code
stringlengths
1
13.8M
QLMDe <- function( x, distname = c('norm', 'GH'), K, data.name = deparse1(substitute(x)), constraint = character(), p = QLMDp(obs = x), init = clust_fmx(x, distname = distname, K = K, constraint = constraint), tol = .Machine$double.eps^.25, maxiter = 1000, ... ) { distname <- match.arg(distname) if (length(K) != 1L || !is.numeric(K) || is.na(K) || K <= 0L) stop('number of component must be length-1 positive integer') if (!is.integer(K)) stop('number of component must be length-1 positive integer (e.g., use integer `2L` instead of numeric/double `2` for 2-component mixture model)') if (!is.vector(x, mode = 'double')) stop('x must be double vector') if (anyNA(x)) stop('do not allow NA_real_ in observations `x`') if (!is.character(data.name) || length(data.name) != 1L || anyNA(data.name) || !nzchar(data.name)) stop('data.name must be length-1 character') interval <- c(min(x), max(x)) if (anyNA(p)) stop('do not allow NA_real_ in `p`') p <- sort.int(unique_allequal(p)) if (!inherits(init, what = 'fmx')) stop('`init` must be \'fmx\' object (e.g., a returned object from ?clust_fmx)') if (init@distname != distname || dim(init@parM)[1L] != K) stop('`init` is not a ', distname, '-', K, ' fit.') q_init <- qfmx(p = p, interval = interval, distname = distname, K = K, parM = init@parM, w = init@w) if (any(id1 <- is.infinite(q_init))) { if (all(id1)) stop('starting values too far away?') p <- p[!id1] } q_obs <- quantile(x, probs = p) x_kern <- density.default(x) x_epdf <- approxfun(x = x_kern$x, y = x_kern$y) d_obs <- x_epdf(q_obs) if (anyNA(d_obs)) stop('do not allow NA_real_ empirical density') tol <- sqrt(sqrt(.Machine$double.eps)) if (all(d0 <- (abs(d_obs) < tol))) stop('must have at least one positive density') if (any(d0)) { p <- p[!d0] d_obs <- d_obs[!d0] q_obs <- q_obs[!d0] } npar <- K * switch(distname, norm = 2L, GH = 4L) + (K - 1L) if (length(p) < npar) { stop('Using ', length(p), ' matching-quantiles to estimate a mixture distribution with ', npar, ' independent parameters. ', 'Try increasing `p` (see ?QLMDp for detail).') } qvv <- quantile_vcov(p = p, d = d_obs) qvv_inv <- chol2inv(chol.default(qvv)) parRun <- fmx2dbl(init) id_constr <- fmx_constraint_user(distname = distname, K = K, user = constraint) has_constr <- (length(id_constr) > 0L) par_init <- if (has_constr) parRun[-id_constr] else parRun if (any(is.infinite(par_init))) { par_init[(par_init < 0) & is.infinite(par_init)] <- -5 if (any((par_init > 0) & is.infinite(par_init))) stop('+Inf parameter indicates ???') } max_return <- .Machine$double.xmax fn <- if (K == 1L) { switch(distname, norm = function(x) { q <- qnorm(p, mean = x[1L], sd = exp(x[2L]), lower.tail = TRUE, log.p = FALSE) if (any(is.infinite(q))) stop('1-comp normal, infinite `q` should not be returned from any `p` between 0 to 1, see `qnorm(.Machine$double.eps)`') return(mahalanobis_int(x = q, center = q_obs, invcov = qvv_inv)) }, GH = function(x) { if (has_constr) parRun[-id_constr] <- x else parRun <- x q <- qGH(p, A = parRun[1L], B = exp(parRun[2L]), g = parRun[3L], h = exp(parRun[4L]), lower.tail = TRUE, log.p = FALSE) if (any(is.infinite(q))) return(max_return) return(mahalanobis_int(x = q, center = q_obs, invcov = qvv_inv)) }) } else { Kseq <- seq_len(K) Kseq1 <- seq_len(K - 1L) switch(distname, norm = { id_w <- 2L*K + Kseq1 function(x) { .pM <- array(x[seq_len(2L*K)], dim = c(K, 2L)) t_w <- t.default(pmlogis_first(x[id_w])) sdinv <- 1 / exp(.pM[,2L]) eff <- cumsum(c(.pM[1L,1L], exp(.pM[2:K,1L]))) * sdinv q <- vuniroot2(y = p, f = function(q) { z <- tcrossprod(sdinv, q) - eff c(t_w %*% pnorm(z)) }, interval = interval) if (any(is.infinite(q))) return(max_return) return(mahalanobis_int(x = q, center = q_obs, invcov = qvv_inv)) } }, GH = { id_w <- 4L*K + Kseq1 function(x) { if (has_constr) parRun[-id_constr] <- x else parRun <- x .pM <- array(parRun[seq_len(4L*K)], dim = c(K, 4L)) t_w <- t.default(pmlogis_first(parRun[id_w])) g <- .pM[,3L] h <- exp(.pM[,4L]) sdinv <- 1 / exp(.pM[,2L]) eff <- cumsum(c(.pM[1L,1L], exp(.pM[2:K,1L]))) * sdinv q <- vuniroot2(y = p, f = function(q) { z <- q0 <- tcrossprod(sdinv, q) - eff for (i in Kseq) z[i,] <- .qGH2z(q0 = q0[i,], g = g[i], h = h[i], tol = tol, maxiter = maxiter) c(t_w %*% pnorm(z)) }, interval = interval, tol = tol, maxiter = maxiter) if (any(is.infinite(q))) return(max_return) return(mahalanobis_int(x = q, center = q_obs, invcov = qvv_inv)) } }) } y <- optim(par = par_init, fn = fn, ...) if (has_constr) parRun[-id_constr] <- y$par else parRun <- y$par ret <- dbl2fmx(x = parRun, K = K, distname = distname) new( Class = 'fmx_QLMDe', data = x, data.name = data.name, distname = distname, parM = ret$parM, w = ret$w, quantile_vv = qvv, epdf = x_epdf, p = p, init = init, optim = y ) } npar_fmx <- function(x) { dm <- dim(x@parM) (dm[2L] + 1L) * dm[1L] - 1L - length(attr(fmx_constraint(x), which = 'user', exact = TRUE)) } print.fmx_QLMDe <- function(x, ...) { parM <- x@parM K <- dim(parM)[1L] dimnames(parM)[[1L]] <- paste0(seq_len(K), '-comp.') parM[] <- sprintf(fmt = '%.2f', parM) obj <- if (K == 1L) parM else cbind(parM, w = sprintf(fmt = '%.1f%%', x@w*1e2)) heading <- paste0(K, '-Component Mixture of ', switch(x@distname, norm = 'Normal', GH = 'Tukey\'s G-&-H'), ' Distribution') ci <- confint.fmx_QLMDe(x, parm = 'user') id_constr <- fmx_constraint(x) if (length(ci) && !anyNA(ci)) { ci0 <- sprintf(fmt = '(%.2f~%.2f)', ci[,1L], ci[,2L]) if (length(id_constr)) { obj[id_constr] <- '.' obj[-id_constr] <- paste(obj[-id_constr], ci0) } else obj[] <- paste(obj, ci0) heading <- paste0(heading, ' (w. 95% Confidence Intervals)') } else heading <- paste0('Malformed ', heading) cat('\n ', heading, '\n\n', sep = '') print.default(obj, quote = FALSE) if (length(id_constr)) cat('\nwhere ', sQuote('.'), ' denotes an enforced constraint\n', sep = '') cat('\n') if (inherits(aod <- attr(x, which = 'anova', exact = TRUE), what = 'anova')) { print(aod) cat('\n') } print(autoplot.fmx_QLMDe(x)) cat('\n') return(invisible(x)) } fmx2dbl <- function(x, distname = x@distname, parM = x@parM, K = dim(parM)[1L], w = x@w, ...) { w_val <- qmlogis_first(w) if (!all(is.finite(w_val))) stop('NA or Inf in proportion indicated degenerated mixture (one or more component has 0% mixture proportion)') w_nm <- if (K == 1L) character() else paste0('logit', 2:K) parM[, id] <- log(parM[, (id <- transLog(distname))]) argnm <- switch(distname, norm = c('mean', 'sdlog'), GH = c('A', 'Blog', 'g', 'hlog'), stop('write more')) if (K > 1L) { parM[2:K, 1L] <- log(parM[2:K, 1L] - parM[1:(K-1L), 1L]) locnm <- c(paste0(argnm[1L], 1L), paste0('log\u0394', seq_len(K)[-1L])) } else locnm <- paste0(argnm[1L], seq_len(K)) out <- c(parM, w_val) names(out) <- c(locnm, paste0(rep(argnm[-1L], each = K), seq_len(K)), w_nm) return(out) } dbl2fmx <- function(x, K, distname, argnm = dist_anm(distname), ...) { nx <- length(x) n_dist <- nx - (K - 1L) w <- if (K == 1L) 1 else unname(pmlogis_first(x[(n_dist + 1L):nx])) .pM <- array(x[seq_len(n_dist)], dim = c(K, n_dist/K), dimnames = list(NULL, argnm)) .pM[,id] <- exp(.pM[, (id <- transLog(distname)), drop = FALSE]) if (K > 1L) .pM[,1L] <- cumsum(c(.pM[1L,1L], exp(.pM[2:K,1L]))) list(parM = .pM, w = w) } transLog <- function(distname) { switch(distname, norm = { 2L }, GH = { c(2L, 4L) }, stop('distribution', sQuote(distname), 'not supported yet')) } quantile_vcov <- function(p, d) { if (anyNA(p) || anyNA(d)) stop('no NA allowed in probability nor density') if ((n <- length(p)) != length(d)) stop('p and d must match in length') fs <- tcrossprod(d, d) p_c <- array(p, dim = c(n,n)) p_r <- t.default(p_c) p_min <- pmin.int(p_r, p_c) p_max <- pmax.int(p_r, p_c) vv <- p_min * (1 - p_max) / fs return(vv) } qfmx_gr <- function( dist, p = stop('must provide `p`'), distname = dist@distname, parM = dist@parM, K = dim(parM)[1L], w = dist@w, interval = qfmx_interval(distname = distname, parM = parM, K = K, w = w, p = c(1e-5, 1-1e-5)), ... ) { x_skeleton <- fmx2dbl(distname = distname, parM = parM, K = K, w = w) has_constr <- (length(id_constr <- fmx_constraint(distname = distname, K = K, parM = parM)) > 0L) x_dbl <- if (has_constr) x_skeleton[-id_constr] else x_skeleton x_nm <- names(x_dbl) if (any(is.infinite(x_dbl))) stop('wont happen since implementation of constraint') if (!is.numeric(interval) || length(interval) != 2L || !all(is.finite(interval))) stop('`interval` must not contain NA nor Inf') x_sbl <- lapply(x_nm, FUN = as.symbol) qfmx_fn <- as.function.default(c(setNames(rep(x = alist(. = ), times = length(x_nm)), nm = x_nm), as.call(c( quote(`{`), quote(x <- x_skeleton), if (has_constr) { as.call(c(quote(`<-`), quote(x[-id_constr]), as.call(c(quote(c), x_sbl)))) } else as.call(c(quote(`<-`), quote(x), as.call(c(quote(c), x_sbl)))), quote(fx <- dbl2fmx(x = x, distname = distname, K = K, argnm = NULL)), quote(qfmx(p = p, parM = fx$parM, w = fx$w, interval = interval, distname = distname, K = K)) )))) ret <- tryCatch(expr = { attr(numericDeriv( expr = as.call(c(quote(qfmx_fn), x_sbl)), theta = x_nm, central = TRUE, rho = list2env(as.list.default(x_dbl), parent = environment())), which = 'gradient', exact = TRUE) }, error = function(e) { cat('stats::numericDeriv in `qfmx_gr` error.\n') array(NA_real_, dim = c(length(p), length(x_nm))) }) dimnames(ret)[[2L]] <- x_nm return(ret) } vcov.fmx_QLMDe <- function(object, parm = c('user', 'internal'), ...) { parm <- match.arg(parm) distname <- object@distname parM <- object@parM K <- dim(parM)[1L] w <- object@w x <- object@data n <- length(x) interval <- c(min(x), max(x)) p <- object@p q <- qfmx(p, distname = distname, K = K, parM = parM, w = w, interval = interval, lower.tail = TRUE, log.p = FALSE) d <- dfmx(q, distname = distname, K = K, parM = parM, w = w, log = FALSE) tol <- sqrt(sqrt(.Machine$double.eps)) if (all(d0 <- (abs(d) < tol))) { cat('malformed estimates with all-0 densities\n') return(invisible()) } if (any(d0)) { p <- p[!d0] q <- q[!d0] d <- d[!d0] } .meat <- quantile_vcov(p = p, d = d) q_gr <- qfmx_gr(p = p, distname = distname, K = K, parM = parM, w = w) int_nm <- dimnames(q_gr)[[2L]] if (all(is.na(q_gr))) { int_dim <- dim(q_gr)[2L] int_vv <- array(NA_real_, dim = c(int_dim, int_dim), dimnames = list(int_nm, int_nm)) } else { .bread <- crossprod_inv(q_gr) %*% t.default(q_gr) int_vv <- .bread %*% tcrossprod(.meat, .bread) / n if (anyNA(int_vv)) { stop('do not allow NA in `int_vv`') } if (any(diag(int_vv) < 0)) stop('diagonal terms of VarCov < 0 ?!') dimnames(int_vv) <- list(int_nm, int_nm) } if (parm == 'internal') return(int_vv) int_p <- fmx2dbl(object) anm <- dist_anm(distname) n_anm <- length(anm) user_nm <- c(t.default(outer(c(anm, if (K > 1L) 'w'), 1:K, FUN = paste0))) jacob <- array(0, dim = c(length(int_p), length(user_nm)), dimnames = list(names(int_p), user_nm)) jacob[1L, 1:K] <- 1 if (K > 1L) { for (k in 2:K) jacob[k, k:K] <- exp(int_p[k]) id_pi <- (n_anm*K+1L):((n_anm+1L)*K-1L) e_pi <- exp(int_p[id_pi]) sum_pi <- sum(1 + e_pi)^2 jacob[id_pi, n_anm*K+1L] <- - e_pi / sum_pi jacob[id_pi, id_pi+1L] <- - tcrossprod(e_pi) / sum_pi } switch(distname, norm = { id_exp <- (K+1L):(2*K) id_identity <- id_constr <- NULL }, GH = { id_exp <- c((K+1L):(2*K), (3*K+1L):(4*K)) id_identity <- (2*K+1L):(3*K) id_constr <- fmx_constraint(object) }) if (length(id_exp)) jacob[cbind(id_exp, id_exp)] <- exp(int_p[id_exp]) if (length(id_identity)) jacob[cbind(id_identity, id_identity)] <- 1 jacob_free <- if (length(id_constr)) jacob[int_nm, -id_constr] else jacob return(t.default(jacob_free) %*% int_vv %*% jacob_free) } coef.fmx <- function(object, parm = c('user', 'internal'), ...) { anm <- dist_anm(object@distname) K <- dim(object@parM)[1L] cf0 <- switch(match.arg(parm), internal = fmx2dbl(object), user = { if (K > 1L) { setNames(c(object@parM, object@w), nm = c(t.default(outer(c(anm, 'w'), 1:K, FUN = paste0)))) } else setNames(c(object@parM), nm = c(t.default(outer(anm, 1:K, FUN = paste0)))) }) if (!length(id_constr <- fmx_constraint(object))) return(cf0) return(cf0[-id_constr]) } confint.fmx_QLMDe <- function(object, parm = c('internal', 'user'), level = .95, ...) { parm <- match.arg(parm) cf <- coef.fmx(object, parm = parm) if (!length(vv <- vcov.fmx_QLMDe(object, parm = parm))) return(invisible()) ses <- sqrt(diag(vv)) p1 <- (1 - level) / 2 p <- c(p1, 1 - p1) ret <- cf + ses %*% t.default(qnorm(p)) dimnames(ret) <- list(names(cf), sprintf('%.1f%%', 1e2*p)) return(ret) } logLik.fmx_QLMDe <- function(object, ...) { if (nobjF <- length(objF <- attr(object, which = 'objF', exact = TRUE))) { if (inherits(objF[[nobjF]], what = 'logLik')) return(objF[[nobjF]]) } logd <- dfmx(x = object@data, dist = object, log = TRUE, ...) if (!all(is.finite(logd))) { } out <- sum(logd) attr(out, 'logl') <- logd attr(out, 'nobs') <- length(object@data) attr(out, 'npar') <- npar_fmx(object) attr(out, 'df') <- attr(out, which = 'nobs', exact = TRUE) - attr(out, which = 'npar', exact = TRUE) class(out) <- 'logLik' return(out) } nobs.fmx_QLMDe <- function(object, ...) length(object@data)
footeValues <- function( p, q, r, PA_n = 0, PB_1 = 0, p_cont = TRUE, q_cont = TRUE, Nb = 1 ){ if (length(p) != length(q)){stop("p is not same length as q!")} if (length(p) != length(r)){stop("p is not same length as r!")} if (length(r) != length(q)){stop("q is not same length as r!")} n <- length(p) if(q_cont){ Nbt <- Nb*exp(-q) }else{ Nbt <- Nb*(1-q) } if(q_cont){ NbL <- Nb*(1-exp(-q)) }else{ NbL <- Nb*q } if(p_cont){ if(q_cont){ NFt <- Nb*exp(p-q)*(1-exp(-p)) }else{ NFt <- Nb*exp(p)*(1-q)*(1-exp(-p)) } }else{ if(q_cont){ NFt <- Nb*p*exp(-q) }else{ NFt <- Nb*p*(1-q) } } NFL <- numeric() if(p_cont){ if(q_cont){ for(i in 1:n){ if(p[i] == q[i]){ NFL[i] <- Nb*(exp(-q[i])+p[i]-1) }else{ NFL[i] <- Nb*(((q[i]*exp(p[i]-q[i]))+((p[i]-q[i])*exp(-q[i]))-p[i])/(p[i]-q[i])) } } }else{ NFL <- Nb*q*(exp(p)-1) } }else{ if(q_cont){ NFL <- Nb*p*(1-exp(-q)) }else{ NFL <- Nb*p*q } } PD_bt <- 1-exp(-r) if(q_cont){ PD_bL <- (((r+q*exp(-(q+r)))/(q+r))-exp(-q))/(1-exp(-q)) }else{ PD_bL <- 1-exp(-r) } if(p_cont){ PD_Ft <- (((r+p*exp(-(p+r)))/(p+r))-exp(-p))/(1-exp(-p)) }else{ PD_Ft <- 1-exp(-r) } if(p_cont){ if(q_cont){ PD_FL <- numeric() for(i in 1:n){ if(p[i] == q[i]){ PD_FL[i] <- (Nb*p[i]/NFL[i])*((r[i]/(p[i]+r[i]))-((1-exp(-p[i]))/p[i]) +(p[i]*(1-exp(-(p[i]+r[i])))/((p[i]+r[i])^2))) }else{ PD_FL[i] <- (Nb/NFL[i])*(((p[i]*r[i]*(exp(p[i]-q[i])-1))/((q[i]+r[i])*(p[i]-q[i]))) +((p[i]*q[i]*exp(-(q[i]+r[i]))*(exp(p[i]+r[i])-1))/((p[i]+r[i])*(q[i]+r[i]))) -(exp(-q[i])*(exp(p[i])-1))) } } }else{ PD_FL <- (-((p*(-exp(-r))-(exp(p)*r)+p+r)/((exp(p)-1)*(p+r)))) } }else{ if(q_cont){ PD_FL <- (-((q*(-exp(-r))-(exp(q)*r)+q+r)/((exp(q)-1)*(q+r)))) }else{ PD_FL <- 1-exp(-r) } } PA <- numeric() PA[n] <- PA_n for(i in 1:(n-1)){ if(q_cont){ PA_i <- 0 for(k in (i+1):n){ if((i+1) <= (k-1)){m <- (i+1):(k-1)}else{m <- NA} PA_i <- PA_i+ifelse(is.na(m[1]),1,exp(-sum(q[m])))*(1-exp(-q[k]))*(1-( ifelse(is.na(m[1]),1,exp(-sum(r[m])))*(1-PD_bL[k]))) } PA[i] <- PA_i+(exp(-sum(q[(i+1):n])))*(1-exp(-sum(r[(i+1):n]))*(1-PA[n])) }else{ PA_i <- 0 for(k in (i+1):n){ if((i+1) <= (k-1)){m <- (i+1):(k-1)}else{m <- NA} PA_i <- PA_i+ifelse(is.na(m[1]),1,prod(1-q[m]))*q[k]*(1-( ifelse(is.na(m[1]),1,exp(-sum(r[m])))*(1-PD_bL[k]))) } PA[i] <- PA_i+(prod(1-q[(i+1):n])*(1-exp(-sum(r[(i+1):n]))*(1-PA[n]))) } } PB <- numeric() PB[1] <- PB_1 for(i in 2:n){ if(p_cont){ PB_i <- 0 for(k in 1:(i-1)){ if((k+1) <= (i-1)){m <- (k+1):(i-1)}else{m <- NA} PB_i <- PB_i+((ifelse(is.na(m[1]),1,exp(-sum(p[m])))*(1-exp(-p[k])))*(1- ifelse(is.na(m[1]),1,exp(-sum(r[m])))*(1-PD_Ft[k]))) } PB[i] <- PB_i+(exp(-sum(p[1:(i-1)])))*(1-exp(-sum(r[1:(i-1)]))*(1-PB[1])) }else{ PB_i <- 0 for(k in 1:(i-1)){ if((k+1) <= (i-1)){m <- (k+1):(i-1)}else{m <- NA} PB_i <- PB_i+((ifelse(is.na(m[1]),1,prod(1/(1+p[m])))*(p[k]/(1+p[k])))*(1- ifelse(is.na(m[1]),1,exp(-sum(r[m])))*(1-PD_Ft[k]))) } PB[i] <- PB_i+(prod(1/(1+p[1:(i-1)]))*(1-exp(-sum(r[1:(i-1)]))*(1-PB[1]))) } } Xbt <- Nbt*PB*PA XbL <- NbL*PB*PD_bL+Nbt*PB*PD_bt*(1-PA) XFt <- NFt*PA*PD_Ft+Nbt*PA*PD_bt*(1-PB) XFL <- (NFL*PD_FL)+(NbL*(1-PB)*PD_bL)+(NFt*(1-PA)*PD_Ft)+(Nbt*(1-PB)*PD_bt*(1-PA)) res <- data.frame(cbind(Nb = rep(Nb,n),Nbt,NbL,NFt,NFL,PD_bt,PD_bL,PD_Ft,PD_FL,PA,PB,Xbt,XbL,XFt,XFL)) return(res) }
ind_clus_kml<- function(AID, cn, locs, cs, centroid_calc= "mean", overwrite= TRUE, dir= NULL){ store_dir<-getwd() on.exit(setwd(store_dir)) if(AID %in% cs$AID == FALSE){stop(paste("AID", AID, "not found", sep=" "))} if(length(cn)!=1){stop("'ind_clus_kml()' only accepts individual clusters")} if(cn %in% cs[which(cs$AID == AID), "clus_ID"] == FALSE){stop(paste("Cluster", cn, "does not exist for", AID, sep=" "))} if((!is.na(centroid_calc) && !is.null(centroid_calc) && (centroid_calc == "mean" | centroid_calc == "median"))==FALSE){stop("'centroid_calc' argument must = 'median' or 'mean'")} if((!is.na(overwrite) && !is.null(overwrite) && (overwrite == TRUE | overwrite == FALSE))==FALSE){stop("'overwrite' argument must = 1/T/TRUE or 0/F/FALSE")} ind_clus<-locs[which(locs$AID == AID & locs$clus_ID == cn),] ind_clus<-ind_clus[which(!is.na(ind_clus$Lat)),] ind_clus$AID2<-"" ind_clus<-ind_clus[,c("AID2", "AID", "clus_ID", "TelemDate", "Long", "Lat")] clus_g_c<-cs[which(cs$AID == AID & cs$clus_ID==cn),] if(centroid_calc=="median"){ spgeo<-sp::SpatialPointsDataFrame(matrix(c(clus_g_c$g_med_Long, clus_g_c$g_med_Lat), ncol=2), clus_g_c, proj4string=sp::CRS("+proj=longlat +datum=WGS84")) } else { spgeo<-sp::SpatialPointsDataFrame(matrix(c(clus_g_c$g_c_Long, clus_g_c$g_c_Lat), ncol=2), clus_g_c, proj4string=sp::CRS("+proj=longlat +datum=WGS84")) } aa<-ind_clus[1,] aa$AID2<-"Centroid" aa$TelemDate<-ind_clus$TelemDate[nrow(ind_clus)]+25200 aa$Lat<-spgeo$coords.x2 aa$Long<-spgeo$coords.x1 ind_clus<-rbind(ind_clus, aa) if(overwrite==TRUE){ f_name<-"ind.kml" setwd(tempdir()) } else { f_name<-paste(AID, "_", cn, ".kml", sep="") setwd(dir) } sp<- sp::SpatialPoints(ind_clus[,c("Long","Lat")]) sp::proj4string(sp) <- sp::CRS("+proj=longlat +datum=WGS84") ST<- spacetime::STIDF(sp=sp,time=ind_clus$TelemDate, data=ind_clus) ind_clus[which(ind_clus$AID2 == "Centroid"), "TelemDate"]<- NA plotKML::plotKML(obj=ST, folder.name=paste(AID, "_", cn, sep="") , file.name=f_name, size= .45, colour=, points_names= paste(ind_clus$AID2,ind_clus$AID,ind_clus$clus_ID,ind_clus$TelemDate,sep=" "), metadata=NULL, open.kml=TRUE, LabelScale=0.6) rm(spgeo, sp, ST, aa, ind_clus, f_name, clus_g_c) }
GB <- 1024 * 1024 * 1024 solve_m_mem_lim <- function( n, m = NA, mat_m_n = 0, mat_n_n = 0, vec_m = 0, vec_n = 0, mem = NA, mem_factor = 0.7 ) { if (missing(n)) stop('`n` is required!') if (n <= 0) stop('`n` must be positive! Passed ', n) if (!is.na(m) && m <= 0) stop('`m` must be positive! Passed ', m) if (mat_m_n < 0) stop('`mat_m_n` must be non-negative! Passed ', mat_m_n) if (mat_n_n < 0) stop('`mat_n_n` must be non-negative! Passed ', mat_n_n) if (vec_m < 0) stop('`vec_m` must be non-negative! Passed ', vec_m) if (vec_n < 0) stop('`vec_n` must be non-negative! Passed ', vec_n) if (is.na(mem)) { mem <- get_mem_lim(factor = mem_factor) } else { if (mem <= 0) stop('`mem` must be positive! Passed ', mem) mem <- mem * GB } if (mat_m_n == 0 && vec_m == 0) stop('At least one of `mat_m_n` or `vec_m` must be non-zero! (there is no `m` to solve for otherwise)') mo8 <- 27 ao8 <- 6 n <- n + 0.0 m_chunk <- ( + mem / 8 - mat_m_n * mo8 - vec_m * ao8 - mat_n_n * (n * n + mo8) - vec_n * (n + ao8) ) / ( + mat_m_n * n + vec_m ) if (m_chunk < 0) stop('The resulting `m_chunk` was negative! This is because either `mat_n_n` or `vec_n` are non-zero and `n` alone is too large for the available memory (even for `m_chunk == 0`). The solution is to free more memory (ideal) or to reduce `n` if possible.') if (!is.na(m)) { if (m < m_chunk) { m_chunk <- m } else { m_chunk <- ceiling( m / ceiling( m / m_chunk ) ) } } else { m_chunk <- floor( m_chunk ) } mem_chunk <- ( + mat_m_n * (m_chunk * n + mo8) + mat_n_n * (n * n + mo8) + vec_m * (m_chunk + ao8) + vec_n * (n + ao8) ) * 8 return( list( m_chunk = m_chunk, mem_chunk = mem_chunk, mem_lim = mem ) ) }
get_captions <- function (id = NULL, lang = "en", format = "sbv", as_raw = TRUE, ...) { if ( !is.character(id)) { stop("Must specify a valid id.") } querylist <- list(tlang = lang, tfmt = format) raw_res <- tuber_GET(paste0("captions", "/", id), query = querylist, ...) if (!as_raw) { raw_res <- rawToChar(raw_res) raw_res <- strsplit(raw_res, split = "\n")[[1]] } raw_res }
rmd_b_heading_1 <- function() { row_ind <- rs_get_ind_first_selected_row() rs_insert_at_row_start(row_ind, "\n } rmd_b_heading_2 <- function() { row_ind <- rs_get_ind_first_selected_row() rs_insert_at_row_start(row_ind, "\n } rmd_b_heading_3 <- function() { row_ind <- rs_get_ind_first_selected_row() rs_insert_at_row_start(row_ind, "\n } rmd_b_heading_4 <- function() { row_ind <- rs_get_ind_first_selected_row() rs_insert_at_row_start(row_ind, "\n } rmd_b_heading_5 <- function() { row_ind <- rs_get_ind_first_selected_row() rs_insert_at_row_start(row_ind, "\n } rmd_b_heading_6 <- function() { row_ind <- rs_get_ind_first_selected_row() rs_insert_at_row_start(row_ind, "\n } rmd_b_heading_1_title <- function() { text <- repeat_symbol("=", 60) rs_enclose_first_row_with_lines("\n", below = text) } rmd_b_heading_2_subtitle <- function() { text <- repeat_symbol("-", 60) rs_enclose_first_row_with_lines("\n", below = text) }
context("Estimate Win Probability") test_that("estimate_win_prob returns tibble with correct values", { input_df <- tibble::tibble( option_name = c("A", "B", "C"), sum_clicks = c(1000, 1000, 1000), sum_conversions = c(100, 120, 110) ) output <- estimate_win_prob(input_df, "conversion_rate") all_option_names <- input_df$option_name expected_column_names <- c("option_name", "win_prob_raw", "win_prob") expect_true(is.data.frame(output)) expect_true(all(expected_column_names %in% colnames(output))) expect_true(all(output$option_name %in% all_option_names)) expect_true(is.double(output$win_prob_raw)) expect_true(is.character(output$win_prob)) expect_equal(nrow(output), length(all_option_names)) }) test_that("estimate_win_prob returns tibble with correct values when win prob is 0", { input_df <- tibble::tibble( option_name = c("A", "B", "C"), sum_clicks = c(1000, 1000, 1000), sum_conversions = c(1, 120, 2) ) output <- estimate_win_prob(input_df, "conversion_rate") all_option_names <- input_df$option_name expected_column_names <- c("option_name", "win_prob_raw", "win_prob") expect_true(is.data.frame(output)) expect_true(all(expected_column_names %in% colnames(output))) expect_true(all(output$option_name %in% all_option_names)) expect_true(is.double(output$win_prob_raw)) expect_true(is.character(output$win_prob)) expect_equal(nrow(output), length(all_option_names)) })
scriptLocation <- function() system.file("chapters", package = "AppliedPredictiveModeling")
useArgonDash <- function() { if (!requireNamespace(package = "argonDash") & !requireNamespace(package = "argonR")) message("Package 'argonDash' and 'argonR' are required to run this function") deps <- findDependencies(argonDash::argonDashPage( navbar = argonDash::argonDashNavbar(), sidebar = argonDash::argonDashSidebar(id = "mysidebar"), header = argonDash::argonDashHeader(), body = argonDash::argonDashBody() )) attachDependencies(tags$div(), value = deps) }
test_that("make_docvars() works", { docvar1 <- quanteda:::make_docvars(0L, docname = character()) docvar2 <- quanteda:::make_docvars(3L, docname = c("A", "B", "C")) docvar3 <- quanteda:::make_docvars(3L, docname = 1:3) docvar4 <- quanteda:::make_docvars(10L) docvar5 <- quanteda:::make_docvars(3L, docname = c("A", "B", "B")) expect_equal(dim(docvar1), c(0, 3)) expect_equal(dim(docvar2), c(3, 3)) expect_equal(dim(docvar3), c(3, 3)) expect_equal(colnames(docvar1), c("docname_", "docid_", "segid_")) expect_equal(colnames(docvar2), c("docname_", "docid_", "segid_")) expect_equal(colnames(docvar3), c("docname_", "docid_", "segid_")) expect_equal(colnames(docvar4), c("docname_", "docid_", "segid_")) expect_equal(docvar4[["docname_"]], paste0("text", 1:10)) expect_error(quanteda:::make_docvars(n = 2, docname = c("A", "B", "C"))) expect_equal(docvar5[["docname_"]], c("A.1", "B.1", "B.2")) expect_error(quanteda:::make_docvars(n = "3")) expect_error(quanteda:::make_docvars(n = 1.4)) docvar4 <- quanteda:::make_docvars(5L, c("A", "A", "B", "B", "C")) expect_equal(docvar4[["docname_"]], c("A.1", "A.2", "B.1", "B.2", "C.1")) docvar5 <- quanteda:::make_docvars(5L, c("A", "B", "B", "A", "C")) expect_equal(docvar5[["docname_"]], c("A.1", "B.1", "B.2", "A.2", "C.1")) docvar6 <- quanteda:::make_docvars(5L, c("A", "A", "B", "B", "C"), unique = FALSE) expect_equal(docvar6[["docname_"]], c("A", "A", "B", "B", "C")) expect_equal(docvar6[["segid_"]], c(1, 1, 1, 1, 1)) }) test_that("reshape_docvars() works", { docvar1 <- data.frame("docname_" = c("doc1", "doc2"), "docid_" = factor(c("doc1", "doc2")), "segid_" = c(1, 1), stringsAsFactors = FALSE) expect_identical( quanteda:::reshape_docvars(docvar1, c(1, 2))[["docname_"]], c("doc1", "doc2") ) expect_identical( quanteda:::reshape_docvars(docvar1, c(1, 1, 2, 2))[["docname_"]], c("doc1.1", "doc1.2", "doc2.1", "doc2.2") ) docvar2 <- data.frame("docname_" = c("doc1.1", "doc1.2"), "docid_" = factor(c("doc1", "doc1")), "segid_" = c(1, 1)) expect_identical( quanteda:::reshape_docvars(docvar2, c(1, 2))[["docname_"]], c("doc1.1", "doc1.2") ) expect_identical( quanteda:::reshape_docvars(docvar2, c(1, 1, 2, 2))[["docname_"]], c("doc1.1", "doc1.2", "doc1.3", "doc1.4") ) expect_identical( quanteda:::reshape_docvars(docvar2, c(1, 1, 1, 1))[["docname_"]], c("doc1.1", "doc1.2", "doc1.3", "doc1.4") ) }) test_that("upgrade_docvars() works", { docvar1 <- data.frame() docvar2 <- data.frame("var1" = c(100, 200, 300), "var2" = c(TRUE, TRUE, FALSE)) docvar2$lis <- list(1:3, -5, 3:4) docvar3 <- data.frame("var1" = c(100, 200, 300), "var2" = c(TRUE, TRUE, FALSE), row.names = c("A", "B", "C")) docvar3$lis <- list(1:3, -5, 3:4) docvar4 <- data.frame("docname_" = c("A", "B", "C"), "docid_" = factor(c("A", "B", "C")), "segid_" = rep(1L, 3), "var1" = c(100, 200, 300), "var2" = c(TRUE, TRUE, FALSE), stringsAsFactors = FALSE) docvar4$lis <- list(1:3, -5, 3:4) expect_identical( quanteda:::upgrade_docvars(docvar1, c("A", "B", "C")), docvar4[, 1:3] ) expect_identical( quanteda:::upgrade_docvars(docvar3), docvar4 ) expect_identical( quanteda:::upgrade_docvars(docvar2, c("A", "B", "C")), docvar4 ) expect_identical( quanteda:::upgrade_docvars(docvar2, c("A", "B", "C")), docvar4 ) }) test_that("get_docvars() works", { data <- data.frame("docname_" = c("A", "B", "C"), "docid_" = factor(c("A", "B", "C")), "segid_" = rep(1L, 3), "var1" = c(100, 200, 300), "var2" = c(TRUE, TRUE, FALSE), stringsAsFactors = FALSE) expect_identical( quanteda:::select_docvars(data, user = FALSE, system = TRUE), data.frame("docname_" = c("A", "B", "C"), "docid_" = factor(c("A", "B", "C")), "segid_" = rep(1L, 3), stringsAsFactors = FALSE) ) expect_error(quanteda:::select_docvars(data, "docid_", user = FALSE, system = FALSE)) expect_identical( quanteda:::select_docvars(data, "docid_", user = FALSE, system = TRUE), data.frame("docid_" = factor(c("A", "B", "C")), stringsAsFactors = FALSE) ) expect_identical( quanteda:::select_docvars(data, "docid_", user = FALSE, system = TRUE, drop = TRUE), factor(c("A", "B", "C")) ) expect_identical( quanteda:::select_docvars(data), data.frame("var1" = c(100, 200, 300), "var2" = c(TRUE, TRUE, FALSE), stringsAsFactors = FALSE) ) expect_identical( quanteda:::select_docvars(data, "var1"), data.frame("var1" = c(100, 200, 300), stringsAsFactors = FALSE) ) expect_identical( quanteda:::select_docvars(data, "var1", drop = TRUE), c(100, 200, 300) ) }) test_that("set_docvars() works", { data <- data.frame("docname_" = c("A", "B", "C"), "docid_" = c("A", "B", "C"), "docnum_" = 1L:3L, "segid_" = rep(1L, 3), "var1" = c(100, 200, 300), "var2" = c(TRUE, TRUE, FALSE), stringsAsFactors = FALSE) quanteda:::set_docvars(data, "var2") <- c(10, 20, 30) expect_identical(data[["var2"]], c(10, 20, 30)) quanteda:::set_docvars(data, "var3") <- c(1000, 2000, 3000) expect_identical(data[["var3"]], c(1000, 2000, 3000)) quanteda:::set_docvars(data) <- data.frame("var1" = c(100, 200, 300), "var2" = c(TRUE, TRUE, TRUE)) expect_identical(data[["var1"]], c(100, 200, 300)) expect_identical(data[["var2"]], c(TRUE, TRUE, TRUE)) expect_identical(names(data), c("docname_", "docid_", "segid_", "var1", "var2")) quanteda:::set_docvars(data) <- NULL expect_identical(names(data), c("docname_", "docid_", "segid_")) }) test_that("docvars of corpus is a data.frame", { expect_equal( class(docvars(data_corpus_inaugural)), "data.frame" ) }) test_that("docvars with non-existent field names generate correct error messages", { expect_error( docvars(data_corpus_inaugural, c("President", "nonexistent")), "field\\(s\\) nonexistent not found" ) toks <- tokens(data_corpus_inaugural, include_docvars = TRUE) expect_error( docvars(toks, c("President", "nonexistent")), "field\\(s\\) nonexistent not found" ) }) test_that("docvars is working with tokens", { corp <- data_corpus_inaugural[1:58] toks <- tokens(corp, include_docvars = TRUE) expect_equal(docvars(toks), docvars(corp)) expect_equal(docvars(toks, "President"), docvars(corp, "President")) toks2 <- toks[docvars(toks, "Year") > 2000] expect_equal(ndoc(toks2), nrow(docvars(toks2))) expect_equal( docvars(quanteda:::"docvars<-"(toks2, "Type", "Speech"), "Type"), rep("Speech", 5) ) expect_output( print(docvars(quanteda:::"docvars<-"(toks, field = NULL, NULL))), "data frame with 0 columns and 58 rows" ) expect_equal( docvars(quanteda:::"docvars<-"(toks, field = "ID", 1:58), "ID"), 1:58 ) }) test_that("docvars is working with dfm", { corp <- data_corpus_inaugural toks <- tokens(corp, include_docvars = TRUE) thedfm <- dfm(toks) expect_equal(docvars(toks), docvars(thedfm)) expect_equal(docvars(toks, "Party"), docvars(corp, "Party")) thedfm2 <- dfm(tokens(corp)) expect_equal(docvars(corp), docvars(thedfm2)) expect_equal(docvars(corp, "Party"), docvars(thedfm2, "Party")) corp2 <- corpus_subset(corp, Party == "Democratic") thedfm3 <- dfm(tokens(corp2)) expect_equal(docvars(corp2), docvars(thedfm3)) }) test_that("$ returns docvars", { corp <- data_corpus_inaugural toks <- tokens(corp, include_docvars = TRUE) dfmat <- dfm(toks) expect_equal(docvars(corp, "Party"), corp$Party) expect_equal(docvars(toks, "Party"), toks$Party) expect_equal(docvars(dfmat, "Party"), dfmat$Party) }) test_that("creating tokens and dfms with empty docvars", { expect_equal( length(docvars(tokens(data_corpus_inaugural, include_docvars = FALSE))), 0 ) expect_equal( length(docvars(suppressWarnings(dfm(tokens(data_corpus_inaugural), include_docvars = FALSE)))), 0 ) }) test_that("tokens works works with one docvar", { docv1 <- data.frame(dvar1 = c("A", "B")) mycorpus1 <- corpus(c(d1 = "This is sample document one.", d2 = "Here is the second sample document."), docvars = docv1) toks1 <- tokens(mycorpus1, include_docvars = TRUE) expect_equivalent(docvars(toks1), docv1) }) test_that("tokens works works with two docvars", { docv2 <- data.frame(dvar1 = c("A", "B"), dvar2 = c(1, 2)) mycorpus2 <- corpus(c(d1 = "This is sample document one.", d2 = "Here is the second sample document."), docvars = docv2) toks2 <- tokens(mycorpus2, include_docvars = TRUE) expect_equivalent(docvars(toks2), docv2) }) test_that("dfm works works with one docvar", { docv1 <- data.frame(dvar1 = c("A", "B")) mycorpus1 <- corpus(c(d1 = "This is sample document one.", d2 = "Here is the second sample document."), docvars = docv1) dfm1 <- suppressWarnings(dfm(tokens(mycorpus1), include_docvars = TRUE)) expect_equivalent(docvars(dfm1), docv1) }) test_that("dfm works works with two docvars", { docv2 <- data.frame(dvar1 = c("A", "B"), dvar2 = c(1, 2)) mycorpus2 <- corpus(c(d1 = "This is sample document one.", d2 = "Here is the second sample document."), docvars = docv2) dfm2 <- suppressWarnings(dfm(tokens(mycorpus2), include_docvars = TRUE)) expect_equivalent(docvars(dfm2), docv2) }) test_that("object always have docvars in the same rows as documents", { txt <- data_char_ukimmig2010 corp1 <- corpus(txt) expect_true(nrow(docvars(corp1)) == ndoc(corp1)) expect_true(all(row.names(docvars(corp1)) == seq_len(ndoc(corp1)))) corp2 <- corpus_segment(corp1, "\\p{P}", valuetype = "regex") expect_true(nrow(docvars(corp2)) == ndoc(corp2)) expect_true(all(row.names(docvars(corp2)) == seq_len(ndoc(corp2)))) corp3 <- corpus_reshape(corp1, to = "sentences") expect_true(nrow(docvars(corp3)) == ndoc(corp3)) expect_true(all(row.names(docvars(corp3)) == seq_len(ndoc(corp3)))) corp4 <- corpus_sample(corp1, size = 5) expect_true(nrow(docvars(corp4)) == ndoc(corp4)) expect_true(all(row.names(docvars(corp4)) == seq_len(ndoc(corp4)))) toks1 <- tokens(txt) expect_true(nrow(docvars(toks1)) == ndoc(toks1)) expect_true(all(row.names(docvars(toks1)) == seq_len(ndoc(toks1)))) toks2 <- tokens(corpus(txt)) expect_true(nrow(docvars(toks2)) == ndoc(toks2)) expect_true(all(row.names(docvars(toks2)) == seq_len(ndoc(toks2)))) toks3 <- quanteda:::tokens_group(toks1, rep(c(1, 2, 3), 3)) expect_true(nrow(docvars(toks3)) == ndoc(toks3)) expect_true(all(row.names(docvars(toks3)) == seq_len(ndoc(toks3)))) toks4 <- tokens_select(toks1, stopwords()) expect_true(nrow(docvars(toks4)) == ndoc(toks4)) expect_true(all(row.names(docvars(toks4)) == seq_len(ndoc(toks4)))) dfm1 <- dfm(tokens(txt)) expect_true(nrow(docvars(dfm1)) == ndoc(dfm1)) expect_true(all(row.names(docvars(dfm1)) == seq_len(ndoc(dfm1)))) dfm2 <- dfm(tokens(txt)) expect_true(nrow(docvars(dfm2)) == ndoc(dfm2)) expect_true(all(row.names(docvars(dfm2)) == seq_len(ndoc(dfm2)))) dfm3 <- dfm(tokens(corpus(txt))) expect_true(nrow(docvars(dfm3)) == ndoc(dfm3)) expect_true(all(row.names(docvars(dfm3)) == seq_len(ndoc(dfm3)))) dfm4 <- dfm_group(dfm1, rep(c(1, 2, 3), 3)) expect_true(nrow(docvars(dfm4)) == ndoc(dfm4)) expect_true(all(row.names(docvars(dfm4)) == seq_len(ndoc(dfm4)))) dfm5 <- suppressWarnings(dfm(dfm1, groups = rep(c(1, 2, 3), 3))) expect_true(nrow(docvars(dfm5)) == ndoc(dfm5)) expect_true(all(row.names(docvars(dfm5)) == seq_len(ndoc(dfm5)))) dfm6 <- dfm_subset(dfm1, rep(c(TRUE, TRUE, FALSE), 3)) expect_true(nrow(docvars(dfm6)) == ndoc(dfm6)) expect_true(all(row.names(docvars(dfm6)) == seq_len(ndoc(dfm6)))) dfm7 <- rbind(dfm1, dfm1) expect_true(nrow(docvars(dfm7)) == ndoc(dfm7)) expect_true(all(row.names(docvars(dfm7)) == seq_len(ndoc(dfm7)))) dfm8 <- suppressWarnings(cbind(dfm1, dfm1)) expect_true(nrow(docvars(dfm8)) == ndoc(dfm8)) expect_true(all(row.names(docvars(dfm8)) == seq_len(ndoc(dfm8)))) }) test_that("error when nrow and ndoc mismatch", { toks <- tokens(c("a b c", "b c d", "c d e")) expect_error(docvars(toks) <- data.frame(var = c(1, 5))) expect_silent(docvars(toks) <- data.frame(var = c(1, 5, 6))) expect_error(docvars(toks) <- data.frame(var = c(1, 5, 6, 3))) mt <- dfm(toks) expect_error(docvars(mt) <- data.frame(var = c(1, 5))) expect_silent(docvars(mt) <- data.frame(var = c(1, 5, 6))) expect_error(docvars(mt) <- data.frame(var = c(1, 5, 6, 3))) }) test_that("assignment of NULL only drop columns", { toks <- tokens(data_corpus_inaugural[1:14]) docvars(toks) <- NULL expect_identical(dim(docvars(toks)), c(14L, 0L)) mt <- dfm(tokens(data_corpus_inaugural[1:14])) docvars(mt) <- NULL expect_identical(dim(docvars(mt)), c(14L, 0L)) }) test_that("can assign docvars when value is a dfm ( mycorp <- corpus(data_char_ukimmig2010) thedfm <- dfm(tokens(mycorp))[, "the"] docvars(mycorp) <- thedfm expect_identical( docvars(mycorp), data.frame(the = as.vector(thedfm)) ) anddfm <- dfm(tokens(mycorp))[, "and"] docvars(anddfm) <- anddfm expect_identical( docvars(anddfm), data.frame(and = as.vector(anddfm)) ) toks <- tokens(mycorp) docvars(toks) <- anddfm expect_identical( docvars(toks), data.frame(and = as.vector(anddfm)) ) }) test_that("docvar can be renamed ( corp <- data_corpus_inaugural names(docvars(corp))[c(1, 3)] <- c("year", "forename") expect_identical(names(docvars(corp)), c("year", "President", "forename", "Party")) toks <- tokens(data_corpus_inaugural) names(docvars(toks))[c(1, 3)] <- c("year", "forename") expect_identical(names(docvars(toks)), c("year", "President", "forename", "Party")) dfmat <- dfm(tokens(data_corpus_inaugural)) names(docvars(dfmat))[c(1, 3)] <- c("year", "forename") expect_identical(names(docvars(dfmat)), c("year", "President", "forename", "Party")) }) test_that("docvar assignment is fully robust including to renaming ( corp <- corpus(c("A b c d.", "A a b. B c.")) docvars(corp) <- data.frame(testdv = 10:11) expect_identical( docvars(corp), data.frame(testdv = 10:11) ) corp <- corpus(c("A b c d.", "A a b. B c.")) expect_error( docvars(corp) <- c("x", "y"), "you must supply field name(s)", fixed = TRUE ) docvars(corp) <- matrix(c("x", "y"), ncol = 1) expect_identical( docvars(corp), data.frame(V1 = c("x", "y"), stringsAsFactors = FALSE) ) df <- data.frame(c("x", "y"), c("a", "b"), 11:12, stringsAsFactors = FALSE) names(df) <- NULL names(df)[2] <- "name2" expect_error(docvars(corp) <- df, "data.frame must have column names") }) test_that("docvars<-.corpus and name uniqueness", { corp <- corpus(c("A b c d.", "A a b. B c.")) docvars(corp) <- data.frame(docvar1 = 1:2) docvars(corp)[2] <- 11:12 docvars(corp)[3] <- c("a", "b") expect_identical( docvars(corp), data.frame(docvar1 = 1:2, V2 = 11:12, V3 = c("a", "b"), stringsAsFactors = FALSE) ) }) test_that("docvars<- NULL removes docvars", { corp1 <- data_corpus_inaugural docvars(corp1)[c(1, 3)] <- NULL expect_identical(names(docvars(corp1)), c("President", "Party")) corp2 <- data_corpus_inaugural docvars(corp2)[c("President", "Party")] <- NULL expect_identical(names(docvars(corp2)), c("Year", "FirstName")) corp3 <- data_corpus_inaugural docvars(corp3, c("President", "Party")) <- NULL expect_identical(names(docvars(corp3)), c("Year", "FirstName")) toks <- tokens(data_corpus_inaugural) toks1 <- toks docvars(toks1)[c(1, 3)] <- NULL expect_identical(names(docvars(toks1)), c("President", "Party")) toks2 <- toks docvars(toks2)[c("President", "Party")] <- NULL expect_identical(names(docvars(toks2)), c("Year", "FirstName")) toks3 <- toks docvars(toks3, c("President", "Party")) <- NULL expect_identical(names(docvars(toks3)), c("Year", "FirstName")) dfmat <- dfm(toks) dfmat1 <- dfmat docvars(dfmat1)[c(1, 3)] <- NULL expect_identical(names(docvars(dfmat1)), c("President", "Party")) dfmat2 <- dfmat docvars(dfmat2)[c("President", "Party")] <- NULL expect_identical(names(docvars(dfmat2)), c("Year", "FirstName")) dfmat3 <- dfmat docvars(dfmat3, c("President", "Party")) <- NULL expect_identical(names(docvars(dfmat3)), c("Year", "FirstName")) }) test_that("works correctly in edge cases", { corp <- corpus(c("A b c d.", "A a b. B c.", "D f. e g.", "H i j.")) expect_error(docvars(corp) <- 1:4, quanteda:::message_error("docvar_noname")) expect_silent(docvars(corp, "var1") <- 1) expect_equal(docvars(corp, "var1"), rep(1, 4)) expect_silent(docvars(corp, "var2") <- 1:4) expect_equal(docvars(corp, "var2"), 1:4) expect_silent(docvars(corp, "var3") <- 1:2) expect_equal(docvars(corp, "var3"), c(1, 2, 1, 2)) expect_error(docvars(corp, "var4") <- 1:3) }) test_that("group_docvars() works", { docvar <- data.frame("docname_" = c("A", "B", "C"), "docid_" = factor(c("A", "B", "C")), "segid_" = rep(1L, 3), "var1" = c(100, 100, 200), "var2" = c(TRUE, TRUE, FALSE), stringsAsFactors = FALSE) docvar1 <- quanteda:::group_docvars(docvar, factor(c("X", "X", "Y"))) expect_equal( names(docvar1), c("docname_", "docid_", "segid_", "var1", "var2") ) expect_equal( docvar1$var1, c(100, 200) ) expect_equal( docvar1$var2, c(TRUE, FALSE) ) docvar2 <- quanteda:::group_docvars(docvar, factor(c("X", "X", "Y"), levels = c("X", "Y", "Z")), field = "var3") expect_equal( names(docvar2), c("docname_", "docid_", "segid_", "var1", "var2", "var3") ) expect_equal( docvar2$var1, c(100, 200, NA) ) expect_equal( docvar2$var2, c(TRUE, FALSE, NA) ) expect_equal( docvar2$var3, factor(c("X", "Y", "Z"), levels = c("X", "Y", "Z")) ) docvar3 <- quanteda:::group_docvars(docvar, factor(c("X", "X", "Y"), levels = c("Z", "Y", "X")), field = "var3") expect_equal( names(docvar3), c("docname_", "docid_", "segid_", "var1", "var2", "var3") ) expect_equal( docvar3$var1, c(NA, 200, 100) ) expect_equal( docvar3$var2, c(NA, FALSE, TRUE) ) expect_equal( docvar3$var3, factor(c("Z", "Y", "X"), levels = c("Z", "Y", "X")) ) }) test_that("docid works", { corp <- corpus(c(textone = "This is a sentence. Another sentence. Yet another.", textwo = "Sentence 1. Sentence 2.")) corpsent <- corp %>% corpus_reshape(to = "sentences") expect_identical( docid(corpsent), factor(c("textone", "textone", "textone", "textwo", "textwo")) ) expect_identical( docid(tokens(corpsent)), docid(corpsent) ) expect_identical( docid(dfm(tokens(corpsent))), docid(corpsent) ) expect_identical( docid(corpus_group(corpsent)), factor(docnames(corp)) ) expect_identical( docid(tokens_group(tokens(corpsent))), factor(docnames(corp)) ) expect_identical( docid(dfm_group(dfm(tokens(corpsent)))), factor(docnames(corp)) ) expect_identical( docid(corpus_group(corpsent, groups = docid(corpsent))), factor(docnames(corp)) ) expect_identical( docid(tokens_group(tokens(corpsent), groups = docid(corpsent))), factor(docnames(corp)) ) expect_identical( docid(dfm_group(dfm(tokens(corpsent)), groups = docid(corpsent))), factor(docnames(corp)) ) }) test_that("docvars are combined along with the main objects", { docvar <- data.frame("var1" = c(100, 100, 200, NA, NA), "var2" = c(NA, NA, NA, TRUE, FALSE)) corp1 <- corpus(data.frame(text = c(d1 = "aa", d2 = "bb", d3 = "cc"), var1 = c(100, 100, 200))) corp2 <- corpus(data.frame(text = c(d4 = "dd", d5 = "ee"), var2 = c(TRUE, FALSE))) expect_equal(docvars(c(corp1, corp2)), docvar) toks1 <- tokens(corp1) toks2 <- tokens(corp2) expect_equal(docvars(c(toks1, toks2)), docvar) dfmat1 <- dfm(tokens(corp1)) dfmat2 <- dfm(tokens(corp2)) expect_equal(docvars(rbind(dfmat1, dfmat2)), docvar) })
