code
stringlengths 1
13.8M
|
---|
"ChemicalReaction" |
library(corporaexplorer)
abc <- test_data
source("./global/backwards_compatibility.R", local = TRUE)
DATE_BASED_CORPUS <- abc$date_based_corpus
contains_grouping_variable <-
!is.null(abc$original_data$grouping_variable)
if (contains_grouping_variable == TRUE) {
GROUPING_VARIABLE <-
abc$original_data$grouping_variable
} else {
GROUPING_VARIABLE <- NA
}
INFO_COLUMNS <- abc$columns_for_info
abc <- abc$original_data$data_dok
abc$Text <- abc$Text_original_case
my_colours <-
rep(c("red", "blue", "green", "purple", "orange", "gray"), 10)
MAX_DOCS_FOR_HTML <- 400 |
.downloader <- function(file) {
network <- as.logical(Sys.getenv("NETWORK_UP", unset = TRUE))
aws <- as.logical(Sys.getenv("AWS_UP", unset = TRUE))
remote_path <- "https://rczechia.jla-data.net/"
remote_file <- paste0(remote_path, file)
local_file <- file.path(tempdir(), file)
if (file.exists(local_file)) {
message("RCzechia: using temporary local dataset.")
} else {
if (!.ok_to_proceed(remote_file) | !network) {
message("No internet connection.")
return(NULL)
}
if (!.ok_to_proceed(remote_file) | !aws) {
message("Data source broken.")
return(NULL)
}
message("RCzechia: downloading remote dataset.")
curl::curl_download(url = remote_file, destfile = local_file, quiet = T)
}
local_df <- readRDS(local_file)
local_df
} |
library(EnvStats)
windows()
with(Helsel.Cohn.88.silver.df,
ecdfPlotCensored(Ag, Censored,
xlab = expression(paste("Ag (", mu, "g/L)", sep = "")),
main = "Empirical CDF Plot for Silver\n(Method of Michael-Schucany)",
include.cen = TRUE))
windows()
with(Helsel.Cohn.88.silver.df,
ecdfPlotCensored(log.Ag, Censored,
xlab = expression(paste("log [ Ag (", mu, "g/L) ]", sep = "")),
main = "Empirical CDF Plot for Silver\n(Method of Michael-Schucany)",
include.cen = TRUE))
windows()
with(Helsel.Cohn.88.silver.df,
cdfCompareCensored(Ag, Censored, distribution = "lnorm",
xlab = expression(paste("Ag (", mu, "g/L)", sep = ""))))
windows()
with(Helsel.Cohn.88.silver.df,
cdfCompareCensored(log(Ag), Censored, distribution="norm",
xlab = expression(paste("log [ Ag (", mu, "g/L) ]", sep = ""))))
attach(Millard.Deverel.88.df)
Cu.Alluvial <- Cu[Zone == "Alluvial.Fan"]
Cu.Alluvial.cen <- Cu.censored[Zone == "Alluvial.Fan"]
Cu.Basin <- Cu[Zone == "Basin.Trough"]
Cu.Basin.cen <- Cu.censored[Zone == "Basin.Trough"]
windows()
cdfCompareCensored(x = Cu.Alluvial, censored = Cu.Alluvial.cen,
y = Cu.Basin, y.censored = Cu.Basin.cen)
detach("Millard.Deverel.88.df")
rm(Cu.Alluvial, Cu.Alluvial.cen, Cu.Basin, Cu.Basin.cen)
windows()
with(Modified.TcCB.df,
qqPlotCensored(TcCB, Censored, distribution = "lnorm",
add.line = TRUE, points.col = "blue"))
boxcox.list <- with(Modified.TcCB.df,
boxcoxCensored(TcCB, Censored))
windows()
plot(boxcox.list)
rm(boxcox.list)
with(EPA.09.Ex.15.1.manganese.df,
elnormCensored(Manganese.ppb, Censored))
with(EPA.09.Ex.15.1.manganese.df,
elnormCensored(Manganese.ppb, Censored, method = "qq.reg"))
with(EPA.09.Ex.15.1.manganese.df,
elnormCensored(Manganese.ppb, Censored,
method = "impute.w.qq.reg", prob.method = "hirsch-stedinger"))
with(EPA.09.Ex.15.1.manganese.df,
elnormCensored(Manganese.ppb, Censored,
method = "impute.w.qq.reg", prob.method = "hirsch-stedinger",
plot.pos.con = 0))
with(EPA.09.Ex.15.1.manganese.df,
elnormCensored(Manganese.ppb, Censored, ci = TRUE))
with(Modified.TcCB.df,
elnormAltCensored(TcCB, Censored, method = "mle", ci = TRUE))
with(Modified.TcCB.df,
egammaAltCensored(TcCB, Censored, ci = TRUE, ci.method = "profile.likelihood"))
with(EPA.09.Ex.15.1.manganese.df,
enparCensored(log(Manganese.ppb), Censored, ci = TRUE))
with(EPA.09.Ex.15.1.manganese.df,
enparCensored(Manganese.ppb, Censored, ci = TRUE))
with(EPA.94b.tccb.df, eqlnorm(TcCB[Area == "Reference"], p = 0.9, ci = TRUE))
with(Modified.TcCB.df, eqlnormCensored(TcCB, Censored, p = 0.9, ci = TRUE))
with(Modified.TcCB.df, eqlnormCensored(TcCB, Censored, p = 0.9,
method = "impute.w.qq.reg", ci = TRUE,
ci.method = "gpq", seed = 47))
egamma.list <- with(Modified.TcCB.df, egammaCensored(TcCB, Censored))
eqgamma(egamma.list, p = 0.9)
rm(egamma.list)
enorm.list <- with(EPA.09.Ex.18.3.TCE.df,
enormCensored(TCE.ppb[Well.type == "Background"],
Censored[Well.type == "Background"]))
predIntNorm(enorm.list, k = 4, pi.type = "upper", conf.level = 0.95, method = "exact")
rm(enorm.list)
with(Modified.TcCB.df, tolIntLnormCensored(TcCB, Censored, ti.type = "upper"))
with(Modified.TcCB.df, tolIntLnormCensored(TcCB, Censored, ti.type = "upper",
method = "impute.w.qq.reg", ti.method = "gpq", seed = 47))
sw.list.norm <- with(Modified.TcCB.df, gofTestCensored(TcCB, Censored))
sw.list.norm
sw.list.lnorm <- with(Modified.TcCB.df, gofTestCensored(TcCB, Censored, dist = "lnorm"))
sw.list.lnorm
windows()
plot(sw.list.norm)
windows()
plot(sw.list.lnorm)
rm(sw.list.norm, sw.list.lnorm)
attach(Millard.Deverel.88.df)
Cu.AF <- Cu[Zone=="Alluvial.Fan"]
Cu.AF.cen <- Cu.censored[Zone=="Alluvial.Fan"]
Cu.BT <- Cu[Zone=="Basin.Trough"]
Cu.BT.cen <- Cu.censored[Zone=="Basin.Trough"]
twoSampleLinearRankTestCensored(Cu.AF, Cu.AF.cen, Cu.BT, Cu.BT.cen,
test = "normal.scores.2", var = "hypergeometric")
rm(Cu.AF, Cu.AF.cen, Cu.BT, Cu.BT.cen)
detach("Millard.Deverel.88.df") |
create.buffer <- function(x, loc, radius, km=FALSE){
mat <- x
if (!is(mat,"bathy")) stop("x must be an object of class bathy")
if (!is.data.frame(loc)) stop("loc must be a two-column data.frame (longitude and latitude)")
if (!is.numeric(radius)) stop("radius must be numeric")
if (length(radius) > 1) warning("only the first value of radius was used")
xyz <- as.xyz(mat)
if (km) {
radius.km <- radius
radius <- 180 * radius.km/(pi*6372.798)
} else {
radius.km <- radius*pi*6372.798/180
}
map <- sp::SpatialPixelsDataFrame(points = xyz[,1:2], data = xyz, tolerance = 0.006)
lo2 <- sp::SpatialPointsDataFrame(loc, data = loc)
adehabitatMA::adeoptions(epsilon=0.001)
temp <- adehabitatMA::buffer(lo2, map, radius)
adehabitatMA::adeoptions(epsilon=0.00000001)
temp <- -as.bathy(as(temp,'SpatialGridDataFrame'))
mat[temp==0] <- NA
out <- list(buffer = mat, center = loc, radius = radius, radius.km = radius.km)
class(out) <- "buffer"
return(out)
} |
get.coverage.by.sample.statistics <- function(project.directory) {
if( !is.character(project.directory) || length(project.directory) > 1 ) {
stop('project.directory must be a string.');
}
if( !file.exists(project.directory) ) {
error.message <- paste('Directory', project.directory, 'does not exist');
stop(error.message);
}
total.coverage.statistics <- process.total.coverage.statistics(project.directory);
coverage.report.data <- process.coverage.reports(project.directory);
coverage.by.sample.statistics <- merge(
total.coverage.statistics,
coverage.report.data,
by = "sample.id",
all = TRUE
);
return(coverage.by.sample.statistics);
} |
precess = function( ra, dec, equinox1, equinox2,
fk4=F,radian=F) {
deg_to_rad = pi/180
if(!radian ){
ra_rad = ra*deg_to_rad
dec_rad = dec*deg_to_rad
}
else {
ra_rad= ra
dec_rad = dec
}
a = cos( dec_rad )
x = rbind(a*cos(ra_rad),
a*sin(ra_rad),
sin(dec_rad))
sec_to_rad = deg_to_rad/3600.e0
r = premat(equinox1, equinox2, fk4 = fk4)
cat('precess:','equinox1=',equinox1,'\n')
cat('precess:','equinox2=',equinox2,'\n')
x2 = r%*%x
cat('precess:','x2=',x2,'\n')
ra_rad = atan2(x2[2,],x2[1,])
dec_rad = asin(x2[3,])
if(!radian ){
ra = ra_rad/deg_to_rad
ra = ra + (ra<0.)*360
dec = dec_rad/deg_to_rad
}
else {
ra = ra_rad
dec = dec_rad
ra = ra + (ra<0.)*2*pi
}
return(list(ra =ra, dec=dec))
} |
CQL <- function(...) {
sql <- dbplyr::sql(...)
structure(sql, class = c("CQL", class(sql)))
}
vicmap_cql_string <- function(x, geometry_predicates, pattern = NULL,
distance = NULL, units = NULL,
coords = NULL, crs = NULL){
if (inherits(x, "sql")) {
stop(glue::glue("object {as.character(x)} not found.\n The object passed to {geometry_predicates} needs to be valid sf object."),
call. = FALSE)
}
if (inherits(x, "vicmap_promise")) {
stop("To use spatial operators, you need to use collect() to retrieve the object used to filter",
call. = FALSE)
}
match.arg(geometry_predicates, cql_geom_predicate_list())
if (!geometry_predicates == "BBOX") {
x <- sf_text(x)
}
cql_args <-
if (geometry_predicates == "BBOX") {
paste0(
paste0(coords, collapse = ", "),
if (!is.null(crs)) paste0(", '", crs, "'")
)
} else if (geometry_predicates %in% c("DWITHIN", "BEYOND")) {
paste0(x, ", ", distance, ", ", units, "")
} else if (geometry_predicates == "RELATE") {
paste0(x, ", ", pattern)
} else {
x
}
CQL(paste0(geometry_predicates,"({geom_name}, ", cql_args, ")"))
}
cql_geom_predicate_list <- function() {
c("EQUALS","DISJOINT","INTERSECTS",
"TOUCHES", "CROSSES", "WITHIN",
"CONTAINS","OVERLAPS", "RELATE",
"DWITHIN", "BEYOND", "BBOX")
}
sf_text <- function(x) {
if (!inherits(x, c("sf", "sfc", "sfg", "bbox"))) {
stop(paste(deparse(substitute(x)), "is not a valid sf object"),
call. = FALSE)
}
if (utils::object.size(x) > getOption("vicmap.max_geom_pred_size", 4400)) {
message("The object is too large to perform exact spatial operations using VicmapR.
To simplify the polygon, sf::st_simplify() was used to reduce the size of the query")
x <- polygonFormat(x)
}
if (inherits(x, "bbox")) {
x <- sf::st_as_sfc(x)
} else {
x <- sf::st_union(x)
}
if (sf::sf_extSoftVersion()["GDAL"] >= "3.0.0") {
ao <- sf::st_axis_order()
sf::st_axis_order(TRUE)
x <- sf::st_transform(x, pipeline = "+proj=pipeline +step +proj=axisswap +order=2,1")
filter_string <- sf::st_as_text(x)
sf::st_axis_order(ao)
} else {
warning("GDAL > 3.0.0 is required")
filter_string <- sf::st_as_text(x)
}
return(filter_string)
}
NULL
EQUALS <- function(geom) {
vicmap_cql_string(geom, "EQUALS")
}
DISJOINT <- function(geom) {
vicmap_cql_string(geom, "DISJOINT")
}
INTERSECTS <- function(geom) {
vicmap_cql_string(geom, "INTERSECTS")
}
TOUCHES <- function(geom) {
vicmap_cql_string(geom, "TOUCHES")
}
CROSSES <- function(geom) {
vicmap_cql_string(geom, "CROSSES")
}
WITHIN <- function(geom) {
vicmap_cql_string(geom, "WITHIN")
}
CONTAINS <- function(geom) {
vicmap_cql_string(geom, "CONTAINS")
}
OVERLAPS <- function(geom) {
vicmap_cql_string(geom, "OVERLAPS")
}
RELATE <- function(geom, pattern) {
if (!is.character(pattern) ||
length(pattern) != 1L ||
!grepl("^[*TF012]{9}$", pattern)) {
stop("pattern must be a 9-character string using the characters '*TF012'",
call. = FALSE)
}
vicmap_cql_string(geom, "RELATE", pattern = pattern)
}
BBOX <- function(coords, crs = NULL){
if (inherits(coords, c("sf", "sfc"))) {
coords <- sf::st_bbox(coords)
}
if (!is.numeric(coords) || length(coords) != 4L) {
stop("'coords' must be a length 4 numeric vector", call. = FALSE)
}
if (inherits(coords, "bbox")) {
crs <- sf::st_crs(coords)$epsg
coords <- as.numeric(coords)
}
if (is.numeric(crs)) {
crs <- paste0("EPSG:", crs)
}
if (!is.null(crs) && !(is.character(crs) && length(crs) == 1L)) {
stop("crs must be a character string denoting the CRS (e.g., 'EPSG:4326')",
call. = FALSE)
}
vicmap_cql_string(x = NULL, "BBOX", coords = coords, crs = crs)
}
DWITHIN <- function(geom, distance,
units = c("meters", "feet", "statute miles", "nautical miles", "kilometers")) {
if (!is.numeric(distance)) {
stop("'distance' must be numeric", call. = FALSE)
}
units <- match.arg(units)
vicmap_cql_string(geom, "DWITHIN", distance = distance, units = units)
}
BEYOND <- function(geom, distance,
units = c("meters", "feet", "statute miles", "nautical miles", "kilometers")) {
if (!is.numeric(distance)) {
stop("'distance' must be numeric", call. = FALSE)
}
units <- match.arg(units)
vicmap_cql_string(geom, "BEYOND", distance = distance, units = units)
} |
infer_cochran_qtest <- function(data, ...) UseMethod("infer_cochran_qtest")
infer_cochran_qtest.default <- function(data, ...) {
vars <- vapply(substitute(...()), deparse, NA_character_)
fdata <- data[vars]
if (ncol(fdata) < 3) {
stop("Please specify at least 3 variables.", call. = FALSE)
}
if (any(sapply(lapply(fdata, as.factor), nlevels) > 2)) {
stop("Please specify dichotomous/binary variables only.", call. = FALSE)
}
k <- cochran_comp(fdata)
result <-
list(
df = k$df,
n = k$n,
pvalue = k$pvalue,
q = k$q)
class(result) <- "infer_cochran_qtest"
return(result)
}
print.infer_cochran_qtest <- function(x, ...) {
print_cochran_test(x)
}
coch_data <- function(x, ...) {
if (is.data.frame(x)) {
data <- x %>%
lapply(as.numeric) %>%
as.data.frame() %>%
`-`(1)
} else {
data <- cbind(x, ...) %>%
apply(2, as.numeric) %>%
`-`(1) %>%
as.data.frame()
}
return(data)
}
cochran_comp <- function(data) {
n <- nrow(data)
k <- ncol(data)
df <- k - 1
cs <-
data %>%
lapply(as.numeric) %>%
as.data.frame() %>%
subtract(1) %>%
sums()
q <- coch(k, cs$cls_sum, cs$cl, cs$g, cs$gs_sum)
pvalue <- 1 - pchisq(q, df)
list(
df = df,
n = n,
pvalue = round(pvalue, 4),
q = q)
}
sums <- function(data) {
cl <- colSums(data)
cls_sum <- sum(cl ^ 2)
g <- rowSums(data)
gs_sum <- sum(g ^ 2)
list(
cl = cl,
cls_sum = cls_sum,
g = g,
gs_sum = gs_sum)
}
coch <- function(k, cls_sum, cl, g, gs_sum) {
((k - 1) * ((k * cls_sum) - (sum(cl) ^ 2))) / ((k * sum(g)) - gs_sum)
} |
GetAcquisitionPlan <-
function(satellites = NULL, date = NULL)
{
endpoint <- "https://api.spectator.earth/acquisition-plan/"
if (!is.null(date)) {
date <- sprintf("%sT12:00:00", as.Date(date))
}
if (!is.null(satellites)) {
satellites <- FindSatelliteName(satellites)
}
qry <- list(satellites = satellites, datetime = date)
resp <- httr::GET(url = endpoint, query = qry)
CheckResponseSatus(resp)
cnt <- httr::content(resp, type = "text", encoding = "UTF-8")
plan <- geojsonsf::geojson_sf(cnt)
if (!is.null(plan$begin_time)) {
plan$begin_time <- as.POSIXct(gsub("Z", "", gsub("T", " ", plan$begin_time)), tz = "GMT")
}
if (!is.null(plan$end_time)) {
plan$end_time <- as.POSIXct(gsub("Z", "", gsub("T", " ", plan$end_time)), tz = "GMT")
}
return(plan)
} |
densEstBayesVignette <- function()
{
vignette("manual",package="densEstBayes")
} |
findMin2 <- function(esTimesDf, RELEVANTVN_ES=NULL, RELEVANTINFO_ES=NULL) {
if(!is.data.frame(esTimesDf)) {
stop("Argument must be of type data.frame.")
}
PROMPT <- c()
absStart1 <- c()
PROMPTEND <- c()
absEnd1 <- c()
lag_ba0 <- c()
midnightDate <- c()
stTimes <- paste0("stTime", 1:RELEVANTINFO_ES[["MAXPROMPT"]])
for (j in 1 : nrow(esTimesDf)) {
start_j1 <- lubridate::as.duration(lubridate::ymd_hms(esTimesDf[j,RELEVANTVN_ES[["ES_START_DATETIME"]]]) - lubridate::ymd_hms(unlist(esTimesDf[j, stTimes])))
absStart_j1 <- abs(start_j1)
absStart_jSec1 <- as.numeric(absStart_j1)
minAST1 <- min(absStart_jSec1)
minStart1 <- which(minAST1 == absStart_jSec1)[1]
start_j2 <- lubridate::as.duration(lubridate::ymd_hms(esTimesDf[j,RELEVANTVN_ES[["ES_START_DATETIME"]]]) - (lubridate::ymd_hms(unlist(esTimesDf[j, stTimes])) - lubridate::days(1)))
absStart_j2 <- abs(start_j2)
absStart_jSec2 <- as.numeric(absStart_j2)
minAST2 <- min(absStart_jSec2)
minStart2 <- which(minAST2 == absStart_jSec2)[1]
start_j3 <- lubridate::as.duration(lubridate::ymd_hms(esTimesDf[j,RELEVANTVN_ES[["ES_START_DATETIME"]]]) - (lubridate::ymd_hms(unlist(esTimesDf[j, stTimes])) + lubridate::days(1)))
absStart_j3 <- abs(start_j3)
absStart_jSec3 <- as.numeric(absStart_j3)
minAST3 <- min(absStart_jSec3)
minStart3 <- which(minAST3 == absStart_jSec3)[1]
minAST <- which(c(minAST1, minAST2, minAST3) == min(c(minAST1, minAST2, minAST3)))
if(minAST == 1) {
midnightDate <- c(midnightDate, 0)
PROMPT <- c(PROMPT, minStart1)
absStart1 <- c(absStart1, as.numeric(absStart_jSec1[minStart1]))
start_j <- start_j1; minStart <- minStart1
} else if(minAST == 2) {
midnightDate <- c(midnightDate, -1)
PROMPT <- c(PROMPT, minStart2)
absStart1 <- c(absStart1, as.numeric(absStart_jSec2[minStart2]))
start_j <- start_j2; minStart <- minStart2
} else if(minAST == 3) {
midnightDate <- c(midnightDate, 1)
PROMPT <- c(PROMPT, minStart3)
absStart1 <- c(absStart1, as.numeric(absStart_jSec3[minStart3]))
start_j <- start_j3; minStart <- minStart3
} else {
warning("Function findMin2 (not visible to the user) within function esAssign failed. Please report bug to the maintainer of the esmprep package (esmprep-at-gmail.com).")
}
if (is.na(nchar(as.character(esTimesDf[j, RELEVANTVN_ES[["ES_END_DATETIME"]]]))) |
nchar(as.character(esTimesDf[j, RELEVANTVN_ES[["ES_END_DATETIME"]]])) < 19) {
PROMPTEND <- c(PROMPTEND, NA)
absEnd1 <- c(absEnd1, NA)
} else {
if(minAST == 1) {
absEnd_i <- abs(lubridate::ymd_hms(esTimesDf[j, RELEVANTVN_ES[["ES_END_DATETIME"]]]) - lubridate::ymd_hms(unlist(esTimesDf[j, stTimes]) ))
} else if(minAST == 2) {
absEnd_i <- abs(lubridate::ymd_hms(esTimesDf[j, RELEVANTVN_ES[["ES_END_DATETIME"]]]) - (lubridate::ymd_hms(unlist(esTimesDf[j, stTimes])) - lubridate::days(1)) )
} else if(minAST == 3) {
absEnd_i <- abs(lubridate::ymd_hms(esTimesDf[j, RELEVANTVN_ES[["ES_END_DATETIME"]]]) - (lubridate::ymd_hms(unlist(esTimesDf[j, stTimes])) + lubridate::days(1)) )
}
absEnd_iSec <- as.numeric(lubridate::as.duration(absEnd_i))
minEnd <- min(absEnd_iSec)
minEnd1 <- which(minEnd == absEnd_iSec)[1]
PROMPTEND <- c(PROMPTEND, minEnd1)
absEnd1 <- c(absEnd1, as.numeric(absEnd_iSec[minEnd1]))
}
lag_ba0 <- c(lag_ba0, ifelse(as.numeric(start_j)[minStart] < 0, 0, 1))
}
return (data.frame(PROMPT, PROMPTEND, absStart1, absEnd1, lag_ba0, midnightDate))
} |
`evalRedundancy` <-
function(mat,ia,red=0){
vec.snps<-strsplit(ia," & ")[[1]]
n.snps<-length(vec.snps)
if(n.snps==1)
return(ia)
vec.jack<-character(n.snps)
for(i in 1:n.snps)
vec.jack[i]<-paste(vec.snps[-i],collapse=" & ")
vec.red<-numeric(n.snps)
full<-with(mat, sum(eval(parse(text=ia))))
for(i in 1:n.snps)
vec.red[i]<-with(mat, sum(eval(parse(text=vec.jack[i]))))
if(any(vec.red-full<=red)){
warning("A redundant SNP in the explanatory interactions is removed.",call.=FALSE)
ids<-which.min(vec.red-full)[1]
new.ia<-vec.jack[ids]
ia<-evalRedundancy(mat,new.ia,red=red)
}
ia
} |
LOCAL <- identical(Sys.getenv("LOCAL"), "TRUE")
knitr::opts_chunk$set(purl = LOCAL)
knitr::opts_chunk$set(
collapse = TRUE,
comment = "
)
require(Patterns)
require(Patterns)
CLLfile <- "https://github.com/fbertran/Patterns/raw/master/add_data/CLL.RData"
repmis::source_data(CLLfile)
CLL[1:10,1:5]
hea_US<-CLL[,which((1:48)%%8<5&(1:48)%%8>0)+2]
hea_S<-CLL[,which(!((1:48)%%8<5&(1:48)%%8>0))+2]
agg_US<-CLL[,which((1:40)%%8<5&(1:40)%%8>0)+98]
agg_S<-CLL[,which(!((1:40)%%8<5&(1:40)%%8>0))+98]
m_hea_US<-as.micro_array(hea_US,c(60,90,210,390),6,name=CLL[,1],gene_ID=CLL[,2])
m_hea_S<- as.micro_array(hea_S,c(60,90,210,390),6,name=CLL[,1],gene_ID=CLL[,2])
m_agg_US<-as.micro_array((agg_US),c(60,90,210,390),5,name=CLL[,1],gene_ID=CLL[,2])
m_agg_S<- as.micro_array((agg_S),c(60,90,210,390),5,name=CLL[,1],gene_ID=CLL[,2])
matplot(t(log(agg_S[which(CLL[,2] %in% "EGR1"),])),type="l",lty=1)
selection1<-geneSelection(list(m_agg_US,m_agg_S),list("condition&time",c(1,2),c(1,1)),-1,alpha=0.1)
selection2<-geneSelection(list(m_agg_US,m_agg_S),list("condition&time",c(1,2),c(1,1)+1),-1,alpha=0.1)
selection3<-geneSelection(list(m_agg_US,m_agg_S),list("condition&time",c(1,2),c(1,1)+2),50,alpha=0.005)
selection4<-geneSelection(list(m_agg_US,m_agg_S),list("condition&time",c(1,2),c(1,1)+3),50,alpha=0.005)
selection<-Patterns::unionMicro(list(selection1,selection2,selection3,selection4))
summary(selection)
length(selection@gene_ID)
require(biomaRt)
affyids=c("202763_at","209310_s_at","207500_at")
ensembl = useMart("ensembl",dataset="hsapiens_gene_ensembl")
infos<-getBM(attributes=c("affy_hg_u133_plus_2","ensembl_gene_id","hgnc_symbol","chromosome_name","start_position","end_position","band"), filters = "affy_hg_u133_plus_2", values = CLL[CLL[,1] %in% selection@name,1] , mart = ensembl,uniqueRows=TRUE, checkFilters = TRUE)
selection@gene_ID <- lapply(selection@name,function(x) {unique(infos[infos$affy_hg_u133_plus_2==x,"hgnc_symbol"])})
selection@group <- rep(NA, length(selection@name))
names(selection@group) <- selection@name
selection@group[selection@name %in% selection4@name] <- 4
selection@group[selection@name %in% selection3@name] <- 3
selection@group[selection@name %in% selection2@name] <- 2
selection@group[selection@name %in% selection1@name] <- 1
plot(selection)
length(selection@group)
network<-inference(selection,fitfun="LASSO2",Finit=CascadeFinit(4,4),Fshape=CascadeFshape(4,4))
str(network)
plotF(network@F, choice='F')
doc <- read.delim("http://bioinfo.life.hust.edu.cn/static/AnimalTFDB3/download/Homo_sapiens_TF",encoding = "UTF-8", header=TRUE)
TF<-as.character(doc[,"Symbol"])
TF<-TF[order(TF)]
infos_selection <- infos[infos$affy_hg_u133_plus_2 %in% selection@name,]
tfs<-which(infos_selection[,"hgnc_symbol"] %in% TF)
matplot(t(selection@microarray[tfs,]),type="l",lty=1)
kk<-kmeans((selection@microarray[tfs,]),10)
matplot(t(kk$centers),type="l",lty=1) |
listToXml <- function(x, ...) {
UseMethod("listToXml")
}
listToXml.default <- function(item, tag) {
if (typeof(item) != "list") {
if (length(item) > 1) {
xml <- XML::xmlNode(tag)
for (name in names(item)) {
XML::xmlAttrs(xml)[[name]] <- item[[name]]
}
return(xml)
} else {
return(XML::xmlNode(tag, item))
}
}
if (identical(names(item), c("text", ".attrs"))) {
xml <- XML::xmlNode(tag, item[["text"]])
} else {
xml <- XML::xmlNode(tag)
for (i in seq_along(item)) {
if (is.null(names(item)) || names(item)[i] != ".attrs") {
xml <- XML::append.xmlNode(xml, listToXml(item[[i]], names(item)[i]))
}
}
}
attrs <- item[[".attrs"]]
for (name in names(attrs)) {
XML::xmlAttrs(xml)[[name]] <- attrs[[name]]
}
return(xml)
} |
create.life <- function(true.lv = NULL, lv.coefs,
lv.control = list(num.lv = 0, type = "independent", lv.covparams = NULL, distmat = NULL),
X = NULL, X.coefs = NULL, traits = NULL, traits.coefs = NULL,
family, row.eff = "none", row.params = NULL, row.ids = NULL,
true.ranef = NULL, ranef.params = NULL, ranef.ids = NULL,
offset = NULL, trial.size = 1, cutoffs = NULL, powerparam = NULL,
manual.dim = NULL, save.params = FALSE) {
n <- max(nrow(true.lv), nrow(X))
p <- max(nrow(lv.coefs), nrow(X.coefs), length(cutoffs))
if(is.null(dim(lv.coefs)))
lv.coefs <- as.matrix(lv.coefs)
if((is.null(n) | is.null(p)) & is.null(manual.dim))
stop("Sorry, but boral cannot determine the number of rows and columns for the response matrix. Please supply manual.dim as vector containing n and p.")
if((is.null(n) | is.null(p)) & !is.null(manual.dim)) {
n <- manual.dim[1]
p <- manual.dim[2]
}
if(!is.null(true.lv)) {
lv.control <- list(num.lv = ncol(true.lv), type = "independent")
}
if(is.null(true.lv)) {
if(lv.control$num.lv > 0) {
if(lv.control$type != "independent" & (is.null(lv.control$distmat) || is.null(lv.control$lv.covparams)))
stop("For structured latent variables are to be generated, please supply both lv.control$distmat and lv.control$lv.covparams")
if(lv.control$type == "exponential")
covmat_chol <- (chol(exp(-lv.control$distmat/lv.control$lv.covparams[1])))
if(lv.control$type == "squared.exponential")
covmat_chol <- (chol(exp(-(lv.control$distmat/lv.control$lv.covparams[1])^2)))
if(lv.control$type == "powered.exponential")
covmat_chol <- (chol(exp(-(lv.control$distmat/lv.control$lv.covparams[1])^lv.control$lv.covparams[2])))
if(lv.control$type == "spherical")
covmat_chol <- (chol((lv.control$distmat < lv.control$lv.covparams[1])*(1 - 1.5*lv.control$distmat/lv.control$lv.covparams[1] + 0.5*(lv.control$distmat/lv.control$lv.covparams[1])^3)))
true.lv <- rmvnorm(n, mean = rep(0,lv.control$num.lv))
if(lv.control$type != "independent")
true.lv <- crossprod(covmat_chol, true.lv)
}
}
num.lv <- lv.control$num.lv
if(!is.null(X)) {
if(is.null(X.coefs) & is.null(traits))
stop("If X is supplied, then either X.coefs or traits and traits.coefs must be supplied.")
}
if(!is.null(X)) {
if(!is.matrix(X))
X <- as.matrix(X)
if(any(apply(X,2,function(x) all(x == 1))))
stop("No intercept column should be included in X.")
}
if((is.null(traits) & !is.null(traits.coefs)) | (!is.null(traits) & is.null(traits.coefs)))
stop("If traits is supplied, then traits.coefs must also be supplied.")
if(!is.null(traits.coefs))
message("Since trait.coefs has been supplied, then X.coefs will be ignored (it will instead be drawn as random effects based off trait.coefs).")
check_traits <- function(traits = traits, y = matrix(NA,nrow=1,ncol=p))
if(length(family) != p & length(family) != 1)
stop("Number of elements in family must be either 1 or equal to
if(length(family) == 1)
family <- rep(family, p)
if(!all(family %in% c("negative.binomial", "ztnegative.binomial", "poisson", "ztpoisson", "binomial", "normal", "lnormal",
"tweedie", "ordinal", "exponential", "beta")))
stop("One of the elements in family is not compatible with current version of boral...sorry!")
check_trial_size(family = family, trial.size = trial.size)
if(length(trial.size) == 1)
trial.size <- rep(trial.size, p)
if(any(family == "ordinal") & is.null(cutoffs))
stop("cutoffs (an ascending vector of intercepts for proportional odds regression) must be supplied if any columns are ordinal data.")
if(any(family == "ordinal"))
index.ord.cols <- which(family == "ordinal")
if(!is.null(cutoffs)) {
num.ord.levels <- length(cutoffs) + 1
cutoffs <- sort(cutoffs)
message("Sorting cutoffs...just in case!")
}
if(any(family == "tweedie") & is.null(powerparam))
stop("Common powerparam must be supplied if any columns are tweedie data (Var = dispersion*mu^powerparam).")
sim_y <- matrix(NA, nrow = n, ncol = p)
check_offset(offset = offset, y = sim_y)
row.coefs <- NULL
if(row.eff != "none") {
if(is.null(row.ids)) {
row.ids <- matrix(1:nrow(sim_y), ncol = 1)
colnames(row.ids) <- "ID1"
}
row.ids <- check_row_ids(row.ids = row.ids, y = sim_y)
check_row_params(row.params = row.params, y = sim_y, row.ids = row.ids)
}
if(row.eff == "fixed")
row.coefs <- row.params
if(row.eff == "random") {
row.coefs <- vector("list", ncol(row.ids))
for(k in 1:ncol(row.ids))
row.coefs[[k]] <- rnorm(length(unique(row.ids[,k])), mean = 0, sd = row.params[[k]])
}
ranef_coefs <- NULL
if(!is.null(ranef.ids) & (is.null(true.ranef) & is.null(ranef.params)))
stop("If you want response-specific random intercepts in the model, then you need supply either true.ranef or ranef.params, in conjunction with ranef.ids")
ranef.ids <- check_ranef_ids(ranef.ids = ranef.ids, y = sim_y)
check_ranef_params(ranef.params = ranef.params, y = sim_y, ranef.ids = ranef.ids)
if(!is.null(true.ranef) & !is.null(ranef.ids)) {
if(is.null(ranef.ids))
stop("ranef.ids needs to be supplied if you want response-specific random intercepts in the model (as determined by true.ranef).")
if(!is.list(true.ranef))
stop("true.ranef must be a list of length ncol(ranef.ids).")
for(k0 in 1:length(true.ranef)) {
if(nrow(true.ranef[[k0]]) != p)
stop("The k-th element in the list true.ranef should be matrix of dimension p by length(unique(ranef.ids[,k])).")
if(ncol(true.ranef[[k0]]) != length(unique(ranef.ids[,k0])))
stop("The k-th element in the list true.ranef should be matrix of dimension p by length(unique(ranef.ids[,k])).")
