code
stringlengths 1
13.8M
|
---|
wordStem <- function(words, language = "porter")
{
words <- as.character(words)
language <- as.character(language[1])
.Call("R_stemWords", words, language, PACKAGE="SnowballC")
}
getStemLanguages <- function()
{
.Call("R_getStemLanguages", PACKAGE="SnowballC")
} |
indexSpec <- function(
files,
noise="/volumes/AAO/nhm-unp-1/_noise.wav",
wl=256
){
sf <-normalize(readWave(files[1]))
s <- spectro(sf, [email protected], plot=FALSE, wl=wl)
bins <- length(s$freq)
nw <- readWave(noise)
ns <- meanspec(nw, [email protected], plot=FALSE, wl=wl)
aci <- entropy <- power <- matrix(, ncol=bins, nrow = length(files))
for (i in 1:length(files)) {
print(i)
wave <- normalize(readWave(files[i]))
spec <- spectro(wave, plot=FALSE, wl=wl)
for (j in 1:bins) {
spec$amp[,j] <- spec$amp[,j] - ns[,2]
}
power[i,] <- rowMeans(spec$amp^2)
aci_t <- entropy_t <- vector(mode="numeric", length=bins)
for (j in 1:bins) {
aci_t[j] <- sum(abs(spec$amp[j,] - rev(spec$amp[j,])))/abs(sum(spec$amp[j,]))
entropy_t[j] <- entropy(spec$amp[,j])
}
aci[i,] <- aci_t
entropy[i,] <- entropy_t
}
power_s <- power/max(unlist(power))
aci_s <- aci/max(unlist(aci))
entropy_s <- entropy(max(unlist(entropy)))
fcis_data <- rgb(power_s, aci_s, entropy_s)
dim(fcis_data) <- dim (power_s)
ret = list(power=power, aci=aci, entropy=entropy, fcis_data=t(fcis_data))
return(ret)
} |
knitr::opts_chunk$set(
collapse = TRUE,
comment = "
)
library(mets)
library(mets)
options(warn=-1)
set.seed(1000)
n <- 1000
k <- 5
theta <- 2
data <- simClaytonOakes(n,k,theta,0.3,3)
out <- phreg(Surv(time,status)~x+cluster(cluster),data=data)
summary(out)
rob <- robust.phreg(out)
betaiid <- iid(out)
head(betaiid)
crossprod(betaiid)^.5
bplot(rob,se=TRUE,robust=TRUE,col=3)
pp <- predict(out,data[1:20,],se=TRUE,robust=TRUE)
plot(pp,se=TRUE,whichx=1:10)
tt <- twostageMLE(out,data=data)
summary(tt)
gout <- gof(out)
gout
plot(gout)
out <- phreg(Surv(time,status)~x+strata(cluster),data=data)
summary(out)
sessionInfo() |
CreateHypotMatrix <- function(modularity.hypot){
if(is.null(dim(modularity.hypot))) return(outer(modularity.hypot, modularity.hypot))
num.hyp <- dim (modularity.hypot) [2]
num.traits <- dim (modularity.hypot) [1]
m.hyp.list <- alply(modularity.hypot, 2, function(x) outer(x, x))
m.hyp.list[[num.hyp+1]] <- matrix(as.integer (as.logical (Reduce ("+", m.hyp.list[1:num.hyp]))),
num.traits, num.traits, byrow=T)
return(m.hyp.list[1:(num.hyp+1)])
}
CombineHypot <- function(modularity.hypot){
n.hypots = dim(modularity.hypot)[2]
if(is.null(n.hypots)) {
cor.hypot = CreateHypotMatrix(modularity.hypot)
diag(cor.hypot) <- 1
return(cor.hypot)
}
if(is.null(colnames(modularity.hypot))) colnames(modularity.hypot) <- 1:n.hypots
counter = BinToDec(rep(1, n.hypots))
hypot_list = list(null = diag(dim(modularity.hypot)[1]))
k = 2
for(i in seq(counter)){
mask = DecToBin(i)
mask = as.logical(as.numeric((mask[(32-(n.hypots-1)):32])))
if(sum(mask) > 1) new_hypot = CreateHypotMatrix(modularity.hypot[,mask])[[sum(mask)+1]]
else new_hypot = CreateHypotMatrix(modularity.hypot[,mask])
diag(new_hypot) <- 1
if(!any(laply(hypot_list, function(x) all(x == new_hypot)))){
hypot_list[[k]] = new_hypot
names(hypot_list)[[k]] <- paste(colnames(modularity.hypot)[mask], collapse = "_")
k = k + 1
}
}
hypot_list
}
Partition2HypotMatrix <- function(x){
sapply(unique(x), function(i) as.numeric(x == i))
}
BinToDec <- function(x) sum(2^(which(rev(unlist(strsplit(as.character(x), "")) == 1))-1))
DecToBin <- function(x) sapply(strsplit(paste(rev(intToBits(x))),""),`[[`,2) |
get_hitchip_taxonomy <- function(chip, phylogeny.version = "full", data.dir = NULL) {
hitchip.taxonomy <- NULL
if (is.null(data.dir)) {
data.dir <- system.file("extdata", package = "microbiome")
}
if (chip == "HITChip") {
load(system.file("data/hitchip.taxonomy.rda", package = "microbiome"))
tax.table <- hitchip.taxonomy[[phylogeny.version]]
} else {
message(paste("get_hitchip_taxonomy not implemented for", chip))
tax.table <- NULL
}
df <- as.data.frame(tax.table)
df
} |
Hilbert <- function(n)
{
n <- as.integer(n)
i <- seq_len(n)
new("dpoMatrix", x = c(1/outer(i - 1L, i, "+")), Dim = c(n,n))
} |
summary.lefkoCondMat <- function(object, ...) {
histmatrices <- object$Mcond
condmatrices <- histmatrices[[1]]
firstcondmat <- condmatrices[[1]]
numhistmats <- length(histmatrices)
prevstages <- length(condmatrices)
matdim <- dim(firstcondmat)
writeLines(paste0("\nThis lefkoCondMat object contains ", prevstages,
" conditional matrices per historical matrix,"))
writeLines(paste0("It covers ", numhistmats, " main historical matrices."))
writeLines(paste0("Each conditional matrix is a square matrix with ", matdim[1],
" rows and columns, and a total of ", matdim[1]*matdim[1], " elements."))
writeLines(paste0("\nThe order of conditional matrices corresponding to stage in occasion t-1 is:\n",
paste(object$ahstages$stage, collapse = " ")))
writeLines("\nThe order of historical matrices is: \n")
print.data.frame(object$labels)
writeLines("\nThe order of conditional matrices matches the stage column in object $ahstages.")
writeLines("The order of historical matrices follows that shown in object $labels.")
}
image3 <- function(mats, ...) UseMethod("image3")
image3.lefkoMat <- function(mats, used = "all", type = "A", ...) {
allmats <- c(1:length(mats$A))
if (!is.character(type)) {
stop("Please enter A, F, or U for type option.", call. = FALSE)
}
type <- tolower(type)
if (!is.element(type, c("a", "u", "f"))) {
stop("Please enter A, F, or U for type option.", call. = FALSE)
}
if (all(is.character(used))) {
if (all(tolower(used) != "all")) {
stop("Value entered for matrix option not recognized.", call. = FALSE)
} else {
chosen_mat <- allmats
}
} else if (is.numeric(used) & is.element(used, allmats)) {
chosen_mat <- used
} else {
stop("Value entered for matrix option not recognized.", call. = FALSE)
}
if (type == "u") {
chosen_list <- mats$U[chosen_mat]
} else if (type == "f") {
chosen_list <- mats$F[chosen_mat]
} else {
chosen_list <- mats$A[chosen_mat]
}
lapply(chosen_list, function(X) {SparseM::image(SparseM::as.matrix.csr(X),
col =c("white", "red"))})
}
image3.matrix <- function(mats, ...) {
SparseM::image(SparseM::as.matrix.csr(mats), col =c("white", "red"))
}
image3.list <- function(mats, used = "all", ...) {
allmats <- c(1:length(mats))
if (all(is.character(used))) {
if (all(tolower(used) != "all")) {
stop("Value entered for matrix option not recognized.", call. = FALSE)
} else {
chosen_mat <- allmats
}
} else if (is.numeric(used) & is.element(used, allmats)) {
chosen_mat <- used
} else {
stop("Value entered for matrix option not recognized.", call. = FALSE)
}
chosen_list <- mats[chosen_mat]
lapply(chosen_list, function(X) {
if (!is.matrix(X)) {
stop("Chosen elements include non-matrix objects. Please choose only list elements containing matrix objects.",
call. = FALSE)
}
SparseM::image(SparseM::as.matrix.csr(X), col =c("white", "red"))}
)
}
image3.lefkoSens <- function(mats, used = "all", type = "a", ...) {
allahmats <- c(1:length(mats$ah_sensmats))
allhmats <- c(1:length(mats$h_sensmats))
allmats <- c(1:max(c(allahmats, allhmats)))
if (!is.character(type)) {
stop("Please enter a or h for type option.", call. = FALSE)
}
type <- tolower(type)
if (!is.element(type, c("a", "h"))) {
stop("Please enter a or h for type option.", call. = FALSE)
}
if (all(is.character(used))) {
if (all(tolower(used) != "all")) {
stop("Value entered for matrix option not recognized.", call. = FALSE)
} else {
chosen_mat <- allmats
}
} else if (is.numeric(used) & is.element(used, allmats)) {
chosen_mat <- used
} else {
stop("Value entered for matrix option not recognized.", call. = FALSE)
}
if (type == "h") {
if (any(is.null(mats$h_sensmats))) {
stop("This object does not appear to have historical sensitivity matrices. Please try ahistorical option.",
call. = FALSE)
}
chosen_list <- mats$h_sensmats[chosen_mat]
} else {
if (any(is.null(mats$ah_sensmats))) {
warning("This object does not appear to have ahistorical sensitivity matrices. Will use historical sensitivity matrices instead.",
call. = FALSE)
chosen_list <- mats$h_sensmats[chosen_mat]
} else {
chosen_list <- mats$ah_sensmats[chosen_mat]
}
}
lapply(chosen_list, function(X) {SparseM::image(SparseM::as.matrix.csr(X),
col =c("white", "red"))})
}
image3.lefkoElas <- function(mats, used = "all", type = "a", ...) {
allahmats <- c(1:length(mats$ah_elasmats))
allhmats <- c(1:length(mats$h_elasmats))
allmats <- c(1:max(c(allahmats, allhmats)))
if (!is.character(type)) {
stop("Please enter a or h for type option.", call. = FALSE)
}
type <- tolower(type)
if (!is.element(type, c("a", "h"))) {
stop("Please enter a or h for type option.", call. = FALSE)
}
if (all(is.character(used))) {
if (all(tolower(used) != "all")) {
stop("Value entered for matrix option not recognized.", call. = FALSE)
} else {
chosen_mat <- allmats
}
} else if (is.numeric(used) & is.element(used, allmats)) {
chosen_mat <- used
} else {
stop("Value entered for matrix option not recognized.", call. = FALSE)
}
if (type == "h") {
if (any(is.null(mats$h_elasmats))) {
stop("This object does not appear to have historical sensitivity matrices. Please try ahistorical option.",
call. = FALSE)
}
chosen_list <- mats$h_elasmats[chosen_mat]
} else {
if (any(is.null(mats$ah_elasmats))) {
warning("This object does not appear to have ahistorical sensitivity matrices. Will use historical sensitivity matrices instead.",
call. = FALSE)
chosen_list <- mats$h_elasmats[chosen_mat]
} else {
chosen_list <- mats$ah_elasmats[chosen_mat]
}
}
lapply(chosen_list, function(X) {SparseM::image(SparseM::as.matrix.csr(X),
col =c("white", "red"))})
}
diff_lM <- function(mpm1, mpm2) {
if (is.null(mpm1) | is.null(mpm2)) {
stop("Function diff_lM() requires two lefkoMat objects as input.",
call. = FALSE)
} else if (all(is.na(mpm1)) | all(is.na(mpm2))) {
stop("Function diff_lM() requires two lefkoMat objects as input.",
call. = FALSE)
}
if (class(mpm1) != "lefkoMat" | class(mpm2) != "lefkoMat") {
stop("Function diff_lM() requires two lefkoMat objects as input.",
call. = FALSE)
}
if (length(mpm1$A) != length(mpm2$A)) {
stop("Objects mpm1 and mpm2 must have the same number of matrices.",
call. = FALSE)
}
if (dim(mpm1$A[[1]])[1] != dim(mpm2$A[[1]])[1]) {
stop("Objects mpm1 and mpm2 must include matrices of the same dimensions.",
call. = FALSE)
}
new_diffs_A <- lapply(c(1:length(mpm1$A)), function(X) {
newmat <- mpm1$A[[X]] - mpm2$A[[X]]
return(newmat)
})
new_diffs_U <- lapply(c(1:length(mpm1$A)), function(X) {
newmat <- mpm1$U[[X]] - mpm2$U[[X]]
return(newmat)
})
new_diffs_F <- lapply(c(1:length(mpm1$A)), function(X) {
newmat <- mpm1$F[[X]] - mpm2$F[[X]]
return(newmat)
})
if (any((mpm1$labels$year2 - mpm2$labels$year2) != 0)) {
warning("Input lefkoMat objects have seemingly different labels objects.",
call. = FALSE)
}
output <- list(A = new_diffs_A, U = new_diffs_U, F = new_diffs_F,
hstages1 = mpm1$hstages, hstages2 = mpm2$hstages, ahstages1 = mpm1$ahstages,
ahstages2 = mpm2$ahstages, labels1 = mpm1$labels, labels2 = mpm2$labels)
class(output) <- "lefkoDiff"
return(output)
} |
as.data.frame.sscurves <- function(x, row.names = NULL, optional = FALSE,
raw_curves = NULL, ...) {
arglist <- .get_dataframe_arglist(attr(x, "args"),
def_raw_curves = TRUE, ...)
.dataframe_common(x, raw_curves = arglist[["raw_curves"]], ...)
}
as.data.frame.mscurves <- function(x, row.names = NULL, optional = FALSE,
raw_curves = NULL, ...) {
arglist <- .get_dataframe_arglist(attr(x, "args"),
def_raw_curves = TRUE, ...)
.dataframe_common(x, raw_curves = arglist[["raw_curves"]], ...)
}
as.data.frame.smcurves <- function(x, row.names = NULL, optional = FALSE,
raw_curves = NULL, ...) {
arglist <- .get_dataframe_arglist(attr(x, "args"),
def_raw_curves = raw_curves, ...)
.dataframe_common(x, raw_curves = arglist[["raw_curves"]], ...)
}
as.data.frame.mmcurves <- function(x, row.names = NULL, optional = FALSE,
raw_curves = NULL, ...) {
arglist <- .get_dataframe_arglist(attr(x, "args"),
def_raw_curves = raw_curves, ...)
.dataframe_common(x, raw_curves = arglist[["raw_curves"]], ...)
}
as.data.frame.sspoints <- function(x, row.names = NULL, optional = FALSE,
raw_curves = NULL, ...) {
arglist <- .get_dataframe_arglist(attr(x, "args"),
def_raw_curves = TRUE, ...)
.dataframe_common(x, mode = "basic", raw_curves = arglist[["raw_curves"]],
...)
}
as.data.frame.mspoints <- function(x, row.names = NULL, optional = FALSE,
raw_curves = NULL, ...) {
arglist <- .get_dataframe_arglist(attr(x, "args"),
def_raw_curves = TRUE, ...)
.dataframe_common(x, mode = "basic", raw_curves = arglist[["raw_curves"]],
...)
}
as.data.frame.smpoints <- function(x, row.names = NULL, optional = FALSE,
raw_curves = NULL, ...) {
arglist <- .get_dataframe_arglist(attr(x, "args"),
def_raw_curves = raw_curves, ...)
.dataframe_common(x, mode = "basic", raw_curves = arglist[["raw_curves"]],
...)
}
as.data.frame.mmpoints <- function(x, row.names = NULL, optional = FALSE,
raw_curves = NULL, ...) {
arglist <- .get_dataframe_arglist(attr(x, "args"),
def_raw_curves = raw_curves, ...)
.dataframe_common(x, mode = "basic", raw_curves = arglist[["raw_curves"]],
...)
}
as.data.frame.aucroc <- function(x, row.names = NULL, optional = FALSE, ...) {
x$uaucs
} |
context("formulas")
test_that("add_predictors() combines predictors", {
expect_identical(add_predictors(~1, ~2, ~3), ~1 + 2 + 3)
})
test_that("add_predictors() combines with fun", {
expect_identical(add_predictors(~1, ~2, ~3, fun = "*"), ~1 * 2 * 3)
})
test_that("add_predictors() handles lhss", {
expect_identical(add_predictors(lhs ~ 1, ~2), lhs ~ 1 + 2)
expect_identical(add_predictors(lhs1 ~ 1, lhs2 ~ 2), lhs1 ~ 1 + 2)
})
test_that("merge_formula() handles lhss", {
expect_identical(merge_formulas(lhs ~ rhs, lhs ~ rhs), lhs ~ rhs + rhs)
expect_error(merge_formulas(lhs ~ rhs, other_lhs ~ rhs), "must be identical")
})
test_that("merging formulas fail when scope conflicts within symbols", {
env <- new.env(parent = emptyenv())
env$object <- list()
object <- list()
f_conflict <- new_formula(NULL, quote(object), env = env)
expect_error(merge_envs(~object, f_conflict), "conflict for the symbol 'object'")
})
test_that("merging formulas fail when scope conflicts between symbols", {
env1 <- new.env(parent = emptyenv())
env1$object <- list()
env2 <- new.env(parent = emptyenv())
env2$other_object <- list()
f1 <- new_formula(NULL, quote(list(object)), env = env1)
f2 <- new_formula(NULL, quote(list(other_object)), env = env2)
expect_error(merge_envs(f1, f2), "conflict across symbols")
})
test_that("formulas() fails when supplied non-formula objects", {
expect_error(formulas(~lhs, NULL), "must contain only formulas")
})
test_that("formulas() combines the lhs", {
expect_equal(formulas(~lhs, a = ~1, b = other ~ 2), list(a = lhs ~ 1, b = lhs ~ 2))
})
test_that("bytecoded fit_with() works", {
bc_fit_with <- compiler::cmpfun(fit_with)
fit <- bc_fit_with(mtcars, lm, list(disp ~ drat))
expect_is(fit[[1]], "lm")
}) |
mapcurves_calc = function(x,
y,
x_name,
y_name,
precision = NULL){
UseMethod("mapcurves_calc")
}
mapcurves_calc.sf = function(x, y, x_name, y_name, precision = NULL){
stopifnot(inherits(st_geometry(x), "sfc_POLYGON") || inherits(st_geometry(x), "sfc_MULTIPOLYGON"))
stopifnot(inherits(st_geometry(y), "sfc_POLYGON") || inherits(st_geometry(y), "sfc_MULTIPOLYGON"))
stopifnot(st_crs(x) == st_crs(y) || !all(is.na(st_crs(x)), is.na(st_crs(y))))
x_name = enquo(x_name)
y_name = enquo(y_name)
x = select(x, map1 := !!x_name)
x = mutate_if(x, is.factor, as.character)
x = mutate_if(x, is.numeric, as.character)
suppressWarnings({x = st_cast(x, "POLYGON")})
y = select(y, map2 := !!y_name)
y = mutate_if(y, is.factor, as.character)
y = mutate_if(y, is.numeric, as.character)
suppressWarnings({y = st_cast(y, "POLYGON")})
if(!is.null(precision)){
x = st_set_precision(x, precision)
y = st_set_precision(y, precision)
}
suppressWarnings({z = st_intersection(x, y)})
z = st_collection_extract(z)
z_df = intersection_prep(z)
z = z_df^2 / tcrossprod(rowSums(z_df), colSums(z_df))
mapcurves_result = mapcurves(z = z)
result = list(map1 = x, map2 = y,
ref_map = mapcurves_result$ref_map, gof = mapcurves_result$gof)
class(result) = c("mapcurves_vector")
return(result)
}
mapcurves_calc.stars = function(x, y, x_name = NULL, y_name = NULL, precision = NULL){
mapcurves_calc(methods::as(x, "Raster"), methods::as(y, "Raster"),
x_name = x_name, y_name = y_name, precision = precision)
}
mapcurves_calc.SpatRaster = function(x, y, x_name = NULL, y_name = NULL, precision = NULL){
mapcurves_calc(methods::as(x, "Raster"), methods::as(y, "Raster"),
x_name = x_name, y_name = y_name, precision = precision)
}
mapcurves_calc.RasterLayer = function(x, y, x_name = NULL, y_name = NULL, precision = NULL){
stopifnot(inherits(x, "RasterLayer"))
stopifnot(inherits(y, "RasterLayer"))
z = stack(x, y)
z_df = t(crosstab(z))
z = z_df^2 / tcrossprod(rowSums(z_df), colSums(z_df))
mapcurves_result = mapcurves(z = z)
result = list(map1 = x, map2 = y,
ref_map = mapcurves_result$ref_map, gof = mapcurves_result$gof)
class(result) = c("mapcurves_vector")
return(result)
}
format.mapcurves_vector = function(x, ...){
paste("The MapCurves results:\n\n",
"The goodness of fit:", round(x$gof, 2), "\n",
"Reference map:", x$ref_map, "\n\n",
"The spatial objects can be retrieved with:\n",
"$map1", "- the first map\n",
"$map2", "- the second map")
}
print.mapcurves_vector = function(x, ...){
cat(format(x, ...), "\n")
} |
plot.spFSR <- function(x, errorBar = FALSE,
annotateBest = FALSE,
se = FALSE, ...){
if( !inherits(x, 'spFSR') ){
stop('Not a spFSR object.')
}
stopifnot( is.logical(errorBar) )
stopifnot( is.logical(annotateBest) )
stopifnot( is.logical(se) )
Values <- x$iter.results$values
Iterations <- c( 1:length(Values) )
if( !errorBar ){
plot(Iterations, Values, ...)
}else{
sdev <- x$iter.results$stds
if(se){
sdev <- sdev/sqrt( length(x$iter.results$importances[[1]]) )
}
upper <- Values + sdev
lower <- Values - sdev
plot(Iterations, Values, ylim = c( min(lower), max(upper) ), ...)
arrows(x0 = Iterations, y0 = lower, y1 = upper, code = 0)
points(lower, pch = '-', cex = 1.5, col = 'red')
points(upper, pch = '-', cex = 1.5, col = 'red')
}
if( annotateBest ){
if( x$measure$minimize ){
v <- which.min(Values)
h <- min(Values)
}else{
v <- which.max(Values)
h <- max(Values)
}
abline( v = v, lty = 'dashed' )
abline( h = h, lty = 'dashed')
}
} |
prepare_sizeDist <- function(
size_dist = NULL,
sp_names = c('Fagus sylvatica', 'Pinus sylvestris')
){
if( any( is.null(sp_names), is.na(sp_names), length(sp_names)==0L) ){
stop( 'sp_names must be provided according to the species table.' )
}
size_dist_out = sizeDist.default['parameter']
size_dist_out[sp_names] <- NA_real_
size_dist_out[sp_names] <- as.numeric( sizeDist.default$default )
if( !is.null(size_dist) ){
if( !identical( c("parameter"), colnames(size_dist)[1]) ){
stop( 'First column name of the parameters table must correspond to: parameter' )
}
if( !all( size_dist$parameter %in% sizeDist.default$parameter) ){
stop( paste0('size_dist input table must contains only parameters presend in: ', paste(sizeDist.default$parameter, collapse = ','),'. Check `param_info`` for more details.' ))
}
sp_names_replace = sp_names[sp_names %in% colnames(size_dist)]
size_dist_out[match(size_dist$parameter, size_dist_out$parameter), sp_names_replace] <- size_dist[,sp_names_replace]
}
return( size_dist_out )
} |
mixdir_vi_dp <- function(X, n_latent, alpha, beta, categories, max_iter, epsilon,
kappa1_init=NULL, kappa2_init=NULL, zeta_init=NULL, phi_init=NULL, verbose=FALSE){
n_ind <- nrow(X)
n_quest <- ncol(X)
n_cat <- max(X, na.rm=TRUE)
if(is.null(alpha) || length(alpha) == 0){
alpha1 <- 1
alpha2 <- 1
}else if(length(alpha) == 2){
alpha1 <- alpha[1]
alpha2 <- alpha[2]
}else{
warning(paste0("alpha shoul only be a vector of 2 values. Using alpha1=alpha2=alpha[1]=", alpha[1]))
alpha1 <- alpha[1]
alpha2 <- alpha[1]
}
if(is.null(beta) || length(beta) == 0){
beta <- 0.1
}else if(length(beta) == 1){
beta <- beta[1]
}else{
warning(paste0("beta should only be a single value. Using beta=beta[1]=", beta[1]))
beta <- beta[1]
}
if(is.null(kappa1_init)){
kappa1_init <- rep(1, n_latent)
}
if(is.null(kappa2_init)){
kappa2_init <- rep(1, n_latent)
}
if(is.null(zeta_init)){
zeta_init <- extraDistr::rdirichlet(n_ind, rep(1, n_latent))
}
if(is.null(phi_init)){
phi_init <- lapply(1:n_quest, function(j) lapply(1:n_latent, function(k) {
x <- sample(1:3, size=length(categories[[j]]), replace=TRUE)
x
}))
}else{
for(k in 1:n_latent){
phi_init_elem_lengths <- sapply(phi_init, function(x) length(x[[k]]))
if(! all(phi_init_elem_lengths == sapply(categories, length))){
stop(paste0("phi_init has the wrong number of elements for feature: ",
paste0(which(phi_init_elem_lengths != sapply(categories, length)), collapse = ", ")))
}
}
}
kappa1 <-kappa1_init
kappa2 <-kappa2_init
zeta <- zeta_init
phi <- phi_init
phia <- conv_phi_to_array(phi, n_quest, n_latent)
iter <- 1
converged <- FALSE
elbo_hist <- rep(NA, max_iter)
while(iter <= max_iter & ! converged){
kappa1 <- alpha1 + colSums(zeta)
summed_up_phi <- t(apply(zeta, 1, function(row) c(rev(cumsum(rev(row))), 0)))[, 2:(n_latent+1)]
kappa2 <- alpha2 + colSums(summed_up_phi)
zeta <- update_zeta_dp_cpp(zeta, X, phia, kappa1, kappa2, n_ind, n_quest, n_latent, n_cat)
if(any(rowSums(zeta) == 0)){
stop(paste0("There was an underflow in the calculation of zeta. Cannot continue.\n",
"The problem probably came from the large number of columns in the input ",
"data (", (ncol(X)), "). Is it possible that you want to work on t(X)?"))
}
zeta <- zeta / rowSums(zeta)
zeta <- zeta[, order(-colSums(zeta))]
for(j in 1:n_quest){
for(k in 1:n_latent){
for(r in seq_along(categories[[j]])){
phi[[j]][[k]][r] <- sum(zeta[ ,k] * (X[, j] == r), na.rm=TRUE) + beta
}
}
}
phia <- conv_phi_to_array(phi, n_quest, n_latent)
elbo <- dp_expec_log_v(kappa1, kappa2, rep(alpha1, length(kappa1)), rep(alpha2, length(kappa2))) +
sum(sapply(1:n_ind, function(i)dp_expec_log_zi(zeta[i, ], kappa1, kappa2))) +
sum(sapply(1:n_quest, function(j) sum(sapply(1:n_latent, function(k) expec_log_ujk(phi[[j]][[k]], rep(beta, length(categories[[j]]))) )))) +
expec_log_x_cpp(X, phia, zeta, n_quest, n_latent, n_cat) +
dp_entrop_v(kappa1, kappa2) +
sum(sapply(1:n_ind, function(i) entrop_zeta(zeta[i, ]))) +
sum(sapply(1:n_quest, function(j) sum(sapply(1:n_latent, function(k) entrop_phi(phi[[j]][[k]]) ))))
if(iter != 1 && ! is.infinite(elbo) && elbo - elbo_hist[iter - 1] < - epsilon)
warning(paste0("The ELBO decreased. This should not happen, it might be due to numerical instabilities or a bug in the code. ",
"Please contact the maintainer to report this.\n"))
if(iter != 1 && ! is.infinite(elbo) && elbo - elbo_hist[iter - 1] < epsilon) converged <- TRUE
if(verbose && iter %% 10 == 0) message(paste0("Iter: ", iter, " ELBO: ", formatC(elbo, digits=8)))
elbo_hist[iter] <- elbo
iter <- iter + 1
}
elbo_hist <- elbo_hist[! is.na(elbo_hist)]
U <- lapply(1:n_quest, function(j) lapply(1:n_latent, function(k) {
x <- rep(NA, times=length(categories[[j]]))
names(x) <- categories[[j]]
x
}))
names(U) <- colnames(X)
for(j in 1:n_quest){
for(k in 1:n_latent){
U[[j]][[k]] <- (phi[[j]][[k]]) / sum(phi[[j]][[k]])
names(U[[j]][[k]]) <- categories[[j]]
}
}
kappa1 <- alpha1 + colSums(zeta)
summed_up_phi <- t(apply(zeta, 1, function(row) c(rev(cumsum(rev(row))), 0)))[, 2:(n_latent+1)]
kappa2 <- alpha2 + colSums(summed_up_phi)
nu <- kappa1/(kappa1 + kappa2)
lambda <- sapply(1:n_latent, function(k){
nu[k] * (if(k > 1) prod((1-nu[1:(k-1)])) else 1)
})
if(lambda[n_latent] > 0.01){
warning("The model put considerable weight on the last component.
Consider re-running the model with an increased number of latent categories.")
