code
stringlengths 1
13.8M
|
---|
postmed <- function (x, s = 1, w = 0.5, prior = "laplace", a = 0.5) {
pr <- substring(prior, 1, 1)
if(pr == "l")
muhat <- postmed.laplace(x, s, w, a)
if(pr == "c") {
if(any(s != 1))
stop(paste("Only standard deviation of 1 is allowed",
"for Cauchy prior."))
muhat <- postmed.cauchy(x, w)
}
return(muhat)
} |
garchSim <-
function(spec = garchSpec(), n = 100, n.start = 100,
extended = FALSE)
{
stopifnot(class(spec) == "fGARCHSPEC")
model = spec@model
if (spec@rseed != 0) set.seed(spec@rseed)
n = n + n.start
if (spec@distribution == "norm")
z = rnorm(n)
if (spec@distribution == "ged")
z = rged(n, nu = model$shape)
if (spec@distribution == "std")
z = rstd(n, nu = model$shape)
if (spec@distribution == "snorm")
z = rsnorm(n, xi = model$skew)
if (spec@distribution == "sged")
z = rsged(n, nu = model$shape, xi = model$skew)
if (spec@distribution == "sstd")
z = rsstd(n, nu = model$shape, xi = model$skew)
delta = model$delta
z = c(rev(spec@presample[, 1]), z)
h = c(rev(spec@presample[, 2]), rep(NA, times = n))
y = c(rev(spec@presample[, 3]), rep(NA, times = n))
m = length(spec@presample[, 1])
names(z) = names(h) = names(y) = NULL
mu = model$mu
ar = model$ar
ma = model$ma
omega = model$omega
alpha = model$alpha
gamma = model$gamma
beta = model$beta
deltainv = 1/delta
order.ar = length(ar)
order.ma = length(ma)
order.alpha = length(alpha)
order.beta = length(beta)
eps = h^deltainv*z
for (i in (m+1):(n+m)) {
h[i] = omega +
sum(alpha*(abs(eps[i-(1:order.alpha)]) -
gamma*(eps[i-(1:order.alpha)]))^delta) +
sum(beta*h[i-(1:order.beta)])
eps[i] = h[i]^deltainv * z[i]
y[i] = mu +
sum(ar*y[i-(1:order.ar)]) +
sum(ma*eps[i-(1:order.ma)]) + eps[i]
}
data = cbind(
z = z[(m+1):(n+m)],
sigma = h[(m+1):(n+m)]^deltainv,
y = y[(m+1):(n+m)])
rownames(data) = as.character(1:n)
data = data[-(1:n.start),]
from <-
timeDate(format(Sys.time(), format = "%Y-%m-%d")) - NROW(data)*24*3600
charvec <- timeSequence(from = from, length.out = NROW(data))
ans <- timeSeries(data = data[, c(3,2,1)], charvec = charvec)
colnames(ans) <- c("garch", "sigma", "eps")
ans <- if (extended) ans else ans[,"garch"]
attr(ans, "control") <- list(garchSpec = spec)
ans
} |
pal_uchicago <- function(palette = c("default", "light", "dark"), alpha = 1) {
palette <- match.arg(palette)
if (alpha > 1L | alpha <= 0L) stop("alpha must be in (0, 1]")
raw_cols <- ggsci_db$"uchicago"[[palette]]
raw_cols_rgb <- col2rgb(raw_cols)
alpha_cols <- rgb(
raw_cols_rgb[1L, ], raw_cols_rgb[2L, ], raw_cols_rgb[3L, ],
alpha = alpha * 255L, names = names(raw_cols),
maxColorValue = 255L
)
manual_pal(unname(alpha_cols))
}
scale_color_uchicago <- function(palette = c("default", "light", "dark"), alpha = 1, ...) {
palette <- match.arg(palette)
discrete_scale("colour", "uchicago", pal_uchicago(palette, alpha), ...)
}
scale_colour_uchicago <- scale_color_uchicago
scale_fill_uchicago <- function(palette = c("default", "light", "dark"), alpha = 1, ...) {
palette <- match.arg(palette)
discrete_scale("fill", "uchicago", pal_uchicago(palette, alpha), ...)
} |
output$radar1 <- rAmCharts::renderAmCharts({
dp <- data.frame(Eye = c('Blue', 'Brown', 'Green', 'Hazel') ,
Male = c(101, 98, 33, 47), Female = c(114, 122, 31, 46))
pipeR::pipeline(
amRadarChart(startDuration = 0, categoryField = 'Eye', dataProvider = dp),
addGraph(balloonText = '(male) [[category]]: [[value]]', valueField = 'Male',
title = 'Male', bullet = 'round'),
addGraph(balloonText = '(female) [[category]]: [[value]]', valueField = 'Female',
title = 'Female', bullet = 'round'),
addValueAxis(gridType = 'circles')
)
})
output$code_radar1 <- renderText({
"
dp <- data.frame(Eye = c('Blue', 'Brown', 'Green', 'Hazel') ,
Male = c(101, 98, 33, 47), Female = c(114, 122, 31, 46))
pipeR::pipeline(
amRadarChart(startDuration = 0, categoryField = 'Eye', dataProvider = dp),
addGraph(balloonText = '(male) [[category]]: [[value]]', valueField = 'Male',
title = 'Male', bullet = 'round'),
addGraph(balloonText = '(female) [[category]]: [[value]]', valueField = 'Female',
title = 'Female', bullet = 'round'),
addValueAxis(gridType = 'circles')
)
"
})
output$radar3 <- rAmCharts::renderAmCharts({
dp <- data.frame(Eye = c('Blue' ,'Brown' , 'Green', 'Hazel'),
Male = c(101, 98, 33, 47),
Female = c(114, 122, 31, 46))
pipeR::pipeline(
amRadarChart(startDuration = 0, categoryField = 'Eye', dataProvider = dp),
addGraph(balloonText = '(male) [[category]]: [[value]]', valueField = 'Male',
title = 'Male',fillAlphas = 0.5,bullet = 'xError'),
addGraph(balloonText = '(female) [[category]]: [[value]]', valueField = 'Female',
title = 'Female', bullet = 'round'),
setLegend(position = 'right'),
addTitle(text='Title exemple')
)
})
output$code_radar3 <- renderText({
"
dp <- data.frame(Eye = c('Blue' ,'Brown' , 'Green', 'Hazel'),
Male = c(101, 98, 33, 47),
Female = c(114, 122, 31, 46))
pipeR::pipeline(
amRadarChart(startDuration = 0, categoryField = 'Eye', dataProvider = dp),
addGraph(balloonText = '(male) [[category]]: [[value]]', valueField = 'Male',
title = 'Male',fillAlphas = 0.5,bullet = 'xError'),
addGraph(balloonText = '(female) [[category]]: [[value]]', valueField = 'Female',
title = 'Female', bullet = 'round'),
setLegend(position = 'right'),
addTitle(text='Title exemple')
)
"
})
output$radar2 <- rAmCharts::renderAmCharts({
data('data_wind')
data_wind$category <- c('N', 'NE', 'E', 'SE', 'S', 'SW', 'W', 'NO')
pipeR::pipeline(
amRadarChart(theme = 'light', startDuration = 0, categoryField = 'category',
dataProvider = data_wind),
addValueAxis(gridType = 'circles', minimum = 0, autoGridCount = FALSE,
axisAlpha = 0.2, fillAlpha = 0.05, fillColor = '
gridAlpha = 0.08, position = 'left'),
addGuide(angle = 225, fillAlpha = 0.3, fillColor = '
tickLength = 0, toAngle = 315, toValue = 5, value = 0,
lineAlpha = 0),
addGuide(angle = 45, fillAlpha = 0.3, fillColor = '
tickLength = 0, toAngle = 135, toValue = 5, value = 0,
lineAlpha = 0),
addGraph(balloonText = '[[category]]: [[value]] m/s', bullet = 'round',
fillAlphas = 0.3, valueField = 'weak')
)
})
output$code_radar2 <- renderText({
"
data('data_wind')
data_wind$category <- c('N', 'NE', 'E', 'SE', 'S', 'SW', 'W', 'NO')
pipeR::pipeline(
amRadarChart(theme = 'light', startDuration = 0, categoryField = 'category',
dataProvider = data_wind),
addValueAxis(gridType = 'circles', minimum = 0, autoGridCount = FALSE,
axisAlpha = 0.2, fillAlpha = 0.05, fillColor = '
gridAlpha = 0.08, position = 'left'),
addGuide(angle = 225, fillAlpha = 0.3, fillColor = '
tickLength = 0, toAngle = 315, toValue = 5, value = 0,
lineAlpha = 0),
addGuide(angle = 45, fillAlpha = 0.3, fillColor = '
tickLength = 0, toAngle = 135, toValue = 5, value = 0,
lineAlpha = 0),
addGraph(balloonText = '[[category]]: [[value]] m/s', bullet = 'round',
fillAlphas = 0.3, valueField = 'weak')
)
"
}) |
source("./prep_data/prep_functions.R")
library(readxl)
library(dplyr)
library(tidyr)
library(data.table)
library(sf)
library(magrittr)
library(ggplot2)
matching <- function(data_mun=NULL, y0){
temp <- data_mun %>%
select(c(paste0("clu",y0),clu_new)) %>%
filter(!is.na(clu_new)) %>%
arrange(get(paste0("clu",y0)),clu_new) %>%
filter(!(get(paste0("clu",y0))==clu_new) )
if (nrow(temp) > 1) {
temp$diff <- 0
for(i in 2:nrow(temp)){ if (is.na(temp[,c(paste0("clu",y0))][i-1]) | is.na( temp[,c("clu_new")][i-1]) ) next
else if (temp[,c(paste0("clu",y0))][i] == temp[,c(paste0("clu",y0))][i-1]
& temp[,c("clu_new")][i] == temp[,c("clu_new")][i-1])
temp$diff[i] <- 1
}
temp <- temp %>%
filter(diff != 1)
temp <- temp %>% select(-diff)
}
temp <- temp %>% mutate(!!paste0("clu",quo_name(y0)) := ifelse(is.na(get(paste0("clu",y0))),-999999999,get(paste0("clu",y0))))
rep_c<-0
repeat {
rep_c <- (rep_c + 1)
while (sum(temp[,c(paste0("clu",y0))] == lag(temp[,c(paste0("clu",y0))],1),na.rm = T) != 0) {
for(i in 2:nrow(temp)) if (temp[,c(paste0("clu",y0))][i] == temp[,c(paste0("clu",y0))][i-1]) temp[,c(paste0("clu",y0))][i] <- temp$clu_new[i]
for(i in 2:nrow(temp)) if (temp$clu_new[i] == temp[,c(paste0("clu",y0))][i]) temp$clu_new[i] <- temp$clu_new[i-1]
temp<- temp[order(temp[,1],temp[,2]),]
temp <- temp %>% filter( !(get(paste0("clu",y0)) == clu_new) )
temp$diff <- 0
for(i in 2:nrow(temp)){ if (is.na(temp[,c(paste0("clu",y0))][i-1]) | is.na( temp[,c("clu_new")][i-1]) ) next
else if (temp[,c(paste0("clu",y0))][i] == temp[,c(paste0("clu",y0))][i-1]
& temp[,c("clu_new")][i] == temp[,c("clu_new")][i-1])
temp$diff[i] <- 1
}
temp <- temp %>%
filter(diff != 1)
temp <- temp %>% select(-diff)
}
temp2 <- temp
temp2 <- temp2 %>% rename(help = clu_new, clu_new = paste0("clu",y0) )
temp2 <- bind_rows(temp,temp2) %>% mutate_all(function(x) ifelse(is.na(x),-999999999,x))
temp2<- temp2[order(temp2[,2],-xtfrm(temp2[,3])),]
if (sum(temp2$clu_new == lead(temp2$clu_new,1) & temp2$help != -999999999,na.rm = T) != 0) {
temp3 <- temp
temp3 <- temp3 %>% rename(clu_new2 = clu_new, clu_new = paste0("clu",y0) )
temp3 <- left_join(temp,temp3)
temp3 <- temp3 %>% mutate(clu_new2 = ifelse(is.na(clu_new2),clu_new,clu_new2))
temp3 <- temp3 %>% filter( get(paste0("clu",y0))!=-999999999 )
temp3 <- temp3 %>% filter( !is.na(get(paste0("clu",y0))) )
temp3 <- temp3 %>% select(-clu_new)
temp3 <- temp3 %>% rename(clu_new = clu_new2)
temp3<- temp3[order(temp3[,1],temp3[,2]),]
temp3 <- temp3 %>% filter( !(get(paste0("clu",y0)) == clu_new) )
temp3$diff <- 0
for(i in 2:nrow(temp3)){ if (is.na(temp3[,c(paste0("clu",y0))][i-1]) | is.na( temp3[,c("clu_new")][i-1]) ) next
else if (temp3[,c(paste0("clu",y0))][i] == temp3[,c(paste0("clu",y0))][i-1]
& temp3[,c("clu_new")][i] == temp3[,c("clu_new")][i-1])
temp3$diff[i] <- 1
}
temp3 <- temp3 %>%
filter(diff != 1)
temp <- temp3 %>% select(-diff)
rm(temp3)
}
if (rep_c == 3){
break
}
}
temp <- as.data.table(temp) %>%
mutate(!!paste0("clu",quo_name(y0)) := as.numeric(as.character(get(paste0("clu",y0)))))
data_mun <- data_mun %>% select(-clu_new) %>% left_join(temp) %>%
mutate(!!paste0("clu",quo_name(y0)) := ifelse(!(is.na(clu_new)),clu_new,get(paste0("clu",y0)))) %>% select(-clu_new)
rm(temp,temp2)
return(data_mun)
}
table_amc <- function(startyear=NULL, endyear=NULL){
if((startyear %in% c(1872,1900,1911,1920,1933,1940,
1950,1960,1970,1980,1991,2000,2010)) &
(endyear %in% c(1872,1900,1911,1920,1933,1940,
1950,1960,1970,1980,1991,2000,2010))){
message(paste0("Loading amc algorithm for ", startyear, " to ", endyear,"\n"))
}else {
stop("Error: Invalid Value to argument.")
}
y0 <- startyear
while (y0 != endyear) {
if (y0==startyear){
data_mun <- readr::read_rds("./prep_data/amc_algorithm/_Crosswalk_pre.rds")
} else{
data_mun <- get(paste0("_Crosswalk_",y_1))
}
if (y0==1872) {
y1 <- 1900
} else if (y0==1900) {
y1 <- 1911
} else if (y0==1911) {
y1 <- 1920
} else if (y0==1920) {
y1 <- 1933
} else if (y0==1933) {
y1 <- 1940
} else if (y0==1940) {
y1 <- 1950
} else if (y0==1950) {
y1 <- 1960
} else if (y0==1960) {
y1 <- 1970
} else if (y0==1970) {
y1 <- 1980
} else if (y0==1980) {
y1 <- 1991
} else if (y0==1991) {
y1 <- 2000
} else if (y0==2000) {
y1 <- 2010
} else if (y0==2010) {
y1 <- 2020
} else {
y1 <- 2030
}
ano_dest <- paste0("n_dest",y0)
ano_dest1 <- paste0("dest1",y0)
exist_dummy1 <- paste0("exist_d",y1)
exist_dummy0 <- paste0("exist_d",y0)
cluster0 <- paste0("clu",y0)
cluster1 <- paste0("clu",quo_name(y0))
cluster_original <- paste0("clu",quo_name(y0),"_orig")
data_mun <- data_mun %>%
mutate(ch_match = as.numeric(get( ano_dest )))
data_mun[,c(exist_dummy1)] <- as.numeric(data_mun[,c(exist_dummy1)])
data_mun[,c(exist_dummy0)] <- as.numeric(data_mun[,c(exist_dummy0)])
if (y0 == startyear) {
data_mun <- data_mun %>%
mutate(uf_amc = as.numeric(uf_amc)) %>%
arrange(uf_amc, get(ano_dest1),
desc(get(exist_dummy0)), final_name)
a <- data_mun %>%
select(c(uf_amc, ano_dest1)) %>%
unique() %>%
filter(get(ano_dest1) != "")
a <- a %>% mutate(!!cluster1 := rownames(a),
!!cluster1 := as.numeric(get(cluster0)))
data_mun <- left_join(data_mun, a)
rm(a)
setDT(data_mun)[, paste0(cluster_original) := get(cluster0) ]
data_mun <- as.data.frame(data_mun)
} else {
data_mun[,c(cluster0)] <- NA
data_mun <- data_mun %>%
mutate(!!cluster1 := get(paste0("clu",y_1,"_final"))) %>%
arrange(get(cluster0),desc(get(ano_dest1)),code2010)
for(i in 2:(nrow(data_mun)) ){ if (data_mun[,c(ano_dest1)][i] !="" & is.na(data_mun[,c(cluster0)][i]))
data_mun[,c(cluster0)][i] <- data_mun[,c(cluster0)][i-1] + 1
}
}
data_mun <- data_mun %>%
mutate(ch_match = ifelse(code2010==2205706 & y0==1872,ch_match-1,
ifelse(code2010==4204202 & y0==1911,ch_match-1,
ifelse(code2010==4209003 & y0==1911,ch_match-1,
ifelse(code2010==4213609 & y0==1911,ch_match-1,
ifelse(code2010==4208104 & y0==1911,ch_match-1,
ifelse(code2010==4210100 & y0==1911,ch_match-1,
ifelse(code2010==1100205 & y0==1911,ch_match-1,ch_match))))))))
data_mun$clu_new <- NA
data_mun <- data_mun %>%
arrange(uf_amc, get(ano_dest1), desc(get(exist_dummy0)), final_name)
for(i in 2:nrow(data_mun)){ if (data_mun[,c(ano_dest1)][i] == data_mun[,c(ano_dest1)][i-1]
& !is.na(data_mun[,c(cluster0)][i-1])
& data_mun[,c(ano_dest1)][i] != "" )
data_mun$clu_new[i] <- data_mun[,c(cluster0)][i-1]
}
for(i in 2:nrow(data_mun)){ if (data_mun[,c(ano_dest1)][i] == data_mun[,c(ano_dest1)][i-1]
& !is.na(data_mun[,c("clu_new")][i-1]))
data_mun$clu_new[i] <- data_mun$clu_new[i-1]
}
data_mun <- data_mun %>%
mutate(ch_match = ifelse( !is.na(clu_new), ch_match-1, ch_match) )
data_mun <- matching(data_mun=data_mun, y0=y0)
for (p in 2:5) {
if (paste0("dest",p,y0) %in% colnames(data_mun)) {
data_mun <- data_mun %>%
mutate(!!paste0("mis",quo_name(y0)) := ifelse(get(ano_dest) >= p,get(paste0("dest",p,y0)),NA))
data_mun <- data_mun %>%
mutate(target = ifelse(!is.na(get(paste0("mis",y0))),1,0))
data_mun$clu_new <- NA
data_mun <- data_mun %>%
mutate(!!paste0("mis",quo_name(y0)) := ifelse(target==0 & get(exist_dummy1) == 1,
get(paste0("dest1",y1)), get(paste0("mis",y0))))
data_mun <- data_mun %>%
arrange(uf_amc, get(paste0("mis",y0)), desc(target), final_name)
for(i in 1:(nrow(data_mun)-1) ){ if (data_mun[,c(paste0("mis",y0))][i] == data_mun[,c(paste0("mis",y0))][i+1]
& !is.na(data_mun[,c(cluster0)][i+1])
& data_mun[,c("target")][i] == 1 )
data_mun$clu_new[i] <- data_mun[,c(cluster0)][i+1]
}
data_mun <- data_mun %>%
mutate(!!paste0("mis",quo_name(y0)) := ifelse(target==0 & get(exist_dummy0)==1,
get(ano_dest1),get(paste0("mis",y0))))
data_mun <- data_mun %>%
arrange(uf_amc, get(paste0("mis",y0)), desc(target), final_name)
for(i in 1:(nrow(data_mun)-1) ){ if (data_mun[,c(paste0("mis",y0))][i] == data_mun[,c(paste0("mis",y0))][i+1]
& !is.na(data_mun[,c(cluster0)][i+1])
& data_mun[,c("target")][i] == 1
& is.na(data_mun[,c("clu_new")][i]))
data_mun$clu_new[i] <- data_mun[,c(cluster0)][i+1]
}
data_mun <- data_mun %>%
mutate(!!paste0("mis",quo_name(y0)) := ifelse(target==0,final_name,get(paste0("mis",y0))))
data_mun <- data_mun %>%
arrange(uf_amc, get(paste0("mis",y0)), desc(target), final_name)
for(i in 1:(nrow(data_mun)-1)){ if (data_mun[,c(paste0("mis",y0))][i] == data_mun[,c(paste0("mis",y0))][i+1]
& !is.na(data_mun[,c(cluster0)][i+1])
& data_mun[,c("target")][i] == 1
& is.na(data_mun[,c("clu_new")][i]))
data_mun$clu_new[i] <- data_mun[,c(cluster0)][i+1]
}
data_mun <- data_mun %>%
mutate(ch_match = ifelse(!is.na(clu_new),ch_match-1,ch_match)) %>%
select(-c("target",paste0("mis",y0)))
data_mun <- matching(data_mun=data_mun, y0=y0)
}
}
data_mun <- data_mun %>%
mutate( !!paste0("mis",quo_name(y0)) := ifelse(ch_match > 0 ,get(ano_dest1),NA),
target = ifelse(!is.na(get(paste0("mis",y0))),1,0))
data_mun$clu_new<-NA
data_mun <- data_mun %>%
mutate(!!paste0("mis",quo_name(y0)) := ifelse(target==0 & get(exist_dummy1) == 1,
get(paste0("dest1",y1)), get(paste0("mis",y0))))
data_mun <- data_mun %>%
arrange(uf_amc, get(paste0("mis",y0)), desc(target), final_name)
for(i in 1:(nrow(data_mun)-1) ){ if (data_mun[,c(paste0("mis",y0))][i] == data_mun[,c(paste0("mis",y0))][i+1]
& !is.na(data_mun[,c(cluster0)][i+1])
& data_mun[,c("target")][i] == 1)
data_mun$clu_new[i] <- data_mun[,c(cluster0)][i+1]
}
data_mun <- data_mun %>%
mutate(!!paste0("mis",quo_name(y0)) := ifelse(target==0 & get(exist_dummy0)==1,
get(ano_dest1),get(paste0("mis",y0))))
data_mun <- data_mun %>%
arrange(uf_amc, get(paste0("mis",y0)), desc(target), final_name)
for(i in 1:(nrow(data_mun)-1) ){ if (data_mun[,c(paste0("mis",y0))][i] == data_mun[,c(paste0("mis",y0))][i+1]
& !is.na(data_mun[,c(cluster0)][i+1])
& data_mun[,c("target")][i] == 1)
data_mun$clu_new[i] <- data_mun[,c(cluster0)][i+1]
}
data_mun <- data_mun %>%
mutate(ch_match = ifelse(!is.na(data_mun$clu_new),ch_match-1,ch_match)) %>%
select(-c("target",paste0("mis",y0)))
data_mun <- matching(data_mun=data_mun, y0=y0)
if (any(data_mun$ch_match != 0 | !is.na(data_mun$ch_match))){
data_mun$clu_new<-NA
data_mun <- data_mun %>%
mutate(!!paste0("mis",quo_name(y0)) := ifelse(ch_match>0,get(ano_dest1),NA))
data_mun <- data_mun %>%
arrange(uf_amc, get(paste0("mis",y0)))
for(i in 2:nrow(data_mun)){ if (!is.na(data_mun[,c(paste0("mis",y0))][i])
& !is.na(data_mun[,c(paste0("mis",y0))][i-1])
& data_mun[,c("uf_amc")][i] == data_mun[,c("uf_amc")][i-1])
data_mun[,c(paste0("mis",y0))][i] <- data_mun[,c(paste0("dest1",y1))][i]
}
for(i in 2:nrow(data_mun)){ if (is.na(data_mun[,c(paste0("mis",y0))][i-1]) ) next else if (data_mun[,c(paste0("mis",y0))][i] == data_mun[,c(paste0("mis",y0))][i-1]
& !is.na(data_mun[,c(cluster0)][i-1])
& !is.na(data_mun[,c(paste0("mis",y0))][i])
& data_mun[,c("ch_match")][i] != 0 )
data_mun$clu_new[i] <- data_mun[,c(cluster0)][i-1]
}
for(i in 2:nrow(data_mun)){ if (is.na(data_mun[,c(paste0("mis",y0))][i-1]) ) next else if (data_mun[,c(paste0("mis",y0))][i] == data_mun[,c(paste0("mis",y0))][i-1]
& !is.na(data_mun[,c(cluster0)][i-1])
& !is.na(data_mun[,c(paste0("mis",y0))][i])
& data_mun[,c("ch_match")][i] != 0 )
data_mun$ch_match[i] <- data_mun$ch_match[i-1]
}
for(i in 1:(nrow(data_mun)-1)){ if(is.na(data_mun[,c(paste0("mis",y0))][i+1]) ) next else if (data_mun[,c(paste0("mis",y0))][i] == data_mun[,c(paste0("mis",y0))][i+1]
& !is.na(data_mun[,c(cluster0)][i+1])
& !is.na(data_mun[,c(paste0("mis",y0))][i])
& data_mun[,c("ch_match")][i] != 0 )
data_mun$ch_match[i] <- data_mun$ch_match[i-1]
}
data_mun <- matching(data_mun=data_mun, y0=y0)
}
data_mun <- data_mun %>%
mutate(!!paste0("clu",quo_name(y0),"_final") := dense_rank(get(cluster0)))
data_mun <- data_mun[ , !(names(data_mun) %in% c(ano_dest1,
paste0("dest2",y0),
paste0("dest3",y0),
paste0("dest4",y0),
paste0("dest5",y0),
exist_dummy0,
ano_dest,
"ch_match"))] %>%
dplyr::arrange(uf_amc,get(cluster0),code2010)
assign(paste0("_Crosswalk_",y0),data_mun)
y_1 <- y0
y0 <- y1
}
data_mun <- get(paste0("_Crosswalk_",y_1))
data_mun <- data_mun %>%
select_if(colnames(data_mun) %in% c("uf_amc","code2010","final_name","clu1872_final",
"clu1900_final","clu1911_final","clu1920_final","clu1933_final",
"clu1940_final","clu1950_final","clu1960_final","clu1970_final",
"clu1980_final","clu1991_final","clu2000_final","clu2010_final")) %>%
mutate(!!paste0("clu",quo_name(y_1),"_final") := as.numeric(get(paste0("clu",y_1,"_final"))),
!!paste0("clu",quo_name(y_1),"_final2") := get(paste0("clu",y_1,"_final")))
if (startyear<=1872){
n0 <- data_mun %>%
filter(final_name=="Granja") %>%
select(paste0("clu",y_1,"_final"))
data_mun <- data_mun %>%
mutate(!!paste0("clu",y_1,"_final2") := ifelse(code2010==2205706,n0,get(paste0("clu",y_1,"_final"))))
}
if (startyear<=1911 & endyear>=1911){
n0 <- data_mun %>%
filter(final_name=="Palmas" & uf_amc == 15) %>%
select(paste0("clu",y_1,"_final"))
data_mun <- data_mun %>%
mutate(!!paste0("clu",y_1,"_final2") := ifelse(code2010==4204202,n0,
ifelse(code2010==4209003,n0,
ifelse(code2010==4213609,n0,get(paste0("clu",y_1,"_final"))))))
n0 <- data_mun %>%
filter(final_name=="Rio Negro" & uf_amc==15) %>%
select(paste0("clu",y_1,"_final"))
data_mun <- data_mun %>%
mutate(!!paste0("clu",y_1,"_final2") := ifelse(code2010==4208104,n0,
ifelse(code2010==4210100,n0,
get(paste0("clu",y_1,"_final")))))
n0 <- data_mun %>%
filter(final_name=="Humaita" & uf_amc==1) %>%
select(paste0("clu",y_1,"_final"))
data_mun <- data_mun %>%
mutate(!!paste0("clu",y_1,"_final2") := ifelse(code2010==1100205,n0,get(paste0("clu",y_1,"_final"))))
}
if (startyear<=1940 | endyear>=1960){
n0 <- data_mun %>%
filter(code2010==3104700) %>%
select(paste0("clu",y_1,"_final"))
data_mun <- data_mun %>%
mutate(!!paste0("clu",y_1,"_final2") := ifelse(code2010==3203304,n0,
ifelse(code2010==3200904,n0,get(paste0("clu",y_1,"_final")))))
rm(n0)
}
if(endyear <= 1970){
data_mun <- data_mun %>%
mutate(code_state = as.numeric(substr(code2010,1,2)),
code_state = ifelse(code_state == 50,51,code_state),
code_state = ifelse(code_state == 17,52,code_state),
code2010 = substr(code2010,3,6),
code2010 = as.numeric(paste0(code_state,code2010))) %>%
select(-c(code_state))
}
if(endyear == 1980){
data_mun <- data_mun %>%
mutate(code_state = as.numeric(substr(code2010,1,2)),
code_state = ifelse(code_state == 17,52,code_state),
code2010 = substr(code2010,3,6),
code2010 = as.numeric(paste0(code_state,code2010))) %>%
select(-c(code_state))
}
data_mun <- data_mun %>%
arrange(uf_amc) %>%
mutate(clu_final = dense_rank(unlist(get(paste0("clu",y_1,"_final2"))))) %>%
select(-c(paste0("clu",y_1,"_final2")))
data_mun <- data_mun %>%
mutate(
uf_amc = ifelse(uf_amc %in% c(1, 20),1,
ifelse(uf_amc %in% c(4, 5),4,
ifelse(uf_amc %in% c(6),5,
ifelse(uf_amc %in% c(7),6,
ifelse(uf_amc %in% c(8),7,
ifelse(uf_amc %in% c(9),8,
ifelse(uf_amc %in% c(10),9,
ifelse(uf_amc %in% c(11),10,
ifelse(uf_amc %in% c(12,18),11,
ifelse(uf_amc %in% c(13),12,
ifelse(uf_amc %in% c(14),13,
ifelse(uf_amc %in% c(15,16),14,
ifelse(uf_amc %in% c(17),15,
ifelse(uf_amc %in% c(19),16,uf_amc)))))))))))))),
uf_amc_lb = ifelse(uf_amc %in% c(1),"AM/MT/(RO/RR/MS)",
ifelse(uf_amc %in% c(2),"PA/(AP)",
ifelse(uf_amc %in% c(3),"MA",
ifelse(uf_amc %in% c(4),"PI/CE",
ifelse(uf_amc %in% c(5),"RN",
ifelse(uf_amc %in% c(6),"PB",
ifelse(uf_amc %in% c(7),"PE",
ifelse(uf_amc %in% c(8),"AL",
ifelse(uf_amc %in% c(9),"SE",
ifelse(uf_amc %in% c(10),"BA",
ifelse(uf_amc %in% c(11),"ES/MG",
ifelse(uf_amc %in% c(12),"RJ",
ifelse(uf_amc %in% c(13),"SP",
ifelse(uf_amc %in% c(14),"PR/SC",
ifelse(uf_amc %in% c(15),"RS",
ifelse(uf_amc %in% c(16),"GO/(DF/TO)",uf_amc)))))))))))))))))
data_mun <- data_mun %>%
dplyr::arrange(clu_final,uf_amc,code2010)
data_mun <- data_mun %>%
dplyr::group_by(clu_final,uf_amc) %>% mutate(help = ifelse(!is.na(clu_final) & row_number()==1,1,NA))
data_mun <- data_mun %>%
dplyr::arrange(help,uf_amc,code2010) %>% ungroup()
data_mun <- data_mun %>%
dplyr::group_by(help,uf_amc) %>% mutate(amc_n=ifelse(help==1,row_number(),NA))
data_mun <- data_mun %>% ungroup() %>%
dplyr::arrange(uf_amc,clu_final,code2010) %>% as.data.frame()
for(i in 2:nrow(data_mun)){ if (is.na(data_mun[,c("amc_n")][i]) )
data_mun$amc_n[i] <- data_mun$amc_n[i-1]
}
data_mun <- data_mun %>%
mutate(amc = ifelse(!is.na(clu_final),uf_amc*1000,NA),
amc = amc + amc_n) %>%
select(-c(amc_n, help))
data_mun <- data_mun %>%
arrange(uf_amc, clu_final, final_name)
data_mun <- setDT(data_mun)[, .(final_name, code2010, amc)]
setnames(data_mun, c('name_muni', 'code_muni_2010', 'code_amc'))
head(data_mun)
data_mun <- subset(data_mun, !is.na(code_amc))
data_mun$code_muni_2010 <- as.integer(data_mun$code_muni_2010)
code_list <- setDT(data_mun)[, .(list_code_muni_2010 = paste(code_muni_2010, collapse = ','),
list_name_muni_2010 = paste(code_muni_2010, collapse = ',')
), by=code_amc]
head(code_list)
dir.create(file.path("shapes_in_sf_all_years_cleaned"), showWarnings = FALSE)
dir.create(file.path("shapes_in_sf_all_years_cleaned/amc/"), showWarnings = FALSE)
dir.create(file.path(paste0("shapes_in_sf_all_years_cleaned/amc/",startyear,"/")), showWarnings = FALSE)
dir <- paste0("./shapes_in_sf_all_years_cleaned/amc/",startyear,"/")
saveRDS(data_mun,paste0(dir,"AMC_",startyear,"_",endyear,".rds"))
assign(paste0("_Crosswalk_final_",startyear,"_",endyear),data_mun)
map <- geobr::read_municipality(year= endyear, code_muni = 'all', simplified = FALSE)
map$code_muni <- as.integer(map$code_muni)
if(endyear <= 1980){
data_mun_sf <- left_join(map %>% mutate(code_muni = as.numeric(substr(code_muni,1,6))), data_mun %>% select(-c(name_muni)), by=c('code_muni'='code_muni_2010' ))
} else{
data_mun_sf <- left_join(map, data_mun %>% select(-c(name_muni)), by=c('code_muni'='code_muni_2010' ))
}
data_mun_sf <- data_mun_sf %>% filter(!is.na(code_amc))
data_mun_sf <- dissolve_polygons(mysf = data_mun_sf, group_column="code_amc")
data_mun_sf <- dplyr::left_join(data_mun_sf, code_list)
head(data_mun_sf)
class(data_mun_sf$list_code_muni_2010)
data_mun_sf_simplified <- simplify_temp_sf(data_mun_sf)
data_mun_sf <- to_multipolygon(data_mun_sf)
data_mun_sf_simplified <- to_multipolygon(data_mun_sf_simplified)
file.name <- paste0(dir,"AMC_",startyear,"_",endyear,".gpkg")
sf::st_write(data_mun_sf, file.name , delete_layer = TRUE)
file.name <- paste0(dir,"AMC_",startyear,"_",endyear,"_simplified.gpkg")
sf::st_write(data_mun_sf_simplified, file.name , delete_layer = TRUE)
message(paste0('Just saved ', file.name) )
} |
library(cheddar)
options(continue=' ')
options(width=90)
options(prompt='> ')
options(SweaveHooks = list(fig=function() par(mgp=c(2.5,1,0),
mar=c(4,4,2,1),
oma=c(0,0,1,0),
cex.main=0.8)))
data(TL84)
print(TL84)
NumberOfNodes(TL84)
NumberOfTrophicLinks(TL84)
head(NPS(TL84, c('category',
'Log10MNBiomass',
TS='TrophicSpecies',
TL='PreyAveragedTrophicLevel')), 10)
getOption("SweaveHooks")[["fig"]]()
PlotNPS(TL84, 'Log10M', 'Log10N')
getOption("SweaveHooks")[["fig"]]()
PlotNvM(TL84)
models <- NvMLinearRegressions(TL84)
colours <- PlotLinearModels(models)
legend("topright", sapply(models, FormatLM), lty=1, col=colours)
getOption("SweaveHooks")[["fig"]]()
PlotNPS(TL84, 'Log10M', 'PreyAveragedTrophicLevel')
getOption("SweaveHooks")[["fig"]]()
PlotTLPS(TL84, 'resource.Log10M', 'consumer.Log10M')
getOption("SweaveHooks")[["fig"]]()
PlotPredationMatrix(TL84)
data(pHWebs)
CollectionCPS(pHWebs,
c('lat',
'long',
'pH',
S='NumberOfNodes',
L='NumberOfTrophicLinks',
'L/S'='LinkageDensity',
C='DirectedConnectance',
Slope='NvMSlope',
B='FractionBasalNodes',
I='FractionIntermediateNodes',
T='FractionTopLevelNodes')) |
sim_comp_pop <- function(simSetup, fun = comp_var(), by = "") {
fun <- if(by == "") fun else apply_by(by, fun)
sim_setup(simSetup, new("sim_fun", order = 4, call = match.call(), fun))
}
sim_comp_sample <- function(simSetup, fun = comp_var(), by = "") {
fun <- if(by == "") fun else apply_by(by, fun)
sim_setup(simSetup, new("sim_fun", order = 6, call = match.call(), fun))
}
sim_comp_agg <- function(simSetup, fun = comp_var(), by = "") {
fun <- if(by == "") fun else apply_by(by, fun)
sim_setup(simSetup, new("sim_fun", order = 8, call = match.call(), fun))
} |
release_questions <- function() {
c(
"Have you removed piwikproRTests in DESCRIPTION?"
)
}
release_questions <- function() {
c(
"Have you updated NEWS.md?"
)
}
release_questions <- function() {
c(
"Have you set Version in DESCRIPTON?"
)
} |
ACE <- function(y = "y", predictor = "~s(x)", restriction = "positive", eps = 0.01, itmax = 10, data = data,...){
y = data[,y]
if(restriction=="positive"){
H <- function(x) exp(x)
H_ <- function(x) log(x)
H1 <-function(x) exp(x)
}
if(restriction=="correlation"){
H <- function(x) {
x[x>3] <- 3
x[x<(-3)] <- -3
tanh(x)
}
H_ <- function(x) atanh(x)
H1 <- function(x) {
x[x > 3] <- 3
x[x < (-3)] <- -3
1-tanh(x)**2}
}
if(restriction=="correlation" & mean(y) >= 1){
eta0 <- H_(0.99)
} else {
if(restriction=="correlation" & mean(y) <= -1){
eta0 <- H_(-0.99)
} else {
eta0 <- H_(mean(y))
}
}
mu0 <- H(eta0)
iter <- 0
continuar <- TRUE
while (continuar) {
iter <- iter + 1
res <- log((y-mu0)**2)
var <- exp(predict(gam(as.formula(paste0("res", parse(text = predictor))), data = data)))
der <- H1(eta0)
var[which(var < 0.01)] <- 0.01
w <- der**2 / var
z <- eta0 + (y-mu0) / der
fit <- gam(as.formula(paste0("z", parse(text = predictor))), data = data, weights = w,...)
eta <- predict(fit)
mu <- H(eta)
MSE0 <- mean(y - mu0)**2
MSE <- mean(y - mu)**2
error <- abs(MSE - MSE0) / MSE0
if (error < eps | iter > itmax) continuar <- FALSE
eta0 <- eta
mu0 <- mu
}
return(list(fit=fit,error = error))
} |
library(rvest)
library(tidyr)
page <- read_html("http://www.zillow.com/homes/for_sale/Greenwood-IN/fsba,fsbo,fore,cmsn_lt/house_type/52333_rid/39.638414,-86.011362,39.550714,-86.179419_rect/12_zm/0_mmm/")
houses <- page %>%
html_elements(".photo-cards li article")
z_id <- houses %>% html_attr("id")
address <- houses %>%
html_element(".zsg-photo-card-address") %>%
html_text()
price <- houses %>%
html_element(".zsg-photo-card-price") %>%
html_text() %>%
readr::parse_number()
params <- houses %>%
html_element(".zsg-photo-card-info") %>%
html_text() %>%
strsplit("\u00b7")
beds <- params %>% purrr::map_chr(1) %>% readr::parse_number()
baths <- params %>% purrr::map_chr(2) %>% readr::parse_number()
house_area <- params %>% purrr::map_chr(3) %>% readr::parse_number() |
valid_call <- function(message = "Hello",
title = NULL,
priority = 0,
attachment = NULL,
user = get_pushover_user(),
app = get_pushover_app(),
device = NULL,
sound = NULL,
url = NULL,
url_title = NULL,
format = "html",
retry = 60,
expire = 3600,
callback = NULL,
timestamp = NULL) {
pushover(
message = message,
title = title,
priority = priority,
attachment = attachment,
user = user,
app = app,
device = device,
sound = sound,
url = url,
url_title = url_title,
format = format,
retry = retry,
expire = expire,
callback = callback,
timestamp = timestamp
)
}
random_string <- function(n) {
paste0(sample(c(LETTERS, letters, 0:9), n, replace = TRUE), collapse = "")
}
test_that("input validation works", {
expect_error(valid_call(message = ""))
expect_error(valid_call(message = random_string(1025)))
expect_error(valid_call(message = NA_character_))
expect_error(valid_call(message = 21))
expect_error(valid_call(message = c("msg 1", "msg 2")))
expect_error(valid_call(title = NA_character_))
expect_error(valid_call(title = 21))
expect_error(valid_call(title = TRUE))
expect_error(valid_call(title = c("msg 1", "msg 2")))
expect_error(valid_call(title = random_string(251)))
expect_error(valid_call(priority = NULL))
expect_error(valid_call(priority = NA))
expect_error(valid_call(priority = "0"))
expect_error(valid_call(priority = c(0, 1)))
expect_error(valid_call(priority = -3))
expect_error(valid_call(priority = 0.1))
expect_error(valid_call(priority = 3))
expect_error(valid_call(attachment = NA_character_))
expect_error(valid_call(attachment = ""))
expect_error(valid_call(attachment = 3))
expect_error(valid_call(attachment = "/blah/notafile.jpg"))
expect_error(valid_call(user = ""))
expect_error(valid_call(user = NA_character_))
expect_error(valid_call(user = 21))
expect_error(valid_call(
user = c("uQiRzpo4DXghDmr9QzzfQu27cmVRsG", "uQiRzpo4DXghDmr9QzzfQu27cmVRsG")
))
expect_error(valid_call(app = ""))
expect_error(valid_call(app = NA_character_))
expect_error(valid_call(app = 21))
expect_error(valid_call(app = random_string(12)))
expect_error(valid_call(device = ""))
expect_error(valid_call(device = NA_character_))
expect_error(valid_call(device = random_string(26)))
expect_error(valid_call(sound = ""))
expect_error(valid_call(sound = NA_character_))
expect_error(valid_call(sound = 21))
expect_error(valid_call(sound = "notasound"))
expect_error(valid_call(url = ""))
expect_error(valid_call(url = NA_character_))
expect_error(valid_call(url = 21))
expect_error(valid_call(url = random_string(513)))
expect_error(valid_call(url_title = ""))
expect_error(valid_call(url_title = NA_character_))
expect_error(valid_call(url_title = 21))
expect_error(valid_call(url_title = random_string(101)))
expect_error(valid_call(format = ""))
expect_error(valid_call(format = NA_character_))
expect_error(valid_call(format = NULL))
expect_error(valid_call(format = 21))
expect_error(valid_call(format = "word"))
expect_error(valid_call(retry = 20))
expect_error(valid_call(retry = FALSE))
expect_error(valid_call(retry = NA_integer_))
expect_error(valid_call(retry = 34.56789))
expect_error(valid_call(retry = 60, expire = 45))
expect_error(valid_call(retry = 10801))
expect_error(valid_call(retry = FALSE))
expect_error(valid_call(retry = NA_integer_))
expect_error(valid_call(retry = 123.456789))
expect_error(valid_call(callback = ""))
expect_error(valid_call(callback = NA_character_))
expect_error(valid_call(callback = 21))
expect_error(valid_call(timestamp = -1))
expect_error(valid_call(callback = NA_integer_))
expect_error(valid_call(callback = 21.214142))
}) |
setMethod("clv.controlflow.estimate.put.inputs", signature = signature(clv.fitted="clv.fitted.spending"), definition = function(clv.fitted, verbose, remove.first.transaction, ...){
clv.fitted <- callNextMethod()
[email protected] <- remove.first.transaction
return(clv.fitted)
})
setMethod(f = "clv.controlflow.predict.check.inputs", signature = signature(clv.fitted="clv.fitted.spending"), definition = function(clv.fitted, verbose, ...){
err.msg <- c()
err.msg <- c(err.msg, .check_user_data_single_boolean(b=verbose, var.name="verbose"))
check_err_msg(err.msg)
})
setMethod("clv.controlflow.check.newdata", signature(clv.fitted="clv.fitted.spending"), definition = function(clv.fitted, user.newdata, ...){
err.msg <- c()
if(!is(object = user.newdata, class2 = "clv.data")){
err.msg <- c(err.msg, paste0("The parameter newdata needs to be a clv data object of class clv.data or a subclass thereof."))
}else{
if(!clv.data.has.spending(user.newdata))
err.msg <- c(err.msg, paste0("The newdata object needs to contain spending data in order to predict spending with it."))
}
check_err_msg(err.msg)
})
setMethod("clv.controlflow.predict.build.result.table", signature(clv.fitted="clv.fitted.spending"), definition = function(clv.fitted, verbose, ...){
dt.predictions <- copy(clv.fitted@cbs[, "Id"])
return(dt.predictions)
})
setMethod("clv.controlflow.predict.get.has.actuals", signature(clv.fitted="clv.fitted.spending"), definition = function(clv.fitted, dt.predictions){
return(clv.data.has.holdout([email protected]))
})
setMethod("clv.controlflow.predict.add.actuals", signature(clv.fitted="clv.fitted.spending"), definition = function(clv.fitted, dt.predictions, has.actuals, verbose, ...){
actual.mean.spending <- i.actual.mean.spending <- Price <- NULL
if(!has.actuals){
return(dt.predictions)
}else{
dt.actual.spending <- clv.data.get.transactions.in.holdout.period([email protected])
dt.actual.spending <- dt.actual.spending[, list(actual.mean.spending = mean(Price)), keyby="Id"]
dt.predictions[dt.actual.spending, actual.mean.spending := i.actual.mean.spending, on="Id"]
dt.predictions[is.na(actual.mean.spending), actual.mean.spending := 0]
return(dt.predictions)
}
})
setMethod("clv.controlflow.predict.post.process.prediction.table", signature = signature(clv.fitted="clv.fitted.spending"), function(clv.fitted, dt.predictions, has.actuals, verbose, ...){
if(has.actuals){
cols <- c("Id", "actual.mean.spending", "predicted.mean.spending")
}else{
cols <- c("Id", "predicted.mean.spending")
}
setcolorder(dt.predictions, cols)
return(dt.predictions)
}) |
lazyarray <- function(
path, storage_format, dim, dimnames = NULL,
multipart = TRUE, prefix = "",
multipart_mode = 1, compress_level = 50L,
file_names = list('', seq_len(dim[[length(dim)]]))[[multipart + 1]],
meta_name = 'lazyarray.meta',
read_only = FALSE, quiet = FALSE, ...
){
if(file.exists(path) && !dir.exists(path)){
stop('lazyarray path must be a directory path, but a file was found.')
}
if(!dir.exists(path)){
arr <- create_lazyarray(
path = path, storage_format = storage_format, dim = dim,
dimnames = dimnames, compress_level = compress_level, prefix = prefix,
multipart = multipart, multipart_mode = multipart_mode,
file_names = file_names, meta_name = meta_name)
if(read_only){
arr <- load_lazyarray(path = path, read_only = TRUE,
meta_name = meta_name)
}
return(arr)
}
if(file.exists(file.path(path, meta_name))){
arr <- load_lazyarray(path = path, read_only = read_only,
meta_name = meta_name)
return(arr)
}
if(!quiet){
message('meta file not found, create one with existing files')
}
if(multipart){
if(length(file_names) != dim[[length(dim)]]){
stop('path exists, but cannot find meta file. Please specify file_names\n',
' See ', sQuote('?lazyarray'), ' for more details')
}
path <- normalizePath(path)
fs <- file.path(path, sprintf('%s%s.fst', prefix, file_names))
fe <- file.exists(fs)
if(any(fe)){
fs <- fs[fe]
ds <- sapply(fs, function(f){
tryCatch({
meta <- cpp_fst_meta_orig(normalizePath(f))
if(inherits(meta, 'fst_error')){ stop(meta) }
meta
}, error = function(e){
stop('Cannot open array file(s). \n ', f)
})
c(meta$nrOfCols, meta$nrOfRows)
}, USE.NAMES = FALSE)
ds <- unique(t(ds))
if(length(ds) != 2){
stop('All existing files must be homogeneous')
}
mp_dim <- dim[-length(dim)]
len1 <- prod(mp_dim)
len2 <- ds[[1]] * ds[[2]]
if(storage_format == 'complex'){
len1 <- len1 * 2
}
if(len1 != len2){
stop('Dimension provided does not match with existing files')
}
if(multipart_mode == 1){
last_d <- ds[[1]]
if(storage_format != 'complex'){ last_d <- last_d * 2 }
if(last_d != 2){
stop('Multipart mode=1, partition dimension should be ',
paste(mp_dim, collapse = 'x'),
'x1, but invalid dimension found.')