}
ranef_coefs <- true.ranef
}
if(is.null(true.ranef) & !is.null(ranef.ids)) {
ranef_coefs <- vector("list", ncol(ranef.ids))
for(k in 1:ncol(ranef.ids))
ranef_coefs[[k]] <- t(sapply(1:p, function(j) rnorm(length(unique(ranef.ids[,k])), mean = 0, sd = ranef.params[j,k])))
}
if(num.lv > 5)
warnings("We won't stop you, but please consider if you really want more than five latent variables in the model", immediate. = TRUE)
if(num.lv == 0)
eta <- matrix(0, nrow = n, ncol = p)
if(num.lv > 0)
eta <- tcrossprod(true.lv, lv.coefs[,2:(num.lv + 1)])
if(is.null(traits.coefs))
eta <- eta + tcrossprod(rep(1,n), as.matrix(lv.coefs[,1]))
if(!is.null(X.coefs) & is.null(traits.coefs))
eta <- eta + tcrossprod(as.matrix(X), X.coefs)
if(!is.null(offset))
eta <- eta + offset
if(!is.null(traits.coefs)) {
X.coefs <- matrix(0, p, ncol(X))
lv.coefs[,1] <- rnorm(p, cbind(1,traits)%*%traits.coefs[1,-ncol(traits.coefs)], sd = traits.coefs[1,ncol(traits.coefs)])
if(any(family == "ordinal")) {
if(length(index.ord.cols) == 1)
lv.coefs[index.ord.cols,1] <- 0
}
for(k in 1:ncol(X))
X.coefs[,k] <- rnorm(p, cbind(1,traits)%*%traits.coefs[k+1,-ncol(traits.coefs)], sd = traits.coefs[k+1,ncol(traits.coefs)])
eta <- eta + tcrossprod(cbind(1,as.matrix(X)), cbind(lv.coefs[,1],X.coefs))
}
if(!is.null(row.coefs)) {
for(k in 1:ncol(row.ids))
eta <- eta + row.coefs[[k]][row.ids[,k]]
}
if(!is.null(ranef_coefs)) {
for(k in 1:ncol(ranef.ids))
eta <- eta + t(ranef_coefs[[k]])[ranef.ids[,k],]
}
for(j in 1:p) {
if(family[j] == "binomial")
sim_y[,j] <- rbinom(n, size = trial.size[j], prob = pnorm(eta[,j]))
if(family[j] == "poisson")
sim_y[,j] <- rpois(n, lambda = exp(eta[,j]))
if(family[j] == "ztpoisson")
sim_y[,j] <- rztpois(n, lambda = exp(eta[,j]))
if(family[j] == "negative.binomial")
sim_y[,j] <- rnbinom(n, mu = exp(eta[,j]), size = 1/(lv.coefs[j,ncol(lv.coefs)]+1e-5))
if(family[j] == "negative.binomial")
sim_y[,j] <- rztnbinom(n, mu = exp(eta[,j]), size = 1/(lv.coefs[j,ncol(lv.coefs)]+1e-5))
if(family[j] == "exponential")
sim_y[,j] <- rexp(n, rate = 1/exp(eta[, j]))
if(family[j] == "gamma")
sim_y[,j] <- rgamma(n, shape = exp(eta[, j])*lv.coefs[j,ncol(lv.coefs)], rate = lv.coefs[j, ncol(lv.coefs)])
if(family[j] == "beta")
sim_y[, j] <- rbeta(n, shape1 = lv.coefs[j,ncol(lv.coefs)]*exp(eta[,j])/(1 + exp(eta[,j])), shape2 = lv.coefs[j,ncol(lv.coefs)]*(1-exp(eta[,j])/(1 +exp(eta[,j]))))
if(family[j] == "normal")
sim_y[, j] <- rnorm(n, mean = eta[, j], sd = (lv.coefs[j,ncol(lv.coefs)]))
if(family[j] == "lnormal")
sim_y[, j] <- rlnorm(n, meanlog = eta[, j], sdlog = (lv.coefs[j,ncol(lv.coefs)]))
if(family[j] == "tweedie")
sim_y[, j] <- rTweedie(n, mu = exp(eta[, j]), phi = lv.coefs[j,ncol(lv.coefs)], p = powerparam)
if(family[j] == "ordinal") {
get_probs <- ordinal_conversion(n = n, lv = true.lv, lv.coefs.j = lv.coefs[j, ], num.lv = num.lv, row.coefs = row.coefs, row.ids = row.ids, X = X, X.coefs.j = X.coefs[j,], cutoffs = cutoffs, est = "ignore")
for(i in 1:n)
sim_y[i, j] <- sample(1:num.ord.levels, 1, prob = get_probs[i,])
}
}
if(!save.params)
out <- sim_y
if(save.params)
out <- list(resp = sim_y, true.lv = true.lv, lv.coefs = lv.coefs, lv.covparams = lv.control$lv.covparams, X.coefs = X.coefs, traits.coefs = traits.coefs, row.params = row.params, row.coefs = row.coefs, row.ids = row.ids,
ranef.params = ranef.params, ranef.coefs = ranef_coefs, ranef.ids = ranef.ids,
cutoffs = cutoffs, powerparam = powerparam)
return(out)
}
function() {
object <- spiderfit_nb
nsims <- 1
seed = NULL
new.lvs = FALSE
new.ranefs = TRUE
distmat = NULL
est = "median"
}
simulate.boral <- function(object, nsim = 1, seed = NULL, new.lvs = FALSE, new.ranefs = FALSE, distmat = NULL, est = "median", ...) {
if(class(object) != "boral")
stop("object must be of class boral.")
if(est == "mean") {
true_mod <- list(lv.coefs = object$lv.coefs.mean, lv = object$lv.mean, X.coefs = object$X.coefs.mean,
ranef.coefs = object$ranef.coefs.mean, ranef.params = object$ranef.params.mean, ranef.ids = object$ranef.ids,
traits = object$traits, traits.coefs = object$traits.coefs.mean, cutoffs = object$cutoffs.mean, powerparam = object$powerparam.mean,
lv.covparams = object$lv.covparams.mean)
if(object$row.eff == "fixed")
true_mod$row.params <- lapply(object$row.coefs, function(x) x$mean)
if(object$row.eff == "random")
true_mod$row.params <- lapply(object$row.sigma, function(x) x$mean)
if(!is.null(object$ranef.ids))
true_mod$ranef.params <- object$ranef.sigma.mean
}
if(est == "median") {
true_mod <- list(lv.coefs = object$lv.coefs.median, lv = object$lv.median, X.coefs = object$X.coefs.median, traits = object$traits,
ranef.coefs = object$ranef.coefs.median, ranef.params = object$ranef.params.median, ranef.ids = object$ranef.ids,
traits.coefs = object$traits.coefs.median, cutoffs = object$cutoffs.median, powerparam = object$powerparam.median,
lv.covparams = object$lv.covparams.median)
if(object$row.eff == "fixed")
true_mod$row.params <- lapply(object$row.coefs, function(x) x$median)
if(object$row.eff == "random")
true_mod$row.params <- lapply(object$row.sigma, function(x) x$median)
if(!is.null(object$ranef.ids))
true_mod$ranef.params <- object$ranef.sigma.median
}
if(!is.null(seed))
set.seed(seed)
if(!new.lvs) {
message("Same latent variables used across simulated datasets (if the model involves them).")
if(!new.ranefs) {
message("Same response-specific random intercepts used across simulated datasets (if the model involves them).")
out <- replicate(nsim,
create.life(true.lv = true_mod$lv, lv.coefs = true_mod$lv.coefs, X = object$X, X.coefs = true_mod$X.coefs, traits = object$traits,
traits.coefs = true_mod$traits.coefs, family = object$family,
row.eff = object$row.eff, row.params = true_mod$row.params, row.ids = object$row.ids,
true.ranef = true_mod$ranef.coefs, ranef.ids = object$ranef.ids,
offset = object$offset, trial.size = object$trial.size, cutoffs = true_mod$cutoffs, powerparam = true_mod$powerparam))
}
if(new.ranefs) {
message("New response-specific random intercepts used across simulated datasets (if the model involves them).")
out <- replicate(nsim,
create.life(true.lv = true_mod$lv, lv.coefs = true_mod$lv.coefs, X = object$X, X.coefs = true_mod$X.coefs, traits = object$traits,
traits.coefs = true_mod$traits.coefs, family = object$family,
row.eff = object$row.eff, row.params = true_mod$row.params, row.ids = object$row.ids,
ranef.params = true_mod$ranef.params, ranef.ids = object$ranef.ids,
offset = object$offset, trial.size = object$trial.size, cutoffs = true_mod$cutoffs, powerparam = true_mod$powerparam))
}
}
if(new.lvs) {
message("New latent variables generated for each simulated dataset (if the model involves them).")
lv.control <- object$lv.control
lv.control$lv.covparams <- true_mod$lv.covparams
if(lv.control$type != "independent" & is.null(distmat))
stop("For structured latent variables are to be generated, please supply distmat.")
lv.control$distmat <- distmat
if(!new.ranefs) {
message("Same response-specific random intercepts used across simulated datasets (if the model involves them).")
out <- replicate(nsim,
create.life(true.lv = NULL, lv.coefs = true_mod$lv.coefs, lv.control = lv.control, X = object$X, X.coefs = true_mod$X.coefs,
traits = object$traits, traits.coefs = true_mod$traits.coefs, family = object$family,
row.eff = object$row.eff, row.params = true_mod$row.params, row.ids = object$row.ids,
true.ranef = true_mod$ranef.coefs, ranef.ids = object$ranef.ids,
offset = object$offset, trial.size = object$trial.size, cutoffs = true_mod$cutoffs, powerparam = true_mod$powerparam))
}
if(new.ranefs) {
message("New response-specific random intercepts used across simulated datasets (if the model involves them).")
out <- replicate(nsim,
create.life(true.lv = NULL, lv.coefs = true_mod$lv.coefs, lv.control = lv.control, X = object$X, X.coefs = true_mod$X.coefs,
traits = object$traits, traits.coefs = true_mod$traits.coefs, family = object$family,
row.eff = object$row.eff, row.params = true_mod$row.params, row.ids = object$row.ids,
ranef.params = true_mod$ranef.params, ranef.ids = object$ranef.ids,
offset = object$offset, trial.size = object$trial.size, cutoffs = true_mod$cutoffs, powerparam = true_mod$powerparam))
}
}
set.seed(NULL)
return(out)
} |
compareData <- function(x, y, tolerance = 10^-5) {
tDir <- tempdir()
on.exit(unlink(tDir, recursive = TRUE, force = TRUE))
.rmag <- function(f) {
x <- try(read.magpie(f), silent = TRUE)
if (!is.magpie(x)) return(NULL)
attr(x, "comment") <- NULL
return(x)
}
.getDir <- function(tDir, file, name) {
if (dir.exists(file)) return(file)
d <- file.path(tDir, name)
if (file.exists(d)) unlink(d, recursive = TRUE, force = TRUE)
untar(file, exdir = d)
return(d)
}
xDir <- .getDir(tDir, x, "x")
yDir <- .getDir(tDir, y, "y")
out <- list(ok = 0, skip = 0, diff = 0, miss = 0)
out$files <- list(notInX = setdiff(list.files(yDir), list.files(xDir)),
notInY = setdiff(list.files(xDir), list.files(yDir)),
inBoth = intersect(list.files(xDir), list.files(yDir)))
maxchar <- max(vapply(out$files$inBoth, nchar, integer(1)))
out$miss <- length(out$files$notInA) + length(out$files$notInA)
.reportMissingFiles <- function(x, name) {
if (length(x) > 0) {
message(length(x), " file(s) missing in ", name, ": ", paste(x, collapse = ", "))
}
}
.reportMissingFiles(out$files$notInX, "x")
.reportMissingFiles(out$files$notInY, "y")
.dimEqual <- function(x, y) {
equal <- TRUE
for (i in 1:3) {
if (!setequal(dimnames(x)[[i]], dimnames(y)[[i]])) equal <- FALSE
}
return(equal)
}
i <- 1
for (f in out$files$inBoth) {
counter <- format(paste0("(", i, "/", length(out$files$inBoth), ") "), width = 10)
message(counter, format(f, width = maxchar), " ... ", appendLF = FALSE)
i <- i + 1
x <- .rmag(file.path(xDir, f))
y <- .rmag(file.path(yDir, f))
if (is.null(x) && is.null(y)) {
message("skipped")
out$skip <- out$skip + 1
} else {
if (!identical(dim(x), dim(y))) {
message("!= dim")
out$diff <- out$diff + 1
} else if (!.dimEqual(x, y)) {
message("!= dimnames")
out$diff <- out$diff + 1
} else {
diff <- max(abs(x - y))
if (!identical(x, y) && diff > tolerance) {
message("!= values (max diff = ", round(diff, 8), ")")
out$diff <- out$diff + 1
} else {
message("OK")
out$ok <- out$ok + 1
}
}
}
}
message("[OK ", out$ok, " | DIFF ", out$diff, " | SKIP ", out$skip, " | MISS ", out$miss, "]")
} |
context("updown")
test_that("updown", {
d1 <- matrix(c(100, 101, -0.79, -0.86, -0.17, -0.14, 0.53, 0.46), nrow = 2, ncol = 4)
colnames(d1) <- c("timestamp", "x", "y", "z")
expect_that(updown(x = d1), equals(c(-10.13181226251, -8.16879677542)))
d2 <- matrix(c(100, 101, 102, 103, 104,
-0.79, -0.36, 0.03, -0.16, 0.54,
-0.27, -0.14, -0.25, -0.10, 0.21,
-0.53, -0.46, 0.13, 0.97, 0.43), nrow = 5, ncol = 4)
colnames(d2) <- c("timestamp", "x", "y", "z")
expect_that(updown(x = d2),
equals(c(-15.84488046458, -13.4781485902239, -61.9126506176981, -5.80805273666503, 16.9208127620101)))
rm(list = c("d1", "d2"))
}) |
dataAugmentation <- function(images,
rotation_angles = 0,
flip = FALSE,
flop = FALSE,
brightness_shift_lim = c(90, 110),
saturation_shift_lim = c(95, 105),
hue_shift_lim = c(80, 120),
fraction_random_BSH = 0) {
if(fraction_random_BSH < 0) stop("fraction_random_BSH must be postive")
if(fraction_random_BSH > 1) stop("fraction_random_BSH must be between 0 and 1")
if(any(rotation_angles != 0)){
images_aug_info <- images$info
if(unique(images_aug_info$width) != unique(images_aug_info$height)) message("width and height of images differs, and there are rotation angles that are not 0. This may lead to invalid model input. Make sure that rotating is valid for your input")
}
if(!0 %in% rotation_angles) warning("0 is not in rotation_angles. That will remove the original images from the augmented image set")
if(any(rotation_angles %% 90 != 0)) warning("Some rotation_angles are not multiples of 90. These rotated images will have different dimensions than the originals and might not be valid model input. ")
images_aug_list <- lapply(rotation_angles, FUN = function(degrees) magick::image_rotate(images$img, degrees = degrees))
images_aug_info <- lapply(rotation_angles, FUN = function(x) data.frame(cbind(images$info, rotation = x)))
images_aug_info <- do.call(rbind, images_aug_info)
if(isTRUE(flip)) {
images_aug_list <- c(images_aug_list, magick::image_flip(images$img))
images_aug_info <- rbind(cbind(images_aug_info, flip = FALSE),
cbind(images$info, rotation = 0, flip = TRUE))
} else {
images_aug_info <- cbind(images_aug_info, flip = FALSE)
}
if(isTRUE(flop)){
images_aug_list <- c(images_aug_list, magick::image_flop(images$img))
images_aug_info <- rbind(cbind(images_aug_info, flop = FALSE),
cbind(images$info, rotation = 0, flip = FALSE, flop = TRUE))
} else {
images_aug_info <- cbind(images_aug_info, flop = FALSE)
}
images_aug <- do.call("c", images_aug_list)
attr(images_aug, "info") <- images_aug_info
if(fraction_random_BSH != 0) {
out2 <- randomBSH(img = images_aug,
fraction_random_BSH = fraction_random_BSH,
brightness_shift_lim = brightness_shift_lim,
saturation_shift_lim = saturation_shift_lim,
hue_shift_lim = hue_shift_lim)
} else {
out2 <- list(info = images_aug_info,
img = images_aug)
}
return(out2)
}
randomBSH <- function(img,
fraction_random_BSH,
brightness_shift_lim,
saturation_shift_lim,
hue_shift_lim)
{
modify_these <- sort(sample(1:length(img), size = round(fraction_random_BSH * length(img))))
df_info <- attr(img, "info")
df_info$brightness_shift <- 100
df_info$saturation_shift <- 100
df_info$hue_shift <- 100
for(i in modify_these){
brightness_shift <- runif(1,
brightness_shift_lim[1],
brightness_shift_lim[2])
saturation_shift <- runif(1,
saturation_shift_lim[1],
saturation_shift_lim[2])
hue_shift <- runif(1,
hue_shift_lim[1],
hue_shift_lim[2])
img_modified <- magick::image_modulate(img[i],
brightness = brightness_shift,
saturation = saturation_shift,
hue = hue_shift)
img[i] <- img_modified
df_info[i,]$brightness_shift <- brightness_shift
df_info[i,]$saturation_shift <- saturation_shift
df_info[i,]$hue_shift <- hue_shift
}
return(list(info = df_info,
img = img))
} |
formals <- function(fun = sys.function(sys.parent()), envir = parent.frame()) {
if(is.character(fun))
fun <- get(fun, mode = "function", envir = envir)
.Internal(formals(fun))
}
body <- function(fun = sys.function(sys.parent())) {
if(is.character(fun))
fun <- get(fun, mode = "function", envir = parent.frame())
.Internal(body(fun))
}
alist <- function (...) as.list(sys.call())[-1L]
`body<-` <- function (fun, envir = environment(fun), value) {
if(!is.function(fun)) warning("'fun' is not a function")
if (is.expression(value)) {
if (length(value) > 1L)
warning("using the first element of 'value' of type \"expression\"")
value <- value[[1L]]
}
as.function(c(as.list(formals(fun)), list(value)), envir)
}
`formals<-` <- function (fun, envir = environment(fun), value)
{
if(!is.function(fun)) warning("'fun' is not a function")
bd <- body(fun)
as.function(c(value,
if(is.null(bd) || is.list(bd)) list(bd) else bd),
envir)
} |
time_apply <- function(data, target, period, .fun, ...,
start_date = NULL, side = "end", clean = FALSE, message = TRUE) {
UseMethod("time_apply", data)
}
time_apply.default <- function(data, target, period, .fun, ...,
start_date = NULL, side = "end", clean = FALSE, message = TRUE) {
stop("Object is not of class `tbl_df` or `tbl_time`.", call. = FALSE)
}
time_apply.data.frame <- function(data, target, period, .fun, ...,
start_date = NULL, side = "end", clean = FALSE, message = TRUE) {
if (missing(target)) stop('Error in time_apply(): argument "target" is missing, with no default', call. = FALSE)
if (missing(period)) stop('Error in time_apply(): argument "period" is missing, with no default', call. = FALSE)
if (missing(.fun)) stop('Error in time_apply(): argument ".fun" is missing, with no default', call. = FALSE)
data <- prep_tbl_time(data, message = F)
date_col_expr <- tibbletime::get_index_quo(data)
date_col_name <- dplyr::quo_name(date_col_expr)
target_expr <- dplyr::enquo(target)
if (is.character(period)) {
ret <- data %>%
tibbletime::collapse_by(period = period, clean = clean, start_date = start_date, side = side) %>%
dplyr::group_by(!! tibbletime::get_index_quo(.)) %>%
dplyr::mutate(time_apply = .fun(!! target_expr, ...)) %>%
dplyr::ungroup() %>%
dplyr::mutate(!! date_col_name := data %>% dplyr::pull(!! date_col_expr))
} else {
ret <- data %>%
dplyr::mutate(
.period_groups = c(0, (1:(nrow(.) - 1) %/% period))
) %>%
dplyr::group_by(.period_groups) %>%
dplyr::mutate(
time_apply = .fun(!! target_expr, ...)
) %>%
dplyr::ungroup() %>%
dplyr::select(-.period_groups)
}
return(ret)
}
time_apply.grouped_df <- function(data, target, period, .fun, ...,
start_date = NULL, side = "end", clean = FALSE, message = TRUE) {
if (missing(target)) stop('Error in time_apply(): argument "target" is missing, with no default', call. = FALSE)
if (missing(period)) stop('Error in time_apply(): argument "period" is missing, with no default', call. = FALSE)
if (missing(.fun)) stop('Error in time_apply(): argument ".fun" is missing, with no default', call. = FALSE)
data <- prep_tbl_time(data, message = F)
target_expr <- dplyr::enquo(target)
ret <- data %>%
grouped_mapper(
.f = time_apply,
target = !! target_expr,
period = period,
.fun = .fun,
... = ...,
start_date = start_date,
side = side,
clean = clean,
message = message)
return(ret)
} |
partd <- function(x) {
d <- attr(x, "d")
if (!is.null(d)) d else 1
}
add_area <- function(df) {
df$area <- (df$r - df$l) * (df$t - df$b)
df
}
squeeze <- function(pieces, bounds = bound()) {
scale_x <- function(x) x * (bounds$r - bounds$l) + bounds$l
scale_y <- function(y) y * (bounds$t - bounds$b) + bounds$b
pieces$l <- scale_x(pieces$l)
pieces$r <- scale_x(pieces$r)
pieces$b <- scale_y(pieces$b)
pieces$t <- scale_y(pieces$t)
pieces
}
bound <- function(t = 1, r = 1, b = 0, l = 0) {
data.frame(t = t, r = r, b = b, l = l)
}
set_offset <- function(dividers, offset = 0) {
if (length(offset) < length(dividers)) {
offset <- rep(offset, length = length(dividers))
}
lapply(seq_along(dividers), function(i) {
div <- dividers[[i]]
if (is.character(div)) div <- match.fun(div)
f <- function(...) div(..., offset = offset[[i]])
mostattributes(f) <- attributes(div)
f
})
} |
context("unit test for {name} endpoint")
testthat::setup({{
}})
httptest::with_mock_api({{
test_that("healthcheck returns a success", {{
url <- generate_url(config$host, config$port, "utility/healthcheck")
expect_status_200(GET(url))
}})
}})
httptest::with_mock_api({{
describe("class", {{
it("POST with character returns a character", {{
input <- "Hello World!"
x <- jsonlite::toJSON(input, auto_unbox = TRUE)
url <- generate_url(config$host, config$port, "utility/class")
expect_status_200(response <- POST(url, body = x))
output <-
extract_content_text(response) %>%
jsonlite::fromJSON(flatten = TRUE) %>%
stringr::str_remove_all('\"')
expect_match(output, "character")
}})
it("POST with data.frame returns a data.frame", {{
input <- mtcars
x <- jsonlite::toJSON(input, auto_unbox = TRUE)
url <- generate_url(config$host, config$port, "utility/class")
expect_status_200(response <- POST(url, body = x))
output <-
extract_content_text(response) %>%
jsonlite::fromJSON(flatten = TRUE) %>%
stringr::str_remove_all('\"')
expect_match(output, "data.frame")
}})
}})
}})
testthat::teardown({{httptest::stop_capturing()}}) |
manylm.influence.measures <-
function (model) {
is.influential <- function(infmat, n) {
k <- ncol(infmat) - 4
if (n <= k)
stop("too few cases, n < k")
absmat <- abs(infmat)
result <- cbind(absmat[, 1:k] > 1, absmat[, k + 1] >
3 * sqrt(k/(n - k)), abs(1 - infmat[, k + 2]) > (3 *
k)/(n - k), pf(infmat[, k + 3], k, n - k) > 0.5,
infmat[, k + 4] > (3 * k)/n)
dimnames(result) <- dimnames(infmat)
result
}
infl <- manylm.influence(model)
p <- model$rank
e <- weighted.residuals(model)
n.vars <- NCOL(e)
n <- nrow(e)
s <- sqrt(colSums(e^2, na.rm = TRUE)/df.residual(model))
s <- matrix( rep(s, each=n ) , nrow=n, ncol=n.vars )
xxi <- chol2inv(model$qr$qr, model$qr$rank)
si <- infl$sigma
h <- infl$hat
vn <- variable.names(model)
vn[vn == "(Intercept)"] <- "1_"
dffits <- e * sqrt(h)/(si * (1 - h))
cov.ratio <- (si/s)^(2 * p)/(1 - h)
cooks.d <- ((e/(s * (1 - h)))^2 * h)/p
coefs <- infl$coefficients
sigma <- infl$sigma
dfbs <- infmat <- is.inf <- list()
for(i in 1:n.vars) {
dfbs[[i]] <- coefs[[i]]/outer(sigma[,i], sqrt(diag(xxi)))
colnames(dfbs[[i]]) <- paste("dfb", abbreviate(vn), sep = ".")
infmati <- cbind(dfbs[[i]], dffit = dffits[,i], cov.r = cov.ratio[,i],
cook.d = cooks.d[,i], hat = h)
infmati[is.infinite(infmati)] <- NaN
infmat[[i]] <- infmati
is.inf[[i]] <- is.influential(infmati, sum(h > 0))
}
names(infmat) <- names(is.inf) <- colnames(e)
ans <- list(infmat = infmat, is.inf = is.inf, call = model$call)
class(ans) <- "infl.mvabund"
ans
} |
hexagon_maze <- function(depth,unit_len,clockwise=TRUE,method=c('two_trapezoids','six_triangles','three_parallelograms','random'),
start_from=c('midpoint','corner'),
boustro=c(1,1),
draw_boundary=FALSE,num_boundary_holes=2,boundary_lines=TRUE,
boundary_holes=NULL,boundary_hole_color=NULL,boundary_hole_locations=NULL,
boundary_hole_arrows=FALSE,
end_side=1) {
method <- match.arg(method)
start_from <- match.arg(start_from)
num_segs <- round(2^depth)
multiplier <- ifelse(clockwise,1,-1)
if (start_from=='corner') { turtle_forward(distance=unit_len * num_segs/2) }
if (depth > 1) {
turtle_up()
my_method <- switch(method,
random={
sample(c('two_trapezoids','six_triangles','three_parallelograms'),1)
},
method)
switch(my_method,
two_trapezoids={
magic_ratio <- sqrt(3) / 4
.turn_right(multiplier * 90)
turtle_forward(2*num_segs * unit_len * magic_ratio)
.turn_left(multiplier * 90)
iso_trapezoid_maze(depth=depth,unit_len=unit_len,clockwise=clockwise,
start_from='midpoint',
boustro=rev(boustro),
draw_boundary=TRUE,boundary_lines=c(1),boundary_holes=c(1))
iso_trapezoid_maze(depth=depth,unit_len=unit_len,clockwise=!clockwise,draw_boundary=FALSE)
.turn_left(multiplier * 90)
turtle_forward(2*num_segs * unit_len * magic_ratio)
.turn_right(multiplier * 90)
},
six_triangles={
turtle_backward(distance=unit_len * num_segs/2)
bholes <- sample.int(n=6,size=5)
for (iii in c(1:6)) {
eq_triangle_maze(depth=depth,unit_len=unit_len,clockwise=clockwise,method='random',draw_boundary=TRUE,
start_from='corner',
boustro=rev(boustro),
boundary_lines=2,boundary_holes=iii %in% bholes)
turtle_forward(distance=unit_len * num_segs)
.turn_right(multiplier*60)
}
turtle_forward(distance=unit_len * num_segs/2)
},
three_parallelograms={
bholes <- sample.int(n=3,size=2)
for (iii in 1:3) {
parallelogram_maze(unit_len=unit_len,height=num_segs,width=num_segs,angle=60,clockwise=clockwise,
width_boustro=rev(boustro),height_boustro=rev(boustro),
draw_boundary=TRUE,boundary_lines=3,num_boundary_holes=0,boundary_holes=iii %in% bholes)
turtle_forward(num_segs * unit_len / 2)
.turn_right(multiplier * 60)
turtle_forward(num_segs * unit_len)
.turn_right(multiplier * 60)
turtle_forward(num_segs * unit_len / 2)
}
})
}
if (draw_boundary) {
turtle_backward(distance=unit_len * num_segs/2)
if (is.null(boundary_hole_locations)) {
boundary_hole_locations <- .rboustro(6,boustro=boustro,nsegs=num_segs)
}
.do_boundary(unit_len,lengths=rep(num_segs,6),angles=multiplier * 60,
num_boundary_holes=num_boundary_holes,boundary_lines=boundary_lines,
boundary_holes=boundary_holes,boundary_hole_color=boundary_hole_color,
boundary_hole_locations=boundary_hole_locations,boundary_hole_arrows=boundary_hole_arrows)
turtle_forward(distance=unit_len * num_segs/2)
}
if ((end_side != 1) && (!is.null(end_side))) {
for (iii in 1:(end_side-1)) {
turtle_forward(distance=unit_len * num_segs/2)
.turn_right(multiplier * 60)
turtle_forward(distance=unit_len * num_segs/2)
}
}
if (start_from=='corner') { turtle_backward(distance=unit_len * num_segs/2) }
} |
library(purrr)
data <- tbl_df(data)
data %>% count(group)
xuniques <- sort(unique(data$x))
maxx <- max(data$x)
length(xuniques)
dataadd <- map_df(unique(data$group), function(g){
datag <- filter(data, group == g)
xgrup <- datag$x
xlack <- setdiff(xuniques, xgrup)
xgrup <- unique(c(0L, xgrup, maxx))
map_df(2:length(xgrup), function(place) {
xlp <- xlack[xgrup[place- 1] < xlack & xlack < xgrup[place]]
if(length(xlp) == 0)
return(NULL)
daux <- datag %>% filter(x == xgrup[place- 1]) %>% select(-x)
if(nrow(daux) > 0) {
return(cbind(data_frame(x = xlp), daux))
} else {
NULL
}
})
})
data <- bind_rows(data, dataadd)
distinct(bind_rows(data, dataadd)) |
library(dplyr)
library(tidyr)
test_that("combine_chains works on a simple example", {
data(line, package = "coda")
ref = line %>%
tidy_draws() %>%
mutate(
.draw = as.integer(.iteration + (.chain - 1) * max(.iteration))
)
line %>%
tidy_draws() %>%
combine_chains() %>%
expect_equal(ref)
})
test_that("combine_chains works with a named output column", {
data(line, package = "coda")
ref = line %>%
tidy_draws() %>%
mutate(d = as.integer(.iteration + (.chain - 1) * max(.iteration)))
line %>%
tidy_draws() %>%
combine_chains(into = "d") %>%
expect_equal(ref)
}) |
convert2Records <- function( infor, records )
{
d.names <- names( records )
n.vars <- c( waGetPara( "records.index" ), waGetPara( "records.vars" ) )
if( !identical( n.vars %in% d.names, rep( TRUE, length( n.vars ) ) ) )
{
stop( paste( "Records columns needed: ", paste( n.vars, collapse = ", ") ) )
}
i.vars <- c( "Name", "Number", "Latitude", "Longitude" )
if( !identical( i.vars %in% names( infor ), rep( TRUE, length( i.vars ) ) ) )
{
stop( paste( "Infor columns needed: ", paste( i.vars, collapse = ", ") ) )
}
a <- NULL
for ( i in seq ( along = n.vars ) )
{
a[[n.vars[i]]] <- records[[n.vars[i]]]
}
extra <- NULL
extra$avgt <- ( a$maxt + a$mint ) / 2
extra$vpd <- vpd.apsim( a$maxt, a$mint )
record <- methods::new( "WeaAnaSite", name = infor$Name,
number = infor$Number,
latitude = as.numeric( infor$Latitude ),
longitude = as.numeric( infor$Longitude ),
year = a$year,
day = a$day,
radn = a$radn,
maxt = a$maxt,
mint = a$mint,
rain = a$rain,
evap = a$evap,
vp = a$vp,
code = as.character( a$code ),
extra = extra,
file.path = as.character( NA ),
data.format = as.character( NA ),
load.later = FALSE )
result <- c(NULL, newPointer( methods::new( "result",
name = as.character( NULL ),
type = as.character( NULL ) ) ) )
records <- methods::new( "WeaAna",
num = 1,
records = c( NULL, newPointer( record ) ),
result = result )
return( records )
} |
context("Weight Calculations")
test_that("weights calculations equal", {
XXX <- cbind(rep(1, 10), seq(0, 1, length = 10))
AAA <- rep(c(0, 1), 5)
fff <- c(.1, .1)
aaa <- c(.1, .5, .9)
GGG <- sort(rep(1:5, 2))
mmm2 <- matrix(c(0.616547184192009, 1.712631, 0.616547184192009,
0.614796738538913, 1.707769, 0.614796738538913,
0.613057773666495, 1.702938, 0.613057773666495,
0.611330209096351, 1.698139, 0.611330209096351,
0.609613965009724, 1.693372, 0.609613965009724), byrow = T, ncol = 3,
dimnames = list(unique(GGG), aaa))
mmm3 <- array(c(-0.07902959, -0.01322103, 0.01576307,
-0.07851113, -0.03058825, 0.01598160,
-0.07799631, -0.04772718, 0.01619665,
-0.07748510, -0.06464023, 0.01640826,
-0.07697746, -0.08132978, 0.01661645,
-0.2195266, -0.03672508, 0.04378631,
-0.2180865, -0.08496735, 0.04439334,
-0.2166564, -0.13257550, 0.04499070,
-0.2152364, -0.17955620, 0.04557849,
-0.2138263, -0.22591605, 0.04615682,
-0.07902959, -0.01322103, 0.01576307,
-0.07851113, -0.03058825, 0.01598160,
-0.07799631, -0.04772718, 0.01619665,
-0.07748510, -0.06464023, 0.01640826,
-0.07697746, -0.08132978, 0.01661645),
dim = c(3, 5, 3),
dimnames = list(1:3, unique(GGG), aaa))
mmm3 <- aperm(mmm3, c(2,1,3))
expect_equal(wght_calc(integrand = logit_integrand,
allocation = .9,
X = XXX[1:2, ], A = AAA[1:2],
parameters = fff,
randomization = .5), 0.462462731646267)
expect_equal(wght_calc(integrand = logit_integrand,
allocation = .9,
X = XXX[1:2, ], A = AAA[1:2],
parameters = c(fff, 1),
randomization = .5), 0.492904177726425)
expect_equal(wght_calc(integrand = logit_integrand,
allocation = .9,
X = XXX[1:2, ], A = AAA[1:2],
parameters = c(fff, 1),
randomization = .5), 0.492904177726425)
expect_equal(wght_deriv_calc(integrand = logit_integrand,
allocation = .3,
X = XXX[1:2, ], A = AAA[1:2],
parameters = c(1, .5, 1),
randomization = .5), c(-0.1277388445291851,
-0.0280714662250347,
0.0947948595448454))
expect_equal(wght_matrix(integrand = logit_integrand,
allocations = aaa,
X = XXX, A = AAA, G = GGG,
parameters = c(fff, 5),
randomization = .5,
runSilent = TRUE), mmm2,
tolerance = 1e-6)
expect_equal(wght_deriv_array(integrand = logit_integrand,
allocations = aaa,
X = XXX, A = AAA, G = GGG,
parameters = c(fff, 5),
randomization = .5,
runSilent = TRUE), mmm3,
tolerance = 1e-6, check.attributes = FALSE)
}) |
QRWSimul <-
function(VecX, tau, times, subj, X, y, d, kn, degree, lambda, gam){
dim = length(subj)
X = matrix(X, nrow=dim)
H = length(tau)
px = ncol(X)
n = length(unique(subj))
if(px != length(VecX))
stop("the length of VecX and the number of covariate(s) must match")
XX = as.matrix(X)
if(all(X[,1]==1)) VecX[1]=1 else VecX[1] = (VecX[1] - min(X[,1]))/(max(X[,1])-min(X[,1]))
if(all(X[,1]==1)) X[,1]=X[,1] else X[,1] = (X[,1] - min(X[,1]))/(max(X[,1])-min(X[,1]))
for(k in 2:px){
VecX[k] = (VecX[k] - min(X[,k]))/(max(X[,k])-min(X[,k]))
X[,k] = (X[,k] - min(X[,k]))/(max(X[,k])-min(X[,k]))
}
hatVt = Vt(times, subj, X, y, d, tau, kn, degree, lambda, gam)
hat_Vt = hatVt$hat_Vt
r50 = hatVt$r50
Wtau = Wtau(times, subj, X=XX, y, d, tau, kn, degree, lambda, gam, hat_Vt, r50)$Wtau
lambda_all = lambdak_wsimul(times, subj, X, y, d, tau, kn, degree, lambda, gam, hat_Vt, Wtau=Wtau)
lambdasicr = lambda_all$lambdasicr
lambdasic = lambda_all$lambdasic
wsimul = ncqr_wsimul(times, subj, y, X, tau, kn, degree, lambda=lambdasicr, lambcross=lambdasic, hat_Vt, Wtau=Wtau, d)
W = wsimul$W
alpha = wsimul$alpha
hat_bt = wsimul$hat_bt
Hpx = rep(seq(1,px), H)
Xbeta = matrix(NA, dim, H*px)
for(h in 1:(H*px))
{
Xbeta[,h]=hat_bt[,h]*VecX[Hpx[h]]
}
qhat_h = matrix(NA, dim, H)
for(h in 1:H){
qhat_h[,h] = rowSums(Xbeta[,((h-1)*px+1):(px*h)])
}
HpxB = rep(px,H)
cum_HpxB = cumsum(HpxB)
cum_HpxA = c(1, c(cum_HpxB[seq(1:(H-1))]+1))
hat_bt0_ori = hat_bt[,cum_HpxA]
hat_btk_ori = hat_bt[,seq(2,px)]
hat_btk = matrix(NA, dim, (px-1))
hat_btk0 = matrix(0, dim, (px-1))
for(k in 1:(px-1)){
hat_btk[,k] = hat_btk_ori[,k]/(max(XX[,(k+1)])-min(XX[,(k+1)]))
hat_btk0[,k] = hat_btk_ori[,k]*min(XX[,(k+1)])/(max(XX[,(k+1)])-min(XX[,(k+1)]))
}
hat_bt0 = hat_bt0_ori - rowSums(hat_btk0)
out = list(W=W, alpha=alpha, hat_bt0=hat_bt0, hat_btk=hat_btk, qhat_h = qhat_h, Wtau=Wtau, hat_Vt = hat_Vt)
return(out)
} |
load("FH/milk.RData")
test_that("Does the fh function in emdi return the same variance, EBLUP and MSE
estimates as the function mseFH of package sae?",{
milk$var <- milk$SD^2
fh_reml <- fh(fixed = yi ~ as.factor(MajorArea), vardir = "var",
combined_data = milk, domains = "SmallArea",
method = "reml", interval = c(0, 1000), MSE = TRUE,
B = c(0,0))
fh_reml_sae <- read.csv("FH/fh_reml_sae.csv", sep = ",",
stringsAsFactors = TRUE)
expect_equal(fh_reml$model$variance, fh_reml_sae$variance[1], tolerance = 0.0001)
expect_equal(fh_reml$ind$FH, as.vector(fh_reml_sae$EBLUP), tolerance = 0.0001)
expect_equal(fh_reml$MSE$FH, fh_reml_sae$MSE, tolerance = 0.00001)
fh_ml <- fh(fixed = yi ~ as.factor(MajorArea), vardir = "var",
combined_data = milk, domains = "SmallArea",
method = "ml", interval = c(0, 1000), MSE = TRUE, B = c(0,0))
fh_ml_sae <- read.csv("FH/fh_ml_sae.csv", sep = ",",
stringsAsFactors = TRUE)
expect_equal(fh_ml$model$variance, fh_ml_sae$variance[1], tolerance = 0.0001)
expect_equal(fh_ml$ind$FH, fh_ml_sae$EBLUP, tolerance = 0.0001)
expect_equal(fh_ml$MSE$FH, fh_ml_sae$MSE, tolerance = 0.0001)
})
load("FH/grapes.RData")
load("FH/grapesprox.RData")
test_that("Does the fh function in emdi return the same variance, correlation
parameter, EBLUP and MSE estimates as the function mseSFH of package
sae?",{
grapes$Domain <- c(1:15)
fh_spatial_reml_analytical <- fh(fixed = grapehect ~ area + workdays - 1,
vardir = "var", tol = 0.0001, maxit = 100,
combined_data = grapes, domains = "Domain",
method = "reml", correlation = "spatial",
corMatrix = as.matrix(grapesprox), MSE = TRUE,
mse_type = "analytical")
fh_spatial_reml_analytical_sae <- read.csv("FH/fh_spatial_reml_analytical_sae.csv",
sep = ",",
stringsAsFactors = TRUE)
expect_equal(fh_spatial_reml_analytical$model$variance[1,2],
fh_spatial_reml_analytical_sae$variance[1])
expect_equal(fh_spatial_reml_analytical$model$variance[1,1],
fh_spatial_reml_analytical_sae$correlation[1])
expect_equal(fh_spatial_reml_analytical$ind$FH,
as.vector(fh_spatial_reml_analytical_sae$EBLUP))
expect_equal(fh_spatial_reml_analytical$MSE$FH,
fh_spatial_reml_analytical_sae$MSE)
fh_spatial_ml_analytical <- fh(fixed = grapehect ~ area + workdays - 1,
vardir = "var", tol = 0.0001, maxit = 100,
combined_data = grapes, domains = "Domain",
method = "ml", correlation = "spatial",
corMatrix = as.matrix(grapesprox), MSE = TRUE,
mse_type = "analytical")
fh_spatial_ml_analytical_sae <- read.csv("FH/fh_spatial_ml_analytical_sae.csv",
sep = ",",
stringsAsFactors = TRUE)
expect_equal(fh_spatial_ml_analytical$model$variance[1,2],