}
prob_z <- matrix(vapply(seq_along(lambda), function(k){
lambda[k] * exp(rowSums(log(matrix(vapply(colnames(X), function(j){
ifelse(is.na(X[ ,j]), 1, U[[j]][[k]][X[, j]])
}, FUN.VALUE=rep(0.0, times=n_ind)), nrow=n_ind))))
}, FUN.VALUE=rep(0.0, times=n_ind)), nrow=n_ind)
prob_z <- prob_z / rowSums(prob_z)
list(
converged=converged,
convergence=elbo_hist,
ELBO=elbo,
lambda=lambda,
pred_class=apply(prob_z, 1, which.max),
class_prob=prob_z,
category_prob=U,
specific_params=list(
kappa1=kappa1,
kappa2=kappa2,
phi=phi
)
)
}
dp_expec_log_v <- function(kappa_a, kappa_b, alpha, beta){
sum(sapply(1:(length(alpha)), function(k){
(alpha[k] - 1) * (digamma(kappa_a[k]) - digamma(kappa_a[k] + kappa_b[k])) + (beta[k] - 1) * (digamma(kappa_b[k]) - digamma(kappa_a[k] + kappa_b[k]))
}))
}
dp_expec_log_zi <- function(zeta_i, kappa_a, kappa_b){
sum(sapply(1:length(zeta_i), function(k){
if(k != length(zeta_i)){
sum(zeta_i[(k+1):length(zeta_i)]) * (digamma(kappa_b[k]) - digamma(kappa_a[k] + kappa_b[k])) +
zeta_i[k] * (digamma(kappa_a[k]) - digamma(kappa_a[k] + kappa_b[k]))
}else {
zeta_i[k] * (digamma(kappa_a[k]) - digamma(kappa_a[k] + kappa_b[k]))
}
}))
}
dp_entrop_v <- function(kappa_a, kappa_b){
sum(sapply(1:(length(kappa_a)), function(k){
lgamma(kappa_a[k]) + lgamma(kappa_b[k]) - lgamma(kappa_a[k] + kappa_b[k]) -
(kappa_a[k] - 1) * digamma(kappa_a[k]) - (kappa_b[k] - 1) * digamma(kappa_b[k]) +
(kappa_a[k] + kappa_b[k] - 2) * digamma(kappa_a[k] + kappa_b[k])
}))
} |
knitr::opts_chunk$set(
collapse = TRUE,
comment = "
)
library(R2019nCoV)
x <- get_2019nCoV()
map <- getMap(x)
map
Seq <- getSeq() |
Robins.CI = function(data,level) {
m0 = data[2,1]/(data[2,1]+data[2,2])
m1 = data[1,1]/(data[1,1]+data[1,2])
n = sum(data)
tau.hat = m1-m0
if (m1 >= m0) {
r = ((2*m0-m1)*(1-m1)-m0*(1-m0))/n}
if (m1 < m0) {
r = ((2*m1-m0)*(1-m0)-m1*(1-m1))/n}
se = sqrt(m0*(1-m0)/(data[2,1]+data[2,2])+m1*(1-m1)/(data[1,1]+data[1,2])+r)
lower = max(tau.hat-qnorm(1-level/2)*se,-1)
upper = min(tau.hat+qnorm(1-level/2)*se,1)
output.all = list(tau.hat=tau.hat,lower=lower,upper=upper)
return(output.all)
}
AE.CI = function(data,level) {
n = sum(data)
m = sum(data[1,])
tau.hat = data[1,1]/m-data[2,1]/(n-m)
f = double()
A1 = -data[1,2]:data[1,1]
for (i in (1:length(A1))) {
j = data
j[1,1]=j[1,1]-A1[i]
j[1,2]=j[1,2]+A1[i]
f[i] = fisher.test(j)$p.value
}
lower1 = min(A1[f>=(level/2)])
upper1 = max(A1[f>=(level/2)])
g = double()
A0 = -data[2,1]:data[2,2]
for (i in (1:length(A0))) {
j = data
j[2,1]=j[2,1]+A0[i]
j[2,2]=j[2,2]-A0[i]
g[i] = fisher.test(j)$p.value
}
lower2 = min(A0[g>=(level/2)])
upper2 = max(A0[g>=(level/2)])
lower = (lower1+lower2)/n
upper = (upper1+upper2)/n
output.all = list(tau.hat=tau.hat,lower=lower,upper=upper)
return(output.all)
}
library('gtools')
nchoosem = function(n,m) {
c = choose(n,m)
trt = combinations(n,m)
Z = matrix(NA,c,n)
for (i in 1:c) {
Z[i,trt[i,]] = 1
Z[i,-trt[i,]] = 0
}
return(Z)
}
comb = function(n,m,nperm) {
trt = matrix(NA,nperm,m)
for (i in 1:nperm) {
trt[i,] = sample(n,m)
}
Z = matrix(NA,nperm,n)
for (i in 1:nperm) {
Z[i,trt[i,]] = 1
Z[i,-trt[i,]] = 0
}
return(Z)
}
library('compiler')
pval2 = function(y.1,y.0,delta0,Z) {
m = length(y.1[is.na(y.1)==0])
n = m+length(y.0[is.na(y.0)==0])
tau.hat = mean(y.1[is.na(y.1)==0])-mean(y.0[is.na(y.0)==0])
dat = matrix(NA,n,3)
dat[,3] = delta0
dat[1:m,1] = y.1[1:m]
dat[(m+1):n,2] = y.0[(m+1):n]
dat[1:m,2] = y.1[1:m]-delta0[1:m]
dat[(m+1):n,1] = y.0[(m+1):n]+delta0[(m+1):n]
tau0 = mean(dat[,3])
t.c = Z%*%dat[,1]/(m)-(1-Z)%*%dat[,2]/(n-m)
p = mean(round(abs(t.c-tau0),15)>=round(abs(tau.hat-tau0),15))
output.all = list(p,tau0,tau.hat,t.c)
names(output.all) = list("p","tau0","tau.hat","t.c")
return(output.all)
}
pval = cmpfun(pval2)
Perm.CI2 = function(data,level,nperm) {
m = sum(data[1,])
n = m+sum(data[2,])
a = data[1,1]
b = data[1,2]
c = data[2,1]
d = data[2,2]
y.1 = c(rep(1,data[1,1]),rep(0,data[1,2]),rep(NA,n-m))
y.0 = c(rep(NA,m),rep(1,data[2,1]),rep(0,data[2,2]))
Z.obs = c(rep(1,m),rep(0,n-m))
Y.obs = c(rep(1,a),rep(0,b),grep(1,c),rep(0,d))
tau.hat = mean(y.1[is.na(y.1)==0])-mean(y.0[is.na(y.0)==0])
d1 = matrix(0,a,a)
d1[col(d1) >= row(d1)] = 1
d1 = cbind(rep(0,a),d1)
d2 = matrix(0,b,b)
d2[col(d2) >= row(d2)] = -1
d2 = cbind(rep(0,b),d2)
d3 = matrix(0,c,c)
d3[col(d3) >= row(d3)] = -1
d3 = cbind(rep(0,c),d3)
d4 = matrix(0,d,d)
d4[col(d4) >= row(d4)] = 1
d4 = cbind(rep(0,d),d4)
C = choose(n,m)
if (C<=nperm) Z = nchoosem(n,m) else Z = comb(n,m,nperm)
p = double()
tau0 = double()
for (g in 1:(a+1)) {
for (h in 1:(b+1)) {
for (i in 1:(c+1)) {
for (j in 1:(d+1)) {
k = pval(y.1,y.0,c(d1[,g],d2[,h],d3[,i],d4[,j]),Z)
p = c(p,k$p)
tau0 = c(tau0,k$tau0)
}
}
}
}
lower = min(tau0[p>=level])
upper = max(tau0[p>=level])
output.all = list(tau.hat=tau.hat,lower=lower,upper=upper)
return(output.all)
}
Perm.CI = cmpfun(Perm.CI2)
Perm.CI.RLH <- function(data,level,verbose=FALSE,total_tests=NA) {
a = data[1,1]
b = data[1,2]
c = data[2,1]
d = data[2,2]
if (is.na(total_tests)) {
result_raw <- .CI_2by2_chiba_tau_v7_approx(a, b, c, d, level, max(data)^3)
} else {
result_raw <- .CI_2by2_chiba_tau_v7_approx(a, b, c, d, level, total_tests)
}
result <- result_raw[1:3]
result <- c(result, (a/(a+b))-(c/(c+d)) )
names(result) <- c("Chiba", "RLH", "Blaker", "tau.hat")
if (verbose) {
alln.list <- lapply(1:length(result_raw[[9]]),function(i) {
c(unlist(result_raw[[9]][i]),unlist(result_raw[[10]][i]))
})
alln.df <- data.frame(do.call(rbind,alln.list)); rm(alln.list)
colnames(alln.df) <- c("n11","n10","n01","n00",
"pv_Chiba_L","pv_Chiba_U",
"pv_RLH","pv_Blaker")
result <- c(result, NA)
result[[5]] <- alln.df
names(result)[length(result)] <- "p_values"
}
return(result)
} |
SIPC.AMMI <- function(model, n, alpha = 0.05,
ssi.method = c("farshadfar", "rao"), a = 1) {
if (!is(model, "AMMI")) {
stop('"model" is not of class "AMMI"')
}
if (!(0 < alpha && alpha < 1)) {
stop('"alpha" should be between 0 and 1 (0 < alpha < 1)')
}
if (missing(n) || is.null(n)) {
n <- sum(model$analysis$Pr.F <= alpha, na.rm = TRUE)
}
if (n %% 1 != 0 && length(n) != 1) {
stop('"n" is not an integer vector of unit length')
}
if (n > nrow(model$analysis)) {
stop('"n" is greater than the number of IPCs in "model"')
}
ssi.method <- match.arg(ssi.method)
yresp <- setdiff(colnames(model$means), c("ENV", "GEN", "RESIDUAL"))
A <- model$biplot
A <- A[A[, 1] == "GEN", -c(1, 2)]
A <- A[, 1:n]
SIPC <- unname(rowSums(apply(A, 2, FUN = abs)))
B <- model$means
W <- aggregate(B[, yresp], by = list(model$means$GEN), FUN = mean, na.rm = TRUE)
SSI_SIPC <- SSI(y = W$x, sp = SIPC, gen = W$Group.1,
method = ssi.method, a = a)
ranking <- SSI_SIPC
colnames(ranking) <- c("SIPC", "SSI", "rSIPC", "rY", "means")
return(ranking)
} |
setConstructorS3("CbsSegmentationDataFile", function(...) {
extend(SegmentationDataFile(...), "CbsSegmentationDataFile")
})
setMethodS3("loadFit", "CbsSegmentationDataFile", function(this, ...) {
pathname <- getPathname(this)
loadObject(pathname)
}, protected=TRUE) |
example <-
function(topic, package = NULL, lib.loc = NULL,
character.only = FALSE, give.lines = FALSE, local = FALSE,
echo = TRUE, verbose = getOption("verbose"), setRNG = FALSE,
ask = getOption("example.ask"),
prompt.prefix = abbreviate(topic, 6),
run.dontrun = FALSE, run.donttest = interactive())
{
if (!character.only) {
topic <- substitute(topic)
if(!is.character(topic)) topic <- deparse(topic)[1L]
}
pkgpaths <- find.package(package, lib.loc, verbose = verbose)
file <- index.search(topic, pkgpaths, firstOnly=TRUE)
if(!length(file)) {
warning(gettextf("no help found for %s", sQuote(topic)), domain = NA)
return(invisible())
}
if(verbose) cat("Found file =", sQuote(file), "\n")
packagePath <- dirname(dirname(file))
pkgname <- basename(packagePath)
lib <- dirname(packagePath)
tf <- tempfile("Rex")
tools::Rd2ex(.getHelpFile(file), tf, commentDontrun = !run.dontrun,
commentDonttest = !run.donttest)
if (!file.exists(tf)) {
if(give.lines) return(character())
warning(gettextf("%s has a help file but no examples", sQuote(topic)),
domain = NA)
return(invisible())
}
on.exit(unlink(tf))
if(give.lines)
return(readLines(tf))
if(pkgname != "base")
library(pkgname, lib.loc = lib, character.only = TRUE)
if(!is.logical(setRNG) || setRNG) {
if((exists(".Random.seed", envir = .GlobalEnv))) {
oldSeed <- get(".Random.seed", envir = .GlobalEnv)
on.exit(assign(".Random.seed", oldSeed, envir = .GlobalEnv),
add = TRUE)
} else {
oldRNG <- RNGkind()
on.exit(RNGkind(oldRNG[1L], oldRNG[2L], oldRNG[3L]), add = TRUE)
}
if(is.logical(setRNG)) {
RNGkind("default", "default", "default")
set.seed(1)
} else eval(setRNG)
}
zz <- readLines(tf, n = 1L)
skips <- 0L
if (echo) {
zcon <- file(tf, open="rt")
while(length(zz) && !length(grep("^
skips <- skips + 1L
zz <- readLines(zcon, n=1L)
}
close(zcon)
}
if(ask == "default")
ask <- echo && grDevices::dev.interactive(orNone = TRUE)
if(ask) {
if(.Device != "null device") {
oldask <- grDevices::devAskNewPage(ask = TRUE)
if(!oldask) on.exit(grDevices::devAskNewPage(oldask), add = TRUE)
}
op <- options(device.ask.default = TRUE)
on.exit(options(op), add = TRUE)
}
source(tf, local, echo = echo,
prompt.echo = paste0(prompt.prefix, getOption("prompt")),
continue.echo = paste0(prompt.prefix, getOption("continue")),
verbose = verbose, max.deparse.length = Inf, encoding = "UTF-8",
skip.echo = skips, keep.source=TRUE)
} |
skip_if_not_installed("nnet")
test_that("autotest", {
learner = mlr3::lrn("classif.nnet")
expect_learner(learner)
result = run_autotest(learner)
expect_true(result, info = result$error)
}) |
table_string <- function (str) {
read.table(
textConnection(str),
blank.lines.skip = TRUE,
header = TRUE,
stringsAsFactors = FALSE)
}
mfdb_populate_example_data <- function (mdb) {
mfdb_import_area(mdb, data.frame(
id = c(1,2,3),
name = c('45G01', '45G02', '45G03'),
size = c(5)))
mfdb_import_temperature(mdb, data.frame(
year = rep(c(1998, 1999), each = 12),
month = c(1:12, 1:12),
areacell = c(rep('45G01', times = 24)),
temperature = c(1:12, 25:36)))
mfdb_import_division(mdb, list(
divA = c('45G03'),
divB = c('45G01', '45G02'),
divC = c('45G01')))
mfdb_import_vessel_taxonomy(mdb, data.frame(
name = c('1.RSH', '2.COM'),
stringsAsFactors = FALSE
))
mfdb_import_survey(mdb, data_source = "fleet_component_example",
table_string("
year month areacell species vessel length age weight
1998 1 45G01 COD 1.RSH 21 2 210
1998 1 45G02 COD 2.COM 34 3 220
1998 1 45G03 COD 2.COM 34 3 230
1998 1 45G01 COD 2.COM 62 1 320
1998 1 45G02 COD 2.COM 53 1 330
1998 1 45G03 COD 2.COM 54 2 430
1998 1 45G01 COD 1.RSH 28 2 210
1998 1 45G02 COD 2.COM 34 3 220
1998 1 45G03 COD 1.RSH 24 3 230
1998 1 45G01 COD 1.RSH 12 1 320
1998 1 45G02 COD 2.COM 44 1 330
1998 1 45G03 COD 1.RSH 14 2 430
"))
} |
body.model <- lm(Bodyfat ~ Weight + Abdomen, data = BodyFat)
msummary(body.model)
histogram( ~ resid(body.model), breaks = 10)
xyplot(resid(body.model) ~ fitted(body.model), type = c("p", "r"), cex = 0.5) |
influenceDiag.vglm <- function(model, approx = TRUE) {
fam <- model@family@vfamily
if(fam != 'betabinomial') stop('Only betabinomial models are admitted within VGAM package')
Coefs <- coef(model)
n.obs <- nobs(model)
p <- model@rank
DFbetas <- matrix(NA, nrow = n.obs, ncol = p)
colnames(DFbetas) <- names(Coefs)
w <- rep(1, n.obs)
epsilon <- model@control$epsilon
if(approx) epsilon <- 1e3
pb <- txtProgressBar(min = 0, max = n.obs, style = 3, char = "*", width = 30)
for(i in 1:n.obs) {
w.i <- w
w.i[i] <- 1e-7
mod.i <- update(model, coefstart = Coefs, weights = w.i, epsilon = epsilon)
DFbetas[i,] <- Coefs - coef(mod.i)
setTxtProgressBar(pb, i)
}
hii <- hatvaluesvlm(model)[ ,1]
Vb <- vcov(model)
cookd <- apply((DFbetas %*% solve(Vb)) * DFbetas, MARGIN = 1, FUN = sum)/p
out <- list(DFbeta = DFbetas, cookDist = cookd, leverage = hii, full.beta = coef(model),
family = fam)
attr(out, which = 'class') <- 'influence'
out
} |
grpPUlasso <- function(X,
z,
py1,
initial_coef = NULL,
group = 1:ncol(X),
penalty = NULL,
lambda = NULL,
nlambda = 100,
lambdaMinRatio = ifelse(N < p, 0.05, 0.005),
maxit = ifelse(method == "CD", 1000, N * 10),
maxit_inner = 100000,
weights = NULL,
eps = 1e-04,
inner_eps = 1e-02,
verbose = FALSE,
stepSize = NULL,
stepSizeAdjustment = NULL,
batchSize = 1,
updateFrequency = N,
samplingProbabilities = NULL,
method = c("CD", "GD", "SGD", "SVRG", "SAG"),
trace = c("none", "param", "fVal", "all")
)
{
N = nrow(X); p = ncol(X)
input_check(X, z, group, penalty, stepSize, samplingProbabilities, weights)
if (is.null(colnames(X))) {
colnames(X) <- paste("V", 1:ncol(X), sep = "")
}
row_ordering = order(z, decreasing = T)
col_ordering = order(group)
ordering_res = ordering_data(row_ordering, col_ordering, X, z, group, weights)
X_lu = ordering_res$X_lu
z_lu = ordering_res$z_lu
w_lu = ordering_res$w_lu
group = ordering_res$group
group0 = ordering_res$group0
remove(X, z, ordering_res)
is.sparse = FALSE
if (inherits(X_lu, "sparseMatrix")) {
is.sparse = TRUE
X_lu = as(X_lu, "CsparseMatrix")
X_lu = as(X_lu, "dgCMatrix")
} else if (inherits(X_lu, "dgeMatrix")) {
X_lu = as.matrix(X_lu)
}
if (!(inherits(X_lu,"matrix") || inherits(X_lu, "dgCMatrix") )) {
stop("X must be a matrix or a sparse matrix")
}
if (typeof(X_lu) != "double") {
X_lu <- X_lu + 0.0
}
if (!is.null(w_lu)) {
weiOption <- TRUE
w_lu <- w_lu / sum(w_lu) * length(w_lu)
} else{
weiOption <- FALSE
w_lu <- rep(1, N)
}
usestrongSet = ifelse(N < p, FALSE, TRUE)
method = match.arg(method, choices = c("CD", "GD", "SGD", "SVRG", "SAG"))
trace = match.arg(trace, choices = c("none", "param", "fVal", "all"))
fitting_ls = fitting_setup(
py1 = py1,
lambda = lambda,
lambdaMinRatio = lambdaMinRatio,
nlambda = nlambda,
initial_coef = initial_coef,
group = group,
penalty = penalty,
p = p
)
opt_ls = opt_option_setup(
method = method,
trace = trace,
stepSize = stepSize,
stepSizeAdjustment = stepSizeAdjustment,
samplingProbabilities = samplingProbabilities
)
if(weiOption&&
(method != "CD")) {
opt_ls$method = "CD"
message("Currently the weight option is available for method == CD. Method switched to CD")
}
skip_fitting = getOption('PUlasso.skip_fitting')
if(!is.sparse) {
g <- LU_dense_cpp(
X_ = X_lu,
z_ = z_lu,
icoef_ = fitting_ls$icoef,
gsize_ = fitting_ls$gsize,
pen_ = fitting_ls$pen,
lambdaseq_ = fitting_ls$lambdaseq,
user_lambdaseq_ = fitting_ls$user_lambdaseq,
pathLength_ = nlambda,
lambdaMinRatio_ = lambdaMinRatio,
pi_ = py1,
max_nUpdates_ = maxit,
maxit_ = maxit_inner,
wei_ = w_lu,
weiOption_ = weiOption,
tol_ = eps,
inner_tol_ = inner_eps,
useStrongSet_ = usestrongSet,
verbose_ = verbose,
stepSize_ = opt_ls$stepSize,
stepSizeAdj_ = opt_ls$stepSizeAdjustment,
batchSize_ = batchSize,
updateFreq_ = updateFrequency,
samplingProbabilities_ = opt_ls$samplingProbabilities,
useLipschitz_ = opt_ls$use_Lipschitz_for_ss_or_sProb,
method_ = method,
trace_ = opt_ls$trace,
skipFitting_ = skip_fitting
)
} else{
g <- LU_sparse_cpp(
X_ = X_lu,
z_ = z_lu,
icoef_ = fitting_ls$icoef,
gsize_ = fitting_ls$gsize,
pen_ = fitting_ls$pen,
lambdaseq_ = fitting_ls$lambdaseq,
user_lambdaseq_ = fitting_ls$user_lambdaseq,
pathLength_ = nlambda,
lambdaMinRatio_ = lambdaMinRatio,
pi_ = py1,
max_nUpdates_ = maxit,
maxit_ = maxit_inner,
wei_ = w_lu,
weiOption_ = weiOption,
tol_ = eps,
inner_tol_ = inner_eps,
useStrongSet_ = usestrongSet,
verbose_ = verbose,
stepSize_ = opt_ls$stepSize,
stepSizeAdj_ = opt_ls$stepSizeAdjustment,
batchSize_ = batchSize,
updateFreq_ = updateFrequency,
samplingProbabilities_ = opt_ls$samplingProbabilities,
useLipschitz_ = opt_ls$use_Lipschitz_for_ss_or_sProb,
method_ = method,
trace_ = opt_ls$trace,
skipFitting_ = skip_fitting
)
}
cpp_results = summary_cpp_results(g, method, trace, colnames = colnames(X_lu), group0 =
group0)
optResult = list(
method = method,
convergence = g$convFlag,
fValues = g$fVals,
subGradients = g$subgrads,
stepSize = g$stepSize,
samplingProbabilities = g$samplingProbabilities,
std_coef_all = cpp_results$std_coef_all,
fValues_all = cpp_results$fVals_all,
maxit = maxit
)
if(method %in% c("CD","GD")){
widx<-which(g$convFlag==1)
if(length(widx)>0){
for(i in 1:length(widx)){
warning(paste("convergence failed at ",widx[i],"th lambda, ", cpp_results$iters[widx[i]],"th iterations",sep=""))
}
}
}else{
if(verbose){
widx<-which(g$convFlag==0)
if(length(widx)>0){
for(i in 1:length(widx)){
cat('|param.diff| < eps at',widx[i],'th lambda,', cpp_results$iters[widx[i]],'th iterations\n')
}
}
}
}
result <- structure(
list(
coef = cpp_results$coef,
std_coef = cpp_results$std_coef,
lambda = g$lambda,
nullDev = g$nullDev,
deviance = g$deviance,
optResult = optResult,
iters = cpp_results$iters,
call = match.call()
),
class = "PUfit"
)
return(result)
} |
library(NewmanOmics)
data(LungPair)
lung <- as.matrix(log2(1 + LungPair))
summary(lung)
set.seed(12345)
normal <- lung[, 1, drop=FALSE]
tumor <- lung[, 2, drop=FALSE]
ps <- pairedStat(normal, tumor)
slotNames(ps)
dim([email protected])
dim([email protected])
summary([email protected])
summary([email protected])
head([email protected])
head([email protected])
ps2 <- pairedStat(list(lung))
summary([email protected])
summary([email protected])
summary([email protected] - [email protected])
summary(pdiff <- [email protected] - [email protected])
plot([email protected], pdiff)
abline(h=0)
plot(ps)
hist(ps) |
expected <- eval(parse(text="list(structure(1:5, .Tsp = c(-1, 3, 1), class = \"ts\"), structure(1:5, .Tsp = c(1, 5, 1), class = \"ts\"))"));
test(id=0, code={
argv <- eval(parse(text="list(structure(1:5, .Tsp = c(-1, 3, 1), class = \"ts\"), structure(1:5, .Tsp = c(1, 5, 1), class = \"ts\"))"));
do.call(`list`, argv);
}, o=expected); |
snntsmarginallatitude <- function(data,cpars=1,M=c(0,0)){
auxcond<-sum(data>pi)+sum(data<0)
if (auxcond>0)
return("Latitude data must have values between 0 and pi")
A <- matrix(0,nrow=M[2]+1,ncol=M[2]+1)
for (k2 in 0:M[2]){
for (m2 in 0:M[2]){
if (abs(k2 - m2) != 1){
A[k2+1,m2+1] <- (2*pi)*((1 + cos((k2-m2)*pi))/(1 - ((k2-m2)^2)));
}
}
}
Ac<-chol(A)
Acinv <- solve(Ac)
cparsauxa <- cpars
for (k1 in 0:M[1]){
cpars[(k1*(M[2]+1)+1):((k1+1)*(M[2]+1))] <- Acinv %*% cparsauxa[(k1*(M[2]+1)+1):((k1+1)*(M[2]+1))]
}
cparsaux<-matrix(cpars,nrow=M[1]+1,ncol=M[2]+1,byrow=TRUE)
y<-rep(0,length(data))
for (j in 1:length(data)){
for (k1 in 0:M[1]){
for (k2 in 0:M[2]){
for (m2 in 0:M[2]){
y[j] <- y[j] + (2*pi)*sin(data[j])*cparsaux[k1+1,k2+1]*Conj(cparsaux[k1+1,m2+1])*(exp(1i*(k2-m2)*data[j]))
}
}
}
}
return(Re(y))
} |
AbstractGeom = ggproto("AbstractGeom", Geom,
default_computed_aes = aes(),
default_params = list(
orientation = NA,
na.rm = FALSE
),
layer_args = list(
show.legend = NA,
inherit.aes = TRUE
),
hidden_params = character(),
deprecated_params = character(),
orientation_options = list(),
setup_params = function(self, data, params) {
params = ggproto_parent(Geom, self)$setup_params(data, params)
params = defaults(params, self$default_params)
orientation_args = c(list(quote(data), quote(params)), self$orientation_options)
params$flipped_aes = do.call(get_flipped_aes, orientation_args)
params$orientation = get_orientation(params$flipped_aes)
params
},
setup_data = function(self, data, params) {
data = ggproto_parent(Geom, self)$setup_data(data, params)
data$flipped_aes = params$flipped_aes
data
},
parameters = function(self, extra = TRUE) {
panel_args = names(ggproto_formals(self$draw_panel))
params = setdiff(panel_args, c(names(ggproto_formals(Geom$draw_group)), "..."))
union(params, names(self$default_params))
}
)
make_geom = function(geom,
mapping = NULL,
data = NULL,
stat = "identity",
position = "identity",
...
) {
geom_name = substitute(geom)
params = geom$default_params[!names(geom$default_params) %in% geom$hidden_params]
params_to_defaults = lapply(params, to_expression)
params_to_syms = syms(names(params_to_defaults))
names(params_to_syms) = names(params_to_defaults)
args_to_defaults = lapply(geom$layer_args, to_expression)
args_to_syms = syms(names(args_to_defaults))
names(args_to_syms) = names(args_to_defaults)
new_function(
c(
pairlist2(
mapping = mapping,
data = data,
stat = stat,
position = position,
... =,
),
params_to_defaults,
args_to_defaults
),
expr({
.Deprecated_arguments(!!geom$deprecated_params, ...)
l = layer(
data = data,
mapping = mapping,
geom = !!geom_name,
stat = stat,
position = position,
!!!args_to_syms,
params = list(
!!!params_to_syms,
...
)
)
!!(
if (length(geom$default_computed_aes) > 0) {
expr(add_default_computed_aesthetics(l, !!geom$default_computed_aes))
} else {
quote(l)
}
)
}),
env = parent.frame()
)
}
to_expression = function(x) {
parse(text = deparse(x), keep.source = FALSE)[[1]]
} |
generateGrid <- function(order, level){
gridpoint.ls <- vector("list", order)
bandwidth.ls <- vector("list", order)
for(u in 1:order) {
for(l in 1:level){
random.val <- sobol(n = max(3, (7-u))^min(u,5) * l, dim = u)
random.val <- matrix(random.val, ncol = u)
gridpoint.ls[[u]][[l]] <- random.val
if(l == 1){
n <- nrow(random.val)
D <- gridpoint.ls[[u]][[l]]
if(u == 1) D <- matrix(D, ncol = 1)
Points <- expand.grid((1:n), (1:n))
Points <- cbind(Points[, 2], Points[, 1])
Points <- Points[Points[, 2] > Points[, 1], ]
junk <- (D[Points[, 2],,drop=FALSE] - D[Points[, 1],,drop=FALSE])^2
bandwidth.ls[[u]][l] <- 6 * u * min(sqrt(rowSums(junk)))
}else{
bandwidth.ls[[u]][l] <- bandwidth.ls[[u]][1] / 2^(l-1)
}
}
}
for(u in 1:min(5, order)){
if(u == 1){
for(l in 1:level){
grid <- seq(0, 1, length = max((6-u),2)*2^(l-1)+1)
grid.df <- data.frame(matrix(rep(grid, u), ncol = u))
gridpoint.ls[[u]][[l]] <- expand.grid(grid.df)
bandwidth.ls[[u]][l] <- 6 * 1/(length(grid)-1)
}
}else{
grid <- seq(0, 1, length = max((6-u),2)+1)
grid.df <- data.frame(matrix(rep(grid, u), ncol = u))
gridpoint.ls[[u]][[1]] <- expand.grid(grid.df)
bandwidth.ls[[u]][1] <- 6 * 1/(length(grid)-1)
}
}
return(list(gridpoint.ls = gridpoint.ls, bandwidth.ls = bandwidth.ls))
} |
context("extractEnvObjectInformation")
source_files <- c(
'sample-classes.R',
'AdditionTCFIP.R'
)
source_package <- 'wyz.code.offensiveProgramming'
sapply(source_files, function(e) {
f <- findFilesInPackage(e, source_package)
stopifnot(length(f) == 1)
source(f)
})
objects <- list(
MyEnv(),
FieldEnv(),
MethodEnv(),
EmptyEnv(),
Zarg(),
Zirg(),
Zorg(),
Zurg(),
AdditionTCFIP()
)
rv <- lapply(objects, extractEnvObjectInformation)
test_that("extractEnvObjectInformation", {
myf <- function(k) {
expect_length(rv[[!!k]], ifelse(k %in% c(2, 4), 1L, 2L))
expect_true(is.list(rv[[!!k]]))
}
lapply(seq_len(length(rv)), myf)
}) |
library(hamcrest)
test.readGnuDataFrames <- function() {
df <- readRDS("gnuRowNames.rds")
assertThat(nrow(df), identicalTo(10L))
assertThat(attr(df, 'row.names'), identicalTo(1:10))
assertThat(df$a, identicalTo(1:10))
assertThat(df$b, identicalTo(factor(letters[1:10])))
} |
Score_adjust_PPI <-
function(scaled_node_score,scaled_edge_score,PPI,lam,subnet,num_random_sampling,best_score)
{
all_genes<-names(scaled_node_score)
node_num<-length(subnet)
genes_selected<-all_genes[subnet]
edges_selected<- PPI[,1] %in% genes_selected & PPI[,2] %in% genes_selected
num_edges_selected<-sum(edges_selected)
random_score<-rep(0,num_random_sampling)
for(i in 1:num_random_sampling){
sampled_edges <- sample(1:dim(PPI)[1],num_edges_selected)
edge_score<-sum(scaled_edge_score[sampled_edges])/sqrt(num_edges_selected)
sampled_nodes <- sample(1:length(all_genes),node_num)
node_score<-sum(scaled_node_score[sampled_nodes])/sqrt(node_num)
random_score[i]<- lam*edge_score + (1-lam)*node_score
print(i)
}
mean<-mean(random_score)
sd<-sd(random_score)
adjusted_score<-(best_score-mean)/sd
return (adjusted_score)
} |
DownDyadHi <- function(x, qmf) {
d <- iconvv(MirrorFilt(qmf), lshift(x))
n <- length(d)
return(d[seq(1, n - 1, 2)])
} |
.options <- function(self, private, code) {
l <- private$map()
s <- paste0(sapply(names(l), function(x) sprintf("%s=%s", x, l[[x]])), collapse = "&")
code <- paste0(code, collapse = "\n")
sprintf("%s&code=%s", s, self$encode(code))
}
.uri <- function(self, private, code) {
sprintf("https://carbon.now.sh/?%s", self$options(code = code))
}
.browse <- function(self, private) {
utils::browseURL(self$uri())
}
.encode <- function(self, private, URL, reserved, repeated) {
if (!repeated && grepl("%[[:xdigit:]]{2}", URL, useBytes = TRUE)) {
return(URL)
}
OK <- paste0(
"[^", if (!reserved) {
"][!();?"
} , "ABCDEFGHIJKLMNOPQRSTUVWXYZ", "abcdefghijklmnopqrstuvwxyz0123456789._~-",
"]"
)
x <- strsplit(URL, "")[[1L]]
z <- grep(OK, x)
z <- sort(c(z, which(x %in% c("[", "]"))))
if (length(z)) {
y <- sapply(x[z], function(x) paste0("%25", toupper(as.character(charToRaw(x))),
collapse = ""
))
y <- gsub("%2527", "%27", y)
x[z] <- y
}
paste(x, collapse = "")
}
.tiny <- function(self, private, clip = FALSE) {
RET <- tinyurl(self$uri())
if (clip) {
clipr::write_clip(RET)
}
return(RET)
}
.rtweet <- function(self,
private,
media,
status = self$tweet_status,
media_format = c("png", "gif"),
...) {
td <- file.path(tempdir(), "rtweet_media")
mf <- match.arg(media_format)
dir.create(td, showWarnings = FALSE)
on.exit(unlink(td, recursive = TRUE, force = TRUE), add = TRUE)
if (inherits(media, "magick-image")) {
if (mf == "gif") {
anim <- magick::image_animate(media, fps = 1)
magick::image_write(
image = anim,
path = file.path(td, sprintf("img01.%s", mf)),
format = mf
)
} else {
invisible(
lapply(seq_along(media), function(x) {
magick::image_write(
image = media[x],
path = file.path(td, sprintf("img%02d.%s", x, mf)),
format = mf
)
})
)
}
tds <- list.files(td, full.names = TRUE)
} else {
tds <- media
}
rtweet::post_tweet(status = status, media = tds, ...)
