code
stringlengths
1
13.8M
MediaDistancia=function(Distancias,n,Normatizar=TRUE){ Distancias2=vector("list", length(Distancias)) for(i in 1:length(Distancias)){ if(class(Distancias[[i]])=="Distancia"){ Distancias2[[i]]=as.matrix(Distancias[[i]]$Distancia) } if(class(Distancias[[i]])!="Distancia"){ Distancias2[[i]]=as.matrix(Distancias[[i]]) }} Distancias=Distancias2 if(Normatizar==TRUE){ for(i in 1:length(Distancias)){ Distancias[[i]]=(Normatiza(Distancias[[i]],Metodo = 2)) } } for(i in 1:length(Distancias)){ Distancias[[i]]=Distancias[[i]]*n[i] } Dist=Distancias[[i]]*0 for(i in 1:length(Distancias)){ Dist=Dist+Distancias[[i]]/sum(n) } as.dist(Dist) }
plotEAF = function(opt.paths, xlim = NULL, ylim = NULL, ...) { requirePackages("eaf", why = "plotEAF") assertList(opt.paths, min.len = 1L, types = "list", names = "unique") if (!is.null(xlim)) { assertNumeric(xlim, len = 2L) } if (!is.null(ylim)) { assertNumeric(ylim, len = 2L) } algos = names(opt.paths) y.names = NULL minimize = NULL data = data.frame() for (i in seq_along(algos)) { a = algos[i] runs = opt.paths[[i]] assertList(runs, types = "OptPath", min.len = 1L) fronts = lapply(seq_along(runs), function(j) { run = runs[[j]] df = as.data.frame(getOptPathParetoFront(run), stringsAsFactors = TRUE) cns = colnames(df) if (length(cns) != 2L) { stopf("Must always have 2 objectives in opt path. But found: %i", length(cns)) } if (i == 1L && j == 1L) { y.names <<- cns minimize <<- run$minimize } if (!all(y.names == cns)) { stopf("Must always have the same 2 objectives in opt path: %s (first ones taken). But found here: %s", collapse(y.names), collapse(cns)) } if (!all(minimize == run$minimize)) { stopf("Must always have the same 'minimize' settings for objectives in opt path: %s (first one taken). But found here: %s", collapse(minimize), collapse(run$minimize)) } cbind(df, .algo = a, .repl = j, stringsAsFactors = TRUE) }) fronts = do.call(rbind, fronts) data = rbind(data, fronts) } yn1 = y.names[1L] yn2 = y.names[2L] f = as.formula(sprintf("%s + %s ~ .repl", yn1, yn2)) defaults = list( xlab = yn1, ylab = yn2, percentiles = 50, col = c("darkgrey", "darkgrey", "darkgrey", "black", "black", "black"), lty = c("solid", "dashed", "dotdash", "solid", "dashed", "dotdash") ) args = list(...) args = insert(defaults, args) args$data = data args$groups = quote(.algo) args$maximise = !minimize args$xlim = xlim args$ylim = ylim do.call(eaf::eafplot, c(list(f), args)) return(data) }
supported_currencies <- function(max_attempts = 3) { validate_arguments(arg_max_attempts = max_attempts) url <- build_get_request( base_url = "https://api.coingecko.com", path = c("api", "v3", "simple", "supported_vs_currencies"), query_parameters = NULL ) supported_currencies <- api_request( url = url, max_attempts = max_attempts ) return(unlist(supported_currencies)) }
tidy_list <- function(x, id.name= "id", content.name = "content", content.attribute.name = 'attribute', ...){ if (is.data.frame(x[[1]])){ tidy_list_df(x = x, id.name = id.name) } else { if (is.atomic(x[[1]])){ tidy_list_vector(x = x, id.name = id.name, content.name = content.name, content.attribute.name = content.attribute.name ) } else { stop("`x` must be a list of `data.frame`s or atomic `vector`s") } } } tidy_list_df <- function (x, id.name = "id"){ if (is.null(names(x))) { names(x) <- seq_along(x) } list.names <- rep(names(x), sapply2(x, nrow)) x <- lapply(x, data.table::as.data.table) x[['fill']] <- TRUE out <- data.frame(list.names, do.call(rbind, x), row.names = NULL, check.names = FALSE, stringsAsFactors = FALSE) colnames(out)[1] <- id.name data.table::data.table(out) } tidy_list_vector <- function(x, id.name = "id", content.attribute.name = 'attribute', content.name = "content"){ if (is.null(names(x))) { names(x) <- seq_along(x) } if (all(!sapply2(x, function(y) is.null(names(y))))){ tidy_list( lapply(x, tidy_vector, content.attribute.name , content.name ), id.name ) } else { dat <- data.frame( rep(names(x), sapply2(x, length)), unlist(x, use.names = FALSE), stringsAsFactors = FALSE, check.names = FALSE, row.names = NULL ) colnames(dat) <- c(id.name, content.name) data.table::data.table(dat) } }
context('corrgrapher working properly for explainers') options(check.attributes = FALSE) set.seed(2020) custom_values <- data.frame(label = colnames(dragons)[-5], value = rep(15, ncol(dragons) - 1), stringsAsFactors = FALSE) custom_values <- custom_values[order(custom_values$label),] rownames(custom_values) <- NULL model_pd_list <- list(numerical = model_pd) test_that( 'Function is working properly with just necessary arguments',{ expect_is(corrgrapher(simple_model_exp),'corrgrapher') expect_is(corrgrapher(tit_model_exp),'corrgrapher') } ) test_that('Values argument working', { expect_equal({ df <- corrgrapher(model_exp, values = custom_values, partial_dependency = model_pd_list)[['nodes']][, c('label', 'value')] df[order(df$label),] }, custom_values)}) test_that('Values argument overrides feature_importance_*',{ expect_warning( cgr <- corrgrapher( model_exp, values = custom_values, feature_importance = model_fi, partial_dependency = model_pd_list ) ) expect_equal({ df <- cgr[['nodes']][, c('label', 'value')] df <- df[order(df$label), ] rownames(df) <- NULL df }, custom_values) expect_warning( cgr <- corrgrapher( model_exp, values = custom_values, feature_importance = list(), partial_dependency = model_pd_list ) ) expect_equal({ df <- cgr[['nodes']][,c('label','value')] df <- df[order(df$label),] rownames(df) <- NULL df }, custom_values) }) test_that("Output type",{ expect_is(cgr_exp, 'corrgrapher') expect_true(all(c("nodes", "edges", "pds") %in% names(cgr_exp))) })
context("method subscript") test_that("get by index", { init_data() expect_equal(pm_first[1, 1], p(1, 1, 2)) expect_equal(pm_first[2, 1], p(0, 3, 1)) expect_equal(pm_first[1, 2], p(1, 0, 4)) expect_equal(pm_first[2, 2], 2) expect_equal(m_first[1, 1], 3) expect_equal(m_first[2, 1], 7) expect_equal(m_first[1, 2], 0) expect_equal(m_first[2, 2], 1) }) test_that("get all", { init_data() expect_equal(pm_first[,], pm_first) expect_equal(m_first[,], m_first) }) test_that("get by sequnce", { init_data() expect_equal(pm_first[c(1, 3), c(1, 3)], polyMatrix(matrix(c(1, 0, 1, 3, 2, 0, 3, 1, 0, 0, 0, 0), 2, 6, byrow = TRUE), 2, 2, 2)) expect_equal(pm_first[c(3, 1), c(3, 1)], polyMatrix(matrix(c(1, 3, 0, 0, 0, 0, 0, 1, 3, 1, 0, 2), 2, 6, byrow = TRUE), 2, 2, 2)) expect_equal(pm_first[c(3, 1, 3), c(3, 1, 3)], polyMatrix(matrix(c(1, 3, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 3, 1, 3, 0, 2, 0, 1, 3, 1, 0, 0, 0, 0, 0, 0), 3, 9, byrow = TRUE), 3, 3, 2)) expect_equal(pm_first[c(3, 1), 1], polyMatrix(matrix(c(3, 0, 0, 1, 1, 2), 2, 3, byrow = TRUE), 2, 1, 2)) expect_equal(pm_first[1, c(3, 1)], polyMatrix(matrix(c(0, 1, 3, 1, 0, 2), 1, 6), 1, 2, 2)) expect_equal(m_first[c(1, 3), c(1, 3)], matrix(c(3, 2, 4, 8), 2, 2, byrow = TRUE)) expect_equal(m_first[c(3, 1), c(3, 1)], matrix(c(8, 4, 2, 3), 2, 2, byrow = TRUE)) expect_equal(m_first[c(3, 1, 3), c(3, 1, 3)], matrix(c(8, 4, 8, 2, 3, 2, 8, 4, 8), 3, 3, byrow = TRUE)) expect_equal(m_first[c(3, 1), 1], c(4, 3)) expect_equal(m_first[1, c(3, 1)], c(2, 3)) }) test_that("get by logic", { init_data() expect_equal(pm_first[c(TRUE, FALSE, FALSE), c(TRUE, FALSE, FALSE)], p(1, 1, 2)) expect_equal(pm_first[c(FALSE, TRUE, FALSE), c(TRUE, FALSE, FALSE)], p(0, 3, 1)) expect_equal(pm_first[c(TRUE, FALSE, FALSE), c(FALSE, TRUE, FALSE)], p(1, 0, 4)) expect_equal(pm_first[c(FALSE, TRUE, FALSE), c(FALSE, TRUE, FALSE)], 2) expect_equal(pm_first[c(TRUE, FALSE), c(TRUE, FALSE)], polyMatrix(matrix(c(1, 0, 1, 3, 2, 0, 3, 1, 0, 0, 0, 0), 2, 6, byrow = TRUE), 2, 2, 2)) expect_equal(pm_first[c(FALSE, TRUE), c(TRUE, FALSE)], polyMatrix(matrix(c(0, 0, 3, 0, 1, 0), 1, 6, byrow = TRUE), 1, 2, 2)) expect_equal(pm_first[c(TRUE, FALSE), c(FALSE, TRUE)], polyMatrix(matrix(c(1, 0, 4, 0, 0, 6), 2, 3, byrow = TRUE), 2, 1, 2)) expect_equal(pm_first[c(FALSE, TRUE), c(FALSE, TRUE)], 2) expect_equal(pm_first[TRUE, TRUE], pm_first) expect_equal(m_first[c(TRUE, FALSE, FALSE), c(TRUE, FALSE, FALSE)], 3) expect_equal(m_first[c(FALSE, TRUE, FALSE), c(TRUE, FALSE, FALSE)], 7) expect_equal(m_first[c(TRUE, FALSE, FALSE), c(FALSE, TRUE, FALSE)], 0) expect_equal(m_first[c(FALSE, TRUE, FALSE), c(FALSE, TRUE, FALSE)], 1) expect_equal(m_first[c(TRUE, FALSE), c(TRUE, FALSE)], matrix(c(3, 2, 4, 8), 2, 2, byrow = TRUE)) expect_equal(m_first[c(FALSE, TRUE), c(TRUE, FALSE)], c(7, 0)) expect_equal(m_first[c(TRUE, FALSE), c(FALSE, TRUE)], c(0, 2)) expect_equal(m_first[c(FALSE, TRUE), c(FALSE, TRUE)], 1) expect_equal(m_first[TRUE, TRUE], m_first) }) test_that("row access", { init_data() expect_equal(pm_first[1,], polyMatrix(matrix(c(1, 1, 0, 1, 0, 3, 2, 4, 0), 1, 9, byrow = TRUE), 1, 3, 2)) expect_equal(pm_first[c(3, 1),], polyMatrix(matrix(c(3, 0, 1, 0, 0, 0, 0, 6, 0, 1, 1, 0, 1, 0, 3, 2, 4, 0), 2, 9, byrow = TRUE), 2, 3, 2)) expect_equal(pm_first[c(TRUE, FALSE),], polyMatrix(matrix(c(1, 1, 0, 1, 0, 3, 2, 4, 0, 3, 0, 1, 0, 0, 0, 0, 6, 0), 2, 9, byrow = TRUE), 2, 3, 2)) expect_equal(pm_first[c(TRUE, FALSE, FALSE),], polyMatrix(matrix(c(1, 1, 0, 1, 0, 3, 2, 4, 0), 1, 9, byrow = TRUE), 1, 3, 2)) expect_equal(pm_first[c(FALSE, TRUE),], polyMatrix(matrix(c(0, 2, 0, 3, 0, 0, 1, 0, 0), 1, 9, byrow = TRUE), 1, 3, 2)) expect_equal(m_first[1,], c(3, 0, 2)) expect_equal(m_first[c(3, 1),], matrix(c(4, 2, 8, 3, 0, 2), 2, 3, byrow = TRUE)) expect_equal(m_first[c(TRUE, FALSE),], matrix(c(3, 0, 2, 4, 2, 8), 2, 3, byrow = TRUE)) expect_equal(m_first[c(TRUE, FALSE, FALSE),], c(3, 0, 2)) expect_equal(m_first[c(FALSE, TRUE),], c(7, 1, 0)) }) test_that("columns access", { init_data() expect_equal(pm_first[, 1], polyMatrix(matrix(c(1, 1, 2, 0, 3, 1, 3, 0, 0), 3, 3, byrow = TRUE), 3, 1, 2)) expect_equal(pm_first[, c(3, 1)], polyMatrix(matrix(c(0, 1, 3, 1, 0, 2, 0, 0, 0, 3, 0, 1, 1, 3, 0, 0, 0, 0), 3, 6, byrow = TRUE), 3, 2, 2)) expect_equal(pm_first[, c(TRUE, FALSE)], polyMatrix(matrix(c(1, 0, 1, 3, 2, 0, 0, 0, 3, 0, 1, 0, 3, 1, 0, 0, 0, 0), 3, 6, byrow = TRUE), 3, 2, 2)) expect_equal(pm_first[, c(TRUE, FALSE, FALSE)], polyMatrix(matrix(c(1, 1, 2, 0, 3, 1, 3, 0, 0), 3, 3, byrow = TRUE), 3, 1, 2)) expect_equal(pm_first[, c(FALSE, TRUE)], polyMatrix(matrix(c(1, 0, 4, 2, 0, 0, 0, 0, 6), 3, 3, byrow = TRUE), 3, 1, 2)) expect_equal(m_first[, 1], c(3, 7, 4)) expect_equal(m_first[, c(3, 1)], matrix(c(2, 3, 0, 7, 8, 4), 3, 2, byrow = TRUE)) expect_equal(m_first[, c(TRUE, FALSE)], matrix(c(3, 2, 7, 0, 4, 8), 3, 2, byrow = TRUE)) expect_equal(m_first[, c(TRUE, FALSE, FALSE)], c(3, 7, 4)) expect_equal(m_first[, c(FALSE, TRUE)], c(0, 1, 2)) }) test_that("set one item: numeric and matrix", { init_data() pm_first[1, 1] <- 9 expect_equal(pm_first, polyMatrix(matrix(c(9, 1, 0, 0, 0, 3, 0, 4, 0, 0, 2, 0, 3, 0, 0, 1, 0, 0, 3, 0, 1, 0, 0, 0, 0, 6, 0), 3, 9, byrow = TRUE), 3, 3, 2)) expect_error(pm_first[1, 1] <- c(1, 2)) expect_error(pm_first[1, 1] <- c()) pm_first[2, 1] <- matrix(8, 1, 1) expect_equal(pm_first, polyMatrix(matrix(c(9, 1, 0, 0, 0, 3, 0, 4, 0, 8, 2, 0, 0, 0, 0, 0, 0, 0, 3, 0, 1, 0, 0, 0, 0, 6, 0), 3, 9, byrow = TRUE), 3, 3, 2)) expect_error(pm_first[1, 1] <- matrix(1, 2, 2)) pm_first[2, 3] <- 5 expect_equal(pm_first, polyMatrix(matrix(c(9, 1, 0, 0, 0, 3, 0, 4, 0, 8, 2, 5, 0, 0, 0, 0, 0, 0, 3, 0, 1, 0, 0, 0, 0, 6, 0), 3, 9, byrow = TRUE), 3, 3, 2)) pm_second[2, 3] <- 0 expect_equal(pm_second, polyMatrix(0, 3, 3, 0)) m_first[1, 2] <- 1 expect_equal(m_first, matrix(c(3, 1, 2, 7, 1, 0, 4, 2, 8), 3, 3, byrow = TRUE)) expect_error(m_first[1, 1] <- c(1, 2)) expect_error(m_first[1, 1] <- c()) m_first[1, 1] <- matrix(1, 1, 1) expect_equal(m_first, matrix(c(1, 1, 2, 7, 1, 0, 4, 2, 8), 3, 3, byrow = TRUE)) expect_error(m_first[1, 1] <- matrix(1, 2, 2)) }) test_that("set one item: polynomail and polyMatrix", { init_data() pm_first[1, 1] <- p(7, 6) expect_equal(pm_first, polyMatrix(matrix(c(7, 1, 0, 6, 0, 3, 0, 4, 0, 0, 2, 0, 3, 0, 0, 1, 0, 0, 3, 0, 1, 0, 0, 0, 0, 6, 0), 3, 9, byrow = TRUE), 3, 3, 2)) pm_second[2, 3] <- p(3, 4, 5) expect_equal(pm_second, polyMatrix(matrix(c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 4, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0), 3, 9, byrow = TRUE), 3, 3, 2)) pm_second[2, 3] <- p(3, 4) expect_equal(pm_second, polyMatrix(matrix(c(0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 4, 0, 0, 0, 0, 0, 0), 3, 6, byrow = TRUE), 3, 3, 1)) pm_second[1, 2] <- p(3, 2, 1) expect_equal(pm_second, polyMatrix(matrix(c(0, 3, 0, 0, 2, 0, 0, 1, 0, 0, 0, 3, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), 3, 9, byrow = TRUE), 3, 3, 2)) pm_first[2, 3] <- polyMatrix(matrix(c(2, 4, 6), 1, 3), 1, 1, 2) expect_equal(pm_first, polyMatrix(matrix(c(7, 1, 0, 6, 0, 3, 0, 4, 0, 0, 2, 2, 3, 0, 4, 1, 0, 6, 3, 0, 1, 0, 0, 0, 0, 6, 0), 3, 9, byrow = TRUE), 3, 3, 2)) }) test_that("set 2x2 items: number and matrix", { init_data() pm_first[c(2, 1), c(3, 1)] <- 9 expect_equal(pm_first, polyMatrix(matrix(c(9, 1, 9, 0, 0, 0, 0, 4, 0, 9, 2, 9, 0, 0, 0, 0, 0, 0, 3, 0, 1, 0, 0, 0, 0, 6, 0), 3, 9, byrow = TRUE), 3, 3, 2)) pm_second[c(2, 1), c(3, 1)] <- 0 expect_equal(pm_second, polyMatrix(0, 3, 3, 0)) m_first[c(2, 1), c(3, 1)] <- 9 expect_equal(m_first, matrix(c(9, 0, 9, 9, 1, 9, 4, 2, 8), 3, 3, byrow = TRUE)) }) test_that("set 2x2: matrix", { init_data() pm_first[c(2, 1), c(3, 1)] <- matrix(c(2, 4, 6, 8), 2, 2, byrow = TRUE) expect_equal(pm_first, polyMatrix(matrix(c(8, 1, 6, 0, 0, 0, 0, 4, 0, 4, 2, 2, 0, 0, 0, 0, 0, 0, 3, 0, 1, 0, 0, 0, 0, 6, 0), 3, 9, byrow = TRUE), 3, 3, 2)) pm_second[c(2, 1), c(3, 1)] <- matrix(c(0, 3, 6, 9), 2, 2, byrow = TRUE) expect_equal(pm_second, polyMatrix(matrix(c(9, 0, 6, 3, 0, 0, 0, 0, 0), 3, 3, byrow = TRUE), 3, 3, 0)) m_first[c(3, 2), c(2, 1)] <- matrix(c(2, 4, 6, 8), 2, 2, byrow = TRUE) expect_equal(m_first, matrix(c(3, 0, 2, 8, 6, 0, 4, 2, 8), 3, 3, byrow = TRUE)) }) test_that("set 2x2: polynomail", { init_data() pm_first[c(2, 1), c(3, 1)] <- p(7, 2) expect_equal(pm_first, polyMatrix(matrix(c(7, 1, 7, 2, 0, 2, 0, 4, 0, 7, 2, 7, 2, 0, 2, 0, 0, 0, 3, 0, 1, 0, 0, 0, 0, 6, 0), 3, 9, byrow = TRUE), 3, 3, 2)) pm_second[c(2, 1), c(3, 1)] <- p(2, 4) expect_equal(pm_second, polyMatrix(matrix(c(2, 0, 2, 4, 0, 4, 2, 0, 2, 4, 0, 4, 0, 0, 0, 0, 0, 0), 3, 6, byrow = TRUE), 3, 3, 1)) pm_second[c(3, 1), c(1, 2)] <- p(3, 5, 7) expect_equal(pm_second, polyMatrix(matrix(c(3, 3, 2, 5, 5, 4, 7, 7, 0, 2, 0, 2, 4, 0, 4, 0, 0, 0, 3, 3, 0, 5, 5, 0, 7, 7, 0), 3, 9, byrow = TRUE), 3, 3, 2)) }) test_that("set 2x2: polyMatrix", { pm_second[c(2, 1), c(3, 1)] <- polyMatrix(matrix(c(1, 3, 2, 4, 5, 7, 6, 8), 2, 4, byrow = TRUE), 2, 2, 1) expect_equal(pm_second, polyMatrix(matrix(c(7, 0, 5, 8, 0, 6, 3, 0, 1, 4, 0, 2, 0, 0, 0, 0, 0, 0), 3, 6, byrow = TRUE), 3, 3, 1)) pm_second[c(2, 1), c(3, 1)] <- polyMatrix(matrix(c(1, 2, 3, 4, 1, 1, 5, 6, 7, 8, 2, 2), 2, 6, byrow = TRUE), 2, 2, 2) expect_equal(pm_second, polyMatrix(matrix(c(6, 0, 5, 8, 0, 7, 2, 0, 2, 2, 0, 1, 4, 0, 3, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0), 3, 9, byrow = TRUE), 3, 3, 2)) }) test_that("set one row", { init_data() pm_first[1,] <- 1 expect_equal(pm_first, polyMatrix(matrix(c(1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 3, 0, 0, 1, 0, 0, 3, 0, 1, 0, 0, 0, 0, 6, 0), 3, 9, byrow = TRUE), 3, 3, 2)) pm_first[1,] <- matrix(c(3, 4, 5), 1, 3) expect_equal(pm_first, polyMatrix(matrix(c(3, 4, 5, 0, 0, 0, 0, 0, 0, 0, 2, 0, 3, 0, 0, 1, 0, 0, 3, 0, 1, 0, 0, 0, 0, 6, 0), 3, 9, byrow = TRUE), 3, 3, 2)) pm_first[1,] <- p(2, 3) expect_equal(pm_first, polyMatrix(matrix(c(2, 2, 2, 3, 3, 3, 0, 0, 0, 0, 2, 0, 3, 0, 0, 1, 0, 0, 3, 0, 1, 0, 0, 0, 0, 6, 0), 3, 9, byrow = TRUE), 3, 3, 2)) pm_first[1,] <- polyMatrix(matrix(c(1, 2, 0, 3, 0, 0), 1, 6, byrow = TRUE), 1, 3, 1) expect_equal(pm_first, polyMatrix(matrix(c(1, 2, 0, 3, 0, 0, 0, 0, 0, 0, 2, 0, 3, 0, 0, 1, 0, 0, 3, 0, 1, 0, 0, 0, 0, 6, 0), 3, 9, byrow = TRUE), 3, 3, 2)) }) test_that("set two rows", { init_data() pm_first[c(3, 1),] <- 1 expect_equal(pm_first, polyMatrix(matrix(c(1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 3, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0), 3, 9, byrow = TRUE), 3, 3, 2)) pm_first[c(3, 1),] <- matrix(c(3, 4, 5, 1, 2, 3), 2, 3, byrow = TRUE) expect_equal(pm_first, polyMatrix(matrix(c(1, 2, 3, 0, 0, 0, 0, 0, 0, 0, 2, 0, 3, 0, 0, 1, 0, 0, 3, 4, 5, 0, 0, 0, 0, 0, 0), 3, 9, byrow = TRUE), 3, 3, 2)) pm_first[c(3, 1),] <- p(2, 3) expect_equal(pm_first, polyMatrix(matrix(c(2, 2, 2, 3, 3, 3, 0, 0, 0, 0, 2, 0, 3, 0, 0, 1, 0, 0, 2, 2, 2, 3, 3, 3, 0, 0, 0), 3, 9, byrow = TRUE), 3, 3, 2)) pm_first[c(3, 1),] <- polyMatrix(matrix(c(1, 2, 0, 3, 0, 0, 0, 9, 8, 0, 0, 7), 2, 6, byrow = TRUE), 2, 3, 1) expect_equal(pm_first, polyMatrix(matrix(c(0, 9, 8, 0, 0, 7, 0, 0, 0, 0, 2, 0, 3, 0, 0, 1, 0, 0, 1, 2, 0, 3, 0, 0, 0, 0, 0), 3, 9, byrow = TRUE), 3, 3, 2)) }) test_that("set one column", { init_data() pm_first[, 1] <- 2 expect_equal(pm_first, polyMatrix(matrix(c(2, 1, 0, 0, 0, 3, 0, 4, 0, 2, 2, 0, 0, 0, 0, 0, 0, 0, 2, 0, 1, 0, 0, 0, 0, 6, 0), 3, 9, byrow = TRUE), 3, 3, 2)) pm_first[, 1] <- matrix(c(3, 2, 1), 3, 1, byrow = TRUE) expect_equal(pm_first, polyMatrix(matrix(c(3, 1, 0, 0, 0, 3, 0, 4, 0, 2, 2, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 6, 0), 3, 9, byrow = TRUE), 3, 3, 2)) pm_first[, 1] <- p(1, 9) expect_equal(pm_first, polyMatrix(matrix(c(1, 1, 0, 9, 0, 3, 0, 4, 0, 1, 2, 0, 9, 0, 0, 0, 0, 0, 1, 0, 1, 9, 0, 0, 0, 6, 0), 3, 9, byrow = TRUE), 3, 3, 2)) pm_first[, 1] <- polyMatrix(matrix(c(2, 5, 0, 8, 7, 0), 3, 2, byrow = TRUE), 3, 1, 1) expect_equal(pm_first, polyMatrix(matrix(c(2, 1, 0, 5, 0, 3, 0, 4, 0, 0, 2, 0, 8, 0, 0, 0, 0, 0, 7, 0, 1, 0, 0, 0, 0, 6, 0), 3, 9, byrow = TRUE), 3, 3, 2)) }) test_that("set tow columns", { init_data() pm_first[, c(3, 1)] <- 2 expect_equal(pm_first, polyMatrix(matrix(c(2, 1, 2, 0, 0, 0, 0, 4, 0, 2, 2, 2, 0, 0, 0, 0, 0, 0, 2, 0, 2, 0, 0, 0, 0, 6, 0), 3, 9, byrow = TRUE), 3, 3, 2)) pm_first[, c(3, 1)] <- matrix(c(9, 3, 8, 2, 7, 1), 3, 2, byrow = TRUE) expect_equal(pm_first, polyMatrix(matrix(c(3, 1, 9, 0, 0, 0, 0, 4, 0, 2, 2, 8, 0, 0, 0, 0, 0, 0, 1, 0, 7, 0, 0, 0, 0, 6, 0), 3, 9, byrow = TRUE), 3, 3, 2)) pm_first[, c(3, 1)] <- p(1, 9) expect_equal(pm_first, polyMatrix(matrix(c(1, 1, 1, 9, 0, 9, 0, 4, 0, 1, 2, 1, 9, 0, 9, 0, 0, 0, 1, 0, 1, 9, 0, 9, 0, 6, 0), 3, 9, byrow = TRUE), 3, 3, 2)) pm_first[, c(3, 1)] <- polyMatrix(matrix(c(1, 2, 4, 5, 0, 0, 5, 8, 2, 7, 0, 0), 3, 4, byrow = TRUE), 3, 2, 1) expect_equal(pm_first, polyMatrix(matrix(c(2, 1, 1, 5, 0, 4, 0, 4, 0, 0, 2, 0, 8, 0, 5, 0, 0, 0, 7, 0, 2, 0, 0, 0, 0, 6, 0), 3, 9, byrow = TRUE), 3, 3, 2)) }) test_that("set whole matrix", { init_data() pm_small[,] <- 6 expect_equal(pm_small, polyMatrix(matrix(c(6, 6, 6, 6), 2, 2, byrow = TRUE), 2, 2, 0)) pm_small[,] <- p(2, 8) expect_equal(pm_small, polyMatrix(matrix(c(2, 2, 8, 8, 2, 2, 8, 8), 2, 4, byrow = TRUE), 2, 2, 1)) }) test_that("custom 1", { pm <- parse.polyMatrix("1, x + 2", "0, x^2", "0, 0") expect_equal(pm[, 1], parse.polyMatrix("1", "0", "0")) expect_equal(pm[, 2], parse.polyMatrix("2 + x", "x^2", "0")) })
print.outbreaker_chains <- function(x, n_row = 3, n_col = 8, type = "chain", ...) { if(type == "chain"){ cat("\n\n ///// outbreaker results ///\n") cat("\nclass: ", class(x)) cat("\ndimensions", nrow(x), "rows, ", ncol(x), "columns") if (ncol(x) > n_col) { ori_names <- names(x) x <- x[, seq_len(min(n_col, ncol(x)))] not_shown <- setdiff(ori_names, names(x)) alpha_txt <- paste(not_shown[range(grep("alpha", not_shown))], collapse=" - ") t_inf_txt <- paste(not_shown[range(grep("t_inf", not_shown))], collapse=" - ") kappa_txt <- paste(not_shown[range(grep("kappa", not_shown))], collapse=" - ") cat("\nancestries not shown:", alpha_txt) cat("\ninfection dates not shown:", t_inf_txt) cat("\nintermediate generations not shown:", kappa_txt) } cat("\n\n/// head //\n") print(head(as.data.frame(x), n_row)) cat("\n...") cat("\n/// tail //\n") print(tail(as.data.frame(x), n_row)) } else if(type == "cluster"){ matrix_ances <- t(apply(x[, grep("alpha", colnames(x))], 1, function(X){ while(any(!is.na(X[X]))) X[!is.na(X[X])] <- X[X[!is.na(X[X])]] X[!is.na(X)] <- names(X[X[!is.na(X)]]) X[is.na(X)] <- names(X[is.na(X)]) return(X) })) max_clust_size <- max(unlist(apply(matrix_ances, 1, table))) table_tot <- t(apply(matrix_ances, 1, function(X){ table_clust <- numeric(max_clust_size) names(table_clust) <- 1:max_clust_size table_clust[names(table(table(X)))] <- table(table(X)) return(table_clust) })) if (ncol(table_tot) > n_col) { cat("\n Biggest cluster:", max_clust_size) cat("\n Cluster not shown:", n_col, "to", ncol(table_tot), "\n") table_tot <- table_tot[, seq_len(min(n_col, ncol(table_tot)))] } if((n_row * 2) < nrow(table_tot)){ cat("\n\n/// head //\n") print(head(as.data.frame(table_tot), n_row)) cat("\n...") cat("\n/// tail //\n") print(tail(as.data.frame(table_tot), n_row)) } else print(as.data.frame(table_tot)) } else stop("type should be chain or cluster") } plot.outbreaker_chains <- function(x, y = "post", type = c("trace", "hist", "density", "cluster", "alpha", "t_inf", "kappa", "network"), burnin = 0, min_support = 0.1, labels = NULL, group_cluster = NULL, ...) { type <- match.arg(type) if (!y %in% names(x)) { stop(paste(y,"is not a column of x")) } frequency <- low <- med <- up <- categ <- NULL if (burnin > max(x$step)) { stop("burnin exceeds the number of steps in x") } x <- x[x$step>burnin,,drop = FALSE] if (type == "trace") { out <- ggplot(x) + geom_line(aes_string(x="step", y = y)) + labs(x="Iteration", y = y, title = paste("trace:",y)) } if (type == "hist") { out <- ggplot(x) + geom_histogram(aes_string(x = y)) + geom_point(aes_string(x = y, y = 0), shape="|", alpha = 0.5, size = 3) + labs(x = y, title = paste("histogram:",y)) } if (type == "density") { out <- ggplot(x) + geom_density(aes_string(x = y)) + geom_point(aes_string(x = y, y = 0), shape="|", alpha = 0.5, size = 3) + labs(x = y, title = paste("density:",y)) } if (type =="alpha") { alpha <- as.matrix(x[,grep("alpha", names(x))]) colnames(alpha) <- seq_len(ncol(alpha)) from <- as.vector(alpha) to <- as.vector(col(alpha)) from[is.na(from)] <- 0 out_dat <- data.frame(xyTable(from,to)) names(out_dat) <- c("from", "to", "frequency") get_prop <- function(i) { ind <- which(out_dat$to == out_dat$to[i]) out_dat[[3]][i]/sum(out_dat[[3]][ind]) } get_alpha_lab <- function(axis, labels = NULL) { if(is.null(labels)) labels <- seq_len(ncol(alpha)) if(axis == 'x') return(labels) else if(axis == 'y') return(c("Import", labels)) } get_alpha_color <- function(color = NULL) { if(is.null(color)) return(NULL) else return(scale_color_manual(values = color)) } get_lab_color <- function(labels = NULL, color = NULL) { list(alpha_lab_x = get_alpha_lab('x', labels), alpha_lab_y = get_alpha_lab('y', labels), alpha_color = get_alpha_color(color)) } tmp <- get_lab_color(labels, ...) out_dat[3] <- vapply(seq_along(out_dat[[3]]), get_prop, 1) out_dat$from <- factor(out_dat$from, levels = c(0, sort(unique(out_dat$to)))) out_dat$to <- factor(out_dat$to, levels = sort(unique(out_dat$to))) out <- ggplot(out_dat) + geom_point(aes(x = to, y = from, size = frequency, color = to)) + scale_x_discrete(drop = FALSE, labels = tmp$alpha_lab_x) + scale_y_discrete(drop = FALSE, labels = tmp$alpha_lab_y) + labs(x = 'To', y = 'From', size = 'Posterior\nfrequency') + tmp$alpha_color + scale_size_area() + guides(colour = FALSE) } if (type =="t_inf") { get_t_inf_lab <- function(labels = NULL) { N <- ncol(t_inf) if(is.null(labels)) labels <- 1:N return(labels) } get_t_inf_color <- function(color = NULL) { if(is.null(color)) return(NULL) else return(scale_fill_manual(values = color)) } get_lab_color <- function(labels = NULL, color = NULL) { list(t_inf_lab_x = get_t_inf_lab(labels), t_inf_color = get_t_inf_color(color)) } t_inf <- as.matrix(x[,grep("t_inf", names(x))]) tmp <- get_lab_color(...) dates <- as.vector(t_inf) cases <- as.vector(col(t_inf)) out_dat <- data.frame(cases = factor(cases), dates = dates) out <- ggplot(out_dat) + geom_violin(aes(x = cases, y = dates, fill = cases)) + coord_flip() + guides(fill = FALSE) + labs(y = 'Infection time', x = NULL) + tmp$t_inf_color + scale_x_discrete(labels = tmp$t_inf_lab) } if (type == "kappa") { get_kappa_lab <- function(labels = NULL) { N <- ncol(kappa) if(is.null(labels)) labels <- 1:N return(labels) } kappa <- as.matrix(x[,grep("kappa", names(x))]) generations <- as.vector(kappa) cases <- as.vector(col(kappa)) to_keep <- !is.na(generations) generations <- generations[to_keep] cases <- cases[to_keep] out_dat <- data.frame(xyTable(generations, cases)) get_prop <- function(i) { ind <- which(out_dat$y == out_dat$y[i]) out_dat[[3]][i]/sum(out_dat[[3]][ind]) } out_dat[3] <- vapply(seq_along(out_dat[[3]]), get_prop, 1) names(out_dat) <- c("generations", "cases", "frequency") out <- ggplot(out_dat) + geom_point(aes(x = generations, y = as.factor(cases), size = frequency, color = factor(cases))) + scale_size_area() + scale_y_discrete(labels = get_kappa_lab(...)) + guides(colour = FALSE) + labs(title = "number of generations between cases", x = "number of generations to ancestor", y = NULL) } if (type == "network") { alpha <- x[, grep("alpha",names(x)), drop = FALSE] from <- unlist(alpha) to <- as.vector(col(alpha)) N <- ncol(alpha) edges <- stats::na.omit(data.frame(xyTable(from, to))) edges[3] <- edges$number/nrow(alpha) names(edges) <- c("from", "to", "value") edges <- edges[edges$value > min_support,,drop = FALSE] edges$arrows <- "to" find_nodes_size <- function(i) { sum(from==i, na.rm = TRUE) / nrow(alpha) } get_node_lab <- function(labels = NULL) { if(is.null(labels)) labels <- 1:N return(labels) } nodes <- data.frame(id = seq_len(ncol(alpha)), label = seq_len(ncol(alpha))) nodes$value <- vapply(nodes$id, find_nodes_size, numeric(1)) nodes$shape <- rep("dot", N) nodes$label <- get_node_lab(...) smry <- summary(x, burnin = burnin) is_imported <- is.na(smry$tree$from) nodes$shaped[is_imported] <- "star" out <- visNetwork::visNetwork(nodes = nodes, edges = edges, ...) out <- visNetwork::visNodes(out, shadow = list(enabled = TRUE, size = 10), color = list(highlight = "red")) out <- visNetwork::visEdges(out, arrows = list( to = list(enabled = TRUE, scaleFactor = 0.2)), color = list(highlight = "red")) } if (type == "cluster"){ matrix_ances <- t(apply(x[x$step > burnin, grep("alpha", colnames(x))], 1, function(X){ while(any(!is.na(X[X]))) X[!is.na(X[X])] <- X[X[!is.na(X[X])]] X[!is.na(X)] <- names(X[X[!is.na(X)]]) X[is.na(X)] <- names(X[is.na(X)]) return(X) })) max_clust_size <- max(unlist(apply(matrix_ances, 1, table))) if(!is.null(group_cluster)) { max_clust_size <- max(max_clust_size, group_cluster) if(max_clust_size != max(group_cluster)) group_cluster <- c(group_cluster, max_clust_size) if(min(group_cluster) != 0) group_cluster <- c(0, group_cluster) } table_tot <- t(apply(matrix_ances, 1, function(X){ table_clust <- numeric(max_clust_size) names(table_clust) <- 1:max_clust_size table_clust[names(table(table(X)))] <- table(table(X)) return(table_clust) })) if(!is.null(group_cluster)) { group_cluster[which.max(group_cluster)] <- group_cluster[which.max(group_cluster)] + 1 aggreg_vector <- sapply(seq_len(max_clust_size), function(X) sum(X > group_cluster)) aggreg_clust_size <- t(aggregate(t(table_tot), by = list(aggreg_vector), sum)[,-1]) colnames(aggreg_clust_size) <- sapply(seq_len(length(group_cluster) - 1), function(X){ if(group_cluster[X] == group_cluster[X+1] -1) return(as.character(group_cluster[X] + 1)) else return(paste0(group_cluster[X] + 1, " - ", group_cluster[X + 1])) }) cluster_size_tot <- t(apply(aggreg_clust_size, 2, function(X) quantile(X, probs = c(0.025, 0.5, 0.975)))) } else cluster_size_tot <- t(apply(table_tot, 2, function(X) quantile(X, probs = c(0.025, 0.5, 0.975)))) out_dat <- cbind.data.frame(rownames(cluster_size_tot), cluster_size_tot, stringsAsFactors=FALSE) colnames(out_dat) <- c("categ", "low", "med", "up") out <- ggplot(out_dat) + geom_bar(aes(x = factor(categ, levels = categ), y = med), stat = "identity") + geom_errorbar(aes(x = categ, ymin=low, ymax=up), width=.2) + guides(fill = FALSE) + labs(y = 'Number of clusters', x = "Cluster size") } return(out) } summary.outbreaker_chains <- function(object, burnin = 0, group_cluster = NULL, ...) { x <- object if (burnin > max(x$step)) { stop("burnin exceeds the number of steps in object") } x <- x[x$step>burnin,,drop = FALSE] out <- list() interv <- ifelse(nrow(x)>2, diff(tail(x$step, 2)), NA) out$step <- c(first = min(x$step), last = max(x$step), interval = interv, n_steps = length(x$step) ) out$post <- summary(x$post) out$like <- summary(x$like) out$prior <- summary(x$prior) out$pi <- summary(x$pi) out$a <- summary(x$a) out$b <- summary(x$b) out$tree <- list() alpha <- as.matrix(x[,grep("alpha", names(x))]) f1 <- function(x) { as.integer(names(sort(table(x, exclude = NULL), decreasing = TRUE)[1])) } out$tree$from <- apply(alpha, 2, f1) out$tree$to <- seq_len(ncol(alpha)) t_inf <- as.matrix(x[,grep("t_inf", names(x))]) out$tree$time <- apply(t_inf, 2, median) f2 <- function(x) { (sort(table(x, exclude = NULL), decreasing = TRUE)/length(x))[1] } out$tree$support <- apply(alpha, 2, f2) out$tree$support[is.na(out$tree$from)] <- NA f3 <- function(x) { (length(which(is.na(x)))/length(x))[1] } out$tree$import <- apply(alpha, 2, f3) kappa <- as.matrix(x[,grep("kappa", names(x))]) out$tree$generations <- apply(kappa, 2, function(X) { return(median(X[!is.na(X)]))}) out$tree <- as.data.frame(out$tree) rownames(out$tree) <- NULL matrix_ances <- t(apply(x[x$step > burnin, grep("alpha", colnames(x))], 1, function(X){ while(any(!is.na(X[X]))) X[!is.na(X[X])] <- X[X[!is.na(X[X])]] X[!is.na(X)] <- names(X[X[!is.na(X)]]) X[is.na(X)] <- names(X[is.na(X)]) return(X) })) max_clust_size <- max(unlist(apply(matrix_ances, 1, table))) if(!is.null(group_cluster)) { max_clust_size <- max(max_clust_size, group_cluster) if(max_clust_size != max(group_cluster)) group_cluster <- c(group_cluster, max_clust_size) if(min(group_cluster) != 0) group_cluster <- c(0, group_cluster) } table_tot <- t(apply(matrix_ances, 1, function(X){ table_clust <- numeric(max_clust_size) names(table_clust) <- 1:max_clust_size table_clust[names(table(table(X)))] <- table(table(X)) return(table_clust) })) if(!is.null(group_cluster)) { group_cluster[which.max(group_cluster)] <- group_cluster[which.max(group_cluster)] + 1 aggreg_vector <- sapply(seq_len(max_clust_size), function(X) sum(X > group_cluster)) aggreg_clust_size <- t(aggregate(t(table_tot), by = list(aggreg_vector), sum)[,-1]) colnames(aggreg_clust_size) <- sapply(seq_len(length(group_cluster) - 1), function(X){ if(group_cluster[X] == group_cluster[X+1] -1) return(as.character(group_cluster[X] + 1)) else return(paste0(group_cluster[X] + 1, " - ", group_cluster[X + 1])) }) out$cluster <- apply(aggreg_clust_size, 2, summary) } else out$cluster <- apply(table_tot, 2, summary) return(out) }