fh_spatial_ml_analytical_sae$variance[1])
expect_equal(fh_spatial_ml_analytical$model$variance[1,1],
fh_spatial_ml_analytical_sae$correlation[1])
expect_equal(fh_spatial_ml_analytical$ind$FH,
as.vector(fh_spatial_ml_analytical_sae$EBLUP))
expect_equal(fh_spatial_ml_analytical$MSE$FH,
fh_spatial_ml_analytical_sae$MSE)
})
test_that("Does the fh function in emdi return the same variance, correlation
parameter, EBLUP and MSE estimates as the function npbmseSFH of package
sae?",{
suppressWarnings(RNGversion("3.6.3"))
grapes$Domain <- c(1:15)
fh_spatial_reml_npb <- fh(fixed = grapehect ~ area + workdays - 1,
vardir = "var", tol = 0.0001, maxit = 100,
combined_data = grapes, domains = "Domain",
method = "reml", correlation = "spatial",
corMatrix = as.matrix(grapesprox), MSE = TRUE,
mse_type = "spatialnonparboot", B = 3, seed = 456)
fh_spatial_reml_npb_bc <- fh(fixed = grapehect ~ area + workdays - 1,
vardir = "var", tol = 0.0001, maxit = 100,
combined_data = grapes, domains = "Domain",
method = "reml", correlation = "spatial",
corMatrix = as.matrix(grapesprox), MSE = TRUE,
mse_type = "spatialnonparbootbc", B = 3,
seed = 456)
fh_spatial_reml_npb_sae <- read.csv("FH/fh_spatial_reml_npb_sae.csv",
sep = ",",
stringsAsFactors = TRUE)
expect_equal(fh_spatial_reml_npb$model$variance[1,2],
fh_spatial_reml_npb_sae$variance[1])
expect_equal(fh_spatial_reml_npb$model$variance[1,1],
fh_spatial_reml_npb_sae$correlation[1])
expect_equal(fh_spatial_reml_npb$ind$FH,
as.vector(fh_spatial_reml_npb_sae$EBLUP))
expect_equal(fh_spatial_reml_npb$MSE$FH,
fh_spatial_reml_npb_sae$MSE, tolerance = 0.000001)
expect_equal(fh_spatial_reml_npb_bc$MSE$FH,
fh_spatial_reml_npb_sae$MSE.BC, tolerance = 0.000001)
})
test_that("Does the fh function in emdi return the same variance, correlation
parameter, EBLUP and MSE estimates as the function pbmseSFH of package
sae?",{
grapes$Domain <- c(1:15)
fh_spatial_reml_pb <- fh(fixed = grapehect ~ area + workdays - 1,
vardir = "var", tol = 0.0001, maxit = 100,
combined_data = grapes, domains = "Domain",
method = "reml", correlation = "spatial",
corMatrix = as.matrix(grapesprox), MSE = TRUE,
mse_type = "spatialparboot", B = 3, seed = 567)
fh_spatial_reml_pb_bc <- fh(fixed = grapehect ~ area + workdays - 1,
vardir = "var", tol = 0.0001, maxit = 100,
combined_data = grapes, domains = "Domain",
method = "reml", correlation = "spatial",
corMatrix = as.matrix(grapesprox), MSE = TRUE,
mse_type = "spatialparbootbc", B = 3, seed = 567)
fh_spatial_reml_pb_sae <- read.csv("FH/fh_spatial_reml_pb_sae.csv", sep = ",",
stringsAsFactors = TRUE)
expect_equal(fh_spatial_reml_pb$model$variance[1,2],
fh_spatial_reml_pb_sae$variance[1])
expect_equal(fh_spatial_reml_pb$model$variance[1,1],
fh_spatial_reml_pb_sae$correlation[1])
expect_equal(fh_spatial_reml_pb$ind$FH,
as.vector(fh_spatial_reml_pb_sae$EBLUP))
expect_equal(fh_spatial_reml_pb$MSE$FH,
fh_spatial_reml_pb_sae$MSE)
expect_equal(fh_spatial_reml_pb_bc$MSE$FH,
fh_spatial_reml_pb_sae$MSE.BC)
grapes$Domain <- c(1:15)
fh_spatial_ml_pb <- fh(fixed = grapehect ~ area + workdays - 1,
vardir = "var", tol = 0.0001, maxit = 100,
combined_data = grapes, domains = "Domain",
method = "ml", correlation = "spatial",
corMatrix = as.matrix(grapesprox), MSE = TRUE,
mse_type = "spatialparboot", B = 3, seed = 123)
fh_spatial_ml_pb_bc <- fh(fixed = grapehect ~ area + workdays - 1,
vardir = "var", tol = 0.0001, maxit = 100,
combined_data = grapes, domains = "Domain",
method = "ml", correlation = "spatial",
corMatrix = as.matrix(grapesprox), MSE = TRUE,
mse_type = "spatialparbootbc", B = 3, seed = 123)
fh_spatial_ml_pb_sae <- read.csv("FH/fh_spatial_ml_pb_sae.csv", sep = ",",
stringsAsFactors = TRUE)
expect_equal(fh_spatial_ml_pb$model$variance[1,2],
fh_spatial_ml_pb_sae$variance[1])
expect_equal(fh_spatial_ml_pb$model$variance[1,1],
fh_spatial_ml_pb_sae$correlation[1])
expect_equal(fh_spatial_ml_pb$ind$FH,
fh_spatial_ml_pb_sae$EBLUP)
expect_equal(fh_spatial_ml_pb$MSE$FH,
fh_spatial_ml_pb_sae$MSE)
expect_equal(fh_spatial_ml_pb_bc$MSE$FH,
fh_spatial_ml_pb_sae$MSE.BC)
})
test_that("Does the fh function in emdi return the same variance, EBLUP and MSE
estimates as the functions rfh and mse (pseudo) of package saeRobust?",{
select <- as.logical(Sys.getenv("_R_TEST_ROBUST_TRUEFALSE_"))
if (is.na(select)) {
select <- FALSE
}
if (select) {
grapes$Domain <- c(1:15)
fh_robust <- fh(fixed = grapehect ~ area + workdays - 1, vardir = "var",
combined_data = grapes, domains = "Domain",
method = "reblup", tol = 1e-06, maxit = 100, k = 1.345,
MSE = TRUE, mse_type = "pseudo")
fh_robust_saeRobust <- read.csv("FH/fh_robust_saeRobust.csv", sep = ",",
stringsAsFactors = TRUE)
expect_equal(unname(fh_robust$model$variance),
fh_robust_saeRobust$variance[1])
expect_equal(fh_robust$ind$FH, fh_robust_saeRobust$EBLUP)
expect_equal(fh_robust$MSE$FH, fh_robust_saeRobust$MSE)
grapes$Domain <- c(1:15)
fh_robustbc <- fh(fixed = grapehect ~ area + workdays - 1, vardir = "var",
combined_data = grapes, domains = "Domain",
method = "reblupbc", tol = 1e-06, maxit = 100,
k = 1.345, mult_constant = 2, MSE = TRUE,
mse_type = "pseudo")
fh_robustbc_saeRobust <- read.csv("FH/fh_robustbc_saeRobust.csv", sep = ",",
stringsAsFactors = TRUE)
expect_equal(unname(fh_robustbc$model$variance),
fh_robust_saeRobust$variance[1])
expect_equal(fh_robustbc$ind$FH, fh_robustbc_saeRobust$EBLUP)
expect_equal(fh_robustbc$MSE$FH, fh_robustbc_saeRobust$MSE)
} else {
expect_equal(TRUE, TRUE)
}
})
test_that("Does the fh function in emdi return the same variance, EBLUP and MSE
estimates as the functions rfh and mse (boot) of package saeRobust?",{
select <- as.logical(Sys.getenv("_R_TEST_ROBUST_TRUEFALSE_"))
if (is.na(select)) {
select <- FALSE
}
if (select) {
grapes$Domain <- c(1:15)
fh_robust_boot <- fh(fixed = grapehect ~ area + workdays - 1, vardir = "var",
combined_data = grapes, domains = "Domain",
method = "reblup", tol = 1e-06, maxit = 100, k = 1.345,
MSE = TRUE, mse_type = "boot", B = 3, seed = 123)
fh_robust_boot_saeRobust <- read.csv("FH/fh_robust_boot_saeRobust.csv",
sep = ",",
stringsAsFactors = TRUE)
expect_equal(unname(fh_robust_boot$model$variance),
fh_robust_boot_saeRobust$variance[1])
expect_equal(fh_robust_boot$ind$FH, fh_robust_boot_saeRobust$EBLUP)
expect_equal(fh_robust_boot$MSE$FH, fh_robust_boot_saeRobust$MSE)
grapes$Domain <- c(1:15)
fh_robustbc_boot <- fh(fixed = grapehect ~ area + workdays - 1,
vardir = "var", combined_data = grapes,
domains = "Domain", method = "reblupbc",
tol = 1e-06, maxit = 100, k = 1.345,
mult_constant = 2, MSE = TRUE,
mse_type = "boot", B = 3, seed = 123)
fh_robustbc_boot_saeRobust <- read.csv("FH/fh_robustbc_boot_saeRobust.csv",
sep = ",",
stringsAsFactors = TRUE)
expect_equal(unname(fh_robustbc_boot$model$variance),
fh_robust_boot_saeRobust$variance[1])
expect_equal(fh_robustbc_boot$ind$FH, fh_robustbc_boot_saeRobust$EBLUP)
expect_equal(fh_robustbc_boot$MSE$FH, fh_robustbc_boot_saeRobust$MSE)
} else {
expect_equal(TRUE, TRUE)
}
})
test_that("Does the fh function in emdi return the same variance, correlation
parameter, EBLUP and MSE estimates as the functions rfh and mse
(pseudo) of package saeRobust?",{
select <- as.logical(Sys.getenv("_R_TEST_ROBUST_TRUEFALSE_"))
if (is.na(select)) {
select <- FALSE
}
if (select) {
grapes$Domain <- c(1:15)
fh_robust_spatial <- fh(fixed = grapehect ~ area + workdays - 1, vardir = "var",
combined_data = grapes, domains = "Domain",
method = "reblup", tol = 1e-06, maxit = 100, k = 1.345,
correlation = "spatial", corMatrix = grapesprox,
MSE = TRUE, mse_type = "pseudo")
fh_robust_spatial_saeRobust <- read.csv("FH/fh_robust_spatial_saeRobust.csv",
sep = ",",
stringsAsFactors = TRUE)
expect_equal(fh_robust_spatial$model$variance$variance,
fh_robust_spatial_saeRobust$variance[1])
expect_equal(fh_robust_spatial$model$variance$correlation,
fh_robust_spatial_saeRobust$correlation[1])
expect_equal(fh_robust_spatial$ind$FH, fh_robust_spatial_saeRobust$EBLUP)
expect_equal(fh_robust_spatial$MSE$FH, fh_robust_spatial_saeRobust$MSE)
grapes$Domain <- c(1:15)
fh_robust_spatial_bc <- fh(fixed = grapehect ~ area + workdays - 1, vardir = "var",
combined_data = grapes, domains = "Domain",
method = "reblupbc", tol = 1e-06, maxit = 100,
k = 1.345, mult_constant = 2,
correlation = "spatial", corMatrix = grapesprox,
MSE = TRUE, mse_type = "pseudo")
fh_robustbc_spatial_saeRobust <- read.csv("FH/fh_robustbc_spatial_saeRobust.csv",
sep = ",",
stringsAsFactors = TRUE)
expect_equal(fh_robust_spatial_bc$model$variance$variance,
fh_robustbc_spatial_saeRobust$variance[1])
expect_equal(fh_robust_spatial_bc$model$variance$correlation,
fh_robustbc_spatial_saeRobust$correlation[1])
expect_equal(fh_robust_spatial_bc$ind$FH,
fh_robustbc_spatial_saeRobust$EBLUP)
expect_equal(fh_robust_spatial_bc$MSE$FH,
fh_robustbc_spatial_saeRobust$MSE)
} else {
expect_equal(TRUE, TRUE)
}
})
test_that("Does the fh function in emdi return the same variance, correlation
parameter, EBLUP and MSE estimates as the functions rfh and mse
(boot) of package saeRobust?",{
select <- as.logical(Sys.getenv("_R_TEST_ROBUST_TRUEFALSE_"))
if (is.na(select)) {
select <- FALSE
}
if (select) {
grapes$Domain <- c(1:15)
fh_robust_spatial_boot <- fh(fixed = grapehect ~ area + workdays - 1,
vardir = "var", combined_data = grapes,
domains = "Domain", method = "reblup",
tol = 1e-06, maxit = 100, k = 1.345,
correlation = "spatial", corMatrix = grapesprox,
MSE = TRUE, mse_type = "boot", B = 3, seed = 123)
fh_robust_spatial_boot_saeRobust <- read.csv("FH/fh_robust_spatial_boot_saeRobust.csv",
sep = ",",
stringsAsFactors = TRUE)
expect_equal(fh_robust_spatial_boot$model$variance$variance,
fh_robust_spatial_boot_saeRobust$variance[1])
expect_equal(fh_robust_spatial_boot$model$variance$correlation,
fh_robust_spatial_boot_saeRobust$correlation[1])
expect_equal(fh_robust_spatial_boot$ind$FH,
fh_robust_spatial_boot_saeRobust$EBLUP)
expect_equal(fh_robust_spatial_boot$MSE$FH,
fh_robust_spatial_boot_saeRobust$MSE)
grapes$Domain <- c(1:15)
fh_robust_spatial_bc_boot <- fh(fixed = grapehect ~ area + workdays - 1,
vardir = "var", combined_data = grapes,
domains = "Domain", method = "reblupbc",
tol = 1e-06, maxit = 100, k = 1.345,
mult_constant = 2, correlation = "spatial",
corMatrix = grapesprox,
MSE = TRUE, mse_type = "boot",
B = 3, seed = 123)
fh_robust_spatial_bc_boot_saeRobust <- read.csv("FH/fh_robust_spatial_bc_boot_saeRobust.csv",
sep = ",",
stringsAsFactors = TRUE)
expect_equal(fh_robust_spatial_bc_boot$model$variance$variance,
fh_robust_spatial_bc_boot_saeRobust$variance[1])
expect_equal(fh_robust_spatial_bc_boot$model$variance$correlation,
fh_robust_spatial_bc_boot_saeRobust$correlation[1])
expect_equal(fh_robust_spatial_bc_boot$ind$FH,
fh_robust_spatial_bc_boot_saeRobust$EBLUP)
expect_equal(fh_robust_spatial_bc_boot$MSE$FH,
fh_robust_spatial_bc_boot_saeRobust$MSE)
} else {
expect_equal(TRUE, TRUE)
}
}) |
TreeDep_plot <- function(my_data ,
variable1 ,
variable2 = "Non-existent",
start_month ,
start_day ,
stop_month ,
stop_day){
units_names <- c("Hum", "Pres", "Precip", "Rad", "Temp", "Wind", "Daylight",
"BAI", "LAI",
"Conc_",
"Dep_",
"Res_",
"Fric_")
units_names4 <- substr(units_names, 1,4)
units <- data.frame("%", "kPa", "mm", "W m-2", "Celsius", "m s-1", "unitless",
"m2 bark m-2 tree covered area", "m2 leaf m-2 tree covered area",
"micrograms m-3",
"g m-2 h-1",
"s m-1",
"m s-1")
colnames(units) <- units_names4
if(substr(variable1, 1,7)=="Dep_vel"){
variable1_units <- "m s-1"
}else{
variable1_units <- as.character(units[,substr(variable1, 1,4)])
}
if(variable1 %in% units_names[1:9]){
variable1_values <- my_data[,variable1]
}else{
dep_df1 <- do.call(variable1, list(my_data))
variable1_values <- dep_df1[,2]
}
if(variable2=="Non-existent"){
my_df <- cbind.data.frame(Dates = my_data[,c("Dates")], variable1_values)
colnames(my_df)[c(2)] <- c(variable1)
my_df$year <- substr(my_df$Dates, 1, 4)
my_df$month <- substr(my_df$Dates, 6, 7)
my_df$day <- substr(my_df$Dates, 9, 10)
my_df$hour <- substr(my_df$Dates, 12, 19)
my_df$my_time <- as.POSIXct(strptime(paste(my_df$year,"-",my_df$month,"-",my_df$day, " ", my_df$hour, sep=""), "%Y-%m-%d %H:%M:%S"))
my_dates <- c(as.character(start_month), as.character(start_day),
as.character(stop_month), as.character(stop_day))
my_dates[nchar(my_dates)==1] <- paste(0, my_dates[nchar(my_dates)==1], sep="" )
ID_start_day <- which(as.character(my_df$day)==my_dates[2] & my_df$month==my_dates[1])
ID_stop_day <- which(as.character(my_df$day)==my_dates[4] & my_df$month==my_dates[3])
my_df_selected <- my_df[c(ID_start_day[1]:ID_stop_day[length(ID_stop_day)]),]
ggplot2::ggplot(my_df_selected, aes_string(x = "my_time")) +
geom_line(aes(y = my_df_selected[,c(variable1)], colour = c(variable1), linetype = c(variable1))) +
scale_linetype_manual(values = c(2)) +
scale_colour_manual(values = c("blue")) +
labs(y = paste(variable1, " (", variable1_units, ")", sep=""),
x = "Date and time",colour = "Legend", linetype = "Legend")+
theme(legend.key.height=unit(1, "cm"), plot.margin = unit(c(0.5,0.5,0.5,0.5), "lines"))+
ggtitle(paste("Hourly", variable1)) +
theme(plot.title = element_text(hjust = 0.5))
}else{
if(substr(variable2, 1,7)=="Dep_vel"){
variable2_units <- "m s-1"
}else{
variable2_units <- as.character(units[,substr(variable2, 1,4)])
}
if(variable2 %in% units_names[1:9]){
variable2_values <- my_data[,variable2]
}else{
dep_df2 <- do.call(variable2, list(my_data))
variable2_values <- dep_df2[,2]
}
my_df <- cbind.data.frame(Dates = my_data[,c("Dates")], variable1_values, variable2_values)
colnames(my_df)[c(2:3)] <- c(variable1, variable2)
my_df$year <- substr(my_df$Dates, 1, 4)
my_df$month <- substr(my_df$Dates, 6, 7)
my_df$day <- substr(my_df$Dates, 9, 10)
my_df$hour <- substr(my_df$Dates, 12, 19)
my_df$my_time <- as.POSIXct(strptime(paste(my_df$year,"-",my_df$month,"-",my_df$day, " ", my_df$hour, sep=""), "%Y-%m-%d %H:%M:%S"))
my_dates <- c(as.character(start_month), as.character(start_day),
as.character(stop_month), as.character(stop_day))
my_dates[nchar(my_dates)==1] <- paste(0, my_dates[nchar(my_dates)==1], sep="" )
ID_start_day <- which(as.character(my_df$day)==my_dates[2] & my_df$month==my_dates[1])
ID_stop_day <- which(as.character(my_df$day)==my_dates[4] & my_df$month==my_dates[3])
my_df_selected <- my_df[c(ID_start_day[1]:ID_stop_day[length(ID_stop_day)]),]
range_var1 <- max(my_df_selected[,c(variable1)], na.rm = T) - min(my_df_selected[,c(variable1)], na.rm = T)
if(range_var1==0){
range_var1 <- ceiling(max(my_df_selected[,c(variable1)], na.rm = T))
}
range_var2 <- max(my_df_selected[,c(variable2)], na.rm = T) - min(my_df_selected[,c(variable2)], na.rm = T)
if(range_var2==0){
range_var2 <- ceiling(max(my_df_selected[,c(variable2)], na.rm = T))
}
ratio <- range_var1 / range_var2
ggplot2::ggplot(my_df_selected, aes_string(x = "my_time")) +
geom_line(aes(y = my_df_selected[,c(variable1)], colour = c(variable1), linetype = c(variable1))) +
geom_line(aes(y =my_df_selected[,c(variable2)] * ratio, colour = c(variable2), linetype = c(variable2))) +
scale_y_continuous(sec.axis = sec_axis(~. / ratio, name = paste(variable2, " (", variable2_units, ")", sep=""))) +
scale_linetype_manual(values = c(2,1)) +
scale_colour_manual(values = c("blue", "red")) +
labs(y = paste(variable1, " (", variable1_units, ")", sep=""), x = "Date and time",colour = "Legend", linetype = "Legend")+
theme(legend.key.height=unit(1, "cm"), plot.margin = unit(c(0.5,0.5,0.5,0.5), "lines"))+
ggtitle(paste("Hourly", variable1, " vs. Hourly", variable2)) +
theme(plot.title = element_text(hjust = 0.5))
}
} |
get_predictions_bayesx <- function(model, data_grid, ...) {
prdat <- suppressMessages(
stats::predict(
object = model,
newdata = data_grid,
type = "link"
))
data_grid$predicted <- as.vector(prdat)
data_grid$conf.low <- NA
data_grid$conf.high <- NA
data_grid
} |
library("devtools")
revdep_check_resume()
revdep_check_save_summary()
revdep_check_print_problems() |
GetHpltStats <- function(filepath) {
file_names <- dir(filepath)
mean_props <- numeric()
for(i in 1:length(file_names)) {
mean_props[i] <- readRDS(file.path(filepath, file_names[i]))$Mean_prop_incongr_seqs
}
MoM_props <- mean(mean_props)
MoM_props
} |
ctStanData <- function(ctm, datalong,optimize,derrind='all'){
nsubjects <- length(unique(datalong[, ctm$subjectIDname]))
mats <- ctStanMatricesList()
driftdiagonly <- ifelse(all(!is.na(ctm$pars$value[ctm$pars$matrix == 'DRIFT' & ctm$pars$row != ctm$pars$col]) &
all(ctm$pars$value[ctm$pars$matrix == 'DRIFT' & ctm$pars$row != ctm$pars$col] == 0) ), 1, 0)
if(any(!c(ctm$manifestNames,ctm$TDpredNames,ctm$TIpredNames) %in% colnames(datalong))) stop(paste0('
variables: ', paste0(c(ctm$manifestNames,ctm$TDpredNames,ctm$TIpredNames)[
which(!c(ctm$manifestNames,ctm$TDpredNames,ctm$TIpredNames) %in% colnames(datalong))], ', '),' not in data'))
if(!(ctm$subjectIDname %in% colnames(datalong))) stop(paste('id column', (ctm$subjectIDname), "not found in data"))
if(ctm$nopriors==FALSE){
if(ctm$n.TIpred > 1 && any(abs(colMeans(datalong[,c(ctm$TIpredNames),drop=FALSE],na.rm=TRUE)) > .3)){
message('Uncentered TI predictors noted -- interpretability may be hindered and default priors may not be appropriate')
}
}
original <- unique(datalong[,ctm$subjectIDname])
datalong <- makeNumericIDs(datalong,ctm$subjectIDname,ctm$timeName)
new <- unique(datalong[,ctm$subjectIDname])
idmap <- data.frame(original, new)
if( (nrow(ctm$t0varstationary) + nrow(ctm$t0meansstationary)) >0 &&
length(c(ctm$modelmats$calcs$driftcint, ctm$modelmats$calcs$diffusion)) > 0) message('Stationarity assumptions based on initial states when using non-linear dynamics')
if(ctm$intoverstates==FALSE || all(derrind=='all') ) derrind = 1:ctm$n.latent
derrind = as.integer(derrind)
if(any(derrind > ctm$n.latent)) stop('derrind > than n.latent found!')
if(length(derrind) > ctm$n.latent) stop('derrind vector cannot be longer than n.latent!')
if(length(unique(derrind)) < length(derrind)) stop('derrind vector cannot contain duplicates or!')
ndiffusion=length(derrind)
nindvarying <- max(ctm$modelmats$matsetup$indvarying)
nparams <- max(ctm$modelmats$matsetup$param[ctm$modelmats$matsetup$when %in% c(0,-1)])
nmatrices <- length(mats$base)
ctm$modelmats$matsetup[which(ctm$modelmats$matsetup$indvarying > 0),]
indvaryingindex <- ctm$modelmats$matsetup$param[which(ctm$modelmats$matsetup$indvarying > 0)]
indvaryingindex <- array(indvaryingindex[!duplicated(indvaryingindex)])
sdscale <- array(ctm$modelmats$matvalues$sdscale[match(indvaryingindex,ctm$modelmats$matsetup$param)])
if(ctm$n.TIpred > 0) {
tipreds <- datalong[match(unique(datalong[,ctm$subjectIDname]),datalong[,ctm$subjectIDname]),ctm$TIpredNames,drop=FALSE]
if(any(is.na(tipreds))) {
if(!optimize){
message(paste0("NA's in TIpreds - sampling ", sum(is.na(tipreds)),' values'))
tipreds[is.na(tipreds)] = 99999
}
if(optimize){
message(paste0("NA's in TIpreds - imputing ", sum(is.na(tipreds)),' NA\'s to allow optimization -- TIpred effect estimates may be overly confident.'))
timu <- apply(tipreds,2,mean,na.rm=TRUE)
tisd <- apply(tipreds,2,sd,na.rm=TRUE)
meandat <- data.table((datalong))[ , lapply(.SD, function(x)
sum(x,na.rm=TRUE)/sum(!is.na(x))) ,
by=c(ctm$subjectIDname)]
meandat <- data.frame(scale(meandat[,apply(meandat,2,sd,na.rm=TRUE) > 1e-4,with=FALSE]))
meandat[is.na(meandat)] <- 0
for(i in 1:ctm$n.TIpred){
lmform = formula(paste0(ctm$TIpredNames[i],' ~ 1 + ',
paste0(colnames(meandat)[-which(colnames(meandat) %in% ctm$TIpredNames[i])],
collapse=' + ')))
lmf <- lm(formula = lmform,data = meandat,na.action=na.exclude)
tipreds[is.na(tipreds[,i]),i] <- predict(lmf)[is.na(tipreds[,i])] * tisd[i] + timu[i]
}
}
}
}
datalong[,ctm$manifestNames][is.na(datalong[,ctm$manifestNames])]<-99999
standata <- list(
Y=cbind(as.matrix(datalong[,ctm$manifestNames])),
subject=as.integer(datalong[,ctm$subjectIDname]),
time=datalong[,ctm$timeName],
ndatapoints=as.integer(nrow(datalong)),
nobs_y=array(as.integer(apply(datalong[,ctm$manifestNames,drop=FALSE],1,function(x) length(x[x!=99999]))),dim=nrow(datalong)),
whichobs_y=matrix(as.integer(t(apply(datalong[,ctm$manifestNames,drop=FALSE],1,function(x) {
out<-as.numeric(which(x!=99999))
if(length(out)==0) out<-rep(0,ctm$n.manifest)
if(length(out)<ctm$n.manifest) out<-c(out,rep(0,ctm$n.manifest-length(out)))
out
}) )),nrow=c(nrow(datalong),ncol=ctm$n.manifest)),
nbinary_y=array(as.integer(apply(datalong[,ctm$manifestNames,drop=FALSE],1,function(x)
length(x[ctm$manifesttype==1 & x!=99999]))),dim=nrow(datalong)),
whichbinary_y=matrix(as.integer(t(apply(datalong[,ctm$manifestNames,drop=FALSE],1,function(x) {
out<-as.numeric(which(ctm$manifesttype==1 & x!=99999))
if(length(out)==0) out<-rep(0,ctm$n.manifest)
if(length(out)<ctm$n.manifest) out<-c(out,rep(0,ctm$n.manifest-length(out)))
out
}) )),nrow=c(nrow(datalong),ncol=ctm$n.manifest)),
ncont_y=array(as.integer(apply(datalong[,ctm$manifestNames,drop=FALSE],1,function(x)
length(x[(ctm$manifesttype==0 | ctm$manifesttype==2) & x!=99999]))),dim=nrow(datalong)),
whichcont_y=matrix(as.integer(t(apply(datalong[,ctm$manifestNames,drop=FALSE],1,function(x) {
out<-as.numeric(which( (ctm$manifesttype==0 | ctm$manifesttype==2) & x!=99999))
if(length(out)==0) out<-rep(0,ctm$n.manifest)
if(length(out)<ctm$n.manifest) out<-c(out,rep(0,ctm$n.manifest-length(out)))
out
}) )),nrow=c(nrow(datalong),ncol=ctm$n.manifest))
)
if(ctm$n.TDpred > 0) {
tdpreds <- datalong[,ctm$TDpredNames,drop=FALSE]
if(any(is.na(tdpreds))) {
message("NA's in TDpreds! Replaced by zeroes, consider appropriateness...")
tdpreds[is.na(tdpreds)] <-0
}
}
if(ctm$n.TDpred ==0) tdpreds <- matrix(0,standata$ndatapoints,0)
standata$tdpreds=array(as.matrix(tdpreds),dim=c(nrow(tdpreds),ncol(tdpreds)))
if(is.null(ctm$dokalmanrows)) standata$dokalmanrows <-
rep(1L, standata$ndatapoints) else standata$dokalmanrows <- as.integer(ctm$dokalmanrows)
standata$priormod = 1L
standata<-c(standata,
list(
nsubjects=as.integer(nsubjects),
nmanifest=as.integer(ctm$n.manifest),
nlatentpop = ctm$nlatentpop,
Jstep = ctm$nlcontrol$Jstep,
maxtimestep = ctm$nlcontrol$maxtimestep,
dokalman=as.integer(is.null(ctm$dokalman)),
intoverstates=as.integer(ctm$intoverstates),
verbose=0L,
manifesttype=array(as.integer(ctm$manifesttype),dim=length(ctm$manifesttype)),
indvaryingindex=array(as.integer(indvaryingindex)),
intoverpopindvaryingindex=array(as.integer(ctm$intoverpopindvaryingindex)),
notindvaryingindex=array(as.integer(which(!(1:nparams) %in% indvaryingindex))),
continuoustime=as.integer(sum(ctm$continuoustime)),
nlatent=as.integer(ctm$n.latent),
ntipred=as.integer(ctm$n.TIpred),
ntdpred=as.integer(ctm$n.TDpred),
nparams=as.integer(nparams),
gendata=0L,
nindvarying=as.integer(nindvarying),
nindvaryingoffdiagonals=as.integer((nindvarying^2-nindvarying)/2),
nt0varstationary=as.integer(nrow(ctm$t0varstationary)),
nt0meansstationary=as.integer(nrow(ctm$t0meansstationary)),
t0varstationary=matrix(as.integer(ctm$t0varstationary),ncol=2),
t0meansstationary=matrix(as.integer(ctm$t0meansstationary),ncol=2),
derrind=array(as.integer(derrind),dim=ndiffusion),
ndiffusion=as.integer(ndiffusion),
driftdiagonly = as.integer(driftdiagonly),
intoverpop=as.integer(ctm$intoverpop),
nopriors=as.integer(ctm$nopriors),
savescores=0L,
savesubjectmatrices=0L,
nJAxfinite = ifelse(ctm$recompile,0L,length(ctm$JAxfinite)),
nJyfinite = ifelse(ctm$recompile,0L,length(ctm$Jyfinite))
))
if(ctm$n.TIpred == 0) tipreds <- array(0,c(0,0))
standata$tipredsdata <- as.matrix(tipreds)
standata$nmissingtipreds <- as.integer(length(tipreds[tipreds== 99999]))
standata$ntipredeffects <- as.integer(ifelse(ctm$n.TIpred > 0, as.integer(max(ctm$modelmats$TIPREDEFFECTsetup)), 0))
standata$TIPREDEFFECTsetup <- apply(ctm$modelmats$TIPREDEFFECTsetup,c(1,2),as.integer,.drop=FALSE)
standata$tipredsimputedscale <- ctm$tipredsimputedscale
standata$tipredeffectscale <- ctm$tipredeffectscale
standata$JAxfinite <- ctm$JAxfinite
standata$Jyfinite <- ctm$Jyfinite
standata$Jycolindexsize <- 1L
standata$Jycolindex <- array(1L)
standata$difftype <- 0L;
standata$dotipred <- 1L;
if(!ctm$timeName %in% colnames(datalong) && !ctm$continuoustime) {
datalong[[ctm$timeName]] <- 1:nrow(datalong)
}
if (!(ctm$timeName %in% colnames(datalong))) stop(paste('time column', (ctm$timeName), "not found in data"))
if(any(is.na(datalong[,ctm$timeName]))) stop('Missings in time column!')
oldsubi<-datalong[1,ctm$subjectIDname]-1
dT<-rep(-1,length(datalong[,ctm$timeName]))
for(rowi in 1:length(datalong[,ctm$timeName])) {
subi<-datalong[rowi,ctm$subjectIDname]
if(subi - oldsubi == 1) {
dT[rowi]<-0
subistartrow<-rowi
}
if(subi - oldsubi == 0) {
dT[rowi]<-datalong[rowi,ctm$timeName] - datalong[rowi-1,ctm$timeName]
if(dT[rowi] < 0) stop(paste0('A time interval of ', dT[rowi],' was found at row ',rowi))
if(dT[rowi] == 0) warning(paste0('A time interval of ', dT[rowi],' was found at row ',rowi))
}
oldsubi<-subi
}
subindices <- lapply(mats$base,function(x) 0)
for(mati in mats$base){
if( (!ctm$intoverpop && any(ctm$pars$indvarying[ctm$pars$matrix %in% names(mats$base)[mati]])) ||
(ctm$n.TIpred >0 && (
any(unlist(ctm$pars[ctm$pars$matrix %in% names(mats$base)[mati],paste0(ctm$TIpredNames,'_effect')])) ||
any(ctm$pars$matrix %in% names(mats$base)[mati] & grepl('[',ctm$pars$param,fixed=TRUE)) )
)) subindex <- 1 else subindex <- 0
subindices[[names(mats$base)[mati]]] <- subindex
}
if(ctm$stationary || nrow(ctm$t0varstationary) > 0) subindices$T0VAR <-
max(c(subindices$T0VAR,subindices$DRIFT,subindices$DIFFUSION))
if(ctm$stationary || nrow(ctm$t0meansstationary) > 0) subindices$T0MEANS <-
max(c(subindices$T0MEANS,subindices$DRIFT,subindices$CINT))
standata$subindices <- as.integer(unlist(subindices))[order(mats$base)]
statedep <- rep(0L,as.integer(max(mats$all)))
lhscalcs <- sapply(unique(unlist(ctm$modelmats$calcs)),function(x) gsub('=.*','',x))
for(i in 1:length(statedep)){
matname <- try(names(mats$all[mats$all %in% i]),silent=TRUE)
if(length(matname)==0) next
statedep[i] <- ifelse(any(
ctm$modelmats$matsetup$when >0 &
ctm$modelmats$matsetup$matrix %in% i),1L,0L)
if(any(sapply(lhscalcs,function(calci)
grepl(matname,calci)))) statedep[i] <- 1L
}
standata$statedep <- statedep
standata$choleskymats<- 0L
if(!is.null(ctm$covmattransform)){
if(ctm$covmattransform=='rawcorr_indep') standata$choleskymats<- -1L
if(ctm$covmattransform=='cholesky') standata$choleskymats<- 1L
if(!ctm$covmattransform %in% c('rawcorr','rawcorr_indep','cholesky')) stop(
'covtransform must be either "rawcorr", "rawcorr_indep", or "cholesky"')
}
standata$matsetup <- apply(ctm$modelmats$matsetup[,-1],c(1,2),as.integer,.drop=FALSE)
standata$matvalues <- apply(ctm$modelmats$matvalues,c(1,2),as.numeric)
standata$nmatrices <- as.integer(nmatrices)
standata$matrixdims <- ctm$modelmats$matrixdims
standata$nrowmatsetup <- as.integer(nrow(ctm$modelmats$matsetup))
standata$sdscale <- array(as.numeric(sdscale),dim=length(sdscale))
standata$approxct <- 0L
if(!is.null(ctm$approxct)) standata$approxct <- as.integer(ctm$approxct)
standata$taylorheun <- 0L
if(!is.null(ctm$taylorheun)) standata$taylorheun <- as.integer(ctm$taylorheun)
standata$idmap <- idmap
standata$popcovn=1000L
standata$llsinglerow=0L
if(any(ctm$manifesttype==1)){
standata$nJyfinite <- as.integer(ctm$n.latent)
standata$Jyfinite <- array(as.integer(1:ctm$n.latent))
}
if(!is.null(ctm$TIpredAuto) && ctm$TIpredAuto %in% c(1L,TRUE)) standata$TIpredAuto <- 1L else standata$TIpredAuto <- 0L
mc=c(ctStanMatricesList()$all)
ms=data.frame(standata$matsetup)
ms=ms[order(ms$param),]
standata$whenmat <- array(0L,dim=c(max(mc),5))
for(mi in mc){
mrows=which(ms$matrix==mi)
for(wheni in 1:4){
standata$whenmat[mi,wheni] = as.integer(any(
ms$when[mrows] %in% c(wheni,100)))
}
standata$whenmat[mi,5] = as.integer(any(
ms$param[mrows] > 0 & ms$when[mrows] %in% c(0,100) & (ms$indvarying[mrows] > 1 | ms$tipred[mrows] > 0) ))
}
rownames(standata$whenmat)[mc] <- names(mc)
standata$whenvecp <- array(0L, c(2,standata$nparams))
standata$whenvecp[1,] <- as.integer(1:standata$nparams)
standata$whenvecp[2,ms$param[ms$when %in% c(0,100) & ms$copyrow <1 & (ms$tipred > 0 | ms$indvarying > 0) & ms$param > 0]] <-
as.integer(ms$param[ms$when %in% c(0,100) & ms$copyrow <1 & (ms$tipred > 0 | ms$indvarying > 0) & ms$param > 0])
standata$whenvecs <- array(0L,dim=c(6,standata$nlatentpop))
for(wheni in 1:4){
standata$whenvecs[wheni,ms$param[ms$when %in% c(wheni,100) & ms$copyrow <=0 & ms$param > 0]] <-
as.integer(ms$param[ms$when %in% c(wheni,100) & ms$copyrow <=0 & ms$param > 0])
}
standata$whenmat[mc[names(mc) == 'asymDIFFUSIONcov'],] <-
apply(standata$whenmat[ mc[names(mc) %in% c('DIFFUSION','DRIFT')],],2,max)
standata$whenmat[mc[names(mc) == 'asymCINT'],] <-
apply(standata$whenmat[mc[names(mc) %in% c('CINT','DRIFT')],],2,max)
standata$whenmat[mc[names(mc) == 'DIFFUSIONcov'],] <- standata$whenmat[mc[names(mc) == 'DIFFUSION'],]
standata$whenmat[mc[names(mc) == 'T0cov'],] <- standata$whenmat[mc[names(mc) == 'T0VAR'],]
standata$whenmat[mc[names(mc) == 'MANIFESTcov'],] <- standata$whenmat[mc[names(mc) == 'MANIFESTVAR'],]
standata$statedep[31:33] <- standata$statedep[c(4,5,8)]
standata$laplaceprior <- rep(0L,standata$nparams)
standata$laplacetipreds <- 0L
if(!is.null(ctm$laplaceprior)){
if('tipreds' %in% ctm$laplaceprior) standata$laplacetipreds <- 1L
ms <- data.frame(standata$matsetup)
standata$laplaceprior[
ms$param[
ms$matrix %in% ctStanMatricesList()$all[names(ctStanMatricesList()$all) %in% ctm$laplaceprior] &
ms$param > 0 &
ms$row!=ms$col &
ms$when==0 &
ms$copyrow<1]
] <- 1L
}
standata$laplaceprioronly <- ifelse(is.null(ctm$laplaceprioronly),0L,as.integer(ctm$laplaceprioronly))
ms <- data.frame(standata$matsetup)
CINTnonzero <- c()
for(i in 1:standata$nlatent){
ri=which(ms$matrix %in% ctStanMatricesList()$all[names(ctStanMatricesList()$all) %in% 'CINT'] & ms$row %in% i)
if(ms$param[ri]==0 && standata$matvalues[ri,'value']==0) next else CINTnonzero <- c(CINTnonzero,i)
}
standata$CINTnonzero <- array(as.integer(CINTnonzero))
standata$CINTnonzerosize <- length(CINTnonzero)
standata$JAxDRIFTequiv <- 1L
ml <- listOfMatrices(ctm$pars)
for(i in 1:nrow(ml$JAx)){
for(j in 1:ncol(ml$JAx)){
if(i <= nrow(ml$DRIFT) && j <= nrow(ml$DRIFT)){
if(ml$JAx[i,j] != ml$DRIFT[i,j]) standata$JAxDRIFTequiv <- 0L
}
if(i > nrow(ml$DRIFT) || j > nrow(ml$DRIFT)){
if(i != j && !ml$JAx[i,j] %in% 0) standata$JAxDRIFTequiv <- 0L
if(i == j && !ml$JAx[i,j] %in% ifelse(ctm$continuoustime,0,1)) standata$JAxDRIFTequiv <- 0L
}
}
}
standata$recompile <- as.integer(ctm$recompile)
standata$nsubsets <- 1L
return(standata)
} |
marginalized.risk=function(fit.risk, marker.name, data, categorical.s, weights=rep(1, nrow(data)), t=NULL, ss=NULL, verbose=FALSE) {
if(categorical.s) {
marginalized.risk.cat (fit.risk, marker.name, data, weights=weights, t=t, verbose=verbose)
} else {
marginalized.risk.cont (fit.risk, marker.name, data, weights=weights, t=t, ss=ss, verbose=verbose)
}
}
marginalized.risk.cat=function(fit.risk, marker.name, data, weights=rep(1, nrow(data)), t=NULL, verbose=FALSE) {
if("coxph" %in% class(fit.risk)) {
time.var=as.character(fit.risk$terms[[2]][[2]])
y.var=as.character(fit.risk$terms[[2]][[3]])
}
ss=unique(data[[marker.name]]); ss=sort(ss[!is.na(ss)])
if (!"coxph" %in% class(fit.risk)) {
dat.tmp.mrc=data
risks=sapply(ss, function(s) {
dat.tmp.mrc[[marker.name]]=s
risks = predict(fit.risk, newdata=dat.tmp.mrc, type="response")
sum(weights * risks) / sum(weights)
})
names(risks)=levels(ss)
risks
} else {
if (is.null(t)) {
tt=sort(unique(data[[time.var]][data[[y.var]]==1]))
risks=sapply(tt, function (t) {
dat.tmp.mrc=data
dat.tmp.mrc[[time.var]]=t
risks=sapply(ss, function(s) {
dat.tmp.mrc[[marker.name]]=s
risks = 1 - exp(-predict(fit.risk, newdata=dat.tmp.mrc, type="expected"))
sum(weights * risks) / sum(weights)
})
})
risks=t(risks)
colnames(risks)=as.character(ss)
list(time=tt, risk=risks)
} else {
if (verbose) print("return risk at time t")
dat.tmp.mrc=data
time.var=fit.risk$terms[[2]][[2]]
dat.tmp.mrc[[time.var]]=t
risks=sapply(ss, function(s) {
dat.tmp.mrc[[marker.name]]=s
risks = 1 - exp(-predict(fit.risk, newdata=dat.tmp.mrc, type="expected"))
sum(weights * risks) / sum(weights)
})
names(risks)=levels(ss)
risks
}
}
}
marginalized.risk.cont=function(fit.risk, marker.name, data, weights=rep(1, nrow(data)), t=NULL, ss=NULL, verbose=FALSE) {
ss.is.null=is.null(ss)
if (ss.is.null) ss=quantile(data[[marker.name]], seq(.05,.95,by=0.01))
dat.tmp.mri=data
if (!is.null(t)) {
time.var=fit.risk$terms[[2]][[2]]
dat.tmp.mri[[time.var]]=t
}
risks=sapply(ss, function(s) {
dat.tmp.mri[[marker.name]]=s
risks = if(is.null(t)) {
predict(fit.risk, newdata=dat.tmp.mri, type="response")
} else {
1 - exp(-predict(fit.risk, newdata=dat.tmp.mri, type="expected"))
}
sum(weights * risks) / sum(weights)
})
if (ss.is.null) cbind(marker=ss, prob=risks) else risks
} |
print_windows <- function(x, file_path, blank_after, hide_notes, ...) {
tryCatch( {
f <- file(file_path, open = "a", encoding = "native.enc")
if (all(class(x) == "character")) {
if (length(x) == 1 && nchar(x) < 100) {
writeLines(enc2utf8(x), con = f, useBytes = TRUE)
} else {
withr::with_options(c("crayon.colors" = 1), {
strgs <- get_unicode_strings(x, ...)
