2*as.vector(wwupwu - (uwpWX %*% iXpXXpwu)), as.vector(uwwu - (upWX %*% iXpXXpwu)) + (uwpuw - (uwpX %*% iXpXXpwu)))/n bigG[,2] <- - c(as.vector(uwpuw - (uwpX %*% iXpXXpwu)), as.vector(crossprod(c22)), as.vector(c32))/n bigG[,3] <- c(n-k, as.vector(c23), -as.vector(sum(diag(t(X) %*% (WX %*% invXtX)))))/n } else { bigG[,1] <- c(2*uwu, 2*wwupwu, (uwwu+uwpuw))/n bigG[,2] <- - c(uwpuw, wwupwwu, wwupwu) / n bigG[,3] <- c(1, trwpw/n, 0) } litg <- c(uu,uwpuw,uwu) / n list(bigG=bigG, litg=litg, trwpw=trwpw, wu=wu, wwu=wwu) } gstsls<-function (formula, data = list(), listw, listw2=NULL, na.action = na.fail, zero.policy = NULL, pars=NULL, scaleU=FALSE, control = list(), verbose = NULL, method = "nlminb", robust = FALSE, legacy = FALSE, W2X = TRUE ) { if (is.null(verbose)) verbose <- get("verbose", envir = .spatialregOptions) stopifnot(is.logical(verbose)) if (is.null(zero.policy)) zero.policy <- get.ZeroPolicyOption() stopifnot(is.logical(zero.policy)) if (!inherits(listw, "listw")) stop("The weights matrix is not a listw object") if (is.null(listw2)) listw2 <- listw else if (!inherits(listw2, "listw")) stop("No 2nd neighbourhood list") if (!inherits(formula, "formula")) formula <- as.formula(formula) mt <- terms(formula, data = data) mf <- lm(formula, data, na.action = na.fail, method = "model.frame") na.act <- attr(mf, "na.action") cl <- match.call() if (!is.null(na.act)) { subset <- !(1:length(listw$neighbours) %in% na.act) subset2 <- !(1:length(listw2$neighbours) %in% na.act) listw <- subset(listw, subset, zero.policy = zero.policy) listw2 <- subset(listw2, subset2, zero.policy = zero.policy) } y <- model.extract(mf, "response") x <- model.matrix(mt, mf) if (length(y) != nrow(x)) stop("x and y have different length") if (nrow(x) != length(listw$neighbours)) stop("Input data and weights have different dimension") if (any(is.na(y))) stop("NAs in dependent variable") if (any(is.na(x))) stop("NAs in independent variable") n <- nrow(x) k <- ncol(x) xcolnames <- colnames(x) K <- ifelse(xcolnames[1] == "(Intercept)" || all(x[, 1] == 1), 2, 1) wy <- lag.listw(listw, y, zero.policy = zero.policy) wy <- array(wy, c(length(y), 1L)) colnames(wy) <- ("Wy") if (any(is.na(wy))) stop("NAs in spatially lagged dependent variable") if (k > 1) { WX <- matrix(nrow = n, ncol = (k - (K - 1))) WWX <- matrix(nrow = n, ncol = (k - (K - 1))) for (i in K:k) { wx <- lag.listw(listw, x[, i], zero.policy = zero.policy) wwx <- lag.listw(listw, wx, zero.policy = zero.policy) if (any(is.na(wx))) stop("NAs in lagged independent variable") WX[, (i - (K - 1))] <- wx WWX[, (i - (K - 1))] <- wwx } } instr <- cbind(WX, WWX) firststep <- tsls(y = y, yend = wy, X = x, Zinst = instr, robust = robust, legacy = legacy) ukp <- residuals(firststep) if (is.null(pars)) { scorr <- c(crossprod(lag.listw(listw2, ukp, zero.policy=zero.policy), ukp)/crossprod(ukp, ukp)) scorr <- scorr/(sum(unlist(listw2$weights))/length(ukp)) if (scaleU) ukp <- scale(ukp) pars <- c(scorr, var(ukp)) } if (length(pars) != 2L || !is.numeric(pars)) stop("invalid starting parameter values") vv <- .kpwuwu(listw2, ukp, zero.policy = zero.policy, arnoldWied=FALSE, X=x) if (method == "nlminb") optres <- nlminb(pars, .kpgm, v = vv, verbose = verbose, control = control) else optres <- optim(pars, .kpgm, v = vv, verbose = verbose, method = method, control = control) if (optres$convergence != 0) warning(paste("convergence failure:", optres$message)) lambda <- optres$par[1] names(lambda) <- "lambda" GMs2 <- optres$par[2] lambda.se <- NULL w2y <- lag.listw(listw2, y) yt <- y - lambda * w2y xt <- x - lambda * lag.listw(listw2, x) wyt <- wy - lambda * lag.listw(listw2, wy) colnames(xt) <- xcolnames colnames(wyt) <- c("Rho_Wy") secstep <- tsls(y = yt, yend = wyt, X = xt, Zinst = instr, robust = robust, legacy = legacy) rho<-secstep$coefficients[1] coef.sac<-secstep$coefficients rest.se <- sqrt(diag(secstep$var)) rho.se <- sqrt(diag(secstep$var))[1] s2<-secstep$sse / secstep$df r<- secstep$residuals fit<- y - r SSE<- crossprod(r) call <- match.call() ret <- structure(list(type= "SARAR", lambda = lambda, coefficients = coef.sac, rest.se = rest.se, s2 = s2, SSE = SSE, parameters = (k + 3), lm.model = NULL, call = call, residuals = r, lm.target = NULL, fitted.values = fit, formula = formula, aliased = NULL, zero.policy = zero.policy, vv = vv, optres = optres, pars = pars, Hcov = NULL, lambda.se=lambda.se, arnoldWied=FALSE, GMs2=GMs2, scaleU=scaleU, secstep_var=secstep$var), class = c("Gmsar")) if (zero.policy) { zero.regs <- attr(listw$neighbours, "region.id")[which(card(listw$neighbours) == 0)] if (length(zero.regs) > 0L) attr(ret, "zero.regs") <- zero.regs } if (!is.null(na.act)) ret$na.action <- na.act ret } GMargminImage <- function(obj, lambdaseq, s2seq) { if (missing(lambdaseq)) { lamin <- obj$lambda-0.5 lamin <- ifelse(lamin < -1, -1, lamin) lamax <- obj$lambda+0.5 lamax <- ifelse(lamax >= 1, (1-.Machine$double.eps), lamax) lambdaseq <- seq(lamin, lamax, length.out=40) } if (missing(s2seq)) s2seq <- seq(0.5*obj$GMs2, 1.5*obj$GMs2, length.out=40) xy <- as.matrix(expand.grid(lambdaseq, s2seq)) vres <- apply(xy, 1, function(x) .kpgm(rhopar=x, v=obj$vv)) res <- matrix(vres, ncol=length(lambdaseq)) list(x=lambdaseq, y=s2seq, z=res) }
setPulse <- function(id = NULL, class = NULL, duration = 1, iteration = 5) { cssPulse <- paste0( "animation: pulse ", duration, "s; animation-iteration-count: ", iteration, "; " ) cssPulse <- if (!is.null(id)) { if (!is.null(class)) { paste0(" } else { paste0(" } } else { if (!is.null(class)) { paste0(".", class, " {", cssPulse, "}") } else { NULL } } extracss <- paste0( "@-webkit-keyframes pulse { 0% { -webkit-box-shadow: 0 0 0 0 rgba(204,169,44, 0.4); } 70% { -webkit-box-shadow: 0 0 0 10px rgba(204,169,44, 0); } 100% { -webkit-box-shadow: 0 0 0 0 rgba(204,169,44, 0); } } @keyframes pulse { 0% { -moz-box-shadow: 0 0 0 0 rgba(204,169,44, 0.4); box-shadow: 0 0 0 0 rgba(204,169,44, 0.4); } 70% { -moz-box-shadow: 0 0 0 10px rgba(204,169,44, 0); box-shadow: 0 0 0 10px rgba(204,169,44, 0); } 100% { -moz-box-shadow: 0 0 0 0 rgba(204,169,44, 0); box-shadow: 0 0 0 0 rgba(204,169,44, 0); } } " ) css <- paste(cssPulse, extracss) htmltools::tags$head( htmltools::tags$style(css) ) }
model_get_weights <- function(model) { UseMethod("model_get_weights") } model_get_weights.default <- function(model) { w <- tryCatch( stats::weights(model), error = function(e) { NULL } ) if (is.null(w) | length(w) == 0) { mf <- model %>% model_get_model_frame() if (!is.null(mf)) { if ("(weights)" %in% names(mf)) { w <- mf %>% purrr::pluck("(weights)") } else { w <- rep_len(1L, mf %>% nrow()) } } } if (is.matrix(w)) w <- c(w) w } model_get_weights.svyglm <- function(model) { stats::weights(model$survey.design) }
make.all.branches.mkn.pij <- function(cache, control) { k <- cache$info$k f.pij <- make.pij.mkn(cache$info, control) idx.tip <- cache$idx.tip n.tip <- cache$n.tip n <- length(cache$len) map <- t(sapply(1:k, function(i) (1:k) + (i - 1) * k)) idx.tip <- cbind(c(map[cache$states,]), rep(seq_len(n.tip), k)) len.uniq <- sort(unique(cache$len)) len.idx <- match(cache$len, len.uniq) children.C <- toC.int(t(cache$children)) order.C <- toC.int(cache$order) function(pars, intermediates, preset=NULL) { if ( !is.null(preset) ) stop("Preset values not allowed") pij <- f.pij(len.uniq, pars)[,len.idx] lq <- numeric(n) branch.init <- branch.base <- matrix(NA, k, n) storage.mode(branch.init) <- "numeric" ans <- matrix(pij[idx.tip], n.tip, k) q <- rowSums(ans) branch.base[,seq_len(n.tip)] <- t.default(ans/q) lq[seq_len(n.tip)] <- log(q) ans <- .C(r_mkn_core, k = as.integer(k), n = length(order.C) - 1L, order = order.C, children = children.C, pij = pij, init = branch.init, base = branch.base, lq = lq, NAOK=TRUE) list(init=ans$init, base=ans$base, lq=ans$lq, vals=ans$init[,cache$root], pij=pij) } } pij.mk2 <- function(len, pars) { q01 <- pars[3] q10 <- pars[2] x <- exp(-(q01+q10)*len) rbind((x*q01 + q10), (1 - x)*q10, (1 - x)*q01, (x*q10 + q01)) / (q01 + q10) } make.pij.mkn <- function(info, control) { if ( control$method == "mk2" ) return(pij.mk2) control <- check.control.ode(control) k <- info$k info <- list(name="mknpij", ny=k*k, np=k*k, idx.d=integer(0), derivs=make.derivs.mkn.pij(k)) pij.ode <- make.ode(info, control) yi <- diag(k) function(len, pars) pij.ode(yi, c(0, len), pars) } make.derivs.mkn.pij <- function(k) { force(k) function(t, y, pars) { Q <- matrix(pars, k, k) y <- matrix(y, k, k) ret <- Q %*% y dim(ret) <- NULL ret } }
initializeShinyInput <- function(shinyInput, elementId){ sprintf( "Shiny.inputBindings.bindingNames['shiny.%s'].binding.initialize(%s);", shinyInput, sprintf("document.getElementById('%s')", elementId) ) } isSlider <- function(x){ inherits(x, "shiny.tag") && length(x[["children"]]) == 2L && inherits(x[["children"]][[2L]], "shiny.tag") && identical(x[["children"]][[2L]][["attribs"]][["class"]], "js-range-slider") } evalHtmlDependencies <- function(x){ lapply(x, function(dep){ if(inherits(dep, "shiny.tag.function")) dep() else dep }) } makeScriptTag <- function(script){ if(inherits(script, "shiny.tag")){ shinyTag( name = "ScriptTag", attribs = c( script[["attribs"]], list(dangerouslySetInnerHTML = list("__html" = URLencode(script[["children"]][[1L]]))) ) ) }else{ Tag$ScriptTag( dangerouslySetInnerHTML = list("__html" = URLencode(script)) ) } } unclassComponent <- function(component, inputId, call){ if(!is.null(statesGroup <- component[["statesGroup"]])){ if(call == "setReactState"){ stop( "You cannot use a component with states in `setReactState`.", call. = FALSE ) } states <- component[["states"]] for(stateName in names(states)){ state <- states[[stateName]] if(!isJseval(state) && !isHook(state) && !isJSX(state)){ if(inherits(state, "html")){ states[[stateName]] <- list("__html" = URLencode(as.character(state))) }else if(isShinyTag(state)){ states[[stateName]] <- unclassComponent(state, inputId, "unclassComponent")[["component"]] } } } component[["states"]] <- URLencode(as.character( toJSON(states, auto_unbox = TRUE, null = "null", digits = NA) )) x <- vapply(states, function(s){ if(isJseval(s) || isHook(s) || isJSX(s)) "" else statesGroup }, character(1L)) x <- c(x, statesEnvir[[inputId]]) assign(inputId, x, envir = statesEnvir) } if(inherits(component, "shiny.tag.list")){ component <- do.call(Tag$Fragment, component) } RadioGroups <- dependencies <- NULL shinyOutput <- FALSE if(isSlider(component)){ dependencies <- evalHtmlDependencies(htmlDependencies(component)) id <- component[["children"]][[2L]][["attribs"]][["id"]] script <- initializeShinyInput("sliderInput", id) component <- Tag$Fragment( list("__html" = URLencode(as.character(component))), makeScriptTag(script) ) }else if( isShinyTag(component) && "class" %in% names(component[["attribs"]]) && grepl("shiny-date-input", component[["attribs"]][["class"]]) && !isTRUE(component[["dontprocess"]]) ){ dependencies <- evalHtmlDependencies(component[["children"]][[3L]]) component[["children"]] <- component[["children"]][c(1L,2L)] script <- initializeShinyInput("dateInput", component[["attribs"]][["id"]]) component[["dontprocess"]] <- TRUE component <- Tag$Fragment( component, makeScriptTag(script) ) }else if( inherits(component, "shiny.tag") && !is.null(htmlDependencies(component)) ){ dependencies <- evalHtmlDependencies(htmlDependencies(component)) depnames <- vapply(dependencies, `[[`, FUN.VALUE = character(1L), "name") if("selectize" %in% depnames){ id <- component[["children"]][[2L]][["children"]][[1L]][["attribs"]][["id"]] script <- initializeShinyInput("selectInput", id) htmltools::htmlDependencies(component) <- NULL component <- Tag$Fragment( component, makeScriptTag(script) ) }else if( grepl("shiny-date-range-input", component[["attribs"]][["class"]]) ){ script <- initializeShinyInput( "dateRangeInput", component[["attribs"]][["id"]] ) htmltools::htmlDependencies(component) <- NULL component <- Tag$Fragment( component, makeScriptTag(script) ) }else{ htmltools::htmlDependencies(component) <- NULL } }else if(!isChakraIcon(component) && grepl("Icon$", component[["name"]])){ if(component[["name"]] %notin% allIcons()){ stop( sprintf("Invalid icon '%s'.", component[["name"]]), call. = FALSE ) } } if( "icon" %in% names(component[["attribs"]]) && !isChakraIcon(icon <- component[["attribs"]][["icon"]]) ){ if(!isReactComponent(icon)){ stop( sprintf( "Invalid `icon` attribute in component '%s'.", component[["name"]] ), call. = FALSE ) } if(!grepl("Icon$", icon[["name"]])){ stop( sprintf( "Invalid `icon` attribute in component '%s'.", component[["name"]] ), call. = FALSE ) } if(icon[["name"]] %notin% chakraIcons()){ stop( sprintf( "Invalid `icon` attribute in component '%s'.", component[["name"]] ), sprintf("'%s' is not the name of a chakra icon.", icon[["name"]]), call. = FALSE ) } } for(attribname in names(component[["attribs"]])){ attrib <- component[["attribs"]][[attribname]] if(isString(attrib)){ component[["attribs"]][[attribname]] <- URLencode(attrib) } if(isReactComponent(attrib) && grepl("Icon$", attrib[["name"]])){ if(attrib[["name"]] %notin% allIcons()){ stop( sprintf("Invalid icon '%s'.", attrib[["name"]]), call. = FALSE ) } } } if(!is.null(component[["attribs"]][["children"]])){ component[["children"]] <- c(component[["children"]], list(component[["attribs"]][["children"]])) component[["attribs"]][["children"]] <- NULL } component[["attribs"]] <- lapply(component[["attribs"]], unclass) attribs <- component[["attribs"]] attribsNames <- names(attribs) if(isReactComponent(component) && "class" %in% attribsNames){ component[["attribs"]][["className"]] <- attribs[["class"]] component[["attribs"]][["class"]] <- NULL attribs <- component[["attribs"]] attribsNames <- names(attribs) } if( component[["name"]] %in% c("Button", "IconButton") && "className" %in% attribsNames && grepl("action-button", attribs[["className"]]) ){ if("id" %notin% attribsNames){ stop( "Buttons with the 'action-button' class must have an `id` attribute.", call. = FALSE ) } }else if( component[["name"]] %in% c("Button", "IconButton") && "value" %in% attribsNames ){ component[["attribs"]][["data-val"]] <- attribs[["value"]] component[["attribs"]][["value"]] <- NULL attribs <- component[["attribs"]] attribsNames <- names(attribs) } if( component[["name"]] %in% c("Button", "IconButton") && "action" %in% attribsNames ){ iconbutton <- component[["name"]] == "IconButton" component[["name"]] <- switch( attribs[["action"]], none = "Button", open = "OpenButton", cancel = "CancelButton", disable = "DisableButton", unmount = "UnmountingButton", close = "ClosingButton", remove = "RemoveButton", "Button" ) if(iconbutton) component[["name"]] <- sub("Button", "IconButton", component[["name"]]) component[["attribs"]][["action"]] <- NULL attribs <- component[["attribs"]] attribsNames <- names(attribs) }else if( component[["name"]] %in% c("Button", "IconButton") && "id" %in% attribsNames && "className" %notin% attribsNames ){ component[["attribs"]][["className"]] <- "action-button" attribs <- component[["attribs"]] attribsNames <- names(attribs) } if(component[["name"]] == "MenuItem"){ if("value" %notin% attribsNames){ stop( "`MenuItem` requires a `value` attribute.", call. = FALSE ) } component[["attribs"]][["data-val"]] <- attribs[["value"]] component[["attribs"]][["value"]] <- NULL attribs <- component[["attribs"]] attribsNames <- names(attribs) } if(sum(attribsNames == "class") > 1L){ component[["attribs"]][which(attribsNames == "class")] <- NULL component[["attribs"]][["class"]] <- do.call(paste, attribs[attribsNames == "class"]) attribs <- component[["attribs"]] attribsNames <- names(attribs) } if("class" %in% attribsNames && grepl("-output", attribs[["class"]])){ shinyOutput <- TRUE }else if( component[["name"]] == "input" && attribs[["type"]] %in% c("text", "number") && !is.null(attribs[["value"]]) ){ script <- sprintf( '$(" ) component[["attribs"]][["value"]] <- NULL component <- Tag$Fragment( component, makeScriptTag(script) ) }else if( component[["name"]] == "CheckboxGroup" ){ if(is.null(attribs[["id"]])){ stop( "Please provide an `id` attribute for the `CheckboxGroup`.", call. = FALSE ) } if(!is.null(defaultValue <- attribs[["defaultValue"]])){ defaultValue <- as.list(defaultValue) x <- unlist(component[["children"]]) values <- as.list(x[grep("value$", names(x))]) defaultValue <- intersect(defaultValue, values) if(length(defaultValue)){ component[["attribs"]][["defaultValue"]] <- defaultValue <- lapply(defaultValue, URLencode) }else{ component[["attribs"]][["defaultValue"]] <- NULL } } }else if( component[["name"]] == "RadioGroup" && !is.null(attribs[["value"]]) ){ RadioGroups <- list(attribs[["value"]]) names(RadioGroups) <- attribs[["id"]] component[["attribs"]][["value"]] <- NULL }else if( component[["name"]] == "script" ){ component <- makeScriptTag(component) }else if(component[["name"]] == "Menu"){ children <- vapply(component[["children"]], `[[`, character(1L), "name") if(!identical(children, c("MenuButton", "MenuList"))){ stop( "Invalid `Menu` component: ", "it must have two children, `MenuButton` and `MenuList`.", call. = FALSE ) } if("id" %notin% attribsNames){ stop( "A `Menu` component must have an `id` attribute.", call. = FALSE ) } }else if(component[["name"]] == "MenuButton" && "text" %in% attribsNames){ text <- attribs[["text"]] check <- is.list(text) && identical(sort(names(text)), c("textWhenClose", "textWhenOpen")) if(!check){ stop( "Invalid `text` attribute of `MenuButton`.", call. = TRUE ) } component[["attribs"]][["text"]] <- lapply(text, URLencode) } componentChildren <- dropNulls(component[["children"]]) if(length(componentChildren)){ component[["children"]] <- lapply(componentChildren, function(child){ if(isJseval(child)){ child }else if(isShinyTag(child)){ x <- unclassComponent(child, inputId, call) shinyOutput <<- x[["shinyOutput"]] || shinyOutput RadioGroups <<- c(x[["RadioGroups"]], RadioGroups) dependencies <<- c(x[["dependencies"]], dependencies) x[["component"]] }else if(inherits(child, "html")){ list("__html" = URLencode(as.character(child))) }else if(isString(child)){ URLencode(child) }else{ child } }) } list( component = unclass(component), shinyOutput = shinyOutput, RadioGroups = RadioGroups, dependencies = dependencies ) }
lm.diallel <- function(formula, Block = NULL, Env = NULL, fct = "GRIFFING2", data){ cl <- match.call() mf <- match.call(expand.dots = FALSE) m <- match(c("formula", "Block", "Env", "data"), names(mf), 0L) mf <- mf[c(1L, m)] mf$drop.unused.levels <- TRUE mf[[1L]] <- quote(stats::model.frame) mf <- eval(mf, parent.frame()) mt <- attr(mf, "terms") Y <- model.response(mf, "numeric") mlm <- is.matrix(Y) ny <- if (mlm) nrow(Y) else length(Y) bName <- deparse(substitute(Block)) Block <- model.extract(mf, "Block") eName <- deparse(substitute(Env)) Env <- model.extract(mf, "Env") pars <- attr(mt, "term.labels") if(missing(data) == T){ Par1 <- mf[,2] Par2 <- mf[,3] } else { Par1 <- mf[,2] Par2 <- mf[,3] } X <- model.matrixDiallel(~ Par1 + Par2, Block=Block, Env = Env, fct = fct) z <- lm.fit(X, Y) class(z) <- c(if (mlm) "mlm", "lm") z$response <- Y z$fct <- fct z$Env <- ifelse(is.null(Env), F, T) z$Block <- ifelse(is.null(Block), F, T) z$na.action <- attr(mf, "na.action") z$offset <- NULL z$xlevels <- .getXlevels(mt, mf) z$call <- cl z$terms <- mt z$model <- mf z$namEff <- attr(X, "namEff") z$modMatrix <- X class(z) <- c("diallel", "lm") return(z) } summary.diallel <- function (object, MSE = NULL, dfr = NULL, ...) { if(!is.null(MSE) & !is.null(dfr)){ sigma <- sqrt(MSE) if(any(class(object) == "diallel") == T) {X <- object$modMatrix } else { X <- model.matrix(object)} ses <- sqrt(diag(solve( t(X) %*% X ))) * sigma tab <- data.frame("Estimate" = object$coef, "SE" = ses) tab$"t value" <- tab[,1]/tab[,2] tab$"Pr(>|t|)" <- 2 * pt(abs(tab$"t value"), dfr, lower.tail = F) return(tab) }else{ z <- object class(z) <- "lm" summary(z) } } vcov.diallel <- function(object, MSE = NULL, ...) { so <- summary(object) if(is.na(so$sigma) & is.null(MSE)){ cat("No residual variance estimate is available") stop() } else if(is.na(so$sigma) == T & is.null(MSE) == F){ retVal <- MSE * so$cov.unscaled } else if(is.na(so$sigma) == F & is.null(MSE) == F){ retVal <- MSE * so$cov.unscaled } else if(is.na(so$sigma) == F & is.null(MSE) == T){ retVal <- so$sigma^2 * so$cov.unscaled } retVal } anova.diallel <- function(object, MSE = NULL, dfr = NULL, ...) { if(is.null(object$Env)) {object$Env <- FALSE } if(object$Env == F){ w <- object$weights ssr <- sum(if(is.null(w)) object$residuals^2 else w*object$residuals^2) mss <- sum(if(is.null(w)) object$fitted.values^2 else w*object$fitted.values^2) if(ssr < 1e-10*mss & is.null(MSE)) warning("ANOVA F-tests on an essentially perfect fit are unreliable") if( is.null(dfr) ) dfr <- df.residual(object) p <- object$rank if(p > 0L) { p1 <- 1L:p comp <- object$effects[p1] asgn <- object$assign[object$qr$pivot][p1] nmeffects <- c("(Intercept)", attr(object$terms, "term.labels")) if(any(class(object) == "diallel") == T) {tlabels <- object$namEff } else {tlabels <- nmeffects[1 + unique(asgn)] nmeffects} ss <- c(unlist(lapply(split(comp^2,asgn), sum)), ssr) df <- c(lengths(split(asgn, asgn)), dfr) } else { ss <- ssr df <- dfr tlabels <- character() } if(is.null(MSE)){ ms <- ss/df f <- ms/(ssr/dfr) P <- pf(f, df, dfr, lower.tail = FALSE) table <- data.frame(df, ss, ms, f, P) table[length(P), 3:5] <- NA } else { ms <- ss/df f <- ms/MSE P <- pf(f, df, dfr, lower.tail = FALSE) table <- data.frame(df, ss, ms, f, P) table[length(P), 2:5] <- NA table[length(P), 3] <- MSE } if(all(class(object) != "diallel")) tlabels <- c(tlabels, "Residuals") dimnames(table) <- list(c(tlabels), c("Df","Sum Sq", "Mean Sq", "F value", "Pr(>F)")) if(attr(object$terms,"intercept")) table <- table[-1, ] structure(table, heading = c("Analysis of Variance Table\n", paste("Response:", deparse(formula(object)[[2L]]))), class = c("anova", "data.frame")) } else if(object$Env == F & (object$fct == "GE2" | object$fct == "GE2r")) { ssr <- sum(object$residuals^2) if(!is.null(MSE)) dfr1 <- dfr dfr <- df.residual(object) mss <- sum(object$fitted.values^2) p <- object$rank p1 <- 1L:p comp <- object$effects[p1] asgn <- object$assign[object$qr$pivot][p1] nmeffects <- c("(Intercept)", attr(object$terms, "term.labels")) tlabels <- object$namEff ss <- c(unlist(lapply(split(comp^2,asgn), sum)), ssr) df <- c(lengths(split(asgn, asgn)), dfr) ms <- ss/df table <- data.frame(df, ss, ms) row.names(table) <- fit$namEff if(!is.null(MSE)){ f <- ms/MSE P <- pf(f, df, dfr1, lower.tail = FALSE) table <- data.frame(df, ss, ms, dfr1, f, P) tlabels <- object$namEff dimnames(table) <- list(c(tlabels), c("Df","Sum Sq", "Mean Sq", "Den df", "F value", "Pr(>F)")) if(attr(object$terms,"intercept")) table <- table[-1, ] structure(table, heading = c("Analysis of Variance Table\n", paste("Response:", deparse(formula(object)[[2L]]))), class = c("anova", "data.frame")) } } else if(object$Env == T) { MSEor <- MSE; dfrOr <- dfr X <- object$modMatrix Y <- object$response namEff <- object$namEff numEff <- length(namEff) - 2 namEff <- namEff[-1] asgn <- attr(X, "assign") fct <- object$fct dataset <- object$model if(object$Block == T){ names(dataset)[4:5] <- c("Block", "Env") dataset$Block <- factor(dataset$Block) dataset$Env <- factor(dataset$Env) matsOr <- model.matrixDiallel(~dataset[,2] + dataset[,3], dataset$Block, fct = fct) } else { names(dataset)[4] <- c("Env") dataset$Env <- factor(dataset$Env) matsOr <- model.matrixDiallel(~dataset[,2] + dataset[,3], fct = fct) } asgn2 <- attr(matsOr, "assign") resdf <- object$df.residual ss <- c() dfr <- c(); labTab <- c() rss <- sum(object$residuals^2) ss[1] <- rss dfr[1] <- resdf labTab[1] <- "Residuals" cont <- 2 for(i in numEff:1){ sel <- asgn2 == i sel2 <- (asgn >=( i + numEff) & asgn <= 2*numEff) | (asgn >= i & asgn <= numEff) sel2 <- ifelse(sel2==T, F, T) df <- matsOr[,sel] X2 <- as.matrix( cbind(X[, sel2], df) ) if(i != 1){ reg2 <- lm.fit(X2, Y) ssGE <- sum(reg2$residuals^2) dfGE <- reg2$df.residual ss[cont] <- ssGE; dfr[cont] <- dfGE labTab[cont] <- paste(namEff[i], "Env", sep = ":") cont <- cont + 1 } else { if(object$Block == F) { reg2 <- lm.fit(X2, Y) ssGE <- sum(reg2$residuals^2) dfGE <- reg2$df.residual ss[cont] <- ssGE; dfr[cont] <- dfGE labTab[cont] <- paste(namEff[i], "Env", sep = ":") cont <- cont + 1 } } X3 <- as.matrix( X[, sel2] ) reg3 <- lm.fit(X3, Y) ssG <- sum(reg3$residuals^2) dfG <- reg3$df.residual ss[cont] <- ssG; dfr[cont] <- dfG; labTab[cont] <- namEff[i] cont <- cont + 1 } reg.null <- lm(Y ~ 1) totss <- deviance(reg.null) totdf <- reg.null$df.residual ss[cont] <- totss; dfr[cont] <- totdf ss <- diff(ss); dfr <- diff(dfr) ss <- c(rev(ss), rss); dfr <- c(rev(dfr), resdf) labTab <- c("Environment", rev(labTab)) labTab[labTab=="Block"] <- "Env:Block" ms <- ss/dfr if(is.null(MSEor)){ MSE <- ms[length(ms)] } else { MSE <- MSEor ms[length(ms)] <- MSE } if(!is.null(dfrOr)){ dfr1 <- dfrOr dfr[length(dfr)] <- dfrOr ss[length(ss)] <- NA } else { dfr1 <- dfr[length(dfr)] } f <- ms/MSE P <- pf(f, dfr, dfr1, lower.tail = FALSE) table <- data.frame(dfr, ss, ms, f, P) table[length(P), 4:5] <- NA colnames(table) <- c("Df","Sum Sq", "Mean Sq", "F value", "Pr(>F)") row.names(table) <- labTab structure(table, heading = c("Analysis of Variance Table\n", paste("Response:", deparse(formula(object)[[2L]]))), class = c("anova", "data.frame")) } else { rss <- c() fit <- object asgn <- fit$assign X <- fit$modMatrix coefs <- fit$coefficients y <- fit$response ngroup <- length(levels(factor(fit$assign))) rss[1] <- deviance(lm(y ~ 1)) for(i in 1:ngroup){ val <- fit$assign <= i exp <- X[,val] %*% as.matrix(coefs[val]) res <- y - exp rss[i+1] <- sum(res^2) } rss[i + 1] <- 0 ss <- rss[1:ngroup] - rss[2:(ngroup+1)] ss <- c(rss[1], ss) df <- c(lengths(split(asgn, asgn)), fit$df.residual) tlabels <- object$namEff if(fit$df.residual == 0){ ss <- ss[-length(ss)] df <- df[-length(df)] tlabels <- object$namEff[-length(object$namEff)] } ms <- ss/df table <- data.frame(df, ss, ms) f <- ms/MSE P <- pf(f, df, dfr, lower.tail = FALSE) table <- data.frame(df, ss, ms, dfr, f, P) dimnames(table) <- list(c(tlabels), c("Df","Sum Sq", "Mean Sq", "Den df", "F value", "Pr(>F)")) if(attr(object$terms,"intercept")) table <- table[-1, ] structure(table, heading = c("Analysis of Variance Table\n", paste("Response:", deparse(formula(object)[[2L]]))), class = c("anova", "data.frame")) table } } predict.diallel <- function(object, ...){ fitted(object) }