context("VS/ES operators") test_that("c on attached vs", { g <- make_ring(10) vg <- V(g)[1:5] vg2 <- V(g)[6:10] expect_equivalent(c(vg, vg2), V(g)) expect_equal(get_vs_graph_id(c(vg, vg2)), get_graph_id(g)) vg <- V(g) vg2 <- V(g)[FALSE] expect_equivalent(c(vg, vg2), V(g)) expect_equivalent(c(vg2, vg), V(g)) vg <- V(g)[c(2,5,6,8)] expect_equivalent(c(vg, vg), V(g)[c(2,5,6,8,2,5,6,8)]) }) test_that("c on detached vs", { g <- make_ring(10) vg <- V(g)[1:5] vg2 <- V(g)[6:10] vg3 <- V(g) vg4 <- V(g)[FALSE] vg5 <- V(g)[c(2,5,6,8)] vg6 <- V(g)[c(2,5,6,8,2,5,6,8)] rm(g) gc() expect_equivalent(c(vg, vg2), vg3) expect_equivalent(c(vg3, vg4), vg3) expect_equivalent(c(vg4, vg3), vg3) expect_equivalent(c(vg5, vg5), vg6) }) test_that("c on attached vs, names", { g <- make_ring(10) V(g)$name <- letters[1:10] vg <- V(g)[1:5] vg2 <- V(g)[6:10] expect_equivalent(c(vg, vg2), V(g)) expect_equal(names(c(vg, vg2)), names(V(g))) vg <- V(g) vg2 <- V(g)[FALSE] expect_equivalent(c(vg, vg2), V(g)) expect_equal(names(c(vg, vg2)), names(V(g))) expect_equivalent(c(vg2, vg), V(g)) expect_equal(names(c(vg2, vg)), names(V(g))) vg <- V(g)[c(2,5,6,8)] expect_equivalent(c(vg, vg), V(g)[c(2,5,6,8,2,5,6,8)]) expect_equal(names(c(vg, vg)), names(V(g)[c(2,5,6,8,2,5,6,8)])) }) test_that("c on detached vs, names", { g <- make_ring(10) vg <- V(g)[1:5] vg2 <- V(g)[6:10] vg3 <- V(g) vg4 <- V(g)[FALSE] vg5 <- V(g)[c(2,5,6,8)] vg6 <- V(g)[c(2,5,6,8,2,5,6,8)] rm(g) gc() expect_equivalent(c(vg, vg2), vg3) expect_equal(names(c(vg, vg2)), names(vg3)) expect_equivalent(c(vg3, vg4), vg3) expect_equal(names(c(vg3, vg4)), names(vg3)) expect_equivalent(c(vg4, vg3), vg3) expect_equal(names(c(vg3, vg4)), names(vg3)) expect_equivalent(c(vg5, vg5), vg6) expect_equal(names(c(vg5, vg5)), names(vg6)) }) test_that("union on attached vs", { g <- make_ring(10) v1 <- V(g)[1:7] v2 <- V(g)[6:10] vu <- union(v1, v2) expect_equivalent(vu, V(g)) expect_equivalent(union(V(g)), V(g)) v3 <- V(g)[FALSE] expect_equivalent(union(V(g), v3), V(g)) expect_equivalent(union(v3, V(g), v3), V(g)) expect_equivalent(union(v3), v3) expect_equivalent(union(v3, v3, v3), v3) expect_equivalent(union(v3, v3), v3) }) test_that("union on detached vs", { g <- make_ring(10) vg <- V(g) v1 <- V(g)[1:7] v2 <- V(g)[6:10] vu <- union(v1, v2) v3 <- V(g)[FALSE] rm(g) gc() expect_equivalent(vu, vg) expect_equivalent(union(vg), vg) expect_equivalent(union(vg, v3), vg) expect_equivalent(union(v3, vg, v3), vg) expect_equivalent(union(v3), v3) expect_equivalent(union(v3, v3, v3), v3) expect_equivalent(union(v3, v3), v3) }) test_that("union on attached vs, names", { g <- make_ring(10) V(g)$name <- letters[1:10] v1 <- V(g)[1:7] v2 <- V(g)[6:10] vu <- union(v1, v2) expect_equivalent(vu, V(g)) expect_equal(names(vu), names(V(g))) expect_equivalent(union(V(g)), V(g)) expect_equal(names(union(V(g))), names(V(g))) v3 <- V(g)[FALSE] expect_equivalent(union(V(g), v3), V(g)) expect_equal(names(union(V(g), v3)), names(V(g))) expect_equivalent(union(v3, V(g), v3), V(g)) expect_equal(names(union(v3, V(g), v3)), names(V(g))) expect_equivalent(union(v3), v3) expect_equal(names(union(v3)), names(v3)) expect_equivalent(union(v3, v3, v3), v3) expect_equal(names(union(v3, v3, v3)), names(v3)) expect_equivalent(union(v3, v3), v3) expect_equal(names(union(v3, v3)), names(v3)) }) test_that("union on detached vs, names", { g <- make_ring(10) V(g)$name <- letters[1:10] vg <- V(g) v1 <- V(g)[1:7] v2 <- V(g)[6:10] v3 <- V(g)[FALSE] rm(g) gc() vu <- union(v1, v2) expect_equivalent(vu, vg) expect_equal(names(vu), names(vg)) expect_equivalent(union(vg), vg) expect_equal(names(union(vg)), names(vg)) expect_equivalent(union(vg, v3), vg) expect_equal(names(union(vg, v3)), names(vg)) expect_equivalent(union(v3, vg, v3), vg) expect_equal(names(union(v3, vg, v3)), names(vg)) expect_equivalent(union(v3), v3) expect_equal(names(union(v3)), names(v3)) expect_equivalent(union(v3, v3, v3), v3) expect_equal(names(union(v3, v3, v3)), names(v3)) expect_equivalent(union(v3, v3), v3) expect_equal(names(union(v3, v3)), names(v3)) }) test_that("intersection on attached vs", { g <- make_ring(10) vg <- V(g) v1 <- V(g)[1:7] v2 <- V(g)[6:10] v3 <- V(g)[FALSE] v4 <- V(g)[1:3] v12 <- V(g)[6:7] v13 <- V(g)[FALSE] v14 <- V(g)[1:3] v24 <- V(g)[FALSE] vi1 <- intersection(v1, v2) expect_equivalent(vi1, v12) vi2 <- intersection(v1, v3) expect_equivalent(vi2, v13) vi3 <- intersection(v1, v4) expect_equivalent(vi3, v14) vi4 <- intersection(v1, vg) expect_equivalent(vi4, v1) vi5 <- intersection(v2, v4) expect_equivalent(vi5, v24) vi6 <- intersection(v3, vg) expect_equivalent(vi6, v3) }) test_that("intersection on detached vs", { g <- make_ring(10) vg <- V(g) v1 <- V(g)[1:7] v2 <- V(g)[6:10] v3 <- V(g)[FALSE] v4 <- V(g)[1:3] v12 <- V(g)[6:7] v13 <- V(g)[FALSE] v14 <- V(g)[1:3] v24 <- V(g)[FALSE] rm(g) gc() vi1 <- intersection(v1, v2) expect_equivalent(vi1, v12) vi2 <- intersection(v1, v3) expect_equivalent(vi2, v13) vi3 <- intersection(v1, v4) expect_equivalent(vi3, v14) vi4 <- intersection(v1, vg) expect_equivalent(vi4, v1) vi5 <- intersection(v2, v4) expect_equivalent(vi5, v24) vi6 <- intersection(v3, vg) expect_equivalent(vi6, v3) }) test_that("intersection on attached vs, names", { g <- make_ring(10) V(g)$name <- letters[1:10] vg <- V(g) v1 <- V(g)[1:7] v2 <- V(g)[6:10] v3 <- V(g)[FALSE] v4 <- V(g)[1:3] v12 <- V(g)[6:7] v13 <- V(g)[FALSE] v14 <- V(g)[1:3] v24 <- V(g)[FALSE] vi1 <- intersection(v1, v2) expect_equivalent(vi1, v12) expect_equal(names(vi1), names(v12)) vi2 <- intersection(v1, v3) expect_equivalent(vi2, v13) expect_equal(names(vi2), names(v13)) vi3 <- intersection(v1, v4) expect_equivalent(vi3, v14) expect_equal(names(vi3), names(v14)) vi4 <- intersection(v1, vg) expect_equivalent(vi4, v1) expect_equal(names(vi4), names(v1)) vi5 <- intersection(v2, v4) expect_equivalent(vi5, v24) expect_equal(names(vi5), names(v24)) vi6 <- intersection(v3, vg) expect_equivalent(vi6, v3) expect_equal(names(vi6), names(v3)) }) test_that("intersection on detached vs, names", { g <- make_ring(10) V(g)$name <- letters[1:10] vg <- V(g) v1 <- V(g)[1:7] v2 <- V(g)[6:10] v3 <- V(g)[FALSE] v4 <- V(g)[1:3] v12 <- V(g)[6:7] v13 <- V(g)[FALSE] v14 <- V(g)[1:3] v24 <- V(g)[FALSE] rm(g) gc() vi1 <- intersection(v1, v2) expect_equivalent(vi1, v12) expect_equal(names(vi1), names(v12)) vi2 <- intersection(v1, v3) expect_equivalent(vi2, v13) expect_equal(names(vi2), names(v13)) vi3 <- intersection(v1, v4) expect_equivalent(vi3, v14) expect_equal(names(vi3), names(v14)) vi4 <- intersection(v1, vg) expect_equivalent(vi4, v1) expect_equal(names(vi4), names(v1)) vi5 <- intersection(v2, v4) expect_equivalent(vi5, v24) expect_equal(names(vi5), names(v24)) vi6 <- intersection(v3, vg) expect_equivalent(vi6, v3) expect_equal(names(vi6), names(v3)) }) test_that("difference on attached vs", { g <- make_ring(10) vg <- V(g) v1 <- V(g)[1:7] v2 <- V(g)[6:10] v3 <- V(g)[FALSE] v4 <- V(g)[1:3] vr1 <- V(g)[8:10] vr2 <- V(g) vr3 <- V(g)[1:5] vr4 <- V(g)[4:7] vr5 <- V(g)[FALSE] vr6 <- V(g)[FALSE] vd1 <- difference(vg, v1) vd2 <- difference(vg, v3) vd3 <- difference(v1, v2) vd4 <- difference(v1, v4) vd5 <- difference(v3, v3) vd6 <- difference(v3, v4) expect_equivalent(vd1, vr1) expect_equivalent(vd2, vr2) expect_equivalent(vd3, vr3) expect_equivalent(vd4, vr4) expect_equivalent(vd5, vr5) expect_equivalent(vd6, vr6) }) test_that("difference on detached vs", { g <- make_ring(10) vg <- V(g) v1 <- V(g)[1:7] v2 <- V(g)[6:10] v3 <- V(g)[FALSE] v4 <- V(g)[1:3] vr1 <- V(g)[8:10] vr2 <- V(g) vr3 <- V(g)[1:5] vr4 <- V(g)[4:7] vr5 <- V(g)[FALSE] vr6 <- V(g)[FALSE] rm(g) gc() vd1 <- difference(vg, v1) vd2 <- difference(vg, v3) vd3 <- difference(v1, v2) vd4 <- difference(v1, v4) vd5 <- difference(v3, v3) vd6 <- difference(v3, v4) expect_equivalent(vd1, vr1) expect_equivalent(vd2, vr2) expect_equivalent(vd3, vr3) expect_equivalent(vd4, vr4) expect_equivalent(vd5, vr5) expect_equivalent(vd6, vr6) }) test_that("difference on attached vs, names", { g <- make_ring(10) V(g)$name <- letters[1:10] vg <- V(g) v1 <- V(g)[1:7] v2 <- V(g)[6:10] v3 <- V(g)[FALSE] v4 <- V(g)[1:3] vr1 <- V(g)[8:10] vr2 <- V(g) vr3 <- V(g)[1:5] vr4 <- V(g)[4:7] vr5 <- V(g)[FALSE] vr6 <- V(g)[FALSE] vd1 <- difference(vg, v1) vd2 <- difference(vg, v3) vd3 <- difference(v1, v2) vd4 <- difference(v1, v4) vd5 <- difference(v3, v3) vd6 <- difference(v3, v4) expect_equivalent(vd1, vr1) expect_equal(names(vd1), names(vr1)) expect_equivalent(vd2, vr2) expect_equal(names(vd2), names(vr2)) expect_equivalent(vd3, vr3) expect_equal(names(vd3), names(vr3)) expect_equivalent(vd4, vr4) expect_equal(names(vd4), names(vr4)) expect_equivalent(vd5, vr5) expect_equal(names(vd5), names(vr5)) expect_equivalent(vd6, vr6) expect_equal(names(vd6), names(vr6)) }) test_that("difference on detached vs, names", { g <- make_ring(10) V(g)$name <- letters[1:10] vg <- V(g) v1 <- V(g)[1:7] v2 <- V(g)[6:10] v3 <- V(g)[FALSE] v4 <- V(g)[1:3] vr1 <- V(g)[8:10] vr2 <- V(g) vr3 <- V(g)[1:5] vr4 <- V(g)[4:7] vr5 <- V(g)[FALSE] vr6 <- V(g)[FALSE] rm(g) gc() vd1 <- difference(vg, v1) vd2 <- difference(vg, v3) vd3 <- difference(v1, v2) vd4 <- difference(v1, v4) vd5 <- difference(v3, v3) vd6 <- difference(v3, v4) expect_equivalent(vd1, vr1) expect_equal(names(vd1), names(vr1)) expect_equivalent(vd2, vr2) expect_equal(names(vd2), names(vr2)) expect_equivalent(vd3, vr3) expect_equal(names(vd3), names(vr3)) expect_equivalent(vd4, vr4) expect_equal(names(vd4), names(vr4)) expect_equivalent(vd5, vr5) expect_equal(names(vd5), names(vr5)) expect_equivalent(vd6, vr6) expect_equal(names(vd6), names(vr6)) }) test_that("rev on attached vs", { for (i in 1:10) { g <- make_ring(10) idx <- seq_len(i) vg <- V(g)[idx] vgr <- V(g)[rev(idx)] vg2 <- rev(vg) expect_equivalent(vg2, vgr) } }) test_that("rev on detached vs", { for (i in 1:10) { g <- make_ring(10) idx <- seq_len(i) vg <- V(g)[idx] vgr <- V(g)[rev(idx)] rm(g) gc() vg2 <- rev(vg) expect_equivalent(vg2, vgr) } }) test_that("rev on attached vs, names", { for (i in 1:10) { g <- make_ring(10) V(g)$name <- letters[1:10] idx <- seq_len(i) vg <- V(g)[idx] vgr <- V(g)[rev(idx)] vg2 <- rev(vg) expect_equivalent(vg2, vgr) expect_equal(names(vg2), names(vgr)) } }) test_that("rev on detached vs, names", { for (i in 1:10) { g <- make_ring(10) V(g)$name <- letters[1:10] idx <- seq_len(i) vg <- V(g)[idx] vgr <- V(g)[rev(idx)] rm(g) gc() vg2 <- rev(vg) expect_equivalent(vg2, vgr) expect_equal(names(vg2), names(vgr)) } }) unique_tests <- list( list(1:5, 1:5), list(c(1,1,2:5), 1:5), list(c(1,1,1,1), 1), list(c(1,2,2,2), 1:2), list(c(2,2,1,1), 2:1), list(c(1,2,1,2), 1:2), list(c(), c()) ) test_that("unique on attached vs", { sapply(unique_tests, function(d) { g <- make_ring(10) vg <- unique(V(g)[ d[[1]] ]) vr <- V(g)[ d[[2]] ] expect_equivalent(vg, vr) }) }) test_that("unique on detached vs", { sapply(unique_tests, function(d) { g <- make_ring(10) vg <- V(g)[ d[[1]] ] vr <- V(g)[ d[[2]] ] rm(g) gc() vg <- unique(vg) expect_equivalent(vg, vr) }) }) test_that("unique on attached vs, names", { sapply(unique_tests, function(d) { g <- make_ring(10) V(g)$name <- letters[1:10] vg <- unique(V(g)[ d[[1]] ]) vr <- V(g)[ d[[2]] ] expect_equivalent(vg, vr) }) }) test_that("unique on detached vs, names", { sapply(unique_tests, function(d) { g <- make_ring(10) V(g)$name <- letters[1:10] vg <- V(g)[ d[[1]] ] vr <- V(g)[ d[[2]] ] rm(g) gc() vg <- unique(vg) expect_equivalent(vg, vr) }) })
context("Data Version management") test_that("data changes but version out of sync", { file <- system.file("extdata", "tests", "subsetCars.Rmd", package = "DataPackageR" ) file2 <- system.file("extdata", "tests", "extra.rmd", package = "DataPackageR" ) expect_null( datapackage_skeleton( name = "subsetCars", path = tempdir(), code_files = c(file), force = TRUE, r_object_names = c("cars_over_20") ) ) package_build(file.path(tempdir(), "subsetCars")) config <- yml_find(file.path(tempdir(), "subsetCars")) config <- yml_add_files(config, "extra.rmd") config <- yml_add_objects(config, "pressure") file.copy(file2, file.path(tempdir(), "subsetCars", "data-raw")) yml_write(config) pkg <- desc::desc(file.path(tempdir(), "subsetCars")) pkg$set("DataVersion", "0.0.0") pkg$write() package_build(file.path(tempdir(), "subsetCars")) expect_equal(grep("Changed: cars_over_20",readLines(file.path(tempdir(), "subsetCars","NEWS.md"))),4) unlink(file.path(tempdir(), "subsetCars"), recursive = TRUE, force = TRUE ) })
test_that("bootstrap_dfm works with character and corpus objects", { txt <- c(textone = "This is a sentence. Another sentence. Yet another.", texttwo = "Premiere phrase. Deuxieme phrase.", textthree = "Sentence three is really short.") corp <- corpus(txt, docvars = data.frame(country = c("UK", "USA", "UK"), year = c(1990, 2000, 2005))) set.seed(10) bs1 <- bootstrap_dfm(corp, n = 10) expect_equal(bs1[[1]], dfm(tokens(corp))) bs2 <- bootstrap_dfm(txt, n = 10, verbose = TRUE) expect_identical(bs2[[1]], dfm(tokens(corp, include_docvars = FALSE))) expect_identical( featnames(bs2[[1]]), featnames(bs2[[2]]) ) expect_identical( docnames(bs2[[1]]), docnames(bs2[[2]]) ) expect_error(bootstrap_dfm(txt, n = -1), "The value of n must be between 0 and Inf") expect_error(bootstrap_dfm(corp, n = -1), "The value of n must be between 0 and Inf") }) test_that("bootstrap_dfm works as planned with dfm", { txt <- c(textone = "This is a sentence. Another sentence. Yet another.", texttwo = "Premiere phrase. Deuxieme phrase.") corp <- corpus(txt, docvars = data.frame(country = c("UK", "USA"), year = c(1990, 2000))) dfmt <- dfm(tokens(corpus_reshape(corp, to = "sentences"))) set.seed(10) bs1 <- bootstrap_dfm(dfmt, n = 3, verbose = FALSE) expect_equivalent(bs1[[1]], dfm(tokens(corp))) bs2 <- bootstrap_dfm(txt, n = 3, verbose = FALSE) expect_identical(bs2[[1]], dfm(tokens(corp, include_docvars = FALSE))) expect_identical( featnames(bs2[[1]]), featnames(bs2[[2]]) ) expect_identical( docnames(bs2[[1]]), docnames(bs2[[2]]) ) }) test_that("verbose messages work", { txt <- c(textone = "This is a sentence. Another sentence. Yet another.", texttwo = "Premiere phrase. Deuxieme phrase.", textthree = "Sentence three is really short.") expect_message( bootstrap_dfm(txt, n = 1, verbose = TRUE), "Segmenting the .+ into sentences" ) expect_message( bootstrap_dfm(txt, n = 1, verbose = TRUE), "resampling and forming dfms: 0" ) })
BANOVA.ordMultiNormal <- function(l1_formula = 'NA', l2_formula = 'NA', data, id, l1_hyper, l2_hyper, burnin, sample, thin, adapt, conv_speedup, jags){ cat('Model initializing...\n') if (l1_formula == 'NA'){ stop("Formula in level 1 is missing or not correct!") }else{ mf1 <- model.frame(formula = l1_formula, data = data) y <- model.response(mf1) if (class(y) != 'integer'){ warning("The response variable must be integers (data class also must be 'integer')..") y <- as.integer(as.character(y)) warning("The response variable has been converted to integers..") } } single_level = F if (l2_formula == 'NA'){ single_level = T DV_sort <- sort(unique(y)) n_categories <- length(DV_sort) if (n_categories < 3) stop('The number of categories must be greater than 2!') if (DV_sort[1] != 1 || DV_sort[n_categories] != n_categories) stop('Check if response variable follows categorical distribution!') n.cut <- n_categories - 1 for (i in 1:ncol(data)){ if(class(data[,i]) != 'factor' && class(data[,i]) != 'numeric' && class(data[,i]) != 'integer') stop("data class must be 'factor', 'numeric' or 'integer'") if ((class(data[,i]) == 'numeric' | class(data[,i]) == 'integer') & length(unique(data[,i])) <= 3){ data[,i] <- as.factor(data[,i]) warning("Variables(levels <= 3) have been converted to factors") } } n <- nrow(data) uni_id <- unique(id) num_id <- length(uni_id) new_id <- rep(0, length(id)) for (i in 1:length(id)) new_id[i] <- which(uni_id == id[i]) id <- new_id dMatrice <- design.matrix(l1_formula, l2_formula, data = data, id = id) JAGS.model <- JAGSgen.ordmultiNormal(dMatrice$X, dMatrice$Z, n.cut, l1_hyper, l2_hyper, conv_speedup) JAGS.data <- dump.format(list(n = n, y = y, X = dMatrice$X, n.cut = n.cut)) result <- run.jags (model = JAGS.model$sModel, data = JAGS.data, inits = JAGS.model$inits, n.chains = 1, monitor = c(JAGS.model$monitorl1.parameters, JAGS.model$monitorl2.parameters, JAGS.model$monitor.cutp), burnin = burnin, sample = sample, thin = thin, adapt = adapt, jags = jags, summarise = FALSE, method="rjags") samples <- result$mcmc[[1]] n_p_l1 <- length(JAGS.model$monitorl1.parameters) index_l1_param<- array(0,dim = c(n_p_l1,1)) for (i in 1:n_p_l1) index_l1_param[i] <- which(colnames(result$mcmc[[1]]) == JAGS.model$monitorl1.parameters[i]) if (length(index_l1_param) > 1) samples_l1_param <- result$mcmc[[1]][,index_l1_param] else samples_l1_param <- matrix(result$mcmc[[1]][,index_l1_param], ncol = 1) colnames(samples_l1_param) <- colnames(result$mcmc[[1]])[index_l1_param] n_p_cutp <- length(JAGS.model$monitor.cutp) index_cutp_param<- array(0,dim = c(n_p_cutp,1)) for (i in 1:n_p_cutp) index_cutp_param[i] <- which(colnames(result$mcmc[[1]]) == JAGS.model$monitor.cutp[i]) if (length(index_cutp_param) > 1) samples_cutp_param <- result$mcmc[[1]][,index_cutp_param] else samples_cutp_param <- matrix(result$mcmc[[1]][,index_cutp_param], ncol = 1) cat('Constructing ANOVA/ANCOVA tables...\n') dMatrice$Z <- array(1, dim = c(1,1), dimnames = list(NULL, ' ')) attr(dMatrice$Z, 'assign') <- 0 attr(dMatrice$Z, 'varNames') <- " " samples_l2_param <- NULL anova.table <- table.ANCOVA(samples_l2_param, dMatrice$Z, dMatrice$X, samples_l1_param, error = pi^2/6) coef.tables <- table.coefficients(samples_l1_param, JAGS.model$monitorl1.parameters, colnames(dMatrice$Z), colnames(dMatrice$X), attr(dMatrice$Z, 'assign') + 1, attr(dMatrice$X, 'assign') + 1, samples_cutp_param) pvalue.table <- table.pvalue(coef.tables$coeff_table, coef.tables$row_indices, l1_names = attr(dMatrice$Z, 'varNames'), l2_names = attr(dMatrice$X, 'varNames')) conv <- conv.geweke.heidel(samples_l1_param, colnames(dMatrice$Z), colnames(dMatrice$X)) mf2 <- NULL class(conv) <- 'conv.diag' cat('Done.\n') }else{ mf2 <- model.frame(formula = l2_formula, data = data) DV_sort <- sort(unique(y)) n_categories <- length(DV_sort) if (n_categories < 2) stop('The number of categories must be greater than 1!') if (DV_sort[1] != 1 || DV_sort[n_categories] != n_categories) stop('Check if response variable follows categorical distribution!') n.cut <- n_categories - 1 for (i in 1:ncol(data)){ if(class(data[,i]) != 'factor' && class(data[,i]) != 'numeric' && class(data[,i]) != 'integer') stop("data class must be 'factor', 'numeric' or 'integer'") if ((class(data[,i]) == 'numeric' | class(data[,i]) == 'integer') & length(unique(data[,i])) <= 3){ data[,i] <- as.factor(data[,i]) warning("Variables(levels <= 3) have been converted to factors") } } n <- nrow(data) uni_id <- unique(id) num_id <- length(uni_id) new_id <- rep(0, length(id)) for (i in 1:length(id)) new_id[i] <- which(uni_id == id[i]) id <- new_id dMatrice <- design.matrix(l1_formula, l2_formula, data = data, id = id) JAGS.model <- JAGSgen.ordmultiNormal(dMatrice$X, dMatrice$Z, n.cut, l2_hyper = l2_hyper, conv_speedup = conv_speedup) JAGS.data <- dump.format(list(n = n, id = id, M = num_id, y = y, X = dMatrice$X, Z = dMatrice$Z, n.cut = n.cut)) result <- run.jags (model = JAGS.model$sModel, data = JAGS.data, inits = JAGS.model$inits, n.chains = 1, monitor = c(JAGS.model$monitorl1.parameters, JAGS.model$monitorl2.parameters, JAGS.model$monitor.cutp), burnin = burnin, sample = sample, thin = thin, adapt = adapt, jags = jags, summarise = FALSE, method="rjags") samples <- result$mcmc[[1]] n_p_l2 <- length(JAGS.model$monitorl2.parameters) index_l2_param<- array(0,dim = c(n_p_l2,1)) for (i in 1:n_p_l2) index_l2_param[i] <- which(colnames(result$mcmc[[1]]) == JAGS.model$monitorl2.parameters[i]) if (length(index_l2_param) > 1) samples_l2_param <- result$mcmc[[1]][,index_l2_param] else samples_l2_param <- matrix(result$mcmc[[1]][,index_l2_param], ncol = 1) colnames(samples_l2_param) <- colnames(result$mcmc[[1]])[index_l2_param] n_p_l1 <- length(JAGS.model$monitorl1.parameters) index_l1_param<- array(0,dim = c(n_p_l1,1)) for (i in 1:n_p_l1) index_l1_param[i] <- which(colnames(result$mcmc[[1]]) == JAGS.model$monitorl1.parameters[i]) if (length(index_l1_param) > 1) samples_l1_param <- result$mcmc[[1]][,index_l1_param] else samples_l1_param <- matrix(result$mcmc[[1]][,index_l1_param], ncol = 1) colnames(samples_l1_param) <- colnames(result$mcmc[[1]])[index_l1_param] n_p_cutp <- length(JAGS.model$monitor.cutp) index_cutp_param<- array(0,dim = c(n_p_cutp,1)) for (i in 1:n_p_cutp) index_cutp_param[i] <- which(colnames(result$mcmc[[1]]) == JAGS.model$monitor.cutp[i]) if (length(index_cutp_param) > 1) samples_cutp_param <- result$mcmc[[1]][,index_cutp_param] else samples_cutp_param <- matrix(result$mcmc[[1]][,index_cutp_param], ncol = 1) cat('Constructing ANOVA/ANCOVA tables...\n') anova.table <- table.ANCOVA(samples_l1_param, dMatrice$X, dMatrice$Z, samples_l2_param) coef.tables <- table.coefficients(samples_l2_param, JAGS.model$monitorl2.parameters, colnames(dMatrice$X), colnames(dMatrice$Z), attr(dMatrice$X, 'assign') + 1, attr(dMatrice$Z, 'assign') + 1, samples_cutp_param) pvalue.table <- table.pvalue(coef.tables$coeff_table, coef.tables$row_indices, l1_names = attr(dMatrice$X, 'varNames'), l2_names = attr(dMatrice$Z, 'varNames')) conv <- conv.geweke.heidel(samples_l2_param, colnames(dMatrice$X), colnames(dMatrice$Z)) class(conv) <- 'conv.diag' cat('Done...\n') } return(list(anova.table = anova.table, coef.tables = coef.tables, pvalue.table = pvalue.table, conv = conv, dMatrice = dMatrice, samples_l1_param = samples_l1_param, samples_l2_param = samples_l2_param, samples_cutp_param = samples_cutp_param, data = data, mf1 = mf1, mf2 = mf2,JAGSmodel = JAGS.model$sModel, single_level = single_level, model_name = "BANOVA.ordMultinomial")) }
pauseTypes <- c('Pause', 'SwitchingPause', 'GrpPause', 'GrpSwitchingPause') categories <- c('Vocalisation', 'SwitchingVocalisation', 'Pause', 'SwitchingPause', 'GrpPause', 'GrpSwitchingPause', 'GrpVocalisation') catDescriptions <- array(dim=length(categories),dimnames=list(categories), data=c('Vocalisation', 'Switching Vocalisation', 'Pause', 'Switching pause', 'Group pause', 'Group switching Pause', 'Group vocalisation')) staticMatrix <- function (matrix, limit=1000, digits=4, history=F) { exp <- 2 ma <- matrix mb <- ma %*% matrix if (history) mseries <- list(ma, mb) while (exp < limit && !all(round(ma,digits=digits) == round(mb, digits=digits))) { exp <- exp + 1 ma <- mb mb <- ma %*% matrix if (history) mseries[[exp]] <- mb } if (!history) mseries <- list(matrix, mb) if (exp == limit) print(paste("staticMatrix: exp limit reached before convergence at matrix^",exp, sep="")) else print(paste("staticMatrix: values converged for matrix^",exp, sep="")) class(mseries) <- 'matrixseries' return(mseries) } matrixExp <- function(matrix, exp, mmatrix=matrix) { if (exp < 1){ warning("matrixExp only accepts positive values") } i <- 1 while (i < exp){ i <- i + 1 mmatrix <- mmatrix %*% matrix } return(mmatrix) } plot.matrixseries <- function(x, ..., par=list(), interact=F) { mseries <- x op <- par(no.readonly = TRUE); on.exit(par(op)) par(par) matrix <- startmatrix(mseries) convpoint <- length(mseries) mm <- mseries[[convpoint]] taillen <- round(convpoint/4) limit <- convpoint + taillen mseries <- c(mseries, lapply(1:taillen, function(y){mm <<- mm %*% matrix})) plot(sapply(1:limit, function(x){mseries[[x]][1,1]}), axes=F, type='l', ylim=c(0,1), xlab='iteration', ylab='amount of speech (steady-state value)', ...) axis(1) axis(2) offs = limit/20 y = limit names <- rownames(matrix) for (j in 1:ncol(matrix)) { y <- y - offs print(paste("Plotting convergence for col ",j)) text(y, mseries[[limit]][1,j]+.02, labels=names[j]) for (i in 1:nrow(matrix)) { if (i == 1 && j == 1) next; cseries <- sapply(1:limit, function(x){mseries[[x]][i,j]}) lines(cseries, col=j) } if (interact) locator(1) } mseries } startmatrix <- function(mseries) UseMethod('startmatrix') startmatrix.default <- function(mseries){ warning(paste("startmatrix() does not know how to handle object of class ", class(mseries))) } startmatrix.matrixseries <- function(mseries){ mseries[[1]] } anonymise <- function(vd) UseMethod('anonymise') anonymise.vocaldia <- function(vd){ excluded <- c(categories, "Grp", "Floor") ordspk <- sort(vd$tdarray[!names(vd$tdarray) %in% excluded], decreasing=T) idx <- pmatch(names(ordspk), names(vd$tdarray)) spkvars <- paste(rep("s",length(ordspk)), LETTERS[1:length(ordspk)], sep='') names(vd$tdarray)[idx] <- spkvars idx <- pmatch(names(ordspk), dimnames(vd$ttarray)[[1]]) dimnames(vd$ttarray)[[1]][idx] <- spkvars idx <- pmatch(names(ordspk), dimnames(vd$ttarray)[[2]]) dimnames(vd$ttarray)[[2]][idx] <- spkvars return(vd) } anonymise.default <- function(vd){ warning(paste("anonymise() does not know how to handle object of class ", class(vd), '. Try passing a vocaldia.')) } identifyPauses <- function(vocvector){ vocvector <- as.character(vocvector) indices <- which(vocvector=='Floor') laindex <- length(vocvector) vocvector <- as.character(vocvector) for (i in indices){ if (i == 1 || i == laindex){ vocvector[i] <- 'Pause' next } if (vocvector[i-1] == 'Grp' || vocvector[i-1] == 'GrpVocalisation'){ if (vocvector[i+1] == 'Grp' || vocvector[i+1] == 'GrpVocalisation') vocvector[i] <- 'GrpPause' else vocvector[i] <- 'GrpSwitchingPause' next } if (vocvector[i-1] == vocvector[i+1]) vocvector[i] <- 'Pause' else vocvector[i] <- 'SwitchingPause' } vocvector } identifyVocalisations <- function(vocvector, idswitchvoc=T){ vocvector <- as.character(vocvector) vocvector <- identifyGrpVocalisations(vocvector) vi <- which(!(vocvector %in% c(pauseTypes,categories,'Floor','Grp'))) if (idswitchvoc){ vsi <- vi[which(sapply(1:(length(vi)-1), function(i){ vi[i+1]==vi[i]+1 && vocvector[vi[i]]!=vocvector[vi[i+1]] }))] vocvector[vi] <- 'Vocalisation' vocvector[vsi] <- 'SwitchingVocalisation' } else vocvector[vi] <- 'Vocalisation' vocvector } identifyGrpVocalisations <- function(vocvector){ vocvector <- as.character(vocvector) grpindices <- which(vocvector=='Grp') vocvector[grpindices] <- 'GrpVocalisation' vocvector } getPofAgivenB <- function(a, b, ttarray){ if (! all(c(a,b) %in% names(ttarray[1,]))) 0 else ttarray[b,a] } getEntropy <- function (distribution){ PtimesLOG2 <- distribution * log((1 / distribution), 2) sum(PtimesLOG2[!is.na(PtimesLOG2)]) } plot.vocaldia <- function(x, ...){ x if (requireNamespace('igraph', quietly = TRUE)){ g <- igraph.vocaldia(x) plot(g, layout=igraph::layout.fruchterman.reingold(g), ...) return(g) } warning(paste('Package igraph not installed. Try installing igraph or "require(igraph)" if installed.')) } igraph.vocaldia <- function(vd, ...){ if (requireNamespace('igraph', quietly = TRUE)){ g <- igraph::graph.adjacency(vd$ttarray, weighted=T) igraph::V(g)$label <- names(vd$ttarray[1,]) igraph::E(g)$label <- round(igraph::E(g)$weight,digits=3) igraph::V(g)$size <- 25*exp(vd$tdarray) g$layout <- igraph::layout.kamada.kawai(g) return(g) } else warning(paste('Package igraph not supported. Try installing igraph or "require(igraph)" if installed.')) } write.vocaldia <- function(vd, file="", ...){ o <- toDotNotation(vd, ...) o <- paste(' if (file!="") cat("Writing ", file, '\n') cat(o, file=file) } toDotNotation <- function(vd, individual=T, varsizenode=T, shape='circle', fontsize=16, rankdir='LR', nodeattribs='fixedsize=true;', comment="") { head <- paste(" "\ndigraph finite_state_machine {\n", 'shape=',shape,';', 'fontsize=', fontsize,';', 'rankdir=', rankdir, ';', nodeattribs) links <- "" nodes <- dimnames(vd$ttarray)[[1]] for (i in nodes){ if (vd$tdarray[i] == 0) next width <- log(1000*vd$tdarray[i],base=5) width <- if (width < .4 ) .4 else width if (individual){ nodelabel <- i } else if (width < .6) { nodelabel <- catDescriptions[i] } else { nodelabel <- catDescriptions[i] } head <- paste(head, " ", i, "[", (if (varsizenode) paste("width =", width,', ') else ""), (if (varsizenode) sprintf("label = \"%s \\n%.3f\"", nodelabel, vd$tdarray[i]) else paste("label = \"",nodelabel,"\", ") ), if (width < .6) "fontsize=8", "];\n") for (j in nodes) { if (vd$ttarray[i,j] == 0) next links <- paste(links, " ", i, "->", j, "[ label =", sprintf("%.3f", vd$ttarray[i,j]), "];\n") } } o <- paste(head, links, "}\n") return(o); }
library(testthat) test_that("autotest", { autotest_sdistribution( sdist = Uniform, pars = list(lower = 0, upper = 1), traits = list(valueSupport = "continuous", variateForm = "univariate", type = Reals$new()), support = Interval$new(0, 1), symmetry = "symmetric", mean = 0.5, mode = NaN, median = 0.5, variance = 1 / 12, skewness = 0, exkur = -6 / 5, entropy = 0, mgf = exp(1) - 1, cf = (exp(1i) - 1) / 1i, pgf = NaN, pdf = dunif(1:3), cdf = punif(1:3), quantile = qunif(c(0.24, 0.42, 0.5)) ) }) test_that("manual", { expect_equal(Uniform$new()$mgf(0), 1) expect_equal(Uniform$new()$cf(0), 1) })
dna2codon <- function(x, codonstart=1, code=1, ambiguity="---", ...){ if(!inherits(x, "phyDat"))stop("x needs to be of class phyDat!") if(attr(x, "type")=="AA")stop("x needs to be a nucleotide sequence!") if(codonstart>1){ del <- -seq_len(codonstart) x <- subset(x, select=del, site.pattern=FALSE) } n_sites <- sum(attr(x, "weight")) if( (n_sites %% 3) ){ keep <- seq_len( (n_sites %/% 3) * 3 ) x <- subset(x, select=keep, site.pattern=FALSE) } phyDat.codon(as.character(x), ambiguity=ambiguity, code=code, ...) } codon2dna <- function(x){ if(!inherits(x, "phyDat"))stop("x needs to be of class phyDat!") phyDat.DNA(as.character(x)) } synonymous_subs <- function(code=1, stop.codon=FALSE){ tmp <- .CODON[, as.character(code)] label <- rownames(.CODON) l <- length(tmp) res <- matrix(1, 64, 64, dimnames = list(label, label)) for(i in seq_len(64)){ for(j in seq_len(64)) { if(tmp[i] == tmp[j]) res[i, j] <- 0 } } res[.ONE_TRANSITION == FALSE] <- -1 if(!stop.codon){ label <- label[tmp != "*"] res <- res[label, label] } res[lower.tri(res)] } tstv_subs <- function(code=1, stop.codon=FALSE){ tmp <- .CODON[, as.character(code)] label <- rownames(.CODON) res <- .SUB if(!stop.codon){ label <- label[tmp != "*"] res <- res[label, label] } res[lower.tri(res)] }
vecInverse <- function(a,dmnVec=NULL) { is.wholenumber <- function(x, tol = sqrt(.Machine$double.eps)) return(abs(x - round(x)) < tol) a <- as.vector(a) if (is.null(dmnVec)) { rtlena <- sqrt(length(a)) if (!is.wholenumber(sqrt(length(a)))) stop("The input vector is not of legal length.") dmnVec <- rep(round(rtlena),2) } if (!is.null(dmnVec)) { if (length(a)!=prod(dmnVec)) stop("The input vector is not of legal length.") } dim(a) <- dmnVec return(a) }
as_list_unnamed <- function(x, ...) { lifecycle::deprecate_soft("0.1.1", "as_list_unnamed()", "as_list()") UseMethod("as_list_unnamed") } as_list_unnamed.default <- function(x, ...) { x <- as.list(x) names <- names(x) attributes(x) <- NULL if(!is.null(names)) names(x) <- names x } as_list <- function(x, ...) { UseMethod("as_list") } as_list.default <- function(x, ...) { x <- as.list(x) names <- names(x) attributes(x) <- NULL if(!is.null(names)) names(x) <- names x }
test_that("geom_boxplot range includes all outliers", { dat <- data_frame(x = 1, y = c(-(1:20) ^ 3, (1:20) ^ 3) ) p <- ggplot_build(ggplot(dat, aes(x,y)) + geom_boxplot()) miny <- p$layout$panel_params[[1]]$y.range[1] maxy <- p$layout$panel_params[[1]]$y.range[2] expect_true(miny <= min(dat$y)) expect_true(maxy >= max(dat$y)) }) test_that("geom_boxplot works in both directions", { dat <- data_frame(x = 1, y = c(-(1:20) ^ 3, (1:20) ^ 3) ) p <- ggplot(dat, aes(x, y)) + geom_boxplot() x <- layer_data(p) expect_false(x$flipped_aes[1]) p <- ggplot(dat, aes(y, x)) + geom_boxplot() y <- layer_data(p) expect_true(y$flipped_aes[1]) x$flipped_aes <- NULL y$flipped_aes <- NULL expect_identical(x, flip_data(y, TRUE)) }) test_that("geom_boxplot for continuous x gives warning if more than one x ( dat <- expand.grid(x = 1:2, y = c(-(1:5) ^ 3, (1:5) ^ 3) ) bplot <- function(aes = NULL, extra = list()) { ggplot_build(ggplot(dat, aes) + geom_boxplot(aes) + extra) } expect_warning(bplot(aes(x, y)), "Continuous x aesthetic") expect_warning(bplot(aes(x, y), facet_wrap(~x)), "Continuous x aesthetic") expect_warning(bplot(aes(Sys.Date() + x, y)), "Continuous x aesthetic") expect_warning(bplot(aes(x, group = x, y)), NA) expect_warning(bplot(aes(1, y)), NA) expect_warning(bplot(aes(factor(x), y)), NA) expect_warning(bplot(aes(x == 1, y)), NA) expect_warning(bplot(aes(as.character(x), y)), NA) }) test_that("can use US spelling of colour", { df <- data_frame(x = 1, y = c(1:5, 100)) plot <- ggplot(df, aes(x, y)) + geom_boxplot(outlier.color = "red") gpar <- layer_grob(plot)[[1]]$children[[1]]$children[[1]]$gp expect_equal(gpar$col, " }) test_that("boxes with variable widths do not overlap", { df <- data_frame( value = 1:12, group = rep(c("a", "b", "c"), each = 4L), subgroup = rep(c("A", "B"), times = 6L) ) p <- ggplot(df, aes(group, value, colour = subgroup)) + geom_boxplot(varwidth = TRUE) d <- layer_data(p)[c("xmin", "xmax")] xid <- find_x_overlaps(d) expect_false(any(duplicated(xid))) }) test_that("boxplots with a group size >1 error", { p <- ggplot( data_frame(x = "one value", y = 3, value = 4:6), aes(x, ymin = 0, lower = 1, middle = y, upper = value, ymax = 10) ) + geom_boxplot(stat = "identity") expect_equal(nrow(layer_data(p, 1)), 3) expect_error(layer_grob(p, 1), "Can't draw more than one boxplot") }) test_that("boxplot draws correctly", { expect_doppelganger("outlier colours", ggplot(mtcars, aes(x = factor(cyl), y = drat, colour = factor(cyl))) + geom_boxplot(outlier.size = 5) ) })
test_that("S3 degree functions work as expected", { x <- c(0, 90, 180, 360) y <- c(0, pi / 2, pi, pi * 2) x1 <- as_degree(x) expect_s3_class(x1, "circumplex_degree") expect_equal(as.numeric(x1), x) x2 <- as_degree(as_degree(x)) expect_s3_class(x2, "circumplex_degree") expect_equal(as.numeric(x2), x) x3 <- as_radian(as_degree(x)) expect_s3_class(x3, "circumplex_radian") expect_equal(as.numeric(x3), y) y1 <- as_radian(y) expect_s3_class(y1, "circumplex_radian") expect_equal(as.numeric(y1), y) y2 <- as_radian(as_radian(y)) expect_s3_class(y2, "circumplex_radian") expect_equal(as.numeric(y2), y) y3 <- as_degree(as_radian(y)) expect_s3_class(y3, "circumplex_degree") expect_equal(as.numeric(y3), x) }) test_that("The ssm display methods is working", { skip_on_cran() data("aw2009") res <- ssm_analyze(aw2009, PA:NO, octants()) expect_output(print(res), "Profile \\[All\\]:") expect_output(summary(res), "Statistical Basis:\\t Mean Scores") expect_output(summary(res), "Bootstrap Resamples:\\t 2000") expect_output(summary(res), "Confidence Level:\\t 0\\.95") expect_output(summary(res), "Listwise Deletion:\\t TRUE") expect_output(summary(res), "Scale Displacements:\\t 90 135 180 225 270 315 360 45") data("jz2017") res <- ssm_analyze(jz2017, PA:NO, octants(), grouping = Gender) expect_output(print(res), "Profile \\[Female\\]:") expect_output(print(res), "Profile \\[Male\\]:") res <- ssm_analyze(jz2017, PA:NO, octants(), grouping = Gender, contrast = "model" ) expect_output(print(res), "Contrast \\[Male - Female\\]:") res <- ssm_analyze(jz2017, PA:NO, octants(), measures = PARPD, grouping = Gender, contrast = "test" ) expect_output(print(res), "Contrast \\[PARPD: Male - Female\\]:") expect_output(summary(res), "Statistical Basis:\\t Correlation Scores") })
Kan.IC = function(a,b,mu,Sigma){ n = length(mu) s = sqrt(diag(Sigma)) seqq = seq_len(n) a1 = a-mu b1 = b-mu Sigma = sym.matrix(Sigma) logp = pmvnormt(lower = a,upper = b,mean = mu,sigma = Sigma,uselog2 = TRUE) prob = 2^logp if(prob < 1e-250){ return(corrector(a,b,mu,Sigma,bw=36)) } run = Rcppqfun_ab(a1,b1,Sigma) qa = run$qa qb = run$qb q = qa-qb muY = mu+ Sigma%*%log2ratio(q,logp) if( any(b < mu - 10*sqrt(diag(Sigma))) | any(a > mu + 10*sqrt(diag(Sigma))) | any(muY < a | muY > b)){ return(corrector(a,b,mu,Sigma,bw=36)) } D = matrix(0,n,n) for(i in seqq){ D[i,i] = a[i]*qa[i] D[i,i] = D[i,i]-b[i]*qb[i] RR = Sigma[-i,-i]-Sigma[-i,i]%*%t(Sigma[i,-i])/Sigma[i,i] ma = mu[-i]+Sigma[-i,i]/Sigma[i,i]*a1[i] run1 = Rcppqfun_ab(a[-i]-ma,b[-i]-ma,RR) qa1 = run1$qa qb1 = run1$qb wa = qa[i]*ma+dnorm(x = a[i],mean = mu[i],sd = s[i])*RR%*%(qa1-qb1) mb = mu[-i]+Sigma[-i,i]/Sigma[i,i]*b1[i] run2 = Rcppqfun_ab(a[-i]-mb,b[-i]-mb,RR) qa2 = run2$qa qb2 = run2$qb wb = qb[i]*mb + dnorm(x = b[i],mean = mu[i],sd = s[i])*RR%*%(qa2-qb2) D[i,-i] = wa-wb } varY = Sigma + Sigma%*%log2ratio(D - q%*%t(muY),logp) varY = (varY + t(varY))/2 EYY = varY+muY%*%t(muY) bool = diag(varY) < 0 if(sum(bool)>0){ out = corrector(a,b,mu,Sigma,bw=36) out$mean = muY out$EYY = out$varcov + out$mean%*%t(out$mean) return(out) } return(list(mean = muY,EYY = EYY,varcov = varY)) } Kan.LRIC = function(a,b,mu,Sigma){ n = length(mu) s = sqrt(diag(Sigma)) seqq = seq_len(n) a1 = a-mu b1 = b-mu Sigma = sym.matrix(Sigma) logp = pmvnormt(lower = a,upper = b,mean = mu,sigma = Sigma,uselog2 = TRUE) prob = 2^logp if(prob < 1e-250){ return(corrector(a,b,mu,Sigma,bw=36)) } run = Rcppqfun(a1,b1,Sigma) qa = run$qa qb = run$qb q = qa-qb muY = mu+ Sigma%*%log2ratio(q,logp) if(any(b < mu - 10*sqrt(diag(Sigma))) | any(a > mu + 10*sqrt(diag(Sigma))) | any(muY < a | muY > b)){ return(corrector(a,b,mu,Sigma,bw=36)) } D = matrix(0,n,n) for(i in seqq){ if(a[i] != -Inf){ D[i,i] = a[i]*qa[i] } if(b[i] != Inf){ D[i,i] = D[i,i]-b[i]*qb[i] } RR = Sigma[-i,-i]-Sigma[-i,i]%*%t(Sigma[i,-i])/Sigma[i,i] if(a[i] == -Inf){ wa = matrix(0,n-1,1) }else { ma = mu[-i]+Sigma[-i,i]/Sigma[i,i]*a1[i] run1 = Rcppqfun(a[-i]-ma,b[-i]-ma,RR) qa1 = run1$qa qb1 = run1$qb wa = qa[i]*ma+dnorm(x = a[i],mean = mu[i],sd = s[i])*RR%*%(qa1-qb1) } if(b[i] == Inf){ wb = matrix(0,n-1,1) }else { mb = mu[-i]+Sigma[-i,i]/Sigma[i,i]*b1[i] run2 = Rcppqfun(a[-i]-mb,b[-i]-mb,RR) qa2 = run2$qa qb2 = run2$qb wb = qb[i]*mb + dnorm(x = b[i],mean = mu[i],sd = s[i])*RR%*%(qa2-qb2) } D[i,-i] = wa-wb } varY = Sigma + Sigma%*%log2ratio(D - q%*%t(muY),logp) varY = (varY + t(varY))/2 EYY = varY+muY%*%t(muY) bool = diag(varY) < 0 if(sum(bool)>0){ out = corrector(a,b,mu,Sigma,bw=36) out$mean = muY out$EYY = out$varcov + out$mean%*%t(out$mean) return(out) } return(list(mean = muY,EYY = EYY,varcov = varY)) } Kan.RC = function(b,mu,Sigma){ n = length(mu) s = sqrt(diag(Sigma)) seqq = seq_len(n) b1 = b-mu Sigma = sym.matrix(Sigma) logp = pmvnormt(upper = b,mean = mu,sigma = Sigma,uselog2 = TRUE) prob = 2^logp if(prob < 1e-250){ return(corrector(upper = b,mu = mu,Sigma = Sigma,bw=36)) } qb = Rcppqfun_b(b1,Sigma) muY = mu - Sigma%*%log2ratio(qb,logp) if(any(b < mu - 10*sqrt(diag(Sigma))) | any(muY > b)){ return(corrector(upper = b,mu = mu,Sigma = Sigma,bw=36)) } D = matrix(0,n,n) for(i in seqq){ D[i,i] = D[i,i]-b[i]*qb[i] RR = Sigma[-i,-i]-Sigma[-i,i]%*%t(Sigma[i,-i])/Sigma[i,i] mb = mu[-i]+Sigma[-i,i]/Sigma[i,i]*b1[i] qb2 = Rcppqfun_b(b[-i]-mb,RR) wb = qb[i]*mb - dnorm(x = b[i],mean = mu[i],sd = s[i])*RR%*%qb2 D[i,-i] = -wb } varY = Sigma + Sigma%*%log2ratio(D + qb%*%t(muY),logp) varY = (varY + t(varY))/2 EYY = varY+muY%*%t(muY) bool = diag(varY) < 0 if(sum(bool)>0){ out = corrector(upper = b,mu = mu,Sigma = Sigma,bw=36) out$mean = muY out$EYY = out$varcov + out$mean%*%t(out$mean) return(out) } return(list(mean = muY,EYY = EYY,varcov = varY)) }