writeLines(strgs, con = f, useBytes = TRUE)
})
}
} else {
withr::with_options(c("crayon.colors" = 1), {
strgs <- get_unicode_strings(x, ...)
writeLines(strgs, con = f, useBytes = TRUE)
})
}
if (blank_after == TRUE)
writeLines("", con = f, useBytes = TRUE)
},
error = function(cond) {
print("Error: Object cannot be printed to log\n")
},
finally = {
if (hide_notes == FALSE) {
tc <- Sys.time()
if (e$log_show_notes == TRUE) {
if (any(class(x) == "data.frame")) {
writeLines(paste("NOTE: Data frame has", nrow(x), "rows and", ncol(x),
"columns."), con = f, useBytes = TRUE)
writeLines("", con = f, useBytes = TRUE)
}
writeLines(paste("NOTE: Log Print Time: ", tc), con = f, useBytes = TRUE)
writeLines(paste("NOTE: Elapsed Time in seconds:", get_time_diff(tc)),
con = f, useBytes = TRUE)
writeLines("", con = f, useBytes = TRUE)
}
}
close(f)
}
)
}
print_other <- function(x, file_path, blank_after, hide_notes, ...) {
tryCatch( {
f <- file(file_path, open = "a", encoding = "UTF-8")
sink(f, append = TRUE)
if (all(class(x) == "character")) {
if (length(x) == 1 && nchar(x) < 100) {
cat(x, "\n")
} else {
withr::with_options(c("crayon.colors" = 1), {
print(x, ..., )
})
}
} else {
withr::with_options(c("crayon.colors" = 1), {
print(x, ...)
})
}
if (blank_after == TRUE)
cat("\n")
},
error = function(cond) {
print("Error: Object cannot be printed to log\n")
},
finally = {
if (hide_notes == FALSE) {
tc <- Sys.time()
if (e$log_show_notes == TRUE) {
if (any(class(x) == "data.frame")) {
cat(paste("NOTE: Data frame has", nrow(x), "rows and", ncol(x),
"columns."), "\n")
cat("\n")
}
cat(paste("NOTE: Log Print Time: ", tc), "\n")
cat(paste("NOTE: Elapsed Time in seconds:", get_time_diff(tc)), "\n")
cat("\n")
}
}
sink()
close(f)
}
)
}
get_unicode_strings <- function(obj, ...) {
if (!all(class(obj) == "character")) {
strgs <- utils::capture.output(print(obj, ...), file = NULL)
ret <- get_unicode(strgs)
} else {
ret <- obj
}
return(ret)
}
get_unicode <- Vectorize(function(string){
ret <- string
m <- gregexpr("<U\\+[0-9A-F]{4}>", string)
if(m[[1]][1] != -1) {
codes <- unlist(regmatches(string, m))
replacements <- codes
N <- length(codes)
for(i in 1:N){
replacements[i] <- intToUtf8(strtoi(paste0("0x", substring(codes[i], 4, 7))))
}
if(1 != m[[1]][1]){
y <- substring(string, 1, m[[1]][1]-1)
y <- paste0(y, replacements[1])
}else{
y <- replacements[1]
}
if(1 < N){
for(i in 2:N){
s <- gsub("<U\\+[0-9A-F]{4}>", replacements[i],
substring(string, m[[1]][i-1]+8, m[[1]][i]+7))
Encoding(s) <- "UTF-8"
y <- paste0(y, s)
}
}
if( nchar(string)>(m[[1]][N]+8) )
ret <- paste0( y, substring(string, m[[1]][N]+8, nchar(string)) )
else
ret <- y
}
return(ret)
}, USE.NAMES = FALSE) |
expect_equal(1+1,2)
Sys.setenv("foo"="bar")
expect_equal("a","b")
report_side_effects(FALSE)
Sys.setenv("foo"="baz")
expect_equal(TRUE, TRUE) |
context("Setting up custom test harness")
test_that("Harness works", {
expect_error(normal_print("x"))
})
testthat_dir <- setwd(file.path("..","test_import"))
test_files <- list.files(".","^test")
for ( test_file in test_files ) {
context(test_file)
test_that(paste(test_file," works"), {
if ( isTRUE(as.logical(Sys.getenv("CI"))) &
tolower(Sys.info()[["sysname"]]) == "windows" ) {
skip("Skipping on CI Windows Action")
}
rscript_file <- ifelse(Sys.info()['sysname']=="Windows","Rscript.exe","Rscript")
rscript_path <- paste0("\"",file.path(R.home(),"bin",rscript_file),"\"")
test_output <- system(paste(rscript_path, test_file), intern=TRUE)
expect_match(
test_output,
"Import tests completed successfully ...",
all=FALSE,
label=paste(test_output,collapse="\n")
)
})
}
context("List any skipped tests")
setwd(testthat_dir) |
l_cget.l_tour <- function(target, state) {
widget <- l_getPlots(target)
target <- unclass(target)
if(is.list(target) && "projection" %in% state) {
return(target[["projection"]])
}
loon::l_cget(widget, state)
}
l_cget.l_tour_compound <- function(target, state) {
widget <- l_getPlots(target)
names <- names(target)
target <- unclass(target)
if(is.list(target) && (state %in% names)) {
if(state == "projection")
return(target[[state]])
else
return(widget[[state]])
}
lapply(widget,
function(w) {
loon::l_cget(w, state)
})
}
l_configure.l_tour <- function(target, ...) {
widget <- l_getPlots(target)
target <- unclass(target)
args <- list(...)
name <- names(args)
if(is.list(target)) {
if("projection" %in% name) {
target[["projection"]] <- args[["projection"]]
args[["projection"]] <- NULL
}
if(length(args) == 0)
return(invisible(
structure(
target,
class = c("l_tour", "loon")
)
))
widget_name <- setdiff(names(target), "projection")
do.call(loon::l_configure, c(list(target = widget), args))
target[[widget_name]] <- widget
return(invisible(
structure(
target,
class = c("l_tour", "loon")
)
))
} else {
if("projection" %in% name) {
args[["projection"]] <- NULL
}
if(length(args) == 0) return(invisible(target))
do.call(l_configure, c(list(target = widget), args))
return(invisible(target))
}
}
l_configure.l_tour_compound <- function(target, ...) {
widget <- l_getPlots(target)
target <- unclass(target)
args <- list(...)
name <- names(args)
if(is.list(target)) {
if("projection" %in% name) {
target[["projection"]] <- args[["projection"]]
args[["projection"]] <- NULL
}
if(length(args) == 0)
return(
invisible(
structure(
target,
class = c("l_tour_compound", "loon")
)
))
lapply(widget,
function(w) {
do.call(loon::l_configure, c(list(target = w), args))
})
target[[setdiff(names(target), "projection")]] <- widget
return(invisible(
structure(
target,
class = c("l_tour_compound", "loon")
)
))
} else {
if("projection" %in% name) {
args[["projection"]] <- NULL
}
if(length(args) == 0) return(invisible(target))
do.call(l_configure, c(list(target = widget), args))
return(invisible(target))
}
}
names.l_tour <- function(x) {
plot_name <- setdiff(names(unclass(x)), "projection")
plot <- x[[plot_name]]
c(names(plot), "projection")
}
names.l_tour_compound <- function(x) {
plot_name <- setdiff(names(unclass(x)), "projection")
plot <- x[[plot_name]]
c(names(plot), "projection")
}
`names<-.l_tour` <- function(x, value) {
stop("`l_tour` object is not allowed to set names")
}
`names<-.l_tour_compound` <- function(x, value) {
stop("`l_tour_compound` object is not allowed to set names")
}
print.l_tour <- function(x, ...) {
plot_name <- setdiff(names(unclass(x)), "projection")
plot <- x[[plot_name]]
print.default(
structure(
as.character(plot),
class = class(x)
)
)
}
print.l_tour_compound <- function(x, ...) {
plot_name <- setdiff(names(unclass(x)), "projection")
print.default(
structure(
as.character(plot_name),
class = class(x)
)
)
}
loonGrob.l_tour <- function(target, name = NULL, gp = NULL, vp = NULL) {
plot_name <- setdiff(names(unclass(target)), "projection")
plot <- target[[plot_name]]
loonGrob(plot, name = name, gp = gp, vp = vp)
}
loonGrob.l_tour_compound <- function(target, name = NULL, gp = NULL, vp = NULL) {
plot_name <- setdiff(names(unclass(target)), "projection")
plot <- target[[plot_name]]
loonGrob(plot, name = name, gp = gp, vp = vp)
} |
l_Rlist2nestedTclList <- function(x) {
paste(
vapply(x, function(x_el) {
paste0('{',paste(x_el, collapse = ' '),'}')
}, character(1)),
collapse = ' '
)
}
l_nestedTclList2Rlist <- function(tclobj, transform=function(x) {as.numeric(x)}) {
n <- as.numeric(tcl('llength', tclobj))
x <- vector(mode = 'list', length = n)
for (i in 1:n) {
x[[i]] <- transform(tcl('lindex', tclobj, i-1))
}
return(x)
} |
NULL
plateau.quadratic=function(trat,resp,
ylab="Dependent",
xlab="Independent",
theme=theme_classic(),
legend.position="top",
error="SE",
r2="all",
point="all",
width.bar=NA,
scale="none",
textsize = 12,
pointsize = 4.5,
linesize = 0.8,
pointshape = 21,
round=NA,
yname.formula="y",
xname.formula="x",
comment=NA,
fontfamily="sans"){
requireNamespace("minpack.lm")
if(is.na(width.bar)==TRUE){width.bar=0.01*mean(trat)}
requireNamespace("dplyr")
requireNamespace("rcompanion")
mod=nls(resp~plquadratic(trat,a,breakpoint,b,c))
model2=summary(mod)
m.ini <- mean(resp)
nullfunct <- function(x, m) {
m}
data=data.frame(trat,resp)
null <- nls(resp~ nullfunct(trat, m),
start = list(m = m.ini),
trace = FALSE,
data = data,
nls.control(maxiter = 1000))
r2 <- nagelkerke(mod, null)$Pseudo.R.squared.for.model.vs.null[2]
requireNamespace("drc")
requireNamespace("ggplot2")
ymean=tapply(resp,trat,mean)
if(error=="SE"){ysd=tapply(resp,trat,sd)/sqrt(tapply(resp,trat,length))}
if(error=="SD"){ysd=tapply(resp,trat,sd)}
if(error=="FALSE"){ysd=0}
desvio=ysd
xmean=tapply(trat,trat,mean)
r2=floor(r2*100)/100
if(is.na(round)==TRUE){
a=coef(mod)[1]
breakpoint=coef(mod)[2]
b=coef(mod)[3]
c=coef(mod)[4]}
if(is.na(round)==FALSE){
a=round(coef(mod)[1],round)
breakpoint=round(coef(mod)[2],round)
b=round(coef(mod)[3],round)
c=round(coef(mod)[4],round)}
s <- sprintf("~~~%s == %e %s %e * %s %s %e * %s^2~(%s>%e) ~~~~~ italic(R^2) == %0.2f",
yname.formula,
a,
ifelse(b >= 0, "+", "-"),
abs(b),
xname.formula,
ifelse(c >= 0, "+", "-"),
abs(c),
xname.formula,
xname.formula,
breakpoint,
r2)
equation=s
if(is.na(comment)==FALSE){equation=paste(equation,"~\"",comment,"\"")}
predesp=predict(mod)
predobs=resp
model=mod
rmse=sqrt(mean((predesp-predobs)^2))
data=data.frame(xmean,ymean)
data1=data.frame(trat=xmean,resp=ymean)
if(point=="mean"){
graph=ggplot(data,aes(x=xmean,y=ymean))
if(error!="FALSE"){graph=graph+geom_errorbar(aes(ymin=ymean-ysd,ymax=ymean+ysd),
width=width.bar,
size=linesize)}
graph=graph+
geom_point(aes(color="black"),size=pointsize,shape=pointshape,fill="gray")}
if(point=="all"){
graph=ggplot(data.frame(trat,resp),aes(x=trat,y=resp))
graph=graph+
geom_point(aes(color="black"),size=pointsize,shape=pointshape,fill="gray")}
xp=seq(min(trat),max(trat),length=1000)
yp=predict(mod,newdata=data.frame(trat=xp))
preditos=data.frame(x=xp,y=yp)
temp1=xp
result=yp
x=xp
y=yp
graph=graph+theme+
geom_line(data=preditos,aes(x=x,
y=y,
color="black"),size=linesize)+
scale_color_manual(name="",values="black",label=parse(text = equation))+
theme(axis.text = element_text(size=textsize,color="black",family = fontfamily),
axis.title = element_text(size=textsize,color="black",family = fontfamily),
legend.position = legend.position,
legend.text = element_text(size=textsize,family = fontfamily),
legend.direction = "vertical",
legend.text.align = 0,
legend.justification = 0)+
ylab(ylab)+xlab(xlab)
if(scale=="log"){graph=graph+scale_x_log10()}
aic=AIC(model)
bic=BIC(model)
minimo=NA
respmin=NA
ybreakpoint=predict(mod,newdata = data.frame(trat=breakpoint))
graphs=data.frame("Parameter"=c("Breakpoint",
"Breakpoint response",
"X Minimum",
"Y Minimum",
"AIC",
"BIC",
"r-squared",
"RMSE"),
"values"=c(breakpoint,
ybreakpoint,
minimo,
respmin,
aic,
bic,
r2,
rmse))
graficos=list("Coefficients quadratic model"=model2,
"values"=graphs,
graph)
print(graficos)
}
pquadInit <- function(mCall, LHS, data, ...){
xy <- sortedXyData(mCall[["x"]], LHS, data)
if(nrow(xy) < 4){
stop("Small sample size")}
xy1 <- xy[1:floor(nrow(xy)/2),]
xy2 <- xy[floor(nrow(xy)/2):nrow(xy),]
xy2$x2 <- xy2[,"x"] - min(xy2[,"x"])
fit2 <- stats::lm(xy2[,"y"] ~ xy2[,"x2"] + I(xy2[,"x2"]^2))
a <- coef(fit2)[1]
b <- coef(fit2)[2]
c <- coef(fit2)[3]
objfun <- function(cfs){
pred <- pquad(xy[,"x"], a=cfs[1], breakpoint=cfs[2], b=cfs[3], c=cfs[4])
ans <- sum((xy[,"y"] - pred)^2)
ans}
op <- try(stats::optim(c(a, mean(xy[,"x"]),b,c), objfun,
method = "L-BFGS-B",
upper = c(Inf, max(xy[,"x"]), Inf, Inf),
lower = c(-Inf, min(xy[,"x"]), -Inf, -Inf)),
silent = TRUE)
if(class(op) != "try-error"){
a <- op$par[1]
breakpoint <- op$par[2]
b <- op$par[3]
c <- op$par[4]}else{
a <- mean(xy1[,"y"])
breakpoint <- mean(xy[,"x"])
b <- b
c <- c}
value <- c(a, breakpoint, b, c)
names(value) <- mCall[c("a","breakpoint","b","c")]
value}
pquad <- function(x, a, breakpoint, b, c){
.value <- (x < breakpoint) * a + (x >= breakpoint) * (a + b * (x - breakpoint) + c * (x - breakpoint)^2)
.exp1 <- 1
.exp2 <- ifelse(x < breakpoint, 0, -b + -(c * (2 * (x - breakpoint))))
.exp3 <- ifelse(x < breakpoint, 0, x - breakpoint)
.exp4 <- ifelse(x < breakpoint, 0, (x - breakpoint)^2)
.actualArgs <- as.list(match.call()[c("a","breakpoint","b","c")])
if (all(unlist(lapply(.actualArgs, is.name)))) {
.grad <- array(0, c(length(.value), 4L), list(NULL, c("a","breakpoint","b","c")))
.grad[, "a"] <- .exp1
.grad[, "breakpoint"] <- .exp2
.grad[, "b"] <- .exp3
.grad[, "c"] <- .exp4
dimnames(.grad) <- list(NULL, .actualArgs)
attr(.value, "gradient") <- .grad}
.value}
plquadratic <- selfStart(model = pquad,
initial = pquadInit,
parameters = c("a","breakpoint","b","c")) |
.dt_locale_key <- "_locale"
dt_locale_get <- function(data) {
dt__get(data, .dt_locale_key)
}
dt_locale_set <- function(data, locale) {
dt__set(data, .dt_locale_key, locale)
}
dt_locale_init <- function(data, locale = NULL) {
list(
locale = locale
) %>%
dt_locale_set(data = data)
}
dt_locale_get_value <- function(data) {
dt_locale_get(data = data)$locale
} |
plot.ceteris_paribus_2d_explainer <- function(x, ..., facet_ncol = NULL, add_raster = TRUE,
add_contour = TRUE, bins = 3, add_observation = TRUE,
pch = "+", size = 6) {
all_responses <- x
class(all_responses) <- "data.frame"
midpoint <- mean(all_responses$y_hat, na.rm = TRUE)
new_x1 <- y_hat <- new_x2 <- NULL
pred <- attr(x, "prediction")$observation
all_pairs <- unique(all_responses[,c("vname1","vname2")])
observations <- lapply(1:nrow(all_pairs), function(i) {
pair <- all_pairs[i,]
data.frame(vname1 = pair$vname1,
vname2 = pair$vname2,
new_x1 = pred[,as.character(pair$vname1)],
new_x2 = pred[,as.character(pair$vname2)],
y_hat = midpoint)
})
observation <- do.call(rbind, observations)
pl <- ggplot(all_responses, aes(new_x1, new_x2, fill = y_hat, z = y_hat)) +
facet_wrap(vname1 ~ vname2, scales = "free", ncol = facet_ncol) +
xlab("") + ylab("") +
scale_fill_gradient2(name = 'Prediction', midpoint = midpoint,
low = "
if (add_raster) {
pl <- pl + geom_raster(data = all_responses)
}
if (add_contour) {
pl <- pl + geom_contour(data = all_responses, color = "white", alpha = 0.5, bins = bins)
}
if (add_observation) {
pl <- pl + geom_point(data = observation, fill = "black", pch = pch, size = size)
}
pl + theme_drwhy_blank()
}
theme_drwhy_blank <- function() {
theme_bw(base_line_size = 0) %+replace%
theme(axis.ticks = element_blank(), legend.background = element_blank(),
legend.key = element_blank(), panel.background = element_blank(),
panel.border = element_blank(), strip.background = element_blank(),
plot.background = element_blank(), complete = TRUE,
legend.direction = "horizontal", legend.position = "top",
plot.title = element_text(color = "
plot.subtitle = element_text(color = "
axis.line.x = element_line(color = "white"),
axis.ticks.x = element_line(color = "white"),
axis.title = element_text(color = "
axis.text = element_text(color = "
strip.text = element_text(color = "
} |
calibrate_carbon <- function(inname,
outname,
site,
method = "Bowling_2003",
calibration_half_width = 0.5,
force_cal_to_beginning = TRUE,
force_cal_to_end = TRUE,
gap_fill_parameters = FALSE,
filter_ambient = TRUE,
r2_thres = 0.95,
correct_refData = TRUE,
write_to_file = TRUE) {
ciso <- ingest_data(inname, analyte = 'Co2')
refe <- extract_carbon_calibration_data(ciso$refe_stacked)
if (correct_refData == TRUE) {
refe <- correct_carbon_ref_cval(refe,site)
}
cal_df <- fit_carbon_regression(ref_data = refe, method = method,
calibration_half_width = calibration_half_width)
ciso_subset <- ciso$ambient
if (method == "Bowling_2003") {
ciso_subset_cal <- lapply(names(ciso_subset),
function(x) {
calibrate_ambient_carbon_Bowling2003(
amb_data_list = ciso_subset[[x]],
caldf = cal_df,
site = site,
filter_data = filter_ambient,
force_to_end = force_cal_to_end,
force_to_beginning = force_cal_to_beginning,
r2_thres = r2_thres)
})
} else if (method == "linreg") {
ciso_subset_cal <- lapply(names(ciso_subset),
function(x) {
calibrate_ambient_carbon_linreg(
amb_data_list = ciso_subset[[x]],
caldf = cal_df,
site = site,
filter_data = filter_ambient,
force_to_end = force_cal_to_end,
force_to_beginning = force_cal_to_beginning,
r2_thres = r2_thres)
})
}
names(ciso_subset_cal) <- names(ciso_subset)
if (write_to_file) {
cal_df$timeBgn <- convert_POSIXct_to_NEONhdf5_time(cal_df$timeBgn)
cal_df$timeEnd <- convert_POSIXct_to_NEONhdf5_time(cal_df$timeEnd)
setup_output_file(inname, outname, site, 'co2')
write_carbon_calibration_data(outname, site, cal_df, method = method)
write_carbon_ambient_data(outname, site, ciso_subset_cal)
write_carbon_reference_data2(outname, site, ciso, cal_df)
rhdf5::h5closeAll()
}
} |
fitted.l1ce <- function(object, ...){
object$fitted
}
fitted.l1celist <- function(object, ...){
do.call("cbind", lapply(object, "[[", "fitted"))
} |
multivariatePredictGlm <- function(Xnew,family,beta,offset=NULL){
prediction <- Xnew%*%beta
if(!is.null(offset)) {
if(is.vector(offset)) {
offset <- matrix(offset,nrow(Xnew), sum(family=="poisson"))
} else {
offset <- as.matrix(offset)
}
}
if(sum(family=="bernoulli")>0){
tmp <- prediction[,which(family=="bernoulli")]
prediction[,which(family=="bernoulli")] <- exp(tmp)/(1+exp(tmp))
}
if(sum(family=="binomial")>0){
tmp <- prediction[,which(family=="binomial")]
prediction[,which(family=="binomial")] <- exp(tmp)/(1+exp(tmp))
}
if(sum("poisson"%in%family)>0){
if(is.null(offset)){
tmp <- prediction[,which(family=="poisson")]
}else{
tmp <- log(offset)+prediction[,which(family=="poisson")]
}
prediction[,which(family=="poisson")] <- exp(tmp)
}
return(prediction)
} |
visuEq <- function (K, nVar=NULL, dMax=NULL, substit = 0, approx = FALSE, selecmod = NULL) {
if (is.list(K)) {
if (is.null(selecmod)) {
stop('The model number should be provided using option: selecmod = ')
}
if (length(selecmod)!=1) {
stop('selecmod should be an integer. Only a single model can be displayed')
}
K <- K$models[[selecmod]]
}
if (is.vector(K)) {
K <- cano2M(nVar, dMax, K)
}
if (is.matrix(K)) {
if (is.null(nVar)) nVar <- dim(K)[2]
if (is.null(dMax)) dMax <- p2dMax(nVar = nVar, pMaxKnown = dim(K)[1])
}
if (dim(K)[2] != nVar) {
stop('nVar = ', nVar,
' is not compatible with the model dimension dim(K)[2] = ',
dim(K)[2])
}
if (d2pMax(nVar,dMax) != dim(K)[1]) {
stop('dMax = ', dMax,
' is not compatible with the model size dim(K)[1] = ',
dim(K)[1])
}
if (approx == TRUE) {
lePlusPetit <- min(abs(K)[abs(K) != 0])
digits <- abs(floor(log10(lePlusPetit)))
K <- round(K, digits)
}
else if ((approx %% 1) == 0 & approx != FALSE) {
lePlusPetit <- min(abs(K)[abs(K) != 0])
digits <- abs(floor(log10(lePlusPetit)))
K <- round(K, digits + approx)
}
else if ((approx %% 1) != 0 & !is.logical(approx)) {
stop("parameter 'approx' should be either a logical or an integer value")
}
N <- list()
for (i in 1:nVar) {
if (!is.numeric(substit[1])) {
varsList = substit
}
else {
if (substit == 0) {
varsList = c("X1", "X2", "X3", "X4", "X5", "X6", "X7", "X8", "X9")
}
else if (substit == 1) {
varsList = c("x", "y", "z", "w", "u", "v", "r", "s", "q")
}
else if (substit == 2) {
varsList = c("X_1", "X_2", "X_3", "X_4", "X_5", "X_6", "X_7", "X_8", "X_9")
}
else {
stop("substit must be either a list of nVar values or equal to 0 or 1 or 2")
}
}
dN <- paste("d", varsList[i],"/dt =", sep="")
M <- cbind(K[K[,i]!=0,i], poLabs(nVar, dMax, K[,i]!=0, Xnote=varsList[1:nVar]), "+")
M <- matrix(t(M), nrow=1, ncol=length(M))
M <- M[,1:(dim(M)[2]-1)]
M <- cbind(dN, t(M))
M <- paste(M,collapse=" ")
for (i in 1:nVar) {
M <- gsub(paste("1 ", varsList[i]), varsList[i], M, fixed=TRUE)
}
M <- gsub(" + -", " -", M, fixed=TRUE)
M <- gsub("+ -", " -", M, fixed=TRUE)
M <- gsub("+ -", " -", M, fixed=TRUE)
M <- gsub(" +-", " -", M, fixed=TRUE)
M <- gsub("ct", "", M)
M <- gsub("Ct", "", M)
if (substit[1] == 2) {
M <- gsub("e-0", "e-", M)
M <- gsub("e+0", "e+", M)
M <- gsub("e", ".10^{", M)
M <- gsub("+-", "-", M)
M <- gsub("+ -", "-", M)
}
cat(M, "\n\n")
N[i] <- M
}
invisible(N)
} |
obfuscatePed <- function(ped, size = 6, maxDelta = 30,
existingIds = character(0), map = FALSE ) {
alias <- obfuscateId(ped$id, size = size, existingIds = existingIds)
ped$sire <- alias[ped$sire]
ped$dam <- alias[ped$dam]
ped$id <- alias
for (col in names(ped)) {
if (any("Date" %in% class(ped[[col]]))) {
ped[[col]] <- obfuscateDate(ped[[col]], maxDelta = maxDelta)
}
}
if (any("age" %in% names(ped)) & any("birth" %in% names(ped)) &
any("exit" %in% names(ped))) {
if (all(is.Date(ped$birth)))
ped["age"] <- calcAge(ped$birth, ped$exit)
}
if (map) {
list(ped = ped, map = alias)
} else {
ped
}
} |
caterpillar.plot <- function(x, Parms=NULL, Title=NULL)
{
if(missing(x)) stop("The x argument is required.")
par(mfrow=c(1,1))
if(identical(class(x), "demonoid")) {
if(any(is.na(x$Summary2))) {
x <- x$Summary1
x.lab <- "All Samples"}
else {
x <- x$Summary2
x.lab <- "Stationary Samples"}
if(!is.null(Parms)) {
if(is.character(Parms)) {
Parms <- sub("\\[","\\\\[",Parms)
Parms <- sub("\\]","\\\\]",Parms)
Parms <- sub("\\.","\\\\.",Parms)
if(length(grep(Parms[1], rownames(x))) == 0)
stop("Parameter in Parms does not exist.")
keeprows <- grep(Parms[1], rownames(x))
if(length(Parms) > 1) {
for (i in 2:length(Parms)) {
if(length(grep(Parms[i], rownames(x))) == 0)
stop("Parameter in Parms does not exist.")
keeprows <- c(keeprows,
grep(Parms[i], rownames(x)))}
}
}
if(is.numeric(Parms)) keeprows <- Parms
temp <- x
x <- matrix(x[keeprows,], length(keeprows), ncol(temp))
rownames(x) <- rownames(temp)[keeprows]
colnames(x) <- colnames(temp)
}
x.rows <- nrow(x)
x.lim <- c(min(x[,5]), max(x[,7]))
y.lim <- c(0, x.rows+1)
plot(0, 0, ylim=y.lim, xlim=x.lim, main=Title, sub="",
xlab=x.lab, ylab="", type="n", ann=TRUE, yaxt="n")
abline(v=0, col="gray")
points(x[,6], x.rows:1, pch=20)
for (i in 1:x.rows) {
lines(x[i,c(5,7)], c(x.rows-i+1, x.rows-i+1))}
yy <- x.rows:1
cex.labels <- 1 / {log(x.rows)/5 + 1}
axis(2, labels=rownames(x), tick=FALSE, las=1, at=yy,
cex.axis=cex.labels)
}
else if(identical(class(x), "demonoid.hpc")) {
Chains <- length(x)
x.temp <- list()
for (i in 1:Chains) {x.temp[[i]] <- x[[i]][["Summary1"]]}
x <- x.temp; remove(x.temp)
x.lab <- "All Samples"
if(!is.null(Parms)) {
if(is.character(Parms)) {
Parms <- sub("\\[","\\\\[",Parms)
Parms <- sub("\\]","\\\\]",Parms)
Parms <- sub("\\.","\\\\.",Parms)
if(length(grep(Parms[1], rownames(x[[1]]))) == 0)
stop("Parameter in Parms does not exist.")
keeprows <- grep(Parms[1], rownames(x[[1]]))
if(length(Parms) > 1) {
for (i in 2:length(Parms)) {
if(length(grep(Parms[i], rownames(x[[1]]))) == 0)
stop("Parameter in Parms does not exist.")
keeprows <- c(keeprows,
grep(Parms[i], rownames(x[[1]])))}
}
}
if(is.numeric(Parms)) keeprows <- Parms
temp <- x
for (i in 1:Chains) {
x[[i]] <- matrix(x[[i]][keeprows,], length(keeprows),
ncol(temp[[1]]))}
rownames(x[[1]]) <- rownames(temp[[1]])[keeprows]
colnames(x[[1]]) <- colnames(temp[[1]])
}
x.rows <- nrow(x[[1]])
x.lim <- c(min(x[[1]][,5]), max(x[[1]][,7]))
y.lim <- c(0, x.rows+1)
plot(0, 0, ylim=y.lim, xlim=x.lim, main=Title, sub="",
xlab=x.lab, ylab="", type="n", ann=TRUE, yaxt="n")
abline(v=0, col="gray")
points(x[[1]][,6], x.rows:1, pch=20)
for (i in 2:Chains) {points(x[[i]][,6], (x.rows:1)-(i/10), col=i, pch=20)}
for (i in 1:x.rows) {
lines(x[[1]][i,c(5,7)], c(x.rows-i+1, x.rows-i+1))}
for (j in 2:Chains) {for (i in 1:x.rows) {
lines(x[[j]][i,c(5,7)], c(x.rows-i+1-(j/10), x.rows-i+1-(j/10)), col=j)}}
yy <- x.rows:1
cex.labels <- 1 / {log(x.rows)/5 + 1}
axis(2, labels=rownames(x[[1]]), tick=FALSE, las=1, at=yy,
cex.axis=cex.labels)
}
else if(identical(class(x), "iterquad")) {
if(any(is.na(x$Posterior))) {
x <- x$Summary1
x.lab <- "Point-Estimates"}
else {
x <- x$Summary2[1:length(x$Initial.Values),]
x.lab <- "SIR Samples"}
if(is.null(Parms)) {
keeprows <- Parms <- 1:length(x$Initial.Values)}
else {
if(is.numeric(Parms)) keeprows <- Parms
if(is.character(Parms)) {
Parms <- sub("\\[","\\\\[",Parms)
Parms <- sub("\\]","\\\\]",Parms)
Parms <- sub("\\.","\\\\.",Parms)
if(length(grep(Parms[1], rownames(x))) == 0)
stop("Parameter in Parms does not exist.")
keeprows <- grep(Parms[1], rownames(x))
if(length(Parms) > 1) {
for (i in 2:length(Parms)) {
if(length(grep(Parms[i],
rownames(x))) == 0)
stop("Parameter in Parms does not exist.")
keeprows <- c(keeprows,
grep(Parms[i], rownames(x)))}
}
}
}
temp <- x
x <- matrix(x[keeprows,], length(keeprows),
ncol(temp))
rownames(x) <- rownames(temp)[keeprows]
colnames(x) <- colnames(temp)
if(x.lab != "SIR Samples") Modes <- x[,1]
else Modes <- x[,6]
if(x.lab != "SIR Samples") LB <- x[,3]
else LB <- x[,5]
if(x.lab != "SIR Samples") UB <- x[,4]
else UB <- x[,7]
x.rows <- length(Modes)
x.lim <- c(min(LB), max(UB))
y.lim <- c(0, x.rows+1)
plot(0, 0, ylim=y.lim, xlim=x.lim, main=Title, sub="",
xlab=x.lab, ylab="", type="n", ann=TRUE, yaxt="n")
abline(v=0, col="gray")
points(Modes, x.rows:1, pch=20)
for (i in 1:x.rows) {
lines(c(LB[i], UB[i]), c(x.rows-i+1, x.rows-i+1))}
yy <- x.rows:1
cex.labels <- 1/{log(x.rows)/5 + 1}
axis(2, labels=rownames(x), tick=FALSE, las=1,
at=yy, cex.axis=cex.labels)
}
else if(identical(class(x), "laplace")) {
if(any(is.na(x$Posterior))) {
x <- x$Summary1
x.lab <- "Point-Estimates"}
else {
x <- x$Summary2[1:length(x$Initial.Values),]
x.lab <- "SIR Samples"}
if(is.null(Parms)) {
keeprows <- Parms <- 1:length(x$Initial.Values)}
else {
if(is.numeric(Parms)) keeprows <- Parms
if(is.character(Parms)) {
Parms <- sub("\\[","\\\\[",Parms)
Parms <- sub("\\]","\\\\]",Parms)
Parms <- sub("\\.","\\\\.",Parms)
if(length(grep(Parms[1], rownames(x))) == 0)
stop("Parameter in Parms does not exist.")
