code
stringlengths
1
13.8M
breathtest_data = function(patient_id, name = NA, first_name = NA, initials = NA, dob = NA, birth_year = NA, gender = NA, study = NA, pat_study_id = NA, file_name, device = "generic", substrate, record_date, start_time = record_date, end_time = record_date, test_no , dose = 100, height = 180, weight = 75, t50 = NA, gec = NA, tlag = NA, data = data) { if (!inherits(data, "data.frame")) stop("Function breathtest_data: data must be a data frame") if (nrow(data) < 5) stop("Function breathtest_data: data should have a least 5 rows") nd = names(data) if (!(nd[1] %in% c("time", "minute"))) stop("Function breathtest_data: first data column must be <<time>> or <<minute>>. It is:<< ", nd[1], ">>") names(data)[1] = "minute" if (!sum(nd[-1] %in% c("pdr", "dob")) > 0) stop("function breathtest_data: data should have either dob or pdr or both") substrate = str_trim(substrate) if (substrate == "") { substrate = "octanoate" } else { substrates = c("octanoate", "acetate") substrate_pattern = c("o[ck]t", "acet") substrate = substrates[str_detect(tolower(substrate), substrate_pattern)][1] } if (length(substrate) == 0) substrate = "octanoate" if (!is.na(gender) & !match(gender, c("m", "f"))) stop("function breathtest_data: gender should be 'm' or 'f'") if (weight <= 30 || height < 1) { height = 180 weight = 75 } if (!"pdr" %in% nd) data$pdr = dob_to_pdr(data$dob, weight, height, mw = substrate) data$minute = as.double(data$minute) structure( list( patient_id = patient_id, name = name, first_name = first_name, initials = initials, dob = dob, birth_year = birth_year, gender = gender, study = study, pat_study_id = pat_study_id, file_name = file_name, device = device, substrate = substrate, record_date = as.character(record_date), start_time = as.character(start_time), end_time = as.character(end_time), test_no = as.integer(test_no), dose = 100, height = height, weight = weight, t50 = t50, gec = gec, tlag = tlag, data = data ), class = "breathtest_data" ) }
recombination_npoint <- function(X, M, recpars = list(N = NULL)) { assertthat::assert_that(is.matrix(X), is.numeric(X), is.matrix(M), is.numeric(M), assertthat::are_equal(dim(X), dim(M)), is.null(recpars$N) || (assertthat::is.count(recpars$N) && is_within(recpars$N, 0, ncol(X) - 1))) if (is.null(recpars$N) || recpars$N == 0) { recpars$N <- sample.int(n = ncol(X) - 1, size = nrow(X), replace = TRUE) } else { recpars$N <- rep(x = recpars$N, times = nrow(X)) } cutlist <- lapply(recpars$N, FUN = function(x,n){ sort(sample.int(n = n, size = x, replace = FALSE)) }, n = ncol(X) - 1) makemask <- function(cuts, x){ m <- matrix(1:ncol(x), nrow = length(cuts), ncol = ncol(x), byrow = TRUE) m <- colSums(m > matrix(cuts, nrow = nrow(m), ncol = ncol(m), byrow = FALSE)) return(m %% 2 == 0) } R <- t(vapply(X = cutlist, FUN = makemask, FUN.VALUE = logical(ncol(X)), x = X)) if (stats::runif(1) < 0.5){ R <- !R } return(R * M + (!R) * X) }
get_reddit_image <- function(subreddit, id, ...){ if(inherits(id, 'imgur_image') || inherits(id, 'imgur_gallery_image')) id <- id$id out <- imgurGET(paste0('gallery/r/', subreddit, '/', id), ...) structure(out, class = 'imgur_gallery_image') }
getSymbolInfo = function(token = '', live = FALSE, figi='', verbose = FALSE) { headers = add_headers("accept" = "application/json","Authorization"=paste("Bearer",token)) raw_data = GET(paste0('https://api-invest.tinkoff.ru/openapi/',ifelse(live == FALSE,'sandbox/',''),'market/search/by-figi?figi=',figi), headers) if(raw_data$status_code==200) { data_tmp <- content(raw_data, as = "parsed") data_result = data.table(t(data_tmp$payload)) return(data_result) } if(raw_data$status_code!=200) if(verbose) return(content(raw_data, as = "parsed")) }
charClass <- function(x, class) .Call(C_charClass, x, class)
context("weib_percentile") test_that("weib_percentile calculates a value that seems probable",{ x <- rnorm(n = 10, mean = 150, sd = 10) expect_equal(weib_percentile(x, percentile = 0.5, iterations = 20), mean(x), tolerance = 7) })
context("ClickhouseResult") library(DBI, warn.conflicts=F) library(dplyr, warn.conflicts=F) source("utils.R")
massShift <- function(seq, label = "none", aaShift = NULL, monoisotopic = TRUE){ label <- tolower(label) if(!(label %in% c("none", "silac_13c", "silac_13c15n", "15n"))){ stop("Given label type unknown. Please use one of 'none', '15N', 'Silac_13C15N', or 'Silac_13C' (case-insensitive).") } if(!is.null(aaShift) & is.null(names(aaShift))){ stop("'aaShift' must be given as a named vector, e.g. 'aaShift = c(K = 6.020129)'.") } allowed <- c(aaList(), "Cterm", "Nterm") if(!is.null(aaShift) & !all(names(aaShift) %in% allowed)){ stop(paste("Unknown amino acids defined in 'aaShift'. Only the following names are allowed:", paste(allowed, collapse = ", "))) } if (label == "silac_13c"){ aaShift <- c("K" = 6.020129 - 0.064229*!monoisotopic, "R" = 6.020129- 0.064229*!monoisotopic) } else if(label == "silac_13c15n"){ aaShift <- c("K" = 8.014199 -0.071499*!monoisotopic, "R" = 10.008269-0.078669*!monoisotopic) } else if(label == "15n"){ aaShift <- c( A = 1, R = 4, N = 2, D = 1, C = 1, E = 1, Q = 2, G = 1, H = 3, I = 1, L = 1, K = 2, M = 1, F = 1, P = 1, S = 1, T = 1, W = 2, Y = 1, V = 1 ) * 0.997035 -0.003635*!monoisotopic } seq <- aaCheck(seq) unlist( lapply(seq, function(x){ sum(aaShift[c(x)], aaShift["Nterm"], aaShift["Cterm"], na.rm = TRUE) })) }
autoDataprep <- function(data, target = NULL, missimpute = "default", auto_mar = FALSE, mar_object = NULL, dummyvar = TRUE, char_var_limit = 12, aucv = 0.02, corr = 0.99, outlier_flag = FALSE, interaction_var = FALSE, frequent_var = FALSE, uid = NULL, onlykeep = NULL, drop = NULL, verbose = FALSE){ if (!is.data.frame(data)) stop ("Input data is not a data frame" ) if (is.null(target)) stop ("target variable is missing" ) cl <- match.call() data <- clean_data(data) data[, paste0(target) := ifelse(is.na( get(target)), 0, get(target))] setDF(data) datstrain <- ExpData(data, type = 1) datstrain1 <- ExpData(data, type = 2) if (!is.null( onlykeep)) data <- data[ unique( c( onlykeep, uid))] mar_variable <- character() if (!is.null(mar_object) & isFALSE(auto_mar)) { stop ( "IF mar_object is given then auto_mar option should be TRUE" ) } if (auto_mar == TRUE) { if (!is.null(mar_object)){ if (class(mar_object) != "autoMAR") stop ("mar object should be autoMAR output") mar_variable <- mar_object$auc_features$Variable } else { xx <- subset(data, select = setdiff(names(data), c(uid, drop))) amrobj <- autoMAR(xx, aucv = 0.9, mar_method = "glm") mar_variable <- amrobj$auc_features$Variable } } names(data) <- trimws( gsub("[][! all_names <- names(data) data <- data[, !duplicated(colnames(data))] if (!is.null(drop)) { data <- subset(data, select = setdiff(all_names, drop)) } num_var <- unique(names(data)[sapply(data, is.numeric)], names(data)[sapply(data, is.integer)]) char_var <- names(data)[sapply(data, is.character)] factor_var <- names(data)[sapply(data, is.factor)] logical_var <- names(data)[sapply(data, is.logical)] date_var <- names(data)[unlist(lapply(data, function(x) class(x) == "Date" | class(x) == "POSIXct" ))] date_flag <- unique_var <- character() if (!is.null(uid)){ unique_var <- unique(c(unique_var, uid)) } if (length(date_var) > 0){ invisible(lapply(date_var, function(x) set(data, which(is.na(data[[x]])), j = x, value = 0))) date_flag <- date_var[sapply(data[date_var], function(x) length(unique(x)) > 1 & length(unique(x)) <= 5)] if (length(date_flag) > 0){ data[date_flag] <- lapply(data[date_flag], function(x) as.character(x)) } } ch_fact_var <- c(factor_var, char_var, logical_var) factor_flag <- num_var_cnt <- num_flag <- character() if (length(ch_fact_var) > 0) { factor_flag <- ch_fact_var[sapply(data[ch_fact_var], function(x) length(unique(x)) %in% c(2 : char_var_limit))] } if (length(num_var) > 0){ num_var_cnt <- sapply(data[num_var], function(x){ x[is.na(x)] <- 0 length(unique(x)) }) num_flag <- num_var[num_var_cnt == 2 | num_var_cnt == 3] num_var <- num_var[num_var_cnt > 3] num_var <- setdiff(num_var, unique_var) num_flag <- setdiff(num_flag, c(unique_var, target)) } final_dum_var <- setdiff(unique(c(factor_flag, date_flag, num_flag)), c(unique_var, target)) mar_list_var <- unique(c(setdiff(c(final_dum_var, num_var, target, date_var), unique_var), mar_variable)) XX <- data[mar_list_var] if (ncol(XX) < 2) stop (cat(" Data preparation for ML model is incomplete due to less number of features", "\n", "Please check the input data / function parameters...")) invisible(lapply(names(XX), function(x) set(XX, which(is.infinite(XX[[x]])), j = x, value = NA))) invisible(lapply(names(XX), function(x) set(XX, which(is.nan(XX[[x]])), j = x, value = NA))) if (length(mar_variable) >= 1){ if (verbose == TRUE) cat("autoDataprep < MAR variable computation.... >", "\n") setDT(XX) XX[, (paste0("Y_", mar_variable)) := lapply(mar_variable, function(x) ifelse(is.na(get(x)), 1, 0))] setDF(XX) } if (anyNA(XX)){ if (verbose == TRUE) cat("autoDataprep < missing imputation.... >", "\n") mis_imp_df <- "default" mis_chk <- mis_imp_df[mis_imp_df %in% missimpute] if (length(mis_chk) > 0) { imp <- impute(XX, classes = list(factor = imputeMode(), integer = imputeMean(), numeric = imputeMedian(), character = imputeConstant(const = 99999))) } else { lenimp <- length(missimpute) if (lenimp == 1) imp <- impute(XX, classes = missimpute$classes) if (lenimp == 2) imp <- impute(XX, target = target, classes = missimpute$classes) } XX <- imp$data } out_summary <- date_summary <- out_summary1 <- dumvarnam <- NULL if (outlier_flag == TRUE) { if (verbose == TRUE) cat("autoDataprep < Outlier treatment based on Tukey method....>", "\n") out_summary <- generateFeature(XX, num_var, type = "Outlier", method = "flag") out_summary1 <- generateFeature(XX, num_var, type = "Outlier", method = "caping") if (ncol(out_summary) > 0) XX <- cbind(XX, out_summary) if (ncol(out_summary1) > 0) XX <- cbind(XX, out_summary1) } out_flag_var <- unique(c(names(out_summary), names(out_summary1))) date_trans_var <- inter_variables <- freq_variables <- freq_vklist <- character() if (length(date_var) > 0) { if (verbose == TRUE) cat("autoDataprep < Date transformer....>", "\n") date_summary <- generateFeature(XX, date_var, type = "date") date_trans_var <- names(date_summary) if (length(date_trans_var) > 0) XX <- cbind(XX, date_summary) rm(date_summary) } if (frequent_var == TRUE) { freq_vklist <- setdiff(factor_flag, c(target, num_flag)) if (length(freq_vklist) > 0){ if (verbose == TRUE) cat("autoDataprep < Frequent transformer....>", "\n") if (length(freq_vklist) > 10) freq_vklist <- freq_vklist[sample(1:length(freq_vklist), 10)] freq_var_data <- generateFeature(XX, varlist = freq_vklist, type = "Frequent", method = "Frequency") if (ncol(freq_var_data) > 0) XX <- cbind(XX, freq_var_data) freq_variables <- names(freq_var_data) } } if (interaction_var == TRUE) { if (length(num_var) > 1){ if (verbose == TRUE) cat("autoDataprep < Interactions transformer....>", "\n") interaction_var <- num_var if (length(num_var) > 10) interaction_var <- num_var[sample(1 : length(num_var), 10)] inter_var_data <- generateFeature(XX, varlist = interaction_var, type = "Interaction", method = "multiply") inter_variables <- names(inter_var_data) if (length(inter_variables) > 0 ) XX <- cbind(XX, inter_var_data) } } varbucket <- list("A" = factor_flag, "B" = date_flag, "C" = num_flag, "D" = num_var, "E" = final_dum_var, "F" = mar_variable, "G" = date_var, "H" = interaction_var, "I" = freq_vklist) if (dummyvar == TRUE){ if (verbose == TRUE) cat("autoDataprep < Categorical variable - one hot encoding....>", "\n") final_dum_var <- setdiff(final_dum_var, c(target, num_flag)) if (length(final_dum_var) > 0){ sparseMtx <- generateFeature(XX, varlist = final_dum_var, type = "Dummy", method = NULL) XX <- cbind(XX, sparseMtx) dumvarnam <- c(colnames(sparseMtx), num_flag) } } all_variable <- setdiff(unique(c(num_var, dumvarnam, out_flag_var, freq_variables, inter_variables, date_trans_var)), c(unique_var, target)) drop_var <- setdiff(all_names, c(unique_var, num_var, factor_flag, final_dum_var, date_var)) if (length(mar_variable) >= 1) all_variable <- setdiff(unique(c(num_var, dumvarnam, freq_variables, inter_variables, date_trans_var, out_flag_var, paste0("Y_", mar_variable))), c(unique_var, target)) if (verbose == TRUE) cat("autoDataprep < variable reduction - zero variance method.... >", "\n") master_variable <- all_variable varSel_auc <- corNms <- zeroNms <- character() mynms <- c(out_flag_var, dumvarnam, date_trans_var) if (length(mynms) > 0) { configureMlr(show.info = FALSE) XXvar <- removeConstantFeatures(XX[mynms]) zeroNms <- setdiff(mynms, names(XXvar)) master_variable <- setdiff(master_variable, zeroNms) } if (verbose == TRUE) cat("autoDataprep < variable selection - pearson correlation method.... >", "\n") myDF <- NULL mynms <- c(out_flag_var, inter_variables, num_var, date_trans_var) mynms <- setdiff(mynms, zeroNms) if (length(mynms) > 1){ suppressWarnings(myDF <- cor (XX[mynms], use = "pairwise.complete.obs")) myDF <- as.matrix (myDF) myDF <- ifelse (is.na(myDF), 0, myDF) myCor <- findCorrelation (myDF, cutoff = corr) corNms <- mynms[myCor] } master_variable <- setdiff(master_variable, corNms) if (verbose == TRUE) cat("autoDataprep < variable selection - AUC method.... >", "\n") targetv <- XX[target][, 1] targetv <- ifelse(is.na(targetv), 0, targetv) varSel_summary <- calc_auc_df(XX, targetv, master_variable, impvalue = aucv) varSel_auc <- varSel_summary[[1]] varSel_auc1 <- varSel_summary[[2]] low_auc_var <- setdiff(master_variable, varSel_auc) master_variable <- varSel_auc mydata <- cbind(data[c(unique_var, target)], XX) mydata <- mydata[, !duplicated(colnames(mydata))] cl[[1]] <- as.name("autoDataprep") fit <- list(call = cl, datasummary = list(type1 = datstrain, type2 = datstrain1), master_data = mydata, raw_list = list("Num_Correlation" = myDF, "AUC_value" = varSel_auc1), var_list = list("All_columns" = all_names, "Numeric_col" = num_var, "Character_col" = char_var, "Factor_col" = factor_var, "Logical_col" = logical_var, "Date_col" = date_var, "Unique_col" = unique_var, "MAR_col" = mar_variable, "Dummy_col" = dumvarnam, "Dropped_col" = drop_var, "Low_auc_col" = low_auc_var, "first_set_var" = varbucket, "final_var_list" = master_variable, "cor_var" = corNms, "auc_var" = varSel_auc, "overall_variable" = all_variable, "zerovariance" = zeroNms, "outlier_summary" = out_flag_var, "mydata_var" = unique(c(unique_var, target, master_variable)))) attr(fit, "class") <- "autoDataprep" invisible(gc(verbose = FALSE)) return(fit) }
suppressPackageStartupMessages({ library(dsos) library(testthat) }) set.seed(123456) n <- 1e4 alpha <- 0.05 test_that("Inliers", { x1 <- data.frame(x = rnorm(n, sd = 1)) x2 <- data.frame(x = rnorm(n, sd = 1 / 2)) expect_lt(cp_ss(x1, x2)$p_value, alpha) }) test_that("Outliers", { x1 <- data.frame(x = rnorm(n, sd = 1)) x2 <- data.frame(x = rnorm(n, sd = 3 / 2)) expect_lt(cp_ss(x1, x2)$p_value, alpha) }) test_that("Same distribution", { x1 <- data.frame(x = rnorm(n)) x2 <- data.frame(x = rnorm(n)) expect_gt(cp_ss(x1, x2)$p_value, alpha) })
print.select <- function(x, ...){ if(!inherits(x, "select")) { stop("Input should be a 'select' object, as obtained from 'atom.select()'") } cat("\n Call: ", paste(deparse(x$call), sep = "\n", collapse = "\n"), "\n", sep = "") cat( paste0("\n Atom Indices "\n XYZ Indices if( length(x$atom) != (length(x$xyz)/3) ) warning("Atom and XYZ Indices Miss-Match") i <- paste(attributes(x)$names, collapse = ", ") cat(strwrap(paste(" + attr:", i), width = 45, exdent = 8), sep = "\n") }
context("Testing AHR functionality") test_that("Test AHR function", { y <- c(rep(1, 10), rep(0, 10)) phat <- seq(1, 0, length = length(y)) Metric <- AHR(y, phat) expect_equal(Metric, 1) })
deviance.bess=function(object,...){ n=object$nsample if(object$family!="bess_gaussian"){ deviance=object$deviance nulldeviance=object$nulldeviance out=c(nulldeviance, deviance) }else{ deviance=n*log(object$mse) nulldeviance=n*log(object$nullmse) out=c(nulldeviance, deviance) } names(out)=c('nulldeviance',colnames(object$beta)) return(out) } deviance.bess.one=function(object,...) { n=object$nsample if(object$family!="bess_gaussian"){ deviance=object$deviance nulldeviance=object$nulldeviance out=c(nulldeviance, deviance) }else{ deviance=n*log(object$mse) nulldeviance=n*log(object$nullmse) out=c(nulldeviance, deviance) } names(out)=c('nulldeviance','deviance') return(out) }
timestamp <- Sys.time() library(caret) library(plyr) library(recipes) library(dplyr) model <- "GFS.GCCL" set.seed(2) training <- twoClassSim(30, linearVars = 2) testing <- twoClassSim(30, linearVars = 2) trainX <- training[, -ncol(training)] trainY <- training$Class rec_cls <- recipe(Class ~ ., data = training) %>% step_center(all_predictors()) %>% step_scale(all_predictors()) cctrl1 <- trainControl(method = "cv", number = 3, returnResamp = "all") cctrl2 <- trainControl(method = "LOOCV") cctrl3 <- trainControl(method = "none") cctrlR <- trainControl(method = "cv", number = 3, returnResamp = "all", search = "random") set.seed(849) test_class_cv_model <- train(trainX, trainY, method = "GFS.GCCL", trControl = cctrl1, tuneLength = 2, preProc = c("center", "scale")) set.seed(849) test_class_cv_form <- train(Class ~ ., data = training, method = "GFS.GCCL", trControl = cctrl1, tuneLength = 2, preProc = c("center", "scale")) test_class_pred <- predict(test_class_cv_model, testing[, -ncol(testing)]) test_class_pred_form <- predict(test_class_cv_form, testing[, -ncol(testing)]) set.seed(849) test_class_rand <- train(trainX, trainY, method = "GFS.GCCL", trControl = cctrlR, tuneLength = 4) set.seed(849) test_class_loo_model <- train(trainX, trainY, method = "GFS.GCCL", trControl = cctrl2, tuneLength = 2, preProc = c("center", "scale")) set.seed(849) test_class_none_model <- train(trainX, trainY, method = "GFS.GCCL", trControl = cctrl3, tuneGrid = test_class_cv_model$bestTune, preProc = c("center", "scale")) test_class_none_pred <- predict(test_class_none_model, testing[, -ncol(testing)]) set.seed(849) test_class_rec <- train(x = rec_cls, data = training, method = "GFS.GCCL", tuneLength = 2, trControl = cctrl1) if( !isTRUE( all.equal(test_class_cv_model$results, test_class_rec$results)) ) stop("CV weights not giving the same results") test_class_imp_rec <- varImp(test_class_rec) test_class_pred_rec <- predict(test_class_rec, testing[, -ncol(testing)]) test_levels <- levels(test_class_cv_model) if(!all(levels(trainY) %in% test_levels)) cat("wrong levels") sInfo <- sessionInfo() timestamp_end <- Sys.time() tests <- grep("test_", ls(), fixed = TRUE, value = TRUE) save(list = c(tests, "sInfo", "timestamp", "timestamp_end"), file = file.path(getwd(), paste(model, ".RData", sep = ""))) if(!interactive()) q("no")
vanWaerdenTest <- function(x, ...) UseMethod("vanWaerdenTest") vanWaerdenTest.default <- function(x, g, ...) { if (is.list(x)) { if (length(x) < 2L) stop("'x' must be a list with at least 2 elements") DNAME <- deparse(substitute(x)) x <- lapply(x, function(u) u <- u[complete.cases(u)]) k <- length(x) l <- sapply(x, "length") if (any(l == 0)) stop("all groups must contain data") g <- factor(rep(1 : k, l)) x <- unlist(x) } else { if (length(x) != length(g)) stop("'x' and 'g' must have the same length") DNAME <- paste(deparse(substitute(x)), "and", deparse(substitute(g))) OK <- complete.cases(x, g) x <- x[OK] g <- g[OK] if (!all(is.finite(g))) stop("all group levels must be finite") g <- factor(g) k <- nlevels(g) if (k < 2) stop("all observations are in the same group") } n <- length(x) if (n < 2) stop("not enough observations") r <- rank(x) zscores <- qnorm(r / (n+1)) AJ <- tapply(zscores, g, sum) NJ <- tapply(zscores, g, length) s2 <- sum(zscores^2) / (n - 1) STATISTIC <- (1 / s2) * sum(AJ^2 / NJ) PARAMETER <- k - 1 PVAL <- pchisq(STATISTIC, PARAMETER, lower.tail = FALSE) names(STATISTIC) <- "Van der Waerden chi-squared" names(PARAMETER) <- "df" RVAL <- list(statistic = STATISTIC, parameter = PARAMETER, p.value = PVAL, method = "Van der Waerden normal scores test", data.name = DNAME) class(RVAL) <- "htest" return(RVAL) } vanWaerdenTest.formula <- function(formula, data, subset, na.action, ...) { if(missing(formula) || (length(formula) != 3L)) stop("'formula' missing or incorrect") m <- match.call(expand.dots = FALSE) if(is.matrix(eval(m$data, parent.frame()))) m$data <- as.data.frame(data) m[[1L]] <- quote(stats::model.frame) mf <- eval(m, parent.frame()) if(length(mf) > 2L) stop("'formula' should be of the form response ~ group") DNAME <- paste(names(mf), collapse = " by ") names(mf) <- NULL y <- do.call("vanWaerdenTest", as.list(mf)) y$data.name <- DNAME y }
context("autowin function") test_that("AutoWinOutput has created an output", { data(Mass, envir = environment()) data(MassClimate, envir = environment()) single <- singlewin(xvar = list(Temp = MassClimate$Temp), cdate = MassClimate$Date, bdate = Mass$Date, baseline = lm(Mass ~ 1, data = Mass), range = c(1, 1), stat = "mean", func = "lin", type = "relative", cmissing = FALSE, cinterval = "day") test <- autowin(reference = single, xvar = list(Temp = MassClimate$Temp), cdate = MassClimate$Date, bdate = Mass$Date, baseline = lm(Mass ~ 1, data = Mass), range = c(2, 1), stat = "mean", func = "lin", type = "relative", cmissing = FALSE, cinterval = "day") furthest <- 2 closest <- 1 duration <- (furthest - closest) + 1 maxmodno <- (duration * (duration + 1))/2 expect_true(exists("test")) expect_equal(length(which(is.na(test))), 0) expect_true(ncol(test) >= 7) expect_equal(maxmodno, nrow(test)) expect_true(round(test$cor[2], 1) == 0.8) expect_true(test$BestWindowOpen[1] == 1 & test$BestWindowOpen[1] == 1) }) test_that("Spatial replication works with autowin", { data(Mass, envir = environment()) Mass$Plot <- c(rep(c("A", "B"), 23), "A") data(MassClimate, envir = environment()) MassClimate$Plot <- "A" MassClimate2 <- MassClimate MassClimate2$Plot <- "B" Clim <- rbind(MassClimate, MassClimate2) single <- singlewin(xvar = list(Temp = Clim$Temp), cdate = Clim$Date, bdate = Mass$Date, baseline = lm(Mass ~ 1, data = Mass), range = c(1, 1), stat = "mean", func = "lin", type = "relative", cmissing = FALSE, cinterval = "day", spatial = list(Mass$Plot, Clim$Plot)) test <- autowin(reference = single, xvar = list(Temp = Clim$Temp), cdate = Clim$Date, bdate = Mass$Date, baseline = lm(Mass ~ 1, data = Mass), range = c(2, 1), stat = "mean", func = "lin", type = "relative", cmissing = FALSE, cinterval = "day", spatial = list(Mass$Plot, Clim$Plot)) furthest <- 2 closest <- 1 duration <- (furthest - closest) + 1 maxmodno <- (duration * (duration + 1))/2 expect_true(exists("test")) expect_equal(length(which(is.na(test))), 0) expect_true(ncol(test) >= 7) expect_equal(maxmodno, nrow(test)) expect_true(round(test$cor[2], 1) == 0.8) expect_true(test$BestWindowOpen[1] == 1 & test$BestWindowOpen[1] == 1) })
load_claim_data<-function(GT.startDate = "2004-01-03", GT.endDate = "2016-12-31"){ icnsa=read.csv(system.file("extdata", "ICNSA.csv", package = "PRISM.forecast"), header=T) fmt <- "%Y-%m-%d" date.all = as.Date(icnsa[,1],fmt) claim.all = xts::xts(icnsa[,2],date.all) colnames(claim.all) <- "icnsa" startDate = '1980-01-05' fmt='%Y-%m-%d' startIdx = which(time(claim.all)==as.Date(startDate,fmt)) endIdx = which(time(claim.all)==as.Date(GT.startDate,fmt))-1 claim.earlyData=claim.all[startIdx:endIdx] startIdx=which(time(claim.all)==as.Date(GT.startDate,fmt)) endIdx=which(time(claim.all)==as.Date(GT.endDate,fmt)) claim.data=claim.all[startIdx:endIdx] data_all <- list() data_all$claim.earlyData <- claim.earlyData data_all$claim.all <- claim.all data_all$claim.data <- claim.data data_all }
summary.monthglm<-function(object, ...){ if (class(object)!="monthglm"){stop("Object must be of class 'monthglm'")} z<-qnorm(0.975) s<-summary(object$glm) type<-as.character(object$call$family)[1] out<-as.data.frame(matrix(data=NA,nrow=nrow(s$coef),ncol=5)) names(out)<-c('mean','lower','upper','zvalue','pvalue') row.names(out)<-row.names(s$coef) out$mean<-s$coef[,1] out$lower<-s$coef[,1]-(z*s$coef[,2]) out$upper<-s$coef[,1]+(z*s$coef[,2]) out$zvalue<-s$coef[,3] out$pvalue<-s$coef[,4] if (type=="poisson"|type=="binomial"){ out$mean<-exp(out$mean) out$lower<-exp(out$lower) out$upper<-exp(out$upper) } index<-grep("months",row.names(out),ignore.case=TRUE,value=FALSE) totable<-out[index,] effect<-'' if (type=="poisson"){effect='RR'} if (type=="binomial"){effect='OR'} ret<-list() ret$n=length(object$residuals) ret$month.ests=totable ret$month.effect=effect class(ret) <- "summary.monthglm" ret }
`mgee` <- function (formula = formula(data), id = id, data = parent.frame(), subset, na.action, R = NULL, b = NULL, tol = 0.001, maxiter = 25, family = gaussian, corstr = "independence", Mv = 1, silent = TRUE, contrasts = NULL, scale.fix = FALSE, scale.value = 1, v4.4compat = FALSE) { call <- match.call() call[[1]]<-as.name("gee") geeOutput<-eval(call) out<-geeUOmega(geeOutput) out }
options(prompt = "R> ", continue = "+ ", width = 70, useFancyQuotes = FALSE) library("ordinal") library("xtable") clm_args <- gsub("function ", "clm", deparse(args(clm))) cat(paste(clm_args[-length(clm_args)], "\n")) cc_args <- gsub("function ", "clm.control", deparse(args(clm.control))) cat(paste(cc_args[-length(cc_args)], "\n")) tab <- with(wine, table(temp:contact, rating)) mat <- cbind(rep(c("cold", "warm"), each = 2), rep(c("no", "yes"), 2), tab) colnames(mat) <- c("Temperature", "Contact", paste("~~", 1:5, sep = "")) xtab <- xtable(mat) print(xtab, only.contents=TRUE, include.rownames=FALSE, sanitize.text.function = function(x) x) library("ordinal") fm1 <- clm(rating ~ temp + contact, data=wine) summary(fm1) anova(fm1, type="III") fm2 <- clm(rating ~ temp, data=wine) anova(fm2, fm1) drop1(fm1, test="Chi") fm0 <- clm(rating ~ 1, data=wine) add1(fm0, scope = ~ temp + contact, test="Chi") confint(fm1) fm.nom <- clm(rating ~ temp, nominal = ~ contact, data=wine) summary(fm.nom) fm.nom$Theta anova(fm1, fm.nom) fm.nom2 <- clm(rating ~ temp + contact, nominal = ~ contact, data=wine) fm.nom2 nominal_test(fm1) fm.sca <- clm(rating ~ temp + contact, scale = ~ temp, data=wine) summary(fm.sca) scale_test(fm1) fm.equi <- clm(rating ~ temp + contact, data=wine, threshold="equidistant") summary(fm.equi) drop(fm.equi$tJac %*% coef(fm.equi)[c("threshold.1", "spacing")]) mean(diff(coef(fm1)[1:4])) anova(fm1, fm.equi) pr1 <- profile(fm1, alpha=1e-4) plot(pr1) plot(pr1, which.par=1) plot(pr1, which.par=2) slice.fm1 <- slice(fm1, lambda = 5) par(mfrow = c(2, 3)) plot(slice.fm1) plot(slice.fm1, parm = 1) plot(slice.fm1, parm = 2) plot(slice.fm1, parm = 3) plot(slice.fm1, parm = 4) plot(slice.fm1, parm = 5) plot(slice.fm1, parm = 6) slice2.fm1 <- slice(fm1, parm = 4:5, lambda = 1e-5) par(mfrow = c(1, 2)) plot(slice2.fm1) plot(slice2.fm1, parm = 1) plot(slice2.fm1, parm = 2) convergence(fm1) head(pred <- predict(fm1, newdata = subset(wine, select = -rating))$fit) stopifnot(isTRUE(all.equal(fitted(fm1), t(pred)[t(col(pred) == wine$rating)])), isTRUE(all.equal(fitted(fm1), predict(fm1, newdata=wine)$fit))) newData <- expand.grid(temp = levels(wine$temp), contact = levels(wine$contact)) cbind(newData, round(predict(fm1, newdata=newData)$fit, 3), "class"=predict(fm1, newdata=newData, type="class")$fit) head(apply(pred, 1, function(x) round(weighted.mean(1:5, x)))) p1 <- apply(predict(fm1, newdata = subset(wine, select=-rating))$fit, 1, function(x) round(weighted.mean(1:5, x))) p2 <- as.numeric(as.character(predict(fm1, type="class")$fit)) stopifnot(isTRUE(all.equal(p1, p2, check.attributes = FALSE))) predictions <- predict(fm1, se.fit=TRUE, interval=TRUE) head(do.call("cbind", predictions)) wine <- within(wine, { rating_comb3 <- rating levels(rating_comb3) <- c("1", "2-4", "2-4", "2-4", "5") }) ftable(rating_comb3 ~ temp, data=wine) fm.comb3 <- clm(rating_comb3 ~ temp, data=wine) summary(fm.comb3) fm.comb3_b <- clm(rating_comb3 ~ 1, data=wine) anova(fm.comb3, fm.comb3_b) fm.nom2 <- clm(rating ~ contact, nominal = ~ temp, data=wine) summary(fm.nom2) fm.soup <- clm(SURENESS ~ PRODID * DAY, data=soup) summary(fm.soup) with(soup, table(DAY, PRODID)) wine <- within(wine, { rating_comb2 <- rating levels(rating_comb2) <- c("1-2", "1-2", "3-5", "3-5", "3-5") }) ftable(rating_comb2 ~ contact, data=wine) fm.comb2 <- clm(rating_comb2 ~ contact, scale = ~ contact, data=wine) summary(fm.comb2) wine <- within(wine, { rating_comb3b <- rating levels(rating_comb3b) <- c("1-2", "1-2", "3", "4-5", "4-5") }) wine$rating_comb3b[1] <- "4-5" ftable(rating_comb3b ~ temp + contact, data=wine) fm.comb3_c <- clm(rating_comb3b ~ contact * temp, scale=~contact * temp, nominal=~contact, data=wine) summary(fm.comb3_c) convergence(fm.comb3_c) rho <- update(fm1, doFit=FALSE) names(rho) rho$clm.nll(rho) c(rho$clm.grad(rho)) rho$clm.nll(rho, par=coef(fm1)) print(c(rho$clm.grad(rho)), digits=3) nll <- function(par, envir) { envir$par <- par envir$clm.nll(envir) } grad <- function(par, envir) { envir$par <- par envir$clm.nll(envir) envir$clm.grad(envir) } nlminb(rho$par, nll, grad, upper=c(rep(Inf, 4), 2, 2), envir=rho)$par artery <- data.frame(disease = factor(rep(0:4, 2), ordered = TRUE), smoker = factor(rep(c("no", "yes"), each=5)), freq = c(334, 99, 117, 159, 30, 350, 307, 345, 481, 67)) addmargins(xtabs(freq ~ smoker + disease, data = artery), margin = 2) fm <- clm(disease ~ smoker, weights=freq, data=artery) exp(fm$beta) fm.nom <- clm(disease ~ 1, nominal = ~ smoker, weights=freq, data=artery, sign.nominal = "negative") coef(fm.nom)[5:8] coef(fm.lm <- lm(I(coef(fm.nom)[5:8]) ~ I(0:3))) nll2 <- function(par, envir) { envir$par <- c(par[1:4], par[5] + par[6] * (0:3)) envir$clm.nll(envir) } start <- unname(c(coef(fm.nom)[1:4], coef(fm.lm))) fit <- nlminb(start, nll2, envir=update(fm.nom, doFit=FALSE)) round(fit$par[5:6], 2)
