code
stringlengths 1
13.8M
|
---|
FactoFAMD <-
function()
{
nom.correct<-function(text, liste=NULL)
{
text<-chartr("^\ ", "...", text)
if(!is.null(liste)) {
while(text %in% liste) text<-paste(text, ".bis", sep="")
}
return(text)
}
top<-tktoplevel(borderwidth=10)
tkwm.title(top,.Facto_gettext("FAMD"))
tkwm.geometry(top, "-50+50")
font2<-tkfont.create(family="times",size=12,weight="bold")
fontheading<-tkfont.create(family="times",size=11,weight="bold")
donnee<-get(getRcmdr(".activeDataSet"))
vars<-colnames(donnee)
rows<-rownames(donnee)
listFrame <- tkframe(top,borderwidth=2)
lab1 = tklabel(listFrame,text=.Facto_gettext("Select quantitative variables"),fg="blue")
lab2 = tklabel(listFrame,text=.Facto_gettext("Select factors"),fg="blue")
lab3 = tklabel(listFrame,text=" ")
tkgrid(lab1,lab3,lab2)
tkgrid.configure(lab1,column=1, columnspan=2, sticky = "nw")
tkgrid.configure(lab2,column=4, columnspan=2, sticky = "ne")
tkgrid.configure(lab3,column=3, columnspan=1, sticky = "n")
listdesc<-tklistbox(listFrame,selectmode="extended",exportselection=FALSE,yscrollcommand=function(...) tkset(scr,...))
scr <- tkscrollbar(listFrame,repeatinterval=5,command=function(...)tkyview(listdesc,...))
tkselection.set(listdesc,0)
listfact<-tklistbox(listFrame,selectmode="extended",exportselection=FALSE,yscrollcommand=function(...) tkset(scrfact,...))
scrfact <- tkscrollbar(listFrame,repeatinterval=5,command=function(...)tkyview(listfact,...))
vars<-colnames(donnee)
vars.fact = NULL
vars.desc = NULL
for (i in (1:ncol(donnee))){
if (is.numeric(donnee[,i])){
tkinsert(listdesc,"end",vars[i])
vars.desc = c(vars.desc,vars[i])
}
else {
vars.fact = c(vars.fact,vars[i])
tkinsert(listfact,"end",vars[i])
}
}
tkgrid(listdesc, scr,tklabel(listFrame,text=" "),listfact,scrfact,sticky = "nw")
tkgrid.configure(scr, sticky = "wns", column=2, columnspan=1)
tkgrid.configure(listdesc,sticky = "ew", column=1, columnspan=1)
tkgrid.configure(scrfact,sticky = "wns", column=5, columnspan=1)
tkgrid.configure(listfact,sticky = "ew", column=4, columnspan=1)
Fillu.funct<-defmacro(label, firstLabel, expr=
{
env<-environment()
variablefact<-NULL
.FilluLabel<-tclVar(paste(firstLabel, "", sep=" "))
.factors<-Factors()
OnFillu<-function()
{
if(length(.factors)==0) errorCondition(recall=NULL, message=.Facto_gettext("No Factor available"))
FilluWin<-tktoplevel()
tkwm.title(FilluWin,.Facto_gettext("Choice of supplementary factors"))
FOK.funct<-function()
{
fact.select<-listfact.nom[as.numeric(tkcurselection(listfact))+1]
if(length(fact.select)==0) {
assign("variablefact", NULL, envir=env)
tclvalue(.FilluLabel)<-paste(firstLabel, "", sep=" ")
tkconfigure(Fillu.but, fg="black")
tkdestroy(FilluWin)
return()
}
assign("variablefact", fact.select, envir=env)
tclvalue(.FilluLabel)<-paste(label, "", sep=" ")
tkconfigure(Fillu.but, fg="blue")
tkdestroy(FilluWin)
}
listfact<-tklistbox(FilluWin,selectmode="extended",exportselection="FALSE",yscrollcommand=function(...)tkset(scrfact,...))
scrfact <-tkscrollbar(FilluWin,repeatinterval=5,command=function(...)tkyview(listfact,...))
listfact.nom<-NULL
indice<-0
for (i in (1:ncol(donnee))) {
if (is.factor(donnee[,i])) {
tkinsert(listfact,"end",vars[i])
listfact.nom<-c(listfact.nom,vars[i])
if(vars[i] %in% variablefact) tkselection.set(listfact, indice)
indice<-indice+1
}
}
FOK.but<-tkbutton(FilluWin, text="OK", width=16,command=FOK.funct)
tkgrid(tklabel(FilluWin, text=""))
tkgrid(tklabel(FilluWin, text = .Facto_gettext("Select supplementary factor(s)"), fg = "blue"), column=1, columnspan = 1, sticky = "ew")
tkgrid(listfact, scrfact, sticky = "nw")
tkgrid.configure(scrfact, sticky = "ens", columnspan=1)
tkgrid.configure(listfact, sticky = "ew", column=1, columnspan=1)
tkgrid(tklabel(FilluWin, text=""))
tkgrid(FOK.but, column=1,columnspan=1, sticky="ew")
tkgrid(tklabel(FilluWin, text=""))
tkgrid.columnconfigure(FilluWin,0, minsize=25)
tkgrid.columnconfigure(FilluWin,2, minsize=25)
}
FilluFrame<-tkframe(IlluFrame)
if(length(.factors)==0){
Fillu.but<-tkbutton(FilluFrame, text=.Facto_gettext("No factors available"), borderwidth=3)
tkconfigure(Fillu.but, fg="grey")
}
else Fillu.but<-tkbutton(FilluFrame, textvariable=.FilluLabel, command=OnFillu, borderwidth=3)
tkgrid(Fillu.but, sticky="ew")
})
Dillu.funct<-defmacro(label, firstLabel, expr=
{
env<-environment()
variableillu<-NULL
.DilluLabel<-tclVar(paste(firstLabel, "", sep=" "))
OnDillu<-function()
{
DilluWin<-tktoplevel()
tkwm.title(DilluWin,.Facto_gettext("Select supplementary quantitative variables"))
DOK.funct<-function()
{
vsup.select<-listvar.nom[as.numeric(tkcurselection(listvar))+1]
if(length(vsup.select)==0)
{
assign("variableillu", NULL, envir=env)
tclvalue(.DilluLabel)<-paste(firstLabel, "", sep=" ")
tkconfigure(Dillu.but, fg="black")
tkdestroy(DilluWin)
return()
}
assign("variableillu", vsup.select, envir=env)
tclvalue(.DilluLabel)<-paste(label, "", sep=" ")
tkconfigure(Dillu.but, fg="blue")
tkdestroy(DilluWin)
}
listvar<-tklistbox(DilluWin,selectmode="extended",exportselection="FALSE",yscrollcommand=function(...)tkset(scrvar,...))
scrvar <-tkscrollbar(DilluWin,repeatinterval=5,command=function(...)tkyview(listvar,...))
listvar.nom<-NULL
indice<-0
for (i in (1:ncol(donnee))) {
if (is.numeric(donnee[,i])) {
tkinsert(listvar,"end",vars[i])
listvar.nom<-c(listvar.nom,vars[i])
if(vars[i] %in% variableillu) tkselection.set(listvar, indice)
indice<-indice+1
}
}
DOK.but<-tkbutton(DilluWin, text="OK", width=16,command=DOK.funct)
tkgrid(tklabel(DilluWin, text=""))
tkgrid(tklabel(DilluWin, text = .Facto_gettext("Select supplementary quantitative variables"), fg = "blue"), column=1, columnspan = 1, sticky = "ew")
tkgrid(listvar, scrvar, sticky = "nw")
tkgrid.configure(scrvar, sticky = "ens", columnspan=1)
tkgrid.configure(listvar, sticky = "ew", column=1, columnspan=1)
tkgrid(tklabel(DilluWin, text=""))
tkgrid(DOK.but, column=1,columnspan=1, sticky="ew")
tkgrid(tklabel(DilluWin, text=""))
tkgrid.columnconfigure(DilluWin,0, minsize=25)
tkgrid.columnconfigure(DilluWin,2, minsize=25)
}
DilluFrame<-tkframe(IlluFrame)
if(length(listNumeric())==0){
Dillu.but<-tkbutton(DilluFrame, text=.Facto_gettext("No quantitative variable available"), borderwidth=3)
tkconfigure(Dillu.but, fg="grey")
}
else Dillu.but<-tkbutton(DilluFrame, textvariable=.DilluLabel, command=OnDillu, borderwidth=3)
tkgrid(Dillu.but, sticky="ew")
})
Iillu.funct<-defmacro(label, firstLabel, expr=
{
env<-environment()
individuillu<-NULL
.IilluLabel<-tclVar(paste(firstLabel, "", sep=" "))
OnIillu<-function()
{
IilluWin<-tktoplevel()
tkwm.title(IilluWin,.Facto_gettext("Select supplementary individual(s)"))
IOK.funct<-function()
{
ind.select<-rows[as.numeric(tkcurselection(listind))+1]
if(length(ind.select)==0) {
assign("individuillu", NULL, envir=env)
tclvalue(.IilluLabel)<-paste(firstLabel, "", sep=" ")
tkconfigure(Iillu.but, fg="black")
tkdestroy(IilluWin)
return()
}
assign("individuillu", ind.select, envir=env)
tclvalue(.IilluLabel)<-paste(label, "", sep=" ")
tkconfigure(Iillu.but, fg="blue")
tkdestroy(IilluWin)
}
listind<-tklistbox(IilluWin,selectmode="extended",exportselection="FALSE",yscrollcommand=function(...)tkset(scrind,...))
scrind <-tkscrollbar(IilluWin,repeatinterval=5,command=function(...)tkyview(listind,...))
indice<-0
for (i in (1:nrow(donnee))) {
tkinsert(listind,"end",rows[i])
if(rows[i] %in% individuillu) tkselection.set(listind, indice)
indice<-indice+1
}
IOK.but<-tkbutton(IilluWin, text="OK", width=16,command=IOK.funct)
tkgrid(tklabel(IilluWin, text=""))
tkgrid(tklabel(IilluWin, text = .Facto_gettext("Select supplementary individual(s)"), fg = "blue"), column=1, columnspan = 1, sticky = "ew")
tkgrid(listind, scrind, sticky = "nw")
tkgrid.configure(scrind, sticky = "ens", columnspan=1)
tkgrid.configure(listind, sticky = "ew", column=1, columnspan=1)
tkgrid(tklabel(IilluWin, text=""))
tkgrid(IOK.but, column=1,columnspan=1, sticky="ew")
tkgrid(tklabel(IilluWin, text=""))
tkgrid.columnconfigure(IilluWin,0, minsize=25)
tkgrid.columnconfigure(IilluWin,2, minsize=25)
}
IilluFrame<-tkframe(IlluFrame)
Iillu.but<-tkbutton(IilluFrame, textvariable=.IilluLabel, command=OnIillu, borderwidth=3)
tkgrid(Iillu.but, sticky="ew")
})
Reinitializ.funct<-function()
{
tkdestroy(top)
FactoFAMD()
}
Sortie.funct<-defmacro(label, firstLabel, expr=
{
env<-environment()
compteur.sortie<-0
Rpropre<-FALSE
RFichier <- ""
Rgroupe<-FALSE
Rindividu<-FALSE
Rindsup<-FALSE
Rquanti<-FALSE
Rquantisup<-FALSE
Rquali<-FALSE
Rqualisup<-FALSE
Rdescdim<-FALSE
.SortieLabel<-tclVar(paste(firstLabel, "", sep=" "))
OnSortie<-function()
{
SortieWin<-tktoplevel()
tkwm.title(SortieWin,.Facto_gettext("Output options"))
onOK.sortie<-function()
{
assign("compteur.sortie", compteur.sortie+1, envir=env)
if(compteur.sortie>0) tclvalue(.SortieLabel)<-paste(label, "", sep=" ")
tkconfigure(Sortie.but, fg="blue")
if(tclvalue(eigValue)=="1") assign("Rpropre", TRUE, envir=env)
else assign("Rpropre", FALSE, envir=env)
if(tclvalue(groupeValue)=="1") assign("Rgroupe", TRUE, envir=env)
else assign("Rgroupe", FALSE, envir=env)
if(tclvalue(indValue)=="1") assign("Rindividu", TRUE, envir=env)
else assign("Rindividu", FALSE, envir=env)
if(tclvalue(ind.sup.Value)=="1") assign("Rindsup", TRUE, envir=env)
else assign("Rindsup", FALSE, envir=env)
if(tclvalue(quantiValue)=="1") assign("Rquanti", TRUE, envir=env)
else assign("Rquanti", FALSE, envir=env)
if(tclvalue(quantisupValue)=="1") assign("Rquantisup", TRUE, envir=env)
else assign("Rquantisup", FALSE, envir=env)
if(tclvalue(qualiValue)=="1") assign("Rquali", TRUE, envir=env)
else assign("Rquali", FALSE, envir=env)
if(tclvalue(qualisupValue)=="1") assign("Rqualisup", TRUE, envir=env)
else assign("Rqualisup", FALSE, envir=env)
if(tclvalue(descdimValue)=="1") assign("Rdescdim", TRUE, envir=env)
else assign("Rdescdim", FALSE, envir=env)
if (tclvalue(Fichier)=="") assign("RFichier", NULL, envir=env)
assign("RFichier", tclvalue(Fichier), envir=env)
tkdestroy(SortieWin)
}
eig.lab <-tklabel(SortieWin, text=.Facto_gettext("Eigenvalues"))
eig.check <- tkcheckbutton(SortieWin)
if(Rpropre) eigValue <- tclVar("1")
else eigValue <- tclVar("0")
tkconfigure(eig.check,variable=eigValue)
groupe.lab <-tklabel(SortieWin, text=.Facto_gettext("Results for the variables"))
groupe.check <- tkcheckbutton(SortieWin)
if(Rgroupe) groupeValue <- tclVar("1")
else groupeValue <- tclVar("0")
tkconfigure(groupe.check,variable=groupeValue)
ind.lab<-tklabel(SortieWin,text=.Facto_gettext("Results for the active individuals"))
ind.check <- tkcheckbutton(SortieWin)
if(Rindividu) indValue <- tclVar("1")
else indValue <- tclVar("0")
tkconfigure(ind.check,variable=indValue)
ind.sup.lab<-tklabel(SortieWin,text=.Facto_gettext("Results for the supplementary individuals"))
ind.sup.check <- tkcheckbutton(SortieWin)
if(Rindsup) ind.sup.Value <- tclVar("1")
else ind.sup.Value <- tclVar("0")
tkconfigure(ind.sup.check,variable=ind.sup.Value)
quanti.lab<-tklabel(SortieWin,text=.Facto_gettext("Results of the quantitative variables"))
quanti.check <- tkcheckbutton(SortieWin)
if(Rquanti) quantiValue <- tclVar("1")
else quantiValue <- tclVar("0")
tkconfigure(quanti.check,variable=quantiValue)
quantisup.lab<-tklabel(SortieWin,text=.Facto_gettext("Results of the supplementary quantitative variables"))
quantisup.check <- tkcheckbutton(SortieWin)
if(Rquantisup) quantisupValue <- tclVar("1")
else quantisupValue <- tclVar("0")
tkconfigure(quantisup.check,variable=quantisupValue)
quali.lab<-tklabel(SortieWin,text=.Facto_gettext("Results of the qualitative variables"))
quali.check <- tkcheckbutton(SortieWin)
if(Rquali) qualiValue <- tclVar("1")
else qualiValue <- tclVar("0")
tkconfigure(quali.check,variable=qualiValue)
qualisup.lab<-tklabel(SortieWin,text=.Facto_gettext("Results of the supplementary qualitative variables"))
qualisup.check <- tkcheckbutton(SortieWin)
if(Rqualisup) qualisupValue <- tclVar("1")
else qualisupValue <- tclVar("0")
tkconfigure(qualisup.check,variable=qualisupValue)
descdim.lab<-tklabel(SortieWin, text=.Facto_gettext("Description of the dimensions"))
descdim.check<-tkcheckbutton(SortieWin)
if(Rdescdim) descdimValue<-tclVar("1")
else descdimValue<-tclVar("0")
tkconfigure(descdim.check,variable=descdimValue)
RFichierFrame<-tkframe(SortieWin,borderwidth=2)
if (is.null(RFichier)) Fichier <- tclVar("")
else Fichier<-tclVar(RFichier)
Fichier.entry <-tkentry(RFichierFrame,width="40",textvariable=Fichier)
tkgrid(tklabel(RFichierFrame,text=.Facto_gettext("Print results on a 'csv' file")),Fichier.entry)
SortieOK.but<-tkbutton(SortieWin,text="OK",width=16,command=onOK.sortie)
tkgrid(tklabel(SortieWin, text = .Facto_gettext("Select output options"), fg ="blue"), columnspan = 2, sticky = "w")
tkgrid(tklabel(SortieWin, text = " "))
tkgrid(eig.lab,eig.check,sticky="w")
tkgrid(groupe.lab,groupe.check,sticky="w")
tkgrid(ind.lab,ind.check,sticky="w")
if (!is.null(individuillu)) tkgrid(ind.sup.lab,ind.sup.check,sticky="w")
tkgrid(quanti.lab,quanti.check,sticky="w")
if (!is.null(variableillu)) tkgrid(quantisup.lab,quantisup.check,sticky="w")
tkgrid(quali.lab,quali.check,sticky="w")
if (!is.null(variablefact)) tkgrid(qualisup.lab,qualisup.check,sticky="w")
tkgrid(descdim.lab,descdim.check,sticky="w")
tkgrid(tklabel(SortieWin, text = " "))
tkgrid(RFichierFrame)
tkgrid(SortieOK.but)
tkgrid(tklabel(SortieWin, text = " "))
}
SortieFrame<-tkframe(IlluFrame)
Sortie.but<-tkbutton(SortieFrame, textvariable=.SortieLabel, command=OnSortie, borderwidth=3)
tkgrid(Sortie.but, sticky="ew")
})
PLOT.FAMD<-defmacro(label, firstLabel, expr=
{
env<-environment()
compteur.graph<-0
.PlotLabel<-tclVar(paste(firstLabel, "", sep=" "))
Gchoix<-TRUE
GTitle<-NULL
Gcol.var<-Gcol.var.tmp<-"red"
Gcol.quanti.sup<-Gcol.quanti.sup.tmp<-"darkred"
Gcol.quali<-Gcol.quali.tmp<-"green"
Gcol.quali.sup<-Gcol.quali.sup.tmp<-"darkgreen"
GAxeGrpe<-c(1,2)
Glabel<-TRUE
Rchoix<-TRUE
RTitle<-NULL
Rlabel.indMoy<-TRUE
Rlabel.quali<-TRUE
Rhabillage<-"none"
Rinvisible<-NULL
RXlimInd<-NULL
RYlimInd<-NULL
Wchoix=TRUE
WTitle<-NULL
WAxeVar<-c(1,2)
Wlabel.var<-TRUE
Wcol.quanti.sup<-Wcol.quanti.sup.tmp<-"blue"
Wcol.var<-Wcol.var.tmp<-"black"
Winvisible<-NULL
Wlim.cos<-0.
OnPlot<-function()
{
PlotWin<-tktoplevel()
tkwm.title(PlotWin,.Facto_gettext("Graphical options"))
tkwm.geometry(PlotWin, "-100+50")
PlotWin2<-tkframe(PlotWin)
onOKsub<-function()
{
assign("compteur.graph", compteur.graph+1, envir=env)
if(compteur.graph>0) tclvalue(.PlotLabel)<-paste(label, .Facto_gettext(""), sep=" ")
tkconfigure(Plot.but, fg="blue")
if(tclvalue(grpe.check.value)==1) assign("Gchoix", TRUE, envir=env)
else assign("Gchoix", FALSE, envir=env)
if(Gchoix) {
if (tclvalue(GTitre)==" ") assign("GTitle", NULL, envir=env)
assign("GTitle", tclvalue(GTitre), envir=env)
assign("Gcol.var", Gcol.var.tmp, envir=env)
assign("Gcol.quanti.sup", Gcol.quanti.sup.tmp, envir=env)
assign("Gcol.quali", Gcol.quali.tmp, envir=env)
assign("Gcol.quali.sup", Gcol.quali.sup.tmp, envir=env)
label.tmp.grpe<-tclvalue(label.grpe.checkValue)
if(label.tmp.grpe==1) assign("Glabel", TRUE, envir=env)
else assign("Glabel", FALSE, envir=env)
}
if(tclvalue(var.check.value)==1) assign("Wchoix", TRUE, envir=env)
else assign("Wchoix", FALSE, envir=env)
if(Wchoix) {
if (tclvalue(WTitre)==" ") assign("WTitle", NULL, envir=env)
assign("WTitle", tclvalue(WTitre), envir=env)
assign("Wlim.cos", tclvalue(WlimCosValue), envir=env)
label.tmp.var<-tclvalue(label.var.checkValue)
if(label.tmp.var==1) assign("Wlabel.var", TRUE, envir=env)
else assign("Wlabel.var", FALSE, envir=env)
assign("Wcol.var", Wcol.var.tmp, envir=env)
assign("Wcol.quanti.sup", Wcol.quanti.sup.tmp, envir=env)
if(tclvalue(inv.Value)=="aucun") assign("Winvisible", NULL, envir=env)
else assign("Winvisible", tclvalue(inv.Value), envir=env)
}
if(tclvalue(ind.check.value)==1) assign("Rchoix", TRUE, envir=env)
else assign("Rchoix", FALSE, envir=env)
if(Rchoix) {
if (tclvalue(Titre)==" ") assign("RTitle", NULL, envir=env)
assign("RTitle", tclvalue(Titre), envir=env)
label.tmp.indMoy<-tclvalue(label.indMoy.checkValue)
label.tmp.quali<-tclvalue(label.quali.checkValue)
if(label.tmp.indMoy==1) assign("Rlabel.indMoy", TRUE, envir=env)
else assign("Rlabel.indMoy", FALSE, envir=env)
if(label.tmp.quali==1) assign("Rlabel.quali", TRUE, envir=env)
else assign("Rlabel.quali", FALSE, envir=env)
habillage.tmp<-listgraph.nom[as.numeric(tkcurselection(listgraph))+1]
if(length(habillage.tmp)==0) assign("Rhabillage","none", envir=env)
else assign("Rhabillage", habillage.tmp, envir=env)
if(tclvalue(XlimIndMin)=="" | tclvalue(XlimIndMax)=="") assign("RXlimInd", NULL, envir=env)
else assign("RXlimInd", c(as.numeric(tclvalue(XlimIndMin)), as.numeric(tclvalue(XlimIndMax))), envir=env)
if(tclvalue(YlimIndMin)=="" | tclvalue(YlimIndMax)=="") assign("RYlimInd", NULL, envir=env)
else assign("RYlimInd", c(as.numeric(tclvalue(YlimIndMin)), as.numeric(tclvalue(YlimIndMax))), envir=env)
inv.ind.tmp<-tclvalue(inv.ind.checkValue)
inv.ind.sup.tmp<-tclvalue(inv.ind.sup.checkValue)
inv.quali.tmp<-tclvalue(inv.quali.checkValue)
assign("Rinvisible", NULL, envir=env)
if(inv.ind.tmp=="1") assign("Rinvisible", c(Rinvisible, "ind"), envir=env)
if(inv.ind.sup.tmp=="1") assign("Rinvisible", c(Rinvisible, "ind.sup"), envir=env)
if(inv.quali.tmp=="1") assign("Rinvisible", c(Rinvisible, "quali"), envir=env)
}
tkdestroy(PlotWin)
}
PlotGrpeFrame<-tkframe(PlotWin2, borderwidth=5, relief="groove")
GchoixFrame<-tkframe(PlotGrpeFrame,borderwidth=2)
grpe.check<-tkcheckbutton(GchoixFrame)
if(Gchoix) grpe.check.value<-tclVar("1")
else grpe.check.value<-tclVar("0")
tkconfigure(grpe.check, variable=grpe.check.value)
tkgrid(tklabel(GchoixFrame, text=.Facto_gettext("Graph of all the variables"), font=font2),grpe.check)
tkgrid(tklabel(GchoixFrame, text=" "))
GTitleFrame<-tkframe(PlotGrpeFrame,borderwidth=2)
if (is.null(GTitle)) GTitre <- tclVar(" ")
else GTitre<-tclVar(GTitle)
GTitre.entry <-tkentry(GTitleFrame,width="40",textvariable=GTitre)
tkgrid(tklabel(GTitleFrame,text=.Facto_gettext("Title of the graph")),GTitre.entry)
GcolFrame<-tkframe(PlotGrpeFrame,borderwidth=2)
Gcol.var.value <- Gcol.var
canvas.var <- tkcanvas(GcolFrame,width="80",height="25",bg=Gcol.var.value)
ChangeColor.var <- function()
{
Gcol.var.value<-tclvalue(tcl("tk_chooseColor",initialcolor=Gcol.var.value,title=.Facto_gettext("Choose a color")))
if (nchar(Gcol.var.value)>0) {
tkconfigure(canvas.var,bg=Gcol.var.value)
assign("Gcol.var.tmp", Gcol.var.value, envir=env)
}
}
ChangeColor.var.button <- tkbutton(GcolFrame,text=.Facto_gettext("Change Color"),command=ChangeColor.var)
tkgrid(tklabel(GcolFrame, text=.Facto_gettext("Color of the quantitative variables")),canvas.var,ChangeColor.var.button)
Gcol.quanti.sup.value<-Gcol.quanti.sup
canvas.quanti.sup <- tkcanvas(GcolFrame,width="80",height="25",bg=Gcol.quanti.sup.value)
ChangeColor.quanti.sup <- function()
{
Gcol.quanti.sup.value<-tclvalue(tcl("tk_chooseColor",initialcolor=Gcol.quanti.sup.value,title=.Facto_gettext("Choose a color")))
if (nchar(Gcol.quanti.sup.value)>0) {
tkconfigure(canvas.quanti.sup,bg=Gcol.quanti.sup.value)
assign("Gcol.quanti.sup.tmp", Gcol.quanti.sup.value, envir=env)
}
}
ChangeColor.quanti.sup.button <- tkbutton(GcolFrame,text=.Facto_gettext("Change Color"),command=ChangeColor.quanti.sup)
if(!is.null(variableillu)) tkgrid(tklabel(GcolFrame, text=.Facto_gettext("color for supplementary quantitative variables")),canvas.quanti.sup,ChangeColor.quanti.sup.button)
Gcol.quali.value<-Gcol.quali
canvas.quali <- tkcanvas(GcolFrame,width="80",height="25",bg=Gcol.quali.value)
ChangeColor.quali <- function()
{
Gcol.quali.value<-tclvalue(tcl("tk_chooseColor",initialcolor=Gcol.quali.value,title=.Facto_gettext("Choose a color")))
if (nchar(Gcol.quali.value)>0) {
tkconfigure(canvas.quali,bg=Gcol.quali.value)
assign("Gcol.quali.tmp", Gcol.quali.value, envir=env)
}
}
ChangeColor.quali.button <- tkbutton(GcolFrame,text=.Facto_gettext("Change Color"),command=ChangeColor.quali)
tkgrid(tklabel(GcolFrame, text=.Facto_gettext("color for qualitative variables")),canvas.quali,ChangeColor.quali.button)
Gcol.quali.sup.value<-Gcol.quali.sup
canvas.quali.sup <- tkcanvas(GcolFrame,width="80",height="25",bg=Gcol.quali.sup.value)
ChangeColor.quali.sup <- function()
{
Gcol.quali.sup.value<-tclvalue(tcl("tk_chooseColor",initialcolor=Gcol.quali.sup.value,title=.Facto_gettext("Choose a color")))
if (nchar(Gcol.quali.sup.value)>0) {
tkconfigure(canvas.quali.sup,bg=Gcol.quali.sup.value)
assign("Gcol.quali.sup.tmp", Gcol.quali.sup.value, envir=env)
}
}
ChangeColor.quali.sup.button <- tkbutton(GcolFrame,text=.Facto_gettext("Change Color"),command=ChangeColor.quali.sup)
if(!is.null(variablefact)) tkgrid(tklabel(GcolFrame, text=.Facto_gettext("color for supplementary qualitative variables")),canvas.quali.sup,ChangeColor.quali.sup.button)
GlabelFrame<-tkframe(PlotGrpeFrame,borderwidth=2)
label.grpe.check<-tkcheckbutton(GlabelFrame)
if (Glabel) label.grpe.checkValue<-tclVar("1")
else label.grpe.checkValue<-tclVar("0")
tkconfigure(label.grpe.check, variable=label.grpe.checkValue)
tkgrid(tklabel(GlabelFrame, text=.Facto_gettext("Labels for the variables")),label.grpe.check)
tkgrid(GchoixFrame)
tkgrid(GTitleFrame)
tkgrid(GcolFrame)
tkgrid(GlabelFrame)
tkgrid(tklabel(PlotGrpeFrame, text=" "))
PlotVarFrame<-tkframe(PlotWin2, borderwidth=5, relief="groove")
WchoixFrame<-tkframe(PlotVarFrame,borderwidth=2)
var.check<-tkcheckbutton(WchoixFrame)
if(Wchoix) var.check.value<-tclVar("1")
else var.check.value<-tclVar("0")
tkconfigure(var.check, variable=var.check.value)
tkgrid(tklabel(WchoixFrame, text=.Facto_gettext("Graph of the quantitative variables"), font=font2),var.check)
tkgrid(tklabel(WchoixFrame, text=" "))
WTitleFrame<-tkframe(PlotVarFrame,borderwidth=2)
if (is.null(WTitle)) WTitre <- tclVar(" ")
else WTitre<-tclVar(WTitle)
WTitre.entry <-tkentry(WTitleFrame,width="40",textvariable=WTitre)
tkgrid(tklabel(WTitleFrame,text=.Facto_gettext("Title of the graph")),WTitre.entry)
WcosFrame<-tkframe(PlotVarFrame,borderwidth=2)
WlimCosValue<-tclVar(paste(Wlim.cos))
WlimCos.entry<-tkentry(WcosFrame, width=5, textvariable=WlimCosValue)
tkgrid(tklabel(WcosFrame,text=.Facto_gettext("Draw variables with a cos2 >:")),WlimCos.entry)
WlabelFrame<-tkframe(PlotVarFrame,borderwidth=2)
label.var.check<-tkcheckbutton(WlabelFrame)
if (Wlabel.var) label.var.checkValue<-tclVar("1")
else label.var.checkValue<-tclVar("0")
tkconfigure(label.var.check, variable=label.var.checkValue)
tkgrid(tklabel(WlabelFrame, text=.Facto_gettext("Labels for the variables")),label.var.check)
WcolFrame<-tkframe(PlotVarFrame,borderwidth=2)
Wcol.var.value <- Wcol.var
Wcanvas.var <- tkcanvas(WcolFrame,width="80",height="25",bg=Wcol.var.value)
WChangeColor.var <- function()
{
Wcol.var.value<-tclvalue(tcl("tk_chooseColor",initialcolor=Wcol.var.value,title=.Facto_gettext("Choose a color")))
if (nchar(Wcol.var.value)>0) {
tkconfigure(Wcanvas.var,bg=Wcol.var.value)
assign("Wcol.var.tmp", Wcol.var.value, envir=env)
}
}
WChangeColor.var.button <- tkbutton(WcolFrame,text=.Facto_gettext("Change Color"),command=WChangeColor.var)
tkgrid(tklabel(WcolFrame, text=.Facto_gettext("Color of the active variables")),Wcanvas.var,WChangeColor.var.button)
Wcol.quanti.sup.value<-Wcol.quanti.sup
Wcanvas.quanti.sup <- tkcanvas(WcolFrame,width="80",height="25",bg=Wcol.quanti.sup.value)
WChangeColor.quanti.sup <- function()
{
Wcol.quanti.sup.value<-tclvalue(tcl("tk_chooseColor",initialcolor=Wcol.quanti.sup.value,title=.Facto_gettext("Choose a color")))
if (nchar(Wcol.quanti.sup.value)>0) {
tkconfigure(Wcanvas.quanti.sup,bg=Wcol.quanti.sup.value)
assign("Wcol.quanti.sup.tmp", Wcol.quanti.sup.value, envir=env)
}
}
WChangeColor.quanti.sup.button <- tkbutton(WcolFrame,text=.Facto_gettext("Change Color"),command=WChangeColor.quanti.sup)
if(!is.null(variableillu)) tkgrid(tklabel(WcolFrame, text=.Facto_gettext("color for supplementary variables")),Wcanvas.quanti.sup,WChangeColor.quanti.sup.button)
WinvisibleFrame<-tkframe(PlotVarFrame,borderwidth=2)
inv.aucun.check<-tkradiobutton(WinvisibleFrame)
inv.act.check<-tkradiobutton(WinvisibleFrame)
inv.sup.check<-tkradiobutton(WinvisibleFrame)
if(is.null(Winvisible)) inv.Value<-tclVar("aucun")
else inv.Value<-tclVar(Winvisible)
tkconfigure(inv.aucun.check,variable=inv.Value,value="aucun")
tkconfigure(inv.act.check,variable=inv.Value, value="actif")
tkconfigure(inv.sup.check,variable=inv.Value, value="sup")
tkgrid(tklabel(WinvisibleFrame, text=.Facto_gettext("Hide some elements:")), columnspan=6, sticky="w")
tkgrid(tklabel(WinvisibleFrame, text="None"),inv.aucun.check, tklabel(WinvisibleFrame, text=.Facto_gettext("active variables")),inv.act.check, tklabel(WinvisibleFrame, text=.Facto_gettext("supplementary variables")),inv.sup.check, sticky="w")
tkgrid(WchoixFrame)
tkgrid(WTitleFrame)
tkgrid(WcolFrame)
tkgrid(WcosFrame)
tkgrid(WlabelFrame)
tkgrid(WinvisibleFrame)
tkgrid(tklabel(PlotVarFrame, text=" "))
PlotIndFrame<-tkframe(PlotWin, borderwidth=5, relief="groove")
RchoixFrame<-tkframe(PlotIndFrame,borderwidth=2)
ind.check<-tkcheckbutton(RchoixFrame)
if(Rchoix) ind.check.value<-tclVar("1")
else ind.check.value<-tclVar("0")
tkconfigure(ind.check, variable=ind.check.value)
tkgrid(tklabel(RchoixFrame, text=.Facto_gettext("Graph of the individuals"), font=font2),ind.check)
tkgrid(tklabel(RchoixFrame, text=" "))
RTitleFrame<-tkframe(PlotIndFrame,borderwidth=2)
if (is.null(RTitle)) Titre <- tclVar(" ")
else Titre<-tclVar(RTitle)
Titre.entry <-tkentry(RTitleFrame,width="40",textvariable=Titre)
tkgrid(tklabel(RTitleFrame,text=.Facto_gettext("Title of the graph")),Titre.entry)
RlabelFrame<-tkframe(PlotIndFrame,borderwidth=2)
label.indMoy.check<-tkcheckbutton(RlabelFrame)
if (Rlabel.indMoy) label.indMoy.checkValue<-tclVar("1")
else label.indMoy.checkValue<-tclVar("0")
tkconfigure(label.indMoy.check, variable=label.indMoy.checkValue)
tkgrid(tklabel(RlabelFrame, text=.Facto_gettext("Labels for the mean individuals")),label.indMoy.check)
label.quali.check<-tkcheckbutton(RlabelFrame)
if (Rlabel.quali) label.quali.checkValue<-tclVar("1")
else label.quali.checkValue<-tclVar("0")
tkconfigure(label.quali.check, variable=label.quali.checkValue)
tkgrid(tklabel(RlabelFrame, text=.Facto_gettext("Labels for the factors")), label.quali.check)
RhabillageFrame<-tkframe(PlotIndFrame,borderwidth=2)
listgraph<-tklistbox(RhabillageFrame,height=4, selectmode="single",exportselection="FALSE",yscrollcommand=function(...) tkset(scrgraph,...))
scrgraph <-tkscrollbar(RhabillageFrame,repeatinterval=5,command=function(...)tkyview(listgraph,...))
