code
stringlengths
1
13.8M
post_medx <- function( x, ed, probs, time, lower, upper, greater, small_bound, return_samples, ... ) { UseMethod("post_medx", x) } post_medx.dreamer_bma <- function( x, ed, probs = c(.025, .975), time = NULL, lower = min(x$doses), upper = max(x$doses), greater = TRUE, small_bound = 0, return_samples = FALSE, ... ) { assert_no_dots("post_medx.dreamer_bma", ...) time <- get_time(x, time) mcmc_index <- vapply( x, function(y) any(grepl("mcmc_", class(y))), logical(1) ) %>% which() model_index <- attr(x, "model_index") samps <- purrr::map_df( unique(model_index), function(i) { index <- which(model_index == i) post_medx( x = x[[mcmc_index[i]]], ed = ed, probs = probs, time = time, lower = lower, upper = upper, greater = greater, small_bound = small_bound, index = index, return_samples = TRUE )$samps } ) output <- summarize_medx(samps = samps, probs = probs) return_stats_samps(output, samps, return_samples) } post_medx.dreamer <- function( x, ed, probs = c(.025, .975), time = NULL, lower = min(attr(x, "doses")), upper = max(attr(x, "doses")), greater = TRUE, small_bound = 0, return_samples = FALSE, index = 1:(nrow(x[[1]]) * length(x)), ... ) { assert_no_dots("post_medx.dreamer", ...) time <- get_time(x, time) extremes <- get_extreme( x = x, time = time, greater = greater, lower = lower, upper = upper, index = index ) samps <- purrr::map_df( ed, calc_post_medx_samps, effect100 = extremes$extreme_responses, extreme_dose = extremes$doses, x = x, index = index, lower = lower, upper = upper, greater = greater, time = time, small_bound = small_bound ) output <- summarize_medx(samps = samps, probs = probs) return_stats_samps(output, samps, return_samples) } calc_post_medx_samps <- function( ed, effect100, extreme_dose, small_bound, x, index, lower, upper, greater, time ) { effect_x <- (ed / 100) * (effect100 - small_bound) + small_bound post_doses <- get_dose( x = x, time = time, response = effect_x, index = index, lower = lower, upper = upper ) post_doses[post_doses > extreme_dose] <- NA return( dplyr::tibble( ed = ed, dose = post_doses ) ) } post_medx.dreamer_mcmc_independent <- function(...) { rlang::abort( "post_medx() not supported for independent models.", class = "dreamer" ) } post_medx.dreamer_mcmc_independent_binary <- function(...) { rlang::abort( "post_medx() not supported for independent models.", class = "dreamer" ) } summarize_medx <- function(samps, probs) { output <- dplyr::group_by(samps, .data$ed) %>% dplyr::summarize( pr_edx_exists = mean(!is.na(.data$dose)), mean = mean(.data$dose, na.rm = TRUE) ) output2 <- purrr::map( probs, function(xx, samps) { dplyr::group_by(samps, .data$ed) %>% dplyr::summarize( !!(paste0(100 * xx, "%")) := quantile(.data$dose, probs = xx, na.rm = TRUE) ) }, samps = samps ) %>% { Reduce( function(x, y, ...) merge(x, y, by = "ed"), . ) } output <- merge(output, output2, by = "ed") return(output) } return_stats_samps <- function(stats, samps, return_samples) { if (return_samples) { return(list(stats = stats, samps = samps)) } else { return(list(stats = stats)) } }
E(chartr2("aixbjyckz", "ab!", "xyz"), "xixyjyckz")
"read.crd" <- function(file, ...) { pos <- regexpr("\\.([[:alnum:]]+)$", file) ext <- ifelse(pos > -1L, substring(file, pos + 1L), "") if(ext %in% c("crd")) { class(file)=c("character", "charmm") } if(ext %in% c("inpcrd", "rst")) { class(file)=c("character", "amber") } UseMethod("read.crd", file) }
survs <- function (y, wt, x, parms, continuous) { y <- data.frame(y) if (parms$LTRC){ colnames(y)[1:4] <- c('start','end','event','biomarker') formulay1 <- Surv(start, end, event) ~ . - biomarker formulay2 <- Surv(start, end, event) ~ . } else { colnames(y)[1:3] <- c('end','event','biomarker') formulay1 <- Surv(end, event) ~ . - biomarker formulay2 <- Surv(end, event) ~ . } nevents <- sum(y[,'event']) rootval <- get_node_val(formulay1, formulay2, y, lrt=parms$lrt, stable=parms$stable, cov.max=parms$cov.max) if (nevents <= parms$min.nevents*2 || rootval < parms$stop.thre){ if (continuous){ goodness <- rep(-Inf,nrow(y)-1); direction <- goodness; } else{ ux <- sort(unique(x)) goodness <- rep(-Inf,length(ux)-1); direction <- ux } return(list(goodness=goodness, direction=direction)) } if (continuous) { n <- nrow(y) goodness <- rep(-Inf,n-1) direction <- double(n-1) for (i in 1:(n-1)) { if (x[i] != x[i+1]) { nel <- sum(y$event[1:i]) ner <- sum(y$event[(i+1):n]) if (nel <= parms$min.nevents || ner <= parms$min.nevents ){ result <- c(-Inf,0) } else{ result <- tryCatch({ leftval <- get_node_val(formulay1, formulay2, y[1:i,], lrt= parms$lrt, stable=parms$stable, cov.max=parms$cov.max) rightval <- get_node_val(formulay1, formulay2, y[(i+1):n,], lrt= parms$lrt, stable=parms$stable, cov.max=parms$cov.max) c(rootval - (leftval + rightval), sign(leftval-rightval)) }, error = function(e){ c(-Inf, sign(1))}) } goodness[i] <- result[1]; direction[i] <- result[2] } } goodness <- goodness + parms$split.add } else { n <- nrow(y) ux <- sort(unique(x)) nx <- length(ux) goodness <- rep(-Inf, nx-1) direction <- double(nx-1) xorder <- order(x); xtmp <- x[xorder]; ytmp <- y[xorder,] for (i in 1:(nx-1)){ nextstart <- min(which(xtmp == ux[i+1])) nel <- sum(ytmp$event[1:(nextstart-1)]) ner <- sum(ytmp$event[nextstart:n]) if (nel <= parms$min.nevents | ner <= parms$min.nevents ){ result <- c(-Inf,0) } else{ result <- tryCatch({ leftval <- get_node_val(formulay1, formulay2, ytmp[1:(nextstart-1),], lrt=parms$lrt, stable=parms$stable, cov.max=parms$cov.max) rightval <- get_node_val(formulay1, formulay2, ytmp[nextstart:n,], lrt=parms$lrt, stable=parms$stable, cov.max=parms$cov.max) c(rootval - (leftval + rightval), sign(leftval-rightval)) }, error = function(e){ c(-Inf, sign(1))}) } goodness[i] <- result[1] } names(goodness) <- ux[1:(nx-1)] goodness <- goodness + parms$split.add direction <- ux } list(goodness=goodness, direction=direction) }
NULL ssoadmin_attach_managed_policy_to_permission_set <- function(InstanceArn, PermissionSetArn, ManagedPolicyArn) { op <- new_operation( name = "AttachManagedPolicyToPermissionSet", http_method = "POST", http_path = "/", paginator = list() ) input <- .ssoadmin$attach_managed_policy_to_permission_set_input(InstanceArn = InstanceArn, PermissionSetArn = PermissionSetArn, ManagedPolicyArn = ManagedPolicyArn) output <- .ssoadmin$attach_managed_policy_to_permission_set_output() config <- get_config() svc <- .ssoadmin$service(config) request <- new_request(svc, op, input, output) response <- send_request(request) return(response) } .ssoadmin$operations$attach_managed_policy_to_permission_set <- ssoadmin_attach_managed_policy_to_permission_set ssoadmin_create_account_assignment <- function(InstanceArn, TargetId, TargetType, PermissionSetArn, PrincipalType, PrincipalId) { op <- new_operation( name = "CreateAccountAssignment", http_method = "POST", http_path = "/", paginator = list() ) input <- .ssoadmin$create_account_assignment_input(InstanceArn = InstanceArn, TargetId = TargetId, TargetType = TargetType, PermissionSetArn = PermissionSetArn, PrincipalType = PrincipalType, PrincipalId = PrincipalId) output <- .ssoadmin$create_account_assignment_output() config <- get_config() svc <- .ssoadmin$service(config) request <- new_request(svc, op, input, output) response <- send_request(request) return(response) } .ssoadmin$operations$create_account_assignment <- ssoadmin_create_account_assignment ssoadmin_create_instance_access_control_attribute_configuration <- function(InstanceArn, InstanceAccessControlAttributeConfiguration) { op <- new_operation( name = "CreateInstanceAccessControlAttributeConfiguration", http_method = "POST", http_path = "/", paginator = list() ) input <- .ssoadmin$create_instance_access_control_attribute_configuration_input(InstanceArn = InstanceArn, InstanceAccessControlAttributeConfiguration = InstanceAccessControlAttributeConfiguration) output <- .ssoadmin$create_instance_access_control_attribute_configuration_output() config <- get_config() svc <- .ssoadmin$service(config) request <- new_request(svc, op, input, output) response <- send_request(request) return(response) } .ssoadmin$operations$create_instance_access_control_attribute_configuration <- ssoadmin_create_instance_access_control_attribute_configuration ssoadmin_create_permission_set <- function(Name, Description = NULL, InstanceArn, SessionDuration = NULL, RelayState = NULL, Tags = NULL) { op <- new_operation( name = "CreatePermissionSet", http_method = "POST", http_path = "/", paginator = list() ) input <- .ssoadmin$create_permission_set_input(Name = Name, Description = Description, InstanceArn = InstanceArn, SessionDuration = SessionDuration, RelayState = RelayState, Tags = Tags) output <- .ssoadmin$create_permission_set_output() config <- get_config() svc <- .ssoadmin$service(config) request <- new_request(svc, op, input, output) response <- send_request(request) return(response) } .ssoadmin$operations$create_permission_set <- ssoadmin_create_permission_set ssoadmin_delete_account_assignment <- function(InstanceArn, TargetId, TargetType, PermissionSetArn, PrincipalType, PrincipalId) { op <- new_operation( name = "DeleteAccountAssignment", http_method = "POST", http_path = "/", paginator = list() ) input <- .ssoadmin$delete_account_assignment_input(InstanceArn = InstanceArn, TargetId = TargetId, TargetType = TargetType, PermissionSetArn = PermissionSetArn, PrincipalType = PrincipalType, PrincipalId = PrincipalId) output <- .ssoadmin$delete_account_assignment_output() config <- get_config() svc <- .ssoadmin$service(config) request <- new_request(svc, op, input, output) response <- send_request(request) return(response) } .ssoadmin$operations$delete_account_assignment <- ssoadmin_delete_account_assignment ssoadmin_delete_inline_policy_from_permission_set <- function(InstanceArn, PermissionSetArn) { op <- new_operation( name = "DeleteInlinePolicyFromPermissionSet", http_method = "POST", http_path = "/", paginator = list() ) input <- .ssoadmin$delete_inline_policy_from_permission_set_input(InstanceArn = InstanceArn, PermissionSetArn = PermissionSetArn) output <- .ssoadmin$delete_inline_policy_from_permission_set_output() config <- get_config() svc <- .ssoadmin$service(config) request <- new_request(svc, op, input, output) response <- send_request(request) return(response) } .ssoadmin$operations$delete_inline_policy_from_permission_set <- ssoadmin_delete_inline_policy_from_permission_set ssoadmin_delete_instance_access_control_attribute_configuration <- function(InstanceArn) { op <- new_operation( name = "DeleteInstanceAccessControlAttributeConfiguration", http_method = "POST", http_path = "/", paginator = list() ) input <- .ssoadmin$delete_instance_access_control_attribute_configuration_input(InstanceArn = InstanceArn) output <- .ssoadmin$delete_instance_access_control_attribute_configuration_output() config <- get_config() svc <- .ssoadmin$service(config) request <- new_request(svc, op, input, output) response <- send_request(request) return(response) } .ssoadmin$operations$delete_instance_access_control_attribute_configuration <- ssoadmin_delete_instance_access_control_attribute_configuration ssoadmin_delete_permission_set <- function(InstanceArn, PermissionSetArn) { op <- new_operation( name = "DeletePermissionSet", http_method = "POST", http_path = "/", paginator = list() ) input <- .ssoadmin$delete_permission_set_input(InstanceArn = InstanceArn, PermissionSetArn = PermissionSetArn) output <- .ssoadmin$delete_permission_set_output() config <- get_config() svc <- .ssoadmin$service(config) request <- new_request(svc, op, input, output) response <- send_request(request) return(response) } .ssoadmin$operations$delete_permission_set <- ssoadmin_delete_permission_set ssoadmin_describe_account_assignment_creation_status <- function(InstanceArn, AccountAssignmentCreationRequestId) { op <- new_operation( name = "DescribeAccountAssignmentCreationStatus", http_method = "POST", http_path = "/", paginator = list() ) input <- .ssoadmin$describe_account_assignment_creation_status_input(InstanceArn = InstanceArn, AccountAssignmentCreationRequestId = AccountAssignmentCreationRequestId) output <- .ssoadmin$describe_account_assignment_creation_status_output() config <- get_config() svc <- .ssoadmin$service(config) request <- new_request(svc, op, input, output) response <- send_request(request) return(response) } .ssoadmin$operations$describe_account_assignment_creation_status <- ssoadmin_describe_account_assignment_creation_status ssoadmin_describe_account_assignment_deletion_status <- function(InstanceArn, AccountAssignmentDeletionRequestId) { op <- new_operation( name = "DescribeAccountAssignmentDeletionStatus", http_method = "POST", http_path = "/", paginator = list() ) input <- .ssoadmin$describe_account_assignment_deletion_status_input(InstanceArn = InstanceArn, AccountAssignmentDeletionRequestId = AccountAssignmentDeletionRequestId) output <- .ssoadmin$describe_account_assignment_deletion_status_output() config <- get_config() svc <- .ssoadmin$service(config) request <- new_request(svc, op, input, output) response <- send_request(request) return(response) } .ssoadmin$operations$describe_account_assignment_deletion_status <- ssoadmin_describe_account_assignment_deletion_status ssoadmin_describe_instance_access_control_attribute_configuration <- function(InstanceArn) { op <- new_operation( name = "DescribeInstanceAccessControlAttributeConfiguration", http_method = "POST", http_path = "/", paginator = list() ) input <- .ssoadmin$describe_instance_access_control_attribute_configuration_input(InstanceArn = InstanceArn) output <- .ssoadmin$describe_instance_access_control_attribute_configuration_output() config <- get_config() svc <- .ssoadmin$service(config) request <- new_request(svc, op, input, output) response <- send_request(request) return(response) } .ssoadmin$operations$describe_instance_access_control_attribute_configuration <- ssoadmin_describe_instance_access_control_attribute_configuration ssoadmin_describe_permission_set <- function(InstanceArn, PermissionSetArn) { op <- new_operation( name = "DescribePermissionSet", http_method = "POST", http_path = "/", paginator = list() ) input <- .ssoadmin$describe_permission_set_input(InstanceArn = InstanceArn, PermissionSetArn = PermissionSetArn) output <- .ssoadmin$describe_permission_set_output() config <- get_config() svc <- .ssoadmin$service(config) request <- new_request(svc, op, input, output) response <- send_request(request) return(response) } .ssoadmin$operations$describe_permission_set <- ssoadmin_describe_permission_set ssoadmin_describe_permission_set_provisioning_status <- function(InstanceArn, ProvisionPermissionSetRequestId) { op <- new_operation( name = "DescribePermissionSetProvisioningStatus", http_method = "POST", http_path = "/", paginator = list() ) input <- .ssoadmin$describe_permission_set_provisioning_status_input(InstanceArn = InstanceArn, ProvisionPermissionSetRequestId = ProvisionPermissionSetRequestId) output <- .ssoadmin$describe_permission_set_provisioning_status_output() config <- get_config() svc <- .ssoadmin$service(config) request <- new_request(svc, op, input, output) response <- send_request(request) return(response) } .ssoadmin$operations$describe_permission_set_provisioning_status <- ssoadmin_describe_permission_set_provisioning_status ssoadmin_detach_managed_policy_from_permission_set <- function(InstanceArn, PermissionSetArn, ManagedPolicyArn) { op <- new_operation( name = "DetachManagedPolicyFromPermissionSet", http_method = "POST", http_path = "/", paginator = list() ) input <- .ssoadmin$detach_managed_policy_from_permission_set_input(InstanceArn = InstanceArn, PermissionSetArn = PermissionSetArn, ManagedPolicyArn = ManagedPolicyArn) output <- .ssoadmin$detach_managed_policy_from_permission_set_output() config <- get_config() svc <- .ssoadmin$service(config) request <- new_request(svc, op, input, output) response <- send_request(request) return(response) } .ssoadmin$operations$detach_managed_policy_from_permission_set <- ssoadmin_detach_managed_policy_from_permission_set ssoadmin_get_inline_policy_for_permission_set <- function(InstanceArn, PermissionSetArn) { op <- new_operation( name = "GetInlinePolicyForPermissionSet", http_method = "POST", http_path = "/", paginator = list() ) input <- .ssoadmin$get_inline_policy_for_permission_set_input(InstanceArn = InstanceArn, PermissionSetArn = PermissionSetArn) output <- .ssoadmin$get_inline_policy_for_permission_set_output() config <- get_config() svc <- .ssoadmin$service(config) request <- new_request(svc, op, input, output) response <- send_request(request) return(response) } .ssoadmin$operations$get_inline_policy_for_permission_set <- ssoadmin_get_inline_policy_for_permission_set ssoadmin_list_account_assignment_creation_status <- function(InstanceArn, MaxResults = NULL, NextToken = NULL, Filter = NULL) { op <- new_operation( name = "ListAccountAssignmentCreationStatus", http_method = "POST", http_path = "/", paginator = list() ) input <- .ssoadmin$list_account_assignment_creation_status_input(InstanceArn = InstanceArn, MaxResults = MaxResults, NextToken = NextToken, Filter = Filter) output <- .ssoadmin$list_account_assignment_creation_status_output() config <- get_config() svc <- .ssoadmin$service(config) request <- new_request(svc, op, input, output) response <- send_request(request) return(response) } .ssoadmin$operations$list_account_assignment_creation_status <- ssoadmin_list_account_assignment_creation_status ssoadmin_list_account_assignment_deletion_status <- function(InstanceArn, MaxResults = NULL, NextToken = NULL, Filter = NULL) { op <- new_operation( name = "ListAccountAssignmentDeletionStatus", http_method = "POST", http_path = "/", paginator = list() ) input <- .ssoadmin$list_account_assignment_deletion_status_input(InstanceArn = InstanceArn, MaxResults = MaxResults, NextToken = NextToken, Filter = Filter) output <- .ssoadmin$list_account_assignment_deletion_status_output() config <- get_config() svc <- .ssoadmin$service(config) request <- new_request(svc, op, input, output) response <- send_request(request) return(response) } .ssoadmin$operations$list_account_assignment_deletion_status <- ssoadmin_list_account_assignment_deletion_status ssoadmin_list_account_assignments <- function(InstanceArn, AccountId, PermissionSetArn, MaxResults = NULL, NextToken = NULL) { op <- new_operation( name = "ListAccountAssignments", http_method = "POST", http_path = "/", paginator = list() ) input <- .ssoadmin$list_account_assignments_input(InstanceArn = InstanceArn, AccountId = AccountId, PermissionSetArn = PermissionSetArn, MaxResults = MaxResults, NextToken = NextToken) output <- .ssoadmin$list_account_assignments_output() config <- get_config() svc <- .ssoadmin$service(config) request <- new_request(svc, op, input, output) response <- send_request(request) return(response) } .ssoadmin$operations$list_account_assignments <- ssoadmin_list_account_assignments ssoadmin_list_accounts_for_provisioned_permission_set <- function(InstanceArn, PermissionSetArn, ProvisioningStatus = NULL, MaxResults = NULL, NextToken = NULL) { op <- new_operation( name = "ListAccountsForProvisionedPermissionSet", http_method = "POST", http_path = "/", paginator = list() ) input <- .ssoadmin$list_accounts_for_provisioned_permission_set_input(InstanceArn = InstanceArn, PermissionSetArn = PermissionSetArn, ProvisioningStatus = ProvisioningStatus, MaxResults = MaxResults, NextToken = NextToken) output <- .ssoadmin$list_accounts_for_provisioned_permission_set_output() config <- get_config() svc <- .ssoadmin$service(config) request <- new_request(svc, op, input, output) response <- send_request(request) return(response) } .ssoadmin$operations$list_accounts_for_provisioned_permission_set <- ssoadmin_list_accounts_for_provisioned_permission_set ssoadmin_list_instances <- function(MaxResults = NULL, NextToken = NULL) { op <- new_operation( name = "ListInstances", http_method = "POST", http_path = "/", paginator = list() ) input <- .ssoadmin$list_instances_input(MaxResults = MaxResults, NextToken = NextToken) output <- .ssoadmin$list_instances_output() config <- get_config() svc <- .ssoadmin$service(config) request <- new_request(svc, op, input, output) response <- send_request(request) return(response) } .ssoadmin$operations$list_instances <- ssoadmin_list_instances ssoadmin_list_managed_policies_in_permission_set <- function(InstanceArn, PermissionSetArn, MaxResults = NULL, NextToken = NULL) { op <- new_operation( name = "ListManagedPoliciesInPermissionSet", http_method = "POST", http_path = "/", paginator = list() ) input <- .ssoadmin$list_managed_policies_in_permission_set_input(InstanceArn = InstanceArn, PermissionSetArn = PermissionSetArn, MaxResults = MaxResults, NextToken = NextToken) output <- .ssoadmin$list_managed_policies_in_permission_set_output() config <- get_config() svc <- .ssoadmin$service(config) request <- new_request(svc, op, input, output) response <- send_request(request) return(response) } .ssoadmin$operations$list_managed_policies_in_permission_set <- ssoadmin_list_managed_policies_in_permission_set ssoadmin_list_permission_set_provisioning_status <- function(InstanceArn, MaxResults = NULL, NextToken = NULL, Filter = NULL) { op <- new_operation( name = "ListPermissionSetProvisioningStatus", http_method = "POST", http_path = "/", paginator = list() ) input <- .ssoadmin$list_permission_set_provisioning_status_input(InstanceArn = InstanceArn, MaxResults = MaxResults, NextToken = NextToken, Filter = Filter) output <- .ssoadmin$list_permission_set_provisioning_status_output() config <- get_config() svc <- .ssoadmin$service(config) request <- new_request(svc, op, input, output) response <- send_request(request) return(response) } .ssoadmin$operations$list_permission_set_provisioning_status <- ssoadmin_list_permission_set_provisioning_status ssoadmin_list_permission_sets <- function(InstanceArn, NextToken = NULL, MaxResults = NULL) { op <- new_operation( name = "ListPermissionSets", http_method = "POST", http_path = "/", paginator = list() ) input <- .ssoadmin$list_permission_sets_input(InstanceArn = InstanceArn, NextToken = NextToken, MaxResults = MaxResults) output <- .ssoadmin$list_permission_sets_output() config <- get_config() svc <- .ssoadmin$service(config) request <- new_request(svc, op, input, output) response <- send_request(request) return(response) } .ssoadmin$operations$list_permission_sets <- ssoadmin_list_permission_sets ssoadmin_list_permission_sets_provisioned_to_account <- function(InstanceArn, AccountId, ProvisioningStatus = NULL, MaxResults = NULL, NextToken = NULL) { op <- new_operation( name = "ListPermissionSetsProvisionedToAccount", http_method = "POST", http_path = "/", paginator = list() ) input <- .ssoadmin$list_permission_sets_provisioned_to_account_input(InstanceArn = InstanceArn, AccountId = AccountId, ProvisioningStatus = ProvisioningStatus, MaxResults = MaxResults, NextToken = NextToken) output <- .ssoadmin$list_permission_sets_provisioned_to_account_output() config <- get_config() svc <- .ssoadmin$service(config) request <- new_request(svc, op, input, output) response <- send_request(request) return(response) } .ssoadmin$operations$list_permission_sets_provisioned_to_account <- ssoadmin_list_permission_sets_provisioned_to_account ssoadmin_list_tags_for_resource <- function(InstanceArn, ResourceArn, NextToken = NULL) { op <- new_operation( name = "ListTagsForResource", http_method = "POST", http_path = "/", paginator = list() ) input <- .ssoadmin$list_tags_for_resource_input(InstanceArn = InstanceArn, ResourceArn = ResourceArn, NextToken = NextToken) output <- .ssoadmin$list_tags_for_resource_output() config <- get_config() svc <- .ssoadmin$service(config) request <- new_request(svc, op, input, output) response <- send_request(request) return(response) } .ssoadmin$operations$list_tags_for_resource <- ssoadmin_list_tags_for_resource ssoadmin_provision_permission_set <- function(InstanceArn, PermissionSetArn, TargetId = NULL, TargetType) { op <- new_operation( name = "ProvisionPermissionSet", http_method = "POST", http_path = "/", paginator = list() ) input <- .ssoadmin$provision_permission_set_input(InstanceArn = InstanceArn, PermissionSetArn = PermissionSetArn, TargetId = TargetId, TargetType = TargetType) output <- .ssoadmin$provision_permission_set_output() config <- get_config() svc <- .ssoadmin$service(config) request <- new_request(svc, op, input, output) response <- send_request(request) return(response) } .ssoadmin$operations$provision_permission_set <- ssoadmin_provision_permission_set ssoadmin_put_inline_policy_to_permission_set <- function(InstanceArn, PermissionSetArn, InlinePolicy) { op <- new_operation( name = "PutInlinePolicyToPermissionSet", http_method = "POST", http_path = "/", paginator = list() ) input <- .ssoadmin$put_inline_policy_to_permission_set_input(InstanceArn = InstanceArn, PermissionSetArn = PermissionSetArn, InlinePolicy = InlinePolicy) output <- .ssoadmin$put_inline_policy_to_permission_set_output() config <- get_config() svc <- .ssoadmin$service(config) request <- new_request(svc, op, input, output) response <- send_request(request) return(response) } .ssoadmin$operations$put_inline_policy_to_permission_set <- ssoadmin_put_inline_policy_to_permission_set ssoadmin_tag_resource <- function(InstanceArn, ResourceArn, Tags) { op <- new_operation( name = "TagResource", http_method = "POST", http_path = "/", paginator = list() ) input <- .ssoadmin$tag_resource_input(InstanceArn = InstanceArn, ResourceArn = ResourceArn, Tags = Tags) output <- .ssoadmin$tag_resource_output() config <- get_config() svc <- .ssoadmin$service(config) request <- new_request(svc, op, input, output) response <- send_request(request) return(response) } .ssoadmin$operations$tag_resource <- ssoadmin_tag_resource ssoadmin_untag_resource <- function(InstanceArn, ResourceArn, TagKeys) { op <- new_operation( name = "UntagResource", http_method = "POST", http_path = "/", paginator = list() ) input <- .ssoadmin$untag_resource_input(InstanceArn = InstanceArn, ResourceArn = ResourceArn, TagKeys = TagKeys) output <- .ssoadmin$untag_resource_output() config <- get_config() svc <- .ssoadmin$service(config) request <- new_request(svc, op, input, output) response <- send_request(request) return(response) } .ssoadmin$operations$untag_resource <- ssoadmin_untag_resource ssoadmin_update_instance_access_control_attribute_configuration <- function(InstanceArn, InstanceAccessControlAttributeConfiguration) { op <- new_operation( name = "UpdateInstanceAccessControlAttributeConfiguration", http_method = "POST", http_path = "/", paginator = list() ) input <- .ssoadmin$update_instance_access_control_attribute_configuration_input(InstanceArn = InstanceArn, InstanceAccessControlAttributeConfiguration = InstanceAccessControlAttributeConfiguration) output <- .ssoadmin$update_instance_access_control_attribute_configuration_output() config <- get_config() svc <- .ssoadmin$service(config) request <- new_request(svc, op, input, output) response <- send_request(request) return(response) } .ssoadmin$operations$update_instance_access_control_attribute_configuration <- ssoadmin_update_instance_access_control_attribute_configuration ssoadmin_update_permission_set <- function(InstanceArn, PermissionSetArn, Description = NULL, SessionDuration = NULL, RelayState = NULL) { op <- new_operation( name = "UpdatePermissionSet", http_method = "POST", http_path = "/", paginator = list() ) input <- .ssoadmin$update_permission_set_input(InstanceArn = InstanceArn, PermissionSetArn = PermissionSetArn, Description = Description, SessionDuration = SessionDuration, RelayState = RelayState) output <- .ssoadmin$update_permission_set_output() config <- get_config() svc <- .ssoadmin$service(config) request <- new_request(svc, op, input, output) response <- send_request(request) return(response) } .ssoadmin$operations$update_permission_set <- ssoadmin_update_permission_set
takefeaturecolumns<-function(sam,feat){ featuretrain = subset(sam, select=c('classification')) feat<-feat[feat!='classification'] for (i in 1:(length(feat))){ row=feat[i] featuretrain[row]<-sam[row] } featuretrain } nextbestfeature<-function(model,trainingsam,testsam,featuresleft,ongoingfeatures){ training<-takefeaturecolumns(trainingsam,union(featuresleft,ongoingfeatures)) test<-takefeaturecolumns(testsam,union(featuresleft,ongoingfeatures)) maxaccuracy<-0 maxfeat<-utils::head(featuresleft,1) for (feat in featuresleft){ feat_trainingsample<-takefeaturecolumns(trainingsam,append(ongoingfeatures,feat)) feat_testsample<-takefeaturecolumns(testsam,append(ongoingfeatures,feat)) featresults<-model(feat_trainingsample,feat_testsample) feataccuracy<-featresults$training if (maxaccuracy<=feataccuracy){ maxaccuracy<-feataccuracy max_train<-featresults$training max_test<- featresults$test max_testsens<-featresults$testsensitivity max_testspec<-featresults$testspecificity max_trainsens<-featresults$trainsensitivity max_trainspec<-featresults$trainspecificity maxfeat<-feat } } return_list <- list("feature" = maxfeat, "training_accuracy" = max_train,"test_accuracy"= max_test,"trainsens"=max_trainsens,"testsens"=max_testsens,"trainspec"=max_trainspec,"testspec"=max_testspec) return(return_list) } beforeandafter<-function(vect,centre,places,threshold){ flag<-FALSE for (i in 1:places){ if (centre+i<length(vect) & (abs(vect[centre]-vect[centre-i])>threshold || abs(vect[centre]-vect[centre+i])>threshold)){ flag<-TRUE } else if (centre+i>=length(vect) & abs(vect[centre]-vect[centre-i])>threshold){ flag<-TRUE } } flag } forwardfeatureselection <-function(model=feamiR::svmlinear,training,test,featurelist,includePlot=FALSE){ ongoing<-c() featureaccuracy<-data.frame(matrix(nrow=length(featurelist), ncol = 0)) i<-1 while (i<=length(featurelist)){ b<-nextbestfeature(model,training,test,featurelist[!featurelist %in% ongoing],ongoing) ongoing<-c(ongoing,b$feature) featureaccuracy[i,'training_accuracy']<-b$training_accuracy featureaccuracy[i,'test_accuracy']<-b$test_accuracy featureaccuracy[i,'accuracy']<-b$training_accuracy featureaccuracy[i,'number of features']<-i featureaccuracy[i,'test_specificity']<-b$testspec featureaccuracy[i,'train_specificity']<-b$trainspec featureaccuracy[i,'test_sensitivity']<-b$testsens featureaccuracy[i,'train_sensitivity']<-b$trainsens i<-i+1 } x<-featureaccuracy$'number of features' y<-featureaccuracy$accuracy if (length(x)<=5){ loess30 = suppressWarnings(stats::loess(y ~ x, degree = 1, span = 0.5)) } else{ loess30<-suppressWarnings(stats::loess(y ~ x,degree=1,span=0.2))} y1 <- stats::predict(loess30,newdata=x,se=FALSE) flag<-TRUE i<-3 numfeat<-length(x) while (i<=length(x) & flag==TRUE){ if (length(x)<20 & i>3){ flag<-beforeandafter(y1,i,3,0.01) } else { if (i>5){ flag<-beforeandafter(y1,i,5,0.01) } } if (!flag){numfeat<-x[i]} i<-i+1 } y2_<-featureaccuracy$test_accuracy loess30_2<-suppressWarnings(stats::loess(y2_ ~ x,degree=1,span=0.2)) y2 <- stats::predict(loess30_2,newdata=x,se=FALSE) y4_<-featureaccuracy$training_accuracy loess30_4<-suppressWarnings(stats::loess(y4_ ~ x,degree=1,span=0.2)) y4 <- stats::predict(loess30_4,newdata=x,se=FALSE) if (includePlot == TRUE){ graphics::plot(utils::head(x,numfeat),utils::head(y,numfeat),col='red',main='Number of Features Against Accuracy up to Plateau',xlab='Number of features',ylab='Accuracy',ylim=c(0:1),type='b') + graphics::text(utils::head(x,numfeat), utils::head(y1,numfeat), utils::head(ongoing,numfeat), cex=0.6, pos=4,adj=0.5, col="red",srt=90) graphics::points(utils::head(x,numfeat),utils::head(y2_,numfeat),col='green') graphics::lines(utils::head(x,numfeat),utils::head(y1,numfeat),col='red') graphics::lines(utils::head(x,numfeat),utils::head(y2,numfeat),col='green')} return_list <- list("feature_list" = utils::head(ongoing,numfeat), "accuracy" = y1[numfeat],"testacc"=featureaccuracy$test_accuracy[numfeat],"trainacc"=featureaccuracy$training_accuracy[numfeat],"trainsens"=featureaccuracy$train_sensitivity[numfeat],"trainspec"=featureaccuracy$train_specificity[numfeat],"testsens"=featureaccuracy$test_sensitivity[numfeat],"testspec"=featureaccuracy$test_specificity[numfeat]) return(return_list) }
checkDir <- function(dir, errors = NULL) { if (!dir.exists(dir)) { errors <- c(errors, " } else { if (length(dir) > 1) { errors <- c(errors, " } } return(errors) } checkReads <- function(reads, errors = NULL) { if (!is.data.frame(reads)) { errors <- c(errors, paste0(" } if (dim(reads)[2] > 2) { errors <- c(errors, paste0(" } else { if (dim(reads)[2] == 2) { if (sum(names(reads) == c("read_count", "barcode")) != 2) { errors <- c(errors, " } } } return(errors) } checkBackbone <- function(backbone, errors = NULL) { if (backbone != "not defined") { if (backbone != "none") { if (!is.character(backbone)) { errors <- c(errors, paste0(" } if (length(backbone) > 1) { errors <- c(errors, " } else { elements <- strsplit(backbone, split = "") %>% unlist %>% table %>% as.data.frame(stringsAsFactors = TRUE) IUPAC_nucCode <- c("A", "C", "G", "T", "U", "R", "Y", "S", "W", "K", "M", "B", "D", "H", "V", "N", ".", "-") if (sum(!as.character(elements[, 1]) %in% IUPAC_nucCode) != 0) { errors <- c(errors, " } } } } return(errors) } checkLabel <- function(label, errors = NULL) { if (length(label) != 1) { errors <- c(errors, " } if (!is.character(label)) { errors <- c(errors, paste0(" } return(errors) } checkBarcodeData <- function(object) { errors <- character() errors <- checkReads(object@reads, errors) errors <- checkBackbone(object@BC_backbone, errors) errors <- checkDir(object@results_dir, errors) errors <- checkLabel(object@label, errors) if (length(errors) == 0) TRUE else errors } BCdat <- methods::setClass("BCdat", slots = list( reads = "data.frame", results_dir = "character", label = "character", BC_backbone = "character" ), prototype = list( reads = data.frame(read_count = NA_integer_, barcode = NA_character_), results_dir = NA_character_, label = NA_character_, BC_backbone = NA_character_ ), validity = checkBarcodeData ) setMethod("show", signature = c("BCdat"), definition = function(object){ len <- 45 cat(" class: BCdat\n\n") cat(" number of barcode sequences:", dim(object@reads)[1], "\n") if (sum(dim(object@reads)) > 1) { cat(" read count distribution: min", min(object@reads$read_count), " mean", round(mean(object@reads$read_count), digits = 2), " median", stats::median(object@reads$read_count), " max", max(object@reads$read_count), "\n") l <- sort(unique(nchar(as.character(object@reads$barcode)))) if (length(l) == 1) { cat(" barcode sequence length:", l[1], "\n") } if (length(l) == 2) { cat(" barcode sequence lengths: ", l[1], ", ", l[2], "\n") } if (length(l) == 3) { cat(" barcode sequence lengths: ", l[1], ", ", l[2], ", ", l[3], "\n") } if (length(l) > 3) { cat(" barcode sequence lengths: ", l[1], ", ", l[2], ", ", l[3], ", ...", l[length(l)], "\n") } cat("\n") cat(" barcode read counts:\n") if (dim(object@reads)[1] > 10) { if (sum(l > (len + 3)) > 0) { seqs <- lapply(as.character(object@reads[1:10, 2]), function(x) { ind <- x %>% nchar %>% -len tmp_seq <- (strsplit(x, split = "") %>% unlist)[c(1:round(len/2), (round(len/2) + ind):nchar(x))] paste0(paste0(tmp_seq[1:round(len/2)], collapse = ""), "...", paste0(tmp_seq[(round(len/2)+1):length(tmp_seq)], collapse = ""), collapse = "") }) %>% unlist print(data.frame(read_count = object@reads[1:10, 1], barcode = seqs, stringsAsFactors = TRUE), row.names = FALSE) } else { print(object@reads[1:10, ], row.names = FALSE) } cat(" ...") } else { if (sum(l > (len + 3)) > 0) { seqs <- lapply(as.character(object@reads[, 2]), function(x) { ind <- x %>% nchar %>% -len tmp_seq <- (strsplit(x, split = "") %>% unlist)[c(1:round(len/2), (round(len/2) + ind):nchar(x))] paste0(paste0(tmp_seq[1:round(len/2)], collapse = ""), "...", paste0(tmp_seq[(round(len/2)+1):length(tmp_seq)], collapse = ""), collapse = "") }) %>% unlist print(data.frame(read_count = object@reads[, 1], barcode = seqs, stringsAsFactors = TRUE), row.names = FALSE) } else { print(object@reads[, ], row.names = FALSE) } } } cat("\n") cat(" results dir: \n") cat(" ", object@results_dir, "\n") cat(" barcode backbone: \n") cat(" ", object@BC_backbone, "\n") cat(" label: \n") cat(" ", object@label, "\n") } )
data_simu <- function(n,N,eta_star,q) { sigma_u=1 P=runif(N,0.1,0.5) W=matrix(0,n,N) for(j in 1:N) { W[,j]=rbinom(n,2,P[j])} nb_comp_non_zero=q*N sigma_e=sqrt(q*N*sigma_u^2*(1-eta_star)/eta_star) b=sample(1:N,nb_comp_non_zero) a1=sort(b) u=rnorm(nb_comp_non_zero,0,sigma_u) e=rnorm(n,0,sigma_e) U=matrix(0,N) U[a1]=u Z=scale(W,center=TRUE,scale=TRUE) Y=Z%*%U + e list(W=W,Y=Y) }
transitiveweights <- function(m,ties.f=pmin,combine.f=max,compare.f=min) sum(unlist(sapply(1:nrow(m),function(i) sapply(1:nrow(m),function(j) if(j==i) 0 else compare.f(m[i,j],combine.f(ties.f(m[i,-c(j,i)], m[-c(i,j),j]))))))) cyclicalweights <- function(m,ties.f=pmin,combine.f=max,compare.f=min) sum(unlist(sapply(1:nrow(m),function(i) sapply(1:nrow(m),function(j) if(j==i) 0 else compare.f(m[j,i],combine.f(ties.f(m[i,-c(j,i)], m[-c(i,j),j]))))))) pgeomean <- function(x,y) sqrt(x*y) summary.call <- function(y) summary(y ~ transitiveweights("min","max","min") + transitiveweights("min","sum","min") + transitiveweights("geomean","sum","geomean") + cyclicalweights("min","max","min") + cyclicalweights("min","sum","min") + cyclicalweights("geomean","sum","geomean"), response="w") simulate.call <- function(y) simulate(y ~ transitiveweights("min","max","min") + transitiveweights("min","sum","min") + transitiveweights("geomean","sum","geomean") + cyclicalweights("min","max","min") + cyclicalweights("min","sum","min") + cyclicalweights("geomean","sum","geomean"), coef=rep(0,6),reference=~DiscUnif(0,4),response="w",control=control.simulate(MCMC.burnin=0,MCMC.interval=100),nsim=100,output="ergm_state") test_that("valued triadic effects in undirected networks", { y <- network.initialize(20, dir=FALSE) y %ergmlhs% "response" <- "w" y <- simulate(y~sum,coef=0,reference=~DiscUnif(0,4),control=control.simulate(MCMC.burnin=1000),nsim=1) y.summ <- summary.call(y) y.m <- as.matrix(y, a="w") expect_equivalent(y.summ[1], transitiveweights(y.m, pmin, max, min)/2) expect_equivalent(y.summ[2], transitiveweights(y.m, pmin, sum, min)/2) expect_equivalent(y.summ[3], transitiveweights(y.m, pgeomean, sum, pgeomean)/2) expect_equivalent(y.summ[4], cyclicalweights(y.m, pmin, max, min)/2) expect_equivalent(y.summ[5], cyclicalweights(y.m, pmin, sum, min)/2) expect_equivalent(y.summ[6], cyclicalweights(y.m, pgeomean, sum, pgeomean)/2) y.sim <- simulate.call(y) s_results <- t(sapply(y.sim, summary.call)) d_results <- attr(y.sim,"stats") expect_equivalent(s_results,as.matrix(d_results)) }) test_that("valued triadic effects in directed networks", { y <- network.initialize(20, dir=TRUE) y <- simulate(y~sum,coef=0,reference=~DiscUnif(0,4),response="w",control=control.simulate(MCMC.burnin=1000),nsim=1) y.summ <- summary.call(y) y.m <- as.matrix(y, a="w") expect_equivalent(y.summ[1], transitiveweights(y.m, pmin, max, min)) expect_equivalent(y.summ[2], transitiveweights(y.m, pmin, sum, min)) expect_equivalent(y.summ[3], transitiveweights(y.m, pgeomean, sum, pgeomean)) expect_equivalent(y.summ[4], cyclicalweights(y.m, pmin, max, min)) expect_equivalent(y.summ[5], cyclicalweights(y.m, pmin, sum, min)) expect_equivalent(y.summ[6], cyclicalweights(y.m, pgeomean, sum, pgeomean)) y.sim <- simulate.call(y) s_results <- t(sapply(y.sim, summary.call)) d_results <- attr(y.sim,"stats") expect_equivalent(s_results,as.matrix(d_results)) })