limit <- function(x,nx,y,ny,conflev,lim,t){ z = qchisq(conflev,1) px = x/nx score= 0 while ( score < z){ a = ny*(lim-1) b = nx*lim+ny-(x+y)*(lim-1) c = -(x+y) p2d = (-b+sqrt(b^2-4*a*c))/(2*a) p1d = p2d*lim/(1+p2d*(lim-1)) score = ((nx*(px-p1d))^2)*(1/(nx*p1d*(1-p1d))+1/(ny*p2d*(1-p2d)))*(nx+ny-1)/(nx+ny) ci = lim if(t==0) { lim = ci/1.001 } else{ lim = ci*1.001 } } return(ci) }
testthat::test_that("TN: initialize function works", { lvs <- c("normal", "abnormal") truth <- factor(rep(lvs, times = c(86, 258)), levels = rev(lvs)) pred <- factor( c( rep(lvs, times = c(54, 32)), rep(lvs, times = c(27, 231))), levels = rev(lvs)) xtab <- table(pred, truth) confMatrix <- ConfMatrix$new(confMatrix = caret::confusionMatrix(xtab)) testthat::expect_is(TN$new(performance = confMatrix), "TN") }) testthat::test_that("TN: compute function works", { lvs <- c("normal", "abnormal") truth <- factor(rep(lvs, times = c(86, 258)), levels = rev(lvs)) pred <- factor( c( rep(lvs, times = c(54, 32)), rep(lvs, times = c(27, 231))), levels = rev(lvs)) xtab <- table(pred, truth) confMatrix <- ConfMatrix$new(confMatrix = caret::confusionMatrix(xtab)) testthat::expect_is(TN$new(performance = confMatrix)$compute(performance.output = NULL), "character") testthat::expect_is(TN$new(performance = NULL)$compute(performance.output = confMatrix), "character") }) testthat::test_that("TN: compute function checks parameter type", { testthat::expect_error(TN$new(performance = NULL)$compute(performance.output = NULL), "[TN][FATAL] Performance output parameter must be defined as 'MinResult' or 'ConfMatrix' type. Aborting...", fixed = TRUE) })
context("CRPS for gamma distribution") test_that("computed values are correct", { const <- 0.399009355 expect_equal(crps_gamma(.2, 1.1), const) expect_equal(crps_gamma(.2 * .9, 1.1, scale = .9), const * .9) })
"luzdat"
context("read_health_facilities") skip_if(Sys.getenv("TEST_ONE") != "") testthat::skip_on_cran() test_that("read_health_facilities", { test_sf <- read_health_facilities() expect_true(is(test_sf, "sf")) expect_equal(nrow(test_sf), 360177) })
"USA_state_boundaries_summary"
context("daSubmodels for lmWithCov") test_that("Correct submodels for standard data.frame and lmWithCov", { nam<-c("SES","IQ","nAch","GPA") cor.m<-matrix(c( 1 ,.3 ,.41 ,.33, .3 ,1 , .16 , .57 , .41 , .16, 1 , .50 , .33 , .57, .50 , 1 ),4,4,byrow=T, dimnames=list(nam,nam) ) lwith<-lmWithCov(GPA~SES+IQ+nAch,cor.m) pred.matrix<-matrix( c(0,0,0, 1,0,0, 0,1,0, 0,0,1, 1,1,0, 1,0,1, 0,1,1, 1,1,1),8,3,byrow=T) predictors<-c("SES","IQ","nAch") level<-c(0,1,1,1,2,2,2,3) response<-c("GPA") constants<-c("") ds<-daSubmodels(lwith) expect_that(as.numeric(ds$pred.matrix),equals(as.numeric(pred.matrix))) expect_that(ds$predictors,equals(predictors)) expect_that(ds$response,equals(response)) expect_that(ds$level,equals(level)) })
context("Generic Manager") test_that("initialization and parameter setting", { TEST_DIRECTORY <- test_path("test_results") generic_manager <- GenericManager$new(results_dir = TEST_DIRECTORY, attr1 = 22) expect_equal(generic_manager$get_attribute("results_dir"), TEST_DIRECTORY) expect_equal(generic_manager$get_attribute("attr1"), 22) expect_error(generic_manager$sample_data <- "dummy", "Sample data should be a data frame") generic_manager$sample_data <- as.matrix(data.frame(a = 1:4, b = 5:8)) expect_is(generic_manager$sample_data, "data.frame") expect_silent(generic_manager$sample_data <- NULL) expect_error(generic_manager$generators <- "dummy", "Generators must be a list of Generator or inherited class objects") expect_error(generic_manager$generators <- list(gen1 = "dummy", gen2 = 1:5), "Generators must be a list of Generator or inherited class objects") generic_manager$generators <- list(gen1 = Generator$new(), gen2 = Generator$new()) expect_named(generic_manager$generators, c("gen1", "gen2")) expect_is(generic_manager$generators$gen1, "Generator") expect_silent(generic_manager$generators <- NULL) }) test_that("sample message and filename generation", { generic_manager <- GenericManager$new() expect_equal(generic_manager$get_message_sample("testing %s message", 1), "testing sample 1 message") expect_equal(generic_manager$get_results_filename(2), "sample_2_results") generic_manager$sample_data <- as.matrix(data.frame(attr1 = 3:4, attr2 = 5:6)) generic_manager$results_filename_attributes <- "pre" expect_equal(generic_manager$get_message_sample("testing %s message", 1), "testing sample 1 message") expect_equal(generic_manager$get_results_filename(2), "pre_2_results") generic_manager$results_filename_attributes <- c("pre", "attr1") expect_equal(generic_manager$get_message_sample("testing %s message", 1), "testing attr1 3 message") expect_equal(generic_manager$get_results_filename(2), "pre_attr1_4_results") generic_manager$results_filename_attributes <- c("pre", "attr1", "attr2", "post") expect_equal(generic_manager$get_message_sample("testing %s message", 1), "testing attr1 3 attr2 5 message") expect_equal(generic_manager$get_results_filename(2), "pre_attr1_4_attr2_6_post") generic_manager$results_filename_attributes <- c("pre", "post") expect_equal(generic_manager$get_message_sample("testing %s message", 1), "testing sample 1 message") expect_equal(generic_manager$get_results_filename(2), "pre_2_post") generic_manager$results_filename_attributes <- c("attr2", "post") expect_equal(generic_manager$get_message_sample("testing %s message", 1), "testing attr2 5 message") expect_equal(generic_manager$get_results_filename(2), "attr2_6_post") expect_equal(generic_manager$results_ext, ".RData") })
CDfriedmanV1 <- function(DATA, Jk, R, LASSO, GROUPLASSO, MaxIter){ DATA <- data.matrix(DATA) I_Data <- dim(DATA)[1] sumJk <- dim(DATA)[2] eps <- 10^(-12) if(missing(MaxIter)){ MaxIter <- 400 } P <- matrix(stats::rnorm(sumJk * R), nrow = sumJk, ncol = R) Pt <- t(P) absP <- abs(P) pen_l <- LASSO * sum(absP) sqP <- P^2 L <- 1 pen_g <- 0 for (i in 1:length(Jk)){ U <- L + Jk[i] - 1 sqrtsumP <- sqrt(colSums(sqP[L:U, ]))/sqrt(Jk[i]) pen_g <- pen_g + GROUPLASSO * sum(sqrtsumP) * Jk[i] L <- U + 1 } residual <- sum(DATA ^ 2) Lossc <- residual + pen_l + pen_g conv <- 0 iter <- 1 Lossvec <- array() while (conv == 0){ if (LASSO == 0 & GROUPLASSO == 0){ SVD_DATA <- svd(DATA, R, R) Tmat <- SVD_DATA$u } else { A <- Pt %*% t(DATA) SVD_DATA <- svd(A, R, R) Tmat <- SVD_DATA$v %*% t(SVD_DATA$u) } residual <- sum((DATA - Tmat %*% Pt)^2) Lossu <- residual + pen_l + pen_g if (LASSO == 0 & GROUPLASSO == 0){ P <- t(DATA) %*% Tmat Pt <- t(P) } else{ L <- 1 for (i in 1:length(Jk)){ U <- L + Jk[i] - 1 Pt_1 <- Pt[ ,c(L:U)] data <- DATA[ ,c(L:U)] if (sum(abs(Pt_1)) != 0){ S_2Vec_Lambda <- soft_th(2 * t(Tmat) %*% data, LASSO) S_2Vec_Lambda_norm <- sqrt(sum(S_2Vec_Lambda^2)) s_l2 <- 0.5 - 0.5 * GROUPLASSO * sqrt(Jk[i])/S_2Vec_Lambda_norm if (s_l2 <= 0 | S_2Vec_Lambda_norm==0){ Pt[ ,c(L:U)] <- 0 } else if(s_l2 > 0){ Pt[ ,c(L:U)] <- s_l2 * S_2Vec_Lambda } } L <- U + 1 } P <- t(Pt) } pen_l <- LASSO*sum(abs(P)) sqP <- P^2 L <- 1 pen_g <- 0 for (i in 1:length(Jk)){ U <- L + Jk[i] - 1 sqrtsumP <- sqrt(colSums(sqP[L:U, ]))/sqrt(Jk[i]) pen_g <- pen_g + GROUPLASSO * sum(sqrtsumP) * Jk[i] L <- U + 1 } residual <- sum((DATA - Tmat %*% Pt)^2) Lossu2 <- residual + pen_l + pen_g if (abs(Lossc-Lossu)< 10^(-9)) { Loss <- Lossu residual <- residual lassopen <- pen_l Glassopen <- pen_g P[abs(P) <= 2 * eps] <- 0 conv <- 1 } else if (iter > MaxIter | LASSO == 0){ Loss <- Lossu residual <- residual lassopen <- pen_l Glassopen <- pen_g P[abs(P) <= 2 * eps] <- 0 conv <- 1 } Lossvec[iter] <- Lossu iter <- iter + 1 Lossc <- Lossu2 } return_varselect <- list() return_varselect$Pmatrix <- P return_varselect$Tmatrix <- Tmat return_varselect$Loss <- Loss return_varselect$Lossvec <- Lossvec return(return_varselect) }
library(simplermarkdown) if (simplermarkdown:::has_pandoc()) { dir <- tempdir() dir.create(dir, recursive = TRUE, showWarnings = FALSE) oldwd <- setwd(dir) old_env <- Sys.getenv("R_TESTS") Sys.setenv("R_TESTS" = "") message("Checking iris.md") md <- "iris.md" r <- "iris.R" message("Tangle file") fn <- system.file(file.path("examples", md), package = "simplermarkdown") mdtangle(fn) message("Compare to reference") lines <- readLines(r) fn_ref <- system.file(file.path("examples_output", r), package = "simplermarkdown") lines_ref <- readLines(fn_ref) stopifnot(isTRUE(all.equal(lines, lines_ref))) message("Cleanup") unlink(r) message("Checking example1.md") md <- "example1.md" r <- "example1.R" message("Tangle file") fn <- system.file(file.path("examples", md), package = "simplermarkdown") mdtangle(fn) message("Compare to reference") lines <- readLines(r) fn_ref <- system.file(file.path("examples_output", r), package = "simplermarkdown") lines_ref <- readLines(fn_ref) stopifnot(isTRUE(all.equal(lines, lines_ref))) message("Cleanup") unlink(r) Sys.setenv("R_TESTS" = old_env) setwd(oldwd) }
wasserstein <- function(X = NULL, Y = NULL, a= NULL, b = NULL, cost = NULL, tplan = NULL, p = 2, ground_p = 2, method = transport_options(), cost_a = NULL, cost_b = NULL, ... ) { if (is.null(method)) method <- "networksimplex" method <- match.arg(method) p <- as.double(p) if (!(p >= 1)) stop("p must be >= 1") if (is.null(cost) & is.null(tplan)) { args <- list(X = X, Y = Y, a = a, b = b, p = p, ground_p = ground_p, method = method, ... ) args <- args[!duplicated(names(args))] argn <- lapply(names(args), as.name) f.call <- as.call(stats::setNames(c(as.name("wasserstein_calc_cost"), argn), c("", names(args)))) loss <- eval(f.call, envir = args) } else if (is.null(tplan)) { if (is.null(ground_p)) ground_p <- p n1 <- nrow(cost) n2 <- ncol(cost) if (missing(a) || is.null(a)) { warning("assuming all points in first group have equal mass") a <- as.double(rep(1/n1, n1)) } if (missing(b) || is.null(b)) { warning("assuming all points in first group have equal mass") b <- as.double(rep(1/n2, n2)) } nzero_a <- a != 0 nzero_b <- b != 0 mass_x <- a[nzero_a] mass_y <- b[nzero_b] cost <- cost[nzero_a, nzero_b, drop = FALSE] if (method == "sinkhorn" && isTRUE(list(...)$unbiased) ) { cost_a <- cost_a[nzero_a, nzero_a, drop = FALSE] cost_b <- cost_b[nzero_b, nzero_b, drop = FALSE] if(is.null(cost_a) || is.null(cost_b)) stop("Must specify cost matrices for both separate groups for unbiased sinkhorn.") pot <- sinkhorn_pot(mass_x = mass_x, mass_y = mass_y, p = p, cost = cost, cost_a = cost_a, cost_b = cost_b, ...) return((sum(mass_x * pot$f) + sum(mass_y * pot$g))^(1/p)) } tplan <- transport_plan_given_C(mass_x, mass_y, p, cost, method, cost_a, cost_b, ...) loss <- wasserstein_(mass_ = tplan$mass, cost_ = cost, p = p, from_ = tplan$from, to_ = tplan$to) } else { loss <- wasserstein_(mass_ = tplan$mass, cost_ = cost, p = p, from_ = tplan$from, to_ = tplan$to) nzero_a <- rep(TRUE, nrow(cost)) nzero_b <- rep(TRUE, ncol(cost)) } return(loss) } wasserstein_calc_cost <- function(X, Y, a = NULL, b = NULL, p = 2, ground_p = 2, observation.orientation = c("rowwise","colwise"), method = transport_options(), ... ) { obs <- match.arg(observation.orientation, c("colwise","rowwise")) method <- match.arg(method) if (missing(X)) stop("Must specify X") if (missing(Y)) stop("Must specify Y") if (!is.matrix(X)) { X <- as.matrix(X) if (dim(X)[2] == 1 & obs == "colwise") X <- t(X) } if (!is.matrix(Y)) { Y <- as.matrix(Y) if (dim(Y)[2] == 1 & obs == "colwise") Y <- t(Y) } p <- as.double(p) ground_p <- as.double(ground_p) if (!(p >= 1)) stop("p must be >= 1") if (obs == "rowwise") { X <- t(X) Y <- t(Y) obs <- "colwise" } stopifnot(nrow(X) == nrow(Y)) stopifnot(all(is.finite(X))) stopifnot(all(is.finite(Y))) if (method == "univariate.approximation" ) { loss <- wasserstein_p_iid_(X,Y, p) } else if ( method == "univariate.approximation.pwr") { loss <- wasserstein_p_iid_p_(X,Y, p) } else if (method == "univariate" | method == "hilbert" | method == "rank") { tp <- transport_plan(X = X, Y = Y, a = a, b = b, p = p, ground_p = ground_p, observation.orientation = obs, method = method, ...) loss <- tp$cost } else if (method == "sliced") { n1 <- ncol(X) n2 <- ncol(Y) if (missing(a) || is.null(a)) { a <- as.double(rep(1/n1, n1)) } if (missing(b) || is.null(b)) { b <- as.double(rep(1/n2, n2)) } nzero_a <- a != 0 nzero_b <- b != 0 a <- a[nzero_a] b <- b[nzero_b] X <- X[, nzero_a, drop = FALSE] Y <- Y[, nzero_b, drop = FALSE] dots <- list(...) tplan <- NULL nboot <- dots$nsim d <- nrow(X) theta <- matrix(stats::rnorm(d * nboot), d, nboot) theta <- sweep(theta, 2, STATS = apply(theta,2,function(x) sqrt(sum(x^2))), FUN = "/") X_theta <- crossprod(x = X, y = theta) Y_theta <- crossprod(x = Y, y = theta) costs <- sapply(1:nboot, function(i) { x <- c(X_theta[,i]) y <- c(Y_theta[,i]) trans <- general_1d_transport(X = t(x), Y = t(y), a = a, b = b, method = "univariate") cost <- ((abs(x[trans$from] - y[trans$to])^ground_p)^(1/ground_p))^p %*% trans$mass return(cost) } ) loss <- mean(costs)^(1/p) } else { n1 <- ncol(X) n2 <- ncol(Y) if (missing(a) || is.null(a)) { a <- as.double(rep(1/n1, n1)) } if (missing(b) || is.null(b)) { b <- as.double(rep(1/n2, n2)) } nzero_a <- a != 0 nzero_b <- b != 0 mass_x <- a[nzero_a] mass_y <- b[nzero_b] X <- X[, nzero_a, drop = FALSE] Y <- Y[, nzero_b, drop = FALSE] if (isTRUE(list(...)$unbiased) && method == "sinkhorn" ) { cost <- cost_calc(X,Y, ground_p) cost_a <- cost_calc(X,X, ground_p) cost_b <- cost_calc(Y,Y, ground_p) pot <- sinkhorn_pot(mass_x = mass_x, mass_y = mass_y, p = p, cost = cost, cost_a = cost_a, cost_b = cost_b, ...) return((sum(mass_x * pot$f) + sum(mass_y * pot$g))^(1/p)) } tp <- transport_plan(X = X, Y = Y, a = a, b = b, p = p, ground_p = ground_p, observation.orientation = obs, method = method, ...) tplan <- tp$tplan loss <- wasserstein_(mass_ = tplan$mass, cost_ = tp$cost, p = p, from_ = tplan$from, to_ = tplan$to) } return(loss) } wasserstein_individual <- function(X,Y, ground_p, observation.orientation = c("colwise","rowwise")) { if (!is.matrix(X)) X <- as.matrix(X) if (!is.matrix(Y)) Y <- as.matrix(Y) obs <- match.arg(observation.orientation) if (obs == "rowwise") { X <- t(X) Y <- t(Y) } Xs <- apply(X,2,sort) Ys <- apply(Y,2,sort) loss <- colMeans((Xs - Ys)^ground_p) return(loss^(1/ground_p)) } general_dist <- function(X, Y) { idx_x <- hilbert_proj_(X) + 1 idx_y <- hilbert_proj_(Y) + 1 n <- ncol(X) m <- ncol(Y) mass_a <- rep(1/n, n) mass_b <- rep(1/m, m) cum_a <- c(cumsum(mass_a))[-n] cum_b <- c(cumsum(mass_b))[-m] mass <- diff(c(0,sort(c(cum_a, cum_b)),1)) cum_m <- cumsum(mass) arep <- table(cut(cum_m, c(-Inf, cum_a, Inf))) brep <- table(cut(cum_m, c(-Inf, cum_b, Inf))) a_idx <- rep(idx_x, times = arep) b_idx <- rep(idx_y, times = brep) transport <- list(from = a_idx[order(b_idx)], to = sort(b_idx), mass = mass[order(b_idx)]) return(transport) } wasserstein_multimarg <- function(..., p = 2, ground_p = 2, observation.orientation = c("rowwise","colwise"), method = c("hilbert", "univariate")) { if (method == "univariate" | method == "hilbert" ) { tp <- transport_plan_multimarg(..., p = p, ground_p = ground_p, observation.orientation = observation.orientation, method = method) loss <- tp$cost } else { stop("Transport method", method, "not currently supported for multimarginal problems.") } return(loss) }
ECconversion2=function(ec,soilsolution="1:1", method="USDA"){ if(method=="landon"){ if(soilsolution=="1:1"){ElectConduct=ec*2.2} else if(soilsolution=="1:5"){ElectConduct=ec*6.4} else if(soilsolution=="1:3"){ElectConduct=ec*3.81} } else if(method=="kargas"){ if(soilsolution=="1:1"){ElectConduct=ec*1.83+0.117} else if(soilsolution=="1:5"){ElectConduct=ec*6.53-0.108} } else if(method=="ozkan"){ if(soilsolution=="1:1"){ElectConduct=ec*1.93-0.57} else if(soilsolution=="1:2.5"){ElectConduct=ec*3.3-0.2} else if(soilsolution=="1:5"){ElectConduct=ec*5.97-1.17} } else if(method=="USDA") { if(soilsolution=="1:1"){ElectConduct=ec*3} else if(soilsolution=="1:5"){ElectConduct=ec*4.5} else if(soilsolution=="1:2"){ElectConduct=ec*5} } else if(method=="hogg") { if(soilsolution=="1:1"){ElectConduct=ec*1.75-0.37} else if(soilsolution=="1:2"){ElectConduct=ec*1.38-0.14} } else if(method=="zhang") { if(soilsolution=="1:1"){ElectConduct=ec*1.79+1.46} } else if(method=="chi") { if(soilsolution=="1:5"){ElectConduct=ec*11.68-5.77} } else if(method=="park") { if(soilsolution=="1:5"){ElectConduct=ec*8.7} } else if(method=="visconti") { if(soilsolution=="1:5"){ElectConduct=ec*6.53-0.108} } else if(method=="korsandi") { if(soilsolution=="1:5"){ElectConduct=ec*5.4-0.61} } else if(method=="shahid") { if(soilsolution=="1:2.5"){ElectConduct=ec*4.77} } else if(method=="klaustermeier") { if(soilsolution=="1:5"){ElectConduct=10^(1.256*log10(ec) +0.766)} } else if(method=="he") { if(soilsolution=="1:5"){ElectConduct=exp(0.7*log(ec)+1.78)} } return(ElectConduct) }
bowlerWktsPredict <- function(df,name,dateRange){ rpart = NULL df=df %>% filter(date >= dateRange[1] & date <= dateRange[2]) print(names(df)) m <-rpart(wicketNo~delivery,data=df) atitle <- paste(name,"- No of deliveries to Wicket") rpart.plot(m,main=atitle) }
context("cachedPOST") public({ clearCache() test_that("Cache gets set on cachedPOST", { expect_length(cacheKeys(), 0) with_fake_http({ expect_POST(a <<- cachedPOST("https://app.crunch.io/api/"), "https://app.crunch.io/api/") expect_POST(b <<- cachedPOST("https://app.crunch.io/api/", body='{"user":"me"}'), 'https://app.crunch.io/api/ {"user":"me"}') }) expect_length(cacheKeys(), 2) expect_true(setequal(cacheKeys(), c("https://app.crunch.io/api/?POST", "https://app.crunch.io/api/?POST&BODY=aec2de8a85873530777f26424e086337"))) expect_identical(a$url, "https://app.crunch.io/api/") expect_identical(content(b), list(user="me")) }) without_internet({ test_that("When the cache is set, can read from it even with no connection", { expect_no_request( expect_identical(cachedPOST("https://app.crunch.io/api/"), a) ) expect_no_request( expect_identical(cachedPOST("https://app.crunch.io/api/", body='{"user":"me"}'), b) ) }) test_that("But uncached() prevents reading from the cache", { uncached({ expect_POST(cachedPOST("https://app.crunch.io/api/"), "https://app.crunch.io/api/") expect_POST(cachedPOST("https://app.crunch.io/api/", body='{"user":"me"}'), 'https://app.crunch.io/api/ {"user":"me"}') }) }) test_that("GETs don't read from cachedPOST cache", { expect_GET(uncached(GET("https://app.crunch.io/api/")), "https://app.crunch.io/api/") }) test_that("And POSTs with different payloads don't read the wrong cache", { expect_POST(cachedPOST("https://app.crunch.io/api/", body="wrong"), "https://app.crunch.io/api/ wrong") }) }) })
coda.samples.dic <- function (model, variable.names, n.iter, thin, ...) { load.module('dic') start <- model$iter() + thin varnames=c(variable.names, c('deviance', 'pD')) out <- jags.samples(model, varnames, n.iter, thin, type = "trace", ...) deviance <- out$deviance pD <- out$pD out$deviance <- NULL out$pD <- NULL ans <- vector("list", model$nchain()) for (ch in 1:model$nchain()) { ans.ch <- vector("list", length(out)) vnames.ch <- NULL for (i in seq(along = out)) { varname <- names(out)[[i]] d <- dim(out[[i]]) if (length(d) < 3) { stop("Invalid dimensions for sampled output") } vardim <- d[1:(length(d) - 2)] nvar <- prod(vardim) niter <- d[length(d) - 1] nchain <- d[length(d)] values <- as.vector(out[[i]]) var.i <- matrix(NA, nrow = niter, ncol = nvar) for (j in 1:nvar) { var.i[, j] <- values[j + (0:(niter - 1)) * nvar + (ch - 1) * niter * nvar] } vnames.ch <- c(vnames.ch, coda.names(varname, vardim)) ans.ch[[i]] <- var.i } ans.ch <- do.call("cbind", ans.ch) colnames(ans.ch) <- vnames.ch ans[[ch]] <- mcmc(ans.ch, start = start, thin = thin) } dic <- list(deviance = mean(as.vector(deviance)), penalty = mean(as.vector(pD)), type = 'pD') class(dic) <- "dic" return(list(samples=mcmc.list(ans), dic=dic)) } coda.names <- function(basename, dim) { if (prod(dim) == 1) return(basename) ndim <- length(dim) lower <- rep(1, ndim) upper <- dim pn <- parse.varname(basename) if (!is.null(pn) && !is.null(pn$lower) && !is.null(pn$upper)) { if (length(pn$lower) == length(pn$upper)) { dim2 <- pn$upper - pn$lower + 1 if (isTRUE(all.equal(dim[dim!=1], dim2[dim2!=1], check.attributes=FALSE))) { basename <- pn$name lower <- pn$lower upper <- pn$upper ndim <- length(dim2) } } } indices <- as.character(lower[1]:upper[1]) if (ndim > 1) { for (i in 2:ndim) { indices <- outer(indices, lower[i]:upper[i], FUN=paste, sep=",") } } paste(basename,"[",as.vector(indices),"]",sep="") } parse.varname <- function(varname) { v <- try(parse(text=varname, n=1), silent=TRUE) if (!is.expression(v) || length(v) != 1) return(NULL) v <- v[[1]] if (is.name(v)) { return(list(name=deparse(v))) } else if (is.call(v) && identical(deparse(v[[1]]), "[") && length(v) > 2) { ndim <- length(v) - 2 lower <- upper <- numeric(ndim) if (any(nchar(sapply(v, deparse)) == 0)) { return(NULL) } for (i in 1:ndim) { index <- v[[i+2]] if (is.numeric(index)) { lower[i] <- upper[i] <- index } else if (is.call(index) && length(index) == 3 && identical(deparse(index[[1]]), ":") && is.numeric(index[[2]]) && is.numeric(index[[3]])) { lower[i] <- index[[2]] upper[i] <- index[[3]] } else return(NULL) } if (any(upper < lower)) return (NULL) return(list(name = deparse(v[[2]]), lower=lower, upper=upper)) } return(NULL) }
tube <- function(times = seq(0, 17.0*3600, by = 100), yini = NULL, dyini = NULL, parms = list(), printmescd = TRUE, method = radau, atol = 1e-6, rtol = 1e-6, maxsteps = 1e5, ...) { parameter <- c(nu = 1.31e-6, g = 9.8, rho = 1.0e3, rcrit = 2.3e3, length= 1.0e3, k = 2.0e-4, d= 1.0e0, b = 2.0e2) parameter <- overrulepar(parameter, parms, 8) if (is.null(yini)) { yini <- rep(0,49) yini[19:36]<- 0.47519404529185289807e-1 yini[37:49] <-109800 } if (is.null(dyini)) dyini <- rep(0,49) checkini(49, yini, dyini) if (is.null(names(yini))) names(yini) <- c("phi1.2","phi2.3","phi2.6","phi3.4","phi3.5","phi4.5", "phi5.10","phi6.5","phi7.4","phi7.8","phi8.5","phi8.10","phi9.8", "phi11.9","phi11.12","phi12.7","phi12.8","phi13.11", "lam1.2","lam2.3","lam2.6","lam3.4","lam3.5","lam4.5", "lam5.10","lam6.5","lam7.4","lam7.8","lam8.5","lam8.10","lam9.8", "lam11.9","lam11.12","lam12.7","lam12.8","lam13.11","p5","58", "p1","p2","p3","p4","p6","p7","p9","p10","p11","p12","p13") prob <- tuberprob() ind <- c(38,11,0) useres <- FALSE if (is.character(method)) { if (method %in% c("mebdfi", "daspk")) useres <- TRUE } else if("res" %in% names(formals(method))) useres <- TRUE if (useres) tuber <- dae(y = yini, dy = dyini, times = times, res = "tuberes", nind = ind, dllname = "deTestSet", initfunc = "tubepar", parms = parameter, maxsteps = maxsteps, method = method, atol= atol, rtol=rtol, ...) else{ a <- pi * parameter["d"]^2/4 c <- parameter["b"]/(parameter["rho"]*parameter["g"]) v <- parameter["rho"]*parameter["length"]/a mass <- matrix(nrow = 1, ncol = 49, data = 0.) mass[1,1:18] <- v mass[1,37:38] <- c tuber <- dae(y = yini, dy = dyini, times = times, nind = ind, func = "tubefunc", mass = mass, massup = 0, massdown = 0, dllname = "deTestSet", initfunc = "tubepar", parms = parameter, method = method, maxsteps = maxsteps, atol= atol, rtol=rtol,...) } if(printmescd) tuber <- printpr (tuber, prob, "tube", rtol, atol) return(tuber) } tuberprob <- function(){ fullnm <- 'Water tube system' problm <- 'water' type <- 'DAE' neqn <- 49 t <- matrix(1,2) t[1] <- 0 t[2] <- 17*3600 numjac <- TRUE mljac <- neqn mujac <- neqn return(list(fullnm=fullnm, problm=problm,type=type,neqn=neqn, t=t,numjac=numjac,mljac=mljac,mujac=mujac)) }
dtp<- function(f,data,index=c("state","year"),maxlags,initnum,conf,conf1,conf2,graph=TRUE){ data<-newframe(data,index=index) f1<-as.formula(f) fm<-f1 mf <- match.call(expand.dots = FALSE) m <- match(c("formula", "data", "subset", "na.action"), names(mf), 0) mf <- mf[c(1, m)] ffm <- Formula::Formula(fm) mf[[1]] <- as.name("model.frame") mf$formula <- ffm fffm<-update(ffm, ~ . -1| . -1|. -1) mf <- model.frame(formula=fffm, data=data) z2 <- model.matrix(fffm, data = mf, rhs = 1) q <- model.matrix(fffm, data = mf, rhs = 2) c <- model.matrix(fffm, data = mf, rhs = 3) y<-model.response(mf) a<-unlist(strsplit(as.character(f1),"[|]")) instrument<-makeinstru(data,a[[2]],maxlags,initnum) x<-as.matrix(instrument$inst) initial<-instrument$initial z1<-as.matrix(initial) largeT<-data$TT t<-data$t yt = tr(y,largeT,t) ct = tr(c,largeT,t) zt1= tr(z1,largeT,t) k=length(z2[1,]); zt2= matrix(c(0),length(yt[,1]),k) for(i in 1:k){ zt2[,i]=tr(z2[,i],largeT,t) } ii=1 qt<-0 for (i in 1:length(q)){ if (t[i]<largeT[i]){ qt[ii]<-q[i] ii=ii+1 } } qt=t(qt) xx=cbind(x,zt2) z1hat<-xx%*%regress(zt1,xx) zhat=cbind(z1hat,zt2) n=length(yt[,1]) xx=cbind(zhat,tr(c,largeT,t)) k=length(xx[1,]) e=yt-xx%*%regress(yt,xx) ss0<-sum(e^2) s0 <- det(t(e)%*%e) n1 <- round(.05*n)+k n2 <- round(.95*n)-k qs <- sort(q) qs <- qs[n1:n2] qs <- as.matrix(unique(qs)) qn <- nrow(qs) sn <- matrix(0,qn,1) r=1 for(r in 1:qn){ d <- (q<=qs[r]) xxx=cbind(xx,tr(c*d,largeT,t),tr(d,largeT,t)) xxx <- xxx-xx%*%regress(xxx,xx) ex <- e-xxx%*%regress(e,xxx) sn[r] <- det(t(ex)%*%ex) } r <- which.min(sn) smin <- sn[r] qhat <- qs[r] d <- (q<=qhat) xxx=cbind(zhat,tr(c*d,largeT,t),tr(d,largeT,t)) beta=regress(yt,xxx) yhat=xxx%*%beta e=yt-yhat lr=n*(sn/smin-1) sig2=smin/n i=length(zhat[1,]) beta1=beta[i+1] beta2=beta[i+3] if (ncol(yt)> 1){ eta1 <- 1 eta2 <- 1 }else{ r1 <- (ct%*%(beta1-beta2))^2 r2 <- r1*(e^2) qx <- cbind(t(qt^0),t(qt^1),t(qt^2)) qh <- cbind(qhat^0,qhat^1,qhat^2) m1 <- qr.solve(qx,r1) m2 <- qr.solve(qx,r2) g1 <- qh%*%m1 g2 <- qh%*%m2 eta1 <- as.numeric((g2/g1)/sig2) sigq <- sqrt(mean((qt-mean(q))^2)) hband <- 2.344*sigq/(n^(.2)) u <- (qhat-qt)/hband u2 <- u^2 f <- mean((1-u2)*(u2<=1))*(.75/hband) df <- -mean(-u*(u2<=1))*(1.5/(hband^2)) eps <- r1 - qx%*%m1 sige <- (t(eps)%*%eps)/(n-3) hband <- as.vector(sige/(4*f*((m1[3]+(m1[2]+2*m1[3]*qhat)*df/f)^2))) u2 <- ((qhat-qt)/hband)^2 kh <- ((1-u2)*.75/hband)*(u2<=1) g1 <- mean(kh%*%r1) g2 <- mean(kh%*%r2) eta2 <- as.numeric((g2/g1)/sig2) } c1 <- -2*log(1-sqrt(conf)) lr0 <- as.numeric(lr >= c1) lr1 <- as.numeric(lr >= (c1*eta1)) lr2 <- as.numeric(lr >= (c1*eta2)) if (!is.na(max(lr0)==1)){ qcf_0 <- cbind(qs[which.min(lr0)],qs[qn+1-which.min(rev(lr0))]) }else{ qcf_0 <- cbind(qs[1],qs[qn]) } if (!is.na(max(lr1)==1)){ qcf_h1 <- cbind(qs[which.min(lr1)],qs[qn+1-which.min(rev(lr1))]) }else{ qcf_h1 <- cbind(qs[1],qs[qn]) } if (!is.na(max(lr2)==1)){ qcf_h2 <- cbind(qs[which.min(lr2)],qs[qn+1-which.min(rev(lr2))]) }else{ qcf_h2 <- cbind(qs[1],qs[qn]) } if (graph==TRUE){ par(mar = c(5,4,4,8)) mtit <- "Confidence Interval Construction for Threshold" ytit <- "Likelihood Ratio Sequence in gamma" xtit <- "Threshold Variable" xxlim <- range(qs) clr <- matrix(1,qn,1)*c1 yylim <- range(rbind(lr,clr)) if (ncol(as.matrix(y)) == 1) {clr <- cbind(clr,(clr*eta1),(clr*eta2))} plot(qs,lr,lty=1 ,xlim=xxlim,ylim=yylim,col=1,type="l",ann=0) lines(qs,clr[,1],lty=2,col=2) if (ncol(as.matrix(y)) == 1){ lines(qs,clr[,2],lty=1,col=3) lines(qs,clr[,3],lty=1,col=4) } title(main=mtit,ylab=ytit,xlab=xtit,cex.main=0.8,cex.lab=0.8) tit1 <- "LRn(gamma)" tit2 <- "90% Critical" tit3 <- "Hetero Corrected - 1" tit4 <- "Hetero Corrected - 2" legend(par("usr")[2],par("usr")[4], xpd = TRUE , bty = "n", c(tit1,tit2,tit3,tit4),lty=c(1,1,1,1),cex=0.6,col=c(1,2,3,4) ) } z <- cbind(zt1,zt2) da <- (q<=qhat) db <- 1-da zi=cbind(zt1,zt2,tr(c*da,largeT,t),tr(da,largeT,t),tr(c*db,largeT,t)) xi=cbind(x,zt2,tr(c*da,largeT,t),tr(da,largeT,t),tr(c*db,largeT,t)) yi=yt out1<- gmm_linear(yi,zi,xi) beta<-out1$beta se <- out1$se betal=beta-se*1.96 betau=beta+se*1.96 n=length(yt[,1]) xx=cbind(zhat,tr(c,largeT,t)) k=length(xx[1,]) e=yt-xx%*%regress(yt,xx) s0 <- det(t(e)%*%e) n1 <- round(.05*n)+k n2 <- round(.95*n)-k qs <- sort(q) qs <- qs[n1:n2] qs <- as.matrix(unique(qs)) qn <- nrow(qs) sn <- matrix(0,qn,1) for (r in 1:qn){ d <- (q<=qs[r]) xxx=cbind(xx,tr(c*d,largeT,t),tr(d,largeT,t)) xxx <- xxx-xx%*%regress(xxx,xx) ex <- e-xxx%*%regress(e,xxx) sn[r] <- det(t(ex)%*%ex) } r <- which.min(sn) smin <- sn[r] qhat <- qs[r] d <- (q<=qhat) xxx=cbind(zhat,tr(c*d,largeT,t),tr(d,largeT,t)) dd=1-d xxx=cbind(xxx,tr(c*dd,largeT,t)) betaf=regress(yt,xxx) yhat=xxx%*%betaf e=yt-yhat lr=n*(sn/smin-1) sig2=smin/n i=length(x[1,]) betaf1=betaf[i+1] betaf2=beta[i+3] if (ncol(yt)> 1){ eta1 <- 1 eta2 <- 1 }else{ r1 <- (ct%*%(betaf1-betaf2))^2 r2 <- r1*(e^2) qx <- cbind(t(qt^0),t(qt^1),t(qt^2)) qh <- cbind(qhat^0,qhat^1,qhat^2) m1 <- qr.solve(qx,r1) m2 <- qr.solve(qx,r2) g1 <- qh%*%m1 g2 <- qh%*%m2 eta1 <- as.vector((g2/g1)/sig2) sigq <- sqrt(mean((qt-mean(q))^2)) hband <- 2.344*sigq/(n^(.2)) u <- (qhat-qt)/hband u2 <- u^2 f <- mean((1-u2)*(u2<=1))*(.75/hband) df <- -mean(-u*(u2<=1))*(1.5/(hband^2)) eps <- r1 - qx%*%m1 sige <- (t(eps)%*%eps)/(n-3) hband <- as.vector(sige/(4*f*((m1[3]+(m1[2]+2*m1[3]*qhat)*df/f)^2))) u2 <- ((qhat-qt)/hband)^2 kh <- ((1-u2)*.75/hband)*(u2<=1) g1 <- mean(kh%*%r1) g2 <- mean(kh%*%r2) eta2 <- as.vector((g2/g1)/sig2) } c1 <- -2*log(1-sqrt(conf)) lr0 <- (lr >= c1) lr1 <- (lr >= (c1*eta1)) lr2 <- (lr >= (c1*eta2)) if (max(lr0)==1){ qcfi_0 <- cbind(qs[which.min(lr0)],qs[qn+1-which.min(rev(lr0))]) }else{ qcfi_0 <- cbind(qs[1],qs[qn]) } if (!is.na(max(lr1)==1)){ qcfi_1 <- cbind(qs[which.min(lr1)],qs[qn+1-which.min(rev(lr1))]) }else{ qcfi_1 <- cbind(qs[1],qs[qn]) } if (!is.na(max(lr2)==1)){ qcfi_2 <- cbind(qs[which.min(lr2)],qs[qn+1-which.min(rev(lr2))]) }else{ qcfi_2 <- cbind(qs[1],qs[qn]) } if (conf2==0) qcf <- qcfi_0 if (conf2==1) qcf <- qcfi_1 if (conf2==2) qcf <- qcfi_2 qq <- unique(q) qq <- as.matrix(sort(qq)) qq <- qq[qq<=qcf[2]] qq <- as.matrix(qq[qq>=qcf[1]]) for (i in 1:nrow(qq)){ qi <- qq[i] dai <- (q<=qi) dbi <- 1-dai yi=yt zi=cbind(zt1,zt2,tr(c*dai,largeT,t),tr(dai,largeT,t),tr(c*dbi,largeT,t)) xi=cbind(x,zt2,tr(c*dai,largeT,t),tr(dai,largeT,t),tr(c*dbi,largeT,t)) out2= gmm_linear(yi,zi,xi) sei=out2$se ss1<-sum(out2$e^2) betafi<-out2$beta betafil <- apply(t(cbind((betafi-sei*1.96),betal)),2,min) betafiu <- apply(t(cbind((betafi+sei*1.96),betau)),2,max) } nz<-length(zhat[1,]) lm<- n*(ss0-ss1)/ss0 df<-ncol(xx) lmpv<-pchisq(lm,df,lower.tail = FALSE) N<-max(data$id) fm<-(n*(ss0-ss1)/df)/(ss0/(n-N-k)) fmpv<-pchisq(fm,df,lower.tail = FALSE) lgrt<-n*(log(ss0)-log(ss1)) lgrtpv<-pchisq(lgrt,df,lower.tail = FALSE) df<-nrow(z2)-ncol(x) alpha<-betaf[(1:nz)] std<-se[(1:nz)] tval<-alpha/std pval<-2*pnorm(-abs(tval)) lw<-betafil[(1:nz)] up<-betafiu[(1:nz)] alpha1<-betaf[(nz+1):(nz+2)] std1<-se[(nz+1):(nz+2)] tval1<-alpha1/std1 pval1<-2*pnorm(-abs(tval1)) lw1<-betafil[(nz+1):(nz+2)] up1<-betafiu[(nz+1):(nz+2)] alpha2<-betaf[(nz+3):(nz+3)] std2<-se[(nz+3):(nz+3)] tval2<-alpha2/std2 pval2<-2*pnorm(-abs(tval2)) lw2<-betafil[(nz+3):(nz+3)] up2<-betafiu[(nz+3):(nz+3)] nmes<-colnames(z2) out<-list(alpha=alpha,std=std,lw=lw,up=up,tval=tval,pval=pval,alpha1=alpha1,std1=std1,lw1=lw1, up1=up1,tval1=tval1,pval1=pval1,alpha2=alpha2,std2=std2,lw2=lw2,up2=up2,tval2=tval2,pval2=pval2, lm=lm,lmpv=lmpv,fm=fm,fmpv=fmpv,lgrt=lgrt,lgrtpv=lgrtpv,nmes=nmes,qhat=qhat,qcfi_0=qcfi_0,qcfi_1=qcfi_1, qcfi_2=qcfi_2,da=da,db=db) class(out) <- "dtp" return(out) }