}
part_dimension <- c(mp_dim, 1)
} else {
part_dimension <- mp_dim
}
} else {
if( multipart_mode == 1 ){
part_dimension <- dim
part_dimension[length(dim)] <- 1
} else if(multipart_mode == 2){
part_dimension <- dim[-length(dim)]
}
}
} else {
if(length(file_names) == 0){
file_names <- ''
}
if(length(file_names) != 1){
stop('path exists, but cannot find meta file. Please specify file_names\n',
' See ', sQuote('?lazyarray'), ' for more details')
}
path <- normalizePath(path)
f <- file.path(path, sprintf('%s%s.fst', prefix, file_names))
meta <- tryCatch({
meta <- cpp_fst_meta_orig(f)
if(inherits(meta, 'fst_error')){
stop(meta)
}
meta
}, error = function(e){
stop('Cannot open array file(s). \n ', f)
})
last_dim <- meta$nrOfCols
prev_dim <- meta$nrOfRows
if(last_dim != dim[length(dim)] || (last_dim * prev_dim != prod(dim))){
stop(sprintf(
'Array dimension not match, expected last dimension to be %d and total length %d, but last dim(%d) and length(%d) is given',
last_dim, prev_dim * last_dim, dim[[length(dim)]], prod(dim)
))
}
part_dimension <- dim
}
meta <- list(
lazyarray_version = 0,
file_format = 'fst',
storage_format = storage_format,
dim = dim,
dimnames = dimnames,
partitioned = multipart,
prefix = prefix,
part_dimension = part_dimension,
postfix = '.fst',
compress_level = compress_level,
file_names = file_names
)
meta_path <- file.path(path, meta_name)
save_yaml(meta, meta_path)
ClassLazyArray$new(path = path, read_only = read_only, meta_name = meta_name)
}
auto_clear_lazyarray <- function(x, onexit = FALSE){
if(requireNamespace('dipsaus', quietly = TRUE)){
path <- dirname(x$storage_path)
path <- normalizePath(path)
dipsaus::shared_finalizer(x, key = path, function(e){
e$remove_data(force = TRUE)
}, onexit = onexit)
rm(path)
}
rm(x, onexit)
invisible()
} |
estimateNuisance <- function(
split_data_list,
model_parms,
alphas,
glmer_fit,
root_options,
vec_dfm_no_alphas,
verbose
){
basic_arg_list <- list(
split_data_list = split_data_list,
model_parms = model_parms,
alphas = alphas
)
CFBI_arg_list <- append(basic_arg_list, list(
glmer_fit = glmer_fit,
CFBI_numstart = 50,
root_options = root_options,
verbose = verbose
))
CFBI_estimates <- do.call(getEstdCFBI_eeroot, CFBI_arg_list)
MCFP_arg_list <- append(basic_arg_list, list(
CFBI_estimates = CFBI_estimates,
vec_dfm_no_alphas = vec_dfm_no_alphas,
verbose = verbose
))
MCFP_tidy_estimates <- do.call(estimateMCFP, MCFP_arg_list)
out_list <- list(
CFBI_estimates = CFBI_estimates,
MCFP_tidy_estimates = MCFP_tidy_estimates
)
}
getEstdCFBI_eeroot <- function(
split_data_list,
model_parms,
alphas,
glmer_fit,
CFBI_numstart,
root_options = NULL,
verbose
){
if(verbose){print(paste("II. Estimate CFBI"))}
ckpt_time <- Sys.time()
beta_here <- model_parms[-length(model_parms)]
theta_here <- model_parms[length(model_parms)]
names(beta_here) <- names(theta_here) <- NULL
new_param_list <- list(
beta = beta_here,
theta = theta_here
)
starting_dfm <- getStartingCFBI(
new_param_list = new_param_list,
glmer_fit = glmer_fit,
alphas = alphas,
CFBI_numstart = CFBI_numstart
)
CFBI_estimate <- rep(NA_real_, length(alphas))
for (alpha_num in 1:length(alphas)) {
alpha <- alphas[alpha_num]
if (alpha_num>1){ckpt_time <- checkpointTimer(time1=ckpt_time, verbose)}
if (verbose) {print(paste("II. solving for alpha_num", alpha_num,
"of", length(alphas), "; alpha=", alpha))}
est_CFBI1Alpha_args <- list(
split_data_list = split_data_list,
model_parms = model_parms,
alpha = alpha,
starting_dfm = starting_dfm,
root_options = root_options
)
CFBI_alpha_solved <- do.call(getCFBI1Alpha, est_CFBI1Alpha_args)
CFBI_estimate[alpha_num] <- CFBI_alpha_solved$root
}
if (alpha_num == length(alphas)){
ckpt_time <- checkpointTimer(time1=ckpt_time,verbose)
}
CFBI_estimate
}
getStartingCFBI <- function(
new_param_list,
glmer_fit,
alphas,
CFBI_numstart
){
starting_CFBIs <- seq(from=-3, to = 3,length.out=CFBI_numstart)
starting_alphas <- guessStartingAlphas(
starting_CFBIs = starting_CFBIs,
new_param_list = new_param_list,
glmer_fit = glmer_fit
)
starting_dfm <- data.frame(
starting_alphas = unlist(starting_alphas),
starting_CFBIs = starting_CFBIs
)
max_start_alpha <- starting_dfm$starting_alphas[nrow(starting_dfm)]
min_start_alpha <- starting_dfm$starting_alphas[1]
if ( sum(alphas>max_start_alpha)>=3) {
print("expanding grid of starting values for CFBI")
starting_CFBIs <- seq(from=2.5, to = 10, by = .75)
starting_alphas <- guessStartingAlphas(
starting_CFBIs = starting_CFBIs,
new_param_list = new_param_list, glmer_fit = glmer_fit
)
starting_dfm2 <- data.frame(
starting_alphas = unlist(starting_alphas),
starting_CFBIs = starting_CFBIs
)
starting_dfm <- rbind(starting_dfm,starting_dfm2)
}
if ( sum(alphas<min_start_alpha)>=3) {
print("expanding grid of starting values for CFBI")
starting_CFBIs <- seq(from=-10, to = -2.5, by = .75)
starting_alphas <- guessStartingAlphas(
starting_CFBIs = starting_CFBIs,
new_param_list = new_param_list, glmer_fit = glmer_fit
)
starting_dfm2 <- data.frame(
starting_alphas = unlist(starting_alphas),
starting_CFBIs = starting_CFBIs
)
starting_dfm <- rbind(starting_dfm,starting_dfm2)
}
max_start_alpha <- starting_dfm$starting_alphas[nrow(starting_dfm)]
min_start_alpha <- starting_dfm$starting_alphas[1]
if ( sum(alphas>max_start_alpha)>3) {
warning("solver may be slow for CFBI's due to large values of alpha")
}
if ( sum(alphas<min_start_alpha)>3) {
warning("solver may be slow for CFBI's due to small values of alpha")
}
return(starting_dfm)
}
guessStartingAlphas <- function(
starting_CFBIs,
new_param_list,
glmer_fit
){
starting_alphas <- lapply(starting_CFBIs, function(start_val){
new_param_list$beta[1] <- start_val
indiv_probs <- suppressMessages(
stats::predict(
glmer_fit,
newparams = new_param_list,
type = "response"
)
)
if ("try-error" %in% class(indiv_probs)){
indiv_probs <- 99
}
mean(indiv_probs)
})
}
getCFBI1Alpha <- function(
alpha,
split_data_list,
model_parms,
starting_dfm,
root_options
){
ordered_rows <- order(abs(starting_dfm$starting_alphas - alpha))
starting_estimate <- mean(starting_dfm[ordered_rows,]$starting_CFBIs[1:2])
CFBI_root_args <- list(
geex_list = list(
eeFUN = CFBI_only_EstFun,
splitdt = split_data_list
),
start = starting_estimate,
root_options = root_options,
alpha = alpha,
model_parms = model_parms
)
do.call(calculateRoots,CFBI_root_args)
}
calculateRoots <- function(geex_list, start, root_options, ...) {
psi_i <- lapply(geex_list$splitdt, function(data_list_i) {
force(data_list_i)
geex_list$eeFUN(data_list = data_list_i, ...)
})
psi <- function(theta) {
psii <- lapply(psi_i, function(f) {
do.call(f, args = append(list(theta = theta), geex_list$ee_args))
})
apply(checkArray(simplify2array(psii)), 1, sum)
}
root_args <- append(root_options, list(f = psi, start = start))
do.call(rootSolve::multiroot, args = root_args)
}
estimateMCFP <- function(
split_data_list,
model_parms,
CFBI_estimates,
alphas,
vec_dfm_no_alphas,
verbose
){
ckpt_time <- Sys.time()
if(verbose){print('III. Estimate MCFP')}
MCFP_onealpha_dfms <- lapply(1:length(alphas), function(alpha_num) {
if (alpha_num > 1) { ckpt_time <- checkpointTimer(time1 = ckpt_time,verbose)}
if(verbose){print(paste('III. alpha num', alpha_num, 'of', length(alphas)))}
MCFP_onealpha_dfm <- getMCFP1AlphaNum(
alpha_num = alpha_num,
alpha = alphas[alpha_num],
CFBI_estimates = CFBI_estimates,
split_data_list = split_data_list,
model_parms = model_parms,
vec_dfm_no_alphas = vec_dfm_no_alphas
)
})
MCFP_estimates_dfm <- do.call(rbind,MCFP_onealpha_dfms)
if (nrow(MCFP_estimates_dfm)!=(length(alphas)*nrow(vec_dfm_no_alphas))) {
stop(
'MCFP_estimates_dfm must have one row for each row in vec_dfm_no_alphas'
)}
ckpt_time <- checkpointTimer(time1=ckpt_time, verbose)
row.names(MCFP_estimates_dfm) <- NULL
MCFP_estimates_dfm
}
getMCFP1AlphaNum <- function(
alpha_num,
alpha,
CFBI_estimates,
split_data_list,
model_parms,
vec_dfm_no_alphas
){
if(length(CFBI_estimates)==1){
CFBI <- CFBI_estimates
} else {
CFBI <- CFBI_estimates[alpha_num]
}
MCFP_onealpha_allgroups_list <-
lapply(split_data_list, function(data_list){
force(data_list)
MCFP_onealpha_onegroup_vec <-
MCFP_EstFun_LHS(
model_parms = model_parms,
CFBI = CFBI,
vec_dfm_no_alphas = vec_dfm_no_alphas,
model_DV_vec = data_list$model_DV_vec,
model_mat = data_list$model_matrix
)
if (nrow(vec_dfm_no_alphas)!= length(MCFP_onealpha_onegroup_vec)) {stop(
'MCFP_onealpha_onegroup_vec must have one prob for each row in vec_dfm_no_alphas'
)}
MCFP_onealpha_onegroup_vec
})
MCFP_onealpha_allgroups <- do.call(cbind, MCFP_onealpha_allgroups_list)
if (ncol(MCFP_onealpha_allgroups) !=
length(split_data_list)) { stop(
'MCFP_onealpha_allgroups must have one row for each group'
)}
if (nrow(MCFP_onealpha_allgroups)!=nrow(vec_dfm_no_alphas)) { stop(
'MCFP_onealpha_allgroups must have one column for each alpha'
)}
MCFP_onealpha_avg <- apply(
MCFP_onealpha_allgroups, 1, function(x){mean(stats::na.omit(x))})
MCFP_onealpha_avg <- as.vector(MCFP_onealpha_avg)
if (length(MCFP_onealpha_avg)!=nrow(vec_dfm_no_alphas)){
stop("MCFP_onealpha_avg should be a vector of nrow(vec_dfm_no_alphas) probs")
}
mcfp_onealpha_dfm <- vec_dfm_no_alphas
mcfp_onealpha_dfm$alpha <- alpha
mcfp_onealpha_dfm$alpha_num <- alpha_num
mcfp_onealpha_dfm$CFBI <- CFBI
mcfp_onealpha_dfm$MCFP <- MCFP_onealpha_avg
mcfp_onealpha_dfm
} |
'dlcd' <- function(x, lcd, uselog=FALSE, eps=10^-10) {
if(class(lcd) != "LogConcDEAD") {
stop("error: lcd must be of class LogConcDEAD")
}
d <- ncol(lcd$x)
if(is.vector(x) && length(x)==d) {
x <- matrix(x,ncol=d)
}
if( is.vector( x ) && d==1 ) {
x <- matrix( x )
}
if(is.matrix(x) && ncol(x)==d)
{
isout <- apply( lcd$outnorm %*% ( t( x ) - lcd$midpoint ) -
lcd$outdist, 2, max ) > eps
vals <- apply( lcd$bunique %*% t( x ) - lcd$betaunique, 2, min ) +
ifelse( isout, -Inf, 0 )
if( uselog ) return( vals )
else return( exp( vals ) )
}
else stop("error: x must be a vector, or a numeric matrix with ",d," columns")
} |
mptmodel <- function(y, weights = NULL, spec, treeid = NULL,
optimargs = list(control = list(reltol = .Machine$double.eps^(1/1.2),
maxit = 1000),
init = NULL),
start = NULL, vcov = TRUE, estfun = FALSE, ...)
{
if(missing(y)) stop("response missing")
stopifnot(class(spec) == "mptspec")
if(is.null(dim(y))) y <- matrix(y, nrow=1L, dimnames=list(NULL, names(y)))
y <- as.matrix(y)
nsubj <- nrow(y)
if(NCOL(y) != length(spec$prob))
stop("number of response categories and model equations do not match")
if(is.null(weights)) weights <- 1L
weights <- rep(weights, length.out = nsubj)
nsubj <- sum(weights > 0L)
tid <- if(length(treeid) == NCOL(y))
factor(treeid)
else if(length(spec$treeid) == NCOL(y))
spec$treeid
else if(!is.null(colnames(y)))
factor(gsub("([^.]+)\\..*", "\\1", colnames(y)))
else
rep(1, NCOL(y))
ysum <- colSums(y * weights)
if(is.null(start)) {
start <- spec$par[is.na(spec$par)]
start[] <- 0
} else {
if(is.null(names(start))) names(start) <- names(spec$par[is.na(spec$par)])
start <- qlogis(start)
}
nll <- function(par) -sum(ysum * log(spec$par2prob(plogis(par))))
grad <- function(par) {
yp <- drop(ysum/spec$par2prob(plogis(par)))
dp <- spec$par2deriv(plogis(par))$deriv
-drop(dp %*% yp) * dlogis(par)
}
if (!is.null(optimargs$init)) {
start[] <- qlogis(optimargs$init)
}
optimargs$init <- NULL
optArgs <- list(par=start, fn=nll, gr=grad, method="BFGS")
optArgs <- c(optArgs, as.list(optimargs))
opt <- do.call(optim, optArgs)
coef <- opt$par
loglik <- -opt$value
pcat <- spec$par2prob(plogis(coef))
snam <- if(!is.null(names(spec$prob))) names(spec$prob)
else if(!is.null(colnames(y))) colnames(y)
else ave(as.character(tid), tid,
FUN = function(a) paste(a, seq_along(a), sep="."))
ncat <- table(tid)
ntrees <- length(ncat)
nbytree <- tapply(ysum, tid, sum)
n <- setNames(nbytree[as.character(tid)], snam)
fitted <- n*pcat
G2 <- 2*sum(ysum*log(ysum/fitted), na.rm=TRUE)
df <- sum(ncat - 1) - length(coef)
gof <- c(G2=G2, df=df, pval = pchisq(G2, df, lower.tail=FALSE))
if(df == 0 && abs(G2) < sqrt(.Machine$double.eps)) {
gof["G2"] <- 0
gof["pval"] <- 1
}
rval <- list(
y = y,
coefficients = coef,
loglik = loglik,
nobs = nsubj,
npar = length(start),
weights = if(isTRUE(all.equal(weights, rep(1, nsubj)))) NULL else weights,
fitted = fitted,
goodness.of.fit = gof,
ntrees = ntrees,
n = n,
pcat = setNames(pcat, snam),
treeid = tid,
spec = spec,
optim = opt,
ysum = setNames(ysum, snam)
)
class(rval) <- "mptmodel"
if(estfun) rval$estfun <- estfun.mptmodel(rval)
return(rval)
}
logLik.mptmodel <- function(object, ...)
structure(object$loglik, df = object$npar, class = "logLik")
coef.mptmodel <- function(object, logit = FALSE, ...){
coef <- object$coefficients
if (logit) {
nm <- paste0("logit(", names(coef), ")")
setNames(coef, nm)
} else {
plogis(coef)
}
}
estfun.mptmodel <- function(x, logit = TRUE, ...)
{
dp <- t(x$spec$par2deriv(coef(x, logit=FALSE))$deriv)
ef <- x$y %*% (dp/x$pcat)
if (logit) ef <- t(dlogis(coef(x, logit=TRUE)) * t(ef))
dimnames(ef) <- list(rownames(x$y), names(coef(x, logit=logit)))
if(!is.null(x$weights)) ef <- ef * weights
ef
}
vcov.mptmodel <- function(object, logit = TRUE, what = c("vcov", "fisher"),
...){
what <- match.arg(what)
coef <- coef(object, logit=logit)
H <- function(par, y = object$ysum, spec = object$spec){
pp <- spec$par2prob(par)
yp <- drop(y/pp)
dp <- spec$par2deriv(par)$deriv
npar <- length(par)
H <- matrix(NA, npar, npar)
for (i in seq_len(npar))
for (j in i:npar)
H[i, j] <- yp %*% (dp[i, ]*dp[j, ]/pp)
H[lower.tri(H)] <- t(H)[lower.tri(H)]
dimnames(H) <- list(names(par), names(par))
H
}
if (logit) {
if (what == "vcov") 1/tcrossprod(dlogis(coef)) * solve(H(plogis(coef)))
else tcrossprod(dlogis(coef)) * H(plogis(coef))
} else {
if (what == "vcov") solve(H(coef))
else H(coef)
}
}
confint.mptmodel <- function(object, parm, level = 0.95, logit = TRUE, ...)
{
cf <- coef(object, logit=logit)
pnames <- names(cf)
if (missing(parm))
parm <- pnames
else if (is.numeric(parm))
parm <- pnames[parm]
a <- (1 - level)/2
a <- c(a, 1 - a)
pct <- paste(format(100*a, trim=TRUE, scientific=FALSE, digits=3), "%")
fac <- qnorm(a)
ci <- array(NA, dim = c(length(parm), 2L), dimnames = list(parm, pct))
ses <- sqrt(diag(vcov(object, logit=logit)))[parm]
ci[] <- cf[parm] + ses %o% fac
ci
}
print.mptmodel <- function(x, digits = max(3, getOption("digits") - 3),
logit=FALSE, ...){
cat("\nMultinomial processing tree (MPT) models\n\n")
cat("Parameter estimates:\n")
print.default(format(coef(x, logit=logit), digits=digits), print.gap=2,
quote = FALSE)
G2 <- x$goodness.of.fit[1]
df <- x$goodness.of.fit[2]
pval <- x$goodness.of.fit[3]
cat("\nGoodness of fit (2 log likelihood ratio):\n")
cat("\tG2(", df, ") = ", format(G2, digits=digits), ", p = ",
format(pval, digits=digits), "\n", sep="")
cat("\n")
invisible(x)
}
plot.mptmodel <- function(x, logit = FALSE, xlab = "Parameter",
ylab = "Estimate", ...){
coef <- coef(x, logit=logit)
plot(coef, axes=FALSE, xlab = xlab, ylab = ylab, ...)
axis(1, seq_along(coef), names(coef))
axis(2)
box()
}
nobs.mptmodel <- function(object, ...) object$nobs
summary.mptmodel <- function(object, ...){
x <- object
coef <- coef(x, logit=TRUE)
pcoef <- coef(x, logit=FALSE)
s.err <- tryCatch(sqrt(diag(vcov(x, logit=TRUE))),
error = function(e) rep(NA, length(coef)))
tvalue <- coef / s.err
pvalue <- 2 * pnorm(-abs(tvalue))
dn <- c("Estimate", "Logit Estim.", "Std. Error")
coef.table <- cbind(pcoef, coef, s.err, tvalue, pvalue)
dimnames(coef.table) <- list(names(pcoef), c(dn, "z value", "Pr(>|z|)"))
aic <- AIC(x)
ans <- list(ntrees=x$ntrees, coefficients=coef.table, aic=aic,
gof=x$goodness.of.fit)
class(ans) <- "summary.mptmodel"
return(ans)
}
print.summary.mptmodel <- function(x, digits = max(3, getOption("digits") - 3),
cs.ind = 2:3, ...){
cat("\nCoefficients:\n")
printCoefmat(x$coef, digits=digits, cs.ind=cs.ind, ...)
cat("\nLikelihood ratio G2:", format(x$gof[1], digits=digits), "on",
x$gof[2], "df,", "p-value:", format(x$gof[3], digits=digits), "\n")
cat(
"AIC: ", format(x$aic, digits=max(4, digits + 1)), sep="")
cat("\n")
cat("Number of trees:", x$ntrees, "\n")
invisible(x)
}
deviance.mptmodel <- function(object, ...) object$goodness.of.fit["G2"]
predict.mptmodel <- function(object, newdata = NULL, ...){
if(is.null(newdata)) fitted(object)
else {
stopifnot(length(newdata) == length(object$n))
object$pcat * newdata
}
}
mptspec <- function(..., .restr = NULL)
{
spec <- match.call()
restr <- spec$.restr
if(!is.null(restr)) {
if(as.character(restr[[1L]]) != "list") stop(".restr must be list")
restr1 <- restr
restrcl <- sapply(restr1[-1L], class)
restr <- sapply(restr1[-1L], function(s) paste(deparse(s), collapse=""))
restr <- paste(names(restr), " = ",
ifelse(restrcl == "numeric", "", "expression("),
restr,
ifelse(restrcl == "numeric", "", ")[[1L]]"),
collapse = ", ")
}
spec$.restr <- NULL
spec <- as.list(spec[-1L])
treeid <- NULL
if (is.character(whichmod <- spec[[1]])) {
modcall <- switch(EXPR = whichmod,
"1HT" = expression(
"1.1" = r + (1 - r)*b,
"1.2" = (1 - r)*(1 - b),
"2.1" = b,
"2.2" = 1 - b
),
"2HT" = expression(
"1.1" = r + (1 - r)*b,
"1.2" = (1 - r)*(1 - b),
"2.1" = (1 - d)*b,
"2.2" = (1 - d)*(1 - b) + d
),
"PairAsso" = expression(
"1.1" = p*q*r,
"1.2" = p*q*(1 - r),
"1.3" = p*(1 - q)*r,
"1.4" = (1 - p) + p*(1 - q)*(1 - r)
),
"proCNI" = expression(
"1.1" = C + (1 - C)*(1 - N)*(1 - I),
"1.2" = (1 - C)*N + (1 - C)*(1 - N)*I,
"2.1" = C + (1 - C)*(1 - N)*J,
"2.2" = (1 - C)*N + (1 - C)*(1 - N)*(1 - J),
"3.1" = (1 - C)*(1 - N)*(1 - I),
"3.2" = C + (1 - C)*N + (1 - C)*(1 - N)*I,
"4.1" = (1 - C)*(1 - N)*J,
"4.2" = C + (1 - C)*N + (1 - C)*(1 - N)*(1 - J)
),
"prospec" = expression(
"1.1" = C1*P*(1 - M1)*(1 - g) + C1*(1 - P) +
(1 - C1)*P*(1 - M1)*(1 - g)*c + (1 - C1)*(1 - P)*c,
"1.2" = (1 - C1)*P*(1 - M1)*(1 - g)*(1 - c) +
(1 - C1)*(1 - P)*(1 - c),
"1.3" = C1*P*M1 + C1*P*(1 - M1)*g + (1 - C1)*P*M1 +
(1 - C1)*P*(1 - M1)*g,
"2.1" = (1 - C2)*P*(1 - M1)*(1 - g)*c + (1 - C2)*(1 - P)*c,
"2.2" = C2*P*(1 - M1)*(1 - g) + C2*(1 - P) +
(1 - C2)*P*(1 - M1)*(1 - g)*(1 - c) +
(1 - C2)*(1 - P)*(1 - c),
"2.3" = C2*P*M1 + C2*P*(1 - M1)*g + (1 - C2)*P*M1 +
(1 - C2)*P*(1 - M1)*g,
"3.1" = C1*P*M2 + C1*P*(1 - M1)*(1 - g) + C1*(1 - P) +
(1 - C1)*P*M2*c + (1 - C1)*P*(1 - M1)*(1 - g)*c +
(1 - C1)*(1 - P)*c,
"3.2" = (1 - C1)*P*M2*(1 - c) + (1 - C1)*P*(1 - M2)*(1 - g)*(1 - c) +
(1 - C1)*(1 - P)*(1 - c),
"3.3" = C1*P*(1 - M2)*g + (1 - C1)*P*(1 - M2)*g,
"4.1" = (1 - C2)*P*M2*c + (1 - C2)*P*(1 - M2)*(1 - g)*c +
(1 - C2)*(1 - P)*c,
"4.2" = C2*P*M2 + C2*P*(1 - M2)*(1 - g) + C2*(1 - P) +
(1 - C2)*P*M2*(1 - c) + (1 - C2)*P*(1 - M2)*(1 - g)*(1 - c) +
(1 - C2)*(1 - P)*(1 - c),
"4.3" = C2*P*(1 - M2)*g + (1 - C2)*P*(1 - M2)*g
),
"rmodel" = expression(
"1.1" = b,
"1.2" = 1 - b,
"2.1" = g,
"2.2" = 1 - g,
"3.1" = r*a + (1 - r)*b*a,
"3.2" = r*(1 - a) + (1 - r)*(1 - b)*(1 - a),
"3.3" = (1 - r)*(1 - b)*a,
"3.4" = (1 - r)*b*(1 - a)
),
"SourceMon" = expression(
"1.1" = D1*d1 + D1*(1 - d1)*g + (1 - D1)*b*g,
"1.2" = D1*(1 - d1)*(1 - g) + (1 - D1)*b*(1 - g),
"1.3" = (1 - D1)*(1 - b),
"2.1" = D2*(1 - d2)*g + (1 - D2)*b*g,
"2.2" = D2*d2 + D2*(1 - d2)*(1 - g) + (1 - D2)*b*(1 - g),
"2.3" = (1 - D2)*(1 - b),
"3.1" = b*g,
"3.2" = b*(1 - g),
"3.3" = 1 - b
),
"SR" = expression(
"1.1" = c*r,
"1.2" = (1 - c)*u^2,
"1.3" = 2*(1 - c)*u*(1 - u),
"1.4" = c*(1 - r) + (1 - c)*(1 - u)^2,
"2.1" = u,
"2.2" = 1 - u
),
"SR2" = expression(
"1.1" = c*r,
"1.2" = (1 - c)*u^2,
"1.3" = 2*(1 - c)*u*(1 - u),
"1.4" = c*(1 - r) + (1 - c)*(1 - u)^2
),
"WST" = expression(
"1.1" = (1 - a)*(1 - P)*(1 - p)*(1 - Q)*(1 - q),
"1.2" = a*c*(1 - d)*(1 - sb)*i +
(1 - a)*(1 - P)*(1 - p)*(1 - Q)*q,
"1.3" = a*c*(1 - d)*sb*i +
(1 - a)*(1 - P)*(1 - p)*Q*(1 - q),
"1.4" = a*(1 - c)*(1 - x)*(1 - d)*i +
(1 - a)*(1 - P)*(1 - p)*Q*q,
"1.5" = a*c*d*(1 - sf)*i +
(1 - a)*(1 - P)*p*(1 - Q)*(1 - q),
"1.6" = a*(1 - c)*x*(1 - sfb)*i +
(1 - a)*(1 - P)*p*(1 - Q)*q,
"1.7" = a*c*d*(1 - sf)*(1 - i) +
a*c*(1 - d)*sb*(1 - i) +
(1 - a)*(1 - P)*p*Q*(1 - q),
"1.8" = (1 - a)*(1 - P)*p*Q*q,
"1.9" = a*c*d*sf*i +
(1 - a)*P*(1 - p)*(1 - Q)*(1 - q),
"1.10" = a*c*d*sf*(1 - i) +
a*c*(1 - d)*(1 - sb)*(1 - i) +
(1 - a)*P*(1 - p)*(1 - Q)*q,
"1.11" = a*(1 - c)*x*sfb*i +
(1 - a)*P*(1 - p)*Q*(1 - q),
"1.12" = (1 - a)*P*(1 - p)*Q*q,
"1.13" = a*(1 - c)*(1 - x)*d*i +
(1 - a)*P*p*(1 - Q)*(1 - q),
"1.14" = (1 - a)*P*p*(1 - Q)*q,
"1.15" = (1 - a)*P*p*Q*(1 - q),
"1.16" = a*(1 - c)*x*sfb*(1 - i) +
a*(1 - c)*x*(1 - sfb)*(1 - i) +
a*(1 - c)*(1 - x)*d*(1 - i) +
a*(1 - c)*(1 - x)*(1 - d)*(1 - i) +
(1 - a)*P*p*Q*q
),
NULL
)
if(is.null(modcall))
stop("'...' has to be either an expression or one of:\n",
" '1HT', '2HT', 'PairAsso', 'proCNI', 'prospec', 'rmodel',\n",
" 'SourceMon', 'SR', 'SR2', 'WST'.\n")
nm <- do.call(rbind, strsplit(names(modcall), "\\."))
treeid <- as.numeric(nm[, 1])
if (!is.null(spec$.replicates) && spec$.replicates > 1) {
ntrees <- max(treeid)
treeid <- rep(treeid, spec$.replicates) +
rep(seq(0, ntrees*(spec$.replicates - 1), ntrees),
each=nrow(nm))
pd <- getParseData(parse(text=modcall, keep.source=TRUE))
pat <- paste0("(",
paste(unique(pd$text[pd$token == "SYMBOL"]), collapse="|"), ")")
newcall <- NULL
for (i in seq_len(spec$.replicates))
newcall <- c(newcall, gsub(pat, paste0("\\1", i), modcall))
modcall <- setNames(parse(text=newcall),
paste(treeid, nm[, 2], sep="."))
}
spec <- modcall
}
spec <- lapply(spec, function(s) paste(deparse(s), collapse=""))
if(!is.null(restr)) {
spec <- lapply(spec, function(s) {
s <- sprintf("substitute(%s, list(%s))", s, restr)
deparse(eval(parse(text = s)))
})
}
if(!is.null(restr)) restr <- lapply(restr1[-1L], as.expression)
prob <- lapply(spec, function(s) parse(text=s, keep.source=TRUE))
if(is.null(treeid) && !is.null(names(prob)))
treeid <- gsub("([^.]+)\\..*", "\\1", names(prob))
pars <- unique(unlist(lapply(prob, function(e) {
pd <- getParseData(e)
pd$text[pd$token == "SYMBOL"]
})))
pars <- structure(rep.int(NA_real_, length(pars)), .Names = pars)
par2prob <- function(par) {
pars <- pars
if(sum(is.na(pars)) != length(par))
stop("numbers of parameters do not match")
pars[is.na(pars)] <- par
pars <- as.list(pars)
rval <- sapply(prob, eval, pars)
names(rval) <- names(prob)
return(rval)
}
deriv <- lapply(prob, deriv3, names(pars))
names(deriv) <- names(prob)
par2deriv <- function(par) {
pars <- pars
na_pars <- is.na(pars)
if(sum(na_pars) != length(par))
stop("numbers of parameters do not match")
pars[na_pars] <- par
pars <- as.list(pars)
deriv1 <- rbind(
sapply(deriv, function(ex) attr(eval(ex, pars), "gradient")))
rownames(deriv1) <- names(pars)
deriv1 <- deriv1[na_pars, , drop = FALSE]
list(deriv = deriv1)
}
retval <- list(
par2prob = par2prob,
par2deriv = par2deriv,
prob = prob,
deriv = deriv,
par = pars,
restr = restr,
treeid = if(!is.null(treeid)) factor(treeid)
)
class(retval) <- "mptspec"
retval
}
update.mptspec <- function(object, .restr = NULL, ...){
spec <- match.call()
restr <- spec$.restr
spec <- unlist(object$prob)
if(!is.null(restr)){
if(as.character(restr[[1L]]) != "list") stop(".restr must be list")
spec$.restr <- restr
}
do.call(mptspec, spec)
}
print.mptspec <- function(x, ...){
print(unlist(x$prob), ...)
} |
library("robustbase")
data("coleman")
set.seed(1234)
folds <- cvFolds(nrow(coleman), K = 5, R = 10)
fitLm <- lm(Y ~ ., data = coleman)
cvFitLm <- cvLm(fitLm, cost = rtmspe,
folds = folds, trim = 0.1)
fitLmrob <- lmrob(Y ~ ., data = coleman, k.max = 500)
cvFitLmrob <- cvLmrob(fitLmrob, cost = rtmspe,
folds = folds, trim = 0.1)
fitLts <- ltsReg(Y ~ ., data = coleman)
cvFitLts <- cvLts(fitLts, cost = rtmspe,
folds = folds, trim = 0.1)
cvFits <- cvSelect(LS = cvFitLm, MM = cvFitLmrob, LTS = cvFitLts)
cvFits
dotplot(cvFits)
fitLts50 <- ltsReg(Y ~ ., data = coleman, alpha = 0.5)
cvFitLts50 <- cvLts(fitLts50, cost = rtmspe, folds = folds,
fit = "both", trim = 0.1)
fitLts75 <- ltsReg(Y ~ ., data = coleman, alpha = 0.75)
cvFitLts75 <- cvLts(fitLts75, cost = rtmspe, folds = folds,
fit = "both", trim = 0.1)
cvFitsLts <- cvSelect("0.5" = cvFitLts50, "0.75" = cvFitLts75)
cvFitsLts
dotplot(cvFitsLts) |
"metalonda_test_data" |
check_lgl <- function(x, coerce = FALSE,
x_name = substitute(x),
error = TRUE) {
x_name <- chk_deparse(x_name)
check_flag_internal(coerce)
check_flag_internal(error)
if(coerce)
attributes(x) <- NULL
check_scalar(x, values = TRUE, x_name = x_name, error = error)
}
check_flag <- function(x, coerce = FALSE,
x_name = substitute(x),
error = TRUE) {
x_name <- chk_deparse(x_name)
check_lgl(x, coerce = coerce, x_name = x_name, error = error)
}
check_flag_na <- function(x, coerce = TRUE,
x_name = substitute(x),
error = TRUE) {
.Deprecated("check_scalar")
x_name <- chk_deparse(x_name)
check_flag_internal(coerce)
check_flag_internal(error)
if(coerce)
attributes(x) <- NULL
check_scalar(x, values = c(TRUE, NA), x_name = x_name, error = error)
} |
setMethod("sketchGrid",
signature(
layers = "ANY",
shapeCross = "ANY"),
function(i,
j,
rowLimit,
colLimit,
layers,
shapeCross,
excludeCenter,
...)
{
coordCross <- extendHorVer(i = i,
j = j,
shapeCross = shapeCross,
rowLimit = rowLimit,
colLimit = colLimit)
coordCirc <- circularExtension(i = i,
j = j,
layers = layers,
rowLimit = rowLimit,
colLimit = colLimit)
if(identical(excludeCenter,FALSE))
{
coordGrid <- rbind(cbind(i,j),
coordCross,
coordCirc)
}
else
{
coordGrid <- rbind(coordCross,
coordCirc)
}
plot.new()
plot.window(xlim = c(0,colLimit),
ylim = c(0,rowLimit))
axis(2,at=1:rowLimit,
labels=rowLimit:1,
cex.axis=0.5)
axis(1,at=1:colLimit,
labels=1:colLimit,
cex.axis=0.5)
mtext("column",
1,
line = 3,
font = 2)
mtext("row",
2,
line = 3,
font = 2)
points(x = rep(1:colLimit,rowLimit),
y = (rowLimit+1)- rep(1:rowLimit, each = colLimit))
points(x = coordGrid[,2],
y = (rowLimit + 1)-coordGrid[,1],
pch = 21, bg = "black")
}
) |
neg2ELratio_t1t2 <- function(formula, group_order, t1, t2, nboot) {
fit <- survfit(update(formula,.~1))
fit_group = survfit(formula)
group = eval(parse(text = labels(terms(formula))))
fit1 = fit_group[group = group_order[[1]]]
fit2 = fit_group[group = group_order[[2]]]
NBOOT <- nboot
fit_time_restrict_boot <- (fit$n.event != 0 & fit$time <= t2 & fit$time >= t1)
mm <- length(fit$time[fit_time_restrict_boot])
S1_hat_Wei <- ((c(1, fit1$surv)[cumsum(c(0, fit$time) %in% c(0, fit1$time))])[-1])[fit_time_restrict_boot]
S2_hat_Wei <- ((c(1, fit2$surv)[cumsum(c(0, fit$time) %in% c(0, fit2$time))])[-1])[fit_time_restrict_boot]
nn <- c(fit1$n, fit2$n)
T_11 <- min((fit$time[fit_time_restrict_boot])[S1_hat_Wei < 1])
T_21 <- min((fit$time[fit_time_restrict_boot])[S2_hat_Wei < 1])
T_1m <- max((fit$time[fit_time_restrict_boot])[S1_hat_Wei > 0])
T_2m <- max((fit$time[fit_time_restrict_boot])[S2_hat_Wei > 0])
lowerb <- max(T_11, T_21)
upperb <- min(T_1m, T_2m)
lowerbindx_boot <- which.min(abs(fit$time[fit_time_restrict_boot] - lowerb))
upperbindx_boot <- which.min(abs(fit$time[fit_time_restrict_boot] - upperb))
if (lowerbindx_boot >= upperbindx_boot) {
warning("lowerbindx_boot >= upperbindx_boot in computing the integral and sup statistic.\nEither your sample size is too small or the overlapping region of the two samples is empty or just one observed event time.")
return (NULL)
}
Td_sort_boot <- (fit$time[fit_time_restrict_boot])[lowerbindx_boot:upperbindx_boot]
return(list(fit = fit, fit1 = fit1, fit2 = fit2, NBOOT = NBOOT, fit_time_restrict_boot = fit_time_restrict_boot,
mm = mm, nn = nn, T_11 = T_11, T_21 = T_21, lowerbindx_boot = lowerbindx_boot,
upperbindx_boot = upperbindx_boot, Td_sort_boot = Td_sort_boot))
} |
knitr::opts_chunk$set(
collapse = TRUE,
comment = "
)
library(JWileymisc)
test <- testDistribution(mtcars$mpg, "normal")
head(test$Data)
table(test$Data$isEV)
plot(test)
test <- testDistribution(mtcars$mpg, "normal",
extremevalues = "theoretical",
ev.perc = .10)
head(test$Data)
table(test$Data$isEV)
plot(test)
test$Data[isEV == "Yes"]
mtcars[test$Data[isEV == "Yes", OriginalOrder], ]
test <- testDistribution(mtcars$mpg, "normal",
extremevalues = "empirical",
ev.perc = .10)
head(test$Data)
table(test$Data$isEV)
plot(test)
testN <- testDistribution(mtcars$mpg, "normal",
extremevalues = "theoretical",
ev.perc = .05)
testG <- testDistribution(mtcars$mpg, "gamma",
extremevalues = "theoretical",
ev.perc = .05)
testN$Distribution$LL
testG$Distribution$LL
plot(testN)
plot(testG)
m <- lm(mpg ~ hp * factor(cyl), data = mtcars)
md <- modelDiagnostics(m, ev.perc = .05)
plot(md, ncol = 1)
md$extremeValues
mtcars[md$extremeValues$Index, 1:4]
m2 <- lm(mpg ~ hp * factor(cyl), data = mtcars[-md$extremeValues$Index, ])
round(data.frame(
M1 = coef(m),
M2 = coef(m2),
PercentChange = coef(m2) / coef(m) * 100 - 100), 2)
if (requireNamespace("pander", quietly = TRUE)) {
pander::pandoc.table(round(data.frame(
M1 = coef(m),
M2 = coef(m2),
PercentChange = coef(m2) / coef(m) * 100 - 100), 2),
justify = "left")
} else {
""
}
md2 <- modelDiagnostics(m2, ev.perc = .05)
plot(md2, ask = FALSE, ncol = 1)
md2$extremeValues |
as_factor = function(x, levels, ordered = is.ordered(x)) {
assert_flag(ordered)
levels = unique(as.character(levels))
levels = levels[!is.na(levels)]
if (is.factor(x)) {
if (!identical(levels(x), levels) || ordered != is.ordered(x)) {
x = factor(x, levels = levels, ordered = ordered)
}
} else {
x = factor(as.character(x), levels = levels, ordered = ordered)
}
x
} |
context("utils_table - T1. Correct values for summarize_long.numeric")
test_that("T1.1. Correct mean values for numeric values", {
values <- 1:5
summary <- visR::summarize_long(values)
testthat::expect_equal(summary[[1]]$mean, base::mean(values))
})
test_that("T1.2. Correct min value for numeric values", {
values <- 1:5
summary <- visR::summarize_long(values)
testthat::expect_equal(summary[[1]]$min, base::min(values))
})
test_that("T1.3. Correct max value for numeric values", {
values <- 1:5
summary <- visR::summarize_long(values)
testthat::expect_equal(summary[[1]]$max, base::max(values))
})
test_that("T1.4. Correct Q1 value for numeric values", {
values <- 1:5
summary <- visR::summarize_long(values)
testthat::expect_equal(summary[[1]]$Q1, stats::quantile(values)[2])
})
test_that("T1.5. Correct Q3 value for numeric values", {
values <- 1:5
summary <- visR::summarize_long(values)
testthat::expect_equal(summary[[1]]$Q3, stats::quantile(values)[4])
})
test_that("T1.6. Correct SD value for numeric values", {
values <- 1:5
summary <- visR::summarize_long(values)
testthat::expect_equal(summary[[1]]$sd, stats::sd(values))
})
test_that("T1.7. Correct median value for numeric values", {
values <- 1:5
summary <- visR::summarize_long(values)
testthat::expect_equal(summary[[1]]$median, stats::median(values))
})
test_that("T1.8. Integers as correctly dispatched to summarize_long.numeric", {
values <- 1:5
testthat::expect_equal(visR::summarize_long(values), visR::summarize_long(as.integer(values)))
})
context("utils_table - T2. Correct values for summarize_long.factors")
test_that("T2.1. Correct count of factor values", {
values <- base::as.factor(c("A", "A", "B"))
summary <- visR::summarize_long(values)
testthat::expect_equal(summary[[1]]$`N A`, base::sum(values=="A"))
})
test_that("T2.2. Correct perentage of factor values", {
values <- base::as.factor(c("A", "A", "B"))
summary <- visR::summarize_long(values)
testthat::expect_equal(base::round(summary[[1]]$`% A`, 2), base::round((base::sum(values=="A")/base::length(values))*100, 2))
})
context("utils_table - T3. Correct values for summarize_long.default")
test_that("T3.1. Correct count of unique values", {
values <- c("A", "A", "B")
summary <- visR::summarize_long(values)
testthat::expect_equal(summary[[1]]$unique_values, base::length(base::unique(values)))
})
test_that("T3.1. Correct count of missing values", {
values <- c("A", "A", "B")
summary <- visR::summarize_long(values)
testthat::expect_equal(summary[[1]]$nmiss, 0)
})
context("utils_table - T4. Correct values for summarize_short.numeric")
test_that("T4.1. Correct mean values for numeric values in summarize_short", {
values <- 1:5
summary <- visR::summarize_short(values)
num <- base::paste0(base::round(base::mean(values),2),
" (",
base::round(stats::sd(values),2),
")")
testthat::expect_equal(summary[[1]]$`Mean (SD)`, num)
})
test_that("T4.2. Correct median values for numeric values in summarize_short", {
values <- 1:5
summary <- visR::summarize_short(values)
num <- base::paste0(base::round(stats::median(values),2),
" (",
base::round(stats::quantile(values, probs=0.25, na.rm = TRUE),2),
"-",
base::round(stats::quantile(values, probs=0.75, na.rm = TRUE),2),
")")
testthat::expect_equal(summary[[1]]$`Median (IQR)`, num)
})
test_that("T4.3. Correct range values for numeric values in summarize_short", {
values <- 1:5
summary <- visR::summarize_short(values)
num <- base::paste0(base::round(base::min(values),2),
"-",
base::round(base::max(values),2))
testthat::expect_equal(summary[[1]]$`Min-max`, num)
})
test_that("T4.4. Correct missing values for numeric values in summarize_short", {
values <- 1:5
summary <- visR::summarize_short(values)
num <- base::paste0(base::sum(is.na(values)), " (",base::sum(is.na(values))/base::length(values) , "%)")
testthat::expect_equal(summary[[1]]$Missing, num)
})
context("utils_table - T5. Correct values for summarize_short.factor and summarize_short.string")
test_that("T5.1. Correct value for factors in summarize_short", {
values <- base::as.factor(c("A", "A", "B"))
summary <- visR::summarize_short(values)
num <- base::paste0(base::sum(values=="A"), " (", round(base::sum(values=="A")/base::length(values)*100, 1), "%)")
testthat::expect_equal(summary[[1]]$A , num)
})
test_that("T5.2. Correct default value in summarize_short", {
values <- c("A", "A", "B")
summary <- visR::summarize_short(values)
num <- base::paste0(base::sum(values=="A"), " (", round(base::sum(values=="A")/base::length(values)*100, 1), "%)")
testthat::expect_equal(summary[[1]]$`Unique values`, as.character(base::sum(values=="A")))
}) |
dRUMAuxMix <-
function(yi,Ni,X,sim=12000,burn=2000,b0,B0,start,verbose=500){
starttime=proc.time()[3]
if(!is.vector(yi)) stop("the counts yi must be a vector")
if(!is.vector(Ni)) stop("the numbers of trials Ni must be a vector")
if(!is.matrix(X)) stop("the design X must be a matrix")
if(length(yi)!=length(Ni)) stop("yi and Ni must have same length")
if(any(is.na(yi))) stop("can't handle NAs in yi")
if(any(is.na(Ni))) stop("can't handle NAs in Ni")
if(any(is.na(X))) stop("can't handle NAs in X")
if(verbose<0) stop("verbose must be a non-negative integer")
yi=as.integer(yi)
Ni=as.integer(Ni)
verbose=as.integer(verbose)
if(any(Ni==0)){
X=X[(Ni>0),,drop=FALSE]
yi=yi[(Ni>0)]
Ni=Ni[(Ni>0)]
}
dims=ncol(X)
t=length(yi)
if(t!=nrow(X)) stop("wrong dimensions")
if(missing(b0)) b0=rep(0,dims)
if(missing(B0)) B0=diag(10,nrow=dims,ncol=dims)
B0inv=solve(B0)
B0invb0=B0inv%*%b0
indi1=as.numeric(yi>0)
indi2=as.numeric(yi<Ni)
pidach=pmin(pmax(yi/Ni,0.05),0.95)
lam0=pidach/(1-pidach)
U=rgamma(t,shape=Ni,rate=1+lam0)
V=rgamma(t,shape=yi,rate=1)
W=rgamma(t,shape=Ni-yi,rate=lam0)
yiStar0=-log((U+indi2*W)/(U+indi1*V))
if(missing(start)) start=rep(0,dims)
beta_new=start
lam_new=lam0
yiStar_new=yiStar0
beta=matrix(NA,dims,sim)
tX=t(X)
H=5
mixture=cbind(matrix(0,nrow=t,ncol=5),matrix(1,nrow=t,ncol=5))
for(i in seq_len(t)){
mixture[i,1:length(compmix(Ni[i])$probs)]=compmix(Ni[i])$probs
mixture[i,6:(6+length(compmix(Ni[i])$probs)-1)]=compmix(Ni[i])$var
}
probs=mixture[,1:5]
vars=mixture[,6:10]
vecvars=as.vector(t(vars))
st=H*(0:(t-1))
sd=sqrt(vars)
logpr=log(probs)
logsd=log(sd)
pos=numeric(t)
sr2=numeric(t)
trickmat=outer(seq_len(H),seq_len(H),"<=")
vertfkt=matrix(0,nrow=t,ncol=H)
pre=probs/sd
twovar=-2*vars
yStar=function(lam_new){
U=rgamma(t,shape=Ni,rate=1+lam_new)
V=rgamma(t,shape=yi,rate=1)
W=rgamma(t,shape=Ni-yi,rate=lam_new)
-log((U+indi2*W)/(U+indi1*V))
}
for(s in seq_len(sim)){
if(s==(burn+1)){stop1=proc.time()[3]}
Pr=pre*exp(rep.int((yiStar_new-log(lam_new))^2,H)/twovar)
vertfkt=Pr%*%trickmat
pos=rowSums(vertfkt[,H]*runif(t) > vertfkt)+1
sr2=vecvars[st+pos]
Xtilde=X/sr2
sum1=tX%*%Xtilde
BN=solve(B0inv+sum1)
tC=t(chol(BN))
XtYstar=X*yiStar_new
sum2=colSums(XtYstar/sr2)
mN=B0invb0+sum2
bN=BN%*%mN
beta_new=as.vector(bN+tC%*%rnorm(dims,0,1))
lam_new=exp(X%*%beta_new)
yiStar_new=yStar(lam_new)
beta[,s]=beta_new
if(verbose>0){
if(is.element(s,c(1:5,10,20,50,100,200,500))){
cat("sim =", s,"/ duration of iter proc so far:",
round(diff<-proc.time()[3]-starttime,2), "sec., expected time to end:", round((diff/(s-1)*sim-diff)/60,2), " min. \n")
flush.console()
}
else if(s%%verbose==0){
cat("sim =", s,"/ duration of iter proc so far:",
round(diff<-proc.time()[3]-starttime,2), "sec., expected time to end:", round((diff/(s-1)*sim-diff)/60,2), " min. \n")
flush.console()
}
}
}
finish=proc.time()[3]
duration=finish-starttime
duration_wBI=finish-stop1
out <- list(beta=beta,sim=sim,burn=burn,dims=dims,t=t,b0=b0,B0=B0,duration=duration,duration_wBI=duration_wBI)
class(out) <- "binomlogit"
return(out)
} |
los_ra_index_summary_tbl <- function(.data,
.max_los = 15,
.alos_col,
.elos_col,
.readmit_rate,
.readmit_bench) {
max_los_var_expr <- .max_los
alos_col_var_expr <- rlang::enquo(.alos_col)
elos_col_var_expr <- rlang::enquo(.elos_col)
readmit_rate_var_expr <- rlang::enquo(.readmit_rate)
readmit_bench_var_expr <- rlang::enquo(.readmit_bench)
if (!is.data.frame(.data)) {
stop(call. = FALSE,
"(data) is not a data-frame/tibble. Please provide.")
}
if (!(.max_los)) {
max_los_var_expr = stats::quantile(!!alos_col_var_expr)[[4]]
}
if (rlang::quo_is_missing(alos_col_var_expr)) {
stop(call. = FALSE, "(.alos_col) is missing. Please supply.")
}
if (rlang::quo_is_missing(elos_col_var_expr)) {
stop(call. = FALSE, "(.elos_col) is missing. Please supply.")
}
if (rlang::quo_is_missing(readmit_rate_var_expr)) {
stop(call. = FALSE, "(.readmit_rate) is missing. Please supply.")
}
if (rlang::quo_is_missing(readmit_bench_var_expr)) {
stop(call. = FALSE, "(.readmit_bench) is missing. Please supply.")
}
if (ncol(.data) > 4) {
stop(call. = FALSE, "(.data) has more than 4 columns. Please fix.")
}
df_tbl <- tibble::as_tibble(.data) %>%
dplyr::mutate(alos = {
{
alos_col_var_expr
}
} %>%
as.integer() %>%
as.double())
df_summary_tbl <- df_tbl %>%
dplyr::mutate(los_group = dplyr::case_when(alos > max_los_var_expr ~ max_los_var_expr
, TRUE ~ alos)) %>%
dplyr::group_by(los_group) %>%
dplyr::summarise(
tot_visits = dplyr::n(),
tot_los = sum(alos, na.rm = TRUE),
tot_elos = sum({
{
elos_col_var_expr
}
}, na.rm = TRUE)
,
tot_ra = sum({
{
readmit_rate_var_expr
}
}, na.rm = TRUE)
,
tot_perf = base::round(base::mean({
{
readmit_bench_var_expr
}
}, na.rm = TRUE), digits = 2)
) %>%
dplyr::ungroup() %>%
dplyr::mutate(tot_rar = dplyr::case_when(tot_ra != 0 ~ base::round((
tot_ra / tot_visits
), digits = 2),
TRUE ~ 0)) %>%
dplyr::mutate(los_index = dplyr::case_when(tot_elos != 0 ~ (tot_los / tot_elos),
TRUE ~ 0)) %>%
dplyr::mutate(rar_index = dplyr::case_when((tot_rar != 0 &
tot_perf != 0) ~ (tot_rar / tot_perf),
TRUE ~ 0)) %>%
dplyr::mutate(los_ra_var = base::abs(1 - los_index) + base::abs(1 - rar_index)) %>%
dplyr::select(los_group, los_index, rar_index, los_ra_var)
return(df_summary_tbl)
}
named_item_list <- function(.data, .group_col) {
group_var_expr <- rlang::enquo(.group_col)
if (!is.data.frame(.data)) {
stop(call. = FALSE,
"(.data) is not a data.frame/tibble. Please supply")
}
if (rlang::quo_is_missing(group_var_expr)) {
stop(call. = FALSE, "(.group_col) is missing. Please supply")
}
data_tbl <- tibble::as_tibble(.data)
data_tbl_list <- data_tbl %>%
dplyr::group_split({
{
group_var_expr
}
})
names(data_tbl_list) <- data_tbl_list %>%
purrr::map( ~ dplyr::pull(., {
{
group_var_expr
}
})) %>%
purrr::map( ~ base::as.character(.)) %>%
purrr::map( ~ base::unique(.))
return(data_tbl_list)
}
category_counts_tbl <- function(.data, .count_col,
.arrange_value = TRUE,
...){
count_col_var_expr <- rlang::enquo(.count_col)
arrange_value <- .arrange_value
if(!is.data.frame(.data)){
stop(call. = FALSE,"(.data) is missing. Please supply.")
}
if(rlang::quo_is_missing(count_col_var_expr)){
stop(call. = FALSE,"(.count_col) is missing. Please supply.")
}
data <- tibble::as_tibble(.data)
data_tbl <- data %>%
dplyr::group_by(...) %>%
dplyr::count({{count_col_var_expr}}) %>%
dplyr::ungroup()
if(arrange_value) {
data_tbl <- data_tbl %>%
dplyr::arrange(dplyr::desc(n))
}
return(data_tbl)
}
top_n_tbl <- function(
.data
, .n_records
, .arrange_value = TRUE
, ...
) {
top_n_var_expr <- rlang::enquo(.n_records)
group_var_expr <- rlang::quos(...)
arrange_value <- .arrange_value
if (!is.data.frame(.data)) {
stop(call. = FALSE, "(data) is not a data-frame/tibble. Please provide.")