NULL .iotsecuretunneling$close_tunnel_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(tunnelId = structure(logical(0), tags = list(type = "string")), delete = structure(logical(0), tags = list(box = TRUE, type = "boolean"))), tags = list(type = "structure")) return(populate(args, shape)) } .iotsecuretunneling$close_tunnel_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(), tags = list(type = "structure")) return(populate(args, shape)) } .iotsecuretunneling$describe_tunnel_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(tunnelId = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .iotsecuretunneling$describe_tunnel_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(tunnel = structure(list(tunnelId = structure(logical(0), tags = list(type = "string")), tunnelArn = structure(logical(0), tags = list(type = "string")), status = structure(logical(0), tags = list(type = "string")), sourceConnectionState = structure(list(status = structure(logical(0), tags = list(type = "string")), lastUpdatedAt = structure(logical(0), tags = list(type = "timestamp"))), tags = list(type = "structure")), destinationConnectionState = structure(list(status = structure(logical(0), tags = list(type = "string")), lastUpdatedAt = structure(logical(0), tags = list(type = "timestamp"))), tags = list(type = "structure")), description = structure(logical(0), tags = list(type = "string")), destinationConfig = structure(list(thingName = structure(logical(0), tags = list(type = "string")), services = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "list"))), tags = list(type = "structure")), timeoutConfig = structure(list(maxLifetimeTimeoutMinutes = structure(logical(0), tags = list(box = TRUE, type = "integer"))), tags = list(type = "structure")), tags = structure(list(structure(list(key = structure(logical(0), tags = list(type = "string")), value = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list")), createdAt = structure(logical(0), tags = list(type = "timestamp")), lastUpdatedAt = structure(logical(0), tags = list(type = "timestamp"))), tags = list(type = "structure"))), tags = list(type = "structure")) return(populate(args, shape)) } .iotsecuretunneling$list_tags_for_resource_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(resourceArn = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .iotsecuretunneling$list_tags_for_resource_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(tags = structure(list(structure(list(key = structure(logical(0), tags = list(type = "string")), value = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list"))), tags = list(type = "structure")) return(populate(args, shape)) } .iotsecuretunneling$list_tunnels_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(thingName = structure(logical(0), tags = list(type = "string")), maxResults = structure(logical(0), tags = list(box = TRUE, type = "integer")), nextToken = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .iotsecuretunneling$list_tunnels_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(tunnelSummaries = structure(list(structure(list(tunnelId = structure(logical(0), tags = list(type = "string")), tunnelArn = structure(logical(0), tags = list(type = "string")), status = structure(logical(0), tags = list(type = "string")), description = structure(logical(0), tags = list(type = "string")), createdAt = structure(logical(0), tags = list(type = "timestamp")), lastUpdatedAt = structure(logical(0), tags = list(type = "timestamp"))), tags = list(type = "structure"))), tags = list(type = "list")), nextToken = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .iotsecuretunneling$open_tunnel_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(description = structure(logical(0), tags = list(type = "string")), tags = structure(list(structure(list(key = structure(logical(0), tags = list(type = "string")), value = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list")), destinationConfig = structure(list(thingName = structure(logical(0), tags = list(type = "string")), services = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "list"))), tags = list(type = "structure")), timeoutConfig = structure(list(maxLifetimeTimeoutMinutes = structure(logical(0), tags = list(box = TRUE, type = "integer"))), tags = list(type = "structure"))), tags = list(type = "structure")) return(populate(args, shape)) } .iotsecuretunneling$open_tunnel_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(tunnelId = structure(logical(0), tags = list(type = "string")), tunnelArn = structure(logical(0), tags = list(type = "string")), sourceAccessToken = structure(logical(0), tags = list(type = "string", sensitive = TRUE)), destinationAccessToken = structure(logical(0), tags = list(type = "string", sensitive = TRUE))), tags = list(type = "structure")) return(populate(args, shape)) } .iotsecuretunneling$tag_resource_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(resourceArn = structure(logical(0), tags = list(type = "string")), tags = structure(list(structure(list(key = structure(logical(0), tags = list(type = "string")), value = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list"))), tags = list(type = "structure")) return(populate(args, shape)) } .iotsecuretunneling$tag_resource_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(), tags = list(type = "structure")) return(populate(args, shape)) } .iotsecuretunneling$untag_resource_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(resourceArn = structure(logical(0), tags = list(type = "string")), tagKeys = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "list"))), tags = list(type = "structure")) return(populate(args, shape)) } .iotsecuretunneling$untag_resource_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(), tags = list(type = "structure")) return(populate(args, shape)) }
context("Density map color vector") colvector <- rev(colorRampPalette(RColorBrewer::brewer.pal(8, "Spectral"))(25)) lgname <- rep("LG1",25) posvector <- seq(1:25) df <- data.frame(group=lgname,pos=posvector) test_that("25 Colors - equal densties", { expect_equal(lmvdencolor(df, colorin=colvector)$col, c(" " " " " })
context('add.fragment.coordinates'); test_that('Throws error on bad input', { expect_error( add.fragment.coordinates( 'hello' ) ); expect_error( add.fragment.coordinates( 5 ) ); expect_error( add.fragment.coordinates( list() ) ); }); test_that('Returns same object if no columns to expand', { input <- data.table( x = rnorm(10), y = rnorm(10) ); expect_equal( add.fragment.coordinates(input), input ); expect_equal( add.fragment.coordinates( data.table() ), data.table() ); }); test_that('Expands bait.id correctly', { input <- data.table( x = rnorm(2), bait.id = c('chr1:0-100', 'chr10:100-200') ); expected.output <- cbind( input, data.table( bait.chr = c('chr1', 'chr10'), bait.start = c(0, 100), bait.end = c(100, 200) ) ); expect_equal( add.fragment.coordinates(input), expected.output ); }); test_that('Expands target.id correctly', { input <- data.table( x = rnorm(2), target.id = c('HPV-2:10-110', '10:100-200') ); expected.output <- cbind( input, data.table( target.chr = c('HPV-2', '10'), target.start = c(10, 100), target.end = c(110, 200) ) ); expect_equal( add.fragment.coordinates(input), expected.output ); }); test_that('Expands both bait.id and target.id correctly', { input <- data.table( x = rnorm(2), bait.id = c('chr1:0-100', 'chr10:100-200'), target.id = c('HPV-2:10-110', 'chr7:100-200') ); expected.output <- cbind( input, data.table( target.chr = c('HPV-2', 'chr7'), target.start = c(10, 100), target.end = c(110, 200), bait.chr = c('chr1', 'chr10'), bait.start = c(0, 100), bait.end = c(100, 200) ) ); expect_equal( add.fragment.coordinates(input), expected.output ); });
summary.ov <- function(object, model_results, sig_level=0.05, progress = TRUE, ...){ temp = prep_for_plots(object, p_contours = stats::coef(summary(model_results$mod_results))[2,4]) raw_treat = object$trt_effect[which(object$es_grid<.000000001 & object$es_grid>-.000000001), which(object$rho_grid==0)] raw_pval = object$p_val[which(object$es_grid<.000000001 & object$es_grid>-.000000001), which(object$rho_grid==0)] pvals = rep(NA, nrow(temp$obs_cors)) trt_effect = rep(NA, nrow(temp$obs_cors)) pb <- progress::progress_bar$new( format = " running simulation [:bar] :percent completed in :elapsed", total = nrow(temp$obs_cors), clear = FALSE, width= 60) for(i in 1:nrow(temp$obs_cors)){ calculate_exact = ov_sim(model_results = model_results, plot_covariates = object$cov, rho_grid = temp$obs_cors$Cor_Outcome[i], es_grid=temp$obs_cors$ES[i], n_reps = object$n_reps) trt_effect[i] = calculate_exact$trt_effect[[1]] pvals[i] = calculate_exact$p_val[[1]] if(progress == TRUE){ pb$tick() Sys.sleep(1 / nrow(temp$obs_cors)) } } effect_size_text = dplyr::case_when((raw_treat < 0 & all(trt_effect < 0)) | raw_treat >= 0 & all(trt_effect >= 0) ~ "no sign changes", raw_treat < 0 & all(trt_effect >= 0) | raw_treat >=0 & all(trt_effect < 0) ~ "all sign changes", TRUE ~ "some sign changes") if(effect_size_text == "no sign changes"){ diff_which.max = which.max(abs(trt_effect - raw_treat)) most_extreme = trt_effect[diff_which.max] text = paste0("The sign of the estimated effect is expected to remain consistent when simulated unobserved confounders have the same strength of association with the treatment indicator and outcome that are seen in the observed confounders. In the most extreme observed case, the estimated treatment effect shifts from ", round(raw_treat,3), " to ", round(most_extreme,3), ".") } else if(effect_size_text == "all sign changes"){ diff_which.max = which.max(abs(trt_effect - raw_treat)) most_extreme = trt_effect[diff_which.max] text = paste0("The sign of the estimated effect is *not* expected to be robust to unobserved confounders that have the same strength of association with the treatment indicator and outcome that are seen in any of the observed confounders. In the most extreme observed case in which the sign changes, the estimated treatment effect shifts from ", round(raw_treat,3), " to ", round(most_extreme,3), ".") } else if(effect_size_text == "some sign changes"){ if(raw_treat < 0){ change = length(which(trt_effect >= 0)) which.change = which(trt_effect >= 0) nochange = length(which(trt_effect < 0)) total = nrow(temp$obs_cors) changes = temp$obs_cors$cov[which(trt_effect >=0)] } else{ change = length(which(trt_effect < 0)) which.change = which(trt_effect < 0) nochange = length(which(trt_effect >= 0)) total = nrow(temp$obs_cors) changes = temp$obs_cors$cov[which(trt_effect < 0)] } diff_which.max = which.max(abs(trt_effect[which.change] - raw_treat)) most_extreme = trt_effect[which.change][diff_which.max] text = paste0("The sign of the estimated effect is expected to remain consistent when simulated unobserved confounders have the same strength of associations with the treatment indicator and outcome that are seen in ", nochange, " of the ", total, " observed confounders. In the most extreme observed case in which the sign changes, the estimated treatment effect shifts from ", round(raw_treat,3), " to ", round(most_extreme,3), ". The sign of the estimate would not be expected to be preserved for unobserved confounders that have the same strength of association with the treatment indicator and outcome as ", paste(changes, collapse=", "), ".") } if(raw_pval < sig_level & all(pvals < sig_level)){ text_p = paste0("Statistical significance at the ", sig_level, " level is expected to be robust to unobserved confounders with strengths of associations with the treatment indicator and outcome that are seen in the observed confounders. In the most extreme observed case, the p-value would be expected to increase from ", format(round(raw_pval,3), nsmall=3), " to ", format(round(max(pvals),3), nsmall=3), ".") } else if(raw_pval < sig_level & all(pvals > sig_level)){ text_p = paste0("Statistical significance at the ", sig_level, " level is *not* expected to be robust to unobserved confounders with strengths of associations with the treatment indicator and outcome that are seen in any of the observed confounders. In the most extreme observed case, the p-value would be expected to increase from ", format(round(raw_pval,3), nsmall=3), " to ", format(round(max(pvals),3), nsmall=3), ".") } else if(raw_pval < sig_level & !(all(pvals<sig_level) | all(pvals >sig_level))){ nonsig = temp$obs_cors$cov[which(pvals>sig_level)] total = nrow(temp$obs_cors) sig_count = total - length(nonsig) text_p = paste0("Statistical significance at the ", sig_level, " level is expected to be robust to unobserved confounders with strengths of associations with the treatment indicator and outcome that are seen in ", sig_count, " of the ", total, " observed confounders. In the most extreme observed case, the p-value would be expected to increase from ", format(round(raw_pval,3), nsmall=3), " to ", format(round(max(pvals),3), nsmall=3), ". Significance at the ", sig_level, " level would not be expected to be preserved for unobserved confounders that have the same strength of association with the treatment indicator and outcome as ", paste(nonsig, collapse=", "),".") } print("Recommendation for reporting the sensitivity analyses") if(raw_pval < 0.05){ print(text) print(text_p) } else{ print(text) } }
options(na.action=na.exclude) options(contrasts=c('contr.treatment', 'contr.poly')) library(survival) test2 <- data.frame(start=c(1, 2, 5, 2, 1, 7, 3, 4, 8, 8), stop =c(2, 3, 6, 7, 8, 9, 9, 9,14,17), event=c(1, 1, 1, 1, 1, 1, 1, 0, 0, 0), x =c(1, 0, 0, 1, 0, 1, 1, 1, 0, 0)) byhand <- function(beta, newx=0) { r <- exp(beta) loglik <- 4*beta - (log(r+1) + log(r+2) + 2*log(3*r+2) + 2*log(3*r+1) + log(2*r +2)) u <- 1/(r+1) + 1/(3*r+1) + 2*(1/(3*r+2) + 1/(2*r+2)) - ( r/(r+2) +3*r/(3*r+2) + 3*r/(3*r+1)) imat <- r*(1/(r+1)^2 + 2/(r+2)^2 + 6/(3*r+2)^2 + 6/(3*r+1)^2 + 6/(3*r+2)^2 + 4/(2*r +2)^2) hazard <-c( 1/(r+1), 1/(r+2), 1/(3*r+2), 1/(3*r+1), 1/(3*r+1), 1/(3*r+2), 1/(2*r +2) ) wtmat <- matrix(c(1,0,0,0,1, 0, 0,0,0,0, 0,1,0,1,1, 0, 0,0,0,0, 0,0,1,1,1, 0, 1,1,0,0, 0,0,0,1,1, 0, 1,1,0,0, 0,0,0,0,1, 1, 1,1,0,0, 0,0,0,0,0, 1, 1,1,1,1, 0,0,0,0,0,.5,.5,1,1,1), ncol=7) wtmat <- diag(c(r,1,1,r,1,r,r,r,1,1)) %*% wtmat x <- c(1,0,0,1,0,1,1,1,0,0) status <- c(1,1,1,1,1,1,1,0,0,0) xbar <- colSums(wtmat*x)/ colSums(wtmat) n <- length(x) hazmat <- wtmat %*% diag(hazard) dM <- -hazmat for (i in 1:5) dM[i,i] <- dM[i,i] +1 dM[6:7,6:7] <- dM[6:7,6:7] +.5 mart <- rowSums(dM) resid <- dM * outer(x, xbar, '-') score <- rowSums(resid) scho <- colSums(resid) scho[6:7] <- rep(mean(scho[6:7]), 2) list(loglik=loglik, u=u, imat=imat, xbar=xbar, haz=hazard, mart=mart, score=score, rmat=resid, scho=scho) } aeq <- function(x,y) all.equal(as.vector(x), as.vector(y)) fit0 <-coxph(Surv(start, stop, event) ~x, test2, iter=0) truth0 <- byhand(0,0) aeq(truth0$loglik, fit0$loglik[1]) aeq(1/truth0$imat, fit0$var) aeq(truth0$mart, fit0$resid) aeq(truth0$scho, resid(fit0, 'schoen')) aeq(truth0$score, resid(fit0, 'score')) fit <- coxph(Surv(start, stop, event) ~x, test2, eps=1e-8, nocenter=NULL) truth <- byhand(fit$coef, 0) aeq(truth$loglik, fit$loglik[2]) aeq(1/truth$imat, fit$var) aeq(truth$mart, fit$resid) aeq(truth$scho, resid(fit, 'schoen')) aeq(truth$score, resid(fit, 'score')) test2b <- rbind(test2, test2, test2) test2b$group <- rep(1:3, each= nrow(test2)) test2b$start <- test2b$start + test2b$group test2b$stop <- test2b$stop + test2b$group fit0 <- coxph(Surv(start, stop, event) ~ x + strata(group), test2b, iter=0) aeq(3*truth0$loglik, fit0$loglik[1]) aeq(3*truth0$imat, 1/fit0$var) aeq(rep(truth0$mart,3), fit0$resid) aeq(rep(truth0$scho,3), resid(fit0, 'schoen')) aeq(rep(truth0$score,3), resid(fit0, 'score')) fit3 <- coxph(Surv(start, stop, event) ~x + strata(group), test2b, eps=1e-8) aeq(3*truth$loglik, fit3$loglik[2]) aeq(3*truth$imat, 1/fit3$var) aeq(rep(truth$mart,3), fit3$resid) aeq(rep(truth$scho,3), resid(fit3, 'schoen')) aeq(rep(truth$score,3), resid(fit3, 'score')) resid(fit) resid(fit, 'scor') resid(fit, 'scho') predict(fit, type='lp') predict(fit, type='risk') predict(fit, type='expected') predict(fit, type='terms') predict(fit, type='lp', se.fit=T) predict(fit, type='risk', se.fit=T) predict(fit, type='expected', se.fit=T) predict(fit, type='terms', se.fit=T) summary(survfit(fit)) summary(survfit(fit, list(x=2)))
context("RP") library(MASS) run_data_test <- function(data, alg, r=NULL, sep=TRUE, piled=FALSE, p=.05){ result <- lapply(data, function(dat) { if (piled) { classifier.alg = lol.classify.nearestCentroid classifier.return = NaN } else { classifier.alg = lda classifier.return = "class" } result <- expect_error(lol.xval.eval(dat$X, dat$Y, r, alg=alg, classifier=classifier.alg, classifier.return=classifier.return, k=20), NA) if (!isTRUE(piled)) { if (!is.null(r)) { expect_equal(dim(result$model$Xr), c(n, r)) } } else { for (ylab in unique(dat$Y)) { expect_equal(length(unique(round(result$model$Xr[dat$Y == ylab, 1]*10000))), 1) } } return(result$lhats) }) if (sep) { expect_lt(wilcox.test(result$separable, result$unseparable, alternative="less", exact=FALSE)$p.value, p) } return(result) } suppressWarnings(RNGversion("3.5.0")) set.seed(123456) alg=lol.project.rp n <- 100 d <- 6 K <- 2 data <- list(separable=lol.sims.rtrunk(n, d), unseparable=lol.sims.xor2(n, d)) p=0.1 test_that("RP full-rank fails for r > d", { expect_error(alg(X=data$separable$X, Y=data$separable$Y, r=d+1)) }) test_that("RP full-rank r == d", { r <- d run_data_test(data, alg=alg, r, p=p) }) test_that("RP full-rank r == K+1", { r <- K+1 run_data_test(data, alg=alg, r, p=p) }) test_that("RP full-rank r == K", { r <- K run_data_test(data, alg=alg, r=r, p=p) }) test_that("RP full-rank r == 1", { r <- 1 run_data_test(data, alg=alg, r=r, p=p) }) set.seed(1234) n <- 100 d <- 110 K <- 2 data <- list(separable=lol.sims.rtrunk(n, d), unseparable=lol.sims.xor2(n, d)) p=0.3 test_that("RP low-rank fails for r > d", { expect_error(alg(X=data$separable$X, Y=data$separable$Y, r=d+1)) }) test_that("RP low-rank r == K+1", { r <- K+1 run_data_test(data, alg=alg, r=r, p=p) }) test_that("RP low-rank r == K", { r <- K run_data_test(data, alg=alg, r=r, p=p) }) test_that("RP low-rank r == 1", { r <- 1 run_data_test(data, alg=alg, r=r, p=p) }) n <- 100 d <- 3 test_that("RP works with multi-class", { data <- lol.sims.mean_diff(n, d, K=d+1, md=3) expect_error(alg(X=data$X, Y=data$Y, r=d-1), NA) })
"RFcop" <- function(u, v, para=NULL, rho=NULL, tau=NULL, fit=c('rho', 'tau'), ...) { if(is.null(para)) { fit <- match.arg(fit) if(is.null(tau) & is.null(rho)) { if(fit == "rho") { rho <- cor(u,v, method="spearman") } else { tau <- cor(u,v, method="kendall") } } rt <- NULL if(is.null(rho)) { try(rt <- uniroot(function(t) { 2*t/(3-t) - tau}, interval=c(0,1)), silent=TRUE) if(is.null(rt)) { warning("could not uniroot the Theta from the Tau") return(NULL) } para <- rt$root names(para) <- "theta" names(tau) <- "Kendall Tau" return(list(para=para, tau=tau)) } else { try(rt <- uniroot(function(t) { t*(4-3*t)/(2-t)^2 - rho}, interval=c(0,1)), silent=TRUE) if(is.null(rt)) { warning("could not uniroot the Theta from the Rho") return(NULL) } para <- rt$root names(para) <- "theta" names(rho) <- "Spearman Rho" return(list(para=para, rho=rho)) } } if(length(para) == 1) { if(para < 0 | para > 1) { warning("Parameter must be 0 <= Theta <= 1") return(NULL) } tau <- 2*para/( 3-para) rho <- para*(4-3*para)/(2-para)^2 } else { warning("Parameter Theta can not be a vector") return(NULL) } if(length(u) > 1 & length(v) > 1 & length(u) != length(v)) { warning("length u = ", length(u), " and length v = ", length(v)) warning("longer object length is not a multiple of shorter object length, ", "no recycling") return(NA) } if(length(u) == 1) { u <- rep(u, length(v)) } else if(length(v) == 1) { v <- rep(v, length(u)) } m <- 1 - para; p <- 1 + para; g <- 1:length(u) rng <- sapply(g, function(i) range(c(u[i], v[i]))) mx <- sapply(g, function(i) max(c(u[i],v[i]))) mn <- sapply(g, function(i) min(c(u[i],v[i]))) cop <- mn + (m/p)*(u*v)^(1/m)*(1 - mx^(-p/m)) if(any(is.nan(cop))) cop[is.nan(cop)] <- mn[is.nan(cop)] if(any(! is.finite(cop))) cop[! is.finite(cop)] <- mn[! is.finite(cop)] return(cop) }
FrF2old <- function(nruns=NULL, nfactors=NULL, factor.names = if(!is.null(nfactors)) {if(nfactors<=50) Letters[1:nfactors] else paste("F",1:nfactors,sep="")} else NULL, default.levels = c(-1,1), ncenter=0, center.distribute=NULL, generators=NULL, design=NULL, resolution=NULL, select.catlg=catlg, estimable=NULL, clear=TRUE, method="VF2", sort="natural", res3=FALSE, max.time=60, perm.start=NULL, perms=NULL, MaxC2=FALSE, replications=1, repeat.only=FALSE, randomize=TRUE, seed=NULL, alias.info=2, blocks=1, block.name="Blocks", bbreps=replications, wbreps=1, alias.block.2fis = FALSE, hard=NULL, check.hard=10, WPs=1, nfac.WP=0, WPfacs=NULL, check.WPs=10, ...){ creator <- sys.call() catlg.name <- deparse(substitute(select.catlg)) nichtda <- "try-error" %in% class(try(eval(parse(text=paste(catlg.name,"[1]",sep=""))),silent=TRUE)) if (nichtda){ catlgs128 <- c("catlg128.8to15","catlg128.26to33",paste("catlg128",16:25,sep=".")) if (catlg.name %in% catlgs128){ if (!requireNamespace("FrF2.catlg128", quietly=TRUE, character.only=TRUE)) stop("Package FrF2.catlg128 is not available") if (packageVersion("FrF2.catlg128") < numeric_version(1.2)){ if (catlg.name %in% catlgs128[c(1,3:11)]) stop("For this version of package FrF2.catlg128,\n", "load ", catlg.name, " with the command data(", catlg.name,")\n", "and then rerun the FrF2 command.\n", "Alternatively, install the latest version of package FrF2.catlg128.") else stop("You need to get the latest version of package FrF2.catlg128 for using ", catlg.name) } } else stop(catlg.name, " not available") } if (!"catlg" %in% class(select.catlg)) stop("invalid choice for select.catlg") if (!is.numeric(ncenter)) stop("ncenter must be a number") if (!length(ncenter)==1) stop("ncenter must be a number") if (!ncenter==floor(ncenter)) stop("ncenter must be an integer number") if (is.null(center.distribute)){ if (!randomize) center.distribute <- min(ncenter, 1) else center.distribute <- min(ncenter, 3)} if (!is.numeric(center.distribute)) stop("center.distribute must be a number") if (!center.distribute==floor(center.distribute)) stop("center.distribute must be an integer number") if (center.distribute > ncenter) stop("center.distribute can be at most ncenter") if (randomize & center.distribute==1) warning("running all center point runs together is usually not a good idea.") block.name <- make.names(block.name) if (ncenter>0 & !identical(WPs,1)) stop("center points for split plot designs are not supported") if (!(is.null(generators) | (identical(WPs,1) | !is.null(WPfacs)))) stop("generators can only be used with split-plot designs, if WPfacs are specified.") if (!is.null(nruns)) if (ncenter>0) if (center.distribute > nruns + 1) stop("center.distribute must not be larger than nruns+1") if (!(is.null(design) | is.null(estimable))) stop("design and estimable must not be specified together.") if (!(is.null(generators) | is.null(design))) stop("generators and design must not be specified together.") if (is.null(nruns) & !(is.null(generators))) stop("If generators is specified, nruns must be given.") if (!(is.null(generators) | is.null(estimable))) stop("generators and estimable must not be specified together.") if (!(identical(blocks,1) | is.null(estimable))) stop("blocks and estimable must not be specified together.") if (!(identical(WPs,1) | is.null(estimable))) stop("WPs and estimable must not be specified together.") if (!(is.null(hard) | is.null(estimable))) stop("hard and estimable must not be specified together.") if (!(identical(blocks,1) | identical(WPs,1))) stop("blocks and WPs must not be specified together.") if (!(identical(blocks,1) | is.null(hard))) stop("blocks and hard must not be specified together.") if (!(identical(WPs,1) | is.null(hard))) stop("WPs and hard must not be specified together.") if (identical(blocks,1) & !identical(wbreps,1)) stop("wbreps must not differ from 1, if blocks = 1.") if (!(is.null(WPfacs) | identical(WPs,1)) & is.null(design) & is.null(generators)) stop("WPfacs requires explicit definition of a design via design or generators.") if (identical(nfac.WP,0) & is.null(WPfacs) & !identical(WPs,1)) stop("WPs whole plots require specification of whole plot factors through nfac.WP or WPfacs!") if (!(is.null(resolution) | is.null(estimable))) stop("You can only specify resolution OR estimable.") if (!(is.null(resolution) | is.null(nruns))) warning("resolution is ignored, if nruns is given.") if (default.levels[1]==default.levels[2]) stop("Both default levels are identical.") if (!(is.logical(clear) & is.logical(res3) & is.logical(MaxC2) & is.logical(repeat.only) & is.logical(randomize) & is.logical(alias.block.2fis) )) stop("clear, res3, MaxC2, repeat.only, randomize, and alias.block.2fis must be logicals (TRUE or FALSE).") if (!is.numeric(max.time)) stop("max.time must be a positive maximum run time for searching a design with estimable given and clear=FALSE.") if (!is.numeric(check.hard)) stop("check.hard must be an integer number.") if (!is.numeric(check.WPs)) stop("check.WPs must be an integer number.") check.hard <- floor(check.hard) check.WPs <- floor(check.WPs) if (!is.numeric(bbreps)) stop("bbreps must be an integer number.") if (!is.numeric(wbreps)) stop("wbreps must be an integer number.") if (!is.numeric(replications)) stop("replications must be an integer number.") if (bbreps > 1 & identical(blocks,1) & !replications > 1) stop("Use replications, not bbreps, for specifying replications for unblocked designs.") if (!alias.info %in% c(2,3)) stop("alias.info can be 2 or 3 only.") if (!(is.numeric(default.levels) | is.character(default.levels))) stop("default.levels must be a numeric or character vector of length 2") if (!length(default.levels) ==2) stop("default.levels must be a numeric or character vector of length 2") if (!(is.null(hard) | is.numeric(hard))) stop("hard must be numeric.") if (!(is.null(resolution) | is.numeric(resolution))) stop("resolution must be numeric.") if (is.numeric(resolution)) if(!(resolution == floor(resolution) & resolution>=3)) stop("resolution must be an integer number (at least 3), if specified.") res.WP <- NULL if (!is.null(design)){ if (!is.character(design)) stop("design must be a character string.") if (!length(design)==1) stop("design must be one character string.") if (design %in% names(select.catlg)){ cand <- select.catlg[design] if (!is.null(nruns)) {if (!nruns==cand[[1]]$nruns) stop("selected design does not have the desired number of runs.")} else nruns <- cand[[1]]$nruns if (!is.null(factor.names)) {if (!length(factor.names)==cand[[1]]$nfac) stop("selected design does not have the number of factors specified in factor.names.")} if (!is.null(nfactors)) {if (!nfactors==cand[[1]]$nfac) stop("selected design does not have the number of factors specified in nfactors.")} else nfactors <- cand[[1]]$nfac } else stop("invalid entry for design") } if (!is.null(nruns)){ k <- round(log2(nruns)) if (!2^k==nruns) stop("nruns must be a power of 2.") if (nruns < 4 | nruns > 4096) stop("less than 4 or more than 4096 runs are not covered by FrF2.") } if (is.null(factor.names) & is.null(nfactors) & (is.null(nruns) | is.null(generators)) & is.null(estimable)) stop("The number of factors must be specified via nfactors, via factor.names, via estimable, through selecting one specific catalogued design or via nruns together with generators.") if (!is.null(factor.names) & !(is.character(factor.names) | is.list(factor.names)) ) stop("factor.names must be a character vector or a list.") if (is.null(nfactors)) {if (!is.null(factor.names)) nfactors <- length(factor.names) else if (!is.null(generators)) nfactors <- length(generators)+k } if (!is.null(estimable)) { if (!is.character(sort)) stop("option sort must be a character string") if (!is.character(method)) stop("option method must be a character string") if (!sort %in% c("natural","high","low")) stop("invalid choice for option sort") if (clear && !method %in% c("LAD","VF2")) stop("invalid choice for option method") estimable <- estimable.check(estimable, nfactors, factor.names) if (is.null(nfactors)) nfactors <- estimable$nfac estimable <- estimable$estimable if (is.null(nruns)) { nruns <- nfactors+ncol(estimable)+1 + (nfactors+ncol(estimable)+1)%%2 if (!isTRUE(all.equal(log2(nruns) %% 1,0))) nruns <- 2^(floor(log2(nruns))+1) k <- round(log2(nruns)) if (k<3) stop("Please specify nruns and/or nfactors. Calculated values are unreasonable.") } if (is.null(perm.start)) perm.start <- 1:nfactors else if (!is.numeric(perm.start)) stop ("perm.start must be NULL or a numeric permutation vector of length nfactors.") if (!all(sort(perm.start)==1:nfactors)) stop ("perm.start must be NULL or a numeric permutation vector of length nfactors.") if (!is.null(perms)) { if (!is.matrix(perms) | !is.numeric(perms)) stop("perms must be a numeric matrix.") if (!ncol(perms)==nfactors) stop ("matrix perms must have nfactors columns.") if (any(apply(perms,1,function(obj) any(!sort(obj)==1:nfactors)))) stop("Each row of perms must be a permutation of 1:nfactors.") } } if (!nfactors==floor(nfactors)) stop("nfactors must be an integer number.") if (!is.null(factor.names) & !length(factor.names)==nfactors) stop("There must be nfactors factor names, if any.") if (is.null(factor.names)) if(nfactors<=50) factor.names <- Letters[1:nfactors] else factor.names <- paste("F",1:nfactors,sep="") if (!((is.character(default.levels) | is.numeric(default.levels)) & length(default.levels)==2) ) stop("default.levels must be a vector of 2 levels.") if (is.list(factor.names)){ if (is.null(names(factor.names))){ if (nfactors<=50) names(factor.names) <- Letters[1:nfactors] else names(factor.names) <- paste("F", 1:nfactors, sep="") } if (any(factor.names=="")) factor.names[which(factor.names=="")] <- list(default.levels)} else {hilf <- vector("list",nfactors) names(hilf) <- factor.names hilf[1:nfactors]<-list(default.levels) factor.names <- hilf} names(factor.names) <- make.names(names(factor.names), unique=TRUE) if (ncenter > 0) if(any(is.na(sapply(factor.names,"is.numeric")))) stop("Center points are implemented for experiments with all factors quantitative only.") if (!is.null(generators)){ generators <- gen.check(k, generators) g <- nfactors - k if (!length(generators)== g) stop("This design in ", nruns, " runs with ", nfactors," factors requires ", g, " generators.") res <- NA; nclear.2fis<-NA; clear.2fis<-NULL;all.2fis.clear<-NA if (g<10) wl <- words.all(k, generators,max.length=6) else if (g<15) wl <- words.all(k, generators,max.length=5) else if (g<20) wl <- words.all(k, generators,max.length=4) else if (g>=20) wl <- alias3fi(k, generators, order=2) WLP <- NULL if (g < 20){ WLP <- wl$WLP res <- min(as.numeric(names(WLP)[which(WLP>0)])) if (res==Inf) {if (g<10) res="7+" else if (g<15) res="6+" else if (g<20) res="5+" } } else{ if (!is.list(wl)) res="5+" else{ if (length(wl$"main")>0) res="3" else if (length(wl$"fi2")>0) res="4" else res="5+"} } gen <- sapply(generators,function(obj) which(sapply(Yates[1:(nruns-1)], function(obj2) isTRUE(all.equal(sort(abs(obj)),obj2))))) gen <- gen*sapply(generators, function(obj) sign(obj[1])) cand <- list(custom=list(res=res, nfac=nfactors, nruns=nruns, gen=gen, WLP=WLP, nclear.2fis=nclear.2fis, clear.2fis=clear.2fis, all.2fis.clear=all.2fis.clear)) class(cand) <- c("catlg","list") } if (!identical(blocks,1)) { blocks <- block.check(k, blocks, nfactors, factor.names) if (is.list(blocks)) k.block <- length(blocks) block.auto=FALSE map <- NULL } if (!is.list(blocks)){ if (blocks>1){ block.auto=TRUE if (is.null(nruns)) stop("blocks>1 only works if nruns is specified.") k.block <- round(log2(blocks)) if (blocks > nruns/2) stop("There cannot be more blocks than half the run size.") if (nfactors+blocks-1>=nruns) stop(paste(nfactors, "factors cannot be accomodated in", nruns, "runs with", blocks, "blocks.")) ntreat <- nfactors } } if (!is.null(hard)){ if (is.null(generators)){ if (is.null(nruns)){ cand <- select.catlg[which(res.catlg(select.catlg)>=resolution & nfac.catlg(select.catlg)==nfactors)] if (length(cand)==0) { message("full factorial design needed for achieving requested resolution") k <- nfactors nruns <- 2^k cand <- list(list(gen=numeric(0))) } else { nruns <- min(nruns.catlg(cand)) k <- round(log2(nruns)) cand <- cand[which(nruns.catlg(cand)==nruns)] } } else { if (nfactors > k) cand <- select.catlg[which(nfac.catlg(select.catlg)==nfactors & nruns.catlg(select.catlg)==nruns)] else cand <- list(list(gen=numeric(0))) } } if (hard == nfactors) stop("It does not make sense to choose hard equal to nfactors.") if (hard >= nruns/2) warning ("Do you really need to declare so many factors as hard-to-change ?") nfac.WP <- hard if (hard < nruns/2){ WPs <- NA if (length(cand[[1]]$gen) > 0) for (i in 1:min(length(cand),check.hard)){ leftadjust.out <- leftadjust(k,cand[[i]]$gen, early=hard, show=1) if (is.na(WPs) | WPs > 2^leftadjust.out$k.early) WPs <- 2^leftadjust.out$k.early } else WPs <- 2^hard } if (hard>=nruns/2 | WPs==nruns) { warning("There are so many hard-to-change factors that no good special design could be found. Randomization has been switched off.") randomize <- FALSE WPs <- 1 leftadjust.out <- leftadjust(k,cand[[1]]$gen,early=hard,show=1) generators <- leftadjust.out$gen } } if (!identical(WPs,1)) { if (is.null(nruns)) stop("WPs>1 only works if nruns is specified.") if (WPs > nruns/2) stop("There cannot be more whole plots (WPs) than half the run size.") k.WP <- round(log2(WPs)) if (!WPs == 2^k.WP) stop("WPs must be a power of 2.") if (!is.null(WPfacs) & nfac.WP==0){ nfac.WP <- length(WPfacs) if (nfac.WP < k.WP) stop("WPfacs must specify at least log2(WPs) whole plot factors.") } if (nfac.WP==0) stop("If WPs > 1, a positive nfac.WP or WPfacs must also be given.") if (nfac.WP < k.WP) { add <- k.WP - nfac.WP names.add <- rep(list(default.levels),add) names(names.add) <- paste("WP",(nfac.WP+1):(nfac.WP+add),sep="") nfactors <- nfactors + add factor.names <- c(factor.names[1:nfac.WP],names.add,factor.names[-(1:nfac.WP)]) nfac.WP <- k.WP warning("There are fewer factors than needed for a full factorial whole plot design. ", add, " dummy splitting factor(s) have been introduced.") } if (!is.null(WPfacs)) { WPfacs <- WP.check(k, WPfacs, nfac.WP, nfactors, factor.names) WPsnum <- as.numeric(chartr("F", " ", WPfacs)) WPsorig <- WPsnum } else {WPsorig <- WPsnum <- 1:nfac.WP } } if (!is.null(nruns)){ if (nfactors<=k & identical(blocks,1) & identical(WPs,1)) { if (nfactors==k) aus <- fac.design(2, k, factor.names=factor.names, replications=replications, repeat.only=repeat.only, randomize=randomize, seed=seed) else aus <- fac.design(2, nfactors, factor.names=factor.names, replications=replications*2^(k-nfactors), repeat.only=repeat.only, randomize=randomize, seed=seed) aus <- qua.design(aus, quantitative="none", contrasts=rep("contr.FrF2",nfactors)) if (ncenter>0) aus <- add.center(aus, ncenter, distribute=center.distribute) di <- design.info(aus) di$creator <- creator di <- c(di, list(FrF2.version = "1.7.2")) design.info(aus) <- di return(aus) } else { if (nfactors < k) stop("A full factorial for nfactors factors requires fewer than nruns runs. Please reduce the number of runs and introduce replications instead.") if (nfactors == k) { generators <- as.list(numeric(0)) cand <- list(custom=list(res=Inf, nfac=nfactors, nruns=nruns, gen=numeric(0), WLP=c(0,0,0,0), nclear.2fis=choose(k,2), clear.2fis=combn(k,2), all.2fis.clear="all")) class(cand) <- c("catlg","list") } if (nfactors > nruns - 1) stop("You can accomodate at most ",nruns-1," factors in a FrF2 design with ",nruns," runs." ) g <- nfactors - k if (!is.null(estimable)) { desmat <- estimable(estimable, nfactors, nruns, clear=clear, res3=res3, max.time=max.time, select.catlg=select.catlg, method=method,sort=sort, perm.start=perm.start, perms=perms, order=alias.info) design.info <- list(type="FrF2.estimable", nruns=nruns, nfactors=nfactors, factor.names=factor.names, catlg.name = catlg.name, map=desmat$map, aliased=desmat$aliased, clear=clear, res3=res3, FrF2.version = sessionInfo(package="FrF2")$otherPkgs$FrF2$Version) desmat <- desmat$design desmat <- as.matrix(sapply(desmat,function(obj) as.numeric(as.character(obj)))) rownames(desmat) <- 1:nrow(desmat) } else if (is.null(generators) & is.null(design)) cand <- select.catlg[nruns.catlg(select.catlg)==nruns & nfac.catlg(select.catlg)==nfactors] block.gen <- NULL if (!is.list(blocks)){ if (blocks > 1) { if (g==0 | choose(nruns - 1 - nfactors, k.block) < 100000){ for (i in 1:length(cand)){ if (g==0) {blockpick.out <- try(blockpick(k, gen=0, k.block=k.block, show=1, alias.block.2fis = alias.block.2fis),TRUE) } else { if (is.null(generators)) blockpick.out <- try(blockpick(k, design=names(cand[i]), k.block=k.block, show=1, alias.block.2fis = alias.block.2fis),TRUE) else blockpick.out <- try(blockpick(k, gen=cand[[i]]$gen, k.block=k.block, show=1, alias.block.2fis = alias.block.2fis),TRUE) } if (!"try-error" %in% class(blockpick.out)) { blocks <- blockpick.out$blockcols block.gen <- blocks cand <- cand[i] cand[[1]]$gen <- c(cand[[1]]$gen,blocks) blocks <- nfactors+(1:k.block) nfactors <- nfactors+k.block g <- g+k.block hilf <- factor.names factor.names <- vector("list", nfactors) factor.names[-blocks] <- hilf factor.names[blocks] <- list(default.levels) names(factor.names) <- c(names(hilf),paste("b",1:k.block,sep="")) blocks <- as.list(blocks) break } } } else{ nfactors <- nfactors+k.block g <- g+k.block hilf <- factor.names factor.names <- vector("list", nfactors) factor.names[(k.block+1):nfactors] <- hilf factor.names[1:k.block] <- list(default.levels) names(factor.names) <- c(paste("b",1:k.block,sep=""),paste(names(hilf))) cand <- select.catlg[nfac.catlg(select.catlg)==nfactors & nruns.catlg(select.catlg)==nruns] if (!