includeChapter <- 1:7 %in% (1:7) includeApp <- 1:4 %in% 1:3 require(MASS) require(Matrix) require(fastR2) require(mosaic) theme_set(theme_bw()) require(knitr) require(xtable) options(xtable.floating = FALSE) opts_knit$set(width=74) opts_knit$set(self.contained=FALSE) opts_chunk$set( digits = 3, dev="pdf", dev.args=list(colormodel="cmyk"), comment=" prompt=FALSE, size="small", cache=TRUE, cache.path='cache/c-', cache.lazy=FALSE, tidy=FALSE, fig.width=8*.45, fig.height=6*.45, fig.show="hold", fig.align="center", out.width=".47\\textwidth", boxedLabel=TRUE ) opts_template$set(fig3 = list(fig.height = 7*.40, fig.width = 8*.40, out.width=".31\\textwidth")) opts_template$set(figtall = list(fig.height = 8*.45, fig.width = 8*.45, out.width=".47\\textwidth")) opts_template$set(fig1 = list(fig.height = 3*0.9, fig.width = 8 * 0.9, out.width=".95\\textwidth")) opts_template$set(figbig = list(fig.height = 9*0.9, fig.width = 12*0.9, out.width=".95\\textwidth")) knit_hooks$set(seed = function(before, options, envir) { if (before) set.seed(options$seed) }) knit_hooks$set(digits = function(before, options, envir) { if (before) { options(digits = options$digits) } else { options(digits = 3) } }) knit_hooks$set( document = function(x) { sub('\\usepackage[]{color}', '\\usepackage{xcolor}', x, fixed = TRUE) gsub( "\\definecolor{shadecolor}{rgb}{0.969, 0.969, 0.969}", "\\definecolor{shadecolor}{gray}{0.8}", x, fixed = TRUE) } ) knit_hooks$set(chunk = function (x, options) { if ( !is.null(options$boxedLabel) && options$boxedLabel && ! grepl("unnamed-chunk", options$label) && (is.null(options$echo) || options$echo) ) { labeling <- paste0( "\\endgraf\\nobreak\\null\\endgraf\\penalty-2\\kern-.5\\baselineskip", "\n\n", "\\hfill \\makebox[0pt][r]{\\fbox{\\tiny ", options$label, "}}", "\\endgraf", "\\kern-4.5ex\n\n") } else { labeling <- "" } ai = knitr:::output_asis(x, options) col = if (!ai) paste(knitr:::color_def(options$background), if (!knitr:::is_tikz_dev(options)) "\\color{fgcolor}", sep = "") k1 = paste(col, "\\begin{kframe}\n", sep = "") k2 = "\\end{kframe}" x = knitr:::.rm.empty.envir(paste(k1, labeling, x, k2, sep = "")) size = if (options$size == "normalsize") "" else sprintf("\\%s", options$size) if (!ai) x = sprintf("\\begin{knitrout}%s\n%s\n\\end{knitrout}", size, x) if (options$split) { name = knitr:::fig_path(".tex", options) if (!file.exists(dirname(name))) dir.create(dirname(name)) cat(x, file = name) sprintf("\\input{%s}", name) } else x } ) blackAndWhite = TRUE fastRlty = rep(1,20) fastRlty = c(1,2,5,6,1,2,5,6,1,2,5,6) trellis.par.set(theme=col.whitebg()) trellis.par.set(theme=col.fastR()) options(continue=" ") options(str = strOptions(strict.width = "wrap")) options(show.signif.stars=FALSE) options(digits=3)
makeAA <- function(pedigree) { A <- makeA(pedigree) AA <- A*A logDet <- determinant(AA, logarithm = TRUE)$modulus[1] AAinv <- solve(AA) AAinv@Dimnames <- list(as.character(pedigree[, 1]), NULL) listAAinv <- sm2list(AAinv, rownames=pedigree[,1], colnames=c("row", "column", "AAinverse")) return(list(AA = AA, logDet = logDet, AAinv = AAinv, listAAinv = listAAinv)) }
rec_pattern <- function(from, to, width = 5, other = NULL){ rec.pat <- c() rec.labels <- c() values <- seq(from, to + width, by = width) for (x in seq_len(length(values) - 1)) { rec.pat <- paste0(rec.pat, sprintf("%i:%i=%i", values[x], values[x + 1] - 1, x), sep = ";") rec.labels <- c(rec.labels, sprintf("%i-%i", values[x], values[x + 1] - 1)) } if (!is.null(other) && !sjmisc::is_empty(other)) rec.pat <- paste0(rec.pat, "else=", other, sep = "") names(rec.labels) <- seq_len(length(values) - 1) list(pattern = rec.pat, labels = rec.labels) }
svmfs <- function (x, ...) UseMethod ("svmfs") `svmfs.default` <- function(x,y, fs.method = c("scad", "1norm", "scad+L2", "DrHSVM"), grid.search=c("interval","discrete"), lambda1.set=NULL, lambda2.set=NULL, bounds=NULL, parms.coding= c("log2","none"), maxevals=500, inner.val.method = c("cv", "gacv"), cross.inner= 5, show= c("none", "final"), calc.class.weights=FALSE, class.weights=NULL, seed=123, maxIter=700, verbose=TRUE, ...){ print("grid search") print(grid.search) print("show") print(show) possible.fs<-c("1norm", "scad", "scad+L2", "DrHSVM") nn<-length(y) nlevels.class<- nlevels(as.factor(y)) levels.class <- levels(as.factor(y)) if (!all((levels(factor(y)) == c("-1","1"))) ) stop ("labels y should be -1 and 1.") if (fs.method == "1norm" & inner.val.method == "gacv" ) stop("gacv is not availible for 1norm SVM. Use k fold cv instead.") if (grid.search=="interval"){ if ((fs.method %in% c("scad", "1norm" )) & is.null(bounds)){ bounds=t(data.frame(log2lambda1=c(-10, 10))) colnames(bounds)<-c("lower", "upper") } if (fs.method %in% c("DrHSVM") & is.null(bounds)){ bounds=t(data.frame(log2lambda2=c(-10, 10))) colnames(bounds)<-c("lower", "upper") } if (fs.method %in% c("scad+L2") & is.null(bounds)){ bounds=t(data.frame(log2lambda1=c(-10, 10), log2lambda2=c(-10,10))) colnames(bounds)<-c("lower", "upper") } if (calc.class.weights){ class.weights = 100/ table(y) }else class.weights = NULL } possible.inner.val.method<-c("gacv", "cv") if (! (inner.val.method %in% possible.inner.val.method )) stop(paste("You have to use one of following (inner) validation methods:", paste(possible.inner.val.method, collapse=", "))) if (! (fs.method %in% possible.fs )) stop(paste("You have to use one of following fecture selection methods:", paste(possible.fs, collapse=", "))) print(paste("feature selection method is", fs.method)) if (!is.null(seed)) set.seed(seed) if (grid.search=="interval") { model<-.run.interval(x=x,y=y, fs.method=fs.method, bounds=bounds,parms.coding=parms.coding, class.weights=class.weights, maxevals=maxevals, seed=seed, maxIter=maxIter, show=show, inner.val.method=inner.val.method, cross.inner=cross.inner, verbose=verbose) } if (grid.search=="discrete") { model<-.run.discrete(x=x,y=y, fs.method=fs.method, lambda1.set=lambda1.set, lambda2.set=lambda2.set, parms.coding=parms.coding, class.weights=class.weights, maxevals=maxevals, seed=seed, maxIter=maxIter, show=show, inner.val.method=inner.val.method, cross.inner=cross.inner, verbose=verbose) } rv <- list(classes=as.factor(y), sample.names = names(y), class.method=paste("svm",fs.method ), grid.search=grid.search, seed = seed, model =model, lambda1.set=lambda1.set, lambda2.set=lambda2.set, bounds=bounds, inner.val.method = inner.val.method, cross.inner= cross.inner ) if (inner.val.method != "cv") rv$cross.inner =NULL class(rv) <- "penSVM" return(rv) }
vapoRwave_palette <- c( " ," ," ," ," ," ," ," ," ," ," ) NULL vapoRwave_pal <- function(){ scales::manual_pal(vapoRwave_palette) } scale_colour_vapoRwave <- function(...) { ggplot2::discrete_scale("colour", "vapoRwave", vapoRwave_pal(), ...) } scale_color_vapoRwave <- scale_colour_vapoRwave scale_fill_vapoRwave <- function(...) { ggplot2::discrete_scale('fill', 'vapoRwave', vapoRwave_pal(), ...) }
compute.fa2<-function(Y, X,verbose=F){ Xtemp <- X Ytemp <- Y if(length(Y)!=length(X)){stop("Input vectors are of different length !!!")} lengthNAX <- sum(is.na(X)) if(lengthNAX > 0){warning(paste("Vector of true values contains ", lengthNAX, " NA !!! NA excluded", sep = ""))} lengthNAY <- sum(is.na(Y)) if(lengthNAY > 0){warning(paste("Vector of imputed values contains ", lengthNAY, " NA !!! NA excluded", sep = ""))} Xtemp <- X[which(!is.na(X)&!is.na(Y))] Ytemp <- Y[which(!is.na(X)&!is.na(Y))] id0XY <- which(X==0&Y==0) Xtemp[id0XY] <- 1 Ytemp[id0XY] <- 1 ratio <- (Ytemp/Xtemp) fraction <- ratio[ratio>=0.5 & ratio<=2] FA2 <- length(fraction)/length(ratio) if (verbose){ if(FA2>0.8) {print(" Good model") }else{print("Important number of different points")} } out<-FA2 return(out) }
test_that("Coercion from other date classes into messydt works", { date <- as.Date("2010-10-10") POSIXct <- as.POSIXct("2010-10-20 CEST") POSIXlt <- as.POSIXlt("2010-10-15 CEST") character <- "2010-10-10" messy <- as_messydate("2010-10-10..2010-10-20") negative <- as_messydate("28 BC") expect_equal(as.Date(messy, min), date) expect_equal(as.POSIXct(messy, max), POSIXct) expect_equal(as.POSIXlt(messy, median), POSIXlt) expect_equal(as.Date(negative, min), as.Date("0028-01-01")) })
context("h2o") skip_on_cran() library(h2o) h2o.init() h2o.no_progress() test_that("H2OBinomialClassification: lime explanation only produces one entry per case and feature", { path <- system.file("extdata", "prostate.csv", package = "h2o") df_h2o <- h2o.importFile(path) df_h2o$CAPSULE <- h2o::as.factor(df_h2o$CAPSULE) df_h2o$RACE <- h2o::as.factor(df_h2o$RACE) df_h2o$DCAPS <- h2o::as.factor(df_h2o$DCAPS) df_h2o$DPROS <- h2o::as.factor(df_h2o$DPROS) df_h2o$ID <- NULL predictors <- c("AGE", "RACE", "VOL", "GLEASON") response <- "CAPSULE" model.rf <- h2o.randomForest(x = predictors, y = response, training_frame = df_h2o, ntrees = 50, stopping_rounds = 2) expect_s4_class(model.rf, "H2OBinomialModel") explainer <- lime(as.data.frame(df_h2o), model = model.rf) expect_s3_class(explainer, "data_frame_explainer") explanation <- lime::explain(as.data.frame(df_h2o[1,]), explainer, n_labels = 1, n_features = 1, kernel_width = 0.5) expect_equal(nrow(explanation), 1) }) test_that("H2OMultinomialClassification: lime explanation only produces one entry per case and feature", { path <- system.file("extdata", "iris.csv", package = "h2o") df_h2o <- h2o.importFile(path) df_h2o$C5 <- h2o::as.factor(df_h2o$C5) response <- "C5" predictors <- base::setdiff(names(df_h2o), response) model.rf <- h2o.randomForest(x = predictors, y = response, training_frame = df_h2o, ntrees = 50, stopping_rounds = 2) expect_s4_class(model.rf, "H2OMultinomialModel") explainer <- lime(as.data.frame(df_h2o), model = model.rf) expect_s3_class(explainer, "data_frame_explainer") explanation <- lime::explain(as.data.frame(df_h2o[1,]), explainer, n_labels = 1, n_features = 1, kernel_width = 0.5) expect_equal(nrow(explanation), 1) }) test_that("H2ORegression: lime explanation only produces one entry per case and feature", { path <- system.file("extdata", "australia.csv", package = "h2o") df_h2o <- h2o.importFile(path) response <- "premax" predictors <- base::setdiff(names(df_h2o), response) model.rf <- h2o.randomForest(x = predictors, y = response, training_frame = df_h2o, ntrees = 50, stopping_rounds = 2) expect_s4_class(model.rf, "H2ORegressionModel") explainer <- lime(as.data.frame(df_h2o), model = model.rf) expect_s3_class(explainer, "data_frame_explainer") explanation <- lime::explain(as.data.frame(df_h2o[1,]), explainer, n_features = 1, kernel_width = 0.5) expect_equal(nrow(explanation), 1) })
library(hamcrest) test.stringparams <- function() { import(org.renjin.invocation.StringParams) strParms <- StringParams$new() assertThat(strParms$concatString("Hello ", "World"), equalTo("Hello World")) } test.charseq <- function() { import(org.renjin.invocation.StringParams) strParms <- StringParams$new() assertThat(strParms$concatCharSeq("Hello ", "World2"), equalTo("Hello World2")) }
tr <- function(x) { if (dim(x)[1] != dim(x)[2] ) { return(NA) } else { return(sum(diag(x))) } invisible() }
ConstModVar <- R6::R6Class( classname = "ConstModVar", lock_class = TRUE, inherit = ModVar, private = list( ), public = list( initialize = function(description, units, const) { D <- DiracDistribution$new(const) super$initialize(description, units, D, k=as.integer(1)) return(invisible(self)) }, is_probabilistic = function() { return(FALSE) } ) )
out_1 <- poped_optimize(poped.db,opt_a=1, bUseExchangeAlgorithm=1, EAStepSize=25,out_file = "") \dontrun{ out_2 <- poped_optimize(poped.db,opt_xt=1, bUseExchangeAlgorithm=1, EAStepSize=1) get_rse(out_2$fmf,out_2$poped.db) plot_model_prediction(out_2$poped.db) dsl <- downsizing_general_design(poped.db) output <- mfea(poped.db, model_switch=dsl$model_switch, ni=dsl$ni, xt=dsl$xt, x=dsl$x, a=dsl$a, bpopdescr=dsl$bpop, ddescr=dsl$d, maxxt=dsl$maxxt, minxt=dsl$minxt, maxa=dsl$maxa, mina=dsl$mina, fmf=0,dmf=0, EAStepSize=1, opt_xt=1) }
library(testthat) test_that("autotest", { autotest_sdistribution( sdist = Loglogistic, pars = list(shape = 2, scale = 3), traits = list( valueSupport = "continuous", variateForm = "univariate", type = PosReals$new(zero = TRUE) ), support = PosReals$new(zero = TRUE), symmetry = "asymmetric", mean = (3 * pi / 2) / sin(pi / 2), mode = 1.73205, median = actuar::qllogis(0.5, shape = 2, scale = 3), variance = NaN, skewness = NaN, exkur = NaN, pgf = NaN, pdf = actuar::dllogis(1:3, shape = 2, scale = 3), cdf = actuar::pllogis(1:3, shape = 2, scale = 3), quantile = actuar::qllogis(c(0.24, 0.42, 0.5), shape = 2, scale = 3), ) })
omercProj4string = function( lon, lat, angle, x=0,y=0, inverseAngle=0, scale=1, ellps='WGS84', units='m', datum='WGS84', crs=TRUE) { x = rep_len(x, length(angle)) y = rep_len(y, length(angle)) scale = rep_len(scale, length(angle)) lat = rep_len(lat, length(angle)) lon = rep_len(lon, length(angle)) whichZeros = (angle==0) which90 = abs(angle)==90 result = paste( "+proj=omerc", " +lat_0=", lat, " +lonc=", lon, " +alpha=", angle, " +k_0=", scale, " +x_0=", x, " +y_0=", y, " +gamma=", inverseAngle, " +ellps=", ellps, " +units=", units, ' +datum=', datum, sep="") if(any(whichZeros)) { result[whichZeros] = paste( "+proj=tmerc", " +lat_0=", lat[whichZeros] , " +lon_0=", lon[whichZeros] , " +k=", scale[whichZeros] , " +x_0=", x[whichZeros] , " +y_0=", y[whichZeros] , " +ellps=", ellps, " +units=", units, ' +datum=', datum, sep="") } if(crs) { result = lapply(result, CRS) } result } omerc = function( x, angle=0, post=c('none', 'north', 'wide','tall'), preserve=NULL ) { digits=3 angleOrig = angle post = post[1] if(is.numeric(post)){ inverseAngle = rep_len(post, length(angle)) post='none' } else { inverseAngle=rep(0, length(angle)) post=post[seq(1,len=length(post))] } scale = rep(1, length(angle)) objectiveResult = NULL southAngle = ( abs(angle)>90) & (abs(angle) < 270 ) angle[southAngle] = angle[southAngle] + 180 inverseAngle[southAngle] = inverseAngle[southAngle] + 180 angleC = exp(1i*2*pi*(angle/360)) angle = round(Arg(angleC)*360/(2*pi), digits) if(!is.numeric(x)){ theCentre = bbox(x) theCentre = theCentre[,'min'] + apply(theCentre, 1, diff)/2 } else { theCentre = x[1:2] if(!is.null(preserve)){ x = preserve } else { if(post %in% c('wide', 'tall')) post = 'none' } } theCentre = round(theCentre, digits) haveRgdal = requireNamespace('rgdal', quietly=TRUE) if(!haveRgdal) { rotatedCRS = omercProj4string( lon=theCentre[1], lat=theCentre[2], angle=angle, inverseAngle = inverseAngle) if(length(rotatedCRS)==1) rotatedCRS = rotatedCRS[[1]] return(rotatedCRS) } crs = crs(x) if(is.na(crs)){ crs = crsLL } if(is.character(crs)) crs = CRS(crs) if(!isLonLat(crs)) { theCentre = SpatialPoints( t(theCentre[1:2]), proj4string=crs ) theCentre = spTransform(theCentre, crsLL) theCentre = as.vector(theCentre@coords) } rotatedCRS = omercProj4string( lon=theCentre[1], lat=theCentre[2], angle=angle) theCentreSp = SpatialPoints(t(theCentre), proj4string=crsLL) newxy = simplify2array(lapply(rotatedCRS, function(qq){ drop(spTransform(theCentreSp, qq)@coords) })) newxy = round(newxy) rotatedCRS = omercProj4string( lon=theCentre[1], lat=theCentre[2], angle=angle, x=-newxy[1,], y=-newxy[2,]) if(!is.null(preserve)) { if(!isLonLat(crs(preserve))){ preserve = spTransform(preserve, crsLL) } distGS = spDists(preserve)*1000 theLower = lower.tri(distGS, diag=FALSE) distGS = distGS[theLower] distEu = unlist(lapply(rotatedCRS, function(crs){ mean( spDists( spTransform(preserve, crs) )[theLower]/distGS, na.rm=TRUE) } )) rotatedCRS = omercProj4string( lon=theCentre[1], lat=theCentre[2], angle=angle, x=-newxy[1,], y=-newxy[2,], scale=round(1/distEu, digits)) distEuSsq = unlist( lapply(rotatedCRS, function(crs){ sqrt(mean( (spDists(spTransform(preserve, crs) )[theLower]/distGS -1)^2, na.rm=TRUE)) } ) ) minDist= which.min(distEuSsq) objectiveResult=list( x = angle, y = distEuSsq ) angle=angle[minDist] scale=round(1/distEu[minDist], digits) inverseAngle = inverseAngle[minDist] newxy = newxy[,minDist,drop=FALSE] } if(!is.numeric(x) & (length(rotatedCRS)>1) & is.null(preserve)){ if(post=='tall') post = 'none' if(post=='wide'){ post='none' inverseAngle = rep(90, length(angle)) } xTrans = mapply( function(CRSobj) { abs(prod(apply(bbox( spTransform(x, CRSobj) ), 1, diff) )) }, CRSobj=rotatedCRS ) objectiveResult=list( x = angle, y = xTrans) minX = which.min(xTrans) angle = angle[minX] scale = scale[minX] inverseAngle = inverseAngle[minX] newxy = newxy[,minX,drop=FALSE] } rotatedCRS = omercProj4string( lon=theCentre[1], lat=theCentre[2], angle=angle, scale=scale, x=-newxy[1,], y=-newxy[2,], inverseAngle=inverseAngle ) if(post=='none') { if(length(rotatedCRS)==1) { rotatedCRS = rotatedCRS[[1]] } if(!is.null(objectiveResult)) attributes(rotatedCRS)$obj = objectiveResult return(rotatedCRS) } if(post=='north') { rotatedCRS = omercProj4string( lon=theCentre[1], lat=theCentre[2], angle=angle, scale=scale, x=-newxy[1,], y=-newxy[2,] ) pointNorth = SpatialPoints( rbind( theCentre, theCentre + c(0, 0.1) ), proj4string=crsLL ) adjust = mapply( function(crs){ pn2 = spTransform( pointNorth, crs ) pn2@coords = round(pn2@coords) pnDist =apply(pn2@coords,2,diff) -atan(pnDist[1]/pnDist[2])*360/(2*pi) }, crs=rotatedCRS ) inverseAngle = round(adjust, digits) } if(post=='wide' | post=='tall' & (length(angle)==1)) { Sgamma = seq(-90,90,) rotatedCRS = omercProj4string( lon=theCentre[1], lat=theCentre[2], angle=angle, scale=scale, x=-newxy[1,], y=-newxy[2,], inverseAngle = Sgamma ) bbarea = mapply( function(CRSobj) { thebb = bbox( spTransform(x, CRSobj) ) thebb = apply(thebb, 1, diff) c(area= abs(prod(thebb)), ratio = as.numeric(abs(thebb[2]/thebb[1])) ) }, CRSobj=rotatedCRS ) bbarea = rbind(bbarea, inverseAngle=Sgamma) if(post=='wide'){ bbarea = bbarea[,bbarea['ratio',]<=1] } else { bbarea = bbarea[,bbarea['ratio',]>=1] } inverseAngle = bbarea[ 'inverseAngle', which.min(bbarea['area',])] } rotatedCRS = omercProj4string( lon=theCentre[1], lat=theCentre[2], angle=angle, inverseAngle=inverseAngle, x=-newxy[1,], y=-newxy[2,], scale=scale) if(length(rotatedCRS)==1) { rotatedCRS = rotatedCRS[[1]] } if(!is.null(objectiveResult)) attributes(rotatedCRS)$obj = objectiveResult rotatedCRS }
QLMDp <- function( from = .05, to = .95, length.out = 15L, equidistant = c('prob', 'quantile'), extra = c(.005, .01, .02, .03, .97, .98, .99, .995), obs ) { if (!is.double(from) || length(from) != 1L || is.na(from) || from <= 0) stop('`from` must be numeric >0') if (!is.double(to) || length(to) != 1L || is.na(to) || to >= 1) stop('`to` must be numeric <1') if (!is.integer(length.out) || length(length.out) != 1L || anyNA(length.out) || length.out < 0L) stop('N must be len-1 non-negative integer') if (!is.double(extra) || anyNA(extra) || any(extra <= 0, extra >= 1)) stop('`extra` must be numeric between (0, 1)') p <- if (!length.out) extra else { c(extra, switch(match.arg(equidistant), prob = { seq.int(from = from, to = to, length.out = length.out) }, quantile = { if (missing(obs)) stop('Must have `obs`') qlim <- quantile(obs, probs = c(from, to)) ecdf(obs)(seq.int(from = qlim[1L], to = qlim[2L], length.out = length.out)) })) } if (!length(p)) stop('len-0 p, do not allow') sort.int(unique_allequal(p)) }
CombIncrease_sim = function(ndose_a1, ndose_a2, p_tox, target, target_min, target_max, prior_tox_a1, prior_tox_a2, n_cohort, cohort, tite=FALSE, time_full=0, poisson_rate=0, nsim, c_e=0.85, c_d=0.45, c_stop=0.95, c_t=0.5, c_over=0.25, cmin_overunder=2, cmin_mtd=3, cmin_recom=1, startup=1, alloc_rule=1, early_stop=1, nburn=2000, niter=5000, seed=14061991){ c_d = 1-c_d dim_ptox = dim(p_tox) if(dim_ptox[1] != ndose_a1 || dim_ptox[2] != ndose_a2){ stop("Wrong dimension of the matrix for true toxicity probabilities.") } n_prior_tox_a1 = length(prior_tox_a1) if(n_prior_tox_a1 != ndose_a1){ stop("The entered vector of initial guessed toxicity probabities for agent 1 is of wrong length.") } n_prior_tox_a2 = length(prior_tox_a2) if(n_prior_tox_a2 != ndose_a2){ stop("The entered vector of initial guessed toxicity probabities for agent 2 is of wrong length.") } ndose_a1 = as.integer(ndose_a1)[1] ndose_a2 = as.integer(ndose_a2)[1] target = as.double(target)[1] target_min = as.double(target_min)[1] target_max = as.double(target_max)[1] prior_tox_a1 = as.double(prior_tox_a1) prior_tox_a2 = as.double(prior_tox_a2) n_cohort = as.integer(n_cohort)[1] cohort = as.integer(cohort)[1] tite = as.logical(tite)[1] time_full = as.double(time_full)[1] poisson_rate = as.double(poisson_rate)[1] nsim = as.integer(nsim)[1] c_e = as.double(c_e)[1] c_d = as.double(c_d)[1] c_stop = as.double(c_stop)[1] c_t = as.double(c_t)[1] c_over = as.double(c_over)[1] cmin_overunder = as.integer(cmin_overunder)[1] cmin_mtd = as.integer(cmin_mtd)[1] cmin_recom = as.integer(cmin_recom)[1] startup = as.integer(startup)[1] alloc_rule = as.integer(alloc_rule)[1] early_stop = as.integer(early_stop)[1] seed = as.integer(seed)[1] nburn = as.integer(nburn)[1] niter = as.integer(niter)[1] if(startup < 0 || startup > 3){ stop("Unknown start-up id.") } if(alloc_rule != 1 && alloc_rule != 2 && alloc_rule != 3){ stop("Unknown allocation rule id.") } if(early_stop != 1 && early_stop != 2 && early_stop != 3){ stop("Unknown early stopping rule id.") } if(target < 0 || target > 1){ stop("Targeted toxicity probability is not comprised between 0 and 1.") } if(target_max < 0 || target_max > 1){ stop("Maximum targeted toxicity probability is not comprised between 0 and 1.") } if(target_min < 0 || target_min > 1){ stop("Minimum targeted toxicity probability is not comprised between 0 and 1.") } if(n_cohort <= 0){ stop("Number of cohorts must be positive.") } if(cohort <= 0){ stop("Cohort size must be positive.") } if(time_full < 0){ stop("Full follow-up time must be positive.") } if(poisson_rate < 0){ stop("Parameter for Poisson process accrual must be positive.") } if(nsim <= 0){ stop("Number of simulations must be positive.") } if(c_e < 0 || c_e > 1 || c_d < 0 || c_d > 1 || c_stop < 0 || c_stop > 1 || c_t < 0 || c_t > 1 || c_over < 0 || c_over > 1){ stop("Probability thresholds are not comprised between 0 and 1.") } if(cmin_overunder < 0 || cmin_mtd < 0 || cmin_recom < 0){ stop("Minimum number of cohorts for stopping or recommendation rule must be positive.") } if(nburn <= 0 || niter <= 0){ stop("Number of iterations and burn-in for MCMC must be positive.") } for(a1 in 1:ndose_a1){ if(prior_tox_a1[a1] < 0 || prior_tox_a1[a1] > 1){ stop("At least one of the initial guessed toxicity probability for agent 1 is not comprised between 0 and 1.") } } for(a2 in 1:ndose_a2){ if(prior_tox_a2[a2] < 0 || prior_tox_a2[a2] > 1){ stop("At least one of the initial guessed toxicity probability for agent 2 is not comprised between 0 and 1.") } } for(a1 in 1:ndose_a1){ for(a2 in 1:ndose_a2){ if(p_tox[a1,a2] < 0 || p_tox[a1,a2] > 1){ stop("At least one of the true toxicity probability is not comprised between 0 and 1.") } } } p_tox_na = matrix(NA, nrow=ndose_a1+1, ncol=ndose_a2+1) p_tox_na[1:ndose_a1, 1:ndose_a2] = p_tox for(a1 in 1:ndose_a1){ for(a2 in 1:ndose_a2){ if(p_tox[a1,a2] > min(1,p_tox_na[a1+1,a2],p_tox_na[a1,a2+1],p_tox_na[a1+1,a2+1],na.rm=TRUE)){ stop("The partial ordering between true toxicity probabilities is not satisfied.") } } } p_tox = as.double(p_tox) inconc = as.double(numeric(1)) n_pat_dose = as.double(numeric(ndose_a1*ndose_a2)) rec_dose = as.double(numeric(ndose_a1*ndose_a2)) n_tox_dose = as.double(numeric(ndose_a1*ndose_a2)) early_conc = as.double(numeric(1)) conc_max = as.double(numeric(1)) tab_pat = as.double(numeric(nsim)) logistic = .C(C_logistic_sim, tite, ndose_a1, ndose_a2, time_full, poisson_rate, p_tox, target, target_max, target_min, prior_tox_a1, prior_tox_a2, n_cohort, cohort, nsim, c_e, c_d, c_stop, c_t, c_over, cmin_overunder, cmin_mtd, cmin_recom, seed, startup, alloc_rule, early_stop, nburn, niter, rec_dose=rec_dose, n_pat_dose=n_pat_dose, n_tox_dose=n_tox_dose, inconc=inconc, early_conc=early_conc, tab_pat=tab_pat) nsim = logistic$nsim inconc=logistic$inconc*100 early_conc=logistic$early_conc*100 conc_max=100-early_conc-inconc tab_pat=logistic$tab_pat rec_dose=logistic$rec_dose*100 n_pat_dose=logistic$n_pat_dose n_tox_dose=logistic$n_tox_dose p_tox= matrix(p_tox,nrow=ndose_a1) rec_dose=matrix(rec_dose,nrow=ndose_a1) n_pat_dose=matrix(n_pat_dose,nrow=ndose_a1) n_tox_dose=matrix(n_tox_dose,nrow=ndose_a1) p_tox_p = t(p_tox)[ndose_a2:1,] rec_dose_p = t(rec_dose)[ndose_a2:1,] n_pat_dose_p = t(n_pat_dose)[ndose_a2:1,] n_tox_dose_p = t(n_tox_dose)[ndose_a2:1,] dimnames(p_tox_p) = list("Agent 2" = ndose_a2:1, "Agent 1" = 1:ndose_a1) dimnames(rec_dose_p) = list("Agent 2 " = ndose_a2:1, "Agent 1" = 1:ndose_a1) dimnames(n_pat_dose_p) = list("Agent 2"=ndose_a2:1, "Agent 1" = 1:ndose_a1) dimnames(n_tox_dose_p) = list("Agent 2" = ndose_a2:1, "Agent 1" = 1:ndose_a1) pat_tot = round(sum(n_pat_dose),1) res = list(call = match.call(), tite=tite, ndose_a1=ndose_a1, ndose_a2=ndose_a2, time_full=time_full, poisson_rate=poisson_rate, startup=startup, alloc_rule=alloc_rule, early_stop=early_stop, p_tox=p_tox, p_tox_p=p_tox_p, target=target, target_min=target_min, target_max=target_max, prior_tox_a1=prior_tox_a1, prior_tox_a2=prior_tox_a2, n_cohort=n_cohort, cohort=cohort, pat_tot=pat_tot, nsim=nsim, c_e=c_e, c_d=c_d, c_stop=c_stop, c_t=c_t, c_over=c_over, cmin_overunder=cmin_overunder, cmin_mtd=cmin_mtd, cmin_recom=cmin_recom, nburn=nburn, niter=niter, seed=seed, rec_dose=rec_dose, n_pat_dose=n_pat_dose, n_tox_dose=n_tox_dose, rec_dose_p=rec_dose_p, n_pat_dose_p=n_pat_dose_p, n_tox_dose_p=n_tox_dose_p, inconc=inconc, early_conc=early_conc, conc_max=conc_max, tab_pat=tab_pat) class(res) = "CombIncrease_sim" return(res) } print.CombIncrease_sim = function(x, dgt = 2, ...) { cat("Call:\n") print(x$call) cat("\n") print_rnd= function (hd, x) {cat(hd, "\n"); print(round(x, digits = dgt)); cat("\n")} print_rnd("True toxicities:", x$p_tox_p) print_rnd("Percentage of Selection:", x$rec_dose_p) print_rnd("Mean number of patients:" , x$n_pat_dose_p) print_rnd("Mean number of toxicities:", x$n_tox_dose_p) cat(paste("Percentage of inconclusive trials:\t",x$inconc,"\n",sep=""), sep="") cat(paste("Percentage of trials stopping with criterion for finding MTD:\t",x$early_conc,"\n",sep=""), sep="") cat(paste("Percentage of trials stopping with recommendation based on maximum sample size:\t",x$conc_max,"\n",sep=""), sep="") cat("\n") cat("Number of simulations:\t", x$nsim, "\n") cat("Total mean number of patients accrued:\t", x$pat_tot, "\n") cat("Quantiles for number of patients accrued:\t", "\n", quantile(x$tab_pat), "\n") } CombIncrease_next = function(ndose_a1, ndose_a2, target, target_min, target_max, prior_tox_a1, prior_tox_a2, cohort, final, pat_incl, dose_adm1, dose_adm2, tite=FALSE, toxicity, time_full=0, time_tox=0, time_follow=0, c_e=0.85, c_d=0.45, c_stop=0.95, c_t=0.5, c_over=0.25, cmin_overunder=2, cmin_mtd=3, cmin_recom=1, early_stop=1, alloc_rule=1, nburn=2000, niter=5000){ if(tite == TRUE) { toxicity = as.numeric(time_tox < time_follow) } if(pat_incl > 0) { cdose1 = dose_adm1[pat_incl] cdose2 = dose_adm2[pat_incl] } else { cdose1 = 0 cdose2 = 0 } n_prior_tox_a1 = length(prior_tox_a1) if(n_prior_tox_a1 != ndose_a1){ stop("The entered vector of initial guessed toxicity probabities for agent 1 is of wrong length.") } n_prior_tox_a2 = length(prior_tox_a2) if(n_prior_tox_a2 != ndose_a2){ stop("The entered vector of initial guessed toxicity probabities for agent 2 is of wrong length.") } n_toxicity = length(toxicity) n_time_follow = length(time_follow) n_time_tox = length(time_tox) n_dose_adm1 = length(dose_adm1) n_dose_adm2 = length(dose_adm2) if(tite==FALSE && n_toxicity != pat_incl){ stop("The entered vector of observed toxicities is of wrong length.") } if(tite==TRUE && n_time_follow != pat_incl){ stop("The entered vector for patients' follow-up time is of wrong length.") } if(tite==TRUE && n_time_tox != pat_incl){ stop("The entered vector for patients' time-to-toxicity is of wrong length.") } if(n_dose_adm1 != pat_incl){ stop("The entered vector for patients' dose of agent 1 is of wrong length.") } if(n_dose_adm2 != pat_incl){ stop("The entered vector for patients' dose of agent 2 is of wrong length.") } tite = as.logical(tite) ndose_a1 = as.integer(ndose_a1)[1] ndose_a2 = as.integer(ndose_a2)[1] time_full = as.double(time_full)[1] target = as.double(target)[1] target_max = as.double(target_max)[1] target_min = as.double(target_min)[1] prior_tox_a1 = as.double(prior_tox_a1) prior_tox_a2 = as.double(prior_tox_a2) cohort = as.integer(cohort)[1] final = as.logical(final) c_e = as.double(c_e)[1] c_d = as.double(c_d)[1] c_stop = as.double(c_stop)[1] c_t = as.double(c_t)[1] c_over = as.double(c_over)[1] cmin_overunder = as.integer(cmin_overunder)[1] cmin_mtd = as.integer(cmin_mtd)[1] cmin_recom = as.integer(cmin_recom)[1] pat_incl = as.integer(pat_incl)[1] cdose1 = as.integer(cdose1-1) cdose2 = as.integer(cdose2-1) dose_adm1 = as.integer(dose_adm1-1) dose_adm2 = as.integer(dose_adm2-1) time_tox = as.double(time_tox) time_follow = as.double(time_follow) toxicity = as.logical(toxicity) alloc_rule = as.integer(alloc_rule)[1] early_stop = as.integer(early_stop)[1] nburn = as.integer(nburn)[1] niter = as.integer(niter)[1] if(alloc_rule != 1 && alloc_rule != 2 && alloc_rule != 3){ stop("Unknown allocation rule id.") } if(early_stop != 1 && early_stop != 2 && early_stop != 3){ stop("Unknown early stopping rule id.") } if(cohort <= 0){ stop("Cohort size must be positive.") } if(time_full < 0){ stop("Full follow-up time must be positive.") } if(c_e < 0 || c_e > 1 || c_d < 0 || c_d > 1 || c_stop < 0 || c_stop > 1 || c_t < 0 || c_t > 1 || c_over < 0 || c_over > 1){ stop("Probability thresholds are not comprised between 0 and 1.") } if(cmin_overunder < 0 || cmin_mtd < 0 || cmin_recom < 0){ stop("Minimum number of cohorts for stopping or recommendation rule must be positive.") } if(nburn <= 0 || niter <= 0){ stop("Number of iterations and burn-in for MCMC must be positive.") } for(i in 1:ndose_a1){ if(prior_tox_a1[i] < 0 || prior_tox_a1[i] > 1){ stop("At least one of the initial guessed toxicity for agent 1 is not comprised between 0 and 1.") } } for(i in 1:ndose_a2){ if(prior_tox_a2[i] < 0 || prior_tox_a2[i] > 1){ stop("At least one of the initial guessed toxicity for agent 2 is not comprised between 0 and 1.") } } if(target < 0 || target > 1){ stop("Targeted toxicity probability is not comprised between 0 and 1.") } if(target_max < 0 || target_max > 1){ stop("Maximum targeted toxicity probability is not comprised between 0 and 1.") } if(target_min < 0 || target_min > 1){ stop("Minimum targeted toxicity probability is not comprised between 0 and 1.") } inconc = as.logical(numeric(1)) early_conc = as.logical(numeric(1)) pi = as.double(numeric(ndose_a1*ndose_a2)) ptox_inf = as.double(numeric(ndose_a1*ndose_a2)) ptox_inf_targ = as.double(numeric(ndose_a1*ndose_a2)) ptox_targ = as.double(numeric(ndose_a1*ndose_a2)) ptox_sup_targ = as.double(numeric(ndose_a1*ndose_a2)) logistic = .C(C_logistic_next, tite, ndose_a1, ndose_a2, time_full, target, target_max, target_min, prior_tox_a1, prior_tox_a2, cohort, final, c_e, c_d, c_stop, c_t, c_over, cmin_overunder, cmin_mtd, cmin_recom, early_stop, alloc_rule, nburn, niter, pat_incl, cdose1=cdose1, cdose2=cdose2, dose_adm1, dose_adm2, time_tox, time_follow, toxicity, inconc=inconc, early_conc=early_conc, pi=pi, ptox_inf=ptox_inf, ptox_inf_targ=ptox_inf_targ, ptox_targ=ptox_targ, ptox_sup_targ=ptox_sup_targ, NAOK=TRUE) cdose1=logistic$cdose1+1 cdose2=logistic$cdose2+1 dose_adm1=dose_adm1+1 dose_adm2=dose_adm2+1 pi=matrix(logistic$pi, nrow=ndose_a1) ptox_inf=matrix(logistic$ptox_inf, nrow=ndose_a1) ptox_inf_targ=matrix(logistic$ptox_inf_targ, nrow=ndose_a1) ptox_targ=matrix(logistic$ptox_targ, nrow=ndose_a1) ptox_sup_targ=matrix(logistic$ptox_sup_targ, nrow=ndose_a1) n_pat_comb = matrix(0, nrow=ndose_a1, ncol=ndose_a2) n_tox_comb = matrix(0, nrow=ndose_a1, ncol=ndose_a2) for(i in 1:pat_incl){ n_pat_comb[dose_adm1[i],dose_adm2[i]] = n_pat_comb[dose_adm1[i],dose_adm2[i]]+1 n_tox_comb[dose_adm1[i],dose_adm2[i]] = n_tox_comb[dose_adm1[i],dose_adm2[i]]+toxicity[i] } n_pat_comb_p = t(n_pat_comb)[ndose_a2:1,] n_tox_comb_p = t(n_tox_comb)[ndose_a2:1,] pi_p = t(pi)[ndose_a2:1,] ptox_inf_p = t(ptox_inf)[ndose_a2:1,] ptox_inf_targ_p = t(ptox_inf_targ)[ndose_a2:1,] ptox_targ_p = t(ptox_targ)[ndose_a2:1,] ptox_sup_targ_p = t(ptox_sup_targ)[ndose_a2:1,] dimnames(n_pat_comb_p) = list("Agent 2"=ndose_a2:1, "Agent 1"=1:ndose_a1) dimnames(n_tox_comb_p) = list("Agent 2"=ndose_a2:1, "Agent 1"=1:ndose_a1) dimnames(pi_p) = list("Agent 2"=ndose_a2:1, "Agent 1"=1:ndose_a1) dimnames(ptox_inf_p) = list("Agent 2"=ndose_a2:1, "Agent 1"=1:ndose_a1) dimnames(ptox_inf_targ_p) = list("Agent 2"=ndose_a2:1, "Agent 1"=1:ndose_a1) dimnames(ptox_targ_p) = list("Agent 2"=ndose_a2:1, "Agent 1"=1:ndose_a1) dimnames(ptox_sup_targ_p) = list("Agent 2"=ndose_a2:1, "Agent 1"=1:ndose_a1) res = list(call = match.call(), tite=tite, ndose_a1=ndose_a1, ndose_a2=ndose_a2, time_full=time_full, target=target, target_max=target_max, target_min=target_min, prior_tox_a1=prior_tox_a1, prior_tox_a2=prior_tox_a2, cohort=cohort, final=final, c_e=c_e, c_d=c_d, c_stop=c_stop, c_t=c_t, c_over=c_over, cmin_overunder=cmin_overunder, cmin_mtd=cmin_mtd, cmin_recom=cmin_recom, early_stop=early_stop, alloc_rule=alloc_rule, nburn=nburn, niter=niter, pat_incl=pat_incl, cdose1=cdose1, cdose2=cdose2, dose_adm1=dose_adm1, dose_adm2=dose_adm2, time_tox=time_tox, time_follow=time_follow, toxicity=toxicity, inconc=logistic$inconc, early_conc=logistic$early_conc, n_pat_comb=n_pat_comb, n_tox_comb=n_tox_comb, pi=pi, ptox_inf=ptox_inf, ptox_inf_targ=ptox_inf_targ, ptox_targ=ptox_targ, ptox_sup_targ=ptox_sup_targ, n_pat_comb_p=n_pat_comb_p, n_tox_comb_p=n_tox_comb_p, pi_p=pi_p, ptox_inf_p=ptox_inf_p, ptox_inf_targ_p=ptox_inf_targ_p, ptox_targ_p=ptox_targ_p, ptox_sup_targ_p=ptox_sup_targ_p) class(res) = "CombIncrease_next" return(res) } print.CombIncrease_next = function(x, dgt = 2, ...) { cat("Call:\n") print(x$call) cat("\n") print_rnd= function (hd, x) {cat(hd, "\n"); print(round(x, digits = dgt)); cat("\n")} print_rnd("Number of patients:" , x$n_pat_comb_p) print_rnd("Number of toxicities:", x$n_tox_comb_p) print_rnd("Estimated toxicity probabilities:", x$pi_p) print_rnd("P(toxicity probability < target):", x$ptox_inf_p) print_rnd("Probabilities of underdosing:", x$ptox_inf_targ_p) print_rnd("Probabilities being in targeted interval:", x$ptox_targ_p) print_rnd("Probabilities of overdosing:", x$ptox_sup_targ_p) cat("Warning: recommendation for model-based phase (start-up phase must be ended).\n") if(!x$inconc){ if(!x$early_conc){ if(x$final){ cat(paste("The RECOMMENDED COMBINATION at the end of the trial is:\t (",x$cdose1, ",", x$cdose2, ")\n",sep=""), sep="") } else{ cat(paste("The next RECOMMENDED COMBINATION is:\t (",x$cdose1, ",", x$cdose2, ")\n",sep=""), sep="") } } else{ cat(paste("The dose-finding process should be STOPPED (criterion for identifying MTD met) and the RECOMMENDED COMBINATION is:\t (",x$cdose1, ",", x$cdose2, ")\n",sep=""), sep="") } } else{ cat(paste("The dose-finding process should be STOPPED WITHOUT COMBINATION RECOMMENDATION (criterion for over or under toxicity met)\n",sep=""), sep="") } }
CheckAtm.lin = function(ATM = list()){ if(is.null(ATM$z0)){ ATM$z0 = 0 } if(is.null(ATM$c0)){ ATM$c0 = 330 } if(is.null(ATM$gc)){ ATM$gc = -10^-9 }else if(ATM$gc == 0){ ATM$gc = -10^-9 } if(is.null(ATM$wx0)){ ATM$wx0 = 0 } if(is.null(ATM$gwx)){ ATM$gwx = 0 } if(is.null(ATM$wy0)){ ATM$wy0 = 0 } if(is.null(ATM$gwy)){ ATM$gwy = 0 } if(is.null(ATM$rho0)){ ATM$rho0 = 1.2929 * exp(-ATM$z0/6800) } if(is.null(ATM$grho)){ ATM$grho = -1.013*10^5/(287.04*273*6800) * exp(-ATM$z0/6800) } return(ATM) }
if (is_installed(pkgnm = pkgnm)) { uninstall(pkgnm = pkgnm) }
majoritySingleVetoGameValue<-function(S,vetoPlayer){ paramCheckResult=getEmptyParamCheckResult() stopOnInvalidCoalitionS(paramCheckResult,S) stopOnInvalidVetoPlayer(paramCheckResult,vetoPlayer) logicmajoritySingleVetoGameValue(S,vetoPlayer) } logicmajoritySingleVetoGameValue=function(S, vetoPlayer) { result=0 if ( (length(S) >= 2) && (vetoPlayer %in% S) ) { result=1 } return(result) } majoritySingleVetoGameVector<-function(n,vetoPlayer){ bitMatrix = createBitMatrix(n)[,1:n]; A<-c() i<-1 end<-((2^n)-1) while(i<=end){ currCoal<-which(bitMatrix[i,]&1) A[i] = majoritySingleVetoGameValue(S=currCoal, vetoPlayer=vetoPlayer) i<-i+1 } return(A) } majoritySingleVetoGame<-function(n,vetoPlayer){ v = majoritySingleVetoGameVector(n=n,vetoPlayer=vetoPlayer) retmajoritySingleVetoGame=list(n=n,vetoPlayer=vetoPlayer,v=v) return(retmajoritySingleVetoGame) }