listgraph.nom<-c("ind")
tkinsert(listgraph,"end","by.individual")
if(Rhabillage=="ind") tkselection.set(listgraph,0)
indice<-1
nbauxli<-c(tclvalue(tkcurselection(listfact)))
nbaux<-unlist(strsplit(nbauxli,"\\ "))
varaux = vars.fact[as.numeric(tkcurselection(listfact))+1]
if (!is.null(variablefact)|(length(nbaux)>0)){
for (j in 1:ncol(donnee)){
if(vars[j] %in% c(variablefact,varaux)){
tkinsert(listgraph,"end",vars[j])
listgraph.nom<-c(listgraph.nom,vars[j])
if(Rhabillage==vars[j]) tkselection.set(listgraph, indice)
indice<-indice+1
}}
}
tkgrid(tklabel(RhabillageFrame, text=.Facto_gettext("Select drawing for the individuals")))
tkgrid(listgraph, scrgraph, sticky = "nw")
tkgrid.configure(scrgraph, sticky = "wns")
tkgrid.configure(listgraph, sticky = "ew")
RinvisibleFrame<-tkframe(PlotIndFrame,borderwidth=2)
inv.ind.check<-tkcheckbutton(RinvisibleFrame)
if ("ind" %in% Rinvisible) inv.ind.checkValue<-tclVar("1")
else inv.ind.checkValue<-tclVar("0")
inv.ind.sup.check<-tkcheckbutton(RinvisibleFrame)
if ("ind.sup" %in% Rinvisible) inv.ind.sup.checkValue<-tclVar("1")
else inv.ind.sup.checkValue<-tclVar("0")
inv.quali.check<-tkcheckbutton(RinvisibleFrame)
if ("quali" %in% Rinvisible) inv.quali.checkValue<-tclVar("1")
else inv.quali.checkValue<-tclVar("0")
tkconfigure(inv.ind.check, variable=inv.ind.checkValue)
tkconfigure(inv.ind.sup.check, variable=inv.ind.sup.checkValue)
tkconfigure(inv.quali.check, variable=inv.quali.checkValue)
tkgrid(tklabel(RinvisibleFrame, text=.Facto_gettext("Hide some elements:")), columnspan=6, sticky="w")
tkgrid(tklabel(RinvisibleFrame, text="ind"),inv.ind.check, tklabel(RinvisibleFrame, text="ind sup"),inv.ind.sup.check, tklabel(RinvisibleFrame, text="quali"),inv.quali.check, sticky="w")
RlimFrame<-tkframe(PlotIndFrame,borderwidth=2)
if(is.null(RXlimInd)) XlimIndMin<-tclVar("")
else XlimIndMin<-tclVar(paste(RXlimInd[1]))
XlimIndMin.entry <-tkentry(RlimFrame,width="5",textvariable=XlimIndMin)
if (is.null(RXlimInd)) XlimIndMax<- tclVar("")
else XlimIndMax<-tclVar(paste(RXlimInd[1]))
XlimIndMax.entry <-tkentry(RlimFrame,width="5",textvariable=XlimIndMax)
tkgrid(tklabel(RlimFrame,text=.Facto_gettext("x limits of the graph:")),XlimIndMin.entry, XlimIndMax.entry)
if(is.null(RYlimInd)) YlimIndMin<- tclVar("")
else YlimIndMin<-tclVar(paste(RYlimInd[1]))
YlimIndMin.entry <-tkentry(RlimFrame,width="5",textvariable=YlimIndMin)
if (is.null(RYlimInd)) YlimIndMax<- tclVar("")
else YlimIndMax<-tclVar(paste(RYlimInd[2]))
YlimIndMax.entry <-tkentry(RlimFrame,width="5",textvariable=YlimIndMax)
tkgrid(tklabel(RlimFrame,text=.Facto_gettext("y limits of the graph:")),YlimIndMin.entry,YlimIndMax.entry)
tkgrid(RchoixFrame)
tkgrid(RTitleFrame)
tkgrid(RlabelFrame)
tkgrid(RinvisibleFrame)
tkgrid(tklabel(PlotIndFrame, text=" "))
tkgrid(RhabillageFrame)
tkgrid(tklabel(PlotIndFrame, text=" "))
tkgrid(RlimFrame)
tkgrid(tklabel(PlotIndFrame, text=" "))
subOKCancelHelp(PlotWin, "plot.FAMD")
tkgrid(PlotGrpeFrame)
tkgrid(PlotVarFrame)
tkgrid(PlotIndFrame, PlotWin2, sticky="ns")
tkgrid(subButtonsFrame, sticky="ew", columnspan=2)
}
PlotFrame<-tkframe(IlluFrame)
Plot.but<-tkbutton(PlotFrame, textvariable=.PlotLabel, command=OnPlot, borderwidth=3)
tkgrid(Plot.but, sticky="ew")
})
OnAppliquer<-function()
{
nom.res<-tclvalue(resu.val)
if (length(which(ls(envir = .GlobalEnv, all.names = TRUE)==nom.res))>0) justDoIt(paste('remove (',nom.res,')'))
ncp<-as.numeric(tclvalue(ncp.val))
Axe<-c(as.numeric(tclvalue(Axe1)), as.numeric(tclvalue(Axe2)))
variables <- variables.q <- NULL
if(length(as.numeric(tkcurselection(listdesc)))<1) variables <- vars.desc
else variables<-vars.desc[as.numeric(tkcurselection(listdesc))+1]
variables <- variables[!(variables%in%variableillu)]
if(length(as.numeric(tkcurselection(listfact)))<1) variables.q <- vars.fact
else variables.q<-vars.fact[as.numeric(tkcurselection(listfact))+1]
variables.q <- variables.q[!(variables.q%in%variablefact)]
allvariables = c(variables,variables.q,variableillu,variablefact)
num.group.sup<-NULL
if (length(variableillu)+length(variablefact)>0) num.group.sup <- ((length(variables)+length(variables.q)+1):length(allvariables))
if(!is.null(individuillu)) {
ind.actif<-rows[-which(rows %in% individuillu)]
commande.data<-paste(activeDataSet(),'.FAMD', '<-', activeDataSet(),'[c("', paste(ind.actif, collapse='", "'), '", "', paste(individuillu, collapse='", "'), '"),', sep='')
}
else commande.data<-paste(activeDataSet(),'.FAMD', '<-', activeDataSet(),'[,', sep='')
commande.data<-paste(commande.data,' c("',paste(allvariables, collapse='", "'), '")]',sep='')
justDoIt(commande.data)
logger(commande.data)
donnee.depart<-activeDataSet()
activeDataSet(paste(activeDataSet(),'.FAMD', sep=""))
commande.FAMD<-paste(nom.res, '<-FAMD(', activeDataSet(),sep='')
if(!is.null(individuillu)) commande.FAMD<-paste(commande.FAMD, ', ind.sup=', nrow(get(getRcmdr(".activeDataSet")))-length(individuillu)+1, ': ', nrow(get(getRcmdr(".activeDataSet"))),sep='')
commande.FAMD<-paste(commande.FAMD, ', ncp=', ncp,sep='')
if (!is.null(num.group.sup)) commande.FAMD<-paste(commande.FAMD, ', sup.var=',num.group.sup[1],':',num.group.sup[length(num.group.sup)],sep='')
commande.FAMD<-paste(commande.FAMD, ', graph=FALSE)',sep='')
justDoIt(commande.FAMD)
logger(commande.FAMD)
justDoIt(paste(nom.res,'$call$call <-',deparse(commande.FAMD),sep=""))
if(Rclassif==TRUE){
commande.hcpc<-paste(nom.res,'.hcpc', '<-HCPC(', nom.res, ' ,nb.clust=', Rmeth, ',consol=', Rconsolid,',min=', Rminhcpc,',max=',Rmaxhcpc,',graph=', Rgraphhcpc, ')', sep="")
justDoIt(commande.hcpc)
logger(commande.hcpc)
if ((Axe[1]!=1)||(Axe[2]!=2)){
command.plothcpc <- paste('plot(',nom.res,'.hcpc, axes=c(', paste(Axe, collapse=", "), '),new.plot=TRUE)',sep="")
justDoIt(command.plothcpc)
logger(command.plothcpc)
command.plothcpc2 <- paste('plot(',nom.res,'.hcpc, choice="map",axes=c(', paste(Axe, collapse=", "), '),draw.tree=FALSE, new.plot=TRUE)',sep="")
justDoIt(command.plothcpc2)
logger(command.plothcpc2)
}
if(Rreshcpc==TRUE){
doItAndPrint(paste(nom.res,'.hcpc$data.clust[,ncol(res.hcpc$data.clust),drop=F]', sep=""))
doItAndPrint(paste(nom.res,'.hcpc$desc.var', sep=""))
doItAndPrint(paste(nom.res,'.hcpc$desc.axes', sep=""))
doItAndPrint(paste(nom.res,'.hcpc$desc.ind', sep=""))
}
}
if (length(which(ls(envir = .GlobalEnv, all.names = TRUE)==nom.res))>0) {if (get(nom.res)$eig[1,2]==100) doItAndPrint(paste('"No graph can be plot: data are unidimensional"'))}
if((Gchoix)&(length(which(ls(envir = .GlobalEnv, all.names = TRUE)==nom.res))>0)){
if (get(nom.res)$eig[1,2]!=100) {
commande.plotG<-paste('plot.FAMD(', nom.res, ', axes=c(', paste(Axe, collapse=", "), '), choix="var", new.plot=TRUE, lab.var=', Glabel, sep="")
commande.plotG <- paste(commande.plotG, ',col.hab = c(',sep='')
auxi = 0
if (length(variables)>0){
commande.plotG <- paste(commande.plotG, 'rep("',Gcol.var,'",',length(variables),')',sep='')
auxi = 1
}
if (length(variables.q)>0){
if (auxi==1) commande.plotG <- paste(commande.plotG, ',',sep='')
commande.plotG <- paste(commande.plotG, 'rep("',Gcol.quali,'",',length(variables.q),')',sep='')
auxi=1
}
if (length(variableillu)>0){
if (auxi==1) commande.plotG <- paste(commande.plotG, ',',sep='')
commande.plotG <- paste(commande.plotG, 'rep("',Gcol.quanti.sup,'",',length(variableillu),')',sep='')
}
if (length(variablefact)>0){
if (auxi==1) commande.plotG <- paste(commande.plotG, ',',sep='')
commande.plotG <- paste(commande.plotG, 'rep("',Gcol.quali.sup,'",',length(variablefact),')',sep='')
}
commande.plotG <- paste(commande.plotG, ')',sep='')
if (is.null(GTitle)) commande.plotG <- paste(commande.plotG,')', sep="")
else {
if (GTitle ==" ") commande.plotG <- paste(commande.plotG,')', sep="")
else commande.plotG <- paste(commande.plotG,', title="', GTitle,'")', sep="")
}
commande.plotG <- paste0("print(",commande.plotG,")")
justDoIt(commande.plotG)
logger(commande.plotG)
}}
if((Wchoix)&(length(which(ls(envir = .GlobalEnv, all.names = TRUE)==nom.res))>0)&(length(variables)>0)){
if (get(nom.res)$eig[1,2]!=100) {
commande.plotW<-paste('plot.FAMD(', nom.res, ', axes=c(', paste(Axe, collapse=", "), '), choix="quanti", new.plot=TRUE, lab.var=', Wlabel.var, ', lim.cos2.var=', Wlim.cos, sep="")
if (!is.null(Winvisible)) {
commande.plotW<-paste(commande.plotW, ', invisible=c("', paste(Winvisible, collapse='", "'),'")', sep='')
if(Winvisible=="actif") commande.plotW<-paste(commande.plotW, ', col.hab=c(rep("', Wcol.quanti.sup,'",length(rownames(', nom.res, '$quanti.var.sup[[1]]))),rep("', Wcol.var, '",length(rownames(', nom.res,'$quanti.var[[1]]))))', sep='')
else commande.plotW<-paste(commande.plotW, ', col.hab=c(rep("', Wcol.var, '",length(rownames(', nom.res,'$quanti.var[[1]]))),rep("', Wcol.quanti.sup,'",length(rownames(', nom.res, '$quanti.var.sup[[1]]))))', sep='')
}
if(is.null(Winvisible)) commande.plotW<-paste(commande.plotW, ', col.hab=c(rep("', Wcol.var, '",length(rownames(', nom.res,'$quanti.var[[1]]))),rep("', Wcol.quanti.sup,'",length(rownames(', nom.res, '$quanti.var.sup[[1]]))))', sep='')
if (is.null(WTitle)) commande.plotW <- paste(commande.plotW,')', sep="")
else {
if (WTitle ==" ") commande.plotW <- paste(commande.plotW,')', sep="")
else commande.plotW <- paste(commande.plotW,', title="', WTitle,'")', sep="")
}
commande.plotW <- paste0("print(",commande.plotW,")")
justDoIt(commande.plotW)
logger(commande.plotW)
}}
if((Rchoix)&(length(which(ls(envir = .GlobalEnv, all.names = TRUE)==nom.res))>0)){
if (get(nom.res)$eig[1,2]!=100) {
if ((Rhabillage!="none") & (Rhabillage!="ind")) {
Rhabillage<-which(colnames(get(getRcmdr(".activeDataSet")))==Rhabillage)
if(length(Rhabillage)==0) Rhabillage<-"none"
}
if (Rhabillage=="none") Rhabillage<-paste('"', Rhabillage, '"', sep="")
if (Rhabillage=="ind") Rhabillage<-paste('"', Rhabillage, '"', sep="")
commande.plotI<-paste('plot.FAMD(', nom.res, ', axes=c(', paste(Axe, collapse=", "), '), choix="ind", new.plot=TRUE, lab.ind=', Rlabel.indMoy, ', lab.var=', Rlabel.quali, ', habillage=', Rhabillage, sep="")
if (!is.null(RXlimInd)) commande.plotI<-paste(commande.plotI, ', xlim=c(', paste(RXlimInd, collapse=", "), ')', sep='')
if (!is.null(RYlimInd)) commande.plotI<-paste(commande.plotI, ', ylim=c(', paste(RYlimInd, collapse=", "), ')', sep='')
if (!is.null(Rinvisible)) commande.plotI<-paste(commande.plotI, ', invisible=c("', paste(Rinvisible, collapse='", "'),'")', sep='')
if (is.null(RTitle)) commande.plotI <- paste(commande.plotI,')', sep="")
else {
if (RTitle ==" ") commande.plotI <- paste(commande.plotI,')', sep="")
else commande.plotI <- paste(commande.plotI,', title="', RTitle,'")', sep="")
}
}
commande.plotI <- paste0("print(",commande.plotI,")")
justDoIt(commande.plotI)
logger(commande.plotI)
}
doItAndPrint(paste('summary(',nom.res,', nb.dec = 3, nbelements=10, nbind = 10, ncp = 3, file="")', sep=""))
if (RFichier==""){
if(Rpropre) doItAndPrint(paste( nom.res, '$eig', sep=""))
if(Rgroupe) doItAndPrint(paste( nom.res, '$group', sep=""))
if(Rindividu) doItAndPrint(paste( nom.res, '$ind', sep=""))
if(Rindsup) doItAndPrint(paste( nom.res, '$ind.sup', sep=""))
if(Rquanti) doItAndPrint(paste( nom.res, '$quanti.var', sep=""))
if(Rquantisup) doItAndPrint(paste( nom.res, '$quanti.var.sup', sep=""))
if(Rquali) doItAndPrint(paste( nom.res, '$quali.var', sep=""))
if(Rqualisup) doItAndPrint(paste( nom.res, '$quali.var.sup', sep=""))
if(Rdescdim) doItAndPrint(paste('dimdesc(', nom.res, ', axes=1:',ncp,')', sep=""))
}
else {
Fich = RFichier
if (substr(Fich,1,1)!='"') Fich = paste('"',Fich,sep='')
if (substr(Fich,nchar(Fich),nchar(Fich))!='"') Fich = paste(Fich,'"',sep='')
append = FALSE
if(Rpropre){
doItAndPrint(paste('write.infile(', nom.res, '$eig, file =',Fich,',append=',append,')', sep=""))
append = TRUE
}
if(Rgroupe){
doItAndPrint(paste('write.infile(', nom.res, '$group, file =',Fich,',append=',append,')', sep=""))
append = TRUE
}
if(Rindividu){
doItAndPrint(paste('write.infile(', nom.res, '$ind, file =',Fich,',append=',append,')', sep=""))
append = TRUE
}
if(Rindsup){
doItAndPrint(paste('write.infile(', nom.res, '$ind.sup, file =',Fich,',append=',append,')', sep=""))
append = TRUE
}
if(Rquanti){
doItAndPrint(paste('write.infile(', nom.res, '$quanti.var, file =',Fich,',append=',append,')', sep=""))
append = TRUE
}
if(Rquantisup){
doItAndPrint(paste('write.infile(', nom.res, '$quanti.var.sup, file =',Fich,',append=',append,')', sep=""))
append = TRUE
}
if(Rquali){
doItAndPrint(paste('write.infile(', nom.res, '$quali.var, file =',Fich,',append=',append,')', sep=""))
append = TRUE
}
if(Rqualisup){
doItAndPrint(paste('write.infile(', nom.res, '$quali.var.sup, file =',Fich,',append=',append,')', sep=""))
append = TRUE
}
if(Rdescdim) doItAndPrint(paste('write.infile(dimdesc(', nom.res, ', axes=1:',ncp,'), file =',Fich,',append=',append,')', sep=""))
}
activeDataSet(donnee.depart)
justDoIt(paste('remove(',activeDataSet(),'.FAMD)',sep=""))
logger(paste('remove(',activeDataSet(),'.FAMD)',sep=""))
}
Hcpc.funct<-defmacro(label, firstLabel, expr=
{
env<-environment()
.HcpcLabel<-tclVar(paste(firstLabel, "", sep=" "))
compteur.hcpc<-0
Rclassif<-0
Rmeth <- -1
Rconsolid<-0
Rgraphhcpc<-1
Rreshcpc<-0
Rminhcpc<-3
Rmaxhcpc<-10
OnHCPC <- function()
{
HcpcWin<-tktoplevel()
tkwm.title(HcpcWin, .Facto_gettext("HCPC options"))
onOKHcpc <- function()
{
assign("compteur.hcpc", compteur.hcpc+1, envir=env)
if(compteur.hcpc>0) tclvalue(.HcpcLabel)<-paste(label, "", sep=" ")
tkconfigure(Hcpc.but, fg="blue")
if(tclvalue(methValue)=="0") assign("Rmeth", 0, envir=env)
else assign("Rmeth", -1, envir=env)
if(tclvalue(consolidValue)=="1") assign("Rconsolid",TRUE, envir=env)
else assign("Rconsolid",FALSE,envir=env)
if(tclvalue(graphhcpcValue)=="1") assign("Rgraphhcpc",TRUE,envir=env)
else assign("Rgraphhcpc",FALSE,envir=env)
if(tclvalue(reshcpcValue)=="1") assign("Rreshcpc",TRUE,envir=env)
else assign("Rreshcpc",FALSE,envir=env)
assign("Rminhcpc",as.numeric(tclvalue(minhcpc)),envir=env)
assign("Rmaxhcpc",as.numeric(tclvalue(maxhcpc)),envir=env)
assign("Rclassif",TRUE,envir=env)
tkdestroy(HcpcWin)
}
OKHcpc.but<-tkbutton(HcpcWin, text="OK", width=8,command=onOKHcpc)
onCancelHcpc <- function()
{
assign("Rclassif",FALSE,envir=env)
tkdestroy(HcpcWin)
}
CancelHcpc.but<-tkbutton(HcpcWin, text="Cancel", width=8,command=onCancelHcpc)
tkgrid(tklabel(HcpcWin, text=""))
tkgrid(tklabel(HcpcWin, text = .Facto_gettext("Hierarchical Clustering on Principal Components"), fg = "darkred"), column=1, columnspan = 8, sticky = "ew")
meth1 <- tkradiobutton (HcpcWin)
meth1.lab <- tklabel(HcpcWin,text=.Facto_gettext("interactive"))
meth2 <- tkradiobutton (HcpcWin)
meth2.lab <- tklabel(HcpcWin,text=.Facto_gettext("automatic"))
methValue <- tclVar(paste(Rmeth))
meth.lab <- tklabel(HcpcWin,text=.Facto_gettext("Choice of the number of clusters:"))
tkconfigure(meth1,variable=methValue,value="0")
tkconfigure(meth2,variable=methValue,value="-1")
minmaxhcpc.label<-tklabel(HcpcWin,text=.Facto_gettext("The optimal number of clusters is chosen between:"))
minhcpc<-tclVar(paste(Rminhcpc))
maxhcpc<-tclVar(paste(Rmaxhcpc))
minhcpc.entry <-tkentry(HcpcWin,width="3",textvariable=minhcpc)
maxhcpc.entry <-tkentry(HcpcWin,width="3",textvariable=maxhcpc)
consolid.lab <- tklabel(HcpcWin,text=.Facto_gettext("Consolidate clusters"))
consolid.check <- tkcheckbutton(HcpcWin)
if(Rconsolid) consolidValue<-tclVar("1")
else consolidValue<-tclVar("0")
tkconfigure(consolid.check,variable=consolidValue)
graphhcpc.lab <- tklabel(HcpcWin,text=.Facto_gettext("Print graphs"))
graphhcpc.check <- tkcheckbutton(HcpcWin)
if(Rgraphhcpc) graphhcpcValue <- tclVar("1")
else graphhcpcValue <- tclVar("0")
tkconfigure(graphhcpc.check,variable=graphhcpcValue)
reshcpc.lab <- tklabel(HcpcWin,text=.Facto_gettext("Print results for clusters"))
reshcpc.check <- tkcheckbutton(HcpcWin)
if(Rreshcpc) reshcpcValue<-tclVar("1")
else reshcpcValue <- tclVar("0")
tkconfigure(reshcpc.check,variable=reshcpcValue)
tkgrid(tklabel(HcpcWin,text=.Facto_gettext("Options for the clustering"), fg = "blue"), column=1, columnspan=8, sticky="we")
tkgrid(tklabel(HcpcWin,text=""))
tkgrid(tklabel(HcpcWin,text=sprintf(.Facto_gettext("Clustering is performed on the first %s dimensions of FAMD"),tclvalue(ncp.val))),column=1,columnspan=4,sticky="w")
tkgrid(tklabel(HcpcWin,text=.Facto_gettext("(Modify in the main options to change this number)")),column=1,columnspan=4,sticky="w")
tkgrid(tklabel(HcpcWin,text=""))
tkgrid(meth.lab,meth1.lab,meth1)
tkgrid(meth2.lab,meth2)
tkgrid(tklabel(HcpcWin,text=""))
tkgrid(minmaxhcpc.label,minhcpc.entry , maxhcpc.entry)
tkgrid(tklabel(HcpcWin,text=""))
tkgrid(consolid.lab,consolid.check)
tkgrid(graphhcpc.lab,graphhcpc.check)
tkgrid(reshcpc.lab,reshcpc.check)
tkgrid(tklabel(HcpcWin,text=""))
tkgrid(OKHcpc.but, CancelHcpc.but)
tkgrid(tklabel(HcpcWin, text=""))
tkgrid.configure(minmaxhcpc.label,meth.lab,consolid.lab,graphhcpc.lab,reshcpc.lab,column=1,columnspan=4,sticky="w")
tkgrid.configure(minhcpc.entry,column=7,columnspan=1,sticky="e")
tkgrid.configure(maxhcpc.entry,column=8,columnspan=1,sticky="w")
tkgrid.configure(meth1,meth2,consolid.check,graphhcpc.check,reshcpc.check,column=8,sticky="e")
tkgrid.configure(meth1.lab,column=6,columnspan=2,sticky="w")
tkgrid.configure(meth2.lab,column=6,columnspan=2,sticky="w")
tkgrid.configure(OKHcpc.but,column=2,columnspan=1,sticky="w")
tkgrid.configure(CancelHcpc.but,column=6,columnspan=1,sticky="e")
tkgrid.columnconfigure(HcpcWin,0, minsize=3)
tkgrid.columnconfigure(HcpcWin,5, minsize=5)
tkgrid.columnconfigure(HcpcWin,8, minsize=3)
}
Hcpc2Frame<-tkframe(HcpcFrame)
Hcpc.but<-tkbutton(Hcpc2Frame, textvariable=.HcpcLabel, command=OnHCPC, borderwidth=3)
tkgrid(Hcpc.but, sticky="ew")
})
onOK<-function()
{
OnAppliquer()
tkdestroy(top)
}
IlluFrame<- tkframe(top, borderwidth=2)
Fillu.funct(label=.Facto_gettext("Supplementary factors"), firstLabel=.Facto_gettext("Supplementary factors"))
Dillu.funct(label=.Facto_gettext("Supplementary quantitative variables"), firstLabel=.Facto_gettext("Supplementary quantitative variables"))
Iillu.funct(label=.Facto_gettext("Supplementary individuals"), firstLabel=.Facto_gettext("Supplementary individuals"))
PLOT.FAMD(label=.Facto_gettext("Graphical options"), firstLabel=.Facto_gettext("Graphical options"))
Sortie.funct(label=.Facto_gettext("Outputs"), firstLabel=.Facto_gettext("Outputs"))
tkgrid(DilluFrame, FilluFrame, IilluFrame, columnspan=7)
tkgrid(tklabel(IlluFrame, text=""))
tkgrid(PlotFrame, SortieFrame, columnspan=7)
tkgrid.configure(DilluFrame, column=1, columnspan=1)
tkgrid.configure(PlotFrame, column=2, columnspan=2,sticky="we")
tkgrid.configure(SortieFrame, column=4, columnspan=2,sticky="ew")
tkgrid.configure(FilluFrame, column=3, columnspan=1)
tkgrid.configure(IilluFrame, column=5, columnspan=1)
tkgrid.columnconfigure(IlluFrame,0, minsize=25)
tkgrid.columnconfigure(IlluFrame,2, minsize=40)
tkgrid.columnconfigure(IlluFrame,4, minsize=25)
OptionFrame<-tkframe(top, borderwidth=2, relief="groove")
resu.lab<-tklabel(OptionFrame,text=.Facto_gettext("Name of the result object: "))
resu.val<-tclVar("res")
resu<-tkentry(OptionFrame,width=10,textvariable=resu.val)
ncp.lab<-tklabel(OptionFrame,text=.Facto_gettext("Number of dimensions: "))
ncp.val<-tclVar("5")
ncp<-tkentry(OptionFrame,width=5,textvariable=ncp.val)
Axe.label<-tklabel(OptionFrame,text=.Facto_gettext("Select the dimensions for the graphs:"))
Axe1<-tclVar("1")
Axe2<-tclVar("2")
Axe1.entry <-tkentry(OptionFrame,width="5",textvariable=Axe1)
Axe2.entry <-tkentry(OptionFrame,width="5",textvariable=Axe2)
tkgrid(tklabel(OptionFrame,text=.Facto_gettext("Main options"), fg = "darkred"), columnspan=8, sticky="we")
tkgrid(tklabel(OptionFrame,text=""))
tkgrid(ncp.lab, ncp)
tkgrid(Axe.label,Axe1.entry , Axe2.entry, sticky="w")
tkgrid(resu.lab, resu)
tkgrid.configure(ncp.lab, resu.lab, Axe.label, column=1, columnspan=4, sticky="w")
tkgrid.configure(ncp, resu, column=6, columnspan=2, sticky="e")
tkgrid.configure(Axe1.entry, column=6, columnspan=1, sticky="w")
tkgrid.configure(Axe2.entry, column=7, columnspan=1, sticky="e")
tkgrid.columnconfigure(OptionFrame,0, minsize=25)
tkgrid.columnconfigure(OptionFrame,5, minsize=40)
tkgrid.columnconfigure(OptionFrame,8, minsize=25)
HcpcFrame<-tkframe(top, borderwidth=2)
Hcpc.funct(label=.Facto_gettext("Perform Clustering after FAMD"), firstLabel=.Facto_gettext("Perform Clustering after FAMD"))
tkgrid(Hcpc2Frame, columnspan=7)
tkgrid.configure(Hcpc2Frame,column=4, columnspan=1)
appliquer.but<-tkbutton(top, text=.Facto_gettext("Apply"),width=12,command=OnAppliquer, borderwidth=3, fg="
OKCancelHelp(helpSubject="FAMD",reset="Reinitializ.funct")
tkgrid(tklabel(top, text=.Facto_gettext("Factor Analysis of Mixed Data (FAMD)"),font=fontheading), columnspan=3)
tkgrid(tklabel(top,text=""))
tkgrid(listFrame, column=1, columnspan=1)
tkgrid(tklabel(top,text=""))
tkgrid(IlluFrame, column=1, columnspan=1)
tkgrid(tklabel(top,text=""))
tkgrid(OptionFrame, column=1, columnspan=1)
tkgrid(tklabel(top,text=""))
tkgrid(HcpcFrame, column=1, columnspan=1)
tkgrid(tklabel(top,text=""))
tkgrid(buttonsFrame, appliquer.but)
tkgrid.configure(buttonsFrame, column=1,sticky="e")
tkgrid.configure(appliquer.but, column=2,sticky="w")
} |
context("User Input/function output errors")
test_that("Check input error messages for mpower()", {
expect_error(mpower(effect_size = , study_size = 10, k = 10, i2 = .50, es_type = "d"), "Need to specify expected effect size")
expect_error(mpower(effect_size = "one" , study_size = 10, k = 10, i2 = .50, es_type = "d"), "effect_size must be numeric")
expect_error(mpower(effect_size = c(.5,.5), study_size = 10, k = 10, i2 = .50, es_type = "d"), "effect_size must be a single number")
expect_warning(mpower(effect_size = 11, study_size = 10, k = 10, i2 = .50, es_type = "d"), "Are you sure effect size is >10?")
expect_error(mpower(effect_size = .5, study_size = , k = 10, i2 = .50, es_type = "d"), "Need to specify expected sample size")
expect_error(mpower(effect_size = .5, study_size = 0, k = 10, i2 = .50, es_type = "d"), "study_size must be greater than 0")
expect_error(mpower(effect_size = .5, study_size = "ten", k = 10, i2 = .50, es_type = "d"), "study_size must be numeric")
expect_error(mpower(effect_size = .5, study_size = c(10,10), k = 10, i2 = .50, es_type = "d"), "study_size must be a single number")
expect_error(mpower(effect_size = .5, study_size = 10, k = , i2 = .50, es_type = "d"), "Need to specify expected number of studies")
expect_error(mpower(effect_size = .5, study_size = 10, k = "ten", i2 = .50, es_type = "d"), "k must be numeric")
expect_error(mpower(effect_size = .5, study_size = 10, k = c(10,10), i2 = .50, es_type = "d"), "k must be a single number")
expect_error(mpower(effect_size = .5, study_size = 10, k = 1, i2 = .50, es_type = "d"), "k must be greater than 1")
expect_error(mpower(effect_size = .5, study_size = 10, k = 10, i2 = .50, es_type = ), "Need to specify effect size as 'd', 'r', or 'or'")
expect_error(mpower(effect_size = .5, study_size = 10, k = 10, i2 = .50, es_type = 1), "Need to specify effect size as 'd', 'r', or 'or'")
expect_error(mpower(effect_size = .5, study_size = 10, k = 10, i2 = .50, es_type = "d", test_type = 1), "Need to specify two-tailed or one-tailed")
})
test_that("check that output is an 'mpower' class", {
expect_match(class(mpower(effect_size = .5, study_size = 10, k = 10, i2 = .50, es_type = "d")), "mpower")
})
test_that("Check input error messages for subgroup_power()", {
expect_error(subgroup_power(n_groups = 2, effect_sizes = .5, study_size = 20, k = 20, i2 = .5, es_type = "d"), "The number of of effect sizes should match the number of groups")
expect_error(subgroup_power(n_groups = 2, effect_sizes = c(".1", ".5"), study_size = 20, k = 20, i2 = .5, es_type = "d"), "Effect sizes must be numeric")
expect_error(subgroup_power(n_groups = 2, effect_sizes = c(.1,.5), study_size = c(20,20), k = 20, i2 = .5, es_type = "d"), "study_size must be a single number")
expect_error(subgroup_power(n_groups = 2, effect_sizes = c(.1,.5), study_size = "twenty", k = 20, i2 = .5, es_type = "d"), "study_size must be numeric")
expect_error(subgroup_power(n_groups = 2, effect_sizes = c(.1,.5), study_size = 20, k = 20, i2 = .5, es_type = "or"), "For Odds Ratio, only enter the 2x2 contingency table. Remove effect_size argument")
expect_error(subgroup_power(n_groups = 2, study_size = 20, k = 20, i2 = .5, es_type = "or", con_table = c(5,5,5,5)), "con_table should be input as a list with each element reflect the group 2x2 tables")
expect_error(subgroup_power(n_groups = 2, study_size = 20, k = 20, i2 = .5, es_type = "or", con_table = list(g = c(5,5,5,5))), "Only 1 group 2x2 table is specified")
expect_error(subgroup_power(n_groups = 2, con_table = list(g1 = c(6,5,4,5), g2 = c("hello")), study_size = 20, k = 20, i2 = .5, es_type = "or"),"Each element of con_table should be numeric")
})
test_that("check that output is an 'subgroup_power' class", {
expect_match(class(subgroup_power(n_groups = 2, con_table = list(g1 = c(6,5,4,5), g2 = c(8,5,2,5)), study_size = 40, k = 20, i2 = .5, es_type = "or")), "subgroup_power")
}) |
NULL
predict.standardized <- function(object, newdata = NULL, response = FALSE,
fixed = TRUE, random = TRUE, ...) {
stopifnot(is.standardized(object), is.data.frame(newdata))
check_dots_predict.standardized(...)
p <- object$pred
if (fixed && !random) {
p <- p$fixed
} else if (!fixed && random) {
p <- p$random
} else if (fixed && random) {
p <- p$all
} else {
stop("'fixed' and 'random' cannot both be FALSE")
}
if (!response) {
p <- p[-2]
}
if (length(p) < 2) {
stop("No variables when response = ", response, ", fixed = ", fixed,
", and random = ", random, ".")
}
fr <- setNames(data.frame(matrix(nrow = nrow(newdata), ncol = length(p) - 1)),
names(p)[-1])
fr[names(p)[-1]] <- eval(p, envir = newdata)
fr <- strip_attr(fr)
return(fr)
}
is.standardized <- function(object) {
return(inherits(object, "standardized"))
}
print.standardized <- function(x, ...) {
sc <- round(x$scale, 3)
cat("\nCall:\n")
cl <- x$call
f <- get_family(x$family)
cl["family"] <- NULL
print(cl)
if (is.character(f)) {
cat("\nFamily:", f, "\n\n")
} else {
print(f)
}
cat("Standardized Formula:\n")
f <- x$formula
attr(f, "standardized.scale") <- NULL
print(f, showEnv = FALSE)
cat("\nVariables:\n")
print(x$variables, row.names = FALSE, right = FALSE)
o <- any(x$variables$Class == "offset") | !is.null(x$offset)
if (is.linear(f <- x$family)) {
if (x$variables$Class[1] %in% c("response.scaledby", "response.scaledby.poly")) {
cat("\nResponse has mean 0 and standard deviation 1 ",
"within each factor level.\n", sep = "")
if (o) {
cat("Offsets are divided by the standard deviation of the raw response",
"within each factor level.\n")
}
} else {
cat("\nResponse has mean 0 and standard deviation 1.\n")
if (o) {
cat("Offsets are divided by the standard deviation of the raw response.\n")
}
}
} else {
if (!is.character(f)) f <- paste0(f$family, "(", f$link, ")")
cat("\nResponse not altered because family = ", f, "\n", sep = "")
if (o) {
cat("Offsets are unaltered for the same reason.\n")
}
}
cat(
"\nContinuous variables have mean 0 and standard deviation ", sc, "\n",
" (within-factor-level if scale_by was used)\n",
"Unordered factors have sum contrasts with deviation ", sc, "\n",
"Ordered factors have orthogonal polynomial contrasts whose\n",
" columns have standard deviation ", sc, "\n",
"Grouping factors are coded as unordered factors with default contrasts\n",
"\n", sep = "")
} |
plotFit = function(concData, id, Time, conc, mol="", adm="Extravascular", ID="", Mol="")
{
if (mol == "") {
x = concData[concData[,id] == ID, Time]
y = concData[concData[,id] == ID, conc]
} else {
x = concData[concData[,id] == ID & concData[,mol] == Mol, Time]
y = concData[concData[,id] == ID & concData[,mol] == Mol, conc]
}
finalMat = BestSlope(x, y, adm=adm)
y1 = ifelse(y==0, 0.1, y)
plot(x, log(y), yaxt = "n", ylim=c(min(log(y1)), finalMat["b0"]), xlab="Time", ylab="Concentration", main=paste("Best Fit ID:", ID))
yticks = seq(round(min(log(y1))), ceiling(max(log(y1))))
ylabels = sapply(yticks, function(i) as.expression(bquote(e^ .(i))))
axis(2, at=exp(yticks), labels=ylabels)
abline(a=finalMat["b0"],b=-finalMat["LAMZ"], untf=TRUE, col="blue")
return(finalMat)
} |
print.betaor <-
function(x, ...){
cat("Call:\n")
print(x$call)
cat("\nOdds Ratio:\n")
printCoefmat(x$oddsratio,P.values=T,has.Pvalue=T)
} |
tar_branch_names <- function(
name,
index,
store = targets::tar_config_get("store")
) {
name <- tar_deparse_language(substitute(name))
tar_assert_chr(name)
tar_branch_names_raw(name = name, index = index, store = store)
} |
library(tidyverse)
library(repurrrsive)
film_number_lookup <- map_chr(sw_films, "url") %>%
map(~ stringr::str_split_fixed(.x, "/", 7)[, 6]) %>%
as.numeric() %>%
set_names(map_chr(sw_films, "url"))
people_tbl <- tibble(
name = sw_people %>% map_chr("name"),
films = sw_people %>% map("films"),
height = sw_people %>% map_chr("height") %>%
readr::parse_number(na = "unknown"),
species = sw_people %>% map_chr("species", .null = NA_character_)
)
people_tbl$films
people_tbl <- people_tbl %>%
mutate(
film_numbers = map(films,
~ film_number_lookup[.x]),
n_films = map_int(films, length)
)
people_tbl %>% select(name, film_numbers, n_films)
people_tbl <- people_tbl %>%
mutate(films_squashed = map_chr(film_numbers, paste,
collapse = ", "))
people_tbl %>% select(name, n_films, films_squashed) |
apportion_scores_comp <- function(obj){
if(is.null(obj$comp_loadings)){
return('The input needs to be the object returned by the function comp_tsout_ens!')
}
nsp <- obj$comp_loadings
outmat4D <- obj$outmat4D
decomp_wts <- obj$decomp_wts
out_wts <- obj$wts
outmat3D <- out_wts[1]*outmat4D[ ,1, , ] + out_wts[2]*outmat4D[ ,2, , ] + out_wts[3]*outmat4D[ ,3, , ] + out_wts[4]*outmat4D[ ,4, , ]
scores_dobin <- outmat3D[ , ,1] %*% diag(decomp_wts[ ,1])
scores_pca <- outmat3D[ , ,2] %*% diag(decomp_wts[ ,2])
scores_ics <- outmat3D[ , ,3] %*% diag(decomp_wts[ ,3])
scores_ica <- outmat3D[ , ,4] %*% diag(decomp_wts[ ,4])
if(length(obj$dobin_loadings)==1){
a_dobin <- 0
}else{
a_dobin <- nsp%*% obj$dobin_loadings%*% t(scores_dobin)
}
if(length(obj$pca_loadings)==1){
a_pca <- 0
}else{
a_pca <- nsp%*% obj$pca_loadings%*% t(scores_pca)
}
if(length(obj$ics_loadings)==1){
a_ics <- 0
}else{
a_ics <- nsp%*% obj$ics_loadings%*% t(scores_ics)
}
if(length(obj$ica_loadings)==1){
a_ica <- 0
}else{
a_ica <- nsp%*% obj$ica_loadings%*% t(scores_ica)
}
a <- abs(a_dobin) + abs(a_pca) + abs(a_ics) + abs(a_ica)
obj$all <- as.data.frame(obj$all)
inds <- obj$all$Indices
tscore <- obj$all$Total_Score
a_ori <- t(a[ ,inds])
a_ori <- as.data.frame(a_ori)
rownames(a_ori) <- paste(inds)
indsout <- obj$outliers$Indices
if(length(indsout) > 0){
a_out <- a[ ,indsout]
}else{
a_out <- NA
}
a_out <- as.data.frame(a_out)
colnames(a_out) <- paste(indsout)
out <- list()
out$scores_out<- a_out
out$scores_all <- t(a_ori)
return(out)
} |
"BackwardStepOne" <- function(y, lastkgroup = floor(0.01*n), kmin = 5) {
n <- length(y)
m <- y
z <- rep(1, n)
rss <- z[1:(n-1)] * z[2:n] / (z[1:(n-1)] + z[2:n]) * (m[1:(n-1)] - m[2:n])^2
l <- n
value <- rep(0, n)
index <- rep(0, n)
ngroup <- lastkgroup
sigma <- estimateSigma(y, h = 10)
cutoff <- 1.0e+12
temp <- .C("backward", as.double(m),
as.integer(z),
as.double(rss),
as.integer(n),
as.integer(l),
as.double(value),
as.integer(index),
as.double(sigma),
as.double(cutoff),
as.integer(ngroup),
as.integer(kmin))
l <- temp[[5]]
m <- temp[[1]][1:l]
z <- temp[[2]][1:l]
rss <- c(temp[[3]][1:(l-1)], NA)
index <- c(1, cumsum(z)[-l]+1)
obj <- cbind(index, m, z, rss)
colnames(obj) <- c("index", "mean", "size", "rss")
return(obj)
} |
setGeneric("stretchPlot", function(x, type = "linear", n, ...) {
standardGeneric("stretchPlot")
})
setMethod("stretchPlot",
signature(x = "RasterLayer"),
function(x, type = "linear", n, ...) {
xx <- pretty(values(x), 2)
p <- length(xx)
if(type == "hist.equal") {
y <- .stretch(x, type = "hist.equal")
plot(y[[1]], breaks = .quantile_breaks(y[[1]]),
axis.args = list(at = y[[2]][-p],
labels = xx[-p]), ...)
}
if(type == "linear") {
y <- .stretch(x, type = "linear")
plot(y[[1]],
axis.args = list(at = y[[2]],
labels = xx), ...)
}
if(type == "sd") {
y <- .stretch(x, type = "sd", n = n)
f <- duplicated(y[[2]])
plot(y[[1]],
axis.args = list(at = y[[2]][!f],
labels = xx[!f]), ...)