weblmListAvailableModels <- function() { res <- weblmHttr("GET", "models") json <- httr::content(res, "text", encoding = "UTF-8") models <- jsonlite::fromJSON(json)$models supportedOps <- c(unlist(unique(jsonlite::fromJSON(json)$models$supportedOperations))) for (supportedOp in supportedOps) { eval(parse(text = paste0(eval(supportedOp), " <- c()"))) for (model in 1:nrow(models)) { eval(parse(text = paste0(eval(supportedOp), " <- c(", eval(supportedOp), ifelse(supportedOp %in% models$supportedOperations[[model]], ', "supported")', ', "unsupported")')))) } eval(parse(text = paste0('models <- cbind(models, ', eval(supportedOp), ' = factor(', eval(supportedOp), ', levels = c("unsupported", "supported")))'))) } models$supportedOperations <- NULL weblm(models, json, res$request) }
context("redesign") test_that("N not changed", { N <- 100 d <- declare_model(N = N) + NULL expect_equal(N, 100) expect_length(draw_data(d)$ID, 100) others <- c(50, 100, 200, 100) d_alt <- redesign(d, N = others) for (i in seq_along(others)) { expect_length(draw_data(d_alt[[i]])$ID, others[i]) } expect_equal(N, 100) })
setMethod("show", signature= "mod_imputeMulti", def= function(object) { cat("\n Call: \n", paste(deparse(object@mle_call), sep= "\n"), "\n Method: ", object@method, "\n\n Iterations: ", object@mle_iter, "\n\n Log-Likelihood: ", object@mle_log_lik) }) setGeneric("summary") summary.mod_imputeMulti <- function(object, ...) { methods::show(object) cat("\n\n") if (object@mle_cp != "none") { summary(object@mle_x_y[, c("alpha", "theta_y")]) } } setMethod("summary", signature="mod_imputeMulti", def=summary.mod_imputeMulti) setGeneric("get_parameters", function(object) standardGeneric("get_parameters")) setMethod("get_parameters", signature= "mod_imputeMulti", function(object) { return(object@mle_x_y) }) setGeneric("get_prior", function(object) standardGeneric("get_prior")) setMethod("get_prior", signature= "mod_imputeMulti", function(object) { return(object@mle_cp) }) setGeneric("get_iterations", function(object) standardGeneric("get_iterations")) setMethod("get_iterations", signature= "mod_imputeMulti", function(object) { return(object@mle_iter) }) setGeneric("get_logLik", function(object) standardGeneric("get_logLik")) setMethod("get_logLik", signature= "mod_imputeMulti", function(object) { return(object@mle_log_lik) }) setGeneric("get_method", function(object) standardGeneric("get_method")) setMethod("get_method", signature= "mod_imputeMulti", function(object) { return(object@method) }) setMethod("show", signature= "imputeMulti", def= function(object) { cat("\n Global Call: \n", paste(deparse(object@Gcall), sep= "\n"), "\n Call: \n", paste(deparse(object@mle_call)), "\n Method: ", object@method, "\n\n Iterations: ", object@mle_iter, "\n\n Log-Likelihood: ", object@mle_log_lik, "\n Number Missing: ", object@nmiss) }) setGeneric("summary") summary.imputeMulti <- function(object, ...) { methods::show(object) if (object@mle_cp != "none") { summary(object@mle_x_y[, c("alpha", "theta_y")]) } } setMethod("summary", signature= "imputeMulti", summary.imputeMulti) setGeneric("get_imputations", function(object) standardGeneric("get_imputations")) setMethod("get_imputations", signature= "imputeMulti", function(object) { return(object@data$imputed_data) }) setGeneric("n_miss", function(object) standardGeneric("n_miss")) setMethod("n_miss", signature= "imputeMulti", function(object) { return(object@nmiss) })
library(geoBayes) data(rhizoctonia) predgrid <- mkpredgrid2d(rhizoctonia[c("Xcoord", "Ycoord")], par.x = 100, chull = TRUE, exf = 1.2) rhizdata <- stackdata(rhizoctonia, predgrid$grid) corrf <- "spherical" kappa <- 0 ssqdf <- 1 ssqsc <- 1 betm0 <- 0 betQ0 <- .01 linkp <- 20 philist <- c(100, 140, 180) omglist <- c(0, .5, 1, 1.5) parlist <- expand.grid(phi=philist, linkp=linkp, omg=omglist, kappa = kappa) estimate <- list(linkp = linkp, phi = c(100, 200), omg = c(0, 2), kappa = kappa) Nout <- 1000 Nthin <- 10 Nbi <- 300 runs <- list() for (i in 1:NROW(parlist)) { runs[[i]] <- mcsglmm(Infected ~ 1, 'binomial', rhizdata, weights = Total, atsample = ~ Xcoord + Ycoord, Nout = Nout*c(.8, .2), Nthin = Nthin, Nbi = Nbi, betm0 = betm0, betQ0 = betQ0, ssqdf = ssqdf, ssqsc = ssqsc, phi = parlist$phi[i], omg = parlist$omg[i], linkp = parlist$linkp[i], kappa = parlist$kappa[i], corrfcn = corrf, corrtuning = list(phi = 0, omg = 0, kappa = 0)) } bf <- bf1skel(runs) bfall <- bf2new(bf, phi = seq(100, 200, 10), omg = seq(0, 2, .2)) plotbf2(bfall, c("phi", "omg")) plotbf2(bfall, c("phi", "omg"), profile = TRUE, type = "b", ylab="log(BF)") bf2optim(bf, estimate)
`nLogLik.trecase.A` = function(coef, phi, theta, rc, genei, hessian=FALSE){ index = rc$index y = rc$y[genei,] n = rc$n[genei,] n0B = rc$n0B[genei,] kappas = rc$kappas out = input.checks.A(coef=coef, phi=phi, index=index, y=y, kappas=kappas, theta=theta, n=n, n0B=n0B, trecase=TRUE) hess = NULL twosex = max(index)>4 if(twosex){ ind.lst = lapply(1:8, function(i){which(index %in% i)}) }else{ ind.lst = lapply(1:4, function(i){which(index %in% i)}) } nsamples = length(index) intercept = rep(1, nsamples) dom = as.numeric(index %in% c(1, 2, 5, 6)) xs = index[1:length(n)];xs[xs == 5] = 1;xs[xs %in% c(2, 6)] = -1 if(twosex){ sex.tot = intercept;sex.tot[index>4] = -1 X = cbind(intercept, kappas, sex.tot, dom, dom*sex.tot) sex.ase = sex.tot[1:length(n)] }else{ X = cbind(intercept, kappas, dom) sex.ase = NULL } nll = ll.jRCI.A(coef, yi=y, ind.lst=ind.lst, X=X, twosex=twosex, sex=sex.ase, ni=n, ni0=n0B, xs=xs, iphi=1/phi, theta=theta) if(hessian){ tag = tryCatch({ hess = hessian(ll.jRCI.A, x=coef, yi=y, ind.lst=ind.lst, X=X, twosex=twosex, sex=sex.ase, ni=n, ni0=n0B, xs=xs, iphi=1/phi, theta=theta) 0 }, error=function(e) { warning("estimation of hessian failed") 1 }) } return(list(nll=nll, hess=hess)) }
profanity_patterns <- c( "\\w*fuck\\w*" )
testthat::test_that("Initiation of saga S3 class ", { testthat::skip_on_cran() testthat::skip_if(is.null(saga_search())) saga <- saga_gis() testthat::expect_true(!is.null(saga)) testthat::expect_gt(length(saga), 0) }) testthat::test_that("Initiation of saga S3 class using opt_lib ", { testthat::skip_on_cran() testthat::skip_if(is.null(saga_search())) saga1 <- saga_gis(opt_lib = "climate_tools") testthat::expect_true(!is.null(saga1)) testthat::expect_length(saga1, n = 1) }) testthat::test_that("Test file caching ", { testthat::skip_on_cran() testthat::skip_if(is.null(saga_search())) saga_bin <- saga_search() saga_version <- Rsagacmd:::saga_version(saga_cmd = saga_bin) if (saga_version < as.numeric_version("4.0.0")) { output <- paste( "Cannot enable grid caching or change number cores for SAGA-GIS", "versions < 4.0.0. Please use a more recent version of SAGA-GIS" ) testthat::expect_message( saga_gis(grid_caching = TRUE, grid_cache_threshold = 20), output) } else { cache_dir <- file.path(tempdir(), paste0("test_caching", as.integer(runif(1, 0, 1e6)))) cache_dir <- gsub("//", "/", cache_dir) cache_dir <- gsub("\\\\", "/", cache_dir) dir.create(cache_dir) saga_fc <- saga_gis( grid_caching = TRUE, grid_cache_threshold = 0.001, grid_cache_dir = cache_dir, cores = 1 ) testthat::expect_true(!is.null(saga_fc)) testthat::expect_gt(length(saga_fc), 0) senv <- environment(saga_fc[[1]][[1]])$senv config_char <- readChar( con = senv$saga_config, nchars = file.info(senv$saga_config)$size - 1 ) config_char <- gsub("[\r]", "", config_char) config_char <- strsplit(config_char, "\n")[[1]] idx <- grep("GRID_CACHE_TMPDIR", config_char) config_cache_dir <- strsplit(config_char[idx], "=")[[1]][2] testthat::expect_equal(shQuote(cache_dir), config_cache_dir) saga <- saga_gis() dem <- saga$grid_calculus$random_terrain( target_user_xmin = 0, target_user_xmax = 1000, target_user_ymin = 0, target_user_ymax = 1000, radius = 100, iterations = 500 ) start_time <- Sys.time() tri <- saga$ta_morphometry$terrain_ruggedness_index_tri(dem = dem) end_time <- Sys.time() elapsed_ram <- end_time - start_time start_time <- Sys.time() tri_fc <- saga_fc$ta_morphometry$terrain_ruggedness_index_tri(dem = dem) end_time <- Sys.time() elapsed_fc <- end_time - start_time testthat::expect_true(elapsed_fc > elapsed_ram) } })
library(highcharter) library(purrr) library(dplyr) library(htmltools) Category <- c("Furniture","Furniture","Furniture","Furniture", "Office Supplies","Office Supplies", "Office Supplies", "Office Supplies", "Office Supplies", "Office Supplies", "Office Supplies", "Office Supplies", "Office Supplies", "Technology","Technology","Technology","Technology") SubCategory <- c("Bookcases","Chairs","Furnishings","Tables","Appliances","Art","Binders","Envelopes", "Fasteners","Labels","Paper","Storage", "Supplies", "Accessories","Copiers","Machines", "Phones") sales <- c(889222.51,920892.65,239840.16,445823.93,614737.91,225594.68,281494.68,104903.88,50156.06,44269.30, 150113.36,692903.08,152196.19,463383.33,965899.78,458655.43,1005525.38) mydf <- data.frame(Category,SubCategory,sales, color = colorize(Category)) categories_grouped <- map(unique(Category), function(x){ list( name = x, categories = SubCategory[Category == x] ) }) hc <- highchart() %>% hc_chart(type = "bar") %>% hc_xAxis(categories = categories_grouped) %>% hc_add_series(data = list_parse(select(mydf, y = sales, color = color)), showInLegend = FALSE) hc dep <- htmlDependency( name = "grouped-categories", version = "1.1.0", src = c( href = "http://blacklabel.github.io/grouped_categories" ), stylesheet = "css/styles.css", script = "grouped-categories.js" ) hc$dependencies <- c(hc$dependencies, list(dep)) hc
cobiclust <- function(x, K = 2, G = 3, nu_j = NULL, a = NULL, akg = FALSE, cvg_lim = 1e-05, nbiter = 5000){ tol = 1e-04 res_init <- init_pam(x = x, nu_j = nu_j, a = a, K = K, G = G, akg = akg) n <- nrow(x) m <- ncol(x) nu_j <- res_init$parameters$nu_j mu_i <- res_init$parameters$mu_i t_jg <- res_init$info$t_jg s_ik <- res_init$info$s_ik pi_c <- res_init$parameters$pi rho_c <- res_init$parameters$rho alpha_c <- matrix(nrow = K, ncol = G, res_init$parameters$alpha) a0 <- res_init$parameters$a exp_utilde <- res_init$info$exp_utilde exp_logutilde <- res_init$info$exp_logutilde lb <- NULL lbtt <- NULL j <- 0 crit <- 1 while((crit > cvg_lim) & (j < nbiter)) { j = j+1 t_old <- t_jg s_old <- s_ik pi_old <- pi_c rho_old <- rho_c alpha_old <- alpha_c a_old <- a0 exp_utilde_old <- exp_utilde exp_logutilde_old <- exp_logutilde i <- 0 crit_em1 <- 1 while(crit_em1 > cvg_lim) { i = i + 1 pi_old <- pi_c alpha_old1 <- alpha_c if (is.matrix(nu_j)){ s_ik_tmp1 <- sapply(1:K, FUN = function(k) log(pi_c[k]) + rowSums(sapply(1:ncol(x), FUN = function(j) rowSums( sapply(1:G, FUN = function(l) t_jg[j, l] * x[, j] * (log(alpha_c[k, l]) + exp_logutilde[, j]) - t_jg[j, l] * mu_i * nu_j[, j] * alpha_c[k, l] * exp_utilde[, j]))))) } else { s_ik_tmp1 <- sapply(1:K, FUN = function(k) log(pi_c[k]) + rowSums(sapply(1:ncol(x), FUN = function(j) rowSums( sapply(1:G, FUN = function(l) t_jg[j, l] * x[, j] * (log(alpha_c[k, l]) + exp_logutilde[, j]) - t_jg[j, l] * mu_i * nu_j[j] * alpha_c[k, l] * exp_utilde[, j]))))) } s_ik_tmp2 <-s_ik_tmp1 - rowMeans(s_ik_tmp1) s_ik_tmp <- apply(s_ik_tmp2, 2, FUN = function(x) exp(x) / rowSums(exp(s_ik_tmp2))) if (sum(is.nan(s_ik)) > 0) { rmax <- apply(s_ik_tmp1, 1, max) s_ik_tmp3 <- s_ik_tmp1 - rmax s_ik <- apply(s_ik_tmp3, 2, FUN = function(x) exp(x) / rowSums(exp(s_ik_tmp3))) } rm(s_ik_tmp1, s_ik_tmp2, s_ik_tmp) s_ik <- apply(s_ik, c(1, 2), FUN = function(x) if (x <= 0.5) max(tol, x) else if (x > 0.5) min(x, 1 - tol)) s_ik[s_ik == tol] <- tol / (ncol(s_ik) - 1) s_ik <- s_ik / rowSums(s_ik) pi_c <- colMeans(s_ik) alpha_c <- alpha_calculation(s_ik = s_ik, t_jg = t_jg, nu_j = nu_j, mu_i = mu_i, K = K, G = G, x = x, exp_utilde = exp_utilde) if (akg == FALSE) { qu_param <- qu_calculation(s_ik = s_ik, t_jg = t_jg, x = x, mu_i = mu_i, nu_j = nu_j, alpha_c = alpha_c, a = a0) } else { qu_param <- qukg_calculation(s_ik = s_ik, t_jg = t_jg, x = x, mu_i = mu_i, nu_j = nu_j, alpha_c = alpha_c, a = a0) } exp_utilde <- qu_param$exp_utilde exp_logutilde <- qu_param$exp_logutilde crit_em1 <- sum((sort(alpha_c) - sort(alpha_old1))^2) + sum((sort(pi_c) - sort(pi_old))^2) } i <- 0 crit_em2 <- 1 while(crit_em2 > cvg_lim) { i = i + 1 rho_old <- rho_c alpha_old2 <- alpha_c t_old <- t_jg if (is.matrix(nu_j)){ t_jg_tmp <- sapply(1:G, FUN = function(l) log(rho_c[l]) + rowSums(sapply(1:nrow(x), FUN = function(i) rowSums(sapply(1:K, FUN = function(k) s_ik[i, k] * x[i,] * (log(alpha_c[k, l]) + exp_logutilde[i, ]) - s_ik[i, k] * mu_i[i] * nu_j[i,] * alpha_c[k, l] * exp_utilde[i, ]))))) } else { t_jg_tmp <- sapply(1:G, FUN = function(l) log(rho_c[l]) + rowSums(sapply(1:nrow(x), FUN = function(i) rowSums(sapply(1:K, FUN = function(k) s_ik[i, k] * x[i,] * (log(alpha_c[k, l]) + exp_logutilde[i, ]) - s_ik[i, k] * mu_i[i] * nu_j * alpha_c[k, l] * exp_utilde[i, ]))))) } t_jg_tmp2 <-t_jg_tmp - rowMeans(t_jg_tmp) t_jg <- apply(t_jg_tmp2, 2, FUN = function(x) exp(x) / rowSums(exp(t_jg_tmp2))) if (sum(is.nan(t_jg)) > 0) { rmax <- apply(t_jg_tmp, 1, max) t_jg_tmp3 <- t_jg_tmp - rmax t_jg <- apply(t_jg_tmp3, 2, FUN = function(x) exp(x) / rowSums(exp(t_jg_tmp3))) } t_jg <- apply(t_jg, c(1, 2), FUN = function(x) if (x <= 0.5) max(tol, x) else if (x > 0.5) min(x, 1 - tol)) t_jg[t_jg == tol] <- (tol) / (ncol(t_jg) - 1) t_jg <- t_jg / rowSums(t_jg) rho_c <- colMeans(t_jg) alpha_c <- alpha_calculation(s_ik = s_ik, t_jg = t_jg, nu_j = nu_j, mu_i = mu_i, K = K, G = G, x = x, exp_utilde = exp_utilde) if (akg == FALSE) { qu_param <- qu_calculation(s_ik = s_ik, t_jg = t_jg, x = x, mu_i = mu_i, nu_j = nu_j, alpha_c = alpha_c, a = a0) } else { qu_param <- qukg_calculation(s_ik = s_ik, t_jg = t_jg, x = x, mu_i = mu_i, nu_j = nu_j, alpha_c = alpha_c, a = a0) } exp_utilde <- qu_param$exp_utilde exp_logutilde <- qu_param$exp_logutilde crit_em2 <- sum((sort(rho_c) - sort(rho_old))^2) + sum((sort(alpha_c) - sort(alpha_old2))^2) } if (is.matrix(nu_j)) { mu_i <- rowSums(x %*% t_jg) / rowSums(s_ik * (nu_j %*% tcrossprod (t_jg, alpha_c) ) ) } else { mu_i <- rowSums(x %*% t_jg) / rowSums(s_ik * rowSums(matrix(nrow = K, sapply(1:G, FUN = function(l) alpha_c[, l] * colSums(t_jg * nu_j)[l])))) } lb_old <- lb a_old <- a0 if (is.null(a)){ if (akg == FALSE){ left_bound = sum(exp_logutilde) right_bound = sum(exp_utilde) a0 <- dicho(x = 0.01, y = abs(max(left_bound, right_bound)), threshold = 1e-08, nb = n * m, left_bound = left_bound, right_bound = right_bound) } else { left_bound = crossprod(s_ik, exp_logutilde %*% t_jg) right_bound = crossprod(s_ik, exp_utilde %*% t_jg) n_kg <- crossprod(s_ik, matrix(nrow = n, ncol = m, 1) %*% t_jg) a0 <- matrix(nrow = K, ncol = G, sapply(1:(K*G), FUN = function(g) dicho(x = 0.01, y = 100, threshold = 1e-08, nb = n_kg[g], left_bound = left_bound[g], right_bound = right_bound[g]))) } } if (akg == FALSE) { qu_param <- qu_calculation(s_ik = s_ik, t_jg = t_jg, x = x, mu_i = mu_i, nu_j = nu_j, alpha_c = alpha_c, a = a0) } else { qu_param <- qukg_calculation(s_ik = s_ik, t_jg = t_jg, x = x, mu_i = mu_i, nu_j = nu_j, alpha_c = alpha_c, a = a0) } alpha_c <- alpha_calculation(s_ik = s_ik, t_jg = t_jg, nu_j = nu_j, mu_i = mu_i, K = K, G = G, x = x, exp_utilde = qu_param$exp_utilde) lb_out <- lb_calculation(x = x, qu_param = qu_param, s_ik = s_ik, pi_c = pi_c, t_jg = t_jg, rho_c = rho_c, mu_i = mu_i, nu_j = nu_j, alpha_c = alpha_c, a = a0, akg = akg) lb <- lb_out$lb if (j > 1){ crit <- abs((lb - lb_old) / lb_old) } lbtt <- c(lbtt, lb) } colclass <- apply(t_jg, 1, which.max) rowclass <- apply(s_ik, 1, which.max) strategy <- list(akg = akg, cvg_lim = cvg_lim) parameters <- list(alpha = alpha_c, pi = pi_c, rho = rho_c, mu_i = mu_i, nu_j = nu_j, a = a0) info <- list(s_ik = s_ik, t_jg = t_jg, exp_logutilde = qu_param$exp_logutilde, exp_utilde = qu_param$exp_utilde, lb = lb, ent_ZW = lb_out$ent_ZW, nbiter = j, lbtt = lbtt, a_tilde = qu_param$a_tilde, b_tilde = qu_param$b_tilde) output <- list(data = x, K = K, G = G, classification = list(rowclass = rowclass, colclass = colclass), strategy = strategy, parameters = parameters, info = info) class(output) <- append(class(output),"cobiclustering") return(output) }
NULL setGeneric('get_indicators', function(inputs, outputs, ...) standardGeneric('get_indicators')) setMethod('get_indicators', signature(inputs="LeMans_param", outputs='LeMans_outputs'), function(inputs, outputs, species=1:dim(outputs@N)[2], time_steps=1:dim(outputs@N)[3], prob=0.5, length_LFI=40) { return(get_indicators(wgt=inputs@wgt, mid=inputs@mid, l_bound=inputs@l_bound, u_bound=inputs@u_bound, Linf=inputs@Linf, N=outputs@N, species=species, time_steps=time_steps, species_names=inputs@species_names, prob=prob, length_LFI=length_LFI)) }) setMethod('get_indicators', signature(inputs="LeMans_param", outputs='missing'), function(inputs, N, species=1:dim(N)[2], time_steps=1:dim(N)[3], prob=0.5, length_LFI=40) { return(get_indicators(wgt=inputs@wgt, mid=inputs@mid, l_bound=inputs@l_bound, u_bound=inputs@u_bound, Linf=inputs@Linf, N=N, species=species, time_steps=time_steps, species_names=inputs@species_names, prob=prob, length_LFI=length_LFI)) }) setMethod('get_indicators', signature(inputs="missing", outputs='LeMans_outputs'), function(wgt, mid, l_bound, u_bound, Linf, outputs, species=1:dim(outputs@N)[2], time_steps=1:dim(outputs@N)[3], species_names=NULL, prob=0.5, length_LFI=40) { return(get_indicators(wgt=wgt, mid=mid, l_bound=l_bound, u_bound=u_bound, Linf=Linf, N=outputs@N, species=species, time_steps=time_steps, species_names=species_names, prob=prob, length_LFI=length_LFI)) }) setMethod('get_indicators', signature(inputs="missing", outputs='missing'), function(wgt, mid, l_bound, u_bound, Linf, N, species=1:dim(N)[2], time_steps=1:dim(N)[3], species_names=NULL, prob=0.5, length_LFI=40) { ret <- list() ret[["LFI"]] <- get_LFI(wgt=wgt, l_bound=l_bound, u_bound=u_bound, N=N, species=species, time_steps=time_steps, species_names=species_names, length_LFI=length_LFI) ret[["MML"]] <- get_MML(wgt=wgt, Linf=Linf, N=N, species=species, time_steps=time_steps, species_names=species_names) ret[["TYL"]] <- get_TyL(wgt=wgt, mid=mid, N=N, species=species, time_steps=time_steps, species_names=species_names) ret[["LQ"]] <- get_LQ(wgt=wgt, u_bound=u_bound, N=N, species=species, time_steps=time_steps, species_names=species_names, prob=prob) return(ret) }) setGeneric('get_LFI', function(inputs, outputs, ...) standardGeneric('get_LFI')) setMethod('get_LFI', signature(inputs="LeMans_param", outputs='LeMans_outputs'), function(inputs, outputs, species=1:dim(outputs@N)[2], time_steps=1:dim(outputs@N)[3], length_LFI=40) { return(get_LFI(wgt=inputs@wgt, l_bound=inputs@l_bound, u_bound=inputs@u_bound, N=outputs@N,species=species, time_steps=time_steps, species_names=inputs@species_names, length_LFI=length_LFI)) }) setMethod('get_LFI', signature(inputs="LeMans_param", outputs='missing'), function(inputs, N, species=1:dim(N)[2], time_steps=1:dim(N)[3], length_LFI=40) { return(get_LFI(wgt=inputs@wgt, l_bound=inputs@l_bound, u_bound=inputs@u_bound, N=N, species=species, time_steps=time_steps, species_names=inputs@species_names, length_LFI=length_LFI)) }) setMethod('get_LFI', signature(inputs="missing", outputs='LeMans_outputs'), function(wgt, l_bound, u_bound, outputs, species=1:dim(outputs@N)[2], time_steps=1:dim(outputs@N)[3], species_names=NULL, length_LFI=40) { return(get_LFI(wgt=wgt, l_bound=l_bound, u_bound=u_bound, N=outputs@N, species=species, time_steps=time_steps, species_names=species_names, length_LFI=length_LFI)) }) setMethod('get_LFI', signature(inputs="missing", outputs='missing'), function(wgt, l_bound, u_bound, N, species=1:dim(N)[2], time_steps=1:dim(N)[3], species_names=NULL, length_LFI=40) { if (length(length_LFI)>1){ return(sapply(length_LFI, function(wgt, l_bound, u_bound, N, species, time_steps, species_names, length_LFI){ get_LFI(wgt=wgt, l_bound=l_bound, u_bound=u_bound, N=N, species=species, time_steps=time_steps, species_names=species_names, length_LFI=length_LFI)}, wgt=wgt, l_bound=l_bound, u_bound=u_bound, N=N, species=species, time_steps=time_steps, species_names=species_names)) } if (is.character(species)){ species <- sapply(species, function(species){which(species==species_names)}) } bry <- which(l_bound<=length_LFI & u_bound>length_LFI) prop <- (length_LFI-l_bound[bry])/(u_bound[bry]-l_bound[bry]) if (length(time_steps)>1){ new_n <- N[, species, time_steps] return(apply(new_n, length(dim(new_n)), calc_LFI, wgt=wgt[,species], bry=bry, prop=prop)) } new_n <- N[, species, time_steps] return(calc_LFI(new_n, wgt=wgt[, species], bry=bry, prop=prop)) }) setGeneric('get_MML', function(inputs, outputs, ...) standardGeneric('get_MML')) setMethod('get_MML', signature(inputs="LeMans_param", outputs='LeMans_outputs'), function(inputs,outputs, species=1:dim(outputs@N)[2], time_steps=1:dim(outputs@N)[3]) { return(get_MML(wgt=inputs@wgt, Linf=inputs@Linf, N=outputs@N, species=species, time_steps=time_steps, species_names=inputs@species_names)) }) setMethod('get_MML', signature(inputs="LeMans_param", outputs='missing'), function(inputs,N, species=1:dim(N)[2], time_steps=1:dim(N)[3]) { return(get_MML(wgt=inputs@wgt, Linf=inputs@Linf, N=N, species=species, time_steps=time_steps, species_names=inputs@species_names)) }) setMethod('get_MML', signature(inputs="missing", outputs='LeMans_outputs'), function(wgt, Linf, outputs, species=1:dim(outputs@N)[2], time_steps=1:dim(outputs@N)[3], species_names=NULL) { return(get_MML(wgt=wgt, Linf=Linf, N=outputs@N, species=species, time_steps=time_steps, species_names=species_names)) }) setMethod('get_MML', signature(inputs="missing", outputs='missing'), function(wgt, Linf, N, species=1:dim(N)[2], time_steps=1:dim(N)[3], species_names=NULL) { if (is.character(species)){ species <- sapply(species, function(species){which(species==species_names)}) } if (length(species)==1){ return(rep(Linf[species], length(time_steps))) } if (length(time_steps)>1){ new_n <- N[, species, time_steps] biomass <- apply(new_n, length(dim(new_n)), calc_biomass, wgt=wgt[, species]) return(apply(biomass, 2, weighted.mean, x=Linf[species])) } new_n <- N[, species, time_steps] return(weighted.mean(Linf[species], w=calc_biomass(new_n, wgt=wgt[, species]))) }) setGeneric('get_TyL', function(inputs, outputs, ...) standardGeneric('get_TyL')) setMethod('get_TyL', signature(inputs="LeMans_param", outputs='LeMans_outputs'), function(inputs, outputs, species=1:dim(outputs@N)[2], time_steps=1:dim(outputs@N)[3]) { return(get_TyL(wgt=inputs@wgt, mid=inputs@mid, N=outputs@N, species=species, time_steps=time_steps, species_names=inputs@species_names)) }) setMethod('get_TyL', signature(inputs="LeMans_param", outputs='missing'), function(inputs, N, species=1:dim(N)[2], time_steps=1:dim(N)[3]) { return(get_TyL(wgt=inputs@wgt, mid=inputs@mid, N=N, species=species, time_steps=time_steps, species_names=inputs@species_names)) }) setMethod('get_TyL', signature(inputs="missing", outputs='LeMans_outputs'), function(wgt, mid, outputs, species=1:dim(outputs@N)[2], time_steps=1:dim(outputs@N)[3], species_names=NULL) { return(get_TyL(wgt=wgt, mid=mid, N=outputs@N, species=species, time_steps=time_steps, species_names=species_names)) }) setMethod('get_TyL', signature(inputs="missing", outputs='missing'), function(wgt, mid, N, species=1:dim(N)[2], time_steps=1:dim(N)[3], species_names=NULL) { if(is.character(species)){ species <- sapply(species, function(species){which(species==species_names)}) } if (length(time_steps)>1){ new_n <- N[, species, time_steps] return(apply(new_n, length(dim(new_n)), calc_TyL, wgt=wgt[, species], mid=mid)) } new_n <- N[, species, time_steps] return(calc_TyL(new_n, wgt=wgt[, species], mid=mid)) }) setGeneric('get_LQ', function(inputs, outputs, ...) standardGeneric('get_LQ')) setMethod('get_LQ', signature(inputs="LeMans_param", outputs='LeMans_outputs'), function(inputs, outputs, species=1:dim(outputs@N)[2], time_steps=1:dim(outputs@N)[3], prob=0.5) { return(get_LQ(wgt=inputs@wgt, u_bound=inputs@u_bound, N=outputs@N, species=species, time_steps=time_steps, species_names=inputs@species_names, prob=prob)) }) setMethod('get_LQ', signature(inputs="LeMans_param", outputs='missing'), function(inputs, N, species=1:dim(N)[2], time_steps=1:dim(N)[3], prob=0.5) { return(get_LQ(wgt=inputs@wgt, u_bound=inputs@u_bound, N=N, species=species, time_steps=time_steps, species_names=inputs@species_names, prob=prob)) }) setMethod('get_LQ', signature(inputs="missing", outputs='LeMans_outputs'), function(wgt, u_bound, outputs, species=1:dim(outputs@N)[2], time_steps=1:dim(outputs@N)[3], species_names=NULL, prob=0.5) { return(get_LQ(wgt=wgt, u_bound=u_bound, N=outputs@N, species=species, time_steps=time_steps, species_names=species_names, prob=prob)) }) setMethod('get_LQ', signature(inputs="missing", outputs='missing'), function(wgt, u_bound, N, species=1:dim(N)[2], time_steps=1:dim(N)[3], species_names=NULL, prob=0.5) { if (length(prob)>1){ return(sapply(prob, function(wgt, u_bound, N, species, time_steps, species_names, prob) get_LQ(wgt=wgt, u_bound=u_bound, N=N, species=species, time_steps=time_steps, species_names=species_names, prob=prob), wgt=wgt, u_bound=u_bound, N=N, species=species, time_steps=time_steps, species_names=species_names)) } if (is.character(species)){ species <- sapply(species, function(species){which(species==species_names)}) } if (length(time_steps)>1){ new_n <- N[,species,time_steps] return(apply(new_n, length(dim(new_n)), calc_LQ, wgt=wgt[, species], u_bound=u_bound, prob=prob)) } new_n <- N[,species,time_steps] return(calc_LQ(new_n, wgt=wgt[,species], u_bound=u_bound, prob=prob)) })
linapprox <- function(xyin, xout) { x <- sort(unique(c(0, xyin[, 1]))) y <- as.vector(tapply(c(0, xyin[, 2]), c(0, xyin[, 1]), max)) n <- length(x) xmax <- max(xout) if (max(x) < xmax) { x <- c(x, xmax) y <- c(y, y[n-1] + (xmax - x[n-1])/(x[n] - x[n-1]) * (y[n] - y[n-1])) } approx(x, y, xout)$y }
dim.trackdata <- function(x) { c(nrow(x$index), ncol(x$data)) } "dimnames.trackdata" <- function(x) { trackdata = x dimnames(trackdata$data) }
emoji_p <- function(x, names = c("laughing", "joy", "grin", "smile", "thinking", "poop"), cutpoints = c(1e-5, 0.001, 0.01, 0.05, 0.1), legend = FALSE) { stopifnot(is.numeric(x)) if (length(names) != (length(cutpoints) + 1)) { stop("`names` and `cutpoints` must be the same length.") } cutpoints <- c(0, cutpoints, 1) symbols <- vapply(names, emoji, character(1), USE.NAMES = FALSE) if (legend) { res <- stats::symnum( x, corr = FALSE, na = FALSE, cutpoints = cutpoints, symbols = symbols ) } else { res <- symbols[as.numeric(cut(x, cutpoints))] } res }
add_variable.abstract_model <- function(.model, .variable, ..., type = "continuous", lb = -Inf, ub = Inf) { add_variable_( .model = .model, .variable = lazyeval::as.lazy( substitute(.variable), parent.frame() ), type = type, lb = lb, ub = ub, .dots = lazyeval::lazy_dots(...) ) } set_objective.abstract_model <- function(model, expression, sense = c("max", "min")) { set_objective_(model, expression = lazyeval::as.lazy( substitute(expression), parent.frame() ), sense = sense ) } add_constraint.abstract_model <- function(.model, .constraint_expr, ..., .show_progress_bar = TRUE) { add_constraint_(.model, lazyeval::as.lazy( substitute(.constraint_expr), parent.frame() ), .dots = lazyeval::lazy_dots(...), .show_progress_bar = .show_progress_bar ) } set_bounds.abstract_model <- function(.model, .variable, ..., lb = NULL, ub = NULL) { set_bounds_( .model = .model, .variable = lazyeval::as.lazy( substitute(.variable), parent.frame() ), lb = lb, ub = ub, .dots = lazyeval::lazy_dots(...) ) } solve_model.abstract_model <- function(model, solver) { if (!is.function(solver)) { stop(paste0( "Solver is not a function Model -> Solution.\n", "Take a look at the examples on the website on how to call", " solve_model." )) } solver(model) }
setMethod('t', signature(x='RasterLayer'), function(x) { r <- raster(x) e <- eold <- extent(r) e@xmin <- eold@ymin e@xmax <- eold@ymax e@ymin <- eold@xmin e@ymax <- eold@xmax extent(r) <- e dim(r) <- c(ncol(x), nrow(x)) if (! hasValues(x)) { return(r) } if (canProcessInMemory(x)) { return(setValues(r, t(as.matrix(x)))) } else { tr <- blockSize(r) pb <- pbCreate(tr$n) r <- writeStart(r, filename=rasterTmpFile(), overwrite=TRUE ) for (i in 1:tr$n) { v <- getValuesBlock(x, row=1, nrows=r@ncols, col=tr$row[i], ncols=tr$nrows[i]) v <- as.vector(matrix(v, ncol=tr$nrows[i], byrow=TRUE)) r <- writeValues(r, v, tr$row[i]) pbStep(pb, i) } r <- writeStop(r) pbClose(pb) return(r) } } ) setMethod('t', signature(x='RasterStackBrick'), function(x) { b <- brick(x, values=FALSE) e <- eold <- extent(b) e@xmin <- eold@ymin e@xmax <- eold@ymax e@ymin <- eold@xmin e@ymax <- eold@xmax extent(b) <- e dim(b) <- c(ncol(b), nrow(b), nlayers(b)) if (! hasValues(x)) { return(b) } if (canProcessInMemory(x)) { x <- as.array(x, transpose=TRUE) return( brick(x, xmn=xmin(b), xmx=xmax(b), ymn=ymin(b), ymx=ymax(b), crs=projection(b)) ) } else { tr <- blockSize(b) pb <- pbCreate(tr$n) b <- writeStart(b, filename=rasterTmpFile(), overwrite=TRUE ) for (i in 1:tr$n) { v <- getValuesBlock(x, row=1, nrows=b@ncols, col=tr$row[i], ncols=tr$nrows[i]) for (j in 1:ncol(v)) { v[,j] <- as.vector(matrix(v[,j], ncol=tr$nrows[i], byrow=TRUE)) } b <- writeValues(b, v, tr$row[i]) pbStep(pb, i) } b <- writeStop(b) pbClose(pb) return(b) } } )