(is.null(generators) & is.null(design))) warning("For this request, generator or design specifications have been ignored, because the block allocation procedure for big problems was used.") for (i in 1:length(cand)){ blockpick.out <- try(blockpick.big(k, gen=cand[[i]]$gen, k.block=k.block, show=1, alias.block.2fis = alias.block.2fis),TRUE) if (!"try-error" %in% class(blockpick.out)) { cand <- cand[i] cand[[1]]$gen <- blockpick.out$gen[1,] map <- blockpick.out$perms[1,] blocks <- as.list(1:k.block) block.gen <- 2^(0:(k.block-1)) break } } } if (alias.block.2fis & !is.list(blocks)) stop("no adequate block design found") if ((!alias.block.2fis) & !is.list(blocks)) stop("no adequate block design found with 2fis unconfounded with blocks") } } if (is.list(blocks)) { hilf.gen <- c(2^(0:(k-1)), cand[[1]]$gen) hilf.block.gen <- sapply(blocks, function(obj) as.intBase(paste(rowSums(do.call(cbind,lapply(obj, function(obj2) digitsBase(hilf.gen[obj2],2,k))))%%2,collapse=""))) k.block.add <- length(intersect(hilf.block.gen, hilf.gen)) if (is.null(block.gen)) { ntreat <- nfactors - k.block.add block.gen <- hilf.block.gen } if (k.block > 1){ hilf <- hilf.block.gen for (i in 2:k.block){ sel <- combn(k.block,i) for (j in 1:ncol(sel)){ neu <- as.intBase(paste(rowSums(do.call(cbind,lapply(sel[,j], function(obj) digitsBase(hilf.block.gen[obj],2,k))))%%2,collapse="")) if (neu %in% hilf) stop("specified blocks is invalid (dependencies)") else hilf <- c(hilf, neu) } } rm(hilf) } } if (WPs > 1){ WP.auto <- FALSE map <- 1:k orignew <- WPsorig if (is.null(WPfacs)){ WP.auto <- TRUE max.res.5 <- c(1,2,3, 5, 6, 8, 11, 17) for (i in 1:length(cand)){ if (is.null(generators)){ if (cand[[i]]$res>=5 & nfac.WP > max.res.5[k.WP]) next if (cand[[i]]$res>=4 & nfac.WP > WPs/2) next } if (nfac.WP > WPs/2 | nfac.WP <= k.WP) splitpick.out <- try(splitpick(k, cand[[i]]$gen, k.WP=k.WP, nfac.WP=nfac.WP, show=1),TRUE) else splitpick.out <- try(splitpick(k, cand[[i]]$gen, k.WP=k.WP, nfac.WP=nfac.WP, show=check.WPs),TRUE) if (!"try-error" %in% class(splitpick.out)) { WPfacs <- 1:k.WP if (nfac.WP > k.WP) WPfacs <- c(WPfacs, (k + 1):(k+nfac.WP-k.WP)) cand <- cand[i] cand[[1]]$gen <- splitpick.out$gen[1,] res.WP <- splitpick.out$res.WP[1] map <- splitpick.out$perms[1,] break } } if (is.null(res.WP)){ if (nruns >= 2^nfactors) { res.WP <- Inf WP.auto <- TRUE WPfacs <- 1:k.WP if (!k.WP == nfac.WP) stop(nfac.WP, " whole plot factors cannot be accomodated in ", (2^k.WP), " whole plots for a full factorial. Please request smaller design with replication instead.") cand <- list(list(gen=numeric(0))) } else stop("no adequate splitplot design found") } orignew <- WPsnum <- WPfacs WPfacs <- paste("F",WPfacs,sep="") } } } } else { if (is.null(resolution) & is.null(estimable)) stop("At least one of nruns or resolution or estimable must be given.") if (!is.null(resolution)){ cand <- select.catlg[which(res.catlg(select.catlg)>=resolution & nfac.catlg(select.catlg)==nfactors)] if (length(cand)==0) { message("full factorial design needed") aus <- fac.design(2, nfactors, factor.names=factor.names, replications=replications, repeat.only=repeat.only, randomize=randomize, seed=seed) for (i in 1:nfactors) if (is.factor(aus[[i]])) contrasts(aus[[i]]) <- contr.FrF2(2) if (ncenter>0) aus <- add.center(aus, ncenter, distribute=center.distribute) return(aus) } } else{ cand <- select.catlg[which(nfac.catlg(select.catlg)==nfactors)] if (length(cand)==0) stop("No design listed in catalogue ", deparse(substitute(select.catlg)), " fulfills all requirements.") } } if (MaxC2 & is.null(estimable) & is.null(generators) ) { if (!res3) cand <- cand[which.max(sapply(cand[which(sapply(cand, function(obj) obj$res)==max(sapply(cand, function(obj) obj$res)))], function(obj) obj$nclear.2fis))] else cand <- cand[which.max(sapply(cand, function(obj) obj$nclear.2fis))] } if (is.null(nruns)) {nruns <- cand[[1]]$nruns k <- round(log2(nruns)) g <- nfactors - k} if (is.null(estimable)){ destxt <- "expand.grid(c(-1,1)" for (i in 2:k) destxt <- paste(destxt,",c(-1,1)",sep="") destxt <- paste("as.matrix(",destxt,"))",sep="") desmat <- eval(parse(text=destxt)) if (is.character(WPfacs) | is.list(blocks)) { desmat <- desmat[,k:1] } if (!is.null(hard)) { desmat <- rep(c(-1,1),each=nruns/2) for (i in 2:k) desmat <- cbind(desmat,rep(c(1,-1,-1,1),times=(2^i)/4,each=nruns/(2^i))) } if (g>0) for (i in 1:g) desmat <- cbind(desmat, sign(cand[[1]]$gen[i][1])*apply(desmat[,unlist(Yates[abs(cand[[1]]$gen[i])])],1,prod)) if (WPs > 1) { if (!WP.auto) { hilf <- apply(desmat[,WPsorig,drop=FALSE],1,paste,collapse="") if (!length(table(hilf))==WPs) stop("The specified design creates ", length(table(hilf)), " and not ", WPs, " whole plots.") for (j in setdiff(1:nfactors,WPsorig)) if (!length(table(paste(hilf,desmat[,j],sep="")))>WPs) stop("Factor ", names(factor.names)[j], " is also a whole plot factor.") if (nfac.WP<3) res.WP <- Inf else res.WP <- GR((3-desmat[,WPsorig,drop=FALSE])%/%2)$GR%/%1 } } if (is.null(rownames(desmat))) rownames(desmat) <- 1:nruns if (is.list(blocks)) { if (is.null(block.gen)) block.gen <- blocks hilf <- blocks for (i in 1:k.block) hilf[[i]] <- apply(desmat[,hilf[[i]],drop=FALSE],1,prod) Blocks <- factor(as.numeric(factor(apply(matrix(as.character(unlist(hilf)),ncol=k.block), 1,paste,collapse="")))) hilf <- order(Blocks, as.numeric(rownames(desmat))) desmat <- desmat[hilf,] Blocks <- Blocks[hilf] contrasts(Blocks) <- contr.FrF2(levels(Blocks)) nblocks <- 2^length(blocks) blocksize <- nruns / nblocks block.no <- paste(Blocks,rep(1:blocksize,nblocks),sep=".") } if (is.character(WPfacs)) { desmat <- desmat[,c(WPsnum,setdiff(1:nfactors,WPsnum))] factor.names <- factor.names[c(WPsorig,setdiff(1:nfactors,WPsorig))] plotsize <- round(nruns/WPs) if (is.null(hard)){ hilf <- ord(cbind(desmat[,1:nfac.WP],as.numeric(rownames(desmat)))) desmat <- desmat[hilf,] } wp.no <- paste(rep(1:WPs,each=plotsize),rep(1:plotsize,WPs),sep=".") } } if (randomize & !is.null(seed)) set.seed(seed) if (!(is.list(blocks) | WPs > 1)){ rand.ord <- rep(1:nruns,replications) if (replications > 1 & repeat.only) rand.ord <- rep(1:nruns,each=replications) if (randomize & !repeat.only) for (i in 1:replications) rand.ord[((i-1)*nruns+1):(i*nruns)] <- sample(nruns) if (randomize & repeat.only) rand.ord <- rep(sample(1:nruns), each=replications) } else { if (is.list(blocks)){ rand.ord <- rep(1:nruns, bbreps * wbreps) if ((!repeat.only) & !randomize) for (i in 0:(nblocks-1)) for (j in 1:wbreps) rand.ord[(i*blocksize*wbreps+(j-1)*blocksize+1):((i+1)*blocksize*wbreps+j*blocksize)] <- (i*blocksize+1):((i+1)*blocksize) rand.ord <- rep(rand.ord[1:(nruns*wbreps)],bbreps) if (repeat.only & !randomize) for (j in 1:wbreps) rand.ord[(i*blocksize*wbreps + (j-1)*blocksize + 1) : (i*blocksize*wbreps + j*blocksize)] <- sample((i%%nblocks*blocksize+1):(i%%nblocks*blocksize+blocksize)) if (wbreps > 1 & repeat.only) rand.ord <- rep(1:nruns,bbreps, each=wbreps) if ((!repeat.only) & randomize) for (i in 0:(nblocks*bbreps-1)) for (j in 1:wbreps) rand.ord[(i*blocksize*wbreps + (j-1)*blocksize + 1) : (i*blocksize*wbreps + j*blocksize)] <- sample((i%%nblocks*blocksize+1):(i%%nblocks*blocksize+blocksize)) if (repeat.only & randomize) for (i in 0:(nblocks*bbreps-1)) rand.ord[(i*blocksize*wbreps + 1) : ((i+1)*blocksize*wbreps)] <- rep(sample((((i%%nblocks)*blocksize)+1): ((i%%nblocks+1)*blocksize)),each=wbreps) } else { rand.ord <- rep(1:nruns,replications) if (replications > 1 & repeat.only) rand.ord <- rep(1:nruns,each=replications) if ((!repeat.only) & randomize){ for (i in 1:(WPs*replications)) rand.ord[((i-1)*plotsize+1):(i*plotsize)] <- sample(rand.ord[((i-1)*plotsize+1):(i*plotsize)]) for (i in 1:replications){ if (is.null(hard)){ WPsamp <- sample(WPs) WPsamp <- (rep(WPsamp,each=plotsize)-1)*plotsize + rep(1:plotsize,WPs) rand.ord[((i-1)*plotsize*WPs+1):(i*plotsize*WPs)] <- rand.ord[(i-1)*plotsize*WPs + WPsamp] } } } if (repeat.only & randomize){ for (i in 1:WPs) rand.ord[((i-1)*plotsize*replications+1):(i*plotsize*replications)] <- rand.ord[(i-1)*plotsize*replications + rep(replications*(sample(plotsize)-1),each=replications) + rep(1:2,each=plotsize)] if (is.null(hard)){ WPsamp <- sample(WPs) WPsamp <- (rep(WPsamp,each=plotsize*replications)-1)*plotsize*replications + rep(1:(plotsize*replications),WPs) rand.ord <- rand.ord[WPsamp] } } } } orig.no <- rownames(desmat) orig.no <- orig.no[rand.ord] orig.no.levord <- sort(as.numeric(orig.no),index=TRUE)$ix rownames(desmat) <- NULL desmat <- desmat[rand.ord,] if (is.list(blocks)) { Blocks <- Blocks[rand.ord] block.no <- block.no[rand.ord] } if (WPs > 1) wp.no <- wp.no[rand.ord] colnames(desmat) <- names(factor.names) if (is.list(blocks)) orig.no <- paste(orig.no,block.no,sep=".") if (WPs > 1) orig.no <- paste(orig.no,wp.no,sep=".") orig.no.rp <- orig.no if (bbreps * wbreps > 1){ if (bbreps > 1) { if (repeat.only & !is.list(blocks)) orig.no.rp <- paste(orig.no.rp, rep(1:bbreps,nruns),sep=".") else orig.no.rp <- paste(orig.no.rp, rep(1:bbreps,each=nruns*wbreps),sep=".") } if (wbreps > 1){ if (repeat.only) orig.no.rp <- paste(orig.no.rp, rep(1:wbreps,nruns*bbreps),sep=".") else orig.no.rp <- paste(orig.no.rp, rep(1:wbreps,each=blocksize,nblocks*bbreps),sep=".") } } desdf <- data.frame(desmat) quant <- rep(FALSE,nfactors) for (i in 1:nfactors) { desdf[,i] <- des.recode(desdf[,i],"-1=factor.names[[i]][1];1=factor.names[[i]][2]") quant[i] <- is.numeric(desdf[,i]) desdf[,i] <- factor(desdf[,i],levels=factor.names[[i]]) contrasts(desdf[,i]) <- contr.FrF2(2) } if (is.list(blocks)) { desdf <- cbind(Blocks, desdf) hilf <- blocks if (all(sapply(hilf,length)==1) & !block.auto) { hilf <- as.numeric(hilf) + 1 levels(desdf$Blocks) <- unique(apply(desdf[,hilf,drop=FALSE],1,paste,collapse="")) } colnames(desdf)[1] <- block.name hilf <- blocks hilf <- as.numeric(hilf[which(sapply(hilf,length)==1)]) if (length(hilf)>0) { desdf <- desdf[,-(hilf+1)] desmat <- desmat[,-hilf] factor.names <- factor.names[-hilf] } desmat <- cbind(model.matrix(~desdf[,1])[,-1],desmat) colnames(desmat)[1:(2^k.block-1)] <- paste(block.name,1:(2^k.block-1),sep="") if (alias.info==3) hilf <- aliases(lm((1:nrow(desmat))~(.)^3,data=data.frame(desmat))) else hilf <- aliases(lm((1:nrow(desmat))~(.)^2,data=data.frame(desmat))) if (length(hilf$aliases) > 0) for (i in 1:length(hilf$aliases)) { txt <- hilf$aliases[[i]] if (length(grep(paste("^-?",block.name,sep=""),txt)) > 0) txt <- txt[-grep(paste("^-?",block.name,sep=""),txt)] if (length(txt)==length(grep("^-",txt))) txt <- sub("-","",txt) hilf$aliases[[i]] <- txt } aliased.with.blocks <- hilf$aliases[1:(2^k.block-1)] aliased.with.blocks <- unlist(aliased.with.blocks) if (nfactors<=50) leg <- paste(Letters[1:ntreat],names(factor.names),sep="=") else leg <- paste(paste("F",1:ntreat,sep=""),names(factor.names),sep="=") if (length(aliased.with.blocks)==0) aliased.with.blocks <- "none" else { aliased.with.blocks <- recalc.alias.block(aliased.with.blocks, leg) aliased.with.blocks <- aliased.with.blocks[ord(data.frame(nchar(aliased.with.blocks),aliased.with.blocks))] } aliased <- hilf$aliases[-(1:(2^k.block-1))] aliased <- aliased[which(sapply(aliased,length)>1)] if (length(aliased)>0) aliased <- struc.aliased(recalc.alias.block(aliased, leg), nfactors, alias.info) ntreat <- ncol(desdf) - 1 if (block.auto) factor.names <- factor.names[1:ntreat] design.info <- list(type="FrF2.blocked", block.name=block.name, nruns=nruns, nfactors=ntreat, nblocks=nblocks, block.gen=block.gen, blocksize=blocksize, ntreat=ntreat,factor.names=factor.names, aliased.with.blocks=aliased.with.blocks, aliased=aliased, bbreps=bbreps, wbreps=wbreps, FrF2.version = sessionInfo(package="FrF2")$otherPkgs$FrF2$Version) if (!is.null(generators)) { if (g>0) design.info <- c(design.info, list(base.design=paste("generator columns:", paste(cand[[1]]$gen, collapse=", ")))) else design.info <- c(design.info, list(base.design="full factorial")) } else design.info <- c(design.info, list(catlg.name = catlg.name, base.design=names(cand[1]))) design.info <- c(design.info, list(map=map)) if (bbreps>1) { hilflev <- paste(rep(levels(desdf[,1]), each=bbreps), rep(1:bbreps, nblocks), sep=".") desdf[,1] <- factor(paste(desdf[,1], rep(1:bbreps, each=nruns*wbreps),sep="."), levels=hilflev) } } if (WPs > 1){ if (alias.info==3) aliased <- aliases(lm((1:nrow(desmat))~(.)^3,data=data.frame(desmat)))$aliases else aliased <- aliases(lm((1:nrow(desmat))~(.)^2,data=data.frame(desmat)))$aliases aliased <- aliased[which(sapply(aliased,length)>1)] if (length(aliased) > 0){ if (nfactors<=50) leg <- paste(Letters[1:nfactors],names(factor.names),sep="=") else leg <- paste(paste("F",1:nfactors,sep=""),names(factor.names),sep="=") aliased <- struc.aliased(recalc.alias.block(aliased, leg), nfactors, alias.info) } design.info <- list(type="FrF2.splitplot", nruns=nruns, nfactors=nfactors, nfac.WP=nfac.WP, nfac.SP=nfactors-nfac.WP, factor.names=factor.names, nWPs=WPs, plotsize=nruns/WPs, res.WP=res.WP, aliased=aliased, FrF2.version = sessionInfo(package="FrF2")$otherPkgs$FrF2$Version) if (!is.null(generators)) design.info <- c(design.info, list(base.design=paste("generator columns:", paste(which(names(Yates)[1:(nruns-1)] %in% names(generators)), collapse=", ")), map=map, orig.fac.order = c(orignew, setdiff(1:nfactors,orignew)))) else design.info <- c(design.info, list(catlg.name = catlg.name, base.design=names(cand[1]), map=map, orig.fac.order = c(orignew, setdiff(1:nfactors,orignew)))) } if (is.null(estimable) & is.null(generators) & !(is.list(blocks) | WPs > 1)) design.info <- list(type="FrF2", nruns=nruns, nfactors=nfactors, factor.names=factor.names, catlg.name = catlg.name, catlg.entry=cand[1], aliased = alias3fi(k,cand[1][[1]]$gen,order=alias.info), FrF2.version = sessionInfo(package="FrF2")$otherPkgs$FrF2$Version) if ((!is.null(generators)) & !is.list(blocks) & !WPs > 1) { if (nfactors <= 50) names(generators) <- Letters[(k+1):nfactors] else names(generators) <- paste("F",(k+1):nfactors, sep="") gen.display <- paste(names(generators),sapply(generators,function(obj){ if (nfactors <= 50) paste(if (obj[1]<0) "-" else "", paste(Letters[abs(obj)],collapse=""),sep="") else paste(if (obj[1]<0) "-" else "", paste(paste("F",abs(obj),sep=""),collapse=":"),sep="")}), sep="=") design.info <- list(type="FrF2.generators", nruns=nruns, nfactors=nfactors, factor.names=factor.names, generators=gen.display, aliased = alias3fi(k,generators,order=alias.info), FrF2.version = sessionInfo(package="FrF2")$otherPkgs$FrF2$Version) } aus <- desdf rownames(aus) <- rownames(desmat) <- 1:nrow(aus) class(aus) <- c("design","data.frame") attr(aus,"desnum") <- desmat orig.no <- factor(orig.no, levels=unique(orig.no[orig.no.levord])) orig.no.rp <- factor(orig.no.rp, levels=unique(orig.no.rp[orig.no.levord])) if (!(is.list(blocks) | WPs > 1)) attr(aus,"run.order") <- data.frame("run.no.in.std.order"=orig.no,"run.no"=1:nrow(desmat),"run.no.std.rp"=orig.no.rp) else attr(aus,"run.order") <- data.frame("run.no.in.std.order"=orig.no,"run.no"=1:nrow(desmat),"run.no.std.rp"=orig.no.rp) if (design.info$type=="FrF2.blocked") { if (design.info$wbreps==1) repeat.only <- FALSE nfactors <- ntreat } if (nfactors<=50) design.info$aliased <- c(list(legend=paste(Letters[1:nfactors],names(factor.names),sep="=")),design.info$aliased) else design.info$aliased <- c(list(legend=paste(paste("F",1:nfactors,sep=""),names(factor.names),sep="=")),design.info$aliased) attr(aus,"design.info") <- c(design.info, list(replications=replications, repeat.only=repeat.only, randomize=randomize, seed=seed, creator=creator)) if (ncenter>0) aus <- add.center(aus, ncenter, distribute=center.distribute) aus }
test_that(".rba_api_check works", { expect_true(object = .rba_api_check("https://google.com")) expect_regex(obj = .rba_api_check("https://google.com/dftgyh"), pattern = "404") }) test_that("rba_connection_test works", { expect_named(object = rba_connection_test(print_output = FALSE, diagnostics = FALSE), expected = names(.rba_stg("tests"))) }) test_that("rba_options works", { expect_class(obj = rba_options(), expected = "data.frame") rba_options(timeout = 91) expect_true(object = (getOption("rba_timeout") == 91)) expect_error(object = rba_options(verbose = 123), regexp = "logical") expect_error(object = rba_options(save_file = "test.txt"), regexp = "logical") }) test_that("rba_pages works", { rba_test <- function(x, skip_error = NULL, ...) { if (isTRUE(skip_error)) { LETTERS[[x]] } else { paste0(LETTERS[[x]], "!", collapse = "") } } expect_error(object = rba_pages(input_call = Sys.sleep(0)), regexp = "qoute") expect_error(object = rba_pages(input_call = quote(Sys.sleep(0))), regexp = "rbioapi") expect_error(object = rba_pages(input_call = quote(rba_test(3))), regexp = "pages") expect_error(object = rba_pages(input_call = quote(rba_test(3))), regexp = "pages") expect_error(object = rba_pages(input_call = quote(rba_test("pages:1:999"))), regexp = "100") })
.max.lambda <- function(X, y, weights, start, offset, family, pen.cov, n.par.cov, pen.mat, pen.mat.transform) { n.cov <- length(n.par.cov) eta <- as.numeric(X %*% start + offset) mu <- family$linkinv(eta) grad <- as.numeric((weights * (mu - y) / family$variance(mu) * family$mu.eta(eta)) %*% X / sum(weights != 0)) beta.tilde <- start - grad beta.tilde.split <- split(beta.tilde, rep(1:n.cov, n.par.cov)) lambda.max <- numeric(length(n.par.cov)) for (j in 1:length(beta.tilde.split)) { if (pen.cov[[j]] == "lasso") { lambda.max[j] <- max(abs(beta.tilde.split[[j]]) / diag(pen.mat[[j]])) } else if (pen.cov[[j]] == "grouplasso") { lambda.max[j] <- sqrt(sum((beta.tilde.split[[j]] / diag(pen.mat[[j]]))^2)) } else if (pen.cov[[j]] == "flasso") { lambda.max[j] <- max(abs(t(pen.mat.transform[[j]]) %*% beta.tilde.split[[j]])) } else if (pen.cov[[j]] %in% c("gflasso", "2dflasso", "ggflasso")) { if (nrow(pen.mat[[j]]) > ncol(pen.mat[[j]])) { lambda.max[j] <- .min.maxnorm(A = t(pen.mat[[j]]), b = beta.tilde.split[[j]]) } else { warning(paste0("'lambda.max' cannot be determined for predictor '", names(pen.cov)[j], "'.")) } } } return(lambda.max) } .min.maxnorm <- function(A, b) { x0 <- .PPF(A, b) A.ginv <- ginv(A) A.kernel <- round(diag(nrow = nrow(A.ginv)) - A.ginv %*% A, 10) opt <- optim(par = 0*x0, fn = .maxnorm, method = "BFGS", control = list(maxit = 1e6, reltol = 1e-10), x0 = x0, A.kernel = A.kernel) return(opt$value) } .maxnorm <- function(z, x0, A.kernel) { return(max(abs(x0 + A.kernel %*% z))) } .PPF <- function(A, b) { m <- nrow(A) n <- ncol(A) if (n <= m) { stop("Matrix 'A' is not underdetermined.") } xk <- ginv(A) %*% b dk <- 0 * xk ak <- 0 Active.Set <- which(abs(xk) == max(abs(xk))) while (length(Active.Set) < n-m+1) { Non.Active.Set <- (1:length(xk))[-Active.Set] n.ASc <- n - length(Active.Set) A.AS <- matrix(A[, Active.Set], ncol = length(Active.Set)) A.ASc <- matrix(A[, -Active.Set], ncol = n.ASc) xk.AS <- xk[Active.Set] if (rankMatrix(A.ASc) < m) { break } dk.AS <- -sign(xk.AS) dk.ASc <- ginv(A.ASc) %*% A.AS %*% sign(xk.AS) dk[Active.Set] <- dk.AS dk[-Active.Set] <- dk.ASc a.possible.set <- rep(-1, n) xi <- xk[Active.Set[1]] di <- dk[Active.Set[1]] for (j in Non.Active.Set) { a.one <- (xi - xk[j]) / (dk[j] - di) a.two <- (-xi - xk[j]) / (dk[j] - (-di)) a.cand <- c(a.one, a.two) a.possible.set[j] <- ifelse(a.one < 0 & a.two < 0, -1, min(a.cand[which(a.cand > 0)])) } ak <- min(a.possible.set[which(a.possible.set > 0)]) xk <- xk + ak * dk Active.Set <- which(abs(xk) == max(abs(xk))) } return(xk) }
with_blend_custom <- function(x, bg_layer, a = 0, b = 0, c = 0, d = 0, flip_order = FALSE, alpha = NA, ...) { UseMethod('with_blend_custom') } with_blend_custom.grob <- function(x, bg_layer, a = 0, b = 0, c = 0, d = 0, flip_order = FALSE, alpha = NA, ..., id = NULL, include = is.null(id)) { gTree(grob = x, bg_layer = bg_layer, a = a, b = b, c = c, d = d, flip_order = flip_order, alpha = tolower(alpha), id = id, include = isTRUE(include), cl = c('custom_blend_grob', 'filter_grob')) } with_blend_custom.Layer <- function(x, bg_layer, a = 0, b = 0, c = 0, d = 0, flip_order = FALSE, alpha = NA, ..., id = NULL, include = is.null(id)) { filter_layer_constructor(x, with_blend_custom, 'CustomBlendedGeom', a = a, b = b, c = c, d = d, flip_order = flip_order, alpha = alpha, ..., include = include, ids = list(id = id, bg_layer = bg_layer)) } with_blend_custom.list <- function(x, bg_layer, a = 0, b = 0, c = 0, d = 0, flip_order = FALSE, alpha = NA, ..., id = NULL, include = is.null(id)) { filter_list_constructor(x, with_blend_custom, 'CustomBlendedGeom', a = a, b = b, c = c, d = d, flip_order = flip_order, alpha = alpha, ..., include = include, ids = list(id = id, bg_layer = bg_layer)) } with_blend_custom.ggplot <- function(x, bg_layer, a = 0, b = 0, c = 0, d = 0, flip_order = FALSE, alpha = NA, ignore_background = TRUE, ...) { filter_ggplot_constructor(x, with_blend_custom, bg_layer = bg_layer, a = a, b = b, c = c, d = d, flip_order = flip_order, alpha = alpha, ..., ignore_background = ignore_background) } with_blend_custom.character <- function(x, bg_layer, a = 0, b = 0, c = 0, d = 0, flip_order = FALSE, alpha = NA, ..., id = NULL, include = is.null(id)) { filter_character_constructor(x, with_blend_custom, 'CustomBlendedGeom', a = a, b = b, c = c, d = d, flip_order = FALSE, alpha = alpha, ..., include = include, ids = list(id = id, bg_layer = bg_layer)) } with_blend_custom.function <- with_blend_custom.character with_blend_custom.formula <- with_blend_custom.character with_blend_custom.raster <- with_blend_custom.character with_blend_custom.nativeRaster <- with_blend_custom.character with_blend_custom.element <- function(x, bg_layer, a = 0, b = 0, c = 0, d = 0, flip_order = FALSE, alpha = NA, ...) { filter_element_constructor(x, with_blend_custom, bg_layer = bg_layer, a = a, b = b, c = c, d = d, flip_order = flip_order, alpha = alpha, ...) } with_blend_custom.guide <- function(x, bg_layer, a = 0, b = 0, c = 0, d = 0, flip_order = FALSE, alpha = NA, ...) { filter_guide_constructor(x, with_blend_custom, bg_layer = bg_layer, a = a, b = b, c = c, d = d, flip_order = flip_order, alpha = alpha, ...) } blend_custom_raster <- function(x, bg_layer, a, b, c, d, flip_order = FALSE, alpha = NA) { raster <- image_read(x) dim <- image_info(raster) bg_layer <- get_layer(bg_layer) bg_layer <- image_read(bg_layer) bg_layer <- image_resize(bg_layer, geometry_size_pixels(dim$width, dim$height, FALSE)) layers <- list(bg_layer, raster) if (flip_order) layers <- rev(layers) result <- image_composite(layers[[1]], layers[[2]], 'Mathematics', compose_args = paste(a, b, c, d, sep = ',')) if (!is.na(alpha)) { alpha_mask <- if (alpha == 'src') layers[[2]] else layers[[1]] result <- image_composite(alpha_mask, result, operator = 'in') } x <- as.integer(result) image_destroy(raster) image_destroy(bg_layer) image_destroy(result) x } makeContent.custom_blend_grob <- function(x) { ras <- rasterise_grob(x$grob) raster <- blend_custom_raster(ras$raster, x$bg_layer, x$a, x$b, x$c, x$d, x$flip_order) raster <- groberize_raster(raster, ras$location, ras$dimension, x$id, x$include) setChildren(x, gList(raster)) }
rsu.sssep.rspool <- function(k, pstar, pse, psp, se.p) { n <- log(1 - se.p) / log(((1 - (1 - pstar)^k) * (1 - pse) + (1 - pstar)^k * psp)) return(ceiling(n)) }
timeInfo <- function( time = NULL, longitude = NULL, latitude = NULL, timezone = NULL ) { if ( is.null(time) ) { stop(paste0("Required parameter 'time' is missing")) } else if ( !is.POSIXct(time) ) { stop(paste0("Required parameter 'time' must be of class POSIXct")) } if ( is.null(longitude) ) { stop(paste0("Required parameter 'longitude' is missing")) } else if ( !is.numeric(longitude) ) { stop(paste0("Required parameter 'longitude' must be of class numeric")) } if ( is.null(latitude) ) { stop(paste0("Required parameter 'latitude' is missing")) } else if ( !is.numeric(latitude) ) { stop(paste0("Required parameter 'latitude' must be of class numeric")) } if ( is.null(timezone) || !(timezone %in% base::OlsonNames()) ) { timezone <- MazamaSpatialUtils::getTimezone(longitude, latitude, useBuffering = TRUE) } if ( is.null(timezone) || is.na(timezone) ) { stop(paste0( "Timezone is not recognized and land-based timezone cannot be found. ", "Plese supply a timezone found in base::OlsonNames()." )) } localTime <- lubridate::with_tz(time, tzone = timezone) coords <- matrix(c(longitude, latitude), nrow = 1) sunrise <- maptools::sunriset(coords, localTime, direction = "sunrise", POSIXct.out = TRUE) sunset <- maptools::sunriset(coords, localTime, direction = "sunset", POSIXct.out = TRUE) solarnoon <- maptools::solarnoon(coords, localTime, POSIXct.out = TRUE) sunrise <- sunrise[,2] ; sunset <- sunset[,2] ; solarnoon <- solarnoon[,2] dayMask <- (localTime >= sunrise) & (localTime < sunset) nightMask <- !dayMask morningMask <- (localTime > sunrise) & (localTime <= solarnoon) afternoonMask <- (localTime > solarnoon) & (localTime <= sunset) Christmas_UTC <- lubridate::ymd_h("2019-12-25 00", tz = "UTC") Christmas_localTime <- lubridate::with_tz(Christmas_UTC, tzone = timezone) Christmas_localTime_UTC <- lubridate::force_tz(Christmas_localTime, tzone = "UTC") lst_offset <- as.numeric(difftime(Christmas_localTime_UTC, Christmas_UTC, units = "hours")) localStandardTime_UTC <- lubridate::with_tz(localTime, tzone = "UTC") + lst_offset * lubridate::dhours(1) timeInfo <- data.frame( localStandardTime_UTC = localStandardTime_UTC, daylightSavings = lubridate::dst(localTime), localTime = localTime, sunrise = sunrise, sunset = sunset, solarnoon = solarnoon, day = dayMask, morning = morningMask, afternoon = afternoonMask, night = nightMask ) return(timeInfo) } if ( FALSE ) { Thompson_Falls <- monitor_load(2018110307, 2018110607, monitorIDs = "300890007_01") time <- Thompson_Falls$data$datetime timezone <- Thompson_Falls$meta$timezone longitude <- Thompson_Falls$meta$longitude latitude <- Thompson_Falls$meta$latitude timeInfo <- timeInfo(time, longitude, latitude, timezone) t(timeInfo[24:27,]) }
states.check <- function(seqdata, state.order, state.equiv, with.missing=FALSE){ if(length(state.order) != length(unique(state.order))) msg.stop("Multiple occurrences of same state in state.order: ", paste(state.order, collapse=" ")) alphabet <- alphabet(seqdata, with.missing) inexistant_al <- which(is.na(match(state.order, alphabet))) if(length(inexistant_al)>0 && !is.numeric(seqdata)) { if(length(inexistant_al)>1 || !is.na(state.order[inexistant_al])) { msg.stop("Bad state.order, states not in the alphabet: ", paste(state.order[inexistant_al], collapse=" ")) } } if (!is.null(state.equiv)){ if(!is.list(state.equiv)){ msg.stop("Bad state.equiv. A list is expected!") } equiv_al <- unlist(state.equiv) if(length(equiv_al) != length(unique(equiv_al))) msg.stop("Multiple occurrence of same state in state.equiv") inexistant_al <- which(is.na(match(equiv_al, alphabet))) if(length(inexistant_al)>0 && !is.numeric(seqdata)) { if(length(inexistant_al)>1 || !is.na(equiv_al[inexistant_al])) { msg.stop("Bad state.equiv, states not in the alphabet: ", paste(equiv_al[inexistant_al], collapse=" ")) } } if (length(unique(state.order)) < length(alphabet)){ inoncomp <- which(is.na(match(alphabet(seqdata),unique(state.order)))) state.noncomp <- alphabet(seqdata)[inoncomp] ii.noncomp.equiv <- match(state.noncomp,equiv_al) ii.noncomp.equiv <- ii.noncomp.equiv[!is.na(ii.noncomp.equiv)] if(length(ii.noncomp.equiv)>0){ state.noncomp.equiv <- equiv_al[ii.noncomp.equiv] for (i in 1:length(state.noncomp.equiv)){ for (k in 1:length(state.equiv)){ if (state.noncomp.equiv[i] %in% state.equiv[[k]] ){ ii <- match(state.equiv[[k]],state.order) if (!is.na(ii[1])){ state.order.new <- c(state.order[1:ii[1]],state.noncomp.equiv[i]) if (length(state.order)>ii[1]) { state.order.new <- c(state.order.new, state.order[(ii[1]+1):length(state.order)]) } state.order <- state.order.new } else {} break } } } } } } return(state.order) }
bayesQR <- function(formula=NULL, data=NULL, quantile=0.5, alasso=FALSE, normal.approx=NULL, ndraw=NULL, keep=1, prior=NULL, seed=NULL){ pandterm <- function(message) { stop(message, call. = FALSE) } nqr <- length(quantile) out <- NULL if (!is.null(seed)){ seedval <- .Fortran("setseed",as.integer(seed)) } if (nqr==1){ out[[1]] <- bayesQR.single(formula=formula, data=data, quantile=quantile, alasso=alasso, normal.approx=normal.approx, ndraw=ndraw, keep=keep, prior=prior) } else { quantile <- sort(quantile) for (i in 1:nqr){ cat("************************************************","\n") cat("* Start estimating quantile ", i," of ", nqr, "in total *", "\n") cat("************************************************","\n") out[[i]] <- bayesQR.single(formula=formula, data=data, quantile=quantile[i], alasso=alasso, normal.approx=normal.approx, ndraw=ndraw, keep=keep, prior=prior) } } class(out) <- "bayesQR" return(out) }
trim <- function(x) { UseMethod("trim") } trim.data.frame <- function(x) { as.data.frame(lapply(x, FUN = trim_helper)) } trim.list <- function(x) { lapply(x, FUN = trim_helper) } trim.default <- function(x) { trim_helper(x) } trim_helper <- function(x) gsub("^\\s+|\\s+$", "", x)
context("Tests for function rv.test") test_that(desc = "Print and plot call", { data("sanitizer") res <- digitTests::rv.test(x = sanitizer$value, check = 'last', method = 'af', B = 500) invisible({capture.output({ print(res) }) }) invisible({capture.output({ plot(res) }) }) expect_equal(length(res$statistic), 1) }) test_that(desc = "Validate Datacolada[77]", { data("sanitizer") res <- digitTests::rv.test(x = sanitizer$value, check = 'last', method = 'af', B = 500) expect_equal(as.numeric(res$statistic), 1.5225) res <- digitTests::rv.test(x = sanitizer$value, check = 'last', method = 'entropy', B = 500) expect_equal(as.numeric(res$statistic), 7.065769174) })
library(OpenMx) library(testthat) data(demoOneFactor) latents = c("G") manifests = names(demoOneFactor) m1 <- mxModel("One Factor", type = "RAM", manifestVars = manifests, latentVars = latents, mxPath(from = latents, to = manifests), mxPath(from = manifests, arrows = 2, values=.2), mxPath(from = latents, arrows = 2, free = FALSE, values = 1.0), mxPath(from = "one", to = manifests), mxData(cov(demoOneFactor), type='cov', numObs=nrow(demoOneFactor), means=colMeans(demoOneFactor)) ) fm <- omxSetParameters(m1, "One Factor.M[1,1]", values = .1, free=FALSE) expect_error(mxPowerSearch(m1, fm), "contains 'cov' data")
context("consume data with public visibility, selectively") gap <- gs_gap() test_that("We can get data from specific cells using limits", { foo <- gap %>% gs_read_cellfeed(ws = 5, range = cell_limits(c(3, 1), c(5, 3)), verbose = FALSE) expect_equal(foo$cell, paste0(LETTERS[1:3], rep(3:5, each = 3))) foo <- gap %>% gs_read_cellfeed(ws = "Oceania", range = cell_limits(c(2, 4), c(NA, 4)), verbose = FALSE) expect_true(all(grepl("^D", foo$cell))) foo <- gap %>% gs_read_cellfeed(ws = "Oceania", range = cell_limits(lr = c(NA, 3)), verbose = FALSE) expect_true(all(grepl("^[ABC][0-9]+$", foo$cell))) }) test_that("We can get data from specific cells using rows and columns", { foo <- gap %>% gs_read_cellfeed(ws = "Africa", range = cell_rows(2:3), verbose = FALSE) expect_true(all(foo$row %in% 2:3)) foo <- gap %>% gs_read_cellfeed(ws = "Africa", range = cell_rows(1), verbose = FALSE) expect_true(all(foo$row == 1)) foo <- gap %>% gs_read_cellfeed(ws = "Oceania", range = cell_cols(3:6), verbose = FALSE) expect_true(all(foo$col %in% 3:6)) foo <- gap %>% gs_read_cellfeed(ws = "Oceania", range = cell_cols(4), verbose = FALSE) expect_true(all(foo$col == 4)) }) test_that("We can get data from specific cells using a range", { foo <- gap %>% gs_read_cellfeed(ws = "Europe", range = "B3:C7", verbose = FALSE) expect_is(foo, "tbl_df") expect_true(all(foo$col %in% 2:3)) expect_true(all(foo$row %in% 3:7)) foo <- gap %>% gs_read_cellfeed(ws = "Europe", range = "R3C2:R7C3", verbose = FALSE) expect_is(foo, "tbl_df") expect_true(all(foo$col %in% 2:3)) expect_true(all(foo$row %in% 3:7)) foo <- gap %>% gs_read_cellfeed(ws = "Europe", range = "C4", verbose = FALSE) expect_is(foo, "tbl_df") expect_equal(foo$col, 3) expect_equal(foo$row, 4) foo <- gap %>% gs_read_cellfeed(ws = "Europe", range = "R4C3", verbose = FALSE) expect_is(foo, "tbl_df") expect_equal(foo$col, 3) expect_equal(foo$row, 4) }) test_that("We decline to reshape data if there is none", { foo <- gap %>% gs_read_cellfeed(ws = "Oceania", range = cell_rows(1), verbose = FALSE) expect_message(tmp <- foo %>% gs_reshape_cellfeed(), "No data to reshape!") expect_identical(dim(tmp), rep(0L, 2)) }) test_that("We can simplify data from the cell feed", { foo <- gap %>% gs_read_cellfeed(ws = "Africa", range = cell_rows(2:3), verbose = FALSE) expect_equal_to_reference( foo %>% gs_simplify_cellfeed(), test_path("for_reference/gap_africa_simplify_A1.rds") ) expect_equal_to_reference( foo %>% gs_simplify_cellfeed(notation = "R1C1"), test_path("for_reference/gap_africa_simplify_R1C1.rds") ) foo <- gap %>% gs_read_cellfeed(ws = "Oceania", range = cell_cols(3), verbose = FALSE) foo_simple <- foo %>% gs_simplify_cellfeed() expect_equivalent(foo_simple, rep(seq(from = 1952, to = 2007, by = 5), 2)) expect_equal(names(foo_simple), paste0("C", 1:24 + 1)) foo_simple2 <- foo %>% gs_simplify_cellfeed(col_names = FALSE) expect_is(foo_simple2, "character") foo_simple3 <- foo %>% gs_simplify_cellfeed(col_names = TRUE) expect_is(foo_simple3, c("numeric", "integer")) foo_simple4 <- foo %>% gs_simplify_cellfeed(convert = FALSE) expect_equivalent(foo_simple4, rep(seq(from = 1952, to = 2007, by = 5), 2) %>% as.character()) yo <- gap %>% gs_read_cellfeed(ws = "Oceania", range = cell_cols(3), verbose = FALSE) yo_simple <- yo %>% gs_simplify_cellfeed(convert = TRUE) expect_is(yo_simple, c("numeric", "integer")) }) test_that("Validation is in force for row / columns limits in the cell feed", { mess <- "less than or equal to" expect_error(gs_read_cellfeed(gap, range = cell_rows(1001:1003), verbose = FALSE), mess) expect_error(gs_read_cellfeed(gap, range = cell_rows(999:1003), verbose = FALSE), mess) expect_error(gs_read_cellfeed(gap, range = cell_cols(27), verbose = FALSE), mess) expect_error(gs_read_cellfeed(gap, range = cell_cols(24:30), verbose = FALSE), mess) }) test_that("query params work on the list feed", { oceania_fancy <- gap %>% gs_read_listfeed(ws = "Oceania", reverse = TRUE, orderby = "gdppercap", sq = "lifeexp > 79 or year < 1960", verbose = FALSE) oceania_fancy <- dplyr::select(oceania_fancy, -year, -pop) expect_equal_to_reference( oceania_fancy, test_path("for_reference/gap_oceania_listfeed_query.rds") ) }) test_that("readr parsing params are handled on the list feed", { cspec <- do.call(readr::cols, as.list(strsplit("cccnnn", "")[[1]])) oceania_tweaked <- gap %>% gs_read_listfeed(ws = "Oceania", col_names = paste0("VAR", 1:6), col_types = cspec, n_max = 5, skip = 1) expect_identical(names(oceania_tweaked), paste0("VAR", 1:6)) expect_equivalent(vapply(oceania_tweaked, class, character(1)), rep(c("character", "numeric"), each = 3)) }) test_that("comment is honored", { skip("Subject to type discrepancies due to readr version.") ss <- gs_ws_feed(pts_ws_feed) ref <- dplyr::data_frame( var1 = c(1, 3), var2 = c(2, NA_real_) ) expect_warning( plain_read <- ss %>% gs_read(ws = "comment", comment = " "1 parsing failure." ) expect_equal(ref, plain_read) expect_warning( csv_read <- ss %>% gs_read_csv(ws = "comment", comment = " "1 parsing failure." ) expect_equal(ref, csv_read) listfeed_read <- ss %>% gs_read_listfeed(ws = "comment", comment = " expect_equal(ref, listfeed_read) range_read <- ss %>% gs_read(ws = "comment", comment = " expect_equal(ref, range_read) })
