code
stringlengths 1
13.8M
|
---|
test_that("Calibrating a unit matrix against a unit vector, with attributes", {
N <- 10
X <- diag(N)
d <- rep(1, N)
totals <- rep(1, N)
for (method in eval(formals(dss)$method)) {
g <- dss(X, d, totals, method = method, attributes = TRUE)
expect_equal(as.numeric(g), totals, info = method)
expect_true(attr(g, "success"))
expect_equal(length(g), N)
expect_type(g, "double")
expect_type(attr(g, "iterations"), "integer")
expect_lt(attr(g, "iterations"), 3)
expect_equal(attr(g, "method"), method)
if (method == "logit") {
expect_equal(attr(g, "bounds"), c(0, 10))
} else {
expect_null(attr(g, "bounds"))
}
}
})
test_that("Test non-convergence, with attributes", {
X <- matrix(rep(1, 4), nrow = 2)
d <- rep(1, 2)
totals <- 1:2
for (method in eval(formals(dss)$method)) {
expect_warning(
g <- dss(X, d, totals, method = method, attributes = TRUE),
NA
)
expect_false(attr(g, "success"))
expect_equal(length(g), 2)
expect_type(g, "double")
expect_type(attr(g, "iterations"), "integer")
}
}) |
context("test-get_poverty_lines")
test_that("test GBA", {
skip_if_offline()
canasta <- get_poverty_lines()
expect_equal(canasta$CBA[1], 1514.53)
expect_equal(canasta$ICE[1], 2.42)
expect_equal(canasta$CBT[1], 3663.66)
})
test_that("test regiones", {
skip_if_offline()
canasta <- get_poverty_lines(regional = TRUE)
expect_equal(canasta$CBA[1], 1224.64)
expect_equal(unique(canasta$region), c( "Cuyo" , "GBA", "Noreste", "Noroeste", "Pampeana", "Patagonia"))
}) |
current.xts_chob <- function() invisible(get(".xts_chob",.plotxtsEnv))
chart.lines <- function(x,
type="l",
lty=1,
lwd=2,
lend=1,
col=NULL,
up.col=NULL,
dn.col=NULL,
legend.loc=NULL,
...){
xx <- current.xts_chob()
switch(type,
h={
if (!is.null(up.col) && !is.null(dn.col)){
colors <- ifelse(x[,1] < 0, dn.col, up.col)
} else {
colors <- if (is.null(col)) 1 else col
}
if (length(colors) < nrow(x[,1]))
colors <- colors[1]
xcoords <- xx$get_xcoords(x[,1])
lines(xcoords,x[,1],lwd=2,col=colors,lend=lend,lty=1,type="h",...)
},
p=, l=, b=, c=, o=, s=, S=, n={
if(is.null(col))
col <- xx$Env$theme$col
if(length(lty) < NCOL(x)) lty <- rep(lty, length.out = NCOL(x))
if(length(lwd) < NCOL(x)) lwd <- rep(lwd, length.out = NCOL(x))
if(length(col) < NCOL(x)) col <- rep(col, length.out = NCOL(x))
for(i in NCOL(x):1) {
xcoords <- xx$get_xcoords(x[,i])
lines(xcoords, x[,i], type=type, lend=lend, col=col[i],
lty=lty[i], lwd=lwd[i], ...)
}
},
{
warning(paste(type, "not recognized. Type must be one of
'p', 'l', 'b, 'c', 'o', 'h', 's', 'S', 'n'.
plot.xts supports the same types as plot.default,
see ?plot for valid arguments for type"))
}
)
if(!is.null(legend.loc)){
lc <- legend.coords(legend.loc, xx$Env$xlim, range(x, na.rm=TRUE))
legend(x=lc$x, y=lc$y, legend=colnames(x), xjust=lc$xjust, yjust=lc$yjust,
fill=col[1:NCOL(x)], bty="n")
}
}
add.par.from.dots <- function(call., ...) {
stopifnot(is.call(call.))
parnames <- c("xlog","ylog","adj","ann","ask","bg","bty","cex","cex.axis",
"cex.lab","cex.main","cex.sub","cin","col","col.axis","col.lab",
"col.main","col.sub","cra","crt","csi","cxy","din","err",
"family", "fg","fig","fin","font","font.axis","font.lab",
"font.main","font.sub","lab","las","lend","lheight","ljoin",
"lmitre","lty","lwd","mai","mar","mex","mfcol","mfg","mfrow",
"mgp","mkh","new","oma","omd","omi","page","pch","pin","plt",
"ps","pty","smo","srt","tck","tcl","usr","xaxp","xaxs","xaxt",
"xpd","yaxp","yaxs","yaxt","ylbias")
dots <- list(...)
argnames <- names(dots)
pm <- match(argnames, parnames, nomatch = 0L)
call.list <- as.list(call.)
as.call(c(call.list, dots[pm > 0L]))
}
chart.lines.expression <- function(...) {
mc <- match.call()
mc[[1]] <- quote(chart.lines)
as.expression(mc)
}
isNullOrFalse <- function(x) {
is.null(x) || identical(x, FALSE)
}
plot.xts <- function(x,
y=NULL,
...,
subset="",
panels=NULL,
multi.panel=FALSE,
col=1:8,
up.col=NULL,
dn.col=NULL,
bg="
type="l",
lty=1,
lwd=2,
lend=1,
main=deparse(substitute(x)),
observation.based=FALSE,
ylim=NULL,
yaxis.same=TRUE,
yaxis.left=TRUE,
yaxis.right=TRUE,
major.ticks="auto",
minor.ticks=NULL,
grid.ticks.on="auto",
grid.ticks.lwd=1,
grid.ticks.lty=1,
grid.col="darkgray",
labels.col="
format.labels=TRUE,
grid2="
legend.loc=NULL,
extend.xaxis=FALSE){
if(is.numeric(multi.panel)){
multi.panel <- min(NCOL(x), multi.panel)
idx <- seq.int(1L, NCOL(x), 1L)
chunks <- split(idx, ceiling(seq_along(idx)/multi.panel))
if(length(lty) < ncol(x)) lty <- rep(lty, length.out = ncol(x))
if(length(lwd) < ncol(x)) lwd <- rep(lwd, length.out = ncol(x))
if(length(col) < ncol(x)) col <- rep(col, length.out = ncol(x))
if(!is.null(panels) && nchar(panels) > 0){
multi.panel <- FALSE
} else {
multi.panel <- TRUE
panels <- NULL
if(yaxis.same)
ylim <- range(x[subset], na.rm=TRUE)
}
for(i in 1:length(chunks)){
tmp <- chunks[[i]]
p <- plot.xts(x=x[,tmp],
y=y,
...=...,
subset=subset,
panels=panels,
multi.panel=multi.panel,
col=col[tmp],
up.col=up.col,
dn.col=dn.col,
bg=bg,
type=type,
lty=lty[tmp],
lwd=lwd[tmp],
lend=lend,
main=main,
observation.based=observation.based,
ylim=ylim,
yaxis.same=yaxis.same,
yaxis.left=yaxis.left,
yaxis.right=yaxis.right,
major.ticks=major.ticks,
minor.ticks=minor.ticks,
grid.ticks.on=grid.ticks.on,
grid.ticks.lwd=grid.ticks.lwd,
grid.ticks.lty=grid.ticks.lty,
grid.col=grid.col,
labels.col=labels.col,
format.labels=format.labels,
grid2=grid2,
legend.loc=legend.loc,
extend.xaxis=extend.xaxis)
if(i < length(chunks))
print(p)
}
return(p)
}
cs <- new.replot_xts()
if(is.null(major.ticks)) {
xs <- x[subset]
mt <- c(years=nyears(xs),
months=nmonths(xs),
days=ndays(xs))
major.ticks <- names(mt)[rev(which(mt < 30))[1]]
}
plot.call <- match.call(expand.dots=TRUE)
if(isTRUE(multi.panel)){
if(NCOL(x) == 1)
cs$set_asp(3)
else
cs$set_asp(NCOL(x))
} else {
cs$set_asp(3)
}
cs$Env$cex <- if (hasArg("cex")) eval.parent(plot.call$cex) else 0.6
cs$Env$mar <- if (hasArg("mar")) eval.parent(plot.call$mar) else c(3,2,0,2)
cs$Env$theme$up.col <- up.col
cs$Env$theme$dn.col <- dn.col
if(hasArg("colorset")) col <- eval.parent(plot.call$colorset)
if(length(col) < ncol(x)) col <- rep(col, length.out = ncol(x))
cs$Env$theme$col <- col
cs$Env$theme$rylab <- yaxis.right
cs$Env$theme$lylab <- yaxis.left
cs$Env$theme$bg <- bg
cs$Env$theme$grid <- grid.col
cs$Env$theme$grid2 <- grid2
cs$Env$theme$labels <- labels.col
cs$Env$theme$srt <- if (hasArg("srt")) eval.parent(plot.call$srt) else 0
cs$Env$theme$las <- if (hasArg("las")) eval.parent(plot.call$las) else 0
cs$Env$theme$cex.axis <- if (hasArg("cex.axis")) eval.parent(plot.call$cex.axis) else 0.9
cs$Env$format.labels <- format.labels
cs$Env$major.ticks <- if (isTRUE(major.ticks)) "auto" else major.ticks
cs$Env$minor.ticks <- if (isTRUE(minor.ticks)) "auto" else minor.ticks
cs$Env$grid.ticks.on <- if (isTRUE(grid.ticks.on)) "auto" else grid.ticks.on
cs$Env$grid.ticks.lwd <- grid.ticks.lwd
cs$Env$grid.ticks.lty <- grid.ticks.lty
cs$Env$type <- type
if(length(lty) < ncol(x)) lty <- rep(lty, length.out = ncol(x))
if(length(lwd) < ncol(x)) lwd <- rep(lwd, length.out = ncol(x))
cs$Env$lty <- lty
cs$Env$lwd <- lwd
cs$Env$lend <- lend
cs$Env$legend.loc <- legend.loc
cs$Env$extend.xaxis <- extend.xaxis
cs$Env$call_list <- list()
cs$Env$call_list[[1]] <- plot.call
cs$Env$observation.based <- observation.based
if(is.character(x))
stop("'x' must be a time-series object")
cs$Env$xdata <- x
cs$Env$xsubset <- subset
cs$Env$column_names <- colnames(x)
cs$Env$nobs <- NROW(cs$Env$xdata)
cs$Env$main <- main
cs$Env$ylab <- if (hasArg("ylab")) eval.parent(plot.call$ylab) else ""
if(is.null(ylim)){
if(isTRUE(multi.panel)){
if(yaxis.same){
yrange <- range(cs$Env$xdata[subset], na.rm=TRUE)
} else {
yrange <- range(cs$Env$xdata[,1][subset], na.rm=TRUE)
}
} else {
yrange <- range(cs$Env$xdata[subset], na.rm=TRUE)
}
if(yrange[1L] == yrange[2L]) {
if(yrange[1L] == 0) {
yrange <- yrange + c(-1, 1)
} else {
yrange <- c(0.8, 1.2) * yrange[1L]
}
}
cs$set_ylim(list(structure(yrange, fixed=FALSE)))
cs$Env$constant_ylim <- range(cs$Env$xdata[subset], na.rm=TRUE)
} else {
cs$set_ylim(list(structure(ylim, fixed=TRUE)))
cs$Env$constant_ylim <- ylim
}
cs$set_frame(1,FALSE)
if(!isNullOrFalse(grid.ticks.on)) {
cs$add(expression(xcoords <- get_xcoords(),
x_index <- get_xcoords(at_posix = TRUE),
atbt <- axTicksByTime(.xts(,x_index)[xsubset], ticks.on=grid.ticks.on),
segments(xcoords[atbt],
get_ylim()[[2]][1],
xcoords[atbt],
get_ylim()[[2]][2],
col=theme$grid, lwd=grid.ticks.lwd, lty=grid.ticks.lty)),
clip=FALSE, expr=TRUE)
}
cs$add_frame(0,ylim=c(0,1),asp=0.5)
cs$set_frame(1)
cs$add(expression(if(NROW(xdata[xsubset])<400)
{axis(1,at=get_xcoords(),labels=FALSE,col=theme$grid2,col.axis=theme$grid2,tcl=0.3)}),expr=TRUE)
if(!isNullOrFalse(major.ticks)) {
cs$add(expression(xcoords <- get_xcoords(),
x_index <- get_xcoords(at_posix = TRUE),
axt <- axTicksByTime(.xts(,x_index)[xsubset], ticks.on=major.ticks, format.labels=format.labels),
axis(1,
at=xcoords[axt],
labels=names(axt),
las=theme$las, lwd.ticks=1.5, mgp=c(3,1.5,0),
tcl=-0.4, cex.axis=theme$cex.axis,
col=theme$labels, col.axis=theme$labels)),
expr=TRUE)
}
if(!isNullOrFalse(minor.ticks)) {
cs$add(expression(xcoords <- get_xcoords(),
x_index <- get_xcoords(at_posix = TRUE),
axt <- axTicksByTime(.xts(,x_index)[xsubset], ticks.on=minor.ticks, format.labels=format.labels),
axis(1,
at=xcoords[axt],
labels=FALSE,
las=theme$las, lwd.ticks=0.75, mgp=c(3,1.5,0),
tcl=-0.4, cex.axis=theme$cex.axis,
col=theme$labels, col.axis=theme$labels)),
expr=TRUE)
}
text.exp <- c(expression(text(xlim[1],0.5,main,font=2,col=theme$labels,offset=0,cex=1.1,pos=4)),
expression(text(xlim[2],0.5,
paste(start(xdata[xsubset]),end(xdata[xsubset]),sep=" / "),
col=theme$labels,adj=c(0,0),pos=2)))
cs$add(text.exp, env=cs$Env, expr=TRUE)
cs$set_frame(2)
exp <- expression(segments(xlim[1],
y_grid_lines(get_ylim()[[2]]),
xlim[2],
y_grid_lines(get_ylim()[[2]]),
col=theme$grid, lwd=grid.ticks.lwd, lty=grid.ticks.lty))
if(yaxis.left){
exp <- c(exp,
expression(text(xlim[1], y_grid_lines(get_ylim()[[2]]),
noquote(format(y_grid_lines(get_ylim()[[2]]), justify="right")),
col=theme$labels, srt=theme$srt, offset=1, pos=2,
cex=theme$cex.axis, xpd=TRUE)))
}
if(yaxis.right){
exp <- c(exp,
expression(text(xlim[2], y_grid_lines(get_ylim()[[2]]),
noquote(format(y_grid_lines(get_ylim()[[2]]), justify="right")),
col=theme$labels, srt=theme$srt, offset=1, pos=4,
cex=theme$cex.axis, xpd=TRUE)))
}
exp <- c(exp, expression(title(ylab = ylab[1], mgp = c(1, 1, 0))))
cs$add(exp, env=cs$Env, expr=TRUE)
cs$set_frame(2)
if(isTRUE(multi.panel)){
lenv <- cs$new_environment()
lenv$xdata <- cs$Env$xdata[subset,1]
lenv$label <- colnames(cs$Env$xdata[,1])
lenv$type <- cs$Env$type
if(yaxis.same){
lenv$ylim <- cs$Env$constant_ylim
} else {
lenv$ylim <- range(cs$Env$xdata[subset,1], na.rm=TRUE)
}
exp <- quote(chart.lines(xdata,
type=type,
lty=lty,
lwd=lwd,
lend=lend,
col=theme$col,
up.col=theme$up.col,
dn.col=theme$dn.col,
legend.loc=legend.loc))
exp <- as.expression(add.par.from.dots(exp, ...))
cs$add(exp, env=lenv, expr=TRUE)
text.exp <- expression(text(x=get_xcoords()[2],
y=ylim[2]*0.9,
labels=label,
col=theme$labels,
adj=c(0,0),cex=1,offset=0,pos=4))
cs$add(text.exp,env=lenv,expr=TRUE)
if(NCOL(cs$Env$xdata) > 1){
for(i in 2:NCOL(cs$Env$xdata)){
lenv <- cs$new_environment()
lenv$xdata <- cs$Env$xdata[subset,i]
lenv$label <- cs$Env$column_names[i]
if(yaxis.same){
lenv$ylim <- cs$Env$constant_ylim
} else {
yrange <- range(cs$Env$xdata[subset,i], na.rm=TRUE)
if(all(yrange == 0)) yrange <- yrange + c(-1,1)
lenv$ylim <- yrange
}
lenv$type <- cs$Env$type
lenv$lty <- cs$Env$lty[i]
lenv$lwd <- cs$Env$lwd[i]
lenv$col <- cs$Env$theme$col[i]
cs$add_frame(ylim=c(0,1),asp=0.25)
cs$next_frame()
text.exp <- expression(text(x=xlim[1],
y=0.5,
labels="",
adj=c(0,0),cex=0.9,offset=0,pos=4))
cs$add(text.exp, env=lenv, expr=TRUE)
cs$add_frame(ylim=lenv$ylim, asp=NCOL(cs$Env$xdata), fixed=TRUE)
cs$next_frame()
exp <- quote(chart.lines(xdata[xsubset],
type=type,
lty=lty,
lwd=lwd,
lend=lend,
col=col,
up.col=theme$up.col,
dn.col=theme$dn.col,
legend.loc=legend.loc))
exp <- as.expression(add.par.from.dots(exp, ...))
exp <- c(exp,
expression(segments(xlim[1],
y_grid_lines(ylim),
xlim[2],
y_grid_lines(ylim),
col=theme$grid, lwd=grid.ticks.lwd, lty=grid.ticks.lty)),
expression(x_grid_lines(xdata[xsubset], grid.ticks.on, ylim)))
if(yaxis.left){
exp <- c(exp,
expression(text(xlim[1], y_grid_lines(ylim),
noquote(format(y_grid_lines(ylim),justify="right")),
col=theme$labels, srt=theme$srt, offset=1,
pos=2, cex=theme$cex.axis, xpd=TRUE)))
}
if(yaxis.right){
exp <- c(exp,
expression(text(xlim[2], y_grid_lines(ylim),
noquote(format(y_grid_lines(ylim),justify="right")),
col=theme$labels, srt=theme$srt, offset=1,
pos=4, cex=theme$cex.axis, xpd=TRUE)))
}
cs$add(exp,env=lenv,expr=TRUE,no.update=TRUE)
text.exp <- expression(text(x=get_xcoords()[2],
y=ylim[2]*0.9,
labels=label,
col=theme$labels,
adj=c(0,0),cex=1,offset=0,pos=4))
cs$add(text.exp,env=lenv,expr=TRUE)
}
}
} else {
if(type == "h" && NCOL(x) > 1)
warning("only the univariate series will be plotted")
exp <- quote(chart.lines(xdata[xsubset],
type=type,
lty=lty,
lwd=lwd,
lend=lend,
col=theme$col,
up.col=theme$up.col,
dn.col=theme$dn.col,
legend.loc=legend.loc))
exp <- as.expression(add.par.from.dots(exp, ...))
cs$add(exp, expr=TRUE)
assign(".xts_chob", cs, .plotxtsEnv)
}
if(!is.null(panels) && nchar(panels) > 0) {
panels <- parse(text=panels, srcfile=NULL)
for( p in 1:length(panels)) {
if(length(panels[p][[1]][-1]) > 0) {
cs <- eval(panels[p])
} else {
cs <- eval(panels[p])
}
}
}
assign(".xts_chob", cs, .plotxtsEnv)
cs
}
addPanel <- function(FUN, main="", on=NA, type="l", col=NULL, lty=1, lwd=1, pch=1, ...){
chob <- current.xts_chob()
xdata <- chob$Env$xdata
fun <- match.fun(FUN)
.formals <- formals(fun)
if("..." %in% names(.formals)) {
x <- try(do.call(fun, c(list(xdata), list(...)), quote=TRUE), silent=TRUE)
} else {
.formals <- modify.args(formals=.formals, arglist=list(...))
.formals[[1]] <- quote(xdata)
x <- try(do.call(fun, .formals), silent=TRUE)
}
if(inherits(x, "try-error")) {
message(paste("FUN function failed with message", x))
return(NULL)
}
addSeriesCall <- quote(addSeries(x = x, main = main, on = on,
type = type, col = col, lty = lty, lwd = lwd, pch = pch))
addSeriesCall <- add.par.from.dots(addSeriesCall, ...)
eval(addSeriesCall)
}
addSeries <- function(x, main="", on=NA, type="l", col=NULL, lty=1, lwd=1, pch=1, ...){
plot_object <- current.xts_chob()
lenv <- plot_object$new_environment()
lenv$main <- main
lenv$plot_lines <- function(x, ta, on, type, col, lty, lwd, pch, ...){
xdata <- x$Env$xdata
xsubset <- x$Env$xsubset
xDataSubset <- xdata[xsubset]
if(all(is.na(on))){
x$Env$x_grid_lines(xDataSubset, x$Env$grid.ticks.on, par("usr")[3:4])
}
if(xsubset == "") {
subset.range <- xsubset
} else {
fmt <- "%Y-%m-%d %H:%M:%OS6"
subset.range <- paste(format(start(xDataSubset), fmt),
format(end(xDataSubset), fmt), sep = "/")
}
xds <- .xts(, .index(xDataSubset), tzone=tzone(xdata))
ta.y <- merge(ta, xds)[subset.range]
if (!isTRUE(x$Env$extend.xaxis)) {
xi <- .index(ta.y)
xc <- .index(xds)
xsubset <- which(xi >= xc[1] & xi <= xc[length(xc)])
ta.y <- ta.y[xsubset]
}
chart.lines(ta.y, type=type, col=col, lty=lty, lwd=lwd, pch=pch, ...)
}
expargs <- substitute(alist(ta=x,
on=on,
type=type,
col=col,
lty=lty,
lwd=lwd,
pch=pch,
...))
expargs <- lapply(expargs[-1L], eval, parent.frame())
exp <- as.call(c(quote(plot_lines),
x = quote(current.xts_chob()),
expargs))
plot_object$add_call(match.call())
xdata <- plot_object$Env$xdata
xsubset <- plot_object$Env$xsubset
no.update <- FALSE
lenv$xdata <- merge(x,xdata,retside=c(TRUE,FALSE))
if(hasArg("ylim")) {
ylim <- eval.parent(substitute(alist(...))$ylim)
} else {
ylim <- range(lenv$xdata[xsubset], na.rm=TRUE)
if(all(ylim == 0)) ylim <- c(-1, 1)
}
lenv$ylim <- ylim
if(is.na(on[1])){
plot_object$add_frame(ylim=c(0,1),asp=0.25)
plot_object$next_frame()
text.exp <- expression(text(x=xlim[1], y=0.3, labels=main,
col=1,adj=c(0,0),cex=0.9,offset=0,pos=4))
plot_object$add(text.exp, env=lenv, expr=TRUE)
plot_object$add_frame(ylim=ylim,asp=1,fixed=TRUE)
plot_object$next_frame()
exp <- c(exp,
expression(segments(xlim[1],
y_grid_lines(ylim),
xlim[2],
y_grid_lines(ylim),
col=theme$grid, lwd=grid.ticks.lwd, lty=grid.ticks.lty)))
if(plot_object$Env$theme$lylab){
exp <- c(exp,
expression(text(xlim[1]-xstep*2/3-max(strwidth(y_grid_lines(ylim))),
y_grid_lines(ylim),
noquote(format(y_grid_lines(ylim),justify="right")),
col=theme$labels, srt=theme$srt, offset=0,
pos=4, cex=theme$cex.axis, xpd=TRUE)))
}
if(plot_object$Env$theme$rylab){
exp <- c(exp,
expression(text(xlim[2]+xstep*2/3,
y_grid_lines(ylim),
noquote(format(y_grid_lines(ylim),justify="right")),
col=theme$labels, srt=theme$srt, offset=0,
pos=4, cex=theme$cex.axis, xpd=TRUE)))
}
plot_object$add(exp,env=lenv,expr=TRUE,no.update=TRUE)
} else {
for(i in 1:length(on)) {
plot_object$set_frame(2*on[i])
plot_object$add(exp,env=lenv,expr=TRUE,no.update=no.update)
}
}
plot_object
}
lines.xts <- function(x, ..., main="", on=0, col=NULL, type="l", lty=1, lwd=1, pch=1){
if(!is.na(on[1]))
if(on[1] == 0) on[1] <- current_panel()
addSeries(x, ...=..., main=main, on=on, type=type, col=col, lty=lty, lwd=lwd, pch=pch)
}
points.xts <- function(x, ..., main="", on=0, col=NULL, pch=1){
if(!is.na(on[1]))
if(on[1] == 0) on[1] <- current_panel()
addSeries(x, ...=..., main=main, on=on, type="p", col=col, pch=pch)
}
addEventLines <- function(events, main="", on=0, lty=1, lwd=1, col=1, ...){
events <- try.xts(events)
if(!is.na(on[1]))
if(on[1] == 0) on[1] <- current_panel()
if(nrow(events) > 1){
if(length(lty) == 1) lty <- rep(lty, nrow(events))
if(length(lwd) == 1) lwd <- rep(lwd, nrow(events))
if(length(col) == 1) col <- rep(col, nrow(events))
}
plot_object <- current.xts_chob()
lenv <- plot_object$new_environment()
lenv$main <- main
lenv$plot_event_lines <- function(x, events, on, lty, lwd, col, ...){
xdata <- x$Env$xdata
xsubset <- x$Env$xsubset
if(all(is.na(on))){
x$Env$x_grid_lines(xdata[xsubset], x$Env$grid.ticks.on, par("usr")[3:4])
}
ypos <- x$Env$ylim[[2*on]][2]*0.995
subset.range <-
paste(format(start(xdata[xsubset]), "%Y%m%d %H:%M:%OS6"),
format(end(xdata[xsubset]), "%Y%m%d %H:%M:%OS6"),
sep = "/")
ta.adj <- merge(n=.xts(1:NROW(xdata[xsubset]),
.index(xdata[xsubset]),
tzone=tzone(xdata)),
.xts(rep(1, NROW(events)),
.index(events)))[subset.range]
ta.y <- ta.adj[,-1]
event.ind <- which(!is.na(ta.y))
abline(v=x$get_xcoords()[event.ind], col=col, lty=lty, lwd=lwd)
text(x=x$get_xcoords()[event.ind], y=ypos,
labels=as.character(events[,1]),
col=x$Env$theme$labels, ...)
}
expargs <- substitute(alist(events=events,
on=on,
lty=lty,
lwd=lwd,
col=col,
...))
expargs <- lapply(expargs[-1L], eval, parent.frame())
exp <- as.call(c(quote(plot_event_lines),
x = quote(current.xts_chob()),
expargs))
plot_object$add_call(match.call())
if(is.na(on[1])){
xdata <- plot_object$Env$xdata
xsubset <- plot_object$Env$xsubset
no.update <- FALSE
lenv$xdata <- xdata
ylim <- range(xdata[xsubset], na.rm=TRUE)
lenv$ylim <- ylim
plot_object$add_frame(ylim=c(0,1),asp=0.25)
plot_object$next_frame()
text.exp <- expression(text(x=xlim[1], y=0.3, labels=main,
col=1,adj=c(0,0),cex=0.9,offset=0,pos=4))
plot_object$add(text.exp, env=lenv, expr=TRUE)
plot_object$add_frame(ylim=ylim,asp=1,fixed=TRUE)
plot_object$next_frame()
exp <- c(exp,
expression(segments(xlim[1],
y_grid_lines(ylim),
xlim[2],
y_grid_lines(ylim),
col=theme$grid, lwd=grid.ticks.lwd, lty=grid.ticks.lty)))
if(plot_object$Env$theme$lylab){
exp <- c(exp,
expression(text(xlim[1]-xstep*2/3-max(strwidth(y_grid_lines(ylim))),
y_grid_lines(ylim),
noquote(format(y_grid_lines(ylim),justify="right")),
col=theme$labels, srt=theme$srt, offset=0,
pos=4, cex=theme$cex.axis, xpd=TRUE)))
}
if(plot_object$Env$theme$rylab){
exp <- c(exp,
expression(text(xlim[2]+xstep*2/3,
y_grid_lines(ylim),
noquote(format(y_grid_lines(ylim),justify="right")),
col=theme$labels, srt=theme$srt, offset=0,
pos=4, cex=theme$cex.axis, xpd=TRUE)))
}
plot_object$add(exp,env=lenv,expr=TRUE,no.update=TRUE)
} else {
for(i in 1:length(on)) {
no.update <- FALSE
plot_object$set_frame(2*on[i])
plot_object$add(exp,env=lenv,expr=TRUE,no.update=no.update)
}
}
plot_object
}
addLegend <- function(legend.loc="topright", legend.names=NULL, col=NULL, ncol=1, on=0, ...){
if(!is.na(on[1]))
if(on[1] == 0) on[1] <- current_panel()
plot_object <- current.xts_chob()
lenv <- plot_object$new_environment()
lenv$plot_legend <- function(x, legend.loc, legend.names, col, ncol, on, bty, text.col, ...){
if(is.na(on[1])){
yrange <- c(0, 1)
} else {
yrange <- x$Env$ylim[[2*on]]
}
if(is.null(ncol)){
ncol <- NCOL(x$Env$xdata)
}
if(is.null(col)){
col <- x$Env$theme$col[1:NCOL(x$Env$xdata)]
}
if(is.null(legend.names)){
legend.names <- x$Env$column_names
}
if(missing(bty)){
bty <- "n"
}
if(missing(text.col)){
text.col <- x$Env$theme$labels
}
lc <- legend.coords(legend.loc, x$Env$xlim, yrange)
legend(x=lc$x, y=lc$y, legend=legend.names, xjust=lc$xjust, yjust=lc$yjust,
ncol=ncol, col=col, bty=bty, text.col=text.col, ...)
}
plot_object$add_call(match.call())
expargs <- substitute(alist(legend.loc=legend.loc,
legend.names=legend.names,
col=col,
ncol=ncol,
on=on,
...))
expargs <- lapply(expargs[-1L], eval, parent.frame())
exp <- as.call(c(quote(plot_legend),
x = quote(current.xts_chob()),
expargs))
if(is.na(on[1])){
plot_object$add_frame(ylim=c(0,1),asp=0.25)
plot_object$next_frame()
text.exp <- expression(text(x=xlim[1], y=0.3, labels=main,
col=theme$labels,adj=c(0,0),cex=0.9,offset=0,pos=4))
plot_object$add(text.exp, env=lenv, expr=TRUE)
plot_object$add_frame(ylim=c(0,1),asp=0.8,fixed=TRUE)
plot_object$next_frame()
plot_object$add(exp,env=lenv,expr=TRUE,no.update=TRUE)
} else {
for(i in 1:length(on)) {
no.update <- FALSE
plot_object$set_frame(2*on[i])
plot_object$add(exp,env=lenv,expr=TRUE,no.update=no.update)
}
}
plot_object
}
legend.coords <- function(legend.loc, xrange, yrange) {
switch(legend.loc,
topleft = list(xjust = 0, yjust = 1, x = xrange[1], y = yrange[2]),
left = list(xjust = 0, yjust = 0.5, x = xrange[1], y = sum(yrange) / 2),
bottomleft = list(xjust = 0, yjust = 0, x = xrange[1], y = yrange[1]),
top = list(xjust = 0.5, yjust = 1, x = (xrange[1] + xrange[2]) / 2, y = yrange[2]),
center = list(xjust = 0.5, yjust = 0.5, x = (xrange[1] + xrange[2]) / 2, y = sum(yrange) / 2),
bottom = list(xjust = 0.5, yjust = 0, x = (xrange[1] + xrange[2]) / 2, y = yrange[1]),
topright = list(xjust = 1, yjust = 1, x = xrange[2], y = yrange[2]),
right = list(xjust = 1, yjust = 0.5, x = xrange[2], y = sum(yrange) / 2),
bottomright = list(xjust = 1, yjust = 0, x = xrange[2], y = yrange[1])
)
}
addPolygon <- function(x, y=NULL, main="", on=NA, col=NULL, ...){
x <- try.xts(x)
if(!is.null(y)) stop("y is not null")
if(ncol(x) > 2) warning("more than 2 columns detected in x, only the first 2 will be used")
plot_object <- current.xts_chob()
lenv <- plot_object$new_environment()
lenv$main <- main
lenv$plot_lines <- function(x, ta, on, col, ...){
xdata <- x$Env$xdata
xsubset <- x$Env$xsubset
if(is.null(col)) col <- x$Env$theme$col
if(all(is.na(on))){
x$Env$x_grid_lines(xdata[xsubset], x$Env$grid.ticks.on, par("usr")[3:4])
}
subset.range <- paste(start(xdata[xsubset]),
end(xdata[xsubset]),sep="/")
ta.adj <- merge(n=.xts(1:NROW(xdata[xsubset]),
.index(xdata[xsubset]),
tzone=tzone(xdata)),ta)[subset.range]
ta.y <- na.omit(ta.adj[,-1])
n <- NROW(ta.y)
xx <- .index(ta.y)[c(1,1:n,n:1)]
yu <- as.vector(coredata(ta.y[,1]))
yl <- as.vector(coredata(ta.y[,2]))
polygon(x=xx, y=c(yl[1], yu, rev(yl)), border=NA, col=col, ...)
}
expargs <- substitute(alist(ta=x,
col=col,
on=on,
...))
expargs <- lapply(expargs[-1L], eval, parent.frame())
exp <- as.call(c(quote(plot_lines),
x = quote(current.xts_chob()),
expargs))
plot_object$add_call(match.call())
xdata <- plot_object$Env$xdata
xsubset <- plot_object$Env$xsubset
no.update <- FALSE
lenv$xdata <- merge(x,xdata,retside=c(TRUE,FALSE))
if(hasArg("ylim")) {
ylim <- eval.parent(substitute(alist(...))$ylim)
} else {
ylim <- range(lenv$xdata[xsubset], na.rm=TRUE)
if(all(ylim == 0)) ylim <- c(-1, 1)
}
lenv$ylim <- ylim
if(is.na(on[1])){
plot_object$add_frame(ylim=c(0,1),asp=0.25)
plot_object$next_frame()
text.exp <- expression(text(x=xlim[1], y=0.3, labels=main,
col=1,adj=c(0,0),cex=0.9,offset=0,pos=4))
plot_object$add(text.exp, env=lenv, expr=TRUE)
plot_object$add_frame(ylim=ylim,asp=1,fixed=TRUE)
plot_object$next_frame()
exp <- c(exp,
expression(segments(xlim[1],
y_grid_lines(ylim),
xlim[2],
y_grid_lines(ylim),
col=theme$grid, lwd=grid.ticks.lwd, lty=grid.ticks.lty)))
if(plot_object$Env$theme$lylab){
exp <- c(exp,
expression(text(xlim[1], y_grid_lines(ylim),
noquote(format(y_grid_lines(ylim),justify="right")),
col=theme$labels, srt=theme$srt, offset=1,
pos=2, cex=theme$cex.axis, xpd=TRUE)))
}
if(plot_object$Env$theme$rylab){
exp <- c(exp,
expression(text(xlim[2], y_grid_lines(ylim),
noquote(format(y_grid_lines(ylim),justify="right")),
col=theme$labels, srt=theme$srt, offset=1,
pos=4, cex=theme$cex.axis, xpd=TRUE)))
}
plot_object$add(exp,env=lenv,expr=TRUE,no.update=TRUE)
} else {
for(i in 1:length(on)) {
plot_object$set_frame(2*on[i])
plot_object$add(exp,env=lenv,expr=TRUE,no.update=no.update)
}
}
plot_object
}
new.replot_xts <- function(frame=1,asp=1,xlim=c(1,10),ylim=list(structure(c(1,10),fixed=FALSE))) {
Env <- new.env()
Env$frame <- frame
Env$asp <- asp
Env$xlim <- xlim
Env$ylim <- ylim
Env$pad1 <- -0
Env$pad3 <- 0
if(length(asp) != length(ylim))
stop("'ylim' and 'asp' must be the same length")
set_frame <- function(frame,clip=TRUE) {
Env$frame <<- frame;
set_window(clip);
}
set_asp <- function(asp) { Env$asp <<- asp }
set_xlim <- function(xlim) { Env$xlim <<- xlim }
set_ylim <- function(ylim) { Env$ylim <<- ylim }
set_pad <- function(pad) { Env$pad1 <<- pad[1]; Env$pad3 <<- pad[2] }
reset_ylim <- function() {
ylim <- get_ylim()
ylim <- rep(list(c(Inf,-Inf)),length(ylim))
lapply(Env$actions,
function(x) {
frame <- attr(x, "frame")
if(frame > 0) {
lenv <- attr(x,"env")
if(is.list(lenv)) lenv <- lenv[[1]]
ylim[[frame]][1] <<- min(ylim[[frame]][1],range(na.omit(lenv$xdata[Env$xsubset]))[1],na.rm=TRUE)
ylim[[frame]][2] <<- max(ylim[[frame]][2],range(na.omit(lenv$xdata[Env$xsubset]))[2],na.rm=TRUE)
}
})
set_ylim(ylim)
}
get_frame <- function(frame) { Env$frame }
get_asp <- function(asp) { Env$asp }
get_xlim <- function(xlim) { Env$xlim }
get_ylim <- function(ylim) { Env$ylim }
scale_ranges <- function(frame, asp, ranges)
{
asp/asp[frame] * abs(diff(ranges[[frame]]))
}
set_window <- function(clip=TRUE,set=TRUE)
{
frame <- Env$frame
frame <- abs(frame)
asp <- Env$asp
xlim <- Env$xlim
ylim <- lapply(Env$ylim, function(x) structure(x + (diff(x) * c(Env$pad1, Env$pad3)),fixed=attr(x,"fixed")))
sr <- scale_ranges(frame, asp, ylim)
if(frame == 1) {
win <- list(xlim, c((ylim[[frame]][1] - sum(sr[-1])), ylim[[frame]][2]))
} else
if(frame == length(ylim)) {
win <- list(xlim, c(ylim[[frame]][1], ylim[[frame]][2] + sum(sr[-length(sr)])))
} else {
win <- list(xlim, c(ylim[[frame]][1] - sum(sr[-(1:frame)]),
ylim[[frame]][2] + sum(sr[-(frame:length(sr))])))
}
if(!set) return(win)
do.call("plot.window",win)
if(clip) clip(par("usr")[1],par("usr")[2],ylim[[frame]][1],ylim[[frame]][2])
}
get_actions <- function(frame) {
actions <- NULL
for(i in 1:length(Env$actions)) {
if(abs(attr(Env$actions[[i]],"frame"))==frame)
actions <- c(actions, Env$actions[i])
}
actions
}
get_xcoords <- function(xts_object = NULL, at_posix = FALSE) {
xcoords <- Env$xycoords$x
if (!is.null(xts_object)) {
xcoords <- merge(.xts(seq_along(xcoords), xcoords), xts_object,
fill = na.locf,
join = "right", retside = c(TRUE, FALSE))
if (!isTRUE(Env$extend.xaxis)) {
xc <- Env$xycoords$x
xi <- .index(xcoords)
xsubset <- which(xi >= xc[1] & xi <= xc[length(xc)])
xcoords <- xcoords[xsubset]
}
if(Env$observation.based && !at_posix) {
result <- drop(coredata(xcoords))
} else {
result <- .index(xcoords)
}
} else {
if(Env$observation.based && !at_posix) {
result <- seq_along(xcoords)
} else {
result <- xcoords
}
}
return(result)
}
add_frame <- function(after, ylim=c(0,0), asp=0, fixed=FALSE) {
if(missing(after))
after <- max(abs(sapply(Env$actions, function(x) attr(x,"frame"))))
for(i in 1:length(Env$actions)) {
cframe <- attr(Env$actions[[i]],"frame")
if(cframe > 0 && cframe > after)
attr(Env$actions[[i]], "frame") <- cframe+1L
if(cframe < 0 && cframe < -after)
attr(Env$actions[[i]], "frame") <- cframe-1L
}
Env$ylim <- append(Env$ylim,list(structure(ylim,fixed=fixed)),after)
Env$asp <- append(Env$asp,asp,after)
}
update_frames <- function(headers=TRUE) {
from_by <- ifelse(headers,2,1)
ylim <- get_ylim()
for(y in seq(from_by,length(ylim),by=from_by)) {
if(!attr(ylim[[y]],'fixed'))
ylim[[y]] <- structure(c(Inf,-Inf),fixed=FALSE)
}
update_frame <- function(x)
{
if(!is.null(attr(x,"no.update")) && attr(x, "no.update"))
return(NULL)
frame <- abs(attr(x, "frame"))
fixed <- attr(ylim[[frame]],'fixed')
if(frame %% from_by == 0 && !fixed) {
lenv <- attr(x,"env")
if(is.list(lenv)) lenv <- lenv[[1]]
lenv_data <- lenv$xdata
if(!is.null(lenv_data)) {
dat.range <- range(na.omit(lenv$xdata[Env$xsubset]))
min.tmp <- min(ylim[[frame]][1],dat.range,na.rm=TRUE)
max.tmp <- max(ylim[[frame]][2],dat.range,na.rm=TRUE)
ylim[[frame]] <<- structure(c(min.tmp,max.tmp),fixed=fixed)
}
}
}
lapply(Env$actions, update_frame)
set_ylim(ylim)
x_axis <- Env$xdata[Env$xsubset][,1]
update_xaxis <- function(action)
{
action_frame <- abs(attr(action, "frame"))
if (action_frame %% from_by == 0) {
lenv <- attr(action, "env")
if (is.list(lenv)) {
lenv <- lenv[[1]]
}
lenv_data <- lenv$xdata
if (!is.null(lenv_data)) {
new_x_axis <- merge(x_axis, .xts(, .index(lenv_data[Env$xsubset])))
if (isTRUE(Env$extend.xaxis)) {
x_axis <<- new_x_axis
} else {
ixc <- .index(new_x_axis)
xaxis_rng <- range(.index(x_axis), na.rm = TRUE)
x_axis <<- new_x_axis[ixc >= xaxis_rng[1L] & ixc <= xaxis_rng[2L],]
}
}
}
}
lapply(Env$actions, update_xaxis)
x_axis <- unique(.index(x_axis))
Env$xycoords <- xy.coords(x_axis, seq_along(x_axis))
if (Env$observation.based) {
Env$xlim <- c(1, length(get_xcoords()))
Env$xstep <- 1
} else {
Env$xlim <- range(get_xcoords(), na.rm = TRUE)
Env$xstep <- diff(get_xcoords()[1:2])
}
}
remove_frame <- function(frame) {
rm.frames <- NULL
max.frame <- max(abs(sapply(Env$actions, function(x) attr(x,"frame"))))
for(i in 1:length(Env$actions)) {
cframe <- attr(Env$actions[[i]],"frame")
if(abs(attr(Env$actions[[i]],"frame"))==frame)
rm.frames <- c(rm.frames, i)
if(cframe > 0 && cframe > frame) {
attr(Env$actions[[i]], "frame") <- cframe-1L
}
if(cframe < 0 && cframe < -frame) {
attr(Env$actions[[i]], "frame") <- cframe+1L
}
}
if(frame > max.frame) {
Env$frame <- max.frame
} else Env$frame <- max.frame-1
Env$ylim <- Env$ylim[-frame]
Env$asp <- Env$asp[-frame]
if(!is.null(rm.frames))
Env$actions <- Env$actions[-rm.frames]
}
next_frame <- function() {
set_frame(max(abs(sapply(Env$actions,function(x) attr(x,"frame"))))+1L)
}
Env$actions <- list()
add <- replot <- function(x,env=Env,expr=FALSE,clip=TRUE,...) {
if(!expr) {
x <- match.call()$x
}
a <- structure(x,frame=Env$frame,clip=clip,env=env,...)