}
tinyurl <- function(uri){
host <- 'tinyurl.com'
if(!httr::http_error(host)){
base <- sprintf('http://%s/api-create.php',host)
uri <- httr::content(httr::GET(sprintf('%s?url=%s',base,uri)))
}
uri
} |
context("test-hl")
library(VulnToolkit)
test_that("fld.frq gives correct output", {
expect_equal(fld.frq(2, 1:10, units = "percent"), 0.8)
expect_equal(fld.frq(2, 1:10, units = "tides"), 9)
expect_error(fld.frq("string", 1:10))
expect_error(fld.frq(2, "string"))
expect_error(fld.frq(2, 1:10, units = "furlongs"))
})
test_that("fld.dur gives correct output", {
expect_equal(fld.dur(z = 2, level = 1:10), 0.8)
expect_error(fld.dur(z = "string", level = 1:10))
expect_error(fld.dur(z = 2, level = "string"))
})
test_that("HL gives correct output", {
expect_error(HL("hello world"))
expect_error(HL(1:10, "hello world"))
expect_equal(nrow(HL(rep(c(c(1:100), c(100:1)), times = 400)[1:8761], seq.POSIXt(from = ISOdate(1910,1,1), to = ISOdate(1911,1,1), by = "hours"))), 1868)
})
test_that("wave.dur gives correct output", {
expect_error(wave.dur(elevation = c(), level = 1:10))
expect_equal(sum(wave.dur(level = 2, elevation = 1:10)), 1)
expect_equal(sum(wave.dur(level = 2:10, elevation = 1:10)), 1)
expect_equal(sum(wave.dur(level = c(NA, 2:10), elevation = 1:10)), 1)
})
test_that("psmsl error checking", {
expect_error(psmsl(type = "string"))
expect_error(psmsl(interval = "string"))
})
test_that("psmsl.stations error checking", {
expect_error(psmsl.stations(type = "string"))
expect_error(psmsl.stations(sort.by = "string"))
})
test_that("noaa.parameters error checking", {
expect_error(noaa.parameters(stn = "abcd"))
})
test_that("noaa error checking", {
expect_error(noaa(continuous = "string"))
expect_error(noaa(units = "string"))
expect_error(noaa(datum = "string"))
expect_error(noaa(interval = "string"))
expect_error(noaa(units = "feet", interval = "string"))
expect_error(noaa(units = "meters", interval = "string"))
expect_error(noaa(time = "string"))
}) |
library(fdacluster)
context("Center Method")
test_that(" the warping methods work", {
expect_equal(length(
kma(
x = aneurisk65$x,
y = aneurisk65$y,
seeds = NULL,
n_clust = 2,
center_method = "mean",
use_verbose = FALSE
)
), 23)
expect_equal(length(
kma(
x = aneurisk65$x,
y = aneurisk65$y,
seeds = NULL,
n_clust = 2,
center_method = "medoid",
use_verbose = FALSE
)
), 23)
}) |
.Random.seed <-
c(403L, 10L, 238561690L, 947170652L, -923171745L, -802767819L,
-311679028L, -566791390L, -1547653763L, 1461993079L, -140580962L,
-1593178536L, 80097211L, 582189401L, -1706050840L, -1749433578L,
723666065L, 344824131L, 935375954L, -1692694812L, -609337049L,
-1383845507L, -115427212L, 806255194L, -1048668507L, 489866431L,
284432198L, 1224791504L, -167475213L, -1435222255L, 1953939264L,
-500005090L, 831371241L, 1897012507L, -1760839894L, -1160591284L,
108707855L, -1259697339L, 947166460L, -1834767534L, -419042099L,
-94647161L, 108468078L, -97851064L, -1740550837L, -436105047L,
-610217480L, -1853087450L, -2086518207L, -1320391725L, 1791826306L,
-1009668684L, 1917450551L, 1322970157L, -691840700L, 1718849130L,
-1705842475L, 1560413807L, 860214134L, 620168352L, 497655139L,
1932406273L, 1030221168L, 1034317070L, 1473916793L, 688148235L,
-688222150L, -1085792452L, -1758520193L, 252719061L, 1622835692L,
240235330L, -115532643L, -873683689L, -1800184706L, 1484010552L,
999117595L, -830908295L, 1570308296L, -411006730L, 1947621681L,
1937437027L, -1567628494L, 1543335044L, 599627975L, -537967715L,
1402791700L, -1781686854L, -861094907L, 628462047L, 515839078L,
1444721648L, 739216659L, 770355889L, 1889131872L, 100389630L,
-1837576567L, -122095173L, -728767606L, 1529399916L, -847182865L,
1042656293L, -997542692L, -607352142L, -1998230099L, 1077277031L,
502435470L, -185788568L, 802180971L, -2129716983L, 1311805336L,
587118278L, -846003167L, -1486892877L, 2136574498L, 36736020L,
1116233879L, 62837389L, -192822364L, -1553285750L, 801876469L,
1295483983L, -1626184874L, 806476288L, 701461315L, -1740680479L,
2052702288L, -2029543250L, 534631513L, 1351836779L, -705812006L,
-1810369892L, -1371009889L, -578519307L, -1065630836L, 1087296098L,
1076389437L, 2048116919L, 855357278L, 867400344L, -1538921989L,
1135874969L, 1136684072L, -1914528554L, -2005350063L, -1813714941L,
58879890L, 1945517348L, -702508057L, 2055989309L, 360289972L,
1573436698L, 936726117L, 1291043583L, 1373607814L, -1680971504L,
1300781491L, 1334772305L, 285905408L, 1590759134L, 1506297129L,
-1462318885L, -381546518L, 1618947980L, -2081398577L, -655892347L,
-949279940L, 2118752786L, 88158477L, -1769850297L, -1325883346L,
-813476472L, 1281010827L, 706414185L, -383788488L, 1132006118L,
-1786894719L, -314545645L, 1883033026L, 963315316L, -1141139337L,
1281120621L, -814735868L, -1549677270L, -101143915L, -447405777L,
1462547510L, -1316204448L, -186255709L, 1776169409L, 745655728L,
1466762446L, -1272745415L, 224625739L, -1463695878L, 2120958204L,
-1015163585L, 1106291221L, -1669668564L, -170962430L, 610345181L,
-157600809L, -929575234L, 2120268024L, -171211045L, -228049607L,
2122238088L, -1308356554L, -1054841743L, 1342148259L, 1064362994L,
-119974076L, -1116153849L, 553579997L, 1922413268L, -1403273734L,
-1279250107L, 1743443359L, 1145284390L, 2023696304L, 181568595L,
2120286065L, 258061984L, 1584962110L, -176066231L, -2087776261L,
-71380022L, -45093588L, -1678581457L, -1333331776L, 166851124L,
486316744L, -1003486534L, 135679120L, -963279124L, 201348692L,
18015890L, 1161955104L, -797911092L, -262354720L, 1721093826L,
387224616L, -1281000532L, -1422808388L, 153240050L, -498432464L,
-50833500L, 384311736L, -1099646118L, 1491047568L, 580049788L,
616029972L, 660544834L, -235221248L, 269212604L, 51265360L, -889216734L,
-394835384L, -1528637428L, -2142827428L, 946868690L, 1156609536L,
-379326124L, -493190936L, -1558630150L, -351721776L, -1902638804L,
997382388L, -543658606L, -762009248L, -639113204L, 339184352L,
-3505566L, 1224030888L, -1267451316L, 1188472700L, -998003406L,
-661059984L, -1634026684L, -1216690216L, 2126724986L, 1745571376L,
1661401020L, 1396848212L, 1384884290L, -1224171360L, 439955132L,
-1443493424L, 320865122L, -1251736856L, 614400204L, -981261828L,
478071282L, 486775424L, -752421388L, 1872856712L, 1571585850L,
-664419504L, 1305351276L, 160536980L, -1600314286L, 1124198880L,
436747468L, -1338086240L, -1683540606L, -1203805976L, -1374069012L,
-80270020L, 272186482L, 1078018160L, 1539790884L, -1386386376L,
-1417939174L, -1772995376L, -1667090628L, 1899911060L, 1694043010L,
-58920512L, 1555607100L, -1917057648L, 1171252770L, -1236116216L,
210044556L, 347838236L, -2099912558L, 558524800L, 1543683604L,
1307111208L, 1587139130L, 452302288L, -986216084L, 67077044L,
1182369810L, -500757024L, -90243124L, -1466081056L, -417105886L,
-459554520L, 240344588L, 1346641724L, -1983366158L, -1752462608L,
892184132L, -598728104L, 1393819450L, 2118096368L, -623014212L,
-1908352748L, 2142575298L, 891931744L, 141112188L, -1225947184L,
-1046331102L, -203568472L, -1488243828L, -1791366980L, 324446002L,
524773952L, -1319623500L, 1941322312L, -641450566L, 2002557456L,
347564780L, -716887724L, 561201426L, -150757984L, 219405004L,
1381367392L, 1563754434L, -11518168L, -821899348L, 338326332L,
-1245918862L, -717464784L, 1839842596L, 626637624L, 589616858L,
-1172357232L, 1521528572L, -959618156L, 109344834L, -1177680640L,
-503913412L, -1625251504L, 885942434L, -121513656L, 580888332L,
-206613796L, -339325614L, 549543040L, 1580474452L, 456751080L,
-1116454662L, 1757375312L, 1578000172L, -1611490956L, -1019507822L,
1818241120L, -1335007860L, -278742176L, 1387465186L, 117369768L,
1453595852L, 1579317244L, -229636686L, -1941836304L, 1896192964L,
1588927832L, 1186640250L, 1253092272L, -629177924L, 227338324L,
-769470526L, -12756960L, -968664900L, 1358168656L, 1342204898L,
-826439576L, 1163664460L, 1161492732L, 1656413170L, 1265531136L,
31678836L, 1900782600L, 317865914L, 1965593040L, -513901588L,
-1138476652L, -789003822L, 1388802400L, 187182924L, 508209440L,
-435816574L, -561533208L, -1219223316L, 1554310204L, 2092129138L,
-146045328L, -982758364L, 330998584L, 626973850L, -1489130800L,
-2108792644L, 1271676564L, 1248194178L, -1585129280L, 2008513340L,
-1622471536L, 1449074210L, -1937596408L, 854017292L, 352617628L,
-1004315118L, 364449664L, -1321409004L, 403931688L, -262153697L,
-2021884552L, 1165851734L, 1902182627L, 1283262117L, 1501113154L,
2073788720L, -788145831L, 1927027403L, 645235516L, -1229362326L,
-316241505L, 1418575913L, 1436588734L, -1750148180L, -984504067L,
-1284668345L, 1545921328L, 27452494L, 530057339L, 2115374045L,
-1874718198L, 1887917864L, -732722799L, -1899442301L, -1399364476L,
793297586L, 1583928839L, -429779375L, 1158376918L, -30359372L,
-1991869243L, 227753487L, 1733506696L, -1881179226L, 806007635L,
-2016240459L, 1497422354L, 782317536L, 712944201L, -1668177797L,
74903884L, 1920918746L, 929170639L, 2121584793L, 1147309230L,
1062156732L, 1448657453L, -1033996841L, 28056608L, -1982611074L,
-291680437L, 188241229L, -1715397766L, 1133624760L, -923984031L,
-360179949L, -1574195404L, -299598526L, -500403881L, -1178305375L,
-1130338970L, -1602140316L, -305158507L, 1911463871L, 1115562840L,
1269358966L, -110435453L, -89882171L, -209828126L, 1565345616L,
1936179833L, 1785685419L, -705582308L, -1256588214L, 1901815871L,
-1062340471L, 546315422L, -1539798708L, -2040409827L, 898383015L,
-2089481264L, -301862034L, 921416219L, -1098542211L, 1576726890L,
1975726088L, -113551183L, -1148913885L, -2056645596L, -967686446L,
-155229401L, -460593807L, -1969067082L, 1371885396L, 873171429L,
814232559L, -190643416L, 705741702L, -817889357L, 1976727317L,
1879482738L, 744302016L, -1856629207L, -1551783269L, 333845356L,
-1280218246L, 878564527L, -1731420231L, -1223755314L, 1563008284L,
1118591117L, -1945201417L, -2046595072L, -2034126242L, -1325535957L,
1039978029L, 153286298L, -1462058408L, -22340159L, 1548362355L,
-145875052L, -307499486L, 203215159L, -980369407L, 1369873670L,
-1906259644L, -2058363787L, 459812319L, 1615788344L, 176714518L,
1228147491L, 373752037L, -917414654L, -2108395664L, -403501287L,
-2089105653L, -580377604L, 609689642L, -2015130529L, -989068311L,
1907952894L, 255149292L, 1762736189L, -1106899961L, -1610754064L,
707421070L, -1604869701L, -1138942051L, -1999024822L, -1487354520L,
-1161737391L, -1419876285L, 411611460L, -240760334L, -1447273529L,
-364401263L, -438009578L, -1538125452L, 1730693125L, 1455329359L,
-374336440L, 1967049190L, 446371603L, 622264437L, -1351269806L,
-1377426272L, 1008795017L, 1775406523L, -143560383L) |
kog.mwu <-
function(data,gene2kog,Alternative="t") {
rsq=data
names(rsq)=c("seq","value")
bads=which(rsq[,2]==Inf | rsq[,2]==(-Inf) | is.na(rsq[,2]))
if (length(bads)>0) { rsq=rsq[-bads,]}
kogs=gene2kog
annotated=rsq[rsq[,1] %in% kogs[,1],]
kogs=kogs[kogs[,1] %in% rsq[,1],]
kogrows=match(kogs[,1],annotated[,1])
annotated=annotated[kogrows,]
annotated$term=as.character(kogs[,2])
annotated$value=as.numeric(as.character(annotated[,2]))
mwut.t=TRUE
if (length(levels(as.factor(annotated[,2])))==2) {
print("Binary classification detected; will perform Fisher's test");
mwut.t=F
rr=kog.ft(annotated)
} else {
print("Continuous measure of interest: will perform MWU test");
rr=kog.mwut(annotated,Alternative)
}
return(rr)
} |
PAveDD <- function(PriceData, AveDD = 0.1, softBudget = FALSE, ...){
if(is.null(dim(PriceData))){
stop("Argument for 'PriceData' must be rectangular.\n")
}
if(any(is.na(PriceData))){
stop("NA-values contained in object for 'PriceData'.\n")
}
if(AveDD <= 0 || AveDD >= 1){
stop("Argument for 'AveDD' must be in the interval (0, 1).\n")
}
call <- match.call()
RC <- as.matrix(returnseries(PriceData, method = "discrete", percentage = FALSE, compound = TRUE))
rownames(RC) <- NULL
N <- ncol(RC)
J <- nrow(RC)
w <- rep(0, N)
u <- rep(0, J)
v <- rep(0, J)
x <- c(w, u, v)
obj <- c(as.numeric(RC[J, ]), rep(0, J), rep(0, J))
a1 <- cbind(diag(N), matrix(0, nrow = N, ncol = 2 * J))
d1 <- rep(">=", N)
b1 <- rep(0, N)
a2 <- c(rep(1, N), rep(0, 2 * J))
ifelse(softBudget, d2 <- "<=", d2 <- "==")
b2 <- 1
a3 <- cbind(-1 * RC, diag(J), -1 * diag(J))
d3 <- rep("==", J)
b3 <- rep(0, J)
a4 <- c(rep(0, N), rep(0, J), rep(1 / J, J))
d4 <- "<="
b4 <- AveDD
a5 <- cbind(-1 * RC, diag(J), matrix(0, nrow = J, ncol = J))
d5 <- rep(">=", J)
b5 <- rep(0, J)
D1 <- -1.0 * diag(J)
udiag <- embed(1:J, 2)[, c(2, 1)]
D1[udiag] <- 1
a6 <- cbind(matrix(0, ncol = N, nrow = J), D1, matrix(0, ncol = J, nrow = J))
a6 <- a6[-J, ]
d6 <- rep(">=", J-1)
b6 <- rep(0, J-1)
Amat <- rbind(a1, a2, a3, a4, a5, a6)
Dvec <- c(d1, d2, d3, d4, d5, d6)
Bvec <- c(b1, b2, b3, b4, b5, b6)
opt <- Rglpk_solve_LP(obj = obj, mat = Amat, dir = Dvec, rhs = Bvec,
max = TRUE, ...)
if(opt$status != 0){
warning(paste("GLPK had exit status:", opt$status))
}
weights <- opt$solution[1:N]
names(weights) <- colnames(PriceData)
dd <- timeSeries(opt$solution[(N + J + 1):(N + J + J)], charvec = rownames(PriceData))
obj <- new("PortAdd", weights = weights, opt = opt, type = "average draw-down", call = call, AveDD = mean(dd), DrawDown = dd)
return(obj)
} |
library(tidyverse)
library(janitor)
library(naniar)
riskfactors <- brfss %>%
tibble::as_tibble() %>%
janitor::clean_names() %>%
dplyr::rename(hispanic = hispanc2,
veteran = veteran2,
education = educa,
employment = employ,
income = income2,
weight_lbs = weight2,
height_inch = height3,
health_general = genhlth,
health_physical = physhlth,
health_mental = menthlth,
health_poor = poorhlth,
health_cover = hlthplan,
provide_care = caregive,
activity_limited = qlactlm2,
drink_any = drnkany4,
drink_days = alcday4,
drink_average = avedrnk2,
smoke_100 = smoke100,
smoke_days = smokday2,
smoke_stop = stopsmk2,
smoke_last = lastsmk1,
diet_fruit = fruit,
diet_salad = greensal,
diet_potato = potatoes,
diet_carrot = carrots,
diet_vegetable = vegetabl,
diet_juice = fruitjui,
bmi = bmi4) %>%
dplyr::select(state,
sex,
age,
weight_lbs,
height_inch,
bmi,
marital,
pregnant,
children,
education,
employment,
income,
veteran,
hispanic,
dplyr::everything()) %>%
dplyr::mutate(bmi = bmi / 100)
devtools::use_data(riskfactors, overwrite = TRUE) |
get_definition <- function(x, name) {
x$get_type(name)
}
for_onload(function() {
"
type __Schema {
types: [__Type!]!
queryType: __Type!
mutationType: __Type
directives: [__Directive!]!
}
" %>%
gqlr_schema(
"__Schema" = list(
description = collapse(
"A GraphQL Schema defines the capabilities of a GraphQL server. It ",
"exposes all available types and directives on the server, as well as ",
"the entry points for query, mutation, and subscription operations.",
" Subscriptions are not implemented in gqlr."
),
fields = list(
"types" = "A list of all types supported by this server.",
"queryType" = "The type that query operations will be rooted at.",
"mutationType" = "The type that mutation operations will be rooted at.",
"directives" = "A list of all directives supported by this server."
),
resolve = function(null, schema) {
list(
types = function(z1, z2, z3) {
all_types <- list() %>%
append(names(schema$get_scalars())) %>%
append(names(schema$get_objects())) %>%
append(names(schema$get_interfaces())) %>%
append(names(schema$get_unions())) %>%
append(names(schema$get_enums())) %>%
append(names(schema$get_input_objects())) %>%
append(names(schema$get_values()))
all_types
},
queryType = function(z1, z2, z3) {
query_type <- schema$get_query_object()
query_type$name
},
mutationType = function(z1, z2, z3) {
mutation_type <- schema$get_mutation_object()
if (is.null(mutation_type)) return(NULL)
mutation_type$name
},
directives = function(z1, z2, z3) {
directives <- schema$get_directives()
directives
}
)
}
)
) %>%
get_definition("__Schema") ->
Introspection__Schema
"
type __Type {
kind: __TypeKind!
name: String
description: String
fields(includeDeprecated: Boolean = false): [__Field!]
interfaces: [__Type!]
possibleTypes: [__Type!]
enumValues(includeDeprecated: Boolean = false): [__EnumValue!]
inputFields: [__InputValue!]
ofType: __Type
}
" %>%
gqlr_schema(
"__Type" = list(
resolve = function(type_obj, schema) {
type_obj <- as_type(type_obj)
ret <- list(
kind = type_obj,
name = function(z1, z2, z3) {
if (inherits(type_obj, "ListType")) return(NULL)
if (inherits(type_obj, "NonNullType")) return(NULL)
name_value(type_obj)
},
description = function(z1, z2, z3) {
if (inherits(type_obj, "ListType")) return(NULL)
if (inherits(type_obj, "NonNullType")) return(NULL)
obj <- schema$get_type(type_obj)
obj$description
}
)
if (
inherits(type_obj, "NonNullType") ||
inherits(type_obj, "ListType")
) {
ret$ofType <- function(z1, z2, z3) {
inner_type <- type_obj$type
inner_type
}
return(ret)
}
if (
schema$is_object(type_obj) ||
schema$is_interface(type_obj)
) {
ret$fields <- function(z1, args, z2) {
include_deprecated <- args$includeDeprecated
if (!is.null(include_deprecated)) {
}
obj <- ifnull(
schema$get_object(type_obj),
schema$get_interface(type_obj)
)
fields <- obj$fields
if (is.null(fields)) return(NULL)
fields
}
}
if (schema$is_object(type_obj)) {
ret$interfaces <- function(z1, z2, z3) {
obj <- schema$get_object(type_obj)
obj_interfaces <- obj$interfaces
if (is.null(obj_interfaces)) return(NULL)
obj_interfaces
}
}
if (schema$is_interface(type_obj)) {
ret$possibleTypes <- function(z1, z2, z3) {
possible_types <- schema$implements_interface(type_obj)
if (is.null(possible_types)) return(NULL)
possible_types
}
} else if (schema$is_union(type_obj)) {
ret$possibleTypes <- function(z1, z2, z3) {
union_obj <- schema$get_union(type_obj)
union_type_names <- union_obj$types
if (is.null(union_type_names)) return(NULL)
union_type_names
}
}
if (schema$is_enum(type_obj)) {
ret$enumValues <- function(z1, args, z3) {
include_deprecated <- args$includeDeprecated
if (!is.null(include_deprecated)) {
}
enum_obj <- schema$get_enum(type_obj)
enum_values <- enum_obj$values
if (is.null(enum_values)) return(NULL)
enum_values
}
}
if (schema$is_input_object(type_obj)) {
ret$inputFields <- function(z1, z2, z3) {
input_obj <- schema$get_input_object(type_obj)
input_obj_fields <- input_obj$fields
if (is.null(input_obj_fields)) return(NULL)
input_obj_fields
}
}
ret
}
)
) %>%
get_definition("__Type") ->
Introspection__Type
"
type __Field {
name: String!
description: String
args: [__InputValue!]!
type: __Type!
isDeprecated: Boolean!
deprecationReason: String
}
" %>%
gqlr_schema(
"__Field" = list(
description = collapse(
"Object and Interface types are described by a list of Fields, each of ",
"which has a name, potentially a list of arguments, and a return type."
),
fields = list(
args = "returns a List of __InputValue representing the arguments this field accepts",
type = "must return a __Type that represents the type of value returned by this field",
isDeprecated = "returns true if this field should no longer be used, otherwise false",
deprecationReason = "optionally provides a reason why this field is deprecated"
),
resolve = function(field_obj, schema) {
list(
name = format(field_obj$name),
description = field_obj$description,
args = ifnull(field_obj$arguments, list()),
type = field_obj$type,
isDeprecated = FALSE,
deprecationReason = NULL
)
}
)
) %>%
get_definition("__Field") ->
Introspection__Field
"
type __InputValue {
name: String!
description: String
type: __Type!
defaultValue: String
}
" %>%
gqlr_schema(
"__InputValue" = list(
description = collapse(
"Arguments provided to Fields or Directives and the input fields of an ",
"InputObject are represented as Input Values which describe their type ",
"and optionally a default value."
),
fields = list(
type = "must return a __Type that represents the type this input value expects",
defaultValue = collapse(
"may return a String encoding (using the GraphQL language) of the default value used by ",
"this input value in the condition a value is not provided at runtime. If this input ",
"value has no default value, returns null."
)
),
resolve = function(input_value, schema) {
list(
name = format(input_value$name),
description = input_value$description,
type = input_value$type,
defaultValue = input_value$defaultValue$value
)
}
)
) %>%
get_definition("__InputValue") ->
Introspection__InputValue
"
type __EnumValue {
name: String!
description: String
isDeprecated: Boolean!
deprecationReason: String
}
" %>%
gqlr_schema(
"__EnumValue" = list(
description = collapse(
"One possible value for a given Enum. Enum values are unique values, not ",
"a placeholder for a string or numeric value. However an Enum value is ",
"returned in a JSON response as a string."
),
resolve = function(enum_value, schema) {
list(
name = format(enum_value$name),
description = enum_value$description,
isDeprecated = FALSE,
deprecationReason = NULL
)
}
)
) %>%
get_definition("__EnumValue") ->
Introspection__EnumValue
"
enum __TypeKind {
SCALAR
OBJECT
INTERFACE
UNION
ENUM
INPUT_OBJECT
LIST
NON_NULL
}
" %>%
gqlr_schema(
"__TypeKind" = list(
description = "An enum describing what kind of type a given `__Type` is.",
values = list(
SCALAR = "Indicates this type is a scalar.",
OBJECT = "Indicates this type is an object. `fields` and `interfaces` are valid fields.",
INTERFACE = "Indicates this type is an interface. `fields` and `possibleTypes` are valid fields.",
UNION = "Indicates this type is a union. `possibleTypes` is a valid field.",
ENUM = "Indicates this type is an enum. `enumValues` is a valid field.",
INPUT_OBJECT = "Indicates this type is an input object. `inputFields` is a valid field.",
LIST = "Indicates this type is a list. `ofType` is a valid field.",
NON_NULL = "Indicates this type is a non-null. `ofType` is a valid field."
),
resolve = function(type_obj, schema) {
if (inherits(type_obj, "NonNullType")) return("NON_NULL")
if (inherits(type_obj, "ListType")) return("LIST")
if (schema$is_scalar(type_obj)) return("SCALAR")
if (schema$is_object(type_obj)) return("OBJECT")
if (schema$is_interface(type_obj)) return("INTERFACE")
if (schema$is_union(type_obj)) return("UNION")
if (schema$is_enum(type_obj)) return("ENUM")
if (schema$is_input_object(type_obj)) return("INPUT_OBJECT")
str(type_obj)
stop("this should not be reached")
}
)
) %>%
get_definition("__TypeKind") ->
Introspection__TypeKind
"
type __Directive {
name: String!
description: String
locations: [__DirectiveLocation!]!
args: [__InputValue!]!
}
" %>%
gqlr_schema(
"__Directive" = list(
description = collapse(
"A Directive provides a way to describe alternate runtime execution and ",
"type validation behavior in a GraphQL document.",
"\n\nIn some cases, you need to provide options to alter GraphQL's ",
"execution behavior in ways field arguments will not suffice, such as ",
"conditionally including or skipping a field. Directives provide this by ",
"describing additional information to the executor."
),
fields = list(
locations = collapse(
"returns a List of __DirectiveLocation representing the valid locations ",
"this directive may be placed"
),
args = "returns a List of __InputValue representing the arguments this directive accepts"
),
resolve = function(directive_obj, schema) {
list(
name = format(directive_obj$name),
description = directive_obj$description,
locations = lapply(directive_obj$locations, format),
args = ifnull(directive_obj$arguments, list())
)
}
)
) %>%
get_definition("__Directive") ->
Introspection__Directive
"
enum __DirectiveLocation {
QUERY
MUTATION
FIELD
FRAGMENT_DEFINITION
FRAGMENT_SPREAD
INLINE_FRAGMENT
}
" %>%
gqlr_schema(
"__DirectiveLocation" = list(
description = collapse(
"A Directive can be adjacent to many parts of the GraphQL language, a ",
"__DirectiveLocation describes one such possible adjacencies."
),
values = list(
QUERY = "Location adjacent to a query",
MUTATION = "Location adjacent to a mutation",
FIELD = "Location adjacent to a field",
FRAGMENT_DEFINITION = "Location adjacent to a fragment definition",
FRAGMENT_SPREAD = "Location adjacent to a fragment spread",
INLINE_FRAGMENT = "Location adjacent to a inline fragment"
)
)
) %>%
get_definition("__DirectiveLocation") ->
Introspection__DirectiveLocation
"
type QueryRootFields {
__schema: __Schema!
__type(name: String!): __Type
}
" %>%
gqlr_schema() %>%
get_definition("QueryRootFields") ->
Introspection__QueryRootFields
Introspection__QueryRootFields$fields[[1]]$.show_in_format <- FALSE
Introspection__QueryRootFields$fields[[1]]$.allow_double_underscore <- TRUE
Introspection__QueryRootFields$fields[[2]]$.show_in_format <- FALSE
Introspection__QueryRootFields$fields[[2]]$.allow_double_underscore <- TRUE
Introspection__QueryRootFields$loc <- NULL
Introspection__QueryRootFields$name$loc <- NULL
Introspection__QueryRootFields$fields[[1]]$loc <- NULL
Introspection__QueryRootFields$fields[[1]]$name$loc <- NULL
Introspection__QueryRootFields$fields[[1]]$type$loc <- NULL
Introspection__QueryRootFields$fields[[1]]$type$type$name$loc <- NULL
Introspection__QueryRootFields$fields[[2]]$loc <- NULL
Introspection__QueryRootFields$fields[[2]]$name$loc <- NULL
Introspection__QueryRootFields$fields[[2]]$type$loc <- NULL
Introspection__QueryRootFields$fields[[2]]$type$name$loc <- NULL
Introspection__QueryRootFields$fields[[2]]$arguments[[1]]$loc <- NULL
Introspection__QueryRootFields$fields[[2]]$arguments[[1]]$name$loc <- NULL
Introspection__QueryRootFields$fields[[2]]$arguments[[1]]$type$loc <- NULL
Introspection__QueryRootFields$fields[[2]]$arguments[[1]]$type$type$loc <- NULL
Introspection__QueryRootFields$fields[[2]]$arguments[[1]]$type$type$name$loc <- NULL
gqlr_env$completed_introspection <- TRUE
}) |
golem_files <- function(react = FALSE, vue = FALSE, framework7 = FALSE){
base <- pkg_file("golem/javascript")
if(any(react, vue, framework7))
fs::dir_create("srcjs")
else
fs::dir_copy(base, "srcjs")
cli::cli_alert_success("Created {.file srcjs} directory")
} |
library("data.table")
library("wyz.code.offensiveProgramming")
library("wyz.code.rdoc")
gc <- GenerationContext('inst/man-generated', overwrite_b_1 = TRUE,
verbosity_b_1 = FALSE, useMarkers_b_1 = FALSE)
target_package_name <- 'wyz.code.rdoc'
source(findFilesInPackage('AdditionTCFIP.R', 'wyz.code.offensiveProgramming')[1])
ic <- InputContext(AdditionTCFIP(), packageName_s_1 = target_package_name)
r <- produceManualPage(ic, gene = gc)
interpretResults(r)
source(findFilesInPackage('Addition_TCFI_Partial_R6.R', 'wyz.code.offensiveProgramming')[1])
ic <- InputContext(Addition_TCFI_Partial_R6$new(), packageName_s_1 = target_package_name)
r <- produceManualPage(ic, gene = gc)
interpretResults(r)
source(findFilesInPackage('Addition_TCFI_Partial_S3.R', 'wyz.code.offensiveProgramming')[1])
ic <- InputContext(Addition_TCFI_Partial_S3(), packageName_s_1 = target_package_name)
r <- produceManualPage(ic, gene = gc)
interpretResults(r)
source(findFilesInPackage('Addition_TCFI_Partial_S4.R', 'wyz.code.offensiveProgramming')[1])
ic <- InputContext(new('Addition_TCFI_Partial_S4'), packageName_s_1 = target_package_name)
r <- produceManualPage(ic, gene = gc)
interpretResults(r)
source(findFilesInPackage('Addition_TCFI_Partial_RC.R', 'wyz.code.offensiveProgramming')[1])
ic <- InputContext(new('Addition_TCFI_Partial_RC'), packageName_s_1 = target_package_name)
r <- produceManualPage(ic, gene = gc)
interpretResults(r) |
setClass("armacopula", contains = "tscopula", slots = list(
name = "character",
modelspec = "numeric",
pars = "list"
))
armacopula <- function(pars = list(ar = 0, ma = 0)) {
if ("ar" %in% names(pars)) {
arpars <- pars$ar
if (is.null(arpars)) {
stop("No NULL values for parameters; omit from list instead")
}
if (non_stat(arpars)) {
stop("Non-stationary AR model")
}
p <- length(arpars)
names(pars$ar) <- paste("ar", 1:p, sep = "")
}
else {
p <- 0
}
if ("ma" %in% names(pars)) {
mapars <- pars$ma
if (is.null(mapars)) {
stop("No NULL values for parameters; omit from list instead")