test_that("Path can be derived for windows Python >= 3.0", { paths_base <- with_mock( "precommit::path_derive_precommit_exec_win_python3plus_candidates" = function() { c( fs::path_home("AppData/Roaming/Python/Python35"), fs::path_home("AppData/Roaming/Python/Python37") ) }, path_derive_precommit_exec_win_python3plus_base() ) expect_equal( paths_base, c( fs::path(fs::path_home(), "AppData/Roaming/Python/Python37/Scripts"), fs::path(fs::path_home(), "AppData/Roaming/Python/Python35/Scripts") ) ) skip_if(!is_windows()) skip_if(!not_conda()) skip_if(on_cran()) expect_match(path_derive_precommit_exec_win_python3plus_base(), "AppData/Roaming") expect_equal( fs::path_file(path_derive_precommit_exec_win()), precommit_executable_file() ) }) test_that("Warns when there are multiple installations found (2x os)", { expect_warning( with_mock( "precommit::path_derive_precommit_exec_path" = function(candidate) { fs::path_home("AppData/Roaming/Python/Python35") }, "Sys.info" = function(...) { c(sysname = "windows") }, "precommit:::path_derive_precommit_exec_win" = function() { c( fs::path_home("AppData/Roaming/Python/Python34"), fs::path_home("AppData/Roaming/Python/Python37") ) }, path_derive_precommit_exec() ), "We detected multiple pre-commit executables" ) }) test_that("Warns when there are multiple installations found (2x path)", { expect_warning( with_mock( "precommit::path_derive_precommit_exec_path" = function(candidate) { c( fs::path_home("AppData/Roaming/Python/Python35"), fs::path_home("AppData/Roaming/Python/Python37") ) }, "Sys.info" = function(...) { c(sysname = "windows") }, "precommit:::path_derive_precommit_exec_win" = function() { fs::path_home("AppData/Roaming/Python/Python34") }, path_derive_precommit_exec() ), "We detected multiple pre-commit executables" ) }) test_that("Warns when there are multiple installations found (path and os)", { expect_warning( with_mock( "precommit::path_derive_precommit_exec_path" = function(candidate) { fs::path_home("AppData/Roaming/Python/Python35") }, "Sys.info" = function(...) { c(sysname = "windows") }, "precommit:::path_derive_precommit_exec_win" = function() { fs::path_home("AppData/Roaming/Python/Python34") }, path_derive_precommit_exec() ), "We detected multiple pre-commit executables" ) })
library(testthat) test_that("medal works", { expect_equal( medal(1), emoji_name[["1st_place_medal"]] ) expect_equal( medal(1:3), unname(emoji_name[c("1st_place_medal", "2nd_place_medal", "3rd_place_medal")]) ) expect_equal( medal(c("1st", "2nd", "3rd")), unname(emoji_name[c("1st_place_medal", "2nd_place_medal", "3rd_place_medal")]) ) expect_equal( medal(c("gold", "silver", "bronze")), unname(emoji_name[c("1st_place_medal", "2nd_place_medal", "3rd_place_medal")]) ) expect_equal( medal(c("gold", "nothing")), c(emoji_name[["1st_place_medal"]], NA) ) })
auc.mc <- function(x, y, method = "leave out", lo = 2, it = 100, ...){ METHODS <- c("leave out", "bootstrap", "sorted bootstrap", "constrained bootstrap", "jackknife", "jack-validate") method <- pmatch(method, METHODS) if (is.na(method)){ stop("invalid method") } if(method == 1){ ind <- lapply(seq(it), function(z) sort(sample(seq(length(x)), length(x)-lo))) res <- sapply(ind, function(z) auc(x[z], y[z], ...)) } else if (method == 2){ ind <- lapply(seq(it), function(z) sample(seq(length(x)), replace=TRUE)) res <- sapply(ind, function(z) auc(x, y[z], ...)) } else if (method == 3){ ind <- lapply(seq(it), function(z) sort(sample(seq(length(x)), replace=TRUE))) res <- sapply(ind, function(z) auc(x, y[z], ...)) } else if (method == 4){ ind <- lapply(seq(it), function(z) unique(sort(sample(seq(length(x)), replace=TRUE)))) res <- sapply(ind, function(z) auc(x[z], y[z], ...)) } else if (method == 5){ ind <- combs(seq(length(x)), length(x)-1) res <- apply(ind, 1, function(z) auc(x[z], y[z], ...)) } else if (method == 6){ ind <- lapply(c(1:lo), function(z) combs(seq(length(x)), length(x)-z)) res <- unlist(sapply(ind, function(z) apply(z, 1, function(w) auc(x[w], y[w], ...)))) } return(res) }
suppressMessages(library(td)) .onWindows <- .Platform$OS.type == "windows" if (! .onWindows) expect_error(time_series(sym="SPY", api="")) if ((Sys.getenv("RunTDTests","") == "yes") && td:::.get_apikey() != "" && requireNamespace("xts", quietly=TRUE)) { spy <- time_series(sym="SPY", interval="1min", outputsize=100, as="xts") expect_true(inherits(spy, "xts")) expect_equal(nrow(spy), 100) }
expected <- eval(parse(text="structure(integer(0), .Dim = 0:1)")); test(id=0, code={ argv <- eval(parse(text="list(0:1)")); .Internal(row(argv[[1]])); }, o=expected);
context("portfolio_compute") test_that("portfolio_compute works (arg method)", { expect_equal(portfolio_compute(investor, marketprices, method = "none"), portfolio_results[, c(1:5)]) expect_equal(portfolio_compute(investor, marketprices, method = "none", progress = TRUE), portfolio_results[, c(1:5)]) expect_equal(portfolio_compute(investor, marketprices, method = "count"), portfolio_results[, c(1:5, 6:9)]) expect_equal(portfolio_compute(investor, marketprices, method = "total"), portfolio_results[, c(1:5, 10:13)]) expect_equal(portfolio_compute(investor, marketprices, method = "value"), portfolio_results[, c(1:5, 14:17)]) expect_equal(portfolio_compute(investor, marketprices, method = "duration"), portfolio_results[, c(1:5, 18:21)], tolerance = 0.001) expect_equal(portfolio_compute(investor, marketprices, method = "all"), portfolio_results, tolerance = 0.001) }) test_that("portfolio_compute works (arg allow_short)", { expect_type(portfolio_compute(investor, marketprices, allow_short = FALSE), "list") }) test_that("portfolio_compute works (arg exact_market_prices)", { expect_equal( portfolio_compute(investor, marketprices, exact_market_prices = TRUE), portfolio_compute(investor, marketprices, exact_market_prices = FALSE) ) }) test_that("portfolio_compute works (arg time_threshold)", { expect_equal(portfolio_compute(investor, marketprices, time_threshold = "5 mins"), portfolio_results[, 1:9], tolerance = 0.001) expect_type(portfolio_compute(investor, marketprices, time_threshold = "30 days"), "list") }) test_that("portfolio_compute works (arg portfolio_driven_DE)", { expect_type(portfolio_compute(investor, marketprices, method = "all", portfolio_driven_DE = TRUE), "list") }) test_that("portfolio_compute works (arg time_series_DE)", { expect_type(portfolio_compute(investor, marketprices, time_series_DE = TRUE), "list") expect_type(portfolio_compute(investor, marketprices, method = "value", time_series_DE = TRUE), "list") expect_type(portfolio_compute(investor, marketprices, method = "all", time_series_DE = TRUE), "list") }) test_that("portfolio_compute works (arg assets_time_series_DE)", { expect_type( portfolio_compute(investor, marketprices, time_series_DE = TRUE, assets_time_series_DE = "ACO"), "list" ) expect_type( portfolio_compute(investor, marketprices, method = "value", time_series_DE = TRUE, assets_time_series_DE = "ACO"), "list" ) expect_type( portfolio_compute(investor, marketprices, method = "all", time_series_DE = TRUE, assets_time_series_DE = "ACO"), "list" ) }) investor_error <- investor names(investor_error) <- c("investors", "types", "asset", "quantity", "price", "datetime") investor_error2 <- investor investor_error2$type[1] <- "Buy" marketprices_error <- marketprices names(marketprices_error) <- c("assets", "datetime", "price") marketprices_error2 <- marketprices marketprices_error2 <- marketprices_error2[-c(11:60), ] test_that("portfolio_compute works (initial checks)", { expect_error(portfolio_compute(investor_error, marketprices)) expect_error(portfolio_compute(investor, marketprices_error)) expect_error(portfolio_compute(investor_error2, marketprices)) expect_error(portfolio_compute(investor, marketprices, method = "new")) expect_error(portfolio_compute(investor, marketprices, time_threshold = "1 month")) expect_warning(portfolio_compute(investor, marketprices, method = "total", time_series_DE = TRUE)) expect_warning(portfolio_compute(investor, marketprices, method = "duration", time_series_DE = TRUE)) expect_warning(portfolio_compute(investor, marketprices, method = "none", time_series_DE = TRUE)) expect_warning(portfolio_compute(investor, marketprices, portfolio_driven_DE = TRUE, time_series_DE = TRUE)) expect_warning(portfolio_compute(investor, marketprices_error2)) expect_warning(portfolio_compute(investor, marketprices, assets_time_series_DE = "AC")) expect_error(portfolio_compute(investor, marketprices, time_series_DE = TRUE, assets_time_series_DE = "AC")) })
library(sand) data(strike) summary(strike) table(V(strike)$race) mytriangle <- function(coords, v=NULL, params) { vertex.color <- params("vertex", "color") if (length(vertex.color) != 1 && !is.null(v)) { vertex.color <- vertex.color[v] } vertex.size <- 1/200 * params("vertex", "size") if (length(vertex.size) != 1 && !is.null(v)) { vertex.size <- vertex.size[v] } symbols(x=coords[,1], y=coords[,2], bg=vertex.color, stars=cbind(vertex.size, vertex.size, vertex.size), add=TRUE, inches=FALSE) } add_shape("triangle", clip=shapes("circle")$clip, plot=mytriangle) V(strike)[V(strike)$race=="YS"]$shape <- "circle" V(strike)[V(strike)$race=="YE"]$shape <- "square" V(strike)[V(strike)$race=="OE"]$shape <- "triangle" nv <- vcount(strike) z <- numeric(nv) z[c(5,15,21,22)] <- 1 V(strike)$color <- rep("white",nv) V(strike)[z==1]$color <- "red3" set.seed(42) my.dist <- c(rep(1.8,4),rep(2.2,9),rep(2,11)) l <- layout_with_kk(strike) plot(strike,layout=l,vertex.label=V(strike)$names, vertex.label.degree=-pi/3, vertex.label.dist=my.dist) V(strike)[z==1]$names rank(-betweenness(strike))[z==1] rank(-closeness(strike))[z==1] A <- as_adjacency_matrix(strike) I.ex.nbrs <- as.numeric(z%*%A > 0) V(strike)[z*I.ex.nbrs==1]$names V(strike)[(1-z)*I.ex.nbrs==1]$names V(strike)[z*(1-I.ex.nbrs)==1]$names V(strike)[(1-z)*(1-I.ex.nbrs)==1]$names O.c11 <- 10.0; O.c10 <- 7; O.c01 <- 5; O.c00 <- 1.0 c(O.c11,O.c10,O.c01)-O.c00 set.seed(41) m <- 4 n <- 10000 I11 <- matrix(,nrow=nv,ncol=n) I10 <- matrix(,nrow=nv,ncol=n) I01 <- matrix(,nrow=nv,ncol=n) I00 <- matrix(,nrow=nv,ncol=n) for(i in 1:n){ z <- rep(0,nv) reps.ind <- sample((1:nv),m,replace=FALSE) z[reps.ind] <- 1 reps.nbrs <- as.numeric(z%*%A > 0) I11[,i] <- z*reps.nbrs I10[,i] <- z*(1-reps.nbrs) I01[,i] <- (1-z)*reps.nbrs I00[,i] <- (1-z)*(1-reps.nbrs) } I11.11 <- I11%*%t(I11)/n I10.10 <- I10%*%t(I10)/n I01.01 <- I01%*%t(I01)/n I00.00 <- I00%*%t(I00)/n names.w.space <- paste(V(strike)$names," ",sep="") my.cex.x <- 0.75; my.cex.y <- 0.75 image(I00.00, zlim=c(0,0.7), xaxt="n", yaxt="n", col=cm.colors(16)) mtext(side=1, text=names.w.space,at=seq(0.0,1.0,(1/23)), las=3, cex=my.cex.x) mtext(side=2, text=names.w.space,at=seq(0.0,1.0,1/23), las=1, cex=my.cex.y) mtext(side=3,text=expression("No Exposure"~(c["00"])), at=0.5, las=1) u <- 1/23; uo2 <- 1/46 xmat <- cbind(rep(3*u+uo2,2),rep(12*u+uo2,2)) ymat <- cbind(c(0-uo2,1+uo2),c(0-uo2,1+uo2)) matlines(xmat,ymat, lty=1, lw=1, col="black") matlines(ymat,xmat, lty=1, lw=1, col="black") z <- rep(0,nv) z[c(5,15,21,22)] <- 1 reps.nbrs <- as.numeric(z%*%A > 0) c11 <- z*reps.nbrs c10 <- z*(1-reps.nbrs) c01 <- (1-z)*reps.nbrs c00 <- (1-z)*(1-reps.nbrs) Obar.c11 <- O.c11*mean(c11/diag(I11.11)) Obar.c10 <- O.c10*mean(c10/diag(I10.10)) Obar.c01 <- O.c01*mean(c01/diag(I01.01)) Obar.c00 <- O.c00*mean(c00/diag(I00.00)) print(c(Obar.c11,Obar.c10,Obar.c01)-Obar.c00) set.seed(42) n <- 10000 Obar.c11 <- numeric() Obar.c10 <- numeric() Obar.c01 <- numeric() Obar.c00 <- numeric() for(i in 1:n){ z <- rep(0,nv) reps.ind <- sample((1:nv),m,replace=FALSE) z[reps.ind] <- 1 reps.nbrs <- as.numeric(z%*%A > 0) c11 <- z*reps.nbrs c10 <- z*(1-reps.nbrs) c01 <- (1-z)*reps.nbrs c00 <- (1-z)*(1-reps.nbrs) Obar.c11 <- c(Obar.c11, O.c11*mean(c11/diag(I11.11))) Obar.c10 <- c(Obar.c10, O.c10*mean(c10/diag(I10.10))) Obar.c01 <- c(Obar.c01, O.c01*mean(c01/diag(I01.01))) Obar.c00 <- c(Obar.c00, O.c00*mean(c00/diag(I00.00))) } ACE <- list(Obar.c11-Obar.c00, Obar.c10-Obar.c00, Obar.c01-Obar.c00) print(sapply(ACE,mean)- c(O.c11-O.c00, O.c10-O.c00, O.c01-O.c00)) print(sapply(ACE,sd)) sapply(ACE,sd)/c(9,6,4)
dr.fit.psir <-function(object,numdir=4,nslices=2,pool=FALSE, slice.function=dr.slices,...){ object <- psir(object,nslices,pool,slice.function) object$numdir <- numdir object$method <- "psir" class(object) <- c("psir", "sir","dr") return(object) } psir <- function(object,nslices,pool,slice.function) { Y <- dr.y(object) X <- dr.x(object) W <- dr.wts(object) n <- dim(X)[1] p <- dim(X)[2] group.names <- unique(as.factor(object$group)) nG <- length(group.names) G <- numeric(n) for (j in 1:nG) G[object$group ==group.names[j]] <- j "%^%"<-function(A,n) { if (dim(A)[2]==1) { A^n } else { eg<-eigen(A) (eg$vectors) %*% diag(abs(eg$values)^n) %*% t(eg$vectors) }} Sigma.pool <- matrix(0,p,p) Sigma <- array(0,c(p,p,nG)) wt.cov <- function(x,w){ xbarw <- apply(x,2,function(x) sum(w*x)/sum(w)) xc <- t(apply(x,1,function(x) x-xbarw)) (1/sum(w)) * t(xc) %*% apply(xc,2,function(x) w*x) } slice <- if (length(nslices)==nG) nslices else rep(nslices,nG) info <- NULL for (k in 1:nG){ sel <- object$group == group.names[k] info[[k]]<- slice.function(Y[sel],slice[k]) Sigma[,,k] <- wt.cov(X[sel,],W[sel]) Sigma.pool <- Sigma.pool + sum(W[sel]) *Sigma[,,k]/ n } slice.info <- function() info psir1 <- function(k) { group.sel <- object$group == group.names[k] Z <- X[group.sel,] y <- Y[group.sel] n <- length(y) Scale <- if(pool) Sigma.pool else Sigma[,,k] z <- (Z-matrix(1,n,1)%*%apply(Z,2,mean)) %*% (Scale %^% (-1/2)) zmeans <- array(0,c(p,info[[k]]$nslices)) for (j in 1:info[[k]]$nslices) { slice.sel <- (info[[k]]$slice.indicator==j) if (sum(slice.sel)<1) mu <- rep(0,p) else mu <- apply(z[slice.sel,],2,mean) zmeans[,j] <- sqrt(sum(slice.sel)/n)*mu } stat <- function(gamma) { r <- p - dim(gamma)[2] gamma <- Scale %^% (1/2) %*% gamma h <- info[[k]]$nslices H <- as.matrix(qr.Q(qr(gamma), complete = TRUE)[, (p - r + 1):p]) st <- sum((t(H)%*%zmeans)^2)*n wts <- rep(1,min(p,h-1)) wts[1:min(p,h-1)] <- 1-svd(zmeans)$d[1:min(p,h-1)]^2 return(list(st=st,wts=wts)) } return(list(zmeans=zmeans,stat=stat)) } zmeans <- NULL for (k in 1:nG){zmeans <- cbind(zmeans,psir1(k)$zmeans)} D <- svd(zmeans,p) evectors <- apply(Sigma.pool%^%(-1/2)%*%D$u,2,function(x)x/sqrt(sum(x^2))) dimnames(evectors) <- list(attr(dr.x(object),"dimnames")[[2]], paste("Dir",1:dim(evectors)[2],sep="")) test <- function(d) { h <- sum(slice) d <- min(d,h-nG) st <- df <- pv <- 0 for (i in 0:(d-1)) { st[i+1] <- sum(D$d[(i+1):min(p,h-nG)]^2)*n df[i+1] <- (h-i-nG)*(p-i) pv[i+1] <- 1 - pchisq(st[i+1], df[i+1])} z<-data.frame(cbind(st,df,pv)) rr<-paste(0:(d-1),"D vs >= ",1:d,"D",sep="") dimnames(z)<-list(rr,c("Stat","df","p.value")) return(z) } coordinate.test <- function(H) { r <- p-dim(H)[2] st <- 0 wts <- 0 for (k in 1:nG) { tp <- psir1(k)$stat(H) st <- st+tp$st wts <- cbind(wts,tp$wts) } wts <- rep(wts,r) testr <- dr.pvalue(wts[wts>1e-5],st,a=object$chi2approx) df <- testr$df.adj pv <- testr$pval.adj return(data.frame(cbind(Test=st,P.value=pv))) } return(c(object, list(evectors=evectors, evalues=D$d^2,slice.info=slice.info, test=test,coordinate.test=coordinate.test))) } dr.test.psir <- function(object,numdir=object$numdir,...) object$test(numdir) dr.coordinate.test.psir <- function(object,hypothesis,d=NULL,...) { gamma <- if (class(hypothesis) == "formula") coord.hyp.basis(object, hypothesis) else as.matrix(hypothesis) object$coordinate.test(gamma) } summary.psir <- function(object,...) { ans <- summary.dr(object,...) ans$method <- "psir" gps<- sizes <- NULL for (g in 1:length(a1 <- object$slice.info())){ gps<- c(gps,a1[[g]][[2]]) sizes <- c(sizes,a1[[g]][[3]])} ans$nslices <- paste(gps,collapse=" ") ans$sizes <- sizes return(ans) } summary.psir <- function (object, ...) { z <- object ans <- z[c("call")] nd <- min(z$numdir,length(which(abs(z$evalues)>1.e-15))) ans$evectors <- z$evectors[,1:nd] ans$method <- "psir" gps<- sizes <- NULL for (g in 1:length(a1 <- object$slice.info())){ gps<- c(gps,a1[[g]][[2]]) sizes <- c(sizes,a1[[g]][[3]])} ans$nslices <- paste(gps,collapse=" ") ans$sizes <- sizes ans$weights <- z$weights sw <- sqrt(ans$weights) y <- z$y ans$n <- z$cases ols.fit <- qr.fitted(object$qr,sw*(y-mean(y))) angles <- cosangle(dr.direction(object),ols.fit) angles <- if (is.matrix(angles)) angles[,1:nd] else angles[1:nd] if (is.matrix(angles)) dimnames(angles)[[1]] <- z$y.name angle.names <- if (!is.matrix(angles)) "R^2(OLS|dr)" else paste("R^2(",dimnames(angles)[[1]],"|dr)",sep="") ans$evalues <-rbind (z$evalues[1:nd],angles) dimnames(ans$evalues)<- list(c("Eigenvalues",angle.names), paste("Dir", 1:NCOL(ans$evalues), sep="")) ans$test <- dr.test(object,nd) class(ans) <- "summary.dr" ans } drop1.psir <- function(object,scope=NULL,...){ drop1.dr(object,scope,...) }
plotsample <- function(data, ask = TRUE, ...) { if (!is.data.frame(data)) data <- read.table(data, header = TRUE) old.par <- par(no.readonly = TRUE) on.exit(par(old.par)) i <- 1 count <- 0 while (i < length(data)) { if (count%%6 == 0) { count <- 0 par(mfrow = c(3, 2), omi = c(1.5, 1, 0, 1.5)/2.54) } plot(data[, 1], data[, i + 1], type = "l", xlab = "iteration", ylab = dimnames(data)[[2]][i + 1], ...) par(ask = ask) count <- count + 1 i <- i + 1 } return(invisible()) } plotsample.coda <- function(data, ask = TRUE, ...) { if (!is.data.frame(data)) data <- read.table(data, header = TRUE) data <- data[, -1] data.mcmc <- coda::as.mcmc(data) plot(data.mcmc, ask = ask, ...) return(invisible()) }
mt_gwas <- function(pleio_results, save_at = NULL){ if (!'pleio_class' %in% class(pleio_results)) stop('pleio_results should be a pleio_class object') n_traits <- nrow(pleio_results[[1]]$betas) n_snp <- length(pleio_results) n <- vector() allele_freq <- vector() estimate <- matrix(nrow = n_snp, ncol = n_traits) s_error <- matrix(nrow = n_snp, ncol = n_traits) for (i in 1:n_snp){ result <- pleio_results[[i]] n[i] <- result$n allele_freq[i] <- result$allele_freq estimate[i,] <- result$betas s_error[i,] <- sqrt(diag(result$lhss)) } t_stat <- estimate / s_error result_list <- list() for (j in 1:n_traits){ result_list[[j]] <- cbind(allele_freq, n, estimate[,j], s_error[,j], t_stat[,j], stats::pt(q = abs(t_stat[,j]), df = n - 2, lower.tail = F) * 2) colnames(result_list[[j]]) <- c('allele_freq', 'n', "estimate", "se", "t value", "p value") rownames(result_list[[j]]) <- names(pleio_results) } names(result_list) <- rownames(pleio_results[[1]]$betas) if (!is.null(save_at)){ if(!is.character(save_at)) stop('Save at must be a character string with a directory or file name') if(length(grep('.rdata', save_at, ignore.case = T)) > 0){ file_name <- strsplit(casefold(basename(save_at)), '.rdata')[[1]] dir_name <- dirname(save_at) }else{ if(length(grep('\\.', save_at)) > 0) stop('The file must be .rdata') dir_name <- save_at file_name <- 'mt_gwas_result' } if(!substring(dir_name, nchar(dir_name)) == '/') dir_name <- paste0(dir_name, '/') if(!dir.exists(dir_name)) dir.create(dir_name) i <- 1 while (file.exists(paste0(dir_name, file_name, '_', i, '.rdata'))) i <- i + 1 save(result_list, file = paste0(dir_name, file_name, '_', i, '.rdata')) } return(result_list) }
library(testthat) context("Force") test_that("All force", { nodes <- sg_make_nodes(50) edges <- sg_make_edges(nodes, 100) sg <- sigmajs() %>% sg_nodes(nodes, id, label, size) %>% sg_edges(edges, id, source, target) %>% sg_force() %>% sg_force_stop() expect_length(sg$x$force, 0) expect_equal(sg$x$forceStopDelay, 5000) expect_error(sg_force()) expect_error(sg_force_stop()) })
plot.cpm <- function(x, ...) { groups <- x$groups plot.args <- list(...) if(length(plot.args) == 0) {plot.args$type <- "p"} if(x$connections == "separate") { if(!"main" %in% names(plot.args)) {mains <- c("Positive Prediction", "Negative Prediction") }else{mains <- plot.args$main} }else{ if(!"main" %in% names(plot.args)) {mains <- c("Overall Prediction") }else{mains <- plot.args$main} } if(!"xlab" %in% names(plot.args)) {plot.args$xlab <- "Observed Score\n(Z-score)"} if(!"ylab" %in% names(plot.args)) {plot.args$ylab <- "Predicted Score\n(Z-score)"} if(!"col" %in% names(plot.args)) { cols <- ifelse(is.null(groups), c("darkorange2", "skyblue2"), c("darkorange2", "darkorange2", "skyblue2", "skyblue2")) }else{ if(length(plot.args$col) == 2) {cols <- rep(c(plot.args$col[1], plot.args$col[2]), 2) }else{cols <- plot.args$col} } if(!"pch"%in% names(plot.args)) { pchs <- ifelse(is.null(groups), c(16,16), c(16,1,16,1)) }else{ if(length(plot.args$pch) == 2) {pchs <- rep(c(plot.args$pch[1], plot.args$pch[2]), 2) }else{pchs <- plot.args$pch} } if(x$connections == "separate") { if(any(is.na(x$posPred))) { pos.na <- which(is.na(x$posPred)) bstat_pos <- x$behav[-pos.na] behav_pred_pos <- x$posPred[-pos.na] }else{ bstat_pos <- x$behav behav_pred_pos <- x$posPred } if(any(is.na(x$negPred))) { neg.na <- which(is.na(x$negPred)) bstat_neg <- x$behav[-neg.na] behav_pred_neg <- x$posPred[-neg.na] }else{ bstat_neg <- x$behav behav_pred_neg <- x$negPred } R_pos<-cor(behav_pred_pos,bstat_pos,use="pairwise.complete.obs") P_pos<-cor.test(behav_pred_pos,bstat_pos)$p.value R_neg<-cor(behav_pred_neg,bstat_neg,use="pairwise.complete.obs") P_neg<-cor.test(behav_pred_neg,bstat_neg)$p.value P_pos<-ifelse(round(P_pos,3)!=0,round(P_pos,3),noquote("< .001")) P_neg<-ifelse(round(P_neg,3)!=0,round(P_neg,3),noquote("< .001")) lower.bstat_pos <- floor(range(bstat_pos))[1] upper.bstat_pos <- ceiling(range(bstat_pos))[2] lower.bstat_neg <- floor(range(bstat_neg))[1] upper.bstat_neg <- ceiling(range(bstat_neg))[2] lower.pos.pred <- floor(range(behav_pred_pos))[1] upper.pos.pred <- ceiling(range(behav_pred_pos))[2] lower.neg.pred <- floor(range(behav_pred_neg))[1] upper.neg.pred <- ceiling(range(behav_pred_neg))[2] text.one_pos <- lower.bstat_pos - (lower.bstat_pos * .20) text.one_neg <- lower.bstat_neg - (lower.bstat_neg * .20) if(!is.null(groups)) { labs_groups <- unique(groups) n_groups <- length(labs_groups) plot.args$col <- c(rep(cols[1],length(which(groups == labs_groups[1]))), rep(cols[2],length(which(groups == labs_groups[2])))) plot.args$pch <- c(rep(pchs[1],length(which(groups == labs_groups[1]))), rep(pchs[2],length(which(groups == labs_groups[2])))) plot.args$x <- bstat_pos plot.args$y <- behav_pred_pos plot.args$ylim <- c(lower.pos.pred, upper.pos.pred) plot.args$xlim <- c(lower.bstat_pos, upper.bstat_pos) plot.args$main <- mains[1] dev.new() par(mar=c(5,5,4,2)) do.call(plot, plot.args) abline(lm(behav_pred_pos~bstat_pos)) if(R_pos>=0) { text.two <- upper.pos.pred - (upper.pos.pred * .20) text(x = text.one_pos, y = text.two, labels = paste("r = ", round(R_pos,3), "\np = ", P_pos)) legend("bottomright", legend = labs_groups, col = c(cols[1], cols[2]), pch = c(pchs[1], pchs[2])) }else if(R_pos<0) { text.two <- lower.pos.pred - (lower.pos.pred * .20) text(x = text.one_pos, y = text.two, labels = paste("r = ", round(R_pos,3), "\np = ", P_pos)) legend("topright", legend = labs_groups, col = c(cols[1], cols[2]), pch = c(pchs[1], pchs[2])) } plot.args$col <- c(rep(cols[3],length(which(groups == labs_groups[1]))), rep(cols[4],length(which(groups == labs_groups[2])))) plot.args$pch <- c(rep(pchs[3],length(which(groups == labs_groups[1]))), rep(pchs[4],length(which(groups == labs_groups[2])))) plot.args$x <- bstat_neg plot.args$y <- behav_pred_neg plot.args$ylim <- c(lower.neg.pred, upper.neg.pred) plot.args$xlim <- c(lower.bstat_neg, upper.bstat_neg) plot.args$main <- mains[2] dev.new() par(mar=c(5,5,4,2)) do.call(plot, plot.args) abline(lm(behav_pred_neg~bstat_neg)) if(R_neg>=0) { text.two <- upper.neg.pred - (upper.neg.pred * .20) text(x = text.one_neg, y = text.two, labels = paste("r = ", round(R_neg,3), "\np = ", P_neg)) legend("bottomright", legend = labs_groups, col = c(cols[3], cols[4]), pch = c(pchs[3], pchs[4])) }else if(R_neg<0) { text.two <- lower.neg.pred - (lower.neg.pred * .20) text(x = text.one_neg, y = text.two, labels = paste("r = ", round(R_neg,3), "\np = ", P_neg)) legend("topright", legend = labs_groups, col = c(cols[3], cols[4]), pch = c(pchs[3], pchs[4])) } }else{ plot.args$col <- cols[1] plot.args$pch <- pchs[1] plot.args$x <- bstat_pos plot.args$y <- behav_pred_pos plot.args$ylim <- c(lower.pos.pred, upper.pos.pred) plot.args$xlim <- c(lower.bstat_pos, upper.bstat_pos) plot.args$main <- mains[1] dev.new() par(mar=c(5,5,4,2)) do.call(plot, plot.args) abline(lm(behav_pred_pos~bstat_pos)) if(R_pos>=0) { text.two <- upper.pos.pred - (upper.pos.pred * .20) text(x = text.one_pos, y = text.two, labels = paste("r = ", round(R_pos,3), "\np = ", P_pos)) }else if(R_pos<0) { text.two <- lower.pos.pred - (lower.pos.pred * .20) text(x = text.one_pos, y = text.two, labels = paste("r = ", round(R_pos,3), "\np = ", P_pos)) } plot.args$col <- cols[2] plot.args$pch <- pchs[2] plot.args$x <- bstat_neg plot.args$y <- behav_pred_neg plot.args$ylim <- c(lower.neg.pred, upper.neg.pred) plot.args$xlim <- c(lower.pos.pred, upper.pos.pred) plot.args$main <- mains[2] dev.new() par(mar=c(5,5,4,2)) do.call(plot, plot.args) abline(lm(behav_pred_neg~bstat_neg)) if(R_neg>=0) { text.two <- upper.neg.pred - (upper.neg.pred * .20) text(x = text.one_neg, y = text.two, labels = paste("r = ", round(R_neg,3), "\np = ", P_neg)) }else if(R_neg<0) { text.two <- lower.neg.pred - (lower.neg.pred * .20) text(x = text.one_neg, y= text.two, labels = paste("r = ", round(R_neg,3), "\np = ", P_neg)) } } }else{ if(any(is.na(x$Pred))) { pos.na <- which(is.na(x$Pred)) bstat_pos <- x$behav[-pos.na] behav_pred_pos <- x$Pred[-pos.na] }else{ bstat_pos <- x$behav behav_pred_pos <- x$Pred } R_pos<-cor(behav_pred_pos,bstat_pos,use="pairwise.complete.obs") P_pos<-cor.test(behav_pred_pos,bstat_pos)$p.value P_pos<-ifelse(round(P_pos,3)!=0,round(P_pos,3),noquote("< .001")) lower.bstat_pos <- floor(range(bstat_pos))[1] upper.bstat_pos <- ceiling(range(bstat_pos))[2] lower.pos.pred <- floor(range(behav_pred_pos))[1] upper.pos.pred <- ceiling(range(behav_pred_pos))[2] text.one_pos <- lower.bstat_pos - (lower.bstat_pos * .20) if(!is.null(groups)) { labs_groups <- unique(groups) n_groups <- length(labs_groups) plot.args$col <- c(rep(cols[1],length(which(groups == labs_groups[1]))), rep(cols[2],length(which(groups == labs_groups[2])))) plot.args$pch <- c(rep(pchs[1],length(which(groups == labs_groups[1]))), rep(pchs[2],length(which(groups == labs_groups[2])))) plot.args$x <- bstat_pos plot.args$y <- behav_pred_pos plot.args$ylim <- c(lower.pos.pred, upper.pos.pred) plot.args$xlim <- c(lower.bstat_pos, upper.bstat_pos) plot.args$main <- mains[1] dev.new() par(mar=c(5,5,4,2)) do.call(plot, plot.args) abline(lm(behav_pred_pos~bstat_pos)) if(R_pos>=0) { text.two <- upper.pos.pred - (upper.pos.pred * .20) text(x = text.one_pos, y = text.two, labels = paste("r = ", round(R_pos,3), "\np = ", P_pos)) legend("bottomright", legend = labs_groups, col = c(cols[1], cols[2]), pch = c(pchs[1], pchs[2])) }else if(R_pos<0) { text.two <- lower.pos.pred - (lower.pos.pred * .20) text(x = text.one_pos, y = text.two, labels = paste("r = ", round(R_pos,3), "\np = ", P_pos)) legend("topright", legend = labs_groups, col = c(cols[1], cols[2]), pch = c(pchs[1], pchs[2])) } }else{ plot.args$col <- cols[1] plot.args$pch <- pchs[1] plot.args$x <- bstat_pos plot.args$y <- behav_pred_pos plot.args$ylim <- c(lower.pos.pred, upper.pos.pred) plot.args$xlim <- c(lower.bstat_pos, upper.bstat_pos) plot.args$main <- mains[1] dev.new() par(mar=c(5,5,4,2)) do.call(plot, plot.args) abline(lm(behav_pred_pos~bstat_pos)) if(R_pos>=0) { text.two <- upper.pos.pred - (upper.pos.pred * .20) text(x = text.one_pos, y = text.two, labels = paste("r = ", round(R_pos,3), "\np = ", P_pos)) }else if(R_pos<0) { text.two <- lower.pos.pred - (lower.pos.pred * .20) text(x = text.one_pos, y = text.two, labels = paste("r = ", round(R_pos,3), "\np = ", P_pos)) } } } }
options( width=150, max.print=1000 ) library(samon, lib.loc="../../../../samlib") trt1Results <- readRDS("RDS/treatment1Results.rds") print(trt1Results)
computeFST<-function(x,method="Anova",nsnp.per.bjack.block=0,sliding.window.size=0,verbose=TRUE){ if(!(method %in% c("Identity","Anova"))){stop("method should either be Identity or Anova (default)")} if(!(is.pooldata(x)) & !(is.countdata(x))){ stop("Input data are not formatted as valid pooldata (see the popsync2pooldata, vcf2pooldata, genobaypass2pooldata and selestim2pooldata functions) or countdata (see the genobaypass2countdata and genotreemix2countdata) object\n")} if(method=="Identity"){ if(is.countdata(x)){ snp.Q1=rowMeans(([email protected]*([email protected]) + ([email protected]@refallele.count)*([email protected]@refallele.count-1) )/([email protected]*([email protected])),na.rm=T) hat.Q1=mean(snp.Q1,na.rm=T) Q2.countdiff=matrix(0,x@nsnp,x@npops*(x@npops-1)/2) Q2.counttot=matrix(0,x@nsnp,x@npops*(x@npops-1)/2) cnt=0 for(i in 1:(x@npops-1)){ for(j in (i+1):x@npops){ cnt=cnt+1 Q2.countdiff[,cnt]=( [email protected][,i]*[email protected][,j] + ([email protected][,i][email protected][,i])*([email protected][,j][email protected][,j])) Q2.counttot[,cnt]=([email protected][,i]*[email protected][,j]) } } snp.Q2=rowSums(Q2.countdiff)/rowSums(Q2.counttot) rm(Q2.counttot,Q2.countdiff) ; gc() hat.Q2=mean(snp.Q2,na.rm=TRUE) }else{ Q1=([email protected]*([email protected]) + (x@[email protected])*(x@[email protected]) )/(x@readcoverage*(x@readcoverage-1)) Q1 = (1/(matrix(1,x@nsnp,x@npools) %*% diag(x@poolsizes-1)))*(Q1 %*% diag(x@poolsizes) - 1) lambdaj=x@poolsizes*(x@poolsizes-1) lambdaj=lambdaj/sum(lambdaj) snp.Q1=rowSums(Q1%*%diag(lambdaj)) hat.Q1=mean(snp.Q1,na.rm=T) rm(Q1) ; gc() Q2=matrix(0,x@nsnp,x@npools*(x@npools-1)/2) omegajj=rep(0,x@npools*(x@npools-1)/2) cnt=0 for(i in 1:(x@npools-1)){ for(j in (i+1):x@npools){ cnt=cnt+1 omegajj[cnt]=x@poolsizes[i]*x@poolsizes[j] Q2[,cnt]=( [email protected][,i]*[email protected][,j] + (x@readcoverage[,i][email protected][,i])*(x@readcoverage[,j][email protected][,j]))/(x@readcoverage[,i]*x@readcoverage[,j]) } } snp.Q2=rowSums(Q2%*%diag(omegajj/sum(omegajj))) hat.Q2=mean(snp.Q2,na.rm=TRUE) rm(Q2) ; gc() } rslt=list(FST=(hat.Q1-hat.Q2)/(1-hat.Q2),snp.Q1=snp.Q1,snp.Q2=snp.Q2,snp.FST=(snp.Q1-snp.Q2)/(1-snp.Q2) ) rm(snp.Q1,snp.Q2) ; gc() } if (method=="Anova"){ if(is.countdata(x)){ SumNi=rowSums([email protected]) [email protected]([email protected]**2)/SumNi Nc=rowSums(Nic)/(x@npops-1) MSG=(rowSums([email protected]*([email protected]@refallele.count)/[email protected])) /(SumNi-x@npops) PA=rowSums([email protected])/SumNi MSP=(rowSums([email protected]*(([email protected]/[email protected])**2)))/(x@npops-1) F_ST=(MSP-MSG)/(MSP+(Nc-1)*MSG) F_ST_multi=mean(MSP-MSG,na.rm=T)/mean(MSP+(Nc-1)*MSG,na.rm=T) rslt <- list(snp.FST = F_ST,snp.Q1 = 1 - MSG*2,snp.Q2 = 1 - MSG*2 - 2*(MSP - MSG) / Nc,FST = F_ST_multi) snpNc=Nc rm(F_ST,MSP,MSG) ; gc() }else{ mtrx.n_i <- matrix(x@poolsizes,nrow = x@nsnp,ncol = x@npools,byrow = TRUE) C_1 <- rowSums(x@readcoverage) C_2 <- rowSums(x@readcoverage^2) D_2 <- rowSums(x@readcoverage / mtrx.n_i + (mtrx.n_i - 1) / mtrx.n_i,na.rm = TRUE) D_2.star <- rowSums(x@readcoverage * (x@readcoverage / mtrx.n_i + (mtrx.n_i - 1) / mtrx.n_i),na.rm = TRUE) / C_1 n_c <- (C_1 - C_2 / C_1) / (D_2 - D_2.star) rm(C_2,mtrx.n_i) ; gc() SSI <- 2*rowSums([email protected]*(x@[email protected])/x@readcoverage) SA<-rowSums([email protected])/C_1 SSP<-2*rowSums(x@readcoverage*(([email protected]/x@readcoverage-SA)**2)) MSI <- SSI / (C_1 - D_2) MSP <- SSP / (D_2 - D_2.star) rm(C_1,D_2,D_2.star) ; gc() F_ST <- (MSP - MSI) / (MSP + (n_c - 1) * MSI) F_ST_multi <- sum(MSP - MSI,na.rm=T) / sum(MSP + (n_c- 1) * MSI,na.rm=T) rslt <- list(snp.FST = F_ST,snp.Q1 = 1 - MSI,snp.Q2 = 1 - MSI - (MSP - MSI) / n_c,FST = F_ST_multi) snpNc=n_c rm(F_ST,MSI,MSP,n_c) ; gc() } snpNc[is.na(rslt$snp.Q1)|is.na(rslt$snp.Q2)]=NA } if(nsnp.per.bjack.block>0){ if(verbose){cat("Starting Block-Jackknife sampling\n")} bjack.blocks=generate.jackknife.blocks(x,nsnp.per.bjack.block,verbose=verbose) tmp.idx.sel=!is.na(bjack.blocks$snp.block.id) tmp.snp.block.id=bjack.blocks$snp.block.id[!is.na(bjack.blocks$snp.block.id)] if(method=="Anova"){ tmp.sampled.q1=as.vector(by(rslt$snp.Q1[tmp.idx.sel]*snpNc[tmp.idx.sel],tmp.snp.block.id,sum,na.rm=T)) tmp.sampled.q1=(sum(tmp.sampled.q1)-tmp.sampled.q1) tmp.sampled.q2=as.vector(by(rslt$snp.Q2[tmp.idx.sel]*snpNc[tmp.idx.sel],tmp.snp.block.id,sum,na.rm=T)) tmp.sampled.q2=(sum(tmp.sampled.q2)-tmp.sampled.q2) tmp.sampled.sumnc=as.vector(by(snpNc[tmp.idx.sel],tmp.snp.block.id,sum,na.rm=T)) tmp.sampled.sumnc=sum(tmp.sampled.sumnc)-tmp.sampled.sumnc sampled.fst=(tmp.sampled.q1-tmp.sampled.q2) / (tmp.sampled.sumnc-tmp.sampled.q2) }else{ tmp.sampled.q1=as.vector(by(rslt$snp.Q1[tmp.idx.sel],tmp.snp.block.id,sum,na.rm=T)) tmp.sampled.q1=(sum(tmp.sampled.q1)-tmp.sampled.q1) tmp.sampled.q2=as.vector(by(rslt$snp.Q2[tmp.idx.sel],tmp.snp.block.id,sum,na.rm=T)) tmp.sampled.q2=(sum(tmp.sampled.q2)-tmp.sampled.q2) tmp.snp.cnt=as.vector(by(1-(is.na(rslt$snp.Q1[tmp.idx.sel])|is.na(rslt$snp.Q2[tmp.idx.sel])),tmp.snp.block.id,sum,na.rm=T)) tmp.snp.cnt=sum(tmp.snp.cnt)-tmp.snp.cnt sampled.fst=(tmp.sampled.q1-tmp.sampled.q2) / (tmp.snp.cnt-tmp.sampled.q2) } rslt[["mean.fst"]]=mean(sampled.fst) rslt[["se.fst"]]=sd(sampled.fst)*(bjack.blocks$nblocks-1)/sqrt(bjack.blocks$nblocks) rslt[["fst.bjack.samples"]]=sampled.fst } if(sliding.window.size>1){ if(verbose){cat("Start sliding-window scan\n")} det.idx.per.chr=matrix(unlist(by(1:x@nsnp,[email protected][,1],range)),ncol=2,byrow=T) if(nrow(det.idx.per.chr)==0){ cat("Exit function: No chr/contigs available (information on SNP contig name might not have been provided)\n") } det.idx.per.chr=cbind(det.idx.per.chr,det.idx.per.chr[,2]-det.idx.per.chr[,1]+1) step=floor(sliding.window.size/2) all.pos=all.fst=all.chr=all.cumpos=win.size=c() tmp.cum=0 if(verbose){ n.chr.eval=sum(det.idx.per.chr[,3]>sliding.window.size) cat(n.chr.eval,"chromosomes scanned (with more than",sliding.window.size,"SNPs)\n") pb <- progress_bar$new(format = " [:bar] :percent eta: :eta",total = n.chr.eval, clear = FALSE, width= 60) tmp.cnt=0 } [email protected][,2] for(i in 1:nrow(det.idx.per.chr)){ if(det.idx.per.chr[i,3]>sliding.window.size){ tmp.sel=det.idx.per.chr[i,1]:det.idx.per.chr[i,2] tmp.pos=floor(rollmean(all.snp.pos[tmp.sel],k=sliding.window.size)) retained.pos=seq(1,length(tmp.pos),step) tmp.pos=tmp.pos[retained.pos] all.pos=c(all.pos,tmp.pos) all.cumpos=c(all.cumpos,tmp.pos+tmp.cum) tmp.cum=max(all.cumpos) all.chr=c(all.chr,rep([email protected][tmp.sel[1],1],length(tmp.pos))) if(method=="Anova"){ qq1=rollsum(rslt$snp.Q1[tmp.sel]*snpNc[tmp.sel],k=sliding.window.size,na.rm=T)[retained.pos] qq2=rollsum(rslt$snp.Q2[tmp.sel]*snpNc[tmp.sel],k=sliding.window.size,na.rm=T)[retained.pos] tmp.sumnc=rollsum(snpNc[tmp.sel],k=sliding.window.size,na.rm=T)[retained.pos] tmp.fst=(qq1-qq2) / (tmp.sumnc-qq2) }else{ qq1=rollsum(rslt$snp.Q1[tmp.sel],k=sliding.window.size,na.rm=T)[retained.pos] qq2=rollsum(rslt$snp.Q2[tmp.sel],k=sliding.window.size,na.rm=T)[retained.pos] tmp.snp.cnt=rollsum(1-(is.na(rslt$snp.Q1[tmp.sel])|is.na(rslt$snp.Q2[tmp.sel])),k=sliding.window.size)[retained.pos] tmp.fst=(qq1-qq2) / (tmp.snp.cnt-qq2) } all.fst=c(all.fst,tmp.fst) win.size=c(win.size,all.snp.pos[tmp.sel[retained.pos]+sliding.window.size-1]-all.snp.pos[tmp.sel[retained.pos]]) if(verbose){pb$tick()} } } if(verbose){ cat("\nAverage (min-max) Window Sizes",round(mean(win.size*1e-3),1),"(",round(min(win.size*1e-3),1),"-",round(max(win.size*1e-3),1),") kb\n") pb$terminate()} rslt[["sliding.windows.fst"]]=data.frame(Chr=all.chr,Position=all.pos,CumulatedPosition=all.cumpos,MultiLocusFst=all.fst,stringsAsFactors=FALSE) } return(rslt) }