context("test-update_node.R") dkanr_setup(url = 'https://newdatacatalogstg.worldbank.org/') meta <- list() meta$title <- jsonlite::unbox("NEW title") meta <- jsonlite::toJSON(meta, pretty = TRUE) node_id <- 126571 httptest::with_mock_api({ test_that("Node is correctly created and returned", { resp <- update_node(nid = node_id, body = meta, as = "json") expect_is(resp, "character") resp <- update_node(nid = node_id, body = meta, as = "list") expect_true(is.list(resp)) }) test_that("JSON is returned by default", { resp <- update_node(nid = node_id, body = meta) expect_is(resp, "character") }) })
if(nzchar(Sys.getenv('NOT_CRAN'))) stopifnot(grepl('tests', basename(getwd())), exists("NAME")) rdsf <- function(x) readRDS(file.path("_helper", "objs", NAME, sprintf("%s.rds", x))) txtf <- function(x) readLines(file.path("_helper", "objs", NAME, sprintf("%s.txt", x))) srdsf <- function(x, i) saveRDS(x, file.path("_helper", "objs", NAME, sprintf("%s.rds", i)), version=2) stxtf <- function(x, i) writeLines(x, file.path("_helper", "objs", NAME, sprintf("%s.txt", i))) library(diffobj) all.opts <- c( list( useFancyQuotes=FALSE, diffobj.format="ansi8", diffobj.color.mode="yb", diffobj.pager="off", width=80L, encoding="UTF-8", warnPartialMatchArgs=TRUE, warnPartialMatchAttr=TRUE, warnPartialMatchDollar=TRUE ) ) options(c(diffobj_set_def_opts(), all.opts)) if(R.version$major >= 4 || R.version$major >= 3 && R.version$minor >= "5.0") suppressWarnings(RNGversion("3.5.2")); source("_helper/commonobjects.R")
mcmcplot <- function(mcmcout, parms=NULL, regex=NULL, random=NULL, leaf.marker="[\\[_]", dir=tempdir(), filename="MCMCoutput", extension="html", title=NULL, heading=title, col=NULL, lty=1, xlim=NULL, ylim=NULL, style=c("gray", "plain"), greek=FALSE){ if (is.null(title)) title <- paste("MCMC Plots: ", deparse(substitute(mcmcout)), sep="") if (is.null(heading)) heading <- title style <- match.arg(style) current.devices <- dev.list() on.exit( sapply(dev.list(), function(dev) if(!(dev %in% current.devices)) dev.off(dev)) ) mcmcout <- convert.mcmc.list(mcmcout) nchains <- length(mcmcout) if (is.null(col)){ col <- mcmcplotsPalette(nchains) } css.file <- system.file("MCMCoutput.css", package="mcmcplots") css.file <- paste("file:///", css.file, sep="") htmlfile <- .html.begin(dir, filename, extension, title=title, cssfile=css.file) if (is.null(varnames(mcmcout))){ warning("Argument 'mcmcout' did not have valid variable names, so names have been created for you.") varnames(mcmcout) <- varnames(mcmcout, allow.null=FALSE) } parnames <- parms2plot(varnames(mcmcout), parms, regex, random, leaf.marker, do.unlist=FALSE) if (length(parnames)==0) stop("No parameters matched arguments 'parms' or 'regex'.") np <- length(unlist(parnames)) cat('\n<div id="outer">\n', file=htmlfile, append=TRUE) cat('<h1>', heading, '</h1>', sep="", file=htmlfile, append=TRUE) cat('<div id="toc">\n', file=htmlfile, append=TRUE) cat('\n<h2>Table of Contents</h2>', file=htmlfile, append=TRUE) cat('<ul id="toc_items">\n', file=htmlfile, append=TRUE) for (group.name in names(parnames)) { cat(sprintf('<li class="toc_item"><a href=" } cat('</ul></div>\n', file=htmlfile, append=TRUE) cat('<div class="main">\n', file=htmlfile, append=TRUE) htmlwidth <- 640 htmlheight <- 480 for (group.name in names(parnames)) { cat(sprintf('<h2><a name="%s">Plots for %s</a></h2>\n', group.name, group.name), file=htmlfile, append=TRUE) for (p in parnames[[group.name]]) { pctdone <- round(100*match(p, unlist(parnames))/np) cat("\r", rep(" ", getOption("width")), sep="") cat("\rPreparing plots for ", group.name, ". ", pctdone, "% complete.", sep="") gname <- paste(p, ".png", sep="") png(file.path(dir, gname), width=htmlwidth, height=htmlheight) plot_err <- tryCatch({ mcmcplot1(mcmcout[, p, drop=FALSE], col=col, lty=lty, xlim=xlim, ylim=ylim, style=style, greek=greek) }, error=function(e) {e}) dev.off() if (inherits(plot_err, "error")) { cat(sprintf('<p class="plot_err">%s. %s</p>', p, plot_err), file=htmlfile, append=TRUE) } else { .html.img(file=htmlfile, class="mcmcplot", src=gname, width=htmlwidth, height=htmlheight) } } } cat("\r", rep(" ", getOption("width")), "\r", sep="") cat('\n</div>\n</div>\n', file=htmlfile, append=TRUE) .html.end(htmlfile) full.name.path <- paste("file://", htmlfile, sep="") browseURL(full.name.path) invisible(full.name.path) }
fn_df_nlevels <- function(d){ sapply(names(d), FUN = function(x)nlevels(d[,x])) } fn_df_discretize <- function(d, cols = 1:NCOL(d)){ for (i in cols){ d[,i] <- factor(d[,i]) } return(d) } fn_df_levels <- function(d, cols = 1:NCOL(d)){ res <- list() for (i in cols){ res[[names(d)[i]]] <- levels(d[1,i]) } return(res) } fn_numeric_to_factor <- function( x, list_levls = rep(list(1:2), NCOL(x)), cols = 1:NCOL(x), missing = -1, offset = 0){ x <- as.data.frame(x) for (c in cols){ lv <- list_levls[[c]] nlv <- length(lv) x[,c] <- factor(x[,c], levels = 1:nlv + offset) levels(x[,c]) <- lv } return(x) } fn_apply_levels_from <- function(dest, from, cols = 1:NCOL(from)){ dest <- as.data.frame(dest) lev <- sapply(cols, function(x)levels(from[1,x]), simplify=FALSE) for (i in cols){ dest[,i] <- factor(dest[,i], levels = lev[[i]]) } names(dest[,cols]) <- names(from[,cols]) return(dest) } fn_dataframe2num_matrix <- function(d, offset = -1, missing = -1, C_style= FALSE){ offset <- as.integer(offset); missing <- as.integer(missing) r <- data.matrix(d) + offset r[is.na(r)] <- missing if(C_style){ r <- t(r) } class(r) <- c('matrix', 'DMVmatrix') attr(r, 'levels') <- fn_df_levels(d) attr(r, 'na.code') <- missing attr(r, 'offset') <- offset attr(r, 'C_style') <- C_style return(r) } fn_df_2_C_Data <- function(df, prefix = 'array', filename = 'console'){ breakdown <- fn_dataframe2num_matrix(df, offset = -1, missing=-1, C_style=T) n <- NROW(df) J <- NCOL(df) l1 <- paste('int ',prefix,'_data_raw[]= {', paste(breakdown, collapse=', '), '};\n', sep='') l2 <- paste('int ', prefix,'_levels[]= {', paste(fn_df_nlevels(df), collapse=', '), '};\n', sep ='') l3 <- paste('int ',prefix, '_n_glob = ', n,';\n', 'int ', prefix,'_J_glob=', J,';\n', sep='') if(filename != 'console'){ fl = file(description = filename, open = 'w') writeLines(strwrap(paste(l1, l2, l3, sep ='\n')), con = fl) close(fl) } else { writeLines(strwrap(paste(l1, l2, l3, sep ='\n'))) } }
options(Encoding="UTF-8") knitr::opts_chunk$set( fig.width = 8, fig.height = 5, collapse = TRUE, comment = " ) library(segclust2d) data(simulshift) library(ggplot2) tmpdf <- simulshift[seq(1,30000, by = 100),] tmpdf$class <- factor(rep(c(1,2,3), each = 102)[1:300]) ggplot(tmpdf)+ geom_path(aes(x = x, y = y))+ geom_point(aes(x= x, y = y, col = factor(class)))+ scale_color_discrete("home-range")+ theme(legend.position= "top") data(simulmode) simulmode$abs_spatial_angle <- abs(simulmode$spatial_angle) simulmode <- simulmode[!is.na(simulmode$abs_spatial_angle), ] library(ggplot2) tmpdf <- simulmode tmpdf$class <- factor(rep(c(1,2,3), each = 20, 5)) ggplot(tmpdf)+ geom_path(aes(x = x, y = y))+ geom_point(aes(x= x, y = y, col = factor(class)))+ scale_color_discrete("behavioural mode")+ theme(legend.position= "top") cli::cli_alert_danger("Argument {cli::col_red('type')} \\ is deprecated and should not be used") cli::cli_alert_danger("Argument {cli::col_red('coord.names')} \\ is deprecated and should not be used") coord.names <- c("x","y") cli::cli_alert("Please use instead \\ {.field seg.var = {deparse(coord.names)}} and \\ {.field scale.variable = FALSE}") shift_seg <- segmentation(simulshift, lmin = 240, Kmax = 25, subsample_by = 60) Kmax = 25 cli::cli_alert_warning( "Adjusting Kmax so that lmin*Kmax < nrow(x). Now, \\ {cli::col_yellow('Kmax = ', Kmax)}") cli::cli_alert_danger( "lmin*Kmax > nrow(x) and Kmax cannot be adjusted. \\ Please provide lower values for lmin") stop("lmin*Kmax > nrow(x)") cli::cli_alert_success("Best segmentation estimated with \\ {shift_seg$Kopt.lavielle} segments, \\ according to Lavielle's criterium") cli::cli_text(cli::col_grey( 'Other number of segments may be selected by looking for likelihood breaks with plot_likelihood()')) cli::cli_text(cli::col_grey( 'Results of the segmentation may be explored with plot() and segmap()')) plot_likelihood(shift_seg) mode_seg <- segmentation(simulmode, lmin = 10, Kmax = 20, seg.var = c("speed","abs_spatial_angle"), scale.variable = TRUE) plot_likelihood(mode_seg) mode_segclust <- segclust(simulmode, Kmax = 20, lmin=10, ncluster = c(2,3), seg.var = c("speed","abs_spatial_angle")) cli::cli_alert_success( "Best segmentation/clustering estimated with \\ {mode_segclust$ncluster.BIC} clusters and \\ {mode_segclust$Kopt.BIC[mode_segclust$ncluster.BIC]} segments according to BIC") cli::cli_text(cli::col_grey( '{cli::symbol$arrow_right} Number of clusters should preferentially be selected according to biological knowledge. Exploring the BIC plot with plot_BIC() can also provide advice to select the number of clusters.')) cli::cli_text(cli::col_grey( '{cli::symbol$arrow_right} Once number of clusters is selected, \\ the number of segments can be selected according to BIC.')) cli::cli_text(cli::col_grey( '{cli::symbol$arrow_right} Results of the segmentation/clustering may further be explored with plot() and segmap()')) plot_BIC(mode_segclust) mode_segclust <- segclust(simulmode, Kmax = 20, lmin=10, ncluster = 2:5, seg.var = c("speed","abs_spatial_angle"), scale.variable = TRUE) plot_BIC(mode_segclust) plot(mode_segclust, ncluster = 3) plot(mode_segclust, ncluster = 4)
test_that("system v semaphores work", { skip_on_os("windows") sid <- semv_open(1) semv_wait(sid) semv_post(sid) semv_wait(sid) semv_unlink(sid) expect_error(semv_wait(sid)) expect_error(semv_post(sid)) expect_error(semv_unlink(sid)) expect_error(semv_open(-1)) }) test_that("undo works for system v semaphores", { skip_on_os("windows") sid <- semv_open(1) job <- parallel::mcparallel({semv_wait(sid); semv_wait(sid); TRUE}) expect_null(parallel::mccollect(job, wait = FALSE, timeout = 1)) parallel:::mckill(job, signal = tools::SIGKILL) semv_wait(sid) semv_unlink(sid) }) test_that("system v semaphores are interruptible", { skip_on_os("windows") sid <- semv_open(0) ppid <- Sys.getpid() job <- parallel::mcparallel({Sys.sleep(1); system(paste0("kill -", tools::SIGINT, " ", ppid))}) expect_true(tryCatch(semv_wait(sid), interrupt = function(i) TRUE)) expect_identical(parallel::mccollect(job)[[1]], 0L) semv_unlink(sid) })
if (getRversion() >= "2.15.1") utils::globalVariables(c(".")) factor_drop <- function(f) { factor_levels <- levels(f) factor(f, levels = setdiff(factor_levels, factor_levels[table(f) == 0])) } batchmean_simple <- function(data, markers) { values <- data %>% dplyr::select(.data$.id, .data$.batchvar, {{ markers }}) %>% dplyr::group_by(.data$.batchvar) %>% dplyr::summarize_at( .vars = dplyr::vars(-.data$.id), .funs = mean, na.rm = TRUE ) %>% dplyr::mutate_at( .vars = dplyr::vars(-.data$.batchvar), .funs = ~ . - mean(., na.rm = TRUE) ) %>% tidyr::pivot_longer( col = c(-.data$.batchvar), names_to = "marker", values_to = "batchmean" ) return(list(list(values = values, models = NULL))) } batchmean_standardize <- function(data, markers, confounders) { res <- data %>% tidyr::pivot_longer( cols = {{ markers }}, names_to = "marker", values_to = "value" ) %>% dplyr::filter(!is.na(.data$value)) %>% dplyr::group_by(.data$marker) %>% tidyr::nest(data = c(-.data$marker)) %>% dplyr::mutate( data = purrr::map( .x = .data$data, .f = ~ .x %>% dplyr::mutate(.batchvar = factor_drop(.data$.batchvar)) ), model = purrr::map( .x = .data$data, .f = ~ stats::lm( formula = stats::as.formula(paste0( "value ~ .batchvar +", paste( confounders, collapse = " + ", sep = " + " ) )), data = .x ) ), .batchvar = purrr::map( .x = .data$data, .f = ~ .x %>% dplyr::pull(.data$.batchvar) %>% levels() ) ) values <- res %>% tidyr::unnest(cols = .data$.batchvar) %>% dplyr::mutate( data = purrr::map2( .x = .data$data, .y = .data$.batchvar, .f = ~ .x %>% dplyr::mutate(.batchvar = .y) ), pred = purrr::map2(.x = .data$model, .y = .data$data, .f = stats::predict) ) %>% dplyr::select(.data$marker, .data$.batchvar, .data$pred) %>% tidyr::unnest(cols = .data$pred) %>% dplyr::group_by(.data$marker, .data$.batchvar) %>% dplyr::summarize(batchmean = mean(.data$pred, na.rm = TRUE)) %>% dplyr::group_by(.data$marker) %>% dplyr::mutate(markermean = mean(.data$batchmean)) %>% dplyr::ungroup() %>% dplyr::transmute( marker = .data$marker, .batchvar = .data$.batchvar, batchmean = .data$batchmean - .data$markermean ) return(list(list( models = res %>% dplyr::ungroup() %>% dplyr::pull("model"), values = values ))) } batchmean_ipw <- function( data, markers, confounders, truncate = c(0.025, 0.975) ) { ipwbatch <- function(data, variable, confounders, truncate) { data <- data %>% dplyr::rename(variable = dplyr::one_of(variable)) %>% dplyr::filter(!is.na(.data$variable)) %>% dplyr::mutate(.batchvar = factor_drop(.data$.batchvar)) res <- data %>% tidyr::nest(data = dplyr::everything()) %>% dplyr::mutate( num = purrr::map( .x = .data$data, .f = ~ nnet::multinom( formula = .batchvar ~ 1, data = .x, trace = FALSE ) ), den = purrr::map( .x = .data$data, .f = ~ nnet::multinom( formula = stats::as.formula( paste(".batchvar ~", confounders) ), data = .x, trace = FALSE ) ) ) values <- res %>% dplyr::mutate_at( .vars = dplyr::vars(.data$num, .data$den), .funs = ~ purrr::map(.x = ., .f = stats::predict, type = "probs") %>% purrr::map(.x = ., .f = tibble::as_tibble) %>% purrr::map2( .x = ., .y = .data$data, .f = ~ .x %>% dplyr::mutate(.batchvar = .y %>% purrr::pluck(".batchvar")) ) ) if (length(levels(factor(data$.batchvar))) == 2) { values <- values %>% dplyr::mutate_at( .vars = dplyr::vars(.data$num, .data$den), .funs = ~ purrr::map(.x = ., .f = ~ .x %>% dplyr::mutate( probs = dplyr::if_else( .data$.batchvar == levels(factor(.data$.batchvar))[1], true = 1 - .data$value, false = .data$value ) ) %>% dplyr::pull(.data$probs)) ) } else { values <- values %>% dplyr::mutate_at( .vars = dplyr::vars(.data$num, .data$den), .funs = ~ purrr::map( .x = ., .f = ~ .x %>% tidyr::pivot_longer( -.data$.batchvar, names_to = "batch", values_to = "prob" ) %>% dplyr::filter(.data$batch == .data$.batchvar) %>% dplyr::pull(.data$prob) ) ) } values <- values %>% tidyr::unnest(cols = c(.data$data, .data$num, .data$den)) %>% dplyr::mutate( sw = .data$num / .data$den, trunc = dplyr::case_when( .data$sw < stats::quantile(.data$sw, truncate[1]) ~ stats::quantile(.data$sw, truncate[1]), .data$sw > stats::quantile(.data$sw, truncate[2]) ~ stats::quantile(.data$sw, truncate[2]), TRUE ~ .data$sw ) ) xlev <- unique(data %>% dplyr::pull(.data$.batchvar)) values <- geepack::geeglm( formula = variable ~ .batchvar, data = values, weights = values$trunc, id = values$.id, corstr = "independence" ) %>% broom::tidy() %>% dplyr::filter(!stringr::str_detect( string = .data$term, pattern = "(Intercept)" )) %>% dplyr::mutate(term = as.character( stringr::str_remove_all( string = .data$term, pattern = ".batchvar" ) )) %>% dplyr::full_join(tibble::tibble(term = as.character(xlev)), by = "term") %>% dplyr::mutate( estimate = dplyr::if_else( is.na(.data$estimate), true = 0, false = .data$estimate ), estimate = .data$estimate - mean(.data$estimate), marker = variable, term = .data$term ) %>% dplyr::arrange(.data$term) %>% dplyr::select(.data$marker, .batchvar = .data$term, batchmean = .data$estimate) list(values = values, models = res %>% dplyr::pull(.data$den)) } purrr::map( .x = data %>% dplyr::select({{ markers }}) %>% names(), .f = ipwbatch, data = data %>% dplyr::filter(dplyr::across(dplyr::all_of(confounders), ~ !is.na(.x))), truncate = truncate, confounders = paste(confounders, sep = " + ", collapse = " + ") ) } batchrq <- function(data, variable, confounders, tau, rq_method) { res <- data %>% dplyr::rename(variable = {{ variable }}) %>% dplyr::filter(!is.na(.data$variable)) %>% dplyr::mutate(.batchvar = factor_drop(.data$.batchvar)) %>% tidyr::nest(data = dplyr::everything()) %>% dplyr::mutate( un = purrr::map( .x = .data$data, .f = ~ quantreg::rq( formula = variable ~ .batchvar, data = .x, tau = tau, method = rq_method ) ), ad = purrr::map( .x = .data$data, .f = ~ quantreg::rq( formula = stats::reformulate( response = "variable", termlabels = c(".batchvar", confounders) ), data = .x, tau = tau, method = rq_method ) ), .batchvar = purrr::map( .x = .data$data, .f = ~ .x %>% dplyr::pull(.data$.batchvar) %>% levels() ) ) values <- res %>% tidyr::unnest(cols = .data$.batchvar) %>% dplyr::mutate( data = purrr::map2( .x = .data$data, .y = .data$.batchvar, .f = ~ .x %>% dplyr::mutate(.batchvar = .y) ), un = purrr::map2(.x = .data$un, .y = .data$data, .f = stats::predict), ad = purrr::map2(.x = .data$ad, .y = .data$data, .f = stats::predict), un = purrr::map( .x = .data$un, .f = tibble::as_tibble, .name_repair = ~ c("un_lo", "un_hi") ), ad = purrr::map( .x = .data$ad, .f = tibble::as_tibble, .name_repair = ~ c("ad_lo", "ad_hi") ), all_lo = purrr::map_dbl( .x = .data$data, .f = ~ stats::quantile(.x$variable, probs = 0.25) ), all_hi = purrr::map_dbl( .x = .data$data, .f = ~ stats::quantile(.x$variable, probs = 0.75) ), all_iq = .data$all_hi - .data$all_lo ) %>% dplyr::select( .data$.batchvar, .data$un, .data$ad, .data$all_lo, .data$all_hi, .data$all_iq ) %>% tidyr::unnest(cols = c(.data$un, .data$ad)) %>% dplyr::group_by(.data$.batchvar) %>% dplyr::summarize( un_lo = stats::quantile(.data$un_lo, probs = 0.25), ad_lo = stats::quantile(.data$ad_lo, probs = 0.25), un_hi = stats::quantile(.data$un_hi, probs = 0.75), ad_hi = stats::quantile(.data$ad_hi, probs = 0.75), all_lo = stats::median(.data$all_lo), all_iq = stats::median(.data$all_iq) ) %>% dplyr::mutate( un_iq = .data$un_hi - .data$un_lo, ad_iq = .data$ad_hi - .data$ad_lo, marker = {{ variable }} ) models <- res %>% dplyr::pull(.data$ad) return(tibble::lst(values, models)) } batch_quantnorm <- function(var, batch) { tibble::tibble(var, batch) %>% tibble::rowid_to_column() %>% tidyr::pivot_wider(names_from = batch, values_from = var) %>% dplyr::select(-.data$rowid) %>% dplyr::select_if(~ !all(is.na(.))) %>% as.matrix() %>% limma::normalizeQuantiles() %>% tibble::as_tibble() %>% dplyr::transmute( result = purrr::pmap_dbl( .l = ., .f = function(...) { mean(c(...), na.rm = TRUE) } ), result = dplyr::if_else( is.nan(.data$result), true = NA_real_, false = .data$result ) ) %>% dplyr::pull(.data$result) } adjust_batch <- function( data, markers, batch, method = c( "simple", "standardize", "ipw", "quantreg", "quantnorm" ), confounders = NULL, suffix = "_adjX", ipw_truncate = c(0.025, 0.975), quantreg_tau = c(0.25, 0.75), quantreg_method = "fn" ) { method <- as.character(dplyr::enexpr(method)) allmethods <- c("simple", "standardize", "ipw", "quantreg", "quantnorm") data_orig <- data %>% dplyr::mutate(.id = dplyr::row_number()) data <- data_orig %>% dplyr::rename(.batchvar = {{ batch }}) %>% dplyr::mutate( .batchvar = factor(.data$.batchvar), .batchvar = factor_drop(.data$.batchvar) ) %>% dplyr::select(.data$.id, .data$.batchvar, {{ markers }}, {{ confounders }}) confounders <- data %>% dplyr::select({{ confounders }}) %>% names() if (!(method[1] %in% allmethods)) { stop(paste0( "Method '", method[1], "' is not implemented.\nAvailable methods: ", paste(allmethods, collapse = ", "), ".\n", "See: help(\"adjust_batch\")." )) } if (method %in% c("simple", "quantnorm") & data %>% dplyr::select({{ confounders }}) %>% ncol() > 0) { message(paste0( "Batch effect correction via 'method = ", method, "' was requested.\n This method does not support ", "adjustment for confounders (", paste(dplyr::enexpr(confounders), sep = ", ", collapse = ", "), "). They will be ignored." )) data <- data %>% dplyr::select(-dplyr::any_of({{ confounders }})) confounders <- NULL } if (method %in% c("simple", "standardize", "ipw")) { if (method %in% c("standardize", "ipw") & data %>% dplyr::select({{ confounders }}) %>% ncol() == 0) { message(paste0( "Batch effect correction via 'method = ", method, "' was requested,\nbut no valid confounders were provided. ", "'method = simple' is used instead." )) method <- "simple" } res <- switch( method, "simple" = batchmean_simple(data = data, markers = {{ markers }}), "standardize" = batchmean_standardize( data = data, markers = {{ markers }}, confounders = {{ confounders }} ), "ipw" = batchmean_ipw( data = data, markers = {{ markers }}, confounders = {{ confounders }}, truncate = ipw_truncate ) ) adjust_parameters <- purrr::map_dfr(.x = res, .f = ~ purrr::pluck(.x, "values")) method_indices <- c("simple" = 2, "standardize" = 3, "ipw" = 4) if (suffix == "_adjX") { suffix <- paste0("_adj", method_indices[method[1]]) } values <- data %>% dplyr::select(-dplyr::any_of({{ confounders }})) %>% tidyr::pivot_longer( cols = c(-.data$.id, -.data$.batchvar), names_to = "marker", values_to = "value" ) %>% dplyr::left_join(adjust_parameters, by = c("marker", ".batchvar")) %>% dplyr::mutate( value_adjusted = .data$value - .data$batchmean, marker = paste0(.data$marker, suffix) ) %>% dplyr::select(-.data$batchmean, -.data$value) } if (method == "quantreg") { res <- purrr::map( .x = data %>% dplyr::select({{ markers }}) %>% names(), .f = batchrq, data = data %>% dplyr::filter(dplyr::across(dplyr::all_of({{ confounders }}), ~ !is.na(.x))), confounders = dplyr::if_else( dplyr::enexpr(confounders) != "", true = paste0( "+ ", paste( dplyr::enexpr(confounders), sep = " + ", collapse = " + " ) ), false = "" ), tau = quantreg_tau, rq_method = quantreg_method ) adjust_parameters <- purrr::map_dfr(.x = res, .f = ~ purrr::pluck(.x, "values")) if (suffix == "_adjX") { suffix <- "_adj5" } values <- data %>% tidyr::pivot_longer( cols = c( -.data$.id, -.data$.batchvar, -dplyr::any_of({{ confounders }}) ), names_to = "marker", values_to = "value" ) %>% dplyr::left_join(adjust_parameters, by = c("marker", ".batchvar")) %>% dplyr::group_by(.data$marker) %>% dplyr::mutate( value_adjusted = (.data$value - .data$un_lo) / .data$un_iq * .data$all_iq * (.data$un_iq / .data$ad_iq) + .data$all_lo - .data$ad_lo + .data$un_lo, marker = paste0(.data$marker, suffix) ) %>% dplyr::select( -dplyr::any_of({{ confounders }}), -.data$value, -.data$un_lo, -.data$un_hi, -.data$ad_lo, -.data$ad_hi, -.data$un_iq, -.data$ad_iq, -.data$all_iq, -.data$all_lo ) } if (method == "quantnorm") { if (suffix == "_adjX") { suffix <- "_adj6" } values <- data %>% dplyr::select(-dplyr::any_of({{ confounders }})) %>% tidyr::pivot_longer( cols = c(-.data$.id, -.data$.batchvar), names_to = "marker", values_to = "value" ) %>% dplyr::mutate(marker = paste0(.data$marker, suffix)) %>% dplyr::group_by(.data$marker) %>% dplyr::mutate(value_adjusted = batch_quantnorm( var = .data$value, batch = .data$.batchvar )) %>% dplyr::ungroup() %>% dplyr::select(-.data$value) res <- list(list(res = NULL, models = NULL)) adjust_parameters <- tibble::tibble(marker = data %>% dplyr::select({{ markers }}) %>% names()) } values <- values %>% tidyr::pivot_wider( names_from = .data$marker, values_from = .data$value_adjusted ) %>% dplyr::select(-.data$.batchvar) %>% dplyr::left_join(x = data_orig, by = ".id") %>% dplyr::select(-.data$.id) attr_list <- list( adjust_method = method, markers = data_orig %>% dplyr::select({{ markers }}) %>% names(), suffix = suffix, batchvar = data_orig %>% dplyr::select({{ batch }}) %>% names(), confounders = dplyr::enexpr(confounders), adjust_parameters = adjust_parameters, model_fits = purrr::map(.x = res, .f = ~ purrr::pluck(.x, "models")) ) class(attr_list) <- c("batchtma", class(res)) attr(values, which = ".batchtma") <- attr_list return(values) }
retour_sn <- function(path){ n <- ncol(path) res3 <- matrix(NA, nrow=nrow(path), ncol=nrow(path)) res3[1, 1] <- 0 for(i in 2: nrow(path)){ res3[i, i-1] <- path[i, n] for(k in 1:(i-1)){ res3[i, i-1-k] <- path[i-k, res3[i, i-k]] } } diag(res3) <- ncol(path) return(res3) } Fpsn <- function(x, Kmax, mini=min(x), maxi=max(x)){ n <- length(x) A <- .C("colibri_sn_R_c", signal=as.double(x), n=as.integer(n), Kmax=as.integer(Kmax), min=as.double(mini), max=as.double(maxi), path=integer(Kmax*n), cost=double(Kmax), allCost=double(n*Kmax) , PACKAGE="jointseg") A$path <- matrix(A$path, nrow=Kmax, byrow=TRUE) A$allCost <- matrix(A$allCost, nrow=Kmax, byrow=TRUE) A$t.est <- retour_sn(A$path) A$K <- length(A$t.est) A$J.est <- A$cost return(A); }
PP3fastIX3 <- function (Pvec, the.init, maxrow, k, maxcol, n, text) { avec <- Pvec[1:maxrow] bvec <- Pvec[(maxrow+1):(2*maxrow)] cvec <- Pvec[(2*maxrow+1):(3*maxrow)] answer <- PP3ix3FromTU(the.init=the.init, avec=avec, bvec=bvec, cvec=cvec, maxrow=maxrow, k=k, maxcol=maxcol, n=n, text=text) return(answer) }
"barcode.panel" <- function(x, horizontal=TRUE, xlim=NULL, labelloc=TRUE, axisloc=TRUE, labelouter=FALSE, nint=0, fontsize=9, ptsize=unit(0.25, "char"), ptpch=1, bcspace=NULL, xlab="", xlaboffset=unit(2.5, "lines"), use.points=FALSE, buffer=0.02, log=FALSE) { if (!is.list(x)) { stop("x must be a list") } K <- length(x) for (i in 1:K) x[[i]] <- x[[i]][!is.na(x[[i]])] maxct <- 0 if (is.null(xlim)) { minx <- min(unlist(x)) - buffer*(max(unlist(x))-min(unlist(x))) maxx <- max(unlist(x)) + buffer*(max(unlist(x))-min(unlist(x))) } else { minx <- xlim[1] maxx <- xlim[2] } xleftoffset <- unit(1, "strwidth", names(x)[1]) for (i in 1:K) { y <- x[[i]] if (length(y)>0) { if (nint>0) z <- hist(y, breaks=pretty(unlist(x), n=nint), plot=FALSE)$counts else z <- table(y) maxct <- max(maxct, max(z)) xleftoffset <- max(xleftoffset, unit(1, "strwidth", names(x)[i])) } } maxct <- maxct + 3 if (log) { maxct <- log(maxct) } xleftoffset <- 1.05*xleftoffset if (is.null(labelloc) || !labelloc) { xrightoffset <- xleftoffset xleftoffset <- unit(0, "npc") xtextloc <- unit(1, "npc") - xrightoffset xtextalign <- "left" } else { xrightoffset <- unit(0, "npc") xtextloc <- xleftoffset xtextalign <- "right" } if (labelouter) { xleftoffset <- unit(0, "npc") xrightoffset <- unit(0, "npc") if (is.null(labelloc) || !labelloc) xtextloc <- unit(1.02, "npc") else xtextloc <- unit(-0.02, "npc") } if (is.null(bcspace)) bcspace <- max(0.2, 1.5 / (maxct + 1)) pushViewport(viewport(x=xleftoffset, y=unit(0, "npc"), width=unit(1, "npc")-xleftoffset-xrightoffset, height=unit(1, "npc"), xscale=c(minx, maxx), just=c("left", "bottom"))) if (!is.null(axisloc)) { grid.xaxis(main=axisloc, gp=gpar(fontsize=fontsize)) if (axisloc) grid.text(xlab, x=unit(0.5, "npc"), y=unit(0, "npc") - xlaboffset) else grid.text(xlab, x=unit(0.5, "npc"), y=unit(1, "npc") + xlaboffset) } popViewport(1) for (i in 1:K) { y <- x[[i]] if (!is.null(labelloc)) grid.text(names(x)[i], x=xtextloc, y=unit((i-1)/K, "npc")+0.5*unit(1/K, "npc"), just=xtextalign, gp=gpar(fontsize=fontsize)) if (nint>0) { zhist <- hist(y, breaks=pretty(unlist(x), n=nint), plot=FALSE) z <- zhist$counts mids <- zhist$mids } else { z <- table(y) mids <- as.numeric(names(z)) } if (length(mids)>0) { vp.barcode <- viewport(x=xleftoffset, y=unit((i-1)/K, "npc") + unit(0.05/K, "npc"), width=unit(1, "npc")-xleftoffset-xrightoffset, height=unit(1/K, "npc")*bcspace - unit(0.05/K, "npc"), xscale=c(minx, maxx), yscale=c(0,1), just=c("left", "bottom"), name="barcode", clip="off") pushViewport(vp.barcode) grid.segments(unit(mids[z>0], "native"), 0, unit(mids[z>0], "native"), 1) popViewport(1) vp.hist <- viewport(x=xleftoffset, y=unit((i-1)/K, "npc")+unit(1/K, "npc")*bcspace, width=unit(1, "npc")-xrightoffset-xleftoffset, height=unit(1/K, "npc")-unit(1/K, "npc")*bcspace, xscale=c(minx, maxx), yscale=c(0,1), just=c("left", "bottom"), name="hist", clip="off") pushViewport(vp.hist) vp.buffer <- viewport(x=0, y=0.05, width=1, height=0.9, just=c("left", "bottom"), xscale=c(minx, maxx), yscale=c(0,1)) pushViewport(vp.buffer) for (j in 1:length(z)) { if (z[j]>1) { xx <- rep(mids[j], z[j]-1) if (log) { yy <- ( log(2 + 1:(z[j]-1)) ) / maxct } else { yy <- (1:(z[j]-1))/maxct } if (use.points) grid.points(unit(xx, "native"), yy, pch=ptpch, size=ptsize) else { if (log) { yy <- c(yy, log(2 + z[j]) / maxct) } else { yy <- c(yy, (z[j])/maxct) } grid.segments(unit(mids[j], "native"), unit(1/maxct, "npc"), unit(mids[j], "native"), unit(max(yy), "npc")) } } } popViewport(2) } } }
qc_applications <- tibble( application = c("developer_friendly", "user_friendly", "future_proof") ) qc_categories <- tibble( category = c("availability", "code_quality", "code_assurance", "documentation", "behaviour", "paper"), color = c(" label = c("Availability", "Code quality", "Code assurance", "Documentation", "Behaviour", "Study design") ) devtools::use_data(qc_applications, qc_categories, overwrite = TRUE, pkg = "package")
extractCol <- function(contrastList, colName, robust = TRUE){ assertthat::assert_that(!missing(contrastList), !is.null(contrastList), length(unique(lapply(contrastList, colnames))) == 1, length(unique(lapply(contrastList, dim))) == 1, msg = "contrastList must be a list of data.frames which all have the same colnames and same row counts.") if (any(is.null(robust), !is.logical(robust), length(robust) != 1)) { warning("robust must be a singular logical value. Assigning default value TRUE.") robust = TRUE } ifelse(robust, return(.extractCol2(contrastList, colName)), return(.extractCol1(contrastList, colName)) ) } .extractCol1 <- function(contrastList, colName){ assertthat::assert_that("list" %in% class(contrastList), !is.null(names(contrastList)), msg = "contrastList must be a named list.") assertthat::assert_that("character" %in% class(colName), msg = "colName must be a column in the data of class 'character'.") MyMatrix = do.call("cbind", lapply(contrastList, `[[`, colName)) rownames(MyMatrix) <- rownames(contrastList[[1]]) colnames(MyMatrix) <- names(contrastList) return(as.data.frame(MyMatrix)) } .extractCol2 <- function(contrastList, colName){ assertthat::assert_that("list" %in% class(contrastList), !is.null(names(contrastList)), msg = "contrastList must be a named list.") assertthat::assert_that("character" %in% class(colName), msg = "colName must be a column in the data of class 'character'.") for (i in 1:length(contrastList)) { newdat <- cbind(rowid = rownames(contrastList[[i]]), data.frame(contrastList[[i]], row.names = NULL)) newdat <- newdat[, c("rowid", colName)] if (i == 1) { dat <- newdat } else { dat <- merge(x = dat, y = newdat, by = "rowid", all = TRUE, sort = FALSE) } colnames(dat)[i + 1] <- names(contrastList[i]) } dat <- data.frame(dat[,-c(1)], row.names = dat[,c(1)]) return(dat) }
