code
stringlengths
1
13.8M
obtainSmoothTrend <- function(object, grid = NULL, newdata = NULL, deriv = 0, includeIntercept = FALSE) { if (!inherits(object, "LMMsolve")) { stop("object should be an object of class LMMsolve.\n") } if (is.null(object$splRes)) { stop("The model was fitted without a spline component.\n") } if (is.null(grid) && is.null(newdata)) { stop("Specify either grid or newdata.\n") } splRes <- object$splRes x <- splRes$x knots <- splRes$knots scaleX <- splRes$scaleX pord <- splRes$pord splDim <- length(x) if (splDim == 1 && (!is.numeric(deriv) || length(deriv) > 1 || deriv < 0 || deriv != round(deriv))) { stop("deriv should be an integer greater than or equal to zero.\n") } if (splDim > 1 && deriv != 0) { deriv <- 0 warning("deriv is ignored for ", splDim, "-dimensional splines.\n", call. = FALSE) } if (!is.null(newdata)) { if (!inherits(newdata, "data.frame")) { stop("newdata should be a data.frame.\n") } missX <- names(x)[!sapply(X = names(x), FUN = function(name) { hasName(x = newdata, name = name) })] if (length(missX) > 0) { stop("The following smoothing variables are not in newdata:\n", paste0(missX, collapse = ", "), "\n") } xGrid <- lapply(X = seq_along(x), FUN = function(i) { newdata[[names(x)[i]]] }) Bx <- mapply(FUN = Bsplines, knots, xGrid, deriv) BxTot <- Reduce(RowKronecker, Bx) } else { if (!is.numeric(grid) || length(grid) != splDim) { stop("grid should be a numeric vector with length equal to the dimension ", "of the fitted spline: ", splDim,".\n") } xGrid <- lapply(X = seq_along(x), FUN = function(i) { seq(min(x[[i]]), max(x[[i]]), length = grid[i]) }) Bx <- mapply(FUN = Bsplines, knots, xGrid, deriv) BxTot <- Reduce(`%x%`, Bx) } X <- mapply(FUN = function(x, y) { constructX(B = x, x = y, scaleX = scaleX, pord = pord) }, Bx, xGrid, SIMPLIFY = FALSE) if (!is.null(newdata)) { XTot <- Reduce(RowKronecker, X) } else { XTot <- Reduce(`%x%`, X) } XTot <- removeIntercept(XTot) if (includeIntercept) { mu <- coef(object)$'(Intercept)' } else { mu <- 0 } if (is.null(XTot)) { bc <- 0 } else { bc <- as.vector(XTot %*% coef(object)$splF) } sc <- as.vector(BxTot %*% coef(object)$splR) fit <- mu + bc + sc if (!is.null(newdata)) { outDat <- newdata outDat[["ypred"]] <- fit } else { outDat <- data.frame(expand.grid(rev(xGrid)), ypred = fit) colnames(outDat)[-ncol(outDat)] <- rev(names(x)) outDat <- outDat[c(names(x), "ypred")] } return(outDat) }
iphub_api_key <- function(force = FALSE) { env <- Sys.getenv('IPHUB_API_KEY') if (!identical(env, "") && !force) return(env) if (!interactive()) { stop("Please set env var IPHUB_API_KEY to your IPHub key", call. = FALSE) } message("Couldn't find env var IPHUB_API_KEY See ?iphub_api_key for more details.") message("Please enter your API key:") pat <- readline(": ") if (identical(pat, "")) { stop("IPHub key entry failed", call. = FALSE) } message("Updating IPHUB_API_KEY env var") Sys.setenv(IPHUB_API_KEY = pat) pat }
Sapply <- function (X, FUN, ..., simplify = TRUE, USE.NAMES = TRUE){ FUN <- match.fun(FUN) if(length(dim(X))){ d.ans <- dim(X) dn.ans <- if(length(dimnames(X))) dimnames(X) else list(NULL) } else { d.ans <- length(X) dn.ans <- if(USE.NAMES) list(names(X)) else list(NULL) } if (!is.vector(X) || is.object(X)) X <- as.list(X) answer <- lapply(X,FUN,...) if (USE.NAMES && is.character(X) && length(d.ans) == 1 && is.null(names(answer))) dn.ans <- X if(simplify){ dd.ans <- NULL ddn.ans <- list(NULL) DIMS <- lapply(answer,dim) ulDIMS <- unique(unlist(lapply(DIMS,length))) if(length(ulDIMS)==1 && ulDIMS > 0){ DIMS <- array(unlist(DIMS),dim=c(ulDIMS,length(X))) common.dims <- rep(NA,ulDIMS) for(i in seq(nrow(DIMS))){ uDIMS.i <- unique(DIMS[i,]) if(length(uDIMS.i) == 1){ common.dims[i] <- uDIMS.i } } if(!any(is.na(common.dims))){ dd.ans <- common.dims ddn.ans <- dimnames(answer[[1]]) } } else { LEN <- unique(unlist(lapply(answer,length))) if(length(LEN)==1 && LEN > 1){ dd.ans <- LEN ddn.ans <- list(names(answer[[1]])) } } if(!is.null(dd.ans)){ if(is.null(ddn.ans)) ddn.ans <- rep(list(NULL),length(dd.ans)) return(array(unlist(answer,recursive=FALSE),dim=c(dd.ans,d.ans),dimnames=c(ddn.ans,dn.ans))) } else return(array(unlist(answer,recursive=FALSE),dim=c(d.ans),dimnames=c(dn.ans))) } return(array(answer,dim=d.ans,dimnames=dn.ans)) } Lapply <- function(X, FUN, ...) Sapply(X, FUN, ..., simplify = FALSE, USE.NAMES = FALSE)
CIetterson <- function(s, s.lwr, s.upr, f, f.lwr, f.upr, J, s.time.variance="carcass age", f.time.variance="number of searches", nsim=1000, ci=0.95){ if(s.time.variance!="date") stopifnot(s.time.variance=="carcass age"&f.time.variance=="number of searches") if(s.time.variance=="date") stopifnot(f.time.variance=="date") s.a <- shapeparameter(s, s.lwr, s.upr)$a s.b <- shapeparameter(s, s.lwr, s.upr)$b f.a <- shapeparameter(f, f.lwr, f.upr)$a f.b <- shapeparameter(f, f.lwr, f.upr)$b n <- length(f) N <- length(s) p <- numeric(nsim) for(r in 1:nsim) { sr <- rbeta(N, s.a, s.b) fr <- rbeta(n, f.a, f.b) if(N==1&n==1) p[r] <- ettersonEq14(s=sr, f=fr, J=J) if(N>1|n>1){ if(s.time.variance!="date") p[r] <- ettersonEq14v2(s=sr, f=fr, J=J) if(s.time.variance=="date") p[r] <- ettersonEq14v1(s=sr, f=fr, J=J) } } estp <- list(p.lower= quantile(p, prob=(1-ci)/2), p.upper=quantile(p, prob=1-(1-ci)/2)) return(estp) }
context("Resampling functions") test_that( "Univariate resampling works", { from <- seq(2, 20, 2) to <- seq(2, 20) values <- from ^ 2 true_values <- to ^ 2 resample_values <- resample(values, from, to) expect_equal(true_values, resample_values) } ) test_that( "Multivariate resampling works", { m <- matrix(1:20, ncol = 2) true_m <- cbind(seq(1, 10, 0.5), seq(11, 20, 0.5)) resample_m <- resample(m, 1:10, seq(1, 10, 0.5)) expect_equal(true_m, resample_m) } ) data(testspec) test_that( "Spectra down-sampling works", { spec <- spectra(testspec_ACRU[, 1:5], 400:2500) new_wl <- seq(400, 1300, 10) true_spec <- spec[[new_wl, ]] resample_spec <- resample(spec, new_wl, method = "linear") expect_equal(true_spec, resample_spec) } ) test_that( "Spectra up-sampling works", { true_spec <- spectra(testspec_ACRU[, 1:5], 400:2500) new_wl <- seq(400, 2500, 10) lowres_spec <- true_spec[[new_wl, ]] resample_spec <- resample(lowres_spec, 400:2500) expect_equal(true_spec, resample_spec, tolerance = 0.005) } ) if (!requireNamespace("PEcAn.logger")) { test_that( "Resampling outside range throws warning", { from <- seq(2, 20, 2) to <- seq(1, 30) values <- from ^ 2 expect_warning(resample(values, from, to), "Resampled values .* unreliable") } ) }
setGeneric("clearNamedRegion", function(object, name) standardGeneric("clearNamedRegion")) setMethod("clearNamedRegion", signature(object = "workbook", name = "character"), function(object, name) { xlcCall(object, "clearNamedRegion", name) invisible() } )
hmflatloglin=function(niter,y,X,scale) { p=dim(X)[2] mod=summary(glm(y~-1+X,family=poisson())) beta=matrix(0,niter,p) beta[1,]=as.vector(mod$coeff[,1]) Sigma2=as.matrix(mod$cov.unscaled) for (i in 2:niter) { tildebeta=mvrnorm(1,beta[i-1,],scale*Sigma2) llr=loglinll(tildebeta,y,X)-loglinll(beta[i-1,],y,X) if (runif(1)<=exp(llr)) beta[i,]=tildebeta else beta[i,]=beta[i-1,] } beta }
boolSkip=F test_that("Check 45.1 - isWeaklySuperadditiveGame with 3 players, return TRUE" ,{ if(boolSkip){ skip("Test was skipped") } v=c(1:7) result=isWeaklySuperadditiveGame(v) expect_equal(result, TRUE) }) test_that("Check 45.2 - isWeaklySuperadditiveGame with 4 players, return TRUE" ,{ if(boolSkip){ skip("Test was skipped") } v=c(1:15) result=isWeaklySuperadditiveGame(v) expect_equal(result, TRUE) }) test_that("Check 45.3 - isWeaklySuperadditiveGame with 3 players, return FALSE" ,{ if(boolSkip){ skip("Test was skipped") } v=c(1:5,7,7) result=isWeaklySuperadditiveGame(v) expect_equal(result, FALSE) })
init_site_models <- function( site_models, ids, distr_id = 0, param_id = 0 ) { testit::assert(beautier::are_site_models(site_models)) testit::assert(length(site_models) == length(ids)) for (i in seq_along(site_models)) { site_model <- site_models[[i]] testit::assert(beautier::is_site_model(site_model)) if (beautier::is_gtr_site_model(site_model)) { site_model <- beautier::init_gtr_site_model( site_model, distr_id = distr_id, param_id = param_id ) } else if (beautier::is_hky_site_model(site_model)) { site_model <- beautier::init_hky_site_model( site_model, distr_id = distr_id, param_id = param_id ) } else if (beautier::is_jc69_site_model(site_model)) { site_model <- beautier::init_jc69_site_model( site_model, distr_id = distr_id, param_id = param_id ) } else { testit::assert(beautier::is_tn93_site_model(site_model)) site_model <- beautier::init_tn93_site_model( site_model, distr_id = distr_id, param_id = param_id ) } distr_id <- distr_id + beautier::get_site_model_n_distrs(site_model) param_id <- param_id + beautier::get_site_model_n_params(site_model) if (beautier::is_one_na(site_model$id)) site_model$id <- ids[i] testit::assert(beautier::is_init_site_model(site_model)) site_models[[i]] <- site_model } site_models } init_gtr_site_model <- function( gtr_site_model, distr_id = 0, param_id = 0 ) { testit::assert(beautier::is_gtr_site_model(gtr_site_model)) if ( !beautier::is_one_na( gtr_site_model$gamma_site_model$gamma_shape_prior_distr ) ) { if ( !beautier::is_init_distr( gtr_site_model$gamma_site_model$gamma_shape_prior_distr ) ) { gtr_site_model$gamma_site_model$gamma_shape_prior_distr <- beautier::init_distr( gtr_site_model$gamma_site_model$gamma_shape_prior_distr, distr_id = distr_id, param_id = param_id ) distr_id <- distr_id + 1 param_id <- param_id + beautier::get_distr_n_params( gtr_site_model$gamma_site_model$gamma_shape_prior_distr ) } } if (!beautier::is_init_distr(gtr_site_model$rate_ac_prior_distr)) { gtr_site_model$rate_ac_prior_distr <- beautier::init_distr( gtr_site_model$rate_ac_prior_distr, distr_id = distr_id, param_id = param_id ) distr_id <- distr_id + 1 param_id <- param_id + beautier::get_distr_n_params( gtr_site_model$rate_ac_prior_distr ) } if (!beautier::is_init_distr(gtr_site_model$rate_ag_prior_distr)) { gtr_site_model$rate_ag_prior_distr <- beautier::init_distr( gtr_site_model$rate_ag_prior_distr, distr_id = distr_id, param_id = param_id ) distr_id <- distr_id + 1 param_id <- param_id + beautier::get_distr_n_params( gtr_site_model$rate_ag_prior_distr ) } if (!beautier::is_init_distr(gtr_site_model$rate_at_prior_distr)) { gtr_site_model$rate_at_prior_distr <- beautier::init_distr( gtr_site_model$rate_at_prior_distr, distr_id = distr_id, param_id = param_id ) distr_id <- distr_id + 1 param_id <- param_id + beautier::get_distr_n_params( gtr_site_model$rate_at_prior_distr ) } if (!beautier::is_init_distr(gtr_site_model$rate_cg_prior_distr)) { gtr_site_model$rate_cg_prior_distr <- beautier::init_distr( gtr_site_model$rate_cg_prior_distr, distr_id = distr_id, param_id = param_id ) distr_id <- distr_id + 1 param_id <- param_id + beautier::get_distr_n_params( gtr_site_model$rate_cg_prior_distr ) } if (!beautier::is_init_distr(gtr_site_model$rate_gt_prior_distr)) { gtr_site_model$rate_gt_prior_distr <- beautier::init_distr( gtr_site_model$rate_gt_prior_distr, distr_id = distr_id, param_id = param_id ) distr_id <- distr_id + 1 param_id <- param_id + beautier::get_distr_n_params( gtr_site_model$rate_gt_prior_distr ) } if (!beautier::is_init_param(gtr_site_model$rate_ac_param)) { gtr_site_model$rate_ac_param <- beautier::init_param( gtr_site_model$rate_ac_param, id = param_id ) param_id <- param_id + 1 } if (!beautier::is_init_param(gtr_site_model$rate_ag_param)) { gtr_site_model$rate_ag_param <- beautier::init_param( gtr_site_model$rate_ag_param, id = param_id ) param_id <- param_id + 1 } if (!beautier::is_init_param(gtr_site_model$rate_at_param)) { gtr_site_model$rate_at_param <- beautier::init_param( gtr_site_model$rate_at_param, id = param_id ) param_id <- param_id + 1 } if (!beautier::is_init_param(gtr_site_model$rate_cg_param)) { gtr_site_model$rate_cg_param <- beautier::init_param( gtr_site_model$rate_cg_param, id = param_id ) param_id <- param_id + 1 } if (!beautier::is_init_param(gtr_site_model$rate_ct_param)) { gtr_site_model$rate_ct_param <- beautier::init_param( gtr_site_model$rate_ct_param, id = param_id ) param_id <- param_id + 1 } if (!beautier::is_init_param(gtr_site_model$rate_gt_param)) { gtr_site_model$rate_gt_param <- beautier::init_param( gtr_site_model$rate_gt_param, id = param_id ) param_id <- param_id + 1 } testit::assert(beautier::is_gtr_site_model(gtr_site_model)) testit::assert( beautier::is_init_gamma_site_model(gtr_site_model$gamma_site_model) ) testit::assert(beautier::is_init_gtr_site_model(gtr_site_model)) gtr_site_model } init_hky_site_model <- function( hky_site_model, distr_id = 0, param_id = 0 ) { testit::assert(beautier::is_hky_site_model(hky_site_model)) if ( !beautier::is_one_na( hky_site_model$gamma_site_model$gamma_shape_prior_distr ) ) { if (!beautier::is_init_distr( hky_site_model$gamma_site_model$gamma_shape_prior_distr )) { hky_site_model$gamma_site_model$gamma_shape_prior_distr <- beautier::init_distr( hky_site_model$gamma_site_model$gamma_shape_prior_distr, distr_id = distr_id, param_id = param_id ) distr_id <- distr_id + 1 param_id <- param_id + beautier::get_distr_n_params( hky_site_model$gamma_site_model$gamma_shape_prior_distr ) } } if (!beautier::is_init_distr(hky_site_model$kappa_prior_distr)) { hky_site_model$kappa_prior_distr <- beautier::init_distr( hky_site_model$kappa_prior_distr, distr_id = distr_id, param_id = param_id ) distr_id <- distr_id + 1 param_id <- param_id + beautier::get_distr_n_params( hky_site_model$kappa_prior_distr ) } testit::assert( beautier::is_init_gamma_site_model(hky_site_model$gamma_site_model) ) testit::assert(beautier::is_init_hky_site_model(hky_site_model)) hky_site_model } init_jc69_site_model <- function( jc69_site_model, distr_id = 0, param_id = 0 ) { testit::assert(beautier::is_jc69_site_model(jc69_site_model)) if ( !beautier::is_one_na( jc69_site_model$gamma_site_model$gamma_shape_prior_distr ) ) { if ( !beautier::is_init_distr( jc69_site_model$gamma_site_model$gamma_shape_prior_distr ) ) { jc69_site_model$gamma_site_model$gamma_shape_prior_distr <- beautier::init_distr( jc69_site_model$gamma_site_model$gamma_shape_prior_distr, distr_id = distr_id, param_id = param_id ) distr_id <- distr_id + 1 param_id <- param_id + beautier::get_distr_n_params( jc69_site_model$gamma_site_model$gamma_shape_prior_distr ) } } testit::assert( beautier::is_init_gamma_site_model(jc69_site_model$gamma_site_model) ) testit::assert(beautier::is_init_jc69_site_model(jc69_site_model)) jc69_site_model } init_tn93_site_model <- function( tn93_site_model, distr_id = 0, param_id = 0 ) { testit::assert(beautier::is_tn93_site_model(tn93_site_model)) if ( !beautier::is_one_na( tn93_site_model$gamma_site_model$gamma_shape_prior_distr ) ) { if ( !beautier::is_init_distr( tn93_site_model$gamma_site_model$gamma_shape_prior_distr ) ) { tn93_site_model$gamma_site_model$gamma_shape_prior_distr <- beautier::init_distr( tn93_site_model$gamma_site_model$gamma_shape_prior_distr, distr_id = distr_id, param_id = param_id ) distr_id <- distr_id + 1 param_id <- param_id + beautier::get_distr_n_params( tn93_site_model$gamma_site_model$gamma_shape_prior_distr ) } } if (!beautier::is_init_distr(tn93_site_model$kappa_1_prior_distr)) { tn93_site_model$kappa_1_prior_distr <- beautier::init_distr( tn93_site_model$kappa_1_prior_distr, distr_id = distr_id, param_id = param_id ) distr_id <- distr_id + 1 param_id <- param_id + beautier::get_distr_n_params( tn93_site_model$kappa_1_prior_distr ) } if (!beautier::is_init_distr(tn93_site_model$kappa_2_prior_distr)) { tn93_site_model$kappa_2_prior_distr <- beautier::init_distr( tn93_site_model$kappa_2_prior_distr, distr_id = distr_id, param_id = param_id ) distr_id <- distr_id + 1 param_id <- param_id + beautier::get_distr_n_params( tn93_site_model$kappa_2_prior_distr ) } if (!beautier::is_init_param(tn93_site_model$kappa_1_param)) { tn93_site_model$kappa_1_param <- beautier::init_param( tn93_site_model$kappa_1_param, id = param_id ) param_id <- param_id + 1 } if (!beautier::is_init_param(tn93_site_model$kappa_2_param)) { tn93_site_model$kappa_2_param <- beautier::init_param( tn93_site_model$kappa_2_param, id = param_id ) param_id <- param_id + 1 } testit::assert( beautier::is_init_gamma_site_model(tn93_site_model$gamma_site_model) ) testit::assert(beautier::is_init_tn93_site_model(tn93_site_model)) tn93_site_model }
mixDen= function(x,pvec,comps) { ums=function(comps) { nc = length(comps) dim = length(comps[[1]][[1]]) mu = matrix(0.0,nc,dim) sigma = matrix(0.0,nc,dim) for(i in 1:nc) { mu[i,] = comps[[i]][[1]] root= backsolve(comps[[i]][[2]],diag(rep(1,dim))) sigma[i,] = sqrt(diag(crossprod(root))) } return(list(mu=mu,sigma=sigma)) } nc = length(comps) mars = ums(comps) den = matrix(0.0,nrow(x),ncol(x)) for(i in 1:ncol(x)) { for(j in 1:nc) den[,i] = den[,i] + dnorm(x[,i],mean = mars$mu[j,i],sd=mars$sigma[j,i])*pvec[j] } return(den) }
RN_plot_spectrum <- function(desired_RN, rad_type = NULL, photon = FALSE, log_plot = 0, prob_cut = 0.01) { rt_allowed <- c("X", "G", "AE", "IE", "A", "AR", "B-", "AQ", "B+", "PG", "DG", "DB", "FF", "N") stop_flag <- FALSE if (!is.null(rad_type)) { if (!rad_type %in% rt_allowed) { cat("Invalid specification for rad_type.\n") cat("Please enter one of these: \n") cat(rt_allowed) cat(" (in quotes) or NULL and select photon = TRUE") } } if (!is.null(rad_type) & photon == TRUE) { cat("Enter either rad_type = 'a rad_type', or photon = TRUE, but not both.") return() } dat_set <- "R" if (!is.null(rad_type)) { if (rad_type %in% c("B-", "B+", "DB")) { dat_set <- "B" } } if (dat_set == "B") { spec_df <- RadData::ICRP_07.BET[which(RadData::ICRP_07.BET$RN %in% desired_RN), ] } if (dat_set == "R") { spec_df <- RadData::ICRP_07.RAD[which(RadData::ICRP_07.RAD$RN %in% desired_RN), ] if (photon == TRUE) { spec_df <- spec_df[which(spec_df$is_photon == TRUE), ] } if (photon == FALSE) { spec_df <- spec_df[which(spec_df$code_AN == rad_type), ] } } if (photon == TRUE) { spec_df <- RadData::ICRP_07.RAD[which(RadData::ICRP_07.RAD$RN %in% desired_RN), ] spec_df <- spec_df[which(spec_df$is_photon == TRUE), ] } if (is.na(spec_df[1, 1])) { oops <- "No matches" stop_flag <- TRUE } if (stop_flag) { return(oops) } E_MeV <- prob <- RN <- MeV_per_dk <- A <- NULL if (dat_set != "B") spec_df <- spec_df[which(spec_df$prob > prob_cut), ] if (dat_set != "B") spec_df$MeV_per_dk <- spec_df$prob * spec_df$E_MeV spec_text <- ifelse(length(desired_RN) > 1, "spectra", "spectrum") if (dat_set != "B") { if (photon == TRUE) rad_text <- "photon" if (photon != TRUE) rad_text <- RadData::rad_codes$description[which(RadData::rad_codes$code_AN == rad_type)] p <- ggplot2::ggplot( data = spec_df, ggplot2::aes(E_MeV, prob, color = RN, shape = RN) ) + ggplot2::geom_segment(ggplot2::aes(xend = E_MeV, yend = 0)) + ggplot2::geom_point(size = 3) + ggplot2::scale_colour_hue(l = 80, c = 150) + ggplot2::ggtitle(paste0("Emission ", spec_text, ": ", rad_text), subtitle = paste0("particle probability > ", prob_cut) ) + ggthemes::theme_calc() + ggplot2::xlab("Energy, MeV") + ggplot2::ylab("probability density") if (log_plot == 1) p <- p + ggplot2::scale_y_log10() if (log_plot == 2) p <- p + ggplot2::scale_x_log10() + ggplot2::scale_y_log10() p } if (dat_set == "B") { p <- ggplot2::ggplot( data = spec_df, ggplot2::aes(E_MeV, A, color = RN, shape = RN) ) + ggthemes::theme_calc() + ggplot2::xlab("Energy, MeV") + ggplot2::ylab("probability density") + ggplot2::geom_line(size = 1.5) + ggplot2::scale_colour_hue(l = 80, c = 150) + ggplot2::ggtitle(RadData::rad_codes$description[which(RadData::rad_codes$code_AN == rad_type)]) if (log_plot == 1) p <- p + ggplot2::scale_y_log10() if (log_plot == 2) p <- p + ggplot2::scale_x_log10() + ggplot2::scale_y_log10() } p }
context("Test estimation when only a single IV-like specification is provided.") set.seed(10L) dtcf <- ivmte:::gendistCovariates()$data.full dtc <- ivmte:::gendistCovariates()$data.dist result <- ivmte(ivlike = ey ~ 1 +d + x1 + x2, data = dtcf, components = l(d, x1), subset = z2 %in% c(2, 3), propensity = d ~ x1 + x2 + z1 + z2, link = "logit", m0 = ~ x1 + x2:u + x2:I(u^2), m1 = ~ x1 + x1:x2 + u + x1:u + x2:I(u^2), uname = u, target = "late", late.from = c(z1 = 1, z2 = 2), late.to = c(z1 = 0, z2 = 3), late.X = c(x1 = 0, x2 = 1), criterion.tol = 0.01, initgrid.nu = 4, initgrid.nx = 2, audit.nx = 5, audit.nu = 5, solver = "lpSolveAPI") dtc$ey <- dtc$ey1 * dtc$p + dtc$ey0 * (1 - dtc$p) dtc$eyd <- dtc$ey1 * dtc$p varlist <- ~ eyd + ey + ey0 + ey1 + p + x1 + x2 + z1 + z2 + I(ey * p) + I(ey * x1) + I(ey * x2) + I(ey * z1) + I(ey * z2) + I(ey0 * p) + I(ey0 * x1) + I(ey0 * x2) + I(ey0 * z1) + I(ey0 * z2) + I(ey1 * p) + I(ey1 * x1) + I(ey1 * x2) + I(ey1 * z1) + I(ey1 * z2) + I(p * p) + I(p * x1) + I(p * x2) + I(p * z1) + I(p * z2) + I(x1 * p) + I(x1 * x1) + I(x1 * x2) + I(x1 * z1) + I(x1 * z2) + I(x2 * p) + I(x2 * x1) + I(x2 * x2) + I(x2 * z1) + I(x2 * z2) + I(z1 * p) + I(z1 * x1) + I(z1 * x2) + I(z1 * z1) + I(z1 * z2) + I(z2 * p) + I(z2 * x1) + I(z2 * x2) + I(z2 * z1) + I(z2 * z2) mv <- popmean(varlist, subset(dtc, dtc$z2 %in% c(2, 3))) m <- as.list(mv) names(m) <- rownames(mv) exx <- symat(c(1, m[["p"]], m[["x1"]], m[["x2"]], m[["p"]], m[["I(p * x1)"]], m[["I(p * x2)"]], m[["I(x1 * x1)"]], m[["I(x1 * x2)"]], m[["I(x2 * x2)"]])) exy <- matrix(c(m[["ey"]], m[["eyd"]], m[["I(ey * x1)"]], m[["I(ey * x2)"]])) ols <- (solve(exx) %*% exy) test_that("IV-like estimates", { expect_equal(as.numeric(result$s.set$s1$beta), as.numeric(ols[2])) expect_equal(as.numeric(result$s.set$s2$beta), as.numeric(ols[3])) }) dtc.x <- split(as.matrix(dtc[, c("x1", "x2")]), seq(1, nrow(dtc))) fit <- glm(d ~ x1 + x2 + z1 + z2, family = binomial(link = "logit"), data = dtcf) dtc$p <- predict(fit, dtc, type = "response") dtc$s.ols.0.d <- unlist(lapply(dtc.x, sOls3, d = 0, j = 2, exx = exx)) dtc$s.ols.1.d <- unlist(lapply(dtc.x, sOls3, d = 1, j = 2, exx = exx)) dtc$s.ols.0.x1 <- unlist(lapply(dtc.x, sOls3, d = 0, j = 3, exx = exx)) dtc$s.ols.1.x1 <- unlist(lapply(dtc.x, sOls3, d = 1, j = 3, exx = exx)) g.ols.d <- genGammaTT(subset(dtc, dtc$z2 %in% c(2, 3)), "s.ols.0.d", "s.ols.1.d") g.ols.x1 <- genGammaTT(subset(dtc, dtc$z2 %in% c(2, 3)), "s.ols.0.x1", "s.ols.1.x1") late.ub <- subset(dtc, dtc$z1 == 0 & dtc$z2 == 3 & dtc$x1 == 0 & dtc$x2 == 1)$p late.lb <- subset(dtc, dtc$z1 == 1 & dtc$z2 == 2 & dtc$x1 == 0 & dtc$x2 == 1)$p dtc$w.late.1 <- 1 / (late.ub - late.lb) dtc$w.late.0 <- - dtc$w.late.1 g.star.late <- genGammaTT(dtc[dtc$x1 == 0 & dtc$x2 == 1, ], "w.late.0", "w.late.1", lb = late.lb, ub = late.ub) test_that("Gamma moments", { expect_equal(as.numeric(c(result$gstar$g0, result$gstar$g1)), as.numeric(unlist(g.star.late))) expect_equal(as.numeric(c(result$s.set$s1$g0, result$s.set$s1$g1)), as.numeric(unlist(g.ols.d))) expect_equal(as.numeric(c(result$s.set$s2$g0, result$s.set$s2$g1)), as.numeric(unlist(g.ols.x1))) }) estimates <- c(ols[c(2, 3)]) A <- rbind(c(g.ols.d$g0, g.ols.d$g1), c(g.ols.x1$g0, g.ols.x1$g1)) Aextra <- matrix(0, nrow = nrow(A), ncol = 2 * nrow(A)) for (i in 1:nrow(A)) { Aextra[i, (i * 2 - 1)] <- -1 Aextra[i, (i * 2)] <- 1 } grid <- result$audit.grid$initial[, 1:3] xGrid <- result$audit.grid$audit.x nx <- nrow(xGrid) uGrid <- result$audit.grid$audit.u xGrid <- xGrid[rep(seq(nrow(xGrid)), each = length(uGrid)), ] uGrid <- rep(uGrid, times = nx) grid <- cbind(xGrid, uGrid) colnames(grid) <- c("x1", "x2", "u") grid <- data.frame(grid) mono0 <- model.matrix(~ x1 + x2:u + x2:I(u^2), data = grid) mono1 <- model.matrix(~ x1 + x1:x2 + u + x1:u + x2:I(u^2), data = grid) maxy <- max(subset(dtc, dtc$z2 %in% c(2, 3))[, c("ey0", "ey1")]) miny <- min(subset(dtc, dtc$z2 %in% c(2, 3))[, c("ey0", "ey1")]) Bzeroes <- matrix(0, ncol = ncol(Aextra), nrow(grid)) b0zeroes <- matrix(0, ncol = ncol(mono0), nrow = nrow(grid)) b1zeroes <- matrix(0, ncol = ncol(mono1), nrow = nrow(grid)) m0bound <- cbind(Bzeroes, mono0, b1zeroes) m1bound <- cbind(Bzeroes, b0zeroes, mono1) mtebound <- cbind(Bzeroes, -mono0, mono1) modelO <- list() modelO$obj <- c(replicate(ncol(Aextra), 1), replicate(ncol(A), 0)) modelO$rhs <- c(estimates, replicate(nrow(m0bound), miny), replicate(nrow(m1bound), miny), replicate(nrow(mtebound), miny - maxy), replicate(nrow(m0bound), maxy), replicate(nrow(m1bound), maxy), replicate(nrow(mtebound), maxy - miny)) modelO$sense <- c(replicate(length(estimates), "="), replicate(nrow(m0bound), ">="), replicate(nrow(m1bound), ">="), replicate(nrow(mtebound), ">="), replicate(nrow(m0bound), "<="), replicate(nrow(m1bound), "<="), replicate(nrow(mtebound), "<=")) modelO$A <- rbind(cbind(Aextra, A), m0bound, m1bound, mtebound, m0bound, m1bound, mtebound) modelO$ub <- c(replicate(ncol(Aextra), Inf), replicate(ncol(A), Inf)) modelO$lb <- c(replicate(ncol(Aextra), 0), replicate(ncol(A), -Inf)) lpsolver.options <- list(epslevel = "tight") minobseq <- runLpSolveAPI(modelO, 'min', lpsolver.options)$objval tolerance <- 1.01 Atop <- c(replicate(ncol(Aextra), 1), replicate(ncol(A), 0)) modelF <- list() modelF$obj <- c(replicate(ncol(Aextra), 0), g.star.late$g0, g.star.late$g1) modelF$rhs <- c(tolerance * minobseq, modelO$rhs) modelF$sense <- c("<=", modelO$sense) modelF$A <- rbind(Atop, modelO$A) modelF$ub <- c(replicate(ncol(Aextra), Inf), replicate(ncol(mono0) + ncol(mono1), Inf)) modelF$lb <- c(replicate(ncol(Aextra), 0), replicate(ncol(mono0) + ncol(mono1), -Inf)) minLate <- runLpSolveAPI(modelF, 'min', lpsolver.options) maxLate <- runLpSolveAPI(modelF, 'max', lpsolver.options) bound <- c(lower = minLate$objval, upper = maxLate$objval) test_that("LP problem", { expect_equal(result$bound, bound) })
library(forestplot) options(forestplot_new_page = TRUE) cochrane_from_rmeta <- structure(list( mean = c(NA, NA, 0.578, 0.165, 0.246, 0.700, 0.348, 0.139, 1.017, NA, 0.531), lower = c(NA, NA, 0.372, 0.018, 0.072, 0.333, 0.083, 0.016, 0.365, NA, 0.386), upper = c(NA, NA, 0.898, 1.517, 0.833, 1.474, 1.455, 1.209, 2.831, NA, 0.731)), .Names = c("mean", "lower", "upper"), row.names = c(NA, -11L), class = "data.frame") tabletext<-cbind( c("", "Study", "Auckland", "Block", "Doran", "Gamsu", "Morrison", "Papageorgiou", "Tauesch", NA, "Summary"), c("Deaths", "(steroid)", "36", "1", "4", "14", "3", "1", "8", NA, NA), c("Deaths", "(placebo)", "60", "5", "11", "20", "7", "7", "10", NA, NA), c("", "OR", "0.58", "0.16", "0.25", "0.70", "0.35", "0.14", "1.02", NA, "0.53")) forestplot(tabletext, cochrane_from_rmeta,new_page = TRUE, is.summary=c(TRUE,TRUE,rep(FALSE,8),TRUE), clip=c(0.1,2.5), xlog=TRUE, col=fpColors(box="royalblue",line="darkblue", summary="royalblue")) forestplot(tabletext, hrzl_lines = gpar(col=" cochrane_from_rmeta,new_page = TRUE, is.summary=c(TRUE,TRUE,rep(FALSE,8),TRUE), clip=c(0.1,2.5), xlog=TRUE, col=fpColors(box="royalblue",line="darkblue", summary="royalblue")) forestplot(tabletext, hrzl_lines = list("3" = gpar(lty=2), "11" = gpar(lwd=1, columns=1:4, col = " cochrane_from_rmeta,new_page = TRUE, is.summary=c(TRUE,TRUE,rep(FALSE,8),TRUE), clip=c(0.1,2.5), xlog=TRUE, col=fpColors(box="royalblue",line="darkblue", summary="royalblue", hrz_lines = " forestplot(tabletext, hrzl_lines = list("3" = gpar(lty=2), "11" = gpar(lwd=1, columns=1:4, col = "blue")), cochrane_from_rmeta,new_page = TRUE, is.summary=c(TRUE,TRUE,rep(FALSE,8),TRUE), clip=c(0.1,2.5), xlog=TRUE, col=fpColors(box="red",line="green", summary="purple", hrz_lines = "orange"), vertices = TRUE) forestplot(tabletext, graph.pos = 4, hrzl_lines = list("3" = gpar(lty=2), "11" = gpar(lwd=1, columns=c(1:3,5), col = " "12" = gpar(lwd=1, lty=2, columns=c(1:3,5), col = " cochrane_from_rmeta,new_page = TRUE, is.summary=c(TRUE,TRUE,rep(FALSE,8),TRUE), clip=c(0.1,2.5), xlog=TRUE, col=fpColors(box="royalblue",line="darkblue", summary="royalblue", hrz_lines = " data(HRQoL) clrs <- fpColors(box="royalblue",line="darkblue", summary="royalblue") tabletext <- list(c(NA, rownames(HRQoL$Sweden)), append(list(expression(beta)), sprintf("%.2f", HRQoL$Sweden[,"coef"]))) forestplot(tabletext, rbind(rep(NA, 3), HRQoL$Sweden), col=clrs, xlab="EQ-5D index") tabletext <- cbind(rownames(HRQoL$Sweden), sprintf("%.2f", HRQoL$Sweden[,"coef"])) forestplot(tabletext, txt_gp = fpTxtGp(label = gpar(fontfamily = "HersheyScript")), rbind(HRQoL$Sweden), col=clrs, xlab="EQ-5D index") forestplot(tabletext, txt_gp = fpTxtGp(label = list(gpar(fontfamily = "HersheyScript"), gpar(fontfamily = "", col = " ticks = gpar(fontfamily = "", cex=1), xlab = gpar(fontfamily = "HersheySerif", cex = 1.5)), rbind(HRQoL$Sweden), col=clrs, xlab="EQ-5D index") forestplot(tabletext, rbind(HRQoL$Sweden), clip =c(-.1, Inf), col=clrs, xlab="EQ-5D index") tabletext <- tabletext[,1] forestplot(tabletext, mean = cbind(HRQoL$Sweden[, "coef"], HRQoL$Denmark[, "coef"]), lower = cbind(HRQoL$Sweden[, "lower"], HRQoL$Denmark[, "lower"]), upper = cbind(HRQoL$Sweden[, "upper"], HRQoL$Denmark[, "upper"]), clip =c(-.1, 0.075), col=fpColors(box=c("blue", "darkred")), xlab="EQ-5D index") forestplot(tabletext, fn.ci_norm = c(fpDrawNormalCI, fpDrawCircleCI), boxsize = .25, line.margin = .1, mean = cbind(HRQoL$Sweden[, "coef"], HRQoL$Denmark[, "coef"]), lower = cbind(HRQoL$Sweden[, "lower"], HRQoL$Denmark[, "lower"]), upper = cbind(HRQoL$Sweden[, "upper"], HRQoL$Denmark[, "upper"]), clip =c(-.125, 0.075), col=fpColors(box=c("blue", "darkred")), xlab="EQ-5D index") forestplot(tabletext, fn.ci_norm = c(fpDrawNormalCI, fpDrawCircleCI), boxsize = .25, line.margin = .1, mean = cbind(HRQoL$Sweden[, "coef"], HRQoL$Denmark[, "coef"]), lower = cbind(HRQoL$Sweden[, "lower"], HRQoL$Denmark[, "lower"]), upper = cbind(HRQoL$Sweden[, "upper"], HRQoL$Denmark[, "upper"]), clip =c(-.125, 0.075), lty.ci = c(1, 2), col=fpColors(box=c("blue", "darkred")), xlab="EQ-5D index") forestplot(tabletext, legend = c("Sweden", "Denmark"), fn.ci_norm = c(fpDrawNormalCI, fpDrawCircleCI), boxsize = .25, line.margin = .1, mean = cbind(HRQoL$Sweden[, "coef"], HRQoL$Denmark[, "coef"]), lower = cbind(HRQoL$Sweden[, "lower"], HRQoL$Denmark[, "lower"]), upper = cbind(HRQoL$Sweden[, "upper"], HRQoL$Denmark[, "upper"]), clip =c(-.125, 0.075), col=fpColors(box=c("blue", "darkred")), xlab="EQ-5D index") forestplot(tabletext, legend_args = fpLegend(pos = list(x=.85, y=0.25), gp=gpar(col=" legend = c("Sweden", "Denmark"), fn.ci_norm = c(fpDrawNormalCI, fpDrawCircleCI), boxsize = .25, line.margin = .1, mean = cbind(HRQoL$Sweden[, "coef"], HRQoL$Denmark[, "coef"]), lower = cbind(HRQoL$Sweden[, "lower"], HRQoL$Denmark[, "lower"]), upper = cbind(HRQoL$Sweden[, "upper"], HRQoL$Denmark[, "upper"]), clip =c(-.125, 0.075), col=fpColors(box=c("blue", "darkred")), xlab="EQ-5D index") forestplot(tabletext, legend = c("Sweden", "Denmark"), fn.ci_norm = c(fpDrawNormalCI, fpDrawCircleCI), boxsize = .25, line.margin = .1, mean = cbind(HRQoL$Sweden[, "coef"], HRQoL$Denmark[, "coef"]), lower = cbind(HRQoL$Sweden[, "lower"], HRQoL$Denmark[, "lower"]), upper = cbind(HRQoL$Sweden[, "upper"], HRQoL$Denmark[, "upper"]), clip =c(-.125, 0.075), col=fpColors(box=c("blue", "darkred")), xticks = c(-.1, -0.05, 0, .05), xlab="EQ-5D index") xticks <- seq(from = -.1, to = .05, by = 0.025) xtlab <- rep(c(TRUE, FALSE), length.out = length(xticks)) attr(xticks, "labels") <- xtlab forestplot(tabletext, legend = c("Sweden", "Denmark"), fn.ci_norm = c(fpDrawNormalCI, fpDrawCircleCI), boxsize = .25, line.margin = .1, mean = cbind(HRQoL$Sweden[, "coef"], HRQoL$Denmark[, "coef"]), lower = cbind(HRQoL$Sweden[, "lower"], HRQoL$Denmark[, "lower"]), upper = cbind(HRQoL$Sweden[, "upper"], HRQoL$Denmark[, "upper"]), clip =c(-.125, 0.075), col=fpColors(box=c("blue", "darkred")), xticks = xticks, xlab="EQ-5D index") forestplot(tabletext, legend = c("Sweden", "Denmark"), fn.ci_norm = c(fpDrawNormalCI, fpDrawCircleCI), boxsize = .25, line.margin = .1, mean = cbind(HRQoL$Sweden[, "coef"], HRQoL$Denmark[, "coef"]), lower = cbind(HRQoL$Sweden[, "lower"], HRQoL$Denmark[, "lower"]), upper = cbind(HRQoL$Sweden[, "upper"], HRQoL$Denmark[, "upper"]), clip =c(-.125, 0.075), col=fpColors(box=c("blue", "darkred")), grid = TRUE, xticks = c(-.1, -0.05, 0, .05), xlab="EQ-5D index") forestplot(tabletext, legend = c("Sweden", "Denmark"), fn.ci_norm = c(fpDrawNormalCI, fpDrawCircleCI), boxsize = .25, line.margin = .1, mean = cbind(HRQoL$Sweden[, "coef"], HRQoL$Denmark[, "coef"]), lower = cbind(HRQoL$Sweden[, "lower"], HRQoL$Denmark[, "lower"]), upper = cbind(HRQoL$Sweden[, "upper"], HRQoL$Denmark[, "upper"]), clip =c(-.125, 0.075), col=fpColors(box=c("blue", "darkred")), grid = structure(c(-.1, -.05, .05), gp = gpar(lty = 2, col = " xlab="EQ-5D index")
if (interactive()){ library(lmvar) fit_lm = lm( Petal.Length ~ Species, data = iris, y = TRUE) plot_qq(fit_lm) X = model.matrix(~ Species - 1, data = iris) fit_lmvar = lmvar(iris$Petal.Length, X, X) plot_qq(fit_lm, fit_lmvar) fit_lm_width = lm( Petal.Length ~ Species + Petal.Width, data = iris, y = TRUE) plot_qq(fit_lm, fit_lm_width) }
"adult_demo" "adult_enroll_dur" "adult_hcc" "adult_group" "adult_interaction" "adult_rxc" "adult_rxc_hcc_inter"
immer_osink <- function(file) { CDM::osink( file=file, suffix=paste0( "__SUMMARY.Rout") ) }
cov.function<- function(data.matrix){ m=dim(data.matrix)[1] n=dim(data.matrix)[2] barX=matrix(colMeans(data.matrix),m,n,byrow=T) S=(1/(m-1))*t(data.matrix-barX)%*%(data.matrix-barX) return(S) }
all_passed <- function(agent, i = NULL) { if (!has_agent_intel(agent)) { stop( "The agent hasn't performed an interrogation.", call. = FALSE ) } all_passed_vec <- agent$validation_set$all_passed if (length(all_passed_vec) < 1) { if (is.null(i)) { return(NA) } else { stop( "You cannot provide a value for `i` when the agent ", "contains no validation steps.", call. = FALSE ) } } if (!is.null(i)) { all_passed_vec_range <- seq_along(all_passed_vec) if (!all(i %in% all_passed_vec_range)) { stop( "All values provided for `i` must be in the range of ", "the validation step numbers present in the agent.", call. = FALSE ) } all_passed_vec <- all_passed_vec[i] } if (any(is.na(all_passed_vec))) { return(FALSE) } all(all_passed_vec) }
siarhistograms <- function(siardata,siarversion=0,legloc='topright') { if(siardata$SHOULDRUN==FALSE && siardata$GRAPHSONLY==FALSE) { cat("You must load in some data first (via option 1) in order to use \n") cat("this feature of the program. \n") cat("Press <Enter> to continue") readline() invisible() return(NULL) } if(length(siardata$output)==0) { cat("No output found - check that you have run the SIAR model. \n \n") return(NULL) } cat("Plots of single groups proportions. \n") if(siardata$numgroups>1) { cat("Enter the group number of the proportions you wish to plot \n") BADGROUP <- TRUE while(BADGROUP==TRUE) { groupnum <- as.integer(scan(what="",nlines=1,quiet=TRUE)) if(length(groupnum)>0) { BADGROUP <- FALSE if(groupnum>siardata$numgroups) { BADGROUP <- TRUE cat("Group number out of range. \n") } } } } else { groupnum <- 1 } title <- "Do you require each plot on a seperate graph or all on the same one?" choices <- c("Each on a seperate graph","All together on one graph") choose <- menu(choices,title = title) cat("Producing plot..... \n \n") if(length(siardata$sources)>0) { sourcenames <- as.character(siardata$sources[,1]) } else { sourcenames <- strsplit(colnames(siardata$output[,((groupnum-1)*(siardata$numsources+siardata$numiso)+1):(groupnum*(siardata$numsources+siardata$numiso)-siardata$numiso)]),paste("G",groupnum,sep="")) } usepars <- siardata$output[,((groupnum-1)*(siardata$numsources+siardata$numiso)+1):(groupnum*(siardata$numsources+siardata$numiso))] mybreaks <- seq(0,1,length=50) halfwidth <- diff(mybreaks)[1]/2 top <- 0 for(j in 1:siardata$numsources) { top <- max(c(top,max(hist(usepars[,j],plot=FALSE,breaks=mybreaks)$density))) } if(choose==2) { if(siardata$TITLE!="SIAR data") { if(siardata$numgroups > 1) plot(1,1,xlim=c(0,1),ylim=c(0,top),type="n",main=paste(siardata$TITLE,": proportion densities for group ",groupnum,sep=""),xlab="proportion",ylab="density") if(siardata$numgroups ==1) plot(1,1,xlim=c(0,1),ylim=c(0,top),type="n",main=paste(siardata$TITLE,": proportion densities",sep=""),xlab="proportion",ylab="density") } else { if(siardata$numgroups > 1) plot(1,1,xlim=c(0,1),ylim=c(0,top),type="n",main=paste("Proportion densities for group ",groupnum,sep=""),xlab="proportion",ylab="density") if(siardata$numgroups ==1) plot(1,1,xlim=c(0,1),ylim=c(0,top),type="n",main="Proportion densities",xlab="proportion",ylab="density") } if(siarversion>0) mtext(paste("siar v",siarversion),side=1,line=4,adj=1,cex=0.6) for(j in 1:siardata$numsources) { Ans <- hist(usepars[,j],plot=FALSE,breaks=mybreaks) for(k in 1:length(Ans$mids)) { lines(c(Ans$mids[k]+(j/((siardata$numsources+1)/2)-1)*halfwidth,Ans$mids[k]+(j/((siardata$numsources+1)/2)-1)*halfwidth),c(0,Ans$density[k]),col=j,lwd=(siardata$numsources+1)/2,lend=1) lines(c(Ans$mids[k]+(j/((siardata$numsources+1)/2)-1)*halfwidth,Ans$mids[k]+(j/((siardata$numsources+1)/2)-1)*halfwidth),c(0,Ans$density[k]),col=j,lwd=(siardata$numsources+1)/2,lend=1) } } legend(legloc,legend=sourcenames,col=seq(1,siardata$numsources),lty=1,lwd=3,bty="n") } if(choose==1) { devAskNewPage(ask=TRUE) for(j in 1:siardata$numsources) { if(siardata$TITLE!="SIAR data") { if(siardata$numgroups > 1) plot(1,1,xlim=c(0,1),ylim=c(0,top),type="n",main=paste(siardata$TITLE,": proportion densities for group ",groupnum,": ",sourcenames[j],sep=""),xlab="proportion",ylab="density") if(siardata$numgroups ==1) plot(1,1,xlim=c(0,1),ylim=c(0,top),type="n",main=paste(siardata$TITLE,": proportion densities: ",sourcenames[j],sep=""),xlab="proportion",ylab="density") } else { if(siardata$numgroups > 1) plot(1,1,xlim=c(0,1),ylim=c(0,top),type="n",main=paste("Proportion densities for group ",groupnum,": ",sourcenames[j],sep=""),xlab="proportion",ylab="density") if(siardata$numgroups ==1) plot(1,1,xlim=c(0,1),ylim=c(0,top),type="n",main=paste("Proportion densities: ",sourcenames[j],sep=""),xlab="proportion",ylab="density") } if(siarversion>0) mtext(paste("siar v",siarversion),side=1,line=4,adj=1,cex=0.6) Ans <- hist(usepars[,j],plot=FALSE,breaks=mybreaks) for(k in 1:length(Ans$mids)) { lines(c(Ans$mids[k]+(j/((siardata$numsources+1)/2)-1)*halfwidth,Ans$mids[k]+(j/((siardata$numsources+1)/2)-1)*halfwidth),c(0,Ans$density[k]),col=j,lwd=(siardata$numsources+1)/2,lend=1) lines(c(Ans$mids[k]+(j/((siardata$numsources+1)/2)-1)*halfwidth,Ans$mids[k]+(j/((siardata$numsources+1)/2)-1)*halfwidth),c(0,Ans$density[k]),col=j,lwd=(siardata$numsources+1)/2,lend=1) } } } }
getChangeMeta <- function(GADSdat, level = "variable") { UseMethod("getChangeMeta") } getChangeMeta.GADSdat <- function(GADSdat, level = "variable") { check_GADSdat(GADSdat) labels <- GADSdat[["labels"]] if(identical(level, "variable")) { oldCols <- c("varName", "varLabel", "format", "display_width") newCols <- paste0(oldCols, "_new") for(n in newCols) labels[, n] <- NA change_sheet <- unique(labels[, c(oldCols, newCols)]) return(new_varChanges(change_sheet)) } if(identical(level, "value")) { oldCols <- c("value", "valLabel", "missings") newCols <- paste0(oldCols, "_new") for(n in newCols) labels[, n] <- NA change_sheet <- labels[, c("varName", oldCols, newCols)] return(new_valChanges(change_sheet)) } stop("Invalid level argument.") } getChangeMeta.all_GADSdat <- function(GADSdat, level = "variable") { check_all_GADSdat(GADSdat) changeSheet_list <- lapply(names(GADSdat$datList), function(nam ) { single_GADSdat <- extractGADSdat(GADSdat, name = nam) getChangeMeta(single_GADSdat, level = level) }) names(changeSheet_list) <- names(GADSdat$datList) changeSheet_list } new_varChanges <- function(df) { stopifnot(is.data.frame(df)) structure(df, class = c("varChanges", "data.frame")) } check_varChanges <- function(changeTable) { if(!is.data.frame(changeTable)) stop("changeTable is not a data.frame.") colNames <- c("varName", "varLabel", "format", "display_width") colNames <- c(colNames, paste0(colNames, "_new")) if(any(!names(changeTable) %in% colNames)) stop("Irregular column names in changeTable.") changeTable$varName_new <- sapply(changeTable$varName_new, function(x) { if(is.na(x)) return(NA) transf_names(x) }) changeTable } new_valChanges <- function(df) { stopifnot(is.data.frame(df)) structure(df, class = c("valChanges", "data.frame")) } check_valChanges <- function(changeTable) { if(!is.data.frame(changeTable)) stop("changeTable is not a data.frame.") oldCols <- c("value", "valLabel", "missings") newCols <- paste0(oldCols, "_new") colNames <- c("varName", oldCols, newCols) if(any(!names(changeTable) %in% colNames)) stop("Irregular column names in changeTable.") if(!all(changeTable[, "missings_new"] %in% c("miss", "valid") | is.na(changeTable[, "missings_new"]))) { stop("Irregular values in 'missings_new' column.") } if(is.character(changeTable[, "value_new"])) { changeTable[, "value_new"] <- suppressWarnings(eatTools::asNumericIfPossible(changeTable[, "value_new"], force.string = FALSE)) if(is.character(changeTable[, "value_new"])) stop("Column 'value_new' in 'changeTable' is character and can not be transformed to numeric.") } if(is.character(changeTable[, "value"])) { changeTable[, "value"] <- suppressWarnings(eatTools::asNumericIfPossible(changeTable[, "value"], force.string = FALSE)) if(is.character(changeTable[, "value"])) stop("Column 'value' in 'changeTable' is character and can not be transformed to numeric.") } wrong_new_miss <- which((changeTable$missings_new == "miss" | !is.na(changeTable$valLabel_new)) & is.na(changeTable$value) & is.na(changeTable$value_new)) if(length(wrong_new_miss) > 0) stop("Value 'NA' can not receive a value label.") changeTable }