library(bayesplot) context("available_mcmc and available_ppc") test_that("available_mcmc works", { a <- available_mcmc() expect_s3_class(a, "bayesplot_function_list") expect_s3_class(a, "character") expect_identical( as.character(a), sort(grep("^mcmc_", getNamespaceExports("bayesplot"), value = TRUE)) ) b <- available_mcmc("trace|dens") expect_s3_class(b, "bayesplot_function_list") expect_identical( as.character(b), sort(grep("^mcmc_dens|^mcmc_trace", getNamespaceExports("bayesplot"), value = TRUE)) ) expect_length(available_mcmc(pattern = "99999"), 0) }) test_that("available_ppc works", { a <- available_ppc() expect_s3_class(a, "bayesplot_function_list") expect_s3_class(a, "character") expect_identical( as.character(a), sort(grep("^ppc_", getNamespaceExports("bayesplot"), value = TRUE)) ) b <- available_ppc("grouped") expect_s3_class(b, "bayesplot_function_list") expect_identical( as.character(b), sort(grep("_grouped$", getNamespaceExports("bayesplot"), value = TRUE)) ) c <- available_ppc("grouped", invert = TRUE) expect_false(any(grepl("grouped", c))) expect_length(available_ppc(pattern = "99999"), 0) }) test_that("print.bayesplot_function_list works", { expect_output(print(available_ppc()), "bayesplot PPC module:") expect_output(print(available_mcmc()), "bayesplot MCMC module:") expect_output(print(available_ppc("ribbon")), "(matching pattern 'ribbon')") expect_output(print(available_mcmc("trace")), "trace_highlight") expect_output(print(available_ppc("grouped", invert = TRUE)), "excluding pattern 'grouped'") })
matrix96 <- function(dataframe,column,rm="FALSE"){ if(is.numeric(column)){data<-matrix(dataframe[,column],ncol=length(unique(dataframe[,2])), byrow = TRUE)} if(!is.numeric(column)){ name<- as.character(column) col<- which(colnames(dataframe)==name) data<-matrix(dataframe[,col],ncol=length(unique(dataframe[,2])), byrow = TRUE) } rownames(data)<-unique(dataframe$row) colnames(data)<-unique(dataframe$col) if(rm==TRUE){ data[is.na(data)] <- 0 data[(data<0)]<-0 } return(data) }
miaSpectra2D <- function(spectra) { .chkArgs(mode = 21L) chkSpectra(spectra) if (!requireNamespace("ThreeWay", quietly = TRUE)) { stop("You must install package ThreeWay to use this function") } n <- length(spectra$F1) m <- length(spectra$F2) p <- length(spectra$names) X <- matrix(NA_real_, nrow = n, ncol = m * p) for (i in 1:p) { st <- 1 + (i - 1) * m end <- i * m X[, st:end] <- spectra$data[[i]] } t1 <- ThreeWay::pcasup1(X, n, m, p, 3) t1$method <- "MIA" class(t1) <- "mia" return(t1) }
duplicates <- function(x) { duplicated(x) | duplicated(x, fromLast=TRUE) } duplicatei <- function (x, first = TRUE) { if (first) match(x,x) else ifelse(duplicated(x), match(x,x), 0) }
context("Checking dob") test_that("dob ...",{ })
gauss_adapt_C <- function (d, h) .Call("gauss_adapt_C", d, h, PACKAGE = "mgwrsar")
jacobi.p.inner.products <- function( n, alpha, beta ) { if ( n < 0 ) stop( "negative highest polynomial order" ) if ( n != round( n ) ) stop( "highest polynomial order is not integer" ) if ( alpha <= -1 ) stop( "alpha less than or equal to -1" ) if ( beta <= -1 ) stop( "beta less than or equal to -1" ) if ( ( abs( alpha ) < 1e-6 ) & ( abs( beta ) < 1e-6 ) ) return( legendre.inner.products( n ) ) if ( abs( alpha - beta ) < 1e-6 ) { alpha.prime <- alpha + 0.5 return( gegenbauer.inner.products( n, alpha.prime ) ) } ab <- alpha + beta abp1 <- alpha + beta + 1 ap1 <- alpha + 1 bp1 <- beta + 1 coef <- 2 ^ abp1 inner.products <- rep( 1, n + 1 ) j <- 1 for ( k in 0:n ) { num <- coef * gamma( k + ap1 ) * gamma( k + bp1 ) den <- ( 2 * k + abp1 ) * factorial( k ) * gamma( k + abp1 ) inner.products[j] <- num / den j <- j + 1 } return( inner.products ) }
tableVisual <- function(v, vnam, doEval = TRUE) { x <- table(v, useNA = "always") x <- t(rbind(x, paste(round(rbind(x/length(v)),4)*100, "%", sep = ""))) x <- cbind(dimnames(x)[[1]], x) rownames(x) <- NULL dimnames(x)[[2]] <- c("value", "count", "percentage") thisCall <- call("pander", x = x, keep.trailing.zeros = TRUE) if (!doEval) return(deparse(thisCall)) else return(eval(thisCall)) } tableVisual <- visualFunction(tableVisual, "Distribution tables", classes = c("character", "factor", "labelled", "haven_labelled"))
context("test-print_importance_plot") test_that("printing importance works", { gtest <- lm(mpg ~ cyl*wt*hp, data = mtcars) gtest0 <- lm(mpg ~ 1, data = mtcars) imp <- importance(gtest, gtest0) expect_output(print(imp), regexp = "Importance") })
context("Tracking - Experiments") teardown({ mlflow_clear_test_dir("mlruns") }) test_that("mlflow_create/get_experiment() basic functionality (fluent)", { mlflow_clear_test_dir("mlruns") experiment_1_id <- mlflow_create_experiment("exp_name", "art_loc") experiment_1a <- mlflow_get_experiment(experiment_id = experiment_1_id) experiment_1b <- mlflow_get_experiment(name = "exp_name") expect_identical(experiment_1a, experiment_1b) expect_identical(experiment_1a$artifact_location, "art_loc") expect_identical(experiment_1a$name, "exp_name") }) test_that("mlflow_create/get_experiment() basic functionality (client)", { mlflow_clear_test_dir("mlruns") client <- mlflow_client() experiment_1_id <- mlflow_create_experiment( client = client, name = "exp_name", artifact_location = "art_loc", tags = list(foo = "bar", foz = "baz", fiz = "biz") ) experiment_1a <- mlflow_get_experiment(client = client, experiment_id = experiment_1_id) experiment_1b <- mlflow_get_experiment(client = client, name = "exp_name") expect_identical(experiment_1a, experiment_1b) expect_identical(experiment_1a$artifact_location, "art_loc") expect_identical(experiment_1a$name, "exp_name") expect_true( all(purrr::transpose(experiment_1b$tags[[1]]) %in% list( list(key = "foz", value = "baz"), list(key = "foo", value = "bar"), list(key = "fiz", value = "biz") ) ) ) }) test_that("mlflow_get_experiment() not found error", { mlflow_clear_test_dir("mlruns") expect_error( mlflow_get_experiment(experiment_id = "42"), "Could not find experiment with ID 42" ) }) test_that("mlflow_list_experiments() works properly", { mlflow_clear_test_dir("mlruns") client <- mlflow_client() ex1 <- mlflow_create_experiment(client = client, "foo1", "art_loc1") ex2 <- mlflow_create_experiment(client = client, "foo2", "art_loc2") experiments_list <- mlflow_list_experiments(client = client) expect_setequal(experiments_list$experiment_id, c("0", "1", "2")) expect_setequal(experiments_list$name, c("Default", "foo1", "foo2")) default_artifact_loc <- file.path(getwd(), "mlruns", "0", fsep = "/") expect_setequal(experiments_list$artifact_location, c(default_artifact_loc, "art_loc1", "art_loc2")) experiments_list <- mlflow_list_experiments() expect_setequal(experiments_list$experiment_id, c("0", "1", "2")) expect_setequal(experiments_list$name, c("Default", "foo1", "foo2")) default_artifact_loc <- file.path(getwd(), "mlruns", "0", fsep = "/") expect_setequal(experiments_list$artifact_location, c(default_artifact_loc, "art_loc1", "art_loc2")) expect_null(mlflow_list_experiments("DELETED_ONLY")) mlflow_set_experiment_tag("key2", "value2", experiment_id = ex2) experiments <- mlflow_list_experiments() expect_true("tags" %in% names(experiments)) expect_setequal( experiments$tags, list(NA, NA, tibble::tibble(key = "key2", value = "value2")) ) mlflow_set_experiment_tag("key1", "value1", experiment_id = ex1) mlflow_set_experiment_tag("key0", "value0", experiment_id = "0") experiments <- mlflow_list_experiments() expect_true("tags" %in% names(experiments)) expect_setequal(experiments$tags, list( tibble::tibble(key = "key0", value = "value0"), tibble::tibble(key = "key1", value = "value1"), tibble::tibble(key = "key2", value = "value2") )) mlflow_set_experiment_tag("key1.2", "value1.2", experiment_id = ex1) experiments <- mlflow_list_experiments() tags <- experiments$tags[experiments$experiment_id %in% ex1][[1]] tags <- tags[order(tags$key),] expect_equal( tags, tibble::tibble(key = c("key1", "key1.2"), value = c('value1', 'value1.2')) ) mlflow_delete_experiment(experiment_id = "1") deleted_experiments <- mlflow_list_experiments("DELETED_ONLY") expect_identical(deleted_experiments$name, "foo1") }) test_that("mlflow_set_experiment_tag() works correctly", { mlflow_clear_test_dir("mlruns") client <- mlflow_client() experiment_id <- mlflow_create_experiment(client = client, "setExperimentTagTestExperiment", "art_exptag_loc") mlflow_set_experiment_tag("dataset", "imagenet1K", experiment_id, client = client) experiment <- mlflow_get_experiment(experiment_id = experiment_id, client = client) tags <- experiment$tags[[1]] expect_identical(tags, tibble::tibble(key = 'dataset', value = 'imagenet1K')) expect_identical("imagenet1K", tags$value[tags$key == "dataset"]) mlflow_set_experiment_tag("dataset", "birdbike", experiment_id, client = client) experiment <- mlflow_get_experiment(experiment_id = experiment_id, client = client) expect_equal(experiment$tags, list(tibble::tibble(key = 'dataset', value = 'birdbike'))) experiment_id_2 <- mlflow_create_experiment(client = client, "setExperimentTagTestExperiment2", "art_exptag_loc2") experiment_2 <- mlflow_get_experiment(experiment_id = experiment_id_2, client = client) expect_equal(experiment_2$tags, NA) mlflow_set_experiment_tag("dataset", "birds200", experiment_id_2, client = client) experiment <- mlflow_get_experiment(experiment_id = experiment_id, client = client) tags <- experiment$tags[[1]] experiment_2 <- mlflow_get_experiment(experiment_id = experiment_id_2, client = client) tags_2 <- experiment_2$tags[[1]] expect_equal(tags, tibble::tibble(key = 'dataset', value = 'birdbike')) expect_equal(tags_2, tibble::tibble(key = 'dataset', value = 'birds200')) mlflow_set_experiment_tag("multiline tag", "value2\nvalue2\nvalue2", experiment_id, client = client) experiment <- mlflow_get_experiment(experiment_id = experiment_id, client = client) expect_identical( tibble::tibble( key = c('dataset', 'multiline tag'), value= c("birdbike", "value2\nvalue2\nvalue2") ), experiment$tags[[1]][order(experiment$tags[[1]]$key),] ) }) test_that("mlflow_get_experiment_by_name() works properly", { mlflow_clear_test_dir("mlruns") client <- mlflow_client() expect_error( mlflow_get_experiment(client = client, name = "exp"), "Could not find experiment with name 'exp'" ) experiment_id <- mlflow_create_experiment(client = client, "exp", "art") experiment <- mlflow_get_experiment(client = client, name = "exp") expect_identical(experiment_id, experiment$experiment_id) expect_identical(experiment$name, "exp") expect_identical(experiment$artifact_location, "art") }) test_that("infer experiment id works properly", { mlflow_clear_test_dir("mlruns") experiment_id <- mlflow_create_experiment("test") Sys.setenv(MLFLOW_EXPERIMENT_NAME = "test") expect_true(experiment_id == mlflow_infer_experiment_id()) Sys.unsetenv("MLFLOW_EXPERIMENT_NAME") Sys.setenv(MLFLOW_EXPERIMENT_ID = experiment_id) expect_true(experiment_id == mlflow_infer_experiment_id()) Sys.unsetenv("MLFLOW_EXPERIMENT_ID") mlflow_set_experiment("test") expect_true(experiment_id == mlflow_infer_experiment_id()) }) test_that("experiment setting works", { mlflow_clear_test_dir("mlruns") exp1_id <- mlflow_create_experiment("exp1") exp2_id <- mlflow_create_experiment("exp2") mlflow_set_experiment(experiment_name = "exp1") expect_identical(exp1_id, mlflow_get_active_experiment_id()) expect_identical(mlflow_get_experiment(exp1_id), mlflow_get_experiment()) mlflow_set_experiment(experiment_id = exp2_id) expect_identical(exp2_id, mlflow_get_active_experiment_id()) expect_identical(mlflow_get_experiment(exp2_id), mlflow_get_experiment()) }) test_that("mlflow_set_experiment() creates experiments", { mlflow_clear_test_dir("mlruns") mlflow_set_experiment(experiment_name = "foo", artifact_location = "artifact/location") experiment <- mlflow_get_experiment() expect_identical(experiment$artifact_location, "artifact/location") expect_identical(experiment$name, "foo") })
sum(1:10)
createGmatFromMat <- function(obj, input.mat, genes, do.par, num.cores) { UseMethod("createGmatFromMat", obj); } createGmatFromMat.default <- function( obj, input.mat=c("bmat", "pmat"), genes, do.par=FALSE, num.cores=1 ){ if(missing(obj)){ stop("obj is missing"); }else{ if(!is(obj, "snap")){ stop("obj is not a snap file"); } } if(missing(genes)){ stop("genes is missing"); }else{ if(!is(genes, "GRanges")){ stop("genes is not a GRanges object"); } if(is.null(genes$name)){ stop("genes does not contain gene names"); } } if(!is(do.par, "logical")){ stop("do.par is not logical object"); } if(!is(num.cores, "numeric")){ stop("num.cores is not logical object"); } input.mat = match.arg(input.mat); if(input.mat == "bmat"){ data.use = obj@bmat; peaks.use = obj@feature; }else if(input.mat == "pmat"){ data.use = obj@pmat; peaks.use = obj@peak; }else{ stop("input.mat does not exist in obj") } if(any(Matrix::rowSums(data.use) == 0)){ stop("input matrix contains empty rows, remove empty rows first") } num.total.cells = nrow(data.use); if(do.par){ if(num.cores > 1){ if (num.cores == 1) { num.cores = 1 } else if (num.cores > detectCores()) { num.cores <- detectCores() - 1 warning(paste0("num.cores set greater than number of available cores(", parallel::detectCores(), "). Setting num.cores to ", num.cores, ".")) } } else if (num.cores != 1) { num.cores <- 1 } } ovs = as.data.frame(GenomicRanges::findOverlaps(peaks.use, genes)); ovs.ls = split(ovs, ovs$subjectHits); if(do.par){ count.ls <- parallel::mclapply(ovs.ls, function(idx){ idx.bins.i = idx$queryHits; if(length(idx.bins.i) == 1L){ count.i = data.use[,idx.bins.i,dropping=TRUE]; if(any(count.i > 0)){ data.frame(i=which(count.i > 0), j=idx$subjectHits[1], val=count.i[count.i > 0]) }else{ data.frame() } }else{ count.i = Matrix::rowSums(data.use[,idx.bins.i,dropping=TRUE]); if(any(count.i > 0)){ data.frame(i=which(count.i > 0), j=idx$subjectHits[1], val=count.i[count.i > 0]) }else{ data.frame() } } }, mc.cores=num.cores); }else{ count.ls <- lapply(ovs.ls, function(idx){ idx.bins.i = idx$queryHits; if(length(idx.bins.i) == 1L){ count.i = data.use[,idx.bins.i,dropping=TRUE]; if(any(count.i > 0)){ data.frame(i=which(count.i > 0), j=idx$subjectHits[1], val=count.i[count.i > 0]) }else{ data.frame() } }else{ count.i = Matrix::rowSums(data.use[,idx.bins.i,dropping=TRUE]); if(any(count.i > 0)){ data.frame(i=which(count.i > 0), j=idx$subjectHits[1], val=count.i[count.i > 0]) }else{ data.frame() } } }); } count.df = do.call(rbind, count.ls); dn = list(obj@barcode, as.character(genes$name)) obj@gmat = Matrix::sparseMatrix( i=count.df[,1], j=count.df[,2], x=count.df[,3], dims=c(nrow(obj), length(genes)), dimnames = dn ); rm(count.df); rm(dn); rm(data.use); rm(ovs); rm(ovs.ls) gc(); return(obj); }
GENMETA.summary <- function(object, signi_digits = 3) { x <- object GMeta_opt_estimate <- as.vector(x[[1]]) GMeta_opt_std_error <- sqrt(as.vector(diag(x[[2]]))) Var_opt_GMeta <- diag(GMeta_opt_std_error) z_stat_opt_GMeta <- GMeta_opt_estimate/GMeta_opt_std_error p_val_opt_GMeta <- 1 - pnorm(abs(z_stat_opt_GMeta)) summary_data_frame_opt <- data.frame(cbind(GMeta_opt_estimate, GMeta_opt_std_error, z_stat_opt_GMeta, p_val_opt_GMeta)) colnames(summary_data_frame_opt) <- c("Estimate", "Std.Error", "z value", "Pr(>|z|)") rownames(summary_data_frame_opt) <- names(x[[1]]) summary_data_frame_opt <- signif(summary_data_frame_opt, signi_digits) signif_column <- factor(noquote(sapply(summary_data_frame_opt[, 4], sign.star))) summary_data_frame_opt <- cbind(summary_data_frame_opt, signif_column) colnames(summary_data_frame_opt)[5] <- paste0(' ') cat("Call:\n") print(x[[5]]) cat("\n") cat("Coefficients: \n") print.data.frame(summary_data_frame_opt, print.gap = 2) cat("\n---\n") cat("Significant codes:\n") cat("0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 \n") cat("\n") cat("Total number of iterations: ") cat(x[[4]]) }
library(dplyr) slice(mtcars, 1L) slice(mtcars, n()) slice(mtcars, 5:n()) slice(mtcars, c(2,4,5,10)) mtcars (by_cyl <- group_by(mtcars, cyl)) nrow(by_cyl) slice(by_cyl, 1:2)
binMAEE = function(y, X, id, Z, maxiter, epsilon, printrange, alpadj, shrink, makevone) { BEGINEND = function(n) { last = cumsum(n) first = last - n + 1 return(cbind(first, last)) } is_pos_def = function(A) { return(min(eigen(A)$values) > 1e-13) } GETROWB = function(mu, gamma, j, k, X, y) { row = (gamma/2) * ((1 - 2 * mu[j]) * X[j, ] + (1 - 2 * mu[k]) * X[k, ] + 2 * mu[j] * (1 - mu[j]) * X[j, ]/(y[j] - mu[j]) + 2 * mu[k] * (1 - mu[k]) * X[k, ]/(y[k] - mu[k])) return(row) } CREATEA = function(mu, y) { return(y - mu) } CREATEC = function(X, mu) { return(X * (mu * (1 - mu))) } CREATEB = function(mu, gamma, n) { B = diag(mu * (1 - mu)) l = 1 for (j in 1:(n - 1)) { for (k in (j + 1):n) { B[j, k] = sqrt(mu[j] * mu[k] * (1 - mu[j]) * (1 - mu[k])) * gamma[l] l = l + 1 } } B[lower.tri(B)] = t(B)[lower.tri(B)] return(B) } SCORE = function(Ustarold, beta, alpha, y, X, Z, n, p, q, flag, rangeflag, VEEFLAG, NPSDFLAG, NPSDADJFLAG) { U = rep(0, p + q) UUtran = Ustar = matrix(0, p + q, p + q) naiveold = ginv(Ustarold[1:p, 1:p]) locx = BEGINEND(n) locz = BEGINEND(choose(n, 2)) for (i in 1:length(n)) { X_c = X[locx[i, 1]:locx[i, 2], , drop = FALSE] y_c = y[locx[i, 1]:locx[i, 2]] Z_c = Z[locz[i, 1]:locz[i, 2], , drop = FALSE] U_c = rep(0, p + q) Ustar_c = matrix(0, p + q, p + q) mu_c = 1/(1 + exp(c(-X_c %*% beta))) gamma_c = c(Z_c %*% alpha) VEE = R = rep(0, choose(n[i], 2)) DB = matrix(0, choose(n[i], 2), p) C = CREATEC(X_c, mu_c) B = CREATEB(mu_c, gamma_c, n[i]) A = CREATEA(mu_c, y_c) INVB = ginv(B) CtinvB = t(C) %*% INVB Hi1 = C %*% naiveold %*% CtinvB if (alpadj) { SQVARFUN = sqrt(mu_c * (1 - mu_c)) INVSQVAR = 1/SQVARFUN CT = t(C) omega = C %*% naiveold %*% CT vminomega = B - omega psd_vmin = is_pos_def(vminomega) mineig = min(eigen(vminomega)$values) if (psd_vmin == 1) { Ci = diag(INVSQVAR) %*% (B %*% ginv(vminomega)) %*% diag(SQVARFUN) RX = (y_c - mu_c) * INVSQVAR Gi = tcrossprod(RX) } else { NPSDADJFLAG = 1 stop("(V - Omega) is not positive definite") } } else { SQVARFUN = sqrt(mu_c * (1 - mu_c)) INVSQVAR = 1/SQVARFUN RX = (y_c - mu_c) * INVSQVAR Gi = tcrossprod(RX) } l = 1 for (j in 1:(n[i] - 1)) { for (k in (j + 1):n[i]) { if ((gamma_c[l] >= min(sqrt((mu_c[j] * (1 - mu_c[k]))/(mu_c[k] * (1 - mu_c[j]))), sqrt((mu_c[k] * (1 - mu_c[j]))/(mu_c[j] * (1 - mu_c[k]))))) | (gamma_c[l] <= max(-sqrt((mu_c[j] * mu_c[k])/((1 - mu_c[j]) * (1 - mu_c[k]))), -sqrt(((1 - mu_c[j]) * (1 - mu_c[k]))/(mu_c[j] * mu_c[k])))) & (flag == 0)) { rangeflag = 1 if (printrange) { warning(cat("Range Violation Detected for Cluster", i, "and Pair", j, k, "\n")) } break } if ((gamma_c[l] >= min(sqrt((mu_c[j] * (1 - mu_c[k]))/(mu_c[k] * (1 - mu_c[j]))), sqrt((mu_c[k] * (1 - mu_c[j]))/(mu_c[j] * (1 - mu_c[k]))))) | (gamma_c[l] <= max(-sqrt((mu_c[j] * mu_c[k])/((1 - mu_c[j]) * (1 - mu_c[k]))), -sqrt(((1 - mu_c[j]) * (1 - mu_c[k]))/(mu_c[j] * mu_c[k])))) & (flag == 1)) { warning(cat("Last Update Pushes Parameters Out of Range.", "\n")) warning(cat("Range Violation Detected for Cluster", i, "and Pair", j, k, "\n")) } VEE[l] = 1 + ((1 - 2 * mu_c[j]) * (1 - 2 * mu_c[k]) * gamma_c[l])/sqrt(mu_c[j] * (1 - mu_c[j]) * mu_c[k] * (1 - mu_c[k])) - gamma_c[l]^2 if (VEE[l] <= 0) { VEEFLAG = 1 stop("Variance of correlation parameter is negative") } if (alpadj) { R[l] = Ci[j, ] %*% Gi[, k] - gamma_c[l] } else { R[l] = Gi[j, k] - gamma_c[l] } l = l + 1 } } if (makevone) { VEE = rep(1, choose(n[i], 2)) } if (min(eigen(B)$values) <= 0) { NPSDFLAG = 1 stop(paste("Var(Y) of Cluster", i, "is not Positive-Definite;", "Joint Distribution Does Not Exist and Program terminates")) } U_c[1:p] = t(C) %*% INVB %*% A U_c[(p + 1):(p + q)] = t(Z_c) %*% (R/VEE) UUtran_c = tcrossprod(U_c) Ustar_c[1:p, 1:p] = t(C) %*% INVB %*% C Ustar_c[(p + 1):(p + q), (p + 1):(p + q)] = t(Z_c) %*% (Z_c/VEE) U = U + U_c UUtran = UUtran + UUtran_c Ustar = Ustar + Ustar_c } rangeflag = 0 return(list(U = U, UUtran = UUtran, Ustar = Ustar, flag = flag, rangeflag = rangeflag, VEEFLAG = VEEFLAG, NPSDFLAG = NPSDFLAG, NPSDADJFLAG = NPSDADJFLAG)) } INITBETA = function(y, X, n) { z = y + y - 1 beta = solve(t(X) %*% X, t(X) %*% z) for (i in 1:2) { u = c(X %*% beta) u = 1/(1 + exp(-u)) v = u * (1 - u) z = t(X) %*% (y - u) Ustar = t(X) %*% (X * v) d = solve(Ustar, z) beta = beta + d } return(list(beta = c(beta), Ustar = Ustar)) } INVBIG = function(ainvc, ainvm, m, c, start, end) { for (i in start:end) { b = ainvm[, i] bt = t(b) btm = bt %*% m btmi = btm[, i] gam = 1 - btmi bg = b/gam ainvc = ainvc + bg %*% (bt %*% c) if (i < end) { ainvm = ainvm + bg %*% btm } } return(ainvc) } MAKEVAR = function(Ustarold, beta, alpha, y, X, Z, n, p, q, VEEFLAG, ROBFLAG, NPSDADJFLAG) { SCORE_RES = SCORE(Ustarold, beta, alpha, y, X, Z, n, p, q, flag = 1, rangeflag = 0, VEEFLAG, NPSDFLAG, NPSDADJFLAG) U = SCORE_RES$U UUtran = SCORE_RES$UUtran Ustar = SCORE_RES$Ustar flag = SCORE_RES$flag rangeflag = SCORE_RES$rangeflag VEEFLAG = SCORE_RES$VEEFLAG NPSDFLAG = SCORE_RES$NPSDFLAG NPSDADJFLAG = SCORE_RES$NPSDADJFLAG naive = ginv(Ustar[1:p, 1:p]) naivealp = ginv(Ustar[(p + 1):(p + q), (p + 1):(p + q)]) eigenRES1 = eigen(naive) evals1 = eigenRES1$values evecs1 = eigenRES1$vectors sqrevals1 = sqrt(evals1) sqe1 = evecs1 %*% diag(sqrevals1) eigenRES2 = eigen(naivealp) evals2 = eigenRES2$values evecs2 = eigenRES2$vectors sqrevals2 = sqrt(evals2) sqe2 = evecs2 %*% diag(sqrevals2) Ustar_c_array = UUtran_c_array = array(0, c(p + q, p + q, length(n))) UUtran = UUbc = UUbc2 = UUbc3 = Ustar = inustar = matrix(0, p + q, p + q) locx = BEGINEND(n) locz = BEGINEND(choose(n, 2)) for (i in 1:length(n)) { X_c = X[locx[i, 1]:locx[i, 2], , drop = FALSE] y_c = y[locx[i, 1]:locx[i, 2]] mu_c = 1/(1 + exp(c(-X_c %*% beta))) U_i = U_c = rep(0, p + q) Ustar_c = matrix(0, p + q, p + q) Z_c = Z[locz[i, 1]:locz[i, 2], , drop = FALSE] gamma_c = c(Z_c %*% alpha) C = CREATEC(X_c, mu_c) B = CREATEB(mu_c, gamma_c, n[i]) A = CREATEA(mu_c, y_c) INVB = ginv(B) U_i[1:p] = t(C) %*% INVB %*% A CtinvB = t(C) %*% INVB Hi1 = C %*% naive %*% CtinvB ai1 = INVB mm1 = C %*% sqe1 ai1A = ai1 %*% A ai1m1 = ai1 %*% mm1 ai1A = INVBIG(ai1A, ai1m1, mm1, A, 1, p) U_c[1:p] = t(C) %*% ai1A VEE = R = rep(0, choose(n[i], 2)) DB = matrix(0, choose(n[i], 2), p) RX = rep(0, n[i]) if (alpadj) { SQVARFUN = sqrt(mu_c * (1 - mu_c)) INVSQVAR = 1/SQVARFUN CT = t(C) omega = C %*% naive %*% CT vminomega = B - omega psd_vmin = is_pos_def(vminomega) mineig = min(eigen(vminomega)$values) if (psd_vmin == 1) { Ci = diag(INVSQVAR) %*% (B %*% ginv(vminomega)) %*% diag(SQVARFUN) RX = (y_c - mu_c) * INVSQVAR Gi = tcrossprod(RX) } else { NPSDADJFLAG = 1 stop("(V - Omega) is not positive definite") } } else { SQVARFUN = sqrt(mu_c * (1 - mu_c)) INVSQVAR = 1/SQVARFUN RX = (y_c - mu_c) * INVSQVAR Gi = tcrossprod(RX) } l = 1 for (j in 1:(n[i] - 1)) { for (k in (j + 1):n[i]) { VEE[l] = 1 + ((1 - 2 * mu_c[j]) * (1 - 2 * mu_c[k]) * gamma_c[l])/sqrt(mu_c[j] * (1 - mu_c[j]) * mu_c[k] * (1 - mu_c[k])) - gamma_c[l]^2 DB[l, ] = GETROWB(mu_c, gamma_c[l], j, k, X_c, y_c) if (alpadj) { R[l] = Ci[j, ] %*% Gi[, k] - gamma_c[l] } else { R[l] = Gi[j, k] - gamma_c[l] } l = l + 1 } } if (makevone) { VEE = rep(1, choose(n[i], 2)) } U_i[(p + 1):(p + q)] = t(Z_c) %*% (R/VEE) mm2 = Z_c %*% sqe2 ai2R = R/VEE ai2m2 = mm2/VEE ai2R = INVBIG(ai2R, ai2m2, mm2, R, 1, q) U_c[(p + 1):(p + q)] = t(Z_c) %*% ai2R Ustar_c[1:p, 1:p] = t(C) %*% INVB %*% C Ustar_c[(p + 1):(p + q), 1:p] = t(Z_c) %*% (DB/VEE) Ustar_c[(p + 1):(p + q), (p + 1):(p + q)] = t(Z_c) %*% (Z_c/VEE) Ustar = Ustar + Ustar_c UUtran_c = tcrossprod(U_i) UUtran = UUtran + UUtran_c UUbc_c = tcrossprod(U_c) UUbc = UUbc + UUbc_c UUbc_ic = tcrossprod(U_c, U_i) UUbc2 = UUbc2 + UUbc_ic Ustar_c_array[, , i] = Ustar_c UUtran_c_array[, , i] = UUtran_c } inustar[1:p, 1:p] = ginv(Ustar[1:p, 1:p]) inustar[(p + 1):(p + q), (p + 1):(p + q)] = ginv(Ustar[(p + 1):(p + q), (p + 1):(p + q)]) inustar[(p + 1):(p + q), 1:p] = -inustar[(p + 1):(p + q), (p + 1):(p + q)] %*% Ustar[(p + 1):(p + q), 1:p] %*% inustar[1:p, 1:p] inustartr = t(inustar) for (i in 1:length(n)) { Hi = diag(1/sqrt(1 - pmin(0.75, c(diag(Ustar_c_array[, , i] %*% inustar))))) UUbc3 = UUbc3 + Hi %*% UUtran_c_array[, , i] %*% Hi } robust = inustar %*% UUtran %*% inustartr varKC = inustar %*% (UUbc2 + t(UUbc2)) %*% inustartr/2 varMD = inustar %*% UUbc %*% inustartr varFG = inustar %*% UUbc3 %*% inustartr naive = inustar[1:p, 1:p] if (min(diag(robust)) <= 0) { ROBFLAG = 1 } if (min(diag(varMD)) <= 0) { ROBFLAG = 1 } if (min(diag(varKC)) <= 0) { ROBFLAG = 1 } if (min(diag(varFG)) <= 0) { ROBFLAG = 1 } return(list(robust = robust, naive = naive, varMD = varMD, varKC = varKC, varFG = varFG, VEEFLAG = VEEFLAG, ROBFLAG = ROBFLAG, NPSDADJFLAG = NPSDADJFLAG)) } FITPRENTICE = function(y, X, Z, n, maxiter, epsilon, VEEFLAG, SINGFLAG, ROBFLAG, ALPFLAG, NPSDFLAG, NPSDADJFLAG) { p = ncol(X) q = ncol(Z) delta = rep(2 * epsilon, p + q) max_modi = 20 converge = 0 rangeflag = 0 alpha = rep(0.01, q) INITRES = INITBETA(y, X, n) beta = INITRES$beta Ustar = INITRES$Ustar niter = 1 while ((niter <= maxiter) & (max(abs(delta)) > epsilon)) { n_modi = 0 SINGFLAG = 0 ALPFLAG = 0 repeat { Ustarold = Ustar NPSDFLAG = 0 NPSDADJFLAG = 0 SCORE_RES = SCORE(Ustarold, beta, alpha, y, X, Z, n, p, q, flag = 0, rangeflag, VEEFLAG, NPSDFLAG, NPSDADJFLAG) U = SCORE_RES$U UUtran = SCORE_RES$UUtran Ustar = SCORE_RES$Ustar rangeflag = SCORE_RES$rangeflag VEEFLAG = SCORE_RES$VEEFLAG if (VEEFLAG == 1) { stop("Program terminated due to division by zero in variance") } if (rangeflag == 1) { if (shrink == "THETA") { if (niter == 1) { alpha = rep(0, q) } else { theta = theta - (0.5)^(n_modi + 1) * delta beta = theta[1:p] alpha = theta[(p + 1):(p + q)] } } else if (shrink == "ALPHA") { if (niter == 1) { alpha = rep(0, q) } else { alpha = 0.95 * alpha } } n_modi = n_modi + 1 if (printrange) { warning(cat("Iteration", niter, "and Shrink Number", n_modi, "\n")) } } if ((n_modi > max_modi) | (rangeflag == 0)) { break } } if (n_modi > max_modi) { if (printrange) { warning(cat("n_modi too great, more than 20 shrinks")) } ALPFLAG = 1 } theta = c(beta, alpha) psdustar = is_pos_def(Ustar) mineig = min(eigen(Ustar)$values) if (psdustar) { delta = solve(Ustar, U) theta = theta + delta beta = theta[1:p] alpha = theta[(p + 1):(p + q)] converge = (max(abs(delta)) <= epsilon) } else { SINGFLAG = 1 } niter = niter + 1 } Ustarold = Ustar MAKEVAR_RES = MAKEVAR(Ustarold, beta, alpha, y, X, Z, n, p, q, VEEFLAG, ROBFLAG, NPSDADJFLAG) robust = MAKEVAR_RES$robust naive = MAKEVAR_RES$naive varMD = MAKEVAR_RES$varMD varKC = MAKEVAR_RES$varKC varFG = MAKEVAR_RES$varFG VEEFLAG = MAKEVAR_RES$VEEFLAG ROBFLAG = MAKEVAR_RES$ROBFLAG NPSDADJFLAG = MAKEVAR_RES$NPSDADJFLAG return(list(beta = beta, alpha = alpha, robust = robust, naive = naive, varMD = varMD, varKC = varKC, varFG = varFG, niter = niter, converge = converge, VEEFLAG = VEEFLAG, SINGFLAG = SINGFLAG, ROBFLAG = ROBFLAG, ALPFLAG = ALPFLAG, NPSDFLAG = NPSDFLAG, NPSDADJFLAG = NPSDADJFLAG)) } RESULTS = function(beta, alpha, robust, naive, varMD, varKC, varFG, niter, n) { p = length(beta) q = length(alpha) K = length(n) df = K - p beta_numbers = as.matrix(seq(1:p)) - 1 bSE = sqrt(diag(naive)) bSEBC0 = sqrt(diag(robust[1:p, 1:p])) bSEBC1 = sqrt(diag(varKC[1:p, 1:p])) bSEBC2 = sqrt(diag(varMD[1:p, 1:p])) bSEBC3 = sqrt(diag(varFG[1:p, 1:p])) alpha_numbers = as.matrix(seq(1:q)) - 1 aSEBC0 = sqrt(diag(robust[(p + 1):(p + q), (p + 1):(p + q)])) aSEBC1 = sqrt(diag(varKC[(p + 1):(p + q), (p + 1):(p + q)])) aSEBC2 = sqrt(diag(varMD[(p + 1):(p + q), (p + 1):(p + q)])) aSEBC3 = sqrt(diag(varFG[(p + 1):(p + q), (p + 1):(p + q)])) outbeta = cbind(beta_numbers, beta, bSE, bSEBC0, bSEBC1, bSEBC2, bSEBC3) outalpha = cbind(alpha_numbers, alpha, aSEBC0, aSEBC1, aSEBC2, aSEBC3) colnames(outbeta) = c("Beta", "Estimate", "MB-stderr", "BC0-stderr", "BC1-stderr", "BC2-stderr", "BC3-stderr") colnames(outalpha) = c("Alpha", "Estimate", "BC0-stderr", "BC1-stderr", "BC2-stderr", "BC3-stderr") return(list(outbeta = outbeta, outalpha = outalpha)) } VEEFLAG = 0 SINGFLAG = 0 CONVFLAG = 0 ROBFLAG = 0 ALPFLAG = 0 NPSDFLAG = 0 NPSDADJFLAG = 0 id1 = id[order(id)] y = y[order(id)] X = X[order(id), ] id = id1 n = as.vector(table(id)) PRENTICE_RES = FITPRENTICE(y, X, Z, n, maxiter, epsilon, VEEFLAG, SINGFLAG, ROBFLAG, ALPFLAG, NPSDFLAG, NPSDADJFLAG) beta = PRENTICE_RES$beta alpha = PRENTICE_RES$alpha robust = PRENTICE_RES$robust naive = PRENTICE_RES$naive varMD = PRENTICE_RES$varMD varKC = PRENTICE_RES$varKC varFG = PRENTICE_RES$varFG niter = PRENTICE_RES$niter converge = PRENTICE_RES$converge VEEFLAG = PRENTICE_RES$VEEFLAG SINGFLAG = PRENTICE_RES$SINGFLAG ROBFLAG = PRENTICE_RES$ROBFLAG ALPFLAG = PRENTICE_RES$ALPFLAG NPSDFLAG = PRENTICE_RES$NPSDFLAG NPSDADJFLAG = PRENTICE_RES$NPSDADJFLAG if (SINGFLAG == 1) { stop("Derivative matrix for beta is singular during updates") } if (ROBFLAG == 1) { stop("Sandwich variance is not positive definite") } if (converge == 0 & SINGFLAG == 0) { stop("The algorithm did not converge") } if (converge == 1 & ROBFLAG == 0) { result = RESULTS(beta, alpha, robust, naive, varMD, varKC, varFG, niter, n) outList = list(outbeta = result$outbeta, outalpha = result$outalpha, beta = beta, alpha = alpha, MB = naive, BC0 = robust, BC1 = varKC, BC2 = varMD, BC3 = varFG, niter = niter) class(outList) = "geemaee" return(outList) } }
wblr.fit <- function(x, modify.by.t0=FALSE,...){ if(!class(x)=="wblr"){ stop("\"x\" argument is not of class \"wblr\".") } arg <- list(...) if(length(arg) > 0) { if(class(arg[[1]])=="list") { arg<-arg[[1]] } } if(!is.null(c(arg$log,arg$canvas))) stop("cannot set log or canvas option in wblr.fit") if(!is.null(c(arg$ties.handler, arg$ties))) warning("handling of ties is only performed on object creation in function wblr.") if(!is.null(arg$method.fit)) { if(length(arg$method.fit)>1) { warning("concatinated rr fit methods are depreciated, use 'rr', 'rr-xony', or 'rr-yonx' ") if(tolower(arg$method.fit[2])=="xony") arg$method.fit<-"rr-xony" if(tolower(arg$method.fit[2])=="yonx") arg$method.fit<-"rr-yonx" } if(tolower(arg$method.fit) == "weibayes" && is.null(arg$weibayes.beta)) { warning("weibayes.beta not provided, using default") } } if(!is.null(x$data$dlines)) { if(!is.null(arg$method.fit)) { if("rr" %in% tolower(arg$method.fit)){ stop("rank regression is not performed on interval data, use an mle fit") } } } if(!is.null(arg$dist)) { if(arg$dist=="lnorm") arg$dist<-"lognormal" } opadata <- x$options opafit <- modifyList(opadata,arg) if(!is.null(x$data$dlines)) { if("rr" %in% substr(tolower(opafit$method.fit),1,2)){ warning("rank regression is not performed on interval data method.fit has been set to mle") opafit$method.fit<-"mle" } } supported_dist <- c( "weibull","weibull2p","weibull3p", "lognormal","lognormal2p","lognormal3p") supported_fit <- c("rr", "rr-xony", "rr-yonx", "mle","mle-rba","mle-unbias", "weibayes") if(is.null(opafit$dist)){ opafit$dist <- "weibull2p" } if(!any(tolower(opafit$dist) %in% supported_dist)){ stop(paste0(opafit$dist," is not a supported fit distribution.")) } if(!any(tolower(opafit$method.fit) %in% supported_fit)){ stop(paste0(opafit$method.fit," is not a supported fit method.")) } if(tolower(opafit$dist) %in% c("weibull3p", "lognormal3p")){ if(!is.null(x$data$dlines)) { if(any(x$data$dlines$t1==0)) { stop("3p modification not permitted on data with discoveries (left==0)") } } } if(tolower(opafit$method.fit)== "weibayes" && !any(tolower(opafit$dist) %in% c("weibull","weibull2p"))) { stop("weibayes fitting only applies to 2 parameter weibull") } if(modify.by.t0==TRUE) { if(tolower(opafit$dist) %in% c("weibull3p", "lognormal3p")){ x$fit<-NULL }else{ modify.by.t0<-FALSE warning("modify.by.t0 ignored for non-3p fitting") } } atleastonefit <- FALSE if(is.null(x$fit)){ i <- 1 x$fit <- list() }else{ i <- length(x$fit)+1 } x$fit[[i]] <- list() op <- unique(c(names(x$options),names(opafit))) if(length(li <- opafit[sapply(op,function(y){ !identical(x$options[[y]], opafit[[y]])})]) > 0){ x$fit[[i]]$options <- li } if(is.null(x$fit[[i]]$options)) { x$fit[[i]]$options<-list() } x$fit[[i]]$options$dist<-opafit$dist if(!is.null(x$data$dlines) && any(c("rr","rr2") %in% tolower(opafit$method.fit))){ modifyList(opafit, list(method.fit="mle")) } x$fit[[i]]$options$method.fit<-opafit$method.fit x$fit[[i]]$n <- x$n x$fit[[i]]$fail <- x$fail x$fit[[i]]$cens <- x$cens x$fit[[i]]$discovery <- x$discovery x$fit[[i]]$interval <- x$interval if(tolower(opafit$dist) %in% c("weibull","weibull2p","weibull3p")){ fit_dist<-"weibull" }else{ if(tolower(opafit$dist) %in% c("lnorm","lognormal","lognormal2p", "lognormal3p")){ fit_dist<-"lnorm" }else{ stop(paste0("dist option ", opafit$dist, "is not recognized for distribution fitting")) } } npar<-2 if(tolower(opafit$dist) %in% c("weibull3p", "lognormal3p")){ npar<-3 } if(any(c("rr") %in% substr(tolower(opafit$method.fit),1,2))){ regression_order<-"XonY" if(nchar(opafit$method.fit)>2){ if(substr(tolower(opafit$method.fit),4,7)=="yonx") { regression_order<-"YonX" } } if(any(x$data$dpoints$weight!=1)) { lrdiv<-x$data$lrq_frame$left/x$data$lrq_frame$right lrqframe2<-data.frame(x$data$lrq_frame, lrdiv) fail_df<-lrqframe2[lrqframe2$lrdiv==1,c(1,4,3)] susp_df<-lrqframe2[lrqframe2$lrdiv<0,c(1,4,3)] susp_df$lrdiv<-rep(0, nrow(susp_df)) teqframe<-rbind(fail_df, susp_df) names(teqframe)<-c("time", "event", "qty") fit_vec<-lslr(getPPP(teqframe), dist=fit_dist, npar=npar, reg_method=regression_order) }else{ fit_vec<-lslr(x$data$dpoints, dist=fit_dist, npar=npar, reg_method=regression_order) } if(!is.null(fit_vec)){ atleastonefit<-TRUE x$fit[[i]]$fit_vec <- fit_vec if(fit_dist=="weibull") { x$fit[[i]]$beta <- fit_vec[2] x$fit[[i]]$eta <- fit_vec[1] } if(fit_dist=="lnorm") { x$fit[[i]]$meanlog<-fit_vec[1] x$fit[[i]]$sdlog<-fit_vec[2] } x$fit[[i]]$gof <- list() if(npar==2){ x$fit[[i]]$gof$r2 <- fit_vec[[3]] x$fit[[i]]$gof$prr <- fit_vec[[4]] }else{ x$fit[[i]]$t0 <- fit_vec[3] x$fit[[i]]$gof$r2 <- fit_vec[[4]] } }else{ x$fit[i] <<- list(NULL) } } if(any(c("mle","mle-rba","mle-unbias") %in% tolower(opafit$method.fit))){ debias<-"none" if(tolower(opafit$method.fit) == "mle-rba") debias <- "rba" if(tolower(opafit$method.fit) == "mle-unbias") { if(fit_dist == "weibull") { debias <- "hrbu" }else{ debias <- "rba" } } fit_vec<-mlefit(x$data$lrq_frame, fit_dist, npar, debias) if(!is.null(fit_vec)){ atleastonefit<-TRUE x$fit[[i]]$fit_vec <- fit_vec if(fit_dist=="weibull") { x$fit[[i]]$beta <- fit_vec[2] x$fit[[i]]$eta <- fit_vec[1] } if(fit_dist=="lnorm") { x$fit[[i]]$meanlog<-fit_vec[1] x$fit[[i]]$sdlog<-fit_vec[2] } x$fit[[i]]$gof <- list() if(npar==2){ x$fit[[i]]$gof$loglik <- fit_vec[[3]] }else{ x$fit[[i]]$t0 <- fit_vec[3] x$fit[[i]]$gof$loglik <- fit_vec[[4]] } } } if(tolower(opafit$method.fit) == "weibayes") { if(!is.null(x$dlines)) stop("weibayes processing not implemented for interval data") lrdiv<-x$data$lrq_frame$left/x$data$lrq_frame$right lrqframe2<-data.frame(x$data$lrq_frame, lrdiv) fail_df<-lrqframe2[lrqframe2$lrdiv==1,c(1,4,3)] susp_df<-lrqframe2[lrqframe2$lrdiv<0,c(1,4,3)] susp_df$lrdiv<-rep(0, nrow(susp_df)) teqframe<-rbind(fail_df, susp_df) names(teqframe)<-c("time", "event", "qty") weibayes_eta<-weibayes(teqframe, beta=opafit$weibayes.beta) atleastonefit<-TRUE fit_vec<-c(weibayes_eta, opafit$weibayes.beta) names(fit_vec)<-c("Eta", "Beta") x$fit[[i]]$fit_vec <- fit_vec x$fit[[i]]$beta <- opafit$weibayes.beta x$fit[[i]]$eta <- weibayes_eta } if(!atleastonefit){ warning("*** calculateSingleFit: Nothing has been fitted. ***\n", '*** Does \"method.fit\" include sensible options? ***') } x$fit[[i]]$modified<-FALSE if(modify.by.t0==TRUE) { if(!is.null(x$fit[[i]]$t0) ){ for(da_line in 1:nrow(x$data$lrq_frame)) { if(x$data$lrq_frame$left[da_line]<x$fit[[i]]$t0 && x$data$lrq_frame$right[da_line]<0) { x$data$lrq_frame$left[da_line]<-x$fit[[i]]$t0+1e-5 } } if(!x$fit[[i]]$t0 < min(x$data$lrq_frame$left)) { stop("t0 too large for data modification") } x$data$lrq_frame$left<-x$data$lrq_frame$left - x$fit[[i]]$t0 x$data$lrq_frame$right[x$data$lrq_frame$right!=-1]<-x$data$lrq_frame$right[x$data$lrq_frame$right!=-1] - x$fit[[i]]$t0 if(!is.null(x$data$dpoints$time)) { x$data$dpoints$time<-x$data$dpoints$time - x$fit[[i]]$t0 } if(!is.null(x$data$dlines$t1)) { x$data$dlines$t1<-x$data$dlines$t1 - x$fit[[i]]$t0 x$data$dlines$t2<-x$data$dlines$t2 - x$fit[[i]]$t0 } x$fit[[i]]$modified<-TRUE }else{ warning("t0 not found for data modification") } } x }
tfpwmk <-function(x) { options(scipen = 999) x = x z = NULL pval = NULL S = 0 var.S = NULL Tau = NULL if (is.vector(x) == FALSE) { stop("Input data must be a vector") } if (any(is.finite(x) == FALSE)) { x[-c(which(is.finite(x) == FALSE))] -> x warning("The input vector contains non-finite numbers. An attempt was made to remove them") } n<-length(x) if (n < 3) { stop("Input vector must contain at least three values") } rep(NA, n * (n - 1)/2) -> V k = 0 for (i in 1:(n-1)) { for (j in (i+1):n) { k = k+1 V[k] = (x[j]-x[i])/(j-i) } } median(V,na.rm=TRUE)->slp t=1:length(x) xt<-(x[1:n])-((slp)*(t)) acf(xt, lag.max=1, plot=FALSE)$acf[-1] -> ro a=1:(length(xt)-1) b=2:(length(xt)) xp<-(xt[b]-(xt[a]*ro)) l<-length(xp) q=1:l y<-(xp[1:l]+((slp)*(q))) n1<-length(y) for (i in 1:(n1-1)) { for (j in (i+1):n1) { S = S + sign(y[j]-y[i]) } } var.S = n1*(n1-1)*(2*n1+5)*(1/18) if(length(unique(y)) < n1) { unique(y) -> aux for (i in 1:length(aux)) { length(which(y == aux[i])) -> tie if (tie > 1) { var.S = var.S - tie*(tie-1)*(2*tie+5)*(1/18) } } } if (S == 0) { z = 0 }else if (S > 0) { z = (S-1)/sqrt(var.S) } else { z = (S+1)/sqrt(var.S) } pval = 2*pnorm(-abs(z)) Tau = S/(.5*n1*(n1-1)) rep(NA, n1 * (n1 - 1)/2) -> W m = 0 for (i in 1:(n1-1)) { for (j in (i+1):n1) { m = m+1 W[m] = (y[j]-y[i])/(j-i) } } median(W,na.rm=TRUE)->slp1 return(c("Z-Value" = z, "Sen's Slope"= slp1, "Old Sen's Slope"= slp, "P-value" = pval, "S" = S, "Var(S)" = var.S, "Tau"=Tau)) }
data("hawkins") pairs(hawkins) mod.ols <- lm(y ~ ., data=hawkins) qqnorm(mod.ols$residuals, ylab="LS residuals") mod.lms <- lmsreg(y ~ ., data=hawkins) qqnorm(mod.lms$residuals, ylab="LMS residuals") mod <- fwdlm(y ~ ., data=hawkins) summary(mod) plot(mod) plot(mod, 1, squared=TRUE, xlim=c(0,132)) par(mfrow=c(1,2)) plot(mod, 5, scaled=FALSE) plot(mod, 6, ylim=c(-40,40)) par(mfrow=c(1,1)) plot(mod, 8, ylim=c(0,20)) par(mfrow=c(2,1)) plot(mod, 3, ylim=c(0,10)) plot(mod, 4, ylim=c(0,20)) par(mfrow=c(1,1)) plot(mod, 9) n <- nrow(hawkins) inc <- mod$included pch <- rep(1,n) pch[inc$"m=86"] <- 3 pch[setdiff(inc$"m=128", inc$"m=122")] <- 15 pch[setdiff(inc$"m=122", inc$"m=110")] <- 17 par(mfrow=c(1,1)) plot(y ~ x8, data=hawkins, pch=pch) pairs(hawkins, col=as.numeric(factor(pch)), pch=pch) data(stackloss) pairs(stackloss) mod1.ols <- lm(Loss ~ . ,data=stackloss) summary(mod1.ols) plot(mod1.ols) mod1 <- fwdlm(Loss ~ ., data=stackloss, nsamp="exact") summary(mod1) plot(mod1) plot(mod1, 1, squared=T) plot(mod1, 2) plot(mod1, 6, ylim=c(-40,40)) mod2 <- fwdlm(Loss ~ Air + Temp, data=stackloss) summary(mod2) plot(mod2, 2) plot(mod2, 10, ylim=c(0.9,1)) mod3.ols <- lm(Loss ~ Air*Temp + I(Air^2), data=stackloss) summary(mod3.ols) mod4 <- fwdlm(Loss ~ Air*Temp + I(Air^2), data=stackloss, nsamp="exact") plot(mod4, 1) plot(mod4, 2) mod5 <- fwdsco(Loss ~ Air*Temp + I(Air^2), data=stackloss, lambda = 1, nsamp="exact") summary(mod5) plot(mod5) mod6 <- fwdlm(log(Loss) ~ Air*Temp + I(Air^2), data=stackloss, nsamp="exact") summary(mod6) plot(mod6, 1) plot(mod6, 6) plot(mod6, 8) mod7 <- fwdlm(log(Loss) ~ Air + Temp, data=stackloss, nsamp="exact") plot(mod7, 10, ylim=c(0.9,1)) plot(mod7, 1, ylim=c(-4,4)) mod8 <- fwdsco(Loss ~ Air + Temp, data=stackloss, lambda = 0, nsamp="exact") summary(mod8) plot(mod8, ylim=c(-4,4)) mod9 <- fwdsco(Loss ~ Air + Temp, data=stackloss, lambda = 0.5, nsamp="exact") plot(mod9, ylim=c(-4,4)) mod10 <- fwdlm(sqrt(Loss) ~ Air + Temp, data=stackloss, nsamp="exact") summary(mod10) plot(mod10, 6, ylim=c(-40,40)) plot(mod10, 10, ylim=c(0.9,1)) plot(mod10, 1, ylim=c(-4,4)) data(salinity) mod1 <- fwdlm(salinity ~ lagsalinity + trend + waterflow, data=salinity, nsamp="exact") plot(mod1) plot(mod1, 1) plot(mod1, 2) mark <- rep(16, nrow(salinity)); mark[16] <- 1 pairs(salinity, pch=mark) salinity$waterflow[16] <- 23.443 mod2 <- fwdlm(salinity ~ lagsalinity + trend + waterflow, data=salinity, nsamp="exact") plot(mod2, 1, th.Res=1.5) par(mfrow=c(1,2)) plot(mod2, 6, ylim=c(-40,40)) mark <- rep(1, nrow(salinity)); mark[c(9, 15, 17)] <- 16 plot(salinity ~ lagsalinity, data=salinity, pch=mark, ylab="Salinity", xlab="Lagged salinity") text(salinity$lagsalinity[mark==16], salinity$salinity[mark==16], which(mark==16), pos=4) par(mfrow=c(1,1)) mod3 <- fwdlm(salinity ~ lagsalinity + waterflow, data=salinity, nsamp="exact") plot(mod3, 1) plot(mod3, 6, ylim=c(-40,40)) col <- pch <- rep(1,nrow(salinity)) col[c(6,14,15)] <- pch[c(6,14,15)] <- 3 col[c(9,15,17)] <- pch[c(9,15,17)] <- 4 pairs(salinity[,c(4,1,3)], col=col, pch=pch, upper.panel = function(x,y,...) text(x,y,1:length(x), ...) ) data(ozone) mod1 <- fwdlm(y ~ ., data=ozone) plot(mod1, 1) plot(mod1, 6, ylim=c(-10,10)) plot(mod1, 8, ylim=c(0,6)) mod1.sco <- fwdsco(y ~ ., data=ozone, lambda=1) plot(mod1.sco) mod2 <- lm(log(y) ~ ., data=ozone) Time <- 1:nrow(ozone) library(MASS) plot(Time, studres(mod2), type="l") abline(0, 0, lty=2) plot(fwdsco(y ~ ., data=ozone, lambda=0), ylim=c(-6,6)) ozone$Time <- Time mod3 <- lm(log(y) ~ ., data=ozone) summary(mod3) mod4 <- lm(log(y) ~ Time + x2 + x5 + x6 + x8, data=ozone) summary(mod4) mod5 <- fwdlm(log(y) ~ Time + x2 + x5 + x6 + x8, data=ozone) plot(mod5, 1, ylim=c(-4.5, 2.5)) plot(mod5, 2) mod5.sco <- fwdsco(y ~ Time + x2 + x5 + x6 + x8, data=ozone, lambda=0) par(mfrow=c(1,2)) plot(mod5.sco, ylim=c(-6,6), plot.mle=F) plot(mod5, 6, ylim=c(-40,40))