Env$actions[[length(Env$actions)+1]] <<- a
}
subset <- function(x="") {
Env$xsubset <<- x
set_xlim(range(get_xcoords(), na.rm=TRUE))
ylim <- get_ylim()
for(y in seq(2,length(ylim),by=2)) {
if(!attr(ylim[[y]],'fixed'))
ylim[[y]] <- structure(c(Inf,-Inf),fixed=FALSE)
}
lapply(Env$actions,
function(x) {
frame <- abs(attr(x, "frame"))
fixed <- attr(ylim[[frame]],'fixed')
if(frame %% 2 == 0 && !fixed) {
lenv <- attr(x,"env")
if(is.list(lenv)) lenv <- lenv[[1]]
yrange <- range(lenv$xdata[Env$xsubset], na.rm=TRUE)
if(all(yrange == 0)) yrange <- yrange + c(-1,1)
min.tmp <- min(ylim[[frame]][1],yrange[1],na.rm=TRUE)
max.tmp <- max(ylim[[frame]][2],yrange[2],na.rm=TRUE)
ylim[[frame]] <<- structure(c(min.tmp,max.tmp),fixed=fixed)
}
})
set_ylim(ylim)
}
add_call <- function(call.) {
stopifnot(is.call(call.))
ncalls <- length(Env$call_list)
Env$call_list[[ncalls+1]] <- call.
}
replot_env <- new.env()
class(replot_env) <- c("replot_xts","environment")
replot_env$Env <- Env
replot_env$set_window <- set_window
replot_env$add <- add
replot_env$replot <- replot
replot_env$get_actions <- get_actions
replot_env$subset <- subset
replot_env$get_xcoords <- get_xcoords
replot_env$update_frames <- update_frames
replot_env$set_frame <- set_frame
replot_env$get_frame <- get_frame
replot_env$next_frame <- next_frame
replot_env$add_frame <- add_frame
replot_env$remove_frame <- remove_frame
replot_env$set_asp <- set_asp
replot_env$get_asp <- get_asp
replot_env$set_xlim <- set_xlim
replot_env$get_xlim <- get_xlim
replot_env$reset_ylim <- reset_ylim
replot_env$set_ylim <- set_ylim
replot_env$get_ylim <- get_ylim
replot_env$set_pad <- set_pad
replot_env$add_call <- add_call
replot_env$new_environment <- function() { new.env(TRUE, Env) }
replot_env$Env$y_grid_lines <- function(ylim) {
p <- pretty(ylim,5)
p[p > ylim[1] & p < ylim[2]]
}
replot_env$Env$x_grid_lines <- function(x, ticks.on, ylim)
{
if (isNullOrFalse(ticks.on)) {
invisible()
} else {
if (isTRUE(ticks.on)) ticks.on <- "auto"
xcoords <- get_xcoords(at_posix = TRUE)
atbt <- axTicksByTime(.xts(, xcoords), ticks.on = ticks.on)
segments(xcoords[atbt], ylim[1L],
xcoords[atbt], ylim[2L],
col = Env$theme$grid,
lwd = Env$grid.ticks.lwd,
lty = Env$grid.ticks.lty)
}
}
return(replot_env)
}
str.replot_xts <- function(x, ...) {
print(str(unclass(x)))
}
print.replot_xts <- function(x, ...) plot(x,...)
plot.replot_xts <- function(x, ...) {
obg <- par(bg = x$Env$theme$bg)
plot.new()
assign(".xts_chob",x,.plotxtsEnv)
ocex <- par(cex = if(.Device == "X11") x$Env$cex else x$Env$cex * 1.5)
omar <- par(mar = x$Env$mar)
oxpd <- par(xpd = FALSE)
usr <- par("usr")
last.frame <- x$get_frame()
x$update_frames()
is_underlay_action <- sapply(x$Env$actions, function(a) attr(a, "frame") < 0)
plot_action <- function(action)
{
x$set_frame(attr(action,"frame"),attr(action,"clip"))
env <- attr(action,"env")
if(is.list(env)) {
env <- unlist(lapply(env, function(x) eapply(x, eval)),recursive=FALSE)
}
eval(action, env)
}
for(a in x$Env$actions[ is_underlay_action]) {
plot_action(a)
}
for(a in x$Env$actions[!is_underlay_action]) {
plot_action(a)
}
x$set_frame(abs(last.frame),clip=FALSE)
do.call("clip", as.list(usr))
par(xpd = oxpd$xpd, cex = ocex$cex, mar = omar$mar, bg = obg$bg)
invisible(x$Env$actions)
}
actions <- function(obj) obj$Env$actions
chart_actions <- function() actions(current.xts_chob())
current_panel <- function() {
act <- chart_actions()
attr(act[[length(act)]], "frame") / 2
} |
word_cor <-
function(x, word, type = "dtm", method = "kendall", p = NULL, min = NULL){
infolocale <- localestart2()
on.exit(localeend2(infolocale))
if (identical(class(x)[1], "DocumentTermMatrix")){
truetype <- 1
all_word <- x$dimnames$Terms
} else if (identical(class(x)[1] , "TermDocumentMatrix")){
all_word <- x$dimnames$Terms
truetype <- 2
} else if (identical(class(x)[1], "matrix")){
if (!is_character_vector(type, len = 1))
stop ("When x is matrix, type must tell me its type: dtm or tdm.")
if (grepl("^d|^D", type)){
truetype <- 3
all_word <- colnames(x)
if (is.null(all_word))
stop ("colnames as words should not be NULL.")
} else if (grepl("^t|^T", type)){
truetype <- 4
all_word <- rownames(x)
if (is.null(all_word))
stop("rownames as words should not be NULL.")
} else {
stop ("When x is matrix, type must tell me its type: dtm or tdm.")
}
} else {
stop("x must be among DTM, TDM or matrix.")
}
stopifnot(method %in% c("pearson", "kendall", "spearman"))
if (!is.null(p))
stopifnot(is.numeric(p), length(p) == 1)
if (!is.null(min))
stopifnot(is.numeric(min), length(min) == 1)
word <- as.character2(word)
if (length(word) > 200)
stop("Argument word allows input of not more than 200 words.")
if (any(is.na(word)))
stop("Argument word should not have NA.")
all_word <- sort(all_word)
word <- intersect(word, all_word)
word <- sort(unique(word))
if (length(word) < 2)
stop("At least 2 words should be left.")
pos <- match(word, all_word)
if (truetype %in% c(1, 3)){
x <- x[, pos]
} else {
x <- t(x[pos, ])
}
nc <- ncol(x)
correlation <- matrix(NA, nrow = nc, ncol = nc)
pvalue <- matrix(NA, nrow = nc, ncol = nc)
if (truetype %in% c(3, 4)){
for (i in 1: nc){
for (j in 1: nc){
if (i > j){
cc <- stats::cor.test(x = x[, i], y = x[, j], method = method, exact = FALSE)
cc1 <- round(cc$estimate, 4)
correlation[i, j] <- cc1
correlation[j, i] <- cc1
cc2 <- round(cc$p.value, 4)
pvalue[i, j] <- cc2
pvalue[j, i] <- cc2
}
}
}
} else {
for (i in 1: nc){
ii <- as.numeric(as.matrix(x[, i]))
for (j in 1: nc){
jj <- as.numeric(as.matrix(x[, j]))
if (i > j){
cc <- stats::cor.test(x = ii, y = jj, method = method, exact = FALSE)
cc1 <- round(cc$estimate, 4)
correlation[i, j] <- cc1
correlation[j, i] <- cc1
cc2 <- round(cc$p.value, 4)
pvalue[i, j] <- cc2
pvalue[j, i] <- cc2
}
}
}
}
rownames(correlation) <- word
colnames(correlation) <- word
rownames(pvalue) <- word
colnames(pvalue) <- word
if (!is.null(p) & is.null(min)){
correlation[pvalue >= p] <- NA
}
if (!is.null(min) & is.null(p)){
correlation[abs(correlation) < min] <- NA
}
if (!is.null(min) & !is.null(p)){
hidethis1 <- pvalue >= p
hidethis2 <- abs(correlation) < min
correlation[hidethis1 | hidethis2] <- NA
}
return(list(corMatrix = correlation, pMatrix = pvalue))
}
|
"tteign" <-
function(covtau,nq,mdc=np-nq) {
if (missing(covtau)) messagena("covtau")
if (missing(nq)) messagena("nq")
np <- ncol(covtau)
xlmbda <- single(np)
iv <- integer(np)
sv <- single(np)
f.res <- .Fortran("tteignz",
covtau=to.single(covtau),
np=to.integer(np),
nq=to.integer(nq),
mdc=to.integer(mdc),
xlmbda=to.single(xlmbda),
iv=to.integer(iv),
sv=to.single(sv))
list(xlmbda=f.res$xlmbda)
} |
NULL
init_knitr_for_roxygen <- function() {
Sys.setenv(CLI_TICK_TIME = "100")
options(
cli.num_colors = 256L,
asciicast_cols = 70
)
proc <- .GlobalEnv$.knitr_asciicast_process
if (is.null(proc) || !proc$is_alive()) {
asciicast::init_knitr_engine(
startup = quote({
options(cli.width = 70)
options(cli.progress_show_after = 0)
options(cli.progress_clear = FALSE)
library(cli)
set.seed(1) }),
echo = TRUE,
echo_input = FALSE,
options = list(
asciicast_cols = 70,
asciicast_end_wait = 3
)
)
}
invisible("")
}
`%||%` <- function(l, r) if (is.null(l)) r else l
new_class <- function(class_name, ...) {
structure(as.environment(list(...)), class = class_name)
}
make_space <- function(len) {
strrep(" ", len)
}
strrep <- function(x, times) {
x <- as.character(x)
if (length(x) == 0L) return(x)
r <- .mapply(
function(x, times) {
if (is.na(x) || is.na(times)) return(NA_character_)
if (times <= 0L) return("")
paste0(replicate(times, x), collapse = "")
},
list(x = x, times = times),
MoreArgs = list()
)
res <- unlist(r, use.names = FALSE)
Encoding(res) <- Encoding(x)
res
}
is_latex_output <- function() {
if (!("knitr" %in% loadedNamespaces())) return(FALSE)
get("is_latex_output", asNamespace("knitr"))()
}
is_windows <- function() {
.Platform$OS.type == "windows"
}
apply_style <- function(text, style, bg = FALSE) {
if (identical(text, ""))
return(text)
if (is.function(style)) {
style(text)
} else if (is.character(style)) {
make_ansi_style(style, bg = bg)(text)
} else if (is.null(style)) {
text
} else {
stop("Not a colour name or ANSI style function", call. = FALSE)
}
}
vcapply <- function(X, FUN, ..., USE.NAMES = TRUE) {
vapply(X, FUN, FUN.VALUE = character(1), ..., USE.NAMES = USE.NAMES)
}
viapply <- function(X, FUN, ..., USE.NAMES = TRUE) {
vapply(X, FUN, FUN.VALUE = integer(1), ..., USE.NAMES = USE.NAMES)
}
vlapply <- function(X, FUN, ..., USE.NAMES = TRUE) {
vapply(X, FUN, FUN.VALUE = logical(1), ..., USE.NAMES = USE.NAMES)
}
rpad <- function(x, width = NULL) {
if (!length(x)) return(x)
w <- nchar(x, type = "width")
if (is.null(width)) width <- max(w)
paste0(x, strrep(" ", pmax(width - w, 0)))
}
lpad <- function(x, width = NULL) {
if (!length(x)) return(x)
w <- nchar(x, type = "width")
if (is.null(width)) width <- max(w)
paste0(strrep(" ", pmax(width - w, 0)), x)
}
tail_na <- function(x, n = 1) {
utils::tail(c(rep(NA, n), x), n)
}
dedent <- function(x, n = 2) {
first_n_char <- strsplit(ansi_substr(x, 1, n), "")[[1]]
n_space <- cumsum(first_n_char == " ")
d_n_space <- diff(c(0, n_space))
first_not_space <- utils::head(c(which(d_n_space == 0), n + 1), 1)
ansi_substr(x, first_not_space, nchar(x))
}
new_uuid <- (function() {
cnt <- 0
function() {
cnt <<- cnt + 1
paste0("cli-", clienv$pid, "-", cnt)
}
})()
na.omit <- function(x) {
if (is.atomic(x)) x[!is.na(x)] else x
}
last <- function(x) {
utils::tail(x, 1)[[1]]
}
str_tail <- function(x) {
substr(x, 2, nchar(x))
}
push <- function(l, el, name = NULL) {
c(l, structure(list(el), names = name))
}
try_silently <- function(expr) {
suppressWarnings(tryCatch(expr, error = function(x) x))
}
random_id <- local({
i <- 0
function() {
i <<- i + 1
paste0("FCkNXbE-", i)
}
})
random_marker <- "ImzV8dciA4cn4POI"
str_trim <- function(x) {
sub("^\\s+", "", sub("\\s+$", "", x))
}
has_asciicast_support <- function() {
tryCatch({
asNamespace("asciicast")$is_recording_supported() &&
asNamespace("asciicast")$is_svg_supported()
}, error = function(e) FALSE)
}
last_character <- function(x) {
substr(x, nchar(x), nchar(x))
}
first_character <- function(x) {
substr(x, 1, 1)
}
second_character <- function(x) {
substr(x, 2, 2)
}
is_alnum <- function(x, ok = "") {
grepl(paste0("^[[:alnum:]/_.", ok, "]*$"), x)
}
os_type <- function() {
.Platform$OS.type
}
leading_space <- function(x) {
sub("^([\\s\u00a0]*).*$", "\\1", x, perl = TRUE)
}
trailing_space <- function(x) {
sub("^.*[^\\s\u00a0]([\\s\u00a0]*)$", "\\1", x, perl = TRUE)
} |
UnormalizedSC <- function(W, K=5, flagDiagZero=FALSE, verbose = FALSE){
W <- checking.gram.similarityMatrix(W, flagDiagZero=flagDiagZero, verbose = verbose)
if(verbose){message("CALCULATION OF THE DEGREE MATRIX")}
D <- diag(rowSums(W))
if(verbose){print(D)}
if(verbose){message("CALCULATION OF THE LAPLACIAN MATRIX")}
L <- D - W
if(verbose){print(L)}
if(verbose){message("CALCULATION OF THE EIGEN VECTORS AND VALUES")}
U <- eigen(L)
if(verbose){
message("EIGEN VALUES = ")
print(U$values)
message("EIGEN VECTOR = ")
print(U$vector)
}
if(verbose){message(paste(K, "EIGEN VECTORS SELECTION"))}
V <- U$vectors[ , ((ncol(L)-K+1):ncol(L))]
if(verbose){print(V)}
if(verbose){message("CUTTING THE CLUSTER WITH KMEANS")}
cluster <- kmeans(V, K)$cluster
if(verbose){cat("cluster = ", cluster, "\n")}
out <- list(cluster = cluster, eigenVect = U$vector, eigenVal = U$values)
} |
dyplot.CalGR <- function(x, ...) {
if (!inherits(x, "CalGR")) {
stop("Non convenient data for x argument. Must be of class \"CalGR\"")
}
dyplot.default(x, ...)
} |
getSummary.crch <- function(obj, alpha = 0.05, ...)
{
memisc::setSummaryTemplate("crch" = c(
"Log-likelihood" = "($logLik:f
"AIC" = "($AIC:f
"BIC" = "($BIC:f
"N" = "($N:d)"
))
cf <- summary(obj)$coefficients
cval <- qnorm(1 - alpha/2)
for(i in seq_along(cf)) cf[[i]] <- cbind(cf[[i]],
cf[[i]][, 1] - cval * cf[[i]][, 2],
cf[[i]][, 1] + cval * cf[[i]][, 2])
nam <- unique(unlist(lapply(cf, rownames)))
acf <- array(dim = c(length(nam), 6, length(cf)),
dimnames = list(nam, c("est", "se", "stat", "p", "lwr", "upr"), names(cf)))
for(i in seq_along(cf)) acf[rownames(cf[[i]]), , i] <- cf[[i]]
ctr <- c(obj$contrasts$location, obj$contrasts$scale)
ctr <- ctr[!duplicated(names(ctr))]
xlev <- obj$levels$full
return(list(
coef = acf,
sumstat = c(
"N" = nobs(obj),
"logLik" = as.vector(logLik(obj)),
"AIC" = AIC(obj),
"BIC" = BIC(obj)
),
contrasts = ctr,
xlevels = xlev,
call = obj$call
))
} |
mvmr_egger_rjags <- function(object,
prior = "default",
betaprior = "",
sigmaprior = "",
orientate = 1,
n.chains = 3,
n.burn = 1000,
n.iter = 5000,
seed = NULL,
rho = 0.5,
...) {
if (!("mvmr_format" %in% class(object))) {
stop('The class of the data object must be "mvmr_format", please resave the object with the output of e.g. object <- mvmr_format(object).')
}
rjags_check()
if (orientate %in% 1:dim(object$beta.exposure)[2]) {
orientAte = orientate
} else {
orientAte = 1
}
orient <- sign(object$beta.exposure)[,orientAte]
Likelihood <-
"for (i in 1:N){
by[i] ~ dnorm(by.hat[i], tau[i])
by.hat[i] <- Pleiotropy + inprod(Estimate[], bx[i,])
tau[i] <- pow(byse[i] * sigma, -2)
}"
if (prior == "default" & betaprior == "") {
Priors <-"Pleiotropy ~ dnorm(0, 1E-3) \n
for (j in 1:K) {
Estimate[j] ~ dnorm(0,1E-3)
} \n sigma ~ dunif(.0001, 10)"
egger_model_string <-
paste0("model {", Likelihood, "\n\n", Priors, "\n\n}")
} else if (prior == "weak" & betaprior == "") {
Priors <- "Pleiotropy ~ dnorm(0, 1E-6) \n
for (j in 1:K) {
Estimate[j] ~ dnorm(0,1E-6)
} \n
sigma ~ dunif(.0001, 10)"
egger_model_string <- paste0("model {", Likelihood, "\n\n", Priors, "\n\n}")
} else if (prior == "pseudo" & betaprior == "") {
Priors <-"Pleiotropy ~ dnorm(0,1E-3) \n
for (j in 1:K) {
Estimate[j] ~ dt(0, 1, 1)} \n
invpsi ~ dgamma(1E-3, 1E-3)\n
sigma <- 1/invpsi"
egger_model_string <- paste0("model {", Likelihood, "\n\n", Priors, "\n\n}")
}
else if (prior == "joint" & betaprior == ""){
vcov_mat<-"
beta[1:l] ~ dmnorm.vcov(mu[], prec[ , ])\n
Pleiotropy <- beta[1]
for (i in 2:K){
Estimate[i] <- beta[i]
}
for (i in 1:l){
for (j in 1:l){
mu[i] <- 0
var[i] <- 1e4
sd <- sqrt(var)
prec[i,j] <- sd[i] * sd[j] * rho
prec[j,i] <- sd[j] * sd[i] * rho
prec[i,i] <- var[i]
}
}
sigma ~ dunif(.0001, 10)
rho <-"
Priors<- paste0(vcov_mat,rho)
egger_model_string <-
paste0("model {", Likelihood,"\n\n",Priors,"\n\n}")
}
else if (betaprior != "" & sigmaprior != "") {
part1 <-"Pleiotropy ~ dnorm(0, 1E-3) \n for (j in 1:K) {Estimate[j] ~ "
part2 <- "\n sigma ~ "
Priors <- paste0(part1,betaprior,"}",part2,sigmaprior)
egger_model_string <-
paste0("model {",Likelihood,"\n\n", Priors,"\n\n }")
} else if (betaprior != "" & sigmaprior == "") {
part1 <-"Pleiotropy ~ dnorm(0, 1E-3) \n for (j in 1:K) {Estimate[j] ~ "
part2 <- "\n sigma ~ dunif(.0001,10)"
Priors <- paste0(part1,betaprior,"}",part2)
egger_model_string <-
paste0("model {",Likelihood,"\n\n", Priors,"\n\n }")
} else if (betaprior == "" & sigmaprior != "") {
part1 <-"Pleiotropy ~ dnorm(0, 1E-3) \n for (j in 1:K) {
Estimate[j] ~ dnorm(0, 1E-6)} \n sigma ~"
Priors <- paste0(part1,sigmaprior)
egger_model_string <-
paste0("model {",Likelihood,"\n\n", Priors,"\n\n }")
}
if (!is.null(seed)) {
if (length(seed) != n.chains) {
stop('The length of the seed vector must be equal to the number of chains.')
}
initsopt <- list()
for (i in 1:n.chains) {
initsopt[[i]] <- list(.RNG.name = "base::Mersenne-Twister", .RNG.seed = seed[i])
}
} else {
initsopt <- NULL
}
egger_model <- rjags::jags.model(
textConnection(egger_model_string),
data = list(
N = length(object$beta.outcome),
K = ncol(object$beta.exposure),
by = orient * object$beta.outcome,
bx = orient * object$beta.exposure,
byse = object$se.outcome
),
n.chains = n.chains,
inits = initsopt,
quiet = TRUE,
...
)
update.jags <- utils::getFromNamespace("update.jags", "rjags")
update.jags(egger_model, n.iter = n.burn)
egger_samp <- rjags::coda.samples(
egger_model,
variable.names = c("Pleiotropy", "Estimate", "sigma"),
n.iter = n.iter
)
g <- egger_samp
p <- summary(egger_samp)
prior <- prior
niter <- n.iter
nburn <- n.burn
nchain <- n.chains
nsnps <- length(object$beta.outcome)
mcmciter <- n.iter + n.burn
avg.pleio <- p$statistics[ncol(object$beta.exposure) + 1, 1]
avg.pleiostd <- p$statistics[ncol(object$beta.exposure) + 1, 2]
avg.pleioLI <- p$quantiles[ncol(object$beta.exposure) + 1, 1]
avg.pleioM <- p$quantiles[ncol(object$beta.exposure) + 1, 3]
avg.pleioUI <- p$quantiles[ncol(object$beta.exposure) + 1, 5]
CI_avgpleio <- c(avg.pleioLI, avg.pleioM, avg.pleioUI)
sigma <- p$statistics[ncol(object$beta.exposure) + 2, 1]
causal.est <- p$statistics[1:ncol(object$beta.exposure), 1]
standard.dev <- p$statistics[1:ncol(object$beta.exposure), 2]
lower.credible_interval <- p$quantiles[1:ncol(object$beta.exposure), 1]
Median_interval <- p$quantiles[1:ncol(object$beta.exposure), 3]
Higher.credible_interval <- p$quantiles[1:ncol(object$beta.exposure), 5]
credible_interval <-
c(lower.credible_interval,
Median_interval,
Higher.credible_interval)
if (sigma < 1) {
warning("The mean of the sigma parameter, the residual standard deviation, we recommend refitting the model with sigma constrained to be >= 1.")
}
out <- list()
out$CausalEffect <- causal.est
out$StandardError <- standard.dev
out$lower.credible_interval <- lower.credible_interval
out$Median_interval <- Median_interval
out$Higher.credible_interval <- Higher.credible_interval
out$CredibleInterval <- credible_interval
out$AvgPleio <- avg.pleio
out$AvgPleioSD <- avg.pleiostd
out$AvgPleioCI <- CI_avgpleio
out$sigma <- sigma
out$samples <- g
out$priormethod <- prior
out$betaprior <- betaprior
out$sigmaprior <- sigmaprior
out$samplesize <- niter
out$burnin <- nburn
out$chains <- nchain
out$MCMC <- mcmciter
out$nsnps <- nsnps
out$Prior <- Priors
out$model <- egger_model_string
class(out) <- "mveggerjags"
return(out)
}
print.mveggerjags <- function(x, ...) {
estmat<- matrix(ncol = 5, nrow = length(x$CausalEffect))
for (i in 1:3){
estmat[i,] <- c(x$CausalEffect[i],x$StandardError[i],x$lower.credible_interval[i],
x$Median_interval[i],x$Higher.credible_interval[i])}
pleiomat<- c(x$AvgPleio,x$AvgPleioSD,x$AvgPleioCI)
outt <-
matrix(
rbind(pleiomat,estmat),
nrow = 1 + length(x$CausalEffect),
ncol = 5,
dimnames = list(
c("Avg Pleio", paste0("Causal Effect",1:length(x$CausalEffect))),
c("Estimate", "SD", "2.5%", "50%", "97.5%")
)
)
print(outt)
invisible(x)
}
summary.mveggerjags <- function(object, ...) {
out <- object
estmat<- matrix(ncol = 5, nrow = length(out$CausalEffect))
for (i in 1:3){
estmat[i,] <- c(out$CausalEffect[i],out$StandardError[i],out$lower.credible_interval[i],
out$Median_interval[i],out$Higher.credible_interval[i])}
pleiomat<- c(out$AvgPleio,out$AvgPleioSD,out$AvgPleioCI)
out1 <-
matrix(
rbind(pleiomat,estmat),
nrow = 1 + length(out$CausalEffect),
ncol = 5,
dimnames = list(
c("Avg Pleio", paste0("Causal Effect",1:length(out$CausalEffect))),
c("Estimate", "SD", "2.5%", "50%", "97.5%")
)
)
cat("Prior : \n\n", out$Prior, "\n\n")
cat("Estimation results:", "\n", "\n")
cat(DescTools::StrAlign("MCMC iterations = ", "\\r"),
out$MCMC,
"\n")
cat(DescTools::StrAlign("Burn in = ", "\\r"), out$burnin, "\n")
cat(DescTools::StrAlign("Sample size by chain = ", "\\r"),
out$samplesize,
"\n")
cat(DescTools::StrAlign("Number of Chains = ", "\\r"),
out$chains,
"\n")
cat(DescTools::StrAlign("Number of SNPs = ", "\\r"),
out$nsnps,
"\n",
"\n")
cat("Inflating Parameter:", out$sigma, "\n\n")
print(out1, ...)
} |
context("Randomized ID")
library(rsvd)
set.seed(1234)
atol_float64 <- 1e-8
m = 50
n = 30
k = 10
testMat <- matrix(runif(m*k), m, k)
testMat <- testMat %*% t(testMat)
testMat <- testMat[,1:n]
id_out <- rid(testMat)
testMat.re = id_out$C %*% id_out$Z
testthat::test_that("Test 1: Interpolative decomposition (column) k=NULL", {
testthat::expect_equal(testMat, testMat.re)
})
testMat.re = testMat[,id_out$idx] %*% id_out$Z
testthat::test_that("Test 2: Interpolative decomposition (column idx) k=NULL", {
testthat::expect_equal(testMat, testMat.re)
})
id_out <- rid(testMat, mode='row')
testMat.re = id_out$Z %*% id_out$R
testthat::test_that("Test 3: Interpolative decomposition (row) k=NULL", {
testthat::expect_equal(testMat, testMat.re)
})
testMat.re = id_out$Z %*% testMat[id_out$idx,]
testthat::test_that("Test 4: Interpolative decomposition (row idx) k=NULL", {
testthat::expect_equal(testMat, testMat.re)
})
id_out <- rid(testMat, k=k)
testMat.re = id_out$C %*% id_out$Z
testthat::test_that("Test 5: Interpolative decomposition (column) k=k", {
testthat::expect_equal(testMat, testMat.re)
})
testMat.re = testMat[,id_out$idx] %*% id_out$Z
testthat::test_that("Test 6: Interpolative decomposition (column idx) k=k", {
testthat::expect_equal(testMat, testMat.re)
})
id_out <- rid(testMat, mode='row', k=k)
testMat.re = id_out$Z %*% id_out$R
testthat::test_that("Test 7: Interpolative decomposition (row) k=k", {
testthat::expect_equal(testMat, testMat.re)
})
testMat.re = id_out$Z %*% testMat[id_out$idx,]
testthat::test_that("Test 8: Interpolative decomposition (row idx) k=k", {
testthat::expect_equal(testMat, testMat.re)
})
testMat <- matrix(runif(m*k), m, k) + 1i* matrix(runif(m*k), m, k)
testMat <- testMat %*% H(testMat)
testMat <- testMat[,1:n]
id_out <- rid(testMat, k=k)
testMat.re = id_out$C %*% id_out$Z
testthat::test_that("Test 9: Interpolative decomposition (column) k=k", {
testthat::expect_equal(testMat, testMat.re)
})
testMat.re = testMat[,id_out$idx] %*% id_out$Z
testthat::test_that("Test 10: Interpolative decomposition (column idx) k=k", {
testthat::expect_equal(testMat, testMat.re)
})
id_out <- rid(testMat, mode='row', k=k)
testMat.re = id_out$Z %*% id_out$R
testthat::test_that("Test 11: Interpolative decomposition (row) k=k", {
testthat::expect_equal(testMat, testMat.re)
})
testMat.re = id_out$Z %*% testMat[id_out$idx,]
testthat::test_that("Test 12: Interpolative decomposition (row idx) k=k", {
testthat::expect_equal(testMat, testMat.re)
}) |
test_that("'utf8_normalize' can reproduce Fig. 3", {
src <- c("\u212b", "\u2126")
nfd <- c("\u0041\u030a", "\u03a9")
nfc <- c("\u00c5", "\u03a9")
expect_equal(utf8_normalize(src), nfc)
expect_equal(utf8_normalize(nfd), nfc)
})
test_that("'utf8_normalize' can reproduce Fig. 4", {
src <- c("\u00c5", "\u00f4")
nfd <- c("\u0041\u030a", "\u006f\u0302")
nfc <- c("\u00c5", "\u00f4")
expect_equal(utf8_normalize(src), nfc)
expect_equal(utf8_normalize(nfd), nfc)
})
test_that("'utf8_normalize' can reproduce Fig. 5", {
src <- c("\u1e69", "\u1e0b\u0323", "\u0071\u0307\u0323")
nfd <- c("\u0073\u0323\u0307", "\u0064\u0323\u0307", "\u0071\u0323\u0307")
nfc <- c("\u1e69", "\u1e0d\u0307", "\u0071\u0323\u0307")
expect_equal(utf8_normalize(src), nfc)
expect_equal(utf8_normalize(nfd), nfc)
})
test_that("'utf8_normalize' can reproduce Fig. 6", {
src <- c("\ufb01", "\u0032\u2075", "\u1e9b\u0323")
nfd <- c("\ufb01", "\u0032\u2075", "\u017f\u0323\u0307")
nfc <- c("\ufb01", "\u0032\u2075", "\u1e9b\u0323")
nfkd <- c("\u0066\u0069", "\u0032\u0035", "\u0073\u0323\u0307")
nfkc <- c("\u0066\u0069", "\u0032\u0035", "\u1e69")
expect_equal(utf8_normalize(src), nfc)
expect_equal(utf8_normalize(nfd), nfc)
expect_equal(utf8_normalize(src, map_compat = TRUE), nfkc)
expect_equal(utf8_normalize(nfd, map_compat = TRUE), nfkc)
expect_equal(utf8_normalize(nfkd), nfkc)
})
test_that("'utf8_normalize' can normalize, case fold, and remove ignorables", {
src <- c("A", "\u00df", "\u1e9e", "\u1fc3", "\u200b")
nfkc_casefold <- c("a", "ss", "ss", "\u03b7\u03b9", "")
expect_equal(
utf8_normalize(src, map_case = TRUE, remove_ignorable = TRUE),
nfkc_casefold
)
})
test_that("'utf8_normalize' can map quotes", {
src <- c("\"", "'", "\u2018", "\u2019", "\u201c", "\u201d")
quotefold <- c("\"", "'", "'", "'", "\u201c", "\u201d")
expect_equal(utf8_normalize(src, map_quote = TRUE), quotefold)
})
test_that("'utf8_normalize' accepts NULL", {
expect_equal(utf8_normalize(NULL), NULL)
})
test_that("'utf8_normalize' accepts NA", {
expect_equal(utf8_normalize(NA_character_), NA_character_)
})
test_that("'utf8_normalize' can handle backslash", {
expect_equal(utf8_normalize("\\m"), "\\m")
}) |
library(tidyverse)
library(tidymodels)
library(SSLR)
context("Testing triTraining")
source("wine.R")
rf <- rand_forest(trees = 100, mode = "classification") %>%
set_engine("randomForest")
m <- triTraining(learner = rf)
test_that(
desc = "triTraining model",
code = {
expect_is(m,"model_sslr")
}
)
model <- m %>% fit(Wine ~ ., data = wine$train)
test_that(
desc = "triTraining fit",
code = {
expect_is(model,"model_sslr_fitted")
expect_equal(model$model$mode,"classification")
}
)
test_that(
desc = "triTraining predictions data frame",
code = {
predictions_frame <- predict(model,wine$test)
expect_is(predictions_frame,"data.frame")
}
)
test_that(
desc = "triTraining predictions factor",
code = {
predictions_factor <- predict(model,wine$test, type = "raw")
expect_is(predictions_factor,"factor")
expect_equal(length(predictions_factor),nrow(wine$test))
}
) |
context("Function as_survey design works.")
df <- data.frame(id = 1:5, strata = c(2, 2, 3, 3, 3), x = 11:15)
test_that("as_survey_design works with both tbl_dfs and data.frames",
expect_equal(df %>%
as_survey_design(ids = id, strata = strata),
df %>%
tibble::as_tibble() %>%
as_survey_design(ids = id, strata = strata)))
test_that("as_survey_design_ works with character",
expect_equal(df %>%
as_survey_design_(ids = "id", strata = "strata"),
df %>%
as_survey_design(ids = id, strata = strata)))
test_that("as_survey_design_ works with formulas",
expect_equal(df %>%
as_survey_design_(ids = ~id, strata = ~strata),
df %>%
as_survey_design(ids = id, strata = strata))) |
summary.timeDate <-
function(object, ...)
{
x = object
cat( "Object: ", as.character(match.call())[2])
cat("\nStart Record: ", as.character(start(x)))
cat("\nEnd Record: ", as.character(end(x)))
cat("\nObservations: ", length(as.character(x)))
cat("\nFormat: ", x@format)
cat("\nFinCenter: ", x@FinCenter)
cat("\n")
invisible(object)
} |
plot.propagate <- function(x, logx = FALSE, ...)
{
object <- x
par(mar = c(4, 4, 3, 1))
resSIM <- object$resSIM
FILTER <- quantile(resSIM, c(0.001, 0.999), na.rm = TRUE)
plotDATA <- resSIM[resSIM > FILTER[1] & resSIM < FILTER[2]]
plotDATA <- plotDATA[!is.na(plotDATA)]
if (logx) plotDATA <- suppressWarnings(log(plotDATA))
HIST <- hist(plotDATA, col = "dodgerblue3", breaks = 100,
main = NULL, cex.main = 1, freq = FALSE, xlab = "Bin", ylab = "Density", ...)