shiny_classes_ronds <- function(data,fondMaille,fondMailleElargi=NULL,fondContour,fondSuppl=NULL,idData,varVolume,varRatio,emprise="FRM",fondEtranger=NULL,fondChx=NULL) { options("stringsAsFactors"=FALSE) msg_error1<-msg_error2<-msg_error3<-msg_error4<-msg_error5<-msg_error6<-msg_error7<-msg_error8<-msg_error9<-msg_error10<-msg_error11<-msg_error12<-msg_error13<-msg_error14<-msg_error15<-msg_error16<-msg_error17<-msg_error18<-msg_error19<-msg_error20<-msg_error21 <- NULL if(any(class(data)!="data.frame")) msg_error1 <- "Les donnees doivent etre dans un data.frame / " if(any(!any(class(fondMaille) %in% "sf"),!any(class(fondMaille) %in% "data.frame"))) msg_error2 <- "Le fond de maille doit etre un objet sf / " if(!is.null(fondMailleElargi)) if(any(!any(class(fondMailleElargi) %in% "sf"),!any(class(fondMailleElargi) %in% "data.frame"))) msg_error3 <- "Le fond de maille elargie doit etre un objet sf / " if(any(!any(class(fondContour) %in% "sf"),!any(class(fondContour) %in% "data.frame"))) msg_error4 <- "Le fond de contour doit etre un objet sf / " if(!is.null(fondSuppl)) if(any(!any(class(fondSuppl) %in% "sf"),!any(class(fondSuppl) %in% "data.frame"))) msg_error5 <- "Le fond supplementaire doit etre un objet sf / " if(any(class(idData)!="character")) msg_error6 <- "Le nom de la variable doit etre de type caractere / " if(any(class(varVolume)!="character")) msg_error7 <- "Le nom de la variable doit etre de type caractere / " if(any(class(varRatio)!="character")) msg_error8 <- "Le nom de la variable doit etre de type caractere / " if(any(class(emprise)!="character")) msg_error9 <- "La valeur doit etre de type caractere ('FRM', '971', '972', '973', '974', '976' ou '999') / " if(!is.null(fondChx)) if(any(!any(class(fondChx) %in% "sf"),!any(class(fondChx) %in% "data.frame"))) msg_error10 <- "Le fond des chx doit etre un objet sf / " if(length(names(data))<3) msg_error11 <- "Le tableau des donnees n'est pas conforme. Il doit contenir au minimum une variable identifiant et les 2 variables a representer / " if(length(names(fondMaille))<3) msg_error12 <- "Le fond de maille n'est pas conforme. La table doit contenir au minimum une variable identifiant, une variable libelle et la geometry / " if(!is.null(fondMailleElargi)) if(length(names(fondMailleElargi))<3) msg_error13 <- "Le fond de maille elargie n'est pas conforme. La table doit contenir au minimum une variable identifiant, une variable libelle et la geometry / " if(length(names(fondContour))<3) msg_error14 <- "Le fond de contour n'est pas conforme. La table doit contenir au minimum une variable identifiant, une variable libelle et la geometry / " if(!is.null(fondSuppl)) if(length(names(fondSuppl))<3) msg_error15 <- "Le fond supplementaire n'est pas conforme. La table doit contenir au minimum une variable identifiant, une variable libelle et la geometry / " if(!any(names(data) %in% idData)) msg_error16 <- "La variable identifiant les donnees n'existe pas dans la table des donnees / " if(!any(names(data) %in% varVolume)) msg_error17 <- "La variable a representer n'existe pas dans la table des donnees / " if(!any(names(data) %in% varRatio)) msg_error18 <- "La variable a representer n'existe pas dans la table des donnees / " if(!emprise %in% c("FRM","971","972","973","974","976","999")) msg_error19 <- "La variable emprise doit etre 'FRM', '971', '972', '973', '974', '976' ou '999' / " if(!is.null(fondEtranger)) if(any(!any(class(fondEtranger) %in% "sf"),!any(class(fondEtranger) %in% "data.frame"))) msg_error20 <- "Le fond etranger doit etre un objet sf / " if(!is.null(fondEtranger)) if(length(names(fondEtranger))<3) msg_error21 <- "Le fond etranger n'est pas conforme. La table doit contenir au minimum une variable identifiant, une variable libelle et la geometry / " if(any(!is.null(msg_error1),!is.null(msg_error2),!is.null(msg_error3),!is.null(msg_error4), !is.null(msg_error5),!is.null(msg_error6),!is.null(msg_error7),!is.null(msg_error8), !is.null(msg_error9),!is.null(msg_error10),!is.null(msg_error11),!is.null(msg_error12), !is.null(msg_error13),!is.null(msg_error14),!is.null(msg_error15),!is.null(msg_error16), !is.null(msg_error17),!is.null(msg_error18),!is.null(msg_error19),!is.null(msg_error20),!is.null(msg_error21))) { stop(simpleError(paste0(msg_error1,msg_error2,msg_error3,msg_error4,msg_error5,msg_error6,msg_error7,msg_error8, msg_error9,msg_error10,msg_error11,msg_error12,msg_error13,msg_error14,msg_error15,msg_error16, msg_error17,msg_error18,msg_error19,msg_error20,msg_error21))) } nb_up <- reactiveValues(a=0) nb_down <- reactiveValues(a=0) ordre_analyse <- reactiveValues(a=1,b=2) insert_save <- reactiveValues(a=0) remove_carte <- reactiveValues(a=0) liste_fonds <- reactiveValues(a=c("analyse","maille","contour")) m_save_ac_rp <- reactiveValues(a=0) erreur_maille <- reactiveValues(a=FALSE) max_classes <- reactiveValues(a=4) methode_calcul <- c("fisher","jenks","kmeans","quantile","manuel") legende <- reactiveValues(a=NULL) sourc <- "Source : Insee" names(data)[names(data)==idData] <- "CODE" names(fondMaille)[1] <- "CODE" names(fondMaille)[2] <- "LIBELLE" names(fondContour)[1] <- "CODE" names(fondContour)[2] <- "LIBELLE" if(!is.null(fondMailleElargi)) { names(fondMailleElargi)[1] <- "CODE" names(fondMailleElargi)[2] <- "LIBELLE" fondMailleElargi$LIBELLE<-iconv(fondMailleElargi$LIBELLE,"latin1","utf8") } epsg_etranger <- NULL if(!is.null(fondEtranger)) { names(fondEtranger)[1] <- "CODE" names(fondEtranger)[2] <- "LIBGEO" fondEtranger$LIBGEO<-iconv(fondEtranger$LIBGEO,"latin1","utf8") if(substr(st_crs(fondEtranger)[1]$input,1,5) == "EPSG:") { epsg_etranger <- substr(st_crs(fondEtranger)[1]$input,6,9) }else { epsg_etranger <- st_crs(fondEtranger)[1]$input } if(is.na(epsg_etranger) | epsg_etranger=="4326") { epsg_etranger <- "3395" } } if(!is.null(fondSuppl)) { names(fondSuppl)[1] <- "CODE" names(fondSuppl)[2] <- "LIBELLE" fondSuppl$LIBELLE<-iconv(fondSuppl$LIBELLE,"latin1","utf8") } fondMaille$LIBELLE<-iconv(fondMaille$LIBELLE,"latin1","utf8") fondContour$LIBELLE<-iconv(fondContour$LIBELLE,"latin1","utf8") ui <- navbarPage("OCEANIS", id="menu", theme = shinytheme("superhero"), tabPanel("Carte",value="carte", sidebarLayout( sidebarPanel(width = 3, style = "overflow-y:scroll; min-height: 1000px; max-height: 1000px", h4(HTML("<b><font color= uiOutput("variable_classe_ac_rp"), uiOutput("variable_rond_ac_rp"), tags$hr(style="border: 5px solid h4(HTML("<b><font color= fluidRow( column(width=9, offset=0.5, uiOutput("ordre_fonds_ac_rp") ), column(width=1, br(), br(), htmlOutput("monter_fond_ac_rp", inline=FALSE), htmlOutput("descendre_fond_ac_rp", inline=FALSE) ) ), uiOutput("elargi_ac_rp"), conditionalPanel(condition = 'input.elargi_ac_rp_id', uiOutput("opacite_elargi_ac_rp") ), uiOutput("ajout_territoire_ac_rp"), uiOutput("ajout_reg_ac_rp"), uiOutput("ajout_dep_ac_rp"), tags$hr(style="border: 5px solid h4(HTML("<b><font color= uiOutput("taille_rond_ac_rp"), htmlOutput("info_taille_max_rond_ac_rp"), htmlOutput("info_rapport_rond_ac_rp"), uiOutput("rapport_rond_ac_rp"), conditionalPanel(condition = 'input.rapport_rond_ac_rp_id', uiOutput("valeur_rapport_rond_ac_rp"), htmlOutput("info_rapport_max_rond_ac_rp") ), uiOutput("choix_centroid_ac_rp"), tags$hr(style="border: 5px solid h4(HTML("<b><font color= uiOutput("liste_classes_ac_rp"), uiOutput("methode_ac_rp"), uiOutput("palette_insee_ac_rp"), uiOutput("distribution_variable_ac_rp"), conditionalPanel(condition = 'input.distribution_variable_ac_rp_id', verticalLayout( wellPanel( style="background: plotOutput("distribution_ac_rp"), br(), uiOutput("slider_bornes_ac_rp"), uiOutput("valid_slider_bornes_ac_rp") ) ) ), conditionalPanel(condition = 'input.methode_ac_rp_id=="manuel"', br(), uiOutput("zone_bornes_max_ac_rp"), uiOutput("zone_bornes_ac_rp"), uiOutput("zone_bornes_min_ac_rp"), br(), uiOutput("valid_bornes_ac_rp") ), tags$hr(style="border: 5px solid h4(HTML("<b><font color= uiOutput("titre_ronds_legende_ac_rp"), uiOutput("titre_classes_legende_ac_rp"), br(), uiOutput("affiche_legende_ac_rp"), uiOutput("type_legende_ac_rp"), br(), tags$hr(style="border: 5px solid h4(HTML("<b><font color= uiOutput("save_carte_ac_rp"), br(), conditionalPanel(condition = 'input.mymap_ac_rp_click', tags$div(class="dropup", HTML('<button class="btn btn-primary dropdown-toggle" type="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Exporter en projet Qgis <span class="caret"></span> </button>'), tags$ul(class="dropdown-menu", wellPanel( style="background: h4("Export de la carte en projet Qgis"), br(), uiOutput("sortie_qgis_ac_rp"), br(), uiOutput("titre1_qgis_ac_rp"), uiOutput("titre2_qgis_ac_rp"), uiOutput("source_qgis_ac_rp"), tags$head(tags$style(HTML(' uiOutput("export_qgis_ac_rp") ) ) ) ), br(), uiOutput("aide_image_ac_rp"), br() ), mainPanel( tags$head( tags$style(HTML(".leaflet-container { background: ), tabsetPanel(id="onglets_ac_rp", tabPanel(title=HTML("<b>Carte</b>"),value="carte", leafletOutput("mymap_ac_rp",width="112%",height = 950) ), tabPanel(title=HTML(paste0("<b>Donn","\u00e9","es</b>")),value="donnees", h5("S\u00e9lectionnez une ou plusieurs lignes pour ensuite les visualiser sur la carte."), DT::dataTableOutput("mydonnees_ac_rp",width="112%",height = 950)), tabPanel(title=HTML("<b>Maille</b>"),value="maille", h5("S\u00e9lectionnez une ou plusieurs lignes pour ensuite les visualiser sur la carte."), DT::dataTableOutput("mymaille_ac_rp",width="112%",height = 950)), tabPanel(title=HTML("<b>Contour</b>"),value="contour", h5("S\u00e9lectionnez une ou plusieurs lignes pour ensuite les visualiser sur la carte."), DT::dataTableOutput("mycontour_ac_rp",width="112%",height = 950)) ) ) ) ) ) server <- function(input, output, session) { observe({ output$variable_classe_ac_rp <- renderUI({ selectInput("variable_classe_ac_rp_id", label=h5("Variable des classes (en ratio)"), choices = varRatio, selected = varRatio) }) output$variable_rond_ac_rp <- renderUI({ selectInput("variable_rond_ac_rp_id", label=h5("Variable des ronds (en volume)"), choices = varVolume, selected = varVolume) }) output$ordre_fonds_ac_rp <- renderUI({ selectInput("ordre_fonds_ac_rp_id", label=h5("Modifier l'ordre des fonds"), choices = liste_fonds$a, multiple=TRUE, selectize=FALSE, selected = NULL) }) output$monter_fond_ac_rp <- renderUI({ actionButton("monter_fond_ac_rp_id", label="", icon=icon("arrow-up")) }) output$descendre_fond_ac_rp <- renderUI({ actionButton("descendre_fond_ac_rp_id", label="", icon=icon("arrow-down")) }) if(!is.null(fondMailleElargi)) { output$elargi_ac_rp <- renderUI({ checkboxInput("elargi_ac_rp_id", label = HTML("Afficher une repr\u00e9sentation \u00e9largie de l'analyse<br>(parfois long)"), value = if(is.null(fondMailleElargi)) FALSE else TRUE) }) output$opacite_elargi_ac_rp <- renderUI({ sliderInput("opacite_elargi_ac_rp_id", label = h5("Opacit\u00e9 de l'analyse \u00e9largie"), value=60, min=0, max=100, step=5, ticks=FALSE) }) } output$ajout_territoire_ac_rp <- renderUI({ checkboxInput("ajout_territoire_ac_rp_id", label = "Afficher le fond des territoires", value = if(is.null(fondSuppl)) FALSE else TRUE) }) output$ajout_reg_ac_rp <- renderUI({ checkboxInput("ajout_reg_ac_rp_id", label = "Afficher le fond des r\u00e9gions", value = FALSE) }) output$ajout_dep_ac_rp <- renderUI({ checkboxInput("ajout_dep_ac_rp_id", label = "Afficher le fond des d\u00e9partements", value = FALSE) }) output$taille_rond_ac_rp <- renderUI({ numericInput("taille_rond_ac_rp_id", label = h5("Rayon du rond le plus grand (en m\u00e8tres)"), value=round(as.numeric(calcul_max_rayon_metres_ac_rp()[[1]])/1.25,0), min=0, max=round(as.numeric(calcul_max_rayon_metres_ac_rp()[[1]]),0), step=1000) }) output$info_taille_max_rond_ac_rp <- renderText({ HTML(paste0("<font size=2 color=white>Valeur max du rayon le plus grand = ", round(as.numeric(calcul_max_rayon_metres_ac_rp()[[1]]),0)," m</font>")) }) output$info_rapport_rond_ac_rp <- renderText({ HTML(paste0("<font size=2 color=white>Rapport Surface rond / Volume = ", (pi*(as.numeric(calcul_max_rayon_metres_ac_rp()[[1]])/1.25)^2)/as.numeric(calcul_max_rayon_metres_ac_rp()[[2]]),"</font>")) }) output$rapport_rond_ac_rp <- renderUI({ checkboxInput("rapport_rond_ac_rp_id", label = "Modifier la valeur du rapport (permet la comparaison entre cartes)", value=FALSE) }) output$valeur_rapport_rond_ac_rp <- renderUI({ numericInput("valeur_rapport_rond_ac_rp_id", label = h5("Nouvelle valeur du rapport Surface rond / Volume"), value=(pi*(as.numeric(calcul_max_rayon_metres_ac_rp()[[1]])/1.25)^2)/as.numeric(calcul_max_rayon_metres_ac_rp()[[2]]), min=0.1, max=(pi*(as.numeric(calcul_max_rayon_metres_ac_rp()[[1]]))^2)/as.numeric(calcul_max_rayon_metres_ac_rp()[[2]]), step=0.1) }) output$info_rapport_max_rond_ac_rp <- renderText({ HTML(paste0("<font size=2 color=white>Valeur max du rapport = ", (pi*(as.numeric(calcul_max_rayon_metres_ac_rp()[[1]]))^2)/as.numeric(calcul_max_rayon_metres_ac_rp()[[2]]),"</font>")) }) if(!is.null(fondChx)) { output$choix_centroid_ac_rp <- renderUI({ radioButtons("choix_centroid_ac_rp_id", label = h5("Les ronds sont centres sur"), choices=c("les centroides des communes"="centroid","les chx des communes"="chx"), selected = if(!is.null(fondChx)) "chx" else "centroid") }) }else { output$choix_centroid_ac_rp <- renderUI({ }) } output$liste_classes_ac_rp <- renderUI({ selectInput("nb_classes_ac_rp_id", label = h5("Nombre de classes"), choices = nb_classes_ac_rp()[[1]], selected = nb_classes_ac_rp()[[1]][1]) }) output$methode_ac_rp <- renderUI({ selectInput("methode_ac_rp_id", label = h5("M\u00e9thode de calcul des classes"), choices = methode_calcul, selected="kmeans") }) output$palette_insee_ac_rp <- renderUI({ selectInput("palette_insee_ac_rp_id", label = h5("Palette de couleurs"), choices = nb_classes_ac_rp()[[2]], selected=nb_classes_ac_rp()[[2]][1]) }) output$distribution_variable_ac_rp <- renderUI({ bsButton("distribution_variable_ac_rp_id",label="Distribution de la variable", style="btn btn-info", icon = icon("chart-bar"), type = "toggle", block = FALSE, disabled = FALSE, value = FALSE) }) observeEvent(input$distribution_variable_ac_rp_id,{ if(!input$distribution_variable_ac_rp_id) return() updateButton(session, "distribution_variable_ac_rp_id", value = TRUE) }, ignoreInit = TRUE) observeEvent(input$distribution_variable_ac_rp_id,{ output$distribution_ac_rp <- renderPlot({ dt_donnees <- data.frame(VAR=as.numeric(analyse_ac_rp()[[1]]$donnees[,varRatio])) ggplot(dt_donnees, aes(x=.data$VAR)) + stat_bin(breaks=unique(sort(c(min(dt_donnees$VAR),new_bornes_ac_rp(),max(dt_donnees$VAR, na.rm = TRUE)))), closed = "left", fill=" scale_x_continuous(breaks=unique(sort(c(min(dt_donnees$VAR),new_bornes_ac_rp(),max(dt_donnees$VAR, na.rm = TRUE)))), labels = round(unique(sort(c(min(dt_donnees$VAR),new_bornes_ac_rp(),max(dt_donnees$VAR, na.rm = TRUE)))),2)) + ggtitle(label=paste0("Distribution de la variable : ",varRatio)) + xlab(label = varRatio) }) output$slider_bornes_ac_rp <- renderUI({ lapply(1:(as.numeric(input$nb_classes_ac_rp_id)-1)+1, function(i) { sliderInput(inputId = paste0("slider_bornes_", i,"_ac_rp_id"), label = NULL, value = rev(react_bornes_ac_rp()[[1]])[i], min = round(min(react_bornes_ac_rp()[[1]]),3), max = round(max(react_bornes_ac_rp()[[1]]),3), step = 0.001) }) }) output$valid_slider_bornes_ac_rp <- renderUI({ actionButton("valid_slider_bornes_ac_rp_id",label=label_bouton_ac_rp(), icon=icon("sync"), style="color: }) },ignoreInit = TRUE) label_bouton_ac_rp <- eventReactive(input$methode_ac_rp_id,{ if(input$methode_ac_rp_id=="manuel") { label_bouton <- "Valider les bornes manuelles" }else { label_bouton <- "Basculer en mode manuel" } return(label_bouton) }) new_bornes_ac_rp <- reactive({ bornes <- vector() for (i in 2:(as.numeric(input$nb_classes_ac_rp_id))) { bornes<-c(bornes,input[[paste0("slider_bornes_", i,"_ac_rp_id")]]) } return(bornes) }) output$zone_bornes_max_ac_rp <- renderUI({ HTML(paste0("Borne max : ", round(max(as.numeric(analyse_ac_rp()[[1]]$donnees[,varRatio])),3))) }) output$zone_bornes_ac_rp <- renderUI({ if(!is.null(input$methode_ac_rp_id)) { if(input$methode_ac_rp_id=="manuel") suppressWarnings(bornes_analyse <- classIntervals(as.numeric(analyse_ac_rp()[[1]]$donnees[,varRatio]),as.numeric(input$nb_classes_ac_rp_id),style="kmeans",rtimes=10,intervalClosure="left")) else suppressWarnings(bornes_analyse <- classIntervals(as.numeric(analyse_ac_rp()[[1]]$donnees[,varRatio]),as.numeric(input$nb_classes_ac_rp_id),style=input$methode_ac_rp_id,rtimes=10,intervalClosure="left")) carac_bornes <- calcul_bornes(analyse_ac_rp()[[1]]$donnees,bornes_analyse,varRatio,input$nb_classes_ac_rp_id,input$methode_ac_rp_id,input$palette_insee_ac_rp_id) if(!is.null(input$nb_classes_ac_rp_id)) { if(input$methode_ac_rp_id=="manuel") { lapply(1:(as.numeric(input$nb_classes_ac_rp_id)-1), function(i) { numericInput(inputId = paste0("bornes_", i,"_ac_rp_id"), label = paste("Choix de la borne ", i), value = round(rev(carac_bornes[[1]])[i+1],3)) }) } } } }) output$zone_bornes_min_ac_rp <- renderUI({ HTML(paste0("Borne min : ", round(min(as.numeric(analyse_ac_rp()[[1]]$donnees[,varRatio])),3))) }) output$valid_bornes_ac_rp <- renderUI({ actionButton("valid_bornes_ac_rp_id",label="Rafraichir la carte", icon=icon("sync"), style="color: }) output$titre_ronds_legende_ac_rp <- renderUI({ textInput("titre_ronds_legende_ac_rp_id", label = h5("Titre de la l\u00e9gende des ronds"), value = "") }) output$titre_classes_legende_ac_rp <- renderUI({ textInput("titre_classes_legende_ac_rp_id", label = h5("Titre de la l\u00e9gende des classes"), value = "") }) output$affiche_legende_ac_rp <- renderUI({ checkboxInput("affiche_legende_ac_rp_id", label = "Activer le d\u00e9placement de la l\u00e9gende au clic", value = TRUE) }) output$type_legende_ac_rp <- renderUI({ radioButtons("type_legende_ac_rp_id", label = h5("Type de l\u00e9gende"), choices = list("Litterale" = 1, "En echelle" = 2), selected = 1, inline = TRUE) }) output$save_carte_ac_rp <- renderUI({ actionButton("save_carte_ac_rp_id", label=HTML("<font size=3>Sauvegarder la carte dans un onglet</font>"), style="color: }) output$entrees_qgis_ac_rp <- renderUI({ actionButton("entrees_qgis_ac_rp_id", label="Exporter en projet Qgis") }) output$sortie_qgis_ac_rp <- renderUI({ tags$div(class="input-group", HTML('<input type="text" id="sortie_qgis_ac_rp_id" class="form-control" placeholder="Nom du projet" aria-describedby="sortie_qgis_ac_rp_id"> <span class="input-group-addon" id="sortie_qgis_ac_rp_id">.qgs</span>')) }) output$titre1_qgis_ac_rp <- renderUI({ textInput("titre1_qgis_ac_rp_id", label = h5("Titre informatif"), value = "", placeholder= "Facultatif") }) output$titre2_qgis_ac_rp <- renderUI({ textInput("titre2_qgis_ac_rp_id", label = h5("Titre descriptif"), value = "", placeholder= "Facultatif") }) output$source_qgis_ac_rp <- renderUI({ textInput("source_qgis_ac_rp_id", label = h5("Source de la carte"), value = sourc) }) output$aide_image_ac_rp <- renderUI({ tags$div(class="dropup", HTML(paste0('<button class="btn btn-primary dropdown-toggle" type="button" data-toggle="dropdown"> <i class="fa fa-book fa-fw" aria-hidden="true"></i> Proc','\u00e9','dure pour capture d\'','\u00e9','cran <span class="caret"></span> </button>')), tags$ul(class="dropdown-menu", wellPanel( style="background: div( HTML("<font size=2>Deux possibilit\u00e9s :</font>"), br(), br(), strong(HTML("<font size=3>Par l'Outil Capture</font>")), br(), HTML("<font size=2>1- Ouvrir un logiciel de capture (Outil Capture de Windows par exemple).</font>"), br(), HTML(paste0("<font size=2>2- S\u00e9lectionner la zone \u00e0 capturer.</font>")), br(), HTML("<font size=2>3- Enregistrer l'image ou copier la dans le presse-papier.</font>"), br(), br(), strong(HTML(paste0("<font size=3>Par impression d'","\u00e9","cran</font>"))), br(), HTML("<font size=2>1- Appuyer sur la touche clavier \"Impr ecran\".</font>"), br(), HTML("<font size=2>2- Ouvrir un logiciel de retouche image (Paint par exemple).</font>"), br(), HTML("<font size=2>3- Coller l'image et l'enregistrer au format voulu (.jpg, .png, .bmp).</font>") ) ) ) ) }) }) observeEvent(list(input$monter_fond_ac_rp_id,input$descendre_fond_ac_rp_id),{ ordre <- c() if(as.numeric(input$monter_fond_ac_rp_id)>nb_up$a) { ordre <- c(2,3) nb_up$a <- nb_up$a+1 } if(as.numeric(input$descendre_fond_ac_rp_id)>nb_down$a) { ordre <- c(1,2) nb_down$a <- nb_down$a+1 } if(is.null(input$ordre_fonds_ac_rp_id)) pos_select <- 0 else pos_select <- which(liste_fonds$a==input$ordre_fonds_ac_rp_id) if(pos_select>0) { if(pos_select==ordre[1]) liste_fonds$a <- liste_fonds$a[c(2,1,3)] if(pos_select==ordre[2]) liste_fonds$a <- liste_fonds$a[c(1,3,2)] updateSelectInput(session, "ordre_fonds_ac_rp_id", choices = liste_fonds$a, selected = input$ordre_fonds_ac_rp_id ) } },ignoreInit = TRUE) calcul_max_rayon_metres_ac_rp <- reactive({ aire_territoire <- as.numeric(sum(st_area(fondMaille[fondMaille$CODE %in% data[,"CODE"],]))) suppressWarnings(max_var <- max(data[data[,"CODE"] %in% fondMaille$CODE,varVolume], na.rm = TRUE)) serie <- data[data[,"CODE"] %in% fondMaille$CODE,varVolume] serie <- serie[!is.na(serie)] quotient <- serie/max_var somme_quotient <- sum(quotient^2) max_surface_rond <- (aire_territoire/(7*somme_quotient)) max_rayon_metres <- sqrt(max_surface_rond/pi) return(list(max_rayon_metres,max_var)) }) rayon_ac_rp <- reactive({ req(input$valeur_rapport_rond_ac_rp_id) Sys.sleep(3) val <- round(sqrt((input$valeur_rapport_rond_ac_rp_id*isolate(calcul_max_rayon_metres_ac_rp())[[2]])/pi),0) return(val) }) rayon_react_ac_rp <- rayon_ac_rp %>% debounce(1000) observeEvent(rayon_react_ac_rp(),{ req(rayon_react_ac_rp()) if(length(rayon_react_ac_rp())==0) return(NULL) if(rayon_react_ac_rp()==0 | is.na(rayon_react_ac_rp())) return(NULL) isolate(updateNumericInput(session,"taille_rond_ac_rp_id", value=rayon_react_ac_rp())) isolate(output$info_rapport_rond_ac_rp <- renderText({ HTML(paste0("<font size=2 color=white>Rapport Surface rond / Volume = ", (pi*(rayon_react_ac_rp())^2)/isolate(calcul_max_rayon_metres_ac_rp())[[2]],"</font>")) })) }) rapport_ac_rp <- reactive({ req(input$taille_rond_ac_rp_id) val <- (pi*(input$taille_rond_ac_rp_id)^2)/isolate(calcul_max_rayon_metres_ac_rp())[[2]] max <- (pi*(isolate(calcul_max_rayon_metres_ac_rp())[[1]])^2)/isolate(calcul_max_rayon_metres_ac_rp())[[2]] return(list(val=val,max=max)) }) rapport_react_ac_rp <- rapport_ac_rp %>% debounce(1000) observeEvent(rapport_react_ac_rp(),{ req(rapport_react_ac_rp()) if(length(rapport_react_ac_rp()$val)==0) return(NULL) if(rapport_react_ac_rp()$val==0 | is.na(rapport_react_ac_rp()$val)) return(NULL) isolate(updateNumericInput(session,"valeur_rapport_rond_ac_rp_id", value=rapport_react_ac_rp()$val)) isolate(output$info_rapport_rond_ac_rp <- renderText({ HTML(paste0("<font size=2 color=white>Rapport Surface rond / Volume = ", rapport_react_ac_rp()$val,"</font>")) })) }) choix_centroid_ac_rp <- reactive({ if(is.null(input$choix_centroid_ac_rp_id)) { centroid <- "centroid" }else { centroid <- input$choix_centroid_ac_rp_id } return(centroid) }) react_bornes_ac_rp <- reactive({ if(is.null(input$nb_classes_ac_rp_id) | is.null(input$methode_ac_rp_id)) { max_classes$a <- 3 methode <- "kmeans" suppressWarnings(bornes_analyse <- classIntervals(as.numeric(analyse_ac_rp()[[1]]$donnees[,varRatio]),max_classes$a,style=methode,rtimes=10,intervalClosure="left")) }else if(input$nb_classes_ac_rp_id=="" | input$methode_ac_rp_id=="") { max_classes$a <- 3 methode <- "kmeans" suppressWarnings(bornes_analyse <- classIntervals(as.numeric(analyse_ac_rp()[[1]]$donnees[,varRatio]),max_classes$a,style=methode,rtimes=10,intervalClosure="left")) }else { max_classes$a <- as.numeric(input$nb_classes_ac_rp_id) if(is.na(max_classes$a)) return(NULL) methode <- as.character(input$methode_ac_rp_id) if(!methode %in% c("manuel")) { suppressWarnings(bornes_analyse <- classIntervals(as.numeric(analyse_ac_rp()[[1]]$donnees[,varRatio]),max_classes$a,style=methode,rtimes=10,intervalClosure="left")) } } if(methode!="manuel") { carac_bornes <- calcul_bornes(analyse_ac_rp()[[1]]$donnees,bornes_analyse,varRatio,max_classes$a,methode,input$palette_insee_ac_rp_id) }else if(methode=="manuel") { carac_bornes <- react_bornes_manuel_1_ac_rp() } return(carac_bornes) }) react_bornes_init_ac_rp <- reactive({ suppressWarnings(bornes_analyse <- classIntervals(as.numeric(analyse_ac_rp()[[1]]$donnees[,varRatio]),3,style="kmeans",rtimes=10,intervalClosure="left")) if(min(bornes_analyse$brks)<0 & max(bornes_analyse$brks)>=0) { palette_init <- "Insee_Rouge" }else { palette_init <- "Insee_Bleu" } carac_bornes <- calcul_bornes(analyse_ac_rp()[[1]]$donnees,bornes_analyse,varRatio,3,"kmeans",palette_init) return(carac_bornes) }) react_bornes_manuel_1_ac_rp <- eventReactive(input$valid_bornes_ac_rp_id,{ suppressWarnings(bornes_analyse <- classIntervals(as.numeric(analyse_ac_rp()[[1]]$donnees[,varRatio]),max_classes$a,style="kmeans",rtimes=10,intervalClosure="left")) bornes <- vector() for (i in 1:(as.numeric(input$nb_classes_ac_rp_id)-1)) { bornes<-c(bornes,input[[paste0("bornes_", i,"_ac_rp_id")]]) } bornes_analyse$brks <- c(min(bornes_analyse$brks), bornes, max(bornes_analyse$brks)) carac_bornes <- calcul_bornes(analyse_ac_rp()[[1]]$donnees,bornes_analyse,varRatio,input$nb_classes_ac_rp_id,input$methode_ac_rp_id,input$palette_insee_ac_rp_id) bornes <- c(carac_bornes[[1]][1],bornes,carac_bornes[[1]][length(carac_bornes[[1]])]) bornes <- sort(unique(bornes),decreasing = T) carac_bornes[[1]] <- bornes return(carac_bornes) },ignoreNULL = TRUE) observeEvent(input$valid_slider_bornes_ac_rp_id,{ updateSelectInput(session, inputId = "methode_ac_rp_id", selected = "manuel") for (i in 0:(as.numeric(input$nb_classes_ac_rp_id))+1) { updateNumericInput(session, inputId = paste0("bornes_", i,"_ac_rp_id"), value = input[[paste0("slider_bornes_", i,"_ac_rp_id")]]) } },ignoreInit = TRUE) nb_classes_ac_rp <- reactive({ if(is.null(varRatio)) return(NULL) donnees <- analyse_ac_rp()[[1]]$donnees[,varRatio] suppressWarnings( if(min(donnees)<0 & max(donnees)>0) { if(length(donnees)>3 & length(donnees)<9) { max_classes <- c(3:(length(donnees)-1)) }else { max_classes <- c(3:9) } max_palettes <- c("Insee_Rouge","Insee_Jaune") }else if(min(donnees)>0) { if(length(donnees)>3 & length(donnees)<6) { max_classes <- c(3:(length(donnees)-1)) }else { max_classes <- c(3:6) } max_palettes <- c("Insee_Bleu","Insee_Jaune","Insee_Rouge","Insee_Violet","Insee_Turquoise","Insee_Vert","Insee_Gris") }else if(max(donnees)<0) { if(length(donnees)>3 & length(donnees)<6) { max_classes <- c(3:(length(donnees)-1)) }else { max_classes <- c(3:6) } max_palettes <- c("Insee_Bleu","Violet_Neg","Turquoise_Neg","Vert_Neg","Gris_Neg") } ) return(list(max_classes,max_palettes)) }) observe({nb_classes_ac_rp()}) output$export_qgis_ac_rp <- renderUI({ downloadButton("downloadProjetQgis_ac_rp", label="Exporter") }) output$downloadProjetQgis_ac_rp <- downloadHandler(contentType = "zip", filename = function(){ paste0(input$sortie_qgis_ac_rp_id,".zip") }, content = function(file){ owd <- setwd(tempdir()) on.exit(setwd(owd)) rep_sortie <- dirname(file) dir.create("layers",showWarnings = F) files <- EXPORT_PROJET_QGIS_AC_RP(file) zip::zip(zipfile = paste0("./",basename(file)), files = files, mode = "cherry-pick") } ) EXPORT_PROJET_QGIS_AC_RP <- function(file) { showModal(modalDialog(HTML("<i class=\"fa fa-spinner fa-spin fa-2x fa-fw\"></i> <font size=+1>Export du projet Qgis en cours...</font> "), size="m", footer=NULL, style = "color: sortie <- input$sortie_qgis_ac_rp_id files <- c("layers", paste0(sortie,".qgs")) rep_sortie <- dirname(file) if(is.null(input$nb_classes_ac_rp_id)) { max_classes <- 4 }else { max_classes <- input$nb_classes_ac_rp_id } if(!is.null(lon_lat_ac_rp()[[1]])) { suppressWarnings(test_affiche_leg <- try(table_classe <- data.frame(classe=c(max_classes:1),label=legende$a,couleurs=analyse_leg_ac_rp()$pal_classes, stringsAsFactors = F),silent=TRUE)) if(class(test_affiche_leg) %in% "try-error") { showModal(modalDialog(HTML("<font size=+1><i class=\"fa fa-hand-pointer-o fa-fw\"></i><b>Double-cliquez</b> d'abord sur la carte pour afficher la l\u00e9gende.</font> "), size="m", footer=NULL, easyClose = TRUE, style = "color: return(NULL) }else { table_classe <- data.frame(classe=c(max_classes:1),label=legende$a,couleurs=analyse_leg_ac_rp()$pal_classes, stringsAsFactors = F) } }else { showModal(modalDialog(HTML("<font size=+1><i class=\"fa fa-hand-pointer-o fa-fw\"></i><b>Double-cliquez</b> d'abord sur la carte pour afficher la l\u00e9gende.</font> "), size="m", footer=NULL, easyClose = TRUE, style = "color: return(NULL) } if(elargi_ac_rp()) { analyse_donnees_elargi <- analyse_ac_rp()[[1]][[4]] analyse_maille_elargi <- fondMailleElargi names_donnees_elargi <- names(analyse_donnees_elargi) analyse_donnees_elargi <- data.frame(analyse_donnees_elargi,val=analyse_donnees_elargi[,varRatio],classe=palette_ac_rp()[[1]](analyse_donnees_elargi[,varRatio])) names(analyse_donnees_elargi) <- c(names_donnees_elargi,"val","classe") analyse_classes_elargi <- merge(table_classe,analyse_donnees_elargi,by.x="couleurs",by.y="classe") analyse_classes_elargi <- analyse_classes_elargi[,c("CODE","LIBELLE",varVolume,varRatio,"val","classe")] analyse_classes_elargi <- analyse_classes_elargi[order(analyse_classes_elargi[,varVolume],decreasing = T),] analyse_ronds_elargi <- analyse_ronds_sf_ac_rp()[[2]] analyse_ronds_elargi$classe <- analyse_classes_elargi$classe analyse_ronds_elargi$COL_BOR <- "white" fond_elargi_ronds <- analyse_ronds_elargi analyse_maille_elargi <- merge(analyse_maille_elargi,analyse_classes_elargi[,c("CODE",varVolume,varRatio,"val","classe")],by="CODE") analyse_maille_elargi <- analyse_maille_elargi[,c("CODE","LIBELLE",varVolume,varRatio,"val","classe","geometry")] analyse_maille_elargi <- st_sf(analyse_maille_elargi,stringsAsFactors = FALSE) fond_elargi_classes <- analyse_maille_elargi fond_maille_elargi <- st_transform(fondMailleElargi, crs= as.numeric(code_epsg_ac_rp())) suppressWarnings(st_write(fond_elargi_ronds, paste0(rep_sortie,"/layers/fond_elargi_ronds_carte.shp"), delete_dsn = TRUE, quiet = TRUE)) suppressWarnings(st_write(fond_elargi_classes, paste0(rep_sortie,"/layers/fond_maille_elargi_carte.shp"), delete_dsn = TRUE, quiet = TRUE)) suppressWarnings(st_write(fond_maille_elargi, paste0(rep_sortie,"/layers/fond_maille_elargi.shp"), delete_dsn = TRUE, quiet = TRUE)) } analyse_donnees <- analyse_ac_rp()[[1]][[2]] analyse_maille <- fondMaille names_donnees <- names(analyse_donnees) analyse_donnees <- data.frame(analyse_donnees,val=analyse_donnees[,varRatio],classe=palette_ac_rp()[[1]](analyse_donnees[,varRatio])) names(analyse_donnees) <- c(names_donnees,"val","classe") analyse_classes <- merge(table_classe,analyse_donnees,by.x="couleurs",by.y="classe") analyse_classes <- analyse_classes[,c("CODE","LIBELLE",varVolume,varRatio,"val","classe")] analyse_classes <- analyse_classes[order(analyse_classes[,varVolume],decreasing = T),] analyse_ronds <- analyse_ronds_sf_ac_rp()[[1]] analyse_ronds$classe <- analyse_classes$classe analyse_ronds$COL_BOR <- "white" analyse_maille <- merge(analyse_maille,analyse_classes[,c("CODE",varVolume,varRatio,"val","classe")],by="CODE") analyse_maille <- analyse_maille[,c("CODE","LIBELLE",varVolume,varRatio,"val","classe","geometry")] analyse_maille <- st_sf(analyse_maille,stringsAsFactors = FALSE) fond_classes <- analyse_maille fond_ronds <- analyse_ronds fond_ronds_leg <- construction_ronds_legende(lon_lat_ac_rp()[[1]],lon_lat_ac_rp()[[2]],code_epsg_ac_rp(),input$taille_rond_ac_rp_id)[[2]] fond_maille <- st_transform(fondMaille, crs= as.numeric(code_epsg_ac_rp())) fond_contour <- st_transform(fondContour, crs= as.numeric(code_epsg_ac_rp())) if(!is.null(fondSuppl) && input$ajout_territoire_ac_rp_id) fond_territoire <- st_transform(fond_territoire_ac_rp(), crs= as.numeric(code_epsg_ac_rp())) if(input$ajout_dep_ac_rp_id) fond_departement <- st_transform(fond_departement_ac_rp(), crs= as.numeric(code_epsg_ac_rp())) if(input$ajout_reg_ac_rp_id) fond_region <- st_transform(fond_region_ac_rp(), crs= as.numeric(code_epsg_ac_rp())) fond_france <- st_transform(fond_habillage_ac_rp()[[1]], crs= as.numeric(code_epsg_ac_rp())) fond_pays <- st_transform(fond_habillage_ac_rp()[[2]], crs= as.numeric(code_epsg_ac_rp())) suppressWarnings(st_write(fond_ronds, paste0(rep_sortie,"/layers/fond_ronds_carte.shp"), delete_dsn = TRUE, quiet = TRUE)) suppressWarnings(st_write(fond_classes, paste0(rep_sortie,"/layers/fond_maille_carte.shp"), delete_dsn = TRUE, quiet = TRUE)) suppressWarnings(st_write(fond_ronds_leg, paste0(rep_sortie,"/layers/fond_ronds_leg.shp"), delete_dsn = TRUE, quiet = TRUE)) suppressWarnings(st_write(fond_maille, paste0(rep_sortie,"/layers/fond_maille.shp"), delete_dsn = TRUE, quiet = TRUE)) suppressWarnings(st_write(fond_contour,paste0(rep_sortie,"/layers/fond_contour.shp"), delete_dsn = TRUE, quiet = TRUE)) if(exists("fond_territoire")) if(!is.null(fond_territoire)) suppressWarnings(st_write(fond_territoire, paste0(rep_sortie,"/layers/fond_territoire.shp"), delete_dsn = TRUE, quiet = TRUE)) if(exists("fond_departement")) if(!is.null(fond_departement)) suppressWarnings(st_write(fond_departement, paste0(rep_sortie,"/layers/fond_departement.shp"), delete_dsn = TRUE, quiet = TRUE)) if(exists("fond_region")) if(!is.null(fond_region)) suppressWarnings(st_write(fond_region,paste0(rep_sortie,"/layers/fond_region.shp"), delete_dsn = TRUE, quiet = TRUE)) suppressWarnings(st_write(fond_france,paste0(rep_sortie,"/layers/fond_france.shp"), delete_dsn = TRUE, quiet = TRUE)) if(exists("fond_pays")) if(!is.null(fond_pays)) suppressWarnings(st_write(fond_pays,paste0(rep_sortie,"/layers/fond_pays.shp"), delete_dsn = TRUE, quiet = TRUE)) titre1 <- paste0(input$titre1_qgis_ac_rp_id,"\n") titre2 <- input$titre2_qgis_ac_rp_id source <- input$source_qgis_ac_rp_id annee <- format(Sys.time(), format = "%Y") variable_a_representer <- varRatio titre_leg_classes <- input$titre_classes_legende_ac_rp_id l <- c() l <- c(l,"fond_ronds_leg") if(elargi_ac_rp()) { l=c(l, "fond_ronds_carte", "fond_elargi_ronds_carte", "fond_maille_carte", "fond_maille_elargi_carte", "fond_maille_elargi" ) }else { l=c(l, "fond_ronds_carte", "fond_maille_carte" ) } l <- c(l,"fond_france","fond_contour","fond_maille") if(exists("fond_territoire")) l <- c(l,"fond_territoire") if(exists("fond_departement")) l <- c(l,"fond_departement") if(exists("fond_region")) l <- c(l,"fond_region") if(exists("fond_pays")) l <- c(l,"fond_pays") export_projet_qgis_classes_ronds(l,rep_sortie,sortie,titre1,titre2,source,titre_leg_classes,table_classe,variable_a_representer,annee) removeModal() showModal(modalDialog(HTML(paste0("<font size=+1>Le projet Qgis a \u00e9t\u00e9 cr","\u00e9","ee.</font>")), size="m", footer=NULL, easyClose = TRUE, style = "color: return(files) } elargi_ac_rp <- reactive({ if(is.null(input$elargi_ac_rp_id)) { elargi <- FALSE }else { elargi <- input$elargi_ac_rp_id } return(elargi) }) code_epsg_ac_rp <- reactive({ code_epsg <- switch(emprise, "FRM"="2154", "971"="5490", "972"="5490", "973"="2972", "974"="2975", "976"="4471", "999"=epsg_etranger) return(code_epsg) }) analyse_ac_rp <- reactive({ req(choix_centroid_ac_rp()) suppressWarnings(test_k_ronds <- try(k_ronds(fondMaille,fondMailleElargi,names(fondMaille)[1],data,"CODE",varVolume,elargi_ac_rp(),choix_centroid_ac_rp(),fondChx),silent=T)) if(class(test_k_ronds) %in% "try-error") { return(NULL) }else { analyse <- k_ronds(fondMaille,fondMailleElargi,names(fondMaille)[1],data,"CODE",varVolume,elargi_ac_rp(),choix_centroid_ac_rp(),fondChx) } if(is.null(analyse)) { showModal(modalDialog(HTML(paste0("<font size=+1>La maille ne correspond pas au niveau g\u00e9ographique du fichier de donn","\u00e9","es.<br><br>Veuillez svp choisir une maille adapt","\u00e9","e ou modifier le fichier de donn","\u00e9","es.</font>")), size="l", footer=NULL, easyClose = TRUE, style = "color: erreur_maille$a <- TRUE return(NULL) } analyse$donnees[,"TXT1"] <- paste0("<b> <font color= analyse$donnees[,"TXT2"] <- paste0("<b> <font color= if(elargi_ac_rp()) { analyse$donnees_elargi[,"TXT1"] <- paste0("<b> <font color= analyse$donnees_elargi[,"TXT2"] <- paste0("<b> <font color= } analyse_WGS84 <- st_transform(analyse$analyse_points,crs=4326) return(list(analyse,analyse_WGS84)) }) analyse_leg_ac_rp <- reactive({ analyse <- analyse_ac_rp()[[1]] analyse$rupture_classes <- palette_ac_rp()[[2]] analyse$pal_classes <- rev(palette_ac_rp()[[3]]) return(analyse) }) fond_habillage_ac_rp <- reactive({ if(emprise=="FRM") { fond_pays <- st_transform(sf_paysm(),crs=4326) fond_france <- st_transform(sf_fram(),crs=4326) }else if(emprise!="999") { if(emprise=="971") { fond_france <- st_transform(sf_reg01(),crs=4326) fond_pays <- fond_france } if(emprise=="972") { fond_france <- st_transform(sf_reg02(),crs=4326) fond_pays <- fond_france } if(emprise=="973") { fond_france <- st_transform(sf_reg03(),crs=4326) fond_pays <- st_transform(sf_pays973(),crs=4326) } if(emprise=="974") { fond_france <- st_transform(sf_reg04(),crs=4326) fond_pays <- fond_france } if(emprise=="976") { fond_france <- st_transform(sf_reg06(),crs=4326) fond_pays <- fond_france } }else if(emprise=="999") { fond_france <- st_transform(fondEtranger,crs=4326) fond_pays <- fond_france }else{} return(list(fond_france,fond_pays)) }) fond_contour_maille_ac_rp <- reactive({ test_contour <- try(st_transform(fondContour,crs=4326), silent = TRUE) test_maille <- try(st_transform(fondMaille,crs=4326), silent = TRUE) if(any(list(class(test_contour),class(test_maille)) %in% "try-error")) { showModal(modalDialog(HTML(paste0("<font size=+1>Une erreur est survenue dans la cr","\u00e9","ation du territoire.<br><br>Veuillez svp v\u00e9rifier vos donn","\u00e9","es et les variables choisies.</font>")), size="m", footer=NULL, easyClose = TRUE, style = "color: erreur_maille$a <- TRUE return(NULL) }else { contour_WGS84 <- st_transform(fondContour,crs=4326) maille_WGS84 <- st_transform(fondMaille,crs=4326) } return(list(contour_WGS84,maille_WGS84)) }) fond_elargi_ac_rp <- reactive({ req(analyse_ac_rp()) if(elargi_ac_rp()) { analyse_WGS84_elargi <- st_transform(analyse_ac_rp()[[1]]$analyse_points_elargi,crs=4326) maille_WGS84_elargi <- st_transform(fondMailleElargi,crs=4326) return(list(analyse_WGS84_elargi,maille_WGS84_elargi)) }else { return(NULL) } }) list_bbox_ac_rp <- reactive({ req(fond_contour_maille_ac_rp()) list_bbox <- list(c(st_bbox(fond_contour_maille_ac_rp()[[1]])[1],st_bbox(fond_contour_maille_ac_rp()[[1]])[3]),c(st_bbox(fond_contour_maille_ac_rp()[[1]])[2],st_bbox(fond_contour_maille_ac_rp()[[1]])[4])) return(list_bbox) }) calcul_rond_ac_rp <- reactive({ req(calcul_max_rayon_metres_ac_rp(),input$taille_rond_ac_rp_id) if(is.null(input$taille_rond_ac_rp_id)) taille_rond <- 1000 if(!is.null(input$taille_rond_ac_rp_id)) { if(input$taille_rond_ac_rp_id>calcul_max_rayon_metres_ac_rp()[[1]]) { showModal(modalDialog(HTML(paste0("Le rayon du rond le plus grand est trop \u00e9lev\u00e9 et ne permet pas de respecter la r\u00e8gle s\u00e9miologique des 1/7\u00e8me. Le rayon max conseill\u00e9 est ",round(calcul_max_rayon_metres_ac_rp()[[1]],2)," m\u00e8tres.")), size="l", footer=NULL, easyClose = TRUE, style = "color: } taille_rond_m <- input$taille_rond_ac_rp_id }else { taille_rond_m <- NULL } return(taille_rond_m) }) analyse_ronds_sf_ac_rp <- reactive({ req(analyse_ac_rp(),code_epsg_ac_rp(),calcul_rond_ac_rp()) if(elargi_ac_rp()) { req(fond_elargi_ac_rp()) centres <- rbind(st_coordinates(fond_elargi_ac_rp()[[1]])) row.names(centres) <- c(1:(nrow(analyse_ac_rp()[[1]]$donnees_elargi))) ronds <- st_sf(geometry=st_sfc(lapply(c(1:nrow(centres)),function(x) st_point(centres[x,])),crs=4326)) ronds_pl_elargi <- st_buffer(st_transform(ronds, crs= as.numeric(code_epsg_ac_rp())), calcul_rond_ac_rp()*sqrt(analyse_ac_rp()[[1]]$donnees_elargi[,varVolume]/calcul_max_rayon_metres_ac_rp()[[2]])) dt_ronds_sf <- data.frame(ronds_pl_elargi,stringsAsFactors = F) analyse_ronds_sf_elargi <- st_sf(cbind(analyse_ac_rp()[[1]]$donnees_elargi,dt_ronds_sf)) }else { analyse_ronds_sf_elargi <- NULL } centres <- rbind(st_coordinates(analyse_ac_rp()[[2]])) row.names(centres) <- c(1:(nrow(analyse_ac_rp()[[1]]$donnees))) ronds <- st_sf(geometry=st_sfc(lapply(c(1:nrow(centres)),function(x) st_point(centres[x,])),crs=4326)) ronds_pl <- st_buffer(st_transform(ronds, crs= as.numeric(code_epsg_ac_rp())), calcul_rond_ac_rp()*sqrt(analyse_ac_rp()[[1]]$donnees[,varVolume]/calcul_max_rayon_metres_ac_rp()[[2]])) dt_ronds_sf <- data.frame(ronds_pl,stringsAsFactors = F) analyse_ronds_sf <- st_sf(cbind(analyse_ac_rp()[[1]]$donnees,dt_ronds_sf)) return(list(analyse_ronds_sf,analyse_ronds_sf_elargi)) }) palette_ac_rp <- reactive({ bornes <- react_bornes_ac_rp()[[1]] if(is.null(bornes)) return(NULL) if(elargi_ac_rp()) { bornes[length(bornes)] <- min(as.numeric(analyse_ac_rp()[[1]]$donnees_elargi[,varRatio])) bornes[1] <- max(as.numeric(analyse_ac_rp()[[1]]$donnees_elargi[,varRatio]), na.rm = TRUE) }else { bornes[length(bornes)] <- min(as.numeric(analyse_ac_rp()[[1]]$donnees[,varRatio])) bornes[1] <- max(as.numeric(analyse_ac_rp()[[1]]$donnees[,varRatio]), na.rm = TRUE) } if(length(unique(bornes)) != length(bornes)) { removeModal() showModal(modalDialog(HTML(paste0("<font size=+1>Les bornes calculees avec la methode '",input$methode_ac_rp_id,"' ne sont pas uniques. La methode kmeans a donc ete retenue.</font>")), size="l", footer=NULL, style = "color: Sys.sleep(7) suppressWarnings(bornes_analyse <- classIntervals(as.numeric(analyse_ac_rp()[[1]]$donnees[,varRatio]),max_classes$a,style="kmeans",rtimes=10,intervalClosure="left")) carac_bornes <- calcul_bornes(analyse_ac_rp()[[1]]$donnees,bornes_analyse,varRatio,max_classes$a,"kmeans",input$palette_insee_ac_rp_id) updateSelectInput(session,"methode_ac_rp_id",choices = methode_calcul, selected="kmeans") bornes <- carac_bornes[[1]] pal_classes <- carac_bornes[[2]] }else { pal_classes <- react_bornes_ac_rp()[[2]] } pal_classes[is.na(pal_classes)] <- "grey" palette<-colorBin(palette=pal_classes, domain=0:100, bins=bornes, na.color="grey") return(list(palette,bornes,pal_classes)) }) fond_territoire_ac_rp <- reactive({ if(!is.null(fondSuppl)) { fond_territoire <- st_transform(fondSuppl,crs=4326) return(fond_territoire) }else { return(NULL) } }) fond_region_ac_rp <- reactive({ fond_region <- st_transform(sf_regm(),crs=4326) return(fond_region) }) fond_departement_ac_rp <- reactive({ fond_departement <- st_transform(sf_depm(),crs=4326) return(fond_departement) }) fond_select_donnees_elargi_ac_rp <- reactive({ req(analyse_ronds_sf_ac_rp(),analyse_ac_rp()) if(elargi_ac_rp()) { fond_donnees_elargi <- analyse_ronds_sf_ac_rp()[[2]][as.data.frame(analyse_ronds_sf_ac_rp()[[2]])[,"CODE"] %in% analyse_ac_rp()[[1]]$donnees_elargi[input$mydonnees_ac_rp_rows_selected,"CODE"],] fond_donnees_elargi <- st_transform(fond_donnees_elargi,crs=4326) return(fond_donnees_elargi) }else { return(NULL) } }) fond_select_donnees_ac_rp <- reactive({ req(analyse_ronds_sf_ac_rp(),analyse_ac_rp()) fond_donnees <- analyse_ronds_sf_ac_rp()[[1]][as.data.frame(analyse_ronds_sf_ac_rp()[[1]])[,"CODE"] %in% analyse_ac_rp()[[1]]$donnees[input$mydonnees_ac_rp_rows_selected,"CODE"],] if(nrow(fond_donnees)>0) { fond_donnees <- st_transform(fond_donnees,crs=4326) return(fond_donnees) }else { return(NULL) } }) fond_select_maille_elargi_ac_rp <- reactive({ req(fond_elargi_ac_rp()) if(elargi_ac_rp()) { fond_maille_elargi <- fond_elargi_ac_rp()[[2]][as.data.frame(fond_elargi_ac_rp()[[2]])[,"CODE"] %in% as.data.frame(fondMailleElargi)[input$mymaille_ac_rp_rows_selected,"CODE"],] return(fond_maille_elargi) }else { return(NULL) } }) fond_select_maille_ac_rp <- reactive({ req(fond_contour_maille_ac_rp()) fond_maille <- fond_contour_maille_ac_rp()[[2]][as.data.frame(fond_contour_maille_ac_rp()[[2]])[,"CODE"] %in% as.data.frame(fondMaille)[input$mymaille_ac_rp_rows_selected,"CODE"],] return(fond_maille) }) fond_select_contour_ac_rp <- reactive({ req(fond_contour_maille_ac_rp()) fond_contour <- fond_contour_maille_ac_rp()[[1]][as.data.frame(fond_contour_maille_ac_rp()[[1]])[,"CODE"] %in% as.data.frame(fondContour)[input$mycontour_ac_rp_rows_selected,"CODE"],] return(fond_contour) }) react_fond_ac_rp <- reactive({ if(input$menu=="carte") { showModal(modalDialog(HTML("<i class=\"fa fa-spinner fa-spin fa-2x fa-fw\"></i><font size=+1>\u00c9laboration de la carte...</font> "), size="m", footer=NULL, style = "color: if(is.null(fondEtranger)) { proj4 <- st_crs(fondMaille)$proj4string }else{ proj4 <- st_crs(fondEtranger)$proj4string } m <- leaflet(padding = 0, options = leafletOptions( preferCanvas = TRUE, transition = 2, crs = leafletCRS(crsClass = "L.Proj.CRS", code = paste0("EPSG:", code_epsg_ac_rp()), proj4def = proj4, resolutions = 2^(16:1) ) )) %>% setMapWidgetStyle(list(background = " addTiles_insee(attribution = paste0("<a href=\"http://www.insee.fr\">OCEANIS - \u00A9 IGN - INSEE ",format(Sys.time(), format = "%Y"),"</a>")) %>% fitBounds(lng1 = min(list_bbox_ac_rp()[[1]]), lat1 = min(list_bbox_ac_rp()[[2]]), lng2 = max(list_bbox_ac_rp()[[1]]), lat2 = max(list_bbox_ac_rp()[[2]]) ) %>% addScaleBar(position = 'bottomright', options = scaleBarOptions(metric = TRUE, imperial = FALSE) ) %>% addMapPane(name = "fond_pays", zIndex = 401) %>% addMapPane(name = "fond_france", zIndex = 402) %>% addMapPane(name = "fond_dep", zIndex = 403) %>% addMapPane(name = "fond_reg", zIndex = 404) %>% addMapPane(name = "fond_territoire", zIndex = 405) %>% addMapPane(name = "fond_trio3", zIndex = 406) %>% addMapPane(name = "fond_trio2", zIndex = 407) %>% addMapPane(name = "fond_trio1", zIndex = 408) %>% addMapPane(name = "selection", zIndex = 409) %>% addMapPane(name = "fond_legende", zIndex = 410) if(emprise %in% c("FRM","973")) { m <- addPolygons(map = m, data = fond_habillage_ac_rp()[[2]][,"LIBGEO"], opacity = 1, stroke = TRUE, color = "white", weight = 1, options = pathOptions(pane = "fond_pays", clickable = F), fill = T, fillColor = " ) } m <- addPolygons(map = m, data = fond_habillage_ac_rp()[[1]][,"LIBGEO"], opacity = 1, stroke = TRUE, color = "black", weight = 1.5, options = pathOptions(pane = "fond_france", clickable = F), fill = T, fillColor = "white", fillOpacity = 1 ) m_save_ac_rp$a <- m if(!is.null(fondSuppl)) { m <- addPolygons(map = m, data = fond_territoire_ac_rp(), stroke = TRUE, color = " weight = 0.5, options = pathOptions(pane = "fond_territoire", clickable = T), popup = paste0("<b> <font color= fill = T, fillColor = "white", fillOpacity = 0.001, group = "territoire" ) } m <- addPolygons(map = m, data = fond_contour_maille_ac_rp()[[1]], opacity = 0.3, stroke = TRUE, color = "black", weight = 3, options = pathOptions(pane = "fond_trio3", clickable = T), popup = paste0("<b> <font color= fill = T, fillColor = "white", fillOpacity = 0.3, group = "maille_contour" ) analyse <- k_ronds(fondMaille,fondMailleElargi,names(fondMaille)[1],data,"CODE",varVolume,FALSE,"centroid",fondChx) analyse$donnees[,"TXT1"] <- paste0("<b> <font color= analyse$donnees[,"TXT2"] <- paste0("<b> <font color= analyse_WGS84 <- st_transform(analyse$analyse_points,crs=4326) m <- addCircles(map = m, lng = st_coordinates(analyse_WGS84)[,1], lat = st_coordinates(analyse_WGS84)[,2], stroke = TRUE, color = " opacity = 1, weight = 1.5, radius = (calcul_max_rayon_metres_ac_rp()[[1]]/1.25)*sqrt(analyse$donnees[,varVolume]/calcul_max_rayon_metres_ac_rp()[[2]]), options = pathOptions(pane = "fond_trio1", clickable = T), popup = paste0("<b> <font color= fill = F, group = "taille" ) suppressWarnings(test_analyse_maille_classe <- try(analyse$donnees[rev(order(analyse$donnees[,varVolume])),varRatio],silent=T)) if(class(test_analyse_maille_classe) %in% "try-error") { return(NULL) }else { analyse_maille_classe <- analyse$donnees[rev(order(analyse$donnees[,varVolume])),varRatio] } bornes <- react_bornes_init_ac_rp()[[1]] bornes[length(bornes)] <- min(as.numeric(analyse$donnees[,varRatio])) bornes[1] <- max(as.numeric(analyse$donnees[,varRatio]), na.rm = TRUE) pal_classes <- react_bornes_init_ac_rp()[[2]] pal_classes[is.na(pal_classes)] <- "grey" palette<-colorBin(palette=pal_classes, domain=0:100, bins=bornes, na.color="grey") analyse_maille <- merge(fond_contour_maille_ac_rp()[[2]][,c("CODE","geometry")],analyse$donnees[,c("CODE","LIBELLE",varVolume,varRatio,"TXT1","TXT2")],by="CODE") names(analyse_maille)[3] <- varVolume names(analyse_maille)[4] <- varRatio analyse_maille <- analyse_maille[rev(order(as.data.frame(analyse_maille)[,varVolume])),] analyse_maille <- st_sf(analyse_maille,stringsAsFactors = FALSE) m <- addPolygons(map = m, data = analyse_maille, opacity = 1, stroke = TRUE, color = "white", weight = 1, options = pathOptions(pane = "fond_trio2", clickable = T), popup = paste0("<b> <font color= "<b><font color= fill = T, fillColor = palette(analyse_maille_classe), fillOpacity = 1, group = "classe" ) removeModal() showModal(modalDialog(HTML("<font size=+1>Veuillez patientez svp, la carte va s'afficher dans quelques secondes...<br><br><i class=\"fa fa-hand-pointer-o fa-fw\"></i><b>Double-cliquez</b> ensuite sur la carte pour afficher la l\u00e9gende.