}
if (rlang::quo_is_missing(top_n_var_expr)) {
stop(call. = FALSE, "(.n_records) is missing. Please provide.")
}
data <- tibble::as_tibble(.data)
data_tbl <- data %>%
dplyr::count(...)
if(arrange_value) {
data_tbl <- data_tbl %>%
dplyr::arrange(dplyr::desc(n))
}
data_tbl <- data_tbl %>%
dplyr::slice(1:( {{top_n_var_expr}} ))
return(data_tbl)
}
ts_census_los_daily_tbl <- function(.data, .keep_nulls_only = FALSE,
.start_date_col, .end_date_col,
.by_time = "day"){
start_date_var_expr <- rlang::enquo(.start_date_col)
end_date_var_expr <- rlang::enquo(.end_date_col)
by_var_expr <- .by_time
if(!is.data.frame(.data)){
stop(call. = FALSE,"(.data) is not a data.frame/tibble. Please supply.")
}
if(rlang::quo_is_missing(start_date_var_expr)){
stop(call. = FALSE,"(.start_date_col) is missing. Please supply.")
}
if(rlang::quo_is_missing(end_date_var_expr)){
stop(call. = FALSE,"(.end_date_col) is missing. Please supply.")
}
keep_nulls_only_bool <- .keep_nulls_only
data_tbl <- tibble::as_tibble(.data)
all_dates_tbl <- data_tbl %>%
dplyr::select(
{{ start_date_var_expr }}
, {{ end_date_var_expr }}
) %>%
purrr::set_names("start_date","end_date") %>%
dplyr::mutate(start_date = as.Date(start_date)) %>%
dplyr::mutate(end_date = as.Date(end_date))
all_dates_tbl <- all_dates_tbl %>%
dplyr::filter(!is.na(start_date)) %>%
dplyr::filter(!is.na(end_date))
start_date <- min(all_dates_tbl[[1]], all_dates_tbl[[2]])
end_date <- max(all_dates_tbl[[1]], all_dates_tbl[[2]])
today <- Sys.Date()
ts_day_tbl <- timetk::tk_make_timeseries(
start_date = start_date
, end_date = end_date
, by = by_var_expr
) %>%
tibble::as_tibble() %>%
dplyr::rename("date"="value") %>%
dplyr::mutate(date = as.Date(date))
res <- sqldf::sqldf(
"
SELECT *
FROM ts_day_tbl AS A
LEFT JOIN all_dates_tbl AS B
ON start_date <= A.date
AND start_date >= A.date
"
)
res <- tibble::as_tibble(res) %>%
dplyr::arrange(end_date)
los_tbl <- res %>%
dplyr::mutate(
los = dplyr::case_when(
!is.na(end_date) ~ difftime(
end_date, start_date, units = by_var_expr
) %>% as.integer()
, TRUE ~ difftime(
today, start_date, units = by_var_expr
) %>% as.integer()
)
) %>%
dplyr::mutate(census = 1) %>%
dplyr::arrange(date)
if(!keep_nulls_only_bool){
data_final_tbl <- los_tbl
} else {
data_final_tbl <- los_tbl %>%
dplyr::filter(is.na(end_date))
}
return(data_final_tbl)
} |
knitr::opts_chunk$set(
collapse = TRUE,
comment = "
)
require(FunChisq)
x <- matrix(c(12,26,18,0,8,12), nrow=2, ncol=3, byrow=TRUE)
x
res <- fun.chisq.test(x, method="exact")
print(res)
pval.text <- format.pval(res$p.value, digits=2)
xif.text <- format.pval(res$estimate, digits=2)
plot_table(
x, xlab="CIMP", ylab="p53 mutation", col="seagreen3",
main=bquote(italic(P)~'='~.(pval.text)*','~~italic(xi[f])~'='~.(xif.text))) |
ggplot_build_set <- function() {
if (!is_installed("ggplot2")) return(NULL)
ggplot_build_restore()
ggplot_build <- getFromNamespace("ggplot_build", "ggplot2")
.globals$ggplot_build <- getFromNamespace("ggplot_build.ggplot", "ggplot2")
assign_in_namespace <- assignInNamespace
ensure_s3_methods_matrix()
assign_in_namespace("ggplot_build.ggplot", ggthematic_build, "ggplot2")
if (is_installed("gganimate")) {
.globals$gganim_build <- getFromNamespace("ggplot_build.gganim", "gganimate")
formals(ggthematic_build)$ggplot_build <- .globals$gganim_build
assign_in_namespace("ggplot_build.gganim", ggthematic_build, "gganimate")
}
}
ggplot_build_restore <- function() {
if (is.function(.globals$ggplot_build)) {
ggplot_build <- getFromNamespace("ggplot_build", "ggplot2")
assign_in_namespace <- assignInNamespace
ensure_s3_methods_matrix()
assign_in_namespace("ggplot_build.ggplot", .globals$ggplot_build, "ggplot2")
rm("ggplot_build", envir = .globals)
if (is.function(.globals$gganim_build)) {
assign_in_namespace("ggplot_build.gganim", .globals$gganim_build, "gganimate")
rm("gganim_build", envir = .globals)
}
}
}
ensure_s3_methods_matrix <- function(pkg = "ggplot2") {
S3 <- .getNamespaceInfo(asNamespace(pkg), "S3methods")
S3 <- matrix(as.character(S3), nrow = nrow(S3), ncol = ncol(S3))
setNamespaceInfo(asNamespace(pkg), "S3methods", S3)
}
ggthematic_build <- function(p, ggplot_build = NULL, theme = NULL) {
theme <- theme %||% thematic_get_theme(resolve = TRUE)
ggplot_build <- ggplot_build %||% .globals$ggplot_build
if (!is.function(ggplot_build)) {
stop("`ggplot_build` must be a function", call. = FALSE)
}
if (!length(theme)) {
return(ggplot_build(p))
}
fg <- theme$fg
bg <- theme$bg
accent <- theme$accent[1]
qualitative <- theme$qualitative
sequential <- theme$sequential
geoms <- c(
lapply(p$layers, function(x) x$geom),
lapply(
c("GeomPoint", "GeomLine", "GeomPolygon"),
getFromNamespace, "ggplot2"
)
)
user_defaults <- lapply(geoms, function(geom) geom$default_aes)
Map(function(geom, user_default) {
geom$default_aes$colour <- adjust_color(user_default$colour, bg, fg, accent)
geom$default_aes$fill <- adjust_color(user_default$fill, bg, fg, accent)
if ("family" %in% names(geom$default_aes)) {
geom$default_aes$family <- theme$font$family
geom$default_aes$size <- user_default$size * theme$font$scale
}
}, geoms, user_defaults)
on.exit({
Map(function(x, y) { x$default_aes <- y }, geoms, user_defaults)
}, add = TRUE)
scale_defaults <- list()
if (!is_na_scalar(qualitative)) {
scale_defaults$ggplot2.discrete.colour <- qualitative
scale_defaults$ggplot2.discrete.fill <- qualitative
}
if (!is_na_scalar(sequential)) {
scale_defaults$ggplot2.continuous.colour <- function(...) {
ggplot2::scale_colour_gradientn(..., colours = sequential)
}
scale_defaults$ggplot2.continuous.fill <- function(...) {
ggplot2::scale_fill_gradientn(..., colours = sequential)
}
scale_defaults$ggplot2.binned.colour <- function(...) {
ggplot2::scale_colour_stepsn(..., colours = sequential)
}
scale_defaults$ggplot2.binned.fill <- function(...) {
ggplot2::scale_fill_stepsn(..., colours = sequential)
}
}
if (has_proper_ggplot_scale_defaults()) {
old_scales <- do.call(options, scale_defaults)
on.exit({options(old_scales)}, add = TRUE)
} else {
if (!is_na_scalar(sequential)) {
if (!p$scales$has_scale("colour")) {
colour_continuous <- tryGet("scale_colour_continuous", envir = p$plot_env)
assign("scale_colour_continuous", scale_defaults$ggplot2.continuous.colour, envir = p$plot_env)
on.exit({
restore_scale("scale_colour_continuous", colour_continuous, envir = p$plot_env)
}, add = TRUE)
}
if (!p$scales$has_scale("fill")) {
fill_continuous <- tryGet("scale_fill_continuous", envir = p$plot_env)
assign("scale_fill_continuous", scale_defaults$ggplot2.continuous.fill, envir = p$plot_env)
on.exit({
restore_scale("scale_fill_continuous", fill_continuous, envir = p$plot_env)
}, add = TRUE)
}
}
if (!is_na_scalar(qualitative)) {
if (!p$scales$has_scale("colour")) {
colour_discrete <- tryGet("scale_colour_discrete", envir = p$plot_env)
assign(
"scale_colour_discrete",
function(...) ggplot2::discrete_scale("colour", "qualitative", qualitative_pal(qualitative), ...),
envir = p$plot_env
)
on.exit({
restore_scale("scale_colour_discrete", colour_discrete, envir = p$plot_env)
}, add = TRUE)
}
if (!p$scales$has_scale("fill")) {
fill_discrete <- tryGet("scale_fill_discrete", envir = p$plot_env)
assign(
"scale_fill_discrete",
function(...) ggplot2::discrete_scale("fill", "qualitative", qualitative_pal(qualitative), ...),
envir = p$plot_env
)
on.exit({
restore_scale("scale_fill_discrete", fill_discrete, envir = p$plot_env)
}, add = TRUE)
}
}
}
theme_final <- theme_thematic(theme)
theme_user <- resolve_theme_inheritance(p$theme)
for (name in names(theme_user)) {
theme_final[[name]] <- ggplot2::merge_element(
new = theme_user[[name]], old = theme_final[[name]]
)
}
p$theme <- theme_final
ggplot_build(p)
}
theme_thematic <- function(theme = .globals$theme) {
ggtheme <- computed_theme_elements(ggplot2::theme_get())
`%missing%` <- function(x, y) {
if (identical(x, "transparent")) return(y)
x %OR% y
}
old_bg <- ggtheme$plot.background$fill %missing% .globals$base_params$bg %missing% "white"
old_fg <- ggtheme$title$colour %missing% "black"
new_fg <- theme$fg
new_bg <- theme$bg
update_color <- function(color) {
amt <- amount_of_mixture(color, old_bg, old_fg)
mix_colors(new_bg, new_fg, amt)
}
update_element <- function(element, name) {
UseMethod("update_element")
}
update_element.element_text <- function(element, name) {
ggplot2::element_text(
colour = update_color(element$colour),
size = element$size * theme$font$scale,
family = if (!identical(theme$font$family, "")) theme$font$family
)
}
update_element.element_rect <- function(element, name) {
ggplot2::element_rect(
fill = update_color(element$fill),
colour = update_color(element$colour)
)
}
update_element.element_line <- function(element, name) {
ggplot2::element_line(
colour = update_color(element$colour)
)
}
update_element.element_blank <- function(element, name) {
if (name %in% c("plot.background", "panel.background")) {
ggplot2::element_rect(fill = new_bg, colour = new_bg)
} else {
element
}
}
update_element.default <- function(element, name) NULL
ggtheme <- Map(function(x, y) update_element(x, y), ggtheme, names(ggtheme))
do.call(ggplot2::theme, dropNulls(ggtheme))
}
computed_theme_elements <- function(ggtheme) {
theme_default <- ggplot2::theme_grey()
elements <- names(ggplot2::get_element_tree())
if (identical(attr(ggtheme, "complete"), FALSE)) {
ggtheme <- theme_default + ggtheme
}
computed <- rlang::set_names(lapply(elements, calc_element_safe, ggtheme), elements)
dropNulls(computed)
}
resolve_theme_inheritance <- function(p_theme) {
if (!length(p_theme)) {
return(p_theme)
}
relationships <- theme_relationships()
while(nrow(relationships) > 0) {
idx <- !relationships$parent %in% relationships$child
for (i in which(idx)) {
this_relationship <- relationships[i, ]
this_kid <- this_relationship$child
this_parent <- this_relationship$parent
parent_el <- p_theme[[this_parent]]
kid_el <- p_theme[[this_kid]]
if (is.null(parent_el)) {
next
}
p_theme[[this_kid]] <- if (!is.null(kid_el)) {
ggplot2::merge_element(new = kid_el, old = parent_el)
} else {
parent_el
}
}
relationships <- relationships[!idx, ]
}
p_theme
}
theme_relationships <- function() {
inherits <- vapply(ggplot2::get_element_tree(), function(x) { x$inherit %||% "" }, character(1))
relations <- data.frame(child = names(inherits), parent = inherits, stringsAsFactors = FALSE)
relations[relations$parent != "", ]
}
calc_element_safe <- function(x, ...) {
tryCatch(ggplot2::calc_element(x, ...), error = function(e) x)
}
restore_scale <- function(name, x, envir) {
if (is.null(x)) rm(name, envir = envir) else assign(name, x, envir = envir)
}
has_proper_ggplot_scale_defaults <- function() {
packageVersion("ggplot2") >= "3.3.2"
}
qualitative_pal <- function(codes) {
function(n) {
if (n <= length(codes)) {
codes[seq_len(n)]
} else {
scales::hue_pal()(n)
}
}
}
is_na_scalar <- function(x) {
if (length(x) != 1) {
return(FALSE)
}
is.na(x)
} |
ChileClimateData <- function(Estaciones = "INFO", Parametros, inicio, fin, Region = FALSE){
sysEstaciones <- system.file("extdata", "Estaciones.csv", package = "AtmChile")
tablaEstaciones <- read.csv(sysEstaciones, sep = "," , dec =".", encoding = "UTF-8")
if(Estaciones[1] == "INFO"){
return(tablaEstaciones)
}
if(fin < inicio){
stop("Verificar fechas de inicio y fin")
}
url1 <- "https://climatologia.meteochile.gob.cl/application/datos/getDatosSaclim/"
parametros_list <- c("Temperatura", "PuntoRocio", "Humedad",
"Viento", "PresionQFE", "PresionQFF")
intervalo <- inicio:fin
lenInEstaciones <- length(Estaciones)
lenInParametros <- length(Parametros)
lenEstaciones <- nrow(tablaEstaciones)
lenParametros <- length(parametros_list)
lendate <- length(intervalo)
start <- as.POSIXct(strptime(paste("01-01-", inicio, "00:00:00", sep =""), format = "%d-%m-%Y %H:%M:%S"))
end <- as.POSIXct(strptime(paste("31-12-", fin, "23:00:00", sep =""), format = "%d-%m-%Y %H:%M:%S"))
date = NULL
date <- seq(start, end, by = "hour")
date <- format(date, format = "%d-%m-%Y %H:%M:%S")
df <- NULL
df2 <- NULL
data_total <- data.frame()
if(Region == TRUE){
r <- 7
}else{
r <- 1
}
for(i in 1:lenInEstaciones){
for(j in 1:lenEstaciones){
if(Estaciones[i] == tablaEstaciones[j, r]){
estacion_var <- tablaEstaciones[j, 1]
Latitud <- tablaEstaciones[j, 5]
Longitud <- tablaEstaciones[j, 6]
Nombre <- rep(tablaEstaciones[j, 4], length(date))
Latitud <- rep(tablaEstaciones[j, 5], length(date))
Longitud <- rep(tablaEstaciones[j, 6], length(date))
data <- data.frame(date, Nombre, Latitud, Longitud)
setDT(data)
for(k in 1:lenInParametros){
for(l in 1:lenParametros){
if(Parametros[k] == parametros_list[l]){
for(m in 1:lendate){
temp <- tempfile()
temp1 <- tempfile()
url3 <- paste(url1, estacion_var,"_",intervalo[m], "_", parametros_list[l], "_", sep = "")
print(url3)
filename <- paste(estacion_var,"_",intervalo[m],"_", parametros_list[l], ".zip", sep = "")
csvname <- paste(estacion_var,"_",intervalo[m],"_", parametros_list[l], "_.csv", sep = "")
CSV <- NULL
try({
download.file(url3, temp, method = "curl")
suppressWarnings({
try({
CSV<- read.csv(unzip(temp, csvname), sep = ";", dec = ".", encoding = "UTF-8")
}, silent = T)
})
}, silent = TRUE)
if(is.null(CSV)| length(CSV) == 0){
momento1 <- as.POSIXct(strptime(paste("01-01-", intervalo[m], "00:00:00", sep =""), format = "%d-%m-%Y %H:%M:%S"))
momento2 <- as.POSIXct(strptime(paste("31-12-", intervalo[m], "23:00:00", sep =""), format = "%d-%m-%Y %H:%M:%S"))
momento <- seq(momento1, momento2, by = "hour")
CodigoNacional <-rep("", length(momento))
momento <- format(momento, format = "%d-%m-%Y %H:%M:%S")
if(parametros_list[l] == "Temperatura"){
Ts_Valor<- rep("", length(momento))
CSV <- data.frame(CodigoNacional, momento, Ts_Valor)
}else if(parametros_list[l] == "PuntoRocio"){
Td_Valor<- rep("", length(momento))
CSV <- data.frame(CodigoNacional, momento, Td_Valor)
}else if(parametros_list[l] == "Humedad"){
HR_Valor<- rep("", length(momento))
CSV <- data.frame(CodigoNacional, momento, HR_Valor)
}else if(parametros_list[l] == "Viento"){
dd_Valor<- rep("", length(momento))
ff_Valor<- rep("", length(momento))
VRB_Valor<- rep("", length(momento))
CSV <- data.frame(CodigoNacional, momento, dd_Valor,ff_Valor, VRB_Valor)
}else if(parametros_list[l] == "PresionQFE"){
QFE_Valor<- rep("", length(momento))
CSV <- data.frame(CodigoNacional, momento, QFE_Valor)
}else if(parametros_list[l] == "PresionQFF"){
QFF_Valor<- rep("", length(momento))
CSV <- data.frame(CodigoNacional, momento, QFF_Valor)
}
}
df<- rbind(df, CSV)
suppressWarnings({
file.remove(csvname)
})
unlink(temp)
}
if(parametros_list[l] == "Viento"){
df2 <- data.frame(df[2], df[3], df[4], df[5])
}else{
df2 <- data.frame(df[2], df[3])
}
setDT(df2)
data <- data[df2, on = c("date" = "momento")]
df <- NULL
df2 <- NULL
}
}
}
if(is.null(data_total)){
data_total<-data
}else{
data_total<-rbind(data_total, data)
}
}
}
}
data_total$date <- format(as.POSIXct(strptime(data_total$date, format = "%d-%m-%Y %H:%M:%S")), format = "%d/%m/%Y %H:%M")
data_total <- data_total[!(is.na(data_total$date)),]
data_total <- data_total[!(is.na(data_total$Nombre)),]
for(i in 3:ncol(data_total)){
data_total[[i]] <- as.numeric(data_total[[i]])
}
data_total <- as.data.frame(data_total)
return(data_total)
} |
context("2-level lme objects")
set.seed(20190513)
suppressMessages(library(lme4, quietly=TRUE))
library(nlme, quietly=TRUE, warn.conflicts=FALSE)
library(mlmRev, quietly=TRUE, warn.conflicts=FALSE)
obj_A <- lme(weight ~ Time * Diet, data=BodyWeight, ~ Time | Rat)
obj_A2 <- update(obj_A, weights = varPower())
obj_A3 <- update(obj_A, correlation = corExp(form = ~ Time))
obj_A4 <- update(obj_A2, correlation = corExp(form = ~ Time))
obj_B <- lme(distance ~ age, random = ~ age, data = Orthodont)
test_that("bread works", {
expect_true(check_bread(obj_A, cluster = BodyWeight$Rat, y = BodyWeight$weight))
expect_true(check_bread(obj_A2, cluster = BodyWeight$Rat, y = BodyWeight$weight, tol = 5 * 10^-5))
expect_true(check_bread(obj_A3, cluster = BodyWeight$Rat, y = BodyWeight$weight))
expect_true(check_bread(obj_A4, cluster = BodyWeight$Rat, y = BodyWeight$weight))
expect_true(check_bread(obj_B, cluster = Orthodont$Subject, y = Orthodont$distance))
expect_equal(vcov(obj_A), obj_A$sigma^2 * bread(obj_A) / v_scale(obj_A))
expect_equal(vcov(obj_A2), obj_A2$sigma^2 * bread(obj_A2) / v_scale(obj_A2))
expect_equal(vcov(obj_A3), obj_A3$sigma^2 * bread(obj_A3) / v_scale(obj_A3))
expect_equal(vcov(obj_A4), obj_A4$sigma^2 * bread(obj_A4) / v_scale(obj_A4))
expect_equal(vcov(obj_B), obj_B$sigma^2 * bread(obj_B) / v_scale(obj_B))
})
test_that("vcovCR options work for CR2", {
CR2_A <- vcovCR(obj_A, type = "CR2")
expect_equal(vcovCR(obj_A, cluster = BodyWeight$Rat, type = "CR2"), CR2_A)
expect_equal(vcovCR(obj_A, type = "CR2", inverse_var = TRUE), CR2_A)
expect_false(identical(vcovCR(obj_A, type = "CR2", inverse_var = FALSE), CR2_A))
target <- targetVariance(obj_A)
expect_equal(vcovCR(obj_A, type = "CR2", target = target, inverse_var = TRUE), CR2_A)
attr(CR2_A, "inverse_var") <- FALSE
expect_equal(vcovCR(obj_A, type = "CR2", target = target, inverse_var = FALSE), CR2_A)
CR2_A2 <- vcovCR(obj_A2, type = "CR2")
expect_equal(vcovCR(obj_A2, cluster = BodyWeight$Rat, type = "CR2"), CR2_A2)
expect_equal(vcovCR(obj_A2, type = "CR2", inverse_var = TRUE), CR2_A2)
expect_false(identical(vcovCR(obj_A2, type = "CR2", inverse_var = FALSE), CR2_A2))
target <- targetVariance(obj_A2)
expect_equal(vcovCR(obj_A2, type = "CR2", target = target, inverse_var = TRUE), CR2_A2)
attr(CR2_A2, "inverse_var") <- FALSE
expect_equal(vcovCR(obj_A2, type = "CR2", target = target, inverse_var = FALSE), CR2_A2)
CR2_A3 <- vcovCR(obj_A3, type = "CR2")
expect_equal(vcovCR(obj_A3, cluster = BodyWeight$Rat, type = "CR2"), CR2_A3)
expect_equal(vcovCR(obj_A3, type = "CR2", inverse_var = TRUE), CR2_A3)
expect_false(identical(vcovCR(obj_A3, type = "CR2", inverse_var = FALSE), CR2_A3))
target <- targetVariance(obj_A3)
expect_equal(vcovCR(obj_A3, type = "CR2", target = target, inverse_var = TRUE), CR2_A3)
attr(CR2_A3, "inverse_var") <- FALSE
expect_equal(vcovCR(obj_A3, type = "CR2", target = target, inverse_var = FALSE), CR2_A3)
CR2_B <- vcovCR(obj_B, type = "CR2")
expect_equal(vcovCR(obj_B, cluster = Orthodont$Subject, type = "CR2"), CR2_B)
expect_equal(vcovCR(obj_B, type = "CR2", inverse_var = TRUE), CR2_B)
expect_false(identical(vcovCR(obj_B, type = "CR2", inverse_var = FALSE), CR2_B))
target <- targetVariance(obj_B)
expect_equal(vcovCR(obj_B, type = "CR2", target = target, inverse_var = TRUE), CR2_B)
attr(CR2_B, "inverse_var") <- FALSE
expect_equal(vcovCR(obj_B, type = "CR2", target = target, inverse_var = FALSE), CR2_B)
})
test_that("vcovCR options work for CR4", {
CR4_A <- vcovCR(obj_A, type = "CR4")
expect_equal(vcovCR(obj_A, cluster = BodyWeight$Rat, type = "CR4"), CR4_A)
expect_equal(vcovCR(obj_A, type = "CR4", inverse_var = TRUE), CR4_A)
expect_false(identical(vcovCR(obj_A, type = "CR4", inverse_var = FALSE), CR4_A))
target <- targetVariance(obj_A)
expect_equal(vcovCR(obj_A, type = "CR4", target = target, inverse_var = TRUE), CR4_A)
attr(CR4_A, "inverse_var") <- FALSE
expect_equal(vcovCR(obj_A, type = "CR4", target = target, inverse_var = FALSE), CR4_A)
CR4_B <- vcovCR(obj_B, type = "CR4")
expect_equal(vcovCR(obj_B, cluster = Orthodont$Subject, type = "CR4"), CR4_B)
expect_equal(vcovCR(obj_B, type = "CR4", inverse_var = TRUE), CR4_B)
expect_false(identical(vcovCR(obj_B, type = "CR4", inverse_var = FALSE), CR4_B))
target <- targetVariance(obj_B)
expect_equal(vcovCR(obj_B, type = "CR4", target = target, inverse_var = TRUE), CR4_B)
attr(CR4_B, "inverse_var") <- FALSE
expect_equal(vcovCR(obj_B, type = "CR4", target = target, inverse_var = FALSE), CR4_B)
})
test_that("CR2 and CR4 are target-unbiased", {
expect_true(check_CR(obj_A, vcov = "CR2"))
expect_true(check_CR(obj_B, vcov = "CR2"))
expect_true(check_CR(obj_A, vcov = "CR4"))
expect_true(check_CR(obj_B, vcov = "CR4"))
})
CR_types <- paste0("CR",0:4)
test_that("Order doesn't matter.", {
check_sort_order(obj_A, BodyWeight)
})
test_that("clubSandwich works with dropped observations", {
dat_miss <- BodyWeight
dat_miss$weight[sample.int(nrow(BodyWeight), size = round(nrow(BodyWeight) / 10))] <- NA
obj_dropped <- update(obj_A, data = dat_miss, na.action = na.omit)
obj_complete <- update(obj_A, data = dat_miss, subset = !is.na(weight))
CR_drop <- lapply(CR_types, function(x) vcovCR(obj_dropped, type = x))
CR_complete <- lapply(CR_types, function(x) vcovCR(obj_complete, type = x))
expect_equal(CR_drop, CR_complete)
test_drop <- lapply(CR_types, function(x) coef_test(obj_dropped, vcov = x, test = "All", p_values = FALSE))
test_complete <- lapply(CR_types, function(x) coef_test(obj_complete, vcov = x, test = "All", p_values = FALSE))
expect_equal(test_drop, test_complete)
})
test_that("lme agrees with gls", {
lme_fit <- lme(weight ~ Time * Diet, data=BodyWeight, ~ 1 | Rat)
gls_fit <- gls(weight ~ Time * Diet, data=BodyWeight,
correlation = corCompSymm(form = ~ 1 | Rat))
CR_lme <- lapply(CR_types, function(x) vcovCR(lme_fit, type = x))
CR_gls <- lapply(CR_types, function(x) vcovCR(gls_fit, type = x))
expect_equivalent(CR_lme, CR_gls, tolerance = 10^-4)
test_lme <- lapply(CR_types, function(x) coef_test(lme_fit, vcov = x, test = "All", p_values = FALSE))
test_gls <- lapply(CR_types, function(x) coef_test(gls_fit, vcov = x, test = "All", p_values = FALSE))
compare_ttests(test_lme, test_gls)
constraints <- c(combn(length(coef(lme_fit)), 2, simplify = FALSE),
combn(length(coef(lme_fit)), 3, simplify = FALSE))
Wald_lme <- Wald_test(lme_fit, constraints = constrain_zero(constraints), vcov = "CR2", test = "All")
Wald_gls <- Wald_test(gls_fit, constraints = constrain_zero(constraints), vcov = "CR2", test = "All")
compare_Waldtests(Wald_lme, Wald_gls)
})
test_that("Emply levels are dropped in model_matrix", {
data(AchievementAwardsRCT)
AA_RCT_females <- subset(AchievementAwardsRCT, sex=="Girl" & year != "1999")
AA_RCT_females <- within(AA_RCT_females, {
sibs_4 <- siblings >= 4
treated2001 <- treated * (year=="2001")
})
lme_fit <- lme(Bagrut_status ~ year * school_type +
father_ed + mother_ed + immigrant + sibs_4 +
qrtl + treated2001:half,
random = ~ 1 | school_id,
data = AA_RCT_females)
betas <- fixef(lme_fit)
X <- model_matrix(lme_fit)
expect_identical(names(betas), colnames(X))
})
test_that("Possible to cluster at higher level than random effects", {
n_districts <- 10
n_schools_per <- rnbinom(n_districts, size = 4, prob = 0.3)
n_schools <- sum(n_schools_per)
n_students_per <- 10
n_students <- n_schools * n_students_per
district_id <- factor(rep(1:n_districts, n_schools_per * n_students_per))
school_id <- factor(rep(1:sum(n_schools_per), each = n_students_per))
student_id <- 1:n_students
Y <- rnorm(n_districts)[district_id] + rnorm(n_schools)[school_id] + rnorm(n_students)
X <- rnorm(n_students)
dat <- data.frame(district_id, school_id, student_id, Y, X)
dat_scramble <- dat[sample(nrow(dat)),]
lme_2level <- lme(Y ~ X, random = ~ 1 | school_id, data = dat)
V <- vcovCR(lme_2level, type = "CR2", cluster = dat$district_id)
expect_is(V, "vcovCR")
expect_error(vcovCR(lme_2level, type = "CR2", cluster = dat_scramble$district_id))
V_scramble <- vcovCR(lme(Y ~ X, random = ~ 1 | school_id, data = dat_scramble),
type = "CR2", cluster = dat_scramble$district_id)
expect_equal(as.matrix(V), as.matrix(V_scramble))
}) |
turnover <- function(df, time.var,
species.var,
abundance.var,
replicate.var=NA,
metric="total") {
if(is.na(replicate.var)){
check_single_onerep(df, time.var, species.var)
output <- turnover_allyears(df, time.var, species.var, abundance.var, metric)
} else {
df[replicate.var] <- if(is.factor(df[[replicate.var]])) {
factor(df[[replicate.var]])
} else {
df[replicate.var]
}
check_single(df, time.var, species.var, replicate.var)
df <- df[order(df[[replicate.var]]),]
X <- split(df, df[replicate.var])
out <- lapply(X, FUN=turnover_allyears, time.var, species.var, abundance.var, metric)
ID <- unique(names(out))
out <- mapply(function(x, y) "[<-"(x, replicate.var, value = y) ,
out, ID, SIMPLIFY = FALSE)
output <- do.call("rbind", out)
}
row.names(output) <- NULL
return(as.data.frame(output))
}
turnover_allyears <- function(df,
time.var,
species.var,
abundance.var,
metric=c("total", "disappearance","appearance")) {
metric = match.arg(metric)
check_numeric(df, time.var, abundance.var)
df <- df[order(df[[time.var]]),]
df <- df[which(df[[abundance.var]]>0),]
templist <- split(df, df[[time.var]])
t1 <- templist[-length(templist)]
t2 <- templist[-1]
out <- Map(turnover_twoyears, t1, t2, species.var, metric)
output <- as.data.frame(unlist(out))
names(output)[1] = metric
alltemp <- unique(df[[time.var]])
output[time.var] = alltemp[2:length(alltemp)]
return(output)
}
turnover_twoyears <- function(d1, d2,
species.var,
metric=c("total", "disappearance","appearance")){
metric = match.arg(metric)
d1spp <- as.character(unique(d1[[species.var]]))
d2spp <- as.character(unique(d2[[species.var]]))
commspp <- intersect(d1spp, d2spp)
disappear <- length(d1spp)-length(commspp)
appear <- length(d2spp)-length(commspp)
totrich <- sum(disappear, appear, length(commspp))
if(metric == "total"){
output <- ((appear+disappear)/totrich)
} else {
if(metric == "appearance"){
output <- appear/totrich
} else {
if(metric == "disappearance"){
output <- disappear/totrich
}
}
}
return(output)
} |
library(h2o)
h2o.init(max_mem_size = "50g", nthreads = -1)
dx_train <- h2o.importFile("train-1m.csv")
dx_test <- h2o.importFile("test.csv")
dx_train$DepTime <- dx_train$DepTime/2500
dx_test$DepTime <- dx_test$DepTime/2500
dx_train$Distance <- log10(dx_train$Distance)/4
dx_test$Distance <- log10(dx_test$Distance)/4
Xnames <- names(dx_train)[which(names(dx_train)!="dep_delayed_15min")]
system.time({
md <- h2o.deeplearning(x = Xnames, y = "dep_delayed_15min", training_frame = dx_train,
activation = "Rectifier", hidden = c(200,200),
adaptive_rate = FALSE, rate = 0.01, rate_annealing = 0,
momentum_start = 0.9, momentum_stable = 0.9, nesterov_accelerated_gradient = FALSE,
epochs = 1)
})
h2o.performance(md, dx_test)@metrics$AUC |
config <- config::get(file = system.file("configurations", "plumber.yml", package = pkg_name(), mustWork = TRUE))
modify_url <- purrr::partial(httr::modify_url, url = "", scheme = config$scheme, hostname = config$host, port = config$port)
expect_success_status <- function(response) expect_equal(httr::status_code(response), 200)
expect_bad_request_status <- function(response) expect_equal(httr::status_code(response), 400)
extract_content_text <- purrr::partial(httr::content, as = "text", encoding = "UTF-8")
test_http("list_tables returns a vector with table names", {
url <- modify_url(path = c("route_name", "list_tables"))
expect_success_status(response <- httr::GET(url))
output <- extract_content_text(response) %>% jsonlite::fromJSON(flatten = TRUE)
expect_type(output, "character")
expect_true("mtcars" %in% output)
})
test_http("read_table returns a data.frame", {
url <- modify_url(path = c("route_name", "read_table"))
expect_success_status(response <- httr::GET(url, query = list(name = "mtcars")))
output <- extract_content_text(response) %>% jsonlite::fromJSON(flatten = TRUE)
expect_s3_class(output, "data.frame")
})
test_http("read_table returns an informative error message", {
url <- modify_url(path = c("route_name", "read_table"))
expect_bad_request_status(response <- httr::GET(url, query = list(name = "xxx")))
output <- extract_content_text(response) %>% jsonlite::fromJSON(flatten = TRUE)
expect_match(output$error, "should be one of")
})
test_http("write_table copies a data.frame to the route_name", {
url <- modify_url(path = c("route_name", "write_table"))
body <- list(name = "zzz", value = datasets::sleep)
expect_success_status(response <- httr::POST(url, body = body, encode = "json"))
output <- extract_content_text(response) %>% jsonlite::fromJSON(flatten = TRUE)
expect_equivalent(output, list())
url <- modify_url(path = c("route_name", "list_tables"))
expect_success_status(response <- httr::GET(url))
output <- extract_content_text(response) %>% jsonlite::fromJSON(flatten = TRUE)
expect_true("zzz" %in% output)
}) |
plot.capthist <- function(x, rad = 5,
hidetraps = FALSE, tracks = FALSE,
title = TRUE, subtitle = TRUE,
add = FALSE,
varycol = TRUE, icolours = NULL, randcol = FALSE,
lab1cap = FALSE, laboffset = 4,
ncap = FALSE,
splitocc = NULL, col2 = 'green',
type = c("petal", "n.per.detector", "n.per.cluster", "sightings", "centres", "telemetry"),
cappar = list(cex=1.3, pch=16, col='blue'),
trkpar = list(col='blue', lwd=1),
labpar = list(cex=0.7, col='black'),
...)
{
if (ms(x)) {
if ((prod(par()$mfrow) < length(x)) & !add)
warning("screen layout does not allow for all sessions and some plots may be lost;",
" set par mfrow")
sapply (x, plot.capthist,
rad = rad, hidetraps = hidetraps, tracks = tracks,
title = title, subtitle = subtitle, add = add, varycol = varycol, icolours =
icolours, randcol = randcol, lab1cap = lab1cap, laboffset =
laboffset, ncap = ncap, splitocc = splitocc, col2 = col2,
type = type, cappar = cappar, trkpar = trkpar, labpar = labpar, ...)
}
else {
plotproxcapt <- function (xy, occ, icol, emphasis = FALSE) {
oxy <- order(occ)
xy <- xy[oxy,]
occ <- occ[oxy]
xy[,1] <- xy[,1] + cos(occ * 2 * pi / nocc) * rad
xy[,2] <- xy[,2] - sin(occ * 2 * pi / nocc) * rad
if (!is.null(splitocc)) {
colr <- ifelse(occ<splitocc,cappar$col, col2)
par(trkpar)
if (tracks) lines (xy, col = colr)
par(cappar)
points (xy, col = colr)
}
else {
par(trkpar)
if (varycol) par(col=icol)
if (tracks) lines (xy)
par(cappar)
if (varycol) par(col=icol)
points (xy)
if (emphasis)
points (xy, col='black', bg=par()$col, pch=21)
}
}
plotpolygoncapt <- function (xy, icol, emphasis = FALSE) {
par(trkpar)
if (varycol) par(col=icol)
if (tracks) lines (xy)
par(cappar)
if (varycol) par(col=icol)
points (xy)
if (emphasis)
points (xy, col='black', bg=par()$col, pch=21)
}
labcapt <- function (n) {
if ( detectr[1] %in% c('proximity', 'count', 'polygonX',
'transectX', 'signal', 'signalnoise', 'polygon',
'transect', 'unmarked', 'presence') ) {
warning ("labels not implemented for this detector type")
}
else {
xn <- apply(abs(x[n,,,drop=FALSE]),2,sum)
o1 <- sum(cumsum(xn)==0)+1
t1 <- which(x[n,o1,]>0)
dx <- (cos((1:nocc) * 2 * pi / nocc) * rad)[o1]
dy <- (sin((1:nocc) * 2 * pi / nocc) * rad)[o1]
par(labpar)
if (varycol) par(col=n)
laboffsety <- ifelse (length(laboffset)==2, laboffset[2], laboffset[1])
text (traps$x[t1]+dx+laboffset[1], traps$y[t1]-dy+laboffsety, row.names(x)[n])
}
}
labhead <- function (n, df) {
par(labpar)
if (varycol) par(col=n)
laboffsety <- ifelse (length(laboffset)==2, laboffset[2], laboffset[1])
text (head(df[[n]],1)$x++laboffset[1], head(df[[n]],1)$y+laboffsety,
row.names(x)[n])
}
ncapt <- function (x) {
if (detectr[1] %in% .localstuff$polydetectors) {
stop ("ncap does not work with polygon and similar detectors")
}
temp <- t(apply (abs(x),c(2,3),sum))
dx <- rep(cos((1:nocc) * 2 * pi / nocc) * rad, rep(nrow(traps),nocc))
dy <- rep(sin((1:nocc) * 2 * pi / nocc) * rad, rep(nrow(traps),nocc))
par(labpar)
par(adj=0.5)
OK <- temp>0
text ((traps$x[row(temp)]+dx)[OK], (traps$y[row(temp)]-dy)[OK], as.character(temp[OK]))
}
plotsignal <- function (df, minsignal, maxsignal,n) {
.localstuff$i <- .localstuff$i+1
dx <- rep( (cos((.localstuff$i) * 2 * pi / n) * rad), nrow(df))
dy <- rep( (sin((.localstuff$i) * 2 * pi / n) * rad), nrow(df))
sq <- order(df$signal)
df <- df[sq,]
df$trap <- as.character(df$trap)
if (maxsignal>minsignal)
greycol <- grey(0.7 * (1 - (df$signal-minsignal)/(maxsignal-minsignal)))
else
greycol <- grey(0.5)
if (tracks) lines (traps$x[df$trap]+dx, traps$y[df$trap]-dy, col=greycol)
par(cappar)
points (traps[df$trap,'x']+dx, traps[df$trap,'y']-dy, col = greycol)
}
plotsightings <- function (x) {
Tu <- Tu(x)
Tu0 <- Tu
marking <- Tu
if (is.null(Tu)) stop ("sightings type requires sighting data Tu")
markocc <- markocc(traps(x))
Tu0[Tu!=0] <- NA
Tu0[,markocc>0] <- NA
Tu[Tu==0] <- NA
marking[,markocc<1] <- NA
dx <- rep((cos((1:nocc) * 2 * pi / nocc) * rad), each = nrow(Tu))
dy <- rep((sin((1:nocc) * 2 * pi / nocc) * rad), each = nrow(Tu))
dx0 <- dx; dx0[is.na(Tu0)] <- NA
if (all(detector(traps(x)) %in% c('polygon'))) {
centres <- split(traps(x), polyID(traps(x)))
centres <- lapply(centres, function(xy) apply(xy[-1,,drop=FALSE], 2, mean))
trapxy <- data.frame(do.call(rbind,centres))
names(trapxy) <- c('x','y')
}
else trapxy <- traps(x)
par(labpar)
text (rep(trapxy$x, nocc) + dx, rep(trapxy$y, nocc) - dy, Tu, cex = 0.8)
par(cappar)
points (rep(trapxy$x, nocc) + dx0, rep(trapxy$y, nocc) - dy, pch = 1, cex = 0.7)
dx[is.na(marking)] <- NA
points (rep(trapxy$x, nocc) + dx, rep(trapxy$y, nocc) - dy, pch=16, cex=0.4)
}
plotcentres <- function (x) {
xtraps <- traps(x)
meanxya <- function(xy) apply(xy, 2, mean)
meanxy <- function(trp) apply(xtraps[trp,],2,mean)
if (all(detector(traps(x)) %in% 'telemetry')) {
xyl <- telemetryxy(x)
xyl <- lapply(xyl, meanxya)
xy <- do.call(rbind, xyl)
}
else if (!any(detector(traps(x)) %in% .localstuff$polydetectors)) {
trplist <- split(trap(x, sortorder = 'ksn'), animalID(x, sortorder = 'ksn'))
xyl <- lapply(trplist, meanxy)
xy <- do.call(rbind, xyl)
}
else {
xyl <- telemetryxy(x)
if (is.null(xyl))
xyl <- split(xy(x), animalID(x, sortorder = "ksn"))
xyl <- lapply(xyl, meanxya)
xy <- do.call(rbind, xyl)
}
if (rad>0) xy <- xy + (runif(2*nrow(xy))-0.5) * rad
points (xy, ...)
}
x <- check3D(x)
opal <- palette() ; on.exit(palette(opal))
type <- match.arg(type)
traps <- traps(x)
detectr <- expanddet(x)
if (is.null(rownames(x)) && nrow(x)>0) {
warning ("capthist has no rownames; using 1:nrow")
rownames(x) <- 1:nrow(x)
}
if (all(detectr == 'telemetry')) {
type <- 'telemetry'
}
if (type =='telemetry')
nocc <- sum(detectr == 'telemetry')
else
nocc <- sum(detectr != 'telemetry')
if (type %in% c('petal','centres'))
cappar <- replacedefaults (list(cex=1.3, pch=16, col='blue'), cappar)
if (type == 'sightings')
cappar <- replacedefaults (list(cex=1, pch=16, col='blue'), cappar)
if (type %in% c('n.per.cluster','n.per.detector'))
cappar <- replacedefaults (list(cex = 3, pch = 21), cappar)
trkpar <- replacedefaults (list(col='blue', lwd=1), trkpar)
labpar <- replacedefaults (list(cex=0.7, col='black'), labpar)
initialpar <- par(cappar)
if (!add) {
if (type=="telemetry") {
xyl <- telemetryxy(x)
xy <- do.call(rbind, xyl)
xl <- range(xy[,1])
yl <- range(xy[,2])
tr <- expand.grid(x=xl, y=yl)
class(tr) <- c('traps', 'data.frame')
plot(tr, hidetr=TRUE, ...)
}
else {
plot(traps, hidetr=hidetraps, ...)
}
}
if (nrow(x) == 0) {
warning("no detections in capthist object")
type <- 'null'
}
if (is.null(icolours)) icolours <- topo.colors((nrow(x)+1)*1.5)
if (varycol) {
if (randcol) icolours <- sample(icolours)
test <- try (palette(icolours))
if (inherits(test, 'try-error'))
stop ("requested too many colours; ",
"try with varycol = FALSE")
icol <- 0
}
else {
}
if (type == 'petal') {
if ((nocc == 1) & ! (detectr[1] %in% c('signal','signalnoise'))) rad <- 0
if ( detectr[1] %in% .localstuff$polydetectors ) {
lxy <- split (xy(x), animalID(x, names = FALSE, sortorder = "ksn"))
mapply (plotpolygoncapt, lxy, 1:length(lxy))
}
else if ( detectr[1] %in% c('signal','signalnoise') )
{
.localstuff$i <- 0
temp <- data.frame(
ID = animalID(x, sortorder = "ksn"),
occ = occasion(x, sortorder = "ksn"),
trap = trap(x, sortorder = "ksn"),
signal = signal(x))
lsignal <- split(temp, animalID(x, names = FALSE, sortorder = "ksn"))
lapply(lsignal, plotsignal, minsignal = min(temp$signal),
maxsignal = max(temp$signal), n=nrow(x))
}
else {
xydf <- as.data.frame(traps(x)[trap(x, sortorder = 'snk'),])
occ <- occasion(x, sortorder = 'snk')
OK <- detectr[occ] != 'telemetry'
ID <- factor(animalID(x), levels = rownames(x))
lxy <- split(xydf[OK,], ID[OK])
occ <- split(occ[OK], ID[OK])
if (tracks & any(unlist(sapply(occ, duplicated))))
warning("track for repeat detections on same occasion",
" joins points in arbitrary sequence")
mapply(plotproxcapt, lxy, occ, 1:length(lxy), telemetered(x))
}
if (lab1cap) {
if ( detectr[1] %in% .localstuff$polydetectors ) {
lxy <- split (xy(x), animalID(x, names = FALSE, sortorder = "ksn"))
sapply(1:nrow(x), labhead, df=lxy)
}
else {
sapply(1:nrow(x), labcapt)
}
}
if (ncap) { ncapt(x)}
}
else if (type %in% c('n.per.cluster','n.per.detector')) {
if (type == 'n.per.detector') {
temp <- table(trap(x, sortorder = 'snk'), animalID(x, sortorder = 'snk'))>0
nj <- apply(temp,1,sum)
centres <- traps(x)[names(nj),]
}
else if (type == 'n.per.cluster') {
nj <- cluster.counts(x)
centres <- cluster.centres(traps)
centres <- centres[nj>0,]
nj <- nj[nj>0]
}
else stop ("unrecognised type")
if (is.null(icolours)) {
icolours <- topo.colors(max(nj)*1.5)
}
palette (icolours)
npal <- length(icolours)
if (max(nj) < npal) {
cols <- npal-nj
}
else {
cols <- round(npal * (1-nj/max(nj)))
}
if (cappar$pch == 21)
fg <- 'black'
else
fg <- cols
par(cappar)
points(centres, col = fg, bg = cols, pch = cappar$pch, cex = cappar$cex)
if (ncap) {
par(labpar)
par(adj=0.5)
vadj <- diff(par()$usr[3:4])/500
text(centres$x, centres$y + vadj, nj)
}
tempcol <- npal- (1:max(nj))
output <- data.frame(
legend = 1:max(nj),
col = tempcol,
colour = icolours[tempcol],
stringsAsFactors = FALSE
)
}
else if (type == 'sightings') {
plotsightings(x)
}
else if (type == 'centres') {
plotcentres(x)
}
else if (type == 'telemetry') {
lxy <- telemetryxy(x)
seqnum <- match(names(lxy), rownames(x))
caught <- apply(abs(x[seqnum,detectr!='telemetry',,drop=FALSE]),1,sum)>0
mapply (plotpolygoncapt, lxy, seqnum, caught)
}
else
if (type != 'null') stop ("type not recognised")
if (type == 'telemetry') {
nocc <- sum(detectr == 'telemetry')
nd <- sum(abs(x)[,detectr == 'telemetry',])
nanimal <- length(telemetryxy(x))
}
else {
nocc <- sum(detectr != 'telemetry')
nd <- sum(abs(x)[,detectr != 'telemetry',])
nanimal <- sum(apply(abs(x)[,detectr != 'telemetry',,drop=FALSE],1,sum)>0)
}
pl <- if (nocc>1) 's' else ''
if (type == 'sightings') {
markocc <- markocc(traps(x))
Tu <- Tu(x)
nd <- sum(Tu)
nocc <- sum(markocc<1)
}
if (type == 'telemetry') {
nd <- sum(sapply(lxy,nrow))
nocc <- sum(detector(traps(x))=="telemetry")
nanimal <- length(lxy)
}
if (is.logical(title)) {
txt <- ifelse (is.null(session(x)), paste(deparse(substitute(x)),
collapse=''), session(x))
title <- ifelse(title, txt, '')
}
if (title != '') {
par(col='black')
mtext(side=3,line=1.2, text = title, cex=0.7)
}
if (is.logical(subtitle)) {
subtitle <- if (subtitle) {
if (type == 'sightings') {
if (any(markocc<0))
paste0(nocc, ' sighting occasion', pl, ', ', nd, ' sightings of marked and unmarked animals')
else
paste0(nocc, ' sighting occasion', pl, ', ', nd, ' sightings of unmarked animals')
}
else if (type == 'telemetry')
paste0(nocc, ' occasion', pl, ', ', nd, ' fixes,',
nanimal, ' animals')
else
paste0(nocc, ' occasion', pl, ', ', nd, ' detections, ',
nanimal, ' animals')
}
else ''
}
if (subtitle != '') {
par(col='black')
mtext(text = subtitle, side=3,line=0.2, cex=0.7)
}
par(initialpar)
if (type %in% c('n.per.detector','n.per.cluster'))
invisible(output)
else
invisible(nd)
}
}
plotMCP <- function(x, add = FALSE, col = 'black', fill = NA, lab1cap = FALSE,
laboffset = 4, ncap = FALSE, ...) {
plotone <- function (df, col, fill) {
if (nrow(df)>0) {
par(fg=col)
polygon(df, col=fill)
}
}
mcp <- function (df) {
if (nrow(df)>1) {
df <- df[chull(df[,1], df[,2]),]
rbind(df, df[1,])
}
else df
}
if (ms(x)) {
lapply(x, plotMCP, add = add, col = col, ...)
}
else {
xyl <- telemetryxy(x)
if (is.null(xyl)) {
if (all(detector(traps(x)) %in% c('polygon','polygonX')))
xyl <- split(xy(x), animalID(x, sortorder = 'ksn'))
else {
df <- as.data.frame(traps(x)[trap(x, names = FALSE, sortorder = 'snk'),])
xyl <- split(df, animalID(x, sortorder = 'snk'))
}
}
if (!add)
plot(traps(x), ...)
fg <- par()$fg
on.exit(par(fg=fg))
if (missing(col)) col <- 'black'
xymcp <- lapply(xyl, mcp)
if (length(xymcp)>0) {
mapply(plotone, xymcp, col, fill)
if (lab1cap | ncap) {
labhead <- function(xy, nam, num, col) {
laboffsety <- ifelse (length(laboffset)==2, laboffset[2], laboffset[1])
if (ncap)
text (xy[1,1] + laboffset[1], xy[1,2] + laboffsety, num, col=col)
else
text (xy[1,1] + laboffset[1], xy[1,2] + laboffsety, nam, col=col)
}
mapply(labhead, xymcp, names(xyl), sapply(xyl,nrow), col)
}
}
invisible(xyl)
}
}
occasionKey <- function (capthist, noccasions, rad = 3, x, y, px = 0.9, py = 0.9,
title = 'Occasion', ...) {
if (missing(x)) {
ux <- par()$usr[1:2]
x <- ux[1] + px * diff(ux)
}
if (missing(y)) {
uy <- par()$usr[3:4]
y <- uy[1] + py * diff(uy)
}
if (!missing(capthist)) {
if (ms(capthist))
stop ("occasionKey requires single-session capthist")
noccasions <- ncol(capthist)
}
else {
if (missing (noccasions))
stop ("occasionKey requires one of capthist or noccasions")
}
dx <- cos((1:noccasions) * 2 * pi / noccasions) * rad
dy <- sin((1:noccasions) * 2 * pi / noccasions) * rad
points (x,y, cex = 0.5)
text (x, y+rad*2.3, title, ...)
text (x+dx, y-dy, 1:noccasions, ...)