keeprows <- grep(Parms[1], rownames(x))
if(length(Parms) > 1) {
for (i in 2:length(Parms)) {
if(length(grep(Parms[i],
rownames(x))) == 0)
stop("Parameter in Parms does not exist.")
keeprows <- c(keeprows,
grep(Parms[i], rownames(x)))}
}
}
}
temp <- x
x <- matrix(x[keeprows,], length(keeprows),
ncol(temp))
rownames(x) <- rownames(temp)[keeprows]
colnames(x) <- colnames(temp)
if(x.lab != "SIR Samples") Modes <- x[,1]
else Modes <- x[,6]
if(x.lab != "SIR Samples") LB <- x[,3]
else LB <- x[,5]
if(x.lab != "SIR Samples") UB <- x[,4]
else UB <- x[,7]
x.rows <- length(Modes)
x.lim <- c(min(LB), max(UB))
y.lim <- c(0, x.rows+1)
plot(0, 0, ylim=y.lim, xlim=x.lim, main=Title, sub="",
xlab=x.lab, ylab="", type="n", ann=TRUE, yaxt="n")
abline(v=0, col="gray")
points(Modes, x.rows:1, pch=20)
for (i in 1:x.rows) {
lines(c(LB[i], UB[i]), c(x.rows-i+1, x.rows-i+1))}
yy <- x.rows:1
cex.labels <- 1/{log(x.rows)/5 + 1}
axis(2, labels=rownames(x), tick=FALSE, las=1,
at=yy, cex.axis=cex.labels)
}
else if(identical(class(x), "pmc")) {
x <- x$Summary
x.lab <- "All Samples"
if(!is.null(Parms)) {
if(is.character(Parms)) {
Parms <- sub("\\[","\\\\[",Parms)
Parms <- sub("\\]","\\\\]",Parms)
Parms <- sub("\\.","\\\\.",Parms)
if(length(grep(Parms[1], rownames(x))) == 0)
stop("Parameter in Parms does not exist.")
keeprows <- grep(Parms[1], rownames(x))
if(length(Parms) > 1) {
for (i in 2:length(Parms)) {
if(length(grep(Parms[i], rownames(x))) == 0)
stop("Parameter in Parms does not exist.")
keeprows <- c(keeprows,
grep(Parms[i], rownames(x)))}
}
}
if(is.numeric(Parms)) keeprows <- Parms
temp <- x
x <- matrix(x[keeprows,], length(keeprows), ncol(temp))
rownames(x) <- rownames(temp)[keeprows]
colnames(x) <- colnames(temp)
}
x.rows <- nrow(x)
x.lim <- c(min(x[,5]), max(x[,7]))
y.lim <- c(0, x.rows+1)
plot(0, 0, ylim=y.lim, xlim=x.lim, main=Title, sub="",
xlab=x.lab, ylab="", type="n", ann=TRUE, yaxt="n")
abline(v=0, col="gray")
points(x[,6], x.rows:1, pch=20)
for (i in 1:x.rows) {
lines(x[i,c(5,7)], c(x.rows-i+1, x.rows-i+1))}
yy <- x.rows:1
cex.labels <- 1 / {log(x.rows)/5 + 1}
axis(2, labels=rownames(x), tick=FALSE, las=1, at=yy,
cex.axis=cex.labels)
}
else if(identical(class(x), "vb")) {
if(any(is.na(x$Posterior))) {
x <- x$Summary1
x.lab <- "Point-Estimates"}
else {
x <- x$Summary2[1:length(x$Initial.Values),]
x.lab <- "SIR Samples"}
if(is.null(Parms)) {
keeprows <- Parms <- 1:length(x$Initial.Values)}
else {
if(is.numeric(Parms)) keeprows <- Parms
if(is.character(Parms)) {
Parms <- sub("\\[","\\\\[",Parms)
Parms <- sub("\\]","\\\\]",Parms)
Parms <- sub("\\.","\\\\.",Parms)
if(length(grep(Parms[1], rownames(x))) == 0)
stop("Parameter in Parms does not exist.")
keeprows <- grep(Parms[1], rownames(x))
if(length(Parms) > 1) {
for (i in 2:length(Parms)) {
if(length(grep(Parms[i],
rownames(x))) == 0)
stop("Parameter in Parms does not exist.")
keeprows <- c(keeprows,
grep(Parms[i], rownames(x)))}
}
}
}
temp <- x
x <- matrix(x[keeprows,], length(keeprows),
ncol(temp))
rownames(x) <- rownames(temp)[keeprows]
colnames(x) <- colnames(temp)
if(x.lab != "SIR Samples") Modes <- x[,1]
else Modes <- x[,6]
if(x.lab != "SIR Samples") LB <- x[,3]
else LB <- x[,5]
if(x.lab != "SIR Samples") UB <- x[,4]
else UB <- x[,7]
x.rows <- length(Modes)
x.lim <- c(min(LB), max(UB))
y.lim <- c(0, x.rows+1)
plot(0, 0, ylim=y.lim, xlim=x.lim, main=Title, sub="",
xlab=x.lab, ylab="", type="n", ann=TRUE, yaxt="n")
abline(v=0, col="gray")
points(Modes, x.rows:1, pch=20)
for (i in 1:x.rows) {
lines(c(LB[i], UB[i]), c(x.rows-i+1, x.rows-i+1))}
yy <- x.rows:1
cex.labels <- 1/{log(x.rows)/5 + 1}
axis(2, labels=rownames(x), tick=FALSE, las=1,
at=yy, cex.axis=cex.labels)
}
else {
x <- as.matrix(x)
x.hpd <- p.interval(x, HPD=TRUE, MM=FALSE, prob=0.95)
x.median <- apply(x, 2, median)
x <- cbind(colMeans(x), sqrt(.colVars(x)),
apply(x, 2, MCSE), ESS(x), x.hpd[,1],
apply(x, 2, median), x.hpd[,2])
rownames(x) <- rownames(x.hpd)
colnames(x) <- c("Mean","SD","MCSE","ESS","LB","Median","UB")
x.lab <- "All Samples"
x.rows <- nrow(x)
x.lim <- c(min(x[,5]), max(x[,7]))
y.lim <- c(0, x.rows+1)
plot(0, 0, ylim=y.lim, xlim=x.lim, main=Title, sub="",
xlab=x.lab, ylab="", type="n", ann=TRUE, yaxt="n")
abline(v=0, col="gray")
points(x[,6], x.rows:1, pch=20)
for (i in 1:x.rows) {
lines(x[i,c(5,7)], c(x.rows-i+1, x.rows-i+1))}
yy <- x.rows:1
cex.labels <- 1 / {log(x.rows)/5 + 1}
axis(2, labels=rownames(x), tick=FALSE, las=1, at=yy,
cex.axis=cex.labels)
}
} |
knitr::opts_chunk$set(collapse = TRUE, comment = "
library(lmem.qtler) |
meanvarFESN_uni = function(mu,Sigma,lambda,tau){
s = sqrt(Sigma)
slam = sqrt(1+lambda^2)
tautil = tau/slam
if(tautil< -35){
Gamma = Sigma/(1+lambda^2)
mub = lambda*tau*Gamma/s
return(meanvarFN(mu-mub,Gamma))
}
phi = lambda/slam
eta = invmills(tau,0,slam)
gamma = sqrt(Sigma/slam^2)
mub = lambda*tau*s/slam^2
m = mu - mub
FFF = AcumESN(0,mu,Sigma,lambda,tau)
eee = dnorm(0,m,gamma)
FNNN = pnorm(0,m,gamma)
ddd = dmvESN1(0,mu,Sigma,lambda,tau)
first = mu*(1-2*FFF) + 2*Sigma*ddd + lambda*eta*s*(1-2*FNNN)
second = mu^2 + Sigma + eta*lambda*s*(m + mu)
third = (1-2*FFF)*mu*(mu^2 + 3*Sigma) + 2*ddd*s*(s*mu^2 + 2*s^3) + eta*lambda*s*(2*eee*gamma^2*(m + mu) + (1-2*FNNN)*(m^2 + gamma^2 + mu*(m + mu) + 2*Sigma))
fourth = mu^4 + 6*mu^2*Sigma + 3*Sigma^2 + eta*lambda*s*(m^3 + m^2*mu + m*(3*gamma^2 + mu^2 + 3*Sigma) + mu*(gamma^2 + mu^2 + 5*Sigma))
return(list(muY=first,EYY=second,varcov=second-first^2))
}
onlymeanFESN_uni = function(mu,Sigma,lambda,tau){
s = sqrt(Sigma)
slam = sqrt(1+lambda^2)
tautil = tau/slam
phi = lambda/slam
eta = invmills(tau,0,slam)
gamma = sqrt(Sigma/slam^2)
mub = lambda*tau*s/slam^2
m = mu - mub
FFF = AcumESN(0,mu,Sigma,lambda,tau)
eee = dnorm(0,m,gamma)
FNNN = pnorm(0,m,gamma)
ddd = dmvESN1(0,mu,Sigma,lambda,tau)
first = mu*(1-2*FFF) + 2*Sigma*ddd + lambda*eta*s*(1-2*FNNN)
return(first)
} |
solutionFunctionGeneratorPermutation <- function(N){
N
function()sample(1:N,replace=FALSE)
}
mutationPermutationInterchange <- function(population, parameters=list()){
N <- length(population[[1]])
if(is.null(parameters$mutationRate)) parameters$mutationRate <- 1/N
mrate <- parameters$mutationRate
popsize <- length(population)
mutations <- ceiling(N * mrate)
if(mutations<=0)
return(population)
samples <- mutations * popsize
index1 <- sample.int(N,samples,TRUE,NULL)
index2 <- sample.int(N,samples,TRUE,NULL)
mutationPermutationInterchangeCore(population,popsize,mutations,index1,index2)
}
mutationPermutationInterchangeCore <- function(population,popsize,mutations,index1,index2){
newpop <- list()
for(i in 1:popsize){
individual <- population[[i]]
if(mutations == 1){
val1 <- individual[index1[i]]
individual[index1[i]] <- individual[index2[i]]
individual[index2[i]] <- val1
}else{
j <- ((i-1)*mutations+1) : (i*mutations)
for(jj in j){
i1 <- index1[jj]
i2 <- index2[jj]
val1= individual[i1]
individual[i1]= individual[i2]
individual[i2]= val1
}
}
newpop <- c(newpop, list(individual))
}
newpop
}
mutationPermutationSwap <- function(population,parameters=list()){
N <- length(population[[1]])
if(is.null(parameters$mutationRate)) parameters$mutationRate <- 1/N
mrate <- parameters$mutationRate
popsize <- length(population)
mutations <- ceiling(N * mrate)
if(mutations<=0)
return(population)
samples <- mutations * popsize
index1 <- sample.int(N-1,samples,TRUE,NULL)
index2 <- index1 +1
mutationPermutationInterchangeCore(population,popsize,mutations,index1,index2)
}
mutationPermutationReversal <- function(population, parameters=list()){
N <- length(population[[1]])
if(is.null(parameters$mutationRate)) parameters$mutationRate <- 1/N
mrate <- parameters$mutationRate
popsize <- length(population)
mutations <- ceiling(N * mrate)
if(mutations<=0)
return(population)
samples <- mutations * popsize
newpop <- list()
index1 <- sample.int(N,samples,TRUE,NULL)
index2 <- sample.int(N,samples,TRUE,NULL)
for(i in 1:popsize){
individual <- population[[i]]
if(mutations == 1){
individual[index1[i]:index2[i]] <- individual[index2[i]:index1[i]]
}else{
j <- ((i-1)*mutations+1) : (i*mutations)
for(jj in j){
i1 <- index1[jj]
i2 <- index2[jj]
individual[i1:i2] <- individual[i2:i1]
}
}
newpop <- c(newpop, list(individual))
}
newpop
}
mutationPermutationInsert <- function(population, parameters=list()){
N <- length(population[[1]])
if(is.null(parameters$mutationRate)) parameters$mutationRate <- 1/N
mrate <- parameters$mutationRate
popsize <- length(population)
mutations <- ceiling(N * mrate)
if(mutations<=0)
return(population)
samples <- mutations * popsize
newpop <- list()
index1 <- sample.int(N,samples,TRUE,NULL)
index2 <- sample.int(N,samples,TRUE,NULL)
for(i in 1:popsize){
individual <- population[[i]]
j <- ((i-1)*mutations+1) : (i*mutations)
for(jj in j){
i1 <- index1[jj]
i2 <- index2[jj]
ind1 <- individual[i1]
individual <- individual[-i1]
if(i2==1)
individual <- c(ind1,individual)
else if(i2==N)
individual <- c(individual,ind1)
else
individual <- c(individual[1:(i2-1)],ind1,individual[i2:(N-1)])
}
newpop <- c(newpop, list(individual))
}
newpop
}
recombinationPermutationCycleCrossover <- function(population, parameters){
popsize <- length(population)/2
newpop <- list()
for(i in 1:popsize){
j <- popsize + i
parent1 <- population[[i]]
parent2 <- population[[j]]
e1 <- parent1[1]
e2 <- parent2[1]
parent2[1] <- e1
while(e1 != e2){
e1 <- e2
rplc <- which(parent1==e1)
e2 <- parent2[rplc]
parent2[rplc] <- e1
}
newpop <- c(newpop, list(parent2))
}
newpop
}
recombinationPermutationOrderCrossover1 <- function(population, parameters){
popsize <- length(population)/2
N <- length(population[[1]])
newpop <- list()
for(i in 1:popsize){
j <- popsize + i
parent1 <- population[[i]]
parent2 <- population[[j]]
idx <- sort(sample(N,2) )
pnew <- setdiff(parent2,parent1[idx[1]:idx[2]])
parent1[-(idx[1]:idx[2])] <- pnew
newpop <- c(newpop, list(parent1))
}
newpop
}
recombinationPermutationPositionBased <- function(population, parameters){
popsize <- length(population)/2
N <- length(population[[1]])
newpop <- list()
for(i in 1:popsize){
j <- popsize + i
parent1 <- population[[i]]
parent2 <- population[[j]]
idx <- sample(N,N/2,replace=FALSE)
parent1[-idx] <- setdiff(parent2,parent1[idx])
newpop <- c(newpop, list(parent1))
}
newpop
}
recombinationPermutationAlternatingPosition <- function(population, parameters){
popsize <- length(population)/2
N <- length(population[[1]])
newpop <- list()
for(i in 1:popsize){
j <- popsize + i
parent1 <- population[[i]]
parent2 <- population[[j]]
pnew <- NULL
for(i in 1:N){
if(i%%2==1)
pnew <- c(pnew,setdiff(parent1,pnew)[1])
if(i%%2==0)
pnew <- c(pnew,setdiff(parent2,pnew)[1])
}
newpop <- c(newpop, list(pnew))
}
newpop
} |
deriv(y1) <- sigma * (y2 - y1)
deriv(y2) <- R * y1 - y2 - y1 * y3
deriv(y3) <- -b * y3 + y1 * y2
initial(y1) <- 10.0
initial(y2) <- 1.0
initial(y3) <- 1.0
sigma <- 10.0
R <- 28.0
b <- 8.0 / 3.0 |
StatOutlier <- ggproto("StatOutlier", Stat,
required_aes = c("x", "y"),
default_aes = aes(x = x, y = y, label = stat(outlier)),
compute_group = function(data, scales,
method = c("x13", "tramoseats"),
spec = NULL,
frequency = NULL,
message = TRUE,
first_date = NULL,
last_date = NULL,
coefficients = FALSE,
digits = 1,
new_data = TRUE){
result <- seasonal_adjustment(data = data,
method = method,
spec = spec,
frequency = frequency,
message = message,
new_data = new_data)
data <- result[["data"]]
sa <- result[["sa"]]
frequency <- result[["frequency"]]
reg_names <- RJDemetra::get_indicators(sa, "preprocessing.model.description")[[1]]
liste_outlier <- grep("(^LS )| (^AO )| (^TC )| (^SO )",
reg_names)
if (length(liste_outlier) == 0)
return(NULL)
liste_outlier_name <- reg_names[liste_outlier]
date <- gsub("(^.* )|(\\()|(\\))", "", liste_outlier_name)
date <- sapply(strsplit(date, "-"),function(x){
x <- as.numeric(x)
x[2] + (x[1] - 1)/frequency
})
out_to_keep <- 1:length(date)
if (!is.null(first_date))
out_to_keep <- intersect(out_to_keep, which(date >= first_date))
if (!is.null(last_date))
out_to_keep <- intersect(out_to_keep, which(date <= last_date))
date <- date[out_to_keep]
liste_outlier_name <- liste_outlier_name[out_to_keep]
if (length(liste_outlier) == 0)
return(NULL)
label_outlier <- liste_outlier_name
if (coefficients) {
reg_coef <- RJDemetra::get_indicators(sa, "preprocessing.model.coefficients")[[1]][liste_outlier,1]
reg_coef <- reg_coef[out_to_keep]
label_outlier <- sprintf(paste0("%s: %.",digits,"f"),
liste_outlier_name,
reg_coef)
}
id_date <- match(as.character(round(date, 3)),
as.character(round(result[["dates"]], 3)))
data_final <- data.frame(x = data$x[id_date],
y = data$y[id_date],
outlier = label_outlier,
stringsAsFactors = FALSE
)
data_final
}
)
geom_outlier <- function(mapping = NULL, data = NULL,
stat = "outlier",
geom = c("text", "label",
"text_repel", "label_repel"),
position = "identity", ...,
method = c("x13", "tramoseats"),
spec = NULL,
frequency = NULL,
message = TRUE,
first_date = NULL,
last_date = NULL,
coefficients = FALSE,
digits = 1,
show.legend = NA,
inherit.aes = TRUE
) {
geom <- match.arg(geom)
if (geom == "label_repel") {
geom <- GeomLabelRepel
} else if (geom == "text_repel") {
geom <- GeomTextRepel
} else if (geom == "label") {
geom <- GeomLabel
} else {
geom <- GeomText
}
ggplot2::layer(data = data, mapping = mapping, stat = stat, geom = geom,
position = position, show.legend = show.legend, inherit.aes = inherit.aes,
params = list(method = method, spec = spec,
frequency = frequency, message = message,
first_date = first_date, last_date = last_date,
coefficients = coefficients, digits = digits,
new_data = !missing(data) || !is.null(data),
...))
} |
library(knitr)
library(poweRlaw)
options(replace.assign=FALSE,width=50)
opts_chunk$set(fig.path = "knitr_figure_poweRlaw/graphicsc-",
cache.path = "knitr_cache_poweRlaw_c/",
fig.align = "center",
dev = "pdf", fig.width = 5, fig.height = 5,
fig.show = "hold", cache = FALSE, par = TRUE,
out.width = "0.4\\textwidth")
knit_hooks$set(crop = hook_pdfcrop)
knit_hooks$set(par = function(before, options, envir) {
if (before && options$fig.show != "none") {
par(mar = c(3, 4, 2, 1), cex.lab = .95, cex.axis = .9,
mgp = c(3, .7, 0), tcl = -.01, las = 1)
}}, crop = hook_pdfcrop)
set.seed(1)
palette(c(rgb(170, 93, 152, maxColorValue = 255),
rgb(103, 143, 57, maxColorValue = 255),
rgb(196, 95, 46, maxColorValue = 255),
rgb(79, 134, 165, maxColorValue = 255),
rgb(205, 71, 103, maxColorValue = 255),
rgb(203, 77, 202, maxColorValue = 255),
rgb(115, 113, 206, maxColorValue = 255)))
library("poweRlaw")
set.seed(1)
x = rpldis(1000, xmin = 2, alpha = 3)
m1 = displ$new(x)
m1$setPars(estimate_pars(m1))
m2 = dispois$new(x)
m2$setPars(estimate_pars(m2))
plot(m2, ylab = "CDF")
lines(m1)
lines(m2, col = 2, lty = 2)
grid()
plot(m2, ylab = "CDF")
lines(m1)
lines(m2, col = 2, lty = 2)
grid()
comp = compare_distributions(m1, m2)
comp$p_two_sided
compare_distributions(m1, m2)$p_two_sided
compare_distributions(m2, m1)$p_two_sided
compare_distributions(m1, m2)$p_one_sided
compare_distributions(m2, m1)$p_one_sided
data("moby")
m1 = displ$new(moby)
m1$setXmin(estimate_xmin(m1))
m2 = dislnorm$new(moby)
m2$setXmin(m1$getXmin())
m2$setPars(estimate_pars(m2))
plot(m2, ylab = "CDF")
lines(m1)
lines(m2, col = 2, lty = 2)
grid()
plot(m2, ylab = "CDF")
lines(m1)
lines(m2, col = 2, lty = 2)
grid()
comp = compare_distributions(m1, m2)
comp$p_two_sided
comp$test_statistic
rm(list = ls(all = TRUE)) |
mlnormal_update_beta <- function( NB, Z_index, G, beta,
Z_list, X_list, y_list, V1_list, theta, REML=FALSE,
id_list, N, V1zero=NULL, REML_shortcut=FALSE,
rcpp_args, X, y, use_Rcpp, prior_args, control_beta )
{
beta0 <- beta
P <- NULL
if ( use_Rcpp ){
mlnormal_update_beta_XVX_ <- mlnormal_update_beta_XVX_Rcpp
} else {
mlnormal_update_beta_XVX_ <- mlnormal_update_beta_XVX_R
}
res <- mlnormal_update_beta_XVX_( NB=NB, Z_index=Z_index,
G=G, V1_list=V1_list, X_list=X_list,
y_list=y_list, rcpp_args=rcpp_args,
X=X, y=y )
XVX <- res$XVX
XVY <- res$XVY
XV_list <- res$XV_list
if ( ( ! REML_shortcut ) & REML ){
XVX1 <- solve(XVX)
V1 <- mlnormal_fill_matrix_from_list( V1=V1zero, V1_list=V1_list,
id_list=id_list, G=G )
H1 <- XVX1 %*% crossprod(X, V1 )
P <- V1 - V1 %*% X %*% H1
}
if ( prior_args$use_GLS ){
beta <- mlnormal_update_beta_GLS( XVX=XVX, XVY=XVY,
control_beta=control_beta)
}
if ( prior_args$use_prior ){
beta <- mlnormal_update_beta_iterations_priors(beta=beta0,
prior_args=prior_args, XVX=XVX, XVY=XVY,
control_beta=control_beta )
}
if ( prior_args$use_penalty ){
beta <- mlnormal_update_beta_iterations_penalty(beta=beta0,
prior_args=prior_args, XVX=XVX, XVY=XVY,
control_beta=control_beta )
}
beta <- mlnormal_as_vector_names(pars=beta, parnames=names(beta0) )
beta <- sirt::bounds_parameters( pars=beta, lower=control_beta$beta_lower,
upper=control_beta$beta_upper )
beta_change <- mlnormal_parameter_change( pars=beta, pars0=beta0 )
res <- list("beta"=beta, "beta_change"=beta_change,
XVX=XVX, XVY=XVY, P=P,
beta_increment=beta - beta0 )
return(res)
} |
.accel_names <- c("Accelerometer_X", "Accelerometer_Y", "Accelerometer_Z")
.gyro_names <- c("Gyroscope_X", "Gyroscope_Y", "Gyroscope_Z")
.mag_names <- c("Magnetometer_X", "Magnetometer_Y", "Magnetometer_Z")
empty_raw <- function(
timestamps, empty_value = NA, info, empty_frame = NULL
) {
if (!length(timestamps)) {
return(structure(
list(
Timestamp = structure(
numeric(0),
class = c("POSIXct", "POSIXt")
),
Accelerometer_X = numeric(0),
Accelerometer_Y = numeric(0),
Accelerometer_Z = numeric(0)
),
row.names = integer(0),
class = "data.frame"
))
}
milliseconds <- seq(info$Sample_Rate) - 1
milliseconds <- milliseconds / info$Sample_Rate
missing_times <- sapply(
timestamps, function(x) x + milliseconds,
simplify = FALSE
) %>% {do.call(c, .)}
if (is.null(empty_frame)) {
missing_entries <- data.frame(
Timestamp = missing_times,
Accelerometer_X = empty_value,
Accelerometer_Y = empty_value,
Accelerometer_Z = empty_value
)
} else {
missing_entries <- data.frame(
Timestamp = missing_times,
empty_frame, row.names = NULL
)
}
missing_entries
}
tick_to_posix <- function(x, tz = "UTC", ...) {
x <- as.numeric(as.character(x)) / 10000000
as.POSIXct(x, tz, origin = "0001-01-01", ...)
}
bin_int <- function(value_bin) {
sum(2 ^ (length(value_bin) - which(value_bin)))
}
AG_binary <- function(value, n = 8) {
binaryLogic::as.binary(
unlist(binaryLogic::as.binary(rev(value), n = n)),
logic = TRUE
)
}
get_value <- function(type, value) {
switch(
type,
"float" = get_float_value(value),
"int" = readBin(value, "integer", 4, 4)
)
}
get_float_value <- function(value) {
n_bytes <- length(value)
n_bits <- n_bytes * 8
exponent <- get_exponent(value, n_bytes)
significand <- get_significand(value, n_bits, n_bytes)
significand * (2^exponent)
}
get_exponent <- function(value, n_bytes) {
x <- value[n_bytes]
binx <- AG_binary(x, n = 8)
is_negative <- binx[1] == binaryLogic::as.binary(1)
exponent <- as.integer(binx)
if (is_negative) {
exponent <- exponent * -1
}
return(as.double(exponent))
}
get_significand <- function(value, n_bits, n_bytes) {
FLOAT_MAXIMUM <- 2^((n_bits - 8) - 1)
x <- value[rev(seq(value))[-1]]
binx <- AG_binary(rev(x), n = 8)
is_negative <- binx[1] == binaryLogic::as.binary(1)
significand <- as.integer(binx)
if (is_negative) {
significand <- significand * -1
}
as.double(significand) / FLOAT_MAXIMUM
}
update_key <- function(key, value) {
key <- key[1, ]
key$Range <- NA
key$value <- value
return(key)
}
capability_collapse <- function(caps) {
cap_length <- length(caps)
if (cap_length == 1) return (caps)
last_cap <- caps[length(caps)]
caps <- paste(caps[-length(caps)], collapse = ", ")
caps <- paste(c(caps, ", and ", last_cap), collapse = "")
if (cap_length == 2) caps <- gsub(", and", " and", caps)
return(caps)
}
get_primary_accel_scale <- function(info) {
scale_factor <- switch(
substring(info$Serial_Number, 1, 3),
"NEO" = 341,
"CLE" = 341,
"MOS" = 256
)
if ("Acceleration_Scale" %in% names(info)) {
scale_factor <- info$Acceleration_Scale
}
stopifnot(all.equal(
scale_factor, as.integer(scale_factor),
scale = 1, tolerance = 0.0
))
as.integer(scale_factor)
} |
parallelTables=function(width,listTables,type="latex"){
a=length(width)
if(class(listTables)!="list"){
cat("\nThe 2nd parameter listTables sholud be a list\n")
return(invisible())
}
b=length(listTables)
if(a!=b) {
cat("\nLengths of width and tables are different\n")
cat(paste("length of width=",a,",length of tables=",b,sep=""))
return(invisible())
}
if(type=="html") parallelTablesHTML(width,listTables)
else parallelTablesLatex(width,listTables)
}
parallelTablesLatex=function(width,listTables){
a=length(width)
cat("\\begin{table}[!htb]\n")
for(i in 1:a){
cat(paste("\\begin{minipage}{",width[i],"\\linewidth}\n\\centering\n",
sep=""))
if(class(listTables[[i]])=="ztable") print(listTables[[i]],type="latex")
else if(class(listTables[[i]])=="character") {
cat(paste("\\includegraphics[width=1\\linewidth]{",
listTables[[i]],"}\n",sep=""))
}
cat("\\end{minipage}\n")
}
cat("\\end{table}")
}
parallelTablesHTML=function(width,listTables){
a=length(width)
cat("<table width=\"100%\" cellspacing=\"5px\" cellpadding=\"5px\" border=\"0\">
\n<colgroup>\n")
for(i in 1:a) cat(paste("<col width=",
ifelse(width[i]<=1,width[i]*100,width[i]),
"%>\n",sep=""))
cat("</colgroup>\n<tr>")
for(i in 1 :a){
cat("<td>")
if(class(listTables[[i]])=="ztable") print(listTables[[i]],type="html")
else if(class(listTables[[i]])=="character")
cat(paste("<img src=\"",listTables[[i]],"\">",sep=""))
cat("</td>\n")
}
cat("</tr>\n</table>\n")
} |
f_level_shift <-
function(data_series,threshold1,threshold2,duration) {
diff1 <- data_series[-1] - data_series[-length(data_series)]
Index <- which(abs(diff1)>threshold1)
diff2 <- rep(0, length(Index))
number_temp <- 0
number <- 0
LS_candidate <- c()
LS_mag <- c()
LS_point <- c()
if(length(Index) > 0) {
for(i in 1:length(Index)) {
Up <- Index[i] + duration
Down <- Index[i] - duration
if ( (Up > length(data_series)) || (Down < 1) ) {
diff2[i] <- 0
} else {
diff2[i] <- mean( data_series[Index[i]:Up] ) - mean( data_series[Down:Index[i]] )
}
if( (abs(diff2[i]) > threshold2) && (sign(diff1[Index[i]]) == sign(diff2[i])) ) {
number_temp <- number_temp + 1
LS_candidate[number_temp] <- Index[i]
LS_mag[number_temp] <- diff2[i]
}
}
}
if(number_temp > 0) {
absLS_mag <- abs(LS_mag)
LS_mag_sorted <- absLS_mag[order(-absLS_mag)]
index_sort <- order(-absLS_mag)
number <- 1
LS_point[number] <- LS_candidate[index_sort[1]]
if(number_temp>1) {
ci <- 2
for(i in 2:number_temp) {
t <- 0
for(j in 1:number) {
if( abs(LS_candidate[index_sort[ci]] - LS_point[j]) > duration ) {
t <- t + 1
}
}
if (t == number) {
number <- number + 1
LS_point[number] <- LS_candidate[index_sort[ci]]
}
ci <- ci + 1
}
}
}
flevel.values <- list(
"no" = number,
"LS_point" = LS_point
)
class(flevel.values) <- "flevel"
return(flevel.values)
} |
write_idx = function(x, file_name, endian = "big")
{ if (!is.character(file_name)) stop("File_name must be character")
file = file(file_name, "wb")
writeBin(as.raw(0), file, size = 1, endian = endian)
writeBin(as.raw(0), file, size = 1, endian = endian)
if (typeof(x) == "integer")
{ type = 12
size = 4
}
else if (typeof(x) == "double")
{ type = 14
size = 8
}
else stop("Type of x must be integer or double")
writeBin(as.raw(type), file, size = 1, endian = endian)
if (is.array(x)) dim_x = dim(x)
else if (is.vector(x)) dim_x = length(x)
else stop("x must be a vector, a matrix or an array")
writeBin(as.raw(length(dim_x)), file, size = 1, endian = endian)
for (i in dim_x)
{ writeBin(i, file, size = 4, endian = endian)
}
if (length(dim_x) > 1) x = as.vector(aperm(x))
writeBin(x, file, size = size, endian = endian)
close(file)
} |
invlogit <- function(x) {
1 - 1 / (1 + exp(x))
}
get_exp_Xb <- function(y, x, pars) exp(get_Xb(y, x, pars))
get_Xb <- function(y, x, pars) {
pars_betas <- pars[-1, ]
x %*% pars_betas
} |
scales <- c(10,50,110)
list_scales_phys <- purrr::map(scales, ne_find_vector_data, category = 'physical')
df_layers_physical <- dplyr::full_join(list_scales_phys[[1]], list_scales_phys[[2]], by='layer')
df_layers_physical <- dplyr::full_join(df_layers_physical, list_scales_phys[[3]], by='layer')
names(df_layers_physical)[2:4] <- paste0('scale',scales)
df_layers_physical[2:4] <- ifelse(is.na(df_layers_physical[2:4]),0,1)
df_layers_physical <- dplyr::arrange(df_layers_physical, layer)
list_scales_cult <- purrr::map(scales, ne_find_vector_data, category = 'cultural')
df_layers_cultural <- dplyr::full_join(list_scales_cult[[1]], list_scales_cult[[2]], by='layer')
df_layers_cultural <- dplyr::full_join(df_layers_cultural, list_scales_cult[[3]], by='layer')
names(df_layers_cultural)[2:4] <- paste0('scale',scales)
df_layers_cultural[2:4] <- ifelse(is.na(df_layers_cultural[2:4]),0,1)
df_layers_cultural <- dplyr::arrange(df_layers_cultural, layer)
devtools::use_data(df_layers_physical, overwrite=TRUE)
devtools::use_data(df_layers_cultural, overwrite=TRUE) |
test_that("defineModule correctly handles different inputs", {
testInitOut <- testInit("raster", smcc = FALSE)
on.exit({
testOnExit(testInitOut)
}, add = TRUE)
tmp <- simInit()
x0 <- list()
expect_warning(defineModule(tmp, x0))
expect_identical(suppressWarnings(defineModule(tmp, x0)),
suppressWarnings(defineModule(tmp, .emptyMetadata())))
x1 <- list(
name = "testModule",
description = "this is a test.",
keywords = c("test"),
childModules = character(),
authors = c(person(c("Alex", "M"), "Chubaty",
email = "[email protected]",
role = c("aut", "cre"))),
version = list(testModule = "0.0.0.9000"),
spatialExtent = raster::extent(rep(NA_real_, 4)),
timeframe = as.POSIXlt(c(NA, NA)),
timeunit = "year",
citation = list(),
documentation = list(),
reqdPkgs = list("grid", "raster", "sp"),
parameters = rbind(
defineParameter("dummyVal", "numeric", 1.0, NA, NA, "vague description
with spaces")
),
inputObjects = bindrows(
expectsInput(objectName = "testInput", objectClass = "list", sourceURL = "", desc = NA_character_),
expectsInput(objectName = "testInput2", objectClass = "list", sourceURL = "", desc = "another vague
description with spaces")
),
outputObjects = bindrows(
createsOutput(objectName = "testOutput", objectClass = "list", desc = NA_character_),
createsOutput(objectName = "testOutput", objectClass = "list", desc = "another vague
description with spaces for outputs another space")
)
)
expect_false(any(unlist(lapply(x1, function(v)
grepl(" |\n", v)))))
x1 <- rmExtraSpacesEOLList(x1)
expect_false(any(unlist(lapply(x1, function(v)
grepl(" |\n", v)))))
x2 <- x1
x2$name <- list("testModule")
expect_identical(defineModule(tmp, x1), defineModule(tmp, x2))
x2 <- x1
x2$description <- list("this is a test.")