"tim.colors" <- function(n = 64, alpha = 1) { orig <- c(" " " " " " " " " " " " " designer.colors( n, col=orig, alpha=alpha) }
rbpareto2 <- function(n, prob, scale, shape) { if (max(length(prob), length(scale), length(shape)) > 1) stop("parameters must be of length 1") p <- runif(n) q <- rep(0, length(p)) cases <- p > (1 - prob) q[cases] <- rpareto2(sum(cases), scale = scale, shape = shape) q }
require(atom4R, quietly = TRUE) require(testthat) require(XML) require(httr) context("SwordDataverseClient") if(FALSE){ message("Dataverse server: sleeping during server configuration...") Sys.sleep(time = 30) ping <- try(status_code(GET('http://dataverse-dev.localhost:8085/')), silent = TRUE) while(is(ping, "try-error") || ping == 500){ message("Dataverse server doesn't seem ready, sleeping 30s more...") Sys.sleep(time = 30) ping <- try(status_code(GET('http://dataverse-dev.localhost:8085/')), silent = TRUE) } message("Dataverse server ready for testing...") initAPI <- function(){ return( try(SwordDataverseClient$new( hostname = "http://dataverse-dev.localhost:8085", token = "dbf293b4-d13e-45d4-99c6-f0cf18159f0d", logger = "DEBUG" ), silent = TRUE) ) } message("Dataverse SWORD API: sleeping during API configuration...") Sys.sleep(30) API <- initAPI() while(is(API, "try-error")){ message("Dataverse SWORD API doesn't seem ready: sleeping 30s more...") Sys.sleep(30) API <- initAPI() } message("Dataverse SWORD API ready for testing...") if(is(API, "SwordDataverseClient")){ test_that("list Dataverses (Sword collections)",{ testthat::skip_on_cran() cols <- API$listCollections() expect_is(cols, "list") expect_true(length(cols)>0) }) test_that("list Dataverse members",{ testthat::skip_on_cran() members <- API$getCollectionMembers("Root") expect_is(members, "AtomFeed") }) test_that("create DC entry",{ testthat::skip_on_cran() dcentry <- DCEntry$new() dcentry$setId("my-dc-entry") dcentry$addDCDate(Sys.time()) dcentry$addDCTitle("atom4R - Tools to read/write and publish metadata as Atom XML format") dcentry$addDCType("Software") creator <- DCCreator$new(value = "Blondel, Emmanuel") dcentry$addDCCreator(creator) dcentry$addDCSubject("R") dcentry$addDCSubject("FAIR") dcentry$addDCSubject("Interoperability") dcentry$addDCSubject("Open Science") dcentry$addDCSubject("Dataverse") dcentry$addDCDescription("Atom4R offers tools to read/write and publish metadata as Atom XML syndication format, including Dublin Core entries. Publication can be done using the Sword API which implements AtomPub API specifications") dcentry$addDCPublisher("GitHub") funder <- DCContributor$new(value = "CNRS") funder$attrs[["Type"]] <- "Funder" dcentry$addDCContributor(funder) contact <- DCContributor$new(value = "[email protected]") contact$attrs[["Type"]] <- "Contact" dcentry$addDCContributor(contact) editor <- DCContributor$new(value = "[email protected]") editor$attrs[["Type"]] <- "Editor" dcentry$addDCContributor(editor) dcentry$addDCRelation("Github repository: https://github.com/eblondel/atom4R") relation = DCRelation$new() dcentry$addDCRelation("CRAN repository: Not yet available") dcentry$addDCSource("Atom Syndication format - https://www.ietf.org/rfc/rfc4287") dcentry$addDCSource("AtomPub, The Atom publishing protocol - https://tools.ietf.org/html/rfc5023") dcentry$addDCSource("Sword API - http://swordapp.org/") dcentry$addDCSource("Dublin Core Metadata Initiative - https://www.dublincore.org/") dcentry$addDCSource("Guidelines for implementing Dublin Core in XML - https://www.dublincore.org/specifications/dublin-core/dc-xml-guidelines/") dcentry$addDCLicense("NONE") dcentry$addDCRights("MIT License") out <- API$createDataverseRecord("dynids", dcentry) expect_is(out, "AtomEntry") }) } }
lav_efa_pace <- function(S, nfactors = 1L, p.idx = seq_len(ncol(S)), reflect = TRUE, order.lv.by = "none", use.R = TRUE, theta.only = TRUE) { S <- unname(S) nvar <- ncol(S) theta <- numeric(nvar) stopifnot(nfactors < nvar / 2) if(use.R) { s.var <- diag(S) R <- stats::cov2cor(S) } else { R <- S } A <- R v.r <- integer(0L) v.c <- integer(0L) for(h in seq_len(nfactors)) { mask.idx <- c(v.r, v.c) tmp <- abs(A) if(length(mask.idx) > 0L) { tmp[mask.idx,] <- 0; tmp[,mask.idx] <- 0 } diag(tmp) <- 0 idx <- which(tmp == max(tmp), arr.ind = TRUE, useNames = FALSE)[1,] k <- idx[1]; l <- idx[2] v.r <- c(v.r, k); v.c <- c(v.c, l) a.kl <- A[k, l] if(abs(a.kl) < sqrt(.Machine$double.eps)) { out <- A; out[k,] <- 0; out[,l] <- 0 } else { out <- A - tcrossprod(A[,l], A[k,])/a.kl out[k,] <- A[k,]/a.kl out[,l] <- - A[,l]/a.kl out[k,l] <- 1/a.kl } A <- out } all.idx <- seq_len(nvar) v.r.init <- v.r v.c.init <- v.c other.idx <- all.idx[-c(v.r, v.c)] theta[other.idx] <- diag(A)[other.idx] for(i in p.idx) { if(i %in% other.idx) { next } v.r <- integer(0L) v.c <- integer(0L) A <- R for(h in seq_len(nfactors)) { mask.idx <- c(i, v.r, v.c) tmp <- abs(A) tmp[mask.idx,] <- 0; tmp[,mask.idx] <- 0; diag(tmp) <- 0 idx <- which(tmp == max(tmp), arr.ind = TRUE, useNames = FALSE)[1,] k <- idx[1]; l <- idx[2] v.r <- c(v.r, k); v.c <- c(v.c, l) a.kl <- A[k, l] if(abs(a.kl) < sqrt(.Machine$double.eps)) { out <- A; out[k,] <- 0; out[,l] <- 0 } else { out <- A - tcrossprod(A[,l], A[k,])/a.kl out[k,] <- A[k,]/a.kl out[,l] <- - A[,l]/a.kl out[k,l] <- 1/a.kl } A <- out } theta[i] <- A[i, i] } if(theta.only) { if(use.R) { theta <- theta * s.var } return(theta[p.idx]) } EV <- eigen(R, symmetric = TRUE) S.sqrt <- EV$vectors %*% sqrt(diag(EV$values)) %*% t(EV$vectors) S.inv.sqrt <- EV$vectors %*% sqrt(diag(1/EV$values)) %*% t(EV$vectors) RTR <- S.inv.sqrt %*% diag(theta) %*% S.inv.sqrt EV <- eigen(RTR, symmetric = TRUE) Omega.m <- EV$vectors[, 1L + nvar - seq_len(nfactors), drop = FALSE] gamma.m <- EV$values[1L + nvar - seq_len(nfactors)] Gamma.m <- diag(gamma.m, nrow = nfactors, ncol = nfactors) LAMBDA.dot <- S.sqrt %*% Omega.m %*% sqrt(diag(nfactors) - Gamma.m) if(use.R) { LAMBDA <- sqrt(s.var) * LAMBDA.dot THETA <- diag(s.var * theta) } else { LAMBDA <- LAMBDA.dot THETA <- diag(theta) } if(reflect) { SUM <- colSums(LAMBDA) neg.idx <- which(SUM < 0) if(length(neg.idx) > 0L) { LAMBDA[, neg.idx] <- -1 * LAMBDA[, neg.idx, drop = FALSE] } } if(order.lv.by == "sumofsquares") { L2 <- LAMBDA * LAMBDA order.idx <- base::order(colSums(L2), decreasing = TRUE) } else if(order.lv.by == "index") { max.loading <- apply(abs(LAMBDA), 2, max) average.index <- sapply(seq_len(ncol(LAMBDA)), function(i) mean(which(abs(LAMBDA[,i]) >= 0.8 * max.loading[i]))) order.idx <- base::order(average.index) } else if(order.lv.by == "none") { order.idx <- seq_len(ncol(LAMBDA)) } else { stop("lavaan ERROR: order must be index, sumofsquares or none") } LAMBDA <- LAMBDA[, order.idx, drop = FALSE] list(LAMBDA = LAMBDA, THETA = THETA) }
plot.SPF.BinBin <- function(x, Type="All.Histograms", Specific.Pi="r_0_0", Col="grey", Box.Plot.Outliers=FALSE, Legend.Pos="topleft", Legend.Cex=1, ...){ Object <- x if (missing(Col)) {Col = "grey"} if (Type=="All.Histograms"){ if ((length(unique(Object$r_min1_min1))> 1) & (length(unique(Object$r_0_min1))> 1) & (length(unique(Object$r_min1_0))> 1)){ plot(0:100, 0:100, axes=F, xlab="", ylab="", type="n", ..., xlim=c(0, 1)) par(mfrow=c(3, 3), mar = c(4.5, 7, 4, 1), oma=rep(0, times=4)) if (length(unique(Object$r_min1_min1)) > 1){ hist(Object$r_min1_min1, main="", col=Col, xlim=c(0, 1), xlab=expression(r(-1,-1)), cex.lab=1.3)} if (length(unique(Object$r_min1_min1)) <= 1){ plot(x=0, col=0, axes=F, xlab="", ylab= " ", ...)} if (length(unique(Object$r_0_min1)) > 1){ hist(Object$r_0_min1, main=" ", col=Col, cex.lab=1.3, xlim=c(0, 1), xlab=expression(r(0,-1)))} if (length(unique(Object$r_0_min1)) <= 1){ plot(x=0, col=0, axes=F, xlab="", ylab= " ", ...)} if (length(unique(Object$r_1_min1)) > 1){ hist(Object$r_1_min1, main=" ", col=Col, cex.lab=1.3, xlim=c(0, 1), xlab=expression(r(1,-1)))} if (length(unique(Object$r_1_min1)) <= 1){ plot(x=0, col=0, axes=F, xlab="", ylab= " ", ...)} if (length(unique(Object$r_min1_0)) > 1){ hist(Object$r_min1_0, main=" ", col=Col, cex.lab=1.3, xlim=c(0, 1), xlab=expression(r(-1,0)))} if (length(unique(Object$r_min1_0)) <= 1){ plot(x=0, col=0, axes=F, xlab="", ylab= " ", ...)} if (length(unique(Object$r_0_0)) > 1){ hist(Object$r_0_0, main=" ", col=Col, cex.lab=1.3, xlim=c(0, 1), xlab=expression(r(0,0)))} if (length(unique(Object$r_0_0)) <= 1){ plot(x=0, col=0, axes=F, xlab="", ylab= " ", ...)} if (length(unique(Object$r_1_0)) > 1){ hist(Object$r_1_0, main=" ", col=Col, cex.lab=1.3, xlim=c(0, 1), xlab=expression(r(1,0)))} if (length(unique(Object$r_1_0)) <= 1){ plot(x=0, col=0, axes=F, xlab="", ylab= " ", ...)} if (length(unique(Object$r_min1_1)) > 1){ hist(Object$r_min1_1, main=" ", col=Col, cex.lab=1.3, xlim=c(0, 1), xlab=expression(r(-1,1)))} if (length(unique(Object$r_min1_1)) <= 1){ plot(x=0, col=0, axes=F, xlab="", ylab= " ", ...)} if (length(unique(Object$r_0_1)) > 1){ hist(Object$r_0_1, main=" ", col=Col, cex.lab=1.3, xlim=c(0, 1), xlab=expression(r(0,1)))} if (length(unique(Object$r_0_1)) <= 1){ plot(x=0, col=0, axes=F, xlab="", ylab= " ", ...)} if (length(unique(Object$r_1_1)) > 1){ hist(Object$r_1_1, main=" ", col=Col, cex.lab=1.3, xlim=c(0, 1), xlab=expression(r(1,1)))} if (length(unique(Object$r_1_1)) <= 1){ plot(x=0, col=0, axes=F, xlab="", ylab= " ", ...)} } if ((length(unique(Object$r_min1_min1))==1) & (length(unique(Object$r_0_min1))==1) & (length(unique(Object$r_min1_0))==1)){ plot(0:100, 0:100, axes=F, xlab="", ylab="", type="n", ..., xlim=c(0, 1)) par(mfrow=c(2, 2), mar = c(4.5, 7, 4, 1), oma=rep(0, times=4)) if (length(unique(Object$r_0_0)) > 1){ hist(Object$r_0_0, main=" ", col=Col, cex.lab=1.3, xlim=c(0, 1), xlab=expression(r(0,0)))} if (length(unique(Object$r_0_0)) <= 1){ plot(x=0, col=0, axes=F, xlab="", ylab= " ", ...)} if (length(unique(Object$r_1_0)) > 1){ hist(Object$r_1_0, main=" ", col=Col, cex.lab=1.3, xlim=c(0, 1), xlab=expression(r(1,0)))} if (length(unique(Object$r_1_0)) <= 1){ plot(x=0, col=0, axes=F, xlab="", ylab= " ", ...)} if (length(unique(Object$r_0_1)) > 1){ hist(Object$r_0_1, main=" ", col=Col, cex.lab=1.3, xlim=c(0, 1), xlab=expression(r(0,1)))} if (length(unique(Object$r_0_1)) <= 1){ plot(x=0, col=0, axes=F, xlab="", ylab= " ", ...)} if (length(unique(Object$r_1_1)) > 1){ hist(Object$r_1_1, main=" ", col=Col, cex.lab=1.3, xlim=c(0, 1), xlab=expression(r(1,1)))} if (length(unique(Object$r_1_1)) <= 1){ plot(x=0, col=0, axes=F, xlab="", ylab= " ", ...)} } if ((length(unique(Object$r_min1_min1))==1) & (length(unique(Object$r_0_min1))== 1) & (length(unique(Object$r_min1_0))> 1)){ plot(0:100, 0:100, axes=F, xlab="", ylab="", type="n", ..., xlim=c(0, 1)) par(mfrow=c(2, 3), mar = c(4.5, 7, 4, 1), oma=rep(0, times=4)) if (length(unique(Object$r_min1_0)) > 1){ hist(Object$r_min1_0, main=" ", col=Col, cex.lab=1.3, xlim=c(0, 1), xlab=expression(r(-1,0)))} if (length(unique(Object$r_min1_0)) <= 1){ plot(x=0, col=0, axes=F, xlab="", ylab= " ", ...)} if (length(unique(Object$r_0_0)) > 1){ hist(Object$r_0_0, main=" ", col=Col, cex.lab=1.3, xlim=c(0, 1), xlab=expression(r(0,0)))} if (length(unique(Object$r_0_0)) <= 1){ plot(x=0, col=0, axes=F, xlab="", ylab= " ", ...)} if (length(unique(Object$r_1_0)) > 1){ hist(Object$r_1_0, main=" ", col=Col, cex.lab=1.3, xlim=c(0, 1), xlab=expression(r(1,0)))} if (length(unique(Object$r_1_0)) <= 1){ plot(x=0, col=0, axes=F, xlab="", ylab= " ", ...)} if (length(unique(Object$r_min1_1)) > 1){ hist(Object$r_min1_1, main=" ", col=Col, cex.lab=1.3, xlim=c(0, 1), xlab=expression(r(-1,1)))} if (length(unique(Object$r_min1_1)) <= 1){ plot(x=0, col=0, axes=F, xlab="", ylab= " ", ...)} if (length(unique(Object$r_0_1)) > 1){ hist(Object$r_0_1, main=" ", col=Col, cex.lab=1.3, xlim=c(0, 1), xlab=expression(r(0,1)))} if (length(unique(Object$r_0_1)) <= 1){ plot(x=0, col=0, axes=F, xlab="", ylab= " ", ...)} if (length(unique(Object$r_1_1)) > 1){ hist(Object$r_1_1, main=" ", col=Col, cex.lab=1.3, xlim=c(0, 1), xlab=expression(r(1,1)))} if (length(unique(Object$r_1_1)) <= 1){ plot(x=0, col=0, axes=F, xlab="", ylab= " ", ...)} } if ((length(unique(Object$r_min1_min1))==1) & (length(unique(Object$r_0_min1))>1) & (length(unique(Object$r_min1_0))==1)){ plot(0:100, 0:100, axes=F, xlab="", ylab="", type="n", ..., xlim=c(0, 1)) par(mfrow=c(3, 2), mar = c(4.5, 7, 4, 1), oma=rep(0, times=4)) if (length(unique(Object$r_0_min1)) > 1){ hist(Object$r_0_min1, main=" ", col=Col, cex.lab=1.3, xlim=c(0, 1), xlab=expression(r(0,-1)))} if (length(unique(Object$r_0_min1)) <= 1){ plot(x=0, col=0, axes=F, xlab="", ylab= " ", ...)} if (length(unique(Object$r_1_min1)) > 1){ hist(Object$r_1_min1, main=" ", col=Col, cex.lab=1.3, xlim=c(0, 1), xlab=expression(r(1,-1)))} if (length(unique(Object$r_1_min1)) <= 1){ plot(x=0, col=0, axes=F, xlab="", ylab= " ", ...)} if (length(unique(Object$r_0_0)) > 1){ hist(Object$r_0_0, main=" ", col=Col, cex.lab=1.3, xlim=c(0, 1), xlab=expression(r(0,0)))} if (length(unique(Object$r_0_0)) <= 1){ plot(x=0, col=0, axes=F, xlab="", ylab= " ", ...)} if (length(unique(Object$r_1_0)) > 1){ hist(Object$r_1_0, main=" ", col=Col, cex.lab=1.3, xlim=c(0, 1), xlab=expression(r(1,0)))} if (length(unique(Object$r_1_0)) <= 1){ plot(x=0, col=0, axes=F, xlab="", ylab= " ", ...)} if (length(unique(Object$r_0_1)) > 1){ hist(Object$r_0_1, main=" ", col=Col, cex.lab=1.3, xlim=c(0, 1), xlab=expression(r(0,1)))} if (length(unique(Object$r_0_1)) <= 1){ plot(x=0, col=0, axes=F, xlab="", ylab= " ", ...)} if (length(unique(Object$r_1_1)) > 1){ hist(Object$r_1_1, main=" ", col=Col, cex.lab=1.3, xlim=c(0, 1), xlab=expression(r(1,1)))} if (length(unique(Object$r_1_1)) <= 1){ plot(x=0, col=0, axes=F, xlab="", ylab= " ", ...)} } par(mfrow=c(1, 1), c(5, 4, 4, 2) + 0.1) } if (Type=="All.Densities"){ plot(0:100, 0:100, axes=F, xlab="", ylab="", type="n", ..., xlim=c(0, 1)) par(mfrow=c(3, 3), mar = c(4.5, 7, 4, 1), oma=rep(0, times=4), xpd=FALSE) if (length(unique(Object$r_min1_min1)) > 1){ plot(density(Object$r_min1_min1, na.rm=T), main=" ", col=Col, cex.lab=1.3, ..., xlim=c(0, 1), xlab=expression(r(-1,-1))) } if (length(unique(Object$r_min1_min1)) <= 1){ plot(x=0, col=0, axes=F, xlab="", ylab= " ", ...)} mtext(side = 3, expression(paste(Delta, "T = -1")), cex=1.5, padj = -1.6) mtext(side = 2, expression(paste(Delta, "S = -1")), cex=1.5, padj = -3.6) if (length(unique(Object$r_0_min1)) > 1){ plot(density(Object$r_0_min1, na.rm=T), main=" ", col=Col, cex.lab=1.3, ...,xlim=c(0, 1), xlab=expression(r(0,-1)))} if (length(unique(Object$r_0_min1)) <= 1){ plot(x=0, col=0, axes=F, xlab="", ylab= " ")} mtext(side = 3, expression(paste(Delta, "T = 0")), cex=1.5, padj = -1.6) if (length(unique(Object$r_1_min1)) > 1){ plot(density(Object$r_1_min1, na.rm=T), main=" ", col=Col, cex.lab=1.3, ...,xlim=c(0, 1), xlab=expression(r(1,-1)))} if (length(unique(Object$r_1_min1)) <= 1){ plot(x=0, col=0, axes=F, xlab="", ylab= " ")} mtext(side = 3, expression(paste(Delta, "T = 1")), cex=1.5, padj = -1.6) if (length(unique(Object$r_min1_0)) > 1){ plot(density(Object$r_min1_0, na.rm=T), main=" ", col=Col, cex.lab=1.3, ...,xlim=c(0, 1), xlab=expression(r(-1,0)))} if (length(unique(Object$r_min1_0)) <= 1){ plot(x=0, col=0, axes=F, xlab="", ylab= " ")} mtext(side = 2, expression(paste(Delta, "S = 0")), cex=1.5, padj = -3.6) if (length(unique(Object$r_0_0)) > 1){ plot(density(Object$r_0_0, na.rm=T), main=" ", col=Col, cex.lab=1.3, ...,xlim=c(0, 1), xlab=expression(r(0,0)))} if (length(unique(Object$r_0_0)) <= 1){ plot(x=0, col=0, axes=F, xlab="", ylab= " ")} if (length(unique(Object$r_1_0)) > 1){ plot(density(Object$r_1_0, na.rm=T), main=" ", col=Col, cex.lab=1.3, ...,xlim=c(0, 1), xlab=expression(r(1,0)))} if (length(unique(Object$r_1_0)) <= 1){ plot(x=0, col=0, axes=F, xlab="", ylab= " ", ...)} if (length(unique(Object$r_min1_1)) > 1){ plot(density(Object$r_min1_1, na.rm=T), main=" ", col=Col, cex.lab=1.3, ...,xlim=c(0, 1), xlab=expression(r(-1,1)))} if (length(unique(Object$r_min1_1)) <= 1){ plot(x=0, col=0, axes=F, xlab="", ylab= " ", ...)} mtext(side = 2, expression(paste(Delta, "S = 1")), cex=1.5, padj = -3.6) if (length(unique(Object$r_0_1)) > 1){ plot(density(Object$r_0_1, na.rm=T), main=" ", col=Col, cex.lab=1.3, ...,xlim=c(0, 1), xlab=expression(r(0,1)))} if (length(unique(Object$r_0_1)) <= 1){ plot(x=0, col=0, axes=F, xlab="", ylab= " ", ...)} if (length(unique(Object$r_1_1)) > 1){ plot(density(Object$r_1_1, na.rm=T), main=" ", col=Col, cex.lab=1.3, ...,xlim=c(0, 1), xlab=expression(r(1,1)))} if (length(unique(Object$r_1_1)) <= 1){ plot(x=0, col=0, axes=F, xlab="", ylab= " ", ...)} par(mfrow=c(1, 1), c(5, 4, 4, 2) + 0.1) } if (Type=="Histogram"){ par(mfrow=c(1, 1), c(5, 4, 4, 2) + 0.1) if (Specific.Pi == "r_min1_min1"){ if (length(unique(Object$r_min1_min1)) > 1){ hist(Object$r_min1_min1, main=" ", col=Col, ...,xlim=c(0, 1), xlab=expression(r(-1,-1)))} if (length(unique(Object$r_min1_min1)) <= 1){ cat("\nNo valid pi values were found. \n")} } if (Specific.Pi == "r_0_min1"){ if (length(unique(Object$r_0_min1)) > 1){ hist(Object$r_0_min1, main=" ", col=Col, ...,xlim=c(0, 1), xlab=expression(r(0,-1)))} if (length(unique(Object$r_0_min1)) <= 1){ cat("\nNo valid pi values were found. \n")} } if (Specific.Pi == "r_1_min1"){ if (length(unique(Object$r_1_min1)) > 1){ hist(Object$r_1_min1, main=" ", col=Col, ...,xlim=c(0, 1), xlab=expression(r(1,-1)))} if (length(unique(Object$r_1_min1)) <= 1){ cat("\nNo valid pi values were found. \n")} } if (Specific.Pi == "r_min1_0"){ if (length(unique(Object$r_min1_0)) > 1){ hist(Object$r_min1_0, main=" ", col=Col, ...,xlim=c(0, 1), xlab=expression(r(-1,0)))} if (length(unique(Object$r_min1_0)) <= 1){ cat("\nNo valid pi values were found. \n")} } if (Specific.Pi == "r_0_0"){ if (length(unique(Object$r_0_0)) > 1){ hist(Object$r_0_0, main=" ", col=Col, ...,xlim=c(0, 1), xlab=expression(r(0,0)))} if (length(unique(Object$r_0_0)) <= 1){ cat("\nNo valid pi values were found. \n")} } if (Specific.Pi == "r_1_0"){ if (length(unique(Object$r_1_0)) > 1){ hist(Object$r_1_0, main=" ", col=Col, ...,xlim=c(0, 1), xlab=expression(r(1,0)))} if (length(unique(Object$r_1_0)) <= 1){ cat("\nNo valid pi values were found. \n")} } if (Specific.Pi == "r_min1_1"){ if (length(unique(Object$r_min1_1)) > 1){ hist(Object$r_min1_1, main=" ", col=Col, ...,xlim=c(0, 1), xlab=expression(r(-1,1)))} if (length(unique(Object$r_min1_1)) <= 1){ cat("\nNo valid pi values were found. \n")} } if (Specific.Pi == "r_0_1"){ if (length(unique(Object$r_0_1)) > 1){ hist(Object$r_0_1, main=" ", col=Col, ...,xlim=c(0, 1), xlab=expression(r(0,1)))} if (length(unique(Object$r_0_1)) <= 1){ cat("\nNo valid pi values were found. \n")} } if (Specific.Pi == "r_1_1"){ if (length(unique(Object$r_1_1)) > 1){ hist(Object$r_1_1, main=" ", col=Col, ...,xlim=c(0, 1), xlab=expression(r(1,1)))} if (length(unique(Object$r_1_1)) <= 1){ cat("\nNo valid pi values were found. \n")} } } if (Type=="Density"){ par(mfrow=c(1, 1), c(5, 4, 4, 2) + 0.1) if (Specific.Pi == "r_min1_min1"){ if (length(unique(Object$r_min1_min1)) > 1){ plot(density(Object$r_min1_min1, na.rm=T), main=" ", col=Col, ...,xlim=c(0, 1), xlab=expression(r(-1,-1))) } if (length(unique(Object$r_min1_min1)) <= 1){ cat("\nNo valid pi values were found. \n")} } if (Specific.Pi == "r_0_min1"){ if (length(unique(Object$r_0_min1)) > 1){ plot(density(Object$r_0_min1, na.rm=T), main=" ", col=Col, ...,xlim=c(0, 1), xlab=expression(r(0,-1)))} if (length(unique(Object$r_0_min1)) <= 1){ cat("\nNo valid pi values were found. \n")} } if (Specific.Pi == "r_1_min1"){ if (length(unique(Object$r_1_min1)) > 1){ plot(density(Object$r_1_min1, na.rm=T), main=" ", col=Col, ...,xlim=c(0, 1), xlab=expression(r(1,-1)))} if (length(unique(Object$r_1_min1)) <= 1){ cat("\nNo valid pi values were found. \n")} } if (Specific.Pi == "r_min1_0"){ if (length(unique(Object$r_min1_0)) > 1){ plot(density(Object$r_min1_0, na.rm=T), main=" ", col=Col, ...,xlim=c(0, 1), xlab=expression(r(-1,0)))} if (length(unique(Object$r_min1_0)) <= 1){ cat("\nNo valid pi values were found. \n")} } if (Specific.Pi == "r_0_0"){ if (length(unique(Object$r_0_0)) > 1){ plot(density(Object$r_0_0, na.rm=T), main=" ", col=Col, ...,xlim=c(0, 1), xlab=expression(r(0,0)))} if (length(unique(Object$r_0_0)) <= 1){ cat("\nNo valid pi values were found. \n")} } if (Specific.Pi == "r_1_0"){ if (length(unique(Object$r_1_0)) > 1){ plot(density(Object$r_1_0, na.rm=T), main=" ", col=Col, ...,xlim=c(0, 1), xlab=expression(r(1,0)))} if (length(unique(Object$r_1_0)) <= 1){ cat("\nNo valid pi values were found. \n")} } if (Specific.Pi == "r_min1_1"){ if (length(unique(Object$r_min1_1)) > 1){ plot(density(Object$r_min1_1, na.rm=T), main=" ", col=Col, ...,xlim=c(0, 1), xlab=expression(r(-1,1)))} if (length(unique(Object$r_min1_1)) <= 1){ cat("\nNo valid pi values were found. \n")} } if (Specific.Pi == "r_0_1"){ if (length(unique(Object$r_0_1)) > 1){ plot(density(Object$r_0_1, na.rm=T), main=" ", col=Col, ...,xlim=c(0, 1), xlab=expression(r(0,1)))} if (length(unique(Object$r_0_1)) <= 1){ cat("\nNo valid pi values were found. \n")} } if (Specific.Pi == "r_1_1"){ if (length(unique(Object$r_1_1)) > 1){ plot(density(Object$r_1_1, na.rm=T), main=" ", col=Col, ...,xlim=c(0, 1), xlab=expression(r(1,1)))} if (length(unique(Object$r_1_1)) <= 1){ cat("\nNo valid pi values were found. \n")} } } if (Type=="Box.Plot"){ par(mfrow=c(1, 1), c(5, 4, 4, 2) + 0.1) if (length(unique(Object$r_min1_min1)) > 1){ a <- cbind(Object$r_min1_min1, "a")} if (length(unique(Object$r_min1_min1)) <= 1){ a <- cbind(NA, "a")} if (length(unique(Object$r_0_min1)) > 1){ b <- cbind(Object$r_0_min1, "b")} if (length(unique(Object$r_0_min1)) <= 1){ b <- cbind(NA, "b")} if (length(unique(Object$r_1_min1)) > 1){ c <- cbind(Object$r_1_min1, "c")} if (length(unique(Object$r_1_min1)) <= 1){ c <- cbind(NA, "c")} if (length(unique(Object$r_min1_0)) > 1){ d <- cbind(Object$r_min1_0, "d")} if (length(unique(Object$r_min1_0)) <= 1){ d <- cbind(NA, "d")} if (length(unique(Object$r_0_0)) > 1){ e <- cbind(Object$r_0_0, "e")} if (length(unique(Object$r_0_0)) <= 1){ e <- cbind(NA, "e")} if (length(unique(Object$r_1_0)) > 1){ f <- cbind(Object$r_1_0, "f")} if (length(unique(Object$r_1_0)) <= 1){ f <- cbind(NA, "f")} if (length(unique(Object$r_min1_1)) > 1){ g <- cbind(Object$r_min1_1, "g")} if (length(unique(Object$r_min1_1)) <= 1){ g <- cbind(NA, "g")} if (length(unique(Object$r_0_1)) > 1){ h <- cbind(Object$r_0_1, "h")} if (length(unique(Object$r_0_1)) <= 1){ h <- cbind(NA, "h")} if (length(unique(Object$r_1_1)) > 1){ i <- cbind(Object$r_1_1, "i")} if (length(unique(Object$r_1_1)) <= 1){ i <- cbind(NA, "i")} data <- data.frame(rbind(a, b, c, d, e, f, g, h, i)) as.numeric.factor <- function(x) {as.numeric(levels(x))[x]} boxplot(as.numeric.factor(data$X1) ~ data$X2, col=rep(c(2, 3, 4), times=3), names=rep(c(-1, 0, 1), each=3), outline = Box.Plot.Outliers, xlab=expression(paste(Delta, S)), ...) abline(v = c(3.5, 6.5), col="blue", lty=3) legend(Legend.Pos, cex = Legend.Cex, c(expression(paste(Delta, "T=-1")), expression(paste(Delta, "T=0")), expression(paste(Delta, "T=1"))), fill = c(2, 3, 4)) } if (Type=="Lines.Mean"){ if (length(unique(Object$r_min1_min1)) > 1){ a <- cbind(mean(Object$r_min1_min1), "a")} if (length(unique(Object$r_min1_min1)) <= 1){ a <- cbind(NA, "a")} if (length(unique(Object$r_0_min1)) > 1){ b <- cbind(mean(Object$r_0_min1), "b")} if (length(unique(Object$r_0_min1)) <= 1){ b <- cbind(NA, "b")} if (length(unique(Object$r_1_min1)) > 1){ c <- cbind(mean(Object$r_1_min1), "c")} if (length(unique(Object$r_1_min1)) <= 1){ c <- cbind(NA, "c")} if (length(unique(Object$r_min1_0)) > 1){ d <- cbind(mean(Object$r_min1_0), "d")} if (length(unique(Object$r_min1_0)) <= 1){ d <- cbind(NA, "d")} if (length(unique(Object$r_0_0)) > 1){ e <- cbind(mean(Object$r_0_0), "e")} if (length(unique(Object$r_0_0)) <= 1){ e <- cbind(NA, "e")} if (length(unique(Object$r_1_0)) > 1){ f <- cbind(mean(Object$r_1_0), "f")} if (length(unique(Object$r_1_0)) <= 1){ f <- cbind(NA, "f")} if (length(unique(Object$r_min1_1)) > 1){ g <- cbind(mean(Object$r_min1_1), "g")} if (length(unique(Object$r_min1_1)) <= 1){ g <- cbind(NA, "g")} if (length(unique(Object$r_0_1)) > 1){ h <- cbind(mean(Object$r_0_1), "h")} if (length(unique(Object$r_0_1)) <= 1){ h <- cbind(NA, "h")} if (length(unique(Object$r_1_1)) > 1){ i <- cbind(mean(Object$r_1_1), "i")} if (length(unique(Object$r_1_1)) <= 1){ i <- cbind(NA, "i")} data <- data.frame(rbind(a, b, c, d, e, f, g, h, i)) as.numeric.factor <- function(x) {as.numeric(levels(x))[x]} plot(as.numeric.factor(data$X1), col=rep(c(2, 3, 4), times=3), axes=FALSE, type="h", lwd=5, xlab=expression(paste(Delta, S)), ylab="Mean", ...) axis(1, at = c(1:9), labels = rep(c(-1, 0, 1), each=3)) axis(2) box() legend(Legend.Pos, cex = Legend.Cex, c(expression(paste(Delta, "T=-1")), expression(paste(Delta, "T=0")), expression(paste(Delta, "T=1"))), lty=rep(1, times=3), col=c(2, 3, 4), lwd=c(5, 5, 5)) abline(v = c(3.5, 6.5), col="blue", lty=3) } if (Type=="Lines.Median"){ if (length(unique(Object$r_min1_min1)) > 1){ a <- cbind(median(Object$r_min1_min1), "a")} if (length(unique(Object$r_min1_min1)) <= 1){ a <- cbind(NA, "a")} if (length(unique(Object$r_0_min1)) > 1){ b <- cbind(median(Object$r_0_min1), "b")} if (length(unique(Object$r_0_min1)) <= 1){ b <- cbind(NA, "b")} if (length(unique(Object$r_1_min1)) > 1){ c <- cbind(median(Object$r_1_min1), "c")} if (length(unique(Object$r_1_min1)) <= 1){ c <- cbind(NA, "c")} if (length(unique(Object$r_min1_0)) > 1){ d <- cbind(median(Object$r_min1_0), "d")} if (length(unique(Object$r_min1_0)) <= 1){ d <- cbind(NA, "d")} if (length(unique(Object$r_0_0)) > 1){ e <- cbind(median(Object$r_0_0), "e")} if (length(unique(Object$r_0_0)) <= 1){ e <- cbind(NA, "e")} if (length(unique(Object$r_1_0)) > 1){ f <- cbind(median(Object$r_1_0), "f")} if (length(unique(Object$r_1_0)) <= 1){ f <- cbind(NA, "f")} if (length(unique(Object$r_min1_1)) > 1){ g <- cbind(median(Object$r_min1_1), "g")} if (length(unique(Object$r_min1_1)) <= 1){ g <- cbind(NA, "g")} if (length(unique(Object$r_0_1)) > 1){ h <- cbind(median(Object$r_0_1), "h")} if (length(unique(Object$r_0_1)) <= 1){ h <- cbind(NA, "h")} if (length(unique(Object$r_1_1)) > 1){ i <- cbind(median(Object$r_1_1), "i")} if (length(unique(Object$r_1_1)) <= 1){ i <- cbind(NA, "i")} data <- data.frame(rbind(a, b, c, d, e, f, g, h, i)) as.numeric.factor <- function(x) {as.numeric(levels(x))[x]} plot(as.numeric.factor(data$X1), col=rep(c(2, 3, 4), times=3), axes=FALSE, type="h", lwd=5, xlab=expression(paste(Delta, S)), ylab="Median", ...) axis(1, at = c(1:9), labels = rep(c(-1, 0, 1), each=3)) axis(2) box() legend(Legend.Pos, cex = Legend.Cex, c(expression(paste(Delta, "T=-1")), expression(paste(Delta, "T=0")), expression(paste(Delta, "T=1"))), lty=rep(1, times=3), col=c(2, 3, 4), lwd=c(5, 5, 5)) abline(v = c(3.5, 6.5), col="blue", lty=3) } if (Type=="Lines.Mode"){ mode <- function(data) { x <- data if (unique(x[1])!=0){ z <- density(x) mode_val <- z$x[which.max(z$y)] if (mode_val < 0){mode_val <- c(0)} } if (unique(x[1])==0){ model_val <- c(0) } fit <- list(mode_val= mode_val) } if (length(unique(Object$r_min1_min1)) > 1){ a <- cbind(mode(Object$r_min1_min1)$mode_val, "a")} if (length(unique(Object$r_min1_min1)) <= 1){ a <- cbind(NA, "a")} if (length(unique(Object$r_0_min1)) > 1){ b <- cbind(mode(Object$r_0_min1)$mode_val, "b")} if (length(unique(Object$r_0_min1)) <= 1){ b <- cbind(NA, "b")} if (length(unique(Object$r_1_min1)) > 1){ c <- cbind(mode(Object$r_1_min1)$mode_val, "c")} if (length(unique(Object$r_1_min1)) <= 1){ c <- cbind(NA, "c")} if (length(unique(Object$r_min1_0)) > 1){ d <- cbind(mode(Object$r_min1_0)$mode_val, "d")} if (length(unique(Object$r_min1_0)) <= 1){ d <- cbind(NA, "d")} if (length(unique(Object$r_0_0)) > 1){ e <- cbind(mode(Object$r_0_0)$mode_val, "e")} if (length(unique(Object$r_0_0)) <= 1){ e <- cbind(NA, "e")} if (length(unique(Object$r_1_0)) > 1){ f <- cbind(mode(Object$r_1_0)$mode_val, "f")} if (length(unique(Object$r_1_0)) <= 1){ f <- cbind(NA, "f")} if (length(unique(Object$r_min1_1)) > 1){ g <- cbind(mode(Object$r_min1_1)$mode_val, "g")} if (length(unique(Object$r_min1_1)) <= 1){ g <- cbind(NA, "g")} if (length(unique(Object$r_0_1)) > 1){ h <- cbind(mode(Object$r_0_1)$mode_val, "h")} if (length(unique(Object$r_0_1)) <= 1){ h <- cbind(NA, "h")} if (length(unique(Object$r_1_1)) > 1){ i <- cbind(mode(Object$r_1_1)$mode_val, "i")} if (length(unique(Object$r_1_1)) <= 1){ i <- cbind(NA, "i")} data <- data.frame(rbind(a, b, c, d, e, f, g, h, i)) as.numeric.factor <- function(x) {as.numeric(levels(x))[x]} plot(as.numeric.factor(data$X1), col=rep(c(2, 3, 4), times=3), axes=FALSE, type="h", ..., xlab=expression(paste(Delta, S)), ylab="Mode", lwd=5) axis(1, at = c(1:9), labels = rep(c(-1, 0, 1), each=3)) axis(2) box() legend(Legend.Pos, cex = Legend.Cex, c(expression(paste(Delta, "T=-1")), expression(paste(Delta, "T=0")), expression(paste(Delta, "T=1"))), lty=rep(1, times=3), col=c(2, 3, 4), lwd=c(5, 5, 5)) abline(v = c(3.5, 6.5), col="blue", lty=3) } if (Type=="3D.Mean"){ if (length(unique(Object$r_min1_min1)) > 1){ a <- cbind(mean(Object$r_min1_min1), -1, -1)} if (length(unique(Object$r_min1_min1)) <= 1){ a <- cbind(NA, -1, -1)} if (length(unique(Object$r_0_min1)) > 1){ b <- cbind(mean(Object$r_0_min1), 0, -1)} if (length(unique(Object$r_0_min1)) <= 1){ b <- cbind(NA, 0, -1)} if (length(unique(Object$r_1_min1)) > 1){ c <- cbind(mean(Object$r_1_min1), 1, -1)} if (length(unique(Object$r_1_min1)) <= 1){ c <- cbind(NA, 1, -1)} if (length(unique(Object$r_min1_0)) > 1){ d <- cbind(mean(Object$r_min1_0), -1, 0)} if (length(unique(Object$r_min1_0)) <= 1){ d <- cbind(NA, -1, 0)} if (length(unique(Object$r_0_0)) > 1){ e <- cbind(mean(Object$r_0_0), 0, 0)} if (length(unique(Object$r_0_0)) <= 1){ e <- cbind(NA, 0, 0)} if (length(unique(Object$r_1_0)) > 1){ f <- cbind(mean(Object$r_1_0), 1, 0)} if (length(unique(Object$r_1_0)) <= 1){ f <- cbind(NA, 1, 0)} if (length(unique(Object$r_min1_1)) > 1){ g <- cbind(mean(Object$r_min1_1), -1, 1)} if (length(unique(Object$r_min1_1)) <= 1){ g <- cbind(NA, -1, 1)} if (length(unique(Object$r_0_1)) > 1){ h <- cbind(mean(Object$r_0_1), 0, 1)} if (length(unique(Object$r_0_1)) <= 1){ h <- cbind(NA, 0, 1)} if (length(unique(Object$r_1_1)) > 1){ i <- cbind(mean(Object$r_1_1), 1, 1)} if (length(unique(Object$r_1_1)) <= 1){ i <- cbind(NA, 1, 1)} data <- data.frame(rbind(a, b, c, d, e, f, g, h, i)) names(data) <- c("Y", "Delta_T", "Delta_S") temp <- lattice::cloud(Y ~ as.factor(Delta_S) + as.factor(Delta_T), data, panel.3d.cloud=latticeExtra::panel.3dbars, xbase=0.4, ybase=0.4, scales=list(arrows=FALSE, col=1), par.settings = list(axis.line = list(col = "transparent")), xlab=expression(paste(Delta, "S")), ylab=expression(paste(Delta, T)), zlab="Mean", col.facet=rep(c(2:4), each=3)) plot(temp) } if (Type=="3D.Median"){ if (length(unique(Object$r_min1_min1)) > 1){ a <- cbind(median(Object$r_min1_min1), -1, -1)} if (length(unique(Object$r_min1_min1)) <= 1){ a <- cbind(NA, -1, -1)} if (length(unique(Object$r_0_min1)) > 1){ b <- cbind(median(Object$r_0_min1), 0, -1)} if (length(unique(Object$r_0_min1)) <= 1){ b <- cbind(NA, 0, -1)} if (length(unique(Object$r_1_min1)) > 1){ c <- cbind(median(Object$r_1_min1), 1, -1)} if (length(unique(Object$r_1_min1)) <= 1){ c <- cbind(NA, 1, -1)} if (length(unique(Object$r_min1_0)) > 1){ d <- cbind(median(Object$r_min1_0), -1, 0)} if (length(unique(Object$r_min1_0)) <= 1){ d <- cbind(NA, -1, 0)} if (length(unique(Object$r_0_0)) > 1){ e <- cbind(median(Object$r_0_0), 0, 0)} if (length(unique(Object$r_0_0)) <= 1){ e <- cbind(NA, 0, 0)} if (length(unique(Object$r_1_0)) > 1){ f <- cbind(median(Object$r_1_0), 1, 0)} if (length(unique(Object$r_1_0)) <= 1){ f <- cbind(NA, 1, 0)} if (length(unique(Object$r_min1_1)) > 1){ g <- cbind(median(Object$r_min1_1), -1, 1)} if (length(unique(Object$r_min1_1)) <= 1){ g <- cbind(NA, -1, 1)} if (length(unique(Object$r_0_1)) > 1){ h <- cbind(median(Object$r_0_1), 0, 1)} if (length(unique(Object$r_0_1)) <= 1){ h <- cbind(NA, 0, 1)} if (length(unique(Object$r_1_1)) > 1){ i <- cbind(median(Object$r_1_1), 1, 1)} if (length(unique(Object$r_1_1)) <= 1){ i <- cbind(NA, 1, 1)} data <- data.frame(rbind(a, b, c, d, e, f, g, h, i)) names(data) <- c("Y", "Delta_T", "Delta_S") temp <- lattice::cloud(Y ~ as.factor(Delta_S) + as.factor(Delta_T), data, panel.3d.cloud=latticeExtra::panel.3dbars, xbase=0.4, ybase=0.4, scales=list(arrows=FALSE, col=1), par.settings = list(axis.line = list(col = "transparent")), xlab=expression(paste(Delta, "S")), ylab=expression(paste(Delta, T)), zlab="Median", col.facet=rep(c(2:4), each=3)) plot(temp) } if (Type=="3D.Mode"){ mode <- function(data) { x <- data if (unique(x[1])!=0){ z <- density(x) mode_val <- z$x[which.max(z$y)] if (mode_val < 0){mode_val <- c(0)} } if (unique(x[1])==0){ model_val <- c(0) } fit <- list(mode_val= mode_val) } if (length(unique(Object$r_min1_min1)) > 1){ a <- cbind(mode(Object$r_min1_min1)$mode_val, -1, -1)} if (length(unique(Object$r_min1_min1)) <= 1){ a <- cbind(NA, -1, -1)} if (length(unique(Object$r_0_min1)) > 1){ b <- cbind(mode(Object$r_0_min1)$mode_val, 0, -1)} if (length(unique(Object$r_0_min1)) <= 1){ b <- cbind(NA, 0, -1)} if (length(unique(Object$r_1_min1)) > 1){ c <- cbind(mode(Object$r_1_min1)$mode_val, 1, -1)} if (length(unique(Object$r_1_min1)) <= 1){ c <- cbind(NA, 1, -1)} if (length(unique(Object$r_min1_0)) > 1){ d <- cbind(mode(Object$r_min1_0)$mode_val, -1, 0)} if (length(unique(Object$r_min1_0)) <= 1){ d <- cbind(NA, -1, 0)} if (length(unique(Object$r_0_0)) > 1){ e <- cbind(mode(Object$r_0_0)$mode_val, 0, 0)} if (length(unique(Object$r_0_0)) <= 1){ e <- cbind(NA, 0, 0)} if (length(unique(Object$r_1_0)) > 1){ f <- cbind(mode(Object$r_1_0)$mode_val, 1, 0)} if (length(unique(Object$r_1_0)) <= 1){ f <- cbind(NA, 1, 0)} if (length(unique(Object$r_min1_1)) > 1){ g <- cbind(mode(Object$r_min1_1)$mode_val, -1, 1)} if (length(unique(Object$r_min1_1)) <= 1){ g <- cbind(NA, -1, 1)} if (length(unique(Object$r_0_1)) > 1){ h <- cbind(mode(Object$r_0_1)$mode_val, 0, 1)} if (length(unique(Object$r_0_1)) <= 1){ h <- cbind(NA, 0, 1)} if (length(unique(Object$r_1_1)) > 1){ i <- cbind(mode(Object$r_1_1)$mode_val, 1, 1)} if (length(unique(Object$r_1_1)) <= 1){ i <- cbind(NA, 1, 1)} data <- data.frame(rbind(a, b, c, d, e, f, g, h, i)) names(data) <- c("Y", "Delta_T", "Delta_S") temp <- lattice::cloud(Y ~ as.factor(Delta_S) + as.factor(Delta_T), data, panel.3d.cloud=latticeExtra::panel.3dbars, xbase=0.4, ybase=0.4, scales=list(arrows=FALSE, col=1), par.settings = list(axis.line = list(col = "transparent")), xlab=expression(paste(Delta, "S")), ylab=expression(paste(Delta, T)), zlab="Mode", col.facet=rep(c(2:4), each=3)) plot(temp) } }