</font> "), size="m", footer=NULL, easyClose = TRUE, style = "color: return(m) } }) observeEvent(input$ajout_territoire_ac_rp_id,{ proxy <- leafletProxy("mymap_ac_rp") clearGroup(map = proxy, group = "territoire") if(!is.null(fondSuppl)) { if(input$ajout_territoire_ac_rp_id) { proxy <- addPolygons(map = proxy, data = fond_territoire_ac_rp(), stroke = TRUE, color = " weight = 0.5, options = pathOptions(pane = "fond_territoire", clickable = T), popup = paste0("<b> <font color= fill = T, fillColor = "white", fillOpacity = 0.001, group = "territoire" ) } } },ignoreInit = TRUE) observeEvent(input$ajout_reg_ac_rp_id,{ proxy <- leafletProxy("mymap_ac_rp") clearGroup(map = proxy, group = "region") if(emprise=="FRM") { if(input$ajout_reg_ac_rp_id) { proxy <- addPolygons(map = proxy, data = fond_region_ac_rp(), stroke = TRUE, color = "grey", opacity = 1, weight = 1.5, options = pathOptions(pane = "fond_reg", clickable = F), fill = F, group = "region" ) } } },ignoreInit = TRUE) observeEvent(input$ajout_dep_ac_rp_id,{ proxy <- leafletProxy("mymap_ac_rp") clearGroup(map = proxy, group = "departement") if(emprise=="FRM") { if(input$ajout_dep_ac_rp_id) { proxy <- addPolygons(map = proxy, data = fond_departement_ac_rp(), stroke = TRUE, color = "grey", opacity = 1, weight = 0.5, options = pathOptions(pane = "fond_dep", clickable = F), fill = F, group = "departement" ) } } },ignoreInit = TRUE) observeEvent(list(input$monter_fond_ac_rp_id,input$descendre_fond_ac_rp_id),{ if(as.numeric(input$monter_fond_ac_rp_id)==0 & as.numeric(input$descendre_fond_ac_rp_id)==0) return(NULL) proxy <- leafletProxy("mymap_ac_rp") clearGroup(map = proxy, group = "maille_contour") clearGroup(map = proxy, group = "taille") i <- 1 for(fond in liste_fonds$a) { if(fond=="analyse") { proxy <- addCircles(map = proxy, lng = st_coordinates(analyse_ac_rp()[[2]])[,1], lat = st_coordinates(analyse_ac_rp()[[2]])[,2], stroke = TRUE, color = " opacity = 1, weight = 1.5, radius = calcul_rond_ac_rp()*sqrt(analyse_ac_rp()[[1]]$donnees[,varVolume]/calcul_max_rayon_metres_ac_rp()[[2]]), options = pathOptions(pane = paste0("fond_trio",i), clickable = T), popup = paste0("<b> <font color= fill = F, group = "taille" ) ordre_analyse$a <- i } if(fond=="maille") { suppressWarnings(test_analyse_maille_classe <- try(analyse_ac_rp()[[1]]$donnees[rev(order(analyse_ac_rp()[[1]]$donnees[,varVolume])),varRatio],silent=T)) if(class(test_analyse_maille_classe) %in% "try-error") { return(NULL) }else { analyse_maille_classe <- analyse_ac_rp()[[1]]$donnees[rev(order(analyse_ac_rp()[[1]]$donnees[,varVolume])),varRatio] } analyse_maille <- merge(fond_contour_maille_ac_rp()[[2]][,c("CODE","geometry")],analyse_ac_rp()[[1]]$donnees[,c("CODE","LIBELLE",varVolume,varRatio,"TXT1","TXT2")],by="CODE") names(analyse_maille)[3] <- varVolume names(analyse_maille)[4] <- varRatio analyse_maille <- analyse_maille[rev(order(as.data.frame(analyse_maille)[,varVolume])),] analyse_maille <- st_sf(analyse_maille,stringsAsFactors = FALSE) proxy <- addPolygons(map = proxy, data = analyse_maille, opacity = 1, stroke = TRUE, color = "white", weight = 1, options = pathOptions(pane = paste0("fond_trio",i), clickable = T), popup = paste0("<b> <font color= "<b><font color= fill = T, fillColor = palette_ac_rp()[[1]](analyse_maille_classe), fillOpacity = 1, group = "classe" ) } if(fond=="contour") { proxy <- addPolygons(map = proxy, data = fond_contour_maille_ac_rp()[[1]], opacity = 0.3, stroke = TRUE, color = "black", weight = 3, options = pathOptions(pane = paste0("fond_trio",i), clickable = T), popup = paste0("<b> <font color= fill = T, fillColor = "white", fillOpacity = 0.3, group = "maille_contour" ) } i <- i + 1 } },ignoreInit = TRUE) observeEvent(input$taille_rond_ac_rp_id,{ req(input$taille_rond_ac_rp_id,calcul_rond_ac_rp()) proxy <- leafletProxy("mymap_ac_rp") clearGroup(map = proxy, group = "taille") proxy <- addCircles(map = proxy, lng = st_coordinates(analyse_ac_rp()[[2]])[,1], lat = st_coordinates(analyse_ac_rp()[[2]])[,2], stroke = TRUE, color = " opacity = 1, weight = 1.5, radius = calcul_rond_ac_rp()*sqrt(analyse_ac_rp()[[1]]$donnees[,varVolume]/calcul_max_rayon_metres_ac_rp()[[2]]), options = pathOptions(pane = paste0("fond_trio",ordre_analyse$a), clickable = T), popup = paste0("<b> <font color= fill = F, group = "taille" ) },ignoreInit = TRUE) observeEvent(input$choix_centroid_ac_rp_id,{ req(input$choix_centroid_ac_rp_id) proxy <- leafletProxy("mymap_ac_rp") clearGroup(map = proxy, group = "taille") proxy <- addCircles(map = proxy, lng = st_coordinates(analyse_ac_rp()[[2]])[,1], lat = st_coordinates(analyse_ac_rp()[[2]])[,2], stroke = TRUE, color = " opacity = 1, weight = 1.5, radius = calcul_rond_ac_rp()*sqrt(analyse_ac_rp()[[1]]$donnees[,varVolume]/calcul_max_rayon_metres_ac_rp()[[2]]), options = pathOptions(pane = paste0("fond_trio",ordre_analyse$a), clickable = T), popup = paste0("<b> <font color= fill = F, group = "taille" ) },ignoreInit = TRUE) observeEvent(list(input$nb_classes_ac_rp_id,input$methode_ac_rp_id,input$valid_bornes_ac_rp_id,input$palette_insee_ac_rp_id),{ req(input$nb_classes_ac_rp_id,input$methode_ac_rp_id,input$palette_insee_ac_rp_id) proxy <- leafletProxy("mymap_ac_rp") clearGroup(map = proxy, group = "classe") suppressWarnings(test_analyse_maille_classe <- try(analyse_ac_rp()[[1]]$donnees[rev(order(analyse_ac_rp()[[1]]$donnees[,varVolume])),varRatio],silent=T)) if(class(test_analyse_maille_classe) %in% "try-error") { return(NULL) }else { analyse_maille_classe <- analyse_ac_rp()[[1]]$donnees[rev(order(analyse_ac_rp()[[1]]$donnees[,varVolume])),varRatio] } analyse_maille <- merge(fond_contour_maille_ac_rp()[[2]][,c("CODE","geometry")],analyse_ac_rp()[[1]]$donnees[,c("CODE","LIBELLE",varVolume,varRatio,"TXT1","TXT2")],by="CODE") names(analyse_maille)[3] <- varVolume names(analyse_maille)[4] <- varRatio analyse_maille <- analyse_maille[rev(order(as.data.frame(analyse_maille)[,varVolume])),] analyse_maille <- st_sf(analyse_maille,stringsAsFactors = FALSE) proxy <- addPolygons(map = proxy, data = analyse_maille, opacity = 1, stroke = TRUE, color = "white", weight = 1, options = pathOptions(pane = paste0("fond_trio",ordre_analyse$b), clickable = T), popup = paste0("<b> <font color= "<b><font color= fill = T, fillColor = palette_ac_rp()[[1]](analyse_maille_classe), fillOpacity = 1, group = "classe" ) },ignoreInit = TRUE) observeEvent(list(input$elargi_ac_rp_id,input$opacite_elargi_ac_rp_id,input$taille_rond_ac_rp_id,input$nb_classes_ac_rp_id,input$methode_ac_rp_id,input$palette_insee_ac_rp_id,input$valid_bornes_ac_rp_id,input$choix_centroid_ac_rp_id),{ req(input$opacite_elargi_ac_rp_id,input$taille_rond_ac_rp_id,input$nb_classes_ac_rp_id,input$methode_ac_rp_id,input$palette_insee_ac_rp_id) proxy <- leafletProxy("mymap_ac_rp") clearGroup(map = proxy, group = "elargi") if(elargi_ac_rp()) { analyse_maille_classe_elargi <- analyse_ac_rp()[[1]]$donnees_elargi[rev(order(analyse_ac_rp()[[1]]$donnees_elargi[,varVolume])),varRatio] analyse_maille_elargi <- merge(fond_elargi_ac_rp()[[2]][,c("CODE","geometry")],analyse_ac_rp()[[1]]$donnees_elargi[,c("CODE","LIBELLE",varVolume,varRatio,"TXT1","TXT2")],by="CODE") names(analyse_maille_elargi)[3] <- varVolume names(analyse_maille_elargi)[4] <- varRatio analyse_maille_elargi <- analyse_maille_elargi[rev(order(as.data.frame(analyse_maille_elargi)[,varVolume])),] analyse_maille_elargi <- st_sf(analyse_maille_elargi,stringsAsFactors = FALSE) proxy <- addPolygons(map = proxy, data = analyse_maille_elargi, opacity = input$opacite_elargi_ac_rp_id/100, stroke = TRUE, color = "white", weight = 1, options = pathOptions(pane = "fond_trio3", clickable = T), popup = paste0("<b> <font color= "<b><font color= fill = T, fillColor = palette_ac_rp()[[1]](analyse_maille_classe_elargi), fillOpacity = input$opacite_elargi_ac_rp_id/100, group = "elargi" ) proxy <- addCircles(map = proxy, lng = st_coordinates(fond_elargi_ac_rp()[[1]])[,1], lat = st_coordinates(fond_elargi_ac_rp()[[1]])[,2], stroke = TRUE, color = " opacity = input$opacite_elargi_ac_rp_id/100, weight = 1.5, radius = calcul_rond_ac_rp()*sqrt(analyse_ac_rp()[[1]]$donnees_elargi[,varVolume]/calcul_max_rayon_metres_ac_rp()[[2]]), options = pathOptions(pane = "fond_trio3", clickable = T), popup = paste0("<b> <font color= fill = F, group = "elargi" ) } },ignoreInit = TRUE) observeEvent(list(input$onglets_ac_rp,input$choix_centroid_ac_rp_id),{ req(input$onglets_ac_rp) if(input$onglets_ac_rp == "carte") { proxy <- leafletProxy("mymap_ac_rp") clearGroup(map = proxy, group = "select_donnees") if(!is.null(input$mydonnees_ac_rp_rows_selected)) { if(elargi_ac_rp()) { suppressWarnings(proxy <- addCircles(map = proxy, lng = st_coordinates(st_centroid(fond_select_donnees_elargi_ac_rp()))[,1], lat = st_coordinates(st_centroid(fond_select_donnees_elargi_ac_rp()))[,2], stroke = TRUE, color = " opacity = 1, weight = 3, radius = calcul_rond_ac_rp()*sqrt(analyse_ac_rp()[[1]]$donnees_elargi[analyse_ac_rp()[[1]]$donnees_elargi[,"CODE"] %in% analyse_ac_rp()[[1]]$donnees_elargi[input$mydonnees_ac_rp_rows_selected,"CODE"],varVolume]/calcul_max_rayon_metres_ac_rp()[[2]]), options = pathOptions(pane = "selection", clickable = F), fill = F, group = "select_donnees") ) }else { suppressWarnings(proxy <- addCircles(map = proxy, lng = st_coordinates(st_centroid(fond_select_donnees_ac_rp()))[,1], lat = st_coordinates(st_centroid(fond_select_donnees_ac_rp()))[,2], stroke = TRUE, color = " opacity = 1, weight = 3, radius = calcul_rond_ac_rp()*sqrt(analyse_ac_rp()[[1]]$donnees[analyse_ac_rp()[[1]]$donnees[,"CODE"] %in% analyse_ac_rp()[[1]]$donnees[input$mydonnees_ac_rp_rows_selected,"CODE"],varVolume]/calcul_max_rayon_metres_ac_rp()[[2]]), options = pathOptions(pane = "selection", clickable = F), fill = F, group = "select_donnees") ) } } } },ignoreInit = TRUE) observeEvent(input$onglets_ac_rp,{ req(input$onglets_ac_rp) if(input$onglets_ac_rp == "carte") { proxy <- leafletProxy("mymap_ac_rp") clearGroup(map = proxy, group = "select_maille") if(!is.null(input$mymaille_ac_rp_rows_selected)) { if(elargi_ac_rp()) { proxy <- addPolygons(map = proxy, data = fond_select_maille_elargi_ac_rp(), stroke = TRUE, weight = 3, color=" options = pathOptions(pane = "selection", clickable = F), fill = F, group = "select_maille" ) }else { proxy <- addPolygons(map = proxy, data = fond_select_maille_ac_rp(), stroke = TRUE, weight = 3, color=" options = pathOptions(pane = "selection", clickable = F), fill = F, group = "select_maille" ) } } } },ignoreInit = TRUE) observeEvent(input$onglets_ac_rp,{ req(input$onglets_ac_rp) if(input$onglets_ac_rp == "carte") { proxy <- leafletProxy("mymap_ac_rp") clearGroup(map = proxy, group = "select_contour") if(!is.null(input$mycontour_ac_rp_rows_selected)) { proxy <- addPolygons(map = proxy, data = fond_select_contour_ac_rp(), stroke = TRUE, weight = 3, color=" options = pathOptions(pane = "selection", clickable = F), fill = F, group = "select_contour" ) } } },ignoreInit = TRUE) lon_lat_ac_rp <- reactive({ click <- input$mymap_ac_rp_click lon <- click$lng lat <- click$lat return(list(lon,lat)) }) observeEvent(list(input$mymap_ac_rp_zoom,input$mymap_ac_rp_click,input$type_legende_ac_rp_id,input$titre_ronds_legende_ac_rp_id,input$titre_classes_legende_ac_rp_id,input$taille_rond_ac_rp_id,input$nb_classes_ac_rp_id,input$methode_ac_rp_id,input$palette_insee_ac_rp_id,input$valid_bornes_ac_rp_id),{ req(input$taille_rond_ac_rp_id) if(is.null(input$affiche_legende_ac_rp_id)) return(NULL) if(input$affiche_legende_ac_rp_id==FALSE) return(NULL) if(is.null(lon_lat_ac_rp()[[1]])) return(NULL) proxy <- leafletProxy("mymap_ac_rp") proxy <- clearGroup(map=proxy, group="leg") proxy <- clearMarkers(map=proxy) large <- as.numeric((st_bbox(fondMaille)[4] - st_bbox(fondMaille)[2]) / 20) pt_ronds <- st_sfc(st_geometry(st_point(c(lon_lat_ac_rp()[[1]], lon_lat_ac_rp()[[2]]))), crs = 4326) pt_ronds <- st_transform(pt_ronds, crs = as.numeric(code_epsg_ac_rp())) pt_ronds <- st_sfc(st_geometry(st_point(c(st_coordinates(pt_ronds)[,1] + large*3, st_coordinates(pt_ronds)[,2] - large*3))), crs = as.numeric(code_epsg_ac_rp())) pt_ronds <- st_transform(pt_ronds, crs = 4326) ronds_leg <- construction_ronds_legende(st_coordinates(pt_ronds)[,1],st_coordinates(pt_ronds)[,2],code_epsg_ac_rp(),input$taille_rond_ac_rp_id) lignes <- construction_lignes_legende(ronds_leg,code_epsg_ac_rp()) pt <- st_sfc(st_geometry(st_point(c(lon_lat_ac_rp()[[1]],lon_lat_ac_rp()[[2]]))), crs = 4326) pt <- st_transform(pt, crs = as.numeric(code_epsg_ac_rp())) coord_pt <- st_coordinates(pt)[1:2] position_leg_ronds <- t(data.frame(c(coord_pt[1],coord_pt[2]))) position_leg_classes <- t(data.frame(c(coord_pt[1],as.numeric(st_bbox(ronds_leg[[2]])[2]) - large*2))) if(is.null(input$type_legende_ac_rp_id)) return(NULL) if(is.null(input$nb_classes_ac_rp_id)) return(NULL) max_classes <- as.numeric(input$nb_classes_ac_rp_id) if(input$type_legende_ac_rp_id==1) { for(i in 1:max_classes) { x_coord_rectangle <- position_leg_classes[1] if(i==1) { y_coord_rectangle <- position_leg_classes[2] }else { y_coord_rectangle <- y_coord_rectangle - large - large / 4 } assign(paste0("rectangle_",i),st_sfc(st_polygon(list(matrix(c(x_coord_rectangle, y_coord_rectangle, x_coord_rectangle + large * 1.5, y_coord_rectangle, x_coord_rectangle + large * 1.5, y_coord_rectangle - large, x_coord_rectangle, y_coord_rectangle - large, x_coord_rectangle, y_coord_rectangle), ncol=2, byrow=TRUE))), crs = as.numeric(code_epsg_ac_rp()))) } classes_leg_texte <- analyse_leg_ac_rp()$rupture_classes label_rectangle <- c() legende$a <- c() for(i in 1:max_classes) { if(i==1) { lbl <- paste0(format(round(classes_leg_texte[i+1],3), big.mark=" ",decimal.mark=",",nsmall=0)," et plus") label_rectangle <- c(label_rectangle, lbl) }else if (i>1 && i<max_classes) { lbl <- paste0("De ", format(round(classes_leg_texte[i+1],3), big.mark=" ",decimal.mark=",",nsmall=0)," \u00E0 moins de ", format(round(classes_leg_texte[i],3), big.mark=" ",decimal.mark=",",nsmall=0)) label_rectangle <- c(label_rectangle, lbl) }else { lbl <- paste0("Moins de ", format(round(classes_leg_texte[i],3), big.mark=" ",decimal.mark=",",nsmall=0)) label_rectangle <- c(label_rectangle, lbl) } legende$a <- c(legende$a,lbl) } ltext <- max(nchar(label_rectangle)) / 2.5 vec <- matrix(c(position_leg_ronds[1] - large / 2, position_leg_ronds[2] + large / 2, position_leg_ronds[1] + large * 1.5 + (large * ltext), position_leg_ronds[2] + large / 2, position_leg_ronds[1] + large * 1.5 + (large * ltext), position_leg_classes[2] - large * (max_classes + (max_classes-1)/4 + 1), position_leg_ronds[1] - large / 2, position_leg_classes[2] - large * (max_classes + (max_classes-1)/4 + 1), position_leg_ronds[1] - large / 2, position_leg_ronds[2] + large / 2), 5,2,byrow=T) rectangle <- st_sfc(st_polygon(list(vec)), crs = as.numeric(code_epsg_ac_rp())) rectangle <- st_transform(rectangle, crs = 4326) proxy <- addPolygons(map = proxy, data = rectangle, stroke = FALSE, options = pathOptions(pane = "fond_legende", clickable = F), fill = T, fillColor = "white", fillOpacity = 0.8, group = "leg" ) for(i in 1:max_classes) { proxy <- addPolygons(map = proxy, data = st_transform(get(paste0("rectangle_",i)), crs = 4326), stroke = FALSE, options = pathOptions(pane = "fond_legende", clickable = F), fill = T, fillColor = analyse_leg_ac_rp()$pal_classes[i], fillOpacity = 1, group = "leg" ) pt_label <- st_sfc(st_geometry(st_point(c(max(st_coordinates(get(paste0("rectangle_",i))[[1]])[,1]) + large / 10, mean(st_coordinates(get(paste0("rectangle_",i))[[1]])[,2])))), crs = as.numeric(code_epsg_ac_rp())) pt_label <- st_transform(pt_label, crs = 4326) proxy <- addLabelOnlyMarkers(map = proxy, lng = st_coordinates(pt_label)[1], lat = st_coordinates(pt_label)[2], label = label_rectangle[i], labelOptions = labelOptions(noHide = T, textOnly = TRUE, direction = "right", style = list( "color" = "black", "font-size" = "12px" )), group = "leg" ) } pt_titre <- st_sfc(st_geometry(st_point(c(position_leg_classes[1], position_leg_classes[2] + large/2))), crs = as.numeric(code_epsg_ac_rp())) pt_titre <- st_transform(pt_titre, crs = 4326) proxy <- addLabelOnlyMarkers(map = proxy, lng = st_coordinates(pt_titre)[1], lat = st_coordinates(pt_titre)[2], label = input$titre_classes_legende_ac_rp_id, labelOptions = labelOptions(noHide = T, textOnly = TRUE, direction = "right", style = list( "color" = "black", "font-size" = "14px" )), group = "leg" ) } if(input$type_legende_ac_rp_id==2) { for(i in 1:max_classes) { x_coord_rectangle <- position_leg_classes[1] if(i==1) { y_coord_rectangle <- position_leg_classes[2] }else { y_coord_rectangle <- y_coord_rectangle - large } assign(paste0("rectangle_",i),st_sfc(st_polygon(list(matrix(c(x_coord_rectangle, y_coord_rectangle, x_coord_rectangle + large * 1.5, y_coord_rectangle, x_coord_rectangle + large * 1.5, y_coord_rectangle - large, x_coord_rectangle, y_coord_rectangle - large, x_coord_rectangle, y_coord_rectangle), ncol=2, byrow=TRUE))), crs = as.numeric(code_epsg_ac_rp()))) } classes_leg_num <- analyse_leg_ac_rp()$rupture_classes ltext <- max(nchar(classes_leg_num)) / 2.5 vec <- matrix(c(position_leg_ronds[1] - large / 2, position_leg_ronds[2] + large / 2, position_leg_ronds[1] + large * 1.5 + (large * ltext * 4), position_leg_ronds[2] + large / 2, position_leg_ronds[1] + large * 1.5 + (large * ltext * 4), position_leg_classes[2] - large * (max_classes + 1), position_leg_ronds[1] - large / 2, position_leg_classes[2] - large * (max_classes + 1), position_leg_ronds[1] - large / 2, position_leg_ronds[2] + large / 2), 5,2,byrow=T) rectangle <- st_sfc(st_polygon(list(vec)), crs = as.numeric(code_epsg_ac_rp())) rectangle <- st_transform(rectangle, crs = 4326) proxy <- addPolygons(map = proxy, data = rectangle, stroke = FALSE, options = pathOptions(pane = "fond_legende", clickable = F), fill = T, fillColor = "white", fillOpacity = 0.8, group = "leg" ) for(i in 1:max_classes) { proxy <- addPolygons(map = proxy, data = st_transform(get(paste0("rectangle_",i)), crs = 4326), stroke = FALSE, options = pathOptions(pane = "fond_legende", clickable = F), fill = T, fillColor = analyse_leg_ac_rp()$pal_classes[i], fillOpacity = 1, group = "leg" ) if(i<max_classes) { x1 <- max(st_coordinates(get(paste0("rectangle_",i))[[1]])[,1]) y1 <- min(st_coordinates(get(paste0("rectangle_",i))[[1]])[,2]) x2 <- max(st_coordinates(get(paste0("rectangle_",i))[[1]])[,1]) + large*0.2 y2 <- min(st_coordinates(get(paste0("rectangle_",i))[[1]])[,2]) ligne <- st_sfc(st_linestring(rbind(c(x1,y1),c(x2,y2))), crs = as.numeric(code_epsg_ac_rp())) proxy <- addPolygons(map = proxy, data = st_transform(ligne, crs = 4326), color = "black", weight = 1, options = pathOptions(pane = "fond_legende", clickable = F), fill = F, fillOpacity = 1, group = "leg" ) pt_label <- st_sfc(st_geometry(st_point(c(x2,y2))), crs = as.numeric(code_epsg_ac_rp())) pt_label <- st_transform(pt_label, crs = 4326) proxy <- addLabelOnlyMarkers(map = proxy, lng = st_coordinates(pt_label)[1], lat = st_coordinates(pt_label)[2], label = as.character(format(round(classes_leg_num[i+1],3),big.mark=" ",decimal.mark=",",nsmall=0)), labelOptions = labelOptions(noHide = T, textOnly = TRUE, direction = "right", style = list( "color" = "black", "font-size" = "12px" )), group = "leg" ) } } pt_titre <- st_sfc(st_geometry(st_point(c(position_leg_classes[1], position_leg_classes[2] + large/2))), crs = as.numeric(code_epsg_ac_rp())) pt_titre <- st_transform(pt_titre, crs = 4326) proxy <- addLabelOnlyMarkers(map = proxy, lng = st_coordinates(pt_titre)[1], lat = st_coordinates(pt_titre)[2], label = input$titre_classes_legende_ac_rp_id, labelOptions = labelOptions(noHide = T, textOnly = TRUE, direction = "right", style = list( "color" = "black", "font-size" = "14px" )), group = "leg" ) } suppressWarnings(proxy <- addCircles(map = proxy, lng = st_coordinates(st_centroid(ronds_leg[[1]]))[,1], lat = st_coordinates(st_centroid(ronds_leg[[1]]))[,2], stroke = TRUE, opacity = 1, color = " weight = 2, radius = c(calcul_rond_ac_rp(),calcul_rond_ac_rp()/sqrt(3)), options = pathOptions(pane = "fond_legende", clickable = F), fill = T, fillColor = "white", fillOpacity = 1, group = "leg") ) proxy <- addPolygons(map = proxy, data = lignes[[1]], stroke = TRUE, opacity = 1, color = " weight = 2, options = pathOptions(pane = "fond_legende", clickable = F), fill = F, fillOpacity = 1, group = "leg" ) proxy <- addLabelOnlyMarkers(map = proxy, lng = st_bbox(lignes[[1]][1,])[3], lat = st_bbox(lignes[[1]][1,])[4], label = as.character(format(round(calcul_max_rayon_metres_ac_rp()[[2]],0),big.mark=" ",decimal.mark=",",nsmall=0)), labelOptions = labelOptions(noHide = T, textOnly = TRUE, direction = "right", style = list( "color" = "black", "font-size" = "12px" )), group = "leg" ) proxy <- addLabelOnlyMarkers(map = proxy, lng = st_bbox(lignes[[1]][2,])[3], lat = st_bbox(lignes[[1]][2,])[4], label = as.character(format(round(calcul_max_rayon_metres_ac_rp()[[2]]/3,0),big.mark=" ",decimal.mark=",",nsmall=0)), labelOptions = labelOptions(noHide = T, textOnly = TRUE, direction = "right", style = list( "color" = "black", "font-size" = "12px" )), group = "leg" ) pt_titre <- st_sfc(st_geometry(st_point(c(position_leg_ronds[1], position_leg_ronds[2]))), crs = as.numeric(code_epsg_ac_rp())) pt_titre <- st_transform(pt_titre, crs = 4326) proxy <- addLabelOnlyMarkers(map = proxy, lng = st_coordinates(pt_titre)[1], lat = st_coordinates(pt_titre)[2], label = input$titre_ronds_legende_ac_rp_id, labelOptions = labelOptions(noHide = T, textOnly = TRUE, direction = "right", style = list( "color" = "black", "font-size" = "14px" )), group = "leg" ) }) observeEvent(input$save_carte_ac_rp_id,{ showModal(modalDialog(HTML("<i class=\"fa fa-spinner fa-spin fa-2x fa-fw\"></i><font size=+1>Sauvegarde de la carte en cours...</font> "), size="m", footer=NULL, style = "color: insert_save$a <- insert_save$a + 1 nb_save_carte <- insert_save$a-remove_carte$a m_save <- m_save_ac_rp$a if(nb_save_carte>6) { insert_save$a <- insert_save$a - 1 showModal(modalDialog(HTML("<font size=+1>Vous ne pouvez pas sauvegarger plus de 6 cartes. Veuillez en supprimer avant de continuer.</font> "), size="l", footer=NULL, easyClose = TRUE, style = "color: return(NULL) } output[[paste0("mymap_save_",insert_save$a,"_ac_rp")]] <- renderLeaflet({ if(!is.null(fondSuppl)) { if(isolate(input$ajout_territoire_ac_rp_id)) { m_save <- addPolygons(map = m_save, data = isolate(fond_territoire_ac_rp()), stroke = TRUE, color = " weight = 0.5, options = pathOptions(pane = "fond_territoire", clickable = T), popup = paste0("<b> <font color= fill = T, fillColor = "white", fillOpacity = 0.001 ) } } if(isolate(input$ajout_reg_ac_rp_id)) { m_save <- addPolygons(map = m_save, data = isolate(fond_region_ac_rp()), stroke = TRUE, color = "grey", opacity = 1, weight = 1.5, options = pathOptions(pane = "fond_reg", clickable = F), fill = F ) } if(isolate(input$ajout_dep_ac_rp_id)) { m_save <- addPolygons(map = m_save, data = isolate(fond_departement_ac_rp()), stroke = TRUE, color = "grey", opacity = 1, weight = 0.5, options = pathOptions(pane = "fond_dep", clickable = F), fill = F ) } i <- 1 for(fond in isolate(liste_fonds$a)) { if(fond=="analyse") { m_save <- addCircles(map = m_save, lng = st_coordinates(isolate(analyse_ac_rp())[[2]])[,1], lat = st_coordinates(isolate(analyse_ac_rp())[[2]])[,2], stroke = TRUE, color = " opacity = 1, weight = 1.5, radius = isolate(calcul_rond_ac_rp())*sqrt(isolate(analyse_ac_rp())[[1]]$donnees[,varVolume]/isolate(calcul_max_rayon_metres_ac_rp())[[2]]), options = pathOptions(pane = paste0("fond_trio",i), clickable = T), popup = paste0("<b> <font color= fill = F ) } if(fond=="maille") { suppressWarnings(test_analyse_maille_classe <- try(isolate(analyse_ac_rp())[[1]]$donnees[rev(order(isolate(analyse_ac_rp())[[1]]$donnees[,varVolume])),varRatio],silent=T)) if(class(test_analyse_maille_classe) %in% "try-error") { return(NULL) }else { analyse_maille_classe <- isolate(analyse_ac_rp())[[1]]$donnees[rev(order(isolate(analyse_ac_rp())[[1]]$donnees[,varVolume])),varRatio] } analyse_maille <- merge(isolate(fond_contour_maille_ac_rp())[[2]][,c("CODE","geometry")],isolate(analyse_ac_rp())[[1]]$donnees[,c("CODE","LIBELLE",varVolume,varRatio,"TXT1","TXT2")],by="CODE") names(analyse_maille)[3] <- varVolume names(analyse_maille)[4] <- varRatio analyse_maille <- analyse_maille[rev(order(as.data.frame(analyse_maille)[,varVolume])),] analyse_maille <- st_sf(analyse_maille,stringsAsFactors = FALSE) m_save <- addPolygons(map = m_save, data = analyse_maille, opacity = 1, stroke = TRUE, color = "white", weight = 1, options = pathOptions(pane = paste0("fond_trio",i), clickable = T), popup = paste0("<b> <font color= "<b><font color= fill = T, fillColor = isolate(palette_ac_rp())[[1]](analyse_maille_classe), fillOpacity = 1 ) } if(fond=="contour") { m_save <- addPolygons(map = m_save, data = isolate(fond_contour_maille_ac_rp())[[1]], opacity = 0.3, stroke = TRUE, color = "black", weight = 3, options = pathOptions(pane = paste0("fond_trio",i), clickable = T), popup = paste0("<b> <font color= fill = T, fillColor = "white", fillOpacity = 0.3 ) } i <- i + 1 } if(isolate(elargi_ac_rp())) { analyse_maille_classe_elargi <- isolate(analyse_ac_rp())[[1]]$donnees_elargi[rev(order(isolate(analyse_ac_rp())[[1]]$donnees_elargi[,varVolume])),varRatio] analyse_maille_elargi <- merge(isolate(fond_elargi_ac_rp())[[2]][,c("CODE","geometry")],isolate(analyse_ac_rp())[[1]]$donnees_elargi[,c("CODE","LIBELLE",varVolume,varRatio,"TXT1","TXT2")],by="CODE") names(analyse_maille_elargi)[3] <- varVolume names(analyse_maille_elargi)[4] <- varRatio analyse_maille_elargi <- analyse_maille_elargi[rev(order(as.data.frame(analyse_maille_elargi)[,varVolume])),] analyse_maille_elargi <- st_sf(analyse_maille_elargi,stringsAsFactors = FALSE) m_save <- addPolygons(map = m_save, data = analyse_maille_elargi, opacity = isolate(input$opacite_elargi_ac_rp_id)/100, stroke = TRUE, color = "white", weight = 1, options = pathOptions(pane = "fond_trio3", clickable = T), popup = paste0("<b> <font color= "<b><font color= fill = T, fillColor = isolate(palette_ac_rp())[[1]](analyse_maille_classe_elargi), fillOpacity = isolate(input$opacite_elargi_ac_rp_id)/100 ) m_save <- addCircles(map = m_save, lng = st_coordinates(isolate(fond_elargi_ac_rp())[[1]])[,1], lat = st_coordinates(isolate(fond_elargi_ac_rp())[[1]])[,2], stroke = TRUE, color = " opacity = isolate(input$opacite_elargi_ac_rp_id)/100, weight = 1.5, radius = isolate(calcul_rond_ac_rp())*sqrt(isolate(analyse_ac_rp())[[1]]$donnees_elargi[,varVolume]/isolate(calcul_max_rayon_metres_ac_rp())[[2]]), options = pathOptions(pane = "fond_trio3", clickable = T), popup = paste0("<b> <font color= fill = F ) } if(!is.null(isolate(lon_lat_ac_rp())[[1]])) { large <- as.numeric((st_bbox(fondMaille)[4] - st_bbox(fondMaille)[2]) / 20) pt_ronds <- st_sfc(st_geometry(st_point(c(isolate(lon_lat_ac_rp())[[1]], isolate(lon_lat_ac_rp())[[2]]))), crs = 4326) pt_ronds <- st_transform(pt_ronds, crs = as.numeric(isolate(code_epsg_ac_rp()))) pt_ronds <- st_sfc(st_geometry(st_point(c(st_coordinates(pt_ronds)[,1] + large*3, st_coordinates(pt_ronds)[,2] - large*3))), crs = as.numeric(isolate(code_epsg_ac_rp()))) pt_ronds <- st_transform(pt_ronds, crs = 4326) ronds_leg <- construction_ronds_legende(st_coordinates(pt_ronds)[,1],st_coordinates(pt_ronds)[,2],isolate(code_epsg_ac_rp()),isolate(input$taille_rond_ac_rp_id)) lignes <- construction_lignes_legende(ronds_leg,isolate(code_epsg_ac_rp())) pt <- st_sfc(st_geometry(st_point(c(isolate(lon_lat_ac_rp())[[1]],isolate(lon_lat_ac_rp())[[2]]))), crs = 4326) pt <- st_transform(pt, crs = as.numeric(isolate(code_epsg_ac_rp()))) coord_pt <- st_coordinates(pt)[1:2] position_leg_ronds <- t(data.frame(c(coord_pt[1],coord_pt[2]))) position_leg_classes <- t(data.frame(c(coord_pt[1],as.numeric(st_bbox(ronds_leg[[2]])[2]) - large*2))) if(is.null(isolate(input$type_legende_ac_rp_id))) return(NULL) if(is.null(isolate(input$nb_classes_ac_rp_id))) return(NULL) max_classes <- as.numeric(isolate(input$nb_classes_ac_rp_id)) if(isolate(input$type_legende_ac_rp_id==1)) { for(i in 1:max_classes) { x_coord_rectangle <- position_leg_classes[1] if(i==1) { y_coord_rectangle <- position_leg_classes[2] }else { y_coord_rectangle <- y_coord_rectangle - large - large / 4 } assign(paste0("rectangle_",i),st_sfc(st_polygon(list(matrix(c(x_coord_rectangle, y_coord_rectangle, x_coord_rectangle + large * 1.5, y_coord_rectangle, x_coord_rectangle + large * 1.5, y_coord_rectangle - large, x_coord_rectangle, y_coord_rectangle - large, x_coord_rectangle, y_coord_rectangle), ncol=2, byrow=TRUE))), crs = as.numeric(isolate(code_epsg_ac_rp())))) } classes_leg_texte <- isolate(analyse_leg_ac_rp())$rupture_classes label_rectangle <- c() for(i in 1:max_classes) { if(i==1) { lbl <- paste0(format(round(classes_leg_texte[i+1],3), big.mark=" ",decimal.mark=",",nsmall=0)," et plus") label_rectangle <- c(label_rectangle, lbl) }else if (i>1 && i<max_classes) { lbl <- paste0("De ", format(round(classes_leg_texte[i+1],3), big.mark=" ",decimal.mark=",",nsmall=0)," \u00E0 moins de ", format(round(classes_leg_texte[i],3), big.mark=" ",decimal.mark=",",nsmall=0)) label_rectangle <- c(label_rectangle, lbl) }else { lbl <- paste0("Moins de ", format(round(classes_leg_texte[i],3), big.mark=" ",decimal.mark=",",nsmall=0)) label_rectangle <- c(label_rectangle, lbl) } } ltext <- max(nchar(label_rectangle)) / 2.5 vec <- matrix(c(position_leg_ronds[1] - large / 2, position_leg_ronds[2] + large / 2, position_leg_ronds[1] + large * 1.5 + (large * ltext), position_leg_ronds[2] + large / 2, position_leg_ronds[1] + large * 1.5 + (large * ltext), position_leg_classes[2] - large * (max_classes + (max_classes-1)/4 + 1), position_leg_ronds[1] - large / 2, position_leg_classes[2] - large * (max_classes + (max_classes-1)/4 + 1), position_leg_ronds[1] - large / 2, position_leg_ronds[2] + large / 2), 5,2,byrow=T) rectangle <- st_sfc(st_polygon(list(vec)), crs = as.numeric(isolate(code_epsg_ac_rp()))) rectangle <- st_transform(rectangle, crs = 4326) m_save <- addPolygons(map = m_save, data = rectangle, stroke = FALSE, options = pathOptions(pane = "fond_legende", clickable = F), fill = T, fillColor = "white", fillOpacity = 0.8, group = "leg" ) for(i in 1:max_classes) { m_save <- addPolygons(map = m_save, data = st_transform(get(paste0("rectangle_",i)), crs = 4326), stroke = FALSE, options = pathOptions(pane = "fond_legende", clickable = F), fill = T, fillColor = isolate(analyse_leg_ac_rp())$pal_classes[i], fillOpacity = 1, group = "leg" ) pt_label <- st_sfc(st_geometry(st_point(c(max(st_coordinates(get(paste0("rectangle_",i))[[1]])[,1]) + large / 10, mean(st_coordinates(get(paste0("rectangle_",i))[[1]])[,2])))), crs = as.numeric(isolate(code_epsg_ac_rp()))) pt_label <- st_transform(pt_label, crs = 4326) m_save <- addLabelOnlyMarkers(map = m_save, lng = st_coordinates(pt_label)[1], lat = st_coordinates(pt_label)[2], label = label_rectangle[i], labelOptions = labelOptions(noHide = T, textOnly = TRUE, direction = "right", style = list( "color" = "black", "font-size" = "12px" )), group = "leg" ) } pt_titre <- st_sfc(st_geometry(st_point(c(position_leg_classes[1], position_leg_classes[2] + large/2))), crs = as.numeric(isolate(code_epsg_ac_rp()))) pt_titre <- st_transform(pt_titre, crs = 4326) m_save <- addLabelOnlyMarkers(map = m_save, lng = st_coordinates(pt_titre)[1], lat = st_coordinates(pt_titre)[2], label = isolate(input$titre_classes_legende_ac_rp_id), labelOptions = labelOptions(noHide = T, textOnly = TRUE, direction = "right", style = list( "color" = "black", "font-size" = "14px" )), group = "leg" ) } if(isolate(input$type_legende_ac_rp_id)==2) { for(i in 1:max_classes) { x_coord_rectangle <- position_leg_classes[1] if(i==1) { y_coord_rectangle <- position_leg_classes[2] }else { y_coord_rectangle <- y_coord_rectangle - large } assign(paste0("rectangle_",i),st_sfc(st_polygon(list(matrix(c(x_coord_rectangle, y_coord_rectangle, x_coord_rectangle + large * 1.5, y_coord_rectangle, x_coord_rectangle + large * 1.5, y_coord_rectangle - large, x_coord_rectangle, y_coord_rectangle - large, x_coord_rectangle, y_coord_rectangle), ncol=2, byrow=TRUE))), crs = as.numeric(isolate(code_epsg_ac_rp())))) } classes_leg_num <- isolate(analyse_leg_ac_rp())$rupture_classes ltext <- max(nchar(classes_leg_num)) / 2.5 vec <- matrix(c(position_leg_ronds[1] - large / 2, position_leg_ronds[2] + large / 2, position_leg_ronds[1] + large * 1.5 + (large * ltext * 4), position_leg_ronds[2] + large / 2, position_leg_ronds[1] + large * 1.5 + (large * ltext * 4), position_leg_classes[2] - large * (max_classes + 1), position_leg_ronds[1] - large / 2, position_leg_classes[2] - large * (max_classes + 1), position_leg_ronds[1] - large / 2, position_leg_ronds[2] + large / 2), 5,2,byrow=T) rectangle <- st_sfc(st_polygon(list(vec)), crs = as.numeric(isolate(code_epsg_ac_rp()))) rectangle <- st_transform(rectangle, crs = 4326) m_save <- addPolygons(map = m_save, data = rectangle, stroke = FALSE, options = pathOptions(pane = "fond_legende", clickable = F), fill = T, fillColor = "white", fillOpacity = 0.8, group = "leg" ) for(i in 1:max_classes) { m_save <- addPolygons(map = m_save, data = st_transform(get(paste0("rectangle_",i)), crs = 4326), stroke = FALSE, options = pathOptions(pane = "fond_legende", clickable = F), fill = T, fillColor = isolate(analyse_leg_ac_rp())$pal_classes[i], fillOpacity = 1, group = "leg" ) if(i<max_classes) { x1 <- max(st_coordinates(get(paste0("rectangle_",i))[[1]])[,1]) y1 <- min(st_coordinates(get(paste0("rectangle_",i))[[1]])[,2]) x2 <- max(st_coordinates(get(paste0("rectangle_",i))[[1]])[,1]) + large*0.2 y2 <- min(st_coordinates(get(paste0("rectangle_",i))[[1]])[,2]) ligne <- st_sfc(st_linestring(rbind(c(x1,y1),c(x2,y2))), crs = as.numeric(isolate(code_epsg_ac_rp()))) m_save <- addPolygons(map = m_save, data = st_transform(ligne, crs = 4326), color = "black", weight = 1, options = pathOptions(pane = "fond_legende", clickable = F), fill = F, fillOpacity = 1, group = "leg" ) pt_label <- st_sfc(st_geometry(st_point(c(x2,y2))), crs = as.numeric(isolate(code_epsg_ac_rp()))) pt_label <- st_transform(pt_label, crs = 4326) m_save <- addLabelOnlyMarkers(map = m_save, lng = st_coordinates(pt_label)[1], lat = st_coordinates(pt_label)[2], label = as.character(format(round(classes_leg_num[i+1],3),big.mark=" ",decimal.mark=",",nsmall=0)), labelOptions = labelOptions(noHide = T, textOnly = TRUE, direction = "right", style = list( "color" = "black", "font-size" = "12px" )), group = "leg" ) } } pt_titre <- st_sfc(st_geometry(st_point(c(position_leg_classes[1], position_leg_classes[2] + large/2))), crs = as.numeric(isolate(code_epsg_ac_rp()))) pt_titre <- st_transform(pt_titre, crs = 4326) m_save <- addLabelOnlyMarkers(map = m_save, lng = st_coordinates(pt_titre)[1], lat = st_coordinates(pt_titre)[2], label = isolate(input$titre_classes_legende_ac_rp_id), labelOptions = labelOptions(noHide = T, textOnly = TRUE, direction = "right", style = list( "color" = "black", "font-size" = "14px" )), group = "leg" ) } suppressWarnings(m_save <- addCircles(map = m_save, lng = st_coordinates(st_centroid(ronds_leg[[1]]))[,1], lat = st_coordinates(st_centroid(ronds_leg[[1]]))[,2], stroke = TRUE, opacity = 1, color = " weight = 2, radius = c(isolate(calcul_rond_ac_rp()),isolate(calcul_rond_ac_rp())/sqrt(3)), options = pathOptions(pane = "fond_legende", clickable = F), fill = T, fillColor = "white", fillOpacity = 1, group = "leg") ) m_save <- addPolygons(map = m_save, data = lignes[[1]], stroke = TRUE, opacity = 1, color = " weight = 2, options = pathOptions(pane = "fond_legende", clickable = F), fill = F, fillOpacity = 1, group = "leg" ) m_save <- addLabelOnlyMarkers(map = m_save, lng = st_bbox(lignes[[1]][1,])[3], lat = st_bbox(lignes[[1]][1,])[4], label = as.character(format(round(isolate(calcul_max_rayon_metres_ac_rp())[[2]],0),big.mark=" ",decimal.mark=",",nsmall=0)), labelOptions = labelOptions(noHide = T, textOnly = TRUE, direction = "right", style = list( "color" = "black", "font-size" = "12px" )), group = "leg" ) m_save <- addLabelOnlyMarkers(map = m_save, lng = st_bbox(lignes[[1]][2,])[3], lat = st_bbox(lignes[[1]][2,])[4], label = as.character(format(round(isolate(calcul_max_rayon_metres_ac_rp())[[2]]/3,0),big.mark=" ",decimal.mark=",",nsmall=0)), labelOptions = labelOptions(noHide = T, textOnly = TRUE, direction = "right", style = list( "color" = "black", "font-size" = "12px" )), group = "leg" ) pt_titre <- st_sfc(st_geometry(st_point(c(position_leg_ronds[1], position_leg_ronds[2]))), crs = as.numeric(isolate(code_epsg_ac_rp()))) pt_titre <- st_transform(pt_titre, crs = 4326) m_save <- addLabelOnlyMarkers(map = m_save, lng = st_coordinates(pt_titre)[1], lat = st_coordinates(pt_titre)[2], label = isolate(input$titre_ronds_legende_ac_rp_id), labelOptions = labelOptions(noHide = T, textOnly = TRUE, direction = "right", style = list( "color" = "black", "font-size" = "14px" )), group = "leg" ) } removeModal() m_save }) output[[paste0("remove_carte_",nb_save_carte,"_ac_rp")]] <- renderUI({ actionButton(paste0("remove_carte_",nb_save_carte,"_ac_rp_id"),label="X Supprimer la carte", style="color: }) appendTab(inputId = "onglets_ac_rp", tabPanel(title=HTML(paste0("<font color= select = TRUE, session = session ) }, ignoreInit = TRUE) observeEvent(input$remove_carte_1_ac_rp_id,{ remove_carte$a <- remove_carte$a + 1 removeTab(inputId = "onglets_ac_rp", target = "carte1", session = session ) }, ignoreInit = TRUE) observeEvent(input$remove_carte_2_ac_rp_id,{ remove_carte$a <- remove_carte$a + 1 removeTab(inputId = "onglets_ac_rp", target = "carte2", session = session ) }, ignoreInit = TRUE) observeEvent(input$remove_carte_3_ac_rp_id,{ remove_carte$a <- remove_carte$a + 1 removeTab(inputId = "onglets_ac_rp", target = "carte3", session = session ) }, ignoreInit = TRUE) observeEvent(input$remove_carte_4_ac_rp_id,{ remove_carte$a <- remove_carte$a + 1 removeTab(inputId = "onglets_ac_rp", target = "carte4", session = session ) }, ignoreInit = TRUE) observeEvent(input$remove_carte_5_ac_rp_id,{ remove_carte$a <- remove_carte$a + 1 removeTab(inputId = "onglets_ac_rp", target = "carte5", session = session ) }, ignoreInit = TRUE) observeEvent(input$remove_carte_6_ac_rp_id,{ remove_carte$a <- remove_carte$a + 1 removeTab(inputId = "onglets_ac_rp", target = "carte6", session = session ) }, ignoreInit = TRUE) output$mydonnees_ac_rp <- DT::renderDataTable(DT::datatable({ if(elargi_ac_rp()) data <- analyse_ac_rp()[[1]]$donnees_elargi else data <- analyse_ac_rp()[[1]]$donnees tableau_donnees <- data[,c("CODE","LIBELLE",varVolume,varRatio)] }, style = 'bootstrap' )) output$mymaille_ac_rp <- DT::renderDataTable(DT::datatable({ if(elargi_ac_rp()) data <- as.data.frame(fondMailleElargi) else data <- as.data.frame(fondMaille) tableau_maille <- data[,c(1:2)] }, style = 'bootstrap' )) output$mycontour_ac_rp <- DT::renderDataTable(DT::datatable({ data <- as.data.frame(fondContour) tableau_contour <- data[,c(1:2)] }, style = 'bootstrap' )) output$mymap_ac_rp <- renderLeaflet({ react_fond_ac_rp() }) } runApp(shinyApp(ui = ui, server = server), launch.browser = TRUE) }
timmaSearchBinary1 <- function(profile_k, space, sens, loo = TRUE) { dim_info <- dim(space$d) rows <- dim_info[1] cols <- dim_info[2] IM_d <- array(NA, dim = dim_info[1:2]) IM_superset <- array(-Inf, dim = dim_info[1:2]) IM_subset <- array(Inf, dim = dim_info[1:2]) identical_idx <- rep(0, rows) for (i in 1:rows) { index <- profile_k[i] + 1 IM_d[i, ] <- space$d[i, , index] IM_superset[i, ] <- space$i[i, , index] IM_subset[i, ] <- space$o[i, , index] identical_idx[i] <- which((!is.na(IM_d[i, ])) == TRUE) } M_d <- sumcpp1(IM_d, rows, cols) maxval <- maxcpp1(IM_superset, rows, cols) minval <- mincpp1(IM_subset, rows, cols) min_subset <- minval$min min_index <- minval$min_idx max_superset <- maxval$max max_index <- maxval$max_idx cell <- is.nan(M_d) & is.finite(max_superset) cell <- which(cell == TRUE) if (length(cell) != 0) { for (i in cell) { drug_sub_cell <- !is.infinite(IM_superset[, i]) index <- max_index[i] dec_maxsens <- identical_idx[index] supersets_small <- IM_subset[, dec_maxsens] < max_superset[i] common_cell <- which(drug_sub_cell & supersets_small) if (length(common_cell) != 0) { k <- 1 for (j in common_cell) { max_superset[i] <- (max_superset[i] * k + sens[j])/(k + 1) k <- k + 1 } } } } cell2 <- is.nan(M_d) & is.finite(min_subset) cell2 <- which(cell2 == TRUE) if (length(cell2) != 0) { for (i in cell2) { drug_sub_cell <- !is.infinite(IM_subset[, i]) index <- min_index[i] dec_minsens <- identical_idx[index] subsets_small <- IM_superset[, dec_minsens] > min_subset[i] if (length(subsets_small) == 0) { common_cell2 <- vector("numeric") } else { common_cell2 <- which(drug_sub_cell & subsets_small) } if (length(common_cell2) != 0) { k <- 1 for (j in common_cell2) { min_subset[i] <- (min_subset[i] * k + sens[j])/(k + 1) k <- k + 1 } } } } M <- M_d M[cell] <- (max_superset[cell] + 1)/2 M[cell2] <- (min_subset[cell2] + 0)/2 average_index <- intersect(cell, cell2) M[average_index] <- (max_superset[average_index] + min_subset[average_index])/2 error_predict <- rep(NA, rows) pred <- rep(NA, rows) if (loo == FALSE) { pred <- M[identical_idx] error_predict <- abs(pred - sens) } else { for (i in 1:rows) { dim_IMd <- c(rows - 1, cols) IM_d_loo <- array(IM_d[-i, ], dim = dim_IMd) IM_subset_loo <- array(IM_subset[-i, ], dim = dim_IMd) IM_superset_loo <- array(IM_superset[-i, ], dim = dim_IMd) sens_loo <- sens[-i] drug_idx_loo <- identical_idx[-i] M_d_loo <- sumcpp1(IM_d_loo, rows - 1, cols) M_loo <- M_d_loo maxval <- maxcpp1(IM_superset_loo, rows - 1, cols) minval <- mincpp1(IM_subset_loo, rows - 1, cols) min_subset_loo <- minval$min min_index_loo <- minval$min_idx max_superset_loo <- maxval$max max_index_loo <- maxval$max_idx cell <- is.nan(M_d_loo) & is.finite(max_superset_loo) cell <- which(cell == TRUE) cell2 <- is.nan(M_d_loo) & is.finite(min_subset_loo) cell2 <- which(cell2 == TRUE) j_max <- which(cell == identical_idx[i]) j_min <- which(cell2 == identical_idx[i]) if (length(j_max) != 0 && length(j_min) == 0) { cell_index <- cell[j_max] drug_sub_cell <- !is.infinite(IM_superset_loo[, cell_index]) index <- max_index_loo[cell_index] dec_maxsens <- drug_idx_loo[index] supersets_small <- IM_subset_loo[, dec_maxsens] < max_superset_loo[cell_index] common_cell <- which(drug_sub_cell & supersets_small) if (length(common_cell) != 0) { k <- 1 for (j in common_cell) { max_superset_loo[cell_index] <- (max_superset_loo[cell_index] * k + sens_loo[j])/(k + 1) k <- k + 1 } } pred[i] <- (max_superset_loo[identical_idx[i]] + 1)/2 error_predict[i] <- abs(pred[i] - sens[i]) } else if (length(j_max) == 0 && length(j_min) != 0) { cell2_index <- cell2[j_min] drug_sub_cell <- !is.infinite(IM_subset_loo[, cell2_index]) index <- min_index_loo[cell2_index] dec_minsens <- drug_idx_loo[index] supersets_small <- IM_superset_loo[, dec_minsens] > min_subset_loo[cell2_index] common_cell <- which(drug_sub_cell & supersets_small) if (length(common_cell) != 0) { k <- 1 for (j in common_cell) { min_subset_loo[cell2_index] <- (min_subset_loo[cell2_index] * k + sens_loo[j])/(k + 1) k <- k + 1 } } pred[i] <- (min_subset_loo[identical_idx[i]] + 0)/2 error_predict[i] <- abs(pred[i] - sens[i]) } else if (length(j_max) != 0 && length(j_min) != 0) { cell_index <- cell[j_max] drug_sub_cell <- !is.infinite(IM_superset_loo[, cell_index]) index <- max_index_loo[cell_index] dec_maxsens <- drug_idx_loo[index] supersets_small <- IM_subset_loo[, dec_maxsens] < max_superset_loo[cell_index] common_cell <- which(drug_sub_cell & supersets_small) if (length(common_cell) != 0) { k <- 1 for (j in common_cell) { max_superset_loo[cell_index] <- (max_superset_loo[cell_index] * k + sens_loo[j])/(k + 1) k <- k + 1 } } cell2_index <- cell2[j_min] drug_sub_cell <- !is.infinite(IM_subset_loo[, cell2_index]) index <- min_index_loo[cell2_index] dec_minsens <- drug_idx_loo[index] supersets_small <- IM_superset_loo[, dec_minsens] > min_subset_loo[cell2_index] common_cell <- which(drug_sub_cell & supersets_small) if (length(common_cell) != 0) { k <- 1 for (j in common_cell) { min_subset_loo[cell2_index] <- (min_subset_loo[cell2_index] * k + sens_loo[j])/(k + 1) k <- k + 1 } } pred[i] <- (max_superset_loo[identical_idx[i]] + min_subset_loo[identical_idx[i]])/2 error_predict[i] <- abs(pred[i] - sens[i]) } else { pred[i] <- M_loo[identical_idx[i]] error_predict[i] <- abs(pred[i] - sens[i]) } } } return(error_predict) }
same_type <- function(x, y) { (typeof(x) == typeof(y)) } different_type <- function(x, y) { !same_type(x, y) }
generate_logfile_entry <- function(logfile, formula, seed, file_name) { logfile_tmp <- data.frame(file_name = file_name, seed = seed, formula_x = as.character(formula["x"]), formula_y = as.character(formula["y"]), stringsAsFactors = F) logfile <- dplyr::bind_rows(logfile, logfile_tmp) write.table(logfile, LOGFILE_PATH, sep = "\t", quote = F, row.names = F) print("logfile saved") }
expand.table <- function(tabdata, freq = colnames(tabdata)[ncol(tabdata)], sample = FALSE) { if(missing(tabdata)) missingMsg('tabdata') if(is.null(colnames(tabdata)) && is.null(freq)) stop('Please either supply colnames to tabdata or provide a vector of counts in freq', call.=FALSE) stopifnot(is.data.frame(tabdata) || is.matrix(tabdata)) tabdat <- as.matrix(tabdata) if(is.character(freq)){ stopifnot(length(freq) == 1L) tmp <- tabdata[,freq] tabdata <- tabdata[, colnames(tabdata) != freq, drop=FALSE] freq <- tmp } stopifnot(length(freq) == nrow(tabdata)) fulldata <- vector('list', nrow(tabdata)) for (i in seq_len(nrow(tabdata))) fulldata[[i]] <- tabdata[rep(i, freq[i]), ] fulldata <- do.call(rbind, fulldata) if(sample) fulldata <- fulldata[sample(seq_len(nrow(fulldata))), ] rownames(fulldata) <- seq_len(nrow(fulldata)) fulldata }
plot_training_df_moran <- function( data = NULL, dependent.variable.name = NULL, predictor.variable.names = NULL, distance.matrix = NULL, distance.thresholds = NULL, fill.color = viridis::viridis( 100, option = "F", direction = -1 ), point.color = "gray30" ){ distance.threshold <- NULL p.value.binary <- NULL moran.i <- NULL if( is.null(data) | is.null(dependent.variable.name) | is.null(predictor.variable.names) ){ stop("No variables to plot.") } data <- as.data.frame(data) if(!is.null(predictor.variable.names)){ if(inherits(predictor.variable.names, "variable_selection")){ predictor.variable.names <- predictor.variable.names$selected.variables } } if(is.null(distance.matrix)){ stop("distance.matrix is missing.") } if(is.null(distance.thresholds)){ distance.thresholds <- default_distance_thresholds(distance.matrix = distance.matrix) } df.list <- list() for(variable in c( dependent.variable.name, predictor.variable.names ) ){ temp.df <- moran_multithreshold( x = as.vector(data[, variable]), distance.matrix = distance.matrix, distance.thresholds = distance.thresholds, verbose = FALSE )$per.distance temp.df$variable <- variable df.list[[variable]] <- temp.df } plot.df <- do.call("rbind", df.list) rownames(plot.df) <- NULL plot.df$p.value.binary <- "< 0.05" plot.df[plot.df$p.value >= 0.05, "p.value.binary"] <- ">= 0.05" plot.df$p.value.binary <- factor( plot.df$p.value.binary, levels = c("< 0.05", ">= 0.05") ) plot.df$variable <- factor( plot.df$variable, levels = c( rev(predictor.variable.names), dependent.variable.name ) ) p <- ggplot2::ggplot(data = plot.df) + ggplot2::scale_fill_gradientn(colors = fill.color) + ggplot2::geom_tile( ggplot2::aes( x = factor(distance.threshold), y = variable, fill = moran.i ) ) + ggplot2::geom_point( ggplot2::aes( x = factor(distance.threshold), y = variable, size = p.value.binary ), color = point.color, pch = 1 ) + ggplot2::scale_size_manual( breaks = c("< 0.05", ">= 0.05"), values = c(2.5, 5), drop = FALSE ) + ggplot2::coord_cartesian(expand = FALSE) + ggplot2::ylab("") + ggplot2::xlab("Distance threshold") + ggplot2::labs( fill = "Moran's I", size = "p-value" ) p }
context("bsts") .data <- iris[, 1:4] datetime <- seq(from = Sys.time(), length.out = nrow(.data), by = "mins") .data <- cbind(datetime = datetime, .data) test_that("bsts_spec_static", { .spec <- bsts_spec_static(.data) expect_true(inherits(.spec, "cbar.model.spec")) }) test_that("bsts_model", { pre_period <- c(1, 100) post_period <- c(101, 150) training_data <- .data training_data[post_period[1]:post_period[2], 1] <- NA .model <- bsts_model(.data) expect_true(inherits(.model, "bsts")) names(.model) .model$coefficients .model$state.contributions[1000, 1:2, 145:150] })
str(dip1) f2(data = dip1, tcol = 3:10, grouping = "type") f2(data = dip1, tcol = 3:10, grouping = "type", use_EMA = "no", bounds = c(5, 80)) f2(data = dip1, tcol = 3:10, grouping = "type", use_EMA = "no", bounds = c(1, 95)) f2(data = dip1, tcol = 3:10, grouping = "type", use_EMA = "ignore") tmp <- rbind(dip1, data.frame(type = "T2", tablet = as.factor(1:6), dip1[7:12, 3:10])) tryCatch( f2(data = tmp, tcol = 3:10, grouping = "type"), error = function(e) message(e), finally = message("\nMaybe you want to remove unesed levels in data."))