DENS <- density(plotDATA)
lines(DENS, col = "red3", lwd = 3)
title(main = paste("Histogram of Monte Carlo simulation results with density curve (red),\n",
(1 - object$alpha) * 100, "% confidence interval (black), median (orange) and mean (green)", sep = ""), cex.main = 1)
abline(v = object$sim[c(5, 6)], col = "black", lwd = 3)
abline(v = object$sim[3], col = "darkorange", lwd = 3, lty = 1)
abline(v = object$sim[1], col = "green3", lwd = 3, lty = 1)
}
|
coef.aidsEst <- function( object, ... ) {
result <- list()
result$alpha0 <- object$coef$alpha0
result$alpha <- object$coef$alpha
result$beta <- object$coef$beta
result$gamma <- object$coef$gamma
result$delta <- object$coef$delta
class( result ) <- "coef.aidsEst"
return( result )
} |
if(require("suppdata") & require("testthat")){
context("RSBP")
test_that("'Proceedings of the royal society Biology' (RSBP) works", {
skip_on_cran()
expect_true(file.exists(suppdata("10.1098/rspb.2015.0338", vol = 282,
issue = 1811, 1)))
})
test_that("'Proceedings of the royal society Biology' (RSBP) fails for character SI info", {
skip_on_cran()
expect_error(suppdata("10.1098/rspb.2015.0338", vol = 282, issue = 1811, "99"), "numeric SI info")
})
} |
adversarial_debiasing <- function(unprivileged_groups, privileged_groups, scope_name='current', sess=tf$compat$v1$Session(),
seed=NULL, adversary_loss_weight=0.1, num_epochs=50, batch_size=128,
classifier_num_hidden_units=200, debias=TRUE) {
unprivileged_dict <- dict_fn(unprivileged_groups)
privileged_dict <- dict_fn(privileged_groups)
ad <- in_algo$AdversarialDebiasing(unprivileged_dict, privileged_dict, scope_name=scope_name, sess=sess)
return (ad)
} |
print.summary.lcpm<-function(x,...){
cat("Call:\n")
print(x$call)
cat("\n")
printCoefmat(x$coefficients, P.values = TRUE, has.Pvalue = TRUE)
cat("\n")
cat("loglikelihood: ",x$loglik)
cat("\n")
if(x$boundaryissue){cat("WARNING: MLE possibly on a boundary")
cat("\n")}
cat("Score Test of Proportionality: ")
cat("Chisq test statistic ", x$proptest, " with ", x$propdf, " degrees of freedom and p-value ", x$propval)
cat("\n")
} |
library(metaplotr)
rm(list = ls())
attach(FergusonBrannick2012)
crosshairs(pub_z, dis_z, pub_z_se, dis_z_se)
crosshairs(pub_z, dis_z, pub_z_se, dis_z_se, confint = .7)
crosshairs(pub_z, dis_z, pub_z_se, dis_z_se, confint = .95)
crosshairs(pub_z, dis_z, pub_z_se, dis_z_se, confint = .3)
crosshairs(pub_z, dis_z, pub_z_se, dis_z_se, whis_on = FALSE)
crosshairs(pub_z, dis_z, pub_z_se, dis_z_se,
main_lab = 'Published vs. Dissertation Effect Sizes',
x_lab = 'Published Studies',
y_lab = 'Dissertations')
attach(Sweeney2015)
crosshairs(inten_d, beh_d, inten_se, beh_se,
main_lab = 'Sweeney (2015) Data',
x_lab = 'Intentions',
y_lab = 'Behaviors',
annotate = TRUE)
crosshairs(inten_d, beh_d, inten_se, beh_se,
main_lab = 'Sweeney (2015) Data',
x_lab = 'Intentions',
y_lab = 'Behaviors',
annotate = TRUE,
bxplts = FALSE)
attach(GenderDiff02)
crosshairs(men_z, women_z, men_se, women_se,
main_lab = 'Ali et al. Psychopathology and Parental Acceptance',
x_lab = 'Men',
y_lab = 'Women',
mdrtr = region,
mdrtr_lab = 'Region',
mdrtr_lab_pos = c(.1, .5))
attach(McLeod2007)
library(metafor)
res1 <- rma(yi = z, vi = var, method = 'DL', data = McLeod2007)
res2 <- blup(res1)
head(res2, 15)
x1 <- McLeod2007$z
se.x1 <- sqrt(McLeod2007$var)
y1 <- res2$pred
se.y1 <- res2$se
crosshairs(x1, y1, se.x1, se.y1,
main_lab = 'Effects of Empirical Bayes Estimation',
x_lab = 'Parenting and Depression Correlations',
y_lab = 'Shrunken Estimates',
annotate = TRUE,
whis_on = FALSE) |
MultipleChoice <- function(x,y,tvectors=tvectors,breakdown=FALSE){
cos <- vector(length=length(y))
names(cos) <- y
for(j in 1:length(y)){value <- costring(x,y[j],
tvectors=tvectors,
breakdown=breakdown)
if(is.na(value)){cos[j] <- -2}
if(!is.na(value)){cos[j] <- value}
}
mc <- names(cos)[which(cos == max(cos))]
return(mc)
} |
verify_length <- function(val) {
year <- substr(val, 12, 13)
len <- ifelse(year == "20", 15, 13)
wrong_len <- which(nchar(val) != len)
if (length(wrong_len) > 0) {
examples <- paste(utils::head(val[wrong_len], 10), sep = ", ")
tip <- "\n\nDid you remove the check digits?"
stop(paste0("Wrong lengths: ", examples, "...", tip))
}
}
carf_calc_dig <- function(id, build = FALSE, verify = TRUE) {
val <- gsub("[^0-9]", "", id)
val <- substr(val, 1, nchar(val))
if (verify) verify_length(val)
calc_dv_one <- function(val) {
len <- nchar(val)
index <- seq(len + 1, 2)
all_values <- as.numeric(unlist(strsplit(val, "")))
weighted_sum <- sum(all_values * index)
dv <- 11 - (weighted_sum %% 11)
if (dv == 10) dv <- 0
if (dv == 11) dv <- 1
as.character(dv)
}
dv1 <- purrr::map_chr(val, calc_dv_one)
dv2 <- purrr::map_chr(paste0(val, dv1), calc_dv_one)
dv <- paste0(dv1, dv2)
if (build) {
paste0(val, dv)
} else {
dv
}
}
carf_check_dig <- function(id) {
val <- gsub("[^0-9]", "", id)
len <- nchar(val)
actual_dv <- substr(val, len - 1, len)
calc_dv <- carf_calc_dig(substr(val, 1, len - 2), verify = FALSE)
actual_dv == calc_dv
}
carf_build_id <- function(id) {
val <- gsub("[^0-9]", "", id)
if (all(nchar(val) %in% c(15, 17))) {
mask <- "([0-9]{5})([0-9]{6})([0-9]{2}|[0-9]{4})([0-9]{2}$)"
pattern <- "\\1.\\2/\\3-\\4"
gsub(mask, pattern, val)
} else {
stop("Length must be 15 or 17.")
}
} |
res <- confmatrix(c(1,1,1,0), c(1,1,0,0))
test_that("Test confMtrix dimention!", {
expect_equal(dim(res$table), c(2,2))
})
test_that("Test confMtrix right value?", {
expect_true(res$table[4] == 2)
})
test_that("Test confMtrix class", {
expect_equal(class(res), "confusionMatrix")
}) |
makeRLearner.regr.LiblineaRL2L1SVR = function() {
makeRLearnerRegr(
cl = "regr.LiblineaRL2L1SVR",
package = "LiblineaR",
par.set = makeParamSet(
makeNumericLearnerParam(id = "cost", default = 1, lower = 0),
makeNumericLearnerParam(id = "epsilon", default = 0.1, lower = 0),
makeNumericLearnerParam(id = "svr_eps", lower = 0),
makeLogicalLearnerParam(id = "bias", default = TRUE),
makeIntegerLearnerParam(id = "cross", default = 0L, lower = 0L, tunable = FALSE),
makeLogicalLearnerParam(id = "verbose", default = FALSE, tunable = FALSE)
),
par.vals = list(svr_eps = 0.1),
properties = "numerics",
name = "L2-Regularized L1-Loss Support Vector Regression",
short.name = "liblinl2l1svr",
note = "Parameter `svr_eps` has been set to `0.1` by default.",
callees = "LiblineaR"
)
}
trainLearner.regr.LiblineaRL2L1SVR = function(.learner, .task, .subset, .weights = NULL, ...) {
d = getTaskData(.task, .subset, target.extra = TRUE)
LiblineaR::LiblineaR(data = d$data, target = d$target, type = 13L, ...)
}
predictLearner.regr.LiblineaRL2L1SVR = function(.learner, .model, .newdata, ...) {
predict(.model$learner.model, newx = .newdata, ...)$predictions
} |
set_edge_attr_to_display <- function(graph,
attr = NULL,
edges = NULL,
default = "label") {
time_function_start <- Sys.time()
fcn_name <- get_calling_fcn()
if (graph_object_valid(graph) == FALSE) {
emit_error(
fcn_name = fcn_name,
reasons = "The graph object is not valid")
}
if (graph_contains_edges(graph) == FALSE) {
emit_error(
fcn_name = fcn_name,
reasons = "The graph contains no edges")
}
attr <-
rlang::enquo(attr) %>% rlang::get_expr() %>% as.character()
if (attr == "NULL") {
attr <- NULL
}
edf <- graph$edges_df
if (is.null(edges)) {
edges <- get_edge_ids(graph)
}
if (!any(edges %in% edf$id)) {
emit_error(
fcn_name = fcn_name,
reasons = "One or more edge ID values in `edges` are not present in the graph")
}
if (!is.null(attr)) {
if (!(attr %in% colnames(edf))) {
emit_error(
fcn_name = fcn_name,
reasons = "The edge attribute given in `attr` is not in the graph's edf")
}
}
if (!("display" %in% colnames(edf))) {
edf <-
edf %>%
dplyr::mutate(display = as.character(default))
}
if (!is.null(attr)) {
attr_to_display <-
dplyr::tibble(
id = as.integer(edges),
display = as.character(attr))
} else if (is.null(attr)) {
attr_to_display <-
dplyr::tibble(
id = as.integer(edges),
display = as.character("is_na"))
}
edf <-
edf %>%
dplyr::left_join(attr_to_display, by = "id")
x_col <- which(grepl("\\.x$", colnames(edf)))
y_col <- which(grepl("\\.y$", colnames(edf)))
if (!is.null(attr)) {
display_col <-
dplyr::coalesce(edf[, y_col], edf[, x_col]) %>%
as.data.frame(stringsAsFactors = FALSE)
} else if (is.null(attr)) {
display_col <-
dplyr::coalesce(edf[, y_col], edf[, x_col])
display_col <-
dplyr::case_when(
display_col == "is_na" ~ as.character(NA),
TRUE ~ display_col) %>%
as.data.frame(stringsAsFactors = FALSE)
}
colnames(display_col)[1] <- "display"
edf <- edf[-which(grepl("\\.x$", colnames(edf)))]
edf <- edf[-which(grepl("\\.y$", colnames(edf)))]
edf <-
dplyr::bind_cols(edf, display_col) %>%
dplyr::select(
id, from, to, rel, display, dplyr::everything())
graph$edges_df <- edf
graph$graph_log <-
add_action_to_log(
graph_log = graph$graph_log,
version_id = nrow(graph$graph_log) + 1,
function_used = fcn_name,
time_modified = time_function_start,
duration = graph_function_duration(time_function_start),
nodes = nrow(graph$nodes_df),
edges = nrow(graph$edges_df))
if (graph$graph_info$write_backups) {
save_graph_as_rds(graph = graph)
}
graph
} |
.InitClassUnion <- function(where) {
setClass("ClassUnionRepresentation", "classRepresentation",
validity =function(object) {
if(isTRUE(object@virtual) && length(object@slots)==0 &&
is.null(object@prototype))
TRUE
else
"Class must be an empty virtual class with NULL prototype"
}, where = where)
setClassUnion("OptionalFunction", c("function", "NULL"), where)
setClassUnion("PossibleMethod", c("function", "MethodDefinition"), where)
clList <- c("ClassUnionRepresentation", "OptionalFunction",
"PossibleMethod")
assign(".SealedClasses", c(get(".SealedClasses", where), clList), where)
}
setClassUnion <- function(name, members = character(), where = topenv(parent.frame())) {
if(length(members)>0) {
membersDefined <- sapply(members, isClass, where = as.environment(where))
if(!all(membersDefined))
stop(gettextf("the member classes must be defined: not true of %s",
paste(.dQ(as(members[!membersDefined], "character")), collapse=", ")), domain = NA)
}
def <- new("ClassUnionRepresentation",
makeClassRepresentation(name, package = getPackageName(where), where = where))
prev <- getClassDef(name, where = where)
value <- setClass(name, def, where = where)
failed <- character()
hasNull <- match("NULL", members, 0)
if(hasNull)
members <- c("NULL", members[-hasNull])
for(what in members) {
if(is(try(setIs(what, name, where = where)), "try-error")) {
if(!is.character(what))
what <- getClass(what, TRUE, where)@className
failed <- c(failed, what)
}
}
if(length(failed)>0) {
if(is.null(prev))
try(removeClass(name, where = where))
else
try(setClass(name, prev, where = where))
stop(gettextf("unable to create union class: could not set members %s",
paste(.dQ(failed), collapse=", ")), domain = NA)
}
invisible(value)
}
isClassUnion <- function(Class) {
if(is.character(Class))
Class <- getClass(Class, TRUE)
extends(class(Class), "ClassUnionRepresentation")
} |
NULL
expfInit <- function(mCall, LHS, data, ...){
xy <- sortedXyData(mCall[["x"]], LHS, data)
if(nrow(xy) < 3){
stop("Too few distinct input values to fit an exponential")
}
if(any(xy[,"y"] < 0)) stop("negative values in y are not allowed.")
fit <- try(stats::lm(log(xy[,"y"]) ~ xy[,"x"], na.action = "na.omit"), silent = TRUE)
if(class(fit) == "try-error"){
a <- xy[1,"y"]
c <- (xy[nrow(xy),"y"] - xy[1,"y"])/(xy[nrow(xy),"x"] - xy[1,"x"])
}else{
a <- exp(coef(fit)[1])
c <- coef(fit)[2]
}
value <- c(a, c)
names(value) <- mCall[c("a","c")]
value
}
expf <- function(x, a, c){
.value <- a * exp(c * x)
.exp1 <- exp(c * x)
.exp2 <- a * (.exp1 * x)
.actualArgs <- as.list(match.call()[c("a","c")])
if (all(unlist(lapply(.actualArgs, is.name)))) {
.grad <- array(0, c(length(.value), 2L), list(NULL, c("a", "c")))
.grad[, "a"] <- .exp1
.grad[, "c"] <- .exp2
dimnames(.grad) <- list(NULL, .actualArgs)
attr(.value, "gradient") <- .grad
}
.value
}
SSexpf <- selfStart(expf, initial = expfInit, c("a", "c")) |
test.distCheck <-
function()
{
NA
return()
} |
get_starred <- function(stoken, id = NULL){
dataRaw <- get_basic(url_segment(id=id, request="starred"), stoken)
return(dataRaw)
} |
search <- function(database, name = NULL) {
if (is.null(name)) {
name <- prompt_string(
"Which do you want to search for?:",
allowed = "A-Za-z0-9-_"
)
}
matches <- search_name(database, name)
if (length(matches) == 1) {
usethis::ui_done("Found one matching tool")
cat("\n")
database$Tools[[matches]]
} else if (length(matches) > 1) {
usethis::ui_done(glue::glue(
"Found {usethis::ui_value(length(matches))} possible tools: ",
"{usethis::ui_value(matches)}"
))
match <- prompt_menu("Which tool would you like to display?", matches)
cat("\n")
database$Tools[[match]]
} else {
usethis::ui_done("No matches found!")
}
}
search_name <- function(database, name) {
matches <- stringdist::stringsim(
tolower(name),
tolower(names(database$Tools)),
method = "jw", p = 0.1
) > 0.9
matches_names <- names(database$Tools)[matches]
return(matches_names)
} |
IRT.se <- function (object, ...)
{
UseMethod("IRT.se")
} |
NULL
generate_regional_trends <- function(indices = NULL,
Min_year = NULL,
Max_year = NULL,
quantiles = c(0.025,0.05,0.25,0.75,0.95,0.975),
slope = FALSE,
prob_decrease = NULL,
prob_increase = NULL)
{
.Deprecated(new = "generate_trends",
msg = paste("generate_regional_trends is deprecated in favour of generate_trends()"))
if (is.null(indices))
{
stop("No indices supplied to generate_regional_trends()."); return(NULL)
}
n_all = indices$samples
if (is.null(Min_year))
{
min_year = indices$y_min
Min_year <- indices$startyear
minyn <- 1
}else{
min_year <- indices$y_min + (Min_year-indices$startyear)
minyn <- 1 + (Min_year-indices$startyear)
if(min_year < 0){
min_year = indices$y_min
Min_year <- indices$startyear
minyn <- 1
}
}
if (is.null(Max_year))
{
max_year = indices$y_max
Max_year = indices$startyear+(max_year - indices$y_min)
maxyn <- 1+(indices$y_max-indices$y_min)
}else{
max_year <- indices$y_min + (Max_year-indices$startyear)
maxyn <- 1+(Max_year-indices$startyear)
}
regions = indices$regions
area_weights <- indices$area_weights
all_regions = names(n_all)
dsum = indices$data_summary
trend <- data.frame(Start_year = integer(),
End_year = integer(),
Region = character(),
Region_alt = character(),
Region_type = character(),
Strata_included = character(),
Strata_excluded = character(),
Trend = double(),
stringsAsFactors = FALSE)
for(qq in quantiles){
trend[,paste0("Trend_Q",qq)] <- double()
}
trend[,"Percent_Change"] <- double()
for(qq in quantiles){
trend[,paste0("Percent_Change_Q",qq)] <- double()
}
for(rr in regions){
regsest = paste0(rr,"_",unique(dsum[which(dsum$Region_type == rr),"Region"]))
for(rrs in regsest){
reg = gsub(rrs,pattern = paste0(rr,"_"),replacement = "",fixed = TRUE)
w_summary_rows = which(dsum$Region == reg & dsum$Region_type == rr)
n = n_all[[rrs]]
reg_alt = unique(dsum[w_summary_rows,"Region_alt"])
st_inc = unique(dsum[w_summary_rows,"Strata_included"])
nstr = length(unlist(stringr::str_split(st_inc,pattern = " ; ")))
st_exc = unique(dsum[w_summary_rows,"Strata_excluded"])
if(slope){
bsl = function(i){
n = length(wy)
sy = sum(i)
sx = sum(wy)
ssx = sum(wy^2)
sxy = sum(i*wy)
b = (n*sxy - sx*sy)/(n*ssx - sx^2)
return(b)
}
wy = c(minyn:maxyn)
ne = log(n[,wy])
m = t(apply(ne,1,FUN = bsl))
sl.t = as.vector((exp(m)-1)*100)
}
ch = n[,maxyn]/n[,minyn]
tr = 100*((ch^(1/(maxyn-minyn)))-1)
trendt <- data.frame(Start_year = (indices$startyear+minyn)-1,
End_year = (indices$startyear+maxyn)-1,
Region = reg,
Region_alt = reg_alt,
Region_type = rr,
Strata_included = st_inc,
Strata_excluded = st_exc,
Trend = median(tr),
stringsAsFactors = FALSE)
for(qq in quantiles){
trendt[,paste0("Trend_Q",qq)] <- stats::quantile(tr,qq,names = FALSE)
}
trendt[,"Percent_Change"] <- 100*(median(ch)-1)
for(qq in quantiles){
trendt[,paste0("Percent_Change_Q",qq)] <- 100*(stats::quantile(ch,qq,names = FALSE)-1)
}
if(slope){
trendt[,"Slope_Trend"] <- median(sl.t)
for(qq in quantiles){
trendt[,paste0("Slope_Trend_Q",qq)] <- stats::quantile(sl.t,qq,names = FALSE)
}
}
if(!is.null(prob_decrease)){
pch = 100*(ch-1)
for(pp in prob_decrease){
trendt[,paste0("prob_decrease_",pp,"_percent")] <- length(pch[which(pch < (-1*pp))])/length(pch)
}
}
if(!is.null(prob_increase)){
pch = 100*(ch-1)
for(pp in prob_increase){
trendt[,paste0("prob_increase_",pp,"_percent")] <- length(pch[which(pch > (pp))])/length(pch)
}
}
trendt[,"Relative_Abundance"] <- mean(dsum[w_summary_rows,"Index"])
trendt[,"Observed_Relative_Abundance"] <- mean(dsum[w_summary_rows,"obs_mean"])
trendt[,"Number_of_strata"] <- nstr
q1 = quantiles[1]
q2 = quantiles[length(quantiles)]
trendt[,paste0("Width_of_",(q2-q1)*100,"_percent_Credible_Interval")] <- trendt[,paste0("Trend_Q",q2)]-trendt[,paste0("Trend_Q",q1)]
if(slope){
trendt[,paste0("Width_of_",(q2-q1)*100,"_percent_Credible_Interval_Slope")] <- trendt[,paste0("Slope_Trend_Q",q2)]-trendt[,paste0("Slope_Trend_Q",q1)]
}
trendt[,"Number_of_Routes"] <- mean(dsum[w_summary_rows,"nrts_total"])
trendt[,"Mean_Number_of_Routes"] <- mean(dsum[w_summary_rows,"nrts"])
trendt[,"backcast_flag"] <- mean(dsum[w_summary_rows,"backcast_flag"])
trend = rbind(trend,trendt)
}
}
return(trend)
} |
"checkPackageExamples" <-
function (pkg, outDir = file.path(tempdir(), "runPackageExamplesDir"), types = c("examples", "tests", "vignettes"))
{
if (!(file.exists(outDir) && file.info(outDir)$isdir)) {
dir.create(outDir, showWarnings = FALSE, recursive = TRUE)
on.exit(unlink(outDir))
}
if (compareVersion(paste(R.version$major, R.version$minor, sep = ".") , "2.9.2") >= 0)
tools::testInstalledPackage(pkg = pkg, lib.loc = .Library, outDir = outDir, types = types) == 0L
else TRUE
} |
MicrobenchmarkClusteringKernel <- function(benchmarkParameters,
numberOfThreads, resultsDirectory, runIdentifier) {
resultsFrame <- data.frame(BenchmarkName=character(),
NumberOfFeatures=integer(), NumberOfFeatureVectors=integer(),
NumberOfClusters=integer(), UserTime=numeric(), SystemTime=numeric(),
WallClockTime=numeric(), DateStarted=character(),
DateFinished=character(), stringsAsFactors=FALSE)
parameterCheck <- tryCatch({
cat(sprintf("Running clustering microbenchmark: %s\n", benchmarkParameters$benchmarkName))
cat(sprintf("Microbenchmark description: %s\n", benchmarkParameters$benchmarkDescription))
allocator <- match.fun(benchmarkParameters$allocatorFunction)
benchmark <- match.fun(benchmarkParameters$benchmarkFunction)
numberOfTrials <- benchmarkParameters$numberOfTrials
numberOfWarmupTrials <- benchmarkParameters$numberOfWarmupTrials
benchmarkName <- benchmarkParameters$benchmarkName
csvResultsBaseFileName <- benchmarkParameters$benchmarkName
csvResultsFileName <- file.path(resultsDirectory,
paste(csvResultsBaseFileName, "_", runIdentifier, ".csv", sep=""))
if (length(numberOfTrials) != length(numberOfWarmupTrials)) {
stop(sprintf("ERROR: Input checking failed for clustering microbenchmark '%s' -- lengths of numberOfTrials and numberOfWarmupTrials arrays must be equal", benchmarkName))
}
dir.create(resultsDirectory, showWarnings=FALSE, recursive=TRUE)
TRUE
}, warning = function(war) {
write(sprintf("%s", war), stderr())
return(FALSE)
}, error = function(err) {
write(sprintf("%s", err), stderr())
return(FALSE)
})
if (!parameterCheck) {
return(resultsFrame)
}
maximumNumberOfTrials <- max(numberOfTrials)
trialTimes <- rep(NA_real_, maximumNumberOfTrials)
dim(trialTimes) <- c(maximumNumberOfTrials,1)
numberOfSuccessfulTrials <- 0
for (i in 1:(numberOfTrials+numberOfWarmupTrials)) {
cat(sprintf("Running performance trial %d...\n", i))
allocationSuccessful <- tryCatch({
RNGkind(kind=RBenchmarkOptions$rng.kind,
normal.kind=RBenchmarkOptions$rng.normal.kind)
set.seed(RBenchmarkOptions$rng.seed,
kind=RBenchmarkOptions$rng.kind,
normal.kind=RBenchmarkOptions$rng.normal.kind)
kernelParameters <- allocator(benchmarkParameters)
numberOfFeatures <- kernelParameters$numberOfFeatures
numberOfFeatureVectors <- kernelParameters$numberOfFeatureVectors
numberOfClusters <- kernelParameters$numberOfClusters
TRUE
}, warning = function(war) {
msg <- sprintf("ERROR: allocator threw a warning -- %s", war)
write(msg, stderr())
return(FALSE)
}, error = function(err) {
msg <- sprintf("ERROR: allocator threw an error -- %s", err)
write(msg, stderr())
return(FALSE)
})
if (!allocationSuccessful) {
break;
}
dateStarted <- date()
timings <- c(NA_real_, NA_real_, NA_real_)
benchmarkSuccessful <- tryCatch({
timings <- benchmark(benchmarkParameters, kernelParameters)
TRUE
}, warning = function(war) {
msg <- sprintf("WARN: benchmark threw a warning -- %s", war)
write(msg, stderr())
return(FALSE)
}, error = function(err) {
msg <- sprintf("ERROR: benchmark threw an error -- %s", err)
write(msg, stderr())
return(FALSE)
})
if (!benchmarkSuccessful) {
break;
}
dateFinished <- date()
userTime <- timings[1]
systemTime <- timings[2]
wallClockTime <- timings[3]
if (i > numberOfWarmupTrials) {
numberOfSuccessfulTrials <- numberOfSuccessfulTrials + 1
resultsFrame[nrow(resultsFrame)+1, ] <- list(
benchmarkName, as.integer(numberOfFeatures),
as.integer(numberOfFeatureVectors), as.integer(numberOfClusters),
userTime, systemTime, wallClockTime, dateStarted, dateFinished)
}
remove(kernelParameters)
invisible(gc())
if (i > numberOfWarmupTrials) {
trialTimes[i-numberOfWarmupTrials,1] <- wallClockTime
}
cat(sprintf("done: %f(sec)\n", wallClockTime))
}
averageWallClockTime <- ComputeAverageTime(numberOfSuccessfulTrials,
trialTimes)
standardDeviation <- ComputeStandardDeviation(numberOfSuccessfulTrials,
trialTimes)
WriteClusteringPerformanceResultsCsv(numberOfThreads, numberOfFeatures,
numberOfFeatureVectors, numberOfClusters, averageWallClockTime,
standardDeviation, csvResultsFileName)
PrintClusteringMicrobenchmarkResults(benchmarkName, numberOfThreads,
numberOfFeatures, numberOfFeatureVectors, numberOfClusters,
numberOfSuccessfulTrials, trialTimes, averageWallClockTime,
standardDeviation)
return (resultsFrame)
} |
"boa.importMatrix" <- function(prefix)
{
link <- NULL
import <- try({
if(length(prefix) && exists(prefix))
link <- as.matrix(get(prefix))
else
cat("Warning: import failed\n Could not find '", prefix, "'.\n",
sep = "")
}, TRUE)
if(inherits(import, "try-error"))
cat("Warning: import failed\n",
" Object type is not supported. Confirm that '", prefix, "' is a\n",
" numeric matrix.\n", sep = "")
return(link)
} |
quo <- function(expr, env = arg_env_(quote(expr), environment()), force = FALSE) {
quo_(arg_expr_(quote(expr), environment()), env = env, force = force)
}
quo_ <- function(expr, env, force = FALSE) {
if(force) {
.Call("_quotation", NULL, expr, eval(expr, env));
} else {
.Call("_quotation", env, expr, missing_value());
}
}
env <- function(q) UseMethod("env")
env.quotation <- function(q) {
environment(q)
}
`env<-` <- function(q, value) {
UseMethod("env<-")
}
`env<-.quotation` <- function(q, value) {
quo_(expr(q), value);
}
expr <- function(q) UseMethod("expr")
expr.quotation <- function(q) {
.Call("_expr_quotation", q)
}
`expr<-` <- function(q, value) {
UseMethod("expr<-")
}
`expr<-.quotation` <- function(q, value) {
quo_(value, env(q))
}
is.quotation <- function(x) {
inherits(x, "quotation")
}
as.quo <- function(x) {
UseMethod("as.quo")
}
as.quo.function <- function(x) {
if (is.primitive(x)) stop("can't convert primitive to quotation")
f <- formals(x)
if (length(f) != 0) {
stop("can only convert function to quotation if it has no args")
}
quo_(body(x), environment(x))
}
as.quo.quotation <- identity
as.quo.dots <- function(x) {
if (length(x) == 1)
x[[1]]
else
stop("can't convert nonscalar dots to a quotation")
}
as.quo.formula <- function(x) {
expr <- x[[2]]
env <- attr(x, ".Environment")
quo_(expr, env)
}
as.quo.lazy <- function(x) {
quo_(x$expr, x$env)
}
as.quo.default <- function(x) {
if (mode(x) == "list") {
expr <- x$expr
env <- x$env
} else {
stop(paste0("can't convert ", class(x)[1] ," to a quo"))
}
quo_(expr, env)
} |
linearKdot <- function(X, i, r=NULL, ..., correction="Ang") {
if(!is.multitype(X, dfok=FALSE))
stop("Point pattern must be multitype")
marx <- marks(X)
lev <- levels(marx)
if(missing(i)) i <- lev[1L] else
if(!(i %in% lev)) stop(paste("i = ", i , "is not a valid mark"))
I <- (marx == i)
J <- rep(TRUE, npoints(X))
result <- linearKmulti(X, I, J,
r=r, correction=correction, ...)
correction <- attr(result, "correction")
type <- if(correction == "Ang") "L" else "net"
result <- rebadge.as.dotfun(result, "K", type, i)
return(result)
}
linearKcross <- function(X, i, j, r=NULL, ..., correction="Ang") {
if(!is.multitype(X, dfok=FALSE))
stop("Point pattern must be multitype")
marx <- marks(X)
lev <- levels(marx)
if(missing(i)) i <- lev[1L] else
if(!(i %in% lev)) stop(paste("i = ", i , "is not a valid mark"))
if(missing(j)) j <- lev[2L] else
if(!(j %in% lev)) stop(paste("j = ", j , "is not a valid mark"))
if(i == j) {
result <- linearK(X[marx == i], r=r, correction=correction, ...)
} else {
I <- (marx == i)
J <- (marx == j)
result <- linearKmulti(X, I, J, r=r, correction=correction, ...)
}
correction <- attr(result, "correction")
type <- if(correction == "Ang") "L" else "net"
result <- rebadge.as.crossfun(result, "K", type, i, j)
return(result)
}
linearKmulti <- function(X, I, J, r=NULL, ..., correction="Ang") {
stopifnot(inherits(X, "lpp"))
correction <- pickoption("correction", correction,
c(none="none",
Ang="Ang",
best="Ang"),
multi=FALSE)
np <- npoints(X)
lengthL <- volume(domain(X))
if(!is.logical(I) || !is.logical(J))
stop("I and J must be logical vectors")
if(length(I) != np || length(J) != np)
stop(paste("The length of I and J must equal",
"the number of points in the pattern"))
if(!any(I)) stop("no points satisfy I")
nI <- sum(I)
nJ <- sum(J)
nIandJ <- sum(I & J)
denom <- (nI * nJ - nIandJ)/lengthL
K <- linearKmultiEngine(X, I, J, r=r, denom=denom,
correction=correction, ...)
correction <- attr(K, "correction")
type <- if(correction == "Ang") "L" else "net"
K <- rebadge.as.crossfun(K, "K", type, "I", "J")
attr(K, "correction") <- correction
return(K)
}
linearKdot.inhom <- function(X, i, lambdaI, lambdadot,
r=NULL, ..., correction="Ang", normalise=TRUE) {
if(!is.multitype(X, dfok=FALSE))
stop("Point pattern must be multitype")
marx <- marks(X)
lev <- levels(marx)
if(missing(i)) i <- lev[1L] else
if(!(i %in% lev)) stop(paste("i = ", i , "is not a valid mark"))
I <- (marx == i)
J <- rep(TRUE, npoints(X))
result <- linearKmulti.inhom(X, I, J, lambdaI, lambdadot,
r=r, correction=correction, normalise=normalise,
...)
correction <- attr(result, "correction")
type <- if(correction == "Ang") "L, inhom" else "net, inhom"
result <- rebadge.as.dotfun(result, "K", type, i)
attr(result, "correction") <- correction
return(result)
}
linearKcross.inhom <- function(X, i, j, lambdaI, lambdaJ,
r=NULL, ...,
correction="Ang", normalise=TRUE) {
if(!is.multitype(X, dfok=FALSE))
stop("Point pattern must be multitype")
marx <- marks(X)
lev <- levels(marx)
if(missing(i)) i <- lev[1L] else
if(!(i %in% lev)) stop(paste("i = ", i , "is not a valid mark"))
if(missing(j)) j <- lev[2L] else
if(!(j %in% lev)) stop(paste("j = ", j , "is not a valid mark"))
if(i == j) {
I <- (marx == i)
result <- linearKinhom(X[I], lambda=lambdaI, r=r,
correction=correction, normalise=normalise, ...)
} else {
I <- (marx == i)
J <- (marx == j)
result <- linearKmulti.inhom(X, I, J, lambdaI, lambdaJ,
r=r, correction=correction,
normalise=normalise, ...)
}
correction <- attr(result, "correction")
type <- if(correction == "Ang") "L, inhom" else "net, inhom"
result <- rebadge.as.crossfun(result, "K", type, i, j)
attr(result, "correction") <- correction
return(result)
}
linearKmulti.inhom <- function(X, I, J, lambdaI, lambdaJ,
r=NULL, ...,
correction="Ang", normalise=TRUE) {
stopifnot(inherits(X, "lpp"))
correction <- pickoption("correction", correction,
c(none="none",
Ang="Ang",
best="Ang"),
multi=FALSE)
np <- npoints(X)
lengthL <- volume(domain(X))
if(!is.logical(I) || !is.logical(J))
stop("I and J must be logical vectors")
if(length(I) != np || length(J) != np)
stop(paste("The length of I and J must equal",
"the number of points in the pattern"))
if(!any(I)) stop("no points satisfy I")
lambdaI <- getlambda.lpp(lambdaI, X, subset=I, ...)
lambdaJ <- getlambda.lpp(lambdaJ, X, subset=J, ...)
weightsIJ <- outer(1/lambdaI, 1/lambdaJ, "*")
denom <- if(!normalise) lengthL else sum(1/lambdaI)
K <- linearKmultiEngine(X, I, J, r=r,
reweight=weightsIJ, denom=denom,
correction=correction, ...)
correction <- attr(K, "correction")
type <- if(correction == "Ang") "L, inhom" else "net, inhom"
K <- rebadge.as.crossfun(K, "K", type, "I", "J")
attr(K, "dangerous") <- union(attr(lambdaI, "dangerous"),
attr(lambdaJ, "dangerous"))
attr(K, "correction") <- correction
return(K)
}
linearKmultiEngine <- function(X, I, J, ..., r=NULL, reweight=NULL, denom=1,
correction="Ang", showworking=FALSE) {
X <- as.lpp(X, sparse=FALSE)
np <- npoints(X)
L <- domain(X)
W <- Window(L)
rmaxdefault <- 0.98 * boundingradius(L)
breaks <- handle.r.b.args(r, NULL, W, rmaxdefault=rmaxdefault)
r <- breaks$r
rmax <- breaks$max
if(correction == "Ang") {
fname <- c("K", "list(L, I, J)")
ylab <- quote(K[L,I,J](r))
} else {
fname <- c("K", "list(net, I, J)")
ylab <- quote(K[net,I,J](r))
}
if(np < 2) {
zeroes <- rep(0, length(r))
df <- data.frame(r = r, est = zeroes)
K <- fv(df, "r", ylab,
"est", . ~ r, c(0, rmax),
c("r", makefvlabel(NULL, "hat", fname)),
c("distance argument r", "estimated %s"),
fname = fname)
attr(K, "correction") <- correction
return(K)
}
clash <- I & J
has.clash <- any(clash)
DIJ <- crossdist(X[I], X[J], check=FALSE)
if(has.clash) {
Iclash <- which(clash[I])
Jclash <- which(clash[J])
DIJ[cbind(Iclash,Jclash)] <- Inf
}
if(correction == "none" && is.null(reweight)) {
K <- compileK(DIJ, r, denom=denom, check=FALSE, fname=fname)
K <- rebadge.as.crossfun(K, "K", "net", "I", "J")
unitname(K) <- unitname(X)
attr(K, "correction") <- correction
return(K)
}
if(correction == "none") {
edgewt <- 1
} else {
toler <- default.linnet.tolerance(L)
m <- DoCountCrossEnds(X, I, J, DIJ, toler)
edgewt <- 1/m
}
wt <- if(!is.null(reweight)) edgewt * reweight else edgewt
K <- compileK(DIJ, r, weights=wt, denom=denom, check=FALSE, fname=fname)
K <- rebadge.as.crossfun(K, "K", "L", "I", "J")
fname <- attr(K, "fname")
K <- bind.fv(K, data.frame(theo=r),
makefvlabel(NULL, NULL, fname, "pois"),
"theoretical Poisson %s")
unitname(K) <- unitname(X)
fvnames(K, ".") <- rev(fvnames(K, "."))
if(showworking)
attr(K, "working") <- list(DIJ=DIJ, wt=wt)
attr(K, "correction") <- correction
return(K)
}
DoCountCrossEnds <- function(X, I, J, DIJ, toler) {
stopifnot(is.lpp(X))
stopifnot(is.logical(I) && is.logical(J))
stopifnot(is.matrix(DIJ))
nI <- sum(I)
nJ <- sum(J)
whichI <- which(I)
whichJ <- which(J)
m <- matrix(1, nI, nJ)
easy <- list(is.connected=TRUE)
L <- domain(X)
if(is.connected(L)) {
for(k in seq_len(nJ)) {
j <- whichJ[k]
I.j <- (whichI != j)
i.j <- setdiff(whichI, j)
m[I.j, k] <- countends(L, X[i.j], DIJ[I.j,k],
toler=toler, internal=easy)
}
} else {
vlab <- connected(L, what="labels")
subsets <- split(seq_len(nvertices(L)), factor(vlab))
for(s in subsets) {
Xs <- thinNetwork(X, retainvertices=s)
ns <- npoints(Xs)
if(ns >= 2) {
Ls <- domain(Xs)
relevant <- attr(Xs, "retainpoints")
Xindex <- which(relevant)
Isub <- I[relevant]
rowsub <- relevant[I]
colsub <- relevant[J]
for(k in which(colsub)) {
j <- whichJ[k]
I.j <- rowsub & (whichI != j)
i.j <- Isub & (Xindex != j)
m[ I.j, k ] <- countends(Ls, Xs[i.j], DIJ[I.j, k],
toler=toler,
internal=easy)
}
}
}
}
if(any(uhoh <- (m == 0) & is.finite(DIJ))) {
warning("Internal error: disc boundary count equal to zero")
m[uhoh] <- 1
}
return(m)
} |
fpower <-
function (p, lambda, eps)
if(lambda==0)log((p+eps)/(1-p+eps)) else
sign(lambda)*((p+eps)/(1-p+eps))^lambda |
context("test-make-formula.R")
test_that("make.formula works", {
model <- c("y1 ~ x1 + x2 + x3", "y2 ~ x1 + x2 + x3")
vars.temp <- paste0("x", 1:3)
y <- paste0("y", 1:2)
out <- make.formula(y, vars.temp)
expect_equal(out, noquote(model))
}) |
print.clime <- function(x,digits = max(3, getOption("digits") - 3), ... ) {
cat("\n clime options summary: \n")
cat(" perturb=", signif(x$perturb, digits), "\t standardize=", x$standardize)
cat("\n lambdas used:\n")
print(signif(x$lambda,digits))
} |
"Emiliania_huxleyi" |
optimize_n <- function(nequalsMminus1=NULL,nequalsM=NULL,nequalsMplus1=NULL){
snp.df<- data.frame(var=character(), snps=numeric())
loci.df<- data.frame(var=character(), loci=numeric())
snp.80.df<- data.frame(var=character(), snps.80=numeric())
loci.80.df<- data.frame(var=character(), loci.80=numeric())
ms<-c("n=M-1","n=M","n=M+1")
j=1
for(x in list(nequalsMminus1,nequalsM,nequalsMplus1)){
if(is.null(x)){j=j+1} else{
invisible(utils::capture.output(vcf.r<- vcfR::read.vcfR(x)))
snps<- vector("numeric", length = ncol(vcf.r@gt)-1)
poly.loci<- vector("numeric", length = ncol(vcf.r@gt)-1)
m<- rep(ms[j], times = ncol(vcf.r@gt)-1)
k=1
for (i in 2:ncol(vcf.r@gt)){
snps[k]<-sum(is.na(vcf.r@gt[,i]) == FALSE)
poly.loci[k]<-length(unique(vcf.r@fix[,1][is.na(vcf.r@gt[,i]) == FALSE]))
k=k+1
}
snp.df<- rbind(snp.df, as.data.frame(cbind(m, snps)))
loci.df<- rbind(loci.df, as.data.frame(cbind(m, poly.loci)))
snps.80<-nrow(vcf.r@gt[(rowSums(is.na(vcf.r@gt))/ncol(vcf.r@gt) <= .2),])
poly.loci.80<-length(unique(vcf.r@fix[,1][(rowSums(is.na(vcf.r@gt))/ncol(vcf.r@gt) <= .2)]))
snp.80.df<- rbind(snp.80.df, as.data.frame(cbind(ms[j], snps.80)))
loci.80.df<- rbind(loci.80.df, as.data.frame(cbind(ms[j], poly.loci.80)))
j=j+1
}
}
colnames(snp.80.df)<-c("var","snps.80")
colnames(loci.80.df)<-c("var","poly.loci.80")
colnames(snp.df)<-c("var","snps")
colnames(loci.df)<-c("var","poly.loci")
out <- list()
out$snp<-snp.df
out$loci<-loci.df
out$snp.R80<-snp.80.df
out$loci.R80<-loci.80.df
return(out)
} |
test_that("teardown adds to queue", {
local_edition(2)
on.exit(teardown_reset())
expect_length(file_teardown_env$queue, 0)
teardown({})
expect_length(file_teardown_env$queue, 1)
teardown({})
expect_length(file_teardown_env$queue, 2)
})
test_that("teardowns runs in order", {
local_edition(2)
on.exit(teardown_reset())
a <- 1
teardown(a <<- 2)
teardown(a <<- 3)
expect_length(file_teardown_env$queue, 2)
teardown_run()
expect_equal(a, 3)
expect_length(file_teardown_env$queue, 0)
})
test_that("teardown run after tests complete", {
test_file(test_path("test-teardown/test-teardown.R"), "silent")
expect_false(file.exists(test_path("test-teardown/teardown.txt")))
}) |
plotTP <- function (TPdist = NULL, ...) {
siberDensityPlot <- function (dat, probs = c(95, 75, 50), xlab = "Group",
ylab = "Value",
xticklabels = NULL, yticklabels = NULL,
clr = grDevices::gray((9:1)/10),
scl = 1, xspc = 0.5, prn = FALSE,
ct = "mode", ylims = NULL,
lbound = -Inf, ubound = Inf, main = "",
ylab.line = 2, ...)