}
if (non_invert(mapars)) {
stop("Non-nvertible MA model")
}
q <- length(mapars)
names(pars$ma) <- paste("ma", 1:q, sep = "")
}
else {
q <- 0
}
if ((p == 0) & (q == 0)) {
stop("Specify named ar and/or ma parameters")
}
new("armacopula",
name = paste("ARMA(", p, ",", q, ")", sep = ""),
modelspec = c(p = p, q = q),
pars = pars
)
}
setMethod("coef", "armacopula", function(object) {
p <- object@modelspec[1]
q <- object@modelspec[2]
if (p > 0) {
arpars <- object@pars$ar
} else {
arpars <- NULL
}
if (q > 0) {
mapars <- object@pars$ma
} else {
mapars <- NULL
}
c(arpars, mapars)
})
setMethod("show", c(object = "armacopula"), function(object) {
cat("object class: ", is(object)[[1]], "\n", sep = "")
cat("name: ", object@name, "\n", sep = "")
cat("parameters: \n")
print(coef(object))
})
non_stat <- function(ar) {
status <- FALSE
if (sum(ar^2) > 0) {
roots <- polyroot(c(1, -ar))
if (min(abs(roots)) <= 1) {
status <- TRUE
}
}
status
}
non_invert <- function(ma) {
status <- FALSE
if (sum(ma^2) > 0) {
roots <- polyroot(c(1, ma))
if (min(abs(roots)) <= 1) {
status <- TRUE
}
}
status
}
setMethod("sim", c(object = "armacopula"), function(object, n = 1000) {
pnorm(arima.sim(
model = object@pars,
n = n,
n.start = 10,
sd = sigmastarma(object)
))
})
sigmastarma <- function(x) {
ar <- x@pars$ar
ma <- x@pars$ma
if (length(ar) == 0) {
ar <- 0
}
if (length(ma) == 0) {
ma <- 0
}
1 / sqrt(ltsa::tacvfARMA(phi = ar, theta = -ma, maxLag = 0, sigma2 = 1))
}
armacopula_objective <- function(theta, modelspec, u) {
xdata <- qnorm(u)
p <- modelspec[1]
ar <- 0
q <- modelspec[2]
ma <- 0
if (p > 0) {
ar <- theta[1:p]
}
if (q > 0) {
ma <- theta[(p + 1):(p + q)]
}
if (non_stat(ar) | non_invert(ma)) {
output <- NA
} else {
sp <- starmaStateSpace(ar, ma, c(p, q))
ans <- FKF::fkf(
a0 = sp$a0, P0 = sp$P0, dt = sp$dt, ct = sp$ct, Tt = sp$Tt, Zt = sp$Zt,
HHt = sp$HHt, GGt = sp$GGt, yt = rbind(xdata)
)
output <- -ans$logLik + sum(log(dnorm(xdata)))
}
return(output)
}
starmaStateSpace <- function(ar, ma, order) {
p <- order[1]
q <- order[2]
m <- max(p, q + 1)
allar <- rep(0, m)
allma <- rep(0, m)
if (p > 0) {
allar[1:p] <- ar
}
if (q > 0) {
allma[1:q] <- ma
}
Tt <- matrix(allar)
Zt <- matrix(1)
if (m > 1) {
block1 <- diag(m - 1)
block2 <- matrix(0, ncol = m - 1)
rmat <- rbind(block1, block2)
Tt <- cbind(Tt, rmat)
Zt <- cbind(Zt, matrix(0, ncol = m - 1))
}
ct <- matrix(0)
dt <- matrix(0, nrow = m)
GGt <- matrix(0)
sigma2 <- ltsa::tacvfARMA(phi = ar, theta = -ma, maxLag = 0, sigma2 = 1)
Hcontent <- 1
if (m > 1) {
Hcontent <- c(1, allma[1:(m - 1)])
}
H <- matrix(Hcontent, nrow = m) / sqrt(sigma2)
HHt <- H %*% t(H)
a0 <- rep(0, m)
P0 <- matrix(solve(diag(1, m^2) - kronecker(Tt, Tt)) %*% as.vector(HHt),
nrow = m,
ncol = m
)
return(list(a0 = a0, P0 = P0, ct = ct, dt = dt, Zt = Zt, Tt = Tt, GGt = GGt, HHt = HHt))
}
kfilter <- function(x, y) {
n <- length(y)
ar <- x@pars$ar
p <- x@modelspec[1]
if (p == 0) {
ar <- 0
}
ma <- x@pars$ma
q <- x@modelspec[2]
if (q == 0) {
ma <- 0
}
sp <- starmaStateSpace(ar, ma, c(p, q))
ans <- FKF::fkf(
a0 = sp$a0, P0 = sp$P0, dt = sp$dt, ct = sp$ct, Tt = sp$Tt, Zt = sp$Zt,
HHt = sp$HHt, GGt = sp$GGt, yt = rbind(as.numeric(qnorm(y)))
)
mu_t <- ans$at[1, 1:n]
sigma_t <- sqrt(ans$Ft[1, 1, 1:n])
resid <- ans$vt[1, 1:n]
if (inherits(x, "zoo")) {
attributes(resid) <- attributes(x)
attributes(mu_t) <- attributes(x)
attributes(sigma_t) <- attributes(x)
}
fseries <- cbind(mu_t, sigma_t, resid)
dimnames(fseries) <- list(NULL, c("mu_t", "sigma_t", "resid"))
fseries
}
resid_armacopula <- function(object, data = NA, trace = FALSE){
series <- kfilter(object, data)
if (trace)
output <- series[, "mu_t"]
else
output <- series[, "resid"]/sigmastarma(object)
output
}
setMethod("kendall", c(object = "armacopula"), function(object, lagmax = 20){
ar <- 0
ma <- 0
if (object@modelspec[1] > 0)
ar <- object@pars$ar
if (object@modelspec[2] > 0)
ma <- object@pars$ma
pacf <- ARMAacf(ar = ar, ma = ma, lag.max = lagmax, pacf = TRUE)
tau <- (2/pi)*asin(pacf)
tau
}
)
glag_for_armacopula <- function(copula, data, lagmax, glagplot = FALSE) {
n <- length(data)
k <- lagmax
data <- cbind(as.numeric(data[1:(n - 1)]), as.numeric(data[2:n]))
if (glagplot){
k <- min(k, 9)
output <- vector(mode = "list", length = k)
output[[1]] <- data
}
else{
output <- rep(NA, k)
output[1] <- cor(data, method = "kendall")[1, 2]
}
ar <- 0
ma <- 0
if (copula@modelspec[1] > 0)
ar <- copula@pars$ar
if (copula@modelspec[2] > 0)
ma <- copula@pars$ma
pacf <- ARMAacf(ar = ar, ma = ma, lag.max = lagmax, pacf = TRUE)
if (k >1){
for (i in 1:(k - 1)) {
n <- dim(data)[1]
model <- rvinecopulib::bicop_dist(family = "gauss", parameters = pacf[i])
data <-
cbind(rvinecopulib::hbicop(data[(1:(n - 1)), ], model, cond_var = 2),
rvinecopulib::hbicop(data[(2:n), ], model, cond_var = 1))
if (glagplot)
output[[i+1]] <- data
else
output[i+1] <- cor(data, method = "kendall")[1, 2]
}
}
output
} |
setGeneric( "wapply",
function( object, ... )
{
standardGeneric( "wapply" )
}
)
setMethod( f = "wapply",
signature = c( object = "WeaAna" ),
definition = function( object, vars, period, FUN, ARGS = NULL, site.ARGS = NULL,
res.name = "result",
yrange = waGetPara( "yrange" ), as.data.frame = FALSE,
extra = NULL)
{
res <- NULL
if ( as.data.frame == TRUE )
{
if ( length( period ) > 1 )
{
stop( "Only one period supported for data frame results" )
}
} else
{
res <- as.list( NULL )
for ( i in 1:length( vars ) )
{
res[[i]] <- as.list( NULL )
}
}
for ( i in seq( along = vars ) )
{
if ( is.na( res.name[i] ) )
{
res.name[i] <- paste( "result", i, sep = "" )
}
}
if (!is.null(extra))
{
extra <- as.data.frame(extra)
}
if ( is.null( FUN ) )
{
stop( "FUN can not be NULL." )
}
t.fun <- as.list( NULL )
if ( length( FUN ) > 1 )
{
for ( i in seq( along = FUN ) )
{
t.fun[[i]] <- FUN[[i]]
}
} else
{
t.fun[[1]] <- FUN
}
t.fun <- rep( t.fun, length.out = length( vars ) )
if ( length( period ) > 1 )
{
old.period <- period
period <- NULL
period[[1]] <- old.period
}
period <- rep( period, length.out = length( vars ) )
period <- as.list( period )
if ( !is.null( ARGS ) ) ARGS <- rep( ARGS, length.out = length( vars ) )
if ( !is.null( site.ARGS ) )
{
for ( i in seq( site.ARGS ) )
{
site.ARGS[[i]] <- rep( site.ARGS[[i]], length.out = object@num )
}
}
if ( object@num == 0 )
{
warning( "No weather records in this object." )
return( NULL )
}
used.args <- 0
for ( i in 1:object@num )
{
records <- getWeaAnaSiteByPos( object, i )
record <- records$value
w.data <- getWeatherRecords( object[i], yrange = yrange, vars = vars )
n.vars <- names( w.data )
for ( j in seq( along = vars ) )
{
if ( !( vars[j] %in% n.vars ) )
{
warning( paste( "Variable(s) not exist, skip it:",
paste( vars[j], collapse = ", " ) ) )
next()
}
key <- periodIndex( w.data$year, w.data$day, period[[j]] )
w.levels <- as.numeric( levels( as.factor( key ) ) )
if ( length( w.levels ) == 0 )
{
warning( "No any levels which need to calculate. Skip this site." )
next()
}
site.res <- NULL
site.res$Name = records$value@name
site.res$Number = records$value@number
site.res$Latitude = records$value@latitude
site.res$Longitude = records$value@longitude
site.res[[as.character( period[[j]][1] )]] = w.levels
w.nlevels <- length( w.levels )
w.res <- NULL
w.args <- ARGS[[j]]
n.w.args <- names( w.args )
for ( m in seq( along = w.args ) )
{
w.args[[m]] <- rep( w.args[[m]], length = used.args + w.nlevels )
}
for ( k in 1:w.nlevels )
{
l.data <- as.numeric( w.data[ key == w.levels[k], vars[j] ] )
l.args <- as.list( NULL )
l.args[[1]] <- l.data
for ( m in seq( along = w.args ) )
{
l.args[[n.w.args[m]]] <- w.args[[m]][k + used.args]
}
n.site.args <- names( site.ARGS )
for ( m in seq( along = site.ARGS ) )
{
l.args[[n.site.args[m]]] <- site.ARGS[[m]][i]
}
l.res <- do.call( as.function( t.fun[[j]] ), l.args )
if ( length( l.res ) > 1 )
{
warning( "Only first result is used." )
}
w.res <- c( w.res, l.res[1] )
}
used.args <- used.args + w.nlevels
site.res[[res.name[j]]] <- w.res
site.res <- as.data.frame( site.res, stringsAsFactors = FALSE )
if (!is.null(extra))
{
names_site_res <- c(names(site.res), names(extra))
site.res <- cbind(site.res, extra[i,])
names(site.res) <- names_site_res
}
row.names( site.res ) <- seq( along = site.res[[1]] )
records$value@res[[res.name[j]]] <- site.res
if ( as.data.frame == TRUE )
{
if ( is.null( res ) )
{
res <- site.res
} else
{
res <- cbind( res, site.res[[6]] )
}
} else
{
res[[j]] <- rbind( res[[j]], site.res )
}
}
}
if ( as.data.frame == TRUE )
{
res <- as.data.frame( res, stringsAsFactors = FALSE )
names( res ) <- c( "Name", "Number", "Latitude", "Longitude", period[[1]][1], res.name )
row.names( res ) <- seq( along = res[[1]] )
return( res )
} else
{
n.res <- NULL
for ( i in 1:length( vars ) )
{
temp <- as.data.frame( res[[i]], stringsAsFactors = FALSE )
row.names( temp ) <- seq( along = temp[[1]] )
registerRes( object, res.name[i], "data.frame" )
n.res[[res.name[i]]] <- temp
}
rm( res )
gc()
if ( length( vars ) == 1 )
{
return( n.res[[1]] )
}
return( n.res )
}
}
) |
default_max_iters <- function(numnode){
2 * max(10, sqrt(numnode))
}
default_alpha <- function(){
10
} |
FDistUlt<-function(X,n.obs=length(X),ref="OP",crt=1,plot=FALSE,subplot=FALSE,p.val_min=.05){
if(!is.numeric(ref)){}else{
if(ref>length(X)/3){warning("Number of clusters must be less than input length/3")
return(NULL)}}
desc<-function(X,fns=FALSE,ref.=ref,crt.=crt,subplot.=subplot,p.val_min.=p.val_min){
eval<-function(X,fns.=fns,crt.=crt,subplot.=subplot,p.val_min.=p.val_min){
FIT<-FDist(X,length(X),crit = crt,plot = subplot,p.val_min=p.val_min)
FIT
}
div<-function(X,ref.=ref){
df<-data.frame(A=1:length(X),B=X)
Enteros<-X-floor(X)==0
if(any(Enteros)){
if(all(Enteros)){
if(!is.numeric(ref)){
mod1<-mclust::Mclust(X,modelNames=c("E", "V"))$classification
if(length(table(mod1))==1){
df$CL<-kmeans(df,2)$cluster
}else{
df$CL<-mod1
}
}else{
df$CL<-kmeans(df,ref)$cluster
}
}else{
df$CL<-ifelse(Enteros,1,2)
}
}else{
if(!is.numeric(ref)){
mod1<-mclust::Mclust(X)$classification
if(length(table(mod1))==1){
df$CL<-kmeans(df,2)$cluster
}else{
df$CL<-mod1
}
}else{
df$CL<-kmeans(df,ref)$cluster
}
}
CLS<-purrr::map(unique(df$CL),~df[df$CL==.x,2])
CLS
return(CLS)
}
suppressWarnings(EV<-eval(X,fns))
if(is.null(EV)){
if(length(X)>40){
DV<-purrr::map(div(X),~desc(.x,fns))
return(DV)
}else{
FN<-rnorm
formals(FN)[1]<-length(X)
formals(FN)[2]<-mean(X)
formals(FN)[3]<-ifelse(length(X)==1,0,sd(X))
return(list(paste0("normal(",mean(X),",",ifelse(length(X)==1,0,sd(X)),")"),FN,FN(),
data.frame(Dist="norm",AD_p.v=1,KS_p.v=1,estimate1=mean(X),estimate2=sd(X),estimateLL1=0,estimateLL2=1,PV_S=2)
))
}
}else{
return(EV)
}
}
FCNS<-desc(X)
flattenlist <- function(x){
morelists <- sapply(x, function(xprime) class(xprime)[1]=="list")
out <- c(x[!morelists], unlist(x[morelists], recursive=FALSE))
if(sum(morelists)){
base::Recall(out)
}else{
return(out)
}
}
superficie<-flattenlist(FCNS)
FUN<-superficie[purrr::map_lgl(superficie,~"function" %in% class(.x))]
Global_FUN<-superficie[purrr::map_lgl(superficie,~"gl_fun" %in% class(.x))]
Dist<-unlist(superficie[purrr::map_lgl(superficie,is.character)])
PLTS<-superficie[purrr::map_lgl(superficie,ggplot2::is.ggplot)]
dfss<-superficie[purrr::map_lgl(superficie,~is.data.frame(.x))]
PV<-do.call("rbind",dfss[purrr::map_lgl(dfss,~ncol(.x)==9)])
Len<-MA<-c()
repp<-floor(n.obs/length(X))+1
for (OBS in 1:repp) {
for (mst in 1:length(FUN)) {
ljsd<-FUN[[mst]]()
MA<-c(MA,ljsd)
if(OBS==1){
Len<-c(Len,length(ljsd)/length(X))
}
}
}
MA<-sample(MA,n.obs)
pv1<-data.frame(Distribution=Dist[nchar(Dist)!=0],Dist_Prop=Len[nchar(Dist)!=0])
p.v<-try(cbind(pv1,PV))
if(assertthat::is.error(pv1)){p.v<-pv1}
cp<-plt<-c()
if(plot){
DF<-rbind(data.frame(A="Fit",DT=MA),
data.frame(A="Real",DT=X))
plt <- ggplot2::ggplot(DF,ggplot2::aes(x=DF$DT,fill=DF$A)) + ggplot2::geom_density(alpha=0.55)+ggplot2::ggtitle("Original Dist.")
plt
}
TPlts<-c()
if(subplot){
cp<-cowplot::plot_grid(plotlist = PLTS, ncol = floor(sqrt(length(PLTS))))
}
TPlts<-list(plt,cp)
return(list(unlist(FUN),MA,p.v,TPlts,Global_FUN))
} |
checkVars <- function(..., out = "assign", .env) {
arg.list <- list(...)
arg.names <- names(arg.list)
arg.names2 <- as.character(eval(substitute(alist(...))))
if(is.null(arg.names)) {
arg.names <- arg.names2
} else {
arg.noname <- which(arg.names == "")
arg.names[arg.noname] <- arg.names2[arg.noname]
}
names(arg.list) <- arg.names
if ("assign" %in% out) {
if (missing(.env) || !is.environment(.env)) {
stop("argument \".env\" is missing or wrong type: Needs an environment.")
} else {
arg.list2 <- list(out = out, .env = .env)
}
} else {
arg.list2 <- list(out = out)
}
tmp <- mapply(checkObject, obj = arg.list, obj.name = arg.names,
MoreArgs = arg.list2, SIMPLIFY = FALSE)
if("return" %in% out) {
return(invisible(tmp))
}
}
checkObject <- function(obj, obj.name, ..., out = "return", .env) {
arg.list <- list(...)
arg.names <- names(arg.list)
if (length(arg.list) > 1) {
return(checkVars(..., out = out, .env = .env))
}
if (length(arg.list) == 1) {
obj <- arg.list[[1]]
if (arg.names == "") {
obj.name <- as.character(eval(substitute(alist(...))))
} else {
obj.name <- arg.names[1]
}
}
if (missing(obj.name)) {
obj.name <- deparse(substitute(obj))
}
out <- match.arg(out, c("return", "assign"), several.ok = TRUE)
if (("assign" %in% out) & (missing(.env) || !is.environment(.env))) {
stop("argument \".env\" is missing or wrong type: Needs an environment.")
}
bk <- c("ba", "bo", "da", "pa", "qs", "th", "tr")
bd <- c("and", "nw")
mod <- c("FM", "D", "IM")
sel <- c(1, 2)
poss.args <- c("y", "y.fm", "x.stat", "x.coint", "m", "model", "trend",
"signif.level", "return.stats", "return.input", "deter",
"kernel", "bandwidth", "demeaning", "t.test", "selector")
obj.name <- match.arg(obj.name, choices = poss.args)
if (testChoice(obj.name, c("y.fm", "x.coint", "deter"))) {
assert(checkNumeric(obj), checkMatrix(obj), checkDataFrame(obj),
.var.name = obj.name)
if (testMatrix(obj) || testDataFrame(obj)) {
if (nrow(obj) < ncol(obj)) {
tmp <- t(as.matrix(obj))
} else {
tmp <- as.matrix(obj)
}
} else {
tmp <- matrix(obj, ncol = 1, dimnames = list(NULL, obj.name))
}
}
if (testChoice(obj.name, c("x.stat", "y"))) {
assert(checkNumeric(obj), checkMatrix(obj), checkDataFrame(obj),
.var.name = obj.name)
if (testMatrix(obj) || testDataFrame(obj)) {
if (nrow(obj) < ncol(obj)) {
tmp <- t(as.matrix(obj[1, , drop = FALSE]))
} else {
tmp <- as.matrix(obj[, 1, drop = FALSE])
}
if (nrow(obj) > 1 & ncol(obj) > 1) {
if (nrow(obj) < ncol(obj)) {
what <- "rows"
hmany <- nrow(obj)
} else {
what <- "columns"
hmany <- ncol(obj)
}
warning(obj.name, " has to many ", what, " (", hmany,
", but may have 1). Only the first one will be used.",
call. = FALSE)
}
} else if (testNumeric(obj)) {
tmp <- matrix(obj, ncol = 1, dimnames = list(NULL, obj.name))
}
}
if (obj.name == "m") {
assertNumber(obj, lower = 0)
tmp <- obj
}
if (obj.name == "model") {
tmp <- match.arg(obj, mod)
}
if (obj.name == "signif.level") {
assertNumber(obj, lower = 0.01, upper = 0.1)
tmp <- obj
}
if (obj.name == "kernel") {
tmp <- match.arg(obj[1], bk)
}
if (obj.name == "bandwidth") {
if (is.character(obj)) {
tmp <- match.arg(tolower(obj[1]), bd)
} else {
assertNumber(obj, lower = 0, finite = TRUE)
tmp <- obj
}
}
if (obj.name == "demeaning" || obj.name == "return.stats" ||
obj.name == "return.input" || obj.name == "t.test" ||
obj.name == "trend") {
tmp <- as.logical(obj)
assert(checkFlag(tmp), .var.name = obj.name)
}
if (obj.name == "selector") {
tmp <- as.numeric(obj)
assertSubset(tmp, sel)
}
if ("assign" %in% out) {
assign(obj.name, value = tmp, envir = .env)
}
if ("return" %in% out) {
return(invisible(tmp))
}
}
checkDoptions <- function(n.lag = NULL, n.lead = NULL, kmax = c("k4", "k12"),
info.crit = c("AIC", "BIC")) {
assert(checkNull(n.lag), checkNumber(n.lag, lower = 0))
assert(checkNull(n.lead), checkNumber(n.lead, lower = 0))
if (testNumber(n.lead) && testNumber(n.lag)) {
n.lag <- as.integer(n.lag)
n.lead <- as.integer(n.lead)
kmax <- info.crit <- NULL
} else {
n.lag <- n.lead <- NULL
kmax <- match.arg(kmax)
info.crit <- match.arg(info.crit)
}
return(list(n.lag = n.lag, n.lead = n.lead, kmax = kmax,
info.crit = info.crit))
} |
gridinfer <- function (file = NULL, dntable = NULL, sp_row = TRUE, reciprocity = TRUE,
criterion = "max", tolerance = sqrt(2), conditioned = TRUE, ...)
{
coords <- NULL
if (is.null(dntable))
dntable <- read.table(file, ...)
if(sp_row) m <- as.matrix(dntable) else m <- as.matrix(t(dntable))
if(any(m < 0)) stop("Sorry, but distributional matrix includes misleading negative entries\n")
coords <- floor(t(m[1:2,,drop=FALSE]))
if(any(duplicated(coords))) stop(paste("Each cell must be identified through an exclusive pair of coordinates\n",
"Please, check your coordinates for duplciates"))
m <- m[-(1:2),,drop = FALSE] & m[-(1:2),,drop =FALSE]
if(!all(apply(m, 1, any))) stop("Error: you have included species without presences")
dcells <- as.matrix(dist(coords))
if(conditioned) sm <- m %*% t(m) else sm <- matrix(TRUE, nrow(m), nrow(m))
if(reciprocity) oper <- "&" else oper <- "|"
for(i in 1:(nrow(m)-1))
for(j in (i+1):nrow(m)) {
sp1 <- apply(dcells[m[i,], m[j,], drop = FALSE], 1, min)
sp2 <- apply(dcells[m[i,], m[j,], drop = FALSE], 2, min)
if(!(eval(call(oper, eval(call(criterion, sp1)) <= tolerance,
eval(call(criterion, sp2)) <= tolerance)) & sm[i, j])) sm[i,j] <- sm[j, i] <- FALSE
}
out <- list(sm = ifelse(sm, 1, 0), Label = rownames(m), occupancy = apply(m, 1, which), coords = coords, kind = "grids")
class(out) <- "gridinference"
return(out)
} |
setwd('inst/examples')
for (tpl in list.files('../rmarkdown/templates', full.names = TRUE)) {
f = list.files(tpl, '^skeleton[.]Rmd$', recursive = TRUE, full.names = TRUE)
file.copy(f, paste0(basename(tpl), '.Rmd'))
}
options(htmltools.dir.version = FALSE)
for (f in list.files('.', '[.]Rmd$')) {
rmarkdown::render(f, output_options = list(self_contained = FALSE))
}
writeLines(c(
'http://pagedown.netlify.com/* https://pagedown.rbind.io/:splat 301!',
'http://pagedown.rbind.io/* https://pagedown.rbind.io/:splat 301!'
), '_redirects') |
setMethodS3("calmateByThetaAB", "array", function(data, references=NULL, ..., truncate=FALSE, refAvgFcn=NULL, flavor=c("v2", "v1"), verbose=FALSE) {
if (!is.array(data)) {
throw("Argument 'data' is not an array: ", class(data)[1]);
}
dim <- dim(data);
dimnames <- dimnames(data);
if (length(dim) != 3) {
throw("Argument 'data' is not a 3-dimensional array: ",
paste(dim, collapse="x"));
}
if (dim[2] != 2) {
throw("Argument 'data' is not a Jx2xI-dimensional array: ",
paste(dim, collapse="x"));
}
if (!is.null(dimnames[[2]])) {
if (!identical(dimnames[[2]], c("A", "B"))) {
throw("If given, the names of the allele (2nd) dimension of the Jx2xI-dimensional array (argument 'data') have to be 'A' & 'B': ", paste(dimnames[[2]], collapse=", "));
}
}
nbrOfSamples <- dim[3];
if (nbrOfSamples < 3) {
throw("Argument 'data' contains less than three samples: ", nbrOfSamples);
}
if (is.null(references)) {
references <- seq(length=nbrOfSamples);
} else if (is.logical(references)) {
if (length(references) != nbrOfSamples) {
throw("Length of argument 'references' does not match the number of samples in argument 'data': ", length(references), " != ", nbrOfSamples);
}
references <- which(references);
} else if (is.numeric(references)) {
references <- as.integer(references);
if (any(references < 1 | references > nbrOfSamples)) {
throw(sprintf("Argument 'references' is out of range [1,%d]: %d", nbrOfSamples), length(references));
}
}
if (length(references) < 3) {
throw("Argument 'reference' specify less than three reference samples: ", length(references));
}
flavor <- match.arg(flavor);
verbose <- Arguments$getVerbose(verbose);
dimnames(data)[[2]] <- c("A", "B");
verbose && enter(verbose, "calmateByThetaAB()");
verbose && cat(verbose, "ASCN signals:");
verbose && str(verbose, data);
verbose && cat(verbose, "Reference samples:");
verbose && str(verbose, references);
verbose && enter(verbose, "Identifying non-finite data points");
ok <- (is.finite(data[,"A",,drop=FALSE]) & is.finite(data[,"B",,drop=FALSE]));
dim(ok) <- dim(ok)[-2];
ok <- rowAlls(ok);
verbose && summary(verbose, ok);
hasNonFinite <- any(!ok);
if (hasNonFinite) {
verbose && enter(verbose, "Excluding non-finite data points");
dataS <- data[ok,,,drop=FALSE];
verbose && str(verbose, data);
verbose && exit(verbose);
dim <- dim(dataS);
} else {
verbose && cat(verbose, "All data points are finite.");
dataS <- data;
}
verbose && exit(verbose);
verbose && enter(verbose, "Fitting CalMaTe");
verbose && cat(verbose, "Algorithm flavor: ", flavor);
if (flavor == "v2") {
fitFcn <- fitCalMaTeV2;
} else if (flavor == "v1") {
fitFcn <- fitCalMaTeV1;
} else {
throw("Unknown algorithm flavor: ", flavor);
}
nbrOfSNPs <- dim(dataS)[1];
verbose && cat(verbose, "Number of SNPs: ", nbrOfSNPs);
verbose && printf(verbose, "Number of SNPs left: ");
dimnames(dataS) <- NULL;
dimCjj <- dim(dataS)[-1];
for (jj in seq(length=nbrOfSNPs)) {
if (verbose && (jj %% 500 == 1)) {
writeRaw(verbose, sprintf("%d, ", nbrOfSNPs-jj+1));
}
Cjj <- dataS[jj,,,drop=FALSE];
dim(Cjj) <- dimCjj;
CCjj <- fitFcn(Cjj, references=references, ...);
stopifnot(identical(dim(CCjj), dimCjj));
dataS[jj,,] <- CCjj;
}
if (verbose) writeRaw(verbose, "done.\n");
verbose && exit(verbose);
if (hasNonFinite) {
verbose && enter(verbose, "Expanding to array with non-finite");
dataC <- data;
dataC[ok,,] <- dataS;
verbose && str(verbose, dataC);
verbose && exit(verbose);
} else {
dataC <- dataS;
dimnames(dataC) <- dimnames(data);
}
rm(dataS);
stopifnot(identical(dim(dataC), dim(data)));
verbose && cat(verbose, "Calibrated ASCN signals:");
verbose && str(verbose, dataC);
if (truncate){
dataC <- truncateThetaAB(dataC);
verbose && cat(verbose, "Truncated ASCN signals:");
verbose && str(verbose, dataC);
}
if (!is.null(refAvgFcn)) {
verbose && enter(verbose, "Standardize total copy numbers toward the average reference signals");
dataCR <- dataC[,,references,drop=FALSE];
yCR <- dataCR[,1,,drop=FALSE]+dataCR[,2,,drop=FALSE];
dim(yCR) <- dim(yCR)[-2];
yCR <- refAvgFcn(yCR, na.rm=TRUE);
dataC <- 2 * dataC / yCR;
verbose && exit(verbose);
}
dimnames(dataC) <- dimnames;
verbose && cat(verbose, "Calibrated (A,B) signals:");
verbose && str(verbose, dataC);
verbose && exit(verbose);
dataC;
}) |
relabelclusters <- function(refcluster, cluster) {
res <- NULL
k <- length(table(refcluster))
n <- length(refcluster)
permut <- combinat::permn(1:k)
npermut <- length(permut)
kappas <- rep(NA, npermut)
auxcluster <- list()
kappas <- lapply(permut,
FUN = function(x) {
auxcluster <- rep(NA, n)
for (j in 1:k)
auxcluster[cluster == j] <- x[j]
irr::kappa2(ratings = cbind(refcluster, auxcluster),
weight = "equal")$value
}
)
kappas <- unlist(kappas)
id <- which(kappas == max(kappas))
if (length(id) > 1)
id <- sample(id, 1)
kappa <- kappas[id]
id <- permut[[id]]
newcluster <- rep(NA, n)
for (j in 1:k)
newcluster[cluster == j] <- id[j]
res$newcluster <- newcluster
res$kappa <- kappa
return(res)
} |
expect_as_vector <- function(x, y, ...) {
expect_equal(as.vector(x), y, ...)
}
expect_data_frame <- function(x, y, ...) {
expect_equal(as.data.frame(x), y, ...)
}
expect_r6_class <- function(object, class) {
expect_s3_class(object, class)
expect_s3_class(object, "R6")
}
expect_equal <- function(object, expected, ignore_attr = FALSE, ..., info = NULL, label = NULL) {
if (inherits(object, "ArrowObject") && inherits(expected, "ArrowObject")) {
mc <- match.call()
expect_true(
all.equal(object, expected, check.attributes = !ignore_attr),
info = info,
label = paste(rlang::as_label(mc[["object"]]), "==", rlang::as_label(mc[["expected"]]))
)
} else {
testthat::expect_equal(object, expected, ignore_attr = ignore_attr, ..., info = info, label = label)
}
}
expect_type_equal <- function(object, expected, ...) {
if (is.Array(object)) {
object <- object$type
}
if (is.Array(expected)) {
expected <- expected$type
}
expect_equal(object, expected, ...)
}
expect_match_arg_error <- function(object, values = c()) {
expect_error(object, paste0("'arg' .*", paste(dQuote(values), collapse = ", ")))
}
expect_deprecated <- expect_warning
verify_output <- function(...) {
if (isTRUE(grepl("conda", R.Version()$platform))) {
skip("On conda")
}
testthat::verify_output(...)
}
compare_dplyr_binding <- function(expr,
tbl,
skip_record_batch = NULL,
skip_table = NULL,
warning = NA,
...) {
expr <- rlang::enquo(expr)
expected <- rlang::eval_tidy(expr, rlang::new_data_mask(rlang::env(.input = tbl)))
if (isTRUE(warning)) {
warning <- "not supported (in|by) Arrow; pulling data into R"
}
skip_msg <- NULL
if (is.null(skip_record_batch)) {
expect_warning(
via_batch <- rlang::eval_tidy(
expr,
rlang::new_data_mask(rlang::env(.input = record_batch(tbl)))
),
warning
)
expect_equal(via_batch, expected, ...)
} else {
skip_msg <- c(skip_msg, skip_record_batch)
}
if (is.null(skip_table)) {
expect_warning(
via_table <- rlang::eval_tidy(
expr,
rlang::new_data_mask(rlang::env(.input = arrow_table(tbl)))
),
warning
)
expect_equal(via_table, expected, ...)
} else {
skip_msg <- c(skip_msg, skip_table)
}
if (!is.null(skip_msg)) {
skip(paste(skip_msg, collapse = "\n"))
}
}
compare_dplyr_error <- function(expr,
tbl,
...) {
force(tbl)
expr <- rlang::enquo(expr)
msg <- tryCatch(
rlang::eval_tidy(expr, rlang::new_data_mask(rlang::env(.input = tbl))),
error = function(e) {
msg <- conditionMessage(e)
if (grepl("Problem while computing", msg[1])) {
msg <- conditionMessage(e$parent)
}
pattern <- i18ize_error_messages()
if (grepl(pattern, msg)) {
msg <- sub(paste0("^.*(", pattern, ").*$"), "\\1", msg)
}
msg
}
)
expect_true(identical(typeof(msg), "character"), label = "dplyr on data.frame errored")
expect_error(
rlang::eval_tidy(
expr,
rlang::new_data_mask(rlang::env(.input = record_batch(tbl)))
),
msg,
...
)
expect_error(
rlang::eval_tidy(
expr,
rlang::new_data_mask(rlang::env(.input = arrow_table(tbl)))
),
msg,
...
)
}
compare_expression <- function(expr,
vec,
skip_array = NULL,
skip_chunked_array = NULL,
ignore_attr = FALSE,
...) {
expr <- rlang::enquo(expr)
expected <- rlang::eval_tidy(expr, rlang::new_data_mask(rlang::env(.input = vec)))
skip_msg <- NULL
if (is.null(skip_array)) {
via_array <- rlang::eval_tidy(
expr,
rlang::new_data_mask(rlang::env(.input = Array$create(vec)))
)
expect_as_vector(via_array, expected, ignore_attr, ...)
} else {
skip_msg <- c(skip_msg, skip_array)
}
if (is.null(skip_chunked_array)) {
split_vector <- split_vector_as_list(vec)
via_chunked <- rlang::eval_tidy(
expr,
rlang::new_data_mask(rlang::env(.input = ChunkedArray$create(split_vector[[1]], split_vector[[2]])))
)
expect_as_vector(via_chunked, expected, ignore_attr, ...)
} else {
skip_msg <- c(skip_msg, skip_chunked_array)
}
if (!is.null(skip_msg)) {
skip(paste(skip_msg, collapse = "\n"))
}
}
compare_expression_error <- function(expr,
vec,
skip_array = NULL,
skip_chunked_array = NULL,
...) {
expr <- rlang::enquo(expr)
msg <- tryCatch(
rlang::eval_tidy(expr, rlang::new_data_mask(rlang::env(.input = vec))),
error = function(e) {
msg <- conditionMessage(e)
pattern <- i18ize_error_messages()
if (grepl(pattern, msg)) {
msg <- sub(paste0("^.*(", pattern, ").*$"), "\\1", msg)
}
msg
}
)
expect_true(identical(typeof(msg), "character"), label = "vector errored")
skip_msg <- NULL
if (is.null(skip_array)) {
expect_error(
rlang::eval_tidy(
expr,
rlang::new_data_mask(rlang::env(.input = Array$create(vec)))
),
msg,
...
)
} else {
skip_msg <- c(skip_msg, skip_array)
}
if (is.null(skip_chunked_array)) {
split_vector <- split_vector_as_list(vec)
expect_error(
rlang::eval_tidy(
expr,
rlang::new_data_mask(rlang::env(.input = ChunkedArray$create(split_vector[[1]], split_vector[[2]])))
),
msg,
...