LPDMRSortInferenceApprox <- function(performanceTable, criteriaMinMax, categoriesRanks, assignments, majorityRules = c("M","V","D","v","d","dV","Dv","dv"), alternativesIDs = NULL, criteriaIDs = NULL, timeLimit = 60, populationSize = 20, mutationProb = 0.1){ if (!(is.matrix(performanceTable) || is.data.frame(performanceTable))) stop("performanceTable should be a matrix or a data frame") if(is.null(colnames(performanceTable))) stop("performanceTable columns should be named") if (!(is.vector(assignments))) stop("assignments should be a vector") if(is.null(names(assignments))) stop("assignments should be named") if (!(is.vector(criteriaMinMax))) stop("criteriaMinMax should be a vector") if(!all(sort(colnames(performanceTable)) == sort(names(criteriaMinMax)))) stop("criteriaMinMax should be named as the columns of performanceTable") if (!(is.vector(categoriesRanks))) stop("categoriesRanks should be a vector") if(is.null(names(categoriesRanks))) stop("categoriesRanks should be named") if(!all(assignments %in% names(categoriesRanks))) stop("some of the assignments reference a category which does not exist in categoriesRanks") if(!all(sort(categoriesRanks) == 1:length(categoriesRanks))) stop("categoriesRanks should contain a permutation of the category indices (from 1 to the number of categories)") if (!is.character(majorityRules)) stop("majorityRules should be a character, a string of characters, or a vector of strings of characters") else if (!(all(majorityRules %in% c("M","V","D","v","d","dV","Dv","dv")))) stop("majorityRules needs to take values in {'M','V','D','v','d','dV','Dv','dv'}") if (!(is.null(timeLimit))) { if(!is.numeric(timeLimit)) stop("timeLimit should be numeric") if(timeLimit <= 0) stop("timeLimit should be strictly positive") } if (!(is.null(populationSize))) { if(!is.numeric(populationSize)) stop("populationSize should be numeric") if(populationSize < 10) stop("populationSize should be at least 10") } if (!(is.null(mutationProb))) { if(!is.numeric(mutationProb)) stop("mutationProb should be numeric") if(mutationProb < 0 || mutationProb > 1) stop("mutationProb should be between 0 and 1") } if (!(is.null(alternativesIDs) || is.vector(alternativesIDs))) stop("alternativesIDs should be a vector") if (!(is.null(criteriaIDs) || is.vector(criteriaIDs))) stop("criteriaIDs should be a vector") if (!is.null(alternativesIDs)){ performanceTable <- performanceTable[alternativesIDs,] assignments <- assignments[names(assignments) %in% alternativesIDs] } if (!is.null(criteriaIDs)){ performanceTable <- performanceTable[,criteriaIDs] criteriaMinMax <- criteriaMinMax[criteriaIDs] } if (is.null(dim(performanceTable))) stop("less than 2 criteria or 2 alternatives") if (length(assignments) == 0) stop("assignments is empty or the provided alternativesIDs have filtered out everything from within") numAlt <- dim(performanceTable)[1] numCrit <- dim(performanceTable)[2] numCat <- length(categoriesRanks) minEvaluations <- apply(performanceTable, 2, min) maxEvaluations <- apply(performanceTable, 2, max) getCategory <- function(alternativePerformances, criteriaWeights, majorityThreshold, profilesPerformances, vetoPerformances, dictatorPerformances, majorityRule, criteriaMinMax){ for (k in (numCat-1):1) { weightedSum <- 0 for (crit in names(criteriaMinMax)) { if (criteriaMinMax[crit] == "min") { if (alternativePerformances[crit] %<=% profilesPerformances[k,crit]) weightedSum <- weightedSum + criteriaWeights[crit] } else { if (alternativePerformances[crit] %>=% profilesPerformances[k,crit]) weightedSum <- weightedSum + criteriaWeights[crit] } } vetoActive <- FALSE if(majorityRule %in% c("V","v","dV","Dv","dv")) { for (crit in names(criteriaMinMax)) { if (criteriaMinMax[crit] == "min") { if (alternativePerformances[crit] %>=% vetoPerformances[k,crit]) { vetoActive <- TRUE break } } else { if (alternativePerformances[crit] %<=% vetoPerformances[k,crit]) { vetoActive <- TRUE break } } } } dictatorActive <- FALSE if(majorityRule %in% c("D","d","dV","Dv","dv")) { for (crit in names(criteriaMinMax)) { if (criteriaMinMax[crit] == "min") { if (alternativePerformances[crit] %<=% dictatorPerformances[k,crit]) { dictatorActive <- TRUE break } } else { if (alternativePerformances[crit] %>=% dictatorPerformances[k,crit]) { dictatorActive <- TRUE break } } } } if(majorityRule == 'M') { if(weightedSum < majorityThreshold) return(k + 1) } else if(majorityRule == 'V') { if(weightedSum < majorityThreshold || vetoActive) return(k + 1) } else if(majorityRule == 'D') { if(weightedSum < majorityThreshold && !dictatorActive) return(k + 1) } else if(majorityRule == 'v') { if(weightedSum < majorityThreshold || (vetoActive && !dictatorActive)) return(k + 1) } else if(majorityRule == 'd') { if(weightedSum < majorityThreshold && (!dictatorActive || vetoActive)) return(k + 1) } if(majorityRule == 'dV') { if((weightedSum < majorityThreshold && !dictatorActive) || vetoActive) return(k + 1) } if(majorityRule == 'Dv') { if(!dictatorActive && (vetoActive || weightedSum < majorityThreshold)) return(k + 1) } if(majorityRule == 'dv') { if((vetoActive && !dictatorActive) || (weightedSum < majorityThreshold && ((vetoActive && dictatorActive) || (!vetoActive && !dictatorActive)))) return(k + 1) } } return(1) } InitializePopulation <- function() { population <- list() for(i in 1:populationSize) { values <- c(0,sort(runif(numCrit-1,0,1)),1) weights <- sapply(1:numCrit, function(i) return(values[i+1]-values[i])) names(weights) <- colnames(performanceTable) majority <- runif(1,0.5,1) majorityRule <- sample(majorityRules, 1) profiles <- NULL for(j in 1:numCrit) { if(criteriaMinMax[j] == 'max') profiles <- cbind(profiles,sort(runif(numCat - 1,minEvaluations[j],maxEvaluations[j]), decreasing = TRUE)) else profiles <- cbind(profiles,sort(runif(numCat - 1,minEvaluations[j],maxEvaluations[j]))) } colnames(profiles) <- colnames(performanceTable) vetoes <- NULL for(j in 1:numCrit) { if(criteriaMinMax[j] == 'max') vetoes <- cbind(vetoes,rep(minEvaluations[j] - 1, numCat - 1)) else vetoes <- cbind(vetoes,rep(maxEvaluations[j] + 1, numCat - 1)) } rownames(vetoes) <- c() colnames(vetoes) <- colnames(performanceTable) dictators <- NULL for(j in 1:numCrit) { if(criteriaMinMax[j] == 'max') dictators <- cbind(dictators,rep(maxEvaluations[j] + 1, numCat - 1)) else dictators <- cbind(dictators,rep(minEvaluations[j] - 1, numCat - 1)) } rownames(dictators) <- c() colnames(dictators) <- colnames(performanceTable) population[[length(population)+1]] <- list(majorityThreshold = majority, criteriaWeights = weights, majorityRule = majorityRule, profilesPerformances = profiles, vetoPerformances = vetoes, dictatorPerformances = dictators) } return(population) } Fitness <- function(individual) { ok <- 0 for (alternative in names(assignments)) { category <- getCategory(performanceTable[alternative,],individual$criteriaWeights, individual$majorityThreshold, individual$profilesPerformances, individual$vetoPerformances, individual$dictatorPerformances, individual$majorityRule, criteriaMinMax) if(category == categoriesRanks[assignments[alternative]]) ok <- ok + 1 } return(ok/length(assignments)) } Reproduce <- function(parents){ children <- list() numPairs <- as.integer(length(parents)/2) pairings <- matrix(sample(1:length(parents),numPairs*2),numPairs,2) for(i in 1:numPairs) { parent1 <- parents[[pairings[i,1]]] parent2 <- parents[[pairings[i,2]]] criteria <- sample(colnames(performanceTable), numCrit) pivot <- runif(1,1,numCrit - 1) profiles1 <- matrix(rep(0,numCrit*(numCat - 1)),numCat - 1,numCrit) profiles2 <- matrix(rep(0,numCrit*(numCat - 1)),numCat - 1,numCrit) vetoes1 <- matrix(rep(0,numCrit*(numCat - 1)),numCat - 1,numCrit) vetoes2 <- matrix(rep(0,numCrit*(numCat - 1)),numCat - 1,numCrit) dictators1 <- matrix(rep(0,numCrit*(numCat - 1)),numCat - 1,numCrit) dictators2 <- matrix(rep(0,numCrit*(numCat - 1)),numCat - 1,numCrit) colnames(profiles1) <- colnames(performanceTable) colnames(profiles2) <- colnames(performanceTable) colnames(vetoes1) <- colnames(performanceTable) colnames(vetoes2) <- colnames(performanceTable) colnames(dictators1) <- colnames(performanceTable) colnames(dictators2) <- colnames(performanceTable) for(k in 1:(numCat - 1)) for(j in 1:numCrit) { if(j <= pivot) { profiles1[k,criteria[j]] <- parent1$profilesPerformances[k,criteria[j]] profiles2[k,criteria[j]] <- parent2$profilesPerformances[k,criteria[j]] vetoes1[k,criteria[j]] <- parent1$vetoPerformances[k,criteria[j]] vetoes2[k,criteria[j]] <- parent2$vetoPerformances[k,criteria[j]] dictators1[k,criteria[j]] <- parent1$dictatorPerformances[k,criteria[j]] dictators2[k,criteria[j]] <- parent2$dictatorPerformances[k,criteria[j]] } else { profiles1[k,criteria[j]] <- parent2$profilesPerformances[k,criteria[j]] profiles2[k,criteria[j]] <- parent1$profilesPerformances[k,criteria[j]] vetoes1[k,criteria[j]] <- parent2$vetoPerformances[k,criteria[j]] vetoes2[k,criteria[j]] <- parent1$vetoPerformances[k,criteria[j]] dictators1[k,criteria[j]] <- parent2$dictatorPerformances[k,criteria[j]] dictators2[k,criteria[j]] <- parent1$dictatorPerformances[k,criteria[j]] } } children[[length(children)+1]] <- list(majorityThreshold = parent1$majorityThreshold, criteriaWeights = parent1$criteriaWeights, majorityRule = parent1$majorityRule, profilesPerformances = parent1$profilesPerformances, vetoPerformances = parent1$vetoPerformances, dictatorPerformances = parent1$dictatorPerformances) children[[length(children)+1]] <- list(majorityThreshold = parent2$majorityThreshold, criteriaWeights = parent2$criteriaWeights, majorityRule = parent2$majorityRule, profilesPerformances = parent2$profilesPerformances, vetoPerformances = parent2$vetoPerformances, dictatorPerformances = parent2$dictatorPerformances) children[[length(children)+1]] <- list(majorityThreshold = parent1$majorityThreshold, criteriaWeights = parent1$criteriaWeights, majorityRule = parent1$majorityRule, profilesPerformances = parent2$profilesPerformances, vetoPerformances = parent2$vetoPerformances, dictatorPerformances = parent2$dictatorPerformances) children[[length(children)+1]] <- list(majorityThreshold = parent2$majorityThreshold, criteriaWeights = parent2$criteriaWeights, majorityRule = parent2$majorityRule, profilesPerformances = parent1$profilesPerformances, vetoPerformances = parent1$vetoPerformances, dictatorPerformances = parent1$dictatorPerformances) children[[length(children)+1]] <- list(majorityThreshold = parent1$majorityThreshold, criteriaWeights = parent1$criteriaWeights, majorityRule = parent1$majorityRule, profilesPerformances = profiles1, vetoPerformances = vetoes1, dictatorPerformances = dictators1) children[[length(children)+1]] <- list(majorityThreshold = parent1$majorityThreshold, criteriaWeights = parent1$criteriaWeights, majorityRule = parent1$majorityRule, profilesPerformances = profiles2, vetoPerformances = vetoes2, dictatorPerformances = dictators2) children[[length(children)+1]] <- list(majorityThreshold = parent2$majorityThreshold, criteriaWeights = parent2$criteriaWeights, majorityRule = parent2$majorityRule, profilesPerformances = profiles1, vetoPerformances = vetoes1, dictatorPerformances = dictators1) children[[length(children)+1]] <- list(majorityThreshold = parent2$majorityThreshold, criteriaWeights = parent2$criteriaWeights, majorityRule = parent2$majorityRule, profilesPerformances = profiles2, vetoPerformances = vetoes2, dictatorPerformances = dictators2) } numChildren <- length(children) for(i in 1:numChildren) { if(runif(1,0,1) < mutationProb) { choicesMatrix <- list(c("V","D"),c("M","v","dV"),c("M","d","Dv"),c("V","Dv","dv"),c("D","dV","dv"),c("V","d","dv"),c("D","v","dv"),c("d","v","Dv","dV")) names(choicesMatrix) <- c("M","V","D","v","d","dV","Dv","dv") oldMajorityRule <- children[[i]]$majorityRule choices <- choicesMatrix[[oldMajorityRule]][choicesMatrix[[oldMajorityRule]] %in% majorityRules] if(length(choices) != 0) children[[i]]$majorityRule <- sample(choices, 1) } if(runif(1,0,1) < mutationProb) { children[[i]]$majorityThreshold <- runif(1,0.5,1) } for(j1 in 1:(numCrit-1)) { for(j2 in (j1+1):numCrit) { if(runif(1,0,1) < mutationProb) { criteria <- c(colnames(performanceTable)[j1],colnames(performanceTable)[j2]) minVal <- 0 - children[[i]]$criteriaWeights[criteria[1]] maxVal <- children[[i]]$criteriaWeights[criteria[2]] tradeoff <- runif(1,minVal,maxVal) children[[i]]$criteriaWeights[criteria[1]] <- children[[i]]$criteriaWeights[criteria[1]] + tradeoff children[[i]]$criteriaWeights[criteria[2]] <- children[[i]]$criteriaWeights[criteria[2]] - tradeoff } } } for(k in 1:(numCat - 1)) { for(criterion in colnames(performanceTable)) { if(runif(1,0,1) < mutationProb) { maxVal <- maxEvaluations[criterion] minVal <- minEvaluations[criterion] if(k < (numCat - 1)) { if(criteriaMinMax[criterion] == 'max') minVal <- children[[i]]$profilesPerformances[k+1,criterion] else maxVal <- children[[i]]$profilesPerformances[k+1,criterion] } if(k > 1) { if(criteriaMinMax[criterion] == 'max') maxVal <- children[[i]]$profilesPerformances[k-1,criterion] else minVal <- children[[i]]$profilesPerformances[k-1,criterion] } if(criteriaMinMax[criterion] == 'max') { if(children[[i]]$vetoPerformances[k,criterion] %>=% minVal) minVal <- children[[i]]$vetoPerformances[k,criterion] + 0.0000000001 if(children[[i]]$dictatorPerformances[k,criterion] %<=% maxVal) maxVal <- children[[i]]$dictatorPerformances[k,criterion] - 0.0000000001 } else { if(children[[i]]$vetoPerformances[k,criterion] %<=% maxVal) maxVal <- children[[i]]$vetoPerformances[k,criterion] - 0.0000000001 if(children[[i]]$dictatorPerformances[k,criterion] %>=% minVal) minVal <- children[[i]]$dictatorPerformances[k,criterion] + 0.0000000001 } children[[i]]$profilesPerformances[k,criterion] <- runif(1,minVal,maxVal) } } } for(k in 1:(numCat - 1)) { for(criterion in colnames(performanceTable)) { if(runif(1,0,1) < mutationProb) { maxVal <- maxEvaluations[criterion] if(criteriaMinMax[criterion] == 'min') maxVal <- maxEvaluations[criterion] + 1 minVal <- minEvaluations[criterion] if(criteriaMinMax[criterion] == 'max') minVal <- minEvaluations[criterion] - 1 if(k < (numCat - 1)) { if(criteriaMinMax[criterion] == 'max') minVal <- children[[i]]$vetoPerformances[k+1,criterion] else maxVal <- children[[i]]$vetoPerformances[k+1,criterion] } if(k > 1) { if(criteriaMinMax[criterion] == 'max') maxVal <- children[[i]]$vetoPerformances[k-1,criterion] else minVal <- children[[i]]$vetoPerformances[k-1,criterion] } if(criteriaMinMax[criterion] == 'max') { if(children[[i]]$profilesPerformances[k,criterion] %<=% maxVal) maxVal <- children[[i]]$profilesPerformances[k,criterion] - 0.0000000001 } else { if(children[[i]]$profilesPerformances[k,criterion] %>=% minVal) minVal <- children[[i]]$profilesPerformances[k,criterion] + 0.0000000001 } children[[i]]$vetoPerformances[k,criterion] <- runif(1,minVal,maxVal) } } } for(k in 1:(numCat - 1)) { for(criterion in colnames(performanceTable)) { if(runif(1,0,1) < mutationProb) { maxVal <- maxEvaluations[criterion] if(criteriaMinMax[criterion] == 'max') maxVal <- maxEvaluations[criterion] + 1 minVal <- minEvaluations[criterion] if(criteriaMinMax[criterion] == 'min') minVal <- minEvaluations[criterion] - 1 if(k < (numCat - 1)) { if(criteriaMinMax[criterion] == 'max') minVal <- children[[i]]$dictatorPerformances[k+1,criterion] else maxVal <- children[[i]]$dictatorPerformances[k+1,criterion] } if(k > 1) { if(criteriaMinMax[criterion] == 'max') maxVal <- children[[i]]$dictatorPerformances[k-1,criterion] else minVal <- children[[i]]$dictatorPerformances[k-1,criterion] } if(criteriaMinMax[criterion] == 'max') { if(children[[i]]$profilesPerformances[k,criterion] %>=% minVal) minVal <- children[[i]]$profilesPerformances[k,criterion] + 0.0000000001 } else { if(children[[i]]$profilesPerformances[k,criterion] %<=% maxVal) maxVal <- children[[i]]$profilesPerformances[k,criterion] - 0.0000000001 } children[[i]]$dictatorPerformances[k,criterion] <- runif(1,minVal,maxVal) } } } } return(children) } startTime <- Sys.time() population <- InitializePopulation() bestIndividual <- list(fitness = 0) ct <- 0 while(as.double(difftime(Sys.time(), startTime, units = 'secs')) < timeLimit) { evaluations <- unlist(lapply(population, Fitness)) maxFitness <- max(evaluations) if(maxFitness >= bestIndividual$fitness) { bestIndividual <- population[[match(maxFitness,evaluations)]] bestIndividual$fitness <- maxFitness } if(as.double(difftime(Sys.time(), startTime, units = 'secs')) / 5 > ct) { ct <- ct + 1 } if(bestIndividual$fitness == 1) break if(length(population) > populationSize) { evaluations <- evaluations^2 newPopulation <- list() newPopulation[[length(newPopulation)+1]] <- bestIndividual i <- 1 while(length(newPopulation) < populationSize) { if(runif(1,0,1) <= evaluations[i]) { evaluations[i] <- -1 newPopulation[[length(newPopulation)+1]] <- population[[i]] } i <- i + 1 if(i > length(population)) i <- 1 } population <- newPopulation } population <- Reproduce(population) } bestIndividual$profilesPerformances <- rbind(bestIndividual$profilesPerformances,rep(NA,numCrit)) bestIndividual$vetoPerformances <- rbind(bestIndividual$vetoPerformances,rep(NA,numCrit)) bestIndividual$dictatorPerformances <- rbind(bestIndividual$dictatorPerformances,rep(NA,numCrit)) rownames(bestIndividual$profilesPerformances) <- names(sort(categoriesRanks)) rownames(bestIndividual$vetoPerformances) <- rownames(bestIndividual$profilesPerformances) rownames(bestIndividual$dictatorPerformances) <- rownames(bestIndividual$profilesPerformances) if(bestIndividual$majorityRule %in% c("V","v","d","dV","Dv","dv")) { used <- LPDMRSortIdentifyUsedVetoProfiles(performanceTable, assignments, sort(categoriesRanks), criteriaMinMax, bestIndividual$majorityThreshold, bestIndividual$criteriaWeights, bestIndividual$profilesPerformances, bestIndividual$vetoPerformances, bestIndividual$dictatorPerformances, bestIndividual$majorityRule, alternativesIDs, criteriaIDs) for (k in (numCat-1):1) { cat <- names(categoriesRanks)[categoriesRanks == k] for (j in 1:numCrit) { if (!used[cat,j]) bestIndividual$vetoPerformances[cat,j] <- NA } } } if(bestIndividual$majorityRule %in% c("D","v","d","dV","Dv","dv")) { used <- LPDMRSortIdentifyUsedDictatorProfiles(performanceTable, assignments, sort(categoriesRanks), criteriaMinMax, bestIndividual$majorityThreshold, bestIndividual$criteriaWeights, bestIndividual$profilesPerformances, bestIndividual$dictatorPerformances, bestIndividual$vetoPerformances, bestIndividual$majorityRule, alternativesIDs, criteriaIDs) for (k in (numCat-1):1) { cat <- names(categoriesRanks)[categoriesRanks == k] for (j in 1:numCrit) { if (!used[cat,j]) bestIndividual$dictatorPerformances[cat,j] <- NA } } } return(bestIndividual) }
multilinestring <- function(..., fmt = 16, third = "z") { UseMethod("multilinestring") } multilinestring.character <- function(..., fmt = 16, third = "z") { pts <- list(...) if (grepl("empty", pts[[1]], ignore.case = TRUE)) { return('MULTILINESTRING EMPTY') } else { check_str(pts) } } multilinestring.data.frame <- function(..., fmt = 16, third = "z") { pts <- list(...) fmtcheck(fmt) str <- lapply(pts, function(v) { sprintf("(%s)", paste0(apply(v, 1, function(z){ p0c(str_trim_(format(z, nsmall = fmt, trim = TRUE))) }), collapse = ", ")) }) len <- unique(vapply(pts, NCOL, numeric(1))) sprint_multil(str, len, third) } multilinestring.matrix <- function(..., fmt = 16, third = "z") { pts <- list(...) fmtcheck(fmt) str <- lapply(pts, function(v) { sprintf("(%s)", paste0(apply(v, 1, function(z){ p0c(str_trim_(format(z, nsmall = fmt, trim = TRUE))) }), collapse = ", ")) }) len <- unique(vapply(pts, NCOL, numeric(1))) sprint_multil(str, len, third) } multilinestring.list <- function(..., fmt = 16, third = "z") { pts <- list(...) fmtcheck(fmt) pts <- un_nest(pts) str <- lapply(pts, function(z) { if (length(z) > 1 && sapply(z, class)[1] != "numeric") { inparens(paste0(lapply(z, make1multipoly, fmt = fmt), collapse = ", ")) } else { make1multilinestr(z, fmt) } }) len <- unique(vapply(pts, function(z) unique(vapply(z, length, numeric(1))), numeric(1))) sprint_multil(str, len, third) } sprint_multil <- function(x, len, third) { if (len == 3) { sprintf('MULTILINESTRING %s(%s)', pick3(third), paste0(x, collapse = ", ")) } else if (len == 4) { sprintf('MULTILINESTRING ZM(%s)', paste0(x, collapse = ", ")) } else { sprintf('MULTILINESTRING (%s)', paste0(x, collapse = ", ")) } } sprint <- function(type, str) { sprintf('%s (%s)', type, str) } make1multilinestr <- function(m, fmt) { inparens(paste0(lapply(m, function(b) { paste0(str_trim_(format(b, nsmall = fmt, trim = TRUE)), collapse = " ") }), collapse = ", ") ) }
aiFun <- function(model = NULL, AI.vec = NULL, inverse = TRUE, Dimnames=NULL) { if(!is.null(model)){ AI.vec <- model$ai } dimAI <- sqrt(length(AI.vec) * 2 + 0.25) - 0.5 AI <- matrix(0, dimAI, dimAI) AI[which(upper.tri(AI, diag = TRUE) == TRUE)] <- AI.vec AI[which(lower.tri(AI) == TRUE)]<-t(AI)[which(lower.tri(AI) == TRUE)] if(inverse == FALSE) AI <- solve(AI) if(is.null(Dimnames)){Dimnames <- names(model$gammas)} dimnames(AI) <- list(Dimnames, Dimnames) AI }
gauss.copula <- function(rho,U,V){ qU <- qnorm(U,0,1) qV <- qnorm(V,0,1) exp((-rho^2*(sum(qU^2)+sum(qV^2))+2*rho*sum(qU*qV))/(2*(1-rho^2)))/(sqrt(1-rho^2)) }
boot.sd2.sub <- function(x.sub, x, weight.sub, weight, k, alpha, nsim, boot.index=c("r.cha", "r.fgt"), gamma){ if (boot.index == "r.cha"){ r.cha1 <- r.cha.sub(x.sub, x, weight.sub, weight, k, alpha) n <- length(x.sub) Rbb <- NULL for(i in 1:nsim){ s <- sample(1:n, n, replace=T) ss <- x.sub[s] wss <- weight.sub[s] rownames(ss) <-NULL R <-r.cha.sub(ss, x,wss, weight, k, alpha) Rb <-R Rbb=rbind(Rb,Rbb) } r.se <- sd(Rbb) ci1_up <- r.cha1 + qnorm(gamma)*r.se ci1_low <- r.cha1 - qnorm(gamma)*r.se ci2_up <- quantile(Rbb,1-(1-gamma)/2) ci2_low <- quantile(Rbb,(1-gamma)/2) tab <- rbind(c(ci1_low, r.cha1, ci1_up), c(ci2_low, r.cha1, ci2_up)) colnames(tab) <- c("ci.low", "r.cha", "ci.up") rownames(tab) <- c("norm", "quantile") outlist=list(se.r.cha = r.se, summary = tab, boot.ind = as.vector(Rbb)) } if (boot.index == "r.fgt"){ r.fgt1 <- r.fgt.sub(x.sub, x, weight.sub, weight, k, alpha) n <- length(x.sub) Rbb <- NULL for(i in 1:nsim){ s <- sample(1:n, n, replace = T) ss <- x.sub[s] wss <- weight.sub[s] rownames(ss) <- NULL R <- r.fgt.sub(ss, x, wss, weight, k, alpha) Rb <- R Rbb <- rbind(Rb,Rbb) } r.se <-sd(Rbb) ci1_up <- r.fgt1 + qnorm(gamma)*r.se ci1_low <- r.fgt1 - qnorm(gamma)*r.se ci2_up <- quantile(Rbb,1-(1-gamma)/2) ci2_low <- quantile(Rbb,(1-gamma)/2) tab <- rbind(c(ci1_low, r.fgt1, ci1_up), c(ci2_low, r.fgt1, ci2_up)) colnames(tab) <- c("ci.low", "r.fgt", "ci.up") rownames(tab) <- c("norm", "quantile") outlist=list(se.r.fgt = r.se, summary = tab, boot.ind = as.vector(Rbb)) } return(outlist) }