}
return(NULL)
}
)
.stretch <- function(x, type = "hist.equal", n) {
if (type == "hist.equal") {
ecdfun <- stats::ecdf(getValues(x))
y <- calc(x, fun = function(x) round(ecdfun(x)*255, 0))
v <- pretty(values(x), 2)
vv <- round(ecdfun(v)*255, 0)
return(list(y, vv))
} else if (type == "sd") {
if (missing(n)) stop("number of standard deviations not specified")
x.sd <- cellStats(x, sd)
x.mean <- cellStats(x, mean)
x.max <- x.mean + x.sd*n
x.min <- x.mean - x.sd*n
sdfun <- function(y) {
y[y < 0] <- x.min
y[y > x.max] <- x.max
tt <- (y - x.min) / (x.max - x.min)
return(tt*255)
}
y <- calc(x, fun = function(x) sdfun(x))
v <- pretty(values(x), 2)
vv <- sdfun(v)
return(list(y, vv))
} else if (type == "linear") {
y <- x
vv <- pretty(values(x), 2)
return(list(y, vv))
}
}
.quantile_breaks <- function(ras){
qts <- quantile(ras)
seq1 <- seq(qts[1], qts[2], length.out = 65)
seq2 <- seq(qts[2], qts[3], length.out = 65)
seq3 <- seq(qts[3], qts[4], length.out = 65)
seq4 <- seq(qts[4], qts[5], length.out = 64)
brks <- c(seq1, seq2[-1], seq3[-1], seq4[-1])
brks
} |
GParetoMultipleMEFPlot <- function(Ra, mu, beta, zeta1, zeta2) {
x <- as.vector(Ra)
x <- sort(x)
u <- x
n <- length(u)
mef <- double(n - 1)
for (i in 1:(n - 1)) {
x <- x[which(x > u[i])]
mef[i] <- mean(x) - u[i]
}
u <- t(u)
u <- u[u!=max(u)]
gpmef1 <- (1 + zeta1 * (u - mu) / beta)/(1 - zeta1);
gpmef2 <- (1 + zeta2 * (u - mu) / beta)/(1 - zeta2);
xlims <- c(min(u),max(u))
ylims <- c(min(mef, gpmef1, gpmef2), max(mef, gpmef1, gpmef2))
plot(u , mef, xlims, ylims, type = "l", xlab = "Threshold (u)",
col = 5, ylab = "e(u)")
par(new = TRUE)
plot(u , gpmef1, xlims, ylims, type = "l", xlab = "Threshold (u)",
col = 4, ylab = "e(u)")
par(new = TRUE)
plot(u , gpmef2, xlims, ylims, type = "l", xlab = "Threshold (u)",
col = 3, ylab = "e(u)")
title("Emperical and Two Generalised Pareto MEFs")
legend("topright", legend = c("Emperical MEF", "Generalized Pareto MEF1", "Generalized Pareto MEF1"), text.col = c(5,4,3))
} |
get_github_hash <- function(repo) {
if (!grepl("version", system("git --version", intern = TRUE))) {
msg <- paste("git must be installed and located in the system path",
"for this function to work")
stop(msg)
}
tmp <- system(paste("git ls-remote -h", repo), intern = TRUE)
strsplit(tmp, "\\\\|[^[:print:]]")[[1]][1]
} |
dashboard <-
function(limit=20,offset=0,type=NA,since_id=0,reblog_info=FALSE,notes_info=FALSE,
token=NA,consumer_key=NA,consumer_secret=NA){
if(!is.numeric(limit) || (limit<1 || limit>20) )
stop("limit must be a numeric type beetwen 1 and 20 (inclusive)")
if(!is.numeric(offset))
stop("offset must be a numeric type")
if(!is.numeric(since_id))
stop("since_id must be a number")
if(!(is.logical(reblog_info)))
stop("reblog_info must be a boolean")
if(!(is.logical(notes_info)))
stop("reblog_info must be a boolean")
if(class(token)[1]!="Token1.0")
stop("token must be a Token1.0 type")
if(!is.character(consumer_key))
stop("consumer_key must be a string")
if(!is.character(consumer_secret))
stop("consumer_secret must be a string")
if(!is.na(type)){
format_type<-c("HTML","text","raw")
if(!(type %in% format_type))
stop("Avaliable values for filter are: HTML, text, raw")
}
url<-"https://api.tumblr.com/v2/user/dashboard"
connection<-"GET"
Params<-list(limit=limit,offset=offset,type=type,since_id=since_id,
reblog_info=reblog_info,notes_info=notes_info)
len<-length(Params)
s<-NULL
for(i in 1:len){
if(!is.na(Params[[i]][1]))
s<-c(s,i)
}
bodyParams<-Params[s]
res<-toJSON(http.connection(url,token,bodyParams,consumer_key,consumer_secret,connection))
return(res)
} |
library(idendr0)
data(iris)
hc <- hclust(dist(iris[, 1:4]))
clusters <- idendro(hc, iris)
idendro(hc, iris, clusters=clusters) |
epa_loadAnnual <- function(
year = NULL,
parameterCode = NULL,
baseUrl = 'https://haze.airfire.org/monitoring',
dataDir = NULL
) {
validParameterCodes <- c("88101", "88502")
if ( is.null(parameterCode) ) {
stop("Required parameter 'parameterCode' is missing")
} else {
parameterCode <- as.character(parameterCode)
if ( !parameterCode %in% validParameterCodes ) {
stop(paste0("PWFSL has not yet processed EPA data for parameterCode '",
parameterCode, "'"))
}
}
if ( is.null(year) ) {
stop(paste0("Required parameter 'year' is missing"))
}
year <- as.numeric(year)
lastYear <- lubridate::now(tzone = "UTC") %>% lubridate::year() - 1
if ( parameterCode == "88101" ) {
parameter <- "PM2.5"
if ( ! year %in% 2008:lastYear) {
stop(sprintf("No EPA data available for parameter code %s in year %i",
parameterCode, year))
}
} else if ( parameterCode == "88502" ) {
parameter <- "PM2.5"
if ( ! year %in% 1998:lastYear) {
stop(sprintf("No EPA data available for parameter code %s in year %i",
parameterCode, year))
}
}
baseUrl <- paste0(baseUrl, '/EPA/RData/', year)
filename <- paste0("epa_", parameter, "_", parameterCode, '_', year, ".RData")
ws_monitor <- MazamaCoreUtils::loadDataFile(filename, baseUrl, dataDir)
return(ws_monitor)
} |
d_inventory <- function(fsq, sta_sen=NA, form.out=NA){
if (!file.exists(fsq))
return(warning("\nThis data base doesn't exist, Verify!\n"))
if(!(form.out %in% c(NA, "xlsx", "csv,", "csv;"))) form.out <- NA
conn <- RSQLite::dbConnect(RSQLite::SQLite(),fsq)
ltab <- RSQLite::dbListTables(conn)
if(!("ST" %in% ltab)){
RSQLite::dbDisconnect(conn)
return(warning("\nThis data base doesn't have station table.\n"))
}
sel <- paste ("SELECT * FROM ST")
lsta <- RSQLite::dbGetQuery(conn, sel)
nsta <- nrow(lsta)
if (nsta == 0){
RSQLite::dbDisconnect(conn)
return(warning("\nNo station in the data base\n"))
}
stac <- nom_stac <-senc <- descric <-tablec <- nbrc <- d_endc <- d_startc <- NULL
nosensor <- nostation <- NULL
Id_station <- Sensor <- NULL
Altitude <- Id_Station <- Latitude <- Longitude <- Nom <- Pays <- Station_type <- NULL
Superficie_bv <- Type_Station <- NULL
x1 <- dplyr::select(lsta, Id_station = Id_Station, Station_type = Type_Station,
Station_name = Nom, Country = Pays, Latitude,
Longitude, Altitude, Basin_areas = Superficie_bv)
x1 <- dplyr::arrange(x1, Station_type, Id_station)
if (is.na(sta_sen)) {
for(i in 1: nsta){
sta <- lsta$Id_Station[i]
nom_sta <- lsta$Nom[i]
sta1 <- paste0("'",sta, "'")
sel <- paste ("SELECT * FROM SS WHERE Id_Station =", sta1)
lsen <- RSQLite::dbGetQuery(conn, sel)
nsen <- nrow(lsen)
if (nsen == 0) {
message("The station ", sta, " has no sensor")
}
else for(j in 1: nsen) {
sen <- lsen$Capteur[j]
sen1 <- paste0("'",sen, "'")
sel <- paste ("SELECT * FROM SS WHERE Id_Station =", sta1,
"AND Capteur =", sen1)
x <- RSQLite::dbGetQuery(conn, sel)
descri <- x$Description
tablex <- x$Tabl
sel <- paste ("SELECT * FROM", tablex, "WHERE Id_Station =", paste0("'",sta, "'"),
"AND Capteur =", paste0("'",sen, "'"))
x <- RSQLite::dbGetQuery(conn, sel)
nbr <- nrow(x)
if (nbr > 0) {
xd <- as.POSIXct(x$Date, origin = "1970-01-01", tz = "UTC")
d_start <- min(xd)
d_end <- max(xd)
} else d_start <- d_end <- NA
stac <- c(stac, sta)
nom_stac <- c(nom_stac, nom_sta)
senc <- c(senc, sen)
descric <- c(descric, descri)
tablec <- c(tablec, tablex)
nbrc <- c(nbrc, nbr)
d_endc <- c(d_endc, d_end)
d_startc <- c(d_startc, d_start)
}
}
} else {
if(sta_sen %in% lsta$Id_Station) {
k <- 0
for (j in 1:length(lsta$Id_Station)) if(sta_sen == lsta$Id_Station[j]) k <- j
sta <- lsta$Id_Station[k]
nom_sta <- lsta$Nom[k]
sta1 <- paste0("'",sta, "'")
sel <- paste ("SELECT * FROM SS WHERE Id_Station =", sta1)
lsen <- RSQLite::dbGetQuery(conn, sel)
nsen <- nrow(lsen)
if (nsen == 0) nosensor <- sta
else for(j in 1: nsen) {
sen <- lsen$Capteur[j]
sen1 <- paste0("'",sen, "'")
sel <- paste ("SELECT * FROM SS WHERE Id_Station =", sta1,
"AND Capteur =", sen1)
x <- RSQLite::dbGetQuery(conn, sel)
descri <- x$Description
tablex <- x$Tabl
sel <- paste ("SELECT * FROM", tablex, "WHERE Id_Station =", paste0("'",sta, "'"),
"AND Capteur =", paste0("'",sen, "'"))
x <- RSQLite::dbGetQuery(conn, sel)
nbr <- nrow(x)
if (nbr > 0) {
xd <- as.POSIXct(x$Date, origin = "1970-01-01", tz = "UTC")
d_start <- min(xd)
d_end <- max(xd)
} else d_start <- d_end <- NA
stac <- c(stac, sta)
nom_stac <- c(nom_stac, nom_sta)
senc <- c(senc, sen)
descric <- c(descric, descri)
tablec <- c(tablec, tablex)
nbrc <- c(nbrc, nbr)
d_endc <- c(d_endc, d_end)
d_startc <- c(d_startc, d_start)
}
} else nostation <- sta_sen
}
if (!is.null(nostation)) x2 <- tibble (station = nostation, comment = " is not in the data base")
else {
if (!is.null(nosensor)) x2 <- tibble (station = nosensor, comment = " has no sensor")
else {
x2 <- tibble::tibble(Id_station = stac, Station_name = nom_stac, Sensor = senc, Description = descric,
Table = tablec, Nb_Rec = nbrc, Date_start = as_datetime(d_startc), Date_end = as_datetime(d_endc))
x2 <- dplyr::arrange(x2, Id_station, Sensor)
}
}
RSQLite::dbDisconnect(conn)
if(is.na(form.out)== TRUE) {
a <- list(x1, x2)
return(a)
} else {
nfse <- tools::file_path_sans_ext(fsq)
fileo1 <- paste0(nfse, "_inv-sta")
fileo2 <- paste0(nfse, "_inv-sen")
if(form.out== "csv,") {
fileo1 <- paste0(fileo1,".csv")
fileo2 <- paste0(fileo2,".csv")
write.csv (x1,file=fileo1, row.names=FALSE)
write.csv (x2,file=fileo2, row.names=FALSE)
return(message("\nThe files ",fileo1," and ", fileo2," are written.\n"))
}
if(form.out== "csv;"){
fileo1 <- paste0(fileo1,".csv")
fileo2 <- paste0(fileo2,".csv")
write.csv2 (x1,file=fileo1, row.names=FALSE)
write.csv2 (x2,file=fileo2, row.names=FALSE)
return(message("\nThe files ",fileo1," and ", fileo2," are written.\n"))
}
if(form.out== "xlsx"){
fileo <- paste0(paste0(nfse, "_inv"),".xlsx")
xx <- list(x1,x2)
WriteXLS::WriteXLS (xx, ExcelFileName=fileo,SheetNames=c("Stations","Sensors"),
col.names=TRUE, row.names=FALSE, na="
return(message("\nThe file ",fileo," is written.\n"))
}
}
} |
tindex <- function(x) {
if (!is_term(x) && !is_term_rcrd(x)) {
lifecycle::deprecate_soft(
"0.2.1", "term::tindex(x = 'must be a term or term_rcrd object')"
)
x <- as_term(x)
}
tindex <- field(as_term_rcrd(x), "dim")
names(tindex) <- as.character(as_term(x))
tindex
} |
optim.gene.norm <-
function(y,status,weight,param,x=NULL,var.list=NULL)
{
mu <- sigma <- list()
mu.mat.old <- mu.mat <- matrix(NA,nrow=ncol(weight),ncol=ncol(y))
sigma.array.old <- sigma.array <- array(NA,c(ncol(weight),ncol(y),ncol(y)))
for(k in 1:ncol(weight))
{
mu.mat.old[k,] <- param$mu[[k]]
sigma.array.old[k,,] <- param$sigma[[k]]
}
for(j in 1:ncol(y))
{
indivs <- which(is.finite(y[,j]))
weight.aff <- matrix(weight[status==2,],nrow=sum(status==2),ncol=ncol(weight))
weight.miss <- matrix(weight[status==0,],nrow=sum(status==0),ncol=ncol(weight))
weight.aff.j <- matrix(weight.aff[indivs,],nrow=length(indivs),ncol=ncol(weight))
mu.mat[,j] <- t(weight.aff.j)%*%y[indivs,j]
mu.mat[,j] <- mu.mat[,j]+apply(weight.miss,2,sum)*mu.mat.old[,j]
mu.mat[,j] <- mu.mat[,j]/(apply(weight.aff.j,2,sum)+apply(weight.miss,2,sum))
}
for(j1 in 1:ncol(y)) for(j2 in 1:ncol(y))
{
indivs <- intersect(which(is.finite(y[,j1])),which(is.finite(y[,j2])))
weight.aff <- matrix(weight[status==2,],nrow=sum(status==2),ncol=ncol(weight))
weight.miss <- matrix(weight[status==0,],nrow=sum(status==0),ncol=ncol(weight))
weight.aff.j1j2 <- matrix(weight.aff[indivs,],nrow=length(indivs),ncol=ncol(weight))
sigma.array[,j1,j2] <- diag(t(weight.aff.j1j2)%*%(outer(y[indivs,j1],mu.mat[,j1],"-")*outer(y[indivs,j2],mu.mat[,j2],"-")))
sigma.array[,j1,j2] <- sigma.array[,j1,j2]+apply(weight.miss,2,sum)*(sigma.array.old[,j1,j2]+(mu.mat.old[,j1]-mu.mat[,j1])*(mu.mat.old[,j2]-mu.mat[,j2]))
sigma.array[,j1,j2] <- sigma.array[,j1,j2]/(apply(weight.aff.j1j2,2,sum)+apply(weight.miss,2,sum))
}
for(k in 1:ncol(weight))
{
mu[[k]] <- mu.mat[k,]
sigma[[k]] <- matrix(sigma.array[k,,],nrow=ncol(y),ncol=ncol(y))
}
param <- list("mu"=mu,"sigma"=sigma)
param
} |
mdes.bcra3r2 <- function(power=.80, alpha=.05, two.tailed=TRUE,
rho2, rho3, esv3=NULL, omega3=esv3/rho3,
p=.50, g3=0, r21=0, r22=0, r2t3=0,
n, J, K){
user.parms <- as.list(match.call())
.error.handler(user.parms)
df <- K - g3 - 1
SSE <- sqrt(rho3*omega3*(1-r2t3)/K +
rho2*(1-r22)/(p*(1-p)*J*K) +
(1-rho3-rho2)*(1-r21)/(p*(1-p)*J*K*n))
mdes <- .mdes.fun(power = power, alpha = alpha, sse = SSE, df = df, two.tailed = two.tailed)
.summ.mdes(effect = "main", power = power, alpha = alpha, sse = SSE, df = df, two.tailed = two.tailed, mdes = mdes)
mdes.out <- list(fun = "mdes.bcra3r2",
parms = list(power=power, alpha=alpha, two.tailed=two.tailed,
rho2=rho2, rho3=rho3,
esv3=esv3, omega3=omega3,
p=p, r21=r21, r22=r22, r2t3=r2t3, g3=g3,
n=n, J=J, K=K),
df=df,
ncp = mdes[1]/SSE,
mdes = mdes)
class(mdes.out) <- c("main", "mdes")
return(invisible(mdes.out))
}
power.bcra3r2 <- function(es=.25, alpha=.05, two.tailed=TRUE,
rho2, rho3, esv3=NULL, omega3=esv3/rho3,
p=.50, g3=0, r21=0, r22=0, r2t3=0,
n, J, K){
user.parms <- as.list(match.call())
.error.handler(user.parms)
df <- K - g3 - 1
SSE <- sqrt(rho3*omega3*(1-r2t3)/K +
rho2*(1-r22)/(p*(1-p)*J*K) +
(1-rho3-rho2)*(1-r21)/(p*(1-p)*J*K*n))
power <- .power.fun(es = es, alpha = alpha, sse = SSE, df = df, two.tailed = two.tailed)
.summ.power(power = power, alpha = alpha, sse = SSE, df = df, two.tailed = two.tailed, es = es)
power.out <- list(fun = "power.bcra3r2",
parms = list(es=es, alpha=alpha, two.tailed=two.tailed,
rho2=rho2, rho3=rho3,
esv3=esv3, omega3=omega3,
p=p, r21=r21, r22=r22, r2t3=r2t3, g3=g3,
df=df,
n=n, J=J, K=K),
df=df,
ncp = es/SSE,
power = power)
class(power.out) <- c("main", "power")
return(invisible(power.out))
}
mrss.bcra3r2 <- function(es=.25, power=.80, alpha=.05, two.tailed=TRUE,
n, J, K0=10, tol=.10,
rho2, rho3, esv3=NULL, omega3=esv3/rho3,
p=.50, g3=0, r21=0, r22=0, r2t3=0){
user.parms <- as.list(match.call())
.error.handler(user.parms)
i <- 0
conv <- FALSE
while(i<=100 & conv==FALSE){
df = K0-g3-1
if(df<= 0 | is.infinite(df)){break}
T1 <- ifelse(two.tailed==TRUE,abs(qt(alpha/2,df)),abs(qt(alpha,df)))
T2 = abs(qt(power,df))
M <- ifelse(power>=.5,T1+T2,T1-T2)
K1 <- (M/es)^2 * (rho3*omega3*(1-r2t3) +
rho2*(1-r22)/(p*(1-p)*J) +
(1-rho3-rho2)*(1-r21)/(p*(1-p)*J*n))
K0 <- (K1+K0)/2
i <- i+1
}
K <- ifelse(df>0,round(K0),NA)
mrss.out <- list(fun = "mrss.bcra3r2",
parms = list(es=es, power=power, alpha=alpha, two.tailed=two.tailed,
n=n, J=J, K0=K0, tol=tol,
rho2=rho2, rho3=rho3,
esv3=esv3, omega3=omega3,
p=p, r21=r21, r22=r22, r2t3=r2t3, g3=g3),
df=df,
ncp = M,
K = K)
class(mrss.out) <- c("main", "mrss")
cat("K =", K, "\n")
return(invisible(mrss.out))
}
mdes.bcra3r2_pn <- function(power=.80, alpha=.05, two.tailed=TRUE, df=NULL,
rho3_trt=.10, omega3=.50, rho2_trt=.20, rho_ic=0,
p=.50, r21=0, g3=0, n, J, K, ic_size=1){
user.parms <- as.list(match.call())
.error.handler(user.parms)
if(ic_size == 1 & rho_ic != 0) {
rho_ic <- 0
warning("Forcing 'rho_ic = 0'", call. = FALSE)
} else if(ic_size > 1 & rho_ic == 0) {
warning("'rho_ic = 0'?", call. = FALSE)
}
if(is.null(df)) {
df <- K - g3 - 1
}
deff_rand_ic <- 1 + ((rho3_trt * omega3 * J * n * p * (1 - p) - rho3_trt) + rho2_trt * (n - 1) + rho_ic * (1 - p) * (ic_size - 1)) / (1 - p * rho_ic)
SSE <- sqrt(((1 - r21) / (K * J * n * p * (1 - p))) * ((1 - p * rho_ic) / (1 - rho_ic)) * deff_rand_ic)
mdes <- .mdes.fun(power = power, alpha = alpha, sse = SSE,
df = df, two.tailed = two.tailed)
.summ.mdes(effect = "main", power = power, alpha = alpha, sse = SSE,
df = round(df,3), two.tailed = two.tailed, mdes = mdes)
mdes.out <- list(fun = "mdes.bcra3r2_pn",
parms = list(power=power, alpha=alpha, two.tailed=two.tailed,
rho3_trt=rho3_trt, omega3=omega3, rho2_trt=rho2_trt, rho_ic = rho_ic,
r21=r21, p=p, n=n, J=J, K=K, ic_size=ic_size),
df = df,
ncp = mdes[1]/SSE,
mdes = mdes)
class(mdes.out) <- c("main", "mdes")
return(invisible(mdes.out))
}
power.bcra3r2_pn <- function(es=.25,alpha=.05, two.tailed=TRUE, df=NULL,
rho3_trt=.10, omega3=.50, rho2_trt=.20, rho_ic=0,
p=.50, r21=0, g3=0, n, J, K, ic_size=1){
user.parms <- as.list(match.call())
.error.handler(user.parms)
if(ic_size == 1 & rho_ic != 0) {
rho_ic <- 0
warning("Forcing 'rho_ic = 0'", call. = FALSE)
} else if(ic_size > 1 & rho_ic == 0) {
warning("'rho_ic = 0'?", call. = FALSE)
}
if(is.null(df)) {
df <- K - g3 - 1
}
deff_rand_ic <- 1 + ((rho3_trt * omega3 * J * n * p * (1 - p) - rho3_trt) + rho2_trt * (n - 1) + rho_ic * (1 - p) * (ic_size - 1)) / (1 - p * rho_ic)
SSE <- sqrt(((1 - r21) / (K * J * n * p * (1 - p))) * ((1 - p * rho_ic) / (1 - rho_ic)) * deff_rand_ic)
power <- .power.fun(es = es, alpha = alpha, sse = SSE,
df = df, two.tailed = two.tailed)
.summ.power(power = power, alpha = alpha, sse = SSE,
df = round(df,3), two.tailed = two.tailed, es = es)
power.out <- list(fun = "power.bcra3r2_pn",
parms = list(es=es, alpha=alpha, two.tailed=two.tailed,
rho3_trt=rho3_trt, omega3=omega3, rho2_trt=rho2_trt, rho_ic=rho_ic,
r21=r21, p=p, n=n, J=J, K=K, ic_size=ic_size),
df = df,
ncp = es/SSE,
power = power)
class(power.out) <- c("main", "power")
return(invisible(power.out))
}
mrss.bcra3r2_pn <- function(es=.25, power=.80, alpha=.05, two.tailed=TRUE, z.test=FALSE,
rho3_trt=.10, omega3 = .50, rho2_trt=.20, rho_ic=0,
p=.50, r21=0, g3=0, n, J, ic_size=1, K0=10, tol=.10){
user.parms <- as.list(match.call())
.error.handler(user.parms)
if(ic_size == 1 & rho_ic != 0) {
rho_ic <- 0
warning("Forcing 'rho_ic = 0'", call. = FALSE)
} else if(ic_size > 1 & rho_ic == 0) {
warning("'rho_ic = 0'?", call. = FALSE)
}
i <- 0
conv <- FALSE
while(i<=100 & conv==FALSE){
df <- K0 - g3 - 1
if(df <= 0) stop("Increase 'K0'", call. = FALSE)
if(df <= 0 | is.infinite(df)){break}
if(z.test) df <- Inf
T1 <- ifelse(two.tailed==TRUE,abs(qt(alpha/2,df)),abs(qt(alpha,df)))
T2 <- abs(qt(power,df))
M <- ifelse(power>=.5,T1+T2,T1-T2)
deff_rand_ic <- 1 + ((rho3_trt * omega3 * J * n * p * (1 - p) - rho3_trt) + rho2_trt * (n - 1) + rho_ic * (1 - p) * (ic_size - 1)) / (1 - p * rho_ic)
VAR <- ((1 - r21) / (J * n * p * (1 - p))) * ((1 - p * rho_ic) / (1 - rho_ic)) * deff_rand_ic
K1 <- (M/es)^2 * VAR
if(abs(K1-K0)<tol){conv <- TRUE}
K0 <- (K1+K0)/2
i <- i+1
}
K <- round(ifelse(df>0,round(K0),NA))
K.out <- list(fun = "mrss.bcra3r2_pn",
parms = list(es=es, power=power, alpha=alpha, two.tailed=two.tailed,
rho3_trt=rho3_trt, omega3=omega3, rho2_trt=rho2_trt, rho_ic=rho_ic,
r21=r21, g3=g3, p=p, n=n, J=J, ic_size=ic_size, K0=K0, tol=tol),
df=df,
ncp = M,
K = K)
class(K.out) <- c ("main", "mrss")
cat("K =", K, "\n")
return(invisible(K.out))
} |
"abstracts"
"abstracts_dfm"
"abstracts_dictionary"
"abstracts_keyatm"
"abstracts_warplda"
"abstracts_btm"
"afinn"
"trump2k"
"newsgroup_nb"
NULL
utils::globalVariables(c('cookd', 'diffxy', 'index', 'meanxy', 'word_length', 'avg_answer', 'abstracts_keyatm', 'abstracts'))
.cp <- function(boolean_test, ...) {
if (boolean_test) {
cli::cli_alert_info(paste0(...))
}
}
.cstop <- function(boolean_test, ...) {
if (boolean_test) {
stop(..., call. = FALSE)
}
}
.safe_sample <- function(x, size) {
if (length(x) == 1) {
return(x)
} else {
return(sample(x, size))
}
}
.generate_meta <- function() {
list("package-version" = utils::packageVersion("oolong"),
"r-version" = getRversion(),
"system" = Sys.info()[c("sysname", "machine", "user")],
"directory" = getwd(),
"created" = Sys.Date()
)
}
.sym_flip <- function(bool) {
ifelse(bool, cli::symbol$tick, cli::symbol$cross)
}
.safe_hash <- function(x) {
if (is.null(x)) {
return(NULL)
}
return(digest::digest(x, algo = "sha1"))
} |
library("matrixStats")
source("utils/validateIndicesFramework.R")
x <- runif(6, min = -6, max = 6)
storage.mode(x) <- "integer"
for (idxs in index_cases) {
validateIndicesTestVector(x, idxs,
ftest = product, fsure = prod,
na.rm = TRUE)
validateIndicesTestVector(x, idxs,
ftest = product, fsure = prod,
na.rm = FALSE)
} |
byosrmRoute <- function(src_dst, crs){
EPP::osrm_ok()
getOption("osrm.server") == "https://routing.openstreetmap.de/"
pop_s <- SpatialPoints(src_dst[ ,1:2], proj4string = crs)
centers_s <- SpatialPoints(src_dst[ ,3:4], proj4string = crs)
pop_s <- spTransform(pop_s, sp::CRS("+init=epsg:4326"))
centers_s <- spTransform(centers_s, sp::CRS("+init=epsg:4326"))
pop1 <- as.data.frame(cbind(1:nrow(src_dst), pop_s@coords))
centers1 <- as.data.frame(cbind(1:nrow(src_dst), centers_s@coords))
r <- as.list(NA)
for (i in 1:nrow(pop1)) {
tryCatch({
r[[i]] <- osrmRoute(src = pop1[i, ], dst = centers1[i, ],
overview = "full", returnclass = "sp")
src_dst[i, "dist"] <- r[[i]]@data$distance * 1000
src_dst[i, "time"] <- r[[i]]@data$duration
}, error = function(e) {cat("ERROR :",conditionMessage(e), "\n")})
}
src_dst
} |
ggdist::theme_ggdist
ggdist::theme_tidybayes
ggdist::facet_title_left_horizontal
ggdist::facet_title_right_horizontal
ggdist::axis_titles_bottom_left |
source("ESEUR_config.r")
library("plyr")
pal_col=rainbow(3)
proj_totals=function(df)
{
sloc=sum(df$sloc)
methods=nrow(df)
files=length(unique(df$file))
return(data.frame(sloc, methods, files))
}
meth_per_file=function(df)
{
meth=ddply(df, .(file), function(df) return(nrow(df)))
return(meth)
}
cc_loc=read.csv(paste0(ESEUR_dir, "sourcecode/Landman.csv.xz"), as.is=TRUE)
cc_loc$logloc=log(cc_loc$sloc)
proj_info=ddply(cc_loc, .(project), proj_totals)
t=density(log(proj_info$sloc))
plot(exp(t$x), t$y, type="l", log="x", col=pal_col[1],
xaxs="i", yaxs="i",
ylim=c(0, 0.28),
xlab="Total per project", ylab="Density\n")
t=density(log(proj_info$methods))
lines(exp(t$x), t$y, col=pal_col[2])
t=density(log(proj_info$files))
lines(exp(t$x), t$y, col=pal_col[3])
legend(x="topright", legend=c("SLOC", "Methods", "Files"), bty="n", fill=pal_col, cex=1.2) |
context("SP_LOG_REG")
set.seed(SEED)
options(bigstatsr.downcast.warning = FALSE)
if (not_cran) {
N <- 934
M <- 1053
m <- 30
x <- matrix(rnorm(N * M, mean = 100, sd = 5), N)
set <- sample(M, size = m)
eff <- rnorm(m)
s <- drop(scale(x[, set]) %*% eff) / m
y0 <- s + rnorm(N) / 10
y <- as.numeric(y0 > 0)
y2 <- y; y2[] <- 0
y3 <- y; y3[10] <- NA
covar0 <- matrix(rnorm(N * 3), N)
lcovar <- list(NULL, covar0)
test_that("can be used with a subset of samples", {
for (t in TEST.TYPES) {
X <- `if`(t == "raw", asFBMcode(x, TRUE), big_copy(x, type = t))
for (covar in sample(lcovar, 1)) {
expect_error(big_spLogReg(X, y0, covar.train = covar, ncores = test_cores()),
"'y01.train' should be composed of 0s and 1s.", fixed = TRUE)
expect_error(big_spLogReg(X, y2, covar.train = covar, ncores = test_cores()),
"'y01.train' should be composed of 0s and 1s.", fixed = TRUE)
expect_error(big_spLogReg(X, y3, covar.train = covar, ncores = test_cores()),
"'y01.train' should be composed of 0s and 1s.", fixed = TRUE)
ind <- sample(N, N / 2)
alphas <- c(runif(1, min = 0.1, max = 1), 1)
mod.bigstatsr <- big_spLogReg(X, y, covar.train = covar, alphas = alphas,
dfmax = Inf, nlam.min = Inf, warn = FALSE,
ncores = test_cores())
lapply(mod.bigstatsr, function(mod) lapply(mod, function(fold) {
if (fold$message != "Model saturated") expect_length(fold$lambda, 200)
}))
if (is.null(covar)) {
expect_length(predict(mod.bigstatsr[2], X, ind.row = (1:N)[-ind],
ncores = test_cores()),
N / 2)
} else {
expect_error(predict(mod.bigstatsr[2], X, ind.row = (1:N)[-ind]),
"You forgot to provide 'covar.row' in predict().")
}
preds <- predict(mod.bigstatsr, X, ind.row = (1:N)[-ind],
covar.row = covar[-ind, ], ncores = test_cores())
expect_gt(AUC(preds, y[-ind]), 0.85)
expect_s3_class(plot(mod.bigstatsr), "ggplot")
mod.bigstatsr2 <- big_spLogReg(X, y[ind], ind.train = ind,
covar.train = covar[ind, ],
alphas = alphas,
ncores = test_cores(),
warn = FALSE)
preds2 <- predict(mod.bigstatsr2, X, ind.row = (1:N)[-ind],
covar.row = covar[-ind, ], ncores = test_cores())
expect_gt(AUC(preds2, y[-ind]), 0.7)
expect_error(predict(mod.bigstatsr2, X, covar.row = covar, abc = 2),
"Argument 'abc' not used.")
flatten <- unlist(mod.bigstatsr2, recursive = FALSE)
expect_true(all(sapply(flatten, class) == "big_sp"))
lapply(flatten, function(obj) {
expect_false(is.null(nb_candidate <- obj$nb_candidate))
expect_false(is.unsorted(nb_candidate))
expect_true(all(nb_candidate >= obj$nb_active))
})
}
}
})
test_that("can be used with a subset of variables (and penalty factors work)", {
for (t in TEST.TYPES) {
X <- `if`(t == "raw", asFBMcode(x, TRUE), big_copy(x, type = t))
ind.col <- cols_along(X)[-set]
ind.novar <- sample(ind.col, 10); X[, ind.novar] <- 100
set2 <- match(set, (1:M)[-ind.novar])
for (covar in sample(lcovar, 1)) {
ind <- sample(N, N / 2)
alphas <- c(runif(1, min = 0.1, max = 1), 1)
expect_warning(
mod.bigstatsr3 <- big_spLogReg(X, y[ind], ind.train = ind,
ind.col = ind.col,
covar.train = covar[ind, ],
alphas = alphas,
ncores = test_cores(),
warn = FALSE),
"10 variables with low/no variation have been removed.", fixed = TRUE
)
expect_equal(nrow(summary(mod.bigstatsr3)), length(alphas))
preds3 <- predict(mod.bigstatsr3, X, ind.row = (1:N)[-ind],
covar.row = covar[-ind, ], ncores = test_cores())
expect_lt(AUC(preds3, y[-ind]), 0.7)
expect_warning(
mod.bigstatsr4 <- big_spLogReg(X, y[ind], ind.train = ind,
covar.train = covar[ind, ],
alphas = alphas,
ncores = test_cores(),
warn = FALSE),
"10 variables with low/no variation have been removed.", fixed = TRUE
)
expect_equal(length(attr(mod.bigstatsr4, "ind.col")), M - 10)
expect_lte(length(mod.bigstatsr4[[c(1, 1)]]$beta), M - 10 + ncol(covar0))
preds4 <- predict(mod.bigstatsr4, X, ind.row = (1:N)[-ind],
covar.row = covar[-ind, ], ncores = test_cores())
auc0 <- AUC(preds4, y[-ind])
pf <- rep(1, ncol(X)); pf[set] <- 10
expect_warning(
mod.bigstatsr5 <- big_spLogReg(X, y[ind], ind.train = ind,
covar.train = covar[ind, ],
alphas = alphas, pf.X = pf,
ncores = test_cores(),
warn = FALSE),
"10 variables with low/no variation have been removed.", fixed = TRUE
)
preds5 <- predict(mod.bigstatsr5, X, ind.row = (1:N)[-ind],
covar.row = covar[-ind, ], ncores = test_cores())
expect_lt(AUC(preds5, y[-ind]), auc0)
pf[set] <- 0
expect_warning(
mod.bigstatsr6 <- big_spLogReg(X, y[ind], ind.train = ind,
covar.train = covar[ind, ],
alphas = alphas, pf.X = pf,
ncores = test_cores(),
warn = FALSE),
"10 variables with low/no variation have been removed.", fixed = TRUE
)
lapply(unlist(mod.bigstatsr6, recursive = FALSE),
function(mod) expect_true(all(mod$beta[set2] != 0)))
preds6 <- predict(mod.bigstatsr6, X, ind.row = (1:N)[-ind],
covar.row = covar[-ind, ], ncores = test_cores())
expect_gt(AUC(preds6, y[-ind]), auc0)
}
}
})
test_that("parameter 'return.all' is deprecated and loss is correct", {
for (t in TEST.TYPES) {
X <- `if`(t == "raw", asFBMcode(x, TRUE), big_copy(x, type = t))
for (covar in sample(lcovar, 1)) {
alpha <- runif(1, min = 0.01, max = 1)
expect_warning(big_spLogReg(X, y, covar.train = covar, alphas = alpha,
return.all = TRUE, warn = FALSE,
ncores = test_cores()))
mod.bigstatsr4 <- big_spLogReg(X, y, covar.train = covar, alphas = alpha,
warn = FALSE, ncores = test_cores())
expect_length(mod.bigstatsr4, 1)
flatten <- mod.bigstatsr4[[1]]
expect_true(all(sapply(flatten, class) == "big_sp"))
lapply(flatten, function(obj) {
ind.val <- setdiff(rows_along(X), obj$ind.train)
y.val <- y[ind.val]
preds <- predict(obj, X, ind.row = ind.val,
ind.col = attr(mod.bigstatsr4, "ind.col"),
covar.row = covar[ind.val, ])
p <- 1 / (1 + exp(-preds))
loss.val <- -mean(y.val * log(p) + (1 - y.val) * log(1 - p))
diff <- abs(loss.val - obj$loss.val)
expect_true(any(diff < 1e-8))
})
}
}
})
test_that("Use a base predictor", {
for (t in TEST.TYPES) {
X <- `if`(t == "raw", asFBMcode(x, TRUE), big_copy(x, type = t))
for (covar in sample(lcovar, 1)) {
ind <- sample(N, N / 2)
alphas <- c(runif(1, min = 0.01, max = 1), 1)
ind.sets <- sample(rep_len(1:10, length(ind)))
mod.bigstatsr <- big_spLogReg(X, y[ind], ind.train = ind,
covar.train = covar[ind, ],
alphas = alphas,
ind.sets = ind.sets,
ncores = test_cores(),
warn = FALSE)
preds <- predict(mod.bigstatsr, X, covar.row = covar, ncores = test_cores())
expect_gt(AUC(preds[-ind], y[-ind]), 0.7)
mod.bigstatsr2 <- big_spLogReg(X, y[ind], ind.train = ind,
base.train = rep(5, length(ind)),
covar.train = covar[ind, ],
alphas = alphas,
ind.sets = ind.sets,
ncores = test_cores(),
warn = FALSE)
expect_equal(sapply(unlist(mod.bigstatsr2, recursive = FALSE),
function(x) x$intercept) + 5,
sapply(unlist(mod.bigstatsr, recursive = FALSE),
function(x) x$intercept))
expect_equal(sapply(unlist(mod.bigstatsr2, recursive = FALSE),
function(x) x$beta.X),
sapply(unlist(mod.bigstatsr, recursive = FALSE),
function(x) x$beta.X))
mod.bigstatsr3 <- big_spLogReg(X, y[ind], ind.train = ind,
base.train = preds[ind] / 2,
covar.train = covar[ind, ],
alphas = alphas,
ind.sets = ind.sets,
ncores = test_cores(),
warn = FALSE)
expect_error(predict(mod.bigstatsr3, X, covar.row = covar),
"You forgot to provide 'base.row' in predict().")
preds3 <- predict(mod.bigstatsr3, X, covar.row = covar, base.row = rep(0, N),
ncores = test_cores())
expect_gt(cor(preds3, preds), 0.9)
}
}
})
}
test_that("Warns if not all converged", {
skip_if_not(not_cran)
set.seed(1)
N <- 230
M <- 730
X <- FBM(N, M, init = rnorm(N * M, sd = 5))
y01 <- as.numeric((rowSums(X[, 1:10]) + 2 * rnorm(N)) > 0)
covar <- matrix(rnorm(N * 3), N)
ind.train <- sort(sample(nrow(X), 150))
ind.test <- setdiff(rows_along(X), ind.train)
ALPHAS <- c(1, 0.5, 0.1, 0.01)
expect_warning(
test <- big_spLogReg(X, y01[ind.train], ind.train = ind.train,
covar.train = covar[ind.train, ],
alphas = ALPHAS, K = 4),
"Some models may not have reached a minimum", fixed = TRUE
)
test_summary <- summary(test)
expect_identical(test_summary$alpha, sort(ALPHAS))
expect_identical(test_summary$all_conv, c(FALSE, FALSE, TRUE, TRUE))
test_summary2 <- summary(test, sort = TRUE)
expect_identical(test_summary2$alpha, ALPHAS)
expect_identical(test_summary2$all_conv, c(TRUE, TRUE, FALSE, FALSE))
expect_false(is.unsorted(test_summary2$validation_loss))
})
test_that("code is used for FBM.code256", {
N <- 230
M <- 730
X <- FBM.code256(N, M, init = round(100 + rnorm(N * M, sd = 5)), code = rnorm(256))
y01 <- as.numeric((rowSums(X[, 1:10]) + rnorm(N)) > 0)
covar <- matrix(rnorm(N * 3), N)
test <- big_spLogReg(X, y01, K = 5)
X2 <- X$copy(code = -X$code256)
test2 <- big_spLogReg(X2, y01, K = 5)
expect_lt(print(cor(summary(test)$beta[[1]], summary(test2)$beta[[1]])), -0.7)
})
test_that("New power parameters work", {
skip_if_not(not_cran)
set.seed(1)
N <- 230
M <- 730
X <- FBM(N, M, init = rnorm(N * M, sd = 5))
y01 <- as.numeric((rowSums(X[, 1:10]) + 2 * rnorm(N)) > 0)
covar <- matrix(rnorm(N * 3), N)
ind.train <- sort(sample(nrow(X), 150))
ind.test <- setdiff(rows_along(X), ind.train)
ALPHAS <- c(1, 0.5, 0.1, 0.01)
expect_warning(
test <- big_spLogReg(X, y01[ind.train], ind.train = ind.train,
covar.train = covar[ind.train, ], K = 4,
alphas = ALPHAS,
power_scale = c(0, 0.5, 1),
power_adaptive = c(0, 0.5, 1.5)),
"Some models may not have reached a minimum", fixed = TRUE
)
test_summary <- summary(test)
expect_identical(test_summary$alpha, rep(sort(ALPHAS), each = 9))
library(dplyr)
nb_var <- test_summary %>%
group_by(alpha, power_adaptive) %>%
summarise(nb_var = mean(nb_var)) %>%
ungroup()
nb_var %>%
group_by(alpha) %>%
summarise(cor = cor(power_adaptive, nb_var, method = "spearman")) %>%
pull(cor) %>%
expect_equal(rep(-1, 4))
nb_var %>%
group_by(power_adaptive) %>%
summarise(cor = cor(alpha, nb_var, method = "spearman")) %>%
pull(cor) %>%
expect_equal(rep(-1, 3))
}) |
compar.lynch <- function(x, G, eps = 1e-4)
{
if (is.vector(x) || is.data.frame(x)) x <- as.matrix(x)
alea <- runif(1, 0, 1)
z <- as.vector(x)
uz <- apply(x, 2, mean)
vcvz <- var(x)
vz <- diag(vcvz)
nsp <- nrow(x)
k <- ncol(x)
X1 <- matrix(0, k, k)
diag(X1) <- 1
I <- matrix(0, nsp, nsp)
diag(I) <- 1
vara <- trvare <- matrix(NA, k, k)
nsp1 <- rep(1, nsp)
X <- X1 %x% nsp1
compteur <- 0
vara <- A0 <- alea * vcvz
vare <- E0 <- (1 - alea) * vcvz
newu <- u0 <- uz
Ginv <- solve(G)
V0 <- vcvz %x% G
a0 <- e0 <- matrix(0, nsp, k)
a1 <- e1 <- matrix(1, nsp, k)
while (any(abs((rbind(a1, e1) - rbind(a0, e0))) > eps)) {
a1 <- a0
e1 <- e0
compteur <- compteur + 1
Rinv <- solve(E0 %x% I)
Dinv <- solve(A0 %x% G)
info <- solve(Rinv + Dinv)
newa <- solve(Rinv + Dinv) %*% Rinv %*% (z - X %*% u0)
newe <- z - X %*% u0 - newa
e0 <- mnewe <- matrix(newe, nsp, k)
a0 <- mnewa <- matrix(newa, nsp, k)
for (i in 1:k) {
for (j in 1:k) {
trvare[i, j] <- sum(diag(info[(((i - 1) * nsp) + 1):(i * nsp),
(((j - 1) * nsp) + 1):(j * nsp)]))}
}
vare <- ((nsp - 1) * var(mnewe) + trvare) / nsp
for (i in 1:k) {
for (j in 1:k) {
vara[i, j] <- (t(mnewa[, i]) %*% Ginv %*% mnewa[, j] +
sum(diag(Ginv %*%
info[(((i - 1) * nsp) + 1):(i * nsp),
(((j - 1) * nsp) + 1):(j * nsp)]))) / nsp
}
}
newu <- apply(x - mnewa, 2, mean)
V <- vara %x% G + vare %x% I
p <- (2 * pi)^(-nsp) * det(V)^(-0.5) *
exp(-0.5 * t(z - (X %*% newu)) %*% solve(V) %*% (z - (X %*% newu)))
E0 <- vare
A0 <- vara
u0 <- newu
}
dimnames(vare) <- dimnames(vara)
list(vare = vare, vara = vara, A = mnewa, E = mnewe, u = newu, lik = log(p))
} |
cut.ff <- function(x, breaks, ...){
f <- NULL
if (length(breaks) == 1L) {
if (is.na(breaks) || breaks < 2L)
stop("invalid number of intervals")
nb <- as.integer(breaks + 1)
dx <- diff(rx <- range(x, na.rm = TRUE))
if (dx == 0) {
dx <- abs(rx[1L])
breaks <- seq.int(rx[1L] - dx/1000, rx[2L] + dx/1000,
length.out = nb)
}
else {
breaks <- seq.int(rx[1L], rx[2L], length.out = nb)
breaks[c(1L, nb)] <- c(rx[1L] - dx/1000, rx[2L] +
dx/1000)
}
}
else nb <- length(breaks <- sort.int(as.double(breaks)))
if (anyDuplicated(breaks))
stop("'breaks' are not unique")
args <- list(...)
args$by <- NULL
args$breaks <- breaks
for (i in chunk(x, ...)){
Log$chunk(i)
args$x <- x[i]
res <- do.call(cut, args)
f <- ffappend( f
, res
, adjustvmode=FALSE
)
}
f
} |
library(shiny.fluent)
if (interactive()) {
shinyApp(
ui = tagList(
reactOutput("modal"),
PrimaryButton.shinyInput("showModal", text = "Show modal"),
),
server = function(input, output) {
modalVisible <- reactiveVal(FALSE)
observeEvent(input$showModal, modalVisible(TRUE))
observeEvent(input$hideModal, modalVisible(FALSE))
output$modal <- renderReact({
Modal(isOpen = modalVisible(),
Stack(tokens = list(padding = "15px", childrenGap = "10px"),
div(style = list(display = "flex"),
Text("Title", variant = "large"),
div(style = list(flexGrow = 1)),
IconButton.shinyInput("hideModal", iconProps = list(iconName = "Cancel")),
),
div(
p("A paragraph of text."),
p("Another paragraph.")
)
)
)
})
}
)
} |
iglu_shiny <- function() {
appDir <- system.file('shiny_iglu', package = 'iglu')
shiny::runApp(appDir, display.mode = 'normal')
} |
expected <- eval(parse(text="\"2014-03-17 18:47:59 GMT\""));
test(id=0, code={
argv <- eval(parse(text="list(structure(list(sec = 59.7693939208984, min = 47L, hour = 18L, mday = 17L, mon = 2L, year = 114L, wday = 1L, yday = 75L, isdst = 0L), .Names = c(\"sec\", \"min\", \"hour\", \"mday\", \"mon\", \"year\", \"wday\", \"yday\", \"isdst\"), class = c(\"POSIXlt\", \"POSIXt\"), tzone = \"GMT\"), \"%Y-%m-%d %H:%M:%S\", TRUE)"));
.Internal(`format.POSIXlt`(argv[[1]], argv[[2]], argv[[3]]));
}, o=expected); |
entropy.shrink = function(y, lambda.freqs, unit=c("log", "log2", "log10"), verbose=TRUE)
{
f = freqs.shrink(y, lambda.freqs=lambda.freqs, verbose=verbose)
h = entropy.plugin(f, unit=unit)
attr(h, "lambda.freqs") = attr(f, "lambda.freqs")
return( h )
}
freqs.shrink = function (y, lambda.freqs, verbose = TRUE)
{
target = 1/length(y)
n = sum(y)
u = y/n
if (missing(lambda.freqs))
{
if (n==1 || n==0)
{
lambda.freqs = 1
}
else
{
lambda.freqs = get.lambda.shrink(n, u, target, verbose)
}
}
else
{
if (verbose)
{
cat(paste("Specified shrinkage intensity lambda.freq (frequencies):",
round(lambda.freqs, 4)) , "\n")
}
}
u.shrink = lambda.freqs * target + (1 - lambda.freqs) * u
attr(u.shrink, "lambda.freqs") = lambda.freqs
return(u.shrink)
}
mi.shrink = function(y2d, lambda.freqs, unit=c("log", "log2", "log10"), verbose=TRUE)
{
f2d = freqs.shrink(y2d, lambda.freqs=lambda.freqs, verbose=verbose)
mi = mi.plugin(f2d, unit=unit)
attr(mi, "lambda.freqs") = attr(f2d, "lambda.freqs")
return( mi )
}
chi2indep.shrink = function(y2d, lambda.freqs, unit=c("log", "log2", "log10"), verbose=TRUE)
{
f2d = freqs.shrink(y2d, lambda.freqs=lambda.freqs, verbose=verbose)
chi2 = chi2indep.plugin(f2d, unit=unit)
attr(chi2, "lambda.freqs") = attr(f2d, "lambda.freqs")
return( chi2 )
}
chi2.shrink = function(y1, y2, lambda.freqs1, lambda.freqs2,
unit=c("log", "log2", "log10"), verbose=TRUE)
{
f1 = freqs.shrink(y1, lambda.freqs=lambda.freqs1, verbose=verbose)
f2 = freqs.shrink(y2, lambda.freqs=lambda.freqs2, verbose=verbose)
chi2 = chi2.plugin(f1, f2, unit=unit)
attr(chi2, "lambda.freqs1") = attr(f1, "lambda.freqs")
attr(chi2, "lambda.freqs2") = attr(f2, "lambda.freqs")
return( chi2 )
}
KL.shrink = function(y1, y2, lambda.freqs1, lambda.freqs2,
unit=c("log", "log2", "log10"), verbose=TRUE)
{
f1 = freqs.shrink(y1, lambda.freqs=lambda.freqs1, verbose=verbose)
f2 = freqs.shrink(y2, lambda.freqs=lambda.freqs2, verbose=verbose)
KL = KL.plugin(f1, f2, unit=unit)
attr(KL, "lambda.freqs1") = attr(f1, "lambda.freqs")
attr(KL, "lambda.freqs2") = attr(f2, "lambda.freqs")
return( KL )
}
get.lambda.shrink = function(n, u, t, verbose)
{
varu = u*(1-u)/(n-1)
msp = sum( (u-t)^2 )
if (msp == 0)
{
lambda = 1
}
else
lambda = sum( varu ) / msp
if (lambda > 1)
{
lambda = 1
}
if (lambda < 0)
{
lambda = 0
}
if (verbose)
{
cat(paste("Estimating optimal shrinkage intensity lambda.freq (frequencies):",
round(lambda, 4)) , "\n")
}
return(lambda)
} |
context("Ensuring that the `tab_footnote()` function works as expected")
data <-
mtcars %>%
gt(rownames_to_stub = TRUE) %>%
cols_move_to_start(columns = c("gear", "carb")) %>%
tab_stubhead(label = "cars") %>%
cols_hide(columns = "mpg") %>%
cols_hide(columns = "vs") %>%
tab_row_group(
label = "Mercs",
rows = contains("Merc"),
) %>%
tab_row_group(
label = "Mazdas",
rows = contains("Mazda"),
) %>%
tab_options(row_group.default_label = "Others") %>%
tab_spanner(
label = "gear_carb_cyl",
id = "gcc",
columns = c(gear, carb, cyl)
) %>%
row_group_order(groups = c("Mazdas", "Mercs")) %>%
cols_merge_range(
col_begin = "disp",
col_end = "drat"
) %>%
tab_header(
title = "Title",
subtitle = "Subtitle"
) %>%
tab_source_note(source_note = "this is a source note") %>%
summary_rows(
groups = c("Mazdas", "Mercs"),
columns = c(hp, wt, qsec),
fns = list(
~mean(., na.rm = TRUE),
~sum(., na.rm = TRUE))
) %>%
summary_rows(
columns = c(hp, wt),
fns = list(
~mean(., na.rm = TRUE),
~sum(., na.rm = TRUE))
)
data_2 <-
gtcars %>%
dplyr::filter(ctry_origin == "Germany") %>%
dplyr::group_by(mfr) %>%
dplyr::top_n(2, msrp) %>%
dplyr::ungroup() %>%
dplyr::select(mfr, model, drivetrain, msrp) %>%
gt() %>%
tab_spanner(
label = "make and model",
id = "mm",
columns = c(mfr, model)
) %>%
tab_spanner(
label = "specs and pricing",
id = "sp",
columns = c(drivetrain, msrp)
) %>%
tab_footnote(
footnote = "Prices in USD.",
locations = cells_column_labels(columns = msrp)
) %>%
tab_footnote(
footnote = "AWD = All Wheel Drive, RWD = Rear Wheel Drive.",
locations = cells_column_labels(columns = drivetrain)
) %>%
tab_footnote(
footnote = "The most important details.",
locations = cells_column_spanners(spanners = "sp")
) %>%
tab_footnote(
footnote = "German cars only.",
locations = cells_column_spanners(spanners = "mm")
)
data_3 <-
gtcars %>%
dplyr::filter(ctry_origin == "Germany") %>%
dplyr::group_by(mfr) %>%
dplyr::top_n(3, msrp) %>%
dplyr::ungroup() %>%
dplyr::select(mfr, model, drivetrain, msrp) %>%
gt(rowname_col = "model", groupname_col = "mfr") %>%
summary_rows(
groups = c("BMW", "Audi"),
columns = "msrp",
fns = list(
~mean(., na.rm = TRUE),
~min(., na.rm = TRUE))
) %>%
summary_rows(
columns = "msrp",
fns = list(
~min(., na.rm = TRUE),
~max(., na.rm = TRUE))
) %>%
tab_footnote(
footnote = "Average price for BMW and Audi.",
locations = cells_summary(
groups = c("BMW", "Audi"),
columns = "msrp",
rows = starts_with("me"))
) %>%
tab_footnote(
footnote = "Maximum price across all cars.",
locations = cells_grand_summary(
columns = "msrp",
rows = starts_with("ma"))
) %>%
tab_footnote(
footnote = "Minimum price across all cars.",
locations = cells_grand_summary(
columns = "msrp",
rows = starts_with("mi"))
)
data_4 <-
sp500 %>%
dplyr::filter(
date >= "2015-01-05" &
date <="2015-01-10"
) %>%
dplyr::select(
-c(adj_close, volume, high, low)
) %>%
gt() %>%
tab_header(
title = "S&P 500",
subtitle = "Open and Close Values"
) %>%
tab_footnote(
footnote = "All values in USD.",
locations = list(
cells_title(groups = "subtitle")
)
) %>%
tab_footnote(
footnote = "Standard and Poor 500.",
locations = list(
cells_title(groups = "title")
)
)
check_suggests <- function() {
skip_if_not_installed("rvest")
skip_if_not_installed("xml2")
}
selection_value <- function(html, key) {
selection <- paste0("[", key, "]")
html %>%
rvest::html_nodes(selection) %>%
rvest::html_attr(key)
}
selection_text <- function(html, selection) {
html %>%
rvest::html_nodes(selection) %>%
rvest::html_text()
}
test_that("the `tab_footnote()` function works correctly", {
check_suggests()
tab <-
data %>%
tab_footnote(
footnote = "Column labels and stub footnote.",
locations = list(
cells_column_labels(),
cells_stub(rows = TRUE)
)
)
dt_footnotes_get(data = tab) %>%
dplyr::pull(locname) %>%
unique() %>%
expect_equal(c("columns_columns", "stub"))
dt_footnotes_get(data = tab) %>%
dplyr::pull(footnotes) %>%
unique() %>%
expect_equal("Column labels and stub footnote.")
tab <-
data %>%
tab_footnote(
footnote = "Stub cell footnote.",
locations = cells_stub(rows = "Merc 240D")
)
dt_footnotes_get(data = tab) %>%
nrow() %>%
expect_equal(1)
dt_footnotes_get(data = tab) %>%
unlist() %>%
unname() %>%
expect_equal(
c("stub", NA_character_, NA_character_, "5", "8",
NA_character_, "Stub cell footnote.")