get_fields <- function(es_host , es_indices = '_all' ) { es_url <- .ValidateAndFormatHost(es_host) .assert( is.character("es_indices") , length(es_indices) > 0 ) indices <- paste(es_indices, collapse = ',') if (nchar(indices) == 0){ msg <- paste("get_fields must be passed a valid es_indices." , "You provided", paste(es_indices, collapse = ', ') , 'which resulted in an empty string') log_fatal(msg) } major_version <- .get_es_version( es_host = es_host ) if (as.integer(major_version) > 6 && indices == "_all"){ log_warn(sprintf( paste0( "You are running Elasticsearch version '%s.x'. _all is not supported in this version." , " Pulling all indices with 'POST /_cat/indices' for you." ) , major_version )) res <- httr::RETRY( verb = "GET" , url = paste( es_url , "_cat" , "indices?format=json" , sep = "/" ) , times = 3 ) indexDT <- data.table::as.data.table( jsonlite::fromJSON( httr::content(res, "text") , simplifyDataFrame = TRUE ) ) indices <- paste0( indexDT[, unique(index)] , collapse = "," ) } es_url <- paste(es_url, indices, '_mapping', sep = '/') log_info(paste('Getting indexed fields for indices:', indices)) result <- httr::GET( url = es_url , httr::add_headers(c('Content-Type' = 'application/json')) ) httr::stop_for_status(result) resultContent <- httr::content(result, as = 'parsed') if (as.integer(major_version) > 6){ mappingDT <- data.table::rbindlist( l = lapply( X = names(resultContent) , FUN = function(index_name){ props <- resultContent[[index_name]][["mappings"]][["properties"]] thisIndexDT <- data.table::data.table( index = index_name , type = NA_character_ , field = names(props) , data_type = sapply(props, function(x){x$type}) ) return(thisIndexDT) } ) , fill = TRUE ) } else { mappingDT <- .flatten_mapping(mapping = resultContent) } rawAliasDT <- .get_aliases(es_host = es_host) if (!is.null(rawAliasDT)) { log_info("Replacing index names with aliases") aliasDT <- data.table::rbindlist( purrr::map2( .x = rawAliasDT[["index"]] , .y = rawAliasDT[["alias"]] , .f = function(idx_name, alias_name, mappingDT){ tmpDT <- mappingDT[index == idx_name] tmpDT[, index := alias_name] return(tmpDT) } , mappingDT = mappingDT ) , fill = TRUE ) mappingDT <- data.table::rbindlist( list(aliasDT, mappingDT[!(index %in% rawAliasDT[["index"]])]) , fill = TRUE ) } numFields <- nrow(mappingDT) numIndex <- mappingDT[, data.table::uniqueN(index)] log_info(paste('Retrieved', numFields, 'fields across', numIndex, 'indices')) return(mappingDT) } .flatten_mapping <- function(mapping) { flattened <- unlist(mapping) mappingCols <- stringr::str_split_fixed(names(flattened), '\\.(mappings|properties)\\.', n = 3) mappingDT <- data.table::data.table( meta = mappingCols , data_type = as.character(flattened) ) newColNames <- c('index', 'type', 'field', 'data_type') data.table::setnames(mappingDT, newColNames) mappingDT <- mappingDT[stringr::str_detect(field, '\\.type$')] metaRegEx <- '\\.(properties|fields|type)' mappingDT[, field := stringr::str_replace_all(field, metaRegEx, '')] return(mappingDT) } .get_aliases <- function(es_host) { url <- paste0(es_host, '/_cat/aliases') result <- httr::GET( url = url , httr::add_headers(c('Content-Type' = 'application/json')) ) httr::stop_for_status(result) resultContent <- httr::content(result, as = 'text') if (is.null(resultContent) || identical(resultContent, "") || identical(resultContent, "[]")) { return(invisible(NULL)) } else { major_version <- .get_es_version(es_host) process_alias <- switch( major_version , "1" = .process_legacy_alias , "2" = .process_legacy_alias , "5" = .process_new_alias , "6" = .process_new_alias , .process_new_alias ) return(process_alias(alias_string = resultContent)) } } .process_legacy_alias <- function(alias_string){ aliasDT <- data.table::as.data.table( jsonlite::fromJSON( alias_string , simplifyDataFrame = TRUE , flatten = TRUE ) ) return(aliasDT[, .(alias, index)]) } .process_new_alias <- function(alias_string) { aliasDT <- data.table::data.table( utils::read.table( text = alias_string , stringsAsFactors = FALSE ) ) return(aliasDT[, .(alias = V1, index = V2)]) }
expected <- eval(parse(text="\"\\\"\\\\n\\\\f\\\\n\\\"\"")); test(id=0, code={ argv <- eval(parse(text="list(\"\\n\\f\\n\", 60L, FALSE, 69, -1L)")); .Internal(deparse(argv[[1]], argv[[2]], argv[[3]], argv[[4]], argv[[5]])); }, o=expected);
setMethodS3("append", "RawGenomicSignals", function(this, other, addId=TRUE, ...) { other <- Arguments$getInstanceOf(other, class(this)[1]) if (addId) { if (is.null(this$id)) { this$id <- rep(1L, times=nbrOfLoci(this)) } if (is.null(other$id)) { nextId <- max(this$id, na.rm=TRUE) + 1L other$id <- rep(nextId, times=nbrOfLoci(other)) } } res <- rbind(this, other) res })
create_spliced_peptides<- function(i){ spliced<- lapply(i, function(pep){ lapply(seq(2, nchar(pep)-2),function(y){ a <- substr(pep, start=0, stop=y) b <- substr(pep, start=y+1, stop=nchar(pep)) splicing<- c(list(peptide= pep, Frag1=a, Frag2=b, spliceType="forward", spliced_peptide=paste(a,b,sep="_")), list(peptide=pep, Frag1=b, Frag2 =a, spliceType="reverse", spliced_peptide=paste(b,a,sep="_"))) return (splicing) }) }) x <- names(unlist(spliced, recursive = T)) x <- x[-grep("\\.Frag1|\\.Frag2|\\.spliceType|\\.spliced_peptide", x)] counts<-seq(1, length(x)) x <- gsub("\\.peptide",".x" , x) x<- paste0(x, counts) spliced_df<- data.frame(matrix(unlist(spliced), ncol=5, byrow=TRUE), stringsAsFactors = FALSE,row.names= x) colnames(spliced_df)<- c("Peptide", "Fragment1", "Fragment2", "spliceType", "spliced_peptide") return(spliced_df) }
FKM.med <- function (X, k, m, RS, stand, startU, index,alpha,conv, maxit, seed = NULL) { if (missing(X)) stop("The data set must be given") if (is.null(X)) stop("The data set X is empty") X=data.matrix(X) n=nrow(X) p=ncol(X) if(p==1){ stop("Dataset X must contain more than one dimension") } if (is.null(rownames(X))) rn=paste("Obj",1:n,sep=" ") else rn=rownames(X) if (is.null(colnames(X))) cn=paste("Var",1:p,sep=" ") else cn=colnames(X) if (any(is.na(X))) stop("The data set X must not contain NA values") if (!is.numeric(X)) stop("The data set X is not a numeric data.frame or matrix") if ((missing(startU)) || (is.null(startU))) { check=1 checkMiss = missing(k) || is.null(k) || !is.numeric(k) if (checkMiss) { k= 2:6 cat("The default value k=2:6 has been set ",fill=TRUE) } nk <- length(k) if(nk != 1){ if(!checkMiss){ checkK = any(k <= 1) | any((k-as.integer(k)) != 0) if(checkK) { k = 2:6 nk <- length(k) cat("The number of clusters k must be greter than 1, integer and numeric: the default value k=2:6 will be used ",fill=TRUE) }else{ k <- sort(unique(k)) nk <- length(k) } } if (missing(index)) { index = "SIL.F" cat("The default index SIL.F has been set ",fill=TRUE) }else{ if(length(index) != 1) { index = "SIL.F" cat("The index must be a single value: SIL.F will be used ",fill=TRUE) }else{ if(all(index!=c("PC","PE","MPC","SIL","SIL.F","XB"))){ index = "SIL.F" cat("No match found for the index name: SIL.F will be used ", fill = TRUE) } } } if(index == "SIL.F"){ if (missing(alpha)) { alpha=1 cat("The default value alpha=1 has been set for computing SIL.F ",fill=TRUE) }else{ if (!is.numeric(alpha)) { alpha=1 cat("The weighting coefficient alpha is not numeric: the default value alpha=1 will be used for computing SIL.F ",fill=TRUE) } if (alpha<0) { alpha=1 cat("The number of clusters k must be non negative: the value alpha=1 will be used for computing SIL.F ",fill=TRUE) } } }else{ alpha = 1 } }else{ nk <- 1 if (missing(index)) { index = "SIL.F" }else{ if(length(index) != 1) { index = "SIL.F" cat("The index must be a single value: SIL.F will be used ",fill=TRUE) }else{ if(!any(index==c("PC","PE","MPC","SIL","SIL.F","XB"))){ index = "SIL.F" cat("No match found for the index name: SIL.F will be used ", fill = TRUE) } } } if(index == "SIL.F"){ if (missing(alpha)) { alpha=1 }else{ if (!is.numeric(alpha)) { alpha=1 cat("The weighting coefficient alpha is not numeric: the default value alpha=1 will be used for computing SIL.F ",fill=TRUE) } if (alpha<0) { alpha=1 cat("The number of clusters k must be non negative: the value alpha=1 will be used for computing SIL.F ",fill=TRUE) } } }else{ alpha = 1 } if (!is.numeric(k)) { k=2 cat("The number of clusters k is not numeric: the default value k=2 will be used ",fill=TRUE) } if ((k>ceiling(n/2)) || (k<2)) { k=2 cat("The number of clusters k must be an integer in {2, 3, ..., ceiling(n/2)}: the default value k=2 will be used ",fill=TRUE) } if (k%%ceiling(k)>0) { k=ceiling(k) cat("The number of clusters k must be an integer in {2, 3, ..., ceiling(nrow(X)/2)}: the value ceiling(k) will be used ",fill=TRUE) } } }else { startU=as.matrix(startU) ns=nrow(startU) k=ncol(startU) check=0 nk = 1 if (any(is.na(startU))) { k=2 cat("The rational start must not contain NA values: the default value k=2 and a random start will be used ",fill=TRUE) check=1 } if (!is.numeric(startU)) { k=2 cat("The rational start is not a numeric data.frame or matrix: the default value k=2 and a random start will be used ",fill=TRUE) check=1 } if ((k>ceiling(n/2)) || (k<2)) { k=2 cat("The number of clusters k must be an integer in {2, 3, ..., ceiling(n/2)}: the default value k=2 and a random start will be used ",fill=TRUE) check=1 } if ((ns!=n) && (check=0)) { cat("The number of rows of startU is different from that of X: k=ncol(startU) and a random start will be used ",fill=TRUE) check=1 } if (any(apply(startU,1,sum)!=1)) { startU=startU/apply(startU,1,sum) cat("The sums of the rows of startU must be equal to 1: the rows of startU will be normalized to unit row-wise sum ",fill=TRUE) } if (missing(index)) { index = "SIL.F" }else{ if(length(index) != 1) { index = "SIL.F" cat("The index must be a single value: SIL.F will be used ",fill=TRUE) }else{ if(!any(index==c("PC","PE","MPC","SIL","SIL.F","XB"))){ index = "SIL.F" cat("No match found for the index name: SIL.F will be used ", fill = TRUE) } } } if(index == "SIL.F"){ if (missing(alpha)) { alpha=1 }else{ if (!is.numeric(alpha)) { alpha=1 cat("The weighting coefficient alpha is not numeric: the default value alpha=1 will be used for computing SIL.F ",fill=TRUE) } if (alpha<0) { alpha=1 cat("The number of clusters k must be non negative: the value alpha=1 will be used for computing SIL.F ",fill=TRUE) } } }else{ alpha = 1 } } if (missing(m)) { m=1.5 } if(length(m) != 1){ m = 1.5 cat("The parameter of fuzziness m must be a single value: the default value m=1.5 will be used",fill=TRUE) } if (!is.numeric(m)) { m=1.5 cat("The parameter of fuzziness m is not numeric: the default value m=1.5 will be used ",fill=TRUE) } if (m<=1) { m=1.5 cat("The parameter of fuzziness m must be >1: the default value m=1.5 will be used ",fill=TRUE) } if (missing(RS)) { RS=1 } if (!is.numeric(RS)) { cat("The number of starts RS is not numeric: the default value RS=1 will be used ",fill=TRUE) RS=1 } if (RS<1) { cat("The number of starts RS must be an integer >=1: the default value RS=1 will be used ",fill=TRUE) RS=1 } if (RS%%ceiling(RS)>0) { cat("The number of starts RS must be an integer >=1: the value ceiling(RS) will be used ",fill=TRUE) RS=ceiling(RS) } if (missing(conv)) conv=1e-9 if (!is.numeric(conv)) { cat("The convergence criterion conv is not numeric: the default value conv=1e-9 will be used ",fill=TRUE) conv=1e-9 } if (conv<=0) { cat("The convergence criterion conv must be a (small) value >0: the default value conv=1e-9 will be used ",fill=TRUE) conv=1e-9 } if (missing(maxit)) maxit=1e+6 if (!is.numeric(maxit)) { cat("The maximum number of iterations maxit is not numeric: the default value maxit=1e+6 will be used ",fill=TRUE) maxit=1e+6 } if (maxit<=0) { cat("The maximum number of iterations maxit must be an integer >0: the default value maxit=1e+6 will be used ",fill=TRUE) maxit=1e+6 } if (maxit%%ceiling(maxit)>0) { cat("The maximum number of iterations maxit must be an integer >0: the value ceiling(maxit) will be used ",fill=TRUE) maxit=ceiling(maxit) } if(!is.null(seed)) { if (!is.numeric(seed)) { cat("The seed value is not numeric: set.seed(NULL) will be used ",fill=TRUE) set.seed(NULL) }else{ set.seed(seed) } } Xraw=X rownames(Xraw)=rownames(X) colnames(Xraw)=colnames(X) if (missing(stand)) stand=0 if (!is.numeric(stand)) stand=0 if (stand==1) X=scale(X,center=TRUE,scale=TRUE)[,] crit.f <- rep(NA,nk) crit = 0 for(c in 1:nk) { if ((check!=1)) { main.temp <- mainFKM_med_U(data = X, m = m, n = n, p = p, k = k[c], U = startU, conv = conv, maxit = maxit,index = index,alpha = alpha) }else{ main.temp <- mainFKM_med(data = X, m = m, n = n, p = p, k = k[c], rs = RS, conv = conv, maxit = maxit,index = index,alpha = alpha) } crit.temp = main.temp$index_max crit.f[c] = main.temp$index if(c == 1 | crit < crit.temp) { main = main.temp crit = crit.temp } } value = as.vector(main$value) it = as.vector(main$iter) U.opt = main$U H.opt = main$H medoid.opt = as.vector(main$medoid) names(crit.f) = paste(index," ","k=",k,sep="") k = main$k rownames(H.opt)=paste("Clus",1:k,sep=" ") colnames(H.opt)=cn rownames(U.opt)=rn colnames(U.opt)=rownames(H.opt) names(value)=paste("Start",1:RS,sep=" ") names(it)=names(value) names(k)=c("Number of clusters") names(m)=c("Parameter of fuzziness") if (stand!=1) stand=0 names(stand)=c("Standardization (1=Yes, 0=No)") clus=cl.memb(U.opt) out=list(U=U.opt, H=H.opt, F=NULL, clus=clus, medoid=medoid.opt, value=value, criterion = crit.f, iter=it, k=k, m=m, ent=NULL, b=NULL, vp=NULL, delta=NULL, stand=stand, Xca=X, X=Xraw, D=NULL, call=match.call()) class(out)=c("fclust") return(out) }
trace_coverage_log <- function(eventlog, threshold = NULL) { relative <- NULL trace_coverage_trace(eventlog) -> raw raw %>% pull(relative) %>% summary_statistics() -> output attr(output, "raw") <- raw return(output) }
get.lars.solution <- function(rho.m, corr.x, activeS, qr.tol, eps.tol) { rhom.sign <- sign(rho.m[activeS]) activeS.sign <- rhom.sign/rhom.sign[1] first.coord <- activeS[1] Q.active <- t(sapply(activeS, function(i) {corr.x[[i]][activeS]})) gmma <- qr.solve(Q.active, activeS.sign, tol = qr.tol)/activeS.sign Dl <- rho.m/rho.m[first.coord] Rl.den <- 1 Rl.num <- rowSums(sapply(1:length(activeS), function(j) { corr.x[[activeS[j]]] * activeS.sign[j] * gmma[j]}), na.rm = TRUE) Rl <- Rl.num / Rl.den num <- Dl - Rl nu.limit <- (1 - abs(num)/(1 - Rl * sign(num))) / Rl.den lr.PlusOne.candidates <- which.min.ind(nu.limit, c(activeS, which(nu.limit < eps.tol))) if (length(lr.PlusOne.candidates) > 0) { lr.PlusOne <- resample(lr.PlusOne.candidates) nu.limit <- nu.limit[lr.PlusOne] } else { lr.PlusOne <- resample(which.min.ind(nu.limit, activeS)) nu.limit <- eps.tol } return(list(nu.limit = nu.limit, lr.PlusOne = lr.PlusOne, gmma = gmma, active.set.sign = activeS.sign)) }
data(hgsc) hgsc <- hgsc[1:40, 1:30] test_that("No algorithms means all algorithms, output is an array", { x1 <- consensus_cluster(hgsc, nk = 4, reps = 1, progress = FALSE) expect_error(x1, NA) expect_is(x1, "array") }) test_that("Output can be saved with or without time in file name", { x1 <- consensus_cluster(hgsc, nk = 2:4, reps = 5, algorithms = "hc", progress = FALSE, file.name = "CCOutput") x2 <- consensus_cluster(hgsc, nk = 2:4, reps = 5, algorithms = "hc", progress = FALSE, file.name = "CCOutput", time.saved = TRUE) expect_identical(x1, x2) file.remove(list.files(pattern = "CCOutput")) }) test_that("Progress bar increments across entire function call", { assign("my_dist", function(x) stats::dist(x, method = "manhattan"), pos = 1) x3 <- consensus_cluster(hgsc, nk = 2, reps = 5, algorithms = c("nmf", "hc", "ap"), distance = c("spear", "my_dist"), nmf.method = "lee", progress = TRUE) expect_error(x3, NA) }) test_that("Able to call only spearman distance", { x4 <- consensus_cluster(hgsc, nk = 2, reps = 5, algorithms = "hc", distance = "spear") expect_error(x4, NA) }) test_that("Data preparation on bootstrap samples works", { x5 <- consensus_cluster(hgsc, nk = 3, reps = 3, algorithms = c("nmf", "hc", "ap"), nmf.method = "lee", prep.data = "sampled") expect_error(x5, NA) }) test_that("no scaling means only choose complete cases and high signal vars", { x6 <- consensus_cluster(hgsc, nk = 2, reps = 2, algorithms = "hc", scale = FALSE) expect_error(x6, NA) }) test_that("t-SNE dimension reduction works", { x7 <- consensus_cluster(hgsc, nk = 4, reps = 1, algorithms = c("hc", "km"), type = "tsne") expect_error(x7, NA) })
[ { "title": "Public and Public plus Private debt to GDP", "href": "http://plausibel.blogspot.com/2013/01/public-and-public-plus-private-debt-to.html" }, { "title": "Data visualization videos", "href": "http://robjhyndman.com/hyndsight/data-visualization-videos/?utm_source=rss&utm_medium=rss&utm_campaign=data-visualization-videos" }, { "title": "Which functions in R base call internal code?", "href": "https://4dpiecharts.com/2010/09/14/which-functions-in-r-base-call-internal-code/" }, { "title": "The Uncertainty of Predictions", "href": "http://statistical-research.com/the-uncertainty-of-predictions/?utm_source=rss&utm_medium=rss&utm_campaign=the-uncertainty-of-predictions" }, { "title": "Let pacman Eat Up library and require", "href": "http://data-steve.github.io/let-pacman-eat-up-library-and-require/" }, { "title": "Performance of the divide-and-conquer SVD algorithm", "href": "http://gallery.rcpp.org/articles/divide-and-concquer-svd/" }, { "title": "2012 Summer Olympics: Home Court Advantage – How Will the Brits Perform?", "href": "https://feedproxy.google.com/~r/graphoftheweek/fzVA/~3/Tln2O_3Hbz4/summer-olympics-home-court-advantage.html" }, { "title": "project euler — problem 68", "href": "https://web.archive.org/web/http://ygc.name/2012/12/12/problem-68/" }, { "title": "Reflections on John Chambers’ UserR! 2014 Keynote Address", "href": "http://blog.revolutionanalytics.com/2014/07/reflections-on-john-chambers-userr-2014-keynote-address.html" }, { "title": "Oracle R Distribution for R 2.15.2 available on public-yum", "href": "https://blogs.oracle.com/R/entry/oracle_r_distribution_for_r" }, { "title": "Bill Veanables Workshop (Augsburg University, Germany :: 2-3 July 2012)", "href": "https://www.r-bloggers.com/bill-veanables-workshop-augsburg-university-germany-2-3-july-2012/" }, { "title": "Mortgage Refinance Calculator", "href": "http://biostatmatt.com/archives/1908" }, { "title": "Comparing two-dimensional data sets in R; take II", "href": "http://blog.mckuhn.de/2011/03/comparing-two-dimensional-data-sets-in_10.html" }, { "title": "Propensity Modeling, Causal Inference, and Discovering Drivers of Growth", "href": "http://blog.echen.me/2014/08/15/propensity-modeling-causal-inference-and-discovering-drivers-of-growth/" }, { "title": "The Golden Section Search Method: Modifying the Bisection Method with the Golden Ratio for Numerical Optimization", "href": "https://chemicalstatistician.wordpress.com/2013/04/22/using-the-bisection-method-with-the-golden-ratio-for-numerical-optimization/" }, { "title": "Everything you need to make R Commander locally (packages, dependencies, zip files)", "href": "https://robertgrantstats.wordpress.com/2015/10/22/everything-you-need-to-make-r-commander-locally-packages-dependencies-zip-files/" }, { "title": "Another Way to Look at Vanguard and Pimco", "href": "http://timelyportfolio.blogspot.com/2013/02/another-way-to-look-at-vanguard-and.html" }, { "title": "Forecasting with Neural Network (using SAP HANA and R)", "href": "http://blagrants.blogspot.com/2013/08/forecasting-with-neural-network-using.html" }, { "title": "Adding watermarks to plots", "href": "https://web.archive.org/web/http://blog.ggplot2.org/post/23537012922" }, { "title": "Because it’s Friday: Foxes on a Trampoline", "href": "http://blog.revolutionanalytics.com/2010/08/because-its-friday-foxes-on-a-trampoline.html" }, { "title": "Bitsanity", "href": "http://www.econometricsbysimulation.com/2014/04/bitsanity.html" }, { "title": "ggplot2 themes examples", "href": "http://datascienceplus.com/ggplot2-themes-examples/" }, { "title": "RODM Article on the Oracle Technology Network", "href": "http://www.r-chart.com/2010/08/rodm-article-on-oracle-technology.html" }, { "title": "Who are Turkopticon’s Top Contributors?", "href": "http://www.econometricsbysimulation.com/2016/01/who-are-turkopticons-top-contributors.html" }, { "title": "Using TeXmacs as an interface for R (part 1)", "href": "https://mltthinks.wordpress.com/2012/12/03/15/" }, { "title": "Free e-book: Data Science with SQL Server 2016", "href": "http://blog.revolutionanalytics.com/2016/10/data-science-with-sql-server-2016.html" }, { "title": "knitr: nice alternative for Sweave", "href": "http://zvfak.blogspot.com/2011/12/knitr-nice-alternative-for-sweave.html" }, { "title": "Random matrix theory and APT’s daily global model", "href": "https://cartesianfaith.com/2012/01/25/random-matrix-theory-and-apts-daily-global-model/" }, { "title": "Wilcoxon Champagne test", "href": "https://statisfaction.wordpress.com/2011/06/14/wilcoxon/" }, { "title": "Zurich, June 24/25, 2011 – Modern Portfolio Design with Rmetrics", "href": "https://web.archive.org/web/https://www.rmetrics.org/zurich2011" }, { "title": "R / Finance 2016 Call for Papers", "href": "http://dirk.eddelbuettel.com/blog/2015/10/15/" }, { "title": "Introducing pipeR 0.4", "href": "https://renkun.me/blog/2014/08/04/introducing-pipeR-0.4.html" }, { "title": "Shiny for Interactive Application Development using R", "href": "http://www.analyticsandvisualization.com/2015/02/shiny-for-interactive-application.html" }, { "title": "Martin Maechler Invited Talk at useR! 2014 – Good Practices in R Programming", "href": "http://datascience.la/martin-maechler-invited-talk-at-user-2014-good-practices-in-r-programming/" }, { "title": "Matlab goes deep [learning]", "href": "https://xianblog.wordpress.com/2016/09/05/matlab-goes-deep-learning/" }, { "title": "R from source", "href": "http://blog.nguyenvq.com/blog/2011/07/11/r-from-source/" }, { "title": "i Before e Except After c", "href": "http://jason.bryer.org/posts/2013-03-26/i_Before_e_Except_After_c.html" }, { "title": "New housedata release 20100923", "href": "http://offensivepolitics.net/blog/2010/09/new-housedata-release-20100923/" }, { "title": "Analyzing the first Presidential Debate", "href": "http://datascienceplus.com/analyzing-the-first-presidential-debate/" }, { "title": "knitr, Slideshows, and Dropbox", "href": "http://christophergandrud.blogspot.com/2012/05/knitr-slideshows-and-dropbox.html" }, { "title": "Evaluating term popularity with twitteR", "href": "http://is-r.tumblr.com/post/37468761327/evaluating-term-popularity-with-twitter" }, { "title": "R twitteR Analysis: How HOT is the Lynas Rare Earths Mining Malaysia?", "href": "https://web.archive.org/web/http://blog.cloudstat.org/post/18296357801" }, { "title": "Bio7 2.4 for Windows and Mac Released", "href": "http://bio7.org/?p=2737" }, { "title": "First meeting of Toronto R User Group this Friday", "href": "http://blog.revolutionanalytics.com/2011/01/first-meeting-of-toronto-r-user-group-this-friday.html" }, { "title": "Statistics meets rhetoric: A text analysis of \"I Have a Dream\" in R", "href": "http://anythingbutrbitrary.blogspot.com/2014/01/statistics-meets-rhetoric-text-analysis.html" }, { "title": "Functional programming with lambda.r", "href": "https://cartesianfaith.com/2012/11/20/functional-programming-with-lambda-r/" }, { "title": "R in a 64 bit world", "href": "http://www.win-vector.com/blog/2015/06/r-in-a-64-bit-world/" }, { "title": "Using Data Tools to Find Data Tools, the Yo Dawg of Data Hacking", "href": "http://www.dataists.com/2010/10/using-data-tools-to-find-data-tools-the-yo-dawg-of-data-hacking/" }, { "title": "plot.xts is wonderful", "href": "http://timelyportfolio.blogspot.com/2012/08/plotxts-is-wonderful.html" }, { "title": "ggplot2: Creating a custom plot with two different geoms", "href": "https://rforwork.info/2012/06/10/ggplot2-creating-a-custom-plot-with-two-different-geoms/" } ]
context("pg_search_es") test_that("pg_search_es", { vcr::use_cassette("pg_search_es", { aa <- pg_search_es() }, preserve_exact_body_bytes = TRUE) expect_is(aa, "tbl_df") expect_is(aa, "data.frame") expect_is(attributes(aa), "list") expect_type(attr(aa, "total"), "integer") expect_type(attr(aa, "max_score"), "double") expect_type(aa$`_index`, "character") expect_type(aa$`_source.eastBoundLongitude`, "double") }) test_that("pg_search_es parameters work", { vcr::use_cassette("pg_search_es_pagination", { aa <- pg_search_es(size = 1) }, preserve_exact_body_bytes = TRUE) expect_is(aa, "tbl_df") expect_equal(NROW(aa), 1) }) test_that("fails well", { skip_on_cran() expect_error(pg_search_es(size = "asdffd"), "size must be of class: numeric, integer") expect_error(pg_search_es(from = "asdffd"), "from must be of class: numeric, integer") expect_error(pg_search_es(source = 5), "source must be of class: character") expect_error(pg_search_es(analyze_wildcard = "asdffd"), "analyze_wildcard must be of class: logical") })
print.uiprobit<-function(x,digits=3,digitsci=digits,digitsui=digits, ...){ if(sum(is.na(x$ui))>0){ ui<-x$uirough ci<-x$cirough }else{ ui<-x$ui ci<-x$ci } w<-which(x$rho==0) ci<-apply(ci[,w,],1,function(x){interv.p(x,digitsci)}) ui<-apply(ui,1,function(x){interv.p(x,digitsui)}) cat("\nCall:\n", deparse(x$call), "\n\n\n", sep = "") cat("Confidence intervals (CI) derived assuming ignorable dropout (rho=0)","\n",sep="") cat("Uncertainty intervals (UI) derived assuming ",min(x$rho),"<=rho<=", max(x$rho),"\n","\n",sep="") Tab<-data.frame(Est=round(x$coef[,w],digits),ci=ci,ui=ui) print(Tab) if(sum(is.na(x$ui))>0){cat("\n","Note that the standard errors are not exact.","\n", "For an exact uncertainty interval choose se = TRUE instead.",sep="")} }
miss_sim <- function(dat,p=.2,type="MAR",seed_nr=123) { set.seed(seed_nr) dim <- dim(dat)[2] if (type=="MAR") { cor_param <- 2*stats::runif(dim * (dim - 1) / 2)-1 cor_matrix <- stats::cov2cor(copula::p2P(cor_param) %*% t(copula::p2P(cor_param))) cor_matrix <- copula::P2p(cor_matrix) } else if (type=="MCAR") { cor_matrix <- diag(dim) cor_matrix <- copula::P2p(cor_matrix) } else stop("Provide valid type") myCop <- copula::normalCopula(param=cor_matrix, dim , dispstr = "un") myMvd <- copula::mvdc(copula=myCop, margins=c("binom"), marginsIdentical = TRUE, paramMargins=list(list(size=1,prob=p)) ) mis_ind <- copula::rMvdc(dim(dat)[1], myMvd) mis_ind_NA <- sapply(mis_ind,function(x) ifelse(x==1,NA,x)) return (dat+mis_ind_NA) }
OpalFileResourceGetter <- R6::R6Class( "OpalFileResourceGetter", inherit = FileResourceGetter, public = list( initialize = function() {}, isFor = function(resource) { if (super$isFor(resource)) { url <- super$parseURL(resource) scheme <- url$scheme path <- url$path (scheme == "opal+http" || scheme == "opal+https") && startsWith(path, "ws/files/") } else { FALSE } }, downloadFile = function(resource, ...) { if (self$isFor(resource)) { fileName <- super$extractFileName(resource) downloadDir <- super$makeDownloadDir() path <- file.path(downloadDir, fileName) url <- super$parseURL(resource) if (url$scheme == "opal+https") { url$scheme <- "https" } else if (url$scheme == "opal+http") { url$scheme <- "http" } urlstr <- super$buildURL(url) httr::GET(urlstr, private$addHeaders(resource), write_disk(path, overwrite = TRUE)) super$newFileObject(path, temp = TRUE) } else { NULL } } ), private = list( addHeaders = function(resource) { if (!is.null(resource$identity) && nchar(resource$identity)>0 && !is.null(resource$secret) && nchar(resource$secret)>0) { httr::add_headers(Authorization = jsonlite::base64_enc(paste0("X-Opal-Auth ", resource$identity, ":", resource$secret))) } else if (!is.null(resource$secret) && nchar(resource$secret)>0) { httr::add_headers("X-Opal-Auth" = resource$secret) } else { httr::add_headers() } } ) )