{
n <- ncol(dat)
if (is.null(ylims)) {
ylims <- c(min(dat) - 0.1 * min(dat), max(dat) + 0.1 *
(max(dat)))
}
graphics::plot(1, 1, xlab = "", ylab = "", main = main,
xlim = c(1 - xspc, n + xspc), ylim = ylims, type = "n",
xaxt = "n", ...)
graphics::title(xlab = xlab)
graphics::title(ylab = ylab, line = ylab.line)
if (is.null(xticklabels)) {
graphics::axis(side = 1, at = 1:n, labels = (as.character(names(dat))))
}
else {
graphics::axis(side = 1, at = 1:n, labels = (xticklabels))
}
clrs <- rep(clr, 5)
for (j in 1:n) {
temp <- hdrcde::hdr(dat[, j], probs, h = stats::bw.nrd0(dat[,
j]))
line_widths <- seq(2, 20, by = 4) * scl
bwd <- c(0.1, 0.15, 0.2, 0.25, 0.3) * scl
if (prn == TRUE) {
cat(paste("Probability values for Column", j, "\n"))
cat(paste("\t", "Mode", format(temp$mode, digits = 3,
scientific = FALSE), "Mean",
format(mean(dat[, j]),
digits = 3, scientific = FALSE), "Median",
format(stats::median(dat[,j]), digits = 3,
scientific = FALSE), "\n"))
}
for (k in seq_along(probs)) {
temp2 <- temp$hdr[k, ]
graphics::polygon(c(j - bwd[k], j - bwd[k], j +
bwd[k], j + bwd[k]),
c(max(c(min(temp2[!is.na(temp2)]), lbound)),
min(c(max(temp2[!is.na(temp2)]), ubound)),
min(c(max(temp2[!is.na(temp2)]), ubound)),
max(c(min(temp2[!is.na(temp2)]),
lbound))), col = clrs[k])
if (ct == "mode") {
graphics::points(j, temp$mode, pch = 19)
}
if (ct == "mean") {
graphics::points(j, mean(dat[, j]), pch = 19)
}
if (ct == "median") {
graphics::points(j, stats::median(dat[, j]),
pch = 19)
}
if (prn == TRUE) {
cat(paste("\t", probs[k], "% lower =",
format(max(min(temp2[!is.na(temp2)]),
lbound), digits = 3, scientific = FALSE),
"upper =", format(min(max(temp2[!is.na(temp2)]),
ubound), digits = 3,
scientific = FALSE),
"\n"))
}
}
}
}
siberDensityPlot(TPdist, ylab = "Trophic Position", ...)
} |
cdf_prob <- function(c, method = c("Fleishman", "Polynomial"), delta = 0.5,
mu = 0, sigma = 1, lower = -1e06, upper = 1e06) {
check <- suppressWarnings(pdf_check(c, method))
if (check$valid.pdf == FALSE) {
warning('This is NOT a valid pdf.')
}
cdf_root <- function(z, c, method, delta, mu, sigma) {
if (method == "Fleishman") {
y <- c[1] + c[2] * z + c[3] * z^2 + c[4] * z^3
}
if (method == "Polynomial") {
y <- c[1] + c[2] * z + c[3] * z^2 + c[4] * z^3 + c[5] * z^4 +
c[6] * z^5
}
return((sigma * y + mu) - delta)
}
R <- uniroot(cdf_root, lower = lower, upper = upper, c = c,
method = method, delta = delta, mu = mu, sigma = sigma)
cum_prob <- pnorm(R$root[1])
return(list(cumulative_prob = cum_prob, roots = R$root))
} |
test_that("regular skip", {
skip("regular skip")
})
test_that("skip with details", {
skip("longer skip:\nthis is what happened")
}) |
con.search.E1E1.D <- function(x, y, n, jlo, jhi)
{
fjk <- matrix(0, n)
fxy <- matrix(0, jhi - jlo + 1)
jkgrid <- expand.grid(jlo:jhi)
res <- data.frame(j = jkgrid,
k.ll = apply(jkgrid, 1, con.parmsFUN.E1E1.D, x = x,
y = y, n = n))
fxy <- matrix(res$k.ll, nrow = jhi-jlo+1)
rownames(fxy) <- jlo:jhi
z <- findmax(fxy)
jcrit <- z$imax + jlo - 1
list(jhat = jcrit, value = max(fxy))
}
con.parmsFUN.E1E1.D <- function(j, x, y, n){
a <- con.parms.D.E1E1(x,y,n,j,1,1)
nr <- nrow(a$theta)
est <- a$theta[nr, ]
b<-con.est.D.E1E1(x[j],est)
s2<-1/b$eta1
t2<-1/b$eta2
return(p.ll.D(n, j, s2, t2))
}
con.parms.D.E1E1 <-
function(x,y,n,j0,e10,e20){
th <- matrix(0,100,5)
th[1,1] <- e10
th[1,2] <- e20
bc <- beta.calc.E1E1.D(x,y,n,j0,e10,e20)
th[1,3:5] <- bc$B
for (iter in 2:100){
m <- iter-1
ec <- eta.calc.D.E1E1(x,y,n,j0,th[m,3:5])
th[iter,1] <- ec$eta1
th[iter,2] <- ec$eta2
bc <- beta.calc.E1E1.D(x,y,n,j0,ec$eta1,ec$eta2)
th[iter,3:5] <- bc$B
theta <- th[1:iter,]
delta <- abs(th[iter,]-th[m,])/th[m,]
if( (delta[1]<.001) & (delta[2]<.001) & (delta[3]<.001)
& (delta[4]<.001) & (delta[5]<.001) )
break
}
list(theta=theta)
}
con.est.D.E1E1 <-
function(xj, est)
{
eta1 <- est[1]
eta2 <- est[2]
a0 <- est[3]
a1 <- est[4]
b1 <- est[5]
b0 <- a0 + a1 * exp(xj)- b1 * exp(xj)
list(eta1 = eta1, eta2 = eta2, a0 = a0, a1 = a1, b0 = b0, b1 = b1)
}
con.vals.E1E1.D <-
function(x, y, n, j, k)
{
a <- con.parms.D.E1E1(x, y, n, j, 1, 1)
nr <- nrow(a$theta)
est <- a$theta[nr, ]
b <- con.est.D.E1E1(x[j], est)
eta <- c(b$eta1, b$eta2)
beta <- c(b$a0, b$a1, b$b0, b$b1)
tau <- x[j]
list(eta = eta, beta = beta, tau = tau)
}
p.ll.D <-function(n, j, s2, t2){
q1 <- n * log(sqrt(2 * pi))
q2 <- 0.5 * j * (1 + log(s2))
q3 <- 0.5 * (n - j) * (1 + log(t2))
- (q1 + q2 + q3)
}
findmax <-function(a){
maxa<-max(a)
imax<- which(a==max(a),arr.ind=TRUE)[1]
jmax<-which(a==max(a),arr.ind=TRUE)[2]
list(imax = imax, jmax = jmax, value = maxa)
}
beta.calc.E1E1.D <-
function(x, y, n, j, e1, e2)
{
aa <- wmat.E1E1.D(x, y, n, j, e1, e2)
W <- aa$w
bb <- rvec.E1E1.D(x, y, n, j, e1, e2)
R <- bb$r
beta <- solve(W, R)
list(B = beta)
}
eta.calc.D.E1E1 <-
function(x, y, n, j, theta)
{
jp1 <- j + 1
a0 <- theta[1]
a1 <- theta[2]
b1 <- theta[3]
b0 <- a0 + (a1 - b1) * exp(x[j])
rss1 <- sum((y[1:j] - a0 - a1 * exp(x[1:j]))^2)
rss2 <- sum((y[jp1:n] - b0 - b1 * exp(x[jp1:n]))^2)
e1 <- j/rss1
e2 <- (n - j)/rss2
list(eta1 = e1, eta2 = e2)
}
wmat.E1E1.D <-
function(x, y, n, j, e1, e2)
{
W <- matrix(0, 3, 3)
jp1 <- j + 1
W[1, 1] <- e1 * j + e2 * (n - j)
W[1, 2] <- e1 * sum(exp(x[1:j])) + e2 * (n - j) * exp(x[j])
W[1, 3] <- e2 * sum(exp(x[jp1:n]) - exp(x[j]))
W[2, 2] <- e1 * sum(exp(x[1:j])^2) + e2 * (n-j) * exp(x[j])^2
W[2, 3] <- e2 * exp(x[j]) * sum(exp(x[jp1:n]) - exp(x[j]))
W[3, 3] <-e2 * sum((exp(x[jp1:n]) - exp(x[j])) * (exp(x[jp1:n]) - exp(x[j])))
W[2, 1] <- W[1, 2]
W[3, 1] <- W[1, 3]
W[3, 2] <- W[2, 3]
list(w = W)
}
rvec.E1E1.D <-
function(x, y, n, j, e1, e2)
{
R <- array(0, 3)
jp1 <- j + 1
y1j <- sum(y[1:j])
yjn <- sum(y[jp1:n])
xy1j <- sum(exp(x[1:j]) * y[1:j])
xyjn <- sum(exp(x[jp1:n]) * y[jp1:n])
R[1] <- e1 * y1j + e2 * yjn
R[2] <- e1 * xy1j + e2 * exp(x[j]) * yjn
R[3] <- e2 * (xyjn - yjn * exp(x[j]))
list(r = R)
} |
getFMfun <- function(FM, LB_pars, Control=list()) {
LB_pars@FM <- FM
(LB_pars@SPR - LBSPRsim_(LB_pars, Control=Control, verbose=FALSE)@SPR)^2
} |
kinesis_dataset <- function(
stream,
shard = "",
read_indefinitely = TRUE,
interval = 100000) {
dataset <- tfio_lib$kinesis$KinesisDataset(
stream = stream,
shard = shard,
read_indefinitely = cast_logical(read_indefinitely),
interval = cast_scalar_integer(interval)
)
as_tf_dataset(dataset)
} |
kluster <- function(x, bw = "SJ", fixed = FALSE) {
tryCatch(
warning = function(cnd) {
stop("input x must be coercible to <numeric>")
},
x <- as.numeric(x)
)
if (length(x) < 1) {
stop("input x must contain at least 1 non-missing value")
}
if (fixed) {
tryCatch(
warning = function(cnd) {
stop("input bw must be coercible to <numeric> if fixed = TRUE")
},
bw <- as.numeric(bw[[1]])
)
}
xdf <- data.frame(i = seq_along(x),
x = x,
out = NA_integer_)
xnm <- xdf[!is.na(xdf$x), ]
xnm <- xnm[order(xnm$x), ]
nnm <- nrow(xnm)
if (nnm < 1) {
stop("input x must contain at least 1 non-missing value")
}
xnm$x <- xnm$x - min(xnm$x)
if (nnm == 1) {
xdf$out[xnm$i] <- 1L
return(xdf$out)
}
if (!fixed) {
d <- stats::density(xnm$x, bw = bw)
d$y <- d$y / max(d$y)
d$y[d$y < 0.00001] <- 0
tp <- pastecs::turnpoints(d$y)
boundaries <- d$x[tp$pos[tp$pits]]
xnm$out <- findInterval(xnm$x, boundaries) + 1
} else {
xnm$out <- xnm$x - dplyr::lag(xnm$x, default = xnm$x[1])
xnm$out <- cumsum(xnm$out > bw) + 1
}
result <- rbind(xdf[is.na(xdf$x), ], xnm)
return(result[order(result$i), ]$out)
} |
order_burr <- function(size,k,shape1,shape2,scale,n,alpha=0.05,...){
sample <- qburr(initial_order(size,k,n),shape1,shape2,scale,...)
pdf <- factorial(size)*cumprod(dburr(sample,shape1,shape2,scale,...))[size]
if(size>5){
return(list(sample=sample,pdf=pdf,ci_median=interval_median(size,sample,alpha)))
}
cat("---------------------------------------------------------------------------------------------\n")
cat("We cannot report the confidence interval. The size of the sample is less or equal than five.\n")
return(list(sample=sample,pdf=pdf))
} |
"efficiency.criteria" <- function(efficiencies)
{
daeTolerance <- get("daeTolerance", envir=daeEnv)
criteria <- vector(mode="list", length = 7)
names(criteria) <- c('aefficiency','mefficiency','sefficiency','eefficiency',
"xefficiency",'order',"dforthog")
df.orthog <- sum(abs(1-efficiencies) < daeTolerance[["eigen.tol"]])
eff.unique <- remove.repeats(efficiencies, daeTolerance[["eigen.tol"]])
K <- length(eff.unique)
if (K == 1)
{ if (eff.unique == 0)
{
criteria["aefficiency"] <- 0
criteria["mefficiency"] <- 0
criteria["sefficiency"] <- 0
criteria["eefficiency"] <- 0
criteria["xefficiency"] <- 0
criteria["order"] <- 0
criteria["dforthog"] <- 0
} else
{
criteria["aefficiency"] <- eff.unique
criteria["mefficiency"] <- eff.unique
criteria["sefficiency"] <- 0
criteria["eefficiency"] <- eff.unique
criteria["xefficiency"] <- eff.unique
criteria["order"] <- K
criteria["dforthog"] <- df.orthog
}
} else
{
criteria["aefficiency"] <- harmonic.mean(efficiencies)
criteria["mefficiency"] <- mean(efficiencies)
criteria["sefficiency"] <- var(efficiencies)
criteria["eefficiency"] <- min(efficiencies)
criteria["xefficiency"] <- max(efficiencies)
criteria["order"] <- K
criteria["dforthog"] <- df.orthog
}
return(criteria)
}
print.summary.p2canon <- function(x, ...)
{ if (!inherits(x, "summary.p2canon"))
stop("Must supply an object of class summary.p2canon")
cat(attr(x, which="title"))
y <- x
nlines <- nrow(y)
repeats <- c(FALSE, y[2:nlines,"Source"] == y[1:(nlines-1),"Source"])
y[repeats, "Source"] <- " "
if ("aefficiency" %in% names(y)) {
y$aefficiency <- formatC(y$aefficiency, format="f", digits=4, width=11)
y$aefficiency <- gsub("NA", " ", y$aefficiency)
}
if ("mefficiency" %in% names(y)) {
y$mefficiency <- formatC(y$mefficiency, format="f", digits=4, width=11)
y$mefficiency <- gsub("NA", " ", y$mefficiency)
}
if ("eefficiency" %in% names(y)) {
y$eefficiency <- formatC(y$eefficiency, format="f", digits=4, width=11)
y$eefficiency <- gsub("NA", " ", y$eefficiency)
}
if ("xefficiency" %in% names(y)) {
y$xefficiency <- formatC(y$xefficiency, format="f", digits=4, width=11)
y$xefficiency <- gsub("NA", " ", y$xefficiency)
}
if ("sefficiency" %in% names(y)) {
y$sefficiency <- formatC(y$sefficiency, format="f", digits=4, width=11)
y$sefficiency <- gsub("NA", " ", y$sefficiency)
}
if ("order" %in% names(y)) {
y$order <- formatC(y$order, format="f", digits=0, width=5)
y$order <- gsub("NA", " ", y$order)
}
if ("dforthog" %in% names(y)) {
y$dforthog <- formatC(y$dforthog, format="f", digits=0, width=8)
y$dforthog <- gsub("NA", " ", y$dforthog)
}
print.data.frame(y, na.print=" ", right=FALSE, row.names=FALSE)
if (!attr(x, which="orthogonal"))
cat("\nThe design is not orthogonal\n\n")
invisible(x)
}
"proj2.sweep" <- function(Q1, Q2, Eff.Q1.Q2)
{
n <- nrow(Q1)
if (n != nrow(Q2))
stop("Matrices not conformable.")
isproj <- is.projector(Q1) & is.projector(Q2)
if (length(Eff.Q1.Q2) == 1 & Eff.Q1.Q2[1]==0)
{
Qconf <- projector(matrix(0, nrow = n, ncol = n))
Qres <- Q1
Eff.Q1.Q2 <- 0
warning("Matrices are orthogonal.")
} else
{
daeTolerance <- get("daeTolerance", envir=daeEnv)
EffUnique.Q1.Q2 <-remove.repeats(Eff.Q1.Q2, daeTolerance[["eigen.tol"]])
K <- length(EffUnique.Q1.Q2)
if (K == 1 & EffUnique.Q1.Q2[1] == 1 & length(Eff.Q1.Q2) == degfree(Q2))
{
Qconf <- projector(Q2)
Qres <- projector(Q1 - Q2)
} else
{
I <- diag(1, nrow = n, ncol = n)
Qres <- I
Q121 <- Q1 %*% Q2 %*% Q1
for(i in 1:K)
Qres <- Qres %*% (Q1 - (Q121/EffUnique.Q1.Q2[i]))
Qres <- projector(Qres)
Qconf <- projector(Q1 - Qres)
}
}
list(Qconf = Qconf, Qres = Qres)
}
"projs.2canon" <- function(Q1, Q2)
{
if (!is.list(Q1) | !is.list(Q2))
stop("Both Q1 and Q2 must be lists")
daeTolerance <- get("daeTolerance", envir=daeEnv)
nQ1 <- length(Q1)
nQ2 <- length(Q2)
n <- nrow(Q1[1])
Q1labels <- names(Q1)
if (is.null(Q1labels))
Q1labels <- as.character(1:nQ1)
Q2labels <- names(Q2)
if (is.null(Q2labels))
Q2labels <- as.character(1:nQ2)
criteria <- c('aefficiency','mefficiency','sefficiency','eefficiency',"xefficiency",
'order',"dforthog")
nc <- 4 + length(criteria)
aliasing <- data.frame(matrix(nrow = 0, ncol=nc))
colnames(aliasing) <- c("Source", "df", "Alias", "In", criteria)
kQ1Q2 <- 0
multieffic <- FALSE
results <- vector(mode = "list", length = 0)
for (i in Q1labels)
{
results[[i]][["Q1res"]] <- Q1[[i]]
rdf <- degfree(Q1[[i]])
for (j in Q2labels)
{
if (rdf >0)
{
Q1Q2.eff <- suppressWarnings(proj2.efficiency(Q1[[i]], Q2[[j]]))
if (Q1Q2.eff[1] > 0)
{
adj.Q1Q2 <- suppressWarnings(proj2.combine(results[[i]][["Q1res"]], Q2[[j]]))
if (degfree(adj.Q1Q2$Qconf) > 0)
{
Qfitlab <- names(results[[i]])[-1]
if (length(Qfitlab) > 0)
{
for (k in Qfitlab)
{
Qjik <- Q2[[k]] %*% Q1[[i]] %*% Q2[[j]]
if (!is.allzero(Qjik))
{
Qij <- proj2.combine(Q1[[i]], Q2[[j]])$Qconf
Qik <- proj2.combine(Q1[[i]], Q2[[k]])$Qconf
Qikj <- proj2.combine(Qik, Qij)
warning(paste(j,"and",k,"are partially aliased in",i, sep=" "))
eff.crit <- efficiency.criteria(Qikj$efficiencies)
aliasing <- rbind(aliasing,
data.frame(c(list(Source = j,
df = degfree(Qikj$Qconf),
Alias = k,
In = i),
eff.crit[criteria]),
stringsAsFactors = FALSE))
}
}
}
results[[i]][[j]] <- vector(mode = "list", length = 0)
results[[i]][[j]][["pairwise"]][["efficiencies"]] <- Q1Q2.eff
results[[i]][[j]][["pairwise"]][criteria] <- efficiency.criteria(Q1Q2.eff)
if (degfree(adj.Q1Q2$Qres) == 0)
{
adj.Q1Q2$Qres <- matrix(0, nrow=nrow(adj.Q1Q2$Qres), ncol=ncol(adj.Q1Q2$Qres))
adj.Q1Q2$Qres <- projector(adj.Q1Q2$Qres)
}
results[[i]][["Q1res"]] <- adj.Q1Q2$Qres
results[[i]][[j]][["adjusted"]][["efficiencies"]] <- adj.Q1Q2$efficiencies
results[[i]][[j]][["adjusted"]][criteria] <- efficiency.criteria(adj.Q1Q2$efficiencies)
if (results[[i]][[j]][["adjusted"]][["aefficiency"]] -
results[[i]][[j]][["adjusted"]][["eefficiency"]] > daeTolerance[["eigen.tol"]])
multieffic <- TRUE
results[[i]][[j]][["Qproj"]] <- adj.Q1Q2$Qconf
rdf <- degfree(adj.Q1Q2$Qres)
} else
{
warning(paste(j,"is aliased with previous terms in",i, sep=" "))
eff.crit <- rep(0, length(criteria))
names(eff.crit) <- criteria
aliasing <- rbind(aliasing,
data.frame(c(list(Source = j,
df = 0,
Alias = "
In = i),
eff.crit),
stringsAsFactors = FALSE))
}
}
}
}
}
if (nrow(aliasing) == 0 )
aliasing <- NULL
p2can <- list(decomp = results, aliasing = aliasing)
class(p2can) <- "p2canon"
return(p2can)
}
"summary.p2canon" <- function(object, which.criteria = c("aefficiency", "eefficiency", "order"), ...)
{
if (!inherits(object, "p2canon"))
stop("object must be of class p2canon as produced by projs.2canon")
criteria <- c("aefficiency", "eefficiency", "mefficiency", "sefficiency", "xefficiency",
"order", "dforthog")
options <- c(criteria, "none", "all")
kcriteria <- options[unlist(lapply(which.criteria, check.arg.values,
options=options))]
if ("all" %in% kcriteria)
kcriteria <- criteria
anycriteria <- !("none" %in% kcriteria)
orthogonaldesign <- TRUE
nc <- 3
if (anycriteria)
{
nc <- nc + length(kcriteria)
res.criteria <- vector(mode = "list", length = length(kcriteria))
names(res.criteria) <- kcriteria
res.criteria[kcriteria] <- NA
summary <- data.frame(matrix(nrow = 0, ncol=nc))
colnames(summary) <- c("Source", "Confounded.source", "df", kcriteria)
}
else
{ summary <- data.frame(matrix(nrow = 0, ncol=nc))
colnames(summary) <- c("Source", "Confounded.source", "df")
}
Q1labels <- names(object$decomp)
for (i in Q1labels)
{
Q2labels <- names(object$decomp[[i]])[-1]
nconf.terms <- 0
if (length(Q2labels) > 0)
{
for (j in Q2labels)
{
kdf <- degfree(object$decomp[[i]][[j]]$Qproj)
if (kdf > 0)
{
nconf.terms <- nconf.terms + 1
if (abs(1 - unlist(object$decomp[[i]][[j]][["adjusted"]]["aefficiency"])) > 1e-04)
orthogonaldesign <- FALSE
if (anycriteria)
summary <- rbind(summary,
data.frame(Source = i,
Confounded.source = j,
df = kdf,
object$decomp[[i]][[j]][["adjusted"]][kcriteria],
stringsAsFactors = FALSE))
else
summary <- rbind(summary,
data.frame(Source = i,
Confounded.source = j,
df = kdf,
stringsAsFactors = FALSE))
}
}
}
kdf <- degfree(object$decomp[[i]]$Q1res)
if (kdf > 0)
if (nconf.terms > 0)
{
if (anycriteria)
summary <- rbind(summary,
data.frame(Source = i,
Confounded.source = "Residual",
df = kdf,
res.criteria[kcriteria],
stringsAsFactors = FALSE))
else
summary <- rbind(summary,
data.frame(Source = i,
Confounded.source = "Residual",
df = kdf,
stringsAsFactors = FALSE))
} else
{
if (anycriteria)
summary <- rbind(summary,
data.frame(Source = i,
Confounded.source = " ",
df = kdf,
res.criteria[kcriteria],
stringsAsFactors = FALSE))
else
summary <- rbind(summary,
data.frame(Source = i,
Confounded.source = " ",
df = kdf,
stringsAsFactors = FALSE))
}
}
summary <- as.data.frame(summary)
class(summary) <- c("summary.p2canon", "data.frame")
titl <- "\n\nSummary table of the decomposition"
if (!orthogonaldesign)
titl <- paste(titl, " (based on adjusted quantities)\n\n", sep = "")
else
titl <- paste(titl, "\n\n", sep = "")
attr(summary, which = "title") <- titl
attr(summary, which = "orthogonal") <- orthogonaldesign
return(summary)
}
"efficiencies.decomp" <- function(decomp, which = "adjusted", ...)
{
options <- c("adjusted", "pairwise")
opt <- options[check.arg.values(which, options)]
Q1labels <- names(decomp)
efficiencies <- vector(mode = "list", length = 0)
for (i in Q1labels)
{
Q2labels <- names(decomp[[i]])[-1]
if (length(Q2labels) > 0)
{
efficiencies[[i]] <- vector(mode = "list", length = 0)
for (j in Q2labels)
efficiencies[[i]][[j]] <- decomp[[i]][[j]][[opt]][["efficiencies"]]
}
}
return(efficiencies)
}
"efficiencies.p2canon" <- function(object, which = "adjusted", ...)
{
if (!inherits(object, "p2canon"))
stop("object must be of class p2canon as produced by projs.2canon")
options <- c("adjusted", "pairwise")
opt <- options[check.arg.values(which, options)]
efficiencies <- efficiencies.decomp(object$decomp, which = which)
return(efficiencies)
}
"projs.combine.p2canon" <- function(object)
{
Q1combineQ2 <- vector(mode = "list", length = 0)
Q1labels <- names(object$decomp)
efficiencies <- vector(mode = "list", length = 0)
for (i in Q1labels)
{
Q2labels <- names(object$decomp[[i]])[-1]
if (length(Q2labels) > 0)
{
for (j in Q2labels)
{
Q1Q2label <- paste(Q1labels[[match(i, Q1labels)]], Q2labels[[match(j, Q2labels)]], sep="&")
Q1combineQ2[[Q1Q2label]] <-object$decomp[[i]][[j]][["Qproj"]]
}
if (degfree(object$decomp[[i]][["Q1res"]]) > 0)
{
Q1Q2label <- paste(Q1labels[[match(i, Q1labels)]],"Residual", sep="&")
Q1combineQ2[[Q1Q2label]] <- object$decomp[[i]][["Q1res"]]
}
} else
Q1combineQ2[[i]] <- object$decomp[[i]][["Q1res"]]
}
return(Q1combineQ2)
} |
context("Visual Test")
model <- lm(mpg ~ disp + hp + wt, data = mtcars)
test_that("residual histogram plot is as expected", {
skip_on_cran()
p <- ols_plot_resid_hist(model)
vdiffr::expect_doppelganger("ggplot2 histogram", p)
})
test_that("hadi plot is as expected", {
skip_on_cran()
p <- ols_plot_hadi(model)
vdiffr::expect_doppelganger("hadi plot", p)
})
test_that("observed vs predicted plot is as expected", {
skip_on_cran()
p <- ols_plot_obs_fit(model)
vdiffr::expect_doppelganger("ovsp plot", p)
})
test_that("potential residual plot is as expected", {
skip_on_cran()
p <- ols_plot_resid_pot(model)
vdiffr::expect_doppelganger("potential residual plot", p)
})
test_that("residual box plot is as expected", {
skip_on_cran()
p <- ols_plot_resid_box(model)
vdiffr::expect_doppelganger("residual box plot", p)
})
test_that("residual fit spread plot 1 is as expected", {
skip_on_cran()
p <- ols_plot_resid_spread(model)
vdiffr::expect_doppelganger("residual fit spread plot", p)
})
test_that("residual fit spread plot 2 is as expected", {
skip_on_cran()
p <- ols_plot_fm(model)
vdiffr::expect_doppelganger("residual fit spread plot 2", p)
})
test_that("residual qq plot is as expected", {
skip_on_cran()
p <- ols_plot_resid_qq(model)
vdiffr::expect_doppelganger("residual qq plot", p)
})
test_that("residual vs fitted plot is as expected", {
skip_on_cran()
p <- ols_plot_resid_fit(model)
vdiffr::expect_doppelganger("residual vs fitted plot", p)
})
test_that("residual vs regressor plot is as expected", {
skip_on_cran()
p <- ols_plot_resid_regressor(model, 'drat')
vdiffr::expect_doppelganger("residual vs regressor plot", p)
})
test_that("cooks d bar plot is as expected", {
skip_on_cran()
p <- ols_plot_cooksd_bar(model, print_plot = FALSE)
vdiffr::expect_doppelganger("cooks d bar plot", p$plot)
})
test_that("cooks d bar chart is as expected", {
skip_on_cran()
p <- ols_plot_cooksd_chart(model, print_plot = FALSE)
vdiffr::expect_doppelganger("cooks d bar chart", p$plot)
})
test_that("dffits plot is as expected", {
skip_on_cran()
p <- ols_plot_dffits(model, print_plot = FALSE)
vdiffr::expect_doppelganger("dffits plot", p$plot)
})
test_that("deleted studentized residual vs fitted plot is as expected", {
skip_on_cran()
p <- ols_plot_resid_stud_fit(model, print_plot = FALSE)
vdiffr::expect_doppelganger("dsrvsp plot", p$plot)
})
test_that("residual vs regressor shiny plot is as expected", {
skip_on_cran()
p <- rvsr_plot_shiny(model, mtcars, "drat")
vdiffr::expect_doppelganger("residual vs regressor shiny plot", p)
})
test_that("residual fit spread plot is as expected", {
skip_on_cran()
p <- ols_plot_resid_fit_spread(model, print_plot = TRUE)
vdiffr::expect_doppelganger("fm_plot", p$fm_plot)
vdiffr::expect_doppelganger("rsd_plot", p$rsd_plot)
})
test_that("response profile plot is as expected", {
skip_on_cran()
p <- ols_plot_response(model, print_plot = FALSE)
vdiffr::expect_doppelganger("resp viz dot plot", p$dot_plot)
vdiffr::expect_doppelganger("resp viz trend plot", p$trend_plot)
vdiffr::expect_doppelganger("resp viz histogram", p$histogram)
vdiffr::expect_doppelganger("resp viz boxplot", p$boxplot)
})
test_that("stepAIC backward regression plot is as expected", {
skip_on_cran()
model <- lm(y ~ ., data = surgical)
p <- plot(ols_step_backward_aic(model))
vdiffr::expect_doppelganger("stepaic backward regression plot", p)
})
test_that("stepAIC forward regression plot is as expected", {
skip_on_cran()
model <- lm(y ~ ., data = surgical)
p <- plot(ols_step_forward_aic(model))
vdiffr::expect_doppelganger("stepaic forward regression plot", p)
})
test_that("stepAIC both direction regression plot is as expected", {
skip_on_cran()
model <- lm(y ~ ., data = surgical)
p <- plot(ols_step_both_aic(model))
vdiffr::expect_doppelganger("stepaic both regression plot", p)
})
test_that("added variable plot is as expected", {
skip_on_cran()
p <- ols_plot_added_variable(model, print_plot = FALSE)
vdiffr::expect_doppelganger("avplot_1", p[[1]])
vdiffr::expect_doppelganger("avplot_2", p[[2]])
vdiffr::expect_doppelganger("avplot_3", p[[3]])
})
test_that("all possible regression plots are as expected", {
skip_on_cran()
model <- lm(mpg ~ disp + hp, data = mtcars)
k <- ols_step_all_possible(model)
p <- plot(k, print_plot = FALSE)
vdiffr::expect_doppelganger("allplot_1", p$plot_1)
vdiffr::expect_doppelganger("allplot_2", p$plot_2)
vdiffr::expect_doppelganger("allplot_3", p$plot_3)
vdiffr::expect_doppelganger("allplot_4", p$plot_4)
vdiffr::expect_doppelganger("allplot_5", p$plot_5)
vdiffr::expect_doppelganger("allplot_6", p$plot_6)
})
test_that("best subset regression plots are as expected", {
skip_on_cran()
model <- lm(mpg ~ disp + hp + wt + qsec, data = mtcars)
k <- ols_step_best_subset(model)
p <- plot(k, print_plot = FALSE)
vdiffr::expect_doppelganger("bestplot_1", p$plot_1)
vdiffr::expect_doppelganger("bestplot_2", p$plot_2)
vdiffr::expect_doppelganger("bestplot_3", p$plot_3)
vdiffr::expect_doppelganger("bestplot_4", p$plot_4)
vdiffr::expect_doppelganger("bestplot_5", p$plot_5)
vdiffr::expect_doppelganger("bestplot_6", p$plot_6)
})
test_that("dfbetas plot is as expected", {
skip_on_cran()
model <- lm(mpg ~ disp + hp + wt + qsec, data = mtcars)
p <- ols_plot_dfbetas(model, print_plot = FALSE)
vdiffr::expect_doppelganger("dfbetas_1", p$plots[[1]])
vdiffr::expect_doppelganger("dfbetas_2", p$plots[[2]])
vdiffr::expect_doppelganger("dfbetas_3", p$plots[[3]])
vdiffr::expect_doppelganger("dfbetas_4", p$plots[[4]])
vdiffr::expect_doppelganger("dfbetas_5", p$plots[[5]])
})
test_that("diagnostics panel is as expected", {
skip_on_cran()
model <- lm(mpg ~ disp + hp + wt + qsec, data = mtcars)
p <- ols_plot_diagnostics(model, print_plot = FALSE)
vdiffr::expect_doppelganger("diag_1", p[[1]])
vdiffr::expect_doppelganger("diag_2", p[[2]])
vdiffr::expect_doppelganger("diag_3", p[[3]])
vdiffr::expect_doppelganger("diag_4", p[[4]])
vdiffr::expect_doppelganger("diag_5", p[[5]])
vdiffr::expect_doppelganger("diag_6", p[[6]])
vdiffr::expect_doppelganger("diag_7", p[[7]])
vdiffr::expect_doppelganger("diag_8", p[[8]])
vdiffr::expect_doppelganger("diag_9", p[[9]])
vdiffr::expect_doppelganger("diag_10", p[[10]])
})
test_that("fitted line plot is as expected", {
skip_on_cran()
p <- ols_plot_reg_line(mtcars$mpg, mtcars$disp, print_plot = FALSE)
vdiffr::expect_doppelganger("reg_line_plot", p)
})
test_that("residual plus component plot is as expected", {
skip_on_cran()
model <- lm(mpg ~ disp + hp + wt + qsec, data = mtcars)
p <- ols_plot_comp_plus_resid(model, print_plot = FALSE)
vdiffr::expect_doppelganger("rpcplot_1", p[[1]])
vdiffr::expect_doppelganger("rpcplot_2", p[[2]])
vdiffr::expect_doppelganger("rpcplot_3", p[[3]])
vdiffr::expect_doppelganger("rpcplot_4", p[[4]])
})
test_that("rstud vs lev plot is as expected", {
skip_on_cran()
model <- lm(read ~ write + math + science, data = hsb)
p <- ols_plot_resid_lev(model, print_plot = FALSE)
vdiffr::expect_doppelganger("rslev_1", p$plot)
})
test_that("standardized residual plot is as expected", {
skip_on_cran()
model <- lm(mpg ~ disp + hp + wt, data = mtcars)
p <- ols_plot_resid_stand(model, print_plot = FALSE)
vdiffr::expect_doppelganger("stanres_1", p$plot)
})
test_that("studentized residual plot is as expected", {
skip_on_cran()
model <- lm(mpg ~ disp + hp + wt, data = mtcars)
p <- ols_plot_resid_stud(model, print_plot = FALSE)
vdiffr::expect_doppelganger("studres_1", p$plot)
})
test_that("stepwise backward regression plots are as expected", {
skip_on_cran()
model <- lm(y ~ ., data = surgical)
k <- ols_step_backward_p(model)
p <- plot(k, print_plot = FALSE)
vdiffr::expect_doppelganger("step_back_1", p$plot_1)
vdiffr::expect_doppelganger("step_back_2", p$plot_2)
vdiffr::expect_doppelganger("step_back_3", p$plot_3)
vdiffr::expect_doppelganger("step_back_4", p$plot_4)
vdiffr::expect_doppelganger("step_back_5", p$plot_5)
vdiffr::expect_doppelganger("step_back_6", p$plot_6)
})
test_that("stepwise forward regression plots are as expected", {
skip_on_cran()
model <- lm(y ~ ., data = surgical)
k <- ols_step_forward_p(model)
p <- plot(k, print_plot = FALSE)
vdiffr::expect_doppelganger("step_forward_1", p$plot_1)
vdiffr::expect_doppelganger("step_forward_2", p$plot_2)
vdiffr::expect_doppelganger("step_forward_3", p$plot_3)
vdiffr::expect_doppelganger("step_forward_4", p$plot_4)
vdiffr::expect_doppelganger("step_forward_5", p$plot_5)
vdiffr::expect_doppelganger("step_forward_6", p$plot_6)
})
test_that("stepwise both regression plots are as expected", {
skip_on_cran()
model <- lm(y ~ ., data = surgical)
k <- ols_step_both_p(model)
p <- plot(k, print_plot = FALSE)
vdiffr::expect_doppelganger("step_both_1", p$plot_1)
vdiffr::expect_doppelganger("step_both_2", p$plot_2)
vdiffr::expect_doppelganger("step_both_3", p$plot_3)
vdiffr::expect_doppelganger("step_both_4", p$plot_4)
vdiffr::expect_doppelganger("step_both_5", p$plot_5)
vdiffr::expect_doppelganger("step_both_6", p$plot_6)
}) |
.onLoad <- function(libname, pkgname) {
if (requireNamespace("emmeans", quietly = TRUE)) {
emmeans::.emm_register(c("bootstrap_model", "bootstrap_parameters"), pkgname)
}
} |
is_predraft <- function(dat) {
if ("draftDetail" %in% names(dat)) {
if (!dat$draftDetail$drafted) {
message("League has not yet drafted this season")
return(TRUE)
}
}
return(FALSE)
}
skip_predraft <- function(dat) {
if (is_installed("testthat") & "draftDetail" %in% names(dat)) {
if (!dat$draftDetail$drafted) {
testthat::skip(message = "League has not drafted")
}
}
} |
setClass(Class="Haplotype", representation=representation(haplist ="list",hapind ="list", uniquehapind="numeric",sequence="matrix",d="matrix",freq="numeric",nhap="numeric"))
setMethod("initialize", "Haplotype", function(.Object,haplist= list(),hapind =list(),uniquehapind=numeric(),sequence=matrix(,0,0),d=matrix(,0,0),freq=sapply(.Object@haplist,length),nhap=length(.Object@haplist)) {
.Object@haplist<-haplist
.Object@hapind<-hapind
.Object@uniquehapind<-uniquehapind
.Object@sequence<-sequence
.Object@d<-d
.Object@freq<-freq
.Object@nhap<-nhap
.Object
})
setMethod("show","Haplotype", function(object)
{
cat("*** S4 Object of Class Haplotype ***\n\n")
show(object@haplist)
cat("\nNumber of haplotypes : ", object@nhap)
cat("\n\nslots of an object Haplotype:\n")
cat(slotNames(object),"\n")
})
haplo<-function(x)
{
x <- as.matrix(x)
diag(x)<-0
nseq<-nrow(x)
whap<-x[1,]==0
haploind<-list(which(whap))
haplovec<-which(whap)
if(length(x)>1)
{
for(i in 2:nseq)
{
whap<-x[i,]==0
whap[haplovec]<-FALSE
haploind<-c(haploind,list(which(whap)))
haplovec<-unique(c(haplovec,which(whap)))
}
}
empthaplo<-sapply(haploind,length)
haploind<-unique(haploind[empthaplo>0])
haplolist<-lapply(haploind,names)
uniqhapindex<-sapply(haploind,"[",1)
hapdistmat<-as.matrix(x[uniqhapindex,uniqhapindex])
freq<-sapply(haplolist,length)
hapnum<-length(freq)
names(haploind)<-paste("haplotype",1:hapnum,sep="")
names(haplolist)<-names(haploind)
hapobj<-new("Haplotype",haplist=haplolist,hapind=haploind,uniquehapind=uniqhapindex,d=hapdistmat,freq=freq,nhap=hapnum)
hapobj
}
setGeneric (
name= "haplotype",
def=function(x,...)standardGeneric("haplotype")
)
setMethod("haplotype","Dna", function(x,indels="sic")
{
d<-distance(x,indels=indels)
if(length(d)==0) stop("at least two DNA sequences are required")
h<-haplo(d)
h@sequence<-x@sequence[h@uniquehapind,,drop=FALSE]
h
})
setMethod("haplotype","matrix", function(x)
{
if(nrow(x)==1) stop("dimension of the distance matrix (x) must be greater than one")
haplo(x)
})
setMethod("haplotype","dist", function(x)
{
if(length(x)==0) stop("length of the distance object (x) must be greater than zero")
haplo(x)
})
setMethod("as.list","Haplotype", function(x)
{
l<-list(x@haplist,x@hapind, x@uniquehapind,x@sequence,x@d,x@freq,x@nhap)
names(l)<-c("haplist","hapind","uniquehapind","sequence","d","freq","nhap")
l
})
setMethod("length","Haplotype", function(x)
{
x@nhap
})
setGeneric (
name= "hapreord",
def=function(x,...)standardGeneric("hapreord")
)
setMethod(f="hapreord", signature= "Haplotype", definition=function(x,order=c(1:x@nhap))
{
if(length(order)!=length(x)) stop(paste("'order' must be vector of length",length(x)))
if(any(order<1)|any(order>length(x))) stop(paste("elements of 'order' must be integers in the range [1,",length(x),"]",sep=""))
haplolist<-x@haplist[order]
names(haplolist)<-paste("haplotype",1:x@nhap,sep="")
haploind<-x@hapind[order]
names(haploind)<-names(haplolist)
if(nrow(x@sequence)>0)
{
hapobj<-new("Haplotype",haplist=haplolist,hapind=haploind,uniquehapind=x@uniquehapind[order],sequence=x@sequence[order,,drop=FALSE],d=x@d[order,order],freq=x@freq[order])
} else {
hapobj<-new("Haplotype",haplist=haplolist,hapind=haploind,uniquehapind=x@uniquehapind[order],d=x@d[order,order],freq=x@freq[order])
}
return(hapobj)
})
setGeneric (
name= "grouping",
def=function(x,...)standardGeneric("grouping")
)
setMethod(f="grouping", signature= "Haplotype", definition=function(x,factors)
{
l<-x@nhap
flevels<-levels(factor(factors))
hapmat<-matrix(0, l, length(flevels))
hapvec<-vector("numeric",length(factors))
rownames(hapmat)<-1:l
colnames(hapmat)<-flevels
for(i in 1:l)
{
hind<- x@hapind[[i]]
fstab<-table(factor(factors[hind]))
hapmat[i,names(fstab)]<-fstab
hapvec[hind]<-i
}
return(list(hapmat=hapmat,hapvec=hapvec))
})
setMethod(f="as.dna", signature= "Haplotype", definition=function(x)
{
seq<-x@sequence
if(!nrow(seq)) stop("Haplotype object does not contain DNA sequences")
dnaobj<-new("Dna",sequence=seq,seqlengths=rep(ncol(seq),nrow(seq)),seqnames=rownames(seq))
dnaobj
}
) |
plot_annual_means <- function(data,
dates = Date,
values = Value,
groups = STATION_NUMBER,
station_number,
roll_days = 1,
roll_align = "right",
water_year_start = 1,
start_year,
end_year,
exclude_years,
months = 1:12,
ignore_missing = FALSE,
allowed_missing = ifelse(ignore_missing,100,0),
include_title = FALSE){
if (missing(data)) {
data <- NULL
}
if (missing(station_number)) {
station_number <- NULL
}
if (missing(start_year)) {
start_year <- 0
}
if (missing(end_year)) {
end_year <- 9999
}
if (missing(exclude_years)) {
exclude_years <- NULL
}
include_title_checks(include_title)
flow_data <- flowdata_import(data = data, station_number = station_number)
flow_data <- format_all_cols(data = flow_data,
dates = as.character(substitute(dates)),
values = as.character(substitute(values)),
groups = as.character(substitute(groups)),
rm_other_cols = TRUE)
annual_stats <- calc_annual_stats(data = flow_data,
roll_days = roll_days,
roll_align = roll_align,
water_year_start = water_year_start,
start_year = start_year,
end_year = end_year,
exclude_years = exclude_years,
months = months,
ignore_missing = ignore_missing,
allowed_missing = allowed_missing)
annual_stats <- dplyr::select(annual_stats, STATION_NUMBER, Year, Mean)
lt_mad <- dplyr::group_by(annual_stats, STATION_NUMBER)