`getLevels` <- function(data) { data <- as.data.frame(data) colnames <- paste("V", ncol(data), sep = ".") pN <- unlist(lapply(data, possibleNumeric)) noflevels <- rep(NA, ncol(data)) ulevels <- rep(NA, ncol(data)) noflevels[pN] <- apply( data[, pN, drop = FALSE], 2, max ) + 1 ulevels <- apply( data, 2, function(x) { return(length(unique(x))) } ) noflevels[is.na(noflevels)] <- ulevels[is.na(noflevels)] factor <- unlist(lapply(data, is.factor)) declared <- unlist(lapply(data, function(x) inherits(x, "declared"))) noflevels[pN][ apply( data[, pN, drop = FALSE], 2, function(x) any(x %% 1 > 0) ) ] <- 2 if (any(factor | declared)) { noflevels[factor | declared] <- pmin(noflevels[factor | declared], ulevels[factor | declared]) } noflevels[noflevels == 1] <- 2 return(noflevels) }
formatCode <- function(code, width = 500L, formatter = styleText, ...) { if (!inherits(code, "shinyMetaDeparsed")) { code <- deparseCode(code, width = width) } code <- do.call(formatter, c(list(code), list(...))) prefix_class(code, "shinyMetaFormatted") } styleText <- function(code, ...) { code <- rebreak(code) styler::style_text(code, ...) } deparseCode <- function(code, width = 500L) { code <- walk_ast(code, quo_to_expr, preorder = TRUE) code <- comment_flags_to_enclosings(code) code <- walk_ast(code, remove_meta_classes) code_text <- deparse_flatten(code, width = width) code_text <- comment_remove_enclosing(code_text) oldClass(code_text) <- "shinyMetaDeparsed" code_text } quo_to_expr <- function(expr) { if (rlang::is_quosure(expr)) { rlang::quo_get_expr(expr) } else { expr } } remove_meta_classes <- function(expr) { remove_class(expr, c("shinyMetaString", "shinyMetaExpr")) } deparse_flatten <- function(expr, width = 500L) { if (rlang::is_call(expr, "{")) { paste0(vapply(expr[-1], deparse_flatten, character(1)), collapse = "\n") } else { paste0(deparse(expr, width.cutoff = width), collapse = "\n") } } rebreak <- function(str) { str <- paste(str, collapse = "\n") tokens <- sourcetools::tokenize_string(str) tokens$value <- paste0( tokens$value, ifelse( tokens$type == "operator" & tokens$value == "%>%", "\n", "" ) ) operator_newline <- grepl("\n", tokens$value) & tokens$type == "whitespace" & c(FALSE, head(tokens$type %in% c("comma", "operator"), -1)) tokens$value[operator_newline] <- " " new_str <- paste(tokens$value, collapse = "") gsub("\\s*\\r?\\n\\s*", "\n", new_str) } comment_remove_enclosing <- function(x) { if (!is.character(x) || length(x) > 1) { stop("Expected a string (character vector of length 1).") } txt <- strsplit(x, "\n")[[1]] comment_index <- grep(paste0('^\\s*"', comment_start), txt) if (!length(comment_index)) return(txt) txt[comment_index] <- sub(paste0('^(\\s*)"', comment_start), "\\1", txt[comment_index]) txt[comment_index] <- sub(paste0(comment_end, '"$'), "", txt[comment_index]) txt[comment_index] <- gsub("\\\"", "\"", txt[comment_index], fixed = TRUE) paste(txt, collapse = "\n") }
finiteSampleCorrection <- function(r, n, model = "locsc"){ if(model == "locsc" & r >= 1.74) return(r) if(model %in% c("loc", "sc") & r >= 3.0) return(r) if(n == 1) return(Inf) if(n == 2) return(Inf) eps <- r/sqrt(n) ns <- c(3:50, seq(55, 100, by = 5), seq(110, 200, by = 10), seq(250, 500, by = 50)) epss <- c(seq(0.001, 0.01, by = 0.001), seq(0.02, to = 0.5, by = 0.01)) if(n %in% ns){ ind <- ns == n }else{ ind <- which.min(abs(ns-n)) } if(model == "locsc") return(max(r, approx(x = epss, y = .finiteSampleRadius.locsc[,ind], xout = eps, rule = 2)$y)) if(model == "loc") return(max(r, approx(x = epss, y = .finiteSampleRadius.loc[,ind], xout = eps, rule = 2)$y)) if(model == "sc") return(max(r, approx(x = epss, y = .finiteSampleRadius.sc[,ind], xout = eps, rule = 2)$y)) else stop("argument 'model' has to be 'locsc', 'loc' or 'sc'") }
cleanup_data = function(data, ...) { UseMethod("cleanup_data") } cleanup_data.data.frame = function(data, ... ){ nc = ncol(data) group = pdr = patient_id = minute = NULL assert_that(nc >= 2) data = tibble::set_tidy_names(data) data = dplyr::distinct(data) if (nc == 2) { names(data) = c("minute", "pdr") if (max(table(data$minute)) > 1) stop("Only two columns, and multiple PDR values for given time. Forgot column pat_id?") } if (!(is.numeric(data$minute) && (is.numeric(data$pdr)))) stop("Columns minute and pdr must be numeric") if (nc == 3) { if (!all(names(data) == c("patient_id", "minute", "pdr"))) { stop("Three columns must be named patient_id, minute, pdr") } if (max(table(data$minute, data$patient_id)) > 1) stop("Multiple data for one patient and minute. Forgot column group?") } if (nc == 4) { if (!all(names(data) == c("patient_id", "group", "minute", "pdr"))) stop("Four columns must be named patient_id, group, minute, pdr") if (max(table(data$minute, data$patient_id, data$group)) > 1) warning("Multiple data for one patient, minute and group. Included the same patient's data twice?") data$group = as.character(data$group) } comment = comment(data) data = data %>% filter(minute >= 0 ) %>% mutate( minute = pmax(minute, 0.01), pdr = as.vector(pdr) ) has_patient_id = "patient_id" %in% names(data) if (!has_patient_id) { data$patient_id = "pat_a" } data$patient_id = as.character(data$patient_id) data$patient_id = str_replace_all(str_trim(data$patient_id), " ", "_") has_group = "group" %in% names(data) if (!has_group) { if (!all(with(data, table(patient_id, minute)) %in% 0:1)) stop("Multiple values for the same patient at the same minute require a <<group>> column") data$group = "A" } else { data$group = str_replace_all(str_trim(data$group), " ", "_") } data = data %>% select(patient_id, group, minute, pdr) if (!is.null(comment)) comment(data) = comment data } cleanup_data.matrix = function(data, ... ){ if (ncol(data) > 2) stop("A matrix can only be used as data input when two columns <minute> and <pdr> are passed. Use a data frame otherwise") cleanup_data(as_tibble(data), ...) } cleanup_data.breathtest_data_list = function(data, ... ){ cleanup_data.list(data, ...) } cleanup_data.list = function(data, ... ){ if (is.null(data)) return(NULL) ret = data.frame() comment = list() for (igroup in seq_along(data)) { d1 = data[[igroup]] if (is(d1,"simulated_breathtest_data")) d1 = d1$data is_breathtest_data = inherits(d1, "breathtest_data") needs_group = !("group" %in% names(d1)) && ("patient_id" %in% names(d1)) group = names(data)[igroup] if (is.null(group)) group = LETTERS[igroup] if (needs_group && !is_breathtest_data) { d1$group = group d1 = d1[c("patient_id", "group", "minute", "pdr")] } dd = cleanup_data(d1, ...) if (is_breathtest_data) { if (dot_lgl("use_filename_as_patient_id", ...)) dd$patient_id = str_sub(d1["file_name"], 1, -5) dd$group = group } comment[[igroup]] = comment(d1) ret = rbind(ret, dd ) } if (max(table(ret$minute, ret$patient_id, ret$group)) > 1) warning("Multiple data for one patient, minute and group. Included the same patient's data twice?") ret = tibble::as_tibble(ret[,c("patient_id", "group", "minute", "pdr")]) comment = unique(comment) comment[map_lgl(comment, is.null)] = NULL if (length(comment) > 0) comment(ret) = paste(comment, collapse = "\n") ret } cleanup_data.breathtest_data = function(data, ... ){ id = data$patient_id if (is.null(id) || id == "0" || id == "" || dot_lgl("use_filename_as_patient_id", ...)) id = str_sub(data["file_name"], 1, -5) d = cbind(patient_id = id, data$data[,c("minute", "pdr")]) cleanup_data(d, ...) } cleanup_data.simulated_breathtest_data = function(data, ... ){ cleanup_data(data$data, ...) } dot_lgl = function(label, ...){ !(is.null(list(...)[[label]])) }
context("sdf collect") sc <- testthat_spark_connection() test_that("sdf_collect() works properly", { mtcars_tbl <- testthat_tbl("mtcars") mtcars_data <- sdf_collect(mtcars_tbl) expect_equivalent(mtcars, mtcars_data) }) test_that("sdf_collect() can collect the first n rows of a Spark dataframe", { mtcars_tbl <- testthat_tbl("mtcars", repartition = 5) mtcars_data <- sdf_collect(mtcars_tbl, n = 10) expect_equivalent(mtcars[1:10,], mtcars_data) }) test_that("sdf_collect() works properly with impl = \"row-wise-iter\"", { mtcars_tbl <- testthat_tbl("mtcars") mtcars_data <- sdf_collect(mtcars_tbl, impl = "row-wise-iter") expect_equivalent(mtcars, mtcars_data) }) test_that("sdf_collect() works properly with impl = \"column-wise\"", { mtcars_tbl <- testthat_tbl("mtcars") mtcars_data <- sdf_collect(mtcars_tbl, impl = "column-wise") expect_equivalent(mtcars, mtcars_data) }) test_that("sdf_collect() works with nested lists", { if (spark_version(sc) < "2.4") { skip("serializing nested list into Spark StructType is only supported in Spark 2.4+") } df <- tibble::tibble( a = list(c(1, 2, 3), c(4, 5), c(6)), b = list(c("foo"), c("bar", "foobar"), c("a", "b", "c")) ) sdf <- sdf_copy_to(sc, df, overwrite = TRUE) res <- sdf_collect(sdf) expect_equivalent(df$a, res$a) expect_equivalent(df$b, sapply(res$b, function(x) do.call(c, as.list(x)))) }) test_that("sdf_collect() works with nested named lists", { if (spark_version(sc) < "2.4") { skip("serializing nested named list into Spark StructType is only supported in Spark 2.4+") } df <- tibble::tibble( x = list(c(a = 1, b = 2), c(a = 3, b = 4), c(a = 5, b = 6)), y = list(c(a = "foo", b = "bar"), c(a = "a", b = "b"), c(a = "", b = "")), z = list(list(a = list(c = "foo", d = "bar", e = list("e")), b = "b")) ) sdf <- sdf_copy_to(sc, df, overwrite = TRUE) res <- sdf_collect(sdf) for (col in colnames(df)) { expect_equivalent(lapply(df[[col]], as.list), res[[col]]) } }) test_that("sdf_collect() works with boolean array column", { skip_on_arrow() sdf <- dplyr::tbl( sc, dplyr::sql(" SELECT * FROM VALUES (ARRAY(FALSE)), (ARRAY(TRUE, FALSE)), NULL, (ARRAY(TRUE, NULL, FALSE)) AS TAB(`arr`) ") ) expect_equivalent( sdf %>% sdf_collect(), tibble::tibble(arr = list(FALSE, c(TRUE, FALSE), NA, c(TRUE, NA, FALSE))) ) }) test_that("sdf_collect() works with byte array column", { skip_on_arrow() sdf <- dplyr::tbl( sc, dplyr::sql(" SELECT * FROM VALUES ARRAY(CAST(97 AS BYTE), CAST(98 AS BYTE)), ARRAY(CAST(98 AS BYTE), CAST(99 AS BYTE), CAST(0 AS BYTE), CAST(100 AS BYTE)), NULL, ARRAY(CAST(101 AS BYTE)) AS TAB(`arr`) ") ) df <- sdf %>% collect() expect_equal( df$arr, list( charToRaw("ab"), c(charToRaw("bc"), as.raw(0), charToRaw("d")), NA, charToRaw("e") ) ) }) test_that("sdf_collect() works with integral array column", { skip_on_arrow() for (type in c("SHORT", "INT")) { sdf <- dplyr::tbl( sc, dplyr::sql( glue::glue( " SELECT * FROM VALUES ARRAY(CAST(1 AS {type})), ARRAY(CAST(2 AS {type}), CAST(3 AS {type})), NULL, ARRAY(CAST(4 AS {type}), NULL, CAST(5 AS {type})) AS TAB(`arr`) ", type = type ) ) ) expect_equivalent( sdf %>% sdf_collect(), tibble::tibble(arr = list(1L, c(2L, 3L), NA, c(4L, NA, 5L))) ) } }) test_that("sdf_collect() works with numeric array column", { skip_on_arrow() for (type in c("FLOAT", "LONG", "DOUBLE")) { sdf <- dplyr::tbl( sc, dplyr::sql( glue::glue( " SELECT * FROM VALUES ARRAY(CAST(1 AS {type})), ARRAY(CAST(2 AS {type}), CAST(3 AS {type})), NULL, ARRAY(CAST(4 AS {type}), NULL, CAST('NaN' AS {type}), CAST(5 AS {type})) AS TAB(`arr`) ", type = type ) ) ) expect_equivalent( sdf %>% sdf_collect(), tibble::tibble(arr = list(1, c(2, 3), NA, c(4, NA, NaN, 5))) ) } }) test_that("sdf_collect() works with string array column", { skip_on_arrow() sdf <- dplyr::tbl( sc, dplyr::sql(" SELECT * FROM VALUES ARRAY('ab'), ARRAY('bcd', 'e'), NULL, ARRAY('fghi', NULL, 'jk') AS TAB(`arr`) ") ) expect_equivalent( sdf %>% sdf_collect(), tibble::tibble(arr = list("ab", c("bcd", "e"), NA, c("fghi", NA, "jk"))) ) }) test_that("sdf_collect() works with temporal array column", { skip_on_arrow() for (type in c("DATE", "TIMESTAMP")) { sdf <- dplyr::tbl( sc, dplyr::sql( glue::glue( " SELECT * FROM VALUES ARRAY(CAST('1970-01-01' AS {type})), ARRAY(CAST('1970-01-02' AS {type}), CAST('1970-01-03' AS {type})), NULL, ARRAY(CAST('1970-01-04' AS {type}), NULL, CAST('1970-01-05' AS {type})) AS TAB(`arr`) ", type = type ) ) ) cast_fn <- if (type == "DATE") as.Date else as.POSIXct expect_equivalent( sdf %>% dplyr::pull(arr), list( cast_fn("1970-01-01", tz = ""), cast_fn(c("1970-01-02", "1970-01-03"), tz = ""), NA, cast_fn(c("1970-01-04", NA, "1970-01-05"), tz = "") ) ) } }) test_that("sdf_collect() works with struct array column", { if (spark_version(sc) < "2.3") { skip("deserializing Spark StructType into named list is only supported in Spark 2.3+") } jsonFilePath <- get_test_data_path("struct-inside-arrays.json") sentences <- spark_read_json(sc, name = "sentences", path = jsonFilePath, overwrite = TRUE) sentences_local <- sdf_collect(sentences) expect_equal(sentences_local$text, c("t e x t")) expected <- list( list( begin = 0L, end = 58L, metadata = list(embeddings = c(1L, 2L, 3L), sentence = 1L), result = "French", type = "document1" ), list( begin = 59L, end = 118L, metadata = list(embeddings = c(4L, 5L, 6L), sentence = 2L), result = "English", type = "document2" ) ) expect_equal(sentences_local$sentences, list(expected)) }) test_that("sdf_collect() works with structs inside nested arrays", { if (spark_version(sc) < "2.3") { skip("deserializing Spark StructType into named list is only supported in Spark 2.3+") } if (spark_version(sc) < "2.4") { skip("to_json on nested arrays is only supported in Spark 2.4+") } jsonFilePath <- get_test_data_path("struct-inside-nested-arrays.json") sentences <- spark_read_json(sc, name = "sentences", path = jsonFilePath, overwrite = TRUE) sentences_local <- sdf_collect(sentences) expect_equal(sentences_local$text, c("t e x t")) expected <- list( list(list( begin = 0, end = 58, metadata = list(embeddings = c(1, 2, 3), sentence = 1), result = "French", type = "document1" )), list(list( begin = 59, end = 118, metadata = list(embeddings = c(4, 5, 6), sentence = 2), result = "English", type = "document2" )) ) expect_equal(sentences_local$sentences, list(expected)) }) test_that("sdf_collect() supports callback", { if (spark_version(sc) < "2.0") skip("batch collection requires Spark 2.0") batch_count <- 0 row_count <- 0 df <- tibble(id = seq(1, 10), val = lapply(seq(1, 10), function(x) list(a = x, b = as.character(x)))) sdf <- sdf_copy_to(sc, df, repartition = 2, overwrite = TRUE) collected <- list() sdf %>% sdf_collect(callback = function(batch_df) { batch_count <<- batch_count + 1 row_count <<- row_count + nrow(batch_df) collected <<- append(collected, batch_df$val) }) expect_equal( batch_count, 1 ) expect_equal( row_count, 10 ) if (spark_version(sc) >= "2.4") { expect_equal( collected, df$val ) } if (spark_version(sc) >= "2.4") { collected <- list() sdf %>% sdf_collect(callback = function(batch_df, idx) { collected <<- append(collected, batch_df$val) }) expect_equal( collected, df$val ) } sdf_len_batch_count <- 0 sdf_len(sc, 10, repartition = 2) %>% sdf_collect(callback = function(df) { sdf_len_batch_count <<- sdf_len_batch_count + 1 }) expect_equal( sdf_len_batch_count, ifelse("arrow" %in% .packages(), 2, 1) ) sdf_len_last_idx <- 0 sdf_len(sc, 10, repartition = 2) %>% sdf_collect(callback = function(df, idx) { sdf_len_last_idx <<- idx }) expect_equal( sdf_len_last_idx, ifelse("arrow" %in% .packages(), 2, 1) ) }) test_that("sdf_collect() supports callback expression", { if (spark_version(sc) < "2.0") skip("batch collection requires Spark 2.0") row_count <- 0 sdf_len(sc, 10, repartition = 2) %>% collect(callback = ~ (row_count <<- row_count + nrow(.x))) expect_equal( 10, row_count ) }) test_that("sdf_collect() preserves NA_real_", { df <- tibble::tibble(x = c(NA_real_, 3.14, 0.142857)) sdf <- sdf_copy_to(sc, df, overwrite = TRUE) expect_equal(sdf %>% collect(), df) })
library(ordinal) fm <- clm(rating ~ temp, nominal=~contact, data=wine) fm$Theta fm$alpha.mat fm <- clm(rating ~ temp, nominal=~contact, data=wine, threshold="symmetric") fm$Theta fm$alpha.mat fm <- clm(rating ~ temp, nominal=~contact, data=wine, threshold="equidistant") fm$Theta fm$alpha.mat fm <- clm(rating ~ contact, nominal=~temp, data=wine) fm$alpha.mat fm$Theta set.seed(123) x <- rnorm(nrow(wine), sd=1) fm <- clm(rating ~ temp, nominal=~ x, data=wine) fm$alpha.mat fm$Theta fm <- clm(rating ~ temp, nominal=~ poly(x, 2), data=wine) fm$alpha.mat fm$Theta set.seed(123) x <- rnorm(nrow(wine), sd=1) fm <- clm(rating ~ temp, nominal=~contact + x, data=wine) fm$alpha.mat fm$Theta fm <- clm(rating ~ temp, nominal=~contact + x, data=wine, threshold="symmetric") fm$alpha.mat fm$Theta with(fm, t(apply(alpha.mat, 1, function(th) tJac %*% th))) fm <- clm(rating ~ temp, nominal=~contact:x, data=wine) fm$alpha.mat fm$Theta fm <- clm(rating ~ temp, nominal=~contact+x+contact:x, data=wine) fm$alpha.mat fm$Theta fm <- clm(rating ~ temp, nominal=~contact*x, data=wine) fm$alpha.mat fm$Theta fm <- clm(rating ~ temp, nominal=~contact + poly(x, 2), data=wine) fm$alpha.mat fm$Theta wine$Con <- as.character(wine$contact) == "yes" fm <- clm(rating ~ temp, nominal=~Con, data=wine) fm$Theta fm$alpha.mat wine$Con.num <- 1 * wine$Con fm <- clm(rating ~ temp, nominal=~Con.num, data=wine) fm$Theta fm$alpha.mat set.seed(321) y <- rnorm(nrow(wine), sd=1) fm1 <- clm(rating ~ temp, nominal=~y + x, data=wine) fm1$alpha.mat fm1$Theta fm1 <- clm(rating ~ temp, nominal=~y + contact + x, data=wine) fm1$alpha.mat fm1$Theta fm1 <- clm(rating ~ temp, nominal=~contact + x + contact:x + y, data=wine) summary(fm1) fm1$Theta fm1$alpha.mat fm1 <- clm(rating ~ temp, nominal=~contact*x + y, data=wine) fm1$Theta fm1$alpha.mat t(fm1$alpha.mat) fm1 data(soup, package="ordinal") fm2 <- clm(SURENESS ~ 1, nominal=~PRODID + DAY, data=soup) fm2$Theta fm2$alpha.mat prodid <- factor(soup$PRODID, ordered=TRUE) fm2 <- clm(SURENESS ~ 1, nominal=~prodid + DAY, data=soup) fm2$alpha.mat fm2$Theta fm2 <- clm(SURENESS ~ 1, nominal=~prodid, data=soup) fm2$alpha.mat fm2$Theta soup2 <- soup levels(soup2$DAY) levels(soup2$GENDER) xx <- with(soup2, DAY == "2" & GENDER == "Female") fm8 <- clm(SURENESS ~ PRODID, nominal= ~ DAY + GENDER, data=soup2, subset=!xx) fm8$alpha.mat fm8$Theta fm9 <- clm(SURENESS ~ PRODID, nominal= ~ DAY * GENDER, data=soup2, subset=!xx) fm9$alpha.mat fm9$Theta stopEqual <- function(x, y, ca=FALSE) stopifnot(isTRUE(all.equal(x, y, check.attributes=ca))) stopEqual(fm8$alpha.mat, fm9$alpha.mat[1:3, ]) stopEqual(fm8$Theta, fm9$Theta) stopEqual(logLik(fm8), logLik(fm9)) set.seed(12345) wts <- runif(nrow(soup)) fm2 <- clm(SURENESS ~ 1, nominal=~SOUPTYPE + DAY, data=soup, weights=wts) fm2$Theta fm2 <- try(clm(SURENESS ~ 1, nominal=~SOUPTYPE + DAY + offset(wts), data=soup), silent=TRUE) stopifnot(inherits(fm2, "try-error")) fm2 <- clm(SURENESS ~ 1, nominal=~SOUPTYPE + DAY, data=soup) fm2$Theta fm2 fm2 <- clm(SURENESS ~ 1, nominal=~SOUPTYPE * DAY, data=soup) fm2$Theta fm2 fm2$alpha.mat fm2 <- clm(SURENESS ~ 1, nominal=~SOUPTYPE * DAY, data=soup, threshold="symmetric") fm2$Theta fm2$alpha.mat fm1 <- clm(rating ~ temp, nominal=~contact-1, data=wine) fm2 <- clm(rating ~ temp, nominal=~contact, data=wine) stopifnot(isTRUE(all.equal(fm1$Theta, fm2$Theta))) stopifnot(isTRUE(all.equal(fm1$logLik, fm2$logLik))) wine2 <- wine wine2$contact <- relevel(wine2$contact, "yes") fm3 <- clm(rating ~ temp, nominal=~contact, data=wine2) stopifnot(isTRUE(all.equal(coef(fm1, na.rm=TRUE), coef(fm3))))
fmodel2pp <- function(zeta, y, apar, bpar, prior = dnorm, ...) { m <- length(bpar) return(fmodel4pp(zeta, y, apar = apar, bpar = bpar, cpar = rep(0,m), dpar = rep(1,m), prior = prior, ...)) }
mng.tree.removal <- function(tr, fl, common.vars, this.period, next.period,...){ per.vol.harv <- list(...)$per.vol.harv final.felling <- ifelse (substr(fl$management[, next.period],1,1) == '1', TRUE, FALSE) thinning <- ifelse (substr(fl$management[, next.period],2,2) == '1', TRUE, FALSE) i.harvestable <- tr$data$plot.id %in% fl$plot.id [final.felling] vols <- common.vars$vol.wo.tr.m3.ha[i.harvestable] uid <- tr$data$plot.id[i.harvestable] sum.vols <- aggregate(vols ~ uid, FUN = sum) vols <- data.frame( treid = tr$data$treeid[i.harvestable], vols = vols, sum.vols = sum.vols$vols[match(uid, sum.vols$uid)]) vols$prob <- with(vols, vols/sum(vols)) vols$prob.vols <- with(vols, prob * vols) ff <- by (data = vols, INDICES = uid, FUN = function(x) { n <- sum(x$vols)/ sum(x$prob * x$vols) data.frame(harvested = ifelse( x$prob >= runif(nrow(x), 0, 1/n) , TRUE, FALSE), treeid = x$treid) }) tr.removed <- rep(FALSE, length(tr$data$treeid)) tr.removed[match(ff$treeid, tr$data$treeid )] <- ff$harvested i.harvestable <- tr$data$plot.id %in% fl$plot.id [thinning] vols <- common.vars$vol.wo.tr.m3.ha[i.harvestable] uid <- tr$data$plot.id[i.harvestable] sum.vols <- aggregate(vols ~ uid, FUN = sum) vols <- data.frame( treid = tr$data$treeid[i.harvestable], vols = vols, sum.vols = sum.vols$vols[match(uid, sum.vols$uid)]) vols$prob <- with(vols, vols/sum(vols)) vols$prob.vols <- with(vols, prob * vols) ff <- by (data = vols, INDICES = uid, FUN = function(x) { n <- sum(x$vols)/ sum(x$prob * x$vols) data.frame(harvested = ifelse( x$prob >= runif(nrow(x), 0, 1/n) , TRUE, FALSE), treeid = x$treid) } ) ff <- do.call(rbind,ff) tr.removed[match(ff$treeid, tr$data$treeid )] <- ff$harvested return(tr.removed) }
tidypredict_fit.lm <- function(model) { parsedmodel <- parse_model(model) build_fit_formula(parsedmodel) } tidypredict_fit.glm <- function(model) { parsedmodel <- parse_model(model) build_fit_formula(parsedmodel) } build_fit_formula <- function(parsedmodel) { parsed_f <- map( parsedmodel$terms, ~ { if (.x$is_intercept == 0) { cols <- map( .x$fields, ~ { f <- NULL if (.x$type == "ordinary") { f <- expr(!!sym(.x$col)) } if (.x$type == "conditional") { f <- expr(ifelse(!!sym(.x$col) == !!.x$val, 1, 0)) } if (.x$type == "operation") { if (.x$op == "morethan") { f <- expr(ifelse(!!sym(.x$col) > !!.x$val, !!sym(.x$col) - !!.x$val, 0)) } if (.x$op == "lessthan") { f <- expr(ifelse(!!sym(.x$col) < !!.x$val, !!.x$val - !!sym(.x$col), 0)) } } f } ) cols <- reduce(cols, function(l, r) expr(!!l * !!r)) expr((!!cols * !!.x$coef)) } else { expr(!!.x$coef) } } ) f <- reduce(parsed_f, function(l, r) expr(!!l + !!r)) if (!is.null(parsedmodel$general$offset)) { f <- expr(!!f + !!parsedmodel$general$offset) } if (parsedmodel$general$is_glm == 1) { link <- parsedmodel$general$link assigned <- 0 if (link == "identity") { assigned <- 1 } if (link == "logit") { assigned <- 1 f <- expr(1 - 1 / (1 + exp(!!f))) } if (link == "log") { assigned <- 1 f <- expr(exp(!!f)) } if (assigned == 0) { stop("Combination of family and link are not supported") } } f } parse_model.lm <- function(model) parse_model_lm(model) parse_model.glm <- function(model) parse_model_lm(model) parse_model_lm <- function(model) { acceptable_formula(model) coefs <- as.numeric(model$coefficients) labels <- names(model$coefficients) vars <- names(attr(model$terms, "dataClasses")) qr <- NULL if (!is.null(model$qr)) qr <- qr.solve(qr.R(model$qr)) pm <- list() pm$general$model <- class(model)[[1]] pm$general$version <- 2 pm$general$type <- "regression" pm$general$residual <- model$df.residual if (length(summary(model)$sigma^2) > 0) { pm$general$sigma2 <- summary(model)$sigma^2 } if (!is.null(model$family$family)) { pm$general$family <- model$family$family } if (!is.null(model$family$link)) { pm$general$link <- model$family$link } if (!is.null(model$call$offset)) { pm$general$offset <- model$call$offset } pm$general$is_glm <- 0 if (class(model)[[1]] == "glm") { pm$general$is_glm <- 1 } terms <- map( seq_len(length(labels)), ~ { list( label = labels[.x], coef = coefs[.x], is_intercept = ifelse(labels[.x] == "(Intercept)", 1, 0), fields = parse_label_lm(labels[.x], vars), qr = parse_qr_lm(labels[.x], qr) ) } ) pm$terms <- terms as_parsed_model(pm) } parse_label_lm <- function(label, vars) { all_items <- NULL items <- strsplit(label, "\\:")[[1]] for (i in seq_len(length(items))) { item <- list( type = "ordinary", col = items[i] ) cat_match <- map_lgl(vars, ~ .x == substr(items[i], 1, nchar(.x))) if (any(cat_match) && any(vars[cat_match] != items[i]) && !(items[i] %in% vars)) { cat_match_vars <- vars[cat_match] sole_cat_match <- cat_match_vars[rank(-nchar(cat_match_vars))][[1]] item <- list( type = "conditional", col = sole_cat_match, val = substr(items[i], nchar(sole_cat_match) + 1, nchar(items[i])), op = "equal" ) } all_items <- c(all_items, list(item)) } all_items } parse_qr_lm <- function(label, qr) { qrs <- qr[label == rownames(qr) ] qrs <- set_names( as.list(qrs), paste0("qr_", 1:length(qrs)) ) } tidypredict_interval.lm <- function(model, interval = 0.95) { parsedmodel <- parse_model(model) te_interval_lm(parsedmodel, interval) } tidypredict_interval.glm <- function(model, interval = 0.95) { parsedmodel <- parse_model(model) te_interval_glm(parsedmodel, interval) } get_qr_lm <- function(qr_name, parsedmodel) { q <- map( parsedmodel$terms, ~ { cqr <- .x$qr[qr_name][[1]] if (.x$is_intercept == 0) { cols <- map( .x$fields, ~ { f <- NULL if (.x$type == "ordinary") { f <- expr(!!sym(.x$col)) } if (.x$type == "conditional") { f <- expr(ifelse(!!sym(.x$col) == !!.x$val, 1, 0)) } if (.x$type == "operation") { if (.x$op == "morethan") { f <- expr(ifelse(!!sym(.x$col) > !!.x$val, !!sym(.x$col) - !!.x$val, 0)) } if (.x$op == "lessthan") { f <- expr(ifelse(!!sym(.x$col) < !!.x$val, !!.x$val - !!sym(.x$col), 0)) } } f } ) cols <- reduce(cols, function(l, r) expr(!!l * !!r)) if (cqr != 0) expr(!!cols * !!cqr) } else { expr(!!cqr) } } ) f <- reduce( q[!map_lgl(q, is.null)], function(x, y) expr(!!x + !!y) ) expr((!!f) * (!!f) * !!parsedmodel$general$sigma2) } te_interval_lm <- function(parsedmodel, interval = 0.95) { qr_names <- names(parsedmodel$terms[[1]]$qr) qrs <- map( qr_names, ~ get_qr_lm(.x, parsedmodel) ) qrs <- reduce(qrs, function(x, y) expr(!!x + (!!y))) tfrac <- qt(1 - (1 - 0.95) / 2, parsedmodel$general$residual) expr(!!tfrac * sqrt((!!qrs) + (!!parsedmodel$general$sigma2))) } te_interval_glm <- function(parsedmodel, interval = 0.95) { intervals <- te_interval_lm(parsedmodel, interval) family <- parsedmodel$general$family link <- parsedmodel$general$link assigned <- 0 if (family == "gaussian" && link == "identity") { assigned <- 1 } if (assigned == 0) { stop("Combination of family and link are not supported for prediction intervals") } intervals }
context("waitForJobs") test_that("waitForJobs", { f = function(x) { if (x == 5) stop("x == 5") else x } reg = makeTestRegistry() batchMap(reg, f, 1:5) submitJobs(reg) waitForJobs(reg) expect_equal(waitForJobs(reg, 1:5, stop.on.error = FALSE), FALSE) expect_warning(waitForJobs(reg, 1:5, stop.on.error = TRUE)) expect_equal(suppressWarnings(waitForJobs(reg, 1:5, stop.on.error = TRUE)), FALSE) expect_equal(waitForJobs(reg, 1:4, stop.on.error=FALSE), TRUE) expect_equal(waitForJobs(reg, 1:4, stop.on.error=TRUE), TRUE) })
install.packages("MCDA") install.packages("cplexAPI",configure.args = "--with-cplex-dir=/opt/ibm/ILOG/CPLEX_Studio128/cplex") library(MCDA) criteria <- c("c1","c2","c3","c4","c5") criteriaMinMax <- c("max","max","max","max","max") names(criteriaMinMax) <- criteria categories <- c("Good","Neutral","Bad") categoriesRanks <- c(1,2,3) names(categoriesRanks) <- categories f <- system.file("datasets", "dataFLOSS.csv", package = "MCDA") pT <- read.csv(f, TRUE, ",", "\"", ".") pT <- data.matrix(pT) rownames(pT) <- 1:dim(pT)[1] colnames(pT) <- criteria assig <-c("Bad", "Neutral", "Bad", "Bad", "Neutral","Good", "Neutral", "Good", "Bad", "Bad", "Good", "Neutral", "Bad", "Bad", "Bad", "Bad", "Bad", "Neutral", "Bad", "Neutral", "Bad", "Bad", "Neutral", "Bad", "Bad") names(assig) <- 1:25 m1 <- MRSortInferenceExact(pT, assig, categoriesRanks, criteriaMinMax, veto = FALSE, readableWeights = TRUE, readableProfiles = TRUE, solver = "cplex", alternativesIDs = names(assig)) print(m1) incomp <- MRSortIdentifyIncompatibleAssignments(pT, assig, categoriesRanks, criteriaMinMax, veto = FALSE, solver = "cplex", alternativesIDs = names(assig)) for(incAlt in incomp$incompatibleSets) { m1pr <- MRSortInferenceExact(pT, assig, categoriesRanks, criteriaMinMax, veto = FALSE, readableWeights = TRUE, readableProfiles = TRUE, alternativesIDs = names(assig)[!names(assig) %in% incAlt], solver = "cplex") print(MRSort(pT, m1pr$profilesPerformances, categoriesRanks, m1pr$weights, criteriaMinMax, m1pr$lambda, alternativesIDs = incAlt)) } m1 <- MRSortInferenceExact(pT, assig, categoriesRanks, criteriaMinMax, veto = TRUE, readableWeights = TRUE, readableProfiles = TRUE, solver = "cplex", alternativesIDs = names(assig)) print(m1) criteriaLBs=c(-2,-2,-2,-2,-2) names(criteriaLBs) <- criteria criteriaUBs=c(2,2,2,2,2) names(criteriaUBs) <- criteria plotMRSortSortingProblem(pT, m1$profilesPerformances, categoriesRanks, assig, criteriaMinMax, criteriaUBs, criteriaLBs, NULL, m1$vetoPerformances, 'V', m1$weights, m1$lambda, alternativesIDs = "no alternatives") assig <-c(assig, "Bad", "Bad", "Neutral", "Bad", "Bad", "Bad", "Bad", "Neutral", "Good", "Neutral") names(assig) <- 1:35 m2 <- MRSortInferenceExact(pT, assig, categoriesRanks, criteriaMinMax, veto = TRUE, readableWeights = TRUE, readableProfiles = TRUE, solver = "cplex", alternativesIDs = names(assig)) print(m2) incomp <- MRSortIdentifyIncompatibleAssignments(pT, assig, categoriesRanks, criteriaMinMax, veto = TRUE, solver = "cplex", alternativesIDs = names(assig)) for(incAlt in incomp$incompatibleSets) { m2pr <- MRSortInferenceExact(pT, assig, categoriesRanks, criteriaMinMax, veto = TRUE, readableWeights = TRUE, readableProfiles = TRUE, alternativesIDs = names(assig)[!names(assig) %in% incAlt], solver = "cplex") print(MRSort(pT, m2pr$profilesPerformances, categoriesRanks, m2pr$weights, criteriaMinMax, m2pr$lambda, m2pr$vetoPerformances, alternativesIDs = incAlt)) } assig[2] <- "Bad" assig[35] <- "Bad" m2 <- MRSortInferenceExact(pT, assig, categoriesRanks, criteriaMinMax, veto = TRUE, readableWeights = TRUE, readableProfiles = TRUE, solver = "cplex", alternativesIDs = names(assig)) plotMRSortSortingProblem(pT, m2$profilesPerformances, categoriesRanks, assig, criteriaMinMax, criteriaUBs, criteriaLBs, NULL, m2$vetoPerformances, 'V', m2$weights, m2$lambda, alternativesIDs = "no alternatives") assig <-c(assig, "Bad", "Neutral", "Bad", "Neutral", "Good", "Bad", "Bad", "Good", "Bad", "Bad") names(assig) <- 1:45 m3 <- MRSortInferenceExact(pT, assig, categoriesRanks, criteriaMinMax, veto = TRUE, readableWeights = TRUE, readableProfiles = TRUE, solver = "cplex", alternativesIDs = names(assig)) print(m3) incomp <- MRSortIdentifyIncompatibleAssignments(pT, assig, categoriesRanks, criteriaMinMax, veto = TRUE, solver = "cplex", alternativesIDs = names(assig)) for(incAlt in incomp$incompatibleSets) { m3pr <- MRSortInferenceExact(pT, assig, categoriesRanks, criteriaMinMax, veto = TRUE, readableWeights = TRUE, readableProfiles = TRUE, alternativesIDs = names(assig)[!names(assig) %in% incAlt], solver = "cplex") print(MRSort(pT, m3pr$profilesPerformances, categoriesRanks, m3pr$weights, criteriaMinMax, m3pr$lambda, m3pr$vetoPerformances, alternativesIDs = incAlt)) } m3 <- LPDMRSortInferenceExact(pT, assig, categoriesRanks, criteriaMinMax, majorityRule = "D", readableWeights = TRUE, readableProfiles = TRUE, minmaxLPD = TRUE, solver = "cplex", alternativesIDs = names(assig)) print(m3) m3 <- LPDMRSortInferenceExact(pT, assig, categoriesRanks, criteriaMinMax, majorityRule = "dV", readableWeights = TRUE, readableProfiles = TRUE, minmaxLPD = TRUE, solver = "cplex", alternativesIDs = names(assig)) print(m3) m3 <- LPDMRSortInferenceExact(pT, assig, categoriesRanks, criteriaMinMax, majorityRule = "Dv", readableWeights = TRUE, readableProfiles = TRUE, minmaxLPD = TRUE, solver = "cplex", alternativesIDs = names(assig)) print(m3) m3 <- LPDMRSortInferenceExact(pT, assig, categoriesRanks, criteriaMinMax, majorityRule = "v", readableWeights = TRUE, readableProfiles = TRUE, minmaxLPD = TRUE, solver = "cplex", alternativesIDs = names(assig)) print(m3) m3 <- LPDMRSortInferenceExact(pT, assig, categoriesRanks, criteriaMinMax, majorityRule = "d", readableWeights = TRUE, readableProfiles = TRUE, minmaxLPD = TRUE, solver = "cplex", alternativesIDs = names(assig)) print(m3) m3 <- LPDMRSortInferenceExact(pT, assig, categoriesRanks, criteriaMinMax, majorityRule = "dv", readableWeights = TRUE, readableProfiles = TRUE, minmaxLPD = TRUE, solver = "cplex", alternativesIDs = names(assig)) print(m3) plotMRSortSortingProblem(pT, m3$profilesPerformances, categoriesRanks, assig, criteriaMinMax, criteriaUBs, criteriaLBs, m3$dictatorPerformances, m3$vetoPerformances, 'dv', m3$weights, m3$lambda, alternativesIDs = "no alternatives")
test_that("testing memoryUse", { skip_on_os("windows") if (!interactive()) skip("This memoryUse is still very experimental") if (!requireNamespace("future", quietly = TRUE)) { skip("future package required") } testInitOut <- testInit(c("raster", "future.callr", "future"), opts = list("spades.moduleCodeChecks" = FALSE, "spades.memoryUseInterval" = 0.2, "spades.futurePlan" = "callr")) oldPlan <- future::plan() on.exit({ testOnExit(testInitOut) if (!identical(future::plan(), oldPlan)) { future::plan(oldPlan) } }, add = TRUE) system.time(future::plan(future.callr::callr)) times <- list(start = 0.0, end = if (isWindows()) 60 else 30, timeunit = "year") params <- list( .globals = list(burnStats = "npixelsburned", stackName = "landscape"), randomLandscapes = list(.plotInitialTime = NA, .plotInterval = NA), caribouMovement = list(.plotInitialTime = NA, .plotInterval = NA, torus = TRUE), fireSpread = list(.plotInitialTime = NA, .plotInterval = NA) ) modules <- list("randomLandscapes", "caribouMovement", "fireSpread") paths <- list(modulePath = system.file("sampleModules", package = "SpaDES.core")) mySim2 <- simInit(times = times, params = params, modules = modules, objects = list(), paths = paths) mySim3 <- spades(mySim2, debug = TRUE) suppressWarnings({ memUse <- memoryUse(mySim3) }) expect_true(is(memUse, "data.table")) expect_true(is.numeric(memUse$maxMemory)) expect_true(sum(!is.na(memUse$maxMemory)) > 0) suppressWarnings({ memUse <- memoryUse(mySim3, max = FALSE) }) })
NULL print.FitSecondaryGrowth <- function(x, ...) { cat("Secondary model estimated from data\n\n") env <- names(x$secondary_model) cat(paste("Environmental factors included:", paste(env, collapse = ", "), "\n\n")) cat(paste("mu_opt:", x$mu_opt_fit, "\n\n")) for (i in 1:length(x$secondary_model)) { cat(paste("Secondary model for ", names(x$secondary_model)[i], ":\n", sep = "")) print(unlist(x$secondary_model[[i]])) cat("\n") } } plot.FitSecondaryGrowth <- function(x, y=NULL, ..., which = 1, add_trend = FALSE) { obs_data <- x$data obs_data$res <- residuals(x) obs_data <- if (x$transformation == "sq") { obs_data %>% select(-"log_mu", -"mu") %>% rename(observed = "sq_mu") } else if (x$transformation == "none") { obs_data %>% select(-"log_mu", -"sq_mu") %>% rename(observed = "mu") } else if (x$transformation == "log") { obs_data %>% select(-"sq_mu", "mu") %>% rename(observed = "mu") } if (which == 1) { label_end <- switch(x$transformation, sq = "square root of the growth rate", log = "logarithm of the growth rate", none = "growth rate" ) p1 <- obs_data %>% mutate(predicted = .data$observed + .data$res) %>% ggplot(aes(x = .data$observed, y = .data$predicted)) + geom_point() + geom_abline(slope = 1, intercept = 0, linetype = 2) + geom_smooth(method = "lm", se = FALSE, colour = "grey") + xlab(paste("Observed", label_end)) + ylab(paste("Fitted", label_end)) + theme_cowplot() } else if(which == 2) { ylabel <- switch(x$transformation, sq = "Square root of the growth rate", log = "Logarithm of the growth rate", none = "Growth rate" ) p1 <- obs_data %>% mutate(predicted = .data$observed + .data$res) %>% select(-"res") %>% pivot_longer(-c("observed", "predicted"), names_to = "env_factor", values_to = "value") %>% pivot_longer(-c("env_factor", "value"), names_to = "point_type", values_to = "growth") %>% ggplot(aes(x = .data$value)) + geom_point(aes(y = .data$growth, colour = .data$point_type)) + facet_wrap("env_factor", scales = "free_x") + ylab(ylabel) + xlab("") + theme_bw() + theme(legend.title = element_blank()) if (isTRUE(add_trend)) { p1 <- p1 + geom_smooth(aes(y = .data$growth, colour = .data$point_type)) } } p1 } summary.FitSecondaryGrowth <- function(object, ...) { summary(object$fit_results) } residuals.FitSecondaryGrowth <- function(object, ...) { residuals(object$fit_results) } coef.FitSecondaryGrowth <- function(object, ...) { coef(object$fit_results) } vcov.FitSecondaryGrowth <- function(object, ...) { covar <- try(solve(0.5*object$fit_results$hessian), silent = TRUE) if (!is.numeric(covar)) { warning("Cannot estimate covariance; system is singular") param <- object$par p <- length(param) covar <- matrix(data = NA, nrow = p, ncol = p) } covar } deviance.FitSecondaryGrowth <- function(object, ...) { deviance(object$fit_results) } fitted.FitSecondaryGrowth <- function(object, ...) { observed <- switch(object$transformation, sq = object$data$sq_mu, log = object$data$log_mu, none = object$data$mu ) observed + residuals(object) } predict.FitSecondaryGrowth <- function(object, newdata=NULL, ...) { if (is.null(newdata)) { newdata <- object$data } sec_model_names <- object$secondary_model %>% map_chr(~ .$model) gammas <- calculate_gammas_secondary(sec_model_names, newdata, object$secondary_model) gammas*object$mu_opt_fit }
library(devtools) library(magrittr) setwd("~/gh/radiant.data") document(roclets = c('rd', 'collate', 'namespace')) system("git add --all .") system("git commit -m 'Update [ci skip]'") system("git push") devtools::install_github("radiant-rstats/radiant") devtools::install_github("radiant-rstats/radiant.data") devtools::install_github("radiant-rstats/radiant.design") devtools::install_github("radiant-rstats/radiant.basics") devtools::install_github("radiant-rstats/radiant.model") devtools::install_github("radiant-rstats/radiant.multivariate") devtools::install_github("rstudio/shinyapps") library(shinyapps) fpath <- "~/gh/radiant/inst/app" setwd(fpath) shinyapps::deployApp(account = "vnijs", launch.browser = FALSE, lint = FALSE) shinyapps::deployApp(account = "vnijs") shinyapps::showLogs(entries=1000)