gr_cumhaz_flexrsurv_fromto_GA0B0AB_bh<-function(GA0B0AB, var, Y, X0, X, Z, step, Nstep, intTD=intTD_NC, intweightsfunc=intweights_CAV_SIM, intTD_base=intTD_base_NC, nT0basis, Spline_t0=BSplineBasis(knots=NULL, degree=3, keep.duplicates=TRUE), Intercept_t0=TRUE, ialpha0, nX0, ibeta0, nX, ialpha, ibeta, nTbasis, Spline_t =BSplineBasis(knots=NULL, degree=3, keep.duplicates=TRUE), Intercept_t_NPH=rep(TRUE, nX), debug=FALSE, ...){ if (debug) cat(" if(is.null(Z)){ nZ <- 0 } else { nZ <- Z@nZ } if(Intercept_t0){ tmpgamma0 <- GA0B0AB[1:nT0basis] } else { tmpgamma0 <- c(0, GA0B0AB[1:nT0basis]) } if( nX0){ PHterm <-exp(X0 %*% GA0B0AB[ialpha0]) } else { PHterm <- 1 } if(nZ) { tBeta <- t(ExpandAllCoefBasis(GA0B0AB[ibeta], ncol=nZ, value=1)) Zalpha <- Z@DM %*%( diag(GA0B0AB[ialpha]) %*% Z@signature ) Zalphabeta <- Zalpha %*% tBeta if(nX) { Zalphabeta <- Zalphabeta + X %*% t(ExpandCoefBasis(GA0B0AB[ibeta0], ncol=nX, splinebasis=Spline_t, expand=!Intercept_t_NPH, value=0)) } } else { if(nX) { Zalphabeta <- X %*% t(ExpandCoefBasis(GA0B0AB[ibeta0], ncol=nX, splinebasis=Spline_t, expand=!Intercept_t_NPH, value=0)) } } if(nX + nZ) { NPHterm <- intTD(rateTD_bh_alphabeta, intFrom=Y[,1], intTo=Y[,2], intToStatus=Y[,3], step=step, Nstep=Nstep, intweightsfunc=intweightsfunc, gamma0=GA0B0AB[1:nT0basis], Zalphabeta=Zalphabeta, Spline_t0=Spline_t0*tmpgamma0, Intercept_t0=Intercept_t0, Spline_t = Spline_t, Intercept_t=TRUE) Intb0 <- intTD_base(func=ratioTD_bh_alphabeta, intFrom=Y[,1], intTo=Y[,2], intToStatus=Y[,3], Spline=Spline_t0, step=step, Nstep=Nstep, intweightsfunc=intweightsfunc, gamma0=GA0B0AB[1:nT0basis], Zalphabeta=Zalphabeta, Spline_t0=Spline_t0*tmpgamma0, Intercept_t0=Intercept_t0, Spline_t = Spline_t, Intercept_t=TRUE, debug=debug) Intb <- intTD_base(func=rateTD_bh_alphabeta, intFrom=Y[,1], intTo=Y[,2], intToStatus=Y[,3], Spline=Spline_t, step=step, Nstep=Nstep, intweightsfunc=intweightsfunc, gamma0=GA0B0AB[1:nT0basis], Zalphabeta=Zalphabeta, Spline_t0=Spline_t0*tmpgamma0, Intercept_t0=Intercept_t0, Spline_t = Spline_t, Intercept_t=TRUE) if(!Intercept_t0){ Intb0<- Intb0[,-1] } indx_without_intercept <- 2:getNBases(Spline_t) } else { NPHterm <- predict(integrate(Spline_t0*tmpgamma0), Y[,2], intercep=Intercept_t0) - predict(integrate(Spline_t0*tmpgamma0), Y[,1], intercep=Intercept_t0) Intb0 <- integrate(Spline_t0, Y[,2], intercep=Intercept_t0) - integrate(Spline_t0, Y[,1], intercep=Intercept_t0) Intb <- NULL } if(nX + nZ) { if(nX0>0) { Intb <- Intb * c(PHterm) } } Intb0 <- Intb0 * c(PHterm) dLdgamma0 <- Intb0 if (nX0) { dLdalpha0 <- X0 * c(PHterm * NPHterm) } else { dLdalpha0 <- NULL } if (nX){ dLdbeta0 <- NULL for(i in 1:nX){ if ( Intercept_t_NPH[i] ){ dLdbeta0 <- cbind(dLdbeta0, X[,i] * Intb) } else { dLdbeta0 <- cbind(dLdbeta0, X[,i] * Intb[,indx_without_intercept]) } } } else { dLdbeta0 <- NULL } if (nZ) { baseIntb <- Intb %*% t(tBeta) indZ <- getIndex(Z) dLdalpha <- NULL dLdbeta <- NULL for(iZ in 1:nZ){ dLdalpha <- cbind(dLdalpha, Z@DM[,indZ[iZ,1]:indZ[iZ,2]] * baseIntb[,iZ]) dLdbeta <- cbind(dLdbeta, Intb[,-1, drop=FALSE] * Zalpha[,iZ]) } } else { dLdalpha <- NULL dLdbeta <- NULL } rep <- cbind(dLdgamma0, dLdalpha0, dLdbeta0, dLdalpha, dLdbeta ) if(debug){ attr(rep, "intb0") <- Intb0 attr(rep, "intb") <- Intb } rep }
cumbasehaz = function(object) { if(class(object) != "gamlasso") stop("Please enter a gamlasso object to print") if(object$inherit$family != "cox") stop("Cumulative base hazard function only makes sense for cox models") lp <- predict.gamlasso(object, newdata=object$inherit$train.data, type="link") event.time <- object$inherit$train.data %>% dplyr::pull(object$inherit$fit.names$response) status <- object$inherit$train.data %>% dplyr::pull(object$inherit$fit.names$weights) L0 = cbh(lp, event.time, status) return(L0) } cbh = function(lp, event.time, status) { cox.model <- survival::coxph(survival::Surv(event.time, status) ~ offset(lp)) sf <- survival::survfit(cox.model) H0 <- approxfun(sf$time, sf$cumhaz*exp( -mean(lp) ) ) return(H0) }
file_upload_button <- function( inputId, label = "", multiple = FALSE, accept = NULL, buttonLabel = "Load", title = "Load data", class = "", icn = "upload", progress = FALSE ) { if (getOption("radiant.shinyFiles", FALSE)) { shinyFiles::shinyFileChoose( input = input, id = inputId, session = session, roots = sf_volumes, filetype = gsub(".", "", accept, fixed = TRUE) ) shinyFiles::shinyFilesButton( inputId, buttonLabel, label, title = title, multiple = FALSE, class = class, icon = icon(icn) ) } else { if (length(accept) > 0) { accept <- paste(accept, collapse = ",") } else { accept <- "" } if (!radiant.data::is_empty(label)) { label <- paste0("</br><label>", label, "</label></br>") } btn <- paste0(label, " <label class='input-group-btn'> <span class='btn btn-default btn-file-solitary ", class, "'> <i class='fa fa-upload'></i> ", buttonLabel, " <input id='", inputId, "' name='", inputId, "' type='file' style='display: none;' accept='", accept, "'/> </span> </label> ") if (progress) { btn <- paste0(btn, "\n<div id='uploadfile_progress' class='progress progress-striped active shiny-file-input-progress'> <div class='progress-bar'></div> </div>") } HTML(btn) } } getdeps <- function() { htmltools::attachDependencies( htmltools::tagList(), c( htmlwidgets:::getDependency("DiagrammeR", "DiagrammeR"), htmlwidgets:::getDependency("plotly", "plotly") ) ) } rstudio_context <- function(type = "rmd") { rse <- rstudioapi::getSourceEditorContext() path <- rse$path ext <- tools::file_ext(path) if (radiant.data::is_empty(path) || !file.exists(path) || tolower(ext) != type) { list(path = "", rpath = "", base = "", base_name = "", ext = "", content = "") } else { path <- normalizePath(path, winslash = "/") pdir <- getOption("radiant.project_dir", default = radiant.data::find_home()) sel <- rse$selection[[1]][["text"]] if (radiant.data::is_empty(sel)) { content <- paste0(rse$content, collapse = "\n") } else { content <- paste0(sel, collapse = "\n") } base <- basename(path) base_name <- sub(paste0(".", ext), "", base) rpath <- if (radiant.data::is_empty(pdir)) { path } else { sub(paste0(pdir, "/"), "", path) } list( path = path, rpath = rpath, base = base, base_name = sub(paste0(".", ext, "$"), "", base), ext = tolower(ext), content = content ) } } scrub <- . %>% gsub("&lt;!--/html_preserve--&gt;", "", .) %>% gsub("&lt;!--html_preserve--&gt;", "", .) %>% gsub("&lt;!&ndash;html_preserve&ndash;&gt;", "", .) %>% gsub("&lt;!&ndash;/html_preserve&ndash;&gt;", "", .) setup_report <- function( report, ech, add_yml = TRUE, type = "rmd", save_type = "Notebook", lib = "radiant" ) { report <- fix_smart(report) %>% gsub("^```\\s*\\{", "\n\n```{", .) %>% gsub("^```\\s*\n", "```\n\n", .) %>% sub("^---\n(.*?)\n---", "", .) %>% sub("<!--(.*?)-->", "", .) sopts <- ifelse(save_type == "PDF", ",\n screenshot.opts = list(vheight = 1200)", "") if (add_yml) { if (save_type %in% c("PDF", "Word", "Powerpoint")) { yml <- "" } else if (save_type == "HTML") { yml <- '---\npagetitle: HTML report\noutput:\n html_document:\n highlight: zenburn\n theme: cosmo\n df_print: paged\n toc: yes\n---\n\n' } else if (save_type %in% c("Rmd", "Rmd + Data (zip)")) { yml <- '---\npagetitle: Rmd report\noutput:\n html_document:\n highlight: zenburn\n theme: cosmo\n df_print: paged\n toc: yes\n code_folding: hide\n code_download: true\n---\n\n' } else { yml <- '---\npagetitle: Notebook report\noutput:\n html_notebook:\n highlight: zenburn\n theme: cosmo\n toc: yes\n code_folding: hide\n---\n\n' } } else { yml = "" } if (missing(ech)) { ech <- if (save_type %in% c("PDF", "Word", "Powerpoint", "HTML")) "FALSE" else "TRUE" } if (grepl("```{r r_setup, include = FALSE}\n", report, fixed = TRUE)) { report } else { paste0(yml, "```{r r_setup, include = FALSE} knitr::opts_chunk$set( comment = NA, echo = ", ech, ", error = TRUE, cache = FALSE, message = FALSE,\n dpi = 96, warning = FALSE", sopts, " ) options( width = 250, scipen = 100, max.print = 5000, stringsAsFactors = FALSE ) if (is.null(shiny::getDefaultReactiveDomain())) library(", lib, ") ``` <style> .btn, .form-control, pre, code, pre code { border-radius: 4px; } .table { width: auto; } ul, ol { padding-left: 18px; } code, pre, pre code { overflow: auto; white-space: pre; word-wrap: normal; } code { color: background-color: } pre { background-color: } </style>\n\n", report) }} knit_it_save <- function(report) { md <- knitr::knit(text = report, envir = r_data) deps <- knitr::knit_meta() dep_scripts <- lapply(deps, function(x) { lapply(x$script, function(script) file.path(x$src$file, script)) }) %>% unlist() %>% unique() dep_stylesheets <- lapply(deps, function(x) { lapply(x$stylesheet, function(stylesheet) file.path(x$src$file, stylesheet)) }) %>% unlist() %>% unique() dep_html <- c( sapply(dep_scripts, function(script) { sprintf( '<script type="text/javascript" src="%s"></script>', base64enc::dataURI(file = script) ) }), sapply(dep_stylesheets, function(sheet) { sprintf( "<style>%s</style>", paste(sshhr(readLines(sheet)), collapse = "\n") ) }) ) preserved <- htmltools::extractPreserveChunks(md) markdown::markdownToHTML( text = preserved$value, header = dep_html, options = c("mathjax", "base64_images"), stylesheet = file.path(getOption("radiant.path.data"), "app/www/bootstrap.min.css") ) %>% htmltools::restorePreserveChunks(preserved$chunks) %>% gsub("<table>", "<table class='table table-condensed table-hover'>", .) } report_clean <- function(report) { withProgress(message = "Cleaning report", value = 1, { report <- gsub("\nr_data\\[\\[\"([^\n]+?)\"\\]\\] \\%>\\%(.*?)\\%>\\%\\s*?store\\(\"(.*?)\", (\".*?\")\\)", "\n\\3 <- \\1 %>%\\2\nregister(\"\\3\", \\4)", report) %>% gsub("r_data\\[\\[\"([^\"]+?)\"\\]\\]", "\\1", .) %>% gsub("r_data\\$", "", .) %>% gsub("\"mean_rm\"", "\"mean\"", .) %>% gsub("\"median_rm\"", "\"median\"", .) %>% gsub("\"min_rm\"", "\"min\"", .) %>% gsub("\"max_rm\"", "\"max\"", .) %>% gsub("\"sd_rm\"", "\"sd\"", .) %>% gsub("\"var_rm\"", "\"var\"", .) %>% gsub("\"sum_rm\"", "\"sum\"", .) %>% gsub("\"length\"", "\"n_obs\"", .) %>% gsub("tabsort = \"desc\\(n\\)\"", "tabsort = \"desc\\(n_obs\\)\"", .) %>% gsub("Search\\(\"(.*?)\",\\s*?.\\)", "search_data(., \"\\1\")", .) %>% gsub("toFct\\(\\)", "to_fct()", .) %>% gsub("rounddf\\(", "round_df(", .) %>% gsub("formatnr\\(", "format_nr(", .) %>% gsub("formatdf\\(", "format_df(", .) %>% gsub("dataset\\s*=\\s*\"([^\"]+)\",", "\\1,", .) %>% gsub("store\\(pred, data\\s*=\\s*\"([^\"]+)\"", "\\1 <- store(\\1, pred", .) %>% gsub("pred_data\\s*=\\s*\"([^\"]+)\"", "pred_data = \\1", .) %>% gsub("(combinedata\\(\\s*?x\\s*?=\\s*?)\"([^\"]+?)\",(\\s*?y\\s*?=\\s*?)\"([^\"]+?)\",", "\\1\\2,\\3\\4,", .) %>% gsub("(combinedata\\((.|\n)*?),\\s*?name\\s*?=\\s*?\"([^\"`]+?)\"([^\\)]+?)\\)", "\\3 <- \\1\\4)\nregister(\"\\3\")", .) %>% gsub("combinedata\\(", "combine_data(", .) %>% gsub("result\\s*<-\\s*(simulater\\((.|\n)*?),\\s*name+\\s*=\\s*\"([^\"`]*?)\"([^\\)]*?)\\)", "\\3 <- \\1\\4)\nregister(\"\\3\")", .) %>% gsub("data\\s*=\\s*\"([^\"]+)\",", "data = \\1,", .) %>% gsub("(simulater\\((\n|.)*?)(register\\(\"(.*?)\"\\))\nsummary\\(result", "\\1\\3\nsummary(\\4", .) %>% gsub("(simulater\\((\n|.)*?)(register\\(\"(.*?)\"\\))\n(summary.*?)\nplot\\(result", "\\1\\3\n\\5\nplot(\\4", .) %>% gsub("result\\s*<-\\s*(repeater\\((.|\n)*?),\\s*name+\\s*=\\s*\"([^\"`]*?)\"([^\\)]*?)\\)", "\\3 <- \\1\\4)\nregister(\"\\3\")", .) %>% gsub("(repeater\\((\n|.)*?)(register\\(\"(.*?)\"\\))\nsummary\\(result", "\\1\\3\nsummary(\\4", .) %>% gsub("(repeater\\((\n|.)*?)(register\\(\"(.*?)\"\\))\n(summary.*?)\nplot\\(result", "\\1\\3\n\\5\nplot(\\4", .) %>% gsub("repeater\\(((.|\n)*?),\\s*sim+\\s*=\\s*\"([^\"`]*?)\"([^\\)]*?)\\)", "repeater(\n \\3,\\1\\4)", .) %>% gsub("(```\\{r.*?\\})(\nresult <- pivotr(\n|.)*?)(\\s*)store\\(result, name = \"(.*?)\"\\)", "\\1\\2\\4\\5 <- result$tab; register(\"\\5\")\\6", .) %>% gsub("(```\\{r.*?\\})(\nresult <- explore(\n|.)*?)(\\s*)store\\(result, name = \"(.*?)\"\\)", "\\1\\2\\4\\5 <- result$tab; register(\"\\5\")\\6", .) %>% gsub("store\\(result,\\s*name\\s*=\\s*\"(.*?)\",\\s*type\\s*=\\s*\"((P|I)W)\"\\)", "\\1 <- result$\\2; register(\"\\1\")", .) }) removeModal() fix_smart(report) } observeEvent(input$report_clean_r, { shinyAce::updateAceEditor( session, "r_edit", value = report_clean(input$r_edit) ) }) observeEvent(input$report_clean_rmd, { shinyAce::updateAceEditor( session, "rmd_edit", value = report_clean(input$rmd_edit) ) }) observeEvent(input$report_ignore, { r_info[["report_ignore"]] <- TRUE removeModal() }) knit_it <- function(report, type = "rmd") { report <- gsub("\r\n", "\n", report) %>% gsub("\r", "\n", .) if (type == "rmd") { report <- gsub("\\\\\\\\\\s*\n", "\\\\\\\\\\\\\\\\\n", report) } if ( !isTRUE(r_info[["report_ignore"]]) && (grepl("\\s*r_data\\[\\[\".*?\"\\]\\]", report) || grepl("\\s*r_data\\$", report) || grepl("\n(\\ grepl("store\\(pred,\\s*data\\s*=\\s*\"", report) || grepl("\\s+data\\s*=\\s*\".*?\",", report) || grepl("\\s+dataset\\s*=\\s*\".*?\",", report) || grepl("\\s+pred_data\\s*=\\s*\"[^\"]+?\",", report) || grepl("result\\s*<-\\s*simulater\\(", report) || grepl("result\\s*<-\\s*repeater\\(", report) || grepl("combinedata\\(\\s*x\\s*=\\s*\"[^\"]+?\"", report) || grepl("formatnr\\(", report) || grepl("formatdf\\(", report) || grepl("rounddf\\(", report) || grepl("tabsort = \"desc\\(n\\)\"", report) || grepl("(mean_rm|median_rm|min_rm|max_rm|sd_rm|var_rm|sum_rm)", report)) ) { showModal( modalDialog( title = "The report contains deprecated code", span("The use of, e.g., r_data[[...]]], dataset = \"...\", etc. in your report is deprecated. Click the 'Clean report' button to remove references that are no longer needed.", br(), br(), "Warning: It may not be possible to update all code to the latest standard automatically. For example, the use of 'store(...)' functions has changed and not all forms can be automatically updated. If this applies to your report a message should be shown when you Knit the report demonstrating how the code should be changed. You can, of course, also use the browser interface to recreate the code you need or use the help function in R or Rstudio for more information (e.g., ?radiant.model::store.model, ?radiant.model::store.model.predict, or ?radiant.model::simulater)", br(), br(), "To avoid the code-cleaning step click 'Cancel' or, if you believe the code is correct as-is, click the 'Ignore' button and continue to Knit your report" ), footer = tagList( modalButton("Cancel"), actionButton("report_ignore", "Ignore", title = "Ignore cleaning popup", class = "btn-primary"), actionButton(paste0("report_clean_", type), "Clean report", title = "Clean report", class = "btn-success") ), size = "m", easyClose = TRUE ) ) return(invisible()) } ldir <- getOption("radiant.launch_dir", default = radiant.data::find_home()) pdir <- getOption("radiant.project_dir", default = ldir) tdir <- tempdir() owd <- ifelse(radiant.data::is_empty(pdir), setwd(tdir), setwd(pdir)) on.exit(setwd(owd)) report <- sub("^---\n(.*?)\n---", "", report) %>% sub("<!--(.*?)-->", "", .) if (!grepl("```{r r_setup, include = FALSE}\n", report, fixed = TRUE)) { report <- paste0("```{r knit_it_setup, include = FALSE}\noptions(width = 250, scipen = 100, max.print = 5000, stringsAsFactors = FALSE)\n```\n\n", report) } md <- knitr::knit( text = report, envir = r_data, quiet = TRUE ) md <- gsub("<p class=\"caption\">plot of chunk unnamed-chunk-[0-9]+</p>", "", md) paste( markdown::markdownToHTML(text = md, fragment.only = TRUE, stylesheet = ""), paste0("<script type='text/javascript' src='", getOption("radiant.mathjax.path"), "/MathJax.js?config=TeX-AMS-MML_HTMLorMML'></script>"), "<script>if (window.MathJax) MathJax.Hub.Typeset();</script>", sep = "\n" ) %>% gsub("<table>", "<table class='table table-condensed table-hover'>", .) %>% scrub() %>% HTML() } sans_ext <- function(path) { sub( "(\\.state\\.rda|\\.rda$|\\.rds$|\\.rmd$|\\.r$|\\.rdata$|\\.html|\\.nb\\.html|\\.pdf|\\.docx|\\.pptx|\\.rmd|\\.zip)", "", tolower(path), ignore.case = TRUE ) } report_name <- function(type = "rmd", out = "report", full.name = FALSE) { ldir <- getOption("radiant.launch_dir", default = radiant.data::find_home()) pdir <- getOption("radiant.project_dir", default = ldir) if (input[[paste0(type, "_generate")]] %in% c("To Rmd", "To R")) { fn <- r_state[[paste0("radiant_", type, "_name")]] } else { fn <- "" } if (radiant.data::is_empty(fn)) { fn <- state_name() fn <- sans_ext(fn) %>% sub("-state", paste0("-", out), .) r_state[[paste0("radiant_", type, "_name")]] <<- paste(fn, sep = ".", switch( type, rmd = "Rmd", r = "R" )) } else { fn <- basename(fn) %>% sans_ext() } if (full.name) { file.path(pdir, fn) } else { fn } } report_save_filename <- function(type = "rmd", full.name = TRUE) { req(input[[paste0(type, "_generate")]]) if (input[[paste0(type, "_generate")]] %in% c("To Rmd", "To R")) { cnt <- rstudio_context(type = type) if (!radiant.data::is_empty(cnt$path)) { if (cnt$path != cnt$rpath) { r_state[[paste0("radiant_", type, "_name")]] <<- cnt$rpath } else { r_state[[paste0("radiant_", type, "_name")]] <<- cnt$path } if (full.name) { fn <- cnt$path } else { fn <- cnt$base_name } } else { fn <- report_name(type = type, full.name = full.name) } } else { fn <- report_name(type = type, full.name = full.name) } fn <- sans_ext(fn) paste(fn, sep = ".", switch( input[[paste0(type, "_save_type")]], Notebook = "nb.html", HTML = "html", PDF = "pdf", Word = "docx", Powerpoint = "pptx", Rmd = "Rmd", `Rmd + Data (zip)` = "zip", R = "R", `R + Data (zip)` = "zip" )) } report_save_content <- function(file, type = "rmd") { if (isTRUE(getOption("radiant.report"))) { isolate({ ldir <- getOption("radiant.launch_dir", default = radiant.data::find_home()) pdir <- getOption("radiant.project_dir", default = ldir) tdir <- tempdir() owd <- ifelse(radiant.data::is_empty(pdir), setwd(tdir), setwd(pdir)) on.exit(setwd(owd)) save_type <- input[[paste0(type, "_save_type")]] generate <- input[[paste0(type, "_generate")]] zip_info <- getOption("radiant.zip") if (save_type %in% c("Rmd + Data (zip)", "R + Data (zip)")) { if (radiant.data::is_empty(zip_info)) { showModal( modalDialog( title = "ZIP attempt failed", span( "There is no zip utility in the path on this system. Please install a zip utility (e.g., 7-zip) and try again" ), footer = modalButton("OK"), size = "m", easyClose = TRUE ) ) return(invisible()) } } lib <- if ("radiant" %in% installed.packages()) "radiant" else "radiant.data" if (generate %in% c("To Rmd", "To R")) { cnt <- rstudio_context(type) if (radiant.data::is_empty(cnt$path) || !cnt$ext == type) { if (generate == "To Rmd") { report <- " } else { report <- " } } else { report <- cnt$content } } else { report <- input[[paste0(type, "_edit")]] } if (save_type == "Rmd + Data (zip)") { withProgress(message = "Preparing Rmd + Data zip file", value = 1, { currdir <- setwd(tempdir()) save(list = ls(envir = r_data), envir = r_data, file = "r_data.rda") setup_report(report, save_type = "Rmd", lib = lib) %>% fix_smart() %>% cat(file = "report.Rmd", sep = "\n") zip(file, c("report.Rmd", "r_data.rda"), flags = zip_info[1], zip = zip_info[2] ) setwd(currdir) }) } else if (save_type == "R + Data (zip)") { withProgress(message = "Preparing R + Data zip file", value = 1, { currdir <- setwd(tempdir()) save(list = ls(envir = r_data), envir = r_data, file = "r_data.rda") cat(report, file = "report.R", sep = "\n") zip(file, c("report.R", "r_data.rda"), flags = zip_info[1], zip = zip_info[2] ) setwd(currdir) }) } else if (save_type == "Rmd") { setup_report(report, save_type = "Rmd", lib = lib) %>% fix_smart() %>% cat(file = file, sep = "\n") } else if (save_type == "R") { cat(report, file = file, sep = "\n") } else { if (file.access(getwd(), mode = 2) == -1) { showModal( modalDialog( title = "Working directory is not writable", HTML( paste0( "<span> The working directory used by radiant (\"", getwd(), "\") is not writable. This is required to save a report. To save reports, restart radiant from a writable directory. Preferaby by setting up an Rstudio project folder. See <a href='https://support.rstudio.com/hc/en-us/articles/200526207-Using-Projects' target='_blank'> https://support.rstudio.com/hc/en-us/articles/200526207-Using-Projects</a> for more information </span>" ) ), footer = modalButton("OK"), size = "m", easyClose = TRUE ) ) return(invisible()) } options(radiant.rmarkdown = TRUE) if (type == "r") { report <- paste0("\n```{r echo = TRUE}\n", report, "\n```\n") } init <- setup_report(report, save_type = save_type, lib = lib) %>% fix_smart() withProgress(message = paste0("Saving report to ", save_type), value = 1, { if (isTRUE(rmarkdown::pandoc_available())) { tmp_fn <- tempfile(pattern = "report-", tmpdir = ".", fileext = ".Rmd") cat(init, file = tmp_fn, sep = "\n") if (!save_type %in% c("Notebook", "HTML")) { oop <- knitr::opts_chunk$get()$screenshot.force knitr::opts_chunk$set(screenshot.force = TRUE) on.exit(knitr::opts_chunk$set(screenshot.force = oop)) } out <- rmarkdown::render( tmp_fn, switch( save_type, Notebook = rmarkdown::html_notebook(highlight = "zenburn", theme = "cosmo", code_folding = "hide"), HTML = rmarkdown::html_document(highlight = "zenburn", theme = "cosmo", code_download = TRUE, df_print = "paged"), PDF = rmarkdown::pdf_document(), Word = rmarkdown::word_document( reference_docx = getOption("radiant.word_style", default = file.path(system.file(package = "radiant.data"), "app/www/style.docx")), ), Powerpoint = rmarkdown::powerpoint_presentation( reference_doc = getOption("radiant.powerpoint_style", default = file.path(system.file(package = "radiant.data"), "app/www/style.potx")) ) ), envir = r_data, quiet = TRUE, encoding = "UTF-8", output_options = list(pandoc_args = "--quiet") ) file.copy(out, file, overwrite = TRUE) file.remove(out, tmp_fn) } else { setup_report(report, add_yml = FALSE, type = save_type, lib = lib) %>% fix_smart() %>% knit_it_save() %>% cat(file = file, sep = "\n") } }) options(radiant.rmarkdown = FALSE) } }) } } update_report <- function( inp_main = "", fun_name = "", inp_out = list("", ""), cmd = "", pre_cmd = "result <- ", post_cmd = "", xcmd = "", outputs = c("summary", "plot"), inp = "result", wrap, figs = TRUE, fig.width = 7, fig.height = 7 ) { if (missing(wrap)) { lng <- nchar(pre_cmd) + nchar(fun_name) + nchar(post_cmd) + 2 if (!radiant.data::is_empty(inp_main)) { lng <- lng + sum(nchar(inp_main)) + sum(nchar(names(inp_main))) + length(inp_main) * 5 - 1 } wrap <- ifelse(lng > 70, TRUE, FALSE) } dctrl <- getOption("dctrl") depr <- function(x, wrap = FALSE) { cutoff <- ifelse (wrap, 20L, 55L) for (i in names(x)) { tmp <- x[[i]] wco <- ifelse(max(nchar(tmp)) > cutoff, cutoff, 55L) if (inherits(tmp, "fractions")) { if (length(tmp) > 1) { tmp <- paste0("c(", paste(tmp, collapse = ", "), ")") } else { tmp <- as.character(tmp) } } else { tmp <- deparse(tmp, control = dctrl, width.cutoff = wco) } if ((nchar(i) + sum(nchar(tmp)) < 70) | (length(tmp) == 2 & tmp[2] == ")")) { tmp <- paste0(tmp, collapse = "") } if (length(tmp) > 1) { if (grepl("^c\\(", tmp[1])) { tmp <- c("c(", sub("^c\\(", "", tmp)) } else { tmp <- c("list(", sub("^list\\(", "", tmp)) } if (tail(tmp, 1) != ")") { tmp <- c(sub("\\)$", "", tmp), ")") } } x[[i]] <- sub("^\\s+", "", tmp) %>% paste0(collapse = "\n ") %>% sub("[ ]+\\)", " \\)", .) } if (wrap) { x <- paste0(paste0(paste0("\n ", names(x)), " = ", x), collapse = ", ") x <- paste0("list(", x, "\n)") } else { x <- paste0(paste0(names(x), " = ", x), collapse = ", ") x <- paste0("list(", x, ")") } x } if (inp_main[1] != "") { cmd <- depr(inp_main, wrap = wrap) %>% sub("list", fun_name, .) %>% paste0(pre_cmd, .) %>% paste0(., post_cmd) %>% sub("dataset = \"([^\"]+)\"", "\\1", .) } lout <- length(outputs) if (lout > 0) { for (i in seq_len(lout)) { if (inp %in% names(inp_out[[i]])) { inp_rep <- inp inp <- inp_out[[i]][[inp]] inp_out[[i]][inp_rep] <- NULL } if (inp_out[i] != "" && length(inp_out[[i]]) > 0) { if (sum(nchar(inp_out[[i]])) > 40L) { cmd <- depr(inp_out[[i]], wrap = TRUE) %>% sub("list\\(", paste0(outputs[i], "\\(\n ", inp, ", "), .) %>% paste0(cmd, "\n", .) } else { cmd <- deparse(inp_out[[i]], control = dctrl, width.cutoff = 500L) %>% sub("list\\(", paste0(outputs[i], "\\(", inp, ", "), .) %>% paste0(cmd, "\n", .) } } else { cmd <- paste0(cmd, "\n", outputs[i], "(", inp, ")") } } } if (xcmd != "") cmd <- paste0(cmd, "\n", xcmd) if (length(input$rmd_generate) == 0) { type <- ifelse(state_init("r_generate", "Use Rmd") == "Use Rmd", "rmd", "r") } else { type <- ifelse(state_init("rmd_generate", "auto") == "Use R", "r", "rmd") } if (type == "r") { update_report_fun(cmd, type = "r") } else { if (figs) { cmd <- paste0("\n```{r fig.width = ", round(7 * fig.width / 650, 2), ", fig.height = ", round(7 * fig.height / 650, 2), ", dpi = 96}\n", cmd, "\n```\n") } else { cmd <- paste0("\n```{r}\n", cmd, "\n```\n") } update_report_fun(cmd, type = "rmd") } } update_report_fun <- function(cmd, type = "rmd", rfiles = FALSE) { isolate({ generate <- paste0(type, "_generate") sinit <- state_init(generate, "auto") editor <- paste0(type, "_edit") sel <- ifelse(type == "rmd", "Rmd", "R") if (sinit == "manual") { os_type <- Sys.info()["sysname"] if (os_type == "Windows") { withProgress(message = "Putting command in clipboard", value = 1, { cat(cmd, file = "clipboard") }) } else if (os_type == "Darwin") { withProgress(message = "Putting command in clipboard", value = 1, { out <- pipe("pbcopy") cat(cmd, file = out) close(out) }) } else if (os_type == "Linux") { showModal( modalDialog( title = "Copy-and-paste the code shown below", pre(cmd), footer = modalButton("Cancel"), size = "m", easyClose = TRUE ) ) } } else if (sinit == "To Rmd") { withProgress(message = "Putting code chunk in Rstudio", value = 1, { rstudioapi::insertText(Inf, fix_smart(cmd)) }) } else if (sinit == "To R") { withProgress(message = "Putting R-code in Rstudio", value = 1, { gsub("(```\\{.*\\}\n)|(```\n)", "", fix_smart(paste0("\n", cmd, "\n"))) %>% rstudioapi::insertText(Inf, .) }) } else { if (radiant.data::is_empty(r_state[[editor]])) { r_state[[editor]] <<- paste0(" } else { r_state[[editor]] <<- paste0(fix_smart(r_state[[editor]]), "\n", cmd) } withProgress(message = paste0("Updating Report > ", sel), value = 1, { shinyAce::updateAceEditor( session, editor, value = fix_smart(r_state[[editor]]) ) }) } if (!rfiles) { if (state_init(paste0(type, "_switch"), "switch") == "switch") { updateTabsetPanel(session, "nav_radiant", selected = sel) } } }) }
suff.stat <- function(ModelMatrix, Table) { nr <- nrow(ModelMatrix) S <- rep(0,nr) for( h in 1:nr) { S[h] <- (Table) %*% ModelMatrix[h,] } return(S) }
pick.model <- function(...) UseMethod("pick.model") pick.model.HOF.list <- function(object, ...) { out <- sapply(object, function(x) pick.model.HOF(object=x, ...)) return(out) } pick.model.HOF <- function (object, level = 0.95, test = c('AICc', 'BIC', 'AIC','Dev'), modeltypes, penal = 'df', gam = FALSE, selectMethod = c('bootselect.lower', 'bootselect.always', 'IC.weight', 'pick.model'), silent = FALSE, ...) { selectMethod <- match.arg(selectMethod) if(is.null(object$bootstrapmodels) & selectMethod != 'pick.model') { if(getOption("eHOF.bootselectmessage")) { message('Bootselect or IC.weight method only possible after bootstrapping.') options(eHOF.bootselectmessage = FALSE)} selectMethod <- 'pick.model' } test <- match.arg(test) if(missing(modeltypes)) modeltypes <- eHOF.modelnames if(length(penal)==1) { penal <- switch(penal, df= sapply(object$models, function(x) length(x$par)), h = c(I=1, II=2, III=3, IV=4, V=5, VI=6, VII=7), m = c(I=1, II=2, III=2, IV=3, V=4, VI=4, VII=5) ) } rejectedmodels <- sapply(object$models, function(x) is.na(x$deviance)) if(gam) { gamfun <- function(x, bs = 'cr', k = -1, ...) gam(x$y ~ s(x$x, bs=bs, k=k),family = get(x$family), scale = 0, ...) pg <- gamfun(object, ...) object$models$GAM <- pg modeltypes <- c(modeltypes, 'GAM') if('GAM' %in% names(penal)) penal['GAM'] <- sum(pg$edf) else penal <- c(penal, GAM=sum(pg$edf)) } if (test == "AIC") { k <- 2 p <- penal[match(names(penal), names(object$models))] ic <- -2 * logLik(object) + k * p ic <- ic[names(ic) %in% modeltypes] model <- names(ic[!rejectedmodels])[which.min(ic[!rejectedmodels])] } if (test == "AICc") { k <- 2 p <- penal[match(names(penal), names(object$models))] ic <- -2 * logLik(object) + k * p + (2*k*(k + 1))/(object$nobs - k - 1) ic <- ic[names(ic) %in% modeltypes] model <- names(ic[!rejectedmodels])[which.min(ic[!rejectedmodels])] } if( test == 'BIC') { k <- log(object$nobs) p <- penal[match(names(penal), names(object$models))] ic <- -2 * logLik(object) + k * p ic <- ic[names(ic) %in% modeltypes] model <- names(ic[!rejectedmodels])[which.min(ic[!rejectedmodels])] } if (test == "Dev") { ic <- deviance(object) ic <- ic[names(ic) %in% modeltypes] model <- names(ic[!rejectedmodels])[which.min(ic[!rejectedmodels])] } if(selectMethod == 'bootselect.lower') { modboot <- names(which.max(table(object$bootstrapmodels))) if(eHOF.modelnames[match(modboot, eHOF.modelnames)] < eHOF.modelnames[match(model, eHOF.modelnames)] ) if(!silent) message(object$y.name, ': Most frequent bootstrap model (',modboot, ') lower than original choice (', model, ',', object$bootstraptest,') by ', test, ' test.', sep='') if(!modboot %in% names(rejectedmodels)[rejectedmodels]) model <- modboot } if(selectMethod == 'bootselect.always') { modboot <- names(which.max(table(object$bootstrapmodels))) if(modboot != model ) if(!silent) message(object$y.name, ': Most frequent bootstrap model (',modboot, ') not equal to original choice (', model, ',', object$bootstraptest,') by ', test, ' test.', sep='') if(!modboot %in% names(rejectedmodels)[rejectedmodels]) model <- modboot } if(selectMethod == 'IC.weights') { dev <- deviance(object); ll <- logLik(object) AICc <- -2 * ll + 2 * penal + 2 * penal *(penal + 1)/(object$nobs - penal - 1) d.AICc <- AICc - min(AICc, na.rm=TRUE) AICc.W <- round(exp(-0.5*AICc)/ sum(exp(-0.5*AICc), na.rm=TRUE),4) model.weight <- names(which.max(AICc.W[!rejectedmodels])) if(eHOF.modelnames[match(model.weight, eHOF.modelnames)] < eHOF.modelnames[match(model, eHOF.modelnames)]) { if(!silent) message('Selection method: Highest ', test, ' weights.\n', object$y.name, ': Original model choice (', model, ') lower than the model with highest IC weight (', model.weight, ') is chosen instead.', sep='') if(!model.weight %in% names(rejectedmodels)[rejectedmodels]) model <- model.weight } } return(model) }
library(dynbenchmark) library(png) library(tidyverse) library(GNG) library(tidygraph) library(ggraph) experiment("manual_ti") run_id <- "mds_robrechtc_1" run <- read_rds(derived_file(paste0(run_id, ".rds"))) processed_file <- derived_file(c(run_id, '_run', '.png')) processx::run(commandline=dynutils::pritt("inkscape -z {derived_file(c(run_id, '.svg'))} -e={processed_file} -d=100")) png <- readPNG(processed_file) red <- png[, , 1] - png[, , 2] coordinates <- red %>% reshape2::melt(varnames=c("y", "x"), value.var=value) %>% as_tibble() %>% filter(value > 0.5) box_height <- dim(red)[[1]]/run$nrow box_width <- dim(red)[[2]]/run$ncol coordinates <- coordinates %>% mutate( col = floor((x-1)/box_width) + 1, row = floor((y-1)/box_height), box_id = (row * run$ncol) + col ) coordinates %>% filter(y<200) %>% ggplot() + geom_point(aes(x, -y, color=factor(box_id))) process_coordinates <- function(coordinates) { data <- coordinates %>% select(x, y) %>% as.matrix() result <- GNG::gng(data, max_nodes=50, assign_cluster=F) graph <- result$edges %>% as_tbl_graph() %>% activate(nodes) %>% left_join(result$nodes %>% mutate(index=as.character(index)) %>% rename(id=name), by=c("name"="index")) %>% left_join(result$node_space %>% as.data.frame() %>% tibble::rownames_to_column("id"), "id") graph } coordinates_split <- coordinates %>% split(coordinates$box_id) graphs <- tibble(graph = map(coordinates_split, process_coordinates), box_id = as.numeric(names(coordinates_split))) graphs <- graphs %>% left_join(run$spaces, by="box_id") map(graphs$graph[16:16], function(graph) { ggraph(graph) + geom_node_point() + geom_edge_link() }) %>% cowplot::plot_grid(plotlist=.) merge_graph <- function(graph, max_dist) { distances <- graph %>% activate(nodes) %>% as_tibble() %>% select(x, y) %>% as.matrix() %>% dist() %>% as.matrix() rownames(distances) <- colnames(distances) <- graph %>% pull(name) close <- distances < maxdist n_close <- close %>% apply(1, sum) close <- close[order(n_close, decreasing=T), order(n_close, decreasing=T)] labels <- setNames(rownames(distances), rownames(distances)) for (i in rownames(close)) { which_close <- names(which(close[i, ])) close[which_close, ] <- FALSE close[, which_close] <- FALSE labels[which_close] <- i } nodes <- graph %>% activate(nodes) %>% as_tibble() %>% mutate(new = labels) %>% group_by(new) %>% summarise(x = mean(x), y=mean(y)) %>% rename(name=new) edges <- graph %>% activate(edges) %>% as_tibble() %>% mutate(from = labels[from], to = labels[to]) %>% mutate(from = match(from, nodes$name), to = match(to, nodes$name)) %>% filter(from!=to) %>% mutate(fromto = map2_chr(from, to, ~paste0(sort(c(.x, .y)), collapse=" group_by(fromto) %>% filter(row_number() == 1) %>% ungroup() new_graph <- tbl_graph(nodes, edges) new_graph } maxdist <- box_width / 10 graphs$graph_merged <- map(graphs$graph, merge_graph, maxdist) map(graphs$graph_merged[1:20], function(graph) { ggraph(graph) + geom_node_point() + geom_edge_link() }) %>% cowplot::plot_grid(plotlist=.) global_x_scale <- 1.15 global_y_scale <- 1.15 scale_graph <- function(graph, box_id) { space <- run$spaces %>% filter(box_id == !!box_id) graph %>% activate(nodes) %>% mutate( x = x - box_width * ((box_id-1) %% run$ncol), y = y - box_height * floor((box_id-1) / run$ncol), y = box_height - y, x = x/box_width, y = y/box_height ) %>% mutate( x = (x - 0.5) * global_x_scale + 0.5, y = (y - 0.5) * global_y_scale + 0.5 ) %>% mutate( x = x * space$x_scale + space$x_shift, y = y * space$y_scale + space$y_shift ) } graphs$graph_scaled <- map2(graphs$graph_merged, graphs$box_id, scale_graph) graphs[100:110, ] %>% pmap(function(graph_scaled, space, ...) { ggraph(graph_scaled) + geom_point(aes(Comp1, Comp2), data=space) + geom_edge_link(edge_colour="darkred", edge_width=4)+ geom_node_point(color="red") }) %>% cowplot::plot_grid(plotlist=.) predictions_list <- graphs %>% pmap(function(box_id, graph_scaled, space, ...) { print(box_id) cluster_space <- graph_scaled %>% activate(nodes) %>% as_tibble() %>% select(x, y) %>% as.matrix() rownames(cluster_space) <- seq_len(nrow(cluster_space)) cluster_network <- graph_scaled %>% activate(edges) %>% as_tibble() %>% mutate_all(as.character) %>% mutate(directed=F, length=1) sample_space <- space %>% .[, c("Comp1", "Comp2")] %>% magrittr::set_colnames(c("x", "y")) %>% magrittr::set_rownames(space$cell_id) out <- dynmethods:::project_cells_to_segments(cluster_network, cluster_space, sample_space) wrap_prediction_model( cell_ids = space$cell_id, milestone_ids = out$milestone_ids, milestone_network = out$milestone_network, progressions = out$progressions, space = out$space_df, graph_scaled = graph_scaled ) }) predictions <- tibble(prediction = predictions_list, dataset_id = graphs$id) datasets <- read_rds(derived_file("datasets.rds", experiment_id="01-datasets/05-dataset_characterisation")) datasets <- datasets %>% slice(match(run$spaces$id, id)) controls <- map(datasets %>% filter(dataset_group == "control" & id != "control_BA") %>% pull(id), function(dataset_id) { print(dataset_id) dataset <- extract_row_to_list(datasets, which(datasets$id == dataset_id)) dataset$geodesic_dist <- dynutils::compute_tented_geodesic_distances(dataset) prediction <- extract_row_to_list(predictions, which(predictions$dataset_id == dataset_id))$prediction prediction$geodesic_dist <- dynutils::compute_tented_geodesic_distances(prediction) plot = dynplot::plot_default(prediction) plot tibble( scores = dyneval::calculate_metrics(dataset, prediction, c("correlation", "edge_flip", "rf_mse"))$summary %>% select(correlation, edge_flip) %>% list(), plot = list(plot), dataset_id = dataset_id ) %>% unnest(scores) }) %>% bind_rows() controls predictions %>% write_rds(derived_file(pritt("predictions_{run$run_id}.rds"))) qsub:::rsync_remote( remote_dest = "prism", path_dest = derived_file() %>% gsub(dynbenchmark::get_dynbenchmark_folder(), qsub:::run_remote("echo $DYNBENCHMARK_PATH", "prism")$cmd_out, .), remote_src = "", path_src = derived_file() )
lsqnonlin <- function(fun, x0, options = list(), ...) { stopifnot(is.numeric(x0)) opts <- list(tau = 1e-3, tolx = 1e-8, tolg = 1e-8, maxeval = 700) namedOpts <- match.arg(names(options), choices = names(opts), several.ok = TRUE) if (!is.null(names(options))) opts[namedOpts] <- options tau <- opts$tau tolx <- opts$tolx tolg <- opts$tolg maxeval <- opts$maxeval fct <- match.fun(fun) fun <- function(x) fct(x, ...) n <- length(x0) m <- length(fun(x0)) x <- x0; r <- fun(x) f <- 0.5 * sum(r^2); J <- jacobian(fun, x) g <- t(J) %*% r; ng <- Norm(g, Inf) A <- t(J) %*% J mu <- tau * max(diag(A)) nu <- 2; nh <- 0 errno <- 0 k <- 1 while (k < maxeval) { k <- k + 1 R <- chol(A + mu*eye(n)) h <- c(-t(g) %*% chol2inv(R)) nh <- Norm(h); nx <- tolx + Norm(x) if (nh <= tolx * nx) {errno <- 1; break} xnew <- x + h; h <- xnew - x dL <- sum(h * (mu*h - g))/2 rn <- fun(xnew) fn <- 0.5 * sum(rn^2); Jn <- jacobian(fun, xnew) if (length(rn) != length(r)) {df <- f - fn } else {df <- sum((r - rn) * (r + rn))/2} if (dL > 0 && df > 0) { x <- xnew; f <- fn; J <- Jn; r <- rn; A <- t(J) %*% J; g <- t(J) %*% r; ng <- Norm(g,Inf) mu <- mu * max(1/3, 1 - (2*df/dL - 1)^3); nu <- 2 } else { mu <- mu*nu; nu <- 2*nu } if (ng <= tolg) { errno <- 2; break } } if (k >= maxeval) errno <- 3 errmess <- switch(errno, "Stopped by small x-step.", "Stopped by small gradient.", "No. of function evaluations exceeded.") return(list(x = c(xnew), ssq = sum(fun(xnew)^2), ng = ng, nh = nh, mu = mu, neval = k, errno = errno, errmess = errmess)) } lsqcurvefit <- function(fun, p0, xdata, ydata) { stopifnot(is.function(fun), is.numeric(p0)) stopifnot(is.numeric(xdata), is.numeric(ydata)) if (length(xdata) != length(ydata)) stop("Aguments 'xdata', 'ydata' must have the same length.") fn <- function(p, x) fun(p, xdata) - ydata lsqnonlin(fn, p0) }
devtools::check_rhub(interactive = FALSE) devtools::check_win_devel() devtools::check_win_release() devtools::check_win_oldrelease() devtools::spell_check(use_wordlist = TRUE) devtools::release_checks() devtools::release()