)
tab <-
data %>%
tab_footnote(
footnote = "Title footnote.",
locations = cells_title(groups = "title")
)
dt_footnotes_get(data = tab) %>%
nrow() %>%
expect_equal(1)
dt_footnotes_get(data = tab) %>%
unlist() %>%
unname() %>%
expect_equal(
c("title", NA_character_, NA_character_, "1", NA_character_,
NA_character_, "Title footnote.")
)
tab <-
data %>%
tab_footnote(
footnote = "Subtitle footnote.",
locations = cells_title(groups = "subtitle")
)
dt_footnotes_get(data = tab) %>%
nrow() %>%
expect_equal(1)
dt_footnotes_get(data = tab) %>%
unlist() %>%
unname() %>%
expect_equal(
c("subtitle", NA_character_, NA_character_, "2", NA_character_,
NA_character_, "Subtitle footnote.")
)
tab <-
data %>%
tab_footnote(
footnote = "Stubhead label footnote.",
locations = cells_stubhead()
)
dt_footnotes_get(data = tab) %>%
nrow() %>%
expect_equal(1)
dt_footnotes_get(data = tab) %>%
unlist() %>%
unname() %>%
expect_equal(
c("stubhead", NA_character_, NA_character_, "2.5", NA_character_,
NA_character_, "Stubhead label footnote.")
)
tab <-
data %>%
tab_footnote(
footnote = "Summary cell footnote.",
locations = cells_summary(
groups = "Mercs", columns = "hp", rows = 2)
)
dt_footnotes_get(data = tab) %>%
nrow() %>%
expect_equal(1)
dt_footnotes_get(data = tab) %>%
unlist() %>%
unname() %>%
expect_equal(
c("summary_cells", "Mercs", "hp", "5", "2", NA_character_,
"Summary cell footnote.")
)
expect_error(
data %>%
tab_footnote(
footnote = "Summary cell footnote.",
locations = cells_summary(
groups = "Mercs", columns = starts_with("x"), rows = 2)
)
)
expect_error(
data %>%
tab_footnote(
footnote = "Summary cell footnote.",
locations = cells_summary(
groups = "Mercs", columns = starts_with("m"), rows = starts_with("x"))
)
)
tab <-
data %>%
tab_footnote(
footnote = "Grand summary cell footnote.",
locations = cells_grand_summary(
columns = wt, rows = starts_with("s")
)
)
dt_footnotes_get(data = tab) %>%
nrow() %>%
expect_equal(1)
dt_footnotes_get(data = tab) %>%
unlist() %>%
unname() %>%
expect_equal(
c("grand_summary_cells", "::GRAND_SUMMARY", "wt", "6", "2",
NA_character_, "Grand summary cell footnote.")
)
expect_error(
data %>%
tab_footnote(
footnote = "Grand summary cell footnote.",
locations = cells_grand_summary(
columns = starts_with("x"), rows = 2)
)
)
expect_error(
data %>%
tab_footnote(
footnote = "Grand summary cell footnote.",
locations = cells_grand_summary(
columns = starts_with("m"), rows = starts_with("x"))
)
)
tab <-
data %>%
tab_footnote(
footnote = "Summary cell footnote.",
locations = cells_summary(
groups = "Mercs", columns = "hp", rows = 2)
) %>%
tab_footnote(
footnote = "Grand summary cell footnote.",
locations = cells_grand_summary(
columns = wt, rows = starts_with("s")
)
)
dt_footnotes_get(data = tab) %>%
nrow() %>%
expect_equal(2)
expect_attr_equal(
tab, "_footnotes",
c("summary_cells", "grand_summary_cells",
"Mercs", "::GRAND_SUMMARY", "hp", "wt",
"5", "6", "2", "2", NA_character_, NA_character_,
"Summary cell footnote.",
"Grand summary cell footnote.")
)
tab <-
data %>%
tab_footnote(
footnote = "Group cell footnote.",
locations = cells_row_groups(groups = "Mazdas"))
dt_footnotes_get(data = tab) %>%
nrow() %>%
expect_equal(1)
dt_footnotes_get(data = tab) %>%
unlist() %>%
unname() %>%
expect_equal(
c("row_groups", "Mazdas", NA_character_, "5", NA_character_,
NA_character_, "Group cell footnote.")
)
tab <-
data %>%
tab_footnote(
footnote = "Column group footnote.",
locations = cells_column_spanners(spanners = "gcc")
)
dt_footnotes_get(data = tab) %>%
nrow() %>%
expect_equal(1)
dt_footnotes_get(data = tab) %>%
unlist() %>%
unname() %>%
expect_equal(
c("columns_groups", "gcc", NA_character_, "3", NA_character_,
NA_character_, "Column group footnote.")
)
tab <-
data %>%
tab_footnote(
footnote = "Single column label footnote.",
locations = cells_column_labels(columns = "gear")
)
dt_footnotes_get(data = tab) %>%
nrow() %>%
expect_equal(1)
dt_footnotes_get(data = tab) %>%
unlist() %>%
unname() %>%
expect_equal(
c("columns_columns", NA_character_, "gear", "4", NA_character_,
NA_character_, "Single column label footnote.")
)
tab <-
data %>%
tab_footnote(
footnote = "Five rows footnote.",
locations = cells_body(columns = "hp", rows = 1:5))
dt_footnotes_get(data = tab) %>%
nrow() %>%
expect_equal(5)
dt_footnotes_get(data = tab) %>%
dplyr::pull(rownum) %>%
expect_equal(1:5)
dt_footnotes_get(data = tab) %>%
dplyr::pull(footnotes) %>%
unique() %>%
expect_equal("Five rows footnote.")
dt_footnotes_get(data = tab) %>%
dplyr::pull(locname) %>%
unique() %>%
expect_equal("data")
dt_footnotes_get(data = tab) %>%
dplyr::pull(colname) %>%
unique() %>%
expect_equal("hp")
expect_error(
data %>%
tab_footnote(
footnote = "Footnote error.",
locations = cells_body(columns = "disp", rows = "Mazda RX7")))
tab <-
data %>%
tab_footnote(
footnote = "A footnote.",
locations = cells_body(columns = "disp", rows = c("Mazda RX4")))
dt_footnotes_get(data = tab) %>%
nrow() %>%
expect_equal(1)
dt_footnotes_get(data = tab) %>%
unlist() %>%
unname() %>%
expect_equal(
c("data", NA_character_, "disp", "5", "1", NA_character_, "A footnote."))
tab <-
data %>%
tab_footnote(
footnote = "A footnote.",
locations = cells_body(columns = c(disp, hp), rows = "Mazda RX4"))
dt_footnotes_get(data = tab) %>%
nrow() %>%
expect_equal(2)
dt_footnotes_get(data = tab)[1, ] %>%
unlist() %>%
unname() %>%
expect_equal(c(
"data", NA_character_, "disp", "5", "1", NA_character_, "A footnote."))
dt_footnotes_get(data = tab)[2, ] %>%
unlist() %>%
unname() %>%
expect_equal(c(
"data", NA_character_, "hp", "5", "1", NA_character_, "A footnote."))
tab <- data_2
dt_footnotes_get(data = tab) %>%
nrow() %>%
expect_equal(4)
dt_footnotes_get(data = tab) %>%
dplyr::pull(locname) %>%
unique() %>%
expect_equal(c("columns_columns", "columns_groups"))
tbl_html <-
tab %>%
render_as_html() %>%
xml2::read_html()
tbl_html %>%
selection_text(selection = "[class='gt_footnote']") %>%
tidy_gsub("\n ", "") %>%
expect_equal(
c(
"1 German cars only.",
"2 The most important details.",
"3 AWD = All Wheel Drive, RWD = Rear Wheel Drive.",
"4 Prices in USD.")
)
tbl_html %>%
selection_text(selection = "[class='gt_footnote_marks']") %>%
tidy_gsub("\n ", "") %>%
expect_equal(rep(as.character(1:4), 2))
})
test_that("the footnotes table is structured correctly", {
footnotes_tbl <- dt_footnotes_get(data = data_3)
expect_is(footnotes_tbl, "tbl_df")
expect_equal(
colnames(footnotes_tbl),
c("locname", "grpname", "colname", "locnum", "rownum",
"colnum", "footnotes")
)
expect_equal(nrow(footnotes_tbl), 4)
expect_equal(
footnotes_tbl$locname,
c("summary_cells", "summary_cells",
"grand_summary_cells", "grand_summary_cells")
)
expect_equal(footnotes_tbl$locnum, c(5, 5, 6, 6))
expect_equal(footnotes_tbl$grpname, c("BMW", "Audi", "::GRAND_SUMMARY", "::GRAND_SUMMARY"))
expect_equal(footnotes_tbl$colname, rep("msrp", 4))
expect_equal(footnotes_tbl$colnum, rep(NA_integer_, 4))
expect_equal(
footnotes_tbl$footnotes,
c("Average price for BMW and Audi.", "Average price for BMW and Audi.",
"Maximum price across all cars.", "Minimum price across all cars.")
)
footnotes_tbl <- dt_footnotes_get(data = data_4)
expect_is(footnotes_tbl, "tbl_df")
expect_equal(
colnames(footnotes_tbl),
c("locname", "grpname", "colname", "locnum", "rownum",
"colnum", "footnotes")
)
expect_equal(nrow(footnotes_tbl), 2)
expect_equal(footnotes_tbl$locname, c("subtitle", "title"))
expect_equal(footnotes_tbl$grpname, c(NA_character_, NA_character_))
expect_equal(footnotes_tbl$colname, c(NA_character_, NA_character_))
expect_equal(footnotes_tbl$locnum, c(2, 1))
expect_equal(footnotes_tbl$rownum, c(NA_integer_, NA_integer_))
expect_equal(footnotes_tbl$colnum, c(NA_integer_, NA_integer_))
expect_equal(
footnotes_tbl$footnotes,
c("All values in USD.", "Standard and Poor 500.")
)
tbl_html <-
data_4 %>%
render_as_html() %>%
xml2::read_html()
tbl_html %>%
selection_text(selection = "[class='gt_heading gt_title gt_font_normal']") %>%
expect_equal("S&P 5001")
tbl_html %>%
selection_text(selection = "[class='gt_heading gt_subtitle gt_font_normal gt_bottom_border']") %>%
expect_equal("Open and Close Values2")
})
test_that("the `list_of_summaries` table is structured correctly", {
gtcars_built <-
gtcars %>%
dplyr::filter(ctry_origin == "Germany") %>%
dplyr::group_by(mfr) %>%
dplyr::top_n(3, msrp) %>%
dplyr::ungroup() %>%
dplyr::select(mfr, model, drivetrain, msrp) %>%
gt(rowname_col = "model", groupname_col = "mfr") %>%
summary_rows(
groups = c("BMW", "Audi"),
columns = msrp,
fns = list(
~mean(., na.rm = TRUE),
~min(., na.rm = TRUE))
) %>%
summary_rows(
columns = msrp,
fns = list(
~min(., na.rm = TRUE),
~max(., na.rm = TRUE))
) %>%
build_data(context = "html")
gtcars_built_summary_df <- dt_summary_df_get(data = gtcars_built)
gtcars_built_summary_df_data <- dt_summary_df_data_get(data = gtcars_built)
gtcars_built_summary_df_display <- dt_summary_df_display_get(data = gtcars_built)
expect_equal(length(gtcars_built_summary_df), 2)
expect_equal(
names(gtcars_built_summary_df),
c("summary_df_data_list", "summary_df_display_list")
)
expect_equal(length(gtcars_built_summary_df_data$summary_df_data_list), 3)
expect_equal(length(gtcars_built_summary_df_display$summary_df_display_list), 3)
expect_equal(
names(gtcars_built_summary_df_data$summary_df_data_list),
c("BMW", "Audi", "::GRAND_SUMMARY")
)
expect_equal(
names(gtcars_built_summary_df_display$summary_df_display_list),
c("::GRAND_SUMMARY", "Audi", "BMW")
)
expect_equal(
gtcars_built_summary_df_display$summary_df_display_list$`::GRAND_SUMMARY`$msrp,
c("56,000.00", "140,700.00")
)
expect_equal(
gtcars_built_summary_df_display$summary_df_display_list$Audi$msrp,
c("113,233.33", "108,900.00")
)
expect_equal(
gtcars_built_summary_df_display$summary_df_display_list$BMW$msrp,
c("116,066.67", "94,100.00")
)
}) |
"pj_officer_level_balanced" |
massLoss <- function(
dat,
time.name,
m.pre.name = NULL,
m.post.name,
id.name
) {
dat <- dat[order(dat[, id.name], dat[, time.name]), ]
for(i in unique(dat[, id.name])) {
which.id <- which(dat[, id.name]==i)
n.id <- length(which.id)
dat[which.id, 'mass.tot'] <- c(0, -diff(dat[which.id, m.post.name]))
dat[which.id, 'cmass.tot'] <- cumsum(dat[which.id, 'mass.tot'])
if (!is.null(m.pre.name)) {
dat[which.id, 'mass.vent'] <- dat[which.id, m.pre.name] - dat[which.id, m.post.name]
dat[which.id, 'mass.leak'] <- c(0, dat[which.id,
m.post.name][-n.id] - dat[which.id, m.pre.name][-1])
dat[which.id, 'cmass.vent'] <- cumsum(dat[which.id, 'mass.vent'])
dat[which.id, 'cmass.leak'] <- cumsum(dat[which.id, 'mass.leak'])
}
}
return(dat)
} |
M <- function(startValue = NULL, iterations = 10000, nBI = 0 , parmin = NULL, parmax= NULL, f = 1, FUN, consoleUpdates=1000) {
if(class(FUN) == "BayesianSetup"){
if(FUN$numPars==1) stop("Sampler cannot be started for 1 parameter")
if(is.null(startValue)){
startValue <- FUN$prior$sampler()
}
parmin <- FUN$prior$lower
parmax <- FUN$prior$upper
FUN <- FUN$posterior$density
}
pValues = startValue
lChain = iterations
npar <- length(pValues)
logMAP <- -Inf
pChain <- matrix(NA_real_, nrow = lChain - nBI, ncol = npar+3)
postL0 <- FUN(pValues, returnAll = T)
accept.prob <- 0
scalProp <- f * 2.4^2/npar
covPar <- scalProp * diag((0.01 * (parmax - parmin))^2)
for (j in 1:lChain) {
if (j%%consoleUpdates == 0) print(c(j,postL1[1]))
candidatepValues <- mvtnorm::rmvnorm(1, pValues, covPar)
postL1 <- FUN(candidatepValues, returnAll = T)
alpha <- min(exp(postL1[1] - postL0[1]), 1)
accept <- 0
if (runif(1) < alpha) {
postL0 <- postL1
pValues <- candidatepValues
accept <- 1
if (postL0[1] > logMAP)
{
logMAP <- postL0[1]
psetMAP <- pValues
}
}
if (j > nBI) {
pChain[j-nBI,] <- c(pValues,postL0)
accept.prob <- accept.prob + accept
}
}
accept.prob <- accept.prob/(lChain-nBI)
list(Draws = pChain, accept.prob = accept.prob,psetMAP=psetMAP)
}
AM <- function(startValue = NULL, iterations = 10000, nBI = 0, parmin = NULL, parmax = NULL, FUN, f = 1, eps = 0) {
if(class(FUN) == "BayesianSetup"){
if(FUN$numPars==1) stop("Sampler cannot be started for 1 parameter")
if(is.null(startValue)){
startValue <- FUN$prior$sampler()
}
parmin <- FUN$prior$lower
parmax <- FUN$prior$upper
FUN <- FUN$posterior$density
}
pValues = startValue
lChain = iterations
noAdapt <- 1000
n.iter <- lChain + noAdapt
npar = length(pValues)
pChain <- matrix(NA_real_, nrow = n.iter - nBI, ncol = npar+3)
postL0 <- FUN(pValues, returnAll = T)
accept.prob <- 0
epsDiag <- eps * diag(npar)
scalProp <- f * (2.4^2/npar)
covPar <- scalProp * diag((0.01*(parmax - parmin))^2)
for (j in 1:n.iter) {
candidatepValues <- as.vector(mvtnorm::rmvnorm(1, pValues, covPar))
postL1 <- FUN(candidatepValues, returnAll = T)
alpha <- min(exp(postL1[1] - postL0[1]), 1)
accept <- 0
if (runif(1) < alpha) {
postL0 <- postL1
pValues <- candidatepValues
accept <- 1
}
if (j > nBI) {
pChain[j-nBI,] <- c(pValues, postL0)
}
if (j == (nBI + noAdapt)) {
avePar <- apply(pChain[1:noAdapt,1:npar], 2, mean)
covPar <- scalProp * (cov(pChain[1:noAdapt,1:npar], pChain[1:noAdapt,1:npar]) + epsDiag)
}
if (j > (nBI + noAdapt)) {
accept.prob <- accept.prob + accept
t <- j - nBI
avePar_new <- as.vector(((t-1) * avePar + pValues) / t)
covPar_new <- ((t-2) * covPar + scalProp * ((t-1) * (avePar %o% avePar) - t * (avePar_new %o% avePar_new) + (pValues %o% pValues)) + epsDiag) / (t-1)
avePar <- avePar_new
covPar <- covPar_new
}
}
accept.prob = accept.prob/(lChain-nBI)
list(Draws = pChain[(noAdapt+1):(n.iter-nBI),], accept.prob = accept.prob)
}
DR <- function(startValue = NULL, iterations = 10000, nBI=0, parmin = NULL, parmax =NULL, f1 = 1, f2= 0.5, FUN) {
if(class(FUN) == "BayesianSetup"){
if(FUN$numPars==1) stop("Sampler cannot be started for 1 parameter")
if(is.null(startValue)){
startValue <- FUN$prior$sampler()
}
parmin <- FUN$prior$lower
parmax <- FUN$prior$upper
FUN <- FUN$posterior$density
}
pValues = startValue
lChain = iterations
npar = length(pValues)
pChain <- matrix(NA_real_, nrow = lChain - nBI, ncol = npar+3)
postL0 <- FUN(pValues, returnAll = T)
covPar <- diag((0.01 * (parmax - parmin))^2)
sP <- (2.4^2/npar) * c(f1, f2)
accept.prob <- 0
for (j in 1:lChain) {
candidatepValues <- mvtnorm::rmvnorm(1, pValues, sP[1] * covPar)
postL1 <- FUN(candidatepValues, returnAll = T)
alpha1 <- min(exp(postL1[1]-postL0[1]), 1.0)
accept <- 0
if (runif(1) < alpha1) {
pValues <- candidatepValues
postL0 = postL1
accept <- 1
} else {
candidatepValues2 <- mvtnorm::rmvnorm(1, pValues, sP[2] * covPar)
postL2 <- FUN(candidatepValues2, returnAll = T)
alpha2 <- min(exp(postL1[1]-postL2[1]), 1.0)
temp <- mvtnorm::dmvnorm(candidatepValues, candidatepValues2, sP[1] * covPar) / mvtnorm::dmvnorm(candidatepValues, pValues, sP[1] * covPar)
alpha <- min(exp(postL2[1]-postL0[1]) * temp * ((1.0-alpha2)/(1.0-alpha1)), 1.0)
if(is.nan(alpha)) {
alpha <- -1
}
if (runif(1) < alpha) {
pValues <- candidatepValues2
postL0 <- postL2
accept <- 1
}
}
if (j > nBI) {
pChain[j-nBI,] <- c(pValues, postL0)
accept.prob <- accept.prob + accept
}
}
accept.prob = accept.prob/(lChain-nBI)
list(Draws = pChain, accept.prob = accept.prob)
}
DRAM <- function(startValue = NULL, iterations = 10000, nBI = 0, parmin = NULL, parmax = NULL, FUN, f = 1, eps = 0) {
if(class(FUN) == "BayesianSetup"){
if(FUN$numPars==1) stop("Sampler cannot be started for 1 parameter")
if(is.null(startValue)){
startValue <- FUN$prior$sampler()
}
parmin <- FUN$prior$lower
parmax <- FUN$prior$upper
FUN <- FUN$posterior$density
}
pValues = startValue
lChain = iterations
noAdapt <- 1000
n.iter <- lChain + noAdapt
npar = length(pValues)
pChain <- matrix(NA_real_, nrow = n.iter - nBI, ncol = npar+3)
postL0 <- FUN(pValues, returnAll = T)
accept.prob <- 0
epsDiag <- eps * diag(npar)
scalProp <- f * (2.4^2/npar)
covPar <- scalProp * diag((0.01*(parmax - parmin))^2)
for (j in 1:n.iter) {
candidatepValues <- as.vector(mvtnorm::rmvnorm(1, pValues, covPar))
postL1 <- FUN(candidatepValues, returnAll = T)
alpha1 <- min(exp(postL1[1] - postL0[1]), 1)
accept <- 0
if (runif(1) < alpha1) {
postL0 <- postL1
pValues <- candidatepValues
accept <- 1
} else {
candidatepValues2 <- as.vector(mvtnorm::rmvnorm(1, pValues, 0.5 * covPar))
postL2 <- FUN(candidatepValues2, returnAll = T)
alpha2 <- min(exp(postL1[1]-postL2[1]), 1.0)
temp <- mvtnorm::dmvnorm(candidatepValues, candidatepValues2, covPar) / mvtnorm::dmvnorm(candidatepValues, pValues, covPar)
alpha <- min(exp(postL2[1]-postL0[1]) * temp * ((1.0-alpha2)/(1.0-alpha1)), 1.0)
if(is.nan(alpha)) {
alpha <- -1
}
if (runif(1) < alpha) {
pValues <- candidatepValues2
postL0 <- postL2
accept <- 1
}
}
if (j > nBI) {
pChain[j-nBI,] <- c(pValues, postL0)
}
if (j == (nBI + noAdapt)) {
avePar <- apply(pChain[1:noAdapt,1:npar], 2, mean)
covPar <- scalProp * (cov(pChain[1:noAdapt,1:npar], pChain[1:noAdapt,1:npar]) + epsDiag)
}
if (j > (nBI + noAdapt)) {
accept.prob <- accept.prob + accept
t <- j - nBI
avePar_new <- as.vector(((t-1) * avePar + pValues) / t)
covPar_new <- ((t-2) * covPar + scalProp * ((t-1) * (avePar %o% avePar) - t * (avePar_new %o% avePar_new) + (pValues %o% pValues)) + epsDiag) / (t-1)
avePar <- avePar_new
covPar <- covPar_new
}
}
accept.prob = accept.prob/(lChain-nBI)
list(Draws = pChain[(noAdapt+1):(n.iter-nBI),], accept.prob = accept.prob)
} |
mpi.hostinfo <- function(comm=1){
if (mpi.comm.size(comm)==0){
err <-paste("It seems no members running on comm", comm)
stop(err)
}
hostname <- mpi.get.processor.name()
rk <- mpi.comm.rank(comm=comm)
size <- mpi.comm.size(comm=comm)
cat("\tHost:",hostname,"\tRank(ID):",rk, "\tof Size:", size,
"on comm", comm, "\n")
}
slave.hostinfo <- function(comm=1, short=TRUE){
if (mpi.comm.rank(comm)!=0)
stop("cannot run slavehostinfo on slaves")
size <- mpi.comm.size(comm)
if (size==0){
err <-paste("It seems no slaves running on comm", comm)
stop(err)
}
if (size == 1)
mpi.hostinfo(comm)
else {
master <-mpi.get.processor.name()
slavehost <- unlist(mpi.remote.exec(mpi.get.processor.name(),comm=comm))
slavecomm <- 1
ranks <- 1:(size-1)
commm <- paste(comm, ")",sep="")
if (size > 10){
rank0 <- paste("master (rank 0 , comm", commm)
ranks <- c(paste(ranks[1:9]," ",sep=""), ranks[10:(size-1)])
}
else
rank0 <- paste("master (rank 0, comm", commm)
cat(rank0, "of size", size, "is running on:",master, "\n")
slavename <- paste("slave", ranks,sep="")
ranks <- paste("(rank ",ranks, ", comm ",slavecomm,")", sep="")
if (short && size > 8){
for (i in 1:3) {
cat(slavename[i], ranks[i], "of size",size,
"is running on:",slavehost[i], "\n")
}
cat("... ... ...\n")
for (i in (size-2):(size-1)){
cat(slavename[i], ranks[i], "of size",size,
"is running on:",slavehost[i], "\n")
}
}
else {
for (i in 1:(size-1)){
cat(slavename[i], ranks[i], "of size",size,
"is running on:",slavehost[i], "\n")
}
}
}
}
lamhosts <- function(){
hosts <- system("lamnodes C -c -n", TRUE)
base <-character(0)
for (host in hosts)
base <- c(base, unlist(strsplit(host, "\\."))[1])
nn <- 0:(length(hosts)-1)
names(nn) <- base
nn
}
mpi.spawn.Rslaves <-
function(Rscript=system.file("slavedaemon.R", package="Rmpi"),
nslaves=mpi.universe.size(),
root=0,
intercomm=2,
comm=1,
hosts=NULL,
needlog=TRUE,
mapdrive=TRUE,
quiet=FALSE,
nonblock=TRUE,
sleep=0.1) {
if (!is.loaded("mpi_comm_spawn"))
stop("You cannot use MPI_Comm_spawn API")
if (mpi.comm.size(comm) > 0){
err <-paste("It seems there are some slaves running on comm ", comm)
stop(err)
}
if (.Platform$OS=="windows"){
workdrive <- unlist(strsplit(getwd(),":"))[1]
workdir <- unlist(strsplit(getwd(),"/"))
if (length(workdir) > 1)
workdir <-paste(workdir, collapse="\\")
else
workdir <- paste(workdir,"\\")
localhost <- Sys.getenv("COMPUTERNAME")
networkdrive <-NULL
remotepath <-networkdrive[which(networkdrive=="RemotePath")+1]
mapdrive <- as.logical(mapdrive && !is.null(remotepath))
arg <- c(Rscript, R.home(), workdrive, workdir, localhost, mapdrive, remotepath)
if (.Platform$r_arch == "i386")
realns <- mpi.comm.spawn(slave = system.file("Rslaves32.cmd",
package = "Rmpi"), slavearg = arg, nslaves = nslaves,
info = 0, root = root, intercomm = intercomm, quiet = quiet)
else
realns <- mpi.comm.spawn(slave = system.file("Rslaves64.cmd",
package = "Rmpi"), slavearg = arg, nslaves = nslaves,
info = 0, root = root, intercomm = intercomm, quiet = quiet)
}
else{
tmp <- paste(Sys.getpid(), "+", comm, sep="")
if (needlog)
arg <- c(Rscript, tmp, "needlog", R.home())
else
arg <- c(Rscript, tmp , "nolog", R.home())
if (!is.null(hosts)){
hosts <- as.integer(hosts)
if (any(is.na(hosts)))
stop("hosts argument contains non-integer object(s).")
if (max(hosts) > mpi.universe.size() -1 ||min(hosts) < 0){
tmp1 <- paste("hosts number should be within 0 to",
mpi.universe.size()-1)
stop(tmp1)
}
nslaves <- length(hosts)
tmpfile <-paste(tmp, "appschema", sep="")
fileobj <- file(tmpfile,"w")
cat("c", paste(hosts, collapse=","), sep="", file=fileobj)
cat(" ", system.file("Rslaves.sh", package="Rmpi"), file=fileobj)
cat(" ", paste(arg, collapse=" "), file=fileobj)
close(fileobj)
mpi.info.create(0)
mpi.info.set(0,"file",tmpfile)
}
if (length(unlist(strsplit(.Platform$pkgType,"mac"))) ==2 && .Platform$r_arch =="x86_64")
realns<-mpi.comm.spawn(slave=system.file("MacR64slaves.sh", package="Rmpi"),
slavearg=arg, nslaves=nslaves, info=0, root=root, intercomm=intercomm, quiet = quiet)
else
realns<-mpi.comm.spawn(slave=system.file("Rslaves.sh", package="Rmpi"),
slavearg=arg, nslaves=nslaves, info=0, root=root, intercomm=intercomm, quiet = quiet)
}
if (!is.null(hosts)){
unlink(tmpfile)
mpi.info.free(0)
}
if (realns==0)
stop("It seems no single slave spawned.")
if (mpi.intercomm.merge(intercomm,0,comm)) {
mpi.comm.set.errhandler(comm)
mpi.comm.disconnect(intercomm)
mpi.bcast(nonblock,type=1, rank=0, comm=comm)
mpi.bcast(sleep,type=2, rank=0, comm=comm)
if (!quiet) slave.hostinfo(comm)
}
else
stop("Fail to merge the comm for master and slaves.")
}
mpi.remote.exec <- function(cmd, ..., simplify=TRUE, comm=1, ret=TRUE){
if (mpi.comm.size(comm) < 2)
stop("It seems no slaves running.")
tag <- floor(runif(1,20000,30000))
scmd <- substitute(cmd)
arg <-list(...)
mpi.bcast.cmd(.mpi.worker.exec, tag=tag, ret=ret, simplify=simplify, comm = comm)
mpi.bcast.Robj(list(scmd=scmd, arg=arg), comm=comm)
if (ret){
size <- mpi.comm.size(comm)
allcode <- mpi.allgather(integer(2), 1, integer(2*size), comm)
type <- allcode[seq(3,2*size,2)]
len <- allcode[seq(4,2*size,2)]
eqlen <- all(len==len[1])
if (all(type==1)){
if (eqlen && simplify){
out <- mpi.gather(integer(len[1]),1,integer(size*len[1]),0,comm)
out <- out[(len[1]+1):(size*len[1])]
dim(out) <- c(len[1], size-1)
out <- data.frame(out)
}
else {
out1<-mpi.gatherv(integer(1),1,integer(1+sum(len)),c(1,len),0,comm)
uplen <- cumsum(len)+1
lowlen <-c(2, uplen[-(size-1)]+1)
out <- as.list(integer(size-1))
names(out) <- paste("slave",1:(size-1), sep="")
for (i in 1:(size-1))
out[[i]]<- out1[lowlen[i]:uplen[i]]
}
}
else if (all(type==2)){
if (eqlen && simplify){
out <- mpi.gather(double(len[1]),2,double(size*len[1]),0,comm)
out <- out[(len[1]+1):(size*len[1])]
dim(out) <- c(len[1], size-1)
out <- data.frame(out)
}
else {
out1<-mpi.gatherv(double(1),2,double(1+sum(len)),c(1,len),0,comm)
uplen <- cumsum(len)+1
lowlen <-c(2, uplen[-(size-1)]+1)
out <- as.list(integer(size-1))
names(out) <- paste("slave",1:(size-1), sep="")
for (i in 1:(size-1))
out[[i]]<- out1[lowlen[i]:uplen[i]]
}
}
else if (all(type==4)){
if (eqlen && simplify){
out <- mpi.gather(raw(len[1]),4,raw(size*len[1]),0,comm)
out <- out[(len[1]+1):(size*len[1])]
dim(out) <- c(len[1], size-1)
out <- data.frame(out)
}
else {
out1<-mpi.gatherv(raw(1),4,raw(1+sum(len)),c(1,len),0,comm)
uplen <- cumsum(len)+1
lowlen <-c(2, uplen[-(size-1)]+1)
out <- as.list(integer(size-1))
names(out) <- paste("slave",1:(size-1), sep="")
for (i in 1:(size-1))
out[[i]]<- out1[lowlen[i]:uplen[i]]
}
}
else {
out <- as.list(integer(size-1))
names(out) <- paste("slave",1:(size-1), sep="")
for (i in 1:(size-1)){
tmp<- mpi.recv.Robj(mpi.any.source(),tag,comm)
src <- mpi.get.sourcetag()[1]
out[[src]]<- tmp
}
}
out
}
}
.typeindex <- function (x) {
if(class(x)=="integer")
as.integer(c(1,length(x)))
else if (class(x)=="numeric")
as.integer(c(2,length(x)))
else if (class(x)=="raw")
as.integer(c(4,length(x)))
else
as.integer(-1)
}
.mpi.worker.exec <- function(tag, ret, simplify){
assign(".mpi.err", FALSE)
.comm <- 1
scmd.arg <- mpi.bcast.Robj(comm=.comm)
if (ret){
size <- mpi.comm.size(.comm)
myerrcode <- as.integer(0)
if (length(scmd.arg$arg)>0)
out <- try(do.call(as.character(scmd.arg$scmd), scmd.arg$arg, envir=.GlobalEnv),TRUE)
else
out <- try(eval(scmd.arg$scmd, envir=sys.parent()), TRUE)
if (get(".mpi.err")){
print(geterrmessage())
type <- integer(2)
}
else {
type <- .typeindex(out)
if (is.na(type[2]))
type[2] <- as.integer(0)
}
allcode <- mpi.allgather(type, 1, integer(2*size), .comm)
type <- allcode[seq(3,2*size,2)]
len <- allcode[seq(4,2*size,2)]
eqlen <- all(len==len[1])
if (all(type==1)) {
if (eqlen && simplify)
mpi.gather(out, 1, integer(1), 0, .comm)
else
mpi.gatherv(out, 1, integer(1), integer(1), 0 ,.comm)
}
else if (all(type==2)) {
if (eqlen && simplify)
mpi.gather(out, 2, double(1), 0, .comm)
else
mpi.gatherv(out, 2, double(1), integer(1), 0, .comm)
}
else if (all(type==4)) {
if (eqlen && simplify)
mpi.gather(out, 4, raw(1), 0, .comm)
else
mpi.gatherv(out, 4, raw(1), integer(1), 0, .comm)
}
else {
mpi.send.Robj(out,0,tag,.comm)
}
}
else {
if (length(scmd.arg$arg)>0)
out <- try(do.call(as.character(scmd.arg$scmd), scmd.arg$arg))
else
out <- try(eval(scmd.arg$scmd))
}
}
mpi.close.Rslaves <- function(dellog=TRUE, comm=1){
if (mpi.comm.size(comm) < 2){
err <-paste("It seems no slaves running on comm", comm)
stop(err)
}
mpi.bcast.cmd(cmd="kaerb", rank=0, comm=comm)
if (.Platform$OS!="windows"){
if (dellog && mpi.comm.size(0) < mpi.comm.size(comm)){
tmp <- paste(Sys.getpid(),"+",comm,sep="")
logfile <- paste("*.",tmp,".*.log", sep="")
if (length(system(paste("ls", logfile),TRUE,ignore.stderr=TRUE) )>=1)
system(paste("rm", logfile))
}
}
if (comm >0){
mpi.comm.free(comm)
}
}
tailslave.log <- function(nlines=3,comm=1){
if (mpi.comm.size(comm)==0)
stop ("It seems no slaves running")
tmp <- paste(Sys.getpid(),"+",comm,sep="")
logfile <- paste("*.",tmp,".*.log", sep="")
if (length(system(paste("ls", logfile),TRUE,ignore.stderr=TRUE))==0)
stop("It seems no slave log files.")
system(paste("tail -",nlines," ", logfile,sep=""))
}
mpi.apply <- function(X, FUN, ..., comm=1){
n <- length(X)
nslaves <- mpi.comm.size(comm)-1
if (nslaves < n)
stop("data length must be at most total slave size")
if (!is.function(FUN))
stop("FUN is not a function")
length(list(...))
tag <- floor(runif(1,1,1000))
mpi.bcast.cmd(.mpi.worker.apply, n=n, tag=tag, comm=comm)
mpi.bcast.Robj(list(FUN=FUN,dot.arg=list(...)),rank=0,comm=comm)
if (n < nslaves)
X=c(X,as.list(integer( nslaves-n)))
mpi.scatter.Robj(c(list("master"),as.list(X)),root=0,comm=comm)
out <- as.list(integer(n))
for (i in 1:n){
tmp<- mpi.recv.Robj(mpi.any.source(),tag,comm)
src <- mpi.get.sourcetag()[1]
out[[src]]<- tmp
}
out
}
.mpi.worker.apply <- function(n, tag){
.comm <- 1
tmpfunarg <- mpi.bcast.Robj(rank=0, comm=.comm)
.tmpfun <- tmpfunarg$FUN
dotarg <- tmpfunarg$dot.arg
tmpdata.arg <- list(mpi.scatter.Robj(root=0,comm=.comm))
if (mpi.comm.rank(.comm) <= n){
out <- try(do.call(".tmpfun", c(tmpdata.arg, dotarg)),TRUE)
mpi.send.Robj(out,0,tag,.comm)
}
}
mpi.iapply <- function(X, FUN, ..., comm=1, sleep=0.01){
n <- length(X)
nslaves <- mpi.comm.size(comm)-1
if (nslaves < n)
stop("data length must be at most total slave size")
if (!is.function(FUN))
stop("FUN is not a function")
length(list(...))
tag <- floor(runif(1,1,1000))
mpi.bcast.cmd(.mpi.worker.apply, n=n, tag=tag,comm=comm)
mpi.bcast.Robj(list(FUN=FUN,dot.arg=list(...)),rank=0,comm=comm)
if (n < nslaves)
X=c(X,as.list(integer( nslaves-n)))
mpi.scatter.Robj(c(list("master"),as.list(X)),root=0,comm=comm)
out <- as.list(integer(n))
done=0
anysource=mpi.any.source()
repeat {
if (mpi.iprobe(anysource,tag,comm)){
srctag <- mpi.get.sourcetag()
charlen <- mpi.get.count(type=4)
tmp <- unserialize(mpi.recv(x = raw(charlen), type = 4, srctag[1],
srctag[2], comm))
out[[srctag[1]]]<- tmp
done=done+1
}
if (done < n)
Sys.sleep(sleep)
else break
}
gc()
out
}
mpi.parSim <- function(n=100,rand.gen=rnorm, rand.arg=NULL,
statistic, nsim=100, run=1, slaveinfo=FALSE, sim.seq=NULL,
simplify=TRUE, comm=1, ...){
sim.seq=NULL
if (mpi.comm.size(comm) < 2)
stop("It seems no slaves running.")
if (!is.function(rand.gen))
stop("rand.gen is not a function")
if (!is.function(statistic))
stop("statistic is not a function")
if (!is.null(rand.arg))
if (!is.list(rand.arg))
stop("rand.arg is not a list")
if (length(list(...))>0)
deparse(list(...))
slave.num <- mpi.comm.size(comm)-1
if (!is.null(sim.seq))
if (!is.integer(sim.seq))
stop("sim.seq is not an integer vector")
else if (min(sim.seq)<1 && max(sim.seq)>slave.num &&
length(sim.seq)!=slave.num*run)
stop("sim.seq is not in right order")
mpi.bcast.cmd(.mpi.worker.sim, n=n, nsim=nsim, run=run, comm=comm)
mpi.bcast.Robj(list(rand.gen=rand.gen, rand.arg=rand.arg,
stat=statistic, stat.arg=list(...)), comm=comm)
result <- as.list(integer(slave.num*run))
if (!is.null(sim.seq)){
for ( i in 1:(slave.num*run)){
result[[i]] <- mpi.recv.Robj(source=sim.seq[i], tag=8, comm=comm)
mpi.send(as.integer(i), type=1, dest=sim.seq[i], tag=88, comm=comm)
}
return(.simplify(slave.num*run, result, simplify, nsim))
}
i <- 0
anysrc <- mpi.any.source()
anytag <- mpi.any.tag()
mpi.parSim.tmp <- integer(slave.num*run)
while (i < slave.num*run){
i <- i+1
result[[i]] <- mpi.recv.Robj(source=anysrc, tag=8, comm=comm)
src <- mpi.get.sourcetag()[1]
mpi.send(as.integer(i), type=1, dest=src, tag=88, comm=comm)
mpi.parSim.tmp[i] <- src
}
if (slaveinfo){
slavename <- paste("slave",1:slave.num, sep="")
cat("Finished slave jobs summary:\n")
for (i in 1:slave.num){
if (i < 10)
cat(slavename[i], " finished",sum(mpi.parSim==i), "job(s)\n")
else
cat(slavename[i], "finished",sum(mpi.parSim==i), "job(s)\n")
}
}
.simplify(slave.num*run, result, simplify, nsim)
}
.mpi.worker.sim <- function(n, nsim, run){
.comm <- 1
tmpdata <- mpi.bcast.Robj(comm=.comm)
rand.arg <- tmpdata$rand.arg
stat.arg <- tmpdata$stat.arg
.tmp.rand.gen <- tmpdata$rand.gen
.tmp.statistic <- tmpdata$stat
i <- 0
slave.num <- mpi.comm.size(.comm)-1
while( i < slave.num*(run-1)+1){
out <- replicate(nsim, do.call(".tmp.statistic", c(list(do.call(".tmp.rand.gen",
c(list(n),rand.arg))), stat.arg)))
mpi.send.Robj(obj=out, dest=0, tag=8, comm=.comm)
i <- mpi.recv(integer(1), type=1, source=0, tag=88, comm=.comm)
}
}
.docall <- function(fun, args) {
if ((is.character(fun) && length(fun) == 1) || is.name(fun))
fun <- get(as.character(fun), envir = .GlobalEnv, mode = "function")
enquote <- function(x) as.call(list(as.name("quote"), x))
do.call("fun", lapply(args, enquote))
}
.splitIndices <- function(nx, ncl) {
x <- 1:nx
r <- nx/ncl
ii <- 0:(ncl - 1) * r
if (nx < ncl)
intv <- 0:ncl
else
intv <- c(x[round(1 + ii)]-1,nx)
structure(split(x, cut(x, intv)), names = NULL)
}
mpi.parMM <- function(A, B, job.num=mpi.comm.size(comm)-1, comm=1){
splitRows <- function(x, ncl)
lapply(.splitIndices(nrow(x), ncl), function(i) x[i,, drop=FALSE])
.docall(rbind, mpi.applyLB(splitRows(A, job.num),
get("%*%"), B, comm=comm))
}
mpi.iparMM <- function(A, B, comm=1, sleep=0.01){
splitRows <- function(x, ncl)
lapply(.splitIndices(nrow(x), ncl), function(i) x[i,, drop=FALSE])
.docall(rbind, mpi.iapply(splitRows(A, mpi.comm.size(comm)-1),
get("%*%"), B, comm=comm, sleep=sleep))
}
mpi.applyLB <- function(X, FUN, ..., apply.seq=NULL, comm=1){
apply.seq=NULL
n <- length(X)
slave.num <- mpi.comm.size(comm)-1
if (slave.num < 1)
stop("There are no slaves running")
if (n <= slave.num) {
if (exists(".mpi.applyLB"))
rm(".mpi.applyLB", envir=.GlobalEnv)
return (mpi.apply(X,FUN,...,comm=comm))
}
if (!is.function(FUN))
stop("FUN is not a function")
length(list(...))