expect_identical(defineModule(tmp, x1), defineModule(tmp, x2))
x2 <- x1
x2$keywords <- list("test")
expect_identical(defineModule(tmp, x1), defineModule(tmp, x2))
x2 <- x1
x2$authors <- "not a person class"
expect_true({defineModule(tmp, x2); TRUE})
x2 <- x1
x2$version <- "0.0.0.9000"
expect_identical(defineModule(tmp, x1), defineModule(tmp, x2))
x2 <- x1
x2$spatialExtent <- NA
expect_identical(defineModule(tmp, x1), defineModule(tmp, x2))
x2 <- x1
x2$timeframe <- NA
expect_identical(defineModule(tmp, x1), defineModule(tmp, x2))
x2 <- x1
x2$timeunit <- NA
expect_identical(defineModule(tmp, x1), defineModule(tmp, x2))
x2 <- x1
x2$citation <- character()
expect_identical(defineModule(tmp, x1), defineModule(tmp, x2))
x2 <- x1
x2$reqdPkgs <- c("grid", "raster", "sp")
expect_identical(defineModule(tmp, x1), defineModule(tmp, x2))
x2 <- x1
x2$parameters <- "not a data.frame"
expect_true({defineModule(tmp, x2); TRUE})
x2 <- x1
x2$inputObjects <- "not a data.frame"
expect_true({defineModule(tmp, x2); TRUE})
x2 <- x1
x2$outputObjects <- "not a person class"
expect_true({defineModule(tmp, x2); TRUE})
})
test_that("depsEdgeList and depsGraph work", {
times <- list(start = 0.0, end = 10)
params <- list(
.globals = list(burnStats = "npixelsburned", stackName = "landscape"),
randomLandscapes = list(.plotInitialTime = NA, .plotInterval = NA),
caribouMovement = list(.plotInitialTime = NA, .plotInterval = NA),
fireSpread = list(.plotInitialTime = NA, .plotInterval = NA)
)
modules <- list("randomLandscapes", "caribouMovement", "fireSpread")
paths <- list(modulePath = system.file("sampleModules", package = "SpaDES.core"))
mySim <- simInit(times, params, modules, paths = paths)
el <- depsEdgeList(mySim)
el_from <- c("caribouMovement", "fireSpread", "fireSpread",
"fireSpread", "randomLandscapes", "randomLandscapes")
el_to <- c("caribouMovement", "caribouMovement", "fireSpread", "fireSpread",
"caribouMovement", "fireSpread")
el_objName <- c("caribou", "landscape", "landscape",
"npixelsburned", "landscape", "landscape")
el_objClass <- c("SpatialPointsDataFrame", "RasterStack", "RasterStack",
"numeric", "RasterStack", "RasterStack")
expect_is(el, "data.table")
expect_equal(names(el), c("from", "to", "objName", "objClass"))
expect_equal(el$from, el_from)
expect_equal(el$to, el_to)
expect_equal(el$objName, el_objName)
expect_equal(el$objClass, el_objClass)
p <- .depsPruneEdges(el)
p_from <- c("fireSpread", "randomLandscapes", "randomLandscapes")
p_to <- c("caribouMovement", "caribouMovement", "fireSpread")
p_objName <- c("landscape", "landscape", "landscape")
p_objClass <- c("RasterStack", "RasterStack", "RasterStack")
p_ <- data.table::data.table(
from = p_from, to = p_to, objName = p_objName, objClass = p_objClass
)
expect_is(p, "data.table")
expect_equivalent(p, p_)
expect_is(depsGraph(mySim), "igraph")
})
test_that("3 levels of parent and child modules load and show correctly", {
testInitOut <- testInit("raster", smcc = FALSE)
on.exit({
testOnExit(testInitOut)
}, add = TRUE)
suppressMessages({
newModule("grandpar1", tmpdir, type = "parent",
children = c("child1", "child2", "par1", "par2"), open = FALSE)
newModule("par1", tmpdir, type = "parent", children = c("child4", "child3"), open = FALSE)
newModule("par2", tmpdir, type = "parent", children = c("child5", "child6"), open = FALSE)
newModule("child1", tmpdir, open = FALSE)
newModule("child2", tmpdir, open = FALSE)
newModule("child3", tmpdir, open = FALSE)
newModule("child4", tmpdir, open = FALSE)
newModule("child5", tmpdir, open = FALSE)
newModule("child6", tmpdir, open = FALSE)
})
fileName <- "child2/child2.R"
xxx <- readLines(fileName)
xxx1 <- gsub(xxx, pattern = 'timeunit = "year"', replacement = 'timeunit = "day"')
cat(xxx1, file = fileName, sep = "\n")
fileName <- "child3/child3.R"
xxx <- readLines(fileName)
xxx1 <- gsub(xxx, pattern = 'timeunit = "year"', replacement = 'timeunit = "week"')
cat(xxx1, file = fileName, sep = "\n")
fileName <- "child5/child5.R"
xxx <- readLines(fileName)
xxx1 <- gsub(xxx, pattern = 'timeunit = "year"', replacement = 'timeunit = "second"')
cat(xxx1, file = fileName, sep = "\n")
fileName <- "par1/par1.R"
xxx <- readLines(fileName)
xxx1 <- gsub(xxx, pattern = 'timeunit = "year"', replacement = 'timeunit = "month"')
cat(xxx1, file = fileName, sep = "\n")
if (Sys.which("glpsol") == "") {
if (Sys.info()[['sysname']] == "Darwin") {
skip("GLPK not available on macOS")
} else if (Sys.info()[['sysname']] == "Linux") {
skip("GLPK not available on Linux")
}
} else {
mySim <- simInit(modules = list("grandpar1"), paths = list(modulePath = tmpdir))
mg <- moduleGraph(mySim, FALSE)
if (is(mg, "list")) {
expect_true(is(mg$graph, "igraph"))
expect_true(is(mg$communities, "communities"))
expect_true(length(unique(mg$communities$member)) == 3)
comm <- try(communities(mg$communities)[["1"]])
if (!is(comm, "try-error")) {
expect_true(any(grepl("grandpar1", comm)))
expect_true(identical(basename(comm), c("grandpar1", "par1", "par2", "child1", "child2")))
}
}
}
})
test_that("Test cleaning up of desc in createsOutputs, expectsInputs, defineParameters", {
testInitOut <- testInit("raster", smcc = FALSE)
on.exit({
testOnExit(testInitOut)
}, add = TRUE)
aList <- list()
aList[[1]] <- expectsInput("ROCList", "list", sourceURL = NA,
"Hi ", "Ho ", "its off
to work we go", otherCol = "lala")
aList[[2]] <- createsOutput("ROCList", "list",
"Hi ", "Ho ", "its off
to work we go", otherCol = "lala")
aList[[3]] <- defineParameter("ROCList", "list", NA, NA, NA,
"Hi ", "Ho ", "its off
to work we go", otherCol = "lala")
tests <- Map(a = aList,
nam = c("expectsInput", "createsOutput", "defineParameter"),
function(a, nam) {
expect_true(is(a, "data.frame"))
cn <- colnames(a)
cn <- tolower(gsub("param", "", cn))
actuallyIs <- tolower(sort(c("...", cn)))
shouldBe <- tolower(sort(c(formalArgs(get(nam)))))
if (!grepl("Param", nam))
shouldBe <- sort(c(shouldBe, "othercol"))
expect_true(identical(actuallyIs, shouldBe))
desc <- a[[grep("desc", tolower(colnames(a)))]]
expect_false(grepl(" ", desc))
expect_false(grepl("\n", desc))
})
}) |
sim.HCAR <- function(psi, data, n.samples){
if (is.environment(data)) {
y <- get("y", envir=data)
X <- get("X", envir=data)
W <- get("W", envir=data)
M <- get("M", envir=data)
Z <- get("Z", envir=data)
n <- length(y)
K <- nrow(M)
In <- get("In", envir=data)
Ik <- get("Ik", envir=data)
} else {
y <- data$y
X <- data$X
W <- data$W
M <- data$M
Z <- data$Z
n <- length(y)
K <- nrow(M)
In <- data$In
Ik <- data$Ik
}
if(is.null(W)){
lambda <- psi[1]
sigma.e <- psi[2]
sigma.u <- psi[3]
beta <- psi[-c(1:3)]
Qe.s <- In/sigma.e
Qu.s <- (Ik - lambda*M)/sigma.u
Xb <- X %*% beta
Q.new <- crossprod(Z)/sigma.e + Qu.s
b <- solve(Q.new, crossprod(Z, as.spam(Qe.s %*% (y-Xb))))
CholQ <- chol(Q.new, pivot = "MMD", memory = list(nnzcolindices = 6.25 * K))
z.err <- matrix(rnorm(K*n.samples), nrow = K, ncol = n.samples)
u.y <- apply(z.err, 2, function(x) b + backsolve(CholQ, x))
log.uy <- function(u.y){
res <- y - Xb - Z%*%u.y
as.numeric(-0.5 *(crossprod(res)/sigma.e + crossprod(u.y, Qu.s) %*% u.y))
}
lpsi <- apply(u.y, 2, log.uy)
logdetQes.half <- sum(log(diag(Qe.s)))/2
Lu.s <- chol(Qu.s, pivot = "MMD", memory = list(nnzcolindices = 6.25 * K))
logdetQus.half <- sum(log(diag(Lu.s)))
const.psi <- logdetQes.half + logdetQus.half
}else{
rho <- psi[1]
lambda <- psi[2]
sigma.e <- psi[3]
sigma.u <- psi[4]
beta <- psi[-c(1:4)]
Qe.s <- as.spam((In - rho*W)/sigma.e)
Qu.s <- as.spam((Ik - lambda*M)/sigma.u)
Xb <- X %*% beta
Q.new <- as.spam(crossprod(Z, Qe.s) %*% Z + Qu.s)
b <- solve(Q.new, crossprod(Z, Qe.s %*% (y-Xb)))
CholQ <- chol(Q.new, pivot = "MMD", memory = list(nnzcolindices = 6.25 * K))
z.err <- matrix(rnorm(K*n.samples), nrow = K, ncol = n.samples)
u.y <- apply(z.err, 2, function(x) b + backsolve(CholQ, x))
log.uy <- function(u.y){
res <- y - Xb - Z%*%u.y
as.numeric(-0.5 *(crossprod(res, Qe.s) %*% res + crossprod(u.y, Qu.s) %*% u.y))
}
lpsi <- apply(u.y, 2, log.uy)
Le.s <- chol(Qe.s, pivot = "MMD", memory = list(nnzcolindices = 6.25 * n))
logdetQes.half <- sum(log(diag(Le.s)))
Lu.s <- chol(Qu.s, pivot = "MMD", memory = list(nnzcolindices = 6.25 * K))
logdetQus.half <- sum(log(diag(Lu.s)))
const.psi <- logdetQes.half + logdetQus.half
}
return(list(psi = psi, n.samples = n.samples, u.y = u.y, lpsi = lpsi, const.psi = const.psi))
} |
set.seed(123)
dists <- list(
dist(matrix(rnorm(1000), ncol = 4)),
dist(matrix(rnorm(1000), ncol = 20)),
dist(matrix(rnorm(10000), ncol = 40)),
dist(matrix(sample(1:100000, 1000), ncol = 4)),
dist(matrix(sample(1:100000, 1000), ncol = 20)),
dist(matrix(sample(1:100000, 1000), ncol = 50))
)
referenceImplementation <- function(distance, dc, gaussian=FALSE) {
if(missing(dc)) {
dc <- reference_estimateDc(distance)
}
rho <- reference_localDensity(distance, dc, gaussian=gaussian)
delta <- reference_distanceToPeak(distance, rho)
res <- list(rho=rho, delta=delta, distance=distance, dc=dc, threshold=c(rho=NA, delta=NA), peaks=NA, clusters=NA, halo=NA,
knn_graph = NA, nearest_higher_density_neighbor = NA,
nn.index = NA, nn.dist = NA)
class(res) <- 'densityCluster'
res
}
reference_estimateDc <- function(distance, neighborRateLow=0.01, neighborRateHigh=0.02) {
comb <- as.matrix(distance)
size <- attr(distance, 'Size')
dc <- min(distance)
dcMod <- as.numeric(summary(distance)['Median']*0.01)
while(TRUE) {
neighborRate <- mean((apply(comb < dc, 1, sum)-1)/size)
if(neighborRate > neighborRateLow && neighborRate < neighborRateHigh) break
if(neighborRate > neighborRateHigh) {
dc <- dc - dcMod
dcMod <- dcMod/2
}
dc <- dc + dcMod
}
cat('Distance cutoff calculated to', dc, '\n')
dc
}
reference_distanceToPeak <- function(distance, rho) {
comb <- as.matrix(distance)
res <- sapply(1:length(rho), function(i) {
peaks <- comb[rho>rho[i], i]
if(length(peaks) == 0) {
max(comb[,i])
} else {
min(peaks)
}
})
names(res) <- names(rho)
res
}
reference_localDensity <- function(distance, dc, gaussian=FALSE) {
comb <- as.matrix(distance)
if(gaussian) {
res <- apply(exp(-(comb/dc)^2), 1, sum)-1
} else {
res <- apply(comb < dc, 1, sum)-1
}
if(is.null(attr(distance, 'Labels'))) {
names(res) <- NULL
} else {
names(res) <- attr(distance, 'Labels')
}
res
}
dcs <- lapply(dists, estimateDc)
referenceDcs <- lapply(dists, reference_estimateDc)
densityClustReference <- Map(referenceImplementation, dists, dcs)
gaussianDensityClustReference <- Map(referenceImplementation, dists, dcs, TRUE) |
if_na = function(x, value, label = NULL){
stopifnot(length(label)<2)
if (length(label) == 0 || label == ""){
recode(x) = c(NA, NaN) ~ value
} else {
args = list(c(NA, NaN) ~ value)
names(args) = label
recode(x) = args
}
x
}
'if_na<-' = function(x, label = NULL, value){
fix_datatable(if_na(x, value, label = label))
}
'%if_na%' = function(x, value) if_na(x, value)
na_if = function(x, value, with_labels = FALSE){
if(!length(value)) return(x)
recode(x, with_labels = with_labels) = value ~ NA
x
}
'na_if<-' = function(x, with_labels = FALSE, value){
fix_datatable(na_if(x, value, with_labels = with_labels))
}
'%na_if%' = function(x, value) na_if(x, value)
mis_val = na_if
'mis_val<-' = `na_if<-`
'%mis_val%' = '%na_if%'
valid = function(x){
UseMethod("valid")
}
valid.default = function(x){
!is.na(x)
}
valid.data.frame = function(x){
if (length(x)) {
res = do.call(cbind, lapply(x, is.na))
} else {
res = matrix(FALSE, NROW(x), 0)
}
!rowAlls(res)
}
valid.dichotomy = function(x){
if (length(x)) {
res = do.call(cbind, lapply(x, function(x) x==1))
} else {
res = matrix(FALSE, NROW(x), 0)
}
rowAnys(res, na.rm = TRUE)
}
valid.matrix = function(x){
!rowAlls(is.na(x))
} |
OptimalSet <-
function(object){
if(is.null(object$Psel))
out <- data.frame("Name"=object$Xopt,"Importance"=object$ranking[object$Xopt])
else
out <- data.frame("Name"=object$Xopt,"Importance"=object$ranking[object$Xopt], "Prob.Selection"=object$Psel[object$Xopt])
rownames(out) <- NULL
return(out)
} |
es10REF <- c("", "Formula: composite ~ dsex + b017451 ", "", "Plausible values: 5",
"jrrIMax: 1", "Weight variable: 'origwt'", "Variance method: jackknife",
"JK replicates: 62", "full data n: 17606", "n used: 16331", "",
"", "Summary Table:", " dsex b017451 N WTD_N PCT SE(PCT) MEAN SE(MEAN)",
" Male Never or hardly ever 2350 2434.844 29.00978 0.6959418 270.8243 1.057078",
" Male Once every few weeks 1603 1638.745 19.52472 0.5020657 275.0807 1.305922",
" Male About once a week 1384 1423.312 16.95795 0.5057265 281.5612 1.409587",
" Male 2 or 3 times a week 1535 1563.393 18.62694 0.4811497 284.9066 1.546072",
" Male Every day 1291 1332.890 15.88062 0.5872731 277.2597 1.795784",
" Female Never or hardly ever 1487 1517.609 18.20203 0.5078805 266.7897 1.519020",
" Female Once every few weeks 1544 1552.149 18.61630 0.4892491 271.2255 1.205528",
" Female About once a week 1469 1514.403 18.16358 0.5782966 278.7502 1.719778",
" Female 2 or 3 times a week 1827 1862.502 22.33864 0.4844840 282.7765 1.404107",
" Female Every day 1841 1890.918 22.67945 0.6553039 275.4628 1.219439"
)
es11REF2 <- c("", "Formula: composite ~ dsex + b017451 ", "", "Plausible values: 5",
"jrrIMax: 1", "Weight variable: 'origwt'", "Variance method: jackknife",
"JK replicates: 62", "full data n: 17606", "n used: 16331", "",
"", "Summary Table:", " dsex b017451 N WTD_N PCT SE(PCT) MEAN SE(MEAN)",
" Male Never or hardly ever 2350 2434.844 29.00978 0.6959418 270.8243 1.057078",
" Male Once every few weeks 1603 1638.745 19.52472 0.5020657 275.0807 1.305922",
" Male About once a week 1384 1423.312 16.95795 0.5057265 281.5612 1.409587",
" Male 2 or 3 times a week 1535 1563.393 18.62694 0.4811497 284.9066 1.546072",
" Male Every day 1291 1332.890 15.88062 0.5872731 277.2597 1.795784",
" Female Never or hardly ever 1487 1517.609 18.20203 0.5078805 266.7897 1.519020",
" Female Once every few weeks 1544 1552.149 18.61630 0.4892491 271.2255 1.205528",
" Female About once a week 1469 1514.403 18.16358 0.5782966 278.7502 1.719778",
" Female 2 or 3 times a week 1827 1862.502 22.33864 0.4844840 282.7765 1.404107",
" Female Every day 1841 1890.918 22.67945 0.6553039 275.4628 1.219439"
)
es2lREF <- c("", "Formula: composite ~ dsex + b017451 ", "", "Plausible values: 5",
"jrrIMax: 5", "Weight variable: 'origwt'", "Variance method: jackknife",
"JK replicates: 62", "full data n: 17606", "n used: 8163", "",
"", "Summary Table:", " dsex b017451 N WTD_N PCT SE(PCT) MEAN SE(MEAN)",
" Male Never or hardly ever 2350 2434.844 29.00978 0.6959418 270.8243 1.063871",
" Male Once every few weeks 1603 1638.745 19.52472 0.5020657 275.0807 1.364160",
" Male About once a week 1384 1423.312 16.95795 0.5057265 281.5612 1.418074",
" Male 2 or 3 times a week 1535 1563.393 18.62694 0.4811497 284.9066 1.516851",
" Male Every day 1291 1332.890 15.88062 0.5872731 277.2597 1.787613"
)
es2lbREF <- c("", "Formula: composite ~ dsex + b017451 ", "", "Plausible values: 5",
"jrrIMax: 5", "Weight variable: 'origwt'", "Variance method: jackknife",
"JK replicates: 62", "full data n: 17606", "n used: 8163", "",
"", "Summary Table:", " dsex b017451 N WTD_N PCT SE(PCT) MEAN SE(MEAN)",
" Male Never or hardly ever 2350 2434.844 29.00978 0.6959418 270.8243 1.063871",
" Male Once every few weeks 1603 1638.745 19.52472 0.5020657 275.0807 1.364160",
" Male About once a week 1384 1423.312 16.95795 0.5057265 281.5612 1.418074",
" Male 2 or 3 times a week 1535 1563.393 18.62694 0.4811497 284.9066 1.516851",
" Male Every day 1291 1332.890 15.88062 0.5872731 277.2597 1.787613"
) |
gates_eff <-
function(dx, dy, marks, par=list(a=1, b=4, smark=1)) {
with(as.list(par),
(pmax(0, 1 - (b * sqrt(dx^2 + dy^2) / marks[[smark]])^a))^(1/a)
)
} |
b_file_keyrings <- new.env(parent = emptyenv())
backend_file <- R6Class(
"backend_file",
inherit = backend_keyrings,
public = list(
name = "file",
initialize = function(keyring = NULL)
b_file_init(self, private, keyring),
get = function(service, username = NULL, keyring = NULL)
b_file_get(self, private, service, username, keyring),
get_raw = function(service, username = NULL, keyring = NULL)
b_file_get_raw(self, private, service, username, keyring),
set = function(service, username = NULL, keyring = NULL,
prompt = NULL)
b_file_set(self, private, service, username, keyring, prompt),
set_with_value = function(service, username = NULL, password = NULL,
keyring = NULL)
b_file_set_with_value(self, private, service, username, password,
keyring),
delete = function(service, username = NULL, keyring = NULL)
b_file_delete(self, private, service, username, keyring),
list = function(service = NULL, keyring = NULL)
b_file_list(self, private, service, keyring),
keyring_create = function(keyring = NULL, password = NULL)
b_file_keyring_create(self, private, keyring, password),
keyring_delete = function(keyring = NULL)
b_file_keyring_delete(self, private, keyring),
keyring_lock = function(keyring = NULL)
b_file_keyring_lock(self, private, keyring),
keyring_unlock = function(keyring = NULL, password = NULL)
b_file_keyring_unlock(self, private, keyring, password),
keyring_is_locked = function(keyring = NULL)
b_file_keyring_is_locked(self, private, keyring),
keyring_list = function()
b_file_keyring_list(self, private),
keyring_default = function()
b_file_keyring_default(self, private),
keyring_set_default = function(keyring)
b_file_keyring_set_default(self, private, keyring),
docs = function() {
modifyList(super$docs(), list(. = paste0(
"Store secrets in encrypted files.\n",
private$keyring)))
}
),
private = list(
keyring = NULL,
keyring_create_direct = function(keyring = NULL, password = NULL, prompt = NULL)
b__file_keyring_create_direct(self, private, keyring, password, prompt),
keyring_autocreate = function(keyring = NULL)
b__file_keyring_autocreate(self, private, keyring),
keyring_file = function(keyring = NULL)
b__file_keyring_file(self, private, keyring),
keyring_read_file = function(keyring = NULL)
b__file_keyring_read_file(self, private, keyring),
keyring_write_file = function(keyring = NULL, nonce = NULL, items = NULL,
key = NULL)
b__file_keyring_write_file(self, private, keyring, nonce, items, key),
get_keyring_pass = function(keyring = NULL)
b__file_get_keyring_pass(self, private, keyring),
set_keyring_pass = function(key = NULL, keyring = NULL)
b__file_set_keyring_pass(self, private, key, keyring),
unset_keyring_pass = function(keyring = NULL)
b__file_unset_keyring_pass(self, private, keyring),
is_set_keyring_pass = function(keyring = NULL)
b__file_is_set_keyring_pass(self, private, keyring),
update_cache = function(keyring = NULL, nonce = NULL, check = NULL,
items = NULL)
b__file_update_cache(self, private, keyring, nonce, check, items),
get_cache = function(keyring = NULL)
b__file_get_cache(self, private, keyring)
)
)
b_file_init <- function(self, private, keyring) {
self$keyring_set_default(keyring %||% "system")
invisible(self)
}
b_file_get <- function(self, private, service, username, keyring) {
private$keyring_autocreate(keyring)
username <- username %||% getOption("keyring_username")
if (self$keyring_is_locked(keyring)) self$keyring_unlock(keyring)
cached <- private$get_cache(keyring)
all_items <- cached$items
all_services <- vapply(all_items, `[[`, character(1L), "service_name")
item_matches <- all_services %in% service
if (!is.null(username)) {
all_users <- vapply(all_items, function(x) x$user_name %||% NA_character_, character(1L))
item_matches <- item_matches & all_users %in% username
}
if (sum(item_matches) < 1L) {
b_file_error("cannot get secret",
"The specified item could not be found in the keychain.")
}
vapply(
lapply(all_items[item_matches], `[[`, "secret"),
b_file_secret_decrypt,
character(1L),
cached$nonce,
private$get_keyring_pass(keyring)
)
}
b_file_set <- function(self, private, service, username, keyring,
prompt) {
username <- username %||% getOption("keyring_username")
keyring <- keyring %||% private$keyring
file <- private$keyring_file(keyring)
ex <- file.exists(file)
prompt <- prompt %||% if (!ex && interactive()) {
paste0(
"Note: the specified keyring does not exist, you'll have to ",
"create it in the next step. Key password: "
)
} else {
"Password: "
}
password <- get_pass(prompt)
if (is.null(password)) stop("Aborted setting keyring key")
private$keyring_autocreate()
self$set_with_value(service, username, password, keyring)
invisible(self)
}
b_file_set_with_value <- function(self, private, service, username,
password, keyring) {
private$keyring_autocreate(keyring)
username <- username %||% getOption("keyring_username")
if (self$keyring_is_locked(keyring)) self$keyring_unlock(keyring)
keyring_file <- private$keyring_file(keyring)
kr_env <- b_file_keyring_env(keyring_file)
with_lock(keyring_file, {
cached <- private$get_cache(keyring)
all_items <- cached$items
services <- vapply(all_items, `[[`, character(1L), "service_name")
users <- vapply(all_items, function(x) x$user_name %||% NA_character_, character(1))
existing <- if (!is.null(username)) {
services %in% service & users %in% username
} else {
services %in% service & is.na(users)
}
if (length(existing)) all_items <- all_items[!existing]
new_item <- list(
service_name = service,
user_name = username,
secret = b_file_secret_encrypt(
password,
cached$nonce,
private$get_keyring_pass(keyring)
)
)
items <- c(all_items, list(new_item))
private$keyring_write_file(keyring, items = items)
kr_env$stamp <- file_stamp(keyring_file)
})
kr_env <- b_file_keyring_env(keyring_file)
kr_env$items <- items
invisible(self)
}
b_file_delete <- function(self, private, service, username, keyring) {
username <- username %||% getOption("keyring_username")
if (self$keyring_is_locked(keyring)) self$keyring_unlock(keyring)
keyring_file <- private$keyring_file(keyring)
kr_env <- b_file_keyring_env(keyring_file)
with_lock(keyring_file, {
cached <- private$get_cache(keyring)
all_items <- cached$items
services <- vapply(all_items, `[[`, character(1L), "service_name")
users <- vapply(all_items, function(x) x$user_name %||% NA_character_, character(1))
existing <- if (!is.null(username)) {
services %in% service & users %in% username
} else {
services %in% service & is.na(users)
}
if (length(existing) == 0) return(invisible(self))
items <- all_items[!existing]
private$keyring_write_file(keyring, items = items)
kr_env$stamp <- file_stamp(keyring_file)
})
kr_env$items <- items
invisible(self)
}
b_file_list <- function(self, private, service, keyring) {
private$keyring_autocreate(keyring)
cached <- private$get_cache(keyring)
all_items <- cached$items
res <- data.frame(
service = vapply(all_items, `[[`, character(1L), "service_name"),
username = vapply(all_items, function(x) x$user_name %||% NA_character_, character(1)),
stringsAsFactors = FALSE
)
if (!is.null(service)) {
res[res[["service"]] == service, ]
} else {
res
}
}
b_file_keyring_create <- function(self, private, keyring, password) {
private$keyring_create_direct(keyring, password)
}
b_file_keyring_delete <- function(self, private, keyring) {
self$keyring_lock(keyring)
kr_file <- private$keyring_file(keyring)
unlink(kr_file, recursive = TRUE, force = TRUE)
invisible(self)
}
b_file_keyring_lock <- function(self, private, keyring) {
keyring <- keyring %||% private$keyring
file <- private$keyring_file(keyring)
if (!file.exists(file)) {
stop("The '", keyring, "' keyring does not exists, create it first!")
}
private$unset_keyring_pass(keyring)
invisible(self)
}
b_file_keyring_unlock <- function(self, private, keyring, password) {
file <- private$keyring_file(keyring)
if (!file.exists(file)) {
stop("Keyring `", keyring, "` does not exist")
}
private$set_keyring_pass(password, keyring)
if (self$keyring_is_locked(keyring)) {
private$unset_keyring_pass(keyring)
b_file_error(
"cannot unlock keyring",
"The supplied password does not work."
)
}
invisible(self)
}
b_file_keyring_is_locked <- function(self, private, keyring) {
private$keyring_autocreate(keyring)
keyring <- keyring %||% private$keyring
file_name <- private$keyring_file(keyring)
if (!file.exists(file_name)) {
stop("Keyring `", keyring, "` does not exist")
}
if (!file.exists(file_name) || !private$is_set_keyring_pass(keyring)) {
TRUE
} else {
tryCatch({
cached <- private$get_cache(keyring)
b_file_secret_decrypt(
cached$check,
cached$nonce,
private$get_keyring_pass(keyring)
)
FALSE
},
error = function(e) {
if(conditionMessage(e) == "Failed to decrypt")
TRUE
else
stop(e)
}
)
}
}
b_file_keyring_list <- function(self, private) {
kr_dir <- dirname(private$keyring_file(NULL))
files <- dir(kr_dir, pattern = "\\.keyring$", full.names = TRUE)
names <- sub("\\.keyring", "", basename(files))
num_secrets <- vapply(
files, function(f) length(yaml::yaml.load_file(f)$items), integer(1))
locked <- vapply(
names, function(k) self$keyring_is_locked(keyring = k), logical(1))
data.frame(
keyring = unname(names),
num_secrets = unname(num_secrets),
locked = unname(locked),
stringsAsFactors = FALSE
)
}
b_file_keyring_default <- function(self, private) {
private$keyring
}
b_file_keyring_set_default <- function(self, private, keyring) {
private$keyring <- keyring
invisible(self)
}
b__file_keyring_create_direct <- function(self, private, keyring, password, prompt) {
check_for_libsodium()
keyring <- keyring %||% private$keyring
prompt <- prompt %||% "Keyring password: "
file_name <- private$keyring_file(keyring)
if (file.exists(file_name)) {
confirmation(paste("are you sure you want to overwrite", file_name,
"(type `yes` if so)"), "yes")
}
password <- password %||% get_pass(prompt)
if (is.null(password)) stop("Aborted creating keyring")
dir.create(dirname(file_name), recursive = TRUE, showWarnings = FALSE)
cat("", file = file_name)
key <- private$set_keyring_pass(password, keyring)
with_lock(file_name,
private$keyring_write_file(
keyring,
nonce = sodium::random(24L),
items = list(),
key = key
)
)
invisible(self)
}
b__file_keyring_file <- function(self, private, keyring) {
keyring <- keyring %||% private$keyring
keyring_dir <- getOption("keyring_file_dir",
rappdirs::user_config_dir("r-keyring"))
file.path(keyring_dir, paste0(keyring, ".keyring"))
}
b__file_keyring_read_file <- function(self, private, keyring) {
check_for_libsodium()
keyring <- keyring %||% private$keyring
file_name <- private$keyring_file(keyring)
with_lock(file_name, {
stamp <- file_stamp(keyring)
yml <- yaml::yaml.load_file(file_name)
})
assert_that(
is_list_with_names(yml, names = c("keyring_info", "items")),
is_list_with_names(
yml[["keyring_info"]],
names = c("keyring_version", "nonce", "integrity_check")
)
)
list(
nonce = sodium::hex2bin(yml[["keyring_info"]][["nonce"]]),
items = lapply(yml[["items"]], b__file_validate_item),
check = yml[["keyring_info"]][["integrity_check"]],
stamp = stamp
)
}
b__file_keyring_write_file <- function(self, private, keyring, nonce, items,
key) {
check_for_libsodium()
keyring <- keyring %||% private$keyring
file_name <- private$keyring_file(keyring)
nonce <- nonce %||% private$get_cache(keyring)$nonce
with_lock(
file_name,
yaml::write_yaml(
list(
keyring_info = list(
keyring_version = as.character(getNamespaceVersion(.packageName)),
nonce = sodium::bin2hex(nonce),
integrity_check = b_file_secret_encrypt(
paste(sample(letters, 22L, replace = TRUE), collapse = ""),
nonce,
key %||% private$get_keyring_pass(keyring)
)
),
items = items %||% private$get_cache(keyring)$items
),
file_name
)
)
invisible(self)
}
b__file_get_keyring_pass <- function(self, private, keyring) {
kr_env <- b_file_keyring_env(private$keyring_file(keyring))
if (is.null(kr_env$key)) {
key <- private$set_keyring_pass(keyring = keyring)
} else {
key <- kr_env$key
}
assert_that(is.raw(key), length(key) > 0L)
key
}
b__file_unset_keyring_pass <- function(self, private, keyring) {
kr_env <- b_file_keyring_env(private$keyring_file(keyring))
kr_env$key <- NULL
invisible(kr_env)
}
b__file_is_set_keyring_pass <- function(self, private, keyring) {
!is.null(b_file_keyring_env(private$keyring_file(keyring))$key)
}
b__file_set_keyring_pass <- function(self, private, key, keyring) {
check_for_libsodium()
key <- key %||% get_pass("Keyring password: ")
if (is.null(key)) stop("Aborted setting keyring password")
assert_that(is_string(key))
key <- sodium::hash(charToRaw(key))
kr_env <- b_file_keyring_env(private$keyring_file(keyring))
kr_env$key <- key
}
b__file_update_cache <- function(self, private, keyring, nonce, check, items) {
kr_env <- b_file_keyring_env(private$keyring_file(keyring))
kr <- private$keyring_read_file(keyring)
nonce <- nonce %||% kr[["nonce"]]
assert_that(is.raw(nonce), length(nonce) > 0L)
kr_env$nonce <- nonce
check <- check %||% kr[["check"]]
assert_that(is.character(check), length(check) > 0L)
kr_env$check <- check
kr_env$items <- lapply(items %||% kr[["items"]], b__file_validate_item)
kr_env$stamp <- kr$stamp
kr_env
}
b__file_get_cache <- function(self, private, keyring) {
keyring_file <- private$keyring_file(keyring)
kr_env <- b_file_keyring_env(keyring_file)
if (is.null(kr_env$nonce) || is.null(kr_env$stamp) || is.na(kr_env$stamp) ||
file_stamp(keyring_file) != kr_env$stamp) {
kr_env <- private$update_cache(keyring)
}
assert_that(is.raw(kr_env$nonce), length(kr_env$nonce) > 0L)
assert_that(is.character(kr_env$check), length(kr_env$check) > 0L)
list(
nonce = kr_env$nonce,
items = lapply(kr_env$items, b__file_validate_item),
check = kr_env$check)
}
b_file_secret_encrypt <- function(secret, nonce, key) {
check_for_libsodium()
res <- sodium::data_encrypt(
charToRaw(secret),
key,
nonce
)
b_file_split_string(sodium::bin2hex(res))
}
b_file_secret_decrypt <- function(secret, nonce, key) {
check_for_libsodium()
rawToChar(
sodium::data_decrypt(
sodium::hex2bin(b_file_merge_string(secret)),
key,
nonce
)
)
}
b_file_keyring_env <- function(file_name) {
env_name <- normalizePath(file_name, mustWork = TRUE)
kr_env <- b_file_keyrings[[env_name]]
if (is.null(kr_env)) {
kr_env <- b_file_keyrings[[env_name]] <- new.env(parent = emptyenv())
}
kr_env
}
b_file_error <- function(problem, reason = NULL) {
if (is.null(reason)) {
info <- problem
} else {
info <- paste0(problem, ": ", reason)
}
stop("keyring error (file-based keyring), ", info, call. = FALSE)
}
b__file_validate_item <- function(item) {
assert_that(
is_list_with_names(item, names = c("service_name", "user_name", "secret")),
is_string(item[["service_name"]]),
is_string_or_null(item[["user_name"]]),
is_string_or_raw(item[["secret"]])
)
invisible(item)
}
b_file_split_string <- function(string, width = 78L) {
assert_that(is_string(string))
paste(
lapply(
seq.int(ceiling(nchar(string) / width)) - 1L,
function(x) substr(string, x * width + 1L, x * width + width)
),
collapse = "\n"
)
}
b_file_merge_string <- function(string) {
assert_that(is_string(string))
paste(strsplit(string, "\n")[[1L]], collapse = "")
}
b__file_keyring_autocreate <- function(self, private, keyring) {
keyring <- keyring %||% private$keyring
file <- private$keyring_file(keyring)
if (!file.exists(file)) {
if (is_interactive()) {
private$keyring_create_direct(
keyring,
password = NULL,
prompt = paste0(
"The '", keyring,
"' keyring does not exist, enter a keyring password to create it: "
)
)
} else {
stop("The '", keyring, "' keyring does not exists, create it first!")
}
}
}
with_lock <- function(file, expr) {
timeout <- getOption("keyring_file_lock_timeout", 1000)
lockfile <- paste0(file, ".lck")
l <- filelock::lock(lockfile, timeout = timeout)
if (is.null(l)) stop("Cannot lock keyring file")
on.exit(filelock::unlock(l), add = TRUE)
expr
}
check_for_libsodium <- function() {
if ("sodium" %in% loadedNamespaces()) return()
tryCatch(
find.package("sodium"),
error = function(err) {
stop(
"The 'file' keyring backend needs the sodium package, ",
"please install it"
)
}
)
tryCatch(
loadNamespace("sodium"),
error = function(err) {
if (Sys.info()[["sysname"]] == "Linux") {
stop(
call. = FALSE,
"Cannot load the sodium package, please make sure that its ",
"system libraries are installed.\n",
"On Debian and Ubuntu systems you probably need the ",
"'libsodium23' package.\n",
"On Fedora, CentOS, RedHat and other RPM systems you need the ",
"libsodium package. \n",
"Error: ", conditionMessage(err)
)
} else {
stop(
call. = FALSE,
"Cannot load the sodium package, please make sure that its ",
"system libraries are installed. \n",
"Error: ", conditionMessage(err)
)
}
}
)
} |
expected <- eval(parse(text="NULL"));
test(id=0, code={
argv <- eval(parse(text="list(NULL, NULL)"));
do.call(`levels<-`, argv);
}, o=expected); |
ModulePopulationVariance3D <- function (modules)
{
m_arit = ArithmeticMean3D(modules)
n = NumberOfElements3D(modules)
return((sum((modules - m_arit)^2))/(n))
} |
require('blockmodels')
set.seed(12)
npc <- 10
Q <- 2
n <- npc * Q
Z<-diag(Q)%x%matrix(1,npc,1)
P00<-matrix(runif(Q*Q),Q,Q)
P10<-matrix(runif(Q*Q),Q,Q)
P01<-matrix(runif(Q*Q),Q,Q)
P11<-matrix(runif(Q*Q),Q,Q)
SumP<-P00+P10+P01+P11
P00<-P00/SumP
P01<-P01/SumP
P10<-P10/SumP
P11<-P11/SumP
MU<-matrix(runif(n*n),n,n)
M1<-1*(MU>Z%*%(P00+P01)%*%t(Z))
M2<-1*((MU>Z%*%P00%*%t(Z)) & (MU<Z%*%(P00+P01+P11)%*%t(Z)))
my_model <- BM_bernoulli_multiplex("SBM",list(M1,M2) , plotting='', explore_min=2, explore_max=2, ncores=2, verbosity=0)
my_model$estimate()
which.max(my_model$ICL)
npc <- 10
Q <- 2
n <- npc * Q
Z<-diag(Q)%x%matrix(1,npc,1)
P00<-matrix(runif(Q*Q),Q,Q)
P10<-matrix(runif(Q*Q),Q,Q)
P01<-matrix(runif(Q*Q),Q,Q)
P11<-matrix(runif(Q*Q),Q,Q)
SumP<-P00+P10+P01+P11
P00<-P00/SumP
P01<-P01/SumP
P10<-P10/SumP
P11<-P11/SumP
P00[lower.tri(P00)]<-t(P00)[lower.tri(P00)]
P01[lower.tri(P01)]<-t(P01)[lower.tri(P01)]
P10[lower.tri(P10)]<-t(P10)[lower.tri(P10)]
P11[lower.tri(P11)]<-t(P11)[lower.tri(P11)]
MU<-matrix(runif(n*n),n,n)
MU[lower.tri(MU)]<-t(MU)[lower.tri(MU)]
M1<-1*(MU>Z%*%(P00+P01)%*%t(Z))
M2<-1*((MU>Z%*%P00%*%t(Z)) & (MU<Z%*%(P00+P01+P11)%*%t(Z)))
my_model <- BM_bernoulli_multiplex("SBM_sym",list(M1,M2) , plotting='', explore_min=2, explore_max=2, ncores=2, verbosity=0)
my_model$estimate()
which.max(my_model$ICL)
npc <- c(20,10)
Q <- c(1,2)
n <- npc * Q
Z1<-diag(Q[1])%x%matrix(1,npc[1],1)
Z2<-diag(Q[2])%x%matrix(1,npc[2],1)
P00<-matrix(runif(Q[1]*Q[2]),Q[1],Q[2])
P10<-matrix(runif(Q[1]*Q[2]),Q[1],Q[2])
P01<-matrix(runif(Q[1]*Q[2]),Q[1],Q[2])
P11<-matrix(runif(Q[1]*Q[2]),Q[1],Q[2])
SumP<-P00+P10+P01+P11
P00<-P00/SumP
P01<-P01/SumP
P10<-P10/SumP
P11<-P11/SumP
MU<-matrix(runif(n[1]*n[2]),n[1],n[2])
M1<-1*(MU>Z1%*%(P00+P01)%*%t(Z2))
M2<-1*((MU>Z1%*%P00%*%t(Z2)) & (MU<Z1%*%(P00+P01+P11)%*%t(Z2)))
my_model <- BM_bernoulli_multiplex("LBM",list(M1,M2) , plotting='', explore_min=2, explore_max=2, ncores=2, verbosity=0)
my_model$estimate()
which.max(my_model$ICL) |
NULL
control_slider_pair <- function(.switchboard, ...) {
switchboard_engine(.switchboard,
constructor = control_slider_pair_construct(.switchboard, ...),
updater = NULL, ...)