cor.matrix<-function(variables,with.variables,data=NULL,test=cor.test,...){ arguments <- as.list(match.call()[-1]) variables<-eval(substitute(variables),data,parent.frame()) if(length(dim(variables))<1.5){ variables<-d(variables) fn <- arguments$variables names(variables)<-if(is.call(fn)) format(fn) else as.character(fn) } if(missing(with.variables)) with.variables <-variables else{ with.variables<-eval(substitute(with.variables),data,parent.frame()) if(length(dim(with.variables))<1.5){ with.variables<-d(with.variables) fn <- arguments$with.variables names(with.variables)<-if(is.call(fn)) format(fn) else as.character(fn) } } cors<-list() for(var1 in colnames(variables)){ cors[[var1]]<-list() for(var2 in colnames(with.variables)){ tmp<-na.omit(data.frame(as.numeric(variables[[var1]]),as.numeric(with.variables[[var2]]))) names(tmp)<-c(var1,var2) cors[[var1]][[var2]]<-test(tmp[[1]],tmp[[2]],...) attr(cors[[var1]][[var2]],"N")<-nrow(tmp) } } class(cors)<-"cor.matrix" cors } print.cor.matrix<-function(x,digits=4,N=TRUE,CI=TRUE,stat=TRUE,p.value=TRUE,...){ if(is.null(x[[1]][[1]]$conf.int)) CI=FALSE n1<-length(x) n2<-length(x[[1]]) label.width<-7 num.rows<-6 result<-as.table(matrix(NA,nrow=n2*num.rows,ncol=n1)) r.names<-names(x[[1]]) r.name.width<-max(nchar(r.names)) if(r.name.width>20){ r.names<-formatC(r.names,width=20) r.name.width<-20 }else r.names<-formatC(r.names,width=r.name.width) c.names<-names(x) if(max(nchar(c.names))>20) c.names<-format(names(x),width=15) colnames(result)<-c.names for(i in 1:n2) rownames(result)[i*num.rows-(num.rows-1)]<-paste(formatC(r.names[i],width=r.name.width), formatC("cor",width=label.width),sep="") rownames(result)[rep(1:num.rows,n2)>1.5]<-formatC(rep(c("N","CI*","stat**","p-value", paste(rep("-",r.name.width+label.width),collapse="")),n2), width=r.name.width+label.width) for(j in 1:n1){ for(i in (1:n2)){ result[i*num.rows-(num.rows-1),j]<-format(x[[j]][[i]]$estimate,digits=digits,...) if(!is.null(attr(x[[j]][[i]],"N"))) result[i*num.rows-(num.rows-2),j]<-format(attr(x[[j]][[i]],"N"),...) if(names(x[[1]])[i]==names(x)[j]) next if(!is.null(x[[j]][[i]]$conf.int)) result[i*num.rows-(num.rows-3),j]<-paste("(",format(x[[j]][[i]]$conf.int[1],digits=digits,...),",", format(x[[j]][[i]]$conf.int[2],digits=digits,...),")",sep="") if(!is.null(x[[j]][[i]]$statistic)){ if(!is.null(x[[j]][[i]]$parameter)){ if(length(x[[j]][[i]]$parameter)==1) result[i*num.rows-(num.rows-4),j]<-paste(format(x[[j]][[i]]$statistic,digits=digits,...), " (",format(x[[j]][[i]]$parameter,digits=digits,...),")", sep="") else result[i*num.rows-(num.rows-4),j]<-paste(format(x[[j]][[i]]$statistic,digits=digits,...), " (",format(x[[j]][[i]]$parameter[1],digits=digits,...),",", format(x[[j]][[i]]$parameter[2],digits=digits,...),")", sep="") }else result[i*num.rows-(num.rows-4),j]<-format(x[[j]][[i]]$statistic,digits=digits,...) } if(!is.null(x[[j]][[i]]$p.value)) result[i*num.rows-(num.rows-5),j]<-format(round(x[[j]][[i]]$p.value,digits), digits=digits,nsmall=digits,...) } } display<-if(CI) rep(TRUE,num.rows*n2) else rep(1:num.rows,n2)!=3 display<-display & (if(N) rep(TRUE,num.rows*n2) else rep(1:num.rows,n2)!=2) display<-display & (if(stat) rep(TRUE,num.rows*n2) else rep(1:num.rows,n2)!=4) display<-display & (if(p.value) rep(TRUE,num.rows*n2) else rep(1:num.rows,n2)!=5) cat("\n",format(x[[1]][[1]]$method, width = getOption("width"), justify = "centre"), "\n\n") print(as.table(result[display,,drop=FALSE])) if(stat & !is.null(x[[1]][[1]]$statistic)){ cat("\t**",names(x[[1]][[1]]$statistic)[1]) if(!is.null(x[[1]][[1]]$parameter)) if(length(x[[1]][[1]]$parameter)==1) cat(" (",names(x[[1]][[1]]$parameter[1]),")\n",sep="") else cat(" (",names(x[[1]][[1]]$parameter[1]),",",names(x[[1]][[1]]$parameter[2]),")\n",sep="") else cat("\n") } if(CI & !is.null(x[[1]][[1]]$conf.int)) if(!is.null(attr(x[[1]][[1]]$conf.int,"conf.level"))) cat("\t * ",attr(x[[1]][[1]]$conf.int,"conf.level")*100,"% percent interval\n\n",sep="") else cat("\n") if(!is.null(x[[1]][[1]]$alternative)) cat("\tHA:",x[[1]][[1]]$alternative,"\n\n") else cat("\n") } as.matrix.cor.matrix<-function(x,...){ n1<-length(x); n2<-length(x[[1]]) mat<-matrix(NA,n2,n1) for(i in 1:n2) for(j in 1:n1) mat[i,j]<-x[[j]][[i]]$estimate colnames(mat)<-names(x) rownames(mat)<-names(x[[1]]) mat }
context("Consistency of data sets with respect to tumor fractions") test_that("Tumor fractions are in [0,1]", { for (dataSet in listDataSets()) { tfs <- listTumorFractions(dataSet) expect_false(any(is.na(tfs))) expect_true(all(tfs>=0)) expect_true(all(tfs<=1)) expect_true(1 %in% tfs) } })
expected <- eval(parse(text="c(NA, NA, NA, NA, NA)")); test(id=0, code={ argv <- eval(parse(text="list(NA, 5L)")); .Internal(`rep.int`(argv[[1]], argv[[2]])); }, o=expected);
library(testthat) library(recipes) library(dplyr) library(modeldata) data(biomass, package = "modeldata") biom_tr <- biomass %>% dplyr::filter(dataset == "Training") %>% dplyr::select(-dataset, -sample) biom_te <- biomass %>% dplyr::filter(dataset == "Testing") %>% dplyr::select(-dataset, -sample, -HHV) data(cells, package = "modeldata") cell_tr <- cells %>% dplyr::filter(case == "Train") %>% dplyr::select(-case) cell_te <- cells %>% dplyr::filter(case == "Test") %>% dplyr::select(-case, -class) load(test_path("test_pls_new.RData")) test_that('PLS, dense loadings', { skip_if_not_installed("mixOmics") rec <- recipe(HHV ~ ., data = biom_tr) %>% step_pls(all_predictors(), outcome = "HHV", num_comp = 3) rec <- prep(rec) expect_equal( names(rec$steps[[1]]$res), c("mu", "sd", "coefs", "col_norms") ) tr_new <- juice(rec, all_predictors()) expect_equal(tr_new, bm_pls_tr) te_new <- bake(rec, biom_te) expect_equal(te_new, bm_pls_te) }) test_that('PLS, sparse loadings', { skip_if_not_installed("mixOmics") rec <- recipe(HHV ~ ., data = biom_tr) %>% step_pls(all_predictors(), outcome = "HHV", num_comp = 3, predictor_prop = 3/5) rec <- prep(rec) expect_equal( names(rec$steps[[1]]$res), c("mu", "sd", "coefs", "col_norms") ) tr_new <- juice(rec, all_predictors()) expect_equal(tr_new, bm_spls_tr) te_new <- bake(rec, biom_te) expect_equal(te_new, bm_spls_te) }) test_that('PLS-DA, dense loadings', { skip_if_not_installed("mixOmics") rec <- recipe(class ~ ., data = cell_tr) %>% step_pls(all_predictors(), outcome = "class", num_comp = 3) rec <- prep(rec) expect_equal( names(rec$steps[[1]]$res), c("mu", "sd", "coefs", "col_norms") ) tr_new <- juice(rec, all_predictors()) expect_equal(tr_new, cell_plsda_tr) te_new <- bake(rec, cell_te) expect_equal(te_new, cell_plsda_te) }) test_that('PLS-DA, sparse loadings', { skip_if_not_installed("mixOmics") rec <- recipe(class ~ ., data = cell_tr) %>% step_pls(all_predictors(), outcome = "class", num_comp = 3, predictor_prop = 50/56) rec <- prep(rec) expect_equal( names(rec$steps[[1]]$res), c("mu", "sd", "coefs", "col_norms") ) tr_new <- juice(rec, all_predictors()) expect_equal(tr_new, cell_splsda_tr) te_new <- bake(rec, cell_te) expect_equal(te_new, cell_splsda_te) }) test_that('No PLS', { skip_if_not_installed("mixOmics") rec <- recipe(class ~ ., data = cell_tr) %>% step_pls(all_predictors(), outcome = "class", num_comp = 0) rec <- prep(rec) expect_equal( names(rec$steps[[1]]$res), c("x_vars", "y_vars") ) pred_names <- summary(rec)$variable[summary(rec)$role == "predictor"] tr_new <- juice(rec, all_predictors()) expect_equal(names(tr_new), pred_names) te_new <- bake(rec, cell_te, all_predictors()) expect_equal(names(te_new), pred_names) }) test_that('tidy method', { skip_if_not_installed("mixOmics") rec <- recipe(HHV ~ ., data = biom_tr) %>% step_pls(all_predictors(), outcome = "HHV", num_comp = 3, id = "dork") tidy_pre <- tidy(rec, number = 1) exp_pre <- tibble::tribble( ~terms, ~value, ~component, ~id, "all_predictors()", NA_real_, NA_character_, "dork" ) expect_equal(tidy_pre, exp_pre) rec <- prep(rec) tidy_post <- tidy(rec, number = 1) exp_post <- tibble::tribble( ~terms, ~value, ~component, ~id, "carbon", 0.82813459059393, "PLS1", "dork", "carbon", 0.718469477422311, "PLS2", "dork", "carbon", 0.476111929729498, "PLS3", "dork", "hydrogen", -0.206963356355556, "PLS1", "dork", "hydrogen", 0.642998926998282, "PLS2", "dork", "hydrogen", 0.262836631090453, "PLS3", "dork", "oxygen", -0.49241242430895, "PLS1", "dork", "oxygen", 0.299176769170812, "PLS2", "dork", "oxygen", 0.418081563632953, "PLS3", "dork", "nitrogen", -0.122633995804743, "PLS1", "dork", "nitrogen", -0.172719084680244, "PLS2", "dork", "nitrogen", 0.642403301090588, "PLS3", "dork", "sulfur", 0.11768677260853, "PLS1", "dork", "sulfur", -0.217341766567037, "PLS2", "dork", "sulfur", 0.521114256955661, "PLS3", "dork" ) expect_equal(tidy_post, exp_post, tolerance = 0.01) }) test_that('print method', { skip_if_not_installed("mixOmics") rec <- recipe(HHV ~ ., data = biom_tr) %>% step_pls(all_predictors(), outcome = "HHV", num_comp = 3, id = "dork") expect_output(print(rec), "feature extraction with all_predictors") rec <- prep(rec) expect_output( print(rec), "feature extraction with carbon, hydrogen, oxygen, nitrogen, sulfur" ) }) test_that('keep_original_cols works', { skip_if_not_installed("mixOmics") pls_rec <- recipe(HHV ~ ., data = biom_tr) %>% step_pls(all_predictors(), outcome = "HHV", num_comp = 3, keep_original_cols = TRUE) pls_trained <- prep(pls_rec) pls_pred <- bake(pls_trained, new_data = biom_te, all_predictors()) expect_equal( colnames(pls_pred), c("carbon", "hydrogen", "oxygen", "nitrogen", "sulfur", "PLS1", "PLS2", "PLS3") ) }) test_that('can prep recipes with no keep_original_cols', { skip_if_not_installed("mixOmics") pls_rec <- recipe(HHV ~ ., data = biom_tr) %>% step_pls(all_predictors(), outcome = "HHV", num_comp = 3) pls_rec$steps[[1]]$keep_original_cols <- NULL expect_warning( pls_trained <- prep(pls_rec, training = biom_tr, verbose = FALSE), "'keep_original_cols' was added to" ) expect_error( pls_pred <- bake(pls_trained, new_data = biom_te, all_predictors()), NA ) })
permMultinom = function(target, dataset, xIndex, csIndex, wei = NULL, univariateModels = NULL, hash = FALSE, stat_hash = NULL, pvalue_hash = NULL, threshold = 0.05, R = 999) { csIndex[ which( is.na(csIndex) ) ] = 0 thres <- threshold * R + 1 if (hash) { csIndex2 = csIndex[which(csIndex!=0)] csIndex2 = sort(csIndex2) xcs = c(xIndex,csIndex2) key = paste(as.character(xcs) , collapse=" "); if ( !is.null(stat_hash[key]) ) { stat = stat_hash[key]; pvalue = pvalue_hash[key]; results <- list(pvalue = pvalue, stat = stat, stat_hash=stat_hash, pvalue_hash=pvalue_hash); return(results); } } pvalue = log(1) stat = 0; if ( !is.na( match(xIndex, csIndex) ) ) { if ( hash) { stat_hash[key] <- 0; pvalue_hash[key] <- log(1); } results <- list(pvalue = 1, stat = 0, stat_hash=stat_hash, pvalue_hash=pvalue_hash); return(results); } if ( any(xIndex < 0) || any(csIndex < 0) ) { message(paste("error in testIndLogistic : wrong input of xIndex or csIndex")) results <- list(pvalue = pvalue, stat = stat, stat_hash=stat_hash, pvalue_hash=pvalue_hash); return(results); } x = dataset[ , xIndex]; cs = dataset[ , csIndex]; if (length(cs) == 0 || any( is.na(cs) ) ) cs = NULL; if ( length(cs) != 0 ) { if ( is.null(dim(cs)[2]) ) { if ( identical(x, cs) ) { if (hash) { stat_hash[key] <- 0; pvalue_hash[key] <- log(1); } results <- list(pvalue = log(1), stat = 0, stat_hash=stat_hash, pvalue_hash=pvalue_hash); return(results); } } else { for ( col in 1:dim(cs)[2] ) { if ( identical(x, cs[, col]) ) { if (hash) { stat_hash[key] <- 0; pvalue_hash[key] <- log(1); } results <- list(pvalue = log(1), stat = 0, stat_hash=stat_hash, pvalue_hash=pvalue_hash); return(results); } } } } if (length(cs) == 0) { fit1 <- nnet::multinom(target ~ 1, trace = FALSE, weights = wei) fit2 <- nnet::multinom(target ~ x, trace = FALSE, weights = wei) dev2 <- fit2$deviance stat <- fit1$deviance - dev2 if ( stat > 0 ) { step <- 0 j <- 1 n <- length(target) while (j <= R & step < thres ) { xb <- sample(x, n) bit2 <- nnet::multinom(target, xb, trace = FALSE, weights = wei) step <- step + ( bit2$deviance < dev2 ) j <- j + 1 } pvalue <- log( (step + 1) / (R + 1) ) } else pvalue <- log(1) } else { fit1 <- nnet::multinom( target ~ cs, trace = FALSE, weights = wei) fit2 <- nnet::multinom(target ~ cs + x, trace = FALSE, weights = wei) dev2 <- deviance(fit2) stat <- deviance(fit1) - dev2 if (stat > 0) { step <- 0 j <- 1 n <- length(x) while (j <= R & step < thres ) { xb <- sample(x, n) bit2 <- nnet::multinom(target ~ cs + xb, trace = FALSE, weights = wei) step <- step + ( bit2$deviance < dev2 ) j <- j + 1 } pvalue <- log( (step + 1) / (R + 1) ) } else pvalue <- log(1) } if (hash) { stat_hash[key] <- stat; pvalue_hash[key] <- pvalue; } if ( is.na(pvalue) || is.na(stat) ) { pvalue = log(1) stat = 0; } else { if (hash) { stat_hash[key] <- stat; pvalue_hash[key] <- pvalue; } } results <- list(pvalue = pvalue, stat = stat, stat_hash=stat_hash, pvalue_hash=pvalue_hash); return(results); }
test_update <- function(x){ ccc <- parse(text = x) cc <- ccc[[length(ccc)]] set.seed(100) if (length(ccc) > 1){ for (i in 1:(length(ccc)-1)){ eval(ccc[[i]], envir = globalenv()) } } a <- eval(cc) all.equal(final(a), final(update(a))) } ll <- lapply(r[5:10], function(e) try(test_update(e), silent = TRUE)) failing <- which(sapply(ll, class) == "try-error") if (length(failing[!failing %in% c(47L, 52L, 53L, 60L, 98L)]) > 0){ stop("failing cases: ", paste(failing, collapse = ", ")) }
"plot.fitted.bsad" <- function(x, ggplot2 = TRUE, legend.position = "top", nbins = 30, ...) { prob <- (1 - x$alpha) * 100 HPD <- x$HPD par(...) if (x$parametric == "none") { if (ggplot2) { if (HPD) { datl <- data.frame(x = rep(x$xgrid, 3), dens = c(x$fsemi$upper, x$fsemi$mean, x$fsemi$lower), Estimates = c(rep(paste(prob, "% HPD UCI (Semi)", sep = ""), x$nint), rep("Posterior Mean (Semi)", x$nint), rep(paste(prob, "% HPD LCI (Semi)", sep = ""), x$nint))) } else { datl <- data.frame(x = rep(x$xgrid, 3), dens = c(x$fsemi$upper, x$fsemi$mean, x$fsemi$lower), Estimates = c(rep(paste(prob, "% Equal-tail UCI (Semi)", sep = ""), x$nint), rep("Posterior Mean (Semi)", x$nint), rep(paste(prob, "% Equal-tail LCI (Semi)", sep = ""), x$nint))) } datx = data.frame(x$x) plt1 <- ggplot(datl) plt1 <- plt1 + geom_histogram( data = datx, aes_string(x='x.x', y='..density..'), alpha=0.7, bins = nbins, col="black", fill= I("grey"), inherit.aes=FALSE) plt1 <- plt1 + aes_string(x = 'x', y = 'dens') plt1 <- plt1 + aes_string(group = 'Estimates') plt1 <- plt1 + aes_string(shape = 'Estimates', linetype = 'Estimates', colour = 'Estimates') plt1 <- plt1 + geom_line(size = 0.8) plt1 <- plt1 + xlab("") plt1 <- plt1 + ylab("Density") plt1 <- plt1 + theme_bw() plt1 <- plt1 + theme(legend.position = legend.position) plt1 <- plt1 + scale_linetype_manual(values = c("dotted", "dotted", "solid")) plt1 } else { ymax <- max(c(x$fsemi$upper, hist(x$x, plot = F)$density)) hist(x$x, prob = T, xlab = "", main = "", ylim = c(0, ymax), xlim = c(x$xmin, x$xmax), col = "gray95", nclass=nbins, ...) lines(x$xgrid, x$fsemi$mean, lwd = 2, lty = 1, col = "dodgerblue") lines(x$xgrid, x$fsemi$lower, lwd = 2, lty = 3, col = "tomato") lines(x$xgrid, x$fsemi$upper, lwd = 2, lty = 3, col = "seagreen3") rug(x$x, lwd = 2) } } else { if (ggplot2) { if (HPD) { datl <- data.frame(x = rep(x$xgrid, 4), dens = c(x$fpar$mean, x$fsemi$upper, x$fsemi$mean, x$fsemi$lower), Estimates = c(rep("Parametric", x$nint), rep(paste(prob, "% HPD UCI (Semi)", sep = ""), x$nint), rep("Posterior Mean (Semi)", x$nint), rep(paste(prob, "% HPD LCI (Semi)", sep = ""), x$nint))) } else { datl <- data.frame(x = rep(x$xgrid, 4), dens = c(x$fpar$mean, x$fsemi$upper, x$fsemi$mean, x$fsemi$lower), Estimates = c(rep("Parametric", x$nint), rep(paste(prob, "% Equal-tail UCI (Semi)", sep = ""), x$nint), rep("Posterior Mean (Semi)", x$nint), rep(paste(prob, "% Equal-tail LCI (Semi)", sep = ""), x$nint))) } datx = data.frame(x$x) plt1 <- ggplot(datl) plt1 <- plt1 + geom_histogram( data = datx, aes_string(x='x.x', y='..density..'), alpha=0.7, bins = nbins, col="black", fill= I("grey"), inherit.aes=FALSE) plt1 <- plt1 + aes_string(x = 'x', y = 'dens') plt1 <- plt1 + aes_string(group = 'Estimates') plt1 <- plt1 + aes_string(shape = 'Estimates', linetype = 'Estimates', colour = 'Estimates') plt1 <- plt1 + geom_line(size = 0.8) plt1 <- plt1 + xlab("") plt1 <- plt1 + ylab("Density") plt1 <- plt1 + theme_bw() plt1 <- plt1 + theme(legend.position = legend.position) plt1 <- plt1 + scale_linetype_manual(values = c("dotted", "dotted", "dashed", "solid")) plt1 } else { ymax <- max(c(x$fsemi$upper, hist(x$x, plot = F)$density)) hist(x$x, prob = T, xlab = "", main = "", col = "gray95", ylim = c(0, ymax), xlim = c(x$xmin, x$xmax), nclass = nbins, ...) lines(x$xgrid, x$fsemi$mean, lwd = 2, lty = 1, col = "magenta") lines(x$xgrid, x$fsemi$upper, lwd = 2, lty = 3, col = "seagreen3") lines(x$xgrid, x$fsemi$lower, lwd = 2, lty = 3, col = "tomato") lines(x$xgrid, x$fpar$mean, lwd = 2, lty = 4, col = "dodgerblue") rug(x$x, lwd = 2) } } }
expected <- eval(parse(text="structure(list(id = character(0), class = structure(\"withId\", package = \".GlobalEnv\")), .Names = c(\"id\", \"class\"))")); test(id=0, code={ argv <- eval(parse(text="list(structure(c(1+1i, 2+1.4142135623731i, 3+1.73205080756888i, 4+2i, 5+2.23606797749979i, 6+2.44948974278318i, 7+2.64575131106459i, 8+2.82842712474619i, 9+3i, 10+3.1622776601684i), id = character(0), class = structure(\"withId\", package = \".GlobalEnv\")))")); do.call(`attributes`, argv); }, o=expected);
setMethod("*", c("AffLinUnivarLebDecDistribution","numeric"), function(e1, e2) { if (length(e2)>1) stop("length of operator must be 1") if (isTRUE(all.equal(e2,1))) return(e1) if (isTRUE(all.equal(e2,0))) return(new("Dirac", location = 0)) if(.isEqual(e1@a*e2,1)&&.isEqual(e1@b,0)){ obj <- e1@X0 if(getdistrOption("simplifyD")) obj <- simplifyD(obj) return(obj) } Distr <- UnivarLebDecDistribution( discretePart = discretePart(e1)*e2, acPart = acPart(e1)*e2, discreteWeight = discreteWeight(e1), acWeight = acWeight(e1)) if(.isEqual(e1@a*e2,1)&&.isEqual(e1@b,0)){ obj <- e1@X0 if(getdistrOption("simplifyD")) obj <- simplifyD(obj) return(obj) } Symmetry <- NoSymmetry() if(is(e1@Symmetry,"SphericalSymmetry")) Symmetry <- SphericalSymmetry(SymmCenter(e1@Symmetry) + e2) object <- new("AffLinUnivarLebDecDistribution", r = Distr@r, d = Distr@d, p = Distr@p, q = Distr@q, X0 = e1@X0, mixDistr = Distr@mixDistr, mixCoeff = Distr@mixCoeff, a = e1@a*e2, b = e1@b, .withSim = [email protected], .withArith = TRUE, .logExact = .logExact(e1), .lowerExact = .lowerExact(e1), gaps = gaps(Distr), support = support(Distr), Symmetry = Symmetry ) object}) setMethod("+", c("AffLinUnivarLebDecDistribution","numeric"), function(e1, e2) { if (length(e2)>1) stop("length of operator must be 1") if (isTRUE(all.equal(e2,0))) return(e1) if(.isEqual(e1@a,1)&&.isEqual(e1@b+e2,0)){ obj <- e1@X0 if(getdistrOption("simplifyD")) obj <- simplifyD(obj) return(obj) } Distr <- UnivarLebDecDistribution( discretePart = discretePart(e1)+e2, acPart = acPart(e1)+e2, discreteWeight = discreteWeight(e1), acWeight = acWeight(e1)) if(.isEqual(e1@a,1)&&.isEqual(e1@b+e2,0)){ obj <- e1@X0 if(getdistrOption("simplifyD")) obj <- simplifyD(obj) return(obj) } Symmetry <- NoSymmetry() if(is(e1@Symmetry,"SphericalSymmetry")) Symmetry <- SphericalSymmetry(SymmCenter(e1@Symmetry) * e2) object <- new("AffLinUnivarLebDecDistribution", r = Distr@r, d = Distr@d, p = Distr@p, q = Distr@q, X0 = e1@X0, mixDistr = Distr@mixDistr, mixCoeff = Distr@mixCoeff, a = e1@a, b = e1@b+e2, .withSim = [email protected], .withArith = TRUE, .logExact = .logExact(e1), .lowerExact = .lowerExact(e1), gaps = gaps(Distr), support = support(Distr), Symmetry = Symmetry ) object})
funcClassPred <- c( "ada", "bagFDA", "brnn", "C5.0", "C5.0Cost", "C5.0Rules", "C5.0Tree", "CSimca", "fda", "FH.GBML", "FRBCS.CHI", "FRBCS.W", "GFS.GCCL", "gpls", "hda", "hdda", "J48", "JRip", "lda", "lda2", "Linda", "LMT", "LogitBoost", "lssvmLinear", "lssvmPoly", "lssvmRadial", "lvq", "mda", "Mlda", "multinom", "nb", "oblique.tree", "OneR", "ORFlog", "ORFpls", "ORFridge", "ORFsvm", "pam", "PART", "pda", "pda2", "PenalizedLDA", "plr", "protoclass", "qda", "QdaCov", "rbf", "rda", "rFerns", "RFlda", "rocc", "rpartCost", "rrlda", "RSimca", "sda", "sddaLDA", "sddaQDA", "SLAVE", "slda", "smda", "sparseLDA", "stepLDA", "stepQDA", "svmRadialWeights", "vbmpRadial", "avNNet", "bag", "bagEarth", "bayesglm", "bdk", "blackboost", "Boruta", "bstLs", "bstSm", "bstTree", "cforest", "ctree", "ctree2", "dnn", "earth", "elm", "evtree", "extraTrees", "gam", "gamboost", "gamLoess", "gamSpline", "gaussprLinear", "gaussprPoly", "gaussprRadial", "gbm", "gcvEarth", "glm", "glmboost", "glmnet", "glmStepAIC", "kernelpls", "kknn", "knn", "logicBag", "logreg", "mlp", "mlpWeightDecay", "nnet", "nodeHarvest", "parRF", "partDSA", "pcaNNet", "pls", "plsRglm", "rbfDDA", "rf", "rknn", "rknnBel", "rpart", "rpart2", "RRF", "RRFglobal", "simpls", "spls", "svmBoundrangeString", "svmExpoString", "svmLinear", "svmPoly", "svmRadial", "svmRadialCost", "svmSpectrumString", "treebag", "widekernelpls", "xyf" )
core_mobile_ui <- f7Page( title = "Tab Layout", f7TabLayout( navbar = f7Navbar( title="LFApp mobile analysis" ), f7Tabs( animated = TRUE, id = "tabs", f7Tab( tabName = "Crop & Segmentation", icon = f7Icon("tray_arrow_up"), active = TRUE, f7Block( hairlines = FALSE, strong = TRUE, inset = FALSE, f7Radio(inputId= "upload", label="Upload image or choose sample", choices=list("Upload image", "Sample"), selected = "Sample"), conditionalPanel( condition = "input.upload == 'Upload image'", f7File(inputId = 'file1', label = 'Upload Image', placeholder = 'JPEG, PNG, and TIFF are supported', accept = c( "image/jpeg", "image/x-png", "image/tiff", ".jpg", ".png", ".tiff")) ) ), f7Accordion( f7AccordionItem( title = "Rotate Image", tagList( f7Slider("rotate", label="Angle", min=-45, max=45, value=0, scale=TRUE), br(), f7Segment( f7Button(inputId="rotateCCW", label = "-90"), f7Button(inputId="rotateCW", label = "+90"), f7Button(inputId="fliphor", label = "FH"), f7Button(inputId="flipver", label = "FV") ) ) ) ), f7Block( f7BlockTitle("Set number of strips and number of lines per strip"), hairlines = TRUE, strong = TRUE, inset = FALSE, f7Slider("strips", label="Number of strips", min=1, max=10, value=1, scale=TRUE, scaleSteps=9), f7Slider("bands", label="Number of lines", min=2, max=6, value=2, scale=TRUE, scaleSteps=4) ), f7Block( f7BlockTitle("Cropping and Segmentation", size="medium"), hairlines = TRUE, strong = TRUE, inset = FALSE, plotOutput("plot1", click = "plot_click", dblclick = "plot_dblclick", hover = hoverOpts("plot_hover", delay = 5000, clip = TRUE), brush = "plot_brush"), h5("Click and drag to select a region of interest. Double click on the selected region to zoom.", align = "center"), uiOutput("cropButtons") ) ), f7Tab( tabName = "Background", icon = f7Icon("circle_lefthalf_fill"), active = FALSE, f7Block( hairlines = FALSE, strong = TRUE, inset = FALSE, "Select strip: ", f7Stepper("selectStrip", label = "", min=1, max=1, value=1, size="small"), f7Accordion( f7AccordionItem( title = "Color image?", f7Radio("channel", label="Conversion mode", choices=list("luminance", "gray", "red", "green", "blue"), selected = "luminance"), ), ), f7Radio("invert", label="Lines darker than background?", choices=list("No", "Yes"), selected = "No"), f7Radio("thresh", label="Threshold", choices=list("Otsu", "Quantile", "Triangle", "Li"), selected = "Otsu"), conditionalPanel( condition = "input.thresh == 'Quantile'", f7Stepper(inputId = "quantile1", label = "Probability [%]:", value = 99, min = 0, max = 100, step = 0.5, manual = TRUE) ), conditionalPanel( condition = "input.thresh == 'Triangle'", f7Stepper(inputId = "tri_offset", label = "Offset:", value = 0.2, min = 0, max = 1, step = 0.1, manual = TRUE) ), f7Segment( f7Button(inputId="threshold", label = "Apply Threshold") ) ), uiOutput("threshPlots"), ), f7Tab( tabName = "Intensity Data", icon = f7Icon("table"), active = FALSE, f7Block( f7Accordion( multiCollapse = TRUE, f7AccordionItem( title = "Upload existing intensity data", f7File(inputId = 'intensFile', label = 'Select CSV file', accept = c("text/csv", "text/comma-separated-values,text/plain", ".csv")) ) ), f7Block( strong = TRUE, f7Block( style = "overflow-x:scroll", DTOutput("intens") ), f7Segment( f7DownloadButton("downloadData", label = "Download Data"), f7Button("deleteData", color="red", label="Delete Data") ) ) ) ) ) ) )
BMTfit.mle <- function(data, start = list(p3 = 0.5, p4 = 0.5, p1 = min(data) - 0.1, p2 = max(data) + 0.1), fix.arg = NULL, type.p.3.4 = "t w", type.p.1.2 = "c-d", optim.method = "Nelder-Mead", custom.optim = NULL, silent = TRUE, ...){ if (!(is.vector(data) & is.numeric(data) & length(data) > 1)) stop("data must be a numeric vector of length greater than 1") my3dots <- list(...) if (length(my3dots) == 0) my3dots <- NULL if(!is.null(my3dots$weights)) stop("Estimation with weights is not considered yet") TYPE.P.3.4 <- c("t w", "a-s") int.type.p.3.4 <- pmatch(type.p.3.4, TYPE.P.3.4) if (is.na(int.type.p.3.4)) stop("invalid type of parametrization for parameters 3 and 4") if (int.type.p.3.4 == -1) stop("ambiguous type of parametrization for parameters 3 and 4") if(type.p.1.2 != "c-d") stop("maximum likelihood estimation only allows parametrization \"c-d\"") fix.arg$type.p.3.4 <- type.p.3.4 fix.arg$type.p.1.2 <- "c-d" stnames <- names(start) m <- length(stnames) lower <- rep(0 + .epsilon, m) upper <- rep(1 - .epsilon, m) lower[stnames == "p1"] <- -Inf upper[stnames == "p1"] <- min(data) - .epsilon lower[stnames == "p2"] <- max(data) + .epsilon upper[stnames == "p2"] <- Inf if(int.type.p.3.4 == 2) { lower[stnames == "p3"] <- -1 + .epsilon } if(!is.null(custom.optim)) if(custom.optim=="nlminb") custom.optim <- .m.nlminb mle <- fitdistrplus::mledist(data, "BMT", start = start, fix.arg = fix.arg, optim.method = optim.method, lower = lower, upper = upper, custom.optim = custom.optim, silent = silent, ...) return(mle) }
infer_initial_trajectory <- function(space, k) { check_numeric_matrix(space, "space", finite = TRUE) check_numeric_vector(k, "k", whole = TRUE, finite = TRUE, range = c(1, nrow(space) - 1), length = 1) fit <- stats::kmeans(space, k) centers <- fit$centers eucl_dist <- as.matrix(stats::dist(centers)) i <- j <- NULL pts <- crossing( i = seq_len(k), j = seq_len(k), pct = seq(0, 1, length.out = 21) ) %>% filter(i < j) pts_space <- (1 - pts$pct) * centers[pts$i, ] + pts$pct * centers[pts$j, ] pts$dist <- rowMeans(RANN::nn2(space, pts_space, k = 10)$nn.dist) dendis <- pts %>% group_by(i, j) %>% summarise(dist = mean(dist)) %>% ungroup() density_dist <- matrix(0, nrow = k, ncol = k) density_dist[cbind(dendis$i, dendis$j)] <- dendis$dist density_dist[cbind(dendis$j, dendis$i)] <- dendis$dist cluster_distances <- eucl_dist * density_dist tsp <- TSP::insert_dummy(TSP::TSP(cluster_distances)) tour <- as.vector(TSP::solve_TSP(tsp)) tour2 <- c(tour, tour) start <- min(which(tour2 == k + 1)) stop <- max(which(tour2 == k + 1)) best_ord <- tour2[(start + 1):(stop - 1)] init_traj <- centers[best_ord, , drop = FALSE] init_traj } infer_trajectory <- function( space, k = 4, thresh = .001, maxit = 10, stretch = 0, smoother = "smooth_spline", approx_points = 100 ) { check_numeric_matrix(space, "space", finite = TRUE) init_traj <- if (k <= 1) { NULL } else { infer_initial_trajectory(space, k = k) } fit <- princurve::principal_curve( as.matrix(space), start = init_traj, thresh = thresh, maxit = maxit, stretch = stretch, smoother = smoother, approx_points = approx_points, trace = FALSE, plot_iterations = FALSE ) path <- fit$s[fit$ord, , drop = FALSE] dimnames(path) <- list(NULL, paste0("Comp", seq_len(ncol(path)))) time <- dynutils::scale_minmax(fit$lambda) list( path = path, time = time ) %>% dynutils::add_class( "SCORPIUS::trajectory" ) } reverse_trajectory <- function(trajectory) { if (!is(trajectory, "SCORPIUS::trajectory")) stop(sQuote("trajectory"), " needs to be an object returned by infer_trajectory") trajectory$time <- 1 - trajectory$time trajectory$path <- trajectory$path[rev(seq_len(nrow(trajectory$path))), , drop = FALSE] trajectory }
aa.specimen.frequencies <- function(freq, seq.matrix, spec.names, seqlength){ no.spec <- nrow(seq.matrix) letter_vector <- c("A", "C", "D", "E", "F", "G", "H", "I", "K", "L", "M", "N", "P", "Q", "R", "S", "T", "V", "W", "Y") aasequence.freq.matrix <- matrix(NA, nrow = no.spec, ncol = seqlength) for(i in 1:seqlength){ aasequence.freq.matrix[which(seq.matrix[,i+2] == letter_vector[1]),i] <- freq[1,i] aasequence.freq.matrix[which(seq.matrix[,i+2] == letter_vector[2]),i] <- freq[2,i] aasequence.freq.matrix[which(seq.matrix[,i+2] == letter_vector[3]),i] <- freq[3,i] aasequence.freq.matrix[which(seq.matrix[,i+2] == letter_vector[4]),i] <- freq[4,i] aasequence.freq.matrix[which(seq.matrix[,i+2] == letter_vector[5]),i] <- freq[5,i] aasequence.freq.matrix[which(seq.matrix[,i+2] == letter_vector[6]),i] <- freq[6,i] aasequence.freq.matrix[which(seq.matrix[,i+2] == letter_vector[7]),i] <- freq[7,i] aasequence.freq.matrix[which(seq.matrix[,i+2] == letter_vector[8]),i] <- freq[8,i] aasequence.freq.matrix[which(seq.matrix[,i+2] == letter_vector[9]),i] <- freq[9,i] aasequence.freq.matrix[which(seq.matrix[,i+2] == letter_vector[10]),i] <- freq[10,i] aasequence.freq.matrix[which(seq.matrix[,i+2] == letter_vector[11]),i] <- freq[11,i] aasequence.freq.matrix[which(seq.matrix[,i+2] == letter_vector[12]),i] <- freq[12,i] aasequence.freq.matrix[which(seq.matrix[,i+2] == letter_vector[13]),i] <- freq[13,i] aasequence.freq.matrix[which(seq.matrix[,i+2] == letter_vector[14]),i] <- freq[14,i] aasequence.freq.matrix[which(seq.matrix[,i+2] == letter_vector[15]),i] <- freq[15,i] aasequence.freq.matrix[which(seq.matrix[,i+2] == letter_vector[16]),i] <- freq[16,i] aasequence.freq.matrix[which(seq.matrix[,i+2] == letter_vector[17]),i] <- freq[17,i] aasequence.freq.matrix[which(seq.matrix[,i+2] == letter_vector[18]),i] <- freq[18,i] aasequence.freq.matrix[which(seq.matrix[,i+2] == letter_vector[19]),i] <- freq[19,i] aasequence.freq.matrix[which(seq.matrix[,i+2] == letter_vector[20]),i] <- freq[20,i] } rownames(aasequence.freq.matrix) <- spec.names return(aasequence.freq.matrix) }
prPropDescs <- function(x, by, name, default_ref, prop_fn, html, digits, digits.nonzero, numbers_first, useNA, useNA.digits, percentage_sign, missing_value, names_of_missing, NEJMstyle) { default_ref <- prDescGetAndValidateDefaultRef(x, default_ref) t <- by(x, by, FUN = prop_fn, html = html, digits = digits, digits.nonzero = digits.nonzero, number_first = numbers_first, useNA = useNA, useNA.digits = useNA.digits, default_ref = default_ref, percentage_sign = percentage_sign ) missing_t <- sapply(t, is.null) if (any(missing_t)) { substitute_t <- rep(missing_value, length(t[!missing_t][[1]])) names(substitute_t) <- names(t[!missing_t][[1]]) for (i in seq_along(t[missing_t])) { t[missing_t][[i]] <- substitute_t } } if (all(unlist(sapply(t, is.na))) & !is.null(names_of_missing)) { substitute_t <- rep(missing_value, length(names_of_missing)) names(substitute_t) <- names_of_missing substitute_list <- vector("list", length = length(t)) names(substitute_list) <- names(t) for (i in seq_along(substitute_list)) { substitute_list[[i]] <- substitute_t } t <- substitute_list } if (unique(sapply(t, length)) == 1) { if (is.factor(x)) { factor_name <- levels(x)[default_ref] } else { factor_name <- levels(factor(x))[default_ref] } name <- glue("{capitalize(factor_name)} {tolower(name)}") } if (NEJMstyle) { percent_sign <- ifelse(html, "%", "\\%") if (numbers_first) { name <- glue("{name} - no ({percent_sign})") } else { name <- glue("{name} - {percent_sign} (no)") } } if (length(t[[1]]) == 1) { names(t[[1]][1]) <- name } return(t) }
"GMMA" <- function(x, short=c(3,5,8,10,12,15), long=c(30,35,40,45,50,60), maType) { x <- try.xts(x, error=as.matrix) if(missing(maType)) { maType <- 'EMA' } fn <- function(g) { do.call(maType, list(x,n=g)) } gmma <- do.call(cbind, lapply(c(short,long), fn)) colnames(gmma) <- c(paste('short lag',short),paste('long lag',long)) reclass(gmma, x) }
phylomatic_tree2 <- function(taxa, get = 'GET', informat = "newick", method = "phylomatic", storedtree = "smith2011", outformat = "newick", clean = "true") { url <- "http://phylodiversity.net/phylomatic/pmws" taxa <- sapply(taxa, function(x) gsub("\\s", "_", x), USE.NAMES=FALSE) if (length(taxa) > 1) { taxa <- paste(taxa, collapse = "\n") } else { taxa <- taxa } args <- compact(list(taxa = taxa, informat = informat, method = method, storedtree = storedtree, outformat = outformat, clean = clean)) get <- match.arg(get, choices=c("GET",'POST')) out <- eval(parse(text=get))(url, query=args) stop_for_status(out) tt <- content(out, as="text") outformat <- match.arg(outformat, choices=c("nexml",'newick')) getnewick <- function(x){ tree <- gsub("\n", "", x[[1]]) read.tree(text = colldouble(tree)) } switch(outformat, nexml = tt, newick = getnewick(tt)) }
context("nodes") x <- connect(port = Sys.getenv("TEST_ES_PORT")) test_that("nodes_stats", { out <- nodes_stats(x) out2 <- nodes_stats(x, node = names(out$nodes)) if (gsub("\\.", "", x$ping()$version$number) >= 500) { expect_equal(sort(names(out)), c("_nodes", "cluster_name", "nodes")) } else { expect_equal(sort(names(out)), c("cluster_name", "nodes")) } expect_is(out, "list") expect_is(out2, "list") expect_is(nodes_stats(x, metric = 'jvm'), "list") expect_is(nodes_stats(x, metric = c('os', 'process')), "list") expect_equal(length(nodes_stats(x, node = "$$%%$$$")$nodes), 0) }) test_that("nodes_info", { out <- nodes_info(x) out2 <- nodes_info(x, node = names(out$nodes)) if (gsub("\\.", "", x$ping()$version$number) >= 500) { expect_equal(sort(names(out)), c("_nodes", "cluster_name", "nodes")) } else { expect_equal(sort(names(out)), c("cluster_name", "nodes")) } expect_is(out, "list") expect_is(out2, "list") expect_is(nodes_info(x, metric = 'get'), "list") expect_is(nodes_info(x, metric = 'jvm'), "list") expect_is(nodes_info(x, metric = c('os', 'process')), "list") expect_equal(length(nodes_info(x, node = "$$%%$$$")$nodes), 0) })