print01Report <- function(data, modelname="Siena", getDocumentation=FALSE) { reportDataObject1 <- function(x) { Report(c(x$observations, "observations,\n"), outf) if (length(x$nodeSets) > 1) { Report("Node Sets:\n", outf) lapply(x$nodeSets, function(z) { Report(c(" ", format(attr(z, "nodeSetName"), width=15), ":", format(length(z), width=3), "nodes\n"), outf) }) Report("\n", outf) } else { Report(c(length(x$nodeSets[[1]]), "actors\n"), outf) } } reportDataObject <- function(x, periodFromStart=0, multi=FALSE) { reportStart <- function() { multipleNodeSets <- length(x$nodeSets) > 1 if (multipleNodeSets) { Report("Dependent variables Type NodeSet(s) (R, C)\n", outf) Report("------------------- ---- -----------------\n", outf) for (i in 1:length(x$depvars)) { atts <- attributes(x$depvars[[i]]) Report(c(format(atts$name, width=20), format(atts$type, width=12)), outf) for (j in 1:length(atts$nodeSet)) { if (j > 1) { Report(', ', outf) } Report(c(format(atts$nodeSet[j]), " (", atts$netdims[j], ")"), sep="", outf) } Report("\n", outf) } } else { Report(c(x$observations, "observations,\n"), outf) Report(c(length(x$nodeSets[[1]]), "actors,\n"), outf) Report(c(sum(types=="oneMode"), "dependent network variables,\n"), outf) Report(c(sum(types=="bipartite"), "dependent bipartite variables,\n"), outf) Report(c(sum(types=="behavior"), "dependent discrete behavior variables,\n"), outf) Report(c(sum(types=="continuous"), "dependent continuous behavior variables,\n"), outf) } Report(c(length(x$cCovars), "constant actor covariates,\n"), outf) Report(c(length(x$vCovars), "exogenous changing actor covariates,\n"), outf) Report(c(length(x$dycCovars), "constant dyadic covariates,\n"), outf) Report(c(length(x$dyvCovars), "exogenous changing dyadic covariates,\n"), outf) Report(c(length(x$compositionChange), c('no files','file', 'files')[1 + as.numeric(length(x$compositionChange))], "with times of composition change.\n"), outf) if ((length(x$cCovars) > 0 || length(x$dycCovars) > 0) && multi) { Report(c("For multi-group projects, constant covariates are", "treated as changing covariates.\n"), outf) if (length(x$dycCovars) > 0) { Report(c("Note that missings in changing dyadic", "covariates are not (yet) supported!\n"), outf) } } Report("\n", outf) } reportNetworks <- function() { Heading(2, outf, "Reading network variables.") anymissings <- FALSE for (i in 1:length(x$depvars)) { depvar <- x$depvars[[i]] atts <- attributes(depvar) netname <- atts$name type <- atts$type if (!(type %in% c("behavior", "continuous"))) { Report("Name of ", outf) if (nNetworks > 1) { Report("this ", outf) } Report(c("network variable: ", netname, '.\n'), sep="", outf) Report(c(type, "network.\n"), outf) if (type == "bipartite") { Report("This is a two-mode network.\n", outf) Report(c("The number of units in the second mode is ", atts$netdims[2], ".\n"), sep="", outf) } for (k in 1:x$observations) { Report(c("For observation moment ", k + periodFromStart, ", degree distributions are as ", "follows:\nNodes\n"), sep="", outf) if (attr(depvar, "sparse")) { tmpdepvar <- depvar[[k]] tmpx1 <- tmpdepvar@x use <- tmpx1 %in% c(10, 11) tmpx1[use] <- tmpx1[use] - 10 tmpdepvar@x <- tmpx1 outdeg <- rowSums(tmpdepvar, na.rm=TRUE) indeg <- colSums(tmpdepvar, na.rm=TRUE) diag(tmpdepvar) <- 0 missrow <- rowSums(is.na(depvar[[k]])) misscol <- colSums(is.na(depvar[[k]])) } else { tmpdepvar <- depvar[, , k] use <- tmpdepvar %in% c(10, 11) tmpdepvar[use] <- tmpdepvar[use] - 10 if (attr(depvar, "type") != "bipartite") { diag(tmpdepvar) <- 0 } outdeg <- rowSums(tmpdepvar, na.rm=TRUE) indeg <- colSums(tmpdepvar, na.rm=TRUE) missrow <- rowSums(is.na(tmpdepvar)) misscol <- colSums(is.na(tmpdepvar)) } if (attr(depvar, "type") == "bipartite") { tmp <- format(cbind(1:atts$netdims[1], outdeg)) tmp2 <- format(cbind(1:atts$netdims[2], indeg)) } else { tmp <- format(cbind(1:atts$netdims[1], outdeg, indeg)) } Report(tmp[, 1], fill=60, outf) Report("out-degrees\n", outf) Report(tmp[, 2], fill=60, outf) if (attr(depvar, "type") == "bipartite") { Report("in-degrees\n", outf) Report(tmp2[, 2], fill=60, outf) } else { Report("in-degrees\n", outf) Report(tmp[, 3], fill=60, outf) } if (attr(depvar, "structural")) { if (attr(depvar, "sparse")) { nstruct0 <- sum(depvar[[k]]@x %in% c(10)) nstruct1 <- sum(depvar[[k]]@x %in% c(11)) } else { nstruct0 <- sum(depvar[, , k] %in% c(10)) nstruct1 <- sum(depvar[, , k] %in% c(11)) } if (nstruct0 + nstruct1 > 0) { Report(c("\nThe input file contains codes for ", "structurally determined values:\n"), sep="", outf ); if (attr(depvar, "sparse")) { nstruct0 <- sum(depvar[[k]]@x %in% c(10)) nstruct1 <- sum(depvar[[k]]@x %in% c(11)) } else { nstruct0 <- sum(depvar[, , k] %in% c(10)) nstruct1 <- sum(depvar[, , k] %in% c(11)) } Report(c(' ', nstruct0, ' structural zero'), sep='', outf) Report(ifelse(nstruct0 > 1, "s were found (code 10).\n", " was found (code 10).\n"), outf) Report(c(' ', nstruct1, ' structural one'), sep='', outf) Report(ifelse(nstruct1 > 1, "s were found (code 11).\n", " was found (code 11).\n"), outf) if (attr(depvar, 'sparse')) { nnonactive <- rowSums(depvar[[k]] == 10 | depvar[[k]] == 11, na.rm=TRUE) nnonactive <- nnonactive >= nrow(depvar[[k]]) } else { nnonactive <- rowSums(depvar[, , k] == 10 | depvar[, , k] == 11, na.rm=TRUE) nnonactive <- nnonactive >= nrow(depvar[, , k]) } if (sum(nnonactive) == 1) { Report(c("Actor ", which(nnonactive), " is inactive at this ", "observation.\n"), sep='', outf) } else if (sum(nnonactive) > 1) { Report(c("Actors", which(nnonactive), "are inactive at this", "observation.\n"), fill=80, outf) } } } if (attr(depvar, "sparse")) { depvark <- depvar[[k]] diag(depvark) <- 0 anymissings <- any(is.na(depvark)) } else { depvark <- depvar[, , k] diag(depvark) <- 0 anymissings <- any(is.na(depvark)) } if (anymissings) { Report(c("\nFor observation moment ", k + periodFromStart, ", number of missing values ", "are:\n"), sep="", outf) if (attr(depvar, "type") == "bipartite") { Report("Senders\n", outf) tmp <- format(cbind(1:atts$netdims[1], missrow)) Report(tmp[, 1], fill=60, outf) Report("missing in rows\n", outf) Report(tmp[, 2], fill=60, outf) tmp <- format(cbind(1:atts$netdims[2], misscol)) Report("Receivers\n", outf) Report(tmp[, 1], fill=60, outf) Report("missing in columns\n", outf) Report(tmp[, 2], fill=60, outf) mult <- atts$netdims[2] } else { Report("Nodes\n", outf) tmp <- format(cbind(1:atts$netdims[1], missrow, misscol)) Report(tmp[, 1], fill=60, outf) Report("missing in rows\n", outf) Report(tmp[, 2], fill=60, outf) Report("missing in columns\n", outf) Report(tmp[, 3], fill=60, outf) mult <- atts$netdims[1] - 1 } Report(c("Total number of missing data: ", sum(missrow), ", corresponding to a fraction of ", format(round(sum(missrow)/ atts$netdims[1] / mult, 3), nsmall=3), ".\n"), sep="", outf) if (k > 1) Report(c("In reported in- and outdegrees,", "missings are not counted.\n"), outf) Report("\n", outf) } else { Report(c("\nNo missing data for observation ", k + periodFromStart, ".\n\n"), sep= "", outf) } } if (anymissings) { Report(c("There are missing data for this", "network variable,\n"), outf) Report(c("and the <<carry missings forward>>", "option is active.\n"), outf) Report("This means that for each tie variable,\n", outf) Report(c("the last previous nonmissing value (if any)", "is imputed.\n"), outf) Report(c("If there is no previous nonmissing value,", "the value 0 is imputed.\n"), outf) } } Report("\n", outf) } Report("\n", outf) } reportBehaviors <- function() { Heading(2, outf, "Reading dependent actor variables.") iBehav <- 0 for (i in 1:length(x$depvars)) { if (types[i] %in% c("behavior", "continuous")) { depvar <- x$depvars[[i]] atts <- attributes(depvar) netname <- atts$name iBehav <- iBehav + 1 mystr <- paste(iBehav, switch(as.character(iBehav), "1"=, "21"=, "31"= "st", "2"=, "22"=, "32"= "nd", "3"=, "23"=, "33"= "rd", "th"), sep="") Report(c(mystr, " dependent actor variable named ", netname,".\n"), sep="", outf) ranged <- atts$range2 if (types[i] == "behavior") ranged <- round(ranged) else ranged <- signif(ranged, 4) Report(c("Maximum and minimum ", ifelse(types[i] == "behavior", "rounded ", ""), "values are ", ranged[1], " and ", ranged[2], ".\n"), sep="", outf) if (types[i] == "behavior") { if (ranged[1] < 0 ) stop("Negative minima not allowed for discrete ", "dependent actor variables.\n") if (ranged[2] > 255 ) stop("Maxima more than 255 not allowed for ", "discrete dependent actor variables.\n") } if (ranged[1] >= ranged[2] ) stop("Dependent actor variables must not be", " constant.\n") if (any(is.na(depvar))) { Report(c("Missing values in this actor variable are", "imputed", "by the mode per observation.\n"), outf) Report(c("But if there is a previous (or later)", "nonmissing value,", "this is used as the imputed value.\n"), outf) Report("Modal values:\nObservation ", outf) Report(c(format(1:x$observations+periodFromStart, width=4), '\n'), outf) Report(c(format("Modes", width=12), format(atts$modes, width=4)), outf) Report("\n", outf) } depvar2 <- depvar depvar2[is.na(depvar2)] <- 0 if (types[i] == "behavior" && !isTRUE(all.equal(as.vector(depvar2), round(as.vector(depvar2))))) { Report(c("Non-integer values noted in this behavior", "variable: they will be truncated.\n") , outf) } Report('\n', outf) } } Report(c("\nA total of", nBehavs, "dependent actor variable"), outf) Report(ifelse(nBehavs > 1, "s.\n\n", ".\n\n"), outf) Report("Number of missing cases per observation:\n", outf) Report(c(" observation", format(1:x$observations+periodFromStart, width=10), " overall\n"), sep="", outf) for (i in 1:length(x$depvars)) { if (types[i] %in% c("behavior", "continuous")) { depvar <- x$depvars[[i]][, 1, ] atts <- attributes(x$depvars[[i]]) netname <- atts$name missings <- colSums(is.na(depvar)) Report(c(format(netname, width=12), format(c(missings, sum(missings)), width=10), " (", format(round(100 * sum(missings)/ nrow(depvar)/ncol(depvar), 1), nsmall=1, width=4), ' %)\n'), sep="", outf) } } Report("\nMeans per observation:\n", outf) Report(c(" observation", format(1:x$observations+periodFromStart, width=10), " overall\n"), sep="", outf) for (i in 1:length(x$depvars)) { if (types[i] %in% c("behavior", "continuous")) { depvar <- x$depvars[[i]][, 1, ] atts <- attributes(x$depvars[[i]]) netname <- atts$name means <- colMeans(depvar, na.rm=TRUE) Report(c(format(netname, width=14), format(round(means, 3), nsmall=3, width=10), format(round(mean(means), 3), width=10), '\n'), sep="", outf) } } } reportConstantCovariates <- function() { nCovars <- length(x$cCovars) covars <- names(x$cCovars) Heading(2, outf, "Reading constant actor covariates.") Report(c(nCovars, "variable"),outf) Report(ifelse(nCovars == 1, ", named:\n", "s, named:\n"), outf) for (i in seq(along=covars)) { Report(c(format(covars[i], width=15), '\n'), outf) } Report(c("\nA total of", nCovars, "non-changing individual covariate"), outf) Report(ifelse(nCovars == 1, ".\n\n", "s.\n\n"), outf) Report("Number of missing cases:\n", outf) for (i in seq(along=covars)) { Report(c(format(covars[i], width=15), sum(is.na(x$cCovars[[i]])), " (", format(round(100 * sum(is.na(x$cCovars[[i]]))/ length(x$cCovars[[i]]), 1), width=3, nsmall=1), '%)\n'), outf) } Report("\nInformation about covariates:\n", outf) Report(c(format("minimum maximum mean centered", width=48, justify="right"), "\n"), outf) any.cent <- 0 any.noncent <- 0 for (i in seq(along=covars)) { atts <- attributes(x$cCovars[[i]]) if (atts$centered) { cent <- " Y" any.cent <- any.cent+1 } else { cent <- " N" any.noncent <- any.noncent+1 } Report(c(format(covars[i], width=10), format(round(atts$range2[1], 1), nsmall=1, width=8), format(round(atts$range2[2], 1), nsmall=1, width=7), format(round(atts$mean, 3), nsmall=3, width=10), cent, "\n"), outf) } if (nData <= 1) { if (any.noncent <= 0) { Report(c("The mean value", ifelse(nCovars == 1, " is", "s are"), " subtracted from the", ifelse(nCovars == 1, " centered", ""), " covariate", ifelse(nCovars == 1, ".\n\n", "s.\n\n")), sep="", outf) } else if (any.cent >= 1) { s.plural <- "" if (any.cent >= 2){s.plural <- "s"} Report(c("For the centered variable", s.plural, ", the mean value", ifelse(any.cent == 1, " is", "s are"), " subtracted from the covariate", s.plural, ".\n"), sep="", outf) } } } reportChangingCovariates <- function() { nCovars <- length(x$vCovars) covars <- names(x$vCovars) use <- ! covars %in% names(x$cCovars) nCovars <- length(x$vCovars[use]) Heading(2, outf, "Reading exogenous changing actor covariates.") Report(c(nCovars, "variable"),outf) Report(ifelse(nCovars == 1, ", named:\n", "s, named:\n"), outf) for (i in seq(along=covars[use])) { Report(c(format(covars[use][i], width=15), '\n'), outf) } Report(c("\nA total of", nCovars, "exogenous changing actor covariate"), outf) Report(ifelse(nCovars == 1, ".\n\n", "s.\n\n"), outf) Report("Number of missing cases per period:\n", outf) Report(c(" period ", format(1:(x$observations - 1) + periodFromStart, width=8), " overall\n"), sep="", outf) for (i in seq(along=covars)) { if (use[i]) { thiscovar <- x$vCovars[[i]] misscols <- colSums(is.na(thiscovar)) Report(c(format(covars[i], width=20), format(misscols, width=7), format(sum(misscols), width=8), " (", format(round(100 * sum(misscols)/nrow(thiscovar)/ ncol(thiscovar), 1), nsmall=1, width=3), '%)\n'), outf) } } Report("\nInformation about changing covariates:\n\n", outf) Report(c(format("minimum maximum mean centered", width=48, justify="right"), "\n"), outf) any.cent <- 0 any.noncent <- 0 for (i in seq(along=covars)) { if (use[i]) { atts <- attributes(x$vCovars[[i]]) if (atts$centered) { cent <- " Y" any.cent <- any.cent+1 } else { cent <- " N" any.noncent <- any.noncent+1 } Report(c(format(covars[i], width=39), cent, '\n'), outf) for (j in 1:(ncol(x$vCovars[[i]]))) { Report(c(" period", format(j + periodFromStart, width=3), format(round(atts$rangep[1, j], 1), nsmall=1, width=7), format(round(atts$rangep[2, j], 1), nsmall=1, width=7), format(round(atts$meanp[j], 3), nsmall=3, width=10), "\n"), outf) } Report(c(format("Overall", width=29), format(round(atts$mean, 3), width=10, nsmall=3), "\n\n"), outf) } } if (nData <= 1) { if (any.noncent <= 0) { Report(c("The mean value", ifelse(nCovars == 1, " is", "s are"), " subtracted from the", ifelse(nCovars == 1, " centered", ""), " covariate", ifelse(nCovars == 1, ".\n\n", "s.\n\n")), sep="", outf) } else if (any.cent >= 1) { s.plural <- "" if (any.cent >= 2){s.plural <- "s"} Report(c("For the centered variable", s.plural, ", the mean value", ifelse(any.cent == 1, " is", "s are"), " subtracted from the covariate", s.plural, ".\n"), sep="", outf) } } } reportConstantDyadicCovariates <- function() { nCovars <- length(x$dycCovars) covars <- names(x$dycCovars) Heading(2, outf, "Reading constant dyadic covariates.") for (i in seq(along=covars)) { Report(c("Dyadic covariate named ", covars[i], '.\n'), sep="", outf) } Report(c("\nA total of", nCovars, "dyadic individual covariate"), outf) Report(ifelse(nCovars == 1, ".\n\n", "s.\n\n"), outf) Report("Number of tie variables with missing data:\n", outf) for (i in seq(along=covars)) { if (attr(x$dycCovars[[i]], "sparse")) { myvar <- x$dycCovars[[i]][[1]] } else { myvar <- x$dycCovars[[i]] } diag(myvar) <- 0 Report(c(format(covars[i], width=30), sum(is.na(myvar)), " (", format(round(100 * sum(is.na(myvar))/ (length(myvar) - nrow(myvar)), 1), width=3, nsmall=1), '%)\n'), outf) } Report("\nInformation about dyadic covariates:\n", outf) Report(c(format("minimum maximum mean centered", width=67, justify="right"), "\n"), outf) any.cent <- 0 any.noncent <- 0 for (i in seq(along=covars)) { atts <- attributes(x$dycCovars[[i]]) if (atts$centered) { cent <- " Y" any.cent <- any.cent+1 } else { cent <- " N" any.noncent <- any.noncent+1 } Report(c(format(covars[i], width=30), format(round(atts$range2[1], 1), nsmall=1, width=8), format(round(atts$range2[2], 1), nsmall=1, width=7), format(round(atts$mean, 3), nsmall=3, width=10), cent, "\n"), outf) } Report('\n', outf) s.plural <- ifelse((any.cent >= 2),"s","") if (any.noncent >= 1) { Report(c('The <mean> listed for the non-centered variable', s.plural, ' is the attribute, not the observed mean.', '\n'), sep="", outf) } if (any.noncent <= 0) { Report(c("The mean value", ifelse(nCovars == 1, " is", "s are"), " subtracted from the", ifelse(nCovars == 1, " centered", ""), " covariate", ifelse(nCovars == 1, ".\n\n", "s.\n\n")), sep="", outf) } else if (any.cent >= 1) { Report(c("For the centered variable", s.plural, ", the mean value", ifelse(any.cent == 1, " is", "s are"), " subtracted from the covariate", s.plural, ".\n"), sep="", outf) } } reportChangingDyadicCovariates <- function() { covars <- names(x$dyvCovars) use <- ! covars %in% names(x$dycCovars) nCovars <- length(x$dyvCovars[use]) Heading(2, outf, "Reading exogenous dyadic covariates.") for (i in seq(along=covars)) { Report(c("Exogenous dyadic covariate named ", covars[i], '.\n'), sep="", outf) } Report("Number of tie variables with missing data per period:\n", outf) Report(c(" period ", format(1:(x$observations - 1) + periodFromStart, width=7), " overall\n"), sep="", outf) for (i in seq(along=covars)) { if (use[i]) { sparse <- attr(x$dyvCovars[[i]], "sparse") vardims <- attr(x$dyvCovars[[i]], "vardims") thiscovar <- x$dyvCovars[[i]] if (!sparse) { missvals <- colSums(is.na(thiscovar), dims=2) } else { missvals <- sapply(thiscovar, function(x)sum(is.na(x))) } Report(c(format(covars[i], width=10), format(missvals, width=6), format(sum(missvals), width=9), " (", format(round(100 * sum(missvals)/vardims[1]/ vardims[2]), nsmall=1, width=3), '%)\n'), outf) } } Report("\nInformation about changing dyadic covariates:\n", outf) Report(c(format("mean centered", width=36, justify="right"), "\n"), outf) any.cent <- 0 any.noncent <- 0 for (i in seq(along=covars)) { atts <- attributes(x$dyvCovars[[i]]) if (atts$centered) { cent <- " Y" any.cent <- any.cent+1 } else { cent <- " N" any.noncent <- any.noncent+1 } Report(c(format(covars[i], width=28), cent, '\n'), outf) for (j in 1:(atts$vardims[3])) { Report(c(" period", format(j + periodFromStart, width=3), format(round(atts$meanp[j], 3), nsmall=3, width=10), "\n"), outf) } if (!atts$centered) { Report(c(format("Overall", width=29), format(round(atts$mean, 3), width=10, nsmall=3), "\n"), outf) } Report("\n", outf) } Report('\n', outf) s.plural <- ifelse((any.cent >= 2),"s","") if (any.noncent >= 1) { Report(c('The <mean> listed for the non-centered variable', s.plural, ' is the attribute, not the observed mean.', '\n'), sep="", outf) } if (nCovars >= 1) { if (any.noncent <= 0) { Report(c("The mean value", ifelse(nCovars == 1, " is", "s are"), " subtracted from the", ifelse(nCovars == 1, " centered", ""), " covariate", ifelse(nCovars == 1, ".\n\n", "s.\n\n")), sep="", outf) } else if (any.cent >= 1) { Report(c("For the centered variable", s.plural, ", the mean value", ifelse(any.cent == 1, " is", "s are"), " subtracted from the covariate", s.plural, ".\n"), sep="", outf) } } } reportCompositionChange <- function() { comps <- x$compositionChange Heading(2, outf, "Reading files with times of composition change.") for (i in seq(along=comps)) { nodeSet <- attr(comps[[i]], "nodeSet") Report(c("\nComposition changes for nodeSet ", nodeSet, '.\n\n'), sep="", outf) events <- attr(comps[[i]], "events") for (j in 1:nrow(events)) { x <- events[j, ] Report(c("Actor ", format(x$actor, width=2), ifelse(x$event=="join", " joins ", " leaves"), " network at time ", format(round(x$period + x$time, 4), nsmall=4), ".\n"), sep="", outf) } pertab <- table(events$period, events$event) for (period in row.names(pertab)) { joiners <- pertab[period, "join"] leavers <- pertab[period, "leave"] Report(c("\nIn period ", period, ", ", joiners, ifelse(joiners == 1, " actor", " actors"), " joined and ", leavers, ifelse(leavers == 1, " actor", " actors"), " left the network.\n"), sep="", outf) } } } types <- lapply(x$depvars, function(z) attr(z, "type")) reportStart() nNetworks <- sum(types != "behavior") nBehavs <- sum(types %in% c("behavior", "continuous")) if (nNetworks > 0) { reportNetworks() } if (nBehavs > 0) { reportBehaviors() } if (length(x$cCovars) > 0) { reportConstantCovariates() } if (nData > 1 && length(x$vCovars) > length(x$cCovars) || (nData ==1 && length(x$vCovars) > 0)) { reportChangingCovariates() } if (length(x$dycCovars) > 0) { reportConstantDyadicCovariates() } if (nData > 1 && length(x$dyvCovars) > length(x$dycCovars) || (nData ==1 && length(x$dyvCovars) > 0)) { reportChangingDyadicCovariates() } if (length(x$compositionChange) > 0) { reportCompositionChange() } Report("\n\n", outf) } if (!(inherits(data, "siena"))) { stop("The first argument needs to be a siena data object.") } if (!(inherits(modelname, "character"))) { cat("Since version 1.1-279, an effects object should not be given\n") cat(" in the call of print01Report. Consult the help file.\n") stop("print01Report needs no effects object.") } if (!inherits(getDocumentation, 'logical')) { stop('wrong parameters; note: do not include an effects object as parameter!') } if (getDocumentation) { tt <- getInternals() return(tt) } Report(openfiles=TRUE, type="w", projname=modelname) Report(" ************************\n", outf) Report(c(" ", modelname, ".txt\n"), sep='', outf) Report(" ************************\n\n", outf) Report(c("Filename is ", modelname, ".txt.\n\n"), sep="", outf) Report(c("This file contains primary output for SIENA project <<", modelname, ">>.\n\n"), sep="", outf) Report(c("Date and time:", format(Sys.time(), "%d/%m/%Y %X"), "\n\n"), outf) packageValues <- packageDescription(pkgname, fields=c("Version", "Date")) rforgeRevision <- packageDescription(pkgname, fields="Repository/R-Forge/Revision") if (is.na(rforgeRevision)) { revision <- "" } else { revision <- paste(" R-forge revision: ", rforgeRevision, " ", sep="") } Report(c(paste(pkgname, "version "), packageValues[[1]], " (", format(as.Date(packageValues[[2]]), "%d %m %Y"), ")", revision, "\n\n"), sep="", outf) if (!inherits(data, 'sienaGroup')) { nData <- 1 data <- sienaGroupCreate(list(data), singleOK=TRUE) } else { nData <- length(data) } if (nData > 1) { Report("Multi-group input detected\n\n", outf) for (i in 1:nData) { Report(c("Subproject ", i, ": <", names(data)[i], ">\n"), sep="", outf) reportDataObject1(data[[i]]) } Report(c("Multi-group project", modelname, "contains", nData, "subprojects.\n\n"), outf) periodFromStart <- 0 for (i in 1:nData) { Heading(1, outf, paste("Subproject ", i, ": <", names(data)[i], ">", sep="", collapse="") ) reportDataObject(data[[i]], periodFromStart, multi=TRUE) periodFromStart <- periodFromStart + data[[i]]$observations } } else { Heading(1, outf, "Data input.") reportDataObject(data[[1]], 0, multi=FALSE) } atts <- attributes(data) nets <- !(atts$types %in% c("behavior", "continuous")) behs <- atts$types == "behavior" if (length(data) > 1) { Heading(1, outf, "Further processing of multi-group data.") Report("Series of observations for the multi-group project:\n", outf) periodFromStart <- 0 for (i in seq(along=data)) { Report(c(format(1:data[[i]]$observations + periodFromStart), '\n'), outf) periodFromStart <- periodFromStart + data[[i]]$observations } Report("\n", outf) if (length(atts$vCovars) == 1) { Report(c("The overall mean value ", format(round(atts$vCovarMean, 4), nsmall=3, width=12), " is subtracted from covariate ", atts$vCovars, ".\n\n"), sep="", outf) } else if (length(atts$vCovars) >= 2) { Report(c("The mean values are subtracted from the covariates:\n"), outf) for (i in seq(along=atts$vCovars)) { Report(c(format(atts$vCovars[i], width=15), format(round(atts$vCovarMean[i], 4), nsmall=3, width=12), '\n'), outf) } } } periodNos <- attr(data, "periodNos") if (any(atts$anyUpOnly[nets])) { netnames <- atts$netnames[nets] upOnly <- atts$anyUpOnly[nets] allUpOnly <- atts$allUpOnly[nets] for (i in which(upOnly)) { if (sum(nets) > 1) { Report(c("Network ", netnames[i], ":\n"), sep = "", outf) } if (allUpOnly[i]) { Report("All network changes are upward.\n", outf) Report("This will be respected in the simulations.\n", outf) Report("Therefore, there is no outdegree parameter.\n\n", outf) } else { Report(c("All network changes are upward for the following", "periods:\n"), outf) periodsUp <- unlist(lapply(data, function(x) { attr(x$depvars[[match(netnames[i], names(x$depvars))]], "uponly") })) periods <- periodNos[c(1:length(periodsUp))[periodsUp]] Report(paste(periods, " => ", periods + 1, ";", sep=""), fill=80, outf) Report("This will be respected in the simulations.\n\n", outf) } } } if (any(atts$anyDownOnly[nets])) { netnames <- atts$netnames[nets] downOnly <- atts$anyDownOnly[nets] allDownOnly <- atts$allDownOnly[nets] for (i in which(downOnly)) { if (sum(nets) > 1) { Report(c("Network ", netnames[i], "\n"), sep = "", outf) } if (allDownOnly[i]) { Report("All network changes are downward.\n", outf) Report("This will be respected in the simulations.\n", outf) Report("Therefore, there is no outdegree parameter.\n\n", outf) } else { periodsDown <- unlist(lapply(data, function(x) { attr(x$depvars[[match(netnames[i], names(x$depvars))]], "downonly") })) Report(c("All network changes are downward for the", "following periods:\n"), outf) periods <- periodNos[c(1:length(periodsDown))[periodsDown]] Report(paste(periods, " => ", periods + 1, ";", sep=""), fill=80, outf) Report("This will be respected in the simulations.\n\n", outf) } } } if (any(atts$anyUpOnly[behs])) { netnames <- atts$netnames[behs] upOnlyAndBeh <- atts$anyUpOnly[behs] allUpOnly <- atts$allUpOnly[behs] for (i in which(upOnlyAndBeh)) { Report(c("\nBehavior variable ", netnames[i], ":\n"), sep = "", outf) if (allUpOnly[i]) { Report("All behavior changes are upward.\n", outf) Report("This will be respected in the simulations.\n", outf) Report("Therefore, there is no linear shape parameter.\n\n", outf) } else { Report(c("All behavior changes are upward for the following", "periods:\n"), outf) periodsUp <- sapply(data, function(x) { attr(x$depvars[[match(netnames[i], names(x$depvars))]], "uponly") }) periods <- periodNos[c(1:length(periodsUp))[periodsUp]] Report(paste(periods, " => ", periods + 1, ";", sep=""), fill=80, outf) Report("This will be respected in the simulations.\n\n", outf) } } } if (any(atts$anyDownOnly[behs])) { netnames <- atts$netnames[behs] downOnly <- atts$anyDownOnly[behs] allDownOnly <- atts$allDownOnly[behs] for (i in which(downOnly)) { Report(c("\nBehavior ", netnames[i], ":\n"), sep = "", outf) if (allDownOnly[i]) { Report("All behavior changes are downward.\n", outf) Report("This will be respected in the simulations.\n", outf) Report("Therefore, there is no linear shape parameter.\n\n", outf) } else { periodsDown <- sapply(data, function(x) { attr(x$depvars[[match(netnames[i], names(x$depvars))]], "downonly") }) Report(c("All behavior changes are downward for the", "following periods:\n"), outf) periods <- periodNos[c(1:length(periodsDown))[periodsDown]] Report(paste(periods, " => ", periods + 1, ";", sep=""), fill=80, outf) Report("This will be respected in the simulations.\n\n", outf) } } } if (any(atts$anyMissing[nets])) { netnames <- atts$netnames[nets] missings <- atts$anyMissing[nets] for (i in seq(along=netnames[missings])) { Report(c("There are missing data for network variable ", netnames[i], ".\n"), sep = "", outf) } } if (any(atts$anyMissing[!nets])) { netnames <- atts$netnames[!nets] missings <- atts$anyMissing[!nets] for (i in seq(along=netnames[missings])) { Report(c("There are missing data for behavior variable ", netnames[i], ".\n"), sep = "", outf) } } if (sum(atts$types == 'oneMode') > 0) { netnames <- atts$netnames[nets] if (nData > 1) { balmean <- lapply(data, function(x) sapply(x$depvars, function(y) attr(y, "balmean"))) } else { balmean <- atts$"balmean" } if (nData > 1 || sum(atts$types == "oneMode") > 1) { Report(c("The mean structural dissimilarity values subtracted", "in the\n"), outf) Report("balance calculations are\n", outf) } else { Report(c("The mean structural dissimilarity value subtracted", "in the\n"), outf) Report("balance calculations is ", outf) } for (i in seq(along=atts$types)) { if (atts$types[i] == "oneMode") { if (nData > 1) { thisbalmean <- sapply(balmean, function(x)x[[netnames[i]]]) if (sum(atts$types != "behavior") > 1) { Report(c("for network ", netnames[i],":"), sep="", outf) } Report("\n", outf) mystr <- format(paste("Subproject ", 1:nData, " <", atts$names, "> ", sep="")) for (j in seq(along=thisbalmean)) { Report(c(mystr[j], ": ", format(round(thisbalmean[j], 4), nsmall=4, width=14), "\n"), sep="", outf) } } else { if (sum(atts$types != "behavior") > 1) { Report(c("for network ", format(netnames[i], width=12), format(round(balmean[i], 4), nsmall=4, width=14), '.\n'), sep="", outf) } else { Report(c(format(round(balmean[i], 4), nsmall=4, width=14), '.\n'), sep="", outf) } } } } } if (sum(atts$types %in% c("behavior", "continuous")) > 0 || (nData ==1 && length(atts$cCovars) > 0) || length(atts$vCovars) > 0) { netnames <- atts$netnames if (nData > 1) { vCovarSim <- lapply(data, function(x) sapply(x$vCovars, function(y) attr(y, "simMean"))) behSim <- lapply(data, function(x) sapply(x$depvars, function(y) attr(y, "simMean"))) } else { vCovarSim <- atts$"vCovarSim" behSim <- atts$"bSim" } Report(c("\nFor the similarity variable calculated from each actor", "covariate,\nthe mean is subtracted.\nThese means are:\n"), outf) if (nData == 1) { for (i in seq(along=atts$cCovars)) { if (atts$cCovarPoszvar[i]) { Report(c("Similarity", format(atts$cCovars[i], width=24), ':', format(round(atts$cCovarSim[i], 4), width=12, nsmall=4), '\n'), outf) } } } for (i in seq(along=atts$netnames)) { if ((atts$types[i] %in% c("behavior", "continuous")) && atts$bPoszvar[i]) { if (nData > 1) { thisSim <- sapply(behSim, function(x)x[[netnames[i]]]) Report(c("Similarity ", format(atts$netnames[i], width=24), ":\n"), sep="", outf) mystr <- format(paste(" Subproject ", 1:nData, " <", atts$names, "> ", sep="")) for (j in seq(along=thisSim)) { Report(c(mystr[j], format(round(thisSim[j], 4), nsmall=4, width=12), "\n"), sep="", outf) } Report("\n", outf) } else { Report(c("Similarity", format(atts$netnames[i], width=24), ':', format(round(atts$bSim[i], 4), nsmall=4, width=12), '\n'), outf) } } } for (i in seq(along=atts$vCovars)) { covarnames <- atts$vCovars if (atts$vCovarPoszvar[i]) { if (nData > 1) { thisSim <- sapply(vCovarSim, function(x)x[[covarnames[i]]]) Report(c("Similarity ", format(covarnames[i], width=24), ":\n"), sep="", outf) mystr <- format(paste(" Subproject ", 1:nData, " <", atts$names, "> ", sep="")) for (j in seq(along=thisSim)) { Report(c(mystr[j], format(round(thisSim[j], 4), nsmall=4, width=12), "\n"), sep="", outf) } Report("\n", outf) } else { Report(c("Similarity", format(atts$vCovars[i], width=24), ':', format(round(atts$vCovarSim[i], 4), width=12, nsmall=4), '\n'), outf) } } } } if (any(atts$anyHigher) || any(atts$anyDisjoint) || any(atts$anyAtLeastOne)) { Report("\n", outf) highers <- atts[["anyHigher"]] disjoints <- atts[["anyDisjoint"]] atleastones <- atts[["anyAtLeastOne"]] if (any(highers)) { higherSplit <- strsplit(names(highers)[highers], ",") lapply(higherSplit, function(x) { Report(c("Network ", x[1], " is higher than network ", x[2], ".\n"), sep="", outf) Report("This will be respected in the simulations.\n\n", outf) }) } if (any(disjoints)) { disjointSplit <- strsplit(names(disjoints)[disjoints],',') lapply(disjointSplit, function(x) { Report(c("Network ", x[1], " is disjoint from network ", x[2], ".\n"), sep="", outf) Report("This will be respected in the simulations.\n\n", outf) }) } if (any(atleastones)) { atLeastOneSplit <- strsplit(names(atleastones)[atleastones],',') lapply(atLeastOneSplit, function(x) { Report(c("A link in at least one of networks ", x[1], " and", x[2], " always exists.\n"), sep="", outf) Report("This will be respected in the simulations.\n\n", outf) }) } } myeff <- getEffects(data) printInitialDescription(data, myeff, modelName=modelname) Report(closefiles=TRUE) }
segsample <- function(mysegs,ratcol,startcol="StartProbe",endcol="EndProbe", blocksize=0,times=0){ if(blocksize==0&times==0)stop("One of blocksize or times must be set") if(blocksize!=0&times!=0)stop("Only one of blocksize or times can be set") segtable<-mysegs[,c(startcol,endcol),drop=F] if(blocksize!=0)segtable<- segtable[rep(1:nrow(segtable), times=(segtable[,endcol]-segtable[,startcol]+1)%/%blocksize),] if(times!=0)segtable<-segtable[rep(1:nrow(segtable),each=times),] return(cbind(segtable, apply(segtable, 1, smedian.sample, v = ratcol))) }
NULL NULL methods::setGeneric("add_contiguity_constraints", signature = methods::signature("x", "zones", "data"), function(x, zones = diag(number_of_zones(x)), data = NULL) standardGeneric("add_contiguity_constraints")) methods::setMethod("add_contiguity_constraints", methods::signature("ConservationProblem", "ANY", "ANY"), function(x, zones, data) { assertthat::assert_that(inherits(x, "ConservationProblem"), inherits(zones, c("matrix", "Matrix")), inherits(data, c("NULL", "Matrix"))) if (!is.null(data)) { data <- methods::as(data, "dgCMatrix") assertthat::assert_that(all(data@x %in% c(0, 1)), ncol(data) == nrow(data), number_of_total_units(x) == ncol(data), all(is.finite(data@x)), Matrix::isSymmetric(data)) d <- list(matrix = data) } else { assertthat::assert_that(inherits(x$data$cost, c("Spatial", "Raster", "sf")), msg = paste("argument to data must be supplied because planning unit", "data are not in a spatially referenced format")) d <- list() } zones <- as.matrix(zones) assertthat::assert_that( isSymmetric(zones), ncol(zones) == number_of_zones(x), is.numeric(zones), all(zones %in% c(0, 1)), all(colMeans(zones) <= diag(zones)), all(rowMeans(zones) <= diag(zones))) colnames(zones) <- x$zone_names() rownames(zones) <- colnames(zones) x$add_constraint(pproto( "ContiguityConstraint", Constraint, data = d, name = "Contiguity constraints", parameters = parameters( binary_parameter("apply constraints?", 1L), binary_matrix_parameter("zones", zones, symmetric = TRUE)), calculate = function(self, x) { assertthat::assert_that(inherits(x, "ConservationProblem")) if (is.Waiver(self$get_data("matrix"))) { data <- adjacency_matrix(x$data$cost) data <- methods::as(data, "dgCMatrix") self$set_data("matrix", data) } invisible(TRUE) }, apply = function(self, x, y) { assertthat::assert_that(inherits(x, "OptimizationProblem"), inherits(y, "ConservationProblem")) if (as.logical(self$parameters$get("apply constraints?")[[1]])) { ind <- y$planning_unit_indices() d <- self$get_data("matrix")[ind, ind, drop = FALSE] z <- self$parameters$get("zones") z_cl <- igraph::graph_from_adjacency_matrix(z, diag = FALSE, mode = "undirected", weighted = NULL) z_cl <- igraph::clusters(z_cl)$membership z_cl <- z_cl * diag(z) d <- Matrix::forceSymmetric(d, uplo = "L") class(d) <- "dgCMatrix" if (max(z_cl) > 0) rcpp_apply_contiguity_constraints(x$ptr, d, z_cl) } invisible(TRUE) })) }) methods::setMethod("add_contiguity_constraints", methods::signature("ConservationProblem", "ANY", "data.frame"), function(x, zones, data) { assertthat::assert_that(inherits(data, "data.frame"), !assertthat::has_name(data, "zone1"), !assertthat::has_name(data, "zone2")) add_contiguity_constraints(x, zones, marxan_boundary_data_to_matrix(x, data)) }) methods::setMethod("add_contiguity_constraints", methods::signature("ConservationProblem", "ANY", "matrix"), function(x, zones, data) { add_contiguity_constraints(x, zones, methods::as(data, "dgCMatrix")) })
CoDa_FPCA <- function(data, normalization, h_scale = 1, m = 5001, band_choice = c("Silverman", "DPI"), kernel = c("gaussian", "epanechnikov"), varprop = 0.99, fmethod) { if(getmode(trunc(diff(apply(data, 1, sum))) == 0)) { CoDa_mat = t(data) } else { band_choice = match.arg(band_choice) kernel = match.arg(kernel) N = nrow(data) if (!exists('h_scale')) h_scale = 1 if(band_choice == "Silverman") { if(kernel == "gaussian") { h.hat_5m = sapply(1:N, function(t) 1.06*sd(data[t,])*(length(data[t,])^(-(1/5)))) } if(kernel == "epanechnikov") { h.hat_5m = sapply(1:N, function(t) 2.34*sd(data[t,])*(length(data[t,])^(-(1/5)))) } h.hat_5m = h_scale * h.hat_5m } if(band_choice == "DPI") { if(kernel == "gaussian") { h.hat_5m = sapply(1:N, function(t) dpik(data[t,], kernel = "normal")) } if(kernel == "epanechnikov") { h.hat_5m = sapply(1:N, function(t) dpik(data[t,], kernel = "epanech")) } h.hat_5m = h_scale * h.hat_5m } n = N u = seq(from = min(data), to = max(data), length = m) du = u[2] - u[1] if(kernel == "gaussian") { Y = sapply(1:N, function(t) density(data[t,], bw = h.hat_5m[t], kernel = 'gaussian', from = min(data), to = max(data), n = m)$y) } if(kernel == "epanechnikov") { Y = sapply(1:N, function(t) density(data[t,], bw = h.hat_5m[t], kernel = 'epanechnikov', from = min(data), to = max(data), n = m)$y) } for(t in 1:N) { Y[,t] = Y[,t]/(sum(Y[,t])*du) } return_density_train_trans <- Y return_density_train_transformation = return_density_train_trans * (10^6) n_1 = ncol(return_density_train_transformation) epsilon = sapply(1:n_1, function(X) max(return_density_train_transformation[,X] - round(return_density_train_transformation[,X], 2))) CoDa_mat = matrix(NA, m, n_1) for(ik in 1:n_1) { index = which(round(return_density_train_transformation[,ik], 2) == 0) CoDa_mat[,ik] = replace(return_density_train_transformation[,ik], index, epsilon[ik]) CoDa_mat[-index,ik] = return_density_train_transformation[-index,ik] * (1 - (length(index) * epsilon[ik])/(10^6))/(10^6) } } c = colSums(CoDa_mat)[1] dum = CoDa_recon(dat = t(CoDa_mat), normalize = normalization, fore_method = fmethod, fh = 1, varprop = varprop, constant = c) return(dum$d_x_t_star_fore) }
test_that("impute_LS_adaptive() works (basic test, check for anyNA and warning)", { set.seed(1234) ds_mis <- mvtnorm::rmvnorm(20, rep(0, 8), diag(1, 8)) ds_mis <- delete_MCAR(ds_mis, 0.2, 1:4) ds_imp <- expect_warning( impute_LS_adaptive(ds_mis, r_max_min = 43, warn_r_max = TRUE), "Not enough data for r_max_min = 43. r_max_min reduced to 7!", fixed = TRUE, all = TRUE ) expect_false(anyNA(ds_imp)) }) test_that("impute_LS_adaptive() works for small matrices", { set.seed(1234) ds_mis <- mvtnorm::rmvnorm(20, rep(0, 5), diag(1, 5)) ds_mis <- delete_MCAR(ds_mis, 0.2, 1:4) ds_imp <- expect_warning(impute_LS_adaptive(ds_mis, warn_r_max = TRUE), "Not enough data for r_max_min = 100. r_max_min reduced to 0!", fixed = TRUE, all = TRUE ) expect_false(anyNA(ds_imp)) expect_equal(ds_imp, impute_LS_array(ds_mis)) }) test_that("impute_LS_adaptive() works for data frames", { set.seed(123) ds_mis <- as.data.frame(mvtnorm::rmvnorm(30, rep(0, 9), diag(2, 9))) ds_mis <- delete_MCAR(ds_mis, 0.1) ds_imp <- expect_warning(impute_LS_adaptive(ds_mis), "Not enough data for r_max_min = 100. r_max_min reduced to 10!", fixed = TRUE, all = TRUE ) expect_false(anyNA(ds_imp)) }) test_that("impute_LS_adaptive() works with completely missing row and verbose", { set.seed(1234) ds_mis <- mvtnorm::rmvnorm(20, rep(0, 7), diag(1, 7)) ds_mis[5, ] <- NA ds_imp_silent <- expect_silent( impute_LS_adaptive(ds_mis, warn_r_max = FALSE, verbose_gene = FALSE, verbose_array = FALSE ) ) expect_false(anyNA(ds_imp_silent)) expect_equal(ds_imp_silent[5, ], suppressWarnings(colMeans(impute_LS_gene(ds_mis)))) ds_imp_verb1 <- expect_message( impute_LS_adaptive(ds_mis, warn_r_max = FALSE, verbose_gene = TRUE, verbose_array = FALSE ), "No observed value in row(s) 5. These rows were imputed with column means.", fixed = TRUE, all = TRUE ) expect_equal(ds_imp_verb1, ds_imp_silent) ds_imp_verb2 <- expect_message( impute_LS_adaptive(ds_mis, warn_r_max = FALSE, verbose_gene = FALSE, verbose_array = TRUE ), "The missing values of following rows were imputed with (parts of) mu: 5", fixed = TRUE, all = TRUE ) expect_equal(ds_imp_verb2, ds_imp_silent) verify_output( test_path("test-impute_LS_adaptive-verbosity.txt"), ds_imp_verb3 <- impute_LS_adaptive(ds_mis, warn_r_max = FALSE, verbose_gene = TRUE, verbose_array = TRUE ) ) expect_equal(ds_imp_verb3, ds_imp_silent) ds_imp_verb4 <- expect_message( impute_LS_adaptive(ds_mis, warn_r_max = FALSE, verbose_gene_p = TRUE, verbose_array_p = FALSE ), "No observed value in row(s) 5. These rows were imputed with column means.", fixed = TRUE, all = TRUE ) expect_equal(ds_imp_verb4, ds_imp_silent) ds_imp_verb5 <- expect_message( impute_LS_adaptive(ds_mis, warn_r_max = FALSE, verbose_gene_p = FALSE, verbose_array_p = TRUE ), "The missing values of following rows were imputed with (parts of) mu: 5", fixed = TRUE, all = TRUE ) expect_equal(ds_imp_verb5, ds_imp_silent) }) test_that("impute_LS_adaptive() works with dataset triangle miss", { ds_triangle_mis <- readRDS(test_path(file.path("datasets", "ds_triangle_mis.rds"))) ds_triangle_LS_array_Bo <- readRDS(test_path(file.path("datasets", "ds_triangle_LS_array_Bo.rds"))) ds_triangle_LS_gene_Bo <- readRDS(test_path(file.path("datasets", "ds_triangle_LS_gene_Bo.rds"))) set.seed(1234) ds_imp <- expect_warning(round(impute_LS_adaptive(ds_triangle_mis, min_common_obs = 5), 3), "Not enough data for r_max_min = 100. r_max_min reduced to 24!", fixed = TRUE, all = TRUE ) expect_true(all(ds_imp <= pmax(ds_triangle_LS_array_Bo, ds_triangle_LS_gene_Bo))) expect_true(all(ds_imp >= pmin(ds_triangle_LS_array_Bo, ds_triangle_LS_gene_Bo))) }) test_that("impute_LS_adaptive() works with dataset MCAR, 100x7", { ds_100x7_LS_array_Bo <- readRDS(test_path(file.path("datasets", "ds_100x7_LS_array_Bo.rds"))) ds_100x7_LS_gene_Bo <- readRDS(test_path(file.path("datasets", "ds_100x7_LS_gene_Bo.rds"))) ds_100x7_mis_MCAR <- readRDS(test_path(file.path("datasets", "ds_100x7_mis_MCAR.rds"))) ds_mis <- ds_100x7_LS_gene_Bo ds_mis[is.na(ds_100x7_mis_MCAR)] <- NA set.seed(1234) ds_imp <- round(impute_LS_adaptive(ds_mis, warn_r_max = FALSE), 3) tol <- 0.002 expect_true(all(ds_imp <= pmax(ds_100x7_LS_array_Bo, ds_100x7_LS_gene_Bo) + tol)) expect_true(all(ds_imp >= pmin(ds_100x7_LS_array_Bo, ds_100x7_LS_gene_Bo) - tol)) })
is.numeric_data.frame <- function(x){ if (is.data.frame(x) && all(sapply(x,base::is.numeric))) return (T) return (F) } is.numeric <- function(x){ if (base::is.numeric(x)) return (T) if (is.data.frame(x) && all(sapply(x,base::is.numeric))) return (T) return (F) } resetPar <- function() { dev.new() op <- par(no.readonly = TRUE) dev.off() op } is.sorted <- function(x) { return(!is.unsorted(x)) } tryCatchCapture <- function(expr, warn = T, err = T) { val <- NULL myWarnings <- NULL wHandler <- function(w) { myWarnings <<- c(myWarnings, w$message) invokeRestart("muffleWarning") } myError <- NULL eHandler <- function(e) { myError <<- e$message NULL } if(warn && err){ val <- tryCatch(withCallingHandlers(expr, warning = wHandler), error = eHandler) return(list(value = val, warnings = myWarnings, error=myError)) } if(warn){ val <- tryCatch(withCallingHandlers(expr, warning = wHandler)) return(list(value = val, warnings = myWarnings)) } if(err){ val <- tryCatch(expr, error = eHandler) return(list(value = val, error=myError)) } val <- expr return(list(value = val)) }
library(magrittr) sa <- rtweet::search_tweets( "url:shinyapps.io OR (shiny app OR application OR rstudio) OR shinyapps OR shinyapp", n = 10000, include_rts = FALSE) l <- tfse::readlines("README.Rmd") links <- unique(sub("/+$", "", gsub(".*\\(|\\)$", "", grep("^\\+ \\[", l, value = TRUE)))) links <- grep("https://[^/]+\\.shinyapps\\.io/[^/]+$", links, value = TRUE) links <- c(sa$urls_expanded_url, sa$urls_url, sa$media_expanded_url, sa$ext_media_expanded_url) %>% unlist() %>% sub("/?(\\ tfse::regmatches_("^https?://[^/]+.shinyapps\\.io/[^/]+/?", drop = TRUE) %>% sub("^http:", "https:", .) %>% sub("/+$", "", .) %>% unique() %>% c(links) %>% unique() %>% sort() -> links user <- regexpr("(?<=//)[^/]+(?=\\.shinyapps)", links, perl = TRUE) user <- regmatches(links, user) app <- regexpr("(?<=shinyapps.io/)[^/]+", links, perl = TRUE) app <- regmatches(links, app) d <- data.table::data.table( user = user, app = app, url = links ) d[, md_url := paste0("+ [**", app, "** by *", user, "*](", url, ")")] get_title <- function(url) { tryCatch({ h <- tryCatch(readthat::read(url), error = function(e) NULL) if (is.null(h) || nchar(h[1]) == 0) { return("") } Sys.sleep(2) h <- xml2::read_html(url) title <- rvest::html_text(rvest::html_nodes(h, "h1,h2,h3,h4,title,.title"), trim = TRUE) if (length(title) == 0) { return("") } title <- title[nchar(title) > 0][1] if (grepl("Please.{0,4}Wait", title, ignore.case = TRUE)) { return("") } title }, error = function(e) "") } o <- vector("list", nrow(d)) for (i in seq_along(o)) { if (length(o[[i]]) > 0) { cat(i, "\n") next } o[[i]] <- get_title(d[, url][i]) cat(i, "\n") } d[, title := unlist(o)] dd <- d[!is.na(title), ] dd[, md_url := paste0(md_url, ": ", title)] by_app <- data.table::copy(dd[order(!grepl("^[[:alpha:]]", app), tolower(app)), ]) by_app[, letter := toupper(substr(by_app[, sub("^[[:punct:]]", "", app)], 1, 1))] by_app[, md_url := ifelse(duplicated(letter), md_url, paste0("\n by_app[, md_url := tfse::trim_ws(gsub("\n+", " ", md_url))] by_app[, md_url := ifelse(grepl("^ by_app[, md_url := ifelse(grepl("^ by_app2 <- data.table::copy(by_app) by_app[, md_url := sub("(?<= toc <- unique(by_app[, letter]) toc <- paste0(" paste0("+ [", toc, "]( readme_prem <- c( '---', 'title: "ShinyApps"', 'output: github_document', '---', '', 'A collection of links to [Shiny apps](https://shinyapps.io)', 'that have been shared on Twitter.', '', toc) writeLines(c(readme_prem, by_app_no_title[, md_url]), "README-notitle.RMD") writeLines(c(readme_prem, by_app[, md_url]), "README.Rmd") rmarkdown::render("README.Rmd") browseURL("README.html") unlink("README.html") git2r::add(path = c("README.Rmd", "README.md")) git2r::commit(message = "Update") git2r::push()
responseFun2 <- function(eta) { q <- length(eta) eta.help <- matrix(rep(c(0, eta), each = q + 1), ncol = q + 1) eta.help[upper.tri(eta.help)] <- 0 pi <- cumprod(c(1, exp(eta[-q])))/sum(apply(exp(eta.help), 1, prod)) pi } sim_fun <- function(model, m, I, k, n, gamma, seed = NULL){ if(!is.null(seed)){ set.seed(seed) } RSM <- GPCM <- FALSE if(model %in% c("GRSM","RSM")){ RSM <- TRUE } if(model %in% c("GRSM","GPCM","2PL")){ GPCM <- TRUE } q <- k-1 X <- c() for(i in 1:m){ if(i%%2 == 1){ X <- cbind(X, rnorm(n)) }else{ X <- cbind(X, rbinom(n,1,0.5)) } } X <- scale(X) if(!RSM){ delta <- deltaX <- matrix(round(rnorm(q*I,sd=0.5),2),nrow=I) alpha <- NA }else{ delta <- round(rnorm(I,sd=0.5),2) alpha <- c(0,round(rnorm(q-1,sd=0.5),2)) deltaX <- t(t(matrix(rep(delta,q),nrow=I))+alpha) } if(!GPCM){ sigma <- rep(1,I) }else{ sigma <- seq(0.7,1,length=I) } theta <- rnorm(n) lin_pred<- c() probs <- c() y <- c() for(i in 1:n){ for(ii in 1:I){ eta <- sigma[ii] * (theta[i] - deltaX[ii,] -sum(gamma[ii,]*X[i,])) lin_pred <- rbind(lin_pred, eta) pi <- responseFun2(eta) if(q==1){ pi <- exp(eta)/(1+exp(eta)) } probs <- rbind(probs,pi) pi <- c(pi,1-sum(pi)) y.sample <- which(rmultinom(1,1,pi)==1) y <- c(y,y.sample) } } Y <- matrix(y,byrow=TRUE,nrow=n) data.sim <- as.data.frame(cbind(Y,X)) return(list(data=data.sim, theta = theta, alpha = alpha, sigma = sigma, delta = delta, gamma = gamma, lin_pred = lin_pred, probs = probs)) } sim_fun2 <- function(model, m, I, k, n, gamma, seed = NULL){ if(!is.null(seed)){ set.seed(seed) } RSM <- GPCM <- FALSE if(model %in% c("GRSM","RSM")){ RSM <- TRUE } if(model %in% c("GRSM","GPCM","2PL")){ GPCM <- TRUE } q <- k-1 X <- c() for(i in 1:m){ X <- cbind(X, rbinom(n,1,0.5)) } if(!RSM){ delta <- deltaX <- matrix(round(rnorm(q*I,sd=0.3),2),nrow=I) alpha <- NA }else{ delta <- round(rnorm(I,sd=0.3),2) alpha <- round(rnorm(q,sd=0.3),2) deltaX <- t(t(matrix(rep(delta,q),nrow=I))+alpha) } if(!GPCM){ sigma <- rep(1,I) }else{ sigma <- seq(0.8,1.2,length=I) } theta <- rnorm(n) lin_pred<- c() probs <- c() y <- c() for(i in 1:n){ for(ii in 1:I){ eta <- sigma[ii] * (theta[i] - deltaX[ii,] -sum(gamma[ii,]*X[i,])) lin_pred <- rbind(lin_pred, eta) pi <- responseFun2(eta) if(q==1){ pi <- exp(eta)/(1+exp(eta)) } probs <- rbind(probs,pi) pi <- c(pi,1-sum(pi)) y.sample <- which(rmultinom(1,1,pi)==1) y <- c(y,y.sample) } } Y <- matrix(y,byrow=TRUE,nrow=n) data.sim <- as.data.frame(cbind(Y,X)) return(list(data=data.sim, theta = theta, alpha = alpha, sigma = sigma, delta = delta, gamma = gamma, lin_pred = lin_pred, probs = probs)) } sim_fun3 <- function(model, m, I, k, n, gamma, seed = NULL){ if(!is.null(seed)){ set.seed(seed) } RSM <- GPCM <- FALSE if(model %in% c("GRSM","RSM")){ RSM <- TRUE } if(model %in% c("GRSM","GPCM","2PL")){ GPCM <- TRUE } q <- k-1 for(i in 1:m){ if(i%%3 == 1){ X <- data.frame(V1= rnorm(n)) } if(i%%3 == 2){ X$V2 <- factor(rbinom(n,1,0.5)) } if(i%%3 == 0){ X$V3 <- factor(sample(1:4,n,replace=TRUE)) } } X2 <- model.matrix(~V1+V2+V3,data=X)[,-1] X2 <- scale(X2) if(!RSM){ delta <- deltaX <- matrix(round(rnorm(q*I,sd=0.5,mean=-0.5),2),nrow=I) alpha <- NA }else{ delta <- round(rnorm(I,sd=0.5),2) alpha <- c(0,round(rnorm(q-1,sd=0.5),2)) deltaX <- t(t(matrix(rep(delta,q),nrow=I))+alpha) } if(!GPCM){ sigma <- rep(1,I) }else{ sigma <- seq(0.7,1,length=I) } theta <- rnorm(n) lin_pred<- c() probs <- c() y <- c() for(i in 1:n){ for(ii in 1:I){ eta <- sigma[ii] * (theta[i] - deltaX[ii,] -sum(gamma[ii,]*X2[i,])) lin_pred <- rbind(lin_pred, eta) pi <- responseFun2(eta) if(q==1){ pi <- exp(eta)/(1+exp(eta)) } probs <- rbind(probs,pi) pi <- c(pi,1-sum(pi)) y.sample <- which(rmultinom(1,1,pi)==1) y <- c(y,y.sample) } } Y <- matrix(y,byrow=TRUE,nrow=n) data.sim <- as.data.frame(cbind(Y,X)) names(data.sim)[1:I] <- paste0("Item",1:I) return(list(data=data.sim, theta = theta, alpha = alpha, sigma = sigma, delta = delta, gamma = gamma, lin_pred = lin_pred, probs = probs)) } sim_cor <- function(model, m, I, k, n, gamma, sigma, seed = NULL){ if(!is.null(seed)){ set.seed(seed) } RSM <- GPCM <- FALSE if(model %in% c("GRSM","RSM")){ RSM <- TRUE } if(model %in% c("GRSM","GPCM","2PL")){ GPCM <- TRUE } q <- k-1 mat1 <- rmvnorm(n, sigma = sigma) set.seed(1860) X <- c() for(i in 1:m){ if(i%%2 == 1){ X <- cbind(X, mat1[,i]) }else{ X <- cbind(X, mat1[,i]>0) } } X <- scale(X) if(!RSM){ delta <- deltaX <- matrix(round(rnorm(q*I,sd=0.5),2),nrow=I) alpha <- NA }else{ delta <- round(rnorm(I,sd=0.5),2) alpha <- c(0,round(rnorm(q-1,sd=0.5),2)) deltaX <- t(t(matrix(rep(delta,q),nrow=I))+alpha) } if(!GPCM){ sigma <- rep(1,I) }else{ sigma <- seq(0.7,1,length=I) } theta <- rnorm(n) lin_pred<- c() probs <- c() y <- c() for(i in 1:n){ for(ii in 1:I){ eta <- sigma[ii] * (theta[i] - deltaX[ii,] -sum(gamma[ii,]*X[i,])) lin_pred <- rbind(lin_pred, eta) pi <- responseFun2(eta) if(q==1){ pi <- exp(eta)/(1+exp(eta)) } probs <- rbind(probs,pi) pi <- c(pi,1-sum(pi)) y.sample <- which(rmultinom(1,1,pi)==1) y <- c(y,y.sample) } } Y <- matrix(y,byrow=TRUE,nrow=n) data.sim <- as.data.frame(cbind(Y,X)) return(list(data=data.sim, theta = theta, alpha = alpha, sigma = sigma, delta = delta, gamma = gamma, lin_pred = lin_pred, probs = probs)) }
context("Natural abundance correction") library(accucor) read_expected <- function(file, sheet) { expected <- readxl::read_excel(path = file, sheet = sheet) expected <- dplyr::mutate_at( expected, dplyr::vars(dplyr::ends_with("_Label")), as.integer ) } test_that("Carbon correction (Excel, simple format)", { resolution <- 100000 input_file <- system.file( "extdata", "C_Sample_Input_Simple.xlsx", package = "accucor" ) corrected <- natural_abundance_correction( path = input_file, output_base = FALSE, resolution = resolution ) expected_output <- list( "Original" = read_expected( system.file( "extdata", "C_Sample_Input_Simple.xlsx", package = "accucor" ), sheet = 1 ), "Corrected" = read_expected( system.file( "extdata", "C_Sample_Input_Simple_corrected.xlsx", package = "accucor" ), sheet = "Corrected" ), "Normalized" = read_expected( system.file( "extdata", "C_Sample_Input_Simple_corrected.xlsx", package = "accucor" ), sheet = "Normalized" ), "PoolAfterDF" = read_expected( system.file( "extdata", "C_Sample_Input_Simple_corrected.xlsx", package = "accucor" ), sheet = "PoolAfterDF" ) ) expect_equal(corrected, expected_output) }) test_that("PoolBeforeDF parameter", { resolution <- 100000 input_file <- system.file( "extdata", "C_Sample_Input_Simple.xlsx", package = "accucor" ) corrected <- natural_abundance_correction( path = input_file, output_base = FALSE, report_pool_size_before_df = TRUE, resolution = resolution ) expected_output <- list( "Original" = read_expected( system.file( "extdata", "C_Sample_Input_Simple.xlsx", package = "accucor" ), sheet = 1 ), "Corrected" = read_expected( system.file( "extdata", "C_Sample_Input_Simple_corrected.xlsx", package = "accucor" ), sheet = "Corrected" ), "Normalized" = read_expected( system.file( "extdata", "C_Sample_Input_Simple_corrected.xlsx", package = "accucor" ), sheet = "Normalized" ), "PoolAfterDF" = read_expected( system.file( "extdata", "C_Sample_Input_Simple_corrected.xlsx", package = "accucor" ), sheet = "PoolAfterDF" ), "PoolBeforeDF" = read_expected( system.file( "extdata", "C_Sample_Input_Simple_corrected.xlsx", package = "accucor" ), sheet = "PoolBeforeDF" ) ) expect_equal(corrected, expected_output) }) test_that("Carbon correction (csv, simple format)", { resolution <- 100000 resolution_defined_at <- 200 input_file <- system.file( "extdata", "C_Sample_Input_Simple.csv", package = "accucor" ) corrected <- natural_abundance_correction( path = input_file, output_base = FALSE, resolution = resolution, resolution_defined_at = resolution_defined_at ) expected_output <- list( "Original" = read_expected( system.file( "extdata", "C_Sample_Input_Simple.xlsx", package = "accucor" ), sheet = 1 ), "Corrected" = read_expected( system.file( "extdata", "C_Sample_Input_Simple_corrected.xlsx", package = "accucor" ), sheet = "Corrected" ), "Normalized" = read_expected( system.file( "extdata", "C_Sample_Input_Simple_corrected.xlsx", package = "accucor" ), sheet = "Normalized" ), "PoolAfterDF" = read_expected( system.file( "extdata", "C_Sample_Input_Simple_corrected.xlsx", package = "accucor" ), sheet = "PoolAfterDF" ) ) expect_equal(corrected, expected_output) }) test_that("Carbon correction (Excel, Classic MAVEN copy/paste)", { resolution <- 100000 resolution_defined_at <- 200 input_file <- system.file("extdata", "C_Sample_Input.xlsx", package = "accucor" ) knowns_file <- system.file("extdata", "KNOWNS.csv", package = "accucor") corrected <- natural_abundance_correction( path = input_file, compound_database = knowns_file, output_base = FALSE, resolution = resolution, resolution_defined_at = resolution_defined_at ) expected_output <- list( "Original" = read_expected( system.file( "extdata", "C_Sample_Input_Simple_corrected.xlsx", package = "accucor" ), sheet = 1 ), "Corrected" = read_expected( system.file( "extdata", "C_Sample_Input_Simple_corrected.xlsx", package = "accucor" ), sheet = "Corrected" ), "Normalized" = read_expected( system.file( "extdata", "C_Sample_Input_Simple_corrected.xlsx", package = "accucor" ), sheet = "Normalized" ), "PoolAfterDF" = read_expected( system.file( "extdata", "C_Sample_Input_Simple_corrected.xlsx", package = "accucor" ), sheet = "PoolAfterDF" ) ) expect_equal(corrected, expected_output) }) test_that("Deuterium correction (Excel, simple format)", { resolution <- 100000 resolution_defined_at <- 200 input_file <- system.file("extdata", "D_Sample_Input_Simple.xlsx", package = "accucor" ) corrected <- natural_abundance_correction( path = input_file, output_base = FALSE, resolution = resolution, resolution_defined_at = resolution_defined_at ) expected_output <- list( "Original" = read_expected( system.file( "extdata", "D_Sample_Input_Simple.xlsx", package = "accucor" ), sheet = 1 ), "Corrected" = read_expected( system.file( "extdata", "D_Sample_Input_Simple_corrected.xlsx", package = "accucor" ), sheet = "Corrected" ), "Normalized" = read_expected( system.file( "extdata", "D_Sample_Input_Simple_corrected.xlsx", package = "accucor" ), sheet = "Normalized" ), "PoolAfterDF" = read_expected( system.file( "extdata", "D_Sample_Input_Simple_corrected.xlsx", package = "accucor" ), sheet = "PoolAfterDF" ) ) expect_equal(corrected, expected_output) }) test_that("Deuterium correction (Excel, Classic Maven Cut/Paste)", { resolution <- 100000 resolution_defined_at <- 200 input_file <- system.file("extdata", "D_Sample_Input.xlsx", package = "accucor" ) knowns_file <- system.file("extdata", "KNOWNS.csv", package = "accucor") corrected <- natural_abundance_correction( path = input_file, compound_database = knowns_file, output_base = FALSE, resolution = resolution, resolution_defined_at = resolution_defined_at ) expected_output <- list( "Original" = read_expected( system.file( "extdata", "D_Sample_Input_Simple.xlsx", package = "accucor" ), sheet = 1 ), "Corrected" = read_expected( system.file( "extdata", "D_Sample_Input_Simple_corrected.xlsx", package = "accucor" ), sheet = "Corrected" ), "Normalized" = read_expected( system.file( "extdata", "D_Sample_Input_Simple_corrected.xlsx", package = "accucor" ), sheet = "Normalized" ), "PoolAfterDF" = read_expected( system.file( "extdata", "D_Sample_Input_Simple_corrected.xlsx", package = "accucor" ), sheet = "PoolAfterDF" ) ) expect_equal(corrected, expected_output) }) test_that("Nitrogen correction (Excel, simple format)", { resolution <- 140000 resolution_defined_at <- 200 input_file <- system.file( "extdata", "N_Sample_Input_Simple.xlsx", package = "accucor" ) corrected <- natural_abundance_correction( path = input_file, output_base = FALSE, resolution = resolution, resolution_defined_at = resolution_defined_at ) expected_output <- list( "Original" = read_expected( system.file( "extdata", "N_Sample_Input_Simple.xlsx", package = "accucor" ), sheet = 1 ), "Corrected" = read_expected( system.file( "extdata", "N_Sample_Input_Simple_corrected.xlsx", package = "accucor" ), sheet = "Corrected" ), "Normalized" = read_expected( system.file( "extdata", "N_Sample_Input_Simple_corrected.xlsx", package = "accucor" ), sheet = "Normalized" ), "PoolAfterDF" = read_expected( system.file( "extdata", "N_Sample_Input_Simple_corrected.xlsx", package = "accucor" ), sheet = "PoolAfterDF" ) ) expect_equal(corrected, expected_output) }) test_that("Nitrogen correction (Excel, Classic Maven Cut/Paste)", { resolution <- 140000 resolution_defined_at <- 200 input_file <- system.file( "extdata", "N_Sample_Input.xlsx", package = "accucor" ) knowns_file <- system.file("extdata", "KNOWNS.csv", package = "accucor") corrected <- natural_abundance_correction( path = input_file, compound_database = knowns_file, output_base = FALSE, resolution = resolution, resolution_defined_at = resolution_defined_at ) expected_output <- list( "Original" = read_expected( system.file( "extdata", "N_Sample_Input_Simple.xlsx", package = "accucor" ), sheet = 1 ), "Corrected" = read_expected( system.file( "extdata", "N_Sample_Input_Simple_corrected.xlsx", package = "accucor" ), sheet = "Corrected" ), "Normalized" = read_expected( system.file( "extdata", "N_Sample_Input_Simple_corrected.xlsx", package = "accucor" ), sheet = "Normalized" ), "PoolAfterDF" = read_expected( system.file( "extdata", "N_Sample_Input_Simple_corrected.xlsx", package = "accucor" ), sheet = "PoolAfterDF" ) ) expect_equal(corrected, expected_output) }) test_that("Carbon correction (csv, El-MAVEN export (with set names))", { resolution <- 140000 resolution_defined_at <- 200 input_file <- system.file( "extdata", "elmaven_export.csv", package = "accucor" ) corrected <- expect_warning(natural_abundance_correction( path = input_file, output_base = FALSE, resolution = resolution, resolution_defined_at = resolution_defined_at )) expected_output <- list( "Original" = read_expected( system.file( "extdata", "elmaven_export_corrected.xlsx", package = "accucor" ), sheet = 1 ), "Corrected" = read_expected( system.file( "extdata", "elmaven_export_corrected.xlsx", package = "accucor" ), sheet = "Corrected" ), "Normalized" = read_expected( system.file( "extdata", "elmaven_export_corrected.xlsx", package = "accucor" ), sheet = "Normalized" ), "PoolAfterDF" = read_expected( system.file( "extdata", "elmaven_export_corrected.xlsx", package = "accucor" ), sheet = "PoolAfterDF" ) ) expect_equivalent(corrected, expected_output) }) test_that("Carbon correction (Excel, El-MAVEN export (with set names))", { resolution <- 140000 resolution_defined_at <- 200 input_file <- system.file( "extdata", "elmaven_export.xlsx", package = "accucor" ) corrected <- natural_abundance_correction( path = input_file, output_base = FALSE, resolution = resolution, resolution_defined_at = resolution_defined_at ) expected_output <- list( "Original" = read_expected( system.file( "extdata", "elmaven_export_corrected.xlsx", package = "accucor" ), sheet = 1 ), "Corrected" = read_expected( system.file( "extdata", "elmaven_export_corrected.xlsx", package = "accucor" ), sheet = "Corrected" ), "Normalized" = read_expected( system.file( "extdata", "elmaven_export_corrected.xlsx", package = "accucor" ), sheet = "Normalized" ), "PoolAfterDF" = read_expected( system.file( "extdata", "elmaven_export_corrected.xlsx", package = "accucor" ), sheet = "PoolAfterDF" ) ) expect_equal(corrected, expected_output) }) test_that("Carbon correction (csv, El-MAVEN export (w/o names))", { resolution <- 140000 input_file <- system.file( "extdata", "elmaven_d2_export.csv", package = "accucor" ) corrected <- natural_abundance_correction( path = input_file, resolution = resolution, output_base = FALSE ) expected_output <- list( "Original" = read_expected( system.file( "extdata", "elmaven_d2_export_corrected.xlsx", package = "accucor" ), sheet = 1 ), "Corrected" = read_expected( system.file( "extdata", "elmaven_d2_export_corrected.xlsx", package = "accucor" ), sheet = "Corrected" ), "Normalized" = read_expected( system.file( "extdata", "elmaven_d2_export_corrected.xlsx", package = "accucor" ), sheet = "Normalized" ), "PoolAfterDF" = read_expected( system.file( "extdata", "elmaven_d2_export_corrected.xlsx", package = "accucor" ), sheet = "PoolAfterDF" ) ) expect_equal(corrected, expected_output) }) test_that("Carbon correction (csv, El-MAVEN, multiple groups per compound)", { resolution <- 140000 input_file <- system.file( "extdata", "alanine_three_peak_groups.csv", package = "accucor" ) corrected <- natural_abundance_correction( path = input_file, resolution = resolution, output_base = FALSE ) expected_output <- list( "Original" = read_expected( system.file( "extdata", "alanine_three_peak_groups_corrected.xlsx", package = "accucor" ), sheet = 1 ), "Corrected" = read_expected( system.file( "extdata", "alanine_three_peak_groups_corrected.xlsx", package = "accucor" ), sheet = "Corrected" ), "Normalized" = read_expected( system.file( "extdata", "alanine_three_peak_groups_corrected.xlsx", package = "accucor" ), sheet = "Normalized" ), "PoolAfterDF" = read_expected( system.file( "extdata", "alanine_three_peak_groups_corrected.xlsx", package = "accucor" ), sheet = "PoolAfterDF" ) ) expect_equal(corrected, expected_output) }) test_that("Carbon correction (dataframe)", { resolution <- 100000 input_data <- as.data.frame( readxl::read_excel( path = system.file( "extdata", "C_Sample_Input_Simple.xlsx", package = "accucor" ), sheet = 1 ) ) corrected <- natural_abundance_correction( data = input_data, resolution = resolution ) expected_output <- list( "Original" = read_expected( system.file( "extdata", "C_Sample_Input_Simple.xlsx", package = "accucor" ), sheet = 1 ), "Corrected" = read_expected( system.file( "extdata", "C_Sample_Input_Simple_corrected.xlsx", package = "accucor" ), sheet = "Corrected" ), "Normalized" = read_expected( system.file( "extdata", "C_Sample_Input_Simple_corrected.xlsx", package = "accucor" ), sheet = "Normalized" ), "PoolAfterDF" = read_expected( system.file( "extdata", "C_Sample_Input_Simple_corrected.xlsx", package = "accucor" ), sheet = "PoolAfterDF" ) ) expect_equal(corrected, expected_output) }) test_that("Carbon correction (El-Maven v0.11.0)", { resolution <- 100000 input_file <- system.file( "extdata", "elmaven_v0.11_export.csv", package = "accucor" ) corrected <- natural_abundance_correction( path = input_file, resolution = resolution, output_base = FALSE ) expected_output <- list( "Original" = read_expected( system.file( "extdata", "elmaven_v0.11_export_corrected.xlsx", package = "accucor" ), sheet = 1 ), "Corrected" = read_expected( system.file( "extdata", "elmaven_v0.11_export_corrected.xlsx", package = "accucor" ), sheet = "Corrected" ), "Normalized" = read_expected( system.file( "extdata", "elmaven_v0.11_export_corrected.xlsx", package = "accucor" ), sheet = "Normalized" ), "PoolAfterDF" = read_expected( system.file( "extdata", "elmaven_v0.11_export_corrected.xlsx", package = "accucor" ), sheet = "PoolAfterDF" ) ) expect_equal(corrected, expected_output) })
dist.vect <- function(vector1, vector2) { dist <- 0 if (ncol(vector1) == ncol(vector2)) { dist <- norm.vect(vector1 - vector2) } return(dist) }