} |
"CredentialForm1" |
nlsmnc <-function(formula, start, trace=FALSE, data=NULL, control=list(),...){
if (! is.null(data)){
for (dfn in names(data)) {
cmd<-paste(dfn,"<-data$",dfn,"")
eval(parse(text=cmd))
}
}
ctrl<-list(
watch=FALSE,
phi=1,
lamda=0.0001,
offset=100,
laminc=10,
lamdec=4
)
ncontrol <- names(control)
nctrl <- names(ctrl)
for (onename in ncontrol) {
if (!(onename %in% nctrl)) {
if (trace) cat("control ",onename," is not in default set\n")
}
ctrl[onename]<-control[onename]
}
phiroot<-sqrt(ctrl$phi)
lamda<-ctrl$lamda
offset<-ctrl$offset
laminc<-ctrl$laminc
lamdec<-ctrl$lamdec
vn <- all.vars(parse(text=formula))
pnum<-start
pnames<-names(pnum)
if (trace) {
parpos <- match(names(pnum), vn)
datvar<-vn[-parpos]
for (dvn in datvar){
cat("Data variable ",dvn,":")
print(eval(parse(text=dvn)))
}
}
if (is.character(formula)){
es<-formula
} else {
tstr<-as.character(formula)
es<-paste(tstr[[2]],"~",tstr[[3]],'')
}
parts<-strsplit(as.character(es), "~")[[1]]
if (length(parts)!=2) stop("Model expression is incorrect!")
lhs<-parts[1]
rhs<-parts[2]
resexp<-paste(rhs,"-",lhs, collapse=" ")
npar<-length(start)
for (i in 1:npar){
joe<-paste(names(pnum)[[i]],"<-",pnum[[i]])
eval(parse(text=joe))
}
gradexp<-deriv(parse(text=resexp), names(start))
if (is.null(data)){
resbest<-eval(parse(text=resexp))
} else {resbest<-with(data, eval(parse(text=resexp))) }
ssbest<-crossprod(resbest)
feval<-1
pbest<-pnum
feval<-1
jeval<-0
if (trace) {
cat("lamda:",lamda," SS = ",ssbest," at ")
print(pnum)
}
ssquares<-.Machine$double.xmax
newjac<-TRUE
eqcount<-0
while (eqcount < npar) {
if (newjac) {
if (is.null(data)){
J0<-eval(gradexp)
} else {J0<-with(data, eval(gradexp))}
Jac<-attr(J0,"gradient")
jeval<-jeval+1
if (any(is.na(Jac))) stop("NaN in Jacobian")
JTJ<-crossprod(Jac)
gjty<-t(Jac)%*%resbest
dde<-diag(diag(JTJ))+phiroot*diag(npar)
}
Happ<-JTJ+lamda*dde
s1<-qr.solve(Happ,gjty)
Rmat<-try(chol(Happ))
matfail<-FALSE
if (class(Rmat) == "try-error") {
matfail<-TRUE
} else {
solfail<-FALSE
delta<-try(backsolve(Rmat,forwardsolve(t(Rmat),gjty)))
if (class(delta)=="try-error") solfail=TRUE
}
if (matfail || solfail) {
if (lamda<1000*.Machine$double.eps) lamda<-1000*.Machine$double.eps
lamda<-laminc*lamda
newjac<-FALSE
if (trace) cat(" Equation solution failure\n")
} else {
pnum<-pbest-delta
names(pnum)<-pnames
eqcount<-length(which((offset+pbest)==(offset+pnum)))
if (eqcount<npar) {
for (i in 1:npar){
joe<-paste(names(pnum)[[i]],"<-",pnum[[i]])
eval(parse(text=joe))
}
feval<-feval+1
if (is.null(data)){
resid<-eval(parse(text=resexp))
} else {resid<-with(data, eval(parse(text=resexp)))}
ssquares<-as.numeric(crossprod(resid))
if (ssquares>=ssbest) {
if (lamda<1000*.Machine$double.eps) lamda<-1000*.Machine$double.eps
lamda<-laminc*lamda
newjac<-FALSE
if(trace) cat(">= lamda=",lamda,"\n")
} else {
if (trace) {
cat("<< lamda=",lamda,"\n")
cat(" SS = ",ssquares," evals J/F:",jeval,"/",feval," eqcount=",eqcount,"\n")
print(pnum)
}
lamda<-lamdec*lamda/laminc
ssbest<-ssquares
resbest<-resid
pbest<-pnum
if (trace) {
cat("<< Lamda=",lamda,"\n")
}
newjac<-TRUE
}
if (ctrl$watch) tmp<-readline()
} else {
if (trace) cat("No parameter change\n")
}
}
}
result<-list(coeffs=pnum,ssquares=ssbest, resid=resbest, jacobian=Jac, feval=feval, jeval=jeval)
} |
httpResponse <- function(status = 200L,
content_type = "text/html; charset=UTF-8",
content = "",
headers = list()) {
headers <- as.list(headers)
if (is.null(headers$`X-UA-Compatible`))
headers$`X-UA-Compatible` <- "IE=edge,chrome=1"
resp <- list(status = status, content_type = content_type, content = content,
headers = headers)
class(resp) <- 'httpResponse'
return(resp)
}
joinHandlers <- function(handlers) {
if (length(handlers) == 0)
return(function(req) NULL)
if (is.function(handlers))
return(handlers)
handlers <- lapply(handlers, function(h) {
if (is.character(h))
return(staticHandler(h))
else
return(h)
})
handlers <- handlers[!sapply(handlers, is.null)]
if (length(handlers) == 0)
return(function(req) NULL)
if (length(handlers) == 1)
return(handlers[[1]])
function(req) {
for (handler in handlers) {
response <- handler(req)
if (!is.null(response))
return(response)
}
return(NULL)
}
}
routeHandler <- function(prefix, handler) {
force(prefix)
force(handler)
if (identical("", prefix))
return(handler)
if (length(prefix) != 1 || !isTRUE(grepl("^/[^\\]+$", prefix))) {
stop("Invalid URL prefix \"", prefix, "\"")
}
pathPattern <- paste("^\\Q", prefix, "\\E/", sep = "")
function(req) {
if (isTRUE(grepl(pathPattern, req$PATH_INFO))) {
origScript <- req$SCRIPT_NAME
origPath <- req$PATH_INFO
on.exit({
req$SCRIPT_NAME <- origScript
req$PATH_INFO <- origPath
}, add = TRUE)
pathInfo <- substr(req$PATH_INFO, nchar(prefix)+1, nchar(req$PATH_INFO))
req$SCRIPT_NAME <- paste(req$SCRIPT_NAME, prefix, sep = "")
req$PATH_INFO <- pathInfo
return(handler(req))
} else {
return(NULL)
}
}
}
routeWSHandler <- function(prefix, wshandler) {
force(prefix)
force(wshandler)
if (identical("", prefix))
return(wshandler)
if (length(prefix) != 1 || !isTRUE(grepl("^/[^\\]+$", prefix))) {
stop("Invalid URL prefix \"", prefix, "\"")
}
pathPattern <- paste("^\\Q", prefix, "\\E/", sep = "")
function(ws) {
req <- ws$request
if (isTRUE(grepl(pathPattern, req$PATH_INFO))) {
origScript <- req$SCRIPT_NAME
origPath <- req$PATH_INFO
on.exit({
req$SCRIPT_NAME <- origScript
req$PATH_INFO <- origPath
}, add = TRUE)
pathInfo <- substr(req$PATH_INFO, nchar(prefix)+1, nchar(req$PATH_INFO))
req$SCRIPT_NAME <- paste(req$SCRIPT_NAME, prefix, sep = "")
req$PATH_INFO <- pathInfo
return(wshandler(ws))
} else {
return(NULL)
}
}
}
staticHandler <- function(root) {
force(root)
return(function(req) {
if (!identical(req$REQUEST_METHOD, 'GET'))
return(NULL)
path <- URLdecode(req$PATH_INFO)
if (is.null(path))
return(httpResponse(400, content="<h1>Bad Request</h1>"))
if (path == '/')
path <- '/index.html'
if (grepl('\\', path, fixed = TRUE))
return(NULL)
abs.path <- resolve(root, path)
if (is.null(abs.path))
return(NULL)
content.type <- getContentType(abs.path)
response.content <- readBin(abs.path, 'raw', n=file.info(abs.path)$size)
return(httpResponse(200, content.type, response.content))
})
}
HandlerList <- R6Class("HandlerList",
portable = FALSE,
class = FALSE,
public = list(
handlers = list(),
add = function(handler, key, tail = FALSE) {
if (!is.null(handlers[[key]]))
stop("Key ", key, " already in use")
newList <- structure(names=key, list(handler))
if (length(handlers) == 0)
handlers <<- newList
else if (tail)
handlers <<- c(handlers, newList)
else
handlers <<- c(newList, handlers)
},
remove = function(key) {
handlers[key] <<- NULL
},
clear = function() {
handlers <<- list()
},
invoke = function(...) {
for (handler in handlers) {
result <- handler(...)
if (!is.null(result))
return(result)
}
return(NULL)
}
)
)
HandlerManager <- R6Class("HandlerManager",
portable = FALSE,
class = FALSE,
public = list(
handlers = "HandlerList",
wsHandlers = "HandlerList",
initialize = function() {
handlers <<- HandlerList$new()
wsHandlers <<- HandlerList$new()
},
addHandler = function(handler, key, tail = FALSE) {
handlers$add(handler, key, tail)
},
removeHandler = function(key) {
handlers$remove(key)
},
addWSHandler = function(wsHandler, key, tail = FALSE) {
wsHandlers$add(wsHandler, key, tail)
},
removeWSHandler = function(key) {
wsHandlers$remove(key)
},
clear = function() {
handlers$clear()
wsHandlers$clear()
},
createHttpuvApp = function() {
list(
onHeaders = function(req) {
maxSize <- getOption('shiny.maxRequestSize') %||% (5 * 1024 * 1024)
if (maxSize <= 0)
return(NULL)
reqSize <- 0
if (length(req$CONTENT_LENGTH) > 0)
reqSize <- as.numeric(req$CONTENT_LENGTH)
else if (length(req$HTTP_TRANSFER_ENCODING) > 0)
reqSize <- Inf
if (reqSize > maxSize) {
return(list(status = 413L,
headers = list('Content-Type' = 'text/plain'),
body = 'Maximum upload size exceeded'))
}
else {
return(NULL)
}
},
call = .httpServer(
function (req) {
hybrid_chain(
hybrid_chain(
withCallingHandlers(withLogErrors(handlers$invoke(req)),
error = function(cond) {
sanitizeErrors <- getOption('shiny.sanitize.errors', FALSE)
if (inherits(cond, 'shiny.custom.error') || !sanitizeErrors) {
stop(cond$message, call. = FALSE)
} else {
stop(paste("An error has occurred. Check your logs or",
"contact the app author for clarification."),
call. = FALSE)
}
}
),
catch = function(err) {
httpResponse(status = 500L,
content_type = "text/html; charset=UTF-8",
content = as.character(htmltools::htmlTemplate(
system_file("template", "error.html", package = "shiny"),
message = conditionMessage(err)
))
)
}
),
function(resp) {
maybeInjectAutoreload(resp)
}
)
},
loadSharedSecret()
),
onWSOpen = function(ws) {
return(wsHandlers$invoke(ws))
}
)
},
.httpServer = function(handler, checkSharedSecret) {
filter <- getOption('shiny.http.response.filter')
if (is.null(filter))
filter <- function(req, response) response
function(req) {
if (!checkSharedSecret(req$HTTP_SHINY_SHARED_SECRET)) {
return(list(status=403,
body='<h1>403 Forbidden</h1><p>Shared secret mismatch</p>',
headers=list('Content-Type' = 'text/html')))
}
head_request <- FALSE
if (identical(req$REQUEST_METHOD, "HEAD")) {
head_request <- TRUE
req$REQUEST_METHOD <- "GET"
}
response <- handler(req)
res <- hybrid_chain(response, function(response) {
if (is.null(response))
response <- httpResponse(404, content="<h1>Not Found</h1>")
if (inherits(response, "httpResponse")) {
headers <- as.list(response$headers)
headers$'Content-Type' <- response$content_type
response <- filter(req, response)
if (head_request) {
headers$`Content-Length` <- getResponseContentLength(response, deleteOwnedContent = TRUE)
return(list(
status = response$status,
body = "",
headers = headers
))
} else {
return(list(
status = response$status,
body = response$content,
headers = headers
))
}
} else {
return(response)
}
})
}
}
)
)
maybeInjectAutoreload <- function(resp) {
if (get_devmode_option("shiny.autoreload", FALSE) &&
isTRUE(grepl("^text/html($|;)", resp$content_type)) &&
is.character(resp$content)) {
resp$content <- gsub(
"</head>",
"<script src=\"shared/shiny-autoreload.js\"></script>\n</head>",
resp$content,
fixed = TRUE
)
}
resp
}
getResponseContentLength <- function(response, deleteOwnedContent) {
force(deleteOwnedContent)
result <- if (is.character(response$content) && length(response$content) == 1) {
nchar(response$content, type = "bytes")
} else if (is.raw(response$content)) {
length(response$content)
} else if (is.list(response$content) && !is.null(response$content$file)) {
if (deleteOwnedContent && isTRUE(response$content$owned)) {
on.exit(unlink(response$content$file, recursive = FALSE, force = FALSE), add = TRUE)
}
file.info(response$content$file)$size
} else {
warning("HEAD request for unexpected content class ", class(response$content)[[1]])
NULL
}
if (is.na(result)) {
return(NULL)
} else {
return(result)
}
} |
sentenceTokenParse <- function(text, docId = "create", removePunc=TRUE, removeNum=TRUE, toLower=TRUE, stemWords=TRUE, rmStopWords=TRUE){
sentenceDf <- sentenceParse(text, docId=docId)
tokenDfList <- lapply(seq_along(sentenceDf$sentence), function(i) {
sentVec <- sentenceDf$sentence[i]
tokenList <- tokenize(text = sentVec, removePunc = removePunc, removeNum = removeNum, toLower = toLower, stemWords = stemWords, rmStopWords=rmStopWords)
subTokenDfList <- lapply(seq_along(tokenList), function(j) {
data.frame(docId=sentenceDf$docId[i], sentenceId=sentenceDf$sentenceId[i], token=tokenList[[j]], stringsAsFactors = FALSE)
})
do.call('rbind', subTokenDfList)
})
tokenDf <- do.call('rbind', tokenDfList)
tokenDf <- tokenDf[!is.na(tokenDf$token),]
class(tokenDf) <- "data.frame"
list(sentences=sentenceDf, tokens=tokenDf)
} |
context("test-delete_node.R")
test_that("delete_node handles bad inputs correctly", {
expect_error(delete_node(), regexp = "argument \"nid\" is missing")
}) |
current.mode <- tmap_mode("plot")
data(NLD_muni)
qtm(NLD_muni, theme = "NLD") + tm_scale_bar(position=c("left", "bottom"))
tmap_mode(current.mode) |
summary.logistic_regression <- function( object, digits=4, file=NULL, ...)
{
mdmb_regression_summary( object=object, digits=digits, file=file, ...)
} |
context('Test all functions used for mirroring')
test_that('Best plane works', {
s <- matrix(1:21, ncol = 3, nrow = 7)
m <- midline(s, 1:4)
expect_equal(sum(m$n^2), 1)
expect_true(length(m$n) == 3)
expect_true(length(m$d) == 1)
expect_true(all(names(m) == c('n', 'd')))
expect_true(all( sapply(m, is.numeric)))
})
test_that('Best plane returns the best plane.', {
set.seed(3)
s <- cbind(rnorm(10), rnorm(10), 0)
pl <- bestplane(s)
expect_equal(pl$n, c(0,0,1))
expect_equal(drop(pl$n[1] + pl$n[2] - pl$d), 0.0)
})
test_that('midline returns best plane', {
s <- cbind(rnorm(14), rnorm(14), 0)
pl <- midline(s, 1:14)
pl2 <- midline(s, c(2:5, 9:12))
expect_equal(drop(pl$n[1] + pl$n[2] - pl$d), 0.0)
expect_equal(drop(pl2$n[1] + pl2$n[2] - pl2$d), 0.0)
})
test_that('bestplane and midline return same values when no missing data.', {
s <- cbind(rnorm(14), rnorm(14), 0)
p1 <- bestplane(s)
l1 <- 1:14
p2 <- midline(s, l1)
expect_equal(p1, p2)
set.seed(99)
s <- cbind(rnorm(14), rnorm(14), 0)
p1 <- bestplane(s)
l1 <- 1:14
p2 <- midline(s, l1)
expect_equal(p1, p2)
})
test_that('Mirrorfill1 replaces points correctly.', {
s <- cbind(rnorm(14), rnorm(14), 0)
s <- rbind(s, c(1, 2, 1), c(NA, NA, NA))
mirrorS <- mirrorfill1(s, l1 = 1:14, l2 = c(15, 16))
expect_equal(mirrorS[16, ], c(1, 2, -1))
})
test_that('Mirrorfill1 replaces points correctly with l1 as 2 col matrix.', {
s <- cbind(rnorm(14), rnorm(14), 0)
s <- rbind(s, c(1, 2, 1), c(NA, NA, NA), c(3, 4, -2), c(NA, NA, NA))
mirrorS <- mirrorfill1(s, l1 = 1:14, l2 = matrix(15:18, byrow = TRUE, ncol = 2))
expect_equal(mirrorS[16, ], c(1, 2, -1))
expect_equal(mirrorS[18, ], c(3, 4, 2))
})
test_that('Reflect works', {
n <- c(0, 0, 1)
d <- 0
p <- c(1, 1, 1)
p2 <- reflect(p, n, d)
expect_equal(p2, c(1, 1, -1))
})
test_that('mirrorfill returns errors when it should.', {
expect_error(mirrorfill(s, l1 = c(2:7, 9:14), l2 = c(99, 100)))
})
test_that('mirrorfill works correctly.', {
a <- array(rep(1:36, 4), dim = c(12, 3, 4))
a[, 3, ] <- 0
a[1:4, 3, ] <- c(1, -1, 2, -2)
a[c(1, 3), 1:2, ] <- a[c(2, 4), 1:2, ]
missinga <- a
missinga[c(1, 3), , 1] <- NA
mirrorA <- mirrorfill(missinga, l1 = 5:12, l2 = 1:4)
expect_equal(mirrorA, a)
l2.m <- matrix(1:4, byrow = TRUE, ncol = 2)
mirrorA2 <- mirrorfill(missinga, l1 = 5:12, l2 = l2.m)
expect_equal(mirrorA2, a)
})
test_that('mirrorfill works correctly when multiple specimens have missing data.', {
a <- array(rep(1:36, 4), dim = c(12, 3, 4))
a[, 3, ] <- 0
a[1:4, 3, ] <- c(1, -1, 2, -2)
a[c(1, 3), 1:2, ] <- a[c(2, 4), 1:2, ]
missinga <- a
missinga[c(1, 3), , 1:3] <- NA
mirrorA <- mirrorfill(missinga, l1 = 5:12, l2 = 1:4)
expect_equal(mirrorA, a)
l2.m <- matrix(1:4, byrow = TRUE, ncol = 2)
mirrorA2 <- mirrorfill(missinga, l1 = 5:12, l2 = l2.m)
expect_equal(mirrorA2, a)
})
test_that('mirror fill handles all missing vs not missing cases correctly.', {
a <- array(rep(1:36, 4), dim = c(12, 3, 4))
a[, 3, ] <- 0
a[1:8, 3, ] <- c(1, -1, 2, -2)
a[c(1, 3, 5, 7), 1:2, ] <- a[c(2, 4, 6, 8), 1:2, ]
a[7, 1, 4] <- 9999
missinga <- a
missinga[c(1, 2), , 1] <- NA
missinga[3, , 2] <- NA
missinga[6, , 3] <- NA
mirrorA <- mirrorfill(missinga, l1 = 9:12, l2 = 1:8)
expect_true(all(is.na(mirrorA[c(1, 2), , 1])))
expect_equal(mirrorA[, , 2], a[, , 2])
expect_equal(mirrorA[, , 3], a[, , 3])
expect_equal(mirrorA[7, 1, 4], 9999)
expect_false(mirrorA[7, 1, 4] == mirrorA[4, 1, 3])
expect_true(mirrorA[4, 1, 3] == mirrorA[4, 1, 2])
expect_true(mirrorA[4, 1, 3] == mirrorA[4, 1, 1])
})
|
rep.int <- function(x, times) .Internal(rep.int(x, times))
rep_len <- function(x, length.out) .Internal(rep_len(x, length.out))
rep.factor <- function(x, ...)
{
y <- NextMethod()
structure(y, class=class(x), levels=levels(x))
} |
depth_distribution <- function(distribution, head_mat = NULL, tail_mat = NULL){
if(is.null(head_mat)&is.null(tail_mat)){
stop("You need to specify a head_mat or tail_mat argument")
}else if((!is.null(head_mat))&(is.null(tail_mat))){
out <- depth_distribution_head(distribution, head_mat)
}else if((is.null(head_mat))&(!is.null(tail_mat))){
out <- depth_distribution_tail(distribution, tail_mat)
}else if((!is.null(head_mat))&(!is.null(tail_mat))){
out <- depth_distribution_unique(distribution, head = head_mat, tail = tail_mat)
}
return(out)
} |
context("test-dataalignment")
test_that("multiplication works", {
expect_equal(2 * 2, 4)
}) |
mgPLS = function(DataX, DataY, Group, ncomp=NULL, Scale=FALSE,
Gcenter=FALSE, Gscale=FALSE){
check(DataX, Group)
check(DataY, Group)
if ((nrow(DataX) != nrow(DataY)))
stop("Oops unequal number of rows in 'DataX' and 'DataY'.")
if (is.data.frame(DataX) == TRUE) {
DataX = as.matrix(DataX)
}
if (is.data.frame(DataY) == TRUE) {
DataY = as.matrix(DataY)
}
if(is.null(ncomp)) {ncomp = 2}
if(is.null(colnames(DataX))) {
colnames(DataX) = paste('VX', 1:ncol(DataX), sep='')
}
if(is.null(colnames(DataY))) {
colnames(DataY) = paste('VY', 1:ncol(DataY), sep='')
}
DataX = as.data.frame(DataX, row.names = NULL)
DataY = as.data.frame(DataY, row.names = NULL)
Group = as.factor(Group)
DataX = as.matrix(DataX)
rownames(DataX) = Group
DataY = as.matrix(DataY)
rownames(DataY) = Group
M = length(levels(Group))
P = dim(DataX)[2]
Q = dim(DataY)[2]
n = as.vector(table(Group))
N = sum(n)
H = ncomp
DataX = scale(DataX, center = Gcenter, scale = Gscale)
DataY = scale(DataY, center = Gcenter, scale = Gscale)
DataXm = split(DataX, Group)
DataYm = split(DataY, Group)
Concat.X = Concat.Y = NULL
for(m in 1:M){
DataXm[[m]] = matrix(DataXm[[m]], nrow=n[m])
DataXm[[m]] = scale(DataXm[[m]], center=TRUE, scale=Scale)
DataYm[[m]] = matrix(DataYm[[m]], nrow=n[m])
DataYm[[m]] = scale(DataYm[[m]], center=TRUE, scale=Scale)
Concat.X = rbind(Concat.X, DataXm[[m]])
Concat.Y = rbind(Concat.Y, DataYm[[m]])
}
colnames(Concat.X) = colnames(DataX)
colnames(Concat.Y) = colnames(DataY)
rownames(Concat.X) = rownames(DataX)
rownames(Concat.Y) = rownames(DataY)
res = list()
res$DataXm = DataXm
res$DataYm = DataYm
res$Concat.X = Concat.X
res$Concat.Y = Concat.Y
aCommonX = matrix(0, ncol=H, nrow=P)
TGlobalX = matrix(0, ncol=H, nrow=N)
UGlobalY = matrix(0, ncol=H, nrow=N)
bCommonY = matrix(0, ncol=H, nrow=Q)
aGroupX = vector("list",M)
bGroupY = vector("list",M)
TGroupX = vector("list",M)
UGroupY = vector("list",M)
for(m in 1:M){
aGroupX[[m]] = matrix(0,nrow=P, ncol=H)
bGroupY[[m]] = matrix(0,nrow=Q, ncol=H)
rownames(aGroupX[[m]]) = colnames(DataX)
colnames(aGroupX[[m]]) = paste("Dim", 1:H, sep="")
rownames(bGroupY[[m]]) = colnames(DataY)
colnames(bGroupY[[m]]) = paste("Dim", 1:H, sep="")
TGroupX[[m]] = matrix(0,nrow=n[m],ncol=H)
UGroupY[[m]] = matrix(0,nrow=n[m],ncol=H)
}
aCommonX_STAR = matrix(0,nrow=P,ncol=H)
COV = vector("list",H)
COVm = vector("list",H)
ppbeta = matrix(0,nrow=P,ncol=H)
betay = vector("list",H)
cum.expvar.Xm = matrix(0, ncol=H, nrow=M)
cum.expvar.Ym = matrix(0, ncol=H, nrow=M)
nor2x = sum((Concat.X)^2)
exp_var = c(0)
nor2y= sum((Concat.Y)^2)
exp_vary = c(0)
res$noncumper.inertiglobal = matrix(0, ncol=ncomp, nrow=1)
colnames(res$noncumper.inertiglobal) = paste("Dim", 1:ncomp, sep="")
for(h in 1:H){
eps = 1e-6
w = stats::rnorm(P)
w = w/as.numeric(sqrt(t(w)%*%w))
x=1.0;
tTold=0;
wTold=w;
uTold=0;
vTold=0;
iter =0;
covv = 0
covvm = 0
tt = matrix(0,nrow=N)
tmm = list()
umm = list()
while (x>eps){
sumyx=0
for (m in 1:M){
ccc = t(DataYm[[m]]) %*% DataXm[[m]] %*% w
sumyx = sumyx+ccc
}
v= sumyx / as.numeric(sqrt(sum((sumyx)^2)))
for (m in 1:M){
um = DataYm[[m]] %*% v
umm[[m]]=um
}
u = (Concat.Y) %*% v
sumxy=0
for (m in 1:M){
ccc = t(DataXm[[m]]) %*% DataYm[[m]] %*% v
aGroupX[[m]][,h]=ccc/as.numeric(sqrt(sum((ccc)^2)))
sumxy = sumxy+ccc
}
w = sumxy / as.numeric(sqrt(sum((sumxy)^2)))
for (m in 1:M){
tm = DataXm[[m]] %*% w
TGroupX[[m]][,h] = tm
ddd = t(DataYm[[m]]) %*% tm
bGroupY[[m]][,h] = ddd/as.numeric(sqrt(sum((ddd)^2)))
tmm[[m]] = tm
}
t = (Concat.X) %*% w
tt = cbind(tt,t)
iter=iter+1
if (iter > 1){
xT = crossprod(t-tTold)
yw = crossprod(v-vTold)
x = max(xT,yw);
}
covv[iter]=(cov(u, t))
tTold= t;
wTold= w;
uTold= u;
vTold= v;
sum_cov=0
for(m in 1:M){
sum_cov= sum_cov+( (n[m]-1) * cov(tmm[[m]],umm[[m]]) )
}
covvm[iter] = sum_cov
}
aCommonX[,h] = wTold
TGlobalX[,h] = t
UGlobalY[,h] = u
bCommonY[,h] = v
COV[[h]] = covv
COVm[[h]]=covvm
project.global=TGlobalX[,h] %*% ginv( t(TGlobalX[,h]) %*% TGlobalX[,h]) %*% t(TGlobalX[,h])
project.data.global=project.global %*% res$Concat.X
res$noncumper.inertiglobal[h] = round(100*sum(diag(t(project.data.global) %*% project.data.global))/ sum(diag(t(res$Concat.X) %*% res$Concat.X)),1)
ppbeta[,h] = t(res$Concat.X)%*% TGlobalX[,h]/(c(( t(TGlobalX[,h])%*% TGlobalX[,h])))
if(h==1){aCommonX_STAR[, h]=aCommonX[,h]}
if(h>=2){
Mat <- diag(P)
for (k in 2 : h) {
mat <- t(TGlobalX[, k-1]) %*% res$Concat.X/ as.numeric(t(TGlobalX[, k-1])%*%TGlobalX[, k-1])
Mat <- Mat %*% (diag(P) - aCommonX[, k-1] %*% mat)
}
aCommonX_STAR[, h] <- Mat %*% aCommonX[, h]
}
dd = coefficients(lm(res$Concat.Y ~TGlobalX[,1:h]))
if(Q==1){betay[[h]]=(dd[-1])}
if(Q>=2){betay[[h]]=(dd[-1,])}
res$coefficients[[h]] = as.matrix(aCommonX_STAR[,1:h]) %*% (betay[[h]])
colnames(res$coefficients[[h]]) = colnames(Concat.Y)
rownames(res$coefficients[[h]]) = colnames(Concat.X)
wp = crossprod(Concat.X, t) / drop(crossprod(t))
wy = crossprod(Concat.Y, t) / drop(crossprod(t))
Concat.X = Concat.X - t%*% t(wp)
Concat.Y = Concat.Y - t %*% t(wy)
exp_var_new= 100* as.numeric(t(t) %*% res$Concat.X %*% t(res$Concat.X) %*% t/ as.vector((t(t)%*%t)) )/nor2x
exp_var=append(exp_var, exp_var_new)
exp_var_newy= 100* as.numeric(t(t) %*% res$Concat.Y %*% t(res$Concat.Y) %*% t/ as.vector((t(t)%*%t)) )/nor2y
exp_vary=append(exp_vary, exp_var_newy)
DataXm = split(Concat.X, Group)
DataYm = split(Concat.Y, Group)
for(m in 1:M){
DataXm[[m]] = matrix(DataXm[[m]], ncol=P)
colnames(DataXm[[m]]) = colnames(Concat.X)
DataYm[[m]] = matrix(DataYm[[m]], ncol=Q)
colnames(DataYm[[m]]) = colnames(Concat.Y)
}
}
expvarX = exp_var[-1]
cumexpvarX = cumsum(expvarX)
EVX = matrix(c(expvarX, cumexpvarX), ncol=2)
rownames(EVX) = paste("Dim", 1:H, sep="")
colnames(EVX) = c("Explained.Var", "Cumulative")
expvarY = exp_vary[-1]
cumexpvarY = cumsum(expvarY)
EVY = matrix(c(expvarY, cumexpvarY), ncol=2)
rownames(EVY) = paste("Dim", 1:H, sep="")
colnames(EVY) = c("Explained.Var", "Cumulative")
for(m in 1:M){
for(h in 1:H){
proj= TGroupX[[m]][,1:h] %*% ginv(t(TGroupX[[m]][,1:h]) %*% TGroupX[[m]][,1:h]) %*% t(TGroupX[[m]][,1:h])
xm_hat= proj %*% DataXm[[m]]
explain_varx=sum(diag( xm_hat %*% t(xm_hat) ))/sum(diag( DataXm[[m]] %*% t(DataXm[[m]]) ))
ym_hat= proj %*% DataYm[[m]]
explain_vary = sum(diag( ym_hat %*% t(ym_hat) ))/sum(diag( DataYm[[m]] %*% t(DataYm[[m]]) ))
cum.expvar.Xm[m,h] = explain_varx
cum.expvar.Ym[m,h] = explain_vary
}
}
res$coefficients.Y <- t(coefficients(lm(Concat.Y ~ TGlobalX - 1)))
rownames(res$coefficients.Y) = colnames(res$Concat.Y)
colnames(res$coefficients.Y) = paste("Dim", 1:H, sep="")
loadings_matricesW = list()
loadings_matricesW[[1]] = aCommonX
for(m in 2:(M+1)){
loadings_matricesW[[m]] = aGroupX[[(m-1)]]
}
loadings_matricesV = list()
loadings_matricesV[[1]] = bCommonY
for(m in 2:(M+1)){
loadings_matricesV[[m]] = bGroupY[[(m-1)]]
}
NAMES = c("Commonload", levels(Group))
similarityA =similarity_function(loadings_matrices=loadings_matricesW, NAMES)
similarityB =similarity_function(loadings_matrices=loadings_matricesV, NAMES)
similarityA_noncum = similarity_noncum(loadings_matrices=loadings_matricesW, NAMES)
similarityB_noncum = similarity_noncum(loadings_matrices=loadings_matricesV, NAMES)
rownames(aCommonX) = colnames(res$Concat.X)
rownames(bCommonY) = colnames(res$Concat.Y)
rownames(TGlobalX) = rownames(res$Concat.X)
rownames(UGlobalY) = rownames(res$Concat.Y)
colnames(aCommonX) = paste("Dim", 1:H, sep="")
colnames(bCommonY) = paste("Dim", 1:H, sep="")
colnames(TGlobalX) = paste("Dim", 1:H, sep="")
colnames(UGlobalY) = paste("Dim", 1:H, sep="")
for(m in 1: M){
colnames(TGroupX[[m]]) = paste("Dim", 1:H, sep="")
}
res$Components.Global = list(X = TGlobalX, Y = UGlobalY)
res$Components.Group = list(X = TGroupX)
res$loadings.common = list(X = aCommonX, Y = bCommonY)
res$loadings.Group = list(X = aGroupX, Y = bGroupY)
colnames(cum.expvar.Xm) = paste("Dim", 1:H, sep="")
colnames(cum.expvar.Ym) = paste("Dim", 1:H, sep="")
rownames(cum.expvar.Xm) = levels(Group)
rownames(cum.expvar.Ym) = levels(Group)
res$expvar = list(X = EVX, Y = EVY)
res$cum.expvar.Group = list(X = cum.expvar.Xm, Y = cum.expvar.Ym)
res$Similarity.Common.Group.load = list(X = similarityA, Y = similarityB)
res$Similarity.noncum.Common.Group.load = list(X = similarityA_noncum , Y = similarityB_noncum)
class(res) = c("mgPLS", "mg")
return(res)
}
print.mgPLS <- function(x, ...)
{
cat("\nMultigroup Partial Least Squares Regression\n")
cat(rep("-",43), sep="")
cat("\n$loadings.common ", "Common loadings")
cat("\n")
invisible(x)
} |
race <- hijack(r_sample_factor,
name = "Race",
x = c("White", "Hispanic", "Black", "Asian", "Bi-Racial", "Native", "Other",
"Hawaiian"),
prob = c(0.637, 0.163, 0.122, 0.047, 0.019, 0.007, 0.002, 0.0015)
) |
context("Select Threshold")
data2 <- get(load("../data/example2.RData"))
test_that("SelectThreshold works", {
expect_setequal(selectThreshold(0.1)(data2, 'clase', IEPConsistency())$featuresSelected, c('x1', 'x2', 'x4', 'x5', 'x3', 'x6'))
expect_setequal(selectThreshold(0.6)(data2, 'clase', IEPConsistency())$featuresSelected, c('x2', 'x4', 'x5', 'x3', 'x6'))
expect_setequal(selectThreshold(0.9)(data2, 'clase', IEPConsistency())$featuresSelected, c('x6'))
})
test_that("Name is set", {
expect_equal(attr(selectThreshold(),'name'),"Select Threshold");
expect_equal(attr(selectThreshold(),'shortName'),"selectThreshold");
}) |
min0 <- function(x, na.rm=TRUE){
sd1 <- stats0( x=x, FUN=min, na.rm=na.rm )
return(sd1)
} |
ciROCemp <- function(rocit_emp, level){
if(!(methods::is(rocit_emp, "rocit"))){
stop("Argument is not of class \"rocit\" ")
}
argMethod <- rocit_emp$method
if(argMethod != "empirical"){
stop("Rocit object method is not \"empirical\" ")
}
pos_count <- rocit_emp$pos_count
neg_count <- rocit_emp$neg_count
pos_D <- rocit_emp$pos_D
neg_D <- rocit_emp$neg_D
TPR <- rocit_emp$TPR
FPR <- rocit_emp$FPR
c <- rocit_emp$Cutoff
max_nD <- max(neg_D)
min_nD <- min(neg_D)
ppdf_temp <- approxfun(density(pos_D))
npdf_temp <- approxfun(density(neg_D))
ppdf <- function(x){
ifelse(is.na(ppdf_temp(x)), 0, ppdf_temp(x))
}
npdf <- function(x){
ifelse(is.na(npdf_temp(x)), 0, npdf_temp(x))
}
ncdf_2 <- function(y){
retval <- rep(NA, length(y))
for(i in 1:length(y)){
x <- y[i]
if(x>max(neg_D)){retval[i] <- 1}else{
if(x<min(neg_D)){retval[i] <- 0}else{
bw <- (x-min(neg_D))/1000
myX <- seq(min(neg_D), x, bw)
myY <- npdf(myX)
retval[i] <- sum(diff(myX)*(myY[-1]+myY[-length(myY)]))/2
}
}
}
return(retval)
}
nSurv <- function(x) {1-ncdf_2(x)}
binwidht <- (max_nD-min_nD)/10000
DummyX <- seq(min_nD-0.001,max_nD+0.001,binwidht)
DummyY <- nSurv(DummyX)
c_starfun=approxfun(DummyY,DummyX)
c_starfun2 <- function(x){
ifelse(x==0, max_nD, ifelse(x==1,min_nD,c_starfun(x)))
}
c_star <- c_starfun2(FPR)
var_term2 <- (npdf(c_star)/ppdf(c_star))^2 * FPR * (1-FPR)/neg_count
var_term1 <- TPR * (1-TPR)/pos_count
SE_TPR <- sqrt(var_term1 + var_term2)
multiplier <- qnorm((1+level)/2)
upper <- TPR + multiplier * SE_TPR
lower <- TPR - multiplier * SE_TPR
upFun <- function(x) {min(c(1,x))}
lowFun <- function(x) {max(c(0,x))}
upper <- sapply(upper, upFun)
lower <- sapply(lower, lowFun)
TPR0 <- which(TPR == 0)
TPR1 <- which(TPR == 1)
lower[TPR1] <- 1
upper[TPR0] <- 0
returnval <- list(`ROC estimation method` = rocit_emp$method,
`Confidence level` = paste0(100*level,"%"),
FPR = FPR, TPR = TPR,
LowerTPR = lower, UpperTPR = upper)
return(returnval)
} |
fn2fix <-
function(i,posx, PA=FALSE, NumProcess=2, type='Poisson', dist='normal',
lambdaMarg=NULL, lambdaParent=NULL, lambdaNumP=NULL, sigmaC=1,
minC=-1, maxC=1,fixed.seed=1)
{
fixed.seed<-fixed.seed+i
aux<-DistSimfix(posx=posx, NumProcess=NumProcess, type=type,
dist=dist, lambdaMarg=lambdaMarg,
lambdaParent=lambdaParent, lambdaNumP=lambdaNumP, sigmaC=sigmaC,
minC=minC, maxC=maxC, PA=PA, info=FALSE,fixed.seed=fixed.seed)
return(aux)
} |
context("test partial eval")
test_that("namespace operators always evaluated locally",
{
expect_equal(partial_eval(quote(base::sum(1, 2))), 3)
expect_equal(partial_eval(quote(base:::sum(1, 2))), 3)
})
test_that("namespaced calls to dplyr functions are stripped",
{
expect_equal(partial_eval(quote(dplyr::n())), expr(n()))
})
test_that("use quosure environment for unevaluted formulas",
{
x <- 1
expect_equal(partial_eval(expr(~x)), ~1)
})
test_that("respects tidy evaluation pronouns",
{
x <- "X"
X <- "XX"
expect_equal(partial_eval(expr(.data$x)), expr(x))
expect_equal(partial_eval(expr(.data[["x"]])), expr(x))
expect_equal(partial_eval(expr(.data[[x]])), expr(X))
expect_equal(partial_eval(expr(.env$x)), "X")
expect_equal(partial_eval(expr(.env[["x"]])), "X")
expect_equal(partial_eval(expr(.env[[x]])), "XX")
}) |
ZIPF <- function (mu.link = "log")
{
mstats <- checklink("mu.link", "ZIPF", substitute(mu.link),c("inverse", "log", "sqrt", "identity"))
structure(
list( family = c("ZIPF", "zipf distribution"),
parameters = list(mu = TRUE),
nopar = 1,
type = "Discrete",
mu.link = as.character(substitute(mu.link)),
mu.linkfun = mstats$linkfun,
mu.linkinv = mstats$linkinv,
mu.dr = mstats$mu.eta,
dldm = function(y,mu)
{
nd <- numeric.deriv(dZIPF(y, mu, log=TRUE), "mu", delta=0.001)
dldm <- as.vector(attr(nd, "gradient"))
dldm
},
d2ldm2 = function(y,mu)
{
nd <- numeric.deriv(dZIPF(y, mu, log=TRUE), "mu", delta=0.001)
dldm <- as.vector(attr(nd, "gradient"))
d2ldv2 <- -dldm*dldm
d2ldv2
},
G.dev.incr = function(y,mu,...) -2*dZIPF(x = y, mu = mu, log = TRUE),
rqres = expression(rqres(pfun="pZIPF", type="Discrete", ymin=1, y=y, mu=mu)),
mu.initial =expression({mu <- rep(.1,length(y)) } ),
mu.valid = function(mu) all(mu > 0),
y.valid = function(y) all(y >= 1),
mean = function(mu) ifelse(mu > 1, zetaP(mu) / zetaP(mu +1), Inf),
variance = function(mu) ifelse(mu > 2, (zetaP(mu + 1) * zetaP(mu - 1) - (zetaP(mu))^2) / (zetaP(mu + 1))^2, Inf)
),
class = c("gamlss.family","family"))
}
dZIPF<- function(x, mu = 1, log = FALSE)
{
if (any(mu <= 0) ) stop(paste("mu must be greater than 0 ", "\n", ""))
if (any(x < 1) ) stop(paste("x must be >=1", "\n", ""))
ly <- max(length(x),length(mu))
x <- rep(x, length = ly)
mu <- rep(mu, length = ly)
logL <- -(mu+1)*log(x)-log(zetaP(mu+1))
lik <- if (log) logL else exp(logL)
as.numeric(lik)
}
pZIPF <- function(q, mu = 1, lower.tail = TRUE, log.p = FALSE)
{
Zeta.aux<- function (shape, qq)
{
LLL <- max(length(shape), length(qq))
if (length(shape) != LLL)
shape <- rep_len(shape, LLL)
if (length(qq) != LLL)
qq <- rep_len(qq, LLL)
if (any(qq < 12 - 1))
warning("all values of argument 'q' should be 12 or more")
aa <- qq
B2 <- c(1/6, -1/30, 1/42, -1/30, 5/66, -691/2730, 7/6, -3617/510)
kk <- length(B2)
ans <- 1/((shape - 1) * (1 + aa)^(shape - 1)) + 0.5/(1 + aa)^shape
term <- (shape/2)/(1 + aa)^(shape + 1)
ans <- ans + term * B2[1]
for (mm in 2:kk)
{
term <- term * (shape + 2 * mm - 3) * (shape + 2 * mm -
2)/((2 * mm - 1) * 2 * mm * (1 + aa)^2)
ans <- ans + term * B2[mm]
}
ifelse(aa - 1 <= qq, ans, rep(0, length(ans)))
}
if (any(mu <= 0) ) stop(paste("mu must be greater than 0 ", "\n", ""))
if (any(q < 1) ) stop(paste("y must be >=0", "\n", ""))
ly <- max(length(q),length(mu))
q <- rep(q, length = ly)
mu <- rep(mu, length = ly)
ans <- rep_len(0, ly)
qfloor <- floor(q)
for (nn in 1:(12 - 1)) ans <- ans + as.numeric(nn <= qfloor)/nn^(mu + 1)
vecTF <- (12 - 1 <= qfloor)
if (lower.tail)
{
if (any(vecTF))
ans[vecTF] <- zetaP(mu[vecTF] + 1) - Zeta.aux(mu[vecTF] +
1, qfloor[vecTF] + 1)
}
else
{
ans <- zetaP(mu + 1) - ans
if (any(vecTF))
ans[vecTF] <- Zeta.aux(mu[vecTF] + 1, qfloor[vecTF] +
1)
}
cdf <- ans/zetaP(mu + 1)
cdf
}
qZIPF <- function(p, mu = 1, lower.tail = TRUE, log.p = FALSE, max.value = 10000)
{
if (any(mu <= 0) ) stop(paste("mu must be greater than 0 ", "\n", ""))
if (any(p < 0) | any(p > 1.0001)) stop(paste("p must be between 0 and 1", "\n", ""))
if (log.p==TRUE) p <- exp(p) else p <- p
if (lower.tail==TRUE) p <- p else p <- 1-p
ly <- length(p)
QQQ <- rep(0,ly)
nmu <- rep(mu, length = ly)
for (i in seq(along=p))
{
cumpro <- 0
if (p[i]+0.000000001 >= 1) QQQ[i] <- Inf
else
{
for (j in seq(from = 1, to = max.value))
{
cumpro <- pZIPF(j, mu = nmu[i], log.p = FALSE)
QQQ[i] <- j
if (p[i] <= cumpro ) break
}
}
}
QQQ
}
rZIPF <- function(n, mu = 1, max.value = 10000)
{
if (any(mu <= 0) ) stop(paste("mu must be greater than 0 ", "\n", ""))
if (any(n <= 0)) stop(paste("n must be a positive integer", "\n", ""))
n <- ceiling(n)
p <- runif(n)
r <- qZIPF(p, mu = mu, max.value = max.value)
as.integer(r)
}
zetaP <-function (x)
{
Zeta.aux<- function (shape, qq)
{
LLL <- max(length(shape), length(qq))
if (length(shape) != LLL)
shape <- rep_len(shape, LLL)
if (length(qq) != LLL)
qq <- rep_len(qq, LLL)
if (any(qq < 12 - 1))
warning("all values of argument 'q' should be 12 or more")
aa <- qq
B2 <- c(1/6, -1/30, 1/42, -1/30, 5/66, -691/2730, 7/6, -3617/510)
kk <- length(B2)
ans <- 1/((shape - 1) * (1 + aa)^(shape - 1)) + 0.5/(1 + aa)^shape
term <- (shape/2)/(1 + aa)^(shape + 1)
ans <- ans + term * B2[1]
for (mm in 2:kk)
{
term <- term * (shape + 2 * mm - 3) * (shape + 2 * mm -
2)/((2 * mm - 1) * 2 * mm * (1 + aa)^2)
ans <- ans + term * B2[mm]
}
ifelse(aa - 1 <= qq, ans, rep(0, length(ans)))
}
aa <- 12
ans <- 0
for (ii in 0:(aa - 1)) ans <- ans + 1/(1 + ii)^x
ans <- ans + Zeta.aux(shape = x, aa)
ans
} |
setClass("yuima.law",representation(rng = "function",
density = "function",
cdf = "function",
quantile = "function",
characteristic = "function",
param.measure = "character",
time.var = "character",
dim = "numLike")
)
setMethod("initialize", "yuima.law",
function(.Object,
rng = function(n,...){},
density = function(x,...){},
cdf = function(q,...){},
quantile = function(p,...){},
characteristic = function(u,...){},
param.measure = character(),
time.var = character(),
dim = NA
){
.Object@rng <- rng
.Object@density <- density
.Object@cdf <- cdf
.Object@quantile <- quantile
.Object@characteristic <- characteristic
[email protected] <- param.measure
[email protected] <- time.var
.Object@dim <- dim
return(.Object)
}
)
setMethod("rand","yuima.law",
function(object, n, param, ...){
res <- aux.rand(object, n, param, ...)
return(res)
}
)
setMethod("dens","yuima.law",
function(object, x, param, log = FALSE, ...){
res <- aux.dens(object, x, param, log, ...)
return(res)
}
)
setMethod("cdf","yuima.law",
function(object, q, param, ...){
res <- aux.cdf(object, q, param, log, ...)
return(res)
}
)
setMethod("quant","yuima.law",
function(object, p, param, ...){
res <- aux.quant(object, p, param, ...)
return(res)
}
)
setMethod("char","yuima.law",
function(object, u, param, ...){
res <- aux.char(object, u, param, ...)
return(res)
}
)
setLaw <- function(rng = function(n,...){NULL},
density = function(x,...){NULL},
cdf = function(q,...){NULL},
quant = function(p,...){NULL},
characteristic = function(u,...){NULL},
time.var="t",
dim = NA){
param <- NULL
param.rng <- extrapParam(myfun = rng, time.var = time.var, aux.var = "n" )
CondRng<- FALSE
if(all(param.rng %in% "...")){
}else{
CondRng <- TRUE
param <- param.rng
}
param.dens <- extrapParam(myfun = density, time.var = time.var, aux.var = "x" )
CondDens<- FALSE
if(all(param.dens %in% "...")){
}else{
CondDens <- TRUE
param <- param.dens
}
if(CondDens){
if(CondRng){
if(!all(param.dens %in% param.rng)){
yuima.stop("dens and rng have different parameters")
}
}
}
param.cdf <- extrapParam(myfun = cdf, time.var = time.var, aux.var = "q" )
if(all(param.cdf %in% "...")){
}else{
if(is.null(param)){
param <- param.cdf
}else{
if(!all(param %in% param.cdf)){
yuima.stop("cdf has different parameters")
}
}
}
param.quant <- extrapParam(myfun = quant, time.var = time.var, aux.var = "p" )
if(all(param.quant %in% "...")){
}else{
if(is.null(param)){
param <- param.quant
}else{
if(!all(param %in% param.quant)){
yuima.stop("quantile has different parameters")
}
}
}
param.char <- extrapParam(myfun = characteristic,
time.var = time.var,
aux.var = "u" )
if(all(param.char %in% "...")){
}else{
if(is.null(param)){
param <- param.char
}else{
if(!all(param %in% param.char)){
yuima.stop("quantile has different parameters")
}
}
}
if(is.null(param)){
param<-character()
}
res <- new("yuima.law",
rng = rng,
density = density,
cdf = cdf,
characteristic = characteristic,
quantile = quant,
param.measure = param,
time.var = time.var,
dim = NA)
return(res)
}
extrapParam <- function(myfun, time.var, aux.var){
dummy <- names(as.list(args(myfun)))
dummy <- dummy[-length(dummy)]
if(dummy[1] != aux.var){
yuima.stop("Change rand.var or charac.var ...")