utils::globalVariables(c('time', 'value', 'level_data', '..cols_breaks', '.', 'weekday', 'Date', 'level', 'heart_rate', 'hr_variability', 'level_start', 'percent', 'dateTime_end', 'level_end', 'dateTime_start', 'GROUP', '..cols_accum', '.SD')) inner_elapsed_time = function(secs, estimated = FALSE) { tmp_hours = as.integer((secs / 60) / 60) tmp_hours_minutes = (secs / 60) %% 60 tmp_seconds = secs %% 60 est_verb = ifelse(estimated, "Estimated time: ", "Elapsed time: ") res_out = paste(c(est_verb, tmp_hours, " hours and ", as.integer(tmp_hours_minutes), " minutes and ", as.integer(tmp_seconds), " seconds."), collapse = "") return(res_out) } compute_elapsed_time = function(time_start) { t_end = proc.time() time_total = as.numeric((t_end - time_start)['elapsed']) time_ = inner_elapsed_time(time_total) cat(time_, "\n") } split_year_in_weeks = function(year) { weeks_data = seq(from = as.Date(glue::glue('{year}-01-01')), to = as.Date(glue::glue('{year}-12-31')), by = '1 week') return(weeks_data) } base_url_request = function(url, oauth_token, show_nchar_case_error = 135) { auth_code = paste("Bearer", oauth_token) query_response = httr::GET(url = url, httr::add_headers(Authorization = auth_code)) if (query_response$status_code != 200) { content_list_obj = httr::content(query_response, "parsed") stop(glue::glue("The request gave an error code of '{query_response$status_code}' with the following first '{show_nchar_case_error}' characters as error message: '{substr(content_list_obj, 1, show_nchar_case_error)}'"), call. = F) } else { content_list_obj = httr::content(query_response, as = "text") content_list_obj = jsonlite::fromJSON(content_list_obj, simplifyVector = TRUE) } return(content_list_obj) } ggplot_each_date = function(date_intraday, date) { date_intraday$time = as.POSIXct(date_intraday$time, tz = 'UTC') MAX_heart_rate = max(date_intraday$value) idx_max = which(date_intraday$value == MAX_heart_rate) max_time = date_intraday$time[idx_max] plt = ggplot2::ggplot(date_intraday, ggplot2::aes(x = time, y = value, group = 1)) + ggplot2::geom_line(color = "green") + ggplot2::ggtitle(glue::glue("Heart-Rate value at {date} ( '{as.character(lubridate::wday(date, label = TRUE))}' )")) + ggplot2::theme(plot.title = ggplot2::element_text(hjust = 0.5, face = "bold")) + ggplot2::geom_hline(yintercept = MAX_heart_rate, linetype = "dotted", colour = 'blue') + ggplot2::scale_y_continuous(breaks = sort(c(seq(min(date_intraday$value), MAX_heart_rate, length.out = 5), MAX_heart_rate))) + ggplot2::scale_x_datetime(date_breaks = "3 hours", date_labels = "%H:%M") + ggplot2::geom_vline(xintercept = max_time, linetype = "dotted", colour = 'blue') return(plt) } heart_rate_time_series = function(user_id, token, date_start, date_end, time_start = '00:00', time_end = '23:59', detail_level = '1min', ggplot_intraday = FALSE, ggplot_ncol = NULL, ggplot_nrow = NULL, verbose = FALSE, show_nchar_case_error = 135) { if (verbose) t_start = proc.time() seq_dates = as.character(seq(from = as.Date(date_start), to = as.Date(date_end), by = 1)) heart_rate = heart_rate_intraday = list() for (idx in 1:length(seq_dates)) { if (verbose) cat(glue::glue("Day: '{seq_dates[idx]}' will be processed ..."), '\n') URL = glue::glue('https://api.fitbit.com/1/user/{user_id}/activities/heart/date/{seq_dates[idx]}/{seq_dates[idx]}/{detail_level}/time/{time_start}/{time_end}.json') process_data = base_url_request(url = URL, oauth_token = token, show_nchar_case_error = show_nchar_case_error) heart_rate[[idx]] = process_data$`activities-heart` tmp_intraday = process_data$`activities-heart-intraday`$dataset if (!inherits(tmp_intraday, 'list') & length(tmp_intraday) > 0) { tmp_intraday$time = as.character(glue::glue("{seq_dates[idx]} {tmp_intraday$time}")) heart_rate_intraday[[seq_dates[idx]]] = data.table::data.table(tmp_intraday) } else { if (verbose) message(glue::glue("Data for Day: '{seq_dates[idx]}' does not exist!")) } } if (length(heart_rate) > 0) { heart_rate = do.call(rbind, heart_rate) } all_dat = list(heart_rate = heart_rate, heart_rate_intraday = heart_rate_intraday) if (ggplot_intraday) { plt = NULL if (length(heart_rate_intraday) > 0) { NAMS_dates = names(heart_rate_intraday) lst_plt = list() for (idx_plt in 1:length(heart_rate_intraday)) { dat_iter = heart_rate_intraday[[NAMS_dates[idx_plt]]] plt_iter = ggplot_each_date(date_intraday = dat_iter, date = NAMS_dates[idx_plt]) lst_plt[[idx_plt]] = plt_iter } plt_all = patchwork::wrap_plots(lst_plt, ncol = ggplot_ncol, nrow = ggplot_nrow) all_dat[['plt']] = plt_all } } all_dat[['detail_level']] = detail_level if (verbose) compute_elapsed_time(t_start) return(all_dat) } heart_rate_heatmap = function(heart_rate_intraday_data, angle_x_axis = 0) { data_heart = lapply(1:length(heart_rate_intraday_data), function(x) { iter_date = names(heart_rate_intraday_data)[x] wday = as.character(lubridate::wday(iter_date, label = TRUE)) min_med_max = c('min', 'median', 'max') iter = data.table::setDT(list(level = factor(min_med_max, levels = rev(sort(min_med_max))), heart_rate = c(min(heart_rate_intraday_data[[x]]$value), stats::median(heart_rate_intraday_data[[x]]$value), max(heart_rate_intraday_data[[x]]$value)), Date = as.Date(rep(iter_date, 3)), weekday = rep(wday, 3))) iter }) data_heart = data.table::rbindlist(data_heart) cols_breaks = c('Date', 'weekday') dat_lev_breaks = data_heart[, ..cols_breaks] dat_lev_breaks = dat_lev_breaks[, .(weekday = unique(weekday)), by = 'Date'] dat_lev_breaks = dat_lev_breaks[order(dat_lev_breaks$Date, decreasing = F), ] plt = ggplot2::ggplot(data = data_heart, ggplot2::aes(x = Date, y = level)) + ggplot2::geom_tile(ggplot2::aes(fill = heart_rate)) + ggplot2::coord_equal(ratio = 1) + viridis::scale_fill_viridis(option = "magma", limits = c(40, 220), breaks = round(seq(40, 220, by = 20))) + ggthemes::theme_tufte(base_family = "Helvetica") + ggplot2::geom_text(ggplot2::aes(label = heart_rate, fontface = 2), color = "yellow", size = 4) + ggplot2::scale_x_date(breaks = dat_lev_breaks$Date, labels = scales::date_format("%Y-%m-%d"), sec.axis = ggplot2::dup_axis(labels = dat_lev_breaks$weekday)) + ggplot2::ylab("Level") + ggplot2::ggtitle("Heart Rate Level Heatmap") + ggplot2::theme(strip.placement = 'outside', plot.title = ggplot2::element_text(size = "16", hjust = 0.5, face = "bold", colour = "blue"), axis.title.x = ggplot2::element_text(size = 12, face = "bold", colour = "blue"), axis.title.y = ggplot2::element_text(size = 12, face = "bold", colour = "blue"), axis.text.x = ggplot2::element_text(size = 12, face = "bold", colour = "black", angle = angle_x_axis, vjust = 1.0, hjust = 1.0), axis.text.y = ggplot2::element_text(size = 12, face = "bold", colour = "black")) return(plt) } heart_rate_variability_sleep_time = function(heart_rate_data, sleep_begin = "00H 40M 0S", sleep_end = "08H 00M 0S", ggplot_hr_var = TRUE, angle_x_axis = 45) { if (heart_rate_data$detail_level != '1min') stop("You have to run the 'heart_rate_time_series' function first with 'detail_level' set to '1min'!", call. = F) heart_rate_intraday = heart_rate_data$heart_rate_intraday LEN = length(heart_rate_intraday) nams = names(heart_rate_intraday) hr_var = rep(NA_real_, LEN) for (i in 1:LEN) { iter_dat = heart_rate_intraday[[i]] iter_time = as.vector(unlist(lapply(strsplit(iter_dat$time, ' '), function(x) x[2]))) iter_time = lubridate::hms(iter_time) idx_night = which(iter_time >= lubridate::hms(sleep_begin) & iter_time < lubridate::hms(sleep_end)) hr_var[i] = varian::rmssd(x = iter_dat$value[idx_night]) } lst_out = list() hr_var = data.table::setDT(list(Date = as.Date(nams), hr_variability = hr_var)) lst_out[['hr_var_data']] = hr_var if (ggplot_hr_var) { plt = ggplot2::ggplot(hr_var, ggplot2::aes(x = Date, y = hr_variability)) + ggplot2::geom_line(linetype = 'dashed', size = 1, color = 'purple') + ggplot2::coord_cartesian(ylim = c(min(hr_var$hr_variability) - 1, max(hr_var$hr_variability) + 1.0)) + ggplot2::scale_x_date(date_breaks = "1 day") + ggplot2::ylab('heart rate var.') + ggplot2::xlab("Date") + ggplot2::ggtitle("Heart Rate Variability (root mean square of successive differences) per minute") + ggplot2::labs(color='Heart Rate Variability (during sleep') + ggplot2::geom_point(color = 'green', size = 3) + ggplot2::geom_text(ggplot2::aes(label = round(hr_var$hr_variability, 3), fontface = 2), color = "maroon", size = 4, vjust = -2) + ggplot2::theme(plot.title = ggplot2::element_text(size = "16", hjust = 0.5, face = "bold", colour = "blue"), axis.title.x = ggplot2::element_text(size = 12, face = "bold", colour = "blue"), axis.title.y = ggplot2::element_text(size = 12, face = "bold", colour = "blue"), axis.text.x = ggplot2::element_text(size = 12, face = "bold", colour = "black", angle = angle_x_axis, vjust = 1, hjust=1), axis.text.y = ggplot2::element_text(size = 12, face = "bold", colour = "black")) lst_out[['hr_var_plot']] = plt } return(lst_out) } sleep_single_day = function(user_id, token, date = '2021-03-09', ggplot_color_palette = 'ggsci::blue_material', show_nchar_case_error = 135, verbose = FALSE) { if (verbose) { t_start = proc.time() cat("Authentication will be performed ...\n") } URL = glue::glue('https://api.fitbit.com/1.2/user/{user_id}/sleep/date/{date}/{date}.json') auth_code = paste("Bearer", token) query_response = httr::GET(url = URL, httr::add_headers(Authorization = auth_code)) if (query_response$status_code != 200) { content_list_obj = httr::content(query_response, "parsed") stop(glue::glue("The request gave an error code of '{query_response$status_code}' with the following first '{show_nchar_case_error}' characters as error message: '{substr(content_list_obj, 1, show_nchar_case_error)}'"), call. = F) } if (verbose) cat("The sleep content will be red ...\n") content_list_obj = httr::content(query_response, "parsed") sleep = content_list_obj$sleep[[1]]$levels$data sleep = lapply(sleep, unlist) sleep = data.frame(do.call(rbind, sleep), stringsAsFactors = F) sleep$dateTime = lubridate::ymd_hms(sleep$dateTime) sleep$seconds = as.numeric(sleep$seconds) if (verbose) cat("The sleep-time will be transformed ...\n") lst_dtbl = list() for (ROW in 1:nrow(sleep)) { iter_row = sleep[ROW, , drop = F] iter_row_begin = iter_row$dateTime + lubridate::seconds(iter_row$seconds) iter_row_end = iter_row$dateTime + lubridate::seconds(iter_row$seconds) iter_dat = data.table::setDT(list(dateTime_start = iter_row$dateTime, level_start = iter_row$level, dateTime_end = iter_row_begin, level_end = iter_row$level, seconds = lubridate::seconds(iter_row$seconds))) lst_dtbl[[ROW]] = iter_dat } lst_dtbl = data.table::rbindlist(lst_dtbl) if (verbose) cat("Groups for the sleep-time will be created ...\n") lst_dtbl_group = list() for (ROW in 1:(nrow(sleep)-1)) { iter_row = sleep[ROW, , drop = F] iter_row$dateTime_end = iter_row$dateTime + lubridate::seconds(iter_row$seconds) iter_row$level_end = iter_row$level COLNAMS = colnames(iter_row) iter_row_next = sleep[ROW + 1, , drop = F] iter_row_next$dateTime_end = iter_row_next$dateTime + lubridate::seconds(iter_row_next$seconds) iter_row_next$level_end = iter_row_next$level colnames(iter_row_next) = c("dateTime_end", "level", "seconds", "dateTime", "level_end") iter_row_next = iter_row_next[, COLNAMS] iter_row$seconds = NULL iter_row$GROUP = as.character(ROW) iter_row_next$seconds = NULL iter_row_next$GROUP = as.character(ROW) dat_iter = data.table::rbindlist(list(iter_row, iter_row_next)) colnames(dat_iter) = c('dateTime_start', 'level_start', 'dateTime_end', 'level_end', 'GROUP') lst_dtbl_group[[ROW]] = dat_iter } lst_dtbl_group = data.table::rbindlist(lst_dtbl_group) if (verbose) cat(glue::glue("The 'ggplot' for day '{date}' will be created ..."), '\n') plt = ggplot2::ggplot(lst_dtbl, ggplot2::aes(x = dateTime_end, y = level_end, xend = dateTime_start, yend = level_start, group = level_start, colour = level_start)) + ggplot2::geom_segment(size = 2, ggplot2::aes(colour = level_end)) + ggplot2::geom_line(data = lst_dtbl_group, ggplot2::aes(group = GROUP), size = 2) + paletteer::scale_color_paletteer_d(ggplot_color_palette, direction = -1) + ggplot2::ggtitle(glue::glue("Sleep value at {date} ( '{as.character(lubridate::wday(date, label = TRUE))}' )")) + ggplot2::scale_x_datetime(date_breaks = "30 min", date_labels = "%H:%M") + ggplot2::ylab(glue::glue("Sleep Level")) + ggplot2::xlab("Time") + ggplot2::labs(color='Sleep Level') + ggplot2::theme(plot.title = ggplot2::element_text(hjust = 0.5, face = "bold", colour = "dark green"), axis.title.x = ggplot2::element_text(size = 10, face = "bold", colour = "dark green"), axis.title.y = ggplot2::element_text(size = 10, face = "bold", colour = "dark green"), axis.text.x = ggplot2::element_text(size = 10, face = "bold", colour = "black", angle = 30, vjust = 1.0, hjust = 1.0), axis.text.y = ggplot2::element_text(size = 10, face = "bold", colour = "black")) cols_accum = c('level_start', 'seconds') level_accum = lst_dtbl[, ..cols_accum] level_accum = level_accum[, lapply(.SD, sum), by = 'level_start'] level_accum$percent = round((level_accum$seconds / sum(level_accum$seconds)) * 100.0, 2) level_accum$Date = as.Date(rep(date, nrow(level_accum))) level_accum$weekday = lubridate::wday(level_accum$Date, label = T, abbr = T) lst_dat = list(init_data = lst_dtbl, grouped_data = lst_dtbl_group, level_accum = level_accum, plt = plt) if (verbose) compute_elapsed_time(t_start) return(lst_dat) } sleep_heatmap = function(level_data, angle_x_axis = 0) { cols_breaks = c('Date', 'weekday') dat_lev_breaks = level_data[, ..cols_breaks] dat_lev_breaks = dat_lev_breaks[, .(weekday = unique(weekday)), by = 'Date'] dat_lev_breaks = dat_lev_breaks[order(dat_lev_breaks$Date, decreasing = F), ] plt = ggplot2::ggplot(data = level_data, ggplot2::aes(x = Date, y = level_start)) + ggplot2::geom_tile(ggplot2::aes(fill = percent)) + ggplot2::coord_equal(ratio = 1) + viridis::scale_fill_viridis(option = "magma", limits = c(0.0, 100.0), breaks = round(seq(0.0, 100.0, by = 10))) + ggthemes::theme_tufte(base_family = "Helvetica") + ggplot2::geom_text(ggplot2::aes(label = glue::glue("min: {round(as.integer(level_data$seconds) / 60.0, 1)} \n ({round(as.numeric(level_data$percent), 2)}%)"), fontface = 2), color = "yellow", size = 4) + ggplot2::scale_x_date(breaks = dat_lev_breaks$Date, labels = scales::date_format("%Y-%m-%d"), sec.axis = ggplot2::dup_axis(labels = dat_lev_breaks$weekday)) + ggplot2::ylab("Level") + ggplot2::ggtitle("Sleep Level Heatmap (Minutes & Percentage of sleep)") + ggplot2::theme(strip.placement = 'outside', plot.title = ggplot2::element_text(size = "16", hjust = 0.5, face = "bold", colour = "blue"), axis.title.x = ggplot2::element_text(size = 12, face = "bold", colour = "blue"), axis.title.y = ggplot2::element_text(size = 12, face = "bold", colour = "blue"), axis.text.x = ggplot2::element_text(size = 12, face = "bold", colour = "black", angle = angle_x_axis, vjust = 1.0, hjust = 1.0), axis.text.y = ggplot2::element_text(size = 12, face = "bold", colour = level_data$colour_y_axis)) return(plt) } sleep_time_series = function(user_id, token, date_start, date_end, ggplot_color_palette = 'ggsci::blue_material', ggplot_ncol = NULL, ggplot_nrow = NULL, show_nchar_case_error = 135, verbose = FALSE) { if (verbose) t_start = proc.time() seq_dates = as.character(seq(from = as.Date(date_start), to = as.Date(date_end), by = 1)) sleep_intraday_plt = level_accum_lst = list() for (idx in 1:length(seq_dates)) { if (verbose) { cat('-----------------------------------------\n') cat(glue::glue("Day: '{seq_dates[idx]}' will be processed ..."), '\n') } sleep_ggplt = sleep_single_day(user_id = user_id, token = token, date = seq_dates[idx], ggplot_color_palette = ggplot_color_palette, show_nchar_case_error = show_nchar_case_error, verbose = FALSE) sleep_intraday_plt[[idx]] = sleep_ggplt$plt level_accum_lst[[idx]] = sleep_ggplt$level_accum } if (verbose) cat("The sleep data heatmap will be added ...\n") level_accum_lst = data.table::rbindlist(level_accum_lst) if (verbose) cat("Assign color to the y-axis labels ..\n") unq_labs = sort(unique(level_accum_lst$level_start)) pal_y_axis = paletteer::paletteer_c(palette = "grDevices::Blues 3", n = length(unq_labs) + 2, direction = 1) pal_y_axis = as.character(pal_y_axis)[3:length(pal_y_axis)] level_accum_lst$colour_y_axis = as.factor(pal_y_axis[ match(level_accum_lst$level_start, unq_labs) ]) if (verbose) cat("Create the sleep heatmap ..\n") heat_map = sleep_heatmap(level_data = level_accum_lst, angle_x_axis = 0) if (verbose) cat("Wrap all plots into a single one multiplot ...\n") plt_all = patchwork::wrap_plots(sleep_intraday_plt, ncol = ggplot_ncol, nrow = ggplot_nrow) if (verbose) compute_elapsed_time(t_start) return(list(plt_lev_segments = plt_all, plt_lev_heatmap = heat_map, heatmap_data = level_accum_lst)) } extract_LOG_ID = function(user_id, token, after_Date = '2021-03-13', limit = 10, sort = 'asc', verbose = FALSE) { if (verbose) t_start = proc.time() URL = glue::glue('https://api.fitbit.com/1/user/{user_id}/activities/list.json?afterDate={after_Date}&offset=0&limit={limit}&sort={sort}') auth_code = paste("Bearer", token) query_response = httr::GET(url = URL, httr::add_headers(Authorization = auth_code)) content_list_obj = httr::content(query_response, "parsed") res_activities = content_list_obj$activities if (length(res_activities) == 0) stop(glue::glue("There are no activities after (and including) Date '{after_Date}'!"), call. = F) LOG_ID = res_activities[[1]]$logId if (verbose) { cat(glue::glue("The activity after (and including) Date '{after_Date}' has 'id' {LOG_ID}"), '\n') compute_elapsed_time(t_start) } return(LOG_ID) } GPS_TCX_data = function(log_id, user_id, token, time_zone = 'Europe/Athens', verbose = FALSE) { if (verbose) { t_start = proc.time() cat("Extract the activity data ...\n") } URL = glue::glue('https://api.fitbit.com/1/user/{user_id}/activities/{log_id}.tcx') auth_code = paste("Bearer", token) query_response = httr::GET(url = URL, httr::add_headers(Authorization = auth_code)) if (verbose) cat("Use XML to traverse the data ...\n") tcx_dat = XML::xmlParse(query_response) tcx_lst = XML::xmlToList(tcx_dat) if (length(tcx_lst) == 0) stop("The 'XML::xmlToList()' function returned an emtpy list!", call. = F) dat_tcx = tcx_lst$Activities$Activity$Lap$Track if (is.null(dat_tcx)) { return(NULL) } dat_tcx_df = lapply(dat_tcx, unlist) dat_tcx_df = data.table::data.table(do.call(rbind, dat_tcx_df), stringsAsFactors = F) if (verbose) cat(glue::glue("The created data.table includes {nrow(dat_tcx_df)} rows and {ncol(dat_tcx_df)} columns"), '\n') if (verbose) cat("The data will be formated and the columns will be renamed ...\n") dat_tcx_df$Position.LongitudeDegrees = as.numeric(dat_tcx_df$Position.LongitudeDegrees) dat_tcx_df$Position.LatitudeDegrees = as.numeric(dat_tcx_df$Position.LatitudeDegrees) dat_tcx_df$AltitudeMeters = as.numeric(dat_tcx_df$AltitudeMeters) dat_tcx_df$DistanceMeters = as.numeric(dat_tcx_df$DistanceMeters) dat_tcx_df$HeartRateBpm.Value = as.numeric(dat_tcx_df$HeartRateBpm.Value) colnames(dat_tcx_df) = c('Time', 'latitude', 'longitude', 'AltitudeMeters', 'DistanceMeters', 'HeartRate_Bpm') date_time = suppressMessages(lubridate::ymd_hms(dat_tcx_df$Time, tz = time_zone)) vec_date = as.Date(date_time) vec_time = hms::as_hms(date_time) dat_tcx_df$Time = NULL dat_tcx_df$Date = vec_date dat_tcx_df$Time = vec_time if (verbose) compute_elapsed_time(t_start) return(dat_tcx_df) } leafGL_point_coords = function(dat_gps_tcx, color_points_column = 'AltitudeMeters', provider = leaflet::providers$Esri.WorldImagery, option_viewer = rstudioapi::viewer, CRS = 4326) { init_options <- options() on.exit(options(init_options)) options(viewer = option_viewer) dat_gps_tcx = sf::st_as_sf(dat_gps_tcx, coords = c("longitude", "latitude")) dat_gps_tcx = sf::st_set_crs(dat_gps_tcx, CRS) bbox_vec = sf::st_bbox(dat_gps_tcx) bbox_vec = as.vector(bbox_vec) lft = leaflet::leaflet() lft = leaflet::addProviderTiles(map = lft, provider = provider) heat_pal = leaflet::colorNumeric(palette = as.character(grDevices::heat.colors(n = 9, alpha = 1, rev = TRUE)), domain = dat_gps_tcx[[color_points_column]]) COLOR = heat_pal(dat_gps_tcx[[color_points_column]]) popup_info = sprintf(glue::glue("<b>Time: </b>%s<br><b> Altitude: </b>%g<br><b> Distance: </b>%g<br><b> HeartRate_Bpm: </b>%g"), dat_gps_tcx$Time, round(dat_gps_tcx$AltitudeMeters, 2), round(dat_gps_tcx$DistanceMeters, 2), dat_gps_tcx$HeartRate_Bpm) lft = leafgl::addGlPoints(map = lft, data = dat_gps_tcx, opacity = 1.0, fillColor = COLOR, popup = popup_info) def_lft = leaflet::fitBounds(map = lft, lng1 = bbox_vec[1], lat1 = bbox_vec[2], lng2 = bbox_vec[3], lat2 = bbox_vec[4]) def_lft = leaflet::addLegend(map = def_lft, pal = heat_pal, values = dat_gps_tcx[[color_points_column]], opacity = 0.7, position = "bottomright", title = color_points_column) return(def_lft) } extend_AOI_buffer = function(dat_gps_tcx, buffer_in_meters = 1000, CRS = 4326, verbose = FALSE) { if (verbose) { t_start = proc.time() cat("Convert the data.table to an 'sf' object ...\n") } dat_gps_tcx = sf::st_as_sf(dat_gps_tcx, coords = c("longitude", "latitude"), crs = CRS) dat_gps_tcx = sf::st_bbox(dat_gps_tcx) dat_gps_tcx = sf::st_as_sfc(dat_gps_tcx) if (verbose) cat(glue::glue("Transform the projection of the 'sf' object from {CRS} to 7801 ..."), '\n') dat_gps_tcx = sf::st_transform(dat_gps_tcx, crs = 7801) if (verbose) cat(glue::glue("Create a buffer of {buffer_in_meters} meters using as input the initial sf object ..."), '\n') buffer = sf::st_buffer(dat_gps_tcx, dist = buffer_in_meters, endCapStyle = "SQUARE") if (verbose) cat("Back-tranformation of the projection and computation of the bounding box ...\n") buffer_trans = sf::st_transform(buffer, crs = CRS) buf_bbx = sf::st_bbox(buffer_trans) dat_buf_bbx = sf::st_as_sfc(buf_bbx, crs = CRS) if (verbose) cat("Use the bounding box to extract the raster extent ...\n") rst_ext = raster::extent(x = buf_bbx) if (verbose) cat("Compute the centroid of the sf-buffer object ...\n") buf_centr = suppressWarnings(sf::st_centroid(dat_buf_bbx)) buf_centr = sf::st_coordinates(buf_centr) buf_centr = data.table::data.table(buf_centr) colnames(buf_centr) = c('longitude', 'latitude') lst_out = list(buffer_bbox = buf_bbx, sfc_obj = dat_buf_bbx, raster_obj_extent = rst_ext, centroid_buffer = buf_centr) if (verbose) compute_elapsed_time(t_start) return(lst_out) } crop_DEM = function(tif_or_vrt_dem_file, sf_buffer_obj, CRS = 4326, digits = 6, verbose = FALSE) { if (!file.exists(tif_or_vrt_dem_file)) stop(glue::glue("The '{tif_or_vrt_dem_file}' file does not exist or is not a valid one!"), call. = F) if (verbose) cat("The raster will be red ...\n") rst_elev = raster::raster(tif_or_vrt_dem_file) if (verbose) cat("The AOI will be extracted from the raster DEM ...\n") extr_buf = tryCatch(exactextractr::exact_extract(x = rst_elev, y = sf_buffer_obj, fun = function(value, cov_frac) value, progress = F, include_xy = TRUE), error = function(e) e) crs = sp::CRS(glue::glue("+init=epsg:{CRS}")) if (verbose) cat("A data.table will be created from the x,y,z vectors ...\n") mt_upd = data.table::setDT(list(x = extr_buf$x, y = extr_buf$y, z = extr_buf$value)) mt_upd = as.matrix(mt_upd) dimnames(mt_upd) = NULL if (verbose) cat("A raster will be created from the x,y,z data.table ...\n") rst_upd = raster::rasterFromXYZ(xyz = mt_upd, res = raster::res(rst_elev), crs = crs, digits = digits) return(rst_upd) } gps_lat_lon_to_LINESTRING = function(dat_gps_tcx, CRS = 4326, verbose = FALSE, time_split_asc_desc = NULL) { dat_gps_tcx = dat_gps_tcx[order(dat_gps_tcx$Time, decreasing = F), ] if (is.null(time_split_asc_desc)) { idx_max = which.max(dat_gps_tcx$AltitudeMeters) } else { idx_max = which(dat_gps_tcx$Time >= time_split_asc_desc) idx_max = idx_max[1] } if (verbose) { min_t = as.character(dat_gps_tcx$Time[which.min(dat_gps_tcx$Time)]) max_t = as.character(dat_gps_tcx$Time[which.max(dat_gps_tcx$Time)]) spl_t = as.character(dat_gps_tcx$Time[idx_max]) cat(glue::glue("The time '{spl_t}' was picked as a split point [ with minimum '{min_t}' and maximum '{max_t}' time ]"), '\n') } color_line = rep(NA_character_, nrow(dat_gps_tcx)) color_line[1:idx_max] = 'blue' color_line[(idx_max+1):length(color_line)] = 'red' dat_gps_tcx$color_line = color_line dat_gps_tcx = split(dat_gps_tcx, by = 'color_line') dat_line_str_ASC = sf::st_as_sf(dat_gps_tcx$blue, coords = c("longitude", "latitude"), crs = CRS) %>% sf::st_combine() %>% sf::st_cast("LINESTRING") dat_line_str_DESC = sf::st_as_sf(dat_gps_tcx$red, coords = c("longitude", "latitude"), crs = CRS) %>% sf::st_combine() %>% sf::st_cast("LINESTRING") return(list(line_ASC = dat_line_str_ASC, line_DESC = dat_line_str_DESC)) } meshgrids_XY_LatLon = function(longitude, latitude, buffer_raster, buffer_bbox, distance_metric = "vincenty", digits = 8) { init_options <- options() on.exit(options(init_options)) options(digits = digits) DIMS = dim(buffer_raster)[1:2] meshgrid_x_openim = utils::getFromNamespace(x = "meshgrid_x", ns = "OpenImageR") meshgrid_y_openim = utils::getFromNamespace(x = "meshgrid_y", ns = "OpenImageR") x = meshgrid_x_openim(rows = DIMS[1], cols = DIMS[2]) + 1 y = meshgrid_y_openim(rows = DIMS[1], cols = DIMS[2]) + 1 lon_seq = seq(from = buffer_bbox['xmin'], to = buffer_bbox['xmax'], length.out = DIMS[2]) lon_seq = lapply(1:DIMS[1], function(x) { lon_seq }) lon_seq = do.call(rbind, lon_seq) lat_seq = seq(from = buffer_bbox['ymin'], to = buffer_bbox['ymax'], length.out = DIMS[1]) lat_seq = lapply(1:DIMS[2], function(x) { lat_seq }) lat_seq = do.call(cbind, lat_seq) seq_mt_coords = data.table::setDT(list(x = as.vector(x), y = as.vector(y), longitude = as.vector(lon_seq), latitude = as.vector(lat_seq))) mt_input_coords = matrix(c(longitude, latitude), nrow = 1, ncol = 2) dist_coords = suppressMessages(geodist::geodist(x = seq_mt_coords[, 3:4], y = mt_input_coords, paired = FALSE, sequential = FALSE, pad = TRUE, measure = distance_metric)) idx_min = which.min(dist_coords[, 1])[1] return(list(coords_row = seq_mt_coords[idx_min, ], dist_meters = dist_coords[idx_min, 1])) } rayshader_3d_DEM = function(rst_buf, rst_ext, rst_bbx, linestring_ASC_DESC = NULL, elevation_sample_points = NULL, zoom = 0.5, windowsize = c(1600, 1000), add_shadow_rescale_original = FALSE, verbose = FALSE) { elevation_aoi = rayshader::raster_to_matrix(raster = rst_buf, verbose = verbose) rayshade_3d = rayshader::sphere_shade(heightmap = elevation_aoi, zscale = 0.95, texture = "desert", progbar = verbose) rayshade_3d = rayshader::add_water(hillshade = rayshade_3d, watermap = rayshader::detect_water(elevation_aoi), color = "desert") rayshade_3d = rayshader::add_shadow(hillshade = rayshade_3d, shadowmap = rayshader::ray_shade(elevation_aoi, zscale = 3, maxsearch = 65), max_darken = 0.5, rescale_original = add_shadow_rescale_original) if (!is.null(linestring_ASC_DESC)) { if (inherits(linestring_ASC_DESC, 'list')) { if (!all(names(linestring_ASC_DESC) %in% c("line_ASC", "line_DESC"))) stop("The named list must include the 'line_ASC', 'line_DESC' sublists!", call. = F) rayshade_3d = rayshader::add_overlay(hillshade = rayshade_3d, overlay = rayshader::generate_line_overlay(linestring_ASC_DESC$line_ASC, linewidth=3, color="blue", extent = rst_ext, heightmap = elevation_aoi), alphalayer=0.8) rayshade_3d = rayshader::add_overlay(hillshade = rayshade_3d, overlay = rayshader::generate_line_overlay(linestring_ASC_DESC$line_DESC, linewidth=3, color="red", extent = rst_ext, heightmap = elevation_aoi), alphalayer=0.8) } else if (inherits(linestring_ASC_DESC, c('sfc', 'sf'))) { rayshade_3d = rayshader::add_overlay(hillshade = rayshade_3d, overlay = rayshader::generate_line_overlay(linestring_ASC_DESC, linewidth=3, color="red", extent = rst_ext, heightmap = elevation_aoi), alphalayer=0.8) } else { stop("The 'linestring_ASC_DESC' parameter can be either a named list ('line_ASC', 'line_DESC') or an object of 'sf' or 'sfc'!", call. = F) } } rayshade_3d = tryCatch(rayshader::plot_3d(heightmap = elevation_aoi, hillshade = rayshade_3d, zoom = 0.5, zscale = 10, windowsize = windowsize, water = TRUE, waterdepth = 0, wateralpha = 0.5, watercolor = "dodgerblue", waterlinecolor = "white", waterlinealpha = 0.3, verbose = verbose), error = function(e) e) if (!is.null(elevation_sample_points)) { for (ROW in 1:nrow(elevation_sample_points)) { label = meshgrids_XY_LatLon(longitude = elevation_sample_points$longitude[ROW], latitude = elevation_sample_points$latitude[ROW], buffer_raster = rst_buf, buffer_bbox = rst_bbx, distance_metric = "vincenty", digits = 8) rayshader::render_label(heightmap = elevation_aoi, x = label$coords_row$x, y = label$coords_row$y, z = as.integer(elevation_sample_points$AltitudeMeters[ROW]), zscale = 15, text = as.character(glue::glue("Elevation: {round(elevation_sample_points$AltitudeMeters[ROW], 2)}")), textcolor = "darkred", linecolor = "darkred", textsize = 1.3, linewidth = 5) Sys.sleep(0.5) } } }
getMuModelName <- function(mutype,ng=1) { getMuModelInfo(mutype,ng)$name }
calibrate_standards_water <- function(cal_df, ref_df, r2_thres = 0.95) { ref_df$dlta18OH2o$mean_cal <- ref_df$dlta18OH2o$mean ref_df$dlta18OH2o$mean_cal <- as.numeric(NA) ref_df$dlta2HH2o$mean_cal <- ref_df$dlta2HH2o$mean ref_df$dlta2HH2o$mean_cal <- as.numeric(NA) ref_df$dlta18OH2o$timeBgn <- convert_NEONhdf5_to_POSIXct_time(ref_df$dlta18OH2o$timeBgn) ref_df$dlta2HH2o$timeBgn <- convert_NEONhdf5_to_POSIXct_time(ref_df$dlta2HH2o$timeBgn) if (nrow(ref_df$dlta18OH2o) > 1) { for (i in 1:nrow(ref_df$dlta18OH2o)) { int <- lubridate::interval(cal_df$start, cal_df$end) cal_id <- which(ref_df$dlta18OH2o$timeBgn[i] %within% int) if (!is.na(ref_df$dlta18OH2o$mean[i]) & !is.na(ref_df$dlta18OH2oRefe$mean[i]) & ref_df$dlta18OH2o$numSamp[i] >= 30 & abs(ref_df$dlta18OH2o$mean[i] - ref_df$dlta18OH2oRefe$mean[i]) < 10 & ref_df$dlta18OH2o$vari[i] < 5) { if (!length(cal_id) == 0) { if (!is.na(cal_df$o_r2[cal_id]) & cal_df$o_r2[cal_id] > r2_thres) { ref_df$dlta18OH2o$mean_cal[i] <- cal_df$o_intercept[cal_id] + cal_df$o_slope[cal_id] * ref_df$dlta18OH2o$mean[i] } else { ref_df$dlta18OH2o$mean_cal[i] <- NA } } else { ref_df$dlta18OH2o$mean_cal[i] <- NA } } else { ref_df$dlta18OH2o$mean_cal[i] <- NA } } } if (nrow(ref_df$dlta2HH2o) > 1) { for (i in 1:nrow(ref_df$dlta2HH2o)) { int <- lubridate::interval(cal_df$start, cal_df$end) cal_id <- which(ref_df$dlta2HH2o$timeBgn[i] %within% int) if (!is.na(ref_df$dlta2HH2o$mean[i]) & !is.na(ref_df$dlta2HH2oRefe$mean[i]) & ref_df$dlta2HH2o$numSamp[i] >= 30 & abs(ref_df$dlta2HH2o$mean[i] - ref_df$dlta2HH2oRefe$mean[i]) < 40 & ref_df$dlta2HH2o$vari[i] < 20) { if (!length(cal_id) == 0) { if (!is.na(cal_df$h_r2[cal_id]) & cal_df$h_r2[cal_id] > r2_thres) { ref_df$dlta2HH2o$mean_cal[i] <- cal_df$h_intercept[cal_id] + cal_df$h_slope[cal_id] * ref_df$dlta2HH2o$mean[i] } else { ref_df$dlta2HH2o$mean_cal[i] <- NA } } else { ref_df$dlta2HH2o$mean_cal[i] <- NA } } else { ref_df$dlta2HH2o$mean_cal[i] <- NA } } } ref_df$dlta18OH2o$timeBgn <- convert_POSIXct_to_NEONhdf5_time(ref_df$dlta18OH2o$timeBgn) ref_df$dlta2HH2o$timeBgn <- convert_POSIXct_to_NEONhdf5_time(ref_df$dlta2HH2o$timeBgn) return(ref_df) }
nnf_normalize <- function(input, p = 2, dim = 2, eps = 1e-12, out = NULL) { if (is.null(out)) { denom <- input$norm(p, dim, keepdim = TRUE)$clamp_min(eps)$expand_as(input) return(input/denom) } else { denom <- input$norm(p, dim, keepdim=TRUE)$clamp_min_(eps)$expand_as(input) return(torch_div_out(out, input, denom)) } } nnf_layer_norm <- function(input, normalized_shape, weight = NULL, bias = NULL, eps = 1e-5) { torch_layer_norm( input = input, normalized_shape = normalized_shape, weight = weight, bias = bias, eps = eps, cudnn_enable = FALSE ) } nnf_local_response_norm <- function(input, size, alpha = 1e-4, beta = 0.75, k = 1) { dim <- input$dim() div <- input$mul(input)$unsqueeze(1) if (dim == 3) { div <- nnf_pad(div, c(0, 0, as.integer(size/2), as.integer((size - 1)/2))) div <- nnf_avg_pool2d(div, c(size, 1), stride = 1)$squeeze(1) } else { sizes <- input$size() div <- div$view(sizes[1], 1, sizes[2], sizes[3], -1) div <- nnf_pad(div, c(0,0,0,0, as.integer(size/2), as.integer((size - 1)/2))) div <- nnf_avg_pool3d(div, c(size, 1, 1), stride = 1)$squeeze(1) div <- div$view(sizes) } div <- div$mul(alpha)$add(k)$pow(beta) input/div } nnf_group_norm <- function(input, num_groups, weight = NULL, bias = NULL, eps = 1e-5) { torch_group_norm(input, num_groups = num_groups, weight = weight, bias = bias, eps = eps ) }
TO_TM <- function(a = 47, longlat_df, d, e, f, g, digits = 4){ b <- as.numeric(longlat_df[,2]) c <- as.numeric(longlat_df[,3]) N <- as.numeric(Ellipsoids[a,3])/sqrt(1-as.numeric(Ellipsoids[a,7])*sin(c*pi/180)^2) DELTA_LAMBA <- as.numeric((b-d)*3600) a1 <- as.numeric(Ellipsoids[a,15])*c b1 <- as.numeric(Ellipsoids[a,16])*sin(2*(c*pi/180)) c1 <- as.numeric(Ellipsoids[a,17])*sin(4*(c*pi/180)) d1 <- as.numeric(Ellipsoids[a,18])*sin(6*(c*pi/180)) e1 <- as.numeric(Ellipsoids[a,19])*sin(8*(c*pi/180)) f1 <- as.numeric(Ellipsoids[a,20])*sin(10*(c*pi/180)) Be <- as.numeric(a1-b1+c1-d1+e1-f1) t <- as.numeric(tan(c*pi/180)) n <- as.numeric(sqrt(as.numeric(Ellipsoids[a,8]))*cos(c*pi/180)) N1 <- as.numeric(1/2*DELTA_LAMBA^2*N*sin(c*pi/180)*cos(c*pi/180)*(Sin_1^2)) N2 <- as.numeric(1/24*DELTA_LAMBA^4*N*sin(c*pi/180)*cos(c*pi/180)^3*(Sin_1^4)*(5-t^2+9*n^2+4*n^4)) N3 <- as.numeric(1/720*DELTA_LAMBA^6*N*sin(c*pi/180)*cos(c*pi/180)^5*(Sin_1^6)*(61-58*t^2+720*n^2-350*t^2*n^2)) Y <- as.numeric(e*(Be+N1+N2+N3)) North <- as.numeric(Y+g) E1 <- as.numeric(DELTA_LAMBA*N*cos(c*pi/180)*Sin_1) E2 <- as.numeric(1/6*DELTA_LAMBA^3*N*cos(c*pi/180)^3*Sin_1^3*(1-t^2+n^2)) E3 <- as.numeric(1/120*DELTA_LAMBA^5*N*cos(c*pi/180)^5*Sin_1^5*(5-18*t^2+t^4+14*n^2-58*t^2*n^2)) X <- as.numeric(e*(E1+E2+E3)) East <- as.numeric(X+f) values <- tibble::as_tibble(as.data.frame(cbind(round(East, digits), round(North, digits), round(X, digits), round(Y, digits)))) names(values) <- c("East", "North", "X", "Y") return(values) }
glmi <- function (formula, family = gaussian, data,vcov = NULL, weights, subset, na.action, start = NULL, etastart, mustart, offset, control = list(...), model = TRUE, method = "glm.fit", x = FALSE, y = TRUE, contrasts = NULL, ...) { call <- match.call() if (is.character(family)) family <- get(family, mode = "function", envir = parent.frame()) if (is.function(family)) family <- family() if (is.null(family$family)) { print(family) stop("'family' not recognized") } if (missing(data)) data <- environment(formula) mf <- match.call(expand.dots = FALSE) m <- match(c("formula", "data", "subset", "weights", "na.action", "etastart", "mustart", "offset"), names(mf), 0L) mf <- mf[c(1L, m)] mf$drop.unused.levels <- TRUE mf[[1L]] <- as.name("model.frame") mf <- eval(mf, parent.frame()) if (identical(method, "model.frame")) return(mf) if (!is.character(method) && !is.function(method)) stop("invalid 'method' argument") if (identical(method, "glm.fit")) control <- do.call("glm.control", control) mt <- attr(mf, "terms") Y <- model.response(mf, "any") if (length(dim(Y)) == 1L) { nm <- rownames(Y) dim(Y) <- NULL if (!is.null(nm)) names(Y) <- nm } X <- if (!is.empty.model(mt)) model.matrix(mt, mf, contrasts) else matrix(, NROW(Y), 0L) weights <- as.vector(model.weights(mf)) if (!is.null(weights) && !is.numeric(weights)) stop("'weights' must be a numeric vector") if (!is.null(weights) && any(weights < 0)) stop("negative weights not allowed") offset <- as.vector(model.offset(mf)) if (!is.null(offset)) { if (length(offset) != NROW(Y)) stop(gettextf("number of offsets is %d should equal %d (number of observations)", length(offset), NROW(Y)), domain = NA) } mustart <- model.extract(mf, "mustart") etastart <- model.extract(mf, "etastart") fit <- eval(call(if (is.function(method)) "method" else method, x = X, y = Y, weights = weights, start = start, etastart = etastart, mustart = mustart, offset = offset, family = family, control = control, intercept = attr(mt, "intercept") > 0L)) if (length(offset) && attr(mt, "intercept") > 0L) { fit2 <- eval(call(if (is.function(method)) "method" else method, x = X[, "(Intercept)", drop = FALSE], y = Y, weights = weights, offset = offset, family = family, control = control, intercept = TRUE)) if (!fit2$converged) warning("fitting to calculate the null deviance did not converge -- increase 'maxit'?") fit$null.deviance <- fit2$deviance } if (model) fit$model <- mf fit$na.action <- attr(mf, "na.action") if (x) fit$x <- X if (!y) fit$y <- NULL fit <- c(fit, list(call = call, formula = formula, terms = mt, data = data, offset = offset, control = control, method = method, contrasts = attr(X, "contrasts"), xlevels = .getXlevels(mt, mf))) class(fit) <- c(fit$class, c("glm", "lm")) fit if(is.null(vcov)) { se <- vcov(fit) } else { if (is.function(vcov)) se <- vcov(fit) else se <- vcov } fit = list(fit,vHaC = se) fit }
ability = function(resp, ip, method="WLE", mu=0, sigma=1, n=5) { switch(method, "MLE" = {mlebme(resp=resp, ip=ip$est, method="ML")}, "BME" = {mlebme(resp=resp, ip=ip$est, mu=mu, sigma=sigma, method="BM")}, "WLE" = {wle(resp=resp, ip=ip$est)}, "EAP" = {eap(resp=resp, ip=ip$est, normal.qu())}, "PV" = {dpv(resp=resp, ip=ip$est, mu=mu, sigma=sigma, n=n)}, "QRS" = {qrs(resp=resp)}, "SUM" = {resp[is.na(resp)]=0; as.matrix(rowSums(resp))}) } llf = function(x,r,p,mu,sigma,method) { pr = p[,3] + (1.0 - p[,3])/(1.0 + exp(p[,1]*(p[,2] - x))) pr = pmax(pr, .00001); pr = pmin(pr, .99999) ll = r*log(pr) + (1-r)*log(1.0-pr) lf = sum(ll) if (method != "ML") lf = lf + log(dnorm(x,mu,sigma)) return(lf) } mle.one = function(resp, ip, mu=mu, sigma=sigma, method=method) { cc = !is.na(resp) resp = resp[cc] ip = ip[cc, , drop=FALSE] n = length(resp) if (n < 1) return(c(NA, NA, 0)) est = optimize(llf, lower = -4, upper = 4, maximum = TRUE, r = resp, p = ip, mu = mu, sigma = sigma, method = method)$maximum ti = tif(ip, est)$f if (method != "ML") ti = ti + 1/(sigma * sigma) sem = sqrt(1/ti) return(c(est, sem, n)) } normal.qu = function(n=15,lower=-4,upper=4,mu=0,sigma=1,scaling="points"){ if (upper<=lower || sigma<=0 || n<3) stop("bad argument") qp=seq(lower,upper,length.out=n) if(scaling=="points") { qw=dnorm(qp,0,1) qw=qw/sum(qw) qp=qp*sigma+mu } else { qw=dnorm(qp,mu,sigma) qw=qw/sum(qw) } return(list(quad.points=qp, quad.weights=qw)) } mlebme = function(resp, ip, mu=0, sigma=1, method="ML") { if (is.list(ip)) ip = ip$est if (is.null(dim(resp))) dim(resp) = c(1,length(resp)) if (is.null(dim(ip))) stop("item parameters not a matrix") if (nrow(ip) != ncol(resp)) stop("responses - item parameters mismatch") np = nrow(resp) o = sapply(1:np, function(i) mle.one(resp=resp[i,], ip=ip, mu=mu, sigma=sigma, method=method)) rownames(o) = c("est","sem","n") return(t(o)) } bce.one = function(resp, ip) { cc = !is.na(resp) resp = resp[cc] ip = ip[cc, , drop=FALSE] n = length(resp) if (n < 1) return(c(NA, NA, 0)) est = uniroot(scf, re=resp, p=ip, lower=-10, upper=10)$root ev = bcv(est, resp, ip) return(c(est, sqrt(ev), n)) } bcv = function(x,r,p) { i = iif(ip=p, x=x)$f p[,3] = 0 q = irf(ip=p, x=x)$f isum = sum(i) jsum = sum(i * p[, 1] * (1 - 2 * q)) return(1/isum + jsum^2/(4 * isum^4)) } scf = function(x,re,p) { three = any(p[,3] > 0) lgt = exp(p[,1] * (x - p[,2])) pr = lgt / (1 + lgt) z = re - pr if (three) z = z - p[,3]*re / (p[,3] + lgt) sm = sum(p[,1]*z) if (three) { pr3 = p[,3] + (1 - p[,3])*pr ii = p[,1]^2 / pr3 * (1 - pr3) * pr^2 } else { ii = p[,1]^2 * pr * (1 - pr) } isum = sum(ii) jsum = sum(ii * p[,1] * (1 - 2*pr)) return(sm + jsum / (isum*2)) } wle = function(resp, ip) { if (is.list(ip)) ip = ip$est if (is.null(dim(resp))) dim(resp) = c(1,length(resp)) if (is.null(dim(ip))) stop("item parameters not a matrix") if (nrow(ip) != ncol(resp)) stop("responses - item parameters mismatch") np = nrow(resp) o = sapply(1:np, function(i) bce.one(resp=resp[i,], ip=ip)) rownames(o) = c("est","sem","n") return(t(o)) } eap.one = function(r, p, qp, qw) { cc = !is.na(r) r = r[cc] p = p[cc,,drop=FALSE] n = length(r) if (n < 1) return(c(NA, NA, 0)) ll = sapply(qp, llf, r=r, p=p, mu=NULL, sigma=NULL, method="ML") wl = exp(ll)*qw swl = sum(wl) x = sum(wl*qp)/swl dev = qp - x sem = sqrt(sum(wl*dev*dev)/swl) return(c(x,sem,n)) } eap = function(resp, ip, qu) { if (is.list(ip)) ip = ip$est if (is.null(dim(resp))) dim(resp) = c(1,length(resp)) if (is.null(dim(ip))) stop("item parameters not a matrix") if (nrow(ip) != ncol(resp)) stop("responses - item parameters mismatch") np = nrow(resp) qp = qu$quad.points qw = qu$quad.weights o = sapply(1:np, function(i) eap.one(r=resp[i,], p=ip, qp, qw),USE.NAMES=FALSE) rownames(o) = c("est","sem","n") return(t(o)) } like = function(x, r, p, mu=0, s=1, log=FALSE, post=TRUE) { pr = irf(ip=p, x=x)$f pr = pmax(pr, .00001); pr = pmin(pr, .99999) ll = log(pr) %*% r + log(1 - pr) %*% (1-r) if (post) if (log) ll=ll+dnorm(x,mu,s,log=TRUE) else ll=exp(ll)*dnorm(x,mu,s) else if (!log) ll=exp(ll) return(ll) } ddf = function(x,r,p,d,mu,s) log(like(x,r,p,mu=mu,s=s,post=TRUE)/d) - dt(x,df=3,log=TRUE) dpv.one = function(resp, ip, n=5, mu, s) { cc = !is.na(resp) resp = resp[cc] ip = ip[cc,] if (length(resp) < 1) return(rep(NA,n)) d = integrate(like, lower=-6, upper=6, p=ip, r=resp, mu=mu, s=s, post=TRUE)$value dd = optimize(f=ddf, c(-6,6), r=resp, p=ip, d=d, mu=mu, s=s, maximum=TRUE)$objective pv = rep(0,n) k = 0 repeat { th = rt(1, df=3) lf = log(like(th, r=resp, p=ip, mu=mu, s=s, post=TRUE) / d) lg = dt(th, df=3, log=TRUE) prob = exp(lf - lg - dd) if (runif(1) < prob) {k = k+1; pv[k] = th} if (k==n) break } return(pv) } dpv = function(resp, ip, mu=0, sigma=1, n=5) { if (is.list(ip)) ip = ip$est if (is.null(dim(resp))) dim(resp) = c(1,length(resp)) if (is.null(dim(ip))) stop("item parameters not a matrix") if (nrow(ip) != ncol(resp)) stop("responses - item parameters mismatch") np = nrow(resp) o = sapply(1:np, function(i) dpv.one(resp=resp[i,], ip=ip, mu=mu, s=sigma, n=n)) return(t(o)) }
context("sanity checks") check_dev <- function(a, b, mean=0, sd=1) { prefix <- sprintf("DEV: a=%f, b=%f, mean=%f, sd=%f", a, b, mean, sd) e <- etruncnorm(a, b, mean, sd) v <- vtruncnorm(a, b, mean, sd) id <- integrate(function(x) dtruncnorm(x, a, b, mean, sd), a, b)$value ee <- integrate(function(x) x * dtruncnorm(x, a, b, mean, sd), a, b)$value ev <- integrate(function(x) (x-ee)^2 * dtruncnorm(x, a, b, mean, sd), a, b)$value test_that(prefix, { expect_equal(id, 1.0, tolerance=0.00005) expect_equal(e, ee, tolerance=0.00005) expect_equal(v, ev, tolerance=0.00005) }) } check_dev(-3, Inf, 0, 1) check_dev(-2, Inf, 1, 1) check_dev( 2, Inf, 0, 1) check_dev( 3, Inf, 1, 1) check_dev(-3, Inf, 0, 2) check_dev(-2, Inf, 1, 2) check_dev( 2, Inf, 0, 2) check_dev( 3, Inf, 1, 2) check_dev(-3.0, -2.5, 0, 1) check_dev(-3.0, -1.5, 0, 1) check_dev(-3.0, -0.5, 0, 1) check_dev(-3.0, 0.5, 0, 1) check_dev(0.0, 0.5, 0, 1) check_dev(0.0, 1.5, 0, 1) check_dev(0.0, 2.5, 0, 1) check_dev(0.0, 3.5, 0, 1) check_dev( 0.0, 1.0, 0.0, 10.0) check_dev( 0.0, 1.0, 5.0, 1.0) check_dev(-1.0, 0.0, 0.0, 10.0) check_dev( 0.0, 1.0, -5.0, 1.0) check_dev( 0.0, 1.0, 5.0, 0.1) check_dev(0L, 1L, 0L, 10L) check_r <- function(a, b, mean, sd, n=10000) { prefix <- sprintf("R: a=%f, b=%f, mean=%f, sd=%f", a, b, mean, sd) x <- rtruncnorm(n, a, b, mean, sd) e.x <- mean(x) e <- etruncnorm(a, b, mean, sd) true_sd <- sqrt(vtruncnorm(a, b, mean, sd)) test_that(prefix, { expect_true(all(x > a)) expect_true(all(x < b)) expect_equal(mean(x), e, tolerance=0.05, scale=sd) expect_equal(sd(x), true_sd, tolerance=0.05, scale=sd) }) } check_r(-Inf, Inf, 0, 1) check_r(-1, 1, 0, 1) check_r(-1, 1, 1, 1) check_r(-1, 1, 0, 2) check_r(1, 2, 0, 1) check_r(1, 2, 1, 1) check_r(1, 2, 0, 2) check_r(-2, -1, 0, 1) check_r(-2, -1, 1, 1) check_r(-2, -1, 0, 2) check_r(-2, Inf, 0, 1) check_r(-2, Inf, 1, 1) check_r(-2, Inf, 0, 2) check_r( 0, Inf, 0, 1) check_r( 0, Inf, 1, 1) check_r( 0, Inf, 0, 2) check_r( 2, Inf, 0, 1) check_r( 2, Inf, 1, 1) check_r( 2, Inf, 0, 2) check_r(-0.2, Inf, 0, 1) check_r(-0.2, Inf, 1, 1) check_r(-0.2, Inf, 0, 2) check_r( 0.0, Inf, 0, 1) check_r( 0.0, Inf, 1, 1) check_r( 0.0, Inf, 0, 2) check_r( 0.2, Inf, 0, 1) check_r( 0.2, Inf, 1, 1) check_r( 0.2, Inf, 0, 2) check_r(-Inf, -2, 0, 1) check_r(-Inf, -2, 1, 1) check_r(-Inf, -2, 0, 2) check_r(-Inf, 0, 0, 1) check_r(-Inf, 0, 1, 1) check_r(-Inf, 0, 0, 2) check_r(-Inf, 2, 0, 1) check_r(-Inf, 2, 1, 1) check_r(-Inf, 2, 0, 2) check_r(-Inf, -0.2, 0, 1) check_r(-Inf, -0.2, 1, 1) check_r(-Inf, -0.2, 0, 2) check_r(-Inf, 0.0, 0, 1) check_r(-Inf, 0.0, 1, 1) check_r(-Inf, 0.0, 0, 2) check_r(-Inf, 0.2, 0, 1) check_r(-Inf, 0.2, 1, 1) check_r(-Inf, 0.2, 0, 2) check_r(-5, -4, 0, 1) check_r(-5L, -4L, 0L, 1L) check_pq <- function(a, b, mean, sd) { prefix <- sprintf("PQ: a=%f, b=%f, mean=%f, sd=%f", a, b, mean, sd) test_that(prefix, { for (p in runif(500)) { q <- qtruncnorm(p, a, b, mean, sd) pp <- ptruncnorm(q, a, b, mean, sd) expect_equal(pp, p, tolerance=0.00001) } }) } check_pq(-1, 0, 0, 1) check_pq(-1, 1, 0, 1) check_pq( 1, 2, 0, 1) check_pq(-1, 0, 4, 1) check_pq(-1, 1, 4, 1) check_pq( 1, 2, 4, 1) check_pq(-1, 0, 0, 3) check_pq(-1, 1, 0, 3) check_pq( 1, 2, 0, 3) check_pq(-1, Inf, 0, 1) check_pq(-1, Inf, 4, 1) check_pq(-1, Inf, 0, 3) check_pq(-Inf, 1, 0, 1) check_pq(-Inf, 1, 4, 1) check_pq(-Inf, 1, 0, 3) check_pq(1L, 2L, 0L, 3L)
source("ESEUR_config.r") library("plyr") pal_col=rainbow(4) plot_Hedge=function(hedge_str, col_num) { about=subset(exp1, Hedge == hedge_str) lines(sort(about$MinValue/about$ActValue), col=pal_col[col_num]) lines(sort(about$ActValue/about$MaxValue), lty=2, col=pal_col[col_num]) } plot_uncertainty=function(hedge_str, col_num) { resp=subset(exp1, Hedge == hedge_str) rel_unc=count((resp$MinValue-resp$ActValue)/resp$MinValue) lines(rel_unc$x, cumsum(rel_unc$freq)/nrow(resp), col=pal_col[col_num]) rel_unc=count((resp$MaxValue-resp$ActValue)/resp$MaxValue) lines(rel_unc$x, cumsum(rel_unc$freq)/nrow(resp), col=pal_col[col_num], lty=2) } exp1=read.csv(paste0(ESEUR_dir, "developers/hedges_Data-Exp2.csv.xz"), as.is=TRUE) sw=which(exp1$MinValue > exp1$MaxValue) t=exp1$MinValue[sw] exp1$MinValue[sw]=exp1$MaxValue[sw] exp1$MaxValue[sw]=t exp1=subset(exp1, ActValue/MinValue < 10) exp1=subset(exp1, ActValue/MaxValue > 0.1) plot(0, type="n", xaxs="i", yaxs="i", xlim=c(-1, 1), ylim=c(0, 1), xlab="Relative uncertainty", ylab="Cumulative probability\n") plot_uncertainty("almost", 1) plot_uncertainty("below", 2) plot_uncertainty("at_most", 3) plot_uncertainty("no_more_than", 4) legend(x="left", legend=c("almost", "below", "at most", "no more than"), bty="n", fill=pal_col, cex=1.2) plot_uncertainty("above", 1) plot_uncertainty("over", 2) plot_uncertainty("at_least", 3) plot_uncertainty("no_less_than", 4) legend(x="right", legend=c("above", "over", "at least", "no less than"), bty="n", fill=pal_col, cex=1.2)