library(psychmeta) rxyi <- c( 0.49, 0.4, 0.36, 0.54, 0.56, 0.62, 0.34, 0.4, 0.53, 0.37, 0.53, 0.45, 0.39, 0.43, 0.36, 0.34, 0.46, 0.19, 0.47, 0.73, 0.48, 0.21, 0.29, 0.23, 0.23, 0.56, 0.37, 0.37, 0.52, 0.34, 0.43, 0.49, 0.47, 0.4, 0.46, 0.25, 0.4, 0.3, 0.39, 0.48, 0.25, 0.53, 0.19, 0.32, 0.28, 0.51, 0.38, 0.41, 0.38, 0.36, 0.48, 0.49, 0.39, 0.41, 0.4, 0.48, 0.4, 0.39, 0.51, 0.43, 0.31, 0.14, 0.1, 0.17, 0.28, 0.38, 0.4, 0.22, 0.01, 0.38, 0.43, 0.27, 0.07, 0.38, 0.2, 0.17, 0.07, 0.34, 0.39, 0.3, 0.38, 0.3, 0.29, 0.1, 0.22, 0.22, 0.4, 0.02, 0.12, 0.16, 0.16, 0.19, 0.22, 0.2, 0.34, 0.31, 0.26, 0.2, 0.21, 0.24, 0.3, 0.24, 0.32, 0.26, 0.25, 0.16, 0.19, 0.19, 0.13, 0.19, 0.32, 0.3, 0.18, 0.24, 0.41, 0.19, 0.2, 0.21, 0.14, 0.21 ) construct_x <- rep(c("A", "A", "B"), 40) construct_y <- rep(c("B", "C", "C"), 40) test_that("Global = NULL, Column all TRUE", { correct_rel <- NULL correct_rxx <- TRUE correct_ryy <- TRUE expected_rel <- list(x = TRUE, y = TRUE) expect_equal( .distribute_logic( logic_general = correct_rel, logic_x = correct_rxx, logic_y = correct_ryy, name_logic_x = "correct_rxx", name_logic_y = "correct_ryy", construct_x = construct_x, construct_y = construct_y, es_length = length(rxyi) ), expected_rel ) }) test_that("Global all TRUE, Column all TRUE", { correct_rel <- c(A = TRUE, B = TRUE, C = TRUE) correct_rxx <- TRUE correct_ryy <- TRUE expected_rel <- list( x = c( TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE ), y = c( TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE ) ) expect_equal( .distribute_logic( logic_general = correct_rel, logic_x = correct_rxx, logic_y = correct_ryy, name_logic_x = "correct_rxx", name_logic_y = "correct_ryy", construct_x = construct_x, construct_y = construct_y, es_length = length(rxyi) ), expected_rel ) }) test_that("Global all FALSE, Column all FALSE", { correct_rel <- c(X = FALSE, Y = FALSE, Z = FALSE) correct_rxx <- FALSE correct_ryy <- FALSE expected_rel <- list( x = c( FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE ), y = c( FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE ) ) expect_equal( .distribute_logic( logic_general = correct_rel, logic_x = correct_rxx, logic_y = correct_ryy, name_logic_x = "correct_rxx", name_logic_y = "correct_ryy", construct_x = construct_x, construct_y = construct_y, es_length = length(rxyi) ), expected_rel ) }) test_that("Global all FALSE, Column all TRUE", { correct_rel <- c(A = FALSE, B = FALSE, C = FALSE) correct_rxx <- TRUE correct_ryy <- TRUE expected_rel <- list( x = c( FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE ), y = c( FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE ) ) expect_equal( .distribute_logic( logic_general = correct_rel, logic_x = correct_rxx, logic_y = correct_ryy, name_logic_x = "correct_rxx", name_logic_y = "correct_ryy", construct_x = construct_x, construct_y = construct_y, es_length = length(rxyi) ), expected_rel ) }) test_that("Global Z missing A = TRUE B = FALSE, Column all TRUE", { correct_rel <- c(A = TRUE, B = FALSE) correct_rxx <- TRUE correct_ryy <- TRUE expected_rel <- list( x = c( TRUE, TRUE, FALSE, TRUE, TRUE, FALSE, TRUE, TRUE, FALSE, TRUE, TRUE, FALSE, TRUE, TRUE, FALSE, TRUE, TRUE, FALSE, TRUE, TRUE, FALSE, TRUE, TRUE, FALSE, TRUE, TRUE, FALSE, TRUE, TRUE, FALSE, TRUE, TRUE, FALSE, TRUE, TRUE, FALSE, TRUE, TRUE, FALSE, TRUE, TRUE, FALSE, TRUE, TRUE, FALSE, TRUE, TRUE, FALSE, TRUE, TRUE, FALSE, TRUE, TRUE, FALSE, TRUE, TRUE, FALSE, TRUE, TRUE, FALSE, TRUE, TRUE, FALSE, TRUE, TRUE, FALSE, TRUE, TRUE, FALSE, TRUE, TRUE, FALSE, TRUE, TRUE, FALSE, TRUE, TRUE, FALSE, TRUE, TRUE, FALSE, TRUE, TRUE, FALSE, TRUE, TRUE, FALSE, TRUE, TRUE, FALSE, TRUE, TRUE, FALSE, TRUE, TRUE, FALSE, TRUE, TRUE, FALSE, TRUE, TRUE, FALSE, TRUE, TRUE, FALSE, TRUE, TRUE, FALSE, TRUE, TRUE, FALSE, TRUE, TRUE, FALSE, TRUE, TRUE, FALSE, TRUE, TRUE, FALSE ), y = c( FALSE, TRUE, TRUE, FALSE, TRUE, TRUE, FALSE, TRUE, TRUE, FALSE, TRUE, TRUE, FALSE, TRUE, TRUE, FALSE, TRUE, TRUE, FALSE, TRUE, TRUE, FALSE, TRUE, TRUE, FALSE, TRUE, TRUE, FALSE, TRUE, TRUE, FALSE, TRUE, TRUE, FALSE, TRUE, TRUE, FALSE, TRUE, TRUE, FALSE, TRUE, TRUE, FALSE, TRUE, TRUE, FALSE, TRUE, TRUE, FALSE, TRUE, TRUE, FALSE, TRUE, TRUE, FALSE, TRUE, TRUE, FALSE, TRUE, TRUE, FALSE, TRUE, TRUE, FALSE, TRUE, TRUE, FALSE, TRUE, TRUE, FALSE, TRUE, TRUE, FALSE, TRUE, TRUE, FALSE, TRUE, TRUE, FALSE, TRUE, TRUE, FALSE, TRUE, TRUE, FALSE, TRUE, TRUE, FALSE, TRUE, TRUE, FALSE, TRUE, TRUE, FALSE, TRUE, TRUE, FALSE, TRUE, TRUE, FALSE, TRUE, TRUE, FALSE, TRUE, TRUE, FALSE, TRUE, TRUE, FALSE, TRUE, TRUE, FALSE, TRUE, TRUE, FALSE, TRUE, TRUE, FALSE, TRUE, TRUE ) ) expect_equal( .distribute_logic( logic_general = correct_rel, logic_x = correct_rxx, logic_y = correct_ryy, name_logic_x = "correct_rxx", name_logic_y = "correct_ryy", construct_x = construct_x, construct_y = construct_y, es_length = length(rxyi) ), expected_rel ) }) test_that("Global X = FALSE, Y = TRUE, Z = FALSE, Column rxx = FALSE, ryy = TRUE", { correct_rel <- c(X = FALSE, Y = TRUE, Z = TRUE) correct_rxx <- FALSE correct_ryy <- TRUE expected_rel <- list( x = c( FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE ), y = c( TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE ) ) expect_equal( .distribute_logic( logic_general = correct_rel, logic_x = correct_rxx, logic_y = correct_ryy, name_logic_x = "correct_rxx", name_logic_y = "correct_ryy", construct_x = construct_x, construct_y = construct_y, es_length = length(rxyi) ), expected_rel ) }) test_that("Global X = FALSE, Y = TRUE, Column rxx = TRUE, ryy = FALSE", { correct_rel <- c(X = FALSE, Y = TRUE) correct_rxx <- TRUE correct_ryy <- FALSE expected_rel <- list( x = c( TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE ), y = c( FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE ) ) expect_equal( .distribute_logic( logic_general = correct_rel, logic_x = correct_rxx, logic_y = correct_ryy, name_logic_x = "correct_rxx", name_logic_y = "correct_ryy", construct_x = construct_x, construct_y = construct_y, es_length = length(rxyi) ), expected_rel ) })
select_spatial_predictors_sequential <- function( data = NULL, dependent.variable.name = NULL, predictor.variable.names = NULL, distance.matrix = NULL, distance.thresholds = NULL, ranger.arguments = NULL, spatial.predictors.df = NULL, spatial.predictors.ranking = NULL, weight.r.squared = 0.75, weight.penalization.n.predictors = 0.25, verbose = FALSE, n.cores = parallel::detectCores() - 1, cluster = NULL ){ if(!is.null(predictor.variable.names)){ if(inherits(predictor.variable.names, "variable_selection")){ predictor.variable.names <- predictor.variable.names$selected.variables } } spatial.predictors.ranking <- spatial.predictors.ranking$ranking if(is.null(weight.r.squared)){weight.r.squared <- 0.75} if(weight.r.squared > 1){weight.r.squared <- 1} if(weight.r.squared < 0){weight.r.squared <- 0} if(is.null(weight.penalization.n.predictors)){weight.penalization.n.predictors <- 0.25} if(weight.penalization.n.predictors > 1){weight.penalization.n.predictors <- 1} if(weight.penalization.n.predictors < 0){weight.penalization.n.predictors <- 0} if(is.null(ranger.arguments)){ ranger.arguments <- list() } ranger.arguments$write.forest <- TRUE ranger.arguments$importance <- "none" ranger.arguments$local.importance <- FALSE ranger.arguments$keep.inbag <- FALSE ranger.arguments$num.trees <- 500 ranger.arguments$data <- NULL ranger.arguments$formula <- NULL ranger.arguments$dependent.variable.name <- NULL ranger.arguments$predictor.variable.names <- NULL ranger.arguments$num.threads <- 1 if(!is.null(cluster)){ n.cores <- NULL stop.cluster <- FALSE } else { cluster <- parallel::makeCluster( n.cores, type = "PSOCK" ) stop.cluster <- TRUE } doParallel::registerDoParallel(cl = cluster) spatial.predictors.i <- NULL optimization.df <- foreach::foreach( spatial.predictors.i = seq(1, length(spatial.predictors.ranking)), .combine = "rbind", .verbose = verbose ) %dopar% { spatial.predictors.selected.names.i <- spatial.predictors.ranking[1:spatial.predictors.i] data.i <- data.frame( data, spatial.predictors.df[, spatial.predictors.selected.names.i] ) colnames(data.i)[(ncol(data)+1):ncol(data.i)] <- spatial.predictors.selected.names.i predictor.variable.names.i <- c( predictor.variable.names, spatial.predictors.selected.names.i ) m.i <- spatialRF::rf( data = data.i, dependent.variable.name = dependent.variable.name, predictor.variable.names = predictor.variable.names.i, distance.matrix = distance.matrix, distance.thresholds = distance.thresholds, ranger.arguments = ranger.arguments, seed = spatial.predictors.i, verbose = FALSE ) out.df <- data.frame( spatial.predictor.index = spatial.predictors.i, moran.i = m.i$residuals$autocorrelation$max.moran, p.value = m.i$residuals$autocorrelation$per.distance[ which.max(m.i$residuals$autocorrelation$per.distance$moran.i), "p.value" ], r.squared = m.i$performance$r.squared.oob ) return(out.df) } if(!is.null(n.cores)){ parallel::stopCluster(cl = cluster) } optimization.df <- data.frame( spatial.predictor.name = spatial.predictors.ranking, spatial.predictor.index = optimization.df$spatial.predictor.index, moran.i = optimization.df$moran.i, p.value = optimization.df$p.value, p.value.binary = ifelse(optimization.df$p.value >= 0.05, 1, 0), r.squared = optimization.df$r.squared, penalization.per.variable = (1/nrow(optimization.df)) * optimization.df$spatial.predictor.index ) optimization.df$optimization <- optimization_function( x = optimization.df, weight.r.squared = weight.r.squared, weight.penalization.n.predictors = weight.penalization.n.predictors ) optimized.index <- which.max(optimization.df$optimization) best.spatial.predictors <- spatial.predictors.ranking[1:optimized.index] optimization.df$selected <- FALSE optimization.df[optimization.df$spatial.predictor.name %in% best.spatial.predictors, "selected"] <- TRUE out.list <- list() out.list$optimization <- optimization.df out.list$best.spatial.predictors <- best.spatial.predictors out.list }
adapt.a <- function (test = c("anova","chisq","cor","one.sample","two.sample","paired"), ref.n = NULL, n = NULL, alpha = .05, power = .80, efxize = c("small","medium","large"), groups = NULL, df = NULL) { if(missing(test)) {stop("test must be selected") }else{test <- match.arg(test)} if(missing(efxize)) { efxize <- "medium" message("No effect size selected. Medium effect size computed.") }else{efxize <- efxize} if(test=="anova") { if(is.null(groups)) {stop("ANOVA is selected. Number of groups must be set")} if(efxize=="small") {efxize <- .10 }else if(efxize=="medium") {efxize <- .25 }else if(efxize=="large") {efxize <- .40} if(!is.numeric(efxize)) {stop("Effect size must be numeric")} if(is.null(ref.n)) { ref.n <- pwr::pwr.anova.test(f=efxize,power=power,sig.level=alpha,k=groups)$n message("ref.n is observations per group") } num <- sqrt(ref.n*(log(ref.n)+qchisq((1-alpha),1))) }else if(test=="chisq") { if(is.null(df)) {stop("Chi-square is selected. Degrees of freedom must be set")} if(efxize=="small") {efxize <- .10 }else if(efxize=="medium") {efxize <- .30 }else if(efxize=="large") {efxize <- .50} if(!is.numeric(efxize)) {stop("Effect size must be numeric")} if(is.null(ref.n)) {ref.n <- pwr::pwr.chisq.test(w=efxize,df=df,power=power,sig.level=alpha)$N} num <- sqrt(ref.n*(log(ref.n)+qchisq((1-alpha),1))) }else if(test=="cor") { if(efxize=="small") {efxize <- .10 }else if(efxize=="medium") {efxize <- .30 }else if(efxize=="large") {efxize <- .50} if(!is.numeric(efxize)) {stop("Effect size must be numeric")} if(is.null(ref.n)) {ref.n <- pwr::pwr.r.test(r=efxize,power=power,sig.level=alpha)$n} num <- sqrt(ref.n*(log(ref.n)+qchisq((1-alpha),1))) }else if(any(c("one.sample","two.sample","paired") %in% test)) { if(efxize=="small") {efxize <- .20 }else if(efxize=="medium") {efxize <- .50 }else if(efxize=="large") {efxize <- .80} if(!is.numeric(efxize)) {stop("Effect size must be numeric")} if(is.null(ref.n)) {ref.n <- pwr::pwr.t.test(d=efxize,power=power,sig.level=alpha,type=test)$n} num <- sqrt(ref.n*(log(ref.n)+qchisq((1-alpha),1))) }else{stop("test does not exist")} denom <- (sqrt(n*(log(n)+qchisq((1-alpha),1)))) adj.a <- alpha*num/denom if(test=="anova") { critical.f <- function (groups, n, a) { df1 <- groups - 1 df2 <- n - groups cvf <- qf(a, df1, df2, lower.tail = FALSE) return(cvf) } cv <- critical.f(groups, n, adj.a) }else if(test=="chisq") { critical.chi <- function (df, a) { cvchi <- qchisq(a, df, lower.tail = FALSE) return(cvchi) } cv <- critical.chi(df, adj.a) }else if(test=="cor") { critical.r <- function (n, a) { df <- n - 2 critical.t <- qt( a/2, df, lower.tail = FALSE ) cvr <- sqrt( (critical.t^2) / ( (critical.t^2) + df ) ) return(cvr) } cv <- critical.r(n, adj.a) }else if(any(c("one.sample","two.sample","paired") %in% test)) { critical.t <- function (n, a) { df <- n - 2 cvt <- qt( a/2, df, lower.tail = FALSE ) return(cvt) } cv <- critical.t(n, adj.a) } output <- list() output$adapt.a <- adj.a output$crit.value <- cv output$orig.a <- alpha output$ref.n <- ref.n output$exp.n <- n if(test=="anova") { output$groups <- groups output$df <- c((groups - 1), (n - groups)) } if(test=="chisq") {output$df <- df} output$power <- power output$efxize <- efxize output$test <- test return(output) }
summary.coxph.penal <- function(object, conf.int = 0.95, scale=1, terms=FALSE, maxlabel=25, ...) { beta <- object$coefficients if (length(beta)==0 && length(object$frail)==0) stop("Penalized summary function can't be used for a null model") if (length(beta) > 0) { nacoef <- !(is.na(beta)) beta2 <- beta[nacoef] if(is.null(beta2) | is.null(object$var)) stop("Input is not valid") se <- sqrt(diag(object$var)) } pterms <- object$pterms nterms <- length(pterms) npenal <- sum(pterms>0) print.map <- rep(0,nterms) if (!is.null(object$printfun)) { temp <- unlist(lapply(object$printfun, is.null)) print.map[pterms>0] <- (1:npenal) * (!temp) } print1 <- NULL pname1 <- NULL if (is.null(object$assign2)) alist <- object$assign[-1] else alist <- object$assign2 print2 <- NULL for (i in 1:nterms) { kk <- alist[[i]] if (print.map[i] >0) { j <- print.map[i] if (pterms[i]==2) temp <- (object$printfun[[j]])(object$frail, object$fvar, , object$df[i], object$history[[j]]) else temp <- (object$printfun[[j]])(beta[kk], object$var[kk,kk], object$var2[kk,kk], object$df[i], object$history[[j]]) print1 <- rbind(print1, temp$coef) if (is.matrix(temp$coef)) { xx <- dimnames(temp$coef)[[1]] if (is.null(xx)) xx <- rep(names(pterms)[i], nrow(temp$coef)) else xx <- paste(names(pterms)[i], xx, sep=', ') pname1 <- c(pname1, xx) } else pname1 <- c(pname1, names(pterms)[i]) print2 <- c(print2, temp$history) } else if (terms && length(kk)>1) { pname1 <- c(pname1, names(pterms)[i]) temp <- coxph.wtest(object$var[kk,kk], beta[kk])$test print1 <- rbind(print1, c(NA, NA, NA, temp, object$df[i], pchisq(temp, 1, lower.tail=FALSE))) } else { pname1 <- c(pname1, names(beta)[kk]) tempe<- (diag(object$var))[kk] temp <- beta[kk]^2/ tempe print1 <- rbind(print1, cbind(beta[kk], sqrt(tempe), sqrt((diag(object$var2))[kk]), temp, 1, pchisq(temp, 1, lower.tail=FALSE))) } } dimnames(print1) <- list(substring(pname1,1, maxlabel), c("coef","se(coef)", "se2", "Chisq","DF","p")) rval <- object[match(c("call", "fail", "na.action", "n", "nevent", "loglik", "iter", "df"), names(object), nomatch=0)] rval$coefficients <- print1 rval$print2 <- print2 if(conf.int & length(beta) >0 ) { z <- qnorm((1 + conf.int)/2, 0, 1) beta <- beta * scale se <- se * scale tmp <- cbind(exp(beta), exp(-beta), exp(beta - z * se), exp(beta + z * se)) dimnames(tmp) <- list(substring(names(beta),1, maxlabel), c("exp(coef)", "exp(-coef)", paste("lower .", round(100 * conf.int, 2), sep = ""), paste("upper .", round(100 * conf.int, 2), sep = ""))) rval$conf.int <- tmp } df <- sum(object$df) logtest <- -2 * (object$loglik[1] - object$loglik[2]) rval$logtest <- c(test = logtest, df=df, pvalue= pchisq(logtest,df, lower.tail=FALSE)) if (!is.null(object$waldtest)) rval$waldtest <- c(test= object$wald.test, df=df, pvalue = pchisq(object$wald.test, df, lower.tail=FALSE)) if (!is.null(object$concordance)) { ctemp <- object$concordance rval$concordance <- ctemp[c("concordance", "std")] names(rval$concordance) <- c("C", "se(C)") } class(rval) <- "summary.coxph.penal" rval }
env_file <- NULL .onLoad <- function(libname, pkgname) { env <- new.env(parent = emptyenv()) env$`__asciicast_data__` <- new.env(parent = baseenv()) client_file <- system.file("client.R", package = "asciicast") if (client_file == "") stop("Cannot find client R file") source( client_file, local = env$`__asciicast_data__`, keep.source = FALSE) arch <- .Platform$r_arch ext <- .Platform$dynlib.ext sofile <- system.file( "libs", arch, paste0("client", ext), package = "processx") if (sofile == "") { sofile <- system.file( "libs", paste0("client", ext), package = "processx") } if (sofile == "") { sofile <- system.file( "src", paste0("client", ext), package = "processx") } if (sofile == "") stop("Cannot find client file") env$`__asciicast_data__`$sofile <- sofile env_file <<- tempfile() saveRDS(env, file = env_file, version = 2, compress = FALSE) lazyrmd$onload_hook( local = FALSE, ci = function() is_recording_supported(), cran = "no-code" ) invisible() }
centiles.com <- function( obj, ..., xvar, cent = c(.4,10,50,90,99.6), legend = TRUE, ylab = "y", xlab = "x", xleg = min(xvar), yleg = max(obj$y), xlim = range(xvar), ylim = NULL, no.data = FALSE, color = TRUE, main = NULL, plot = TRUE ) { if (length(list(...))) { object <- list(obj, ...) nobj <- length(object) isgamlss <- unlist(lapply(object, is.gamlss)) if (!any(isgamlss)) stop("some of the objects are not gamlss") if (missing(xvar)) { xvar <- all.vars(obj$call$formula)[[2]] if (any(grepl("data", names(obj$call)))) { DaTa <- eval(obj$call[["data"]]) xvar <- get(xvar, envir=as.environment(DaTa)) } } xvarO <- deparse(substitute(xvar)) xvar <- try(xvar, silent = TRUE) if (any(class(xvar)%in%"try-error")) { DaTa <- eval(obj$call[["data"]]) xvar <- get(xvarO, envir=as.environment(DaTa)) } fname <- lapply(object, function(x) x$family[1]) qfun <- lapply(fname, function(x) paste("q",x,sep="")) lenpar <- lapply(object, function(x) length(x$parameters) ) oxvar <- xvar[order(xvar)] oyvar <- object[[1]]$y[order(xvar)] if (is.null(ylim)) ylim <- range( object[[1]]$y) Title <- if (is.null(main)) paste("Centile curves") else main if (plot) { if (no.data==FALSE) type<-"p" else type<-"n" plot(oxvar, oyvar, type=type, pch = 15, cex = 0.5, col = gray(0.7), xlab= xlab, ylab=ylab, xlim=xlim, ylim=ylim) title(Title) } ltype <- 0 for (iii in 1:nobj) { cat("******** Model", iii,"******** \n" ) lpar <- lenpar[[iii]] if (color==TRUE) col <- 3 else col <- 1 ltype <- ltype+1 ii <- 0 per <- rep(0,length(cent)) for(var in cent) { if(lpar==1) { newcall <-call(qfun[[iii]],var/100, mu=fitted(object[[iii]],"mu")[order(xvar)]) } else if(lpar==2) { newcall <-call(qfun[[iii]],var/100, mu=fitted(object[[iii]],"mu")[order(xvar)], sigma=fitted(object[[iii]],"sigma")[order(xvar)]) } else if(lpar==3) { newcall <-call(qfun[[iii]],var/100, mu=fitted(object[[iii]],"mu")[order(xvar)], sigma=fitted(object[[iii]],"sigma")[order(xvar)], nu=fitted(object[[iii]],"nu")[order(xvar)]) } else { newcall <-call(qfun[[iii]],var/100, mu=fitted(object[[iii]],"mu")[order(xvar)], sigma=fitted(object[[iii]],"sigma")[order(xvar)], nu=fitted(object[[iii]],"nu")[order(xvar)], tau=fitted(object[[iii]],"tau")[order(xvar)]) } ii <- ii+1 ll<- eval(newcall) if (plot) { lines(oxvar,ll,col=col, lty=ltype) if (color==TRUE) colleg <- c(3,4,5,6,7,8,9,10) else colleg <- c(1) if (legend==TRUE) legend(list(x=xleg,y=yleg), legend = cent, col=colleg, lty=1, ncol=1, bg="white") } if (color==TRUE) col <- col+1 per[ii]<-(1-sum(oyvar>ll)/length(oyvar))*100 cat("% of cases below ", var,"centile is ", per[ii], "\n" ) } } } else { if (!is.gamlss(obj)) stop(paste("This is not an gamlss object", "\n", "")) if(is.null(xvar)) stop(paste("The xvar argument is not specified", "\n", "")) fname <- obj$family[1] qfun <- paste("q",fname,sep="") Title <- paste("Centile curves using",fname, sep=" ") oxvar <- xvar[order(xvar)] oyvar <- obj$y[order(xvar)] if (plot) { if (no.data==FALSE) type <- "p" else type <- "n" plot(oxvar, oyvar, type = type , pch = 15, cex = 0.5, col = gray(0.7), xlab = xlab, ylab = ylab ,xlim = xlim, ylim, ...) title(Title) } if (color==TRUE) col <- 3 else col <- 1 lpar <- length(obj$parameters) ii <- 0 per <- rep(0,length(cent)) for(var in cent) { if(lpar==1) { newcall <-call(qfun,var/100, mu=fitted(obj,"mu")[order(xvar)]) } else if(lpar==2) { newcall <-call(qfun,var/100, mu=fitted(obj,"mu")[order(xvar)], sigma=fitted(obj,"sigma")[order(xvar)]) } else if(lpar==3) { newcall <-call(qfun,var/100, mu=fitted(obj,"mu")[order(xvar)], sigma=fitted(obj,"sigma")[order(xvar)], nu=fitted(obj,"nu")[order(xvar)]) } else { newcall <-call(qfun,var/100, mu=fitted(obj,"mu")[order(xvar)], sigma=fitted(obj,"sigma")[order(xvar)], nu=fitted(obj,"nu")[order(xvar)], tau=fitted(obj,"tau")[order(xvar)]) } ii <- ii+1 ll<- eval(newcall) if (plot) { lines(oxvar,ll,col=col, lty=1) if (color==TRUE) colleg <- c(3,4,5,6,7,8,9,10) else colleg <- c(1) if (legend==TRUE) legend(list(x=xleg,y=yleg), legend = cent, col=colleg, lty=1, ncol=1, bg="white") } if (color==TRUE) col <- col+1 per[ii]<-(1-sum(oyvar>ll)/length(oyvar))*100 cat("% of cases below ", var,"centile is ", per[ii], "\n" ) } } }
from <- function(.from, ..., .into = "imports", .library = .libPaths()[1L], .directory=".", .all=(length(.except) > 0), .except=character(), .chdir = TRUE, .character_only = FALSE) { cl <- match.call()[[1L]] exports_only <- identical(cl, call("::", quote(import), quote(from))) if (!exports_only && !identical(cl, call(":::", quote(import), quote(from)))) stop("Use `import::` or `import:::` when importing objects.", call. = FALSE) if (missing(.from)) stop("Argument `.from` must be specified for import::from.", call. = FALSE) if (identical(cl, call(":::", quote(import), quote(from))) && (.all!=FALSE || length(.except)!=0)) stop("`import:::` must not be used in conjunction with .all or .except", call. = FALSE) if (!missing(.into) && is.character(.into) && .into == "") .into = quote({environment()}) if (detect_bad_recursion(.traceback(0))) { .into = quote({environment()}) warning(paste0("import::from() or import::into() was used recursively, to import \n", " a module from within a module. Please rely on import::here() \n", " when using the import package in this way.\n", " See vignette(import) for further details.")) } symbols <- symbol_list(..., .character_only = .character_only, .all = .all) from <- `if`(isTRUE(.character_only), .from, symbol_as_character(substitute(.from))) into_expr <- substitute(.into) `{env}` <- identical(into_expr[[1]], quote(`{`)) if (`{env}`) { into <- eval.parent(.into) if (!is.environment(into)) stop("into is not an environment, but {env} notation was used.", call. = FALSE) } else { into <- symbol_as_character(into_expr) } use_into <- !exists(".packageName", parent.frame(), inherits = TRUE) && !`{env}` && !into == "" into_exists <- !`{env}` && (into %in% search()) make_attach <- attach if (use_into && !into_exists) make_attach(NULL, 2L, name = into) from_is_script <- is_script(from, .directory) if (from_is_script) { from_created <- from %in% ls(scripts, all.names = TRUE) if (!from_created || modified(from, .directory) > modified(scripts[[from]])) { attached <- search() if (!from_created) assign(from, new.env(parent = parent.frame()), scripts) modified(scripts[[from]]) <- modified(from, .directory) scripts[[from]][[".packageName"]] <- from packages_before <- .packages() suppress_output(sys.source(file_path(.directory, from), scripts[[from]], chdir = .chdir)) packages_after <- .packages() if ( !identical(packages_before,packages_after) ) { warning("A package was loaded using 'library(...)' from within an import::*() module.\n", " Please rely on import::here() to load objects from packages within an \n", " import::*() module. See vignette(import) for further details." ) } on.exit({ to_deattach <- Filter(function(.) !. %in% attached, search()) for (d in to_deattach) detach(d, character.only = TRUE) }) } pkg <- scripts[[from]] pkg_name <- from all_objects <- ls(scripts[[from]]) } else { spec <- package_specs(from) all_objects <- getNamespaceExports(spec$pkg) pkg <- tryCatch( loadNamespace(spec$pkg, lib.loc = .library, versionCheck = spec$version_check), error = function(e) stop(conditionMessage(e), call. = FALSE) ) pkg_name <- spec$pkg } if (.all) { all_objects <- setdiff(all_objects, "__last_modified__") names(all_objects) <- all_objects symbols <- c(symbols,all_objects) symbols <- symbols[!duplicated(symbols)] } if (length(.except)>0) { symbols <- symbols[!(symbols %in% .except)] } for (s in seq_along(symbols)) { import_call <- make_import_call( list(new = names(symbols)[s], nm = symbols[s], ns = pkg, inh = !exports_only, pos = if (use_into || `{env}`) into else -1), exports_only && !from_is_script) if (!from_is_script) import_aliases[[names(symbols)[s]]] <- call("::", as.symbol(pkg_name), as.symbol(symbols[s])) tryCatch(eval.parent(import_call), error = function(e) stop(e$message, call. = FALSE)) } if (!`{env}` && into != "" && !exists("?", into, mode = "function", inherits = FALSE)) { assign("?", `?redirect`, into) } invisible(as.environment(into)) }
LKrigMakewU <- function(object, verbose = FALSE) { LKinfo<- object$LKinfo if (!is.null(object$U)) { wU <- sqrt(object$weights) * object$U } else { if (!is.null(LKinfo$fixedFunction)) { wU <- sqrt(object$weights) * do.call( LKinfo$fixedFunction, c(list(x = object$x, Z = object$Z, distance.type = LKinfo$distance.type), LKinfo$fixedFunctionArgs)) } else{ wU<- NULL } } if (verbose) { cat("dim wU:", dim(wU), fill=TRUE) } return( wU) }
source("ESEUR_config.r") library("plyr") mdon=read.csv(paste0(ESEUR_dir, "ecosystems/overney20donations.csv.xz"), as.is=TRUE) mon_av=ddply(mdon, .(project_id), function(df) mean(df$earning_after_adoption)) plot(sort(mon_av$V1), log="y", col=point_col, xaxs="i", xlab="Project", ylab="Monthly donation (dollars)\n")
context("metadata cache 2/3") test_that("check_update", { skip_if_offline() skip_on_cran() withr::local_options( list(repos = c(CRAN = "https://cloud.r-project.org")) ) dir.create(pri <- fs::path_norm(tempfile())) on.exit(unlink(pri, recursive = TRUE), add = TRUE) dir.create(rep <- fs::path_norm(tempfile())) on.exit(unlink(rep, recursive = TRUE), add = TRUE) cmc <- cranlike_metadata_cache$new(pri, rep, "source", bioc = FALSE) data <- cmc$check_update() check_packages_data(data) expect_identical(get_private(cmc)$data, data) expect_true(Sys.time() - get_private(cmc)$data_time < oneminute()) rep_files <- get_private(cmc)$get_cache_files("replica") expect_true(file.exists(rep_files$rds)) expect_true(Sys.time() - file_get_time(rep_files$rds) < oneminute()) pri_files <- get_private(cmc)$get_cache_files("primary") expect_true(file.exists(pri_files$rds)) expect_true(Sys.time() - file_get_time(pri_files$rds) < oneminute()) expect_true(all(file.exists(rep_files$pkgs$path))) expect_true(all(file.exists(rep_files$pkgs$etag))) expect_true(all(file.exists(pri_files$pkgs$path))) expect_true(all(file.exists(pri_files$pkgs$etag))) cat("foobar\n", file = rep_files$pkgs$path[1]) cat("foobar2\n", file = rep_files$rds) cat("foobar\n", file = pri_files$pkgs$path[1]) cat("foobar2\n", file = pri_files$rds) data2 <- cmc$check_update() expect_identical(data, data2) expect_equal(read_lines(rep_files$pkgs$path[1]), "foobar") cmc$cleanup(force = TRUE) expect_false(file.exists(pri_files$rds)) expect_false(any(file.exists(pri_files$pkgs$path))) expect_false(file.exists(rep_files$rds)) expect_false(any(file.exists(rep_files$pkgs$path))) }) test_that("deps will auto-update as needed", { skip_if_offline() skip_on_cran() withr::local_options(list(repos = NULL)) dir.create(pri <- fs::path_norm(tempfile())) on.exit(unlink(pri, recursive = TRUE), add = TRUE) dir.create(rep <- fs::path_norm(tempfile())) on.exit(unlink(rep, recursive = TRUE), add = TRUE) cmc <- cranlike_metadata_cache$new(pri, rep, "source", bioc = FALSE) pri_files <- get_private(cmc)$get_cache_files("primary") mkdirp(dirname(pri_files$pkgs$path)) fs::file_copy(get_fixture("PACKAGES-src.gz"), pri_files$pkgs$path) cmc$deps("A3", recursive = FALSE) expect_false(is.null(get_private(cmc)$data)) expect_true(Sys.time() - get_private(cmc)$data_time < oneminute()) rep_files <- get_private(cmc)$get_cache_files("replica") expect_true(file.exists(rep_files$rds)) expect_true(Sys.time() - file_get_time(rep_files$rds) < oneminute()) pri_files <- get_private(cmc)$get_cache_files("primary") expect_true(file.exists(pri_files$rds)) expect_true(Sys.time() - file_get_time(pri_files$rds) < oneminute()) expect_true(all(file.exists(rep_files$pkgs$path))) expect_true(all(file.exists(pri_files$pkgs$path))) }) test_that("deps, extract_deps", { skip_if_offline() skip_on_cran() withr::local_options(list(repos = NULL)) dir.create(pri <- fs::path_norm(tempfile())) on.exit(unlink(pri, recursive = TRUE), add = TRUE) dir.create(rep <- fs::path_norm(tempfile())) on.exit(unlink(rep, recursive = TRUE), add = TRUE) cmc <- cranlike_metadata_cache$new(pri, rep, "source", bioc = FALSE, cran_mirror = "mirror") pri_files <- get_private(cmc)$get_cache_files("primary") mkdirp(dirname(pri_files$pkgs$path)) fs::file_copy(get_fixture("PACKAGES-src.gz"), pri_files$pkgs$path) file_set_time(pri_files$pkgs$path, Sys.time() - 1/2 * oneday()) pkgs <- read_packages_file( get_fixture("PACKAGES-src.gz"), mirror = "mirror", repodir = "src/contrib", platform = "source", rversion = "*", type = "cran") deps <- cmc$deps("abc", FALSE, FALSE) expect_identical(deps$package, "abc") expect_identical(attr(deps, "base"), character()) expect_identical(attr(deps, "unknown"), character()) deps2 <- extract_deps(pkgs, "abc", FALSE, FALSE) expect_identical(deps, deps2) deps <- extract_deps(pkgs, "abc", TRUE, FALSE) expect_identical(deps$package, c("abc", "abc.data", "MASS", "nnet")) expect_identical(attr(deps, "base"), character()) expect_identical(attr(deps, "unknown"), c("quantreg", "locfit")) deps2 <- extract_deps(pkgs, "abc", TRUE, FALSE) expect_identical(deps, deps2) deps <- extract_deps(pkgs, "abc", TRUE, TRUE) expect_identical(deps$package, c("abc", "abc.data", "MASS", "nnet")) expect_identical( sort(attr(deps, "base")), sort(c("grDevices", "graphics", "stats", "utils", "methods"))) expect_identical(attr(deps, "unknown"), c("quantreg", "locfit")) deps2 <- extract_deps(pkgs, "abc", TRUE, TRUE) expect_identical(deps, deps2) deps <- extract_deps(pkgs, "nnet", c("Depends", "Suggests"), FALSE) expect_identical(deps$package, c("MASS", "nnet")) expect_identical(attr(deps, "base"), c("stats", "utils")) expect_identical(attr(deps, "unknown"), character()) deps2 <- extract_deps(pkgs, "nnet", c("Depends", "Suggests"), FALSE) expect_identical(deps, deps2) })
subset_lake_data = function(lake_name, types){ check_lake(lake_name) siteID <- "_private" variable <- "_private" year <- "_private" value <- "_private" IDs <- get_site_ID(lake_name) df <- data.frame() df = tryCatch({ for (i in 1:length(IDs)){ vals <- filter(gltc_values, tolower(variable) %in% tolower(types), siteID == IDs[i]) %>% select(variable, year, value) df <- rbind(vals, df) } df <- acast(df, year ~ variable) df <- cbind(data.frame(year = as.numeric(row.names(df))), df) rownames(df) <- NULL df }, error = function(e) { return(df) }) if (nrow(df) == 0) df = data.frame() return(df) }
util_tibble2raster <- function(x) UseMethod("util_tibble2raster") util_tibble2raster <- function(x) { r <- raster::raster(matrix(x$z, max(x$y), max(x$x), byrow = TRUE)) raster::extent(r) <- c(0, max(x$x), 0, max(x$y)) return(r) }
utils::globalVariables(c("%dopar%", "CRS", "SpatialPoints", "bbox", "clusterEvalQ", "coordinates", "error", "foreach", "get.knnx", "makeCluster", "proj4string", "rasterToPoints", "registerDoParallel", "registerDoSNOW", "spDists", "stopCluster", "xres", "yres", "ginv"))
require(spatstat.utils) a <- paren(character(0)) a <- paren("hello", "") a <- paren("hello", "{") strsplitretain("hello, world") truncline(c("Now is the time for all good people", "to come to the aid of the Party"), 15) is.blank(c("a", " ", "b")) onetwo <- c("one", "two") padtowidth(onetwo, 10, "left") padtowidth(onetwo, 10, "right") padtowidth(onetwo, 10, "centre") splat("Hello world", indent="zzz") choptext("Hello\nWorld") exhibitStringList("Letters", letters) exhibitStringList("Letters", letters[1:4]) numalign(42, 1e4) singlestring(1:5) x <- c("TRUE", "unknown", "not known") verbalogic(x, "and") verbalogic(x, "or") verbalogic(x, "not") x[1] <- "FALSE" verbalogic(x, "and") sensiblevarname("$@wtf%!", "variablenumberone") nzpaste(c("Hello", "", "World")) substringcount("v", "vavavoom") huh <- c("42", "y <- x", "$%^%$") is.parseable(huh) make.parseable(huh) paste.expr(expression(y == x)) pasteFormula(y ~ x + z) gsubdot("cbind(est,theo)", ". ~ r") simplenumber(0) simplenumber(1/3) simplenumber(2/3) simplenumber(-2) simplenumber(0, unit="km") simplenumber(1/3, unit="km") simplenumber(2/3, unit="km") simplenumber(-2, unit="km") makeCutLabels(0:3)
lsa.bin.log.reg <- function(data.file, data.object, split.vars, bin.dep.var, bckg.indep.cont.vars, bckg.indep.cat.vars, bckg.cat.contrasts, bckg.ref.cats, PV.root.indep, standardize = FALSE, weight.var, norm.weight = FALSE, include.missing = FALSE, shortcut = FALSE, output.file, open.output = TRUE) { tmp.options <- options(scipen = 999, digits = 22) on.exit(expr = options(tmp.options), add = TRUE) warnings.collector <- list() if(missing("bckg.indep.cont.vars") & missing("bckg.indep.cat.vars") & missing("PV.root.indep")) { stop('No independent variables ("bckg.indep.cont.vars", "bckg.indep.cat.vars" or "PV.root.indep") were passed to the call. All operations stop here. Check your input.\n\n', call. = FALSE) } if(!missing(bin.dep.var) && length(bin.dep.var) > 1) { stop('Only one binary dependent variable can be passed at a time. All operations stop here. Check your input.\n\n', call. = FALSE) } if(!missing(bckg.indep.cat.vars) && !missing(bckg.ref.cats) && length(bckg.indep.cat.vars) != length(bckg.ref.cats)) { stop('"bckg.indep.cat.vars" and "bckg.ref.cats" must have equal length. All operations stop here. Check your input.\n\n', call. = FALSE) } if(!missing(bckg.indep.cat.vars) && !missing(bckg.cat.contrasts) && length(bckg.indep.cat.vars) != length(bckg.cat.contrasts)) { stop('"bckg.indep.cat.vars" and "bckg.cat.contrasts" must have equal length. All operations stop here. Check your input.\n\n', call. = FALSE) } if(!missing(bckg.ref.cats) && !is.numeric(bckg.ref.cats)) { stop('The reference category passed to "bckg.ref.cats" must be a numeric value. All operations stop here. Check your input.\n\n', call. = FALSE) } if(!missing(bckg.indep.cat.vars) & missing(bckg.cat.contrasts)) { bckg.cat.contrasts <- rep(x = "dummy", times = length(bckg.indep.cat.vars)) warnings.collector[["contrast.cat.set.default"]] <- 'Independent categorical background variable(s) were passed to "bckg.indep.cat.vars", but no contrast coding schemes were provided for the "bckg.cat.contrasts" argument. "dummy" coding was set as default for all variables passed to "bckg.indep.cat.vars".' } if(!missing(bckg.indep.cat.vars) && any(!bckg.cat.contrasts %in% c("dummy", "simple", "deviation"))) { stop('An unsupported contrast coding scheme was passed to the "bckg.indep.cat.vars". All operations stop here. Check your input.\n\n', call. = FALSE) } if(!missing(data.file) == TRUE && !missing(data.object) == TRUE) { stop('Either "data.file" or "data.object" has to be provided, but not both. All operations stop here. Check your input.\n\n', call. = FALSE) } else if(!missing(data.file)) { if(file.exists(data.file) == FALSE) { stop('The file specified in the "data.file" argument does not exist. All operations stop here. Check your input.\n\n', call. = FALSE) } ptm.data.import <- proc.time() data <- copy(import.data(path = data.file)) used.data <- deparse(substitute(data.file)) message('\nData file ', used.data, ' imported in ', format(as.POSIXct("0001-01-01 00:00:00") + {proc.time() - ptm.data.import}[[3]], "%H:%M:%OS3")) } else if(!missing(data.object)) { if(length(all.vars(match.call())) == 0) { stop('The object specified in the "data.object" argument is quoted, is this an object or a path to a file? All operations stop here. Check your input.\n\n', call. = FALSE) } if(!exists(all.vars(match.call()))) { stop('The object specified in the "data.object" argument does not exist. All operations stop here. Check your input.\n\n', call. = FALSE) } data <- copy(data.object) used.data <- deparse(substitute(data.object)) message('\nUsing data from object "', used.data, '".') } if(!"lsa.data" %in% class(data)) { stop('\nThe data is not of class "lsa.data". All operations stop here. Check your input.\n\n', call. = FALSE) } vars.list <- get.analysis.and.design.vars(data) if(!missing(bckg.indep.cat.vars) & missing(bckg.ref.cats)) { bckg.ref.cats <- sapply(X = data[ , mget(vars.list[["bckg.indep.cat.vars"]])], FUN = function(i) { min(na.omit(as.numeric(i))) }) warnings.collector[["ref.cat.set.default"]] <- 'Independent categorical background variable(s) were passed to "bckg.indep.cat.vars", but no reference categories were provided for the "bckg.ref.cats" argument. Default reference categories were set: the minimum value(s) available in the data for categorical independent variable(s).' } action.args.list <- get.action.arguments() file.attributes <- get.file.attributes(imported.object = data) tryCatch({ if(file.attributes[["lsa.study"]] %in% c("PIRLS", "prePIRLS", "ePIRLS", "RLII", "TIMSS", "preTIMSS", "TIMSS Advanced", "TiPi") & missing(shortcut)) { action.args.list[["shortcut"]] <- FALSE } data <- produce.analysis.data.table(data.object = data, object.variables = vars.list, action.arguments = action.args.list, imported.file.attributes = file.attributes) max.two.cats <- sapply(X = data, FUN = function(i) { length(unique(na.omit(i[ , get(bin.dep.var)]))) }) if(na.omit(unique(max.two.cats)) != 2) { stop('The variable passed to "bin.dep.var" is not binary. All operations stop here. Check your input.\n\n', call. = FALSE) } lapply(X = data, FUN = function(i) { i[get(bin.dep.var) == min(get(bin.dep.var), na.rm = TRUE), (bin.dep.var) := 0] i[get(bin.dep.var) == max(get(bin.dep.var), na.rm = TRUE), (bin.dep.var) := 1] }) countries.with.all.NA.vars <- sapply(X = data, FUN = function(i) { any(sapply(X = i[ , mget(unname(unlist(vars.list[c("bin.dep.var", "bckg.indep.cont.vars", "bckg.indep.cat.vars", "PV.names")])))], FUN = function(j) { all(is.na(j)) }) == TRUE) }) countries.with.all.NA.vars <- names(Filter(isTRUE, countries.with.all.NA.vars)) if(length(countries.with.all.NA.vars) > 0) { warnings.collector[["countries.with.all.NA.vars"]] <- paste0('One or more countries in the data have one or more variables in the regression model which have only missing values and have been removed: ', paste(countries.with.all.NA.vars, collapse = ", "), ".") if(length(countries.with.all.NA.vars) == length(names(data))) { stop('One or more variables in the model has missing values in all countries. All operations stop here. Check the data for all variables.\n\n', call. = FALSE) } else { data[countries.with.all.NA.vars] <- NULL } } if(!missing(bckg.indep.cat.vars)) { countries.with.constant.cat.vars <- names(Filter(isTRUE, lapply(X = data, FUN = function(i) { any(Filter(isTRUE, lapply(X = i[ , mget(unname(unlist(vars.list["bckg.indep.cat.vars"])))], FUN = function(j) { length(unique(j)) < 2 })) == TRUE) }))) if(length(countries.with.constant.cat.vars) > 0) { warnings.collector[["countries.with.constant.cat.vars"]] <- paste0('One or more countries in the data have one or more variables in "bckg.indep.cat.vars" which are constant and have been removed: ', paste(countries.with.all.NA.vars, collapse = ", "), ".") data[countries.with.constant.cat.vars] <- NULL } } if(!is.null(vars.list[["split.vars"]])) { data <- lapply(X = data, FUN = function(i) { rows.to.remove <- lapply(X = vars.list[["bckg.indep.cat.vars"]], FUN = function(j) { tmp <- dcast(i, formula(paste0(vars.list[["split.vars"]][length(vars.list[["split.vars"]])], " ~ ", j)), value.var = j, fun.aggregate = length) tmp1 <- tmp[ , mget(colnames(tmp)[2:length(colnames(tmp))])] tmp[ , JUSTONEVALID := apply(tmp1, 1, function(j) { if(sum(j > 0) == 1) { FALSE } else { TRUE } })] tmp[JUSTONEVALID == FALSE, get(vars.list[["split.vars"]][length(vars.list[["split.vars"]])])] }) i[!get(vars.list[["split.vars"]][length(vars.list[["split.vars"]])]) %in% unlist(rows.to.remove), ] }) } data <- lapply(X = data, FUN = function(i) { i <- na.omit(object = i, cols = unlist(vars.list[c("bin.dep.var", "bckg.indep.cont.vars", "bckg.indep.cat.vars", "bckg.cat.contrasts", "bckg.ref.cats")])) i[get(vars.list[["weight.var"]]) > 0, ] }) if(standardize == TRUE) { data <- lapply(X = data, FUN = function(i) { all.model.vars <- unlist(x = Filter(Negate(is.null), vars.list[c("bckg.indep.cont.vars", "PV.names")]), use.names = FALSE) i[ , (all.model.vars) := lapply(.SD, scale), .SDcols = all.model.vars] }) } if(!is.null(vars.list[["bckg.indep.cat.vars"]])) { bckg.cat.vars.new.names <- unlist(Map(f = function(input1, input2) { if(input2 == "dummy") { paste0(input1, "_DY") } else if(input2 == "deviation") { paste0(input1, "_DN") } else if(input2 == "simple") { paste0(input1, "_SC") } }, input1 = as.list(vars.list[["bckg.indep.cat.vars"]]), input2 = as.list(bckg.cat.contrasts))) contrast.columns <- copy(lapply(X = data, FUN = function(i) { i[ , mget(vars.list[["bckg.indep.cat.vars"]])] })) contrast.columns <- lapply(X = contrast.columns, FUN = function(i) { i[ , (bckg.cat.vars.new.names) := lapply(.SD, factor), .SDcols = vars.list[["bckg.indep.cat.vars"]]] tmp.contr.cols <- Map(f = function(input1, input2, input3) { if(input2 == "dummy") { contrasts(input1) <- contr.treatment(n = length(levels(input1)), base = input3) } else if(input2 == "deviation") { input1 <- factor(x = input1, levels = c(levels(input1)[!levels(input1) == input3], input3)) deviation.contrasts <- contr.sum(n = length(levels(input1))) dimnames(deviation.contrasts) <- list(levels(input1), grep(pattern = input3, x = levels(input1), value = TRUE, invert = TRUE)) contrasts(input1) <- deviation.contrasts } else if(input2 == "simple") { input1 <- factor(x = input1, levels = c(levels(input1)[levels(input1) == input3], levels(input1)[!levels(input1) == input3])) contr.treatment.matrix <- contr.treatment(n = length(levels(input1))) effect.contrasts.matrix <- matrix(rep(x = 1/4, times = length(levels(input1))*(length(levels(input1)) - 1)), ncol = (length(levels(input1)) - 1)) contr.treatment.matrix <- contr.treatment.matrix - effect.contrasts.matrix dimnames(contr.treatment.matrix) <- list(levels(input1), grep(pattern = input3, x = levels(input1), value = TRUE, invert = TRUE)) contrasts(input1) <- contr.treatment.matrix } return(data.table(input1)) }, input1 = i[ , mget(bckg.cat.vars.new.names)], input2 = as.list(bckg.cat.contrasts), input3 = as.list(bckg.ref.cats)) tmp.contr.cols <- do.call(cbind, tmp.contr.cols) setnames(x = tmp.contr.cols, bckg.cat.vars.new.names) }) data <- Map(f = cbind, data, contrast.columns) } vars.list[["pcts.var"]] <- tmp.pcts.var vars.list[["group.vars"]] <- tmp.group.vars analysis.info <- list() model.stats <- list() number.of.countries <- length(names(data)) if(number.of.countries == 1) { message("\nValid data from one country have been found. Some computations can be rather intensive. Please be patient.\n") } else if(number.of.countries > 1) { message("\nValid data from ", number.of.countries, " countries have been found. Some computations can be rather intensive. Please be patient.\n") } counter <- 0 compute.all.stats <- function(data) { independent.variables <- grep(pattern = ".indep", x = names(vars.list), value = TRUE) if("PV.root.indep" %in% independent.variables) { independent.variables.PV <- lapply(X = vars.list[["PV.root.indep"]], FUN = function(i) { as.list(grep(pattern = i, x = unlist(vars.list[["PV.names"]]), value = TRUE)) }) } if(any(c("bckg.indep.cont.vars", "bckg.indep.cat.vars") %in% independent.variables)) { if(exists("bckg.cat.vars.new.names")) { independent.variables.bckg <- paste(unlist(c(vars.list[["bckg.indep.cont.vars"]], bckg.cat.vars.new.names)), collapse = " + ") } else { independent.variables.bckg <- paste(unlist(vars.list[["bckg.indep.cont.vars"]]), collapse = " + ") } } if(exists("independent.variables.PV") & exists("independent.variables.bckg")) { independent.variables <- do.call(cbind, independent.variables.PV) independent.variables <- cbind(independent.variables, independent.variables.bckg) independent.variables <- as.list(apply(X = independent.variables, MARGIN = 1, FUN = function(i) { paste(i, collapse = " + ") })) } else if(exists("independent.variables.PV") & !exists("independent.variables.bckg")) { independent.variables <- lapply(X = vars.list[["PV.root.indep"]], FUN = function(i) { as.list(grep(pattern = i, x = unlist(vars.list[["PV.names"]]), value = TRUE)) }) independent.variables <- do.call(cbind, independent.variables) independent.variables <- as.list(apply(X = independent.variables, MARGIN = 1, FUN = function(i) { paste(i, collapse = " + ") })) } else if(!exists("independent.variables.PV") & exists("independent.variables.bckg")) { if(exists("bckg.cat.vars.new.names")) { independent.variables <- paste(unlist(Filter(Negate(is.null), c(vars.list["bckg.indep.cont.vars"], bckg.cat.vars.new.names))), collapse = " + ") } else { independent.variables <- paste(unlist(Filter(Negate(is.null), vars.list["bckg.indep.cont.vars"])), collapse = " + ") } } if(is.character(independent.variables)) { regression.formula <- paste(c(bin.dep.var, independent.variables), collapse = " ~ ") } else if(is.list(independent.variables)) { regression.formula <- Map(f = paste, bin.dep.var, independent.variables, sep = " ~ ") } rep.wgts.names <- paste(c("REPWGT", unlist(lapply(X = design.weight.variables[grep("rep.wgts", names(design.weight.variables), value = TRUE)], FUN = function(i) { unique(gsub(pattern = "[[:digit:]]*$", replacement = "", x = i)) }))), collapse = "|") rep.wgts.names <- grep(pattern = rep.wgts.names, x = names(data), value = TRUE) all.weights <- c(vars.list[["weight.var"]], rep.wgts.names) if(norm.weight == TRUE) { data[ , (all.weights) := lapply(.SD, function(i) { length(i) * i / sum(i) }), .SDcols = all.weights] } cnt.start.time <- format(Sys.time(), format = "%Y-%m-%d %H:%M:%OS3") if(include.missing == FALSE) { data1 <- na.omit(object = copy(data), cols = key.vars) if(!is.null(vars.list[["pcts.var"]])) { percentages <- na.omit(data1[ , c(.(na.omit(unique(get(vars.list[["pcts.var"]])))), Map(f = wgt.pct, variable = .(get(vars.list[["pcts.var"]])), weight = mget(all.weights))), by = eval(vars.list[["group.vars"]])]) number.of.cases <- na.omit(data1[eval(parse(text = vars.list[["weight.var"]])) > 0, .(n_Cases = .N), by = key.vars]) sum.of.weights <- na.omit(data1[ , lapply(.SD, sum), by = key.vars, .SDcols = all.weights]) } else { percentages <- na.omit(data1[ , c(.(na.omit(unique(get(key.vars)))), Map(f = wgt.pct, variable = .(get(key.vars)), weight = mget(all.weights)))]) number.of.cases <- na.omit(data1[ , .(n_Cases = .N), by = key.vars]) sum.of.weights <- na.omit(data1[ , lapply(.SD, sum), by = key.vars, .SDcols = all.weights]) } } else if (include.missing == TRUE) { data1 <- copy(data) if(!is.null(vars.list[["pcts.var"]])) { percentages <- data1[ , c(.(na.omit(unique(get(vars.list[["pcts.var"]])))), Map(f = wgt.pct, variable = .(get(vars.list[["pcts.var"]])), weight = mget(all.weights))), by = eval(vars.list[["group.vars"]])] number.of.cases <- data1[eval(parse(text = vars.list[["weight.var"]])) > 0, .(n_Cases = .N), by = key.vars] sum.of.weights <- data1[ , lapply(.SD, sum), by = key.vars, .SDcols = all.weights] } else { percentages <- data[ , c(.(na.omit(unique(get(key.vars)))), Map(f = wgt.pct, variable = .(get(key.vars)), weight = mget(all.weights)))] number.of.cases <- data[ , .(n_Cases = .N), by = key.vars] sum.of.weights <- data[ , lapply(.SD, sum), by = key.vars, .SDcols = all.weights] } } percentages <- list(percentages) sum.of.weights <- list(sum.of.weights) if(!is.null(vars.list[["pcts.var"]])) { reshape.list.statistics.bckg(estimate.object = percentages, estimate.name = "Percentages_", bckg.vars.vector = vars.list[["pcts.var"]], weighting.variable = vars.list[["weight.var"]], data.key.variables = key.vars, new.names.vector = vars.list[["pcts.var"]], replication.weights = rep.wgts.names, study.name = file.attributes[["lsa.study"]], SE.design = shortcut) } else { reshape.list.statistics.bckg(estimate.object = percentages, estimate.name = "Percentages_", bckg.vars.vector = NULL, weighting.variable = vars.list[["weight.var"]], data.key.variables = key.vars, new.names.vector = key.vars, replication.weights = rep.wgts.names, study.name = file.attributes[["lsa.study"]], SE.design = shortcut) } percentages <- rbindlist(percentages) if(nrow(number.of.cases) > nrow(percentages)) { percentages <- merge(number.of.cases[ , mget(key.vars)], percentages, all.x = TRUE) percentages[ , (grep(pattern = "Percentages_[[:alnum:]]+$", x = colnames(percentages), value = TRUE)) := lapply(.SD, function(i){i[is.na(i)] <- 100; i}), .SDcols = grep(pattern = "Percentages_[[:alnum:]]+$", x = colnames(percentages), value = TRUE)] percentages[ , (grep(pattern = "Percentages_[[:alnum:]]+_SE$", x = colnames(percentages), value = TRUE)) := lapply(.SD, function(i){i[is.na(i)] <- 0; i}), .SDcols = grep(pattern = "Percentages_[[:alnum:]]+_SE$", x = colnames(percentages), value = TRUE)] } reshape.list.statistics.bckg(estimate.object = sum.of.weights, estimate.name = "Sum_", weighting.variable = vars.list[["weight.var"]], data.key.variables = key.vars, new.names.vector = vars.list[["weight.var"]], replication.weights = rep.wgts.names, study.name = file.attributes[["lsa.study"]], SE.design = shortcut) if(!is.null(vars.list[["PV.root.indep"]])) { PV.names.to.split.by <- transpose(vars.list[["PV.names"]]) PV.names.to.keep <- lapply(X = PV.names.to.split.by, FUN = function(i) { grep(pattern = paste(c(key.vars, i, vars.list[["bin.dep.var"]], vars.list[["bckg.indep.cont.vars"]], vars.list[["bckg.indep.cat.vars"]], all.weights, vars.list[["jk.zones"]], vars.list[["rep.ind"]]), collapse = "|"), x = colnames(data1), value = TRUE) }) data1 <- lapply(X = PV.names.to.keep, FUN = function(i) { data1[ , mget(i)] }) } if(is.null(vars.list[["PV.root.indep"]])) { if(exists("bckg.cat.vars.new.names")) { bckg.regression <- list(compute.logistic.regression.all.repwgt(data.object = data1, vars.vector = c(vars.list[["bin.dep.var"]], vars.list[["bckg.indep.cont.vars"]], bckg.cat.vars.new.names), weight.var = all.weights, keys = key.vars, reg.formula = regression.formula)) } else { bckg.regression <- list(compute.logistic.regression.all.repwgt(data.object = data1, vars.vector = c(vars.list[["bin.dep.var"]], vars.list[["bckg.indep.cont.vars"]]), weight.var = all.weights, keys = key.vars, reg.formula = regression.formula)) } lapply(X = bckg.regression, FUN = function(i) { setnames(x = i, old = "V1", new = "Variable") }) } else if(!is.null(vars.list[["PV.root.indep"]])) { PV.regression <- list(lapply(X = seq_along(data1), FUN = function(i) { compute.logistic.regression.all.repwgt(data.object = data1[[i]], vars.vector = grep(pattern = paste(c(vars.list[["PV.root.indep"]], vars.list[["bin.dep.var"]], vars.list[["bckg.indep.cont.vars"]], vars.list[["bckg.indep.cat.vars"]]), collapse = "|"), x = colnames(data1[[i]]), value = TRUE), weight.var = all.weights, keys = key.vars, reg.formula = regression.formula[[i]]) })) PV.regression["odds.ratios"] <- lapply(X = PV.regression, FUN = function(i) { lapply(X = i, function(j) { j <- j[V1 %in% grep(pattern = "_odds$", x = V1, value = TRUE)] j[ , V1 := gsub(pattern = "_odds$", replacement = "", x = V1)] }) }) PV.regression[1] <- lapply(X = PV.regression[1], FUN = function(i) { lapply(X = i, function(j) { j[!V1 %in% grep(pattern = "_odds$", x = V1, value = TRUE), ] }) }) PV.regression <- lapply(X = PV.regression, FUN = function(i) { lapply(X = i, FUN = function(j) { j[ , V1 := as.character(V1)] PV.values.names <- grep(pattern = paste(vars.list[["PV.root.indep"]], collapse = "|"), x = j[ , V1], value = TRUE) new.V1.values <- unname(sapply(X = j[ , V1], FUN = function(k) { ifelse(test = k %in% PV.values.names, yes = gsub(pattern = "[[:digit:]]+$", replacement = "", x = k), no = k) })) j[ , V1 := new.V1.values] if(exists("bckg.cat.vars.new.names")) { new.cat.indep.vars.vals <- unique(grep(pattern = paste(bckg.cat.vars.new.names, collapse = "|"), x = j[ , V1], value = TRUE)) if(file.attributes[["lsa.study"]] %in% c("PISA", "PISA for Development", "ICCS", "ICILS")) { PV.root.indep.names <- unique(gsub(pattern = "[[:digit:]]+", replacement = "N", x = grep(pattern = paste(vars.list[["PV.root.indep"]], collapse = "|"), x = j[ , V1], value = TRUE))) j[ , V1 := sapply(.SD, FUN = function(k) { ifelse(test = grepl(pattern = paste(vars.list[["PV.root.indep"]], collapse = "|"), x = k), yes = gsub(pattern = "[[:digit:]]+", replacement = "N", x = k), no = k) }), .SDcols = "V1"] j[ , V1 := factor(x = V1, levels = c("(Intercept)", PV.root.indep.names, vars.list[["bckg.indep.cont.vars"]], new.cat.indep.vars.vals, "null.deviance", "deviance", "df.null", "df.residual", "aic", "bic", "chi.square", "r2hl", "r2cs", "r2n"), labels = c("(Intercept)", PV.root.indep.names, vars.list[["bckg.indep.cont.vars"]], new.cat.indep.vars.vals, "null.deviance", "deviance", "df.null", "df.residual", "aic", "bic", "chi.square", "r2hl", "r2cs", "r2n"))] } else { j[ , V1 := factor(x = V1, levels = c("(Intercept)", vars.list[["PV.root.indep"]], vars.list[["bckg.indep.cont.vars"]], new.cat.indep.vars.vals, "null.deviance", "deviance", "df.null", "df.residual", "aic", "bic", "chi.square", "r2hl", "r2cs", "r2n"), labels = c("(Intercept)", vars.list[["PV.root.indep"]], vars.list[["bckg.indep.cont.vars"]], new.cat.indep.vars.vals, "null.deviance", "deviance", "df.null", "df.residual", "aic", "bic", "chi.square", "r2hl", "r2cs", "r2n"))] } } else { if(file.attributes[["lsa.study"]] %in% c("PISA", "PISA for Development", "ICCS", "ICILS")) { PV.root.indep.names <- unique(gsub(pattern = "[[:digit:]]+", replacement = "N", x = grep(pattern = paste(vars.list[["PV.root.indep"]], collapse = "|"), x = j[ , V1], value = TRUE))) j[ , V1 := sapply(.SD, FUN = function(k) { ifelse(test = grepl(pattern = paste(vars.list[["PV.root.indep"]], collapse = "|"), x = k), yes = gsub(pattern = "[[:digit:]]+", replacement = "N", x = k), no = k) }), .SDcols = "V1"] j[ , V1 := factor(x = V1, levels = c("(Intercept)", PV.root.indep.names, vars.list[["bckg.indep.cont.vars"]], "null.deviance", "deviance", "df.null", "df.residual", "aic", "bic", "chi.square", "r2hl", "r2cs", "r2n"), labels = c("(Intercept)", PV.root.indep.names, vars.list[["bckg.indep.cont.vars"]], "null.deviance", "deviance", "df.null", "df.residual", "aic", "bic", "chi.square", "r2hl", "r2cs", "r2n"))] } else { j[ , V1 := factor(x = V1, levels = c("(Intercept)", vars.list[["PV.root.indep"]], vars.list[["bckg.indep.cont.vars"]], "null.deviance", "deviance", "df.null", "df.residual", "aic", "bic", "chi.square", "r2hl", "r2cs", "r2n"), labels = c("(Intercept)", vars.list[["PV.root.indep"]], vars.list[["bckg.indep.cont.vars"]], "null.deviance", "deviance", "df.null", "df.residual", "aic", "bic", "chi.square", "r2hl", "r2cs", "r2n"))] } } setkeyv(x = j, cols = c(key.vars, "V1")) }) }) PV.regression <- lapply(X = PV.regression, FUN = function(i) { lapply(X = i, FUN = function(j) { setnames(x = j, old = c("V1", all.weights), new = c("Variable", paste0("V", 1:length(all.weights)))) }) }) } if(is.null(vars.list[["PV.root.indep"]])) { reshape.list.statistics.bckg(estimate.object = bckg.regression, estimate.name = "Coefficients", data.key.variables = key.vars, new.names.vector = "", bckg.vars.vector = vars.list[["bckg.indep.vars"]], weighting.variable = vars.list[["weight.var"]], replication.weights = rep.wgts.names, study.name = file.attributes[["lsa.study"]], SE.design = shortcut) bckg.regression <- bckg.regression[[1]] country.model.stats <- bckg.regression[Variable %in% c("null.deviance", "deviance", "df.null", "df.residual", "aic", "bic", "chi.square", "r2hl", "r2cs", "r2n"), ] setnames(x = country.model.stats, old = c("Variable", "Coefficients", "Coefficients_SE"), new = c("Statistic", "Estimate", "Estimate_SE")) bckg.regression <- bckg.regression[!Variable %in% c("null.deviance", "deviance", "df.null", "df.residual", "aic", "bic", "chi.square", "r2hl", "r2cs", "r2n"), ] } else if(!is.null(vars.list[["PV.root.indep"]])) { reshape.list.statistics.PV(estimate.object = PV.regression, estimate.name = "Coefficients", PV.vars.vector = "", weighting.variable = vars.list[["weight.var"]], replication.weights = rep.wgts.names, study.name = file.attributes[["lsa.study"]], SE.design = shortcut) lapply(X = PV.regression[["odds.ratios"]], FUN = function(i) { i[ , Variable := paste0(Variable, "_odds")] }) PV.regression <- lapply(X = PV.regression, FUN = function(i) { rbindlist(l = i, idcol = "DDD") }) PV.regression <- rbindlist(l = PV.regression) PV.regression <- split(x = PV.regression, by = "DDD") PV.regression <- list(lapply(X = PV.regression, FUN = function(i) { i[ , DDD := NULL] })) reset.coefficients.colnames <- function(input1, input2) { setnames(x = input1, old = grep(pattern = "^Coefficients$", x = colnames(input1), value = TRUE), new = paste0("Coefficients_", input2)) setnames(x = input1, old = grep(pattern = "^Coefficients_SumSq$", x = colnames(input1), value = TRUE), new = paste0("Coefficients_", input2, "_SumSq")) } PV.regression <- lapply(X = PV.regression, FUN = function(i) { list(Map(f = reset.coefficients.colnames, input1 = i, input2 = as.list(paste(vars.list[["bin.dep.var"]], 1:length(vars.list[["PV.names"]][[1]]), sep = "0"))))[[1]] }) PV.regression <- lapply(X = PV.regression, FUN = function(i) { Reduce(function(...) merge(...), i) }) aggregate.PV.estimates(estimate.object = PV.regression, estimate.name = "Coefficients_", root.PV = vars.list[["bin.dep.var"]], PV.vars.vector = paste(vars.list[["bin.dep.var"]], 1:length(vars.list[["PV.names"]][[1]]), sep = "0"), data.key.variables = c(key.vars, "Variable"), study.name = file.attributes[["lsa.study"]], SE.design = shortcut) if(file.attributes[["lsa.study"]] %in% c("PISA", "PISA for Development", "ICCS", "ICILS")) { lapply(X = PV.regression, FUN = function(i) { coefficient.cols <- grep(pattern = "^Coefficients_[[:graph:]]+$", x = colnames(i), value = TRUE) if(length(coefficient.cols) > 0) { main.coeff.col <- coefficient.cols[!coefficient.cols %in% grep(pattern = "_SE$|_SVR$|_MVR$", x = coefficient.cols, value = TRUE)] setnames(x = i, old = main.coeff.col, new = paste0("Coefficients_", vars.list[["bin.dep.var"]])) setnames(x = i, old = grep(pattern = "^Coefficients_[[:graph:]]+_SE$", x = colnames(i), value = TRUE), new = paste0("Coefficients_", vars.list[["bin.dep.var"]], "_SE")) setnames(x = i, old = grep(pattern = "^Coefficients_[[:graph:]]+_SVR$", x = colnames(i), value = TRUE), new = paste0("Coefficients_", vars.list[["bin.dep.var"]], "_SVR")) setnames(x = i, old = grep(pattern = "^Coefficients_[[:graph:]]+_MVR$", x = colnames(i), value = TRUE), new = paste0("Coefficients_", vars.list[["bin.dep.var"]], "_MVR")) } else { i } }) } PV.regression <- PV.regression[[1]] coeff.colnames <- grep(pattern = "^Coefficients_", x = colnames(PV.regression), value = TRUE) country.model.stats <- PV.regression[Variable %in% c("null.deviance", "deviance", "df.null", "df.residual", "aic", "bic", "chi.square", "r2hl", "r2cs", "r2n"), ] colnames(country.model.stats) <- gsub(pattern = paste(paste0("_", unlist(vars.list)), collapse = "|"), replacement = "", x = colnames(country.model.stats)) setnames(x = country.model.stats, old = c("Variable", "Coefficients", grep(pattern = "Coefficients_", x = colnames(country.model.stats), value = TRUE)), new = c("Statistic", "Estimate", gsub(pattern = "Coefficients_", replacement = "Estimate_", x = grep(pattern = "Coefficients_", x = colnames(country.model.stats), value = TRUE)))) PV.regression <- PV.regression[!Variable %in% c("null.deviance", "deviance", "df.null", "df.residual", "aic", "bic", "chi.square", "r2hl", "r2cs", "r2n"), ] merged.PV.estimates <- PV.regression PV.regression <- NULL } country.model.stats[ , Statistic := factor(x = Statistic, levels = c("null.deviance", "deviance", "df.null", "df.residual", "aic", "bic", "chi.square", "r2hl", "r2cs", "r2n"), labels = c("Null Deviance (-2LL)", "Deviance (-2LL)", "DF Null", "DF Residual", "AIC", "BIC", "Chi-Square", "R-Squared (Hosmer & Lemeshow)", "R-Squared (Cox & Snell)", "R-Squared (Nagelkerke)"))] setkeyv(x = country.model.stats, cols = c(key.vars, "Statistic")) cnt.model.name <- unique(country.model.stats[ , get(key.vars[1])]) model.stats[[cnt.model.name]] <<- country.model.stats country.analysis.info <- produce.analysis.info(cnt.ID = unique(data[ , get(key.vars[1])]), data = used.data, study = file.attributes[["lsa.study"]], cycle = file.attributes[["lsa.cycle"]], weight.variable = vars.list[["weight.var"]], rep.design = DESIGN, used.shortcut = shortcut, number.of.reps = rep.wgts.names, in.time = cnt.start.time) analysis.info[[country.analysis.info[ , COUNTRY]]] <<- country.analysis.info if("PV.root.indep" %in% names(vars.list) == FALSE) { merged.outputs <- Reduce(function(...) merge(..., all = TRUE), list(number.of.cases, sum.of.weights, percentages, bckg.regression)) } else if("PV.root.indep" %in% names(vars.list) == TRUE) { merged.outputs <- Reduce(function(...) merge(..., all = TRUE), list(number.of.cases, sum.of.weights, percentages, merged.PV.estimates)) colnames(merged.outputs) <- gsub(pattern = paste(paste0("Coefficients_", unlist(vars.list[["bin.dep.var"]])), collapse = "|"), replacement = "Coefficients", x = colnames(merged.outputs)) } merged.outputs[ , Wald_Statistic := Coefficients/Coefficients_SE] merged.outputs[ , Wald_Statistic := lapply(.SD, function(i) { ifelse(test = is.infinite(i), yes = NA, no = i) }), .SDcols = "Wald_Statistic"] merged.outputs[ , p_value := 2 * pnorm(q = abs(Wald_Statistic), lower.tail = FALSE)] merged.outputs[ , (c("Wald_Statistic", "p_value")) := lapply(.SD, function(i) { ifelse(test = is.na(i), yes = NaN, no = i) }), .SDcols = c("Wald_Statistic", "p_value")] odds.ratios.estimates <- merged.outputs[Variable %in% grep(pattern = "_odds$", x = Variable, value = TRUE), mget(c(key.vars, "Variable", "Coefficients", "Coefficients_SE"))] odds.ratios.estimates[ , Variable := droplevels(Variable)] setnames(x = odds.ratios.estimates, old = c("Coefficients", "Coefficients_SE"), new = c("Odds_Ratio", "Odds_Ratio_SE")) odds.ratios.estimates[ , Variable := gsub(pattern = "_odds$", replacement = "", x = Variable)] setkeyv(x = odds.ratios.estimates, cols = c(key.vars, "Variable")) merged.outputs <- merged.outputs[!Variable %in% grep(pattern = "_odds$", x = Variable, value = TRUE), ] merged.outputs[ , Variable := droplevels(Variable)] setkeyv(x = merged.outputs, cols = c(key.vars, "Variable")) merged.outputs <- merge(x = merged.outputs, y = odds.ratios.estimates) merged.outputs[ , Wald_L95CI := Coefficients - qnorm(0.975) * Coefficients_SE] merged.outputs[ , Wald_U95CI := Coefficients + qnorm(0.975) * Coefficients_SE] merged.outputs[ , Odds_L95CI := exp(Wald_L95CI)] merged.outputs[ , Odds_U95CI := exp(Wald_U95CI)] odds.ratios.estimates <- NULL counter <<- counter + 1 message(" ", if(nchar(counter) == 1) { paste0("( ", counter, "/", number.of.countries, ") ") } else if(nchar(counter) == 2) { paste0("(", counter, "/", number.of.countries, ") ") }, paste0(str_pad(string = unique(merged.outputs[[1]]), width = 40, side = "right"), " processed in ", country.analysis.info[ , DURATION])) return(merged.outputs) } estimates <- rbindlist(lapply(X = data, FUN = compute.all.stats)) estimates[ , colnames(estimates)[1] := as.character(estimates[ , get(colnames(estimates)[1])])] setkeyv(x = estimates, cols = key.vars) total.exec.time <- rbindlist(analysis.info)[ , DURATION] total.exec.time.millisec <- sum(as.numeric(str_extract(string = total.exec.time, pattern = "[[:digit:]]{3}$")))/1000 total.exec.time <- sum(as.ITime(total.exec.time), total.exec.time.millisec) if(length(unique(estimates[ , get(key.vars[1])])) > 1) { message("\nAll ", length(unique(estimates[ , get(key.vars[1])])), " countries with valid data processed in ", format(as.POSIXct("0001-01-01 00:00:00") + total.exec.time - 1, "%H:%M:%OS3")) } else { message("") } ptm.add.table.average <- proc.time() estimates <- compute.table.average(output.obj = estimates, object.variables = vars.list, data.key.variables = c(key.vars, "Variable"), data.properties = file.attributes) estimates[eval(parse(text = colnames(estimates)[1])) == "Table Average", Wald_Statistic := Coefficients/Coefficients_SE] estimates[eval(parse(text = colnames(estimates)[1])) == "Table Average", p_value := 2 * pnorm(q = abs(Wald_Statistic), lower.tail = FALSE)] if(standardize == TRUE) { if(!is.null(vars.list[["PV.names"]])) { estimates[Variable == "(Intercept)", (c("Coefficients", "Coefficients_SE", "Coefficients_SVR", "Coefficients_MVR", "Wald_Statistic", "p_value")) := NaN] } else { estimates[Variable == "(Intercept)", (c("Coefficients", "Coefficients_SE", "Wald_Statistic", "p_value")) := NaN] } } message('"Table Average" added to the estimates in ', format(as.POSIXct("0001-01-01 00:00:00") + {proc.time() - ptm.add.table.average}[[3]], "%H:%M:%OS3")) ptm.add.model.stats <- proc.time() model.stats <- rbindlist(l = model.stats) setkeyv(x = model.stats, cols = c(key.vars, "Statistic")) model.stats <- compute.table.average(output.obj = model.stats, object.variables = vars.list, data.key.variables = c(key.vars, "Statistic"), data.properties = file.attributes) model.stats[eval(parse(text = colnames(model.stats)[1])) == "Table Average" & Statistic %in% c("Null Deviance (-2LL)", "Deviance (-2LL)", "DF Null", "DF Residual"), Estimate := NaN] model.stats[eval(parse(text = colnames(model.stats)[1])) == "Table Average" & Statistic %in% c("Null Deviance (-2LL)", "Deviance (-2LL)", "DF Null", "DF Residual"), Estimate_SE := NaN] message('\nModel statistics table assembled in ', format(as.POSIXct("0001-01-01 00:00:00") + {proc.time() - ptm.add.model.stats}[[3]], "%H:%M:%OS3"), "\n") export.results(output.object = estimates, analysis.type = action.args.list[["executed.analysis.function"]], model.stats.obj = model.stats, analysis.info.obj = rbindlist(l = analysis.info), destination.file = output.file, open.exported.file = open.output) if(exists("removed.countries.where.any.split.var.is.all.NA") && length(removed.countries.where.any.split.var.is.all.NA) > 0) { warning('Some of the countries had one or more splitting variables which contains only missing values. These countries are: "', paste(removed.countries.where.any.split.var.is.all.NA, collapse = '", "'), '".', call. = FALSE) } }, interrupt = function(f) { message("\nInterrupted by the user. Computations are not finished and output file is not produced.\n") }) vars.list.analysis.vars <- grep(pattern = "split.vars|bckg.dep.var|bckg.indep.cont.vars|bckg.indep.cat.vars", x = names(vars.list), value = TRUE) vars.list.analysis.vars <- unlist(vars.list[vars.list.analysis.vars]) vars.list.analysis.vars <- grep(pattern = paste(unique(unlist(studies.all.design.variables)), collapse = "|"), x = vars.list.analysis.vars, value = TRUE) if(length(vars.list.analysis.vars) > 0) { warning('Some of the variables specified as analysis variables (in "split.vars" and/or background variables - dependent or independent) are design variables (sampling variables or PVs). This kind of variables shall not be used for analysis. Check your input.', call. = FALSE) } if(length(warnings.collector) > 0) { if(!is.null(warnings.collector[["ref.cat.set.default"]])) { warning(warnings.collector[["ref.cat.set.default"]], call. = FALSE) } if(!is.null(warnings.collector[["contrast.cat.set.default"]])) { warning(warnings.collector[["contrast.cat.set.default"]], call. = FALSE) } if(!is.null(warnings.collector[["countries.with.all.NA.vars"]])) { warning(warnings.collector[["countries.with.all.NA.vars"]], call. = FALSE) } if(!is.null(warnings.collector[["countries.with.constant.cat.vars"]])) { warning(warnings.collector[["countries.with.constant.cat.vars"]], call. = FALSE) } } }
htmlH4 <- function(children=NULL, id=NULL, n_clicks=NULL, n_clicks_timestamp=NULL, key=NULL, role=NULL, accessKey=NULL, className=NULL, contentEditable=NULL, contextMenu=NULL, dir=NULL, draggable=NULL, hidden=NULL, lang=NULL, spellCheck=NULL, style=NULL, tabIndex=NULL, title=NULL, loading_state=NULL, ...) { wildcard_names = names(dash_assert_valid_wildcards(attrib = list('data', 'aria'), ...)) props <- list(children=children, id=id, n_clicks=n_clicks, n_clicks_timestamp=n_clicks_timestamp, key=key, role=role, accessKey=accessKey, className=className, contentEditable=contentEditable, contextMenu=contextMenu, dir=dir, draggable=draggable, hidden=hidden, lang=lang, spellCheck=spellCheck, style=style, tabIndex=tabIndex, title=title, loading_state=loading_state, ...) if (length(props) > 0) { props <- props[!vapply(props, is.null, logical(1))] } component <- list( props = props, type = 'H4', namespace = 'dash_html_components', propNames = c('children', 'id', 'n_clicks', 'n_clicks_timestamp', 'key', 'role', 'accessKey', 'className', 'contentEditable', 'contextMenu', 'dir', 'draggable', 'hidden', 'lang', 'spellCheck', 'style', 'tabIndex', 'title', 'loading_state', wildcard_names), package = 'dashHtmlComponents' ) structure(component, class = c('dash_component', 'list')) }
clean_points <- function(coord, merge_dist, coord_col = c("Lon", "Lat"), filter_layer = NULL, na.rm = FALSE ) { coord_only <- if (ncol(coord) > 2) coord[coord_col] else {if (na.rm == TRUE) coord[!is.na(coord$Lon) | !is.na(coord$Lat),] else coord} dist_mat <- raster::pointDistance(coord_only, lonlat = TRUE, allpairs = TRUE) < merge_dist diag(dist_mat) <- NA logical_dist <- colSums(dist_mat, na.rm = TRUE) == 0 logical_raster <- if (!is.null(filter_layer)) { raster::extract(filter_layer, coord_only) == 1 } else TRUE coord_clean <- coord[logical_dist & logical_raster,] rbind(n_entries_species = nrow(coord), n_entries_clean = nrow(coord_clean)) %>% message return(coord_clean) } utils::globalVariables(".")