if (!is.null(apply.seq))
if (!is.integer(apply.seq))
stop("apply.seq is not an integer vector")
else if (min(apply.seq)<1 && max(apply.seq)>slave.num &&
length(apply.seq)!=n)
stop("apply.seq is not in right order")
mpi.bcast.cmd(.mpi.worker.applyLB, n=n, comm=comm)
mpi.bcast.Robj(list(FUN=FUN,dot.arg=list(...)),rank=0,comm=comm)
out <- as.list(integer(n))
mpi.anysource <- mpi.any.source()
mpi.anytag <- mpi.any.tag()
for (i in 1:slave.num)
mpi.send.Robj(list(data.arg=list(X[[i]])), dest=i,tag=i, comm=comm)
if (!is.null(apply.seq)){
for ( i in 1:n){
tmp <- mpi.recv.Robj(source=apply.seq[i], tag=mpi.anytag, comm=comm)
tag <- mpi.get.sourcetag()[2]
out[[tag]]<- tmp
j <- i+slave.num
if (j <= n)
mpi.send.Robj(list(data.arg=list(X[[j]])), dest=apply.seq[i],tag=j, comm=comm)
else
mpi.send.Robj(list(data.arg=list(n)),dest=apply.seq[i],tag=j,comm=comm)
}
return(out)
}
mpi.seq.tmp <- integer(n)
for (i in 1:n){
tmp<- mpi.recv.Robj(mpi.anysource,mpi.anytag,comm)
srctag <- mpi.get.sourcetag()
out[[srctag[2]]]<- tmp
mpi.seq.tmp[i] <- srctag[1]
j <- i+slave.num
if (j <= n)
mpi.send.Robj(list(data.arg=list(X[[j]])), dest=srctag[1],tag=j, comm=comm)
else
mpi.send.Robj(list(data.arg=list(n)),dest=srctag[1],tag=j,comm=comm)
}
out
}
.mpi.worker.applyLB <- function(n){
.comm <- 1
tmpfunarg <- mpi.bcast.Robj(rank=0, comm=.comm)
.tmpfun <- tmpfunarg$FUN
dotarg <- tmpfunarg$dot.arg
mpi.anytag <- mpi.any.tag()
repeat {
tmpdata.arg <- mpi.recv.Robj(source=0,tag=mpi.anytag, comm=.comm)$data.arg
tag <- mpi.get.sourcetag()[2]
if (tag > n)
break
out <- try(do.call(".tmpfun", c(tmpdata.arg, dotarg)),TRUE)
mpi.send.Robj(out,0,tag,.comm)
}
}
mpi.iapplyLB <- function(X, FUN, ..., apply.seq=NULL, comm=1, sleep=0.01){
apply.seq=NULL
n <- length(X)
slave.num <- mpi.comm.size(comm)-1
if (slave.num < 1)
stop("There are no slaves running")
if (n <= slave.num) {
if (exists(".mpi.applyLB"))
rm(".mpi.applyLB", envir =.GlobalEnv)
return (mpi.iapply(X,FUN,...,comm=comm,sleep=sleep))
}
if (!is.function(FUN))
stop("FUN is not a function")
if (slave.num > 2000)
stop("Total slaves are more than nonblock send/receive can handle")
length(list(...))
if (!is.null(apply.seq))
if (!is.integer(apply.seq))
stop("apply.seq is not an integer vector")
else if (min(apply.seq)<1 && max(apply.seq)>slave.num &&
length(apply.seq)!=n)
stop("apply.seq is not in right order")
mpi.bcast.cmd(.mpi.worker.applyLB, n=n, comm=comm)
mpi.bcast.Robj(list(FUN=FUN,dot.arg=list(...)),rank=0,comm=comm)
out <- as.list(integer(n))
mpi.anysource <- mpi.any.source()
mpi.anytag <- mpi.any.tag()
for (i in 1:slave.num)
mpi.send.Robj(list(data.arg=list(X[[i]])), dest=i,tag=i,comm=comm)
if (!is.null(apply.seq)){
i=0
repeat {
if (mpi.iprobe(apply.seq[i+1],mpi.anytag,comm)){
i=i+1
j <- i+slave.num
if ( j <= n)
mpi.send.Robj(list(data.arg=list(X[[j]])), dest=apply.seq[i],tag=j, comm=comm)
else
mpi.send.Robj(as.integer(0),dest=apply.seq[i],tag=j,comm=comm)
charlen <- mpi.get.count(type=4)
tag <- mpi.get.sourcetag()[2]
tmp <- unserialize(mpi.recv(x = raw(charlen), type = 4, apply.seq[i], tag, comm))
out[[tag]]<- tmp
}
if (i < n)
Sys.sleep(sleep)
else break
}
return(out)
}
mpi.seq.tmp <- integer(n)
i=0
repeat {
if (mpi.iprobe(mpi.anysource,mpi.anytag,comm)){
i=i+1
srctag <- mpi.get.sourcetag()
src <- srctag[1]
tag <- srctag[2]
j <- i+slave.num
if ( j <= n)
mpi.send.Robj(list(data.arg=list(X[[j]])), dest=src,tag=j, comm=comm)
else
mpi.send.Robj(as.integer(0),dest=src,tag=j,comm=comm)
charlen <- mpi.get.count(type=4)
tmp <- unserialize(mpi.recv(x = raw(charlen), type = 4, src, tag, comm))
out[[tag]]<- tmp
mpi.seq.tmp[i] <- src
}
if (i < n)
Sys.sleep(sleep)
else
break
}
gc()
out
}
.simplify <- function(n, answer, simplify, len=1, recursive=FALSE){
if (simplify && length(answer)&&length(common.len <- unique(unlist(lapply(answer,
length)))) == 1 ) {
if (common.len == len)
unlist(answer, recursive = recursive)
else if (common.len > len)
array(unlist(answer, recursive = recursive),
dim = c(common.len/len, n*len),
dimnames = list(names(answer[[1]]), names(answer)))
else answer
}
else answer
}
mpi.parLapply <- function(X, FUN, ..., job.num=mpi.comm.size(comm)-1, apply.seq=NULL, comm=1){
if (job.num < 2)
stop("job.num is at least 2.")
splitList <- function(x, ncl)
lapply(.splitIndices(length(X), ncl), function(i) X[i])
.docall(c, mpi.applyLB(splitList(X, job.num),
lapply, FUN, ..., apply.seq=apply.seq, comm=comm))
}
mpi.iparLapply <- function(X, FUN, ..., job.num=mpi.comm.size(comm)-1, apply.seq=NULL, comm=1, sleep=0.01){
if (job.num < 2)
stop("job.num is at least 2.")
splitList <- function(X, ncl)
lapply(.splitIndices(length(X), ncl), function(i) X[i])
.docall(c, mpi.iapplyLB(splitList(X, job.num),
lapply, FUN, ..., apply.seq=apply.seq, comm=comm, sleep=sleep))
}
mpi.parSapply <- function (X, FUN, ..., job.num=mpi.comm.size(comm)-1, apply.seq=NULL,
simplify = TRUE, USE.NAMES = TRUE, comm=1)
{
FUN <- match.fun(FUN)
answer <- mpi.parLapply(as.list(X),FUN,...,job.num=job.num,apply.seq=apply.seq,comm=comm)
if (USE.NAMES && is.character(X) && is.null(names(answer)))
names(answer) <- X
.simplify(length(X),answer, simplify)
}
mpi.iparSapply <- function (X, FUN, ..., job.num=mpi.comm.size(comm)-1, apply.seq=NULL,
simplify = TRUE, USE.NAMES = TRUE, comm=1,sleep=0.01)
{
FUN <- match.fun(FUN)
answer <- mpi.iparLapply(as.list(X),FUN,...,job.num=job.num,apply.seq=apply.seq,comm=comm,sleep=sleep)
if (USE.NAMES && is.character(X) && is.null(names(answer)))
names(answer) <- X
.simplify(length(X),answer, simplify)
}
mpi.parReplicate <- function(n, expr, job.num=mpi.comm.size(comm)-1, apply.seq=NULL,
simplify = TRUE, comm=1){
mpi.parSapply(integer(n), eval.parent(substitute(function(...) expr)),
job.num=job.num, apply.seq=apply.seq, simplify = simplify, comm=comm)
}
mpi.iparReplicate <- function(n, expr, job.num=mpi.comm.size(comm)-1, apply.seq=NULL,
simplify = TRUE, comm=1,sleep=0.01){
mpi.iparSapply(integer(n), eval.parent(substitute(function(...) expr)),
job.num=job.num, apply.seq=apply.seq, simplify = simplify, comm=comm,sleep=sleep)
}
mpi.parRapply <- function(X,FUN,...,job.num=mpi.comm.size(comm)-1,apply.seq=NULL,comm=1){
if (job.num < 2)
stop("job.num is at least 2.")
splitRows <- function(X, ncl)
lapply(.splitIndices(nrow(X), ncl), function(i) X[i,, drop=FALSE])
.docall(c, mpi.applyLB(splitRows(X,job.num), apply, 1, FUN, ...,
apply.seq=apply.seq, comm=comm))
}
mpi.iparRapply <- function(X,FUN,...,job.num=mpi.comm.size(comm)-1,apply.seq=NULL,comm=1,sleep=0.01){
if (job.num < 2)
stop("job.num is at least 2.")
splitRows <- function(X, ncl)
lapply(.splitIndices(nrow(X), ncl), function(i) X[i,, drop=FALSE])
.docall(c, mpi.iapplyLB(splitRows(X,job.num), apply, 1, FUN, ...,
apply.seq=apply.seq, comm=comm,sleep=sleep))
}
mpi.parCapply <- function(X,FUN,...,job.num=mpi.comm.size(comm)-1,apply.seq=NULL,comm=1){
if (job.num < 2)
stop("job.num is at least 2.")
splitCols <- function(X, ncl)
lapply(.splitIndices(ncol(X), ncl), function(i) X[,i, drop=FALSE])
.docall(c, mpi.applyLB(splitCols(X,job.num), apply, 2, FUN, ...,
apply.seq=apply.seq, comm=comm))
}
mpi.iparCapply <- function(X,FUN,...,job.num=mpi.comm.size(comm)-1,apply.seq=NULL,comm=1,sleep=0.01){
if (job.num < 2)
stop("job.num is at least 2.")
splitCols <- function(X, ncl)
lapply(.splitIndices(ncol(X), ncl), function(i) X[,i, drop=FALSE])
.docall(c, mpi.iapplyLB(splitCols(X,job.num), apply, 2, FUN, ...,
apply.seq=apply.seq, comm=comm,sleep=sleep))
}
mpi.parApply <- function(X, MARGIN, FUN, ..., job.num = mpi.comm.size(comm)-1,
apply.seq=NULL, comm=1)
{
FUN <- match.fun(FUN)
d <- dim(X)
dl <- length(d)
if(dl == 0)
stop("dim(X) must have a positive length")
ds <- 1:dl
if(length(oldClass(X)) > 0)
X <- if(dl == 2) as.matrix(X) else as.array(X)
dn <- dimnames(X)
s.call <- ds[-MARGIN]
s.ans <- ds[MARGIN]
d.call <- d[-MARGIN]
d.ans <- d[MARGIN]
dn.call<- dn[-MARGIN]
dn.ans <- dn[MARGIN]
d2 <- prod(d.ans)
if(d2 == 0) {
newX <- array(vector(typeof(X), 1), dim = c(prod(d.call), 1))
ans <- FUN(if(length(d.call) < 2) newX[,1] else
array(newX[,1], d.call, dn.call), ...)
return(if(is.null(ans)) ans else if(length(d.call) < 2) ans[1][-1]
else array(ans, d.ans, dn.ans))
}
newX <- aperm(X, c(s.call, s.ans))
dim(newX) <- c(prod(d.call), d2)
if(length(d.call) < 2) {
if (length(dn.call)) dimnames(newX) <- c(dn.call, list(NULL))
ans <- mpi.parLapply(1:d2, function(i, ...) FUN(newX[,i], ...),
..., job.num = job.num, apply.seq=apply.seq, comm=comm )
}
else
ans <- mpi.parLapply(1:d2,
function(i, ...) FUN(array(newX[,i], d.call, dn.call), ...),
..., job.num = job.num, apply.seq=apply.seq, comm=comm)
ans.list <- is.recursive(ans[[1]])
l.ans <- length(ans[[1]])
ans.names <- names(ans[[1]])
if(!ans.list)
ans.list <- any(unlist(lapply(ans, length)) != l.ans)
if(!ans.list && length(ans.names)) {
all.same <- sapply(ans, function(X) identical(names(X), ans.names))
if (!all(all.same)) ans.names <- NULL
}
len.a <- if(ans.list) d2 else length(ans <- unlist(ans, recursive = FALSE))
if(length(MARGIN) == 1 && len.a == d2) {
names(ans) <- if(length(dn.ans[[1]])) dn.ans[[1]]
return(ans)
}
if(len.a == d2)
return(array(ans, d.ans, dn.ans))
if(len.a > 0 && len.a %% d2 == 0)
return(array(ans, c(len.a %/% d2, d.ans),
if(is.null(dn.ans)) {
if(!is.null(ans.names)) list(ans.names,NULL)
} else c(list(ans.names), dn.ans)))
return(ans)
}
mpi.iparApply <- function(X, MARGIN, FUN, ..., job.num = mpi.comm.size(comm)-1,
apply.seq=NULL, comm=1,sleep=0.01)
{
FUN <- match.fun(FUN)
d <- dim(X)
dl <- length(d)
if(dl == 0)
stop("dim(X) must have a positive length")
ds <- 1:dl
if(length(oldClass(X)) > 0)
X <- if(dl == 2) as.matrix(X) else as.array(X)
dn <- dimnames(X)
s.call <- ds[-MARGIN]
s.ans <- ds[MARGIN]
d.call <- d[-MARGIN]
d.ans <- d[MARGIN]
dn.call<- dn[-MARGIN]
dn.ans <- dn[MARGIN]
d2 <- prod(d.ans)
if(d2 == 0) {
newX <- array(vector(typeof(X), 1), dim = c(prod(d.call), 1))
ans <- FUN(if(length(d.call) < 2) newX[,1] else
array(newX[,1], d.call, dn.call), ...)
return(if(is.null(ans)) ans else if(length(d.call) < 2) ans[1][-1]
else array(ans, d.ans, dn.ans))
}
newX <- aperm(X, c(s.call, s.ans))
dim(newX) <- c(prod(d.call), d2)
if(length(d.call) < 2) {
if (length(dn.call)) dimnames(newX) <- c(dn.call, list(NULL))
ans <- mpi.iparLapply(1:d2, function(i, ...) FUN(newX[,i], ...),
..., job.num = job.num, apply.seq=apply.seq, comm=comm, sleep=sleep )
}
else
ans <- mpi.iparLapply(1:d2,
function(i, ...) FUN(array(newX[,i], d.call, dn.call), ...),
..., job.num = job.num, apply.seq=apply.seq, comm=comm, sleep=sleep)
ans.list <- is.recursive(ans[[1]])
l.ans <- length(ans[[1]])
ans.names <- names(ans[[1]])
if(!ans.list)
ans.list <- any(unlist(lapply(ans, length)) != l.ans)
if(!ans.list && length(ans.names)) {
all.same <- sapply(ans, function(X) identical(names(X), ans.names))
if (!all(all.same)) ans.names <- NULL
}
len.a <- if(ans.list) d2 else length(ans <- unlist(ans, recursive = FALSE))
if(length(MARGIN) == 1 && len.a == d2) {
names(ans) <- if(length(dn.ans[[1]])) dn.ans[[1]]
return(ans)
}
if(len.a == d2)
return(array(ans, d.ans, dn.ans))
if(len.a > 0 && len.a %% d2 == 0)
return(array(ans, c(len.a %/% d2, d.ans),
if(is.null(dn.ans)) {
if(!is.null(ans.names)) list(ans.names,NULL)
} else c(list(ans.names), dn.ans)))
return(ans)
} |
blimMD <- function(K, N.R, R = as.binmat(N.R),
errtype = c("both", "error", "guessing"),
incrule = c("minimum", "hypblc1", "hypblc2"), m = 1){
K <- as.matrix(K)
N.R <- setNames(as.integer(N.R), names(N.R))
N <- sum(N.R)
nitems <- ncol(K)
npat <- nrow(R)
nstates <- nrow(K)
d.RK <- switch(match.arg(errtype),
both = apply(K, 1,
function(k) colSums(xor(t(R), k))),
error = apply(K, 1,
function(k) colSums(ifelse(k - t(R) < 0, NA, k - t(R)))),
guessing = apply(K, 1,
function(k) colSums(ifelse(t(R) - k < 0, NA, t(R) - k)))
)
d.min <- apply(d.RK, 1, min, na.rm=TRUE)
i.RK <- switch(match.arg(incrule),
minimum = (d.RK == d.min) & !is.na(d.RK),
hypblc1 = replace(1/(1 + d.RK - d.min)^m, is.na(d.RK), 0),
hypblc2 = replace(1/(1 + d.RK)^m, is.na(d.RK), 0))
m.RK <- i.RK/rowSums(i.RK) * N.R
disc.tab <- xtabs(N.R ~ d.min)
disc <- as.numeric(names(disc.tab)) %*% disc.tab / N
P.K <- colSums(m.RK)/N
names(P.K) <- if(is.null(rownames(K))) as.pattern(K) else rownames(K)
beta <- eta <- numeric(nitems)
names(beta) <- names(eta) <-
if(is.null(colnames(K))){
make.unique(c("a", letters[(seq_len(nitems) %% 26) + 1])[-(nitems + 1)],
sep="")
}else colnames(K)
for(j in seq_len(nitems)){
beta[j] <- sum(m.RK[which(R[,j] == 0), which(K[,j] == 1)]) /
sum(m.RK[,which(K[,j] == 1)])
eta[j] <- sum(m.RK[which(R[,j] == 1), which(K[,j] == 0)]) /
sum(m.RK[,which(K[,j] == 0)])
}
beta[is.na(beta)] <- 0
eta[is.na( eta)] <- 0
z <- list(discrepancy=c(disc), P.K=P.K, beta=beta, eta=eta,
disc.tab=disc.tab, nstates=nstates, npatterns=npat, ntotal=N,
nerror=NA, method="MD", iter=NA, loglik=NA)
class(z) <- "blim"
z
} |
AVif <- function(IFriv) {
n <- ncol(IFriv)
A <- apply(IFriv, 2, tcrossprod)
dim(A) <- c(nrow(IFriv), nrow(IFriv), n)
A.AV <- apply(A, 1:2, mean)/n
dimnames(A.AV) <- list(rownames(IFriv), rownames(IFriv))
A.AV
} |
x <- 1:10
x <- rlang::set_names(x, letters[1:10])
x_array <- as.array(x)
x_mat <- as.matrix(x)
context("test-coercion-matrix")
test_that("Can coerce to matrices from various inputs", {
expect_is(as_matrix(x), "matrix")
expect_is(as_matrix(x_array), "matrix")
expect_is(as_matrix(x_mat), "matrix")
})
test_that("vector -> matrix makes a 1 column matrix", {
expect_equal(rray_dim(as_matrix(x)), c(vec_size(x), 1L))
})
test_that("names() and rray_dim_names() are kept", {
nms <- c(rray_dim_names(x), rray_empty_dim_names(1))
expect_equal(rray_dim_names(as_matrix(x)), nms)
expect_equal(rray_dim_names(as_matrix(x_array)), nms)
expect_equal(rray_dim_names(as_matrix(x_mat)), nms)
})
test_that("meta dim names are kept", {
x_nms <- rray_dim_names(x_array)
names(x_nms) <- "meta_nm"
x_array_meta <- x_array
rray_dim_names(x_array_meta) <- x_nms
nms_with_meta <- c(rray_dim_names(x_array_meta), rray_empty_dim_names(1))
expect_equal(
rray_dim_names(as_matrix(x_array_meta)),
nms_with_meta
)
})
test_that("Cannot reduce >2D to a matrix most of the time", {
expect_error(as_matrix(rray(1, c(1, 1, 2))), "A >2D object")
expect_equal(
as_matrix(rray(1, c(2, 3, 1))),
new_matrix(1, c(2, 3))
)
})
context("test-coercion-array")
test_that("Can coerce to arrays from various inputs", {
expect_is(as_array(x), "array")
expect_is(as_array(x_array), "array")
expect_is(as_array(x_mat), "matrix")
})
test_that("vector -> array makes a 1D array", {
expect_equal(rray_dim(as_array(x)), vec_size(x))
})
test_that("names() and rray_dim_names() are kept", {
nms_1D <- rray_dim_names(x)
nms_2D <- c(rray_dim_names(x), rray_empty_dim_names(1))
expect_equal(rray_dim_names(as_array(x)), nms_1D)
expect_equal(rray_dim_names(as_array(x_array)), nms_1D)
expect_equal(rray_dim_names(as_array(x_mat)), nms_2D)
})
test_that("meta dim names are kept", {
x_rray <- as_rray(x_array)
x_nms <- rray_dim_names(x_rray)
names(x_nms) <- "meta_nm"
rray_dim_names(x_rray) <- x_nms
nms_with_meta <- rray_dim_names(x_rray)
expect_equal(
rray_dim_names(as_array(x_rray)),
nms_with_meta
)
})
context("test-coercion-rray")
test_that("Can coerce to rrays from various inputs", {
expect_is(as_rray(x), "vctrs_rray")
expect_is(as_rray(x_array), "vctrs_rray")
expect_is(as_rray(x_mat), "vctrs_rray")
})
test_that("vector -> rray makes a 1D rray", {
expect_equal(rray_dim(as_rray(x)), vec_size(x))
})
test_that("names() and rray_dim_names() are kept", {
nms_1D <- rray_dim_names(x)
nms_2D <- c(rray_dim_names(x), rray_empty_dim_names(1))
expect_equal(rray_dim_names(as_rray(x)), nms_1D)
expect_equal(rray_dim_names(as_rray(x_array)), nms_1D)
expect_equal(rray_dim_names(as_rray(x_mat)), nms_2D)
})
test_that("meta dim names are kept", {
x_nms <- rray_dim_names(x_array)
names(x_nms) <- "meta_nm"
x_array_meta <- x_array
rray_dim_names(x_array_meta) <- x_nms
nms_with_meta <- rray_dim_names(x_array_meta)
expect_equal(
rray_dim_names(as_rray(x_array_meta)),
nms_with_meta
)
})
test_that("4D tests", {
x_4D <- array(1, c(1, 1, 1, 1), dimnames = list("r1", "c1", "..3_1", "..4_1"))
nms_4D <- rray_dim_names(x_4D)
expect_equal(rray_dim(as_rray(x_4D)), c(1, 1, 1, 1))
expect_equal(rray_dim_names(as_rray(x_4D)), nms_4D)
}) |
ceresPlots <- function(model, ...){
UseMethod("ceresPlots")
}
ceresPlots.default<-function(model, terms= ~ ., layout=NULL, ask, main, ...){
terms <- if(is.character(terms)) paste("~", terms) else terms
vform <- update(formula(model), terms)
if(any(is.na(match(all.vars(vform), all.vars(formula(model))))))
stop("Only predictors in the formula can be plotted.")
mf <- attr(model.frame(model), "terms")
terms <- attr(mf, "term.labels")
vterms <- attr(terms(vform), "term.labels")
good <- NULL
if (any(attr(terms(model),"order")>1)) {
stop("CERES plots not available for models with interactions.")}
for (term in vterms) if(
inherits(model$model[[term]], "numeric") |
inherits(model$model[[term]], "integer")) good <- c(good,term)
nt <- length(good)
if(length(good) < length(vterms))
warning("Factors skipped in drawing CERES plots.")
vterms <- good
if (nt == 0) stop("No plots specified")
if (missing(main)) main <- if (nt == 1) "CERES Plot" else "CERES Plots"
if (nt == 0) stop("No plots specified")
if (nt > 1 & (is.null(layout) || is.numeric(layout))) {
if(is.null(layout)){
layout <- switch(min(nt, 9), c(1, 1), c(1, 2), c(2, 2), c(2, 2),
c(3, 2), c(3, 2), c(3, 3), c(3, 3), c(3, 3))
}
ask <- if(missing(ask) || is.null(ask)) prod(layout)<nt else ask
op <- par(mfrow=layout, ask=ask, no.readonly=TRUE,
oma=c(0, 0, 1.5, 0), mar=c(5, 4, 1, 2) + .1)
on.exit(par(op))
}
if(!is.null(class(model$na.action)) &&
inherits(model$na.action, 'exclude')) class(model$na.action) <- 'omit'
for(term in vterms)
ceresPlot(model, term, main="", ...)
mtext(side=3, outer=TRUE, main, cex=1.2)
invisible(0)
}
ceresPlot<-function (model, ...) {
UseMethod("ceresPlot")
}
ceresPlot.lm<-function(model, variable, id=FALSE,
line=TRUE, smooth=TRUE, col=carPalette()[1], col.lines=carPalette()[-1],
xlab, ylab, pch=1, lwd=2, grid=TRUE, ...){
id <- applyDefaults(id, defaults=list(method=list(abs(residuals(model, type="pearson")), "x"), n=2, cex=1, col=carPalette()[1], location="lr"), type="id")
if (isFALSE(id)){
id.n <- 0
id.method <- "none"
labels <- id.cex <- id.col <- id.location <- NULL
}
else{
labels <- id$labels
if (is.null(labels)) labels <- names(na.omit(residuals(model)))
id.method <- id$method
id.n <- if ("identify" %in% id.method) Inf else id$n
id.cex <- id$cex
id.col <- id$col
id.location <- id$location
}
smoother.args <- applyDefaults(smooth, defaults=list(smoother=loessLine, var=FALSE), type="smooth")
if (!isFALSE(smoother.args)) {
smoother <- smoother.args$smoother
smoother.args$smoother <- NULL
if (is.null(smoother.args$spread)) smoother.args$spread <- smoother.args$var
}
else smoother <- "none"
expand.model.frame <- function (model, extras, envir = environment(formula(model)),
na.expand = FALSE){
f <- formula(model)
data <- eval(model$call$data, envir)
ff <- foo ~ bar + baz
if (is.call(extras))
gg <- extras
else gg <- parse(text = paste("~", paste(extras, collapse = "+")))[[1]]
ff[[2]] <- f[[2]]
ff[[3]][[2]] <- f[[3]]
ff[[3]][[3]] <- gg[[2]]
if (!na.expand) {
naa <- model$call$na.action
subset <- model$call$subset
rval <- if (is.null(data)){
eval(call("model.frame", ff, data=model.frame(model),
subset = subset, na.action = naa), envir)} else
eval(call("model.frame", ff, data = data,
subset = subset, na.action = naa), envir)
}
else {
subset <- model$call$subset
rval <- eval(call("model.frame", ff, data = data, subset = subset,
na.action = I), envir)
oldmf <- model.frame(model)
keep <- match(rownames(oldmf), rownames(rval))
rval <- rval[keep, ]
class(rval) <- "data.frame"
}
return(rval)
}
if(!is.null(class(model$na.action)) &&
inherits(model$na.action, 'exclude')) class(model$na.action) <- 'omit'
var<-if (is.character(variable) & 1==length(variable)) variable
else deparse(substitute(variable))
mod.mat<-model.matrix(model)
obs<-names(residuals(model))
all.obs<-if (is.null(model$call$data)) obs else row.names(eval(model$call$data))
xx<-rep(NA, length(all.obs))
names(xx)<-all.obs
terms<-predictor.names(model)
if (is.na(match(var, terms))) stop(paste(var,"is not in the model."))
if (!is.null(model$contrasts[[var]])) stop(paste(var,"is a factor."))
terms<-terms[-match(var,terms)]
if (any(attr(terms(model),"order")>1)) {
stop("ceres plot not available for models with interactions.")
}
.x<-xvars<-NULL
for (xvar in terms){
if (is.null(model$contrasts[[xvar]])){
xvars<-c(xvars,xvar)
xx[obs]<-fitted.values(loess(as.formula(paste("mod.mat[,'",xvar,"']~mod.mat[,'",var,"']",sep=""))))
.x<-cbind(.x, xx)
}
}
if (is.null(xvars)) stop("There are no covariates.")
n.x<-length(xvars)
mf<-na.omit(expand.model.frame(model, all.vars(formula(model))))
rownames(.x)<-all.obs
mf$.x<-.x[obs,]
aug.model <- update(model, . ~ . + .x, data=mf, subset=NULL)
aug.mod.mat<-model.matrix(aug.model)
coef<-coefficients(aug.model)
k<-length(coef)
posn<-k:(k-n.x+1)
partial.res<-residuals(aug.model, "partial")[,var] +
aug.mod.mat[,posn] %*% as.matrix(coef[posn])
xlab <- if(!missing(xlab)) xlab else var
ylab <- if(!missing(ylab)) ylab else
paste("CERES Residual(",responseName(model),")", sep="")
plot(mod.mat[,var], partial.res, xlab=xlab, col=col, pch=pch,
ylab=ylab, type="n", ...)
if(grid){
grid(lty=1, equilogs=FALSE)
box()}
points(mod.mat[,var], partial.res, col=col, pch=pch)
showLabels(mod.mat[,var], partial.res, labels=labels,
method=id.method, n=id.n, cex=id.cex,
col=id.col, location=id.location)
if (line) abline(lm(partial.res~mod.mat[,var]), lty=2, lwd=lwd,
col=col.lines[1])
if (is.function(smoother)) {
smoother(mod.mat[, var], partial.res, col=col.lines[2], log.x=FALSE,
log.y=FALSE, spread=smoother.args$spread, smoother.args=smoother.args)
}
}
ceresPlot.glm<-function(model, ...){
ceresPlot.lm(model, ...)
} |
postTest <- function(object.list) {
if(!is(object.list, "haplinStrat")) stop("Argument 'object.list' should be the result from running 'haplinStrat'", call. = F)
if(any(is.na(object.list))) {
warning("NA element in list of estimation results. Interaction test not performed", call. = F)
return(object.list)
}
.object.list <- object.list[-1]
if(length(.object.list) <= 1) stop("Need at least two strata", call. = F)
.stratnavn <- names(.object.list)
if(is.null(.stratnavn)) .stratnavn <- as.character(seq(along = .object.list))
.info <- lapply(.object.list, function(x) x$info)
.response <- .info[[1]]$haplos$response
.maternal <- .info[[1]]$model$maternal
.poo <- .info[[1]]$model$poo
.tmp.selected.haplotypes <- lapply(.info, function(x)x$haplos$selected.haplotypes)
.sel.haps <- .tmp.selected.haplotypes[[1]]
.sjekk <- sapply(.tmp.selected.haplotypes[-1], function(x) identical(tolower(x), tolower(.sel.haps)))
if(any(!.sjekk)) stop("Different haplotypes selected in different strata!",
call. = F)
.tmp.ref.cat <- lapply(.info, function(x){
.tmp <- x$haplos$ref.cat
names(.tmp) <- tolower(names(.tmp))
})
.ref.cat <- .tmp.ref.cat[[1]]
.sjekk <- sapply(.tmp.ref.cat[-1], function(x) identical(x, .ref.cat))
if(any(!.sjekk)) stop("Cannot do interaction test with different reference categories", call. = F)
.params <- lapply(.object.list, coef)
.coef <- lapply(.params, function(x) x$coef)
.cov <- lapply(.params, function(x) x$cov)
.tmp <- f.post.diff(coeff = .coef, covar = .cov)
if(.poo) .tmp <- f.post.poo.diff(coeff = .tmp$coef, covar = .tmp$cov)
.coef <- .tmp$coeff
.cov <- .tmp$cov
.names <- rownames(.coef[[1]])
.effs <- f.coefnames(.names)
.names.tests <- list(haplo.freq = .effs$haplo.freq, child = c(.effs$child.s, .effs$child.d), child.poo = c(.effs$child.poo.m, .effs$child.poo.f, .effs$child.d), poo = .effs$poo, maternal = c(.effs$maternal.s, .effs$maternal.d))
if(.poo){
if(.maternal){
.test <- c("haplo.freq", "child.poo", "poo", "maternal")
}else{
.test <- c("haplo.freq", "child.poo", "poo")
}
} else {
if(.maternal){
.test <- c("haplo.freq", "child", "maternal")
}else{
.test <- c("haplo.freq", "child")
}
}
standard.tests <- F
if(standard.tests){
.c <- .cdd <- NULL
.f.extr <- function(co, selpars){
if(ncol(co[[1]]) == 1){
.res <- lapply(co, function(x) x[selpars, , drop = F])
}else {
.res <- lapply(co, function(x) x[selpars, selpars, drop = F])
}
return(.res)
}
.coef.c <- .f.extr(.coef, .c)
if(.response == "free") .coef.cdd <- .f.extr(.coef, .cdd)
.coef.comb <- .f.extr(.coef, c(.c, .cdd))
.cov.c <- .f.extr(.cov, .c)
if(.response == "free") .cov.cdd <- .f.extr(.cov, .cdd)
.cov.comb <- .f.extr(.cov, c(.c, .cdd))
.contr.c <- diag(length(.coef.c[[1]]))
if(.response == "free") .contr.cdd <- diag(length(.coef.cdd[[1]]))
.contr.comb <- diag(length(.coef.comb[[1]]))
.res.c <- vector(length(.coef.c), mode = "list")
if(.response == "free") .res.cdd <- vector(length(.coef.cdd), mode = "list")
.res.comb <- vector(length(.coef.comb), mode = "list")
for (i in seq(along = .coef.c)){
.res.c[[i]] <- f.post.chisq(coeff = .coef.c[[i]], covar = .cov.c[[i]], contrast.mat = .contr.c)
if(.response == "free") .res.cdd[[i]] <- f.post.chisq(coeff = .coef.cdd[[i]], covar = .cov.cdd[[i]], contrast.mat = .contr.cdd)
.res.comb[[i]] <- f.post.chisq(coeff = .coef.comb[[i]], covar = .cov.comb[[i]], contrast.mat = .contr.comb)
f.vis(.res.c, vis = F)
if(.response == "free") f.vis(.res.cdd, vis = F)
}
cat("\nIndividual Wald tests within each stratum, \nfor single dose, double dose and combined:\n")
cat("\nPost-hoc (Wald) test single dose:")
.res.c.vis <- cbind("Stratum: ", format(.stratnavn, justify = "right"), ", Chi-squared = ", round(sapply(.res.c, function(x)x$chisq), 3), ", df's = ", sapply(.res.c, function(x) x$df), ", p-value = ", round(sapply(.res.c, function(x) x$pval), 5))
dimnames(.res.c.vis) <- list(rep("", dim(.res.c.vis)[1]), rep("", dim(.res.c.vis)[2]))
print(.res.c.vis, quote = F, print.gap = 0)
if(.response == "free") {
cat("\nPost-hoc (Wald) test double dose:")
.res.cdd.vis <- cbind("Stratum: ", format(.stratnavn, justify = "right"), ", Chi-squared = ", round(sapply(.res.cdd, function(x)x$chisq), 3), ", df's = ", sapply(.res.cdd, function(x) x$df), ", p-value = ", round(sapply(.res.cdd, function(x) x$pval), 5))
dimnames(.res.cdd.vis) <- list(rep("", dim(.res.cdd.vis)[1]), rep("", dim(.res.cdd.vis)[2]))
print(.res.cdd.vis, quote = F, print.gap = 0)
}
cat("\nPost-hoc (Wald) test combined single and double dose:")
.res.comb.vis <- cbind("Stratum: ", format(.stratnavn, justify = "right"), ", Chi-squared = ", round(sapply(.res.comb, function(x)x$chisq), 3), ", df's = ", sapply(.res.comb, function(x) x$df), ", p-value = ", round(sapply(.res.comb, function(x) x$pval), 5))
dimnames(.res.comb.vis) <- list(rep("", dim(.res.comb.vis)[1]), rep("", dim(.res.comb.vis)[2]))
print(.res.comb.vis, quote = F, print.gap = 0)
cat("\nCompare combined to overall likelihood ratio p-values:")
.p.value.overall <- sapply(.object.list, function(x){
.tmp <- summary(x)$loglike["p.value.overall"]
if(is.null(.tmp)) .tmp <- NA
return(.tmp)
})
.p.value.overall.vis <- cbind("Stratum: ", format(.stratnavn, justify = "right"), ", p-value = ", round(as.numeric(.p.value.overall), 5))
dimnames(.p.value.overall.vis) <- list(rep("", nrow(.p.value.overall.vis)), rep("", ncol(.p.value.overall.vis)))
print(.p.value.overall.vis, quote = F, print.gap = 0)
}
.chisq.res <- lapply(.test, function(x) f.posttest(coef_ = .coef, cov_ = .cov, test = .names.tests[[x]]))
names(.chisq.res) <- .test
.ut <- lapply(.chisq.res, function(x) {
x$y <- NULL
return(unlist(x))
})
.ut <- do.call("rbind", .ut)
.ut <- dframe(test = rownames(.ut), .ut)
rownames(.ut) <- NULL
attr(.ut,"coef") <- .coef
attr(.ut,"cov") <- .cov
return(.ut)
} |
fMP_CorrGxM <-
function(listdata, param, PointsW) {
m = c(listdata$M1,listdata$M2);
p1 = listdata$P1; p2 = listdata$P2;
rG = listdata$rG;
muM = param$muM; muP = param$muP;
aM = param$aM; cM = param$cM; eM = param$eM;
aP = param$aP; cP = param$cP; eP = param$eP;
rA = param$rA; rC = param$rC; rE = param$rE;
alphaP = param$alphaP;
kappaP = param$kappaP;
epsilonP = param$epsilonP;
aC = rA*aP; cC = rC*cP; eC = rE*eP;
aU = sqrt(1-rA^2)*aP; cU = sqrt(1-rC^2)*cP; eU = sqrt(1-rE^2)*eP;
alphaC = rA*alphaP;
alphaU = sqrt(1-rA^2)*alphaP;
kappaC = rC*kappaP;
kappaU = sqrt(1-rC^2)*kappaP;
epsilonC = rE*epsilonP;
epsilonU = sqrt(1-rE^2)*epsilonP;
Points = PointsW$Points;
W=PointsW$W;
K3 = length(W);
entry1 = aM^2 + cM^2 + eM^2;
entry2 = aM^2*rG + cM^2;
SigmaM = matrix(c(entry1, entry2,
entry2, entry1),2,2);
invSigmaM = solve(SigmaM);
fm = log(2*pi) + 0.5*log(det(SigmaM)) + 0.5*(m-muM)%*%invSigmaM%*%(m-muM);
SigmaAC = matrix(c( 1, rG, 0,
rG, 1, 0,
0, 0, 1), 3,3)
SigmaACM = matrix(c( aM, aM*rG, cM, aM*rG, aM, cM), 3,2)
covAC_M = SigmaAC - SigmaACM %*%invSigmaM%*%t(SigmaACM);
trans = sqrt(2)*t(chol(covAC_M));
tmpA = SigmaACM %*% invSigmaM;
tmpB = tmpA %*% c(muM,muM);
tmpC = tmpA %*% m - tmpB;
tmpD = matrix(rep(tmpC,K3),3,K3)
AC = tmpD + trans %*% Points;
CC = t(matrix(rep(AC[3,],2),K3,2))
tmpA = matrix(rep(m-muM,K3),2,K3)
E = (tmpA - aM*AC[1:2,] - cM*CC) / eM;
muP_ACM = muP+(aC+alphaC*m)*AC[1:2,]+(cC+kappaC*m)*CC+(eC+epsilonC*m)*E;
entry11 = (aU+alphaU*m[1])^2+(cU+kappaU*m[1])^2+(eU+epsilonU*m[1])^2;
entry12 = (aU+alphaU*m[1])*(aU+alphaU*m[2])*rG+(cU+kappaU*m[1])*(cU+kappaU*m[2]);
entry22 = (aU+alphaU*m[2])^2+(cU+kappaU*m[2])^2+(eU+epsilonU*m[2])^2;
det_covP_ACM = entry11*entry22 - entry12^2;
infind = det_covP_ACM < 1e-6;
entry11[infind] = 1e-3;
entry12[infind] = 0;
entry22[infind] = 1e-3;
tmpA = (p1-muP_ACM[1,])*entry22 - (p2-muP_ACM[2,])*entry12;
tmpB = -(p1-muP_ACM[1,])*entry12 + (p2-muP_ACM[2,])*entry11;
tmpC = (tmpA*(p1-muP_ACM[1,]) + tmpB*(p2-muP_ACM[2,])) / det_covP_ACM;
inversevalue = 2*pi*sqrt(det_covP_ACM)*exp(0.5*tmpC);
fp_M = -log(sum(W/inversevalue)) + 1.5*log(pi);
return(fm+fp_M);
} |
autocol = function(x, set = '', alpha = NA, limits = NA, na_colour = NA, bias = 1, legend_len = 6){
pal_type = switch (class(x)[1],
'factor' = 'categorical',
'character' = 'categorical',
'logical' = 'categorical',
'integer' = 'continuous',
'numeric' = 'continuous',
'trynumeric'
)
if(pal_type=='trynumeric'){
original_class = class(x)
x = as.numeric(x)
if(!length(x) > 1) stop('Could not convert as.numeric(x)')
}
x_na = is.na(x)
if(pal_type=='categorical'){
set_palette = get_set(set, default = 'sasha')
if(class(x)=='character') x = factor(x, levels=unique(x))
col_level = as.integer(as.factor(x)) %% length(set_palette)
col_level[col_level==0] = length(set_palette)
res_pal = set_palette[col_level]
legend_labels = 1:length(unique(x)) %% length(set_palette)
legend_labels[legend_labels==0] = length(set_palette)
legend_fill = set_palette[legend_labels]
legend_labels = as.character(unique(as.factor(x)))
options(autolegend = list(legend_labels, legend_fill))
}
if(pal_type=='continuous' | pal_type=='trynumeric'){
chosen_colour_ramp = colorRamp(get_set(set, default = 'viridis'), space = 'Lab', bias = bias)
if(is.na(limits[1]))
limits = range(x, na.rm = TRUE)
create_autolegend_data(limits = limits, chosen_colour_ramp = chosen_colour_ramp, legend_len = legend_len,
override_class = if(pal_type=='trynumeric') original_class else NA )
x_scaled = (x - limits[1]) / (limits[2] - limits[1])
x_scaled = pmin(1,pmax(0, x_scaled))
x_scaled[x_na] = 0
res_pal = rgb(chosen_colour_ramp(x_scaled), maxColorValue = 255)
res_pal[x_na] = NA
}
res_pal[x_na] = na_colour
if(!is.na(alpha[1])){
max_alpha = if(length(alpha)==1) 1 else max(alpha,na.rm=TRUE)
alpha = pmax(0, alpha, na.rm=TRUE)
res_pal = rgb(t(col2rgb( res_pal )), alpha=255*alpha/max_alpha, maxColorValue=255 )
}
return(res_pal)
}
autolegend = function(...){
if(!'autolegend' %in% names(options())) stop('Must call autocol(...) first to create options("autolegend")')
if('pch' %in% names(list(...)))