)
} else {
skip_msg <- c(skip_msg, skip_chunked_array)
}
if (!is.null(skip_msg)) {
skip(paste(skip_msg, collapse = "\n"))
}
}
split_vector_as_list <- function(vec) {
vec_split <- length(vec) %/% 2
vec1 <- vec[seq(from = min(1, length(vec) - 1), to = min(length(vec) - 1, vec_split), by = 1)]
vec2 <- vec[seq(from = min(length(vec), vec_split + 1), to = length(vec), by = 1)]
list(vec1, vec2)
} |
tfr <- "^runit\\..*\\.R"
pkgDir<-'../../../'
if (is.element('SoilR',installed.packages())){
devtools::uninstall(pkgDir)
}
devtools::install(pkgDir,quick=TRUE)
require("parallel")
require("RUnit")
require("deSolve")
require("devtools")
require("SoilR")
source("../testhelpers.R")
alltests <- defineTestSuite(
name="suite for manual testing with the SoilR package loaded",
dirs=c("."),
testFileRegexp = tfr,
"test.NonlinearOperators"
)
testResult <- runTestSuite(alltests)
printTextProtocol(testResult,separateFailureList=TRUE)
ef=getErrors(testResult)
n=ef$nErr+ef$nFail
if (n>0) {stop(1)} |
format_date <- function(date) {
WEEKDAYS <- c(
"Monday",
"Tuesday",
"Wednesday",
"Thursday",
"Friday",
"Saturday",
"Sunday"
)
weekday <- WEEKDAYS[lubridate::wday(date, week_start = 1)]
day <- format(date, "%d")
month <- month.name[as.integer(format(date, "%m"))]
year <- format(date, "%Y")
return(paste(
weekday,
day,
month,
year
))
} |
predM <- function(p.m, p.r) {
length <- length(p.m)
result <- numeric(length)
for (i in 1:length) {
if (is.infinite(p.m[i]) & p.m[i] < 0) {
result[i] <- 0
next
}
if (is.infinite(p.r[i]) & p.r[i] < 0) {
result[i] <- 1
next
}
result[i] <- p.m[i] / (p.m[i] + p.r[i])
}
result
}
predMV <- function(p.m, p.r) {
length <- length(p.m)
result <- numeric(length)
for (i in 1:length) {
if (is.infinite(p.m[i]) & p.m[i] < 0) {
result[i] <- 0
next
}
if (is.infinite(p.r[i]) & p.r[i] < 0) {
result[i] <- 1
next
}
result[i] <- 1 / (1 + exp(p.r[i] - p.m[i]))
}
result
}
fitStateMR <- function(data, theta, cutoff = 0.5,
integrControl = integr.control()) {
if (!is.matrix(data)) data <- as.matrix(data)
dinc <- apply(data, 2, diff)
integrControl <- unlist(integrControl)
ncol_data <- ncol(data)
cart_result <- fwd_bwd_mr(theta, dinc, integrControl)
cart_fwd <- cart_result[, 1:2]
cart_bwd <- cart_result[, 3:4]
cart_result <- cart_fwd * cart_bwd
predM <- predM(cart_result[, 1], cart_result[, 2])
cart_state <- ifelse(predM > cutoff, 1, 0)
result <- cbind(data, cart_result, cart_state)
colnames(result)[(ncol_data+1):(ncol_data+3)] <- c("p.m", "p.r", "states")
as.data.frame(result)
}
fitViterbiMR <- function(data, theta, cutoff = 0.5,
integrControl = integr.control()) {
if (!is.matrix(data)) data <- as.matrix(data)
dinc <- apply(data, 2, diff)
integrControl <- unlist(integrControl)
ncol_data <- ncol(data)
cart_result <- viterbi_mr(theta, dinc, integrControl)
predM <- predMV(cart_result[, 1], cart_result[, 2])
cart_state <- ifelse(predM > cutoff, 1, 0)
result <- cbind(data, cart_result, cart_state)
colnames(result)[(ncol_data+1):(ncol_data+3)] <- c("p.m", "p.r", "states")
as.data.frame(result)
}
fitPartialViterbiMR <- function(data, theta, cutoff = 0.5,
startpoint, pathlength,
integrControl = integr.control()) {
if (!is.matrix(data)) data <- as.matrix(data)
nrow_data <- nrow(data)
if (startpoint < 1 | startpoint > nrow_data) stop("start time point should be within data time interval.")
if ((startpoint + pathlength - 1) > nrow_data) stop("end time point should be within data time interval.")
dinc <- apply(data, 2, diff)
integrControl <- unlist(integrControl)
ncol_data <- ncol(data)
cart_result <- partial_viterbi_mr(theta, dinc, integrControl, startpoint - 1, pathlength)
predM <- predMV(cart_result[, 1], cart_result[, 2])
cart_state <- ifelse(predM > cutoff, 1, 0)
result <- cbind(data[startpoint:(startpoint+pathlength-1), ], cart_result, cart_state)
colnames(result)[(ncol_data+1):(ncol_data+3)] <- c("p.m", "p.r", "states")
as.data.frame(result)
}
|
options(width=87, digits=3, scipen=4)
set.seed(61777369)
library(broman)
library(qtl)
data(mapthis)
summary(mapthis)
par(mar=c(4.1,4.1,0.6,1.1))
plotMissing(mapthis, main="")
par(mfrow=c(1,2), las=1, cex=0.8)
plot(ntyped(mapthis), ylab="No. typed markers", main="No. genotypes by individual")
plot(ntyped(mapthis, "mar"), ylab="No. typed individuals",
main="No. genotypes by marker")
mapthis <- subset(mapthis, ind=(ntyped(mapthis)>50))
nt.bymar <- ntyped(mapthis, "mar")
todrop <- names(nt.bymar[nt.bymar < 200])
mapthis <- drop.markers(mapthis, todrop)
cg <- comparegeno(mapthis)
par(mar=c(4.1,4.1,0.1,0.6),las=1)
hist(cg[lower.tri(cg)], breaks=seq(0, 1, len=101), xlab="No. matching genotypes",
main="")
rug(cg[lower.tri(cg)])
wh <- which(cg > 0.9, arr=TRUE)
wh <- wh[wh[,1] < wh[,2],]
wh
g <- pull.geno(mapthis)
table(g[144,], g[292,])
table(g[214,], g[216,])
table(g[238,], g[288,])
for(i in 1:nrow(wh)) {
tozero <- !is.na(g[wh[i,1],]) & !is.na(g[wh[i,2],]) & g[wh[i,1],] != g[wh[i,2],]
mapthis$geno[[1]]$data[wh[i,1],tozero] <- NA
}
mapthis <- subset(mapthis, ind=-wh[,2])
print(dup <- findDupMarkers(mapthis, exact.only=FALSE))
gt <- geno.table(mapthis)
gt[gt$P.value < 0.05/totmar(mapthis),]
todrop <- rownames(gt[gt$P.value < 1e-10,])
mapthis <- drop.markers(mapthis, todrop)
g <- pull.geno(mapthis)
gfreq <- apply(g, 1, function(a) table(factor(a, levels=1:3)))
gfreq <- t(t(gfreq) / colSums(gfreq))
par(mfrow=c(1,3), las=1)
for(i in 1:3)
plot(gfreq[i,], ylab="Genotype frequency", main=c("AA", "AB", "BB")[i],
ylim=c(0,1))
par(mar=rep(0.1,4), pty="s")
triplot(labels=c("AA","AB","BB"))
tripoints(gfreq, cex=0.8)
tripoints(c(0.25, 0.5, 0.25), col="red", lwd=2, cex=1, pch=4)
mapthis <- est.rf(mapthis)
checkAlleles(mapthis, threshold=5)
rf <- pull.rf(mapthis)
lod <- pull.rf(mapthis, what="lod")
par(mar=c(4.1,4.1,0.6,0.6), las=1, cex=0.8)
plot(as.numeric(rf), as.numeric(lod), xlab="Recombination fraction", ylab="LOD score")
lg <- formLinkageGroups(mapthis, max.rf=0.35, min.lod=6)
table(lg[,2])
mapthis <- formLinkageGroups(mapthis, max.rf=0.35, min.lod=6, reorgMarkers=TRUE)
par(mar=c(4.1,4.1,2.1,2.1), las=1)
plotRF(mapthis, main="", alternate.chrid=TRUE)
par(mar=c(4.1,4.1,1.1,0.6), las=1)
rf <- pull.rf(mapthis)
lod <- pull.rf(mapthis, what="lod")
mn4 <- markernames(mapthis, chr=4)
par(mfrow=c(2,1))
plot(rf, mn4[3], bandcol="gray70", ylim=c(0,1), alternate.chrid=TRUE)
abline(h=0.5, lty=2)
plot(lod, mn4[3], bandcol="gray70", alternate.chrid=TRUE)
geno.crosstab(mapthis, mn4[3], mn4[1])
mn5 <- markernames(mapthis, chr=5)
geno.crosstab(mapthis, mn4[3], mn5[1])
toswitch <- markernames(mapthis, chr=c(5, 7:11))
mapthis <- switchAlleles(mapthis, toswitch)
mapthis <- est.rf(mapthis)
par(mar=c(4.1,4.1,2.1,2.1), las=1)
plotRF(mapthis, main="", alternate.chrid=TRUE)
rf <- pull.rf(mapthis)
lod <- pull.rf(mapthis, what="lod")
par(mar=c(4.1,4.1,0.6,0.6), las=1, cex=0.8)
plot(as.numeric(rf), as.numeric(lod), xlab="Recombination fraction", ylab="LOD score")
lg <- formLinkageGroups(mapthis, max.rf=0.35, min.lod=6)
table(lg[,2])
mapthis <- formLinkageGroups(mapthis, max.rf=0.35, min.lod=6, reorgMarkers=TRUE)
mapthis <- est.rf(mapthis)
par(mar=c(4.1,4.1,1.6,1.6), las=1)
plotRF(mapthis, main="")
file <- "Rcache/order5.RData"
if(file.exists(file)) {
load(file)
} else {
mapthis <- orderMarkers(mapthis, chr=5)
save(mapthis, file=file)
}
pull.map(mapthis, chr=5)
file <- "Rcache/rip5.RData"
if(file.exists(file)) {
load(file)
} else {
rip5 <- ripple(mapthis, chr=5, window=7)
save(rip5, file=file)
}
summary(rip5)
file <- "Rcache/rip5lik.RData"
if(file.exists(file)) {
load(file)
} else {
rip5lik <- ripple(mapthis, chr=5, window=4, method="likelihood",
error.prob=0.005)
save(rip5lik, file=file)
}
summary(rip5lik)
compareorder(mapthis, chr=5, c(1:7,9,8), error.prob=0.01)
compareorder(mapthis, chr=5, c(1:7,9,8), error.prob=0.001)
compareorder(mapthis, chr=5, c(1:7,9,8), error.prob=0)
mapthis <- switch.order(mapthis, chr=5, c(1:7,9,8), error.prob=0.005)
pull.map(mapthis, chr=5)
file <- "Rcache/order4.RData"
if(file.exists(file)) {
load(file)
} else {
mapthis <- orderMarkers(mapthis, chr=4)
pull.map(mapthis, chr=4)
save(mapthis, file=file)
}
pull.map(mapthis, chr=4)
file <- "Rcache/rip4.RData"
if(file.exists(file)) {
load(file)
} else {
rip4 <- ripple(mapthis, chr=4, window=7)
save(rip4, file=file)
}
summary(rip4)
file <- "Rcache/rip4lik.RData"
if(file.exists(file)) {
load(file)
} else {
rip4lik <- ripple(mapthis, chr=4, window=4, method="likelihood",
error.prob=0.005)
save(rip4lik, file=file)
}
summary(rip4lik)
mapthis <- switch.order(mapthis, chr=4, c(1:8,10,9), error.prob=0.005)
pull.map(mapthis, chr=4)
file <- "Rcache/order3.RData"
if(file.exists(file)) {
load(file)
} else {
mapthis <- orderMarkers(mapthis, chr=3)
pull.map(mapthis, chr=3)
save(mapthis, file=file)
}
pull.map(mapthis, chr=3)
file <- "Rcache/rip3.RData"
if(file.exists(file)) {
load(file)
} else {
rip3 <- ripple(mapthis, chr=3, window=7)
save(rip3, file=file)
}
summary(rip3)
file <- "Rcache/rip3lik.RData"
if(file.exists(file)) {
load(file)
} else {
rip3lik <- ripple(mapthis, chr=3, window=4, method="likelihood",
error.prob=0.005)
save(rip3lik, file=file)
}
summary(rip3lik)
file <- "Rcache/order2.RData"
if(file.exists(file)) {
load(file)
} else {
mapthis <- orderMarkers(mapthis, chr=2)
pull.map(mapthis, chr=2)
save(mapthis, file=file)
}
pull.map(mapthis, chr=2)
file <- "Rcache/rip2.RData"
if(file.exists(file)) {
load(file)
} else {
rip2 <- ripple(mapthis, chr=2, window=7)
save(rip2, file=file)
}
summary(rip2)
file <- "Rcache/rip2lik.RData"
if(file.exists(file)) {
load(file)
} else {
rip2lik <- ripple(mapthis, chr=2, window=4, method="likelihood",
error.prob=0.005)
save(rip2lik, file=file)
}
summary(rip2lik)
par(las=1, mar=c(4.1,4.1,1.1,0.1), cex=0.8)
pat2 <- apply(rip2[,1:24], 1, paste, collapse=":")
pat2lik <- apply(rip2lik[,1:24], 1, paste, collapse=":")
rip2 <- rip2[match(pat2lik, pat2),]
plot(rip2[,"obligXO"], rip2lik[,"LOD"], xlab="obligate crossover count",
ylab="LOD score")
file <- "Rcache/order1.RData"
if(file.exists(file)) {
load(file)
} else {
mapthis <- orderMarkers(mapthis, chr=1)
pull.map(mapthis, chr=1)
save(mapthis, file=file)
}
pull.map(mapthis, chr=1)
file <- "Rcache/rip1.RData"
if(file.exists(file)) {
load(file)
} else {
rip1 <- ripple(mapthis, chr=1, window=7)
save(rip1, file=file)
}
summary(rip1)
file <- "Rcache/rip1lik.RData"
if(file.exists(file)) {
load(file)
} else {
rip1lik <- ripple(mapthis, chr=1, window=4, method="likelihood",
error.prob=0.005)
save(rip1lik, file=file)
}
summary(rip1lik)
summaryMap(mapthis)
firstsummary <- summaryMap(mapthis)
par(las=1, mar=c(4.1,4.1,1.1,0.1), cex=0.8)
plotMap(mapthis, main="", show.marker.names=TRUE)
par(mar=c(4.1,4.1,1.6,1.6), las=1)
plotRF(mapthis, main="")
par(mar=c(4.1,4.1,1.6,1.6), las=1, pty="s", cex=0.8)
messedup <- switch.order(mapthis, chr=1, c(1:11,23:33,12:22),
error.prob=0.005)
plotRF(messedup, chr=1, main="")
par(las=1, mar=c(4.1,4.1,1.1,0.1), cex=0.8)
plotMap(messedup, main="", show.marker.names=TRUE)
file <- "Rcache/dropone.RData"
if(file.exists(file)) {
load(file)
} else {
dropone <- droponemarker(mapthis, error.prob=0.005)
save(dropone, file=file)
}
par(mar=c(4.1,4.1,1.6,0.1), mfrow=c(2,1), cex=0.8)
plot(dropone, lod=1, ylim=c(-100,0))
plot(dropone, lod=2, ylab="Change in chr length (cM)")
summary(dropone, lod.column=2)
badmar <- rownames(summary(dropone, lod.column=2))[1:3]
mapthis <- drop.markers(mapthis, badmar)
newmap <- est.map(mapthis, error.prob=0.005)
mapthis <- replace.map(mapthis, newmap)
summaryMap(mapthis)
secondsummary <- summaryMap(mapthis)
par(mar=c(4.1,4.1,0.6,0.6), cex=0.8)
plot(countXO(mapthis), ylab="Number of crossovers")
thecounts <- countXO(mapthis)
worst <- rev(sort(thecounts, decreasing=TRUE)[1:2])
mapthis <- subset(mapthis, ind=(countXO(mapthis) < 50))
summary(rip <- ripple(mapthis, chr=5, window=7))
summary(rip <- ripple(mapthis, chr=5, window=2, method="likelihood",
error.prob=0.005))
mapthis <- switch.order(mapthis, chr=5, c(1:7,9,8), error.prob=0.005)
pull.map(mapthis, chr=5)
newmap <- est.map(mapthis, error.prob=0.005)
mapthis <- replace.map(mapthis, newmap)
summaryMap(mapthis)
thirdsummary <- summaryMap(mapthis)
file <- "Rcache/errorrate.RData"
if(file.exists(file)) {
load(file)
} else {
loglik <- err <- c(0.001, 0.0025, 0.005, 0.0075, 0.01, 0.0125, 0.015, 0.0175, 0.02)
for(i in seq(along=err)) {
cat(i, "of", length(err), "\n")
tempmap <- est.map(mapthis, error.prob=err[i])
loglik[i] <- sum(sapply(tempmap, attr, "loglik"))
}
lod <- (loglik - max(loglik))/log(10)
save(err, lod, file=file)
}
par(mar=c(4.1,4.1,0.6,0.6), las=1)
plot(err, lod, xlab="Genotyping error rate", xlim=c(0,0.02),
ylab=expression(paste(log[10], " likelihood")))
file <- "Rcache/errorlod.RData"
if(file.exists(file)) {
load(file)
} else {
mapthis <- calc.errorlod(mapthis, error.prob=0.005)
save(mapthis, file=file)
}
print(toperr <- top.errorlod(mapthis, cutoff=6))
par(mar=c(4.1,4.1,0.6,0.6), las=1, cex.axis=0.9)
plotGeno(mapthis, chr=1, ind=toperr$id[toperr$chr==1], main="", cex=0.8,
include.xo=FALSE, cutoff=6)
mapthis.clean <- mapthis
for(i in 1:nrow(toperr)) {
chr <- toperr$chr[i]
id <- toperr$id[i]
mar <- toperr$marker[i]
mapthis.clean$geno[[chr]]$data[mapthis$pheno$id==id, mar] <- NA
}
gt <- geno.table(mapthis, scanone.output=TRUE)
par(mar=c(4.1,4.1,0.6,0.6), las=1, mfrow=c(2,1), cex=0.8)
plot(gt, ylab=expression(paste(-log[10], " P-value")))
plot(gt, lod=3:5, ylab="Genotype frequency")
abline(h=c(0.25, 0.5), lty=2, col="gray")
par(las=1, mar=c(4.6,4.6,0.6,0.6), cex=0.8)
plotMap(mapthis, main="", show.marker.names=TRUE) |
NULL
offspring = function(x, id, original.id = TRUE) {
if (original.id)
id = .internalID(x, id)
p = x$pedigree
offs_rows = p[, 1 + p[id, "SEX"]] == id
if (original.id)
x$orig.ids[offs_rows] else (1:x$nInd)[offs_rows]
}
spouses = function(x, id, original.id = TRUE) {
internal_id = ifelse(original.id, .internalID(x, id), id)
p = x$pedigree
offs_rows = p[, 1 + p[internal_id, "SEX"]] == internal_id
spou = unique.default(p[offs_rows, 4 - p[internal_id, "SEX"]])
if (original.id)
return(x$orig.ids[spou]) else return(spou)
}
related.pairs = function(x, relation = c("parents", "siblings", "grandparents", "nephews_nieces",
"cousins", "spouses", "unrelated"), available = F, interfam = c("none",
"founders", "all"), ...) {
relation = match.arg(relation)
interfam = match.arg(interfam)
func = function(...) get(relation)(...)
if (is.linkdat.list(x)) {
res = do.call(rbind, lapply(x, function(xx)
related.pairs(xx, relation, available, ...)
))
if (relation == "unrelated" && interfam != "none") {
avail = lapply(x, function(xx) {
ids = if (available)
xx$available else xx$orig.ids
if (interfam == "founders")
ids = intersect(ids, xx$orig.ids[xx$founders])
if (length(ids) == 0)
return(NULL)
ids
})
avail = avail[!sapply(avail, is.null)]
fampairs = data.frame(t(.comb2(length(avail))))
interfam = do.call(rbind, lapply(fampairs, function(p) fast.grid(avail[p])))
res = rbind(res, interfam)
}
return(res)
}
res = NULL
for (i in 1:x$nInd) {
rels = func(x, i, original.id = F, ...)
rels = rels[rels != i]
res = rbind(res, cbind(rep.int(i, length(rels)), rels, deparse.level = 0))
}
res[res[, 1] > res[, 2], ] = res[res[, 1] > res[, 2], 2:1]
res = unique(res)
if (available) {
avail = .internalID(x, x$available)
res = res[res[, 1] %in% avail & res[, 2] %in% avail, , drop = F]
}
res[] = x$orig.ids[res]
res
}
unrelated = function(x, id, original.id = TRUE) {
if (!original.id)
id = x$orig.ids[id]
ancs = c(id, ancestors(x, id))
rel = unique.default(unlist(lapply(ancs, function(a) c(a, descendants(x, a, original.id = TRUE)))))
unrel = setdiff(x$orig.ids, rel)
if (!original.id)
unrel = .internalID(x, unrel)
unrel
}
leaves = function(x) {
p = as.matrix(x, FALSE)
.mysetdiff(p[, "ID", drop = F], p[, c("FID", "MID")])
}
parents = function(x, id, original.id = TRUE) {
grandparents(x, id, degree = 1, original.id = original.id)
}
grandparents = function(x, id, degree = 2, original.id = TRUE) {
if (original.id)
id = .internalID(x, id)
p = x$pedigree
gp = id
for (i in seq_len(degree)) gp = p[gp, 2:3]
if (original.id)
x$orig.ids[gp] else (1:x$nInd)[gp]
}
siblings = function(x, id, half = NA, original.id = TRUE) {
if (original.id)
id = .internalID(x, id)
p = x$pedigree
fa = p[id, "FID"]
mo = p[id, "MID"]
if (fa == 0 && mo == 0)
return(numeric())
samefather = p[, "FID"] == fa
samemother = p[, "MID"] == mo
sib_rows = if (is.na(half))
samefather | samemother else if (half)
xor(samefather, samemother) else samefather & samemother
sib_rows[id] = FALSE
if (original.id)
x$orig.ids[sib_rows] else (1:x$nInd)[sib_rows]
}
cousins = function(x, id, degree = 1, removal = 0, half = NA, original.id = TRUE) {
if (original.id)
id = .internalID(x, id)
gp = grandparents(x, id, degree = degree, original.id = FALSE)
uncles = unique.default(unlist(lapply(gp, siblings, x = x, half = half, original.id = FALSE)))
cous = uncles
for (i in seq_len(degree + removal)) cous = unique.default(unlist(lapply(cous, offspring,
x = x, original.id = FALSE)))
if (original.id)
cous = x$orig.ids[cous]
cous
}
nephews_nieces = function(x, id, removal = 1, half = NA, original.id = TRUE) {
cousins(x, id, degree = 0, removal = removal, half = half, original.id = original.id)
}
ancestors = function(x, id) {
if (is.linkdat(x)) {
p = x$pedigree
orig_ids = x$orig.ids
ids_int = .internalID(x, id)
} else if (is.matrix(x) && c("ID", "FID", "MID") %in% colnames(x)) {
p = x
orig_ids = p[, "ID"]
ids_int = match(id, orig_ids)
} else stop("x must be either a linkdat object or a matrix whose colnames include 'ID', 'FID' and 'MID'")
p = relabel(p, 1:nrow(p))
ancest = numeric(0)
up1 = as.numeric(p[ids_int, c("FID", "MID")])
up1 = up1[up1 > 0 & up1 <= nrow(p)]
up1 = up1[!duplicated.default(up1)]
while (length(up1) > 0) {
ancest = c(ancest, up1)
up1 = .mysetdiff(as.numeric(p[up1, c("FID", "MID")]), ancest)
}
ancest = sort.int(ancest[(ancest != 0) & !duplicated(ancest)])
return(orig_ids[ancest])
}
descendants = function(x, id, original.id = TRUE) {
internal_id = ifelse(original.id, .internalID(x, id), id)
nextgen <- desc <- offspring(x, internal_id, original.id = FALSE)
while (TRUE) {
nextgen <- unlist(lapply(nextgen, offspring, x = x, original.id = FALSE))
if (length(nextgen) == 0)
break
desc <- c(desc, nextgen)
}
desc = unique.default(sort.default(desc))
if (original.id)
return(x$orig.ids[desc]) else return(desc)
} |
p_z <- function(x, ts = TRUE) {
if(ts == TRUE) {
return(qnorm(x/2, lower.tail = FALSE))
} else {
return(qnorm(x, lower.tail = FALSE))
}
} |
context("Test ipinfo")
test_that("data.frames can be returned from ip-info", {
skip_on_cran()
result <- ip_info("2607:FB90:426:DC1D:CFC4:4875:8BC2:4D93")
expect_that(is.data.frame(result), equals(TRUE))
expect_that(nrow(result), equals(1))
})
test_that("data.frames with false entries can be returned from ip-info", {
skip_on_cran()
result <- ip_info(c("2607:FB90:426:DC1D:CFC4:4875:8BC2:4D93",
"foo"))
expect_that(is.data.frame(result), equals(TRUE))
expect_that(nrow(result), equals(2))
expect_true(any(is.na(result)))
}) |
NULL
US_countyNameToFIPS <- function(
state = NULL,
countyName = NULL
) {
state <- as.character(state)
if ( length(state) == 1 )
state <- rep(state, length.out = length(countyName) )
if ( length(state) != length(countyName) )
stop("Parameter 'state' must have the same length as 'countyName' or be of length 1")
if ( state[1] %in% US_stateCodes$stateCode ) {
stateFIPS <- US_stateCodeToFIPS(state)
} else if ( tolower(state[1]) %in% tolower(US_stateCodes$stateName) ) {
stateFIPS <- US_stateNameToFIPS(state)
} else if ( state[1] %in% US_stateCodes$stateFIPS ) {
stateFIPS <- state
} else {
stop(sprintf("state = \"%s\" is not recognized.", state))
}
state_county_name <-
paste0(stateFIPS, "_", countyName) %>%
tolower()
US_state_county_name <-
paste0(
MazamaSpatialUtils::US_countyCodes$stateFIPS,
"_",
MazamaSpatialUtils::US_countyCodes$countyName
) %>%
tolower()
indices <- match(state_county_name, US_state_county_name)
countyFIPS <-
MazamaSpatialUtils::US_countyCodes$countyFIPS[indices]
return(countyFIPS)
}
US_countyFIPSToName <- function(
state = NULL,
countyFIPS = NULL
) {
state <- as.character(state)
if ( length(state) == 1 )
state <- rep(state, length.out = length(countyFIPS) )
if ( length(state) != length(countyFIPS) )
stop("Parameter 'state' must have the same length as 'countyFIPS' or be of length 1")
if ( state[1] %in% US_stateCodes$stateCode ) {
stateFIPS <- US_stateCodeToFIPS(state)
} else if ( tolower(state[1]) %in% tolower(US_stateCodes$stateName) ) {
stateFIPS <- US_stateNameToFIPS(state)
} else if ( state[1] %in% US_stateCodes$stateFIPS ) {
stateFIPS <- state
} else {
stop(sprintf("state = \"%s\" is not recognized.", state))
}
state_county_FIPS <-
paste0(stateFIPS, "_", countyFIPS) %>%
tolower()
US_state_county_FIPS <-
paste0(
MazamaSpatialUtils::US_countyCodes$stateFIPS,
"_",
MazamaSpatialUtils::US_countyCodes$countyFIPS
) %>%
tolower()
indices <- match(state_county_FIPS, US_state_county_FIPS)
countyName <-
MazamaSpatialUtils::US_countyCodes$countyName[indices]
return(countyName)
} |
test_path_arguments<- function(root_path, file){
if(!is.null(root_path) & !is.null(file)){
status = 0
message(paste0("\nPlease, do not specify both the 'root_path' and 'file' parameters to the function. You can:\n",
"1) Specify neither the 'root_path' nor the 'file' argument, in this case we will assume that data is in your working directory and the files are named exactly as they have been downloaded from the source.\n",
"2) Specify only the 'root_path' argument, in this case we will assume that data is in the directory specified and it is exactly as it have been downloaded from the source.\n"),
"3) Specify only the 'file' argument, in this case we will assume that data is in a .txt or .csv file stored in the adress specified by the 'file' parameter.")
}else{
if(is.null(root_path) & is.null(file)){
status = 1
message(paste0("You haven't specified neither the 'root_path' nor ther 'file' parameters to the function. in this case we will assume that data is in your working directory and the files are named exactly as they have been downloaded from the source.\n"))
}else{
if(is.null(file)){
status = 2
message(paste0("You have specified the 'root_path' argument, in this case we will assume that data is in the directory specified and it is exactly as it have been downloaded from the source.\n"))
}else{
status = 3
message(paste0("You have specified the 'file' argument, in this case we will assume that data is in a .txt or .csv file stored in the adress specified by the 'file' parameter.\n"))
if (!file.exists(file)) { stop("Data not found. Check if you have provided a valid address in the 'file' parameter" ) }
}
}
}
return(status)
}
read_fwf2 <- function(file, dic){
dict = nodic_overlap(dic)
read = mapply(aux_read_fwf, file, dict) %>% dplyr::bind_cols()
read = read[, dic$var_name]
return(read)
}
nodic_overlap <- function(dic, init_pos = "int_pos", fin_pos = "fin_pos"){
dic = arrange(.data = dic, dic[[init_pos]])
overlap.pos = which(dic[[init_pos]][-1] - dic[[init_pos]][-length(dic[[init_pos]])] < dic[[fin_pos]][-length(dic[[fin_pos]])] - dic[[init_pos]][-length(dic[[init_pos]])] + 1)
print(overlap.pos)
if(length(overlap.pos) > 0){
dic.pos = dic
dic.lis = list()
dic.lis[[1]] = dic[-overlap.pos,]
for(i in 1:length(overlap.pos)){
dic.lis[[i+1]] = dic[overlap.pos[i],]
}
} else {
dic.lis = list()
dic.lis[[1]] = dic
}
i = 1:length(dic.lis)
names(dic.lis) = paste("V", i, sep = "")
return(dic.lis)
}
get_available_datasets <- function(){
datasets_list<- list.files(system.file("extdata", package = "microdadosBrasil"), full.names = TRUE) %>%
(function(x) return(grep("metadata_harmonization",x, value = T))) %>%
str_split("/") %>%
lapply(tail, c(n = 1)) %>%
unlist %>%
str_replace(pattern = "_.+", replacement = "")
return(datasets_list)
}
get_available_periods <- function(dataset, fwfonly = FALSE){
md = is.data.frame(dataset)
if(!md){
dataset = read_metadata(dataset)
}
if(!"period" %in% names(dataset)){
warning("metadata in wrong format")
return(NULL)
}
if(fwfonly){
dataset = dataset %>% filter(format == "fwf")
}
periods = dataset$period
return(periods)
}
get_available_filetypes<- function(dataset, period){
md = is.data.frame(dataset)
if(!md){
dataset = read_metadata(dataset)
}
if(all(!grepl(pattern = "^ft_",names(dataset)))){
warning("metadata in wrong format")
return(NULL)
}
filetypes = dataset[ dataset$period == period,]
filetypes = subset(filetypes, select = !is.na(filetypes)[1,]) %>% names
filetypes = subset(filetypes, grepl(filetypes, pattern = "^ft_"))
filetypes = gsub(filetypes, pattern = "^ft_", replacement = "")
return(filetypes)
}
as.object_size <- function(x) structure(x, class = "object_size") |
chartsTabUI <- function(id, chart){
ns <- shiny::NS(id)
header<-div(class=ns("header"), makeChartSummary(chart))
chartWrap<-chart$functions$ui(ns("chart-wrap"))
return(list(header, chartWrap))
}
chartsTab <- function(input, output, session, chart, data, mapping){
ns <- session$ns
params <- reactive({
makeChartParams(
data = data(),
mapping = mapping(),
chart = chart
)
})
if(chart$type=="module"){
callModule(chart$functions$main, "chart-wrap", params)
}else{
output[["chart-wrap"]] <- chart$functions$server(
do.call(
chart$functions$main,
params()
)
)
}
insertUI(
paste0(".",ns("header"), " .chart-header"),
where="beforeEnd",
ui=downloadButton(ns("scriptDL"), "R script", class="pull-right btn-xs dl-btn")
)
mapping_list<-reactive({
mapping_list <- generateMappingList(mapping() %>% filter(.data$domain %in% chart$domain))
if(length(mapping_list)==1){
mapping_list <- mapping_list[[1]]
}
return(mapping_list)
})
output$scriptDL <- downloadHandler(
filename = paste0("sg-",chart$name,".R"),
content = function(file) {
writeLines(makeChartExport(chart, mapping_list()), file)
}
)
if(chart$type !="module"){
insertUI(
paste0(".",ns("header"), " .chart-header"),
where="beforeEnd",
ui=downloadButton(ns("reportDL"), "html report", class="pull-right btn-primary btn-xs")
)
output$reportDL <- downloadHandler(
filename = paste0("sg-",chart$name,".html"),
content = function(file) {
templateReport <- system.file("report","safetyGraphicsReport.Rmd", package = "safetyGraphics")
tempReport <- file.path(tempdir(), "report.Rmd")
file.copy(templateReport, tempReport, overwrite = TRUE)
report_params <- list(
data = data(),
mapping = mapping(),
chart = chart
)
rmarkdown::render(
tempReport,
output_file = file,
params = report_params,
envir = new.env(parent = globalenv())
)
}
)
}
} |
get_probabilities <- function(bpc_object, n = 1000) {
if (class(bpc_object) != 'bpc')
stop('Error! The object is not of bpc class')
model_type <- bpc_object$model_type
stanfit <- get_stanfit(bpc_object)
out <- NULL
s <- get_sample_posterior(bpc_object, n = n)
lookup <- bpc_object$lookup_table
cluster_lookup <- bpc_object$cluster_lookup_table
comb <-
gtools::combinations(
n = bpc_object$Nplayers,
r = 2,
v = lookup$Names,
repeats.allowed = F
)
newdata <- data.frame(comb)
col_names <-
c(bpc_object$call_arg$player1,
bpc_object$call_arg$player0)
colnames(newdata) <- col_names
newdata <- as.data.frame(newdata)
l <- nrow(newdata)
predictors <- NULL
if (stringr::str_detect(model_type, '-generalized')) {
predictors <- bpc_object$predictors_df
}
if (stringr::str_detect(model_type, '-ordereffect')) {
z <- data.frame(rep(0, l))
colnames(z) <- bpc_object$call_arg$z_player1
newdata <- cbind(newdata, z)
}
if (stringr::str_detect(model_type, '-U')) {
cluster_lookup_table <- bpc_object$cluster_lookup_table
ncluster <- nrow(cluster_lookup_table)
comb_newdata <- NULL
for (i in seq(1:ncluster))
{
U <- data.frame(rep(cluster_lookup_table$Names[i], l))
colnames(U) <- bpc_object$call_arg$cluster
comb_newdata <- rbind(comb_newdata, cbind(newdata, U))
}
newdata <- comb_newdata
}
pred <-
predict.bpc(
bpc_object,
newdata = newdata,
n = n,
predictors=predictors,
return_matrix = T
)
t <- NULL
y_pred <- pred[, startsWith(colnames(pred), "y_pred")]
ties_pred <- pred[, startsWith(colnames(pred), "ties_pred")]
mean_ties <- apply(ties_pred, 2, mean)
is_not_tie <- ties_pred != 1
mean_y <- c()
for (i in 1:ncol(y_pred)) {
mean_i <- mean(y_pred[is_not_tie[, i], i])
mean_y <- c(mean_y, mean_i)
}
mean_y <- apply(y_pred, 2, mean)
t <- data.frame(
i = newdata[, col_names[1]],
j = newdata[, col_names[2]],
i_beats_j = mean_y,
i_ties_j = mean_ties
) %>%
tibble::remove_rownames()
if (stringr::str_detect(model_type, '-U'))
{
newdata_colnames <- colnames(newdata)
U_name <- bpc_object$call_arg$cluster
t_names <- colnames(t)
t <- cbind(t, newdata[,U_name])
colnames(t) <- c(t_names,U_name)
t <-t %>% dplyr::relocate(U_name, .after=.data$j)
}
if (stringr::str_detect(model_type, '-ordereffect'))
{
newdata_colnames <- colnames(newdata)
z_name <- bpc_object$call_arg$z_player1
t_names <- colnames(t)
t <- cbind(t, newdata[,z_name])
colnames(t) <- c(t_names,z_name)
t <-t %>% dplyr::relocate(z_name, .after=.data$j)
}
if (startsWith(model_type, 'bt'))
{
t <- t %>%
dplyr::select(-.data$i_ties_j)
}
out <- list(Table = t,
Posterior = t(pred))
return(out)
} |
pedtodot <- function(pedfile,makeped=FALSE,sink=TRUE,page="B5",
url="http://www.mrc-epid.cam.ac.uk",height=0.5,width=0.75,rotate=0,dir="none")
{
if (makeped) ped <- pedfile[,-c(5,6,7,9)]
else ped <- pedfile
pedigree <- ped[,1]
member <- ped[,2]
father <- ped[,3]
mother <- ped[,4]
sex <- ped[,5]
aff <- ped[,6]
page.int <- charmatch(page,c("A4","A5","B5","Legal","Letter","Executive"))
pagesize <- c("8.2677165,11.692913",
"5.83,8.27",
"7.17,10.12",
"8.5,14",
"8.5,11",
"7.25,10.5")
ashape <- matrix(c(
"m","box,regular=1",
"1","box,regular=1",
"f","circle",
"2","circle"),ncol=2,byrow=T)
ashade <- matrix(c(
"y","style=filled,color=grey",
"2","style=filled,color=grey",
"n","style=\"setlinewidth(2)\"",
"1","style=\"setlinewidth(2)\"",
"x","green",
"0","green"),ncol=2,byrow=T)
ssize <- dim(ped)[1]
shape <- shade <- rep('1',ssize)
for (s in 1:ssize) {
for (t in 1:4) if (sex[s]==ashape[t,1]) shape[s] <- ashape[t,2]
for (t in 1:6) if (aff[s]==ashade[t,1]) shade[s] <- ashade[t,2]
}
uid <- unique(pedigree)
for (j in 1:length(uid))
{
if(sink) cat(paste("[",uid[j],"]",sep=""))
if(sink) sink(paste(uid[j],".dot",sep=""))
cat(paste("digraph ped_",uid[j],sep=""),"{\n")
if (page!="") {
if (is.na(page.int)) cat(paste("page=\"", page, "\"",sep="")," ;\n")
else if (page.int>0) cat(paste("page=\"", pagesize[page.int], "\"",sep="")," ;\n")
}
cat("ratio=\"auto\" ;\n")
cat("mincross = 2.0 ;\n")
cat("label=\"pedigree",uid[j],"\" ;\n")
cat(paste("rotate=",rotate,sep="")," ;\n")
if(url!="") cat(paste("URL=\"",url,"\"",sep="")," ;\n")
selected <- pedigree==uid[j]
id.j <- member[selected]
dad.j <- father[selected]
mom.j <- mother[selected]
sex.j <- sex[selected]
aff.j <- aff[selected]
shape.j <- shape[selected]
shade.j <- shade[selected]
n <- length(id.j)
for (s in 1:n) cat(paste("\"", id.j[s], "\" [shape=", sep=""), shape.j[s],
",height=", height, ",width=",width, shade.j[s], "] ;\n")
fid <- match(dad.j,id.j)
mid <- match(mom.j,id.j)
fid <- fid[!is.na(fid)]
mid <- mid[!is.na(mid)]
marriage <- matrix(rep(0,3*n*(n+1)/2),ncol=3)
child <- array(rep('0',n*n*(n+1)/2+2),dim=c(n*(n+1)/2,n+2))
k <- 1
for (s in 1:n) {
s1 <- fid[k]
s2 <- mid[k]
l <- min(s1,s2)
u <- max(s1,s2)
if (dad.j[s]!="x" && dad.j[s]!="0") {
loc <- u*(u-1)/2 + l
marriage[loc,1] <- s1
marriage[loc,2] <- s2
marriage[loc,3] <- marriage[loc,3] + 1
child[loc,marriage[loc,3]+2] <- id.j[s]
k <- k + 1
}
}
marriage <- as.data.frame(marriage)
child <- as.data.frame(child)
married <- marriage[marriage[,3]>0,]
n <- dim(married)[1]
for (m in 1:n) {
s1 <- married[m,1]
s2 <- married[m,2]
l <- min(s1,s2)
u <- max(s1,s2)
loc <- u*(u-1)/2 + l
s1 <- id.j[s1]
s2 <- id.j[s2]
mating <- paste("\"", s1, "x", s2, "\"",sep="")
cat(mating, "[shape=diamond,style=filled,label=\"\",height=.1,width=.1] ;\n")
cat(paste("\"", s1, "\"",sep="")," -> ", mating, paste(" [dir=",dir, ",weight=1]",sep="")," ;\n")
cat(paste("\"", s2, "\"",sep="")," -> ", mating, paste(" [dir=",dir, ",weight=1]",sep="")," ;\n")
for (k in 1:married[m,3]) {
cat(mating, " -> ",paste("\"", child[loc,k+2], "\"",sep=""), paste("[dir=",dir, ",weight=2]",sep="")," ;\n")
}
}
cat("}\n")
if(sink) sink()
}
cat("\n")
} |
rvn_annual_peak_event_error <- function(sim, obs, mm=9, dd=30, add_line = TRUE, add_labels = TRUE)
{
df.peak.event <- rvn_annual_peak_event(sim, obs, mm=mm, dd=dd)$df_peak_event
errs <- (df.peak.event$sim.peak.event - df.peak.event$obs.peak.event)/df.peak.event$obs.peak.event *
100
text.labels <- year(df.peak.event$obs.dates)
x.lab <- "Date (Water Year Ending)"
y.lab <- "% Error in Event Peaks"
title.lab <- ""
if (add_line) {
limit <- max(max(errs), abs(min(errs)))
y.max <- max(0.5, limit)
y.min <- min(-0.5, limit *-1)
} else {
y.max <- limit
y.min <- limit*-1
}
df.plot <- data.frame(cbind(text.labels,errs))
df.plot$text.labels <- as.factor(df.plot$text.labels)
p1 <- ggplot(data=df.plot)+
geom_point(aes(x=text.labels,y=errs))+
scale_y_continuous(limits=c(y.min,y.max),name=y.lab)+
scale_x_discrete(name=x.lab)+
rvn_theme_RavenR()
if (add_line) {
p1 <- p1+
geom_hline(yintercept=0,linetype=2)
}
if (add_labels) {
p1 <- p1+
geom_text(x= max(as.numeric(df.plot$text.labels)+0.5),
y= y.max/2,
label= "Overpredict",
angle=90,
vjust = 0.5,
hjust = 0.5)
p1 <- p1+
geom_text(x=max(as.numeric(df.plot$text.labels)+0.5),
y= y.min/2,
label="Underpredict",
angle=90,
vjust = 0.5,
hjust = 0.5)
}
df <- data.frame(obs.dates = df.peak.event$obs.dates, errors = errs)
return(list(df_peak_event_error = df,p1=p1))
} |
copyToClipboard <- function(x, ...) {
if (!exists("writeClipboard", getNamespace("utils"))) {
stop("This function works only on windows systems")
}
UseMethod("copyToClipboard", x)
invisible()
}
copyToClipboard.antaresDataList <- function(x, what, ...) {
if (length(x) == 1) copyToClipboard(x[[1]])
else {
if (missing(what)) {
cat("Which element do you want to copy to clipboard ?\n")
for (i in 1:length(x)) cat(i, ":", names(x)[i], "\n")
what <- scan(what = numeric(), n = 1)
}
copyToClipboard(x[[what]])
}
}
copyToClipboard.data.frame <- function(x, ...) {
if (nrow(x) > 50000) {
x <- x[1:50000, ]
warning("Table is too large. Only 50000 rows are copied to clipboard")
}
write.table(x, file = textConnection(".txt", "w", local=TRUE),
sep="\t", row.names = FALSE, ...)