ensembleMOS <- function(ensembleData, trainingDays, consecutive = FALSE, dates = NULL, control = NULL, warmStart = FALSE, model = NULL, exchangeable = NULL) { if (!inherits(ensembleData,"ensembleData")) stop("not an ensembleData object") mc <- match.call() mc$model <- NULL if (!is.null(model)) { switch( model, "normal" = { mc[[1]] <- as.name("ensembleMOSnormal") }, "truncnormal" = { mc[[1]] <- as.name("ensembleMOStruncnormal") }, "lognormal" = { mc[[1]] <- as.name("ensembleMOSlognormal") }, "csg0" = { mc[[1]] <- as.name("ensembleMOScsg0") }, "gev0" = { mc[[1]] <- as.name("ensembleMOSgev0") }, stop("unrecognized model") ) } else stop("unspecified model") if (length(attr(ensembleData, "class")) > 2) { attr(ensembleData, "class") <- attr(ensembleData, "class")[-1] mc$ensembleData <- ensembleData } eval(mc, parent.frame()) }
context("Expected input arguments and output in getModelFitness") models <- modelPop(nPop=15, numVar=6, longitudinal=FALSE, consMatrix = matrix(c(1, 2), 1, 2)) test_that("Incorrect/missing input arguments yields errors in getModelFitness", { expect_error(getModelFitness(theData=NULL, allModelString=models, longitudinal=FALSE, co="covariance", mixture=FALSE), "Data cannot be missing") expect_error(getModelFitness(theData=1:10, allModelString=models, longitudinal=FALSE, co="covariance", mixture=FALSE), "Data should be either a data frame or a matrix of numerical values.") expect_error(getModelFitness(theData=c("a", "b"), allModelString=models, longitudinal=FALSE, co="covariance", mixture=FALSE), "Data should be either a data frame or a matrix of numerical values.") expect_error(getModelFitness(theData=data.frame(letter=letters[1:3], number=1:3), allModelString=models, longitudinal=FALSE, co="covariance", mixture=FALSE), "Data should be either a data frame or a matrix of numerical values.") expect_error(getModelFitness(theData=crossdata6V, allModelString=1:3, longitudinal=FALSE, co="covariance", mixture=FALSE), "Argument allModelString should be formed in a matrix.") expect_error(getModelFitness(theData=crossdata6V, allModelString=NULL, longitudinal=FALSE, co="covariance", mixture=FALSE), "Argument allModelString cannot be missing.") expect_error(getModelFitness(theData=crossdata6V, allModelString=models, longitudinal=NULL, co="covariance", mixture=FALSE), "Argument longitudinal cannot be missing.") expect_error(getModelFitness(theData=crossdata6V, allModelString=models, longitudinal=1:3, co="covariance", mixture=FALSE), "Argument longitudinal should be either logical TRUE or FALSE.") expect_error(getModelFitness(theData=crossdata6V, allModelString=models, longitudinal=FALSE, co="covariance", mixture=1:3), "Argument mixture should be either logical TRUE or FALSE.") expect_error(getModelFitness(theData=crossdata6V, allModelString=models, longitudinal=FALSE, co="wrongString", mixture=FALSE), "Argument co should be either covariance or correlation matrix.") expect_error(getModelFitness(theData=crossdata6V, allModelString=models, longitudinal=FALSE, co=20, mixture=FALSE), "Argument co should be a string of characters, e.g., either covariance or correlation.") }) test_that("Correct input arguments yield expected output in modelFitness.", { skip_on_cran() result <- getModelFitness(theData=crossdata6V, allModelString=models, longitudinal=FALSE, co="covariance", mixture=FALSE) expect_true(is.matrix(result)) expect_equal(nrow(result), nrow(models)) expect_equal(ncol(result), ncol(models) + 2) })
makeDataList <- function(dat, J, ntrt, uniqtrt, t0, bounds = NULL, ...) { n <- nrow(dat) dataList <- vector(mode = "list", length = ntrt + 1) rankftime <- match(dat$ftime, sort(unique(dat$ftime))) dataList[[1]] <- dat[rep(1:nrow(dat), rankftime), ] for (j in J) { dataList[[1]][[paste0("N", j)]] <- 0 dataList[[1]][[paste0("N", j)]][cumsum(rankftime)] <- as.numeric(dat$ftype == j) } dataList[[1]]$C <- 0 dataList[[1]]$C[cumsum(rankftime)] <- as.numeric(dat$ftype == 0) n.row.ii <- nrow(dataList[[1]]) uniqftime <- unique(dat$ftime) orduniqftime <- uniqftime[order(uniqftime)] row.names(dataList[[1]])[row.names(dataList[[1]]) %in% paste(row.names(dat))] <- paste0(row.names(dat), ".0") dataList[[1]]$t <- orduniqftime[as.numeric(paste(unlist(strsplit( row.names(dataList[[1]]), ".", fixed = TRUE ))[seq(2, n.row.ii * 2, 2)])) + 1] if (!is.null(bounds)) { boundFormat <- data.frame(t = bounds$t) for (j in J) { if (paste("l", j, sep = "") %in% colnames(bounds)) { boundFormat[[paste0("l", j)]] <- bounds[, paste0("l", j)] } else { boundFormat[[paste0("l", j)]] <- 0 } if (paste("u", j, sep = "") %in% names(bounds)) { boundFormat[[paste0("u", j)]] <- bounds[, paste0("u", j)] } else { boundFormat[[paste0("u", j)]] <- 1 } } suppressMessages( dataList[[1]] <- plyr::join( x = dataList[[1]], y = boundFormat, type = "left" ) ) for (j in J) { tmp <- is.na(dataList[[1]][, paste0("l", j)]) dataList[[1]][tmp, paste0("l", j)] <- 0 tmp <- is.na(dataList[[1]][, paste0("u", j)]) dataList[[1]][tmp, paste0("u", j)] <- 1 } } else { for (j in J) { dataList[[1]][[paste0("l", j)]] <- 0 dataList[[1]][[paste0("u", j)]] <- 1 } } for (i in seq_len(ntrt)) { dataList[[i + 1]] <- dat[sort(rep(1:nrow(dat), t0)), ] dataList[[i + 1]]$t <- rep(1:t0, n) for (j in J) { typejEvents <- dat$id[which(dat$ftype == j)] dataList[[i + 1]][[paste0("N", j)]] <- 0 dataList[[i + 1]][[paste0("N", j)]][dataList[[i + 1]]$id %in% typejEvents & dataList[[i + 1]]$t >= dataList[[i + 1]]$ftime] <- 1 } censEvents <- dat$id[which(dat$ftype == 0)] dataList[[i + 1]]$C <- 0 dataList[[i + 1]]$C[dataList[[i + 1]]$id %in% censEvents & dataList[[i + 1]]$t >= dataList[[i + 1]]$ftime] <- 1 dataList[[i + 1]]$trt <- uniqtrt[i] dataList[[i + 1]]$ftime <- t0 if (!is.null(bounds)) { suppressMessages( dataList[[i + 1]] <- plyr::join( x = dataList[[i + 1]], y = boundFormat, type = "left" ) ) for (j in J) { tmp <- is.na(dataList[[i + 1]][, paste0("l", j)]) dataList[[i + 1]][tmp, paste0("l", j)] <- 0 tmp <- is.na(dataList[[i + 1]][, paste0("u", j)]) dataList[[i + 1]][tmp, paste0("u", j)] <- 1 } } else { for (j in J) { dataList[[i + 1]][[paste0("l", j)]] <- .Machine$double.eps dataList[[i + 1]][[paste0("u", j)]] <- 1 - .Machine$double.eps } } } names(dataList) <- c("obs", uniqtrt) return(dataList) }
rm(list = ls()) source("helper.R") context("test-spamlist.R") test_that("spam.list", { spamtest_eq(spam( list(ind=numeric(0), j=numeric(0), numeric(0)),nrow=4,ncol=3), spam(0,4,3),rel=FALSE) i <- c(1,2,3,4,5) j <- c(5,4,3,2,1) ss3 <- spam(0,5,5) ss3[cbind(i,j)] <- i/j spamtest_eq(spam.list(list(i=i,j=j,i/j)), ss3) pad(ss3) <- c(13,13) spamtest_eq(spam.list(list(i=i,j=j,i/j),13,13), ss3) pad(ss3) <- c(3,3) spamtest_eq(spam.list(list(i=i,j=j,i/j),3,3), ss3) pad(ss3) <- c(2,2) spamtest_eq(spam.list(list(i=i,j=j,i/j),2,2), ss3,rel=F) spamtest_eq({options(spam.listmethod='EP'); spam.list(list(i=i,j=j,i/j),ncol=3)}, {options(spam.listmethod='BS'); method='BS';spam.list(list(i=i,j=j,i/j),ncol=3)}) spamtest_eq({options(spam.listmethod='EP'); spam.list(list(i=i,j=j,i/j),ncol=3,nrow=4)}, {options(spam.listmethod='BS'); spam.list(list(i=i,j=j,i/j),ncol=3,nrow=4)}) spamtest_eq(spam.list(list(i=i,j=j,i/j),ncol=1,nrow=1), 0,rel=F) set.seed(2011) m = 1000 rmax = 30 cmax = 40 i = floor(runif(m) * rmax) + 1 j = floor(runif(m) * cmax) + 1 val = floor(10 * runif(m)) + 1 options(spam.listmethod='EP') ss1 <- spam.list(list(i=i,j=j,val)) options(spam.listmethod='BS') ss2 <- spam.list(list(i=i,j=j,val)) spamtest_eq(ss1,ss2,rel=F) }) test_that("spam with list", { spamtest_eq(spam( list(ind=numeric(0), j=numeric(0), numeric(0)),nrow=4,ncol=3), spam(0,4,3),rel=FALSE) i <- c(1,2,3,4,5) j <- c(5,4,3,2,1) ss3 <- spam(0,5,5) ss3[cbind(i,j)] <- i/j spamtest_eq(spam(list(i=i,j=j,i/j)), ss3) pad(ss3) <- c(13,13) spamtest_eq(spam(list(i=i,j=j,i/j),13,13), ss3) pad(ss3) <- c(3,3) spamtest_eq(spam(list(i=i,j=j,i/j),3,3), ss3) pad(ss3) <- c(2,2) spamtest_eq(spam(list(i=i,j=j,i/j),2,2), ss3,rel=F) spamtest_eq({options(spam.listmethod='EP'); spam(list(i=i,j=j,i/j),ncol=3)}, {options(spam.listmethod='BS'); method='BS';spam(list(i=i,j=j,i/j),ncol=3)}) spamtest_eq({options(spam.listmethod='EP'); spam(list(i=i,j=j,i/j),ncol=3,nrow=4)}, {options(spam.listmethod='BS'); spam(list(i=i,j=j,i/j),ncol=3,nrow=4)}) spamtest_eq(spam(list(i=i,j=j,i/j),ncol=1,nrow=1), 0,rel=F) set.seed(2011) m = 1000 rmax = 30 cmax = 40 i = floor(runif(m) * rmax) + 1 j = floor(runif(m) * cmax) + 1 val = floor(10 * runif(m)) + 1 options(spam.listmethod='EP') ss1 <- spam(list(i=i,j=j,val)) options(spam.listmethod='BS') ss2 <- spam(list(i=i,j=j,val)) spamtest_eq(ss1,ss2,rel=F) })
library("testthat") library("SuperLearner") set.seed(4747) p <- 2 n <- 5e4 x <- replicate(p, stats::rnorm(n, 0, 1)) x_df <- as.data.frame(x) y <- 1 + 0.5 * x[, 1] + 0.75 * x[, 2] + stats::rnorm(n, 0, 1) true_var <- mean((y - mean(y)) ^ 2) r2_one <- 0.5 ^ 2 * 1 / true_var r2_two <- 0.75 ^ 2 * 1 / true_var folds <- sample(rep(seq_len(2), length = length(y))) y_1 <- y[folds == 1] y_2 <- y[folds == 2] x_1 <- subset(x_df, folds == 1) x_2 <- subset(x_df, folds == 2) learners <- c("SL.glm") V <- 2 set.seed(1234) full_fit_1 <- SuperLearner::SuperLearner(Y = y_1, X = x_1, SL.library = learners, cvControl = list(V = V)) full_fitted_1 <- SuperLearner::predict.SuperLearner(full_fit_1)$pred full_fit_2 <- SuperLearner::SuperLearner(Y = y_2, X = x_2, SL.library = learners, cvControl = list(V = V)) full_fitted_2 <- SuperLearner::predict.SuperLearner(full_fit_2)$pred reduced_fit_1 <- SuperLearner::SuperLearner(Y = full_fitted_2, X = x_2[, -2, drop = FALSE], SL.library = learners, cvControl = list(V = V)) reduced_fitted_1 <- SuperLearner::predict.SuperLearner(reduced_fit_1)$pred reduced_fit_2 <- SuperLearner::SuperLearner(Y = full_fitted_1, X = x_1[, -1, drop = FALSE], SL.library = learners, cvControl = list(V = V)) reduced_fitted_2 <- SuperLearner::predict.SuperLearner(reduced_fit_2)$pred set.seed(4747) test_that("Merging variable importance estimates works", { est_1 <- vim(Y = y, f1 = full_fitted_1, f2 = reduced_fitted_1, run_regression = FALSE, indx = 2, type = "r_squared", sample_splitting_folds = folds) expect_warning(est_2 <- vim(Y = y, f1 = full_fitted_2, f2 = reduced_fitted_2, run_regression = FALSE, indx = 1, type = "r_squared", sample_splitting_folds = folds)) merged_ests <- merge_vim(est_1, est_2) expect_equal(merged_ests$est[1], r2_two, tolerance = 0.2, scale = 1) expect_equal(merged_ests$est[2], r2_one, tolerance = 0.4, scale = 1) expect_output(print(merged_ests), "Estimate", fixed = TRUE) }) test_that("Merging cross-validated variable importance estimates works", { est_1 <- cv_vim(Y = y, X = x_df, run_regression = TRUE, indx = 2, V = V, cvControl = list(V = V), SL.library = learners, env = environment(), na.rm = TRUE) est_2 <- cv_vim(Y = y, X = x_df, run_regression = TRUE, indx = 1, V = V, cvControl = list(V = V), SL.library = learners, env = environment(), na.rm = TRUE) merged_ests <- merge_vim(est_1, est_2) expect_equal(merged_ests$est[1], r2_two, tolerance = 0.1, scale = 1) expect_equal(merged_ests$est[2], r2_one, tolerance = 0.1, scale = 1) expect_output(print(merged_ests), "Estimate", fixed = TRUE) })
NULL col_is_logical <- function(x, columns, actions = NULL, step_id = NULL, label = NULL, brief = NULL, active = TRUE) { preconditions <- NULL values <- NULL columns_expr <- rlang::as_label(rlang::quo(!!enquo(columns))) %>% gsub("^\"|\"$", "", .) columns <- rlang::enquo(columns) columns <- resolve_columns(x = x, var_expr = columns, preconditions = NULL) if (is_a_table_object(x)) { secret_agent <- create_agent(x, label = "::QUIET::") %>% col_is_logical( columns = columns, label = label, brief = brief, actions = prime_actions(actions), active = active ) %>% interrogate() return(x) } agent <- x if (is.null(brief)) { brief <- generate_autobriefs( agent, columns, preconditions, values, "col_is_logical" ) } step_id <- normalize_step_id(step_id, columns, agent) i_o <- get_next_validation_set_row(agent) check_step_id_duplicates(step_id, agent) for (i in seq(columns)) { agent <- create_validation_step( agent = agent, assertion_type = "col_is_logical", i_o = i_o, columns_expr = columns_expr, column = columns[i], preconditions = NULL, actions = covert_actions(actions, agent), step_id = step_id[i], label = label, brief = brief[i], active = active ) } agent } expect_col_is_logical <- function(object, columns, threshold = 1) { fn_name <- "expect_col_is_logical" vs <- create_agent(tbl = object, label = "::QUIET::") %>% col_is_logical( columns = {{ columns }}, actions = action_levels(notify_at = threshold) ) %>% interrogate() %>% .$validation_set x <- vs$notify threshold_type <- get_threshold_type(threshold = threshold) if (threshold_type == "proportional") { failed_amount <- vs$f_failed } else { failed_amount <- vs$n_failed } if (length(x) > 1 && any(x)) { fail_idx <- which(x)[1] failed_amount <- failed_amount[fail_idx] x <- TRUE } else { x <- any(x) fail_idx <- 1 } if (inherits(vs$capture_stack[[1]]$warning, "simpleWarning")) { warning(conditionMessage(vs$capture_stack[[1]]$warning)) } if (inherits(vs$capture_stack[[1]]$error, "simpleError")) { stop(conditionMessage(vs$capture_stack[[1]]$error)) } act <- testthat::quasi_label(enquo(x), arg = "object") column_text <- prep_column_text(vs$column[[fail_idx]]) col_type <- "logical" testthat::expect( ok = identical(!as.vector(act$val), TRUE), failure_message = glue::glue( failure_message_gluestring( fn_name = fn_name, lang = "en" ) ) ) act$val <- object invisible(act$val) } test_col_is_logical <- function(object, columns, threshold = 1) { vs <- create_agent(tbl = object, label = "::QUIET::") %>% col_is_logical( columns = {{ columns }}, actions = action_levels(notify_at = threshold) ) %>% interrogate() %>% .$validation_set if (inherits(vs$capture_stack[[1]]$warning, "simpleWarning")) { warning(conditionMessage(vs$capture_stack[[1]]$warning)) } if (inherits(vs$capture_stack[[1]]$error, "simpleError")) { stop(conditionMessage(vs$capture_stack[[1]]$error)) } all(!vs$notify) }
blrtest <- function(z, H, r){ if(!(class(z)=="ca.jo")){ stop("\nPlease, provide object of class 'ca.jo' as 'z'.\n") } if(r >= z@P || r < 1){ stop("\nCount of cointegrating relationships is out of allowable range.\n") } if(z@ecdet == "none"){ P <- z@P }else{ P <- z@P + 1 } r <- as.integer(r) H <- as.matrix(H) if(!(nrow(H)==P)){ stop("\nRow number of 'H' is unequal to VAR order.\n") } type <- "Estimation and testing under linear restrictions on beta" N <- nrow(z@Z0) M00 <- crossprod(z@Z0)/N M11 <- crossprod(z@Z1)/N MKK <- crossprod(z@ZK)/N M01 <- crossprod(z@Z0, z@Z1)/N M0K <- crossprod(z@Z0, z@ZK)/N MK0 <- crossprod(z@ZK, z@Z0)/N M10 <- crossprod(z@Z1, z@Z0)/N M1K <- crossprod(z@Z1, z@ZK)/N MK1 <- crossprod(z@ZK, z@Z1)/N M11inv <- solve(M11) S00 <- M00 - M01%*%M11inv%*%M10 S0K <- M0K - M01%*%M11inv%*%M1K SK0 <- MK0 - MK1%*%M11inv%*%M10 SKK <- MKK - MK1%*%M11inv%*%M1K Ctemp <- chol(t(H)%*%SKK%*%H, pivot=TRUE) pivot <- attr(Ctemp, "pivot") oo <- order(pivot) C <- t(Ctemp[,oo]) Cinv <- solve(C) S00inv <- solve(S00) valeigen <- eigen(Cinv%*%t(H)%*%SK0%*%S00inv%*%S0K%*%H%*%t(Cinv)) e <- valeigen$vector V <- H%*%t(Cinv)%*%e Vorg <- V idx <- ncol(V) V <- sapply(1:idx, function(x) V[,x]/V[1,x]) W <- S0K%*%V%*%solve(t(V)%*%SKK%*%V) PI <- W %*% t(V) DELTA <- S00 - S0K%*%V%*%solve(t(V)%*%SKK%*%V)%*%t(V)%*%SK0 GAMMA <- M01%*%M11inv - PI%*%MK1%*%M11inv lambda.res <- valeigen$values lambda <- z@lambda teststat <- N*sum(log((1-lambda.res[1:r])/(1-lambda[1:r]))) df <- r*(P - ncol(H)) pval <- c(1-pchisq(teststat, df), df) new("cajo.test", Z0=z@Z0, Z1=z@Z1, ZK=z@ZK, ecdet=z@ecdet, H=H, A=NULL, B=NULL, type=type, teststat=teststat, pval=pval, lambda=lambda.res, Vorg=Vorg, V=V, W=W, PI=PI, DELTA=DELTA, DELTA.bb=NULL, DELTA.ab=NULL, DELTA.aa.b=NULL, GAMMA=GAMMA, test.name="Johansen-Procedure") }
mediate_contY_contM=function(data, outcome="Y", mediator="M", exposure="X", covariateY=c("X1","X2"), covariateM=c("X1","X2"),x0=0,x1=1) { data = as.data.frame(data) if (is.null(covariateY)) { formula_Y=as.formula(paste(outcome,"~",exposure,"+",mediator,sep="")) } else { formula_Y=as.formula(paste(outcome,"~",exposure,"+",mediator,"+",paste(covariateY,collapse="+"),sep="")) } if (is.null(covariateM)) { formula_M=as.formula(paste(mediator,"~",exposure,sep="")) } else { formula_M=as.formula(paste(mediator,"~",exposure,"+",paste(covariateM,collapse="+"),sep="")) } model_Y=summary(lm(formula_Y,data=data)) model_M=summary(lm(formula_M,data=data)) beta=model_Y$coef[,1];cov_beta=model_Y$cov.unscaled gamma=model_M$coef[,1];cov_gamma=model_M$cov.unscaled nbeta=dim(cov_beta)[1];ngamma=dim(cov_gamma)[1] S=matrix(0,ncol=nbeta+ngamma,nrow=nbeta+ngamma) S[1:ngamma,1:ngamma]=cov_gamma; S[(ngamma+1):(nbeta+ngamma),(ngamma+1):(nbeta+ngamma)]=cov_beta colnames(S)=rownames(S)=c(paste(names(gamma),"_gamma",sep=""),paste(names(beta),"_beta",sep="")) if (is.null(covariateY)==0) { names(cY) = paste(names(beta),"_betafix",sep="")[-c(1:3)] beta_c=paste("beta_",covariateY,sep="") } if (is.null(covariateM)==0) { names(cM) = paste(names(gamma),"_gammafix",sep="")[-c(1:2)] gamma_c=paste("gamma_",covariateM,sep="") } NIEa_fun = function() { output = "beta2*gamma1*(x1-x0)" return(output) } variable=c("gamma0","gamma1",if(is.null(covariateM)==0) {gamma_c},"beta0","beta1","beta2",if(is.null(covariateY)==0) {beta_c}) NIEa_D=deriv(parse(text=NIEa_fun()),variable) gamma0=gamma[1];gamma1=gamma[2]; if(is.null(covariateM)==0) { for (i in (1:length(covariateM))) {assign(gamma_c[i],gamma[2+i])} } beta0=beta[1];beta1=beta[2];beta2=beta[3] if(is.null(covariateY)==0) { for (i in (1:length(covariateY))) {assign(beta_c[i],beta[3+i])} } TEa_fun = function() { output = "(beta2*gamma1+beta1)*(x1-x0)" return(output) } TEa_D=deriv(parse(text=TEa_fun()),variable) PMa_fun = function() { .UP = "beta2*gamma1" .BOT = "beta2*gamma1+beta1" output=paste("(",.UP,")/(",.BOT,")") return(output) } PMa_D=deriv(parse(text=PMa_fun()),variable) NIEa_D = eval(NIEa_D) NIEa_p = NIEa_D[1] lambda= t(attr(NIEa_D,"gradient")) V_NIEa = as.vector(t(lambda) %*% S %*% lambda) TEa_D = eval(TEa_D) TEa_p = TEa_D[1] lambda= t(attr(TEa_D,"gradient")) V_TEa = as.vector(t(lambda) %*% S %*% lambda) PMa_D = eval(PMa_D) PMa_p = PMa_D[1] lambda= t(attr(PMa_D,"gradient")) V_PMa = as.vector(t(lambda) %*% S %*% lambda) point_est = c(NIEa_p,TEa_p,PMa_p); names(point_est)=c("NIE","TE","PM") var_est = c(V_NIEa,V_TEa,V_PMa); names(var_est)=c("NIE","TE","PM") sd_est = sqrt(var_est) names(sd_est)=c("NIE","TE","PM") ci_est = rbind(point_est-1.96*sd_est,point_est+1.96*sd_est) rownames(ci_est) = c("Lower boundary","Upper boundary") return(list(point_est=point_est,var_est=var_est,sd_est=sd_est,ci_est=ci_est)) } Mediate_contY_contM_bootci=function(data, outcome="Y", mediator="M", exposure="X", covariateY=c("X1","X2"), covariateM=c("X1","X2"), x0=0,x1=1,R=1000) { data = as.data.frame(data) get_par_boot=function(data=data,indices) { data=data[indices,] if (is.null(covariateY)) { formula_Y=as.formula(paste(outcome,"~",exposure,"+",mediator,sep="")) } else { formula_Y=as.formula(paste(outcome,"~",exposure,"+",mediator,"+",paste(covariateY,collapse="+"),sep="")) } if (is.null(covariateM)) { formula_M=as.formula(paste(mediator,"~",exposure,sep="")) } else { formula_M=as.formula(paste(mediator,"~",exposure,"+",paste(covariateM,collapse="+"),sep="")) } model_Y=summary(lm(formula_Y,data=data)) model_M=summary(lm(formula_M,data=data)) beta=model_Y$coef[,1];cov_beta=model_Y$cov.unscaled gamma=model_M$coef[,1];cov_gamma=model_M$cov.unscaled nbeta=dim(cov_beta)[1];ngamma=dim(cov_gamma)[1] S=matrix(0,ncol=nbeta+ngamma,nrow=nbeta+ngamma) S[1:ngamma,1:ngamma]=cov_gamma; S[(ngamma+1):(nbeta+ngamma),(ngamma+1):(nbeta+ngamma)]=cov_beta colnames(S)=rownames(S)=c(paste(names(gamma),"_gamma",sep=""),paste(names(beta),"_beta",sep="")) if (is.null(covariateY)==0) { names(cY) = paste(names(beta),"_betafix",sep="")[-c(1:3)] beta_c=paste("beta_",covariateY,sep="") } if (is.null(covariateM)==0) { names(cM) = paste(names(gamma),"_gammafix",sep="")[-c(1:2)] gamma_c=paste("gamma_",covariateM,sep="") } NIEa_fun = function() { output = "beta2*gamma1*(x1-x0)" return(output) } variable=c("gamma0","gamma1",if(is.null(covariateM)==0) {gamma_c},"beta0","beta1","beta2",if(is.null(covariateY)==0) {beta_c}) gamma0=gamma[1];gamma1=gamma[2]; if(is.null(covariateM)==0) { for (i in (1:length(covariateM))) {assign(gamma_c[i],gamma[2+i])} } beta0=beta[1];beta1=beta[2];beta2=beta[3] if(is.null(covariateY)==0) { for (i in (1:length(covariateY))) {assign(beta_c[i],beta[3+i])} } TEa_fun = function() { output = "(beta2*gamma1+beta1)*(x1-x0)" return(output) } PMa_fun = function() { .UP = "beta2*gamma1*(x1-x0)" .BOT = "(beta2*gamma1+beta1)*(x1-x0)" output=paste("(",.UP,")/(",.BOT,")") return(output) } NIEa_p = eval(parse(text=NIEa_fun())) TEa_p = eval(parse(text=TEa_fun())) PMa_p = eval(parse(text=PMa_fun())) point_est = c(NIEa_p,TEa_p,PMa_p); names(point_est)=c("NIE","TE","PM") return(point_est) } boot.par=boot::boot(data=data, statistic=get_par_boot, R=R) boot.parciNIEa <- boot::boot.ci(boot.par, index=1, type=c("perc")) boot.parciTEa <- boot::boot.ci(boot.par, index=2, type=c("perc")) boot.parciPMa <- boot::boot.ci(boot.par, index=3, type=c("perc")) ci_est_prec = c(boot.parciNIEa$percent[4:5], boot.parciTEa$percent[4:5], boot.parciPMa$percent[4:5]) names(ci_est_prec)=c(paste(rep("CI_",6),rep(c("NIE","TE","PM"),each=2),rep(c("_Low","_High"),times=3),sep="")) return(ci_est_prec) } mediate_contY_binaM=function(data, outcome="Y", mediator="M", exposure="X", covariateY=c("X1","X2","X3","X4","X5","X6","X7","X8"), covariateM=c("X1","X2","X3","X4","X5","X6","X7"), x0=0,x1=1,cY=c(0,0),cM=c(0,0)) { data = as.data.frame(data) if (is.null(covariateY)) { formula_Y=as.formula(paste(outcome,"~",exposure,"+",mediator,sep="")) } else { formula_Y=as.formula(paste(outcome,"~",exposure,"+",mediator,"+",paste(covariateY,collapse="+"),sep="")) } if (is.null(covariateM)) { formula_M=as.formula(paste(mediator,"~",exposure,sep="")) } else { formula_M=as.formula(paste(mediator,"~",exposure,"+",paste(covariateM,collapse="+"),sep="")) } model_Y=summary(lm(formula_Y,data=data)) model_M=summary(glm(formula_M,family=binomial(link="logit"),data=data)) beta=model_Y$coef[,1];cov_beta=model_Y$cov.unscaled gamma=model_M$coef[,1];cov_gamma=model_M$cov.unscaled nbeta=dim(cov_beta)[1];ngamma=dim(cov_gamma)[1] S=matrix(0,ncol=nbeta+ngamma,nrow=nbeta+ngamma) S[1:ngamma,1:ngamma]=cov_gamma; S[(ngamma+1):(nbeta+ngamma),(ngamma+1):(nbeta+ngamma)]=cov_beta colnames(S)=rownames(S)=c(paste(names(gamma),"_gamma",sep=""),paste(names(beta),"_beta",sep="")) if (is.null(covariateY)==0) { names(cY) = paste(names(beta),"_betafix",sep="")[-c(1:3)] beta_c=paste("beta_",covariateY,sep="") } if (is.null(covariateM)==0) { names(cM) = paste(names(gamma),"_gammafix",sep="")[-c(1:2)] gamma_c=paste("gamma_",covariateM,sep="") } .A = paste("exp(gamma0+gamma1*",x0,if(is.null(covariateM)==0) { paste("+",paste(paste(gamma_c,"*",cM),collapse = "+"))} ,")") .B= paste("exp(beta2+gamma0+gamma1*",x1,if(is.null(covariateM)==0) { paste("+",paste(paste(gamma_c,"*",cM),collapse = "+"))} ,")") NIEa_fun = function() { output=paste("beta2*((",.A,")/(1+",.A,")-(",.B,")/(1+",.B,"))") return(output) } variable=c("gamma0","gamma1",if(is.null(covariateM)==0) {gamma_c},"beta0","beta1","beta2",if(is.null(covariateY)==0) {beta_c}) NIEa_D=deriv(parse(text=NIEa_fun()),variable) gamma0=gamma[1];gamma1=gamma[2]; if(is.null(covariateM)==0) { for (i in (1:length(covariateM))) {assign(gamma_c[i],gamma[2+i])} } beta0=beta[1];beta1=beta[2];beta2=beta[3] if(is.null(covariateY)==0) { for (i in (1:length(covariateY))) {assign(beta_c[i],beta[3+i])} } TEa_fun = function() { output = paste("beta1*",x1-x0,"+","beta2*((",.A,")/(1+",.A,")-(",.B,")/(1+",.B,"))") return(output) } TEa_D=deriv(parse(text=TEa_fun()),variable) PMa_fun = function() { .UP = paste("beta2*((",.A,")/(1+",.A,")-(",.B,")/(1+",.B,"))") .BOT = paste("beta1*",x1-x0,"+","beta2*((",.A,")/(1+",.A,")-(",.B,")/(1+",.B,"))") output=paste("(",.UP,")/(",.BOT,")") return(output) } PMa_D=deriv(parse(text=PMa_fun()),variable) NIEa_D = eval(NIEa_D) NIEa_p = NIEa_D[1] lambda= t(attr(NIEa_D,"gradient")) V_NIEa = as.vector(t(lambda) %*% S %*% lambda) TEa_D = eval(TEa_D) TEa_p = TEa_D[1] lambda= t(attr(TEa_D,"gradient")) V_TEa = as.vector(t(lambda) %*% S %*% lambda) PMa_D = eval(PMa_D) PMa_p = PMa_D[1] lambda= t(attr(PMa_D,"gradient")) V_PMa = as.vector(t(lambda) %*% S %*% lambda) point_est = c(NIEa_p,TEa_p,PMa_p); names(point_est)=c("NIE","TE","PM") var_est = c(V_NIEa,V_TEa,V_PMa); names(var_est)=c("NIE","TE","PM") sd_est = sqrt(var_est) names(sd_est)=c("NIE","TE","PM") ci_est = rbind(point_est-1.96*sd_est,point_est+1.96*sd_est) rownames(ci_est) = c("Lower boundary","Upper boundary") return(list(point_est=point_est,var_est=var_est,sd_est=sd_est,ci_est=ci_est)) } Mediate_contY_binaM_bootci=function(data, outcome="Y", mediator="M", exposure="X", covariateY=c("X1","X2"), covariateM=c("X1","X2"), x0=0,x1=1,cY=c(0,0),cM=c(0,0),R=1000) { data = as.data.frame(data) get_par_boot=function(data=data,indices) { data=data[indices,] if (is.null(covariateY)) { formula_Y=as.formula(paste(outcome,"~",exposure,"+",mediator,sep="")) } else { formula_Y=as.formula(paste(outcome,"~",exposure,"+",mediator,"+",paste(covariateY,collapse="+"),sep="")) } if (is.null(covariateM)) { formula_M=as.formula(paste(mediator,"~",exposure,sep="")) } else { formula_M=as.formula(paste(mediator,"~",exposure,"+",paste(covariateM,collapse="+"),sep="")) } model_Y=summary(lm(formula_Y,data=data)) model_M=summary(glm(formula_M,family=binomial(link="logit"),data=data)) beta=model_Y$coef[,1];cov_beta=model_Y$cov.unscaled gamma=model_M$coef[,1];cov_gamma=model_M$cov.unscaled nbeta=dim(cov_beta)[1];ngamma=dim(cov_gamma)[1] S=matrix(0,ncol=nbeta+ngamma,nrow=nbeta+ngamma) S[1:ngamma,1:ngamma]=cov_gamma; S[(ngamma+1):(nbeta+ngamma),(ngamma+1):(nbeta+ngamma)]=cov_beta colnames(S)=rownames(S)=c(paste(names(gamma),"_gamma",sep=""),paste(names(beta),"_beta",sep="")) if (is.null(covariateY)==0) { names(cY) = paste(names(beta),"_betafix",sep="")[-c(1:3)] beta_c=paste("beta_",covariateY,sep="") } if (is.null(covariateM)==0) { names(cM) = paste(names(gamma),"_gammafix",sep="")[-c(1:2)] gamma_c=paste("gamma_",covariateM,sep="") } .A = paste("exp(gamma0+gamma1*",x0,if(is.null(covariateM)==0) { paste("+",paste(paste(gamma_c,"*",cM),collapse = "+"))} ,")") .B= paste("exp(beta2+gamma0+gamma1*",x1,if(is.null(covariateM)==0) { paste("+",paste(paste(gamma_c,"*",cM),collapse = "+"))} ,")") NIEa_fun = function() { output = paste("beta2*((",.A,")/(1+",.A,")-(",.B,")/(1+",.B,"))") return(output) } variable=c("gamma0","gamma1",if(is.null(covariateM)==0) {gamma_c},"beta0","beta1","beta2",if(is.null(covariateY)==0) {beta_c}) gamma0=gamma[1];gamma1=gamma[2]; if(is.null(covariateM)==0) { for (i in (1:length(covariateM))) {assign(gamma_c[i],gamma[2+i])} } beta0=beta[1];beta1=beta[2];beta2=beta[3] if(is.null(covariateY)==0) { for (i in (1:length(covariateY))) {assign(beta_c[i],beta[3+i])} } TEa_fun = function() { output = paste("beta1*",x1-x0,"+","beta2*((",.A,")/(1+",.A,")-(",.B,")/(1+",.B,"))") return(output) } PMa_fun = function() { .UP = paste("beta2*((",.A,")/(1+",.A,")-(",.B,")/(1+",.B,"))") .BOT = paste("beta1*",x1-x0,"+","beta2*((",.A,")/(1+",.A,")-(",.B,")/(1+",.B,"))") output=paste("(",.UP,")/(",.BOT,")") return(output) } NIEa_p = eval(parse(text=NIEa_fun())) TEa_p = eval(parse(text=TEa_fun())) PMa_p = eval(parse(text=PMa_fun())) point_est = c(NIEa_p,TEa_p,PMa_p); names(point_est)=c("NIE","TE","PM") return(point_est) } boot.par=boot::boot(data=data, statistic=get_par_boot, R=R) boot.parciNIEa <- boot::boot.ci(boot.par, index=1, type=c("perc")) boot.parciTEa <- boot::boot.ci(boot.par, index=2, type=c("perc")) boot.parciPMa <- boot::boot.ci(boot.par, index=3, type=c("perc")) ci_est_prec = c(boot.parciNIEa$percent[4:5], boot.parciTEa$percent[4:5], boot.parciPMa$percent[4:5]) names(ci_est_prec)=c(paste(rep("CI_",6),rep(c("NIE","TE","PM"),each=2),rep(c("_Low","_High"),times=3),sep="")) return(ci_est_prec) } mediate_binaY_contM=function(data, outcome="Y", mediator="M", exposure="X", covariateY=c("X1","X2","X3","X4","X5","X6","X7","X8"), covariateM=c("X1","X2","X3","X4","X5","X6","X7"), x0=0,x1=1,cY=c(0,0),cM=c(0,0)) { data = as.data.frame(data) HermiteCoefs=function (order) { x <- 1 if (order > 0) for (n in 1:order) x <- c(0, 2 * x) - c(((0:(n - 1)) * x)[-1L], 0, 0) return(x) } gauss.hermite=function (f, mu = 0, sd = 1, ..., order = 5) { stopifnot(is.function(f)) stopifnot(length(mu) == 1) stopifnot(length(sd) == 1) Hn <- HermiteCoefs(order) Hn1 <- HermiteCoefs(order - 1) x <- sort(Re(polyroot(Hn))) Hn1x <- matrix(Hn1, nrow = 1) %*% t(outer(x, 0:(order - 1), "^")) w <- 2^(order - 1) * factorial(order) * sqrt(pi)/(order * Hn1x)^2 ww <- w/sqrt(pi) xx <- mu + sd * sqrt(2) * x ans <- 0 for (i in seq_along(x)) ans <- ans + ww[i] * f(xx[i], ...) return(ans) } mygrad=function (f, x0,heps = 1e-5, ...) { if (!is.numeric(x0)) stop("Argument 'x0' must be a numeric value.") fun <- match.fun(f) f <- function(x) fun(x, ...) p =length(f(x0)) n <- length(x0) hh <- rep(0, n) gr <- matrix(0,nrow=n,ncol=p) for (i in 1:n) { hh[i] <- heps gr[i,] <- (f(x0 + hh) - f(x0 - hh))/(2 * heps) hh[i] <- 0 } return(gr) } NIE_unbiased = function(theta,loc_gamma_0=loc_gamma_0,loc_gamma_c=loc_gamma_c,loc_beta_0=loc_beta_0,loc_beta_c=loc_beta_c, x0s=x0s,x1=x1,cY=cY,cM=cM) { gamma0 = theta[1] gamma1 = theta[2] gamma_c = theta[loc_gamma_c] beta0 = theta[loc_beta_0[1]] beta1 = theta[loc_beta_0[2]] beta2 = theta[loc_beta_0[3]] beta_c = theta[loc_beta_c] sigma2 = theta[length(theta)] if (is.null(loc_beta_c)) { f11 = function(x) {exp(beta0+beta1*x1+beta2*x)/(1+exp(beta0+beta1*x1+beta2*x))} f10 = function(x) {exp(beta0+beta1*x1+beta2*x)/(1+exp(beta0+beta1*x1+beta2*x))} } else { f11 = function(x) {exp(beta0+beta1*x1+beta2*x+sum(beta_c*cY))/(1+exp(beta0+beta1*x1+beta2*x+sum(beta_c*cY)))} f10 = function(x) {exp(beta0+beta1*x1+beta2*x+sum(beta_c*cY))/(1+exp(beta0+beta1*x1+beta2*x+sum(beta_c*cY)))} } if (is.null(loc_gamma_c)) { p11s= gauss.hermite(f=f11,mu=gamma0+gamma1*x1,sd=sqrt(sigma2),order=40) p10s= gauss.hermite(f=f10,mu=gamma0+gamma1*x0s,sd=sqrt(sigma2),order=40) } else { p11s= gauss.hermite(f=f11,mu=gamma0+gamma1*x1+sum(gamma_c*cM),sd=sqrt(sigma2),order=40) p10s= gauss.hermite(f=f10,mu=gamma0+gamma1*x0s+sum(gamma_c*cM),sd=sqrt(sigma2),order=40) } output = log((p11s)/(1-p11s)) - log((p10s)/(1-p10s)) return(output) } TE_unbiased = function(theta,loc_gamma_0=loc_gamma_0,loc_gamma_c=loc_gamma_c,loc_beta_0=loc_beta_0,loc_beta_c=loc_beta_c, x0s=x0s,x1=x1,cY=cY,cM=cM) { gamma0 = theta[1] gamma1 = theta[2] gamma_c = theta[loc_gamma_c] beta0 = theta[loc_beta_0[1]] beta1 = theta[loc_beta_0[2]] beta2 = theta[loc_beta_0[3]] beta_c = theta[loc_beta_c] sigma2 = theta[length(theta)] if (is.null(loc_beta_c)) { f11 = function(x) {exp(beta0+beta1*x1+beta2*x)/(1+exp(beta0+beta1*x1+beta2*x))} f00 = function(x) {exp(beta0+beta1*x0s+beta2*x)/(1+exp(beta0+beta1*x0s+beta2*x))} } else { f11 = function(x) {exp(beta0+beta1*x1+beta2*x+sum(beta_c*cY))/(1+exp(beta0+beta1*x1+beta2*x+sum(beta_c*cY)))} f00 = function(x) {exp(beta0+beta1*x0s+beta2*x+sum(beta_c*cY))/(1+exp(beta0+beta1*x0s+beta2*x+sum(beta_c*cY)))} } if (is.null(loc_gamma_c)) { p11s= gauss.hermite(f=f11,mu=gamma0+gamma1*x1,sd=sqrt(sigma2),order=40) p00s= gauss.hermite(f=f00,mu=gamma0+gamma1*x0s,sd=sqrt(sigma2),order=40) } else { p11s= gauss.hermite(f=f11,mu=gamma0+gamma1*x1+sum(gamma_c*cM),sd=sqrt(sigma2),order=40) p00s= gauss.hermite(f=f00,mu=gamma0+gamma1*x0s+sum(gamma_c*cM),sd=sqrt(sigma2),order=40) } output = log((p11s)/(1-p11s)) - log((p00s)/(1-p00s)) return(output) } PM_unbiased=function(theta,loc_gamma_0=loc_gamma_0,loc_gamma_c=loc_gamma_c,loc_beta_0=loc_beta_0,loc_beta_c=loc_beta_c, x0s=x0s,x1=x1,cY=cY,cM=cM) { gamma0 = theta[1] gamma1 = theta[2] gamma_c = theta[loc_gamma_c] beta0 = theta[loc_beta_0[1]] beta1 = theta[loc_beta_0[2]] beta2 = theta[loc_beta_0[3]] beta_c = theta[loc_beta_c] sigma2 = theta[length(theta)] if (is.null(loc_beta_c)) { f11 = function(x) {exp(beta0+beta1*x1+beta2*x)/(1+exp(beta0+beta1*x1+beta2*x))} f10 = function(x) {exp(beta0+beta1*x1+beta2*x)/(1+exp(beta0+beta1*x1+beta2*x))} f00 = function(x) {exp(beta0+beta1*x0s+beta2*x)/(1+exp(beta0+beta1*x0s+beta2*x))} } else { f11 = function(x) {exp(beta0+beta1*x1+beta2*x+sum(beta_c*cY))/(1+exp(beta0+beta1*x1+beta2*x+sum(beta_c*cY)))} f10 = function(x) {exp(beta0+beta1*x1+beta2*x+sum(beta_c*cY))/(1+exp(beta0+beta1*x1+beta2*x+sum(beta_c*cY)))} f00 = function(x) {exp(beta0+beta1*x0s+beta2*x+sum(beta_c*cY))/(1+exp(beta0+beta1*x0s+beta2*x+sum(beta_c*cY)))} } if (is.null(loc_gamma_c)) { p11s= gauss.hermite(f=f11,mu=gamma0+gamma1*x1,sd=sqrt(sigma2),order=40) p10s= gauss.hermite(f=f10,mu=gamma0+gamma1*x0s,sd=sqrt(sigma2),order=40) p00s= gauss.hermite(f=f00,mu=gamma0+gamma1*x0s,sd=sqrt(sigma2),order=40) } else { p11s= gauss.hermite(f=f11,mu=gamma0+gamma1*x1+sum(gamma_c*cM),sd=sqrt(sigma2),order=40) p10s= gauss.hermite(f=f10,mu=gamma0+gamma1*x0s+sum(gamma_c*cM),sd=sqrt(sigma2),order=40) p00s= gauss.hermite(f=f00,mu=gamma0+gamma1*x0s+sum(gamma_c*cM),sd=sqrt(sigma2),order=40) } te = log((p11s)/(1-p11s)) - log((p00s)/(1-p00s)) nie = log((p11s)/(1-p11s)) - log((p10s)/(1-p10s)) return(nie/te) } if (is.null(covariateY)) { formula_Y=as.formula(paste(outcome,"~",exposure,"+",mediator,sep="")) } else { formula_Y=as.formula(paste(outcome,"~",exposure,"+",mediator,"+",paste(covariateY,collapse="+"),sep="")) } if (is.null(covariateM)) { formula_M=as.formula(paste(mediator,"~",exposure,sep="")) } else { formula_M=as.formula(paste(mediator,"~",exposure,"+",paste(covariateM,collapse="+"),sep="")) } model_Y=summary(glm(formula_Y,family=binomial(link="logit"),data=data)) model_M=summary(lm(formula_M,data=data)) beta=model_Y$coef[,1];cov_beta=model_Y$cov.unscaled gamma=model_M$coef[,1];cov_gamma=model_M$cov.unscaled nbeta=dim(cov_beta)[1];ngamma=dim(cov_gamma)[1] S=matrix(0,ncol=nbeta+ngamma,nrow=nbeta+ngamma) S[1:ngamma,1:ngamma]=cov_gamma; S[(ngamma+1):(nbeta+ngamma),(ngamma+1):(nbeta+ngamma)]=cov_beta colnames(S)=rownames(S)=c(paste(names(gamma),"_gamma",sep=""),paste(names(beta),"_beta",sep="")) NIE=beta[3]*gamma[2] V_NIE = gamma[2]^2 * cov_beta[3,3] + beta[3]^2 * cov_gamma[2,2] TE = beta[2]+beta[3]*gamma[2] lambda = matrix(c(0,beta[3],rep(0,length(covariateM)),0,1,gamma[2],rep(0,length(covariateY))),ncol=1) V_TE=as.vector(t(lambda) %*% S %*% lambda) lambda = matrix(c(0,beta[2]*beta[3]/(beta[2]+beta[3]*gamma[2])^2,rep(0,length(covariateM)),0,-beta[3]*gamma[2]/(beta[2]+beta[3]*gamma[2])^2,beta[2]*gamma[2]/(beta[2]+beta[3]*gamma[2])^2,rep(0,length(covariateY))),ncol=1) PM = beta[3]*gamma[2]/(beta[2]+beta[3]*gamma[2]) V_PM=as.vector(t(lambda) %*% S %*% lambda) sigma2=model_M$sigma var_sigma2=2*model_M$sigma^2*(1/model_M$df[2]) theta=c(gamma,beta,sigma2) S=matrix(0,ncol=nbeta+ngamma+1,nrow=nbeta+ngamma+1) S[1:ngamma,1:ngamma]=cov_gamma; S[(ngamma+1):(nbeta+ngamma),(ngamma+1):(nbeta+ngamma)]=cov_beta S[(nbeta+ngamma+1),(nbeta+ngamma+1)]=var_sigma2 colnames(S)=rownames(S)=c(paste(names(gamma),"_gamma",sep=""),paste(names(beta),"_beta",sep=""),"sigma2_M") loc_gamma_0 = 1:2 loc_gamma_c = 3:(3+length(covariateM)-1) loc_beta_0 = (ngamma+1):(ngamma+3) loc_beta_c = (ngamma+4):(ngamma+4+length(covariateY)-1) if (is.null(covariateM)) {loc_gamma_c=NULL} if (is.null(covariateY)) {loc_beta_c=NULL} x0s=x0 NIE_nonrare_p = NIE_unbiased(theta=theta,loc_gamma_0=loc_gamma_0,loc_gamma_c=loc_gamma_c,loc_beta_0=loc_beta_0,loc_beta_c=loc_beta_c, x0s=x0s,x1=x1,cY=cY,cM=cM) lambda= mygrad(NIE_unbiased,x0=theta,loc_gamma_0=loc_gamma_0,loc_gamma_c=loc_gamma_c,loc_beta_0=loc_beta_0,loc_beta_c=loc_beta_c, x0s=x0s,x1=x1,cY=cY,cM=cM) V_NIE_nonrare = as.vector(t(lambda) %*% S %*% lambda) TE_nonrare_p = TE_unbiased(theta=theta,loc_gamma_0=loc_gamma_0,loc_gamma_c=loc_gamma_c,loc_beta_0=loc_beta_0,loc_beta_c=loc_beta_c, x0s=x0s,x1=x1,cY=cY,cM=cM) lambda= mygrad(TE_unbiased,x0=theta,loc_gamma_0=loc_gamma_0,loc_gamma_c=loc_gamma_c,loc_beta_0=loc_beta_0,loc_beta_c=loc_beta_c, x0s=x0s,x1=x1,cY=cY,cM=cM) V_TE_nonrare = as.vector(t(lambda) %*% S %*% lambda) PM_nonrare_p = PM_unbiased(theta=theta,loc_gamma_0=loc_gamma_0,loc_gamma_c=loc_gamma_c,loc_beta_0=loc_beta_0,loc_beta_c=loc_beta_c, x0s=x0s,x1=x1,cY=cY,cM=cM) lambda= mygrad(PM_unbiased,x0=theta,loc_gamma_0=loc_gamma_0,loc_gamma_c=loc_gamma_c,loc_beta_0=loc_beta_0,loc_beta_c=loc_beta_c, x0s=x0s,x1=x1,cY=cY,cM=cM) V_PM_nonrare = as.vector(t(lambda) %*% S %*% lambda) point_est = c(NIE,TE,PM,NIE_nonrare_p,TE_nonrare_p,PM_nonrare_p); names(point_est)=c("NIE","TE","PM","NIE_nonrare","TE_nonrare","PM_nonrare") var_est = c(V_NIE,V_TE,V_PM,V_NIE_nonrare,V_TE_nonrare,V_PM_nonrare); names(var_est)=c("NIE","TE","PM","NIE_nonrare","TE_nonrare","PM_nonrare") sd_est = sqrt(var_est) names(sd_est)=c("NIE","TE","PM","NIE_nonrare","TE_nonrare","PM_nonrare") ci_est = rbind(point_est-1.96*sd_est,point_est+1.96*sd_est) rownames(ci_est) = c("Lower boundary","Upper boundary") return(list(point_est=point_est,var_est=var_est,sd_est=sd_est,ci_est=ci_est)) } Mediate_binaY_contM_bootci=function(data, outcome="Y", mediator="M", exposure="X", covariateY=c("X1","X2"), covariateM=c("X1","X2"), x0=0,x1=1,cY=c(0,0),cM=c(0,0),R=1000) { HermiteCoefs=function (order) { x <- 1 if (order > 0) for (n in 1:order) x <- c(0, 2 * x) - c(((0:(n - 1)) * x)[-1L], 0, 0) return(x) } gauss.hermite=function (f, mu = 0, sd = 1, ..., order = 5) { stopifnot(is.function(f)) stopifnot(length(mu) == 1) stopifnot(length(sd) == 1) Hn <- HermiteCoefs(order) Hn1 <- HermiteCoefs(order - 1) x <- sort(Re(polyroot(Hn))) Hn1x <- matrix(Hn1, nrow = 1) %*% t(outer(x, 0:(order - 1), "^")) w <- 2^(order - 1) * factorial(order) * sqrt(pi)/(order * Hn1x)^2 ww <- w/sqrt(pi) xx <- mu + sd * sqrt(2) * x ans <- 0 for (i in seq_along(x)) ans <- ans + ww[i] * f(xx[i], ...) return(ans) } mygrad=function (f, x0,heps = 1e-5, ...) { if (!is.numeric(x0)) stop("Argument 'x0' must be a numeric value.") fun <- match.fun(f) f <- function(x) fun(x, ...) p =length(f(x0)) n <- length(x0) hh <- rep(0, n) gr <- matrix(0,nrow=n,ncol=p) for (i in 1:n) { hh[i] <- heps gr[i,] <- (f(x0 + hh) - f(x0 - hh))/(2 * heps) hh[i] <- 0 } return(gr) } NIE_unbiased = function(theta,loc_gamma_0=loc_gamma_0,loc_gamma_c=loc_gamma_c,loc_beta_0=loc_beta_0,loc_beta_c=loc_beta_c, x0s=x0s,x1=x1,cY=cY,cM=cM) { gamma0 = theta[1] gamma1 = theta[2] gamma_c = theta[loc_gamma_c] beta0 = theta[loc_beta_0[1]] beta1 = theta[loc_beta_0[2]] beta2 = theta[loc_beta_0[3]] beta_c = theta[loc_beta_c] sigma2 = theta[length(theta)] if (is.null(loc_beta_c)) { f11 = function(x) {exp(beta0+beta1*x1+beta2*x)/(1+exp(beta0+beta1*x1+beta2*x))} f10 = function(x) {exp(beta0+beta1*x1+beta2*x)/(1+exp(beta0+beta1*x1+beta2*x))} } else { f11 = function(x) {exp(beta0+beta1*x1+beta2*x+sum(beta_c*cY))/(1+exp(beta0+beta1*x1+beta2*x+sum(beta_c*cY)))} f10 = function(x) {exp(beta0+beta1*x1+beta2*x+sum(beta_c*cY))/(1+exp(beta0+beta1*x1+beta2*x+sum(beta_c*cY)))} } if (is.null(loc_gamma_c)) { p11s= gauss.hermite(f=f11,mu=gamma0+gamma1*x1,sd=sqrt(sigma2),order=40) p10s= gauss.hermite(f=f10,mu=gamma0+gamma1*x0s,sd=sqrt(sigma2),order=40) } else { p11s= gauss.hermite(f=f11,mu=gamma0+gamma1*x1+sum(gamma_c*cM),sd=sqrt(sigma2),order=40) p10s= gauss.hermite(f=f10,mu=gamma0+gamma1*x0s+sum(gamma_c*cM),sd=sqrt(sigma2),order=40) } output = log((p11s)/(1-p11s)) - log((p10s)/(1-p10s)) return(output) } TE_unbiased = function(theta,loc_gamma_0=loc_gamma_0,loc_gamma_c=loc_gamma_c,loc_beta_0=loc_beta_0,loc_beta_c=loc_beta_c, x0s=x0s,x1=x1,cY=cY,cM=cM) { gamma0 = theta[1] gamma1 = theta[2] gamma_c = theta[loc_gamma_c] beta0 = theta[loc_beta_0[1]] beta1 = theta[loc_beta_0[2]] beta2 = theta[loc_beta_0[3]] beta_c = theta[loc_beta_c] sigma2 = theta[length(theta)] if (is.null(loc_beta_c)) { f11 = function(x) {exp(beta0+beta1*x1+beta2*x)/(1+exp(beta0+beta1*x1+beta2*x))} f00 = function(x) {exp(beta0+beta1*x0s+beta2*x)/(1+exp(beta0+beta1*x0s+beta2*x))} } else { f11 = function(x) {exp(beta0+beta1*x1+beta2*x+sum(beta_c*cY))/(1+exp(beta0+beta1*x1+beta2*x+sum(beta_c*cY)))} f00 = function(x) {exp(beta0+beta1*x0s+beta2*x+sum(beta_c*cY))/(1+exp(beta0+beta1*x0s+beta2*x+sum(beta_c*cY)))} } if (is.null(loc_gamma_c)) { p11s= gauss.hermite(f=f11,mu=gamma0+gamma1*x1,sd=sqrt(sigma2),order=40) p00s= gauss.hermite(f=f00,mu=gamma0+gamma1*x0s,sd=sqrt(sigma2),order=20) } else { p11s= gauss.hermite(f=f11,mu=gamma0+gamma1*x1+sum(gamma_c*cM),sd=sqrt(sigma2),order=40) p00s= gauss.hermite(f=f00,mu=gamma0+gamma1*x0s+sum(gamma_c*cM),sd=sqrt(sigma2),order=40) } output = log((p11s)/(1-p11s)) - log((p00s)/(1-p00s)) return(output) } PM_unbiased=function(theta,loc_gamma_0=loc_gamma_0,loc_gamma_c=loc_gamma_c,loc_beta_0=loc_beta_0,loc_beta_c=loc_beta_c, x0s=x0s,x1=x1,cY=cY,cM=cM) { gamma0 = theta[1] gamma1 = theta[2] gamma_c = theta[loc_gamma_c] beta0 = theta[loc_beta_0[1]] beta1 = theta[loc_beta_0[2]] beta2 = theta[loc_beta_0[3]] beta_c = theta[loc_beta_c] sigma2 = theta[length(theta)] if (is.null(loc_beta_c)) { f11 = function(x) {exp(beta0+beta1*x1+beta2*x)/(1+exp(beta0+beta1*x1+beta2*x))} f10 = function(x) {exp(beta0+beta1*x1+beta2*x)/(1+exp(beta0+beta1*x1+beta2*x))} f00 = function(x) {exp(beta0+beta1*x0s+beta2*x)/(1+exp(beta0+beta1*x0s+beta2*x))} } else { f11 = function(x) {exp(beta0+beta1*x1+beta2*x+sum(beta_c*cY))/(1+exp(beta0+beta1*x1+beta2*x+sum(beta_c*cY)))} f10 = function(x) {exp(beta0+beta1*x1+beta2*x+sum(beta_c*cY))/(1+exp(beta0+beta1*x1+beta2*x+sum(beta_c*cY)))} f00 = function(x) {exp(beta0+beta1*x0s+beta2*x+sum(beta_c*cY))/(1+exp(beta0+beta1*x0s+beta2*x+sum(beta_c*cY)))} } if (is.null(loc_gamma_c)) { p11s= gauss.hermite(f=f11,mu=gamma0+gamma1*x1,sd=sqrt(sigma2),order=40) p10s= gauss.hermite(f=f10,mu=gamma0+gamma1*x0s,sd=sqrt(sigma2),order=40) p00s= gauss.hermite(f=f00,mu=gamma0+gamma1*x0s,sd=sqrt(sigma2),order=40) } else { p11s= gauss.hermite(f=f11,mu=gamma0+gamma1*x1+sum(gamma_c*cM),sd=sqrt(sigma2),order=40) p10s= gauss.hermite(f=f10,mu=gamma0+gamma1*x0s+sum(gamma_c*cM),sd=sqrt(sigma2),order=40) p00s= gauss.hermite(f=f00,mu=gamma0+gamma1*x0s+sum(gamma_c*cM),sd=sqrt(sigma2),order=40) } te = log((p11s)/(1-p11s)) - log((p00s)/(1-p00s)) nie = log((p11s)/(1-p11s)) - log((p10s)/(1-p10s)) return(nie/te) } data = as.data.frame(data) get_par_boot=function(data=data,indices) { data=data[indices,] if (is.null(covariateY)) { formula_Y=as.formula(paste(outcome,"~",exposure,"+",mediator,sep="")) } else { formula_Y=as.formula(paste(outcome,"~",exposure,"+",mediator,"+",paste(covariateY,collapse="+"),sep="")) } if (is.null(covariateM)) { formula_M=as.formula(paste(mediator,"~",exposure,sep="")) } else { formula_M=as.formula(paste(mediator,"~",exposure,"+",paste(covariateM,collapse="+"),sep="")) } model_Y=summary(glm(formula_Y,family=binomial(link="logit"),data=data)) model_M=summary(lm(formula_M,data=data)) beta=model_Y$coef[,1];cov_beta=model_Y$cov.unscaled gamma=model_M$coef[,1];cov_gamma=model_M$cov.unscaled nbeta=dim(cov_beta)[1];ngamma=dim(cov_gamma)[1] S=matrix(0,ncol=nbeta+ngamma,nrow=nbeta+ngamma) S[1:ngamma,1:ngamma]=cov_gamma; S[(ngamma+1):(nbeta+ngamma),(ngamma+1):(nbeta+ngamma)]=cov_beta colnames(S)=rownames(S)=c(paste(names(gamma),"_gamma",sep=""),paste(names(beta),"_beta",sep="")) NIE=beta[3]*gamma[2] V_NIE = gamma[2]^2 * cov_beta[3,3] + beta[3]^2 * cov_gamma[2,2] TE = beta[2]+beta[3]*gamma[2] lambda = matrix(c(0,beta[3],rep(0,length(covariateM)),0,1,gamma[2],rep(0,length(covariateY))),ncol=1) V_TE=as.vector(t(lambda) %*% S %*% lambda) lambda = matrix(c(0,beta[2]*beta[3]/(beta[2]+beta[3]*gamma[2])^2,rep(0,length(covariateM)),0,-beta[3]*gamma[2]/(beta[2]+beta[3]*gamma[2])^2,beta[2]*gamma[2]/(beta[2]+beta[3]*gamma[2])^2,rep(0,length(covariateY))),ncol=1) PM = beta[3]*gamma[2]/(beta[2]+beta[3]*gamma[2]) V_PM=as.vector(t(lambda) %*% S %*% lambda) sigma2=model_M$sigma var_sigma2=2*model_M$sigma^2*(1/model_M$df[2]) theta=c(gamma,beta,sigma2) S=matrix(0,ncol=nbeta+ngamma+1,nrow=nbeta+ngamma+1) S[1:ngamma,1:ngamma]=cov_gamma; S[(ngamma+1):(nbeta+ngamma),(ngamma+1):(nbeta+ngamma)]=cov_beta S[(nbeta+ngamma+1),(nbeta+ngamma+1)]=var_sigma2 colnames(S)=rownames(S)=c(paste(names(gamma),"_gamma",sep=""),paste(names(beta),"_beta",sep=""),"sigma2_M") loc_gamma_0 = 1:2 loc_gamma_c = 3:(3+length(covariateM)-1) loc_beta_0 = (ngamma+1):(ngamma+3) loc_beta_c = (ngamma+4):(ngamma+4+length(covariateY)-1) if (is.null(covariateM)) {loc_gamma_c=NULL} if (is.null(covariateY)) {loc_beta_c=NULL} x0s=x0 