CoxBenchmark <- function(theData = NULL, theOutcome = "Class", reps = 100, trainFraction = 0.5,referenceCV = NULL,referenceName = "Reference",referenceFilterName="COX.BSWiMS") { if (!requireNamespace("BeSS", quietly = TRUE)) { install.packages("BeSS", dependencies = TRUE) } if (!requireNamespace("survminer", quietly = TRUE)) { install.packages("survminer", dependencies = TRUE) } if (is.null(theData)) { if (exists("theDataSet", envir=FRESAcacheEnv)) { theData <- get("theDataSet", envir=FRESAcacheEnv); theOutcome <- get("theDataOutcome", envir=FRESAcacheEnv); } } else { assign("theDataSet",theData,FRESAcacheEnv); assign("theDataOutcome",theOutcome,FRESAcacheEnv); } aucTable <- NULL accciTable <- NULL errorciTable <- NULL senTable <- NULL speTable <- NULL aucTable_filter <- NULL accciTable_filter <- NULL errorciTable_filter <- NULL senTable_filter <- NULL speTable_filter <- NULL CIFollowUPTable <- NULL CIRisksTable <- NULL LogRankTable <- NULL CIFollowUPTable_filter <- NULL CIRisksTable_filter <- NULL LogRankTable_filter <- NULL fmeth_0 <- NULL; FilterMethod <- function(clasfun = survival::coxph, classname = "", center = FALSE, ...) { rcvFilter_reference <- FRESA.CAD::randomCV(theData,theOutcome,clasfun,trainSampleSets = referenceCV$trainSamplesSets,featureSelectionFunction = referenceCV$selectedFeaturesSet); cStats <- predictionStats_survival(rcvFilter_reference$survMedianTest,plotname="Cox with BSWiMS"); CIFollowUPTable_filter <- rbind(CIFollowUPTable_filter,cStats$CIFollowUp); CIRisksTable_filter <- rbind(CIRisksTable_filter,cStats$CIRisk); LogRankTable_filter <- rbind(LogRankTable_filter,cStats$LogRank); binaryPreds <- rcvFilter_reference$survMedianTest[,c("Outcome","LinearPredictorsMedian")] binaryStats <- predictionStats_binary(binaryPreds,"Cox with BSWiMS") accciTable_filter <- rbind(accciTable_filter,binaryStats$accc) errorciTable_filter <- rbind(errorciTable_filter,binaryStats$berror) aucTable_filter <- rbind(aucTable_filter,binaryStats$aucs) senTable_filter <- rbind(senTable_filter,binaryStats$sensitivity) speTable_filter <- rbind(speTable_filter,binaryStats$specificity) rcvFilter_LASSO <- try(FRESA.CAD::randomCV(theData,theOutcome,clasfun,trainSampleSets = referenceCV$trainSamplesSets,featureSelectionFunction = rcvLASSO$selectedFeaturesSet)); if (!inherits(rcvLASSO, "try-error")) { cStats <- predictionStats_survival(rcvFilter_LASSO$survMedianTest,plotname="Cox with LASSO"); CIFollowUPTable_filter <- rbind(CIFollowUPTable_filter,cStats$CIFollowUp); CIRisksTable_filter <- rbind(CIRisksTable_filter,cStats$CIRisk); LogRankTable_filter <- rbind(LogRankTable_filter,cStats$LogRank); binaryPreds <- rcvFilter_LASSO$survMedianTest[,c("Outcome","LinearPredictorsMedian")] binaryStats <- predictionStats_binary(binaryPreds,"Cox with Lasso") accciTable_filter <- rbind(accciTable_filter,binaryStats$accc) errorciTable_filter <- rbind(errorciTable_filter,binaryStats$berror) aucTable_filter <- rbind(aucTable_filter,binaryStats$aucs) senTable_filter <- rbind(senTable_filter,binaryStats$sensitivity) speTable_filter <- rbind(speTable_filter,binaryStats$specificity) } rcvFilter_BESS <- try(FRESA.CAD::randomCV(theData,theOutcome,clasfun,trainSampleSets = referenceCV$trainSamplesSets,featureSelectionFunction = rcvBESS$selectedFeaturesSet)); if (!inherits(rcvLASSO, "try-error")) { cStats <- predictionStats_survival(rcvFilter_BESS$survMedianTest,plotname="Cox with BESS"); CIFollowUPTable_filter <- rbind(CIFollowUPTable_filter,cStats$CIFollowUp); CIRisksTable_filter <- rbind(CIRisksTable_filter,cStats$CIRisk); LogRankTable_filter <- rbind(LogRankTable_filter,cStats$LogRank); binaryStats <- predictionStats_binary(rcvFilter_BESS$survMedianTest[,c("Outcome","LinearPredictorsMedian")],"Cox with BeSS") accciTable_filter <- rbind(accciTable_filter,binaryStats$accc) errorciTable_filter <- rbind(errorciTable_filter,binaryStats$berror) aucTable_filter <- rbind(aucTable_filter,binaryStats$aucs) senTable_filter <- rbind(senTable_filter,binaryStats$sensitivity) speTable_filter <- rbind(speTable_filter,binaryStats$specificity) } cat("Univariate cox Feature Selection: "); rcvFilter_UniCox <- try(FRESA.CAD::randomCV(theData,theOutcome,clasfun,trainSampleSets = referenceCV$trainSamplesSets,featureSelectionFunction = univariate_cox)); if (!inherits(rcvLASSO, "try-error")) { cStats <- predictionStats_survival(rcvFilter_UniCox$survMedianTest,"Cox with Univariate cox Feature Selection"); CIFollowUPTable_filter <- rbind(CIFollowUPTable_filter,cStats$CIFollowUp); CIRisksTable_filter <- rbind(CIRisksTable_filter,cStats$CIRisk); LogRankTable_filter <- rbind(LogRankTable_filter,cStats$LogRank); binaryStats <- predictionStats_binary(rcvFilter_UniCox$survMedianTest[,c("Outcome","LinearPredictorsMedian")],"Unicox") accciTable_filter <- rbind(accciTable_filter,binaryStats$accc) errorciTable_filter <- rbind(errorciTable_filter,binaryStats$berror) aucTable_filter <- rbind(aucTable_filter,binaryStats$aucs) senTable_filter <- rbind(senTable_filter,binaryStats$sensitivity) speTable_filter <- rbind(speTable_filter,binaryStats$specificity) } result <- list(CIFollowUPTable_filter = CIFollowUPTable_filter, CIRisksTable_filter = CIRisksTable_filter, LogRankTable_filter = LogRankTable_filter, accciTable_filter = accciTable_filter, errorciTable_filter = errorciTable_filter, aucTable_filter = aucTable_filter, senTable_filter = senTable_filter, speTable_filter = speTable_filter, rcvFilter_reference = rcvFilter_reference, rcvFilter_LASSO = rcvFilter_LASSO, rcvFilter_BESS = rcvFilter_BESS, rcvFilter_UniCox = rcvFilter_UniCox ) return(result); } theFiltersets <- character(); theClassMethod <- character(); elapcol <- character(); cputimes <- list(); jaccard <- NULL; featsize <- NULL; TheCVEvaluations = list(); times <- list(); jaccard_filter <- list(); selFrequency <- data.frame(colnames(theData)); rownames(selFrequency) <- colnames(theData); if (is.null(referenceCV)) { cat("Modeling BSWiMS: + Model found, - No Model \n"); referenceCV <- FRESA.CAD::randomCV(theData,theOutcome,BSWiMS.model,trainFraction = trainFraction,repetitions = reps,featureSelectionFunction = "Self"); referenceName = "BSWiMS"; referenceFilterName = "Cox.BSWiMS"; methods <- c(referenceName); theFiltersets <- c(referenceName); } if (class(referenceCV) == "list") { elapcol <- names(referenceCV[[1]]$theTimes) == "elapsed" TheCVEvaluations <- referenceCV; for (i in 1:length(referenceCV)) { cStats <- predictionStats_survival(referenceCV[[i]]$survMedianTest,plotname = names(referenceCV)[i]); CIFollowUPTable <- rbind(CIFollowUPTable,cStats$CIFollowUp); CIRisksTable <- rbind(CIRisksTable,cStats$CIRisk); LogRankTable <- rbind(LogRankTable,cStats$LogRank); binaryPreds <- referenceCV[[i]]$survMedianTest[,c("Outcome","LinearPredictorsMedian")] binaryStats <- predictionStats_binary(binaryPreds,"BSWiMS") accciTable <- rbind(accciTable,binaryStats$accc) errorciTable <- rbind(errorciTable,binaryStats$berror) aucTable <- rbind(aucTable,binaryStats$aucs); senTable <- rbind(senTable,binaryStats$sensitivity); speTable <- rbind(speTable,binaryStats$specificity); cputimes[[i]] = mean(referenceCV[[i]]$theTimes[ elapcol ]); times[[i]] <- referenceCV[[i]]$theTimes; selFrequency <- cbind(selFrequency,numeric(ncol(theData))); selFrequency[names(referenceCV[[i]]$featureFrequency),ncol(selFrequency)] <- referenceCV[[i]]$featureFrequency; jaccard_filter[[i]] <- referenceCV[[i]]$jaccard; } referenceName <- names(referenceCV); referenceFilterName <- paste("FS",names(referenceCV),sep="_"); referenceCV <- referenceCV[[1]]; class(referenceCV) <- "list" } else { cStats <- predictionStats_survival(referenceCV$survMedianTest,plotname = referenceName); CIFollowUPTable <- rbind(CIFollowUPTable,cStats$CIFollowUp); CIRisksTable <- rbind(CIRisksTable,cStats$CIRisk); LogRankTable <- rbind(LogRankTable,cStats$LogRank); binaryPreds <- referenceCV$survMedianTest[,c("Outcome","LinearPredictorsMedian")] binaryStats <- predictionStats_binary(binaryPreds,"BSWiMS") accciTable <- rbind(accciTable,binaryStats$accc) errorciTable <- rbind(errorciTable,binaryStats$berror) aucTable <- rbind(aucTable,binaryStats$aucs) senTable <- rbind(senTable,binaryStats$sensitivity) speTable <- rbind(speTable,binaryStats$specificity) TheCVEvaluations$Reference <- referenceCV; times[[1]] <- referenceCV$theTimes; elapcol <- names(referenceCV$theTimes) == "elapsed" cputimes[[1]] = mean(referenceCV$theTimes[ elapcol ]); selFrequency <- cbind(selFrequency,numeric(ncol(theData))); selFrequency[names(referenceCV$featureFrequency),ncol(selFrequency)] <- referenceCV$featureFrequency; jaccard_filter[[1]] <- referenceCV$jaccard; } reps <- referenceCV$repetitions; test_Predictions <- referenceCV$survMedianTest; tnames <- rownames(test_Predictions) rcvLASSO <- try(FRESA.CAD::randomCV(theData,theOutcome,LASSO_MIN,trainSampleSets = referenceCV$trainSamplesSets,featureSelectionFunction = "Self")); if (!inherits(rcvLASSO, "try-error")) { methods <- cbind(methods,"LASSO"); cStats <- predictionStats_survival(rcvLASSO$survMedianTest,plotname = "LASSO"); CIFollowUPTable <- rbind(CIFollowUPTable,cStats$CIFollowUp); CIRisksTable <- rbind(CIRisksTable,cStats$CIRisk); LogRankTable <- rbind(LogRankTable,cStats$LogRank); binaryPreds <- rcvLASSO$survMedianTest[,c("Outcome","LinearPredictorsMedian")] binaryStats <- predictionStats_binary(binaryPreds,"Lasso") accciTable <- rbind(accciTable,binaryStats$accc) errorciTable <- rbind(errorciTable,binaryStats$berror) aucTable <- rbind(aucTable,binaryStats$aucs) senTable <- rbind(senTable,binaryStats$sensitivity) speTable <- rbind(speTable,binaryStats$specificity) TheCVEvaluations$LASSO <- rcvLASSO; times$LASSO <- rcvLASSO$theTimes selFrequency <- cbind(selFrequency,numeric(ncol(theData))); selFrequency[names(rcvLASSO$featureFrequency),ncol(selFrequency)] <- rcvLASSO$featureFrequency; theFiltersets <- c(theFiltersets,"LASSO"); jaccard_filter$LASSO <- rcvLASSO$jaccard; test_Predictions <- cbind(test_Predictions,rcvLASSO$survMedianTest[tnames,3],rcvLASSO$survMedianTest[tnames,4],rcvLASSO$survMedianTest[tnames,5],rcvLASSO$survMedianTest[tnames,6]) cputimes$LASSO = mean(rcvLASSO$theTimes[ elapcol ]) } rcvGLMNET_RIDGE <- try(FRESA.CAD::randomCV(theData,theOutcome,GLMNET_RIDGE_MIN,trainSampleSets = referenceCV$trainSamplesSets,featureSelectionFunction = "Self")); if (!inherits(rcvGLMNET_RIDGE, "try-error")) { methods <- cbind(methods,"RIDGE"); cStats <- predictionStats_survival(rcvGLMNET_RIDGE$survMedianTest,plotname = "GLMNET_RIDGE"); CIFollowUPTable <- rbind(CIFollowUPTable,cStats$CIFollowUp); CIRisksTable <- rbind(CIRisksTable,cStats$CIRisk); LogRankTable <- rbind(LogRankTable,cStats$LogRank); binaryPreds <- rcvGLMNET_RIDGE$survMedianTest[,c("Outcome","LinearPredictorsMedian")] binaryStats <- predictionStats_binary(binaryPreds,"Ridge") accciTable <- rbind(accciTable,binaryStats$accc) errorciTable <- rbind(errorciTable,binaryStats$berror) aucTable <- rbind(aucTable,binaryStats$aucs) senTable <- rbind(senTable,binaryStats$sensitivity) speTable <- rbind(speTable,binaryStats$specificity) TheCVEvaluations$RIDGE <- rcvGLMNET_RIDGE; times$RIDGE <- rcvGLMNET_RIDGE$theTimes selFrequency <- cbind(selFrequency,numeric(ncol(theData))); selFrequency[names(rcvGLMNET_RIDGE$featureFrequency),ncol(selFrequency)] <- rcvGLMNET_RIDGE$featureFrequency; theFiltersets <- c(theFiltersets,"RIDGE"); jaccard_filter$RIDGE <- rcvGLMNET_RIDGE$jaccard; test_Predictions <- cbind(test_Predictions,rcvGLMNET_RIDGE$survMedianTest[tnames,3],rcvGLMNET_RIDGE$survMedianTest[tnames,4],rcvGLMNET_RIDGE$survMedianTest[tnames,5],rcvGLMNET_RIDGE$survMedianTest[tnames,6]) cputimes$RIDGE = mean(rcvGLMNET_RIDGE$theTimes[ elapcol ]) } rcvGLMNET_ELASTICNET <- try(FRESA.CAD::randomCV(theData,theOutcome,GLMNET_ELASTICNET_MIN,trainSampleSets = referenceCV$trainSamplesSets,featureSelectionFunction = "Self")); if (!inherits(rcvGLMNET_ELASTICNET, "try-error")) { methods <- cbind(methods,"ELASTICNET"); cStats <- predictionStats_survival(rcvGLMNET_ELASTICNET$survMedianTest,plotname = "GLMNET_ELASTICNET"); CIFollowUPTable <- rbind(CIFollowUPTable,cStats$CIFollowUp); CIRisksTable <- rbind(CIRisksTable,cStats$CIRisk); LogRankTable <- rbind(LogRankTable,cStats$LogRank); binaryPreds <- rcvGLMNET_ELASTICNET$survMedianTest[,c("Outcome","LinearPredictorsMedian")] binaryStats <- predictionStats_binary(binaryPreds,"ElasticNet") accciTable <- rbind(accciTable,binaryStats$accc) errorciTable <- rbind(errorciTable,binaryStats$berror) aucTable <- rbind(aucTable,binaryStats$aucs) senTable <- rbind(senTable,binaryStats$sensitivity) speTable <- rbind(speTable,binaryStats$specificity) TheCVEvaluations$ELASTICNET <- rcvGLMNET_ELASTICNET; times$ELASTICNET <- rcvGLMNET_ELASTICNET$theTimes selFrequency <- cbind(selFrequency,numeric(ncol(theData))); selFrequency[names(rcvGLMNET_ELASTICNET$featureFrequency),ncol(selFrequency)] <- rcvGLMNET_ELASTICNET$featureFrequency; theFiltersets <- c(theFiltersets,"ELASTICNET"); jaccard_filter$ELASTICNET <- rcvGLMNET_ELASTICNET$jaccard; test_Predictions <- cbind(test_Predictions,rcvGLMNET_ELASTICNET$survMedianTest[tnames,3],rcvGLMNET_ELASTICNET$survMedianTest[tnames,4],rcvGLMNET_ELASTICNET$survMedianTest[tnames,5],rcvGLMNET_ELASTICNET$survMedianTest[tnames,6]) cputimes$ELASTICNET = mean(rcvGLMNET_ELASTICNET$theTimes[ elapcol ]) } rcvBESS <- try(FRESA.CAD::randomCV(theData,theOutcome,BESS,trainSampleSets = referenceCV$trainSamplesSets,featureSelectionFunction = "Self",method="gsection")); if (!inherits(rcvBESS, "try-error")) { methods <- cbind(methods,"BESS"); cStats <- predictionStats_survival(rcvBESS$survMedianTest,plotname = "BeSS"); CIFollowUPTable <- rbind(CIFollowUPTable,cStats$CIFollowUp); CIRisksTable <- rbind(CIRisksTable,cStats$CIRisk); LogRankTable <- rbind(LogRankTable,cStats$LogRank); binaryPreds <- rcvBESS$survMedianTest[,c("Outcome","LinearPredictorsMedian")]; binaryStats <- predictionStats_binary(binaryPreds,"BeSS"); accciTable <- rbind(accciTable,binaryStats$accc); errorciTable <- rbind(errorciTable,binaryStats$berror); aucTable <- rbind(aucTable,binaryStats$aucs); senTable <- rbind(senTable,binaryStats$sensitivity); speTable <- rbind(speTable,binaryStats$specificity); TheCVEvaluations$BESS <- rcvBESS; times$BESS <- rcvBESS$theTimes selFrequency <- cbind(selFrequency,numeric(ncol(theData))); selFrequency[names(rcvBESS$featureFrequency),ncol(selFrequency)] <- rcvBESS$featureFrequency; theFiltersets <- c(theFiltersets,"BESS"); jaccard_filter$BESS <- rcvBESS$jaccard; test_Predictions <- cbind(test_Predictions,rcvBESS$survMedianTest[tnames,3],rcvBESS$survMedianTest[tnames,4],rcvBESS$survMedianTest[tnames,5],rcvBESS$survMedianTest[tnames,6]) cputimes$BESS = mean(rcvBESS$theTimes[ elapcol ]) } rcvBESSSequential <- try(FRESA.CAD::randomCV(theData,theOutcome,BESS,trainSampleSets = referenceCV$trainSamplesSets,featureSelectionFunction = "Self",method="sequential",ic.type="GIC")); if (!inherits(rcvBESSSequential, "try-error")) { methods <- cbind(methods,"BeSS.SEQUENTIAL"); cStats <- predictionStats_survival(rcvBESSSequential$survMedianTest,plotname = "BeSS.SEQUENTIAL"); CIFollowUPTable <- rbind(CIFollowUPTable,cStats$CIFollowUp); CIRisksTable <- rbind(CIRisksTable,cStats$CIRisk); LogRankTable <- rbind(LogRankTable,cStats$LogRank); binaryPreds <- rcvBESSSequential$survMedianTest[,c("Outcome","LinearPredictorsMedian")]; binaryStats <- predictionStats_binary(binaryPreds,"BeSS.SEQUENTIAL"); accciTable <- rbind(accciTable,binaryStats$accc); errorciTable <- rbind(errorciTable,binaryStats$berror); aucTable <- rbind(aucTable,binaryStats$aucs); senTable <- rbind(senTable,binaryStats$sensitivity); speTable <- rbind(speTable,binaryStats$specificity); TheCVEvaluations$BESS.SEQUENTIAL <- rcvBESSSequential; times$BESS.SEQUENTIAL <- rcvBESSSequential$theTimes selFrequency <- cbind(selFrequency,numeric(ncol(theData))); selFrequency[names(rcvBESSSequential$featureFrequency),ncol(selFrequency)] <- rcvBESSSequential$featureFrequency; theFiltersets <- c(theFiltersets,"BESS.SEQUENTIAL"); jaccard_filter$BESS.SEQUENTIAL <- rcvBESSSequential$jaccard; test_Predictions <- cbind(test_Predictions,rcvBESSSequential$survMedianTest[tnames,3],rcvBESSSequential$survMedianTest[tnames,4],rcvBESSSequential$survMedianTest[tnames,5],rcvBESSSequential$survMedianTest[tnames,6]) cputimes$BESS.SEQUENTIAL = mean(rcvBESSSequential$theTimes[ elapcol ]) } rcvBESSSequentialBIC <- try(FRESA.CAD::randomCV(theData,theOutcome,BESS,trainSampleSets = referenceCV$trainSamplesSets,featureSelectionFunction = "Self")); if (!inherits(rcvBESSSequentialBIC, "try-error")) { methods <- cbind(methods,"BeSS.SEQUENTIAL.BIC"); cStats <- predictionStats_survival(rcvBESSSequentialBIC$survMedianTest,plotname = "BeSS.SEQUENTIAL.BIC"); CIFollowUPTable <- rbind(CIFollowUPTable,cStats$CIFollowUp); CIRisksTable <- rbind(CIRisksTable,cStats$CIRisk); LogRankTable <- rbind(LogRankTable,cStats$LogRank); binaryPreds <- rcvBESSSequentialBIC$survMedianTest[,c("Outcome","LinearPredictorsMedian")] binaryStats <- predictionStats_binary(binaryPreds,"BeSS.SEQUENTIAL.BIC") accciTable <- rbind(accciTable,binaryStats$accc); errorciTable <- rbind(errorciTable,binaryStats$berror); aucTable <- rbind(aucTable,binaryStats$aucs); senTable <- rbind(senTable,binaryStats$sensitivity); speTable <- rbind(speTable,binaryStats$specificity); TheCVEvaluations$BESS.SEQUENTIAL.BIC <- rcvBESSSequentialBIC; times$BESS.SEQUENTIAL.BIC <- rcvBESSSequentialBIC$theTimes selFrequency <- cbind(selFrequency,numeric(ncol(theData))); selFrequency[names(rcvBESSSequentialBIC$featureFrequency),ncol(selFrequency)] <- rcvBESSSequentialBIC$featureFrequency; theFiltersets <- c(theFiltersets,"BESS.SEQUENTIAL.BIC"); jaccard_filter$BESS.SEQUENTIAL.BIC <- rcvBESSSequentialBIC$jaccard; test_Predictions <- cbind(test_Predictions,rcvBESSSequentialBIC$survMedianTest[tnames,3],rcvBESSSequentialBIC$survMedianTest[tnames,4],rcvBESSSequentialBIC$survMedianTest[tnames,5],rcvBESSSequentialBIC$survMedianTest[tnames,6]) cputimes$BESS.SEQUENTIAL.BIC = mean(rcvBESSSequentialBIC$theTimes[ elapcol ]) } predictions <- c("MartinGale","LinearPredictors","FollowUpTimes","Risks"); columnNamesMethods <- NULL; for(x in methods) { for(y in predictions) { columnNamesMethods <- cbind(columnNamesMethods,paste(x,y,sep="")) } } colnames(test_Predictions) <- c("Times","Outcome",columnNamesMethods); thesets <- c("Survival Algorithm") theMethod <- methods; rownames(CIFollowUPTable) <- theMethod; rownames(CIRisksTable) <- theMethod; rownames(LogRankTable) <- theMethod; rownames(accciTable) <- theMethod; rownames(errorciTable) <- theMethod; rownames(aucTable) <- theMethod; rownames(senTable) <- theMethod; rownames(speTable) <- theMethod; cputimes <- unlist(cputimes); names(cputimes) <- theMethod; if (class(referenceCV) != "list") { classnames <- colnames(test_Predictions); cat("Cox\n") fmeth <- FilterMethod(survival::coxph,"Cox") CIFollowUPTable_filter <- rbind(CIFollowUPTable_filter,fmeth$CIFollowUPTable_filter); CIRisksTable_filter <- rbind(CIRisksTable_filter,fmeth$CIFollowUPTable_filter); LogRankTable_filter <- rbind(LogRankTable_filter,fmeth$LogRankTable_filter); accciTable_filter <- rbind(accciTable_filter,fmeth$accciTable_filter) errorciTable_filter <- rbind(errorciTable_filter,fmeth$errorciTable_filter) aucTable_filter <- rbind(aucTable_filter,fmeth$aucTable_filter) senTable_filter <- rbind(senTable_filter,fmeth$senTable_filter) speTable_filter <- rbind(speTable_filter,fmeth$speTable_filter) TheCVEvaluations$Cox.Reference <- fmeth$rcvFilter_reference; TheCVEvaluations$Cox.LASSO = fmeth$rcvFilter_LASSO; TheCVEvaluations$Cox.BESS = fmeth$rcvFilter_BESS; TheCVEvaluations$Cox.Unicox = fmeth$rcvFilter_UniCox; test_Predictions <- cbind(test_Predictions,fmeth$rcvFilter_reference$survMedianTest[tnames,3],fmeth$rcvFilter_reference$survMedianTest[tnames,4],fmeth$rcvFilter_reference$survMedianTest[tnames,5],fmeth$rcvFilter_reference$survMedianTest[tnames,6]); filters = c("COX.BSWiMS"); if (!inherits(fmeth$rcvFilter_LASSO, "try-error")) { test_Predictions <- cbind(test_Predictions,fmeth$rcvFilter_LASSO$survMedianTest[tnames,3],fmeth$rcvFilter_LASSO$survMedianTest[tnames,4],fmeth$rcvFilter_LASSO$survMedianTest[tnames,5],fmeth$rcvFilter_LASSO$survMedianTest[tnames,6]); filters = c(filters,"COX.LASSO"); } if (!inherits(fmeth$rcvFilter_BESS, "try-error")) { test_Predictions <- cbind(test_Predictions,fmeth$rcvFilter_BESS$survMedianTest[tnames,3],fmeth$rcvFilter_BESS$survMedianTest[tnames,4],fmeth$rcvFilter_BESS$survMedianTest[tnames,5],fmeth$rcvFilter_BESS$survMedianTest[tnames,6]); filters = c(filters,"COX.BESS"); } if (!inherits(fmeth$rcvFilter_UniCox, "try-error")) { test_Predictions <- cbind(test_Predictions,fmeth$rcvFilter_UniCox$survMedianTest[tnames,3],fmeth$rcvFilter_UniCox$survMedianTest[tnames,4],fmeth$rcvFilter_UniCox$survMedianTest[tnames,5],fmeth$rcvFilter_UniCox$survMedianTest[tnames,6]); filters = c(filters,"COX.UnivariateCox"); } columnNamesMethods <- NULL; for(x in filters) { for(y in predictions) { columnNamesMethods <- cbind(columnNamesMethods,paste(x,y,sep="")) } } colnames(test_Predictions) <- c(classnames,columnNamesMethods); selFrequency <- cbind(selFrequency,numeric(ncol(theData))); if (!inherits(fmeth$rcvFilter_UniCox, "try-error")) { selFrequency[names(fmeth$rcvFilter_UniCox$featureFrequency),ncol(selFrequency)] <- fmeth$rcvFilter_UniCox$featureFrequency; theFiltersets <- c(theFiltersets,"Cox.Unicox"); jaccard_filter$kendall <- fmeth$rcvFilter_UniCox$jaccard; } } featsize <- unlist(lapply(jaccard_filter, `[`, c('averageLength'))) names(featsize) <- theFiltersets; jaccard <- unlist(lapply(jaccard_filter, `[`, c('Jaccard.SM'))) names(jaccard) <- theFiltersets; selFrequency <- as.data.frame(selFrequency[,-1]) selFrequency <- selFrequency/reps; colnames(selFrequency) <- theFiltersets; totsum <- apply(selFrequency,1,sum); selFrequency <- selFrequency[order(-totsum),]; totsum <- totsum[order(-totsum)]; selFrequency <- selFrequency[totsum>0,]; test_Predictions <- as.data.frame(test_Predictions) for (i in 2:ncol(test_Predictions)) { if (test_Predictions[,i] < -1) { test_Predictions[,i] <- 1.0/(1.0+exp(-test_Predictions[,i] )); } } result <- list(errorciTable = errorciTable,accciTable = accciTable,aucTable = aucTable,senTable = senTable,speTable = speTable, errorciTable_filter = errorciTable_filter,accciTable_filter = accciTable_filter,aucTable_filter = aucTable_filter,senTable_filter = senTable_filter,speTable_filter = speTable_filter, CIRisksTable = CIRisksTable,CIFollowUPTable = CIFollowUPTable,LogRankTable = LogRankTable, CIRisksTable_filter = CIRisksTable_filter,CIFollowUPTable_filter = CIFollowUPTable_filter,LogRankTable_filter = LogRankTable_filter, times = list(Reference = referenceCV$theTimes,LASSO = rcvLASSO$theTimes, RIDGE = rcvGLMNET_RIDGE$theTimes, ELASTICNET = rcvGLMNET_ELASTICNET, BESS = rcvBESS$theTimes, BESS.SEQUENTIAL = rcvBESSSequential$theTimes, BESS.SEQUENTIAL.BIC=rcvBESSSequentialBIC$theTimes), jaccard = jaccard, featsize = featsize, TheCVEvaluations = TheCVEvaluations, thesets = thesets, theMethod = theMethod, theFiltersets = theFiltersets, testPredictions = test_Predictions, featureSelectionFrequency = selFrequency, cpuElapsedTimes=cputimes ) class(result) <- c("FRESA_benchmark","Survival.COX"); return(result) }
tam_print_computation_time <- function(object) { cat( "Date of Analysis:", paste(object$time[2]), "\n" ) cat("Computation time:", print(object$time[2] - object$time[1]), "\n\n") }
timestamp <- Sys.time() library(caret) library(plyr) library(recipes) library(dplyr) library(xgboost) modelX <- "xgbDART" for(i in getModelInfo(modelX)[[1]]$library) do.call("requireNamespace", list(package = i)) xgbGrid <- expand.grid(nrounds = c(1, 10), max_depth = 2, eta = 0.30, rate_drop = 0.10, skip_drop = 0.10, colsample_bytree = 0.90, min_child_weight = 2, subsample = 0.75, gamma = 0.10) set.seed(2) training <- twoClassSim(100, linearVars = 2) testing <- twoClassSim(500, linearVars = 2) trainX <- training[, -ncol(training)] trainY <- training$Class rec_cls <- recipe(Class ~ ., data = training) %>% step_center(all_predictors()) %>% step_scale(all_predictors()) train_sparse <- xgb.DMatrix(as.matrix(trainX)) cctrl1 <- trainControl(method = "cv", number = 3, returnResamp = "all", classProbs = TRUE, summaryFunction = twoClassSummary) cctrl2 <- trainControl(method = "LOOCV", classProbs = TRUE, summaryFunction = twoClassSummary) cctrl3 <- trainControl(method = "oob") cctrl4 <- trainControl(method = "none", classProbs = TRUE, summaryFunction = twoClassSummary) cctrlR <- trainControl(method = "cv", number = 3, returnResamp = "all", search = "random") set.seed(649) test_class_cv_model <- train(trainX, trainY, method = modelX, trControl = cctrl1, metric = "ROC", preProc = c("center", "scale"), tuneGrid = xgbGrid) set.seed(649) test_class_cv_model_sp <- train(train_sparse, trainY, method = modelX, trControl = cctrl1, metric = "ROC", tuneGrid = xgbGrid) set.seed(649) test_class_cv_form <- train(Class ~ ., data = training, method = modelX, trControl = cctrl1, metric = "ROC", preProc = c("center", "scale"), tuneGrid = xgbGrid) test_class_pred <- predict(test_class_cv_model, testing[, -ncol(testing)]) test_class_prob <- predict(test_class_cv_model, testing[, -ncol(testing)], type = "prob") test_class_pred_form <- predict(test_class_cv_form, testing[, -ncol(testing)]) test_class_prob_form <- predict(test_class_cv_form, testing[, -ncol(testing)], type = "prob") set.seed(649) test_class_rand <- train(trainX, trainY, method = modelX, trControl = cctrlR, tuneLength = 4) set.seed(649) test_class_loo_model <- train(trainX, trainY, method = modelX, trControl = cctrl2, metric = "ROC", preProc = c("center", "scale"), tuneGrid = xgbGrid) set.seed(649) test_class_none_model <- train(trainX, trainY, method = modelX, trControl = cctrl4, tuneGrid = xgbGrid[nrow(xgbGrid),], metric = "ROC", preProc = c("center", "scale")) test_class_none_pred <- predict(test_class_none_model, testing[, -ncol(testing)]) test_class_none_prob <- predict(test_class_none_model, testing[, -ncol(testing)], type = "prob") set.seed(649) test_class_rec <- train(x = rec_cls, data = training, method = modelX, trControl = cctrl1, metric = "ROC", tuneGrid = xgbGrid) if(!isTRUE( all.equal(test_class_cv_model$results, test_class_rec$results))){ stop("CV weights not giving the same results") } test_class_imp_rec <- varImp(test_class_rec) test_class_pred_rec <- predict(test_class_rec, testing[, -ncol(testing)]) test_class_prob_rec <- predict(test_class_rec, testing[, -ncol(testing)], type = "prob") rep_eval_of_predict_cls = sapply( 1:100, function(x) predict(test_class_rec, newdata = testing[1, -ncol(testing)], type="prob")[,1]) if(length(unique(rep_eval_of_predict_cls))>1){ stop("Repeated evaluation do not return the same result (classification).") } test_levels <- levels(test_class_cv_model) if(!all(levels(trainY) %in% test_levels)) cat("wrong levels") library(caret) library(plyr) library(recipes) library(dplyr) set.seed(1) training <- SLC14_1(75) testing <- SLC14_1(100) trainX <- training[, -ncol(training)] trainY <- training$y rec_reg <- recipe(y ~ ., data = training) %>% step_center(all_predictors()) %>% step_scale(all_predictors()) testX <- trainX[, -ncol(training)] testY <- trainX$y train_sparse <- xgb.DMatrix(as.matrix(trainX)) rctrl1 <- trainControl(method = "cv", number = 3, returnResamp = "all") rctrl2 <- trainControl(method = "LOOCV") rctrl3 <- trainControl(method = "oob") rctrl4 <- trainControl(method = "none") rctrlR <- trainControl(method = "cv", number = 3, returnResamp = "all", search = "random") set.seed(649) test_reg_cv_model <- train(trainX, trainY, method = modelX, trControl = rctrl1, preProc = c("center", "scale"), tuneGrid = xgbGrid) test_reg_pred <- predict(test_reg_cv_model, testX) set.seed(649) test_reg_cv_model_sp <- train(train_sparse, trainY, method = modelX, trControl = rctrl1, tuneGrid = xgbGrid) test_reg_pred_sp <- predict(test_reg_cv_model_sp, testX) set.seed(649) test_reg_cv_form <- train(y ~ ., data = training, method = modelX, trControl = rctrl1, preProc = c("center", "scale"), tuneGrid = xgbGrid) test_reg_pred_form <- predict(test_reg_cv_form, testX) set.seed(649) test_reg_rand <- train(trainX, trainY, method = modelX, trControl = rctrlR, tuneLength = 4) set.seed(649) test_reg_loo_model <- train(trainX, trainY, method = modelX, trControl = rctrl2, preProc = c("center", "scale"), tuneGrid = xgbGrid) set.seed(649) test_reg_none_model <- train(trainX, trainY, method = modelX, trControl = rctrl4, tuneGrid = xgbGrid[nrow(xgbGrid),], preProc = c("center", "scale")) test_reg_none_pred <- predict(test_reg_none_model, testX) set.seed(649) test_reg_rec <- train(x = rec_reg, data = training, method = modelX, trControl = rctrl1, tuneGrid = xgbGrid) if( !isTRUE( all.equal(test_reg_cv_model$results, test_reg_rec$results))){ stop("CV weights not giving the same optimal parameters") } test_reg_imp_rec <- varImp(test_reg_rec) test_reg_pred_rec <- predict(test_reg_rec, testing[, -ncol(testing)]) rep_eval_of_predict_reg = sapply(1:100, function(x) predict(test_reg_rec, newdata = testing[1, -ncol(testing)])) if(length(unique(rep_eval_of_predict_reg))>1){ stop("Repeated evaluation do not return the same result (regression).") } test_class_predictors1 <- predictors(test_class_cv_model) test_reg_predictors1 <- predictors(test_reg_cv_model) test_class_imp <- varImp(test_class_cv_model) test_reg_imp <- varImp(test_reg_cv_model) tests <- grep("test_", ls(), fixed = TRUE, value = TRUE) sInfo <- sessionInfo() timestamp_end <- Sys.time() save(list = c(tests, "sInfo", "timestamp", "timestamp_end"), file = file.path(getwd(), paste(modelX, ".RData", sep = ""))) if(!interactive()) q("no")