filter.variants <- function( variants, caller = c('vardict', 'ides', 'mutect', 'pgm', 'consensus', 'isis', 'varscan', 'lofreq'), config.file = NULL, verbose = FALSE ) { caller <- match.arg(caller); filters <- get.varitas.options(paste0('filters.', caller)); if( !in.varitas.options( paste0('filters.', caller) ) ) { error.message <- paste('No filters found in VariTAS settings for variant caller', caller); stop(error.message); } if( !is.data.frame(variants) ) { stop('variants must be a data frame'); } print(filters); if( !is.null(config.file) ) { config <- yaml::yaml.load_file(config.file); config$pkgname <- get.varitas.options('pkgname'); options(varitas = config); } names(variants) <- stringr::str_replace( names(variants), pattern = 'TUMOR', replacement = 'TUMOUR' ); old.names <- names(variants); names(variants) <- gsub('.DEPTH', '.DP', names(variants)); paired <- FALSE; if( any(grepl('NORMAL', names(variants))) ) { paired <- TRUE; } filtered.variants <- variants; if(verbose) { cat('\nApplying filters to', nrow(variants), 'calls from', caller, '\n'); } if( 'min_tumour_variant_reads' %in% names(filters) ) { tumour.af <- mean.field.value(filtered.variants, field = 'TUMOUR.AF', caller = caller); tumour.dp <- mean.field.value(filtered.variants, field = 'TUMOUR.DP', caller = caller); passed.filter <- (tumour.dp*tumour.af >= filters$min_tumour_variant_reads) | is.na(tumour.dp*tumour.af); filtered.variants <- filtered.variants[passed.filter, ]; if(verbose) { cat('Applied min_tumour_variant_reads filter, and removed', sum(!passed.filter), 'variants\n'); } } if( paired && 'max_normal_variant_reads' %in% names(filters) && caller != 'lofreq' ) { normal.af <- mean.field.value(filtered.variants, field = 'NORMAL.AF', caller = caller); normal.dp <- mean.field.value(filtered.variants, field = 'NORMAL.DP', caller = caller); passed.filter <- (normal.dp*normal.af <= filters$max_normal_variant_reads) | is.na(normal.dp*normal.af); filtered.variants <- filtered.variants[passed.filter, ]; if(verbose) { cat('Applied max_normal_variant_reads filter, and removed', sum(!passed.filter), 'variants\n'); } } if( 'min_tumour_depth' %in% names(filters) ) { tumour.dp <- mean.field.value(filtered.variants, field = 'TUMOUR.DP', caller = caller); passed.filter <- (tumour.dp >= filters$min_tumour_depth) | is.na(tumour.dp); filtered.variants <- filtered.variants[passed.filter, ]; if(verbose) { cat('Applied min_tumour_depth filter, and removed', sum(!passed.filter), 'variants\n'); } } if( paired && 'min_normal_depth' %in% names(filters) ) { normal.dp <- mean.field.value(filtered.variants, field = 'NORMAL.DP', caller = caller); passed.filter <- (normal.dp >= filters$min_normal_depth) | is.na(normal.dp); filtered.variants <- filtered.variants[passed.filter, ]; if(verbose) { cat('Applied min_normal_depth filter, and removed', sum(!passed.filter), 'variants\n'); } } if( 'min_tumour_allele_frequency' %in% names(filters) ) { tumour.af <- mean.field.value(filtered.variants, field = 'TUMOUR.AF', caller = caller); passed.filter <- (tumour.af >= filters$min_tumour_allele_frequency) | is.na(tumour.af); filtered.variants <- filtered.variants[passed.filter, ]; if(verbose) { cat('Applied min_tumour_allele_frequency filter, and removed', sum(!passed.filter), 'variants\n'); } } if( paired && 'max_normal_allele_frequency' %in% names(filters) && caller != 'lofreq' ) { normal.af <- mean.field.value(filtered.variants, field = 'NORMAL.AF', caller = caller); passed.filter <- (normal.af <= filters$max_normal_allele_frequency) | is.na(normal.af); filtered.variants <- filtered.variants[passed.filter, ]; if(verbose) { cat('Applied max_normal_allele_frequency filter, and removed', sum(!passed.filter), 'variants\n'); } } if( 'indel_min_tumour_allele_frequency' %in% names(filters) ) { mutation.type <- classify.variant(ref = filtered.variants$REF, alt = filtered.variants$ALT); tumour.af <- mean.field.value(filtered.variants, field = 'TUMOUR.AF', caller = caller); passed.filter <- ('indel' != mutation.type) | tumour.af >= filters$indel_min_tumour_allele_frequency | is.na(tumour.af); filtered.variants <- filtered.variants[passed.filter, ]; if(verbose) { cat('Applied indel_min_tumour_allele_frequency filter, and removed', sum(!passed.filter), 'variants\n'); } } if( 'min_quality' %in% names(filters) ) { qual <- mean.field.value(filtered.variants, field = 'QUAL', caller = caller); passed.filter <- (qual >= filters$min_quality) | is.na(qual); filtered.variants <- filtered.variants[passed.filter, ]; if(verbose) { cat('Applied min_quality filter, and removed', sum(!passed.filter), 'variants\n'); } } if( 'ct_min_tumour_allele_frequency' %in% names(filters) ) { tumour.af <- mean.field.value(filtered.variants, field = 'TUMOUR.AF', caller = caller); base.substitutions <- get.base.substitution(ref = filtered.variants$REF, alt = filtered.variants$ALT); base.substitutions[ is.na(base.substitutions) ] <- ''; passed.filter <- (base.substitutions != 'C>T') | (tumour.af >= filters$ct_min_tumour_allele_frequency) | is.na(tumour.af); filtered.variants <- filtered.variants[passed.filter, ]; if(verbose) { cat('Applied ct_min_tumour_allele_frequency filter, and removed', sum(!passed.filter), 'variants\n'); } } if( 'remove_1000_genomes' %in% names(filters) && filters$remove_1000_genomes ) { if( sum(grepl('1000g', names(variants) )) > 1 ) { stop('More than one column matching 1000g found.'); } passed.filter <- '.' == filtered.variants[ , grepl('1000g', names(variants))]; filtered.variants <- filtered.variants[passed.filter, ]; if(verbose) { cat('Applied remove_1000_genomes filter, and removed', sum(!passed.filter), 'variants\n'); } } if( 'remove_exac' %in% names(filters) && filters$remove_exac ) { if( sum(grepl('^ExAC', names(variants) )) > 1 ) { stop('More than one column matching ExAC found.'); } passed.filter <- '.' == filtered.variants[ , grepl('^ExAC', names(variants))] | as.numeric(filtered.variants[ , grepl('^ExAC', names(variants))]) < 0.01; filtered.variants <- filtered.variants[passed.filter, ]; if(verbose) { cat('Applied remove_exac filter, and removed', sum(!passed.filter), 'variants\n'); } } if( 'remove_germline_status' %in% names(filters) && filters$remove_germline_status ) { status.columns <- grepl('STATUS$', names(filtered.variants)); if( 1 == sum(status.columns) ) { passed.filter <- is.na(filtered.variants[, status.columns]) | filtered.variants[, status.columns] != 'Germline'; filtered.variants <- filtered.variants[passed.filter, ]; } if(verbose) { cat('Applied remove_germline_status filter, and removed', sum(!passed.filter), 'variants\n'); } } names(filtered.variants) <- old.names; return(filtered.variants); }
library(tinytest) library(ggiraph) library(ggplot2) library(xml2) source("setup.R") { eval(test_geom_layer, envir = list(name = "geom_bar_interactive")) }
image_modify_rgb_v=function(x, fun_r=NULL, fun_g=NULL, fun_b=NULL, alpha=FALSE, rescale_v=NULL, result="magick", res=144){ stopifnot(result %in% c("magick", "raster")) if ( ! grepl("magick", class(x)[1])) stop("x must be a picture read into R by magick::image_read.") x=as.raster(x) nrpic=nrow(x) ncpic=ncol(x) x=as.character(x) vv=farver::get_channel(x, channel="v", space="hsv")/360 if (!is.null(rescale_v)) vv=RESCALE_FUN_VEC(vv, para=rescale_v) if ( ! is.null(fun_r)){ rr=farver::get_channel(x, channel="r", space="rgb") if (is.function(fun_r)){ rr=rr*(1+(match.fun(fun_r)(vv)-vv)) } else if (is.list(fun_r)){ rr=rr*(1+(USE_INTERNAL_CURVE(vv, LIST=fun_r, cat_text=NULL)-vv)) } x=farver::set_channel(x, channel="r", value=rr, space="rgb") rr=NULL } if ( ! is.null(fun_g)){ gg=farver::get_channel(x, channel="g", space="rgb") if (is.function(fun_g)){ gg=gg*(1+(match.fun(fun_g)(vv)-vv)) } else if (is.list(fun_g)){ gg=gg*(1+(USE_INTERNAL_CURVE(vv, LIST=fun_g, cat_text=NULL)-vv)) } x=farver::set_channel(x, channel="g", value=gg, space="rgb") gg=NULL } if ( ! is.null(fun_b)){ bb=farver::get_channel(x, channel="b", space="rgb") if (is.function(fun_b)){ bb=bb*(1+(match.fun(fun_b)(vv)-vv)) } else if (is.list(fun_b)){ bb=bb*(1+(USE_INTERNAL_CURVE(vv, LIST=fun_b, cat_text=NULL)-vv)) } x=farver::set_channel(x, channel="b", value=bb, space="rgb") bb=NULL } x=matrix(x, nrow=nrpic, byrow=TRUE) if (result=="raster"){ return(x) } else { magick::image_read(x) } }
context("test-weigted.R") test_that("test of frequency method", { expect_equal(flag_weighted(1, data.frame(f=c("pe","b","p","p","u","e","d"),stringsAsFactors = F), data.frame(w=c(10,3,7,12,31,9,54))),c("d","54")) expect_equal(flag_weighted(1, data.frame(f=c("pe","b","p","p","up","e","d"),stringsAsFactors = F), data.frame(w=c(10,3,7,12,31,9,54))),c("p","60")) expect_equal(flag_weighted(1, data.frame(f=c(NA,NA,NA,NA),stringsAsFactors = F), data.frame(w=c(NA,NA,NA,NA))),c(NA,NA)) expect_equal(flag_weighted(1, data.frame(f=c(NA,"b",NA,NA),stringsAsFactors = F), data.frame(w=c(NA,NA,NA,NA))),c(NA,NA)) expect_equal(flag_weighted(1, data.frame(f=c(NA,"b",NA,"b"),stringsAsFactors = F), data.frame(w=c(NA,NA,NA,8))),c("b","8")) expect_equal(flag_weighted(1, data.frame(f=c(NA,"bd",NA,NA),stringsAsFactors = F), data.frame(w=c(NA,9,NA,7))),c("b, d","9")) expect_equal(flag_weighted(1, data.frame(f=c(NA,"bd",NA,"be"),stringsAsFactors = F), data.frame(w=c(NA,9,NA,7))),c("b","16")) expect_equal(flag_weighted(1, data.frame(f=c(NA,"bde",NA,NA),stringsAsFactors = F), data.frame(w=c(NA,10,NA,7))),c("b, d, e","10")) expect_equal(flag_weighted(1, data.frame(f=c(NA,"bd",NA,"d"),stringsAsFactors = F), data.frame(w=c(NA,9,NA,7))),c("d","16")) expect_equal(flag_weighted(1, data.frame(f=c(NA,"bde","deu","peb"),stringsAsFactors = F), data.frame(w=c(NA,9,5,7))),c("e","21")) expect_equal(flag_weighted(1, data.frame(f=c(NA,"bde","deu","peb"),stringsAsFactors = F), data.frame(w=c(NA,9,5,NA))),c("d, e","14")) })
simSettNum <- 2 compileCode <- TRUE library(rstan) ; library(HRW) nWarm <- 10000 nKept <- 10000 nThin <- 10 if (simSettNum == 1) { n <- 500 fTrue <- function(x) return(sin(4*pi*x^2)) muXTrue <- 0.5 ; sigmaXTrue <- 1/6 sigmaEpsTrue <- sqrt(0.35) phiTrue <- c(3,-3) } if (simSettNum == 2) { n <- 1000 fTrue <- function(x) return(3*exp(-78*(x-0.38)^2)+exp(-200*(x-0.75)^2) - x) muXTrue <- 0.5 ; sigmaXTrue <- 1/6 sigmaEpsTrue <- 0.35 phiTrue <- c(2.95,-2.95) } set.seed(2) x <- rnorm(n,muXTrue,sigmaXTrue) probxObs <- 1/(1+exp(-(phiTrue[1]+phiTrue[2]*x))) indicxObsTmp <- rbinom(n,1,probxObs) xObs <- x[indicxObsTmp == 1] nObs <- length(xObs) yxObs <- fTrue(xObs) + sigmaEpsTrue*rnorm(nObs) indicxObs <- rep(1,nObs) xUnobsTrue <- x[indicxObsTmp == 0] nUnobs <- length(xUnobsTrue) yxUnobs <- fTrue(xUnobsTrue) + sigmaEpsTrue*rnorm(nUnobs) indicxUnobs <- rep(0,nUnobs) r <- c(indicxObs,indicxUnobs) ncZ <- 30 knots <- seq(min(xObs),max(xObs),length = (ncZ+2))[-c(1,ncZ+2)] ZxObs <- outer(xObs,knots,"-") ZxObs <- ZxObs*(ZxObs>0) npRegMNARModel <- 'data { int<lower=1> nObs; int<lower=1> nUnobs; int<lower=1> n; int<lower=1> ncZ; vector[nObs] yxObs; vector[nUnobs] yxUnobs; vector[nObs] xObs; vector[ncZ] knots; matrix[nObs,ncZ] ZxObs; int<lower=0,upper=1> r[n]; real<lower=0> sigmaBeta; real<lower=0> sigmaMu; real<lower=0> sigmaPhi; real<lower=0> Ax; real<lower=0> Aeps; real<lower=0> Au; } transformed data { vector[n] y; for (i in 1:nObs) y[i] = yxObs[i]; for (i in 1:nUnobs) y[i+nObs] = yxUnobs[i]; } parameters { vector[2] beta; vector[ncZ] u; vector[2] phi; real muX; real<lower=0> sigmaX; real<lower=0> sigmaEps; real<lower=0> sigmaU; real xUnobs[nUnobs]; } transformed parameters { matrix[n,2] X; matrix[n,ncZ] Z; for (i in 1:nObs) { X[i,1] = 1 ; X[i,2] = xObs[i] ; Z[i] = ZxObs[i]; } for (i in 1:nUnobs) { X[i+nObs,1] = 1 ; X[i+nObs,2] = xUnobs[i]; for (k in 1:ncZ) Z[i+nObs,k] = (xUnobs[i]-knots[k])*step(xUnobs[i]-knots[k]); } } model { y ~ normal(X*beta+Z*u,sigmaEps); r ~ bernoulli_logit(X*phi); col(X,2) ~ normal(muX,sigmaX); u ~ normal(0,sigmaU) ; beta ~ normal(0,sigmaBeta); muX ~ normal(0,sigmaMu); phi ~ normal(0,sigmaPhi); sigmaX ~ cauchy(0,Ax); sigmaEps ~ cauchy(0,Aeps); sigmaU ~ cauchy(0,Au); }' allData <- list(nObs = nObs,nUnobs = nUnobs,n = (nObs+nUnobs), ncZ = ncZ,xObs = xObs,yxObs = yxObs,yxUnobs = yxUnobs,knots = knots, ZxObs = ZxObs,r = r,sigmaMu = 1e5,sigmaBeta = 1e5,sigmaPhi = 1e5, sigmaEps = 1e5,sigmaX = 1e5,Ax = 1e5,Aeps = 1e5,Au = 1e5) if (compileCode) stanCompilObj <- stan(model_code = npRegMNARModel,data = allData, iter = 1,chains = 1) stanObj <- stan(model_code = npRegMNARModel,data = allData,warmup = nWarm, iter = (nWarm + nKept),chains = 1,thin = nThin,refresh = 25, fit = stanCompilObj) betaMCMC <- NULL for (j in 1:2) { charVar <- paste("beta[",as.character(j),"]",sep = "") betaMCMC <- rbind(betaMCMC,extract(stanObj,charVar,permuted = FALSE)) } uMCMC <- NULL for (k in 1:ncZ) { charVar <- paste("u[",as.character(k),"]",sep = "") uMCMC <- rbind(uMCMC,extract(stanObj,charVar,permuted = FALSE)) } muXMCMC <- as.vector(extract(stanObj,"muX",permuted = FALSE)) sigmaXMCMC <- as.vector(extract(stanObj,"sigmaX",permuted = FALSE)) sigmaEpsMCMC <- as.vector(extract(stanObj,"sigmaEps",permuted = FALSE)) sigmaUMCMC <- as.vector(extract(stanObj,"sigmaU",permuted = FALSE)) phiMCMC <- NULL for (j in 1:2) { charVar <- paste("phi[",as.character(j),"]",sep = "") phiMCMC <- rbind(phiMCMC,extract(stanObj,charVar,permuted = FALSE)) } xUnobsMCMC <- NULL for (i in 1:nUnobs) { charVar <- paste("xUnobs[",as.character(i),"]",sep = "") xUnobsMCMC <- rbind(xUnobsMCMC,extract(stanObj,charVar,permuted = FALSE)) } cexVal <- 0.3 obsCol <- "darkblue" ; misCol <- "lightskyblue" estFunCol <- "darkgreen"; trueFunCol <- "indianred3" varBandCol <- "palegreen" ng <- 101 xg <- seq(min(x),max(x),length = ng) Xg <- cbind(rep(1,ng),xg) Zg <- outer(xg,knots,"-") Zg <- Zg*(Zg>0) fMCMC <- Xg%*%betaMCMC + Zg%*%uMCMC credLower <- apply(fMCMC,1,quantile,0.025) credUpper <- apply(fMCMC,1,quantile,0.975) fg <- apply(fMCMC,1,mean) par(mfrow = c(1,1),mai = c(1.02,0.82,0.82,0.42)) plot(xg,fg,type = "n",bty = "l",xlab = "x",ylab = "y",xlim = range(c(xObs,xUnobsTrue)), ylim = range(c(yxObs,yxUnobs))) polygon(c(xg,rev(xg)),c(credLower,rev(credUpper)),col = varBandCol,border = FALSE) lines(xg,fg,lwd = 2,col = estFunCol) lines(xg,fTrue(xg),lwd = 2,col = trueFunCol) points(xObs,yxObs,col = obsCol,cex = cexVal) points(xUnobsTrue,yxUnobs,col = misCol,cex = cexVal) legend(0.75,1.5,c("fully observed","x value unobserved"),col = c(obsCol,misCol), pch = rep(1,2),pt.lwd = rep(2,2)) legend(0.467,-1.2,c("true f","estimated f"),col = c(trueFunCol,estFunCol), lwd = rep(2,2)) indQ1 <- length(xg[xg <= quantile(xObs,0.25)]) fQ1MCMC <- fMCMC[indQ1,] indQ2 <- length(xg[xg <= quantile(xObs,0.50)]) fQ2MCMC <- fMCMC[indQ2,] indQ3 <- length(xg[xg <= quantile(xObs,0.75)]) fQ3MCMC <- fMCMC[indQ3,] parms <- list(cbind(muXMCMC,sigmaXMCMC,sigmaEpsMCMC,phiMCMC[1,],phiMCMC[2,], fQ1MCMC,fQ2MCMC,fQ3MCMC)) parNamesVal <- list(c(expression(mu[x])),c(expression(sigma[x])), c(expression(sigma[epsilon])), c(expression(phi[0])),c(expression(phi[1])), c("first quartile","of x"), c("second quart.","of x"), c("third quartile","of x")) summMCMC(parms,parNames = parNamesVal,numerSummCex = 1, KDEvertLine = FALSE,addTruthToKDE = c(muXTrue,sigmaXTrue,sigmaEpsTrue, phiTrue[1],phiTrue[2],fTrue(xg[indQ1]), fTrue(xg[indQ2]),fTrue(xg[indQ3]))) parms <- list(t(xUnobsMCMC[1:5,])) parNamesVal <- list(c(expression(x[1]^{"unobs"})), c(expression(x[2]^{"unobs"})), c(expression(x[3]^{"unobs"})), c(expression(x[4]^{"unobs"})), c(expression(x[5]^{"unobs"}))) summMCMC(parms,parNames = parNamesVal,KDEvertLine = FALSE,addTruthToKDE = x[1:5])
testthat::context('check_attach') testthat::describe('test check attach',{ testthat::skip_on_ci() nenv <- new.env() sinew:::check_attach('testthat::test_dir',nenv) it('already loaded',testthat::expect_true(length(ls(nenv))==0)) unloadNamespace('ggplot2') sinew:::check_attach('ggplot2::aes',nenv) it('not already loaded',testthat::expect_true('package:ggplot2'%in%nenv$toUnload)) })
"sumpos" <- function(v){sum(v[v>0])}
test_that("tuneIrace", { rdesc = makeResampleDesc("Holdout", stratify = TRUE, split = 0.1) ps1 = makeParamSet( makeNumericParam("cp", lower = 0.001, upper = 1), makeIntegerParam("minsplit", lower = 1, upper = 10) ) n = 100 ctrl = makeTuneControlIrace( maxExperiments = n, nbIterations = 1L, minNbSurvival = 1) tr1 = tuneParams(makeLearner("classif.rpart"), multiclass.task, rdesc, par.set = ps1, control = ctrl) expect_true(getOptPathLength(tr1$opt.path) >= 10 && getOptPathLength(tr1$opt.path) <= n) expect_number(tr1$y, lower = 0, upper = 0.3) ps2 = makeParamSet( makeNumericParam("C", lower = -5, upper = 5, trafo = function(x) 2^x), makeNumericParam("sigma", lower = -5, upper = 5, trafo = function(x) 2^x) ) n = 20 ctrl = makeTuneControlIrace( maxExperiments = n, nbIterations = 1L, minNbSurvival = 1) tr2 = tuneParams(makeLearner("classif.ksvm"), multiclass.task, rdesc, par.set = ps2, control = ctrl, measures = acc) expect_true(getOptPathLength(tr2$opt.path) >= 10 && getOptPathLength(tr2$opt.path) <= n) expect_number(tr2$y, lower = 0.8, upper = 1) }) test_that("tuneIrace works with dependent params", { ps = makeParamSet( makeDiscreteParam("kernel", values = c("vanilladot", "rbfdot")), makeNumericParam("sigma", lower = 1, upper = 2, requires = quote(kernel == "rbfdot")) ) lrn = makeLearner("classif.ksvm") rdesc = makeResampleDesc("Holdout") ctrl = makeTuneControlIrace( maxExperiments = 40, nbIterations = 2L, minNbSurvival = 1) tr = tuneParams(lrn, multiclass.task, rdesc, par.set = ps, control = ctrl) expect_true(getOptPathLength(tr$opt.path) >= 20 && getOptPathLength(tr$opt.path) <= 100) expect_true(!is.na(tr$y)) ps = makeParamSet( makeNumericParam("C", lower = -12, upper = 12, trafo = function(x) 2^x), makeDiscreteParam("kernel", values = c("vanilladot", "polydot", "rbfdot")), makeNumericParam("sigma", lower = -12, upper = 12, trafo = function(x) 2^x, requires = quote(kernel == "rbfdot")), makeIntegerParam("degree", lower = 2L, upper = 5L, requires = quote(kernel == "polydot")) ) ctrl = makeTuneControlRandom(maxit = 5L) rdesc = makeResampleDesc("Holdout") res = tuneParams("classif.ksvm", sonar.task, rdesc, par.set = ps, control = ctrl) }) test_that("tuneIrace works with logical params", { ps = makeParamSet( makeLogicalParam("scaled"), makeLogicalParam("shrinking") ) lrn = makeLearner("classif.ksvm", kernel = "vanilladot") rdesc = makeResampleDesc("Holdout", split = 0.3, stratify = TRUE) ctrl = makeTuneControlIrace( maxExperiments = 20, nbIterations = 1, minNbSurvival = 1) task = subsetTask(multiclass.task, c(1:10, 50:60, 100:110)) tr = tuneParams(lrn, task, rdesc, par.set = ps, control = ctrl) expect_true(getOptPathLength(tr$opt.path) >= 15 && getOptPathLength(tr$opt.path) <= 20) expect_true(!is.na(tr$y)) lrn2 = makeTuneWrapper(lrn, rdesc, par.set = ps, control = ctrl) z = holdout(lrn2, task, split = 0.5, stratify = TRUE) expect_true(getOptPathLength(tr$opt.path) >= 15 && getOptPathLength(tr$opt.path) <= 20) expect_true(!is.na(tr$y)) }) test_that("tuneIrace works with tune.threshold", { rdesc = makeResampleDesc("Holdout", stratify = TRUE, split = 0.1) ps = makeParamSet(makeIntegerParam("minsplit", lower = 1, upper = 3)) n = 20 ctrl = makeTuneControlIrace( maxExperiments = n, nbIterations = 1L, minNbSurvival = 1) expect_silent(tuneParams("classif.rpart", multiclass.task, rdesc, par.set = ps, control = ctrl)) }) test_that("tuneIrace uses digits", { rdesc = makeResampleDesc(method = "Holdout") ctrl = makeTuneControlIrace(maxExperiments = 30L, nbIterations = 1L) ps = makeParamSet(makeNumericParam("shrinkage", lower = pi * 1e-20, upper = 5.242e12)) lrn.tune = makeTuneWrapper("classif.gbm", resampling = rdesc, par.set = ps, control = ctrl, show.info = FALSE) res = suppressWarnings(resample(lrn.tune, task = multiclass.task, rdesc)) lrn = makeLearner("classif.rpart") ctrl = makeTuneControlIrace( maxExperiments = 30L, nbIterations = 1L, digits = 5L) ps = makeParamSet(makeNumericParam("cp", lower = 1e-5, upper = 1e-4)) lrn.tune = makeTuneWrapper(lrn, resampling = rdesc, par.set = ps, control = ctrl, show.info = FALSE) res = resample(lrn.tune, task = multiclass.task, rdesc) ctrl = makeTuneControlIrace(maxExperiments = 60L, digits = 4) ps = makeParamSet(makeNumericParam("cp", lower = 1e-5, upper = 1e-4)) lrn.tune = makeTuneWrapper(lrn, resampling = rdesc, par.set = ps, control = ctrl, show.info = FALSE) expect_error(resample(lrn.tune, task = multiclass.task, rdesc)) ctrl = makeTuneControlIrace(maxExperiments = 60L, digits = "a") ps = makeParamSet(makeNumericParam("cp", lower = 1e-5, upper = 1e-2)) lrn.tune = makeTuneWrapper(lrn, resampling = rdesc, par.set = ps, control = ctrl, show.info = FALSE) expect_error(resample(lrn.tune, task = multiclass.task, rdesc)) ctrl = makeTuneControlIrace(maxExperiments = 60L, digits = c(6L, 7L)) ps = makeParamSet(makeNumericParam("cp", lower = 1e-5, upper = 1e-2)) lrn.tune = makeTuneWrapper(lrn, resampling = rdesc, par.set = ps, control = ctrl, show.info = FALSE) expect_error(resample(lrn.tune, task = multiclass.task, rdesc)) }) test_that("makeTuneControlIrace handles budget parameter", { rdesc = makeResampleDesc("Holdout", stratify = TRUE, split = 0.1) ps = makeParamSet(makeIntegerParam("minsplit", lower = 1, upper = 3)) n = 20 expect_error(makeTuneControlIrace( budget = n, nbIterations = 1L, minNbSurvival = 1, maxExperiments = n + 2L)) expect_error(makeTuneControlIrace( budget = n + 2L, nbIterations = 1L, minNbSurvival = 1, maxExperiments = n)) ctrl = makeTuneControlIrace( budget = n, nbIterations = 1L, minNbSurvival = 1, maxExperiments = n) tr1 = tuneParams(makeLearner("classif.rpart"), multiclass.task, rdesc, par.set = ps, control = ctrl) expect_true(getOptPathLength(tr1$opt.path) <= n) }) test_that("Error in hyperparameter tuning with scientific notation for lower/upper boundaries ps = makeParamSet(makeNumericParam("shrinkage", lower = 4e-5, upper = 1e-4)) ctrl = makeTuneControlIrace(maxExperiments = 30L, nbIterations = 1L) rdesc = makeResampleDesc(method = "Holdout") lrn.tune = makeTuneWrapper("classif.gbm", resampling = rdesc, par.set = ps, control = ctrl) expect_silent(resample(lrn.tune, task = sonar.task, rdesc)) }) test_that("irace works with unnamed discrete values", { lrn = makeLearner("classif.rpart") ctrl = makeTuneControlIrace(maxExperiments = 30L, nbIterations = 1L) ps = makeParamSet( makeDiscreteParam("minsplit", c(2L, 7L)) ) expect_silent(tuneParams(lrn, multiclass.task, hout, par.set = ps, control = ctrl)) }) test_that("irace handles parameters with unsatisfiable requirement gracefully", { skip_on_os("windows") lrn = makeLearner("classif.J48") ctrl = makeTuneControlIrace( maxExperiments = 20L, nbIterations = 1L, minNbSurvival = 1L) ps = makeParamSet( makeNumericParam("C", 0.1, 0.3, requires = quote(R != R)), makeLogicalParam("R")) res = tuneParams(lrn, pid.task, hout, par.set = ps, control = ctrl) ps = makeParamSet( makeNumericParam("C", 0.1, 0.3), makeLogicalParam("R", requires = quote(C > 1))) expect_silent(tuneParams(lrn, sonar.task, hout, par.set = ps, control = ctrl)) })
expected <- eval(parse(text="integer(0)")); test(id=0, code={ argv <- eval(parse(text="list(TRUE, FALSE, structure(numeric(0), .Dim = c(0L, 0L), .Dimnames = list(NULL, NULL)))")); .Internal(order(argv[[1]], argv[[2]], argv[[3]])); }, o=expected);
dic_order <- function(x, dic, type) { if (!tibble::is_tibble(dic)) dic <- get_eurostat_dic(dic) n_type <- match(type, c("code", "label")) if (is.na(n_type)) stop("Invalid type.") y <- order(match(x, dic[[n_type]])) if (any(is.na(y))) stop("All orders were not found.") y }
library(fda) data(package='fda') help.start() daybasis65 = create.fourier.basis(c(0,365), 65) coefmat = matrix(0, 65, 35, dimnames=list( daybasis65$names, CanadianWeather$place) ) tempfd. = fd(coefmat, daybasis65) fdnames = list("Age (years)", "Child", "Height (cm)") fdnames = vector('list', 3) fdnames[[1]] = "Age (years)" fdnames[[2]] = "Child" fdnames[[3]] = "Height (cm)" station = vector('list', 35) station[[ 1]]= "St. Johns" station[[35]] = "Resolute" station = as.list(CanadianWeather$place) fdnames = list("Day", "Weather Station" = station, "Mean temperature (deg C)") unitRng = c(0,1) bspl2 = create.bspline.basis(unitRng, norder=2) plot(bspl2, lwd=2) tstFn1 = fd(c(-1, 2), bspl2) tstFn2 = fd(c( 1, 3), bspl2) par(mfrow=c(3,1)) fdsumobj = tstFn1+tstFn2 plot(tstFn1, lwd=2, xlab="", ylab="Line 1") plot(tstFn2, lwd=2, xlab="", ylab="Line 2") plot(fdsumobj, lwd=2, xlab="", ylab="Line1 + Line 2") fddifobj = tstFn2-tstFn1 plot(tstFn1, lwd=2, xlab="", ylab="Line 1") plot(tstFn2, lwd=2, xlab="", ylab="Line 2") plot(fddifobj, lwd=2, xlab="", ylab="Line2 - Line 1") fdprdobj = tstFn1 * tstFn2 plot(tstFn1, lwd=2, xlab="", ylab="Line 1") plot(tstFn2, lwd=2, xlab="", ylab="Line 2") plot(fdprdobj, lwd=2, xlab="", ylab="Line2 * Line 1") fdsqrobj = tstFn1^2 plot(tstFn1, lwd=2, xlab="", ylab="Line 1") plot(tstFn2, lwd=2, xlab="", ylab="Line 2") plot(fdsqrobj, lwd=2, xlab="", ylab="Line 1 ^2") a = 0.5 fdrootobj = fdsqrobj^a plot(tstFn1, lwd=2, xlab="", ylab="Line 1") plot(tstFn2, lwd=2, xlab="", ylab="Line 2") plot(fdrootobj, lwd=2, xlab="", ylab="sqrt(fdsqrobj)") fdrootobj = (fdsqrobj + 1)^a par(mfrow=c(2,1)) plot(fdsqrobj + 1, lwd=2, xlab="", ylab="fdsqrobj + 1") plot(fdrootobj, lwd=2, xlab="", ylab="sqrt(fdsqrobj + 1)") a = (-1) fdinvobj = fdsqrobj^a plot(fdsqrobj, lwd=2, xlab="", ylab="fdsqrobj") plot(fdinvobj, lwd=2, xlab="", ylab="1/fdsqrobj") fdinvobj = (fdsqrobj+1)^a plot(fdsqrobj + 1, lwd=2, xlab="", ylab="fdsqrobj + 1") plot(fdinvobj, lwd=2, xlab="", ylab="1/(fdsqrobj+1)") a = -0.99 fdpowobj = (fdsqrobj+1)^a plot(fdsqrobj + 1, lwd=2, xlab="", ylab="fdsqrobj + 1") plot(fdpowobj, lwd=2, xlab="", ylab="(fdsqrobj+1)^(-0.99)") Tempbasis = create.fourier.basis(yearRng, 65) Tempfd = smooth.basis(day.5, CanadianWeather$dailyAv[,,'Temperature.C'], Tempbasis)$fd meanTempfd = mean(Tempfd) sumTempfd = sum(Tempfd) par(mfrow=c(1,1)) plot((meanTempfd-sumTempfd*(1/35))) plot(Tempfd[35], lwd=1, ylim=c(-35,20)) lines(meanTempfd, lty=2) DmeanTempVec = eval.fd(day.5, meanTempfd, 1) plot(day.5, DmeanTempVec, type='l') harmaccelLfd = vec2Lfd(c(0,c(2*pi/365)^2, 0), c(0, 365)) LmeanTempVec = eval.fd(day.5, meanTempfd, harmaccelLfd) par(mfrow=c(1,1)) plot(day.5, LmeanTempVec, type="l", cex=1.2, xlab="Day", ylab="Harmonic Acceleration") abline(h=0) dayOfYearShifted = c(182:365, 1:181) tempmat = daily$tempav[dayOfYearShifted, ] tempbasis = create.fourier.basis(yearRng,65) temp.fd = smooth.basis(day.5, tempmat, tempbasis)$fd temp.fd$fdnames = list("Day (July 2 to June 30)", "Weather Station", "Mean temperature (deg. C)") plot(temp.fd, lwd=2, xlab='Day (July 1 to June 30)', ylab='Mean temperature (deg. C)') basis13 = create.bspline.basis(c(0,10), 13) tvec = seq(0,1,len=13) sinecoef = sin(2*pi*tvec) sinefd = fd(sinecoef, basis13, list("t","","f(t)")) op = par(cex=1.2) plot(sinefd, lwd=2) points(tvec*10, sinecoef, lwd=2) par(op) cat(MontrealTemp, file='MtlDaily.txt') MtlDaily = matrix(scan("MtlDaily.txt",0),34,365) thawdata = t(MtlDaily[,16:47]) daytime = ((16:47)+0.5) plot(daytime, apply(thawdata,1,mean), "b", lwd=2, xlab="Day", ylab="Temperature (deg C)", cex=1.2) thawbasis = create.bspline.basis(c(16,48),7) thawbasismat = eval.basis(thawbasis, daytime) thawcoef = solve(crossprod(thawbasismat), crossprod(thawbasismat,thawdata)) thawfd = fd(thawcoef, thawbasis, list("Day", "Year", "Temperature (deg C)")) plot(thawfd, lty=1, lwd=2, col=1) plotfit.fd(thawdata[,1], daytime, thawfd[1], lty=1, lwd=2, main='') omega = 2*pi/365 thawconst.basis = create.constant.basis(thawbasis$rangeval) betalist = vector("list", 3) betalist[[1]] = fd(0, thawconst.basis) betalist[[2]] = fd(omega^2, thawconst.basis) betalist[[3]] = fd(0, thawconst.basis) harmaccelLfd. = Lfd(3, betalist) accelLfd = int2Lfd(2) harmaccelLfd.thaw = vec2Lfd(c(0,omega^2,0), thawbasis$rangeval) all.equal(harmaccelLfd.[-1], harmaccelLfd.thaw[-1]) class(accelLfd) class(harmaccelLfd) Ltempmat = eval.fd(day.5, temp.fd, harmaccelLfd) D2tempfd = deriv.fd(temp.fd, 2) Ltempfd = deriv.fd(temp.fd, harmaccelLfd) Bspl2 = create.bspline.basis(nbasis=2, norder=1) Bspl3 = create.bspline.basis(nbasis=3, norder=2) corrmat = array(1:6/6, dim=2:3) bBspl2.3 = bifd(corrmat, Bspl2, Bspl3) help(fd) help(Lfd)
testthat::expect_equal(x, -999)
test_that("tbl_at_vars() treats `NULL` as empty inputs", { expect_identical(tbl_at_vars(mtcars, vars(NULL)), tbl_at_vars(mtcars, vars())) expect_identical( tibble::remove_rownames(mutate_at(mtcars, vars(NULL), `*`, 100)), tibble::remove_rownames(mtcars) ) }) test_that("lists of formulas are auto-named", { df <- tibble(x = 1:3, y = 4:6) out <- df %>% summarise_all(list(~ mean(.), ~sd(.x, na.rm = TRUE))) expect_named(out, c("x_mean", "y_mean", "x_sd", "y_sd")) out <- df %>% summarise_all(list(foobar = ~ mean(.), ~sd(.x, na.rm = TRUE))) expect_named(out, c("x_foobar", "y_foobar", "x_sd", "y_sd")) }) test_that("colwise utils gives meaningful error messages", { expect_snapshot(error = TRUE, tbl_at_vars(iris, raw(3))) expect_snapshot(error = TRUE, tbl_if_vars(iris, list(identity, force), environment()) ) .funs <- as_fun_list(list(identity, force), caller_env()) expect_snapshot(error = TRUE, tbl_if_vars(iris, .funs, environment()) ) })
makeFits_initial = function(paths, amplitude, intercept) { for(i in 1:length(paths)){ if (!any(colnames(paths[[i]])==c("distance","oxygen"))) {stop('data frame does not contain columns named distance and oxygen')} } if (! is.atomic(amplitude) || !length(amplitude)==1) {stop('amplitude needs to be a single value')} if (! is.atomic(intercept) || !length(intercept)==1) {stop('intercept needs to be a single value')} for(i in 1:length(paths)){if (any(is.na(paths[[i]]))) {stop('Data has NAs')}} fits = c() for(i in 1:length(paths)) { data = paths[[i]] curve = sineFit(data,amplitude,intercept, method = "initial") fit = convertParameters(curve) fit$predictedMin = fit$intercept - abs(fit$amplitude) fit$predictedMax = fit$intercept + abs(fit$amplitude) fit$observedMin = min(data$oxygen) fit$observedMax = max(data$oxygen) fit$MSE = mean((predict(curve)-data$oxygen)^2) fit$PearsonCorrelation = stats::cor(predict(curve),paths[[i]]$oxygen,method="pearson") fits = rbind(fits, as.numeric(fit)) } fits = data.frame(fits) colnames(fits) = c("amplitude","intercept","x0","X","birth","predictedMin", "predictedMax","observedMin","observedMax","MSE","Pearson") return(fits) }
awsimage <- function (object, hmax=4, aws=TRUE, varmodel=NULL, ladjust=1.25 , mask = NULL, xind = NULL, yind = NULL, wghts=c(1,1,1,1), scorr=TRUE, lkern="Plateau", plateau=NULL, homogen=TRUE, earlystop=TRUE, demo=FALSE, graph=FALSE, max.pixel=4.e2,clip=FALSE,compress=TRUE) { IQRdiff <- function(data) IQR(diff(data))/1.908 if(!check.adimpro(object)) { cat(" Consistency check for argument object failed (see warnings). object is returned.\"n") return(invisible(object)) } object <- switch(object$type, "hsi" = hsi2rgb(object), "yuv" = yuv2rgb(object), "yiq" = yiq2rgb(object), "xyz" = xyz2rgb(object), object) if(object$type=="RAW") stop("RAW-image, will be implemented in function awsraw later ") if(!is.null(object$call)) { warning("argument object is result of awsimage or awspimage. You should know what you do.") } args <- match.call() if(!is.null(mask)) { varmodel <- "None" scorr <- FALSE clip <- FALSE homogen <- FALSE earlystop <- FALSE } if(clip) object <- clip.image(object,xind,yind,compress=FALSE) if(object$compressed) object <- decompress.image(object) if(is.null(varmodel)) { varmodel <- if(object$gamma) "Constant" else "Linear" } bcf <- c(-.4724,1.1969,.22167,.48691,.13731,-1.0648) estvar <- toupper(varmodel) %in% c("CONSTANT","LINEAR","QUADRATIC") hpre <- 2. if(estvar) { dlw<-(2*trunc(hpre)+1) nvarpar <- switch(toupper(varmodel),CONSTANT=1,LINEAR=2,QUADRATIC=3,1) } else { nvarpar <- 1 } dimg <- dimg0 <- dim(object$img) imgtype <- object$type dv <- switch(imgtype,rgb=dimg[3],greyscale=1) if(length(wghts)<dv) wghts <- c(wghts,rep(1,dv-length(wghts))) else wghts <- pmin(.1,wghts) wghts <- switch(imgtype, greyscale=1, rgb = wghts[1:dv]) spcorr <- matrix(0,2,dv) h0 <- c(0,0) if( valid.index(xind,dimg[1]) || valid.index(yind,dimg[2])) mask <- NULL if(!is.null(mask)) { if(!is.logical(mask)||dim(mask)!=dimg[1:2]) { mask<-NULL warning("Argument mask changed to NULL") } else if(sum(mask)==0) mask<-NULL } if(!is.null(mask)){ xmask <- range((1:dimg[1])[apply(mask,1,any)]) ymask <- range((1:dimg[2])[apply(mask,2,any)]) xind <- xmask[1]:xmask[2] yind <- ymask[1]:ymask[2] n1 <- length(xind) n2 <- length(yind) n <- n1*n2 } else { if(is.null(xind)) xind <- 1:dimg[1] if(is.null(yind)) yind <- 1:dimg[2] n1 <- length(xind) n2 <- length(yind) n <- n1*n2 } dimg <- switch(imgtype,greyscale=c(n1,n2),rgb=c(n1,n2,dv)) mc.cores <- setCores(, reprt = FALSE) lkern <- switch(lkern, Triangle=1, Quadratic=2, Cubic=3, Plateau=4, 1) if (is.null(hmax)) hmax <- 4 wghts <- wghts/sum(wghts) dgf <- sum(wghts)^2/sum(wghts^2) if (aws) lambda <- ladjust*switch(imgtype,greyscale=16,rgb=7) else lambda <- 1e50 sigma2 <- switch(imgtype, "greyscale" = IQRdiff(object$img)^2, "rgb" = apply(object$img,3,IQRdiff)^2, IQRdiff(object$img)^2) sigma2 <- pmax(.01,sigma2) cat("Estimated variance (assuming independence): ", signif(sigma2/65635^2,4),"\n") if (!estvar) { if (length(sigma2)==1) { if(dv>1) sigma2 <- rep(sigma2,1) } else if (length(sigma2)==dv) { wghts <- wghts[1:dv]/sigma2 } } spmin <- plateau if(is.null(spmin)) spmin <- .25 maxvol <- getvofh2(hmax,lkern) kstar <- as.integer(log(maxvol)/log(1.25)) if(aws){ k <- if(estvar) 6 else 1 } else { cat("No adaptation method specified. Calculate kernel estimate with bandwidth hmax.\n") k <- kstar } if (demo && !graph) graph <- TRUE if(graph){ oldpar <- par(mfrow=c(1,3),mar=c(1,1,3,.25),mgp=c(2,1,0)) on.exit(par(oldpar)) graphobj0 <- object[-(1:length(object))[names(object)=="img"]] graphobj0$dim <- c(n1,n2) if(!is.null(.Options$adimpro.xsize)) max.x <- trunc(.Options$adimpro.xsize/3.2) else max.x <- 600 if(!is.null(.Options$adimpro.ysize)) max.y <- trunc(.Options$adimpro.ysize/1.2) else max.y <- 900 } bi <- rep(1,n) img <- theta <- switch(imgtype,greyscale=object$img[xind,yind], rgb=aperm(object$img[xind,yind,],c(3,1,2))) bi0 <- 1 coef <- matrix(0,nvarpar,dv) coef[1,] <- sigma2 vobj <- list(coef=coef,meanvar=sigma2) imgq995 <- switch(imgtype,greyscale=quantile(img[xind,yind],.995), rgb=apply(img[,xind,yind],1,quantile,.995)) if(scorr){ twohp1 <- 2*trunc(hpre)+1 pretheta <- .Fortran(C_awsimg0, as.integer(img), as.integer(n1), as.integer(n2), as.integer(dv), as.double(hpre), theta=integer(prod(dimg)), bi=double(n1*n2), as.integer(lkern), double(twohp1*twohp1), double(dv*mc.cores), PACKAGE="adimpro")$theta dim(pretheta) <- switch(imgtype, "greyscale" = dimg, "rgb" = dimg[c(3,1,2)]) spchcorr <- .Fortran(C_estcorr, as.double(switch(imgtype, greyscale=object$img[xind,yind]-pretheta, rgb=object$img[xind,yind,]-aperm(pretheta,c(2,3,1)))), as.integer(n1), as.integer(n2), as.integer(dv), scorr=double(2*dv), chcorr=double(max(1,dv*(dv-1)/2)), PACKAGE="adimpro")[c("scorr","chcorr")] spcorr <- spchcorr$scorr srh <- sqrt(hpre) spcorr <- matrix(pmin(.9,spcorr+ bcf[1]/srh+bcf[2]/hpre+ bcf[3]*spcorr/srh+bcf[4]*spcorr/hpre+ bcf[5]*spcorr^2/srh+bcf[6]*spcorr^2/hpre),2,dv) chcorr <- spchcorr$chcorr for(i in 1:dv) cat("Estimated spatial correlation in channel ",i,":",signif(spcorr[,i],2),"\n") if(dv>1) cat("Estimated correlation between channels (1,2):",signif(chcorr[1],2), " (1,3):",signif(chcorr[2],2), " (2,3):",signif(chcorr[3],2),"\n") } else { spcorr <- matrix(0,2,dv) chcorr <- numeric(max(1,dv*(dv-1)/2)) } if(!is.null(mask)) fix <- !mask[xind,yind] lambda0 <- 1e50 if(earlystop) fix <- rep(FALSE,n) else fix <- FALSE if(homogen) hhom <- rep(0,n) else hhom <- 0 total <- cumsum(1.25^(1:kstar))/sum(1.25^(1:kstar)) mc.cores <- setCores(,reprt=FALSE) while (k<=kstar) { hakt0 <- geth2(1,10,lkern,1.25^(k-1),1e-4) hakt <- geth2(1,10,lkern,1.25^k,1e-4) twohp1 <- 2*trunc(hakt)+1 spcorr <- pmax(apply(spcorr,1,mean),0) if(any(spcorr>0)) { h0<-numeric(length(spcorr)) for(i in 1:length(h0)) h0[i]<-geth.gauss(spcorr[i]) if(length(h0)<2) h0<-rep(h0[1],2) } if (any(spcorr>0)) { lcorr <- Spatialvar.gauss(hakt0,h0)/ Spatialvar.gauss(h0,1e-5)/Spatialvar.gauss(hakt0,1e-5) lambda0 <-lambda0*lcorr if(varmodel=="None") lambda0 <- lambda0*Varcor.gauss(h0) } if(is.null(mask)){ zobj <- .Fortran(C_awsvimg0, as.integer(img), fix=as.integer(fix), as.integer(n1), as.integer(n2), as.integer(n1*n2), as.integer(dv), as.double(vobj$coef), as.integer(nvarpar), as.double(vobj$meanvar), as.double(chcorr), hakt=as.double(hakt), hhom=as.double(hhom), as.double(lambda0), as.integer(theta), bi=as.double(bi), bi0=as.double(bi0), theta=integer(prod(dimg)), as.integer(lkern), as.double(spmin), as.double(sqrt(wghts)), double(twohp1*twohp1), as.integer(earlystop), as.integer(homogen), PACKAGE="adimpro")[c("bi","bi0","theta","hakt","hhom","fix")] } else { zobj <- .Fortran(C_mawsimg0, as.integer(img), as.integer(fix), as.integer(mask[xind,yind]), as.integer(n1), as.integer(n2), as.integer(dv), hakt=as.double(hakt), as.double(lambda0), as.integer(theta), bi=as.double(bi), bi0=as.double(bi0), theta=integer(prod(dimg)), as.integer(lkern), as.double(spmin), double(twohp1*twohp1), as.double(wghts), PACKAGE="adimpro")[c("bi","bi0","theta","hakt","hhom","fix")] } theta <- as.integer(zobj$theta) dim(theta) <- switch(imgtype,greyscale=dimg,rgb=dimg[c(3,1,2)]) bi <- zobj$bi bi0 <- zobj$bi0 hhom <- zobj$hhom fix <- zobj$fix rm(zobj) gc() dim(bi) <- dimg[1:2] if (graph) { graphobj <- graphobj0 class(graphobj) <- "adimpro" graphobj$img <- switch(imgtype, greyscale=object$img[xind,yind], rgb=object$img[xind,yind,]) show.image(graphobj,max.x=max.x,max.y=max.y,xaxt="n",yaxt="n") title("Observed Image") graphobj$img <- switch(imgtype,greyscale=theta,rgb=aperm(theta,c(2,3,1))) show.image(graphobj,max.x=max.x,max.y=max.y,xaxt="n",yaxt="n") title(paste("Reconstruction h=",signif(hakt,3))) graphobj$img <- matrix(as.integer(65534*bi/bi0),n1,n2) graphobj$type <- "greyscale" graphobj$gamma <- FALSE show.image(graphobj,max.x=max.x,max.y=max.y,xaxt="n",yaxt="n") title(paste("Adaptation (rel. weights):",signif(mean(bi)/bi0,3))) rm(graphobj) gc() } cat("Bandwidth",signif(hakt,3)," Progress",signif(total[k],2)*100,"% ") if(earlystop) cat(" pixels fixed: ",sum(fix)) if(homogen) cat(" mean radius of homog. regions ",signif(mean(hhom),3)) if(homogen) cat(" min radius of homog. regions ",signif(min(hhom),3)) cat("\n") if (scorr) { if(hakt > hpre){ spchcorr <- .Fortran(C_estcorr, as.double(switch(imgtype, greyscale=object$img[xind,yind]- theta, rgb=object$img[xind,yind,]- aperm(theta,c(2,3,1)))), as.integer(n1), as.integer(n2), as.integer(dv), scorr=double(2*dv), chcorr=double(max(1,dv*(dv-1)/2)), PACKAGE="adimpro")[c("scorr","chcorr")] spcorr <- spchcorr$scorr srh <- sqrt(hakt) spcorr <- matrix(pmin(.9,spcorr+ bcf[1]/srh+bcf[2]/hakt+ bcf[3]*spcorr/srh+bcf[4]*spcorr/hakt+ bcf[5]*spcorr^2/srh+bcf[6]*spcorr^2/hakt),2,dv) chcorr <- spchcorr$chcorr for(i in 1:dv) cat("Estimated spatial correlation in channel ",i,":",signif(spcorr[,i],2),"\n") if(dv>1) cat("Estimated correlation between channels (1,2):",signif(chcorr[1],2), " (1,3):",signif(chcorr[2],2), " (2,3):",signif(chcorr[3],2),"\n") } else { spcorr <- matrix(pmin(.9,spchcorr$scorr+ bcf[1]/srh+bcf[2]/hpre+ bcf[3]*spchcorr$scorr/srh+bcf[4]*spchcorr$scorr/hpre+ bcf[5]*spchcorr$scorr^2/srh+bcf[6]*spchcorr$scorr^2/hpre),2,dv) chcorr <- spchcorr$chcorr } } else { spcorr <- matrix(0,2,dv) chcorr <- numeric(max(1,dv*(dv-1)/2)) } if (estvar) { vobj <- switch(toupper(varmodel), CONSTANT=.Fortran(C_esigmac, as.integer(switch(imgtype, greyscale=object$img[xind,yind], rgb=object$img[xind,yind,])), as.integer(n1*n2), as.integer(dv), as.integer(switch(imgtype, greyscale=theta, rgb=aperm(theta,c(2,3,1)))), as.double(bi), as.integer(imgq995), coef=double(nvarpar*dv), meanvar=double(dv), PACKAGE="adimpro")[c("coef","meanvar")], LINEAR=.Fortran(C_esigmal, as.integer(switch(imgtype, greyscale=object$img[xind,yind], rgb=object$img[xind,yind,])), as.integer(n1*n2), as.integer(dv), as.integer(switch(imgtype, greyscale=theta, rgb=aperm(theta,c(2,3,1)))), as.double(bi), as.integer(imgq995), coef=double(nvarpar*dv), meanvar=double(dv), PACKAGE="adimpro")[c("coef","meanvar")], QUADRATIC=.Fortran(C_esigmaq, as.integer(switch(imgtype, greyscale=object$img[xind,yind], rgb=object$img[xind,yind,])), as.integer(n1*n2), as.integer(dv), as.integer(switch(imgtype, greyscale=theta, rgb=aperm(theta,c(2,3,1)))), as.double(bi), as.integer(imgq995), coef=double(nvarpar*dv), meanvar=double(dv), PACKAGE="adimpro")[c("coef","meanvar")] ) dim(vobj$coef) <- c(nvarpar,dv) for(i in 1:dv){ if(any(spcorr[,i]>.1) & vobj$meanvar[i]<sigma2[i]) { vobj$coef[,i] <- vobj$coef[,i]*sigma2[i]/vobj$meanvar[i] vobj$meanvar[i] <- sigma2[i] } } cat("Estimated mean variance",signif(vobj$meanvar/65635^2,3),"\n") } if (demo) readline("Press return") lambda0 <- lambda k <- k+1 } if(graph) par(oldpar) if(imgtype=="rgb") { object$img[xind,yind,] <- aperm(theta,c(2,3,1)) } else if(imgtype=="greyscale") { object$img[xind,yind] <- theta } ni <- array(1,dimg0[1:2]) ni[xind,yind] <- bi object$ni <- ni object$ni0 <- bi0 object$hmax <- hakt object$call <- args if(estvar) { if(varmodel=="Quadratic") { vobj$coef[1,] <- vobj$coef[1,]/65535^2 vobj$coef[2,] <- vobj$coef[2,]/65535 vobj$coef[3,] <- vobj$coef[3,] } else if(varmodel=="Linear") { vobj$coef[1,] <- vobj$coef[1,]/65535^2 vobj$coef[2,] <- vobj$coef[2,]/65535 } else vobj$coef <- vobj$coef/65535^2 object$varcoef <- vobj$coef object$wghts <- vobj$wghts } if(scorr) { object$scorr <- spcorr object$chcorr <- chcorr } invisible(if(compress) compress.image(object) else object) } awspimage <- function(object, hmax=12, aws=TRUE, degree=1, varmodel=NULL, ladjust=1.0, xind = NULL, yind = NULL, wghts=c(1,1,1,1), scorr=TRUE, lkern="Plateau", plateau=NULL, homogen=TRUE, earlystop=TRUE, demo=FALSE, graph=FALSE, max.pixel=4.e2, clip=FALSE, compress=TRUE){ IQRdiff <- function(img) IQR(diff(img))/1.908 gettheta <- function(ai,bi){ n1 <- dim(ai)[1] n2 <- dim(ai)[2] n <- n1*n2 dp1 <- dim(ai)[3] dp2 <- dim(bi)[3] dv <- dim(ai)[4] ind <- matrix(c(1, 2, 3, 4, 5, 6, 2, 4, 5, 7, 8, 9, 3, 5, 6, 8, 9,10, 4, 7, 8,11,12,13, 5, 8, 9,12,13,14, 6, 9,10,13,14,15),6,6)[1:dp1,1:dp1] theta <- ai for(i in 1:dv) { theta[,,,i] <- array(.Fortran(C_mpaws2, as.integer(n), as.integer(dp1), as.integer(dp2), as.double(ai[,,,i]), as.double(bi), theta=double(dp1*n), double(dp1*dp1), as.integer(ind),PACKAGE="adimpro")$theta,c(n1,n2,dp1)) } theta } if(!check.adimpro(object)) { cat(" Consistency check for argument object failed (see warnings). object is returned.