NIE_nonrare_p = NIE_unbiased(theta=theta,loc_gamma_0=loc_gamma_0,loc_gamma_c=loc_gamma_c,loc_beta_0=loc_beta_0,loc_beta_c=loc_beta_c, x0s=x0s,x1=x1,cY=cY,cM=cM) lambda= mygrad(NIE_unbiased,x0=theta,loc_gamma_0=loc_gamma_0,loc_gamma_c=loc_gamma_c,loc_beta_0=loc_beta_0,loc_beta_c=loc_beta_c, x0s=x0s,x1=x1,cY=cY,cM=cM) V_NIE_nonrare = as.vector(t(lambda) %*% S %*% lambda) TE_nonrare_p = TE_unbiased(theta=theta,loc_gamma_0=loc_gamma_0,loc_gamma_c=loc_gamma_c,loc_beta_0=loc_beta_0,loc_beta_c=loc_beta_c, x0s=x0s,x1=x1,cY=cY,cM=cM) lambda= mygrad(TE_unbiased,x0=theta,loc_gamma_0=loc_gamma_0,loc_gamma_c=loc_gamma_c,loc_beta_0=loc_beta_0,loc_beta_c=loc_beta_c, x0s=x0s,x1=x1,cY=cY,cM=cM) V_TE_nonrare = as.vector(t(lambda) %*% S %*% lambda) PM_nonrare_p = PM_unbiased(theta=theta,loc_gamma_0=loc_gamma_0,loc_gamma_c=loc_gamma_c,loc_beta_0=loc_beta_0,loc_beta_c=loc_beta_c, x0s=x0s,x1=x1,cY=cY,cM=cM) lambda= mygrad(PM_unbiased,x0=theta,loc_gamma_0=loc_gamma_0,loc_gamma_c=loc_gamma_c,loc_beta_0=loc_beta_0,loc_beta_c=loc_beta_c, x0s=x0s,x1=x1,cY=cY,cM=cM) V_PM_nonrare = as.vector(t(lambda) %*% S %*% lambda) point_est = c(NIE,TE,PM,NIE_nonrare_p,TE_nonrare_p,PM_nonrare_p); names(point_est)=c("NIE","TE","PM","NIE_nonrare","TE_nonrare","PM_nonrare") return(point_est) } boot.par=boot::boot(data=data, statistic=get_par_boot, R=R) boot.parciNIE <- boot::boot.ci(boot.par, index=1, type=c("perc")) boot.parciTE <- boot::boot.ci(boot.par, index=2, type=c("perc")) boot.parciPM <- boot::boot.ci(boot.par, index=3, type=c("perc")) boot.parciNIE_nonrare <- boot::boot.ci(boot.par, index=4, type=c("perc")) boot.parciTE_nonrare <- boot::boot.ci(boot.par, index=5, type=c("perc")) boot.parciPM_nonrare <- boot::boot.ci(boot.par, index=6, type=c("perc")) ci_est_prec = c(boot.parciNIE$percent[4:5], boot.parciTE$percent[4:5], boot.parciPM$percent[4:5], boot.parciNIE_nonrare$percent[4:5], boot.parciTE_nonrare$percent[4:5], boot.parciPM_nonrare$percent[4:5]) names(ci_est_prec)=c(paste(rep("CI_",6),rep(c("NIE","TE","PM"),each=2),rep(c("_Low","_High"),times=3),sep=""), paste(rep("CI_",6),rep(c("NIE_nonrare","TE_nonrare","PM_nonrare"),each=2),rep(c("_Low","_High"),times=3),sep="")) return(ci_est_prec) } mediate_binaY_binaM=function(data, outcome="Y", mediator="M", exposure="X", covariateY=c("X1","X2"), covariateM=c("X1","X2"), x0=0,x1=1,cY=c(0,0),cM=c(0,0)) { data = as.data.frame(data) if (is.null(covariateY)) { formula_Y=as.formula(paste(outcome,"~",exposure,"+",mediator,sep="")) } else { formula_Y=as.formula(paste(outcome,"~",exposure,"+",mediator,"+",paste(covariateY,collapse="+"),sep="")) } if (is.null(covariateM)) { formula_M=as.formula(paste(mediator,"~",exposure,sep="")) } else { formula_M=as.formula(paste(mediator,"~",exposure,"+",paste(covariateM,collapse="+"),sep="")) } model_Y=summary(glm(formula_Y,family=binomial(link="logit"),data=data)) model_M=summary(glm(formula_M,family=binomial(link="logit"),data=data)) beta=model_Y$coef[,1];cov_beta=model_Y$cov.unscaled gamma=model_M$coef[,1];cov_gamma=model_M$cov.unscaled nbeta=dim(cov_beta)[1];ngamma=dim(cov_gamma)[1] S=matrix(0,ncol=nbeta+ngamma,nrow=nbeta+ngamma) S[1:ngamma,1:ngamma]=cov_gamma; S[(ngamma+1):(nbeta+ngamma),(ngamma+1):(nbeta+ngamma)]=cov_beta colnames(S)=rownames(S)=c(paste(names(gamma),"_gamma",sep=""),paste(names(beta),"_beta",sep="")) if (is.null(covariateY)==0) { names(cY) = paste(names(beta),"_betafix",sep="")[-c(1:3)] beta_c=paste("beta_",covariateY,sep="") } if (is.null(covariateM)==0) { names(cM) = paste(names(gamma),"_gammafix",sep="")[-c(1:2)] gamma_c=paste("gamma_",covariateM,sep="") } .A = paste("exp(gamma0+gamma1*",x0,if(is.null(covariateM)==0) { paste("+",paste(paste(gamma_c,"*",cM),collapse = "+"))} ,")") .B= paste("exp(beta2+gamma0+gamma1*",x1,if(is.null(covariateM)==0) { paste("+",paste(paste(gamma_c,"*",cM),collapse = "+"))} ,")") .C=paste("exp(gamma0+gamma1*",x1,if(is.null(covariateM)==0) { paste("+",paste(paste(gamma_c,"*",cM),collapse = "+"))} ,")") .D= paste("exp(beta2+gamma0+gamma1*",x0,if(is.null(covariateM)==0) { paste("+",paste(paste(gamma_c,"*",cM),collapse = "+"))} ,")") NIEa_fun = function() { output = paste("log(","(1+",.A,")*","(1+",.B,")/((","1+",.C,")*(","1+",.D,"))",")") return(output) } variable=c("gamma0","gamma1",if(is.null(covariateM)==0) {gamma_c},"beta0","beta1","beta2",if(is.null(covariateY)==0) {beta_c}) NIEa_D=deriv(parse(text=NIEa_fun()),variable) gamma0=gamma[1];gamma1=gamma[2]; if(is.null(covariateM)==0) { for (i in (1:length(covariateM))) {assign(gamma_c[i],gamma[2+i])} } beta0=beta[1];beta1=beta[2];beta2=beta[3] if(is.null(covariateY)==0) { for (i in (1:length(covariateY))) {assign(beta_c[i],beta[3+i])} } TEa_fun = function() { output = paste("beta1*",(x1-x0),"+","log(","(1+",.A,")*","(1+",.B,")/((","1+",.C,")*(","1+",.D,"))",")") return(output) } TEa_D=deriv(parse(text=TEa_fun()),variable) PMa_fun = function() { .UP = paste("log(","(1+",.A,")*","(1+",.B,")/((","1+",.C,")*(","1+",.D,"))",")") .BOT = paste("beta1*",(x1-x0),"+","log(","(1+",.A,")*","(1+",.B,")/((","1+",.C,")*(","1+",.D,"))",")") output=paste("(",.UP,")/(",.BOT,")") return(output) } PMa_D=deriv(parse(text=PMa_fun()),variable) NIEa_D = eval(NIEa_D) NIEa_p = NIEa_D[1] lambda= t(attr(NIEa_D,"gradient")) V_NIEa = as.vector(t(lambda) %*% S %*% lambda) TEa_D = eval(TEa_D) TEa_p = TEa_D[1] lambda= t(attr(TEa_D,"gradient")) V_TEa = as.vector(t(lambda) %*% S %*% lambda) PMa_D = eval(PMa_D) PMa_p = PMa_D[1] lambda= t(attr(PMa_D,"gradient")) V_PMa = as.vector(t(lambda) %*% S %*% lambda) .A = paste("exp(gamma0+gamma1*",x0,if(is.null(covariateM)==0) { paste("+",paste(paste(gamma_c,"*",cM),collapse = "+"))} ,")") .B = paste("exp(beta2+gamma0+gamma1*",x1,if(is.null(covariateM)==0) { paste("+",paste(paste(gamma_c,"*",cM),collapse = "+"))} ,")") .C =paste("exp(gamma0+gamma1*",x1,if(is.null(covariateM)==0) { paste("+",paste(paste(gamma_c,"*",cM),collapse = "+"))} ,")") .D = paste("exp(beta2+gamma0+gamma1*",x0,if(is.null(covariateM)==0) { paste("+",paste(paste(gamma_c,"*",cM),collapse = "+"))} ,")") .E = paste("exp(beta0+beta1*",x1,if(is.null(covariateY)==0) { paste("+",paste(paste(beta_c,"*",cY),collapse = "+"))} ,")") .F = paste("exp(beta0+beta2+beta1*",x1,if(is.null(covariateY)==0) { paste("+",paste(paste(beta_c,"*",cY),collapse = "+"))} ,")") .G = paste("exp(beta0+beta1*",x0,if(is.null(covariateY)==0) { paste("+",paste(paste(beta_c,"*",cY),collapse = "+"))} ,")") .H = paste("exp(beta0+beta2+beta1*",x0,if(is.null(covariateY)==0) { paste("+",paste(paste(beta_c,"*",cY),collapse = "+"))} ,")") NIE_fun = function() { .A1 = paste("(1+",.A,"+",.E,"*",.A,"+",.F,")") .A2 = paste("(1+",.C,"+",.E,"*",.C,"+",.F,")") .B1 = paste("(1+", .F,"+",.B,"*(1+",.E,"))") .B2 = paste("(1+", .F,"+",.D,"*(1+",.E,"))") output = paste("log(",.A1,"/",.A2,")+","log(",.B1,"/",.B2,")") return(output) } NIE_D=deriv(parse(text=NIE_fun()),variable) TE_fun = function() { .C1 = paste("(1+",.A,"+",.G,"*",.A,"+",.H,")") .C2 = paste("(1+",.C,"+",.E,"*",.C,"+",.F,")") .D1 = paste("(1+", .F,"+",.B,"*(1+",.E,"))") .D2 = paste("(1+", .H,"+",.D,"*(1+",.G,"))") output = paste("beta1*",(x1-x0),"+log(",.C1,"/",.C2,")+","log(",.D1,"/",.D2,")") return(output) } TE_D=deriv(parse(text=TE_fun()),variable) PM_fun = function() { .A1 = paste("(1+",.A,"+",.E,"*",.A,"+",.F,")") .A2 = paste("(1+",.C,"+",.E,"*",.C,"+",.F,")") .B1 = paste("(1+", .F,"+",.B,"*(1+",.E,"))") .B2 = paste("(1+", .F,"+",.D,"*(1+",.E,"))") .C1 = paste("(1+",.A,"+",.G,"*",.A,"+",.H,")") .C2 = paste("(1+",.C,"+",.E,"*",.C,"+",.F,")") .D1 = paste("(1+", .F,"+",.B,"*(1+",.E,"))") .D2 = paste("(1+", .H,"+",.D,"*(1+",.G,"))") output1 = paste("(log(",.A1,"/",.A2,")+","log(",.B1,"/",.B2,"))") output2 = paste("(beta1*",(x1-x0),"+log(",.C1,"/",.C2,")+","log(",.D1,"/",.D2,"))") return(paste(output1,"/",output2)) } PM_D=deriv(parse(text=PM_fun()),variable) NIE_D = eval(NIE_D) NIE_p = NIE_D[1] lambda= t(attr(NIE_D,"gradient")) V_NIE = as.vector(t(lambda) %*% S %*% lambda) TE_D = eval(TE_D) TE_p = TE_D[1] lambda= t(attr(TE_D,"gradient")) V_TE = as.vector(t(lambda) %*% S %*% lambda) PM_D = eval(PM_D) PM_p = PM_D[1] lambda= t(attr(PM_D,"gradient")) V_PM = as.vector(t(lambda) %*% S %*% lambda) point_est = c(NIEa_p,TEa_p,PMa_p,NIE_p,TE_p,PM_p); names(point_est)=c("NIEa","TEa","PMa","NIE","TE","PM") var_est = c(V_NIEa,V_TEa,V_PMa,V_NIE,V_TE,V_PM); names(var_est)=c("NIEa","TEa","PMa","NIE","TE","PM") sd_est = sqrt(var_est) names(sd_est)=c("NIEa","TEa","PMa","NIE","TE","PM") ci_est = rbind(point_est-1.96*sd_est,point_est+1.96*sd_est) rownames(ci_est) = c("Lower boundary","Upper boundary") return(list(point_est=point_est,var_est=var_est,sd_est=sd_est,ci_est=ci_est)) } Mediate_binaY_binaM_bootci=function(data, outcome="Y", mediator="M", exposure="X", covariateY=c("X1","X2"), covariateM=c("X1","X2"), x0=0,x1=1,cY=c(0,0),cM=c(0,0),R=1000) { data = as.data.frame(data) get_par_boot=function(data=data,indices) { data=data[indices,] if (is.null(covariateY)) { formula_Y=as.formula(paste(outcome,"~",exposure,"+",mediator,sep="")) } else { formula_Y=as.formula(paste(outcome,"~",exposure,"+",mediator,"+",paste(covariateY,collapse="+"),sep="")) } if (is.null(covariateM)) { formula_M=as.formula(paste(mediator,"~",exposure,sep="")) } else { formula_M=as.formula(paste(mediator,"~",exposure,"+",paste(covariateM,collapse="+"),sep="")) } model_Y=summary(glm(formula_Y,family=binomial(link="logit"),data=data)) model_M=summary(glm(formula_M,family=binomial(link="logit"),data=data)) beta=model_Y$coef[,1];cov_beta=model_Y$cov.unscaled gamma=model_M$coef[,1];cov_gamma=model_M$cov.unscaled nbeta=dim(cov_beta)[1];ngamma=dim(cov_gamma)[1] S=matrix(0,ncol=nbeta+ngamma,nrow=nbeta+ngamma) S[1:ngamma,1:ngamma]=cov_gamma; S[(ngamma+1):(nbeta+ngamma),(ngamma+1):(nbeta+ngamma)]=cov_beta colnames(S)=rownames(S)=c(paste(names(gamma),"_gamma",sep=""),paste(names(beta),"_beta",sep="")) if (is.null(covariateY)==0) { names(cY) = paste(names(beta),"_betafix",sep="")[-c(1:3)] beta_c=paste("beta_",covariateY,sep="") } if (is.null(covariateM)==0) { names(cM) = paste(names(gamma),"_gammafix",sep="")[-c(1:2)] gamma_c=paste("gamma_",covariateM,sep="") } .A = paste("exp(gamma0+gamma1*",x0,if(is.null(covariateM)==0) { paste("+",paste(paste(gamma_c,"*",cM),collapse = "+"))} ,")") .B= paste("exp(beta2+gamma0+gamma1*",x1,if(is.null(covariateM)==0) { paste("+",paste(paste(gamma_c,"*",cM),collapse = "+"))} ,")") .C=paste("exp(gamma0+gamma1*",x1,if(is.null(covariateM)==0) { paste("+",paste(paste(gamma_c,"*",cM),collapse = "+"))} ,")") .D= paste("exp(beta2+gamma0+gamma1*",x0,if(is.null(covariateM)==0) { paste("+",paste(paste(gamma_c,"*",cM),collapse = "+"))} ,")") NIEa_fun = function() { output = paste("log(","(1+",.A,")*","(1+",.B,")/((","1+",.C,")*(","1+",.D,"))",")") return(output) } variable=c("gamma0","gamma1",if(is.null(covariateM)==0) {gamma_c},"beta0","beta1","beta2",if(is.null(covariateY)==0) {beta_c}) gamma0=gamma[1];gamma1=gamma[2]; if(is.null(covariateM)==0) { for (i in (1:length(covariateM))) {assign(gamma_c[i],gamma[2+i])} } beta0=beta[1];beta1=beta[2];beta2=beta[3] if(is.null(covariateY)==0) { for (i in (1:length(covariateY))) {assign(beta_c[i],beta[3+i])} } TEa_fun = function() { output = paste("beta1*",(x1-x0),"+","log(","(1+",.A,")*","(1+",.B,")/((","1+",.C,")*(","1+",.D,"))",")") return(output) } PMa_fun = function() { .UP = paste("log(","(1+",.A,")*","(1+",.B,")/((","1+",.C,")*(","1+",.D,"))",")") .BOT = paste("beta1*",(x1-x0),"+","log(","(1+",.A,")*","(1+",.B,")/((","1+",.C,")*(","1+",.D,"))",")") output=paste("(",.UP,")/(",.BOT,")") return(output) } NIEa_p = eval(parse(text=NIEa_fun())) TEa_p = eval(parse(text=TEa_fun())) PMa_p = eval(parse(text=PMa_fun())) .A = paste("exp(gamma0+gamma1*",x0,if(is.null(covariateM)==0) { paste("+",paste(paste(gamma_c,"*",cM),collapse = "+"))} ,")") .B = paste("exp(beta2+gamma0+gamma1*",x1,if(is.null(covariateM)==0) { paste("+",paste(paste(gamma_c,"*",cM),collapse = "+"))} ,")") .C =paste("exp(gamma0+gamma1*",x1,if(is.null(covariateM)==0) { paste("+",paste(paste(gamma_c,"*",cM),collapse = "+"))} ,")") .D = paste("exp(beta2+gamma0+gamma1*",x0,if(is.null(covariateM)==0) { paste("+",paste(paste(gamma_c,"*",cM),collapse = "+"))} ,")") .E = paste("exp(beta0+beta1*",x1,if(is.null(covariateY)==0) { paste("+",paste(paste(beta_c,"*",cY),collapse = "+"))} ,")") .F = paste("exp(beta0+beta2+beta1*",x1,if(is.null(covariateY)==0) { paste("+",paste(paste(beta_c,"*",cY),collapse = "+"))} ,")") .G = paste("exp(beta0+beta1*",x0,if(is.null(covariateY)==0) { paste("+",paste(paste(beta_c,"*",cY),collapse = "+"))} ,")") .H = paste("exp(beta0+beta2+beta1*",x0,if(is.null(covariateY)==0) { paste("+",paste(paste(beta_c,"*",cY),collapse = "+"))} ,")") NIE_fun = function() { .A1 = paste("(1+",.A,"+",.E,"*",.A,"+",.F,")") .A2 = paste("(1+",.C,"+",.E,"*",.C,"+",.F,")") .B1 = paste("(1+", .F,"+",.B,"*(1+",.E,"))") .B2 = paste("(1+", .F,"+",.D,"*(1+",.E,"))") output = paste("log(",.A1,"/",.A2,")+","log(",.B1,"/",.B2,")") return(output) } TE_fun = function() { .C1 = paste("(1+",.A,"+",.G,"*",.A,"+",.H,")") .C2 = paste("(1+",.C,"+",.E,"*",.C,"+",.F,")") .D1 = paste("(1+", .F,"+",.B,"*(1+",.E,"))") .D2 = paste("(1+", .H,"+",.D,"*(1+",.G,"))") output = paste("beta1*",(x1-x0),"+log(",.C1,"/",.C2,")+","log(",.D1,"/",.D2,")") return(output) } PM_fun = function() { .A1 = paste("(1+",.A,"+",.E,"*",.A,"+",.F,")") .A2 = paste("(1+",.C,"+",.E,"*",.C,"+",.F,")") .B1 = paste("(1+", .F,"+",.B,"*(1+",.E,"))") .B2 = paste("(1+", .F,"+",.D,"*(1+",.E,"))") .C1 = paste("(1+",.A,"+",.G,"*",.A,"+",.H,")") .C2 = paste("(1+",.C,"+",.E,"*",.C,"+",.F,")") .D1 = paste("(1+", .F,"+",.B,"*(1+",.E,"))") .D2 = paste("(1+", .H,"+",.D,"*(1+",.G,"))") output1 = paste("(log(",.A1,"/",.A2,")+","log(",.B1,"/",.B2,"))") output2 = paste("(beta1*",(x1-x0),"+log(",.C1,"/",.C2,")+","log(",.D1,"/",.D2,"))") return(paste(output1,"/",output2)) } NIE_p = eval(parse(text=NIE_fun())) TE_p = eval(parse(text=TE_fun())) PM_p = eval(parse(text=PM_fun())) point_est = c(NIEa_p,TEa_p,PMa_p,NIE_p,TE_p,PM_p); names(point_est)=c("NIEa","TEa","PMa","NIE","TE","PM") return(point_est) } boot.par=boot::boot(data=data, statistic=get_par_boot, R=R) boot.parciNIEa <- boot::boot.ci(boot.par, index=1, type=c("perc")) boot.parciTEa <- boot::boot.ci(boot.par, index=2, type=c("perc")) boot.parciPMa <- boot::boot.ci(boot.par, index=3, type=c("perc")) boot.parciNIE<- boot::boot.ci(boot.par, index=4, type=c("perc")) boot.parciTE <- boot::boot.ci(boot.par, index=5, type=c("perc")) boot.parciPM <- boot::boot.ci(boot.par, index=6, type=c("perc")) ci_est_prec = c(boot.parciNIEa$percent[4:5], boot.parciTEa$percent[4:5], boot.parciPMa$percent[4:5], boot.parciNIE$percent[4:5], boot.parciTE$percent[4:5], boot.parciPM$percent[4:5]) names(ci_est_prec)=c(paste(rep("CI_",6),rep(c("NIEa","TEa","PMa"),each=2),rep(c("_Low","_High"),times=3),sep=""), paste(rep("CI_",6),rep(c("NIE","TE","PM"),each=2),rep(c("_Low","_High"),times=3),sep="")) return(ci_est_prec) } mediate=function(data, outcome="Y1", mediator="Mc", exposure="X", binary.outcome=0, binary.mediator=0, covariate.outcome=c("C1","C2"), covariate.mediator=c("C1","C2"), x0=0, x1=1, c.outcome=c(0,0), c.mediator=c(0,0), boot=0, R=2000) { data=as.data.frame(data) covariateY=covariate.outcome covariateM=covariate.mediator cY<-c.outcome;cM<-c.mediator if (binary.outcome==0 & binary.mediator==0) { delta_res=mediate_contY_contM(data=data,outcome=outcome,mediator=mediator,exposure=exposure, covariateY=covariateY,covariateM=covariateM,x0=x0,x1=x1) if (boot==1) { boot_res=Mediate_contY_contM_bootci(data=data,outcome=outcome,mediator=mediator,exposure=exposure, covariateY=covariateY,covariateM=covariateM,x0=x0,x1=x1,R=R) } } if (binary.outcome==0 & binary.mediator==1) { delta_res=mediate_contY_binaM(data=data,outcome=outcome,mediator=mediator,exposure=exposure, covariateY=covariateY,covariateM=covariateM,x0=x0,x1=x1,cY=cY,cM=cM) if (boot==1) { boot_res=Mediate_contY_binaM_bootci(data=data,outcome=outcome,mediator=mediator,exposure=exposure, covariateY=covariateY,covariateM=covariateM,x0=x0,x1=x1,R=R,cY=cY,cM=cM) } } if (binary.outcome==1 & binary.mediator==0) { delta_res=mediate_binaY_contM(data=data,outcome=outcome,mediator=mediator,exposure=exposure, covariateY=covariateY,covariateM=covariateM,x0=x0,x1=x1,cY=cY,cM=cM) if (boot==1) { boot_res=Mediate_binaY_contM_bootci(data=data,outcome=outcome,mediator=mediator,exposure=exposure, covariateY=covariateY,covariateM=covariateM,x0=x0,x1=x1,R=R,cY=cY,cM=cM) } } if (binary.outcome==1 & binary.mediator==1) { delta_res=mediate_binaY_binaM(data=data,outcome=outcome,mediator=mediator,exposure=exposure, covariateY=covariateY,covariateM=covariateM,x0=x0,x1=x1,cY=cY,cM=cM) if (boot==1) { boot_res=Mediate_binaY_binaM_bootci(data=data,outcome=outcome,mediator=mediator,exposure=exposure, covariateY=covariateY,covariateM=covariateM,x0=x0,x1=x1,R=R,cY=cY,cM=cM) } } if (binary.outcome==1) { point=delta_res[[1]] serror=delta_res[[3]] ci_delta = delta_res[[4]] res=as.data.frame(rbind(point,serror,ci_delta)) colnames(res)=c("Approximate NIE","Approximate TE","Approximate MP", "Exact NIE","Exact TE","Exact MP") rownames(res)=c("point estimate","S.E by Delta Method","CI Lower by Delta Method", "CI Upper by Delta Method") if (boot==1) { ci_boot=as.data.frame(rbind(boot_res[c(1,3,5,7,9,11)],boot_res[c(2,4,6,8,10,12)])) colnames(ci_boot)=c("Approximate NIE","Approximate TE","Approximate MP", "Exact NIE","Exact TE","Exact MP") rownames(ci_boot)=c("CI Lower by Bootstrap Method", "CI Upper by Bootstrap Method") res=rbind(res,ci_boot) } } if (binary.outcome==0) { point=delta_res[[1]] serror=delta_res[[3]] ci_delta = delta_res[[4]] res=as.data.frame(rbind(point,serror,ci_delta)) colnames(res)=c("NIE","TE","MP") rownames(res)=c("point estimate","S.E by Delta Method","CI Lower by Delta Method", "CI Upper by Delta Method") if (boot==1) { ci_boot=as.data.frame(rbind(boot_res[c(1,3,5)],boot_res[c(2,4,6)])) colnames(ci_boot)=c("NIE","TE","MP") rownames(ci_boot)=c("CI Lower by Bootstrap Method", "CI Upper by Bootstrap Method") res=rbind(res,ci_boot) } } res=list(res=res,class="mediate") attr(res, "class") <- "mediate" print.mediate(res) invisible(res) } print.mediate=function(x, ...) { res=format(x$res, digits=3) isboot=ifelse(dim(res)[1]==4,0,1) iscontY=ifelse(dim(res)[2]==3,1,0) if (iscontY==1) {num.row=3} else {num.row=6} if (isboot==1) {num.col=3} else {num.col=2} out=as.data.frame(matrix(0,ncol=num.col,nrow=num.row)) if (isboot==1) { colnames(out)=c("Point (S.E.)"," 95% CI by Delta Approach"," 95% CI by Bootstrap") } else { colnames(out)=c("Point (S.E.)"," 95% CI by Delta Approach") } if (iscontY==1) { rownames(out)=c("NIE: ","TE: ","MP: ") } else { rownames(out)=c("NIE: Approximate ","NIE: Exact ", "TE: Approximate ","TE: Exact ", "MP: Approximate ","MP: Exact ") } for (i in (1:num.row)) { out[i,1]=paste(res[1,i]," (",res[2,i],")",sep="") out[i,2]=paste("(",res[3,i],",",res[4,i],")",sep="") if (isboot==1) { out[i,3]=paste("(",res[5,i],",",res[6,i],")",sep="") } } cat(paste("Mediation Analysis Results\n")) print.data.frame(out) }
if (session_variables$doc_tab_open == TRUE) { remove_tab_doc_tekst() remove_tab_doc_info() if (INCLUDE_EXTRA == TRUE) { remove_tab_extra() } session_variables$doc_tab_open <- FALSE } if (session_variables$doc_list_open == FALSE) { add_tab_doc_list_tekst(365) session_variables$doc_list_open <- TRUE } else if (session_variables$doc_list_open == TRUE) { shiny::updateTabsetPanel(session, inputId = "dokumentboks", selected = 'document_list_title') } show_ui("day_corpus_box") show_ui("document_box") output$document_list_title <- shiny::renderText({ "Document list" }) output$title <- shiny::renderText({ format_date(session_variables[[plot_mode$mode]]$Date[min_rad]) }) output$document_box_title <- shiny::renderText({ "Document list" })
acontext("variable value") problems <- data.frame(problemStart=c(100, 200, 100, 150, 200, 250), problemEnd=c(200, 300, 150, 200, 250, 300), problem.i=c(1, 2, 1, 2, 3, 4), bases.per.problem=c(100, 100, 50, 50, 50, 50)) problems$problem.name <- with(problems, { sprintf("size.%d.problem.%d", bases.per.problem, problem.i) }) sizes <- data.frame(bases.per.problem=c(50, 100), problems=c(2, 4)) problems$peakStart <- problems$problemStart + 10 problems$peakEnd <- problems$problemEnd - 10 samples <- rbind(data.frame(problems, sample.id="sample1", peaks=1), data.frame(problems, sample.id="sample1", peaks=2), data.frame(problems, sample.id="sample2", peaks=2)) peaks <- expand.grid(peaks=0:2, problem.name=problems$problem.name) peaks$error.type <- c("false positive", "false negative", "correct") rownames(problems) <- problems$problem.name peaks$bases.per.problem <- problems[paste(peaks$problem.name), "bases.per.problem"] peak.problems <- rbind(data.frame(problems, peaks=1), data.frame(problems, peaks=2)) one.error <- data.frame(bases.per.problem=1:10, errors=rnorm(10), chunks="one") two.error <- data.frame(bases.per.problem=1:10, errors=rnorm(10), chunks="two") showSelected.vec <- c(problem.name="peaks", "bases.per.problem") clickSelects.vec <- c(problem.name="peaks") viz <- list(errorLines=ggplot()+ scale_color_manual(values=c(one="red", two="black"))+ scale_size_manual(values=c(one=1, two=2))+ geom_line(aes(bases.per.problem, errors, color=chunks, size=chunks), data=one.error)+ geom_line(aes(bases.per.problem, errors, color=chunks, size=chunks), data=two.error), problems=ggplot()+ ggtitle("select problem")+ geom_segment(aes(problemStart, problem.i, xend=problemEnd, yend=problem.i), clickSelects="problem.name", showSelected="bases.per.problem", size=5, data=data.frame(problems, sample.id="problems"))+ geom_text(aes(200, 5, label=paste("problem size", bases.per.problem)), showSelected="bases.per.problem", data=data.frame(sizes, sample.id="problems"))+ geom_segment(aes(peakStart, problem.i, xend=peakEnd, yend=problem.i), showSelected=showSelected.vec, clickSelects="problem.name", data=data.frame(peak.problems, sample.id="problems"), size=10, color="deepskyblue")+ geom_segment(aes(peakStart, 0, xend=peakEnd, yend=0), showSelected=showSelected.vec, clickSelects="problem.name", data=samples, size=10, color="deepskyblue")+ theme_bw()+ theme(panel.margin=grid::unit(0, "cm"))+ facet_grid(sample.id ~ .), title="viz with .variable .value", sizes=ggplot()+ ggtitle("select problem size")+ geom_point(aes(bases.per.problem, problems), clickSelects="bases.per.problem", size=10, data=sizes), peaks=ggplot()+ ggtitle("select number of peaks")+ geom_point(aes(peaks, peaks, color=error.type, id=peaks), showSelected=c("problem.name", "bases.per.problem"), clickSelects = clickSelects.vec, size=10, data=peaks)+ geom_text(aes(1, 3, label=problem.name), showSelected=c("problem.name", "bases.per.problem"), data=problems)) info <- animint2HTML(viz) test_that("No widgets for .variable .value selectors", { computed.vec <- getSelectorWidgets(info$html) expected.vec <- c( "chunks", "problem.name", "bases.per.problem", "error.type") expect_identical(sort(computed.vec), sort(expected.vec)) }) circle.xpath <- '//svg[@id="plot_peaks"]//circle' title.xpath <- paste0(circle.xpath, '//title') test_that("clickSelects.variable tooltip/title", { circle.list <- getNodeSet(info$html, circle.xpath) expect_equal(length(circle.list), 3) title.list <- getNodeSet(info$html, title.xpath) title.vec <- sapply(title.list, xmlValue) expect_identical(title.vec, paste("size.100.problem.1", 0:2)) }) test_that("two lines rendered in first plot", { path.list <- getNodeSet( info$html, '//svg[@id="plot_errorLines"]//g[@class="PANEL1"]//path') style.strs <- sapply(path.list, function(x) xmlAttrs(x)["style"]) pattern <- paste0("(?<name>\\S+?)", ": *", "(?<value>.+?)", ";") style.matrices <- str_match_all_perl(style.strs, pattern) size.vec <- sapply(style.matrices, function(m)m["stroke-width", "value"]) size.num <- as.numeric(sub("px", "", size.vec)) expect_equal(size.num, c(1, 2)) color.vec <- sapply(style.matrices, function(m)m["stroke", "value"]) expect_color(color.vec, c("red", "black")) }) test_that(".variable and .value makes compiler create selectors", { selector.names <- sort(names(info$selectors)) problem.selectors <- paste0(problems$problem.name) expected.names <- sort(c("problem.name", "error.type", "chunks", problem.selectors, "bases.per.problem")) expect_identical(selector.names, expected.names) selected <- sapply(info$selectors[problem.selectors], "[[", "selected") expect_true(all(selected == "1")) }) test_that(".variable and .value renders correctly at first", { node.list <- getNodeSet(info$html, '//g[@class="geom6_segment_problems"]//line') expect_equal(length(node.list), 2) }) test_that("clicking reduces the number of peaks", { no.peaks.html <- clickHTML(id=0) node.list <- getNodeSet(no.peaks.html, '//g[@class="geom6_segment_problems"]//line') expect_equal(length(node.list), 1) }) test_that("clicking increases the number of peaks", { more.peaks.html <- clickHTML(id=2) node.list <- getNodeSet(more.peaks.html, '//g[@class="geom6_segment_problems"]//line') expect_equal(length(node.list), 3) }) viz.for <- list(problems=ggplot()+ ggtitle("select problem")+ geom_segment(aes(problemStart, problem.i, xend=problemEnd, yend=problem.i), clickSelects="problem.name", showSelected="bases.per.problem", size=5, data=data.frame(problems, sample.id="problems"))+ geom_text(aes(200, 5, label=paste("problem size", bases.per.problem)), showSelected="bases.per.problem", data=data.frame(sizes, sample.id="problems"))+ theme_bw()+ theme(panel.margin=grid::unit(0, "cm"))+ facet_grid(sample.id ~ .), title="viz with for loop", sizes=ggplot()+ ggtitle("select problem size")+ geom_point(aes(bases.per.problem, problems), clickSelects="bases.per.problem", size=10, data=sizes), peaks=ggplot()+ ggtitle("select number of peaks")+ geom_text(aes(1, 3, label=problem.name), showSelected="problem.name", data=problems)) pp.list <- split(peak.problems, peak.problems$problem.name) s.list <- split(samples, samples$problem.name) p.list <- split(peaks, peaks$problem.name) for(problem.name in names(p.list)){ s.name <- paste0(problem.name, "peaks") p <- p.list[[problem.name]] p[[s.name]] <- p$peaks pp <- pp.list[[problem.name]] pp[[s.name]] <- pp$peaks pp$problem.nodots <- gsub("[.]", "", pp$problem.name) s <- s.list[[problem.name]] s[[s.name]] <- s$peaks p$bases.per.problem <- pp$bases.per.problem[1] viz.for$problems <- viz.for$problems+ geom_segment(aes_string("peakStart", "problem.i", id="problem.nodots", xend="peakEnd", yend="problem.i"), showSelected=c(s.name, "bases.per.problem"), clickSelects="problem.name", data=data.frame(pp, sample.id="problems"), size=10, color="deepskyblue")+ geom_segment(aes_string("peakStart", "0", xend="peakEnd", yend="0"), showSelected=c(s.name, "bases.per.problem"), clickSelects="problem.name", data=s, size=10, color="deepskyblue") viz.for$peaks <- viz.for$peaks+ geom_point(aes_string("peaks", "peaks"), showSelected=c("problem.name", "bases.per.problem"), clickSelects=s.name, size=10, data=p) } info <- animint2HTML(viz.for) test_that("Widgets for regular selectors", { computed.vec <- getSelectorWidgets(info$html) expected.vec <- c( "problem.name", "bases.per.problem", "size.100.problem.1peaks", "size.100.problem.2peaks", "size.50.problem.1peaks", "size.50.problem.2peaks", "size.50.problem.3peaks", "size.50.problem.4peaks") expect_identical(sort(computed.vec), sort(expected.vec)) }) chunk.counts <- function(html=getHTML()){ node.set <- getNodeSet(html, '//td[@class="downloaded"]') as.integer(sapply(node.set, xmlValue)) } test_that("counts of chunks downloaded or not at first", { value.vec <- chunk.counts() expect_equal(value.vec, c(1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0)) }) test_that("changing problem downloads one chunk", { clickID('size100problem2') Sys.sleep(1) value.vec <- chunk.counts() expect_equal(value.vec, c(1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0)) }) test_that("clickSelects tooltip/title", { circle.list <- getNodeSet(info$html, circle.xpath) expect_equal(length(circle.list), 3) title.list <- getNodeSet(info$html, title.xpath) title.vec <- sapply(title.list, xmlValue) expect_identical(title.vec, paste("size.100.problem.1peaks", 0:2)) })
bstick.chclust <- function(n, ng=10, plot=TRUE, ...) { if (n$method != "coniss") stop("bstick cannot display conslink results") disp <- rev(n$height) tot.disp <- disp[1] disp <- abs(diff(disp)) nobj <- length(n$height) bs <- bstick(nobj, tot.disp) yR <- range(disp[1:(ng-1)], bs[1:(ng-1)]) if (plot) { plot(2:ng, disp[1:(ng-1)], type="o", ylim=yR, ylab="Sum of Squares", xlab = "Number of groups") lines(2:ng, bs[1:(ng-1)], col="red", type="o") } invisible(data.frame(nGroups = 2:(ng), dispersion=disp[1:(ng-1)], bstick = bs[1:(ng-1)])) }
UtilPseudoValues <- function(dataset, FOM, FPFValue = 0.2) { dataType <- dataset$descriptions$type if (dataType != "LROC") { NL <- dataset$ratings$NL LL <- dataset$ratings$LL } else { if (FOM == "Wilcoxon"){ datasetRoc <- DfLroc2Roc(dataset) NL <- datasetRoc$ratings$NL LL <- datasetRoc$ratings$LL } else if (FOM %in% c("PCL", "ALROC")){ NL <- dataset$ratings$NL LL <- dataset$ratings$LL } else stop("incorrect FOM for LROC data") } maxNL <- dim(NL)[4] maxLL <- dim(LL)[4] I <- dim(NL)[1] J <- dim(NL)[2] K <- dim(NL)[3] K2 <- dim(LL)[3] K1 <- K - K2 if (FOM %in% c("MaxNLF", "ExpTrnsfmSp", "HrSp")) { jkFomValues <- array(dim = c(I, J, K1)) jkPseudoValues <- array(dim = c(I, J, K1)) } else if (FOM %in% c("MaxLLF", "HrSe")) { jkFomValues <- array(dim = c(I, J, K2)) jkPseudoValues <- array(dim = c(I, J, K2)) } else if (FOM %in% c("Wilcoxon", "HrAuc", "SongA1", "AFROC", "AFROC1", "wAFROC1", "wAFROC", "MaxNLFAllCases", "ROI", "SongA2", "PCL", "ALROC")) { jkFomValues <- array(dim = c(I, J, K)) jkPseudoValues <- array(dim = c(I, J, K)) } else stop("Illegal FOM specified") t <- dataset$descriptions$truthTableStr fomArray <- UtilFigureOfMerit(dataset, FOM, FPFValue) lastCase <- 0 caseTransitions <- array(dim = J) for (i in 1:I) { for (j in 1:J) { k1_ij_logi <- !is.na(t[i,j,,1]) k2_ij_logi <- !is.na(t[i,j,,2])[(K1+1):K] k_ij_logi <- !is.na(t[i,j,,1]) | !is.na(t[i,j,,2]) if (sum(k_ij_logi) == 0) next perCase_ij <- dataset$lesions$perCase[k2_ij_logi] K1_ij <- sum(!is.na(t[i,j,,1])) K2_ij <- sum(!is.na(t[i,j,,2])) K_ij <- K1_ij + K2_ij lID_ij <- dataset$lesions$IDs[k2_ij_logi,1:maxLL, drop = FALSE] lW_ij <- dataset$lesions$weights[k2_ij_logi,1:maxLL, drop = FALSE] nl_ij <- NL[i, j, k_ij_logi, 1:maxNL]; dim(nl_ij) <- c(K_ij, maxNL) ll_ij <- LL[i, j, k2_ij_logi, 1:maxLL]; dim(ll_ij) <- c(K2_ij, maxLL) if (FOM %in% c("MaxNLF", "ExpTrnsfmSp", "HrSp")) { for (k in 1:K1_ij) { kIndxNor <- which(k1_ij_logi)[k];if (is.na(kIndxNor)) stop("Indexing error in UtilPseudoValues") nlij_jk <- nl_ij[-k, ];dim(nlij_jk) <- c(K_ij - 1, maxNL) llij_jk <- ll_ij;dim(llij_jk) <- c(K2_ij, maxLL) lV_j_jk <- perCase_ij lW_j_jk <- lW_ij;dim(lW_j_jk) <- c(K2_ij, maxLL) lID_j_jk <- lID_ij;dim(lID_j_jk) <- c(K2_ij, maxLL) if (is.na(jkFomValues[i, j, kIndxNor])) { jkFomValues[i, j, kIndxNor] <- MyFom_ij(nlij_jk, llij_jk, lV_j_jk, lID_j_jk, lW_j_jk, maxNL, maxLL, K1_ij - 1, K2_ij, FOM, FPFValue) } else stop("overwriting UtilPseudoValues") if (is.na(jkPseudoValues[i, j, kIndxNor])) { jkPseudoValues[i, j, kIndxNor] <- fomArray[i, j] * K1_ij - jkFomValues[i, j, kIndxNor] * (K1_ij - 1) } else stop("overwriting UtilPseudoValues") } } else if (FOM %in% c("MaxLLF", "HrSe")) { for (k in 1:K2_ij) { kIndxAbn <- which(k2_ij_logi)[k];if (is.na(kIndxAbn)) stop("Indexing error in UtilPseudoValues") nlij_jk <- nl_ij[-(k+K1_ij), ];dim(nlij_jk) <- c(K_ij - 1, maxNL) llij_jk <- ll_ij[-k, ];dim(llij_jk) <- c(K2_ij - 1, maxLL) lV_j_jk <- perCase_ij[-k] lW_j_jk <- lW_ij[-k, ];dim(lW_j_jk) <- c(K2_ij - 1, maxLL) lID_j_jk <- lID_ij[-k, ];dim(lID_j_jk) <- c(K2_ij - 1, maxLL) if (is.na(jkFomValues[i, j, kIndxAbn])) { jkFomValues[i, j, kIndxAbn] <- MyFom_ij(nlij_jk, llij_jk, lV_j_jk, lID_j_jk, lW_j_jk, maxNL, maxLL, K1_ij, K2_ij - 1, FOM, FPFValue) } else stop("overwriting UtilPseudoValues 3") if (is.na(jkPseudoValues[i, j, kIndxAbn])) { jkPseudoValues[i, j, kIndxAbn] <- fomArray[i, j] * K2_ij - jkFomValues[i, j, kIndxAbn] * (K2_ij - 1) } else stop("overwriting UtilPseudoValues") } } else { for (k in 1:K_ij) { kIndxAll <- which(k_ij_logi)[k];if (is.na(kIndxAll)) stop("Indexing error in UtilPseudoValues") if (k <= K1_ij) { nlij_jk <- nl_ij[-k, ];dim(nlij_jk) <- c(K_ij - 1, maxNL) llij_jk <- ll_ij;dim(llij_jk) <- c(K2_ij, maxLL) lV_j_jk <- perCase_ij lID_j_jk <- lID_ij;dim(lID_j_jk) <- c(K2_ij, maxLL) lW_j_jk <- lW_ij;dim(lW_j_jk) <- c(K2_ij, maxLL) if (is.na(jkFomValues[i, j, kIndxAll])) { jkFomValues[i, j, kIndxAll] <- MyFom_ij(nlij_jk, llij_jk, lV_j_jk, lID_j_jk, lW_j_jk, maxNL, maxLL, K1_ij - 1, K2_ij, FOM, FPFValue) } else stop("overwriting UtilPseudoValues") if (is.na(jkPseudoValues[i, j, kIndxAll])) { jkPseudoValues[i, j, kIndxAll] <- fomArray[i, j] * K_ij - jkFomValues[i, j, kIndxAll] * (K_ij - 1) } else stop("overwriting UtilPseudoValues") } else { nlij_jk <- nl_ij[-k, ];dim(nlij_jk) <- c(K_ij - 1, maxNL) llij_jk <- ll_ij[-(k - K1_ij), ];dim(llij_jk) <- c(K2_ij - 1, maxLL) lV_j_jk <- perCase_ij[-(k - K1_ij)] lW_j_jk <- lW_ij[-(k - K1_ij), ];dim(lW_j_jk) <- c(K2_ij - 1, maxLL) lID_j_jk <- lID_ij[-(k - K1_ij), ];dim(lID_j_jk) <- c(K2_ij - 1, maxLL) if (is.na(jkFomValues[i, j, kIndxAll])) { jkFomValues[i, j, kIndxAll] <- MyFom_ij(nlij_jk, llij_jk, lV_j_jk, lID_j_jk, lW_j_jk, maxNL, maxLL, K1_ij, K2_ij - 1, FOM, FPFValue) } else stop("overwriting UtilPseudoValues") if (is.na(jkPseudoValues[i, j, kIndxAll])) { jkPseudoValues[i, j, kIndxAll] <- fomArray[i, j] * K_ij - jkFomValues[i, j, kIndxAll] * (K_ij - 1) } else stop("overwriting UtilPseudoValues") } } } if (FOM %in% c("MaxNLF", "ExpTrnsfmSp", "HrSp")) { jkPseudoValues[i, j, which(k1_ij_logi)] <- jkPseudoValues[i, j, which(k1_ij_logi)] + (fomArray[i, j] - mean(jkPseudoValues[i, j, which(k1_ij_logi)])) } else if (FOM %in% c("MaxLLF", "HrSe")) { jkPseudoValues[i, j, which(k2_ij_logi)] <- jkPseudoValues[i, j, which(k2_ij_logi)] + (fomArray[i, j] - mean(jkPseudoValues[i, j, which(k2_ij_logi)])) } else { jkPseudoValues[i, j, which(k_ij_logi)] <- jkPseudoValues[i, j, which(k_ij_logi)] + (fomArray[i, j] - mean(jkPseudoValues[i, j, which(k_ij_logi)])) } caseTransitions[j] <- lastCase lastCase <- (lastCase + K_ij) %% K } } caseTransitions <- c(caseTransitions, K) return(list( jkPseudoValues = jkPseudoValues, jkFomValues = jkFomValues, caseTransitions = caseTransitions )) }
combineStreamflow <- function(flowlist, mult, approx = FALSE) { flows <- flowlist$flows for (i in 1:length(mult)) { flows[, i] <- flows[, i] * mult[i] } flows <- as.xts(rowSums(flows), order.by = index(flows)) if (approx) { flows <- na.approx(flows) } return(flows) }
.newMethodObj_CaseCohort <- function(info, par, minData, ...) { base <- .newBaseInfo(par = par, minData = minData) return( list("wg" = info$wg, "wb" = info$wb, "np" = length(x = base$beta) + length(x = base$et), "baseInfo" = base) ) } .loglik_CaseCohort <- function(object, ...) { Su <- object$baseInfo$U$S Sv <- object$baseInfo$V$S res <- -sum(object$wg*object$wb* {object$baseInfo$del1 * log(x = 1.0-Su) + object$baseInfo$del2 * log(x = Su-Sv) + {1.0-object$baseInfo$del1-object$baseInfo$del2} * log(x = Sv)}) if (is.nan(x = res)) return( Inf ) return( res ) } .dloglik_CaseCohort <- function(object, ...) { Su <- object$baseInfo$U$S Sv <- object$baseInfo$V$S dSu <- .deriv1S(object = object$baseInfo$U, et = object$baseInfo$et, beta = object$baseInfo$beta) dSv <- .deriv1S(object = object$baseInfo$V, et = object$baseInfo$et, beta = object$baseInfo$beta) temp11 <- -dSu / {1.0-Su} temp12 <- {dSu - dSv} / {Su-Sv} temp13 <- dSv / Sv res <- object$baseInfo$del1*temp11 + object$baseInfo$del2*temp12 + {1.0-object$baseInfo$del1-object$baseInfo$del2}*temp13 return( unname(-res*object$wb*object$wg) ) } .ddloglik_CaseCohort <- function(object, ...) { n <- length(x = object$baseInfo$del1) np <- object$np res <- matrix(data = 0.0, nrow = np, ncol = np) Su <- object$baseInfo$U$S Sv <- object$baseInfo$V$S if (length(x = object$wb) == 1L) { object$wb <- rep(x = object$wb, times = n) } if (length(x = object$wg) == 1L) { object$wg <- rep(x = object$wg, times = n) } for (i in 1L:n) { dSu <- .derivS(object = object$baseInfo$U, i = i, et = object$baseInfo$et, beta = object$baseInfo$beta) dSv <- .derivS(object = object$baseInfo$V, i = i, et = object$baseInfo$et, beta = object$baseInfo$beta) temp11 <- -dSu$Stt / {1.0-Su[i]} - dSu$St %o% dSu$St / {{1.0-Su[i]}^2} temp12 <- {dSu$Stt - dSv$Stt} / {Su[i]-Sv[i]} - {dSu$St - dSv$St} %o% {dSu$St - dSv$St} / {{Su[i]-Sv[i]}^2} temp13 <- dSv$Stt / Sv[i] - dSv$St %o% dSv$St/{Sv[i]^2} res <- res + {object$baseInfo$del1[i]*temp11 + object$baseInfo$del2[i]*temp12 + {1.0-object$baseInfo$del1[i]-object$baseInfo$del2[i]}*temp13}* object$wb[i]*object$wg[i] } return( unname(-res) ) } .se_CaseCohort <- function(object, B, argList, ...) { np <- length(x = object$baseInfo$beta) n <- length(x = object$baseInfo$del1) boot <- matrix(data = NA, nrow = B, ncol = np) for (b in 1L:B) { argList[[ "info" ]] <- list("wg" = object$wg, "wb" = rexp(n = n, rate = 1.0)) tmp <- .myOptim(argList = argList) if (is.null(x = tmp)) { warning(paste("optim did not converge for bootstrap iteration", b)) } else { i <- length(x = tmp) boot[b,] <- tmp[[ i ]]$par[1L:np] } } se <- drop(x = apply(X = boot, MARGIN = 2L, FUN = sd, na.rm = TRUE)) names(x = se) <- names(x = object$baseInfo$beta) return( se ) } .pValue <- function(object, se, ...) { pValue <- 2.0*{1.0 - pnorm(q = abs(x = object$baseInfo$beta / se), mean = 0.0, sd = 1.0)} names(x = pValue) <- names(x = object$baseInfo$beta) return( pValue ) } .AIC <- function(object, value, ...) { n <- length(object$baseInfo$beta) + length(object$baseInfo$et) return( 2.0*{value + n} ) }
drop.scope.svisit <- function (terms1, terms2, model = c("sta", "det")) { model <- match.arg(model) terms1 <- terms(terms1, model) f2 <- if (missing(terms2)) numeric(0) else attr(terms(terms2, model), "factors") factor.scope(attr(terms1, "factors"), list(drop = f2))$drop }
param_defaults <- function(values) { l <- list( k_photo_fixed = FALSE, k_photo_max = 0.47, k_loss = 0.05, BM_threshold = 5e-4, BM_min = 0, T_opt = 26.7, T_min = 8, T_max = 40.5, Q10 = 2, T_ref = 25, alpha = 5e-5, beta = 0.025, N_50 = 0.034, P_50 = 0.0043, BM_L = 177, E_max = 1, EC50_int = NA, b = NA, P = NA, r_A_DW = 1000, r_FW_DW = 16.7, r_FW_V = 1, r_DW_FN = 1e-4, K_pw = 1, k_met = 0 ) if(!missing(values)) { for(nm in names(values)) { if(!nm %in% names(l)) { warning(paste("parameter",nm,"is not part of the Lemna model")) } l[[nm]] <- values[[nm]] } } l } param_new <- function(values) { l <- list( k_photo_fixed = NA, k_photo_max = NA, k_loss = NA, BM_threshold = NA, BM_min = NA, T_opt = NA, T_min = NA, T_max = NA, Q10 = NA, T_ref = NA, alpha = NA, beta = NA, N_50 = NA, P_50 = NA, BM_L = NA, E_max = NA, EC50_int = NA, b = NA, P = NA, r_A_DW = NA, r_FW_DW = NA, r_FW_V = NA, r_DW_FN = NA, K_pw = NA, k_met = NA ) if(!missing(values)) { for(nm in names(values)) { if(!nm %in% names(l)) { warning(paste("parameter",nm,"is not part of the Lemna model")) } l[[nm]] <- values[[nm]] } } l }
as.single <- function(x,...) UseMethod("as.single") as.single.default <- function(x,...) structure(.Internal(as.vector(x,"double")), Csingle=TRUE) as.character.default <- function(x,...) .Internal(as.vector(x, "character")) as.expression <- function(x,...) UseMethod("as.expression") as.expression.default <- function(x,...) .Internal(as.vector(x, "expression")) as.list <- function(x,...) UseMethod("as.list") as.list.default <- function (x, ...) if (typeof(x) == "list") x else .Internal(as.vector(x, "list")) as.list.function <- function (x, ...) c(formals(x), list(body(x))) as.list.data.frame <- function(x,...) { x <- unclass(x) attr(x,"row.names") <- NULL x } as.vector.data.frame <- function(x, mode = "any") { x <- as.list.data.frame(x) if(mode %in% c("any", "list")) x else as.vector(x, mode=mode) } as.list.environment <- function(x, all.names=FALSE, sorted=FALSE, ...) .Internal(env2list(x, all.names, sorted)) as.vector <- function(x, mode = "any") .Internal(as.vector(x, mode)) as.matrix <- function(x, ...) UseMethod("as.matrix") as.matrix.default <- function(x, ...) { if (is.matrix(x)) x else array(x, c(length(x), 1L), if(!is.null(names(x))) list(names(x), NULL) else NULL) } as.null <- function(x,...) UseMethod("as.null") as.null.default <- function(x,...) NULL as.function <- function(x,...) UseMethod("as.function") as.function.default <- function (x, envir = parent.frame(), ...) if (is.function(x)) x else .Internal(as.function.default(x, envir)) as.array <- function(x, ...) UseMethod("as.array") as.array.default <- function(x, ...) { if(is.array(x)) return(x) n <- names(x) dim(x) <- length(x) if(length(n)) dimnames(x) <- list(n) return(x) } as.symbol <- function(x) .Internal(as.vector(x, "symbol")) as.name <- as.symbol as.qr <- function(x) stop("you cannot be serious", domain = NA)
MRPCA=function(data=0,data0,real=TRUE,example=FALSE) { if (real||example){ etatol=0.7 }else{ etatol=0.9 } lll=0 time=system.time( while(lll==0){ X0=data0 n=nrow(X0);p=ncol(X0) mr=which(is.na(X0)==TRUE) m=nrow(as.matrix(mr)) cm0=colMeans(X0,na.rm=T) ina=as.matrix(mr%%n) jna=as.matrix(floor((mr+n-1)/n)) data0[is.na(data0)]=cm0[ceiling(which(is.na(X0))/n)] X=as.matrix(data0) Z=scale(X,center=TRUE,scale=FALSE) niter=0;d=1;tol=1e-5;nb=10 while((d>=tol) & (niter<=nb)){ niter=niter+1 Xold=X Zold=Z R=cor(Z) lambda=svd(R)$d l=lambda/sum(lambda) J=rep(l,times=p);dim(J)=c(p,p) upper.tri(J,diag=T);J[lower.tri(J)]=0 eta=matrix(colSums(J),nrow = 1,ncol = p,byrow = FALSE) ww=which(eta>=etatol) k=ww[1] Lambda=svd(Z)$d A=svd(Z)$v B=svd(Z)$u Lambdak=diag(sqrt(lambda[1:k]),k,k) Ak=matrix(A[,1:k],p,k);Bk=matrix(B[,1:k],n,k) Lambdapk=diag(sqrt(lambda[(k+1):p]),p-k,p-k) sigma2hat=sum(diag(Lambdapk%*%Lambdapk))/(p-k) for( i in 1:n){ M=is.na(X0[i,]) job=which(M==FALSE);jna=which(M==TRUE) piob=nrow(as.matrix(job));pina=nrow(as.matrix(jna)) while((piob>0)&(pina>0)){ Qi=matrix(0,p,p) for( u in 1:piob){ Qi[job[u],u]=1 } for( v in 1:pina){ Qi[jna[v],v+piob]=1 } zi=Z[i,] zQi=zi%*%Qi ZQi=Z%*%Qi AQi=t(t(Ak)%*%Qi) ziob=matrix(zQi[,1:piob],1,piob) zina=matrix(zQi[,piob+(1:pina)],1,pina) Ziob=matrix(ZQi[,1:piob],n,piob,byrow=FALSE) Zina=matrix(ZQi[,piob+(1:pina)],n,pina,byrow=FALSE) Aiob=matrix(AQi[1:piob,],piob,k,byrow=FALSE) Aina=matrix(AQi[piob+(1:pina),],pina,k,byrow=FALSE) Cihat=n^(-1/2)*Aina%*%(Lambdak%*%Lambdak-sigma2hat*diag(k))^(1/2) tihat=n^(1/2)*solve(Lambdak)%*%(Lambdak%*%Lambdak-sigma2hat*diag(k))^(1/2)%*%Bk[i,] zinahat=Cihat%*%tihat ZQi[i,piob+(1:pina)]=zinahat Zi=ZQi%*%t(Qi) Z=Zi pina=0 } } ZMRPCA=Znew=Z d=sqrt(sum(diag((t(Zold-Znew)%*%(Zold-Znew))))) } XMRPCA=Xnew=Znew+matrix(rep(1,n*p),ncol=p)%*%diag(cm0) lll=1 } ) if(real){ MSEMRPCA= MAEMRPCA= REMRPCA='NULL' }else{ MSEMRPCA=(1/m)*t(Xnew[mr]-data[mr])%*%(Xnew[mr]-data[mr]) MAEMRPCA=(1/m)*sum(abs(Xnew[mr]-data[mr])) REMRPCA=(sum(abs(data[mr]-Xnew[mr])))/(sum(data[mr])) } lambdaMRPCA=svd(cor(XMRPCA))$d lMRPCA=lambdaMRPCA/sum(lambdaMRPCA);J=rep(lMRPCA,times=p);dim(J)=c(p,p) upper.tri(J,diag=T);J[lower.tri(J)]=0;dim(J)=c(p,p) etaMRPCA=matrix(colSums(J),nrow = 1,ncol = p,byrow = FALSE) wwMRPCA=which(etaMRPCA>=etatol);kMRPCA=wwMRPCA[1] lambdaMRPCApk=lambdaMRPCA[(kMRPCA+1):p] GCVMRPCA=sum(lambdaMRPCApk)*p/(p-kMRPCA)^2 return(list(XMRPCA=XMRPCA,MSEMRPCA=MSEMRPCA,MAEMRPCA=MAEMRPCA,REMRPCA=REMRPCA,GCVMRPCA=GCVMRPCA,timeMRPCA=time)) }
`fullsecder` <- function(A){ q <- A != 0 size <- dim(A) qq <- matrix(q,ncol=1) D <- NULL for(j in 1:size[2]){ for(i in 1:size[1]){ if(A[i,j]!=0){ d2 <- secder(A,i,j) D <- cbind(D, matrix(d2,ncol=1)*qq) } } } qq <- which(D[,1] !=0) D <- D[qq,] dd <- dim(D) uu <- which(A>0, arr.ind=TRUE) o <- order(uu[,1]) uu <- uu[o,] D <- D[o,o] m <- length(uu[,1]) uuu <- rep(0,m) for(i in 1:m) uuu[i] <- paste(uu[i,1],uu[i,2],sep="") D <- matrix(D, nrow=dd[1], ncol=dd[2], dimnames=list(uuu,uuu)) D }