test_that("Inverse Gamma distribution", { dist <- dist_inverse_gamma(3, 2) expect_equal(format(dist), "InvGamma(3, 0.5)") skip_if_not_installed("actuar", "2.0.0") expect_equal(quantile(dist, 0.1), actuar::qinvgamma(0.1, 3, 2)) expect_equal(quantile(dist, 0.5), actuar::qinvgamma(0.5, 3, 2)) expect_equal(density(dist, 0), actuar::dinvgamma(0, 3, 2)) expect_equal(density(dist, 3), actuar::dinvgamma(3, 3, 2)) expect_equal(cdf(dist, 0), actuar::pinvgamma(0, 3, 2)) expect_equal(cdf(dist, 3), actuar::pinvgamma(3, 3, 2)) expect_equal(cdf(dist, quantile(dist, 0.4)), 0.4, tolerance = 1e-3) expect_equal(mean(dist), (1/2) / (3 - 1)) expect_equal(median(dist), actuar::qinvgamma(0.5, 3, 2)) expect_equal(median(dist[[1]]), actuar::qinvgamma(0.5, 3, 2)) expect_equal(variance(dist), (1/2)^2/((3-1)^2*(3-2))) })
club <- function(X, dataCols, core, time_trim, HACmethod = c('FQSB', 'AQSB'), cstar = 0, cstar_method = c('fixed', 'incremental'), cstar_increment = 0.1, cstar_cap = 3){ HACmethod <- match.arg(HACmethod) cstar_method <- match.arg(cstar_method) if(cstar_increment <= 0) cstar_method <- 'fixed' X$row <- seq_len(nrow(X)) unitsNoCore <- X[-core, ] while(TRUE){ nr <- nrow(unitsNoCore) tvalue <- vector(length=nr) for (k in seq_len(nr)){ H <- computeH( X[ c(core, unitsNoCore$row[k]), dataCols ]) tvalue[k] <- estimateMod(H, time_trim, HACmethod = HACmethod)['tvalue'] } ind <- which(tvalue > cstar) clubCandidates_id <- unitsNoCore[ind, 'id'] clubCandidates_row <- unitsNoCore[ind, 'row'] clubId <- c(X[core, 'id'], clubCandidates_id) clubRows <- c(core, clubCandidates_row) H <- computeH(X[clubRows, dataCols]) mod <- estimateMod(H, time_trim, HACmethod = HACmethod) if( (mod['tvalue'] > -1.65) | (cstar_method=='fixed') ){ break } else{ if(cstar<= cstar_cap){ cstar <- cstar + cstar_increment } else{ clubId <- X[core, 'id'] clubRows <- core break } } } return( list(id = clubId, rows = clubRows, model = mod, cstar = cstar) ) }
topicLasso <- function(formula, data, stmobj=NULL, subset=NULL, omit.var=NULL, family="gaussian", main="Topic Effects on Outcome", xlab=expression("Lower Outcome Higher Outcome"), labeltype=c("prob", "frex", "lift", "score"),seed=02138, xlim=c(-4,4), standardize=FALSE, nfolds=20, ...) { X <- model.matrix(formula, data) pvarnames <- colnames(X) p <- ncol(X) z <- stmobj X <- cbind(X,z$theta) if(colnames(X)[1]=="(Intercept)") { p <- p - 1 X <- X[,-1] pvarnames <- pvarnames[-1] } mframe <- model.frame(formula,data) y <- model.response(mframe) if(!is.null(subset)) { X <- X[subset,] y <- y[subset] } X <- Matrix(X) if(!is.null(seed)) set.seed(seed) labeltype <- match.arg(labeltype) if(!z$settings$kappa$LDAbeta) labeltype <- "topics" topiclabs <- labelTopics(z) topiclabs <- apply(topiclabs[[labeltype]], 1, commas) topiclabs <- sprintf("Topic %i: %s", 1:length(topiclabs), topiclabs) varnames <- c(pvarnames, topiclabs) linmod <- glmnet::cv.glmnet(x=X,y=y, family=family, standardize=standardize, nfolds=nfolds, ...) loadings <- coef(linmod)[-1] posind <- which(loadings>0) if(length(posind!=0)) { cat(c("Positive Effect \n",sprintf("%s \n", varnames[posind]))) } else { cat("No Positive Effects. \n") } negind <- which(loadings<0) if(length(negind!=0)) { cat(c("Negative Effect \n",sprintf("%s \n", varnames[negind]))) } else { cat("No Negative Effects. \n") } coefind <- which(loadings!=0) drop <- c() if(!is.null(omit.var)) { for(i in 1:length(omit.var)) { drop <- c(drop,agrep(omit.var[i], varnames)) } coefind <- coefind[!(coefind %in% drop)] } if(length(coefind)!=0) { coefval <- loadings[coefind] labels <- varnames[coefind] labels <- labels[order(coefval)] values <- sort(coefval) plot(x=values, y=1:length(values), pch=19, main=main, xlim=xlim, ylab="", type="p", xlab=xlab, ylim=c(-1, length(values)+1),yaxt="n", bty="n") text(values, 1:length(values), labels, pos=2) segments(0, -1, 0, length(values)+1,lty=2) } else { cat("No Non Zero Loadings") } return(invisible(linmod)) }
makeRLearner.multilabel.randomForestSRC = function() { makeRLearnerMultilabel( cl = "multilabel.randomForestSRC", package = "randomForestSRC", par.set = makeParamSet( makeIntegerLearnerParam(id = "ntree", default = 1000L, lower = 1L), makeDiscreteLearnerParam(id = "bootstrap", default = "by.root", values = c("by.root", "by.node", "none", "by.user")), makeIntegerLearnerParam(id = "mtry", default = NULL, lower = 1L, special.vals = list(NULL)), makeIntegerLearnerParam(id = "nodesize", lower = 1L, default = NULL, special.vals = list(NULL)), makeIntegerLearnerParam(id = "nodedepth", default = NULL, special.vals = list(NULL)), makeDiscreteLearnerParam(id = "splitrule", default = NULL, values = list("gini", "gini.unwt", "gini.hvwt", "random", NULL = NULL), special.vals = list(NULL)), makeIntegerLearnerParam(id = "nsplit", lower = 0L, default = 0L, requires = quote(splitrule != "random")), makeLogicalLearnerParam(id = "split.null", default = FALSE), makeDiscreteLearnerParam(id = "importance", default = FALSE, tunable = FALSE, values = list(`FALSE` = FALSE, `TRUE` = TRUE, "none", "permute", "random", "anti", "permute.ensemble", "random.ensemble", "anti.ensemble")), makeDiscreteLearnerParam(id = "na.action", default = "na.impute", values = c("na.omit", "na.impute"), when = "both"), makeIntegerLearnerParam(id = "nimpute", default = 1L, lower = 1L), makeDiscreteLearnerParam(id = "proximity", default = FALSE, tunable = FALSE, values = list("inbag", "oob", "all", `TRUE` = TRUE, `FALSE` = FALSE)), makeIntegerLearnerParam(id = "sampsize", lower = 1L, default = NULL, requires = quote(bootstrap == "by.root"), special.vals = list(NULL)), makeDiscreteLearnerParam(id = "samptype", default = "swr", values = c("swr", "swor"), requires = quote(bootstrap == "by.root")), makeUntypedLearnerParam(id = "samp", requires = quote(bootstrap == "by.user")), makeNumericVectorLearnerParam(id = "xvar.wt", lower = 0, default = NULL, special.vals = list(NULL)), makeLogicalLearnerParam(id = "forest", default = TRUE, tunable = FALSE), makeDiscreteLearnerParam(id = "var.used", default = FALSE, tunable = FALSE, values = list(`FALSE` = FALSE, "all.trees", "by.tree")), makeDiscreteLearnerParam(id = "split.depth", default = FALSE, tunable = FALSE, values = list(`FALSE` = FALSE, "all.trees", "by.tree")), makeIntegerLearnerParam(id = "seed", default = NULL, upper = 0L, tunable = FALSE, special.vals = list(NULL)), makeLogicalLearnerParam(id = "do.trace", default = FALSE, tunable = FALSE, when = "both"), makeLogicalLearnerParam(id = "membership", default = FALSE, tunable = FALSE), makeLogicalLearnerParam(id = "statistics", default = FALSE, tunable = FALSE), makeLogicalLearnerParam(id = "tree.err", default = FALSE, tunable = FALSE), makeUntypedLearnerParam(id = "coerce.factor", default = NULL, special.vals = list(NULL)) ), par.vals = list(na.action = "na.impute"), properties = c("missings", "numerics", "factors", "prob", "weights"), name = "Random Forest", short.name = "rfsrc", note = "`na.action` has been set to `na.impute` by default to allow missing data support.", callees = "rfsrc" ) } trainLearner.multilabel.randomForestSRC = function(.learner, .task, .subset, .weights = NULL, ...) { targets = getTaskTargetNames(.task) f = as.formula(stri_paste("cbind(", stri_paste(targets, collapse = ",", sep = " "), ") ~ .", sep = "")) d = getTaskData(.task, .subset, recode.target = "multilabel.factor") randomForestSRC::rfsrc(f, data = d, case.wt = .weights, ...) } predictLearner.multilabel.randomForestSRC = function(.learner, .model, .newdata, ...) { p = predict(.model$learner.model, newdata = .newdata, importance = "none", ...) if (.learner$predict.type == "prob") { return(sapply(p$classOutput, function(x) x$predicted[, 1])) } else { return(sapply(p$classOutput, function(x) as.logical(x$class))) } }
read.fs.volume.nii <- function(filepath, flatten = FALSE, with_header=FALSE, drop_empty_dims=FALSE, do_rotate = FALSE, ...) { nifti_img = filepath; if (requireNamespace("oro.nifti", quietly = TRUE)) { if(is.character(nifti_img)) { nifti_img = oro.nifti::readNIfTI(nifti_img, ...); } if(! oro.nifti::is.nifti(nifti_img)) { stop("Parameter 'nifti_img' is not a nifti instance from oro.nifti."); } if(!(nifti_img@magic == "n+1" | nifti_img@magic == "ni1")) { stop(sprintf("Unknown NIFTI magic code '%s', file format not supported. Expected magic code 'n+1' or 'ni1'.\n", nifti_img@magic)); } scale_data = FALSE; if(nifti_img@scl_slope != 0.0) { if(!(nifti_img@scl_slope == 1.0 & nifti_img@scl_inter == 0.0)) { scale_data = TRUE; } } if(scale_data) { warning(sprintf("Detected that Nifti data needs scaling (@scl_slope=%.2f, @scl_inter=%.2f), but scaling not implemented yet.\n", nifti_img@scl_slope, nifti_img@scl_inter)); } MRI_UCHAR = translate.mri.dtype("MRI_UCHAR"); MRI_INT = translate.mri.dtype("MRI_INT"); MRI_FLOAT = translate.mri.dtype("MRI_FLOAT"); MRI_SHORT = translate.mri.dtype("MRI_SHORT"); dti = nifti.dtype.info(nifti_img@datatype, nifti_img@bitpix); dtype = dti$mri_dtype; num_used_dimensions = nifti_img@dim_[1]; byte_swap = FALSE; if(num_used_dimensions < 1L | num_used_dimensions > 7L) { byte_swap = TRUE; stop(sprintf("Byte-swapped Nifti images not supported yet.\n")); } num_frames = ifelse(num_used_dimensions < 4L, 1L, nifti_img@dim_[5]); if(num_used_dimensions > 4L & nifti_img@dim_[6] > 1L) { stop("Nifti images with more than 4 used dimensions not supported yet."); } if(nifti_img@dim_[2] < 0L) { ncols = nifti_img@glmin; } else { ncols = nifti_img@dim_[2]; } space_info = nifti.space.info(nifti_img@xyzt_units); space_unit_factor = space_info$scaling; time_info = nifti.time.info(nifti_img@xyzt_units); time_unit_factor = time_info$scaling; header = mghheader(c(ncols, nifti_img@dim_[3], nifti_img@dim_[4], num_frames), dtype); header$internal$xsize = nifti_img@pixdim[2]; header$internal$ysize = nifti_img@pixdim[3]; header$internal$zsize = nifti_img@pixdim[4]; header$internal$tr = nifti_img@pixdim[5]; if(nifti_img@sform_code != 0L) { vox2ras = rbind(nifti_img@srow_x, nifti_img@srow_y, nifti_img@srow_z, c(0, 0, 0, 1)); header = mghheader.update.from.vox2ras(header, vox2ras); header$ras_good_flag = 1L; } else if(nifti_img@qform_code != 0L) { qb = nifti_img@quatern_b; qc = nifti_img@quatern_c; qd = nifti_img@quatern_d; qa = 1.0 - (qb*qb + qc*qc + qd*qd); if (qa < 1.0e-7) { qa = 1.0 / sqrt(qb*qb + qc*qc + qd*qd); qb = qa*qb; qc = qa*qc; qd = qa*qd; qa = 0.0; } else { qa = sqrt(qa); } rot_mat = matrix(rep(0., 9), nrow=3L); rot_mat[1,1] = qa*qa + qb*qb - qc*qc - qd*qd; rot_mat[1,2] = 2.0 * qb * qc - 2.0 * qa * qd; rot_mat[1,3] = 2.0 * qb * qd + 2.0 * qa * qc; rot_mat[2,1] = 2.0 * qb * qc + 2.0 * qa * qd; rot_mat[2,2] = qa*qa + qc*qc - qb*qb - qd*qd; rot_mat[2,3] = 2.0 * qc * qd - 2.0 * qa * qb; rot_mat[3,1] = 2.0 * qb * qd - 2.0 * qa * qc; rot_mat[3,2] = 2.0 * qc * qd + 2.0 * qa * qb; rot_mat[3,3] = qa*qa + qd*qd - qc*qc - qb*qb; qfac = nifti_img@pixdim[1]; if(!(qfac == -1 | qfac == 1)) { warning(sprintf("Treating non-standard qfac value '%f' as 1.0\n.", qfac)); qfac = 1; } rot_mat[1,3] = rot_mat[1,3] * qfac; rot_mat[2,3] = rot_mat[2,3] * qfac; rot_mat[3,3] = rot_mat[3,3] * qfac; header$internal$x_r = rot_mat[1,1]; header$internal$y_r = rot_mat[1,2]; header$internal$z_r = rot_mat[1,3]; header$internal$x_a = rot_mat[2,1]; header$internal$y_a = rot_mat[2,2]; header$internal$z_a = rot_mat[2,3]; header$internal$x_s = rot_mat[3,1]; header$internal$y_s = rot_mat[3,2]; header$internal$z_s = rot_mat[3,3]; header$internal$c_r = (header$internal$xsize * header$internal$x_r) * (header$internal$width / 2.0) + (header$internal$ysize * header$internal$y_r) * (header$internal$height / 2.0) + (header$internal$zsize * header$internal$z_r) * (header$internal$depth / 2.0) + nifti_img@qoffset_x; header$internal$c_a = (header$internal$xsize * header$internal$x_a) * (header$internal$width / 2.0) + (header$internal$ysize * header$internal$y_a) * (header$internal$height / 2.0) + (header$internal$zsize * header$internal$z_a) * (header$internal$depth / 2.0) + nifti_img@qoffset_y; header$internal$c_s = (header$internal$xsize * header$internal$x_s) * (header$internal$width / 2.0) + (header$internal$ysize * header$internal$y_s) * (header$internal$height / 2.0) + (header$internal$zsize * header$internal$z_s) * (header$internal$depth / 2.0) + nifti_img@qoffset_z; header$ras_good_flag = 1L; } else { warning("Nifti image does not contain valid sform or qform, orientation cannot be derived and is arbitrary."); header$internal$x_r = -1.0; header$internal$x_a = 0.0; header$internal$x_s = 0.0; header$internal$y_r = 0.0; header$internal$y_a = 1.0; header$internal$y_s = 0.0; header$internal$z_r = 0.0; header$internal$z_a = 0.0; header$internal$z_s = 1.0; header$internal$c_r = header$internal$xsize * header$internal$width / 2.0; header$internal$c_a = header$internal$ysize * header$internal$height / 2.0; header$internal$c_s = header$internal$zsize * header$internal$depth / 2.0; header$ras_good_flag = 0L; } header$internal$xsize = header$internal$xsize * space_unit_factor; header$internal$ysize = header$internal$ysize * space_unit_factor; header$internal$zsize = header$internal$zsize * space_unit_factor; header$internal$c_r = header$internal$c_r * space_unit_factor; header$internal$c_a = header$internal$c_a * space_unit_factor; header$internal$c_s = header$internal$c_s * space_unit_factor; header$internal$tr = header$internal$tr * time_unit_factor; header$has_mr_params = 1L; header$mr = list(); header$mr$tr = header$internal$tr; x_half_length = header$internal$width / 2.0 * header$internal$xsize; y_half_length = header$internal$height / 2.0 * header$internal$ysize; z_half_length = header$internal$depth / 2.0 * header$internal$zsize; header$internal$xstart = - x_half_length; header$internal$xend = x_half_length; header$internal$ystart = - y_half_length; header$internal$yend = y_half_length; header$internal$zstart = - z_half_length; header$internal$zend = z_half_length; xfov = header$internal$xend - header$internal$xstart; yfov = header$internal$yend - header$internal$ystart; zfov = header$internal$zend - header$internal$zstart; header$internal$fov = ifelse(xfov > yfov, ifelse(xfov > zfov, xfov, zfov), ifelse(yfov > zfov, yfov, zfov)); header$mr$fov = header$internal$fov; orientation_info = get.slice.orientation(header$internal$Mdc); header$internal$slice_orientation_string = orientation_info$orientation_string; header$internal$slice_direction_name = orientation_info$direction_name; data = [email protected]; if(do_rotate) { if(length(dim(drop(data))) == 3L) { data = rotate3D(drop(data), axis=1L, degrees = 90L); } else { warning(sprintf("Not rotating: data dimension is '%s'.\n", paste(dim(data), collapse = " "))); } } if(length(dim(data)) != 4) { dim(data) = c(ncols, nifti_img@dim_[3], nifti_img@dim_[4], num_frames); } nv = prod(dim(data)); if(flatten) { dim(data) = c(nv); data = as.vector(unlist(data)); header$voldim = c(length(data)); } if(drop_empty_dims) { data = drop(data); } fsvol = list("header"=header, "data"=data); class(fsvol) = 'fs.volume'; if(with_header) { return(fsvol); } else { return(data); } } else { stop("The 'oro.nifti' package is required to use this functionality."); } } nifti.space.info <- function(xyzt_units) { nifti_unit_code = bitwAnd(xyzt_units, 0x07); nifti_unit_name = "unknown"; scaling = 1.0; if(nifti_unit_code == 1L) { nifti_unit_name = "m"; scaling = 1000.0; } if(nifti_unit_code == 2L) { nifti_unit_name = "mm"; scaling = 1.0; } if(nifti_unit_code == 3L) { nifti_unit_name = "mum"; scaling = 0.001; } return(list("code"=nifti_unit_code, "name"=nifti_unit_name, "scaling"=scaling)); } nifti.dtype.info <- function(datatype, bitpix) { MRI_UCHAR = translate.mri.dtype("MRI_UCHAR"); MRI_INT = translate.mri.dtype("MRI_INT"); MRI_FLOAT = translate.mri.dtype("MRI_FLOAT"); MRI_SHORT = translate.mri.dtype("MRI_SHORT"); if(datatype == 2L & bitpix == 8L) { return(list('mri_dtype' = MRI_UCHAR, 'r_dtype' = integer())); } else if(datatype == 4L & bitpix == 16L) { return(list('mri_dtype' = MRI_SHORT, 'r_dtype' = integer())); } else if(datatype == 8L & bitpix == 32L) { return(list('mri_dtype' = MRI_INT, 'r_dtype' = integer())); } else if(datatype == 512L & bitpix == 16L) { return(list('mri_dtype' = MRI_INT, 'r_dtype' = integer())); } else if(datatype == 768L & bitpix == 32L) { return(list('mri_dtype' = MRI_INT, 'r_dtype' = integer())); } else if(datatype == 16L & bitpix == 32L) { return(list('mri_dtype' = MRI_FLOAT, 'r_dtype' = numeric())); } else if(datatype == 64L & bitpix == 64L) { return(list('mri_dtype' = MRI_FLOAT, 'r_dtype' = numeric())); } else { stop(sprintf("Nifti images with datatype=%d and bitpix=%d not supported yet.\n", datatype, bitpix)); } } nifti.transform.type.name <- function(form_code) { if(form_code == 1L) { return("scanner_anatomical"); } if(form_code == 2L) { return("reference"); } if(form_code == 3L) { return("talairach_space"); } if(form_code == 4L) { return("MNI152_space"); } return("unknown"); } nifti.time.info <- function(xyzt_units) { nifti_unit_code = bitwAnd(xyzt_units, 0x38); nifti_unit_name = "unknown"; scaling = 1.0; if(nifti_unit_code == 8L) { nifti_unit_name = "s"; scaling = 1000.0; } if(nifti_unit_code == 16L) { nifti_unit_name = "ms"; scaling = 1.0; } if(nifti_unit_code == 24L) { nifti_unit_name = "mus"; scaling = 0.001; } return(list("code"=nifti_unit_code, "name"=nifti_unit_name, "scaling"=scaling)); }
boot.transitions <- function(transitions, iterations, by.stage.counts = FALSE, ...) { t <- iterations mat <- vector("list", t) vec <- vector("list", t) lam <- numeric(t) for (i in 1:t) { if (by.stage.counts) { boot <- do.call( rbind, lapply( split(transitions, transitions$stage, drop = TRUE), function(x) x[sample(nrow(x), replace = TRUE), ] ) ) } else { boot <- transitions[sample(nrow(transitions), replace = TRUE), ] } A <- projection.matrix(boot, ...) vec[[i]] <- table(boot$stage) mat[[i]] <- as.vector(A) lam[i] <- lambda(A) } n <- dim(A)[1] boot.stage <- list( lambda = lam, matrix = matrix(unlist(mat), byrow = TRUE, nrow = t, dimnames = list(1:t, paste("a", 1:n, rep(1:n, each = n), sep = "")) ), vector = matrix(unlist(vec), byrow = TRUE, nrow = t, dimnames = list(1:t, names(vec[[1]]))) ) boot.stage }
write_selection <- function(dist_e , dist_c, type, pe_fixed, pc_fixed, ze_fixed, zc_fixed, ind_fixed, pe_random, pc_random, ze_random, zc_random, ind_random, model_e_random, model_c_random, model_me_random, model_mc_random) eval.parent(substitute( { model_string_jags<- " model { for(i in 1:N1) { cost1[i] ~ dnorm(mu_c1[i], tau_c[1]) eff1[i] ~ dnorm(mu_e1[i], tau_e[1]) mu_c1[i] <- inprod(X1_c_fixed[i, ], beta[, 1]) + beta_f[1] * (eff1[i] - mu_e[1]) + inprod(X1_c_random[i, ], b1[, clus1_c[i]]) + b1_f[clus1_c[i]] * (eff1[i] - mu_e[1]) mu_e1[i] <- inprod(X1_e_fixed[i, ], alpha[, 1]) + inprod(X1_e_random[i, ], a1[, clus1_e[i]]) m_eff1[i] ~ dbern(pq_1[i]) logit(pq_1[i]) <- inprod(Z1_e_fixed[i, ], gamma_e[, 1]) + delta_e[1] * eff1[i] + inprod(Z1_e_random[i, ], g1_e[, clus1_me[i]]) + d1_e[clus1_me[i]] * eff1[i] m_cost1[i] ~ dbern(pc_1[i]) logit(pc_1[i]) <- inprod(Z1_c_fixed[i, ], gamma_c[, 1]) + delta_c[1] * cost1[i] + inprod(Z1_c_random[i, ], g1_c[, clus1_mc[i]]) + d1_c[clus1_mc[i]] * cost1[i] loglik_e1[i] <- logdensity.norm(eff1[i], mu_e1[i], tau_e[1]) loglik_c1[i] <- logdensity.norm(cost1[i], mu_c1[i], tau_c[1]) loglik_me1[i] <- logdensity.bern(m_eff1[i], pq_1[i]) loglik_mc1[i] <- logdensity.bern(m_cost1[i], pc_1[i]) } for(i in 1:N2) { cost2[i] ~ dnorm(mu_c2[i], tau_c[2]) eff2[i] ~ dnorm(mu_e2[i], tau_e[2]) mu_c2[i] <- inprod(X2_c_fixed[i, ], beta[, 2]) + beta_f[2] * (eff2[i] - mu_e[2]) + inprod(X2_c_random[i, ], b2[, clus2_c[i]]) + b2_f[clus2_c[i]] * (eff2[i] - mu_e[2]) mu_e2[i] <- inprod(X2_e_fixed[i, ], alpha[, 2]) + inprod(X2_e_random[i, ], a2[, clus2_e[i]]) m_eff2[i] ~ dbern(pq_2[i]) logit(pq_2[i]) <- inprod(Z2_e_fixed[i, ], gamma_e[, 2]) + delta_e[2] * eff2[i] + inprod(Z2_e_random[i, ], g2_e[, clus2_me[i]]) + d2_e[clus2_me[i]] * eff2[i] m_cost2[i] ~ dbern(pc_2[i]) logit(pc_2[i]) <- inprod(Z2_c_fixed[i, ], gamma_c[, 2]) + delta_c[2] * cost2[i] + inprod(Z2_c_random[i, ], g2_c[, clus2_mc[i]]) + d2_c[clus2_mc[i]] * cost2[i] loglik_e2[i] <- logdensity.norm(eff2[i], mu_e2[i], tau_e[2]) loglik_c2[i] <- logdensity.norm(cost2[i], mu_c2[i], tau_c[2]) loglik_me2[i] <- logdensity.bern(m_eff2[i], pq_2[i]) loglik_mc2[i] <- logdensity.bern(m_cost2[i], pc_2[i]) } for (t in 1:2) { tau_c[t] <- 1 / ss_c[t] ss_c[t] <- s_c[t] * s_c[t] s_c[t] <- exp(ls_c[t]) tau_e[t] <- 1 / ss_e[t] ss_e[t] <- s_e[t] * s_e[t] s_e[t] <- exp(ls_e[t]) } for (t in 1:2) { for(j in 1:pc_random) {tau_b_hat[j, t] <- 1 / ss_b_hat[j, t] ss_b_hat[j, t] <- s_b_hat[j, t] * s_b_hat[j, t] } for(j in 1:pe_random) {tau_a_hat[j, t] <- 1 / ss_a_hat[j, t] ss_a_hat[j, t] <- s_a_hat[j, t] * s_a_hat[j, t] } for(j in 1:zc_random) {tau_g_c_hat[j, t] <- 1 / ss_g_c_hat[j, t] ss_g_c_hat[j, t] <- s_g_c_hat[j, t] * s_g_c_hat[j, t] } for(j in 1:ze_random) {tau_g_e_hat[j, t] <- 1 / ss_g_e_hat[j, t] ss_g_e_hat[j, t] <- s_g_e_hat[j, t] * s_g_e_hat[j, t] } tau_d_c_hat[t] <- 1 / ss_d_c_hat[t] ss_d_c_hat[t] <- s_d_c_hat[t] * s_d_c_hat[t] tau_d_e_hat[t] <- 1 / ss_d_e_hat[t] ss_d_e_hat[t] <- s_d_e_hat[t] * s_d_e_hat[t] } p_c[1] <- ilogit(inprod(mean_z_c1_fixed[], gamma_c[, 1]) + delta_c[1] * mean(cost1[]) + inprod(mean_z_c1_random[], mu_g_c_hat[, 1]) + mu_d_c_hat[1] * mean(cost1[])) p_c[2] <- ilogit(inprod(mean_z_c2_fixed[], gamma_c[, 2]) + delta_c[2] * mean(cost2[]) + inprod(mean_z_c2_random[], mu_g_c_hat[, 2]) + mu_d_c_hat[2] * mean(cost2[])) p_e[1] <- ilogit(inprod(mean_z_e1_fixed[], gamma_e[, 1]) + delta_e[1] * mean(eff1[]) + inprod(mean_z_e1_random[], mu_g_e_hat[, 1]) + mu_d_e_hat[1] * mean(eff1[])) p_e[2] <- ilogit(inprod(mean_z_e2_fixed[], gamma_e[, 2]) + delta_e[2] * mean(eff2[]) + inprod(mean_z_e2_random[], mu_g_e_hat[, 2]) + mu_d_e_hat[2] * mean(eff2[])) mu_c[1] <- inprod(mean_cov_c1_fixed[], beta[, 1]) + inprod(mean_cov_c1_random[], mu_b_hat[, 1]) mu_c[2] <- inprod(mean_cov_c2_fixed[], beta[, 2]) + inprod(mean_cov_c2_random[], mu_b_hat[, 2]) mu_e[1] <- inprod(mean_cov_e1_fixed[], alpha[, 1]) + inprod(mean_cov_e1_random[], mu_a_hat[, 1]) mu_e[2] <- inprod(mean_cov_e2_fixed[], alpha[, 2]) + inprod(mean_cov_e2_random[], mu_a_hat[, 2]) for (j in 2:pe_fixed) { for(t in 1:2) {alpha[j, t] ~ dnorm(0, 0.0000001) } } alpha[1, 1] ~ dnorm(0, 0.0000001) alpha[1, 2] ~ dnorm(0, 0.0000001) for (j in 2:pc_fixed) { for(t in 1:2) {beta[j, t] ~ dnorm(0, 0.0000001) } } beta[1, 1] ~ dnorm(0, 0.0000001) beta[1, 2] ~ dnorm(0, 0.0000001) for (j in 1:pe_random) { for(s in 1:n1_clus_e) {a1[j, s] ~ dnorm(mu_a_hat[j, 1], tau_a_hat[j, 1]) } } for (j in 1:pe_random) { for(s in 1:n2_clus_e) {a2[j, s] ~ dnorm(mu_a_hat[j, 2], tau_a_hat[j, 2]) } } for (j in 1:pc_random) { for(s in 1:n1_clus_c) {b1[j, s] ~ dnorm(mu_b_hat[j, 1], tau_b_hat[j, 1]) } } for (j in 1:pc_random) { for(s in 1:n2_clus_c) {b2[j, s] ~ dnorm(mu_b_hat[j, 2], tau_b_hat[j, 2]) } } for(t in 1:2) { ls_c[t] ~ dunif(-5, 10) ls_e[t] ~ dunif(-5, 10) beta_f[t] ~ dnorm(0, 0.0000001) for(j in 1:pc_random) {mu_b_hat[j, t] ~ dnorm(0, 0.001) s_b_hat[j, t] ~ dunif(0, 100) } for(j in 1:pe_random) {mu_a_hat[j, t] ~ dnorm(0, 0.001) s_a_hat[j, t] ~ dunif(0, 100) } for(j in 1:zc_random) {mu_g_c_hat[j, t] ~ dnorm(0, 0.001) s_g_c_hat[j, t] ~ dunif(0, 100) } for(j in 1:ze_random) {mu_g_e_hat[j, t] ~ dnorm(0, 0.001) s_g_e_hat[j, t] ~ dunif(0, 100) } } for(s in 1:n1_clus_c) {b1_f[s] ~ dnorm(mu_b_f_hat[1], tau_b_f_hat[1]) } for(s in 1:n2_clus_c) {b2_f[s] ~ dnorm(mu_b_f_hat[2], tau_b_f_hat[2]) } for(t in 1:2) {mu_b_f_hat[t] ~ dnorm(0, 0.001) tau_b_f_hat[t] <- 1 / ss_b_f_hat[t] ss_b_f_hat[t] <- s_b_f_hat[t] * s_b_f_hat[t] s_b_f_hat[t] ~ dunif(0, 100) } for (j in 2:ze_fixed) { for(t in 1:2) {gamma_e[j, t] ~ dnorm(0, 0.01) } } gamma_e[1, 1] ~ dlogis(0, 1) gamma_e[1, 2] ~ dlogis(0, 1) for (j in 2:zc_fixed) { for(t in 1:2) {gamma_c[j, t] ~ dnorm(0, 0.01) } } gamma_c[1, 1] ~ dlogis(0, 1) gamma_c[1, 2] ~ dlogis(0, 1) for (j in 1:ze_random) { for(s in 1:n1_clus_me) {g1_e[j, s] ~ dnorm(mu_g_e_hat[j, 1], tau_g_e_hat[j, 1]) } } for (j in 1:ze_random) { for(s in 1:n2_clus_me) {g2_e[j, s] ~ dnorm(mu_g_e_hat[j, 2], tau_g_e_hat[j, 2]) } } for (j in 1:zc_random) { for(s in 1:n1_clus_mc) {g1_c[j, s] ~ dnorm(mu_g_c_hat[j, 1], tau_g_c_hat[j, 1]) } } for (j in 1:zc_random) { for(s in 1:n2_clus_mc) {g2_c[j, s] ~ dnorm(mu_g_c_hat[j, 2], tau_g_c_hat[j, 2]) } } for(t in 1:2) { delta_e[t] ~ dnorm(0, 1) delta_c[t] ~ dnorm(0, 1) } for(s in 1:n1_clus_me) {d1_e[s] ~ dnorm(mu_d_e_hat[1], tau_d_e_hat[1]) } for(s in 1:n2_clus_me) {d2_e[s] ~ dnorm(mu_d_e_hat[2], tau_d_e_hat[2]) } for(s in 1:n1_clus_mc) {d1_c[s] ~ dnorm(mu_d_c_hat[1], tau_d_c_hat[1]) } for(s in 1:n2_clus_mc) {d2_c[s] ~ dnorm(mu_d_c_hat[2], tau_d_c_hat[2]) } for(t in 1:2) { mu_d_e_hat[t] ~ dnorm(0, 1) mu_d_c_hat[t] ~ dnorm(0, 1) s_d_e_hat[t] ~ dunif(0, 1) s_d_c_hat[t] ~ dunif(0, 1) } } " if(length(model_e_random) == 0) { model_string_jags <- gsub(" + inprod(X1_e_random[i, ], a1[, clus1_e[i]])", "", model_string_jags, fixed = TRUE) model_string_jags <- gsub(" + inprod(X2_e_random[i, ], a2[, clus2_e[i]])", "", model_string_jags, fixed = TRUE) model_string_jags <- gsub("for(j in 1:pe_random) {tau_a_hat[j, t] <- 1 / ss_a_hat[j, t]", "", model_string_jags, fixed = TRUE) model_string_jags <- gsub("ss_a_hat[j, t] <- s_a_hat[j, t] * s_a_hat[j, t] }", "", model_string_jags, fixed = TRUE) model_string_jags <- gsub(" + inprod(mean_cov_e1_random[], mu_a_hat[, 1])", "", model_string_jags, fixed = TRUE) model_string_jags <- gsub(" + inprod(mean_cov_e2_random[], mu_a_hat[, 2])", "", model_string_jags, fixed = TRUE) model_string_jags <- gsub("for (j in 1:pe_random) { model_string_jags <- gsub("for(s in 1:n1_clus_e) {a1[j, s] ~ dnorm(mu_a_hat[j, 1], tau_a_hat[j, 1]) }", "", model_string_jags, fixed = TRUE) model_string_jags <- gsub("} model_string_jags <- gsub("for (j in 1:pe_random) { model_string_jags <- gsub("for(s in 1:n2_clus_e) {a2[j, s] ~ dnorm(mu_a_hat[j, 2], tau_a_hat[j, 2]) }", "", model_string_jags, fixed = TRUE) model_string_jags <- gsub("} model_string_jags <- gsub("for(j in 1:pe_random) {mu_a_hat[j, t] ~ dnorm(0, 0.001)", "", model_string_jags, fixed = TRUE) model_string_jags <- gsub("s_a_hat[j, t] ~ dunif(0, 100) }", "", model_string_jags, fixed = TRUE) } if(length(model_c_random) == 0) { model_string_jags <- gsub(" + inprod(X1_c_random[i, ], b1[, clus1_c[i]])", "", model_string_jags, fixed = TRUE) model_string_jags <- gsub(" + inprod(X2_c_random[i, ], b2[, clus2_c[i]])", "", model_string_jags, fixed = TRUE) model_string_jags <- gsub("for(j in 1:pc_random) {tau_b_hat[j, t] <- 1 / ss_b_hat[j, t]", "", model_string_jags, fixed = TRUE) model_string_jags <- gsub("ss_b_hat[j, t] <- s_b_hat[j, t] * s_b_hat[j, t] }", "", model_string_jags, fixed = TRUE) model_string_jags <- gsub(" + inprod(mean_cov_c1_random[], mu_b_hat[, 1])", "", model_string_jags, fixed = TRUE) model_string_jags <- gsub(" + inprod(mean_cov_c2_random[], mu_b_hat[, 2])", "", model_string_jags, fixed = TRUE) model_string_jags <- gsub("for (j in 1:pc_random) { model_string_jags <- gsub("for(s in 1:n1_clus_c) {b1[j, s] ~ dnorm(mu_b_hat[j, 1], tau_b_hat[j, 1]) }", "", model_string_jags, fixed = TRUE) model_string_jags <- gsub("} model_string_jags <- gsub("for (j in 1:pc_random) { model_string_jags <- gsub("for(s in 1:n2_clus_c) {b2[j, s] ~ dnorm(mu_b_hat[j, 2], tau_b_hat[j, 2]) }", "", model_string_jags, fixed = TRUE) model_string_jags <- gsub("} model_string_jags <- gsub("for(j in 1:pc_random) {mu_b_hat[j, t] ~ dnorm(0, 0.001)", "", model_string_jags, fixed = TRUE) model_string_jags <- gsub("s_b_hat[j, t] ~ dunif(0, 100) }", "", model_string_jags, fixed = TRUE) model_string_jags <- gsub("+ b1_f[clus1_c[i]] * (eff1[i] - mu_e[1])", "", model_string_jags, fixed = TRUE) model_string_jags <- gsub("+ b2_f[clus2_c[i]] * (eff2[i] - mu_e[2])", "", model_string_jags, fixed = TRUE) model_string_jags <- gsub("for(s in 1:n1_clus_c) {b1_f[s] ~ dnorm(mu_b_f_hat[1], tau_b_f_hat[1]) }", "", model_string_jags, fixed = TRUE) model_string_jags <- gsub("for(s in 1:n2_clus_c) {b2_f[s] ~ dnorm(mu_b_f_hat[2], tau_b_f_hat[2]) }", "", model_string_jags, fixed = TRUE) model_string_jags <- gsub("for(t in 1:2) {mu_b_f_hat[t] ~ dnorm(0, 0.001)", "", model_string_jags, fixed = TRUE) model_string_jags <- gsub("tau_b_f_hat[t] <- 1 / ss_b_f_hat[t]", "", model_string_jags, fixed = TRUE) model_string_jags <- gsub("ss_b_f_hat[t] <- s_b_f_hat[t] * s_b_f_hat[t]", "", model_string_jags, fixed = TRUE) model_string_jags <- gsub("s_b_f_hat[t] ~ dunif(0, 100) }", "", model_string_jags, fixed = TRUE) model_string_jags <- gsub(" if(length(model_e_random) == 0) { model_string_jags <- gsub(" } else if(length(model_c_random) != 0 & is_c_random_c == TRUE & is_int_c_random_c == FALSE) { model_string_jags <- gsub(" + inprod(X1_c_random[i, ], b1[, clus1_c[i]])", "", model_string_jags, fixed = TRUE) model_string_jags <- gsub(" + inprod(X2_c_random[i, ], b2[, clus2_c[i]])", "", model_string_jags, fixed = TRUE) model_string_jags <- gsub("for(j in 1:pc_random) {tau_b_hat[j, t] <- 1 / ss_b_hat[j, t]", "", model_string_jags, fixed = TRUE) model_string_jags <- gsub("ss_b_hat[j, t] <- s_b_hat[j, t] * s_b_hat[j, t] }", "", model_string_jags, fixed = TRUE) model_string_jags <- gsub(" + inprod(mean_cov_c1_random[], mu_b_hat[, 1])", "", model_string_jags, fixed = TRUE) model_string_jags <- gsub(" + inprod(mean_cov_c2_random[], mu_b_hat[, 2])", "", model_string_jags, fixed = TRUE) model_string_jags <- gsub("for (j in 1:pc_random) { model_string_jags <- gsub("for(s in 1:n1_clus_c) {b1[j, s] ~ dnorm(mu_b_hat[j, 1], tau_b_hat[j, 1]) }", "", model_string_jags, fixed = TRUE) model_string_jags <- gsub("} model_string_jags <- gsub("for (j in 1:pc_random) { model_string_jags <- gsub("for(s in 1:n2_clus_c) {b2[j, s] ~ dnorm(mu_b_hat[j, 2], tau_b_hat[j, 2]) }", "", model_string_jags, fixed = TRUE) model_string_jags <- gsub("} model_string_jags <- gsub("for(j in 1:pc_random) {mu_b_hat[j, t] ~ dnorm(0, 0.001)", "", model_string_jags, fixed = TRUE) model_string_jags <- gsub("s_b_hat[j, t] ~ dunif(0, 100) }", "", model_string_jags, fixed = TRUE) if(length(model_e_random) == 0) { model_string_jags <- gsub(" } if(length(model_me_random) == 0) { model_string_jags <- gsub(" + inprod(Z1_e_random[i, ], g1_e[, clus1_me[i]])", "", model_string_jags, fixed = TRUE) model_string_jags <- gsub(" + inprod(Z2_e_random[i, ], g2_e[, clus2_me[i]])", "", model_string_jags, fixed = TRUE) model_string_jags <- gsub("for(j in 1:ze_random) {tau_g_e_hat[j, t] <- 1 / ss_g_e_hat[j, t]", "", model_string_jags, fixed = TRUE) model_string_jags <- gsub("ss_g_e_hat[j, t] <- s_g_e_hat[j, t] * s_g_e_hat[j, t] }", "", model_string_jags, fixed = TRUE) model_string_jags <- gsub(" + inprod(mean_z_e1_random[], mu_g_e_hat[, 1])", "", model_string_jags, fixed = TRUE) model_string_jags <- gsub(" + inprod(mean_z_e2_random[], mu_g_e_hat[, 2])", "", model_string_jags, fixed = TRUE) model_string_jags <- gsub("for (j in 1:ze_random) { model_string_jags <- gsub("for(s in 1:n1_clus_me) {g1_e[j, s] ~ dnorm(mu_g_e_hat[j, 1], tau_g_e_hat[j, 1]) }", "", model_string_jags, fixed = TRUE) model_string_jags <- gsub("} model_string_jags <- gsub("for (j in 1:ze_random) { model_string_jags <- gsub("for(s in 1:n2_clus_me) {g2_e[j, s] ~ dnorm(mu_g_e_hat[j, 2], tau_g_e_hat[j, 2]) }", "", model_string_jags, fixed = TRUE) model_string_jags <- gsub("} model_string_jags <- gsub("for(j in 1:ze_random) {mu_g_e_hat[j, t] ~ dnorm(0, 0.001)", "", model_string_jags, fixed = TRUE) model_string_jags <- gsub("s_g_e_hat[j, t] ~ dunif(0, 100) }", "", model_string_jags, fixed = TRUE) model_string_jags <- gsub("+ d1_e[clus1_me[i]] * eff1[i]", "", model_string_jags, fixed = TRUE) model_string_jags <- gsub("+ d2_e[clus2_me[i]] * eff2[i]", "", model_string_jags, fixed = TRUE) model_string_jags <- gsub("+ mu_d_e_hat[1] * mean(eff1[])", "", model_string_jags, fixed = TRUE) model_string_jags <- gsub("+ mu_d_e_hat[2] * mean(eff2[])", "", model_string_jags, fixed = TRUE) model_string_jags <- gsub("tau_d_e_hat[t] <- 1 / ss_d_e_hat[t]", "", model_string_jags, fixed = TRUE) model_string_jags <- gsub("ss_d_e_hat[t] <- s_d_e_hat[t] * s_d_e_hat[t]", "", model_string_jags, fixed = TRUE) model_string_jags <- gsub("mu_d_e_hat[t] ~ dnorm(0, 1)", "", model_string_jags, fixed = TRUE) model_string_jags <- gsub("s_d_e_hat[t] ~ dunif(0, 1)", "", model_string_jags, fixed = TRUE) model_string_jags <- gsub("for(s in 1:n1_clus_me) {d1_e[s] ~ dnorm(mu_d_e_hat[1], tau_d_e_hat[1]) }", "", model_string_jags, fixed = TRUE) model_string_jags <- gsub("for(s in 1:n2_clus_me) {d2_e[s] ~ dnorm(mu_d_e_hat[2], tau_d_e_hat[2]) }", "", model_string_jags, fixed = TRUE) if(length(model_mc_random) == 0) { model_string_jags <- gsub(" model_string_jags <- gsub(" model_string_jags <- gsub(" model_string_jags <- gsub("for(t in 1:2) { model_string_jags <- gsub("} if(length(model_c_random) == 0 & length(model_e_random) == 0 | length(model_e_random) == 0 & pc_random == 0) { model_string_jags <- gsub(" model_string_jags <- gsub(" model_string_jags <- gsub("for (t in 1:2) { model_string_jags <- gsub("} } } } else if(length(model_me_random) != 0 & is_me_random_e == TRUE & is_int_me_random_e == FALSE) { model_string_jags <- gsub(" + inprod(Z1_e_random[i, ], g1_e[, clus1_me[i]])", "", model_string_jags, fixed = TRUE) model_string_jags <- gsub(" + inprod(Z2_e_random[i, ], g2_e[, clus2_me[i]])", "", model_string_jags, fixed = TRUE) model_string_jags <- gsub("for(j in 1:ze_random) {tau_g_e_hat[j, t] <- 1 / ss_g_e_hat[j, t]", "", model_string_jags, fixed = TRUE) model_string_jags <- gsub("ss_g_e_hat[j, t] <- s_g_e_hat[j, t] * s_g_e_hat[j, t] }", "", model_string_jags, fixed = TRUE) model_string_jags <- gsub(" + inprod(mean_z_e1_random[], mu_g_e_hat[, 1])", "", model_string_jags, fixed = TRUE) model_string_jags <- gsub(" + inprod(mean_z_e2_random[], mu_g_e_hat[, 2])", "", model_string_jags, fixed = TRUE) model_string_jags <- gsub("for (j in 1:ze_random) { model_string_jags <- gsub("for(s in 1:n1_clus_me) {g1_e[j, s] ~ dnorm(mu_g_e_hat[j, 1], tau_g_e_hat[j, 1]) }", "", model_string_jags, fixed = TRUE) model_string_jags <- gsub("} model_string_jags <- gsub("for (j in 1:ze_random) { model_string_jags <- gsub("for(s in 1:n2_clus_me) {g2_e[j, s] ~ dnorm(mu_g_e_hat[j, 2], tau_g_e_hat[j, 2]) }", "", model_string_jags, fixed = TRUE) model_string_jags <- gsub("} model_string_jags <- gsub("for(j in 1:ze_random) {mu_g_e_hat[j, t] ~ dnorm(0, 0.001)", "", model_string_jags, fixed = TRUE) model_string_jags <- gsub("s_g_e_hat[j, t] ~ dunif(0, 100) }", "", model_string_jags, fixed = TRUE) } if(length(model_mc_random) == 0) { model_string_jags <- gsub(" + inprod(Z1_c_random[i, ], g1_c[, clus1_mc[i]])", "", model_string_jags, fixed = TRUE) model_string_jags <- gsub(" + inprod(Z2_c_random[i, ], g2_c[, clus2_mc[i]])", "", model_string_jags, fixed = TRUE) model_string_jags <- gsub("for(j in 1:zc_random) {tau_g_c_hat[j, t] <- 1 / ss_g_c_hat[j, t]", "", model_string_jags, fixed = TRUE) model_string_jags <- gsub("ss_g_c_hat[j, t] <- s_g_c_hat[j, t] * s_g_c_hat[j, t] }", "", model_string_jags, fixed = TRUE) model_string_jags <- gsub(" + inprod(mean_z_c1_random[], mu_g_c_hat[, 1])", "", model_string_jags, fixed = TRUE) model_string_jags <- gsub(" + inprod(mean_z_c2_random[], mu_g_c_hat[, 2])", "", model_string_jags, fixed = TRUE) model_string_jags <- gsub("for (j in 1:zc_random) { model_string_jags <- gsub("for(s in 1:n1_clus_mc) {g1_c[j, s] ~ dnorm(mu_g_c_hat[j, 1], tau_g_c_hat[j, 1]) }", "", model_string_jags, fixed = TRUE) model_string_jags <- gsub("} model_string_jags <- gsub("for (j in 1:zc_random) { model_string_jags <- gsub("for(s in 1:n2_clus_mc) {g2_c[j, s] ~ dnorm(mu_g_c_hat[j, 2], tau_g_c_hat[j, 2]) }", "", model_string_jags, fixed = TRUE) model_string_jags <- gsub("} model_string_jags <- gsub("for(j in 1:zc_random) {mu_g_c_hat[j, t] ~ dnorm(0, 0.001)", "", model_string_jags, fixed = TRUE) model_string_jags <- gsub("s_g_c_hat[j, t] ~ dunif(0, 100) }", "", model_string_jags, fixed = TRUE) model_string_jags <- gsub("+ d1_c[clus1_mc[i]] * cost1[i]", "", model_string_jags, fixed = TRUE) model_string_jags <- gsub("+ d2_c[clus2_mc[i]] * cost2[i]", "", model_string_jags, fixed = TRUE) model_string_jags <- gsub("+ mu_d_c_hat[1] * mean(cost1[])", "", model_string_jags, fixed = TRUE) model_string_jags <- gsub("+ mu_d_c_hat[2] * mean(cost2[])", "", model_string_jags, fixed = TRUE) model_string_jags <- gsub("tau_d_c_hat[t] <- 1 / ss_d_c_hat[t]", "", model_string_jags, fixed = TRUE) model_string_jags <- gsub("ss_d_c_hat[t] <- s_d_c_hat[t] * s_d_c_hat[t]", "", model_string_jags, fixed = TRUE) model_string_jags <- gsub("mu_d_c_hat[t] ~ dnorm(0, 1)", "", model_string_jags, fixed = TRUE) model_string_jags <- gsub("s_d_c_hat[t] ~ dunif(0, 1)", "", model_string_jags, fixed = TRUE) model_string_jags <- gsub("for(s in 1:n1_clus_mc) {d1_c[s] ~ dnorm(mu_d_c_hat[1], tau_d_c_hat[1]) }", "", model_string_jags, fixed = TRUE) model_string_jags <- gsub("for(s in 1:n2_clus_mc) {d2_c[s] ~ dnorm(mu_d_c_hat[2], tau_d_c_hat[2]) }", "", model_string_jags, fixed = TRUE) if(length(model_me_random) == 0) { model_string_jags <- gsub(" model_string_jags <- gsub(" model_string_jags <- gsub(" model_string_jags <- gsub("for(t in 1:2) { model_string_jags <- gsub("} if(length(model_e_random) == 0 & length(model_c_random) == 0 | length(model_e_random) == 0 & pc_random == 0) { model_string_jags <- gsub(" model_string_jags <- gsub(" model_string_jags <- gsub("for (t in 1:2) { model_string_jags <- gsub("} } } } else if(length(model_mc_random) != 0 & is_mc_random_c == TRUE & is_int_mc_random_c == FALSE) { model_string_jags <- gsub(" + inprod(Z1_c_random[i, ], g1_c[, clus1_mc[i]])", "", model_string_jags, fixed = TRUE) model_string_jags <- gsub(" + inprod(Z2_c_random[i, ], g2_c[, clus2_mc[i]])", "", model_string_jags, fixed = TRUE) model_string_jags <- gsub("for(j in 1:zc_random) {tau_g_c_hat[j, t] <- 1 / ss_g_c_hat[j, t]", "", model_string_jags, fixed = TRUE) model_string_jags <- gsub("ss_g_c_hat[j, t] <- s_g_c_hat[j, t] * s_g_c_hat[j, t] }", "", model_string_jags, fixed = TRUE) model_string_jags <- gsub(" + inprod(mean_z_c1_random[], mu_g_c_hat[, 1])", "", model_string_jags, fixed = TRUE) model_string_jags <- gsub(" + inprod(mean_z_c2_random[], mu_g_c_hat[, 2])", "", model_string_jags, fixed = TRUE) model_string_jags <- gsub("for (j in 1:zc_random) { model_string_jags <- gsub("for(s in 1:n1_clus_mc) {g1_c[j, s] ~ dnorm(mu_g_c_hat[j, 1], tau_g_c_hat[j, 1]) }", "", model_string_jags, fixed = TRUE) model_string_jags <- gsub("} model_string_jags <- gsub("for (j in 1:zc_random) { model_string_jags <- gsub("for(s in 1:n2_clus_mc) {g2_c[j, s] ~ dnorm(mu_g_c_hat[j, 2], tau_g_c_hat[j, 2]) }", "", model_string_jags, fixed = TRUE) model_string_jags <- gsub("} model_string_jags <- gsub("for(j in 1:zc_random) {mu_g_c_hat[j, t] ~ dnorm(0, 0.001)", "", model_string_jags, fixed = TRUE) model_string_jags <- gsub("s_g_c_hat[j, t] ~ dunif(0, 100) }", "", model_string_jags, fixed = TRUE) } if(type == "MAR") { model_string_jags <- gsub(" + delta_e[1] * mean(eff1[])", "", model_string_jags, fixed = TRUE) model_string_jags <- gsub(" + delta_e[2] * mean(eff2[])", "", model_string_jags, fixed = TRUE) model_string_jags <- gsub(" + delta_e[1] * eff1[i]", "", model_string_jags, fixed = TRUE) model_string_jags <- gsub(" + delta_e[2] * eff2[i]", "", model_string_jags, fixed = TRUE) model_string_jags <- gsub("delta_e[t] ~ dnorm(0, 1)", "", model_string_jags, fixed = TRUE) model_string_jags <- gsub(" + delta_c[1] * mean(cost1[])", "", model_string_jags, fixed = TRUE) model_string_jags <- gsub(" + delta_c[2] * mean(cost2[])", "", model_string_jags, fixed = TRUE) model_string_jags <- gsub(" + delta_c[1] * cost1[i]", "", model_string_jags, fixed = TRUE) model_string_jags <- gsub(" + delta_c[2] * cost2[i]", "", model_string_jags, fixed = TRUE) model_string_jags <- gsub("delta_c[t] ~ dnorm(0, 1)", "", model_string_jags, fixed = TRUE) model_string_jags <- gsub("for(t in 1:2) { model_string_jags <- gsub("} model_string_jags <- gsub(" model_string_jags <- gsub(" model_string_jags <- gsub(" model_string_jags <- gsub("for(t in 1:2) { model_string_jags <- gsub("} if(length(model_me_random) != 0) { model_string_jags <- gsub("+ d1_e[clus1_me[i]] * eff1[i]", "", model_string_jags, fixed = TRUE) model_string_jags <- gsub("+ d2_e[clus2_me[i]] * eff2[i]", "", model_string_jags, fixed = TRUE) model_string_jags <- gsub("+ mu_d_e_hat[1] * mean(eff1[])", "", model_string_jags, fixed = TRUE) model_string_jags <- gsub("+ mu_d_e_hat[2] * mean(eff2[])", "", model_string_jags, fixed = TRUE) model_string_jags <- gsub("tau_d_e_hat[t] <- 1 / ss_d_e_hat[t]", "", model_string_jags, fixed = TRUE) model_string_jags <- gsub("ss_d_e_hat[t] <- s_d_e_hat[t] * s_d_e_hat[t]", "", model_string_jags, fixed = TRUE) model_string_jags <- gsub("mu_d_e_hat[t] ~ dnorm(0, 1)", "", model_string_jags, fixed = TRUE) model_string_jags <- gsub("s_d_e_hat[t] ~ dunif(0, 1)", "", model_string_jags, fixed = TRUE) model_string_jags <- gsub("for(s in 1:n1_clus_me) {d1_e[s] ~ dnorm(mu_d_e_hat[1], tau_d_e_hat[1]) }", "", model_string_jags, fixed = TRUE) model_string_jags <- gsub("for(s in 1:n2_clus_me) {d2_e[s] ~ dnorm(mu_d_e_hat[2], tau_d_e_hat[2]) }", "", model_string_jags, fixed = TRUE) } if(length(model_mc_random) != 0) { model_string_jags <- gsub("+ d1_c[clus1_mc[i]] * cost1[i]", "", model_string_jags, fixed = TRUE) model_string_jags <- gsub("+ d2_c[clus2_mc[i]] * cost2[i]", "", model_string_jags, fixed = TRUE) model_string_jags <- gsub("+ mu_d_c_hat[1] * mean(cost1[])", "", model_string_jags, fixed = TRUE) model_string_jags <- gsub("+ mu_d_c_hat[2] * mean(cost2[])", "", model_string_jags, fixed = TRUE) model_string_jags <- gsub("tau_d_c_hat[t] <- 1 / ss_d_c_hat[t]", "", model_string_jags, fixed = TRUE) model_string_jags <- gsub("ss_d_c_hat[t] <- s_d_c_hat[t] * s_d_c_hat[t]", "", model_string_jags, fixed = TRUE) model_string_jags <- gsub("mu_d_c_hat[t] ~ dnorm(0, 1)", "", model_string_jags, fixed = TRUE) model_string_jags <- gsub("s_d_c_hat[t] ~ dunif(0, 1)", "", model_string_jags, fixed = TRUE) model_string_jags <- gsub("for(s in 1:n1_clus_mc) {d1_c[s] ~ dnorm(mu_d_c_hat[1], tau_d_c_hat[1]) }", "", model_string_jags, fixed = TRUE) model_string_jags <- gsub("for(s in 1:n2_clus_mc) {d2_c[s] ~ dnorm(mu_d_c_hat[2], tau_d_c_hat[2]) }", "", model_string_jags, fixed = TRUE) } } else if(type == "MNAR_eff") { model_string_jags <- gsub(" + delta_c[1] * mean(cost1[])", "", model_string_jags, fixed = TRUE) model_string_jags <- gsub(" + delta_c[2] * mean(cost2[])", "", model_string_jags, fixed = TRUE) model_string_jags <- gsub(" + delta_c[1] * cost1[i]", "", model_string_jags, fixed = TRUE) model_string_jags <- gsub(" + delta_c[2] * cost2[i]", "", model_string_jags, fixed = TRUE) model_string_jags <- gsub("delta_c[t] ~ dnorm(0, 1)", "", model_string_jags, fixed = TRUE) if(length(model_mc_random) != 0) { model_string_jags <- gsub("+ d1_c[clus1_mc[i]] * cost1[i]", "", model_string_jags, fixed = TRUE) model_string_jags <- gsub("+ d2_c[clus2_mc[i]] * cost2[i]", "", model_string_jags, fixed = TRUE) model_string_jags <- gsub("+ mu_d_c_hat[1] * mean(cost1[])", "", model_string_jags, fixed = TRUE) model_string_jags <- gsub("+ mu_d_c_hat[2] * mean(cost2[])", "", model_string_jags, fixed = TRUE) model_string_jags <- gsub("tau_d_c_hat[t] <- 1 / ss_d_c_hat[t]", "", model_string_jags, fixed = TRUE) model_string_jags <- gsub("ss_d_c_hat[t] <- s_d_c_hat[t] * s_d_c_hat[t]", "", model_string_jags, fixed = TRUE) model_string_jags <- gsub("mu_d_c_hat[t] ~ dnorm(0, 1)", "", model_string_jags, fixed = TRUE) model_string_jags <- gsub("s_d_c_hat[t] ~ dunif(0, 1)", "", model_string_jags, fixed = TRUE) model_string_jags <- gsub("for(s in 1:n1_clus_mc) {d1_c[s] ~ dnorm(mu_d_c_hat[1], tau_d_c_hat[1]) }", "", model_string_jags, fixed = TRUE) model_string_jags <- gsub("for(s in 1:n2_clus_mc) {d2_c[s] ~ dnorm(mu_d_c_hat[2], tau_d_c_hat[2]) }", "", model_string_jags, fixed = TRUE) } if(length(model_me_random) != 0 & !("e" %in% model_me_random)) { model_string_jags <- gsub("+ d1_e[clus1_me[i]] * eff1[i]", "", model_string_jags, fixed = TRUE) model_string_jags <- gsub("+ d2_e[clus2_me[i]] * eff2[i]", "", model_string_jags, fixed = TRUE) model_string_jags <- gsub("+ mu_d_e_hat[1] * mean(eff1[])", "", model_string_jags, fixed = TRUE) model_string_jags <- gsub("+ mu_d_e_hat[2] * mean(eff2[])", "", model_string_jags, fixed = TRUE) model_string_jags <- gsub("tau_d_e_hat[t] <- 1 / ss_d_e_hat[t]", "", model_string_jags, fixed = TRUE) model_string_jags <- gsub("ss_d_e_hat[t] <- s_d_e_hat[t] * s_d_e_hat[t]", "", model_string_jags, fixed = TRUE) model_string_jags <- gsub("mu_d_e_hat[t] ~ dnorm(0, 1)", "", model_string_jags, fixed = TRUE) model_string_jags <- gsub("s_d_e_hat[t] ~ dunif(0, 1)", "", model_string_jags, fixed = TRUE) model_string_jags <- gsub("for(s in 1:n1_clus_me) {d1_e[s] ~ dnorm(mu_d_e_hat[1], tau_d_e_hat[1]) }", "", model_string_jags, fixed = TRUE) model_string_jags <- gsub("for(s in 1:n2_clus_me) {d2_e[s] ~ dnorm(mu_d_e_hat[2], tau_d_e_hat[2]) }", "", model_string_jags, fixed = TRUE) } if(length(model_mc_random) != 0 & !("c" %in% model_mc_random) & length(model_me_random) != 0 & !("e" %in% model_me_random)) { model_string_jags <- gsub(" model_string_jags <- gsub(" model_string_jags <- gsub(" model_string_jags <- gsub("for(t in 1:2) { model_string_jags <- gsub("} } } else if(type == "MNAR_cost") { model_string_jags <- gsub(" + delta_e[1] * mean(eff1[])", "", model_string_jags, fixed = TRUE) model_string_jags <- gsub(" + delta_e[2] * mean(eff2[])", "", model_string_jags, fixed = TRUE) model_string_jags <- gsub(" + delta_e[1] * eff1[i]", "", model_string_jags, fixed = TRUE) model_string_jags <- gsub(" + delta_e[2] * eff2[i]", "", model_string_jags, fixed = TRUE) model_string_jags <- gsub("delta_e[t] ~ dnorm(0, 1)", "", model_string_jags, fixed = TRUE) if(length(model_me_random) != 0) { model_string_jags <- gsub("+ d1_e[clus1_me[i]] * eff1[i]", "", model_string_jags, fixed = TRUE) model_string_jags <- gsub("+ d2_e[clus2_me[i]] * eff2[i]", "", model_string_jags, fixed = TRUE) model_string_jags <- gsub("+ mu_d_e_hat[1] * mean(eff1[])", "", model_string_jags, fixed = TRUE) model_string_jags <- gsub("+ mu_d_e_hat[2] * mean(eff2[])", "", model_string_jags, fixed = TRUE) model_string_jags <- gsub("tau_d_e_hat[t] <- 1 / ss_d_e_hat[t]", "", model_string_jags, fixed = TRUE) model_string_jags <- gsub("ss_d_e_hat[t] <- s_d_e_hat[t] * s_d_e_hat[t]", "", model_string_jags, fixed = TRUE) model_string_jags <- gsub("mu_d_e_hat[t] ~ dnorm(0, 1)", "", model_string_jags, fixed = TRUE) model_string_jags <- gsub("s_d_e_hat[t] ~ dunif(0, 1)", "", model_string_jags, fixed = TRUE) model_string_jags <- gsub("for(s in 1:n1_clus_me) {d1_e[s] ~ dnorm(mu_d_e_hat[1], tau_d_e_hat[1]) }", "", model_string_jags, fixed = TRUE) model_string_jags <- gsub("for(s in 1:n2_clus_me) {d2_e[s] ~ dnorm(mu_d_e_hat[2], tau_d_e_hat[2]) }", "", model_string_jags, fixed = TRUE) } if(length(model_mc_random) != 0 & !("c" %in% model_mc_random)) { model_string_jags <- gsub("+ d1_c[clus1_mc[i]] * cost1[i]", "", model_string_jags, fixed = TRUE) model_string_jags <- gsub("+ d2_c[clus2_mc[i]] * cost2[i]", "", model_string_jags, fixed = TRUE) model_string_jags <- gsub("+ mu_d_c_hat[1] * mean(cost1[])", "", model_string_jags, fixed = TRUE) model_string_jags <- gsub("+ mu_d_c_hat[2] * mean(cost2[])", "", model_string_jags, fixed = TRUE) model_string_jags <- gsub("tau_d_c_hat[t] <- 1 / ss_d_c_hat[t]", "", model_string_jags, fixed = TRUE) model_string_jags <- gsub("ss_d_c_hat[t] <- s_d_c_hat[t] * s_d_c_hat[t]", "", model_string_jags, fixed = TRUE) model_string_jags <- gsub("mu_d_c_hat[t] ~ dnorm(0, 1)", "", model_string_jags, fixed = TRUE) model_string_jags <- gsub("s_d_c_hat[t] ~ dunif(0, 1)", "", model_string_jags, fixed = TRUE) model_string_jags <- gsub("for(s in 1:n1_clus_mc) {d1_c[s] ~ dnorm(mu_d_c_hat[1], tau_d_c_hat[1]) }", "", model_string_jags, fixed = TRUE) model_string_jags <- gsub("for(s in 1:n2_clus_mc) {d2_c[s] ~ dnorm(mu_d_c_hat[2], tau_d_c_hat[2]) }", "", model_string_jags, fixed = TRUE) } if(length(model_mc_random) != 0 & !("c" %in% model_mc_random) & length(model_me_random) != 0 & !("e" %in% model_me_random)) { model_string_jags <- gsub(" model_string_jags <- gsub(" model_string_jags <- gsub(" model_string_jags <- gsub("for(t in 1:2) { model_string_jags <- gsub("} } } else if(type == "MNAR") { if(length(model_me_random) != 0 & !