}
cond <- dummy %in% time.var
dummy.par <- dummy[!cond]
dummy <- dummy.par[!dummy.par%in%aux.var]
return(dummy)
} |
test_that('trialr_crm_selector matches dfcrm_selector.', {
skeleton <- c(0.1, 0.2, 0.4, 0.55)
target <- 0.2
scale = sqrt(0.75)
outcomes <- '2NNT 2NNN 3NTT 2NNT'
model1 <- get_dfcrm(skeleton = skeleton, target = target, scale = scale)
fit1 <- model1 %>% fit(outcomes)
model2 <- get_trialr_crm(skeleton = skeleton, target = target,
model = 'empiric', beta_sd = scale)
fit2 <- model2 %>% fit(outcomes)
expect_equal(model2$model, 'empiric')
expect_equal(model2$extra_args$beta_sd, sqrt(0.75))
expect_equal(recommended_dose(fit1), recommended_dose(fit2))
epsilon <- 0.02
expect_true(all(abs(mean_prob_tox(fit1) - mean_prob_tox(fit2)) < epsilon))
skeleton <- c(0.1, 0.2, 0.33, 0.45, 0.6, 0.7, 0.8)
target <- 0.33
outcomes <- '1NNN 2NNN 3NTT 2NNN 3TNN 3TNT 2NNN'
model1 <- get_dfcrm(skeleton = skeleton, target = target, intcpt = 4,
model = 'logistic')
fit1 <- model1 %>% fit(outcomes)
model2 <- get_trialr_crm(skeleton = skeleton, target = target,
model = 'logistic', a0 = 4,
beta_mean = 0, beta_sd = sqrt(1.34))
fit2 <- model2 %>% fit(outcomes)
expect_equal(model2$model, 'logistic')
expect_equal(model2$extra_args$a0, 4)
expect_equal(model2$extra_args$beta_mean, 0)
expect_equal(model2$extra_args$beta_sd, sqrt(1.34))
expect_equal(recommended_dose(fit1), recommended_dose(fit2))
epsilon <- 0.02
expect_true(all(abs(mean_prob_tox(fit1) - mean_prob_tox(fit2)) < epsilon))
})
test_that('trialr_crm_selector matches bcrm.', {
dose <- c(1, 2.5, 5, 10, 15, 20, 25, 30, 40, 50, 75, 100, 150, 200, 250)
skeleton <- c(0.010, 0.015, 0.020, 0.025, 0.030, 0.040, 0.050,
0.100, 0.170, 0.300, 0.400, 0.500, 0.650, 0.800, 0.900)
target <- 0.30
df <- data.frame(
patient=1:18,
dose = rep(c(1:4, 7), c(3, 4, 5, 4, 2)),
tox = rep(0:1, c(16, 2)))
bcrm_dose <- 9
bcrm_prob_tox <- c(0.07015495, 0.08657340, 0.10073468, 0.11345014, 0.12513580,
0.14632099, 0.16543985, 0.24440829, 0.33268033, 0.46747152,
0.55775747, 0.64098831, 0.75674204, 0.86470521, 0.93341409)
outcomes <- '1NNN 2NNNN 3NNNN 4NNNN 7TT'
fit2 <- get_trialr_crm(skeleton = skeleton, target = target,
model = 'empiric', beta_sd = 1.34, seed = 2020) %>%
fit(outcomes = outcomes)
expect_equal(bcrm_dose, recommended_dose(fit2))
epsilon <- 0.02
expect_true(all(abs(bcrm_prob_tox - mean_prob_tox(fit2)) < epsilon))
})
test_that('empiric trialr_crm_selector supports correct interface.', {
skeleton <- c(0.05, 0.1, 0.25, 0.4, 0.6)
target <- 0.25
model = 'empiric'
model_fitter <- get_trialr_crm(skeleton = skeleton, target = target,
model = model, beta_sd = 1)
x <- fit(model_fitter, '1NNN 2NTT')
expect_equal(tox_target(x), 0.25)
expect_true(is.numeric(tox_target(x)))
expect_equal(num_patients(x), 6)
expect_true(is.integer(num_patients(x)))
expect_equal(cohort(x), c(1,1,1, 2,2,2))
expect_true(is.integer(cohort(x)))
expect_equal(length(cohort(x)), num_patients(x))
expect_equal(doses_given(x), unname(c(1,1,1, 2,2,2)))
expect_true(is.integer(doses_given(x)))
expect_equal(length(doses_given(x)), num_patients(x))
expect_equal(tox(x), c(0,0,0, 0,1,1))
expect_true(is.integer(tox(x)))
expect_equal(length(tox(x)), num_patients(x))
expect_equal(num_tox(x), 2)
expect_true(is.integer(num_tox(x)))
expect_true(all((model_frame(x) - data.frame(patient = c(1,2,3,4,5,6),
cohort = c(1,1,1,2,2,2),
dose = c(1,1,1,2,2,2),
tox = c(0,0,0,0,1,1))) == 0))
expect_equal(nrow(model_frame(x)), num_patients(x))
expect_equal(num_doses(x), 5)
expect_true(is.integer(tox(x)))
expect_equal(dose_indices(x), 1:5)
expect_true(is.integer(dose_indices(x)))
expect_equal(length(dose_indices(x)), num_doses(x))
expect_equal(recommended_dose(x), 1)
expect_true(is.integer(recommended_dose(x)))
expect_equal(length(recommended_dose(x)), 1)
expect_equal(continue(x), TRUE)
expect_true(is.logical(continue(x)))
expect_equal(n_at_dose(x), c(3,3,0,0,0))
expect_true(is.integer(n_at_dose(x)))
expect_equal(length(n_at_dose(x)), num_doses(x))
expect_equal(n_at_dose(x, dose = 0), 0)
expect_true(is.integer(n_at_dose(x, dose = 0)))
expect_equal(length(n_at_dose(x, dose = 0)), 1)
expect_equal(n_at_dose(x, dose = 1), 3)
expect_true(is.integer(n_at_dose(x, dose = 1)))
expect_equal(length(n_at_dose(x, dose = 1)), 1)
expect_equal(n_at_dose(x, dose = 'recommended'), 3)
expect_true(is.integer(n_at_dose(x, dose = 'recommended')))
expect_equal(length(n_at_dose(x, dose = 'recommended')), 1)
expect_equal(n_at_recommended_dose(x), 3)
expect_true(is.integer(n_at_recommended_dose(x)))
expect_equal(length(n_at_recommended_dose(x)), 1)
expect_equal(is_randomising(x), FALSE)
expect_true(is.logical(is_randomising(x)))
expect_equal(length(is_randomising(x)), 1)
expect_equal(unname(prob_administer(x)), c(0.5,0.5,0,0,0))
expect_true(is.numeric(prob_administer(x)))
expect_equal(length(prob_administer(x)), num_doses(x))
expect_equal(tox_at_dose(x), c(0,2,0,0,0))
expect_true(is.integer(tox_at_dose(x)))
expect_equal(length(tox_at_dose(x)), num_doses(x))
expect_true(is.numeric(empiric_tox_rate(x)))
expect_equal(length(empiric_tox_rate(x)), num_doses(x))
expect_true(is.numeric(mean_prob_tox(x)))
expect_equal(length(mean_prob_tox(x)), num_doses(x))
expect_true(is.numeric(median_prob_tox(x)))
expect_equal(length(median_prob_tox(x)), num_doses(x))
expect_true(is.logical(dose_admissible(x)))
expect_equal(length(dose_admissible(x)), num_doses(x))
expect_true(is.numeric(prob_tox_quantile(x, p = 0.9)))
expect_equal(length(prob_tox_quantile(x, p = 0.9)), num_doses(x))
expect_true(is.numeric(prob_tox_exceeds(x, 0.5)))
expect_equal(length(prob_tox_exceeds(x, 0.5)), num_doses(x))
expect_true(is.logical(supports_sampling(x)))
expect_true(is.data.frame(prob_tox_samples(x)))
expect_true(is.data.frame(prob_tox_samples(x, tall = TRUE)))
expect_error(summary(x), NA)
expect_output(print(x))
expect_true(tibble::is_tibble(as_tibble(x)))
expect_true(nrow(as_tibble(x)) >= num_doses(x))
x <- fit(model_fitter, '')
expect_equal(tox_target(x), 0.25)
expect_true(is.numeric(tox_target(x)))
expect_equal(num_patients(x), 0)
expect_true(is.integer(num_patients(x)))
expect_equal(cohort(x), integer(0))
expect_true(is.integer(cohort(x)))
expect_equal(length(cohort(x)), num_patients(x))
expect_equal(doses_given(x), integer(0))
expect_true(is.integer(doses_given(x)))
expect_equal(length(doses_given(x)), num_patients(x))
expect_equal(tox(x), integer(0))
expect_true(is.integer(tox(x)))
expect_equal(length(tox(x)), num_patients(x))
expect_equal(num_tox(x), 0)
expect_true(is.integer(num_tox(x)))
mf <- model_frame(x)
expect_equal(nrow(mf), 0)
expect_equal(ncol(mf), 4)
expect_equal(num_doses(x), 5)
expect_true(is.integer(num_doses(x)))
expect_equal(dose_indices(x), 1:5)
expect_true(is.integer(dose_indices(x)))
expect_equal(length(dose_indices(x)), num_doses(x))
expect_equal(recommended_dose(x), 1)
expect_true(is.integer(recommended_dose(x)))
expect_equal(length(recommended_dose(x)), 1)
expect_equal(continue(x), TRUE)
expect_true(is.logical(continue(x)))
expect_equal(n_at_dose(x), c(0,0,0,0,0))
expect_true(is.integer(n_at_dose(x)))
expect_equal(length(n_at_dose(x)), num_doses(x))
expect_equal(n_at_dose(x, dose = 0), 0)
expect_true(is.integer(n_at_dose(x, dose = 0)))
expect_equal(length(n_at_dose(x, dose = 0)), 1)
expect_equal(n_at_dose(x, dose = 1), 0)
expect_true(is.integer(n_at_dose(x, dose = 1)))
expect_equal(length(n_at_dose(x, dose = 1)), 1)
expect_equal(n_at_dose(x, dose = 'recommended'), 0)
expect_true(is.integer(n_at_dose(x, dose = 'recommended')))
expect_equal(length(n_at_dose(x, dose = 'recommended')), 1)
expect_equal(n_at_recommended_dose(x), 0)
expect_true(is.integer(n_at_recommended_dose(x)))
expect_equal(length(n_at_recommended_dose(x)), 1)
expect_equal(is_randomising(x), FALSE)
expect_true(is.logical(is_randomising(x)))
expect_equal(length(is_randomising(x)), 1)
expect_true(is.numeric(prob_administer(x)))
expect_equal(length(prob_administer(x)), num_doses(x))
expect_equal(tox_at_dose(x), c(0,0,0,0,0))
expect_true(is.integer(tox_at_dose(x)))
expect_equal(length(tox_at_dose(x)), num_doses(x))
expect_true(is.numeric(empiric_tox_rate(x)))
expect_equal(length(empiric_tox_rate(x)), num_doses(x))
expect_true(is.numeric(mean_prob_tox(x)))
expect_equal(length(mean_prob_tox(x)), num_doses(x))
expect_true(is.numeric(median_prob_tox(x)))
expect_equal(length(median_prob_tox(x)), num_doses(x))
expect_true(is.logical(dose_admissible(x)))
expect_equal(length(dose_admissible(x)), num_doses(x))
expect_true(is.numeric(prob_tox_quantile(x, p = 0.9)))
expect_equal(length(prob_tox_quantile(x, p = 0.9)), num_doses(x))
expect_true(is.numeric(prob_tox_exceeds(x, 0.5)))
expect_equal(length(prob_tox_exceeds(x, 0.5)), num_doses(x))
expect_true(is.logical(supports_sampling(x)))
expect_true(is.data.frame(prob_tox_samples(x)))
expect_true(is.data.frame(prob_tox_samples(x, tall = TRUE)))
expect_error(summary(x), NA)
expect_output(print(x))
expect_true(tibble::is_tibble(as_tibble(x)))
expect_true(nrow(as_tibble(x)) >= num_doses(x))
outcomes <- tibble(
cohort = c(1,1,1, 2,2,2),
dose = c(1,1,1, 2,2,2),
tox = c(0,0, 0,0, 1,1)
)
x <- fit(model_fitter, outcomes)
expect_equal(tox_target(x), 0.25)
expect_true(is.numeric(tox_target(x)))
expect_equal(num_patients(x), 6)
expect_true(is.integer(num_patients(x)))
expect_equal(cohort(x), c(1,1,1, 2,2,2))
expect_true(is.integer(cohort(x)))
expect_equal(length(cohort(x)), num_patients(x))
expect_equal(doses_given(x), c(1,1,1, 2,2,2))
expect_true(is.integer(doses_given(x)))
expect_equal(length(doses_given(x)), num_patients(x))
expect_equal(tox(x), c(0,0,0, 0,1,1))
expect_true(is.integer(tox(x)))
expect_equal(length(tox(x)), num_patients(x))
expect_equal(num_tox(x), 2)
expect_true(is.integer(num_tox(x)))
expect_true(all((model_frame(x) - data.frame(patient = c(1,2,3,4,5,6),
cohort = c(1,1,1,2,2,2),
dose = c(1,1,1,2,2,2),
tox = c(0,0,0,0,1,1))) == 0))
expect_equal(nrow(model_frame(x)), num_patients(x))
expect_equal(num_doses(x), 5)
expect_true(is.integer(tox(x)))
expect_equal(dose_indices(x), 1:5)
expect_true(is.integer(dose_indices(x)))
expect_equal(length(dose_indices(x)), num_doses(x))
expect_equal(recommended_dose(x), 1)
expect_true(is.integer(recommended_dose(x)))
expect_equal(length(recommended_dose(x)), 1)
expect_equal(continue(x), TRUE)
expect_true(is.logical(continue(x)))
expect_equal(n_at_dose(x), c(3,3,0,0,0))
expect_true(is.integer(n_at_dose(x)))
expect_equal(length(n_at_dose(x)), num_doses(x))
expect_equal(n_at_dose(x, dose = 0), 0)
expect_true(is.integer(n_at_dose(x, dose = 0)))
expect_equal(length(n_at_dose(x, dose = 0)), 1)
expect_equal(n_at_dose(x, dose = 1), 3)
expect_true(is.integer(n_at_dose(x, dose = 1)))
expect_equal(length(n_at_dose(x, dose = 1)), 1)
expect_equal(n_at_dose(x, dose = 'recommended'), 3)
expect_true(is.integer(n_at_dose(x, dose = 'recommended')))
expect_equal(length(n_at_dose(x, dose = 'recommended')), 1)
expect_equal(n_at_recommended_dose(x), 3)
expect_true(is.integer(n_at_recommended_dose(x)))
expect_equal(length(n_at_recommended_dose(x)), 1)
expect_equal(is_randomising(x), FALSE)
expect_true(is.logical(is_randomising(x)))
expect_equal(length(is_randomising(x)), 1)
expect_equal(unname(prob_administer(x)), c(0.5,0.5,0,0,0))
expect_true(is.numeric(prob_administer(x)))
expect_equal(length(prob_administer(x)), num_doses(x))
expect_equal(tox_at_dose(x), c(0,2,0,0,0))
expect_true(is.integer(tox_at_dose(x)))
expect_equal(length(tox_at_dose(x)), num_doses(x))
expect_true(is.numeric(empiric_tox_rate(x)))
expect_equal(length(empiric_tox_rate(x)), num_doses(x))
expect_true(is.numeric(mean_prob_tox(x)))
expect_equal(length(mean_prob_tox(x)), num_doses(x))
expect_true(is.numeric(median_prob_tox(x)))
expect_equal(length(median_prob_tox(x)), num_doses(x))
expect_true(is.logical(dose_admissible(x)))
expect_equal(length(dose_admissible(x)), num_doses(x))
expect_true(is.numeric(prob_tox_quantile(x, p = 0.9)))
expect_equal(length(prob_tox_quantile(x, p = 0.9)), num_doses(x))
expect_true(is.numeric(prob_tox_exceeds(x, 0.5)))
expect_equal(length(prob_tox_exceeds(x, 0.5)), num_doses(x))
expect_true(is.logical(supports_sampling(x)))
expect_true(is.data.frame(prob_tox_samples(x)))
expect_true(is.data.frame(prob_tox_samples(x, tall = TRUE)))
expect_error(summary(x), NA)
expect_output(print(x))
expect_true(tibble::is_tibble(as_tibble(x)))
expect_true(nrow(as_tibble(x)) >= num_doses(x))
})
test_that('logistic trialr_crm_selector supports correct interface.', {
skeleton <- c(0.05, 0.1, 0.25, 0.4, 0.6)
target <- 0.25
model = 'logistic'
model_fitter <- get_trialr_crm(skeleton = skeleton, target = target,
model = model, a0 = 2,
beta_mean = 0, beta_sd = 1)
x <- fit(model_fitter, '1NNN 2NTT')
expect_equal(tox_target(x), 0.25)
expect_true(is.numeric(tox_target(x)))
expect_equal(num_patients(x), 6)
expect_true(is.integer(num_patients(x)))
expect_equal(cohort(x), c(1,1,1, 2,2,2))
expect_true(is.integer(cohort(x)))
expect_equal(length(cohort(x)), num_patients(x))
expect_equal(doses_given(x), unname(c(1,1,1, 2,2,2)))
expect_true(is.integer(doses_given(x)))
expect_equal(length(doses_given(x)), num_patients(x))
expect_equal(tox(x), c(0,0,0, 0,1,1))
expect_true(is.integer(tox(x)))
expect_equal(length(tox(x)), num_patients(x))
expect_equal(num_tox(x), 2)
expect_true(is.integer(num_tox(x)))
expect_true(all((model_frame(x) - data.frame(patient = c(1,2,3,4,5,6),
cohort = c(1,1,1,2,2,2),
dose = c(1,1,1,2,2,2),
tox = c(0,0,0,0,1,1))) == 0))
expect_equal(nrow(model_frame(x)), num_patients(x))
expect_equal(num_doses(x), 5)
expect_true(is.integer(tox(x)))
expect_equal(dose_indices(x), 1:5)
expect_true(is.integer(dose_indices(x)))
expect_equal(length(dose_indices(x)), num_doses(x))
expect_equal(recommended_dose(x), 1)
expect_true(is.integer(recommended_dose(x)))
expect_equal(length(recommended_dose(x)), 1)
expect_equal(continue(x), TRUE)
expect_true(is.logical(continue(x)))
expect_equal(n_at_dose(x), c(3,3,0,0,0))
expect_true(is.integer(n_at_dose(x)))
expect_equal(length(n_at_dose(x)), num_doses(x))
expect_equal(n_at_dose(x, dose = 0), 0)
expect_true(is.integer(n_at_dose(x, dose = 0)))
expect_equal(length(n_at_dose(x, dose = 0)), 1)
expect_equal(n_at_dose(x, dose = 1), 3)
expect_true(is.integer(n_at_dose(x, dose = 1)))
expect_equal(length(n_at_dose(x, dose = 1)), 1)
expect_equal(n_at_dose(x, dose = 'recommended'), 3)
expect_true(is.integer(n_at_dose(x, dose = 'recommended')))
expect_equal(length(n_at_dose(x, dose = 'recommended')), 1)
expect_equal(n_at_recommended_dose(x), 3)
expect_true(is.integer(n_at_recommended_dose(x)))
expect_equal(length(n_at_recommended_dose(x)), 1)
expect_equal(is_randomising(x), FALSE)
expect_true(is.logical(is_randomising(x)))
expect_equal(length(is_randomising(x)), 1)
expect_equal(unname(prob_administer(x)), c(0.5,0.5,0,0,0))
expect_true(is.numeric(prob_administer(x)))
expect_equal(length(prob_administer(x)), num_doses(x))
expect_equal(tox_at_dose(x), c(0,2,0,0,0))
expect_true(is.integer(tox_at_dose(x)))
expect_equal(length(tox_at_dose(x)), num_doses(x))
expect_true(is.numeric(empiric_tox_rate(x)))
expect_equal(length(empiric_tox_rate(x)), num_doses(x))
expect_true(is.numeric(mean_prob_tox(x)))
expect_equal(length(mean_prob_tox(x)), num_doses(x))
expect_true(is.numeric(median_prob_tox(x)))
expect_equal(length(median_prob_tox(x)), num_doses(x))
expect_true(is.logical(dose_admissible(x)))
expect_equal(length(dose_admissible(x)), num_doses(x))
expect_true(is.numeric(prob_tox_quantile(x, p = 0.9)))
expect_equal(length(prob_tox_quantile(x, p = 0.9)), num_doses(x))
expect_true(is.numeric(prob_tox_exceeds(x, 0.5)))
expect_equal(length(prob_tox_exceeds(x, 0.5)), num_doses(x))
expect_true(is.logical(supports_sampling(x)))
expect_true(is.data.frame(prob_tox_samples(x)))
expect_true(is.data.frame(prob_tox_samples(x, tall = TRUE)))
expect_error(summary(x), NA)
expect_output(print(x))
expect_true(tibble::is_tibble(as_tibble(x)))
expect_true(nrow(as_tibble(x)) >= num_doses(x))
x <- fit(model_fitter, '')
expect_equal(tox_target(x), 0.25)
expect_true(is.numeric(tox_target(x)))
expect_equal(num_patients(x), 0)
expect_true(is.integer(num_patients(x)))
expect_equal(cohort(x), integer(0))
expect_true(is.integer(cohort(x)))
expect_equal(length(cohort(x)), num_patients(x))
expect_equal(doses_given(x), integer(0))
expect_true(is.integer(doses_given(x)))
expect_equal(length(doses_given(x)), num_patients(x))
expect_equal(tox(x), integer(0))
expect_true(is.integer(tox(x)))
expect_equal(length(tox(x)), num_patients(x))
expect_equal(num_tox(x), 0)
expect_true(is.integer(num_tox(x)))
mf <- model_frame(x)
expect_equal(nrow(mf), 0)
expect_equal(ncol(mf), 4)
expect_equal(num_doses(x), 5)
expect_true(is.integer(num_doses(x)))
expect_equal(dose_indices(x), 1:5)
expect_true(is.integer(dose_indices(x)))
expect_equal(length(dose_indices(x)), num_doses(x))
expect_equal(recommended_dose(x), 1)
expect_true(is.integer(recommended_dose(x)))
expect_equal(length(recommended_dose(x)), 1)
expect_equal(continue(x), TRUE)
expect_true(is.logical(continue(x)))
expect_equal(n_at_dose(x), c(0,0,0,0,0))
expect_true(is.integer(n_at_dose(x)))
expect_equal(length(n_at_dose(x)), num_doses(x))
expect_equal(n_at_dose(x, dose = 0), 0)
expect_true(is.integer(n_at_dose(x, dose = 0)))
expect_equal(length(n_at_dose(x, dose = 0)), 1)
expect_equal(n_at_dose(x, dose = 1), 0)
expect_true(is.integer(n_at_dose(x, dose = 1)))
expect_equal(length(n_at_dose(x, dose = 1)), 1)
expect_equal(n_at_dose(x, dose = 'recommended'), 0)
expect_true(is.integer(n_at_dose(x, dose = 'recommended')))
expect_equal(length(n_at_dose(x, dose = 'recommended')), 1)
expect_equal(n_at_recommended_dose(x), 0)
expect_true(is.integer(n_at_recommended_dose(x)))
expect_equal(length(n_at_recommended_dose(x)), 1)
expect_equal(is_randomising(x), FALSE)
expect_true(is.logical(is_randomising(x)))
expect_equal(length(is_randomising(x)), 1)
expect_true(is.numeric(prob_administer(x)))
expect_equal(length(prob_administer(x)), num_doses(x))
expect_equal(tox_at_dose(x), c(0,0,0,0,0))
expect_true(is.integer(tox_at_dose(x)))
expect_equal(length(tox_at_dose(x)), num_doses(x))
expect_true(is.numeric(empiric_tox_rate(x)))
expect_equal(length(empiric_tox_rate(x)), num_doses(x))
expect_true(is.numeric(mean_prob_tox(x)))
expect_equal(length(mean_prob_tox(x)), num_doses(x))
expect_true(is.numeric(median_prob_tox(x)))
expect_equal(length(median_prob_tox(x)), num_doses(x))
expect_true(is.logical(dose_admissible(x)))
expect_equal(length(dose_admissible(x)), num_doses(x))
expect_true(is.numeric(prob_tox_quantile(x, p = 0.9)))
expect_equal(length(prob_tox_quantile(x, p = 0.9)), num_doses(x))
expect_true(is.numeric(prob_tox_exceeds(x, 0.5)))
expect_equal(length(prob_tox_exceeds(x, 0.5)), num_doses(x))
expect_true(is.logical(supports_sampling(x)))
expect_true(is.data.frame(prob_tox_samples(x)))
expect_true(is.data.frame(prob_tox_samples(x, tall = TRUE)))
expect_error(summary(x), NA)
expect_output(print(x))
expect_true(tibble::is_tibble(as_tibble(x)))
expect_true(nrow(as_tibble(x)) >= num_doses(x))
outcomes <- tibble(
cohort = c(1,1,1, 2,2,2),
dose = c(1,1,1, 2,2,2),
tox = c(0,0, 0,0, 1,1)
)
x <- fit(model_fitter, outcomes)
expect_equal(tox_target(x), 0.25)
expect_true(is.numeric(tox_target(x)))
expect_equal(num_patients(x), 6)
expect_true(is.integer(num_patients(x)))
expect_equal(cohort(x), c(1,1,1, 2,2,2))
expect_true(is.integer(cohort(x)))
expect_equal(length(cohort(x)), num_patients(x))
expect_equal(doses_given(x), c(1,1,1, 2,2,2))
expect_true(is.integer(doses_given(x)))
expect_equal(length(doses_given(x)), num_patients(x))
expect_equal(tox(x), c(0,0,0, 0,1,1))
expect_true(is.integer(tox(x)))
expect_equal(length(tox(x)), num_patients(x))
expect_equal(num_tox(x), 2)
expect_true(is.integer(num_tox(x)))
expect_true(all((model_frame(x) - data.frame(patient = c(1,2,3,4,5,6),
cohort = c(1,1,1,2,2,2),
dose = c(1,1,1,2,2,2),
tox = c(0,0,0,0,1,1))) == 0))
expect_equal(nrow(model_frame(x)), num_patients(x))
expect_equal(num_doses(x), 5)
expect_true(is.integer(tox(x)))
expect_equal(dose_indices(x), 1:5)
expect_true(is.integer(dose_indices(x)))
expect_equal(length(dose_indices(x)), num_doses(x))
expect_equal(recommended_dose(x), 1)
expect_true(is.integer(recommended_dose(x)))
expect_equal(length(recommended_dose(x)), 1)
expect_equal(continue(x), TRUE)
expect_true(is.logical(continue(x)))
expect_equal(n_at_dose(x), c(3,3,0,0,0))
expect_true(is.integer(n_at_dose(x)))
expect_equal(length(n_at_dose(x)), num_doses(x))
expect_equal(n_at_dose(x, dose = 0), 0)
expect_true(is.integer(n_at_dose(x, dose = 0)))
expect_equal(length(n_at_dose(x, dose = 0)), 1)
expect_equal(n_at_dose(x, dose = 1), 3)
expect_true(is.integer(n_at_dose(x, dose = 1)))
expect_equal(length(n_at_dose(x, dose = 1)), 1)
expect_equal(n_at_dose(x, dose = 'recommended'), 3)
expect_true(is.integer(n_at_dose(x, dose = 'recommended')))
expect_equal(length(n_at_dose(x, dose = 'recommended')), 1)
expect_equal(n_at_recommended_dose(x), 3)
expect_true(is.integer(n_at_recommended_dose(x)))
expect_equal(length(n_at_recommended_dose(x)), 1)
expect_equal(is_randomising(x), FALSE)
expect_true(is.logical(is_randomising(x)))
expect_equal(length(is_randomising(x)), 1)
expect_equal(unname(prob_administer(x)), c(0.5,0.5,0,0,0))
expect_true(is.numeric(prob_administer(x)))
expect_equal(length(prob_administer(x)), num_doses(x))
expect_equal(tox_at_dose(x), c(0,2,0,0,0))
expect_true(is.integer(tox_at_dose(x)))
expect_equal(length(tox_at_dose(x)), num_doses(x))
expect_true(is.numeric(empiric_tox_rate(x)))
expect_equal(length(empiric_tox_rate(x)), num_doses(x))
expect_true(is.numeric(mean_prob_tox(x)))
expect_equal(length(mean_prob_tox(x)), num_doses(x))
expect_true(is.numeric(median_prob_tox(x)))
expect_equal(length(median_prob_tox(x)), num_doses(x))
expect_true(is.logical(dose_admissible(x)))
expect_equal(length(dose_admissible(x)), num_doses(x))
expect_true(is.numeric(prob_tox_quantile(x, p = 0.9)))
expect_equal(length(prob_tox_quantile(x, p = 0.9)), num_doses(x))
expect_true(is.numeric(prob_tox_exceeds(x, 0.5)))
expect_equal(length(prob_tox_exceeds(x, 0.5)), num_doses(x))
expect_true(is.logical(supports_sampling(x)))
expect_true(is.data.frame(prob_tox_samples(x)))
expect_true(is.data.frame(prob_tox_samples(x, tall = TRUE)))
expect_error(summary(x), NA)
expect_output(print(x))
expect_true(tibble::is_tibble(as_tibble(x)))
expect_true(nrow(as_tibble(x)) >= num_doses(x))
})
test_that('logistic2 trialr_crm_selector supports correct interface.', {
skeleton <- c(0.05, 0.1, 0.25, 0.4, 0.6)
target <- 0.25
model = 'logistic2'
model_fitter <- get_trialr_crm(skeleton = skeleton, target = target,
model = model,
alpha_mean = -2, alpha_sd = 1,
beta_mean = 0, beta_sd = 1)
x <- fit(model_fitter, '1NNN 2NTT')
expect_equal(tox_target(x), 0.25)
expect_true(is.numeric(tox_target(x)))
expect_equal(num_patients(x), 6)
expect_true(is.integer(num_patients(x)))
expect_equal(cohort(x), c(1,1,1, 2,2,2))
expect_true(is.integer(cohort(x)))
expect_equal(length(cohort(x)), num_patients(x))
expect_equal(doses_given(x), unname(c(1,1,1, 2,2,2)))
expect_true(is.integer(doses_given(x)))
expect_equal(length(doses_given(x)), num_patients(x))
expect_equal(tox(x), c(0,0,0, 0,1,1))
expect_true(is.integer(tox(x)))
expect_equal(length(tox(x)), num_patients(x))
expect_equal(num_tox(x), 2)
expect_true(is.integer(num_tox(x)))
expect_true(all((model_frame(x) - data.frame(patient = c(1,2,3,4,5,6),
cohort = c(1,1,1,2,2,2),
dose = c(1,1,1,2,2,2),
tox = c(0,0,0,0,1,1))) == 0))
expect_equal(nrow(model_frame(x)), num_patients(x))
expect_equal(num_doses(x), 5)
expect_true(is.integer(tox(x)))
expect_equal(dose_indices(x), 1:5)
expect_true(is.integer(dose_indices(x)))
expect_equal(length(dose_indices(x)), num_doses(x))
expect_equal(recommended_dose(x), 2)
expect_true(is.integer(recommended_dose(x)))
expect_equal(length(recommended_dose(x)), 1)
expect_equal(continue(x), TRUE)
expect_true(is.logical(continue(x)))
expect_equal(n_at_dose(x), c(3,3,0,0,0))
expect_true(is.integer(n_at_dose(x)))
expect_equal(length(n_at_dose(x)), num_doses(x))
expect_equal(n_at_dose(x, dose = 0), 0)
expect_true(is.integer(n_at_dose(x, dose = 0)))
expect_equal(length(n_at_dose(x, dose = 0)), 1)
expect_equal(n_at_dose(x, dose = 1), 3)
expect_true(is.integer(n_at_dose(x, dose = 1)))
expect_equal(length(n_at_dose(x, dose = 1)), 1)
expect_equal(n_at_dose(x, dose = 'recommended'), 3)
expect_true(is.integer(n_at_dose(x, dose = 'recommended')))
expect_equal(length(n_at_dose(x, dose = 'recommended')), 1)
expect_equal(n_at_recommended_dose(x), 3)
expect_true(is.integer(n_at_recommended_dose(x)))
expect_equal(length(n_at_recommended_dose(x)), 1)
expect_equal(is_randomising(x), FALSE)
expect_true(is.logical(is_randomising(x)))
expect_equal(length(is_randomising(x)), 1)
expect_equal(unname(prob_administer(x)), c(0.5,0.5,0,0,0))
expect_true(is.numeric(prob_administer(x)))
expect_equal(length(prob_administer(x)), num_doses(x))
expect_equal(tox_at_dose(x), c(0,2,0,0,0))
expect_true(is.integer(tox_at_dose(x)))
expect_equal(length(tox_at_dose(x)), num_doses(x))
expect_true(is.numeric(empiric_tox_rate(x)))
expect_equal(length(empiric_tox_rate(x)), num_doses(x))
expect_true(is.numeric(mean_prob_tox(x)))
expect_equal(length(mean_prob_tox(x)), num_doses(x))
expect_true(is.numeric(median_prob_tox(x)))
expect_equal(length(median_prob_tox(x)), num_doses(x))
expect_true(is.logical(dose_admissible(x)))
expect_equal(length(dose_admissible(x)), num_doses(x))
expect_true(is.numeric(prob_tox_quantile(x, p = 0.9)))
expect_equal(length(prob_tox_quantile(x, p = 0.9)), num_doses(x))
expect_true(is.numeric(prob_tox_exceeds(x, 0.5)))
expect_equal(length(prob_tox_exceeds(x, 0.5)), num_doses(x))
expect_true(is.logical(supports_sampling(x)))
expect_true(is.data.frame(prob_tox_samples(x)))
expect_true(is.data.frame(prob_tox_samples(x, tall = TRUE)))
expect_error(summary(x), NA)
expect_output(print(x))
expect_true(tibble::is_tibble(as_tibble(x)))
expect_true(nrow(as_tibble(x)) >= num_doses(x))
x <- fit(model_fitter, '')
expect_equal(tox_target(x), 0.25)
expect_true(is.numeric(tox_target(x)))
expect_equal(num_patients(x), 0)
expect_true(is.integer(num_patients(x)))
expect_equal(cohort(x), integer(0))
expect_true(is.integer(cohort(x)))
expect_equal(length(cohort(x)), num_patients(x))
expect_equal(doses_given(x), integer(0))
expect_true(is.integer(doses_given(x)))
expect_equal(length(doses_given(x)), num_patients(x))
expect_equal(tox(x), integer(0))
expect_true(is.integer(tox(x)))
expect_equal(length(tox(x)), num_patients(x))
expect_equal(num_tox(x), 0)
expect_true(is.integer(num_tox(x)))
mf <- model_frame(x)
expect_equal(nrow(mf), 0)
expect_equal(ncol(mf), 4)
expect_equal(num_doses(x), 5)
expect_true(is.integer(num_doses(x)))
expect_equal(dose_indices(x), 1:5)
expect_true(is.integer(dose_indices(x)))
expect_equal(length(dose_indices(x)), num_doses(x))
expect_equal(recommended_dose(x), 1)
expect_true(is.integer(recommended_dose(x)))
expect_equal(length(recommended_dose(x)), 1)
expect_equal(continue(x), TRUE)
expect_true(is.logical(continue(x)))
expect_equal(n_at_dose(x), c(0,0,0,0,0))
expect_true(is.integer(n_at_dose(x)))
expect_equal(length(n_at_dose(x)), num_doses(x))
expect_equal(n_at_dose(x, dose = 0), 0)
expect_true(is.integer(n_at_dose(x, dose = 0)))
expect_equal(length(n_at_dose(x, dose = 0)), 1)
expect_equal(n_at_dose(x, dose = 1), 0)
expect_true(is.integer(n_at_dose(x, dose = 1)))
expect_equal(length(n_at_dose(x, dose = 1)), 1)
expect_equal(n_at_dose(x, dose = 'recommended'), 0)
expect_true(is.integer(n_at_dose(x, dose = 'recommended')))
expect_equal(length(n_at_dose(x, dose = 'recommended')), 1)
expect_equal(n_at_recommended_dose(x), 0)
expect_true(is.integer(n_at_recommended_dose(x)))
expect_equal(length(n_at_recommended_dose(x)), 1)
expect_equal(is_randomising(x), FALSE)
expect_true(is.logical(is_randomising(x)))
expect_equal(length(is_randomising(x)), 1)
expect_true(is.numeric(prob_administer(x)))
expect_equal(length(prob_administer(x)), num_doses(x))
expect_equal(tox_at_dose(x), c(0,0,0,0,0))
expect_true(is.integer(tox_at_dose(x)))
expect_equal(length(tox_at_dose(x)), num_doses(x))
expect_true(is.numeric(empiric_tox_rate(x)))
expect_equal(length(empiric_tox_rate(x)), num_doses(x))
expect_true(is.numeric(mean_prob_tox(x)))
expect_equal(length(mean_prob_tox(x)), num_doses(x))
expect_true(is.numeric(median_prob_tox(x)))
expect_equal(length(median_prob_tox(x)), num_doses(x))
expect_true(is.logical(dose_admissible(x)))
expect_equal(length(dose_admissible(x)), num_doses(x))
expect_true(is.numeric(prob_tox_quantile(x, p = 0.9)))
expect_equal(length(prob_tox_quantile(x, p = 0.9)), num_doses(x))
expect_true(is.numeric(prob_tox_exceeds(x, 0.5)))
expect_equal(length(prob_tox_exceeds(x, 0.5)), num_doses(x))
expect_true(is.logical(supports_sampling(x)))
expect_true(is.data.frame(prob_tox_samples(x)))
expect_true(is.data.frame(prob_tox_samples(x, tall = TRUE)))
expect_error(summary(x), NA)
expect_output(print(x))
expect_true(tibble::is_tibble(as_tibble(x)))
expect_true(nrow(as_tibble(x)) >= num_doses(x))
outcomes <- tibble(
cohort = c(1,1,1, 2,2,2),
dose = c(1,1,1, 2,2,2),
tox = c(0,0, 0,0, 1,1)
)
x <- fit(model_fitter, outcomes)
expect_equal(tox_target(x), 0.25)
expect_true(is.numeric(tox_target(x)))
expect_equal(num_patients(x), 6)
expect_true(is.integer(num_patients(x)))
expect_equal(cohort(x), c(1,1,1, 2,2,2))
expect_true(is.integer(cohort(x)))
expect_equal(length(cohort(x)), num_patients(x))
expect_equal(doses_given(x), c(1,1,1, 2,2,2))
expect_true(is.integer(doses_given(x)))
expect_equal(length(doses_given(x)), num_patients(x))
expect_equal(tox(x), c(0,0,0, 0,1,1))
expect_true(is.integer(tox(x)))
expect_equal(length(tox(x)), num_patients(x))
expect_equal(num_tox(x), 2)
expect_true(is.integer(num_tox(x)))
expect_true(all((model_frame(x) - data.frame(patient = c(1,2,3,4,5,6),
cohort = c(1,1,1,2,2,2),
dose = c(1,1,1,2,2,2),
tox = c(0,0,0,0,1,1))) == 0))
expect_equal(nrow(model_frame(x)), num_patients(x))
expect_equal(num_doses(x), 5)
expect_true(is.integer(tox(x)))
expect_equal(dose_indices(x), 1:5)
expect_true(is.integer(dose_indices(x)))
expect_equal(length(dose_indices(x)), num_doses(x))
expect_equal(recommended_dose(x), 2)
expect_true(is.integer(recommended_dose(x)))
expect_equal(length(recommended_dose(x)), 1)
expect_equal(continue(x), TRUE)
expect_true(is.logical(continue(x)))
expect_equal(n_at_dose(x), c(3,3,0,0,0))
expect_true(is.integer(n_at_dose(x)))
expect_equal(length(n_at_dose(x)), num_doses(x))
expect_equal(n_at_dose(x, dose = 0), 0)
expect_true(is.integer(n_at_dose(x, dose = 0)))
expect_equal(length(n_at_dose(x, dose = 0)), 1)
expect_equal(n_at_dose(x, dose = 1), 3)
expect_true(is.integer(n_at_dose(x, dose = 1)))
expect_equal(length(n_at_dose(x, dose = 1)), 1)
expect_equal(n_at_dose(x, dose = 'recommended'), 3)
expect_true(is.integer(n_at_dose(x, dose = 'recommended')))
expect_equal(length(n_at_dose(x, dose = 'recommended')), 1)
expect_equal(n_at_recommended_dose(x), 3)
expect_true(is.integer(n_at_recommended_dose(x)))
expect_equal(length(n_at_recommended_dose(x)), 1)
expect_equal(is_randomising(x), FALSE)
expect_true(is.logical(is_randomising(x)))
expect_equal(length(is_randomising(x)), 1)
expect_equal(unname(prob_administer(x)), c(0.5,0.5,0,0,0))
expect_true(is.numeric(prob_administer(x)))
expect_equal(length(prob_administer(x)), num_doses(x))
expect_equal(tox_at_dose(x), c(0,2,0,0,0))
expect_true(is.integer(tox_at_dose(x)))
expect_equal(length(tox_at_dose(x)), num_doses(x))
expect_true(is.numeric(empiric_tox_rate(x)))
expect_equal(length(empiric_tox_rate(x)), num_doses(x))
expect_true(is.numeric(mean_prob_tox(x)))
expect_equal(length(mean_prob_tox(x)), num_doses(x))
expect_true(is.numeric(median_prob_tox(x)))
expect_equal(length(median_prob_tox(x)), num_doses(x))
expect_true(is.logical(dose_admissible(x)))
expect_equal(length(dose_admissible(x)), num_doses(x))
expect_true(is.numeric(prob_tox_quantile(x, p = 0.9)))
expect_equal(length(prob_tox_quantile(x, p = 0.9)), num_doses(x))
expect_true(is.numeric(prob_tox_exceeds(x, 0.5)))
expect_equal(length(prob_tox_exceeds(x, 0.5)), num_doses(x))
expect_true(is.logical(supports_sampling(x)))
expect_true(is.data.frame(prob_tox_samples(x)))
expect_true(is.data.frame(prob_tox_samples(x, tall = TRUE)))
expect_error(summary(x), NA)
expect_output(print(x))
expect_true(tibble::is_tibble(as_tibble(x)))
expect_true(nrow(as_tibble(x)) >= num_doses(x))
}) |
github_api_repo_subscribe = function(repo, subscribed, ignored){
arg_is_chr_scalar(repo)
arg_is_lgl_scalar(subscribed, ignored)
if (subscribed == ignored)
cli_stop("{.code subscribed != ignored} must be true")
ghclass_api_v3_req(
endpoint = "PUT /repos/:owner/:repo/subscription",
owner = get_repo_owner(repo),
repo = get_repo_name(repo),
subscribed = subscribed,
ignored = ignored
)
}
repo_watch = function(repo) {
arg_is_chr(repo)
res = purrr::map(
repo,
function(repo, notifications) {
res = purrr::safely(github_api_repo_subscribe)(
repo,
subscribed = TRUE,
ignored = FALSE
)
status_msg(
res,
"Watched {.val {repo}}.",
"Failed to watch {.val {repo}}."
)
}
)
invisible(res)
}
repo_ignore = function(repo) {
arg_is_chr(repo)
res = purrr::map(
repo,
function(repo, notifications) {
res = purrr::safely(github_api_repo_subscribe)(
repo,
subscribed = FALSE,
ignored = TRUE
)
status_msg(
res,
"Ignored repo {.val {repo}}.",
"Failed to ignore repo {.val {repo}}."
)
}
)
invisible(res)
} |
multiPersonIBD = function(x, ids, complete = FALSE, verbose = FALSE) {
N = length(ids)
if(N < 2)
stop2("`length(ids)` must be at least 2")
if(N > 6)
stop2("length(ids) > 6: Not implemented yet")
inb = inbreeding(x, ids)
if(any(isInbred <- inb > .Machine$double.eps)) {
message(paste0(sprintf(" Individual '%s' is inbred (f = %g)",
ids[isInbred], inb[isInbred]), collapse = "\n"))
stop2("This function requires all `ids` individuals to be non-inbred")
}
if(!hasParentsBeforeChildren(x))
x = parentsBeforeChildren(x)
x = foundersFirst(x)
mem = initialiseGKMemo(x, counters = c("i", "itriv", "iimp", "ifound", "ilook", "irec"))
allPatterns = MULTIPATTERNS_NONINBRED[[N]]
usePatterns = removeImpossiblePatterns(allPatterns, x, ids, verbose = verbose)
ids2 = rep(ids, each = 2)
coefs = apply(usePatterns, 1, function(r) {
kp = r[1:(2*N)]
weight = r[2*N + 1]
g = generalisedKinship(x, split(ids2, kp), mem = mem)
2^N * weight * g
})
if(verbose)
printCounts2(mem)
glist = lapply(seq(1, 2*N, by = 2), function(i)
paste(usePatterns[, i], usePatterns[, i+1], sep = " "))
res = as.data.frame(glist, col.names = as.character(ids), optional = TRUE,
stringsAsFactors = FALSE)
res = cbind(Prob = coefs, res)
if(!complete)
res = res[res$Prob > 0, , drop = FALSE]
res
}
standardAlleleSeq = function(x) {
res = integer(length(x))
a = x[1]
i = 1L
while(TRUE) {
res[x == a] = i
a = x[match(0, res)]
if(is.na(a))
break
i = i + 1
}
res
}
minimalPattern = function(x) {
if(is.matrix(x)) {
res = apply(x, 1, minimalPattern)
return(res)
}
if(!is.numeric(x) || any(as.integer(x) != x))
stop("The input must be a vector of integers:", toString(x))
n = length(x)
if(n %% 2 != 0)
stop("Input vector must have even length, not ", toString(x))
insertAt = function(y, pos, value) {
y[y == value] = max(y) + 1
y[pos] = value
y
}
nPairs = n/2
even = 2 * seq_len(nPairs)
odd = even - 1
i = 0
for(k in seq_len(nPairs)) {
a = x[2*k - 1]
b = x[2*k]
if(a == b) {
if(a > i) {
x = insertAt(x, x == a, i + 1)
i = i + 1
}
next
}
n.new = sum(a > i, b > i)
if(n.new == 2) {
idx.a = x == a
idx.b = x == b
grps.a = idx.a[odd] | idx.a[even]
grps.b = idx.b[odd] | idx.b[even]
diffs = grps.a != grps.b
swap = any(diffs) && grps.b[match(TRUE, diffs)]
x = insertAt(x, idx.a, value = if(swap) i+2 else i+1)
x = insertAt(x, idx.b, value = if(swap) i+1 else i+2)
i = i + 2
}
else if (n.new == 1) {
x = insertAt(x, x == max(a,b), i + 1)
i = i + 1
}
if((g1 <- x[2*k - 1]) > (g2 <- x[2*k])) {
x[2*k - 1] = g2
x[2*k] = g1
}
}
x
}
expandSwaps = function(x, makeUnique = TRUE) {
n = length(x)/2
res = matrix(0L, nrow = 2*n, ncol = 2^n)
for(i in 1:n) {
rows = c(2*i-1, 2*i)
g = x[rows]
swap = rep(c(FALSE, TRUE), each = 2^(n-i), length.out = 2^n)
res[rows, !swap] = g
res[rows, swap] = g[2:1]
}
res = apply(res, 2, standardAlleleSeq)
if(makeUnique)
res = unique.matrix(res, MARGIN = 2)
t.default(res)
}
removeImpossiblePatterns = function(patterns, x, ids, verbose = TRUE) {
N = length(ids)
if(length(ids) < 3) return(patterns[, 1:(2*N + 1)])
nr = nrow(patterns)
kappas = kappaIBD(x, ids)
nonz = lapply(1:nrow(kappas), function(i) (0:2)[kappas[i, 3:5] > 0])
names(nonz) = sapply(combn(N, 2, simplify = FALSE), paste, collapse = "-")
for(p in names(nonz)) {
goodrows = patterns[, p] %in% nonz[[p]]
patterns = patterns[goodrows, , drop = FALSE]
}
if(verbose)
message(sprintf("State space reduction: %d --> %d", nr, nrow(patterns)))
patterns
} |
plot_dym_sp <- function(subnic, sp, xlab=NULL, ylab=NULL, main=NA, col.axis="azure3", lty.axis=2, lwd.axis=2,
border.E="black",
col.E="
lty.E=1,
lwd.E=1,
col.NR ="
border.NR ="black",
lty.NR=1,
lwd.NR=1,
col.NR.lab="black",
cex.NR.lab=0.7,
pch.NR.pos= 21,
col.NR.pos="black",
col.NR.pt="black",
cex.NR.pos=1,
border.SR="black",
col.SR="
lty.SR=1,
lwd.SR=1,
col.SR.lab="black",
cex.SR.lab=0.7,
fac.SR.lab=1.2,
pch.SR.pos= 21,
col.SR.pos="
col.SR.pt="black",
cex.SR.pos=1,
col.arrow="black",
angle.arrow=20,
lwd.arrow=2, length.arrow=0.1, font.sp=2, leg=T, posi.leg="topleft", bty.leg="n", ...){
fac <- subnic$factor
lev <- levels(fac)
ar_sub <- subarea(subnic)
eig <- round(subnic$eig/sum(subnic$eig)*100,2)[1:2]
E <- ar_sub$E
if(pch.SR.pos<21|pch.SR.pos>25){
col.SR.pt <- col.SR.pos
}
if(pch.NR.pos<21|pch.NR.pos>25){
col.NR.pt <- col.NR.pos
}
NR <- ar_sub$NR[[sp]]
if(is.null(xlab)){
xlab=paste(paste("OMI1",eig[1], sep=" "),"%",sep="")}
if(is.null(ylab)){
ylab=paste(paste("OMI2",eig[2], sep=" "),"%",sep="")}
plot(subnic$ls, main=main, xlab= xlab,
ylab= ylab, type="n",...)
polygon(E$x, E$y, border=border.E, col=col.E, lty=lty.E, lwd=lwd.E)
polygon(NR$x,NR$y, border=border.NR, col=col.NR, lty=lty.NR,lwd= lwd.NR)
nami <- paste(sp, lev, sep="")
spli <- subnic$sub[rownames(subnic$sub)%in%nami,]
colnames(spli) <- colnames(subnic$li)
levi <- sub(sp,"",nami)
M <- length(levi)
if(is.na(col.NR.lab[M])){
col.SRi <- rep(col.SR,M)
border.SRi <- rep(border.SR,M)
}
for (j in 1:M){
SR <- ar_sub$SR[[lev[j]]]
SR <- SR[[nami[j]]]
if (length(SR$x)>2){
polygon(SR$x,SR$y, border=border.SRi[j], col=col.SRi[j],lty=lty.SR, lwd=lwd.SR)
}
else {
points(SR$x,SR$y,pch=pch.SR.pos,col=col.SR.pt[j], bg=col.SR.pos[j], cex=cex.SR.pos)
}
}
abline(h=0, lty=lty.axis, lwd=lwd.axis, col=col.axis)
abline(v=0, lty=lty.axis, lwd=lwd.axis, col=col.axis)
arrows(rep(0,M),rep(0,M),spli[,1], spli[,2], angle=angle.arrow,
col=col.arrow,lwd=lwd.arrow, length=length.arrow)
points(spli[,1], spli[,2], pch=pch.SR.pos, col=col.SR.pt, bg=col.SR.pos, cex=cex.SR.pos)
points(subnic$li[sp,1], subnic$li[sp,2], pch=pch.NR.pos, col=col.NR.pt, bg=col.NR.pos, cex=cex.NR.pos)
li <- rbind(subnic$li[sp,], spli)
if(anyNA(li)){
li <- li[-which(is.na(li)==T),]
}
if(sum(round(apply(li,2,diff),1))==0){
text(subnic$li[sp,1]*fac.SR.lab,subnic$li[sp,2]*fac.SR.lab,sp, col=col.NR.lab, cex=cex.NR.lab, font = font.sp)
} else {
li <- rbind(subnic$li[sp,]*fac.SR.lab, spli*fac.SR.lab)
text(li[,1],li[,2],rownames(li),col=c(col.NR.lab,col.SR.lab), cex=c(cex.NR.lab,rep(cex.SR.lab,dim(spli)[1])), font = font.sp)
}
if(isTRUE(leg)){
filli <- c(col.E, col.NR,NA,col.SR,NA)
borderi <- c(border.E, border.NR,NA, border.SR,NA)
col.leg <- c(NA,NA, col.NR.pt,NA,col.SR.pt)
col.bg <- c(NA,NA, col.NR.pos,NA,col.SR.pos)
pch.leg <- c(NA,NA,pch.NR.pos,NA,pch.SR.pos)
tex.leg <- c("E","NR","NR position","SR","SR position")
lty.leg <- c(0,0,NA,0,NA)
lwd.leg <- c(0,0,NA,0,NA)
posi.cex <-c(NA,NA,cex.NR.pos,NA,cex.SR.pos)
if(is.na(col.E)){
filli[1] <- NA
borderi[1] <- NA
tex.leg[1] <- NA
}
if(is.na(col.NR)){
filli[2] <- NA
borderi[2] <- NA
tex.leg[2] <- NA
}
if(anyNA(col.SR)){
filli[4] <- NA
borderi[4] <- NA
tex.leg[4] <- NA
}
if(anyNA(cex.NR.pos)){
posi.cex[3] <- NA
tex.leg[3] <- NA
}
if(anyNA(cex.SR.pos)){
posi.cex[5] <- NA
tex.leg[5] <- NA
}
if(lty.E>1){
pch.leg[1] <- NA
lty.leg[1] <- lty.E
lwd.leg[1] <- lwd.E
}
if (lty.NR>1){
pch.leg[2] <- NA
lty.leg[2] <- lty.NR
lwd.leg[2] <- lwd.NR
}
if (lty.SR>1){
pch.leg[4] <- NA
lty.leg[4] <- lty.SR
lwd.leg[4] <- lwd.SR
}
legend(posi.leg, legend=tex.leg, fill =filli, border=borderi, pch=pch.leg, col=col.leg, pt.cex = posi.cex,
pt.bg=col.bg, lty=lty.leg, pt.lwd=c(NA,NA,1,NA,1), lwd=lwd.leg, bty=bty.leg,...)