resize.lp <- function(lprec, nrow, ncol) { .Call(RlpSolve_resize_lp, lprec, as.integer(nrow), as.integer(ncol)) invisible() }
rowCtr <- function(obj, dim) { I <- dim(obj$rowcoord)[1] K <- min(obj$nd, ncol(obj$rowcoord)) svF <- matrix(rep(obj$sv[1:K], I), I, K, byrow=TRUE) rpc <- obj$rowcoord[,1:K] * svF obj$rowmass * rowSums(rpc[,dim, drop=FALSE]^2) / sum(obj$sv[dim]^2) } colCtr <- function(obj, dim) { J <- dim(obj$colcoord)[1] K <- min(obj$nd, ncol(obj$colcoord)) svG <- matrix(rep(obj$sv[1:K], J), J, K, byrow=TRUE) cpc <- obj$colcoord[,1:K] * svG obj$colmass * rowSums(cpc[,dim, drop=FALSE]^2) / sum(obj$sv[dim]^2) } rowSubsetCa <- function(obj, indices) { ret <- obj for (i in 4:7) { ret[[i]] <- list() ret[[i]] <- obj[[i]][indices] } del <- which(!(1:nrow(obj$rowcoord) %in% indices)) ret$rowsup <- as.numeric(sapply(obj$rowsup[obj$rowsup %in% indices], function(x) x - sum(del < x))) ret$rowcoord <- matrix() ret$rowcoord <- obj$rowcoord[indices,,drop=FALSE] ret$rownames <- obj$rownames[indices] ret } colSubsetCa <- function(obj, indices) { ret <- obj for (i in 9:12) { ret[[i]] <- list() ret[[i]] <- obj[[i]][indices] } ret$colsup <- ret$colsup[ret$colsup %in% indices] ret$colsup <- as.numeric(lapply(obj$colsup, function(x) x - sum(indices < x))) ret$colcoord <- matrix() ret$colcoord <- obj$colcoord[indices,,drop=FALSE] ret$colnames <- obj$colnames[indices] ret } showCorpusCa <- function(corpusCa, dim=1, ndocs=10, nterms=10) { objects <- .getCorpusWindow() window <- objects$window txt <- objects$txt listbox <- objects$listbox tkwm.title(window, .gettext("Correspondence Analysis")) actDocs<-length(corpusCa$rowvars) == length(corpusCa$rowsup) if(actDocs) { tndocs <- nrow(corpusCa$rowcoord) - length(corpusCa$rowsup) tnterms <- nrow(corpusCa$colcoord) tnvars <- length(unique(names(corpusCa$rowvars))) tkinsert(txt, "end", sprintf(.gettext("Correspondence analysis of %i documents, %i terms and %i supplementary variables."), tndocs, tnterms, tnvars), "body") } else { tnactvars <- length(unique(names(corpusCa$rowvars)[!corpusCa$rowvars %in% corpusCa$rowsup])) tndocs <- nrow(corpusCa$rowcoord) - length(corpusCa$rowvars) tnterms <- nrow(corpusCa$colcoord) tnsupvars <- length(unique(names(corpusCa$rowvars)[corpusCa$rowvars %in% corpusCa$rowsup])) tkinsert(txt, "end", sprintf(.gettext("Correspondence analysis of %i active variable(s) (aggregating %i documents), %i terms and %i supplementary variable(s)."), tnactvars, tndocs, tnterms, tnsupvars), "body") } tkinsert(txt, "end", "\n\n", "heading") mark <- 0 titles <- c(.gettext("Position"), .gettext("Contribution (%)"), .gettext("Quality (%)")) tkinsert(txt, "end", paste(.gettext("Axes summary:"), "\n", sep=""), "heading") tkmark.set(txt, paste("mark", mark, sep=""), tkindex(txt, "insert-1c")) tkinsert(listbox, "end", .gettext("Axes summary")) mark <- mark + 1 nd <- min(length(corpusCa$sv), corpusCa$nd) values <- 100 * (corpusCa$sv[1:nd]^2)/sum(corpusCa$sv^2) values2 <- cumsum(values) val <- rbind(values, values2) rownames(val) <- c(.gettext("Inertia (%)"), .gettext("Cumulated inertia (%)")) colnames(val) <- seq.int(ncol(val)) names(dimnames(val)) <- c("", .gettext("Axis")) tkinsert(txt, "end", paste(capture.output(val), collapse="\n"), "fixed") if(actDocs) { rows <- order(rowCtr(corpusCa, dim), decreasing=TRUE)[1:ndocs] rows <- rows[!rows %in% corpusCa$rowsup] } else { rows <- corpusCa$rowvars[!corpusCa$rowvars %in% corpusCa$rowsup] } cols <- order(colCtr(corpusCa, dim), decreasing=TRUE)[1:nterms] cols <- cols[!cols %in% corpusCa$colsup] for(j in 1:length(dim)) { rowsCtr <- rowCtr(corpusCa, dim[j]) rows <- rows[order(rowsCtr[rows], decreasing=TRUE)] colsCtr <- colCtr(corpusCa, dim[j]) cols <- cols[order(colsCtr[cols], decreasing=TRUE)] tkinsert(txt, "end", paste("\n\n", sprintf(.gettext("Most contributive terms on negative side of axis %i:"), dim[j]), "\n", sep=""), "heading") tkmark.set(txt, paste("mark", mark, sep=""), tkindex(txt, "insert-1c")) tkinsert(listbox, "end", sprintf(.gettext("Axis %i - Negative Side:"), dim[j])) tkitemconfigure(listbox, mark, background="grey") mark <- mark + 1 negcols <- cols[corpusCa$colcoord[cols, dim[j]] < 0] if(length(negcols) == 0) { tkinsert(txt, "end", sprintf(.gettext("None among the %i most contributive terms."), nterms), "body") } else { df <- data.frame(row.names=corpusCa$colnames[negcols], corpusCa$colcoord[negcols, dim[j]] * corpusCa$sv[dim[j]], colsCtr[negcols] * 100, (corpusCa$colcoord[negcols, dim[j]] * corpusCa$sv[dim[j]] / corpusCa$coldist[negcols])^2 * 100) colnames(df) <- titles tkinsert(txt, "end", paste(capture.output(format(df)), collapse="\n"), "fixed") } if(!actDocs) { negrows <- rows[corpusCa$rowcoord[rows, dim[j]] <= 0] tkinsert(txt, "end", paste("\n\n", sprintf(.gettext("Active levels on negative side of axis %i:"), dim[j]), "\n", sep=""), "heading") df <- data.frame(row.names=corpusCa$rownames[negrows], corpusCa$rowcoord[negrows, dim[j]] * corpusCa$sv[dim[j]], rowsCtr[negrows] * 100, (corpusCa$rowcoord[negrows, dim[j]] * corpusCa$sv[dim[j]] / corpusCa$rowdist[negrows])^2 * 100) colnames(df) <- titles tkinsert(txt, "end", paste(capture.output(format(df)), collapse="\n"), "fixed") tkinsert(txt, "end", paste("\n\n", sprintf(.gettext("Most extreme documents on negative side of axis %i:"), dim[j]), "\n", sep=""), "heading") int <- setdiff(1:nrow(corpusCa$rowcoord), corpusCa$rowvars) negrows <- int[corpusCa$rowcoord[int, dim[j]] < 0] negrows <- negrows[order(corpusCa$rowcoord[negrows, dim[j]])[1:ndocs]] negrows <- negrows[!is.na(negrows)] df <- data.frame(row.names=corpusCa$rownames[negrows], corpusCa$rowcoord[negrows, dim[j]] * corpusCa$sv[dim[j]], (corpusCa$rowcoord[negrows, dim[j]] * corpusCa$sv[dim[j]] / corpusCa$rowdist[negrows])^2 * 100) colnames(df) <- titles[-2] } else { tkinsert(txt, "end", paste("\n\n", sprintf(.gettext("Most contributive documents on negative side of axis %i:"), dim[j]), "\n", sep=""), "heading") negrows <- rows[corpusCa$rowcoord[rows, dim[j]] < 0] df <- data.frame(row.names=corpusCa$rownames[negrows], corpusCa$rowcoord[negrows, dim[j]] * corpusCa$sv[dim[j]], rowsCtr[negrows] * 100, (corpusCa$rowcoord[negrows, dim[j]] * corpusCa$sv[dim[j]] / corpusCa$rowdist[negrows])^2 * 100) colnames(df) <- titles } ids <- names(corpus) if(length(negrows) == 0) { tkinsert(txt, "end", sprintf(.gettext("None among the %i most contributive documents."), ndocs), "body") } else { tkinsert(txt, "end", paste(capture.output(format(df)), collapse="\n"), "fixed") tkinsert(txt, "end", "\n", "heading") for(i in negrows) { id <- corpusCa$rownames[i] tkinsert(txt, "end", paste("\n", id, "\n", sep=""), "articlehead") tkmark.set(txt, paste("mark", mark, sep=""), tkindex(txt, "insert-1c")) mark <- mark + 1 tkinsert(listbox, "end", id) doc <- corpus[[match(id, ids)]] origin <- meta(doc, "origin") date <- meta(doc, "datetimestamp") if(length(origin) > 0 && length(date) > 0) tkinsert(txt, "end", paste(origin, " - ", date, "\n", sep=""), "details") else if(length(origin) > 0) tkinsert(txt, "end", paste(origin, "\n", sep=""), "details") else if(length(origin) > 0) tkinsert(txt, "end", paste(date, "\n", sep=""), "details") if(length(origin) > 0 || length(date) > 0) tkinsert(txt, "end", "\n", "small") tkinsert(txt, "end", paste(paste(doc, collapse="\n"), "\n"), "body") } } tkinsert(txt, "end", paste("\n\n", sprintf(.gettext("Most contributive terms on positive side of axis %i:"), dim[j]), "\n", sep=""), "heading") tkinsert(listbox, "end", sprintf(.gettext("Axis %i - Positive Side:"), dim[j])) tkitemconfigure(listbox, mark, background="grey") tkmark.set(txt, paste("mark", mark, sep=""), tkindex(txt, "insert-1c")) mark <- mark + 1 poscols <- cols[corpusCa$colcoord[cols, dim[j]] >= 0] if(length(poscols) == 0) { tkinsert(txt, "end", sprintf(.gettext("None among the %i most contributive terms."), nterms), "body") } else { df <- data.frame(row.names=corpusCa$colnames[poscols], corpusCa$colcoord[poscols, dim[j]] * corpusCa$sv[dim[j]], colsCtr[poscols] * 100, (corpusCa$colcoord[poscols, dim[j]] * corpusCa$sv[dim[j]] / corpusCa$coldist[poscols])^2 * 100) colnames(df) <- titles tkinsert(txt, "end", paste(capture.output(format(df)), collapse="\n"), "fixed") } if(!actDocs) { posrows <- rows[corpusCa$rowcoord[rows, dim[j]] > 0] tkinsert(txt, "end", paste("\n\n", sprintf(.gettext("Active levels on positive side of axis %i:"), dim[j]), "\n", sep=""), "heading") df <- data.frame(row.names=corpusCa$rownames[posrows], corpusCa$rowcoord[posrows, dim[j]] * corpusCa$sv[dim[j]], rowsCtr[posrows] * 100, (corpusCa$rowcoord[posrows, dim[j]] * corpusCa$sv[dim[j]] / corpusCa$rowdist[posrows])^2 * 100) colnames(df) <- titles tkinsert(txt, "end", paste(capture.output(format(df)), collapse="\n"), "fixed") tkinsert(txt, "end", paste("\n\n", sprintf(.gettext("Most extreme documents on positive side of axis %i:"), dim[j]), "\n", sep=""), "heading") int <- setdiff(1:nrow(corpusCa$rowcoord), corpusCa$rowvars) posrows <- int[corpusCa$rowcoord[int, dim[j]] > 0] posrows <- posrows[order(corpusCa$rowcoord[posrows, dim[j]], decreasing=TRUE)[1:ndocs]] posrows <- posrows[!is.na(posrows)] df <- data.frame(row.names=corpusCa$rownames[posrows], corpusCa$rowcoord[posrows, dim[j]] * corpusCa$sv[dim[j]], (corpusCa$rowcoord[posrows, dim[j]] * corpusCa$sv[dim[j]] / corpusCa$rowdist[posrows])^2 * 100) colnames(df) <- titles[-2] } else { tkinsert(txt, "end", paste("\n\n", sprintf(.gettext("Most contributive documents on positive side of axis %i:"), dim[j]), "\n", sep=""), "heading") posrows <- rows[corpusCa$rowcoord[rows, dim[j]] > 0] df <- data.frame(row.names=corpusCa$rownames[posrows], corpusCa$rowcoord[posrows, dim[j]] * corpusCa$sv[dim[j]], rowsCtr[posrows] * 100, (corpusCa$rowcoord[posrows, dim[j]] * corpusCa$sv[dim[j]] / corpusCa$rowdist[posrows])^2 * 100) colnames(df) <- titles } if(length(posrows) == 0) { tkinsert(txt, "end", sprintf(.gettext("None among the %i most contributive documents."), ndocs), "body") } else { tkinsert(txt, "end", paste(capture.output(format(df)), collapse="\n"), "fixed") tkinsert(txt, "end", "\n", "heading") for(i in posrows) { id <- corpusCa$rownames[i] tkinsert(txt, "end", paste("\n", id, "\n", sep=""), "articlehead") tkmark.set(txt, paste("mark", mark, sep=""), tkindex(txt, "insert-1c")) mark <- mark + 1 tkinsert(listbox, "end", id) doc <- corpus[[match(id, ids)]] origin <- meta(doc, "origin") date <- meta(doc, "datetimestamp") if(length(origin) > 0 && length(date) > 0) tkinsert(txt, "end", paste(origin, " - ", date, "\n", sep=""), "details") else if(length(origin) > 0) tkinsert(txt, "end", paste(origin, "\n", sep=""), "details") else if(length(origin) > 0) tkinsert(txt, "end", paste(date, "\n", sep=""), "details") if(length(origin) > 0 || length(date) > 0) tkinsert(txt, "end", "\n", "small") tkinsert(txt, "end", paste(paste(doc, collapse="\n"), "\n"), "body") } } suprows <- intersect(corpusCa$rowvars, corpusCa$rowsup) if(length(suprows) > 0) { tkinsert(txt, "end", paste("\n\n", sprintf(.gettext("Situation of supplementary variables on axis %i:"), dim[j]), "\n", sep=""), "heading") tkinsert(listbox, "end", sprintf(.gettext("Axis %i - Variables"), dim[j])) tkitemconfigure(listbox, mark, background="grey") tkmark.set(txt, paste("mark", mark, sep=""), tkindex(txt, "insert-1c")) mark <- mark + 1 df <- data.frame(row.names=corpusCa$rownames[suprows], corpusCa$rowcoord[suprows, dim[j]] * corpusCa$sv[dim[j]], (corpusCa$rowcoord[suprows, dim[j]] * corpusCa$sv[dim[j]] / corpusCa$rowdist[suprows])^2 * 100) colnames(df) <- titles[-2] tkinsert(txt, "end", paste(capture.output(format(df)), collapse="\n"), "fixed") } } tkraise(window) } showCorpusCaDlg <- function() { if(!exists("corpusCa") || !class(corpusCa) == "ca") { .Message(message=.gettext("Please run a correspondence analysis on the corpus first."), type="error") return() } initializeDialog(title=.gettext("Show Correspondence Analysis")) actDocs<-length(corpusCa$rowvars) == length(corpusCa$rowsup) dimFrame <- tkframe(top) tkgrid(.titleLabel(dimFrame, text=.gettext("Dimensions to plot:")), sticky="s") tclXDim <- tclVar(1) tclYDim <- tclVar(2) nd <- min(length(corpusCa$sv), corpusCa$nd) xSlider <- tkscale(dimFrame, from=1, to=nd, showvalue=TRUE, variable=tclXDim, resolution=1, orient="horizontal") ySlider <- tkscale(dimFrame, from=1, to=nd, showvalue=TRUE, variable=tclYDim, resolution=1, orient="horizontal") tnterms <- nrow(corpusCa$colcoord) - length(corpusCa$colsup) if(actDocs) tndocs <- nrow(corpusCa$rowcoord) - length(corpusCa$rowsup) else tndocs <- nrow(corpusCa$rowcoord) - length(corpusCa$rowvars) if(!actDocs) { checkBoxes(frame="labelsFrame", boxes=c("varLabels", "termLabels"), initialValues=c(1, 1), labels=c(.gettext("Variables"), .gettext("Terms")), title=.gettext("Draw labels for:")) checkBoxes(frame="pointsFrame", boxes=c("varPoints", "termPoints"), initialValues=c(1, 1), labels=c(.gettext("Variables"), .gettext("Terms")), title=.gettext("Draw point symbols for:")) } else if(length(corpusCa$rowsup) == 0) { checkBoxes(frame="labelsFrame", boxes=c("docLabels", "termLabels"), initialValues=c(0, 1), labels=c(.gettext("Documents"), .gettext("Terms")), title=.gettext("Draw labels for:")) checkBoxes(frame="pointsFrame", boxes=c("docPoints", "termPoints"), initialValues=c(0, 1), labels=c(.gettext("Documents"), .gettext("Terms")), title=.gettext("Draw point symbols for:")) } else { checkBoxes(frame="labelsFrame", boxes=c("varLabels", "docLabels", "termLabels"), initialValues=c(0, 0, 1), labels=c(.gettext("Variables"), .gettext("Documents"), .gettext("Terms")), title=.gettext("Draw labels for:")) checkBoxes(frame="pointsFrame", boxes=c("varPoints", "docPoints", "termPoints"), initialValues=c(0, 0, 1), labels=c(.gettext("Variables"), .gettext("Documents"), .gettext("Terms")), title=.gettext("Draw point symbols for:")) } vars <- colnames(meta(corpus)) if(actDocs) selection <- (1:length(vars)) - 1 else selection <- match(unique(names(corpusCa$rowvars[!corpusCa$rowvars %in% corpusCa$rowsup])), vars) - 1 varBox <- variableListBox(top, vars, selectmode="multiple", title=.gettext("Variables to plot:"), initialSelection=selection) tkbind(varBox$listbox, "<<ListboxSelect>>", function(...) tclvalue(varLabelsVariable) <- 1) nFrame <- tkframe(top) tkgrid(.titleLabel(nFrame, text=.gettext("Number of items to show:")), sticky="s") tclNDocs <- tclVar(25) tclNTerms <- tclVar(25) spinDocs <- tkwidget(top, type="spinbox", from=1, to=tndocs, inc=1, textvariable=tclNDocs, validate="all", validatecommand=.validate.uint) spinTerms <- tkwidget(top, type="spinbox", from=1, to=tnterms, inc=1, textvariable=tclNTerms, validate="all", validatecommand=.validate.uint) ctrDimVariable <- tclVar("xyDim") ctrDimFrame <- tkframe(top) ctrDim1 <- ttkradiobutton(ctrDimFrame, variable=ctrDimVariable, value="xyDim", text=.gettext("Both axes")) ctrDim2 <- ttkradiobutton(ctrDimFrame, variable=ctrDimVariable, value="xDim", text=.gettext("Horizontal axis")) ctrDim3 <- ttkradiobutton(ctrDimFrame, variable=ctrDimVariable, value="yDim", text=.gettext("Vertical axis")) onCustom <- function() { x <- tclvalue(tclXDim) y <- tclvalue(tclYDim) docLabels <- if(!actDocs) FALSE else tclvalue(docLabelsVariable) == 1 termLabels <- tclvalue(termLabelsVariable) == 1 varLabels <- if(actDocs && length(corpusCa$rowsup) == 0) FALSE else tclvalue(varLabelsVariable) == 1 docPoints <- if(!actDocs) FALSE else tclvalue(docPointsVariable) == 1 termPoints <- tclvalue(termPointsVariable) == 1 varPoints <- if(actDocs && length(corpusCa$rowsup) == 0) FALSE else tclvalue(varPointsVariable) == 1 vars <- getSelection(varBox) nDocs <- as.integer(tclvalue(tclNDocs)) nTerms <- as.integer(tclvalue(tclNTerms)) ctrDim <- switch(tclvalue(ctrDimVariable), xyDim=paste("c(", x, ", ", y, ")", sep=""), xDim=x, yDim=y) if(nDocs > tndocs) nDocs <- tndocs if(nTerms > tnterms) nTerms <- tnterms if(!(docLabels || termLabels || varLabels || docPoints || termPoints || varPoints)) { .Message(.gettext("Please select something to plot."), "error", parent=top) return() } setBusyCursor() on.exit(setIdleCursor()) doItAndPrint(sprintf("showCorpusCa(corpusCa, %s, %s, %s)", ctrDim, nDocs, nTerms)) if(actDocs) { if((docLabels || docPoints) && (varLabels || varPoints)) { rowWhat <- "all" varIndexes <- corpusCa$rowvars[names(corpusCa$rowvars) %in% vars] doItAndPrint(paste("plottingCa <- rowSubsetCa(corpusCa, c(order(rowCtr(corpusCa, ", ctrDim, "), decreasing=TRUE)[1:", nDocs, "], ", paste(varIndexes, collapse=", "), "))", sep="")) } else if(docLabels || docPoints) { rowWhat <- "active" doItAndPrint(paste("plottingCa <- rowSubsetCa(corpusCa, order(rowCtr(corpusCa, ", ctrDim, "), decreasing=TRUE)[1:", nDocs, "])", sep="")) } else if(varLabels || varPoints) { rowWhat <- "passive" varIndexes <- corpusCa$rowvars[names(corpusCa$rowvars) %in% vars] doItAndPrint(paste("plottingCa <- rowSubsetCa(corpusCa, c(", paste(varIndexes, collapse=", "), "))", sep="")) } else { rowWhat <- "none" } if(((docPoints || docLabels) && (varPoints || varLabels)) && docLabels != varLabels) Message(.gettext("Plotting documents and variables at the same time currently forces labels to be drawn for both or none."), "note") rowActivePoints<-if(docPoints) 16 else NA rowSupPoints<-if(varPoints) 1 else NA rowActiveColor<-"black" rowSupColor<-"blue" rowActiveFont<-3 rowSupFont<-4 } else { if(varLabels || varPoints) { rowWhat <- "all" varIndexes <- corpusCa$rowvars[names(corpusCa$rowvars) %in% vars] doItAndPrint(paste("plottingCa <- rowSubsetCa(corpusCa, c(", paste(varIndexes, collapse=", "), "))", sep="")) } else { rowWhat <- "none" } rowActivePoints<-if(varPoints) 1 else NA rowSupPoints<-if(varPoints) 16 else NA rowActiveColor<-rowSupColor<-"blue" rowActiveFont<-rowSupFont<-4 } if(termLabels || termPoints) { colWhat <- "all" if(docLabels || docPoints || varLabels || varPoints) doItAndPrint(paste("plottingCa <- colSubsetCa(plottingCa, order(colCtr(corpusCa, ", ctrDim, "), decreasing=TRUE)[1:", nTerms, "])", sep="")) else doItAndPrint(paste("plottingCa <- colSubsetCa(corpusCa, order(colCtr(corpusCa, ", ctrDim, "), decreasing=TRUE)[1:", nTerms, "])", sep="")) } else { colWhat <- "none" } doItAndPrint(sprintf('plotCorpusCa(plottingCa, dim=c(%s, %s), what=c("%s", "%s"), labels=c(%i, %i), pch=c(%s, %s, %s, NA), col.text=c("%s", "%s", "black", "red"), font=c(%i, %i, 1, 2), mass=TRUE, xlab="%s", ylab="%s")', x, y, rowWhat, colWhat, if(docLabels || varLabels) 2 else 0, if(termLabels) 2 else 0, rowActivePoints, rowSupPoints, if(termPoints) 17 else NA, rowActiveColor, rowSupColor, rowActiveFont, rowSupFont, sprintf(.gettext("Dimension %s (%.1f%%)"), x, 100 * corpusCa$sv[as.integer(x)]^2/sum(corpusCa$sv^2)), sprintf(.gettext("Dimension %s (%.1f%%)"), y, 100 * corpusCa$sv[as.integer(y)]^2/sum(corpusCa$sv^2)))) activateMenus() } onClose <- NULL .customCloseHelp(helpSubject="showCorpusCaDlg", custom.button=.gettext("Show")) tkgrid(labelRcmdr(dimFrame, text=.gettext("Horizontal axis:")), xSlider, sticky="w") tkgrid(labelRcmdr(dimFrame, text=.gettext("Vertical axis:")), ySlider, sticky="w") tkgrid(dimFrame, sticky="w", pady=6, columnspan=2) tkgrid(labelsFrame, pointsFrame, sticky="w", pady=6, padx=c(0, 6)) if(!actDocs || length(corpusCa$rowsup) > 0) tkgrid(getFrame(varBox), columnspan=2, sticky="we", pady=6) tkgrid(labelRcmdr(nFrame, text=.gettext("Documents:")), spinDocs, sticky="w") tkgrid(labelRcmdr(nFrame, text=.gettext("Terms:")), spinTerms, sticky="w") tkgrid(nFrame, sticky="w", pady=6, columnspan=2) tkgrid(labelRcmdr(ctrDimFrame, text=.gettext("Most contributive to:")), sticky="w", columnspan=2, pady=6) tkgrid(ctrDim1, ctrDim2, ctrDim3, sticky="w", pady=6) tkgrid(ctrDimFrame, sticky="w", pady=6, columnspan=2) tkgrid.columnconfigure(ctrDimFrame, "all", uniform="a") tkgrid(buttonsFrame, sticky="ew", pady=6, columnspan=2) .Tcl("update idletasks") tkwm.resizable(top, 0, 0) tkbind(top, "<Return>", onCustom) tkbind(top, "<Escape>", onClose) if (getRcmdr("double.click") && (!preventDoubleClick)) tkbind(window, "<Double-ButtonPress-1>", onCustom) tkwm.deiconify(top) tkfocus(top) if (getRcmdr("crisp.dialogs")) tclServiceMode(on=TRUE) }
iconfianza.x <- function(datos, nivel = 0.95, ic = T, colas = 2, use.t = F) { datos[datos == -Inf] <- NA datos[datos == Inf] <- NA n <- sum(!is.na(datos)) if (n != 0) { if (use.t) pnor <- qt(1 - (1 - nivel) / colas, n - 1) else pnor <- qnorm(1 - (1 - nivel) / colas) med <- mean(datos, na.rm = T) std <- sqrt(var(datos, na.rm = T)) l.i <- med - pnor * std l.s <- med + pnor * std } else { med <- NA l.i <- NA l.s <- NA } if (ic) iconfres <- c(l.i, med, l.s) else iconfres <- rep(med, 3) iconfres }
options(digits = 7L) base::cat("Time elapsed: ", proc.time() - base::get("ptime", pos = 'CheckExEnv'),"\n") grDevices::dev.off() quit('no')
selectActiveDims = function(q=NULL,E,threshold,mu,Sigma,pn=NULL,method=1,verb=0,pmvnorm_usr=pmvnorm){ n<-length(mu) if(is.null(q)){ return(selectQdims(E=E,threshold=threshold,mu=mu,Sigma=Sigma,pn=pn,method=method,reducedReturn=T,verb=verb,pmvnorm_usr=pmvnorm_usr)) }else if(length(q)==2){ return(selectQdims(E=E,threshold=threshold,mu=mu,Sigma=Sigma,pn=pn,method=method,reducedReturn=T,verb=verb,limits = q, pmvnorm_usr=pmvnorm_usr)) } if(method==0){ indQ<-as.integer(seq(from = 1,to = n,length.out = q)) }else if(method==1){ if(is.null(pn)){ pn<-pnorm((mu-threshold)/sqrt(diag(Sigma))) } indQ<-sample.int(n,q,prob = pn) }else if(method==2){ if(is.null(pn)){ pn<-pnorm((mu-threshold)/sqrt(diag(Sigma))) } indQ<-sample.int(n,q,prob = pn*(1-pn)) }else if(method==3){ distances<-as.matrix(dist(E)) if(is.null(pn)){ pn<-pnorm((mu-threshold)/sqrt(diag(Sigma))) } indQ<-rep(-1,q) indQ[1]<-sample.int(n,1,prob = pn) dd<-1 for(i in (2:q)){ dd<-dd^0.8*distances[indQ[i-1],] dd<-dd/diff(range(dd)) indQ[i]<-sample.int(n,1,prob = dd*pn) } }else if(method==4){ distances<-as.matrix(dist(E)) if(is.null(pn)){ pn<-pnorm((mu-threshold)/sqrt(diag(Sigma))) } indQ<-rep(-1,q) indQ[1]<-sample.int(n,1,prob = pn*(1-pn)) dd<-1 for(i in (2:q)){ dd<-dd^0.8*distances[indQ[i-1],] dd<-dd/diff(range(dd)) indQ[i]<-sample.int(n,1,prob = dd*pn*(1-pn)) } }else if(method==5){ indQ<-sample.int(n,q) }else { indQ<-as.integer(seq(from = 1,to = n,length.out = q)) } indQ<-sort(indQ) return(indQ) } selectQdims = function(E,threshold,mu,Sigma,pn=NULL,method=1,reducedReturn=T,verb=0,limits=NULL,pmvnorm_usr=pmvnorm){ if(verb>0) cat("\n selectQdims: find good q and select active dimensions \n") n<-length(mu) if(!is.null(limits)){ q0=max(2,min(limits[1],n)) qMax=min(limits[2],n,300) }else{ q0=min(10,n) qMax=min(n,300) } if(verb>0) cat("\n Initial q:",q0) indQ<-selectActiveDims(q=q0,E=E,threshold=threshold,mu=mu,Sigma=Sigma,pn=pn,method=method,pmvnorm_usr=pmvnorm_usr) Eq<-E[indQ,] muEq<-mu[indQ] KEq<-Sigma[indQ,indQ] pPrime<- 1 - pmvnorm_usr(lower=rep(-Inf,length(indQ)),upper = rep(threshold,length(indQ)),mean = muEq,sigma = KEq) err<-attr(pPrime,"error") deltaP<-1 qIncrement<-min(10,ceiling(0.01*n)) if(verb>0) cat(", Increments q:",qIncrement,"\n") flag=0 q=q0 while(flag<2){ q<-min(q+qIncrement,qMax) indQ<-selectActiveDims(q=q,E=E,threshold=threshold,mu=mu,Sigma=Sigma,pn=pn,method=method,pmvnorm_usr=pmvnorm_usr) Eq<-E[indQ,] muEq<-mu[indQ] KEq<-Sigma[indQ,indQ] if("algorithm" %in% names(formals(pmvnorm_usr))){ temp<-1 - pmvnorm_usr(lower=rep(-Inf,length(indQ)),upper = rep(threshold,length(indQ)),mean = muEq,sigma = KEq,algorithm = GenzBretz(abseps = 0.01)) }else{ temp<-1 - pmvnorm_usr(lower=rep(-Inf,length(indQ)),upper = rep(threshold,length(indQ)),mean = muEq,sigma = KEq) } err<-attr(temp,"error") deltaP<-abs(temp-pPrime)/(temp+1) if(deltaP<=err) flag<-flag+1 if(q==qMax) flag<-flag+2 pPrime<-temp } if(verb>0) cat("Final q:",q,", deltaP: ",deltaP,", err:",err,"\n") res<-indQ if(!reducedReturn){ pq<-1 - pmvnorm_usr(lower=rep(-Inf,length(indQ)),upper = rep(threshold,length(indQ)),mean = muEq,sigma = KEq) attr(pq,"error")<-attr(temp,"error") res<-list(indQ=indQ,pq=pq,Eq=Eq,muEq=muEq,KEq=KEq) } return(res) }
datacheck4 <- function(pos_list, k){ for (i in 1:length(pos_list)){ if (length(table(pos_list[i]))== k[[i]]){ pos_list = pos_list } else{ stop("User-declared nominal size does not match observed nominal size. Please check vector of target positions.") } } }
ghkgcmr_R <- function(R, pdf, cdf, nrep){ .Call('ghkgcmr', PACKAGE = 'gcKrig', R, pdf, cdf, nrep) } ghkgcmr2_R <- function(R, pdf, cdf, nrep){ .Call('ghkgcmr2', PACKAGE = 'gcKrig', R, pdf, cdf, nrep) } likGHK <- function( pars, y, x = NULL, locs, marginal, corr, effort, longlat = FALSE, distscale = 1, nrep = 1000, reorder = FALSE, seed = 12345 ){ if(longlat == FALSE){ matD <- as.matrix(dist(locs, method = "euclidean", diag = TRUE, upper = TRUE))*distscale }else if(longlat == TRUE){ if (requireNamespace("sp", quietly = TRUE)) { matD <- sp::spDists(x = as.matrix(locs), longlat = TRUE)*distscale }else{ stop("Please install {sp} first!") } } npars <- length(pars) nparcorr <- corr$npar.cor if(marginal$nod == 1 & pars[ncol(x)+1] < 0){ pars[ncol(x)+1] <- 0 } if(corr$nug == 0 & pars[npars] < 0){ pars[npars] <- 0 }else if(corr$nug == 1){ pars[npars] <- ifelse(pars[npars] > 1, 1, pars[npars]) pars[npars] <- ifelse(pars[npars] < 0, 0, pars[npars]) pars[npars-1] <- ifelse(pars[npars-1] < 0, 0, pars[npars-1]) } R <- corr$corr(pars[(npars-nparcorr+1):npars], D = matD) pdf = marginal$pdf(y = y, x = x, pars = pars, effort = effort) cdf = marginal$cdf(y = y, x = x, pars = pars, effort = effort) set.seed(seed) if(reorder == FALSE){ loglik <- ghkgcmr_R(R = R, pdf = pdf, cdf = cdf, nrep = nrep) } else{ loglik <- ghkgcmr2_R(R = R, pdf = pdf, cdf = cdf, nrep = nrep) } if(is.nan(loglik) | loglik == -Inf) loglik = -1e6 if (loglik == Inf) loglik = 1e6 return(-loglik) } profilelikGHK <- function( theta, par.index, fitted, fixvalue = NULL, single = TRUE, alpha, nrep = 1000, seed = 12345 ){ if(single == TRUE){ optpar <- append(fixvalue, theta, after = par.index-1) llik <- likGHK(pars = optpar, y = fitted$args$y, x = fitted$args$x, locs = fitted$args$locs, marginal = fitted$args$marginal, corr = fitted$args$corr, effort = fitted$args$effort, longlat = fitted$args$longlat, distscale = fitted$args$distscale, nrep = nrep, reorder = FALSE, seed = seed) llikout <- (-llik - (fitted$log.lik-qchisq(1-alpha,1)/2) )^2 }else{ optpar <- append(theta, fixvalue, after = par.index-1) llikout <- likGHK(pars = optpar, y = fitted$args$y, x = fitted$args$x, locs = fitted$args$locs, marginal = fitted$args$marginal, corr = fitted$args$corr, effort = fitted$args$effort, longlat = fitted$args$longlat, distscale = fitted$args$distscale, nrep = nrep, reorder = FALSE, seed = seed) } return(llikout) } mleProfilelikGHK <- function( fitted, par.index, fixvalue = NULL, single = TRUE, start, alpha, nrep = 1000, seed = 12345 ){ if(single == TRUE){ est <- optim(start, profilelikGHK, par.index = par.index, fitted = fitted,fixvalue = fixvalue, single = TRUE, alpha = alpha, nrep = nrep, seed = seed, method = 'L-BFGS-B', lower = fitted$optlb[par.index], upper = fitted$optub[par.index])$par }else{ est <- optim(start, profilelikGHK, par.index = par.index, fitted = fitted, fixvalue = fixvalue, single = FALSE, alpha = alpha, nrep = nrep, seed = seed, method = 'L-BFGS-B', lower = fitted$optlb[-par.index], upper = fitted$optub[-par.index])$par } return(est) } mleGHK <- function( y, x = NULL, locs, marginal, corr, effort = 1, longlat = FALSE, distscale = 1, corrpar0 = NULL, ghkoptions = list(nrep = c(100,1000), reorder = FALSE, seed = 12345) ){ if(longlat == FALSE){ D <- as.matrix(dist(locs, method = "euclidean", diag = TRUE, upper = TRUE))*distscale }else if(longlat == TRUE){ if (requireNamespace("sp", quietly = TRUE)) { D <- sp::spDists(x = as.matrix(locs), longlat = TRUE)*distscale }else{ stop("Please install {sp} first!") } } N <- length(y) if(length(effort) == 1 & effort[1] == 1) effort <- rep(1,N) if(!is.null(x)){ x <- as.data.frame(x) x <- cbind(rep(1,N), x) }else{ x <- cbind(rep(1,N), x) } marg0 <- marginal$start(y = y, x = x, effort = effort) n.nugget0 <- corr$nug n.reg0 <- ncol(x) n.od0 <- marginal$nod if(is.null(corrpar0)){ corpar0 <- corr$start(D) }else{ corpar0 <- corrpar0 names(corpar0) <- names(corr$start(D)) } est <- c(marg0, corpar0) optlb <- c(rep(-Inf,n.reg0), rep(0, n.od0), 0, rep(0, n.nugget0)) optub <- c(rep(Inf,n.reg0), rep(Inf, n.od0), Inf, rep(1, n.nugget0)) for(j in 1:length(ghkoptions$nrep)){ fit <- optim(par = est, fn = likGHK, y = y, x = x, locs = locs, marginal = marginal, corr = corr, effort = effort, longlat = longlat, distscale = distscale, nrep = ghkoptions$nrep[j], reorder = ghkoptions$reorder, seed = ghkoptions$seed, method = "L-BFGS-B", lower = optlb, upper = optub) est <- fit$par } kmarg <- length(marg0) k <- length(est) if (is.null(fit$convergence) || fit$convergence != 0) warnings("Maximum likelihood estimation failed. Algorithm does not converge or MLEs do not exist.") result.list <- list(MLE = est, x = x, nug = n.nugget0, nreg = n.reg0, log.lik = -fit$value, AIC = 2*k+2*fit$value, AICc = 2*k+2*fit$value + 2*k*(k+1)/(N-k-1), BIC = 2*fit$value + k*log(N), kmarg = kmarg, par.df = k, N = N, D = D, optlb = optlb, optub = optub, args = mget(names(formals()),sys.frame(sys.nframe()))) return(result.list) } likGHKXX <- function(pars, y, XX, locs, marginal, corr, effort, longlat, distscale, nrep, seed) { likGHK(pars = pars, y = y, x = cbind(rep(1, length(y)), XX), locs = locs, marginal = marginal, corr = corr, effort = effort, longlat = longlat, distscale = distscale, nrep = nrep, reorder = FALSE, seed = seed) } predGHK <- function( obs.y, obs.x = NULL, obs.locs, pred.x = NULL, pred.locs, longlat = FALSE, distscale = 1, marginal, corr, obs.effort = 1, pred.effort = 1, estpar = NULL, corrpar0 = NULL, pred.interval = NULL, ghkoptions = list(nrep = c(100, 1000), reorder = FALSE, seed = 12345) ){ x <- as.data.frame(cbind(rep(1,length(obs.y)), obs.x)) colnames(x)[1] <- c("Intercept") if(!is.matrix(pred.locs) & !is.data.frame(pred.locs)) stop("Input 'pred.locs' must be a data frame or matrix!") if(!is.matrix(obs.locs) & !is.data.frame(obs.locs)) stop("Input 'obs.locs' must be a data frame or matrix!") if(length(obs.effort) == 1) obs.effort <- rep(obs.effort, nrow(obs.locs)) if(!length(obs.effort) == nrow(obs.locs)) stop("Sampling Effort must be equal to the number of sampling locations!") if(length(pred.effort) == 1) pred.effort <- rep(pred.effort, nrow(pred.locs)) if(!length(pred.effort) == nrow(pred.locs)) stop("Prediction Effort must be equal to the number of prediction locations!") if(is.null(estpar)){ MLE.est <- mleGHK(y = obs.y, x = x[,-1], locs = obs.locs, marginal = marginal, corr = corr, effort = obs.effort, longlat = longlat, distscale = distscale, corrpar0 = corrpar0, ghkoptions = ghkoptions) loglik <- MLE.est$log.lik; estpar <- MLE.est$MLE }else{ loglik <- -likGHK(pars = estpar, y = obs.y, x = x, locs = obs.locs, marginal = marginal, corr = corr, effort = obs.effort, longlat = longlat, distscale = distscale, nrep = ghkoptions$nrep[length(ghkoptions$nrep)], reorder = ghkoptions$reorder, seed = ghkoptions$seed) } if(is.null(pred.x)) { pred.x <- matrix(1, nrow = nrow(pred.locs), ncol = 1) }else { pred.x <- cbind(rep(1, nrow(pred.locs)) , pred.x) } pred.x <- as.data.frame(pred.x) names(pred.x) <- names(x) if(nrow(pred.x)!= nrow(pred.locs)) stop("Number of prediction locations did not match rows of covariates") if (requireNamespace("FNN", quietly = TRUE)) { if(nrow(pred.locs) == 1){ indexloc <- which.min(FNN::get.knnx(pred.locs, obs.locs, 1)$nn.dist) m0 <- n0 <- round(unique(pred.effort)*obs.y[indexloc]/obs.effort[indexloc])+1 }else{ m0 <- n0 <- round(pred.effort*apply(pred.locs, 1, function(x) obs.y[which.min(FNN::get.knnx(t(as.matrix(x)), obs.locs, 1)$nn.dist)]/obs.effort[which.min(FNN::get.knnx(t(as.matrix(x)), obs.locs, 1)$nn.dist)]))+1 } }else{ stop("Please install {FNN} first!") } NPL <- length(m0) max.count <- ceiling(5*max(obs.y/obs.effort)*max(pred.effort)) if(is.null(pred.interval)){ ans <- matrix(NA, nrow = NPL, ncol = 2) } else if(pred.interval >=0 & pred.interval<=1 ) { ans <- matrix(NA, nrow = NPL, ncol = 6) }else stop("Input pred.interval must be a number between 0 and 1!") nnrep <- length(ghkoptions$nrep) for(j in 1:NPL){ tmpfun <- function(xtmp) { exp(-likGHK(pars = estpar, y = c(obs.y, xtmp), x = rbind(as.matrix(x), pred.x[j,]), locs = rbind(obs.locs, pred.locs[j,]), marginal = marginal, corr = corr, effort = c(obs.effort, pred.effort[j]), longlat = longlat, distscale = distscale, nrep = ghkoptions$nrep[nnrep], reorder = ghkoptions$reorder, seed = ghkoptions$seed) - loglik) } p.m0 <- p.n0 <- tmpfun(m0[j]); mu.m0 <- mu.n0 <- p.m0*m0[j]; mu2.m0 <- mu2.n0 <- p.m0*m0[j]^2 MM1 <- matrix(0, nrow = 2, ncol = 4); MM2 <- matrix(0, nrow = 2, ncol = 4) MM1[1,] <- c(p.m0, mu.m0, mu2.m0, m0[j]); MM2[1,] <- c(p.n0, mu.n0, mu2.n0, n0[j]) p.m0 <- tmpfun(m0[j]-1); mu.m0 <- p.m0*(m0[j]-1) mu2.m0 <- p.m0*(m0[j]-1)^2; MM1[2,] <- c(p.m0, mu.m0, mu2.m0, m0[j]-1) while( (p.m0 > sqrt(.Machine$double.eps) | MM1[nrow(MM1), 2] > MM1[nrow(MM1)-1, 2]) & m0[j] > 1) { p.m0 <- tmpfun(m0[j]-2); mu.m0 <- p.m0*(m0[j]-2); mu2.m0 <- p.m0*(m0[j]-2)^2 MM1 <- rbind(MM1, c(p.m0, mu.m0, mu2.m0, m0[j]-2)); m0[j] <- m0[j]-1 } p.n0 <- tmpfun(n0[j]+1); mu.n0 <- p.n0*(n0[j]+1); mu2.n0 <- p.n0*(n0[j]+1)^2 MM2[2, ] <- c(p.n0, mu.n0, mu2.n0, n0[j]+1) while( (p.n0 > sqrt(.Machine$double.eps) | MM2[nrow(MM2), 2] > MM2[nrow(MM2)-1, 2]) & n0[j] < max.count) { p.n0 <- tmpfun(n0[j]+2); mu.n0 <- p.n0*(n0[j]+2); mu2.n0 <- p.n0*(n0[j]+2)^2 MM2 <- rbind(MM2, c(p.n0, mu.n0, mu2.n0, n0[j]+2)); n0[j] <- n0[j]+1 } MM2 <- MM2[-1, ]; MM.all <- rbind(MM1, MM2); weight <- 1/sum(MM.all[,1]) if(!is.null(pred.interval)){ pd <- cbind(MM.all[,4], MM.all[,1]*weight ) pd1 <- pd[order(pd[,1]), ];pd1 <- cbind(pd1, cumsum(pd1[,2])) id1 <- suppressWarnings(ifelse(max(which(pd1[,3] <= (1-pred.interval)/2 ))==-Inf, 0, max(which(pd1[,3] <= (1-pred.interval)/2 )))) id2 <- min(which(pd1[,3] >= 1-(1-pred.interval)/2 )) L1 <- id1; U1 <- id2-1 pd2 <- pd[order(pd[,2], decreasing = TRUE),] pd2 <- cbind(pd2, cumsum(pd2[,2])) id3 <- which(pd2[,3] >= pred.interval)[1] L2 <- min(pd2[1:id3,1]); U2 <- max(pd2[1:id3,1]) ans[j, ] <- c(sum(MM.all[,2])*weight, sum(MM.all[,3]*weight)-(sum(MM.all[,2])*weight)^2, L1, U1, L2, U2) }else{ ans[j, ] <- c(sum(MM.all[,2])*weight, sum(MM.all[,3]*weight)-(sum(MM.all[,2])*weight)^2) } } if(!is.null(pred.interval)){ anslist <- (list(obs.locs = obs.locs, obs.y = obs.y, pred.locs = pred.locs, predValue = ans[,1], predCount = round(ans[,1]), predVar = ans[,2], ConfidenceLevel = pred.interval, predInterval.EqualTail = ans[,3:4], predInterval.Shortest = ans[,5:6])) }else{ anslist <- (list(obs.locs = obs.locs, obs.y = obs.y, pred.locs = pred.locs, predValue = ans[,1], predCount = round(ans[,1]), predVar = ans[,2])) } return(anslist) } predGHK.sf <- function( obs.y, obs.x = NULL, obs.locs, pred.x = NULL, pred.locs, longlat = FALSE, distscale = 1, marginal, corr, obs.effort = 1, pred.effort = 1, estpar = NULL, corrpar0 = NULL, pred.interval = NULL, n.cores = 2, cluster.type="SOCK", ghkoptions = list(nrep = c(100,1000), reorder = FALSE, seed = 12345) ){ x <- as.data.frame(cbind(rep(1,length(obs.y)), obs.x)) colnames(x)[1] <- c("Intercept") if(is.null(ghkoptions[["nrep"]])) ghkoptions$nrep = c(100,1000) if(is.null(ghkoptions[["reorder"]])) ghkoptions$reorder = FALSE if(is.null(ghkoptions[["seed"]])) ghkoptions$seed = 12345 if(!is.matrix(pred.locs) & !is.data.frame(pred.locs)) stop("Input 'pred.locs' must be a data frame or matrix!") if(!is.matrix(obs.locs) & !is.data.frame(obs.locs)) stop("Input 'obs.locs' must be a data frame or matrix!") if(length(obs.effort) == 1) obs.effort <- rep(obs.effort, nrow(obs.locs)) if(!length(obs.effort) == nrow(obs.locs)) stop("Sampling Effort must be equal to the number of sampling locations!") if(length(pred.effort) == 1) pred.effort <- rep(pred.effort, nrow(pred.locs)) if(!length(pred.effort) == nrow(pred.locs)) stop("Prediction Effort must be equal to the number of prediction locations!") if(is.null(estpar)){ MLE.est <- mleGHK(y = obs.y, x = x[,-1], locs = obs.locs, marginal = marginal, corr = corr, effort = obs.effort, longlat = longlat, distscale = distscale, corrpar0 = corrpar0, ghkoptions = ghkoptions) loglik <- MLE.est$log.lik; estpar <- MLE.est$MLE }else{ loglik <- -likGHK(pars = estpar, y = obs.y, x = x, locs = obs.locs, marginal = marginal, corr = corr, effort = obs.effort, longlat = longlat, distscale = distscale, nrep = ghkoptions$nrep[length(ghkoptions$nrep)], reorder = ghkoptions$reorder, seed = ghkoptions$seed) } if(is.null(pred.x)) { pred.x <- matrix(1, nrow = nrow(pred.locs), ncol = 1) }else { pred.x <- cbind(rep(1, nrow(pred.x)) , pred.x) } pred.x <- as.data.frame(pred.x) colnames(pred.x)[1] <- c("Intercept") names(pred.x) <- names(x) if(nrow(pred.x)!= nrow(pred.locs)) stop("Number of prediction locations did not match the number of covariates") if (requireNamespace("FNN", quietly = TRUE)) { if(nrow(pred.locs) == 1){ indexloc <- which.min(FNN::get.knnx(pred.locs, obs.locs, 1)$nn.dist) m0 <- n0 <- round(unique(pred.effort)*obs.y[indexloc]/obs.effort[indexloc])+1 }else{ m0 <- n0 <- round(pred.effort*apply(pred.locs, 1, function(x) obs.y[which.min(FNN::get.knnx(t(as.matrix(x)), obs.locs, 1)$nn.dist)]/obs.effort[which.min(FNN::get.knnx(t(as.matrix(x)), obs.locs, 1)$nn.dist)]))+1 } }else { stop("Please install {FNN} first!") } NPL <- length(m0) max.count <- ceiling(5*max(obs.y/obs.effort)*max(pred.effort)) nnrep <- length(ghkoptions$nrep) if (requireNamespace("snowfall", quietly = TRUE)) { snowfall::sfInit(parallel =TRUE, cpus = n.cores, type = cluster.type) suppressMessages(snowfall::sfExportAll(except = NULL, debug = FALSE)) suppressMessages(snowfall::sfLibrary("gcKrig", character.only= TRUE)) par.pred.inner <- function(j){ tmpfun <- function(xtmp) { exp(-likGHK(pars = estpar, y = c(obs.y, xtmp), x = rbind(as.matrix(x), pred.x[j,]), locs = rbind(obs.locs, pred.locs[j,]), marginal = marginal, corr = corr, effort = c(obs.effort, pred.effort[j]), longlat = longlat, distscale = distscale, nrep = ghkoptions$nrep[nnrep], reorder = ghkoptions$reorder, seed = ghkoptions$seed) - loglik) } p.m0 <- p.n0 <- tmpfun(m0[j]); mu.m0 <- mu.n0 <- p.m0*m0[j]; mu2.m0 <- mu2.n0 <- p.m0*m0[j]^2 MM1 <- matrix(0, nrow = 2, ncol = 4); MM2 <- matrix(0, nrow = 2, ncol = 4) MM1[1,] <- c(p.m0, mu.m0, mu2.m0, m0[j]); MM2[1,] <- c(p.n0, mu.n0, mu2.n0, n0[j]) p.m0 <- tmpfun(m0[j]-1); mu.m0 <- p.m0*(m0[j]-1); mu2.m0 <- p.m0*(m0[j]-1)^2; MM1[2,] <- c(p.m0, mu.m0, mu2.m0, m0[j]-1) while( (p.m0 > sqrt(.Machine$double.eps) | MM1[nrow(MM1), 2] > MM1[nrow(MM1)-1, 2]) & m0[j] > 1) { p.m0 <- tmpfun(m0[j]-2); mu.m0 <- p.m0*(m0[j]-2); mu2.m0 <- p.m0*(m0[j]-2)^2 MM1 <- rbind(MM1, c(p.m0, mu.m0, mu2.m0, m0[j]-2)); m0[j] <- m0[j]-1 } p.n0 <- tmpfun(n0[j]+1); mu.n0 <- p.n0*(n0[j]+1); mu2.n0 <- p.n0*(n0[j]+1)^2 MM2[2, ] <- c(p.n0, mu.n0, mu2.n0, n0[j]+1) while( (p.n0 > sqrt(.Machine$double.eps) | MM2[nrow(MM2), 2] > MM2[nrow(MM2)-1, 2]) & n0[j] < max.count) { p.n0 <- tmpfun(n0[j]+2); mu.n0 <- p.n0*(n0[j]+2); mu2.n0 <- p.n0*(n0[j]+2)^2 MM2 <- rbind(MM2, c(p.n0, mu.n0, mu2.n0, n0[j]+2)); n0[j] <- n0[j]+1 } MM2 <- MM2[-1, ]; MM.all <- rbind(MM1, MM2); weight <- 1/sum(MM.all[,1]) if(!is.null(pred.interval)){ pd <- cbind(MM.all[,4], MM.all[,1]*weight ) pd1 <- pd[order(pd[,1]), ];pd1 <- cbind(pd1, cumsum(pd1[,2])) id1 <- suppressWarnings(ifelse(max(which(pd1[,3] <= (1-pred.interval)/2 ))==-Inf, 0, max(which(pd1[,3] <= (1-pred.interval)/2 )))) id2 <- min(which(pd1[,3] >= 1-(1-pred.interval)/2 )); L1 <- id1; U1 <- id2-1 pd2 <- pd[order(pd[,2], decreasing = TRUE),] pd2 <- cbind(pd2, cumsum(pd2[,2])) id3 <- which(pd2[,3] >= pred.interval)[1] L2 <- min(pd2[1:id3,1]); U2 <- max(pd2[1:id3,1]) ans <- c(sum(MM.all[,2])*weight, sum(MM.all[,3]*weight)-(sum(MM.all[,2])*weight)^2, L1, U1, L2, U2) }else{ ans <- c(sum(MM.all[,2])*weight, sum(MM.all[,3]*weight)-(sum(MM.all[,2])*weight)^2) } return(ans) } out = snowfall::sfSapply(1:NPL, par.pred.inner) snowfall::sfStop() }else{ stop("Please install {snowfall} first before using this function!") } ans <- t(out) if(!is.null(pred.interval)){ anslist <- (list(obs.locs = obs.locs, obs.y = obs.y, pred.locs = pred.locs, predValue = ans[,1], predCount = round(ans[,1]), predVar = ans[,2], ConfidenceLevel = pred.interval, predInterval.EqualTail = ans[,3:4], predInterval.Shortest = ans[,5:6])) }else{ anslist <- (list(obs.locs = obs.locs, obs.y = obs.y, pred.locs = pred.locs, predValue = ans[,1], predCount = round(ans[,1]), predVar = ans[,2])) } return(anslist) }
library(testthat) library(gluedown) library(stringr) library(rvest) library(glue) test_that("md_quote creates a <blockquote> tag with other blocks (ex. 206)", { lines <- md_quote(md_softline(md_heading("Foo"), "bar", "baz")) lines %>% md_convert() %>% read_html() %>% html_node("blockquote") %>% expect_full() lines %>% md_convert() %>% read_html() %>% html_node("h1") %>% html_text() %>% expect_equal("Foo") }) test_that("md_quote can create an empty block quote (ex. 217)", { node <- md_quote("") %>% md_convert() %>% read_html() %>% html_nodes("blockquote") %>% html_text(trim = TRUE) expect_nchar(node, 0) }) test_that("md_quotes with soft lines create a single quote (ex. 221)", { text <- c("foo", "bar") text %>% md_quote() %>% md_convert() %>% read_html() %>% html_node("blockquote") %>% html_text(trim = TRUE) %>% expect_equal(expected = str_c(text, collapse = "\n")) }) test_that("md_quotes with blank lines create paragraphs (ex. 222)", { text <- c("foo", "", "bar") node <- text %>% md_quote() %>% md_convert() %>% read_html() %>% html_node("blockquote") %>% html_nodes("p") %>% html_text(trim = TRUE) expect_equal(node, text[which(text != "")]) }) test_that("md_quote can create nested block qutoes (ex. 228)", { lines <- md_quote(md_quote(md_quote("foo"))) nodes <- lines %>% md_convert() %>% read_html() %>% html_nodes("blockquote") expect_length(nodes, 3) })