lt_mad <- dplyr::summarise(lt_mad, LTMAD = mean(Mean, na.rm = TRUE))
annual_stats <- dplyr::left_join(annual_stats, lt_mad, by = "STATION_NUMBER")
annual_stats <- dplyr::mutate(annual_stats,
MAD_diff = Mean - LTMAD)
annual_stats <- annual_stats[stats::complete.cases(annual_stats$Mean), ]
tidy_plots <- dplyr::group_by(annual_stats, STATION_NUMBER)
tidy_plots <- tidyr::nest(tidy_plots)
tidy_plots <- dplyr::mutate(
tidy_plots,
plot = purrr::map2(data, STATION_NUMBER,
~ggplot2::ggplot(data = ., ggplot2::aes(x = Year, y = MAD_diff)) +
ggplot2::geom_bar(stat = "identity", fill = "cornflowerblue", na.rm = TRUE) +
ggplot2::geom_hline(yintercept = 0, size = 0.1) +
ggplot2::scale_y_continuous(labels = function(x) round(x + unique(.$LTMAD),3),
breaks = scales::pretty_breaks(n = 10)) +
ggplot2::scale_x_continuous(breaks = scales::pretty_breaks(n = 8))+
{if(length(unique(annual_stats$Year)) < 8) ggplot2::scale_x_continuous(breaks = unique(annual_stats$Year))}+
ggplot2::ylab("Mean Annual Discharge (cms)") +
{if (include_title & .y != "XXXXXXX") ggplot2::ggtitle(paste(.y)) } +
ggplot2::theme_bw() +
ggplot2::theme(panel.border = ggplot2::element_rect(colour = "black", fill = NA, size = 1),
panel.grid = ggplot2::element_line(size = .2),
axis.title = ggplot2::element_text(size = 12),
axis.text = ggplot2::element_text(size = 10),
plot.title = ggplot2::element_text(hjust = 1, size = 9, colour = "grey25"))
))
plots <- tidy_plots$plot
if (nrow(tidy_plots) == 1) {
names(plots) <- "Annual_Means"
} else {
names(plots) <- paste0(tidy_plots$STATION_NUMBER, "_Annual_Means")
}
plots
} |
gf_point(Sepal.Length ~ Sepal.Width, data = iris) |
fpath = system.file("testdata",
"ploglik_cmodStd_r_lambda_ratio_par3.rda",
package = "gear")
load(fpath)
scmod = cmod_std(model = "matern", psill = 1, r = 1, par3 = 1,
angle = pi/8, ratio = 1/1.5,
radians = TRUE, invert = TRUE)
weights = rep(1, length(y))
gear_ml = optimx::optimx(par = c(1, 1, 1/1.5, 1),
fn = ploglik_cmodStd_r_lambda_ratio_par3,
lower = c(0.001, 0, 0.001, 0.001),
upper = c(2, 2, 1, 2.5),
method = "L-BFGS-B",
x = x, y = y, d = d,
weights = weights, scmod = scmod,
reml = FALSE,
control = list(dowarn = FALSE))
sigmasq_ml = ploglik_cmodStd_r_lambda_ratio_par3(with(gear_ml, c(p1, p2, p3, p4)),
x = x,
y = y,
d = d,
weights = weights,
scmod = scmod,
return_ll = FALSE)
gear_reml = optimx::optimx(par = c(1, 1, 1/1.5, 1),
fn = ploglik_cmodStd_r_lambda_ratio_par3,
lower = c(0.001, 0, 0.001, 0.001),
upper = c(15, 5, 1, 2.5),
method = "L-BFGS-B",
x = x, y = y, d = d, nugget = geoR_reml$nugget,
weights = weights, scmod = scmod,
reml = TRUE,
control = list(dowarn = FALSE))
sigmasq_reml = ploglik_cmodStd_r_lambda_ratio_par3(with(gear_ml, c(p1, p2, p3, p4)),
x = x,
y = y,
d = d,
weights = weights,
scmod = scmod,
reml = TRUE,
return_ll = FALSE)
test_that("ploglik_cmodStd_r_lambda_ratio_par3 accuracy (geoR)", {
expect_true(abs(geoR_ml$cov.pars[1] - sigmasq_ml) < 1e-1)
expect_true(abs(geoR_ml$cov.pars[2] - gear_ml$p1 * gear_ml$p3) < 1e-3)
expect_true(abs(geoR_ml$nugget - sigmasq_ml * gear_ml$p2) < 1e-2)
expect_true(abs(geoR_ml$aniso.pars[2] - 1/gear_ml$p3) < 1e-2)
expect_true(abs(geoR_ml$kappa - gear_ml$p4) < 1e-2)
expect_true(abs(geoR_ml$loglik - gear_ml$value/-2) < 1e-5)
expect_true(abs(geoR_reml$cov.pars[1] - sigmasq_reml) < 1e-1/2)
expect_true(abs(geoR_reml$cov.pars[2] - gear_reml$p1 * gear_reml$p3) < 1e-3)
expect_true(abs(geoR_reml$nugget - sigmasq_reml * gear_reml$p2) < 1e-2)
expect_true(abs(geoR_reml$aniso.pars[2] - 1/gear_reml$p3) < 1e-2)
expect_true(abs(geoR_reml$kappa - gear_reml$p4) < 1e-2)
expect_true(abs(geoR_reml$loglik - gear_reml$value/-2) < 1e-5)
})
cmod = scmod
cmod$evar = scmod$psill
data = data.frame(y = y, x1 = coords[,1], x2 = coords[,2])
object = geolm(y ~ 1, data = data, coordnames = c("x1", "x2"),
mod = cmod)
object_ml = estimate(object, method = "L-BFGS-B",
lower = list(r = 0.001, lambda = 0, angle = 0, ratio = 0.001, par3 = 0.001),
upper = list(r = 2, lambda = 2, angle = pi - .001, ratio = 1, par3 = 2.5),
est_nugget = TRUE, est_par3 = TRUE,
est_angle = FALSE, est_ratio = TRUE,
verbose = FALSE)
object_reml = estimate(object, method = "L-BFGS-B",
lower = list(r = 0.001, lambda = 0, angle = 0, ratio = 0.001, par3 = 0.001),
upper = list(r = 15, lambda = 5, angle = pi - .001, ratio = 1, par3 = 2.5),
est_nugget = TRUE, est_par3 = TRUE,
est_angle = FALSE, est_ratio = TRUE,
verbose = FALSE, reml = TRUE)
test_that("estimate r_lambda_angle_par3 accuracy (geoR)", {
expect_true(abs(geoR_ml$sigmasq - object_ml$mod$psill) < 1e-1)
expect_true(abs(geoR_ml$phi - object_ml$mod$r*object_ml$mod$ratio) < 1e-2)
expect_true(abs(geoR_ml$aniso.pars[1] - object_ml$mod$angle) < 1e-2)
expect_true(abs(geoR_ml$aniso.pars[2] - 1/object_ml$mod$ratio) < 1e-1/2)
expect_true(abs(geoR_ml$kappa - object_ml$mod$par3) < 1e-1)
expect_true(abs(geoR_ml_beta - object_ml$coeff) < 1e-2)
expect_equal(gear_ml$value/-2, object_ml$loglik)
expect_equivalent(gear_ml[1:5], object_ml$optimx[1:5])
expect_true(abs(geoR_reml$sigmasq - object_reml$mod$psill) < 1e-1)
expect_true(abs(geoR_reml$phi - object_reml$mod$r*object_reml$mod$ratio) < 1e-4)
expect_true(abs(geoR_reml$aniso.pars[1] - object_reml$mod$angle) < 1e-3)
expect_true(abs(geoR_reml$aniso.pars[2] - 1/object_reml$mod$ratio) < 1e-2)
expect_true(abs(geoR_reml$kappa - object_reml$mod$par3) < 1e-2)
expect_true(abs(geoR_reml_beta - object_reml$coeff) < 1e-2)
expect_equivalent(gear_reml[1:5], object_reml$optimx[1:5])
})
cmod_radians = scmod
cmod_radians$evar = 1
cmod_radians$angle = scmod$angle * 180/pi
cmod_radians$radians = FALSE
object_radians = geolm(y ~ 1, data = data, coordnames = c("x1", "x2"),
mod = cmod_radians)
object_ml_radians = estimate(object_radians, method = "L-BFGS-B",
lower = list(r = 0.001, lambda = 0, ratio = 0.001, par3 = 0.001),
upper = list(r = 2, lambda = 2, ratio = 1, par3 = 2.5),
est_nugget = TRUE, est_par3 = TRUE,
est_angle = FALSE, est_ratio = TRUE,
verbose = FALSE)
test_that("estimate w/ and w/o radians r_lambda_ratio_par3 accuracy", {
expect_equal(object_ml$mod$angle, object_ml_radians$mod$angle * pi/180)
expect_equal(object_ml$mod$ratio, object_ml_radians$mod$ratio)
expect_equal(object_ml$mod$psill, object_ml_radians$mod$psill)
expect_equal(object_ml$mod$r, object_ml_radians$mod$r)
expect_equal(object_ml$mod$par3, object_ml_radians$mod$par3)
expect_equal(object_ml$coeff, object_ml_radians$coeff)
expect_equal(object_ml$loglik, object_ml_radians$loglik)
object_ml_radians$optimx$xtime = object_ml$optimx$xtime
expect_equal(object_ml$optimx, object_ml_radians$optimx)
}) |
write.cross <-
function(cross, format=c("csv", "csvr", "csvs", "csvsr", "mm", "qtlcart",
"gary", "qtab", "mapqtl", "tidy"),
filestem="data", chr, digits=NULL, descr)
{
if(!inherits(cross, "cross"))
stop("Input should have class \"cross\".")
format <- match.arg(format)
if(!missing(chr)) cross <- subset(cross,chr=chr)
chr_type <- sapply(cross$geno,chrtype)
crosstype <- crosstype(cross)
if((crosstype=="bc" || crosstype=="f2") &&
any(chr_type=="X")) {
sexpgm <- getsex(cross)
sex <- sexpgm$sex
pgm <- sexpgm$pgm
for(i in which(chr_type=="X"))
cross$geno[[i]]$data <- fixX4write(cross$geno[[i]]$data,sex,pgm,crosstype)
}
if(crosstype == "bcsft")
class(cross) <- c("f2", "cross")
if(format=="csv") write.cross.csv(cross,filestem,digits,FALSE,FALSE)
else if(format=="csvr") write.cross.csv(cross,filestem,digits,TRUE,FALSE)
else if(format=="csvs") write.cross.csv(cross,filestem,digits,FALSE,TRUE)
else if(format=="csvsr") write.cross.csv(cross,filestem,digits,TRUE,TRUE)
else if(format=="mm") write.cross.mm(cross,filestem,digits)
else if(format=="qtlcart") write.cross.qtlcart(cross, filestem)
else if(format=="gary") write.cross.gary(cross, digits)
else if(format=="tidy") write.cross.tidy(cross, filestem, digits)
else if(format=="qtab") {
if(missing(descr)) descr <- paste(deparse(substitute(cross)), "from R/qtl")
write.cross.qtab(cross, filestem, descr, verbose=FALSE)
} else if(format == "mapqtl")
write.cross.mq(cross, filestem, digits)
}
write.cross.mm <-
function(cross, filestem="data", digits=NULL)
{
n.ind <- nind(cross)
tot.mar <- totmar(cross)
n.phe <- nphe(cross)
n.chr <- nchr(cross)
n.mar <- nmar(cross)
type <- crosstype(cross)
if(type=="riself" || type=="risib" || type=="dh" || type=="haploid") type <- "bc"
if(type != "f2" && type != "bc")
stop("write.cross.mm only works for intercross, backcross, doubled haploid and RI data.")
file <- paste(filestem, ".raw", sep="")
if(type == "f2")
write("data type f2 intercross", file, append=FALSE)
else
write("data type f2 backcross", file, append=FALSE)
write(paste(n.ind, tot.mar, n.phe), file, append=TRUE)
mlmn <- max(nchar(unlist(lapply(cross$geno,function(a) colnames(a$data)))))+1
for(i in 1:n.chr) {
for(j in 1:n.mar[i]) {
mn <- paste("*", colnames(cross$geno[[i]]$data)[j], sep="")
if(nchar(mn) < mlmn)
mn <- paste(mn,paste(rep(" ", mlmn-nchar(mn)),collapse=""),sep="")
g <- cross$geno[[i]]$data[,j]
x <- rep("", n.ind)
x[is.na(g)] <- "-"
x[!is.na(g) & g==1] <- "A"
x[!is.na(g) & g==2] <- "H"
if(type == "f2") {
x[!is.na(g) & g==3] <- "B"
x[!is.na(g) & g==4] <- "D"
x[!is.na(g) & g==5] <- "C"
}
if(n.ind < 60)
write(paste(mn, paste(x,collapse="")), file, append=TRUE)
else {
lo <- seq(1,n.ind-1,by=60)
hi <- c(lo[-1]-1,n.ind)
for(k in seq(along=lo)) {
if(k==1) write(paste(mn,paste(x[lo[k]:hi[k]],collapse="")),file,append=TRUE)
else write(paste(paste(rep(" ", mlmn),collapse=""),
paste(x[lo[k]:hi[k]],collapse="")),file,append=TRUE)
}
}
}
}
mlpn <- max(nchar(colnames(cross$pheno)))+1
for(i in 1:n.phe) {
pn <- paste("*",colnames(cross$pheno)[i],sep="")
if(nchar(pn) < mlpn)
pn <- paste(pn, paste(rep(" ", mlpn-nchar(pn)),collapse=""),sep="")
if(!is.factor(cross$pheno[,i])) {
if(is.null(digits)) x <- as.character(cross$pheno[,i])
else x <- as.character(round(cross$pheno[,i],digits))
}
else
x <- as.character(cross$pheno[,i])
x[is.na(x)] <- "-"
if(n.ind < 10)
write(paste(pn, paste(x,collapse="")), file, append=TRUE)
else {
lo <- seq(1,n.ind-1,by=10)
hi <- c(lo[-1]-1,n.ind)
for(k in seq(along=lo)) {
if(k==1) write(paste(pn,paste(x[lo[k]:hi[k]],collapse=" ")),file,append=TRUE)
else write(paste(paste(rep(" ", mlpn),collapse=""),
paste(x[lo[k]:hi[k]],collapse=" ")),file,append=TRUE)
}
}
}
file <- paste(filestem, ".prep", sep="")
for(i in 1:n.chr) {
cname <- paste("chr", names(cross$geno)[i], sep="")
line <- paste("make chromosome", cname)
if(i==1) write(line, file, append=FALSE)
else write(line, file, append=TRUE)
mn <- names(cross$geno[[i]]$map)
write(paste(paste("sequence", mn[1]), paste(mn[-1],collapse=" ")),
file, append=TRUE)
write(paste("anchor", cname), file, append=TRUE)
write(paste("framework", cname), file, append=TRUE)
}
}
write.cross.csv <-
function(cross, filestem="data", digits=NULL, rotate=FALSE, split=FALSE)
{
type <- crosstype(cross)
if(type != "f2" && type != "bc" && type != "riself" && type != "risib" && type != "dh" && type != "haploid")
stop("write.cross.csv only works for intercross, backcross, RI, doubled haploid, and haploid data.")
if(!split)
file <- paste(filestem, ".csv", sep="")
else {
genfile <- paste(filestem, "_gen.csv", sep="")
phefile <- paste(filestem, "_phe.csv", sep="")
}
if(split) {
id <- getid(cross)
if(is.null(id)) {
cross$pheno$id <- 1:nind(cross)
id <- getid(cross)
}
id.col <- which(colnames(cross$pheno)==attr(id,"phenam"))
}
n.ind <- nind(cross)
tot.mar <- totmar(cross)
n.phe <- nphe(cross)
n.chr <- nchr(cross)
n.mar <- nmar(cross)
geno <- matrix(ncol=tot.mar,nrow=n.ind)
if("alleles" %in% names(attributes(cross))) {
alle <- attr(cross, "alleles")
alleles <- c(paste(alle[1],alle[1],sep=""),
paste(alle[1],alle[2],sep=""),
paste(alle[2],alle[2],sep=""),
paste("not ", alle[2],alle[2],sep=""),
paste("not ", alle[1],alle[1],sep=""))
}
else alleles <- c("A","H","B","D","C")
if(type=="dh" || type=="riself" || type=="risib") alleles[2:3] <- alleles[3:2]
else if(type=="haploid") alleles <- alle
firstmar <- 1
for(i in 1:n.chr) {
geno[,firstmar:(firstmar+n.mar[i]-1)] <-
alleles[match(cross$geno[[i]]$data,1:5)]
firstmar <- firstmar + n.mar[i]
}
if(any(is.na(geno))) geno[is.na(geno)] <- "-"
pheno <- cross$pheno
for(i in 1:nphe(cross)) {
if(is.factor(pheno[,i])) pheno[,i] <- as.character(pheno[,i])
else if(is.numeric(pheno[,i])) {
if(!is.null(digits)) pheno[,i] <- round(pheno[,i], digits)
pheno[,i] <- as.character(pheno[,i])
}
}
pheno <- matrix(unlist(pheno), nrow=n.ind)
if(any(is.na(pheno))) pheno[is.na(pheno)] <- "-"
thedata <- cbind(pheno,geno)
colnames(thedata) <- c(colnames(cross$pheno),
unlist(lapply(cross$geno, function(a) colnames(a$data))))
chr <- rep(names(cross$geno),n.mar)
pos <- unlist(lapply(cross$geno,function(a) a$map))
chr <- c(rep("",n.phe),chr)
if(!is.null(digits))
pos <- c(rep("",n.phe),as.character(round(pos,digits)))
else
pos <- c(rep("",n.phe),as.character(pos))
thenames <- colnames(thedata)
thedata <- matrix(as.character(thedata), ncol=ncol(thedata))
thedata <- rbind(thenames, chr, pos, thedata)
if(!split) {
if(!rotate)
write.table(thedata, file, quote=FALSE, sep=",",
row.names=FALSE, col.names=FALSE)
else
write.table(t(thedata), file, quote=FALSE, sep=",",
row.names=FALSE, col.names=FALSE)
}
else {
n.phe <- nphe(cross)
phe <- thedata[-(2:3),1:n.phe]
gen <- cbind(thedata[,id.col], thedata[,-(1:n.phe)])
if(!rotate) {
write.table(gen, genfile, quote=FALSE, sep=",",
row.names=FALSE, col.names=FALSE)
write.table(phe, phefile, quote=FALSE, sep=",",
row.names=FALSE, col.names=FALSE)
}
else {
write.table(t(gen), genfile, quote=FALSE, sep=",",
row.names=FALSE, col.names=FALSE)
write.table(t(phe), phefile, quote=FALSE, sep=",",
row.names=FALSE, col.names=FALSE)
}
}
}
write.cross.gary <-
function(cross, digits=NULL)
{
n.ind <- nind(cross)
tot.mar <- totmar(cross)
n.phe <- nphe(cross)
n.chr <- nchr(cross)
n.mar <- nmar(cross)
chrid <- NULL
for(i in 1:n.chr) {
chrname <- names(cross$geno[i])
chrid <- c(chrid, rep(chrname, n.mar[i]))
}
write.table(chrid, file="chrid.dat", quote=FALSE, row.names=FALSE,
col.names=FALSE)
markpos <- NULL
for(i in 1:n.chr)
markpos <- c(markpos, cross$geno[[i]]$map)
write.table(markpos, file="markerpos.txt", quote=FALSE, sep="\t",
row.names=TRUE, col.names=FALSE)
mnames <- names(markpos)
write.table(mnames, file="mnames.txt", quote=FALSE, row.names=FALSE,
col.names=FALSE)
geno <- NULL
for(i in 1:n.chr)
geno <- cbind(geno, cross$geno[[i]]$data)
geno <- geno - 1
write.table(geno, file="geno.dat", quote=FALSE, row.names=FALSE,
col.names=FALSE, sep="\t", na="9")
pheno <- cross$pheno
for(i in 1:nphe(cross)) {
if(is.factor(pheno[,i])) pheno[,i] <- as.character(pheno[,i])
else if(is.numeric(pheno[,i])) {
if(is.null(digits)) pheno[,i] <- as.character(pheno[,i])
else pheno[,i] <- as.character(round(pheno[,i], digits))
}
}
pheno <- matrix(unlist(pheno), nrow=nrow(pheno))
write.table(pheno, file="pheno.dat", quote=FALSE, row.names=FALSE,
col.names=FALSE, sep="\t", na="-999")
write.table(names(cross$pheno), file="pnames.txt", quote=FALSE,
row.names=FALSE, col.names=FALSE, sep="\t", na="-999")
}
write.cross.tidy <-
function(cross, filestem="data", digits=NULL)
{
genfile <- paste(filestem, "_gen.csv", sep="")
phefile <- paste(filestem, "_phe.csv", sep="")
mapfile <- paste(filestem, "_map.csv", sep = "")
type <- crosstype(cross)
id <- getid(cross)
if(is.null(id)) {
cross$pheno$id <- 1:nind(cross)
id <- getid(cross)
}
id.col <- which(colnames(cross$pheno) == attr(id,"phenam"))
if("alleles" %in% names(attributes(cross))) {
alle <- attr(cross, "alleles")
alleles <- c(paste(alle[1],alle[1],sep=""),
paste(alle[1],alle[2],sep=""),
paste(alle[2],alle[2],sep=""),
paste("not ", alle[2],alle[2],sep=""),
paste("not ", alle[1],alle[1],sep=""))
}
else alleles <- c("A","H","B","D","C")
if (type %in% c("dh", "riself", "risib")) alleles[2:3] <- alleles[3:2]
else if (type == "haploid") alleles <- alle
geno <- pull.geno(cross)
geno <- matrix(alleles[geno], ncol = nind(cross), byrow = TRUE,
dimnames = list(markernames(cross), make.names(id)))
if(any(is.na(geno))) geno[is.na(geno)] <- "-"
pheno <- cross$pheno[-id.col]
for(i in 1:ncol(pheno)) {
if(is.factor(pheno[,i])) pheno[,i] <- as.character(pheno[,i])
else if(is.numeric(pheno[,i])) {
if(!is.null(digits)) pheno[,i] <- round(pheno[,i], digits)
pheno[,i] <- as.character(pheno[,i])
}
}
pheno <- matrix(unlist(pheno), nrow=nind(cross),
dimnames = list(make.names(id), phenames(cross)[-id.col]))
pheno <- t(pheno)
if(any(is.na(pheno))) pheno[is.na(pheno)] <- "-"
map <- pull.map(cross, as.table = TRUE)
if(!is.null(digits))
map$pos <- as.character(round(map$pos, digits))
else
map$pos <- as.character(map$pos)
write.table(geno, genfile, quote = FALSE, sep = ",", col.names = NA)
write.table(pheno, phefile, quote = FALSE, sep = ",", col.names = NA)
write.table(map, mapfile, quote = FALSE, sep = ",", col.names = NA)
}
fixX4write <-
function(geno,sex,pgm,crosstype)
{
if(!is.null(sex) & any(sex==1)) {
temp <- geno[sex==1,,drop=FALSE]
temp[temp==2] <- 3
geno[sex==1,] <- temp
}
if(crosstype == "f2") {
if(!is.null(pgm)) {
if(!is.null(sex)) {
if(any(pgm==1 & sex==0)) {
temp <- geno[sex==0 & pgm==1,,drop=FALSE]
temp[temp==1] <- 3
geno[sex==0 & pgm==1,] <- temp
}
}
else {
if(any(pgm==1)) {
temp <- geno[pgm==1,,drop=FALSE]
temp[temp==1] <- 3
geno[pgm==1,] <- temp
}
}
}
}
geno
} |
isStrictlyNegativeIntegerOrNaScalar <- function(argument, default = NULL, stopIfNot = FALSE, message = NULL, argumentName = NULL) {
checkarg(argument, "N", default = default, stopIfNot = stopIfNot, nullAllowed = FALSE, n = 1, zeroAllowed = FALSE, negativeAllowed = TRUE, positiveAllowed = FALSE, nonIntegerAllowed = FALSE, naAllowed = TRUE, nanAllowed = FALSE, infAllowed = FALSE, message = message, argumentName = argumentName)
} |
context("ML Result")
test_that("multilabel_prediction", {
set.seed(1)
colrows <- list(as.character(11:20), paste("lbl", 1:10, sep=''))
probs <- matrix(stats::runif(100), ncol = 10, dimnames = colrows)
classes <- ifelse(probs >= 0.5, 1, 0)
mres1 = multilabel_prediction(classes, probs, TRUE)
mres2 = multilabel_prediction(classes, probs, FALSE)
expect_is(mres1, "mlresult")
expect_is(mres2, "mlresult")
expect_true(is.probability(mres1))
expect_true(is.bipartition(mres2))
expect_false(is.probability(mres2))
expect_false(is.bipartition(mres1))
expect_equal(as.bipartition(mres1), classes)
expect_equal(as.bipartition(mres1), as.bipartition(mres2))
expect_equal(as.probability(mres1), probs)
expect_equal(as.probability(mres1), as.probability(mres2))
expect_equal(dimnames(mres1), colrows)
expect_equal(dimnames(mres1), dimnames(mres2))
colrows <- list(as.character(11:20), paste("lbl", 1:5, sep=''))
probs <- matrix(stats::runif(50, min = 0, max = 0.4), ncol = 5,
dimnames = colrows)
classes <- ifelse(probs >= 0.5, 1, 0)
mres3 = multilabel_prediction(classes, probs, FALSE)
expect_true(all(rowSums(mres3) == 1))
probs[1:5, c(1,2)] <- 0.45
probs[6:10, -c(1,2)] <- 0.47
mres4 = multilabel_prediction(classes, probs, FALSE)
expect_true(all(rowSums(mres4[1:5, c(1,2)]) == 1))
expect_true(all(rowSums(mres4[6:10, c(1,2)]) == 0))
expect_true(all(rowSums(mres4[1:5, -c(1,2)]) == 0))
expect_true(all(rowSums(mres4[6:10, -c(1,2)]) == 1))
})
test_that("as.ranking", {
rowcol <- list(as.character(1:5), c("lA", "lB"))
mlres <- as.mlresult(matrix(seq(0.1, 1, by = 0.1), ncol=2, byrow = TRUE,
dimnames = rowcol))
rk <- as.ranking(mlres)
exp.rk <- matrix(c(rep(2, 5), rep(1, 5)), ncol = 2, dimnames = rowcol)
expect_is(rk, "matrix")
expect_equal(rk, exp.rk)
expect_equal(dimnames(rk), rowcol)
mlres2 <- as.mlresult(cbind(mlres, 1 - mlres))
rk <- as.ranking(mlres2)
expect_equal(rk[1, ], rk[2, ])
expect_equal(rk[4, ], rk[5, ])
expect_equal(rowSums(rk), c(10, 10, 9, 10, 10), check.names = FALSE)
rk <- as.ranking(mlres2, ties = "average")
expect_equal(rowSums(rk), c(10, 10, 10, 10, 10), check.names = FALSE)
rk <- as.ranking(mlres2, ties = "max")
expect_equal(rowSums(rk), c(10, 10, 11, 10, 10), check.names = FALSE)
})
test_that("as.mlresult", {
set.seed(1234)
predictions <- matrix(stats::runif(100), ncol = 10)
colnames(predictions) <- paste('label', 1:10, sep='')
mlresult <- as.mlresult(predictions)
mlresult2 <- as.mlresult(mlresult, prob = FALSE)
mlresult3 <- as.mlresult(predictions, threshold = 0.3)
expect_is(mlresult, "mlresult")
expect_is(mlresult2, "mlresult")
expect_is(mlresult3, "mlresult")
expect_equal(as.probability(mlresult), predictions)
expect_equal(as.mlresult(as.data.frame(predictions)), mlresult)
expect_equal(as.mlresult(mlresult), mlresult)
expect_true(attr(mlresult, "type") == attr(mlresult3, "type"))
expect_false(attr(mlresult, "type") == attr(mlresult2, "type"))
expect_equal(as.bipartition(mlresult),
as.bipartition(fixed_threshold(predictions, 0.5)))
expect_equal(as.bipartition(mlresult3),
as.bipartition(fixed_threshold(predictions, 0.3)))
})
test_that("Filter ML Result", {
set.seed(1234)
labels <- matrix(stats::runif(150), ncol = 10)
colnames(labels) <- paste("label", 1:10, sep='')
mlres <- as.mlresult(labels)
bipartition <- as.bipartition(mlres)
mlres1 <- multilabel_prediction(bipartition, labels, TRUE)
mlres2 <- multilabel_prediction(bipartition, labels, FALSE)
expect_is(mlres1[1:3, ], "mlresult")
expect_is(mlres1[1:3], "mlresult")
expect_equal(mlres1[1:3, ], mlres1[1:3])
expect_is(mlres1[1:3, 1:3], "matrix")
expect_is(mlres1[, 1:5], "matrix")
expect_is(mlres1[, 1, drop = FALSE], "matrix")
expect_is(mlres1[, 1], "numeric")
expect_true(is.probability(mlres1[1:3, ]))
expect_true(is.bipartition(mlres2[1:3, ]))
expect_equal(mlres1[, c("label1", "label3")], labels[, c("label1", "label3")])
expect_equal(mlres2[, c("label1", "label3")],
bipartition[, c("label1", "label3")])
expect_equal(mlres1[, 3:6], labels[, 3:6])
expect_equal(mlres2[, 2:8], bipartition[, 2:8])
expect_equal(mlres1[1:5, 1:5], labels[1:5, 1:5])
expect_equal(mlres2[2:8, 2:8], bipartition[2:8, 2:8])
mlres3 <- mlres1[1:8]
expect_equal(as.probability(mlres3), labels[1:8, ])
expect_equal(as.bipartition(mlres3), bipartition[1:8, ])
}) |
BlackScholesCallESSim <- function(amountInvested, stockPrice, strike, r, mu,
sigma, maturity, numberTrials, cl, hp){
annualMaturity <- maturity / 360
annualHp <- hp / 360
N <- 1
dt <- annualHp / N
nudt <- (mu - .5 * sigma^2) * dt
sigmadt <- sigma * sqrt(dt)
lnS <- log(stockPrice)
M <- numberTrials
initialOptionPrice <- BlackScholesCallPrice(stockPrice, strike,
r, sigma, maturity)
numberOfOptions <- abs(amountInvested) / initialOptionPrice
lnSt <- matrix(0, M, N)
newStockPrice <- matrix(0, M, N)
for (i in 1:M){
lnSt[i] <- lnS + rnorm(1, nudt, sigmadt)
newStockPrice[i] <- exp(lnSt[i, 1])
}
profitOrLoss <- double(M)
if (amountInvested > 0) {
for (i in 1:M) {
profitOrLoss[i] <- (BlackScholesCallPrice(newStockPrice[i], strike, r,
sigma, maturity - hp) - initialOptionPrice) * numberOfOptions
}
}
if (amountInvested < 0) {
for (i in 1:M) {
profitOrLoss[i] <- (-BlackScholesCallPrice(newStockPrice[i], strike, r,
sigma, maturity - hp) + initialOptionPrice) * numberOfOptions
}
}
y <- HSES(profitOrLoss, cl)
return(y)
} |
rvifelse <- function (test, yes, no) {
rvmapply(ifelse, test=test, yes=yes, no=no)
} |
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL
SeuratObject::AddMetaData
SeuratObject::as.Graph
SeuratObject::as.Neighbor
SeuratObject::as.Seurat
SeuratObject::as.sparse
SeuratObject::Assays
SeuratObject::Cells
SeuratObject::CellsByIdentities
SeuratObject::Command
SeuratObject::CreateAssayObject
SeuratObject::CreateDimReducObject
SeuratObject::CreateSeuratObject
SeuratObject::DefaultAssay
SeuratObject::`DefaultAssay<-`
SeuratObject::Distances
SeuratObject::Embeddings
SeuratObject::FetchData
SeuratObject::GetAssayData
SeuratObject::GetImage
SeuratObject::GetTissueCoordinates
SeuratObject::HVFInfo
SeuratObject::Idents
SeuratObject::`Idents<-`
SeuratObject::Images
SeuratObject::Index
SeuratObject::`Index<-`
SeuratObject::Indices
SeuratObject::IsGlobal
SeuratObject::JS
SeuratObject::`JS<-`
SeuratObject::Key
SeuratObject::`Key<-`
SeuratObject::Loadings
SeuratObject::`Loadings<-`
SeuratObject::LogSeuratCommand
SeuratObject::Misc
SeuratObject::`Misc<-`
SeuratObject::Neighbors
SeuratObject::Project
SeuratObject::`Project<-`
SeuratObject::Radius
SeuratObject::Reductions
SeuratObject::RenameCells
SeuratObject::RenameIdents
SeuratObject::ReorderIdent
SeuratObject::RowMergeSparseMatrices
SeuratObject::SetAssayData
SeuratObject::SetIdent
SeuratObject::SpatiallyVariableFeatures
SeuratObject::StashIdent
SeuratObject::Stdev
SeuratObject::SVFInfo
SeuratObject::Tool
SeuratObject::`Tool<-`
SeuratObject::UpdateSeuratObject
SeuratObject::VariableFeatures
SeuratObject::`VariableFeatures<-`
SeuratObject::WhichCells |
context("Test for lets.overlap")
data(PAM)
test_that("lets.overlap works fine, Chesser&Zink", {
resu_test <- lets.overlap(PAM, method = "Chesser&Zink")
expect_equal(class(resu_test)[1], "matrix")
expect_true(all(dim(resu_test) == length(PAM[[3]])))
expect_true(!any(is.na(resu_test)))
})
test_that("lets.overlap works fine, xy = FALSE", {
resu_test <- lets.overlap(PAM[[1]][, -c(1, 2)],
method = "Chesser&Zink",
xy = FALSE)
expect_equal(class(resu_test)[1], "matrix")
expect_true(all(dim(resu_test) == length(PAM[[3]])))
expect_true(!any(is.na(resu_test)))
})
test_that("lets.overlap works fine, xy = TRUE", {
resu_test <- lets.overlap(PAM[[1]],
method = "Chesser&Zink",
xy = TRUE)
expect_equal(class(resu_test)[1], "matrix")
expect_true(all(dim(resu_test) == length(PAM[[3]])))
expect_true(!any(is.na(resu_test)))
})
test_that("lets.overlap works fine, Cells", {
resu_test <- lets.overlap(PAM, method = "Cells")
expect_equal(class(resu_test)[1], "matrix")
expect_true(all(dim(resu_test) == length(PAM[[3]])))
expect_true(!any(is.na(resu_test)))
})
test_that("lets.overlap works fine, Proportional", {
resu_test <- lets.overlap(PAM, method = "Proportional")
expect_equal(class(resu_test)[1], "matrix")
expect_true(all(dim(resu_test) == length(PAM[[3]])))
expect_true(!any(is.na(resu_test)))
})
test_that("lets.overlap error method", {
expect_error(lets.overlap(PAM, method = "testerror"))
})
test_that("lets.overlap error xy", {
expect_error(lets.overlap(PAM[[1]], method = "Cells"))
}) |
library(hamcrest)
library(stats)
library(methods)
test.setClassInheritRepresentationAndContains <- function() {
setClass("A", representation(a="numeric"))
a1 <- new("A", a=1.5)
m1 <- as.matrix(1)
setClass("M", contains = "matrix", representation(fuzz = "numeric"))
set.seed(113)
f1 <- runif(3)
assertThat(
as(new("M", 1:12, nrow = 3, fuzz = f1), "matrix"),
identicalTo(matrix(1:12, nrow=3))
)
assertThat(
as(new("M", 1:12, 3, fuzz = f1), "matrix"),
identicalTo(matrix(1:12, 3))
)
assertThat(
as(new("M", 1:12, ncol = 3, fuzz = f1), "matrix"),
identicalTo(matrix(1:12, ncol=3))
)
}
test.setClassCallSlots <- function() {
setClass("A", representation(a="numeric"))
a1 <- new("A", a=1.5)
m1 <- as.matrix(1)
setClass("M", contains = "matrix", representation(fuzz = "numeric"))
set.seed(113)
f1 <- runif(3)
setClass("B", contains = c("matrix", "A"))
assertThat(
new("B", m1, a1)@a,
identicalTo(a1@a)
)
assertThat(
as(new("B", m1),"matrix"),
identicalTo(m1)
)
assertThat(
new("B", matrix(m1, nrow = 2), a1, a=pi)@a,
identicalTo(pi)
)
}
test.setClassValidateSlots <- function() {
setClass("A", representation(a="numeric"))
a1 <- new("A", a=1.5)
m1 <- as.matrix(1)
setClass("M", contains = "matrix", representation(fuzz = "numeric"))
set.seed(113)
f1 <- runif(3)
setClass("B", contains = c("matrix", "A"))
setClass("C", contains = "B", representation(c = "character"))
setValidity("B", function(object) {
if(all(is.na(object@a) | (object@a > 0)))
TRUE
else
FALSE
})
assertThat(
try(validObject(new("B", a= c(NA,3, -1, 2))),silent=TRUE),
instanceOf("try-error")
)
assertThat(
try(validObject(new("A", a= c(NA,3, -1, 2))),silent=TRUE),
instanceOf("try-error")
)
assertThat(
try(validObject(new("B", m1, a2)),silent=TRUE),
instanceOf("try-error")
)
}
test.setClassValidateSlots <- function() {
a3 <- array(1:24, 2:4)
a2 <- array(1:12, 3:4)
assertTrue(
is(tryCatch(as(a3, "matrix"), error = function(e)e), "error")
)
assertTrue(
is(as(a2 <- array(1:12, 3:4), "matrix"), "matrix")
)
assertTrue(
is(a2, "matrix")
)
assertTrue(
is(a2, "array")
)
assertTrue(
is(a3, "array")
)
assertTrue(
!is(a3, "matrix")
)
assertTrue(
identical(a2, matrix(1:12, 3) )
)
}
test.setClassUnion <- function() {
assertFalse(
is(tryCatch(setClassUnion("mn", c("matrix","numeric")), error = function(e)e), "error")
)
assertFalse(
is(tryCatch(setClassUnion("an", c("array", "integer")), error = function(e)e), "error")
)
assertFalse(
is(tryCatch(setClassUnion("AM", c("array", "matrix")), error = function(e)e), "error")
)
}
test.setClassMix <- function() {
f = setClass("BAR", slots = c(y="integer"))
a1 <- new("BAR")
a1@y <- 10L
assertFalse(
is(tryCatch(setClass("BAR", slots = c(y="integer")), error = function(e)e), "error")
)
assertTrue(
is(f, "classGeneratorFunction")
)
assertTrue(
is(a1@y, "integer")
)
assertTrue(
is(a1@y, "numeric")
)
assertTrue(
is(a1, "BAR")
)
assertThat(
a1@y,
identicalTo(10L)
)
f = function() { setMethod("initialize", "BAR", function(.Object, Y) {.Object@y <- Y; .Object}) }
f_out = f()
a2 <- new("BAR", 5L)
assertFalse(
is(tryCatch(f(), error = function(e)e), "error")
)
assertThat(
f_out,
identicalTo("initialize")
)
assertTrue(
is(a2, "BAR")
)
assertTrue(
is(a2@y, "integer")
)
assertTrue(
is(a2@y, "numeric")
)
g = setClass("BAR3", contains = "BAR")
b <- new("BAR3", 7L)
assertFalse(
is(tryCatch(setClass("BAR3", contains = "BAR"), error = function(e)e), "error")
)
assertTrue(
is(g, "classGeneratorFunction")
)
assertTrue(
is(b@y, "integer")
)
assertTrue(
is(b@y, "numeric")
)
assertTrue(
is(b, "BAR3")
)
assertThat(
b@y,
identicalTo(7L)
)
assertTrue(
is(tryCatch(new("BAR3", 7), error = function(e)e), "error")
)
assertTrue(
is(tryCatch(b@y <- 9, error = function(e)e), "error")
)
assertTrue(
is(tryCatch(b@y <- "CHAR", error = function(e)e), "error")
)
} |
setAs(
from = "CompactStratification",
to = "data.frame",
def = function(from) {
as(as(from, "SpatialPixelsDataFrame"), "data.frame")
}
)
setAs(
from = "CompactStratification",
to = "SpatialPixels",
def = function(from) {
tmp <- from@cells
gridded(tmp) <- FALSE
suppressWarnings(as(tmp, "SpatialPixels"))
}
)
setAs(
from = "CompactStratification",
to = "SpatialPixelsDataFrame",
def = function(from) {
suppressWarnings(
SpatialPixelsDataFrame(
points = as(from, "SpatialPixels"),
data = data.frame(stratumId = from@stratumId)
)
)
}
)
setAs(
from = "SamplingPattern",
to = "data.frame",
def = function(from) {
as(from@sample, "data.frame")
}
)
setAs(
from = "SamplingPatternRandomComposite",
to = "data.frame",
def = function(from) {
as(as(from, "SpatialPointsDataFrame"), "data.frame")
}
)
setAs(
from = "SamplingPatternRandomComposite",
to = "SpatialPointsDataFrame",
def = function(from) {
SpatialPointsDataFrame(
coords = as(from, "SpatialPoints"),
data = data.frame(composite = from@composite)
)
}
)
setAs(
from = "SamplingPattern",
to = "SpatialPoints",
def = function(from) {
from@sample
}
) |
source("ESEUR_config.r")
library("bitops")
library("plyr")
library("png")
map_RGB=function(color)
{
return(bitOr(as.numeric(255*color[ , 1]),
bitOr(bitShiftL(as.numeric(255*color[ , 2]), 8),
bitShiftL(as.numeric(255*color[ , 3]), 16))))
}
hm=readPNG(paste0(ESEUR_dir, "evolution/heatmap2.png"), FALSE)
xbounds=c(1, ncol(hm))
ybounds=c(1, nrow(hm))
plot(1, type="n",
xaxt="n", yaxt="n",
xlim=xbounds, ylim=ybounds,
xlab="", ylab="")
rasterImage(hm, xbounds[1], ybounds[1], xbounds[2], ybounds[2])
black_white_RGB=rbind(c(0, 0, 0),
c(1, 1, 1))
black_white=map_RGB(black_white_RGB)
white_RGB=black_white[2]
hm_RGB=hm[5925, 580:3204, ]
hm_scale=data.frame(RGB=map_RGB(hm_RGB),
scale=(1:nrow(hm_RGB))/nrow(hm_RGB))
uniq_scale=hm_scale[with(hm_scale,
c((RGB[-1] != head(RGB, n=-1)), TRUE)), ]
uniq_scale$scale[uniq_scale$RGB == white_RGB]=0
th=hm[1:5450,551:6000,]
col_edge=aaply(th, 1, function(df) (df[ , 1] != df[ , 2]))
t1_ce=aaply(col_edge, 1, function(df) tail(which(c(TRUE, df)), n=1))-1
t2_ce=t1_ce[t1_ce != 0]
ce_offset=t2_ce[c((t2_ce[-1] != head(t2_ce, n=-1)), TRUE)]
ce_row=as.numeric(names(ce_offset))
col_map=aaply(th, 1, map_RGB)
col_val=col_map[ce_row, ce_offset]
t1_v=aaply(col_val, 1, function(df) t=mapvalues(df, from=uniq_scale$RGB,
to=uniq_scale$scale,
warn_missing=FALSE))
version_p=t(apply(t1_v, 2, rev))
write.csv(version_p, file="linux-src-evol.csv.xz", row.names=FALSE)
pal_col=rainbow(30, end=26/30)
pal_col=c("
image(version_p, col=pal_col) |
context("eib_plot")
library(ggplot2)
library(dplyr)
library(reshape2)
library(purrr)
library(vdiffr)
load("ce.RData")
he <- BCEA::bcea(eff, cost)
test_that("eib.plot_ggplot draws correctly", {
eib_plot <- eib.plot(he, graph = "ggplot2", title = "my title")
}) |
NULL
. = NULL
test_rqdatatable <- function() {
d = data.frame(x = c(1, 2))
x = NULL
d %.>%
extend(., y = x*x)
return(d)
} |
progress_time <- function() {
n <- 0
txt <- NULL
list(
init = function(x) {
txt <<- txtTimerBar(x)
utils::setTxtProgressBar(txt, 0)
},
step = function() {
n <<- n + 1
utils::setTxtProgressBar(txt, n)
},
term = function() close(txt)
)
}
txtTimerBar <- function(n = 1) {
start <- .last_update_time <- proc.time()[3]
times <- numeric(n)
value <- NULL
killed <- FALSE
width <- getOption("width") - nchar('||100% ~ 999.9 h remaining.')