("e" %in% model_me_random)) { model_string_jags <- gsub("+ d1_e[clus1_me[i]] * eff1[i]", "", model_string_jags, fixed = TRUE) model_string_jags <- gsub("+ d2_e[clus2_me[i]] * eff2[i]", "", model_string_jags, fixed = TRUE) model_string_jags <- gsub("+ mu_d_e_hat[1] * mean(eff1[])", "", model_string_jags, fixed = TRUE) model_string_jags <- gsub("+ mu_d_e_hat[2] * mean(eff2[])", "", model_string_jags, fixed = TRUE) model_string_jags <- gsub("tau_d_e_hat[t] <- 1 / ss_d_e_hat[t]", "", model_string_jags, fixed = TRUE) model_string_jags <- gsub("ss_d_e_hat[t] <- s_d_e_hat[t] * s_d_e_hat[t]", "", model_string_jags, fixed = TRUE) model_string_jags <- gsub("mu_d_e_hat[t] ~ dnorm(0, 1)", "", model_string_jags, fixed = TRUE) model_string_jags <- gsub("s_d_e_hat[t] ~ dunif(0, 1)", "", model_string_jags, fixed = TRUE) model_string_jags <- gsub("for(s in 1:n1_clus_me) {d1_e[s] ~ dnorm(mu_d_e_hat[1], tau_d_e_hat[1]) }", "", model_string_jags, fixed = TRUE) model_string_jags <- gsub("for(s in 1:n2_clus_me) {d2_e[s] ~ dnorm(mu_d_e_hat[2], tau_d_e_hat[2]) }", "", model_string_jags, fixed = TRUE) } if(length(model_mc_random) != 0 & !("c" %in% model_mc_random)) { model_string_jags <- gsub("+ d1_c[clus1_mc[i]] * cost1[i]", "", model_string_jags, fixed = TRUE) model_string_jags <- gsub("+ d2_c[clus2_mc[i]] * cost2[i]", "", model_string_jags, fixed = TRUE) model_string_jags <- gsub("+ mu_d_c_hat[1] * mean(cost1[])", "", model_string_jags, fixed = TRUE) model_string_jags <- gsub("+ mu_d_c_hat[2] * mean(cost2[])", "", model_string_jags, fixed = TRUE) model_string_jags <- gsub("tau_d_c_hat[t] <- 1 / ss_d_c_hat[t]", "", model_string_jags, fixed = TRUE) model_string_jags <- gsub("ss_d_c_hat[t] <- s_d_c_hat[t] * s_d_c_hat[t]", "", model_string_jags, fixed = TRUE) model_string_jags <- gsub("mu_d_c_hat[t] ~ dnorm(0, 1)", "", model_string_jags, fixed = TRUE) model_string_jags <- gsub("s_d_c_hat[t] ~ dunif(0, 1)", "", model_string_jags, fixed = TRUE) model_string_jags <- gsub("for(s in 1:n1_clus_mc) {d1_c[s] ~ dnorm(mu_d_c_hat[1], tau_d_c_hat[1]) }", "", model_string_jags, fixed = TRUE) model_string_jags <- gsub("for(s in 1:n2_clus_mc) {d2_c[s] ~ dnorm(mu_d_c_hat[2], tau_d_c_hat[2]) }", "", model_string_jags, fixed = TRUE) } if(length(model_mc_random) != 0 & !("c" %in% model_mc_random) & length(model_me_random) != 0 & !("e" %in% model_me_random)) { model_string_jags <- gsub(" model_string_jags <- gsub(" model_string_jags <- gsub(" model_string_jags <- gsub("for(t in 1:2) { model_string_jags <- gsub("} } } if(ind_random == TRUE) { model_string_jags <- gsub("+ b1_f[clus1_c[i]] * (eff1[i] - mu_e[1])", "", model_string_jags, fixed = TRUE) model_string_jags <- gsub("+ b2_f[clus2_c[i]] * (eff2[i] - mu_e[2])", "", model_string_jags, fixed = TRUE) model_string_jags <- gsub("for(s in 1:n1_clus_c) {b1_f[s] ~ dnorm(mu_b_f_hat[1], tau_b_f_hat[1]) }", "", model_string_jags, fixed = TRUE) model_string_jags <- gsub("for(s in 1:n2_clus_c) {b2_f[s] ~ dnorm(mu_b_f_hat[2], tau_b_f_hat[2]) }", "", model_string_jags, fixed = TRUE) model_string_jags <- gsub("for(t in 1:2) {mu_b_f_hat[t] ~ dnorm(0, 0.001)", "", model_string_jags, fixed = TRUE) model_string_jags <- gsub("tau_b_f_hat[t] <- 1 / ss_b_f_hat[t]", "", model_string_jags, fixed = TRUE) model_string_jags <- gsub("ss_b_f_hat[t] <- s_b_f_hat[t] * s_b_f_hat[t]", "", model_string_jags, fixed = TRUE) model_string_jags <- gsub("s_b_f_hat[t] ~ dunif(0, 100) }", "", model_string_jags, fixed = TRUE) model_string_jags <- gsub(" } if(ind_fixed == TRUE) { model_string_jags <- gsub(" + beta_f[1] * (eff1[i] - mu_e[1])", "", model_string_jags, fixed = TRUE) model_string_jags <- gsub(" + beta_f[2] * (eff2[i] - mu_e[2])", "", model_string_jags, fixed = TRUE) model_string_jags <- gsub("beta_f[t] ~ dnorm(0, 0.0000001)", "", model_string_jags, fixed = TRUE) model_string_jags <- gsub(" } if(dist_c == "norm") { model_string_jags <- gsub(" model_string_jags <- gsub(" model_string_jags <- gsub(" } if(dist_c == "gamma") { model_string_jags <- gsub("cost1[i] ~ dnorm(mu_c1[i], tau_c[1])", "cost1[i] ~ dgamma(mu_c1[i] * tau_c1[i], tau_c1[i])", model_string_jags, fixed = TRUE) model_string_jags <- gsub(" model_string_jags <- gsub("mu_c1[i] <- ", "log(mu_c1[i]) <- ", model_string_jags, fixed = TRUE) model_string_jags <- gsub("cost2[i] ~ dnorm(mu_c2[i], tau_c[2])", "cost2[i] ~ dgamma(mu_c2[i] * tau_c2[i], tau_c2[i])", model_string_jags, fixed = TRUE) model_string_jags <- gsub(" model_string_jags <- gsub("mu_c2[i] <- ", "log(mu_c2[i]) <- ", model_string_jags, fixed = TRUE) model_string_jags <- gsub("tau_c[t] <- 1 / ss_c[t]", "", model_string_jags, fixed = TRUE) model_string_jags <- gsub("ss_c[t] <- s_c[t] * s_c[t]", "", model_string_jags, fixed = TRUE) model_string_jags <- gsub("s_c[t] <- exp(ls_c[t])", "", model_string_jags, fixed = TRUE) model_string_jags <- gsub("ls_c[t] ~ dunif(-5, 10)", "s_c[t] ~ dunif(0, 10000)", model_string_jags, fixed = TRUE) model_string_jags <- gsub("loglik_c1[i] <- logdensity.norm(cost1[i], mu_c1[i], tau_c[1])", "loglik_c1[i] <- logdensity.gamma(cost1[i], mu_c1[i] * tau_c1[i], tau_c1[i])", model_string_jags, fixed = TRUE) model_string_jags <- gsub("loglik_c2[i] <- logdensity.norm(cost2[i], mu_c2[i], tau_c[2])", "loglik_c2[i] <- logdensity.gamma(cost2[i], mu_c2[i] * tau_c2[i], tau_c2[i])", model_string_jags, fixed = TRUE) model_string_jags <- gsub(" if(length(model_c_random) == 0) { model_string_jags <- gsub("mu_c[1] <- inprod(mean_cov_c1_fixed[], beta[, 1])", "mu_c[1] <- exp(inprod(mean_cov_c1_fixed[], beta[, 1]))", model_string_jags, fixed = TRUE) model_string_jags <- gsub("mu_c[2] <- inprod(mean_cov_c2_fixed[], beta[, 2])", "mu_c[2] <- exp(inprod(mean_cov_c2_fixed[], beta[, 2]))", model_string_jags, fixed = TRUE) } if(length(model_c_random) != 0) { model_string_jags <- gsub("mu_c[1] <- inprod(mean_cov_c1_fixed[], beta[, 1]) + inprod(mean_cov_c1_random[], mu_b_hat[, 1])", "mu_c[1] <- exp(inprod(mean_cov_c1_fixed[], beta[, 1]) + inprod(mean_cov_c1_random[], mu_b_hat[, 1]))", model_string_jags, fixed = TRUE) model_string_jags <- gsub("mu_c[2] <- inprod(mean_cov_c2_fixed[], beta[, 2]) + inprod(mean_cov_c2_random[], mu_b_hat[, 2])", "mu_c[2] <- exp(inprod(mean_cov_c2_fixed[], beta[, 2]) + inprod(mean_cov_c2_random[], mu_b_hat[, 2]))", model_string_jags, fixed = TRUE) } } else if(dist_c == "lnorm") { model_string_jags <- gsub("cost1[i] ~ dnorm(mu_c1[i], tau_c[1])", "cost1[i] ~ dlnorm(lmu_c1[i], ltau_c[1])", model_string_jags, fixed = TRUE) model_string_jags <- gsub(" model_string_jags <- gsub("mu_c1[i] <- ", "lmu_c1[i] <- ", model_string_jags, fixed = TRUE) model_string_jags <- gsub("cost2[i] ~ dnorm(mu_c2[i], tau_c[2])", "cost2[i] ~ dlnorm(lmu_c2[i], ltau_c[2])", model_string_jags, fixed = TRUE) model_string_jags <- gsub(" model_string_jags <- gsub("mu_c2[i] <- ", "lmu_c2[i] <- ", model_string_jags, fixed = TRUE) model_string_jags <- gsub("tau_c[t] <- 1 / ss_c[t]", "ltau_c[t] <- 1 / lss_c[t]", model_string_jags, fixed = TRUE) model_string_jags <- gsub("ss_c[t] <- s_c[t] * s_c[t]", "lss_c[t] <- ls_c[t] * ls_c[t]", model_string_jags, fixed = TRUE) model_string_jags <- gsub("s_c[t] <- exp(ls_c[t])", "s_c[t] <- sqrt(exp(2 * lmu_c[t] + lss_c[t]) * (exp(lss_c[t]) - 1))", model_string_jags, fixed = TRUE) model_string_jags <- gsub("ls_c[t] ~ dunif(-5, 10)", "ls_c[t] ~ dunif(0, 100)", model_string_jags, fixed = TRUE) model_string_jags <- gsub(" model_string_jags <- gsub("loglik_c1[i] <- logdensity.norm(cost1[i], mu_c1[i], tau_c[1])", "loglik_c1[i] <- logdensity.lnorm(cost1[i], lmu_c1[i], ltau_c[1])", model_string_jags, fixed = TRUE) model_string_jags <- gsub("loglik_c2[i] <- logdensity.norm(cost2[i], mu_c2[i], tau_c[2])", "loglik_c2[i] <- logdensity.lnorm(cost2[i], lmu_c2[i], ltau_c[2])", model_string_jags, fixed = TRUE) if(length(model_c_random) == 0) { model_string_jags <- gsub("mu_c[1] <- inprod(mean_cov_c1_fixed[], beta[, 1])", "lmu_c[1] <- inprod(mean_cov_c1_fixed[], beta[, 1])", model_string_jags, fixed = TRUE) model_string_jags <- gsub("mu_c[2] <- inprod(mean_cov_c2_fixed[], beta[, 2])", "lmu_c[2] <- inprod(mean_cov_c2_fixed[], beta[, 2])", model_string_jags, fixed = TRUE) } if(length(model_c_random) != 0) { model_string_jags <- gsub("mu_c[1] <- inprod(mean_cov_c1_fixed[], beta[, 1]) + inprod(mean_cov_c1_random[], mu_b_hat[, 1])", "lmu_c[1] <- inprod(mean_cov_c1_fixed[], beta[, 1]) + inprod(mean_cov_c1_random[], mu_b_hat[, 1])", model_string_jags, fixed = TRUE) model_string_jags <- gsub("mu_c[2] <- inprod(mean_cov_c2_fixed[], beta[, 2]) + inprod(mean_cov_c2_random[], mu_b_hat[, 2])", "lmu_c[2] <- inprod(mean_cov_c2_fixed[], beta[, 2]) + inprod(mean_cov_c2_random[], mu_b_hat[, 2])", model_string_jags, fixed = TRUE) } } if(dist_e == "norm") { model_string_jags <- gsub(" model_string_jags <- gsub(" } if(dist_e == "beta") { model_string_jags <- gsub("eff1[i] ~ dnorm(mu_e1[i], tau_e[1])", "eff1[i] ~ dbeta(mu_e1[i] * tau_e1[i], (1 - mu_e1[i]) * tau_e1[i])", model_string_jags, fixed = TRUE) model_string_jags <- gsub(" model_string_jags <- gsub("mu_e1[i] <- ", "logit(mu_e1[i]) <- ", model_string_jags, fixed = TRUE) model_string_jags <- gsub("eff2[i] ~ dnorm(mu_e2[i], tau_e[2])", "eff2[i] ~ dbeta(mu_e2[i] * tau_e2[i], (1 - mu_e2[i]) * tau_e2[i])", model_string_jags, fixed = TRUE) model_string_jags <- gsub(" model_string_jags <- gsub("mu_e2[i] <- ", "logit(mu_e2[i]) <- ", model_string_jags, fixed = TRUE) model_string_jags <- gsub("tau_e[t] <- 1 / ss_e[t]", "", model_string_jags, fixed = TRUE) model_string_jags <- gsub("ss_e[t] <- s_e[t] * s_e[t]", "", model_string_jags, fixed = TRUE) model_string_jags <- gsub("s_e[t] <- exp(ls_e[t])", "", model_string_jags, fixed = TRUE) model_string_jags <- gsub("ls_e[t] ~ dunif(-5, 10)", "s_e[t] ~ dunif(0, sqrt(mu_e[t] * (1 - mu_e[t])))", model_string_jags, fixed = TRUE) model_string_jags <- gsub("loglik_e1[i] <- logdensity.norm(eff1[i], mu_e1[i], tau_e[1])", "loglik_e1[i] <- logdensity.beta(eff1[i], mu_e1[i] * tau_e1[i], (1 - mu_e1[i]) * tau_e1[i])", model_string_jags, fixed = TRUE) model_string_jags <- gsub("loglik_e2[i] <- logdensity.norm(eff2[i], mu_e2[i], tau_e[2])", "loglik_e2[i] <- logdensity.beta(eff2[i], mu_e2[i] * tau_e2[i], (1 - mu_e2[i]) * tau_e2[i])", model_string_jags, fixed = TRUE) if(length(model_e_random) == 0) { model_string_jags <- gsub("mu_e[1] <- inprod(mean_cov_e1_fixed[], alpha[, 1])", "mu_e[1] <- ilogit(inprod(mean_cov_e1_fixed[], alpha[, 1]))", model_string_jags, fixed = TRUE) model_string_jags <- gsub("mu_e[2] <- inprod(mean_cov_e2_fixed[], alpha[, 2])", "mu_e[2] <- ilogit(inprod(mean_cov_e2_fixed[], alpha[, 2]))", model_string_jags, fixed = TRUE) } if(length(model_e_random) != 0) { model_string_jags <- gsub("mu_e[1] <- inprod(mean_cov_e1_fixed[], alpha[, 1]) + inprod(mean_cov_e1_random[], mu_a_hat[, 1])", "mu_e[1] <- ilogit(inprod(mean_cov_e1_fixed[], alpha[, 1]) + inprod(mean_cov_e1_random[], mu_a_hat[, 1]))", model_string_jags, fixed = TRUE) model_string_jags <- gsub("mu_e[2] <- inprod(mean_cov_e2_fixed[], alpha[, 2]) + inprod(mean_cov_e2_random[], mu_a_hat[, 2])", "mu_e[2] <- ilogit(inprod(mean_cov_e2_fixed[], alpha[, 2]) + inprod(mean_cov_e2_random[], mu_a_hat[, 2]))", model_string_jags, fixed = TRUE) } } else if(dist_e == "gamma"){ model_string_jags <- gsub("eff1[i] ~ dnorm(mu_e1[i], tau_e[1])", "eff1[i] ~ dgamma(mu_e1[i] * tau_e1[i], tau_e1[i])", model_string_jags, fixed = TRUE) model_string_jags <- gsub(" model_string_jags <- gsub("mu_e1[i] <- ", "log(mu_e1[i]) <- ", model_string_jags, fixed = TRUE) model_string_jags <- gsub("eff2[i] ~ dnorm(mu_e2[i], tau_e[2])", "eff2[i] ~ dgamma(mu_e2[i] * tau_e2[i], tau_e2[i])", model_string_jags, fixed = TRUE) model_string_jags <- gsub(" model_string_jags <- gsub("mu_e2[i] <- ", "log(mu_e2[i]) <- ", model_string_jags, fixed = TRUE) model_string_jags <- gsub("tau_e[t] <- 1 / ss_e[t]", "", model_string_jags, fixed = TRUE) model_string_jags <- gsub("ss_e[t] <- s_e[t] * s_e[t]", "", model_string_jags, fixed = TRUE) model_string_jags <- gsub("s_e[t] <- exp(ls_e[t])", "", model_string_jags, fixed = TRUE) model_string_jags <- gsub("ls_e[t] ~ dunif(-5, 10)", "s_e[t] ~ dunif(0, 10000)", model_string_jags, fixed = TRUE) model_string_jags <- gsub("loglik_e1[i] <- logdensity.norm(eff1[i], mu_e1[i], tau_e[1])", "loglik_e1[i] <- logdensity.gamma(eff1[i], mu_e1[i] * tau_e1[i], tau_e1[i])", model_string_jags, fixed = TRUE) model_string_jags <- gsub("loglik_e2[i] <- logdensity.norm(eff2[i], mu_e2[i], tau_e[2])", "loglik_e2[i] <- logdensity.gamma(eff2[i], mu_e2[i] * tau_e2[i], tau_e2[i])", model_string_jags, fixed = TRUE) if(length(model_e_random) == 0) { model_string_jags <- gsub("mu_e[1] <- inprod(mean_cov_e1_fixed[], alpha[, 1])", "mu_e[1] <- exp(inprod(mean_cov_e1_fixed[], alpha[, 1]))", model_string_jags, fixed = TRUE) model_string_jags <- gsub("mu_e[2] <- inprod(mean_cov_e2_fixed[], alpha[, 2])", "mu_e[2] <- exp(inprod(mean_cov_e2_fixed[], alpha[, 2]))", model_string_jags, fixed = TRUE) } if(length(model_e_random) != 0) { model_string_jags <- gsub("mu_e[1] <- inprod(mean_cov_e1_fixed[], alpha[, 1]) + inprod(mean_cov_e1_random[], mu_a_hat[, 1])", "mu_e[1] <- exp(inprod(mean_cov_e1_fixed[], alpha[, 1]) + inprod(mean_cov_e1_random[], mu_a_hat[, 1]))", model_string_jags, fixed = TRUE) model_string_jags <- gsub("mu_e[2] <- inprod(mean_cov_e2_fixed[], alpha[, 2]) + inprod(mean_cov_e2_random[], mu_a_hat[, 2])", "mu_e[2] <- exp(inprod(mean_cov_e2_fixed[], alpha[, 2]) + inprod(mean_cov_e2_random[], mu_a_hat[, 2]))", model_string_jags, fixed = TRUE) } } else if(dist_e == "exp"){ model_string_jags <- gsub("eff1[i] ~ dnorm(mu_e1[i], tau_e[1])", "eff1[i] ~ dexp(1 / mu_e1[i])", model_string_jags, fixed = TRUE) model_string_jags <- gsub(" model_string_jags <- gsub("mu_e1[i] <- ", "log(mu_e1[i]) <- ", model_string_jags, fixed = TRUE) model_string_jags <- gsub("eff2[i] ~ dnorm(mu_e2[i], tau_e[2])", "eff2[i] ~ dexp(1 / mu_e2[i])", model_string_jags, fixed = TRUE) model_string_jags <- gsub(" model_string_jags <- gsub("mu_e2[i] <- ", "log(mu_e2[i]) <- ", model_string_jags, fixed = TRUE) model_string_jags <- gsub("tau_e[t] <- 1 / ss_e[t]", "", model_string_jags, fixed = TRUE) model_string_jags <- gsub("ss_e[t] <- s_e[t] * s_e[t]", "", model_string_jags, fixed = TRUE) model_string_jags <- gsub("s_e[t] <- exp(ls_e[t])", "", model_string_jags, fixed = TRUE) model_string_jags <- gsub("ls_e[t] ~ dunif(-5, 10)", "s_e[t] <- mu_e[t]", model_string_jags, fixed = TRUE) model_string_jags <- gsub("loglik_e1[i] <- logdensity.norm(eff1[i], mu_e1[i], tau_e[1])", "loglik_e1[i] <- logdensity.exp(eff1[i], 1/mu_e1[i])", model_string_jags, fixed = TRUE) model_string_jags <- gsub("loglik_e2[i] <- logdensity.norm(eff2[i], mu_e2[i], tau_e[2])", "loglik_e2[i] <- logdensity.exp(eff2[i], 1/mu_e2[i])", model_string_jags, fixed = TRUE) if(length(model_e_random) == 0) { model_string_jags <- gsub("mu_e[1] <- inprod(mean_cov_e1_fixed[], alpha[, 1])", "mu_e[1] <- exp(inprod(mean_cov_e1_fixed[], alpha[, 1]))", model_string_jags, fixed = TRUE) model_string_jags <- gsub("mu_e[2] <- inprod(mean_cov_e2_fixed[], alpha[, 2])", "mu_e[2] <- exp(inprod(mean_cov_e2_fixed[], alpha[, 2]))", model_string_jags, fixed = TRUE) } if(length(model_e_random) != 0) { model_string_jags <- gsub("mu_e[1] <- inprod(mean_cov_e1_fixed[], alpha[, 1]) + inprod(mean_cov_e1_random[], mu_a_hat[, 1])", "mu_e[1] <- exp(inprod(mean_cov_e1_fixed[], alpha[, 1]) + inprod(mean_cov_e1_random[], mu_a_hat[, 1]))", model_string_jags, fixed = TRUE) model_string_jags <- gsub("mu_e[2] <- inprod(mean_cov_e2_fixed[], alpha[, 2]) + inprod(mean_cov_e2_random[], mu_a_hat[, 2])", "mu_e[2] <- exp(inprod(mean_cov_e2_fixed[], alpha[, 2]) + inprod(mean_cov_e2_random[], mu_a_hat[, 2]))", model_string_jags, fixed = TRUE) } } else if(dist_e == "weibull"){ model_string_jags <- gsub("eff1[i] ~ dnorm(mu_e1[i], tau_e[1])", "eff1[i] ~ dweib(tau_e1[i], pow(1 / (mu_e1[i] / exp(loggam(1 + 1/tau_e1[i]))), tau_e1[i]))", model_string_jags, fixed = TRUE) model_string_jags <- gsub(" model_string_jags <- gsub("mu_e1[i] <- ", "log(mu_e1[i]) <- ", model_string_jags, fixed = TRUE) model_string_jags <- gsub("eff2[i] ~ dnorm(mu_e2[i], tau_e[2])", "eff2[i] ~ dweib(tau_e2[i], pow(1 / (mu_e2[i] / exp(loggam(1 + 1/tau_e2[i]))), tau_e2[i]))", model_string_jags, fixed = TRUE) model_string_jags <- gsub(" model_string_jags <- gsub("mu_e2[i] <- ", "log(mu_e2[i]) <- ", model_string_jags, fixed = TRUE) model_string_jags <- gsub("tau_e[t] <- 1 / ss_e[t]", "", model_string_jags, fixed = TRUE) model_string_jags <- gsub("ss_e[t] <- s_e[t] * s_e[t]", "", model_string_jags, fixed = TRUE) model_string_jags <- gsub("s_e[t] <- exp(ls_e[t])", "", model_string_jags, fixed = TRUE) model_string_jags <- gsub("ls_e[t] ~ dunif(-5, 10)", "s_e[t] ~ dunif(0, 100)", model_string_jags, fixed = TRUE) model_string_jags <- gsub("loglik_e1[i] <- logdensity.norm(eff1[i], mu_e1[i], tau_e[1])", "loglik_e1[i] <- logdensity.weib(eff1[i], tau_e1[i], pow(1 / (mu_e1[i] / exp(loggam(1 + 1/tau_e1[i]))), tau_e1[i]))", model_string_jags, fixed = TRUE) model_string_jags <- gsub("loglik_e2[i] <- logdensity.norm(eff2[i], mu_e2[i], tau_e[2])", "loglik_e2[i] <- logdensity.weib(eff2[i], tau_e2[i], pow(1 / (mu_e2[i] / exp(loggam(1 + 1/tau_e2[i]))), tau_e2[i]))", model_string_jags, fixed = TRUE) if(length(model_e_random) == 0) { model_string_jags <- gsub("mu_e[1] <- inprod(mean_cov_e1_fixed[], alpha[, 1])", "mu_e[1] <- exp(inprod(mean_cov_e1_fixed[], alpha[, 1]))", model_string_jags, fixed = TRUE) model_string_jags <- gsub("mu_e[2] <- inprod(mean_cov_e2_fixed[], alpha[, 2])", "mu_e[2] <- exp(inprod(mean_cov_e2_fixed[], alpha[, 2]))", model_string_jags, fixed = TRUE) } if(length(model_e_random) != 0) { model_string_jags <- gsub("mu_e[1] <- inprod(mean_cov_e1_fixed[], alpha[, 1]) + inprod(mean_cov_e1_random[], mu_a_hat[, 1])", "mu_e[1] <- exp(inprod(mean_cov_e1_fixed[], alpha[, 1]) + inprod(mean_cov_e1_random[], mu_a_hat[, 1]))", model_string_jags, fixed = TRUE) model_string_jags <- gsub("mu_e[2] <- inprod(mean_cov_e2_fixed[], alpha[, 2]) + inprod(mean_cov_e2_random[], mu_a_hat[, 2])", "mu_e[2] <- exp(inprod(mean_cov_e2_fixed[], alpha[, 2]) + inprod(mean_cov_e2_random[], mu_a_hat[, 2]))", model_string_jags, fixed = TRUE) } } else if(dist_e == "logis"){ model_string_jags <- gsub("eff1[i] ~ dnorm(mu_e1[i], tau_e[1])", "eff1[i] ~ dlogis(mu_e1[i], tau_e[1])", model_string_jags, fixed = TRUE) model_string_jags <- gsub("eff2[i] ~ dnorm(mu_e2[i], tau_e[2])", "eff2[i] ~ dlogis(mu_e2[i], tau_e[2])", model_string_jags, fixed = TRUE) model_string_jags <- gsub("tau_e[t] <- 1 / ss_e[t]", "tau_e[t] <- 1 / sqrt((3 * ss_e[t]) / pow(3.14159265 , 2))", model_string_jags, fixed = TRUE) model_string_jags <- gsub("s_e[t] <- exp(ls_e[t])", "", model_string_jags, fixed = TRUE) model_string_jags <- gsub("ls_e[t] ~ dunif(-5, 10)", "s_e[t] ~ dunif(0, 10000)", model_string_jags, fixed = TRUE) model_string_jags <- gsub("loglik_e1[i] <- logdensity.norm(eff1[i], mu_e1[i], tau_e[1])", "loglik_e1[i] <- logdensity.logis(eff1[i], mu_e1[i], tau_e[1])", model_string_jags, fixed = TRUE) model_string_jags <- gsub("loglik_e2[i] <- logdensity.norm(eff2[i], mu_e2[i], tau_e[2])", "loglik_e2[i] <- logdensity.logis(eff2[i], mu_e2[i], tau_e[2])", model_string_jags, fixed = TRUE) } else if(dist_e == "bern"){ model_string_jags <- gsub("eff1[i] ~ dnorm(mu_e1[i], tau_e[1])", "eff1[i] ~ dbern(mu_e1[i])", model_string_jags, fixed = TRUE) model_string_jags <- gsub(" model_string_jags <- gsub("mu_e1[i] <- ", "logit(mu_e1[i]) <- ", model_string_jags, fixed = TRUE) model_string_jags <- gsub("eff2[i] ~ dnorm(mu_e2[i], tau_e[2])", "eff2[i] ~ dbern(mu_e2[i])", model_string_jags, fixed = TRUE) model_string_jags <- gsub(" model_string_jags <- gsub("mu_e2[i] <- ", "logit(mu_e2[i]) <- ", model_string_jags, fixed = TRUE) model_string_jags <- gsub("tau_e[t] <- 1 / ss_e[t]", "", model_string_jags, fixed = TRUE) model_string_jags <- gsub("ss_e[t] <- s_e[t] * s_e[t]", "", model_string_jags, fixed = TRUE) model_string_jags <- gsub("s_e[t] <- exp(ls_e[t])", "", model_string_jags, fixed = TRUE) model_string_jags <- gsub("ls_e[t] ~ dunif(-5, 10)", "s_e[t] <- sqrt(mu_e[t] * (1 - mu_e[t]))", model_string_jags, fixed = TRUE) model_string_jags <- gsub("loglik_e1[i] <- logdensity.norm(eff1[i], mu_e1[i], tau_e[1])", "loglik_e1[i] <- logdensity.bern(eff1[i], mu_e1[i])", model_string_jags, fixed = TRUE) model_string_jags <- gsub("loglik_e2[i] <- logdensity.norm(eff2[i], mu_e2[i], tau_e[2])", "loglik_e2[i] <- logdensity.bern(eff2[i], mu_e2[i])", model_string_jags, fixed = TRUE) if(length(model_e_random) == 0) { model_string_jags <- gsub("mu_e[1] <- inprod(mean_cov_e1_fixed[], alpha[, 1])", "mu_e[1] <- ilogit(inprod(mean_cov_e1_fixed[], alpha[, 1]))", model_string_jags, fixed = TRUE) model_string_jags <- gsub("mu_e[2] <- inprod(mean_cov_e2_fixed[], alpha[, 2])", "mu_e[2] <- ilogit(inprod(mean_cov_e2_fixed[], alpha[, 2]))", model_string_jags, fixed = TRUE) } if(length(model_e_random) != 0) { model_string_jags <- gsub("mu_e[1] <- inprod(mean_cov_e1_fixed[], alpha[, 1]) + inprod(mean_cov_e1_random[], mu_a_hat[, 1])", "mu_e[1] <- ilogit(inprod(mean_cov_e1_fixed[], alpha[, 1]) + inprod(mean_cov_e1_random[], mu_a_hat[, 1]))", model_string_jags, fixed = TRUE) model_string_jags <- gsub("mu_e[2] <- inprod(mean_cov_e2_fixed[], alpha[, 2]) + inprod(mean_cov_e2_random[], mu_a_hat[, 2])", "mu_e[2] <- ilogit(inprod(mean_cov_e2_fixed[], alpha[, 2]) + inprod(mean_cov_e2_random[], mu_a_hat[, 2]))", model_string_jags, fixed = TRUE) } } else if(dist_e == "pois"){ model_string_jags <- gsub("eff1[i] ~ dnorm(mu_e1[i], tau_e[1])", "eff1[i] ~ dpois(mu_e1[i])", model_string_jags, fixed = TRUE) model_string_jags <- gsub(" model_string_jags <- gsub("mu_e1[i] <- ", "log(mu_e1[i]) <- ", model_string_jags, fixed = TRUE) model_string_jags <- gsub("eff2[i] ~ dnorm(mu_e2[i], tau_e[2])", "eff2[i] ~ dpois(mu_e2[i])", model_string_jags, fixed = TRUE) model_string_jags <- gsub(" model_string_jags <- gsub("mu_e2[i] <- ", "log(mu_e2[i]) <- ", model_string_jags, fixed = TRUE) model_string_jags <- gsub("tau_e[t] <- 1 / ss_e[t]", "", model_string_jags, fixed = TRUE) model_string_jags <- gsub("ss_e[t] <- s_e[t] * s_e[t]", "", model_string_jags, fixed = TRUE) model_string_jags <- gsub("s_e[t] <- exp(ls_e[t])", "", model_string_jags, fixed = TRUE) model_string_jags <- gsub("ls_e[t] ~ dunif(-5, 10)", "s_e[t] <- sqrt(mu_e[t])", model_string_jags, fixed = TRUE) model_string_jags <- gsub("loglik_e1[i] <- logdensity.norm(eff1[i], mu_e1[i], tau_e[1])", "loglik_e1[i] <- logdensity.pois(eff1[i], mu_e1[i])", model_string_jags, fixed = TRUE) model_string_jags <- gsub("loglik_e2[i] <- logdensity.norm(eff2[i], mu_e2[i], tau_e[2])", "loglik_e2[i] <- logdensity.pois(eff2[i], mu_e2[i])", model_string_jags, fixed = TRUE) if(length(model_e_random) == 0) { model_string_jags <- gsub("mu_e[1] <- inprod(mean_cov_e1_fixed[], alpha[, 1])", "mu_e[1] <- exp(inprod(mean_cov_e1_fixed[], alpha[, 1]))", model_string_jags, fixed = TRUE) model_string_jags <- gsub("mu_e[2] <- inprod(mean_cov_e2_fixed[], alpha[, 2])", "mu_e[2] <- exp(inprod(mean_cov_e2_fixed[], alpha[, 2]))", model_string_jags, fixed = TRUE) } if(length(model_e_random) != 0) { model_string_jags <- gsub("mu_e[1] <- inprod(mean_cov_e1_fixed[], alpha[, 1]) + inprod(mean_cov_e1_random[], mu_a_hat[, 1])", "mu_e[1] <- exp(inprod(mean_cov_e1_fixed[], alpha[, 1]) + inprod(mean_cov_e1_random[], mu_a_hat[, 1]))", model_string_jags, fixed = TRUE) model_string_jags <- gsub("mu_e[2] <- inprod(mean_cov_e2_fixed[], alpha[, 2]) + inprod(mean_cov_e2_random[], mu_a_hat[, 2])", "mu_e[2] <- exp(inprod(mean_cov_e2_fixed[], alpha[, 2]) + inprod(mean_cov_e2_random[], mu_a_hat[, 2]))", model_string_jags, fixed = TRUE) } } else if(dist_e == "nbinom"){ model_string_jags <- gsub("eff1[i] ~ dnorm(mu_e1[i], tau_e[1])", "eff1[i] ~ dnegbin(tau_e[1] / (tau_e[1] + mu_e1[i]), tau_e[1])", model_string_jags, fixed = TRUE) model_string_jags <- gsub(" model_string_jags <- gsub("mu_e1[i] <- ", "log(mu_e1[i]) <- ", model_string_jags, fixed = TRUE) model_string_jags <- gsub("eff2[i] ~ dnorm(mu_e2[i], tau_e[2])", "eff2[i] ~ dnegbin(tau_e[2] / (tau_e[2] + mu_e2[i]), tau_e[2])", model_string_jags, fixed = TRUE) model_string_jags <- gsub(" model_string_jags <- gsub("mu_e2[i] <- ", "log(mu_e2[i]) <- ", model_string_jags, fixed = TRUE) model_string_jags <- gsub("tau_e[t] <- 1 / ss_e[t]", "", model_string_jags, fixed = TRUE) model_string_jags <- gsub("ss_e[t] <- s_e[t] * s_e[t]", "s_e[t] <- sqrt((tau_e[t] / (tau_e[t] + mu_e[t])) * tau_e[t]) / (1 - (tau_e[t] / (tau_e[t] + mu_e[t])))", model_string_jags, fixed = TRUE) model_string_jags <- gsub("s_e[t] <- exp(ls_e[t])", "", model_string_jags, fixed = TRUE) model_string_jags <- gsub("ls_e[t] ~ dunif(-5, 10)", "tau_e[t] ~ dunif(0, 100)", model_string_jags, fixed = TRUE) model_string_jags <- gsub("loglik_e1[i] <- logdensity.norm(eff1[i], mu_e1[i], tau_e[1])", "loglik_e1[i] <- logdensity.negbin(eff1[i], tau_e[1] / (tau_e[1] + mu_e1[i]), tau_e[1])", model_string_jags, fixed = TRUE) model_string_jags <- gsub("loglik_e2[i] <- logdensity.norm(eff2[i], mu_e2[i], tau_e[2])", "loglik_e2[i] <- logdensity.negbin(eff2[i], tau_e[2] / (tau_e[2] + mu_e2[i]), tau_e[2])", model_string_jags, fixed = TRUE) if(length(model_e_random) == 0) { model_string_jags <- gsub("mu_e[1] <- inprod(mean_cov_e1_fixed[], alpha[, 1])", "mu_e[1] <- exp(inprod(mean_cov_e1_fixed[], alpha[, 1]))", model_string_jags, fixed = TRUE) model_string_jags <- gsub("mu_e[2] <- inprod(mean_cov_e2_fixed[], alpha[, 2])", "mu_e[2] <- exp(inprod(mean_cov_e2_fixed[], alpha[, 2]))", model_string_jags, fixed = TRUE) } if(length(model_e_random) != 0) { model_string_jags <- gsub("mu_e[1] <- inprod(mean_cov_e1_fixed[], alpha[, 1]) + inprod(mean_cov_e1_random[], mu_a_hat[, 1])", "mu_e[1] <- exp(inprod(mean_cov_e1_fixed[], alpha[, 1]) + inprod(mean_cov_e1_random[], mu_a_hat[, 1]))", model_string_jags, fixed = TRUE) model_string_jags <- gsub("mu_e[2] <- inprod(mean_cov_e2_fixed[], alpha[, 2]) + inprod(mean_cov_e2_random[], mu_a_hat[, 2])", "mu_e[2] <- exp(inprod(mean_cov_e2_fixed[], alpha[, 2]) + inprod(mean_cov_e2_random[], mu_a_hat[, 2]))", model_string_jags, fixed = TRUE) } } if(dist_e %in% c("beta", "gamma", "weibull", "bern", "pois", "exp")) { if(dist_c == "gamma"){ model_string_jags <- gsub("for (t in 1:2) { model_string_jags <- gsub("} model_string_jags <- gsub(" } } if(pe_fixed == 1) { inprod_e1 <- "X1_e_fixed[i] * alpha[1]" inprod_e2 <- "X2_e_fixed[i] * alpha[2]" inprod_mean_e1 <- "mean_cov_e1_fixed * alpha[1]" inprod_mean_e2 <- "mean_cov_e2_fixed * alpha[2]" begin_prior_beta <- " prior_beta <- " end_prior_beta <- " prior_beta_e1 <- "alpha[1] ~ dnorm(0, 0.0000001)" prior_beta_e2 <- "alpha[2] ~ dnorm(0, 0.0000001)" model_string_jags <- gsub("inprod(X1_e_fixed[i, ], alpha[, 1])", inprod_e1, model_string_jags, fixed = TRUE) model_string_jags <- gsub("inprod(X2_e_fixed[i, ], alpha[, 2])", inprod_e2, model_string_jags, fixed = TRUE) model_string_jags <- gsub("inprod(mean_cov_e1_fixed[], alpha[, 1])", inprod_mean_e1, model_string_jags, fixed = TRUE) model_string_jags <- gsub("inprod(mean_cov_e2_fixed[], alpha[, 2])", inprod_mean_e2, model_string_jags, fixed = TRUE) model_string_jags <- gsub("for (j in 2:pe_fixed) { model_string_jags <- gsub("for(t in 1:2) {alpha[j, t] ~ dnorm(0, 0.0000001) }", prior_beta, model_string_jags, fixed = TRUE) model_string_jags <- gsub("} model_string_jags <- gsub("alpha[1, 1] ~ dnorm(0, 0.0000001)", prior_beta_e1, model_string_jags, fixed = TRUE) model_string_jags <- gsub("alpha[1, 2] ~ dnorm(0, 0.0000001)", prior_beta_e2, model_string_jags, fixed = TRUE) } if(length(model_e_random) != 0 & pe_random == 1) { model_string_jags <- gsub("inprod(X1_e_random[i, ], a1[, clus1_e[i]])", "X1_e_random[i] * a1[clus1_e[i]]", model_string_jags, fixed = TRUE) model_string_jags <- gsub("inprod(X2_e_random[i, ], a2[, clus2_e[i]])", "X2_e_random[i] * a2[clus2_e[i]]", model_string_jags, fixed = TRUE) model_string_jags <- gsub("inprod(mean_cov_e1_random[], mu_a_hat[, 1])", "mean_cov_e1_random * mu_a_hat[1]", model_string_jags, fixed = TRUE) model_string_jags <- gsub("inprod(mean_cov_e2_random[], mu_a_hat[, 2])", "mean_cov_e2_random * mu_a_hat[2]", model_string_jags, fixed = TRUE) model_string_jags <- gsub("for (j in 1:pe_random) { model_string_jags <- gsub("for(s in 1:n1_clus_e) {a1[j, s] ~ dnorm(mu_a_hat[j, 1], tau_a_hat[j, 1]) }", "for(s in 1:n1_clus_e) {a1[s] ~ dnorm(mu_a_hat[1], tau_a_hat[1]) }", model_string_jags, fixed = TRUE) model_string_jags <- gsub("} model_string_jags <- gsub("for (j in 1:pe_random) { model_string_jags <- gsub("for(s in 1:n2_clus_e) {a2[j, s] ~ dnorm(mu_a_hat[j, 2], tau_a_hat[j, 2]) }", "for(s in 1:n2_clus_e) {a2[s] ~ dnorm(mu_a_hat[2], tau_a_hat[2]) }", model_string_jags, fixed = TRUE) model_string_jags <- gsub("} model_string_jags <- gsub("for(j in 1:pe_random) {mu_a_hat[j, t] ~ dnorm(0, 0.001)", "mu_a_hat[t] ~ dnorm(0, 0.001)", model_string_jags, fixed = TRUE) model_string_jags <- gsub("s_a_hat[j, t] ~ dunif(0, 100) }", "s_a_hat[t] ~ dunif(0, 100)", model_string_jags, fixed = TRUE) model_string_jags <- gsub("for(j in 1:pe_random) {tau_a_hat[j, t] <- 1 / ss_a_hat[j, t]", "tau_a_hat[t] <- 1 / ss_a_hat[t]", model_string_jags, fixed = TRUE) model_string_jags <- gsub("ss_a_hat[j, t] <- s_a_hat[j, t] * s_a_hat[j, t] }", "ss_a_hat[t] <- s_a_hat[t] * s_a_hat[t]", model_string_jags, fixed = TRUE) } if(pc_fixed == 1) { inprod_c1 <- "X1_c_fixed[i] * beta[1]" inprod_c2 <- "X2_c_fixed[i] * beta[2]" inprod_mean_c1 <- "mean_cov_c1_fixed * beta[1]" inprod_mean_c2 <- "mean_cov_c2_fixed * beta[2]" begin_prior_beta <- " prior_beta <- " end_prior_beta <- " prior_beta_c1 <- "beta[1] ~ dnorm(0, 0.0000001)" prior_beta_c2 <- "beta[2] ~ dnorm(0, 0.0000001)" model_string_jags <- gsub("inprod(X1_c_fixed[i, ], beta[, 1])", inprod_c1, model_string_jags, fixed = TRUE) model_string_jags <- gsub("inprod(X2_c_fixed[i, ], beta[, 2])", inprod_c2, model_string_jags, fixed = TRUE) model_string_jags <- gsub("inprod(mean_cov_c1_fixed[], beta[, 1])", inprod_mean_c1, model_string_jags, fixed = TRUE) model_string_jags <- gsub("inprod(mean_cov_c2_fixed[], beta[, 2])", inprod_mean_c2, model_string_jags, fixed = TRUE) model_string_jags <- gsub("for (j in 2:pc_fixed) { model_string_jags <- gsub("for(t in 1:2) {beta[j, t] ~ dnorm(0, 0.0000001) }", prior_beta, model_string_jags, fixed = TRUE) model_string_jags <- gsub("} model_string_jags <- gsub("beta[1, 1] ~ dnorm(0, 0.0000001)", prior_beta_c1, model_string_jags, fixed = TRUE) model_string_jags <- gsub("beta[1, 2] ~ dnorm(0, 0.0000001)", prior_beta_c2, model_string_jags, fixed = TRUE) } if(length(model_c_random) != 0 & pc_random == 1) { model_string_jags <- gsub("inprod(X1_c_random[i, ], b1[, clus1_c[i]])", "X1_c_random[i] * b1[clus1_c[i]]", model_string_jags, fixed = TRUE) model_string_jags <- gsub("inprod(X2_c_random[i, ], b2[, clus2_c[i]])", "X2_c_random[i] * b2[clus2_c[i]]", model_string_jags, fixed = TRUE) model_string_jags <- gsub("inprod(mean_cov_c1_random[], mu_b_hat[, 1])", "mean_cov_c1_random * mu_b_hat[1]", model_string_jags, fixed = TRUE) model_string_jags <- gsub("inprod(mean_cov_c2_random[], mu_b_hat[, 2])", "mean_cov_c2_random * mu_b_hat[2]", model_string_jags, fixed = TRUE) model_string_jags <- gsub("for (j in 1:pc_random) { model_string_jags <- gsub("for(s in 1:n1_clus_c) {b1[j, s] ~ dnorm(mu_b_hat[j, 1], tau_b_hat[j, 1]) }", "for(s in 1:n1_clus_c) {b1[s] ~ dnorm(mu_b_hat[1], tau_b_hat[1]) }", model_string_jags, fixed = TRUE) model_string_jags <- gsub("} model_string_jags <- gsub("for (j in 1:pc_random) { model_string_jags <- gsub("for(s in 1:n2_clus_c) {b2[j, s] ~ dnorm(mu_b_hat[j, 2], tau_b_hat[j, 2]) }", "for(s in 1:n2_clus_c) {b2[s] ~ dnorm(mu_b_hat[2], tau_b_hat[2]) }", model_string_jags, fixed = TRUE) model_string_jags <- gsub("} model_string_jags <- gsub("for(j in 1:pc_random) {mu_b_hat[j, t] ~ dnorm(0, 0.001)", "mu_b_hat[t] ~ dnorm(0, 0.001)", model_string_jags, fixed = TRUE) model_string_jags <- gsub("s_b_hat[j, t] ~ dunif(0, 100) }", "s_b_hat[t] ~ dunif(0, 100)", model_string_jags, fixed = TRUE) model_string_jags <- gsub("for(j in 1:pc_random) {tau_b_hat[j, t] <- 1 / ss_b_hat[j, t]", "tau_b_hat[t] <- 1 / ss_b_hat[t]", model_string_jags, fixed = TRUE) model_string_jags <- gsub("ss_b_hat[j, t] <- s_b_hat[j, t] * s_b_hat[j, t] }", "ss_b_hat[t] <- s_b_hat[t] * s_b_hat[t]", model_string_jags, fixed = TRUE) } if(ze_fixed == 1) { inprod_e1 <- "Z1_e_fixed[i] * gamma_e[1]" inprod_e2 <- "Z2_e_fixed[i] * gamma_e[2]" if(type == "MAR" | type == "MNAR_cost") { inprod_mean_e1 <- "mean_z_e1_fixed * gamma_e[1]" inprod_mean_e2 <- "mean_z_e2_fixed * gamma_e[2]" model_string_jags <- gsub("inprod(mean_z_e1_fixed[], gamma_e[, 1])", inprod_mean_e1, model_string_jags, fixed = TRUE) model_string_jags <- gsub("inprod(mean_z_e2_fixed[], gamma_e[, 2])", inprod_mean_e2, model_string_jags, fixed = TRUE) } if(type == "MNAR_eff" | type == "MNAR") { inprod_mean_e1 <- "mean_z_e1_fixed * gamma_e[1] + delta_e[1] * mean(eff1[])" inprod_mean_e2 <- "mean_z_e2_fixed * gamma_e[2] + delta_e[2] * mean(eff2[])" model_string_jags <- gsub("inprod(mean_z_e1_fixed[], gamma_e[, 1]) + delta_e[1] * mean(eff1[])", inprod_mean_e1, model_string_jags, fixed = TRUE) model_string_jags <- gsub("inprod(mean_z_e2_fixed[], gamma_e[, 2]) + delta_e[2] * mean(eff2[])", inprod_mean_e2, model_string_jags, fixed = TRUE) } begin_prior_gamma <- " begin_prior_gamma2 <- " prior_gamma_e1 <- "gamma_e[1] ~ dlogis(0, 1)" prior_gamma_e2 <- "gamma_e[2] ~ dlogis(0, 1)" end_prior_gamma <- " model_string_jags <- gsub("inprod(Z1_e_fixed[i, ], gamma_e[, 1])", inprod_e1, model_string_jags, fixed = TRUE) model_string_jags <- gsub("inprod(Z2_e_fixed[i, ], gamma_e[, 2])", inprod_e2, model_string_jags, fixed = TRUE) model_string_jags <- gsub("for (j in 2:ze_fixed) { model_string_jags <- gsub("for(t in 1:2) {gamma_e[j, t] ~ dnorm(0, 0.01) }", begin_prior_gamma2, model_string_jags, fixed = TRUE) model_string_jags <- gsub("gamma_e[1, 1] ~ dlogis(0, 1)", prior_gamma_e1, model_string_jags, fixed = TRUE) model_string_jags <- gsub("gamma_e[1, 2] ~ dlogis(0, 1)", prior_gamma_e2, model_string_jags, fixed = TRUE) model_string_jags <- gsub("} } if(ze_random == 1 & length(model_me_random) != 0) { if(type == "MAR" | type == "MNAR_cost") { model_string_jags <- gsub("inprod(mean_z_e1_random[], mu_g_e_hat[, 1])", "mean_z_e1_random * mu_g_e_hat[1]", model_string_jags, fixed = TRUE) model_string_jags <- gsub("inprod(mean_z_e2_random[], mu_g_e_hat[, 2])", "mean_z_e2_random * mu_g_e_hat[2]", model_string_jags, fixed = TRUE) } if(type == "MNAR_eff" | type == "MNAR") { model_string_jags <- gsub("inprod(mean_z_e1_random[], mu_g_e_hat[, 1]) + mu_d_e_hat[1] * mean(eff1[])", "mean_z_e1_random * mu_g_e_hat[1] + mu_d_e_hat[1] * mean(eff1[])", model_string_jags, fixed = TRUE) model_string_jags <- gsub("inprod(mean_z_e2_random[], mu_g_e_hat[, 2]) + mu_d_e_hat[2] * mean(eff2[])", "mean_z_e2_random * mu_g_e_hat[2] + mu_d_e_hat[2] * mean(eff2[])", model_string_jags, fixed = TRUE) } model_string_jags <- gsub("inprod(Z1_e_random[i, ], g1_e[, clus1_me[i]])", "Z1_e_random[i] * g1_e[clus1_me[i]]", model_string_jags, fixed = TRUE) model_string_jags <- gsub("inprod(Z2_e_random[i, ], g2_e[, clus2_me[i]])", "Z2_e_random[i] * g2_e[clus2_me[i]]", model_string_jags, fixed = TRUE) model_string_jags <- gsub("for(j in 1:ze_random) {tau_g_e_hat[j, t] <- 1 / ss_g_e_hat[j, t]", "tau_g_e_hat[t] <- 1 / ss_g_e_hat[t]", model_string_jags, fixed = TRUE) model_string_jags <- gsub("ss_g_e_hat[j, t] <- s_g_e_hat[j, t] * s_g_e_hat[j, t] }", "ss_g_e_hat[t] <- s_g_e_hat[t] * s_g_e_hat[t]", model_string_jags, fixed = TRUE) model_string_jags <- gsub("inprod(mean_z_e1_random[], mu_g_e_hat[, 1])", "mean_z_e1_random * mu_g_e_hat[1]", model_string_jags, fixed = TRUE) model_string_jags <- gsub("inprod(mean_z_e2_random[], mu_g_e_hat[, 2])", "mean_z_e2_random * mu_g_e_hat[2]", model_string_jags, fixed = TRUE) model_string_jags <- gsub("for (j in 1:ze_random) { model_string_jags <- gsub("for(s in 1:n1_clus_me) {g1_e[j, s] ~ dnorm(mu_g_e_hat[j, 1], tau_g_e_hat[j, 1]) }", "for(s in 1:n1_clus_me) {g1_e[s] ~ dnorm(mu_g_e_hat[1], tau_g_e_hat[1]) }", model_string_jags, fixed = TRUE) model_string_jags <- gsub("} model_string_jags <- gsub("for (j in 1:ze_random) { model_string_jags <- gsub("for(s in 1:n2_clus_me) {g2_e[j, s] ~ dnorm(mu_g_e_hat[j, 2], tau_g_e_hat[j, 2]) }", "for(s in 1:n2_clus_me) {g2_e[s] ~ dnorm(mu_g_e_hat[2], tau_g_e_hat[2]) }", model_string_jags, fixed = TRUE) model_string_jags <- gsub("} model_string_jags <- gsub("for(j in 1:ze_random) {mu_g_e_hat[j, t] ~ dnorm(0, 0.001)", "mu_g_e_hat[t] ~ dnorm(0, 0.001)", model_string_jags, fixed = TRUE) model_string_jags <- gsub("s_g_e_hat[j, t] ~ dunif(0, 100) }", "s_g_e_hat[t] ~ dunif(0, 100)", model_string_jags, fixed = TRUE) } if(zc_fixed == 1) { inprod_c1 <- "Z1_c_fixed[i] * gamma_c[1]" inprod_c2 <- "Z2_c_fixed[i] * gamma_c[2]" if(type == "MAR" | type == "MNAR_eff") { inprod_mean_c1 <- "mean_z_c1_fixed * gamma_c[1]" inprod_mean_c2 <- "mean_z_c2_fixed * gamma_c[2]" model_string_jags <- gsub("inprod(mean_z_c1_fixed[], gamma_c[, 1])", inprod_mean_c1, model_string_jags, fixed = TRUE) model_string_jags <- gsub("inprod(mean_z_c2_fixed[], gamma_c[, 2])", inprod_mean_c2, model_string_jags, fixed = TRUE) } if(type == "MNAR_cost" | type == "MNAR") { inprod_mean_c1 <- "mean_z_c1_fixed * gamma_c[1] + delta_c[1] * mean(cost1[])" inprod_mean_c2 <- "mean_z_c2_fixed * gamma_c[2] + delta_c[2] * mean(cost2[])" model_string_jags <- gsub("inprod(mean_z_c1_fixed[], gamma_c[, 1]) + delta_c[1] * mean(cost1[])", inprod_mean_c1, model_string_jags, fixed = TRUE) model_string_jags <- gsub("inprod(mean_z_c2_fixed[], gamma_c[, 2]) + delta_c[2] * mean(cost2[])", inprod_mean_c2, model_string_jags, fixed = TRUE) } begin_prior_gamma <- " begin_prior_gamma2 <- " prior_gamma_c1 <- "gamma_c[1] ~ dlogis(0, 1)" prior_gamma_c2 <- "gamma_c[2] ~ dlogis(0, 1)" end_prior_gamma <- " model_string_jags <- gsub("inprod(Z1_c_fixed[i, ], gamma_c[, 1])", inprod_c1, model_string_jags, fixed = TRUE) model_string_jags <- gsub("inprod(Z2_c_fixed[i, ], gamma_c[, 2])", inprod_c2, model_string_jags, fixed = TRUE) model_string_jags <- gsub("for (j in 2:zc_fixed) { model_string_jags <- gsub("for(t in 1:2) {gamma_c[j, t] ~ dnorm(0, 0.01) }", begin_prior_gamma2, model_string_jags, fixed = TRUE) model_string_jags <- gsub("gamma_c[1, 1] ~ dlogis(0, 1)", prior_gamma_c1, model_string_jags, fixed = TRUE) model_string_jags <- gsub("gamma_c[1, 2] ~ dlogis(0, 1)", prior_gamma_c2, model_string_jags, fixed = TRUE) model_string_jags <- gsub("} } if(zc_random == 1 & length(model_mc_random) != 0) { if(type == "MAR" | type == "MNAR_eff") { model_string_jags <- gsub("inprod(mean_z_c1_random[], mu_g_c_hat[, 1])", "mean_z_c1_random * mu_g_c_hat[1]", model_string_jags, fixed = TRUE) model_string_jags <- gsub("inprod(mean_z_c2_random[], mu_g_c_hat[, 2])", "mean_z_c2_random * mu_g_c_hat[2]", model_string_jags, fixed = TRUE) } if(type == "MNAR_cost" | type == "MNAR") { model_string_jags <- gsub("inprod(mean_z_c1_random[], mu_g_c_hat[, 1]) + mu_d_c_hat[1] * mean(cost1[])", "mean_z_c1_random * mu_g_c_hat[1] + mu_d_c_hat[1] * mean(cost1[])", model_string_jags, fixed = TRUE) model_string_jags <- gsub("inprod(mean_z_c2_random[], mu_g_c_hat[, 2]) + mu_d_c_hat[2] * mean(cost2[])", "mean_z_c2_random * mu_g_c_hat[2] + mu_d_c_hat[2] * mean(cost2[])", model_string_jags, fixed = TRUE) } model_string_jags <- gsub("inprod(Z1_c_random[i, ], g1_c[, clus1_mc[i]])", "Z1_c_random[i] * g1_c[clus1_mc[i]]", model_string_jags, fixed = TRUE) model_string_jags <- gsub("inprod(Z2_c_random[i, ], g2_c[, clus2_mc[i]])", "Z2_c_random[i] * g2_c[clus2_mc[i]]", model_string_jags, fixed = TRUE) model_string_jags <- gsub("for(j in 1:zc_random) {tau_g_c_hat[j, t] <- 1 / ss_g_c_hat[j, t]", "tau_g_c_hat[t] <- 1 / ss_g_c_hat[t]", model_string_jags, fixed = TRUE) model_string_jags <- gsub("ss_g_c_hat[j, t] <- s_g_c_hat[j, t] * s_g_c_hat[j, t] }", "ss_g_c_hat[t] <- s_g_c_hat[t] * s_g_c_hat[t]", model_string_jags, fixed = TRUE) model_string_jags <- gsub("inprod(mean_z_c1_random[], mu_g_c_hat[, 1])", "mean_z_c1_random * mu_g_c_hat[1]", model_string_jags, fixed = TRUE) model_string_jags <- gsub("inprod(mean_z_c2_random[], mu_g_c_hat[, 2])", "mean_z_c2_random * mu_g_c_hat[2]", model_string_jags, fixed = TRUE) model_string_jags <- gsub("for (j in 1:zc_random) { model_string_jags <- gsub("for(s in 1:n1_clus_mc) {g1_c[j, s] ~ dnorm(mu_g_c_hat[j, 1], tau_g_c_hat[j, 1]) }", "for(s in 1:n1_clus_mc) {g1_c[s] ~ dnorm(mu_g_c_hat[1], tau_g_c_hat[1]) }", model_string_jags, fixed = TRUE) model_string_jags <- gsub("} model_string_jags <- gsub("for (j in 1:zc_random) { model_string_jags <- gsub("for(s in 1:n2_clus_mc) {g2_c[j, s] ~ dnorm(mu_g_c_hat[j, 2], tau_g_c_hat[j, 2]) }", "for(s in 1:n2_clus_mc) {g2_c[s] ~ dnorm(mu_g_c_hat[2], tau_g_c_hat[2]) }", model_string_jags, fixed = TRUE) model_string_jags <- gsub("} model_string_jags <- gsub("for(j in 1:zc_random) {mu_g_c_hat[j, t] ~ dnorm(0, 0.001)", "mu_g_c_hat[t] ~ dnorm(0, 0.001)", model_string_jags, fixed = TRUE) model_string_jags <- gsub("s_g_c_hat[j, t] ~ dunif(0, 100) }", "s_g_c_hat[t] ~ dunif(0, 100)", model_string_jags, fixed = TRUE) } model_string_jags <- prior_selection(type = type, dist_e = dist_e, dist_c = dist_c, pe_fixed = pe_fixed, pc_fixed = pc_fixed, ze_fixed = ze_fixed, zc_fixed = zc_fixed, model_e_random = model_e_random, model_c_random = model_c_random, model_me_random = model_me_random, model_mc_random = model_mc_random, pe_random = pe_random, pc_random = pc_random, ze_random = ze_random, zc_random = zc_random) writeLines(model_string_jags, "selection.txt") model_string <- "selection.txt" return(model_string) }))
"riskfactors"
remove_all_na_cols <- function(df){ Filter(function(x)!all(is.na(x)),df) }
gpLogLikelihood <- function(model) { if (model$approx == "ftc") { if ("S" %in% names(model)) { ll = -0.5*(model$d*model$logDetK_uu + sum(model$invK_uu * model$S)) return (ll) } ll = 0 for (i in 1:dim(model$m)[2]) { if ((!"isSpherical" %in% names(model)) || model$isSpherical) ll = ll -.5*model$logDetK_uu - .5*t(model$m[, i,drop=FALSE])%*%model$invK_uu%*%model$m[, i,drop=FALSE] else { if (model$isMissingData) m = model$m[model$indexPresent[[i]], i] else m = model$m[, i] ll = ll - .5*model$logDetK_uu[i] - .5*t(m)%*%model$invK_uu[[i]]%*%m } } } else if (model$approx %in% c("dtc", "dtcvar")) { if ((!"isSpherical" %in% names(model)) || model$isSpherical) { E = model$K_uf%*%model$m EET = E %*% t(E) if (length(model$beta)==1) { ll = -0.5*(model$d*(-(model$N-model$k)*log(model$beta) - model$logDetK_uu + model$logDetA) - (sum(model$Ainv*EET) -sum(model$m * model$m))*model$beta) if (model$approx == "dtcvar") ll = ll - model$d * 0.5*sum(model$diagD) } else stop("Not implemented variable length beta yet.") } else { ll = 0 for (i in 1:model$d) { ind = gpDataIndices(model, i) e = model$K_uf[, ind,drop=FALSE]%*%model$m[ind, i,drop=FALSE] if (length(model$beta)==1) { ll = ll - 0.5*((-(model$N-model$k)*log(model$beta) - model$logDetK_uu + model$logDetA[i]) - (t(e)%*%model$Ainv[[i]]%*%e - t(model$m[ind, i,drop=FALSE])%*%model$m[ind, i,drop=FALSE])*model$beta) if(is.nan(ll)) stop("Log likelihood is NaN") if (model$approx == "dtcvar") stop("Not implemented dtcvar for non-spherical yet.") } else stop("Not implemented variable length beta yet.") } } } else if (model$approx == "fitc") { if ((!"isSpherical" %in% names(model)) || model$isSpherical) { if (length(model$beta)==1) { if (FALSE) { Dinvm = model$Dinv %*% model$m K_ufDinvm = model$K_uf %*% Dinvm ll = -0.5*(model$d * (sum(log(model$diagD)) -(model$N-model$k)*log(model$beta) + model$detDiff) + (sum(Dinvm * model$m) - sum((model$Ainv%*%K_ufDinvm) * K_ufDinvm))*model$beta) ll = ll - 0.5*model$N*model$d*log(2*pi) } else { ll = - model$d*(sum(log(diag(model$Lm))) + 0.5*(-(model$N - model$k)*log(model$beta) +(model$N*log(2*pi) + sum(log(model$diagD))))) for (i in 1:model$d) ll = ll - 0.5*model$beta*(t(model$scaledM[, i,drop=FALSE])%*%model$scaledM[, i,drop=FALSE] - t(model$bet[, i,drop=FALSE])%*%model$bet[, i,drop=FALSE]) } } else stop("Variable length Beta not implemented yet.") } else { if (length(model$beta)==1) { if (FALSE) { ll = 0 for (i in 1:model$d) { ind = gpDataIndices(model, i) Dinvm = model$Dinv[[i]]%*%model$m[ind, i,drop=FALSE] K_ufDinvm = model$K_uf[, ind,drop=FALSE]%*%Dinvm ll = ll -0.5*(sum(log(model$diagD[[i]])) - (length(ind) - model$k)*log(model$beta) + model$detDiff[i] + (sum(Dinvm * model$m[ind, i,drop=FALSE]) - sum((model$Ainv[[i]]%*%K_ufDinvm) * K_ufDinvm))*model$beta + length(ind)*log(2*pi)) } } else { ll = 0 for (i in 1:model$d) { ind = gpDataIndices(model, i) ll = ll - (sum(log(diag(model$Lm[[i]]))) + 0.5*(-(length(ind) - model$k)*log(model$beta) +(length(ind)*log(2*pi)+sum(log(model$diagD[[i]]))))) ll = ll - 0.5*model$beta*(t(model$scaledM[[i]])%*%model$scaledM[[i]] - t(model$bet[[i]])%*%model$bet[[i]]) } } } else stop("Variable length Beta not implemented yet.") } } else if (model$approx == "pitc") { if ((!"isSpherical" %in% names(model)) || model$isSpherical) { if (length(model$beta)==1) { ll = model$d*(model$logDetA-model$logDetK_uu + model$k*log(model$beta)) K_ufDinvm = matrix(0, model$k, model$d) Dinvm = list() for (i in 1:length(model$blockEnd)) { ind = gpBlockIndices(model, i) Dinvm[[i]] = model$Dinv[[i]]%*%model$m[ind, ,drop=FALSE] K_ufDinvm = K_ufDinvm + model$K_uf[, ind,drop=FALSE]%*%Dinvm[[i]] } ll = ll - model$beta*sum((model$Ainv%*%K_ufDinvm) * K_ufDinvm) for (i in 1:length(model$blockEnd)) { ind = gpBlockIndices(model, i) ll = ll + model$d*(model$logDetD[i] - length(ind)*log(model$beta)) + model$beta*sum(Dinvm[[i]] * model$m[ind, ,drop=FALSE]) } ll = -0.5*ll ll = ll - 0.5*model$N*model$d*log(2*pi) } else stop("Variable Length Beta not implemented yet.") } else { if (length(model$beta)==1) { ll = 0 Dinvm = matrix(0, model$blockEnd, model$d) Dinvm = lapply(split(Dinvm,row(Dinvm)), split, 1:model$d) for (j in 1:model$d) { ll = ll + model$logDetA[j]-model$logDetK_uu + model$k*log(model$beta) K_ufDinvm = matrix(0, model$k, 1) for (i in 1:length(model$blockEnd)) { ind = gpDataIndices(model, j, i) Dinvm[[i]][[j]] = model$Dinv[[i]][[j]]%*%model$m[ind, j,drop=FALSE] K_ufDinvm = K_ufDinvm + model$K_uf[, ind]%*%Dinvm[[i]][[j]] } ll = ll - model$beta*sum((model$Ainv[[i]]%*%K_ufDinvm) * K_ufDinvm) for (i in 1:length(model$blockEnd)) { ind = gpDataIndices(model, j, i) ll = ll + model$logDetD[i, j] - length(ind)*log(model$beta) + model$beta*sum(Dinvm[[i]][[j]] * model$m[ind, j,drop=FALSE]) ll = ll + length(ind)*log(2*pi) } } ll = -0.5*ll } else stop("Variable Length Beta not implemented yet.") } } if (model$learnScales) ll = ll - sum(log(model$scale)) ll = ll - model$d * model$N/2 * log(2*pi) return (ll) }