grnn.optmiz_auc <- function(net, lower = 0, upper, nfolds = 4, seed = 1, method = 1) { if (class(net) != "General Regression Neural Net") stop("net needs to be a GRNN.", call. = F) if (!(method %in% c(1, 2))) stop("the method is not supported.", call. = F) fd <- folds(seq(nrow(net$x)), n = nfolds, seed = seed) cv <- function(s) { cls <- parallel::makeCluster(min(nfolds, parallel::detectCores() - 1), type = "PSOCK") obj <- c("fd", "net", "grnn.fit", "grnn.predone", "grnn.predict") parallel::clusterExport(cls, obj, envir = environment()) rs <- Reduce(rbind, parallel::parLapply(cls, fd, function(f) data.frame(ya = net$y[f], yp = grnn.predict(grnn.fit(net$x[-f, ], net$y[-f], sigma = s), net$x[f, ])))) parallel::stopCluster(cls) return(MLmetrics::AUC(y_pred = rs$yp, y_true = rs$ya)) } if (method == 1) { rst <- optimize(f = cv, interval = c(lower, upper), maximum = T) } else if (method == 2) { rst <- optim(par = mean(lower, upper), fn = cv, lower = lower, upper = upper, method = "Brent", control = list(fnscale = -1)) } return(data.frame(sigma = rst[[1]], auc = rst[[2]])) }
a <- matrix(rnorm(50 * 10), 50) b <- svd(a, nu = 5, nv = 5) str(b) c <- svd(a) str(c) rowMeans(c$u) a <- NA `if`(b, 2, 3) crossprod(c$u) tcrossprod(c$u)[1:5, 1:5] crossprod(c$v) tcrossprod(c$v)[1:5, 1:5] crossprod(b$u)[1:5, 1:5] tcrossprod(b$u)[1:5, 1:5] crossprod(b$v)[1:5, 1:5] tcrossprod(b$v)[1:5, 1:5] a <- matrix(rnorm(1e5 * 200), 1e5) print(system.time(e <- qr.Q(qr(a)))) print(system.time(b <- svd(a, nv = 0))) all.equal(crossprod(e), diag(ncol(e))) all.equal(crossprod(b$u), diag(ncol(e)))
buildNames <- function(dframe, numOfNames, minLength, maxLength) { if(!missing(dframe)) { alphaMatrixFirst <- genMatrix(dframe,"first") alphaMatrixAll <- genMatrix(dframe,"all") } topAlphas <- rowSums(alphaMatrixFirst) topAlphas <- topAlphas[order(-topAlphas)] maxRange <- min(length(topAlphas), 13) if(maxRange < 13) { warning("Training data is not large enough. Expect less than minimum length names and/or names that do not seem like training data") } n <- sample(topAlphas[1:maxRange],numOfNames, replace = TRUE) custNames <- list() for(i in seq_along(n)) { firstAlpha <- names(n[i]) secondAlpha <- nextAlphaProb(alphaMatrix = alphaMatrixFirst, currentAlpha = firstAlpha, placement = "first") custName <- list(firstAlpha,secondAlpha) prevAlpha <- paste0(unlist(custName),collapse = "") nameLength <- sample(minLength:maxLength, 1, replace = FALSE) for(j in 3:nameLength) { nextAlpha <- nextAlphaProb(alphaMatrix = alphaMatrixAll, currentAlpha = prevAlpha, placement = "all") if(nextAlpha == "doesNotExist") { prevAlphaEnd <- unlist(strsplit(prevAlpha, split = ""))[2] nextAlpha <- nextAlphaProb(alphaMatrix = alphaMatrixFirst, currentAlpha = prevAlphaEnd, placement = "first") next } custName <- list(custName,nextAlpha) custName <- unlist(custName) prevAlpha <- paste0(custName[length(custName)-1], custName[length(custName)], collapse = "") } custName <- paste0(custName, collapse = "") custNames <- c(unlist(custNames), custName) } return(custNames) }
InitialPopulation <- function(x, populationSize, startGenes, EveryGeneInInitialPopulation=TRUE) { cat(paste("\nGenerating the initial population...\n")) genomeLength=length(featureNames(x)); cat("Generating random chromosomes...\n"); populationInit = matrix(0, nrow=populationSize, ncol=genomeLength); if (EveryGeneInInitialPopulation==TRUE){ noDGenes=ceiling(genomeLength/populationSize); index1<-sample(1:genomeLength, genomeLength, replace=FALSE) if (genomeLength%%populationSize==0){ indexI<-matrix(index1, nrow=populationSize) cat(paste("\nNo rest...\n")) } else { cat(paste("\nWith rest...\n")) index2<-sample(setdiff(1:genomeLength,tail(index1, startGenes+1)), abs(populationSize*noDGenes-genomeLength), replace=FALSE) indexI<-matrix(c(index1,index2), nrow=populationSize, byrow = TRUE) } for (i in 1:populationSize) { for(j in 1:noDGenes){ populationInit[i, indexI[i, j]] = 1; } } if (startGenes>noDGenes){ for (i in 1:populationSize) { populationInit[i, sample(setdiff(1:genomeLength,indexI[i,]), startGenes-noDGenes, replace=FALSE)] = 1; } } } else { for (i in 1:populationSize) { populationInit[i, sample(1:genomeLength, startGenes, replace=FALSE)] = 1; } } colnames(populationInit)=featureNames(x); rownames(populationInit)=1:populationSize; return(populationInit); } Individuals<-function(population){ cat(paste("\tGenerating Individuals...\n")) if(nrow(population)%%2==1){ population<-rbind(population, population[1,]) rownames(population)<-c(1:nrow(population)) } noIndividuals<-nrow(population) Id<-rep(1:(nrow(population)/2), each=2) population<-cbind(Id, population) } splitChromosomes <- function(x, noChr=22) { noGenes<-matrix(c(1, 3000, 9.174312, 2, 2500, 7.645260, 3, 1900, 5.810398, 4, 1600, 4.892966, 5, 1700, 5.198777, 6, 1900, 5.810398, 7, 1800, 5.504587, 8, 1400, 4.281346, 9, 1400, 4.281346, 10, 1400, 4.281346, 11, 2000, 6.116208, 12, 1600, 4.892966, 13, 800, 2.446483, 14, 1200, 3.669725, 15, 1200, 3.669725, 16, 1300, 3.975535, 17, 1600, 4.892966, 18, 600, 1.834862, 19, 1700, 5.198777, 20, 900, 2.752294, 21, 400, 1.223242, 22, 800, 2.446483), nrow=22, ncol=3, byrow=TRUE) colnames(noGenes)<-c("Chromosome", "NoOfGenes", "Percent") toSplit<-dim(exprs(x))[1]; if (3*noChr>toSplit){ cat(paste("\nToo many chromosomes for the given genome. Please specify a lower number of chromosomes...\n")); noChr<-toSplit%/%3 cat(paste("\nAutomatically changing the number of chromosomes to "), noChr, paste(" ...\n")); } noGenes2<-noGenes[1:noChr,3]; rm(noGenes); newPercent<-noGenes2/sum(noGenes2)*100; rm(noGenes2); chr<-as.integer(newPercent*toSplit/100); rm(newPercent); chr[noChr]<-chr[noChr]+(toSplit-sum(chr)); rm(toSplit); rm(noChr); chrNumber<-0; chrConfig<-c(); for (i in chr) { chrNumber<-chrNumber+1 chrConfig<-c(chrConfig, rep(chrNumber,i)); } rm(chrNumber); rm(chr); rm(i); return(chrConfig); } RandomizePop<-function(population){ cat(paste("\tRandomizing the population...\n")) newIndex<-sample(1:dim(population)[1], replace=FALSE) newPopulation<-population[newIndex,] rownames(newPopulation)<-c(1:dim(newPopulation)[1]) return(newPopulation) } EvaluationFunction <- function(x, individuals, response, method, trainTest, nnetSize=NA, nnetDecay=NA, rdaAlpha=NA, rdaDelta=NA, ...){ cat(paste("\tEvaluating Fitnesses...\n")) if(toString(trainTest)=="LOO"){ traintest<-xvalSpec("LOO") } else if (toString(trainTest)=="LOG"){ traintest<-xvalSpec("LOG", 5, balKfold.xvspec(5)) } else { traintest<-c(trainTest) } formula<-as.formula(paste(response, "~.")) population<-individuals[,2:dim(individuals)[2]] populationSize<-nrow(population) results<-c() for (q in 1:populationSize) { if (!is.na(nnetSize)) { result = MLearn(formula, x[population[q,]==1,], .method = method, trainInd = traintest, size=nnetSize, decay=nnetDecay) } else if (!is.na(rdaAlpha)) { result = MLearn(formula, x[population[q,]==1,], .method = method, trainInd = traintest, alpha=rdaAlpha, delta=rdaDelta) } else { result = MLearn(formula, x[population[q,]==1,], .method = method, trainInd = traintest) } Accuracy<-(confuMat(result)[1]+confuMat(result)[4])/(confuMat(result)[1]+confuMat(result)[2]+confuMat(result)[3]+confuMat(result)[4]) results<-rbind(results, Accuracy) } results<-cbind(individuals[,1], results) rownames(results)=1:populationSize avgs<-c() for (j in results[,1]){ avgs<-rbind(avgs, mean(results[results[,1]==j,2])) } results<-cbind(results, avgs) colnames(results)=c("Id", "Accuracy", "Average Acc") return(results) } AnalyzeResults<-function(individuals, results, randomAssortment=TRUE, chrConf){ cat(paste("\tAnalyzing the results\n")) keep<-matrix(0, nrow=nrow(individuals), ncol=1) rownames(keep)<-rownames(results) colnames(keep)<-"Keep" crossOvers<-matrix(c(0), nrow=0, ncol=ncol(individuals)) colnames(crossOvers)<-colnames(individuals) for (i in 1:nrow(results)){ if (results[i, 2] >= results[i, 3]) keep[i, 1]=1 } cat(paste("\tApplying crossovers...\n")) if (randomAssortment==TRUE){ for (j in 1:(nrow(individuals)/2)){ selChr<-individuals[results[,1]==j, -1] repeat { newChr<-RandomAssortment(Crossover(selChr[1,], selChr[2,], chrConf), chrConf) if ((sum(newChr[1,])>3)&&(sum(newChr[2,])>3)){ break } cat(paste("\tFailed crossover & random assortment...Redone.\n")) } newChromosomes<-cbind(c(j,j), newChr) crossOvers<-rbind(crossOvers, newChromosomes) } cat(paste("\tApplying Random Assortment...\n")) rownames(crossOvers)<-1:nrow(crossOvers) } else { for (j in 1:(nrow(individuals)/2)){ selChr<-individuals[results[,1]==j, -1] repeat { newChr<-Crossover(selChr[1,], selChr[2,], chrConf) if ((sum(newChr[1,])>3)&&(sum(newChr[2,])>3)){ break } cat(paste("\tFailed crossover...Redone.\n")) } newChromosomes<-cbind(c(j,j), newChr) crossOvers<-rbind(crossOvers, newChromosomes) } rownames(crossOvers)<-1:nrow(crossOvers) } return(list(keep, crossOvers)) } Crossover<-function(c1, c2, chrConf){ crossVector<-rep(0, length(c1)) for (i in 1:max(chrConf)) { crossSlice<-crossVector[chrConf==i] crossIndexes<-sort(sample(1:(length(crossSlice)),2, replace=TRUE)) crossSlice[crossIndexes[1]:crossIndexes[2]]=1 rm(crossIndexes) crossVector[chrConf==i]<-crossSlice } c3<-rep(NA, length(c1)) c4<-rep(NA, length(c1)) maTemp<-rbind(chrConf, crossVector,c1, c2, c3, c4) rm(c3) rm(c4) rm(crossVector) maTemp[5,maTemp[2,]==0]<-maTemp[3,maTemp[2,]==0] maTemp[5,maTemp[2,]==1]<-maTemp[4,maTemp[2,]==1] maTemp[6,maTemp[2,]==0]<-maTemp[4,maTemp[2,]==0] maTemp[6,maTemp[2,]==1]<-maTemp[3,maTemp[2,]==1] newChrs<-maTemp[5:6,] rm(maTemp) return(newChrs) } RandomAssortment<-function(newChrs, chrConf){ AssortIndex<-sample(c(0,1), size=max(chrConf), replace = TRUE) c3<-rep(NA, ncol(newChrs)) c4<-rep(NA, ncol(newChrs)) exchange<-c() for (i in 1:max(chrConf)) { exchange<-c(exchange, rep(AssortIndex[i], sum(as.numeric(chrConf==i)))) } maTemp<-rbind(chrConf, exchange, newChrs[1,], newChrs[2,], c3, c4) rm(c3) rm(c4) rm(AssortIndex) rm(exchange) maTemp[5,maTemp[2,]==0]<-maTemp[3,maTemp[2,]==0] maTemp[5,maTemp[2,]==1]<-maTemp[4,maTemp[2,]==1] maTemp[6,maTemp[2,]==0]<-maTemp[4,maTemp[2,]==0] maTemp[6,maTemp[2,]==1]<-maTemp[3,maTemp[2,]==1] splittedChrs<-maTemp[5:6,] rm(maTemp) return(splittedChrs) } pointMutation<-function(individuals, mutationChance){ noMutations<-floor(mutationChance/100*length(individuals[,-1])) cat(paste("\tApplying", noMutations, "Point Mutations...\n")) individualsOrig<-individuals indexes<-sample(0:length(individuals[,-1]),noMutations) individuals[,-1][indexes]=as.numeric(!as.logical(individuals[,-1][indexes])) for (q in 1:dim(individuals[,-1])[1]) { if (sum(individuals[q,-1])<4){ individuals[q,]=individualsOrig[q,]; cat(paste("\tInvalid mutated genotype.Not inherited....\n")) } } rm(q) rm(individualsOrig) return(individuals) } nonSenseMutation<-function(individuals, chrConf, mutationChance){ noChr<-max(chrConf) noMutations<-floor(mutationChance/100*dim(individuals)[1]*noChr) cat(paste("\tApplying", noMutations, "NonSenseMutation mutations...\n")) indexes<-sample(1:length(individuals[,-1]), noMutations) indexChr<-rep(chrConf, dim(individuals)[1]) addIndexes<-c() for (i in indexes) { p<-i repeat { p<-p+1 if (!identical(indexChr[i], indexChr[p])||identical(i, length(individuals[,-1]))){ break; } addIndexes<-c(addIndexes, p) } } rm(i) allIndexes<-sort(c(indexes, addIndexes), decreasing = FALSE) invIndividuals<-t(individuals) for (i in allIndexes) { invIndividuals[-1,][i]=0 } for (q in 1:dim(invIndividuals[-1,])[2]) { if (sum(invIndividuals[-1,q])<4){ invIndividuals[,q]=t(individuals)[,q]; cat(paste("\tInvalid mutated genotype.Not inherited....\n")) } } individuals<-t(invIndividuals) rm(invIndividuals) rm(i) rm(q) rm(addIndexes) rm(indexes) rm(allIndexes) return(individuals) } frameShiftMutation<-function(individuals, chrConf, mutationChance){ noChr<-max(chrConf) noMutations<-floor(mutationChance/100*dim(individuals)[1]*noChr) cat(paste("\tApplying", noMutations, "FrameShiftMutation mutations...\n")) indexes<-sample(1:length(individuals[,-1]),noMutations) indexChr<-rep(chrConf, dim(individuals)[1]) addIndexes<-c() for (i in indexes) { p<-i repeat { p<-p+1 if (!identical(indexChr[i], indexChr[p])||identical(i, length(individuals[,-1]))){ break; } addIndexes<-c(addIndexes, p) } } rm(i) allIndexes<-sort(c(indexes, addIndexes), decreasing = FALSE) invIndividuals<-t(individuals) for (j in 1:length(allIndexes)) { if (identical(allIndexes[j]+1, allIndexes[j+1])){ invIndividuals[-1,][allIndexes[j]]=invIndividuals[-1,][allIndexes[j]+1] }else{ invIndividuals[-1,][allIndexes[j]]=0 } } for (q in 1:dim(invIndividuals[-1,])[2]) { if (sum(invIndividuals[-1,q])<4){ invIndividuals[,q]=t(individuals)[,q]; cat(paste("\tInvalid mutated genotype.Not inherited....\n")) } } individuals<-t(invIndividuals) rm(invIndividuals) rm(j) rm(q) rm(addIndexes) rm(indexes) rm(allIndexes) return(individuals) } largeSegmentDeletion<-function(individuals, chrConf, mutationChance){ noChr<-max(chrConf) indexesChr<-sample(1:(dim(individuals)[1]*noChr),floor(mutationChance/100*dim(individuals)[1]*noChr)) indivIndex<-ceiling(indexesChr/noChr) chrIndex<-indexesChr%/%indivIndex noMutations<-length(indexesChr) cat(paste("\tApplying", noMutations, "LargeSegmentDeletion mutations...\n")) individualsOrig<-individuals for (i in 1:length(indexesChr)) { margins<-sort(sample(1:(length(individuals[,-1][indivIndex[i],chrConf==chrIndex[i]])),2, replace=FALSE), decreasing = FALSE) individuals[,-1][indivIndex[i],chrConf==chrIndex[i]][margins[1]:margins[2]]=0 } for (q in 1:dim(individuals[,-1])[1]) { if (sum(individuals[q,-1])<4){ individuals[q,]=individualsOrig[q,]; cat(paste("\tInvalid mutated genotype.Not inherited....\n")) } } rm(i) rm(q) rm(individualsOrig) rm(indexesChr) rm(indivIndex) rm(chrIndex) return(individuals) } wholeChromosomeDeletion<-function(individuals, chrConf, mutationChance){ noChr<-max(chrConf) indexesChr<-sample(1:(dim(individuals)[1]*noChr),floor(mutationChance/100*dim(individuals)[1]*noChr)) indivIndex<-ceiling(indexesChr/noChr) chrIndex<-indexesChr%/%indivIndex noMutations<-length(indexesChr) cat(paste("\tApplying", noMutations, "WholeChromosomeDeletion mutations...\n")) individualsOrig<-individuals for (i in 1:length(indexesChr)) { individuals[,-1][indivIndex[i],chrConf==chrIndex[i]]=0 } for (q in 1:dim(individuals[,-1])[1]) { if (sum(individuals[q,-1])<4){ individuals[q,]=individualsOrig[q,]; cat(paste("\tInvalid mutated genotype.Not inherited....\n")) } } rm(i) rm(q) rm(individualsOrig) rm(indexesChr) rm(indivIndex) rm(chrIndex) return(individuals) } transposon<-function(individuals, chrConf, mutationChance){ noChr<-max(chrConf) indexesChr<-sample(1:(dim(individuals)[1]*noChr),floor(mutationChance/100*dim(individuals)[1]*noChr)) indivIndex<-ceiling(indexesChr/noChr) chrIndex<-indexesChr%/%indivIndex noMutations<-length(indexesChr) cat(paste("\tApplying", noMutations, "Transposons mutations...\n")) individualsOrig<-individuals for (i in 1:length(indexesChr)) { pickFrom<-as.numeric(which(individuals[,-1][indivIndex[i],chrConf==chrIndex[i]]==1)) if(length(pickFrom)!=0){ transposon<-sample(pickFrom, 1) positions<-sample(c(-(sum(chrConf==chrIndex[i])-1):-1, 1:(sum(chrConf==chrIndex[i])-1)), 1) newIndex<-transposon+positions if (newIndex>sum(chrConf==chrIndex[i])){ newIndex<-newIndex-sum(chrConf==chrIndex[i]) } if (newIndex<1){ newIndex<-sum(chrConf==chrIndex[i])+newIndex } individuals[,-1][indivIndex[i],chrConf==chrIndex[i]][transposon]=0 individuals[,-1][indivIndex[i],chrConf==chrIndex[i]][newIndex]=1 } } for (q in 1:dim(individuals[,-1])[1]) { if (sum(individuals[q,-1])<4){ individuals[q,]=individualsOrig[q,]; cat(paste("\tInvalid mutated genotype.Not inherited....\n")) } } rm(i) rm(q) rm(individualsOrig) rm(indexesChr) rm(indivIndex) rm(chrIndex) return(individuals) } Elitism<-function(results, elitism, ID){ cat(paste("\tApplying Elitism...Keeping the Best ", elitism, "%\n")) if (ID=="ID2"){ cat("Elitistic individuals...\n") elite<-3 } else { cat("Elitistic genotypes...\n") elite<-2 } keep<-matrix(0, nrow=nrow(results), ncol=1) rownames(keep)<-rownames(results) colnames(keep)<-"Keep" toKeep<-sort(results[,elite], decreasing = TRUE, index.return=TRUE) toKeep<-toKeep$ix newIndex<-floor(length(toKeep)*elitism/100) rez<-results[toKeep,] toKeep<-toKeep[1:newIndex] keep[toKeep]<-1 return(list(keep, toKeep)) } EmbryonicSelection<-function(population, results, embryonicSelection){ cat(paste("\tApplying Embryonic Selection for Fitness > ", embryonicSelection, "\n")) keep<-matrix(0, nrow=nrow(population), ncol=1) rownames(keep)<-rownames(results) colnames(keep)<-"Keep" keep[(results[,3] > embryonicSelection)==TRUE]=1 return(keep) } PlotGenAlg <- function(DGenes, dGenes, maxEval, meanEval){ dev.off() dev.new() setFr <- layout(matrix(c(1,2,3,3),2,2,byrow = TRUE), TRUE) layout.show(setFr) par(las=2) index<-sort(DGenes, decreasing=TRUE, index.return=TRUE) DGenes<-DGenes[index$ix] plottedGenes<-length(DGenes) plot(maxEval, type="o", col="red", xlab="iteration no.", main="Maximum Accuracy") plot(meanEval, type="o", col="blue", xlab="iteration no.", main="Mean Accuracy") barplot(DGenes[1:plottedGenes], main="Genes inheritance", xlab="Gene", col=c("darkblue"), beside=FALSE, add=FALSE) } dGAselID<-function(x, response, method=knn.cvI(k=3, l=2), trainTest="LOG", startGenes, populationSize, iterations, noChr=22, elitism=NA, ID="ID1", pMutationChance=0, nSMutationChance=0, fSMutationChance=0, lSDeletionChance=0, wChrDeletionChance=0, transposonChance=0, randomAssortment=TRUE, embryonicSelection=NA, EveryGeneInInitialPopulation=TRUE, nnetSize=NA, nnetDecay=NA, rdaAlpha=NA, rdaDelta=NA, ...){ if (typeof(x)!="S4") { stop("The supplied data is not an ExpressionSet."); } if(randomAssortment==TRUE){ cat("The chromosomes will be randomly assigned...\n") } if (EveryGeneInInitialPopulation==TRUE){ cat("Every gene will be present in the initial population...\n") } if (is.na(embryonicSelection)) { embryonicSelection = NA } if (is.na(elitism)) { elitism = 0 } cat("Elitism =", elitism, "%\n") cat("Point Mutations rate =", pMutationChance, "%\n") cat("Non-sense Mutations rate =", nSMutationChance, "%\n") cat("Frameshift Mutation rate =", fSMutationChance, "%\n") cat("Large Segment Deletion rate =", lSDeletionChance, "%\n") cat("Whole Chromosome Deletion rate =", wChrDeletionChance, "%\n") cat("Transposon rate =", transposonChance, "%\n") cat("Embryonic Selection for fitness > ", embryonicSelection, "\n") cat("Fitness evaluation function =", method@mlFunName, "\n") cat("Cross-validation =", trainTest, "\n") cat("\nInitial population...\n") initialPopulation<-InitialPopulation(x, populationSize, startGenes, EveryGeneInInitialPopulation) individuals<-Individuals(initialPopulation) cat(paste("Splitting the genotype in", noChr, "chromosomes\n")) chrConf<-splitChromosomes(x, noChr) kDGenes<-matrix(c(0), nrow=1, ncol=ncol(initialPopulation)) colnames(kDGenes)<-colnames(initialPopulation) rownames(kDGenes)<-"DGenes" kdGenes<-matrix(c(0), nrow=1, ncol=ncol(initialPopulation)) colnames(kdGenes)<-colnames(initialPopulation) rownames(kdGenes)<-"dGenes" MaxAcc<-c() MeanAcc<-c() MinAcc<-c() bestIndividual<-matrix(0, nrow=1, ncol=ncol(initialPopulation)) iteration<-0 dev.new() repeat{ cat(paste("Starting iteration no.", iteration, "\n")) results<-EvaluationFunction(x, individuals, response, method, trainTest, nnetSize, nnetDecay, rdaAlpha, rdaDelta) iterMinAccuracy <- range(results[,2])[1] MinAcc<-c(MinAcc, iterMinAccuracy) cat(paste("\tMinimum Fitness in iteration no.", iteration, "equals", iterMinAccuracy*100, "%\n")) iterMeanAccuracy <- mean(results[,2]) MeanAcc<-c(MeanAcc, iterMeanAccuracy) cat(paste("\tMean Fitness in iteration no.", iteration, "equals", iterMeanAccuracy*100, "%\n")) iterMaxAccuracy <- range(results[,2])[2] MaxAcc<-c(MaxAcc, iterMaxAccuracy) cat(paste("\tMaximum Fitness in iteration no.", iteration, "equals", iterMaxAccuracy*100, "%\n")) lostInEmbryonic<-0 if (!is.na(embryonicSelection)) { keptEmbr<-EmbryonicSelection(individuals, results, embryonicSelection) keptIndividuals<-individuals[keptEmbr==1,] keptIndividuals[,1]<-rep(1:(nrow(keptIndividuals)/2), each=2) rownames(keptIndividuals)<-1:nrow(keptIndividuals) keptResults<-results[keptEmbr==1,] keptResults[,1]<-rep(1:(nrow(keptIndividuals)/2), each=2) rownames(keptResults)<-1:nrow(keptResults) discardedIndividuals<-individuals[keptEmbr==0,] lostInEmbryonic<-nrow(discardedIndividuals) } else { keptIndividuals<-individuals keptResults<-results discardedIndividuals<-individuals[0,] } iterRes<-AnalyzeResults(keptIndividuals, keptResults, randomAssortment, chrConf) keptIndividualsFromChildren<-iterRes[[2]] discardedIndividuals<-rbind(discardedIndividuals, keptIndividuals[!(iterRes[[1]]==1),]) keptIndividualsFromParents<-keptIndividuals[(iterRes[[1]]==1),] rownames(keptIndividualsFromParents)<-1:nrow(keptIndividualsFromParents) keptResults<-keptResults[iterRes[[1]]==1,] rownames(keptResults)<-1:nrow(keptResults) keptInElitism<-0 if (floor(nrow(keptResults)*elitism/100)==0) { tempResults<-keptResults tempIndividualsFromParents<-keptIndividualsFromParents keptIndividualsFromParents<-keptIndividualsFromParents[0,] keptResults<-keptResults[0,] keptElit<-Elitism(tempResults, 50, ID) forBest<-tempIndividualsFromParents[keptElit[[2]],] forBest<-forBest[1,] rm(tempResults) rm(tempIndividualsFromParents) } else { keptElit<-Elitism(keptResults, elitism, ID) keptIndividualsFromParents<-keptIndividualsFromParents[keptElit[[2]],] forBest<-rbind(keptIndividualsFromParents)[1,] keptResults<-keptResults[keptElit[[2]],] keptInElitism<-nrow(rbind(keptResults)) } best<-t(as.matrix(forBest))[,-1] bestIndividual<-rbind(bestIndividual, best) rm(forBest) if(lostInEmbryonic<keptInElitism){ adjust<-keptInElitism-lostInEmbryonic toRemove<-sample(1:nrow(keptIndividualsFromChildren), adjust, replace=FALSE) keptIndividualsFromChildren<-keptIndividualsFromChildren[-toRemove,] } keptIndividuals<-rbind(keptIndividualsFromParents,keptIndividualsFromChildren) rownames(keptIndividuals)<-1:nrow(keptIndividuals) tempMat<-matrix(0, nrow=1, ncol= ncol(individuals)) tempMat<-rbind(keptIndividualsFromParents) kDGenes[1,]<-kDGenes[1,] + colSums(tempMat)[-1] rm(tempMat) if((nrow(discardedIndividuals)>0)&&(ncol(discardedIndividuals)>0)){ tempMat<-matrix(0, nrow=1, ncol= ncol(individuals)) tempMat<-rbind(keptIndividualsFromParents) kdGenes[1,]<-kdGenes[1,] + colSums(tempMat)[-1] rm(tempMat) } if(pMutationChance!=0){ keptIndividuals<-pointMutation(keptIndividuals, pMutationChance) } if(nSMutationChance!=0){ keptIndividuals<-nonSenseMutation(keptIndividuals, chrConf, nSMutationChance) } if(fSMutationChance!=0){ keptIndividuals<-frameShiftMutation(keptIndividuals, chrConf, fSMutationChance) } if(lSDeletionChance!=0){ keptIndividuals<-largeSegmentDeletion(keptIndividuals, chrConf, lSDeletionChance) } if(wChrDeletionChance!=0){ keptIndividuals<-wholeChromosomeDeletion(keptIndividuals, chrConf, wChrDeletionChance) } if(transposonChance!=0){ keptIndividuals<-transposon(keptIndividuals, chrConf, transposonChance) } for (i in 1:dim(keptIndividuals)[1]) { if((sum(keptIndividuals[i,2:dim(keptIndividuals)[2]]))<3){ index<-keptIndividuals[i,]==0 interval<-1:dim(keptIndividuals)[2] interval<-interval[index] index<-sample(interval,1, replace=FALSE) keptIndividuals[i,index]<-1 rm(index) rm(interval) } } keptIndividuals<-RandomizePop(keptIndividuals) keptIndividuals<-Individuals(keptIndividuals[,-1]) cat(paste("\tPopulation Size in iteration no. ", iteration," = ", nrow(keptIndividuals), "\n")) PlotGenAlg(kDGenes, kdGenes, MaxAcc, MeanAcc) flush.console() individuals<-keptIndividuals iteration <- iteration+1 if(iteration>=iterations) break() } rezultate<-list(DGenes=kDGenes, dGenes=kdGenes, MaximumAccuracy=MaxAcc, MeanAccuracy=MeanAcc, MinAccuracy=MinAcc, BestIndividuals=bestIndividual[-1,]) return(rezultate) }
context("Prepare text") test_that("textProcessor and prepDocuments correctly subset metadata ", { data("gadarian") txtOut <- textProcessor(documents = gadarian$open.ended.response, metadata = data.frame(MetaID = gadarian$MetaID), sparselevel = .8) expect_equal(nrow(txtOut$meta), length(txtOut$documents)) prepped <- prepDocuments(txtOut$documents, txtOut$vocab, txtOut$meta, upper.thresh = 100) expect_equal(nrow(prepped$meta), length(prepped$documents)) })
print.spam.chol.NgPeyton <- function(x,...) { nrow <- x@dimension[1] nnzR <- x@rowpointers[nrow+1]-1 cat("(Upper) Cholesky factor of dimension ", nrow, "x", nrow, " with ",nnzR," (row-wise) nonzero elements (",printSize(x),").", sep = "", fill=TRUE) cat(" (The object is supposed to be used with: 'as.spam', 'backsolve', 'forwardsolve', etc.)\n", fill=TRUE) cat("Class 'spam.chol.NgPeyton'\n") invisible(NULL) } setMethod("show","spam.chol.NgPeyton", function(object) { nrow <- object@dimension[1] nnzR <- object@rowpointers[nrow+1]-1 cat("(Upper) Cholesky factor of dimension ", nrow, "x", nrow, " with ",nnzR," (row-wise) nonzero elements (",printSize(object),").", sep = "", fill=TRUE) cat(" (The object is supposed to be used with: 'as.spam', 'backsolve', 'forwardsolve', etc.)\n", fill=TRUE) cat("Class 'spam.chol.NgPeyton'\n") invisible(NULL) }) "diag.of.spam.chol.NgPeyton" <- function(x, nrow, ncol) return( x@entries[x@rowpointers[-(x@dimension[1]+1)]]) setMethod("diag", "spam.chol.NgPeyton", diag.of.spam.chol.NgPeyton) setMethod("diag<-", "spam.chol.NgPeyton", function(x) stop("diagonal cannot be changed on 'spam.chol.NgPeyton' object")) setMethod("print", "spam.chol.NgPeyton", print.spam.chol.NgPeyton) setMethod("length", "spam.chol.NgPeyton",function(x) x@rowpointers[x@dimension[1]+1]-1) setMethod("length<-","spam.chol.NgPeyton",function(x,value) stop("length cannot be changed on 'spam.chol.NgPeyton' object") ) setMethod("dim", "spam.chol.NgPeyton",function(x) x@dimension) setMethod("dim<-", "spam.chol.NgPeyton",function(x,value) stop("dimension cannot be altered on 'spam.chol.NgPeyton' object") ) setMethod("c","spam.chol.NgPeyton", function(x,...){ nrow <- x@dimension[1] nnzR <- x@rowpointers[nrow+1]-1 nsuper <- as.integer( length(x@supernodes)-1) if( getOption("spam.force64") || .format.spam(x)$package != "spam") SS <- .format64() else SS <- .format32 xcolindices <- .C64('calcja', SIGNATURE = rep(SS$signature, 7), nrow, nsuper, x@supernodes, x@colindices, x@colpointers, x@rowpointers, xja = vector_dc( SS$type, nnzR), INTENT=c("r", "r", "r", "r", "r", "r", "w"), NAOK = getOption("spam.NAOK"), PACKAGE = SS$package)$xja cx <- .C64("spamcsrdns", SIGNATURE = c(SS$signature, "double" , SS$signature, SS$signature, "double"), nrow = nrow, entries = x@entries, colindices = xcolindices, rowpointers = x@rowpointers, res = vector_dc( "double", nrow*nrow), INTENT = c("r", "r", "r", "r", "w"), NAOK=getOption("spam.NAOK"), PACKAGE = SS$package)$res if (length( list(...)) < 1) return( cx) else c( cx,c(...)) }) as.spam.chol.NgPeyton <- function(x, eps = getOption("spam.eps")) { if( getOption("spam.force64") || .format.spam(x)$package != "spam") SS <- .format64() else SS <- .format32 if (eps<.Machine$double.eps) stop("'eps' should not be smaller than machine precision",call.=FALSE) nrow <- x@dimension[1] nnzR <- x@rowpointers[nrow+1]-1 nsuper <- length(x@supernodes)-1 colindices <- .C64('calcja', SIGNATURE=rep(SS$signature, 7), nrow, nsuper, x@supernodes, x@colindices, x@colpointers, x@rowpointers, xja=vector(SS$type, nnzR), INTENT=c("r", "r", "r", "r", "r", "r", "w"), NAOK = getOption("spam.NAOK"), PACKAGE = SS$package)$xja return(.newSpam( entries=x@entries, colindices=colindices, rowpointers=x@rowpointers, dimension=x@dimension )) } "as.matrix.spam.chol.NgPeyton" <- function(x,...){ nrow <- x@dimension[1] nnzR <- x@rowpointers[nrow+1]-1L nsuper <- length(x@supernodes)-1L if( getOption("spam.force64") || .format.spam(x)$package != "spam" ) SS <- .format64() else SS <- .format32 xcolindices <- .C64('calcja', SIGNATURE = c(rep(SS$signature,7)), nrow, nsuper, x@supernodes, x@colindices, x@colpointers, x@rowpointers, xja = vector_dc( SS$type, nnzR), INTENT=c("r", "r", "r", "r", "r", "r", "w"), NAOK = getOption("spam.NAOK"), PACKAGE = SS$package)$xja return(array(.C64("spamcsrdns", SIGNATURE = c(SS$signature, "double" , SS$signature, SS$signature, "double"), nrow = nrow, entries = x@entries, colindices = xcolindices, rowpointers = x@rowpointers, res = vector_dc( "double", nrow*nrow), INTENT = c("r", "r", "r", "r", "w"), NAOK=getOption("spam.NAOK"), PACKAGE = SS$package)$res, c(nrow,nrow)) ) } setMethod("as.spam","spam.chol.NgPeyton", as.spam.chol.NgPeyton) setMethod("as.matrix","spam.chol.NgPeyton",as.matrix.spam.chol.NgPeyton) setMethod("as.vector","spam.chol.NgPeyton", function(x){ as.vector.spam(as.spam.chol.NgPeyton(x)) }) setGeneric("backsolve", def = function(r, x, ...) standardGeneric("backsolve"), useAsDefault= function(r, x, ...) base::backsolve(r, x, ...)) setGeneric("forwardsolve", def = function(l, x, ...) standardGeneric("forwardsolve"), useAsDefault= function(l, x, ...) base::forwardsolve(l, x, ...)) setMethod("chol","spam", chol.spam) setMethod("solve","spam",solve.spam) setMethod("chol2inv","spam", chol2inv.spam) setMethod("chol2inv","spam.chol.NgPeyton", chol2inv.spam) setMethod("backsolve","spam", backsolve.spam) setMethod("backsolve","spam.chol.NgPeyton", backsolve.spam, sealed=TRUE) setMethod("forwardsolve","spam", forwardsolve.spam) setMethod("forwardsolve","spam.chol.NgPeyton", forwardsolve.spam) "ordering.default" <- function(x, inv=FALSE) stop('Operation not defined form this class') setGeneric("ordering", function(x, inv=FALSE) standardGeneric("ordering")) setMethod("ordering","spam.chol.NgPeyton",function(x,inv=FALSE) { if (inv) return(x@invpivot) else return(x@pivot) }) setMethod("ordering","matrix",function(x,inv=FALSE) { if (dim(x)[1]!=dim(x)[2]) stop("ordering is defined for square matrices only") if(inv)return(dim(x)[1]:1) else return(1:dim(x)[1]) }) setMethod("ordering","spam",function(x,inv=FALSE) { if (dim(x)[1]!=dim(x)[2]) stop("ordering is defined for square matrices only") if(inv) return(dim(x)[1]:1) else return(1:dim(x)[1]) }) setMethod("image","spam.chol.NgPeyton", function(x,cex=NULL,...){ image.spam(as.spam.chol.NgPeyton(x),cex=cex,...) }) setMethod("display","spam.chol.NgPeyton", function(x,...){ display.spam(as.spam.chol.NgPeyton(x),...) }) setMethod("t","spam.chol.NgPeyton", function(x){ t.spam(as.spam.chol.NgPeyton(x)) }) setMethod("chol","spam.chol.NgPeyton", function(x){ x })
setClass("fDISTFIT", representation( call = "call", model = "character", data = "data.frame", fit = "list", title = "character", description = "character" ) ) setMethod("show", "fDISTFIT", function(object) { cat("\nTitle:\n ") cat(object@title, "\n") cat("\nCall:\n ") cat(paste(deparse(object@call), sep = "\n", collapse = "\n"), "\n", sep = "") cat("\nModel:\n ", object@model, "\n", sep = "") cat("\nEstimated Parameter(s):\n") print(object@fit$estimate) cat("\nDescription:\n ") cat(object@description, "\n\n") invisible() })
fitYP4 <- function(Y, d, Z, beta1=1, beta2= -1, maxiter=60){ temp1 <- YP4(y=Y, d=d, Z=Z, b1=beta1, b2=beta2, k=maxiter) ELval <- ELcomp(Haz=temp1$Hazw, Sur=temp1$Survival, gam=temp1$gam) list(EmpLik=ELval, BaselineH=temp1$Hazw, alpha=temp1$alpha) }
library(lumberjack) tmpfile <- tempfile() logger <- expression_logger$new( mh = mean(height) , mw = mean(weight) , verbose = FALSE ) women %L>% start_log(logger) %L>% identity() %L>% {.$height <- 2*.$height; .} %L>% dump_log(file=tmpfile) lg <- read.csv(tmpfile) expect_equal(lg$mh[1], mean(women$height)) expect_equal(lg$mw[1], mean(women$weight)) expect_equal(lg$mh[2], mean(2*women$height)) expect_equal(lg$mw[2], mean(women$weight)) expect_true("label" %in% ls(logger)) expect_true(all(is.na(lg$srcref)))
IRT.predict.R <- function( object, dat, group=1 ) { resp <- dat irf1 <- IRT.irfprob( object ) irf1[ is.na(irf1) ] <- 0 N <- nrow(resp) I <- ncol(resp) TP <- dim(irf1)[3] K <- dim(irf1)[2] if ( length( dim(irf1) )==4 ){ irf1 <- irf1[,,,group] } pred <- array( 0, dim=c(N,TP,I) ) dimnames(pred)[[3]] <- colnames(resp) var1 <- pred pred.categ <- array( 0, dim=c(N,K,TP,I) ) dimnames(pred.categ)[[4]] <- colnames(resp) for (ii in 1:I){ v1 <- rep(0,N) kk <- 1 irf.ii <- matrix( irf1[ii,kk,], nrow=N, ncol=TP, byrow=TRUE ) pred.categ[,kk,,ii] <- irf.ii for (kk in 2:K){ irf.ii <- matrix( irf1[ii,kk,], nrow=N, ncol=TP, byrow=TRUE ) p1 <- irf.ii pred.categ[,kk,,ii] <- p1 v1 <- (kk-1) * p1 + v1 } pred[,,ii] <- v1 ind.ii <- which( is.na(resp[,ii]) ) if ( length(ind.ii) > 0 ){ pred[ ind.ii,,ii ] <- NA pred.categ[ ind.ii, 1:K,,ii ] <- NA } for (kk in 1:K){ var1[,,ii ] <- var1[,,ii] + pred.categ[, kk,, ii] * ( ( kk-1 ) - pred[,,ii] )^2 } } resp1 <- array( 0, dim=c(N,TP,I) ) for (tt in 1:TP){ resp1[,tt,] <- resp } resid1 <- resp1 - pred sresid1 <- resid1 / sqrt( var1 ) res <- list( "expected"=pred, "probs.categ"=pred.categ, "variance"=var1, "residuals"=resid1, "stand.resid"=sresid1 ) return(res) }
IC_RR_coxph=function(model,alpha=0.05,sided=2){ tab=matrix(nrow=nrow(summary(model)$coefficients),ncol=ncol(summary(model)$coefficients)+3, dimnames = list(c(rownames(summary(model)$coefficients)),c(colnames(summary(model)$coefficients),"RR","IC.inf","IC.sup"))) tab[,1:ncol(summary(model)$coefficients)]=round(summary(model)$coefficients,digits=3) tab[,"RR"]=round(exp(summary(model)$coefficients[,"coef"]),digits=3) tab[,"IC.inf"]=round(exp(summary(model)$coefficients[,"coef"]-qnorm(1-alpha/2)*summary(model)$coefficients[,"se(coef)"]),digits=3) tab[,"IC.sup"]=round(exp(summary(model)$coefficients[,"coef"]+qnorm(1-alpha/2)*summary(model)$coefficients[,"se(coef)"]),digits=3) if (sided==1){ tab[,5]=tab[,5]/2 } if (nrow(tab)==1){tab=t(as.matrix(tab[,-2]))} else{tab=tab[,-2]} rownames(tab)=rownames(summary(model)$coefficients) signif=ifelse(tab[,"Pr(>|z|)"]>=0.1,"",ifelse(tab[,"Pr(>|z|)"]>=0.05,".",ifelse(tab[,"Pr(>|z|)"]>=0.01,"*",ifelse(tab[,"Pr(>|z|)"]>=0.001,"**","***")))) res=cbind(tab,signif) colnames(res)=c(colnames(tab),"") return(noquote(res)) }
anecdotal <- function(RESOURCES = NULL, LAND = NULL, PARAS = NULL, AGENTS = NULL, res_type = 1, samp_age = 1, agent_type = 0, type_cat = 1, move_agents = FALSE, model = "IBM" ){ check_model <- 0; if(model == "IBM"){ if(!is.array(RESOURCES)){ stop("Warning: Resources need to be in an array"); } if(!is.array(LAND)){ stop("Warning: Landscape need to be in an array"); } if(!is.vector(PARAS) | !is.numeric(PARAS)){ stop("Warning: Parameters must be in a numeric vector"); } if(!is.array(AGENTS)){ stop("Warning: Agents need to be in an array"); } PARAS[8] <- agent_type; PARAS[10] <- res_type; PARAS[17] <- samp_age; PARAS[18] <- type_cat; PARAS[29] <- move_agents; ANECDOTAL_OUT <- run_anecdotal_a( RESOURCE_c = RESOURCES, LANDSCAPE_c = LAND, PARAMETERS_c = PARAS, AGENT_c = AGENTS ); check_model <- 1; } if(check_model == 0){ stop("Invalid model selected (Must be 'IBM')"); } return(ANECDOTAL_OUT); } run_anecdotal_a <- function(RESOURCE_c, LANDSCAPE_c, PARAMETERS_c, AGENT_c){ .Call("anecdotal", RESOURCE_c, LANDSCAPE_c, PARAMETERS_c, AGENT_c); }
getSummaryStatisticsTable <- function( data, var = NULL, varFlag = NULL, varLab = NULL, varLabInclude = length(var) > 1, varInclude0 = FALSE, varIgnore = NULL, varGeneralLab = "Variable", varSubgroupLab = "Variable group", varIncludeTotal = FALSE, varTotalInclude = FALSE, varTotalInSepRow = FALSE, rowVar = NULL, rowVarLab = NULL, rowVarDataLevels = NULL, rowOrder = "auto", rowOrderTotalFilterFct = NULL, rowOrderCatLast = NULL, rowVarInSepCol = NULL, rowVarFormat = NULL, rowVarTotalInclude = NULL, rowVarTotalByVar = NULL, rowVarTotalInSepRow = NULL, rowTotalLab = NULL, rowInclude0 = FALSE, rowAutoMerge = TRUE, emptyValue = "-", rowVarTotalPerc = NULL, colVar = NULL, colVarTotal = colVar, colVarTotalPerc = colVarTotal, colInclude0 = FALSE, colVarDataLevels = NULL, colTotalInclude = FALSE, colTotalLab = "Total", stats = NULL, statsExtra = NULL, statsVarBy = NULL, statsPerc = c("statN", "statm"), statsGeneralLab = "Statistic", statsValueLab = "StatisticValue", statsLabInclude = NULL, subjectVar = "USUBJID", filterFct = NULL, dataTotal = NULL, dataTotalPerc = dataTotal, dataTotalRow = NULL, dataTotalCol = NULL, type = "auto", byVar = NULL, byVarLab = NULL, checkVarDiffBySubj = "error", labelVars = NULL, outputType = "flextable", statsLayout = ifelse("DT" %in% outputType, "col", "row"), landscape = (style == "presentation"), margin = 1, rowPadBase = 14.4, title = NULL, footer = NULL, file = NULL, style = "report", colorTable = getColorPaletteTable(style = style), colHeaderTotalInclude = TRUE, fontsize = switch(style, 'report' = 8, 'presentation' = 10), fontname = switch(style, 'report' = "Times", 'presentation' = "Tahoma"), vline = "none", hline = "auto", pageDim = NULL, expandVar = NULL, noEscapeVar = NULL, barVar = NULL, ...){ summaryTable <- computeSummaryStatisticsTable( data = data, var = var, varFlag = varFlag, varLab = varLab, varLabInclude = varLabInclude, varInclude0 = varInclude0, varIgnore = varIgnore, varGeneralLab = varGeneralLab, varSubgroupLab = varSubgroupLab, varIncludeTotal = varIncludeTotal, varTotalInclude = varTotalInclude, varTotalInSepRow = varTotalInSepRow, colVar = colVar, colVarTotal = colVarTotal, colVarTotalPerc = colVarTotalPerc, colInclude0 = colInclude0, colVarDataLevels = colVarDataLevels, colTotalInclude = colTotalInclude, colTotalLab = colTotalLab, rowVar = rowVar, rowInclude0 = rowInclude0, rowVarDataLevels = rowVarDataLevels, rowVarLab = rowVarLab, rowOrder = rowOrder, rowOrderTotalFilterFct = rowOrderTotalFilterFct, rowOrderCatLast = rowOrderCatLast, rowVarTotalInclude = rowVarTotalInclude, rowVarTotalByVar = rowVarTotalByVar, rowVarTotalPerc = rowVarTotalPerc, rowVarTotalInSepRow = rowVarTotalInSepRow, type = type, subjectVar = subjectVar, stats = stats, statsExtra = statsExtra, statsPerc = statsPerc, statsVarBy = statsVarBy, statsGeneralLab = statsGeneralLab, filterFct = filterFct, dataTotal = dataTotal, dataTotalPerc = dataTotalPerc, dataTotalRow = dataTotalRow, dataTotalCol = dataTotalCol, labelVars = labelVars, byVar = byVar, byVarLab = byVarLab, checkVarDiffBySubj = checkVarDiffBySubj ) if(is.null(summaryTable)) return(invisible()) ft <- exportSummaryStatisticsTable( summaryTable = summaryTable, rowVarFormat = rowVarFormat, rowTotalLab = rowTotalLab, rowVarInSepCol = rowVarInSepCol, rowAutoMerge = rowAutoMerge, colHeaderTotalInclude = colHeaderTotalInclude, statsValueLab = statsValueLab, statsLabInclude = statsLabInclude, title = title, footer = footer, labelVars = labelVars, emptyValue = emptyValue, file = file, landscape = landscape, margin = margin, rowPadBase = rowPadBase, outputType = outputType, statsLayout = statsLayout, expandVar = expandVar, noEscapeVar = noEscapeVar, barVar = barVar, style = style, colorTable = colorTable, fontsize = fontsize, fontname = fontname, vline = vline, hline = hline, pageDim = pageDim, ... ) return(ft) }
knitr::opts_chunk$set(echo = TRUE) knitr::include_graphics("grid.jpg") library(portsort) library(PerformanceAnalytics) library(xts) data(Factors) R.Forward = Factors[[1]]; R.Lag = Factors[[2]]; V.Lag = Factors[[3]] Fa = R.Lag; Fb = V.Lag dimA = 0:3/3;dimB = 0:3/3;dimC = c(0,1) sort.output.con = conditional.sort(Fa,Fb,Fc=NULL,R.Forward,dimA,dimB,dimC,type = 7) sort.output.uncon = unconditional.sort(Fa,Fb,Fc=NULL,R.Forward,dimA,dimB,dimC, type = 7) table.AnnualizedReturns(sort.output.con$returns, scale = 365, geometric = FALSE, digits = 3) table.AnnualizedReturns(sort.output.uncon$returns, scale = 365, geometric = FALSE, digits = 3) library(portsort) library(PerformanceAnalytics) library(xts) data(Factors) R.Forward = Factors[[1]]; R.Lag = Factors[[2]]; V.Lag = Factors[[3]] Fa = R.Lag; Fb = V.Lag dimA = 0:3/3;dimB = 0:3/3;dimC = c(0,1) sort.output = conditional.sort(Fa,Fb,Fc=NULL,R.Forward,dimA,dimB,dimC) turnover.output = portfolio.turnover(sort.output) turnover.output$`Mean Turnover` library(portsort) library(PerformanceAnalytics) library(xts) data(Factors) R.Forward = Factors[[1]]; R.Lag = Factors[[2]]; V.Lag = Factors[[3]] Fa = R.Lag; Fb = V.Lag dimA = 0:3/3;dimB = 0:3/3;dimC = c(0,1) sort.output = conditional.sort(Fa,Fb,Fc=NULL,R.Forward,dimA,dimB,dimC) portfolio.frequency(sort.output, rank = 1) portfolio.frequency(sort.output, rank = 2) library(portsort) library(PerformanceAnalytics) library(xts) data(Factors) R.Forward = Factors[[1]]; R.Lag = Factors[[2]]; V.Lag = Factors[[3]] Fa = R.Lag; Fb = V.Lag dimA = 0:3/3;dimB = 0:3/3;dimC = c(0,1) sort.output.con = conditional.sort(Fa,Fb,Fc=NULL,R.Forward,dimA,dimB,dimC) sort.output.uncon = unconditional.sort(Fa,Fb,Fc=NULL,R.Forward,dimA,dimB,dimC) portfolio.mean.size(sort.output = sort.output.con) portfolio.mean.size(sort.output = sort.output.uncon) library(portsort) library(PerformanceAnalytics) library(xts) data(Factors) s = 21 k = 1 R.Forward = Factors[[1]]; R.Lag = Factors[[2]]; V.Lag = Factors[[3]] XSMOM = R.Lag XSMOM[1:nrow(XSMOM),1:ncol(XSMOM)] <- NA for (i in 1:ncol(R.Lag)){ for (t in (s + 1):nrow(R.Lag)){ XSMOM[t,i] = sum(R.Lag[(t-s):(t-1-k),i]) } } XSMOM = na.omit(XSMOM) R.Forward = R.Forward[(s + 1):nrow(R.Forward), ] Fa = XSMOM; Fb = NULL; Fc = NULL dimA = 0:5/5 XSMOM.output = conditional.sort(Fa=Fa,R.Forward=R.Forward,dimA=dimA) table.AnnualizedReturns(XSMOM.output$returns,scale = 365, geometric = FALSE) portfolio.turnover(XSMOM.output)$`Mean Turnover` portfolio.frequency(XSMOM.output, rank = 1) portfolio.mean.size(XSMOM.output) LS.Portfolio = XSMOM.output$returns[,5] + (-1*XSMOM.output$returns[,1]) table.AnnualizedReturns(LS.Portfolio,scale = 365, geometric = FALSE) chart.CumReturns(LS.Portfolio, geometric = FALSE, main = "XSMOM Long-Short Portfolio") library(portsort) library(PerformanceAnalytics) library(xts) data(Factors) R.Forward = Factors[[1]]; R.Lag = Factors[[2]]; V.Lag = Factors[[3]] Fa = R.Lag; Fb = V.Lag dimA = 0:3/3 dimB = 0:3/3 sort.con = conditional.sort(Fa=Fa,Fb=Fb,R.Forward = R.Forward,dimA=dimA,dimB=dimB) sort.uncon = unconditional.sort(Fa=Fa,Fb=Fb,R.Forward = R.Forward,dimA=dimA,dimB=dimB) table.AnnualizedReturns(sort.con$returns,scale = 365, geometric = FALSE) table.AnnualizedReturns(sort.uncon$returns,scale = 365, geometric = FALSE) portfolio.turnover(sort.con)$`Mean Turnover` portfolio.turnover(sort.uncon)$`Mean Turnover` portfolio.frequency(sort.con, rank = 1) portfolio.frequency(sort.uncon, rank = 1) portfolio.mean.size(sort.con) portfolio.mean.size(sort.uncon) Conditonal.LS.Portfolio = sort.con$returns[,1] + (-1*sort.con$returns[,9]) Unconditonal.LS.Portfolio = sort.uncon$returns[,1] + (-1*sort.uncon$returns[,9]) Portfolios = cbind(Conditonal.LS.Portfolio,Unconditonal.LS.Portfolio) colnames(Portfolios) = c("Conditional","Unconditional") chart.CumReturns(Portfolios, geometric = FALSE, legend.loc = "topleft", main = "Sorting Comparison") table.AnnualizedReturns(Portfolios,scale = 365, geometric = FALSE)