elx_fetch_data <- function(url, type = c("title","text","ids","notice"), language_1 = "en", language_2 = "fr", language_3 = "de", include_breaks = TRUE){ stopifnot("url must be specified" = !missing(url), "type must be specified" = !missing(type), "type must be correctly specified" = type %in% c("title","text","ids","notice")) language <- paste(language_1,", ",language_2,";q=0.8, ",language_3,";q=0.7", sep = "") if (stringr::str_detect(url,"celex.*[\\(|\\)|\\/]")){ clx <- stringr::str_extract(url, "(?<=celex\\/).*") %>% stringr::str_replace_all("\\(","%28") %>% stringr::str_replace_all("\\)","%29") %>% stringr::str_replace_all("\\/","%2F") url <- paste("http://publications.europa.eu/resource/celex/", clx, sep = "") } if (type == "title"){ response <- graceful_http(url, headers = httr::add_headers('Accept-Language' = language, 'Accept' = 'application/xml; notice=object'), verb = "GET") if (httr::status_code(response)==200){ out <- httr::content(response) %>% xml2::xml_find_first("//EXPRESSION_TITLE") %>% xml2::xml_find_first("VALUE") %>% xml2::xml_text() } else {out <- httr::status_code(response)} } if (type == "text"){ response <- graceful_http(url, headers = httr::add_headers('Accept-Language' = language, 'Content-Language' = language, 'Accept' = 'text/html, text/html;type=simplified, text/plain, application/xhtml+xml, application/xhtml+xml;type=simplified, application/pdf, application/pdf;type=pdf1x, application/pdf;type=pdfa1a, application/pdf;type=pdfx, application/pdf;type=pdfa1b, application/msword'), verb = "GET") if (httr::status_code(response)==200){ out <- elx_read_text(response) } else if (httr::status_code(response)==300){ links <- response %>% httr::content(as = "text") %>% xml2::read_html() %>% rvest::html_node("body") %>% rvest::html_nodes("a") %>% rvest::html_attrs() %>% unlist() names(links) <- NULL multiout <- "" for (q in 1:length(links)){ multiresponse <- graceful_http(links[q], headers = httr::add_headers('Accept-Language' = language, 'Content-Language' = language, 'Accept' = 'text/html, text/html;type=simplified, text/plain, application/xhtml+xml, application/xhtml+xml;type=simplified, application/pdf, application/pdf;type=pdf1x, application/pdf;type=pdfa1a, application/pdf;type=pdfx, application/pdf;type=pdfa1b, application/msword'), verb = "GET") if (httr::status_code(multiresponse)==200){ multiout[q] <- elx_read_text(multiresponse) multiout <- paste0(multiout, collapse = " ---documentbreak--- ") } else { multiout <- NA_character_ names(multiout) <- "missingdoc" } } names(multiout) <- "multidocs" out <- multiout } else if (httr::status_code(response)==406){ out <- NA names(out) <- "missingdoc" } if (include_breaks == FALSE){ out <- stringr::str_remove_all(out,"---pagebreak---|---documentbreak---") } } if (type == "ids"){ response <- graceful_http(url, headers = httr::add_headers('Accept-Language' = language, 'Accept' = 'application/xml; notice=identifiers'), verb = "GET") if (httr::status_code(response)==200){ out <- httr::content(response) %>% xml2::xml_children() %>% xml2::xml_find_all(".//VALUE") %>% xml2::xml_text() } else {out <- httr::status_code(response)} } if (type == "notice"){ response <- graceful_http(url, headers = httr::add_headers('Accept-Language' = language, 'Accept' = 'application/xml; notice=branch'), verb = "GET") if (httr::status_code(response)==200){ out <- httr::content(response) } else {out <- httr::status_code(response)} } return(out) } elx_read_text <- function(http_response){ if (stringr::str_detect(http_response$headers$`content-type`,"html")){ out <- http_response %>% xml2::read_html() %>% rvest::html_node("body") %>% rvest::html_text() %>% paste0(collapse = " ---pagebreak--- ") names(out) <- "html" } else if (stringr::str_detect(http_response$headers$`content-type`,"pdf")){ out <- http_response$url %>% pdftools::pdf_text() %>% paste0(collapse = " ---pagebreak--- ") names(out) <- "pdf" } else if (stringr::str_detect(http_response$headers$`content-type`,"msword")){ out <- http_response$url %>% antiword::antiword() %>% paste0(collapse = " ---pagebreak--- ") names(out) <- "word" } else { out <- "unsupported format" names(out) <- "unsupported" } return(out) }
ggmatrix_progress <- function( format = " plot: [:plot_i,:plot_j] [:bar]:percent est::eta ", clear = TRUE, show_after = 0, ... ) { ret <- function(pm, ...) { progress::progress_bar$new( format = format, clear = clear, show_after = show_after, total = pm$ncol * pm$nrow, ... ) } ret } as_ggmatrix_progress <- function(x, total, ...) { if (isFALSE(x)) { return(FALSE) } if (isTRUE(x)) { return(ggmatrix_progress(...)) } if (is.null(x)) { shouldDisplay <- interactive() && total > 15 if (!shouldDisplay) { return(FALSE) } else { return(ggmatrix_progress(...)) } } if (is.function(x)) { return(x) } stop( "as_ggmatrix_progress only knows how to handle TRUE, FALSE, NULL, or a function.", " If a function, it must return a new progress_bar" ) } isFALSE <- function(x) { identical(FALSE, x) }
NULL collapse_labels_lines <- function(labels) { is_exp <- vapply(labels, function(l) length(l) > 0 && is.expression(l[[1]]), logical(1)) out <- do.call("Map", c(list(paste, sep = ", "), labels)) label <- list(unname(unlist(out))) if (all(is_exp)) { label <- lapply(label, function(l) list(parse(text = paste0("list(", l, ")")))) } label } label_value <- function(labels, multi_line = TRUE) { labels <- lapply(labels, as.character) if (multi_line) { labels } else { collapse_labels_lines(labels) } } class(label_value) <- c("function", "labeller") label_variable <- function(labels, multi_line = TRUE) { if (multi_line) { row <- as.list(names(labels)) } else { row <- list(paste(names(labels), collapse = ", ")) } lapply(row, rep, nrow(labels) %||% length(labels[[1]])) } label_both <- function(labels, multi_line = TRUE, sep = ": ") { value <- label_value(labels, multi_line = multi_line) variable <- label_variable(labels, multi_line = multi_line) if (multi_line) { out <- vector("list", length(value)) for (i in seq_along(out)) { out[[i]] <- paste(variable[[i]], value[[i]], sep = sep) } } else { value <- do.call("paste", c(value, sep = ", ")) variable <- do.call("paste", c(variable, sep = ", ")) out <- Map(paste, variable, value, sep = sep) out <- list(unname(unlist(out))) } out } class(label_both) <- c("function", "labeller") label_context <- function(labels, multi_line = TRUE, sep = ": ") { if (length(labels) == 1) { label_value(labels, multi_line) } else { label_both(labels, multi_line) } } class(label_context) <- c("function", "labeller") label_parsed <- function(labels, multi_line = TRUE) { labels <- label_value(labels, multi_line = multi_line) if (multi_line) { lapply(unname(labels), lapply, function(values) { c(parse(text = as.character(values))) }) } else { lapply(labels, function(values) { values <- paste0("list(", values, ")") lapply(values, function(expr) c(parse(text = expr))) }) } } class(label_parsed) <- c("function", "labeller") find_names <- function(expr) { if (is.call(expr)) { unlist(lapply(expr[-1], find_names)) } else if (is.name(expr)) { as.character(expr) } } label_bquote <- function(rows = NULL, cols = NULL, default) { cols_quoted <- substitute(cols) rows_quoted <- substitute(rows) has_warned <- FALSE call_env <- env_parent() fun <- function(labels) { quoted <- resolve_labeller(rows_quoted, cols_quoted, labels) if (is.null(quoted)) { return(label_value(labels)) } evaluate <- function(...) { params <- list(...) if ("x" %in% find_names(quoted) && !"x" %in% names(params)) { if (!has_warned) { warn("Referring to `x` is deprecated, use variable name instead") has_warned <<- TRUE } params$x <- params[[1]] } params <- as_environment(params, call_env) eval(substitute(bquote(expr, params), list(expr = quoted))) } list(do.call("Map", c(list(f = evaluate), labels))) } structure(fun, class = "labeller") } utils::globalVariables(c("x", ".")) label_wrap_gen <- function(width = 25, multi_line = TRUE) { fun <- function(labels) { labels <- label_value(labels, multi_line = multi_line) lapply(labels, function(x) { x <- strwrap(x, width = width, simplify = FALSE) vapply(x, paste, character(1), collapse = "\n") }) } structure(fun, class = "labeller") } is_labeller <- function(x) inherits(x, "labeller") resolve_labeller <- function(rows, cols, labels) { if (is.null(cols) && is.null(rows)) { abort("Supply one of rows or cols") } if (attr(labels, "facet") == "wrap") { if (!is.null(cols) && !is.null(rows)) { abort("Cannot supply both rows and cols to facet_wrap()") } cols %||% rows } else { if (attr(labels, "type") == "rows") { rows } else { cols } } } as_labeller <- function(x, default = label_value, multi_line = TRUE) { force(x) fun <- function(labels) { labels <- lapply(labels, as.character) default <- dispatch_args(default, multi_line = multi_line) if (is_labeller(x)) { x <- dispatch_args(x, multi_line = multi_line) x(labels) } else if (is.function(x)) { default(lapply(labels, x)) } else if (is.formula(x)) { default(lapply(labels, as_function(x))) } else if (is.character(x)) { default(lapply(labels, function(label) x[label])) } else { default(labels) } } structure(fun, class = "labeller") } labeller <- function(..., .rows = NULL, .cols = NULL, keep.as.numeric = NULL, .multi_line = TRUE, .default = label_value) { if (!is.null(keep.as.numeric)) { .Deprecated(old = "keep.as.numeric") } dots <- list(...) .default <- as_labeller(.default) function(labels) { if (!is.null(.rows) || !is.null(.cols)) { margin_labeller <- resolve_labeller(.rows, .cols, labels) } else { margin_labeller <- NULL } if (is.null(margin_labeller)) { labellers <- lapply(dots, as_labeller, default = .default) } else { margin_labeller <- as_labeller(margin_labeller, default = .default, multi_line = .multi_line) if (any(names(dots) %in% names(labels))) { abort(glue( "Conflict between .{attr(labels, 'type')} and ", glue_collapse(names(dots), ", ", last = " and ") )) } } if (is.null(margin_labeller)) { out <- lapply(names(labels), function(label) { if (label %in% names(labellers)) { labellers[[label]](labels[label])[[1]] } else { .default(labels[label])[[1]] } }) names(out) <- names(labels) if (.multi_line) { out } else { collapse_labels_lines(out) } } else { margin_labeller(labels) } } } build_strip <- function(label_df, labeller, theme, horizontal) { labeller <- match.fun(labeller) if (empty(label_df)) { return(if (horizontal) { list(top = NULL, bottom = NULL) } else { list(left = NULL, right = NULL) }) } labels <- lapply(labeller(label_df), cbind) labels <- do.call("cbind", labels) ncol <- ncol(labels) nrow <- nrow(labels) if (horizontal) { grobs_top <- lapply(labels, element_render, theme = theme, element = "strip.text.x.top", margin_x = TRUE, margin_y = TRUE) grobs_top <- assemble_strips(matrix(grobs_top, ncol = ncol, nrow = nrow), theme, horizontal, clip = "on") grobs_bottom <- lapply(labels, element_render, theme = theme, element = "strip.text.x.bottom", margin_x = TRUE, margin_y = TRUE) grobs_bottom <- assemble_strips(matrix(grobs_bottom, ncol = ncol, nrow = nrow), theme, horizontal, clip = "on") list( top = grobs_top, bottom = grobs_bottom ) } else { grobs_left <- lapply(labels, element_render, theme = theme, element = "strip.text.y.left", margin_x = TRUE, margin_y = TRUE) grobs_left <- assemble_strips(matrix(grobs_left, ncol = ncol, nrow = nrow), theme, horizontal, clip = "on") grobs_right <- lapply(labels[, rev(seq_len(ncol(labels))), drop = FALSE], element_render, theme = theme, element = "strip.text.y.right", margin_x = TRUE, margin_y = TRUE) grobs_right <- assemble_strips(matrix(grobs_right, ncol = ncol, nrow = nrow), theme, horizontal, clip = "on") list( left = grobs_left, right = grobs_right ) } } assemble_strips <- function(grobs, theme, horizontal = TRUE, clip) { if (length(grobs) == 0 || is.zero(grobs[[1]])) { grobs <- grobs[seq_len(NROW(grobs))] return(grobs) } grobs[] <- lapply(grobs, function(g) { if (inherits(g, "titleGrob")) return(g) add_margins(gList(g), grobHeight(g), grobWidth(g), margin_x = TRUE, margin_y = TRUE) }) if (horizontal) { height <- max_height(lapply(grobs, function(x) x$heights[2])) width <- unit(1, "null") } else { height <- unit(1, "null") width <- max_width(lapply(grobs, function(x) x$widths[2])) } grobs[] <- lapply(grobs, function(x) { x$widths <- unit.c(x$widths[1], width, x$widths[c(-1, -2)]) x$heights <- unit.c(x$heights[1], height, x$heights[c(-1, -2)]) x$vp$parent$layout$widths <- unit.c(x$vp$parent$layout$widths[1], width, x$vp$parent$layout$widths[c(-1, -2)]) x$vp$parent$layout$heights <- unit.c(x$vp$parent$layout$heights[1], height, x$vp$parent$layout$heights[c(-1, -2)]) x }) if (horizontal) { height <- sum(grobs[[1]]$heights) } else { width <- sum(grobs[[1]]$widths) } background <- if (horizontal) "strip.background.x" else "strip.background.y" background <- element_render(theme, background) grobs[] <- lapply(grobs, function(x) { ggname("strip", gTree(children = gList(background, x))) }) apply(grobs, 1, function(x) { if (horizontal) { mat <- matrix(x, ncol = 1) } else { mat <- matrix(x, nrow = 1) } gtable_matrix("strip", mat, rep(width, ncol(mat)), rep(height, nrow(mat)), clip = clip) }) } check_labeller <- function(labeller) { labeller <- match.fun(labeller) is_deprecated <- all(c("variable", "value") %in% names(formals(labeller))) if (is_deprecated) { old_labeller <- labeller labeller <- function(labels) { Map(old_labeller, names(labels), labels) } warn(glue( "The labeller API has been updated. Labellers taking `variable` ", "and `value` arguments are now deprecated. See labellers documentation.")) } labeller }
assign("rbf.tcv", function(formula, data, eta, rho, n.neigh, func){ z = extractFormula(formula, data, newdata=data)$z s = coordinates(data) rbf.pred <- as.data.frame(matrix(NA,nrow= length(z), ncol=8)) colnames(rbf.pred) <- c("var1.pred","var1.var","observed","residual","zscore","fold","x","y") pb <- txtProgressBar(min = 0, max = length(z), char = "=", style = 3) for(i in 1:(length(z))){ rbf.pred[i,1] <- rbf(formula, data[-i,], eta, rho, newdata=data[i,], n.neigh, func)[,3] rbf.pred[i,6] <- i setTxtProgressBar(pb, i) } close(pb) rbf.pred[,3]<- z rbf.pred[,7:8]<-s rbf.pred[,4]<- rbf.pred[,3]-rbf.pred[,1] rbf.pred } )
v1 = c('A', 'B','C') v1 class(v1) (v2 = c(1,2,3)) v2 class(v2) (v3 = c(TRUE, FALSE, TRUE)) class(v3) V3a <- c(T,F,T) v4 = 100:200 length(v4) v4 v5 = seq(1,10,2) v4; v5 v4 v4[-c(1,3,4)] v4[v4 > 150] v7 = c('A','C') v1 v1[!v1 %in% v7] v1 v1['A'] v1[1] v1 v4(v8 = 10:15) names(v8) = c('E','F','G','H','I','J') v8 v8['G'] v8[c('G','I')] v8[3:5] str(v8) str(v1) class(v8) class(v1) rollno=c(1,2,3) name=c('Rohit','Lalit', 'Hitesh') course=c('MBA','BBA','MCA') dept=c('Dept1','Dept1','Dept2') marks=floor(rnorm(3,50,10)) ?rnorm rnorm(3,50,10) students = data.frame(rollno, name, course, dept, marks) students class(students) str(students) summary(students) df = data.frame(rollno=c(1,2,3), name=c('Rohit','Lalit', 'Hitesh'), course=c('MBA','BBA','MCA'), dept=c('Dept1','Dept1','Dept2'),marks=floor(runif(3,50,100))) df class(df) df str(df) class(df) summary(df) listL1 = list('dhiraj', v1, students, mymatrix, myarray) listL1 ls() rm(list=ls()) ls() (mylist1 = list( 1, df, v4)) ?matrix 'a':'Z' mym = matrix(c('a','b',2,'d'), ncol=2) mym 1:24 (mymatrix = matrix(1:24,ncol=6,byrow=T)) length(11:35) mymatrix[,1] mymatrix[2:4,3:4] mymatrix[5,3] mymatrix ?matrix (mymatrix = matrix(1:24,ncol=4, byrow=TRUE)) rows1= c('R_1','R_2') 1:6 rn = paste('R',1:6, sep='-') cn = paste('C',1:4, sep='-') dimnames(mymatrix) = list(c(rn), c(cn)) mymatrix ?dimnames dimnames(mymatrix) = list(c(paste('R',1:6, sep='_')), c(paste('C',1:4,sep=''))) mymatrix paste('C',1:4, sep='') mymatrix[c('R-1'),] mymatrix[,c('C-3')] mymatrix[c('R-1','R-3'),] mymatrix[c(1,3),] mymatrix colSums(mymatrix) rowSums(mymatrix) rowMeans(mymatrix) colMeans(mymatrix) (myarray = array(101:124, dim=c(4,3,2))) (myarray = array(1:24, dim=c(3,2,4))) (myarray = array(1:24, dim=c(4,3,2), dimnames = list(c('S1','S2','S3','S4'), c('Sub1','Sub2','Sub3'), c('Dept1','Dept2')))) myarray apply(myarray,3,sum) apply(myarray,2,mean) apply(myarray,3,sum) apply(myarray,c(2,3),mean) apply(myarray,c(1,3),sd) apply(myarray,c(1,2),max) name = c('S1','S2','S3','S4','S5') course = c('PHD', 'MTECH', 'BTECH','BTECH','PHD') gender = c('M', 'F', 'M', 'F','M') grades = c('A','B','C','A','F') marks = c(runif(5, 50, 100)) df = data.frame(name, course, gender, grades, marks) df str(df) df[1:2,] df[,1:3] df$name = as.character(df$name) str(df) df$grades = factor(df$grades, ordered=F, levels=c('A','B','C','D','E','F')) str(df) df$grades df$gender = factor(df$gender, ordered=T, levels=c('M','F')) df$gender students df df=fix(df) df[3:4,1:2] df df$course df$name df$gender = c('M','F','M','M') df str(df) df$gender = factor(df$gender) str(df) df$grades = c('A', 'B', 'A', 'C') df str(df) df$grades = factor(df$grades, ordered=T) str(df) df$grades df$grades = factor(df$grades, ordered=T, levels=c('C','B','A')) df$grades table(df$course,df$gender) mymatrix apply(mymatrix, 1, sum) apply(mymatrix, 2, sum) apply(mymatrix, 2, sd) myarray apply(myarray, 1, sum) df ?apply df tapply(df$marks, df$gender, mean) ?tapply df df$gender = NULL df df[df$dept == 'Dept1',] df[df$marks >= 80,]
search_anymatch <- function(x, wt = "json", raw = FALSE, ...) { out <- itis_GET("searchForAnyMatch", list(srchKey = x), wt, ...) if (raw || wt == "xml") return(out) x <- parse_raw(out)$anyMatchList tmp <- dr_op(bindlist(x$commonNameList.commonNames), "class") if (NROW(tmp) == 0) return(tibble::tibble()) names(tmp) <- paste0("common_", names(tmp)) x <- suppressWarnings( cbind( dr_op(x, c("commonNameList.commonNames", "commonNameList.class", "commonNameList.tsn", "class")), tmp ) ) tibble::as_tibble(x) }
estimate.model.lnre.fzm <- function (model, spc, param.names, method, cost.function, m.max=15, runs=1, debug=FALSE, ...) { if (! inherits(model, "lnre.fzm")) stop("argument must be object of class 'lnre.fzm'") if (runs > 1) warning("multiple estimation runs not yet implemented for Custom method (please set runs=1)") B.root.function <- function (B, N, V, model) { B <- B model <- model$util$update(model, list(B=B)) E.V <- EV(model, N) E.V - V } compute.B <- function(model, spc) { alpha <- model$param$alpha A <- model$param$A N <- N(spc) V <- V(spc) term1 <- (N ^ alpha) * Igamma(1 - alpha, N * A, lower=FALSE) term2 <- (A ^ (-alpha)) * (1 - exp(-N * A)) C <- alpha * V / (term1 + term2) B <- ( (1 - alpha) / C + A ^ (1 - alpha) ) ^ (1 / (1 - alpha)) if (B > 1e6) { if (debug) warning("Estimate B = ",B," > 1e6 from inexact model, adjusting to 1e6") B <- 1e6 } if (model$exact) { .eps <- 10 * .Machine$double.eps upper.B <- B lower.B <- upper.B .diff <- B.root.function(lower.B, N, V, model) if (.diff >= 0) { if (debug) warning("Can't adjust estimate B = ",B," from inexact model ", "since E[V] - V = ",.diff," > 0") } else { while ((lower.B - A) > .eps && .diff < 0) { lower.B <- (lower.B + A) / 2 .diff <- B.root.function(lower.B, N, V, model) } if (.diff < 0) { if (debug) warning("Can't find exact estimate for B, since lowest possible value ", "B = ",lower.B," has E[V] - V = ",.diff," < 0") } else { res <- uniroot(B.root.function, lower=lower.B, upper=upper.B, tol=.eps * B, N=N, V=V, model=model) if (abs(res$f.root) > .5) { if (debug) warning("No exact estimate for B found. Best guess was ", "B = ",res$root," with E[V] - V = ",res$f.root) } else { B <- res$root } } } } B } if ("B" %in% param.names) { param.names <- param.names[param.names != "B"] } else { warning("parameter B cannot be fixed in fZM estimation, ignoring specified value") } param.values <- rep(0, length(param.names)) if ("alpha" %in% param.names) { tmp <- list(alpha=Vm(spc, 1) / V(spc)) tmp <- model$util$transform(tmp) param.values[param.names == "alpha"] <- tmp$alpha } compute.cost <- function (P.vector, param.names, model, spc, m.max=15, debug=FALSE) { P.trans <- as.list(P.vector) names(P.trans) <- param.names P <- model$util$transform(P.trans, inverse=TRUE) P$B <- max(1, 10 * P$A) model <- model$util$update(model, P) B <- compute.B(model, spc) model <- model$util$update(model, list(B=B)) cost <- cost.function(model, spc, m.max) if (debug) { report <- as.data.frame(model$param) report$cost <- round(cost, digits=2) rownames(report) <- "" print(report) } cost } if (length(param.names) > 1) { result <- optim(param.values, compute.cost, method="Nelder-Mead", control=list(trace=debug, reltol=1e-12), param.names=param.names, model=model, spc=spc, m.max=m.max, debug=debug) res.conv <- result$convergence if (res.conv > 1) stop("parameter estimation failed (code ", res.conv, ")") if (res.conv > 0) warning("iteration limit exceeded, estimated parameter values may be incorrect (code 1)") P.estimate <- as.list(result$par) names(P.estimate) <- param.names model <- model$util$update(model, P.estimate, transformed=TRUE) } else if (length(param.names) >= 1) { result <- nlm(compute.cost, param.values, print.level=debug, stepmax=10, steptol=1e-12, param.names=param.names, model=model, spc=spc, m.max=m.max, debug=debug) res.code <- result$code if (res.code > 3) stop("parameter estimation failed (code ", res.code,")") if (res.code == 3) warning("estimated parameter values may be incorrect (code 3)") P.estimate <- as.list(result$estimate) names(P.estimate) <- param.names model <- model$util$update(model, P.estimate, transformed=TRUE) } B <- compute.B(model, spc) model <- model$util$update(model, list(B=B)) model$gof <- lnre.goodness.of.fit(model, spc, n.estimated=length(param.names) + 1) model }
stri_startswith <- function(str, ..., fixed, coll, charclass) { providedarg <- c( fixed = !missing(fixed), coll = !missing(coll), charclass = !missing(charclass)) if (sum(providedarg) != 1) stop("you have to specify either `fixed`, `coll`, or `charclass`") if (providedarg["fixed"]) stri_startswith_fixed(str, fixed, ...) else if (providedarg["coll"]) stri_startswith_coll(str, coll, ...) else if (providedarg["charclass"]) stri_startswith_charclass(str, charclass, ...) } stri_endswith <- function(str, ..., fixed, coll, charclass) { providedarg <- c( fixed = !missing(fixed), coll = !missing(coll), charclass = !missing(charclass)) if (sum(providedarg) != 1) stop("you have to specify either `fixed`, `coll`, or `charclass`") if (providedarg["fixed"]) stri_endswith_fixed(str, fixed, ...) else if (providedarg["coll"]) stri_endswith_coll(str, coll, ...) else if (providedarg["charclass"]) stri_endswith_charclass(str, charclass, ...) } stri_startswith_fixed <- function(str, pattern, from = 1L, negate = FALSE, ..., opts_fixed = NULL) { if (!missing(...)) opts_fixed <- do.call(stri_opts_fixed, as.list(c(opts_fixed, ...))) .Call(C_stri_startswith_fixed, str, pattern, from, negate, opts_fixed) } stri_endswith_fixed <- function(str, pattern, to = -1L, negate = FALSE, ..., opts_fixed = NULL) { if (!missing(...)) opts_fixed <- do.call(stri_opts_fixed, as.list(c(opts_fixed, ...))) .Call(C_stri_endswith_fixed, str, pattern, to, negate, opts_fixed) } stri_startswith_charclass <- function(str, pattern, from = 1L, negate = FALSE) { .Call(C_stri_startswith_charclass, str, pattern, from, negate) } stri_endswith_charclass <- function(str, pattern, to = -1L, negate = FALSE) { .Call(C_stri_endswith_charclass, str, pattern, to, negate) } stri_startswith_coll <- function(str, pattern, from = 1L, negate = FALSE, ..., opts_collator = NULL) { if (!missing(...)) opts_collator <- do.call(stri_opts_collator, as.list(c(opts_collator, ...))) .Call(C_stri_startswith_coll, str, pattern, from, negate, opts_collator) } stri_endswith_coll <- function(str, pattern, to = -1L, negate = FALSE, ..., opts_collator = NULL) { if (!missing(...)) opts_collator <- do.call(stri_opts_collator, as.list(c(opts_collator, ...))) .Call(C_stri_endswith_coll, str, pattern, to, negate, opts_collator) }
library(openxlsx) library(magrittr) library(huxtable) doc <- openxlsx::createWorkbook() show_add <- function(doc, ht, message) { if (is_hux(ht)) { caption(ht) <- message if (caption_pos(ht) == "top") caption_pos(ht) <- "bottom" } sheet <- substr(message, 1, 20) sheet <- make.names(sheet) if (is_hux(ht)) doc <- as_Workbook(ht, Workbook = doc, sheet = sheet) } ht_orig <- huxtable(a = c('Foo', 'Bar', 'Baz'), b = 2:4) ht <- ht_orig doc %<>% show_add(ht, 'Basic table') huxtable::bold(ht)[1, 1:2] <- TRUE huxtable::italic(ht)[1:2, 1] <- TRUE doc %<>% show_add(ht, 'Bold + Italic') top_border(ht)[1,] <- 1 top_border(ht)[2,] <- 2 top_border(ht)[3,] <- 1 left_border(ht)[1,1] <- 1 right_border(ht)[2,2] <- 1 doc %<>% show_add(ht, 'Borders: second top should be thicker') ht <- set_all_border_colors(ht, 1:2, 1, 'blue') ht <- set_all_border_colors(ht, 2:3, 2, 'red') doc %<>% show_add(ht, 'Border colors: left/top blue, bottom/right red') font_size(ht)[2,2] <- 16 font(ht)[3,1] <- 'Arial' doc %<>% show_add(ht, 'Font size and font') ht <- hux(a = c('short', 'much longer', 'short', 'short'), b = 1:4) align(ht)[1, 1] <- 'left' align(ht)[2, 1] <- 'left' align(ht)[3, 1] <- 'center' align(ht)[4, 1] <- 'right' doc %<>% show_add(ht, 'Horizontal alignment') na_string(ht) <- '--' ht[1,1] <- NA doc %<>% show_add(ht, 'NA string --') ht$a <- c('top', 'middle', 'bottom', 'top') valign(ht)[,1] <- ht$a font_size(ht)[, 2] <- 16 doc %<>% show_add(ht, 'Vertical alignment') ht <- ht_orig ht <- set_all_borders(ht, , , 1) doc %<>% show_add(ht, 'Width: nothing specified') width(ht) <- .75 col_width(ht) <- c(.7, .3) doc %<>% show_add(ht, 'Width: .7/.3, total .75') col_width(ht) <- c(.2, .8) doc %<>% show_add(ht, 'Width: .2/.8, total .75') ht <- ht_orig background_color(ht)[1,] <- 'yellow' background_color(ht)[1,2] <- 'orange' background_color(ht)[2,] <- grey(.95) background_color(ht)[3,] <- ' doc %<>% show_add(ht, 'Background color') ht <- ht_orig text_color(ht)[, 1] <- 'blue' text_color(ht)[, 2] <- 'red' doc %<>% show_add(ht, 'Text color') ht <- ht_orig ht <- set_all_borders(ht, 1) colspan(ht)[2,1] <- 2 doc %<>% show_add(ht, 'Body colspan') colspan(ht)[2,1] <- 1 rowspan(ht)[2,1] <- 2 doc %<>% show_add(ht, 'Body rowspan') colspan(ht)[2,1] <- 2 rowspan(ht)[2,1] <- 2 doc %<>% show_add(ht, 'Body row and colspan') ht <- hux('Long title' = 1:4, 'Long title 2' = 1:4, add_colnames = TRUE) rotation(ht)[1, 1] <- 90 doc %<>% show_add(ht, 'Rotation 90 degrees') ht <- ht_orig ht[1, 1:2] <- "Some very very long long long text" wrap(ht)[1, 1] <- TRUE doc %<>% show_add(ht, 'wrap on and off') ht <- ht_orig caption_pos(ht) <- "topleft" doc %<>% show_add(ht, 'topleft caption') caption_pos(ht) <- "topright" doc %<>% show_add(ht, 'topright caption') caption_pos(ht) <- "topcenter" doc %<>% show_add(ht, 'topcenter caption') ht$c <- ht$d <- ht$e <- ht$f <- ht$a caption_pos(ht) <- "top" position(ht) <- "right" doc %<>% show_add(ht, "caption determined by pos (right)") saveWorkbook(doc, fp <- file.path("scripts", "openxlsx-test-output.xlsx"), overwrite = TRUE) openXL(fp)
yini <- c(y1=1, y2=0, y3=0) neq <- length(yini) parms <- c(k1 = 0.04, k2 = 3e7, k3 = 1e4) vRober <- function(y, parms) { dy1 <- -parms["k1"]*y[1] + parms["k3"]*y[2]*y[3] dy2 <- parms["k1"]*y[1] - parms["k2"]*y[2]*y[2] - parms["k3"]*y[2]*y[3] dy3 <- parms["k2"]*y[2]*y[2] c(dy1, dy2, dy3) } r_rober <- function(t, y, parms, psens) vRober(y, parms) times <- 10^(seq(from = -5, to = 11, by = 0.1)) includes <- "using namespace arma;\n pfnd <- cppXPtr(code=' int d_robertson(double t, const vec &y, vec &ydot, RObject &param, NumericVector &psens) { NumericVector p(param); ydot[0] = -p["k1"]*y[0] + p["k3"]*y[1]*y[2]; ydot[2] = p["k2"]*y[1]*y[1]; ydot[1] = -ydot[0] - ydot[2]; return(CV_SUCCESS); } ', depends=c("RcppArmadillo","r2sundials","rmumps"), includes=includes, cacheDir="lib", verbose=FALSE) pfnj <- cppXPtr(code=' int jac_robertson(double t, const vec &y, const vec &ydot, mat &J, RObject &param, NumericVector &psens, vec &tmp1, vec &tmp2, vec &tmp3) { NumericVector p(param); J(0, 0) = -p["k1"]; J(1, 0) = p["k1"]; J(2, 0) = 0.; J(0, 1) = p["k3"]*y[2]; J(1, 1) = -p["k3"]*y[2]-2*p["k2"]*y[1]; J(2, 1) = 2*p["k2"]*y[1]; J(0, 2) = p["k3"]*y[1]; J(1, 2) = -p["k3"]*y[1]; J(2, 2) = 0.; return(CV_SUCCESS); } ', depends=c("RcppArmadillo","r2sundials","rmumps"), includes=includes, cacheDir="lib", verbose=FALSE) pfnspj <- cppXPtr(code=' int spjac_robertson(double t, const vec &y, const vec &ydot, uvec &ir, uvec &pj, vec &v, int n, int nz, RObject &param, NumericVector &psens, vec &tmp1, vec &tmp2, vec &tmp3) { if (nz < 8) stop("spjac_robertson: not enough room for non zeros, must have at least 8, instead got %d", nz); NumericVector prm(param); int i=0; pj[0] = 0; // init pj // first column ir[i] = 0; v[i++] = -prm["k1"]; ir[i] = 1; v[i++] = prm["k1"]; pj[1] = i; // second column ir[i] = 0; v[i++] = prm["k3"]*y[2]; ir[i] = 1; v[i++] = -prm["k3"]*y[2]-2*prm["k2"]*y[1]; ir[i] = 2; v[i++] = 2*prm["k2"]*y[1]; pj[2] = i; // third column ir[i] = 0; v[i++] = prm["k3"]*y[1]; ir[i] = 1; v[i++] = -prm["k3"]*y[1]; ir[i] = 2; v[i++] = 0; // just to hold the place for a full main diagonal pj[3] = i; return(CV_SUCCESS); } ', depends=c("RcppArmadillo","r2sundials","rmumps"), includes=includes, cacheDir="lib", verbose=FALSE) pfnsens1 <- cppXPtr(code=' int sens_robertson1(int Ns, double t, const vec &y, const vec &ydot, int iS, const vec &yS, vec &ySdot, RObject &param, NumericVector &p, vec &tmp1, vec &tmp2) { // calculate (∂f /∂y)s_i(t) + (∂f /∂p_i) for i = iS // (∂f /∂y)s_i(t) //print(p); //stop("print"); ySdot[0] = -p["k1"]*yS[0] + p["k3"]*y[2]*yS[1] + p["k3"]*y[1]*yS[2]; ySdot[1] = p["k1"]*yS[0] - (p["k3"]*y[2]+2*p["k2"]*y[1])*yS[1] - p["k3"]*y[1]*yS[2]; ySdot[2] = 2*p["k2"]*y[1]*yS[1]; // + (∂f /∂p_i) switch(iS) { case 0: ySdot[0] -= y[0]; ySdot[1] += y[0]; break; case 1: ySdot[1] -= y[1]*y[1]; ySdot[2] += y[1]*y[1]; break; case 2: ySdot[0] += y[1]*y[2]; ySdot[1] -= y[1]*y[2]; } return(CV_SUCCESS); } ', depends=c("RcppArmadillo","r2sundials","rmumps"), includes=includes, cacheDir="lib", verbose=FALSE) outr <- r2sundials::r2cvodes(yini, times, r_rober, param=parms, maxsteps=2000) out0 <- r2sundials::r2cvodes(yini, times, pfnd, param=parms, maxsteps=2000) test.r_vs_cpp <- function() { checkEqualsNumeric(out0, outr, tolerance=1.e-6, msg="equivalence of R and C++ rhs callbacks") } out1 <- r2sundials::r2cvodes(yini, times, pfnd, param=parms, fjac=pfnspj, nz=8, maxsteps=2000) test.sparse <- function() { checkEqualsNumeric(out0, out1, tolerance=1.e-6, msg="equivalence of solution with sparse Jacobian and internal cvodes Jacobian") } out2 <- r2sundials::r2cvodes(yini, times, pfnd, param=parms, fjac=pfnj, Ns=3, psens=parms, fsens1=pfnsens1, maxsteps=2000) test.dense <- function() { checkEqualsNumeric(out2, out1, tolerance=1.e-6, msg="equivalence of solutions with sparse Jacobian and dense Jacobian") } test.sensitivity <- function() { checkEqualsNumeric(dim(attr(out2, "sens")), c(length(yini), length(times), 3), msg="sensitivity dimension") } yinib <- c(x=0, y=1, vx=0.5, vy=0) paramb <- c(g=9.81, kx=0.1, ky=0.3, nbounce=5) timesb <- seq(0, 3, length.out=101) pball <- cppXPtr(code=' int d_ball(double t, const vec &y, vec &ydot, RObject &param, NumericVector &psens) { NumericVector p(param); ydot[0] = y[2]; ydot[1] = y[3]; ydot[2] = y[1] > 0 ? 0. : -y[2]; // falling till y=0 then damping ydot[3] = y[1] > 0 ? -p["g"] : -y[3]; // falling till y=0 then damping return(CV_SUCCESS); } ', depends=c("RcppArmadillo","r2sundials","rmumps"), includes=includes, cacheDir="lib", verbose=FALSE) proot <- cppXPtr(code=' int root_ball(double t, const vec &y, vec &vroot, RObject &param, NumericVector &psens) { vroot[0] = y[1]; // y==0 return(CV_SUCCESS); } ', depends=c("RcppArmadillo","r2sundials","rmumps"), includes=includes, cacheDir="lib", verbose=FALSE) pevt <- cppXPtr(code=' int event_ball(double t, const vec &y, vec &ynew, int Ns, std::vector<vec> &ySv, const ivec &rootsfound, RObject &param, NumericVector &psens) { NumericVector p(param); static int nbounce=0; if (y[3] > 0) // we cross 0 in ascending trajectory, it can happen when y < 0 in limits of abstol return(R2SUNDIALS_EVENT_IGNORE); ynew=y; if (++nbounce < p["nbounce"]) { // here nbounce=1:4 ynew[2] *= 1.-p["kx"]; // horizontal speed is lowered ynew[3] *= -(1.-p["ky"]); // vertical speed is lowered and reflected return(R2SUNDIALS_EVENT_HOLD); } else { // here nbounce=5 nbounce=0; // reinit counter for possible next calls to cvode return(R2SUNDIALS_EVENT_STOP); } } ', depends=c("RcppArmadillo", "r2sundials", "rmumps"), includes=includes, cacheDir="lib", verbose=FALSE) outb <- r2sundials::r2cvodes(yinib, timesb, pball, paramb, nroot=1, froot=proot, fevent=pevt) test.root.cpp <- function() { checkEqualsNumeric(dim(attr(outb, "roots")), c(2, 5), msg="root finding") } rhs_ball_r <- function(t, y, p, psens) { ydot <- y ydot[1] <- y[3]; ydot[2] <- y[4]; ydot[3] <- if (y[2] > 0) 0. else -y[3] ydot[4] <- if (y[2] > 0) -p["g"] else -y[4] return(ydot) } root_ball_r <- function(t, y, p, psens) y[2] event_ball_r <- local({ nbounce <- 0 function(t, y, Ns, ySm, rootsfound, p, psens) { if (y[4] > 0) return(list(flag=R2SUNDIALS_EVENT_IGNORE, ynew=y)) nbounce <<- nbounce + 1 ynew <- y; if (nbounce < p["nbounce"]) { ynew[3] <- ynew[3]*(1.-p["kx"]) ynew[4] <- -ynew[4]*(1.-p["ky"]) return(list(flag=R2SUNDIALS_EVENT_HOLD, ynew=ynew)) } else { nbounce <<- 0 return(list(flag=R2SUNDIALS_EVENT_STOP, ynew=ynew)) } } }) outbr <- r2sundials::r2cvodes(yinib, timesb, rhs_ball_r, paramb, nroot=1, froot=root_ball_r, fevent=event_ball_r) test.root.r <- function() { checkEqualsNumeric(outb, outbr, msg="root finding in R") checkEqualsNumeric(dim(attr(outbr, "roots")), c(2, 5), msg="dim root finding in R") } pexp <- cppXPtr(code=' int d_exp(double t, const vec &y, vec &ydot, RObject &param, NumericVector &psens) { ydot[0] = -psens["nu"]*(y[0]-psens["lim"]); return(CV_SUCCESS); } ', depends=c("RcppArmadillo","r2sundials","rmumps"), includes=includes, cacheDir="lib", verbose=FALSE) par_exp <- c("nu"=1, "lim"=1) ti <- seq(0, 5, length.out=11) oute <- r2sundials::r2cvodes(0., ti, pexp, Ns=2, psens=par_exp) test.expdecay <- function() { theor <- par_exp["lim"]-exp(-par_exp["nu"]*ti) checkEqualsNumeric(oute[1,], theor, tolerance=1.e-6, msg="numeric precision in exp decay") }