update <- function(i) {
if (i == 0) return()
value <<- i
times[i] <- proc.time()[3] - start
avg <- times[i] / i
time_left <- (n - i) * avg
nbars <- trunc(i / n * width)
cat_line("|", str_rep("=", nbars), str_rep(" ", width - nbars), "|",
format(i / n * 100, width = 3), "% ~", show_time(time_left), " remaining")
}
getVal <- function() value
kill <- function(){
if (killed) return()
killed <<- TRUE
if (value == n) {
cat_line("|", str_rep("=", width), "|100%")
cat("Completed after", show_time(proc.time()[3] - start), "\n")
} else {
cat("Killed after", show_time(proc.time()[3] - start), "\n")
}
}
cat_line("|", str_rep(" ", width), "| 0%")
structure(
list(getVal = getVal, up = update, kill = kill),
class = "txtProgressBar")
}
show_time <- function(x) {
if (x < 60) {
paste(round(x), "s")
} else if (x < 60 * 60) {
paste(round(x / 60), "m")
} else {
paste(round(x / (60 * 60)), "h")
}
}
cat_line <- function(...) {
msg <- paste(..., sep = "", collapse = "")
gap <- max(c(0, getOption("width") - nchar(msg, "width")))
cat("\r", msg, rep.int(" ", gap), sep = "")
utils::flush.console()
}
str_rep <- function(x, i) {
paste(rep.int(x, i), collapse = "")
} |
rescale_img = function(filename,
pngname = NULL,
write.nii = FALSE,
outfile = NULL,
min.val = -1024,
max.val = 3071,
ROIformat=FALSE,
drop_dim = TRUE,
writer = "dcm2nii", ...){
if (write.nii){
stopifnot(!is.null(outfile))
}
img = check_nifti(filename)
r = range(c(img))
if (!(r[1] >= min.val & r[2] <= max.val)) {
img[img < min.val] = min.val
img[img > max.val] = max.val
}
img = zero_trans(img)
if (ROIformat) {
img[img < 0] = 0
}
img = cal_img(img)
descrip(img) = paste0("written by ", writer, " - ", descrip(img))
if (drop_dim) {
img = drop_img_dim(img)
}
if (!is.null(pngname)){
options(bitmapType = 'cairo')
print(pngname)
pngname = gsub("%", "", pngname)
grDevices::png(pngname)
graphics::hist(img)
grDevices::dev.off()
}
if (write.nii) {
writenii(img, filename = outfile, drop_dim = drop_dim, ...)
}
return(img)
}
datatyper = function(img, type_string = NULL,
datatype = NULL, bitpix=NULL, trybyte=TRUE,
warn = TRUE){
img = check_nifti(img)
if (!is.null(type_string)) {
accepted = names(convert.datatype())
type_string = toupper(type_string)
stopifnot(type_string %in% accepted)
datatype = convert.datatype()[[type_string]]
bitpix = convert.bitpix()[[type_string]]
}
if (!is.null(datatype) & !is.null(bitpix)) {
datatype(img) <- datatype
bitpix(img) <- bitpix
return(img)
}
if (!is.null(datatype) & is.null(bitpix)) {
stop("Both bitpix and datatype need to be specified if one is")
}
if (is.null(datatype) & !is.null(bitpix)) {
stop("Both bitpix and datatype need to be specified if one is")
}
arr = as(img, "array")
is.log = inherits(arr[1], "logical")
any_na = anyNA(arr)
if (any_na) {
warn_them = img@datatype < 64L
img@"datatype" = max(64L, img@datatype)
warn_them = warn_them | img@bitpix < 64L
img@bitpix = max(64L, img@bitpix)
if (warn_them) {
warning("Need to change bitpix and datatype to FLOAT64 due to NAs")
}
return(img)
}
if (is.log) {
datatype(img) <- convert.datatype()$UINT8
bitpix(img) <- convert.bitpix()$UINT8
return(img)
}
testInteger <- function(img){
x = c(as(img, "array"))
test <- all.equal(x, as.integer(x), check.attributes = FALSE)
return(isTRUE(test))
}
is.int = testInteger(img)
if (is.int) {
rr = range(img, na.rm = TRUE)
if (all(rr == c(0, 1)) & trybyte) {
if (all(img %in% c(0, 1))) {
datatype(img) <- convert.datatype()$UINT8
bitpix(img) <- convert.bitpix()$UINT8
return(img)
}
}
signed = FALSE
if (any(rr < 0)) {
signed = TRUE
}
trange = diff(rr)
mystr = NULL
num = 16
if (is.null(mystr) & trange <= (2 ^ num) - 1 ) {
mystr = "INT16"
}
num = 32
if (is.null(mystr) & trange <= (2 ^ num) - 1 ) {
mystr = "INT32"
}
num = 64
if (is.null(mystr) & trange <= (2 ^ num) - 1 ) {
mystr = "FLOAT64"
}
if (is.null(mystr)) {
stop(paste0("Cannot determine integer datatype, ",
"may want to recheck data or not use datatyper!"))
}
datatype(img) <- oro.nifti::convert.datatype()[[mystr]]
bitpix(img) <- oro.nifti::convert.bitpix()[[mystr]]
return(img)
} else {
if (warn) {
warning("Assuming FLOAT32 - changing @bitpix and @datatype in header")
}
mystr = "FLOAT32"
datatype(img) <- convert.datatype()[[mystr]]
bitpix(img) <- convert.bitpix()[[mystr]]
return(img)
}
}
newnii = function(img, ...){
img = check_nifti(img)
img = zero_trans(img)
img = cal_img(img)
img = datatyper(img, ...)
return(img)
} |
Geweke.Diagnostic <- function(x)
{
x <- as.matrix(x)
if(nrow(x) < 100) return(rep(NA, ncol(x)))
frac1 <- 0.1; frac2 <- 0.5
startx <- 1; endx <- nrow(x)
xstart <- c(startx, endx - frac2 * {endx - startx})
xend <- c(startx + frac1 * {endx - startx}, endx)
y.variance <- y.mean <- vector("list", 2)
for (i in 1:2) {
y <- x[xstart[i]:xend[i],]
y.mean[[i]] <- colMeans(as.matrix(y))
yy <- as.matrix(y)
y <- as.matrix(y)
max.freq <- 0.5; order <- 1; max.length <- 200
if(nrow(yy) > max.length) {
batch.size <- ceiling(nrow(yy) / max.length)
yy <- aggregate(ts(yy, frequency=batch.size), nfreq=1,
FUN=mean)}
else {batch.size <- 1}
yy <- as.matrix(yy)
fmla <- switch(order + 1,
spec ~ one,
spec ~ f1,
spec ~ f1 + f2)
if(is.null(fmla)) stop("Invalid order.")
N <- nrow(yy)
Nfreq <- floor(N/2)
freq <- seq(from=1/N, by=1/N, length=Nfreq)
f1 <- sqrt(3) * {4 * freq - 1}
f2 <- sqrt(5) * {24 * freq * freq - 12 * freq + 1}
v0 <- numeric(ncol(yy))
for (j in 1:ncol(yy)) {
zz <- yy[,j]
if(var(zz) == 0) v0[j] <- 0
else {
yfft <- fft(zz)
spec <- Re(yfft * Conj(yfft)) / N
spec.data <- data.frame(one=rep(1, Nfreq), f1=f1,
f2=f2, spec=spec[1 + {1:Nfreq}],
inset=I(freq <= max.freq))
glm.out <- try(glm(fmla, family=Gamma(link="log"),
data=spec.data), silent=TRUE)
if(!inherits(glm.out, "try-error"))
v0[j] <- predict(glm.out, type="response",
newdata=data.frame(spec=0, one=1,
f1=-sqrt(3), f2=sqrt(5)))
}
}
spec <- list(spec=v0)
spec$spec <- spec$spec * batch.size
y.variance[[i]] <- spec$spec / nrow(y)
}
z <- {y.mean[[1]] - y.mean[[2]]} /
sqrt(y.variance[[1]] + y.variance[[2]])
return(z)
} |
nowcast.plot <- function(out, type = "fcst"){
if(type == "fcst"){
data <- data.frame(date = as.Date(out$yfcst), out$yfcst)
data[max(which(is.na(data$out))),"out"] <- data[max(which(is.na(data$out))),"in."]
graphics::par(mar=c(5.1, 4.1, 4.1, 5), xpd = F)
graphics::plot(data[,"y"], xaxt = "n", main = "", bty = "l",
col = "
graphics::axis(1, at = seq(1,nrow(data),frequency(out$yfcst)), labels = substr(data[seq(1,nrow(data),frequency(out$yfcst)),"date"],1,7), las=1, cex = 0.7)
graphics::abline(v = seq(1,nrow(data),frequency(out$yfcst)), lty = 3, col = "
graphics::grid(col = "
graphics::lines(data[,"y"], type = "l", lty = 1, col = 1)
graphics::lines(data[,"in."], type = "l", lty = 1, lwd = 2, col = "dodgerblue")
graphics::lines(data[,"out"], type = "l", lty = 4, lwd = 2, col = "orangered")
graphics::par(xpd = T)
add_legend("topright", legend=c("y","yhat","fcst"), bty = "n",
lty = c(1,1,4), lwd = c(1,2,2), col = c(1,"dodgerblue","orangered"))
graphics::title(main = list("Forecasting", font = 1, cex = 0.9))
}else if(type == "eigenvalues"){
if(!("reg" %in% names(out))){
stop('Graph not available for EM method')
}
graphics::par(mar = c(5.1,4.1,4.1,2.1), xpd = F)
eig <- out$factors$eigen$values/sum(out$factors$eigen$values)*100
n <- min(20,length(eig))
graphics::barplot(eig[1:n], col = "
xlab = "eigenvalues", ylab = "%")
graphics::grid(col = "
graphics::title(main = list("eigenvalues: percentage variance", font = 1, cex = 0.9))
}else if(type == "eigenvectors"){
if(!("reg" %in% names(out))){
stop('Graph not available for EM method')
}
graphics::par(mar = c(5.1,4.1,4.1,5), xpd = F)
vec <- out$factors$eigen$vectors[,1]
pvec <- (out$factors$eigen$vectors[,1]^2)*100
color <- ifelse(vec >= 0, "dodgerblue", "orangered")
graphics::plot(pvec, main = "", bty = "l", xaxt = "n", type = "h", ylab = "weight (%)", xlab = "variable", col = color)
graphics::axis(1, at = seq(1,length(vec),1), labels = seq(1,length(vec),1), las=1, cex = 0.7)
graphics::title(main = list("Variable Percentage Weight in Factor 1", font = 1, cex = 0.9))
graphics::par(xpd = T)
graphics::text(y = max(pvec), x = length(pvec)*1.1, labels = "signal weights:", col = 1, cex = 0.8)
graphics::text(y = max(pvec)*0.94, x = length(pvec)*1.1, labels = "positive", col = "dodgerblue", cex = 0.8)
graphics::text(y = max(pvec)*0.88, x = length(pvec)*1.1, labels = "negative", col = "orangered", cex = 0.8)
}else if(type == "factors"){
graphics::par(mar=c(5.1, 4.1, 4.1, 5), xpd = F)
n <- ncol(data.frame(out$factors$dynamic_factors))
stats::ts.plot(out$factors$dynamic_factors, col = c(1,"orangered","blue"), lty = c(1,2,3), gpars = list(bty = "l"))
anos <- unique(as.numeric(substr(as.Date(out$factors$dynamic_factors),1,4)))
graphics::grid()
graphics::par(xpd = T)
graphics::title(main = list("Estimated Factors", font = 1, cex = 1))
if("month_y" %in% names(out)){
leg <- colnames(out$factors$dynamic_factors)
}else{
leg <- paste("Factor", 1:n)
}
add_legend("topright", legend = leg, bty = "n",
col = c(1,"orangered","blue"), lty = c(1,2,3), lwd = c(1,1,1,2,2,2), cex = 0.9)
}
} |
library(shiny.fluent)
if (interactive()) {
tokens <- list(childrenGap = 20)
shinyApp(
ui = div(
Stack(
DefaultButton.shinyInput("button1", text = "Default Button", styles = list("background: green")),
PrimaryButton.shinyInput("button2", text = "Primary Button"),
CompoundButton.shinyInput("button3", secondaryText = "Compound Button has additional text", text = "Compound Button"),
ActionButton.shinyInput("button4", iconProps = list("iconName" = "AddFriend"), text = "Action Button"),
horizontal = TRUE,
tokens = tokens
),
textOutput("text")
),
server = function(input, output) {
clicks <- reactiveVal(0)
addClick <- function() { clicks(isolate(clicks() + 1)) }
observeEvent(input$button1, addClick())
observeEvent(input$button2, addClick())
observeEvent(input$button3, addClick())
observeEvent(input$button4, addClick())
output$text <- renderText({
paste("Clicks:", clicks())
})
}
)
} |
contrastHipotesisProporcion <- function () {
defaults <- list (initial.nexitos="",initial.nfracasos="",initial.nconf="0.95",initial.alternative = "two.sided",initial.p0 = "0.5")
dialog.values <- getDialog ("contrastHipotesisProporcion", defaults)
initializeDialog(title = gettext("Hypothesis Testing for a proportion",domain="R-RcmdrPlugin.TeachStat"))
selectFactorsFrame<-tkframe(top)
comboBoxFrame<-tkframe(selectFactorsFrame)
twoOrMoreLevelFactors<-twoOrMoreLevelFactors()
if (length(twoOrMoreLevelFactors())!=0){
mostrar<-"readonly"
}else {
mostrar<-"disabled"
}
valuescombo_box<-c(gettext("<no variable selected>",domain="R-RcmdrPlugin.TeachStat"),twoOrMoreLevelFactors())
varcombo_box=tclVar(valuescombo_box[1])
combo_box<-ttkcombobox(comboBoxFrame,values=valuescombo_box,textvariable=varcombo_box,state=mostrar)
tkgrid(labelRcmdr(comboBoxFrame, text=gettext("Variable (pick one)",domain="R-RcmdrPlugin.TeachStat"), foreground=getRcmdr("title.color") ), sticky="nw")
tkgrid(combo_box,sticky="nw")
tkbind(combo_box, "<<ComboboxSelected>>",function(){
value<-tclvalue(varcombo_box)
if(value!=gettext("<no variable selected>",domain="R-RcmdrPlugin.TeachStat")){
datasetactivo <- ActiveDataSet()
datasetactivo<-get(datasetactivo)
niveles<-levels(datasetactivo[,value])
tkconfigure(combo_box2,values=niveles)
tclvalue(varcombo_box2)<-niveles[1]
tk2state.set(combo_box2, state="readonly")
tkfocus(combo_box2)}
else{tk2state.set(combo_box2, state="disabled")
niveles<-gettext("<no variable selected>",domain="R-RcmdrPlugin.TeachStat")
tkconfigure(combo_box2,values=niveles)
tclvalue(varcombo_box2)<-niveles}})
varcombo_box2=tclVar(gettext("<no variable selected>",domain="R-RcmdrPlugin.TeachStat"))
combo_box2<-ttkcombobox(comboBoxFrame,values=varcombo_box2,textvariable=varcombo_box2,state="disabled")
tkgrid(labelRcmdr(comboBoxFrame, text=gettext("Proportion for the level (pick one)",domain="R-RcmdrPlugin.TeachStat"), foreground=getRcmdr("title.color") ), sticky="nw")
tkgrid(combo_box2, sticky="nw")
exitosFracasosFrame<-tkframe(top)
nExitosVar<-tclVar(dialog.values$initial.nexitos)
nExitosEntry<-ttkentry(exitosFracasosFrame,width="5",textvariable=nExitosVar)
tkgrid(labelRcmdr(exitosFracasosFrame, text=gettext("No. successes",domain="R-RcmdrPlugin.TeachStat"), foreground=getRcmdr("title.color")),nExitosEntry, sticky="nw")
nFracasosVar<-tclVar(dialog.values$initial.nfracasos)
nFracasosEntry<-ttkentry(exitosFracasosFrame,width="5",textvariable=nFracasosVar)
tkgrid(labelRcmdr(exitosFracasosFrame, text=gettext("No. failures",domain="R-RcmdrPlugin.TeachStat"), foreground=getRcmdr("title.color") ),nFracasosEntry, sticky="nw")
optionsFrame <- tkframe(top)
radioButtons(optionsFrame, name = "alternative", buttons = c("twosided",
"less", "greater"), values = c("two.sided", "less", "greater"),
labels = gettext(c("Population proportion != p0", "Population proportion < p0",
"Population proportion > p0"),domain="R-RcmdrPlugin.TeachStat"), title = gettext("Alternative hypothesis",domain="R-RcmdrPlugin.TeachStat"),
initialValue = dialog.values$initial.alternative)
rightFrame<-tkframe(top)
p0Frame <- tkframe(rightFrame)
p0Variable <- tclVar(dialog.values$initial.p0)
p0Field <- ttkentry(p0Frame, width = "5", textvariable = p0Variable)
tkgrid(labelRcmdr(p0Frame, text=gettext("Null hypothesis: p =",domain="R-RcmdrPlugin.TeachStat"), foreground=getRcmdr("title.color") ), p0Field, sticky="nw")
nConfianzaFrame<-tkframe(rightFrame)
nConfianzaVar<-tclVar(dialog.values$initial.nconf)
nConfianzaEntry<-ttkentry(nConfianzaFrame,width="5",textvariable=nConfianzaVar)
onOK <- function(){
varICProporcion<-tclvalue(varcombo_box)
if ((length(twoOrMoreLevelFactors)!=0)&&(varICProporcion !=gettext("<no variable selected>",domain="R-RcmdrPlugin.TeachStat"))){
activeDataSet <- ActiveDataSet()
activeDataSet<-get(activeDataSet)
variableICProporcion<-activeDataSet[,varICProporcion]
variableLevelICProporcion<-tclvalue(varcombo_box2)}
else {
variableICProporcion<-NULL
variableLevelICProporcion<-NULL
}
valornexitos<-tclvalue(nExitosVar)
if( (valornexitos!="") && (is.na(as.integer(valornexitos)) || (as.integer(valornexitos)<0) || !(isTRUE(all.equal(as.numeric(valornexitos),as.integer(valornexitos)))) )) {
valornexitos=""
errorCondition(recall=contrastHipotesisProporcion, message=gettext("Successes number value must be a positive integer number",domain="R-RcmdrPlugin.TeachStat"))
return()
}
else{if(valornexitos!=""){valornexitos<-as.integer(valornexitos)}}
valornfracasos<-tclvalue(nFracasosVar)
if((valornfracasos!="") && (is.na(as.integer(valornfracasos)) || (as.integer(valornfracasos)<0) || !(isTRUE(all.equal(as.numeric(valornfracasos),as.integer(valornfracasos)))) )){
valornfracasos=""
errorCondition(recall=contrastHipotesisProporcion, message=gettext("Failures number value must be a positive integer number",domain="R-RcmdrPlugin.TeachStat"))
return()
}
else{if(valornfracasos!=""){valornfracasos<-as.integer(valornfracasos)}}
if ((is.null(variableICProporcion))&&((valornexitos=="")||(valornfracasos==""))){
errorCondition(recall=contrastHipotesisProporcion, message=gettext("A variable or successes number and failures number must be selected",domain="R-RcmdrPlugin.TeachStat"))
return()
}
sumaexitosfracasos<-sum(as.integer(valornexitos),as.integer(valornfracasos))
if ((is.null(variableICProporcion))&&(sumaexitosfracasos==0)){
errorCondition(recall=contrastHipotesisProporcion, message=gettext("A variable must be selected or the sum of successes and failures numbers must be positive",domain="R-RcmdrPlugin.TeachStat"))
return()
}
muestrasnulas <- ((valornexitos=="")&(valornfracasos==""))
muestrasrellenas <- ((!valornexitos=="")&(!valornfracasos==""))
if (!(is.null(variableICProporcion)) && (!(muestrasnulas | muestrasrellenas))){
errorCondition(recall=contrastHipotesisProporcion, message=gettext("Successes number and failures number must be provided",domain="R-RcmdrPlugin.TeachStat"))
return()
}
valornConfianza<-tclvalue(nConfianzaVar)
if(is.na(as.numeric(valornConfianza)) || (as.numeric(valornConfianza)<=0)||(as.numeric(valornConfianza)>=1)) {
valornConfianza=0.95
errorCondition(recall=contrastHipotesisProporcion, message=gettext("Confidence level must be between 0 and 1",domain="R-RcmdrPlugin.TeachStat"))
return()
}
else{valornConfianza<-as.numeric(valornConfianza)}
valorp0<-tclvalue(p0Variable)
if((is.na(as.numeric(valorp0))) || (as.numeric(valorp0)<0)||(as.numeric(valorp0)>1)){
valorp0="0.0"
errorCondition(recall=contrastHipotesisProporcion, message=gettext("Value for the null hypothesis must be between 0 and 1 (and not be)",domain="R-RcmdrPlugin.TeachStat"))
return()
}
else{ valorp0<-as.numeric(valorp0)}
varHAlternativa<-tclvalue(alternativeVariable)
putDialog ("contrastHipotesisProporcion", list(initial.nexitos=valornexitos,initial.nfracasos=valornfracasos,initial.nconf=valornConfianza,initial.alternative = varHAlternativa,initial.p0 = valorp0))
closeDialog()
valornexitos<-as.integer(valornexitos)
valornfracasos<-as.integer(valornfracasos)
valornConfianza<-as.numeric(valornConfianza)
.activeDataSet<-ActiveDataSet()
if ((length(twoOrMoreLevelFactors)!=0)&&(varICProporcion !=gettext("<no variable selected>",domain="R-RcmdrPlugin.TeachStat"))){
vICProporcion<-paste(.activeDataSet,"$",varICProporcion, sep="")
vLevelICProporcion<-paste('"',tclvalue(varcombo_box2),'"',sep="")}
else {
vICProporcion<-NULL
vLevelICProporcion<-NULL
}
Haltern<-paste('"',varHAlternativa,'"',sep="")
tipointervalo<-paste("\\n",gettext("Hypothesis Testing for a proportion",domain="R-RcmdrPlugin.TeachStat"),"\\n", sep="")
linaux<-paste(rep(c("-"," "),(nchar(tipointervalo)/2)),collapse="")
tipointervalo<-paste(tipointervalo, linaux,sep="")
if(!is.null(vICProporcion)){
command<- paste("exitos<-sum(",vICProporcion," == ", vLevelICProporcion,",na.rm = TRUE)",sep="")
command<- paste(command,"\n","total<-length(",vICProporcion,")",sep="")
command<-paste(command,"\n","aux<- Cprop.test(ex=exitos, nx=total, p.null=",valorp0,", alternative=",Haltern,")",sep="")
command<- paste(command,"\n","levelsaux<-levels(",vICProporcion,")",sep="")
command<- paste(command,"\n","levelsaux<-levelsaux[levelsaux!=",vLevelICProporcion,"]",sep="")
command<- paste("local({\n",command,"\n",sep="")
if(length(levels(variableICProporcion))<=2){
resultado<-paste('cat("',tipointervalo, '\\n',gettext("No. successes",domain="R-RcmdrPlugin.TeachStat"),': ', varICProporcion,' [',tclvalue(varcombo_box2),' vs.", levelsaux,"] --> ',gettext("No. successes",domain="R-RcmdrPlugin.TeachStat"),' = ",exitos," -- ',gettext("No. attempts",domain="R-RcmdrPlugin.TeachStat"),' =", total,"\\n"',')', sep="" )}
else{resultado<-paste('cat("',tipointervalo, '\\n',gettext("No. successes",domain="R-RcmdrPlugin.TeachStat"),': ', varICProporcion,' [',tclvalue(varcombo_box2),'"," vs. ', gettext("Other levels",domain="R-RcmdrPlugin.TeachStat"), '] --> ',gettext("No. successes",domain="R-RcmdrPlugin.TeachStat"),' = ",exitos," -- ',gettext("No. attempts",domain="R-RcmdrPlugin.TeachStat"),' =", total,"\\n"',')', sep="" )}
command<- paste(command, resultado,"\n",sep="" )
distribucion<-paste('cat("',gettext("Distribution",domain="R-RcmdrPlugin.TeachStat"),':","Normal(0,1)\\n")',sep="")
e.contraste<- paste('\n cat("',gettext("Test statistics value",domain="R-RcmdrPlugin.TeachStat"),':",as.numeric(aux$statistic),"\\n")',sep="")
p.valor<-paste('\n if(aux$p.value>0.05){cat("',gettext("p-value",domain="R-RcmdrPlugin.TeachStat"),':",format.pval(aux$p.value),"\\n")}
if(aux$p.value>=0.025 && aux$p.value<=0.05){cat("',gettext("p-value",domain="R-RcmdrPlugin.TeachStat"),':",format.pval(aux$p.value),"*\\n")}
if(aux$p.value>=0.0001 && aux$p.value<=0.025){cat("',gettext("p-value",domain="R-RcmdrPlugin.TeachStat"),':",format.pval(aux$p.value),"**\\n")}
if(aux$p.value>=0 && aux$p.value<=0.0001){cat("',gettext("p-value",domain="R-RcmdrPlugin.TeachStat"),':",format.pval(aux$p.value),"***\\n")}\n',sep="")
if (varHAlternativa == "two.sided"){h.alt<-paste(gettext("Population proportion is not equal to",domain="R-RcmdrPlugin.TeachStat"),valorp0,sep=" ")}
if (varHAlternativa == "less"){h.alt<-paste(gettext("Population proportion is less than",domain="R-RcmdrPlugin.TeachStat"),valorp0,sep=" ")}
if (varHAlternativa == "greater"){h.alt<- paste(gettext("Population proportion is greater than",domain="R-RcmdrPlugin.TeachStat"),valorp0,sep=" ")}
h.alt<-paste('\n cat("',gettext("Alternative hypothesis",domain="R-RcmdrPlugin.TeachStat"),':","',h.alt,'","\\n")',sep="")
e.muestral<-paste('\n cat("',gettext("Sample estimate",domain="R-RcmdrPlugin.TeachStat"),':",names(aux$estimate),as.numeric(aux$estimate),"\\n")',sep="")
command<- paste(command, distribucion,e.contraste,p.valor, h.alt,e.muestral,"\n})",sep="" )
doItAndPrint(command)
}
if(!is.na(valornexitos)){
if((valornexitos==0)||(valornfracasos==0)){
errorCondition(recall=contrastHipotesisProporcion, message=gettext("There must be at least 1 success and 1 failure",domain="R-RcmdrPlugin.TeachStat"))
return()
}
command2<- paste("aux<- Cprop.test(ex=",valornexitos,", nx=",valornexitos + valornfracasos,",p.null=",valorp0,", alternative=",Haltern,")",sep="" )
command2<- paste("local({\n",command2,"\n",sep="")
resultado<-paste('cat("',tipointervalo,'\\n',gettext("Sample",domain="R-RcmdrPlugin.TeachStat"),': ',gettext("No. successes",domain="R-RcmdrPlugin.TeachStat"),' = ', valornexitos, ' -- ',gettext("No. attempts",domain="R-RcmdrPlugin.TeachStat"),' = ', valornexitos + valornfracasos, '\\n")', sep="" )
command2<- paste(command2, resultado,"\n",sep="" )
distribucion<-paste('cat("',gettext("Distribution",domain="R-RcmdrPlugin.TeachStat"),':","Normal(0,1)\\n")',sep="")
e.contraste<- paste('\n cat("',gettext("Test statistics value",domain="R-RcmdrPlugin.TeachStat"),':",as.numeric(aux$statistic),"\\n")',sep="")
p.valor<-paste('\n if(aux$p.value>0.05){cat("',gettext("p-value",domain="R-RcmdrPlugin.TeachStat"),':",format.pval(aux$p.value),"\\n")}
if(aux$p.value>=0.025 && aux$p.value<=0.05){cat("',gettext("p-value",domain="R-RcmdrPlugin.TeachStat"),':",format.pval(aux$p.value),"*\\n")}
if(aux$p.value>=0.0001 && aux$p.value<=0.025){cat("',gettext("p-value",domain="R-RcmdrPlugin.TeachStat"),':",format.pval(aux$p.value),"**\\n")}
if(aux$p.value>=0 && aux$p.value<=0.0001){cat("',gettext("p-value",domain="R-RcmdrPlugin.TeachStat"),':",format.pval(aux$p.value),"***\\n")}\n',sep="")
if (varHAlternativa == "two.sided"){h.alt<-paste(gettext("Population proportion is not equal to",domain="R-RcmdrPlugin.TeachStat"),valorp0,sep=" ")}
if (varHAlternativa == "less"){h.alt<-paste(gettext("Population proportion is less than",domain="R-RcmdrPlugin.TeachStat"),valorp0,sep=" ")}
if (varHAlternativa == "greater"){h.alt<- paste(gettext("Population proportion is greater than",domain="R-RcmdrPlugin.TeachStat"),valorp0,sep=" ")}
h.alt<-paste('\n cat("',gettext("Alternative hypothesis",domain="R-RcmdrPlugin.TeachStat"),':","',h.alt,'","\\n")',sep="")
e.muestral<-paste('\n cat("',gettext("Sample estimate",domain="R-RcmdrPlugin.TeachStat"),':",names(aux$estimate),as.numeric(aux$estimate),"\\n")',sep="")
command2<- paste(command2, distribucion,e.contraste,p.valor, h.alt,e.muestral,"\n})",sep="" )
doItAndPrint(command2)
}
tkfocus(CommanderWindow())
}
OKCancelHelp(helpSubject = "Cprop.test", reset="contrastHipotesisProporcion", apply="contrastHipotesisProporcion")
tkgrid(comboBoxFrame,labelRcmdr(selectFactorsFrame, text=" "),exitosFracasosFrame, sticky="nw")
tkgrid(selectFactorsFrame, sticky="nw")
tkgrid(labelRcmdr(top, text=" "))
tkgrid(labelRcmdr(rightFrame, text=" "),sticky="nw")
tkgrid(p0Frame,sticky="nw")
tkgrid(nConfianzaFrame, sticky="nw")
tkgrid(alternativeFrame,labelRcmdr(optionsFrame, text=" "),rightFrame, sticky="nw")
tkgrid(optionsFrame,sticky="nw")
tkgrid(buttonsFrame, sticky="w")
dialogSuffix()
} |
genConfig1D <- function(n) {
x <- rep(0.0,n)
out <- .C("genConfig1D", n=as.integer(n), x=as.double(x));
out$x
}
flipConfig1D <- function(x) {
out <- .C("flipConfig1D", n=as.integer(length(x)), x=as.double(x));
out$x
}
flipConfig1Dmany <- function(x, upperF) {
out <- .C("flipConfig1Dmany", n=as.integer(length(x)), x=as.double(x), upperF=as.integer(upperF));
out$x
}
lattice1DenergyNN <- function(x) {
energy <-0
if(!is.numeric(x))
stop("argument x must be numeric");
out <- .C("lattice1DenergyNN", n=as.integer(length(x)), vec=as.double(x), energy=as.double(energy));
out$energy
}
sumVec <- function(x) {
sum <-0
if(!is.numeric(x))
stop("argument x must be numeric");
out <- .C("sumVec", n=as.integer(length(x)), vec=as.double(x), sum=as.double(sum));
out$sum
}
totalEnergy1D <- function(x, J, H) {
energy <- 0
if(!is.numeric(x))
stop("argument x must be numeric");
out <- .C("totalEnergy1D", n=as.integer(length(x)), vec=as.double(x), J=as.double(J), H=as.double(H), totalEnergy=as.double(energy));
out$totalEnergy
}
transitionProbability1D <- function(ikBT, x, xflip, J, H, probSel) {
prob <- 0.0;
if(!is.numeric(x))
stop("argument x must be numeric");
if(!is.numeric(xflip))
stop("argument xflip must be numeric");
out <- .C("transitionProbability1D", ikBT=as.double(ikBT), n=as.integer(length(x)), vec=as.double(x), vecFlip=as.double(xflip),
J=as.double(J), H=as.double(H), prob=as.double(prob), probSel=as.integer(probSel));
out$prob
}
isStep1D <- function(ikBT, x, J, H, probSel) {
prob <- 0.0;
accept <- 0.0;
if(!is.numeric(x))
stop("argument x must be numeric");
out <- .C("isStep1D", ikBT=as.double(ikBT), n=as.integer(length(x)), vec=as.double(x),
J=as.double(J), H=as.double(H), prob=as.double(prob), accept=as.integer(accept),
probSel=as.integer(probSel));
rout <- list(vec=out$vec, accept=out$accept)
rout
}
isPerform1D <- function(ikBT, x, J, H, nstep, ensembleM, probSel) {
if(!is.numeric(x))
stop("argument x must be numeric");
omegaM <- rep(0.0, nstep);
times <- rep(1.0, nstep);
naccept <- 0;
nreject <- 0;
out <- .C("isPerform1D", ikBT=as.double(ikBT), n=as.integer(length(x)), vec=as.double(x),
J=as.double(J), H=as.double(H), ensembleM=as.double(ensembleM),
omegaM=as.double(omegaM), nstep=as.integer(nstep), naccept=as.integer(naccept),
nreject=as.integer(nreject), times=as.integer(times), probSel=as.integer(probSel));
rout <- list(omegaM=out$omegaM, nreject=out$nreject, naccept=out$naccept, times=out$times);
rout
} |
collect <- function(x, n = NULL) {
steps <- n %&&% iter_take(n)
reduce_steps(x, steps, along_builder(list()))
}
loop <- function(loop) {
loop <- substitute(loop)
if (!is_call(loop, "for")) {
abort("`loop` must be a `for` expression.")