MARSSoptim <- function(MLEobj) { neglogLik <- function(x, MLEobj = NULL) { MLEobj <- MARSSvectorizeparam(MLEobj, x) free <- MLEobj$marss$free pars <- MLEobj$par par.dims <- attr(MLEobj[["marss"]], "model.dims") for (elem in c("Q", "R", "V0")) { if (!is.fixed(free[[elem]])) { d <- sub3D(free[[elem]], t = 1) par.dim <- par.dims[[elem]][1:2] L <- unvec(d %*% pars[[elem]], dim = par.dim) the.par <- tcrossprod(L) MLEobj$par[[elem]] <- solve(crossprod(d)) %*% t(d) %*% vec(the.par) } } MLEobj$marss$fixed <- MLEobj$fixed.original MLEobj$marss$free <- MLEobj$free.original negLL <- MARSSkf(MLEobj, only.logLik = TRUE, return.lag.one = FALSE)$logLik -1 * negLL } if (!inherits(MLEobj, "marssMLE")) { stop("Stopped in MARSSoptim(). Object of class marssMLE is required.\n", call. = FALSE) } for (elem in c("Q", "R")) { if (dim(MLEobj$model$free[[elem]])[3] > 1) { stop(paste("Stopped in MARSSoptim() because this function does not allow estimated part of ", elem, " to be time-varying.\n", sep = ""), call. = FALSE) } } MODELobj <- MLEobj[["marss"]] y <- MODELobj$data free <- MODELobj$free fixed <- MODELobj$fixed tmp.inits <- MLEobj$start control <- MLEobj$control par.dims <- attr(MODELobj, "model.dims") m <- par.dims[["x"]][1] n <- par.dims[["y"]][1] control.names <- c("trace", "fnscale", "parscale", "ndeps", "maxit", "abstol", "reltol", "alpha", "beta", "gamma", "REPORT", "type", "lmm", "factr", "pgtol", "temp", "tmax") optim.control <- list() for (elem in control.names) { if (!is.null(control[[elem]])) optim.control[[elem]] <- control[[elem]] } if (is.null(control[["lower"]])) { lower <- -Inf } else { lower <- control[["lower"]] } if (is.null(control[["upper"]])) { upper <- Inf } else { upper <- control$upper } if (control$trace == -1) optim.control$trace <- 0 tmp.MLEobj <- MLEobj tmp.MLEobj$fixed.original <- tmp.MLEobj$marss$fixed tmp.MLEobj$free.original <- tmp.MLEobj$marss$free tmp.MLEobj$par <- tmp.inits for (elem in c("Q", "R", "V0")) { d <- sub3D(free[[elem]], t = 1) f <- sub3D(fixed[[elem]], t = 1) the.par <- unvec(f + d %*% tmp.inits[[elem]], dim = par.dims[[elem]][1:2]) is.zero <- diag(the.par) == 0 if (any(is.zero)) diag(the.par)[is.zero] <- 1 the.par <- t(chol(the.par)) if (any(is.zero)) diag(the.par)[is.zero] <- 0 if (!is.fixed(free[[elem]])) { tmp.MLEobj$par[[elem]] <- solve(crossprod(d)) %*% t(d) %*% vec(the.par) } else { tmp.MLEobj$par[[elem]] <- matrix(0, 0, 1) } tmp.list.mat <- fixed.free.to.formula(f, d, par.dims[[elem]][1:2]) tmp.list.mat[upper.tri(tmp.list.mat)] <- 0 tmp.MLEobj$marss$free[[elem]] <- convert.model.mat(tmp.list.mat)$free } pars <- MARSSvectorizeparam(tmp.MLEobj) if (substr(tmp.MLEobj$method, 1, 4) == "BFGS") { optim.method <- "BFGS" } else { optim.method <- "something wrong" } kf.function <- MLEobj$fun.kf optim.output <- try(optim(pars, neglogLik, MLEobj = tmp.MLEobj, method = optim.method, lower = lower, upper = upper, control = optim.control, hessian = FALSE), silent = TRUE) if (inherits(optim.output, "try-error")) { if (MLEobj$fun.kf != "MARSSkfss") { cat("MARSSkfas returned error. Trying MARSSkfss.\n") tmp.MLEobj$fun.kf <- "MARSSkfss" kf.function <- "MARSSkfss" optim.output <- try(optim(pars, neglogLik, MLEobj = tmp.MLEobj, method = optim.method, lower = lower, upper = upper, control = optim.control, hessian = FALSE), silent = TRUE) } } if (inherits(optim.output, "try-error")) { optim.output <- list(convergence = 53, message = c("MARSSkfas and MARSSkfss tried to compute log likelihood and encountered numerical problems.\n", sep = "")) } MLEobj.return <- MLEobj MLEobj.return$iter.record <- optim.output$message MLEobj.return$start <- tmp.inits MLEobj.return$convergence <- optim.output$convergence if (optim.output$convergence %in% c(1, 0)) { if ((!control$silent || control$silent == 2) && optim.output$convergence == 0) cat(paste("Success! Converged in ", optim.output$counts[1], " iterations.\n", "Function ", kf.function, " used for likelihood calculation.\n", sep = "")) if ((!control$silent || control$silent == 2) && optim.output$convergence == 1) cat(paste("Warning! Max iterations of ", control$maxit, " reached before convergence.\n", "Function ", kf.function, " used for likelihood calculation.\n", sep = "")) tmp.MLEobj <- MARSSvectorizeparam(tmp.MLEobj, optim.output$par) for (elem in c("Q", "R", "V0")) { if (!is.fixed(MODELobj$free[[elem]])) { d <- sub3D(tmp.MLEobj$marss$free[[elem]], t = 1) par.dim <- par.dims[[elem]][1:2] L <- unvec(tmp.MLEobj$marss$free[[elem]][, , 1] %*% tmp.MLEobj$par[[elem]], dim = par.dim) the.par <- tcrossprod(L) tmp.MLEobj$par[[elem]] <- solve(crossprod(d)) %*% t(d) %*% vec(the.par) } } pars <- MARSSvectorizeparam(tmp.MLEobj) MLEobj.return <- MARSSvectorizeparam(MLEobj.return, pars) kf.out <- try(MARSSkf(MLEobj.return), silent = TRUE) if (inherits(kf.out, "try-error")) { MLEobj.return$numIter <- optim.output$counts[1] MLEobj.return$logLik <- -1 * optim.output$value MLEobj.return$errors <- c(paste0("\nWARNING: optim() successfully fit the model but ", kf.function, " returned an error with the fitted model. Try MARSSinfo('optimerror54') for insight.", sep = ""), "\nError: ", kf.out[1]) MLEobj.return$convergence <- 54 MLEobj.return <- MARSSaic(MLEobj.return) kf.out <- NULL } } else { if (optim.output$convergence == 10) optim.output$message <- c("degeneracy of the Nelder-Mead simplex\n", paste("Function ", kf.function, " used for likelihood calculation.\n", sep = ""), optim.output$message) optim.output$counts <- NULL if (!control$silent) cat("MARSSoptim() stopped with errors. No parameter estimates returned.\n") if (control$silent == 2) cat("MARSSoptim() stopped with errors. No parameter estimates returned. See $errors in output for details.\n") MLEobj.return$par <- NULL MLEobj.return$errors <- optim.output$message kf.out <- NULL } if (!is.null(kf.out)) { if (control$trace > 0) MLEobj.return$kf <- kf.out MLEobj.return$states <- kf.out$xtT MLEobj.return$numIter <- optim.output$counts[1] MLEobj.return$logLik <- kf.out$logLik } MLEobj.return$method <- MLEobj$method if (!is.null(kf.out)) MLEobj.return <- MARSSaic(MLEobj.return) return(MLEobj.return) }
library(hamcrest) x <- as.POSIXlt("2015-01-02 03:04:06.07", tz = "UTC") assertThat(names(unclass(x)), identicalTo(c("sec", "min", "hour", "mday", "mon", "year", "wday", "yday", "isdst"))) assertThat(names(attributes(x)), identicalTo(c("names", "class", "tzone"))) assertTrue(identical(x, structure( list( sec = 6.07, min = 4L, hour = 3L, mday = 2L, mon = 0L, year = 115L, wday = 5L, yday = 1L, isdst = 0L), class = c("POSIXlt", "POSIXt"), tzone = "UTC")))
NULL Query <- R6::R6Class("Query", private = list( .vars = NULL ), public = list( con = NULL, sql = NULL, initialize = function(con, sql, vars) { self$con <- con self$sql <- sql private$.vars <- vars }, print = function(...) { cat("<Query> ", self$sql, "\n", sep = "") print(self$con) }, fetch = function(n = -1L) { res <- dbSendQuery(self$con, self$sql) on.exit(dbClearResult(res)) out <- dbFetch(res, n) res_warn_incomplete(res) out }, fetch_paged = function(chunk_size = 1e4, callback) { qry <- dbSendQuery(self$con, self$sql) on.exit(dbClearResult(qry)) while (!dbHasCompleted(qry)) { chunk <- dbFetch(qry, chunk_size) callback(chunk) } invisible(TRUE) }, vars = function() { private$.vars }, ncol = function() { length(self$vars()) } ) )
C2RVine <- function(order, family, par, par2 = rep(0, length(family))) { dd <- length(family) d <- (1 + sqrt(1 + 8 * dd))/2 if (dd < 1) stop("Length of 'family' has to be positive.") if (length(par) != length(par2)) stop("Lengths of 'par' and 'par2' do not match.") if (length(par) != dd) stop("Lengths of 'family' and 'par' do not match.") if (length(order) != d) stop("Length of 'order' and dimension of the D-vine do not match.") BiCopCheck(family, par, par2) Matrix <- matrix(rep(0, d * d), d, d) Copula.Params <- matrix(rep(0, d * d), d, d) Copula.Params2 <- matrix(rep(0, d * d), d, d) Copula.Types <- matrix(rep(0, d * d), d, d) for (i in 1:d) { for (j in 1:(d - i + 1)) { Matrix[(d - i + 1), j] <- order[i] } } k <- 1 for (i in 1:(d - 1)) { for (j in 1:(d - i)) { Copula.Types[(d - i + 1), (d - j - i + 1)] <- family[k] Copula.Params[(d - i + 1), (d - j - i + 1)] <- par[k] Copula.Params2[(d - i + 1), (d - j - i + 1)] <- par2[k] k <- k + 1 } } RVineMatrix(Matrix = Matrix, family = Copula.Types, par = Copula.Params, par2 = Copula.Params2) }
setMethod( f = "overhead", signature = "USL", definition = function(object, newdata) { if (missing(newdata)) newdata <- object@frame x <- newdata[, object@regr, drop=TRUE] y.ideal <- 1 / x y.contention <- coef(object)[['alpha']] * (x - 1) / x y.coherency <- coef(object)[['beta']] * (1/2) * (x - 1) col.names <- c("ideal", "contention", "coherency") matrix(c(y.ideal, y.contention, y.coherency), nrow = length(x), dimnames = list(seq(x), col.names)) } )
imageW <- function(data, latticeVersion=FALSE, transp=TRUE, NAcol="grey95", rowNa=NULL, colNa=NULL, tit=NULL, xLab=NA, yLab=NA, las=2, col=NULL, nColor=9, balanceCol=TRUE, gridCol="grey75", gridLty=1, centColShift=0, cexDispl=NULL, panel.background.col="white", rotXlab=0, rotYlab=0, cexXlab=0.7, cexAxs=NULL, cexYlab=0.9, Xtck=0, Ytck=0, cexTit=1.6, silent=FALSE, debug=FALSE, callFrom=NULL, ...) { fxNa <- wrMisc::.composeCallName(callFrom, newNa="imageW") argNa <- deparse(substitute(data)) if(debug) silent <- FALSE doPlot <- if(length(data) >0) is.numeric(data) else FALSE if(length(dim(data)) <2) data <- try(matrix(as.numeric(data), ncol=1, dimnames=list(names(data), NULL))) if("try-error" %in% class(data)) doPlot <- FALSE else { if(is.data.frame(data) & doPlot) {doPlot <- is.numeric(as.matrix(data)); data <- as.matrix(data)}} if(doPlot) { if(length(rowNa) <nrow(data)) rowNa <- rownames(data) if(length(rowNa) <1) rowNa <- if(length(nrow(data)) >1) 1:nrow(data) else "" if(length(colNa) < ncol(data)) colNa <- colnames(data) if(length(colNa) <1) colNa <- if(length(ncol(data)) >1) 1:ncol(data) else "" if(is.null(xLab)) xLab <- "" if(is.null(yLab)) yLab <- "" if(latticeVersion) { if(!transp) data <- t(data) if(length(rotXlab)==0 & any(las %in% c(2,3))) rotXlab <- 0 if(length(rotYlab)==0 & any(las %in% c(0,3))) rotYlab <- 0 ma2 <- expand.grid(1:ncol(data), 1:nrow(data)) ma2 <- cbind(ma2, as.numeric(t(data[nrow(data):1,]))) colnames(ma2) <- c("x","y","z") if(any(is.na(xLab))) xLab <- NULL if(any(is.na(yLab))) yLab <- NULL if(length(col) <2) col <- c("blue","grey80","red") nCol2 <- try(round(nColor[1])) msg <- " argument 'nColor' should contain integer at least as high as numbers of colors defined to pass through; resetting to default=9" if("try-error" %in% class(nCol2)) nCol2 <- NULL if(nCol2 < length(col)) { if(!silent) message(fxNa,msg) nCol2 <- 9 } miMa <- range(data, na.rm=TRUE) width <- (miMa[2] - miMa[1])/ nCol2 bre <- miMa[1] + (0:nCol2) *width clo0 <- which.min(abs(as.numeric(data))) clo0br <- min(which(bre >= as.numeric(data)[clo0])) if(clo0br >1 & clo0br < length(bre) -1 & length(col) >2) { maxLe <- max(clo0br -1, length(bre) -clo0br) -as.integer(balanceCol) negCol <- try(grDevices::colorRampPalette(col[1:2])(if(balanceCol) maxLe else length(clo0br-1))) if("try-error" %in% class(negCol)) {if(!silent) message(fxNa,"invalid color-gradient for neg values") } negCol <- negCol[-length(negCol)] posCol <- try((grDevices::colorRampPalette(col[2:3])(if(balanceCol) maxLe else length(length(bre) -1 -clo0br))) []) if("try-error" %in% class(posCol)) { if(!silent) message(fxNa,"invalid color-gradient for pos values") } if(debug) message(fxNa, "/1 clo0br ",clo0br," max nCol ",nCol2," le negCol ",length(negCol)," le posCol ",length(posCol)) if(balanceCol) { centColShift <- if(length(centColShift) <1 | !is.numeric(centColShift)) 0 else as.integer(centColShift) .keepLastN <- function(x,lastN) x[(length(x) -lastN +1):length(x)] if(length(negCol) != clo0br -2 +centColShift) { if(debug) message(fxNa," correct negCol (prev=",length(negCol),") centColShift=",centColShift," to : ",clo0br -2 +centColShift) if(length(negCol) > clo0br -2 +centColShift) negCol <- .keepLastN(negCol, clo0br -2 +centColShift) if(length(negCol) < clo0br -2 +centColShift) {negCol <- grDevices::colorRampPalette(col[1:2])(clo0br -1 +centColShift) negCol <- negCol[-length(negCol)] } } if(length(posCol) != length(bre) -length(negCol) -1) { if(debug) message(fxNa," corr posCol (prev ",length(posCol),") to ",maxLe + centColShift," to ",length(bre) -length(negCol) -1) if(length(posCol) > length(bre) -length(negCol) -1) posCol <- posCol[1:(length(bre) -clo0br)] if(length(posCol) < length(bre) -length(negCol) -1) { posCol <- grDevices::colorRampPalette(col[2:3])(length(bre) -length(negCol) -1) } } } cols <- c(negCol, posCol) if(debug) message(fxNa, "/2 clo0br ",clo0br," max nCol ",nCol2," le cols ",length(cols)," le negCol ",length(negCol)," le posCol ",length(posCol)) } else { cols <- if(length(col)==2) grDevices::colorRampPalette(col[1:2])(length(bre) -1) else { c(grDevices::colorRampPalette(col[1:2])(floor(length(bre)/2)), (grDevices::colorRampPalette(col[2:3])(length(bre) -floor(length(bre)/2)))[-1]) } } myPanel <- function(...) { grid::grid.rect(gp=grid::gpar(col=NA, fill=NAcol)) lattice::panel.levelplot(...) argXYZ <- list(...) if(length(cexDispl)==1 & is.numeric(cexDispl)) lattice::panel.text(argXYZ$x, argXYZ$y, signif(argXYZ$z,2), cex=cexDispl) if(any(is.na(gridCol))) gridCol <- NULL chGri <- (1:6) %in% gridLty if(length(gridCol) >0 & any(chGri)) { lattice::panel.abline(h=0.5 +1:(nrow(data) -1), col=gridCol, lty=gridLty) lattice::panel.abline(v=0.5 +1:(ncol(data) -1), col=gridCol, lty=gridLty) } } if(doPlot) lattice::levelplot(z ~ x *y, data = ma2, aspect=nrow(data)/ncol(data), col.regions=cols, region = TRUE, cuts =length(cols) -1, xlab = xLab, ylab = yLab, main = tit, scales=list(relation="free", x=list(at=1:ncol(data), labels=if(transp) colNa else rowNa, cex=cexXlab, rot=rotXlab, tck=as.numeric(Xtck)), y=list(at=nrow(data):1, labels=if(transp) rowNa else colNa, cex=cexYlab, rot=rotYlab, tck=as.numeric(Ytck))), par.settings=list(axis.line=list(col='black')), panel=myPanel ) } else { if(transp) data <- t(data) if(ncol(data) >1) data <- data[,ncol(data):1] if(identical(col,"heat.colors") | identical(col,"heatColors")) col <- rev(grDevices::heat.colors(sort(c(15, prod(dim(data)) +2))[2] )) chRCo <- requireNamespace("RColorBrewer", quietly=TRUE) msgRCo <- c(fxNa,": package 'RColorBrewer' not installed",", ignore argument 'col'") if(identical(col,"YlOrRd")) {if(chRCo) col <- RColorBrewer::brewer.pal(9,"YlOrRd") else { col <- NULL; if(!silent) message(msgRCo) }} if(identical(col,"RdYlGn")) {if(chRCo) col <- RColorBrewer::brewer.pal(11,"RdYlGn") else { col <- NULL; if(!silent) message(msgRCo) }} if(identical(col,"Spectral")) {if(chRCo) col <- RColorBrewer::brewer.pal(11,"Spectral") else { col <- NULL; if(!silent) message(msgRCo) }} if(identical(col,"RdBu")) {if(chRCo) col <- RColorBrewer::brewer.pal(11,"RdBu") else { col <- NULL; if(!silent) message(msgRCo) }} if(length(col) <1) { if(!chRCo) message(msgRCo[1:2]," using rainbow colors instead of 'RdYlBu'") col <- if(chRCo) grDevices::colorRampPalette(rev(RColorBrewer::brewer.pal(n=7, name="RdYlBu")))(60) else grDevices::rainbow(60)} chNa <- is.na(data) if(any(chNa) & length(NAcol) >0) { if(!is.matrix(data)) data <- as.matrix(data) mi <- min(data, na.rm=TRUE) if(any(chNa)) data[which(chNa)] <- min(data, na.rm=TRUE) -diff(range(data, na.rm=TRUE))*1.1/(length(col)) col <- c(NAcol,col) } yAt <- (0:(length(rowNa)-1))/(length(rowNa)-1) if(doPlot) { graphics::image(data, col=col, xaxt="n", yaxt="n", main=tit, xlab=if(transp) xLab else yLab, ylab=if(transp) yLab else xLab, cex.main=cexTit) graphics::mtext(at=(0:(length(colNa)-1))/(length(colNa)-1), colNa, side=if(transp) 1 else 2, line=0.3, las=las, cex=cexYlab) graphics::mtext(at=if(transp) rev(yAt) else yAt, rowNa, side=if(transp) 2 else 1, line=0.3, las=las, cex=cexXlab) graphics::box(col=grDevices::grey(0.8)) }} } else if(!silent) message(fxNa,": argument 'data' invalid, please furnish matrix or data.frame with min 2 lines & min 1 col") }
nn_pairwise_distance <- nn_module( "nn_pairwise_distance", initialize = function(p = 2, eps = 1e-6, keepdim = FALSE) { self$norm <- p self$eps <- eps self$keepdim <- keepdim }, forward = function(x1, x2) { nnf_pairwise_distance(x1, x2, p = self$norm, eps = self$eps, keepdim = self$keepdim) } )
outbreaker_mcmc_shape <- function(param, data) { if (!all(vapply(param$alpha, length, integer(1))==data$N)) { stop("some ancestries are missing in the param") } param$alpha <- matrix(unlist(param$alpha), ncol = data$N, byrow = TRUE) colnames(param$alpha) <- paste("alpha", seq_len(data$N), sep=".") if (!all(vapply(param$t_inf, length, integer(1))==data$N)) { stop("some infection dates are missing in the param") } param$t_inf <- matrix(unlist(param$t_inf), ncol = data$N, byrow = TRUE) colnames(param$t_inf) <- paste("t_inf", seq_len(data$N), sep=".") if (!all(vapply(param$kappa, length, integer(1))==data$N)) { stop("some ancestries are missing in the param") } param$kappa <- matrix(unlist(param$kappa), ncol = data$N, byrow = TRUE) colnames(param$kappa) <- paste("kappa", seq_len(data$N), sep=".") param <- data.frame(step = param$step, post = param$post, like = param$like, prior = param$prior, a = param$a, b = param$b, pi = param$pi, param$alpha, param$t_inf, param$kappa) names(param) <- gsub("[.]", "_", names(param)) class(param) <- c("outbreaker_chains","data.frame") return(param) }
Lopt.get <- function(data, mcep=10){ cvK <- array(0,dim=mcep) for(k in 1:mcep){ b <- as.formula(paste("y ~ ",paste(colnames(data[,1:(k+1)]), collapse="+"),sep = "")) C.lda.pred <- lda(b , data=data, CV=TRUE) cvK[k] <- mean(C.lda.pred$class==data$y) } Lopt <- min(which(cvK == max(cvK))) Lopt }
sample_addresses <- tibble::tribble( ~name, ~addr, "White House", "1600 Pennsylvania Ave NW Washington, DC", "Transamerica Pyramid", "600 Montgomery St, San Francisco, CA 94111", "NY Stock Exchange", "11 Wall Street, New York, New York", "Willis Tower", "233 S Wacker Dr, Chicago, IL 60606", "Chateau Frontenac", "1 Rue des Carrieres, Quebec, QC G1R 4P5, Canada", "Nashville", "Nashville, TN" , "Nairobi", "Nairobi, Kenya", "Istanbul", "Istanbul, Turkey", "Tokyo", "Tokyo, Japan", ) usethis::use_data(sample_addresses, overwrite = TRUE)
filter_throughput_time_percentile <- function(eventlog, percentage, reverse) { case_selection <- eventlog %>% throughput_time("case") %>% arrange(throughput_time) %>% slice(1:ceiling(n()*percentage)) %>% pull(1) filter_case(eventlog, case_selection, reverse) }
tidy_matrix <- function(x, row.name = 'row', col.name = 'col', value.name = 'value', ...){ stopifnot(is.matrix(x)) out <- data.table::data.table(x = rep(rownames(x), ncol(x)), y = rep(colnames(x), each = nrow(x)), z = c(x)) data.table::setnames(out, c(row.name, col.name, value.name)) out } tidy_adjacency_matrix <- function(x, ...){ tidy_matrix(x, row.name = 'from', col.name = 'to', value.name = 'n', ...) }
cat0 <- function(..., sep="") { return(cat(..., sep=sep)); }
updateversion <- function(x) { if (is.null(x$version)) { major <- 0 minor <- 0 } else { version <- as.numeric(unlist(strsplit(x$version, "-"))) major <- version[1] minor <- version[2] } update.0.9.6 <- FALSE update.0.9.7 <- FALSE update.1.3.0 <- FALSE update.2.0.0 <- FALSE if (!((major == 0.9 & minor > 5) | major > 0.9)) { update.0.9.6 <- TRUE update.0.9.7 <- TRUE } if (!((major == 0.9 & minor > 6) | major > 0.9)) update.0.9.7 <- TRUE if (major < 1.3) update.1.3.0 <- TRUE if (major < 2.0) update.2.0.0 <- TRUE if (inherits(x, "netmeta")) { if (update.0.9.6) { x$prediction <- FALSE x$df.Q <- x$df x$d <- nma.krahn(x)$d if (is.null(x$d)) x$d <- 1 if (x$d > 1) { dd <- decomp.design(x) x$Q.heterogeneity <- dd$Q.decomp$Q[2] x$Q.inconsistency <- dd$Q.decomp$Q[3] x$df.Q.heterogeneity <- dd$Q.decomp$df[2] x$df.Q.inconsistency <- dd$Q.decomp$df[3] x$pval.Q.heterogeneity <- dd$Q.decomp$pval[2] x$pval.Q.inconsistency <- dd$Q.decomp$pval[3] } else { x$Q.heterogeneity <- NA x$Q.inconsistency <- NA x$df.Q.heterogeneity <- NA x$df.Q.inconsistency <- NA x$pval.Q.heterogeneity <- NA x$pval.Q.inconsistency <- NA } x$df <- NULL x$baseline.reference <- TRUE x$version <- packageDescription("netmeta")$Version } if (update.0.9.7) x$backtransf <- TRUE if (update.1.3.0) { x$statistic.fixed <- x$zval.fixed x$statistic.random <- x$zval.random x$statistic.direct.fixed <- x$zval.direct.fixed x$statistic.direct.random <- x$zval.direct.random x$statistic.indirect.fixed <- x$zval.indirect.fixed x$statistic.indirect.random <- x$zval.indirect.random x$statistic.nma.fixed <- x$zval.nma.fixed x$statistic.nma.random <- x$zval.nma.random x$zval.fixed <- x$zval.random <- x$zval.nma.fixed <- x$zval.nma.random <- x$zval.direct.fixed <- x$zval.direct.random <- x$zval.indirect.fixed <- x$zval.indirect.random <- NULL if (any(x$narms > 2)) { tdata1 <- data.frame(studlab = x$studlab, .order = seq(along = x$studlab)) tdata2 <- data.frame(studlab = as.character(x$studies), narms = x$narms) tdata12 <- merge(tdata1, tdata2, by = "studlab", all.x = TRUE, all.y = FALSE, sort = FALSE) tdata12 <- tdata12[order(tdata12$.order), ] x$n.arms <- tdata12$narms x$multiarm <- tdata12$narms > 2 } else { x$n.arms <- rep(2, length(x$studlab)) x$multiarm <- rep(FALSE, length(x$studlab)) } } if (update.2.0.0) { x$fixed <- x$comb.fixed x$random <- x$comb.random x$level.ma <- x$level.comb x$comb.fixed <- x$comb.random <- x$level.comb <- NULL } return(x) } if (inherits(x, c("summary.netmeta", "summary.netcomb"))) { if (update.2.0.0) { x$level.ma <- x$level.comb x$x$fixed <- x$comb.fixed x$x$random <- x$comb.random x$comb.fixed <- x$comb.random <- x$level.comb <- NULL x$version <- packageDescription("netmeta")$Version } return(x) } if (inherits(x, "netcomb") && !inherits(x, "discomb")) { if (update.1.3.0) { x$statistic.fixed <- x$zval.fixed x$statistic.random <- x$zval.random x$statistic.nma.fixed <- x$zval.nma.fixed x$statistic.nma.random <- x$zval.nma.random x$statistic.cnma.fixed <- x$zval.cnma.fixed x$statistic.cnma.random <- x$zval.cnma.random x$statistic.Comb.fixed <- x$zval.Comb.fixed x$statistic.Comb.random <- x$zval.Comb.random x$statistic.Comp.fixed <- x$zval.Comp.fixed x$statistic.Comp.random <- x$zval.Comp.random x$zval.fixed <- x$zval.random <- x$zval.nma.fixed <- x$zval.nma.random <- x$zval.cnma.fixed <- x$zval.cnma.random <- x$zval.Comb.fixed <- x$zval.Comb.random <- x$zval.Comp.fixed <- x$zval.Comp.random <- NULL x$version <- packageDescription("netmeta")$Version } if (update.2.0.0) { x$fixed <- x$comb.fixed x$random <- x$comb.random x$level.ma <- x$level.comb x$comb.fixed <- x$comb.random <- x$level.comb <- NULL } return(x) } if (inherits(x, "discomb")) { if (update.1.3.0) { x$statistic.fixed <- x$zval.fixed x$statistic.random <- x$zval.random x$statistic.nma.fixed <- x$zval.nma.fixed x$statistic.nma.random <- x$zval.nma.random x$statistic.cnma.fixed <- x$zval.cnma.fixed x$statistic.cnma.random <- x$zval.cnma.random x$statistic.Comb.fixed <- x$zval.Comb.fixed x$statistic.Comb.random <- x$zval.Comb.random x$statistic.Comp.fixed <- x$zval.Comp.fixed x$statistic.Comp.random <- x$zval.Comp.random x$zval.fixed <- x$zval.random <- x$zval.nma.fixed <- x$zval.nma.random <- x$zval.cnma.fixed <- x$zval.cnma.random <- x$zval.Comb.fixed <- x$zval.Comb.random <- x$zval.Comp.fixed <- x$zval.Comp.random <- NULL x$version <- packageDescription("netmeta")$Version } if (update.2.0.0) { x$fixed <- x$comb.fixed x$random <- x$comb.random x$level.ma <- x$level.comb x$comb.fixed <- x$comb.random <- x$level.comb <- NULL } return(x) } if (inherits(x, "netsplit")) { if (update.1.3.0) { x$statistic.fixed <- x$zval.fixed x$statistic.random <- x$zval.random x$statistic.nma.fixed <- x$zval.nma.fixed x$statistic.nma.random <- x$zval.nma.random x$statistic.cnma.fixed <- x$zval.cnma.fixed x$statistic.cnma.random <- x$zval.cnma.random x$statistic.Comb.fixed <- x$zval.Comb.fixed x$statistic.Comb.random <- x$zval.Comb.random x$statistic.Comp.fixed <- x$zval.Comp.fixed x$statistic.Comp.random <- x$zval.Comp.random x$zval.fixed <- x$zval.random <- x$zval.nma.fixed <- x$zval.nma.random <- x$zval.cnma.fixed <- x$zval.cnma.random <- x$zval.Comb.fixed <- x$zval.Comb.random <- x$zval.Comp.fixed <- x$zval.Comp.random <- NULL x$version <- packageDescription("netmeta")$Version } if (update.2.0.0) { x$x$fixed <- x$comb.fixed x$x$random <- x$comb.random x$level.ma <- x$level.comb x$comb.fixed <- x$comb.random <- x$level.comb <- NULL } return(x) } if (inherits(x, "netrank")) { if (update.2.0.0) { x$x <- updateversion(x$x) x$version <- packageDescription("netmeta")$Version } return(x) } if (inherits(x, "rankogram")) { if (update.2.0.0) { if (is.null(x$cumulative.rankprob)) x$cumulative.rankprob <- FALSE if (is.null(x$nchar.trts)) x$nchar.trts <- 666 x$fixed <- x$comb.fixed x$random <- x$comb.random x$comb.fixed <- x$comb.random <- NULL x$version <- packageDescription("netmeta")$Version } return(x) } if (inherits(x, "netimpact")) { if (update.2.0.0) { x$x <- updateversion(x$x) x$version <- packageDescription("netmeta")$Version } return(x) } if (inherits(x, "netbind")) { if (update.2.0.0) { x$x$fixed <- x$comb.fixed x$x$random <- x$comb.random x$x$level.ma <- x$level.comb x$comb.fixed <- x$comb.random <- x$level.comb <- NULL x$version <- packageDescription("netmeta")$Version } return(x) } if (inherits(x, "netposet")) { if (update.2.0.0) { x$fixed <- x$comb.fixed x$random <- x$comb.random x$comb.fixed <- x$comb.random <- NULL x$version <- packageDescription("netmeta")$Version } return(x) } if (inherits(x, "netcontrib")) { if (update.2.0.0) { x$x$fixed <- x$comb.fixed x$x$random <- x$comb.random x$comb.fixed <- x$comb.random <- NULL x$version <- packageDescription("netmeta")$Version } return(x) } x }
dtgamma <- function (x, shape, scale = 1, a = 0, b = Inf) { stopifnot(all(shape > 0) & all(scale > 0)) Fa <- pgamma(a, shape, scale = scale) Fb <- pgamma(b, shape, scale = scale) y <- dgamma(x, shape, scale = scale) inda <- which(x < a) indb <- which(x > b) if (length(inda) > 0) y[inda] <- 0 if (length(indb) > 0) y[indb] <- 0 return(y/(Fb - Fa)) }
SDMXDimension <- function(xmlObj, namespaces){ sdmxVersion <- version.SDMXSchema(xmlDoc(xmlObj), namespaces) VERSION.21 <- sdmxVersion == "2.1" messageNs <- findNamespace(namespaces, "message") strNs <- findNamespace(namespaces, "structure") conceptRefXML <- NULL if(VERSION.21){ conceptIdentityXML <- getNodeSet(xmlDoc(xmlObj), "//str:ConceptIdentity", namespaces = c(str = as.character(strNs))) if(length(conceptIdentityXML) > 0) conceptRefXML <- xmlChildren(conceptIdentityXML[[1]])[[1]] } codelistRefXML <- NULL if(VERSION.21){ enumXML <- getNodeSet(xmlDoc(xmlObj), "//str:Enumeration", namespaces = c(str = as.character(strNs))) if(length(enumXML) > 0) codelistRefXML <- xmlChildren(enumXML[[1]])[[1]] } conceptRef <- NULL conceptVersion <- NULL conceptAgency <- NULL conceptSchemeRef <- NULL conceptSchemeAgency <- NULL codelist <- NULL codelistVersion <- NULL codelistAgency <- NULL isMeasureDimension <- NULL isFrequencyDimension <- NULL isEntityDimension <- NULL isCountDimension <- NULL isNonObservationTimeDimension <- NULL isIdentityDimension <- NULL crossSectionalAttachDataset <- NULL crossSectionalAttachGroup <- NULL crossSectionalAttachSection <- NULL crossSectionalAttachObservation <- NULL if(VERSION.21){ if(!is.null(conceptRefXML)){ conceptRef = xmlGetAttr(conceptRefXML, "id") conceptVersion = xmlGetAttr(conceptRefXML, "maintainableParentVersion") conceptAgency = xmlGetAttr(conceptRefXML, "agencyID") } if(!is.null(codelistRefXML)){ codelist <- xmlGetAttr(codelistRefXML, "id") codelistVersion <- xmlGetAttr(codelistRefXML, "version") codelistAgency <- xmlGetAttr(codelistRefXML, "agencyID") } }else{ conceptRef = xmlGetAttr(xmlObj, "conceptRef") conceptVersion = xmlGetAttr(xmlObj, "conceptVersion") conceptAgency = xmlGetAttr(xmlObj, "conceptAgency") conceptSchemeRef = xmlGetAttr(xmlObj, "conceptSchemeRef") conceptSchemeAgency = xmlGetAttr(xmlObj, "conceptSchemeAgency") codelist = xmlGetAttr(xmlObj, "codelist") codelistVersion = xmlGetAttr(xmlObj, "codelistVersion") codelistAgency = xmlGetAttr(xmlObj, "codelistAgency") isMeasureDimension = xmlGetAttr(xmlObj, "isMeasureDimension") isFrequencyDimension = xmlGetAttr(xmlObj, "isFrequencyDimension") isEntityDimension = xmlGetAttr(xmlObj, "isEntityDimension") isCountDimension = xmlGetAttr(xmlObj, "isCountDimension") isNonObservationTimeDimension = xmlGetAttr(xmlObj,"isNonObservationTimeDimension") isIdentityDimension = xmlGetAttr(xmlObj, "isIdentityDimension") crossSectionalAttachDataset = xmlGetAttr(xmlObj, "crossSectionalAttachDataset") crossSectionalAttachGroup = xmlGetAttr(xmlObj, "crossSectionalAttachGroup") crossSectionalAttachSection = xmlGetAttr(xmlObj, "crossSectionalAttachSection") crossSectionalAttachObservation = xmlGetAttr(xmlObj,"crossSectionalAttachObservation") } if(is.null(conceptRef)) conceptRef <- as.character(NA) if(is.null(conceptVersion)) conceptVersion <- as.character(NA) if(is.null(conceptAgency)) conceptAgency <- as.character(NA) if(is.null(conceptSchemeRef)) conceptSchemeRef <- as.character(NA) if(is.null(conceptSchemeAgency)) conceptSchemeAgency <- as.character(NA) if(is.null(codelist)) codelist <- as.character(NA) if(is.null(codelistVersion)) codelistVersion <- as.character(NA) if(is.null(codelistAgency)) codelistAgency <- as.character(NA) if(is.null(isMeasureDimension)){ isMeasureDimension <- FALSE }else{ isMeasureDimension <- as.logical(isMeasureDimension) } if(is.null(isFrequencyDimension)){ isFrequencyDimension <- FALSE }else{ isFrequencyDimension <- as.logical(isFrequencyDimension) } if(is.null(isEntityDimension)){ isEntityDimension <- FALSE }else{ isEntityDimension <- as.logical(isEntityDimension) } if(is.null(isCountDimension)){ isCountDimension <- FALSE }else{ isCountDimension <- as.logical(isCountDimension) } if(is.null(isNonObservationTimeDimension)){ isNonObservationTimeDimension <- FALSE }else{ isNonObservationTimeDimension <- as.logical(isNonObservationTimeDimension) } if(is.null(isIdentityDimension)){ isIdentityDimension <- FALSE }else{ isIdentityDimension <- as.logical(isIdentityDimension) } if(is.null(crossSectionalAttachDataset)){ crossSectionalAttachDataset <- NA }else{ crossSectionalAttachDataset <- as.logical(crossSectionalAttachDataset) } if(is.null(crossSectionalAttachGroup)){ crossSectionalAttachGroup <- NA }else{ crossSectionalAttachGroup <- as.logical(crossSectionalAttachGroup) } if(is.null(crossSectionalAttachSection)){ crossSectionalAttachSection <- NA }else{ crossSectionalAttachSection <- as.logical(crossSectionalAttachSection) } if(is.null(crossSectionalAttachObservation)){ crossSectionalAttachObservation <- NA }else{ crossSectionalAttachObservation <- as.logical(crossSectionalAttachObservation) } obj<- new("SDMXDimension", conceptRef = conceptRef, conceptVersion = conceptVersion, conceptAgency = conceptAgency, conceptSchemeRef = conceptSchemeRef, conceptSchemeAgency = conceptSchemeAgency, codelist = codelist, codelistVersion = codelistVersion, codelistAgency = codelistAgency, isMeasureDimension = isMeasureDimension, isFrequencyDimension = isFrequencyDimension, isEntityDimension = isEntityDimension, isCountDimension = isCountDimension, isNonObservationTimeDimension = isNonObservationTimeDimension, isIdentityDimension = isIdentityDimension, crossSectionalAttachDataset = crossSectionalAttachDataset, crossSectionalAttachGroup = crossSectionalAttachGroup, crossSectionalAttachSection = crossSectionalAttachSection, crossSectionalAttachObservation = crossSectionalAttachObservation ) }
setRefClass( "VAR_INMB", fields = c( sde = "numeric", sdc = "numeric", rho="numeric", object_lambda = "ANY" ), methods=list( initialize = function(sde,sdc,rho,object_lambda){ check_heritage (object_lambda, "Lambda") object_lambda <<- object_lambda check_1(list(sde=sde,sdc=sdc,rho=rho)) check_positif(list(sde=sde, sdc=sdc)) check_rho(rho) sde <<- sde sdc <<- sdc rho <<- rho set_var_inmb() }, set_var_inmb = function(){ var_inmb <<- 2 * (object_lambda$get_lambda()^2 * sde^2 + sdc^2 - 2*object_lambda$get_lambda() * rho * sde * sdc) }, set_sdc = function(sdc){ check_1(list(sdc=sdc)) check_positif(list(sdc=sdc)) sdc <<- sdc set_var_inmb() }, set_sde = function(sde){ check_1(list(sde=sde)) check_positif(list(sde=sde)) sde <<- sde set_var_inmb() }, set_rho = function(rho){ check_1(list(rho=rho)) check_rho(rho) rho <<- rho set_var_inmb() }, get_var_inmb = function(){ set_var_inmb() return(var_inmb) }, get_var_inmb_exp = function(){ set_var_inmb() return (var_inmb/2) }, get_var_inmb_ref = function(){ set_var_inmb() return (var_inmb/2) }, set_object_lambda = function(object_lambda){ check_heritage (object_lambda, "Lambda") object_lambda <<- object_lambda set_var_inmb() } ), contains = "VAR_INMB_DIRECT" ) create_object_var_inmb <- function(sdc, sde, rho, object_lambda){ var_inmb <- methods::new(Class="VAR_INMB", sdc=sdc, sde = sde, rho = rho, object_lambda = object_lambda) }
seqLLCS <- function(seq1, seq2) { if (!inherits(seq1, "stslist") | !inherits(seq2, "stslist")) { stop(" [!] sequences must be sequence objects") } a1 <- alphabet(seq1) a2 <- alphabet(seq2) if (length(a1) != length(a2) || any(a1 != a2)) { stop(" [!] The alphabet of both sequences have to be same.") } l1 <- seqlength(seq1) l2 <- seqlength(seq2) result <- .C(C_cLCS, as.integer(seq1), as.integer(seq2), as.double(c(l1, l2)), result = as.integer(0))$result return(result) }
menu.ttest <- function() { z <- .C("menu_ttest", vars=character(2), ints=integer(4), level=double(1)) if (z$ints[4] > 1) return(invisible()) oc <- call("t.test", x = as.name(z$vars[1]), y = as.name(z$vars[2]), alternative = c("two.sided", "less", "greater")[1+z$ints[1]], paired = z$ints[2] != 0, var.equal = z$ints[3] != 0, conf.level = z$level) eval(oc) } menu.ttest2 <- function() { .C("menu_ttest2") return(invisible()) } menu.ttest3 <- function() .Call("menu_ttest3") del.ttest <- function() winMenuDel("Statistics") .onAttach <- function(libname, pkgname) { if(interactive()) { winMenuAdd("Statistics") winMenuAdd("Statistics/Classical tests") winMenuAddItem("Statistics/Classical tests", "t-test:1", "menu.ttest()") winMenuAddItem("Statistics/Classical tests", "t-test:2", "menu.ttest2()") winMenuAddItem("Statistics/Classical tests", "t-test:3", "menu.ttest3()") packageStartupMessage("To remove the Statistics menu use del.ttest()") } } .onDetach <- function(libpath) del.ttest()
test_that("`plot.see_point_estimate()` works", { if (require("bayestestR") && require("rstanarm")) { set.seed(123) m <- stan_glm(Sepal.Length ~ Petal.Width * Species, data = iris, refresh = 0 ) result <- point_estimate(m, centrality = "median") expect_s3_class(plot(result), "ggplot") } })
id <- function(mea) { UseMethod("id", mea) } id.MEA <- function(mea){ attr(mea, "id") } id.default <- function(mea){ if (is.list(mea)) mea = MEAlist(mea) sapply(mea, attr, "id") } group <- function(mea) { UseMethod("group", mea) } group.MEA <- function(mea){ attr(mea, "group") } group.default <- function(mea){ if (is.list(mea)) mea = MEAlist(mea) sapply(mea, attr, "group") } session <- function(mea) { UseMethod("session", mea) } session.MEA <- function(mea){ attr(mea, "session") } session.default <- function(mea){ if (is.list(mea)) mea = MEAlist(mea) sapply(mea, attr, "session") } sampRate <- function(mea) { UseMethod("sampRate", mea) } sampRate.MEA <- function(mea){ attr(mea, "sampRate") } sampRate.default <- function(mea){ if (is.list(mea)) mea = MEAlist(mea) attr(mea, "sampRate") } s1Name <- function(mea) { UseMethod("s1Name", mea) } s1Name.MEA <- function(mea){ attr(mea, "s1Name") } s1Name.default <- function(mea){ if (is.list(mea)) mea = MEAlist(mea) attr(mea, "s1Name") } s2Name <- function(mea) { UseMethod("s2Name", mea) } s2Name.MEA <- function(mea){ attr(mea, "s2Name") } s2Name.default <- function(mea){ if (is.list(mea)) mea = MEAlist(mea) attr(mea, "s2Name") } uid <- function(mea) { UseMethod("uid", mea) } uid.MEA <- function(mea){ attr(mea, "uid") } uid.default <- function(mea){ if (is.list(mea)) mea = MEAlist(mea) sapply(mea, attr, "uid") } getCCF <- function (mea, type) { UseMethod("getCCF", mea) } getCCF.MEA <- function (mea, type) { if (!hasCCF(mea)) stop ("No ccf computation found, please refer to MEAccf() function.") if (type %in% lagNames(mea)) { return (mea$ccf[[type]]) } else if (type %in% names(mea$ccfRes)) { return (mea$ccfRes[[type]]) } else if (type == "matrix") { l = attr(mea,which = "ccf")$lag return (mea$ccf[paste0("lag",seq(-l,l))]) } else if (type == "fullMatrix") { return (mea$ccf) } else stop ("'type' must be either \"matrix\", \"fullMatrix\", a lag label extracted with lagNames(), or one of:\r\n\"",paste0(ccfResNames(mea),collapse = "\", \""),"\"", call.=F) } getCCF.default <- function (mea, type) { if (is.list(mea)) mea = MEAlist(mea) mea <- MEAlist(mea) if(type=="grandAver"){ sapply(mea, getCCF, type) } else lapply(mea, getCCF, type) } lagNames <- function (mea) { UseMethod("lagNames", mea) } lagNames.MEA <- function (mea) { if (!hasCCF(mea)) stop("No ccf computation found, please refer to MEAccf() function.") names(mea$ccf) } lagNames.default <- function (mea){ if (is.list(mea)) mea = MEAlist(mea) mea <- MEAlist(mea) names(mea[[1]]$ccf) } ccfResNames <- function (mea) { UseMethod("ccfResNames", mea) } ccfResNames.MEA <- function (mea) { if (!hasCCF(mea)) stop("No ccf computation found, please refer to MEAccf() function.") names(mea$ccfRes) } ccfResNames.default <- function (mea){ if (is.list(mea)) mea = MEAlist(mea) mea <- MEAlist(mea) names(mea[[1]]$ccfRes) }
to_ms <- function(timestamp, time_class, time_format, tz) { if ("numeric" %in% time_class || "integer" %in% time_class) { if (time_format == "ms") { return(format(timestamp, scientific = FALSE)) } if (time_format == "sec") { return(format(timestamp * 1000, scientific = FALSE)) } cat("\nSet time_format = \"ms\" if time stamps are in milliseconds") cat("\nor time_format = \"sec\" if time stamps are in seconds.") stop("Wrong arguments.", call. = FALSE) } if ("POSIXt" %in% time_class || "POSIXct" %in% time_class || "POSIXlt" %in% time_class) { return(format(as.numeric(timestamp) * 1000, scientific = FALSE)) } if ("Date" %in% time_class) { origin <- as.Date("1970-01-01") return(format(as.numeric(difftime(timestamp, origin, units = "secs")) * 1000, scientific = FALSE)) } if ("chron" %in% time_class) { if (!requireNamespace("chron", quietly = TRUE)) { msg <- "It seems that time stamps are 'chrone' objects, so" msg <- '"chron" package should be installed. \n' msg <- paste0(msg, 'Please install it with: install.packages("chron")') stop(msg, call. = FALSE) } origin <- chron::as.chron("1970-01-01 00:00:00", "%Y-%m-%d %H:%M:%S") return(format(as.numeric(difftime(timestamp, origin, units = "secs")) * 1000, scientific = FALSE)) } if ("timeDate" %in% time_class) { if (!requireNamespace("timeDate", quietly = TRUE)) { msg <- "It seems that time stamps are 'timeDate' objects, so" msg <- '"timeDate" package should be installed. \n' msg <- paste0(msg, 'Please install it with: install.packages("chron")') stop(msg, call. = FALSE) } origin <- timeDate::timeDate("1970-01-01 00:00:00", format = "%Y-%m-%d %H:%M:%S", FinCenter = "GMT") return(format(as.numeric(difftime(timestamp, origin, units = "secs")) * 1000, scientific = FALSE)) } if (time_class == "character") { return( format( as.numeric( as.POSIXct(timestamp, tz = tz, format = time_format, origin = "1970-01-01 00:00:00")) * 1000, scientific = FALSE)) } msg <- "Can not understand what time format is used." stop(msg, call. = FALSE) }
context("EbayesThresh") test_that("beta.laplace recovers result from v1.3.2 package when s=1",{ x <- c(-2,1,0,-4,5) y <- c(+0.889852029651143, -0.380041716606011, -0.561817771773154, +285.459466672351, +15639.8849145429) expect_equal(beta.laplace(x),y,tolerance = 1e-6) }) test_that("postmean recovers result from v1.3.2 package when s=1 and w=0.5",{ x <- c(-2,1,0,-4,5) y <- c(-1.01158962199946, +0.270953305249239, 0, -3.48800924041643, +4.4997151290092) expect_equal(postmean(x, s=1),y,tolerance = 1e-6) }) test_that("postmed recovers result from v1.3.2 package when s=1 and w=0.5",{ x <- c(-2,1,0,-4,5) y <- c(-0.829992882781227, 0, 0, -3.49568406354978, +4.49992059554046) expect_equal(postmed(x, s=1),y,tolerance = 1e-6) }) test_that("tfromw recovers result from v1.3.2 package when s=1",{ w <- seq(0.2,0.8,0.2) y <- c(+2.44873377028853, +1.92279064562172, +1.40956187155098, +0.767900790087879) expect_equal(tfromw(w),y,tolerance = 1e-6) }) test_that("tfromx recovers result from v1.3.2 package when s=1",{ set.seed(123) x <- rnorm(100) y <- c(+3.03485425654799) expect_equal(tfromx(x),y,tolerance = 1e-6) }) test_that("wfromt recovers result from v1.3.2 package when s=1",{ y <- c(+0.734187187788918, +0.368633767549335, +0.0661925474440213, +0.00348003803260551, +6.39312743790131e-05) expect_equal(wfromt(1:5),y,tolerance = 1e-10) }) test_that("wfromx recovers result from v1.3.2 package when s=1",{ set.seed(123) x <- rnorm(100) y <- 0.0609124723599925 expect_equal(wfromx(x),y,tolerance = 1e-6) }) test_that("wandafromx recovers result from v1.3.2 package when s=1",{ set.seed(123) x <- rnorm(100) y <- list(w = 0.371583145802847,a = 3) expect_equal(wandafromx(x),y,tolerance = 1e-6) }) test_that("ebayesthresh recovers result from v1.3.2 when s=1 (1st test)",{ set.seed(123) mu <- c(rep(0, 50), rnorm(50, sd=2)) x <- mu + rnorm(100) y <- c(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0.461501932251305,0,-1.18081131503738, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0.87949485647377,0,0,0,0,0,2.18630700818864,0,0, 2.83745453837867,0,-3.69477351123594,0,0,0,0,0,0,0, 3.36467539856769,0,-4.07317568417785,0,-0.141700670497741, -0.343683094401104,0,-1.65608219851322,0,0,-3.5191992174366, 0,0,-2.66613200774895,1.45289341778632,1.15387225239285, 0,0,0,0,1.59321391647936,0,0,0,-0.925903664068815,0,0, -3.59828116583749,2.11687940619439,0,-2.04737147690392, -1.08310726061405,0,3.13925967166472,0) expect_equal(ebayesthresh(x, sdev = 1),y,tolerance = 1e-6) }) test_that("ebayesthresh recovers result from v1.3.2 when s=1 (2nd test)",{ set.seed(120) mu <- c(rep(0, 50), rnorm(50, sd=2)) x <- mu + rnorm(100) y <- c(0,0,0,0,0,0,0,0,0,0,0,0,-1.04121693067389, 0,0,0,0,0,0,0,0,0,0,-1.35978570570315,0,0,-0.240101857101125, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 3.83090910100726,0.0712822438458154,0,-3.59696604125997, 3.86540675250451,0.0897481774495907,0,0,0,0,-3.41370542189694, 0,0,3.49859567543283,0,0,-1.81030820004674,3.71037602480949, 0,0,0,2.81312247449243,0,0,0,-2.00442016176308,-4.6661776361885, 0,0,1.67416061651496,0,0,-1.53846644772252,0,5.8288454853458, 0,0,0,0,0,0,3.00394257291387,0,0,-2.26047995381615,0,0) expect_equal(ebayesthresh(x, sdev = 1),y,tolerance = 1e-6) }) test_that(paste("ebayesthresh returns the same result with sdev=1", "and sdev=rep(1, n) (3rd test)"),{ set.seed(120) mu <- c(rep(0, 50), rnorm(50, sd=2)) x <- mu + rnorm(100) expect_equal(ebayesthresh(x, sdev = rep(1,100)), ebayesthresh(x, sdev = 1), tolerance = 1e-6) }) test_that(paste("ebayesthresh with heterogeneous variance in which", "samples are presented in different orders (4th test)"),{ set.seed(120) mu <- c(rep(0, 25), rnorm(25, sd=2)) s <- rchisq(50, 1) x <- mu + rnorm(50, sd=s) i <- sample(50) expect_equal(ebayesthresh(x,sdev = s), ebayesthresh(x[i],sdev = s[i])[order(i)], tolerance = 1e-6) })
read_pop_arrangements <- function(year=2015, simplified=TRUE, showProgress=TRUE){ temp_meta <- select_metadata(geography="pop_arrengements", year=year, simplified=simplified) file_url <- as.character(temp_meta$download_path) temp_sf <- download_gpkg(file_url, progress_bar = showProgress) return(temp_sf) }
context("query webgeom") test_that("query geoms", { testthat::skip_on_cran() expect_is(query(webgeom(), 'geoms'),'character') wg <- webgeom(geom = "sample:CONUS_states", attribute = "STATE", values = "New Hampshire") expect_is(query(wg, 'geoms'),'character') expect_error(query(webgeom(), 'attributes')) expect_error(query(webgeom(), 'values')) }) test_that("query attributes", { testthat::skip_on_cran() wg <- webgeom(geom = "sample:CONUS_states", attribute = "STATE", values = "New Hampshire") expect_is(query(wg, 'attributes'),'character') }) test_that("query values", { testthat::skip_on_cran() wg <- webgeom(geom = "sample:CONUS_states", attribute = "STATE", values = "New Hampshire") expect_is(query(wg, 'values'),'character') }) test_that("query values returns only unique", { expect_false(any( duplicated( query(webgeom(geom="sample:Counties" , attribute = "STATE_FIPS"), 'values')) ) ) }) context("Create WFS post XML works") test_that("two states", { wg <- readRDS("data/test_wfsgetfeature_wg.rds") xml <- geoknife:::wfsFilterFeatureXML(wg) fn <- "data/test_wfsgetfeature.xml" expect_equal(xml, gsub("\r", "", readChar(fn, file.info(fn)$size))) })
is.CoordPolar <- function(coord) { "CoordPolar" %in% class(coord) } is.CoordSerialaxes <- function(coord) { "CoordSerialaxes" %in% class(coord) } is.CoordFlip <- function(coord) { "CoordFlip" %in% class(coord) }