legend(..., locator(n=1), legend = options('autolegend')[[1]][[1]], col = options('autolegend')[[1]][[2]], xpd = NA)
else
legend(..., locator(n=1), legend = options('autolegend')[[1]][[1]], fill = options('autolegend')[[1]][[2]], xpd = NA)
return(NULL)
}
autopal = function(set = '', n = 30, limits = NA, bias = 1, legend_len = 6){
chosen_colour_ramp = colorRamp(get_set(set), space = 'Lab', bias = bias)
if(!is.na(limits[1])){
original_class = NA
if(!class(limits) %in% c('numeric','integer')){
original_class = class(limits)
limits = as.numeric(limits)}
create_autolegend_data(limits = limits, chosen_colour_ramp = chosen_colour_ramp, legend_len = legend_len,
override_class = original_class)
}
palcols = rgb(chosen_colour_ramp(c(0,seq(0,1,length.out=n-2),1)), maxColorValue = 255)
return(palcols)
}
create_autolegend_data = function(limits, chosen_colour_ramp, legend_len = 6, override_class = NA){
legend_labels = pretty(limits, n = legend_len)
longest_label = max(nchar(as.character(legend_labels)))
legend_labels[1] = signif(limits[1], digits = longest_label)
legend_labels[length(legend_labels)] = signif(limits[2], digits = longest_label)
legend_scaled = (legend_labels-min(legend_labels))/diff(range(legend_labels))
legend_fill = rgb(chosen_colour_ramp(legend_scaled), maxColorValue = 255)
if(!is.na(override_class[1]))
attr(legend_labels, 'class') = override_class
options(autolegend = list(legend_labels, legend_fill))
} |
source("ESEUR_config.r")
patches=read.csv(paste0(ESEUR_dir, "regression/linux-patch-fix.csv.xz"), as.is=TRUE)
cleaned=subset(patches, Total.Updates < 40)
c_mod=glm(Fixes ~ Total.Updates, data=cleaned)
print(summary(c_mod)) |
setMethod("show", "datagroup", function(object){
cat('An object of class "datagroup":\n')
for (i in 1:length(object@group)){
cat(paste0('[',i,'] '))
cat(object@group[[i]]$title,'\n')
cat(' url:',object@group[[i]]$url,'\n')
}
}) |
lastdaypresent <- function(x, ID = "all", refdate = NULL) {
if (class(x) == "elo") {
pm <- x$pmat
} else {
stop("so far 'x' must be of class 'elo'...", call. = FALSE)
}
if (is.null(refdate)) refdate <- max(x$truedates)
pm <- pm[x$truedates <= refdate, ]
if (0 %in% colSums(pm)) {
pids <- names(pm)[colSums(pm) == 0]
pm <- pm[, colSums(pm) > 0]
} else {
pids <- NA
}
res <- x$truedates[apply(pm, 2, function(z) max(which(z == 1)))]
names(res) <- colnames(pm)
if (!is.na(pids[1])) {
res <- c(res, rep(NA, length(pids)))
names(res) <- c(names(pm), pids)
}
if (ID != "all") {
if (ID %in% names(res)) {
res <- as.Date(as.character(res[ID]))
} else {
res <- NA
warning("ID not found...", call. = FALSE)
}
}
return(res)
} |
LW_er_lambdacov_none_effectcov_none_responsecov_none <- function(par,
fitness,
target,
density,
covariates,
fixed_parameters){
num.sp <- nrow(target)
pos <- 1
if(is.null(fixed_parameters[["lambda"]])){
lambda <- par[pos:(pos + num.sp - 1)]
pos <- pos + num.sp
}else{
lambda <- fixed_parameters[["lambda"]]
}
if(is.null(fixed_parameters[["effect"]])){
effect <- par[pos:(pos + num.sp - 1)]
pos <- pos + num.sp
}else{
effect <- fixed_parameters[["effect"]]
}
if(is.null(fixed_parameters[["response"]])){
response <- par[pos:(pos + num.sp - 1)]
pos <- pos + num.sp
}else{
response <- fixed_parameters[["response"]]
}
sigma <- par[length(par)]
lambda.part <- colSums(lambda*target)
r.part <- colSums(response*target)
e.part <- colSums(density^effect)
pred <- lambda.part/(1+(r.part*e.part))
llik <- dnorm(fitness, mean = (log(pred)), sd = (sigma), log=TRUE)
return(sum(-1*llik))
} |
read.wdat <- function(cmd, datfile = cmd$data, na = " ",
ilabels = NULL) {
dat <- readLines(datfile)
ncols <- max(nchar(dat))
nvars <- cmd$ni + 1
if(!all(nchar(dat) == ncols))
warning("Lines", paste(which(nchar(dat) != ncols),
collapse = ", "), "are missing information")
dat <- format(dat)
out <- data.frame(matrix(ncol = nvars, nrow = length(dat)))
out[, 1] <-
trim(substr(dat, cmd$name1, cmd$name1 + cmd$namelen - 1))
for(i in 1:cmd$ni) {
out[, i + 1] <- substr(dat, cmd$item1 + i - 1,
cmd$item1 + i - 1)
out[out[, i + 1] == na, i + 1] <- NA
out[, i + 1] <- as.numeric(out[, i + 1])
}
if(!is.null(ilabels))
cmd$labels <- ilabels
if(!is.null(cmd$labels))
names(out) <- c("name", cmd$labels)
else
names(out) <- c("name", paste("i", 1:cmd$ni, sep = ""))
return(out)
} |
options(width=65, digits = 3)
pkg <- search()[2]
while (search()[2] != if(.Platform$GUI == "AQUA") "tools:RGUI" else "package:stats") {
spkg <- strsplit( pkg, ":" )[[1]][2]
if (packageHasNamespace(spkg, .libPaths()[1]) )
unloadNamespace(spkg ) else detach(pos = match(pkg, search()))
pkg <- search()[2]
}
rm(list = ls())
gc()
library(MPDiR)
library(lattice)
ltheme <- canonical.theme("pdf", color = FALSE)
ltheme$strip.background$bg <- "grey85"
lattice.options(default.theme = ltheme)
formals(deparse)$width.cutoff <- 50L
assignInNamespace("deparse", deparse, "base")
rm(deparse)
library(MPDiR)
RespFun <- function(x, n) x^n
x <- seq(0, 1, len = 200)
xy <- expand.grid(x = x, y = x)
xy$Diff <- with(xy, RespFun(x, 0.25) + RespFun(y, 1.75))
xp <- c(0.4, 0.6)
yp <- c((1 - xp^0.25)^(1/1.75), (1.25 - xp^0.25)^(1/1.75))
print(
contourplot(Diff ~ x * y, xy, at = c(1, 1.25),
aspect = "iso", subscripts = TRUE,
scale = list(x = list(at = xp, labels = expression(varphi^1, varphi*minute^1 )),
y = list(at = yp,
labels = expression(varphi^2, varphi*minute^2, varphi*minute*minute^2,
varphi*minute*minute*minute^2) ), cex = 1.5
),
labels = FALSE,
xlab = list(label = "Scale 1", cex = 1.3),
ylab = list(label = "Scale 2", cex = 1.3),
panel = function(x, y, z, subscripts,...){
panel.contourplot(x, y, z, subscripts, lwd = 2, ...)
panel.abline(v = xp, h = yp, lty = 2, lwd = 1)
lpoints(c(xp, xp), yp, cex = 1.25, col = "black", lwd = 1.5)
})
)
data(BumpyGlossy, package = "MLCM")
head(BumpyGlossy)
library(MLCM)
library(plotrix)
mr <- par("mar")
op <- par(mar = mr + c(0, 0, 0, 4.5), pty = "s")
plot(BumpyGlossy,
xlab = expression(paste("Surface ", S[ij],
" Gloss Level (i) and Roughness level (j)")),
ylab = expression(paste("Surface ", S[kl],
" Gloss Level (k) and Roughness level (l)"))
)
par(xpd = NA)
gradient.rect(5.9, 1, 6.3, 5,
col = grey.colors(4, 0, 0.83), gradient = "y")
text(6.375, seq(1.5, 4.5, 1),
formatC(round(seq(0, 1, len = 4), 2), 2, format = "f"),
adj = 0)
par(op)
lmlcm <- function(p, d){
n <- max(d[, 2:3]) - 1
pcur <- c(0, p[1:n], 0, p[-(1:n)])
rv <- pcur[d[, 2]] - pcur[d[, 3]] +
pcur[d[, 4] + 5] - pcur[d[, 5] + 5]
-sum(ifelse(d[, 1] == "1", pnorm(rv, log.p = TRUE),
pnorm(rv, lower.tail = FALSE, log.p = TRUE)))
}
p <- c(seq(0.1, 1, len = 4), seq(1, 10, len = 4))
bg.opt <- optim(p, lmlcm, d = BumpyGlossy,
method = "BFGS", hessian = TRUE)
bg.opt$par
bg.opt$value
sqrt(diag(solve(bg.opt$hessian)))
opt.est <- c(0, bg.opt$par[1:4], 0, bg.opt$par[-(1:4)])
ci <- 1.96 * sqrt(diag(solve(bg.opt$hess)))
ci <- c(0, ci[1:4], 0, ci[-(1:4)])
plot(opt.est[1:5], type = "l", ylim = c(0, 6),
lty = 2, lwd = 2, pch = 2,
xlab = "Physical Scale Values",
ylab = "Perceptual Scale Values")
lines(opt.est[6:10], lwd = 2, type = "l", pch = 1)
segments(1:5, opt.est[1:5] + ci[1:5], 1:5, opt.est[1:5] - ci[1:5])
segments(1:5, opt.est[-(1:5)] + ci[-(1:5)], 1:5, opt.est[-(1:5)] - ci[-(1:5)])
points(opt.est[1:5], pch = 22, bg = "white")
points(opt.est[6:10], pch = 21, bg = "white")
make.wide <- function(d){
nr <- nrow(d)
wts <- rep(c(1, -1), each = nr)
ix.mat <- matrix(0, ncol = max(d), nrow = nr)
ix.mat[matrix(c(rep(1:nr, 2), as.vector(unlist(d))),
ncol = 2)] <- wts
ix.mat <- t(apply(ix.mat, 1, function(x)
if (sum(x) == 0) x else
rep(0, max(d))))
ix.mat[, -1]
}
bg.lst <- lapply(seq(2, length(BumpyGlossy) - 1, 2),
function(x, d){ make.wide(d[, x:(x+1)]) },
d = BumpyGlossy)
X <- do.call(cbind, bg.lst)
colnames(X) <- c(paste("G", 2:5, sep = ""),
paste("B", 2:5, sep = ""))
head(X)
bg.df <- data.frame(resp = BumpyGlossy$Resp, X)
bg.glm <- glm(resp ~ . -1, binomial(probit), bg.df)
opt.est <- c(0, bg.opt$par[1:4], 0, bg.opt$par[-(1:4)])
glm.est <- c(0, bg.glm$coef[1:4], 0, bg.glm$coef[-(1:4)])
plot(opt.est[1:5], type = "l", ylim = c(0, 6), lty = 2, lwd = 2,
xlab = "Physical Scale Values",
ylab = "Perceptual Scale Values",
cex.lab = 1.5, cex.axis = 1.3)
lines(opt.est[6:10], lwd = 2)
points(glm.est[1:5], pch = 22, bg = "white", cex = 1.5)
points(glm.est[6:10], pch = 21, bg = "white", cex = 1.5)
bg.Ind <- update(bg.glm, . ~ . - G2 - G3 - G4 - G5)
anova(bg.Ind, bg.glm, test = "Chisq")
make.wide.full <- function(d){
cn <- function(y, mx) (y[, 2] - 1) * mxd[2] + y[, 1]
nr <- nrow(d)
mxd <- c(max(d[, 1:2]), max(d[, 3:4]))
nc <- prod(mxd)
nms <- sapply(seq(1, ncol(d), 2), function(x)
substring(names(d)[x], 1, nchar((names(d)[x])) - 1))
fnm <- mapply(paste, nms,
list(seq_len(mxd[1]), seq_len(mxd[2])),
sep = "", SIMPLIFY = FALSE)
nms.f <- interaction(do.call(expand.grid, fnm),
sep = ":")
ix.mat <- matrix(0, ncol = nc, nrow = nr)
ix.mat[cbind(seq_len(nr), cn(d[, c(1, 3)], mxd))] <- 1
ix.mat[cbind(seq_len(nr), cn(d[, c(2, 4)], mxd))] <- -1
ix.mat <- t(apply(ix.mat, 1, function(x) if (sum(x) == 0)
x else rep(0, nc)))
colnames(ix.mat) <- levels(nms.f)
ix.mat[, -1]
}
Xf <- make.wide.full(BumpyGlossy[, -1])
bg.dff <- data.frame(resp = BumpyGlossy[, 1], Xf)
bg.dff[1, ]
BumpyGlossy[1, ]
bg.saturated <- update(bg.glm, data = bg.dff)
anova(bg.glm, bg.saturated, test = "Chisq")
rm(make.wide, make.wide.full)
library(MLCM)
bg.add <- mlcm(BumpyGlossy)
methods(class = "mlcm")
bg.ind <- mlcm(BumpyGlossy, model = "ind", whichdim = 2)
bg.saturated <- mlcm(BumpyGlossy, model = "full")
bg.add$pscale
opar <- par(mfrow = c(1,2), cex.lab = 1.5, cex.axis = 1.3)
plot(bg.saturated, type = "b", lty = 1, lwd = 2,
col = c("black", paste("grey", 10 + 15 * (1:4))),
xlab = "Glossiness Level",
ylab = "Roughness Estimates")
mtext("a", 3, adj = 0, cex = 2, line = 1)
plot(bg.saturated, transpose = TRUE, type = "b", lty = 1, lwd = 2,
col = c("black", paste("grey", 10 + 15 * (1:4))),
xlab = "Roughness Level",
ylab = "Glossiness Estimates")
mtext("b", 3, adj = 0, cex = 2, line = 1)
par(opar)
mr <- par("mar")
opar <- par(mfrow = c(1, 2), mar = mr + c(0, 0, 0, 3))
bg.add.pred <- with(bg.add, outer(pscale[, 1], pscale[, 2], "+"))
plot(bg.saturated, standard.scale = TRUE,
type = "b", lty = 1, lwd = 2,
col = c("black", paste("grey", 10 + 15 * (1:4))),
ylim = c(-0.2, 1.2),
xlab = "Gloss Level",
ylab = "Roughness model Estimates")
cf <- coef(lm(as.vector(bg.saturated$pscale/bg.saturated$pscale[5, 5]) ~
as.vector(bg.add.pred) + 0))
matplot(cf * bg.add.pred, type = "l", lty = 2, lwd = 2,
col = c("black", paste("grey", 10 + 15 * (1:4))),
add = TRUE)
bg.saturated.sc <- bg.saturated$pscale/bg.saturated$pscale[5, 5]
bg.add.adj <- cf * bg.add.pred
bg.res <- (bg.add.adj - bg.saturated.sc) + 0.5
mtext("a", 3, adj = 0, cex = 2, line = 1)
par(xpd = NA)
gcl <- grey.colors(100, min(bg.res), max(bg.res))
image(1:5, 1:5, bg.res,
col = gcl,
xlab = "Gloss Level", ylab = "Roughness Level"
)
dgcl <- grey.colors(100, 0, 1)
gradient.rect(5.8, 1, 6.2, 5, col = dgcl,
gradient = "y")
ylab <- -1:1
ypos <- seq(1, 5, len = 3)
text(6.7, ypos, formatC(ylab, 1, format = "f"), adj = 1)
mtext("b", 3, adj = 0, cex = 2, line = 1)
par(opar)
bg.frm <- mlcm(~ p[1] * (x - 1)^p[2] + p[3] * (y - 1)^p[4],
p = c(0.1, 1, 1.5, 0.8),
data = BumpyGlossy)
bg.frm$par
xx <- seq(1, 5, len = 100)
plot(bg.add, xlab = "Physical Scale Values",
ylab = "Perceptual Scale Values")
lines(xx, predict(bg.frm, newdata = xx)[seq_along(xx)])
lines(xx, predict(bg.frm, newdata = xx)[-seq_along(xx)])
anova(bg.add, bg.frm)
dd <- structure(list(N = c(30, 150, 300, 63, 315, 630, 201.6, 1008,
2016, 495, 2475, 4950), SD = c(0.198804903944735, 0.0494169735922849,
0.0483475961477474, 0.11144484767624, 0.057941390390986, 0.0498386086620115,
0.0687411704173731, 0.0489132254288009, 0.035810703580535, 0.0710439540913592,
0.0282549870235406, 0.0152091769143304), ScaleLevels = c(5, 5,
5, 6, 6, 6, 8, 8, 8, 10, 10, 10), PerTrial = c(10, 50, 100, 10,
50, 100, 10, 50, 100, 10, 50, 100)), .Names = c("N", "SD", "ScaleLevels",
"PerTrial"), row.names = c(NA, -12L), class = "data.frame")
dd.lm <- lm(log10(SD) ~ offset(-0.5 * log10(N)), dd)
plot(SD ~ N, dd, xlim = c(10, 5000), ylim = c(0.005, 0.3), log = "xy",
pch = 20 + unclass(factor(dd$ScaleLevels)), cex = 1.3,
bg = c("white", "grey", "black")[unclass(factor(dd$PerTrial))])
x <- 10^seq(1, 3.7, len = 100)
lines(x, 10^coef(dd.lm) / sqrt(x), lwd = 2)
points(SD ~ N, dd,
pch = 20 + unclass(factor(dd$ScaleLevels)), cex = 1.3,
bg = c("white", "grey", "black")[unclass(factor(dd$PerTrial))])
legend(10, 0.021, unique(dd$ScaleLevels^2), pch = 21:25, bty = "n",
title = "Number of Stimuli" )
legend(100, 0.021, unique(dd$PerTrial), pch = 21, bty = "n",
title = "%subsampling", pt.bg = c("white", "grey", "black") ) |
validate_get_twcv <- function(
color_matrix,
dbscan_eps = 20,
dbscan_min_pts = 4,
max_var_tight_cluster = 150,
max_prop_single_tight_cluster = 0.6,
safe_num_clusters = 3,
safe_twcv = 250
) {
if (nrow(color_matrix) < dbscan_min_pts) {
return(list(
valid = FALSE,
reason_invalid = "too_few_color_responses",
twcv = NA,
num_clusters = NA
))
}
dbscan_res <- dbscan::dbscan(
color_matrix,
eps = dbscan_eps,
minPts = dbscan_min_pts
)
cluster_numbers <- unique(dbscan_res$cluster)
twcv <- total_within_cluster_variance(color_matrix, dbscan_res$cluster)
num_noise_pts <- sum(dbscan_res$cluster == 0)
noise_c_few_pts <- (num_noise_pts > 0) && (num_noise_pts < dbscan_min_pts)
num_clusters <- length(cluster_numbers) - as.numeric(noise_c_few_pts)
for (clu_n in cluster_numbers) {
cluster_mask <- dbscan_res$cluster == clu_n
num_in_cluster <- length(dbscan_res$cluster[cluster_mask])
prop_in_cluster <- num_in_cluster / length(dbscan_res$cluster)
if (prop_in_cluster > max_prop_single_tight_cluster) {
cluster_var <- point_3d_variance(color_matrix[cluster_mask, ])
if (cluster_var <= max_var_tight_cluster) {
return(list(
valid = FALSE,
reason_invalid = "hi_prop_tight_cluster",
twcv = twcv,
num_clusters = num_clusters
))
}
}
}
twcv_score <- total_within_cluster_variance(
color_matrix,
dbscan_res$cluster
)
few_clusters <- num_clusters < safe_num_clusters
low_twcv <- twcv_score < safe_twcv
if (few_clusters && low_twcv) {
return(list(
valid = FALSE,
reason_invalid = "few_clusters_low_twcv",
twcv = twcv,
num_clusters = num_clusters
))
}
return(list(
valid = TRUE,
reason_invalid = "",
twcv = twcv,
num_clusters = num_clusters
))
} |
df_groceries <- read.csv("./data/groceries.csv")
str(df_groceries)
head(df_groceries)
dim(df_groceries)
df_sorted <- df_groceries[order(df_groceries$Member_number),]
df_sorted
df_sorted$Member_number <- as.numeric(df_sorted$Member_number)
str(df_sorted)
head(df_sorted)
df_sorted$itemDescription <- as.factor(df_sorted$itemDescription)
str(df_sorted)
library(dplyr)
library(plyr)
?ddply
df_itemList <- ddply(df_groceries, c("Member_number","Date"), function(df1)paste(df1$itemDescription,collapse = ","))
df_itemList$Member_number <- NULL
df_itemList$Date <- NULL
str(df_itemList)
colnames(df_itemList) <- c("itemList")
str(df_itemList)
head(df_itemList,n=20)
df_itemList
write.csv(df_itemList,"./data/ItemList.csv", row.names = TRUE)
library(arules)
txn = read.transactions(file="./data/ItemList.csv", rm.duplicates= TRUE, format="basket",sep=",",cols=1);
txn = read.transactions(file.choose(), rm.duplicates= TRUE, format="basket",sep=",",cols=1);
txn
inspect(txn)
txn@itemInfo$labels <- gsub("\"","",txn@itemInfo$labels)
basket_rules <- apriori(txn,parameter = list(minlen=2,sup = 0.01, conf = 0.7, target="rules"))
inspect(basket_rules)
if(sessionInfo()['basePkgs']=="tm" | sessionInfo()['otherPkgs']=="tm"){
detach(package:sentiment, unload=TRUE)
detach(package:tm, unload=TRUE)
}
inspect(basket_rules)
df_basket <- as(basket_rules,"data.frame")
df_basket$confidence <- df_basket$confidence * 100
df_basket$support <- df_basket$support * nrow(df)
write.csv(df_basket,"Rules_20.csv",row.names = FALSE)
library(arulesViz)
plot(basket_rules)
set.seed(8000)
plot(basket_rules, method = "grouped", control = list(k = 5))
plot(basket_rules[1:10,], method="graph", control=list(type="items"))
plot(basket_rules[1:10,], method="paracoord", control=list(alpha=.5, reorder=TRUE))
itemFrequencyPlot(txn, topN = 5)
plot(basket_rules[1:10,],measure=c("support","lift"),shading="confidence",interactive=T) |
fgsub <- function(x, pattern, fun, ...){
hit_id <- pattern_id <- pat <- NULL
locs <- stringi::stri_detect_regex(x, pattern)
locs[is.na(locs)] <- FALSE
txt <- x[locs]
hits <- stringi::stri_extract_all_regex(txt, pattern)
h <- lengths(hits)
y <- sum(h)
if (y == 0) return(x)
counter <- ceiling(y/26)
pats <- unique(unlist(hits))
reps <- paste0("textcleanholder", seq_along(pats), "textcleanholder")
freps <- unlist(lapply(pats, fun))
pat_key <- data.table::data.table(pat = reps, replacement = freps)
hit_key <- data.table::data.table(
hit_id = rep(seq_len(length(h)), h),
pat = reps,
pattern_id = unlist(lapply(h, seq_len))
)
data.table::setkey(pat_key, pat)
data.table::setkey(hit_key, pat)
hit_key <- hit_key[pat_key][,
hit_id := as.integer(hit_id)][,
pattern_id := as.integer(pattern_id)]
data.table::setorderv(hit_key, cols = c('hit_id', 'pattern_id'))
for (i in seq_len(y)) {
hkr <- hit_key[i,]
txt[hkr[, 'hit_id'][[1]]] <- sub(
pattern,
hkr[, 'pat'][[1]],
txt[hkr[, 'hit_id'][[1]]],
perl = TRUE
)
}
txt <- mgsub(txt, hit_key[['pat']], hit_key[['replacement']], fixed = TRUE, ...)
x[locs] <- txt
x
} |
context("Set global (uuid) identifiers")
test_that("We can generate valid EML with uuid ids on all elements", {
skip_if_not_installed("geiger")
if(require("uuid")){
options(uuid = TRUE)
data(geospiza)
add_trees(geospiza$phy)
nexml <- add_characters(geospiza$dat)
write.nexml(nexml, file = "geospiza.xml")
expect_true_or_null(nexml_validate("geospiza.xml"))
unlink("geospiza.xml")
}
}) |
context("METAR time zone")
x1 <- "EPWA 281830Z 18009KT 140V200 9999 SCT037 03/M01 Q1008 NOSIG"
x2 <- "CYUL 281800Z 13008KT 30SM BKN240 01/M06 A3005 RMK CI5 SLP180"
x3 <- "201711271930 METAR LEMD 271930Z 02002KT CAVOK 04/M03 Q1025 NOSIG= NOSIG="
x4 <- "201905121244 METAR KDCA 121244Z 05010KT 1 3/4SM R01/6000VP6000FT -RA BR OVC007 14/12 A2978 RMK AO2 P0002 T01390122"
x5 <- "201905121244 SPECI KDCA 121244Z 05010KT 2 1/4SM R01/6000VP6000FT -RA BR OVC007 14/12 A2978 RMK AO2 P0002 T01390122"
x6 <- "CYWG 172000Z 30015G25KT 3/4SM R36/4000FT/D -SN BLSN BKN008 OVC040 M05/M08 A2992 REFZRA WS RWY36 RMK SF5NS3 SLP134"
x7 <- "METAR KJFK 282355Z AUTO 13009KT 10SM -RA SCT028 SCT035 BKN079 23/20 A2972 RMK T02300200 LTG DSNT SE-SW! MADISHF"
x <- c(x1, x2, x3, x4, x5, x6, x7)
dx <- data.frame(metar = x)
test_that("Check time zones", {
expect_equal(metar_time_zone(x1), "Z")
expect_equal(metar_time_zone(x2), "Z")
expect_equal(metar_time_zone(x3), "Z")
expect_equal(metar_time_zone(x4), "Z")
expect_equal(metar_time_zone(x5), "Z")
expect_equal(metar_time_zone(x6), "Z")
expect_equal(metar_time_zone(x7), "Z")
expect_equal(metar_time_zone(x), c("Z", "Z", "Z", "Z", "Z", "Z", "Z"))
expect_equal(metar_time_zone(dx$metar), c("Z", "Z", "Z", "Z", "Z", "Z", "Z"))
})
x8 <- "EPWA 0281830Z 18009KT 140V200 9999 SCT037 03/M01 Q1008 NOSIG"
x9 <- "CYU 281800Z 13008KT 30SM BKN240 01/M06 A3005 RMK CI5 SLP180"
x10 <- "201711271930 METAR LEMD 271930 02002KT CAVOK 04/M03 Q1025 NOSIG= NOSIG="
test_that("Incorrect METAR reports", {
expect_equal(is.na(metar_time_zone(x8)), TRUE)
expect_equal(is.na(metar_time_zone(x9)), TRUE)
expect_equal(is.na(metar_time_zone(x10)), TRUE)
})
dx <- data.frame(metar = c(x1, x2, x3, x4, x5, x6, x7, x8, x9, x10))
test_that("Correct and incorrect METAR reports", {
expect_equal(metar_time_zone(dx$metar),
c("Z", "Z", "Z", "Z", "Z", "Z", "Z", NA, NA, NA))
})
dxt <- tibble::as_tibble(dx)
test_that("Check invalid input format", {
expect_error(metar_pressure(dx))
expect_error(metar_pressure(dxt))
}) |
s3saveRDS <- function(x, object = paste0(as.character(substitute(x)), ".rds"), bucket, compress = TRUE, ...) {
if (missing(bucket)) {
bucket <- get_bucketname(object)
}
object <- get_objectkey(object)
tmp <- tempfile(fileext = ".rds")
on.exit(unlink(tmp))
saveRDS(x, file = tmp, compress = compress)
r <- put_object(file = tmp, bucket = bucket, object = object, ...)
return(invisible(r))
}
s3readRDS <- function(object, bucket, ...) {
if (missing(bucket)) {
bucket <- get_bucketname(object)
}
object <- get_objectkey(object)
tmp <- tempfile(fileext = ".rds")
on.exit(unlink(tmp))
r <- save_object(bucket = bucket, object = object, file = tmp, ...)
tryCatch(readRDS(tmp),
error = function(e) {
if (grepl("unknown input format", as.character(e), fixed = TRUE)) {
r <- readBin(tmp, "raw", n = 1e9, endian = "big")
unserialize(memDecompress(from = r, "gzip"))
} else {
stop(e)
}
}
)
} |
getAverageSpreadOf2SubpopClades<-function(tsneResults, pacman_results){
ClusterID<-NULL
l<-cbind(as.data.frame(tsneResults), pacman_results[,c(2,3)])
recurrentClades<-names(which(table(l[,3]) == 2))
l2<-l[(l[,3] %in% recurrentClades),]
clade_dist_record<-vector()
for(i in 1:length(recurrentClades)){
clade_subset<-subset(l2, ClusterID == recurrentClades[i])
clade_subset_info<-clade_subset[,c(3,4)]
clade_subset<-clade_subset[,c(1,2)]
clade_dist<-sqrt(sum(clade_subset[1,]-clade_subset[2,])^2)
clade_dist_record[i]<-clade_dist
}
avgDist<-mean(clade_dist_record)
return(avgDist)
} |
setMethod("cor.test", signature(x = "Nri"),
function(x, y, ...)
{
cor_apply_lh <- function(response, ...)
{
predictor <- get("predictor", envir= environment_apply)
t_res <- cor.test(x = predictor, y = response, ...)
return(c(t_res$p.value, t_res$estimate))
}
cor_apply_rh <- function(predictor, ...)
{
response <- get("response", envir= environment_apply)
t_res <- cor.test(x = predictor, y = response, ...)
return(c(t_res$p.value, t_res$estimate))
}
cor_apply_both <- function(xy, ...)
{
t_res <- cor.test(x = xy[1:(length(xy)/2)], y = xy[(length(xy)/2+1):length(xy)], ...)
return(c(t_res$p.value, t_res$estimate))
}
if (class(x)[1] == "Nri")
{
if (class(y)[1] == "Nri")
{
nri_response <- NA
for (i in 1:length(dim(x$nri)))
if (dim(x$nri)[i]!=dim(y$nri)[i])
stop("Dimensions of nri values in x and y differ")
} else {
nri_response <- FALSE
}
nri_data <- x
} else {
if (class(y)[1] == "Nri")
{
nri_response <- TRUE
nri_data <- y
} else {
stop("Could not determine which variable contains nri-values")
}
}
if (is.na(nri_response))
{
xy <- new("DistMat3D", values = c(x$nri, y$nri),
nlyr = dim(x$nri)[3] + dim(y$nri)[3],
ncol = dim(x$nri)[1])
res <- new("Nri", nri = xy, fwhm = x@fwhm,
wavelength = x@wavelength,
dimnames = list(Band_1 = x@dimnames[[1]],
Band_2 = x@dimnames[[1]],
Sample = c(x@dimnames[[1]],
y@dimnames[[1]])))
cor_data <- apply(xy, MARGIN = c(1, 2), FUN = cor_apply_both, ...)
} else {
if (nri_response)
{
res <- y
response <- y$nri
environment_apply <- new.env(parent = .GlobalEnv)
assign("predictor", x, environment_apply)
cor_data <- apply(response, MARGIN = c(1, 2), FUN = cor_apply_lh, ...)
} else {
res <- x
predictor <- x$nri
environment_apply <- new.env(parent = .GlobalEnv)
assign("response", y, environment_apply)
cor_data <- apply(predictor, MARGIN = c(1, 2), FUN = cor_apply_rh, ...)
}
}
final <- list(p.value = new("DistMat3D", values = cor_data[1,],
ncol = dim(x$nri)[1], nlyr = 1),
estimate = new("DistMat3D", values = cor_data[2,],
ncol = dim(x$nri)[1], nlyr = 1)
)
attr(final,"is.predictor.nri") <- nri_response
attr(final,"function") <- "cor.test"
res@multivariate <- final
return(res)
}
) |
.profitFerrerScale=function(mag=15, rout=3, a=1, b=1, axrat=1, box=0){
if(box!=0){Rbox=pi*(box+2)/(4*beta(1/(box+2),1+1/(box+2)))}else{Rbox=1}
lumtot = (a*beta(a,1+2/(2-b)))*rout^2 * pi *axrat/Rbox;
magtot = -2.5 * log10(lumtot)
return(1/(10^(0.4 * (mag - magtot))))
}
.profitFerrer=function(r=1, rout=3, a=1, b=1){
inten = (1-(r/rout)^(2-b))^a
inten[r>rout]=0
return(inten)
}
.profitFerrerXY=function(args=c(0,0), xcen=0, ycen=0, rout=3, a=1, b=1, ang=0, axrat=1, box=0){
rad=sqrt((args[1]-xcen)^2+(args[2]-ycen)^2);
angrad=-ang*pi/180
angmod=atan2((args[1]-xcen),(args[2]-ycen))-angrad;
xmod=rad*sin(angmod);
ymod=rad*cos(angmod);
xmod=xmod/axrat;
radmod=(abs(xmod)^(2+box)+abs(ymod)^(2+box))^(1/(2+box))
output=.profitFerrer(radmod, rout=rout, a=a, b=b)
return(output)
}
.profitFerrerExactSumPix=function(xpix=c(0,1), ypix=c(0,1), xcen=0, ycen=0, rout=3, a=1, b=1, ang=0, axrat=1, box=0, rel.tol=1e-3, abs.tol= 1e-10){
return(hcubature(.profitFerrerXY, lowerLimit=c(xpix[1],ypix[1]), upperLimit=c(xpix[2],ypix[2]), xcen=xcen, ycen=ycen, rout=rout, a=a, b=b, ang=ang, axrat=axrat, box=box, tol=rel.tol, absError=abs.tol)$integral)
}
profitRadialFerrer=function(r=1, mag=15, rout=3, a=1, b=1, ang=0, axrat=1, box=0){
return= .profitFerrer(r, rout=rout, a=a, b=b)*
.profitFerrerScale(mag=mag, rout=rout, a=a, b=b, axrat=axrat, box=box)
}
profitCubaFerrer=function(xcen=dim[1]/2, ycen=dim[2]/2, mag=15, rout=3, a=1, b=1, ang=0, axrat=1, box=0, dim=c(25,25), rel.tol=1e-3, abs.tol= 1e-10, plot=FALSE, ...){
if(length(dim)==1){dim=rep(dim,2)}
xpix=0:(dim[1]-1)
ypix=0:(dim[2]-1)
pixgrid=expand.grid(xpix,ypix)
pixval={}
for(i in 1:length(pixgrid[,1])){
pixval=c(pixval, .profitFerrerExactSumPix(c(pixgrid[i,1],pixgrid[i,1]+1), c(pixgrid[i,2],pixgrid[i,2]+1), xcen=xcen, ycen=ycen, rout=rout, a=a, b=b, ang=ang, axrat=axrat, box=box, rel.tol= rel.tol, abs.tol= abs.tol))
}
output=matrix(pixval*.profitFerrerScale(mag=mag, rout=rout, a=a, b=b, axrat=axrat, box=box),dim[1],dim[2])
if(plot){
magimage(output, ...)
}
return=output
} |
setClass(Class="Target", representation=representation(name="character"))
setMethod(
f="show",
signature="Target",
definition=function(object) cat(sprintf("<object of class %s>\n", class(object)))
) |
locofmax<-function(pcf)
{
d<-length(pcf$N)
step<-matrix(0,d,1)
for (i in 1:d){
step[i]<-(pcf$support[2*i]-pcf$support[2*i-1])/pcf$N[i]
}
nod<-which.max(pcf$value)
lowi<-matrix(0,d,1)
uppi<-matrix(0,d,1)
for (jj in 1:d){
lowi[jj]<-pcf$support[2*jj-1]+step[jj]*(pcf$down[nod,jj])
uppi[jj]<-pcf$support[2*jj-1]+step[jj]*pcf$high[nod,jj]
}
baryc<-lowi+(uppi-lowi)/2
return(baryc)
} |
require(OpenMx)
model <- mxModel('model')
obsData <- matrix(c(1:10), 10, 1)
data <- mxData(obsData, "raw")
chol <- mxMatrix("Full", 2, 2, c(T,T,F,T), c(1,.2,0,1), name="Chol")
expCov <- mxAlgebra(Chol %*% t(Chol), name="expCov")
expMean <- mxMatrix("Full", 1, 2, T, c(0,0), "expMean")
objective <- mxExpectationNormal("expCov", "expMean")
foo <- mxMatrix('Full', 1, 1, name = 'foo')
bar <- mxMatrix('Full', 10, 1, name = 'bar')
model <- mxModel(model, data, chol, expCov, expMean, objective, foo, bar, mxFitFunctionML())
omxCheckIdentical(mxEval(objective + foo, model, TRUE), matrix(as.numeric(NA), 1, 1))
objective <- mxExpectationNormal("expCov", "expMean")
model <- mxModel(model, objective, mxFitFunctionML(vector = TRUE))
omxCheckIdentical(mxEval(objective + bar, model, TRUE), matrix(as.numeric(NA), 10, 1)) |
library(hamcrest)
Sys.setlocale('LC_COLLATE', 'C')
as.vector.foo <- function(...) 41L
as.vector.foo <- function(...) 99
Math.bar <- function(...) 44
Summary.bar <- function(...) 45
Ops.bar <- function(...) 46
test.as.vector.1 <- function() assertThat(as.vector(NULL), identicalTo(NULL))
test.as.vector.2 <- function() assertThat(as.vector(logical(0)), identicalTo(logical(0)))
test.as.vector.3 <- function() assertThat(as.vector(c(TRUE, TRUE, FALSE, FALSE, TRUE)), identicalTo(c(TRUE, TRUE, FALSE, FALSE, TRUE)))
test.as.vector.4 <- function() assertThat(as.vector(structure(c(TRUE, FALSE), .Names = c("a", ""))), identicalTo(c(TRUE, FALSE)))
test.as.vector.5 <- function() assertThat(as.vector(c(TRUE, FALSE, NA)), identicalTo(c(TRUE, FALSE, NA)))
test.as.vector.6 <- function() assertThat(as.vector(integer(0)), identicalTo(integer(0)))
test.as.vector.7 <- function() assertThat(as.vector(structure(integer(0), .Names = character(0))), identicalTo(integer(0)))
test.as.vector.8 <- function() assertThat(as.vector(1:3), identicalTo(1:3))
test.as.vector.9 <- function() assertThat(as.vector(c(1L, NA, 4L, NA, 999L)), identicalTo(c(1L, NA, 4L, NA, 999L)))
test.as.vector.10 <- function() assertThat(as.vector(c(1L, 2L, 1073741824L, 1073741824L)), identicalTo(c(1L, 2L, 1073741824L, 1073741824L)))
test.as.vector.11 <- function() assertThat(as.vector(numeric(0)), identicalTo(numeric(0)))
test.as.vector.12 <- function() assertThat(as.vector(c(3.14159, 6.28319, 9.42478, 12.5664, 15.708)), identicalTo(c(3.14159, 6.28319, 9.42478, 12.5664, 15.708), tol = 0.000100))
test.as.vector.13 <- function() assertThat(as.vector(c(-3.14159, -6.28319, -9.42478, -12.5664, -15.708)), identicalTo(c(-3.14159, -6.28319, -9.42478, -12.5664, -15.708), tol = 0.000100))
test.as.vector.14 <- function() assertThat(as.vector(structure(1:2, .Names = c("a", "b"))), identicalTo(1:2))
test.as.vector.15 <- function() assertThat(as.vector(structure(c(1.5, 2.5), .Names = c("a", "b"))), identicalTo(c(1.5, 2.5), tol = 0.000100))
test.as.vector.16 <- function() assertThat(as.vector(c(1.5, 1.51, 0, 1.49, -30)), identicalTo(c(1.5, 1.51, 0, 1.49, -30), tol = 0.000100))
test.as.vector.17 <- function() assertThat(as.vector(c(1.5, 1.51, 0, 1.49, -30, NA)), identicalTo(c(1.5, 1.51, 0, 1.49, -30, NA), tol = 0.000100))
test.as.vector.18 <- function() assertThat(as.vector(c(1.5, 1.51, 0, 1.49, -30, NaN)), identicalTo(c(1.5, 1.51, 0, 1.49, -30, NaN), tol = 0.000100))
test.as.vector.19 <- function() assertThat(as.vector(c(1.5, 1.51, 0, 1.49, -30, Inf)), identicalTo(c(1.5, 1.51, 0, 1.49, -30, Inf), tol = 0.000100))
test.as.vector.20 <- function() assertThat(as.vector(c(1.5, 1.51, 0, 1.49, -30, -Inf)), identicalTo(c(1.5, 1.51, 0, 1.49, -30, -Inf), tol = 0.000100))
test.as.vector.21 <- function() assertThat(as.vector(character(0)), identicalTo(character(0)))
test.as.vector.22 <- function() assertThat(as.vector(c("4.1", "blahh", "99.9", "-413", NA)), identicalTo(c("4.1", "blahh", "99.9", "-413", NA)))
test.as.vector.23 <- function() assertThat(as.vector(complex(0)), identicalTo(complex(0)))
test.as.vector.24 <- function() assertThat(as.vector(list(1, 2, 3)), identicalTo(list(1, 2, 3)))
test.as.vector.25 <- function() assertThat(as.vector(list(1, 2, NULL)), identicalTo(list(1, 2, NULL)))
test.as.vector.26 <- function() assertThat(as.vector(list(1L, 2L, 3L)), identicalTo(list(1L, 2L, 3L)))
test.as.vector.27 <- function() assertThat(as.vector(list(1L, 2L, NULL)), identicalTo(list(1L, 2L, NULL)))
test.as.vector.28 <- function() assertThat(as.vector(list(1, 2, list(3, 4))), identicalTo(list(1, 2, list(3, 4))))
test.as.vector.29 <- function() assertThat(as.vector(list(1, 2, numeric(0))), identicalTo(list(1, 2, numeric(0))))
test.as.vector.30 <- function() assertThat(as.vector(list(3, "a", structure(list("b", z = list(TRUE, "c")), .Names = c("", "z")))), identicalTo(list(3, "a", structure(list("b", z = list(TRUE, "c")), .Names = c("", "z")))))
test.as.vector.31 <- function() assertThat(as.vector(structure(list(`NA` = 1, 2, b = 3), .Names = c(NA, "", "b"))), identicalTo(structure(list("NA" = 1, 2, b = 3), .Names = c(NA, "", "b"))))
test.as.vector.32 <- function() assertThat(as.vector(pairlist(41, "a", 21L)), identicalTo(pairlist(41, "a", 21L)))
test.as.vector.33 <- function() assertThat(as.vector(pairlist(a = 41, 42)), identicalTo(pairlist(a = 41, 42)))
test.as.vector.34 <- function() assertThat(as.vector(pairlist(a = 41, NULL)), identicalTo(pairlist(a = 41, NULL)))
test.as.vector.35 <- function() assertThat(as.vector(structure(1:12, .Dim = 3:4)), identicalTo(1:12))
test.as.vector.36 <- function() assertThat(as.vector(structure(1:12, .Dim = 3:4, .Dimnames = structure(list( x = c("a", "b", "c"), y = c("d", "e", "f", "g")), .Names = c("x", "y")))), identicalTo(1:12))
test.as.vector.37 <- function() assertThat(as.vector(structure(1:3, rando.attrib = 941L)), identicalTo(1:3))
test.as.vector.38 <- function() assertThat(as.vector(structure(1:3, .Dim = 3L, .Dimnames = list(c("a", "b", "c")))), identicalTo(1:3))
test.as.vector.39 <- function() assertThat(as.vector(structure(1:3, .Dim = 3L, .Dimnames = structure(list( z = c("a", "b", "c")), .Names = "z"))), identicalTo(1:3))
test.as.vector.40 <- function() assertThat(as.vector(structure(list("foo"), class = "foo")), identicalTo(99))
test.as.vector.41 <- function() assertThat(as.vector(structure(list("bar"), class = "foo")), identicalTo(99))
test.as.vector.42 <- function() assertThat(as.vector(quote(xyz)), throwsError())
test.as.vector.43 <- function() assertThat(as.vector(quote(sin(3.14))), deparsesTo("sin(3.14)"))
test.as.vector.44 <- function() assertThat(as.vector("NaN"), identicalTo("NaN"))
test.as.vector.45 <- function() assertThat(as.vector("NABOOM!"), identicalTo("NABOOM!"))