immer_IRT_likelihood_gpcm_helper <- function(theta, b, a, dat, dat_resp=NULL) { dat <- as.matrix(dat) if ( is.null(dat_resp) ){ dat_resp <- 1 - is.na(dat) } dat_resp <- as.matrix(dat_resp) dat[ is.na(dat) ] <- 0 b <- as.matrix(b) K <- ncol(b) TP <- length(theta) probs <- immer_gpcm_calc_probs( theta=theta, b=b, a=a ) like <- immer_irt_likelihood_gpcm( probs=probs, dat=dat, dat_resp=dat_resp, TP=TP, K=K ) attr(like, "theta") <- theta attr(like, "prob.theta") <- NA attr(like, "skillspace") <- NA attr(like, "G") <- NA return(like) }
leafletGeo = function(mapName, dat = NULL, namevar = NULL, valuevar = NULL){ countries <- readGeoLocal(mapName) countries$popup = countries$name if(is.null(dat)){ return( countries ) }else{ if(class(dat) != 'data.frame'){ stop("dat should be a data.frame") } if(is.null(namevar)){ name = dat[, 1] %>% toLabel() }else{ name = evalFormula(namevar,dat) } name = as.character(name) %>% toLabel() if(is.null(valuevar)){ value = dat[, 2] }else{ value = evalFormula(valuevar,dat) } countries <- readGeoLocal(mapName) countries$label = toLabel(countries$name) index = sapply(countries$label,function(x) which(name==x)[1]) countries$value = value[index] countries$popup = countries$name return( countries ) } }
SpatialPixelsDataFrame = function(points, data, tolerance = sqrt(.Machine$double.eps), proj4string = CRS(as.character(NA)), round = NULL, grid = NULL) { if (is.null(points)) stop("points argument is NULL") if (is(points, "SpatialPixels") && is.null(grid)) grid = points@grid if (!is(points, "SpatialPoints")) points = SpatialPoints(points, proj4string = proj4string) points = SpatialPixels(points, tolerance = tolerance, round = round, grid = grid) new("SpatialPixelsDataFrame", points, data = data) } SpatialGridDataFrame = function(grid, data, proj4string = CRS(as.character(NA))) { if (!is(grid, "SpatialGrid")) grid = SpatialGrid(grid, proj4string) new("SpatialGridDataFrame", grid, data = data) } setMethod("addAttrToGeom", signature(x = "SpatialPixels", y = "data.frame"), function(x, y, match.ID, ...) SpatialPixelsDataFrame(geometry(x), y, ...) ) setMethod("addAttrToGeom", signature(x = "SpatialGrid", y = "data.frame"), function(x, y, match.ID, ...) SpatialGridDataFrame(geometry(x), y, ...) ) as.SPixDF.SGDF = function(from) { data = list() n = .NumberOfCells(from@grid) for (i in seq_along(from@data)) { v = vector(mode(from@data[[i]]), n) if (is.factor(from@data[[i]])) v = factor(rep(NA, n), levels = levels(from@data[[i]])) else v[[email protected]] = NA v[[email protected]] = from@data[[i]] data[[i]] = v } data = data.frame(data, stringsAsFactors = FALSE) names(data) = names(from@data) SpatialGridDataFrame(from@grid, data, rebuild_CRS(slot(from, "proj4string"))) } pix2grid = function(from) { n = .NumberOfCells(from@grid) data = data.frame(matrix(nrow = n, ncol = ncol(from@data))) data[[email protected],] = from@data names(data) = names(from@data) fids = which(sapply(from@data, is.factor)) if (length(fids) > 0) { for (fi in fids) { v = vector(mode(from@data[[fi]]), n) v = factor(rep(NA, n), levels = levels(from@data[[fi]])) v[[email protected]] = from@data[[fi]] data[,fi] = v } } SpatialGridDataFrame(from@grid, data, rebuild_CRS(slot(from, "proj4string"))) } setAs("SpatialPixelsDataFrame", "SpatialGridDataFrame", pix2grid) as.SGDF.SPixDF = function(from) { sel = apply(sapply(from@data, is.na), 1, function(x) !all(x)) if (!any(sel)) { warning("complete map seems to be NA's -- no selection was made") sel = rep(TRUE, length(sel)) } new("SpatialPixelsDataFrame", new("SpatialPixels", new("SpatialPoints", coords = coordinates(from)[sel,,drop=FALSE], bbox = from@bbox, proj4string = from@proj4string), grid = from@grid, grid.index = which(sel)), data = from@data[sel,,drop=FALSE]) } setAs("SpatialGridDataFrame", "SpatialPixelsDataFrame", as.SGDF.SPixDF) setAs("SpatialGridDataFrame", "SpatialPointsDataFrame", function(from) as(as(from, "SpatialPixelsDataFrame"), "SpatialPointsDataFrame")) setMethod("coordinates", "SpatialPixelsDataFrame", function(obj) coordinates(as(obj, "SpatialPixels"))) setMethod("coordinates", "SpatialGridDataFrame", function(obj) coordinates(as(obj, "SpatialGrid"))) row.names.SpatialGridDataFrame <- function(x) { row.names(x@data) } as.SpPixDF.SpPoiDF = function(from) new("SpatialPointsDataFrame", as(from, "SpatialPoints"), data = from@data, coords.nrs = [email protected]) setAs("SpatialPixelsDataFrame", "SpatialPointsDataFrame", as.SpPixDF.SpPoiDF) as.SpatialPolygonsDataFrame.SpatialPixelsDataFrame = function(from) { df <- from@data SP <- as(from, "SpatialPolygons") row.names(df) <- row.names(SP) SpatialPolygonsDataFrame(SP, df) } setAs("SpatialPixelsDataFrame", "SpatialPolygonsDataFrame", as.SpatialPolygonsDataFrame.SpatialPixelsDataFrame) as.matrix.SpatialPixelsDataFrame = function(x, ...) { x = as(x, "SpatialGridDataFrame") as.matrix(x, ...) } as.array.SpatialGridDataFrame = function(x,...) { d = gridparameters(x)$cells.dim if (ncol(x@data) > 1) d = c(d, ncol(x@data)) array(do.call(c, x@data), dim = d) } setAs("SpatialGridDataFrame", "array", function(from) as.array.SpatialGridDataFrame(from)) setAs("SpatialPixelsDataFrame", "array", function(from) as(as(from, "SpatialGridDataFrame"), "array")) as.matrix.SpatialGridDataFrame = function(x, ..., byrow = FALSE) { if (ncol(x@data) > 1) warning( "as.matrix.SpatialGridDataFrame uses first column;\n use subset or [] for other columns") if (byrow) matrix(x@data[[1]], x@[email protected][2], x@[email protected][1], byrow=byrow) else matrix(x@data[[1]], x@[email protected][1], x@[email protected][2], byrow=byrow) } setAs("SpatialPixelsDataFrame", "matrix", function(from) as.matrix.SpatialPixelsDataFrame(from)) setAs("SpatialGridDataFrame", "matrix", function(from) as.matrix.SpatialGridDataFrame(from)) as.data.frame.SpatialPixelsDataFrame = function(x, row.names, optional, ...) as.data.frame(as(x, "SpatialPointsDataFrame")) as.data.frame.SpatialGridDataFrame = function(x, row.names, optional, ...) as.data.frame(as(x, "SpatialPixelsDataFrame")) setAs("SpatialPixelsDataFrame", "data.frame", function(from) as.data.frame.SpatialPixelsDataFrame(from)) setAs("SpatialGridDataFrame", "data.frame", function(from) as.data.frame.SpatialGridDataFrame(from)) setMethod("[", "SpatialPixelsDataFrame", function(x, i, j, ... , drop = FALSE) { grid = x@grid x = as(x, "SpatialPointsDataFrame") missing.i = missing(i) missing.j = missing(j) nargs = nargs() if (missing.i && missing.j) { i = TRUE j = TRUE } else if (missing.j && !missing.i) { if (nargs == 2) { j = i i = TRUE } else { j = TRUE } } else if (missing.i && !missing.j) i = TRUE if (is.matrix(i)) stop("matrix argument not supported in SpatialPointsDataFrame selection") if (is(i, "Spatial")) i = !is.na(over(x, geometry(i))) if (any(is.na(i))) stop("NAs not permitted in row index") x@coords = x@coords[i, , drop = FALSE] if (nrow(x@coords)) x@bbox = .bboxCoords(x@coords) x@data = x@data[i, j, ..., drop = FALSE] if (drop) gridded(x) = TRUE else gridded(x) = list(TRUE, grid) x }) subs.SpatialGridDataFrame <- function(x, i, j, ... , drop = FALSE) { n.args = nargs() dots = list(...) if (drop) stop("argument drop needs to be FALSE") missing.i = missing(i) missing.j = missing(j) if (length(dots) > 0) { missing.k = FALSE k = dots[[1]] } else missing.k = TRUE if (missing.i && missing.j && missing.k) return(x) grd = x@grid if (missing.k) { k = TRUE if (missing.j && n.args != 3) { x@data = x@data[ , i, drop = FALSE] return(x) } } else if (missing.j && n.args == 2) { x@data = x@data[ , k, drop = FALSE] return(x) } if (missing.i) rows = 1:[email protected][2] else { if (is(i, "Spatial")) i = !is.na(over(x, geometry(i))) if (is.integer(i)) { if ((length(i) > [email protected][2] && length(i) < nrow(x@data)) || max(i) > [email protected][2]) { if (all(i < 0)) { i = -i negate = TRUE } else negate = FALSE i = (1:nrow(x@data)) %in% i if (negate) i = !i } } if (length(i) == nrow(x@data)) { if (!missing.j) x@data = x@data[j] x@data = data.frame(lapply(x@data, function(C) { C[!i] = NA; C })) return(x) } rows = i } if (missing.j) cols = 1:[email protected][1] else cols = j idx = 1:prod([email protected][1:2]) m = matrix(idx, [email protected][2], [email protected][1], byrow = TRUE)[rows,cols] idx = as.vector(m) if (any(is.na(idx))) stop("NAs not permitted in index") if (length(idx) == 0) { x@data = x@data[,k,drop=FALSE] x@data[] = NA return(x) } pts = SpatialPoints(coordinates(x)[idx,,drop=FALSE], rebuild_CRS(slot(x, "proj4string"))) if (length(idx) == 1) SpatialPointsDataFrame(pts, x@data[idx, k, drop = FALSE]) else { res = SpatialPixelsDataFrame(SpatialPixels(pts), x@data[idx, k, drop = FALSE]) as(res, "SpatialGridDataFrame") } } setMethod("[", "SpatialGridDataFrame", subs.SpatialGridDataFrame) cbind.SpatialGridDataFrame = function(...) { stop.ifnot.equal = function(a, b) { res = all.equal(getGridTopology(a), getGridTopology(b)) if (!is.logical(res) || !res) stop("topology is not equal") } grds = list(...) ngrds = length(grds) if (ngrds < 1) stop("no arguments supplied") if (ngrds == 1) return(grds[[1]]) sapply(grds[2:ngrds], function(x) stop.ifnot.equal(x, grds[[1]])) gr = grds[[1]] gr@data = do.call(cbind, lapply(grds, function(x) x@data)) proj4string(gr) = rebuild_CRS(slot(grds[[1]], "proj4string")) gr } print.SpatialPixelsDataFrame = function(x, ...) { cat("Object of class SpatialPixelsDataFrame\n") print(as(x, "SpatialPixels")) if (length(x) > 0) { cat("\n") cat("Data summary:\n") if (ncol(x@data) > 0) print(summary(x@data)) } invisible(x) } setMethod("show", "SpatialPixelsDataFrame", function(object) print.SpatialPixelsDataFrame(object)) print.SpatialGridDataFrame = function(x, ...) { cat("Object of class SpatialGridDataFrame\n") print(as(x, "SpatialGrid")) if (length(x) > 0) { cat("\n") cat("Data summary:\n") if (ncol(x@data) > 1) sobj = summary(x@data) else sobj = summary(x@data[[1]]) print(sobj) } invisible(x) } setMethod("show", "SpatialGridDataFrame", function(object) print.SpatialGridDataFrame(object)) names.SpatialPixelsDataFrame = function(x) names(x@data) names.SpatialGridDataFrame = function(x) names(x@data) checkNames = function(x) { if (!identical(x, make.names(x))) warning("attempt to set invalid names: this may lead to problems later on. See ?make.names") } "names<-.SpatialPixelsDataFrame" = function(x,value) { checkNames(value); names(x@data) = value; x } "names<-.SpatialGridDataFrame" = function(x,value) { checkNames(value); names(x@data) = value; x } dim.SpatialPixelsDataFrame = function(x) dim(x@data) dim.SpatialGridDataFrame = function(x) dim(x@data) setMethod("split", "SpatialPixelsDataFrame", split.data.frame) setMethod("geometry", "SpatialGridDataFrame", function(obj) as(obj, "SpatialGrid")) setMethod("geometry", "SpatialPixelsDataFrame", function(obj) as(obj, "SpatialPixels")) setAs("SpatialGridDataFrame", "SpatialPolygonsDataFrame", function(from) { fullgrid(from) = FALSE as(from, "SpatialPolygonsDataFrame") } ) length.SpatialPixelsDataFrame = function(x) { nrow(x@coords) } length.SpatialGridDataFrame = function(x) { .NumberOfCells(x@grid) } image.scale <- function(z, zlim, col = heat.colors(12), breaks, axis.pos=1, add.axis = TRUE, at = NULL, shrink = 0, ...) { stopifnot(!is.factor(z)) if (!missing(breaks) && length(breaks) != (length(col) + 1)) stop("must have one more break than colour") if (missing(zlim)) zlim <- range(z, na.rm=TRUE) if (missing(breaks)) breaks <- seq(zlim[1], zlim[2], length.out = length(col) + 1) Shrink = function(r, s) { w = diff(r) c(r[1] - 0.5 * s * w, r[2] + 0.5 * s * w) } if (axis.pos %in% c(1,3)) { ylim <- c(0, 1) xlim <- Shrink(range(breaks), shrink) } if (axis.pos %in% c(2,4)) { ylim <- Shrink(range(breaks), shrink) xlim <- c(0, 1) } poly <- vector(mode="list", length(col)) for (i in seq(poly)) poly[[i]] <- c(breaks[i], breaks[i+1], breaks[i+1], breaks[i]) plot(1,1,t="n", ylim = ylim, xlim = xlim, axes = FALSE, xlab = "", ylab = "", xaxs = "i", yaxs = "i", ...) for(i in seq(poly)) { if (axis.pos %in% c(1,3)) polygon(poly[[i]], c(0,0,1,1), col=col[i], border=NA) if (axis.pos %in% c(2,4)) polygon(c(0,0,1,1), poly[[i]], col=col[i], border=NA) } if (shrink > 0) { if (is.null(at)) at = pretty(breaks) b = c(breaks[1], breaks[length(breaks)]) if (axis.pos %in% c(1,3)) lines(y = c(0,1,1,0,0), x = c(b[1],b[1],b[2],b[2],b[1])) if (axis.pos %in% c(2,4)) lines(x = c(0,1,1,0,0), y = c(b[1],b[1],b[2],b[2],b[1])) } else box() if (add.axis) axis(axis.pos, at) } image.scale.factor <- function(z, col = heat.colors(nlevels(z)), axis.pos = 1, scale.frac = 0.3, scale.n = 15, ...) { stopifnot(is.factor(z)) stopifnot(axis.pos %in% c(1,4)) frc = scale.frac stre = scale.n plot(1, 1, t="n", ylim = c(0,1), xlim = c(0,1), axes = FALSE, xlab = "", ylab = "", xaxs = "i", yaxs = "i", ...) n = nlevels(z) if (n != length(col)) stop(" lb = (1:n - 0.5)/max(n, stre) poly <- vector(mode="list", length(col)) breaks = (0:n) / max(n, stre) if (n < stre) { breaks = breaks + (stre - n)/(2 * stre) lb = lb + (stre - n)/(2 * stre) } for (i in seq(poly)) poly[[i]] <- c(breaks[i], breaks[i+1], breaks[i+1], breaks[i]) for(i in seq(poly)) { if (axis.pos %in% c(1,3)) polygon(poly[[i]], c(1,1,1-frc,1-frc), col=col[i], border=NA) if (axis.pos %in% c(2,4)) polygon(c(0,0,frc,frc), poly[[i]], col=col[i], border=NA) } b = c(breaks[1], breaks[length(breaks)]) if (axis.pos %in% c(1,3)) { lines(y = c(1,1-frc,1-frc,1,1), x = c(b[1],b[1],b[2],b[2],b[1])) text(y = (1-frc)/1.05, x = lb, levels(z), pos = axis.pos) } if (axis.pos %in% c(2,4)) { lines(x = c(0,frc,frc,0,0), y = c(b[1],b[1],b[2],b[2],b[1])) text(x = 1.05 * frc, y = lb, levels(z), pos = axis.pos) } } plot.SpatialGridDataFrame = function(x, ..., attr = 1, col, breaks, zlim = range(as.numeric(x[[attr]])[is.finite(x[[attr]])]), axes = FALSE, xaxs = "i", yaxs = xaxs, at = NULL, border = NA, axis.pos = 4, add.axis = TRUE, what = "both", scale.size = lcm(2.8), scale.shrink = 0, scale.frac = 0.3, scale.n = 15) { if (missing(col)) { if (is.factor(x[[1]])) col = RColorBrewer::brewer.pal(nlevels(x[[1]]), "Set2") else col = bpy.colors(100) } image.args = list(x = x, col = col, zlim = zlim, axes = axes, xaxs = xaxs, yaxs = yaxs, ...) if (all(c("red", "green", "blue") %in% names(image.args))) what = "image" else image.args$x = x[1] if (!missing(breaks)) image.args$breaks = breaks si = scale.size if (what == "both") switch (axis.pos, layout(matrix(c(2,1), nrow=2, ncol=1), widths=1, heights=c(1,si)), layout(matrix(c(1,2), nrow=1, ncol=2), widths=c(si,1), heights=1), layout(matrix(c(1,2), nrow=2, ncol=1), widths=1, heights=c(si,1)), layout(matrix(c(2,1), nrow=1, ncol=2), widths=c(1,si), heights=1) ) if (what %in% c("both", "scale")) { mar = c(1,1,1,1) if (! is.factor(x[[1]])) mar[axis.pos] = 3 if (axes && axis.pos %in% c(2,4)) mar[1] = 3 if (axes && axis.pos %in% c(1,3)) mar[2] = 3 par(mar = mar) if (is.factor(x[[1]])) image.scale.factor(x[[1]], col = col, axis.pos = axis.pos, scale.frac = scale.frac, scale.n = scale.n) else image.scale(x[[1]], zlim = zlim, col = col, breaks = breaks, axis.pos = axis.pos, add.axis = add.axis, at = at, shrink = scale.shrink) } if (what %in% c("both", "image")) { if (is.factor(x[[1]])) image.args$x[[1]] = as.numeric(x[[1]]) mar=c(1,1,1,1) if (axes) mar[1:2] = 3 par(mar = mar) do.call(image, image.args) if (!is.na(border)) plot(geometry(x), col = border, add = TRUE) } } setMethod("plot", signature(x = "SpatialGridDataFrame", y = "missing"), function(x,y,...) plot.SpatialGridDataFrame(x,...)) setMethod("plot", signature(x = "SpatialPixelsDataFrame", y = "missing"), function(x,y,...) plot.SpatialGridDataFrame(x,...))
predict.aidsEst <- function( object, newdata = NULL, observedShares = FALSE, ... ) { if( is.null( newdata ) ) { newdata <- eval( object$call$data ) } if( object$method == "LA" ) { if( observedShares ) { priceIndex <- aidsPx( priceIndex = object$priceIndex, priceNames = object$priceNames, data = newdata, shareNames = object$shareNames, base = list( prices = object$basePrices, shares = object$baseShares ), coef = coef( object ), shifterNames = object$shifterNames ) } else { priceIndex <- object$priceIndex } } else if( object$method %in% c( "IL", "MK" ) ) { priceIndex <- "TL" } else { stop( "unknown element 'method' of argument 'object'" ) } result <- aidsCalc( priceNames = object$priceNames, totExpName = object$totExpName, coef = coef( object ), data = newdata, priceIndex = priceIndex, basePrices = object$basePrices, baseShares = object$baseShares ) return( result ) }
VCOV.calc <- function(object){ P<-length(object$Beta) L<-length(object$gl) N<-nrow(object$sdata) hess<-99 if(prod(object$gl>0)==1){ try1<-try(solve(-object$Hessian),silent=TRUE) if(!is.character(try1) & prod(is.finite(try1))==1){ vcov.bg<-try1[1:P,1:P] hess<-0 }else{ try2<-try(qr.solve(-object$Hessian),silent=TRUE) if(!is.character(try2) & prod(is.finite(try2))==1){ vcov.bg<-try2[1:P,1:P] hess<-1 } } } if(hess==99){ v<--object$Hessian A = v[1:P, 1:P] B = v[1:P, (P + 1):(P + L)] C = v[(P + 1):(P + L), 1:P] D = v[(P + 1):(P + L), (P + 1):(P + L)] vcov.bg = try(ginv(A - B %*% ginv(D) %*% C),silent=TRUE) if(!is.character(vcov.bg) & prod(is.finite(vcov.bg))==1) hess<-2 } if(hess==99){ x0<-c(object$Beta,object$gl) Hessian<-try(hessian(f=loglik,x0=x0,sdata=object$sdata,Xp=object$Xp,r=object$r,bl.Li=object$bl.Li,bl.Ri=object$bl.Ri),silent=TRUE) VCOV<-diag(solve(-Hessian)) numer.bg<-try(solve(-Hessian),silent=TRUE) if(!is.character(numer.bg)){vcov.bg=diag(numer.bg)[1:P]; hess<-3} } return(list(vcov.bg=vcov.bg,hess=hess)) }
NULL sdf_register.spatial_rdd <- function(x, name = NULL) { as.spark.dataframe(x, name = name) } as.spark.dataframe <- function(x, non_spatial_cols = NULL, name = NULL) { sc <- spark_connection(x$.jobj) sdf <- invoke_static( sc, "org.apache.sedona.sql.utils.Adapter", "toDf", x$.jobj, as.list(non_spatial_cols), spark_session(sc) ) sdf_register(sdf, name) }
context("DGEobj - tests for annotate.R functions") test_that('annotate.R: annotateDGEobj()', { ann.file <- tempfile("annotations_test", fileext = ".txt") writeLines(c("key1='value 1'", "key2=value 2"), con = ann.file) ann_DGEobj <- annotateDGEobj(t_obj, ann.file) expect_equal(attr(ann_DGEobj, 'key1'), "'value 1'") expect_equal(attr(ann_DGEobj, 'key2'), 'value 2') expect_null(attr(ann_DGEobj, 'key3')) ann_DGEobj <- annotateDGEobj(t_obj, ann.file, keys = list("key2")) expect_null(attr(ann_DGEobj, 'key1')) expect_equal(attr(ann_DGEobj, 'key2'), 'value 2') ann.list <- list("key1" = "'value 1'", "key2" = "value 2") ann_DGEobj <- annotateDGEobj(t_obj, ann.list) expect_equal(attr(ann_DGEobj, 'key1'), "'value 1'") expect_equal(attr(ann_DGEobj, 'key2'), 'value 2') expect_null(attr(ann_DGEobj, 'key3')) ann_DGEobj <- annotateDGEobj(t_obj, ann.list, keys = list("key2")) expect_null(attr(ann_DGEobj, 'key1')) expect_equal(attr(ann_DGEobj, 'key2'), 'value 2') }) test_that('annotate.R: incorrect usage', { expect_error(annotateDGEobj(t_obj), regexp = "argument \"annotations\" is missing, with no default") expect_error(annotateDGEobj(t_obj, NULL), regexp = "When annotations is NULL, no attribute gets added to the dgeObj.") expect_error(annotateDGEobj(t_obj, "nonexistantfile.txt"), regexp = "The file specified does not exist.") })
context("Test 15: check BL=0 case for affcd is same as for aff") test_that("check 1, setting streamEstSigma", { numChecks <- 5 showChecks <- F etaval <- 0.01 alphaval <- 0.01 BLval <- 0 aff1 <- initAFFMean(eta=etaval) affcd1 <- initAFFMeanCD(eta=etaval, alpha=alphaval, BL=BLval) affcd1$streamEstMean <- 0 affcd1$streamEstSigma <- 1 seednum <- 3 regimeLength <- 100 numChanges <- 3 delta <- 3 sigma <- 1 numChanges <- 3 N <- (regimeLength) * (numChanges + 1) stepChanges <- rep(c(0:numChanges), each=regimeLength) * delta * sigma set.seed(seednum) stream <- rnorm(N, mean=0, sd=sigma) + stepChanges lambda <- rep(0, length(stream)) lambdaCD <- rep(0, length(stream)) lambdaDeriv <- rep(0, length(stream)) lambdaCDDeriv <- rep(0, length(stream)) affmean <- rep(0, length(stream)) affmeanCD <- rep(0, length(stream)) t <- seq_along(stream) for (i in t ){ obs <- stream[i] aff1$update(obs) affcd1$update(obs) lambda[i] <- aff1$lambda lambdaCD[i] <- affcd1$lambda affmean[i] <- aff1$xbar affmeanCD[i] <- affcd1$affxbar lambdaDeriv[i] <- aff1$Lderiv lambdaCDDeriv[i] <- affcd1$Lderiv } endCheck <- length(stream) startCheck <- endCheck - numChecks + 1 for ( j in seq(from=startCheck, to=endCheck, by=1) ){ expect_equal(lambda[j], lambdaCD[j]) expect_equal(lambdaDeriv[j], lambdaCDDeriv[j]) expect_equal(affmean[j], affmeanCD[j]) if (showChecks){ cat("\n\n Test1 \n") cat(j, ": ", lambda[j], ", ", lambdaCD[j], ", ", lambda[j]==lambdaCD[j], "\n") cat(j, ": ", lambdaDeriv[j], ", ", lambdaCDDeriv[j], ", ", lambdaDeriv[j]==lambdaCDDeriv[j], "\n") cat(j, ": ", affmean[j], ", ", affmeanCD[j], ", ", affmean[j]==affmeanCD[j], "\n") } } }) test_that("check 2, NOT setting streamEstSigma", { numChecks <- 5 showChecks <- F etaval <- 0.01 alphaval <- 0.01 BLval <- 0 aff1 <- initAFFMean(eta=etaval) affcd1 <- initAFFMeanCD(eta=etaval, alpha=alphaval, BL=BLval) affcd1$streamEstMean <- 0 seednum <- 3 regimeLength <- 100 numChanges <- 3 delta <- 3 sigma <- 1 numChanges <- 3 N <- (regimeLength) * (numChanges + 1) stepChanges <- rep(c(0:numChanges), each=regimeLength) * delta * sigma set.seed(seednum) stream <- rnorm(N, mean=0, sd=sigma) + stepChanges lambda <- rep(0, length(stream)) lambdaCD <- rep(0, length(stream)) lambdaDeriv <- rep(0, length(stream)) lambdaCDDeriv <- rep(0, length(stream)) affmean <- rep(0, length(stream)) affmeanCD <- rep(0, length(stream)) t <- seq_along(stream) for (i in t ){ obs <- stream[i] aff1$update(obs) affcd1$update(obs) lambda[i] <- aff1$lambda lambdaCD[i] <- affcd1$lambda affmean[i] <- aff1$xbar affmeanCD[i] <- affcd1$affxbar lambdaDeriv[i] <- aff1$Lderiv lambdaCDDeriv[i] <- affcd1$Lderiv } endCheck <- length(stream) startCheck <- endCheck - numChecks + 1 for ( j in seq(from=startCheck, to=endCheck, by=1) ){ expect_equal(lambda[j], lambdaCD[j]) expect_equal(lambdaDeriv[j], lambdaCDDeriv[j]) expect_equal(affmean[j], affmeanCD[j]) if (showChecks){ cat("\n\n Test2 \n") cat(j, ": ", lambda[j], ", ", lambdaCD[j], ", ", lambda[j]==lambdaCD[j], "\n") cat(j, ": ", lambdaDeriv[j], ", ", lambdaCDDeriv[j], ", ", lambdaDeriv[j]==lambdaCDDeriv[j], "\n") cat(j, ": ", affmean[j], ", ", affmeanCD[j], ", ", affmean[j]==affmeanCD[j], "\n") } } })
causality <- function(x, cause = NULL, vcov.=NULL, boot=FALSE, boot.runs=100){ if(!(class(x)=="varest")){ stop("\nPlease provide an object of class 'varest', generated by 'var()'.\n") } K <- x$K p <- x$p obs <- x$obs type <- x$type obj.name <- deparse(substitute(x)) y <- x$y y.names <- colnames(x$y) if(is.null(cause)){ cause <- y.names[1] warning("\nArgument 'cause' has not been specified;\nusing first variable in 'x$y' (", cause, ") as cause variable.\n") } else { if(!all(cause%in%y.names)) stop("Argument cause does not match variables names.\n") } y1.names <- subset(y.names, subset = y.names %in% cause) y2.names <- subset(y.names, subset = !(y.names %in% cause)) Z <- x$datamat[, -c(1 : K)] xMlm<-toMlm(x) PI <- coef(xMlm) PI.vec <- as.vector(PI) R2<-matrix(0, ncol=ncol(PI), nrow=nrow(PI)) g<-which(gsub("\\.l\\d+", "", rownames(PI))%in%cause) j<-which(colnames(PI)%in%cause) R2[g,-j]<-1 if (!is.null(x$restrictions)) { xr <- t(x$restrictions) xr <- abs(xr - 1) rownames(xr)[rownames(xr) == "const"] <- "(Intercept)" xr <- xr[rownames(PI), colnames(PI)] xr <- xr + R2 xr[xr == 2] <- 1 R2 <- xr } w<-which(as.vector(R2)!=0) N <- length(w) R<-matrix(0, ncol=ncol(PI)*nrow(PI), nrow=N) for(i in 1:N) R[i,w[i]]<-1 if (is.null(vcov.)) { sigma.pi <- vcov(xMlm) } else if (is.function(vcov.)) { sigma.pi <- vcov.(xMlm) } else { sigma.pi <- vcov. } df1 <- p * length(y1.names) * length(y2.names) df2 <- K * obs - length(PI) STATISTIC <- t(R %*% PI.vec) %*% solve(R %*% sigma.pi %*% t(R)) %*% R %*% PI.vec / N if(boot){ co.names<-Bcoef(x) k<-which(gsub("\\.l\\d+", "", colnames(co.names))%in%cause) l<-which(rownames(co.names)%in%cause) R2inv<-matrix(1, ncol=nrow(PI), nrow=ncol(PI)) R2inv[-l,k]<-0 if (!is.null(x$restrictions)) { xr <- x$restrictions xr <- xr[rownames(co.names), colnames(co.names)] R2inv <- xr * R2inv } xres<-restrict(x, method = "man", resmat = R2inv) pred<-sapply(xres$varresult,predict) res<-residuals(xres) if(is.null(vcov.)){ if (is.null(x$restrictions)) { Zmlm<-model.matrix(xMlm) cross<-crossprod(Zmlm) inside<-solve(R %*% sigma.pi %*% t(R)) boot.fun<-function(x=1){ Ynew<-pred+res*rnorm(n=obs, mean=0, sd=x) PI.boot<-solve(cross, crossprod(Zmlm,Ynew)) PI.boot.vec<-as.vector(PI.boot) t(R %*% PI.boot.vec) %*% inside %*% (R %*% PI.boot.vec) / N } } else { xtmp <- x boot.fun <- function(x = 1) { xtmp$datamat[,1:K] <- pred + res * rnorm(n = obs, mean = 0, sd = x) xMlm.boot <- toMlm(xtmp) sigma.pi.boot <- vcov(xMlm.boot) PI.boot.vec <- as.vector(coef(xMlm.boot)) t(R %*% PI.boot.vec) %*% solve(R %*% sigma.pi.boot %*% t(R)) %*% R %*% PI.boot.vec / N } } } else { xtmp <- x boot.fun<-function(x=1){ xtmp$datamat[,1:K]<-pred+res*rnorm(n=obs, sd=x, mean=0) xMlm.boot <- toMlm(xtmp) if (is.function(vcov.)) { sigma.pi.boot <- vcov.(xMlm.boot) } else { sigma.pi.boot <- vcov. warning("vcov. should be function, not an object, when used with boot=TRUE") } PI.boot.vec <- as.vector(coef(xMlm.boot)) t(R %*% PI.boot.vec) %*% solve(R %*% sigma.pi.boot %*% t(R)) %*% R %*% PI.boot.vec / N } } res.rep<-replicate(boot.runs, boot.fun(x=1)) pval<-mean(res.rep>as.numeric(STATISTIC)) } names(STATISTIC) <- "F-Test" if(!boot){ PARAMETER1 <- df1 PARAMETER2 <- df2 names(PARAMETER1) <- "df1" names(PARAMETER2) <- "df2" PVAL <- 1 - pf(STATISTIC, PARAMETER1, PARAMETER2) PARAM<-c(PARAMETER1, PARAMETER2) } else { PARAMETER1 <- boot.runs names(PARAMETER1) <- "boot.runs" PVAL <- pval PARAM<-PARAMETER1 } METHOD <- paste("Granger causality H0:", paste(y1.names, collapse=" "), "do not Granger-cause", paste(y2.names, collapse=" ")) result1 <- list(statistic = STATISTIC, parameter = PARAM, p.value = PVAL, method = METHOD, data.name = paste("VAR object", obj.name)) class(result1) <- "htest" sigma.u <- crossprod(resid(x)) / (obs - ncol(Z)) colnames(sigma.u) <- y.names rownames(sigma.u) <- y.names select <- sigma.u[rownames(sigma.u) %in% y2.names, colnames(sigma.u) %in% y1.names ] sig.vech <- sigma.u[lower.tri(sigma.u, diag = TRUE)] index <- which(sig.vech %in% select) N <- length(index) Cmat <- matrix(0, nrow = N, ncol = length(sig.vech)) for(i in 1 : N){ Cmat[i, index[i]] <- 1 } Dmat <- .duplicate(K) Dinv <- MASS::ginv(Dmat) lambda.w <- obs %*% t(sig.vech) %*% t(Cmat) %*% solve(2 * Cmat %*% Dinv %*% kronecker(sigma.u, sigma.u) %*% t(Dinv) %*% t(Cmat)) %*% Cmat %*% sig.vech STATISTIC <- lambda.w names(STATISTIC) <- "Chi-squared" PARAMETER <- N names(PARAMETER) <- "df" PVAL <- 1 - pchisq(STATISTIC, PARAMETER) METHOD <- paste("H0: No instantaneous causality between:", paste(y1.names, collapse=" "), "and", paste(y2.names, collapse=" ")) result2 <- list(statistic = STATISTIC, parameter = PARAMETER, p.value = PVAL, method = METHOD, data.name = paste("VAR object", obj.name)) class(result2) <- "htest" result2 return(list(Granger = result1, Instant = result2)) }
delintercept <- function (mm) { saveattr <- attributes(mm) intercept <- which(saveattr$assign == 0) if (!length(intercept)) return(mm) mm <- mm[, -intercept, drop = FALSE] saveattr$dim <- dim(mm) saveattr$dimnames <- dimnames(mm) saveattr$assign <- saveattr$assign[-intercept] attributes(mm) <- saveattr mm }