}
env <- caller_env()
if (is_true(env$.__generator_instance__.)) {
abort(c(
"Can't use `loop()` within a generator.",
i = "`for` loops already support iterators in generator functions."
))
}
args <- node_cdr(loop)
var <- as_string(node_car(args))
iterator <- as_iterator(eval_bare(node_cadr(args), env))
body <- node_cadr(node_cdr(args))
elt <- NULL
advance <- function() !is_exhausted(elt <<- iterator())
update <- function() env[[var]] <- elt
loop <- expr(
while (!!call2(advance)) {
!!call2(update)
!!body
}
)
eval_bare(loop, env)
invisible(exhausted())
}
async_collect <- function(x, n = NULL) {
steps <- n %&&% iter_take(n)
async_reduce_steps(x, steps, along_builder(list()))
} |
mtcars_short <- mtcars[1:5, ]
check_suggests <- function() {
skip_if_not_installed("rvest")
skip_if_not_installed("xml2")
}
selection_value <- function(html, key) {
selection <- paste0("[", key, "]")
html %>%
rvest::html_nodes(selection) %>%
rvest::html_attr(key)
}
selection_text <- function(html, selection) {
html %>%
rvest::html_nodes(selection) %>%
rvest::html_text()
}
test_that("the `text_transform()` function works correctly", {
check_suggests()
tbl_html <-
mtcars_short %>%
gt() %>%
text_transform(
locations = cells_body(columns = mpg),
fn = function(x) paste0(x, " mpg")
)
tbl_html %>%
render_as_html() %>%
xml2::read_html() %>%
selection_text("tr td:first-child") %>%
expect_match(".* mpg$")
tbl_html <-
mtcars_short %>%
gt() %>%
text_transform(
locations = cells_body(columns = mpg),
fn = function(x) {
paste0(x, " ", ifelse(x >= 20, "(good)", "(bad)"))
}
)
tbl_html %>%
render_as_html() %>%
xml2::read_html() %>%
selection_text("tr td:first-child") %>%
expect_match(".*(\\(good\\)|\\(bad\\))$")
tbl_html <-
mtcars_short %>%
gt() %>%
text_transform(
locations = cells_body(columns = mpg),
fn = function(x) {
ifelse(x >= 20, 25, 15)
}
)
tbl_html %>%
render_as_html() %>%
xml2::read_html() %>%
selection_text("tr td:first-child") %>%
unique() %>%
expect_equal(c("25", "15"))
tbl_html <-
mtcars_short %>%
gt() %>%
fmt_number(
columns = mpg,
decimals = 4,
pattern = "{x} miles") %>%
text_transform(
locations = cells_body(columns = mpg),
fn = function(x) {
paste(x, "per gallon")
}
)
tbl_html %>%
render_as_html() %>%
xml2::read_html() %>%
selection_text("tr td:first-child") %>%
expect_match(".*miles per gallon$")
tbl_html <-
mtcars_short %>%
gt() %>%
text_transform(
locations = cells_body(columns = mpg),
fn = function(x) {
paste(x, "miles")
}
) %>%
text_transform(
locations = cells_body(columns = mpg),
fn = function(x) {
paste(x, "per gallon")
}
)
tbl_html %>%
render_as_html() %>%
xml2::read_html() %>%
selection_text("tr td:first-child") %>%
expect_match(".*miles per gallon$")
transforms <- dt_transforms_get(data = tbl_html)
transforms %>%
length() %>%
expect_equal(2)
transforms[[1]] %>%
names() %>%
expect_equal(c("resolved", "fn"))
transforms[[2]] %>%
names() %>%
expect_equal(c("resolved", "fn"))
transforms[[1]]$resolved %>%
names() %>%
expect_equal(c("columns", "rows", "colnames"))
transforms[[2]]$resolved %>%
names() %>%
expect_equal(c("columns", "rows", "colnames"))
transforms[[1]]$resolved %>%
expect_is(c("resolved", "cells_body", "location_cells"))
transforms[[2]]$resolved %>%
expect_is(c("resolved", "cells_body", "location_cells"))
transforms[[1]]$fn %>%
expect_is("function")
transforms[[2]]$fn %>%
expect_is("function")
round_mult <- function(x, multiple = 0.25) {
x <- as.numeric(x)
format(multiple * round(x / multiple))
}
tbl_html <-
mtcars_short %>%
gt() %>%
text_transform(
locations = cells_body(columns = mpg),
fn = round_mult
)
tbl_html %>%
render_as_html() %>%
xml2::read_html() %>%
selection_text("tr td:first-child") %>%
expect_match(".*\\.(00|25|50|75)$")
})
test_that("`text_transform()` works in the body even when rows/columns are reordered", {
tbl_html <-
mtcars_short %>%
gt(rownames_to_stub = TRUE) %>%
tab_row_group(
label = md("**Mazda**"),
rows = starts_with("Maz"),
id = "Mazda"
) %>%
tab_row_group(
label = md("**2 Hornets + a Datsun**"),
rows = matches("Datsun|Hornet"),
id = "DatsunHornet"
) %>%
text_transform(
locations = cells_body(columns = mpg, rows = "Datsun 710"),
fn = function(x) paste0(x, "!")
) %>%
text_transform(
locations = cells_body(columns = mpg, rows = starts_with("Mazda")),
fn = function(x) round(as.numeric(x), 0)
)
tbl_html %>%
render_as_html() %>%
xml2::read_html() %>%
selection_text("tr td:nth-child(2)") %>%
expect_equal(c("22.8!", "21.4", "18.7", "21", "21"))
tbl_html <-
tbl_html %>%
row_group_order(groups = c("Mazda", "DatsunHornet"))
tbl_html %>%
render_as_html() %>%
xml2::read_html() %>%
selection_text("tr td:nth-child(1)") %>%
expect_equal(
c(
"Mazda", "Mazda RX4", "Mazda RX4 Wag", "2 Hornets + a Datsun",
"Datsun 710", "Hornet 4 Drive", "Hornet Sportabout"
)
)
tbl_html %>%
render_as_html() %>%
xml2::read_html() %>%
selection_text("tr td:nth-child(2)") %>%
expect_equal(c("21", "21", "22.8!", "21.4", "18.7"))
tbl_html <-
tbl_html %>%
cols_move(columns = mpg, after = cyl)
tbl_html %>%
render_as_html() %>%
xml2::read_html() %>%
selection_text("tr td:nth-child(3)") %>%
expect_equal(c("21", "21", "22.8!", "21.4", "18.7"))
})
test_that("`text_transform()` works in column labels", {
tbl_html <-
mtcars_short %>%
gt(rownames_to_stub = TRUE) %>%
tab_row_group(
label = md("**Mazda**"),
rows = starts_with("Maz"),
id = "Mazda"
) %>%
tab_row_group(
label = md("**2 Hornets + a Datsun**"),
rows = matches("Datsun|Hornet"),
id = "DatsunHornet"
) %>%
cols_move_to_end(columns = cyl) %>%
text_transform(
locations = cells_column_labels(columns = c(mpg, cyl)),
fn = toupper
)
tbl_html %>%
render_as_html() %>%
xml2::read_html() %>%
selection_text("th") %>%
expect_equal(
c(
"", "MPG", "disp", "hp", "drat", "wt",
"qsec", "vs", "am", "gear", "carb", "CYL"
)
)
})
test_that("`text_transform()` works on row labels in the stub", {
tbl_html <-
mtcars_short %>%
gt(rownames_to_stub = TRUE) %>%
tab_row_group(
label = md("**Mazda**"),
rows = starts_with("Maz"),
id = "Mazda"
) %>%
tab_row_group(
label = md("**2 Hornets + a Datsun**"),
rows = matches("Datsun|Hornet"),
id = "DatsunHornet"
) %>%
cols_move_to_end(columns = cyl) %>%
text_transform(
locations = cells_stub(rows = c("Mazda RX4 Wag", "Hornet Sportabout")),
fn = toupper
)
tbl_html %>%
render_as_html() %>%
xml2::read_html() %>%
selection_text("[class='gt_row gt_right gt_stub']") %>%
expect_equal(
c(
"Datsun 710", "Hornet 4 Drive", "HORNET SPORTABOUT",
"Mazda RX4", "MAZDA RX4 WAG"
)
)
}) |
SchumakerIndInterval = function(z,s,Smallt){
if (sum(s)*(Smallt[2]-Smallt[1]) == 2*(z[2]-z[1])){
tsi = Smallt[2]
} else {
delta = (z[2] -z[1])/(Smallt[2]-Smallt[1])
Condition = ((s[1]-delta)*(s[2]-delta) >= 0)
Condition2 = abs(s[2]-delta) < abs(s[1]-delta)
if (Condition){
tsi = sum(Smallt)/2
} else {
if (Condition2){
tsi = (Smallt[1] + (Smallt[2]-Smallt[1])*(s[2]-delta)/(s[2]-s[1]))
} else {
tsi = (Smallt[2] + (Smallt[2]-Smallt[1])*(s[1]-delta)/(s[2]-s[1]))
}
}
}
alpha = tsi-Smallt[1]
beta = Smallt[2]-tsi
sbar = (2*(z[2]-z[1])-(alpha*s[1]+beta*s[2]))/(Smallt[2]-Smallt[1])
Coeffs1 = c((sbar-s[1])/(2*alpha), s[1], z[1])
if (beta == 0){
Coeffs2 = c(Coeffs1)
} else {
Coeffs2 = c((s[2]-sbar)/(2*beta), sbar , Coeffs1 %*% c(alpha^2, alpha, 1))
}
data.frame(tsi = c(tsi, tsi), C = c(Coeffs1[1], Coeffs2[1]), B = c(Coeffs1[2], Coeffs2[2]), A = c(Coeffs1[3], Coeffs2[3]) )
} |
library(randtoolbox)
if(FALSE)
{
RNGkind()
set.generator(name="congruRand", mod=2^31-1, mult=16807, incr=0, seed=12345)
get.description()
runif(5)
setSeed(12345)
congruRand(5, dim=1, mod=2^31-1, mult=16807, incr=0)
RNGkind()
4294967296 == 2^32
set.generator(name="congruRand", mod="4294967296", mult="1664525", incr="1013904223", seed=1)
runif(5)
setSeed(1)
congruRand(5, dim=1, mod=4294967296, mult=1664525, incr=1013904223)
281474976710656 == 2^48
set.generator(name="congruRand", mod="281474976710656", mult="25214903917", incr="11", seed=1)
runif(5)
setSeed(1)
congruRand(5, dim=1, mod=281474976710656, mult=25214903917, incr=11)
18446744073709551616 == 2^64
set.generator(name="congruRand", mod="18446744073709551616", mult="1442695040888963407", incr="1013904223", seed=1)
runif(5)
(1442695040888963407 * 1 + 1013904223) / 2^64
setSeed(1)
congruRand(5, dim=1, mod=18446744073709551616, mult=1442695040888963407, incr=1013904223)
set.generator(name="congruRand", mod="18446744073709551616", mult="636412233846793005", incr="1", seed=1)
res <- get.description()
runif(1)
setSeed(1)
congruRand(2, dim=1, mod=18446744073709551616, mult=636412233846793005, incr=1, echo = TRUE)
} |
transform_rows_unit_norm = function(x, norm = 1) {
if(!inherits(x, "matrix") && !inherits(x, "sparseMatrix"))
stop("x should inherit from `matrix`` or `Matrix::sparseMatrix`")
if(!is.numeric(norm) || length(norm) != 1)
stop("`norm` should be numeric of length 1")
rs = rowSums(x ^ norm)
if(isTRUE(all.equal(rep(1, length(rs)), rs, tolerance = 1e-5, check.attributes = FALSE)))
return(x)
norm_vec = 1 / rs ^ (1 / norm)
norm_vec[is.infinite(norm_vec)] = 0
if(inherits(x, "sparseMatrix"))
Diagonal(x = norm_vec) %*% x
else
x * norm_vec
}
normalize = function(m, norm = c("l1", "l2", "none")) {
stopifnot(inherits(m, "matrix") || inherits(m, "sparseMatrix"))
norm = match.arg(norm)
if (norm == "none")
return(m)
norm_vec = switch(norm,
l1 = 1 / rowSums(m),
l2 = 1 / sqrt(rowSums(m ^ 2))
)
norm_vec[is.infinite(norm_vec)] = 0
if(inherits(m, "sparseMatrix"))
Diagonal(x = norm_vec) %*% m
else
m * norm_vec
}
as.lda_c = function(X) {
if (is.list(X) && all(vapply(X, function(x) is.matrix(x) && is.integer(x), FALSE)) ) {
class(X) = "lda_c"
return(X)
}
if (!inherits(X, "RsparseMatrix"))
X = as( X, "RsparseMatrix")
len = nrow(X)
input_ids = rownames(X)
m_lda_c = vector("list", len)
for(i in seq_len(len)) {
i_start = X@p[i] + 1L
i_end = X@p[i + 1L]
if(i_start <= i_end) {
i_range = i_start:i_end
m_lda_c[[i]] = rbind(X@j[i_range], as.integer(X@x[i_range]))
}
else {
m = integer()
dim(m) = c(2L, 0L)
m_lda_c[[i]] = m
}
}
names(m_lda_c) = input_ids
class(m_lda_c) = 'lda_c'
m_lda_c
}
to_lda_c = function(X) {
.Deprecated("as.lda_c")
as.lda_c(X)
}
rbind_dgTMatrix = function(...) {
res = new('dgTMatrix')
mat_list = list(...)
ncols = vapply(mat_list, ncol, FUN.VALUE = 0L)
stopifnot( length(unique(ncols)) == 1)
all_colnames = lapply(mat_list, colnames)
stopifnot( length(unique(all_colnames)) == 1)
nrows = vapply(mat_list, nrow, FUN.VALUE = 0L)
offset = cumsum(c(0L, nrows[-length(nrows)]))
res@i = do.call(c, Map(function(m, offs) m@i + offs, mat_list, offset))
res@j = do.call(c, lapply(mat_list, function(m) m@j) )
res@x = do.call(c, lapply(mat_list, function(m) m@x) )
res_rownames = do.call(c, lapply(mat_list, rownames) )
res@Dim = c(sum(nrows), ncols[[1]])
res@Dimnames = list(res_rownames, all_colnames[[1]] )
res
} |
order_betaexpg <- function(size,spec,lambda,a,b,k,n,alpha=0.05,...){
sample <- qbetaexpg(initial_order(size,k,n),spec,lambda,a,b,...)
pdf <- factorial(size)*cumprod(dbetaexpg(sample,spec,...))[size]
if(size>5){
return(list(sample=sample,pdf=pdf,ci_median=interval_median(size,sample,alpha)))
}
cat("---------------------------------------------------------------------------------------------\n")
cat("We cannot report the confidence interval. The size of the sample is less or equal than five.\n")
return(list(sample=sample,pdf=pdf))
} |
Huggins89.t1 <-
structure(list(x2 = c(6.3, 4, 4.7, 4.8, 6.6, 3.9, 5.9, 5, 5.6,
4.6, 5.9, 4.4, 4.6, 4.4, 5.6, 3.6, 3.7, 4.4, 3.6, 4.4), y01 = c(0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), y02 = c(1,
1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0), y03 = c(0,
1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0), y04 = c(1,
1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0), y05 = c(1,
1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0), y06 = c(0,
0, 1, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0), y07 = c(0,
0, 1, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1), y08 = c(1,
1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0), y09 = c(0,
0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), y10 = c(0,
0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0), z01 = c(5.8,
5.8, 5.8, 5.8, 5.8, 5.8, 5.8, 5.8, 5.8, 5.8, 5.8, 5.8, 5.8, 5.8,
5.8, 5.8, 5.8, 5.8, 5.8, 5.8), z02 = c(2.9, 2.9, 2.9, 2.9, 2.9,
2.9, 2.9, 2.9, 2.9, 2.9, 2.9, 2.9, 2.9, 2.9, 2.9, 2.9, 2.9, 2.9,
2.9, 2.9), z03 = c(3.7, 3.7, 3.7, 3.7, 3.7, 3.7, 3.7, 3.7, 3.7,
3.7, 3.7, 3.7, 3.7, 3.7, 3.7, 3.7, 3.7, 3.7, 3.7, 3.7), z04 = c(2.2,
2.2, 2.2, 2.2, 2.2, 2.2, 2.2, 2.2, 2.2, 2.2, 2.2, 2.2, 2.2, 2.2,
2.2, 2.2, 2.2, 2.2, 2.2, 2.2), z05 = c(3.5, 3.5, 3.5, 3.5, 3.5,
3.5, 3.5, 3.5, 3.5, 3.5, 3.5, 3.5, 3.5, 3.5, 3.5, 3.5, 3.5, 3.5,
3.5, 3.5), z06 = c(3.6, 3.6, 3.6, 3.6, 3.6, 3.6, 3.6, 3.6, 3.6,
3.6, 3.6, 3.6, 3.6, 3.6, 3.6, 3.6, 3.6, 3.6, 3.6, 3.6), z07 = c(1.9,
1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9,
1.9, 1.9, 1.9, 1.9, 1.9, 1.9), z08 = c(3, 3, 3, 3, 3, 3, 3, 3,
3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3), z09 = c(4.8, 4.8, 4.8, 4.8,
4.8, 4.8, 4.8, 4.8, 4.8, 4.8, 4.8, 4.8, 4.8, 4.8, 4.8, 4.8, 4.8,
4.8, 4.8, 4.8), z10 = c(4.7, 4.7, 4.7, 4.7, 4.7, 4.7, 4.7, 4.7,
4.7, 4.7, 4.7, 4.7, 4.7, 4.7, 4.7, 4.7, 4.7, 4.7, 4.7, 4.7)), .Names = c("x2",
"y01", "y02", "y03", "y04", "y05", "y06", "y07", "y08", "y09", "y10",
"z01", "z02", "z03", "z04", "z05", "z06", "z07", "z08", "z09", "z10"), row.names = c(NA,
-20L), class = "data.frame") |
getSupportedPreparations <- function() {
allSupportedPreparations <- list(
supportedImputeTS = c("ImputeTSInterpolation",
"ImputeTSKalman",
"ImputeTSLOCF",
"ImputeTSMA",
"ImputeTSMean",
"ImputeTSRandom",
"ImputeTSReplace"
),
other = c()
)
return(allSupportedPreparations)
}
getSupportedModels <- function() {
allSupportedModels <- list(
supportedUnivariateForeCastModels = c("ForecastETS", "ForecastArima",
"ForecastBats",
"ForecastHolt",
"ForecastMeanf",
"ForecastRWF",
"ForecastSplineF",
"ForecastThetaf",
"ForecastSES"
),
supportedMultivariateModels=c("NeuralNetwork"),
other = c()
)
return(allSupportedModels)
}
getSupportedPostProcessors <- function() {
allSupportedPostProcessors <- list(
other = c("bedAlgo")
)
return(allSupportedPostProcessors)
} |
[
{
"title": "The Frisch–Waugh–Lovell Theorem for Both OLS and 2SLS",
"href": "https://diffuseprior.wordpress.com/2013/06/05/the-frisch-waugh-lovell-theorem-for-both-ols-and-2sls/"
},
{
"title": "Predictive analysis on Web Analytics tool data",
"href": "http://www.tatvic.com/blog/predictive-analysis-on-web-analytics-tool-data/"
},
{
"title": "Universal portfolio, part 8",
"href": "http://optimallog.blogspot.com/2012/07/universal-portfolio-part-8.html"
},
{
"title": "Aspirational & Useful: deck.rb with RStudio/knitr & Go2Shell",
"href": "http://christophergandrud.blogspot.com/2012/05/aspirational-useful-deckrb-with.html"
},
{
"title": "Emacs, ESS and R for Zombies",
"href": "http://blog.revolutionanalytics.com/2014/03/emacs-ess-and-r-for-zombies.html"
},
{
"title": "Biblical kings and boxplots",
"href": "http://computersandbuildings.com/biblical-kings-and-boxplots/"
},
{
"title": "What makes a good academic conference?",
"href": "http://www.decisionsciencenews.com/2014/09/11/makes-good-academic-conference/"
},
{
"title": "the spatial concentration of Green support",
"href": "https://web.archive.org/web/http://jackman.stanford.edu/blog/?p=1810"
},
{
"title": "Simulated War",
"href": "http://www.premiersoccerstats.com/wordpress/?p=825&utm_source=rss&utm_medium=rss&utm_campaign=simulated-war-2"
},
{
"title": "Images as Voronoi tesselations",
"href": "http://is-r.tumblr.com/post/36732821806/images-as-voronoi-tesselations"
},
{
"title": "Bootstrap Confidence Intervals",
"href": "http://statistical-research.com/bootstrap-confidence-intervals/?utm_source=rss&utm_medium=rss&utm_campaign=bootstrap-confidence-intervals"
},
{
"title": "Dollars and cents: How are you at estimating the total bill?",
"href": "http://www.decisionsciencenews.com/2011/09/30/dollars-and-cents-how-are-you-at-estimating-the-total-bill/"
},
{
"title": "Principal component analysis to yield curve change",
"href": "http://mockquant.blogspot.com/2010/12/principal-component-analysis-to-yield.html"
},
{
"title": "Eclipse and StatET 2.0 Install For Running R",
"href": "http://lukemiller.org/index.php/2012/01/eclipse-and-statet-2-0-install-for-running-r/"
},
{
"title": "Do your \"data janitor work\" like a boss with dplyr",
"href": "http://www.gettinggeneticsdone.com/2014/08/do-your-data-janitor-work-like-boss.html"
},
{
"title": "My day out at
"href": "https://nsaunders.wordpress.com/2012/05/11/my-day-out-at-osddmalaria/"
},
{
"title": "\"The Dude\" takes the Tarantino threshold",
"href": "http://rcrastinate.blogspot.com/2013/01/the-dude-takes-tarantino-threshold.html"
},
{
"title": "How to win the KDD Cup Challenge with R and gbm",
"href": "http://www.cybaea.net/Blogs/Data/How-to-win-the-KDD-Cup-Challenge-with-R-and-gbm.html"
},
{
"title": "11 Million Yellow Slips – City of Toronto Parking Tickets, 2008-2011",
"href": "http://www.everydayanalytics.ca/2012/06/11-million-parking-tickets.html"
},
{
"title": "Bayesian vs. Frequentist Intervals: Which are more natural to scientists?",
"href": "http://biostatmatt.com/archives/1812"
},
{
"title": "Getting indices of top elements from a vector using a priority queue",
"href": "http://gallery.rcpp.org/articles/top-elements-from-vectors-using-priority-queue/"
},
{
"title": "Installing Pandoc from R (on Windows) – using the {installr} package",
"href": "https://www.r-statistics.com/2013/02/installing-pandoc-from-r-on-windows/"
},
{
"title": "New R Software/Methodology for Handling Missing Dat",
"href": "https://matloff.wordpress.com/2015/09/16/new-r-softwaremethodology-for-handling-missing-dat/"
},
{
"title": "Tibshirani’s original paper on the lasso.\r\nBreiman’s…",
"href": "http://isomorphism.es/post/37362497363/tibshirani-lasso"
},
{
"title": "White House taps Edward Tufte to explain the stimulus",
"href": "https://web.archive.org/web/http://blog.revolution-computing.com/2010/03/white-house-taps-edward-tufte-to-explain-the-stimulus.html"
},
{
"title": "A slightly different introduction to R, part I",
"href": "https://martinsbioblogg.wordpress.com/2013/01/19/a-slightly-different-introduction-to-r-part-i/"
},
{
"title": "Rcpp vs. R implementation of cosine similarity",
"href": "http://brainchronicle.blogspot.com/2012/06/rcpp-vs-r-implementation-of-cosine.html"
},
{
"title": "data.frame objects in R (via “R in Action”)",
"href": "https://www.r-statistics.com/2011/12/data-frame-objects-in-r-via-r-in-action/"
},
{
"title": "Simulating the Rule of Five",
"href": "http://datadrivensecurity.info/blog/posts/2014/Nov/hubbard/"
},
{
"title": "Tools for Hacking R: Subversion",
"href": "http://biostatmatt.com/archives/686"
},
{
"title": "Extension to an R Package: brew gets a weave",
"href": "http://biostatmatt.com/archives/573"
},
{
"title": "Introductory Time-Series analysis of US Environmental Protection Agency (EPA) pollution data",
"href": "http://r-video-tutorial.blogspot.com/2015/05/introductory-time-series-analysis-of-us.html"
},
{
"title": "Clegg vs Pleb: An XKCD-esque chart",
"href": "http://www.drunks-and-lampposts.com/"
},
{
"title": "A set of
"href": "http://www.christopherlortie.info/a-set-of-rstats-adventuretime-themed-openscience-slide-decks/"
},
{
"title": "RSAP, Rook and ERP",
"href": "http://blagrants.blogspot.com/2012/07/rsap-rook-and-erp.html"
},
{
"title": "An experience of EARL",
"href": "http://www.burns-stat.com/experience-earl/"
},
{
"title": "Visualizing a flood with R",
"href": "http://blog.revolutionanalytics.com/2016/06/visualizing-a-flood-with-r.html"
},
{
"title": "Extracting reflectance data from SpectraSuite JCAMP files in R",
"href": "https://web.archive.org/web/http://planetflux.adamwilson.us/2011/05/extracting-reflectance-data-from.html"
},
{
"title": "Upgrade and update R 2.15 to R 3.0 in Debian Wheezy",
"href": "http://tata-box-blog.blogspot.com/2014/02/upgrade-and-update-r-215-to-r-30-in.html"
},
{
"title": "Release of XLConnect 0.1-3",
"href": "https://miraisolutions.wordpress.com/2011/02/28/xlconnect/"
},
{
"title": "The opinionated estimator",
"href": "http://computersandbuildings.com/the-opinionated-estimator/"
},
{
"title": "Enron Email Corpus Topic Model Analysis Part 2 – This Time with Better regex",
"href": "https://rforwork.info/2013/11/04/enron-email-corpus-topic-model-analysis-part-2-this-time-with-better-regex/"
},
{
"title": "Finding outliers in numerical data",
"href": "http://exploringdatablog.blogspot.com/2013/02/finding-outliers-in-numerical-data.html"
},
{
"title": "jsonlite gets a triple mushroom boost!",
"href": "https://www.opencpu.org/posts/jsonlite-release-0-9-11/"
},
{
"title": "Using miniCRAN in Azure ML",
"href": "http://blog.revolutionanalytics.com/2015/10/using-minicran-in-azure-ml.html"
},
{
"title": "ReactomePA: an R/Bioconductor package for reactome pathway analysis and visualization",
"href": "http://guangchuangyu.github.io/2016/02/reactomepa-an-r/bioconductor-package-for-reactome-pathway-analysis-and-visualization/"
},
{
"title": "BayesFactor version 0.9.8 released to CRAN",
"href": "http://bayesfactor.blogspot.com/2014/08/bayesfactor-version-0.html"
},
{
"title": "Plotting texts as graphs with R and igraph",
"href": "https://www.r-bloggers.com/"
},
{
"title": "Examples using R – Analysis of Variance",
"href": "http://www.studytrails.com/blog/examples-using-r-analysis-of-variance/"
},
{
"title": "Data Science MD July Recap: Python and R Meetup",
"href": "http://www.datacommunitydc.org/blog/2013/08/data-science-md-july-recap-python-and-r-meetup/?utm_source=rss&utm_medium=rss&utm_campaign=data-science-md-july-recap-python-and-r-meetup"
}
] |
wboot.twfe.panel <- function(nn, n, y, dd, post, x, i.weights){
v <- stats::rexp(n)
v <- as.matrix(c(v, v))
b.weights <- as.vector(i.weights * v)
reg.b <- stats::lm(y ~ dd:post + post + dd + x, weights = b.weights)
twfe.att.b <- reg.b$coefficients["dd:post"]
return(twfe.att.b)
} |
testPathBase <- normalizePath(path = "../files")
bookdownFile <- file.path(testPathBase, "_bookdown.yml")
file.create(bookdownFile)
write_yaml(
list(
SAS_dir = "path/to/data",
patient_profile_path = "./patient_profiles/"
),
bookdownFile
) |
porosity <- function(IN=data$rst, PLOT=TRUE, NEIGH=4) {
opar <- par(no.readonly=TRUE)
on.exit(par(opar))
oldw <- getOption("warn")
options(warn = -1)
on.exit(options(warn=oldw))
if(PLOT) {
plot.new()
}
if(PLOT) {
par(mfrow=c(3,4), pty="s")
plot(IN, main="Original")
}
imgpad <- extend(x=IN, y=1, value=0)
if(PLOT) {
plot(imgpad, main="imgpad")
}
spres <- res(imgpad)[1]
north <- shift(imgpad, dy=spres)
south <- shift(imgpad, dy=-spres)
west <- shift(imgpad, dx=-spres)
east <- shift(imgpad, dx=spres)
if(PLOT) {
plot(north, main="North")
plot(south, main="South")
plot(west, main="West")
plot(east, main="East")
}
neighnorth <- imgpad * north
neighsouth <- imgpad * south
neighwest <- imgpad * west
neigheast <- imgpad * east
if(PLOT) {
plot(neighnorth)
plot(neighsouth)
plot(neighwest)
plot(neigheast)
}
out <- neighnorth + neighsouth + neighwest + neigheast
if(PLOT) {
plot(out, main="Out")
}
tab <- freq(out)
tab <- tab[tab[,1] != 0,]
tot2wayjoins <- sum(tab[,1]*tab[,2])
tot1wayjoins <- tot2wayjoins/2
zones <- clump(IN, directions=NEIGH)
N <- as.data.frame(freq(zones))
N <- N[!is.na(N[,1]),]
if(PLOT) {
plot(zones, main="Zones")
}
joins2way <- zonal(out, zones, fun=sum)
joins1way <- joins2way[,2]/2
joins <- as.data.frame(cbind(N, joins2way[,2]/2, 0, 0))
names(joins) <- c("Zone", "N", "Jact", "Jmax", "Porosity")
joins$Jmax <- trunc((4 * joins$N - 4 * sqrt(joins$N)) / 2)
joins$Porosity <- 1 - (joins$Jact / joins$Jmax)
return(joins)
} |
context('functions')
test_that('monoUpDown', {
expect_error(monoUpDown(block_length = 10))
expect_error(monoUpDown(demo_returns, difference = "FALSE"))
expect_error(monoUpDown(demo_returns, bootstrapRep = "100"))
expect_error(monoUpDown(demo_returns, bootstrapRep = -1))
expect_error(monoUpDown(demo_returns))
expect_error(monoUpDown(demo_returns, block_length = 7))
expect_error(monoUpDown(demo_returns))
expect_error(monoUpDown(data = cbind(demo_returns, demo_returns), block_length = 10))
expect_equal(dim(monoUpDown(demo_returns,block_length = 10)),as.integer(c(4,2)))
expect_gte(monoUpDown(demo_returns,block_length = 10)[1,1],expected = 0)
expect_gte(monoUpDown(demo_returns,block_length = 10)[2,1],expected = 0)
expect_gte(monoUpDown(demo_returns,block_length = 10)[3,1],expected = 0)
expect_gte(monoUpDown(demo_returns,block_length = 10)[4,1],expected = 0)
expect_gte(monoUpDown(demo_returns,block_length = 10)[1,2],expected = 0)
expect_gte(monoUpDown(demo_returns,block_length = 10)[2,2],expected = 0)
expect_gte(monoUpDown(demo_returns,block_length = 10)[3,2],expected = 0)
expect_gte(monoUpDown(demo_returns,block_length = 10)[4,2],expected = 0)
expect_lte(monoUpDown(demo_returns,block_length = 10)[1,1],expected = 1)
expect_lte(monoUpDown(demo_returns,block_length = 10)[2,1],expected = 1)
expect_lte(monoUpDown(demo_returns,block_length = 10)[3,1],expected = 1)
expect_lte(monoUpDown(demo_returns,block_length = 10)[4,1],expected = 1)
expect_lte(monoUpDown(demo_returns,block_length = 10)[1,2],expected = 1)
expect_lte(monoUpDown(demo_returns,block_length = 10)[2,2],expected = 1)
expect_lte(monoUpDown(demo_returns,block_length = 10)[3,2],expected = 1)
expect_lte(monoUpDown(demo_returns,block_length = 10)[4,2],expected = 1)
}) |
Read.IC.info.BADM <-function(lat, long){
cov.factor <-1
U.S.SB <-
read.csv(system.file("data","BADM.csv", package = "PEcAn.data.land"))
Regions <- EPA_ecoregion_finder(lat, long)
Code_Level <- Regions$L2
biomass.df <- U.S.SB %>%
dplyr::filter(
NA_L2CODE == Code_Level,
VARIABLE %>% grepl("ROOT_|AG_BIOMASS|SOIL_STOCK|SOIL_CHEM", .)
) %>%
dplyr::select(SITE_ID, GROUP_ID, VARIABLE_GROUP, VARIABLE, DATAVALUE)
if (nrow(biomass.df) < 3) {
Code_Level <- Regions$L1
biomass.df <- U.S.SB %>%
dplyr::filter(
NA_L1CODE == Code_Level,
VARIABLE %>% grepl("ROOT_|AG_BIOMASS|SOIL_STOCK|SOIL_CHEM", .)