test.as.vector.46 <- function() assertThat(as.vector("NaNaNabooboo"), identicalTo("NaNaNabooboo"))
test.as.vector.47 <- function() assertThat(as.vector("-Inf"), identicalTo("-Inf"))
test.as.vector.48 <- function() assertThat(as.vector("+Infinity"), identicalTo("+Infinity"))
test.as.vector.49 <- function() assertThat(as.vector("Infinity and beyond!"), identicalTo("Infinity and beyond!"))
test.as.vector.50 <- function() assertThat(as.vector("Infi"), identicalTo("Infi"))
test.as.vector.51 <- function() assertThat(as.vector("0.03f"), identicalTo("0.03f"))
test.as.vector.52 <- function() assertThat(as.vector(" 0.0330 "), identicalTo(" 0.0330 "))
test.as.vector.53 <- function() assertThat(as.vector(structure("foo", class = "foo")), identicalTo(99))
test.as.vector.54 <- function() assertThat(as.vector(structure(list(1L, "bar"), class = "bar")), identicalTo(structure(list(1L, "bar"), class = "bar")))
test.as.vector.55 <- function() assertThat(as.vector(NULL, mode = "any"), identicalTo(NULL))
test.as.vector.56 <- function() assertThat(as.vector(NULL, mode = "logical"), identicalTo(logical(0)))
test.as.vector.57 <- function() assertThat(as.vector(NULL, mode = "integer"), identicalTo(integer(0)))
test.as.vector.58 <- function() assertThat(as.vector(NULL, mode = "numeric"), identicalTo(numeric(0)))
test.as.vector.59 <- function() assertThat(as.vector(NULL, mode = "double"), identicalTo(numeric(0)))
test.as.vector.60 <- function() assertThat(as.vector(NULL, mode = "complex"), identicalTo(complex(0)))
test.as.vector.61 <- function() assertThat(as.vector(NULL, mode = "raw"), identicalTo(raw(0)))
test.as.vector.62 <- function() assertThat(as.vector(NULL, mode = "character"), identicalTo(character(0)))
test.as.vector.63 <- function() assertThat(as.vector(NULL, mode = "list"), identicalTo(list()))
test.as.vector.64 <- function() assertThat(as.vector(NULL, mode = "expression"), deparsesTo("expression(NULL)"))
test.as.vector.65 <- function() assertThat(as.vector(NULL, mode = "rubish"), throwsError())
test.as.vector.66 <- function() assertThat(as.vector(NULL, mode = NA_character_), throwsError())
test.as.vector.67 <- function() assertThat(as.vector(logical(0), mode = "any"), identicalTo(logical(0)))
test.as.vector.68 <- function() assertThat(as.vector(logical(0), mode = "logical"), identicalTo(logical(0)))
test.as.vector.69 <- function() assertThat(as.vector(logical(0), mode = "integer"), identicalTo(integer(0)))
test.as.vector.70 <- function() assertThat(as.vector(logical(0), mode = "numeric"), identicalTo(numeric(0)))
test.as.vector.71 <- function() assertThat(as.vector(logical(0), mode = "double"), identicalTo(numeric(0)))
test.as.vector.72 <- function() assertThat(as.vector(logical(0), mode = "complex"), identicalTo(complex(0)))
test.as.vector.73 <- function() assertThat(as.vector(logical(0), mode = "raw"), identicalTo(raw(0)))
test.as.vector.74 <- function() assertThat(as.vector(logical(0), mode = "character"), identicalTo(character(0)))
test.as.vector.75 <- function() assertThat(as.vector(logical(0), mode = "list"), identicalTo(list()))
test.as.vector.76 <- function() assertThat(as.vector(logical(0), mode = "expression"), deparsesTo("expression()"))
test.as.vector.77 <- function() assertThat(as.vector(logical(0), mode = "rubish"), throwsError())
test.as.vector.78 <- function() assertThat(as.vector(logical(0), mode = NA_character_), throwsError())
test.as.vector.79 <- function() assertThat(as.vector(c(TRUE, TRUE, FALSE, FALSE, TRUE), mode = "any"), identicalTo(c(TRUE, TRUE, FALSE, FALSE, TRUE)))
test.as.vector.80 <- function() assertThat(as.vector(c(TRUE, TRUE, FALSE, FALSE, TRUE), mode = "logical"), identicalTo(c(TRUE, TRUE, FALSE, FALSE, TRUE)))
test.as.vector.81 <- function() assertThat(as.vector(c(TRUE, TRUE, FALSE, FALSE, TRUE), mode = "integer"), identicalTo(c(1L, 1L, 0L, 0L, 1L)))
test.as.vector.82 <- function() assertThat(as.vector(c(TRUE, TRUE, FALSE, FALSE, TRUE), mode = "numeric"), identicalTo(c(1, 1, 0, 0, 1)))
test.as.vector.83 <- function() assertThat(as.vector(c(TRUE, TRUE, FALSE, FALSE, TRUE), mode = "double"), identicalTo(c(1, 1, 0, 0, 1)))
test.as.vector.84 <- function() assertThat(as.vector(c(TRUE, TRUE, FALSE, FALSE, TRUE), mode = "complex"), identicalTo(c(1+0i, 1+0i, 0+0i, 0+0i, 1+0i)))
test.as.vector.85 <- function() assertThat(as.vector(c(TRUE, TRUE, FALSE, FALSE, TRUE), mode = "raw"), identicalTo(as.raw(c(0x01, 0x01, 0x00, 0x00, 0x01))))
test.as.vector.86 <- function() assertThat(as.vector(c(TRUE, TRUE, FALSE, FALSE, TRUE), mode = "character"), identicalTo(c("TRUE", "TRUE", "FALSE", "FALSE", "TRUE")))
test.as.vector.87 <- function() assertThat(as.vector(c(TRUE, TRUE, FALSE, FALSE, TRUE), mode = "list"), identicalTo(list(TRUE, TRUE, FALSE, FALSE, TRUE)))
test.as.vector.88 <- function() assertThat(as.vector(c(TRUE, TRUE, FALSE, FALSE, TRUE), mode = "expression"), deparsesTo("expression(TRUE, TRUE, FALSE, FALSE, TRUE)"))
test.as.vector.89 <- function() assertThat(as.vector(c(TRUE, TRUE, FALSE, FALSE, TRUE), mode = "rubish"), throwsError())
test.as.vector.90 <- function() assertThat(as.vector(c(TRUE, TRUE, FALSE, FALSE, TRUE), mode = NA_character_), throwsError())
test.as.vector.91 <- function() assertThat(as.vector(structure(c(TRUE, FALSE), .Names = c("a", "")), mode = "any"), identicalTo(c(TRUE, FALSE)))
test.as.vector.92 <- function() assertThat(as.vector(structure(c(TRUE, FALSE), .Names = c("a", "")), mode = "logical"), identicalTo(c(TRUE, FALSE)))
test.as.vector.93 <- function() assertThat(as.vector(structure(c(TRUE, FALSE), .Names = c("a", "")), mode = "integer"), identicalTo(c(1L, 0L)))
test.as.vector.94 <- function() assertThat(as.vector(structure(c(TRUE, FALSE), .Names = c("a", "")), mode = "numeric"), identicalTo(c(1, 0)))
test.as.vector.95 <- function() assertThat(as.vector(structure(c(TRUE, FALSE), .Names = c("a", "")), mode = "double"), identicalTo(c(1, 0)))
test.as.vector.96 <- function() assertThat(as.vector(structure(c(TRUE, FALSE), .Names = c("a", "")), mode = "complex"), identicalTo(c(1+0i, 0+0i)))
test.as.vector.97 <- function() assertThat(as.vector(structure(c(TRUE, FALSE), .Names = c("a", "")), mode = "raw"), identicalTo(as.raw(c(0x01, 0x00))))
test.as.vector.98 <- function() assertThat(as.vector(structure(c(TRUE, FALSE), .Names = c("a", "")), mode = "character"), identicalTo(c("TRUE", "FALSE")))
test.as.vector.99 <- function() assertThat(as.vector(structure(c(TRUE, FALSE), .Names = c("a", "")), mode = "list"), identicalTo(structure(list(a = TRUE, FALSE), .Names = c("a", ""))))
test.as.vector.100 <- function() assertThat(as.vector(structure(c(TRUE, FALSE), .Names = c("a", "")), mode = "expression"), deparsesTo("expression(TRUE, FALSE)"))
test.as.vector.101 <- function() assertThat(as.vector(structure(c(TRUE, FALSE), .Names = c("a", "")), mode = "rubish"), throwsError())
test.as.vector.102 <- function() assertThat(as.vector(structure(c(TRUE, FALSE), .Names = c("a", "")), mode = NA_character_), throwsError())
test.as.vector.103 <- function() assertThat(as.vector(c(TRUE, FALSE, NA), mode = "any"), identicalTo(c(TRUE, FALSE, NA)))
test.as.vector.104 <- function() assertThat(as.vector(c(TRUE, FALSE, NA), mode = "logical"), identicalTo(c(TRUE, FALSE, NA)))
test.as.vector.105 <- function() assertThat(as.vector(c(TRUE, FALSE, NA), mode = "integer"), identicalTo(c(1L, 0L, NA)))
test.as.vector.106 <- function() assertThat(as.vector(c(TRUE, FALSE, NA), mode = "numeric"), identicalTo(c(1, 0, NA)))
test.as.vector.107 <- function() assertThat(as.vector(c(TRUE, FALSE, NA), mode = "double"), identicalTo(c(1, 0, NA)))
test.as.vector.108 <- function() assertThat(as.vector(c(TRUE, FALSE, NA), mode = "complex"), identicalTo(c(1+0i, 0+0i, NA)))
test.as.vector.109 <- function() assertThat(as.vector(c(TRUE, FALSE, NA), mode = "raw"), identicalTo(as.raw(c(0x01, 0x00, 0x00))))
test.as.vector.110 <- function() assertThat(as.vector(c(TRUE, FALSE, NA), mode = "character"), identicalTo(c("TRUE", "FALSE", NA)))
test.as.vector.111 <- function() assertThat(as.vector(c(TRUE, FALSE, NA), mode = "list"), identicalTo(list(TRUE, FALSE, NA)))
test.as.vector.112 <- function() assertThat(as.vector(c(TRUE, FALSE, NA), mode = "expression"), deparsesTo("expression(TRUE, FALSE, NA)"))
test.as.vector.113 <- function() assertThat(as.vector(c(TRUE, FALSE, NA), mode = "rubish"), throwsError())
test.as.vector.114 <- function() assertThat(as.vector(c(TRUE, FALSE, NA), mode = NA_character_), throwsError())
test.as.vector.115 <- function() assertThat(as.vector(integer(0), mode = "any"), identicalTo(integer(0)))
test.as.vector.116 <- function() assertThat(as.vector(integer(0), mode = "logical"), identicalTo(logical(0)))
test.as.vector.117 <- function() assertThat(as.vector(integer(0), mode = "integer"), identicalTo(integer(0)))
test.as.vector.118 <- function() assertThat(as.vector(integer(0), mode = "numeric"), identicalTo(numeric(0)))
test.as.vector.119 <- function() assertThat(as.vector(integer(0), mode = "double"), identicalTo(numeric(0)))
test.as.vector.120 <- function() assertThat(as.vector(integer(0), mode = "complex"), identicalTo(complex(0)))
test.as.vector.121 <- function() assertThat(as.vector(integer(0), mode = "raw"), identicalTo(raw(0)))
test.as.vector.122 <- function() assertThat(as.vector(integer(0), mode = "character"), identicalTo(character(0)))
test.as.vector.123 <- function() assertThat(as.vector(integer(0), mode = "list"), identicalTo(list()))
test.as.vector.124 <- function() assertThat(as.vector(integer(0), mode = "expression"), deparsesTo("expression()"))
test.as.vector.125 <- function() assertThat(as.vector(integer(0), mode = "rubish"), throwsError())
test.as.vector.126 <- function() assertThat(as.vector(integer(0), mode = NA_character_), throwsError())
test.as.vector.127 <- function() assertThat(as.vector(structure(integer(0), .Names = character(0)), mode = "any"), identicalTo(integer(0)))
test.as.vector.128 <- function() assertThat(as.vector(structure(integer(0), .Names = character(0)), mode = "logical"), identicalTo(logical(0)))
test.as.vector.129 <- function() assertThat(as.vector(structure(integer(0), .Names = character(0)), mode = "integer"), identicalTo(integer(0)))
test.as.vector.130 <- function() assertThat(as.vector(structure(integer(0), .Names = character(0)), mode = "numeric"), identicalTo(numeric(0)))
test.as.vector.131 <- function() assertThat(as.vector(structure(integer(0), .Names = character(0)), mode = "double"), identicalTo(numeric(0)))
test.as.vector.132 <- function() assertThat(as.vector(structure(integer(0), .Names = character(0)), mode = "complex"), identicalTo(complex(0)))
test.as.vector.133 <- function() assertThat(as.vector(structure(integer(0), .Names = character(0)), mode = "raw"), identicalTo(raw(0)))
test.as.vector.134 <- function() assertThat(as.vector(structure(integer(0), .Names = character(0)), mode = "character"), identicalTo(character(0)))
test.as.vector.135 <- function() assertThat(as.vector(structure(integer(0), .Names = character(0)), mode = "list"), identicalTo(structure(list(), .Names = character(0))))
test.as.vector.136 <- function() assertThat(as.vector(structure(integer(0), .Names = character(0)), mode = "expression"), deparsesTo("expression()"))
test.as.vector.137 <- function() assertThat(as.vector(structure(integer(0), .Names = character(0)), mode = "rubish"), throwsError())
test.as.vector.138 <- function() assertThat(as.vector(structure(integer(0), .Names = character(0)), mode = NA_character_), throwsError())
test.as.vector.139 <- function() assertThat(as.vector(1:3, mode = "any"), identicalTo(1:3))
test.as.vector.140 <- function() assertThat(as.vector(1:3, mode = "logical"), identicalTo(c(TRUE, TRUE, TRUE)))
test.as.vector.141 <- function() assertThat(as.vector(1:3, mode = "integer"), identicalTo(1:3))
test.as.vector.142 <- function() assertThat(as.vector(1:3, mode = "numeric"), identicalTo(c(1, 2, 3)))
test.as.vector.143 <- function() assertThat(as.vector(1:3, mode = "double"), identicalTo(c(1, 2, 3)))
test.as.vector.144 <- function() assertThat(as.vector(1:3, mode = "complex"), identicalTo(c(1+0i, 2+0i, 3+0i)))
test.as.vector.145 <- function() assertThat(as.vector(1:3, mode = "raw"), identicalTo(as.raw(c(0x01, 0x02, 0x03))))
test.as.vector.146 <- function() assertThat(as.vector(1:3, mode = "character"), identicalTo(c("1", "2", "3")))
test.as.vector.147 <- function() assertThat(as.vector(1:3, mode = "list"), identicalTo(list(1L, 2L, 3L)))
test.as.vector.148 <- function() assertThat(as.vector(1:3, mode = "expression"), deparsesTo("expression(1L, 2L, 3L)"))
test.as.vector.149 <- function() assertThat(as.vector(1:3, mode = "rubish"), throwsError())
test.as.vector.150 <- function() assertThat(as.vector(1:3, mode = NA_character_), throwsError())
test.as.vector.151 <- function() assertThat(as.vector(c(1L, NA, 4L, NA, 999L), mode = "any"), identicalTo(c(1L, NA, 4L, NA, 999L)))
test.as.vector.152 <- function() assertThat(as.vector(c(1L, NA, 4L, NA, 999L), mode = "logical"), identicalTo(c(TRUE, NA, TRUE, NA, TRUE)))
test.as.vector.153 <- function() assertThat(as.vector(c(1L, NA, 4L, NA, 999L), mode = "integer"), identicalTo(c(1L, NA, 4L, NA, 999L)))
test.as.vector.154 <- function() assertThat(as.vector(c(1L, NA, 4L, NA, 999L), mode = "numeric"), identicalTo(c(1, NA, 4, NA, 999)))
test.as.vector.155 <- function() assertThat(as.vector(c(1L, NA, 4L, NA, 999L), mode = "double"), identicalTo(c(1, NA, 4, NA, 999)))
test.as.vector.156 <- function() assertThat(as.vector(c(1L, NA, 4L, NA, 999L), mode = "complex"), identicalTo(c(1+0i, NA, 4+0i, NA, 999+0i)))
test.as.vector.157 <- function() assertThat(as.vector(c(1L, NA, 4L, NA, 999L), mode = "raw"), identicalTo(as.raw(c(0x01, 0x00, 0x04, 0x00, 0x00))))
test.as.vector.158 <- function() assertThat(as.vector(c(1L, NA, 4L, NA, 999L), mode = "character"), identicalTo(c("1", NA, "4", NA, "999")))
test.as.vector.159 <- function() assertThat(as.vector(c(1L, NA, 4L, NA, 999L), mode = "list"), identicalTo(list(1L, NA_integer_, 4L, NA_integer_, 999L)))
test.as.vector.160 <- function() assertThat(as.vector(c(1L, NA, 4L, NA, 999L), mode = "expression"), deparsesTo("expression(1L, NA_integer_, 4L, NA_integer_, 999L)"))
test.as.vector.161 <- function() assertThat(as.vector(c(1L, NA, 4L, NA, 999L), mode = "rubish"), throwsError())
test.as.vector.162 <- function() assertThat(as.vector(c(1L, NA, 4L, NA, 999L), mode = NA_character_), throwsError())
test.as.vector.163 <- function() assertThat(as.vector(c(1L, 2L, 1073741824L, 1073741824L), mode = "any"), identicalTo(c(1L, 2L, 1073741824L, 1073741824L)))
test.as.vector.164 <- function() assertThat(as.vector(c(1L, 2L, 1073741824L, 1073741824L), mode = "logical"), identicalTo(c(TRUE, TRUE, TRUE, TRUE)))
test.as.vector.165 <- function() assertThat(as.vector(c(1L, 2L, 1073741824L, 1073741824L), mode = "integer"), identicalTo(c(1L, 2L, 1073741824L, 1073741824L)))
test.as.vector.166 <- function() assertThat(as.vector(c(1L, 2L, 1073741824L, 1073741824L), mode = "numeric"), identicalTo(c(1, 2, 1073741824, 1073741824), tol = 0.000100))
test.as.vector.167 <- function() assertThat(as.vector(c(1L, 2L, 1073741824L, 1073741824L), mode = "double"), identicalTo(c(1, 2, 1073741824, 1073741824), tol = 0.000100))
test.as.vector.168 <- function() assertThat(as.vector(c(1L, 2L, 1073741824L, 1073741824L), mode = "complex"), identicalTo(c(1+0i, 2+0i, 1073741824+0i, 1073741824+0i)))
test.as.vector.169 <- function() assertThat(as.vector(c(1L, 2L, 1073741824L, 1073741824L), mode = "raw"), identicalTo(as.raw(c(0x01, 0x02, 0x00, 0x00))))
test.as.vector.170 <- function() assertThat(as.vector(c(1L, 2L, 1073741824L, 1073741824L), mode = "character"), identicalTo(c("1", "2", "1073741824", "1073741824")))
test.as.vector.171 <- function() assertThat(as.vector(c(1L, 2L, 1073741824L, 1073741824L), mode = "list"), identicalTo(list(1L, 2L, 1073741824L, 1073741824L)))
test.as.vector.172 <- function() assertThat(as.vector(c(1L, 2L, 1073741824L, 1073741824L), mode = "expression"), deparsesTo("expression(1L, 2L, 1073741824L, 1073741824L)"))
test.as.vector.173 <- function() assertThat(as.vector(c(1L, 2L, 1073741824L, 1073741824L), mode = "rubish"), throwsError())
test.as.vector.174 <- function() assertThat(as.vector(c(1L, 2L, 1073741824L, 1073741824L), mode = NA_character_), throwsError())
test.as.vector.175 <- function() assertThat(as.vector(numeric(0), mode = "any"), identicalTo(numeric(0)))
test.as.vector.176 <- function() assertThat(as.vector(numeric(0), mode = "logical"), identicalTo(logical(0)))
test.as.vector.177 <- function() assertThat(as.vector(numeric(0), mode = "integer"), identicalTo(integer(0)))
test.as.vector.178 <- function() assertThat(as.vector(numeric(0), mode = "numeric"), identicalTo(numeric(0)))
test.as.vector.179 <- function() assertThat(as.vector(numeric(0), mode = "double"), identicalTo(numeric(0)))
test.as.vector.180 <- function() assertThat(as.vector(numeric(0), mode = "complex"), identicalTo(complex(0)))
test.as.vector.181 <- function() assertThat(as.vector(numeric(0), mode = "raw"), identicalTo(raw(0)))
test.as.vector.182 <- function() assertThat(as.vector(numeric(0), mode = "character"), identicalTo(character(0)))
test.as.vector.183 <- function() assertThat(as.vector(numeric(0), mode = "list"), identicalTo(list()))
test.as.vector.184 <- function() assertThat(as.vector(numeric(0), mode = "expression"), deparsesTo("expression()"))
test.as.vector.185 <- function() assertThat(as.vector(numeric(0), mode = "rubish"), throwsError())
test.as.vector.186 <- function() assertThat(as.vector(numeric(0), mode = NA_character_), throwsError())
test.as.vector.187 <- function() assertThat(as.vector(c(3.14159, 6.28319, 9.42478, 12.5664, 15.708), mode = "any"), identicalTo(c(3.14159, 6.28319, 9.42478, 12.5664, 15.708), tol = 0.000100))
test.as.vector.188 <- function() assertThat(as.vector(c(3.14159, 6.28319, 9.42478, 12.5664, 15.708), mode = "logical"), identicalTo(c(TRUE, TRUE, TRUE, TRUE, TRUE)))
test.as.vector.189 <- function() assertThat(as.vector(c(3.14159, 6.28319, 9.42478, 12.5664, 15.708), mode = "integer"), identicalTo(c(3L, 6L, 9L, 12L, 15L)))
test.as.vector.190 <- function() assertThat(as.vector(c(3.14159, 6.28319, 9.42478, 12.5664, 15.708), mode = "numeric"), identicalTo(c(3.14159, 6.28319, 9.42478, 12.5664, 15.708), tol = 0.000100))
test.as.vector.191 <- function() assertThat(as.vector(c(3.14159, 6.28319, 9.42478, 12.5664, 15.708), mode = "double"), identicalTo(c(3.14159, 6.28319, 9.42478, 12.5664, 15.708), tol = 0.000100))
test.as.vector.192 <- function() assertThat(as.vector(c(3.14159, 6.28319, 9.42478, 12.5664, 15.708), mode = "complex"), identicalTo(c(3.14159+0i, 6.28319+0i, 9.42478+0i, 12.5664+0i, 15.708+0i)))
test.as.vector.193 <- function() assertThat(as.vector(c(3.14159, 6.28319, 9.42478, 12.5664, 15.708), mode = "raw"), identicalTo(as.raw(c(0x03, 0x06, 0x09, 0x0c, 0x0f))))
test.as.vector.194 <- function() assertThat(as.vector(c(3.14159, 6.28319, 9.42478, 12.5664, 15.708), mode = "character"), identicalTo(c("3.14159", "6.28319", "9.42478", "12.5664", "15.708")))
test.as.vector.195 <- function() assertThat(as.vector(c(3.14159, 6.28319, 9.42478, 12.5664, 15.708), mode = "list"), identicalTo(list(3.14159, 6.28319, 9.42478, 12.5664, 15.708)))
test.as.vector.196 <- function() assertThat(as.vector(c(3.14159, 6.28319, 9.42478, 12.5664, 15.708), mode = "expression"), deparsesTo("expression(3.14159, 6.28319, 9.42478, 12.5664, 15.708)"))
test.as.vector.197 <- function() assertThat(as.vector(c(3.14159, 6.28319, 9.42478, 12.5664, 15.708), mode = "rubish"), throwsError())
test.as.vector.198 <- function() assertThat(as.vector(c(3.14159, 6.28319, 9.42478, 12.5664, 15.708), mode = NA_character_), throwsError())
test.as.vector.199 <- function() assertThat(as.vector(c(-3.14159, -6.28319, -9.42478, -12.5664, -15.708), mode = "any"), identicalTo(c(-3.14159, -6.28319, -9.42478, -12.5664, -15.708), tol = 0.000100))
test.as.vector.200 <- function() assertThat(as.vector(c(-3.14159, -6.28319, -9.42478, -12.5664, -15.708), mode = "logical"), identicalTo(c(TRUE, TRUE, TRUE, TRUE, TRUE)))
test.as.vector.201 <- function() assertThat(as.vector(c(-3.14159, -6.28319, -9.42478, -12.5664, -15.708), mode = "integer"), identicalTo(c(-3L, -6L, -9L, -12L, -15L)))
test.as.vector.202 <- function() assertThat(as.vector(c(-3.14159, -6.28319, -9.42478, -12.5664, -15.708), mode = "numeric"), identicalTo(c(-3.14159, -6.28319, -9.42478, -12.5664, -15.708), tol = 0.000100))
test.as.vector.203 <- function() assertThat(as.vector(c(-3.14159, -6.28319, -9.42478, -12.5664, -15.708), mode = "double"), identicalTo(c(-3.14159, -6.28319, -9.42478, -12.5664, -15.708), tol = 0.000100))
test.as.vector.204 <- function() assertThat(as.vector(c(-3.14159, -6.28319, -9.42478, -12.5664, -15.708), mode = "complex"), identicalTo(c(-3.14159+0i, -6.28319+0i, -9.42478+0i, -12.5664+0i, -15.708+0i)))
test.as.vector.205 <- function() assertThat(as.vector(c(-3.14159, -6.28319, -9.42478, -12.5664, -15.708), mode = "raw"), identicalTo(as.raw(c(0x00, 0x00, 0x00, 0x00, 0x00))))
test.as.vector.206 <- function() assertThat(as.vector(c(-3.14159, -6.28319, -9.42478, -12.5664, -15.708), mode = "character"), identicalTo(c("-3.14159", "-6.28319", "-9.42478", "-12.5664", "-15.708")))
test.as.vector.207 <- function() assertThat(as.vector(c(-3.14159, -6.28319, -9.42478, -12.5664, -15.708), mode = "list"), identicalTo(list(-3.14159, -6.28319, -9.42478, -12.5664, -15.708)))
test.as.vector.208 <- function() assertThat(as.vector(c(-3.14159, -6.28319, -9.42478, -12.5664, -15.708), mode = "expression"), deparsesTo("expression(-3.14159, -6.28319, -9.42478, -12.5664, -15.708)"))
test.as.vector.209 <- function() assertThat(as.vector(c(-3.14159, -6.28319, -9.42478, -12.5664, -15.708), mode = "rubish"), throwsError())
test.as.vector.210 <- function() assertThat(as.vector(c(-3.14159, -6.28319, -9.42478, -12.5664, -15.708), mode = NA_character_), throwsError())
test.as.vector.211 <- function() assertThat(as.vector(structure(1:2, .Names = c("a", "b")), mode = "any"), identicalTo(1:2))
test.as.vector.212 <- function() assertThat(as.vector(structure(1:2, .Names = c("a", "b")), mode = "logical"), identicalTo(c(TRUE, TRUE)))
test.as.vector.213 <- function() assertThat(as.vector(structure(1:2, .Names = c("a", "b")), mode = "integer"), identicalTo(1:2))
test.as.vector.214 <- function() assertThat(as.vector(structure(1:2, .Names = c("a", "b")), mode = "numeric"), identicalTo(c(1, 2)))
test.as.vector.215 <- function() assertThat(as.vector(structure(1:2, .Names = c("a", "b")), mode = "double"), identicalTo(c(1, 2)))
test.as.vector.216 <- function() assertThat(as.vector(structure(1:2, .Names = c("a", "b")), mode = "complex"), identicalTo(c(1+0i, 2+0i)))
test.as.vector.217 <- function() assertThat(as.vector(structure(1:2, .Names = c("a", "b")), mode = "raw"), identicalTo(as.raw(c(0x01, 0x02))))
test.as.vector.218 <- function() assertThat(as.vector(structure(1:2, .Names = c("a", "b")), mode = "character"), identicalTo(c("1", "2")))
test.as.vector.219 <- function() assertThat(as.vector(structure(1:2, .Names = c("a", "b")), mode = "list"), identicalTo(structure(list(a = 1L, b = 2L), .Names = c("a", "b"))))
test.as.vector.220 <- function() assertThat(as.vector(structure(1:2, .Names = c("a", "b")), mode = "expression"), deparsesTo("expression(1L, 2L)"))
test.as.vector.221 <- function() assertThat(as.vector(structure(1:2, .Names = c("a", "b")), mode = "rubish"), throwsError())
test.as.vector.222 <- function() assertThat(as.vector(structure(1:2, .Names = c("a", "b")), mode = NA_character_), throwsError())
test.as.vector.223 <- function() assertThat(as.vector(structure(c(1.5, 2.5), .Names = c("a", "b")), mode = "any"), identicalTo(c(1.5, 2.5), tol = 0.000100))
test.as.vector.224 <- function() assertThat(as.vector(structure(c(1.5, 2.5), .Names = c("a", "b")), mode = "logical"), identicalTo(c(TRUE, TRUE)))
test.as.vector.225 <- function() assertThat(as.vector(structure(c(1.5, 2.5), .Names = c("a", "b")), mode = "integer"), identicalTo(1:2))
test.as.vector.226 <- function() assertThat(as.vector(structure(c(1.5, 2.5), .Names = c("a", "b")), mode = "numeric"), identicalTo(c(1.5, 2.5), tol = 0.000100))
test.as.vector.227 <- function() assertThat(as.vector(structure(c(1.5, 2.5), .Names = c("a", "b")), mode = "double"), identicalTo(c(1.5, 2.5), tol = 0.000100))
test.as.vector.228 <- function() assertThat(as.vector(structure(c(1.5, 2.5), .Names = c("a", "b")), mode = "complex"), identicalTo(c(1.5+0i, 2.5+0i)))
test.as.vector.229 <- function() assertThat(as.vector(structure(c(1.5, 2.5), .Names = c("a", "b")), mode = "raw"), identicalTo(as.raw(c(0x01, 0x02))))
test.as.vector.230 <- function() assertThat(as.vector(structure(c(1.5, 2.5), .Names = c("a", "b")), mode = "character"), identicalTo(c("1.5", "2.5")))
test.as.vector.231 <- function() assertThat(as.vector(structure(c(1.5, 2.5), .Names = c("a", "b")), mode = "list"), identicalTo(structure(list(a = 1.5, b = 2.5), .Names = c("a", "b"))))
test.as.vector.232 <- function() assertThat(as.vector(structure(c(1.5, 2.5), .Names = c("a", "b")), mode = "expression"), deparsesTo("expression(1.5, 2.5)"))
test.as.vector.233 <- function() assertThat(as.vector(structure(c(1.5, 2.5), .Names = c("a", "b")), mode = "rubish"), throwsError())
test.as.vector.234 <- function() assertThat(as.vector(structure(c(1.5, 2.5), .Names = c("a", "b")), mode = NA_character_), throwsError())
test.as.vector.235 <- function() assertThat(as.vector(c(1.5, 1.51, 0, 1.49, -30), mode = "any"), identicalTo(c(1.5, 1.51, 0, 1.49, -30), tol = 0.000100))
test.as.vector.236 <- function() assertThat(as.vector(c(1.5, 1.51, 0, 1.49, -30), mode = "logical"), identicalTo(c(TRUE, TRUE, FALSE, TRUE, TRUE)))
test.as.vector.237 <- function() assertThat(as.vector(c(1.5, 1.51, 0, 1.49, -30), mode = "integer"), identicalTo(c(1L, 1L, 0L, 1L, -30L)))
test.as.vector.238 <- function() assertThat(as.vector(c(1.5, 1.51, 0, 1.49, -30), mode = "numeric"), identicalTo(c(1.5, 1.51, 0, 1.49, -30), tol = 0.000100))
test.as.vector.239 <- function() assertThat(as.vector(c(1.5, 1.51, 0, 1.49, -30), mode = "double"), identicalTo(c(1.5, 1.51, 0, 1.49, -30), tol = 0.000100))
test.as.vector.240 <- function() assertThat(as.vector(c(1.5, 1.51, 0, 1.49, -30), mode = "complex"), identicalTo(c(1.5+0i, 1.51+0i, 0+0i, 1.49+0i, -30+0i)))
test.as.vector.241 <- function() assertThat(as.vector(c(1.5, 1.51, 0, 1.49, -30), mode = "raw"), identicalTo(as.raw(c(0x01, 0x01, 0x00, 0x01, 0x00))))
test.as.vector.242 <- function() assertThat(as.vector(c(1.5, 1.51, 0, 1.49, -30), mode = "character"), identicalTo(c("1.5", "1.51", "0", "1.49", "-30")))
test.as.vector.243 <- function() assertThat(as.vector(c(1.5, 1.51, 0, 1.49, -30), mode = "list"), identicalTo(list(1.5, 1.51, 0, 1.49, -30)))
test.as.vector.244 <- function() assertThat(as.vector(c(1.5, 1.51, 0, 1.49, -30), mode = "expression"), deparsesTo("expression(1.5, 1.51, 0, 1.49, -30)"))
test.as.vector.245 <- function() assertThat(as.vector(c(1.5, 1.51, 0, 1.49, -30), mode = "rubish"), throwsError())
test.as.vector.246 <- function() assertThat(as.vector(c(1.5, 1.51, 0, 1.49, -30), mode = NA_character_), throwsError())
test.as.vector.247 <- function() assertThat(as.vector(c(1.5, 1.51, 0, 1.49, -30, NA), mode = "any"), identicalTo(c(1.5, 1.51, 0, 1.49, -30, NA), tol = 0.000100))
test.as.vector.248 <- function() assertThat(as.vector(c(1.5, 1.51, 0, 1.49, -30, NA), mode = "logical"), identicalTo(c(TRUE, TRUE, FALSE, TRUE, TRUE, NA)))
test.as.vector.249 <- function() assertThat(as.vector(c(1.5, 1.51, 0, 1.49, -30, NA), mode = "integer"), identicalTo(c(1L, 1L, 0L, 1L, -30L, NA)))
test.as.vector.250 <- function() assertThat(as.vector(c(1.5, 1.51, 0, 1.49, -30, NA), mode = "numeric"), identicalTo(c(1.5, 1.51, 0, 1.49, -30, NA), tol = 0.000100))
test.as.vector.251 <- function() assertThat(as.vector(c(1.5, 1.51, 0, 1.49, -30, NA), mode = "double"), identicalTo(c(1.5, 1.51, 0, 1.49, -30, NA), tol = 0.000100))
test.as.vector.252 <- function() assertThat(as.vector(c(1.5, 1.51, 0, 1.49, -30, NA), mode = "complex"), identicalTo(c(1.5+0i, 1.51+0i, 0+0i, 1.49+0i, -30+0i, complex(real=NA, imaginary=0))))
test.as.vector.253 <- function() assertThat(as.vector(c(1.5, 1.51, 0, 1.49, -30, NA), mode = "raw"), identicalTo(as.raw(c(0x01, 0x01, 0x00, 0x01, 0x00, 0x00))))
test.as.vector.254 <- function() assertThat(as.vector(c(1.5, 1.51, 0, 1.49, -30, NA), mode = "character"), identicalTo(c("1.5", "1.51", "0", "1.49", "-30", NA)))
test.as.vector.255 <- function() assertThat(as.vector(c(1.5, 1.51, 0, 1.49, -30, NA), mode = "list"), identicalTo(list(1.5, 1.51, 0, 1.49, -30, NA_real_)))
test.as.vector.256 <- function() assertThat(as.vector(c(1.5, 1.51, 0, 1.49, -30, NA), mode = "expression"), deparsesTo("expression(1.5, 1.51, 0, 1.49, -30, NA_real_)"))
test.as.vector.257 <- function() assertThat(as.vector(c(1.5, 1.51, 0, 1.49, -30, NA), mode = "rubish"), throwsError())
test.as.vector.258 <- function() assertThat(as.vector(c(1.5, 1.51, 0, 1.49, -30, NA), mode = NA_character_), throwsError())
test.as.vector.259 <- function() assertThat(as.vector(c(1.5, 1.51, 0, 1.49, -30, NaN), mode = "any"), identicalTo(c(1.5, 1.51, 0, 1.49, -30, NaN), tol = 0.000100))
test.as.vector.260 <- function() assertThat(as.vector(c(1.5, 1.51, 0, 1.49, -30, NaN), mode = "logical"), identicalTo(c(TRUE, TRUE, FALSE, TRUE, TRUE, NA)))
test.as.vector.261 <- function() assertThat(as.vector(c(1.5, 1.51, 0, 1.49, -30, NaN), mode = "integer"), identicalTo(c(1L, 1L, 0L, 1L, -30L, NA)))
test.as.vector.262 <- function() assertThat(as.vector(c(1.5, 1.51, 0, 1.49, -30, NaN), mode = "numeric"), identicalTo(c(1.5, 1.51, 0, 1.49, -30, NaN), tol = 0.000100))
test.as.vector.263 <- function() assertThat(as.vector(c(1.5, 1.51, 0, 1.49, -30, NaN), mode = "double"), identicalTo(c(1.5, 1.51, 0, 1.49, -30, NaN), tol = 0.000100))
test.as.vector.264 <- function() assertThat(as.vector(c(1.5, 1.51, 0, 1.49, -30, NaN), mode = "complex"), identicalTo(c(1.5+0i, 1.51+0i, 0+0i, 1.49+0i, -30+0i, complex(real=NaN, imaginary=0))))
test.as.vector.265 <- function() assertThat(as.vector(c(1.5, 1.51, 0, 1.49, -30, NaN), mode = "raw"), identicalTo(as.raw(c(0x01, 0x01, 0x00, 0x01, 0x00, 0x00))))
test.as.vector.266 <- function() assertThat(as.vector(c(1.5, 1.51, 0, 1.49, -30, NaN), mode = "character"), identicalTo(c("1.5", "1.51", "0", "1.49", "-30", "NaN")))
test.as.vector.267 <- function() assertThat(as.vector(c(1.5, 1.51, 0, 1.49, -30, NaN), mode = "list"), identicalTo(list(1.5, 1.51, 0, 1.49, -30, NaN)))
test.as.vector.268 <- function() assertThat(as.vector(c(1.5, 1.51, 0, 1.49, -30, NaN), mode = "expression"), deparsesTo("expression(1.5, 1.51, 0, 1.49, -30, NaN)"))
test.as.vector.269 <- function() assertThat(as.vector(c(1.5, 1.51, 0, 1.49, -30, NaN), mode = "rubish"), throwsError())
test.as.vector.270 <- function() assertThat(as.vector(c(1.5, 1.51, 0, 1.49, -30, NaN), mode = NA_character_), throwsError())
test.as.vector.271 <- function() assertThat(as.vector(c(1.5, 1.51, 0, 1.49, -30, Inf), mode = "any"), identicalTo(c(1.5, 1.51, 0, 1.49, -30, Inf), tol = 0.000100))
test.as.vector.272 <- function() assertThat(as.vector(c(1.5, 1.51, 0, 1.49, -30, Inf), mode = "logical"), identicalTo(c(TRUE, TRUE, FALSE, TRUE, TRUE, TRUE)))
test.as.vector.273 <- function() assertThat(as.vector(c(1.5, 1.51, 0, 1.49, -30, Inf), mode = "integer"), identicalTo(c(1L, 1L, 0L, 1L, -30L, NA)))
test.as.vector.274 <- function() assertThat(as.vector(c(1.5, 1.51, 0, 1.49, -30, Inf), mode = "numeric"), identicalTo(c(1.5, 1.51, 0, 1.49, -30, Inf), tol = 0.000100))
test.as.vector.275 <- function() assertThat(as.vector(c(1.5, 1.51, 0, 1.49, -30, Inf), mode = "double"), identicalTo(c(1.5, 1.51, 0, 1.49, -30, Inf), tol = 0.000100))
test.as.vector.276 <- function() assertThat(as.vector(c(1.5, 1.51, 0, 1.49, -30, Inf), mode = "complex"), identicalTo(c(1.5+0i, 1.51+0i, 0+0i, 1.49+0i, -30+0i, Inf+0i)))
test.as.vector.277 <- function() assertThat(as.vector(c(1.5, 1.51, 0, 1.49, -30, Inf), mode = "raw"), identicalTo(as.raw(c(0x01, 0x01, 0x00, 0x01, 0x00, 0x00))))
test.as.vector.278 <- function() assertThat(as.vector(c(1.5, 1.51, 0, 1.49, -30, Inf), mode = "character"), identicalTo(c("1.5", "1.51", "0", "1.49", "-30", "Inf")))
test.as.vector.279 <- function() assertThat(as.vector(c(1.5, 1.51, 0, 1.49, -30, Inf), mode = "list"), identicalTo(list(1.5, 1.51, 0, 1.49, -30, Inf)))
test.as.vector.280 <- function() assertThat(as.vector(c(1.5, 1.51, 0, 1.49, -30, Inf), mode = "expression"), deparsesTo("expression(1.5, 1.51, 0, 1.49, -30, Inf)"))
test.as.vector.281 <- function() assertThat(as.vector(c(1.5, 1.51, 0, 1.49, -30, Inf), mode = "rubish"), throwsError())
test.as.vector.282 <- function() assertThat(as.vector(c(1.5, 1.51, 0, 1.49, -30, Inf), mode = NA_character_), throwsError())
test.as.vector.283 <- function() assertThat(as.vector(c(1.5, 1.51, 0, 1.49, -30, -Inf), mode = "any"), identicalTo(c(1.5, 1.51, 0, 1.49, -30, -Inf), tol = 0.000100))
test.as.vector.284 <- function() assertThat(as.vector(c(1.5, 1.51, 0, 1.49, -30, -Inf), mode = "logical"), identicalTo(c(TRUE, TRUE, FALSE, TRUE, TRUE, TRUE)))
test.as.vector.285 <- function() assertThat(as.vector(c(1.5, 1.51, 0, 1.49, -30, -Inf), mode = "integer"), identicalTo(c(1L, 1L, 0L, 1L, -30L, NA)))
test.as.vector.286 <- function() assertThat(as.vector(c(1.5, 1.51, 0, 1.49, -30, -Inf), mode = "numeric"), identicalTo(c(1.5, 1.51, 0, 1.49, -30, -Inf), tol = 0.000100))
test.as.vector.287 <- function() assertThat(as.vector(c(1.5, 1.51, 0, 1.49, -30, -Inf), mode = "double"), identicalTo(c(1.5, 1.51, 0, 1.49, -30, -Inf), tol = 0.000100))
test.as.vector.288 <- function() assertThat(as.vector(c(1.5, 1.51, 0, 1.49, -30, -Inf), mode = "complex"), identicalTo(c(1.5+0i, 1.51+0i, 0+0i, 1.49+0i, -30+0i, -Inf+0i)))
test.as.vector.289 <- function() assertThat(as.vector(c(1.5, 1.51, 0, 1.49, -30, -Inf), mode = "raw"), identicalTo(as.raw(c(0x01, 0x01, 0x00, 0x01, 0x00, 0x00))))
test.as.vector.290 <- function() assertThat(as.vector(c(1.5, 1.51, 0, 1.49, -30, -Inf), mode = "character"), identicalTo(c("1.5", "1.51", "0", "1.49", "-30", "-Inf")))
test.as.vector.291 <- function() assertThat(as.vector(c(1.5, 1.51, 0, 1.49, -30, -Inf), mode = "list"), identicalTo(list(1.5, 1.51, 0, 1.49, -30, -Inf)))
test.as.vector.292 <- function() assertThat(as.vector(c(1.5, 1.51, 0, 1.49, -30, -Inf), mode = "expression"), deparsesTo("expression(1.5, 1.51, 0, 1.49, -30, -Inf)"))
test.as.vector.293 <- function() assertThat(as.vector(c(1.5, 1.51, 0, 1.49, -30, -Inf), mode = "rubish"), throwsError())
test.as.vector.294 <- function() assertThat(as.vector(c(1.5, 1.51, 0, 1.49, -30, -Inf), mode = NA_character_), throwsError())
test.as.vector.295 <- function() assertThat(as.vector(character(0), mode = "any"), identicalTo(character(0)))
test.as.vector.296 <- function() assertThat(as.vector(character(0), mode = "logical"), identicalTo(logical(0)))
test.as.vector.297 <- function() assertThat(as.vector(character(0), mode = "integer"), identicalTo(integer(0)))
test.as.vector.298 <- function() assertThat(as.vector(character(0), mode = "numeric"), identicalTo(numeric(0)))
test.as.vector.299 <- function() assertThat(as.vector(character(0), mode = "double"), identicalTo(numeric(0)))
test.as.vector.300 <- function() assertThat(as.vector(character(0), mode = "complex"), identicalTo(complex(0)))
test.as.vector.301 <- function() assertThat(as.vector(character(0), mode = "raw"), identicalTo(raw(0)))
test.as.vector.302 <- function() assertThat(as.vector(character(0), mode = "character"), identicalTo(character(0)))
test.as.vector.303 <- function() assertThat(as.vector(character(0), mode = "list"), identicalTo(list()))
test.as.vector.304 <- function() assertThat(as.vector(character(0), mode = "expression"), deparsesTo("expression()"))
test.as.vector.305 <- function() assertThat(as.vector(character(0), mode = "rubish"), throwsError())
test.as.vector.306 <- function() assertThat(as.vector(character(0), mode = NA_character_), throwsError())
test.as.vector.307 <- function() assertThat(as.vector(c("4.1", "blahh", "99.9", "-413", NA), mode = "any"), identicalTo(c("4.1", "blahh", "99.9", "-413", NA)))