\"n") return(invisible(object)) } object <- switch(object$type, "hsi" = hsi2rgb(object), "yuv" = yuv2rgb(object), "yiq" = yiq2rgb(object), "xyz" = xyz2rgb(object), object) if(!is.null(object$call)) { warning("argument object is result of awsimage or awspimage. You should know what you do.\"n") } args <- match.call() if(!(degree %in% c(1,2))) { warning("only polynomial degrees 1 and 2 implemented, original image is returned") return(object) } if(clip) object <- clip.image(object,xind,yind,compress=FALSE) if(object$compressed) object <- decompress.image(object) if(is.null(varmodel)) { varmodel <- if(object$gamma) "Constant" else "Linear" } estvar <- toupper(varmodel) %in% c("CONSTANT","LINEAR") hpre <- switch(degree,2.,3.) bcf <- switch(degree,c(-.4724,1.1969,.22167,.48691,.13731,-1.0648), c(-.69249,2.0552,.05379,1.6063,.28891,-1.907)) if(estvar) { dlw<-(2*trunc(hpre)+1) nvarpar <- switch(varmodel,Constant=1,Linear=2,1) } else nvarpar <- 1 dimg <- dimg0 <- dim(object$img) imgtype <- object$type dv <- switch(imgtype,rgb=dimg[3],greyscale=1) if(length(wghts)<dv) wghts <- c(wghts,rep(1,dv-length(wghts))) else wghts <- pmin(.1,wghts) wghts <- switch(imgtype, greyscale=1, rgb = wghts[1:dv]) spcorr <- matrix(0,2,dv) h0 <- c(0,0) if(is.null(xind)) xind <- 1:dimg[1] if(is.null(yind)) yind <- 1:dimg[2] n1 <- length(xind) n2 <- length(yind) n <- n1*n2 dimg <- c(n1,n2,dv) dp1 <- switch(degree+1,1,3,6) dp2 <- switch(degree+1,1,6,15) lkern <- switch(lkern, Triangle=1, Quadratic=2, Cubic=3, Plateau=4, 1) if (is.null(hmax)) hmax <- 12 wghts <- wghts/max(wghts) maxvol <- getvofh2(hmax,lkern) kstar <- as.integer(log(maxvol)/log(1.25)) if(aws){ k <- if(estvar) 6 else 1 } else { cat("No adaptation method specified. Calculate kernel estimate with bandwidth hmax.\n") k <- kstar } lambda <- if (aws) ladjust*switch(imgtype, greyscale=switch(degree,18.5,32), rgb = switch(degree,38,120)) else 1e50 sigma2 <- switch(imgtype, "greyscale" = IQRdiff(object$img)^2, "rgb" = apply(object$img,3,IQRdiff)^2, IQRdiff(object$img)^2) cat("Estimated variance: ", signif(sigma2/65635^2,4),"\n") if (!estvar) { vobj <- list(coef= sigma2, meanvar=sigma2) spcorr <- matrix(0,2,dv) } spmin <- 0 bi <- array(rep(1,n*dp2),c(dimg[1:2],dp2)) theta <- array(0,c(dimg,dp1)) theta[,,,1] <- switch(imgtype,greyscale=object$img[xind,yind],rgb=object$img[xind,yind,]) bi0 <- 1 ind <- matrix(c(1, 2, 3, 4, 5, 6, 2, 4, 5, 7, 8, 9, 3, 5, 6, 8, 9,10, 4, 7, 8,11,12,13, 5, 8, 9,12,13,14, 6, 9,10,13,14,15),6,6)[1:dp1,1:dp1] coef <- matrix(0,nvarpar,dv) coef[1,] <- sigma2 vobj <- list(coef=coef,meanvar=sigma2) imgq995 <- switch(imgtype,greyscale=quantile(object$img[xind,yind],.995), rgb=apply(object$img[xind,yind,],3,quantile,.995)) if(scorr){ twohp1 <- 2*trunc(hpre)+1 pretheta <- .Fortran(C_awsimg, as.integer(switch(imgtype, greyscale=object$img[xind,yind], rgb=object$img[xind,yind,])), as.integer(n1), as.integer(n2), as.integer(dv), as.double(hpre), theta=integer(prod(dimg)), bi=double(n1*n2), as.integer(lkern), double(twohp1*twohp1), double(dv), PACKAGE="adimpro")[c("theta","bi")] prebi <- pretheta$bi pretheta <- pretheta$theta spchcorr <- .Fortran(C_estcorr, as.double(switch(imgtype, greyscale=object$img[xind,yind], rgb=object$img[xind,yind,])-pretheta), as.integer(n1), as.integer(n2), as.integer(dv), scorr=double(2*dv), chcorr=double(max(1,dv*(dv-1)/2)), PACKAGE="adimpro")[c("scorr","chcorr")] spcorr <- spchcorr$scorr srh <- sqrt(hpre) spcorr <- matrix(pmin(.9,spcorr+ bcf[1]/srh+bcf[2]/hpre+ bcf[3]*spcorr/srh+bcf[4]*spcorr/hpre+ bcf[5]*spcorr^2/srh+bcf[6]*spcorr^2/hpre),2,dv) chcorr <- spchcorr$chcorr for(i in 1:dv) cat("Estimated spatial correlation in channel ",i,":",signif(spcorr[,i],2),"\n") if(dv>1) cat("Estimated correlation between channels (1,2):",signif(chcorr[1],2), " (1,3):",signif(chcorr[2],2), " (2,3):",signif(chcorr[3],2),"\n") } else { spcorr <- matrix(0,2,dv) chcorr <- numeric(max(1,dv*(dv-1)/2)) } if (estvar) { vobj <- switch(toupper(varmodel), CONSTANT=.Fortran(C_epsigmac, as.integer(switch(imgtype, greyscale=object$img[xind,yind], rgb=object$img[xind,yind,])), as.integer(n1*n2), as.integer(dv), as.integer(pretheta), as.double(prebi), as.integer(imgq995), coef=double(nvarpar*dv), meanvar=double(dv), as.integer(dp1), PACKAGE="adimpro")[c("coef","meanvar")], LINEAR=.Fortran(C_epsigmal, as.integer(switch(imgtype, greyscale=object$img[xind,yind], rgb=object$img[xind,yind,])), as.integer(n1*n2), as.integer(dv), as.integer(pretheta), as.double(prebi), as.integer(imgq995), coef=double(nvarpar*dv), meanvar=double(dv), as.integer(dp1), PACKAGE="adimpro")[c("coef","meanvar")] ) if(any(is.na(vobj$coef))) vobj <- oldvobj dim(vobj$coef) <- c(nvarpar,dv) for(i in 1:dv){ if(any(spcorr[,i]>.1) & vobj$meanvar[i]<sigma2[i]) { vobj$coef[,i] <- vobj$coef[,i]*sigma2[i]/vobj$meanvar[i] vobj$meanvar[i] <- sigma2[i] } } cat("Estimated mean variance",signif(vobj$meanvar/65635^2,3),"\n") } rm(prebi) hincr <- sqrt(1.25) if (demo && !graph) graph <- TRUE if(graph){ oldpar <- par(mfrow=c(1,3),mar=c(1,1,3,.25),mgp=c(2,1,0)) on.exit(par(oldpar)) graphobj0 <- object[-(1:length(object))[names(object)=="img"]] graphobj0$dim <- c(n1,n2) if(!is.null(.Options$adimpro.xsize)) max.x <- trunc(.Options$adimpro.xsize/3.2) else max.x <- 600 if(!is.null(.Options$adimpro.ysize)) max.y <- trunc(.Options$adimpro.ysize/1.2) else max.y <- 900 } hw <- degree+.1 lambda0 <- 1e50 total <- cumsum(1.25^(1:kstar))/sum(1.25^(1:kstar)) while (k<=kstar) { hakt0 <- geth2(1,10,lkern,1.25^(k-1),1e-4) hakt <- geth2(1,10,lkern,1.25^k,1e-4) twohp1 <- 2*trunc(hakt)+1 twohhwp1 <- 2*trunc(hakt+hw)+1 spcorr <- pmax(apply(spcorr,1,mean),0) if(any(spcorr>0)) { h0<-numeric(length(spcorr)) for(i in 1:length(h0)) h0[i]<-geth.gauss(spcorr[i]) if(length(h0)<2) h0<-rep(h0[1],2) } if (any(spcorr>0)) { lcorr <- Spatialvar.gauss(hakt0,h0)/ Spatialvar.gauss(h0,1e-5)/Spatialvar.gauss(hakt0,1e-5) lambda0 <-lambda0*lcorr if(varmodel=="None") lambda0 <- lambda0*Varcor.gauss(h0) } zobj <- .Fortran(C_awspimg, as.integer(switch(imgtype, greyscale=object$img[xind,yind], rgb=object$img[xind,yind,])), as.integer(n1), as.integer(n2), as.integer(dv), as.integer(degree), as.double(hw), as.double(vobj$coef), as.integer(nvarpar), as.double(vobj$meanvar), hakt=as.double(hakt), as.double(lambda0), as.double(theta), bi=as.double(bi), bi0=double(1), ai=double(n*dp1*dv), as.integer(lkern), as.double(spmin), double(twohp1*twohp1), double(twohp1*twohp1), double(twohhwp1*twohhwp1), double(twohhwp1*twohhwp1), as.double(wghts), as.integer(ind), PACKAGE="adimpro")[c("bi","bi0","ai","hakt")] dim(zobj$ai) <- c(dimg[1:2],dp1,dv) bi <- zobj$bi dim(bi)<-c(n1,n2,dp2) theta <- gettheta(zobj$ai,bi) dim(theta)<-c(dimg[1:2],dp1,dv) bi0 <- max(zobj$bi0,bi[,,1]) rm(zobj) gc() if (graph) { graphobj <- graphobj0 class(graphobj) <- "adimpro" graphobj$img <- switch(imgtype, greyscale=object$img[xind,yind], rgb=object$img[xind,yind,]) show.image(graphobj,max.x=max.x,max.y=max.y,xaxt="n",yaxt="n") title("Observed Image") graphobj$img <- switch(imgtype, greyscale=array(pmin(65535,pmax(0,as.integer(theta[,,1,]))),dimg[1:2]), rgb=array(pmin(65535,pmax(0,as.integer(theta[,,1,]))),dimg)) show.image(graphobj,max.x=max.x,max.y=max.y,xaxt="n",yaxt="n") title(paste("Reconstruction h=",signif(hakt,3))) graphobj$img <- matrix(pmin(65535,pmax(0,as.integer(65534*bi[,,1]/bi0))),n1,n2) graphobj$type <- "greyscale" graphobj$gamma <- FALSE show.image(graphobj,max.x=max.x,max.y=max.y,xaxt="n",yaxt="n") title(paste("Adaptation (rel. weights):",signif(mean(bi[,,1])/bi0,3))) rm(graphobj) gc() } cat("Bandwidth",signif(hakt,3)," Progress",signif(total[k],2)*100,"% \n") if (scorr) { if(hakt > hpre){ spchcorr <- .Fortran(C_estcorr, as.double(switch(imgtype, greyscale=object$img[xind,yind], rgb=object$img[xind,yind,])- theta[,,1,]), as.integer(n1), as.integer(n2), as.integer(dv), scorr=double(2*dv), chcorr=double(max(1,dv*(dv-1)/2)), PACKAGE="adimpro")[c("scorr","chcorr")] spcorr <- spchcorr$scorr srh <- sqrt(hakt) spcorr <- matrix(pmin(.9,spcorr+ bcf[1]/srh+bcf[2]/hakt+ bcf[3]*spcorr/srh+bcf[4]*spcorr/hakt+ bcf[5]*spcorr^2/srh+bcf[6]*spcorr^2/hakt),2,dv) chcorr <- spchcorr$chcorr for(i in 1:dv) cat("Estimated spatial correlation in channel ",i,":",signif(spcorr[,i],2),"\n") if(dv>1) cat("Estimated correlation between channels (1,2):",signif(chcorr[1],2), " (1,3):",signif(chcorr[2],2), " (2,3):",signif(chcorr[3],2),"\n") } else { spcorr <- matrix(pmin(.9,spcorr+ bcf[1]/srh+bcf[2]/hakt+ bcf[3]*spcorr/srh+bcf[4]*spcorr/hakt+ bcf[5]*spcorr^2/srh+bcf[6]*spcorr^2/hakt),2,dv) chcorr <- spchcorr$chcorr } } else { spcorr <- matrix(0,2,dv) chcorr <- numeric(max(1,dv*(dv-1)/2)) } if (estvar && hakt > hpre) { oldvobj <- vobj vobj <- switch(toupper(varmodel), CONSTANT=.Fortran(C_epsigmac, as.integer(switch(imgtype, greyscale=object$img[xind,yind], rgb=object$img[xind,yind,])), as.integer(n1*n2), as.integer(dv), as.integer(theta[,,1,]), as.double(bi), as.integer(imgq995), coef=double(nvarpar*dv), meanvar=double(dv), as.integer(dp1), PACKAGE="adimpro")[c("coef","meanvar")], LINEAR=.Fortran(C_epsigmal, as.integer(switch(imgtype, greyscale=object$img[xind,yind], rgb=object$img[xind,yind,])), as.integer(n1*n2), as.integer(dv), as.integer(theta[,,1,]), as.double(bi), as.integer(imgq995), coef=double(nvarpar*dv), meanvar=double(dv), as.integer(dp1), PACKAGE="adimpro")[c("coef","meanvar")] ) if(any(is.na(vobj$coef))) vobj <- oldvobj dim(vobj$coef) <- c(nvarpar,dv) cat("Estimated mean variance",signif(vobj$meanvar/65635^2,3),"\n") } if (demo) readline("Press return") lambda0 <- lambda k <- k+1 } if(graph) par(oldpar) if(imgtype=="rgb") { object$img[xind,yind,] <- as.integer(pmin(65535,pmax(0,theta[,,1,]))) } else if(imgtype=="greyscale") { object$img[xind,yind] <- as.integer(pmin(65535,pmax(0,theta[,,1,1]))) } ni <- array(1,dimg0[1:2]) ni[xind,yind] <- bi[,,1] object$ni <- ni object$ni0 <- bi0 object$hmax <- hakt object$call <- args if(estvar) { if(varmodel=="Linear") { vobj$coef[1,] <- vobj$coef[1,]/65535^2 vobj$coef[2,] <- vobj$coef[2,]/65535 } else vobj$coef <- vobj$coef/65535^2 object$varcoef <- vobj$coef object$wghts <- vobj$wghts } if(scorr) { object$scorr <- spcorr object$chcorr <- chcorr } invisible(if(compress) compress.image(object) else object) } awsprop <- function (object, hmax=10, lambda=10, wghts=c(1,1,1,1), lkern="Plateau", plateau=NULL, earlystop=FALSE, homogen=FALSE, graph=FALSE, max.pixel=4.e2) { varmodel <- "Constant" IQRdiff <- function(data) IQR(diff(data))/1.908 if(!check.adimpro(object)) { cat(" Consistency check for argument object failed (see warnings). object is returned.\"n") return(invisible(object)) } object <- switch(object$type, "hsi" = hsi2rgb(object), "yuv" = yuv2rgb(object), "yiq" = yiq2rgb(object), "xyz" = xyz2rgb(object), object) if(!is.null(object$call)) { warning("argument object is result of awsimage or awspimage. You should know what you do.") } args <- match.call() if(object$compressed) object <- decompress.image(object) hpre <- 2. dlw<-(2*trunc(hpre)+1) nvarpar <- 1 dimg <- dimg0 <- dim(object$img) imgtype <- object$type dv <- switch(imgtype,rgb=dimg[3],greyscale=1) if(length(wghts)<dv) wghts <- c(wghts,rep(1,dv-length(wghts))) else wghts <- pmin(.1,wghts) wghts <- switch(imgtype, greyscale=1, rgb = wghts[1:dv]) h0 <- c(0,0) n1 <- dimg[1] n2 <- dimg[2] n <- n1*n2 dimg <- switch(imgtype,greyscale=c(n1,n2),rgb=c(n1,n2,dv)) lkern <- switch(lkern, Triangle=1, Quadratic=2, Cubic=3, Plateau=4, 1) if (is.null(hmax)) hmax <- 4 wghts <- wghts/sum(wghts) dgf <- sum(wghts)^2/sum(wghts^2) sigma2 <- switch(imgtype, "greyscale" = IQRdiff(object$img)^2, "rgb" = apply(object$img,3,IQRdiff)^2, IQRdiff(object$img)^2) sigma2 <- pmax(0.01,sigma2) cat("Estimated variance (assuming independence): ", signif(sigma2/65635^2,4),"\n") spmin <- plateau if(is.null(spmin)) spmin <- .25 hinit <- 1 hincr <- sqrt(1.25) if(graph){ oldpar <- par(mfrow=c(1,3),mar=c(1,1,3,.25),mgp=c(2,1,0)) on.exit(par(oldpar)) graphobj0 <- object[-(1:length(object))[names(object)=="img"]] graphobj0$dim <- c(n1,n2) } hmax <- hmax bi <- rep(1,n) img <- theta <- switch(imgtype,greyscale=object$img, rgb=aperm(object$img,c(3,1,2))) bi0 <- 1 coef <- matrix(0,nvarpar,dv) coef[1,] <- sigma2 vobj <- list(coef=coef,meanvar=sigma2) imgq995 <- switch(imgtype,greyscale=quantile(img,.995), rgb=apply(img,1,quantile,.995)) steps <- as.integer(log(hmax/hinit)/log(hincr)+1) if(length(lambda)<(steps+1)) lambda <- c(lambda,rep(lambda[length(lambda)],1+steps-length(lambda))) hakt0 <- hakt <- hinit hakt <- hakt*hincr step <- 1 lambda0 <- lambda[1] sigma2 <- pmax(0.01,rep(IQRdiff(object$img)^2,dv)) vobj <- list(coef=sigma2,meanvar=sigma2) progress <- 0 total <- (hincr^(2*ceiling(log(hmax/hinit)/log(hincr)))-1)/(hincr^2-1) if (total == 0) total <- hincr^(2*step) if(earlystop) fix <- rep(FALSE,n) else fix <- FALSE if(homogen) hhom <- rep(0,n) else hhom <- 0 chcorr <- numeric(max(1,dv*(dv-1)/2)) mc.cores <- setCores(,reprt=FALSE) dv2 <- dv*dv while (hakt<=hmax) { twohp1 <- 2*trunc(hakt)+1 hakt0 <- hakt if(lambda[step+1]<1e20){ zobj <- .Fortran(C_awsvimg0, as.integer(img), fix=as.integer(fix), as.integer(n1), as.integer(n2), as.integer(n1*n2), as.integer(dv), as.double(vobj$coef), as.integer(nvarpar), as.double(vobj$meanvar), as.double(chcorr), hakt=as.double(hakt), hhom=as.double(hhom), as.double(lambda0), as.integer(theta), bi=as.double(bi), bi0=as.double(bi0), theta=integer(prod(dimg)), as.integer(lkern), as.double(spmin), as.double(sqrt(wghts)), double(twohp1*twohp1), as.logical(earlystop), as.logical(homogen), PACKAGE="adimpro")[c("bi","bi0","theta","hakt","hhom","fix")] theta <- zobj$theta bi <- zobj$bi bi0 <- zobj$bi0 hhom <- zobj$hhom fix <- zobj$fix dim(theta) <- switch(imgtype,greyscale=dimg,rgb=dimg[c(3,1,2)]) rm(zobj) gc() dim(bi) <- dimg[1:2] if (graph) { graphobj <- graphobj0 class(graphobj) <- "adimpro" graphobj$img <- object$img show.image(graphobj,max.x=max.pixel,xaxt="n",yaxt="n") title("Observed Image") graphobj$img <- switch(imgtype,greyscale=theta,rgb=aperm(theta,c(2,3,1))) show.image(graphobj,max.x=max.pixel,xaxt="n",yaxt="n") title(paste("Reconstruction h=",signif(hakt,3))) graphobj$img <- matrix(as.integer(65534*bi/bi0),n1,n2) graphobj$type <- "greyscale" graphobj$gamma <- FALSE show.image(graphobj,max.x=max.pixel,xaxt="n",yaxt="n") title(paste("Adaptation (rel. weights):",signif(mean(bi)/bi0,3))) rm(graphobj) gc() } if(lambda0<1e20){ zobj0 <- .Fortran(C_awsimg0, as.integer(img), as.integer(n1), as.integer(n2), as.integer(dv), as.double(hpre), theta=integer(prod(dimg)), bi=double(n1*n2), as.integer(lkern), double(twohp1*twohp1), double(dv*mc.cores), PACKAGE="adimpro")[c("bi","theta")] theta0 <- zobj0$theta bi00 <- zobj0$bi if(dv==1) risk <- mean(sqrt(zobj0$bi*(theta-theta0)^2/vobj$coef)) else { dim(theta0) <- switch(imgtype,greyscale=dimg,rgb=dimg[c(3,1,2)]) risk1 <- mean(sqrt(zobj0$bi*(theta[1,,]-theta0[1,,])^2/vobj$coef[1])) risk2 <- mean(sqrt(zobj0$bi*(theta[1,,]-theta0[2,,])^2/vobj$coef[2])) risk3 <- mean(sqrt(zobj0$bi*(theta[1,,]-theta0[3,,])^2/vobj$coef[3])) risk <- (risk1+risk2+risk3)/3 } } else { risk <- 0 } progress <- progress + hincr^(2*step) cat("Bandwidth",signif(hakt,3),"lambda",signif(lambda0,3),"risk",signif(risk,3)," Progress",signif(progress/total,2)*100,"% \n") vobj <- .Fortran(C_esigmac, as.integer(object$img), as.integer(n1*n2), as.integer(dv), as.integer(switch(imgtype, greyscale=theta, rgb=aperm(theta,c(2,3,1)))), as.double(bi), as.integer(imgq995), coef=double(nvarpar*dv), meanvar=double(dv), PACKAGE="adimpro")[c("coef","meanvar")] cat("Estimated mean variance",signif(vobj$meanvar/65635^2,3),"\n") } step <- step + 1 hakt <- hakt*hincr lambda0 <- lambda[step] } if(graph) par(oldpar) object$img <- switch(imgtype,greyscale=theta, rgb=aperm(theta,c(2,3,1))) ni <- array(1,dimg0[1:2]) ni <- bi object$ni <- ni object$ni0 <- bi0 object$hmax <- hakt/hincr object$call <- args vobj$coef <- vobj$coef/65535^2 object$varcoef <- vobj$coef object$wghts <- vobj$wghts invisible(object) }
summary.brma <- function(object, ...){ out <- object[na.omit(match(c("coefficients", "tau2", "I2", "H2", "R2", "k"), names(object)))] out$method <- object$fit@stan_args[[1]]$method out$algorithm <- object$fit@stan_args[[1]]$algorithm class(out) <- c("brma_sum", class(out)) return(out) } .extract_samples <- function(sim, par, ...){ unlist(lapply(1:sim$chains, function(i) { if (sim$warmup2[i] == 0){ sim$samples[[i]][[par]] } else { sim$samples[[i]][[par]][-(1:sim$warmup2[i])] } })) } print.brma <- function(x, ...){ print(summary(x)) } print.brma_sum <- function(x, digits = 2, ...){ cat("BRMA mixed-effects model (k = ", x$k, "), method: ", x$algorithm, " ", x$method, "\n", sep = "") cat("tau^2: ", formatC(x$tau2, digits = digits, format = "f"), " (SE = ", formatC(x$coefficients["tau2", 2], digits = digits, format = "f"),")\n\n", sep = "") coefs <- x$coefficients pstars <- c("*", "")[as.integer(apply(coefs[, c("2.5%", "97.5%")], 1, function(x){sum(sign(x)) == 0}))+1] coefs <- formatC(coefs, digits = digits, format = "f") coefs <- cbind(coefs, pstars) colnames(coefs)[ncol(coefs)] <- "" prmatrix(coefs, quote = FALSE, right = TRUE, na.print = "") cat("\n*: This coefficient is significant, as the 95% credible interval excludes zero.") }
.is.msaenet <- function(x) "msaenet" %in% class(x) .is.glmnet <- function(x) "glmnet" %in% class(x) .is.ncvreg <- function(x) "ncvreg" %in% class(x) .is.adaptive <- function(x) any(class(x) %in% c("msaenet.aenet", "msaenet.amnet", "msaenet.asnet")) .is.multistep <- function(x) any(class(x) %in% c("msaenet.msaenet", "msaenet.msamnet", "msaenet.msasnet")) .aic <- function(deviance, df) deviance + (2L * df) .bic <- function(deviance, df, nobs) deviance + (log(nobs) * df) .ebic <- function(deviance, df, nobs, nvar, gamma) deviance + (log(nobs) * df) + (2L * gamma * lchoose(nvar, df)) .deviance <- function(model) { if (.is.glmnet(model)) return((1L - model$"dev.ratio") * model$"nulldev") if (.is.ncvreg(model)) return(model$"loss") } .df <- function(model) { if (.is.glmnet(model)) return(model$"df") if (.is.ncvreg(model)) { return(unname(colSums( as.matrix(abs(model$"beta"[-1L, ])) > .Machine$double.eps ))) } } .nobs <- function(model) { if (.is.glmnet(model)) return(model$"nobs") if (.is.ncvreg(model)) return(model$"n") } .nvar <- function(model) { if (.is.glmnet(model)) return(model$"dim"[[1L]]) if (.is.ncvreg(model)) return(length(model$"penalty.factor")) }
whiteKernGradient <- function (kern, x, x2, covGrad) { if ( nargs()==3 ) { covGrad <- x2 g <- sum(diag(as.matrix(covGrad))) } else { g <- 0 } return (g) }
mse.saery.boot.AR1.typeI <- function(X, D, md, beta, sigma2edi, sigmau1, sigmau2, rho, Fsig, B){ sigmau1.gorro.ast <- sigmau2.gorro.ast <- rho.gorro.ast <- vector() u1 <- u1d <- u1di <- mudi.ast.1 <- u2d <- u2di <- beta.gorro.ast <- beta.gorro1.ast <- mudi.gorro.ast.1 <- u1di.gorro.ast <- u1di.gorro.ast2 <- u1d.gorro.ast <- u1d.gorro.ast2 <- u2di.gorro.ast <- list() beta.tilde.ast <- beta.tilde1.ast <- u1d.tilde.ast <- u1di.tilde.ast <- u2di.tilde.ast <- mudi.tilde.ast.1 <- mudi.tilde.ast.1 <- list() g1g2g3 <- g123.AR1(X, D, md, sigma2edi, sigmau1, sigmau2, rho, Fsig) mse.boot.AR1.typeI <- g1g2g3[[1]] + g1g2g3[[2]] Badg2 <- 0 b <- BadTot2 <- 0 M <- sum(md) mse.boot.AR <- difmud <- mse.last.boot.AR <- 0 excepcion <- vector() while(b<B){ b <- b+1 edi <- rnorm(M,0,sqrt(sigma2edi)) u1di <- 0 u2di <- 0 for(d in 1:D){ u1 <- rnorm(1,0,sqrt(sigmau1)) u1d[[d]] <- rep(u1,md[d]) epdi <- rnorm(md[d],0,sqrt(sigmau2)) u2di <- (1/(1-rho^2)^0.5)*epdi[1] for(i in 2:md[d]) u2di[i] <- rho*u2di[i-1]+epdi[i] u2d[[d]] <- u2di } u1di <- unlist(u1d) u2di <- unlist(u2d) ydi.ast1 <- as.vector(X%*%beta + u1di + u2di + edi) mudi.ast.1[[b]] <- as.vector(X%*%beta + u1di + u2di) sigma.0 <- sigmau1 fitboot <- try(REML.saery.AR1(X, ydi.ast1, D, md, sigma2edi, sigma1.0=sigma.0,sigma2.0=sigma.0), TRUE) if(class(fitboot)=="try-error"){ excepcion <- c(excepcion, b) write.table(data.frame(class(fitboot),D,b), file="WARNING.txt", append=TRUE, col.names=FALSE, row.names=FALSE) b <- b-1 } else { cat("Bootstrap sample no. " , b,"\n") sigmau1.gorro.ast <- fitboot[[1]][1] sigmau2.gorro.ast <- fitboot[[1]][2] rho.gorro.ast <- fitboot[[1]][3] beta.gorro.ast[[b]] <- BETA.U.saery.AR1(X, ydi.ast1, D, md, sigma2edi, sigmau1.gorro.ast, sigmau2.gorro.ast, rho.gorro.ast) beta.gorro1.ast[[b]] <- beta.gorro.ast[[b]][[1]] u1d.gorro.ast[[b]] <- beta.gorro.ast[[b]][[2]] u1di.gorro.ast[[b]] <- list() for(d in 1:D) u1di.gorro.ast[[b]][[d]] <- rep(u1d.gorro.ast[[b]][d,1],md[d]) u1di.gorro.ast[[b]] <- unlist(u1di.gorro.ast[[b]]) u2di.gorro.ast[[b]] <- beta.gorro.ast[[b]][[3]] mudi.gorro.ast.1[[b]] <- as.vector(X%*%beta.gorro1.ast[[b]] + u1di.gorro.ast[[b]]+ u2di.gorro.ast[[b]]) beta.tilde.ast[[b]] <- BETA.U.saery.AR1(X, ydi.ast1, D, md, sigma2edi, sigmau1, sigmau2, rho) beta.tilde1.ast[[b]] <- beta.tilde.ast[[b]][[1]] u1d.tilde.ast[[b]] <- beta.tilde.ast[[b]][[2]] u1di.tilde.ast[[b]] <- list() for(d in 1:D) u1di.tilde.ast[[b]][[d]] <- rep(u1d.tilde.ast[[b]][d,1],md[d]) u1di.tilde.ast[[b]] <- unlist(u1di.tilde.ast[[b]]) u2di.tilde.ast[[b]] <- beta.tilde.ast[[b]][[3]] mudi.tilde.ast.1[[b]] <- as.vector(X%*%beta.tilde1.ast[[b]] + u1di.tilde.ast[[b]]+ u2di.tilde.ast[[b]]) difmud <- difmud + (mudi.gorro.ast.1[[b]]-mudi.tilde.ast.1[[b]])^2 } } mse.boot.AR1.typeI <- mse.boot.AR1.typeI + difmud/B return(mse.boot.AR1.typeI) }
ts_pc <- function(x) { ts_apply(ts_regular(x), function(x) { value <- NULL x[, list(time, value = 100 * (value / c(NA, value[-length(value)]) - 1))] }) } ts_diff <- function(x) { ts_apply(ts_regular(x), function(x) { value <- NULL x[, list(time, value = value - c(NA, value[-length(value)]))] }) } ts_pca <- function(x) { ts_apply(ts_regular(x), function(x) { fr <- frequency_one(x$time)$freq value <- NULL x[ , list(time, value = 100 * ((value / c(NA, value[-length(value)]))^fr - 1)) ] }) } ts_pcy <- function(x) { ts_apply(ts_regular(x), function(x) { value <- NULL value_lag <- NULL xlag <- data.table(time = time_shift(x$time, "1 year"), value_lag = x$value) xlag[x, on = "time"][, list(time, value = (value / value_lag - 1) * 100)] }) } ts_diffy <- function(x) { ts_apply(ts_regular(x), function(x) { value <- NULL value_lag <- NULL xlag <- data.table(time = time_shift(x$time, "1 year"), value_lag = x$value) xlag[x, on = "time"][, list(time, value = value - value_lag)] }) }
set.seed(5555) candle_df1t3 <- data.frame( Cycle = as.factor(rep(1:24, each=3)), candle_width = rnorm(n = 3*24, mean = 10, sd = 1), mold_cell = as.ordered(rep(1:3)) ) candle_df4 <- data.frame( Cycle = as.factor(rep(1:24, each=1)), candle_width = rnorm(n = 1*24, mean = 11, sd = 2), mold_cell = as.ordered(rep(4, each=24)) ) candle_df <- rbind(candle_df1t3, candle_df4) library(ggplot2) library(ggQC) XbarR <- ggplot(candle_df, aes(x = Cycle, y = candle_width, group = 1)) + stat_summary(fun.y = mean, geom = "point") + stat_summary(fun.y = mean, geom = "line") + stat_QC() XbarR XbarR + stat_QC_labels() R_Bar <- ggplot(candle_df, aes(x = Cycle, y = candle_width, group = 1)) + stat_summary(fun.y = QCrange, geom = "point") + stat_summary(fun.y = QCrange, geom = "line") + stat_QC(method="rBar") + stat_QC_labels(method="rBar") + ylab("R-Bar") R_Bar XbarR <- ggplot(candle_df, aes(x = Cycle, y = candle_width, group = 1)) + stat_summary(fun.y = mean, geom = "point") + stat_summary(fun.y = mean, geom = "line") + stat_QC() + stat_QC_labels() + geom_point(alpha= 1/5) + stat_QC(n=1, color.qc_limits = "orange") + stat_QC_labels(n=1, color.qc_limits = "orange") XbarR XbarR <- ggplot(candle_df, aes(x = Cycle, y = candle_width, group = 1, color=mold_cell)) + stat_summary(fun.y = mean, geom = "point") + stat_summary(fun.y = mean, geom = "line") + stat_QC() + stat_QC_labels() + geom_point(alpha= 1/2) + stat_QC(n=1, color.qc_limits = "orange") + stat_QC_labels(n=1, color.qc_limits = "orange") XbarR XmR <- ggplot(candle_df, aes(x = Cycle, y = candle_width, group = 1, color = mold_cell)) + geom_point() + geom_line() + stat_QC(method="XmR") + stat_QC_labels(method="XmR") + facet_grid(.~mold_cell) XmR
get_auxiliary <- function(x, type = "sigma", summary = TRUE, centrality = "mean", verbose = TRUE, ...) { type <- match.arg(type, choices = .aux_elements()) if (inherits(x, "brmsfit")) { return(.get_generic_aux(x, type, summary = summary, centrality = centrality)) } else if (type == "sigma") { return(as.numeric(get_sigma(x))) } else if (type == "dispersion") { return(get_dispersion(x)) } else { return(NULL) } } get_dispersion <- function(x, ...) { UseMethod("get_dispersion") } get_dispersion.model_fit <- function(x, ...) { get_dispersion(x$fit, ...) } get_dispersion.glm <- function(x, verbose = TRUE, ...) { info <- model_info(x, verbose = verbose) disp <- NULL if (info$is_poisson || info$is_binomial || info$is_negbin) { disp <- 1 } else { working_weights <- get_weights(x, type = "working") working_res <- as.vector(get_residuals(x, type = "working"))^2 * working_weights disp <- sum(working_res[working_weights > 0]) / get_df(x, type = "residual") } disp } get_dispersion.glmerMod <- function(x, verbose = TRUE, ...) { info <- model_info(x, verbose = verbose) disp <- NULL if (info$is_poisson || info$is_binomial || info$is_negbin) { disp <- 1 } else { res_df <- get_df(x, type = "residual") p_res <- get_residuals(x, type = "pearson") disp <- sum(p_res^2) / res_df } disp } get_dispersion.glmmTMB <- function(x, verbose = TRUE, ...) { info <- model_info(x, verbose = verbose) disp <- NULL if (info$is_poisson || info$is_binomial || info$is_negbin) { disp <- 1 } else { disp <- as.numeric(get_sigma(x))^2 } disp } get_dispersion.brmsfit <- get_dispersion.glmmTMB .get_generic_aux <- function(x, param, summary = TRUE, centrality = "mean", ...) { aux <- NULL if (inherits(x, "brmsfit")) { aux <- as.data.frame(x)[[param]] if (summary) { aux <- .summary_of_posteriors(aux, centrality = centrality) } } aux }
print.MVA.test.mult <- function(x,digits=4,...) { cat("\n") cat(strwrap(x$method,prefix="\t"),sep="\n") cat("\n") cat("data: ",x$data.name,"\n\n") tab <- data.frame(Response=names(x$p.value),Q2=x$statistic,P=x$p.value) print(tab,digits=digits,row.names=FALSE) cat(paste("\nP value adjustment method: ",x$p.adjust.method,"\n",sep="")) invisible(x) } MVA.test <- function(X,Y,cmv=FALSE,ncomp=8,kout=7,kinn=6,scale=TRUE,model=c("PLSR","CPPLS","PLS-DA","PPLS-DA","LDA", "QDA","PLS-DA/LDA","PLS-DA/QDA","PPLS-DA/LDA","PPLS-DA/QDA"),Q2diff=0.05,lower=0.5,upper=0.5,Y.add=NULL, weights=rep(1,nrow(X)),set.prior=FALSE,crit.DA=c("plug-in","predictive","debiased"),p.method="fdr",nperm=999, progress=TRUE,...) { model <- match.arg(model) if (model %in% c("LDA","QDA") & cmv) {stop("LDA and QDA alone only if cmv = FALSE")} dname <- paste0(deparse(substitute(X))," and ",deparse(substitute(Y)),"\nModel: ",model, "\n",ncomp," components",ifelse(cmv," maximum",""),"\n",nperm," permutations") if (!cmv) { testname <- "Permutation test based on cross-validation" cv.ref <- MVA.cv(X,Y,repet=20,k=kout,ncomp=ncomp,scale=scale,model=model,lower=lower,upper=upper,Y.add=Y.add, weights=weights,set.prior=set.prior,crit.DA=crit.DA,...) } else { testname <- "Permutation test based on cross model validation" cv.ref <- MVA.cmv(X,Y,repet=20,kout=kout,kinn=kinn,ncomp=ncomp,scale=scale,model=model,crit.inn=ifelse(is.factor(Y),"NMC","Q2"), Q2diff=Q2diff,lower=lower,upper=upper,Y.add=Y.add,weights=weights,set.prior=set.prior,crit.DA=crit.DA,...) } if(cv.ref$type=="quant") { ref <- colMeans(cv.ref$Q2) names(ref) <- if (ncol(as.data.frame(Y))==1) {"Q2"} else {paste("Q2",colnames(Y),sep=".")} } else { ref <- mean(as.vector(cv.ref$NMC)) names(ref) <- "CER" } if (cv.ref$type=="quant" & ncol(as.data.frame(Y))>1) { stat.perm <- matrix(0,nrow=nperm+1,ncol=ncol(Y)) stat.perm[1,] <- ref } else { stat.perm <- numeric(nperm+1) stat.perm[1] <- ref } if (progress) {pb <- txtProgressBar(min=0,max=100,initial=0,style=3)} for(i in 1:nperm) { if (progress) {setTxtProgressBar(pb,round(i*100/nperm,0))} if (!cmv) { if (cv.ref$type=="quant" & ncol(as.data.frame(Y))>1) { cv.perm <- MVA.cv(X,Y[sample(1:nrow(Y)),],repet=1,k=kout,ncomp=ncomp,scale=scale,model=model,lower=lower,upper=upper, Y.add=Y.add,weights=weights,set.prior=set.prior,crit.DA=crit.DA,...) } else { cv.perm <- suppressWarnings(MVA.cv(X,sample(Y),repet=1,k=kout,ncomp=ncomp,scale=scale,model=model,lower=lower, upper=upper,Y.add=Y.add,weights=weights,set.prior=set.prior,crit.DA=crit.DA,...)) } } else { if (cv.ref$type=="quant" & ncol(as.data.frame(Y))>1) { cv.perm <- MVA.cmv(X,Y[sample(1:nrow(Y)),],repet=1,kout=kout,kinn=kinn,ncomp=ncomp,scale=scale,model=model, crit.inn=ifelse(is.factor(Y),"NMC","Q2"),Q2diff=Q2diff,lower=lower,upper=upper, Y.add=Y.add,weights=weights,set.prior=set.prior,crit.DA=crit.DA,...) } else { cv.perm <- suppressWarnings(MVA.cmv(X,sample(Y),repet=1,kout=kout,kinn=kinn,ncomp=ncomp,scale=scale,model=model, crit.inn=ifelse(is.factor(Y),"NMC","Q2"),Q2diff=Q2diff,lower=lower,upper=upper,Y.add=Y.add, weights=weights,set.prior=set.prior,crit.DA=crit.DA,...)) } } if (cv.ref$type=="quant" & ncol(as.data.frame(Y))>1) { stat.perm[i+1,] <- cv.perm$Q2 } else { stat.perm[i+1] <- if(cv.ref$type=="quant") {as.vector(cv.perm$Q2)} else {as.vector(cv.perm$NMC)} } } if (progress) {cat("\n")} if (cv.ref$type=="quant") { if (ncol(as.data.frame(Y))==1) { pvalue <- length(which((stat.perm+.Machine$double.eps/2) >= ref))/(nperm+1) } else { pvalue <- numeric(ncol(Y)) for (i in 1:ncol(Y)) {pvalue[i] <- length(which((stat.perm[,i]+.Machine$double.eps/2) >= ref[i]))/(nperm+1)} pvalue <- p.adjust(pvalue,method=p.method) names(pvalue) <- colnames(Y) } } else { pvalue <- length(which((stat.perm-.Machine$double.eps/2) <= ref))/(nperm+1) } result <- list(method=testname,data.name=dname,statistic=ref,permutations=nperm,p.value=pvalue, p.adjust.method=p.method) class(result) <- ifelse(cv.ref$type=="quant" & ncol(as.data.frame(Y))>1,"MVA.test.mult","htest") return(result) }
mspa <- function(dudi, lwORorthobasisSp, nblocks, scannf = TRUE, nf = 2, centring = c("param", "sim"), nperm = 999){ if (!inherits(dudi, "dudi")) stop("object of class 'dudi' expected") if(inherits(lwORorthobasisSp,"orthobasisSp")){ if (any((dudi$lw - attr(lwORorthobasisSp,"weights"))^2 > 1e-07)) stop("Non equal row weights") U <- lwORorthobasisSp } if(inherits(lwORorthobasisSp,"listw")) U <- scores.listw(lwORorthobasisSp, wt = dudi$lw, MEM.autocor = "all") if(ncol(U) != (nrow(U) - 1)) stop(paste("The orthobasis contains only", ncol(U), "vectors. The decomposition of variance is thus incomplete.")) df <- dudi$tab varweights <- dudi$cw/sum(dudi$cw) n <- nrow(df) p <- ncol(df) centring <- match.arg(centring) findname <- function(vec){ if(length(vec) == 1) return(vec) res <- sub("[.][^.]*$","",vec[1]) return(res) } var.idx <- dudi$assign if(!is.null(var.idx)){ temp <- split(colnames(df), var.idx) newlev <- sapply(temp, findname) levels(var.idx) <- newlev } X <- scalewt(df, wt = dudi$lw, center=TRUE, scale=TRUE) R <- t(X) %*% diag(dudi$lw) %*% as.matrix(U) R2 <- R*R if(centring=="param"){ newdf <- R2-(1/(n-1)) } else{ tempX <- t(X) fPerm <- function(X){ permX <- X[, sample(1:n)] res <- permX %*% diag(dudi$lw) %*% as.matrix(U) res <- res * res return(res) } listR2sim <- lapply(1:nperm, function(i) fPerm(tempX)) meanR2sim <- listR2sim[[1]] for(i in 2:nperm){ meanR2sim <- meanR2sim + listR2sim[[i]] } meanR2sim <- meanR2sim / nperm newdf <- R2 - meanR2sim } newdf[newdf < 0] <- 0 if(!(missing(nblocks))){ fac <- cut(1:ncol(U), nblocks) i.start <- tapply(1:ncol(U), fac, min) i.stop <- tapply(1:ncol(U), fac, max) levels(fac) <- paste("[", i.start, "-", i.stop, "]", sep="") newdf <- t(apply(newdf, 1, function(i) tapply(i, fac, sum))) R2 <- t(apply(R2, 1, function(i) tapply(i, fac, sum))) } newdf <- as.data.frame(newdf) res <- as.dudi(newdf, scannf = scannf, nf = nf, row.w = varweights, col.w = rep(1, ncol(newdf)), call = match.call(), type = "mspa") res$ls <- as.data.frame(as.matrix(R2) %*% as.matrix(res$c1)) colnames(res$ls) <- colnames(res$li) row.names(res$ls) <- row.names(res$li) xmoy <- apply(R2, 2, function(c) weighted.mean(c,varweights)) bary <- as.vector(t(xmoy) %*% as.matrix(res$c1)) names(bary) <- colnames(res$c1) res$R2 <- R2 res$meanPoint <- bary res$varweights <- varweights names(res$varweights) <- colnames(X) if(!is.null(var.idx)) res$assign <- var.idx if(centring=="sim") { res$centring <- meanR2sim if(!(missing(nblocks))) res$centring <- tapply(meanR2sim, fac, sum) } return(res) } scatter.mspa <- function(x, xax = 1, yax = 2, posieig = "topleft", bary=TRUE, plot = TRUE, storeData = TRUE, pos = -1, ...){ if(!inherits(x,"mspa")) stop("Object of class 'mspa' expected") if((xax == yax) || (x$nf == 1)) stop("One axis only : not yet implemented") if(length(xax) > 1 | length(yax) > 1) stop("Not implemented for multiple xax/yax") if(xax > x$nf) stop("Non convenient xax") if(yax > x$nf) stop("Non convenient yax") position <- match.arg(posieig[1], choices = c("bottomleft", "bottomright", "topleft", "topright", "none"), several.ok = FALSE) graphsnames <- c("mem", "var", "bary", "eig") sortparameters <- sortparamADEgS(..., graphsnames = graphsnames) params <- list() params$mem <- list(plabels = list(cex = 1)) params$var <- list(plabels = list(cex = 1.5)) params$eig <- list(pbackground = list(box = TRUE), psub = list(text = "Eigenvalues")) if(bary) params$bary = list(ppoints = list(pch = 20, cex = 2, col = "black")) sortparameters <- modifyList(params, sortparameters, keep.null = TRUE) g1 <- do.call("s.arrow", c(list(dfxy = substitute(x$c1), xax = xax, yax = yax, plot = FALSE, storeData = storeData, pos = pos - 2), sortparameters$mem)) g2 <- do.call("s.label", c(list(dfxy = substitute(x$ls), xax = xax, yax = yax, plot = FALSE, storeData = storeData, pos = pos - 2), sortparameters$var)) object <- do.call("superpose", list(g1@Call, g2@Call)) if(bary){ g3 <- xyplot(x$meanPoint[yax] ~ x$meanPoint[xax], col = sortparameters$bary$ppoints$col, pch = sortparameters$bary$ppoints$pch, cex = sortparameters$bary$ppoints$cex, xlab = "", ylab = "", aspect = [email protected]$paxes$aspectratio) object <- do.call("superpose", list(object@Call, g3)) } if(position != "none") { g4 <- do.call("plotEig", c(list(eigvalue = substitute(x$eig), nf = 1:x$nf, xax = xax, yax = yax, plot = FALSE), sortparameters$eig)) object <- do.call("insert", list(g4@Call, object@Call, posi = position, ratio = 0.25, plot = FALSE)) } names(object) <- graphsnames[c(1, 2, 3 * isTRUE(bary), 4 * (position != "none"))] object@Call <- match.call() if(plot) print(object) invisible(object) } print.mspa <- function(x, ...){ cat("Multi-Scale Pattern Analysis\n") cat("call: ") print(x$call) cat("class: ") cat(class(x), "\n") cat("\n$rank (rank) :", x$rank) cat("\n$nf (axis saved) :", x$nf) cat("\n\neigen values: ") l0 <- length(x$eig) cat(signif(x$eig, 4)[1:(min(5, l0))]) if (l0 > 5) cat(" ...\n\n") else cat("\n\n") sumry <- array("", c(3, 4), list(1:3, c("vector", "length", "mode", "content"))) sumry[1, ] <- c("$eig", length(x$eig), mode(x$eig), "Eigenvalues") sumry[2, ] <- c("$cw", length(x$cw), mode(x$cw), "MEM weights") sumry[3, ] <- c("$lw", length(x$lw), mode(x$lw), "variables weights") print(sumry, quote = FALSE) cat("\n") sumryA <- array("", c(4, 4), list(1:4, c("data.frame", "nrow", "ncol", "content"))) sumryA[1, ] <- c("$R2", nrow(x$R2), ncol(x$R2), "Matrix of R2 ('S')") sumryA[2, ] <- c("$tab", nrow(x$tab), ncol(x$tab), "Matrix of centred R2 ('Z')") sumryA[3, ] <- c("$c1", nrow(x$c1), ncol(x$c1), "Principal axes, i.e. MEM loadings('A')") sumryA[4, ] <- c("$ls", nrow(x$ls), ncol(x$ls), "Projection of variables (R2) on principal axes ('B')") cat("\nMain components:\n") print(sumryA, quote = FALSE) sumryB <- array("", c(3, 4), list(1:3, c("data.frame", "nrow", "ncol", "content"))) sumryB[1, ] <- c("$li", nrow(x$li), ncol(x$li), "Scores for variables") sumryB[2, ] <- c("$l1", nrow(x$l1), ncol(x$l1), "Principal components") sumryB[3, ] <- c("$co", nrow(x$co), ncol(x$co), "Scores for MEM") cat("\nGeneric 'dudi' components:\n") print(sumryB, quote = FALSE) cat("Other elements: ") if (length(names(x)) > 14) cat(names(x)[15:(length(x))], "\n") else cat("NULL\n") }
as_r <- function(f, ...) { UseMethod("as_r") } as_r.default <- function(f, support = NULL, ..., n_grid = 10001, n_sample = 10000, args_new = list()) { assert_as_def_args(f, support, n_grid) assert_type( n_sample, is_single_number, type_name = "single number more than 1", min_val = 2 ) assert_type(args_new, is.list) f_name <- deparse(substitute(f)) honored_distr <- as_honored_distr( "r", f_name, f, support, ..., n_grid = n_grid ) if (!is.null(honored_distr)) { return(honored_distr) } smpl <- f(n_sample, ...) support <- detect_support_r(smpl, format_support(support)) disable_asserting_locally() new_call_args <- c_dedupl(list(x = smpl, type = "continuous"), args_new) d_f <- do.call(new_d, new_call_args) d_f <- as_d(unpdqr(d_f), support = support, n_grid = n_grid) as_r(d_f) } as_r.pdqr <- function(f, ...) { assert_pdqr_fun(f) disable_asserting_locally() new_r(x = meta_x_tbl(f), type = meta_type(f)) } detect_support_r <- function(smpl, supp) { mean_diff <- mean(diff(sort(smpl))) smpl_support <- range(smpl) + mean_diff * c(-1, 1) supp <- coalesce_pair(supp, smpl_support) if (!is_support(supp) || (supp[1] == supp[2])) { stop_collapse( "Detected support isn't proper. Usually this is because input random ", "generation function isn't proper." ) } supp }