}
control_slider_pair_construct <- function(.switchboard,
inject = c("", ""),
minimum = c(0, 0),
maximum = c(100, 100),
label = c(" ", " "),
size = 1,
...) {
aCanvas <- tcltk::tkcanvas(.switchboard, width = 80 * size, height = 80 * size, background = switchboard.env$mainColors[2], borderwidth = 0, highlightthickness = 0)
if(inject[1] != "") {
if(as.integer(tcltk::tcl("info", "exists", inject[1])) == 1) tcltk::tcl("unset", inject[1])
tcltk::.Tcl(paste("set", inject[1], mget(inject[1], envir = parent.frame(n = 3), ifnotfound = NA)))
tcltk::tkbind(inject[1], "<Destroy>", function(...) {tcltk::tcl("unset", inject[1])})
injectorSlider1 <- tcltk::ttkscale(aCanvas, from = minimum[1], to = maximum[1], variable = inject[1], value = tcltk::tclvalue(inject[1]),
command = function(...){assign(inject[1], as.numeric(tcltk::tclvalue(inject[1])), envir = parent.frame(n = 5));})
tcltk::tkcreate(aCanvas, "window", 0, 10 * size - 5, width = 75 * size, anchor = "nw", window = injectorSlider1)
}
if(inject[2] != "") {
if(as.integer(tcltk::tcl("info", "exists", inject[2] )) == 1) tcltk::tcl("unset", inject[2] )
tcltk::.Tcl(paste("set", inject[2], mget(inject[2], envir = parent.frame(n = 3), ifnotfound = NA)))
tcltk::tkbind(inject[2], "<Destroy>", function(...) {tcltk::tcl("unset", inject[2])})
injectorSlider2 <- tcltk::ttkscale(aCanvas, from = minimum[2], to = maximum[2], variable = inject[2] , value = tcltk::tclvalue(inject[2]),
command = function(...){assign(inject[2] , as.numeric(tcltk::tclvalue(inject[2])), envir = parent.frame(n = 5));})
tcltk::tkcreate(aCanvas, "window", 0, 52 * size - 5, width = 75 * size, anchor = "nw", window = injectorSlider2)
}
tcltk::tkcreate(aCanvas, "text", 37.5 * size, 10 * size + 25, text = label[1], anchor = "center", font = paste(switchboard.env$font, floor(9 / 1.2)), fill = switchboard.env$mainColors[4])
tcltk::tkcreate(aCanvas, "text", 37.5 * size, 52 * size + 25, text = label[2], anchor = "center", font = paste(switchboard.env$font, floor(9 / 1.2)), fill = switchboard.env$mainColors[4])
return(aCanvas)
} |
trig_asn <- function(x, ...) {
2 * asin(sqrt(x), ...)
}
trig_atahn <- function(x, ...) {
atanh(x, ...)
}
dist_logit <- function(x, ...) {
assert_uni_ts(x)
out <- dist(x, "logis", ...)
with_attrs(out, x)
}
dist_probit <- function(x, ...) {
assert_uni_ts(x)
out <- dist(x, "norm", ...)
with_attrs(out, x)
}
dist <- function(x, dist, ...) {
qfun <- match.fun(paste0("q", dist))
qfun(x, ...)
}
dist_inv <- function(x, dist, ...) {
pfun <- match.fun(paste0("p", dist))
pfun(x, ...)
} |
bekk_fit <- function(spec, data, QML_t_ratios = FALSE,
max_iter = 50, crit = 1e-9){
if (!inherits(spec, 'bekkSpec')) {
stop('Please provide and object of class "bekkSpec" for spec.')
}
if (any(is.na(data))) {
stop("\nNAs in data.\n")
}
if (ncol(data) < 2) {
stop("The data matrix should contain at least two variables.")
}
if (is.null(colnames(data))) {
colnames(data) <- paste("y", 1:ncol(data), sep = "")
}
UseMethod('bekk_fit')
}
bekk_fit.bekk <- function(spec, data, QML_t_ratios = FALSE,
max_iter = 50, crit = 1e-9) {
init_values <- spec$init_values
N <- ncol(data)
if(!is.numeric(init_values)) {
if (is.null(init_values)) {
theta <- gridSearch_BEKK(data)
theta <- theta[[1]]
} else if (init_values == 'random') {
cat('Generating starting values \n')
theta <- random_grid_search_BEKK(data)
theta <- theta[[1]]
} else if (init_values == 'simple') {
uncond_var <- crossprod(data)/nrow(data)
A <- matrix(0, ncol = N, nrow = N)
G <- matrix(0, ncol = N, nrow = N)
C <- matrix(0, ncol = N, nrow = N)
diag(A) <- 0.3
diag(G) <- 0.92
diag(C) <- 0.05*diag(uncond_var)
for (i in 1:N){
for (j in seq(i,N)){
cij <- uncond_var[i, j]/sqrt(uncond_var[i, i]*uncond_var[j, j])
C[i,j] <- cij*sqrt(C[i, i]*C[j, j])
C[j,i] <- C[i, j]
}
}
C = t(chol(C))
C0 = C[,1]
if (N > 2) {
for (i in 2:(N-1)){
C0 = c(C0, C[i:N, i])
}
}
C0 = c(C0, C[N, N])
theta = c(C0, c(A), c(G))
}
} else {
if(length(init_values) != 2 * N^2 + N * (N + 1)/2) {
stop('Number of initial parameter does not match dimension of data.')
}
theta <- init_values
}
theta <- matrix(theta, ncol =1)
params <- bhh_bekk(data, theta, max_iter, crit)
if (QML_t_ratios == TRUE) {
tratios <- QML_t_ratios(params$theta, data)
tratios_mat <- coef_mat(abs(tratios), N)
} else {
tratios_mat <- coef_mat(abs(params$t_val), N)
}
param_mat <- coef_mat(params$theta, N)
var_process <- sigma_bekk(data, t(param_mat$c0), param_mat$a, param_mat$g)
sigma_t <- as.data.frame(var_process$sigma_t)
colnames(sigma_t) <- rep(1, N^2)
k <- 1
k2 <- 1
for (i in 1:N) {
for (j in 1:N) {
if (i == j) {
colnames(sigma_t)[k2] <- paste('Conditional standard deviation of \n', colnames(data)[k])
k <- k + 1
k2 <- k2 +1
} else {
colnames(sigma_t)[k2] <- paste('Conditional correlation of \n', colnames(data)[i], ' and ', colnames(data)[j])
k2 <- k2 +1
}
}
}
for (i in 1:nrow(sigma_t)) {
tm <- matrix(unlist(sigma_t[i,]), N, N, byrow = T)
tm2 <- sqrt(solve(diag(diag(tm))))%*%tm%*%sqrt(solve(diag(diag(tm))))
diag(tm2) <- sqrt(diag(tm))
sigma_t[i,] <- c(tm2)
}
elim <- elimination_mat(N)
sigma_t <- sigma_t[, which(colSums(elim) == 1)]
if (inherits(data, "ts")) {
sigma_t <- ts(sigma_t, start = time(data)[1], frequency = frequency(data))
}
else if(inherits(data, "xts") || inherits(data, "zoo") ){
sigma_t <- xts(sigma_t, order.by = time(data))
}
BEKK_valid <- valid_bekk(param_mat$c0, param_mat$a, param_mat$g)
params$likelihood_iter <- params$likelihood_iter[params$likelihood_iter != 0]
result <- list(C0 = param_mat$c0,
A = param_mat$a,
G = param_mat$g,
C0_t = tratios_mat$c0,
A_t = tratios_mat$a,
G_t = tratios_mat$g,
theta = params$theta,
log_likelihood = params$likelihood,
BEKK_valid = BEKK_valid,
sigma_t = sigma_t,
H_t = var_process$sigma_t,
e_t = var_process$e_t,
Second_moments_of_residuals = cov(var_process$e_t),
iter = params$iter,
likelihood_iter = params$likelihood_iter,
asymmetric = FALSE,
data = data)
class(result) <- c('bekkFit', 'bekk')
return(result)
}
bekk_fit.bekka <- function(spec, data, QML_t_ratios = FALSE,
max_iter = 50, crit = 1e-9) {
init_values <- spec$init_values
N <- ncol(data)
if(is.null(spec$model$signs)){
spec$model$signs = matrix(rep(-1, N), ncol = 1)
}
if(length(spec$model$signs) != N){
stop('Length of "signs" does not match dimension of data.')
}
if(!is.numeric(init_values)) {
if (is.null(init_values)) {
theta <- gridSearch_asymmetricBEKK(data, spec$model$signs)
theta <- theta[[1]]
} else if (init_values == 'random') {
cat('Generating starting values \n')
theta = random_grid_search_asymmetric_BEKK(data, spec$model$signs)[[1]]
} else if (init_values == 'simple') {
uncond_var <- crossprod(data)/nrow(data)
A <- matrix(0, ncol = N, nrow = N)
B <- matrix(0, ncol = N, nrow = N)
G <- matrix(0, ncol = N, nrow = N)
C <- matrix(0, ncol = N, nrow = N)
diag(A) <- 0.25
diag(B) <- 0.05
diag(G) <- 0.92
diag(C) <- 0.05*diag(uncond_var)
for (i in 1:N){
for (j in seq(i,N)){
cij <- uncond_var[i, j]/sqrt(uncond_var[i, i]*uncond_var[j, j])
C[i,j] <- cij*sqrt(C[i, i]*C[j, j])
C[j,i] <- C[i, j]
}
}
C = t(chol(C))
C0 = C[,1]
if (N > 2) {
for (i in 2:(N-1)){
C0 = c(C0, C[i:N, i])
}
}
C0 = c(C0, C[N, N])
theta = c(C0, c(A), c(G))
}
} else {
if(length(init_values) != 3 * N^2 + N * (N + 1)/2) {
stop('Number of initial parameter does not match dimension of data.')
}
theta <- init_values
}
theta <- matrix(theta, ncol =1)
params <- bhh_asymm_bekk(data, theta, max_iter, crit, spec$model$signs)
if (QML_t_ratios == TRUE) {
tratios <- QML_t_ratios_asymm(params$theta, data, spec$model$signs)
tratios_mat <- coef_mat_asymm(abs(tratios), N)
} else {
tratios_mat <- coef_mat_asymm(abs(params$t_val), N)
}
param_mat <- coef_mat_asymm(params$theta, N)
var_process <- sigma_bekk_asymm(data, t(param_mat$c0), param_mat$a, param_mat$b, param_mat$g, spec$model$signs)
sigma_t <- as.data.frame(var_process$sigma_t)
colnames(sigma_t) <- rep(1, N^2)
k <- 1
k2 <- 1
for (i in 1:N) {
for (j in 1:N) {
if (i == j) {
colnames(sigma_t)[k2] <- paste('Conditional SD of', colnames(data)[k])
k <- k + 1
k2 <- k2 +1
} else {
colnames(sigma_t)[k2] <- paste('Conditional correlation of', colnames(data)[i], ' and ', colnames(data)[j])
k2 <- k2 +1
}
}
}
for (i in 1:nrow(sigma_t)) {
tm <- matrix(unlist(sigma_t[i,]), N, N, byrow = T)
tm2 <- sqrt(solve(diag(diag(tm))))%*%tm%*%sqrt(solve(diag(diag(tm))))
diag(tm2) <- sqrt(diag(tm))
sigma_t[i,] <- c(tm2)
}
elim <- elimination_mat(N)
sigma_t <- sigma_t[, which(colSums(elim) == 1)]
if (inherits(data, "ts")) {
sigma_t <- ts(sigma_t, start = time(data)[1], frequency = frequency(data))
}
else if(inherits(data, "xts") || inherits(data, "zoo") ){
sigma_t <- xts(sigma_t, order.by = time(data))
}
BEKK_valid <- valid_asymm_bekk(param_mat$c0, param_mat$a, param_mat$b, param_mat$g, data, spec$model$signs)
expected_signs=expected_indicator_value(data,spec$model$signs)
params$likelihood_iter <- params$likelihood_iter[params$likelihood_iter != 0]
result <- list(C0 = param_mat$c0,
A = param_mat$a,
B = param_mat$b,
G = param_mat$g,
C0_t = tratios_mat$c0,
A_t = tratios_mat$a,
B_t = tratios_mat$b,
G_t = tratios_mat$g,
theta = params$theta,
signs = spec$model$signs,
log_likelihood = params$likelihood,
BEKK_valid = BEKK_valid,
sigma_t = sigma_t,
H_t = var_process$sigma_t,
e_t = var_process$e_t,
Second_moments_of_residuals = cov(var_process$e_t),
iter = params$iter,
likelihood_iter = params$likelihood_iter,
asymmetric = TRUE,
expected_signs = expected_signs,
data = data)
class(result) <- c('bekkFit', 'bekka')
return(result)
} |
devmode <- function(
devmode = getOption("shiny.devmode", TRUE),
verbose = getOption("shiny.devmode.verbose", TRUE)
) {
options(
shiny.devmode = devmode,
shiny.devmode.verbose = verbose
)
}
in_devmode <- function() {
isTRUE(getOption("shiny.devmode", FALSE)) &&
!identical(Sys.getenv("TESTTHAT"), "true")
}
with_devmode <- function(
devmode,
code,
verbose = getOption("shiny.devmode.verbose", TRUE)
) {
withr::with_options(
list(
shiny.devmode = devmode,
shiny.devmode.verbose = verbose
),
code
)
}
devmode_inform <- function(
message,
.frequency = "regularly",
.frequency_id = message,
.file = stderr(),
...
) {
if (!(
in_devmode() &&
isTRUE(getOption("shiny.devmode.verbose", TRUE))
)) {
return()
}
if (is.null(message)) {
return()
}
rlang::inform(
message = paste0("shiny devmode - ", message),
.frequency = .frequency,
.frequency_id = .frequency_id,
.file = .file,
...
)
}
registered_devmode_options <- Map$new()
register_devmode_option <- function(
name,
devmode_message = NULL,
devmode_default = NULL
) {
if (!is.null(devmode_message)) {
stopifnot(length(devmode_message) == 1 && is.character(devmode_message))
}
registered_devmode_options$set(
name,
list(devmode_default = devmode_default, devmode_message = devmode_message)
)
}
get_devmode_option <- function(
name,
default = NULL,
devmode_default = missing_arg(),
devmode_message = missing_arg()
) {
getOption(
name,
local({
if (!in_devmode()) {
return(default)
}
info <- registered_devmode_options$get(name)
if (is.null(info)) {
rlang::warn(
message = paste0(
"`get_devmode_option(name)` could not find `name = \"", name, "\"`. ",
"Returning `default` value"
)
)
return(default)
}
devmode_inform(
maybe_missing(
devmode_message,
default = info$devmode_message
)
)
maybe_missing(
devmode_default,
default = info$devmode_default
)
})
)
}
register_devmode_option(
"shiny.autoreload",
"Turning on shiny autoreload. To disable, call `options(shiny.autoreload = FALSE)`",
TRUE
)
register_devmode_option(
"shiny.minified",
"Using full shiny javascript file. To use the minified version, call `options(shiny.minified = TRUE)`",
FALSE
)
register_devmode_option(
"shiny.fullstacktrace",
"Turning on full stack trace. To disable, call `options(shiny.fullstacktrace = FALSE)`",
TRUE
) |
glm.summary <- function (in.object, alpha = 0.05){
lo <- in.object$coefficient - qnorm(1-alpha/2) * sqrt(diag(summary(in.object)$cov.unscaled))
hi <- in.object$coefficient + qnorm(1-alpha/2) * sqrt(diag(summary(in.object)$cov.unscaled))
out.mat <- round(cbind(in.object$coefficient, sqrt(diag(glm.vc(in.object))), lo, hi),5)
dimnames(out.mat)[[2]] <- c("Coefficient","Std. Error",
paste(1-alpha,"CI Lower"),paste(1-alpha,"CI Upper"))
out.mat
} |
var_dif_fis <- function(n, r, rho)
{
2/(n-3) - 2*((r*(-2*rho^2+1)-0.5*rho^2*(-r^2+1-2*rho^2))/(1-rho^2)^2/(n-3))
} |
build_query_string <- function(country,
povline,
year,
aggregate = FALSE,
fill_gaps = FALSE,
coverage = "all",
ppp = NULL,
format = "json") {
check_build_query_string_inputs(country,
povline,
year,
aggregate,
fill_gaps,
coverage,
ppp )
i <- seq_along(country) - 1
if (aggregate == TRUE) {
fill_gaps <- TRUE
}
country <- assign_country(country)
country <- assign_coverage(country = country, coverage = coverage)
if (fill_gaps == TRUE) {
year_str <- "YearSelected="
} else {
year_str <- "SurveyYears="
}
year <- paste0(year_str, paste(year, collapse = ","))
povline <- paste0("PovertyLine=", povline)
country <- paste0("Countries=", paste(country, collapse = ","))
format <- paste0("format=", format)
display <- if (aggregate == TRUE) {
display <- paste0("display=Regional")
} else {
display <- paste0("display=C")
}
if (!is.null(ppp)) {
ppp <- purrr::map2_chr(i, ppp, function(x, y) {paste0("PPP", x, "=", y)})
ppp <- paste(ppp, collapse = "&")
out <- paste(year, country, povline, ppp, display, format, collapse = "&")
out <- stringr::str_replace_all(out, pattern = " ", replacement = "&")
} else {
out <- paste(year, country, povline, display, format, collapse = "&")
out <- stringr::str_replace_all(out, pattern = " ", replacement = "&")
}
return(out)
}
check_build_query_string_inputs <- function(country,
povline,
year,
aggregate,
fill_gaps,
coverage,
ppp)
{
accepted_coverage <- c(names(coverage_lkup), "all")
assertthat::assert_that(length(country) > 0,
msg = "Please submit at least ONE country")
assertthat::assert_that(length(year) > 0,
msg = "Please submit at least ONE year")
assertthat::assert_that(length(povline) > 0,
msg = "Please submit ONE poverty line")
assertthat::assert_that(length(povline) == 1,
msg = "Please submit only one povline,
for instance: povline = 1.9")
assertthat::assert_that(coverage %in% accepted_coverage,
msg = paste0("The 'coverage' argument only accepts one of the following values:\n",
accepted_coverage))
assertthat::assert_that(length(coverage) == 1,
msg = "Please submit only ONE coverage")
assertthat::assert_that(is.null(ppp) | length(ppp) == length(country),
msg = "When using custom ppp, please ensure you submit
one ppp per country")
assertthat::assert_that(is.null(ppp) | coverage != "all",
msg = "Custom ppp are not allowed with `coverage` = `all`")
if (aggregate == TRUE & fill_gaps == FALSE) {
message("You specified `aggregate = TRUE`. Aggregation is only possible
over a common reference year: The `fill_gaps` parameter will be
forced to `TRUE`")}
} |
library(ranger)
library(survival)
context("ranger_treeInfo")
rf.class.formula <- ranger(Species ~ ., iris, num.trees = 5)
rf.class.first <- ranger(dependent.variable.name = "Species", data = iris[, c(5, 1:4)], num.trees = 5)
rf.class.mid <- ranger(dependent.variable.name = "Species", data = iris[, c(1:2, 5, 3:4)], num.trees = 5)
rf.class.last <- ranger(dependent.variable.name = "Species", data = iris, num.trees = 5)
ti.class.formula <- treeInfo(rf.class.formula)
ti.class.first <- treeInfo(rf.class.first)
ti.class.mid <- treeInfo(rf.class.mid)
ti.class.last <- treeInfo(rf.class.last)
test_that("Terminal nodes have only prediction, non-terminal nodes all others, classification formula", {
expect_true(all(is.na(ti.class.formula[ti.class.formula$terminal, 2:6])))
expect_true(all(!is.na(ti.class.formula[ti.class.formula$terminal, c(1, 7:8)])))
expect_true(all(!is.na(ti.class.formula[!ti.class.formula$terminal, -8])))
expect_true(all(is.na(ti.class.formula[!ti.class.formula$terminal, 8])))
})
test_that("Terminal nodes have only prediction, non-terminal nodes all others, classification depvarname first", {
expect_true(all(is.na(ti.class.first[ti.class.first$terminal, 2:6])))
expect_true(all(!is.na(ti.class.first[ti.class.first$terminal, c(1, 7:8)])))
expect_true(all(!is.na(ti.class.first[!ti.class.first$terminal, -8])))
expect_true(all(is.na(ti.class.first[!ti.class.first$terminal, 8])))
})
test_that("Terminal nodes have only prediction, non-terminal nodes all others, classification depvarname mid", {
expect_true(all(is.na(ti.class.mid[ti.class.mid$terminal, 2:6])))
expect_true(all(!is.na(ti.class.mid[ti.class.mid$terminal, c(1, 7:8)])))
expect_true(all(!is.na(ti.class.mid[!ti.class.mid$terminal, -8])))
expect_true(all(is.na(ti.class.mid[!ti.class.mid$terminal, 8])))
})
test_that("Terminal nodes have only prediction, non-terminal nodes all others, classification depvarname last", {
expect_true(all(is.na(ti.class.last[ti.class.last$terminal, 2:6])))
expect_true(all(!is.na(ti.class.last[ti.class.last$terminal, c(1, 7:8)])))
expect_true(all(!is.na(ti.class.last[!ti.class.last$terminal, -8])))
expect_true(all(is.na(ti.class.last[!ti.class.last$terminal, 8])))
})
test_that("Names in treeInfo match, classification", {
varnames <- colnames(iris)[1:4]
expect_true(all(is.na(ti.class.formula$splitvarName) | ti.class.formula$splitvarName %in% varnames))
expect_true(all(is.na(ti.class.first$splitvarName) | ti.class.first$splitvarName %in% varnames))
expect_true(all(is.na(ti.class.mid$splitvarName) | ti.class.mid$splitvarName %in% varnames))
expect_true(all(is.na(ti.class.last$splitvarName) | ti.class.last$splitvarName %in% varnames))
})
test_that("Prediction for classification is factor with correct levels", {
expect_is(ti.class.formula$prediction, "factor")
expect_equal(levels(ti.class.formula$prediction), levels(iris$Species))
})
test_that("Prediction for matrix classification is integer with correct values", {
rf <- ranger(dependent.variable.name = "Species", data = data.matrix(iris),
num.trees = 5, classification = TRUE)
ti <- treeInfo(rf, 1)
expect_is(ti$prediction, "numeric")
expect_equal(sort(unique(ti$prediction)), 1:3)
})
n <- 20
dat <- data.frame(y = rnorm(n),
replicate(2, runif(n)),
replicate(2, rbinom(n, size = 1, prob = .5)))
rf.regr.formula <- ranger(y ~ ., dat, num.trees = 5)
rf.regr.first <- ranger(dependent.variable.name = "y", data = dat, num.trees = 5)
rf.regr.mid <- ranger(dependent.variable.name = "y", data = dat[, c(2:3, 1, 4:5)], num.trees = 5)
rf.regr.last <- ranger(dependent.variable.name = "y", data = dat[, c(2:5, 1)], num.trees = 5)
ti.regr.formula <- treeInfo(rf.regr.formula)
ti.regr.first <- treeInfo(rf.regr.first)
ti.regr.mid <- treeInfo(rf.regr.mid)
ti.regr.last <- treeInfo(rf.regr.last)
test_that("Terminal nodes have only prediction, non-terminal nodes all others, regression formula", {
expect_true(all(is.na(ti.regr.formula[ti.regr.formula$terminal, 2:6])))
expect_true(all(!is.na(ti.regr.formula[ti.regr.formula$terminal, c(1, 7:8)])))
expect_true(all(!is.na(ti.regr.formula[!ti.regr.formula$terminal, -8])))
expect_true(all(is.na(ti.regr.formula[!ti.regr.formula$terminal, 8])))
})
test_that("Terminal nodes have only prediction, non-terminal nodes all others, regression depvarname first", {
expect_true(all(is.na(ti.regr.first[ti.regr.first$terminal, 2:6])))
expect_true(all(!is.na(ti.regr.first[ti.regr.first$terminal, c(1, 7:8)])))
expect_true(all(!is.na(ti.regr.first[!ti.regr.first$terminal, -8])))
expect_true(all(is.na(ti.regr.first[!ti.regr.first$terminal, 8])))
})
test_that("Terminal nodes have only prediction, non-terminal nodes all others, regression depvarname mid", {
expect_true(all(is.na(ti.regr.mid[ti.regr.mid$terminal, 2:6])))
expect_true(all(!is.na(ti.regr.mid[ti.regr.mid$terminal, c(1, 7:8)])))
expect_true(all(!is.na(ti.regr.mid[!ti.regr.mid$terminal, -8])))
expect_true(all(is.na(ti.regr.mid[!ti.regr.mid$terminal, 8])))
})
test_that("Terminal nodes have only prediction, non-terminal nodes all others, regression depvarname last", {
expect_true(all(is.na(ti.regr.last[ti.regr.last$terminal, 2:6])))
expect_true(all(!is.na(ti.regr.last[ti.regr.last$terminal, c(1, 7:8)])))
expect_true(all(!is.na(ti.regr.last[!ti.regr.last$terminal, -8])))
expect_true(all(is.na(ti.regr.last[!ti.regr.last$terminal, 8])))
})
test_that("Names in treeInfo match, regression", {
varnames <- c("X1", "X2", "X1.1", "X2.1")
expect_true(all(is.na(ti.regr.formula$splitvarName) | ti.regr.formula$splitvarName %in% varnames))
expect_true(all(is.na(ti.regr.first$splitvarName) | ti.regr.first$splitvarName %in% varnames))
expect_true(all(is.na(ti.regr.mid$splitvarName) | ti.regr.mid$splitvarName %in% varnames))
expect_true(all(is.na(ti.regr.last$splitvarName) | ti.regr.last$splitvarName %in% varnames))
})
test_that("Prediction for regression is numeric in correct range", {
expect_is(ti.regr.formula$prediction, "numeric")
expect_true(all(is.na(ti.regr.formula$prediction) | ti.regr.formula$prediction >= min(dat$y)))
expect_true(all(is.na(ti.regr.formula$prediction) | ti.regr.formula$prediction <= max(dat$y)))
})
rf.prob.formula <- ranger(Species ~ ., iris, num.trees = 5, probability = TRUE)
rf.prob.first <- ranger(dependent.variable.name = "Species", data = iris[, c(5, 1:4)], num.trees = 5, probability = TRUE)
rf.prob.mid <- ranger(dependent.variable.name = "Species", data = iris[, c(1:2, 5, 3:4)], num.trees = 5, probability = TRUE)
rf.prob.last <- ranger(dependent.variable.name = "Species", data = iris, num.trees = 5, probability = TRUE)
ti.prob.formula <- treeInfo(rf.prob.formula)
ti.prob.first <- treeInfo(rf.prob.first)
ti.prob.mid <- treeInfo(rf.prob.mid)
ti.prob.last <- treeInfo(rf.prob.last)
test_that("Terminal nodes have only prediction, non-terminal nodes all others, probability formula", {
expect_true(all(is.na(ti.prob.formula[ti.prob.formula$terminal, 2:6])))
expect_true(all(!is.na(ti.prob.formula[ti.prob.formula$terminal, c(1, 7:10)])))
expect_true(all(!is.na(ti.prob.formula[!ti.prob.formula$terminal, c(-8, -9, -10)])))
expect_true(all(is.na(ti.prob.formula[!ti.prob.formula$terminal, 8:10])))
})
test_that("Terminal nodes have only prediction, non-terminal nodes all others, probability depvarname first", {
expect_true(all(is.na(ti.prob.first[ti.prob.first$terminal, 2:6])))
expect_true(all(!is.na(ti.prob.first[ti.prob.first$terminal, c(1, 7:8)])))
expect_true(all(!is.na(ti.prob.first[!ti.prob.first$terminal, c(-8, -9, -10)])))
expect_true(all(is.na(ti.prob.first[!ti.prob.first$terminal, 8:10])))
})
test_that("Terminal nodes have only prediction, non-terminal nodes all others, probability depvarname mid", {
expect_true(all(is.na(ti.prob.mid[ti.prob.mid$terminal, 2:6])))
expect_true(all(!is.na(ti.prob.mid[ti.prob.mid$terminal, c(1, 7:8)])))
expect_true(all(!is.na(ti.prob.mid[!ti.prob.mid$terminal, c(-8, -9, -10)])))
expect_true(all(is.na(ti.prob.mid[!ti.prob.mid$terminal, 8:10])))
})
test_that("Terminal nodes have only prediction, non-terminal nodes all others, probability depvarname last", {
expect_true(all(is.na(ti.prob.last[ti.prob.last$terminal, 2:6])))
expect_true(all(!is.na(ti.prob.last[ti.prob.last$terminal, c(1, 7:8)])))
expect_true(all(!is.na(ti.prob.last[!ti.prob.last$terminal, c(-8, -9, -10)])))
expect_true(all(is.na(ti.prob.last[!ti.prob.last$terminal, 8:10])))
})
test_that("Names in treeInfo match, probability", {
varnames <- colnames(iris)[1:4]
expect_true(all(is.na(ti.prob.formula$splitvarName) | ti.prob.formula$splitvarName %in% varnames))
expect_true(all(is.na(ti.prob.first$splitvarName) | ti.prob.first$splitvarName %in% varnames))
expect_true(all(is.na(ti.prob.mid$splitvarName) | ti.prob.mid$splitvarName %in% varnames))
expect_true(all(is.na(ti.prob.last$splitvarName) | ti.prob.last$splitvarName %in% varnames))
})
test_that("Prediction for probability is one probability per class, sum to 1", {
expect_equal(ncol(ti.prob.formula), 10)
expect_is(ti.prob.formula$pred.setosa, "numeric")
expect_true(all(!ti.prob.formula$terminal | rowSums(ti.prob.formula[, 8:10]) == 1))
})
test_that("Prediction for probability has correct factor levels", {
dat <- iris[c(101:150, 1:100), ]
rf <- ranger(dependent.variable.name = "Species", data = dat, num.trees = 5, probability = TRUE)
pred_rf <- predict(rf, dat, num.trees = 1)$predictions
ti <- treeInfo(rf)
terminal_nodes <- predict(rf, dat, type = "terminalNodes")$predictions[, 1]
pred_ti <- as.matrix(ti[terminal_nodes + 1, grep("pred", colnames(ti))])
colnames(pred_ti) <- gsub("pred\\.", "", colnames(pred_ti))
rownames(pred_ti) <- NULL
expect_equal(pred_rf, pred_ti)
})
rf.surv.formula <- ranger(Surv(time, status) ~ ., veteran, num.trees = 5)
rf.surv.first <- ranger(dependent.variable.name = "time", status.variable.name = "status", data = veteran[, c(3:4, 1:2, 5:8)], num.trees = 5)
rf.surv.mid <- ranger(dependent.variable.name = "time", status.variable.name = "status", data = veteran, num.trees = 5)
rf.surv.last <- ranger(dependent.variable.name = "time", status.variable.name = "status", data = veteran[, c(2, 1, 5:8, 3:4)], num.trees = 5)
ti.surv.formula <- treeInfo(rf.surv.formula)
ti.surv.first <- treeInfo(rf.surv.first)
ti.surv.mid <- treeInfo(rf.surv.mid)
ti.surv.last <- treeInfo(rf.surv.last)
test_that("Terminal nodes have only nodeID, non-terminal nodes all, survival formula", {
expect_true(all(is.na(ti.surv.formula[ti.surv.formula$terminal, 2:6])))
expect_true(all(!is.na(ti.surv.formula[ti.surv.formula$terminal, c(1, 7)])))
expect_true(all(!is.na(ti.surv.formula[!ti.surv.formula$terminal, ])))
})
test_that("Terminal nodes have only prediction, non-terminal nodes all others, survival depvarname first", {
expect_true(all(is.na(ti.surv.first[ti.surv.first$terminal, 2:6])))
expect_true(all(!is.na(ti.surv.first[ti.surv.first$terminal, c(1, 7)])))
expect_true(all(!is.na(ti.surv.first[!ti.surv.first$terminal, ])))
})
test_that("Terminal nodes have only prediction, non-terminal nodes all others, survival depvarname mid", {
expect_true(all(is.na(ti.surv.mid[ti.surv.mid$terminal, 2:6])))
expect_true(all(!is.na(ti.surv.mid[ti.surv.mid$terminal, c(1, 7)])))
expect_true(all(!is.na(ti.surv.mid[!ti.surv.mid$terminal, ])))
})
test_that("Terminal nodes have only prediction, non-terminal nodes all others, survival depvarname last", {
expect_true(all(is.na(ti.surv.last[ti.surv.last$terminal, 2:6])))
expect_true(all(!is.na(ti.surv.last[ti.surv.last$terminal, c(1, 7)])))
expect_true(all(!is.na(ti.surv.last[!ti.surv.last$terminal, ])))
})
test_that("Names in treeInfo match, survival", {
varnames <- colnames(veteran)[c(1:2, 5:8)]
expect_true(all(is.na(ti.surv.formula$splitvarName) | ti.surv.formula$splitvarName %in% varnames))
expect_true(all(is.na(ti.surv.first$splitvarName) | ti.surv.first$splitvarName %in% varnames))
expect_true(all(is.na(ti.surv.mid$splitvarName) | ti.surv.mid$splitvarName %in% varnames))
expect_true(all(is.na(ti.surv.last$splitvarName) | ti.surv.last$splitvarName %in% varnames))
})
test_that("No prediction for Survival", {
expect_equal(ncol(ti.surv.formula), 7)
})
test_that("Error if no saved forest", {
expect_error(treeInfo(ranger(Species ~ ., iris, write.forest = FALSE)),
"Error\\: No saved forest in ranger object\\. Please set write.forest to TRUE when calling ranger\\.")
})
test_that("Spitting value is comma separated list for partition splitting", {
n <- 50
dat <- data.frame(x = sample(c("A", "B", "C", "D", "E"), n, replace = TRUE),
y = rbinom(n, 1, 0.5),
stringsAsFactors = FALSE)
rf.partition <- ranger(y ~ ., dat, num.trees = 5, respect.unordered.factors = "partition")
ti.partition <- treeInfo(rf.partition)
expect_is(ti.partition$splitval, "character")
expect_true(all(is.na(ti.partition$splitval) | grepl("^\\d+(?:,\\d+)*$", ti.partition$splitval)))
})
test_that("Spitting value is numeric for order splitting", {
set.seed(100)
rf.order <- ranger(Sepal.Length ~ ., iris, num.trees = 5, respect.unordered.factors = "order")
ti.order <- treeInfo(rf.order)
expect_is(ti.order$splitval[!ti.order$terminal & ti.order$splitvarName == "Species"], "numeric")
})
test_that("treeInfo works for 31 unordered factor levels but not for 32", {
n <- 31
dt <- data.frame(x = factor(1:n, ordered = FALSE),
y = rbinom(n, 1, 0.5))
rf <- ranger(y ~ ., data = dt, num.trees = 10, splitrule = "extratrees")
expect_silent(treeInfo(rf))
n <- 32
dt <- data.frame(x = factor(1:n, ordered = FALSE),
y = rbinom(n, 1, 0.5))
rf <- ranger(y ~ ., data = dt, num.trees = 10, splitrule = "extratrees")
expect_warning(treeInfo(rf), "Unordered splitting levels can only be shown for up to 31 levels.")