gsCP <- function(x, theta = NULL, i = 1, zi = 0, r = 18) { if (!(methods::is(x, "gsProbability") || methods::is(x, "gsDesign"))) { stop("gsCP must be called with class of x either gsProbability or gsDesign") } if (i < 1 || i >= x$k) { stop("gsCP must be called with i from 1 to x$k-1") } test.type <- ifelse(methods::is(x, "gsProbability"), 3, x$test.type) if (zi > x$upper$bound[i]) { stop("gsCP must have x$lower$bound[i] <= zi <= x$upper$bound[i]") } else if (test.type > 1 && zi < x$lower$bound[i]) { stop("gsCP must have x$lower$bound[i]<=zi<=x$upper$bound[i]") } if (is.null(theta)) theta <- c(zi/sqrt(x$n.I[i]), 0, x$delta) knew <- x$k - i Inew <- x$n.I[(i + 1):x$k] - x$n.I[i] if (is.null(x$timing)) x$timing <- x$n.I/x$n.I[x$k] bnew <- (x$upper$bound[(i+1):x$k]*sqrt(x$timing[(i+1):x$k]) - zi*sqrt(x$timing[i]))/ sqrt(x$timing[(i+1):x$k]-x$timing[i]) if (test.type > 1) { anew <- (x$lower$bound[(i+1):x$k]*sqrt(x$timing[(i+1):x$k]) - zi*sqrt(x$timing[i]))/ sqrt(x$timing[(i+1):x$k]-x$timing[i]) } else { anew <- rep(-20, knew) } gsProbability(k = knew, theta = theta, n.I = Inew, a = anew, b = bnew, r = r, overrun = 0) } gsPP <- function(x, i = 1, zi = 0, theta = c(0, 3), wgts = c(.5, .5), r = 18, total = TRUE) { if (!(methods::is(x, "gsProbability") || methods::is(x, "gsDesign"))) { stop("gsPP: class(x) must be gsProbability or gsDesign") } test.type <- ifelse(methods::is(x, "gsProbability"), 3, x$test.type) checkScalar(i, "integer", c(1, x$k - 1)) checkScalar(zi, "numeric", c(-Inf, Inf), c(FALSE, FALSE)) checkVector(wgts, "numeric", c(0, Inf), c(TRUE, FALSE)) checkVector(theta, "numeric", c(-Inf, Inf), c(FALSE, FALSE)) checkLengths(theta, wgts) checkScalar(r, "integer", c(1, 80)) cp <- gsCP(x = x, i = i, theta = theta, zi = zi, r = r) gsDen <- stats::dnorm(zi, mean = sqrt(x$n.I[i]) * theta) * wgts pp <- cp$upper$prob %*% gsDen / sum(gsDen) if (total) { return(sum(pp)) } else { return(pp) } } gsPI <- function(x, i = 1, zi = 0, j = 2, level = .95, theta = c(0, 3), wgts = c(.5, .5)) { if (!(methods::is(x, "gsProbability") || methods::is(x, "gsDesign"))) { stop("gsPI: class(x) must be gsProbability or gsDesign") } checkScalar(i, "integer", c(1, x$k - 1)) checkScalar(j, "integer", c(i + 1, x$k)) checkScalar(zi, "numeric", c(-Inf, Inf), c(FALSE, FALSE)) checkVector(wgts, "numeric", c(0, Inf), c(TRUE, FALSE)) checkVector(theta, "numeric", c(-Inf, Inf), c(FALSE, FALSE)) checkLengths(theta, wgts) post <- stats::dnorm(zi, mean = sqrt(x$n.I[i]) * theta) * wgts post <- post / sum(post) lower <- stats::uniroot( f = postfn, interval = c(-20, 20), PP = 1 - (1 - level) / 2, d = x, i = i, zi = zi, j = j, theta = theta, wgts = post )$root if (level == 0) return(lower) upper <- stats::uniroot( f = postfn, interval = c(-20, 20), PP = (1 - level) / 2, d = x, i = i, zi = zi, j = j, theta = theta, wgts = post )$root c(lower, upper) } gsBoundCP <- function(x, theta = "thetahat", r = 18) { if (!(methods::is(x, "gsProbability") || methods::is(x, "gsDesign"))) { stop("gsPI: class(x) must be gsProbability or gsDesign") } checkScalar(r, "integer", c(1, 70)) if (!is.character(theta)) { checkVector(theta, "numeric", c(-Inf, Inf), c(FALSE, FALSE)) } len <- x$k - 1 test.type <- ifelse(methods::is(x, "gsProbability"), 3, x$test.type) if (theta != "thetahat") { thetahi <- rep(theta, len) if (test.type > 1) thetalow <- thetahi } else { if (test.type > 1) thetalow <- x$lower$bound[1:len] / sqrt(x$n.I[1:len]) thetahi <- x$upper$bound[1:len] / sqrt(x$n.I[1:len]) } CPhi <- rep(0, len) if (test.type > 1) CPlo <- CPhi for (i in 1:len) { if (test.type > 1) { xlow <- gsCP(x, thetalow[i], i, x$lower$bound[i]) CPlo[i] <- sum(xlow$upper$prob) } xhi <- gsCP(x, thetahi[i], i, x$upper$bound[i]) CPhi[i] <- sum(xhi$upper$prob) } if (test.type > 1) cbind(CPlo, CPhi) else CPhi } gsPosterior <- function(x = gsDesign(), i = 1, zi = NULL, prior = normalGrid(), r = 18) { if (is.null(prior$gridwgts)) prior$gridwgts <- rep(1, length(prior$z)) checkLengths(prior$z, prior$density, prior$gridwgts) checkVector(prior$gridwgts, "numeric", c(0, Inf), c(TRUE, FALSE)) checkVector(prior$density, "numeric", c(0, Inf), c(TRUE, FALSE)) checkVector(prior$z, "numeric", c(-Inf, Inf), c(FALSE, FALSE)) if (!(methods::is(x, "gsProbability") || methods::is(x, "gsDesign"))) { stop("gsPosterior: x must have class gsDesign or gsProbability") } test.type <- ifelse(methods::is(x, "gsProbability"), 3, x$test.type) checkScalar(i, "integer", c(1, x$k - 1)) if (is.null(zi)) { zi <- c(x$lower$bound[i], x$upper$bound[i]) } else { checkVector(zi, "numeric", c(-Inf, Inf), c(FALSE, FALSE)) } if (length(zi) > 2) stop("gsPosterior: length of zi must be 1 or 2") if (length(zi) > 1) { if (zi[2] <= zi[1]) { stop("gsPosterior: when length of zi is 2, must have zi[2] > zi[1]") } xa <- x if (zi[1] != x$lower$bound[i] || zi[2] != x$upper$bound[i]) { xa$lower$bound[i] <- zi[1] xa$upper$bound[i] <- zi[2] } xa <- gsProbability(d = xa, theta = prior$z, r = r) prob <- xa$lower$prob + xa$upper$prob for (j in 1:ncol(prob)) prob[, j] <- 1 - cumsum(prob[, j]) marg <- sum(prob[i, ] * prior$gridwgts * prior$density) posterior <- prob[i, ] * prior$density } else { y <- gsZ(x, theta = prior$z, i = i, zi = zi) marg <- sum(as.vector(y$density) * prior$gridwgts * prior$density) posterior <- as.vector(y$density) * prior$density } posterior <- posterior / marg return(list( z = prior$z, density = posterior, gridwgts = prior$gridwgts, wgts = prior$gridwgts * posterior )) } gsZ <- function(x, theta, i, zi) { mu <- sqrt(x$n.I[i]) * theta xx <- matrix(0, nrow = length(zi), ncol = length(theta)) for (j in 1:length(theta)) xx[, j] <- stats::dnorm(zi - mu[j]) list(zi = zi, theta = theta, density = xx) } postfn <- function(x, PP, d, i, zi, j, theta, wgts) { newmean <- (d$timing[j] - d$timing[i]) * theta * sqrt(d$n.I[d$k]) newsd <- sqrt(d$timing[j] - d$timing[i]) pprob <- stats::pnorm(x * sqrt(d$timing[j]) - zi * sqrt(d$timing[i]), mean = newmean, sd = newsd, lower.tail = FALSE ) sum(pprob * wgts) - PP } gsPOS <- function(x, theta, wgts) { if (!methods::is(x, c("gsProbability", "gsDesign"))) { stop("x must have class gsProbability or gsDesign") } checkVector(theta, "numeric") checkVector(wgts, "numeric") checkLengths(theta, wgts) x <- gsProbability(theta = theta, d = x) one <- rep(1, x$k) as.double(one %*% x$upper$prob %*% wgts) } gsCPOS <- function(i, x, theta, wgts) { if (!methods::is(x, c("gsProbability", "gsDesign"))) { stop("x must have class gsProbability or gsDesign") } checkScalar(i, "integer", c(1, x$k), c(TRUE, FALSE)) checkVector(theta, "numeric") checkVector(wgts, "numeric") checkLengths(theta, wgts) x <- gsProbability(theta = theta, d = x) v <- c(rep(1, i), rep(0, (x$k - i))) pAi <- 1 - as.double(v %*% (x$upper$prob + x$lower$prob) %*% wgts) v <- 1 - v pAiB <- as.double(v %*% x$upper$prob %*% wgts) pAiB / pAi }
IF.SD <- function(returns = NULL, evalShape = FALSE, retVals = NULL, nuisPars = NULL, k = 4, IFplot = FALSE, IFprint = TRUE, prewhiten = FALSE, ar.prewhiten.order = 1, cleanOutliers = FALSE, cleanMethod = c("locScaleRob")[1], eff = 0.99, ...){ DataCheck(returns = returns, evalShape = evalShape, retVals = retVals, nuisPars = nuisPars, k = k, IFplot = IFplot, IFprint = IFprint, prewhiten = prewhiten, ar.prewhiten.order = ar.prewhiten.order, cleanOutliers = cleanOutliers, cleanMethod = cleanMethod, eff = eff) nuisPars <- NuisanceData(nuisPars) if(xts::is.xts(returns)) returns.dates <- zoo::index(returns) if(cleanOutliers){ temp.returns <- robust.cleaning(returns, cleanMethod, eff) if(xts::is.xts(returns)) returns <- xts::xts(temp.returns, returns.dates) else returns <- temp.returns } if(evalShape){ IFvals <- EvaluateShape(estimator = "SD", retVals = retVals, returns = returns, k = k, nuisPars = nuisPars, IFplot = IFplot, IFprint = IFprint) if(IFprint) return(IFvals) else{ opt <- options(show.error.messages = FALSE) on.exit(options(opt)) stop() } } mu.hat <- mean(returns) sd.hat <- sd(returns) IF.SD.vector <- IF.SD.fn(x = returns, returns = returns) if(prewhiten) IF.SD.vector <- as.numeric(arima(x = IF.SD.vector, order = c(ar.prewhiten.order,0,0), include.mean = TRUE)$residuals) if(xts::is.xts(returns)) IF.SD.vector <- xts::xts(IF.SD.vector, returns.dates) if(isTRUE(IFplot)){ print(plot(IF.SD.vector, type = "l", main = "SD Estimator Influence Function Transformed Returns", ylab = "IF")) } if(!IFprint){ opt <- options(show.error.messages = FALSE) on.exit(options(opt)) stop() } if(xts::is.xts(returns)) return(xts::xts(IF.SD.vector, returns.dates)) else return(IF.SD.vector) }
bgigvp <- function(x, t = 24) { if(dim(x)[1] == 0) { stop("Dimension of data-set must be higher than 0.") } names <- c("date", "time", "glucose") names <- match(names, names(x)) if(any(is.na(names))) { stop("Names of data-set must be date, time and glucose.") } if(any(is.na(as.character(x$date))) || any(is.na(as.character(x$time)))) { stop("Variables date and time must be non-NA values.") } date.time <- as.POSIXct(paste(as.character(x$date), as.character(x$time)), format = "%Y/%m/%d %H:%M:%S") if(any(is.na(date.time))) { stop("Variable date and time must have yyyy/mm/dd and hh:mm:ss format.") } if(all(is.na(x$glucose))) { stop("Variable glucose must be non-NA value.") } if(!is.numeric(x$glucose)) { stop("Variable glucose must be numeric.") } if(!is.numeric(t)) { stop("t must be numeric.") } if(all(t != c(4, 6, 8, 12, 24))) { stop("t must be 4, 6, 8, 12 or 24.") } xt <- data.frame(matrix(nrow = 24, ncol = 6)) names(xt) <- c("hour", "4h", "6h", "8h", "12h", "24h") xt$hour <- 0:23 xt$"4h" <- c(rep(1, 4), rep(2, 4), rep(3, 4), rep(4, 4), rep(5, 4), rep(6, 4)) xt$"6h" <- c(rep(1, 6), rep(2, 6), rep(3, 6), rep(4, 6)) xt$"8h" <- c(rep(1, 8), rep(2, 8), rep(3, 8)) xt$"12h" <- c(rep(1, 12), rep(2, 12)) xt$"24h" <- 1 t <- paste(t, "h", sep = "") x$serie <- NA date <- levels(as.factor(as.character(x$date))) for(i in 1:length(date)) { position <- which(x$date == date[i]) x$serie[position] <- as.numeric(i) } hour <- separate(x, time, into = c("hour", "minutes", "seconds"), ":") hour <- as.numeric(hour$hour) for(i in 1:length(hour)) { for(j in 0:23) { if(hour[i] == j) { x$serie[i] <- paste(x$serie[i], ".", xt[j + 1, t], sep = "") } } } serie <- levels(as.factor(as.numeric(as.character(x$serie)))) x$lbgi <- x$hbgi <- x$bgi <- 0 for(i in 1:length(serie)) { position <- which(x$serie == serie[i]) aux <- x[position, ] if(!all(is.na(aux$glucose))) { f <- 1.509 * ((log(as.numeric(as.character(aux$glucose))) ^ 1.084) - 5.381) r <- 10 * (f ^ 2) rh <- c() rl <- c() for(j in 1:length(f)) { if(is.na(f[j])) { rh <- c(rh, 0) rl <- c(rl, 0) } else { if(f[j] > 0) { rh <- c(rh, r[j]) rl <- c(rl, 0) } else if(f[j] < 0) { rl <- c(rl, r[j]) rh <- c(rh, 0) } else { rh <- c(rh, 0) rl <- c(rl, 0) } } } if(length(rl) == 0) rl <- 0 if(length(rh) == 0) rh <- 0 x$lbgi[position] <- round(mean(rl, na.rm = TRUE), digits = 2) x$hbgi[position] <- round(mean(rh, na.rm = TRUE), digits = 2) x$bgi[position] <- round(mean(c(x$lbgi[position], x$hbgi[position]), na.rm = TRUE), digits = 2) } } if(any(is.na(x$lbgi))) { position <- is.na(x$lbgi) x$lbgi[position] <- 0 } if(any(is.na(x$hbgi))) { position <- is.na(x$hbgi) x$hbgi[position] <- 0 } if(any(is.na(x$bgi))) { position <- is.na(x$bgi) x$bgi[position] <- 0 } x <- x[,-which(names(x) == "serie")] return(x) }
lm1 <- lm(wt ~ disp + drat + hp, mtcars) BF1 <- BF(lm1) PHPexplo <- matrix( c(0.065, 0.003, 0.931, 0.001, 0.000, 0.999, 0.612, 0.342, 0.046, 0.742, 0.178, 0.080),nrow=4,byrow=T) test_that("BF.lm exploratory hypotheses correctly evaluated", { expect_equivalent( PHPexplo,round(BF1$PHP_exploratory,3) )}) BF2 <- BF(lm1,hypothesis="disp=drat=0;disp>drat>0;disp>drat=0") test_that("BF.lm multiple confirmatory hypotheses correctly evaluated", { expect_equivalent( round(BF2$PHP_confirmatory,5),c(0.00000,0.53382,0.40265,0.06353) )}) BF2 <- BF(lm1,hypothesis="disp=drat=0;disp>drat>0;disp>drat=0",complement=FALSE) test_that("BF.lm multiple confirmatory hypotheses correctly evaluated", { expect_equivalent( round(BF2$PHP_confirmatory,5),c(0.00000,0.57003,0.42997) )}) BF3 <- BF(lm1,hypothesis="disp=hp=0") test_that("BF.lm one equality hypothesis correctly evaluated", { expect_equivalent( round(BF3$PHP_confirmatory,5),c(0.00003,0.99997) )}) BF4 <- BF(lm1,hypothesis="drat<hp<disp") test_that("BF.lm one order hypothesis correctly evaluated", { expect_equivalent( round(BF4$PHP_confirmatory,5),c(0.96872,0.03128) )}) BF5 <- BF(lm1,hypothesis="drat<hp=disp") test_that("BF.lm one equal/order hypothesis correctly evaluated", { expect_equivalent( round(BF5$PHP_confirmatory,5),c(0.47961,0.52039) )})
simcode<-function (dataset, myformula, iv, ctime, nsamp = 10000, add = NULL, nobs = NA, half = FALSE, verbose = FALSE) { bad <- NULL gg <- as.formula(paste("Surv(newt,nc)~", deparse(myformula[[3]]))) sr1 <- survreg(formula = myformula, data = dataset, x = TRUE, y = TRUE) if (is.na(nobs)) nobs <- dim(sr1$x)[1] use <- seq(nobs) csr1 <- coefficients(sr1) ivl <- (names(csr1) == iv)[-1] if (half) csr1 <- csr1/2 csr1[iv] <- 0 randdat <- cbind(as.data.frame(list(newt = rep(NA, nobs))), sr1$x[use, ]) start<-0 if (is.null(add)) { set.seed(202043125) } else { outout <- rbind(add$out, array(NA, c(nsamp, dim(add$out)[2]))) start <- dim(add$out)[1] set.seed(add$seed) } d1 <- Sys.time() for (kk in seq(nsamp)) { if (verbose) { d2 <- Sys.time() if (verbose) message("kk=", kk, " of ", nsamp, ". Completion time ", (d2 - d1) * (nsamp - kk)/kk + d2) } if (nobs < dim(sr1$x)[1]) use <- sample(dim(sr1$x)[1], nobs) for (j in seq(nobs)) { elpred <- exp(sr1$x[use, ] %*% csr1) randdat$newt[j] <- rweibull(1, shape = 1/sr1$scale, scale = elpred[j]) } randdat$nc <- randdat$newt < ctime randdat$newt[randdat$newt >= ctime] <- ctime randdat$y <- Surv(randdat$newt, randdat$nc) xxx <- sr1$x[use, -1] randdat$x <- xxx repairedfit <- fixcoxph(randdat, xxx, iv, verbose = verbose) penalizedout <- coxphf(gg, randdat, maxit = 200, maxstep = 0.1) hh<-update(as.formula(gg),paste("~. -",iv)) penalizedoutsmaller <- coxphf(hh, randdat, maxit = 200, maxstep = 0.1) myout<-summarizefits(repairedfit,penalizedout,penalizedoutsmaller,iv) if((start+kk)==1){ outout <- array(NA, c(nsamp, length(myout))) dimnames(outout)<-list(NULL,names(myout)) } outout[start + kk,]<-myout } return(list(out = outout, seed = .Random.seed, bad = bad, srreg = sr1)) }
emSNMoE <- function(X, Y, K, p = 3, q = 1, n_tries = 1, max_iter = 1500, threshold = 1e-6, verbose = FALSE, verbose_IRLS = FALSE) { top <- 0 try_EM <- 0 best_loglik <- -Inf while (try_EM < n_tries) { try_EM <- try_EM + 1 if (n_tries > 1 && verbose) { message("EM try number: ", try_EM, "\n") } param <- ParamSNMoE(X = X, Y = Y, K = K, p = p, q = q) param$initParam(segmental = TRUE) iter <- 0 converge <- FALSE prev_loglik <- -Inf stat <- StatSNMoE(paramSNMoE = param) while (!converge && (iter <= max_iter)) { stat$EStep(param) reg_irls <- param$MStep(stat, verbose_IRLS) stat$computeLikelihood(reg_irls) iter <- iter + 1 if (verbose) { message("EM - SNMoE: Iteration: ", iter, " | log-likelihood: " , stat$loglik) } if (prev_loglik - stat$loglik > 1e-5) { if (verbose) { warning("EM log-likelihood is decreasing from ", prev_loglik, "to ", stat$loglik, "!") } top <- top + 1 if (top > 20) break } converge <- abs((stat$loglik - prev_loglik) / prev_loglik) <= threshold if (is.na(converge)) { converge <- FALSE } prev_loglik <- stat$loglik stat$stored_loglik <- c(stat$stored_loglik, stat$loglik) } if (stat$loglik > best_loglik) { statSolution <- stat$copy() paramSolution <- param$copy() best_loglik <- stat$loglik } if (n_tries > 1 && verbose) { message("Max value of the log-likelihood: ", stat$loglik, "\n\n") } } statSolution$MAP() if (n_tries > 1 && verbose) { message("Max value of the log-likelihood: ", statSolution$loglik, "\n") } statSolution$computeStats(paramSolution) return(ModelSNMoE(param = paramSolution, stat = statSolution)) }
MICA.ContCont <- function(Trial.R, D.aa, D.bb, T0S0, T1S1, T0T0=1, T1T1=1, S0S0=1, S1S1=1, T0T1=seq(-1, 1, by=.1), T0S1=seq(-1, 1, by=.1), T1S0=seq(-1, 1, by=.1), S0S1=seq(-1, 1, by=.1)) { Results <- na.exclude(matrix(NA, 1, 8)) colnames(Results) <- c("T0T1", "T0S0", "T0S1", "T1S0", "T1S1", "S0S1", "ICA", "MICA") T0S0_hier <- T0S0[1] T1S1_hier <- T1S1[1] combins <- expand.grid(T0T1, T0S0_hier, T0S1, T1S0, T1S1_hier, S0S1) lengte <- dim(combins)[1] if (length(T0S0)>1){ if (length(T0S0)<lengte){stop("The specified vector for T0S0 should be larger than ", lengte) } T0S0_vector <- T0S0[1:lengte] combins[,2] <- T0S0_vector } if (length(T1S1)>1){ if (length(T1S1)<lengte){stop("The specified vector for T1S1 should be larger than ", lengte) } T1S1_vector <- T1S1[1:lengte] combins[,5] <- T1S1_vector } for (i in 1: nrow(combins)) { T0T1 <- combins[i, 1] T0S0 <- combins[i, 2] T0S1 <- combins[i, 3] T1S0 <- combins[i, 4] T1S1 <- combins[i, 5] S0S1 <- combins[i, 6] Sigma_c <- diag(4) Sigma_c[2,1] <- Sigma_c[1,2] <- T0T1 * (sqrt(T0T0)*sqrt(T1T1)) Sigma_c[3,1] <- Sigma_c[1,3] <- T0S0 * (sqrt(T0T0)*sqrt(S0S0)) Sigma_c[4,1] <- Sigma_c[1,4] <- T0S1 * (sqrt(T0T0)*sqrt(S1S1)) Sigma_c[3,2] <- Sigma_c[2,3] <- T1S0 * (sqrt(T1T1)*sqrt(S0S0)) Sigma_c[4,2] <- Sigma_c[2,4] <- T1S1 * (sqrt(T1T1)*sqrt(S1S1)) Sigma_c[4,3] <- Sigma_c[3,4] <- S0S1 * (sqrt(S0S0)*sqrt(S1S1)) Sigma_c[1,1] <- T0T0 Sigma_c[2,2] <- T1T1 Sigma_c[3,3] <- S0S0 Sigma_c[4,4] <- S1S1 Cor_c <- cov2cor(Sigma_c) Min.Eigen.Cor <- try(min(eigen(Cor_c)$values), TRUE) if (Min.Eigen.Cor > 0) { ICA <- ((sqrt(S0S0*T0T0)*Cor_c[3,1])+(sqrt(S1S1*T1T1)*Cor_c[4,2])-(sqrt(S0S0*T1T1)*Cor_c[3,2])-(sqrt(S1S1*T0T0)*Cor_c[4,1]))/(sqrt((T0T0+T1T1-(2*sqrt(T0T0*T1T1)*Cor_c[2,1]))*(S0S0+S1S1-(2*sqrt(S0S0*S1S1)*Cor_c[4,3])))) Var_eps_t <- T0T0 + T1T1 - (2*sqrt(T0T0*T1T1)*Cor_c[2,1]) Var_eps_s <- S0S0 + S1S1 - (2*sqrt(S0S0*S1S1)*Cor_c[4,3]) Var_delt_t <- D.bb + T0T0 + T1T1 - (2*sqrt(T0T0*T1T1)*Cor_c[2,1]) Var_delt_s <- D.aa + S0S0 + S1S1 - (2*sqrt(S0S0*S1S1)*Cor_c[4,3]) MICA <- ((sqrt(D.bb*D.aa)*Trial.R) + (sqrt(Var_eps_t*Var_eps_s)*ICA)) / sqrt(Var_delt_t*Var_delt_s) if ((is.finite(ICA))==TRUE){ results.part <- as.vector(cbind(T0T1, T0S0, T0S1, T1S0, T1S1, S0S1, ICA, MICA)) Results <- rbind(Results, results.part) rownames(Results) <- NULL} } } Results <- data.frame(Results, stringsAsFactors = TRUE) rownames(Results) <- NULL Total.Num.Matrices <- nrow(combins) fit <- list(Total.Num.Matrices=Total.Num.Matrices, Pos.Def=Results[,1:6], ICA=Results$ICA, MICA=Results$MICA, Call=match.call()) class(fit) <- "MICA.ContCont" fit } plot.MICA.ContCont <- function(x, ICA=TRUE, MICA=TRUE, Type="Percent", Labels=FALSE, Xlab.ICA, Main.ICA, Xlab.MICA, Main.MICA, Par=par(oma=c(0, 0, 0, 0), mar=c(5.1, 4.1, 4.1, 2.1)), col, ...){ Object <- x if (MICA==TRUE){ dev.new() par=Par if (missing(Xlab.MICA)) {Xlab.MICA <- expression(rho[M])} if (missing(col)) {col <- c(8)} if (missing(Main.MICA)) {Main.MICA="MICA"} if (Type=="Freq"){ h <- hist(Object$MICA, ...) h$density <- h$counts/sum(h$counts) cumulMidPoint <- ecdf(x=Object$MICA)(h$mids) labs <- paste(round((1-cumulMidPoint), digits=4)*100, "%", sep="") if (Labels==FALSE){ plot(h,freq=T, xlab=Xlab.MICA, ylab="Frequency", col=col, main=Main.MICA) } if (Labels==TRUE){ plot(h,freq=T, xlab=Xlab.MICA, ylab="Frequency", col=col, main=Main.MICA, labels=labs) } } if (Type=="Percent"){ h <- hist(Object$MICA, ...) h$density <- h$counts/sum(h$counts) cumulMidPoint <- ecdf(x=Object$MICA)(h$mids) labs <- paste(round((1-cumulMidPoint), digits=4)*100, "%", sep="") if (Labels==FALSE){ plot(h,freq=F, xlab=Xlab.MICA, ylab="Percentage", col=col, main=Main.MICA) } if (Labels==TRUE){ plot(h,freq=F, xlab=Xlab.MICA, ylab="Percentage", col=col, main=Main.MICA, labels=labs) } } if (Type=="CumPerc"){ h <- hist(Object$MICA, breaks=length(Object$MICA), ...) h$density <- h$counts/sum(h$counts) cumulative <- cumsum(h$density) plot(x=h$mids, y=cumulative, xlab=Xlab.MICA, ylab="Cumulative percentage", col=0, main=Main.MICA) lines(x=h$mids, y=cumulative) } } if (ICA==TRUE){ dev.new() par=Par if (missing(Xlab.ICA)) {Xlab.ICA <- expression(rho[Delta])} if (missing(col)) {col <- c(8)} if (missing(Main.ICA)) {Main.ICA="ICA"} if (Type=="Freq"){ h <- hist(Object$ICA, ...) h$density <- h$counts/sum(h$counts) cumulMidPoint <- ecdf(x=Object$ICA)(h$mids) labs <- paste(round((1-cumulMidPoint), digits=4)*100, "%", sep="") if (Labels==FALSE){ plot(h,freq=T, xlab=Xlab.ICA, ylab="Frequency", col=col, main=Main.ICA) } if (Labels==TRUE){ plot(h,freq=T, xlab=Xlab.ICA, ylab="Frequency", col=col, main=Main.ICA, labels=labs) } } if (Type=="Percent"){ h <- hist(Object$ICA, ...) h$density <- h$counts/sum(h$counts) cumulMidPoint <- ecdf(x=Object$ICA)(h$mids) labs <- paste(round((1-cumulMidPoint), digits=4)*100, "%", sep="") if (Labels==FALSE){ plot(h,freq=F, xlab=Xlab.ICA, ylab="Percentage", col=col, main=Main.ICA) } if (Labels==TRUE){ plot(h,freq=F, xlab=Xlab.ICA, ylab="Percentage", col=col, main=Main.ICA, labels=labs) } } if (Type=="CumPerc"){ h <- hist(Object$ICA, breaks=length(Object$ICA), ...) h$density <- h$counts/sum(h$counts) cumulative <- cumsum(h$density) plot(x=h$mids, y=cumulative, xlab=Xlab.ICA, ylab="Cumulative percentage", col=0, main=Main.ICA) lines(x=h$mids, y=cumulative) } } } summary.MICA.ContCont <- function(object, ..., Object){ if (missing(Object)){Object <- object} mode <- function(data) { x <- data z <- density(x) mode_val <- z$x[which.max(z$y)] fit <- list(mode_val= mode_val) } cat("\nFunction call:\n\n") print(Object$Call) cat("\n\n cat("\n cat("\n cat(Object$Total.Num.Matrices) cat("\n\n cat("\n cat(nrow(Object$Pos.Def)) cat("\n\n\n cat("\n cat("Mean (SD) MICA: ", format(round(mean(Object$MICA), 4), nsmall = 4), " (", format(round(sd(Object$MICA), 4), nsmall = 4), ")", " [min: ", format(round(min(Object$MICA), 4), nsmall = 4), "; max: ", format(round(max(Object$MICA), 4), nsmall = 4), "]", sep="") cat("\nMode MICA: ", format(round(mode(Object$MICA)$mode_val, 4), nsmall = 4)) cat("\n\nQuantiles of the MICA distribution: \n\n") quant <- quantile(Object$MICA, probs = c(.05, .10, .20, .50, .80, .90, .95)) print(quant) }
x.cod <- structure(list(N = structure(list(Sex = c("Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex"), Year = c(1971L, 1971L, 1971L, 1971L, 1971L, 1971L, 1971L, 1971L, 1971L, 1971L, 1972L, 1972L, 1972L, 1972L, 1972L, 1972L, 1972L, 1972L, 1972L, 1972L, 1973L, 1973L, 1973L, 1973L, 1973L, 1973L, 1973L, 1973L, 1973L, 1973L, 1974L, 1974L, 1974L, 1974L, 1974L, 1974L, 1974L, 1974L, 1974L, 1974L, 1975L, 1975L, 1975L, 1975L, 1975L, 1975L, 1975L, 1975L, 1975L, 1975L, 1976L, 1976L, 1976L, 1976L, 1976L, 1976L, 1976L, 1976L, 1976L, 1976L, 1977L, 1977L, 1977L, 1977L, 1977L, 1977L, 1977L, 1977L, 1977L, 1977L, 1978L, 1978L, 1978L, 1978L, 1978L, 1978L, 1978L, 1978L, 1978L, 1978L, 1979L, 1979L, 1979L, 1979L, 1979L, 1979L, 1979L, 1979L, 1979L, 1979L, 1980L, 1980L, 1980L, 1980L, 1980L, 1980L, 1980L, 1980L, 1980L, 1980L, 1981L, 1981L, 1981L, 1981L, 1981L, 1981L, 1981L, 1981L, 1981L, 1981L, 1982L, 1982L, 1982L, 1982L, 1982L, 1982L, 1982L, 1982L, 1982L, 1982L, 1983L, 1983L, 1983L, 1983L, 1983L, 1983L, 1983L, 1983L, 1983L, 1983L, 1984L, 1984L, 1984L, 1984L, 1984L, 1984L, 1984L, 1984L, 1984L, 1984L, 1985L, 1985L, 1985L, 1985L, 1985L, 1985L, 1985L, 1985L, 1985L, 1985L, 1986L, 1986L, 1986L, 1986L, 1986L, 1986L, 1986L, 1986L, 1986L, 1986L, 1987L, 1987L, 1987L, 1987L, 1987L, 1987L, 1987L, 1987L, 1987L, 1987L, 1988L, 1988L, 1988L, 1988L, 1988L, 1988L, 1988L, 1988L, 1988L, 1988L, 1989L, 1989L, 1989L, 1989L, 1989L, 1989L, 1989L, 1989L, 1989L, 1989L, 1990L, 1990L, 1990L, 1990L, 1990L, 1990L, 1990L, 1990L, 1990L, 1990L, 1991L, 1991L, 1991L, 1991L, 1991L, 1991L, 1991L, 1991L, 1991L, 1991L, 1992L, 1992L, 1992L, 1992L, 1992L, 1992L, 1992L, 1992L, 1992L, 1992L, 1993L, 1993L, 1993L, 1993L, 1993L, 1993L, 1993L, 1993L, 1993L, 1993L, 1994L, 1994L, 1994L, 1994L, 1994L, 1994L, 1994L, 1994L, 1994L, 1994L, 1995L, 1995L, 1995L, 1995L, 1995L, 1995L, 1995L, 1995L, 1995L, 1995L, 1996L, 1996L, 1996L, 1996L, 1996L, 1996L, 1996L, 1996L, 1996L, 1996L, 1997L, 1997L, 1997L, 1997L, 1997L, 1997L, 1997L, 1997L, 1997L, 1997L, 1998L, 1998L, 1998L, 1998L, 1998L, 1998L, 1998L, 1998L, 1998L, 1998L, 1999L, 1999L, 1999L, 1999L, 1999L, 1999L, 1999L, 1999L, 1999L, 1999L, 2000L, 2000L, 2000L, 2000L, 2000L, 2000L, 2000L, 2000L, 2000L, 2000L, 2001L, 2001L, 2001L, 2001L, 2001L, 2001L, 2001L, 2001L, 2001L, 2001L, 2002L, 2002L, 2002L, 2002L, 2002L, 2002L, 2002L, 2002L, 2002L, 2002L, 2003L, 2003L, 2003L, 2003L, 2003L, 2003L, 2003L, 2003L, 2003L, 2003L, 2004L, 2004L, 2004L, 2004L, 2004L, 2004L, 2004L, 2004L, 2004L, 2004L), Age = c(1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L), N = c(472457, 172835, 162647, 135592, 112548, 51297.2, 41974.6, 27548.5, 12444.9, 17569.8, 262806, 386744, 140900, 127383, 89481, 57003.5, 25276.4, 20682.7, 13574.4, 14789.6, 425777, 215126, 315234, 110164, 83310, 44279.4, 27395.7, 12147.8, 9940.07, 13631.7, 628953, 348515, 175177, 243911, 68056.4, 35289.4, 17986.6, 11128.3, 4934.5, 9575.04, 207659, 514819, 283750, 135313, 149252, 28043.6, 13910.1, 7089.79, 4386.47, 5719.29, 360187, 169979, 419340, 220242, 85064.5, 66414.1, 12017.7, 5960.96, 3038.23, 4330.7, 401021, 294838, 138537, 327544, 143288, 41522.2, 31452.5, 5691.34, 2823, 3489.8, 229905, 328279, 240556, 109431, 225994, 81035.3, 23020, 17437.3, 3155.29, 3499.83, 234366, 188208, 268022, 191374, 78262.4, 139010, 49119.3, 13953.5, 10569.6, 4033.99, 186469, 191858, 153635, 212839, 135635, 47150.4, 82426.3, 29125.4, 8273.75, 8659.21, 328677, 152646, 156559, 121550, 148043, 78200.3, 26682.1, 46644.4, 16481.8, 9582.26, 213028, 269049, 124446, 122667, 80396.6, 75417.8, 38773.5, 13229.6, 23127.4, 12923.2, 185820, 174379, 219301, 97299, 80223.1, 39780.6, 36242.2, 18632.7, 6357.52, 17324.3, 530062, 152109, 142176, 171976, 64652.2, 41347.5, 19972.3, 18195.8, 9354.78, 11889.8, 510445, 433905, 124050, 111789, 115866, 34500.1, 21545.5, 10407.2, 9481.53, 11070.2, 277039, 417840, 353751, 97211.5, 74005.2, 59157.3, 17146.8, 10708.3, 5172.47, 10214.4, 117558, 226770, 340337, 274491, 61009.1, 32776.5, 25222.2, 7310.69, 4565.57, 6560.36, 192850, 96225.4, 184656, 263295, 169428, 25779.4, 13278.4, 10218, 2961.71, 4507.36, 146381, 157860, 78414.3, 144007, 169858, 80880.4, 11919.2, 6139.31, 4724.34, 3453.36, 260156, 119826, 128727, 61586.9, 96463.6, 89343.5, 41500.5, 6115.85, 3150.14, 4196.07, 232307, 212955, 97654.7, 100481, 39924.8, 46644.9, 41884.4, 19455.5, 2867.13, 3443.94, 103293, 190152, 173406, 75546.5, 62012.4, 16863.4, 18888.4, 16960.7, 7878.34, 2555.62, 242279, 84547.9, 154780, 133613, 45581.6, 24510, 6350.95, 7113.6, 6387.62, 3929.58, 301904, 198312, 68823.3, 119317, 80830.9, 18159.7, 9311.52, 2412.77, 2702.51, 3919.59, 112824, 247134, 161698, 54003.2, 79529.8, 41990.2, 9194.56, 4714.58, 1221.63, 3352.89, 226670, 92358.2, 201626, 