adaptmh<-function(tab1,tab2,Gamma=1,alpha=0.05,double=FALSE,inc=0.25){ stopifnot((length(Gamma)==1)&(Gamma>=1)) stopifnot((length(alpha)==1)&(alpha>0)&(alpha<1)) stopifnot((length(inc)==1)&(inc>0)) stopifnot((double==TRUE)|(double==FALSE)) d1<-dim(tab1) d2<-dim(tab2) stopifnot((d1[1]==2)&(d1[2]==2)&(d2[1]==2)&(d2[2]==2)) if (length(d1)==2) tab1<-array(tab1,c(2,2,1)) if (length(d2)==2) tab2<-array(tab2,c(2,2,1)) stopifnot(sum(as.vector(tab1))>0) stopifnot(sum(as.vector(tab2))>0) tab1<-tab1[,,apply(tab1,3,sum)>0] tab2<-tab2[,,apply(tab2,3,sum)>0] if (length(dim(tab1))==2) tab1<-array(tab1,c(2,2,1)) if (length(dim(tab2))==2) tab2<-array(tab2,c(2,2,1)) check2x2xktable<-function(tab){ r1<-tab[1,1,]+tab[1,2,] r2<-tab[2,1,]+tab[2,2,] c1<-tab[1,1,]+tab[2,1,] c2<-tab[1,2,]+tab[2,2,] mc<-pmin(pmin(r1,r2),pmin(c1,c2)) if (max(mc)==0) { warning("One of the 2x2 or 2x2xk tables is degenerate.") stop("There is a problem with your data.") } } check2x2xktable(tab1) check2x2xktable(tab2) adaptmhInternal<-function(tab1,tab2,gamma=gamma,alpha=alpha,double=double){ one2x2<-function(tb,gamma=gamma){ m1<-tb[1,1]+tb[1,2] m2<-tb[2,1]+tb[2,2] n<-tb[1,1]+tb[2,1] mx<-min(n,m1) mn<-max(0,n-m2) x<-mn:mx g<-rep(0,mx+1) pr<-dFNCHypergeo(x,m1,m2,n,gamma) g[(mn+1):(mx+1)]<-pr g } one2x2xk<-function(tbk,gamma=gamma){ k<-dim(tbk)[3] g<-1 for (i in 1:k){ gi<-one2x2(tbk[,,i],gamma=gamma) g<-gconv(g,gi) } g } g1=one2x2xk(tab1,gamma=gamma) g2=one2x2xk(tab2,gamma=gamma) if (double){ lg1<-length(g1) gd<-c(g1[1],as.vector(rbind(rep(0,lg1-1),g1[2:lg1]))) gboth<-gconv(gd,g2) } else {gboth<-gconv(g1,g2)} val1<-(0:(length(g1)-1)) val2<-(0:(length(g2)-1)) valboth<-(0:(length(gboth)-1)) names(gboth)<-valboth names(g1)<-val1 names(g2)<-val2 actuala<-sum(tab1[1,1,]) if (double) actualb<-(2*actuala)+sum(tab2[1,1,]) else actualb<-actuala+sum(tab2[1,1,]) jt<-outer(g1,g2,"*") va<-outer(val1,rep(1,length(g2)),"*") if (double){vb<-outer(2*val1,val2,"+")} else{vb<-outer(val1,val2,"+")} c1<-rev(cumsum(rev(g1))) cboth<-rev(cumsum(rev(gboth))) onealpha<-function(alpha1){ if (sum(c1<=alpha1)>=1) mina<-min(val1[c1<=alpha1]) else mina<-Inf if (sum(cboth<=alpha1)>=1) minb<-min(valboth[cboth<=alpha1]) else minb<-Inf if (sum(c1<=(alpha1/3))>=1) maxa<-min(val1[c1<=(alpha1/3)]) else maxa<-max(val1) if (sum(cboth<=(alpha1/3))>=1) maxb<-min(valboth[cboth<=(alpha1/3)]) else maxb<-max(valboth) obj<-function(a,b){ peither<-sum(jt[(va>=a)|(vb>=b)]) pb<-sum(gboth[valboth>=b]) pa<-sum(g1[val1>=a]) adif<-abs(pa-pb) o<-c(a,b,peither,pa,pb,adif) names(o)<-c("a","b","peither","pa","pb","adif") o } o1<-NULL if ((mina==Inf)&(minb==Inf)){ warning("At least one of your tables has such small counts that an alpha-level test at this Gamma is not informative.") stop("Results are not significant at level alpha, but no results could be with these data and Gamma.") } else if ((mina<Inf)&(minb==Inf)) { maxb<-Inf for (a in mina:maxa){ o1<-rbind(o1,obj(a,minb)) } } else if ((mina==Inf)&(minb<Inf)) { maxa<-Inf for (b in minb:maxb){ o1<-rbind(o1,obj(mina,b)) } } else { for (a in mina:maxa){ for (b in minb:maxb){ o1<-rbind(o1,obj(a,b)) } } } o1<-as.data.frame(o1) o2<-o1[o1$peither<=alpha1,] o2<-o2[order(o2$a,o2$b),] ua<-sort(unique(o2$a)) o3<-NULL bestb<-Inf for (i in 1:length(ua)){ oi<-o2[o2$a==ua[i],] wh<-which.min(oi$b) currentb<-oi$b[wh] if (currentb<bestb) { o3<-rbind(o3,oi[wh,]) bestb<-currentb } } o4<-o3[which.min(o3$adif),] o4 } o<-NULL for (i in 1:length(alpha)){ o<-rbind(o,onealpha(alpha[i])) } result<-rep("Accept at",length(alpha)) result[(actuala>=o$a)|(actualb>=o$b)]<-"Reject at" o<-cbind(o,result,alpha) rownames(o)<-alpha list(A=actuala,B=actualb,result=o) } ninc<-floor((Gamma-1)/inc) if (ninc==0) gammas<-1 else gammas<-c(1,1+(inc*(1:ninc))) if (!is.element(Gamma,gammas)) gammas<-c(gammas,Gamma) g1<-adaptmhInternal(tab1,tab2,gamma=gammas[1],alpha=alpha,double=double) out<-g1$result acta<-g1$A actb<-g1$B if (length(gammas)>=2) { for (i in 2:length(gammas)) { out<-rbind(out,adaptmhInternal(tab1,tab2,gamma=gammas[i],alpha=alpha,double=double)$result) } } if (dim(out)[1]==1) out<-as.matrix(out,1,length(out)) out<-as.data.frame(out) rownames(out)<-gammas Gamma<-gammas out<-cbind(out,Gamma) if (!all(out$result=="Reject at")) { first<-which(out$result=="Accept at")[1] out<-out[1:first,] } list(A=acta,B=actb,result=out) }
cesInterN4 <- function( funcName, par, xNames, tName, data, rhoApprox ) { coefArray <- array( par, c( length( par ), 2, 2, 2 ) ) dimnames( coefArray ) <- list( names( par ), c( "rho_1 = 0", "rho_1 = E" ), c( "rho_2 = 0", "rho_2 = E" ), c( "rho = 0", "rho = E" ) ) weights <- c( 0, 0, 0 ) names( weights ) <- c( "rho_1 = 0", "rho_2 = 0", "rho = 0" ) rhoNames <- c( "rho_1", "rho_2", "rho" ) permVec <- rep( 2:4, 2 ) for( i in 1:3 ) { if( abs( par[ rhoNames[ i ] ] ) <= rhoApprox ) { atemp <- aperm( coefArray, c( 1, permVec[ i:( i + 2 ) ] ) ) atemp[ rhoNames[ i ], 1, , ] <- 0 atemp[ rhoNames[ i ], 2, , ] <- rhoApprox * (-1)^( par[ rhoNames[ i ] ] < 0 ) coefArray <- aperm( atemp, c( 1, permVec[ ( 5 - i ):( 7 - i ) ] ) ) weights[ i ] <- 1 - abs( par[ rhoNames[ i ] ] ) / rhoApprox } } result <- 0 weightMatrix <- cbind( weights, 1 - weights ) for( i in 1:2 ) { for( j in 1:2 ) { for( k in 1:2 ) { if( weightMatrix[ 1, i ] != 0 && weightMatrix[ 2, j ] != 0 && weightMatrix[ 3, k ] != 0 ) { result <- result + weightMatrix[ 1, i ] * weightMatrix[ 2, j ] * weightMatrix[ 3, k ] * do.call( funcName, args = list( coef = coefArray[ , i, j, k ], data = data, xNames = xNames, tName = tName ) ) } } } } return( result ) }
fn3 <- function(ss,a,n,M){ res <- numeric(0) s1 <- (n-sum(ss*a[-1]))/a[1] if ((s1==0 | s1 == 1) && sum(c(s1,ss))<= M) res <- c(s1,ss) res } recursive.fn3 <- function(w,b,a,n,M){ S <- rep(0,0) d <- 0 if(length(b)) { for( i in seq(0,b[1]) ) { if (length(b) >1){ d<-sum(w*a[length(a):(length(a)-length(w)+1)])+i*a[length(b)+1] b[2] <- min(1,floor((n-d)/a[length(b)])) } S <- c(S, Recall( c(w,i), b[-1],a,n,M)) } } else { return(fn3(rev(w),a,n,M)) } S } fn4 <- function(ss,a,n,M,bounds){ res <- numeric(0) s1 <- (n-sum(ss*a[-1]))/a[1] if (s1>=0 && s1 <= bounds[1] && s1==floor(s1) && sum(c(s1,ss))<= M) res <- c(s1,ss) res } recursive.fn4 <- function(w,b,a,n,M,bounds){ S <- rep(0,0) d <- 0 if(length(b)) { for( i in seq(0,b[1]) ) { if (length(b) >1){ d<-sum(w*a[length(a):(length(a)-length(w)+1)])+i*a[length(b)+1] b[2] <- min(bounds[length(b)],floor((n-d)/a[length(b)])) } S <- c(S, Recall( c(w,i), b[-1],a,n,M,bounds)) } } else { return(fn4(rev(w),a,n,M,bounds)) } S } get.subsetsum <- function(a,n,M=NULL,problem="subsetsum01", bounds=NULL){ if (length(a) < 2) {stop("length of vector 'a' has to be more than 1")} if (!isTRUE(all(a == floor(a))) || !isTRUE(all(a > 0))) stop("'a' must only contain positive integer values") if (length(n) >1) {stop("'n' has to be a positive integer")} if (!isTRUE(n == floor(n)) || !isTRUE(n > 0)) {stop("'n' has to be a positive integer")} l <- length(a) if (is.null(M)) M <- floor(n/min(a)) else { if (!isTRUE(M == floor(M)) || !isTRUE(M > 0)) {stop("'M' has to be a positive integer")} if (M > l) stop("'M' has to be less or equal to the length of 'a'") } if (!(problem %in% c("subsetsum01", "bsubsetsum"))) stop("unknown problem is used") if (problem=="bsubsetsum" & is.null(bounds)) stop("no upper limits for the set of indices, 'bounds', supplied to solve the bounded problem") if (problem=="bsubsetsum" & length(bounds)!=length(a)) stop("lengths of vectors 'bounds' and 'a' must be the same") ra <- rank(a, ties.method= "first") a <- sort(a) bounds <- bounds[ra] out <-numeric(0) if (problem=="subsetsum01"){ b <- c(min(1,floor(n/a[l])),rep(NA,l-2)) out <- recursive.fn3(numeric(0), b,a,n,M) if (length(out)==0) {out <- NULL } else { dim(out) <- c(l,length(out)/l) out <- as.matrix(out[ra,],l,length(out)/l) rownames(out) <- paste("s", c(1:l), sep="") colnames(out) <- paste(c("sol."), seq(1:dim(out)[2]), sep="") } } else if (problem=="bsubsetsum"){ b <- c(min(bounds[l],floor(n/a[l])),rep(NA,l-2)) out <- recursive.fn4(numeric(0), b,a,n,M,bounds) if (length(out)==0) {out <- NULL } else { dim(out) <- c(l,length(out)/l) out <- as.matrix(out[ra,],l,length(out)/l) rownames(out) <- paste("s", c(1:l), sep="") colnames(out) <- paste(c("sol."), seq(1:dim(out)[2]), sep="") } } if (is.null(out)) n.sol <-0 else n.sol <- ncol(out) object <- list() object$p.n <- n.sol object$solutions <- out class(object)<-"subsetsum" object } print.subsetsum <- function (x,...) { cat("\n") if (is.null(x$solutions)) cat("no solutions", "\n") else { cat("The number of solutions: ", x$p.n, "\n", sep = "") cat("\nSolutions:\n") printCoefmat(x$solutions, ...) cat("\n") } invisible(x) }
library(tidyverse) shift <- expand.grid(c = 1:10, r = 1:40) %>% mutate(n = row_number()) %>% rowwise() %>% mutate( x = list(4 * c(c, c + 1, c + 0.5)), y = list(c(r, r, r - 1)) ) %>% unnest(c(x, y)) ggplot(shift) + geom_polygon(aes(x, y, group = n)) + coord_fixed() + theme_void()
source("xpl-helpers.R") source("xpl-output.R") source("xpl-format.R") observe({ updateSelectInput(session, inputId = "var_anova1", choices = names(data()), selected = '') updateSelectInput(session, inputId = "var_anova2", choices = names(data()), selected = '') }) observeEvent(input$finalok, { f_data <- final_split$train[, sapply(final_split$train, is.factor)] num_data <- final_split$train[, sapply(final_split$train, is.numeric)] if (is.null(dim(f_data))) { k <- final_split$train %>% map(is.factor) %>% unlist() j <- names(which(k == TRUE)) fdata <- tibble::as_data_frame(f_data) colnames(fdata) <- j updateSelectInput(session, inputId = "var_anova2", choices = names(fdata)) } else { updateSelectInput(session, 'var_anova2', choices = names(f_data)) } if (is.null(dim(num_data))) { k <- final_split$train %>% map(is.numeric) %>% unlist() j <- names(which(k == TRUE)) numdata <- tibble::as_data_frame(num_data) colnames(numdata) <- j updateSelectInput(session, 'var_anova1', choices = names(numdata), selected = names(numdata)) } else if (ncol(num_data) < 1) { updateSelectInput(session, 'var_anova1', choices = '', selected = '') } else { updateSelectInput(session, 'var_anova1', choices = names(num_data)) } }) observeEvent(input$submit_part_train_per, { f_data <- final_split$train[, sapply(final_split$train, is.factor)] num_data <- final_split$train[, sapply(final_split$train, is.numeric)] if (is.null(dim(f_data))) { k <- final_split$train %>% map(is.factor) %>% unlist() j <- names(which(k == TRUE)) fdata <- tibble::as_data_frame(f_data) colnames(fdata) <- j updateSelectInput(session, inputId = "var_anova2", choices = names(fdata)) } else { updateSelectInput(session, 'var_anova2', choices = names(f_data)) } if (is.null(dim(num_data))) { k <- final_split$train %>% map(is.numeric) %>% unlist() j <- names(which(k == TRUE)) numdata <- tibble::as_data_frame(num_data) colnames(numdata) <- j updateSelectInput(session, 'var_anova1', choices = names(numdata), selected = names(numdata)) } else if (ncol(num_data) < 1) { updateSelectInput(session, 'var_anova1', choices = '', selected = '') } else { updateSelectInput(session, 'var_anova1', choices = names(num_data)) } }) d_anova <- eventReactive(input$submit_anova, { req(input$var_anova1) req(input$var_anova2) data <- final_split$train[, c(input$var_anova1, input$var_anova2)] eval(parse(text = paste0("data$", names(data)[2], " <- as.numeric(as.character(data$", names(data)[2], "))"))) xpl_oneway_anova(data, input$var_anova1, input$var_anova2) }) output$anova_out <- renderPrint({ d_anova() })
control.simulate.network <- function(MCMC.burnin.min = 1000, MCMC.burnin.max = 100000, MCMC.burnin.pval = 0.5, MCMC.burnin.add = 1, MCMC.prop.form = ~discord + sparse, MCMC.prop.diss = ~discord + sparse, MCMC.prop.weights.form = "default", MCMC.prop.weights.diss = "default", MCMC.prop.args.form = NULL, MCMC.prop.args.diss = NULL, MCMC.maxedges = Inf, MCMC.maxchanges = 1000000, term.options = NULL, MCMC.packagenames = c()) { control <- list() for(arg in names(formals(sys.function()))) control[arg] <- list(get(arg)) set.control.class("control.simulate.network") } control.simulate.stergm <- function(MCMC.burnin.min = NULL, MCMC.burnin.max = NULL, MCMC.burnin.pval = NULL, MCMC.burnin.add = NULL, MCMC.prop.form = NULL, MCMC.prop.diss = NULL, MCMC.prop.weights.form = NULL, MCMC.prop.weights.diss = NULL, MCMC.prop.args.form = NULL, MCMC.prop.args.diss = NULL, MCMC.maxedges = NULL, MCMC.maxchanges = NULL, term.options = NULL, MCMC.packagenames = NULL) { control <- list() for(arg in names(formals(sys.function()))) control[arg] <- list(get(arg)) set.control.class("control.simulate.stergm") }
SelfTrain <- function(form,data, learner, learner.pars=list(), pred, pred.pars=list(), thrConf=0.9, maxIts=10,percFull=1, verbose=FALSE) { N <- NROW(data) it <- 0 sup <- which(!is.na(data[,as.character(form[[2]])])) repeat { it <- it+1 model <- do.call(learner,c(list(form,data[sup,]),learner.pars)) probPreds <- do.call(pred,c(list(model,data[-sup,]),pred.pars)) new <- which(probPreds[,2] > thrConf) if (verbose) cat('IT.',it,'\t nr. added exs. =',length(new),'\n') if (length(new)) { data[(1:N)[-sup][new],as.character(form[[2]])] <- probPreds[new,1] sup <- c(sup,(1:N)[-sup][new]) } else break if (it == maxIts || length(sup)/N >= percFull) break } return(model) }
synonyms <- function(...) { UseMethod("synonyms") } synonyms.default <- function(sci_id, db = NULL, rows = NA, x = NULL, ...) { nstop(db) pchk(x, "sci") if (!is.null(x)) sci_id <- x switch( db, itis = { id <- process_syn_ids(sci_id, db, get_tsn, rows = rows, ...) structure(stats::setNames(synonyms(id, ...), sci_id), class = "synonyms", db = "itis") }, tropicos = { id <- process_syn_ids(sci_id, db, get_tpsid, rows = rows, ...) structure(stats::setNames(synonyms(id, ...), sci_id), class = "synonyms", db = "tropicos") }, nbn = { id <- process_syn_ids(sci_id, db, get_nbnid, rows = rows, ...) structure(stats::setNames(synonyms(id, ...), sci_id), class = "synonyms", db = "nbn") }, worms = { id <- process_syn_ids(sci_id, db, get_wormsid, rows = rows, ...) structure(stats::setNames(synonyms(id, ...), sci_id), class = "synonyms", db = "worms") }, iucn = { id <- process_syn_ids(sci_id, db, get_iucn, ...) structure(stats::setNames(synonyms(id, ...), sci_id), class = "synonyms", db = "iucn") }, pow = { id <- process_syn_ids(sci_id, db, get_pow, ...) structure(stats::setNames(synonyms(id, ...), sci_id), class = "synonyms", db = "pow") }, stop("the provided db value was not recognised", call. = FALSE) ) } process_syn_ids <- function(input, db, fxn, ...){ g <- tryCatch(as.numeric(as.character(input)), warning = function(e) e) if (inherits(g, "condition") && all(!grepl("ipni\\.org", input))) { return(eval(fxn)(input, ...)) } if ( is.numeric(g) || is.character(input) && all(grepl("N[HB]", input)) || is.character(input) && all(grepl("ipni\\.org", input)) || is.character(input) && all(grepl("[[:digit:]]", input)) ) { as_fxn <- switch(db, itis = as.tsn, tropicos = as.tpsid, nbn = as.nbnid, worms = as.wormsid, iucn = as.iucn, pow = as.pow) if (db == "iucn") return(as_fxn(input, check = TRUE)) return(as_fxn(input, check = FALSE)) } else { eval(fxn)(input, ...) } } synonyms.tsn <- function(id, ...) { warn_db(list(...), "itis") fun <- function(x){ if (is.na(x)) { NA_character_ } else { is_acc <- rit_acc_name(x, ...) if (all(!is.na(is_acc$acceptedName))) { accdf <- stats::setNames( data.frame(x[1], is_acc, stringsAsFactors = FALSE), c("sub_tsn", "acc_name", "acc_tsn", "acc_author") ) x <- is_acc$acceptedTsn message("Accepted name(s) is/are '", paste0(is_acc$acceptedName, collapse = "/"), "'") message("Using tsn(s) ", paste0(is_acc$acceptedTsn, collapse = "/"), "\n") } else { accdf <- data.frame(sub_tsn = x[1], acc_tsn = x[1], stringsAsFactors = FALSE) } res <- Map(function(z, w) { tmp <- ritis::synonym_names(z) if (NROW(tmp) == 0) { tibble::tibble() } else { tmp <- stats::setNames(tmp, c('syn_author', 'syn_name', 'syn_tsn')) cbind(w, tmp, row.names = NULL) } }, x, split(accdf, seq_len(NROW(accdf)))) do.call("rbind", unname(res)) } } stats::setNames(lapply(id, fun), id) } rit_acc_name <- function(x, ...) { tmp <- ritis::accepted_names(x, ...) if (NROW(tmp) == 0) { data.frame(submittedtsn = x[1], acceptedName = NA, acceptedTsn = x[1], stringsAsFactors = FALSE) } else { tmp } } synonyms.tpsid <- function(id, ...) { warn_db(list(...), "topicos") fun <- function(x) { if (is.na(x)) { NA_character_ } else { res <- tp_synonyms(x, ...)$synonyms if (grepl("no syns found", res[1,1])) tibble::tibble() else res } } stats::setNames(lapply(id, fun), id) } synonyms.nbnid <- function(id, ...) { warn_db(list(...), "nbn") fun <- function(x){ if (is.na(x)) { NA_character_ } else { res <- nbn_synonyms(x, ...) if (length(res) == 0) tibble::tibble() else res } } stats::setNames(lapply(id, fun), id) } synonyms.wormsid <- function(id, ...) { warn_db(list(...), "worms") fun <- function(x) { if (is.na(x)) { NA_character_ } else { res <- tryCatch(worrms::wm_synonyms(as.numeric(x), ...), error = function(e) e) if (inherits(res, "error")) tibble::tibble() else res } } stats::setNames(lapply(id, fun), id) } synonyms.iucn <- function(id, ...) { warn_db(list(...), "iucn") out <- vector(mode = "list", length = length(id)) for (i in seq_along(id)) { if (is.na(id[[i]])) { out[[i]] <- NA_character_ } else { res <- rredlist::rl_synonyms(attr(id, "name")[i], ...)$result out[[i]] <- if (length(res) == 0) tibble::tibble() else res } } stats::setNames(out, id) } synonyms.pow <- function(id, ...) { warn_db(list(...), "pow") out <- vector(mode = "list", length = length(id)) for (i in seq_along(id)) { if (is.na(id[[i]])) { out[[i]] <- NA_character_ } else { res <- pow_synonyms(id[i], ...) out[[i]] <- if (length(res) == 0) { tibble::tibble() } else { names(res)[1] <- "id" res } } } stats::setNames(out, id) } synonyms.ids <- function(id, ...) { fun <- function(x){ if (is.na(x)) { out <- NA_character_ } else { out <- synonyms(x, ...) } return( out ) } lapply(id, fun) } synonyms_df <- function(x) { UseMethod("synonyms_df") } synonyms_df.default <- function(x) { stop("no 'synonyms_df' method for ", class(x), call. = FALSE) } synonyms_df.synonyms <- function(x) { x <- Filter(function(z) inherits(z, "data.frame"), x) x <- Filter(function(z) NROW(z) > 0, x) (data.table::setDF( data.table::rbindlist(x, use.names = TRUE, fill = TRUE, idcol = TRUE) )) }
create_database <- function(dbname, user, password, host) { stopifnot(is.character(dbname), is.character(user), is.character(password), is.character(host)) drv <- dbDriver("PostgreSQL") database_diet <- dbConnect(drv, dbname = dbname, user = user, password = password, host = host) dbSendQuery(database_diet, "CREATE TABLE deputies (id_deputy varchar(4) NOT NULL, nr_term_of_office int NOT NULL, surname_name varchar(50) NOT NULL, PRIMARY KEY (id_deputy, nr_term_of_office), CONSTRAINT uq_surname_name UNIQUE (nr_term_of_office, surname_name))") dbSendQuery(database_diet, "CREATE TABLE votings (id_voting int NOT NULL, nr_term_of_office int NOT NULL, nr_meeting int NOT NULL, date_meeting date NOT NULL, nr_voting int NOT NULL, topic_voting text NOT NULL, link_results varchar(200), PRIMARY KEY (id_voting, nr_term_of_office))") dbSendQuery(database_diet, "CREATE TABLE votes (id_vote int NOT NULL, nr_term_of_office int NOT NULL, id_deputy varchar(4) NOT NULL, id_voting int NOT NULL, vote varchar(20) NOT NULL, club varchar(50), PRIMARY KEY (id_vote, nr_term_of_office), FOREIGN KEY (id_deputy, nr_term_of_office) REFERENCES deputies(id_deputy, nr_term_of_office), FOREIGN KEY (id_voting, nr_term_of_office) REFERENCES votings(id_voting, nr_term_of_office))") dbSendQuery(database_diet, "CREATE TABLE statements (id_statement varchar(11) NOT NULL, nr_term_of_office int NOT NULL, surname_name varchar(100) NOT NULL, date_statement date NOT NULL, titles_order_points text NOT NULL, statement text NOT NULL, PRIMARY KEY (id_statement, nr_term_of_office))") dbSendQuery(database_diet, "CREATE TABLE counter (id SERIAL PRIMARY KEY, what varchar(10) NOT NULL, date varchar(10) NOT NULL)") suppressWarnings(dbDisconnect(database_diet)) return(invisible(NULL)) }
getParDepMan <- function(object, pred.var, pred.grid, pred.fun, train, progress, parallel, paropts, ...) { plyr::adply(pred.grid, .margins = 1, .progress = progress, .parallel = parallel, .paropts = paropts, .fun = function(x) { temp <- train temp[, pred.var] <- x out <- pred.fun(object, newdata = temp) if (length(out) == 1) { stats::setNames(out, "yhat") } else { if (is.null(names(out))) { stats::setNames(out, paste0("yhat.", 1L:length(out))) } else { stats::setNames(out, paste0("yhat.", names(out))) } } }, .id = NULL) }
qat_analyse_lim_rule_dynamic_1d <- function(measurement_vector, min_vector=NULL, max_vector=NULL, min_vector_name=NULL, max_vector_name=NULL, min_vector_identifier=NULL, max_vector_identifier=NULL) { flagvector <- array(0.0, length(measurement_vector)) if(length(measurement_vector) != length(min_vector)) { min_vector <- array(NaN, length(measurement_vector)) } if(length(measurement_vector) != length(max_vector)) { max_vector <- array(NaN, length(measurement_vector)) } for (ii in 1:length(measurement_vector)) { if (!is.na(measurement_vector[ii])) { if (!is.na(min_vector[ii])) { if (measurement_vector[ii] < min_vector[ii]) { flagvector[ii] <- -1 } } if (!is.na(max_vector[ii])) { if (measurement_vector[ii] > max_vector[ii]) { flagvector[ii] <- +1 } } } } resultlist<- c(list(flagvector), list(min_vector), list(max_vector), list(min_vector_name), list(max_vector_name), list(min_vector_identifier), list(max_vector_identifier)) names(resultlist)<-c("flagvector", "min_vector", "max_vector", "min_vector_name", "max_vector_name", "min_vector_identifier", "max_vector_identifier") return(resultlist) }
organization_purge <- function(id, url = get_default_url(), key = get_default_key(), as = 'list', ...) { res <- ckan_POST(url, 'organization_purge', list(id = id), key = key, ...) switch(as, json = res, list = lapply(jsl(res), as.ckan_organization), table = jsd(res)) }
fourCellsFromXY <- function(object, xy, duplicates=TRUE) { r <- raster(object) stopifnot(is.matrix(xy)) return( .doFourCellsFromXY(r@ncols, r@nrows, xmin(r), xmax(r), ymin(r), ymax(r), xy, duplicates, .isGlobalLonLat(r))) }
context("checkRequiredCols") library(stringi) requiredCols <- getRequiredCols() test_that("checkRequiredCols detects missing cols", { cols <- stri_c("id,sire,siretype,dam,damtype,sex,numberofparentsknown,birth,", "arrivalatcenter,death,departure,status,ancestry,fromcenter?,", "origin") expect_true(all(requiredCols %in% checkRequiredCols(cols, reportErrors = TRUE))) })
juldate=function( date) { if(length(date)<3) stop('illegal date vector - must have a least 3 elements') date = c(date,rep(0,6-length(date))) iy = floor( date[1] ) if(iy<0 )iy = iy +1 else if(iy==0 ) stop('error - there is no year 0') im = floor( date[2] ) day = date[3] + ( date[4] + date[5]/60.0 + date[6]/3600.0) / 24.0 if(( im<3 ) ){ iy= iy-1 im = im+12 } a = floor(iy/100) ry = iy jd = floor(ry*0.25) + 365.0*(ry -1860) + floor(30.6001*(im+1.)) + day - 105.5 if(jd>-100830.5 )jd = jd + 2 - a + floor(a/4) return(jd) }
get.breaks.vector <- function(CycleBreaksMatrix){ breaks.vector <- NULL for(i in 1:dim(CycleBreaksMatrix)[2]){ set <- na.omit(CycleBreaksMatrix[,i]) lset <- length(set)-1 breaks.vector <- append(breaks.vector, set[1:lset]) } return(breaks.vector) }
test_that("inv_simpson works", { .act <- ds_inv_simpson(de_county, starts_with('pop_')) .exp <- c(2.06408053773311, 2.25755787299953, 1.68145472009487) expect_equal(.act, .exp, tolerance = 1e-6) }) test_that("inv_simpson .name works", { .act <- ds_inv_simpson(de_county, starts_with('pop_'), .name = 'special_name') expect_true('special_name' %in% names(.act)) })
tidy.lmodel2 <- function(x, ...) { ret <- x$regression.results[c(1:3, 5)] %>% select( method = Method, Intercept, Slope, p.value = `P-perm (1-tailed)` ) %>% pivot_longer( cols = c(dplyr::everything(), -method, -p.value), names_to = "term", values_to = "estimate" ) %>% arrange(method, term) confints <- x$confidence.intervals %>% pivot_longer( cols = c(dplyr::everything(), -Method), names_to = "key", values_to = "value" ) %>% tidyr::separate(key, c("level", "term"), "-") %>% mutate(level = ifelse(level == "2.5%", "conf.low", "conf.high")) %>% tidyr::pivot_wider(c(Method, term), names_from = level, values_from = value ) %>% dplyr::arrange(Method) %>% as.data.frame() %>% select(method = Method, term, conf.low, conf.high) ret %>% inner_join(confints, by = c("method", "term")) %>% select(-p.value, dplyr::everything()) %>% as_tibble() } glance.lmodel2 <- function(x, ...) { as_glance_tibble( r.squared = x$rsquare, theta = x$theta, p.value = x$P.param, H = x$H, nobs = stats::nobs(x), na_types = "rrrri" ) }
XB <- function (Xca, U, H, m) { if (missing(Xca)) stop("The data set must be given") if (is.null(Xca)) stop("The data set Xca is empty") n=nrow(Xca) Xca=as.matrix(Xca) if (any(is.na(Xca))) stop("The data set Xca must not contain NA values") if (!is.numeric(Xca)) stop("The data set Xca is not a numeric data.frame or matrix") if (missing(U)) stop("The membership degree matrix U must be given") if (is.null(U)) stop("The membership degree matrix U is empty") U=as.matrix(U) if (any(is.na(U))) stop("The membership degree matrix U must not contain NA values") if (!is.numeric(U)) stop("The membership degree matrix U is not numeric") if (missing(H)) stop("The prototype matrix H must be given") if (is.null(H)) stop("The prototype matrix H is empty") H=as.matrix(H) if (any(is.na(H))) stop("The prototype matrix H must not contain NA values") if (!is.numeric(H)) stop("The prototype matrix H is not numeric") if (nrow(U)!=nrow(Xca)) stop("The numbers of rows of U and Xca must be the same") if (nrow(H)!=ncol(U)) stop("The number of rows of H and the one of columns of U must be the same") if (ncol(H)!=ncol(Xca)) stop("The numbers of columns of H and Xca must be the same") if (ncol(U)==1) stop("There is only k=1 cluster: the XB index is not computed") k=ncol(U) if (missing(m)) { m=2 } if (!is.numeric(m)) { m=2 cat("The parameter of fuzziness m is not numeric: the default value m=2 will be used ",fill=TRUE) } if (m<=1) { m=2 cat("The parameter of fuzziness m must be >1: the default value m=2 will be used ",fill=TRUE) } xie.beni = xie_beni(X = Xca,U = U,H = H,m = m,n = n,k = k) return(xie.beni) }
c2compnames<-function(cmat, ntype="aggr") { if(is.null(colnames(cmat))) {colnames(cmat)<-1:ncol(cmat)} if(!is.matrix(cmat)) {stop("cmat must be a matrix")} if(!is.numeric(cmat)) {stop("cmat must be a numeric matric")} if(length(ntype)!=1) {stop("ntype must be a single character string!")} if(!ntype %in% c("aggr", "sequ")) {stop("ntype must be one of 'aggr', 'sequ'")} if(ntype=="aggr") { cnames<-colnames(cmat) rnames<-character(length=nrow(cmat)) for(i in 1:nrow(cmat)) { si<-sign(cmat[i,]) wsip<-si==1 wsin<-si==(-1) rnames[i]<-paste( "(", paste(cnames[wsip], collapse="+"), ")-(", paste(cnames[wsin], collapse="+"), ")", collapse="", sep="" ) } } if(ntype=="sequ") { cnames<-colnames(cmat) rnames<-character(length=nrow(cmat)) for(i in 1:nrow(cmat)) { si<-sign(cmat[i,]) wsin0<-si!=0 wsip<-si[wsin0]==1 wsin<-si[wsin0]==(-1) nam<-cnames[wsin0] sic<-character(length=length(nam)) sic[wsip]<-"+" sic[wsin]<-"-" rnames[i]<-paste(paste(sic, nam, sep=""), collapse="") } } rownames(cmat)<-rnames return(cmat) } IAcontrasts<-function(type, k) { if(!all(type %in% c("Dunnett", "Tukey", "Sequence", "Identity"))) {stop("all elements of type must be one of 'Dunnett','Tukey' or 'Sequence'")} if ( any(c(length(k),length(type))!=2)) {stop("k and type must be vectors of length 2")} if(!is.numeric(k) & !is.integer(k)) {stop("k must be an integer vector")} n1<-rep(3,k[1]) names(n1)<-as.character(1:k[1]) n2<-rep(3,k[2]) names(n2)<-as.character(1:k[2]) if(type[1]!="Identity"){CM1 <- contrMat(n=n1, type=type[1])} else{CM1<-diag(rep(1,k[1]))} if(type[2]!="Identity"){CM2 <- contrMat(n=n2, type=type[2])} else{CM2 <-diag(rep(1,k[2]))} out <- kronecker(CM1, CM2) cnames <- paste( rep(colnames(CM1), each=length(colnames(CM2))), rep(colnames(CM2), times=length(colnames(CM1))), sep="") colnames(out)<-cnames return(out) } IAcontrastsCMAT<-function(CMAT1, CMAT2) { out <- kronecker(CMAT1, CMAT2) cnames <- paste( rep(colnames(CMAT1), each=length(colnames(CMAT2))), rep(colnames(CMAT2), times=length(colnames(CMAT1))), sep="") colnames(out)<-cnames return(out) }
eget <- function(..., coerce=TRUE, envir=parent.frame(), inherits=FALSE, mode="default", cmdArg=FALSE) { pargs <- .parseArgs(list(...), defaults=alist(name=, default=NULL)) args <- pargs$args if (!is.element("name", names(args))) { argsT <- pargs$namedArgs if (length(argsT) == 0L) { stop("Argument 'name' is missing (or NULL).") } args$name <- names(argsT)[1L] default <- argsT[[1L]] args$default <- default argsT <- argsT[-1L] pargs$args <- args pargs$namedArgs <- argsT } args <- Reduce(c, pargs) name <- as.character(args$name) .stop_if_not(length(name) == 1L) default <- args$default if (cmdArg) { defaultT <- cmdArg(...) if (!is.null(defaultT)) default <- defaultT } if (is.list(envir)) { } else { envir <- as.environment(envir) .stop_if_not(is.environment(envir)) } value <- default if (is.list(envir)) { if (is.element(name, names(envir))) { value <- envir[[name]] } } else { if (mode == "default") { mode <- mode(value) if (mode == "NULL") mode <- "any" } if (exists(name, mode=mode, envir=envir, inherits=inherits)) { value <- get(name, mode=mode, envir=envir, inherits=inherits) } } if (coerce) { if (!identical(value, default) && !is.null(default)) { value <- as(value, Class=class(default)[1L]) } } value } ecget <- function(..., envir=parent.frame()) { eget(..., envir=envir, cmdArg=TRUE) }
prep.date <- function(x) { if(all(is.timepoint(x)) == TRUE){ doy <- as.numeric(strftime(x, format = "%j")) } if(is.numeric(x)){ if(any(x <= 0) | any(x > 366)){ stop(c("Day of the year is not between 1-366"))} doy <- x } doy }
select_all <- function(.tbl, .funs = list(), ...) { lifecycle::signal_stage("superseded", "select_all()") funs <- as_fun_list(.funs, caller_env(), ..., .caller = "select_all") vars <- tbl_vars(.tbl) syms <- vars_select_syms(vars, funs, .tbl) select(.tbl, !!!syms) } rename_all <- function(.tbl, .funs = list(), ...) { lifecycle::signal_stage("superseded", "rename_with()") funs <- as_fun_list(.funs, caller_env(), ..., .caller = "rename_all") vars <- tbl_vars(.tbl) syms <- vars_select_syms(vars, funs, .tbl, strict = TRUE) rename(.tbl, !!!syms) } select_if <- function(.tbl, .predicate, .funs = list(), ...) { funs <- as_fun_list(.funs, caller_env(), ..., .caller = "select_if") if (!is_logical(.predicate)) { .predicate <- as_fun_list(.predicate, caller_env(), .caller = "select_if", .caller_arg = ".predicate") } vars <- tbl_if_vars(.tbl, .predicate, caller_env(), .include_group_vars = TRUE) syms <- vars_select_syms(vars, funs, .tbl) select(.tbl, !!!syms) } rename_if <- function(.tbl, .predicate, .funs = list(), ...) { funs <- as_fun_list(.funs, caller_env(), ..., .caller = "rename_if") if (!is_logical(.predicate)) { .predicate <- as_fun_list(.predicate, caller_env(), .caller = "rename_if", .caller_arg = ".predicate") } vars <- tbl_if_vars(.tbl, .predicate, caller_env(), .include_group_vars = TRUE) syms <- vars_select_syms(vars, funs, .tbl, strict = TRUE) rename(.tbl, !!!syms) } select_at <- function(.tbl, .vars, .funs = list(), ...) { vars <- tbl_at_vars(.tbl, .vars, .include_group_vars = TRUE) funs <- as_fun_list(.funs, caller_env(), ..., .caller = "select_at") syms <- vars_select_syms(vars, funs, .tbl) select(.tbl, !!!syms) } rename_at <- function(.tbl, .vars, .funs = list(), ...) { vars <- tbl_at_vars(.tbl, .vars, .include_group_vars = TRUE) funs <- as_fun_list(.funs, caller_env(), ..., .caller = "rename_at") syms <- vars_select_syms(vars, funs, .tbl, strict = TRUE) rename(.tbl, !!!syms) } vars_select_syms <- function(vars, funs, tbl, strict = FALSE, error_call = caller_env()) { if (length(funs) > 1) { msg <- glue("`.funs` must contain one renaming function, not {length(funs)}.") abort(msg, call = error_call) } else if (length(funs) == 1) { fun <- funs[[1]] if (is_quosure(fun)) { fun <- quo_as_function(fun) } syms <- if (length(vars)) { set_names(syms(vars), fun(as.character(vars))) } else { set_names(syms(vars)) } } else if (!strict) { syms <- syms(vars) } else { msg <- glue("`.funs` must specify a renaming function.") abort(msg, call = error_call) } group_vars <- group_vars(tbl) group_syms <- syms(group_vars) has_group_sym <- group_syms %in% syms new_group_syms <- set_names(group_syms[!has_group_sym], group_vars[!has_group_sym]) c(new_group_syms, syms) }
ppcca.metabol <- function(Y, Covars, minq=1, maxq=2, scale="none", epsilon = 0.1, plot.BIC=FALSE, printout=TRUE) { Y<-as.matrix(Y) Covars<-as.matrix(Covars) if (missing(Y)) { stop("Spectral data are required to fit the PPCCA model.\n") } if (missing(Covars)) { stop("Covariate data are required to fit the PPCCA model.\n ") } if (nrow(Y) != nrow(Covars)) { stop("Spectral data and covariate data should have the same number of rows.\n") } if (missing(minq)) { minq<- 1 } if (missing(maxq)) { maxq<- 2 } if (minq > maxq) { stop("minq can not be greater than maxq.\n") } if (maxq > ncol(Y)) { stop("maxq can not be greater than the number of variables.\n") } if(maxq > 10) { cat("Warning! Model fitting may become very slow for q > 10.\n\n") } if (epsilon > 1) { cat("Warning! Poor model covergence expected for epsilon > 1.\n") } if (epsilon < 0.0001) { cat("Warning! Model covergence becomes very slow for epsilon < 0.0001.\n") } V<-4000 N<-nrow(Y) p<-ncol(Y) L<-ncol(Covars) Covars<-standardize(Covars) Covars<-rbind(rep(1, N), t(Covars)) if(p > 375) { stop("Spectral dimension is too large for current computation capabilities. Reduce the number of spectral bins to less than 375.") } Sig_q<-rep(0,maxq) W_q<-list() Alpha_q<-list() U_q<-list() AIC<-rep(0,maxq) BIC<-rep(0,maxq) ll<-matrix(NA,maxq,V) lla<-matrix(NA,maxq,V) Y<-as.matrix(scaling(Y, type=scale)) Vp<-10 C2p<-p*3 muhat<-colMeans(Y) Yc<-sweep(Y,2,muhat,"-") S<-(1/nrow(Yc))*(t(Yc)%*%Yc) temp<-eigen(S) for(q in minq:maxq) { Sig<-abs((1/(p-q))*sum(temp$val[(q+1):p])) W<-temp$vec[,1:q] scores<-t(solve((t(W)%*%W) + (Sig*diag(q)))%*%t(W)%*%t(Yc)) Alpha<-matrix(0, q, L+1) for(i in 1:q) { if(L==1) { dat<-data.frame(cbind(scores[,i], as.matrix(Covars[2:(L+1),]))) }else{ dat<-data.frame(cbind(scores[,i], t(Covars[2:(L+1),]))) } Alpha[i,]<-glm(dat, family=gaussian)$coef } tol <- epsilon+1 v <- 0 while(tol>epsilon) { v <- v+1 M_1<-solve(t(W)%*%W + Sig*diag(q)) u<-M_1%*%(t(W)%*%t(Yc) + Sig*(Alpha%*%Covars)) Sum_Euu<-(nrow(Yc)*Sig*M_1) + (u%*%t(u)) Alpha<-(u%*%t(Covars))%*%solve(Covars%*%t(Covars)) W<-(t(Yc)%*%t(u))%*%solve(Sum_Euu) YWEu<-sum(diag(Yc%*%W%*%u)) MLESig<-(nrow(Yc)*sum(diag(S)) + sum(diag((t(W)%*%W)%*%Sum_Euu)) - 2*YWEu)/(p*nrow(Yc)) Sig<- c(((N*p)*MLESig + C2p)/((N*p) + Vp + 2)) Den<-rep(NA, nrow(Y)) Sigma<-W%*%t(W)+(Sig*diag(p)) mumat<-W%*%(Alpha%*%Covars) + matrix(muhat, nrow=p, ncol=N, byrow=FALSE) for(i in 1:nrow(Y)) { Den[i]<-(dmvnorm(Y[i,], mumat[,i], Sigma, log=TRUE)) } ll[q,v]<-sum(Den) converge<-Aitken(ll, lla, v, q, epsilon) tol<-converge[[1]] lla[q,v]<-converge[[2]] if(v == V) { cat("Algorithm stopped for q = ", q,". Maximum number of iterations exceeded.\n\n") tol<-epsilon-1 } } if(printout == TRUE) { cat("q = ", q, ": PPCCA converged.\n\n") } params<-(p*q) - (0.5*q*(q-1)) + (q*(L+1)) + 1 AIC[q]<-2*ll[q,v] - (2*params) BIC[q]<-2*ll[q,v] - params*log(N) U_q[[q]]<-u Sig_q[q]<-Sig W_q[[q]]<-W Alpha_q[[q]]<-Alpha } qopt<-c(minq:maxq)[BIC[minq:maxq]==max(BIC[minq:maxq])] Uopt<-t(U_q[[qopt]]) Wopt<-W_q[[qopt]] Sigopt<-Sig_q[qopt] Alphaopt<-Alpha_q[[qopt]] if(plot.BIC == TRUE) { plot(minq:maxq, BIC[minq:maxq], type="b", xlab="q", ylab="BIC", col.lab="blue") abline(v=qopt,col="red", lty=2) } list(q=qopt, sig=Sigopt, scores=Uopt, loadings=Wopt, coefficients=Alphaopt, BIC=BIC[minq:maxq], AIC=AIC[minq:maxq]) }
ggpairs(tips, columns = 1:2, params = c(corMethod = "pearson")) ggpairs(tips, columns = 1:2, params = c(corMethod = "kendall")) ggpairs(tips, columns = 1:2, params = c(corMethod = "pearson"), color = "sex") ggpairs(tips, columns = 1:2, params = c(corMethod = "kendall"), color = "sex") ggpairs(tips, columns = 1:2, upper = list( params = list(corMethod = "kendall"))) ggpairs(tips, columns = 1:2, upper = list( params = list(corMethod = "pearson"))) ggpairs(tips, columns = 1:2, upper = list( params = list(corMethod = "pearson")), color = "sex") ggpairs(tips, columns = 1:2, upper = list( params = list(corMethod = "kendall")), color = "sex") swM <- swiss colnames(swM) <- abbreviate(colnames(swiss), min=6) swM[1,2] <- swM[7,3] <- swM[25,5] <- NA (C. <- cov(swM)) try(cov(swM, use = "all")) (C2 <- cov(swM, use = "complete")) stopifnot(identical(C2, cov(swM, use = "na.or.complete"))) range(eigen(C2, only.values = TRUE)$values) (C3 <- cov(swM, use = "pairwise")) range(eigen(C3, only.values = TRUE)$values) cor(mtcars[, 1:3], method = "kendall", use = "complete")[2,3] 0.7915213 cor(mtcars[, 1:3], method = "kendall", use = "pairwise")[2,3] cor(mtcars[, 1:3], method = "kendall", use = "na.or")[2,3] cor(mtcars$cyl, mtcars$disp, method = "kendall", use = "complete") cor(mtcars$cyl, mtcars$disp, method = "kendall", use = "pairwise") cor(mtcars$cyl, mtcars$disp, method = "kendall", use = "na.or") ggally_cor(mtcars, aes(cyl, disp), corMethod = "kendall", use = "complete.obs")