ramml <- function(X,y,p,e) { X <- as.matrix(X) n <- length(y) m <- dim(X)[2] q <- 2*p-3 if (m == 1) { mx <- median(X) } else { mx <-l1median(X) } Xmc <- as.matrix(scale(X, center = mx, scale = FALSE)) wx <- sqrt(apply(Xmc^2, 1, sum)) du <- wx/median(wx) t <- e betay <- 1/((1+((1/q)*(t^2)))^2) betax <- 1/((1+((1/q)*(du^2)))^2) beta <- betay*betax alfa <- (1/q*t)/((1+((1/q)*(t^2)))^2) alfa <- alfa*betax; WB <- diag(as.vector(beta), n,n) WA <- diag(as.vector(alfa), n,n) K <- solve(t(X)%*%WB%*%X)%*%(t(X)%*%WB%*%y) D <- solve(t(X)%*%WB%*%X)%*%(t(X)%*%WA%*%c(rep(1,n))) B <- (2*p/q)*t(y-X%*%K)%*%WA%*%c(rep(1,n)); C <- (2*p/q)*t(y-X%*%K)%*%WB%*%(y-X%*%K); sigmamml <- (B+sqrt(B^2+4*n*C))/(2*sqrt(n*(n-m))); betamml <- K+D%*%sigmamml; yfit <- X%*%betamml residual <- y-yfit list(coef = betamml, scale=as.numeric(sigmamml), fitted.values = yfit, residuals = residual) }
spatmed.reg <- function(y, x, xnew = NULL, tol = 1e-07, ses = FALSE) { x <- model.matrix(y ~ ., data.frame(x) ) p <- dim(x)[2] d <- dim(y)[2] medi <- function(be) { be <- matrix(be, nrow = p) est <- x %*% be sum( sqrt( rowSums( (y - est)^2 ) ) ) } tic <- proc.time() mod <- Rfast::spatmed.reg(y, x[, -1], tol = tol) be <- mod$be seb <- NULL if ( ses ) { qa <- nlm(medi, as.vector(be), iterlim = 5000) qa <- optim(qa$estimate, medi, control = list(maxit = 5000), hessian = TRUE) seb <- sqrt( diag( solve(qa$hessian) ) ) seb <- matrix(seb, ncol = d) if ( is.null(colnames(y)) ) { colnames(seb) <- colnames(be) <- paste("Y", 1:d, sep = "") } else colnames(seb) <- colnames(be) <- colnames(y) } est <- NULL if ( !is.null(xnew) ) { xnew <- model.matrix( ~ ., data.frame(xnew) ) est <- xnew %*% be } if ( is.null(colnames(y)) ) { colnames(be) <- paste("Y", 1:d, sep = "") } else colnames(be) <- colnames(y) rownames(be) <- colnames(x) if ( !is.null(seb) ) rownames(seb) <- colnames(x) runtime <- proc.time() - tic list(iter = mod$iters, runtime = runtime, be = be, seb = seb, est = est) }
selected_sites_DI <- function(PAM_subset, selection_type = "all", method = "jaccard", verbose = TRUE, ...) { if (missing(PAM_subset)) { stop("Argument 'PAM_subset' must be defined.") } if (class(PAM_subset)[1] != "PAM_subset") { stop("Object 'PAM_subset' must be of class 'PAM_subset'.") } if (!selection_type %in% c("all", "random", "E", "G", "EG")) { stop("Argument 'selection_type' is not valid, options are: 'all'', 'random', 'E', 'G', or 'EG'.") } else { if (!selection_type == "all") { selection_type <- paste0("selected_sites_", selection_type) } } diss <- list() dise <- list() nnull <- which(!sapply(PAM_subset[3:6], is.null))[1] + 2 rsel <- PAM_subset[[nnull]] fcol <- ncol(rsel[[1]]) icol <- which(colnames(rsel[[1]]) == "Latitude_PAM") + 1 if (selection_type == "all") { selects <- names(PAM_subset) selection_type <- grep("selected_sites", selects, value = TRUE) } else { selection_type <- paste0("PAM_", selection_type) } if (verbose == TRUE) { message("Running analysis...") } if ("PAM_selected_sites_random" %in% selection_type & !is.null(PAM_subset$PAM_selected_sites_random)) { if (verbose == TRUE) { message("Random selection") } rsel <- PAM_subset$PAM_selected_sites_random diss$DI_selected_sites_random <- dis_loop(rsel, icol, fcol, method, verbose, ...) diss$cluster_random <- lapply(diss$DI_selected_sites_random, function(x) { stats::hclust(x) }) sums <- lapply(rsel, function(x) {colSums(x[, icol:fcol]) > 0}) sums <- do.call(rbind, sums) * 1 rownames(sums) <- paste0("random_", rownames(sums)) dise$random <- sums } if ("PAM_selected_sites_G" %in% selection_type & !is.null(PAM_subset$PAM_selected_sites_G)) { if (verbose == TRUE) { message("G selection") } rsel <- PAM_subset$PAM_selected_sites_G diss$DI_selected_sites_G <- dis_loop(rsel, icol, fcol, method, verbose, ...) diss$cluster_G <- lapply(diss$DI_selected_sites_G, function(x) { stats::hclust(x) }) sums <- lapply(rsel, function(x) {colSums(x[, icol:fcol]) > 0}) sums <- do.call(rbind, sums) * 1 rownames(sums) <- paste0("G_", rownames(sums)) dise$G <- sums } if ("PAM_selected_sites_E" %in% selection_type & !is.null(PAM_subset$PAM_selected_sites_E)) { if (verbose == TRUE) { message("E selection") } rsel <- PAM_subset$PAM_selected_sites_E diss$DI_selected_sites_E <- dis_loop(rsel, icol, fcol, method, verbose, ...) diss$cluster_E <- lapply(diss$DI_selected_sites_E, function(x) { stats::hclust(x) }) sums <- lapply(rsel, function(x) {colSums(x[, icol:fcol]) > 0}) sums <- do.call(rbind, sums) * 1 rownames(sums) <- paste0("E_", rownames(sums)) dise$E <- sums } if ("PAM_selected_sites_EG" %in% selection_type & !is.null(PAM_subset$PAM_selected_sites_EG)) { if (verbose == TRUE) { message("EG selection") } rsel <- PAM_subset$PAM_selected_sites_EG diss$DI_selected_sites_EG <- dis_loop(rsel, icol, fcol, method, verbose, ...) diss$cluster_EG <- lapply(diss$DI_selected_sites_EG, function(x) { stats::hclust(x) }) sums <- lapply(rsel, function(x) {colSums(x[, icol:fcol]) > 0}) sums <- do.call(rbind, sums) * 1 rownames(sums) <- paste0("EG_", rownames(sums)) dise$EG <- sums } if (verbose == TRUE) { message("Summary of all selections") } diss$all_selections <- do.call(rbind, dise) toex <- which(apply(diss$all_selections, 1, sum) == 0) if (length(toex) > 0) { if (verbose == TRUE) { message("\tOne or more sites were excluded due to lack of species data:\n\t", paste(names(toex), collapse = ", ")) } diss$all_selections <- diss$all_selections[-toex, ] } diss$DI_selections <- vegan::vegdist(diss$all_selections, method = method, ...) diss$cluster_selections <- stats::hclust(diss$DI_selections) return(diss) } dis_loop <- function(site_spp_list, icol, fcol, method = "jaccard", verbose = TRUE, ...) { if (missing(site_spp_list)) {stop("Argument 'site_spp_list' is missing")} lapply(site_spp_list, function(x) { comat <- x[, icol:fcol] rownames(comat) <- paste0("Site_" , 1:nrow(comat)) toex <- which(apply(comat, 1, sum) == 0) if (length(toex) > 0) { if (verbose == TRUE) { message("\tOne or more sites were excluded due to lack of species data:\n\t", paste(names(toex), collapse = ", ")) } comat <- comat[-toex, ] } vegan::vegdist(comat, method = method, ...) }) }
FWT_TI <- function(x, L, qmf) { n <- dyadlength(x)$x J <- dyadlength(x)$y D <- J - L wp <- matrix(0, n, D + 1) x <- ShapeAsRow(x) wp[, 1] <- t(x) for (d in 0:(D - 1)) { for (b in 0:(2^d - 1)) { s <- t(wp[packet(d, b, n), 1]) hsr <- DownDyadHi(s, qmf) hsl <- DownDyadHi(rshift(s), qmf) lsr <- DownDyadLo(s, qmf) lsl <- DownDyadLo(rshift(s), qmf) wp[packet(d + 1, 2 * b, n), d + 2] <- t(hsr) wp[packet(d + 1, 2 * b + 1, n), d + 2] <- t(hsl) wp[packet(d + 1, 2 * b, n), 1] <- t(lsr) wp[packet(d + 1, 2 * b + 1, n), 1] <- t(lsl) } } return(wp) }
if(!isGeneric("montePop")) setGeneric('montePop', function(popVals, ...) standardGeneric('montePop'), signature = c('popVals') ) if(!isGeneric("monteNTSample")) setGeneric('monteNTSample', function(population, ...) standardGeneric('monteNTSample'), signature = c('population') ) if(!isGeneric("monteBSSample")) setGeneric('monteBSSample', function(population, ...) standardGeneric('monteBSSample'), signature = c('population') ) if(!isGeneric("monte")) setGeneric('monte', function(object, ...) standardGeneric('monte'), signature = c('object') ) setMethod('montePop', signature(popVals = 'numeric'), function(popVals, zeroTruncate = FALSE, n = NA, description = 'Monte Carlo Population Object', ... ) { if(length(popVals) <= 1) stop('Need a population of size > 1!') if(any(is.na(popVals))) { popVals = popVals[!is.na(popVals)] cat('\n Missing values (NA) have been removed from the population\n') } if(zeroTruncate) popVals = popVals[popVals > 0] N = length(popVals) mean = mean(popVals) var = var(popVals) stDev = sqrt(var) total = sum(popVals) if(!all(is.na(n))) { nn = length(n) if(nn < 1 || !is.numeric(n)) stop('Please specify \"n\" as an integer vector!') n = sort(round(n)) n.names = paste('n',n,sep='.') names(n) = n.names if(any(n >= N)) stop('Sample sizes \"n\" can not be larger than the population size \"N\"!') fpc = (N - n)/N names(fpc) = n.names varMean = var/n * fpc stErr = sqrt(varMean) } else { n = NA_real_ fpc = NA_real_ varMean = fpc stErr = fpc } pop = new('montePop', mean = mean, var = var, stDev = stDev, N = N, total = total, popVals = popVals, description = description, zeroTruncated = zeroTruncate, n = n, fpc = fpc, varMean = varMean, stErr = stErr ) return(pop) } ) setMethod('montePop', signature(popVals = 'sampSurf'), function(popVals, zeroTruncate = TRUE, n = NA, description = 'Monte Carlo Population Object: sampSurf', ... ) { vals = getValues(popVals@tract) pop = montePop(vals, zeroTruncate = zeroTruncate, n = n, description = description, ...) return(pop) } ) setMethod('monteNTSample', signature(population = 'montePop'), function(population, n = c(10), mcSamples = 100, alpha = 0.05, replace = TRUE, startSeed = NA, runQuiet = TRUE, ... ) { nn = length(n) if(nn < 1 || !is.numeric(n)) stop('Please specify \"n\" as an integer vector!') n = sort(round(n)) n.names = paste('n',n,sep='.') names(n) = n.names if(mcSamples < 2 || !is.numeric(mcSamples) || length(mcSamples)>1) stop('Please specify \"mcSamples\" as an integer scalar >= 2!') if(alpha <=0 || alpha >=1) stop('Please specify 0<alpha<1!') popVals = population@popVals popMean = population@mean N = population@N if(any(n >= N)) stop('Sample sizes \"n\" can not be larger than the population size \"N\"!') fpc = (N - n)/N names(fpc) = n.names if(!runQuiet) cat('\nCalculating Normal theory intervals...') ranSeed = initRandomSeed(startSeed) alpha = alpha/2 t.values = qt(1-alpha, n-1) names(t.values) = n.names means = data.frame(matrix(NA, nrow=mcSamples, ncol=nn)) colnames(means) = n.names vars = means stDevs = means varMeans = means stErrs = means lowerCIs = means upperCIs = means caught = means caught[] = FALSE for(i in seq_len(mcSamples)) { for(j in seq_len(nn)) { n.j = n[j] samp = sample(popVals, n.j, replace=replace, ...) means[i, j] = mean(samp) vars[i, j] = var(samp) stDevs[i, j] = sqrt(vars[i, j]) varMeans[i, j] = vars[i, j]/n.j * fpc[j] stErrs[i, j] = sqrt(varMeans[i, j]) lowerCIs[i, j] = means[i, j] - t.values[j]*stErrs[i, j] upperCIs[i, j] = means[i, j] + t.values[j]*stErrs[i, j] if(lowerCIs[i, j] <= popMean && popMean <= upperCIs[i, j]) caught[i, j] = TRUE } } caughtPct = colMeans(caught) * 100 names(caughtPct) = n.names nt.means = colMeans(means) nt.vars = colMeans(vars) nt.stDevs = colMeans(stDevs) nt.varMeans = colMeans(varMeans) nt.stErrs = colMeans(stErrs) nt.lowerCIs = colMeans(lowerCIs) nt.upperCIs = colMeans(upperCIs) nt.Stats = data.frame(rbind(nt.means, nt.vars, nt.stDevs, nt.varMeans, nt.stErrs, nt.lowerCIs, nt.upperCIs)) rownames(nt.Stats) = c('mean', 'var', 'stDev', 'VarMean', 'stErr', 'lowerCI', 'upperCI') colnames(nt.Stats) = n.names if(!runQuiet) cat('\n') ms = new('monteNTSample', mcSamples = mcSamples, n = n, fpc = fpc, means = means, vars = vars, stDevs = stDevs, varMeans = varMeans, stErrs = stErrs, lowerCIs = lowerCIs, upperCIs = upperCIs, caught = caught, caughtPct = caughtPct, stats = nt.Stats, alpha = alpha*2, t.values = t.values, replace = replace, ranSeed = ranSeed ) return(ms) } ) setMethod('monteBSSample', signature(population = 'montePop'), function(population, n = c(10), mcSamples = 100, R = 100, alpha = 0.05, replace = TRUE, startSeed = NA, runQuiet = TRUE, ... ) { nn = length(n) if(nn < 1 || !is.numeric(n)) stop('Please specify \"n\" as an integer vector!') n = sort(round(n)) n.names = paste('n',n,sep='.') names(n) = n.names mcSamples = round(mcSamples) if(mcSamples < 2 || !is.numeric(mcSamples) || length(mcSamples)>1) stop('Please specify \"mcSamples\" as an integer scalar >= 2!') R = round(R) if(R < 10 || !is.numeric(R) || length(R)>1) stop('Please specify \"R\" as an integer scalar >= 10!') if(alpha <=0 || alpha >=1) stop('Please specify 0<alpha<1!') popVals = population@popVals popMean = population@mean N = population@N if(any(n >= N)) stop('Sample sizes \"n\" can not be larger than the population size \"N\"!') fpc = (N - n)/N names(fpc) = n.names if(!runQuiet) cat('\nCalculating bootstrap intervals...') ranSeed = initRandomSeed(startSeed) means = data.frame(matrix(NA, nrow=mcSamples, ncol=nn)) colnames(means) = n.names vars = means stDevs = means varMeans = means stErrs = means lowerCIs = means upperCIs = means caught = means caught[] = FALSE meanboot = function(x,idx) mean(x[idx]) degenerate = rep(0, nn) names(degenerate) = n.names for(i in seq_len(mcSamples)) { for(j in seq_len(nn)) { n.j = n[j] samp = sample(popVals, n.j, replace=replace) boot.samp = boot(samp, meanboot, R, ...) means[i, j] = mean(boot.samp$t0) vars[i, j] = var(samp) stDevs[i, j] = sqrt(vars[i, j]) varMeans[i, j] = vars[i, j]/n.j * fpc[j] stErrs[i, j] = sqrt(varMeans[i, j]) if(length(unique(samp)) == 1) { degenerate[j] = degenerate[j] + 1 next } suppressWarnings({ boot.cis = boot.ci(boot.samp, 1-alpha, type='bca') }) lowerCIs[i, j] = boot.cis$bca[1, 4] upperCIs[i, j] = boot.cis$bca[1, 5] if(lowerCIs[i, j] <= popMean && popMean <= upperCIs[i, j]) caught[i, j] = TRUE } } caughtPct = colMeans(caught) * 100 names(caughtPct) = n.names m.means = colMeans(means, na.rm = TRUE) m.vars = colMeans(vars, na.rm = TRUE) m.stDevs = colMeans(stDevs, na.rm = TRUE) m.varMeans = colMeans(varMeans, na.rm = TRUE) m.stErrs = colMeans(stErrs, na.rm = TRUE) m.lowerCIs = colMeans(lowerCIs, na.rm = TRUE) m.upperCIs = colMeans(upperCIs, na.rm = TRUE) bs.Stats = data.frame(rbind(m.means, m.vars, m.stDevs, m.varMeans, m.stErrs, m.lowerCIs, m.upperCIs)) rownames(bs.Stats) = c('mean', 'var', 'stDev', 'varMean', 'stErr', 'lowerCI', 'upperCI') colnames(bs.Stats) = n.names if(!runQuiet) cat('\n') ms = new('monteBSSample', mcSamples = mcSamples, n = n, fpc = fpc, means = means, vars = vars, stDevs = stDevs, varMeans = varMeans, stErrs = stErrs, lowerCIs = lowerCIs, upperCIs = upperCIs, caught = caught, caughtPct = caughtPct, stats = bs.Stats, R = R, alpha = alpha, replace = replace, degenerate = degenerate, ranSeed = ranSeed ) return(ms) } ) setMethod('monte', signature(object = 'montePop'), function(object, zeroTruncate = TRUE, n = object@n, mcSamples = 100, type = c('both', 'normalTheory', 'bootstrap'), R = 100, alpha = 0.05, description = 'Monte Carlo Object', replace = TRUE, startSeed = NA, runQuiet = TRUE, ... ) { nn = length(n) if(nn < 1 || !is.numeric(n)) stop('Please specify \"n\" as an integer vector!') n = sort(round(n)) if(mcSamples < 1 || !is.numeric(mcSamples) || length(mcSamples)>1) stop('Please specify \"mcSamples\" as an integer scalar!') if(alpha <=0 || alpha >=1) stop('Please specify 0<alpha<1!') type = match.arg(type) pop = object if(any(is.na(pop@n))) stop('Sample sizes must be present (no NAs) in \"montePop\" object for monte') if(length(intersect(pop@n, n)) != length(n)) stop('Sample sizes between \"montePop\" object and argument \"n\" must match exactly!') if(type == 'both' || type == 'normalTheory') mnts = monteNTSample(pop, n=n, mcSamples=mcSamples, alpha=alpha, replace=replace, startSeed=startSeed, runQuiet=runQuiet, ... ) else mnts = NULL if(type == 'both' || type == 'bootstrap') mbss = monteBSSample(pop, n=n, mcSamples=mcSamples, R=R, alpha=alpha, replace=replace, startSeed=startSeed, runQuiet=runQuiet, ... ) else mbss = NULL mo = new('monte', pop = pop, estimate = NA_character_, NTsamples = mnts, BSsamples = mbss, description = description ) return(mo) } ) setMethod('monte', signature(object = 'sampSurf'), function(object, zeroTruncate = TRUE, n = c(10), mcSamples = 100, type = c('both', 'normalTheory', 'bootstrap'), R = 100, alpha = 0.05, description = 'Monte Carlo Object', replace = TRUE, startSeed = NA, runQuiet = TRUE, ... ) { pop = montePop(object, zeroTruncate = zeroTruncate, n = n, ...) mo = monte(object = pop, zeroTruncate = zeroTruncate, n = n, mcSamples = mcSamples, type = type, R = R, alpha = alpha, description = description, replace = replace, startSeed = startSeed, runQuiet = runQuiet, ... ) mo@estimate = object@estimate return(mo) } ) setMethod('monte', signature(object = 'numeric'), function(object, zeroTruncate = TRUE, n = c(10), mcSamples = 100, type = c('both', 'normalTheory', 'bootstrap'), R = 100, alpha = 0.05, description = 'Monte Carlo Object', replace = TRUE, startSeed = NA, runQuiet = TRUE, ... ) { pop = montePop(object, zeroTruncate = zeroTruncate, n = n, ...) mo = monte(object = pop, zeroTruncate = zeroTruncate, n = n, mcSamples = mcSamples, type = type, R = R, alpha = alpha, description = description, replace = replace, startSeed = startSeed, runQuiet = runQuiet, ... ) return(mo) } )
plot_missing_dates <- function(data, dates = Date, values = Value, groups = STATION_NUMBER, station_number, roll_days = 1, roll_align = "right", water_year_start = 1, start_year, end_year, months = 1:12, include_title = FALSE){ if (missing(data)) { data <- NULL } if (missing(station_number)) { station_number <- NULL } if (missing(start_year)) { start_year <- 0 } if (missing(end_year)) { end_year <- 9999 } include_title_checks(include_title) flow_data <- flowdata_import(data = data, station_number = station_number) flow_data <- format_all_cols(data = flow_data, dates = as.character(substitute(dates)), values = as.character(substitute(values)), groups = as.character(substitute(groups)), rm_other_cols = TRUE) flow_summary <- screen_flow_data(data = flow_data, roll_days = roll_days, roll_align = roll_align, water_year_start = water_year_start, start_year = start_year, end_year = end_year, months = months) missing_plotdata <- flow_summary[,c(1,2,11:ncol(flow_summary))] missing_plotdata <- tidyr::gather(missing_plotdata, Month, Value, 3:ncol(missing_plotdata)) missing_plotdata <- dplyr::mutate(missing_plotdata, Month = substr(Month, 1, 3)) missing_plotdata$Month <- factor(missing_plotdata$Month, levels = month.abb[c(water_year_start:12, 1:water_year_start-1)]) miss_plots <- dplyr::group_by(missing_plotdata, STATION_NUMBER) miss_plots <- tidyr::nest(miss_plots) miss_plots <- dplyr::mutate(miss_plots, plot = purrr::map2(data, STATION_NUMBER, ~ggplot2::ggplot(data = ., ggplot2::aes(x = Year, y = Value)) + ggplot2::geom_bar(colour = "cornflowerblue", fill = "cornflowerblue", na.rm = TRUE, stat = "identity") + ggplot2::facet_wrap(~Month, ncol = 3, scales = "fixed", strip.position = "top") + ggplot2::ylab("Missing Days") + ggplot2::xlab("Year") + ggplot2::theme_bw() + ggplot2::scale_y_continuous(limits = c(0, 32)) + {if (include_title & .y != "XXXXXXX") ggplot2::ggtitle(paste(.y)) } + ggplot2::theme(panel.border = ggplot2::element_rect(colour = "black", fill = NA, size = 1), panel.grid = ggplot2::element_line(size = .2), axis.title = ggplot2::element_text(size = 12), axis.text = ggplot2::element_text(size = 10), plot.title = ggplot2::element_text(hjust = 1, size = 9, colour = "grey25"), strip.background = ggplot2::element_blank(), strip.text = ggplot2::element_text(hjust = 0, face = "bold", size = 10)) )) plots <- miss_plots$plot if (nrow(miss_plots) == 1) { names(plots) <- "Missing_Dates" } else { names(plots) <- paste0(miss_plots$STATION_NUMBER, "_Missing_Dates") } plots }
translateIOV <- function(model, occ.name, nocc, output, iov0, cat0=NULL) { if (length(cat0)==0) cat0 <- NULL sections <- sectionsModel(model) sm <- splitModel(model, sections) lines <- c() i.iov <- iov0 o.iov <- addiov(i.iov, output) cat0.name <- unlist(lapply(cat0, function(x) x$name)) rem.name <- c("occ","socc", "OCC","sOCC") if (!is.null(cat0)) rem.name <- unique(c(rem.name,paste0("s",cat0.name))) i.cov <- which(sapply(sm, function(ch) ch$name=="[COVARIATE]")) d.iov <- c.iov <- v.iov <- NULL add.iov <- FALSE if (length(i.cov)>0) { sec.cov <- splitSection(sm[[i.cov]]) r0.cov <- iovin(sec.cov$input, NULL, i.iov, nocc, sec.cov$name, cat0, rem.name=rem.name) i.iov <- r0.cov$iov lines.cov <- r0.cov$lines if (length(sec.cov$blocks)) { for (k in (1:length(sec.cov$blocks))) { if (identical(sec.cov$blocks[k],'EQUATION:')) { rk.cov <- ioveq(sec.cov$lines[[k]], i.iov, d.iov, nocc) } else { rk.cov <- iovdef(sec.cov$lines[[k]], i.iov, nocc) d.iov <- rk.cov$d.iov } c.iov <- rk.cov$iov lines.cov <- c(lines.cov, rk.cov$lines) } } if (!is.null(d.iov) | !is.null(i.iov)) { add.iov <- TRUE lines <- c(lines,"",lines.cov) } else { lines <- c(lines,"",sm[[i.cov]]$lines) } o.iov <- unique(c(o.iov,addiov(c.iov, output))) } i.ind <- which(sapply(sm, function(ch) ch$name=="[INDIVIDUAL]")) if (length(i.ind)>0) { sec.ind <- splitSection(sm[[i.ind]]) u.iov <- c.iov u.iov <- setdiff(c.iov, cat0.name) r0.ind <- iovin(sec.ind$input, u.iov, i.iov, nocc, sec.ind$name, cat0, rem.name=rem.name) v.iov <- unique(c(u.iov, i.iov)) o.iov <- unique(c(o.iov,addiov(c.iov, output))) lines.ind <- r0.ind$lines for (k in (1:length(sec.ind$blocks))) { if (identical(sec.ind$blocks[k],'EQUATION:')) { rk.ind <- ioveq(sec.ind$lines[[k]], v.iov, d.iov, nocc) v.iov <- rk.ind$iov } else { rk.ind <- iovdef(sec.ind$lines[[k]], v.iov, nocc) d.iov <- rk.ind$d.iov v.iov <- rk.ind$iov } lines.ind <- c(lines.ind, rk.ind$lines) } if (!is.null(d.iov)) { add.iov <- TRUE lines <- c(lines,"",lines.ind) } else { lines <- c(lines,"",sm[[i.ind]]$lines) } } i.long <- which(sapply(sm, function(ch) ch$name=="[LONGITUDINAL]")) if (length(i.long)>0) { if (!is.null(v.iov) & add.iov) { sec.long <- splitSection(sm[[i.long]]) u.iov <- unique(c(i.iov,o.iov)) long.lines <- iovinlong(sec.long$input, v.iov, u.iov, nocc, sec.long$name, occ.name) if (length(v.iov)==length(d.iov)) { r1.long <- iovseclong(sec.long, v.iov, d.iov, u.iov, nocc, occ.name) lines <- c(lines,"",long.lines,r1.long$lines) } } else { lines <- c(lines,"",sm[[i.long]]$lines) } } model <- "tempiov_model.txt" write(lines,model) return(list(model=model, iov=unique(c(o.iov,v.iov,i.iov)), occ.name=occ.name, cat=cat0)) } regstr1 <-function(expr,str) { strb <- paste0(" ",str," ") sep <- "([^[:digit:]_])" ig <- grep(paste0(sep,expr,sep),strb) newv <- gsub("\\=.*","",str[ig]) return(newv) } repstr1 <-function(expr,x,str) { str <- paste0(" ",str," ") sep <- "([^[:digit:]_])" str <- gsub(paste0(sep,expr,sep),paste0("\\1",expr,x,"\\2"),str) str <- gsub("^\\s+|\\s+$", "", str) return(str) } line2field <- function(str) { if (length(str)>1) str <- strmerge(str, 0) str <- gsub(" ","",str) rout <- list() for (k in (1:length(str))) { strk <- str[k] strk <- gsub("no-variability","sd=0",strk) r <- list(name=sub("\\=.*","",strk)) i1 <- regexpr("\\{",strk) i2 <- tail(gregexpr("\\}",strk)[[1]],n=1) strk <- substr(strk,i1+1,i2-1) sp <- strsplit(strk,",")[[1]] sp <- strmerge(sp, 1) fields <- sub("\\=.*","",sp) rv <- sub(".*\\=","",sp) nv <- lapply(rv, function(x) sum(gregexpr("\\{",x)[[1]]>0)) lrv <- as.list(rv) iv1 <- which(nv==1) if (length(iv1)>0) { riv1 <- gsub(".*?\\{(.*?)\\}.*", "\\1", rv[iv1]) lrv[iv1] <- strsplit(riv1,",") } iv2 <- which(nv>=2) if (length(iv2)>0) { for (i2 in (iv2)) { rvi2 <- rv[i2] i1 <- regexpr("\\{",rvi2) i2 <- tail(gregexpr("\\}",rvi2)[[1]],n=1) rvi2 <- substr(rvi2,i1+1,i2-1) j1 <- -1 j2 <- -1 ni2 <- nchar(rvi2) lrvi2 <- c() while (j2>=j1 && j2 <ni2) { j1 <- j2+2 if (substr(rvi2,j1,j1)=="{") j2 <- regexpr("\\}",substr(rvi2,j1+1,ni2))+j1 else j2 <- regexpr("\\,",substr(rvi2,j1+1,ni2))+j1-1 if (j2>=j1) lrvi2 <- c(lrvi2, substr(rvi2,j1,j2)) else lrvi2 <- c(lrvi2, substr(rvi2,j1,ni2)) } lrv[[iv2]] <- lrvi2 } } r$fields <- lrv names(r$fields) <- fields rout[[k]] <- r } if (length(rout)==1) rout <- rout[[1]] return(rout) } field2line <- function(r) { nr <- length(r) lines <- vector(length=nr) for (k in (1:nr)) { rk <- r[[k]] nk <- names(rk$fields) mk <- sapply(rk$fields,length) ik <- which(mk>1) rk$fields[ik] <- sapply(rk$fields[ik], function(x) paste0("{",paste(x,collapse=","),"}")) uk <- paste(nk,unlist(rk$fields),sep="=") lines[k] <- paste0(rk$name,"={",paste(uk, collapse=","),"}") } return(lines) } strmerge <- function(str1, op=0) { n <- length(str1) str2 <- c() idx <- 0 while (idx<n) { idx <- idx + 1 si <- str1[idx] n1 <- sum(gregexpr("\\{",si)[[1]]>0) n2 <- sum(gregexpr("\\}",si)[[1]]>0) while(n1 > n2) { idx <- idx+1 if (identical(substr(si,nchar(si),nchar(si)),",") | identical(substr(si,nchar(si),nchar(si)),"{")) si <- paste0(si,str1[idx]) else si <- paste(si,str1[idx],sep=",") n1 <- sum(gregexpr("\\{",si)[[1]]>0) n2 <- sum(gregexpr("\\}",si)[[1]]>0) } str2 <- c(str2, si) } list1 <- NULL for (idx in (1:length(str2))) { si <- str2[idx] if (identical(substr(si,nchar(si),nchar(si)),"=")) list1 <- c(list1, idx) } if (length(list1)>0) { for (idx in list1) str2[idx] <- paste0(str2[idx],str2[idx+1]) str2 <- str2[-(list1+1)] } if (op==1) { n <- length(str2) str3 <- c() idx <- 0 while (idx<n) { idx <- idx + 1 si <- str2[idx] if (!identical(si, "no-variability")) { while (!grepl("=",si)) { idx <- idx + 1 si <- paste(si, str2[idx], sep=",") } } str3 <- c(str3, si) } str3 <- gsub(",}","}",str3) return(str3) } else { str2 <- gsub(",}","}",str2) return(str2) } } splitSection <- function(section) { lines <- section$lines i.input = grep("input=",lines, fixed=TRUE)[1] i.eq = grep("EQUATION:",lines, fixed=TRUE) i.def = grep("DEFINITION:",lines, fixed=TRUE) i.pk = grep("PK:",lines, fixed=TRUE) is <- sort(c(i.pk,i.eq,i.def)) is <- c(is, length(lines)+1) if (!is.na(i.input)) input <- lines[i.input:(is[1]-1)] else input <- NULL bt <- c() bc <- list() if (length(is)>1) { for (k in (1:(length(is)-1))) { if (regexpr("EQUATION:",lines[is[k]], fixed=TRUE)==1) bt <- c(bt, "EQUATION:") else if (regexpr("DEFINITION:",lines[is[k]], fixed=TRUE)==1) bt <- c(bt, "DEFINITION:") else bt <- c(bt, "PK:") if (is[k+1]-is[k] >1) bc[[k]] <- lines[(is[k]+1):(is[k+1]-1)] else bc[[k]] <- "" } } return(list(name=section$name, input=input, blocks=bt, lines=bc)) } iovin <- function(lines, c.iov=NULL, v.iov=NULL, nocc, name, cat=NULL, rem.name=NULL) { if (!is.null(rem.name)) { vc <- sub("\\=.*","",lines) lines <- lines[!(vc %in% rem.name)] foo <- "foo123456" lines <- gsub(paste0(rem.name,collapse="|"),foo,lines) lines <- gsub(paste0(",",foo),"",lines) lines <- gsub(paste0(foo,","),",",lines) lines <- gsub("\\{,","\\{",lines) lines <- gsub(",\\}","\\}",lines) lines <- gsub(paste(paste0("=",rem.name),collapse="|"),"=",lines) lines <- lines[lines!="input="] lines <- lines[lines!=paste0("input=",foo)] gl <- grep("\\{\\}",lines) if (length(gl)>0) lines <- lines[-gl] } if (length(lines)==0) return(list(iov=NULL, lines=name)) suffix <- "_iov" sep <- "([\\,\\{\\}])" vi <- c() for (expr in v.iov) if (length(grep(expr, lines))==0) rem.name <- c(rem.name, expr) v.iov <- setdiff(v.iov,rem.name) l.input <- grep("input", lines) if (length(v.iov)==1 && l.input %in% grep(v.iov,lines) && length(grep("\\{", lines[l.input]))==0) lines[l.input] <- paste0("input={",v.iov,"}") for (expr in c.iov) { nexpr0 <- paste0(expr,"0") nexpr1 <- paste0("eta_",expr,suffix,1:nocc,collapse=",") nexpr <- paste(nexpr0, nexpr1, sep=",") if (any(regexpr(paste0(sep,expr,sep),lines)>0)) { vi <- c(vi, expr) lines <- gsub(paste0(sep,expr,sep),paste0("\\1",nexpr,"\\2"),lines) } else { lines <- c(lines, paste0("input={",nexpr,"}")) } } for (expr in v.iov) { nexpr <- paste0(expr,suffix,1:nocc,collapse=",") if (any(regexpr(paste0(sep,expr,sep),lines)>0)) vi <- c(vi, expr) lines <- gsub(paste0(sep,expr,sep),paste0("\\1",nexpr,"\\2"),lines) } vc <- sub("\\=.*","",lines) if (!is.null(c(c.iov,v.iov))) lines <- lines[!(vc %in% c(c.iov,v.iov))] if (!is.null(cat)) { for (k in (1: length(cat))) { if (!(cat[[k]]$name %in% rem.name)) { if (!(cat[[k]]$name %in% vi)) lines <- c(lines, paste0("input = {", paste0(cat[[k]]$name,suffix,1:nocc,collapse=","),"}")) for (ko in (1:nocc)) { lo <- paste0(cat[[k]]$name,suffix,ko,"={type=categorical,categories={",paste(cat[[k]]$categories,collapse = ","),"}}") lines <- c(lines, lo) } } } } return(list(iov=vi, lines=c(name,lines))) } iovinlong <- function(lines, v.iov, o.iov, nocc, name, occ.name) { suffix <- "_iov" sep <- "([\\,\\{\\}])" for (expr in v.iov) { nexpr0 <- paste0(expr,"0") nexpr1 <- paste0("eta_",expr,suffix,1:nocc,collapse=",") nexpr <- paste(nexpr0, nexpr1, sep=",") if (any(regexpr(paste0(sep,expr,sep),lines)>0)) lines <- gsub(paste0(sep,expr,sep),paste0("\\1",nexpr,"\\2"),lines) else lines <- c(lines, paste0("input={",nexpr,"}")) } for (expr in o.iov) { nexpr <- paste0(expr,suffix,1:nocc,collapse=",") if (any(regexpr(paste0(sep,expr,sep),lines)>0)) lines <- gsub(paste0(sep,expr,sep),paste0("\\1",nexpr,"\\2"),lines) else lines <- c(lines, paste0("input={",nexpr,"}")) } lines <- c(lines, paste0("input={",occ.name,"}"), paste0(occ.name,"={use=regressor}")) return(lines=c(name,lines)) } ioveq <- function(lines, v.iov=NULL, d.iov=NULL, nocc) { new.lines <- c() if (length(d.iov)>0) { for (i in 1:length(v.iov)) { vi <- v.iov[i] di <- d.iov[i] vi0 <- paste0(vi,"0") vis <- paste0(vi,"_iov") vie <- paste0("eta_",vi,"_iov") for (k in (1:nocc)) { if (tolower(di)=="normal") { nl <- paste0(vis,k," = ",vi0," + ",vie,k) } else if (tolower(di)=="lognormal") { nl <- paste0(vis,k," = ",vi0," * exp(",vie,k,")") } else if (tolower(di)=="logitnormal") { nl <- paste0(vis,k," = 1/(1+exp(-logit(",vi0,") + ",vie,k,"))") } else { stop("IOV is only possible with distributions normal, lognormal, logitnormal", call.=FALSE) } new.lines <- c(new.lines, nl) } } } listc <- c() for (kc in (1: length(v.iov))) { listk <- testk <- v.iov[kc] while (length(testk)>0) { listk <- unique(c(listk,regstr1(testk[1],lines))) testk <- unique(c(testk,regstr1(testk[1],lines))) testk <- testk[-1] } listc <- unique(c(listc, listk)) } new.eq <- c() for (ko in (1:nocc)) { smek <- lines for (exprk in listc) { smek <- repstr1(exprk,paste0("_iov",ko),smek) } new.eq <- c(new.eq, smek) } new.eq <- unique(new.eq) return(list(iov=listc,lines=c("EQUATION:",new.lines,new.eq))) } iovseclong <- function(sec, v.iov=NULL, d.iov=NULL, o.iov=NULL, nocc, occ.name) { suffix <- "_iov" new.lines <- c() if (!is.null(v.iov)) { new.lines <- c("EQUATION:",paste0("if ",occ.name,"==1")) for (ko in (1:nocc)) { for (vi in v.iov) { new.lines <- c(new.lines, paste0(" eta_",vi,"=",paste0("eta_",vi,suffix,ko))) } for (vi in o.iov) { new.lines <- c(new.lines, paste0(" ",vi,"=",paste0(vi,suffix,ko))) } new.lines <- c(new.lines, paste0("elseif ",occ.name,"==",ko+1)) } new.lines[length(new.lines)] <- "end" } for (i in 1:length(v.iov)) { vi <- v.iov[i] di <- d.iov[i] if (tolower(di)=="normal") { nl <- paste0(vi," = ",vi,"0 + eta_",vi) } else if (tolower(di)=="lognormal") { nl <- paste0(vi," = ",vi,"0 * exp(eta_",vi,")") } else if (tolower(di)=="logitnormal") { nl <- paste0(vi," = 1/(1+exp(-logit(",vi,"0) + eta_",vi,"))") } else { stop("IOV is only possible with distributions normal, lognormal, logitnormal", call.=FALSE) } new.lines <- c(new.lines, nl) } for (k in (1:length(sec$blocks))) { new.lines <- c(new.lines,sec$blocks[k],sec$lines[[k]]) } return(list(lines=new.lines)) } iovdef <- function(lines, v.iov=NULL, nocc) { suffix <- "_iov" lines <- gsub(",mean=",",reference=",lines) lines <- gsub(",prediction=",",reference=",lines) lines <- gsub(",typical=",",reference=",lines) iop.sd <- (length(grep("var=",lines))==0) fields <- line2field(lines) if (length(lines)==1) fields <- list(fields) i.iov <- which(sapply(fields, function(x) !is.null(x$fields$varlevel))) vcv <- list() for (k in (1:length(fields))) { icv <- match(fields[[k]]$fields$covariate,v.iov) icv <- icv[!is.na(icv)] vcv[[k]] <- v.iov[icv] if (length(icv)>0) i.iov <- unique(c(i.iov, k)) } if (length(i.iov)>0) { v.iov <- sapply(fields[i.iov], function(x) x$name) d.iov <- sapply(fields[i.iov], function(x) x$fields$distribution) for (iv in i.iov) { if (identical(fields[[iv]]$fields$varlevel,"id*occ")) { if (iop.sd) fields[[iv]]$fields$sd <- c(0,fields[[iv]]$fields$sd) else fields[[iv]]$fields$var <- c(0,fields[[iv]]$fields$var) } } f1 <- fields for (iv in i.iov) { f1[[iv]]$name <- paste0(f1[[iv]]$name,"0") f1[[iv]]$fields$varlevel <- NULL f1[[iv]]$fields$covariate <- NULL f1[[iv]]$fields$coefficient <- NULL if (iop.sd) f1[[iv]]$fields$sd <- f1[[iv]]$fields$sd[1] else f1[[iv]]$fields$var <- f1[[iv]]$fields$var[1] } line1 <- field2line(f1) f2 <- fields for (iv in i.iov) { f2[[iv]]$fields$varlevel <- NULL f2[[iv]]$fields$reference <- 0 f2[[iv]]$fields$distribution <- "normal" if (iop.sd) f2[[iv]]$fields$sd <- ifelse(is.na(f2[[iv]]$fields$sd[2]),0,f2[[iv]]$fields$sd[2]) else f2[[iv]]$fields$var <- ifelse(is.na(f2[[iv]]$fields$var[2]),0,f2[[iv]]$fields$var[2]) } f2o <- f2[i.iov] f2 <- list() for (ko in (1:nocc)) { for (k in 1:length(i.iov)) { f2o[[k]]$name <- paste0("eta_",v.iov[k],suffix,ko) if (length(vcv)>0) { vcvk <- vcv[[i.iov[k]]] if (length(vcvk)>0) { fck <- fields[[i.iov[k]]]$fields$covariate for (j in (1:length(vcvk))) fck <- gsub(vcvk[j],paste0(vcvk[j],suffix,ko),fck) f2o[[k]]$fields$covariate <- fck } } } f2 <- c(f2,f2o) } line2 <- field2line(f2) new.lines <- c("DEFINITION:",line1,line2) } else { new.lines <- c("DEFINITION:", lines) d.iov <- NULL } new.lines <- gsub("no-variability=no-variability","no-variability",new.lines) l.cor <- grep("id\\*occ",new.lines) if (length(l.cor)>0) { lk.cor <- NULL for (i in l.cor) { li.cor0 <- new.lines[i] li.cor0 <- gsub("id\\*occ", "id", li.cor0) vi1 <- gregexpr("\\(", li.cor0)[[1]] vi2 <- gregexpr("\\)", li.cor0)[[1]] nv1 <- length(vi1) li.cor <- NULL for (ko in (1:nocc)) { li.cork <- li.cor0 for (ji in seq_len(nv1)) { i1 <- vi1[nv1-ji+1] i2 <- vi2[nv1-ji+1] str12 <- substr(li.cork, start=i1, stop=i2) isep <- regexpr(",", str12) viov <- c(substring(str12,first=2,last=isep-1),substring(str12,first=isep+1, last=nchar(str12)-1)) li.cork <- gsub(str12,paste0("(eta_",viov[1],suffix,ko,", ","eta_",viov[2],suffix,ko,")"),li.cork, fixed=TRUE) } lk.cor <- c(lk.cor, li.cork ) } } new.lines <- new.lines[-l.cor] new.lines <- c(new.lines, lk.cor) } return(list(iov=v.iov,d.iov=d.iov,lines=new.lines)) } addiov0 <- function(var.iov, v.iov, output) { for (k in 1:length(output)) { nk <- output[[k]]$name ik <- match(nk, var.iov) nk <- nk[!is.na(ik)] ik <- ik[!is.na(ik)] if (length(ik)>0) { v.iov <- unique(c(v.iov, nk)) } } return(v.iov) } addiov <- function(v.iov, output) { o.iov <- NULL for (k in 1:length(output)) { nk <- output[[k]]$name ik <- match(nk, v.iov) nk <- nk[!is.na(ik)] ik <- ik[!is.na(ik)] if (length(ik)>0) { o.iov <- unique(c(o.iov, nk)) } } return(o.iov) } outiov <- function(output,v.iov,occ, v.iov0) { new.output <- list() j <- 0 for (k in 1:length(output)) { nk <- output[[k]]$name ik <- match(nk, c(v.iov,v.iov0)) nk <- nk[!is.na(ik)] ik <- ik[!is.na(ik)] if (length(ik)>0) { output[[k]]$name <- setdiff(output[[k]]$name, nk) if (is.data.frame(occ[[1]])) outk <- list(name=nk, time=occ[[1]]) else outk <- list(name=nk, time=occ[[1]]$time) j <-j+1 new.output[[j]] <- outk nk <- setdiff(nk, v.iov0) if (length(nk)>0) { j <-j+1 new.output[[j]] <- list(name=paste0(nk,"0")) } } } output <- c(output, new.output) } param.iov <- function(p, occ) { suffix <- "_iov" occ <- occ[[1]] p2 <- p if (is.data.frame(occ)) { no <- names(occ) occ.name <- setdiff(no,c("id","time")) nocc <- length(unique(occ[[occ.name]])) } else { occ.name <- occ$name nocc <- length(occ$time) no <- c("id", "time", occ.name) } v.iov <- c() cat <- list() indj <- 0 for (k in (1:length(p))) { pk <- p[[k]] if (is.data.frame(pk) && (!is.null(pk$time))) { jfk <- which(sapply(pk,is.character)|sapply(pk,is.factor)) jfk <- jfk[names(jfk)!="id"] if (length(jfk)>0) { for (jf in (1:length(jfk))) { indj <- indj+1 cat[[indj]] <- list(name=names(pk)[jfk[jf]], categories=levels(pk[,jfk[jf]])) } } nk <- names(pk) so <- setdiff(nk, no) if (length(so)==0) so <- occ.name n.param <- length(so) if (!("id" %in% nk)) pk$id <- 1 N <- length(unique(pk$id)) io <- intersect(nk, no) if (is.data.frame(occ)) mo <- merge(occ, pk) else mo <- merge(data.frame(occ=1:nocc,time=occ$time),pk) dk <- vector(length=n.param) for (j in (1:n.param)) { pkj <- mo[c("id",so[j])] dk[j] <- (dim(unique(pkj))[1] == N) } for (j in (1:length(dk))){ if (!dk[j]) pk[so[j]] <- NULL } pk$time <- NULL pk[occ.name] <- NULL if (!("id" %in% nk)) pk$id <- NULL if (dim(pk)[2]>1) p2[[k]] <- unique(pk) else p2[[k]] <- NULL pk.occ <- mo pk.occ[so[dk]] <- NULL pk.occ["time"] <- NULL if (!identical(occ.name,"occ")) { pk.occ$occ <- pk.occ[occ.name] pk.occ[occ.name] <- NULL } pkn <- subset(pk.occ, occ==1) io <- which(names(pkn) %in% so[!dk]) names(pkn)[io] <- paste0(so[!dk],suffix,1) pkn$occ <- NULL for (ko in (2:nocc)) { pko <- subset(pk.occ, occ==ko) names(pko)[io] <- paste0(so[!dk],suffix,ko) pko$occ <- NULL pkn <- merge(pkn,pko, by=c("id"), all=TRUE) } for (kf in (1:dim(pkn)[2])) { if (is.factor(pkn[,kf])) pkn[is.na(pkn[,kf]),kf] <- levels(pkn[,kf])[1] else pkn[is.na(pkn[,kf]),kf] <- NaN } if (!("id" %in% nk)) { pkn$id <- NULL pkn <- as.vector(pkn) } p2[[length(p2)+1]] <- pkn v.iov <- c(v.iov, so[!dk]) } } p2 <- p2[sapply(p2,length)>0] for (j in seq_len(length(cat))) { cj <- grep("[\\+\\-\\*<>]",cat[[j]]$categories) if (length(cj)>0) cat[[j]]$categories[cj] <- paste0("'",cat[[j]]$categories[cj],"'") } return(list(param=p2, iov=v.iov, cat=cat)) }
V_aD<-function(px,x,h,n,k=1,cantprem=1,premperyear=1,i=0.04,data,prop=1,assumption="none",variation="none",cap,t){ dig<-getOption("digits") on.exit(options(digits = dig)) options(digits = 15) reserve<-c() res<-0 rown<-c() if(px>0 && x>=0 && is_integer(x)==1 && h>=0 && is_integer(h)==1 && n>0 && is_integer(n)==1 && k>=1 && is_integer(k)==1 && cantprem>=1 && is_integer(cantprem)==1 && premperyear>=1 && premperyear<=12 && is_integer(premperyear)==1 && i>=0 && prop>0 && cap>0){ if(k==1 && premperyear==1){ if(t<=(h+n)){ for(j in 1:t){ risk<-0 prem<-px if(j>h){ risk<-cap*(n-(j-h-1)) } if(j>cantprem){ prem<-0 } res<-(res+prem-risk)*(E(x+j-1,1,i,data,prop,"none",1))^(-1) e<-(E(x+j-1,1,i,data,prop,"none",1))^(-1) reserve<-rbind(reserve,c(prem,risk,e,round(res,3))) rown<-c(rown,paste("Year",j)) } } else{ stop("Check Year") } colnames(reserve)<-c("Premium","Risk","1/E","Reserve") rownames(reserve)<-rown }else if(k<=12){ if(t<=(h+n)*12){ if(variation=="inter"){ Premiums_Paid<-0 frac<-1 CumVariationInter<-n+1 for(s in 1:t){ risk<-0 prem<-0 age<-trunc((s-1)/12) if(s>h*12 & contmeses(s,k)==1){ if((s-1)/12==round((s-1)/12)){ CumVariationInter<-CumVariationInter-1 } risk<-(cap/k)*(CumVariationInter) } if(contmeses(s,premperyear)==1 & Premiums_Paid<cantprem){ prem<-px Premiums_Paid<-Premiums_Paid+1 } va<-(res+prem-risk)*E(x+age,(frac-1)/12,i,data,prop,assumption,1) res<-va*(E(x+age,frac/12,i,data,prop,assumption,1))^(-1) e<-E(x+age,(frac-1)/12,i,data,prop,assumption,1)*(E(x+age,frac/12,i,data,prop,assumption,1))^(-1) reserve<-rbind(reserve,c(prem,risk,e,round(res,3))) rown<-c(rown,paste("Month",s)) frac<-frac+1 if(round(s/12)==s/12){ frac<-1 } } colnames(reserve)<-c("Premium","Risk","1/E","Reserve") rownames(reserve)<-rown } else if(variation=="intra"){ Premiums_Paid<-0 frac<-1 CumVariationIntra<-n*k+1 for(s in 1:t){ risk<-0 prem<-0 age<-trunc((s-1)/12) if(s>h*12 & contmeses(s,k)==1){ CumVariationIntra<-CumVariationIntra-1 risk<-(cap/k)*(CumVariationIntra) } if(contmeses(s,premperyear)==1 & Premiums_Paid<cantprem){ prem<-px Premiums_Paid<-Premiums_Paid+1 } va<-(res+prem-risk)*E(x+age,(frac-1)/12,i,data,prop,assumption,1) res<-va*(E(x+age,frac/12,i,data,prop,assumption,1))^(-1) e<-E(x+age,(frac-1)/12,i,data,prop,assumption,1)*(E(x+age,frac/12,i,data,prop,assumption,1))^(-1) reserve<-rbind(reserve,c(prem,risk,e,round(res,3))) rown<-c(rown,paste("Month",s)) frac<-frac+1 if(round(s/12)==s/12){ frac<-1 } } colnames(reserve)<-c("Premium","Risk","1/E","Reserve") rownames(reserve)<-rown }else{ stop("Check variation") } }else{ stop("Check Month") } }else{ stop("Check k") } } else{ stop("Check values") } return(as.data.frame(reserve)) }
context("stat_prop") test_that("example", { expect_print <- function(x) { expect_silent(print(x)) } d <- as.data.frame(Titanic) p <- ggplot(d) + aes(x = Class, fill = Survived, weight = Freq, by = Class) + geom_bar(position = "fill") + geom_text(stat = "prop", position = position_fill(.5)) expect_print(p) expect_print(p + facet_grid(~Sex)) expect_print(ggplot(d) + aes(x = Class, fill = Survived, weight = Freq) + geom_bar(position = "dodge") + geom_text( aes(by = Survived), stat = "prop", position = position_dodge(0.9), vjust = "bottom" )) expect_print(ggplot(d) + aes(x = Class, fill = Survived, weight = Freq, by = 1) + geom_bar() + geom_text( aes(label = scales::percent(after_stat(prop), accuracy = 1)), stat = "prop", position = position_stack(.5) )) skip_if_not_installed("reshape") data(tips, package = "reshape") expect_print(ggally_colbar(tips, mapping = aes(x = smoker, y = sex))) expect_print(ggally_rowbar(tips, mapping = aes(x = smoker, y = sex))) expect_print(ggally_colbar(tips, mapping = aes(x = smoker, y = sex), size = 8)) expect_print(ggally_colbar(tips, mapping = aes(x = smoker, y = sex), colour = "white", fontface = "bold")) expect_print(ggally_colbar(tips, mapping = aes(x = smoker, y = sex, label = after_stat(count)))) expect_print(ggally_colbar(tips, mapping = aes(x = smoker, y = sex), geom_bar_args = list(width = .5))) expect_print(ggally_colbar(tips, mapping = aes(x = smoker, y = sex), label_format = scales::label_percent(accuracy = .01, decimal.mark = ","))) expect_print(ggduo( data = as.data.frame(Titanic), mapping = aes(weight = Freq), columnsX = "Survived", columnsY = c("Sex", "Class", "Age"), types = list(discrete = "rowbar"), legend = 1 )) }) test_that("stat_prop() works with an y aesthetic", { expect_print <- function(x) { expect_silent(print(x)) } d <- as.data.frame(Titanic) p <- ggplot(d) + aes(y = Class, fill = Survived, weight = Freq, by = Class) + geom_bar(position = "fill") + geom_text(stat = "prop", position = position_fill(.5)) expect_print(p) })