setClass("SolrExpression", contains=c("Expression", "VIRTUAL")) setClass("SolrFunctionExpression", representation(name="ANY"), prototype(name=""), contains="SolrExpression") setClass("SolrLuceneExpression", contains=c("SolrExpression", "VIRTUAL")) setClass("SolrSymbol", representation(missable="logical"), prototype(missable=TRUE), contains=c("SimpleSymbol", "SolrFunctionExpression"), validity=function(object) { if (!isTRUEorFALSE(object@missable)) { "'missable' must be TRUE or FALSE" } }) setClassUnion("SolrSymbolORNULL", c("SolrSymbol", "NULL")) setClass("SolrLuceneSymbol", contains="SolrSymbol") setClass("PredicatedSolrSymbol", representation(subject="SolrSymbol", predicate="SolrExpression"), contains="SolrExpression") setClass("SolrLuceneBinaryOperator", representation(e1="SolrLuceneExpression", e2="SolrLuceneExpression"), contains=c("SolrLuceneExpression", "VIRTUAL")) setClass("SolrLuceneAND", contains="SolrLuceneBinaryOperator") setClass("SolrLuceneOR", contains="SolrLuceneBinaryOperator") setClass("SolrLuceneUnaryOperator", representation(e1="SolrLuceneExpression"), contains=c("SolrLuceneExpression", "VIRTUAL")) setClass("SolrLuceneProhibit", contains="SolrLuceneUnaryOperator") setClass("SolrLuceneTerm", representation(field="SolrSymbolORNULL", term="ANY", inverted="logical"), prototype(inverted=FALSE), contains="SolrLuceneExpression", validity=function(object) { if (!isTRUEorFALSE(object@inverted)) "'inverted' must be TRUE or FALSE" }) setClass("LuceneRange", representation(from="ANY", to="ANY", fromInclusive="logical", toInclusive="logical"), prototype(fromInclusive=FALSE, toInclusive=FALSE), validity=function(object) { if (!isTRUEorFALSE(object@fromInclusive) || !isTRUEorFALSE(object@toInclusive)) "fromInclusive and toInclusive must be TRUE or FALSE" }) setClass("SolrLuceneRangeTerm", representation(term="LuceneRange"), contains="SolrLuceneTerm") setClass("SolrQParserExpression", representation(query="Expression", useValueParam="logical", tag="character_OR_NULL"), prototype(useValueParam=FALSE), contains="SolrExpression", validity=function(object) { if (!is.null(object@tag) && !isSingleString(object@tag)) "'tag' must be a single, non-NA string, or NULL" }) setClassUnion("SolrLuceneExpressionOrSymbol", c("SolrLuceneExpression", "SolrQParserExpression", "SolrSymbol")) setClass("LuceneQParserExpression", representation(query="SolrLuceneExpression"), contains="SolrQParserExpression") setClassUnion("numericORNULL", c("numeric", "NULL")) setClass("FRangeQParserExpression", representation(l="numericORNULL", u="numericORNULL", incl="logical", incu="logical", query="SolrFunctionExpression"), prototype(incl=TRUE, incu=TRUE), contains="SolrQParserExpression", validity=function(object) { c(if (!(is.null(object@l) || isSingleNumber(object@l)) || !(is.null(object@u) || isSingleNumber(object@u))) { "'l' and 'u' each must be a single, non-NA number, or NULL" }, if (!isTRUEorFALSE(object@incl) || !isTRUEorFALSE(object@incu)) { "'incl' and 'incu' must be TRUE or FALSE" }) }) setClass("JoinQParserExpression", representation(from="SolrSymbol", to="SolrSymbol", query="SolrLuceneExpression"), contains="SolrQParserExpression") setClass("AbstractSolrFunctionCall") setClass("SolrFunctionCall", representation(name="character", args="list", missables="character"), contains=c("AbstractSolrFunctionCall", "SolrFunctionExpression"), validity=function(object) { c(if (!isSingleString(object@name)) "'name' of a Solr function call must be a string", if (any(is.na(object@missables))) "'missables' must not contain NAs") }) setClassUnion("functionORNULL", c("function", "NULL")) setClass("SolrAggregateCall", representation(name="character", subject="SolrFunctionExpression", params="list", postprocess="functionORNULL"), contains = c("AbstractSolrFunctionCall", "SolrExpression"), validity=function(object) { if (!isSingleString(object@name)) "'name' of a Solr aggregate call must be a string" }) setClass("ParentSolrAggregateCall", representation(child="SolrAggregateCall"), contains="SolrAggregateCall") setClass("SolrSortExpression", representation(by="SolrFunctionExpression", decreasing="logical"), contains="SolrExpression") setClass("SolrFilterExpression", representation(filter="SolrQParserExpression", tag="character"), contains="SolrExpression", validity=function(object) { }) SolrLuceneOR <- function(e1, e2) { new("SolrLuceneOR", e1=as(e1, "SolrLuceneExpression", strict=FALSE), e2=as(e2, "SolrLuceneExpression", strict=FALSE)) } SolrLuceneAND <- function(e1, e2) { new("SolrLuceneAND", e1=as(e1, "SolrLuceneExpression", strict=FALSE), e2=as(e2, "SolrLuceneExpression", strict=FALSE)) } SolrLuceneProhibit <- function(e1) { new("SolrLuceneProhibit", e1=as(e1, "SolrLuceneExpression", strict=FALSE)) } SolrLuceneTerm <- function(field, term) { new("SolrLuceneTerm", field=if (!is.null(field)) as(field, "SolrSymbol", strict=FALSE), term=term) } SolrLuceneRangeTerm <- function(field, from, to, fromInclusive, toInclusive) { new("SolrLuceneRangeTerm", field=field, term=new("LuceneRange", from=from, to=to, fromInclusive=fromInclusive, toInclusive=toInclusive)) } SolrQParserExpression <- function(tag = NULL) { if (!is.null(tag)) { tag <- as.character(tag) } new("SolrQParserExpression", tag=tag) } FRangeQParserExpression <- function(query, l = NULL, u = NULL, incl = TRUE, incu = TRUE) { new("FRangeQParserExpression", query=as(query, "SolrFunctionExpression", strict=FALSE), l=l, u=u, incl=incl, incu=incu) } LuceneQParserExpression <- function(query) { new("LuceneQParserExpression", query=as(query, "SolrLuceneExpression", strict=FALSE)) } JoinQParserExpression <- function(query, from, to) { new("JoinQParserExpression", query=as(query, "SolrLuceneExpression", strict=FALSE), from=as(from, "SolrSymbol", strict=FALSE), to=as(to, "SolrSymbol", strict=FALSE)) } SolrFunctionExpression <- function(name="") { if (isNA(name)) { solrNA } else { new("SolrFunctionExpression", name=name) } } SolrFunctionCall <- function(name, args) { new("SolrFunctionCall", name=name, args=args, missables=missablesForArgs(name, args)) } SolrAggregateCall <- function(name = "", subject = SolrFunctionExpression(), params=list(), child = NULL, postprocess = NULL) { obj <- new("SolrAggregateCall", name=name, subject=as(subject, "SolrFunctionExpression", strict=FALSE), params=params, postprocess=postprocess) if (!is.null(child)) { obj <- new("ParentSolrAggregateCall", obj, child=child) } obj } SolrSortExpression <- function(decreasing) { new("SolrSortExpression", decreasing=decreasing) } setGeneric("SymbolFactory", function(x, ...) standardGeneric("SymbolFactory")) setMethod("SymbolFactory", "SolrExpression", function(x) SolrSymbol) setMethod("SymbolFactory", "SolrQParserExpression", function(x) SolrLuceneSymbol) SolrSymbol <- new("SymbolFactory", function(name) { new("SolrSymbol", name=as.character(name)) }) SolrLuceneSymbol <- new("SymbolFactory", function(name) { new("SolrLuceneSymbol", name=as.character(name)) }) PredicatedSolrSymbol <- function(subject, predicate) { new("PredicatedSolrSymbol", subject=subject, predicate=as(predicate, "SolrExpression", strict=FALSE)) } setGeneric("args", function(name) standardGeneric("args")) setMethod("args", "SolrFunctionCall", function(name) name@args) setMethod("args", "SolrAggregateCall", function(name) c(name@subject, name@params)) setGeneric("name", function(x) standardGeneric("name")) setMethod("name", "ANY", function(x) x@name) `name<-` <- function(x, value) { x@name <- value x } query <- function(x) x@query `query<-` <- function(x, value) { x@query <- value x } setGeneric("tag", function(x, ...) standardGeneric("tag")) setMethod("tag", "ANY", function(x) NULL) setMethod("tag", "SolrQParserExpression", function(x) x@tag) setGeneric("child", function(x) standardGeneric("child")) setMethod("child", "ANY", function(x) NULL) setMethod("child", "ParentSolrAggregateCall", function(x) x@child) setGeneric("child<-", function(x, value) standardGeneric("child<-")) setReplaceMethod("child", "SolrAggregateCall", function(x, value) { if (!is.null(value)) { new("ParentSolrAggregateCall", x, child=value) } else { x } }) setReplaceMethod("child", "ParentSolrAggregateCall", function(x, value) { x@child <- value x }) resultWidth <- function(x) { if (name(x) == "percentile") length(params(x)) else 1L } setMethod("translate", c("SolrExpression", "SolrExpression"), function(x, target, context, ...) { as(x, class(target), strict=FALSE) }) missable <- function(x) x@missable `missable<-` <- function(x, value) { x@missable <- value x } setGeneric("missables", function(x, fields = NULL) standardGeneric("missables"), signature="x") setMethod("missables", "SolrSymbol", function(x) { if (missable(x)) { list(name(x)) } else { list() } }) setMethod("missables", "SolrFunctionCall", function(x) x@missables) setMethod("missables", "SolrFunctionExpression", function(x) missables(name(x))) setMethod("missables", "SolrQParserExpression", function(x) missables(query(x))) setMethod("missables", "SolrLuceneBinaryOperator", function(x) { missables <- c(missables(x@e1), missables(x@e2)) naCheck <- if (isLuceneNACheck(x@e1)) x@e1 else if (isLuceneNACheck(x@e2)) x@e2 if (!is.null(naCheck) && is(x, "SolrLuceneAND") == naCheck@inverted) { missables <- setdiff(missables, name(naCheck@field)) } missables }) setMethod("missables", "SolrLuceneUnaryOperator", function(x) missables(x@e1)) isLuceneNACheck <- function(x) { is(x, "SolrLuceneTerm") && identical(x@term, I("*")) } setMethod("missables", "SolrLuceneTerm", function(x) { if (isLuceneNACheck(x)) list() else missables(x@field) }) setMethod("missables", "ANY", function(x) list()) `missables<-` <- function(x, value) { x@missables <- value x } isSolrNACheck <- function(fun, args) { fun == "exists" && !(is(args[[1L]], "SolrFunctionCall") && name(args[[1L]]) == "query") } missablesForArgs <- function(fun, args) { if (fun == "if") { args <- args[1L] } as.character(if (!isSolrNACheck(fun, args)) { unique(unlist(lapply(args, missables))) }) } setGeneric("dropMissables", function(x, which) standardGeneric("dropMissables")) setMethod("dropMissables", "SolrFunctionCall", function(x, which) { x@missables <- setdiff(x@missables, which) x@args <- lapply(x@args, dropMissables, which) x }) setMethod("dropMissables", "SolrFunctionExpression", function(x, which) { name(x) <- dropMissables(name(x), which) x }) setMethod("dropMissables", "SolrQParserExpression", function(x, which) { query(x) <- dropMissables(query(x), which) x }) setMethod("dropMissables", "SolrLuceneBinaryOperator", function(x, which) { initialize(x, e1=dropMissables(x@e1, which), e2=dropMissables(x@e2, which)) }) setMethod("dropMissables", "SolrLuceneUnaryOperator", function(x, which) { initialize(x, e1=dropMissables(x@e1, which)) }) setMethod("dropMissables", "SolrLuceneTerm", function(x, which) { x@field <- dropMissables(x@field, which) x }) setMethod("dropMissables", "SolrSymbol", function(x, which) { missable(x) <- missable(x) && !(name(x) %in% which) x }) setMethod("dropMissables", "ANY", function(x) { x }) setGeneric("invert", function(x) standardGeneric("invert")) setMethod("invert", "SolrQParserExpression", function(x) { x@query <- invert(x@query) x }) setMethod("invert", "SolrLuceneAND", function(x) { SolrLuceneOR(invert(x@e1), invert(x@e2)) }) setMethod("invert", "SolrLuceneOR", function(x) { SolrLuceneAND(invert(x@e1), invert(x@e2)) }) setMethod("invert", "SolrLuceneProhibit", function(x) { x@e1 }) setMethod("invert", "SolrLuceneTerm", function(x) { x@inverted <- !x@inverted x }) setMethod("invert", "SolrLuceneRangeTerm", function(x) { x@term <- invert(x@term) x }) setMethod("invert", "LuceneRange", function(x) { initialize(x, from=x@to, to=x@from, fromInclusive=!x@toInclusive, toInclusive=!x@fromInclusive) }) setMethod("invert", "FRangeQParserExpression", function(x) { equals <- !is.null(x@u) && identical(x@u, x@l) && x@incl && x@incu if (equals) { num <- if (!is.null(x@u)) x@u else x@l minus <- SolrFunctionCall("sub", list(query(x), num)) expr <- SolrFunctionCall("abs", list(minus)) FRangeQParserExpression(expr, l=0L, incl=FALSE) } else if (is.null(x@u) || is.null(x@l)) { initialize(x, l=x@u, u=x@l, incu=!x@incl, incl=!x@incu) } else { stop("cannot invert frange") } }) setMethod("invert", "SolrFunctionExpression", function(x) { SolrFunctionCall("not", list(x)) }) wrapParens <- function(x) { if (!is(x, "SolrLuceneUnaryOperator")) { paste0("(", x, ")") } else { x } } setMethod("as.character", "SolrLuceneOR", function(x) { paste(wrapParens(x@e1), wrapParens(x@e2)) }) setMethod("as.character", "SolrLuceneAND", function(x) { paste(wrapParens(x@e1), "AND", wrapParens(x@e2)) }) setMethod("as.character", "SolrLuceneProhibit", function(x) { if (substring(x@e1, 1L, 1L) == "-") { expr <- substring(x@e1, 2L) } else { expr <- paste0("-", wrapParens(x@e1)) } }) setMethod("as.character", "SolrLuceneTerm", function(x) { if (x@inverted) { x@inverted <- FALSE if (is.logical(x@term)) { x@term <- !x@term } else { wrapped <- SolrLuceneProhibit(x) if (!isLuceneNACheck(x)) { wrapped <- SolrLuceneAND(wrapped, initialize(x, term=I("*"))) } return(as.character(wrapped)) } } term <- normLuceneLiteral(x@term) if (!is.null(x@field)) { paste0(x@field, ":", term) } else term }) setMethod("as.character", "LuceneRange", function(x) { paste0(if (x@fromInclusive) "[" else "{", normLuceneLiteral(x@from), " TO ", normLuceneLiteral(x@to), if (x@toInclusive) "]" else "}") }) setMethod("as.character", "SolrQParserExpression", function(x) { params <- slotsAsList(x) params$query <- NULL params$useValueParam <- NULL params <- Filter(Negate(is.null), params) def <- mapply(identical, params, slotsAsList(new(class(x)))[names(params)]) params <- params[!as.logical(def)] if (x@useValueParam) { params$v <- x@query } qparser <- qparserFromExpr(x) params <- vapply(params, normLuceneLiteral, character(1L)) paste0("{!", qparser, if (length(params)) " ", paste(names(params), params, sep="=", collapse=" "), "}", if (!x@useValueParam) x@query) }) setMethod("as.character", "FRangeQParserExpression", function(x) { missables <- missables(query(x)) if (length(missables) > 0L) { expr <- Reduce(SolrLuceneAND, c(lapply(missables, SolrLuceneTerm, I("*")), dropMissables(x, missables))) as.character(as(expr, "SolrQParserExpression")) } else { callNextMethod() } }) setMethod("as.character", "JoinQParserExpression", function(x) { if (length(x@to) == 0L) { stop("incomplete join operation, try syntax: x %in% y[expr]") } callNextMethod() }) normLuceneLiteral <- function(x) { x <- fulfill(x) if (is.factor(x)) { x <- as.character(x) } else if (is(x, "POSIXt") || is(x, "Date")) { x <- toSolr(x, new("solr.DateField")) } else if (is(x, "Expression")) { x <- as.character(x) } if (is.character(x) && !is(x, "AsIs")) { x <- paste0("\"", gsub("\"", "\\\"", gsub("\\", "\\\\", x, fixed=TRUE), fixed=TRUE), "\"") } else if (is.logical(x)) { x <- tolower(as.character(x)) } if (length(x) > 1L) { x <- paste0("(", paste(x, collapse=" "), ")") } as.character(x) } setMethod("as.character", "SolrFunctionExpression", function(x) { ans <- as.character(x@name) if (is.logical(x@name)) ans <- tolower(ans) ans }) normSolrArg <- function(x) { x <- fulfill(x) if (is(x, "Expression")) { x <- as.character(as(x, "SolrFunctionExpression", strict=FALSE)) } else { x <- normLuceneLiteral(x) } if (anyNA(x)) { stop("cannot represent NA as a Solr function argument") } x } setMethod("as.character", "AbstractSolrFunctionCall", function(x) { args <- vapply(args(x), normSolrArg, character(1L)) paste0(name(x), "(", paste(args, collapse=","), ")") }) callQuery <- function(x) { query <- as(x, "SolrQParserExpression", strict=FALSE) query@useValueParam <- TRUE quoted <- SolrFunctionExpression(query) SolrFunctionCall("query", list(quoted)) } symbolExists <- function(x) SolrFunctionCall("exists", list(I(x))) symbolAnd <- function(x, y) SolrFunctionCall("and", list(x, y)) noneMissing <- function(missables) { Reduce(symbolAnd, lapply(missables, symbolExists)) } setGeneric("propagateNAs", function(x, na=solrNA) standardGeneric("propagateNAs"), signature="x") setMethod("propagateNAs", "SolrFunctionCall", function(x, na) { missables <- missables(x) if (length(missables) == 0L) { return(x) } condition <- noneMissing(missables) x <- dropMissables(x, missables) SolrFunctionCall("if", list(condition, x, na)) }) setMethod("propagateNAs", "SolrSymbol", function(x, na) { missable(x) <- FALSE x }) setMethod("as.character", "SolrFunctionCall", function(x) { x <- propagateNAs(x) callNextMethod() }) setMethod("as.character", "SolrSortExpression", function(x) { paste(x@by, if (x@decreasing) "desc" else "asc") }) setAs("SolrQParserExpression", "SolrLuceneExpression", function(from) { SolrLuceneTerm("_query_", from) }) setAs("SolrFunctionCall", "SolrQParserExpression", function(from) { FRangeQParserExpression(from, l=1, u=1) }) setAs("SolrSymbol", "SolrLuceneExpression", function(from) { SolrLuceneTerm(from, TRUE) }) setAs("character", "SolrLuceneExpression", function(from) { SolrLuceneTerm(NULL, from) }) setAs("AsIs", "SolrLuceneExpression", function(from) { SolrLuceneTerm(NULL, from) }) setAs("logical", "SolrLuceneExpression", function(from) { if (isNA(from)) { from <- FALSE } if (!isTRUEorFALSE(from)) { stop("'from' must be TRUE, FALSE or NA") } true <- SolrLuceneTerm("*", I("*")) if (!from) { SolrLuceneProhibit(true) } else { true } }) setAs("logical", "SolrExpression", function(from) { as(from, "SolrLuceneExpression") }) setAs("ANY", "SolrQParserExpression", function(from) { LuceneQParserExpression(from) }) setAs("ANY", "SolrLuceneExpressionOrSymbol", function(from) { as(from, "SolrQParserExpression") }) setAs("Expression", "SolrFunctionExpression", function(from) { SolrFunctionCall("exists", list(callQuery(from))) }) setAs("ANY", "SolrFunctionExpression", function(from) { SolrFunctionExpression(from) }) setAs("ANY", "SolrSymbol", function(from) SolrSymbol(from)) setMethod("show", "SolrExpression", function(object) { cat(as.character(object), "\n") }) targetFromQParser <- function(x) { if (!isSingleString(x)) { stop("QParser name must be a single, non-NA string") } cls <- supportedSolrQParsers()[x] if (is.na(cls)) { stop("QParser '", x, "' is not supported") } new(cls) } qparserFromExpr <- function(x) { qparserFromClassName(class(x)) } qparserFromClassName <- function(x) { tolower(sub("QParserExpression$", "", x)) } supportedSolrQParsers <- function() { cls <- signatureClasses(translate, 2) ans <- cls[vapply(cls, extends, logical(1), "QParserExpression")] setNames(ans, qparserFromClassName(ans)) } solrQueryNA <- SolrLuceneProhibit(SolrLuceneTerm("*", I("*"))) solrNA <- callQuery(solrQueryNA)
estBetaParams <- function(mu, var) { alpha <- ((1 - mu) / var - 1 / mu) * mu ^ 2 beta <- alpha * (1 / mu - 1) c('alpha' = abs(alpha), 'beta' = abs(beta)) } rbeta2 <- function(n, mu, sigma){ params <- estBetaParams(mu, sigma^2) rbeta(n, params[1], params[2]) } dbeta2 <- function(x, mu, sigma, log=FALSE){ params <- estBetaParams(mu, sigma^2) dbeta(x, params[1], params[2], log=log) } psiPrior <- function(psi, alpha=.5, kmax=5, minim=.001){ psivec <- psi psivec[which(psivec<minim)] <- 0 psivec <- sort(psivec/sum(psivec), decreasing=TRUE) if(length(which(psivec>0))==1){ psivec[1] <- 1 - minim psivec[2] <- minim } p <- log(ddirichlet(psivec[c(which(psivec>0))], rep(alpha, length(which(psivec>0))))) p } filterCN <- function(data, threshold){ indices <- which(abs(data$X - 1) >= threshold | abs(data$Y - 1) >= threshold) if (length(indices) < 1) { indices <- 1 } list('mat'=data[indices,], 'indices'=indices) } filterMutations <- function(mutdata, mu, threshold){ indices <- which(abs(mutdata$refCounts - mu) >= threshold | abs(mutdata$varCounts - mu) >= threshold) ids <- mutdata$mut.id[indices] list(mat = mutdata[indices,], ids = ids) } seqSeg <- function(seqsnps, len, thresh){ sigma0 <- sd(c(seqsnps$refCounts, seqsnps$varCounts)) dens <- density(seqsnps$refCounts) mu <- dens$x[which.max(dens$y)] chrs <- unique(seqsnps$chr) dflist <- lapply(1:length(chrs),function(i){ seqdata.chr <- seqsnps[seqsnps$chr == chrs[i],] meandiffs <- t(sapply(1:(nrow(seqdata.chr) - len), function(j) { mu1.ref <- mean(seqdata.chr$refCounts[((j - 1)*len+1):(j*len)]) mu2.ref <- mean(seqdata.chr$refCounts[(j*len+1):((j+1)*len)]) mu1.var <- mean(seqdata.chr$varCounts[((j - 1)*len+1):(j*len)]) mu2.var <- mean(seqdata.chr$varCounts[(j*len + 1):((j + 1)*len)]) c(abs(mu2.ref - mu1.ref), abs(mu2.var - mu1.var)) })) peaks.ref <- findPeaks(meandiffs[,1], thresh=.25) peaks.var <- findPeaks(meandiffs[,2], thresh=.25) peaks <- sort(unique(c(peaks.ref, peaks.var)), decreasing=FALSE) if(length(peaks) > 0){ start <- c(1, 1 + len*sapply(1:length(peaks), function(j) {peaks[j]} )) end <- c(start[-1] - 1, nrow(seqdata.chr)) }else{ start <- 1 end <- nrow(seqdata.chr) } markers <- end - start + 1 X <- sapply(1:length(start), function(j) {median(seqdata.chr$refCounts[start[j]:end[j]])})/mu Y <- sapply(1:length(start), function(j) {median(seqdata.chr$varCounts[start[j]:end[j]])})/mu LRR <- log10((X + Y)/2) BAF <- X/(X + Y) data.frame('chr'=rep(chrs[i],length(start)), 'start'=start, 'end'=end, 'LRR'=LRR, 'BAF'=BAF, 'X'=X, 'Y'=Y, 'markers'=markers) }) df <- Reduce(rbind, dflist) df$seg <- 1:nrow(df) df }
.compute_without_plots = function(gene_sigs_list, mRNA_expr_matrix,names_sigs=NULL,names_datasets=NULL , covariates=NULL, thresholds=NULL, out_dir = file.path('~', "sigQC"), showResults = FALSE,origin=NULL){ if(!dir.exists(out_dir)){ dir.create(out_dir,recursive=T) } logfile.path = file.path(out_dir, "log.log") log.con = file(logfile.path, open = "a") cat(paste("LOG FILE CREATED: ",Sys.time(), sep=""), file=log.con, sep="\n") radar_plot_values <- list(); for(i in 1:length(names_sigs)){ radar_plot_values[[names_sigs[i]]] <- list(); } tryCatch({ tryCatch(radar_plot_values <- eval_var_loc_noplots(gene_sigs_list,names_sigs, mRNA_expr_matrix,names_datasets,out_dir,file=log.con,showResults,radar_plot_values), error=function(err){ cat(paste0("Error occurred in eval_var_loc_noplots: ",err), file=log.con, sep="\n") }) tryCatch(radar_plot_values <- eval_expr_loc_noplots(gene_sigs_list,names_sigs,mRNA_expr_matrix,names_datasets,thresholds, out_dir,file=log.con,showResults,radar_plot_values ), error=function(err){ cat(paste0("Error occurred in eval_expr_loc_noplots: ",err), file=log.con, sep="\n") }) tryCatch(radar_plot_values <- eval_compactness_loc_noplots(gene_sigs_list,names_sigs,mRNA_expr_matrix,names_datasets,out_dir,file=log.con,showResults,radar_plot_values,logged=T,origin ), error=function(err){ cat(paste0("Error occurred during the evaluation of compactness: ",err), file=log.con, sep="\n") }) tryCatch({radar_plot_values <- compare_metrics_loc_noplots(gene_sigs_list,names_sigs,mRNA_expr_matrix,names_datasets,out_dir,file=log.con,showResults,radar_plot_values )}, error=function(err){ cat(paste0("Error occurred, likely due to inability to calculate PCA, because of missing values: ",err), file=log.con, sep="\n") }) tryCatch({radar_plot_values <- eval_stan_loc_noplots(gene_sigs_list,names_sigs,mRNA_expr_matrix,names_datasets,out_dir,file=log.con,showResults,radar_plot_values )}, error=function(err){ cat(paste0("Error occurred in eval_stan_loc_noplots: ",err), file=log.con, sep="\n") }) tryCatch(make_radar_chart_loc_noplots(radar_plot_values,showResults,names_sigs, names_datasets,out_dir,file=log.con), error=function(err){ cat(paste0("Error occurred in make_radar_chart_loc_noplots: ",err), file=log.con, sep="\n") }) }, error = function(err) { }, finally = { close(log.con) }) } eval_var_loc_noplots <- function(gene_sigs_list,names_sigs, mRNA_expr_matrix,names_datasets, out_dir = '~',file=NULL,showResults = FALSE,radar_plot_values){ num_rows <- length(names_sigs) num_cols <- length(names_datasets) gene_sig_mean_sd_table <- list() for(k in 1:length(names_sigs)){ gene_sig <- gene_sigs_list[[names_sigs[k]]] for (i in 1:length(names_datasets)){ data.matrix = mRNA_expr_matrix[[names_datasets[i]]] inter <- intersect(gene_sig[,1], row.names(data.matrix)) sd_genes <- as.matrix(apply(data.matrix,1,function(x){stats::sd(as.numeric(x),na.rm=T) })) mean_genes <- as.matrix(apply(mRNA_expr_matrix[[names_datasets[i]]],1,function(x) {mean(as.numeric(x),na.rm=T)})) radar_plot_values[[names_sigs[k]]][[names_datasets[i]]]['sd_median_ratio'] = stats::median(stats::na.omit(sd_genes[inter,1]))/(stats::median(stats::na.omit(sd_genes)) +stats::median(stats::na.omit(sd_genes[inter,1]))) radar_plot_values[[names_sigs[k]]][[names_datasets[i]]]['abs_skewness_ratio'] = abs(moments:: skewness(stats::na.omit(mean_genes[inter, 1])))/(abs(moments:: skewness(stats::na.omit(mean_genes))) + abs(moments:: skewness(stats::na.omit(mean_genes[inter, 1])))) quants_sd <- stats::quantile(sd_genes*is.finite(sd_genes),probs=c(0.1,0.25,0.5,0.75,0.9),na.rm=T) gene_sig_mean_sd_table[[names_sigs[k]]][[names_datasets[i]]] <- cbind(mean_genes[inter, 1],sd_genes[inter, 1]) colnames(gene_sig_mean_sd_table[[names_sigs[k]]][[names_datasets[i]]]) <- c("Mean","SD") } } for(k in 1:length(names_sigs)){ gene_sig <- gene_sigs_list[[names_sigs[k]]] for (i in 1:length(names_datasets)){ data.matrix = mRNA_expr_matrix[[names_datasets[i]]] inter <- intersect(gene_sig[,1], row.names(data.matrix)) coeff_of_var <- as.matrix(apply(data.matrix,1,function(x){stats::sd(as.numeric(stats::na.omit(x)),na.rm=T) / mean(as.numeric(stats::na.omit(x)),na.rm=T)})) coeff_of_var_gene_sig <- coeff_of_var[inter, 1] quantiles_considered <- stats::quantile(coeff_of_var,probs=c(0.9,0.75,0.5),na.rm=T) prop_top_10_percent <- sum(stats::na.omit(coeff_of_var_gene_sig) >= quantiles_considered[1]) / length(stats::na.omit(coeff_of_var_gene_sig)) prop_top_25_percent <- sum(stats::na.omit(coeff_of_var_gene_sig) >= quantiles_considered[2]) / length(stats::na.omit(coeff_of_var_gene_sig)) prop_top_50_percent <- sum(stats::na.omit(coeff_of_var_gene_sig) >= quantiles_considered[3]) / length(stats::na.omit(coeff_of_var_gene_sig)) radar_plot_values[[names_sigs[k]]][[names_datasets[i]]]['prop_top_10_percent'] <- prop_top_10_percent radar_plot_values[[names_sigs[k]]][[names_datasets[i]]]['prop_top_25_percent'] <- prop_top_25_percent radar_plot_values[[names_sigs[k]]][[names_datasets[i]]]['prop_top_50_percent'] <- prop_top_50_percent radar_plot_values[[names_sigs[k]]][[names_datasets[i]]]['coeff_of_var_ratio'] <- abs((abs(stats::median(stats::na.omit(coeff_of_var_gene_sig))))/((abs(stats::median(stats::na.omit(coeff_of_var)))) + abs((stats::median(stats::na.omit(coeff_of_var_gene_sig)))))) } } radar_plot_values } eval_expr_loc_noplots <- function(gene_sigs_list,names_sigs, mRNA_expr_matrix,names_datasets, thresholds = NULL, out_dir = '~',file=NULL,showResults = FALSE,radar_plot_values){ num_rows <- length(names_sigs) num_cols <- length(names_datasets) for(k in 1:length(names_sigs)){ gene_sig <- gene_sigs_list[[names_sigs[k]]] for (i in 1:length(names_datasets)){ data.matrix = mRNA_expr_matrix[[names_datasets[i]]] inter <- intersect(gene_sig[,1], row.names(data.matrix)) genes_expr <- data.matrix[inter,] gene_expr_vals <- (rowSums(is.na(genes_expr)) / dim(genes_expr)[2]) gene_expr_vals[setdiff(gene_sig[,1], row.names(data.matrix))] <- 1 gene_expr_vals <- -sort(-gene_expr_vals) radar_plot_values[[names_sigs[k]]][[names_datasets[i]]]['med_prop_na'] <- stats::median(1-gene_expr_vals) } } if (length(thresholds) == 0) { thresholds <- rep(0,length(names_datasets)) for ( i in 1:length(names_datasets)){ thresholds[i] <- stats::median(unlist(stats::na.omit(mRNA_expr_matrix[[names_datasets[i]]]))) } } if(length(names(thresholds))==0){ names(thresholds) <- names_datasets } for (k in 1:length(names_sigs)){ gene_sig <- gene_sigs_list[[names_sigs[k]]] for (i in 1:length(names_datasets)){ data.matrix = mRNA_expr_matrix[[names_datasets[i]]] inter <- intersect(gene_sig[,1], row.names(data.matrix)) genes_expr <- data.matrix[inter,] gene_expr_vals <- 1 - ((rowSums(genes_expr < thresholds[i])) / (dim(genes_expr)[2])) gene_expr_vals[setdiff(gene_sig[,1], row.names(data.matrix))] <- 0 gene_expr_vals <- sort(gene_expr_vals) radar_plot_values[[names_sigs[k]]][[names_datasets[i]]]['med_prop_above_med'] <- stats::median(gene_expr_vals) } } radar_plot_values } eval_compactness_loc_noplots <- function(gene_sigs_list,names_sigs, mRNA_expr_matrix, names_datasets, out_dir = '~',file=NULL,showResults = FALSE,radar_plot_values,logged=T,origin=NULL){ for(k in 1:length(names_sigs)){ gene_sig <- gene_sigs_list[[names_sigs[k]]] for (i in 1:length(names_datasets) ){ data.matrix = mRNA_expr_matrix[[names_datasets[i]]] inter <- intersect(gene_sig[,1], row.names(data.matrix)) autocors <- stats::cor(t(stats::na.omit(data.matrix[inter,])),method='spearman') if(dim(autocors)[1] > 1){ radar_plot_values[[names_sigs[k]]][[names_datasets[i]]]['autocor_median'] <- stats::median(autocors,na.rm=T) }else{ radar_plot_values[[names_sigs[k]]][[names_datasets[i]]]['autocor_median'] <- 0 } } } radar_plot_values } compare_metrics_loc_noplots <- function(gene_sigs_list,names_sigs, mRNA_expr_matrix, names_datasets, out_dir = '~',file=NULL,showResults = FALSE,radar_plot_values){ for(k in 1:length(names_sigs)){ gene_sig <- gene_sigs_list[[names_sigs[k]]] for (i in 1:length(names_datasets)){ data.matrix = mRNA_expr_matrix[[names_datasets[i]]] data.matrix[!(is.finite(as.matrix(data.matrix)))] <- NA inter = intersect(gene_sig[,1],rownames(data.matrix)) med_scores <- apply(data.matrix[inter,],2,function(x){stats::median(stats::na.omit(x))}) mean_scores <- apply(data.matrix[inter,],2,function(x){mean(stats::na.omit(x))}) pca1_scores <- NULL tryCatch({ pca1_scores <- stats::prcomp(stats::na.omit(t(data.matrix[inter,])),retx=T) },error=function(e){ pca1_scores <<- NULL cat(paste0("There was an error: ",names_datasets[i]," ", names_sigs[k]," ", e,'\n'), file=file) }) if(length(pca1_scores) > 1){ props_of_variances <- pca1_scores$sdev^2/(sum(pca1_scores$sdev^2)) pca1_scores <- pca1_scores$x[,1] common_score_cols <- intersect(names(med_scores),intersect(names(mean_scores),names(pca1_scores))) }else{ common_score_cols <- intersect(names(med_scores),names(mean_scores)) } if(length(common_score_cols) > 1){ rho <- stats::cor(med_scores[common_score_cols],mean_scores[common_score_cols],method='spearman') rho_mean_med <- rho }else{ rho_mean_med <- 0 } if (length(pca1_scores) > 1){ rho <- stats::cor(mean_scores[common_score_cols],pca1_scores[common_score_cols],method='spearman') rho_mean_pca1 <- rho rho <- stats::cor(pca1_scores[common_score_cols],med_scores[common_score_cols],method='spearman') rho_pca1_med <- rho }else{ rho_mean_pca1 <- 0 rho_pca1_med <- 0 } radar_plot_values[[names_sigs[k]]][[names_datasets[i]]]['rho_mean_med'] <- rho_mean_med radar_plot_values[[names_sigs[k]]][[names_datasets[i]]]['rho_pca1_med'] <- rho_pca1_med radar_plot_values[[names_sigs[k]]][[names_datasets[i]]]['rho_mean_pca1'] <- rho_mean_pca1 if(length(pca1_scores) > 1){ bars_plot <- props_of_variances[1:min(10,length(props_of_variances))] radar_plot_values[[names_sigs[k]]][[names_datasets[i]]]['prop_pca1_var']<- bars_plot[1] }else{ radar_plot_values[[names_sigs[k]]][[names_datasets[i]]]['prop_pca1_var']<- 0 } } } cat('Metrics compared successfully.\n', file=file) radar_plot_values } eval_stan_loc_noplots <- function(gene_sigs_list, names_sigs,mRNA_expr_matrix, names_datasets,out_dir = '~',file=NULL,showResults = FALSE,radar_plot_values ){ for(k in 1:length(names_sigs)){ gene_sig <- gene_sigs_list[[names_sigs[k]]] for (i in 1:length(names_datasets)){ data.matrix = mRNA_expr_matrix[[names_datasets[i]]] inter <- intersect(gene_sig[,1], row.names(data.matrix)) z_transf_mRNA <- data.matrix[inter,] for (gene in inter){ z_transf_mRNA[gene,] <- (as.numeric(z_transf_mRNA[gene,]) - mean(as.numeric(z_transf_mRNA[gene,]),na.rm=T)) / stats::sd(as.numeric(z_transf_mRNA[gene,]),na.rm=T) } z_transf_scores <- apply(z_transf_mRNA[inter,],2,function(x) {stats::median(stats::na.omit(x))}) med_scores <- apply(data.matrix[inter,],2,function(x){ stats::median(stats::na.omit(x))}) rho <- stats::cor(med_scores,z_transf_scores,method='spearman') radar_plot_values[[names_sigs[k]]][[names_datasets[i]]]['standardization_comp'] <- rho } } cat('Standardisation compared successfully.\n', file=file) radar_plot_values } make_radar_chart_loc_noplots <- function(radar_plot_values,showResults = FALSE,names_sigs,names_datasets, out_dir = '~',file){ radar_plot_mat <- c() all_metrics <- c('sd_median_ratio','abs_skewness_ratio','prop_top_10_percent','prop_top_25_percent', 'prop_top_50_percent','coeff_of_var_ratio','med_prop_na','med_prop_above_med', 'autocor_median','rho_mean_med','rho_pca1_med','rho_mean_pca1', 'prop_pca1_var','standardization_comp') for(k in 1:length(names_sigs)){ for(i in 1:length(names_datasets)){ diff_names <- base::setdiff(all_metrics,names(radar_plot_values[[names_sigs[k]]][[names_datasets[i]]])) if(length(diff_names)>0){ for(j in 1:length(diff_names)){ radar_plot_values[[names_sigs[k]]][[names_datasets[i]]][diff_names[j]] <- 0 } } } } for(k in 1:length(names_sigs)){ t <- lapply(radar_plot_values[[names_sigs[k]]],function(x) radar_plot_mat <<- rbind(radar_plot_mat,x)) } radar_plot_mat <- rbind(rep(1,length(radar_plot_values[[1]][[1]])),rep(0,length(radar_plot_values[[1]][[1]])),radar_plot_mat) radar_plot_mat <- abs(radar_plot_mat) legend_labels <- c() for(k in 1:length(names_sigs) ){ for(i in 1:length(names_datasets)){ legend_labels <- c(legend_labels,paste0(names_datasets[i],' ',names_sigs[k],' (XXXX)')) } } row.names(radar_plot_mat) <- c('max','min',legend_labels) areas <- c() for (i in 3:dim(radar_plot_mat)[1]){ areas<- c(areas,sum(sapply(1:length(radar_plot_mat[i,]),function(x) if(x < length(radar_plot_mat[i,])){radar_plot_mat[i,x] * radar_plot_mat[i,x+1]}else{radar_plot_mat[i,x]* radar_plot_mat[i,1]}))) } areas <- areas /dim(radar_plot_mat)[2] count <-1 legend_labels <-c() for(k in 1:length(names_sigs) ){ for(i in 1:length(names_datasets)){ legend_labels <- c(legend_labels,paste0(names_datasets[i],' ',names_sigs[k],' (',format(areas[count],digits=2),')')) count <- count + 1 } } legend_labels <- legend_labels[order(-areas)] if(!dir.exists(file.path(out_dir,'radarchart_table'))){ dir.create(file.path(out_dir,'radarchart_table')) } radarplot_rownames <- c() for(k in 1:length(names_sigs) ){ for(i in 1:length(names_datasets)){ radarplot_rownames <- c(radarplot_rownames,paste0(gsub(' ','.', names_datasets[i]),'_',gsub(' ','.', names_sigs[k]))) } } radar_plot_mat <- radar_plot_mat[3:(dim(radar_plot_mat)[1]),] radar_plot_mat <- as.matrix(radar_plot_mat) if(length(radarplot_rownames)==1){ new_colnames <- rownames(radar_plot_mat) dim(radar_plot_mat) <- c(1,length(radar_plot_mat)) colnames(radar_plot_mat) <- new_colnames } row.names(radar_plot_mat) <- radarplot_rownames utils::write.table(radar_plot_mat,file=file.path(out_dir,'radarchart_table', paste0('radarchart_table','.txt')),quote=F,sep='\t',row.names=T,col.names=T) cat('Radar chart made successfully.\n', file=file) }
env <- function(x) { environment(x$as_list) }
pack_layers <- function(loonPlot, ggObj, buildggObj, panelIndex, activeInfo, modelLayers) { lenLayers <- length(ggObj$layers) if(lenLayers == 0) return(NULL) ggplotPanelParams <- buildggObj$ggplotPanelParams ggBuild <- buildggObj$ggBuild curveLayers <- modelLayers$curveLayers boxplotLayers <- modelLayers$boxplotLayers activeGeomLayers <- activeInfo$activeGeomLayers activeModel <- activeInfo$activeModel loonLayers <- lapply(seq_len(lenLayers), function(j){ if(j %in% activeGeomLayers) return(NULL) loonLayer(widget = loonPlot, layerGeom = ggObj$layers[[j]], data = ggBuild$data[[j]][ggBuild$data[[j]]$PANEL == panelIndex, ], ggplotPanelParams = ggplotPanelParams[[panelIndex]], ggObj = ggObj, curveAdditionalArgs = list(curve = list(which_curve = j, curveLayers = curveLayers)) ) }) if(length(activeGeomLayers) != lenLayers && length(activeGeomLayers) > 0 && all(activeGeomLayers != 0L)) { otherLayerId <- seq(lenLayers)[-activeGeomLayers] minOtherLayerId <- min(otherLayerId) max_hist_points_layerId <- max(activeGeomLayers) if(max_hist_points_layerId > minOtherLayerId){ modelLayerup <- sapply(seq_len(length(which(otherLayerId < max_hist_points_layerId) == TRUE)), function(j){ loon::l_layer_raise(loonPlot, "model") } ) } } if (length(boxplotLayers) != 0 && activeModel == "l_plot" && length(activeGeomLayers) == 0) { loon::l_layer_hide(loonPlot, "model") modelLayerup <- sapply(seq_len(lenLayers), function(j){ loon::l_layer_raise(loonPlot, "model") }) } loonLayers }