}) |
context("lsat_scenes")
test_that("lsat_scenes, n_max parameter usage", {
skip_on_cran()
a <- lsat_scenes(n_max = 3)
expect_is(a, "data.frame")
expect_is(a, "tbl_df")
expect_is(a$entityId, "character")
expect_is(a$acquisitionDate, "POSIXct")
expect_equal(NROW(a), 3)
})
test_that("lsat_scenes, skip parameter usage", {
expect_warning(lsat_scenes(n_max = 3, skip = 3),
"you probably don't want to use 'skip'")
}) |
reintegrate <- function(ag, to, time_var = "Timestamp",
direction = c("forwards", "backwards"), verbose = FALSE) {
direction <- try(
match.arg(direction, c("forwards", "backwards", "error")),
silent = TRUE)
if (class(direction) == "try-error") {
warning(paste("Argument `direction` must be exactly one of",
"\"forwards\" or \"backwards\". Defaulting to forwards."))
direction <- "forwards"
}
start_epoch <- unique(diff.POSIXt(ag[ ,time_var]))
if (start_epoch == to) {
if (verbose) cat(
"\nReturning original data --",
"already in desired epoch length"
)
return(ag)
}
stopifnot(length(start_epoch) == 1, (to / start_epoch) %% 1 == 0)
block_size <- to / start_epoch
ag <- get_blocks(ag, time_var, to, start_epoch, block_size, direction)
col_classes <- sapply(ag, function(x) class(x)[1])
col_numeric <- col_classes %in% c("numeric", "integer")
first_vars <- names(col_classes)[!col_numeric]
sum_vars <- names(col_classes)[col_numeric]
ag[ ,time_var] <- as.character(ag[ ,time_var])
firsts <-
sapply(match(first_vars, names(ag)), function(x)
tapply(ag[ ,x], ag$block_no, function(y)
switch(direction,
"forwards" = y[1], "backwards" = y[length(y)])))
firsts <-
stats::setNames(data.frame(firsts, stringsAsFactors = FALSE),
first_vars)
sums <-
sapply(match(sum_vars, names(ag)), function(x)
tapply(ag[ ,x], ag$block_no, sum, na.rm = TRUE))
sums <- stats::setNames(data.frame(sums, stringsAsFactors = FALSE),
sum_vars)
ag <- data.frame(cbind(firsts, sums), stringsAsFactors = FALSE)
ag[ ,sum_vars] <- sapply(ag[ ,sum_vars], as.numeric)
ag[ ,time_var] <- as.POSIXct(ag$Timestamp, "UTC")
ag$block_no <- NULL
triaxial_vars <- c("Axis1", "Axis2", "Axis3")
if (all(triaxial_vars %in% names(ag))) {
ag$Vector.Magnitude <-
round(get_VM(ag[ ,triaxial_vars]), 2)
}
return(ag)
} |
.runThisTest <- Sys.getenv("RunAllinsightTests") == "yes"
.runStanTest <- Sys.getenv("RunAllinsightStanTests") == "yes"
if (.runThisTest && .runStanTest && requiet("testthat") && requiet("insight") && requiet("brms")) {
data(mtcars)
set.seed(123)
model <- brms::brm(mpg ~ wt, data = mtcars, seed = 1, refresh = 0)
priors <- insight::get_priors(model)
test_that("get_priors", {
expect_equal(priors$Location, c(19.2, NA, 0), tolerance = 1e-3)
expect_equal(priors$Distribution, c("student_t", "uniform", "student_t"))
expect_equal(priors$Parameter, c("b_Intercept", "b_wt", "sigma"))
})
} |
.path_to_gb.dmp <-
function(package="ncbit"){
path=paste(system.file(package=package), "data", sep="/")
nd=paste(path, "nodes.dmp", sep="/")
nm=paste(path, "names.dmp", sep="/")
ncbi=paste(path, "ncbi.rda", sep="/")
return(c(ncbi=ncbi, names=nm, nodes=nd, base=path))
} |
library(testthat)
library(seriation)
library(dendextend)
set.seed(0)
context("ser_permutation_vector")
p <- sample(1:10)
sp <- ser_permutation_vector(p, method="valid")
expect_identical(length(sp), 10L)
expect_identical(get_order(sp), p)
expect_identical(get_order(rev(sp)), rev(p))
expect_error(ser_permutation_vector(c(1:10, 12L), method="invalid"), "Invalid permutation vector!")
expect_error(ser_permutation_vector(c(1:10, 3L), method="invalid"), "Invalid permutation vector!")
context("ser_permutation")
expect_identical(length(ser_permutation(sp)), 1L)
expect_identical(length(ser_permutation(sp, sp)), 2L)
hc <- hclust(dist(runif(10)))
expect_identical(length(ser_permutation(sp, hc)), 2L)
hc <- ser_permutation_vector(hc, method="hc")
expect_identical(length(ser_permutation(sp, hc, sp)), 3L)
expect_identical(length(ser_permutation(ser_permutation(sp), 1:10)), 2L)
context("permute")
v <- structure(1:10, names = LETTERS[1:10])
expect_identical(permute(v, ser_permutation(1:10)), v[1:10])
expect_identical(permute(LETTERS[1:10], ser_permutation(1:10)), LETTERS[1:10])
expect_identical(permute(v, ser_permutation(10:1)), v[10:1])
expect_identical(permute(LETTERS[1:10], ser_permutation(10:1)), LETTERS[10:1])
expect_error(permute(v, ser_permutation(1:11)))
m <- matrix(runif(9), ncol=3, dimnames = list(1:3, LETTERS[1:3]))
expect_identical(permute(m, ser_permutation(1:3, 3:1)), m[,3:1])
expect_identical(permute(m, ser_permutation(3:1, 3:1)), m[3:1,3:1])
expect_error(permute(m, ser_permutation(1:10, 1:9)))
expect_error(permute(m, ser_permutation(1:9, 1:11)))
expect_identical(permute(m, ser_permutation(3:1, 3:1), margin = 1), m[3:1, ])
expect_identical(permute(m, ser_permutation(3:1, 3:1), margin = 2), m[ , 3:1])
expect_identical(permute(m, ser_permutation(3:1), margin = 1), m[3:1, ])
expect_identical(permute(m, ser_permutation(3:1), margin = 2), m[, 3:1])
df <- as.data.frame(m)
expect_identical(permute(df, ser_permutation(1:3, 3:1)), df[,3:1])
expect_identical(permute(df, ser_permutation(3:1, 3:1)), df[3:1,3:1])
d <- dist(matrix(runif(25), ncol=5))
attr(d, "call") <- NULL
expect_identical(permute(d, ser_permutation(1:5)), d)
expect_equivalent(permute(d, ser_permutation(5:1)), as.dist(as.matrix(d)[5:1,5:1]))
expect_error(permute(d, ser_permutation(1:8)))
l <- list(a = 1:10, b = letters[1:5], 25)
expect_identical(permute(l, 3:1), rev(l))
dend <- as.dendrogram(hclust(d))
expect_equal(dend, permute(dend, get_order(dend)))
expect_equal(rev(dend), permute(dend, rev(get_order(dend))))
o <- sample(5)
expect_warning(permute(dend, o))
hc <- hclust(d)
expect_equal(hc, permute(hc, get_order(hc)))
expect_equal(as.hclust(rev(as.dendrogram(hc)))[1:3],
permute(hc, rev(get_order(hc)))[1:3])
expect_warning(permute(hc, o))
context("permutation_matrix2vector")
pv <- 1:5
pm <- permutation_vector2matrix(pv)
expect_true(all(diag(pm) == 1))
pv <- sample(1:100)
pm <- permutation_vector2matrix(pv)
expect_identical(permutation_matrix2vector(pm), pv) |
{
}
seq_consecutive <-
function(x,...){
stopifnot(is.vector(x))
y <- integer(length(x))
y[1] <- 1
if(length(x)>1)for(i in seq_len(length(x))[-1]){
if(x[i]==x[i-1])
y[i] <- y[i-1]
else
y[i] <- y[i-1] +1
}
return(y)
} |
cubeClvR2 <- function(cF = 1, crF = 0, ccF = cF, ccrF = crF,
cM = 1, crM = 0, ccM = cM, ccrM = crM,
dW = 0, drW = 0, ddW = dW, ddrW = drW,
hSuf = 1, crossF = 0.5, crossM = 0.5,
eta=NULL, phi=NULL,omega=NULL, xiF=NULL, xiM=NULL, s=NULL){
params <- c(cF,crF,ccF,ccrF,cM,crM,ccM,ccrM,dW,drW,ddW,ddrW,hSuf,crossF,crossM)
if(any(params>1) || any(params<0)){
stop("Parameters are rates, they must be between 0 and 1.")
}
gTypes <- list(c('W', 'C'), c('W', 'G'))
gTypes2 <- c('W', 'R', 'B')
genotypes <- c('WWWWWW','WWWWRW','WWWWBW','WWWWRR','WWWWBR','WWWWBB',
'CWWWWW','CWWWRW','CWWWBW','CWWWRR','CWWWBR','CWWWBB',
'WGWWWW','WGWWRW','WGWWBW','WGWWRR','WGWWBR','WGWWBB',
'CGWWWW','CGWWRW','CGWWBW','CGWWRR','CGWWBR','CGWWBB',
'CWCWWW','CWCWRW','CWCWBW','CWCWRR','CWCWBR','CWCWBB',
'CWWGWW','CWWGRW','CWWGBW','CWWGRR','CWWGBR','CWWGBB',
'CGCWWW','CGCWRW','CGCWBW','CGCWRR','CGCWBR','CGCWBB',
'WGWGWW','WGWGRW','WGWGBW','WGWGRR','WGWGBR','WGWGBB',
'CGWGWW','CGWGRW','CGWGBW','CGWGRR','CGWGBR','CGWGBB',
'CGCGWW','CGCGRW','CGCGBW','CGCGRR','CGCGBR','CGCGBB')
locus12 <- list("W"=c("W"=1),
"C"=c("C"=1),
"G"=c("G"=1))
fLocus3 <- list()
fLocus3$mendelian <- list("W"=c("W"=1),
"R"=c("R"=1),
"B"=c("B"=1))
fLocus3$oneCas <- list("W"=c("W"=1-cF,
"R"=cF*crF,
"B"=cF*(1-crF)),
"R"=c("R"=1),
"B"=c("B"=1))
fLocus3$twoCas <- list("W"=c("W"=1-ccF,
"R"=ccF*ccrF,
"B"=ccF*(1-ccrF)),
"R"=c("R"=1),
"B"=c("B"=1))
mLocus3 <- list()
mLocus3$zero <- list("W"=c("W"=1),
"R"=c("R"=1),
"B"=c("B"=1))
mLocus3$zeroOne <- list("W"=c("W"=1-dW,
"R"=dW*drW,
"B"=dW*(1-drW)),
"R"=c("R"=1),
"B"=c("B"=1))
mLocus3$zeroTwo <- list("W"=c("W"=1-ddW,
"R"=ddW*ddrW,
"B"=ddW*(1-ddrW)),
"R"=c("R"=1),
"B"=c("B"=1))
mLocus3$one <- list("W"=c("W"=1-cM,
"R"=cM*crM,
"B"=cM*(1-crM)),
"R"=c("R"=1),
"B"=c("B"=1))
mLocus3$oneOne <- list("W"=c("W"=(1-cM)*(1-dW),
"R"=cM*crM + dW*drW,
"B"=cM*(1-crM) + dW*(1-drW)),
"R"=c("R"=1),
"B"=c("B"=1))
mLocus3$oneTwo <- list("W"=c("W"=(1-cM)*(1-ddW),
"R"=cM*crM + ddW*ddrW,
"B"=cM*(1-crM) + ddW*(1-ddrW)),
"R"=c("R"=1),
"B"=c("B"=1))
mLocus3$two <- list("W"=c("W"=1-ccM,
"R"=ccM*ccrM,
"B"=ccM*(1-ccrM)),
"R"=c("R"=1),
"B"=c("B"=1))
mLocus3$twoOne <- list("W"=c("W"=(1-ccM)*(1-dW),
"R"=ccM*ccrM + dW*drW,
"B"=ccM*(1-ccrM) + dW*(1-drW)),
"R"=c("R"=1),
"B"=c("B"=1))
mLocus3$twoTwo <- list("W"=c("W"=(1-ccM)*(1-ddW),
"R"=ccM*ccrM + ddW*ddrW,
"B"=ccM*(1-ccrM) + ddW*(1-ddrW)),
"R"=c("R"=1),
"B"=c("B"=1))
numGen <- length(genotypes)
tMatrix <- array(data = 0,
dim = c(numGen,numGen,numGen),
dimnames = list(genotypes,genotypes,genotypes))
numAlleles <- 2
numLoci <- 3
fScore <- mScore <- integer(length = numAlleles)
for(fi in 1:numGen){
fSplit <- strsplit(x = genotypes[fi], split = "", useBytes = TRUE)[[1]]
fAlleleMat <- matrix(data = fSplit, nrow = numAlleles, ncol = numLoci)
fScore[1] <- sum('C' == fAlleleMat)
fScore[2] <- any('G' == fAlleleMat)
fPHold <- rep(x = list(list()), times = numLoci)
fAllele <- character(length = 0L)
fProbs <- numeric(length = 0L)
fPHold[[1]] <- locus12[ fAlleleMat[ ,1] ]
fPHold[[2]] <- locus12[ fAlleleMat[ ,2] ]
if(all(fScore)){
if(fScore[1] == 1){
fPHold[[3]] <- fLocus3$oneCas[ fAlleleMat[ ,3] ]
} else {
fPHold[[3]] <- fLocus3$twoCas[ fAlleleMat[ ,3] ]
}
} else {
fPHold[[3]] <- fLocus3$mendelian[ fAlleleMat[ ,3] ]
}
hold1 <- fPHold[[1]][[1]]
fPHold[[1]][[1]] <- c((1-crossF)*hold1, crossF*fPHold[[2]][[1]])
fPHold[[2]][[1]] <- c((1-crossF)*fPHold[[2]][[1]], crossF*hold1)
for(allele in 1:numAlleles){
holdProbs <- expand.grid(fPHold[[allele]],KEEP.OUT.ATTRS = FALSE, stringsAsFactors = FALSE)
holdAllele <- expand.grid(names(fPHold[[allele]][[1]]), names(fPHold[[allele]][[2]]),
KEEP.OUT.ATTRS = FALSE, stringsAsFactors = FALSE)
fProbs <- c(fProbs, holdProbs[,1]*holdProbs[,2])
fAllele <- c(fAllele, file.path(holdAllele[,1], holdAllele[,2], fsep = ""))
}
fAllele <- fAllele[fProbs!=0]
fProbs <- fProbs[fProbs!=0]
for(mi in 1:numGen){
mSplit <- strsplit(x = genotypes[mi], split = "", useBytes = TRUE)[[1]]
mAlleleMat <- matrix(data = mSplit, nrow = numAlleles, ncol = numLoci)
mScore[1] <- sum('C' == mAlleleMat)
mScore[2] <- any('G' == mAlleleMat)
mPHold <- rep(x = list(list()), times = numLoci)
mAllele <- character(length = 0L)
mProbs <- numeric(length = 0L)
mPHold[[1]] <- locus12[ mAlleleMat[ ,1] ]
mPHold[[2]] <- locus12[ mAlleleMat[ ,2] ]
if(all(mScore)){
if(mScore[1] == 1){
if(all(fScore)){
if(fScore[1]== 1){
mPHold[[3]] <- mLocus3$oneOne[ mAlleleMat[ ,3] ]
} else {
mPHold[[3]] <- mLocus3$oneTwo[ mAlleleMat[ ,3] ]
}
} else {
mPHold[[3]] <- mLocus3$one[ mAlleleMat[ ,3] ]
}
} else {
if(all(fScore)){
if(fScore[1]== 1){
mPHold[[3]] <- mLocus3$twoOne[ mAlleleMat[ ,3] ]
} else {
mPHold[[3]] <- mLocus3$twoTwo[ mAlleleMat[ ,3] ]
}
} else {
mPHold[[3]] <- mLocus3$two[ mAlleleMat[ ,3] ]
}
}
} else {
if(all(fScore)){
if(fScore[1]== 1){
mPHold[[3]] <- mLocus3$zeroOne[ mAlleleMat[ ,3] ]
} else {
mPHold[[3]] <- mLocus3$zeroTwo[ mAlleleMat[ ,3] ]
}
} else {
mPHold[[3]] <- mLocus3$zero[ mAlleleMat[ ,3] ]
}
}
hold1 <- mPHold[[1]][[1]]
mPHold[[1]][[1]] <- c((1-crossM)*hold1, crossM*mPHold[[2]][[1]])
mPHold[[2]][[1]] <- c((1-crossM)*mPHold[[2]][[1]], crossM*hold1)
for(allele in 1:numAlleles){
holdProbs <- expand.grid(mPHold[[allele]],KEEP.OUT.ATTRS = FALSE, stringsAsFactors = FALSE)
holdAllele <- expand.grid(names(mPHold[[allele]][[1]]), names(mPHold[[allele]][[2]]),
KEEP.OUT.ATTRS = FALSE, stringsAsFactors = FALSE)
mProbs <- c(mProbs, holdProbs[,1]*holdProbs[,2])
mAllele <- c(mAllele, file.path(holdAllele[,1], holdAllele[,2], fsep = ""))
}
mAllele <- mAllele[mProbs!=0]
mProbs <- mProbs[mProbs!=0]
holdProbs <- expand.grid(fProbs, mProbs, KEEP.OUT.ATTRS = FALSE, stringsAsFactors = FALSE)
holdAllele <- expand.grid(fAllele, mAllele, KEEP.OUT.ATTRS = FALSE, stringsAsFactors = FALSE)
holdAllele <- apply(X = holdAllele, MARGIN = 1, FUN = sort.int)
holdProbs <- holdProbs[ ,1]*holdProbs[ ,2]
holdAllele <- file.path(holdAllele[1,], holdAllele[2,], fsep = "")
reducedOneTwo <- vapply(X = unique(holdAllele), FUN = function(x){
sum(holdProbs[holdAllele==x])},
FUN.VALUE = numeric(length = 1L))
holdProbs <- expand.grid(unlist(fPHold[[3]], use.names = FALSE), unlist(mPHold[[3]], use.names = FALSE),
KEEP.OUT.ATTRS = FALSE, stringsAsFactors = FALSE)
holdAllele <- expand.grid(names(c(fPHold[[3]][[1]], fPHold[[3]][[2]])),
names(c(mPHold[[3]][[1]], mPHold[[3]][[2]])),
KEEP.OUT.ATTRS = FALSE, stringsAsFactors = FALSE)
holdAllele <- apply(X = holdAllele, MARGIN = 1, FUN = sort.int)
holdProbs <- holdProbs[ ,1]*holdProbs[ ,2]
holdAllele <- file.path(holdAllele[1,], holdAllele[2,], fsep = "")
reducedThree <- vapply(X = unique(holdAllele), FUN = function(x){
sum(holdProbs[holdAllele==x])},
FUN.VALUE = numeric(length = 1L))
alleles <- as.vector(outer(X = names(reducedOneTwo), Y = names(reducedThree), FUN = file.path, fsep = ""))
probs <- as.vector(outer(X = reducedOneTwo, Y = reducedThree, FUN = '*'))
probs <- probs/sum(probs)
tMatrix[fi,mi, alleles ] <- probs
}
}
tMatrix[tMatrix < .Machine$double.eps] <- 0
viabilityVec <- c(1,1,hSuf,1,hSuf,0, 1,1,hSuf,1,hSuf,0, 1,1,1,1,1,hSuf,
1,1,1,1,1,hSuf, 1,1,hSuf,1,hSuf,0, 1,1,1,1,1,hSuf,
1,1,1,1,1,hSuf, 1,1,1,1,1,1, 1,1,1,1,1,1, 1,1,1,1,1,1)
viabilityMask <- aperm(a = array(data = viabilityVec, dim = c(numGen,numGen,numGen),
dimnames = list(genotypes, genotypes, genotypes)),
perm = c(3,2,1),resize = TRUE)
modifiers = cubeModifiers(genotypes, eta = eta, phi = phi, omega = omega, xiF = xiF, xiM = xiM, s = s)
return(list(
ih = tMatrix,
tau = viabilityMask,
genotypesID = genotypes,
genotypesN = numGen,
wildType = "WWWWWW",
eta = modifiers$eta,
phi = modifiers$phi,
omega = modifiers$omega,
xiF = modifiers$xiF,
xiM = modifiers$xiM,
s = modifiers$s,
releaseType = "CGCGWW"
))
} |
context("nlm_distancegradient")
test_that("nlm_distancegradient behaves like it should", {
suppressWarnings(distance_gradient <- nlm_distancegradient(ncol = 9,
nrow = 12,
origin = c(5, 5, 5, 5)))
expect_that(distance_gradient, is_a("RasterLayer"))
})
test_that("nlm_distancegradient sets origin right", {
suppressWarnings(distance_gradient <- nlm_distancegradient(ncol = 9,
nrow = 12,
origin = c(5, 5, 5, 5)))
expect_equal(raster::as.matrix(distance_gradient)[5, 5], 0)
})
test_that("nlm_distancegradient produces the right number of rows", {
suppressWarnings(distance_gradient <- nlm_distancegradient(ncol = 9,
nrow = 12,
origin = c(5, 5, 5, 5)))
expect_equal(distance_gradient@nrows, 12)
})
test_that("nlm_distancegradient produces the right number of columns", {
suppressWarnings(distance_gradient <- nlm_distancegradient(ncol = 9,
nrow = 12,
origin = c(5, 5, 5, 5)))
expect_equal(distance_gradient@ncols, 9)
}) |
module.readable <- function(module) {
return (file.access(module, mode=4) == 0 && !file.info(module)$isdir)
}
find.first.R <- function(module, character.only = FALSE, warn.not.found = TRUE) {
if (character.only || length(substitute(module)) > 1) {
module <- as.character(module)
} else {
module <- as.character(substitute(module))
}
module <- gsub('\\\\', '/', module)
module.paths <- get('.:module.paths', envir = module.cache)
search.for.r <- (toupper(substr(module, nchar(module)-1, nchar(module))) != '.R')
files <- c()
if ((substr(module, 1, 1) == '/') || (substr(module, 2, 2) == ':')) {
files <- append(files, ifelse(search.for.r, paste(module, 'R', sep='.'), module))
} else {
files <- append(files, file.path('.', ifelse(search.for.r, paste(module, 'R', sep='.'), module)))
files <- append(files, file.path(module.paths, module))
if (search.for.r) {
files <- append(files, file.path(module.paths, paste(module, 'R', sep='.')))
}
}
files <- gsub('(?<!\\.)\\./', '', files, perl=TRUE)
for (filepath in files) {
if ((substr(filepath, 1, 1) == '/') || (substr(filepath, 2, 2) == ':')) {
} else {
filepath <- path.expand(file.path(getwd(), filepath))
filepath <- gsub('/(?<!\\.)[^/]+/\\.\\.', '', filepath, perl=TRUE)
}
if (module.readable(filepath)) {
return (filepath)
}
}
if (missing(warn.not.found)) {
warn.not.found <- get('.:warn.not.found', envir = module.cache)
}
if (warn.not.found) {
warning('No module named ', module,
ifelse(search.for.r, paste0(' or ', module, '.R'), ''),
' in: ', paste(c('.', module.paths), collapse='/, '), '/.')
}
return(NA)
}
hide.not.found.warnings <- function() {
assign('.:warn.not.found', FALSE, envir = module.cache)
}
show.not.found.warnings <- function() {
assign('.:warn.not.found', TRUE, envir = module.cache)
} |
skda<-function(x, y, tau, method="Bayes") {
nclass=length(unique(y))
if(length(setdiff(y,1:nclass))>0.5)
{stop("The categorical response must be coded as 1, 2, ..., K!!!")}
y=y-1
n=length(y)
p=dim(as.matrix(x))[2]
lam=matrix(0, p,1)
phat=matrix(0,n,nclass)
maxct=40;
priorporp=switch(method,
mle=matrix(1/nclass, nclass,1),
Bayes=matrix(as.vector(table(y)/length(y)), nclass,1)
)
wu=.C("coordescent", as.integer(n), as.integer(p), as.integer(nclass), as.double(x),
as.integer(y), as.double(tau),
as.integer(maxct), as.double(priorporp), as.double(lam), as.double(phat));
lam=wu[[9]]
phat=matrix(wu[[10]],n,nclass)
return(list(lam=lam, phat=phat))
}
predprob<-function(x,y,lam,xnew, method="Bayes") {
nclass=length(unique(y))
if(length(setdiff(y,1:nclass))>0.5)
{stop("The categorical response must be coded as 1, 2, ..., K!!!")}
y=y-1
n=length(y);
p=dim(as.matrix(x))[2];
m=dim(as.matrix(xnew))[1];
priorporp=switch(method,
mle=matrix(1/nclass, nclass,1),
Bayes=matrix(as.vector(table(y)/length(y)), nclass,1)
)
phat=matrix(0,m,nclass);
result=.C("condprob", as.integer(n), as.integer(p),as.integer(nclass),
as.integer(y), as.double(x), as.double(lam),
as.integer(m), as.double(xnew), as.double(priorporp),
as.double(phat));
phat=matrix(result[[10]], m, nclass);
return(phat);
}
evalonefold<-function(i,j,n,k,x,y,taus,nclass,method){
tuind=seq(i,n,k);
trind=setdiff(1:n,tuind)
xtr=x[trind,];
ytr=y[trind];
xtu=x[tuind,];
ytu=y[tuind];
temp=skda(xtr, ytr, taus[j], method);
lam=temp$lam;
ptuhat=predprob(xtr,ytr,lam,xtu, method);
fer=0
for (m in 1:nclass)
{ind=which(ytu==m);
fer=fer+sum(log(ptuhat[ind,m]));
}
fer
}
cvskda<-function(x,y,taus,nfolds=10, method="Bayes") {
nclass=length(unique(y))
if(length(setdiff(y,1:nclass))>0.5)
{stop("The categorical response must be coded as 1, 2, ..., K!!!")}
if(length(taus)<1.5)
{stop("There must be more than one taus!!!")
}
n=length(y);
tmpord=sample(n);
x=x[tmpord,];
y=y[tmpord];
er=matrix(0,nfolds,length(taus));
mc = detectCores()
if(.Platform$OS.type=="windows") {
cl <- makeCluster(getOption("cl.cores", mc))
}
er=NULL
for(j in 1:length(taus)) {
if(.Platform$OS.type=="windows") {
a=clusterApplyLB (cl, 1:nfolds, function(t)evalonefold(t,j,n,nfolds,x,y,taus,nclass,method))
}
else {
a=mclapply(1:nfolds, function(t)evalonefold(t,j,n,nfolds,x,y,taus,nclass,method), mc.cores = mc)
}
er=cbind(er,unlist(a))
if((j>1.5)&(sum(er[,j])<sum(er[,j-1])))
{break;
}
}
if(.Platform$OS.type=="windows") {
stopCluster(cl)
}
cver=apply(er[,1:min(j,length(taus))],2,sum);
jbest=which.max(cver);
temp=skda(x, y, taus[jbest], method);
lam=temp$lam
lam
}
|
texmexFamily <-
function(name, log.lik, param, info=NULL, sandwich = NULL, start=NULL, resid=NULL,
rl, delta, endpoint, density, rng, prob, quant){
res <- list(name=name, log.lik=log.lik, param=param, info=info, sandwich = sandwich, start=start,
resid=resid, rl=rl, delta=delta, endpoint=endpoint, density=density,
rng=rng, prob=prob, quant=quant)
oldClass(res) <- 'texmexFamily'
res
}
print.texmexFamily <- function(x, ...){
cat('Family: ', x$name, '\n')
invisible(x)
}
summary.texmexFamily <- function(object, ...){
res <- list(object=object)
if (is.null(object$info)){
res$info <- 'Numerical approximation'
} else {
res$info <- 'Closed form'
}
oldClass(res) <- "summary.texmexFamily"
res
}
print.summary.texmexFamily <- function(x, ...){
print.texmexFamily(x$object, ...)
cat('Parameters: ', x$object$param, '\n')
cat('Information: ', x$info, '\n')
invisible(x)
} |
library(rmarkdown)
test_that("documents with spaces in names can be rendered", {
the_test <- "citeall"
dir_name <- file.path(tempdir(), the_test)
if(dir.exists(dir_name)) unlink(dir_name, recursive = TRUE)
file_name <- file.path(dir_name, "test.Rmd")
dir.create(dir_name)
on.exit(unlink(dir_name, recursive = TRUE), add = TRUE)
draft(file_name, template = "github_document", package = "rmarkdown",
create_dir = FALSE, edit = FALSE)
write(c("", "Optional reference: @@reference2020"),
file = file_name, append = TRUE)
if (rmarkdown::pandoc_available("1.14")){
sink_out <- capture_output(cite_all(file_name))
contents <- readLines(gsub("Rmd$", "md", file_name), encoding = "UTF-8")
expect_true(any(contents == "Optional reference: @reference2020"))
sink_out <- capture_output(cite_essential(file_name))
contents <- readLines(gsub("Rmd$", "md", file_name), encoding = "UTF-8")
expect_true(!any(contents == "Optional reference: @reference2020"))
expect_true(any(contents == "Optional reference:"))
}
})
test_that("cite_* work with umlaute", {
the_test <- "citeall"
dir_name <- file.path(tempdir(), the_test)
if(dir.exists(dir_name)) unlink(dir_name, recursive = TRUE)
file_name <- file.path(dir_name, "test.Rmd")
dir.create(dir_name)
on.exit(unlink(dir_name, recursive = TRUE), add = TRUE)
draft(file_name, template = "github_document", package = "rmarkdown",
create_dir = FALSE, edit = FALSE)
worcs:::write_as_utf(c("", "Optional räference: @@reference2020"),
con = file_name, append = TRUE)
if (rmarkdown::pandoc_available("1.14")){
sink_out <- capture_output(cite_all(file_name))
md_file <- force(gsub("Rmd$", "md", file_name))
contents <- worcs:::read_as_utf(md_file)
expect_true(any(contents == "Optional räference: @reference2020"))
sink_out <- capture_output(cite_essential(file_name))
contents <- worcs:::read_as_utf(gsub("Rmd$", "md", file_name))
expect_true(!any(contents == "Optional räference: @reference2020"))
expect_true(any(contents == "Optional räference:"))
}
})
test_that("cite_* retain relative paths", {
the_test <- "relative"
dir_name <- file.path(tempdir(), the_test)
if(dir.exists(dir_name)) unlink(dir_name, recursive = TRUE)
file_name <- file.path(dir_name, "test.Rmd")
dir.create(dir_name)
on.exit(unlink(dir_name, recursive = TRUE), add = TRUE)
draft(file_name, template = "github_document", package = "rmarkdown",
create_dir = FALSE, edit = FALSE)
write(c("", "Optional reference: @@reference2020"),
file = file_name, append = TRUE)
write.csv(iris, file.path(dir_name, "iris.csv"))
write(c("",
"
```{r}
myiris <- read.csv('iris.csv')
```
"), file = file_name, append = TRUE)
if (rmarkdown::pandoc_available("1.14")){
sink_out <- capture_output(cite_all(file_name))
contents <- readLines(normalizePath(gsub("\\.Rmd", "\\.md", file_name)))
expect_true(any(contents == "Optional reference: @reference2020"))
sink_out <- capture_output(cite_essential(file_name))
contents <- readLines(normalizePath(gsub("\\.Rmd", "\\.md", file_name)))
expect_true(!any(contents == "Optional reference: @reference2020"))
expect_true(any(grepl("myiris", contents, fixed = TRUE)))
expect_true(any(contents == "Optional reference:"))
}
})
test_that("cite_* retain double @", {
the_test <- "citeall"
dir_name <- file.path(tempdir(), the_test)
if(dir.exists(dir_name)) unlink(dir_name, recursive = TRUE)
file_name <- file.path(dir_name, "test.Rmd")
dir.create(dir_name)
on.exit(unlink(dir_name, recursive = TRUE), add = TRUE)
draft(file_name, template = "github_document", package = "rmarkdown",
create_dir = FALSE, edit = FALSE)
write(c("", "Optional reference: @@reference2020"),
file = file_name, append = TRUE)
if (rmarkdown::pandoc_available("1.14")){
sink_out <- capture_output(cite_all(file_name))
contents <- readLines(file_name, encoding = "UTF-8")
expect_true(any(contents == "Optional reference: @@reference2020"))
sink_out <- capture_output(cite_essential(file_name))
contents <- readLines(file_name, encoding = "UTF-8")
expect_true(any(contents == "Optional reference: @@reference2020"))
}
}) |
getLikes <- function(user="me", n=500, token){
query <- paste0('https://graph.facebook.com/', user,
'?fields=likes.limit(', n, ').fields(id,name,website)')
content <- callAPI(query, token)
if ('data' %in% names(content$likes) == FALSE){
stop("User not found, or token is not authorized.")
}
df <- userLikesToDF(content$likes$data)
next_url <- content$likes$paging$`next`
while (!is.null(next_url)){
content <- callAPI(next_url, token)
df <- rbind(df, userLikesToDF(content$data))
next_url <- content$paging$`next`
}
return(df)
} |
library(caret)
data(GermanCredit)
?GermanCredit
str(GermanCredit)
Train <- createDataPartition(GermanCredit$Class, p=0.6, list=FALSE)
training <- GermanCredit[ Train, ]
testing <- GermanCredit[ -Train, ]
mod_fit <- train(Class ~ Age + ForeignWorker + Property.RealEstate + Housing.Own + CreditHistory.Critical, data=training, method="glm", family="binomial")
exp(coef(mod_fit$finalModel))
predict(mod_fit, newdata=testing)
predict(mod_fit, newdata=testing, type="prob")
mod_fit_one <- glm(Class ~ Age + ForeignWorker + Property.RealEstate + Housing.Own + CreditHistory.Critical, data=training, family="binomial")
predict(mod_fit_one, newdata=testing)
mod_fit_two <- glm(Class ~ Age + ForeignWorker, data=training, family="binomial")
anova(mod_fit_one, mod_fit_two, test ="Chisq")
library(lmtest)
lrtest(mod_fit_one, mod_fit_two)
library(pscl)
pR2(mod_fit_one)
library(MKmisc)
HLgof.test(fit = fitted(mod_fit_one), obs = training$Class)
library(ResourceSelection)
hoslem.test(training$Class, fitted(mod_fit_one), g=10)
library(survey)
regTermTest(mod_fit_one, "ForeignWorker")
regTermTest(mod_fit_one, "CreditHistory.Critical")
varImp(mod_fit)
red = predict(mod_fit, newdata=testing)
accuracy <- table(pred, testing[,"Class"])
sum(diag(accuracy))/sum(accuracy)
pred = predict(mod_fit, newdata=testing)
confusionMatrix(data=pred, testing$Class)
ibrary(pROC)
f1 = roc(Class ~ CreditHistory.Critical, data=training)
plot(f1, col="red")
library(ROCR)
prob <- predict(mod_fit_one, newdata=testing, type="response")
pred <- prediction(prob, testing$Class)
perf <- performance(pred, measure = "tpr", x.measure = "fpr")
plot(perf)
auc <- performance(pred, measure = "auc")
auc <- [email protected][[1]]
auc
ctrl <- trainControl(method = "repeatedcv", number = 10, savePredictions = TRUE)
mod_fit <- train(Class ~ Age + ForeignWorker + Property.RealEstate + Housing.Own +
CreditHistory.Critical, data=GermanCredit, method="glm", family="binomial",
trControl = ctrl, tuneLength = 5)
pred = predict(mod_fit, newdata=testing)
confusionMatrix(data=pred, testing$Class) |
scatter_plot <- function(x, y, title = NA, sub = NA, xlab = NA,
ylab = NA, colours = "black", fill = NULL, shape = 18, xlim_min = NULL,
xlim_max = NULL, ylim_min = NULL, ylim_max = NULL,
size = 1, colmain = "black", colsub = "black", colaxis = "black",
collab = "black", fontmain = 1, fontsub = 1, fontaxis = 1, fontlab = 1,
cexmain = 1, cexsub = 1, cexaxis = 1, cexlab = 1, text_p = NA,
text_x_loc = NA, text_y_loc = NA, text_col = "black", text_font = NA,
text_size = NA, m_text = NA, m_side = 3, m_line = 0.5, m_adj = 0.5,
m_col = "black", m_font = 1, m_cex = 1, fitline = FALSE, col_abline = 'black',
lty_abline = 1, lwd_abline = 1) {
plot(x = x, y = y, type = 'p', main = title, sub = sub, xlab = xlab, ylab = ylab,
xlim = c(xlim_min, xlim_max), ylim = c(ylim_min, ylim_max),
col = colours, bg = fill, pch = shape, cex = size,
col.main = colmain, col.sub = colsub,
col.axis = colaxis, col.lab = collab, font.main = fontmain,
font.sub = fontsub, font.axis = fontaxis, font.lab = fontlab,
cex.main = cexmain, cex.sub = cexsub, cex.axis = cexaxis,
cex.lab = cexlab)
text(text_x_loc, text_y_loc, text_p, font = text_font, col = text_col,
cex = text_size)
mtext(m_text, side = m_side, line = m_line, adj = m_adj,
col = m_col, font = m_font, cex = m_cex)
if (fitline) {
abline(lm(y ~ x), col = col_abline, lty = lty_abline, lwd = lwd_abline)
}
} |
load("../data/data-filterMS.RData")
out_filterMS <- filterMS(msDatObj, paste0("frac", 3:4), "all", 0.05, 1000, 7L)
out_filterMS_bord_none <- filterMS(msDatObj, paste0("frac", 3:4), "none", 0.05, 1000, 7L)
out_filterMS_bord_1val <- filterMS(msDatObj, paste0("frac", 3:4), 0, 0.05, 1000, 7L)
out_filterMS_bord_2val <- filterMS(msDatObj, paste0("frac", 3:4), c(1, 99), 0.05, 1000, 7L)
out_filterMS_nfinal_none <- filterMS(msDatObj, paste0("frac", 3:4), c(1, 99), 0.05, 1e9, 7L)
out_v1 <- format(out_filterMS)
out_bord_none <- format(out_filterMS_bord_none)
out_bord_1val <- format(out_filterMS_bord_1val)
out_bord_2val <- format(out_filterMS_bord_2val)
out_nfinal_none <- format(out_filterMS_nfinal_none)
target_v1 <- list()
target_v1$newl <- "\n"
target_v1$regn <- paste0(
"The region of interest was specified as (2 fractions):\n",
"------------------------------------------------------\n",
" frac3\n",
" frac4\n",
"\n")
target_v1$bord <- paste0(
"The bordering regions were specified as \"all\"\n",
"---------------------------------------------\n",
" frac1\n",
" frac2\n",
" frac5\n",
" frac6\n",
"\n")
target_v1$fcri <- paste0(
"The filtering criteria was specified as:\n",
"----------------------------------------\n",
" minimum intensity: 1,000 \n",
" maximum charge: 7 \n",
" bordering region ratio: 0.05\n",
"\n")
target_v1$prir <- paste0(
"The mass spectrometry data prior to filtering had:\n",
"--------------------------------------------------\n",
" 24 compounds\n",
" 6 fractions\n",
"\n")
target_v1$frem <- paste0(
"Individually, each criterion reduced the 24 m/z levels to the following number:\n",
"-------------------------------------------------------------------------------\n",
" criterion 1: 20 (fraction with max. abundance is in region of interest)\n",
" criterion 2: 13 (fractions in bordering region have < 5 of max. abundance)\n",
" criterion 3: 18 (nonzero abundance in right adjacent fraction to max.)\n",
" criterion 4: 20 (at least 1 intensity > 1,000 in region of interest)\n",
" criterion 5: 20 (must have charge <= 7)\n",
"\n")
target_v1$ffin <- paste0(
"The total number of candidate compounds was reduced to:\n",
"-------------------------------------------------------\n",
" 4\n",
"\n")
target_v1 <- unlist(target_v1)
target_bord_none <- c(bord = paste0(
"The bordering regions were specified as \"none\"\n",
"----------------------------------------------\n",
" * no fraction names to show *\n",
"\n"))
target_bord_1val <- c(bord = paste0(
"The bordering regions were specified as each having length 0:\n",
"-------------------------------------------------------------\n",
" * no fraction names to show *\n",
"\n"))
target_bord_2val <- c(bord = paste0(
"The bordering regions were specified as having lengths 1 and 99:\n",
"----------------------------------------------------------------\n",
" frac2\n",
" frac5\n",
" frac6\n",
"\n"))
target_nfinal_none <- c(ffin = paste0(
"The total number of candidate compounds was reduced to:\n",
"-------------------------------------------------------\n",
" 0\n",
"\n"))
save(out_v1, out_bord_none, out_bord_1val, out_bord_2val, out_nfinal_none,
target_v1, target_bord_none, target_bord_1val, target_bord_2val, target_nfinal_none,
file="tests/data/data-summary-filterMS.RData") |
upload_video <- function(
file,
snippet = NULL,
status = list(privacyStatus = "public"),
query = NULL,
open_url = FALSE,
...
) {
if ("privacyStatus" %in% names(status)) {
p <- status$privacyStatus
p <- match.arg(p, choices = c("private", "public", "unlisted"))
}
if ("license" %in% names(status)) {
p <- status$license
p <- match.arg(p, choices = c("creativeCommon", "youtube"))
}
if ("tags" %in% names(snippet)) {
tags <- snippet$tags
if (length(tags) == 1) {
tags <- list(tags)
}
snippet$tags <- tags
}
metadata <- tempfile()
body <- list()
if (length(snippet) == 0) {
snippet <- NULL
}
if (length(status) == 0) {
status <- NULL
}
body$snippet <- snippet
body$status <- status
part <- paste(names(body), collapse = ",")
query <- as.list(query)
query$part <- part
body <- jsonlite::toJSON(body, auto_unbox = TRUE)
writeLines(body, metadata)
body <- list(
metadata = upload_file(metadata, type = "application/json; charset=UTF-8"),
y = httr::upload_file(file))
yt_check_token()
req <- httr::POST("https://www.googleapis.com/upload/youtube/v3/videos",
body = body, query = query,
config(token = getOption("google_token")),
...)
if (httr::status_code(req) > 300) {
print(body)
print(paste0("File is: ", metadata))
cat(readLines(metadata))
cat("\n")
print(query)
print(httr::content(req)$error)
stop("Request was bad")
}
tuber_check(req)
res <- content(req)
url <- paste0("https://www.youtube.com/watch?v=", res$id)
if (open_url) {
browseURL(url)
}
list(request = req, content = res,
url = url)
} |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.