dev2bitmap <- function(file, type = "png16m", height = 7, width = 7, res = 72, units = "in", pointsize, ..., method = c("postscript", "pdf"), taa = NA, gaa = NA) { if(missing(file)) stop("'file' is missing with no default") if(!is.character(file) || length(file) != 1L || !nzchar(file)) stop("'file' must be a non-empty character string") method <- match.arg(method) units <- match.arg(units, c("in", "px", "cm", "mm")) height <- switch(units, "in"=1, "cm"=1/2.54, "mm"=1/25.4, "px"=1/res) * height width <- switch(units, "in"=1, "cm"=1/2.54, "mm"=1/25.4, "px"=1/res) * width gsexe <- tools::find_gs_cmd() if(!nzchar(gsexe)) stop("GhostScript was not found") check_gs_type(gsexe, type) if(missing(pointsize)) pointsize <- 1.5*min(width, height) tmp <- tempfile("Rbit") on.exit(unlink(tmp)) din <- graphics::par("din"); w <- din[1L]; h <- din[2L] if(missing(width) && !missing(height)) width <- w/h * height if(missing(height) && !missing(width)) height <- h/w * width current.device <- dev.cur() if(method == "pdf") dev.off(dev.copy(device = pdf, file = tmp, width = width, height = height, pointsize = pointsize, paper = "special", ...)) else dev.off(dev.copy(device = postscript, file = tmp, width = width, height = height, pointsize = pointsize, paper = "special", horizontal = FALSE, ...)) dev.set(current.device) extra <- "" if (!is.na(taa)) extra <- paste0(" -dTextAlphaBits=", taa) if (!is.na(gaa)) extra <- paste0(extra, " -dGraphicsAlphaBits=", gaa) cmd <- paste0(gsexe, " -dNOPAUSE -dBATCH -q -sDEVICE=", type, " -r", res, " -dAutoRotatePages=/None", " -g", ceiling(res*width), "x", ceiling(res*height), extra, " -sOutputFile=", shQuote(file), " ", tmp) system(cmd, invisible = TRUE) invisible() } bitmap <- function(file, type = "png16m", height = 7, width = 7, res = 72, units = "in", pointsize, taa = NA, gaa = NA, ...) { if(missing(file)) stop("'file' is missing with no default") if(!is.character(file) || length(file) != 1L || !nzchar(file)) stop("'file' must be a non-empty character string") units <- match.arg(units, c("in", "px", "cm", "mm")) height <- switch(units, "in"=1, "cm"=1/2.54, "mm"=1/25.4, "px"=1/res) * height width <- switch(units, "in"=1, "cm"=1/2.54, "mm"=1/25.4, "px"=1/res) * width gsexe <- tools::find_gs_cmd() if(!nzchar(gsexe)) stop("GhostScript was not found") check_gs_type(gsexe, type) if(missing(pointsize)) pointsize <- 1.5*min(width, height) extra <- "" if (!is.na(taa)) extra <- paste0(" -dTextAlphaBits=", taa) if (!is.na(gaa)) extra <- paste0(extra, " -dGraphicsAlphaBits=", gaa) tmp <- tempfile("Rbit") cmd <- paste0(gsexe, " -dNOPAUSE -dBATCH -q -sDEVICE=", type, " -r", res, " -dAutoRotatePages=/None", " -g", ceiling(res*width), "x", ceiling(res*height), extra, " -sOutputFile=", shQuote(file)) postscript(file = tmp, width = width, height = height, pointsize = pointsize, paper = "special", horizontal = FALSE, print.it = TRUE, command = cmd, ...) invisible() } check_gs_type <- function(gsexe, type) { gshelp <- system(paste(gsexe, "-help"), intern = TRUE, invisible = TRUE) st <- grep("^Available", gshelp) en <- grep("^Search", gshelp) if(!length(st) || !length(en)) warning("unrecognized format of gs -help") else { gsdevs <- gshelp[(st+1L):(en-1L)] devs <- c(strsplit(gsdevs, " "), recursive = TRUE) if(match(type, devs, 0L) == 0L) { op <- options(warning.length = 8000L) on.exit(options(op)) stop(gettextf("device '%s' is not available\n", type), gettextf("Available devices are:\n%s", paste(gsdevs, collapse = "\n")), domain = NA) } } }
close_bracket_style <- function(srcData) { parseData <- srcData$parseData if (is.null(parseData)) stop("no parse data; ", "use 'getSourceData' with 'keep.source = TRUE'") w <- which(parseData$token == "']'") if (!length(w)) return(TRUE) col <- parseData$col1[w] lines <- parseData$line1[w] pcol <- parseData$col2[w - 1L] pchar <- parseData$token[w - 1L] valid <- ((col - pcol) == 1L & pchar != "','") | ((col - pcol) > 1L & pchar == "','") res <- all(valid) if (!res) { lines <- lines[!valid] msg <- sapply(lines, function(l) .makeMessage(gettext("Line"), " ", l, ": ", gettext("do not use spaces before closing brackets (except after a comma)"), appendLF = TRUE)) attributes(res) <- list(lines = lines, message = msg) message(msg, appendLF = FALSE) } res } open_bracket_style <- function(srcData) { parseData <- srcData$parseData if (is.null(parseData)) stop("no parse data; ", "use 'getSourceData' with 'keep.source = TRUE'") w <- which(parseData$token == "'['") if (!length(w)) return(TRUE) col <- parseData$col1[w] lines <- parseData$line1[w] valid <- 1L == (parseData$col1[w + 1L] - col) res <- all(valid) if (!res) { lines <- lines[!valid] msg <- sapply(lines, function(l) .makeMessage(gettext("Line"), " ", l, ": ", gettext("do not use spaces after opening brackets"), appendLF = TRUE)) attributes(res) <- list(lines = lines, message = msg) message(msg, appendLF = FALSE) } res }
SKAT.bootstrap <- function(x, NullObject, genomic.region = x@snps$genomic.region, weights = (1-x@snps$maf)**24, maf.threshold = 0.5, perm.target = 100, perm.max = 5e4, debug = FALSE, estimation.pvalue = "kurtosis") { if(nrow(x) != length(NullObject$group)) stop("Different number of individuals in 'x' and 'NullObject'") if(!is.factor(genomic.region)) stop("'genomic.region' should be a factor") genomic.region <- droplevels(genomic.region) if(any(table(genomic.region)==1)) stop("All 'genomic.region' sould contain at least 2 variants, please use 'filter.rare.variants()' to filter the bed matrix") which.snps <- (x@snps$maf <= maf.threshold) & (x@snps$maf > 0) group <- NullObject$group Pi <- NullObject$Pi.data X <- NullObject$X W <- W.mat(Pi[,-1,drop=FALSE]) XX <- block.diag( rep(list(X), ncol(Pi) - 1) ) WX <- W %*% XX XWX <- t(XX) %*% WX U <- -(WX %*% solve(XWX, t(XX))) diag(U) <- diag(U)+1 B <- .Call('skat_bootstrap', PACKAGE = "Ravages", x@bed, which.snps, genomic.region, group, x@p, Pi, weights, U, perm.target, perm.max); names(B)[5] <- "p.perm" M1 <- B$M1; M2 <- B$M2; M3 <- B$M3; M4 <- B$M4; S2 <- M2 - M1**2 m3 <- M3 - 3*S2*M1 - M1**3 m4 <- M4 - 4*m3*M1 - 6*S2*M1**2 - M1**4 B$sigma <- sqrt(S2) B$skewness <- m3/S2**1.5 B$kurtosis <- m4/S2**2 B$p.chi2 <- as.vector(mapply(p.valeur.moments.liu, Q = B$stat, mu = B$M1, sigma = B$sigma, skewness = B$skewness, kurtosis = B$kurtosis - 3, estimation.pvalue = estimation.pvalue)) names(B)[6] <- "mean" B$p.value <- ifelse(B$nb.perm < perm.max, B$p.perm, B$p.chi2) B$p.value <- ifelse(is.na(B$p.chi), NA, B$p.value) B <- as.data.frame(B, row.names = levels(genomic.region)) if(debug) B[,!(names(B) %in% c("M2", "M3", "M4"))] else B[ , c("stat", "p.perm", "p.chi2", "p.value") ] }
item.alpha <- function(x, exclude = NULL, std = FALSE, ordered = FALSE, na.omit = FALSE, print = c("all", "alpha", "item"), digits = 2, conf.level = 0.95, as.na = NULL, check = TRUE, output = TRUE) { if (isTRUE(missing(x))) { stop("Please specify a matrix, data frame, variance-covariance or correlation matrix for the argument 'x'.", call. = FALSE) } if (isTRUE(is.null(x))) { stop("Input specified for the argument 'x' is NULL.", call. = FALSE) } if (isTRUE(!is.logical(check))) { stop("Please specify TRUE or FALSE for the argument 'check'.", call. = FALSE) } if (isTRUE(check)) { if (isTRUE(!is.matrix(x) && !is.data.frame(x))) { stop("Please specify a matrix, a data frame, a variance-covariance or correlation matrix for the argument 'x'.", call. = FALSE) } if (isTRUE(ncol(x) == 1L)) { stop("Please specify at least two items to compute coefficient alpha.", call. = FALSE) } if (isTRUE(nrow(x) != ncol(x))) { x.check <- vapply(as.data.frame(x, stringsAsFactors = FALSE), function(y) length(na.omit(unique(y))) == 1L, FUN.VALUE = logical(1)) if (isTRUE(any(x.check))) { stop(paste0("Following variables in the matrix or data frame specified in 'x' have zero variance: ", paste(names(which(x.check)), collapse = ", ")), call. = FALSE) } } check.ex <- !exclude %in% colnames(x) if (isTRUE(any(check.ex))) { stop(paste0("Items to be excluded from the analysis were not found in 'x': ", paste(exclude[check.ex], collapse = ", ")), call. = FALSE) } if (isTRUE(!is.logical(std))) { stop("Please specify TRUE or FALSE for the argument 'std'.", call. = FALSE) } if (isTRUE(!is.logical(ordered))) { stop("Please specify TRUE or FALSE for the argument 'ordered'.", call. = FALSE) } if (isTRUE(!is.logical(na.omit))) { stop("Please specify TRUE or FALSE for the argument 'na.omit'.", call. = FALSE) } if (isTRUE(!all(print %in% c("all", "alpha", "item")))) { stop("Character strings in the argument 'print' do not all match with \"all\", \"alpha\", or \"item\".", call. = FALSE) } if (isTRUE(conf.level >= 1L || conf.level <= 0L)) { stop("Please specifiy a numeric value between 0 and 1 for the argument 'conf.level'.", call. = FALSE) } if (isTRUE(digits %% 1 != 0L || digits < 0L)) { stop("Specify a positive integer number for the argument 'digits'.", call. = FALSE) } if (isTRUE(!is.logical(output))) { stop("Please specify TRUE or FALSE for the argument 'output'.", call. = FALSE) } } if (isTRUE(nrow(x) == ncol(x))) { if (isTRUE(isSymmetric(x))) { sym <- TRUE x.raw <- FALSE } else { sym <- FALSE x.raw <- TRUE } if (isTRUE(sym)) { std <- ifelse(all(diag(x) == 1L), TRUE, FALSE) } } else { x.raw <- TRUE } if (isTRUE(ordered)) { if (!isTRUE(x.raw)) { stop("Please submit raw data to the argument 'x' to compute ordinal coefficient alpha.", call. = FALSE) } x <- misty::cor.poly(x, output = FALSE)$result$cor x.raw <- FALSE std <- TRUE } x <- as.data.frame(x, stringsAsFactors = FALSE) if (isTRUE(x.raw)) { if (isTRUE(!is.null(exclude))) { x <- x[, which(!colnames(x) %in% exclude)] if (isTRUE(is.null(dim(x)))) { stop("At least two items after excluding items are needed to compute coefficient alpha.", call. = FALSE) } } if (isTRUE(!is.null(as.na))) { x <- misty::as.na(x, na = as.na, check = check) x.miss <- vapply(x, function(y) all(is.na(y)), FUN.VALUE = logical(1L)) if (isTRUE(any(x.miss))) { stop(paste0("After converting user-missing values into NA, following items are completely missing: ", paste(names(which(x.miss)), collapse = ", ")), call. = FALSE) } x.zero.var <- vapply(x, function(y) length(na.omit(unique(y))) == 1L, FUN.VALUE = logical(1)) if (isTRUE(any(x.zero.var))) { stop(paste0("After converting user-missing values into NA, following items have zero variance: ", paste(names(which(x.zero.var)), collapse = ", ")), call. = FALSE) } } } else { if (isTRUE(!is.null(exclude))) { x <- x[, which(!colnames(x) %in% exclude)] x <- x[which(!rownames(x) %in% exclude), ] if (isTRUE(is.null(dim(x)))) { stop("At least two items after excluding items are needed to compute coefficient alpha.", call. = FALSE) } } } if (isTRUE(na.omit)) { x <- na.omit(x) } if (isTRUE(all(c("all", "alpha", "item") %in% print))) { print <- c("alpha", "item") } if (isTRUE(length(print) == 1L && "all" %in% print)) { print <- c("alpha", "item") } if (isTRUE(x.raw)) { if (isTRUE(std)) { mat.sigma <- cor(x, use = "pairwise.complete.obs", method = "pearson") } else { mat.sigma <- cov(x, use = "pairwise.complete.obs", method = "pearson") } } else { mat.sigma <- x } alpha.function <- function(mat.sigma, p) { return((p / (p - 1)) * (1L - sum(diag(as.matrix(mat.sigma))) / sum(as.matrix(mat.sigma)))) } p <- ncol(mat.sigma) alpha.mat.sigma <- alpha.function(mat.sigma, p) if (isTRUE(x.raw)) { alpha.x <- data.frame(n = nrow(x), items = ncol(mat.sigma), alpha = alpha.mat.sigma, stringsAsFactors = FALSE) } else { alpha.x <- data.frame(items = ncol(mat.sigma), alpha = alpha.mat.sigma, stringsAsFactors = FALSE) } if (isTRUE(x.raw)) { if (isTRUE(any(is.na(x)) && !isTRUE(na.omit))) { df1 <- mean(apply(combn(ncol(x), 2L), 2, function(y) nrow(na.omit(cbind(x[, y[1L]], x[, y[2L]]))))) - 1L } else { df1 <- nrow(na.omit(x)) - 1L } df2 <- (ncol(x) - 1L) * df1 alpha.low <- 1L - (1L - alpha.mat.sigma) * qf(1L - (1L - conf.level) / 2L, df1, df2) alpha.upp <- 1L - (1L - alpha.mat.sigma) * qf((1L - conf.level) / 2L, df1, df2) alpha.x <- data.frame(alpha.x, low = alpha.low, upp = alpha.upp, stringsAsFactors = FALSE) } if (isTRUE(x.raw)) { itemstat <- matrix(rep(NA, times = ncol(x)*2L), ncol = 2L, dimnames = list(NULL, c("it.cor", "alpha"))) for (i in seq_len(ncol(x))) { var <- colnames(x)[i] itemstat[i, 1L] <- ifelse(ncol(x) > 2L, cor(x[, i], rowMeans(x[, -grep(var, colnames(x))], na.rm = TRUE), use = "pairwise.complete.obs"), NA) if (isTRUE(std)) { itemstat[i, 2L] <- ifelse(ncol(x) > 2L, alpha.function(cor(x[, -grep(var, colnames(x))], use = "pairwise.complete.obs", method = "pearson"), p = (ncol(x) - 1L)), NA) } else { itemstat[i, 2L] <- ifelse(ncol(x) > 2L, alpha.function(cov(x[, -grep(var, colnames(x))], use = "pairwise.complete.obs", method = "pearson"), p = (ncol(x) - 1L)), NA) } } itemstat <- data.frame(var = colnames(x), misty::descript(x, output = FALSE)$result[, c("n", "nNA", "pNA", "m", "sd", "min", "max")], itemstat, stringsAsFactors = FALSE) } else { itemstat <- NULL } object <- list(call = match.call(), type = "item.alpha", data = x, args = list(exclude = exclude, std = std, ordered = ordered, na.omit = na.omit, print = print, digits = digits, conf.level = conf.level, as.na = as.na, check = check, output = output), result = list(alpha = alpha.x, itemstat = itemstat)) class(object) <- "misty.object" if (isTRUE(output)) { print(object, check = FALSE) } return(invisible(object)) }
context("as_workbook") test_that("as_workbook works as expected", { source(file.path(test_path(), 'testdata', 'testdata.R')) for(el in list(t_df1, t_mash_1, t_comp_1, t_stack_1)) { tres <- as_workbook(el, blah = "blubb", keepNA = TRUE) expect_is(tres, 'Workbook') if(!inherits(el, 'Tatoo_report')){ expect_identical(length(names(tres)), 1L) } else { expect_identical(names(tres), names(el)) } } }) test_that("Tagged_table and default named regions are created correctly", { source(file.path(test_path(), 'testdata', 'testdata.R')) footer(t_tagged_1) <- c("blah", "blubb") wb <- as_workbook(t_tagged_1) res <- openxlsx::getNamedRegions(wb) expect_setequal( attr(res, "position"), c("A1:A3", "A5:D10", "A5:D5", "A6:D10", "A12:A13") ) footer(t_tagged_1) <- NULL wb <- as_workbook(t_tagged_1) res <- openxlsx::getNamedRegions(wb) expect_setequal( attr(res, "position"), c("A1:A3", "A5:D10", "A5:D5", "A6:D10") ) title(t_tagged_1) <- NULL table_id(t_tagged_1) <- NULL longtitle(t_tagged_1) <- NULL subtitle(t_tagged_1) <- NULL wb <- as_workbook(t_tagged_1) res <- openxlsx::getNamedRegions(wb) expect_setequal( attr(res, "position"), c("A2:D7", "A2:D2", "A3:D7") ) }) test_that("Mashed_table named regions are created correctly", { source(file.path(test_path(), 'testdata', 'testdata.R')) wb <- as_workbook(t_mash_1) res <- openxlsx::getNamedRegions(wb) expect_identical( attr(res, "position"), c("A1:D21", "A1:D1", "A2:D21") ) wb <- as_workbook(t_mash_4) res <- openxlsx::getNamedRegions(wb) expect_identical( attr(res, "position"), c("A1:A3", "A5:J5", "A6:J11", "A6:J6", "A7:J11", "A13:A13") ) }) test_that("Composite_table named regions are created correctly", { source(file.path(test_path(), 'testdata', 'testdata.R')) wb <- as_workbook(t_comp_1) res <- openxlsx::getNamedRegions(wb) expect_setequal( attr(res, "position"), c("A1:I1", "A2:I8", "A2:I2", "A3:I8") ) wb <- as_workbook(t_comp_3) res <- openxlsx::getNamedRegions(wb) expect_setequal( attr(res, "position"), c("A1:A3", "A5:G5", "A6:G12", "A6:G6", "A7:G12", "A14:A14") ) })
chart.Events <- function (R, dates, prior=12, post=12, main = NULL, xlab=NULL, ...) { R = checkData(R[,1,drop=FALSE]) if(is.null(main)) main = paste(colnames(R), "Event Study") for(i in 1:length(dates)){ date = dates[i] origin = grep(date,index(R)) if(length(origin)==0) stop("Date not found or dates don't match the index of the data.") x1 = matrix(R[(max(0,origin-prior)):origin, ],ncol=1) if(origin-prior<0) x1 = rbind(matrix(rep(NA,abs(origin-prior)+1),ncol=1),x1) x2 = matrix(R[(origin+1):min(length(R),origin+post) ],ncol=1) if(origin+post>length(R)) x2 = rbind(x2,matrix(rep(NA,((origin+post)-length(R))),ncol=1)) x = rbind(x1,x2) if(date == dates[1]) y = x else y = cbind(y,x) } colnames(y) = as.character(dates) x.xts=xts(y, order.by=time(R)[1:nrow(y)]) event.line = format(time(x.xts)[prior+1], "%m/%y") if(is.null(xlab)) xlab = "Periods to Event" chart.TimeSeries(x.xts, xlab = xlab, xaxis.labels = seq(-prior, post, by=1), event.lines = event.line, main = main, ...) }
tabu.search = function(x, start, whitelist, blacklist, score, extra.args, max.iter, maxp, optimized, tabu, debug = FALSE) { nodes = names(x) n.nodes = length(nodes) iter = 1 score.equivalence = is.score.equivalent(score, nodes, extra.args) score.decomposability = is.score.decomposable(score, extra.args) cache = matrix(0, nrow = n.nodes, ncol = n.nodes) updated = seq_len(n.nodes) - 1L tabu.list = vector("list", tabu) max.loss.iter = tabu loss.iter = 0 best.score = -Inf reference.score = per.node.score(network = start, score = score, targets = nodes, extra.args = extra.args, data = x) if (!is.null(blacklist)) blmat = arcs2amat(blacklist, nodes) else blmat = matrix(0L, nrow = n.nodes, ncol = n.nodes) if (!is.null(whitelist)) wlmat = arcs2amat(whitelist, nodes) else wlmat = matrix(0L, nrow = n.nodes, ncol = n.nodes) if (debug) { cat("----------------------------------------------------------------\n") cat("* starting from the following network:\n") print(start) cat("* current score:", sum(reference.score), "\n") cat("* whitelisted arcs are:\n") if (!is.null(whitelist)) print(whitelist) cat("* blacklisted arcs are:\n") if (!is.null(blacklist)) print(blacklist) start$learning$algo = "tabu" start$learning$ntests = 0 start$learning$test = score start$learning$args = extra.args start$learning$optimized = optimized } repeat { current = as.integer((iter - 1) %% tabu) if ((robust.difference(sum(reference.score), best.score) > 0) || (iter == 1)) { best.network = start best.score = sum(reference.score) } if (debug) cat("* iteration", iter, "using element", current, "of the tabu list.\n") amat = arcs2amat(start$arcs, nodes) nparents = colSums(amat) .Call(call_tabu_hash, amat = amat, nodes = nodes, tabu.list = tabu.list, current = current) .Call(call_score_cache_fill, nodes = nodes, data = x, network = start, score = score, extra = extra.args, reference = reference.score, equivalence = score.equivalence && optimized, decomposability = score.decomposability, updated = (if (optimized) updated else seq(length(nodes)) - 1L), amat = amat, cache = cache, blmat = blmat, debug = debug) to.be.added = arcs.to.be.added(amat = amat, nodes = nodes, blacklist = blmat, whitelist = NULL, nparents = nparents, maxp = maxp, arcs = FALSE) bestop = .Call(call_tabu_step, amat = amat, nodes = nodes, added = to.be.added, cache = cache, reference = reference.score, wlmat = wlmat, blmat = blmat, tabu.list = tabu.list, current = current, baseline = 0, nparents = nparents, maxp = maxp, debug = debug) if (bestop$op == FALSE) { if (loss.iter >= max.loss.iter) { start = best.network if (debug) { cat("----------------------------------------------------------------\n") cat("* maximum number of iterations without improvements reached, stopping.\n") cat("* best network ever seen is:\n") print(best.network) } break } else { loss.iter = loss.iter + 1 } if (debug) { cat("----------------------------------------------------------------\n") cat("* network score did not increase (for", loss.iter, "times), looking for a minimal decrease :\n") } bestop = .Call(call_tabu_step, amat = amat, nodes = nodes, added = to.be.added, cache = cache, reference = reference.score, wlmat = wlmat, blmat = blmat, tabu.list = tabu.list, current = current, baseline = -Inf, nparents = nparents, maxp = maxp, debug = debug) if (bestop$op == FALSE) { if (debug) { cat("----------------------------------------------------------------\n") cat("* no more possible operations.\n") cat("@ stopping at iteration", iter, ".\n") } if (loss.iter > 0) start = best.network break } } else { if (robust.difference(sum(reference.score), best.score) > 0) loss.iter = 0 } start = arc.operations(start, from = bestop$from, to = bestop$to, op = bestop$op, check.cycles = FALSE, check.illegal = FALSE, update = TRUE, debug = FALSE) if (bestop$op == "reverse") updated = which(nodes %in% c(bestop$from, bestop$to)) - 1L else updated = which(nodes %in% bestop$to) - 1L if (debug) { start$learning$ntests = test.counter() cat("----------------------------------------------------------------\n") cat("* best operation was: ") if (bestop$op == "set") cat("adding", bestop$from, "->", bestop$to, ".\n") else if (bestop$op == "drop") cat("removing", bestop$from, "->", bestop$to, ".\n") else cat("reversing", bestop$from, "->", bestop$to, ".\n") cat("* current network is :\n") print(start) cat("* current score:", sum(reference.score), "\n") cat(sprintf("* best score up to now: %s (delta: %s)\n", format(best.score), format(robust.difference(sum(reference.score), best.score)))) } if (iter >= max.iter) { if (debug) cat("@ stopping at iteration", max.iter, ".\n") if (loss.iter > 0) start = best.network break } else iter = iter + 1 } return(start) }
fun.errorMessage <- function(type) { if(type=='DataSet'){ txt <- "The data sets was not specificated." } if(type=='DataLength'){ txt <- "The length of data must be set." } if(type=='DefaultParameter'){ txt <- "Parameters are not specificated, using the default one." } return(txt) }
doigbeta <- function(x, shape0, shape1, shape2, p1, log=FALSE) { doifun(x=x, dfun=dgbeta, p1=p1, log=log, shape1=shape1, shape2=shape2, shape0=shape0) } poigbeta <- function(q, shape0, shape1, shape2, p1, lower.tail = TRUE, log.p = FALSE) { poifun(q=q, pfun=pgbeta, p1=p1, lower.tail=lower.tail, log.p=log.p, shape1=shape1, shape2=shape2, shape0=shape0) } qoigbeta <- function(p, shape0, shape1, shape2, p1, lower.tail = TRUE, log.p = FALSE) { qoifun(p=p, qfun=qgbeta, p1=p1, lower.tail=lower.tail, log.p=log.p, shape1=shape1, shape2=shape2, shape0=shape0) } roigbeta <- function(n, shape0, shape1, shape2, p1) { roifun(n=n, rfun=rgbeta, p1=p1, shape1=shape1, shape2=shape2, shape0=shape0) } ecoigbeta <- function(x, shape0, shape1, shape2, p1) { ecoifun(x=x, ecfun=ecgbeta, mfun=mgbeta, p1=p1, shape1=shape1, shape2=shape2, shape0=shape0) } moigbeta <- function(order, shape0, shape1, shape2, p1) { moifun(order=order, mfun=mgbeta, p1=p1, shape1=shape1, shape2=shape2, shape0=shape0) } tloigbeta <- function(shape0, shape1, shape2, p1) { tloifun(p1=p1, shape1=shape1, shape2=shape2, shape0=shape0) }
maxlik.fd.scoring <- function(m, step = NULL, information = c("expected", "observed", "mix"), ls = list(type = "optimize", tol = .Machine$double.eps^0.25, cap = 1), barrier = list(type = c("1", "2"), mu = 0), control = list(maxit = 100, tol = 0.001, trace = FALSE, silent = FALSE), debug = FALSE) { if (!is.null(step) && (step <= 0 || !is.numeric(step))) stop("'step' must be a numeric positive value.") mcall <- match.call() mll.step <- function(x, m, pd, barrier) { mloglik.fd(x = m@pars + x * pd, model = m, barrier = barrier) } dmll.step <- function(x, m, pd, xreg, barrier) { m@pars <- m@pars + x * pd gr <- mloglik.fd.deriv(model = m, xreg = xreg, gradient = TRUE, hessian = FALSE, infomat = FALSE, modcovgrad = FALSE, barrier = barrier, version = "2")$gradient drop(gr %*% pd) } cargs <- list(maxit = 100, tol = 0.001, trace = FALSE, silent = TRUE) ncargs0 <- names(cargs) cargs[ncargs <- names(control)] <- control if (length(nocargs <- ncargs[!ncargs %in% ncargs0])) warning("unknown names in 'control': ", paste(nocargs, collapse = ", ")) control <- cargs info <- match.arg(information)[1] use.gcov <- info == "expected" use.hess <- info == "observed" use.mix <- info == "mix" lsres <- list(ls.iter = NULL, ls.counts = c("fnc" = 0, "grd" = 0)) lsintv <- c(0, ls$cap) convergence <- FALSE iter <- 0 if (is.null(m@ssd)) { pg <- Mod(fft(m@diffy))^2 / (2 * pi * length(m@diffy)) } else pg <- m@ssd if (!is.null(m@xreg)) { dxreg <- m@fdiff(m@xreg, frequency(m@y)) fitxreg <- lm(m@diffy ~ dxreg - 1, na.action = na.omit) m@pars[m@ss$xreg] <- coef(fitxreg) xreg <- list(dxreg = dxreg, fft.dxreg = fft.dxreg <- apply(dxreg, 2, fft)) } else xreg <- NULL pars0 <- m@pars if (control$trace) { Mpars <- rbind(pars0, matrix(nrow = control$maxit + 1, ncol = length(pars0))) } else Mpars <- NULL steps <- if (control$trace) rep(NA, control$maxit + 2) else NULL while (!(convergence || iter > control$maxit)) { tmp <- mloglik.fd.deriv(m, xreg = xreg, gradient = TRUE, hessian = use.hess, infomat = use.gcov, modcovgrad = use.mix, barrier = barrier, version = "2") G <- -tmp$gradient M <- switch(info, "expected" = tmp$infomat, "observed" = tmp$hessian, "mix" = tmp$modcovgrad) if (info == "observed" || info == "mix") { M <- force.defpos(M, 0.001, FALSE) } pd <- drop(solve(M) %*% G) if (is.null(step)) { lsintv[2] <- step.maxsize(m@pars, m@lower, m@upper, pd, ls$cap) lsout <- switch(ls$type, "optimize" = optimize(f = mll.step, interval = lsintv, maximum = FALSE, tol = ls$tol, m = m, pd = pd, barrier = barrier), "brent.fmin" = Brent.fmin(a = 0, b = lsintv[2], fcn = mll.step, tol = ls$tol, m = m, pd = pd, barrier = barrier), "wolfe" = linesearch(b = lsintv[2], fcn = mll.step, grd = dmll.step, ftol = ls$ftol, gtol = ls$gtol, m = m, pd = pd, xreg = xreg, barrier = barrier)) lambda <- lsout$minimum lsres$ls.iter <- c(lsres$ls.iter, lsout$iter) lsres$ls.counts <- lsres$ls.counts + lsout$counts } else if (is.numeric(step)) lambda <- step pars.old <- m@pars pars.new <- pars.old + lambda * pd m <- set.pars(m, pars.new) if (sqrt(sum((pars.old - pars.new)^2)) < control$tol) { convergence <- TRUE } iter <- iter + 1 if (control$trace) { Mpars[iter+1,] <- pars.new steps[iter] <- lambda } if (debug) { val <- logLik(object = m, domain = "frequency", barrier = barrier) cat(paste("\niter =", iter, "logLik =", round(val, 4), "\n")) print(get.pars(m)) } if (debug && !is.null(m@lower) && !is.null(m@upper)) { check.bounds(m) } } if (!control$silent && !convergence) warning(paste("Possible convergence problem.", "Maximum number of iterations reached.")) if (control$trace) { Mpars <- na.omit(Mpars) attr(Mpars, "na.action") <- NULL steps <- na.omit(steps) attr(steps, "na.action") <- NULL } val <- -mloglik.fd( model = m, barrier = barrier, inf = 99999) if (convergence) { convergence <- "yes" } else convergence <- "maximum number of iterations was reached" vcov.type <- switch(info, "expected" = "information matrix", "observed" = "Hessian", "mix" = "modified outer product of the gradient") res <- c(list(call = mcall, model = m, init = pars0, pars = m@pars, xreg = xreg, loglik = val, convergence = convergence, iter = iter, message = "", Mpars = Mpars, steps = steps), lsres, list(Dmat = M, std.errors = sqrt(diag(solve(M))), vcov.type = vcov.type)) class(res) <- "stsmFit" res }
knit_print.huxtable <- function (x, options, ...) { of <- getOption("huxtable.knitr_output_format", guess_knitr_output_format()) call_name <- switch(of, latex = "to_latex", html = "to_html", pptx = , docx = "as_flextable", md = "to_md", screen = "to_screen", rtf = "to_rtf", { warning(glue::glue( 'Unrecognized output format "{of}". Using `to_screen` to print huxtables.\n', 'Set options("huxtable.knitr_output_format") manually to ', '"latex", "html", "rtf", "docx", "pptx", "md" or "screen".')) "to_screen" }) res <- do.call(call_name, list(x)) res <- switch(of, latex = { latex_deps <- report_latex_dependencies(quiet = TRUE) tenv <- tabular_environment(x) if (tenv %in% c("tabulary", "longtable")) { latex_deps <- c(latex_deps, list(rmarkdown::latex_dependency(tenv))) } knitr::asis_output(res, meta = latex_deps) }, html = knitr::asis_output(htmlPreserve(res)), rtf = knitr::raw_output(res), pptx = , docx = knitr::knit_print(res), knitr::asis_output(res) ) return(res) } knit_print.data.frame <- function(x, options, ...) { if (! isTRUE(getOption("huxtable.knit_print_df", FALSE))) { NextMethod() } else { ht <- as_huxtable(x) df_theme <- getOption("huxtable.knit_print_df_theme", theme_plain) assert_that(is.function(df_theme)) ht <- df_theme(ht) knitr::knit_print(ht) } } guess_knitr_output_format <- function() { assert_package("guess_knitr_output_format", "knitr") assert_package("guess_knitr_output_format", "rmarkdown") of <- knitr::opts_knit$get("out.format") if (is.null(of) || of == "markdown") { of <- knitr::opts_knit$get("rmarkdown.pandoc.to") if (is.null(of)) { knit_in <- knitr::current_input() if (is.null(knit_in)) return("") of <- rmarkdown::default_output_format(knit_in) of <- of$name } } if (of == "tufte_handout") of <- "latex" if (of == "tufte_html") of <- "html" of <- sub("_.*", "", of) if (of == "html4") of <- "html" if (of %in% c("ioslides", "revealjs", "slidy")) of <- "html" if (of %in% c("beamer", "pdf")) of <- "latex" of } htmlPreserve <- function (x) { x <- paste(x, collapse = "\r\n") if (nzchar(x)) sprintf("<!--html_preserve-->%s<!--/html_preserve-->", x) else x }
`km1Nugget.init` <- function(model) { n <- nrow(model@X) parinit <- model@parinit trend.estimate <- lm(model@y~model@F-1) random.part.estimate <- trend.estimate$residuals sigma.total.standard <- sd(random.part.estimate) x.dist <- dist(model@X) y.dist <- dist(random.part.estimate) alpha <- max(min(0.5, 100/(n*(n-1))), 10/100) I <- (x.dist >= quantile(x.dist, alpha)) sigma.total.vario <- sqrt(1/2*mean(y.dist[I]^2)) sigma.total <- max(sigma.total.standard, sigma.total.vario) sq.nugget.init <- sqrt(model@covariance@nugget) if (identical(sq.nugget.init, numeric(0))) sq.nugget.init <- -1 if ((sq.nugget.init>=0) & (sq.nugget.init<=sigma.total)) { sigma.init <- sqrt(sigma.total^2 - sq.nugget.init^2)} else { alpha <- max(min(0.5, 20/(n*(n-1))), 1/100) I <- (x.dist <= quantile(x.dist, alpha)) mreg <- lm(y.dist[I]^2 ~ I(x.dist[I]^2)) nugget.init <- mreg$coef[1] if (nugget.init<=0) { sq.nugget.init <- sqrt(1/10)*sigma.total sigma.init <- sqrt(9/10)*sigma.total} else if (nugget.init>=sigma.total^2) { sq.nugget.init <- sqrt(9/10)*sigma.total sigma.init <- sqrt(1/10)*sigma.total} else { sq.nugget.init <- sqrt(nugget.init) sigma.init <- sqrt(sigma.total^2 - sq.nugget.init^2) } } lower <- model@lower upper <- model@upper ninit <- model@control$pop.size param.n <- model@[email protected] if (length(parinit)>0) { matrixinit <- matrix(parinit, nrow = param.n, ncol = ninit) } else { if (existsMethod("paramSample", signature = class(model@covariance))) { matrixinit <- paramSample(model@covariance, n=ninit, lower=lower, upper=upper, y=model@y) } else { matrixinit <- matrix(runif(ninit*param.n), nrow = param.n, ncol = ninit) matrixinit <- lower + matrixinit*(upper - lower) } } angle.init <- atan(sigma.init/sq.nugget.init) radius.init <- sigma.total radius.min <- 1/2*radius.init radius.max <- 3/2*radius.init angle.sim <- runif(n=ninit, min=1/2*angle.init, max=min(3/2*angle.init, pi/2)) radius.sim <- sqrt(2*runif(n=ninit, min=1/2*radius.min^2, max=1/2*radius.max^2)) sq.nugget.init.sim <- radius.sim*cos(angle.sim) sigma.init.sim <- radius.sim*sin(angle.sim) alphainit <- sigma.init.sim^2 / (sigma.init.sim^2 + sq.nugget.init.sim^2) matrixinit <- rbind(matrixinit, alphainit) fninit <- apply(matrixinit, 2, logLikFun, model) selection <- sort(fninit, decreasing = TRUE, index.return = TRUE)$ix selection <- selection[1:model@control$multistart] parinit <- matrixinit[, selection, drop = FALSE] lp <- nrow(parinit) covinit <- list() for (i in 1:model@control$multistart){ pari <- as.numeric(parinit[, i]) covinit[[i]] <- vect2covparam(model@covariance, pari[1:(lp-1)]) covinit[[i]]@nugget <- pari[lp] covinit[[i]]@sd2 <- pari[lp-1] } return(list(par = parinit, value = fninit[selection], cov = covinit, lower = c(lower, 0), upper = c(upper, model@control$upper.alpha))) }
kbSkew <- function(x) { x <- as.vector(x) orderX <- x[order(x)] - mean(x) revOrdrX <- x[order(x, decreasing = TRUE)] - mean(x) even <- (orderX + revOrdrX)/2 odd <- (orderX - revOrdrX)/2 combine <- c(even, odd) est_sigma <- sum(even^2)/sum(combine^2) return(est_sigma) } kbMvtSkew <- function(x) { x <- as.matrix(x) p <- dim(x)[2] perm <- function(v) { n <- length(v) if (n == 1) v else { X <- NULL for (i in 1:n) X <- rbind(X, cbind(v[i], perm(v[-i]))) X } } cardP <- factorial(p) permX <- perm(seq(p)) Delta_Hat <- rep(0, cardP) for (k in 1:cardP) { delta_hat <- rep(0, p) X = x[, permX[k, ]] meanX = apply(X, 2, mean) deMeanX = sweep(X, 2, meanX, FUN = "-") delta_hat[1] = kbSkew(X[, 1]) for (j in 1:(p-1)) { V = meanX[j+1] + cov(X[,(j+1)], X[,1:j]) %*% solve(cov(X[,1:j], X[,1:j])) %*% t(deMeanX[,1:j]) Z = X[,j+1] - as.vector(V) delta_hat[j+1] = kbSkew(Z) } Delta_Hat[k] = sum(delta_hat) } return(mean(Delta_Hat)) } pcKbSkew <- function(x, cor = FALSE) { x_pca <- princomp(x, cor = cor) pcSkew <- apply(x_pca$scores, 2, kbSkew) return(sum(pcSkew)) } MardiaMvtSkew <- function(x) { x <- as.matrix(x) n <- dim(x)[1] sample.mean <- apply(x, 2, mean) cx <- sweep(x, 2, sample.mean, FUN = "-") S_Cov <- cov(x)*(n - 1)/n inv_S <- solve(S_Cov) quad_mat <- cx %*% inv_S %*% t(cx) quad_cube <- quad_mat^3 beta_hat <- 1/(n^2) * sum(quad_cube) return(beta_hat) } PearsonSkew <- function(x) { if (!is.vector(x, mode = "numeric")) { stop(sQuote("x"), " must be a vector of numeric values") } gamma <- mean((x - mean(x))^3)/(sd(x)^3) return(gamma) } BowleySkew <- function(x) { if (!is.vector(x, mode = "numeric")) { stop(sQuote("x"), " must be a vector of numeric values") } Q <- as.vector(quantile(x, prob = c(0.25, 0.50, 0.75))) gamma = (Q[3] + Q[1] - 2 * Q[2]) / (Q[3] - Q[1]) return(gamma) }
write_log <- function(con, tablename, source){ log <- data.frame(table_name = tablename, timestamp = as.character(lubridate::now()), source = source, stringsAsFactors = F) if (dbExistsTable(con,"log")) { log <- dbReadTable(con,"log") %>% dplyr::filter(table_name != tablename) %>% dplyr::bind_rows(log) } dbWriteTable(con,"log",log, overwrite = TRUE) } update_table <- function(con, table, source, tablename) { if (missing(tablename)) { tablename <- deparse(substitute(table)) } dbBegin(con) rexpr <- try({ dbWriteTable(con, tablename, as.data.frame(table), overwrite = TRUE) write_log(con, tablename, source) }) if (inherits(rexpr, "try-error")) { dbRollback(con) stop(rexpr) } else{ dbCommit(con) } } clean_database <- function(con) { invisible( lapply(dbListTables(con),function(x){ message("DROP TABLE ",x,"\n") dbRemoveTable(con,x)}) ) }
.createModel_MC <- function(tree){ comment <- "Matching competition model\n Implemented as in Drury et al. Systematic Biology." paramsNames <- c("m0","logsigma","S") params0 <- c(0,log(1),0) periodizing <- periodizeOneTree(tree) eventEndOfPeriods <- endOfPeriods(periodizing, tree) initialCondition <- function(params) return( list(mean=c(params[1]), var=matrix(c(0))) ) aAGamma <- function(i, params){ vectorU <- getLivingLineages(i, eventEndOfPeriods) vectorA <- function(t) return(0*vectorU) matrixGamma <- function(t) return(exp(params[2])*diag(vectorU)) matrixA <- params[3]*diag(vectorU) - (params[3]/sum(vectorU)) * outer(vectorU,vectorU) return(list(a=vectorA, A=matrixA, Gamma=matrixGamma)) } constraints <- function(params) return(params[3]<=0) model <- new(Class="PhenotypicADiag", name="MC", period=periodizing$periods, aAGamma=aAGamma, numbersCopy=eventEndOfPeriods$copy, numbersPaste=eventEndOfPeriods$paste, initialCondition=initialCondition, paramsNames=paramsNames, constraints=constraints, params0=params0, tipLabels=eventEndOfPeriods$labeling, comment=comment) return(model) } getMatrixCoalescenceJ <- function(tree, periods){ matrixCoalescenceTimes <- findMRCA(tree, type="height") n <- length(matrixCoalescenceTimes[,1]) matrixCoalescenceJ <- diag(0, n) for(k in 1:n){ for(l in 1:n){ matrixCoalescenceJ[k,l] <- which(periods == matrixCoalescenceTimes[k,l]) } } return(matrixCoalescenceJ) } isATip <- function(tree, branch_number){ return(!(tree$edge[branch_number,2] %in% tree$edge[,1])) } periodizeOneTree <- function(tree){ nodeheight <- nodeHeights(tree) startingTimes <- nodeheight[,1] endTimes <- nodeheight[,2] all_time_events <- sort(c(startingTimes, endTimes)) periods <- unique(all_time_events) return(list(periods=periods, startingTimes=startingTimes, endTimes=endTimes)) } endOfPeriods <- function(periodizing, tree){ nBranch <- length(periodizing$startingTimes) nPeriods <- length(periodizing$periods) numbersCopy <- rep(0, times=nPeriods) numbersPaste <- rep(0, times=nPeriods) numbersLineages <- rep(0, times=nPeriods) numbersLivingLineages <- rep(0, times=nPeriods) labelingLineages <- rep(0, times=nBranch) initialBranches <- periodizing$startingTimes[periodizing$startingTimes==0] if(length(initialBranches) == 1){ labelingLineages[1] <- 1 n <- 1 }else{ labelingLineages[periodizing$startingTimes==0] <- c(1,2) n <- 2 } numbersLineages[1] <- n numbersLivingLineages[1] <- n numbersCopy[1] <- 1 numbersPaste[1] <- 2 for(i in 2:nPeriods){ tau_i <- periodizing$periods[i] newBranches <- which(tau_i == periodizing$startingTimes) if(length(newBranches) == 2){ n <- n+1 labelingLineages[newBranches[1]] <- labelingLineages[newBranches[1]-1] labelingLineages[newBranches[2]] <- n numbersCopy[i] <- labelingLineages[newBranches[1]-1] numbersPaste[i] <- n numbersLivingLineages[i] <- numbersLivingLineages[i-1]+1 }else{ deadBranches <- which(tau_i == periodizing$endTimes) numbersCopy[i] <- labelingLineages[ deadBranches[1] ] numbersPaste[i] <- 0 numbersLivingLineages[i] <- numbersLivingLineages[i-1]-1 } numbersLineages[i] <- n } permutationLabels <- labelingLineages[!(periodizing$endTimes %in% periodizing$startingTimes)] labeling <- tree$tip.label[order(permutationLabels)] return(list(copy=numbersCopy, paste=numbersPaste, nLineages=numbersLineages, labeling=labeling, nLivingLineages=numbersLivingLineages)) } getLivingLineages <- function(i, eventEndOfPeriods){ livingLineages <- rep(1, times=eventEndOfPeriods$nLineages[i]) deads <- eventEndOfPeriods$copy[1:i][eventEndOfPeriods$paste[1:i] == 0] livingLineages[deads] <- 0 return(livingLineages) }
isStrictlyPositiveIntegerOrNaOrNanScalar <- function(argument, default = NULL, stopIfNot = FALSE, message = NULL, argumentName = NULL) { checkarg(argument, "N", default = default, stopIfNot = stopIfNot, nullAllowed = FALSE, n = 1, zeroAllowed = FALSE, negativeAllowed = FALSE, positiveAllowed = TRUE, nonIntegerAllowed = FALSE, naAllowed = TRUE, nanAllowed = TRUE, infAllowed = FALSE, message = message, argumentName = argumentName) }
fbag <- function (data, factor, xlim = NULL, ylim = range(data$y, na.rm = TRUE), xlab, ylab, plotlegend, legendpos, ncol, projmethod, ...) { y <- t(data$y) x <- data$x if (projmethod == "PCAproj") { rob <- PCAproj(y, k = 2, center = median)$score } if (projmethod == "rapca") { rob <- fdpca(x, data$y)$coeff[, 2:3] rownames(rob) = 1:(dim(data$y)[2]) colnames(rob) = c("Comp.1", "Comp.2") } pcbag <- compute.bagplot(rob[, 1], rob[, 2], factor = factor) if (pcbag$is.one.dim == TRUE) { stop("Bivariate principal component scores lie in one direction.") } else { outlier <- as.numeric(rownames(pcbag$pxy.outlier)) inside <- as.numeric(rownames(pcbag$pxy.bag)) insidecurve <- y[inside, ] maximum1 <- apply(insidecurve, 2, max, na.rm = TRUE) minimum1 <- apply(insidecurve, 2, min, na.rm = TRUE) out <- as.numeric(rownames(pcbag$pxy.outer)) outcurve <- y[out, ] maximum2 <- apply(outcurve, 2, max, na.rm = TRUE) minimum2 <- apply(outcurve, 2, min, na.rm = TRUE) p = dim(y)[2] low = up = matrix(, p, 1) for (i in 1:p) { up[i, ] = quantile(outcurve[, i], probs = 0.75) low[i, ] = quantile(outcurve[, i], probs = 0.25) } IQR = up - low dist <- (rob[, 1] - pcbag$center[1])^2 + (rob[, 2] - pcbag$center[2])^2 center <- order(dist)[1] centercurve <- y[center, ] notchlow <- centercurve - 1.57 * (IQR)/sqrt(nrow(y)) notchupper <- centercurve + 1.57 * (IQR)/sqrt(nrow(y)) n <- length(outlier) plot(c(x, rev(x)), c(maximum2, rev(minimum2)), type = "n", main = "", ylim = ylim, xlab = xlab, ylab = ylab) polygon(c(x, rev(x)), c(maximum2, rev(minimum2)), border = FALSE, col = "light gray", ylim = ylim, ...) polygon(c(x, rev(x)), c(maximum1, rev(minimum1)), border = FALSE, col = "dark gray", ...) lines(fts(x, notchlow), col = "blue", lty = 2, ...) lines(fts(x, notchupper), col = "blue", lty = 2, ...) lines(fts(x, centercurve), col = "black", ...) if (n > 0) { if(n == 1) { outliercurve <- as.matrix(y[outlier, ]) lines(fts(x, outliercurve), col = rainbow(n), ...) if (plotlegend == TRUE) { legend(legendpos, c(colnames(data$y)[outlier]), col = rainbow(n), lty = 1, ncol = ncol, ...) } } if(n > 1) { outliercurve <- y[outlier, ] lines(fts(x, t(outliercurve)), col = rainbow(n), ...) if (plotlegend == TRUE) { legend(legendpos, c(colnames(data$y)[outlier]), col = rainbow(n), lty = 1, ncol = ncol, ...) } } return(outlier) } } }
wtd.stat.amb <- function(data, w){ y <- cos(data) + 1i * sin(data) wtd_ext_mean <- colMeans( y * w ) ymean <- rbind( Re(wtd_ext_mean), Im(wtd_ext_mean)) y1bar <- ymean[,1] y2bar <- ymean[,2] S12 <- colMeans( cbind(Im(y[,1]) * Im(y[,2]) * w, -Re(y[,1]) * Im(y[,2]) * w, -Im(y[,1]) * Re(y[,2]) * w, Re(y[,1]) * Re(y[,2]) * w) ) S12 <- matrix(S12, nrow = 2) return( list(y1bar = y1bar, y2bar = y2bar, S12 = S12)) }