127672, 37178.2, 44739.6, 23148.4, 5068.78, 2599.06, 2521.85, 66566.4, 185554, 75361.1, 159420, 88524.1, 21274.9, 25116.6, 12995.4, 2845.6, 2874.86, 265870, 54492.4, 151433, 59697.5, 111593, 51809.5, 12232.8, 14441.7, 7472.2, 3289.2, 255701, 217641, 44450.3, 119350, 40716.8, 61373.9, 27881.6, 6583.15, 7771.91, 5791.32, 263285, 209311, 177419, 34796.1, 78562.4, 20488.1, 30030.4, 13642.5, 3221.15, 6636.54, 343564, 215516, 170582, 138482, 22551.7, 37964.7, 9598.29, 14068.7, 6391.29, 4618.17, 87727.6, 281228, 175601, 132845, 88662.9, 10549.2, 17172.8, 4341.67, 6363.81, 4980.01, 310215, 71812.9, 229330, 137941, 89063.6, 46737, 5425.48, 8832.03, 2232.93, 5834.17, 378867, 253943, 58587.1, 181008, 94794.7, 49886.8, 25646.8, 2977.22, 4846.56, 4426.82)), class = "data.frame", row.names = c(NA, -340L)), B = structure(list(Year = 1971:2004, VB = c(1140000, 964964, 761019, 722716, 778435, 825133, 1050000, 1270000, 1330000, 1410000, 1190000, 940285, 775779, 780698, 827749, 769197, 776460, 868580, 953567, 784715, 610520, 495860, 470127, 468598, 518647, 577960, 682386, 708012, 646309, 550857, 525343, 561627, 636831, 734505), SB = c(1370000, 1170000, 894552, 999547, 966587, 1060000, 1480000, 1500000, 1630000, 1750000, 1410000, 1130000, 918667, 1e+06, 1020000, 900452, 1090000, 1190000, 1200000, 912646, 762816, 598591, 630708, 642020, 613469, 737990, 906160, 828555, 817466, 623002, 700825, 737061, 808611, 982954), Y = c(453052, 398528, 383446, 374770, 370991, 347849, 340050, 330390, 368064, 434344, 468659, 388387, 300056, 283822, 325267, 368633, 392257, 378076, 355954, 335390, 308560, 267767, 251979, 178809, 169424, 181658, 203153, 242632, 260052, 235654, 235098, 208830, 210000, NA), R = c(262806, 425777, 628953, 207659, 360187, 401021, 229905, 234366, 186469, 328677, 213028, 185820, 530062, 510445, 277039, 117558, 192850, 146381, 260156, 232307, 103293, 242279, 301904, 112824, 226670, 66566.4, 265870, 255701, 263285, 343564, 87727.6, 310215, 378867, NA)), row.names = c(NA, -34L), class = "data.frame"), Sel = structure(list(Series = c("Gear 1", "Gear 1", "Gear 1", "Gear 1", "Gear 1", "Gear 1", "Gear 1", "Gear 1", "Gear 1", "Gear 1", "Survey 1", "Survey 1", "Survey 1", "Survey 1", "Survey 1", "Survey 1", "Survey 1", "Survey 1", "Survey 1", "Survey 1", "Maturity", "Maturity", "Maturity", "Maturity", "Maturity", "Maturity", "Maturity", "Maturity", "Maturity", "Maturity"), Sex = c("Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex"), Age = c(1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L), P = c(0.000465918, 0.0107437, 0.109044, 0.487138, 0.957858, 1, 0.999999, 0.999998, 0.999996, 0.999993, 0.093353, 0.30199, 0.656636, 0.959678, 1, 0.999999, 0.999998, 0.999996, 0.999994, 0.999991, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1)), class = "data.frame", row.names = c(NA, -30L)), Dev = list(sigmaR = c(Initial = 0.5, Annual = 1), Initial = c(`2` = -0.276004, `3` = -0.133551, `4` = -0.08248, `5` = 0.0879693, `6` = -0.161992, `7` = 0.19093, `8` = 0.323306, `9` = 0.082165), Annual = c(`1971` = 0.904468, `1972` = 0.0370796, `1973` = 0.544025, `1974` = 0.98496, `1975` = -0.145333, `1976` = 0.411873, `1977` = 0.501718, `1978` = -0.107777, `1979` = -0.0903785, `1980` = -0.329944, `1981` = 0.228531, `1982` = -0.176938, `1983` = -0.278815, `1984` = 0.808412, `1985` = 0.753572, `1986` = 0.138847, `1987` = -0.693534, `1988` = -0.235523, `1989` = -0.526445, `1990` = 0.0482014, `1991` = -0.0151754, `1992` = -0.786165, `1993` = 0.129073, `1994` = 0.334609, `1995` = -0.654477, `1996` = 0.0556041, `1997` = -1.21763, `1998` = 0.121238, `1999` = 0.101377, `2000` = 0.133603, `2001` = 0.467231, `2002` = -0.928844, `2003` = 0.321739)), Survey = structure(list(Series = c(1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L), Year = 1971:2004, Obs = c(NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 548.4, 402.2, 493.1, 561.3, 522, 307, 291.9, 203.8, 220.3, 177.8, 224.2, 325.9, 347, 422.6, 282.2, 251.9, 236.1, 310, 344.5, NA), CV = c(NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, NA), Fit = c(509.758, 436.334, 375.37, 376.073, 395.967, 482.794, 535.93, 578.928, 636.372, 638.789, 519.153, 410.725, 364.678, 378.4, 384.105, 419.75, 464.846, 459.498, 424.87, 346.746, 285.949, 252.182, 259.693, 237.64, 256.392, 313.859, 329.732, 322.584, 288.12, 263.397, 292.159, 298.522, 342.267, 348.371)), row.names = c(NA, -34L ), class = "data.frame"), CAc = structure(list(Series = c(1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L), Year = c(1971L, 1971L, 1971L, 1971L, 1971L, 1971L, 1971L, 1971L, 1971L, 1971L, 1972L, 1972L, 1972L, 1972L, 1972L, 1972L, 1972L, 1972L, 1972L, 1972L, 1973L, 1973L, 1973L, 1973L, 1973L, 1973L, 1973L, 1973L, 1973L, 1973L, 1974L, 1974L, 1974L, 1974L, 1974L, 1974L, 1974L, 1974L, 1974L, 1974L, 1975L, 1975L, 1975L, 1975L, 1975L, 1975L, 1975L, 1975L, 1975L, 1975L, 1976L, 1976L, 1976L, 1976L, 1976L, 1976L, 1976L, 1976L, 1976L, 1976L, 1977L, 1977L, 1977L, 1977L, 1977L, 1977L, 1977L, 1977L, 1977L, 1977L, 1978L, 1978L, 1978L, 1978L, 1978L, 1978L, 1978L, 1978L, 1978L, 1978L, 1979L, 1979L, 1979L, 1979L, 1979L, 1979L, 1979L, 1979L, 1979L, 1979L, 1980L, 1980L, 1980L, 1980L, 1980L, 1980L, 1980L, 1980L, 1980L, 1980L, 1981L, 1981L, 1981L, 1981L, 1981L, 1981L, 1981L, 1981L, 1981L, 1981L, 1982L, 1982L, 1982L, 1982L, 1982L, 1982L, 1982L, 1982L, 1982L, 1982L, 1983L, 1983L, 1983L, 1983L, 1983L, 1983L, 1983L, 1983L, 1983L, 1983L, 1984L, 1984L, 1984L, 1984L, 1984L, 1984L, 1984L, 1984L, 1984L, 1984L, 1985L, 1985L, 1985L, 1985L, 1985L, 1985L, 1985L, 1985L, 1985L, 1985L, 1986L, 1986L, 1986L, 1986L, 1986L, 1986L, 1986L, 1986L, 1986L, 1986L, 1987L, 1987L, 1987L, 1987L, 1987L, 1987L, 1987L, 1987L, 1987L, 1987L, 1988L, 1988L, 1988L, 1988L, 1988L, 1988L, 1988L, 1988L, 1988L, 1988L, 1989L, 1989L, 1989L, 1989L, 1989L, 1989L, 1989L, 1989L, 1989L, 1989L, 1990L, 1990L, 1990L, 1990L, 1990L, 1990L, 1990L, 1990L, 1990L, 1990L, 1991L, 1991L, 1991L, 1991L, 1991L, 1991L, 1991L, 1991L, 1991L, 1991L, 1992L, 1992L, 1992L, 1992L, 1992L, 1992L, 1992L, 1992L, 1992L, 1992L, 1993L, 1993L, 1993L, 1993L, 1993L, 1993L, 1993L, 1993L, 1993L, 1993L, 1994L, 1994L, 1994L, 1994L, 1994L, 1994L, 1994L, 1994L, 1994L, 1994L, 1995L, 1995L, 1995L, 1995L, 1995L, 1995L, 1995L, 1995L, 1995L, 1995L, 1996L, 1996L, 1996L, 1996L, 1996L, 1996L, 1996L, 1996L, 1996L, 1996L, 1997L, 1997L, 1997L, 1997L, 1997L, 1997L, 1997L, 1997L, 1997L, 1997L, 1998L, 1998L, 1998L, 1998L, 1998L, 1998L, 1998L, 1998L, 1998L, 1998L, 1999L, 1999L, 1999L, 1999L, 1999L, 1999L, 1999L, 1999L, 1999L, 1999L, 2000L, 2000L, 2000L, 2000L, 2000L, 2000L, 2000L, 2000L, 2000L, 2000L, 2001L, 2001L, 2001L, 2001L, 2001L, 2001L, 2001L, 2001L, 2001L, 2001L, 2002L, 2002L, 2002L, 2002L, 2002L, 2002L, 2002L, 2002L, 2002L, 2002L ), SS = c(50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50), Sex = c("Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex" ), Age = c(1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L), Obs = c(0, 0, 0.0845488, 0.232127, 0.29506, 0.136825, 0.112257, 0.0707206, 0.0388497, 0.0296115, 0, 0, 0.0695204, 0.229131, 0.239544, 0.177074, 0.0859766, 0.0758038, 0.0816456, 0.0413032, 0, 0, 0.270907, 0.189378, 0.203087, 0.126378, 0.0943184, 0.027322, 0.0349811, 0.0536282, 0, 0, 0.110408, 0.459793, 0.162302, 0.107188, 0.0667386, 0.0462276, 0.0122485, 0.0350946, 0, 0, 0.221055, 0.222473, 0.332989, 0.0911951, 0.0726362, 0.0278459, 0.0154733, 0.0163333, 0, 0, 0.192654, 0.325122, 0.172341, 0.19933, 0.0474159, 0.0436573, 0.0105977, 0.00888181, 0, 0, 0.0241952, 0.394852, 0.300496, 0.112572, 0.120485, 0.0260001, 0.0164109, 0.00498898, 0, 0, 0.0610734, 0.165811, 0.447244, 0.179443, 0.0888665, 0.0419339, 0.00995663, 0.0056706, 0, 0, 0.0688281, 0.272276, 0.131909, 0.329898, 0.135338, 0.0423926, 0.0137158, 0.00564149, 0, 0, 0.0366357, 0.24039, 0.273841, 0.127391, 0.228257, 0.0661179, 0.0187729, 0.00859439, 0, 0, 0.0170211, 0.10686, 0.314986, 0.186822, 0.102143, 0.212603, 0.0386068, 0.0209589, 0, 0, 0.0292021, 0.185009, 0.217455, 0.252027, 0.12456, 0.0681471, 0.102381, 0.0212193, 0, 0, 0.0398909, 0.122456, 0.272805, 0.212632, 0.1951, 0.0940702, 0.0230546, 0.0399919, 0, 0, 0.0729588, 0.341047, 0.209905, 0.165654, 0.087356, 0.0792927, 0.0289673, 0.0148187, 0, 0, 0.0636176, 0.241899, 0.3487, 0.179976, 0.0858252, 0.0413904, 0.0223061, 0.0162862, 0, 0, 0.175677, 0.173021, 0.226757, 0.26246, 0.0971319, 0.0377957, 0.0150723, 0.0120851, 0, 0, 0.0798062, 0.450678, 0.197245, 0.109728, 0.113848, 0.0301685, 0.0106123, 0.00791388, 0, 0, 0.0496263, 0.290698, 0.413208, 0.137967, 0.047305, 0.0434461, 0.009943, 0.00780655, 0, 0, 0.0214635, 0.230561, 0.412453, 0.259168, 0.0495184, 0.0157783, 0.00725885, 0.00379833, 0, 0, 0.0523269, 0.111374, 0.245841, 0.402822, 0.154104, 0.0232735, 0.00550857, 0.00474877, 0, 0, 0.0826881, 0.242931, 0.149745, 0.207967, 0.242032, 0.0615182, 0.00872894, 0.00438864, 0, 0, 0.131937, 0.234435, 0.286446, 0.123255, 0.108783, 0.0896789, 0.0216638, 0.00380142, 0, 0, 0.221507, 0.357415, 0.164185, 0.143504, 0.038715, 0.0300925, 0.0292497, 0.0153326, 0, 0, 0.0961764, 0.37693, 0.307046, 0.108792, 0.0685881, 0.0196256, 0.00935222, 0.0134897, 0, 0, 0.191263, 0.161659, 0.298863, 0.232037, 0.0730776, 0.0283431, 0.00555852, 0.00919908, 0, 0, 0.10153, 0.282183, 0.139746, 0.233295, 0.178739, 0.0408887, 0.0158664, 0.00775311, 0, 0, 0.0300199, 0.286636, 0.301559, 0.116994, 0.128639, 0.103867, 0.0199958, 0.0122904, 0, 0, 0.0492431, 0.10975, 0.361619, 0.287185, 0.0839184, 0.0549108, 0.0420233, 0.0113496, 0, 0, 0.0315137, 0.244047, 0.19003, 0.307299, 0.161824, 0.0348834, 0.0185587, 0.0118441, 0, 0, 0.137208, 0.0860543, 0.380255, 0.146806, 0.148938, 0.0734488, 0.0144361, 0.0128539, 0, 0, 0.146257, 0.323012, 0.120108, 0.251174, 0.0724961, 0.050684, 0.0260196, 0.0102478, 0, 0, 0.0855117, 0.266334, 0.350131, 0.0990576, 0.128873, 0.0320921, 0.0194974, 0.018503), Fit = c(0.000638965, 0.00539005, 0.0514821, 0.19173, 0.312928, 0.148901, 0.12184, 0.0799654, 0.036124, 0.0509998, 0.000409886, 0.0139091, 0.051432, 0.207722, 0.286914, 0.190819, 0.0846123, 0.0692351, 0.0454399, 0.0495077, 0.000714247, 0.00832158, 0.123764, 0.193218, 0.287313, 0.159426, 0.0986369, 0.0437373, 0.0357886, 0.04908, 0.0010244, 0.0130894, 0.0667764, 0.415362, 0.227884, 0.123364, 0.0628768, 0.0389019, 0.0172498, 0.0334719, 0.00031764, 0.0181587, 0.101581, 0.216404, 0.46935, 0.0920679, 0.0456671, 0.023276, 0.0144009, 0.0187765, 0.000511249, 0.00556349, 0.139304, 0.326849, 0.248225, 0.202328, 0.0366113, 0.0181598, 0.00925581, 0.0131932, 0.000466816, 0.00791425, 0.0377433, 0.398649, 0.342911, 0.103741, 0.0785823, 0.0142195, 0.00705309, 0.00871902, 0.000250395, 0.00824454, 0.0613179, 0.124613, 0.506018, 0.189427, 0.0538112, 0.0407611, 0.00737574, 0.00818112, 0.000262341, 0.00485798, 0.070216, 0.223974, 0.180101, 0.333972, 0.118009, 0.0335232, 0.0253933, 0.00969158, 0.000202924, 0.00481452, 0.03913, 0.24217, 0.303453, 0.110129, 0.192523, 0.0680279, 0.0193249, 0.0202252, 0.000385277, 0.00412606, 0.0429512, 0.14897, 0.356766, 0.196744, 0.0671295, 0.117353, 0.0414666, 0.0241079, 0.000313304, 0.00912447, 0.0428358, 0.188625, 0.243086, 0.238065, 0.122393, 0.0417606, 0.0730039, 0.0407933, 0.000322505, 0.00697885, 0.0890798, 0.176561, 0.286243, 0.148186, 0.135005, 0.0694081, 0.0236821, 0.0645338, 0.000936013, 0.00619379, 0.0587591, 0.317516, 0.234709, 0.15671, 0.0756961, 0.0689631, 0.035455, 0.0450626, 0.000878002, 0.0172103, 0.0499387, 0.201043, 0.409728, 0.127367, 0.0795414, 0.0384212, 0.0350037, 0.0408686, 0.000489238, 0.0170151, 0.146208, 0.179489, 0.268679, 0.224222, 0.0649908, 0.0405871, 0.019605, 0.038715, 0.000177721, 0.00790534, 0.120418, 0.43387, 0.189616, 0.106351, 0.0818394, 0.0237212, 0.014814, 0.0212865, 0.000243797, 0.00280508, 0.0546344, 0.348011, 0.440339, 0.0699475, 0.0360284, 0.0277246, 0.00803601, 0.0122298, 0.000194704, 0.00484183, 0.0244107, 0.200271, 0.464482, 0.2309, 0.0340273, 0.0175267, 0.0134872, 0.00985872, 0.000429596, 0.00456273, 0.0497497, 0.106331, 0.327478, 0.316651, 0.147086, 0.0216757, 0.0111647, 0.0148716, 0.000504525, 0.0106648, 0.0496371, 0.228163, 0.17826, 0.217427, 0.195237, 0.0906885, 0.0133646, 0.0160532, 0.000266852, 0.0113279, 0.104848, 0.20406, 0.32936, 0.0935051, 0.104733, 0.0940447, 0.0436842, 0.0141705, 0.000645264, 0.00519243, 0.0964787, 0.37206, 0.249576, 0.140106, 0.0363037, 0.0406631, 0.0365132, 0.0224624, 0.000773592, 0.0117176, 0.0412736, 0.31966, 0.425806, 0.0998716, 0.0512099, 0.0132693, 0.0148627, 0.0215562, 0.00028678, 0.0144853, 0.0961941, 0.143519, 0.415595, 0.22908, 0.0501615, 0.0257206, 0.00666464, 0.0182918, 0.000530789, 0.00498713, 0.110502, 0.312583, 0.178982, 0.224859, 0.116343, 0.0254754, 0.0130627, 0.0126746, 0.000130421, 0.00838321, 0.0345569, 0.326571, 0.356571, 0.0894646, 0.10562, 0.0546478, 0.0119662, 0.0120892, 0.000510948, 0.00241485, 0.0681118, 0.119952, 0.440896, 0.213702, 0.0504572, 0.0595685, 0.0308209, 0.013567, 0.000557106, 0.0109344, 0.022666, 0.271876, 0.182378, 0.286999, 0.130381, 0.0307844, 0.0363432, 0.0270815, 0.000652707, 0.0119655, 0.102941, 0.0901916, 0.400405, 0.109015, 0.159788, 0.0725902, 0.0171393, 0.035312, 0.000875772, 0.0126681, 0.101768, 0.36908, 0.118183, 0.207708, 0.0525131, 0.0769709, 0.0349672, 0.0252663, 0.000189883, 0.0140363, 0.0889552, 0.300633, 0.394533, 0.0490072, 0.0797777, 0.0201695, 0.0295635, 0.0231349)), row.names = c(NA, -320L), class = "data.frame"), CAs = structure(list(Series = c(1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L), Year = c(1985L, 1985L, 1985L, 1985L, 1985L, 1985L, 1985L, 1985L, 1985L, 1985L, 1986L, 1986L, 1986L, 1986L, 1986L, 1986L, 1986L, 1986L, 1986L, 1986L, 1987L, 1987L, 1987L, 1987L, 1987L, 1987L, 1987L, 1987L, 1987L, 1987L, 1988L, 1988L, 1988L, 1988L, 1988L, 1988L, 1988L, 1988L, 1988L, 1988L, 1989L, 1989L, 1989L, 1989L, 1989L, 1989L, 1989L, 1989L, 1989L, 1989L, 1990L, 1990L, 1990L, 1990L, 1990L, 1990L, 1990L, 1990L, 1990L, 1990L, 1991L, 1991L, 1991L, 1991L, 1991L, 1991L, 1991L, 1991L, 1991L, 1991L, 1992L, 1992L, 1992L, 1992L, 1992L, 1992L, 1992L, 1992L, 1992L, 1992L, 1993L, 1993L, 1993L, 1993L, 1993L, 1993L, 1993L, 1993L, 1993L, 1993L, 1994L, 1994L, 1994L, 1994L, 1994L, 1994L, 1994L, 1994L, 1994L, 1994L, 1995L, 1995L, 1995L, 1995L, 1995L, 1995L, 1995L, 1995L, 1995L, 1995L, 1996L, 1996L, 1996L, 1996L, 1996L, 1996L, 1996L, 1996L, 1996L, 1996L, 1997L, 1997L, 1997L, 1997L, 1997L, 1997L, 1997L, 1997L, 1997L, 1997L, 1998L, 1998L, 1998L, 1998L, 1998L, 1998L, 1998L, 1998L, 1998L, 1998L, 1999L, 1999L, 1999L, 1999L, 1999L, 1999L, 1999L, 1999L, 1999L, 1999L, 2000L, 2000L, 2000L, 2000L, 2000L, 2000L, 2000L, 2000L, 2000L, 2000L, 2001L, 2001L, 2001L, 2001L, 2001L, 2001L, 2001L, 2001L, 2001L, 2001L, 2002L, 2002L, 2002L, 2002L, 2002L, 2002L, 2002L, 2002L, 2002L, 2002L, 2003L, 2003L, 2003L, 2003L, 2003L, 2003L, 2003L, 2003L, 2003L, 2003L), SS = c(30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30), Sex = c("Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex", "Unisex"), Age = c(1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L), Obs = c(0.0512773, 0.344339, 0.108042, 0.149089, 0.199343, 0.0699715, 0.0460689, 0.015036, 0.00995164, 0.00688244, 0.0597677, 0.240022, 0.37874, 0.0888986, 0.0841425, 0.104475, 0.0263168, 0.00982918, 0.0032896, 0.00451825, 0.0136367, 0.107823, 0.38519, 0.306471, 0.0787566, 0.0456549, 0.0449077, 0.00960173, 0.00336248, 0.00459538, 0.0126568, 0.0270797, 0.26377, 0.373855, 0.245594, 0.0287354, 0.0216344, 0.022591, 0.002134, 0.00195003, 0.017625, 0.0717651, 0.0958468, 0.338976, 0.29487, 0.149202, 0.018323, 0.0063258, 0.00497339, 0.00209406, 0.0415639, 0.0881364, 0.195485, 0.105181, 0.201615, 0.242057, 0.106302, 0.011288, 0.00396202, 0.00441056, 0.030792, 0.126832, 0.139772, 0.235189, 0.118803, 0.14102, 0.163159, 0.0329747, 0.00623636, 0.00522295, 0.00684215, 0.162786, 0.31607, 0.179321, 0.154614, 0.0621496, 0.0541671, 0.0485603, 0.0122589, 0.00323102, 0.0342315, 0.0462173, 0.294947, 0.349123, 0.126954, 0.0952153, 0.0204238, 0.0167801, 0.0112187, 0.00489021, 0.14657, 0.152992, 0.091428, 0.271736, 0.223219, 0.0588115, 0.0368974, 0.00713485, 0.00489247, 0.00631944, 0.0105395, 0.259289, 0.221329, 0.0802965, 0.21329, 0.158003, 0.0337621, 0.0157199, 0.00312612, 0.00464452, 0.0290375, 0.0427757, 0.332527, 0.229803, 0.100226, 0.114121, 0.109203, 0.0297401, 0.00819608, 0.00437124, 0.00815309, 0.150866, 0.0914359, 0.378546, 0.195742, 0.0638771, 0.0586888, 0.044404, 0.00377333, 0.00451452, 0.048751, 0.0336297, 0.181334, 0.0971391, 0.373616, 0.171354, 0.0393758, 0.0314522, 0.018448, 0.00489929, 0.0520459, 0.23227, 0.0493697, 0.297697, 0.0916966, 0.166631, 0.0783154, 0.0165505, 0.00929643, 0.00612719, 0.117496, 0.174462, 0.342296, 0.0433967, 0.187594, 0.0517759, 0.0511506, 0.0258879, 0.00318909, 0.00275138, 0.0901008, 0.160937, 0.272525, 0.278601, 0.0363812, 0.112922, 0.024674, 0.0145969, 0.00585359, 0.00340842, 0.00527583, 0.218316, 0.235807, 0.230302, 0.207363, 0.0407157, 0.0477692, 0.00854456, 0.00412891, 0.00177773, 0.0691984, 0.0275059, 0.287201, 0.238818, 0.195205, 0.118263, 0.0254615, 0.0291785, 0.00669062, 0.00247801), Fit = c(0.0835561, 0.229767, 0.142831, 0.188116, 0.203169, 0.0604952, 0.0377795, 0.0182488, 0.0166256, 0.0194112, 0.0395434, 0.192933, 0.355162, 0.142642, 0.113153, 0.0904507, 0.0262172, 0.0163727, 0.00790859, 0.0156175, 0.015593, 0.0973032, 0.317529, 0.374286, 0.0866851, 0.0465706, 0.035837, 0.0103874, 0.00648697, 0.00932123, 0.0278185, 0.0449021, 0.187358, 0.390438, 0.261801, 0.0398343, 0.0205177, 0.0157888, 0.00457641, 0.00696471, 0.0258808, 0.0902879, 0.0975178, 0.261743, 0.3217, 0.153182, 0.0225741, 0.0116274, 0.00894752, 0.00654037, 0.0545917, 0.0813407, 0.190002, 0.132855, 0.216834, 0.200829, 0.0932861, 0.0137474, 0.00708096, 0.00943199, 0.0541123, 0.160467, 0.160001, 0.24061, 0.0996202, 0.116388, 0.10451, 0.0485452, 0.00715401, 0.00859322, 0.02547, 0.151679, 0.30076, 0.191501, 0.163798, 0.0445425, 0.0498912, 0.0447994, 0.0208095, 0.00675029, 0.0608188, 0.0686576, 0.273297, 0.3448, 0.12257, 0.0659078, 0.0170778, 0.0191285, 0.0171763, 0.0105666, 0.077193, 0.164029, 0.123777, 0.313623, 0.22139, 0.049738, 0.0255035, 0.00660837, 0.00740193, 0.0107354, 0.0274876, 0.194775, 0.277101, 0.135255, 0.207557, 0.109586, 0.0239959, 0.0123041, 0.00318819, 0.00875031, 0.0504747, 0.0665303, 0.315808, 0.292262, 0.088683, 0.106719, 0.0552168, 0.0120908, 0.00619962, 0.00601543, 0.0148537, 0.133942, 0.118284, 0.365696, 0.211599, 0.0508534, 0.0600361, 0.0310628, 0.00680178, 0.00687172, 0.0622297, 0.04126, 0.249313, 0.143642, 0.279793, 0.1299, 0.0306708, 0.0362091, 0.0187347, 0.00824681, 0.0622535, 0.17141, 0.0761208, 0.298711, 0.106188, 0.160061, 0.0727143, 0.0171686, 0.0202688, 0.0151035, 0.0629793, 0.161967, 0.298517, 0.0855658, 0.201307, 0.0524982, 0.0769491, 0.0349572, 0.00825378, 0.0170052, 0.0733498, 0.148845, 0.256165, 0.303936, 0.0515754, 0.0868244, 0.0219511, 0.0321747, 0.0146167, 0.0105616, 0.0174999, 0.181477, 0.24639, 0.272421, 0.189458, 0.0225419, 0.0366954, 0.00927738, 0.0135983, 0.0106413, 0.0588922, 0.0441024, 0.306234, 0.269207, 0.18112, 0.0950447, 0.0110333, 0.0179608, 0.00454088, 0.0118643)), row.names = c(NA, -190L), class = "data.frame")), call = quote(importCol(res.file = "~/r/library/scape/example/cod.res", Dev = TRUE, Survey = TRUE, CAc = TRUE, CAs = TRUE)), class = "scape")
library(testthat) library(RBesT) cat("TEST RUN DATE:", date(), "\n") cat("TESTING PACKAGE:\n") print(packageDescription("RBesT")) Sys.setenv(NOT_CRAN="true") cat("RUNNING PACKAGE TESTS:\n") for(test in c("gMAP", "EM", "oc1S", "oc2S", "mixdist", "mixdiff", "preddist", "postmix", "utils", "pos1S", "pos2S")) { test_package("RBesT", filter=test, reporter="tap") } test_package("RBesT", reporter="stop") cat("\n\nR SESSION INFO:\n") print(sessionInfo()) cat("\nTEST FINISH DATE:", date(), "\n") cat("\n\nALL TESTS SUCCESSFUL\n")
context("lapply") test_that("eply and evals can be passed to functions like lapply", { e <- split(example.expr(), f = seq_len(nrow(example.expr()))) expect_silent(o <- lapply(e, eply, .fun = example.fun, .with = example.with() )) expect_silent(o <- lapply(c("1+1", "a+2"), evals, .with = list(a = 1))) })
print.robustlm <- function(x, ...){ out <- list( beta = x[["beta"]], alpha = x[["alpha"]], gamma = x[["gamma"]], weight = x[["weight"]], loss = x[["loss"]] ) print(out) }
foo <- function (x, ...) 123
plotgaps <- function(X, code.type = .code.type[1], main = "Gaps Plot", xlab = "Sites", ylab = "Proportion", ...){ if(sum(code.type %in% .code.type) != 1){ stop("The code.type is not found.") } if(code.type == .code.type[1]){ GAP <- .nucleotide$nid[.nucleotide$code == "-"] } else if(code.type == .code.type[2]){ GAP <- .snp$sid[.snp$code == "-"] } else{ stop("code.type is not implemented.") } my.col <- "gray" N <- nrow(X) L <- ncol(X) xlim <- c(1, L) ylim <- c(0, 1) prop <- colSums(X == GAP) / N plot(1:L, prop, type = "l", xlim = xlim, ylim = ylim, col = my.col, main = main, xlab = xlab, ylab = ylab) }
setConstructorS3("AffymetrixTsvFile", function(...) { this <- extend(AffymetrixFile(...), "AffymetrixTsvFile", "cached:.cdf" = NULL, "cached:.data" = NULL ) if (isFile(this)) verify(this) this }) setMethodS3("getChipType", "AffymetrixTsvFile", function(this, ...) { getName(this) }) setMethodS3("getDefaultExtension", "AffymetrixTsvFile", function(static, ...) { "tsv" }, static=TRUE, protected=TRUE) setMethodS3("getExtensionPattern", "AffymetrixTsvFile", function(static, ...) { ext <- getDefaultExtension(static, ...) pattern <- sprintf("[.](%s|%s)$", tolower(ext), toupper(ext)) pattern }, static=TRUE, protected=TRUE) setMethodS3("findByChipType", "AffymetrixTsvFile", function(static, chipType, ...) { pattern <- sprintf("^%s%s", chipType, getExtensionPattern(static)) pathname <- findAnnotationDataByChipType(chipType, pattern) pathname }, static=TRUE, protected=TRUE) setMethodS3("byChipType", "AffymetrixTsvFile", function(static, chipType, ...) { pathname <- findByChipType(static, chipType, ...) if (is.null(pathname)) throw("Failed to located Affymetrix TSV file: ", chipType) newInstance(static, pathname) }) setMethodS3("verify", "AffymetrixTsvFile", function(this, ...) { tryCatch({ df <- readDataFrame(this, nrows=10) }, error = function(ex) { throw("File format error of the Affymetrix TSV file: ", getPathname(this)) }) invisible(TRUE) }, private=TRUE) setMethodS3("getData", "AffymetrixTsvFile", function(this, force=FALSE, ...) { data <- this$.data if (force || is.null(data)) { data <- readDataFrame(this, ...) this$.data <- data } data }) setMethodS3("readDataFrame", "AffymetrixTsvFile", function(this, ..., verbose=FALSE) { pathname <- getPathname(this) colClasses <- c( "probeset_id"="character", "chr"="character", "snp_pos"="integer", "len"="integer", "GC"="double", "gc_count"="integer" ) df <- readTable(pathname, colClasses=colClasses, header=TRUE, sep="\t", ...) names <- colnames(df) names <- gsub("probeset_id", "unit", names) names <- gsub("chr", "chromosome", names) names <- gsub("GC", "gc", names) names <- gsub("snp_pos", "physical position", names) names <- gsub("_", " ", names) names <- toCamelCase(names) colnames(df) <- names df[["gc"]] <- df[["gc"]]/100 chr <- df[["chromosome"]] chr[chr == "X"] <- 23 chr[chr == "Y"] <- 24 suppressWarnings({ chr <- as.integer(chr) }) df[["chromosome"]] <- chr chr <- NULL df <- unique(df) gc() unf <- getUnitNamesFile(this) unitNames <- getUnitNames(unf) units <- match(df[["unit"]], unitNames) if (any(is.na(units))) { throw("File format error: Identified units that do not exist in the annotation unit names file: ", getChipType(unf)) } df[["unit"]] <- units o <- order(units) df <- df[o,] df }) setMethodS3("getField", "AffymetrixTsvFile", function(this, units=NULL, field, ...) { if (is.null(units)) { unf <- getUnitNamesFile(this) units <- seq_len(nbrOfUnits(unf)) } data <- getData(this, ...) if (!field %in% colnames(data)) throw("No such field: ", field) idxs <- match(units, data$unit) data[[field]][idxs] }) setMethodS3("getPosition", "AffymetrixTsvFile", function(this, ...) { getField(this, field="physicalPosition", ...) }) setMethodS3("getFragmentLengths", "AffymetrixTsvFile", function(this, ...) { getField(this, field="len", ...) }) setMethodS3("getGc", "AffymetrixTsvFile", function(this, ...) { getField(this, field="gc", ...) }) setMethodS3("getCdf", "AffymetrixTsvFile", function(this, ...) { cdf <- this$.cdf if (is.null(cdf)) { chipType <- getChipType(this) cdf <- AffymetrixCdfFile$byChipType(chipType) this$.cdf <- cdf } cdf })