utils::writeClipboard(.txt)
}
copyToClipboard.matrix <- function(x, ...) {
if (nrow(x) > 50000) {
x <- x[1:50000, ]
warning("Matrix is too large. Only 50000 rows are copied to clipboard")
}
write.table(x, file = textConnection(".txt", "w", local=TRUE),
sep="\t", row.names = FALSE, col.names = FALSE, ...)
utils::writeClipboard(.txt)
}
copyToClipboard.default <- function(x, ...) {
copyToClipboard(as.matrix(x), ...)
} |
HMM_based_method <-
function(x, cut_points, distribution_class,
min_m = 2, max_m = 6, n = 100,
max_scaled_x = NA, names_activity_ranges = NA,
discr_logL = FALSE, discr_logL_eps = 0.5,
dynamical_selection = TRUE, training_method = "EM",
Mstep_numerical = FALSE,
BW_max_iter = 50, BW_limit_accuracy = 0.001, BW_print = TRUE,
DNM_max_iter = 50, DNM_limit_accuracy = 0.001, DNM_print = 2, decoding_method = 'global',
bout_lengths = NULL, plotting = 0)
{
if(is.null(bout_lengths))
{
stop("Set variable 'bout_lengths' to use this function. See help-manual for further information. For example: bout_lengths=c(1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,12,13,20,21,40,41,60,61,80,81,120,121,240,241,480,481,1440,1,1440)")
}
scaling_observations <- function(x, max_scaled_x)
{
scaling_observations_factor <- max_scaled_x / max(x)
scaled_x <- scaling_observations_factor * x
return(list(original_x = x, scaling_observations_factor = scaling_observations_factor, scaled_x = scaled_x))
}
original_x <- x
if(!is.na(max_scaled_x))
{
x <- scaling_observations(x = x, max_scaled_x = max_scaled_x)
data_scale_factor <- x$scaling_observations_factor
x <- x$scaled_x
}
if(distribution_class == "pois" | distribution_class == "genpois" | distribution_class == "bivariate_pois" | distribution_class == "geom")
{
x <- round(x)
}
trained_HMM_with_selected_m <- HMM_training(x = x, min_m = min_m, max_m = max_m, distribution_class = distribution_class, discr_logL = discr_logL, discr_logL_eps = discr_logL_eps, training_method = training_method, Mstep_numerical = Mstep_numerical, n = n, dynamical_selection = dynamical_selection, BW_max_iter = BW_max_iter, BW_limit_accuracy = BW_limit_accuracy, BW_print = BW_print, DNM_max_iter = DNM_max_iter, DNM_limit_accuracy = DNM_limit_accuracy, DNM_print = DNM_print)$trained_HMM_with_selected_m
decoding <- HMM_decoding(x = x, m = trained_HMM_with_selected_m$m, delta = trained_HMM_with_selected_m$delta, gamma = trained_HMM_with_selected_m$gamma, distribution_class = trained_HMM_with_selected_m$distribution_class, distribution_theta = trained_HMM_with_selected_m$distribution_theta, decoding_method = decoding_method, discr_logL = discr_logL, discr_logL_eps = discr_logL_eps)
if(!is.na(max_scaled_x))
{
decoding$decoding_distr_means <- (1 / data_scale_factor) * decoding$decoding_distr_means
}else{
decoding$decoding_distr_means <- decoding$decoding_distr_means
}
extendend_cut_off_point_method <- cut_off_point_method(x = original_x, hidden_PA_levels = decoding$decoding_distr_means , cut_points = cut_points, names_activity_ranges = names_activity_ranges, bout_lengths = bout_lengths, plotting = plotting)
return(list(trained_HMM_with_selected_m = trained_HMM_with_selected_m,
decoding = decoding,
extendend_cut_off_point_method = extendend_cut_off_point_method))
} |
'dst033' |
stgmix <- function(mean, vcv, window, tlim, p0=0, p=NULL, sres=128, tres=sres, int=1) {
if(!is.owin(window)) stop("'window' must be of spatstat class 'owin'")
w <- window
if(!is.matrix(mean)) stop("'mean' must be a matrix")
if(nrow(mean)!=3) stop("'mean' is of incorrect dimension")
n <- ncol(mean)
if(int<=0) stop("'int' must be positive")
if(sres<=1||tres<=0) stop("'sres' and 'tres' must be >= 1")
if(length(p0)>1) p0 <- p0[1]
if(!is.numeric(p0)) stop("'p0' must be numeric")
if(p0<0||p0>1) stop("'p0' must be in [0,1]")
if(is.null(p)) p <- rep((1-p0)/n,n)
if(!is.numeric(p)) stop("'p' must be numeric")
if(length(p)!=n)
if(any(p<0)||any(p>1)) stop("all elements of 'p' must be in [0,1]")
if(sum(c(p,p0))!=1) stop("'p0' and 'p' must sum to 1")
if(!is.numeric(vcv)) stop("'vcv' must be numeric")
if(is.array(vcv)){
if(!all(dim(vcv)==c(3,3,n))) stop("'vcv' must be an array of 3x3 matrices with layers matching the number of components")
for(i in 1:n){
if((!isSymmetric(vcv[,,i]))||(det(vcv[,,i])<=0)) stop(paste("matrix",i,"in 'vcv' is invalid -- each must be symmetric and positive-definite"))
}
} else stop("'vcv' must be an array")
if(!is.vector(tlim)) stop("'tlim' must be a vector")
if(length(tlim)!=2) stop("'tlim' must be a vector of length 2")
if(!is.numeric(tlim)) stop("'tlim' must be numeric")
if(tlim[2]<=tlim[1]) stop("'tlim[2]' must be greater than 'tlim[1]'")
w <- as.mask(window,dimyx=sres)
x <- w$xcol
y <- w$yrow
xy <- expand.grid(x,y)
xyinside <- inside.owin(x=xy[,1],y=xy[,2],w=w)
xyin <- xy[xyinside,]
tseq <- seq(tlim[1], tlim[2], length=tres+1)
tstep <- (tlim[2] - tlim[1])/tres
tt <- tseq[-(tres+1)] + 0.5*tstep
varea <- w$xstep*w$ystep*tstep
xyt <- expand.grid(x,y,tt)
f <- dmvnorm(xyt,mean=mean[,1],sigma=vcv[,,1])
scale1 <- sum(f*xyinside*varea)
if(scale1<0.01 && !inside.owin(mean[1,1],mean[2,1],w) && (mean[3,1]<tlim[1]||mean[3,1]>tlim[2])) warning("Component 1 may be out of range")
f <- p[1] * f / scale1
if(n>1){
for(i in 2:n){
fAdd <- dmvnorm(xyt,mean=mean[,i],sigma=vcv[,,i])
scale <- sum(fAdd*xyinside*varea)
if (scale<0.01 && !inside.owin(mean[1,i],mean[2,i],w) && (mean[3,i]<tlim[1]||mean[3,i]>tlim[2])) warning(paste("Component",i,"may be out of range"))
fAdd <- p[i] * fAdd / scale
f <- f + fAdd
}
}
volume <- sum(varea*sum(xyinside)*tres)
f <- (f+p0/volume)*int
narep <- rep(1,length(xyinside))
narep[!xyinside] <- NA
f.arr <- array(f*narep,dim=c(sres,sres,tres))
f.list <- solist()
for(i in 1:tres){
f.list[[i]] <- im(t(f.arr[,,i]),xcol=x,yrow=y)
f.list[[i]] <- f.list[[i]][w,drop=FALSE]
}
result <- list(a=f.arr,v=f.list,xcol=x,yrow=y,tlay=tt,W=window)
class(result) <- "stim"
return(result)
} |
anthro_zscore_subscapular_skinfold_for_age <-
function(subskin, age_in_days, age_in_months, sex, flag_threshold = 5,
growthstandards = growthstandards_ssanthro) {
anthro_zscore_adjusted(
name = "ss",
measure = subskin,
age_in_days = age_in_days,
age_in_months = age_in_months,
sex = sex,
growthstandards = growthstandards,
flag_threshold = flag_threshold,
allowed_age_range = c(91, 1856)
)
} |
p2p_arrows<-function(x1,y1,x2,y2,space=0.05,col=par("fg"),...) {
xspace<-(x2-x1)*space
yspace<-(y2-y1)*space
arrows(x1+xspace,y1+yspace,x2-xspace,y2-yspace,...)
} |
resetDummyProvider()
cluster <- NULL
serverData <- NULL
verbose <- 0
test_that("DockerCluster constructor", {
expect_error(
provider <- DummyProvider()
,NA)
expect_error(
container <- DummyWorkerContainer()
,NA)
expect_error(
serverData <<- CloudPrivateServer(
publicIp = "192.168.1.1", publicPort = 123,
privateIp = "127.0.0.1", privatePort = 456,
serverClientSameLAN = TRUE)
,NA)
expect_error(
cluster <<- makeDockerCluster(
cloudProvider = provider,
workerContainer = container,
privateServerData = serverData,
verbose = verbose)
,NA)
})
test_that("DockerCluster server status", {
expect_true(cluster$isServerRunning())
expect_true(cluster$clusterExists())
})
test_that("DockerCluster set worker number", {
expect_error(
cluster$setWorkerNumber(10),
NA
)
expect_identical(cluster$getWorkerNumbers(),
list(initializing = 0L, running = 10L, expected = 10L))
})
test_that("DockerCluster stop server", {
expect_error(
cluster$stopServer(),
NA
)
expect_true(cluster$isServerRunning())
expect_true(cluster$clusterExists())
})
test_that("DockerCluster worker container", {
container <- cluster@cloudProvider$workerContainer
expect_equal(container$environment$serverIp, serverData$publicIp)
expect_equal(container$environment$serverPort, serverData$publicPort)
})
test_that("DockerCluster server container", {
container <- cluster@cloudProvider$serverContainer
expect_true(length(container$environment) == 0)
})
test_that("DockerCluster register backend", {
expect_error(
cluster$registerBackend(),
NA
)
expect_error(
cluster$deregisterBackend(),
NA
)
})
test_that("DockerCluster stop cluster", {
expect_error(
cluster$stopCluster(),
NA
)
expect_identical(cluster$getWorkerNumbers(),
list(initializing = 0L, running = 0L, expected = 10L))
expect_true(cluster$isServerRunning())
expect_error(
cluster$update(),
NA
)
})
test_that("DockerCluster cleanup", {
cluster <<- NULL
expect_error(
gc(),
NA
)
}) |
acontext("variable value")
test_that("selector.aes errors when no matching variable for value", {
a.list <-
list(c("clickSelects.variable", "clickSelects2.variable",
"clickSelects2.value"),
c("clickSelects.variable", "clickSelects2.variable",
"clickSelects.value"),
c("showSelected.variable", "showSelected2.variable",
"showSelected2.value"),
c("showSelected.variable", "showSelected2.variable",
"showSelected.value"),
c("clickSelects.variable", "showSelected2.variable",
"clickSelects.value"),
"showSelected.variable",
"showSelected2.variable",
"clickSelects.variable",
"clickSelects2.variable",
"showSelected.value",
"showSelected2.value",
"clickSelects.value",
"clickSelects2.value")
for(a.vec in a.list){
arg.list <- as.list(paste0("var", seq_along(a.vec)))
names(arg.list) <- a.vec
a <- do.call(aes_string, arg.list)
expect_error({
selector.aes(a)
}, ".variable or .value aes not found")
}
})
problems <-
data.frame(problemStart=c(100, 200, 100, 150, 200, 250),
problemEnd=c(200, 300, 150, 200, 250, 300),
problem.i=c(1, 2, 1, 2, 3, 4),
bases.per.problem=c(100, 100, 50, 50, 50, 50))
problems$problem.name <- with(problems, {
sprintf("size.%d.problem.%d", bases.per.problem, problem.i)
})
sizes <- data.frame(bases.per.problem=c(50, 100),
problems=c(2, 4))
problems$peakStart <- problems$problemStart + 10
problems$peakEnd <- problems$problemEnd - 10
samples <-
rbind(data.frame(problems, sample.id="sample1", peaks=1),
data.frame(problems, sample.id="sample1", peaks=2),
data.frame(problems, sample.id="sample2", peaks=2))
peaks <-
expand.grid(peaks=0:2,
problem.name=problems$problem.name)
peaks$error.type <-
c("false positive", "false negative", "correct")
rownames(problems) <- problems$problem.name
peaks$bases.per.problem <-
problems[paste(peaks$problem.name), "bases.per.problem"]
peak.problems <-
rbind(data.frame(problems, peaks=1),
data.frame(problems, peaks=2))
one.error <-
data.frame(bases.per.problem=1:10,
errors=rnorm(10),
chunks="one")
two.error <-
data.frame(bases.per.problem=1:10,
errors=rnorm(10),
chunks="two")
viz <-
list(errorLines=ggplot()+
scale_color_manual(values=c(one="red", two="black"))+
scale_size_manual(values=c(one=1, two=2))+
geom_line(aes(bases.per.problem, errors,
color=chunks, size=chunks),
data=one.error)+
geom_line(aes(bases.per.problem, errors,
color=chunks, size=chunks),
data=two.error),
problems=ggplot()+
ggtitle("select problem")+
geom_segment(aes(problemStart, problem.i,
clickSelects=problem.name,
showSelected=bases.per.problem,
xend=problemEnd, yend=problem.i),
size=5,
data=data.frame(problems, sample.id="problems"))+
geom_text(aes(200, 5,
label=paste("problem size", bases.per.problem),
showSelected=bases.per.problem),
data=data.frame(sizes, sample.id="problems"))+
geom_segment(aes(peakStart, problem.i,
showSelected.variable=paste0(problem.name, "peaks"),
showSelected.value=peaks,
clickSelects=problem.name,
showSelected2=bases.per.problem,
xend=peakEnd, yend=problem.i),
data=data.frame(peak.problems, sample.id="problems"),
size=10,
color="deepskyblue")+
geom_segment(aes(peakStart, 0,
showSelected.variable=paste0(problem.name, "peaks"),
showSelected.value=peaks,
clickSelects=problem.name,
showSelected2=bases.per.problem,
xend=peakEnd, yend=0),
data=samples,
size=10,
color="deepskyblue")+
theme_bw()+
theme(panel.margin=grid::unit(0, "cm"))+
facet_grid(sample.id ~ .),
title="viz with .variable .value",
sizes=ggplot()+
ggtitle("select problem size")+
geom_point(aes(bases.per.problem, problems,
clickSelects=bases.per.problem),
size=10,
data=sizes),
peaks=ggplot()+
ggtitle("select number of peaks")+
geom_point(aes(peaks, peaks,
color=error.type,
id=peaks,
showSelected=problem.name,
showSelected2=bases.per.problem,
clickSelects.variable=paste0(problem.name, "peaks"),
clickSelects.value=peaks),
size=10,
data=peaks)+
geom_text(aes(1, 3, label=problem.name,
showSelected2=bases.per.problem,
showSelected=problem.name),
data=problems))
info <- animint2HTML(viz)
test_that("No widgets for .variable .value selectors", {
computed.vec <- getSelectorWidgets(info$html)
expected.vec <- c(
"chunks", "problem.name", "bases.per.problem",
"error.type")
expect_identical(sort(computed.vec), sort(expected.vec))
})
circle.xpath <- '//svg[@id="plot_peaks"]//circle'
title.xpath <- paste0(circle.xpath, '//title')
test_that("clickSelects.variable tooltip/title", {
circle.list <- getNodeSet(info$html, circle.xpath)
expect_equal(length(circle.list), 3)
title.list <- getNodeSet(info$html, title.xpath)
title.vec <- sapply(title.list, xmlValue)
expect_identical(title.vec, paste("size.100.problem.1peaks", 0:2))
})
test_that("two lines rendered in first plot", {
path.list <- getNodeSet(
info$html, '//svg[@id="plot_errorLines"]//g[@class="PANEL1"]//path')
style.strs <- sapply(path.list, function(x) xmlAttrs(x)["style"])
pattern <-
paste0("(?<name>\\S+?)",
": *",
"(?<value>.+?)",
";")
style.matrices <- str_match_all_perl(style.strs, pattern)
size.vec <- sapply(style.matrices, function(m)m["stroke-width", "value"])
size.num <- as.numeric(sub("px", "", size.vec))
expect_equal(size.num, c(1, 2))
color.vec <- sapply(style.matrices, function(m)m["stroke", "value"])
expect_color(color.vec, c("red", "black"))
})
test_that(".variable and .value makes compiler create selectors", {
selector.names <- sort(names(info$selectors))
problem.selectors <- paste0(problems$problem.name, "peaks")
expected.names <-
sort(c("problem.name",
"error.type",
"chunks",
problem.selectors,
"bases.per.problem"))
expect_identical(selector.names, expected.names)
selected <- sapply(info$selectors[problem.selectors], "[[", "selected")
expect_true(all(selected == "1"))
})
test_that(".variable and .value renders correctly at first", {
node.list <-
getNodeSet(info$html, '//g[@class="geom6_segment_problems"]//line')
expect_equal(length(node.list), 2)
})
test_that("clicking reduces the number of peaks", {
no.peaks.html <- clickHTML(id=0)
node.list <-
getNodeSet(no.peaks.html, '//g[@class="geom6_segment_problems"]//line')
expect_equal(length(node.list), 1)
})
test_that("clicking increases the number of peaks", {
more.peaks.html <- clickHTML(id=2)
node.list <-
getNodeSet(more.peaks.html, '//g[@class="geom6_segment_problems"]//line')
expect_equal(length(node.list), 3)
})
viz.for <-
list(problems=ggplot()+
ggtitle("select problem")+
geom_segment(aes(problemStart, problem.i,
clickSelects=problem.name,
showSelected=bases.per.problem,
xend=problemEnd, yend=problem.i),
size=5,
data=data.frame(problems, sample.id="problems"))+
geom_text(aes(200, 5,
label=paste("problem size", bases.per.problem),
showSelected=bases.per.problem),
data=data.frame(sizes, sample.id="problems"))+
theme_bw()+
theme(panel.margin=grid::unit(0, "cm"))+
facet_grid(sample.id ~ .),
title="viz with for loop",
sizes=ggplot()+
ggtitle("select problem size")+
geom_point(aes(bases.per.problem, problems,
clickSelects=bases.per.problem),
size=10,
data=sizes),
peaks=ggplot()+
ggtitle("select number of peaks")+
geom_text(aes(1, 3, label=problem.name,
showSelected=problem.name),
data=problems))
pp.list <- split(peak.problems, peak.problems$problem.name)
s.list <- split(samples, samples$problem.name)
p.list <- split(peaks, peaks$problem.name)
for(problem.name in names(p.list)){
s.name <- paste0(problem.name, "peaks")
p <- p.list[[problem.name]]
p[[s.name]] <- p$peaks
pp <- pp.list[[problem.name]]
pp[[s.name]] <- pp$peaks
pp$problem.nodots <- gsub("[.]", "", pp$problem.name)
s <- s.list[[problem.name]]
s[[s.name]] <- s$peaks
p$bases.per.problem <- pp$bases.per.problem[1]
viz.for$problems <- viz.for$problems+
geom_segment(aes_string("peakStart", "problem.i",
id="problem.nodots",
showSelected=s.name,
clickSelects="problem.name",
showSelected2="bases.per.problem",
xend="peakEnd", yend="problem.i"),
data=data.frame(pp, sample.id="problems"),
size=10,
color="deepskyblue")+
geom_segment(aes_string("peakStart", "0",
showSelected=s.name,
clickSelects="problem.name",
showSelected2="bases.per.problem",
xend="peakEnd", yend="0"),
data=s,
size=10,
color="deepskyblue")
viz.for$peaks <- viz.for$peaks+
geom_point(aes_string("peaks", "peaks",
showSelected="problem.name",
showSelected2="bases.per.problem",
clickSelects=s.name),
size=10,
data=p)
}
info <- animint2HTML(viz.for)
test_that("Widgets for regular selectors", {
computed.vec <- getSelectorWidgets(info$html)
expected.vec <- c(
"problem.name", "bases.per.problem",
"size.100.problem.1peaks", "size.100.problem.2peaks",
"size.50.problem.1peaks", "size.50.problem.2peaks",
"size.50.problem.3peaks", "size.50.problem.4peaks")
expect_identical(sort(computed.vec), sort(expected.vec))
})
chunk.counts <- function(html=getHTML()){
node.set <-
getNodeSet(html, '//td[@class="downloaded"]')
as.integer(sapply(node.set, xmlValue))
}
test_that("counts of chunks downloaded or not at first", {
value.vec <- chunk.counts()
expect_equal(value.vec,
c(1, 1, 1, 1, 1, 1,
0, 0, 0, 0, 0, 0, 0, 0,
1, 1, 1,
0, 0, 0, 0, 0))
})
test_that("changing problem downloads one chunk", {
clickID('size100problem2')
Sys.sleep(1)
value.vec <- chunk.counts()
expect_equal(value.vec,
c(1, 1, 1, 1, 1, 1,
0, 0, 0, 0, 0, 0, 0, 0,
1, 1, 1, 1,
0, 0, 0, 0))
})
test_that("clickSelects tooltip/title", {
circle.list <- getNodeSet(info$html, circle.xpath)
expect_equal(length(circle.list), 3)
title.list <- getNodeSet(info$html, title.xpath)
title.vec <- sapply(title.list, xmlValue)
expect_identical(title.vec, paste("size.100.problem.1peaks", 0:2))
}) |
DataSummaryGUI <- function(base.txt) {
submit <- function() {
if( !is.nothing) {
data.select <- as.numeric( tkcurselection( data.listbox))+1
dd.cmd <- paste( "dd <- get( \"", full.list[ data.select], "\")", sep="")
} else dd.cmd <- "dd <- in2extRemesData"
eval( parse( text=dd.cmd))
write( dd.cmd, file="in2extRemes.log", append=TRUE)
summaryCMD <- "print( summary( dd[[\"data\"]]))"
eval( parse( text=summaryCMD))
write( summaryCMD, file="in2extRemes.log", append=TRUE)
tkdestroy( base)
invisible()
}
DataSummaryHelp <- function() {
help.msg1 <- paste( " ",
"This is a simple function that summarizes the entire selected data set and prints the summary to the console", " ",
sep="\n")
cat( help.msg1)
invisible()
}
endprog <- function() {
tkdestroy( base)
}
base <- tktoplevel()
tkwm.title( base, "Data Summary")
top.frm <- tkframe( base, borderwidth=2, relief="groove")
bot.frm <- tkframe( base, borderwidth=2, relief="groove")
data.listbox <- tklistbox( top.frm,
yscrollcommand=function(...) tkset(data.scroll, ...),
selectmode="single",
width=20,
height=5,
exportselection=0)
data.scroll <- tkscrollbar( top.frm, orient="vert",
command=function(...) tkyview( data.listbox, ...))
temp <- ls(all.names=TRUE, name=".GlobalEnv")
full.list <- character(0)
is.nothing <- TRUE
for( i in 1:length( temp)) {
if( is.null( class( get( temp[i])))) next
if( (class(get( temp[i]))[1] == "in2extRemesDataObject")) {
tkinsert( data.listbox, "end", paste( temp[i]))
full.list <- c( full.list, temp[i])
is.nothing <- FALSE
}
}
tkpack( tklabel( top.frm, text="Data Object", padx=4), side="top")
tkpack( data.listbox, data.scroll, side="left", fill="y")
tkpack( top.frm)
ok.but <- tkbutton( bot.frm, text="OK", command=submit)
cancel.but <- tkbutton( bot.frm, text="Cancel", command=endprog)
help.but <- tkbutton( bot.frm, text="Help", command=DataSummaryHelp)
tkpack( ok.but, cancel.but, side="left")
tkpack( help.but, side="right")
tkbind( ok.but, "<Return>", submit)
tkbind( cancel.but, "<Return>", endprog)
tkbind( help.but, "<Return>", DataSummaryHelp)
tkpack( top.frm, fill="x")
tkpack( bot.frm, side="bottom")
} |
Sliding.Window <-
function(VLF, seqlength, n = 30){
samples <- nrow(VLF)
window <- matrix(0, nrow = samples, ncol = seqlength-n)
colors <- c("blue", "red", "green", "purple")
for(r in 1:samples){
for(i in 1:(seqlength-n)){
for(z in 0:(n-1)){
window[r,i] <- window[r,i] + VLF[r,i+z]
}
window[r,i] = window[r,i]/n
}
}
theAxis = (c(1:(seqlength-n))/(seqlength-n))*100
plot(x = theAxis, window[1,], type = "l", ylab = "VLFs/Position", xlab = "Percentile Barcode Segment", main = bquote("Sliding Window Analysis of ntVLFs (Window, N =" ~ .(n)~")"), col = colors[1])
t = 2
while(t <= samples){
lines(x = theAxis, window[t,], type = "l", col = colors[t])
t <- t + 1
}
if(samples > 1){
legend("topright", legend = rownames(VLF), col = colors[1:samples], lty = 1)
}
} |
"pdfpe3" <-
function(x,para) {
if(! are.parpe3.valid(para)) return()
names(para$para) <- NULL
MU <- para$para[1]
SIGMA <- para$para[2]
GAMMA <- para$para[3]
SMALL <- sqrt(.Machine$double.eps)
if(abs(GAMMA) <= SMALL) return(dnorm(x, mean=MU, sd=SIGMA))
ALPHA <- 4/GAMMA^2
BETA <- (1/2) * SIGMA * abs(GAMMA)
XI <- MU - 2 * SIGMA/GAMMA
Y <- sign(GAMMA) * (x - XI)
f <- dgamma(Y/BETA, ALPHA)/BETA
names(f) <- NULL
f[! is.finite(f)] <- NA
f[is.na(f)] <- 0
return(f)
} |
source <-
function(file, local = FALSE, echo = verbose, print.eval = echo,
exprs, spaced = use_file,
verbose = getOption("verbose"),
prompt.echo = getOption("prompt"),
max.deparse.length = 150, width.cutoff = 60L,
deparseCtrl = "showAttributes",
chdir = FALSE,
encoding = getOption("encoding"),
continue.echo = getOption("continue"),
skip.echo = 0, keep.source = getOption("keep.source"))
{
envir <- if (isTRUE(local)) parent.frame()
else if(identical(local, FALSE)) .GlobalEnv
else if (is.environment(local)) local
else stop("'local' must be TRUE, FALSE or an environment")
if (!missing(echo)) {
if (!is.logical(echo))
stop("'echo' must be logical")
if (!echo && verbose) {
warning("'verbose' is TRUE, 'echo' not; ... coercing 'echo <- TRUE'")
echo <- TRUE
}
}
if (verbose) {
cat("'envir' chosen:")
print(envir)
}
if(use_file <- missing(exprs)) {
ofile <- file
from_file <- FALSE
srcfile <- NULL
if(is.character(file)) {
have_encoding <- !missing(encoding) && encoding != "unknown"
if(identical(encoding, "unknown")) {
enc <- utils::localeToCharset()
encoding <- enc[length(enc)]
} else enc <- encoding
if(length(enc) > 1L) {
encoding <- NA
owarn <- options(warn = 2)
for(e in enc) {
if(is.na(e)) next
zz <- file(file, encoding = e)
res <- tryCatch(readLines(zz, warn = FALSE), error = identity)
close(zz)
if(!inherits(res, "error")) { encoding <- e; break }
}
options(owarn)
}
if(is.na(encoding))
stop("unable to find a plausible encoding")
if(verbose)
cat(gettextf('encoding = "%s" chosen', encoding), "\n", sep = "")
if(file == "") {
file <- stdin()
srcfile <- "<stdin>"
} else {
filename <- file
file <- file(filename, "r", encoding = encoding)
on.exit(close(file))
if (isTRUE(keep.source)) {
lines <- readLines(file, warn = FALSE)
on.exit()
close(file)
srcfile <- srcfilecopy(filename, lines, file.mtime(filename)[1],
isFile = TRUE)
} else {
from_file <- TRUE
srcfile <- filename
}
loc <- utils::localeToCharset()[1L]
encoding <- if(have_encoding)
switch(loc,
"UTF-8" = "UTF-8",
"ISO8859-1" = "latin1",
"unknown")
else "unknown"
}
} else {
lines <- readLines(file, warn = FALSE)
srcfile <-
if (isTRUE(keep.source))
srcfilecopy(deparse(substitute(file)), lines)
else
deparse(substitute(file))
}
exprs <- if (!from_file) {
if (length(lines))
.Internal(parse(stdin(), n = -1, lines, "?", srcfile, encoding))
else expression()
} else
.Internal(parse(file, n = -1, NULL, "?", srcfile, encoding))
on.exit()
if (from_file) close(file)
if (verbose)
cat("--> parsed", length(exprs), "expressions; now eval(.)ing them:\n")
if (chdir){
if(is.character(ofile)) {
if(grepl("^(ftp|http|file)://", ofile))
warning("'chdir = TRUE' makes no sense for a URL")
else if((path <- dirname(ofile)) != ".") {
owd <- getwd()
if(is.null(owd))
stop("cannot 'chdir' as current directory is unknown")
on.exit(setwd(owd), add=TRUE)
setwd(path)
}
} else {
warning("'chdir = TRUE' makes no sense for a connection")
}
}
} else {
if(!missing(file)) stop("specify either 'file' or 'exprs' but not both")
if(!is.expression(exprs))
exprs <- as.expression(exprs)
}
Ne <- length(exprs)
if (echo) {
sd <- "\""
nos <- "[^\"]*"
oddsd <- paste0("^", nos, sd, "(", nos, sd, nos, sd, ")*", nos, "$")
trySrcLines <- function(srcfile, showfrom, showto) {
tryCatch(suppressWarnings(getSrcLines(srcfile, showfrom, showto)),
error = function(e) character())
}
}
yy <- NULL
lastshown <- 0
srcrefs <- attr(exprs, "srcref")
if(verbose && !is.null(srcrefs)) {
cat("has srcrefs:\n"); utils::str(srcrefs) }
for (i in seq_len(Ne+echo)) {
tail <- i > Ne
if (!tail) {
if (verbose)
cat("\n>>>> eval(expression_nr.", i, ")\n\t =================\n")
ei <- exprs[i]
}
if (echo) {
nd <- 0
srcref <- if(tail) attr(exprs, "wholeSrcref") else
if(i <= length(srcrefs)) srcrefs[[i]]
if (!is.null(srcref)) {
if (i == 1) lastshown <- min(skip.echo, srcref[3L]-1)
if (lastshown < srcref[3L]) {
srcfile <- attr(srcref, "srcfile")
dep <- trySrcLines(srcfile, lastshown+1, srcref[3L])
if (length(dep)) {
leading <- if(tail) length(dep) else srcref[1L]-lastshown
lastshown <- srcref[3L]
while (length(dep) && grepl("^[[:blank:]]*$", dep[1L])) {
dep <- dep[-1L]
leading <- leading - 1L
}
dep <- paste0(rep.int(c(prompt.echo, continue.echo),
c(leading, length(dep)-leading)),
dep, collapse="\n")
nd <- nchar(dep, "c")
} else
srcref <- NULL
}
}
if (is.null(srcref)) {
if (!tail) {
dep <- substr(paste(deparse(ei, width.cutoff = width.cutoff,
control = deparseCtrl),
collapse = "\n"), 12L, 1e+06L)
dep <- paste0(prompt.echo,
gsub("\n", paste0("\n", continue.echo), dep))
nd <- nchar(dep, "c") - 1L
}
}
if (nd) {
do.trunc <- nd > max.deparse.length
dep <- substr(dep, 1L, if (do.trunc) max.deparse.length else nd)
cat(if (spaced) "\n", dep, if (do.trunc)
paste(if (grepl(sd, dep) && grepl(oddsd, dep))
" ...\" ..." else " ....", "[TRUNCATED] "),
"\n", sep = "")
}
}
if (!tail) {
yy <- withVisible(eval(ei, envir))
i.symbol <- mode(ei[[1L]]) == "name"
if (!i.symbol) {
curr.fun <- ei[[1L]][[1L]]
if (verbose) {
cat("curr.fun:")
utils::str(curr.fun)
}
}
if (verbose >= 2) {
cat(".... mode(ei[[1L]])=", mode(ei[[1L]]), "; paste(curr.fun)=")
utils::str(paste(curr.fun))
}
if (print.eval && yy$visible) {
if(isS4(yy$value))
methods::show(yy$value)
else
print(yy$value)
}
if (verbose)
cat(" .. after ", sQuote(deparse(ei, control =
unique(c(deparseCtrl, "useSource")))),
"\n", sep = "")
}
}
invisible(yy)
}
withAutoprint <- function(exprs, evaluated = FALSE, local = parent.frame(),
print. = TRUE, echo = TRUE, max.deparse.length = Inf,
width.cutoff = max(20, getOption("width")),
deparseCtrl = c("keepInteger", "showAttributes", "keepNA"),
...)