) %>%
dplyr::select(SITE_ID, GROUP_ID, VARIABLE_GROUP, VARIABLE, DATAVALUE)
}
if (nrow(biomass.df) < 3) {
Code_Level <- "ALL"
biomass.df <- U.S.SB %>%
dplyr::filter(VARIABLE %>% grepl("ROOT_|AG_BIOMASS|SOIL_STOCK|SOIL_CHEM", .)) %>%
dplyr::select(SITE_ID, GROUP_ID, VARIABLE_GROUP, VARIABLE, DATAVALUE)
}
entries <- biomass.df %>%
split(.$GROUP_ID) %>%
purrr::map_dfr(
function(Gdf) {
PlantWoodIni <- NA
SoilIni <- NA
litterIni <- NA
Rootini <- NA
litterIni <- NA
Date.in <- NA
Oregan.in <- NA
if (nrow(Gdf) > 0) {
type <-
sapply(c(
"*LIT",
"*SOIL",
"*_BIOMASS",
"*_ROOT_BIOMASS",
"*_LIT_BIOMASS"
),
grepl,
Gdf[1, 3])
type <- names(type)[type]
} else{
return(NULL)
}
if (length(type) > 1)
type <- type[-which(type == "*_BIOMASS")]
unit.in <- Gdf %>%
dplyr::filter(VARIABLE %>% grepl("UNIT", .)) %>%
dplyr::pull(DATAVALUE) %>%
as.character()
if (length(unit.in) > 0)
if (unit.in =="kgDM m-2") cov.factor <- cov.factor *0.48
unit.ready <- ifelse(unit.in == "gC m-2",
"g/m^2",
ifelse(unit.in == "kgDM m-2", "kg/m^2",
"kg/m^2"))
if (length(unit.in) == 0)
unit.ready <- "kg/m^2"
Date.in <- Gdf %>%
dplyr::filter(VARIABLE %>% grepl("DATE", .)) %>%
dplyr::pull(DATAVALUE) %>%
as.Date()
if (length(Date.in) == 0)
Date.in <- NA
if (type == "*_BIOMASS") {
Oregan.in <- Gdf %>%
dplyr::filter(VARIABLE %>% grepl("ORGAN", .)) %>%
dplyr::pull(DATAVALUE)
PlantWoodIni <-
udunits2::ud.convert(Gdf$DATAVALUE[1]%>%
as.numeric()*cov.factor, unit.ready, "kg/m^2")
} else if (type == "*SOIL") {
val <- Gdf %>%
dplyr::filter(VARIABLE %>% grepl("SOIL_STOCK_C_ORG", .)) %>%
dplyr::pull(DATAVALUE) %>%
as.numeric()
if (length(val) > 0)
SoilIni <- udunits2::ud.convert(val*cov.factor, "g/m^2", "kg/m^2")
} else if (type == "*_LIT_BIOMASS") {
litterIni <-
udunits2::ud.convert(Gdf$DATAVALUE[1] %>%
as.numeric()*cov.factor, unit.ready, "kg/m^2")
} else if (type == "*_ROOT_BIOMASS") {
Rootini <-
udunits2::ud.convert(Gdf$DATAVALUE[1]%>%
as.numeric()*cov.factor, unit.ready, "kg/m^2")
}
return(
data.frame(
Site = Gdf$SITE_ID %>% unique(),
Var = Gdf$VARIABLE[1],
Date = Date.in,
Organ = Oregan.in,
AGB = PlantWoodIni,
soil_organic_carbon_content = SoilIni,
litter_carbon_content = litterIni
)
)
})
ind <- apply(entries[,5:7], 1, function(x) all(is.na(x)))
entries <- entries[-which(ind),]
return(entries)
}
netcdf.writer.BADM <- function(lat, long, siteid, outdir, ens){
entries <- Read.IC.info.BADM (lat, long)
input <- list()
dims <- list(lat = lat ,
lon = long,
time = 1)
PWI <- entries$AGB[!is.na(entries$AGB)]
LIn <- entries$litter_carbon_content[!is.na(entries$litter_carbon_content)]
SIn <- entries$soil_organic_carbon_content[!is.na(entries$soil_organic_carbon_content)]
variables <- list(SoilMoistFrac = 1,
SWE = 0)
if (length(PWI) > 0)
variables <-
c(variables, wood_carbon_content = sample(PWI, 1, replace = T))
if (length(LIn) > 0)
variables <-
c(variables, litter_carbon_content = sample(LIn, 1, replace = T))
if (length(SIn) > 0)
variables <-
c(variables, soil_organic_carbon_content = sample(SIn, 1, replace = T))
input$dims <- dims
input$vals <- variables
return(pool_ic_list2netcdf(
input = input,
outdir = outdir,
siteid = siteid,
ens
)$file)
}
BADM_IC_process <- function(settings, dir, overwrite=TRUE){
new.site <-
data.frame(
id = settings$run$site$id %>% as.numeric(),
lat = settings$run$site$lat ,
lon = settings$run$site$lon %>% as.numeric()
)
out.ense <- seq_len(settings$ensemble$size) %>%
purrr::map(~ netcdf.writer.BADM(new.site$lat,
new.site$lon,
new.site$id,
outdir=dir,
ens=.x))
out.ense <- out.ense %>%
stats::setNames(rep("path", length(out.ense)))
return(out.ense)
}
EPA_ecoregion_finder <- function(Lat, Lon){
U.S.SB.sp <-
data.frame(Lati = Lat %>% as.numeric(),
Long = Lon %>% as.numeric())
sp::coordinates(U.S.SB.sp) <- ~ Long + Lati
L1 <-
sf::read_sf(system.file("data","eco-region.json", package = "PEcAn.data.land")) %>%
sf::st_set_crs(
"+proj=laea +lat_0=45 +lon_0=-100 +x_0=0 +y_0=0 +a=6370997 +b=6370997 +units=m +no_defs"
) %>%
sf::st_transform("+proj=longlat +datum=WGS84")
L2 <-
sf::read_sf(system.file("data","eco-regionl2.json", package = "PEcAn.data.land")) %>%
sf::st_set_crs(
"+proj=laea +lat_0=45 +lon_0=-100 +x_0=0 +y_0=0 +a=6370997 +b=6370997 +units=m +no_defs"
) %>%
sf::st_transform("+proj=longlat +datum=WGS84")
sp::proj4string(U.S.SB.sp) <- sp::proj4string(sf::as_Spatial(L1))
over.out.L1 <- sp::over(U.S.SB.sp, sf::as_Spatial(L1))
over.out.L2 <- sp::over(U.S.SB.sp, sf::as_Spatial(L2))
return(data.frame(L1 = over.out.L1$NA_L1CODE, L2 = over.out.L2$NA_L2CODE))
} |
df1 <- data.frame(x = rnorm(100), y = rnorm(100))
df2 <- data.frame(x = rnorm(100), y = rnorm(100))
df3 <- data.frame(x = rnorm(100), y = rnorm(100))
df4 <- data.frame(x = rnorm(100), y = rnorm(100))
mylist <- list(df1, df2, df3, df4)
resultDF <- mylist[[1]]
for (i in 2:4) resultDF <- rbind(resultDF, mylist[[i]])
resultDF2 <- rbind( mylist[[1]], mylist[[2]], mylist[[3]], mylist[[4]])
resultDF3 <- do.call("rbind", mylist)
all.equal( resultDF2, resultDF3)
m <- 4
nr <- nrow(df1)
nc <- ncol(df1)
resultDF4 <- as.data.frame(matrix(0, nrow = nr*m, ncol = nc))
for (j in 1:m) resultDF4[(((j-1)*nr) + 1):(j*nr), ] <- mylist[[j]]
library("plyr")
resultDF5 <- ldply(mylist, rbind)
all.equal(resultDF, resultDF5)
resultDF6 <- rbind.fill(mylist)
all.equal(resultDF, resultDF6)
mylist2 <- lapply(mylist, as.matrix)
matrixDoCall <- do.call("rbind", mylist2)
all.equal(as.data.frame(matrixDoCall), resultDF)
phony <- function(i){
data.frame(w = rnorm(1000), x = rnorm(1000), y = rnorm(1000), z = rnorm(1000))
}
mylist <- lapply(1:1000, phony)
resultDF <- mylist[[1]]
system.time(
for (i in 2:1000) resultDF <- rbind(resultDF, mylist[[i]])
)
system.time( resultDF3 <- do.call("rbind", mylist) )
all.equal(resultDF, resultDF3)
m <- length(mylist)
nr <- nrow(mylist[[1]])
nc <- ncol(mylist[[1]])
system.time(
resultDF4 <- as.data.frame(matrix(0, nrow = nr*m, ncol = nc))
)
colnames(resultDF4) <- colnames(mylist[[1]])
system.time(
for (j in 1:m) resultDF4[(((j-1)*nr) + 1):(j*nr), ] <- mylist[[j]]
)
all.equal(resultDF, resultDF4)
mylist2 <- lapply(mylist, as.matrix)
m <- length(mylist2)
nr <- nrow(mylist2[[1]])
nc <- ncol(mylist2[[1]])
system.time(
resultDF4B <- matrix(0, nrow = nr*m, ncol = nc)
)
colnames(resultDF4B) <- colnames(mylist[[1]])
system.time(
for (j in 1:m) resultDF4B[(((j-1)*nr) + 1):(j*nr), ] <- mylist2[[j]]
)
all.equal(resultDF, as.data.frame(resultDF4B))
system.time( resultDF5 <- ldply(mylist, rbind))
all.equal(resultDF, resultDF5)
system.time(resultDF6 <- rbind.fill(mylist))
all.equal(resultDF, resultDF6)
system.time(matrixDoCall <- do.call("rbind", mylist2) )
all.equal(as.data.frame(matrixDoCall), resultDF) |
rels = function(path) UseMethod("rels")
rels.path = function(path) {
urls = attr(path, "relationships")
FUN <- function(x) {
url = x
result = http_request(url, "GET")
rel = configure_result(result)
return(rel)
}
rels = lapply(urls, FUN)
return(rels)
} |
tau3scen2<-
function(X, digits = 3)
{
nn <- dim(X)
ni <- nn[1]
ui <- rep(1, ni)
nj <- nn[2]
nk <- nn[3]
n <- sum(X)
p3 <- X/n
if(length(dim(X)) != 3)
stop("X is not a three-way table \n")
pi <- apply(p3, 1, sum)
pj <- apply(p3, 2, sum)
pk <- apply(p3, 3, sum)
pijk <- pi %o% pj %o% pk
p1jk <- ui %o% pj %o% pk
devt <- 1 - sum(pi^2)
tau3 <- sum(((p3 - pijk)^2/p1jk))
itau3 <- tau3/devt
pij <- apply(p3, c(1, 2), sum)
pik <- apply(p3, c(1, 3), sum)
pjk <- apply(p3, c(2, 3), sum)
p1j <- ui %o% pj
p1k <- ui %o% pk
p2ij <- pi %o% pj
p2ik <- pi %o% pk
tauij <- sum(((pij - p2ij)^2/p1j))
itauij <- tauij/devt
tauik <- sum(((pik - p2ik)^2/p1k))
itauik <- tauik/devt
khjk <- 1/ni * (sum((pjk - (pj %o% pk))^2/(pj %o% pk)))
ikhjk<-khjk/devt
khin3 <- tau3 - tauij - tauik - khjk
ikhin3 <-khin3/devt
nom <- c("IJ", "IK", "JK", "IJK", "M")
x <- c(tauij, tauik, khjk, khin3, tau3)
y <- (100 * x)/tau3
dres<-(ni-1)*(nj-1)*(nk-1)
dij<-(ni-1)*(nj-1)
dik<-(ni-1)*(nk-1)
djk<-(nj-1)*(nk-1)
dtot<-dij+dik+djk+dres
CM <- (n - 1) *(ni-1)* itau3
Cij<-(n-1)*(ni-1)*itauij
Cik<-(n-1)*(ni-1)*itauik
Cjk<-(n-1)*(ni-1)*ikhjk
Cijk<-(n-1)*(ni-1)*ikhin3
zz <- c(itauij, itauik, ikhjk, ikhin3,itau3)
zz2<-c(Cij,Cik,Cjk,Cijk,CM)
zz3<-c(dij,dik,djk,dres,dtot)
pvalue= 1 - pchisq(zz2, zz3)
z <- rbind(x, zz,y,zz2,zz3,pvalue)
nomr <- c("Numerator","Index",
"% of Inertia","C-statistic","df","p-value")
dimnames(z) <- list(nomr, nom)
z<-round(z,digits=digits)
list(z=z)
} |
RelTableModel <- function(l){
tableInfo <- c(
"tableName", "fields",
"primaryKey", "foreignKeys", "indexes",
"display"
)
fieldInfo <- c("name", "type", "nullable", "unique", "comment")
stopifnot(
all(tableInfo %in% names(l)),
all(names(l) %in% tableInfo),
is.character(l$tableName),
length(l$tableName)==1,
!is.na(l$tableName),
is.data.frame(l$fields),
all(fieldInfo %in% colnames(l$fields)),
all(colnames(l$fields) %in% fieldInfo),
is.character(l$fields$name),
all(!is.na(l$fields$name)),
!any(duplicated(l$fields$name)),
is.character(l$fields$type),
all(!is.na(l$fields$type)),
is.logical(l$fields$nullable),
all(!is.na(l$fields$nullable)),
is.logical(l$fields$unique),
all(!is.na(l$fields$unique)),
is.character(l$fields$comment),
is.null(l$primaryKey) || is.character(l$primaryKey),
all(!is.na(l$primaryKey)),
all(l$primaryKey %in% l$fields$name)
)
for(
att in setdiff(
names(attributes(l$fields)), c("row.names", "names", "class")
)
){
attr(l$fields, att) <- NULL
}
l$fields <- dplyr::as_tibble(l$fields) %>%
dplyr::select(c("name", "type", "nullable", "unique", "comment")) %>%
dplyr::mutate("comment"=as.character(
ifelse(is.na(.data$comment), "", .data$comment)
))
l$primaryKey <- sort(l$primaryKey)
if(length(l$primaryKey)==1){
l$fields[
which(l$fields$name==l$primaryKey),
"unique"
] <- TRUE
}
if(any(l$fields$type %in% c("row", "column"))){
if(!all(c("row", "column") %in% l$fields$type)){
stop("Both row and column should be provided when modelling a matrix")
}
if(nrow(l$fields) !=3 ){
stop("A matrix model should have 3 and only 3 fields")
}
if(length(unique(l$fields$type)) != 3){
stop(paste(
"A matrix model should have 3 fields":
"2 of types 'row' and 'column' and the 3rd of your choice"
))
}
rcfields <- l$fields %>% dplyr::filter(.data$type %in% c("row", "column"))
if(any(rcfields$nullable)){
stop("Matrix row and column cannot be nullable")
}
if(any(rcfields$unique)){
stop(paste(
"The combination of row and column is unique (primary key)",
" but not row names and column names independently"
))
}
l$primaryKey <- rcfields$name
if(setdiff(l$fields$type, c("row", "column"))=="base64"){
stop("A matrix cannot store base64 documents")
}
check_types(setdiff(l$fields$type, c("row", "column")))
}else{
check_types(l$fields$type)
}
if(!is.null(l$foreignKeys)){
stopifnot(is.list(l$foreignKeys))
fkn <- c("refTable", "key")
l$foreignKeys <- lapply(
l$foreignKeys,
function(fko){
fk <- fko[fkn]
stopifnot(
all(names(fk) %in% fkn),
all(fkn %in% names(fk)),
!is.na(fk$refTable),
is.character(fk$refTable),
length(fk$refTable)==1,
!is.na(fk$refTable),
is.data.frame(fk$key),
all(c("from", "to") %in% names(fk$key)),
all(names(fk$key) %in% c("from", "to")),
is.character(fk$key$from),
all(!is.na(fk$key$from)),
is.character(fk$key$to),
all(!is.na(fk$key$to)),
all(fk$key$from %in% l$fields$name)
)
for(
att in setdiff(
names(attributes(fk$key)), c("row.names", "names", "class")
)
){
attr(fk$key, att) <- NULL
}
fk$key <- dplyr::as_tibble(fk$key)
cnames <- c("fmin", "fmax", "tmin", "tmax")
if("cardinality" %in% names(fko)){
stopifnot(
is.integer(fko$cardinality),
length(fko$cardinality)==4,
all(
cnames %in%
names(fko$cardinality)
),
all(!is.na(fko$cardinality)),
all(fko$cardinality >= -1),
fko$cardinality["fmin"] > -1,
fko$cardinality["tmin"] > -1,
fko$cardinality["fmax"]==-1 || (
fko$cardinality["fmax"] > 0 &&
fko$cardinality["fmax"] >= fko$cardinality["fmin"]
),
fko$cardinality["tmax"]==-1 || (
fko$cardinality["tmax"] > 0 &&
fko$cardinality["tmax"] >= fko$cardinality["tmin"]
)
)
fk$cardinality <- fko$cardinality[cnames]
}else{
fk$cardinality <- c(0, -1, 1, 1)
names(fk$cardinality) <- cnames
}
return(fk)
}
)
names(l$foreignKeys) <- NULL
}
if(!is.null(l$indexes)){
stopifnot(is.list(l$indexes))
idn <- c("fields", "unique")
l$indexes <- lapply(
l$indexes,
function(ind){
stopifnot(
is.list(ind),
all(names(ind) %in% idn),
all(idn %in% names(ind)),
is.character(ind$fields),
all(!is.na(ind$fields)),
is.logical(ind$unique),
all(!is.na(ind$unique)),
length(ind$unique)==1,
all(ind$fields %in% l$fields$name)
)
ind$fields <- sort(unique(ind$fields))
return(ind)
}
)
}
if(!is.null(l$display)){
stopifnot(is.list(l$display))
dn <- c("x", "y", "color", "comment")
stopifnot(
all(names(l$display) %in% dn),
all(dn %in% names(l$display)),
is.numeric(l$display$x),
is.numeric(l$display$y),
is.character(l$display$color),
is.character(l$display$comment),
all(unlist(lapply(l$display, length))==1)
)
}
toRet <- l
class(toRet) <- c("RelTableModel", class(toRet))
toRet <- correct_constraints(toRet)
return(toRet)
}
is.RelTableModel <- function(x){
inherits(x, "RelTableModel")
}
is.MatrixModel <- function(x){
inherits(x, "RelTableModel") &&
"row" %in% x$fields$type
}
format.RelTableModel <- function(x, ...){
f <- x$fields
pk <- x$primaryKey
it <- index_table(x)
ind <- NULL
if(!is.null(it)){
it <- it %>% dplyr::filter(.data$index!=0)
ind <- unique(it$field)
}
f$i <- unlist(lapply(
f$name,
function(n){
paste(sort(it$index[which(it$field==n)]), collapse=",")
}
))
toRet <- paste0(
sprintf(
"Table name: %s%s",
x$tableName,
ifelse(is.MatrixModel(x), " (matrix)", "")
), "\n",
paste(
apply(
f, 1,
function(y){
toRet <- " "
toRet <- paste0(
toRet,
ifelse(y[1] %in% pk, "*", " "),
ifelse(y[4]=="TRUE" & !y[1] %in% pk, "+ ", " "),
y[1]
)
toRet <- paste0(
toRet, " (",
y[2],
ifelse(
y[1] %in% ind,
paste0(", idx.", y[6]),
""
),
ifelse(y[3]=="FALSE", ", not", ","),
" nullable",
")"
)
return(toRet)
}
),
collapse="\n"
)
)
if(length(x$foreignKeys)>0){
toRet <- paste0(
toRet, "\n",
"Referenced tables:\n",
paste(unlist(lapply(
x$foreignKeys,
function(y){
y$refTable
}
)), collapse="\n")
)
}
return(toRet)
}
print.RelTableModel <- function(x, ...){
cat(format(x, ...), "\n")
}
length.RelTableModel <- function(x){
nrow(x$fields)
}
lengths.RelTableModel <- function(x, use.names=TRUE){
lengths(unclass(x), use.names=use.names)
}
index_table <- function(x){
stopifnot(is.RelTableModel(x))
pk <- x$primaryKey
ind <- x$indexes
toRet <- NULL
i <- 0
if(length(pk)>0){
toRet <- dplyr::tibble(
index=i,
field=pk,
uniqueIndex=TRUE
)
}
for(ci in ind){
i <- i+1
toRet <- dplyr::bind_rows(
toRet,
dplyr::tibble(
index=i,
field=ci$fields,
uniqueIndex=ci$unique
)
)
}
return(toRet)
}
col_types <- function(x){
stopifnot(is.RelTableModel(x))
do.call(
readr::cols,
structure(
lapply(
x$fields$type,
function(y){
switch(
y,
"row"=readr::col_character(),
"column"=readr::col_character(),
"integer"=readr::col_integer(),
"numeric"=readr::col_double(),
"logical"=readr::col_logical(),
"character"=readr::col_character(),
"Date"=readr::col_date(),
"POSIXct"=readr::col_datetime(),
"base64"=readr::col_character()
)
}
),
.Names=x$fields$name
)
)
}
correct_constraints <- function(x){
stopifnot(is.RelTableModel(x))
if(length(x$primaryKey)==1){
x$fields[which(x$fields$name==x$primaryKey), "unique"] <- TRUE
x$fields[which(x$fields$name==x$primaryKey), "nullable"] <- FALSE
}
if(length(x$primaryKey)>0){
ei <- lapply(
x$indexes,
function(y){
identical(sort(y$fields), sort(x$primaryKey))
}
) %>%
unlist() %>%
as.logical() %>%
which()
if(length(ei)>1) stop("Check this part of code")
if(length(ei)==0){
x$indexes <- unique(c(
x$indexes,
list(
list(
fields=sort(x$primaryKey),
unique=TRUE
)
)
))
}else{
x$indexes[[ei]]$unique <- TRUE
}
}
if(length(x$indexes)>0){
for(i in 1:length(x$indexes)){
if(x$indexes[[i]]$unique && length(x$indexes[[i]]$fields)==1){
if(
x$fields[
which(x$fields$name==x$indexes[[i]]$fields), "type"
] %in% c("row", "column")
){
stop("Matrix row and column cannot be unique individually")
}
x$fields[
which(x$fields$name==x$indexes[[i]]$fields), "unique"
] <- TRUE
}
}
}
uniqueFields <- x$fields %>%
dplyr::filter(.data$unique) %>%
dplyr::pull("name")
if(length(x$indexes)>0 && length(uniqueFields)>0){
for(i in 1:length(x$indexes)){
if(any(x$indexes[[i]]$fields %in% uniqueFields)){
x$indexes[[i]]$unique <- TRUE
}
}
}
return(x)
}
confront_table_data <- function(
x,
d,
checks=c("unique", "not nullable")
){
if(length(checks)>0){
checks <- match.arg(
checks,
c("unique", "not nullable"),
several.ok=TRUE
)
}
stopifnot(is.RelTableModel(x))
if(is.MatrixModel(x)){
vf <- x$fields %>% dplyr::filter(!.data$type %in% c("row", "column"))
toRet <- list(
missingFields = character(0),
suppFields = character(0),
availableFields = vf$name,
fields=list(),
success=TRUE
)
toRet$fields[[vf$name]] <- list(success=TRUE, message=NULL)
if(!inherits(d[1], vf$type)){
toRet$fields[[vf$name]]$success <- FALSE
toRet$success <- FALSE
toRet$fields[[vf$name]]$message <- paste(c(
toRet$fields[[vf$name]]$message,
sprintf(
'Unexpected "%s"',
paste(class(d[1]), collapse=", ")
)
), collapse=" ")
}
if("not nullable" %in% checks){
mis <- sum(is.na(d))
if(mis!=0){
toRet$fields[[vf$name]]$message <- paste(c(
toRet$fields[[vf$name]]$message,
sprintf(
'Missing values %s/%s = %s%s',
mis, length(d), round(mis*100/length(d)), "%"
)
), collapse=" ")
if(!vf$nullable){
toRet$fields[[vf$name]]$success <- FALSE
toRet$success <- FALSE
}
}
}
if("unique" %in% checks && vf$unique && any(duplicated(d))){
toRet$fields[[vf$name]]$success <- FALSE
toRet$success <- FALSE
toRet$fields[[vf$name]]$message <- paste(c(
toRet$fields[[vf$name]]$message,
"Some values are duplicated"
), collapse=" ")
}
return(toRet)
}
stopifnot(
is.data.frame(d)
)
missingFields <- setdiff(x$fields$name, colnames(d))
suppFields <- setdiff(colnames(d), x$fields$name)
availableFields <- intersect(colnames(d), x$fields$name)
toRet <- list(
missingFields=missingFields,
suppFields=suppFields,
availableFields=availableFields,
fields=list(),
success=length(missingFields)==0 && length(suppFields)==0
)
for(fn in availableFields){
ft <- x$fields$type[which(x$fields$name==fn)]
ft <- ifelse(ft %in% c("row", "column"), "character", ft)
fe <- x$fields$nullable[which(x$fields$name==fn)]
fu <- x$fields$unique[which(x$fields$name==fn)]
toRet$fields[[fn]] <- list(success=TRUE, message=NULL)
if(!inherits(dplyr::pull(d, !!fn), ft)){
if(ft!="base64" || !inherits(dplyr::pull(d, !!fn), "character")){
toRet$fields[[fn]]$success <- FALSE
toRet$success <- FALSE
toRet$fields[[fn]]$message <- paste(c(
toRet$fields[[fn]]$message,
sprintf(
'Unexpected "%s"',
paste(class(dplyr::pull(d, !!fn)), collapse=", ")
)
), collapse=" ")
}
}
if("not nullable" %in% checks){
mis <- sum(is.na(dplyr::pull(d, !!fn)))
if(mis!=0){
toRet$fields[[fn]]$message <- paste(c(
toRet$fields[[fn]]$message,
sprintf(
'Missing values %s/%s = %s%s',
mis, nrow(d), round(mis*100/nrow(d)), "%"
)
), collapse=" ")
if(!fe){
toRet$fields[[fn]]$success <- FALSE
toRet$success <- FALSE
}
}
}
if("unique" %in% checks && fu && any(duplicated(dplyr::pull(d, !!fn)))){
toRet$fields[[fn]]$success <- FALSE
toRet$success <- FALSE
toRet$fields[[fn]]$message <- paste(c(
toRet$fields[[fn]]$message,
"Some values are duplicated"
), collapse=" ")
}
}
if("unique" %in% checks && length(x$indexes)>0){
toRet$indexes <- list()
for(i in 1:length(x$indexes)){
toRet$indexes[[i]] <- list()
idx <- x$indexes[[i]]
if(any(idx$fields %in% missingFields)){
toRet$indexes[[i]]$success <- FALSE
toRet$indexes[[i]]$message <- paste(c(
toRet$indexes[[i]]$message,
"Missing field"
), collapse=" ")
toRet$success <- FALSE
}else{
if(!idx$unique){
toRet$indexes[[i]]$success <- TRUE
}else{
if(any(duplicated(d[,idx$fields]))){
toRet$indexes[[i]]$success <- FALSE
toRet$indexes[[i]]$message <- paste(c(
toRet$indexes[[i]]$message,
"Some values are duplicated"
), collapse=" ")
toRet$success <- FALSE
}else{
toRet$indexes[[i]]$success <- TRUE
}
}
}
}
}
if("not nullable" %in% checks && is.MatrixModel(x)){
if(!"indexes" %in% names(toRet)){
toRet$indexes <- list()
}
i <- length(toRet$indexes)+1
rf <- x$fields %>%
dplyr::filter(.data$type=="row") %>%
dplyr::pull("name")
cf <- x$fields %>%
dplyr::filter(.data$type=="column") %>%
dplyr::pull("name")
fe <- x$fields %>%
dplyr::filter(!.data$type %in% c("row", "column")) %>%
dplyr::pull("nullable")
ncells <- length(unique(d[,rf])) * length(unique(d[,cf]))
mis <- ncells - nrow(d)
if(mis > 0 ){
toRet$indexes[[i]]$message <- paste(c(
toRet$indexes[[i]]$message,
sprintf(
'Missing cells %s/%s = %s%s',
mis, ncells, round(mis*100/ncells), "%"
)
), collapse=" ")
if(!fe){
toRet$indexes[[i]]$success <- FALSE
toRet$success <- FALSE
}
}
}
return(toRet)
}
identical_RelTableModel <- function(x, y, includeDisplay=TRUE){
stopifnot(is.RelTableModel(x), is.RelTableModel(y))
toRet <- x$tableName==y$tableName
toRet <- toRet && identical(
x$fields %>% dplyr::arrange(.data$name),
y$fields %>% dplyr::arrange(.data$name)
)
toRet <- toRet && length(x$primaryKey)==length(y$primaryKey) &&
all(x$primaryKey==y$primaryKey)
toRet <- toRet && length(x$indexes)==length(y$indexes)
if(toRet && length(x$indexes)>0){
xidx <- lapply(
x$indexes,
function(z){
z$fields <- sort(z$fields)
return(z)
}
)
xidx <- xidx[order(unlist(lapply(
xidx,
function(z) paste(z$fields, collapse=", ")
)))]
yidx <- lapply(
y$indexes,
function(z){
z$fields <- sort(z$fields)
return(z)
}
)
yidx <- yidx[order(unlist(lapply(
yidx,
function(z) paste(z$fields, collapse=", ")
)))]
toRet <- identical(xidx, yidx)
}
toRet <- toRet && length(x$foreignKeys)==length(y$foreignKeys)
if(toRet && length(x$foreignKeys)>0){
xfk <- lapply(
x$foreignKeys,
function(z){
z$key <- z$key %>% dplyr::arrange(.data$from, .data$to)
return(z)
}
)
xfk <- xfk[order(unlist(lapply(
xfk,
function(z){
paste0(
z$refTable, " [",
paste(
paste(z$key$from, z$key$to, sep="->"),
collapse=", "
),
"]"
)
}
)))]
yfk <- lapply(
y$foreignKeys,
function(z){
z$key <- z$key %>% dplyr::arrange(.data$from, .data$to)
return(z)
}
)
yfk <- yfk[order(unlist(lapply(
yfk,
function(z){
paste0(
z$refTable, " [",
paste(
paste(z$key$from, z$key$to, sep="->"),
collapse=", "
),
"]"
)
}
)))]
toRet <- identical(xfk, yfk)
}
if(includeDisplay){
toRet <- toRet && length(x$display)==length(y$display) &&
(length(x$display)==0 || identical(
x$display[order(names(x$display))],
y$display[order(names(y$display))]
))
}
return(toRet)
}
get_foreign_keys.RelTableModel <- function(x){
tn <- x$tableName
fk <- x$foreignKeys
if(length(fk)==0){
return(NULL)
}
toRet <- do.call(rbind, lapply(
fk,
function(k){
to <- k$refTable
kt <- k$key %>% dplyr::arrange(.data$from, .data$to)
dplyr::tibble(
to=to,
ff=list(kt$from), tf=list(kt$to)
) %>%
dplyr::bind_cols(dplyr::as_tibble(t(k$cardinality))) %>%
return()
}
))
toRet %>% dplyr::mutate(
from=tn
) %>%
dplyr::select(
"from", "ff", "to", "tf", "fmin", "fmax", "tmin", "tmax"
) %>%
return()
} |
getTaxonTable <- function(
taxonType = NA,
recordReturnLimit = NA,
stream = 'true',
token = NA
){
options(stringsAsFactors = FALSE)
requireNamespace('httr')
requireNamespace('jsonlite')
url_prefix = 'http://data.neonscience.org/api/v0/taxonomy?taxonTypeCode='
url_to_get <- as.character(paste0(url_prefix, taxonType))
if(!is.na(recordReturnLimit)) url_to_get <- paste0(url_to_get,'&limit=',recordReturnLimit)
if(!is.na(stream)) url_to_get <- paste0(url_to_get,'&stream=',stream)
req.df <- data.frame()
req <- NULL
req <- getAPI(apiURL = url_to_get, token = token)
if(is.null(req)) {
message(paste("No data were returned"))
return(invisible())
}
if (req$status_code == 204) {
message(paste("No data are available"))
return(invisible())
}else if (req$status_code == 413) {
message(paste("Data GET failed with status code ", req$status_code,
": Payload Too Large. Query a smaller dataset.",
sep = ""))
return(invisible())
}else {
if (req$status_code != 200) {
message(paste("Data GET failed with status code ", req$status_code,
". Check the formatting of your inputs.", sep = ""))
return(invisible())
}
}
if(!is.null(req)){
taxa_list <- jsonlite::fromJSON(httr::content(req, as='text', encoding="UTF-8"))
taxa_table <- taxa_list$data
names(taxa_table) <- gsub('.+?\\:','',names(taxa_table))
}
return(taxa_table)
} |
caretStack <- function(all.models, ...){
predobs <- makePredObsMatrix(all.models)
model <- train(predobs$preds, predobs$obs, ...)
out <- list(models=all.models, ens_model=model, error=model$results)
class(out) <- "caretStack"
return(out)
}
predict.caretStack <- function(
object, newdata=NULL,
se=FALSE, level=0.95,
return_weights=FALSE,
na.action=na.omit,
...){
stopifnot(is(object$models, "caretList"))
type <- extractModelTypes(object$models)
preds <- predict(object$models, newdata=newdata, na.action=na.action)
if(type == "Classification"){
out <- predict(object$ens_model, newdata=preds, na.action=na.action, ...)
if(inherits(out, c("data.frame", "matrix"))){
est <- out[, getBinaryTargetLevel(), drop = TRUE]
} else{
est <- out
}
} else{
est <- predict(object$ens_model, newdata=preds, ...)
}
if(se | return_weights){
imp <- varImp(object$ens_model)$importance
weights <- imp$Overall
weights[!is.finite(weights)] <- 0
weights <- weights / sum(weights)
names(weights) <- row.names(imp)
methods <- colnames(preds)
for(m in setdiff(methods, names(weights))){
weights[m] <- 0
}
}
out <- est
if(se){
if(!is.numeric(est)){
message("Standard errors not available.")
out <- est
} else{
weights <- weights[methods]
std_error <- apply(preds, 1, wtd.sd, w = weights)
std_error <- (qnorm(level) * std_error)
out <- data.frame(
fit = est,
lwr = est - std_error,
upr = est + std_error
)
}
}
if(return_weights) {
attr(out, "weights") <- weights
}
return(out)
}
is.caretStack <- function(object){
is(object, "caretStack")
}
summary.caretStack <- function(object, ...){
summary(object$ens_model)
}
print.caretStack <- function(x, ...){
base.models <- paste(names(x$models), collapse=", ")
cat(sprintf("A %s ensemble of %s base models: %s", x$ens_model$method, length(x$models), base.models))
cat("\n\nEnsemble results:\n")
print(x$ens_model)
}
plot.caretStack <- function(x, ...){
plot(x$ens_model, ...)
}
dotplot.caretStack <- function(x, data=NULL, ...){
dotplot(resamples(x$models), data=data, ...)
} |
adjOutl <- function(x, z = NULL, options = list()){
if (missing(x)) {
stop("Input argument x is required.")
}
x <- data.matrix(x)
if (!is.numeric(x)) {
stop("The input argument x must be a numeric data matrix.")
}
n1 <- nrow(x)
p1 <- ncol(x)
if (n1 > sum(complete.cases(x))) {
stop("Missing values in x are not allowed.")
}
if (is.null(z)) {
z <- x
}
z <- data.matrix(z)
if (!is.numeric(z)) {
stop("The input argument z must be a numeric data matrix.")
}
n2 <- nrow(z)
p2 <- ncol(z)
if (p1 != p2) {
stop("The data dimension has to be the same for x and z.")
}
if (n2 > sum(complete.cases(z))) {
stop("Missing values in z are not allowed.")
}
if (is.null(options)) {
options <- list()
}
if (!is.list(options)) {
stop("options must be a list")
}
if ("type" %in% names(options)) {
type <- options[["type"]]
} else {
type <- "Affine"
}
if ("ndir" %in% names(options)) {
ndir <- options[["ndir"]]
} else {
ndir <- NULL
}
if ("seed" %in% names(options)) {
seed <- options[["seed"]]
} else {
seed <- NULL
}
type.id <- match(type, c("Affine", "Rotation", "Shift"))[1]
if (is.na(type.id)) {
stop("The input parameter type must be one of: Affine, Rotation or Shift.")
}
if (is.null(ndir)) {
if (type.id == 1) {
ndir <- 250 * p1
} else if (type.id == 2) {
ndir <- 250 * 20
} else {
ndir <- 250 * 50
}
}
calc.all <- 0
if (is.numeric(ndir)) {
if (ndir < 1) {
stop("The number of directions must be a positive integer.")
}
if (type.id == 1) {
ndir0 <- choose(n1, p1)
if (ndir0 <= ndir) {
ndir <- ndir0
calc.all <- 1
}
}
if (type.id == 2) {
ndir0 <- choose(n1, 2)
if (ndir0 <= ndir) {
ndir <- ndir0
calc.all <- 1
}
}
}
if (!is.numeric(ndir)) {
if (ndir == "all") {
if (type.id == 1) {
ndir <- choose(n1, p1)
calc.all <- 1
if (ndir > 1e7) {
stop("ndir is larger than 1e7. Try a smaller value of ndir.")
}
}
if (type.id == 2) {
ndir <- choose(n1, 2)
calc.all <- 1
if (ndir > 1e7) {
stop("ndir is larger than 1e7. Try a smaller value of ndir.")
}
}
if (type.id == 3) {
stop("Cannot compute all directions for type Shift.")
}
}
else stop("The input parameter ndir is not recognized.")
}
if (type.id == 1 & (n1 < (p1 + 1))) {
stop("When type is affine, n should be larger than p.")
}
if (is.null(seed)) {
seed <- 10
}
if (!is.numeric(seed)) {
stop("The seed must be a strictly positive integer.")
}
if (seed <= 0) {
stop("The seed must be a strictly positive integer.")
}
tol <- 1e-7
scaled.x <- scale(x)
temp <- attributes(scaled.x)
column.sd <- temp[["scaled:scale"]]
if (sum(column.sd <= 1e-14) > 0) {
warning("One of the variables has zero
standard deviation. Check the data matrix x.")
returned.result <- list(outlyingnessX = NULL,
outlyingnessZ = NULL,
cutoff = NULL,
flagX = NULL,
flagZ = NULL,
singularSubsets = NULL,
dimension = sum(column.sd > 1e-14),
hyperplane = as.numeric(column.sd <= 1e-14),
inSubspace = NULL)
class(returned.result) <- c("mrfDepth", "adjOutl")
return(returned.result)
}
w1 <- try(svd(scaled.x / sqrt(n1 - 1)), silent = TRUE)
if (!is.list(w1)) {
warning("The singular-value decomposition of the
data matrix x could not be computed.")
returned.result <- list(outlyingnessX = NULL,
outlyingnessZ = NULL,
cutoff = NULL,
flagX = NULL,
flagZ = NULL,
singularSubsets = NULL,
dimension = NULL,
hyperplane = NULL,
inSubspace = NULL)
class(returned.result) <- c("mrfDepth", "adjOutl")
return(returned.result)
}
if (min(w1$d) < tol) {
warning("An exact fit is found. Check the output for more details.")
returned.result <- list(outlyingnessX = NULL,
outlyingnessZ = NULL,
cutoff = NULL,
flagX = NULL,
flagZ = NULL,
singularSubsets = NULL,
dimension = sum(w1$d > tol),
hyperplane = w1$v[, which(w1$d == min(w1$d))[1]],
inSubspace = NULL)
class(returned.result) <- c("mrfDepth", "adjOutl")
return(returned.result)
}
x <- rbind(x, z)
n <- nrow(x)
p <- ncol(x)
result <- .C("adjprojout",
as.integer(n),
as.integer(p),
as.integer(ndir),
as.double(x),
as.double(rep(0, n)),
as.double(0),
as.integer(0),
as.integer(type.id),
as.integer(n1),
as.integer(calc.all),
as.double(rep(0, p1)),
as.integer(seed),
PACKAGE = "mrfDepth")
adj.outlyingness <- result[[5]]
if (sum(abs(result[[11]])) > tol) {
warning("A direction was found for which the robust scale estimate equals
zero. See the help page for more details.", call. = FALSE)
returned.result <- list(outlyingnessX = NULL,
outlyingnessZ = NULL,
cutoff = NULL,
flagX = NULL,
flagZ = NULL,
singularSubsets = NULL,
dimension = NULL,
hyperplane = result[[11]],
inSubspace = as.logical(adj.outlyingness[1:n1]))
class(returned.result) <- c("mrfDepth", "adjOutl")
return(returned.result)
}
LAO <- log(0.1 + adj.outlyingness[1:n1])
cutoff <- exp(median(LAO) + mad(LAO) * qnorm(0.995)) - 0.1
flag.X <- adj.outlyingness[1:n1] <= cutoff
flag.Z <- adj.outlyingness[(n1 + 1):(n1 + n2)] <= cutoff
returned.result <- list(outlyingnessX = adj.outlyingness[1:n1],
outlyingnessZ = adj.outlyingness[(n1 + 1):(n1 + n2)],
cutoff = cutoff,
flagX = flag.X,
flagZ = flag.Z,
singularsubsets = result[[7]],
dimension = NULL,
hyperplane = NULL,
inSubspace = NULL)
class(returned.result) <- c("mrfDepth", "adjOutl")
return(returned.result)
} |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.