climdex2ecad<-function(homefolder='./',stationlist='stations.csv',countrycode='DE'){ ecv.ECAD <- c("rr","tx","tn") ecv.hl15 <- c("24-28 RR : Precipitation amount in 0.1 mm", "24-28 TX : Maximum temperature in 0.1 C", "24-28 TN : Minimum temperature in 0.1 C") ecv.hl16 <- c("30-34 Q_RR : quality code for RR (0='valid'; 1='suspect'; 9='missing')", "30-34 Q_TX : quality code for TX (0='valid'; 1='suspect'; 9='missing')", "30-34 Q_TN : quality code for TN (0='valid'; 1='suspect'; 9='missing')") ecv.hl22 <- c(" STAID, SOUID, DATE, RR, Q_RR"," STAID, SOUID, DATE, TX, Q_TX", " STAID, SOUID, DATE, TN, Q_TN") ecv <- data.frame(ECAD=ecv.ECAD,hl15=ecv.hl15,hl16=ecv.hl16,hl22=ecv.hl22) lst.stn <- utils::read.table(paste0(homefolder,'raw_ClimDex/',stationlist),header = FALSE, sep = ",",na.strings='-99.9') n.stn <- nrow(lst.stn) if(!dir.exists(paste0(homefolder,'raw'))){dir.create(paste0(homefolder,'raw'))} for (i in 1:n.stn) { filename<-paste0(lst.stn[i,4],'.txt') print(filename) lat.angel <- lst.stn[i,1] if(lat.angel < 0){nyu<-TRUE;lat.angel = lat.angel*(-1)}else{nyu=FALSE} lat.angel.chr <- as.character(lat.angel) lat.deg <- as.numeric(strsplit(lat.angel.chr, "\\.")[[1]][1]) lat.min <- as.numeric(strsplit(as.character((lat.angel-lat.deg)*60), "\\.")[[1]][1]) lat.sec <- round((((lat.angel-lat.deg)*60) - lat.min) * 60) if (nyu) {lat.deg <- paste0("-",sprintf("%02d",lat.deg))} else {lat.deg <- paste0("+",sprintf("%02d",lat.deg))} lat.min <- sprintf("%02d",lat.min) lat.sec <- sprintf("%02d",lat.sec) LAT <- paste0(lat.deg,':',lat.min,':',lat.sec) lon.angel <- lst.stn[i,2] if(lon.angel < 0){nyu<-TRUE;lon.angel = lon.angel*(-1)}else{nyu=FALSE} lon.angel.chr <- as.character(lon.angel) lon.deg <- as.numeric(strsplit(lon.angel.chr, "\\.")[[1]][1]) lon.min <- as.numeric(strsplit(as.character((lon.angel-lon.deg)*60), "\\.")[[1]][1]) lon.sec <- round((((lon.angel-lon.deg)*60) - lon.min) * 60) if (nyu) {lon.deg <- paste0("-",sprintf("%03d",lon.deg))} else {lon.deg <- paste0("+",sprintf("%03d",lon.deg))} lon.min <- sprintf("%02d",lon.min) lon.sec <- sprintf("%02d",lon.sec) LON <- paste0(lon.deg,':',lon.min,':',lon.sec) if(file.exists(paste0(homefolder,'raw_ClimDex/',filename))){ y<-utils::read.table(paste0(homefolder,'raw_ClimDex/',filename),na.strings='-99.9') y[,4]<-round(y[,4],1) y[,5]<-round(y[,5],1) y[,6]<-round(y[,6],1) date<-as.numeric(paste0(y[,1],sprintf("%02d",y[,2]),sprintf("%02d",y[,3]))) STAID <- i for (j in 1:3) { SOUID <- paste0(j,sprintf("%05d",i)) file.nm <- paste0(toupper(ecv[j,1]),'_STAID',sprintf("%06d",STAID),'.txt') file.out <- file(paste0(homefolder,'raw/',file.nm)) writeLines(c("This is INQC's formal conversion of a COST Home data file to the ECA&D format (STAID and SOUID are not real!)", paste("EUROPEAN CLIMATE ASSESSMENT & DATASET (ECA&D), file created on:",Sys.Date(),sep=" "), "THESE DATA CAN BE USED FOR NON-COMMERCIAL RESEARCH AND EDUCATION PROVIDED THAT THE FOLLOWING SOURCE IS ACKNOWLEDGED: ", "", "Klein Tank, A.M.G. and Coauthors, 2002. Daily dataset of 20th-century surface", "air temperature and precipitation series for the European Climate Assessment.", "Int. J. of Climatol., 22, 1441-1453.", "Data and metadata available at http://www.ecad.eu", "", "FILE FORMAT (MISSING VALUE CODE = -9999):", "", "01-06 STAID: Station identifier", "08-13 SOUID: Source identifier", "15-22 DATE : Date YYYYMMDD", ecv[j,2], ecv[j,3], "", paste0("This is the blended series of station ",lst.stn[i,4],", ",countrycode," (STAID: ",STAID,")"), paste0("Blended and updated with sources: ",SOUID), "See files sources.txt and stations.txt for more info.", "", ecv[j,4]), file.out) close(file.out) VALUE <- as.numeric(y[,j+3])*10 QC <- vector(mode='integer',length=length(VALUE)) QC[1:length(VALUE)] <- 0 QC[which(is.na(VALUE))] <- 9 VALUE[which(is.na(VALUE))] <- -9999 df.j <- data.frame('STAID'=format(STAID,width=6), 'SOUID'=SOUID, 'DATE'=date, 'VALUE'=format(VALUE,width=5), 'QC'=format(QC,width=5)) utils::write.table(df.j, file=paste0(homefolder,'raw/',file.nm),row.names = FALSE,col.names = FALSE, sep = ",",append=TRUE,quote = FALSE) } stn.fl.ECAD.i <- data.frame(format(STAID,width=5),format(lst.stn[i,4],width=40),countrycode, LAT,LON,format(lst.stn[i,3],width=4)) if (i==1) { stn.fl.ECAD <- stn.fl.ECAD.i } else { stn.fl.ECAD <- rbind(stn.fl.ECAD, stn.fl.ECAD.i) } } } names(stn.fl.ECAD) <- c('STAID','STANAME ','CN',' LAT',' LON','HGHT') utils::write.table(stn.fl.ECAD,file=paste0(homefolder,'raw/','stations.txt'), col.names=TRUE,row.names=FALSE,sep=',',quote = FALSE) }
expected <- eval(parse(text="structure(c(-1.82608695652174, 1.17391304347826, 1.17391304347826, 4.17391304347826, -1.82608695652174, -1.82608695652174, 2.17391304347826, 0.173913043478262, 4.17391304347826, -0.826086956521738, 2.17391304347826, 2.17391304347826, 2.17391304347826, 4.17391304347826, -2.82608695652174, 2.17391304347826, 2.17391304347826, -0.826086956521738, -3.82608695652174, -1.82608695652174, -4.82608695652174, 0.173913043478262, -7.82608695652174, 1.15, 5.15, -0.85, 1.15, -2.85, -2.85, -1.85, NA, 6.15, -2.85, 0.15, 3.15, 0.15, NA, NA, 1.15, -1.85, 0.15, -0.85, -0.85, 2.15, -2.85, -2.85, -32.2608695652174, -54.2608695652174, -36.2608695652174, -45.2608695652174, 194.739130434783, 130.739130434783, -35.2608695652174, -59.2608695652174, -63.2608695652174, 25.7391304347826, -25.2608695652174, -44.2608695652174, -16.2608695652174, -63.2608695652174, -53.2608695652174, -56.2608695652174, -19.2608695652174, -35.2608695652174, -39.2608695652174, -7.26086956521739, -38.2608695652174, 213.739130434783, 158.739130434783, 8.09999999999999, -94.9, -59.9, -49.9, 176.1, 11.1, -59.9, NA, 100.1, 15.1, 21.1, 84.1, 65.1, NA, NA, -63.9, -37.9, -26.9, -128.9, 42.1, -87.9, 118.1, -30.9), .Dim = c(23L, 4L), .Dimnames = list(NULL, c(\"V1\", \"V2\", \"V3\", \"V4\")))")); test(id=0, code={ argv <- eval(parse(text="list(structure(c(9, 12, 12, 15, 9, 9, 13, 11, 15, 10, 13, 13, 13, 15, 8, 13, 13, 10, 7, 9, 6, 11, 3, 5, 9, 3, 5, 1, 1, 2, NA, 10, 1, 4, 7, 4, NA, NA, 5, 2, 4, 3, 3, 6, 1, 1, 63, 41, 59, 50, 290, 226, 60, 36, 32, 121, 70, 51, 79, 32, 42, 39, 76, 60, 56, 88, 57, 309, 254, 146, 43, 78, 88, 314, 149, 78, NA, 238, 153, 159, 222, 203, NA, NA, 74, 100, 111, 9, 180, 50, 256, 107), .Dim = c(23L, 4L), .Dimnames = list(NULL, c(\"V1\", \"V2\", \"V3\", \"V4\"))), structure(c(10.8260869565217, 10.8260869565217, 10.8260869565217, 10.8260869565217, 10.8260869565217, 10.8260869565217, 10.8260869565217, 10.8260869565217, 10.8260869565217, 10.8260869565217, 10.8260869565217, 10.8260869565217, 10.8260869565217, 10.8260869565217, 10.8260869565217, 10.8260869565217, 10.8260869565217, 10.8260869565217, 10.8260869565217, 10.8260869565217, 10.8260869565217, 10.8260869565217, 10.8260869565217, 3.85, 3.85, 3.85, 3.85, 3.85, 3.85, 3.85, 3.85, 3.85, 3.85, 3.85, 3.85, 3.85, 3.85, 3.85, 3.85, 3.85, 3.85, 3.85, 3.85, 3.85, 3.85, 3.85, 95.2608695652174, 95.2608695652174, 95.2608695652174, 95.2608695652174, 95.2608695652174, 95.2608695652174, 95.2608695652174, 95.2608695652174, 95.2608695652174, 95.2608695652174, 95.2608695652174, 95.2608695652174, 95.2608695652174, 95.2608695652174, 95.2608695652174, 95.2608695652174, 95.2608695652174, 95.2608695652174, 95.2608695652174, 95.2608695652174, 95.2608695652174, 95.2608695652174, 95.2608695652174, 137.9, 137.9, 137.9, 137.9, 137.9, 137.9, 137.9, 137.9, 137.9, 137.9, 137.9, 137.9, 137.9, 137.9, 137.9, 137.9, 137.9, 137.9, 137.9, 137.9, 137.9, 137.9, 137.9), .Dim = c(23L, 4L)))")); do.call(`-`, argv); }, o=expected);
sim2.bd.fast.single.origin <- function(n,lambda,mu,rho,origin){ edge <- c(-1,-2) leaves <- c(-2) timecreation <-c(0,0) time <-0 maxspecies <- -2 edge.length <- c(0) index = 2 specevents = vector() specevents <-c(specevents,origin) for (j in 1:(n-1)){ r <- runif(1,0,1) tor=origin lamb1= rho * lambda mu1 = mu - lambda *(1-rho) if (lambda>mu) { temp <- 1/(lamb1-mu1)*log((lamb1-mu1* exp((-lamb1+mu1)*tor) -mu1*(1-exp((-lamb1+mu1)*tor)) *r )/(lamb1-mu1* exp((-lamb1+mu1)*tor) -lamb1*(1-exp((-lamb1+mu1)*tor)) *r ) ) } else { temp<- -((tor* r)/(-1 - lambda* rho* tor + lambda* rho* tor*r )) } specevents <- c(specevents,temp) } specevents <- sort(specevents,decreasing=TRUE) while (index<=n) { timestep <- specevents[(index-1)]-specevents[index] time = time+timestep species <- sample(leaves,1) del <- which(leaves == species) edgespecevent <- which(edge == species) - length(edge.length) edge.length[edgespecevent] <- time-timecreation[- species] edge <- rbind(edge,c(species,maxspecies-1)) edge <- rbind(edge,c(species,maxspecies-2)) edge.length <- c(edge.length,0,0) leaves <- c(leaves,maxspecies-1,maxspecies-2) maxspecies <- maxspecies-2 leaves <- leaves[- del] timecreation <- c(timecreation,time,time) index <- index+1 } time <- specevents[1] for (j in (1:length(leaves))){ k = which( edge == leaves[j] ) - length(edge.length) edge.length[ k ] <- time - timecreation[- leaves[j]] } nodes <- (length(leaves))*2 leaf=1 interior=length(leaves)+1 edgetemp<-edge if (nodes == 2) { phy2 <-1 } else { for (j in (1:nodes)){ if (sum(match(leaves,- j,0)) == 0) { posvalue <- interior interior <- interior +1 } else { posvalue <- leaf leaf <- leaf +1 } replacel <- which(edge == - j) for (k in 1:length(replacel)) { if ((replacel[k]-1) < length(edge.length)) { edge[replacel[k],1] <- posvalue } else { edge[(replacel[k]-length(edge.length)),2] <- posvalue } } } } phy <- list(edge = edge) phy$tip.label <- paste("t", sample(length(leaves)), sep = "") phy$edge.length <- edge.length phy$Nnode <- length(leaves) class(phy) <- "phylo" storage.mode(phy$edge) <- "integer" phy }
context("fct_relevel") test_that("warns about unknown levels", { f1 <- factor(c("a", "b")) expect_warning(f2 <- fct_relevel(f1, "d"), "Unknown levels") expect_equal(levels(f2), levels(f1)) }) test_that("moves supplied levels to front", { f1 <- factor(c("a", "b", "c", "d")) f2 <- fct_relevel(f1, "c", "b") expect_equal(levels(f2), c("c", "b", "a", "d")) }) test_that("can moves supplied levels to end", { f1 <- factor(c("a", "b", "c", "d")) f2 <- fct_relevel(f1, "a", "b", after = 2) f3 <- fct_relevel(f1, "a", "b", after = Inf) expect_equal(levels(f2), c("c", "d", "a", "b")) expect_equal(levels(f3), c("c", "d", "a", "b")) }) test_that("can relevel with function ", { f1 <- fct_rev(factor(c("a", "b"))) f2a <- fct_relevel(f1, rev) f2b <- fct_relevel(f1, ~ rev(.)) expect_equal(levels(f2a), c("a", "b")) expect_equal(levels(f2b), c("a", "b")) }) test_that("function must return character vector", { f <- factor(c("a", "b")) expect_error(fct_relevel(f, ~ 1), "character vector") })
available_hosts <- function() { .xena_hosts <- "UCSCXenaTools" %:::% ".xena_hosts" .xena_hosts %>% as.character() } get_pancan_value <- function(identifier, subtype = NULL, dataset = NULL, host = available_hosts(), samples = NULL) { stopifnot(length(identifier) == 1, !all(is.null(subtype), is.null(dataset))) if (!requireNamespace("UCSCXenaTools", quietly = TRUE)) { stop("Package 'UCSCXenaTools' is not installed.") } if (!"UCSCXenaTools" %in% .packages()) { attachNamespace("UCSCXenaTools") } host <- match.arg(host, choices = available_hosts(), several.ok = TRUE) data <- UCSCXenaTools::XenaData if (!is.null(subtype)) { data <- data %>% dplyr::filter(XenaHostNames %in% host, grepl(subtype, DataSubtype)) } if (!is.null(dataset)) { data <- data %>% dplyr::filter(XenaHostNames %in% host, grepl(dataset, XenaDatasets)) } if (nrow(data) == 0) { stop("No dataset is determined by input") } if (nrow(data) > 1) { data <- dplyr::filter(data, .data$XenaDatasets == dataset) } res <- try_query_value(data[["XenaHosts"]], data[["XenaDatasets"]], identifiers = identifier, samples = samples, check = FALSE, use_probeMap = TRUE ) res2 <- res[1, ] names(res2) <- colnames(res) res2 } try_query_value <- function(host, dataset, identifiers, samples, check = FALSE, use_probeMap = TRUE, max_try = 5L) { Sys.sleep(0.1) tryCatch( { message("Try querying data UCSCXenaTools::fetch_dense_values(host, dataset, identifiers = identifiers, samples = samples, check = check, use_probeMap = use_probeMap ) }, error = function(e) { if (max_try == 1) { stop("Tried 5 times but failed, please check URL or your internet connection or try it later!") } else { try_query_value(host, dataset, identifiers, samples, check = check, use_probeMap = use_probeMap, max_try = max_try - 1L ) } } ) } get_pancan_gene_value <- function(identifier) { host <- "toilHub" dataset <- "TcgaTargetGtex_rsem_gene_tpm" expression <- get_data(dataset, identifier, host) unit <- "log2(tpm+0.001)" report_dataset_info(dataset) res <- list(expression = expression, unit = unit) res } get_pancan_transcript_value <- function(identifier) { id <- identifier host <- "toilHub" dataset <- "TcgaTargetGtex_rsem_isoform_tpm" res_p <- check_exist_data("mp", dataset, host) if (res_p$ok) { ids <- res_p$data } else { ids <- UCSCXenaTools::fetch_dataset_identifiers("https://toil.xenahubs.net", dataset) names(ids) <- sub("\\.[0-9]+", "", ids) save_data(ids, "mp", dataset, host) } identifier <- as.character(ids[identifier]) if (is.na(identifier)) identifier <- id expression <- get_data(dataset, identifier, host) unit <- "log2(tpm+0.001)" report_dataset_info(dataset) res <- list(expression = expression, unit = unit) res } get_pancan_protein_value <- function(identifier) { host <- "pancanAtlasHub" dataset <- "TCGA-RPPA-pancan-clean.xena" expression <- get_data(dataset, identifier, host) unit <- "norm_value" report_dataset_info(dataset) res <- list(expression = expression, unit = unit) res } .all_pancan_proteins <- c( "ACC1", "ACC_pS79", "ACETYLATUBULINLYS40", "ACVRL1", "ADAR1", "AKT", "AKT_pS473", "AKT_pT308", "ALPHACATENIN", "AMPKALPHA", "AMPKALPHA_pT172", "ANNEXIN1", "ANNEXINVII", "AR", "ARAF", "ARAF_pS299", "ARID1A", "ASNS", "ATM", "AXL", "BAD_pS112", "BAK", "BAP1C4", "BAX", "BCL2", "BCL2A1", "BCLXL", "BECLIN", "BETACATENIN", "BID", "BIM", "BRAF", "BRAF_pS445", "BRCA2", "BRD4", "CA9", "CABL", "CASPASE3", "CASPASE7CLEAVEDD198", "CASPASE8", "CASPASE9", "CAVEOLIN1", "CD20", "CD26", "CD31", "CD49B", "CDK1", "CDK1_pY15", "CHK1", "CHK1_pS296", "CHK1_pS345", "CHK2", "CHK2_pT68", "CHROMOGRANINANTERM", "CIAP", "CJUN_pS73", "CK5", "CKIT", "CLAUDIN7", "CMET", "CMET_pY1235", "CMYC", "COG3", "COLLAGENVI", "COMPLEXIISUBUNIT30", "CRAF", "CRAF_pS338", "CTLA4", "CYCLINB1", "CYCLIND1", "CYCLINE1", "CYCLINE2", "DIRAS3", "DJ1", "DUSP4", "DVL3", "E2F1", "ECADHERIN", "EEF2", "EEF2K", "EGFR", "EGFR_pY1068", "EGFR_pY1173", "EIF4E", "EIF4G", "ENY2", "EPPK1", "ERALPHA", "ERALPHA_pS118", "ERCC1", "ERCC5", "ERK2", "ETS1", "EZH2", "FASN", "FIBRONECTIN", "FOXM1", "FOXO3A", "FOXO3A_pS318S321", "G6PD", "GAB2", "GAPDH", "GATA3", "GATA6", "GCN5L2", "GSK3ALPHABETA", "GSK3ALPHABETA_pS21S9", "GSK3_pS9", "GYGGLYCOGENIN1", "GYS", "GYS_pS641", "HER2", "HER2_pY1248", "HER3", "HER3_pY1289", "HEREGULIN", "HIF1ALPHA", "HSP70", "IGF1R_pY1135Y1136", "IGFBP2", "INPP4B", "IRF1", "IRS1", "JAB1", "JAK2", "JNK2", "JNK_pT183Y185", "KEAP1", "KU80", "LCK", "LCN2A", "LDHA", "LDHB", "LKB1", "MACC1", "MAPK_pT202Y204", "MEK1", "MEK1_pS217S221", "MIG6", "MITOCHONDRIA", "MRE11", "MSH2", "MSH6", "MTOR", "MTOR_pS2448", "MYH11", "MYOSINIIA", "MYOSINIIA_pS1943", "NAPSINA", "NCADHERIN", "NDRG1_pT346", "NF2", "NFKBP65_pS536", "NOTCH1", "NRAS", "NRF2", "OXPHOSCOMPLEXVSUBUNITB", "P16INK4A", "P21", "P27", "P27_pT157", "P27_pT198", "P38MAPK", "P38_pT180Y182", "P53", "P62LCKLIGAND", "P63", "P70S6K1", "P70S6K_pT389", "P90RSK", "P90RSK_pT359S363", "PAI1", "PARP1", "PARPAB3", "PARPCLEAVED", "PAXILLIN", "PCADHERIN", "PCNA", "PDCD1", "PDCD4", "PDK1", "PDK1_pS241", "PDL1", "PEA15", "PEA15_pS116", "PI3KP110ALPHA", "PI3KP85", "PKCALPHA", "PKCALPHA_pS657", "PKCDELTA_pS664", "PKCPANBETAII_pS660", "PKM2", "PR", "PRAS40_pT246", "PRDX1", "PREX1", "PTEN", "PYGB", "PYGBAB2", "PYGL", "PYGM", "RAB11", "RAB25", "RAD50", "RAD51", "RAPTOR", "RB", "RBM15", "RB_pS807S811", "RET_pY905", "RICTOR", "RICTOR_pT1135", "S6", "S6_pS235S236", "S6_pS240S244", "SCD1", "SETD2", "SF2", "SHC_pY317", "SHP2_pY542", "SLC1A5", "SMAC", "SMAD1", "SMAD3", "SMAD4", "SNAIL", "SRC", "SRC_pY416", "SRC_pY527", "STAT3_pY705", "STAT5ALPHA", "STATHMIN", "SYK", "SYNAPTOPHYSIN", "TAZ", "TFRC", "THYMIDILATESYNTHASE", "TIGAR", "TRANSGLUTAMINASE", "TSC1", "TTF1", "TUBERIN", "TUBERIN_pT1462", "VEGFR2", "X1433BETA", "X1433EPSILON", "X1433ZETA", "X4EBP1", "X4EBP1_pS65", "X4EBP1_pT37T46", "X4EBP1_pT70", "X53BP1", "XBP1", "XRCC1", "YAP", "YAP_pS127", "YB1", "YB1_pS102" ) get_pancan_mutation_status <- function(identifier) { if (utils::packageVersion("UCSCXenaTools") < "1.3.2") { stop("You need to update 'UCSCXenaTools' (>=1.3.2).", call. = FALSE) } host <- "pancanAtlasHub" dataset <- "mc3.v0.2.8.PUBLIC.nonsilentGene.xena" report_dataset_info(dataset) data <- get_data(dataset, identifier, host) return(data) } get_pancan_cn_value <- function(identifier, use_thresholded_data = TRUE) { host <- "tcgaHub" if (use_thresholded_data) { dataset <- "TCGA.PANCAN.sampleMap/Gistic2_CopyNumber_Gistic2_all_thresholded.by_genes" unit <- "-2,-1,0,1,2: 2 copy del,1 copy del,no change,amplification,high-amplification" } else { dataset <- "TCGA.PANCAN.sampleMap/Gistic2_CopyNumber_Gistic2_all_data_by_genes" unit <- "Gistic2 copy number" } data <- get_data(dataset, identifier, host) report_dataset_info(dataset) res <- list(data = data, unit = unit) res } get_pancan_methylation_value <- function(identifier, type = c("450K", "27K")) { type <- match.arg(type) if (type == "450K") { host <- "pancanAtlasHub" dataset <- "jhu-usc.edu_PANCAN_HumanMethylation450.betaValue_whitelisted.tsv.synapse_download_5096262.xena" } else { host <- "tcgaHub" dataset <- "TCGA.PANCAN.sampleMap/HumanMethylation27" } data <- get_data(dataset, identifier, host) unit <- "beta value" report_dataset_info(dataset) res <- list(data = data, unit = unit) res } get_pancan_miRNA_value <- function(identifier) { host <- "pancanAtlasHub" dataset <- "pancanMiRs_EBadjOnProtocolPlatformWithoutRepsWithUnCorrectMiRs_08_04_16.xena" expression <- get_data(dataset, identifier, host) unit <- "log2(norm_value+1)" report_dataset_info(dataset) res <- list(expression = expression, unit = unit) res } report_dataset_info <- function(dataset) { msg <- paste0( "More info about dataset please run following commands:\n", " library(UCSCXenaTools)\n", " XenaGenerate(subset = XenaDatasets == \"", dataset, "\") %>% XenaBrowse()" ) message(msg) } check_file <- function(id, dataset, host) { f <- file.path( get_cache_dir(), paste0( host, "_", gsub("[/]", "_", dataset), "_", id, ".rds" ) ) return(f) } check_exist_data <- function(id, dataset, host) { f <- check_file(id, dataset, host) if (file.exists(f)) { data <- tryCatch( readRDS(f), error = function(e) { message("Read cache data failed.") return(NULL) } ) if (!is.null(data)) { return(list( ok = TRUE, data = data )) } else { return( list( ok = FALSE, data = NULL ) ) } } else { return( list( ok = FALSE, data = NULL ) ) } } save_data <- function(data, id, dataset, host) { f <- check_file(id, dataset, host) if (!dir.exists(dirname(f))) { dir.create(dirname(f), recursive = TRUE) } tryCatch( saveRDS(data, file = f), error = function(e) { message("Save data to cache directory failed.") } ) } get_data <- function(dataset, identifier, host = NULL) { stopifnot(length(dataset) == 1) if (is.null(host)) { host <- UCSCXenaTools::XenaData %>% dplyr::filter(.data$XenaDatasets == dataset) %>% dplyr::pull(.data$XenaHostNames) } res <- check_exist_data(identifier, dataset, host) if (res$ok) { value <- res$data } else { value <- get_pancan_value(identifier, dataset = dataset, host = host) label <- UCSCXenaTools::XenaData %>% dplyr::filter(.data$XenaDatasets == dataset) %>% dplyr::pull(.data$DataSubtype) attr(value, "label") <- label save_data(value, identifier, dataset, host) } value }
Merton <- function(L, V0, sigma, r, t){ if(!is.numeric(L)) stop("L must be a number") if(length(L) != 1) stop("L must be a number and not a vector") if(!is.numeric(V0)) stop("V0 must be a number") if(length(V0) != 1) stop("V0 must be a number and not a vector") if(!is.numeric(sigma)) stop("L must be a number") if(length(sigma) != 1) stop("L must be a number and not a vector") if(!is.numeric(r)) stop("r must be a number") if(length(r) != 1) stop("r must be constant for all maturities") if(!is.numeric(t)) stop("Time t must be a numeric vector") d1 <- (log(V0 / L) + (r + (sigma^2 / 2) * t)) / (sigma * sqrt(t)) d2 <- d1 - sigma * sqrt(t) Q <- stats::pnorm(-d2) Surv <- 1 - Q Vt <- V0 * exp(r * t) St <- fOptions::GBSOption(TypeFlag = "c", S = Vt, X = L, Time = (t[length(t)] - t), r = r, b = r, sigma = sigma)@price Dt <- L * exp(- r * (t[length(t)] - t)) - fOptions::GBSOption(TypeFlag = "p", S = Vt, X = L, Time = (t[length(t)] - t), r = r, b = r, sigma = sigma)@price out <- data.frame(t, Vt, St, Dt, Surv) names(out) <- c('Maturity', 'Vt', 'St', 'Dt', 'Survival') return(out) }
test_that("simple cardinal", { expect_equal(nom_card(2), "two") expect_equal( nom_card(525600), "five hundred twenty-five thousand six hundred" ) expect_equal(nom_card(100000000), "one hundred million") }) test_that("cardinal vector", { expect_equal( nom_card(c(2, 525600, 100000000)), c( "two", "five hundred twenty-five thousand six hundred", "one hundred million") ) }) test_that("cardinal with max_n", { expect_equal(nom_card(2, 10), "two") expect_equal(nom_card(20, 10), "20") expect_equal(nom_card(c(2, 20), 10), c("two", "20")) expect_equal(nom_card(c(2, 20), -1), c("2", "20")) expect_equal(nom_card(c(20, 20), c(10, 100)), c("20", "twenty")) }) test_that("negative cardinal", { expect_equal(nom_card(-2), "negative two") expect_equal( nom_card(-525600), "negative five hundred twenty-five thousand six hundred" ) expect_equal(nom_card(-100000000), "negative one hundred million") expect_equal(nom_card(-2, negative = "minus"), "minus two") expect_equal( nom_card(c(-2, -2), negative = c("negative", "minus")), c("negative two", "minus two") ) }) test_that("decimal cardinal", { expect_equal(nom_card(2.9), "two and nine tenths") expect_equal(nom_card(1/8), "one eighth") expect_equal(nom_card(1/20), "one twentieth") expect_equal(nom_card(1/1e10), "zero ten-millionths") expect_equal(nom_card(1 - 1/1e10), "ten million ten-millionths") expect_equal( nom_card(3539/7079), "three thousand five hundred thirty-nine seven-thousand-seventy-ninths" ) expect_equal(nom_card(16/113), "sixteen hundred-thirteenths") }) test_that("decimal cardinal with fracture ...", { expect_equal(nom_card(1/2, base_10 = TRUE), "five tenths") expect_equal( nom_card(c(1/2, 3/4), common_denom = TRUE), c("two quarters", "three quarters") ) expect_equal(nom_card(499/1000, max_denom = 100), "one half") expect_equal( nom_card(1307.36, base_10 = TRUE), "one thousand three hundred seven and thirty-six hundredths" ) }) test_that("early return", { expect_equal(nom_card(numeric(0)), character(0)) expect_equal(nom_numer(numeric(0)), character(0)) expect_equal(convert_hundreds(numeric(0)), character(0)) }) test_that("errors", { expect_error(nom_card(character(1))) expect_error(nom_card(numeric(1), negative = numeric(1))) expect_error(nom_card(numeric(1), negative = character(0))) expect_error(nom_card(numeric(1), negative = character(2))) expect_error(nom_card(numeric(1), max_n = numeric(0))) expect_error(nom_card(numeric(1), max_n = character(1))) expect_error(nom_numer(character(1))) expect_error(nom_numer(0.5)) })
b_min <- function(x, ... ){ min(x, na.rm = TRUE, ...) } b_max <- function(x, ... ){ max(x, na.rm = TRUE, ...) } b_median <- function(x, ... ){ stats::median(x, na.rm = TRUE, ...) } b_mean <- function(x, ... ){ mean(x, na.rm = TRUE, ...) } b_q25 <- function(x, ... ){ stats::quantile(x, type = 8, probs = 0.25, na.rm = TRUE, names = FALSE, ...) } b_q75 <- function(x, ... ){ stats::quantile(x, type = 8, probs = 0.75, na.rm = TRUE, names = FALSE, ...) } b_range <- function(x, ... ){ range(x, na.rm = TRUE, ...) } b_range_diff <- function(x, ... ) { diff(b_range(x, na.rm = TRUE, ...)) } b_sd <- function(x, ... ){ stats::sd(x, na.rm = TRUE, ...) } b_var <- function(x, ... ){ stats::var(x, na.rm = TRUE, ...) } b_mad <- function(x, ... ){ stats::mad(x, na.rm = TRUE, ...) } b_iqr <- function(x, ... ){ stats::IQR(x, na.rm = TRUE, type = 8, ...) } b_diff_var <- function(x, ...){ x <- stats::na.omit(x) if (length(x) == 1){ return(NA) } stats::var(diff(x, na.rm = TRUE, ...)) } b_diff_sd <- function(x, ...){ x <- stats::na.omit(x) if (length(x) == 1){ return(NA) } b_sd(diff(x, ...)) } b_diff_mean <- function(x, ...){ x <- stats::na.omit(x) if (length(x) == 1){ return(NA) } b_mean(diff(x, ...)) } b_diff_median <- function(x, ...){ x <- stats::na.omit(x) if (length(x) == 1){ return(NA) } b_median(diff(x, ...)) } b_diff_q25 <- function(x, ...){ x <- stats::na.omit(x) if (length(x) == 1){ return(NA) } b_q25(diff(x, ...)) } b_diff_q75 <- function(x, ...){ x <- stats::na.omit(x) if (length(x) == 1){ return(NA) } b_q75(diff(x, ...)) } b_diff_max <- function(x, ...){ x <- stats::na.omit(x) if (length(x) == 1){ return(NA) } b_max(diff(x, ...)) } b_diff_min <- function(x, ...){ x <- stats::na.omit(x) if (length(x) == 1){ return(NA) } b_min(diff(x, ...)) } b_diff_iqr <- function(x, ...){ x <- stats::na.omit(x) if (length(x) == 1){ return(NA) } b_iqr(diff(x, ...)) }
mpr_request <- function(slugIDs = NULL, slugIDs_legacy = NULL, report_time = NULL, message = TRUE){ if(is.null(report_time)){ report_time = format(Sys.Date(), format="%m/%d/%Y") } if(is.null(slugIDs) & is.null(slugIDs_legacy)) stop('slugIDs or slugIDs_legacy must be provided.') if(!is.null(slugIDs) & !is.null(slugIDs_legacy)) stop("Please provide slugIDs or slugIDs_legacy, not both. Hint: use data('slugInfo') to check with the ID information") if(!is.null(slugIDs_legacy)){ ehagdhjdsdcsd <- new.env() utils::data("slugInfo", envir = ehagdhjdsdcsd) slugIDs <- ehagdhjdsdcsd$slugInfo$slug_id[which(ehagdhjdsdcsd$slugInfo$legacy_slugid %in% slugIDs_legacy)] } if(length(slugIDs) == 1){ out <- mpr_request_single(slugIDs, report_time, message = message) }else{ out <- lapply(slugIDs, function(i) mpr_request_single(i, report_time, message = message)) names(out) <- slugIDs } return(out) }
"Case10"
author_info<-function(authors, citations, sep,top=10,only_first_author=F){ if(length(authors)!=length(citations))stop('authors and citations must be of same length.') if(!is.numeric(citations))stop('citations must be a numeric vector') citations[is.na(citations)]<-0 unique_authors<-sort(table(str_trim(unlist(str_split(authors, sep)))), decreasing=T) if(only_first_author){ auth<-str_split(authors,sep) unique_authors<-sort(table(str_trim(sapply(auth,function(x)x[1]))),decreasing = T) } top<-min(top, length(unique_authors)) top_authors<-names(unique_authors)[1:top] pat<-str_replace_all(top_authors,'\\.','\\\\.') tp<-tc<-h<-g<-i10<-max_cit<-numeric(top) for(i in seq_len(top)){ ind<- which(str_detect(string = authors,pattern = sprintf('%s%s|%s$',pat[i],sep,pat[i]))) tp[i]<- length(ind) tc[i]<- sum(citations[ind]) h[i]<-h_index(citations[ind]) g[i]<-g_index(citations[ind]) i10[i]<-sum(citations[ind]>=10) max_cit[i]<-max(citations[ind]) } list(author_names=top_authors, total_instances=tp, total_citations=tc, h_index=h, g_index=g, i10_index=i10, max_citation=max_cit) }
"pepper"
alphabetCheck<-function(sequences,alphabet="aa",label=c()){ if(length(sequences)==0){ stop("ERROR: sequence parameter is empty") } if(length(label)!=0&&length(label)!=length(sequences)){ stop("ERROR: The lenght of the label vector and the number of sequences do not match!") } if(alphabet=="rna"){ alphabet<-c("A","C","G","U") }else if (alphabet=="dna"){ alphabet<-c("A","C","G","T") } else if (alphabet=="aa"){ alphabet<-c("A","C","D","E","F","G","H","I","K","L","M","N","P","Q","R","S","T","V","W","Y" ) } else { stop("ERROR: alphabet shoud be 'dna' or 'rna' or 'aa' ") } alphabetCheck = sapply(sequences, function(i) all(strsplit(i, split = "")[[1]] %in% alphabet)) flag=0 if(length(label)==length(sequences)){ flag=1 label = label[alphabetCheck] } else if(length(label)>0 && length(label)!=length(sequences)){ stop("ERROR: The number of labels is not equal to the number of sequences!") } if(is.null(names(sequences))){ names(sequences)<-as.character(1:length(sequences)) } nonstanSeq<-names(sequences)[!alphabetCheck] if(length(nonstanSeq)!=0){ nonstanSeq<-toString(nonstanSeq) warMessage<-paste("The sequences (",nonstanSeq,") were deleted. They contained non-standard alphabets") message(warMessage) } sequences = sequences[alphabetCheck] if(length(sequences)==0){ stop("All sequences contained non-standard alphabets. No sequences remained for analysis :) ") } if(flag==1){ names(label)=names(sequences) } seq_lab<-list("sequences"=sequences,"Lab"=label) return(seq_lab) }
mclapply <- function(X, FUN, ..., mc.preschedule = TRUE, mc.set.seed = TRUE, mc.silent = FALSE, mc.cores = 1L, mc.cleanup = TRUE, mc.allow.recursive = TRUE, affinity.list = NULL) { cores <- as.integer(mc.cores) if(cores < 1L) stop("'mc.cores' must be >= 1") if(cores > 1L) stop("'mc.cores' > 1 is not supported on Windows") lapply(X, FUN, ...) } pvec <- function(v, FUN, ..., mc.set.seed = TRUE, mc.silent = FALSE, mc.cores = 1L, mc.cleanup = TRUE) { if (!is.vector(v)) stop("'v' must be a vector") cores <- as.integer(mc.cores) if(cores < 1L) stop("'mc.cores' must be >= 1") if(cores > 1L) stop("'mc.cores' > 1 is not supported on Windows") FUN(v, ...) } mcmapply <- function(FUN, ..., MoreArgs = NULL, SIMPLIFY = TRUE, USE.NAMES = TRUE, mc.preschedule = TRUE, mc.set.seed = TRUE, mc.silent = FALSE, mc.cores = 1L, mc.cleanup = TRUE, affinity.list = NULL) { cores <- as.integer(mc.cores) if(cores < 1L) stop("'mc.cores' must be >= 1") if(cores > 1L) stop("'mc.cores' > 1 is not supported on Windows") mapply(FUN = FUN, ..., MoreArgs = MoreArgs, SIMPLIFY = SIMPLIFY, USE.NAMES = USE.NAMES) } mcMap <- function (f, ...) { f <- match.fun(f) mcmapply(f, ..., SIMPLIFY = FALSE, mc.silent = TRUE) }
NULL setGeneric("ssimUpdate", function(ssimObject) standardGeneric("ssimUpdate")) setMethod("ssimUpdate", signature(ssimObject = "character"), function(ssimObject) { return(SyncroSimNotFound(ssimObject)) }) setMethod("ssimUpdate", signature(ssimObject = "SsimObject"), function(ssimObject) { success <- FALSE tt <- command(list(update = NULL, lib = .filepath(ssimObject)), .session(ssimObject)) if (!is.na(tt[1])){ if (tt == "saved"){ message("Library successfully updated") success <- TRUE } else{ message(tt) } } return(invisible(success)) })
besselIs <- function(x, nu, nterm = 800, expon.scaled = FALSE, log = FALSE, Ceps = if(isNum) 8e-16 else 2^(- [email protected][[1]]@prec)) { if(length(nu) > 1) stop(" 'nu' must be scalar (length 1)!") n <- length(x) if(n == 0) return(x) j <- (nterm-1):0 if(is.numeric(x) && is(nu, "mpfr")) { x <- mpfr(x, precBits = max(64, .getPrec(nu))) isNum <- FALSE } else isNum <- is.numeric(x) || is.complex(x) l.s.j <- outer(j, (x/2), function(X,Y) X*2*log(Y)) if(is(l.s.j, "mpfr")) j <- mpfr(j, precBits = max(sapply([email protected], slot, "prec"))) else if(!isNum) j <- as(j, class(x)) log.s.j <- if(expon.scaled) l.s.j - rep(abs(Re(x)), each=nterm) - lgamma(j+1) - lgamma(nu+1 + j) else l.s.j - lgamma(j+1) - lgamma(nu+1 + j) if(log) { s.j <- lsum(log.s.j) if(any(i0 <- x == 0)) s.j[i0] <- 0 if(any(lrgS <- Re(log.s.j[1,]) > Re(log(Ceps) + s.j))) lapply(x[lrgS], function(x) warning(gettextf(" 'nterm=%d' may be too small for %s", nterm, paste(format(x), collapse=", ")), domain=NA)) nu*log(x/2) + s.j } else { s.j <- exp(log.s.j) s <- colSums(s.j) if(any(i0 <- x == 0)) s[i0] <- 0 if(!all(iFin <- is.finite(s))) stop(sprintf("infinite s for x=%g", x[!iFin][1])) if(any(lrgS <- Re(s.j[1,]) > Re(Ceps * s))) lapply(x[lrgS], function(x) warning(gettextf(" 'nterm=%d' may be too small for %s", nterm, paste(format(x), collapse=", ")), domain=NA)) (x/2)^nu * s } } bI <- function(x, nu, nterm = 800, expon.scaled = FALSE, log = FALSE, Ceps = if(isNum) 8e-16 else 2^(- [email protected][[1]]@prec)) { .Deprecated("besselIs") isNum <- is.numeric(x) || is.complex(x) besselIs(x, nu, nterm=nterm, expon.scaled=expon.scaled, log=log, Ceps=Ceps) } besselIasym <- function(x, nu, k.max = 10, expon.scaled=FALSE, log=FALSE) { stopifnot(k.max == round(k.max)) d <- 0 if(k.max >= 1) { x8 <- 8*x for(k in k.max:1) { d <- (1 - d)*((2*(nu-k)+1)*(2*(nu+k)-1))/(k*x8) } } if(expon.scaled) sx <- x - abs(if(is.complex(x)) Re(x) else x) pi2 <- 2* (if(inherits(x, "mpfr")) Rmpfr::Const("pi", max(.getPrec(x))) else pi) if(log) { (if(expon.scaled) sx else x) + log1p(-d) - log(pi2*x) / 2 } else { exp(if(expon.scaled) sx else x) * (1-d) / sqrt(pi2*x) } } besselKasym <- function(x, nu, k.max = 10, expon.scaled=FALSE, log=FALSE) { stopifnot(k.max == round(k.max)) d <- 0 if(k.max >= 1) { x8 <- 8*x for(k in k.max:1) { d <- (1 + d)*((2*(nu-k)+1)*(2*(nu+k)-1))/(k*x8) } } pi.2 <- (if(inherits(x, "mpfr")) Rmpfr::Const("pi", max(.getPrec(x))) else pi)/2 if(log) { (if(expon.scaled) 0 else -x ) + log1p(d) + (log(pi.2) - log(x)) / 2 } else { (if(expon.scaled) 1 else exp(-x)) * (1+d) * sqrt(pi.2/x) } } besselI.ftrms <- function(x, nu, K = 20) { stopifnot(length(x) == 1, x > 0, length(nu) == 1, length(K) == 1, K == round(K), K >= 0) kk <- seq_len(K) mu <- 4*nu^2 x8 <- 8*x multf <- - (mu - (2*kk-1)^2)/(kk*x8) cumprod(multf) } besselI.nuAsym <- function(x, nu, k.max, expon.scaled=FALSE, log=FALSE) { stopifnot(k.max == round(k.max), 0 <= k.max, k.max <= 5) z <- x/nu sz <- sqrt(1 + z^2) t <- 1/sz eta <- (if(expon.scaled) { w <- if(is.complex(z)) { x. <- Re(z); y <- Im(z) 1-y^2 + 2i*x.*y } else 1 w/(sz + abs(if(is.complex(z)) x. else z)) } else sz) + log(z / (1 + sz)) if(k.max == 0) d <- 0 else { t2 <- t^2 u1.t <- (t*(3 - 5*t2))/24 d <- if(k.max == 1) { u1.t/nu } else { u2.t <- t2*(81 + t2*(-462 + t2*385)) / 1152 if(k.max == 2) (u1.t + u2.t/nu)/nu else { u3.t <- t*t2*(30375 + t2*(-369603 + t2*(765765 - t2*425425)))/ 414720 if(k.max == 3) (u1.t + (u2.t + u3.t/nu)/nu)/nu else { t4 <- t2*t2 u4.t <- t4*(4465125 + t2*(-94121676 + t2*(349922430 + t2*(-446185740 + t2*185910725))))/39813120 if(k.max == 4) (u1.t + (u2.t + (u3.t + u4.t/nu)/nu)/nu)/nu else { u5.t <- t*t4*(1519035525 + t2*(-49286948607 + t2*(284499769554 + t2*(-614135872350 + t2*(566098157625 - t2*188699385875)) )))/6688604160 if(k.max == 5) (u1.t + (u2.t + (u3.t + (u4.t + u5.t/nu)/nu)/nu)/nu)/nu else stop("k.max > 5: not yet implemented (but should NOT happen)") } } } } } pi2 <- 2* (if(inherits(x, "mpfr")) Rmpfr::Const("pi", max(.getPrec(x))) else pi) if(log) { log1p(d) + nu*eta - (log(sz) + log(pi2*nu))/2 } else { (1+d) * exp(nu*eta) / sqrt(pi2*nu*sz) } } besselK.nuAsym <- function(x, nu, k.max, expon.scaled=FALSE, log=FALSE) { stopifnot(k.max == round(k.max), 0 <= k.max, k.max <= 5) z <- x/nu sz <- sqrt(1 + z^2) t <- 1/sz eta <- (if(expon.scaled) 1/(z + sz) else sz) + log(z / (1 + sz)) if(k.max == 0) d <- 0 else { t2 <- t^2 u1.t <- (t*(3 - 5*t2))/24 d <- if(k.max == 1) { - u1.t/nu } else { u2.t <- t2*(81 + t2*(-462 + t2*385)) / 1152 if(k.max == 2) (- u1.t + u2.t/nu)/nu else { u3.t <- t*t2*(30375 + t2*(-369603 + t2*(765765 - t2*425425)))/ 414720 if(k.max == 3) (- u1.t + (u2.t - u3.t/nu)/nu)/nu else { t4 <- t2*t2 u4.t <- t4*(4465125 + t2*(-94121676 + t2*(349922430 + t2*(-446185740 + t2*185910725))))/39813120 if(k.max == 4) (- u1.t + (u2.t + (-u3.t + u4.t/nu)/nu)/nu)/nu else { u5.t <- t*t4*(1519035525 + t2*(-49286948607 + t2*(284499769554 + t2*(-614135872350 + t2*(566098157625 - t2*188699385875)) )))/6688604160 if(k.max == 5) (- u1.t + (u2.t + (-u3.t + (u4.t - u5.t/nu)/nu)/nu)/nu)/nu else stop("k.max > 5: not yet implemented (but should NOT happen)") } } } } } if(log) { log1p(d) - nu*eta - (log(sz) - log(pi/(2*nu)))/2 } else { (1+d) * exp(-nu*eta)*sqrt(pi/(2*nu * sz)) } }
dfbetas.manylm <- function (model, infl = manylm.influence(model, do.coef = TRUE), ...) { xxi <- chol2inv(model$qr$qr, model$qr$rank) n.vars <- NCOL(model$coefficients) dfbs <- list() dfbetai <- dfbeta(model, infl) sqrdigxxi <- sqrt(diag(xxi)) for(i in 1:n.vars) dfbs[[i]] <- dfbetai[[i]] /outer(infl$sigma[,i], sqrdigxxi) names(dfbs) <- colnames(model$coefficients) return(dfbs) }
DSC_EA <- function(k, generations=2000, crossoverRate=.8, mutationRate=.001, populationSize=100) { EA <- EA_R$new(k, generations, crossoverRate, mutationRate, populationSize) structure( list( description = "EA - Reclustering using an evolutionary algorithm", RObj = EA ), class = c("DSC_EA", "DSC_Macro", "DSC_R", "DSC") ) } EA_R <- setRefClass("EA", fields = list( crossoverRate = "numeric", mutationRate = "numeric", populationSize = "integer", k = "integer", data = "data.frame", weights = "numeric", generations = "integer", C = "ANY" ), methods = list( initialize = function(k, generations, crossoverRate, mutationRate, populationSize) { k <<- as.integer(k) generations <<- as.integer(generations) crossoverRate <<- crossoverRate mutationRate <<- mutationRate populationSize <<- as.integer(populationSize) } ) ) EA_R$methods( cluster = function(x, weight = rep(1,nrow(x)), ...) { data <<- x weights <<- weight C <<- new(EvoStream) .self$C$reclusterInitialize(as.matrix(data), weights, .self$k, .self$crossoverRate, .self$mutationRate, .self$populationSize) .self$C$recluster(.self$generations) }, get_microclusters = function(...) { as.data.frame(.self$data) }, get_microweights = function(...) { .self$weights }, get_macroclusters = function(...) { as.data.frame(.self$C$get_macroclusters()) }, get_macroweights = function(...) { .self$C$get_macroweights() }, microToMacro = function(micro=NULL) { clusterAssignment = .self$C$microToMacro()+1 if(!is.null(micro)){ return(clusterAssignment[micro]) } else{ return(clusterAssignment) } }, recluster = function(generations=1){.self$C$recluster(generations)} ) DSC_registry$set_entry(name = "DSC_EA", DSC_Micro = FALSE, DSC_Macro = TRUE, description = "EA - Reclustering using an evolutionary algorithm")
library(EnvNJ) context("n-Gram") test_that("ngram() works properly", { s <- "MSAGARRRPR" a <- ngram(s, k = 1) b <- ngram(s, k = 2) c <- ngram(s, k = 3) d <- ngram(s, k = 4) expect_is(a, 'data.frame') expect_equal(length(a), 2) expect_equal(nrow(a), 20) expect_equal(sum(a$frequency), 10) expect_is(b, 'data.frame') expect_equal(length(b), 2) expect_equal(nrow(b), 400) expect_equal(sum(b$frequency), 9) expect_is(c, 'data.frame') expect_equal(length(c), 2) expect_equal(nrow(c), 8000) expect_equal(sum(c$frequency), 8) expect_is(d, 'data.frame') expect_equal(length(d), 2) expect_equal(nrow(d), 160000) expect_equal(sum(d$frequency), 7) }) test_that("ngraMatrix() works properly", { prot <- data.frame(sp1 = c("MSPGASRGPR", "MKMADRSGKI", "MACTIQKAEA"), sp2 = c("MSAGARRRPR", "MADRGKLVPG", "MCCAIQKAEA")) a <- ngraMatrix(prot, k = 1) a1 <- a[[1]] a2 <- a[[2]] expect_is(a, 'list') expect_is(a1, 'data.frame') expect_is(a2, 'data.frame') expect_equal(nrow(a1), 20) expect_equal(length(a1), 7) expect_equal(nrow(a2), 20) expect_equal(length(a2), 3) expect_equal(sum(apply(a1[-1], 2, sum) == rep(10,6)), 6) expect_equal(sum(apply(a2[-1], 2, sum) == rep(30,2)), 2) b <- ngraMatrix(prot, k = 2) b1 <- b[[1]] b2 <- b[[2]] expect_is(b, 'list') expect_is(b1, 'data.frame') expect_is(b2, 'data.frame') expect_equal(nrow(b1), 400) expect_equal(length(b1), 7) expect_equal(nrow(b2), 400) expect_equal(length(b2), 3) expect_equal(sum(apply(b1[-1], 2, sum) == rep(9,6)), 6) expect_equal(sum(apply(b2[-1], 2, sum) == rep(27,2)), 2) c <- ngraMatrix(prot, k = 3) c1 <- c[[1]] c2 <- c[[2]] expect_is(c, 'list') expect_is(c1, 'data.frame') expect_is(c2, 'data.frame') expect_equal(nrow(c1), 8000) expect_equal(length(c1), 7) expect_equal(nrow(c2), 8000) expect_equal(length(c2), 3) expect_equal(sum(apply(c1[-1], 2, sum) == rep(8,6)), 6) expect_equal(sum(apply(c2[-1], 2, sum) == rep(24,2)), 2) d <- ngraMatrix(prot, k = 4) d1 <- d[[1]] d2 <- d[[2]] expect_is(d, 'list') expect_is(d1, 'data.frame') expect_is(d2, 'data.frame') expect_equal(nrow(d1), 160000) expect_equal(length(d1), 7) expect_equal(nrow(d2), 160000) expect_equal(length(d2), 3) expect_equal(sum(apply(d1[-1], 2, sum) == rep(7,6)), 6) expect_equal(sum(apply(d2[-1], 2, sum) == rep(21,2)), 2) }) test_that("svdgram() works properly", { a <- ngraMatrix(bovids, k = 2)[[1]][, -1] b <- ngraMatrix(bovids, k = 2)[[2]][, -1] species <- names(b) ta <- svdgram(matrix = a, rank = c(50, 143), species = species, SVS = TRUE) tb <- svdgram(matrix = b, rank = 11, species = species, SVS = FALSE) expect_is(ta, "multiPhylo") expect_equal(ta[[1]]$Nnode, 9) expect_equal(sum(ta[[1]]$tip.label == species), 11) expect_equal(names(ta[1]), "rank-50") expect_is(tb, "multiPhylo") expect_equal(tb[[1]]$Nnode, 9) expect_equal(sum(tb[[1]]$tip.label == species), 11) expect_equal(names(tb[1]), "rank-11") })