}
} |
spl2Db <- function(x.coord,y.coord, at.var=NULL,at.levels=NULL, nsegments = c(10,10),
degree = c(3,3), penaltyord = c(2,2),nestorder = c(1,1),
minbound=NULL, maxbound=NULL, method="Lee", what="bits" ) {
if(length(degree) == 1){degree <- rep(degree,2) }
if(length(nsegments) == 1){nsegments <- rep(nsegments,2) }
if(length(penaltyord) == 1){penaltyord <- rep(penaltyord,2) }
if(length(nestorder) == 1){nestorder <- rep(nestorder,2) }
x.coord.name <- as.character(substitute(list(x.coord)))[-1L]
y.coord.name <- as.character(substitute(list(y.coord)))[-1L]
if(is.null(at.var)){
at.var <- rep("A",length(x.coord))
at.name <- "FIELDINST"
at.levels <- "A"
}else{
at.name <- as.character(substitute(list(at)))[-1L]
if(length(at.var) != length(x.coord)){stop("at.var has different length than x.coord and y.coord, please fix.", call. = FALSE)}
if(is.null(at.levels)){at.levels <- levels(as.factor(at.var))}
}
index <- 1:length(x.coord)
if(!is.numeric(x.coord)){stop("x.coord argument in spl2D() needs to be numeric.", call. = FALSE)}
if(!is.numeric(y.coord)){stop("y.coord argument in spl2D() needs to be numeric.", call. = FALSE)}
dat <- data.frame(x.coord, y.coord, at.var, index); colnames(dat) <- c(x.coord.name,y.coord.name,at.name,"index")
missby <- which(is.na(dat[,at.name]))
if(length(missby)>0){stop("We will split using the at.name argument and you have missing values in this column.\nPlease correct.", call. = FALSE)}
dat[,at.name] <- as.factor(dat[,at.name])
data0 <- split(dat, dat[,at.name])
names(data0) <- levels(dat[,at.name])
nasx <- which(is.na(dat[,x.coord.name]))
nasy <- which(is.na(dat[,y.coord.name]))
if(length(nasx) > 0 | length(nasy) >0){
stop("x.coord and y.coord columns cannot have NA's", call. = FALSE)
}
multires <- lapply(data0, function(dxy){
TPXZg <- tpsmmbwrapper(columncoordinates=x.coord.name, rowcoordinates=y.coord.name,
maxbound=maxbound, minbound=minbound, penaltyord=penaltyord,
data=dxy, nsegments=nsegments, nestorder=nestorder, asreml="grp", method=method)
fC <- TPXZg$data[,TPXZg$grp$TP.R.1_fcol]
fR <- TPXZg$data[,TPXZg$grp$TP.C.1_frow]
fC.R <- TPXZg$data[,TPXZg$grp$TP.R.2_fcol]
C.fR <- TPXZg$data[,TPXZg$grp$TP.C.2_frow]
fC.fR <- TPXZg$data[,TPXZg$grp$TP_fcol_frow]
rest <- TPXZg$data[,min(c(which(colnames(TPXZg$data)=="TP.col"),which(colnames(TPXZg$data)=="TP.row"))):(min(c(TPXZg$grp$TP.R.1_fcol,TPXZg$grp$TP.C.1_frow))-1)]
return(list(fC,fR,fC.R,C.fR,fC.fR,rest))
})
names(multires) <- at.levels
toFill <- lapply(data0,function(x){x$index})
myNames <- list()
for(k in 1:6){
myNames[[k]] <- lapply(multires,function(x){colnames(x[[k]])})
}; names(myNames) <- c("fC","fR","fC.R", "C.fR","fC.fR","rest")
Zup <- list()
Zup2 <- list()
Kup <- list()
typevc <- numeric()
re_name <- character()
counter <- 1
counter2 <- 1
for(k in 1:6){
for(j in 1:length(multires)){
if(names(multires)[j] %in% at.levels){
Z <- matrix(0,nrow=nrow(dat),ncol=length(myNames[[k]][[j]]))
colnames(Z) <- myNames[[k]][[j]]
prov <- multires[[j]][[k]]
Z[toFill[[j]],colnames(prov)] <- as.matrix(prov)
attr(Z,"variables") <- c(x.coord.name, y.coord.name)
if(k < 6){
Zup[[counter]] <- Z
names(Zup)[counter] <- paste0(names(multires)[j],":",names(myNames)[k])
Gu1 <- diag(ncol(Z)); colnames(Gu1) <- rownames(Gu1) <- colnames(Z)
Kup[[counter]] <- Gu1
typevc[counter] <- 1
re_name[counter] <- names(Zup)[counter]
counter <- counter + 1
}else{
Zup2[[counter2]] <- Z
names(Zup2)[counter2] <- paste0(names(multires)[j],":",names(myNames)[k])
counter2 <- counter2 + 1
}
}
}
}
Gti=NULL
Gtc=NULL
vcs <- diag(length(Zup)); rownames(vcs) <- colnames(vcs) <- names(Zup)
if(what=="bits"){
namess2 <- c(x.coord.name, y.coord.name)
S3 <- list(Z=Zup,K=Kup,Gti=Gti,Gtc=Gtc,typevc=typevc,re_name=re_name,vcs=vcs, terms=namess2)
}else if(what == "base"){
S3 <- do.call(cbind,Zup2)
}else{stop("method not recognized.",call. = FALSE)}
return(S3)
}
spl2Dmats <- function(x.coord.name,
y.coord.name,
data,
at.name,
at.levels,
nsegments = NULL,
minbound=NULL,
maxbound=NULL,
degree = c(3,3),
penaltyord = c(2,2),
nestorder = c(1,1),
method="Lee" ) {
x.coord <- data[,x.coord.name]
y.coord <- data[,y.coord.name]
data[,paste0(x.coord.name,"f")] <- as.factor(data[,x.coord.name])
data[,paste0(y.coord.name,"f")] <- as.factor(data[,y.coord.name])
if(!is.numeric(x.coord)){stop("x.coord argument in spl2D() needs to be numeric.", call. = FALSE)}
if(!is.numeric(y.coord)){stop("y.coord argument in spl2D() needs to be numeric.", call. = FALSE)}
if(missing(at.name)){
dat <- data.frame(x.coord, y.coord); colnames(dat) <- c(x.coord.name,y.coord.name)
dat$FIELDINST <- "FIELD1"
at.name="FIELDINST"
dat[,at.name] <- as.factor(dat[,at.name])
data0 <- split(dat, dat[,at.name])
at.levels="FIELD1"
data[,at.name] <- "FIELD1"
}else{
check <- which(colnames(data)==at.name)
if(length(check)==0){stop("at.name column not found in the data provided", call. = FALSE)}else{
at <- data[,at.name]
dat <- data.frame(x.coord, y.coord, at); colnames(dat) <- c(x.coord.name,y.coord.name,at.name)
missby <- which(is.na(dat[,at.name]))
if(length(missby)>0){stop("We will split using the at.name argument and you have missing values in this column.\nPlease correct.", call. = FALSE)}
dat[,at.name] <- as.factor(dat[,at.name])
data0 <- split(dat, dat[,at.name])
names(data0) <- levels(dat[,at.name])
}
}
if(missing(at.levels)){
at.levels <- levels(dat[,at.name])
}
nasx <- which(is.na(dat[,x.coord.name]))
nasy <- which(is.na(dat[,y.coord.name]))
if(length(nasx) > 0 | length(nasy) >0){
stop("x.coord and y.coord columns cannot have NA's", call. = FALSE)
}
multires <- lapply(data0, function(dxy){
TPXZg <- tpsmmbwrapper(columncoordinates=x.coord.name, rowcoordinates=y.coord.name,
maxbound=maxbound, minbound=minbound, penaltyord=penaltyord,
data=dxy, nsegments=nsegments, nestorder=nestorder, asreml="grp", method=method)
fC <- TPXZg$data[,TPXZg$grp$TP.R.1_fcol]
fR <- TPXZg$data[,TPXZg$grp$TP.C.1_frow]
fC.R <- TPXZg$data[,TPXZg$grp$TP.R.2_fcol]
C.fR <- TPXZg$data[,TPXZg$grp$TP.C.2_frow]
fC.fR <- TPXZg$data[,TPXZg$grp$TP_fcol_frow]
rest <- TPXZg$data[,min(c(which(colnames(TPXZg$data)=="TP.col"),which(colnames(TPXZg$data)=="TP.row"))):(min(c(TPXZg$grp$TP.R.1_fcol,TPXZg$grp$TP.C.1_frow))-1)]
all <- TPXZg$data[,TPXZg$grp$All]
return(list(fC,fR,fC.R,C.fR,fC.fR,all,rest))
})
nrows <- unlist(lapply(data0,nrow))
end <- numeric(); for(l in 1:length(nrows)){end[l] <- sum(nrows[1:l]) }
start <- numeric(); for(l in 1:length(nrows)){start[l] <- end[l]-nrows[l]+1 }
nColList <- list()
for(k in 1:6){
nColList[[k]] <- unlist(lapply(multires,function(x){colnames(x[[k]])}))
}
uniqueNames <- lapply(nColList,unique)
Zl <- list()
for(k in 1:6){
Z <- matrix(0,nrow=nrow(dat),ncol=length(uniqueNames[[k]]))
colnames(Z) <- uniqueNames[[k]]
for(j in 1:length(multires)){
if(names(multires)[j] %in% at.levels){
prov <- multires[[j]][[k]]
Z[start[j]:end[j],colnames(prov)] <- as.matrix(prov)
}
}
attr(Z,"variables") <- c(x.coord.name, y.coord.name)
Zl[[k]] <- Z
}
names(Zl) <- c("fC","fR","fC.R", "C.fR","fC.fR","all")
data[,at.name] <- as.factor(data[,at.name])
dataToreturn <- split(data, data[at.name])
dataToreturn <- do.call(rbind,dataToreturn)
rest <- lapply(multires,function(x){x[[7]]})
rest <- do.call(rbind,rest)
dataToreturn <- cbind(dataToreturn,rest)
Zl$data <- dataToreturn
return(Zl)
}
tpsmmbwrapper <- function (columncoordinates, rowcoordinates, data, nsegments=NULL,
minbound=NULL, maxbound=NULL, degree = c(3, 3), penaltyord = c(2, 2),
nestorder = c(1, 1), asreml = "mbf", eigenvalues = "include",
method = "Lee", stub = NULL)
{
if (missing(columncoordinates))
stop("columncoordinates argument must be set")
if (missing(rowcoordinates))
stop("rowcoordinates argument must be set")
if (missing(data))
stop("data argument must be set")
col <- sort(unique(data[[columncoordinates]]))
nuc <- length(col)
col.match <- match(data[[columncoordinates]], col)
row <- sort(unique(data[[rowcoordinates]]))
nur <- length(row)
row.match <- match(data[[rowcoordinates]], row)
nv <- length(data[[columncoordinates]])
if (is.null(minbound)) {
cminval <- min(col)
rminval <- min(row)
} else {
cminval <- min(c(minbound[1], min(col)))
if (length(minbound) < 2) {
rminval <- min(c(minbound[1], min(row)))
}
else {
rminval <- min(c(minbound[2], min(row)))
}
}
if (is.null(maxbound)) {
cmaxval <- max(col)
rmaxval <- max(row)
}
else {
cmaxval <- max(c(maxbound[1], max(col)))
if (length(maxbound) < 2) {
rmaxval <- max(c(maxbound[1], max(row)))
}
else {
rmaxval <- max(c(maxbound[2], max(row)))
}
}
if (is.null(nsegments)) {
nsegcol <- nuc - 1
nsegrow <- nur - 1
}
else {
nsegcol <- max(c(nsegments[1], 2))
}
if (length(nsegments) < 2) {
nsegrow <- max(c(nsegments[1], 2))
}
else {
nsegrow <- max(c(nsegments[2], 2))
}
nestcol <- floor(nestorder[1])
if (length(nestorder) < 2)
nestrow <- floor(nestorder[1])
else nestrow <- floor(nestorder[2])
nsncol <- 0
if (nestcol > 1) {
if (nsegcol%%nestcol != 0)
warning("Column nesting ignored: number of column segments must be a multiple of nesting order")
else nsncol <- nsegcol/nestcol
}
nsnrow <- 0
if (nestrow > 1) {
if (nsegrow%%nestrow != 0)
warning("Row nesting ignored: number of row segments must be a multiple of nesting order")
else nsnrow <- nsegrow/nestrow
}
Bc <- bbasis(col, cminval, cmaxval, nsegcol, degree[1])
nc <- ncol(Bc)
if (length(degree) < 2)
degr <- degree[1]
else degr <- degree[2]
Br <- bbasis(row, rminval, rmaxval, nsegrow, degr)
nr <- ncol(Br)
if (nsncol > 0) {
Bcn <- bbasis(col, cminval, cmaxval, nsncol, degree[1])
ncn <- ncol(Bcn)
}
else ncn <- nc
if (nsnrow > 1) {
Brn <- bbasis(row, rminval, rmaxval, nsnrow, degr)
nrn <- ncol(Brn)
}
else nrn <- nr
diff.c <- penaltyord[[1]]
Dc <- diff(diag(nc), diff = diff.c)
svd.c <- svd(crossprod(Dc))
nbc <- nc - diff.c
U.Zc <- svd.c$u[, c(1:nbc)]
U.Xc <- svd.c$u[, -c(1:nbc)]
L.c <- sqrt(svd.c$d[c(1:nbc)])
diagc <- L.c^2
BcU <- Bc %*% U.Zc
BcX <- Bc %*% U.Xc
BcULi <- BcU %*% diag(1/L.c)
if ("include" %in% eigenvalues) {
BcZmat.df <- as.data.frame(BcULi)
BcZmat <- BcULi
}
else {
BcZmat.df <- as.data.frame(BcU)
BcZmat <- BcU
}
BcZmat.df$TP.col <- col
mat1c <- matrix(rep(1, nuc), nrow = nuc)
BcXadj <- BcX - mat1c %*% t(mat1c) %*% BcX/nuc
Xfc <- (svd(crossprod(BcXadj)))$u[, c(ncol(BcXadj):1)]
BcX <- BcX %*% Xfc
if (BcX[1, 1] < 0)
BcX[, 1] <- -1 * BcX[, 1]
if (BcX[1, 2] > 0)
BcX[, 2] <- -1 * BcX[, 2]
if (nsncol > 0) {
Dcn <- diff(diag(ncn), diff = diff.c)
svd.cn <- svd(crossprod(Dcn))
nbcn <- ncn - diff.c
U.Zcn <- svd.cn$u[, c(1:nbcn)]
U.Xcn <- svd.cn$u[, -c(1:nbcn)]
L.cn <- sqrt(svd.cn$d[c(1:nbcn)])
BcnU <- Bcn %*% U.Zcn
BcnX <- Bcn %*% U.Xcn
}
else {
nbcn <- nbc
BcnU <- BcU
L.cn <- L.c
}
if (length(penaltyord) < 2) {
diff.r <- penaltyord[1]
}
else {
diff.r <- penaltyord[2]
}
Dr <- diff(diag(nr), diff = diff.r)
svd.r <- svd(crossprod(Dr))
nbr <- nr - diff.r
U.Zr <- svd.r$u[, c(1:nbr)]
U.Xr <- svd.r$u[, -c(1:nbr)]
L.r <- sqrt(svd.r$d[c(1:nbr)])
diagr <- L.r^2
BrU <- Br %*% U.Zr
BrX <- Br %*% U.Xr
BrULi <- BrU %*% diag(1/L.r)
if ("include" %in% eigenvalues) {
BrZmat.df <- as.data.frame(BrULi)
BrZmat <- BrULi
}
else {
BrZmat.df <- as.data.frame(BrU)
BrZmat <- BrU
}
BrZmat.df$TP.row <- row
mat1r <- matrix(rep(1, nur), nrow = nur)
BrXadj <- BrX - mat1r %*% t(mat1r) %*% BrX/nur
Xfr <- (svd(crossprod(BrXadj)))$u[, c(ncol(BrXadj):1)]
BrX <- BrX %*% Xfr
if (BrX[1, 1] < 0)
BrX[, 1] <- -1 * BrX[, 1]
if (BrX[1, 2] > 0)
BrX[, 2] <- -1 * BrX[, 2]
if (nsnrow > 0) {
Drn <- diff(diag(nrn), diff = diff.r)
svd.rn <- svd(crossprod(Drn))
nbrn <- nrn - diff.r
U.Zrn <- svd.rn$u[, c(1:nbrn)]
U.Xrn <- svd.rn$u[, -c(1:nbrn)]
L.rn <- sqrt(svd.rn$d[c(1:nbrn)])
BrnU <- Brn %*% U.Zrn
BrnX <- Brn %*% U.Xrn
}
else {
nbrn <- nbr
BrnU <- BrU
L.rn <- L.r
}
A <- 10^(floor(log10(max(row))) + 1)
row.index <- rep(row, times = nuc)
col.index <- rep(col, each = nur)
index <- A * col.index + row.index
C.R <- A * data[[columncoordinates]] + data[[rowcoordinates]]
BcrZ1 <- BcnU[col.match, ] %x% matrix(rep(1, nbrn), nrow = 1,
ncol = nbrn)
BcrZ2 <- matrix(rep(1, nbcn), nrow = 1, ncol = nbcn) %x%
BrnU[row.match, ]
BcrZ <- BcrZ1 * BcrZ2
diagrx <- rep(L.cn^2, each = nbrn)
diagcx <- rep(L.rn^2, times = nbcn)
if ("Lee" %in% method) {
diagcr <- diagrx + diagcx
}
if ("Wood" %in% method) {
diagcr <- diagrx * diagcx
}
if (!("Lee" %in% method) & !("Wood" %in% method)) {
stop("Invalid setting of method argument")
}
BcrZLi <- BcrZ %*% diag(1/sqrt(diagcr))
if ("include" %in% eigenvalues) {
BcrZmat.df <- as.data.frame(BcrZLi)
BcrZmat <- BcrZLi
}
else {
BcrZmat.df <- as.data.frame(BcrZ)
BcrZmat <- BcrZ
}
BcrZmat.df$TP.CxR <- C.R
tracelist <- list()
for (i in 1:diff.c) {
nm <- paste0("Xc", i, ":Zr")
tempmat <- (BcX[col.match, i] %x% matrix(rep(1, nbr),
nrow = 1)) * BrZmat[row.match, ]
if ("include" %in% eigenvalues)
tempmatsc <- tempmat
else tempmatsc <- tempmat * (rep(1, nv) %*% matrix((1/diagr),
nrow = 1))
tracelist[nm] <- sum(tempmatsc * tempmat)
}
for (i in 1:diff.r) {
nm <- paste0("Zc:Xr", i)
tempmat <- BcZmat[col.match, ] * (matrix(rep(1, nbc),
nrow = 1) %x% BrX[row.match, i])
if ("include" %in% eigenvalues)
tempmatsc <- tempmat
else tempmatsc <- tempmat * (rep(1, nv) %*% matrix((1/diagc),
nrow = 1))
tracelist[nm] <- sum(tempmatsc * tempmat)
}
if ("include" %in% eigenvalues)
tracelist["Zc:Zr"] <- sum(BcrZmat * BcrZmat)
else {
tempmatsc <- BcrZmat * (rep(1, nv) %*% matrix((1/diagcr),
nrow = 1))
tracelist["Zc:Zr"] <- sum(tempmatsc * BcrZmat)
}
outdata <- as.data.frame(data)
outdata$TP.col <- data[[columncoordinates]]
outdata$TP.row <- data[[rowcoordinates]]
outdata$TP.CxR <- C.R
BcrX1 <- BcX[col.match, ] %x% matrix(rep(1, diff.r), nrow = 1)
BcrX2 <- matrix(rep(1, diff.c), nrow = 1) %x% BrX[row.match,
]
BcrX <- BcrX1 * BcrX2
fixed <- list()
fixed$col <- data.frame(row.names = C.R)
for (i in 1:diff.c) {
c.fixed <- paste("TP.C", ".", i, sep = "")
outdata[c.fixed] <- BcX[col.match, i]
fixed$col[c.fixed] <- BcX[col.match, i]
}
fixed$row <- data.frame(row.names = C.R)
for (i in 1:diff.r) {
r.fixed <- paste("TP.R", ".", i, sep = "")
outdata[r.fixed] <- BrX[row.match, i]
fixed$row[r.fixed] <- BrX[row.match, i]
}
ncolX <- diff.c * diff.r
fixed$int <- data.frame(row.names = C.R)
for (i in 1:ncolX) {
cr.fixed <- paste("TP.CR", ".", i, sep = "")
outdata[cr.fixed] <- BcrX[, i]
fixed$int[cr.fixed] <- BcrX[, i]
}
if (!missing(stub)) {
cname <- paste0("BcZ", stub, ".df")
rname <- paste0("BrZ", stub, ".df")
crname <- paste0("BcrZ", stub, ".df")
}
else {
cname <- "BcZ.df"
rname <- "BrZ.df"
crname <- "BcrZ.df"
}
mbftext <- paste0("list(TP.col=list(key=c(\"TP.col\",\"TP.col\"),cov=\"",
cname, "\"),")
mbftext <- paste0(mbftext, "TP.row=list(key=c(\"TP.row\",\"TP.row\"),cov=\"",
rname, "\"),")
mbftext <- paste0(mbftext, "TP.CxR=list(key=c(\"TP.CxR\",\"TP.CxR\"),cov=\"",
crname, "\"))")
mbflist <- eval(parse(text = mbftext))
if ("grp" %in% asreml) {
grp <- list()
listnames <- list()
start <- length(outdata)
start0 <- start
scale <- 1
j <- 1
for (i in 1:diff.c) {
nm0 <- paste0(names(fixed$col[i]), "_frow")
listnames[j] <- nm0
for (k in 1:nbr) {
nm <- paste0(nm0, "_", k)
outdata[nm] <- scale * fixed$col[[i]] * BrZmat[row.match,
k]
}
grp[[j]] <- seq(from = start + 1, to = start + nbr,
by = 1)
start <- start + nbr
j <- j + 1
}
for (i in 1:diff.r) {
nm0 <- paste0(names(fixed$row[i]), "_fcol")
listnames[j] <- nm0
for (k in 1:nbc) {
nm <- paste0(nm0, "_", k)
outdata[nm] <- scale * fixed$row[[i]] * BcZmat[col.match,
k]
}
grp[[j]] <- seq(from = start + 1, to = start + nbc,
by = 1)
start <- start + nbc
j <- j + 1
}
m <- 0
nm0 <- "TP_fcol_frow"
listnames[j] <- nm0
for (k in 1:(nbrn * nbcn)) {
nm <- paste0(nm0, "_", k)
outdata[nm] <- scale * BcrZmat[, k]
}
grp[[j]] <- seq(from = start + 1, to = start + (nbcn *
nbrn), by = 1)
end <- start + (nbcn * nbrn)
j <- j + 1
listnames[j] <- "All"
grp[[j]] <- seq(from = start0 + 1, to = end, by = 1)
grp <- structure(grp, names = listnames)
}
if ("sepgrp" %in% asreml) {
grp <- list()
listnames <- list()
start <- length(outdata)
nm0 <- "TP_C"
listnames[1] <- nm0
for (i in 1:diff.c) {
nm <- paste0(nm0, "_", i)
outdata[nm] <- fixed$col[[i]]
}
grp[[1]] <- seq(from = start + 1, to = start + diff.c,
by = 1)
start <- start + diff.c
nm0 <- "TP_R"
listnames[2] <- nm0
for (i in 1:diff.r) {
nm <- paste0(nm0, "_", i)
outdata[nm] <- fixed$row[[i]]
}
grp[[2]] <- seq(from = start + 1, to = start + diff.r,
by = 1)
start <- start + diff.r
nm0 <- "TP_fcol"
listnames[3] <- nm0
for (k in 1:nbc) {
nm <- paste0(nm0, "_", k)
outdata[nm] <- BcZmat[col.match, k]
}
grp[[3]] <- seq(from = start + 1, to = start + nbc, by = 1)
start <- start + nbc
nm0 <- "TP_frow"
listnames[4] <- nm0
for (k in 1:nbr) {
nm <- paste0(nm0, "_", k)
outdata[nm] <- BrZmat[row.match, k]
}
grp[[4]] <- seq(from = start + 1, to = start + nbr, by = 1)
start <- start + nbr
grp <- structure(grp, names = listnames)
nm0 <- "TP_fcol_frow"
listnames[5] <- nm0
for (k in 1:(nbrn * nbcn)) {
nm <- paste0(nm0, "_", k)
outdata[nm] <- BcrZmat[, k]
}
grp[[5]] <- seq(from = start + 1, to = start + (nbcn *
nbrn), by = 1)
grp <- structure(grp, names = listnames)
}
if ("own" %in% asreml) {
grp <- list()
listnames <- list()
listnames[1] <- "All"
start <- length(outdata)
nm0 <- "Xc_Zr"
Xc_Zr <- (BcX[col.match, ] %x% matrix(rep(1, nbr), nrow = 1)) *
(matrix(rep(1, diff.c), nrow = 1) %x% BrZmat[row.match,
])
nXc_Zr <- ncol(Xc_Zr)
for (i in 1:nXc_Zr) {
nm <- paste0(nm0, "_", i)
outdata[nm] <- Xc_Zr[, i]
}
nm0 <- "Zc_Xr"
Zc_Xr <- (BcZmat[col.match, ] %x% matrix(rep(1, diff.r),
nrow = 1)) * (matrix(rep(1, nbc), nrow = 1) %x% BrX[row.match,
])
nZc_Xr <- ncol(Zc_Xr)
for (i in 1:nZc_Xr) {
nm <- paste0(nm0, "_", i)
outdata[nm] <- Zc_Xr[, i]
}
nm0 <- "Zc_Zr"
Zc_Zr <- BcrZmat
nZc_Zr <- ncol(Zc_Zr)
for (i in 1:nZc_Zr) {
nm <- paste0(nm0, "_", i)
outdata[nm] <- Zc_Zr[, i]
}
grp[[1]] <- seq(from = start + 1, to = start + nXc_Zr +
nZc_Xr + nZc_Zr, by = 1)
grp <- structure(grp, names = listnames)
}
res <- list()
res$data <- outdata
res$mbflist <- mbflist
res[["BcZ.df"]] <- BcZmat.df
res[["BrZ.df"]] <- BrZmat.df
res[["BcrZ.df"]] <- BcrZmat.df
res$dim <- c(diff.c = diff.c, nbc = nbc, nbcn = nbcn, diff.r = diff.r,
nbr = nbr, nbrn = nbrn)
res$trace <- tracelist
if ("grp" %in% asreml)
res$grp <- grp
if ("sepgrp" %in% asreml)
res$grp <- grp
if ("own" %in% asreml)
res$grp <- grp
if ("mbf" %in% asreml)
res$grp <- NULL
if (!("include" %in% eigenvalues))
res$eigen <- list(diagc = diagc, diagr = diagr, diagcr = diagcr)
res
}
bbasis <- function (x, xl, xr, ndx, deg)
{
tpower <- function(x, t, p) {
(x - t)^p * (x > t)
}
dx <- (xr - xl)/ndx
knots <- seq(xl - deg * dx, xr + deg * dx, by = dx)
P <- outer(x, knots, tpower, deg)
n <- dim(P)[2]
D <- diff(diag(n), diff = deg + 1)/(gamma(deg + 1) * dx^deg)
B <- (-1)^(deg + 1) * P %*% t(D)
B
} |
polar_init <- function(data, x, ...) {
stopifnot(is.data.frame(data))
data$y <- 1L
calls <- lapply(as.list(match.call()), function(x) {
if (is.symbol(x)) as.character(x) else x
})
stopifnot(!is.null(calls$x))
ggplot(data, aes_string(calls$x, "y")) +
geom_point(...) +
coord_polar() +
expand_limits(y = c(0, 1)) +
theme(
axis.text.y = element_blank(),
axis.line.y = element_blank(),
axis.ticks.y = element_blank(),
panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
panel.background = element_blank()
) +
labs(y = NULL, x = NULL)
}
polar_connect <- function(data, x1, x2, ...) {
stopifnot(is.data.frame(data))
calls <- lapply(as.list(match.call()), function(x) {
if (is.symbol(x)) as.character(x) else x
})
stopifnot(!is.null(calls$x1), !is.null(calls$x2))
aes_args <- list(
x = calls$x1,
y = 1,
xend = calls$x2,
yend = 1
)
alist <- calls[setdiff(names(calls), c("x1", "x2", "", "data"))]
if (length(alist) > 0) {
dot_list <- alist
aes_appends <- sapply(alist, function(x) {
x %in% colnames(data)
})
if (sum(aes_appends) > 0) {
aes_args <- c(aes_args, alist[aes_appends])
dot_list <- alist[!aes_appends]
}
} else {
dot_list <- list(...)
}
my_aes <- do.call("aes_string", aes_args)
do.call("geom_segment_straight",
args = c(
list(
mapping = my_aes,
data = data
),
dot_list
)
)
} |
.groupByDistrict <- function(x, opts, fun = c(sum)) {
x <- merge(x, opts$districtsDef, by = "area", allow.cartesian = TRUE)
areasInData <- unique(x$area)
districts <- intersect(x$district, opts$districtsDef$district)
districtsDef <- split(opts$districtsDef$area, opts$districtsDef$district)
for (d in districts) {
missingAreas <- setdiff(districtsDef[[d]], areasInData)
if (length(missingAreas) > 0) warning("The following areas belongs to district ", d, " but are not in 'x': ",
paste(missingAreas, collapse = ", "))
}
x[, area := NULL]
idVars <- .idCols(x)
if (length(fun) == 1) fun <- rep(fun, ncol(x) - length(idVars))
x[, mapply(function(x, f) {f(x)}, x = .SD, f = fun, SIMPLIFY=FALSE),
by = idVars]
}
.merge_Col_Area_D <- function(x = NULL, colMerge = NULL, opts=NULL, allX = TRUE){
if (!is.null(x$districts)){
for(oneCol in colMerge){
byarea <- .get_by_area(x)
bydistrict <- .get_by_district(x)
ColAreas <- x$areas[, mget(oneCol), by = byarea]
ColDistricts <- .groupByDistrict(ColAreas, opts)
class(ColDistricts) <- c("data.table", "data.frame")
if(!(oneCol %in% names(x$districts))){
x$districts <- merge(x$districts,
ColDistricts,
by = bydistrict)
}else{
x$districts <- merge(x$districts,
ColDistricts,
by = bydistrict,
all.x = allX,
all.y = !allX)
}
if(paste0(oneCol,".x") %in% names(x$districts)){
if(!(oneCol %in% names(x$districts))){
if(allX){
x$districts[, c(oneCol):= get(paste0(oneCol,".x"))]
}else{
x$districts[, c(oneCol):= get(paste0(oneCol,".y"))]
}
}
x$districts[, c(paste0(oneCol,".x")) := NULL]
x$districts[, c(paste0(oneCol,".y")) := NULL]
}
}
}
return(x)
} |
{}
stepArchetypes <- function(..., k, nrep = 3, method = archetypes, verbose = TRUE) {
mycall <- match.call()
as <- list()
for ( i in 1:length(k) ) {
as[[i]] <- list()
class(as[[i]]) <- 'repArchetypes'
for ( j in seq_len(nrep) ) {
if ( verbose )
cat('\n*** k=', k[i], ', rep=', j, ':\n', sep='')
as[[i]][[j]] <- method(..., k=k[i])
}
}
return(structure(as, class='stepArchetypes', call=mycall))
}
setOldClass('repArchetypes')
setOldClass('stepArchetypes')
`[.stepArchetypes` <- function(x, i) {
y <- unclass(x)[i]
attributes(y) <- attributes(x)
return(y)
}
print.stepArchetypes <- function(x, ...) {
cat('StepArchetypes object\n\n')
cat(deparse(attr(x, 'call')), '\n')
}
summary.stepArchetypes <- function(object, ...) {
print(object)
ps <- nparameters(object)
for ( i in seq_along(object) ) {
cat('\nk=', ps[i], ':\n', sep='')
print(object[[i]], full=FALSE)
}
}
setMethod('parameters', signature = c(object = 'stepArchetypes'),
function(object, ...) {
lapply(object, parameters)
})
nparameters.stepArchetypes <- function(object, ...) {
return(sapply(object, nparameters))
}
rss.stepArchetypes <- function(object, ...) {
ret <- t(sapply(object, rss))
rownames(ret) <- paste('k', nparameters(object), sep='')
return(ret)
}
bestModel.stepArchetypes <- function(object, ...) {
zsmin <- lapply(object, bestModel)
if ( length(zsmin) == 1 )
return(zsmin[[1]])
else
return(zsmin)
}
print.repArchetypes <- function(x, ...) {
for ( i in seq_along(x) )
print(x[[i]], ...)
invisible(x)
}
setMethod('parameters', signature = signature(object = 'repArchetypes'),
function(object, ...) {
lapply(object, parameters)
})
rss.repArchetypes <- function(object, ...) {
ret <- sapply(object, rss)
names(ret) <- paste('r', seq_along(ret), sep='')
return(ret)
}
nparameters.repArchetypes <- function(object, ...) {
nparameters(object[[1]])
}
bestModel.repArchetypes <- function(object, ...) {
m <- which.min(rss(object))
if ( length(m) == 0 )
return(object[[1]])
else
return(object[[m]])
} |
search_and_replace_in_source <- function(input,
replacements = NULL,
output = NULL,
preventOverwriting = TRUE,
encoding = "UTF-8",
rlWarn = rock::opts$get(rlWarn),
silent=FALSE) {
if (file.exists(input)) {
res <- readLines(input,
encoding=encoding,
warn = rlWarn);
} else {
res <- input;
}
if (is.null(replacements)) {
stop("You have to specify one or more replacements. Specify them in a list ",
"containing vectors that each have two elements. The first is the ",
"regular expression to search for; the second is the replacement. For ",
"example:\n\n",
"replacements=list(c('firstStringToLookFor', 'firstReplacement'),\n",
" c('secondStringToLookFor', 'secondReplacement'))\n\n",
"Also see the examples in the manual, which you can view with:\n\n",
"?rock::search_and_replace_in_source\n");
} else {
for (i in seq_along(replacements)) {
res <- gsub(replacements[[i]][1],
replacements[[i]][2],
res,
perl=TRUE);
}
}
if (is.null(output)) {
attr(res, "output") <- "returned";
return(res);
} else {
if (!dir.exists(dirname(output))) {
stop("The directory specified where the output file '",
basename(output), "' is supposed to be written ('",
dirname(output),
"') does not exist.");
}
if (file.exists(output) && preventOverwriting) {
if (!silent) {
message("File '",
output, "' exists, and `preventOverwriting` was `TRUE`, so I did not ",
"write the 'post-search-replace-source' to disk.");
}
attr(res, "output") <- "existed";
} else {
con <- file(description=output,
open="w",
encoding=encoding);
writeLines(text=res,
con=con);
close(con);
attr(res, "output") <- "written";
}
if (!silent) {
message("I just wrote a 'post-search-replace-source' to file '",
output,
"'. Note that this file may be overwritten if this ",
"script is ran again (unless `preventOverwriting` is set to `TRUE`). ",
"Therefore, make sure to copy it to ",
"another directory, or rename it, before starting to code this source!");
}
return(invisible(res));
}
} |
dt1 <- simulation_model1(seed = 50)
test_that("linfinity handles strange data", {
expect_error(linfinity_depth(dt = list()))
expect_error(linfinity_depth(dt = data.frame()) )
expect_error(linfinity_depth(dt = matrix(NA, nrow = 1, ncol = 3)))
expect_error(linfinity_depth(dt = matrix(c(1:2, NA), nrow = 1, ncol = 3)))
})
test_that("linfinity_depth gives correct result", {
linda <- linfinity_depth(dt1$data)
expect_equal(order(linda)[1:10],
c(43, 53, 70, 20, 96, 36, 14, 3, 18, 16))
expect_equal(order(linda)[90:100],
c(24, 74, 87, 25, 34, 83, 80, 76, 23, 90, 47))
}) |
mixbeta <- function(..., param=c("ab", "ms", "mn")) {
mix <- mixdist3(...)
param <- match.arg(param)
mix[c(2,3),] <- switch(param,
ab=mix[c(2,3),],
ms=t(ms2beta(mix[2,], mix[3,], FALSE)),
mn=t(mn2beta(mix[2,], mix[3,], FALSE)))
rownames(mix) <- c("w", "a", "b")
assert_that(all(mix["a",]>=0))
assert_that(all(mix["b",]>=0))
class(mix) <- c("betaMix", "mix")
likelihood(mix) <- "binomial"
mix
}
ms2beta <- function(m, s, drop=TRUE) {
n <- m*(1-m)/s^2 - 1
assert_that(all(n>=0))
ab <- cbind(a=n*m, b=n*(1-m))
if(drop) ab <- drop(ab)
ab
}
mn2beta <- function(m, n, drop=TRUE) {
assert_that(all(n>=0))
ab <- cbind(a=n*m, b=n*(1-m))
if(drop) ab <- drop(ab)
ab
}
print.betaMix <- function(x, ...) {
cat("Univariate beta mixture\n")
NextMethod()
}
print.betaBinomialMix <- function(x, digits=NULL, ...) {
cat("Univariate beta binomial mixture\nn = ", attr(x, "n"),"\n", sep="")
NextMethod()
}
summary.betaMix <- function(object, probs=c(0.025,0.5,0.975), ...) {
p <- object[1,]
a <- object[2,]
b <- object[3,]
m <- a/(a+b)
v <- m*(1-m)/(a+b+1)
m2 <- v + m^2
mmix <- sum(p * m)
vmix <- sum(p * (m2 - (mmix)^2) )
q <- c()
if(length(probs) != 0) {
q <- qmix.betaMix(object, p=probs)
names(q) <- paste(format(probs*100,digits=2), "%", sep="")
}
c(mean=mmix, sd=sqrt(vmix), q)
}
summary.betaBinomialMix <- function(object, probs=c(0.025,0.5,0.975), ...) {
n <- attr(object, "n")
p <- object[1,]
a <- object[2,]
b <- object[3,]
m <- n * a/(a+b)
v <- n*a*b*(a+b+n)/( (a+b)^2 * ( a + b + 1 ) )
m2 <- v + m^2
mmix <- sum(p * m)
vmix <- sum(p * (m2 - (mmix)^2) )
q <- qmix.betaBinomialMix(object, p=probs)
if(length(q) != 0)
names(q) <- paste(format(probs*100,digits=2), "%", sep="")
c(mean=mmix, sd=sqrt(vmix), q)
} |
check_names <- function(x, names = character(0), exclusive = FALSE, order = FALSE,
x_name = NULL) {
chk_s3_class(names, "character")
chk_unique(names)
chk_not_any_na(names)
chk_flag(exclusive)
chk_flag(order)
if (is.null(x_name)) x_name <- deparse_backtick_chk((substitute(x)))
chk_string(x_name)
chk_named(x, x_name = x_name)
x_names <- names(x)
if (!length(names)) {
if (exclusive && length(x_names)) {
abort_chk(x_name, " must not have any elements")
}
return(invisible(x))
}
x_name <- backtick_chk(p0("names(", unbacktick_chk(x_name), ")"))
if (length(setdiff(names, x_names))) {
abort_chk(x_name, " must include ", cc(setdiff(names, x_names), conj = " and "))
}
if (exclusive && length(setdiff(x_names, names))) {
abort_chk(x_name, " must not include ", cc(setdiff(x_names, names), conj = " or "))
}
if (order && !identical(intersect(names, x_names), intersect(x_names, names))) {
abort_chk(x_name, " must include ", cc(names, conj = " and "), " in that order")
}
invisible(x)
} |
bicubic <- function(x,y,z,x0,y0){
nx <- length(x)
ny <- length(y)
if(dim(z)[1]!=nx)
stop("dim(z)[1] and length of x differs!")
if(dim(z)[2]!=ny)
stop("dim(z)[2] and length of y differs!")
n0 <- length(x0)
if(length(y0)!=n0)
stop("length of y0 and x0 differs!")
ret <- .Fortran("rgbi3p",
md=as.integer(1),
nxd=as.integer(nx),
nyd=as.integer(ny),
xd=as.double(x),
yd=as.double(y),
zd=as.double(z),
nip=as.integer(n0),
xi=as.double(x0),
yi=as.double(y0),
zi=double(n0),
ier=integer(1),
wk=double(3*nx*ny),
PACKAGE="akima")
list(x=x0,y=y0,z=ret$zi)
}
bicubic.grid <- function(x,y,z,xlim=c(min(x),max(x)),ylim=c(min(y),max(y)),
nx=40,ny=40,dx=NULL,dy=NULL){
Nx <- length(x)
Ny <- length(y)
if(dim(z)[1]!=Nx)
stop("dim(z)[1] and length of x differs!")
if(dim(z)[2]!=Ny)
stop("dim(z)[2] and length of y differs!")
if(!is.null(dx)){
xi <- seq(xlim[1],xlim[2],by=dx)
nx <- length(xi)
} else {
xi <- seq(ylim[1],ylim[2],length=nx)
}
if(!is.null(dx)){
yi <- seq(ylim[1],ylim[2],by=dy)
ny <- length(yi)
} else {
yi <- seq(ylim[1],ylim[2],length=ny)
}
xmat <- matrix(rep(xi,ny),nrow=ny,ncol=nx,byrow=TRUE)
ymat <- matrix(rep(yi,nx),nrow=ny,ncol=nx,byrow=FALSE)
xy <- cbind(c(xmat),c(ymat))
n0 <- nx*ny
ret <- bicubic(x,y,z,xy[,1],xy[,2])
list(x=xi,y=yi,z=t(matrix(ret$z,nrow=ny,ncol=nx,byrow=F)))
} |
diveR_packages <- function(include_self = TRUE) {
raw <- utils::packageDescription("diveR")$Imports
imports <- strsplit(raw, ",")[[1]]
parsed <- gsub("^\\s+|\\s+$", "", imports)
names <- vapply(strsplit(parsed, "\\s+"), "[[", 1, FUN.VALUE = character(1))
names <- setdiff(names, presentationPackages())
if (include_self) {
names <- c(names, "diveR")
}
names
}
msg <- function(..., startup = FALSE) {
if (startup) {
if (!isTRUE(getOption("diveR.quiet"))) {
packageStartupMessage(text_col(...))
}
} else {
message(text_col(...))
}
}
text_col <- function(x) {
if (!rstudioapi::isAvailable()) {
return(x)
}
if (!rstudioapi::hasFun("getThemeInfo")) {
return(x)
}
theme <- rstudioapi::getThemeInfo()
if (isTRUE(theme$dark)) crayon::white(x) else crayon::black(x)
}
invert <- function(x) {
if (length(x) == 0) return()
stacked <- utils::stack(x)
tapply(as.character(stacked$ind), stacked$values, list)
}
style_grey <- function(level, ...) {
crayon::style(
paste0(...),
crayon::make_style(grDevices::grey(level), grey = TRUE)
)
} |
vowelsynth = function (ffs = c(270, 2200, 2800, 3400, 4400), fbw = 0.06, dur = 300, f0 = c(120,100),
fs = 10000, verify = FALSE, returnsound = TRUE, noise1 = .001, noise2 = .01, power = NULL){
if (dur < 50) stop ('Duration must be at least 50 ms.')
if (length (f0) > 2) stop ('Only initial and final f0 may be specified.')
T = 1/fs
n = round(dur/1000/T)
if (!is.null(power)) n = length(power)
if (is.numeric (nrow(ffs))) n = nrow(ffs)
if (length(f0) == 1) f0 = c(f0,f0)
f0 = exp(seq (log(f0[1]), log(f0[2]), length.out = n))
vsource = NULL
spot = 1
while (length (vsource) < n*5){
tmp = f0[spot]
cycle = round(fs/tmp)
tmp = 2*seq (0,1, 1/(cycle*4)) - 3*seq (0,1, 1/(cycle*4))^2
tmp = c(rep (0, cycle), tmp)
vsource = c(vsource, tmp)
spot = spot + cycle
}
vsource = resample (vsource, fs, fs*5, synthfilter = TRUE)
vsource = vsource + rnorm (length(vsource), sd = sd(vsource)*noise1)
vsource = vsource[1:n]
vsource = jitter(vsource)
vsource = preemphasis (vsource, coeff = .94)
x = c(1, 10 / (1000/fs), 20 / (1000/fs), n-(30 / (1000/fs)), n)
if (is.null(power)) power = interpolate (x, y = c(30,55, 60,55,30), increment = 1, type = 'linear')[1:n,2]
power = 10^(power/20)
power = jitter(power, factor = 0.01)
vsource = vsource * power
output = Ffilter (vsource, ffs = ffs, fs = fs, verify = FALSE, bwp = fbw)
output = output * power
output = output + rnorm (length(output), sd = sd(output)*noise2)
output = output /(max(abs(output)) * 1.05)
if (verify == TRUE) {
par (mfrow = c(2,1), mar = c(4,4,1,1))
plot ((1:n)*T*1000,output, ylab = 'Amplitude', xlab = 'Time (ms)', type = 'l', xaxs = 'i')
abline (h = 0, lty = 'dotted')
spectrogram (output, fs = fs, dynamicrange = 60)
}
if (returnsound == TRUE)
output = makesound(output, "sound.wav", fs = fs)
return(output)
} |
shiny::validate(shiny::need(
check_regexes(c(search_arguments$highlight_terms,
search_arguments$subset_terms))
,
paste("\nInvalid regular expression. Please modify your search.")
))
shiny::validate(need(
check_valid_column_names(search_arguments$subset_custom_column, sv$subset)
,
paste("Make sure to specify only variables present in the corpus.")
))
shiny::validate(need(
contains_argument(search_arguments$highlight_terms) == FALSE
,
paste('Search arguments ("--") work only for subsetting.')
))
shiny::validate(need(
contains_only_valid_thresholds(isolate(collect_subset_terms()))
,
paste(
'Treshold argument invalid. Make sure it contains only numbers, e.g. "--4".'