{
if(!evaluated) {
exprs <- substitute(exprs)
if(is.call(exprs)) {
if(exprs[[1]] == quote(`{`))
exprs <- as.list(exprs[-1])
}
}
source(exprs = exprs, local = local, print.eval = print., echo = echo,
max.deparse.length = max.deparse.length, width.cutoff = width.cutoff,
deparseCtrl = deparseCtrl, ...)
} |
plot.msden <- function(x, what = c("z", "edge", "bw"), sleep = 0.2, override.par = TRUE, ...){
wha <- what[1]
ellip <- list(...)
if(is.null(ellip)) ellip <- list()
if(is.null(ellip$box)) ellip$box <- FALSE
if(is.null(ellip$ribargs)) ellip$ribargs <- list(box=TRUE)
if(wha=="z"){
lst <- x$z
} else if(wha=="edge"){
lst <- x$q
if(is.null(lst)) stop("no edge correction present in multi-scale density object")
} else if(wha=="bw"){
lst <- x$him
if(is.null(ellip$zlim)) ellip$zlim <- range(lapply(lst,range))
} else {
stop("invalid 'what'")
}
if(override.par) par(mfrow=c(1,1),mar=rep(2,4))
hv <- as.numeric(names(lst))
for(i in 1:length(lst)){
dev.hold()
ellip$x <- lst[[i]]
ellip$main <- paste("h0 =",round(hv[i],5))
do.call("plot.im",ellip)
plot(as.polygonal(Window(x$pp)),add=TRUE)
axis(1)
axis(2)
box(bty="l")
dev.flush()
Sys.sleep(sleep)
}
invisible(NULL)
} |
plot_qdis.lmvar <- function( object_1, object_2 = NULL, ...){
name_1 = deparse(substitute(object_1))
name_2 = deparse(substitute(object_2))
plot_qdis_lmlike( object_1, object_2, name_1, name_2)
} |
expected <- eval(parse(text="NULL"));
test(id=0, code={
argv <- eval(parse(text="list(-1L, FALSE, FALSE, FALSE)"));
.Internal(`sink`(argv[[1]], argv[[2]], argv[[3]], argv[[4]]));
}, o=expected); |
library(dplyr)
data(mpg, package = "ggplot2")
mpgman2 <- mpg %>%
group_by(manufacturer, year) %>%
dplyr::summarise(
n = dplyr::n(),
displ = mean(displ)
)
mpgman2
hchart(
mpgman2, "column", hcaes(x = manufacturer, y = n, group = year),
colorKey = "displ",
name = c("Year 1999", "Year 2008")
) %>%
hc_colorAxis(min = 0, max = 5)
hchart(iris, "point", hcaes(Sepal.Length, Sepal.Width)) %>%
hc_colorAxis(
minColor = "red",
maxColor = "blue"
)
n <- 5
stops <- data.frame(
q = 0:n/n,
c = c("
stringsAsFactors = FALSE
)
stops <- list_parse2(stops)
M <- round(matrix(rnorm(50*50), ncol = 50), 2)
hchart(M) %>%
hc_colorAxis(stops = stops) |
insertMatBtoA <- function(A, B) {
namesA <- rownames(A)
namesB <- rownames(B)
namesAinB <- namesA[namesA %in% namesB]
namesA2 <- colnames(A)
namesB2 <- colnames(B)
namesAinB2 <- namesA2[namesA2 %in% namesB2]
A[namesA %in% namesB, namesA2 %in% namesB2] <- B[match(namesAinB,
namesB), match(namesAinB2, namesB2)]
return(A)
} |
context("correlations output")
x <- cat(" Correlations \n-------------------------------------------\nVariable Zero Order Partial Part \n-------------------------------------------\ndisp -0.848 -0.048 -0.019 \nhp -0.776 -0.224 -0.093 \nwt -0.868 -0.574 -0.285 \nqsec 0.419 0.219 0.091 \n-------------------------------------------")
model <- lm(mpg ~ disp + hp + wt + qsec, data = mtcars)
expect_output(print(olsrr::ols_correlations(model)), x) |
options(digits=3)
dataDir <- system.file("extdata", package = "qMRI")
t1Names <- paste0("t1w_", 1:8, ".nii.gz")
mtNames <- paste0("mtw_", 1:6, ".nii.gz")
pdNames <- paste0("pdw_", 1:8, ".nii.gz")
t1Files <- file.path(dataDir, t1Names)
mtFiles <- file.path(dataDir, mtNames)
pdFiles <- file.path(dataDir, pdNames)
B1File <- file.path(dataDir, "B1map.nii.gz")
maskFile <- file.path(dataDir, "mask.nii.gz")
TE <- c(2.3, 4.6, 6.9, 9.2, 11.5, 13.8, 16.1, 18.4,
2.3, 4.6, 6.9, 9.2, 11.5, 13.8,
2.3, 4.6, 6.9, 9.2, 11.5, 13.8, 16.1, 18.4)
TR <- rep(25, 22)
FA <- c(rep(21, 8), rep(6, 6), rep(6, 8))
library(qMRI)
mpm <- readMPMData(t1Files, pdFiles, mtFiles,
maskFile,
TR = TR, TE = TE, FA = FA,
verbose = FALSE)
modelMPM <- estimateESTATICS(mpm,
method = "NLR",
verbose = FALSE)
setCores(2, reprt=FALSE)
modelMPMQLsp1 <- smoothESTATICS(modelMPM,
mpmData = extract(mpm, "ddata"),
kstar = 16,
alpha = 0.004,
patchsize = 1,
verbose = FALSE)
mask <- extract(mpm,"mask")
mask[,c(1:10,12:21),] <- FALSE
mpm <- qMRI:::setMPMmask(mpm, mask)
sigma <- array(50, mpm$sdim)
modelMPMQL <- estimateESTATICS(mpm,
method = "QL",
sigma = sigma,
L = 1,
verbose = FALSE)
library(adimpro)
rimage.options(zquantiles = c(.01, .99), ylab = "z")
par(mfrow = c(2, 4),
mar = c(3, 3, 3, 1), mgp = c(2, 1, 0))
pnames <- c("T1", "MT", "PD", "R2star")
for (i in 1:4) {
modelCoeff <- extract(modelMPMQL,"modelCoeff")
rimage(modelCoeff[i, , 11, ])
title(pnames[i])
}
for (i in 1:4) {
modelCoeff <- extract(modelMPMQLsp1,"modelCoeff")
rimage(modelCoeff[i, , 11, ])
title(paste("smoothed", pnames[i]))
}
mpmsp1 <- mpm
ddata <- extract(modelMPMQLsp1,"smoothedData")
dim(ddata) <- c(dim(ddata)[1],prod(dim(ddata)[-1]))
mpmsp1$ddata <- ddata[,mpm$mask]
modelMPM2 <- estimateESTATICS(mpmsp1,
method = "NLR",
L = 1,
verbose = FALSE)
qMRIMaps <- calculateQI(modelMPM,
b1File = B1File,
TR2 = 3.4)
qMRIQLMaps <- calculateQI(modelMPMQL,
b1File = B1File,
TR2 = 3.4)
qMRIQLSmoothedp1Maps <- calculateQI(modelMPMQLsp1,
b1File = B1File,
TR2 = 3.4)
qMRIMaps2 <- calculateQI(modelMPM2,
b1File = B1File,
TR2 = 3.4)
library(oro.nifti)
zlim <- matrix(c(0, 0, 0, 3000,
1.5, 35, 2, 10000),
4, 2)
R1 <- readNIfTI(file.path(dataDir, "R1map.nii.gz"))
R2star <- readNIfTI(file.path(dataDir, "R2starmap.nii.gz"))
MT <- readNIfTI(file.path(dataDir, "MTmap.nii.gz"))
PD <- readNIfTI(file.path(dataDir, "PDmap.nii.gz"))
rimage.options(ylab = "z")
par(mfrow = c(4, 4),
mar = c(3, 3, 3, 1), mgp = c(2, 1, 0))
nmaps <- c("R1", "R2star", "MT", "PD")
rimage(R1[, 11, ], zlim = zlim[1, ],
main = paste("true", nmaps[1]))
rimage(R2star[, 11, ], zlim = zlim[2, ],
main = paste("true", nmaps[2]))
rimage(MT[, 11, ], zlim = zlim[3, ],
main = paste("true", nmaps[3]),
col = colMT)
rimage(PD[, 11, ], zlim = zlim[4, ],
main = paste("true", nmaps[4]))
qmap1 <- extract(qMRIQLMaps, nmaps)
for (i in 1:4) rimage(qmap1[[i]][, 11, ], zlim = zlim[i, ],
main = paste("Estimated", nmaps[i]),
col = if(i==3) colMT else grey(0:225/255))
qmap2 <- extract(qMRIQLSmoothedp1Maps, nmaps)
for (i in 1:4) rimage(qmap2[[i]][, 11, ], zlim = zlim[i, ],
main = paste("Smoothed", nmaps[i]),
col = if(i==3) colMT else grey(0:225/255))
qmap3 <- extract(qMRIMaps2, nmaps)
for (i in 1:4) rimage(qmap3[[i]][, 11, ], zlim = zlim[i, ],
main = paste("Smoothed data", nmaps[i]),
col = if(i==3) colMT else grey(0:225/255))
qmap0 <- extract(qMRIMaps,nmaps)
mask <- extract(mpm,"mask")
cat("\n",
"Bias of NLR estimates\n",
"R1", mean((qmap0$R1-R1)[mask]),
"R2star", mean((qmap0$R2star-R2star)[mask]),
"MT", mean((qmap0$MT-MT)[mask]),
"PD", mean((qmap0$PD-PD)[mask]), "\n",
"Bias of QL estimates\n",
"R1", mean((qmap1$R1-R1)[mask]),
"R2star", mean((qmap1$R2star-R2star)[mask]),
"MT", mean((qmap1$MT-MT)[mask]),
"PD", mean((qmap1$PD-PD)[mask]), "\n")
cat("\n",
"Root mean squared error of NLR estimate\n",
"R1", sqrt(mean((qmap0$R1-R1)[mask]^2)),
"R2star", sqrt(mean((qmap0$R2star-R2star)[mask]^2)),
"MT", sqrt(mean((qmap0$MT-MT)[mask]^2)),
"PD", sqrt(mean((qmap0$PD-PD)[mask]^2)), "\n",
"Root mean squared error of QL estimate\n",
"R1", sqrt(mean((qmap1$R1-R1)[mask]^2)),
"R2star", sqrt(mean((qmap1$R2star-R2star)[mask]^2)),
"MT", sqrt(mean((qmap1$MT-MT)[mask]^2)),
"PD", sqrt(mean((qmap1$PD-PD)[mask]^2)),"\n",
"Root mean squared error of smoothed QL estimate\n",
"R1", sqrt(mean((qmap2$R1-R1)[mask]^2)),
"R2star", sqrt(mean((qmap2$R2star-R2star)[mask]^2)),
"MT", sqrt(mean((qmap2$MT-MT)[mask]^2)),
"PD", sqrt(mean((qmap2$PD-PD)[mask]^2)),"\n",
"Root mean squared error of estimate from smoothed data \n",
"R1", sqrt(mean((qmap3$R1-R1)[mask]^2)),
"R2star", sqrt(mean((qmap3$R2star-R2star)[mask]^2)),
"MT", sqrt(mean((qmap3$MT-MT)[mask]^2)),
"PD", sqrt(mean((qmap3$PD-PD)[mask]^2)),"\n")
cat("Mean R1", mean(R1[mask]), "Mean R2star",
mean(R2star[mask]), "Mean MT", mean(MT[mask]),
"Mean PD", mean(PD[mask]),"\n") |
classicalBootstrap <- function(initialSample, b = n, increases = FALSE)
{
if(is.vector(initialSample))
{
initialSample <- matrix(initialSample,nrow=1)
}
n <- nrow(initialSample)
parameterCheckForResampling(initialSample,b)
if(increases)
{
initialSample <- transformFromIncreases(initialSample)
}
if(!all(apply(initialSample, 1, is.Fuzzy)))
{
stop("Some values in initial sample are not correct fuzzy numbers")
}
numbers <- sample(n,b, replace = TRUE)
outputSample <- initialSample[numbers,]
if(increases)
{
outputSample <- transformToIncreases(outputSample)
}
return(outputSample)
} |
library(azuremlsdk)
library(optparse)
library(caret)
library(glmnet)
options <- list(
make_option(c("-d", "--data_folder")),
make_option(c("-p", "--percent_train"))
)
opt_parser <- OptionParser(option_list = options)
opt <- parse_args(opt_parser)
paste(opt$data_folder)
accidents <- readRDS(file.path(opt$data_folder, "accidents.Rd"))
summary(accidents)
train.pct <- as.numeric(opt$percent_train)
if(length(train.pct)==0 || (train.pct<0) || (train.pct>1)) train.pct <- 0.75
accident_idx <- createDataPartition(accidents$dead, p = train.pct, list = FALSE)
accident_trn <- accidents[accident_idx, ]
accident_tst <- accidents[-accident_idx, ]
calc_acc = function(actual, predicted) {
mean(actual == predicted)
}
accident_glmnet_mod = train(
dead ~ .,
data = accident_trn,
method = "glmnet"
)
summary(accident_glmnet_mod)
log_metric_to_run("Accuracy",
calc_acc(actual = accident_tst$dead,
predicted = predict(accident_glmnet_mod, newdata = accident_tst))
)
log_metric_to_run("Method","GLMNET")
log_metric_to_run("TrainPCT",train.pct)
output_dir = "outputs"
if (!dir.exists(output_dir)){
dir.create(output_dir)
}
saveRDS(accident_glmnet_mod, file = "./outputs/model.rds")
message("Model saved") |
isofind <- function(data,
isoscape,
calibfit = NULL,
mask = NA,
verbose = interactive()
) {
if (verbose) {
print("computing the test statistic and its variance...")
}
if (is.null(calibfit)) {
warning(
"The assignment is computed directly on the isoscape
without using a calibration! This means that IsoriX
considers that you directly fitted the isoscape on
the same material as the material you are trying
to assign. If this is not the case, rerun isofind()
by providing a calibration object to the argument
calibfit!")
}
if (!is.null(mask) && class(mask) != "SpatialPolygons" && is.na(mask)) {
OceanMask <- NULL
utils::data("OceanMask", envir = environment(), package = "IsoriX")
mask <- OceanMask
}
names_layers <- gsub(" ", "_", as.character(data$sample_ID))
time <- system.time({
if (!is.null(calibfit)) {
data$mean_origin <-
(data$sample_value - calibfit$param["intercept"])/calibfit$param["slope"]
list_stat_layers <- sapply(1:nrow(data),
function(i) {
data$mean_origin[i] - isoscape$isoscapes$mean
}
)
} else {
list_stat_layers <- sapply(1:nrow(data),
function(i) {
data$sample_value[i] - isoscape$isoscapes$mean
}
)
}
names(list_stat_layers) <- names_layers
stat_brick <- raster::brick(list_stat_layers)
rm(list_stat_layers)
if (any(names_layers != names(stat_brick))) {
warning("Your sample_ID could not be used to name rasters (you may have used numbers, symbols or punctuations that is messing with the package raster), so they have been slightly modified by this package.")
names_layers <- names(stat_brick)
}
if (!is.null(calibfit)) {
X <- cbind(1, data$mean_origin)
fixedVar <- rowSums(X * (X %*% calibfit$fixefCov))
list_varstat_layers <- sapply(1:nrow(data),
function(i) {
isoscape$isoscapes$mean_predVar +
calibfit$phi/calibfit$param["slope"]^2 +
fixedVar[i]/calibfit$param["slope"]^2 +
0
}
)
} else {
list_varstat_layers <- sapply(1:nrow(data),
function(i) {
isoscape$isoscapes$mean_respVar
}
)
}
names(list_varstat_layers) <- names_layers
varstat_brick <- raster::brick(list_varstat_layers)
rm(list_varstat_layers)
if (verbose) {
print("running the assignment test...")
}
logpv_brick <- raster::raster(varstat_brick)
for (sample_ID in names_layers) {
name_layer <- paste("logpv_brick$", sample_ID, sep = "")
expr_to_run <- paste(name_layer,
"<- .assign_test(raster::values(stat_brick[[sample_ID]]), raster::values(varstat_brick[[sample_ID]]))"
)
eval(parse(text = expr_to_run))
}
if (verbose) {
print("combining assignments across samples...")
}
group_pv <- raster::calc(logpv_brick, .Fisher_method)
})
time <- round(as.numeric((time)[3]))
if (verbose) {
print(paste("assignments for all", nrow(data), "organisms have been computed in", time, "sec."))
}
if (verbose) {
print("converting log p-values into p-values...")
}
pv_brick <- exp(logpv_brick)
rm(logpv_brick)
names(pv_brick) <- names_layers
if (!is.null(mask)) {
if (verbose) {
print("applying the mask...")
}
raster_mask <- is.na(raster::rasterize(mask, stat_brick))
stat_brick <- stat_brick*raster_mask
names(stat_brick) <- names_layers
varstat_brick <- varstat_brick*raster_mask
names(varstat_brick) <- names_layers
pv_brick <- pv_brick*raster_mask
names(pv_brick) <- names_layers
group_pv <- raster::overlay(group_pv, raster_mask, fun = prod)
}
if (!is.null(data$lat) & !is.null(data$long)) {
assigns <- .create_spatial_points(long = data$long,
lat = data$lat,
proj = "+proj=longlat +datum=WGS84"
)
} else {
assigns <- NULL
}
calibs <- NULL
if (!is.null(calibfit)) {
calibs <- calibfit$sp_points$calibs
}
out <- list(sample = list("stat" = stat_brick,
"stat_var" = varstat_brick,
"pv" = pv_brick
),
group = list("pv" = group_pv),
sp_points = list("sources" = isoscape$sp_points$sources,
"calibs" = calibs,
"assigns" = assigns
)
)
class(out) <- c("ISOFIND", "list")
if (verbose) {
print("done!")
}
return(out)
}
.assign_test <- function(stats, vars, log_scale = TRUE) {
pv <- 2*(1 - stats::pnorm(abs(stats), mean = 0, sd = sqrt(vars)))
if (log_scale) {
pv <- log(pv)
}
return(pv)
}
.Fisher_method <- function(logpv) {
if (length(logpv) == 1) {
return(exp(logpv))
}
Fisher_stat <- -2*sum(logpv, na.rm = TRUE)
df <- 2*length(logpv[!is.na(logpv)])
pv <- stats::pchisq(q = Fisher_stat, df = df, lower.tail = FALSE)
return(pv)
}
print.ISOFIND <- function(x, ...) {
print(summary(x))
return(invisible(NULL))
}
summary.ISOFIND <- function(object, ...) {
for (i in names(object)[names(object) != "sp_points"]) {
cat(paste("
print(object[[i]])
cat("\n")
}
return(invisible(NULL))
} |
e2qmol_multipliers <- function(w.length){
return(e2quantum_multipliers(w.length, molar=TRUE))
} |
"glow500"
"glow11m"
"glow_bonemed"
"glow_mis_comp"
"glow_mis_wmissing"
"glow_rand" |
A=c(1,1.5,3,5,3.5,4.5,3.5)
B=c(1,2,4,7,5,5,4.5)
marks=data.frame(A,B)
marks
?kmeans
(c1 = kmeans(marks,centers=3))
c1$iter
cbind(marks, c1$cluster)
c1$centers
plot(marks, pch=10,col = c1$cluster)
c1$centers
points(c1$centers, col = 1:3, pch = 8, cex = 3)
c1$iter
mcenters = marks[c(1,5),]
mcenters
(c2a <- kmeans(marks, centers=mcenters))
cbind(marks, c2a$cluster)
matrix(c(1,1,5,7), ncol=2)
?matrix
(c2b <- kmeans(marks, centers=matrix(c(1,1,5,7), ncol=2)))
c2a
cbind(marks,c2a$cluster)
c2a$centers
aggregate(marks,by=list(c2a$cluster),FUN=mean)
c2a
c2a$iter
library(dplyr)
marks
marks %>% group_by(c2a$cluster) %>% summarise_all(funs(sum, mean, median, n()))
x1=marks[1,]; x2=marks[2,]
x1;x2
sqrt(sum((x1-x2)^2))
sqrt(1.25)
dist(rbind(x1,x2))
euc.dist <- function(x1, x2) sqrt(sum((x1 - x2) ^ 2))
for (i in 1:7)
print(paste(i, round(euc.dist(marks[i,], marks[1,]),2),sep='-'))
ref1 = marks[1,]; ref1
ref2 = marks[4,]; ref2
(d1= apply(marks,1,function(x)sqrt(sum((x-ref1)^2))))
(d2= apply(marks,1,function(x)sqrt(sum((x-ref2)^2))))
df=cbind(marks, d1,d2)
df
apply(df, 1, function(x) max(which(x == min(x, na.rm = TRUE))))
df
apply(df[,c(3,4)],1, min)
df3 <-transform(df, mind1d2=apply(df[,c(3,4)],1, min, na.rm = TRUE))
df3
gender = c('M','F','M')
gender
genderF = factor(gender)
genderF
grades = c('A','B','C')
grades
gradesF = factor(grades)
gradesF
gradesF1 = factor(grades, ordered=T)
gradesF1
gradesF2 = factor(grades, ordered=T, levels=c('C','B','A'))
gradesF2
marks = rnorm(3, 50,10)
df = data.frame(genderF, gradesF, marks)
df
str(df) |
test_that("use_mit_license() works", {
create_local_package()
use_mit_license()
expect_equal(desc::desc_get("License", proj_get())[[1]], "MIT + file LICENSE")
expect_proj_file("LICENSE.md")
expect_true(is_build_ignored("^LICENSE\\.md$"))
expect_proj_file("LICENSE")
expect_false(is_build_ignored("^LICENSE$"))
})
test_that("use_proprietary_license() works", {
create_local_package()
use_proprietary_license("foo")
expect_equal(desc::desc_get("License", proj_get())[[1]], "file LICENSE")
expect_proj_file("LICENSE")
})
test_that("other licenses work without error", {
create_local_package()
expect_error(use_agpl_license(3), NA)
expect_error(use_apache_license(2), NA)
expect_error(use_cc0_license(), NA)
expect_error(use_ccby_license(), NA)
expect_error(use_gpl_license(2), NA)
expect_error(use_gpl_license(3), NA)
expect_error(use_lgpl_license(2.1), NA)
expect_error(use_lgpl_license(3), NA)
expect_error(use_agpl3_license(), NA)
expect_error(use_gpl3_license(), NA)
expect_error(use_apl2_license(), NA)
})
test_that("check license gives useful errors", {
expect_error(check_license_version(1, 2), "must be 2")
expect_error(check_license_version(1, 2:4), "must be 2, 3, or 4")
})
test_that("generate correct abbreviations", {
expect_equal(license_abbr("GPL", 2, TRUE), "GPL (>= 2)")
expect_equal(license_abbr("GPL", 2, FALSE), "GPL-2")
expect_equal(license_abbr("Apache License", 2, FALSE), "Apache License (== 2)")
}) |
context("Bonett & Price Jr (2020) examples.")