g <- function(m,k,n,p) { sum(dbinom(m:k,size=n,prob=p)) } g.prime <- function(m,k,n,p) { q <- (1-p) out <- exp(lchoose(n-1,m-1)+(m-1)*log(p)+(n-m)*log(q)) out <- out - exp(lchoose(n-1,k)+k*log(p)+(n-k-1)*log(q)) out <- n*out out } evaluate.g.maximum <- function(m,k,n) { if(m==0 || k==n) { max.value <- 1 } else { a <- (lchoose(n-1,m-1)-lchoose(n-1,k))/(k-m+1) best.p <- 1-1/(1+exp(a)) max.value <- g(m,k,n,best.p) } return(max.value) } where.g.maximum <- function(m,k,n) { if(m==0 && k==n) { return(NULL) } else if(m==0) { return(0) } else if(k==n) { return(1) } else { a <- (lchoose(n-1,m-1)-lchoose(n-1,k))/(k-m+1) best.p <- 1-1/(1+exp(a)) return(best.p) } } find.endpoints.given.confidence.level <- function(m,k,n,alpha=0.05,digits=4) { left.endpt <- NULL right.endpt <- NULL interval.length <- 10^(-digits) if(alpha==0) { if(m!=0 || k!=n) { return(NULL) } else { left.endpt <- 0 right.endpt <- 1 } } determine.next.x <- function(x0,a,b) { g0 <- g(m,k,n,x0) g.prime0 <- g.prime(m,k,n,x0) if(is.na(g.prime0) || g.prime0==0 || is.infinite(g.prime0)) { return((a+b)/2) } else { f0 <- g0-(1-alpha) x1 <- x0-f0/g.prime0 if(x1>=a && x1<=b) { return(x1) } else { return((a+b)/2) } } } search.for.right.endpoint <- function() { while((b-a)>=interval.length) { x1 <- determine.next.x(x0,a,b) g1 <- g(m,k,n,x1) if(g1<=(1-alpha)) { b <- x1 if(a<(x1-interval.length*0.9)) { a1 <- x1-interval.length*0.9 ga1 <- g(m,k,n,a1) if(ga1>(1-alpha)) { a <- a1 } else { b <- a1 x1 <- a1 } } } else { a <- x1 if(b>(x1+interval.length*0.9)) { b1 <- x1+interval.length*0.9 gb1 <- g(m,k,n,b1) if(gb1<=(1-alpha)) { b <- b1 } else { a <- b1 x1 <- b1 } } } x0 <- x1 } bb <- floor(b*10^digits)/10^digits if(bb<=a) { right.endpt <<- bb } else { gbb <- g(m,k,n,bb) if(gbb<(1-alpha)) { aa <- floor(a*10^digits)/10^digits right.endpt <<- aa } else { right.endpt <<- bb } } } search.for.left.endpoint <- function() { while((b-a)>=interval.length) { x1 <- determine.next.x(x0,a,b) g1 <- g(m,k,n,x1) if(g1<=(1-alpha)) { a <- x1 if(b>(x1+interval.length*0.9)) { b1 <- x1+interval.length*0.9 gb1 <- g(m,k,n,b1) if(gb1>(1-alpha)) { b <- b1 } else { a <- b1 x1 <- b1 } } } else { b <- x1 if(a<(x1-interval.length*0.9)) { a1 <- x1-interval.length*0.9 ga1 <- g(m,k,n,a1) if(ga1<=(1-alpha)) { a <- a1 } else { b <- a1 x1 <- a1 } } } x0 <- x1 } aa <- ceiling(a*10^digits)/10^digits if(aa>=b) { left.endpt <<- aa } else { gaa <- g(m,k,n,aa) if(gaa<(1-alpha)) { bb <- ceiling(b*10^digits)/10^digits left.endpt <<- bb } else { left.endpt <<- aa } } } if(m==0 && k==n) { left.endpt <- 0 right.endpt <- 1 } else if(m==0) { left.endpt <- 0 a <- 0 b <- 1 x0 <- 1/2 g0 <- g(m,k,n,x0) if(g0<=(1-alpha)) { b <- x0 } else { a <- x0 } search.for.right.endpoint() } else if(k==n) { right.endpt <- 1 a <- 0 b <- 1 x0 <- 1/2 g0 <- g(m,k,n,x0) if(g0<=(1-alpha)) { a <- x0 } else { b <- x0 } search.for.left.endpoint() } else { max.coverage <- evaluate.g.maximum(m,k,n) if(max.coverage<(1-alpha)) { return(NULL) } else { g.max <- where.g.maximum(m,k,n) a <- 0 b <- g.max x0 <- (a+b)/2 g0 <- g(m,k,n,x0) if(g0<=(1-alpha)) { a <- x0 } else { b <- x0 } search.for.left.endpoint() a <- g.max b <- 1 x0 <- (a+b)/2 g0 <- g(m,k,n,x0) if(g0<=(1-alpha)) { b <- x0 } else { a <- x0 } search.for.right.endpoint() if(left.endpt>right.endpt) { return(NULL) } } } return(c(left.endpt,right.endpt)) } evaluate.coverage <- function(L.vec, U.vec=NULL, digits=10) { n <- length(L.vec)-1 stopifnot(n>0) L.vec <- round(L.vec*10^digits)/10^digits if(is.null(U.vec)) { U.vec <- rev(1-L.vec) } U.vec <- round(U.vec*10^digits)/10^digits stopifnot(length(U.vec)==(n+1)) coverage.at.left.endpt.vec <- rep(NA, n+1) coverage.at.right.endpt.vec <- rep(NA, n+1) for(i in 1:length(L.vec)) { left.endpt <- L.vec[i] if(left.endpt==0) { coverage.at.left.endpt.vec[i] <- ifelse(L.vec[1]==0,1,0) } else { X.range <- range(which(L.vec<left.endpt & left.endpt<=U.vec)) m <- X.range[1]-1 k <- X.range[2]-1 coverage.at.left.endpt.vec[i] <- g(m,k,n,p=left.endpt) } } for(i in 1:length(U.vec)) { right.endpt <- U.vec[i] if(right.endpt==1) { coverage.at.right.endpt.vec[i] <- ifelse(U.vec[n+1]==1,1,0) } else { X.range <- range(which(U.vec>right.endpt & L.vec<=right.endpt)) m <- X.range[1]-1 k <- X.range[2]-1 coverage.at.right.endpt.vec[i] <- g(m,k,n,p=right.endpt) } } output <- cbind(coverage.at.left.endpt.vec,coverage.at.right.endpt.vec) rownames(output) <- paste("X=", c(0:n)) return(output) } blyth.still.casella <- function(n, X=NULL, alpha=0.05, digits=2, CIs.init=NULL, additional.info=FALSE) { stopifnot(alpha>=0 && alpha<1) stopifnot(n==floor(n) && n>0) if(!is.null(X)) { stopifnot(X==floor(X) && X>=0 && X<=n) } if(alpha==0) { CI.mat <- matrix(NA, nrow=n+1, ncol=2) CI.mat[,1] <- 0 CI.mat[,2] <- 1 rownames(CI.mat) <- paste0("X=",0:n) colnames(CI.mat) <- c("L","U") Endpoint.Type.mat <- matrix("NC",nrow=n+1,ncol=2) rownames(Endpoint.Type.mat) <- paste0("X=",0:n) colnames(Endpoint.Type.mat) <- c("L","U") Range.mat <- matrix(NA,nrow=n+1,ncol=4) Range.mat[,1:2] <- 0 Range.mat[,3:4] <- 1 rownames(Range.mat) <- paste0("X=",0:n) colnames(Range.mat) <- c("L.min","L.max","U.min","U.max") if(!is.null(X)) { CI.mat <- CI.mat[X+1,,drop=FALSE] Endpoint.Type.mat <- Endpoint.Type.mat[X+1,,drop=FALSE] Range.mat <- Range.mat[X+1,,drop=FALSE] } if(!additional.info) { result <- CI.mat class(result) <- "customclass" return(result) } else { result <- list(CI=CI.mat,Endpoint.Type=Endpoint.Type.mat,Range=Range.mat) class(result) <- "customclass" return(result) } } if(n==1) { CI.mat <- matrix(NA, nrow=2, ncol=2) CI.mat[1,] <- c( 0,max(1-alpha,0.5)) CI.mat[2,] <- c(min(alpha,0.5), 1) CI.mat[1,2] <- ceiling(CI.mat[1,2]*10^digits)/10^digits CI.mat[2,1] <- floor(CI.mat[2,1]*10^digits)/10^digits rownames(CI.mat) <- c("X=0","X=1") colnames(CI.mat) <- c("L","U") Endpoint.Type.mat <- matrix("NC",nrow=2,ncol=2) rownames(Endpoint.Type.mat) <- c("X=0","X=1") colnames(Endpoint.Type.mat) <- c("L","U") Range.mat <- cbind(CI.mat[,1],CI.mat[,1],CI.mat[,2],CI.mat[,2]) rownames(Range.mat) <- c("X=0","X=1") colnames(Range.mat) <- c("L.min","L.max","U.min","U.max") if(!is.null(X)) { CI.mat <- CI.mat[X+1,,drop=FALSE] Endpoint.Type.mat <- Endpoint.Type.mat[X+1,,drop=FALSE] Range.mat <- Range.mat[X+1,,drop=FALSE] } if(!additional.info) { result <- CI.mat class(result) <- "customclass" return(result) } else { result <- list(CI=CI.mat,Endpoint.Type=Endpoint.Type.mat,Range=Range.mat) class(result) <- "customclass" return(result) } } digits.save <- digits if(!is.null(CIs.init)) { stopifnot(ncol(CIs.init)==2 && nrow(CIs.init)==(n+1)) L.vec <- floor(CIs.init[,1]*10^digits)/10^digits U.vec <- ceiling(CIs.init[,2]*10^digits)/10^digits stopifnot(all(diff(L.vec)>=0)) stopifnot(all(diff(U.vec)>=0)) min.coverage <- min(evaluate.coverage(L.vec,U.vec,digits)[[1]], evaluate.coverage(L.vec,U.vec,digits)[[2]]) if(min.coverage<(1-alpha)) stop("Initial set of confidence intervals does not have sufficient coverage probability"); } else { L.vec <- qbeta(alpha/2,0:n,(n+1):1) U.vec <- qbeta(1-alpha/2,1:(n+1),n:0) L.vec <- floor(L.vec*10^digits)/10^digits U.vec <- ceiling(U.vec*10^digits)/10^digits } move.noncoincidental.endpoint <- function() { L.at.i <- L.vec[i+1] j <- which(U.vec[0:(i-1)+1]>L.at.i) if(length(j)==0) { i <<- i-1 return(invisible(NULL)) } j <- j[1]-1 first.touch.vers <- rep(Inf,4) if(i<n) { first.touch.vers[1] <- L.vec[i+2] } if(i!=(n/2)) { first.touch.vers[2] <- U.vec[i+1] } if((i+j)!=n) { first.touch.vers[3] <- U.vec[j+1] } if(i==(n/2) || (i+j)==n) { first.touch.vers[4] <- 0.5 } first.touch <- min(first.touch.vers) if(first.touch==Inf) { i <<- i-1 return(invisible(NULL)) } if(g(j,i-1,n,first.touch)<(1-alpha)) { endpts <- find.endpoints.given.confidence.level(j,i-1,n,alpha,digits) if(is.null(endpts)) { i <<- (i-1) } else { right.endpt <- endpts[2] if(L.at.i < right.endpt) { L.vec[i+1] <<- right.endpt U.vec[n-i+1] <<- round((1-right.endpt)*10^digits)/10^digits coincidental.endpoint.idx[i+1] <<- NA i <<- (i-1) } else { coincidental.endpoint.idx[i+1] <<- NA i <<- (i-1) } } } else { if(L.at.i < first.touch) { L.vec[i+1] <<- first.touch U.vec[n-i+1] <<- round((1-first.touch)*10^digits)/10^digits coincidental.endpoint.idx[i+1] <<- NA } else { i <<- i-1 } } } move.coincidental.endpoint <- function() { L.at.i <- L.vec[i+1] j.equal <- which(U.vec[0:(i-1)+1]==L.at.i)-1 if(i<n) { j.not.taken <- setdiff(j.equal, coincidental.endpoint.idx[(i+2):(n+1)]) if(!all(is.na(coincidental.endpoint.idx[(i+2):(n+1)]))) { j.not.taken <- j.not.taken[j.not.taken < min(coincidental.endpoint.idx[(i+2):(n+1)], na.rm = T)] } }else { j.not.taken <- j.equal } if(length(j.not.taken)>0) { coincidental.endpoint.idx[i+1] <<- j.not.taken[length(j.not.taken)] j <- j.not.taken[length(j.not.taken)] }else{ stop("No matching j is found") } if(j==(n-i)) { i <<- i-1 return(invisible(NULL)) } if(g(j,i-1,n,L.at.i)<(1-alpha) || g(j+1,i,n,L.at.i)<(1-alpha)) { new.j <- j k <- length(j.not.taken) while (g(new.j,i-1,n,L.at.i)<(1-alpha) || g(new.j+1,i,n,L.at.i)<(1-alpha)) { if(k<1) { stop("Error: None of the endpoints satisfy the coverage") } else{ k <- k-1 new.j <- j.not.taken[k] } } coincidental.endpoint.idx[i+1] <<- new.j i <<- i-1 return(invisible(NULL)) } first.touch.vers <- rep(Inf,6) if(i<n && (i+1)!=(n-j)) { first.touch.vers[1] <- L.vec[i+2] } if(i!=(n-i)) { first.touch.vers[2] <- U.vec[i+1] } if((i+j)<n) { first.touch.vers[3] <- 0.5 } if((j+1)!=(n-i)) { first.touch.vers[4] <- U.vec[j+2] } if((i+j)<n) { first.touch.vers[5] <- 0.5 } if(j<(i-1)) { endpts.sep.set <- find.endpoints.given.confidence.level(j+1,i-1,n,alpha,digits) if(!is.null(endpts.sep.set)) { if(endpts.sep.set[2]>L.at.i) { g.max <- where.g.maximum(j+1,i-1,n) first.choice <- round(g.max*10^digits)/10^digits second.choice <- floor(endpts.sep.set[2]*10^digits)/10^digits if(first.choice>endpts.sep.set[2] || first.choice<=L.at.i) { first.choice <- NULL } if(second.choice<=L.at.i) { second.choice <- NULL } if(!is.null(first.choice)) { first.touch.vers[6] <- first.choice } else if(!is.null(second.choice)) { first.touch.vers[6] <- second.choice } } } } first.touch <- min(first.touch.vers) if(first.touch==Inf) { i <<- i-1 return(invisible(NULL)) } if(g(j,i-1,n,first.touch)<(1-alpha) || g(j+1,i,n,first.touch)<(1-alpha)) { endpts.set1 <- find.endpoints.given.confidence.level(j,i-1,n,alpha,digits) endpts.set2 <- find.endpoints.given.confidence.level(j+1,i,n,alpha,digits) if(is.null(endpts.set1) || is.null(endpts.set2)) { i <<- (i-1) } else { right.endpt <- endpts.set1[2] if(right.endpt < endpts.set2[1] || right.endpt <= L.at.i) { i <<- (i-1) } else { L.vec[i+1] <<- right.endpt U.vec[n-i+1] <<- round((1-right.endpt)*10^digits)/10^digits U.vec[j+1] <<- right.endpt L.vec[n-j+1] <<- round((1-right.endpt)*10^digits)/10^digits i <<- (i-1) } } } else { if(L.at.i < first.touch) { L.vec[i+1] <<- first.touch U.vec[n-i+1] <<- round((1-first.touch)*10^digits)/10^digits U.vec[j+1] <<- first.touch L.vec[n-j+1] <<- round((1-first.touch)*10^digits)/10^digits } else { i <<- (i-1) } } } L.no.longer.changes <- FALSE iter <- 0 while(!L.no.longer.changes) { iter <- iter + 1 L.old <- L.vec i <- n coincidental.endpoint.idx <- rep(NA, n+1) while(i>0) { L.at.i <- L.vec[i+1] j.equal <- which(U.vec[0:(i-1)+1]==L.at.i)-1 if(i<n){ j.not.taken <- setdiff(j.equal, coincidental.endpoint.idx[(i+2):(n+1)]) if(!all(is.na(coincidental.endpoint.idx[(i+2):(n+1)]))) { j.not.taken <- j.not.taken[j.not.taken < min(coincidental.endpoint.idx[(i+2):(n+1)], na.rm = T)] } }else { j.not.taken <- j.equal } j <- j.not.taken if(length(j)>0) { j <- j[length(j)] separable <- TRUE if(j==(i-1)) { separable <- FALSE } else { if(g(j+1,i-1,n,L.at.i)<(1-alpha)) { separable <- FALSE } } if(separable) { move.noncoincidental.endpoint() } else { move.coincidental.endpoint() } } else { move.noncoincidental.endpoint() } } L.new <- L.vec if(all(L.new==L.old)) L.no.longer.changes <- TRUE } coincidental.endpt.mat <- cbind(c(0:n), coincidental.endpoint.idx) colnames(coincidental.endpt.mat) <- NULL keep.ind <- which(apply(coincidental.endpt.mat,1,sum)!=n & !is.na(coincidental.endpt.mat[,2])) if(length(keep.ind)==0) { coincidental.endpt.mat.reduced <- c() } else { coincidental.endpt.mat.reduced <- coincidental.endpt.mat[keep.ind,,drop=FALSE] } if(!is.null(coincidental.endpt.mat.reduced)) { colnames(coincidental.endpt.mat.reduced) <- c("L.index", "U.index") } Range.mat <- cbind(L.vec,L.vec,U.vec,U.vec) if(!is.null(coincidental.endpt.mat.reduced)) { for(k in 1:nrow(coincidental.endpt.mat.reduced)) { i <- coincidental.endpt.mat.reduced[k,1] j <- coincidental.endpt.mat.reduced[k,2] endpts.set1 <- find.endpoints.given.confidence.level(j,i-1,n,alpha,digits) endpts.set2 <- find.endpoints.given.confidence.level(j+1,i,n,alpha,digits) if(is.null(endpts.set1) || is.null(endpts.set2)) { stop("Error in deciding allowable range for coincidental endpoints. Please consider increasing the argument 'digits'.") } allowable.range <- c(endpts.set2[1],endpts.set1[2]) Range.mat[i+1,1:2] <- allowable.range Range.mat[j+1,3:4] <- allowable.range Range.mat[n-i+1,3:4] <- round(rev(1-allowable.range)*10^digits)/10^digits Range.mat[n-j+1,1:2] <- round(rev(1-allowable.range)*10^digits)/10^digits } } while(TRUE) { no.more.adjustment <- TRUE if(!is.null(coincidental.endpt.mat.reduced)) { for(k in 1:nrow(coincidental.endpt.mat.reduced)) { i <- coincidental.endpt.mat.reduced[k,1] j <- coincidental.endpt.mat.reduced[k,2] range.lower.limit <- Range.mat[i+1,1] range.upper.limit <- Range.mat[i+1,2] rll <- range.lower.limit rul <- range.upper.limit rll.candidates.vec <- c() rul.candidates.vec <- c() if(i+j<n) { rul.candidates.vec <- c(rul.candidates.vec, 0.5) } if(i+j>n) { rll.candidates.vec <- c(rll.candidates.vec, 0.5) } if(i>0) { rll.candidates.vec <- c(rll.candidates.vec, Range.mat[i,1]) } if(j>0) { rll.candidates.vec <- c(rll.candidates.vec, Range.mat[j,3]) } if(i<n) { rul.candidates.vec <- c(rul.candidates.vec, Range.mat[i+2,2]) } if(j<n) { rul.candidates.vec <- c(rul.candidates.vec, Range.mat[j+2,4]) } if(rll<max(rll.candidates.vec)) { no.more.adjustment <- FALSE rll <- max(rll.candidates.vec) Range.mat[ i+1,1] <- rll Range.mat[ j+1,3] <- rll Range.mat[n-i+1,4] <- 1-rll Range.mat[n-j+1,2] <- 1-rll } if(rul>min(rul.candidates.vec)) { no.more.adjustment <- FALSE rul <- min(rul.candidates.vec) Range.mat[ i+1,2] <- rul Range.mat[ j+1,4] <- rul Range.mat[n-i+1,3] <- 1-rul Range.mat[n-j+1,1] <- 1-rul } } } if(no.more.adjustment) break; } rownames(Range.mat) <- paste0("X=",0:n) colnames(Range.mat) <- c("L.min","L.max","U.min","U.max") L.vec <- round((Range.mat[,1]+Range.mat[,2])/2*10^digits)/10^digits U.vec <- rev(round((1-L.vec)*10^digits)/10^digits) if(!is.null(coincidental.endpt.mat.reduced)) { for(k in 1:nrow(coincidental.endpt.mat.reduced)) { i <- coincidental.endpt.mat.reduced[k,1] j <- coincidental.endpt.mat.reduced[k,2] realigned.endpt <- max(L.vec[i+1],U.vec[j+1]) L.vec[i+1] <- U.vec[j+1] <- realigned.endpt } } CI.mat <- cbind(L.vec,U.vec) rownames(CI.mat) <- paste0("X=",0:n) colnames(CI.mat) <- c("L","U") Endpoint.Type.mat <- matrix("NC",nrow=n+1,ncol=2) half.range.mat <- matrix(NA, nrow = n + 1, ncol = 2) if(!is.null(coincidental.endpt.mat.reduced)) { coincidental.Ls <- coincidental.endpt.mat.reduced[,1] coincidental.Us <- coincidental.endpt.mat.reduced[,2] Endpoint.Type.mat[coincidental.Ls+1,1] <- "C" Endpoint.Type.mat[coincidental.Us+1,2] <- "C" half.range.mat[coincidental.Ls+1,1] <- (Range.mat[coincidental.Ls+1,1] + Range.mat[coincidental.Ls+1,2])/2 half.range.mat[coincidental.Us+1,2] <- (Range.mat[coincidental.Us+1,1] + Range.mat[coincidental.Us+1,2])/2 } rownames(Endpoint.Type.mat) <- paste0("X=",0:n) colnames(Endpoint.Type.mat) <- c("L","U") rownames(half.range.mat) <- paste0("X=",0:n) colnames(half.range.mat) <- c("L","U") if(digits.save!=digits) { digits <- digits.save CI.mat[,1] <- floor(CI.mat[,1]*10^digits)/10^digits CI.mat[,2] <- ceiling(CI.mat[,2]*10^digits)/10^digits Range.mat[,1] <- pmin(ceiling(Range.mat[,1]*10^digits)/10^digits, CI.mat[,1]) Range.mat[,2] <- pmax( floor(Range.mat[,2]*10^digits)/10^digits, CI.mat[,1]) Range.mat[,3] <- pmin(ceiling(Range.mat[,3]*10^digits)/10^digits, CI.mat[,2]) Range.mat[,4] <- pmax( floor(Range.mat[,4]*10^digits)/10^digits, CI.mat[,2]) } if(!is.null(X)) { CI.mat <- CI.mat[X+1,,drop=FALSE] if(length(c(which(coincidental.endpt.mat.reduced[,1] == X), which(coincidental.endpt.mat.reduced[,2] == X))) == 0){ coincidental.endpt.mat.reduced <- NULL }else{ coincidental.endpt.mat.reduced <- coincidental.endpt.mat.reduced[c(which(coincidental.endpt.mat.reduced[,1] == X), which(coincidental.endpt.mat.reduced[,2] == X)),,drop=FALSE] } Endpoint.Type.mat <- Endpoint.Type.mat[X+1,,drop=FALSE] Range.mat <- Range.mat[X+1,,drop=FALSE] } if(!additional.info) { result <- CI.mat class(result) <- "customclass" return(result) } else { result <- list(CI=CI.mat, coinc.index = coincidental.endpt.mat.reduced, endpoint.type=Endpoint.Type.mat, range=Range.mat) class(result) <- "customclass" return(result) } } add.sign.to.number <- function(x, digits) { x.c <- lapply(x, function(x) {if(!is.na(x)) {x <- formatC(x, format = 'f', digits = digits)} else {x<- ""}}) x.plus.sign <- lapply(x.c, function(x) {if(x != "") x <- paste(c(bquote("\U00B1"), x), collapse = " ")}) x.plus.sign[sapply(x.plus.sign, is.null)] <- "" x.plus.sign <- unlist(x.plus.sign) return(x.plus.sign) } summary.customclass <- function(object, ...) { arguments <- list(...) if (!is.null(names(object))) { ls <- object$CI[,1] us <- object$CI[,2] lus <- c(ls, us) if(all(lus %in% c(0,1))){ l.for.digits <- 0 } else { l.for.digits <- max(lus[!lus %in% c(0,1)]) } digits <- nchar(sub("^.+[.]","",l.for.digits)) L.range <- floor(apply(object$range, 1, function(x) if(x[1] != x[2]) {1/2*(x[2] - x[1])} else NA)*10^digits)/10^digits L.range.plus.sign <- add.sign.to.number(L.range, digits) U.range <- floor(apply(object$range, 1, function(x) if(x[3] != x[4]) {1/2*(x[4] - x[3])} else NA)*10^digits)/10^digits U.range.plus.sign <- add.sign.to.number(U.range, digits) output <- data.frame(L = ls, L.range = L.range.plus.sign, U = us, U.range = U.range.plus.sign) return(output) } else { output <- object class(output) <- "matrix" return(summary(output)) } }
quantile.mcmc.list <- function(x, ...) { apply(as.matrix(x), 2, quantile, ...) }
EnsureMatrix <- function(x, nRow = NULL, nCol = NULL) { if (is.null(x)) { if(!is.null(nCol)) if(nCol) stop("nCol not allowed when x is NULL") return(matrix(0, nRow, 0)) } x <- as.matrix(x) if (!is.null(nRow)) if (nrow(x) != nRow) stop(paste("nrow is", nrow(x), "when", nRow, "expected")) if (!is.null(nCol)) if (ncol(x) != nCol) stop(paste("ncol is", ncol(x), "when", nCol, "expected")) x } EnsureIntercept <- function(x) { colMax <- apply(x, 2, max) colMin <- apply(x, 2, min) if (!any((colMax - colMin == 0) & (colMax != 0))) return(cbind(1, x)) x }
AGumbel <- function(copula, w) .AGumbel(w, copula@parameters[1]) .AGumbel <- function(w, alpha) { r <- w w <- w[i <- which(!(bnd <- w == 0 | w == 1))] r[i] <- (w^alpha + (1 - w)^alpha)^(1/alpha) r[bnd] <- 1 r } dAduGumbel <- function(copula, w) { alpha <- copula@parameters[1] value <- eval(expression({ .expr2 <- 1 - w .expr4 <- w^alpha + .expr2^alpha .expr5 <- 1/alpha .expr7 <- .expr5 - 1 .expr8 <- .expr4^.expr7 .expr9 <- alpha - 1 .expr14 <- w^.expr9 * alpha - .expr2^.expr9 * alpha .expr15 <- .expr5 * .expr14 .expr22 <- .expr9 - 1 .value <- .expr4^.expr5 .grad <- array(0, c(length(.value), 1L), list(NULL, "w")) .hessian <- array(0, c(length(.value), 1L, 1L), list(NULL, "w", "w")) .grad[, "w"] <- .expr8 * .expr15 .hessian[, "w", "w"] <- .expr4^(.expr7 - 1) * (.expr7 * .expr14) * .expr15 + .expr8 * (.expr5 * (w^.expr22 * .expr9 * alpha + .expr2^.expr22 * .expr9 * alpha)) attr(.value, "gradient") <- .grad attr(.value, "hessian") <- .hessian .value }), list(alpha=alpha, w=w)) der1 <- c(attr(value, "gradient")) der2 <- c(attr(value, "hessian")) data.frame(der1=der1, der2=der2) } gumbelCopula <- function(param = NA_real_, dim = 2L, use.indepC = c("message", "TRUE", "FALSE")) { stopifnot(length(param) == 1) if(!is.na(param) && param == 1) { use.indepC <- match.arg(use.indepC) if(!identical(use.indepC, "FALSE")) { if(identical(use.indepC, "message")) message("parameter at boundary ==> returning indepCopula()") return( indepCopula(dim=dim) ) } } cdfExpr <- function(d) { expr <- "( - log(u1))^alpha" for (i in 2:d) { cur <- paste0( "(-log(u", i, "))^alpha") expr <- paste(expr, cur, sep=" + ") } expr <- paste("exp(- (", expr, ")^ (1/alpha))") parse(text = expr) } pdfExpr <- function(cdf, d) { val <- cdf for (i in 1:d) { val <- D(val, paste0("u", i)) } val } cdf <- cdfExpr((dim <- as.integer(dim))) pdf <- if (dim <= 6) pdfExpr(cdf, dim) new("gumbelCopula", dimension = dim, parameters = param, exprdist = c(cdf = cdf, pdf = pdf), param.names = "alpha", param.lowbnd = 1, param.upbnd = Inf, fullname = "<deprecated slot>") } rgumbelCopula <- function(n, copula) { dim <- copula@dimension alpha <- copula@parameters[1] if(is.na(alpha <- copula@parameters[1])) stop("parameter is NA") if (alpha - 1 < .Machine$double.eps ^(1/3) ) return(rCopula(n, indepCopula(dim=dim))) b <- 1/alpha fr <- if(identical(getOption("copula:rstable1"), "rPosStable")) rPosStableS(n, b) else rstable1(n, alpha = b, beta = 1, gamma = cospi2(b)^alpha, pm=1) val <- matrix(runif(dim * n), nrow = n) psi(copula, - log(val) / fr) } pgumbelCopula <- function(copula, u) { dim <- copula@dimension if(!is.matrix(u)) u <- matrix(u, ncol = dim) for (i in 1:dim) assign(paste0("u", i), u[,i]) alpha <- copula@parameters[1] pmax(eval(copula@exprdist$cdf), 0) } dgumbelCopula <- function(u, copula, log=FALSE, ...) { if(!is.matrix(u)) u <- rbind(u, deparse.level = 0L) dim <- copula@dimension for (i in 1:dim) assign(paste0("u", i), u[,i]) if(log) stop("'log=TRUE' not yet implemented") alpha <- copula@parameters[1] eval(copula@exprdist$pdf) } if(FALSE) dgumbelCopula.pdf <- function(u, copula, log=FALSE) { dim <- copula@dimension if (dim > 10) stop("Gumbel copula PDF not implemented for dimension > 10.") if(!is.matrix(u)) u <- rbind(u, deparse.level = 0L) for (i in 1:dim) assign(paste0("u", i), u[,i]) alpha <- copula@parameters[1] if(log) log(c(eval(gumbelCopula.pdf.algr[dim]))) else c(eval(gumbelCopula.pdf.algr[dim])) } iTauGumbelCopula <- function(copula, tau) { if (any(neg <- tau < 0)) { warning("For the Gumbel copula, tau must be >= 0. Replacing negative values by 0.") tau[neg] <- 0 } 1/(1 - tau) } gumbelRhoFun <- function(alpha) { theta <- .gumbelRho$trFuns$forwardTransf(alpha, .gumbelRho$ss) c(.gumbelRho$assoMeasFun$valFun(theta)) } gumbeldRho <- function(alpha) { ss <- .gumbelRho$ss forwardTransf <- .gumbelRho$trFuns$forwardTransf forwardDer <- .gumbelRho$trFuns$forwardDer valFun <- .gumbelRho$assoMeasFun$valFun theta <- forwardTransf(alpha, ss) c(valFun(theta, 1)) * forwardDer(alpha, ss) } iRhoGumbelCopula <- function(copula, rho) { if (any(neg <- rho < 0)) { warning("For the Gumbel copula, rho must be >= 0. Replacing negative values by 0.") rho[neg] <- 0 } gumbelRhoInv <- approxfun(x = .gumbelRho$assoMeasFun$fm$ysmth, y = .gumbelRho$assoMeasFun$fm$x, rule = 2) ss <- .gumbelRho$ss theta <- gumbelRhoInv(rho) .gumbelRho$trFuns$backwardTransf(theta, ss) } setMethod("rCopula", signature("numeric", "gumbelCopula"), rgumbelCopula) setMethod("pCopula", signature("matrix", "gumbelCopula"), function(u, copula, ...) .pacopula(u, copGumbel, theta=copula@parameters)) setMethod("dCopula", signature("matrix", "gumbelCopula"), function (u, copula, log = FALSE, checkPar=TRUE, ...) copGumbel@dacopula(u, theta=copula@parameters, log=log, checkPar=checkPar, ...)) setMethod("A", signature("gumbelCopula"), AGumbel) setMethod("dAdu", signature("gumbelCopula"), dAduGumbel) setMethod("iPsi", signature("gumbelCopula"), function(copula, u) copGumbel@iPsi(u, theta=copula@parameters)) setMethod("psi", signature("gumbelCopula"), function(copula, s) copGumbel@psi(s, theta=copula@parameters)) setMethod("diPsi", signature("gumbelCopula"), function(copula, u, degree=1, log=FALSE, ...) { s <- if(log || degree %% 2 == 0) 1. else -1. s* copGumbel@absdiPsi(u, theta=copula@parameters, degree=degree, log=log, ...) }) setMethod("tau", "gumbelCopula", function(copula) 1 - 1/copula@parameters) setMethod("rho", "gumbelCopula", function(copula) gumbelRhoFun(copula@parameters)) setMethod("lambda", signature("gumbelCopula"), function(copula, ...) c(lower = 0, upper = 2 - 2^(1/copula@parameters))) setMethod("iTau", signature("gumbelCopula"), iTauGumbelCopula) setMethod("iRho", signature("gumbelCopula"), iRhoGumbelCopula) setMethod("dRho", "gumbelCopula", function(copula) gumbeldRho(copula@parameters)) setMethod("dTau", "gumbelCopula", function(copula) 1 / copula@parameters^2)
sscv = function(CV, DesignNo=1, True.R=1, Alpha=0.1, Beta=0.2, ThetaL=0.8, ThetaU=1.25, nMax=999999) { mse = log(1 + (CV/100)^2) return(ssmse(mse, DesignNo, True.R, Alpha, Beta, ThetaL, ThetaU, nMax)) }
context("assertions about utils in utils.R") just.show.error <- function(err, ...){ lapply(err, summary) } test_that("has_all_names works with verify", { expect_equal(verify(mtcars, has_all_names("mpg", "wt", "qsec")), mtcars) expect_equal(mtcars %>% verify(has_all_names("mpg", "wt", "qsec")), mtcars) mpgg <- "something" expect_equal(verify(mtcars, exists("mpgg")), mtcars) expect_output( mtcars %>% verify(has_all_names("mpgg"), error_fun = just.show.error), "verification [has_all_names(\"mpgg\")] failed! (1 failure)", fixed = TRUE) mpg_var <- "mpg" wt_var <- "wt" expect_equal(verify(mtcars, has_all_names(mpg_var, wt_var)), mtcars) expect_equal(mtcars %>% verify(has_all_names(mpg_var, wt_var)), mtcars) }) test_that("has_only_names works with verify", { test_data <- data.frame(A=1, B=2) expect_equal(verify(test_data, has_only_names(c("B", "A"))), test_data) expect_equal(verify(test_data, has_only_names(c("A", "B"))), test_data) expect_equal(verify(test_data, has_only_names("A", "B")), test_data) expect_output( expect_error(verify(test_data, has_only_names("A"))), regexp='verification [has_only_names("A")] failed', fixed=TRUE ) expect_error( verify(test_data, has_only_names(1)), regexp="Arguments to 'has_only_names()' must be character strings.", fixed=TRUE ) }) test_that("has_class works with verify", { expect_equal(verify(mtcars, has_class("mpg", class = "numeric")), mtcars) expect_equal( mtcars %>% verify(has_class("mpg", "wt", class = "numeric")), mtcars) expect_output( mtcars %>% verify(has_class("mpg", class = "character"), error_fun = just.show.error), "verification [has_class(\"mpg\", class = \"character\")] failed! (1 failure)", fixed = TRUE ) mpg_var <- "mpg" wt_var <- "wt" expect_equal(verify(mtcars, has_class(mpg_var, class = "numeric")), mtcars) expect_equal(mtcars %>% verify(has_class(mpg_var, wt_var, class = "numeric")), mtcars) })
print.summary.invGauss <- function(x, covariance = FALSE, ...){ cat("Call:\n") print(x$call) cat("\nCoefficients:\n") print(x$coefficients) cat("\nLog likelihood: ", x$loglik, "\n\n", sep = "") cat("AIC: ", x$AIC, "\n\n", sep = "") if(covariance) { cat("Asymptotic covariance of coefficients:\n") print(x$cov.unscaled) } return(invisible(x)) }
require(httr) require(magrittr) require(stringr) base_endpoint <- function(server, endpoint) paste(server, "/alfresco/api/-default-/public/", endpoint, sep="") tickets_endpoint <- function(server) base_endpoint(server, "authentication/versions/1/tickets") ticket_endpoint <- function(server) paste(tickets_endpoint(server), "-me-", sep="/") alf_session <- function (server, username, password) { response <- tickets_endpoint(server) %>% POST(body=list(userId = username, password = password), encode = "json") if (http_error(response)) if (response$status_code == 403) stop("Authentication failed, please check your username and password are correct.") else stop(http_status(response)$message) else { node_endpoint <- function(node_id) base_endpoint(server, "alfresco/versions/1/nodes/") %>% paste(node_id, sep="") node_content_endpoint <- function(node_id) node_endpoint(node_id) %>% paste("/content", sep="") node_children_endpoint <- function(node_id) node_endpoint(node_id) %>% paste("/children", sep="") list( server = server, ticket = fromJSON(content(response, "text"), flatten = TRUE)$entry$id, node_endpoint = node_endpoint, node_content_endpoint = node_content_endpoint, node_children_endpoint = node_children_endpoint ) } } alf_session.is_valid <- function (session) { tryCatch( if (!is.null(alf_GET(ticket_endpoint(session$server), ticket=session$ticket, params=list(ticket=session$ticket)))) TRUE, error = function(e) if (str_detect(string=e$message, pattern = "401")) FALSE else stop(e) ) } alf_session.invalidate <- function (session) { tryCatch ({ alf_DELETE(ticket_endpoint(session$server), ticket=session$ticket, params=list(ticket=session$ticket)) TRUE }, error = function (e) if (str_detect(string=e$message, pattern = "401")) FALSE else stop(e) ) %>% invisible() }
resetJobs = function(reg, ids, force = FALSE) { checkRegistry(reg, writeable = TRUE) syncRegistry(reg) if (missing(ids) || length(ids) == 0L) return(integer(0L)) ids = checkIds(reg, ids) assertFlag(force) if (!force) { if(is.null(getListJobs()) || is.null(getKillJob())) { stop("Listing or killing of jobs not supported by your cluster functions\n", "You need to set force = TRUE to reset jobs, but see the warning in ?resetJobs") } running = dbFindOnSystem(reg, ids, limit = 10L) if (length(running) > 0L) stopf("Can't reset jobs which are live on system. You have to kill them first!\nIds: %s", collapse(running)) } info("Resetting %i jobs in DB.", length(ids)) dbSendMessage(reg, dbMakeMessageKilled(reg, ids), staged = FALSE) invisible(ids) }
test_that("lod() catches bad `aff` input", { x = nuclearPed(1) x = setMarkers(x, marker(x)) mod = diseaseModel("AD") expect_error(lod(x, aff = 1:4, mod = mod), "Invalid `aff`") expect_error(lod(x, aff = 0:1, mod = mod), "Unknown ID label: 0") expect_error(lod(x, aff = list(aff = 1), mod = mod), "Invalid name of `aff`") expect_error(lod(x, aff = list(affected = 1, unaffected = 1), mod = mod), "Individual with multiple affection statuses") }) test_that("lod() with liability classes", { x = nuclearPed(3) x = setMarkers(x, marker(x, geno = c("1/2", "1/1", "1/2","1/2","1/2"))) mod = diseaseModel("AD", pen = data.frame(f0 = 0, f1 = 1:0, f2 = 1:0)) res = lod(x, aff = c(2,1,2,2,1), mod = mod, liab = c(1,1,1,1,2)) expect_equal(round(res - log10(2), 3), 0) expect_equal(res, lod(x, aff = c(2,1,2,2,0), mod = diseaseModel("AD"))) })
library("plink") options(prompt = "R> ", continue = "+ ", width = 70, digits = 4, show.signif.stars = FALSE, useFancyQuotes = FALSE) x <- matrix(c( 0.844, -1.630, 0.249, NA, NA, NA, NA, NA, NA, NA, 1.222, -0.467, -0.832, 0.832, NA, NA, NA, NA, NA, NA, 1.101, -0.035, -1.404, -0.285, 0.541, 1.147, NA, NA, NA, NA, 1.076, 0.840, 0.164, NA, NA, NA, NA, NA, NA, NA, 0.972, -0.140, 0.137, NA, NA, NA, NA, NA, NA, NA, 0.905, 0.522, -0.469, -0.959, NA, 0.126, -0.206, -0.257, 0.336, NA, 0.828, 0.375, -0.357, -0.079, -0.817, 0.565, 0.865, -1.186, -1.199, 0.993, 1.134, 2.034, 0.022, NA, NA, NA, NA, NA, NA, NA, 0.871, 1.461, -0.279, 0.279, NA, NA, NA, NA, NA, NA), 9, 10, byrow = TRUE) round(x, 2) a <- round(matrix(c( 0.844, NA, NA, NA, NA, 1.222, NA, NA, NA, NA, 1.101, NA, NA, NA, NA, 1.076, NA, NA, NA, NA, 0.972, NA, NA, NA, NA, 0.905, 0.522, -0.469, -0.959, NA, 0.828, 0.375, -0.357, -0.079, -0.817, 1.134, NA, NA, NA, NA, 0.871, NA, NA, NA, NA), 9, 5, byrow = TRUE), 2) b <- round(matrix(c( -1.630, NA, NA, NA, NA, -0.467, -0.832, 0.832, NA, NA, -0.035, -1.404, -0.285, 0.541, 1.147, 0.840, NA, NA, NA, NA, -0.140, NA, NA, NA, NA, 0.126, -0.206, -0.257, 0.336, NA, 0.565, 0.865, -1.186, -1.199, 0.993, 2.034, NA, NA, NA, NA, 1.461, -0.279, 0.279, NA, NA), 9, 5, byrow = TRUE), 2) c <- round(c(0.249, NA, NA, 0.164, 0.137, NA, NA, 0.022, NA), 2) list(a = a, b = b, c = c) cat <- c(2, 3, 5, 2, 2, 4, 5, 2, 3) pm <- as.poly.mod(9, c("drm", "grm", "nrm"), list(c(1, 4, 5, 8), c(2, 3, 9), 6:7)) pm <- as.poly.mod(9, c("grm", "drm", "nrm"), list(c(2, 3, 9), c(1, 4, 5, 8), 6:7)) pars <- as.irt.pars(x, cat = cat, poly.mod = pm, location = TRUE) common <- matrix(c(51:60, 1:10), 10, 2) common cat <- rep(2, 36) pm <- as.poly.mod(36) x <- as.irt.pars(KB04$pars, KB04$common, cat = list(cat, cat), poly.mod = list(pm, pm), grp.names = c("new", "old")) out <- plink(x) summary(out) out <- plink(x, rescale = "SL", base.grp = 2) summary(out) ability <- list(group1 = -4:4, group2 = -4:4) out <- plink(x, rescale = "SL", ability = ability, base.grp = 2, weights.t = as.weight(30, normal.wt = TRUE), symmetric = TRUE) summary(out) link.ability(out) pm1 <- as.poly.mod(55, c("drm", "gpcm", "nrm"), dgn$items$group1) pm2 <- as.poly.mod(55, c("drm", "gpcm", "nrm"), dgn$items$group2) x <- as.irt.pars(dgn$pars, dgn$common, dgn$cat, list(pm1, pm2)) out <- plink(x) summary(out) out1 <- plink(x, exclude = "nrm") summary(out1, descrip = TRUE) pm1 <- as.poly.mod(41, c("drm", "gpcm"), reading$items[[1]]) pm2 <- as.poly.mod(70, c("drm", "gpcm"), reading$items[[2]]) pm3 <- as.poly.mod(70, c("drm", "gpcm"), reading$items[[3]]) pm4 <- as.poly.mod(70, c("drm", "gpcm"), reading$items[[4]]) pm5 <- as.poly.mod(72, c("drm", "gpcm"), reading$items[[5]]) pm6 <- as.poly.mod(71, c("drm", "gpcm"), reading$items[[6]]) pm <- list(pm1, pm2, pm3, pm4, pm5, pm6) grp.names <- c("Grade 3.0", "Grade 4.0", "Grade 4.1", "Grade 5.1", "Grade 5.2", "Grade 6.2") x <- as.irt.pars(reading$pars, reading$common, reading$cat, pm, grp.names = grp.names) out <- plink(x, method = c("HB", "SL"), base.grp = 4) summary(out) dichot <- matrix(c(1.2, -1.1, 0.19, 0.8, 2.1, 0.13), 2, 3, byrow = TRUE) poly <- t(c(0.64, -1.8, -0.73, 0.45)) mixed.pars <- rbind(cbind(dichot, matrix(NA, 2, 1)), poly) cat <- c(2, 2, 4) pm <- as.poly.mod(3, c("drm", "gpcm"), list(1:2, 3)) mixed.pars <- as.irt.pars(mixed.pars, cat = cat, poly.mod = pm) out <- mixed(mixed.pars, theta = -4:4) round(get.prob(out), 3) pm <- as.poly.mod(36) x <- as.irt.pars(KB04$pars, KB04$common, cat = list(rep(2, 36), rep(2, 36)), poly.mod = list(pm, pm)) out <- plink(x, rescale = "MS", base.grp = 2, D = 1.7, exclude = list(27, 27), grp.names = c("new", "old")) wt <- as.weight(theta = c(-5.21, -4.16, -3.12, -2.07, -1.03, 0.02, 1.06, 2.11, 3.15, 4.20), weight = c(0.0001, 0.0028, 0.0302, 0.1420, 0.3149, 0.3158, 0.1542, 0.0359, 0.0039, 0.0002)) eq.out <- equate(out, method = c("TSE", "OSE"), weights1 = wt, syn.weights = c(1, 0), D = 1.7) eq.out$tse[1:10,] eq.out$ose$scores[1:10,] pdf.options(family = "Times") trellis.device(device = "pdf", file = "IRC.pdf") tmp <- plot(pars, incorrect = TRUE, auto.key = list(space = "right")) print(tmp) dev.off() plot(pars, incorrect = TRUE, auto.key = list(space = "right")) pm1 <- as.poly.mod(41, c("drm", "gpcm"), reading$items[[1]]) pm2 <- as.poly.mod(70, c("drm", "gpcm"), reading$items[[2]]) pm3 <- as.poly.mod(70, c("drm", "gpcm"), reading$items[[3]]) pm4 <- as.poly.mod(70, c("drm", "gpcm"), reading$items[[4]]) pm5 <- as.poly.mod(72, c("drm", "gpcm"), reading$items[[5]]) pm6 <- as.poly.mod(71, c("drm", "gpcm"), reading$items[[6]]) pm <- list(pm1, pm2, pm3, pm4, pm5, pm6) grp.names <- c("Grade 3.0", "Grade 4.0", "Grade 4.1", "Grade 5.1", "Grade 5.2", "Grade 6.2") x <- as.irt.pars(reading$pars, reading$common, reading$cat, pm) out <- plink(x, method = "SL",rescale = "SL", base.grp = 4, grp.names = grp.names) pdf.options(family="Times") pdf("drift_a.pdf", 4, 4.2) plot(out, drift = "a", sep.mod = TRUE, groups = 4, drift.sd = 2) dev.off() pdf.options(family="Times") pdf("drift_b.pdf", 4, 4.2) plot(out, drift = "b", sep.mod = TRUE, groups = 4, drift.sd = 2) dev.off() pdf.options(family="Times") pdf("drift_c.pdf", 4, 4.2) plot(out, drift = "c", sep.mod = TRUE, groups = 4, drift.sd = 2) dev.off() plot(out, drift = "pars", sep.mod = TRUE, groups = 4, drift.sd = 2)
gg_rf <- function(df, vble, fitted, res, cen_obs = FALSE, cen_obs_label = "Centered observed values", cen_fit_label = "Centered fitted values", res_label = "Residuals", xlabel = expression(f[i]), ylabel = quo_text(vble), ...) { if (!is.data.frame(df)) stop("The object provided in the argument df is not a data.frame") vble <- enquo(vble) fitted <- enquo(fitted) res <- enquo(res) if (!is.numeric(eval_tidy(vble, df))) stop(paste(quo_text(vble), "provided for the vble argument is not a numeric variable")) if (!is.numeric(eval_tidy(fitted, df))) stop(paste(quo_text(fitted), "provided for the fitted argument is not a numeric variable")) if (!is.numeric(eval_tidy(res, df))) stop(paste(quo_text(res), "provided for the res argument is not a numeric variable")) if (!is.logical(cen_obs)) stop("Argument cen_obs must be either TRUE or FALSE") df <- df %>% ungroup() %>% mutate( centered_observed_values = !!vble - mean(!!vble), centered_fitted_values = !!fitted - mean(!!fitted) ) %>% tidyr::pivot_longer( cols = c(.data$centered_observed_values, .data$centered_fitted_values, !!res), names_to = "tipo", values_to = "valor" ) %>% mutate(tipo = factor(.data$tipo, levels = c("centered_observed_values", "centered_fitted_values", quo_text(res)), labels = c(cen_obs_label, cen_fit_label, res_label)) ) if (!cen_obs) { df <- filter(df, .data$tipo != cen_obs_label) } g <- ggplot(df, aes(sample = .data$valor)) + stat_qq(distribution = qunif, ...) + facet_wrap(~ .data$tipo) + xlab(xlabel) + ylab(ylabel) return(g) }
"spatialSign" <- function(x, ...) UseMethod("spatialSign") "spatialSign.default" <- function(x, na.rm = TRUE, ...) { if (is.character(x) | is.factor(x)) stop("spatial sign is not defined for character or factor data", call. = FALSE) denom <- sum(x ^ 2, na.rm = na.rm) out <- if (sqrt(denom) > .Machine$double.eps) x / sqrt(denom) else x * 0 out } "spatialSign.matrix" <- function(x, na.rm = TRUE, ...) { if (is.character(x)) stop("spatial sign is not defined for character data", call. = FALSE) xNames <- dimnames(x) p <- ncol(x) tmp <- t(apply(x, 1, spatialSign.default, na.rm = na.rm)) if (p == 1 & nrow(tmp) == 1) tmp <- t(tmp) dimnames(tmp) <- xNames tmp } "spatialSign.data.frame" <- function(x, na.rm = TRUE, ...) { if (any(apply(x, 2, function(data) is.character(data) | is.factor(data)))) stop("spatial sign is not defined for character or factor data", call. = FALSE) xNames <- dimnames(x) x <- as.matrix(x) if (!is.numeric(x)) stop("a character matrix was the result of as.matrix", call. = FALSE) tmp <- spatialSign(x, na.rm = na.rm) dimnames(tmp) <- xNames tmp }
getSSMBowlingDetails <- function(dir='.',odir=".") { bowlingDetails=bowler=wickets=economyRate=matches=meanWickets=meanER=totalWickets=NULL currDir= getwd() teams <-c("Auckland", "Canterbury", "Central Districts", "Northern Districts", "Otago", "Wellington") details=df=NULL teams1 <- NULL for(team in teams){ print(team) tryCatch({ bowling <- getTeamBowlingDetails(team,dir=dir, save=TRUE,odir=odir) teams1 <- c(teams1,team) }, error = function(e) { print("No data") } ) } }
gh_encode = function(latitude, longitude, precision = 6L) { if (length(precision) != 1L) stop("More than one precision value detected; precision is fixed on input (for now)") if (precision < 1L) stop('Invalid precision. Precision is measured in ', 'number of characters, must be at least 1.') if (precision > .global$GH_MAX_PRECISION) { warning('Precision is limited to ', .global$GH_MAX_PRECISION, ' characters; truncating') precision = .global$GH_MAX_PRECISION } .Call(Cgh_encode, latitude, longitude, as.integer(precision)) }