)
))
if (nrow(sv$subset) > 0) {
shinyjs::enable("download_txt")
shinyjs::enable("download_zip")
if (nrow(sv$subset) <= MAX_DOCS_FOR_HTML) {
shinyjs::enable("download_html")
}
} |
{
library(vroom)
data <- vroom(file, col_types = c(pickup_datetime = "c"))
vroom:::vroom_materialize(data, replace = TRUE)
}
vroom_write(data, pipe(sprintf("pigz > %s", tempfile(fileext = ".gz"))), delim = "\t") |
editor <- aceEditor("rmd", mode = "markdown", wordWrap = TRUE,
fontSize = getOption("editR")$editor_font_size,
theme = getOption("editR")$editor_theme,
debounce = 100, autoComplete = "live", height = "auto") |
expected <- eval(parse(text="structure(list(`Surv(stop, status * as.numeric(event), type = \"mstate\")` = NULL), .Names = \"Surv(stop, status * as.numeric(event), type = \\\"mstate\\\")\", class = \"data.frame\", row.names = c(NA, 300L))"));
test(id=0, code={
argv <- eval(parse(text="list(structure(list(`Surv(stop, status * as.numeric(event), type = \"mstate\")` = structure(c(760, 2160, 5441, 277, 1815, 2587, 547, 1125, 2010, 2422, 6155, 1767, 61, 60, 7807, 7732, 6126, 7921, 3590, 5231, 5384, 5934, 6415, 6789, 6778, 3561, 4505, 3987, 4726, 5550, 5216, 5757, 2345, 6931, 6760, 5796, 4810, 5143, 3091, 3316, 700, 1706, 5088, 944, 2466, 1706, 7364, 1857, 9510, 9603, 31, 7479, 2006, 2588, 2983, 8761, 3932, 4201, 5293, 273, 2223, 4249, 5308, 8327, 499, 5789, 7417, 3242, 3275, 10359, 10852, 362, 9993, 1795, 3562, 4139, 4840, 4959, 547, 4119, 8308, 1674, 2953, 3776, 1369, 7911, 7519, 9318, 4370, 7301, 1642, 4169, 7417, 6117, 4536, 7235, 6723, 7397, 7428, 2084, 4066, 1673, 2860, 0, 3773, 4810, 4206, 2314, 4065, 8961, 6143, 517, 3837, 7498, 2815, 8806, 7668, 12457, 8600, 7003, 2435, 1826, 2403, 3805, 4901, 365, 6642, 3318, 3012, 1431, 2223, 4962, 5982, 638, 3346, 4996, 6800, 7454, 8887, 5024, 2833, 4232, 5238, 3186, 3380, 3382, 8100, 1766, 7184, 8059, 6008, 5047, 2236, 8165, 4224, 2844, 6256, 7370, 3560, 4939, 4941, 2230, 3068, 152, 10122, 3226, 3943, 518, 8569, 845, 2099, 8006, 8052, 9560, 0, 7965, 7470, 8133, 809, 153, 1851, 3010, 2121, 7085, 5068, 7093, 5930, 6878, 8080, 791, 6626, 3962, 1116, 1249, 9257, 1077, 566, 174, 4627, 5022, 2070, 3012, 1625, 6607, 8381, 8389, 1005, 3895, 4236, 6970, 8497, 2861, 8487, 3227, 8030, 8023, 31, 2435, 518, 4758, 7958, 7884, 4453, 6349, 7862, 1392, 3167, 6025, 4656, 1767, 7736, 2678, 2191, 3658, 7758, 8009, 2556, 3511, 7954, 822, 4321, 5151, 7545, 7576, 32, 7875, 5236, 7106, 2802, 7898, 3014, 7867, 5354, 2989, 7555, 6089, 8697, 6479, 1826, 5917, 792, 1431, 1434, 4763, 2910, 6209, 5824, 2400, 1400, 3027, 7198, 7247, 2557, 3855, 61, 7410, 1492, 7160, 7899, 5181, 7280, 3448, 7381, 2434, 6763, 7065, 1218, 1554, 7533, 7288, 2922, 5988, 2495, 5234, 9598, 2953, 2961, 4539, 3775, 6524, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 0, 0, 1, 2, 1, 2, 2, 1, 2, 1, 2, 1, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 1, 2, 1, 2, 2, 1, 2, 2, 0, 2, 1, 2, 2, 0, 2, 1, 2, 0, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 0, 1, 2, 1, 2, 2, 0, 1, 2, 1, 2, 2, 2, 2, 0, 2, 1, 2, 2, 0, 1, 2, 2, 0, 1, 2, 0, 2, 1, 2, 2, 1, 2, 1, 2, 2, 2, 2, 1, 2, 2, 1, 2, 0, 2, 2, 1, 0, 2, 2, 0, 0, 2, 0, 2, 1, 2, 1, 2, 2, 2, 2, 2, 1, 2, 1, 2, 2, 1, 2, 1, 0, 0, 2, 2, 1, 2, 2, 1, 2, 0, 2, 1, 2, 2, 2, 2, 0, 2, 2, 2, 0, 2, 1, 2, 1, 2, 2, 0, 2, 2, 2, 0, 2, 2, 1, 2, 0, 2, 0, 0, 0, 2, 2, 2, 2, 2, 2, 2, 0, 2, 2, 0, 2, 2, 2, 1, 2, 0, 2, 2, 2, 1, 2, 1, 2, 2, 2, 0, 0, 2, 1, 2, 1, 0, 1, 0, 2, 0, 0, 2, 2, 2, 2, 0, 0, 2, 2, 0, 2, 2, 2, 2, 2, 0, 2, 1, 2, 0, 0, 1, 2, 0, 2, 1, 2, 1, 2, 2, 0, 1, 2, 1, 0, 2, 0, 2, 2, 0, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1, 2, 0, 0, 1, 2, 2, 0, 2, 0, 2, 2, 0, 2, 0, 2, 2, 0, 1, 2, 0, 0, 1, 2, 1, 2, 0, 1, 2, 2, 1, 2), .Dim = c(300L, 2L), .Dimnames = list(NULL, c(\"time\", \"status\")), type = \"mright\", states = c(\"1\", \"2\"), class = \"Surv\")), .Names = \"Surv(stop, status * as.numeric(event), type = \\\"mstate\\\")\", class = \"data.frame\", row.names = c(NA, 300L)), structure(list(`Surv(stop, status * as.numeric(event), type = \"mstate\")` = NULL), .Names = \"Surv(stop, status * as.numeric(event), type = \\\"mstate\\\")\", class = \"data.frame\", row.names = c(NA, 300L)))"));
.Internal(copyDFattr(argv[[1]], argv[[2]]));
}, o=expected); |
context("coefficients.bas")
test_that("coefficients", {
data("Hald")
hald_gprior <- bas.lm(Y ~ ., data = Hald, prior = "ZS-null",
modelprior = beta.binomial(1, 1))
expect_is(coefficients(hald_gprior), "coef.bas")
expect_length(coefficients(hald_gprior, estimator='MPM'),11)
expect_equal("HPM", coefficients(hald_gprior, estimator='HPM')$estimator)
expect_error(coefficients(hald_gprior, estimator='BPM'))
expect_null(print(coefficients(hald_gprior, estimator="BMA")))
expect_equal(coefficients(hald_gprior, estimator='HPM')$postmean,
coefficients(hald_gprior, estimator='BMA', n.models=1)$postmean)
coef_hald <- coef(hald_gprior)
confint_hald <- confint(coef_hald)
expect_is(confint_hald, "confint.bas")
expect_is(confint(coef_hald, approx=FALSE, nsim=5000), "confint.bas")
expect_length(confint(coef_hald, parm="X4"), 3)
expect_null(plot(confint(coef_hald, parm=2:5)))
expect_null(plot(confint(coef(hald_gprior, estimator='HPM'))))
expect_null(plot(confint(coef(hald_gprior, estimator='HPM')),
horizontal = TRUE))
expect_error(confint(coef(hald_gprior), nsim=1))
})
test_that("plot posterior coefficients", {
data(UScrime, package="MASS")
UScrime[,-2] <- log(UScrime[,-2])
crime_bic <- bas.lm(y ~ ., data=UScrime, n.models=2^10, prior="BIC")
crime_coef <- coef(crime_bic)
expect_null(plot(crime_coef, subset=2:4, ask=TRUE))
expect_null(plot(crime_coef, ask=FALSE))
}) |
library(sf)
library(raster)
library(dplyr)
library(stringr)
library(spData)
dim(world)
nrow(world)
ncol(world)
world_df = st_set_geometry(world, NULL)
class(world_df)
sel_area = world$area_km2 < 10000
summary(sel_area)
small_countries = world[sel_area, ]
small_countries = world[world$area_km2 < 10000, ]
world1 = dplyr::select(world, name_long, pop)
names(world1)
world2 = dplyr::select(world, name_long:pop)
world3 = dplyr::select(world, -subregion, -area_km2)
world4 = dplyr::select(world, name_long, population = pop)
names(world4)
operators = c("`==`", "`!=`", "`>, <`", "`>=, <=`", "`&, |, !`")
operators_exp = c("Equal to", "Not equal to", "Greater/Less than",
"Greater/Less than or equal",
"Logical operators: And, Or, Not")
knitr::kable(tibble(Symbol = operators, Name = operators_exp),
caption = paste("Comparison operators that return Booleans",
"(TRUE/FALSE)."),
caption.short = "Comparison operators that return Booleans.",
booktabs = TRUE)
world7 = world %>%
filter(continent == "Asia") %>%
dplyr::select(name_long, continent) %>%
slice(1:5)
world8 = slice(
dplyr::select(
filter(world, continent == "Asia"),
name_long, continent),
1:5)
world_agg1 = aggregate(pop ~ continent, FUN = sum, data = world, na.rm = TRUE)
class(world_agg1)
world_agg2 = aggregate(world["pop"], by = list(world$continent),
FUN = sum, na.rm = TRUE)
class(world_agg2)
world_agg3 = world %>%
group_by(continent) %>%
summarize(pop = sum(pop, na.rm = TRUE))
options(scipen = 999)
world %>%
dplyr::select(pop, continent) %>%
group_by(continent) %>%
summarize(pop = sum(pop, na.rm = TRUE), n_countries = n()) %>%
top_n(n = 3, wt = pop) %>%
st_set_geometry(value = NULL) %>%
knitr::kable(caption = paste("The top 3 most populous continents,",
"and the number of countries in each."),
caption.short = "Top 3 most populous continents.",
booktabs = TRUE)
world_coffee = left_join(world, coffee_data)
class(world_coffee)
names(world_coffee)
plot(world_coffee["coffee_production_2017"])
coffee_renamed = rename(coffee_data, nm = name_long)
world_coffee2 = left_join(world, coffee_renamed, by = c(name_long = "nm"))
world_coffee_inner = inner_join(world, coffee_data)
nrow(world_coffee_inner)
setdiff(coffee_data$name_long, world$name_long)
str_subset(world$name_long, "Dem*.+Congo")
coffee_data$name_long[grepl("Congo,", coffee_data$name_long)] =
str_subset(world$name_long, "Dem*.+Congo")
world_coffee_match = inner_join(world, coffee_data)
nrow(world_coffee_match)
coffee_world = left_join(coffee_data, world)
class(coffee_world)
world_new = world
world_new$pop_dens = world_new$pop / world_new$area_km2
world_data = world %>% st_set_geometry(NULL)
class(world_data)
library(spData)
data("elev")
data("grain")
levels(grain)[[1]] = cbind(levels(grain)[[1]], wetness = c("wet", "moist", "dry"))
levels(grain)
factorValues(grain, grain[c(1, 11, 35)])
source("https://github.com/Robinlovelace/geocompr/raw/main/code/03-cont-raster-plot.R", print.eval = TRUE)
elev[1, 1] = 0
elev[]
elev[1, 1:2] = 0
library(spData)
data(us_states)
data(us_states_df) |
expect_error(anyOutside(1:10, "a"), "character")
expect_error(anyOutside(1:10, 3L, "c"), "character")
expect_error(anyOutside(1:10, 1L, 10L, nas_absent = ""), "logical")
expect_error(anyOutside(1:10, 1L, 10L, nas_absent = c(TRUE, FALSE)), "length")
expect_error(anyOutside(1:10, 1, 10.5))
expect_identical(anyOutside(1:10, 1L, 10L), 0L)
expect_identical(anyOutside(1:10, 1L, 1L), 2L)
expect_identical(anyOutside(1:10, 10L, 1L), 1L)
expect_identical(anyOutside(1:10, 4L, 5L), 1L)
expect_identical(anyOutside(1:10, 1L, 5L), 6L)
expect_identical(anyOutside(seq(0, 1, length.out = 5), 0, 1), 0L)
expect_identical(anyOutside(seq(0, 1, length.out = 5), 0.9, 1), 1L)
expect_identical(anyOutside(NULL), 0L)
expect_identical(anyOutside(1:10 + 0, 1, 5), 6L)
expect_identical(anyOutside(c(1:5, NA_real_), 1, 5), NA_integer_)
expect_identical(anyOutside(c(1:5, NA_real_), 1, 5, na_is_outside = TRUE), 6L)
expect_identical(anyOutside(c(1:5, NA_real_), 1, 5, na_is_outside = FALSE), 0L)
expect_identical(anyOutside(c(NA, 1L), 1L, 2L), NA_integer_)
expect_identical(anyOutside(c(NA, 1L), 1L, 2L, nas_absent = FALSE), NA_integer_)
expect_identical(anyOutside(c(NA, 1L), 1L, 2L, nas_absent = FALSE, na_is_outside = FALSE), 0L)
expect_identical(anyOutside(c(NA, 1L, 4L), 1L, 2L, na_is_outside = FALSE), 3L)
expect_identical(anyOutside(c(NA, 1L, 4L), 1L, 2L, nas_absent = FALSE, na_is_outside = TRUE), 1L)
expect_identical(anyOutside(c(1L, 4L, 3L), -1L, 5L, nas_absent = TRUE), 0L)
expect_identical(anyOutside(c(1L, 4L, 3L), -1L, 5L, nas_absent = TRUE, na_is_outside = FALSE), 0L)
expect_identical(anyOutside(c(1L, 4L, 3L), -1L, 5L, nas_absent = TRUE, na_is_outside = TRUE), 0L)
expect_identical(anyOutside(c(1L, 4L, 3 ), -1 , 5 , nas_absent = TRUE, na_is_outside = TRUE), 0L)
expect_identical(anyOutside(c(NA, 1L, 9L), 1L, 10L, na_is_outside = NA), NA_integer_)
expect_identical(anyOutside(c(NA, 1L, 9L), 1L, 10L, na_is_outside = TRUE), 1L)
expect_identical(anyOutside(c(NA, 1L, 9L), 1L, 10L, na_is_outside = FALSE), 0L)
expect_identical(anyOutside(c(1:10, NA), 1L, 7L), 8L)
dbl_1na5 <- as.double(c(1:5, NA, 5))
expect_identical(anyOutside(dbl_1na5, 1, 5, na_is_outside = FALSE), 0L)
expect_identical(anyOutside(dbl_1na5, 1, 5), NA_integer_)
expect_identical(anyOutside(dbl_1na5, 1, 4), 5L)
expect_identical(anyOutside(dbl_1na5, 1, 4, nas_absent = FALSE, na_is_outside = FALSE), 5L)
expect_identical(anyOutside(dbl_1na5, 1, 5, nas_absent = FALSE, na_is_outside = FALSE), 0L) |
lilikoi.Loaddata<-function(filename){
Metadata <- read.csv(file=filename,check.names=F,row.names=1)
dataSet <- list()
dataSet$cmpd<-(colnames(Metadata)[-1])
newList <- list("Metadata"=Metadata, "dataSet"=dataSet)
return(newList)
} |
PlotCGBN <- function(tree.1, tree.2, fontsize=NULL, pbar=FALSE, plotting=TRUE, epsilon = 10^-6) {
dag <- tree.1@graph$dag
node.class <- [email protected]
absorbed.1 <- [email protected]
absorbed.2 <- [email protected]
absorbed <- union(absorbed.1, absorbed.2)
var.inter <- intersect(absorbed.1, absorbed.2)
var.1 <- setdiff(absorbed.1, var.inter)
var.2 <- setdiff(absorbed.2, var.inter)
vars <- absorbed
node.names <- tree.1@node
active.vars <- setdiff(node.names, vars)
disc.all <- names(node.class)[node.class]
cont.all <- names(node.class)[!node.class]
disc.active <- intersect(disc.all, active.vars)
cont.active <- intersect(cont.all, active.vars)
all.active <- c(disc.active, cont.active)
klds.0 <- c()
sys <- Sys.info()[1]
if(pbar){
if(sys=="Windows") {
pb <- winProgressBar(title = "Computing posterior", min = 0,
max = length(all.active), width = 300)
} else {
pb <- txtProgressBar(min = 0, max = length(all.active), style = 3)
}
}
for (i in 1:length(all.active)){
if(pbar){
if(sys=="Windows") {
setWinProgressBar(pb, i, title=paste("Computing posterior for ", all.active[i], ": ",
round((i-1)/length(all.active)*100, 0), "% complete"))
} else {
setTxtProgressBar(pb, i)
}
}
post.1 <- Marginals(tree.1, all.active[i])
post.2 <- Marginals(tree.2, all.active[i])
klds.0[i] <- SymmetricKLD(post.1[[1]][[1]], post.2[[1]][[1]],
discrete = node.class[all.active[i]], epsilon = epsilon)
}
names(klds.0) <- all.active
klds <- abs(klds.0)
if(pbar){close(pb)}
if (!plotting){
return(klds.0)
}
nAttrs <- list()
node.shape <- c(rep("circle", (length(cont.all)) ), rep("box",(length(disc.all)) ))
names(node.shape) <- c(cont.all, disc.all)
nAttrs$shape <- node.shape
if(!is.null(fontsize)){
nAttrs$fontsize <- rep(fontsize, length(node.names))
names(nAttrs$fontsize) <- node.names
}
max.kl <- max(klds)
min.kl <- -max(klds)
if (max.kl==0) {
fill.post <- rep("white", length(klds.0))
} else {
pseudo <- c(klds.0, -klds.0)/max.kl
pseudo <- sign(pseudo)*abs(pseudo)^0.5
rbPal <- colorRampPalette(c('dodgerblue','white','red'))
fill.post <- rbPal(100)[as.numeric(cut(pseudo,breaks = 100))]
fill.post <- fill.post[1:length(klds.0)]
}
names(fill.post) <- all.active
fill.1 <- rep("khaki", length(vars))
names(fill.1) <- var.1
fill.2 <- rep("orange", length(vars))
names(fill.2) <- var.2
fill.inter <- rep("gray", length(vars))
names(fill.inter) <- var.inter
nAttrs$fillcolor <- c(fill.1, fill.2, fill.inter, fill.post)
if(length(cont.active)>0){
par(oma=c(0,0,0,4))
graph_plot <- Rgraphviz::layoutGraph(dag, nodeAttrs=nAttrs)
Rgraphviz::renderGraph(graph_plot)
par(oma=c( 0,0,0,0.5))
color.bar(colorRampPalette(c("dodgerblue", "white", "red"))(1000), -signif(max.kl,1), sym=TRUE)
} else {
par(oma=c(0,0,0,4))
graph_plot <- Rgraphviz::layoutGraph(dag, nodeAttrs=nAttrs)
Rgraphviz::renderGraph(graph_plot)
par(oma=c( 0,0,0,0.5))
color.bar(colorRampPalette(c("white", "red"))(1000), min=0, max=signif(max.kl,1), sym=FALSE)
}
return(klds.0)
}
color.bar <- function(lut, min, max=-min, nticks=11, ticks=seq(min, max, len=nticks), title='', sym=TRUE) {
scale = (length(lut)-1)/(max-min)
n.half <- length(lut)/2
cl <- c()
for (i in 1:(length(lut)-1)) {
if (sym) {
j <- n.half+1+sign(i-n.half)*(abs(i-n.half)/n.half)^0.5*n.half
} else {
j <- 1+(i/length(lut))^0.5*length(lut)
}
cl[i] <- lut[j]
}
image.plot(legend.only=TRUE, col=cl, zlim=c(min(ticks, na.rm=T), max(ticks, na.rm=T)),
add=TRUE, horizontal=FALSE, legend.shrink=0.3, legend.cex=0.7, legend.lab=title)
} |
write_restart.SIPNET <- function(outdir, runid, start.time, stop.time, settings, new.state,
RENAME = TRUE, new.params = FALSE, inputs) {
rundir <- settings$host$rundir
variables <- colnames(new.state)
if (length(new.params$restart) > 0) {
IC_extra <- data.frame(t(new.params$restart))
} else{
IC_extra <- data.frame()
}
if (RENAME) {
file.rename(file.path(outdir, runid, "sipnet.out"),
file.path(outdir, runid, paste0("sipnet.", as.Date(start.time), ".out")))
system(paste("rm", file.path(rundir, runid, "sipnet.clim")))
} else {
print(paste("Files not renamed -- Need to rerun year", start.time, "before next time step"))
}
settings$run$start.date <- start.time
settings$run$end.date <- stop.time
prior.sla <- new.params[[which(!names(new.params) %in% c("soil", "soil_SDA", "restart"))[1]]]$SLA
unit.conv <- 2 * (10000 / 1) * (1 / 1000) * (3.154 * 10^7)
analysis.save <- list()
if ("NPP" %in% variables) {
analysis.save[[length(analysis.save) + 1]] <- udunits2::ud.convert(new.state$NPP, "kg/m^2/s", "Mg/ha/yr")
names(analysis.save[[length(analysis.save)]]) <- c("NPP")
}
if ("NEE" %in% variables) {
analysis.save[[length(analysis.save) + 1]] <- new.state$NEE
names(analysis.save[[length(analysis.save)]]) <- c("NEE")
}
if ("AbvGrndWood" %in% variables) {
AbvGrndWood <- udunits2::ud.convert(new.state$AbvGrndWood, "Mg/ha", "g/m^2")
analysis.save[[length(analysis.save) + 1]] <- AbvGrndWood
names(analysis.save[[length(analysis.save)]]) <- c("AbvGrndWood")
analysis.save[[length(analysis.save) + 1]] <- IC_extra$abvGrndWoodFrac
names(analysis.save[[length(analysis.save)]]) <- c("abvGrndWoodFrac")
analysis.save[[length(analysis.save) + 1]] <- IC_extra$coarseRootFrac
names(analysis.save[[length(analysis.save)]]) <- c("coarseRootFrac")
analysis.save[[length(analysis.save) + 1]] <- IC_extra$fineRootFrac
names(analysis.save[[length(analysis.save)]]) <- c("fineRootFrac")
}
if ("LeafC" %in% variables) {
analysis.save[[length(analysis.save) + 1]] <- new.state$LeafC * prior.sla * 2
if (new.state$LeafC < 0) analysis.save[[length(analysis.save)]] <- 0
names(analysis.save[[length(analysis.save)]]) <- c("lai")
}
if ("Litter" %in% variables) {
analysis.save[[length(analysis.save) + 1]] <- udunits2::ud.convert(new.state$Litter, 'kg m-2', 'g m-2')
if (new.state$Litter < 0) analysis.save[[length(analysis.save)]] <- 0
names(analysis.save[[length(analysis.save)]]) <- c("litter")
}
if ("TotSoilCarb" %in% variables) {
analysis.save[[length(analysis.save) + 1]] <- udunits2::ud.convert(new.state$TotSoilCarb, 'kg m-2', 'g m-2')
if (new.state$TotSoilCarb < 0) analysis.save[[length(analysis.save)]] <- 0
names(analysis.save[[length(analysis.save)]]) <- c("soil")
}
if ("SoilMoistFrac" %in% variables) {
analysis.save[[length(analysis.save) + 1]] <- new.state$SoilMoistFrac
if (new.state$SoilMoistFrac < 0 || new.state$SoilMoistFrac > 1) analysis.save[[length(analysis.save)]] <- 0.5
names(analysis.save[[length(analysis.save)]]) <- c("litterWFrac")
analysis.save[[length(analysis.save) + 1]] <- new.state$SoilMoistFrac
if (new.state$SoilMoistFrac < 0 || new.state$SoilMoistFrac > 1) analysis.save[[length(analysis.save)]] <- 0.5
names(analysis.save[[length(analysis.save)]]) <- c("soilWFrac")
}
if ("SWE" %in% variables) {
analysis.save[[length(analysis.save) + 1]] <- new.state$SWE/10
if (new.state$SWE < 0) analysis.save[[length(analysis.save)]] <- 0
names(analysis.save[[length(analysis.save)]]) <- c("snow")
}
if ("LAI" %in% variables) {
analysis.save[[length(analysis.save) + 1]] <- new.state$LAI
if (new.state$LAI < 0) analysis.save[[length(analysis.save)]] <- 0
names(analysis.save[[length(analysis.save)]]) <- c("lai")
}
if (!is.null(analysis.save) && length(analysis.save)>0){
analysis.save.mat <- data.frame(matrix(unlist(analysis.save, use.names = TRUE), nrow = 1))
colnames(analysis.save.mat) <- names(unlist(analysis.save))
}else{
analysis.save.mat <- NULL
}
print(runid %>% as.character())
print(analysis.save.mat)
do.call(write.config.SIPNET, args = list(defaults = NULL,
trait.values = new.params,
settings = settings,
run.id = runid,
inputs = inputs,
IC = analysis.save.mat))
print(runid)
} |
dopos <- function(pos, limits, width, height, side.legend, shift)
{
if(side.legend > 1L)
limits <- rev(limits)
shift <- c(diff(limits[[1]]), diff(limits[[2]])) * shift
if(pos == "bottomleft") {
xlim <- c(min(limits[[1L]], na.rm = TRUE), min(limits[[1L]], na.rm = TRUE) + width) + shift[1]
ylim <- c(min(limits[[2L]], na.rm = TRUE), min(limits[[2L]], na.rm = TRUE) + height) + shift[2]
}
if(pos == "topleft") {
xlim <- c(min(limits[[1L]], na.rm = TRUE), min(limits[[1L]], na.rm = TRUE) + width) + shift[1]
ylim <- c(max(limits[[2L]], na.rm = TRUE) - height, max(limits[[2L]], na.rm = TRUE)) - shift[2]
}
if(pos == "topright") {
xlim <- c(max(limits[[1L]], na.rm = TRUE) - width, max(limits[[1L]], na.rm = TRUE)) - shift[1]
ylim <- c(max(limits[[2L]], na.rm = TRUE) - height, max(limits[[2L]], na.rm = TRUE)) - shift[2]
}
if(pos == "bottomright") {
xlim <- c(max(limits[[1L]], na.rm = TRUE) - width, max(limits[[1L]], na.rm = TRUE)) - shift[1]
ylim <- c(min(limits[[2L]], na.rm = TRUE), min(limits[[2L]], na.rm = TRUE) + height) + shift[2]
}
if(pos == "bottom") {
m <- mean(limits[[1]] - min(limits[[1]], na.rm = TRUE), na.rm = TRUE) - 0.5 * width
xlim <- c(min(limits[[1L]], na.rm = TRUE), min(limits[[1L]], na.rm = TRUE) + width) + m
ylim <- c(min(limits[[2L]], na.rm = TRUE), min(limits[[2L]], na.rm = TRUE) + height) + shift[2]
}
if(pos == "top") {
m <- mean(limits[[1]] - min(limits[[1]], na.rm = TRUE), na.rm = TRUE) - 0.5 * width
xlim <- c(min(limits[[1L]], na.rm = TRUE), min(limits[[1L]], na.rm = TRUE) + width) + m
ylim <- c(max(limits[[2L]], na.rm = TRUE) - height, max(limits[[2L]], na.rm = TRUE)) - shift[2]
}
if(pos == "left") {
m <- mean(limits[[2]] - min(limits[[2]], na.rm = TRUE), na.rm = TRUE) - 0.5 * height
xlim <- c(min(limits[[1L]], na.rm = TRUE), min(limits[[1L]], na.rm = TRUE) + width) + shift[1]
ylim <- c(min(limits[[2L]], na.rm = TRUE), min(limits[[2L]], na.rm = TRUE) + height) + m
}
if(pos == "right") {
m <- mean(limits[[2]] - min(limits[[2]], na.rm = TRUE), na.rm = TRUE) - 0.5 * height
xlim <- c(max(limits[[1L]], na.rm = TRUE) - width, max(limits[[1L]], na.rm = TRUE)) - shift[1]
ylim <- c(min(limits[[2L]], na.rm = TRUE), min(limits[[2L]], na.rm = TRUE) + height) + m
}
if(pos == "center") {
mx <- mean(limits[[1]] - min(limits[[1]], na.rm = TRUE), na.rm = TRUE) - 0.5 * width
my <- mean(limits[[2]] - min(limits[[2]], na.rm = TRUE), na.rm = TRUE) - 0.5 * height
xlim <- c(min(limits[[1L]], na.rm = TRUE), min(limits[[1L]], na.rm = TRUE) + width) + mx
ylim <- c(min(limits[[2L]], na.rm = TRUE), min(limits[[2L]], na.rm = TRUE) + height) + my
}
return(list(xlim = xlim, ylim = ylim))
} |
bic.zipfsreg <- function( target, dataset, wei = NULL, tol = 2, ncores = 1 ) {
p <- ncol(dataset)
moda <- list()
k <- 1
n <- length(target)
con <- log(n)
tool <- NULL
info <- matrix( 0, ncol = 2 )
result <- NULL
sela <- NULL
lgy <- sum( lgamma(target + 1) )
if ( any( is.na(dataset) ) ) {
warning("The dataset contains missing values (NA) and they were replaced automatically by the variable (column) median (for numeric) or by the most frequent level (mode) if the variable is factor")
if ( is.matrix(dataset) ) {
dataset <- apply( dataset, 2, function(x){ x[which(is.na(x))] = median(x, na.rm = TRUE) ; return(x) } )
} else {
poia <- unique( which( is.na(dataset), arr.ind = TRUE )[, 2] )
for ( i in poia ) {
xi <- dataset[, i]
if ( is.numeric(xi) ) {
xi[ which( is.na(xi) ) ] <- median(xi, na.rm = TRUE)
} else if ( is.factor( xi ) ) {
xi[ which( is.na(xi) ) ] <- levels(xi)[ which.max( as.vector( table(xi) ) )]
}
dataset[, i] <- xi
}
}
}
if ( is.null( colnames(dataset) ) ) colnames(dataset) <- paste("X", 1:p, sep = "")
runtime <- proc.time()
if ( is.null(wei) ) {
ini <- - 2 * Rfast::zip.mle(target)$loglik + 2 * con
lgy <- sum( gamma(target + 1) )
} else {
ini <- - 2 * zipmle.wei(target, wei)$loglik + 2 * con
lgy <- sum( wei * gamma(target + 1) )
}
bico <- zip.regs(target, dataset, wei, logged = TRUE, ncores = ncores)[, 3]
mat <- cbind(1:p, bico)
bico <- NULL
colnames(mat) <- c("variable", "BIC")
rownames(mat) <- 1:p
sel <- which.min( mat[, 2] )
if ( ini - mat[sel, 2] > tol ) {
info[1, ] <- mat[sel, ]
mat <- mat[-sel, , drop = FALSE]
sela <- sel
mi <- zip.reg( target, dataset[, sel], wei = wei, lgy = lgy )
tool[1] <- - 2 * mi$loglik + ( length(mi$be) + 1 ) * con
moda[[ 1 ]] <- mi
} else {
info <- info
sela <- NULL
}
if ( length(moda) > 0 & nrow(mat) > 0 ) {
k <- 2
pn <- p - k + 1
mod <- list()
if ( ncores <= 1 ) {
bico <- numeric( pn )
for ( i in 1:pn ) {
ma <- zip.reg( target, dataset[, c(sel, mat[i, 1]) ], wei = wei, lgy = lgy )
bico[i] <- - 2 * ma$loglik + ( length(ma$be) + 1 ) * con
}
mat[, 2] <- bico
} else {
cl <- makePSOCKcluster(ncores)
registerDoParallel(cl)
bico <- numeric(pn)
mod <- foreach( i = 1:pn, .combine = rbind, .export = "zip.reg") %dopar% {
ww <- zip.reg( target, dataset[, c(sel, mat[i, 1]) ], wei = wei, lgy = lgy )
bico[i] <- - 2 * ww$loglik + ( length(ma$be) + 1 ) * con
}
stopCluster(cl)
mat[, 2] <- mod
}
ina <- which.min( mat[, 2] )
sel <- mat[ina, 1]
if ( tool[1] - mat[ina, 2] <= tol ) {
info <- info
} else {
tool[2] <- mat[ina, 2]
info <- rbind(info, mat[ina, ] )
sela <- info[, 1]
mat <- mat[-ina, , drop = FALSE]
mi <- zip.reg( target, dataset[, sela], wei = wei, lgy = lgy )
tool[2] <- - 2 * mi$loglik + ( length(mi$be) + 1 ) * con
moda[[ 2 ]] <- mi
}
}
if ( nrow(info) > 1 & nrow(mat) > 0 ) {
while ( ( k < n - 15 ) & ( tool[ k - 1 ] - tool[ k ] > tol ) & ( nrow(mat) > 0 ) ) {
k <- k + 1
pn <- p - k + 1
if (ncores <= 1) {
for ( i in 1:pn ) {
ma <- zip.reg( target, dataset[, c(sela, mat[i, 1]) ], wei = wei, lgy = lgy )
mat[i, 2] <- - 2 * ma$loglik + ( length(ma$be) + 1 ) * con
}
} else {
cl <- makePSOCKcluster(ncores)
registerDoParallel(cl)
bico <- numeric(pn)
mod <- foreach( i = 1:pn, .combine = rbind, .export = "beta.reg") %dopar% {
ww <- zip.reg( target, dataset[, c(sela, mat[i, 1]) ], wei = wei, lgy = lgy )
bico[i] <- - 2 * ww$loglik + ( length(ww$be) + 1 ) * con
}
stopCluster(cl)
mat[, 2] <- mod
}
ina <- which.min( mat[, 2] )
sel <- mat[ina, 1]
if ( tool[k - 1] - mat[ina, 2] <= tol ) {
info <- rbind( info, c( -10, Inf ) )
tool[k] <- Inf
} else {
tool[k] <- mat[ina, 2]
info <- rbind(info, mat[ina, ] )
sela <- info[, 1]
mat <- mat[-ina, , drop = FALSE]
ma <- zip.reg( target, dataset[, sela], wei = wei, lgy =lgy )
tool[k] <- - 2 * ma$loglik + ( length(ma$be) + 1 ) * con
moda[[ k ]] <- ma
}
}
}
runtime <- proc.time() - runtime
d <- length(sela)
final <- NULL
if ( d >= 1 ) {
colnames(xx) <- paste("V", sela, sep = "")
final <- zip.reg( target, dataset[, sela], wei = wei )
info <- info[1:d, , drop = FALSE ]
colnames(info) <- c( "variables", "BIC" )
rownames(info) <- info[, 1]
}
list(runtime = runtime, mat = t(mat), info = info, ci_test = "testIndZIP", final = final )
} |
bboptim <- function(data, ParameterNames=NULL, respName=NULL, control=list(), force=FALSE,
optimizers=blackbox.getOption("optimizers"), precision=1e-3) {
np <- ncol(data)-1L
if (is.null(ParameterNames)) ParameterNames <- colnames(data)[seq(np)]
if (is.null(respName)) respName <- colnames(data)[np+1L]
sorted_etc <- prepareData(data=data,ParameterNames=ParameterNames,
respName=respName,verbose=FALSE)
fnscale <- control$fnscale
maximizeBool <- control$maximize
if (is.null(maximizeBool)) {
maximizeBool <- ! ( is.null(fnscale) || fnscale >= 0 )
} else if (is.null(fnscale)) {
if (maximizeBool) fnscale <- -1
} else stop("Mixing controls 'maximize' and 'fnscale' is dangerous. Please correct.")
gcvres <- calcGCV(sorted_etc, force=force, decreasing=maximizeBool, optimizers=optimizers )
ranfix <- list(rho=1/gcvres$CovFnParam[ParameterNames],
nu=gcvres$CovFnParam[["smoothness"]])
form <- as.formula(paste(respName,"~ 1 + Matern(1|",paste(ParameterNames,collapse=" + "),")"))
optimizers[optimizers=="optim"] <- "L-BFGS-B"
phi <- max(gcvres$pureRMSE^2,1e-8)
ranfix <- c(ranfix,list(phi=phi))
if (TRUE) {
oldopt <- spaMM.options(spaMM_glm_conv_silent=TRUE)
thisfit <- HLCor(form,data=data,ranPars=ranfix,REMLformula=form)
spaMM.options(oldopt)
ranfix <- c(ranfix,list(lambda=thisfit$lambda))
etafix <- list(beta=fixef(thisfit))
} else {
ranfix <- c(ranfix,list(lambda=phi/gcvres$lambdaEst))
etafix <- list()
}
thisfit <- fitme(form,data=sorted_etc,fixed=ranfix,etaFix=etafix, method="REML")
lower <- apply(sorted_etc[,ParameterNames,drop=FALSE],2,min)
upper <- apply(sorted_etc[,ParameterNames,drop=FALSE],2,max)
if ( ! maximizeBool ) {
init <- thisfit$data[which.min(predict(thisfit)),ParameterNames]
optr_fitted <- list(par=init,value=min(predict(thisfit,newdata=thisfit$data)))
} else {
init <- thisfit$data[which.max(predict(thisfit)),ParameterNames]
optr_fitted <- list(par=init,value=max(predict(thisfit,newdata=thisfit$data)))
}
mse <- attr(predict(thisfit,init,variances=list(linPred=TRUE,dispVar=TRUE)),"predVar")[1]
mse <- max(0,mse)
optr_fitted$RMSE <- sqrt(mse)
if ("L-BFGS-B" %in% optimizers) {
if (is.null(control$parscale)) control$parscale <- (upper-lower)
optr <- optim(init, function(v) {as.numeric(predict(thisfit,newdata=v))},
lower=lower,upper=upper,control=control,method="L-BFGS-B")
} else if ("lbfgsb3c" %in% optimizers){
if ( maximizeBool ) {
ufn <- function (v) { - as.numeric(predict(thisfit,newdata=v)) }
} else {
ufn <- function (v) { as.numeric(predict(thisfit,newdata=v)) }
}
if ( ! requireNamespace("lbfgsb3c",quietly=TRUE) ) {
stop("Package lbfgsb3c not installed.")
}
optr <- lbfgsb3c::lbfgsb3c(par=unlist(init),fn=ufn,lower=lower,upper=upper)
if ( maximizeBool ) {optr$value <- - optr$value}
} else if ("bobyqa" %in% optimizers) {
if ( maximizeBool ) {
ufn <- function (v) { - as.numeric(predict(thisfit,newdata=v)) }
} else {
ufn <- function (v) { as.numeric(predict(thisfit,newdata=v)) }
}
control <- list(rhobeg=min(abs(upper-lower))/20)
control$rhoend <- max(1,control$rhobeg)/1e6
if ( ! requireNamespace("minqa",quietly=TRUE) ) {
stop("Package minqa not installed.")
}
optr <- minqa::bobyqa(par=unlist(init),fn=ufn,lower=lower,upper=upper,control=control)
if ( maximizeBool ) {optr$value <- - optr$fval} else {optr$value <- optr$fval}
} else {
if ( maximizeBool ) {
ufn <- function (v) { - as.numeric(predict(thisfit,newdata=v)) }
} else {
ufn <- function (v) { as.numeric(predict(thisfit,newdata=v)) }
}
optr <- nloptr(x0=unlist(init),eval_f=ufn,lb=lower,ub=upper,
opts=list(algorithm="NLOPT_LN_BOBYQA",maxeval=-1))
if ( maximizeBool ) {optr$value <- - optr$objective} else {optr$value <- optr$objective}
optr$par <- optr$solution
}
colTypes <- list(ParameterNames=ParameterNames,respName=respName)
eta <- predict(thisfit,newdata=optr$par,variances=list(linPred=TRUE,dispVar=TRUE))
RMSE <- sqrt(max(0,attr(eta,"predVar")))
reltol <- control$reltol
if (is.null(reltol)) reltol <- sqrt(.Machine$double.eps)
if (maximizeBool) {
convergence <- (optr_fitted$value > optr$value-reltol)
} else convergence <- (optr_fitted$value < optr$value+reltol)
conv_crits <- c(objective=convergence,precision=(get_predVar(thisfit,optr$par)<precision))
resu <- list(fit=thisfit,optr_fitted=optr_fitted,optr=optr,callArgs = as.list(match.call())[-1],colTypes=colTypes,
GCVmethod=gcvres$GCVmethod,RMSE=RMSE,conv_crits=conv_crits)
class(resu) <- c("list","bboptim")
return(resu)
}
print.bboptim <- function(x,...) {
if (all(x$conv_crits)) {
cat("Apparent convergence at optimum:\n")
print(x["optr"],...)
cat("Other elements of bboptim object not fully shown:",
paste(setdiff(names(x),c("optr","convergence")),collapse=", "))
} else {
reasons <- c(objective="optimum objective not reached",precision="target precision not reached")[ ! (x$conv_crits)]
cat("Apparent optimum not ascertained: ")
cat(paste(reasons,collapse = " & "))
cat("\nInferred optimum among fitted points:\n")
print(unlist(x[["optr_fitted"]]),...)
cat("Inferred optimum over all space:\n")
print(c(unlist(x[["optr"]][c("par","value")]),RMSE=signif(x$RMSE,4)),...)
cat("Other elements of bboptim object not fully shown:",
paste(setdiff(names(x),c("optr_fitted","RMSE","convergence")),collapse=", "))
}
}
summary.bboptim <- function(object,...) {
print(x=object,...)
}
bbrhull <- function(n, from=10*n, vT,
object,
fixed=NULL, outputVars=object$colTypes$ParameterNames) {
trypoints <- data.frame(rvolTriangulation(from, vT))
colnames(trypoints) <- colnames(vT$vertices)
if (! is.null(fixed)) {
trypoints <- cbind(trypoints, fixed)
}
if ("Migraine" %in% blackbox.getOption("usedBy")) {
trypoints <- apply(trypoints, 1, tofullKrigingspace)
if (length(outputVars)>1L) {
trypoints <- t(trypoints)
} else trypoints <- matrix(trypoints,ncol=1L)
}
colnames(trypoints) <- outputVars
trypred <- predict(object, newdata=as.data.frame(trypoints), variances=list(predVar=TRUE))
trySE <- attr(trypred, "predVar")
trySE[trySE<0] <- 0
trySE <- sqrt(trySE)
Qmax <- object$Qmax
if (is.null(Qmax)) {
Qmin <- object$Qmin
tryQ <- trypred - 1.96*trySE
expectedImprovement <- trySE*dnorm((tryQ-Qmin)/trySE)+(Qmin-tryQ)*pnorm((Qmin-tryQ)/trySE)
} else {
tryQ <- trypred + 1.96*trySE
expectedImprovement <- trySE*dnorm((Qmax-tryQ)/trySE)+(tryQ-Qmax)*pnorm((tryQ-Qmax)/trySE)
}
trypoints <- trypoints[order(expectedImprovement, decreasing=TRUE)[seq_len(n)], outputVars, drop=FALSE]
return(trypoints)
}
rbb <- function(object,n=NULL,from=NULL,focus=0.75) {
if (focus<0 || focus>1) {
focus <- max(0,min(1,focus))
message.redef(paste("'focus' outside (0,1), set to",focus))
}
ParameterNames <- object$colTypes$ParameterNames
np <- length(ParameterNames)
if (is.null(n)) {
n <- floor(10*(1+3*log(np)))
n <- min(n,2^(np+1))
}
if (is.null(from)) {
from <- n* floor(10*(1+3*log(np)))
}
if (from<=2*n) stop("from < 2*n: please increase 'from' relative to 'n'")
ycolname <- object$colTypes$respName
obspred <- predict(object$fit,variances=list(linPred=TRUE,dispVar=TRUE),binding=ycolname)
obsSE <- attr(obspred,"predVar")
obsSE[obsSE<0] <- 0
fnscale <- object$callArgs$control$fnscale
if ( ! is.null(fnscale) && fnscale < 0) {
object$fit$Qmax <- max(obspred[,ycolname]+1.96 * sqrt(obsSE))
ordr <- order(obspred[,ycolname],decreasing=TRUE)
} else {
object$fit$Qmin <- min(obspred[,ycolname]-1.96 * sqrt(obsSE))
ordr <- order(obspred[,ycolname],decreasing=FALSE)
}
vT <- volTriangulationWrapper(object$fit$data[,ParameterNames,drop=FALSE])
candidates <- bbrhull(round(n*(1-focus)), from=from,vT, object$fit,outputVars=ParameterNames)
if (FALSE) {
ntop <- min(nrow(obspred),4*np)
vT <- volTriangulationWrapper(object$fit$data[ordr[seq(ntop)],ParameterNames,drop=FALSE])
candidates2 <- bbrhull(n-nrow(candidates)-1L, from=from/2,vT, object$fit,outputVars=ParameterNames)
} else {
whichSimplex <- locatePointinvT(object$optr$par,vT)
if (length(whichSimplex)==1L) {
simplex <- vT$vertices[vT$simplicesTable[whichSimplex,],,drop=FALSE]
candidates2 <- replicate(n-nrow(candidates)-1L,
rsimplex(simplex=simplex))
if (np == 1L) {
candidates2 <- as.matrix(candidates2)
} else candidates2 <- t(candidates2)
rownames(candidates2) <- NULL
colnames(candidates2) <- ParameterNames
} else {
subvT <- subsimplices.volTriangulation(vT,whichSimplex)
candidates2 <- rvolTriangulation(n=n-nrow(candidates)-1L,subvT)
}
}
candidates <- rbind(candidates,candidates2,object$optr$par)
candidatesWPred <- predict(object$fit,newdata=candidates,binding=ycolname)
poolWresp <- rbind(object$fit$data,candidatesWPred)
uli <- .ULI(poolWresp[,1:np,drop=FALSE])
if (any(table(uli[-length(uli)])>2L)) {
if (blackbox.getOption("dump_frames")) {
warning("Some candidate(s) in >2 copies.")
dump.frames(dumpto = "dump_in_rbb",to.file=TRUE)
} else stop("Some candidate(s) in >2 copies.")
}
table_uli <- table(uli)
curr_nrep_optr <- table_uli[uli[length(uli)]]
if (curr_nrep_optr==1L) {
candidates <- rbind(candidates,object$optr$par)
ndoublons <- 0L
} else if (curr_nrep_optr==3L) {
candidates <- candidates[-nrow(candidates),,drop=FALSE]
ndoublons <- 2L
} else if (curr_nrep_optr>3L) {
stop("Candidate optimum already in >2 copies in candidate points.")
} else ndoublons <- 1L
if (ndoublons>0L) {
singletonsWresp <- poolWresp[which(uli %in% which(table_uli==1L)),,drop=FALSE]
if (nrow(singletonsWresp)>0L) {
whichPts <- order(singletonsWresp[,ycolname],
decreasing=( ! is.null(fnscale) && fnscale < 0))[seq_len(ndoublons)]
candidates <- rbind(candidates,singletonsWresp[whichPts,1:np])
}
}
if ( ! inherits(candidates,"data.frame")) {
if (blackbox.getOption("dump_frames")) {
warning("! inherits(candidates,\"data.frame\").")
dump.frames(dumpto = "another_dump_in_rbb",to.file=TRUE)
} else stop("! inherits(candidates,\"data.frame\").")
}
candidates
} |
gx.rqpca.loadplot <-
function (save, main = "", crit = 0.3, cex = 0.8, cex.axis = 0.7,
cex.main = 0.8)
{
frame()
old.par <- par(); on.exit(par(old.par))
par(pty = "m", las = 1)
if (main == "")
banner <- paste("PC loadings >", crit, "for", deparse(substitute(save)),
"\ndata source:", save$input)
else banner <- main
l <- save$rload
range.l <- range(l)
ly <- -1; uy <- 1
if (range.l[1] < -0.975) ly <- range.l[1] - 0.1
if (range.l[2] > 0.975) uy <- range.l[2] + 0.1
k <- dim(l)[2]
p <- dim(l)[1]
lnam <- save$matnames[[2]]
plot(cbind(c(0, 1, 1, 0, 0), c(uy, uy, ly, ly, uy)), type = "l",
axes = FALSE, xlab = "", ylab = "")
segments(0, 0, 1, 0)
if (uy > 1) segments(0, 1, 1, 1, lty = 2)
segments(0, 0.5, 1, 0.5, lty = 2)
segments(0, -0.5, 1, -0.5, lty = 2)
if (ly < -1) segments(0, -1, 1, -1, lty = 2)
tplace1 = -0.3
mtext("-1", side = 2, at = -1, line = tplace1, cex = cex.axis)
mtext("-0.5", side = 2, at = -0.5, line = tplace1, cex = cex.axis)
mtext("0", side = 2, at = 0, line = tplace1, cex = cex.axis)
mtext("+0.5", side = 2, at = 0.5, line = tplace1, cex = cex.axis)
mtext("+1", side = 2, at = 1, line = tplace1, cex = cex.axis)
title(banner, cex.main = cex.main)
bb <- apply(l^2, 2, sum)/sum(l^2)
bb1 <- cumsum(bb)
cumpct <- cumsum(save$econtrib)
mtext("0%", side = 3, at = 0, line = tplace1, cex = 0.7)
tplace2 = -0.5
for (i in 1:k) {
segments(bb1[i], uy, bb1[i], ly)
lplot <- abs(l[, i]) > crit
lsel <- l[lplot, i]
names(lsel) <- lnam[lplot]
if (i == 1) {
mtext(paste(round(cumpct[i]), "%", sep = ""), side = 3,
at = bb1[i], line = tplace1, cex = cex.axis)
chardist <- bb[1]/(length(lsel) + 1)
text(seq(from = chardist, by = chardist, length = length(lsel)),
lsel, names(lsel), cex = cex)
mtext(paste("PC-", round(i), sep = ""), side = 1,
at = bb1[i]/2, line = tplace2, cex = cex.axis)
}
else {
if (length(lsel) >= 1) {
mtext(paste(round(cumpct[i]), "%", sep = ""),
side = 3, at = bb1[i], line = tplace1, cex = cex.axis)
chardist <- (bb1[i] - bb1[i - 1])/(length(lsel) +
1)
text(seq(from = bb1[i - 1] + chardist, by = chardist,
length = length(lsel)), lsel, names(lsel),
cex = cex)
mtext(paste("PC-", round(i), sep = ""), side = 1,
at = bb[i]/2 + bb1[i - 1], line = tplace2,
cex = cex.axis)
}
}
}
invisible()
} |
roll.spillover <- function (data, width, n.ahead = 10, index=c("orthogonalized", "generalized"),
ortho.type = c("single", "partial", "total"), ...)