A_data <- c(21, 14, 11, 27, 19, 32, 21, 23, 18, 26, 24, 23)
B_data <- c(34, 19, 26, 31, 39, 42, 27, 14, 25, 29, 33, 36)
ci_median_bs <- function(alpha, y1, y2) {
z <- qnorm(1 - alpha/2)
n1 <- length(y1)
y1 <- sort(y1)
n2 <- length(y2)
y2 <- sort(y2)
med1 <- median(y1)
med2 <- median(y2)
o1 <- round(n1/2 - sqrt(n1))
if (o1 < 1) {o1 = 1}
o2 <- n1 - o1 + 1
l1 <- log(y1[o1])
u1 <- log(y1[o2])
p <- pbinom(o1 - 1, size = n1, prob = .5)
z0 <- qnorm(1 - p)
se1 <- (u1 - l1)/(2*z0)
o1 <- round(n2/2 - sqrt(n2))
if (o1 < 1) {o1 = 1}
o2 <- n2 - o1 + 1
l2 <- log(y2[o1])
u2 <- log(y2[o2])
p <- pbinom(o1 - 1, size = n2, prob = .5)
z0 <- qnorm(1 - p)
se2 <- (u2 - l2)/(2*z0)
se <- sqrt(se1^2 + se2^2)
logratio <- log(med1/med2)
ll <- exp(logratio - z*se)
ul <- exp(logratio + z*se)
out <- data.frame(median1 = med1,
median2 = med2,
median_ratio = exp(logratio),
LL = ll,
UL = ul,
log_ratio = logratio,
se = se)
return(out)
}
test_that("LRM is correct.", {
res_ci_median_bs <- ci_median_bs(alpha = .05, y1 = B_data, y2 = A_data)
res_LRM_delta <- LRM(A_data = A_data, B_data = B_data, delta_method = TRUE)
res_LRM_bar <- LRM(A_data = A_data, B_data = B_data)
expect_equal(res_ci_median_bs$log_ratio, res_LRM_delta$Est)
expect_error(expect_equal(res_ci_median_bs$se, res_LRM_delta$SE))
expect_equal(res_ci_median_bs$log_ratio, res_LRM_bar$Est)
expect_equal(res_ci_median_bs$se, res_LRM_bar$SE)
expect_equal(log(res_ci_median_bs$LL), res_LRM_bar$CI_lower)
expect_equal(log(res_ci_median_bs$UL), res_LRM_bar$CI_upper)
})
test_that("LRM warns for data series of length 1.", {
A_data <- c(9, 5, 1)
B_data <- c(2, 3)
C_data <- c(3)
expect_silent(LRM(A_data = A_data, B_data = B_data, delta_method = TRUE))
expect_silent(LRM(A_data = A_data, B_data = B_data))
expect_warning(LRM(A_data = A_data, B_data = C_data, delta_method = TRUE))
expect_warning(LRM(A_data = A_data, B_data = C_data))
})
test_that("LRM works when data series has zeros.", {
A_data <- c(9, 5, 5, 6, 11, 4, 1, 2, 3, 6, 6)
B_data <- c(0, 3, 0, 1, 4, 2, 4, 0, 3, 2, 1, 0, 0, 0)
C_data <- c(0, 0, 0, 1, 0, 2, 4, 0, 3, 2, 1, 0, 0, 0)
expect_silent(LRM(A_data = A_data, B_data = B_data, delta_method = TRUE))
expect_silent(LRM(A_data = A_data, B_data = B_data))
expect_silent(LRM(A_data = A_data, B_data = C_data, delta_method = TRUE))
expect_silent(LRM(A_data = A_data, B_data = C_data))
})
test_that("LRM works within calc_ES() and batch_calc_ES().", {
library(dplyr)
res_A <-
McKissick %>%
group_by(Case_pseudonym) %>%
summarise(
calc_ES(condition = Condition, outcome = Outcome,
ES = c("LRRd","LRM"),
improvement = "decrease",
format = "wide")
)
res_B <-
batch_calc_ES(
McKissick,
grouping = Case_pseudonym,
condition = Condition,
outcome = Outcome,
session_number = Session_number,
ES = c("LRRd","LRM"),
improvement = "decrease",
format = "wide"
)
res_C <-
batch_calc_ES(
McKissick,
grouping = Case_pseudonym,
condition = Condition,
outcome = Outcome,
session_number = Session_number,
improvement = "decrease",
ES = "LRM"
) %>%
select(-ES) %>%
rename_with(.fn = ~ paste("LRM", ., sep = "_"), .cols = -Case_pseudonym)
res_D <-
batch_calc_ES(
McKissick,
grouping = Case_pseudonym,
condition = Condition,
outcome = Outcome,
session_number = Session_number,
improvement = "decrease",
ES = "all",
warn = FALSE
) %>%
dplyr::filter(ES == "LRM") %>%
select(-ES) %>%
rename_with(.fn = ~ paste("LRM", ., sep = "_"), .cols = -Case_pseudonym)
res_E <-
batch_calc_ES(
McKissick,
grouping = Case_pseudonym,
condition = Condition,
outcome = Outcome,
session_number = Session_number,
improvement = "decrease",
ES = "parametric",
warn = FALSE
) %>%
dplyr::filter(ES == "LRM") %>%
select(-ES) %>%
rename_with(.fn = ~ paste("LRM", ., sep = "_"), .cols = -Case_pseudonym)
expect_equal(res_A, res_B)
expect_equal(res_C, select(res_B, Case_pseudonym, starts_with("LRM")))
expect_equal(res_C, res_D)
expect_equal(res_C, res_E)
}) |
context("copula")
test_that("copula behaves as it should", {
skip_on_cran()
skip_on_travis()
fun <- function(d) apply(d,2,function(x)(1:n)[rank(x)])/(1+n)
n <- 200
u2 <- cbind(sample(n),sample(n))
d2 <- fun(u2)
u3 <- cbind(sample(n),sample(n),sample(n))
d3 <- fun(u3)
expect_equal(d2, copula(u2)$copula, label="copula:2dimensional")
expect_equal(d3, copula(u3)$copula, label="copula:3dimensional")
})
test_that("copula throws errors", {
expect_error(copula(TRUE), label="copula:exception")
expect_error(copula("text"), label="copula:exception")
})
test_that("copula fails for data frames without numerics", {
dat <- data.frame(x=letters, stringsAsFactors=FALSE)
expect_error(copula(dat))
})
test_that("copula warns if it drops variables", {
dat <- data.frame(x=letters,
y=seq_along(letters),
stringsAsFactors=FALSE)
expect_warning(copula(dat))
}) |
library(hamcrest)
expected <- c(0x1.0cbd62e0401d5p+5 + -0x1.a19a1cd3e1fa7p-1i, -0x1.545620f35a3e8p+4 + 0x1.921fb1fdabc2ep-1i,
0x1.af99ec211f9ap+4 + -0x1.823faf58b25ccp-1i, -0x1.a07fafb825976p+4 + 0x1.71fe17a160f0cp-1i,
0x1.911477cb4de82p+5 + -0x1.615f063b6179bp-1i, -0x1.b13aa44ba639ep+5 + 0x1.5066ae27fcfb8p-1i,
0x1.2fb690b98cadap+5 + -0x1.3f1958f6843bp-1i, -0x1.17597c20df2c3p+5 + 0x1.2d7b65af06077p-1i,
0x1.728f945ac46b8p+4 + -0x1.1b9147b798716p-1i, -0x1.402ff46335374p+5 + 0x1.095f85b47cf82p-1i,
0x1.df71d062c36c1p+5 + -0x1.edd570c6d03bp-2i, -0x1.4e2099f44455cp+5 + 0x1.c86f12e46caa8p-2i,
0x1.afd3de847cce1p+4 + -0x1.a29564a2b2fe8p-2i, -0x1.b24de47ddceaep+4 + 0x1.7c51f60495fd2p-2i,
0x1.49213cf1edc6p+5 + -0x1.55ae71c49fbc1p-2i, -0x1.7275ec4ce8a1bp+5 + 0x1.2eb49ae3b9c26p-2i,
0x1.22d869c0e94f5p+5 + -0x1.076e4a31d31b9p-2i, -0x1.a886957f22906p+5 + 0x1.bfcad7a2083bp-3i,
0x1.19a2ba051d825p+5 + -0x1.7047f967a059p-3i, -0x1.2bf437bb305a2p+5 + 0x1.2068102e51472p-3i,
0x1.71d27abb2a67bp+4 + -0x1.a07e93e34b8f8p-4i, -0x1.6ac3d7449a008p+4 + 0x1.ff879c56b56ap-5i,
0x1.b0ccc22558ffap+5 + -0x1.7b21aa498c06p-6i, -0x1.80a463e91363p+1 + -0x1.092bacdb80b6p-6i,
0x1.1e9505bc8c671p+5 + 0x1.c69b02e5ebd6p-5i, -0x1.2d47eef2c341fp+5 + -0x1.8416aa9f9c2a4p-4i,
0x1.67ea420716afep+5 + 0x1.123ee3de5414ap-3i, -0x1.338d8ad4fb357p+5 + -0x1.622d29479ea24p-3i,
0x1.d6de5aa40b439p+4 + 0x1.b1c1f3ef61a25p-3i, -0x1.185c5c32a43f3p+5 + -0x1.0074946a4054cp-2i,
0x1.c5060b0becd7fp+4 + 0x1.27c76452b3eacp-2i, -0x1.356b5f95e987ap+4 + -0x1.4ecf7a66b2a4p-2i,
0x1.ed328740899b4p+4 + 0x1.7582fa3cdeb78p-2i, -0x1.6fdd28af1ef32p+5 + -0x1.9bd81cca9aadap-2i,
0x1.0b624e879529fp+5 + 0x1.c1c532dc6861fp-2i, -0x1.71320d2088666p+4 + -0x1.e740a7884230fp-2i,
0x1.fc8388984676cp+4 + 0x1.0620814ca7e1ep-1i, -0x1.4544128161ceep+5 + -0x1.185e757a2d394p-1i,
0x1.1e9b35ebf1f2ap+5 + 0x1.2a55947a330e6p-1i, -0x1.3199bcda8eba8p+5 + -0x1.3c01545f6af4fp-1i,
0x1.8751d80713e57p+5 + 0x1.4d5d3e4742e4bp-1i, -0x1.31ff9ec4502cp+5 + -0x1.5e64ef7aa2c39p-1i,
0x1.989bf61dce0d9p+5 + 0x1.6f141a8991204p-1i, -0x1.008470167622fp+5 + -0x1.7f668861781eep-1i,
0x1.090d52e94126ap+5 + 0x1.8f58195dc36a4p-1i, -0x1.38bb60c90c9fbp+5 + -0x1.9ee4c65293533p-1i,
0x1.d8423a469dd96p+5 + 0x1.ae08a19140c64p-1i, -0x1.c5f27313708eep+3 + -0x1.bcbfd7e6710bfp-1i,
0x1.7febe7f1677ffp+4 + 0x1.cb06b19178c5ap-1i, -0x1.b0e3c9277cfa4p+5 + -0x1.d8d99334cf556p-1i,
0x1.7454a4f3bc85ep+5 + 0x1.e634febf56c2ap-1i, -0x1.57a4e45319c1fp+5 + -0x1.f315944e3c736p-1i,
0x1.1caa4212b082ep+5 + 0x1.ff78130739edep-1i, -0x1.1e604feea0193p+5 + -0x1.05acacf57f48fp+0i,
0x1.914c891f1aca1p+5 + 0x1.0b5b344fc681cp+0i, -0x1.55b295274671cp+5 + -0x1.10c630192c8ddp+0i,
0x1.52bf9590b00fcp+5 + 0x1.15ec41e8fab9p+0i, -0x1.96b2d40188607p+5 + -0x1.1acc1cbf90ce4p+0i,
0x1.89a70ba49f399p+4 + 0x1.1f64855a86258p+0i, -0x1.2d6e3b22528f3p+5 + -0x1.23b452844f635p+0i,
0x1.609ade7297a47p+5 + 0x1.27ba6d5f54c22p+0i, -0x1.9d95150621936p+5 + -0x1.2b75d1ac661dap+0i,
0x1.5005bb7f147a3p+5 + 0x1.2ee58e0c7a988p+0i, -0x1.13770964d6237p+4 + -0x1.3208c43dabaf6p+0i,
0x1.069d23abb4b79p+5 + 0x1.34dea9535bd3cp+0i, -0x1.271d64a81c745p+5 + -0x1.376685e97aebap+0i,
0x1.98c69fcf4ee9fp+4 + 0x1.399fb652db317p+0i, -0x1.5c18830a1bc29p+5 + -0x1.3b89aac28b451p+0i,
0x1.70f0d61761f6ep+5 + 0x1.3d23e7702a988p+0i, -0x1.2fd8b86cb688cp+5 + -0x1.3e6e04b72f351p+0i,
0x1.0a2894cbf2ecdp+5 + 0x1.3f67af3114f8bp+0i, -0x1.55ef001254381p+5 + -0x1.4010a7ca6f8dbp+0i,
0x1.101077cc1d4fbp+5 + 0x1.4068c3d2d9fa2p+0i, -0x1.0f7b00d7b9b5cp+5 + -0x1.406fed07bf93cp+0i,
0x1.1859ba67a497fp+5 + 0x1.40262199fba75p+0i, -0x1.3099a02d37fa8p+5 + -0x1.3f8b742e4e82ep+0i,
0x1.5ded618a2798ap+5 + 0x1.3ea00bd8a7ab6p+0i, -0x1.ebdd34e36746ap+5 + -0x1.3d6424124670ap+0i,
0x1.037c597934cd9p+5 + 0x1.3bd80caab36cdp+0i, -0x1.93f68e2c75a3bp+4 + -0x1.39fc29b396ad6p+0i,
0x1.e4cd30e2d74cep+5 + 0x1.37d0f3676f914p+0i, -0x1.62c773622be08p+5 + -0x1.3556f60b34f3dp+0i,
0x1.0e30186c470e9p+5 + 0x1.328ed1cae507ep+0i, -0x1.653a0d701b57ep+5 + -0x1.2f793a910e178p+0i,
0x1.4008de0b61adp+5 + 0x1.2c16f7d95a397p+0i, -0x1.28cfbbb9bd36ep+5 + -0x1.2868e47e297f8p+0i,
0x1.20392e06a2006p+5 + 0x1.246fee81476c2p+0i, -0x1.2f99b765ea36dp+5 + -0x1.202d16cfc98f2p+0i,
0x1.bbf0953c30f6bp+4 + 0x1.1ba17101269c2p+0i, -0x1.869258c2cd7b8p+4 + -0x1.16ce231196171p+0i,
0x1.a639ebdea6844p+5 + 0x1.11b46517ca9cdp+0i, -0x1.a68ba139b0d3cp+5 + -0x1.0c5580f619299p+0i,
0x1.3e7970e7ce6a2p+5 + 0x1.06b2d207216fp+0i, -0x1.00d9517a99561p+5 + -0x1.00cdc4c60c6c8p+0i,
0x1.b11213d30199bp+5 + 0x1.f54face4ee4cep-1i, -0x1.95eb95caa1598p+4 + -0x1.e885296041db9p-1i,
0x1.384870244425ep+4 + 0x1.db3f3a44eb502p-1i, -0x1.b501643e97469p+4 + -0x1.cd813a081a824p-1i,
0x1.cfdc68bc74a2cp+5 + 0x1.bf4ea17475b43p-1i, -0x1.7c3939a85b5aep+5 + -0x1.b0ab06c98dddcp-1i,
0x1.6b102eb10f49p+3 + 0x1.a19a1cd3e1f8dp-1i, -0x1.71d62bb871008p+4 + -0x1.921fb1fdabbd4p-1i,
0x1.1725e60ffed8fp+5 + 0x1.823faf58b2553p-1i, -0x1.55b1b55662374p+5 + -0x1.71fe17a160e5ap-1i,
0x1.7f5a866cc19c1p+4 + 0x1.615f063b61771p-1i, -0x1.7dcbdfd06b481p+5 + -0x1.5066ae27fcf15p-1i,
0x1.06925e23edbe1p+6 + 0x1.3f1958f68439p-1i, -0x1.833652c075e5p+5 + -0x1.2d7b65af05ff9p-1i,
0x1.4ec0a043381a7p+5 + 0x1.1b9147b798687p-1i, -0x1.75165f4e808a9p+4 + -0x1.095f85b47cf06p-1i,
0x1.7badac248b85bp+4 + 0x1.edd570c6d032cp-2i, -0x1.f3346dfa347ebp+4 + -0x1.c86f12e46cb0dp-2i,
0x1.52d1ece8bfed4p+5 + 0x1.a29564a2b2ec4p-2i, -0x1.2150e475cfb1bp+5 + -0x1.7c51f60495e41p-2i,
0x1.e962e16affe0fp+4 + 0x1.55ae71c49fa8bp-2i, -0x1.c4f77304e8606p+4 + -0x1.2eb49ae3b9c0bp-2i,
0x1.bfc959102d168p+3 + 0x1.076e4a31d31e8p-2i, -0x1.1d1f1ee3d33f5p+5 + -0x1.bfcad7a208232p-3i,
0x1.b015966bbb7c9p+4 + 0x1.7047f967a048cp-3i, -0x1.3b266880fd23cp+5 + -0x1.2068102e512fcp-3i,
0x1.5241779e03da4p+4 + 0x1.a07e93e34b838p-4i, -0x1.0e3fab9d16b4p+5 + -0x1.ff879c56b56p-5i,
0x1.3f2f25279b2dbp+5 + 0x1.7b21aa498b38p-6i, -0x1.7f7bbc4ff4e44p+5 + 0x1.092bacdb81bep-6i,
0x1.2246a428e6c04p+5 + -0x1.c69b02e5ec36p-5i, -0x1.996005211d4e3p+4 + 0x1.8416aa9f9c4f8p-4i,
0x1.4f8a96a826feep+5 + -0x1.123ee3de5406p-3i, -0x1.909c59c0e9a4p+3 + 0x1.622d29479ec28p-3i,
0x1.37dea14bf64dep+5 + -0x1.b1c1f3ef61c3cp-3i, -0x1.3b2edfd27d7d6p+5 + 0x1.0074946a40647p-2i,
0x1.1f378371d3501p+4 + -0x1.27c76452b3f95p-2i, -0x1.7d1ddb412124cp+5 + 0x1.4ecf7a66b2a95p-2i,
0x1.82edfd823985ap+5 + -0x1.7582fa3cdecabp-2i, -0x1.76b10fc05b69bp+5 + 0x1.9bd81cca9ab9ep-2i,
0x1.424754fcc63cfp+5 + -0x1.c1c532dc6871cp-2i, -0x1.381e9440f193p+5 + 0x1.e740a78842396p-2i,
0x1.5b055b9445c4ep+5 + -0x1.0620814ca7e46p-1i, -0x1.4fc56ddbc339ap+5 + 0x1.185e757a2d41p-1i,
0x1.039ba9624734cp+5 + -0x1.2a55947a33215p-1i, -0x1.2f26c4120506cp+5 + 0x1.3c01545f6affcp-1i,
0x1.a2d55e0f55e4p+5 + -0x1.4d5d3e4742e9bp-1i, -0x1.a7c947f2d50cap+5 + 0x1.5e64ef7aa2bcap-1i,
0x1.6359dd90333ddp+5 + -0x1.6f141a899125bp-1i, -0x1.a6ba267947e1p+5 + 0x1.7f668861782a6p-1i,
0x1.934c6e00f5628p+5 + -0x1.8f58195dc3751p-1i, -0x1.059185b398a4fp+5 + 0x1.9ee4c65293569p-1i,
0x1.17d8d915e3044p+5 + -0x1.ae08a19140ca8p-1i, -0x1.0c4227d6a32d6p+5 + 0x1.bcbfd7e67118dp-1i,
0x1.22322be6defffp+5 + -0x1.cb06b19178cedp-1i, -0x1.c96d238fc0b29p+4 + 0x1.d8d99334cf5f6p-1i,
0x1.1131417899f1fp+4 + -0x1.e634febf56c9ep-1i, -0x1.06ae417591a4cp+5 + 0x1.f315944e3c75ep-1i,
0x1.da4cfc95ee3bp+4 + -0x1.ff78130739f6ep-1i, -0x1.8f294e80036bcp+3 + 0x1.05acacf57f4e2p+0i,
0x1.3634bcdb463eep+5 + -0x1.0b5b344fc688dp+0i, -0x1.343c5ddc0276bp+5 + 0x1.10c630192c92ap+0i,
0x1.77690b2b622f4p+5 + -0x1.15ec41e8fabafp+0i, -0x1.7792526a4aeadp+5 + 0x1.1acc1cbf90d2ap+0i,
0x1.d7e8c90a95edbp+4 + -0x1.1f64855a862aap+0i, -0x1.1db27e4b69654p+5 + 0x1.23b452844f664p+0i,
0x1.939a2cabf5ef2p+4 + -0x1.27ba6d5f54c6p+0i, -0x1.802b4202faeb8p+4 + 0x1.2b75d1ac661e4p+0i,
0x1.8d3a7e57d7bfap+4 + -0x1.2ee58e0c7a9ffp+0i, -0x1.f0881af52b9b6p+4 + 0x1.3208c43dabb4dp+0i,
0x1.c33eb22100ccbp+4 + -0x1.34dea9535bd93p+0i, -0x1.1731cb1d51b6ep+4 + 0x1.376685e97aeb6p+0i,
0x1.f05fe2ef9ad2fp+4 + -0x1.399fb652db2fcp+0i, -0x1.4828ee38f4242p+5 + 0x1.3b89aac28b47p+0i,
0x1.03c96948e32ep+6 + -0x1.3d23e7702aa03p+0i, -0x1.25f9f4ad5dc68p+5 + 0x1.3e6e04b72f38dp+0i,
0x1.7ae16ec4509fp+5 + -0x1.3f67af3114f93p+0i, -0x1.dae51b3189629p+5 + 0x1.4010a7ca6f8dbp+0i,
0x1.4006428040deap+5 + -0x1.4068c3d2d9fdbp+0i, -0x1.d131608acbfc3p+5 + 0x1.406fed07bf981p+0i,
0x1.55935fd2c81e1p+5 + -0x1.40262199fba78p+0i, -0x1.97d09e974096dp+4 + 0x1.3f8b742e4e849p+0i,
0x1.c742c3ca2d0e2p+3 + -0x1.3ea00bd8a7ab4p+0i, -0x1.477624410ab8dp+5 + 0x1.3d64241246746p+0i,
0x1.3bed2833d3051p+4 + -0x1.3bd80caab371p+0i, -0x1.77e70af7bb2d7p+4 + 0x1.39fc29b396b1bp+0i,
0x1.4f5f1382bc137p+5 + -0x1.37d0f3676f944p+0i, -0x1.a759c30dad4ecp+5 + 0x1.3556f60b34f44p+0i,
0x1.f5925705540e9p+4 + -0x1.328ed1cae50acp+0i, -0x1.b80dcfd3b50f9p+4 + 0x1.2f793a910e1bcp+0i,
0x1.305806b53368fp+5 + -0x1.2c16f7d95a3dcp+0i, -0x1.813fb0ffb1ffbp+5 + 0x1.2868e47e29816p+0i,
0x1.627f52abe5671p+4 + -0x1.246fee81476c1p+0i, -0x1.106f81f213819p+5 + 0x1.202d16cfc9945p+0i,
0x1.0df79b0c2f678p+5 + -0x1.1ba1710126a14p+0i, -0x1.ad40d72de36dcp+5 + 0x1.16ce2311961a3p+0i,
0x1.a08188643e43bp+5 + -0x1.11b46517ca9dfp+0i, -0x1.dfbb15d741695p+5 + 0x1.0c5580f61927fp+0i,
0x1.ac1564fa894bdp+5 + -0x1.06b2d2072171ap+0i, -0x1.63731b3ba15cep+4 + 0x1.00cdc4c60c72ap+0i,
0x1.bc09418ec6a52p+4 + -0x1.f54face4ee562p-1i, -0x1.339c0a926192p+5 + 0x1.e885296041df9p-1i,
0x1.2a8f2cee8309ep+5 + -0x1.db3f3a44eb4c8p-1i, -0x1.370fcff9f0f86p+5 + 0x1.cd813a081a894p-1i,
0x1.29c627bfc2341p+5 + -0x1.bf4ea17475ba9p-1i, -0x1.e2287ac3fca43p+4 + 0x1.b0ab06c98de74p-1i
)
assertThat(stats:::fft(inverse=TRUE,z=c(0+0i, 0.049997738617622-0.394151678231315i, -0.162286836987266-0.4118734053215i,
-0.368580129901942-0.510518048590567i, 0.420008902789442+0.212862861763337i,
0.332766398569408-0.233620277751706i, 0.264617604104067+0.292429642201921i,
0.07998281429866+0.318363215613022i, 0.322801027804864+0.476018521487547i,
0.525111764313381+0.187222667758168i, -0.166216289632984-0.738516417766413i,
0.313842726893916-0.619267865544926i, -0.591380335732259+0.348470741765022i,
0.457764941987522-0.103689071543765i, -0.58127901847917+1.17369820350148i,
-0.347010386142286+0.049452963925725i, 0.0342726720745041-0.0058524564797619i,
0.328929309620574-0.062004654015796i, 0.69216954754286-0.421556363726408i,
0.837634584994327-0.314945568780225i, -0.370460032941542-0.687673491975595i,
-0.33590219356449-0.885007692953627i, 0.352422863074107+0.272257442277362i,
-0.260820853229449-0.449822908268625i, -0.550988096133938-0.024417994482001i,
0.664090465748734+0.500704400693681i, 0.509733837416494+0.026376501483059i,
0.31426343114112-0.025067437304768i, -0.539193540429505+0.073709046614921i,
-0.386286553414737-0.41157839405086i, 0.951735229985533-0.574005984494953i,
-0.605062107408231+0.219497001914272i, -0.223908518458298+0.217129815457029i,
0.074527002921762+0.631151602563531i, -0.316692661677074+0.645221413953487i,
0.365617034584563+0.00629082344599i, -0.411211404538222-0.58628211392252i,
-0.543890275095469+0.554916896214628i, 0.844636825495295-0.213505560713243i,
0.245775121616696+0.339164965800047i, 0.008253333909882+0.59307413825898i,
-0.300433974344889-0.041472794619843i, -1.36871187464702+0.76694192682655i,
0.376843853981935-0.152864483770531i, -0.225089950052878-0.0992238412979i,
0.535130687386297-0.936967852187939i, -0.242141224096674-0.956649625182962i,
1.59191309066108+0.33962444236645i, -0.74892661566996-1.08921412722874i,
-0.52166714887478-0.180028700167517i, -0.397897587822549+0.555464486808108i,
0.92656799854714+1.28731361616011i, -0.700594061094114+0.205342932257612i,
0.531095951939506+0.143386344297323i, -0.99758597584971-0.402668204591331i,
0.461350884263873+0.450185730135808i, 0.675304419379909-0.408673021250101i,
0.71758684145034+0.404792017949363i, 0.3035094616159-0.425532807458167i,
0.506055740891074+0.777705592636569i, 0.181560968229867+0.659430574391635i,
1.10397703787741-0.6886584427141i, -0.181073539200941+0.131545785616102i,
0.913193510885363+0.221545381591971i, 0.690322424306309+0.174566573804035i,
-0.45483583235305-0.582192664609651i, -0.846595431910549-0.467203939952173i,
-0.946638614879789-0.099906318347228i, 0.063418372506302-0.97257399962078i,
-0.524368273125362+0.18065349165976i, -0.252196738751498-0.488745389511525i,
-0.622922268128171+0.021777719846512i, -0.61095976261603-1.31761743291479i,
-0.63929889523417+0.801397035149863i, -0.202794152643118-0.609876688135212i,
-0.833718545873324+0.224598664498435i, 0.578293915403353-0.944405436783388i,
0.767240327727704-0.240964439210037i, -0.152988257623007-0.904825616277863i,
0.679457526456541-0.268837452305894i, 0.234934918030234+0.141278774406706i,
-0.152584453290296-0.282538987041591i, -0.051000168322624+0.72513728803682i,
-0.56129132864059+1.01415922597238i, -1.55090405662834+0.23151143485493i,
0.762710644622458-0.65694511658226i, 0.336249977456837-0.3539853252003i,
0.781513429691396+0.413028432182484i, -1.21749107714943+1.12529884453592i,
-0.512666341410842+0.076197302189448i, -0.553629313503129-0.100340270793262i,
-0.906476963859203-0.503695057247765i, -0.622370910791937-0.265508583764482i,
0.14689247417201-1.09298241182197i, 0.061311810343343+0.969935138015308i,
-0.652955744047943+0.865942725685155i, 0.245419246727404-0.78935287914092i,
0.782962124431475-0.042779993270524i, -0.178005140682559-0.638433583284494i,
-0.610509023289185+0i, 36.95629+0i, 0.339114047291116-0.815628910889233i,
-0.178005140682559+0.638433583284495i, 0.782962124431475+0.042779993270524i,
0.245419246727404+0.789352879140919i, -0.652955744047944-0.865942725685155i,
0.061311810343343-0.969935138015308i, 0.14689247417201+1.09298241182197i,
-0.622370910791938+0.265508583764482i, -0.906476963859203+0.503695057247765i,
-0.553629313503129+0.100340270793262i, -0.512666341410842-0.076197302189448i,
-1.21749107714943-1.12529884453592i, 0.781513429691396-0.413028432182484i,
0.336249977456837+0.3539853252003i, 0.762710644622458+0.65694511658226i,
-1.55090405662834-0.23151143485493i, -0.56129132864059-1.01415922597238i,
-0.051000168322624-0.72513728803682i, -0.152584453290296+0.282538987041591i,
0.234934918030234-0.141278774406706i, 0.679457526456541+0.268837452305894i,
-0.152988257623007+0.904825616277863i, 0.767240327727704+0.240964439210037i,
0.578293915403353+0.944405436783389i, -0.833718545873324-0.224598664498436i,
-0.202794152643118+0.609876688135211i, -0.63929889523417-0.801397035149863i,
-0.61095976261603+1.31761743291479i, -0.622922268128171-0.021777719846512i,
-0.252196738751498+0.488745389511525i, -0.524368273125362-0.18065349165976i,
0.063418372506302+0.972573999620779i, -0.946638614879789+0.099906318347228i,
-0.846595431910549+0.467203939952173i, -0.45483583235305+0.582192664609651i,
0.690322424306309-0.174566573804035i, 0.913193510885363-0.221545381591971i,
-0.181073539200941-0.131545785616102i, 1.10397703787741+0.6886584427141i,
0.181560968229867-0.659430574391636i, 0.506055740891074-0.777705592636569i,
0.3035094616159+0.425532807458167i, 0.71758684145034-0.404792017949363i,
0.675304419379909+0.408673021250101i, 0.461350884263874-0.450185730135808i,
-0.99758597584971+0.402668204591331i, 0.531095951939506-0.143386344297323i,
-0.700594061094115-0.205342932257612i, 0.92656799854714-1.28731361616011i,
-0.397897587822549-0.555464486808108i, -0.521667148874779+0.180028700167517i,
-0.74892661566996+1.08921412722874i, 1.59191309066108-0.33962444236645i,
-0.242141224096674+0.956649625182963i, 0.535130687386297+0.936967852187939i,
-0.225089950052878+0.0992238412979i, 0.376843853981935+0.152864483770531i,
-1.36871187464702-0.76694192682655i, -0.300433974344889+0.041472794619843i,
0.008253333909882-0.59307413825898i, 0.245775121616696-0.339164965800046i,
0.844636825495295+0.213505560713243i, -0.543890275095469-0.554916896214628i,
-0.411211404538222+0.58628211392252i, 0.365617034584563-0.00629082344599i,
-0.316692661677074-0.645221413953487i, 0.074527002921762-0.631151602563532i,
-0.223908518458298-0.217129815457029i, -0.605062107408231-0.219497001914272i,
0.951735229985533+0.574005984494953i, -0.386286553414736+0.41157839405086i,
-0.539193540429505-0.073709046614921i, 0.31426343114112+0.025067437304768i,
0.509733837416494-0.026376501483059i, 0.664090465748735-0.500704400693681i,
-0.550988096133938+0.024417994482001i, -0.260820853229449+0.449822908268625i,
0.352422863074107-0.272257442277362i, -0.33590219356449+0.885007692953627i,
-0.37046003294154+0.687673491975592i, 0.837634584994327+0.314945568780225i,
0.69216954754286+0.421556363726408i, 0.328929309620574+0.062004654015796i,
0.0342726720745042+0.0058524564797619i, -0.347010386142286-0.049452963925725i,
-0.58127901847917-1.17369820350148i, 0.457764941987522+0.103689071543765i,
-0.591380335732259-0.348470741765022i, 0.313842726893917+0.619267865544926i,
-0.166216289632984+0.738516417766413i, 0.525111764313381-0.187222667758168i,
0.322801027804864-0.476018521487546i, 0.07998281429866-0.318363215613022i,
0.264617604104067-0.292429642201921i, 0.332766398569408+0.233620277751706i,
0.420008902789442-0.212862861763337i, -0.368580129901942+0.510518048590567i,
-0.162286836987266+0.411873405321501i, 0.049997738617622+0.394151678231315i
))
, identicalTo( expected, tol = 1e-6 ) ) |
survRDah <- function(DH, freq=1, occsPerSeason, N, pStar) {
if(length(occsPerSeason) > 1)
stop("Different occasions per season are not supported: 'occsPerSeason' must be scalar.")
K <- ncol(DH) / occsPerSeason
if(length(N) != K)
stop("'N' must have one value per season.")
if(length(pStar) != K)
stop("'pStar' must have one value per season.")
seasonID <- rep(1:K, each=occsPerSeason)
if(length(seasonID) != ncol(DH))
stop("The number of columns of 'DH' does not match the season data.")
getDHseason <- function(dh)
tapply(dh, as.factor(seasonID), max)
DHseason <- t(apply(DH, 1, getDHseason))
mMat <- ch2mArray(DHseason, freq=freq)
param <- rep(0, K-1)
nll <- function(param) {
log_phi <- plogis(param, log.p=TRUE)
nll <- -sum(mMat * log_qArray(log_phi, log(pStar[-1]), log(1 - pStar[-1])))
return(min(nll, .Machine$double.xmax))
}
res <- nlm(nll, param)
phiHat <- plogis(res$estimate)
bHat <- N[-1] / N[-K] - phiHat
return(list(
phiHat = phiHat,
bHat = bHat,
pStarHat = pStar,
Nhat = N))
} |
library(testthat)
library(RClone)
test_check("RClone", filter = "p5")
print("unit tests p5 are ok !") |
setMethod("sform", "character", function(object){
object = path.expand(object)
stopifnot(file.exists(object))
slots = paste0("sto_xyz:", 1:3)
res = sapply(slots, function(key) {
fslval(object, keyword = key, verbose = FALSE)
})
convmat <- function(form){
ss <- strsplit(form, " ")
ss <- t(sapply(ss, function(x) x[x!=""]))
class(ss) <- "numeric"
return(ss)
}
res = convmat(res)
rownames(res) = NULL
return(res)
}) |
get_random_seed <- function() {
env <- globalenv()
env$.Random.seed
}
set_random_seed <- function(seed, kind = NULL) {
env <- globalenv()
if (is.null(seed)) {
if (!is.null(kind)) RNGkind(kind)
rm(list = ".Random.seed", envir = env, inherits = FALSE)
} else {
env$.Random.seed <- seed
}
}
next_random_seed <- function(seed = get_random_seed()) {
sample.int(n = 1L, size = 1L, replace = FALSE)
seed_next <- get_random_seed()
stop_if_not(!any(seed_next != seed))
invisible(seed_next)
}
is_valid_random_seed <- function(seed) {
oseed <- get_random_seed()
on.exit(set_random_seed(oseed))
env <- globalenv()
env$.Random.seed <- seed
res <- tryCatch({
sample.int(n = 1L, size = 1L, replace = FALSE)
}, simpleWarning = function(w) w)
!inherits(res, "simpleWarning")
}
as_lecyer_cmrg_seed <- function(seed) {
if (is.logical(seed)) {
stop_if_not(length(seed) == 1L)
if (!is.na(seed) && !seed) {
stopf("Argument 'seed' must be TRUE if logical: %s", seed)
}
oseed <- get_random_seed()
if (!is.na(seed) && seed) {
if (is_lecyer_cmrg_seed(oseed)) return(oseed)
}
okind <- RNGkind("L'Ecuyer-CMRG")[1]
on.exit(set_random_seed(oseed, kind = okind), add = TRUE)
return(get_random_seed())
}
stop_if_not(is.numeric(seed), all(is.finite(seed)))
seed <- as.integer(seed)
if (is_lecyer_cmrg_seed(seed)) {
return(seed)
}
if (length(seed) == 1L) {
oseed <- get_random_seed()
on.exit(set_random_seed(oseed), add = TRUE)
okind <- RNGkind("L'Ecuyer-CMRG")[1]
on.exit(set_random_seed(oseed, kind = okind), add = TRUE)
set.seed(seed)
return(get_random_seed())
}
stopf("Argument 'seed' must be L'Ecuyer-CMRG RNG seed as returned by parallel::nextRNGStream() or an single integer: %s", capture.output(str(seed)))
}
is_lecyer_cmrg_seed <- function(seed) {
is.numeric(seed) &&
length(seed) == 7L &&
all(is.finite(seed)) &&
(seed[1] %% 10000L == 407L)
}
make_rng_seeds <- function(count, seed = FALSE,
debug = getOption("future.debug", FALSE)) {
if (is.null(seed)) return(NULL)
if (is.logical(seed) && !is.na(seed) && !seed) return(NULL)
stop_if_not(is.numeric(count), length(count) == 1L, !is.na(count),
count >= 0L)
seeds <- NULL
if (debug) mdebug("Generating random seeds ...")
if (is.list(seed)) {
if (debug) mdebugf("Using a pre-define stream of %d random seeds ...", count)
seeds <- seed
nseeds <- length(seeds)
if (nseeds != count) {
stopf("Argument 'seed' is a list, which specifies the sequence of seeds to be used for each element iterated over, but length(seed) != number of elements: %g != %g", nseeds, count)
}
ns <- unique(unlist(lapply(seeds, FUN = length), use.names = FALSE))
if (length(ns) != 1L) {
stopf("The elements of the list specified in argument 'seed' are not all of the same lengths (did you really pass RNG seeds?): %s", hpaste(ns))
}
if (ns == 1L) {
stop("Argument 'seed' is invalid. Pre-generated random seeds must be valid .Random.seed seeds, which means they should be all integers and consists of two or more elements, not just one.")
}
types <- unlist(lapply(seeds, FUN = typeof), use.names = FALSE)
if (!all(types == "integer")) {
stopf("The elements of the list specified in argument 'seed' are not all integers (did you really pass RNG seeds?): %s", hpaste(unique(types)))
}
if (!is_valid_random_seed(seeds[[1]])) {
stopf("The list in argument 'seed' does not seem to hold elements that are valid .Random.seed values: %s", capture.output(str(seeds[[1]])))
}
if (debug) {
mdebugf("Using a pre-define stream of %d random seeds ... DONE", count)
mdebug("Generating random seeds ... DONE")
}
return(seeds)
}
if (debug) mdebugf("Generating random seed streams for %d elements ...", count)
.seed <- as_lecyer_cmrg_seed(seed)
oseed <- next_random_seed()
on.exit(set_random_seed(oseed))
seeds <- vector("list", length = count)
for (ii in seq_len(count)) {
seeds[[ii]] <- nextRNGSubStream(.seed)
.seed <- nextRNGStream(.seed)
}
if (debug) {
mdebugf("Generating random seed streams for %d elements ... DONE", count)
mdebug("Generating random seeds ... DONE")
}
seeds
} |
context("lexicon fetches lexicons")
test_that("unknown lexicons fail", {
expect_error(lexicon("thisdoesnotexist"))
})
test_that("lexicons exist", {
expect_true(any(class(lexicon("aws")) == "tbl"))
expect_true(any(class(lexicon("az")) == "tbl"))
expect_true(any(class(lexicon("brew")) == "tbl"))
expect_true(any(class(lexicon("docker")) == "tbl"))
expect_true(any(class(lexicon("gcloud")) == "tbl"))
expect_true(any(class(lexicon("gh")) == "tbl"))
expect_true(any(class(lexicon("git")) == "tbl"))
expect_true(any(class(lexicon("heroku")) == "tbl"))
expect_true(any(class(lexicon("kubectl")) == "tbl"))
expect_true(any(class(lexicon("sfdx")) == "tbl"))
}) |
skip_if(utils::packageVersion('grid') < "3.6")
test_that("geom_polygon draws correctly", {
tbl <- data_frame(
x = c(
0, 10, 10, 0,
20, 30, 30, 20,
22, 28, 28, 22
),
y = c(
0, 0, 10, 10,
20, 20, 30, 30,
22, 22, 28, 28
),
group = c(rep(1, 4), rep(2, 8)),
subgroup = c(rep(1, 8), rep(2, 4))
)
p <- ggplot(tbl, aes(x, y, group = group, subgroup = subgroup)) +
geom_polygon()
expect_doppelganger("basic polygon plot", p)
}) |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.