{
if (!(class(data) == "zoo")) {
stop("\nPlease provide an object of class 'zoo', generated by 'as.zoo'.\n")
}
K <- ncol(data)+1
roll.index <- switch(match.arg(index),
orthogonalized = {
switch(match.arg(ortho.type),
single={rollapply(data, width = width,
FUN = function(z) {
O.spillover(VAR(z,...), ortho.type = c("single"))[K,K]
},
by.column = FALSE, align = "right")},
partial={rollapply(data, width = width,
FUN = function(z) {
O.spillover(VAR(z,...), ortho.type = c("partial"))[K,K]
},
by.column = FALSE, align = "right")},
total={rollapply(data, width = width,
FUN = function(z) {
O.spillover(VAR(z,...), ortho.type = c("total"))[K,K]
},
by.column = FALSE, align = "right")})
},
generalized ={
rollapply(data, width = width,
FUN = function(z) {
G.spillover(VAR(z,...))[K,K]
},
by.column = FALSE, align = "right")
} )
return(roll.index)
} |
setwd(dirname(this.dir()))
source("setup.R")
raw_data_path <- get_inpath(this.dir())
out_data_path <- get_outpath(this.dir())
br <- read_excel(paste0(raw_data_path,"baton_rouge_police_settlements_records.xlsx"),
sheet = "amounts",
col_types = "text")
br_po <- read_excel(paste0(raw_data_path,"baton_rouge_police_settlements_records.xlsx"),
sheet = "police_officers",
col_types = "text")
br <- br %>%
mutate(city = "Baton Rouge", state="LA") %>%
mutate(amount_awarded = as.numeric(amount_awarded),
calendar_year = as.numeric(calendar_year),
filed_date = NA,
filed_year = NA,
incident_date_clean = as_date(as.numeric(incident_date),origin = '1899-12-30'),
closed_date_clean = as_date(as.numeric(closed_date),origin = '1899-12-30'))
nrow(br %>% filter(is.na(incident_date_clean)))
nrow(br %>% filter(is.na(closed_date_clean)))
nrow(br %>% filter(is.na(calendar_year)))
br <- br %>%
mutate(closed_date = closed_date_clean,
incident_date = incident_date_clean,
incident_year = year(incident_date))
br <- br %>%
mutate(summary_allegations = NA,
court = NA)
br_po <- br_po %>%
mutate(city = "Baton Rouge", state= "LA") %>%
rename(calendar_year = year) %>%
mutate(calendar_year = as.numeric(calendar_year),
closed_date_clean = as_date(as.numeric(closed_date),origin = '1899-12-30'),
closed_date = closed_date_clean) %>%
select(-closed_date_clean)
merged <- full_join(br,br_po)
br <- br %>% select(calendar_year,
city,
state,
incident_date,
incident_year,
filed_date,
filed_year,
closed_date,
amount_awarded,
other_expenses,
collection,
total_incurred,
case_outcome,
docket_number,
claim_number,
court,
plaintiff_name,
plaintiff_attorney,
matter_name,
location,
summary_allegations)
summary(br$calendar_year)
nrow(br %>% group_by_all() %>% filter(n()>1))
nrow(br %>% group_by(docket_number) %>% filter(n()>1))
table(br$summary_allegations)
print(paste("There are",nrow(br %>% filter(is.na(closed_date))),"rows missing closed date"))
print(paste("There are",nrow(br %>% filter(is.na(calendar_year))),"rows missing calendar year"))
print(paste("There are",nrow(br %>% filter(is.na(amount_awarded))),"rows missing amount awarded"))
print(paste("There are",nrow(br %>% filter(amount_awarded==0)),"rows with amount awarded = 0"))
print(paste("There are",nrow(br %>% filter(is.na(docket_number))),"rows missing docket number"))
print("Total number of cases")
print(nrow(br))
print("Total amount awarded")
sum(br$amount_awarded)
write.csv(br,paste0(out_data_path,"baton_rouge_edited.csv"), na = "",row.names = FALSE)
write.csv(br_po,paste0(out_data_path,"baton_rouge_police_edited.csv"), na = "", row.names = FALSE) |
get_data <- function(records, dir_out = NULL, md5_check = TRUE, force = FALSE, as_sf = TRUE, ..., verbose = TRUE) {
if (inherits(verbose, "logical")) options(gSD.verbose = verbose)
extras <- list(...)
if (is.null(extras$hub)) extras$hub <- "auto"
if (is.null(records$level)) records$level <- NA
records <- .check_records(records, c("product", "product_group", "entity_id", "level", "record_id", "summary"))
records.names <- colnames(records)
groups <- unique(records$product_group)
if ("sentinel" %in% groups) {
.check_login("Copernicus")
}
if ("landsat" %in% groups) {
.check_login("USGS")
}
if ("modis" %in% groups) {
.check_login(c("USGS", "earthdata"))
}
if ("srtm" %in% groups) {
.check_login(c("earthdata"))
}
if (is.null(records$download_available)) {
out("Column 'download_available' not present, calling check_availabilty() to check download availability of records...")
records <- check_availability(records, verbose = FALSE)
if (inherits(verbose, "logical")) options(gSD.verbose = verbose)
}
if (all(!records$download_available)) out("All supplied records are currently not availabe for download. Use order_data() to make them available for download.", type = 3)
if (any(!records$download_available)) out("Some records are currently not available for download and will be skipped (see records$download_available). Use order_data() to make them available for download.", type = 2)
sub <- which(records$download_available)
if (any(records[sub, ][records$product_group == "landsat", ]$level != "l1")) {
records$gSD.espa_item <- NA
records[sub, ][records$product_group == "landsat" & records$level != "l1", ]$gSD.espa_item <-
.apply(records[sub, ][records$product_group == "landsat" & records$level != "l1", ], MARGIN = 1, function(x) {
content(.get(paste0(getOption("gSD.api")$espa, "item-status/", x$order_id, "/", x$record_id), getOption("gSD.usgs_user"), getOption("gSD.usgs_pass")))[[1]][[1]]
})
}
records$gSD.cred <- NA
records[sub, ]$gSD.cred <- .apply(records[sub, ], MARGIN = 1, function(x) {
if (x["product_group"] == "sentinel") {
list(.CopHub_select(x = extras$hub, p = if (isTRUE(as.logical(x[["is_gnss"]]))) "GNSS" else x[["product"]], user = getOption("gSD.dhus_user"), pw = getOption("gSD.dhus_pass")))
} else if (x["product_group"] == "srtm") {
list(user = getOption("gSD.ed_user"), pw = getOption("gSD.ed_pass"))
} else {
NA
}
})
records$md5_checksum <- NA
if (isTRUE(md5_check)) {
out("Receiving MD5 checksums...")
records[sub, ]$md5_checksum <- unlist(.apply(records[sub, ], MARGIN = 1, function(x) {
if (x["product_group"] == "sentinel") {
cred <- unlist(x$gSD.cred)
if (!is.null(x$md5_url)) content(.get(x$md5_url, cred[1], cred[2]), USE.NAMES = F) else NA
} else if (x["product_group"] == "landsat" & x$level != "l1") {
strsplit(content(.get(x$gSD.espa_item$cksum_download_ur), as = "text", encoding = "UTF-8"), " ")[[1]][1]
} else {
NA
}
}, verbose = F))
}
out("Assembling dataset URLs...")
records$dataset_url <- NA
records[sub, ]$dataset_url <- .get_ds_urls(records[sub, ])
dir_out <- .check_dir_out(dir_out, "datasets")
records$gSD.dir <- paste0(dir_out, "/", records$product, "/")
catch <- .sapply(records$gSD.dir, function(x) if (!dir.exists(x)) dir.create(x, recursive = T))
records$dataset_file <- NA
records[sub, ]$dataset_file <- .get_ds_filenames(records[sub, ])
records$gSD.item <- 1:nrow(records)
records$gSD.head <- .sapply(records$gSD.item, function(i, n = nrow(records)) paste0("[Dataset ", toString(i), "/", toString(n), "] "))
records$dataset_file <- .apply(records, MARGIN = 1, function(x) {
if (isTRUE(x$download_available)) {
dataset_url <- unlist(x$dataset_url, recursive = T)
dataset_file <- unlist(x$dataset_file, recursive = T)
cred <- unlist(x$gSD.cred)
if (any(is.na(dataset_url), is.na(dataset_file))) {
NA
} else {
download <- .sapply(1:length(dataset_url), function(i) {
file.head <- gsub("]", paste0(" | File ", i, "/", length(dataset_url), "]"), x$gSD.head)
.retry(.download,
url = dataset_url[i],
file = dataset_file[i],
name = paste0(x$record_id, if (!is.na(x$level)) paste0(" (", x$level, ")") else NULL),
head = file.head,
type = "dataset",
md5 = x$md5_checksum,
prog = if (isTRUE(verbose)) TRUE else FALSE,
fail = expression(out(paste0("Attempts to download '", name, "' failed.", type = 2))),
retry = expression(out(paste0("[Attempt ", toString(3 - n + 1), "/3] Reattempting download of '", name, "'..."), msg = T)),
delay = 0,
value = T,
username = if (any(x$product_group == "sentinel", x$product_group == "srtm")) cred[1] else NULL,
password = if (any(x$product_group == "sentinel", x$product_group == "srtm")) cred[2] else NULL
)
})
files <- dataset_file[download]
if (length(files) > 0) list(files) else return(NA)
}
} else {
out(paste0(x$gSD.head, "Skipping download of dataset '", paste0(x$record_id, if (!is.na(x$level)) paste0(" (", x$level, ")") else NULL), "', since it is not available for download..."), msg = T)
return(NA)
}
})
records <- .check_records(records, as_sf = as_sf)
return(.column_summary(records, records.names))
}
getSentinel_data <- get_data
getLandsat_data <- get_data
getMODIS_data <- get_data |
speech_url <- function(chamber, from, to){
param <- fechas_legis(from, to)
out <- list()
for(i in 1:length(param)){
out[[i]] <- proto_url(chamber = chamber,
legislature = names(param)[i],
from = parseo(param[[i]][1]),
to = parseo(param[[i]][2]))
}
url <- unlist(out)
if(is.null(url)){
stop("There are no sessions in that date range.", call. = FALSE)
}
return(url)
} |
testData = createData(sampleSize = 200, overdispersion = 0, family = gaussian())
fittedModel <- lmer(observedResponse ~ Environment1 + (1|group),
data = testData)
simulationOutput <- simulateResiduals(fittedModel = fittedModel)
plot(simulationOutput, quantreg = T)
x = plotResiduals(simulationOutput, testData$Environment1, rank = T)
library(SHT)
unif.2017YMq(as.matrix(x))
ks.test(x$pred, punif)
ks.test(x$res, punif)
library(spatstat)
spatial = ppp(x$pred,x$res, c(0,1), c(0,1))
plot(spatial)
x <- ppm(spatial ~ x * y + polynom(y,2), Poisson())
summary(x)
plot(x)
hist(simulationOutput)
testResiduals(simulationOutput) |
require(crs)
require(quadprog)
set.seed(42)
n <- 1000
n.eval <- 50
x.min <- -5
x.max <- 5
lower <- -0.1
upper <- 0.1
x1 <- runif(n,x.min,x.max)
x2 <- runif(n,x.min,x.max)
y <- sin(sqrt(x1^2+x2^2))/sqrt(x1^2+x2^2) + rnorm(n,sd=.1)
data.train <- data.frame(y,x1,x2)
x1.seq <- seq(min(x1),max(x1),length=n.eval)
x2.seq <- seq(min(x2),max(x2),length=n.eval)
rm(y,x1,x2)
data.eval <- data.frame(y=0,expand.grid(x1=x1.seq,x2=x2.seq))
model.unres <- crs(y~x1+x2,
deriv=1,
data=data.train,
nmulti=5,
basis="tensor")
model.gradient.unres <- model.unres$deriv.mat
summary(model.unres)
B <- crs:::prod.spline(x=data.train[,-1],
K=cbind(model.unres$degree,model.unres$segments),
basis=model.unres$basis)
B.x1 <- crs:::prod.spline(x=data.train[,-1],
K=cbind(model.unres$degree,model.unres$segments),
basis=model.unres$basis,
deriv.index=1,
deriv=1)
Aymat.res.x1 <- t(B.x1%*%solve(t(B)%*%B)%*%t(B))*data.train$y
B.x2 <- crs:::prod.spline(x=data.train[,-1],
K=cbind(model.unres$degree,model.unres$segments),
basis=model.unres$basis,
deriv.index=2,
deriv=1)
Aymat.res.x2 <- t(B.x2%*%solve(t(B)%*%B)%*%t(B))*data.train$y
Amat <- cbind(Aymat.res.x1,
-Aymat.res.x1,
Aymat.res.x2,
-Aymat.res.x2)
rm(B,B.x1,B.x2,Aymat.res.x1,Aymat.res.x2)
bvec <- c(rep(lower,n),
-rep(upper,n),
rep(lower,n),
-rep(upper,n))
QP.output <- solve.QP(Dmat=diag(n),dvec=rep(1,n),Amat=Amat,bvec=bvec)
if(is.nan(QP.output$value)) stop(" solve.QP failed. Try smoother curve (larger bandwidths or polynomial order)")
rm(Amat,bvec)
p.hat <- QP.output$solution
data.trans <- data.frame(y=p.hat*data.train$y,data.train[,2:ncol(data.train),drop=FALSE])
model.res <- crs(y~x1+x2,cv="none",
degree=model.unres$degree,
segments=model.unres$segments,
basis=model.unres$basis,
data=data.trans,
deriv=1)
fitted.unres <- matrix(predict(model.unres,newdata=data.eval), n.eval, n.eval)
fitted.res <- matrix(predict(model.res,newdata=data.eval), n.eval, n.eval)
zlim <- c(min(fitted.unres,fitted.res),max(fitted.unres,fitted.res))
par(mfrow=c(1,2))
persp(x1.seq, x2.seq,
fitted.unres,
main="Unconstrained Regression Spline",
col="lightblue",
ticktype="detailed",
ylab="X2",
xlab="X1",
zlim=zlim,
zlab="Conditional Expectation",
theta=300,
phi=30)
persp(x1.seq, x2.seq,
fitted.res,
main="Constrained Regression Spline",
sub="-0.1 <= g'(x1,x2) <= 0.1",
col="lightblue",
ticktype="detailed",
ylab="X2",
xlab="X1",
zlim=zlim,
zlab="Conditional Expectation",
theta=300,
phi=30)
par(mfrow=c(1,1)) |
knitr::opts_chunk$set(
collapse = TRUE,
comment = "
dpi = 300,
fig.width = 1.8,
fig.height = 1.8
)
library(ggalignment)
library(dplyr)
ggalignment(alignment = data.frame(img = character(),
alignment = character()),
font_size = 3)
align_cats <- example_cats()
ggalignment(align_cats, font_size = 3)
cats_rect <-
align_cats %>%
mutate(img = c(align_cats$img[1:3],
system.file("img/gray_2.png", package = "ggalignment")))
ggalignment(alignment = cats_rect, font_size = 3)
cats_with_coords <-
align_cats %>%
mutate(x = c(0.5, -0.5, -0.5, 0.5),
y = c(-0.5, -0.5, 0.5, 0.5))
ggalignment(alignment = cats_with_coords, font_size = 3)
cats_with_multi_image <-
align_cats %>%
mutate(alignment = rep("chaotic neutral")) %>%
mutate(x = c(0.5, -0.5, -0.5, 0.5),
y = c(-0.5, -0.5, 0.5, 0.5))
ggalignment(alignment = cats_with_multi_image,
font_size = 3)
ggalignment(alignment = align_cats,
font_size = 3,
max_images_per_dim = 1)
ggalignment(alignment = align_cats,
font_size = 3,
max_images_per_dim = 2)
ggalignment(alignment = align_cats,
font_size = 3,
max_images_per_dim = 4)
ggalignment(alignment = align_cats,
line_type = "dotted",
line_color = "seagreen1",
background_color = "turquoise4",
font_color = "skyblue1",
font_size = 3)
local_example <-
data.frame(img = c("r_logo.png",
"obie_portrait.png"),
alignment = c("lawful good",
"chaotic neutral"))
ggalignment(local_example,
font_size = 3)
url_example <-
data.frame(img = c("https://www.r-project.org/Rlogo.png",
"https://avatars.githubusercontent.com/u/18043377?v=4"),
alignment = c("lawful good",
"chaotic neutral"))
ggalignment(url_example,
font_size = 3) |
utils::globalVariables(c("proj_i", "S", "i"))
smart_pca <- function(snp_data, packed_data = FALSE,
sample_group, sample_remove = FALSE, snp_remove = FALSE,
missing_value = 9, missing_impute = "remove",
scaling = "drift",
program_svd = "RSpectra", pc_axes = 2,
sample_project = FALSE, pc_project = c(1:2)) {
startT <- Sys.time()
get.time <- function(t) {
tt <- as.numeric(difftime(Sys.time(), t, units = "secs"))
H <- tt %/% 3600
rr <- tt %% 3600
if(rr > 0) {
M <- rr %/% 60
rr2 <- rr %% 60
if(rr2 > 0) {
S <- round(rr2)
}else{
S <- 0
}
} else {
M <- 0
S <- 0
}
return(paste0(H, "h ", M, "m ", S, "s"))
}
message("Checking argument options selected...")
if(!is.numeric(sample_remove)) sample_remove <- as.logical(sample_remove)
if(!is.numeric(sample_project)) sample_project <- as.logical(sample_project)
if(isFALSE(sample_project)) pc_project <- 0
if (program_svd == "RSpectra" & max(pc_project) > pc_axes) {
stop("Dimensionality of projected space (pc_project) must be equal to or smaller than dimensionality of PCA (pc_axes)\nComputation aborted")
}
if (missing_impute != "remove" & missing_impute != "mean") {
stop("Check spelling: missing_impute must be 'remove' or 'mean'")
}
if (missing_value != 9 & !is.na(missing_value)) {
stop("Missing values must be coded as 9 or NA")
}
if (scaling != "none" & scaling != "center" & scaling != "sd" & scaling != "drift") {
stop("Check spelling: scaling must be 'none', 'center', 'sd' or 'drift'")
}
if (program_svd != "RSpectra" & program_svd != "bootSVD") {
stop("Check spelling: program_svd must be 'RSpectra' or 'bootSVD'")
}
if (missing_impute != "remove" & missing_impute != "mean") {
stop("Check spelling: missing_impute must equal 'remove' or 'mean'")
}
message("Argument options are correct...")
message("Loading data...")
samp_dat <- data.table::data.table(sample_group)
data.table::setnames(samp_dat, "Group")
samp_dat[, I:= 1:.N]
sampN.full <- nrow(samp_dat)
sample_PCA <- 1:sampN.full
if (!isFALSE(sample_remove)) {
sample_PCA <- setdiff(sample_PCA, sample_remove)
sample_project <- setdiff(sample_project, sample_remove)
}
if (!isFALSE(sample_project)) {
sample_PCA <- setdiff(sample_PCA, sample_project)
}
sampN <- length(sample_PCA)
is.binary <- function(filepath, max = 1000) {
f = file(filepath, "rb", raw = TRUE)
b = readBin(f, "int", max, size = 1, signed = FALSE)
close(f)
return(max(b) > 128)
}
if (is.binary(snp_data) == TRUE) {
packed_data = TRUE
message("Data is binary (packedancestrymap)...")
} else {
packed_data = FALSE
}
if(length(grep("\\.geno$", snp_data)) == 1) {
if(isFALSE(packed_data)) {
snp_dat <- vroom::vroom_fwf(file = snp_data,
col_positions = vroom::fwf_widths(rep(1, sampN.full), col_names = NULL),
col_types = paste(rep("i", sampN.full), collapse=""))
snpN.full <- nrow(snp_dat)
message(paste("Imported", snpN.full, "SNP by", sampN.full, "sample eigenstrat genotype matrix (decompressed or unpacked format)"))
message(paste0("Time elapsed: ", get.time(startT)))
message("Filtering data...")
snp_dat1 <- do.call(cbind, snp_dat[, sample_PCA])
if (!isFALSE(sample_project)) {
snp_dat2 <- do.call(cbind, snp_dat[, sample_project])
}
} else {
ss <- strsplit(snp_data, "\\.")[[1]]
snp_data <- paste(ss[-length(ss)], collapse = ".")
snp_dat <- read_packedancestrymap(pref = snp_data)$geno
attr(snp_dat, "dimnames") <- NULL
snpN.full <- nrow(snp_dat)
message(paste("Imported", snpN.full, "SNP by", sampN.full, "sample packed eigenstrat genotype matrix (compressed or packed format)"))
message(paste0("Time elapsed: ", get.time(startT)))
message("Filtering data...")
snp_dat1 <- snp_dat[, sample_PCA]
if (!isFALSE(sample_project)) {
snp_dat2 <- snp_dat[, sample_project]
}
missing_value <- NA
}
} else {
snp_dat <- data.table::fread(file = snp_data, header = FALSE)
snpN.full <- nrow(snp_dat)
message(paste("Imported", snpN.full, "SNP by", sampN.full, "sample genotype matrix"))
message(paste0("Time elapsed: ", get.time(startT)))
message("Filtering data...")
snp_dat1 <- do.call(cbind, snp_dat[, sample_PCA, with = FALSE])
if (!isFALSE(sample_project)) {
snp_dat2 <- do.call(cbind, snp_dat[, sample_project, with=FALSE])
} else {
message(paste("No samples projected after PCA computation"))
}
}
if (length(sample_group) != ncol(snp_dat)) {
stop("length(sample_group) should be equal to number of samples in dataset: computation aborted")
}
rm(snp_dat); gc()
if (!isFALSE(snp_remove)) {
snp.keep <- setdiff(1:snpN.full, snp_remove)
snpN.full <- length(snp.keep)
snp_dat1 <- snp_dat1[snp.keep, ]
if (!isFALSE(sample_project)) {
snp_dat2 <- snp_dat2[snp.keep, ]
}
}
if (snpN.full < 3) {
stop("Less than 3 SNPs remaining: computation aborted")
}
message(paste(snpN.full, "SNPs included in PCA", "computation"))
message(paste(length(snp_remove), "SNPs omitted from PCA computation"))
message(paste(length(sample_PCA), "samples included in PCA computation"))
if (!isFALSE(sample_remove)) {
message(paste(length(sample_remove), "samples omitted from PCA computation"))
}
if (!isFALSE(sample_project)) {
message(paste(length(sample_project), "samples projected after PCA computation"))
}
message("Completed data filtering")
message(paste0("Time elapsed: ", get.time(startT)))
message("Scanning for invariant SNPs...")
if (is.na(missing_value)) {
genoMean <- rowMeans(snp_dat1, na.rm = TRUE)
genoVar <- Rfast::rowVars(snp_dat1, na.rm = TRUE)
} else {
genoTab <- Rfast::rowTabulate(snp_dat1)
genoTab <- cbind(sampN - rowSums(genoTab), genoTab)
GTR <- setdiff(1:ncol(genoTab) - 1, missing_value)
sumN <- rowSums(genoTab[, GTR+1])
sumX <- foreach::foreach(i = GTR, .combine = "+") %do% {
i * genoTab[, i+1]
}
sumX2 <- foreach::foreach(i = GTR, .combine = "+") %do% {
i^2 * genoTab[, i+1]
}
genoMean <- sumX / sumN
genoVar <- ((sumX2 / sumN) - genoMean ^ 2) * (sumN / (sumN - 1))
rm(sumN, sumX, sumX2)
}
keepSNPs <- which(genoVar != 0)
if (length(keepSNPs > 0)) {
snp_dat1 <- snp_dat1[keepSNPs, ]
genoMean <- genoMean[keepSNPs]
genoVar <- genoVar[keepSNPs]
if (!isFALSE(sample_project)) {
snp_dat2 <- snp_dat2[keepSNPs, ]
}
}
rm(keepSNPs)
snpN <- nrow(snp_dat1)
if (snpN == snpN.full) {
message("Scan complete: no invariant SNPs found")
} else {
message(paste("Scan complete: removed", snpN.full - snpN, "invariant SNPs"))
}
message(paste0("Time elapsed: ", get.time(startT)))
message("Checking for missing values...")
if (is.na(missing_value)) {
missI <- which(is.na(snp_dat1))
} else {
missI <- which(snp_dat1 == missing_value)
}
if (length(missI) > 0) {
Z <- missI %% snpN
Z[Z == 0] <- snpN
snpMissI <- sort(unique(Z))
snpMissN <- length(snpMissI)
message(paste(snpMissN, "SNPs contain missing values"))
if (missing_impute == "mean") {
message("Imputing SNPs with missing values...")
snp_dat1[missI] <- genoMean[Z]
message(paste("Imputation with means completed:", length(missI), "missing values imputed"))
}
if (missing_impute == "remove") {
message("Removing SNPs with missing values...")
snp_dat1 <- snp_dat1[-snpMissI, ]
if (!isFALSE(sample_project)) {
snp_dat2 <- snp_dat2[-snpMissI, ]
}
genoMean <- genoMean[-snpMissI]
genoVar <- genoVar[-snpMissI]
snpN <- nrow(snp_dat1)
message(paste("Removal completed:", snpMissN, "SNPs removed"))
message(paste(snpN, "SNPs remaining"))
}
rm(missI, Z)
} else {
message("Scan completed: no missing values found")
rm(missI)
}
message(paste0("Time elapsed: ", get.time(startT)))
if(scaling != "none") {
message("Scaling values by SNP...")
if (scaling == "drift") {
message("Centering and scaling by drift dispersion...")
snp_drift <- sqrt((genoMean / 2) * (1 - genoMean/2))
snp_dat1 <- (snp_dat1 - genoMean) / snp_drift
}
if (scaling == "sd") {
message("Centering and standardizing (z-scores)...")
if (missing_impute == "mean") {
snp_sd <- Rfast::rowVars(snp_dat1, std = TRUE)
} else {
snp_sd <- sqrt(genoVar)
}
snp_dat1 <- (snp_dat1 - genoMean) / snp_sd
}
if (scaling == "center") {
message("Centering data...")
snp_dat1 <- snp_dat1 - genoMean
}
message(paste0("Completed scaling using ", scaling))
message(paste0("Time elapsed: ", get.time(startT)))
} else {
message("Note: SNP-based scaling not used")
}
message(paste0("Computing singular value decomposition using ", program_svd, "..."))
if (program_svd == "RSpectra") {
snp_pca <- RSpectra::svds(t(snp_dat1), k = pc_axes)
} else {
snp_pca <- bootSVD::fastSVD(t(snp_dat1))
}
if (missing_impute == "mean") {
if (scaling == "sd") {
snp_peigTotal <- sum(genoVar)
} else {
snp_peigTotal <- sum(Rfast::rowVars(snp_dat1))
}
} else {
snp_peigTotal <- sum(genoVar)
}
rm(snp_dat1); gc()
message(paste0("Completed singular value decomposition using ", program_svd))
message(paste0("Time elapsed: ", get.time(startT)))
message(paste0("Extracting eigenvalues and eigenvectors..."))
snp_pc <- data.frame(snp_pca$u %*% diag(snp_pca$d))
colnames(snp_pc) <- paste0("PC", c(1:ncol(snp_pc)))
snp_pcoef <- data.frame(snp_pca$v)
colnames(snp_pcoef) <- paste0("PC", c(1:ncol(snp_pcoef)))
snp_peig <- snp_pca$d ^ 2 / (sampN - 1)
snp_peigN <- length(snp_peig)
snp_eigVar <- snp_peig * 100 / snp_peigTotal
snp_eigVarCum <- cumsum(snp_eigVar)
snp_eig <- rbind(snp_peig, snp_eigVar, snp_eigVarCum)
rownames(snp_eig) <- c("observed eigenvalues", "variance explained", "cumulative variance explained")
colnames(snp_eig) <- paste("PC", c(1:snp_peigN), sep= "")
rm(snp_pca)
message("Eigenvalues and eigenvectors extracted")
message(paste0("Time elapsed: ", get.time(startT)))
if (!isFALSE(sample_project)) {
message("Projecting ancient samples onto PCA space")
message("PCA space = ", paste("PC", c(pc_project), sep = ""))
sampN.anc <- ncol(snp_dat2)
if (scaling == "drift") {
snp_dat2 <- (snp_dat2 - genoMean) / snp_drift
if(!is.na(missing_value)) {
missing_value <- (missing_value - genoMean) / snp_drift
}
rm(genoMean, snp_drift)
}
if (scaling == "sd") {
snp_dat2 <- (snp_dat2 - genoMean) / snp_sd
if(!is.na(missing_value)) {
missing_value <- (missing_value - genoMean) / snp_sd
}
rm(genoMean, snp_sd)
}
if (scaling == "center") {
snp_dat2 <- snp_dat2 - genoMean
if(!is.na(missing_value)) {
missing_value <- missing_value - genoMean
}
rm(genoMean)
}
proj_sp <- snp_pcoef[, pc_project]
aProj <- foreach::foreach(proj_i = 1:sampN.anc, .final = t, .combine = cbind) %do% {
p_i <- data.table::data.table(proj_sp, S = snp_dat2[, proj_i])
if (any(is.na(missing_value))) {
NAout <- p_i[!is.na(S)]
} else {
NAout <- p_i[S != missing_value]
}
x <- as.matrix(NAout[, .SD, .SDcols = 1:(ncol(NAout) - 1)])
solve(crossprod(x), crossprod(x, NAout$S))
}
rm(snp_dat2, proj_sp); gc()
message("Completed ancient sample projection")
message(paste(sampN.anc, "ancient samples projected"))
message(paste0("Time elapsed: ", get.time(startT)))
}
message("Tabulating PCA outputs...")
sample.out <- merge(samp_dat, data.table::data.table(I = sample_PCA, Class = "PCA", snp_pc), by = "I")
if (!isFALSE(sample_project)) {
xx <- rep(NA, snp_peigN)
names(xx) <- paste0("PC", 1:snp_peigN)
proj_dt <- data.table::data.table(I = sample_project, Group = sample_group[sample_project], Class = "Projected", t(xx))
for(i in 1:ncol(aProj)){
data.table::set(proj_dt, j = colnames(aProj)[i], value = aProj[, i])
}
sample.out <- rbind(sample.out, proj_dt)
}
if (!isFALSE(sample_remove)) {
xx <- rep(NA, snp_peigN)
names(xx) <- paste0("PC", 1:snp_peigN)
sample.out <- rbind(sample.out, data.table::data.table(I = sample_remove, Group = sample_group[sample_remove], Class = "Removed", t(xx)))
}
sample.out <- sample.out[order(I)]
sample.out[, I:=NULL]
OUT <- list(pca.snp_loadings = snp_pcoef, pca.eigenvalues = snp_eig, pca.sample_coordinates = as.data.frame(sample.out))
message("Completed tabulations of PCA outputs...")
return(OUT)
} |
subset_date <- function(.tibble, date_1, date_2) {
filtrert_tibble <- .tibble[.tibble$Date %in% date_1:date_2,]
return(filtrert_tibble)
}
subset_terms <- function(.tibble, terms, threshold, custom_column) {
if (!is.null(terms)) {
for (i in seq_along(terms)) {
if (!is.na(custom_column[i])) {
text_column <-
rlang::sym(custom_column[i])
} else {
text_column <- rlang::sym("Text")
}
if (is.na(threshold[i])) {
threshold[i] <- 1
}
.tibble <- .tibble %>%
dplyr::mutate(hitcount =
stringr::str_count(
!!text_column,
stringr::regex(
terms[i],
ignore_case = !search_arguments$case_sensitive
)
)) %>%
dplyr::filter(hitcount >= threshold[i])
}
}
return(.tibble)
} |
suppressPackageStartupMessages(library(rstanarm))
LOO.CORES <- ifelse(.Platform$OS.type == "windows", 1, 2)
SEED <- 1234L
set.seed(SEED)
CHAINS <- 2
ITER <- 40
REFRESH <- 0
if (!exists("example_model")) {
example_model <- run_example_model()
}
context("loo and waic")
expect_equivalent_loo <- function(fit) {
l <- suppressWarnings(loo(fit, cores = LOO.CORES))
w <- suppressWarnings(waic(fit))
expect_s3_class(l, "loo")
expect_s3_class(w, "loo")
expect_s3_class(w, "waic")
att_names <- c("names", "dims", "class", "model_name", "discrete", "yhash", "formula")
expect_named(attributes(l), att_names)
expect_named(attributes(w), att_names)
discrete <- attr(l, "discrete")
expect_true(!is.na(discrete) && is.logical(discrete))
llik <- log_lik(fit)
r <- loo::relative_eff(exp(llik), chain_id = rstanarm:::chain_id_for_loo(fit))
l2 <- suppressWarnings(loo(llik, r_eff = r, cores = LOO.CORES))
expect_equal(l$estimates, l2$estimates)
expect_equivalent(w, suppressWarnings(waic(log_lik(fit))))
}
test_that("loo & waic do something for non mcmc models", {
SW(fito <- stan_glm(mpg ~ wt, data = mtcars, algorithm = "optimizing",
seed = 1234L, prior_intercept = NULL, refresh = 0,
prior = NULL, prior_aux = NULL))
SW(fitvb1 <- update(fito, algorithm = "meanfield", iter = ITER))
SW(fitvb2 <- update(fito, algorithm = "fullrank", iter = ITER))
SW(loo1 <- loo(fito))
SW(loo2 <- loo(fitvb1))
SW(loo3 <- loo(fitvb2))
expect_true("importance_sampling_loo" %in% class(loo1))
expect_true("importance_sampling_loo" %in% class(loo2))
expect_true("importance_sampling_loo" %in% class(loo3))
})
test_that("loo errors if model has weights", {
SW(
fit <- stan_glm(mpg ~ wt, data = mtcars,
weights = rep_len(c(1,2), nrow(mtcars)),
seed = SEED, refresh = 0, iter = 50)
)
expect_error(loo(fit), "not supported")
expect_error(loo(fit), "'kfold'")
})
context("loo then refitting")
test_that("loo issues errors/warnings", {
expect_warning(loo(example_model, cores = LOO.CORES, k_threshold = 2),
"Setting 'k_threshold' > 1 is not recommended")
expect_error(loo(example_model, k_threshold = -1),
"'k_threshold' < 0 not allowed.")
expect_error(loo(example_model, k_threshold = 1:2),
"'k_threshold' must be a single numeric value")
expect_warning(rstanarm:::recommend_kfold(5), "Found 5")
expect_warning(rstanarm:::recommend_kfold(5), "10-fold")
expect_warning(rstanarm:::recommend_reloo(7), "Found 7")
})
test_that("loo with k_threshold works", {
SW(fit <- stan_glm(mpg ~ wt, prior = normal(0, 500), data = mtcars[25:32,],
seed = 12345, iter = 5, chains = 1, cores = 1,
refresh = 0))
expect_message(loo(fit, k_threshold = 0.5), "Model will be refit")
SW(loo_x <- loo(example_model))
expect_message(rstanarm:::reloo(example_model, loo_x, obs = 1),
"Model will be refit 1 times")
})
test_that("loo with k_threshold works for edge case(s)", {
y <- mtcars$mpg[1:10]
x <- rexp(length(y))
SW(fit <- stan_glm(y ~ 1, refresh = 0, iter = 50))
expect_message(
SW(res <- loo(fit, k_threshold = 0.1, cores = LOO.CORES)),
"problematic observation\\(s\\) found"
)
expect_s3_class(res, "loo")
})
context("kfold")
test_that("kfold does not throw an error for non mcmc models", {
SW(fito <- stan_glm(mpg ~ wt, data = mtcars, algorithm = "optimizing",
seed = 1234L, refresh = 0))
SW(k <- kfold(fito, K = 2))
expect_true("kfold" %in% class(k))
})
test_that("kfold throws error if K <= 1 or K > N", {
expect_error(kfold(example_model, K = 1), "K > 1", fixed = TRUE)
expect_error(kfold(example_model, K = 1e5), "K <= nobs(x)", fixed = TRUE)
})
test_that("kfold throws error if folds arg is bad", {
expect_error(kfold(example_model, K = 2, folds = 1:100), "length(folds) == N is not TRUE", fixed = TRUE)
expect_error(kfold(example_model, K = 2, folds = 1:2), "length(folds) == N is not TRUE", fixed = TRUE)
expect_error(kfold(example_model, K = 2, folds = seq(1,100, length.out = 56)), "all(folds == as.integer(folds)) is not TRUE", fixed = TRUE)
})
test_that("kfold throws error if model has weights", {
SW(
fit <- stan_glm(mpg ~ wt, data = mtcars,
iter = ITER, chains = CHAINS, refresh = 0,
weights = runif(nrow(mtcars), 0.5, 1.5))
)
expect_error(kfold(fit), "not currently available for models fit using weights")
})
test_that("kfold works on some examples", {
mtcars2 <- mtcars
mtcars2$wt[1] <- NA
SW(
fit_gaus <- stan_glm(mpg ~ wt, data = mtcars2, refresh = 0,
chains = 1, iter = 10)
)
SW(kf <- kfold(fit_gaus, 2))
SW(kf2 <- kfold(example_model, 2))
expect_named(kf, c("estimates", "pointwise", "elpd_kfold", "se_elpd_kfold", "p_kfold", "se_p_kfold"))
expect_named(kf2, c("estimates", "pointwise", "elpd_kfold", "se_elpd_kfold", "p_kfold", "se_p_kfold"))
expect_named(attributes(kf), c("names", "class", "K", "dims", "model_name", "discrete", "yhash", "formula"))
expect_named(attributes(kf2), c("names", "class", "K", "dims", "model_name", "discrete", "yhash", "formula"))
expect_s3_class(kf, c("kfold", "loo"))
expect_s3_class(kf2, c("kfold", "loo"))
expect_false(is.na(kf$p_kfold))
expect_false(is.na(kf2$p_kfold))
SW(kf <- kfold(fit_gaus, K = 2, save_fits = TRUE))
expect_true("fits" %in% names(kf))
expect_s3_class(kf$fits[[1, "fit"]], "stanreg")
expect_type(kf$fits[[2, "omitted"]], "integer")
expect_length(kf$fits[[2, "omitted"]], 16)
})
test_that("loo_compare throws correct errors", {
SW(capture.output({
mtcars$mpg <- as.integer(mtcars$mpg)
fit1 <- stan_glm(mpg ~ wt, data = mtcars, iter = 5, chains = 2, refresh = 0)
fit2 <- update(fit1, data = mtcars[-1, ])
fit3 <- update(fit1, formula. = log(mpg) ~ .)
fit4 <- update(fit1, family = poisson("log"))
l1 <- loo(fit1, cores = LOO.CORES)
l2 <- loo(fit2, cores = LOO.CORES)
l3 <- loo(fit3, cores = LOO.CORES)
l4 <- loo(fit4, cores = LOO.CORES)
w1 <- waic(fit1)
k1 <- kfold(fit1, K = 3)
}))
expect_error(loo_compare(l1, l2),
"Not all models have the same number of data points")
expect_error(loo_compare(list(l4, l2, l3)),
"Not all models have the same number of data points")
fit1$loo <- l1
fit2$loo <- l2
fit3$loo <- l3
fit4$loo <- l4
expect_error(loo_compare(fit1, fit2), "Not all models have the same number of data points")
expect_warning(loo_compare(fit1, fit3), "Not all models have the same y variable")
expect_error(loo_compare(fit1, fit4),
"Discrete and continuous observation models can't be compared")
expect_error(loo_compare(l1, fit1),
"All inputs should have class 'loo'")
expect_error(loo_compare(l1),
"requires at least two models")
})
test_that("loo_compare works", {
suppressWarnings(capture.output({
mtcars$mpg <- as.integer(mtcars$mpg)
fit1 <- stan_glm(mpg ~ wt, data = mtcars, iter = 40, chains = 2, refresh = 0)
fit2 <- update(fit1, formula. = . ~ . + cyl)
fit3 <- update(fit2, formula. = . ~ . + gear)
fit4 <- update(fit1, family = "poisson")
fit5 <- update(fit1, family = "neg_binomial_2")
fit1$loo <- loo(fit1, cores = LOO.CORES)
fit2$loo <- loo(fit2, cores = LOO.CORES)
fit3$loo <- loo(fit3, cores = LOO.CORES)
fit4$loo <- loo(fit4, cores = LOO.CORES)
fit5$loo <- loo(fit5, cores = LOO.CORES)
k1 <- kfold(fit1, K = 2)
k2 <- kfold(fit2, K = 2)
k3 <- kfold(fit3, K = 3)
k4 <- kfold(fit4, K = 2)
k5 <- kfold(fit5, K = 2)
}))
expect_false(attr(fit1$loo, "discrete"))
expect_false(attr(fit2$loo, "discrete"))
expect_false(attr(fit3$loo, "discrete"))
expect_true(attr(fit4$loo, "discrete"))
expect_true(attr(fit5$loo, "discrete"))
comp1 <- loo_compare(fit1, fit2)
comp2 <- loo_compare(fit1, fit2, fit3)
expect_s3_class(comp1, "compare.loo")
expect_s3_class(comp2, "compare.loo")
expect_equal(comp1[, "elpd_diff"], loo_compare(list(fit1$loo, fit2$loo))[, "elpd_diff"])
expect_equal(comp2[, "elpd_diff"], loo_compare(list(fit1$loo, fit2$loo, fit3$loo))[, "elpd_diff"])
comp1_detail <- loo_compare(fit1, fit2, detail=TRUE)
expect_output(print(comp1_detail), "Model formulas")
expect_equivalent(comp2, loo_compare(stanreg_list(fit1, fit2, fit3)))
expect_warning(comp3 <- loo_compare(k1, k2, k3),
"Not all kfold objects have the same K value")
expect_true(attr(k4, "discrete"))
expect_true(attr(k5, "discrete"))
expect_s3_class(loo_compare(k4, k5), "compare.loo")
})
context("loo and waic helpers")
test_that("kfold_and_reloo_data works", {
f <- rstanarm:::kfold_and_reloo_data
d <- f(example_model)
expect_identical(d, lme4::cbpp[, colnames(d)])
y <- rnorm(40)
SW(fit <- stan_glm(y ~ 1, iter = ITER, chains = CHAINS, refresh = 0))
expect_equivalent(f(fit), model.frame(fit))
SW(fit2 <- stan_glm(mpg ~ wt, data = mtcars, subset = gear != 5, iter = ITER,
chains = CHAINS, refresh = 0))
expect_equivalent(f(fit2), subset(mtcars[mtcars$gear != 5, c("mpg", "wt")]))
})
test_that(".weighted works", {
f <- rstanarm:::.weighted
expect_equal(f(2, NULL), 2)
expect_equal(f(2, 3), 6)
expect_equal(f(8, 0.25), 2)
expect_error(f(2), "missing, with no default")
}) |
ghosh.inv <- function(Z = NULL, X, B, RS_label, regions){
if(!missing(regions)){
if("InputOutput" %in% class(Z)){
RS_label <- Z$RS_label
if(class(regions) == "character"){
for(k in 1:length(regions)){
if(!regions[k] %in% RS_label[, 1]) stop(paste(regions[k], "is not a region in RS_label. Check spelling, capitalization, and punctuation."))
}
}
else if(class(regions) == "numeric" | class(regions) == "integer"){
region <- unique(RS_label[, 1])
regions <- region[regions]
}
} else if(!"InputOutput" %in% class(Z)){
if(missing(RS_label)) stop("Missing RS_label. This is needed to select the correct elements of Z and X to calculate the Leontief inverse.")
if(class(regions) == "character"){
for(k in 1:length(regions)){
if(!regions[k] %in% RS_label[, 1]) stop(paste(regions[k], "is not a region in RS_label. Check spelling, capitalization, and punctuation."))
}
}
else if(class(regions) == "numeric" | class(regions) == "integer"){
region <- unique(RS_label[, 1])
regions <- region[regions]
}
}
}
if("InputOutput" %in% class(Z)){
B <- Z$B
if(missing(regions)){
n <- dim(B)[1]
I <- diag(n)
duration <- round(8e-10 * n^3/60, 2)
if(duration >= 0.1){
print(paste("Calculating the Ghoshian inverse. Should take roughtly", duration, "minutes."))
}
G <- solve(I - B)
} else if(!missing(regions)){
RS_label <- Z$RS_label
B <- Z$B
i <- which(RS_label[, 1] %in% regions)
B <- B[i, i]
n <- length(i)
I <- diag(n)
duration <- round(8e-10 * n^3/60, 2)
if(duration >= 0.1){
print(paste("Calculating the Ghoshian inverse. Should take roughtly", duration, "minutes."))
}
G <- solve(I - B)
}
} else{
if(missing(B)){
if(dim(Z)[1] != dim(Z)[2]) stop("The intermediate transaction (Z) matrix needs to be a square matrix")
if(dim(Z)[1] != length(X)) stop("Check dimensions/length; Z should be a nxn matrix and X should be a nx1 vector")
n <- length(X)
if(n > 1500){
print("Calculating Intermediate Transaction Matrix (A)...")
}
xhat <- diag(c(1/X))
B <- Z * xhat
}
n <- dim(B)[1]
if(missing(regions)){
I <- diag(n)
duration <- round(8e-10 * n^3/60, 2)
if(duration >= 0.1){
print(paste("Calculating the Ghoshian inverse. Should take roughtly", duration, "minutes."))
}
G <- solve(I - B)
} else if(!missing(regions)){
i <- which(RS_label[, 1] %in% regions)
B <- B[i, i]
n <- length(i)
I <- diag(n)
duration <- round(8e-10 * n^3/60, 2)
if(duration >= 0.1){
print(paste("Calculating the Ghoshian inverse. Should take roughtly", duration, "minutes."))
}
G <- solve(I - B)
}
}
G
} |
context("Displaying the graph's metagraph")
test_that("the display of the metagraph works", {
property_graph <-
create_graph() %>%
add_gnm_graph(
n = 100,
m = 135,
set_seed = 23) %>%
select_nodes_by_degree(
expressions = "deg >= 3") %>%
set_node_attrs_ws(
node_attr = type,
value = "a") %>%
clear_selection() %>%
select_nodes_by_degree(
expressions = "deg < 3") %>%
set_node_attrs_ws(
node_attr = type,
value = "b") %>%
clear_selection() %>%
select_nodes_by_degree(
expressions = "deg == 0") %>%
set_node_attrs_ws(
node_attr = type,
value = "c") %>%
set_node_attr_to_display(
attr = type) %>%
select_edges_by_node_id(
nodes =
get_node_ids(.) %>%
sample(
size = 0.15 * length(.) %>%
floor())) %>%
set_edge_attrs_ws(
edge_attr = rel,
value = "r_1") %>%
invert_selection() %>%
set_edge_attrs_ws(
edge_attr = rel,
value = "r_2") %>%
clear_selection() %>%
copy_edge_attrs(
edge_attr_from = rel,
edge_attr_to = label)
metagraph_object <- display_metagraph(property_graph)
expect_is(
metagraph_object, c("grViz", "htmlwidget"))
}) |
init3ordered<-function (x, p, q, r, x0)
{
nom <- dimnames(x)
n <- dim(x)
dimnames(x) <- NULL
dimnames(x0) <- NULL
y <- x0
dimnames(y) <- NULL
dim(y) <- c(n[1], n[2] * n[3])
pii <- apply(y/sum(y), 1, sum)
p <- min(p, n[1])
mj <- c(1:n[1])
Bpoly <- emerson.poly(mj, pii)
Bpoly <- Bpoly[,-c(1) ]
a <- diag(sqrt(pii)) %*% Bpoly[,1:p]
y <- aperm(x0, c(2, 3, 1))
dim(y) <- c(n[2], n[3] * n[1])
pj <- apply(y/sum(y), 1, sum)
q <- min(q, n[2])
mj <- c(1:n[2])
Bpoly <- emerson.poly(mj, pj)
Bpoly <- Bpoly[,-c(1) ]
b <- diag(sqrt(pj)) %*% Bpoly[, 1:q]
y <- aperm(x0, c(3, 1, 2))
dim(y) <- c(n[3], n[1] * n[2])
pk <- apply(y/sum(y), 1, sum)
r <- min(r, n[3])
mj <- c(1:(n[3]))
Bpoly <- emerson.poly(mj, pk)
Bpoly <- Bpoly[,-c(1) ]
cc <- diag(sqrt(pk)) %*% Bpoly[, 1:r]
dimnames(x) <- nom
xsf <- flatten(x)
bc <- Kron(b, cc)
Z <- t(a) %*% xsf %*% bc
list(a = as.matrix(a), b = as.matrix(b), cc = as.matrix(cc),
g = NULL, x = x,pii=pii,pj=pj,pk=pk)
} |
finproducts = c('Mutual Funds', 'NPS', 'Savings Account', 'PPF', 'FD', 'Bonds', 'Stocks', 'General Insurance', 'NRI Banking', 'Car Insurance', 'Debit Card', 'Credit Card', 'Mobile Banking')
finproducts |
e2e_run <- function(model, nyears=20, quiet=TRUE, csv.output=FALSE) {
oo <- options()
on.exit(options(oo))
pkg.env$quiet <- quiet
pkg.env$csv.output <- csv.output
build <- build_model(model, nyears)
output <- StrathE2E.run(build)
aggregates <- aggregate_model_output(model, output)
total.annual.catch <- extract_timeseries_annual_landings(model, build, output)
annual.catch.by.gear <- disaggregate_landings_discards_by_gear(elt(build, "fleet.output"), total.annual.catch)
catch.land.disc <- extract_simulated_catch_land_disc_by_gear_for_given_year(model, annual.catch.by.gear)
monthly.averages <- monthly_averages_of_final_year(model, build, output, aggregates)
annual.results.wholedomain <- derive_annual_results_wholedomain(model, build, output, aggregates)
annual.results.offshore <- derive_annual_results_offshore(model, build, output, aggregates)
annual.results.inshore <- derive_annual_results_inshore(model, build, output, aggregates)
flow.matrices <- assemble_flow_matrix_from_model_annual_output(model, build, output, aggregates)
model.path <- elt(model, "setup", "model.path")
annual.target.data <- read_annual_target_data(model.path)
monthly.target.data <- read_monthly_target_data(model.path)
model.target.results <- derive_model_target_results(model, build, output, aggregates, annual.target.data)
fit.to.target.data <- calculate_error_function(model, model.target.results)
results <- list(
build = list(
model.parameters = elt(build, "model.parameters"),
run = elt(build, "run"),
drivers = elt(build, "drivers"),
forcings = elt(build, "forcings")
),
output = output,
aggregates = aggregates,
fleet.output = elt(build, "fleet.output"),
total.annual.catch = total.annual.catch,
annual.catch.by.gear = annual.catch.by.gear,
final.year.outputs = list(
inshore_catchmat = elt(catch.land.disc, "inshore_catchmat"),
inshore_discmat = elt(catch.land.disc, "inshore_discmat"),
inshore_landmat = elt(catch.land.disc, "inshore_landmat"),
offshore_catchmat = elt(catch.land.disc, "offshore_catchmat"),
offshore_landmat = elt(catch.land.disc, "offshore_landmat"),
offshore_discmat = elt(catch.land.disc, "offshore_discmat"),
monthly.averages = monthly.averages,
mass_results_inshore = elt(annual.results.inshore, "mass_results"),
maxmass_results_inshore = elt(annual.results.inshore, "maxmass_results"),
minmass_results_inshore = elt(annual.results.inshore, "minmass_results"),
annual_flux_results_inshore = elt(annual.results.inshore, "annual_flux_results"),
mass_results_offshore = elt(annual.results.offshore, "mass_results"),
maxmass_results_offshore = elt(annual.results.offshore, "maxmass_results"),
minmass_results_offshore = elt(annual.results.offshore, "minmass_results"),
annual_flux_results_offshore = elt(annual.results.offshore, "annual_flux_results"),
mass_results_wholedomain = elt(annual.results.wholedomain, "mass_results"),
maxmass_results_wholedomain = elt(annual.results.wholedomain, "maxmass_results"),
minmass_results_wholedomain = elt(annual.results.wholedomain, "minmass_results"),
annual_flux_results_wholedomain = elt(annual.results.wholedomain, "annual_flux_results"),
flow_matrix_all_fluxes = elt(flow.matrices, "flow_matrix_all_fluxes"),
flow_matrix_excl_spawn_recruit = elt(flow.matrices, "flow_matrix_excl_spawn_recruit"),
NetworkIndexResults = elt(flow.matrices, "NetworkIndexResults"),
annual.target.data = annual.target.data,
monthly.target.data = monthly.target.data,
annual_obj = elt(fit.to.target.data, "annual_obj"),
partial_chi = elt(fit.to.target.data, "partial_chi"),
opt_results = elt(fit.to.target.data, "opt_results")
)
)
results
} |
import_local <- function(path, station_code, trace = FALSE, collMethd = c('1', '2')){
if(file.exists(paste0(path, '.zip'))){
path <- paste0(path, '.zip')
}
if(!file.exists(path)){
stop('Path does not exist')
}
if(!grepl('wq|met|nut', station_code))
stop('station_code must include wq, met, or nut')
zips <- grepl('\\.zip$', path)
station_code <- tolower(gsub('\\.csv$', '', station_code))
if(zips){
file_nms <- unzip(path, list = TRUE)$Name
expr <- paste0(station_code, '.*', '\\.csv$')
files_in <- grep(expr, file_nms, value = TRUE, ignore.case = TRUE)
if(length(files_in) == 0) stop('File(s) not found.')
tmp_fl <- tempfile()
unzip(path, files = files_in, exdir = tmp_fl)
files_in <- dir(tmp_fl, recursive = TRUE)
path <- tmp_fl
} else {
file_nms <- dir(path)
expr <- paste0('^', station_code, '.*', '\\.csv$')
}
files_in <- grep(expr, file_nms, value = TRUE, ignore.case = TRUE)
if(length(files_in) == 0) stop('File(s) not found.')
station_code <- tolower(station_code)
dat <- vector('list', length(files_in))
names(dat) <- gsub('.csv', '', files_in)
if(trace) cat('Loading files...\n\n')
for(file_in in files_in){
if(trace) cat(file_in, '\t')
tmp <- try({
read.csv(file.path(path, file_in), stringsAsFactors = FALSE)
}, silent = TRUE)
if('try-error' %in% class(tmp)){
raw <- readLines(file.path(path, file_in))
keep_lines <- grep(paste0('^', station_code), raw)
tmp <- raw[keep_lines]
tmp <- strsplit(tmp, ',')
tmp <- do.call('rbind', tmp)
tmp <- data.frame(tmp, stringsAsFactors = FALSE)
names(tmp) <- strsplit(
gsub('["\\"]', '', raw[keep_lines[1] - 1]),
',')[[1]]
}
names(tmp) <- tolower(names(tmp))
tmp <- tmp[, !names(tmp) %in% c('stationcode', 'isswmp')]
names(tmp)[grep('datetimestamp', names(tmp), ignore.case = TRUE)] <- 'datetimestamp'
tmp$datetimestamp <- time_vec(tmp$datetimestamp, station_code)
nm <- gsub('.csv', '', file_in)
dat[[nm]] <- tmp
}
if(zips) unlink(tmp_fl, recursive = TRUE)
parm <- substring(station_code, 6)
parm <- gsub('[0-9.*]', '', parm)
nms <- param_names(parm)[[parm]]
out <- do.call('rbind', dat)
if('met' %in% parm & any(duplicated(out$datetimestamp)) & 'frequency' %in% names(out)){
min_step <- as.character(min(as.numeric(unique(out$frequency))))
out <- out[out$frequency %in% min_step, ]
out <- out[!duplicated(out$datetimestamp),]
}
if(any(c('nut', 'wq') %in% parm) & any(duplicated(out$datetimestamp))){
out <- out[!duplicated(out$datetimestamp),]
}
out <- out[!is.na(out$datetimestamp), ]
if(parm == 'nut'){
if(length(unique(out$collmethd)) == 2){
out <- out[out$collmethd %in% collMethd, ]
}else{
warning('This station does not have diel sampling data. All data will be retained.', call. = FALSE)
out <- out
}
}
out <- data.frame(
datetimestamp = out$datetimestamp,
out[, names(out) %in% nms],
row.names = seq(1, nrow(out))
)
parameters <- grep('datetimestamp|^f_|^c_', names(out), invert = TRUE, value = TRUE)
out[, parameters] <- suppressWarnings(
lapply(out[, parameters], function(x) as.numeric(as.character(x)))
)
names(out) <- tolower(names(out))
station_code <- gsub('[0-9]*$', '', station_code)
out <- swmpr(out, station_code)
if(trace) cat('\n\nData imported...')
return(out)
} |
new_rational <- function(n = integer(), d = integer()) {
vec_assert(n, ptype = integer())
vec_assert(d, ptype = integer())
new_rcrd(list(n = n, d = d), class = "vctrs_rational")
}
rational <- function(n, d) {
args <- vec_cast_common(n, d, .to = integer())
args <- vec_recycle_common(!!! args)
new_rational(args[[1L]], args[[2L]])
}
format.vctrs_rational <- function(x, ...) {
n <- field(x, "n")
d <- field(x, "d")
out <- paste0(n, "/", d)
out[is.na(n) | is.na(d)] <- NA
out
}
vec_proxy_equal.vctrs_rational <- function(x) {
n <- field(x, "n")
d <- field(x, "d")
gcd <- gcd(n, d)
data.frame(n = n / gcd, d = d / gcd)
}
gcd <- function(x, y) {
r <- x %% y
ifelse(r, gcd(y, r), y)
}
vec_proxy_compare.vctrs_rational <- function(x, ...) {
field(x, "n") / field(x, "d")
}
rational_methods <- list(
vec_ptype_abbr.vctrs_rational = function(x, ...) "rtnl",
vec_ptype_full.vctrs_rational = function(x, ...) "rational",
vec_ptype2.vctrs_rational = function(x, y, ...) UseMethod("vec_ptype2.vctrs_rational"),
vec_ptype2.vctrs_rational.vctrs_rational = function(x, y, ...) new_rational(),
vec_ptype2.vctrs_rational.integer = function(x, y, ...) new_rational(),
vec_ptype2.integer.vctrs_rational = function(x, y, ...) new_rational(),
vec_cast.vctrs_rational = function(x, to, ...) UseMethod("vec_cast.vctrs_rational"),
vec_cast.vctrs_rational.vctrs_rational = function(x, to, ...) x,
vec_cast.double.vctrs_rational = function(x, to, ...) field(x, "n") / field(x, "d"),
vec_cast.vctrs_rational.integer = function(x, to, ...) rational(x, 1),
vec_proxy_equal.vctrs_rational = vec_proxy_equal.vctrs_rational,
vec_proxy_compare.vctrs_rational = vec_proxy_compare.vctrs_rational
)
local_rational_class <- function(frame = caller_env()) {
local_methods(.frame = frame, !!!rational_methods)
} |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.