test.as.vector.308 <- function() assertThat(as.vector(c("4.1", "blahh", "99.9", "-413", NA), mode = "logical"), identicalTo(c(NA, NA, NA, NA, NA)))
test.as.vector.309 <- function() assertThat(as.vector(c("4.1", "blahh", "99.9", "-413", NA), mode = "integer"), identicalTo(c(4L, NA, 99L, -413L, NA)))
test.as.vector.310 <- function() assertThat(as.vector(c("4.1", "blahh", "99.9", "-413", NA), mode = "numeric"), identicalTo(c(4.1, NA, 99.9, -413, NA), tol = 0.000100))
test.as.vector.311 <- function() assertThat(as.vector(c("4.1", "blahh", "99.9", "-413", NA), mode = "double"), identicalTo(c(4.1, NA, 99.9, -413, NA), tol = 0.000100))
test.as.vector.312 <- function() assertThat(as.vector(c("4.1", "blahh", "99.9", "-413", NA), mode = "complex"), identicalTo(c(4.1+0i, NA, 99.9+0i, -413+0i, NA)))
test.as.vector.313 <- function() assertThat(as.vector(c("4.1", "blahh", "99.9", "-413", NA), mode = "raw"), identicalTo(as.raw(c(0x04, 0x00, 0x63, 0x00, 0x00))))
test.as.vector.314 <- function() assertThat(as.vector(c("4.1", "blahh", "99.9", "-413", NA), mode = "character"), identicalTo(c("4.1", "blahh", "99.9", "-413", NA)))
test.as.vector.315 <- function() assertThat(as.vector(c("4.1", "blahh", "99.9", "-413", NA), mode = "list"), identicalTo(list("4.1", "blahh", "99.9", "-413", NA_character_)))
test.as.vector.316 <- function() assertThat(as.vector(c("4.1", "blahh", "99.9", "-413", NA), mode = "expression"), deparsesTo("expression(\"4.1\", \"blahh\", \"99.9\", \"-413\", NA_character_)"))
test.as.vector.317 <- function() assertThat(as.vector(c("4.1", "blahh", "99.9", "-413", NA), mode = "rubish"), throwsError())
test.as.vector.318 <- function() assertThat(as.vector(c("4.1", "blahh", "99.9", "-413", NA), mode = NA_character_), throwsError())
test.as.vector.319 <- function() assertThat(as.vector(complex(0), mode = "any"), identicalTo(complex(0)))
test.as.vector.320 <- function() assertThat(as.vector(complex(0), mode = "logical"), identicalTo(logical(0)))
test.as.vector.321 <- function() assertThat(as.vector(complex(0), mode = "integer"), identicalTo(integer(0)))
test.as.vector.322 <- function() assertThat(as.vector(complex(0), mode = "numeric"), identicalTo(numeric(0)))
test.as.vector.323 <- function() assertThat(as.vector(complex(0), mode = "double"), identicalTo(numeric(0)))
test.as.vector.324 <- function() assertThat(as.vector(complex(0), mode = "complex"), identicalTo(complex(0)))
test.as.vector.325 <- function() assertThat(as.vector(complex(0), mode = "raw"), identicalTo(raw(0)))
test.as.vector.326 <- function() assertThat(as.vector(complex(0), mode = "character"), identicalTo(character(0)))
test.as.vector.327 <- function() assertThat(as.vector(complex(0), mode = "list"), identicalTo(list()))
test.as.vector.328 <- function() assertThat(as.vector(complex(0), mode = "expression"), deparsesTo("expression()"))
test.as.vector.329 <- function() assertThat(as.vector(complex(0), mode = "rubish"), throwsError())
test.as.vector.330 <- function() assertThat(as.vector(complex(0), mode = NA_character_), throwsError())
test.as.vector.331 <- function() assertThat(as.vector(list(1, 2, 3), mode = "any"), identicalTo(list(1, 2, 3)))
test.as.vector.332 <- function() assertThat(as.vector(list(1, 2, 3), mode = "logical"), identicalTo(c(TRUE, TRUE, TRUE)))
test.as.vector.333 <- function() assertThat(as.vector(list(1, 2, 3), mode = "integer"), identicalTo(1:3))
test.as.vector.334 <- function() assertThat(as.vector(list(1, 2, 3), mode = "numeric"), identicalTo(c(1, 2, 3)))
test.as.vector.335 <- function() assertThat(as.vector(list(1, 2, 3), mode = "double"), identicalTo(c(1, 2, 3)))
test.as.vector.336 <- function() assertThat(as.vector(list(1, 2, 3), mode = "complex"), identicalTo(c(1+0i, 2+0i, 3+0i)))
test.as.vector.337 <- function() assertThat(as.vector(list(1, 2, 3), mode = "raw"), identicalTo(as.raw(c(0x01, 0x02, 0x03))))
test.as.vector.338 <- function() assertThat(as.vector(list(1, 2, 3), mode = "character"), identicalTo(c("1", "2", "3")))
test.as.vector.339 <- function() assertThat(as.vector(list(1, 2, 3), mode = "list"), identicalTo(list(1, 2, 3)))
test.as.vector.340 <- function() assertThat(as.vector(list(1, 2, 3), mode = "expression"), deparsesTo("expression(1, 2, 3)"))
test.as.vector.341 <- function() assertThat(as.vector(list(1, 2, 3), mode = "rubish"), throwsError())
test.as.vector.342 <- function() assertThat(as.vector(list(1, 2, 3), mode = NA_character_), throwsError())
test.as.vector.343 <- function() assertThat(as.vector(list(1, 2, NULL), mode = "any"), identicalTo(list(1, 2, NULL)))
test.as.vector.344 <- function() assertThat(as.vector(list(1, 2, NULL), mode = "logical"), throwsError())
test.as.vector.345 <- function() assertThat(as.vector(list(1, 2, NULL), mode = "integer"), throwsError())
test.as.vector.346 <- function() assertThat(as.vector(list(1, 2, NULL), mode = "numeric"), throwsError())
test.as.vector.347 <- function() assertThat(as.vector(list(1, 2, NULL), mode = "double"), throwsError())
test.as.vector.348 <- function() assertThat(as.vector(list(1, 2, NULL), mode = "complex"), throwsError())
test.as.vector.349 <- function() assertThat(as.vector(list(1, 2, NULL), mode = "raw"), throwsError())
test.as.vector.350 <- function() assertThat(as.vector(list(1, 2, NULL), mode = "character"), identicalTo(c("1", "2", "NULL")))
test.as.vector.351 <- function() assertThat(as.vector(list(1, 2, NULL), mode = "list"), identicalTo(list(1, 2, NULL)))
test.as.vector.352 <- function() assertThat(as.vector(list(1, 2, NULL), mode = "expression"), deparsesTo("expression(1, 2, NULL)"))
test.as.vector.353 <- function() assertThat(as.vector(list(1, 2, NULL), mode = "rubish"), throwsError())
test.as.vector.354 <- function() assertThat(as.vector(list(1, 2, NULL), mode = NA_character_), throwsError())
test.as.vector.355 <- function() assertThat(as.vector(list(1L, 2L, 3L), mode = "any"), identicalTo(list(1L, 2L, 3L)))
test.as.vector.356 <- function() assertThat(as.vector(list(1L, 2L, 3L), mode = "logical"), identicalTo(c(TRUE, TRUE, TRUE)))
test.as.vector.357 <- function() assertThat(as.vector(list(1L, 2L, 3L), mode = "integer"), identicalTo(1:3))
test.as.vector.358 <- function() assertThat(as.vector(list(1L, 2L, 3L), mode = "numeric"), identicalTo(c(1, 2, 3)))
test.as.vector.359 <- function() assertThat(as.vector(list(1L, 2L, 3L), mode = "double"), identicalTo(c(1, 2, 3)))
test.as.vector.360 <- function() assertThat(as.vector(list(1L, 2L, 3L), mode = "complex"), identicalTo(c(1+0i, 2+0i, 3+0i)))
test.as.vector.361 <- function() assertThat(as.vector(list(1L, 2L, 3L), mode = "raw"), identicalTo(as.raw(c(0x01, 0x02, 0x03))))
test.as.vector.362 <- function() assertThat(as.vector(list(1L, 2L, 3L), mode = "character"), identicalTo(c("1", "2", "3")))
test.as.vector.363 <- function() assertThat(as.vector(list(1L, 2L, 3L), mode = "list"), identicalTo(list(1L, 2L, 3L)))
test.as.vector.364 <- function() assertThat(as.vector(list(1L, 2L, 3L), mode = "expression"), deparsesTo("expression(1L, 2L, 3L)"))
test.as.vector.365 <- function() assertThat(as.vector(list(1L, 2L, 3L), mode = "rubish"), throwsError())
test.as.vector.366 <- function() assertThat(as.vector(list(1L, 2L, 3L), mode = NA_character_), throwsError())
test.as.vector.367 <- function() assertThat(as.vector(list(1L, 2L, NULL), mode = "any"), identicalTo(list(1L, 2L, NULL)))
test.as.vector.368 <- function() assertThat(as.vector(list(1L, 2L, NULL), mode = "logical"), throwsError())
test.as.vector.369 <- function() assertThat(as.vector(list(1L, 2L, NULL), mode = "integer"), throwsError())
test.as.vector.370 <- function() assertThat(as.vector(list(1L, 2L, NULL), mode = "numeric"), throwsError())
test.as.vector.371 <- function() assertThat(as.vector(list(1L, 2L, NULL), mode = "double"), throwsError())
test.as.vector.372 <- function() assertThat(as.vector(list(1L, 2L, NULL), mode = "complex"), throwsError())
test.as.vector.373 <- function() assertThat(as.vector(list(1L, 2L, NULL), mode = "raw"), throwsError())
test.as.vector.374 <- function() assertThat(as.vector(list(1L, 2L, NULL), mode = "character"), identicalTo(c("1", "2", "NULL")))
test.as.vector.375 <- function() assertThat(as.vector(list(1L, 2L, NULL), mode = "list"), identicalTo(list(1L, 2L, NULL)))
test.as.vector.376 <- function() assertThat(as.vector(list(1L, 2L, NULL), mode = "expression"), deparsesTo("expression(1L, 2L, NULL)"))
test.as.vector.377 <- function() assertThat(as.vector(list(1L, 2L, NULL), mode = "rubish"), throwsError())
test.as.vector.378 <- function() assertThat(as.vector(list(1L, 2L, NULL), mode = NA_character_), throwsError())
test.as.vector.379 <- function() assertThat(as.vector(list(1, 2, list(3, 4)), mode = "any"), identicalTo(list(1, 2, list(3, 4))))
test.as.vector.380 <- function() assertThat(as.vector(list(1, 2, list(3, 4)), mode = "logical"), throwsError())
test.as.vector.381 <- function() assertThat(as.vector(list(1, 2, list(3, 4)), mode = "integer"), throwsError())
test.as.vector.382 <- function() assertThat(as.vector(list(1, 2, list(3, 4)), mode = "numeric"), throwsError())
test.as.vector.383 <- function() assertThat(as.vector(list(1, 2, list(3, 4)), mode = "double"), throwsError())
test.as.vector.384 <- function() assertThat(as.vector(list(1, 2, list(3, 4)), mode = "complex"), throwsError())
test.as.vector.385 <- function() assertThat(as.vector(list(1, 2, list(3, 4)), mode = "raw"), throwsError())
test.as.vector.386 <- function() assertThat(as.vector(list(1, 2, list(3, 4)), mode = "character"), identicalTo(c("1", "2", "list(3, 4)")))
test.as.vector.387 <- function() assertThat(as.vector(list(1, 2, list(3, 4)), mode = "list"), identicalTo(list(1, 2, list(3, 4))))
test.as.vector.388 <- function() assertThat(as.vector(list(1, 2, list(3, 4)), mode = "expression"), deparsesTo("expression(1, 2, list(3, 4))"))
test.as.vector.389 <- function() assertThat(as.vector(list(1, 2, list(3, 4)), mode = "rubish"), throwsError())
test.as.vector.390 <- function() assertThat(as.vector(list(1, 2, list(3, 4)), mode = NA_character_), throwsError())
test.as.vector.391 <- function() assertThat(as.vector(list(1, 2, numeric(0)), mode = "any"), identicalTo(list(1, 2, numeric(0))))
test.as.vector.392 <- function() assertThat(as.vector(list(1, 2, numeric(0)), mode = "logical"), identicalTo(c(TRUE, TRUE, NA)))
test.as.vector.393 <- function() assertThat(as.vector(list(1, 2, numeric(0)), mode = "integer"), identicalTo(c(1L, 2L, NA)))
test.as.vector.394 <- function() assertThat(as.vector(list(1, 2, numeric(0)), mode = "numeric"), identicalTo(c(1, 2, NA)))
test.as.vector.395 <- function() assertThat(as.vector(list(1, 2, numeric(0)), mode = "double"), identicalTo(c(1, 2, NA)))
test.as.vector.396 <- function() assertThat(as.vector(list(1, 2, numeric(0)), mode = "complex"), identicalTo(c(1+0i, 2+0i, NA)))
test.as.vector.397 <- function() assertThat(as.vector(list(1, 2, numeric(0)), mode = "raw"), identicalTo(as.raw(c(0x01, 0x02, 0x00))))
test.as.vector.398 <- function() assertThat(as.vector(list(1, 2, numeric(0)), mode = "character"), identicalTo(c("1", "2", "numeric(0)")))
test.as.vector.399 <- function() assertThat(as.vector(list(1, 2, numeric(0)), mode = "list"), identicalTo(list(1, 2, numeric(0))))
test.as.vector.400 <- function() assertThat(as.vector(list(1, 2, numeric(0)), mode = "expression"), deparsesTo("expression(1, 2, numeric(0))"))
test.as.vector.401 <- function() assertThat(as.vector(list(1, 2, numeric(0)), mode = "rubish"), throwsError())
test.as.vector.402 <- function() assertThat(as.vector(list(1, 2, numeric(0)), mode = NA_character_), throwsError())
test.as.vector.403 <- function() assertThat(as.vector(list(3, "a", structure(list("b", z = list(TRUE, "c")), .Names = c("", "z"))), mode = "any"), identicalTo(list(3, "a", structure(list("b", z = list(TRUE, "c")), .Names = c("", "z")))))
test.as.vector.404 <- function() assertThat(as.vector(list(3, "a", structure(list("b", z = list(TRUE, "c")), .Names = c("", "z"))), mode = "logical"), throwsError())
test.as.vector.405 <- function() assertThat(as.vector(list(3, "a", structure(list("b", z = list(TRUE, "c")), .Names = c("", "z"))), mode = "integer"), throwsError())
test.as.vector.406 <- function() assertThat(as.vector(list(3, "a", structure(list("b", z = list(TRUE, "c")), .Names = c("", "z"))), mode = "numeric"), throwsError())
test.as.vector.407 <- function() assertThat(as.vector(list(3, "a", structure(list("b", z = list(TRUE, "c")), .Names = c("", "z"))), mode = "double"), throwsError())
test.as.vector.408 <- function() assertThat(as.vector(list(3, "a", structure(list("b", z = list(TRUE, "c")), .Names = c("", "z"))), mode = "complex"), throwsError())
test.as.vector.409 <- function() assertThat(as.vector(list(3, "a", structure(list("b", z = list(TRUE, "c")), .Names = c("", "z"))), mode = "raw"), throwsError())
test.as.vector.410 <- function() assertThat(as.vector(list(3, "a", structure(list("b", z = list(TRUE, "c")), .Names = c("", "z"))), mode = "character"), identicalTo(c("3", "a", "list(\"b\", z = list(TRUE, \"c\"))")))
test.as.vector.411 <- function() assertThat(as.vector(list(3, "a", structure(list("b", z = list(TRUE, "c")), .Names = c("", "z"))), mode = "list"), identicalTo(list(3, "a", structure(list("b", z = list(TRUE, "c")), .Names = c("", "z")))))
test.as.vector.412 <- function() assertThat(as.vector(list(3, "a", structure(list("b", z = list(TRUE, "c")), .Names = c("", "z"))), mode = "expression"), deparsesTo("expression(3, \"a\", list(\"b\", z = list(TRUE, \"c\")))"))
test.as.vector.413 <- function() assertThat(as.vector(list(3, "a", structure(list("b", z = list(TRUE, "c")), .Names = c("", "z"))), mode = "rubish"), throwsError())
test.as.vector.414 <- function() assertThat(as.vector(list(3, "a", structure(list("b", z = list(TRUE, "c")), .Names = c("", "z"))), mode = NA_character_), throwsError())
test.as.vector.415 <- function() assertThat(as.vector(structure(list(`NA` = 1, 2, b = 3), .Names = c(NA, "", "b")), mode = "any"), identicalTo(structure(list("NA" = 1, 2, b = 3), .Names = c(NA, "", "b"))))
test.as.vector.416 <- function() assertThat(as.vector(structure(list(`NA` = 1, 2, b = 3), .Names = c(NA, "", "b")), mode = "logical"), identicalTo(c(TRUE, TRUE, TRUE)))
test.as.vector.417 <- function() assertThat(as.vector(structure(list(`NA` = 1, 2, b = 3), .Names = c(NA, "", "b")), mode = "integer"), identicalTo(1:3))
test.as.vector.418 <- function() assertThat(as.vector(structure(list(`NA` = 1, 2, b = 3), .Names = c(NA, "", "b")), mode = "numeric"), identicalTo(c(1, 2, 3)))
test.as.vector.419 <- function() assertThat(as.vector(structure(list(`NA` = 1, 2, b = 3), .Names = c(NA, "", "b")), mode = "double"), identicalTo(c(1, 2, 3)))
test.as.vector.420 <- function() assertThat(as.vector(structure(list(`NA` = 1, 2, b = 3), .Names = c(NA, "", "b")), mode = "complex"), identicalTo(c(1+0i, 2+0i, 3+0i)))
test.as.vector.421 <- function() assertThat(as.vector(structure(list(`NA` = 1, 2, b = 3), .Names = c(NA, "", "b")), mode = "raw"), identicalTo(as.raw(c(0x01, 0x02, 0x03))))
test.as.vector.422 <- function() assertThat(as.vector(structure(list(`NA` = 1, 2, b = 3), .Names = c(NA, "", "b")), mode = "character"), identicalTo(c("1", "2", "3")))
test.as.vector.423 <- function() assertThat(as.vector(structure(list(`NA` = 1, 2, b = 3), .Names = c(NA, "", "b")), mode = "list"), identicalTo(structure(list("NA" = 1, 2, b = 3), .Names = c(NA, "", "b"))))
test.as.vector.424 <- function() assertThat(as.vector(structure(list(`NA` = 1, 2, b = 3), .Names = c(NA, "", "b")), mode = "expression"), deparsesTo("structure(expression(`NA` = 1, 2, b = 3), .Names = c(NA, \"\", \"b\"))"))
test.as.vector.425 <- function() assertThat(as.vector(structure(list(`NA` = 1, 2, b = 3), .Names = c(NA, "", "b")), mode = "rubish"), throwsError())
test.as.vector.426 <- function() assertThat(as.vector(structure(list(`NA` = 1, 2, b = 3), .Names = c(NA, "", "b")), mode = NA_character_), throwsError())
test.as.vector.427 <- function() assertThat(as.vector(pairlist(41, "a", 21L), mode = "any"), identicalTo(pairlist(41, "a", 21L)))
test.as.vector.428 <- function() assertThat(as.vector(pairlist(41, "a", 21L), mode = "logical"), identicalTo(c(TRUE, NA, TRUE)))
test.as.vector.429 <- function() assertThat(as.vector(pairlist(41, "a", 21L), mode = "integer"), identicalTo(c(41L, NA, 21L)))
test.as.vector.430 <- function() assertThat(as.vector(pairlist(41, "a", 21L), mode = "numeric"), identicalTo(c(41, NA, 21)))
test.as.vector.431 <- function() assertThat(as.vector(pairlist(41, "a", 21L), mode = "double"), identicalTo(c(41, NA, 21)))
test.as.vector.432 <- function() assertThat(as.vector(pairlist(41, "a", 21L), mode = "complex"), identicalTo(c(41+0i, NA, 21+0i)))
test.as.vector.433 <- function() assertThat(as.vector(pairlist(41, "a", 21L), mode = "raw"), identicalTo(as.raw(c(0x29, 0x00, 0x15))))
test.as.vector.434 <- function() assertThat(as.vector(pairlist(41, "a", 21L), mode = "character"), identicalTo(c("41", "a", "21")))
test.as.vector.435 <- function() assertThat(as.vector(pairlist(41, "a", 21L), mode = "list"), identicalTo(list(41, "a", 21L)))
test.as.vector.436 <- function() assertThat(as.vector(pairlist(41, "a", 21L), mode = "expression"), deparsesTo("expression(pairlist(41, \"a\", 21L))"))
test.as.vector.437 <- function() assertThat(as.vector(pairlist(41, "a", 21L), mode = "rubish"), throwsError())
test.as.vector.438 <- function() assertThat(as.vector(pairlist(41, "a", 21L), mode = NA_character_), throwsError())
test.as.vector.439 <- function() assertThat(as.vector(pairlist(a = 41, 42), mode = "any"), identicalTo(pairlist(a = 41, 42)))
test.as.vector.440 <- function() assertThat(as.vector(pairlist(a = 41, 42), mode = "logical"), identicalTo(c(TRUE, TRUE)))
test.as.vector.441 <- function() assertThat(as.vector(pairlist(a = 41, 42), mode = "integer"), identicalTo(41:42))
test.as.vector.442 <- function() assertThat(as.vector(pairlist(a = 41, 42), mode = "numeric"), identicalTo(c(41, 42)))
test.as.vector.443 <- function() assertThat(as.vector(pairlist(a = 41, 42), mode = "double"), identicalTo(c(41, 42)))
test.as.vector.444 <- function() assertThat(as.vector(pairlist(a = 41, 42), mode = "complex"), identicalTo(c(41+0i, 42+0i)))
test.as.vector.445 <- function() assertThat(as.vector(pairlist(a = 41, 42), mode = "raw"), identicalTo(as.raw(c(0x29, 0x2a))))
test.as.vector.446 <- function() assertThat(as.vector(pairlist(a = 41, 42), mode = "character"), identicalTo(c("41", "42")))
test.as.vector.447 <- function() assertThat(as.vector(pairlist(a = 41, 42), mode = "list"), identicalTo(structure(list(a = 41, 42), .Names = c("a", ""))))
test.as.vector.448 <- function() assertThat(as.vector(pairlist(a = 41, 42), mode = "expression"), deparsesTo("expression(pairlist(a = 41, 42))"))
test.as.vector.449 <- function() assertThat(as.vector(pairlist(a = 41, 42), mode = "rubish"), throwsError())
test.as.vector.450 <- function() assertThat(as.vector(pairlist(a = 41, 42), mode = NA_character_), throwsError())
test.as.vector.451 <- function() assertThat(as.vector(pairlist(a = 41, NULL), mode = "any"), identicalTo(pairlist(a = 41, NULL)))
test.as.vector.452 <- function() assertThat(as.vector(pairlist(a = 41, NULL), mode = "logical"), throwsError())
test.as.vector.453 <- function() assertThat(as.vector(pairlist(a = 41, NULL), mode = "integer"), throwsError())
test.as.vector.454 <- function() assertThat(as.vector(pairlist(a = 41, NULL), mode = "numeric"), throwsError())
test.as.vector.455 <- function() assertThat(as.vector(pairlist(a = 41, NULL), mode = "double"), throwsError())
test.as.vector.456 <- function() assertThat(as.vector(pairlist(a = 41, NULL), mode = "complex"), throwsError())
test.as.vector.457 <- function() assertThat(as.vector(pairlist(a = 41, NULL), mode = "raw"), throwsError())
test.as.vector.458 <- function() assertThat(as.vector(pairlist(a = 41, NULL), mode = "character"), identicalTo(c("41", "NULL")))
test.as.vector.459 <- function() assertThat(as.vector(pairlist(a = 41, NULL), mode = "list"), identicalTo(structure(list(a = 41, NULL), .Names = c("a", ""))))
test.as.vector.460 <- function() assertThat(as.vector(pairlist(a = 41, NULL), mode = "expression"), deparsesTo("expression(pairlist(a = 41, NULL))"))
test.as.vector.461 <- function() assertThat(as.vector(pairlist(a = 41, NULL), mode = "rubish"), throwsError())
test.as.vector.462 <- function() assertThat(as.vector(pairlist(a = 41, NULL), mode = NA_character_), throwsError())
test.as.vector.463 <- function() assertThat(as.vector(structure(1:12, .Dim = 3:4), mode = "any"), identicalTo(1:12))
test.as.vector.464 <- function() assertThat(as.vector(structure(1:12, .Dim = 3:4), mode = "logical"), identicalTo(c(TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE)))
test.as.vector.465 <- function() assertThat(as.vector(structure(1:12, .Dim = 3:4), mode = "integer"), identicalTo(1:12))
test.as.vector.466 <- function() assertThat(as.vector(structure(1:12, .Dim = 3:4), mode = "numeric"), identicalTo(c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12)))
test.as.vector.467 <- function() assertThat(as.vector(structure(1:12, .Dim = 3:4), mode = "double"), identicalTo(c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12)))
test.as.vector.468 <- function() assertThat(as.vector(structure(1:12, .Dim = 3:4), mode = "complex"), identicalTo(c(1+0i, 2+0i, 3+0i, 4+0i, 5+0i, 6+0i, 7+0i, 8+0i, 9+0i, 10+0i, 11+0i, 12+0i)))
test.as.vector.469 <- function() assertThat(as.vector(structure(1:12, .Dim = 3:4), mode = "raw"), identicalTo(as.raw(c(0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c))))
test.as.vector.470 <- function() assertThat(as.vector(structure(1:12, .Dim = 3:4), mode = "character"), identicalTo(c("1", "2", "3", "4", "5", "6", "7", "8", "9", "10", "11", "12")))
test.as.vector.471 <- function() assertThat(as.vector(structure(1:12, .Dim = 3:4), mode = "list"), identicalTo(list(1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L)))
test.as.vector.472 <- function() assertThat(as.vector(structure(1:12, .Dim = 3:4), mode = "expression"), deparsesTo("expression(1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L)"))
test.as.vector.473 <- function() assertThat(as.vector(structure(1:12, .Dim = 3:4), mode = "rubish"), throwsError())
test.as.vector.474 <- function() assertThat(as.vector(structure(1:12, .Dim = 3:4), mode = NA_character_), throwsError())
test.as.vector.475 <- function() assertThat(as.vector(structure(1:12, .Dim = 3:4, .Dimnames = structure(list( x = c("a", "b", "c"), y = c("d", "e", "f", "g")), .Names = c("x", "y"))), mode = "any"), identicalTo(1:12))
test.as.vector.476 <- function() assertThat(as.vector(structure(1:12, .Dim = 3:4, .Dimnames = structure(list( x = c("a", "b", "c"), y = c("d", "e", "f", "g")), .Names = c("x", "y"))), mode = "logical"), identicalTo(c(TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE)))
test.as.vector.477 <- function() assertThat(as.vector(structure(1:12, .Dim = 3:4, .Dimnames = structure(list( x = c("a", "b", "c"), y = c("d", "e", "f", "g")), .Names = c("x", "y"))), mode = "integer"), identicalTo(1:12))
test.as.vector.478 <- function() assertThat(as.vector(structure(1:12, .Dim = 3:4, .Dimnames = structure(list( x = c("a", "b", "c"), y = c("d", "e", "f", "g")), .Names = c("x", "y"))), mode = "numeric"), identicalTo(c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12)))
test.as.vector.479 <- function() assertThat(as.vector(structure(1:12, .Dim = 3:4, .Dimnames = structure(list( x = c("a", "b", "c"), y = c("d", "e", "f", "g")), .Names = c("x", "y"))), mode = "double"), identicalTo(c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12)))
test.as.vector.480 <- function() assertThat(as.vector(structure(1:12, .Dim = 3:4, .Dimnames = structure(list( x = c("a", "b", "c"), y = c("d", "e", "f", "g")), .Names = c("x", "y"))), mode = "complex"), identicalTo(c(1+0i, 2+0i, 3+0i, 4+0i, 5+0i, 6+0i, 7+0i, 8+0i, 9+0i, 10+0i, 11+0i, 12+0i)))
test.as.vector.481 <- function() assertThat(as.vector(structure(1:12, .Dim = 3:4, .Dimnames = structure(list( x = c("a", "b", "c"), y = c("d", "e", "f", "g")), .Names = c("x", "y"))), mode = "raw"), identicalTo(as.raw(c(0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c))))
test.as.vector.482 <- function() assertThat(as.vector(structure(1:12, .Dim = 3:4, .Dimnames = structure(list( x = c("a", "b", "c"), y = c("d", "e", "f", "g")), .Names = c("x", "y"))), mode = "character"), identicalTo(c("1", "2", "3", "4", "5", "6", "7", "8", "9", "10", "11", "12")))
test.as.vector.483 <- function() assertThat(as.vector(structure(1:12, .Dim = 3:4, .Dimnames = structure(list( x = c("a", "b", "c"), y = c("d", "e", "f", "g")), .Names = c("x", "y"))), mode = "list"), identicalTo(list(1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L)))
test.as.vector.484 <- function() assertThat(as.vector(structure(1:12, .Dim = 3:4, .Dimnames = structure(list( x = c("a", "b", "c"), y = c("d", "e", "f", "g")), .Names = c("x", "y"))), mode = "expression"), deparsesTo("expression(1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L)"))
test.as.vector.485 <- function() assertThat(as.vector(structure(1:12, .Dim = 3:4, .Dimnames = structure(list( x = c("a", "b", "c"), y = c("d", "e", "f", "g")), .Names = c("x", "y"))), mode = "rubish"), throwsError())
test.as.vector.486 <- function() assertThat(as.vector(structure(1:12, .Dim = 3:4, .Dimnames = structure(list( x = c("a", "b", "c"), y = c("d", "e", "f", "g")), .Names = c("x", "y"))), mode = NA_character_), throwsError())
test.as.vector.487 <- function() assertThat(as.vector(structure(1:3, rando.attrib = 941L), mode = "any"), identicalTo(1:3))
test.as.vector.488 <- function() assertThat(as.vector(structure(1:3, rando.attrib = 941L), mode = "logical"), identicalTo(c(TRUE, TRUE, TRUE)))
test.as.vector.489 <- function() assertThat(as.vector(structure(1:3, rando.attrib = 941L), mode = "integer"), identicalTo(1:3))
test.as.vector.490 <- function() assertThat(as.vector(structure(1:3, rando.attrib = 941L), mode = "numeric"), identicalTo(c(1, 2, 3)))
test.as.vector.491 <- function() assertThat(as.vector(structure(1:3, rando.attrib = 941L), mode = "double"), identicalTo(c(1, 2, 3)))
test.as.vector.492 <- function() assertThat(as.vector(structure(1:3, rando.attrib = 941L), mode = "complex"), identicalTo(c(1+0i, 2+0i, 3+0i)))
test.as.vector.493 <- function() assertThat(as.vector(structure(1:3, rando.attrib = 941L), mode = "raw"), identicalTo(as.raw(c(0x01, 0x02, 0x03))))
test.as.vector.494 <- function() assertThat(as.vector(structure(1:3, rando.attrib = 941L), mode = "character"), identicalTo(c("1", "2", "3")))
test.as.vector.495 <- function() assertThat(as.vector(structure(1:3, rando.attrib = 941L), mode = "list"), identicalTo(list(1L, 2L, 3L)))
test.as.vector.496 <- function() assertThat(as.vector(structure(1:3, rando.attrib = 941L), mode = "expression"), deparsesTo("expression(1L, 2L, 3L)"))
test.as.vector.497 <- function() assertThat(as.vector(structure(1:3, rando.attrib = 941L), mode = "rubish"), throwsError())
test.as.vector.498 <- function() assertThat(as.vector(structure(1:3, rando.attrib = 941L), mode = NA_character_), throwsError())
test.as.vector.499 <- function() assertThat(as.vector(structure(1:3, .Dim = 3L, .Dimnames = list(c("a", "b", "c"))), mode = "any"), identicalTo(1:3))
test.as.vector.500 <- function() assertThat(as.vector(structure(1:3, .Dim = 3L, .Dimnames = list(c("a", "b", "c"))), mode = "logical"), identicalTo(c(TRUE, TRUE, TRUE)))
test.as.vector.501 <- function() assertThat(as.vector(structure(1:3, .Dim = 3L, .Dimnames = list(c("a", "b", "c"))), mode = "integer"), identicalTo(1:3))
test.as.vector.502 <- function() assertThat(as.vector(structure(1:3, .Dim = 3L, .Dimnames = list(c("a", "b", "c"))), mode = "numeric"), identicalTo(c(1, 2, 3)))
test.as.vector.503 <- function() assertThat(as.vector(structure(1:3, .Dim = 3L, .Dimnames = list(c("a", "b", "c"))), mode = "double"), identicalTo(c(1, 2, 3)))
test.as.vector.504 <- function() assertThat(as.vector(structure(1:3, .Dim = 3L, .Dimnames = list(c("a", "b", "c"))), mode = "complex"), identicalTo(c(1+0i, 2+0i, 3+0i)))
test.as.vector.505 <- function() assertThat(as.vector(structure(1:3, .Dim = 3L, .Dimnames = list(c("a", "b", "c"))), mode = "raw"), identicalTo(as.raw(c(0x01, 0x02, 0x03))))
test.as.vector.506 <- function() assertThat(as.vector(structure(1:3, .Dim = 3L, .Dimnames = list(c("a", "b", "c"))), mode = "character"), identicalTo(c("1", "2", "3")))
test.as.vector.507 <- function() assertThat(as.vector(structure(1:3, .Dim = 3L, .Dimnames = list(c("a", "b", "c"))), mode = "list"), identicalTo(structure(list(a = 1L, b = 2L, c = 3L), .Names = c("a", "b", "c"))))
test.as.vector.508 <- function() assertThat(as.vector(structure(1:3, .Dim = 3L, .Dimnames = list(c("a", "b", "c"))), mode = "expression"), deparsesTo("expression(1L, 2L, 3L)"))
test.as.vector.509 <- function() assertThat(as.vector(structure(1:3, .Dim = 3L, .Dimnames = list(c("a", "b", "c"))), mode = "rubish"), throwsError())
test.as.vector.510 <- function() assertThat(as.vector(structure(1:3, .Dim = 3L, .Dimnames = list(c("a", "b", "c"))), mode = NA_character_), throwsError())
test.as.vector.511 <- function() assertThat(as.vector(structure(1:3, .Dim = 3L, .Dimnames = structure(list( z = c("a", "b", "c")), .Names = "z")), mode = "any"), identicalTo(1:3))
test.as.vector.512 <- function() assertThat(as.vector(structure(1:3, .Dim = 3L, .Dimnames = structure(list( z = c("a", "b", "c")), .Names = "z")), mode = "logical"), identicalTo(c(TRUE, TRUE, TRUE)))
test.as.vector.513 <- function() assertThat(as.vector(structure(1:3, .Dim = 3L, .Dimnames = structure(list( z = c("a", "b", "c")), .Names = "z")), mode = "integer"), identicalTo(1:3))
test.as.vector.514 <- function() assertThat(as.vector(structure(1:3, .Dim = 3L, .Dimnames = structure(list( z = c("a", "b", "c")), .Names = "z")), mode = "numeric"), identicalTo(c(1, 2, 3)))
test.as.vector.515 <- function() assertThat(as.vector(structure(1:3, .Dim = 3L, .Dimnames = structure(list( z = c("a", "b", "c")), .Names = "z")), mode = "double"), identicalTo(c(1, 2, 3)))
test.as.vector.516 <- function() assertThat(as.vector(structure(1:3, .Dim = 3L, .Dimnames = structure(list( z = c("a", "b", "c")), .Names = "z")), mode = "complex"), identicalTo(c(1+0i, 2+0i, 3+0i)))
test.as.vector.517 <- function() assertThat(as.vector(structure(1:3, .Dim = 3L, .Dimnames = structure(list( z = c("a", "b", "c")), .Names = "z")), mode = "raw"), identicalTo(as.raw(c(0x01, 0x02, 0x03))))
test.as.vector.518 <- function() assertThat(as.vector(structure(1:3, .Dim = 3L, .Dimnames = structure(list( z = c("a", "b", "c")), .Names = "z")), mode = "character"), identicalTo(c("1", "2", "3")))
test.as.vector.519 <- function() assertThat(as.vector(structure(1:3, .Dim = 3L, .Dimnames = structure(list( z = c("a", "b", "c")), .Names = "z")), mode = "list"), identicalTo(structure(list(a = 1L, b = 2L, c = 3L), .Names = c("a", "b", "c"))))
test.as.vector.520 <- function() assertThat(as.vector(structure(1:3, .Dim = 3L, .Dimnames = structure(list( z = c("a", "b", "c")), .Names = "z")), mode = "expression"), deparsesTo("expression(1L, 2L, 3L)"))
test.as.vector.521 <- function() assertThat(as.vector(structure(1:3, .Dim = 3L, .Dimnames = structure(list( z = c("a", "b", "c")), .Names = "z")), mode = "rubish"), throwsError())
test.as.vector.522 <- function() assertThat(as.vector(structure(1:3, .Dim = 3L, .Dimnames = structure(list( z = c("a", "b", "c")), .Names = "z")), mode = NA_character_), throwsError())
test.as.vector.523 <- function() assertThat(as.vector(structure(list("foo"), class = "foo"), mode = "any"), identicalTo(99))
test.as.vector.524 <- function() assertThat(as.vector(structure(list("foo"), class = "foo"), mode = "logical"), identicalTo(99))
test.as.vector.525 <- function() assertThat(as.vector(structure(list("foo"), class = "foo"), mode = "integer"), identicalTo(99))
test.as.vector.526 <- function() assertThat(as.vector(structure(list("foo"), class = "foo"), mode = "numeric"), identicalTo(99))
test.as.vector.527 <- function() assertThat(as.vector(structure(list("foo"), class = "foo"), mode = "double"), identicalTo(99))
test.as.vector.528 <- function() assertThat(as.vector(structure(list("foo"), class = "foo"), mode = "complex"), identicalTo(99))
test.as.vector.529 <- function() assertThat(as.vector(structure(list("foo"), class = "foo"), mode = "raw"), identicalTo(99))
test.as.vector.530 <- function() assertThat(as.vector(structure(list("foo"), class = "foo"), mode = "character"), identicalTo(99))
test.as.vector.531 <- function() assertThat(as.vector(structure(list("foo"), class = "foo"), mode = "list"), identicalTo(99))
test.as.vector.532 <- function() assertThat(as.vector(structure(list("foo"), class = "foo"), mode = "expression"), identicalTo(99))
test.as.vector.533 <- function() assertThat(as.vector(structure(list("foo"), class = "foo"), mode = "rubish"), identicalTo(99))
test.as.vector.534 <- function() assertThat(as.vector(structure(list("foo"), class = "foo"), mode = NA_character_), identicalTo(99))
test.as.vector.535 <- function() assertThat(as.vector(structure(list("bar"), class = "foo"), mode = "any"), identicalTo(99))
test.as.vector.536 <- function() assertThat(as.vector(structure(list("bar"), class = "foo"), mode = "logical"), identicalTo(99))
test.as.vector.537 <- function() assertThat(as.vector(structure(list("bar"), class = "foo"), mode = "integer"), identicalTo(99))
test.as.vector.538 <- function() assertThat(as.vector(structure(list("bar"), class = "foo"), mode = "numeric"), identicalTo(99))
test.as.vector.539 <- function() assertThat(as.vector(structure(list("bar"), class = "foo"), mode = "double"), identicalTo(99))
test.as.vector.540 <- function() assertThat(as.vector(structure(list("bar"), class = "foo"), mode = "complex"), identicalTo(99))
test.as.vector.541 <- function() assertThat(as.vector(structure(list("bar"), class = "foo"), mode = "raw"), identicalTo(99))
test.as.vector.542 <- function() assertThat(as.vector(structure(list("bar"), class = "foo"), mode = "character"), identicalTo(99))
test.as.vector.543 <- function() assertThat(as.vector(structure(list("bar"), class = "foo"), mode = "list"), identicalTo(99))
test.as.vector.544 <- function() assertThat(as.vector(structure(list("bar"), class = "foo"), mode = "expression"), identicalTo(99))
test.as.vector.545 <- function() assertThat(as.vector(structure(list("bar"), class = "foo"), mode = "rubish"), identicalTo(99))
test.as.vector.546 <- function() assertThat(as.vector(structure(list("bar"), class = "foo"), mode = NA_character_), identicalTo(99))
test.as.vector.547 <- function() assertThat(as.vector(quote(xyz), mode = "any"), throwsError())
test.as.vector.548 <- function() assertThat(as.vector(quote(xyz), mode = "logical"), throwsError())
test.as.vector.549 <- function() assertThat(as.vector(quote(xyz), mode = "integer"), throwsError())
test.as.vector.550 <- function() assertThat(as.vector(quote(xyz), mode = "numeric"), throwsError())
test.as.vector.551 <- function() assertThat(as.vector(quote(xyz), mode = "double"), throwsError())
test.as.vector.552 <- function() assertThat(as.vector(quote(xyz), mode = "complex"), throwsError())
test.as.vector.553 <- function() assertThat(as.vector(quote(xyz), mode = "raw"), throwsError())
test.as.vector.554 <- function() assertThat(as.vector(quote(xyz), mode = "character"), identicalTo("xyz"))
test.as.vector.555 <- function() assertThat(as.vector(quote(xyz), mode = "list"), identicalTo(list(quote(xyz))))
test.as.vector.556 <- function() assertThat(as.vector(quote(xyz), mode = "expression"), deparsesTo("expression(xyz)"))
test.as.vector.557 <- function() assertThat(as.vector(quote(xyz), mode = "rubish"), throwsError())
test.as.vector.558 <- function() assertThat(as.vector(quote(xyz), mode = NA_character_), throwsError())
test.as.vector.559 <- function() assertThat(as.vector(quote(sin(3.14)), mode = "any"), deparsesTo("sin(3.14)"))
test.as.vector.560 <- function() assertThat(as.vector(quote(sin(3.14)), mode = "logical"), throwsError())
test.as.vector.561 <- function() assertThat(as.vector(quote(sin(3.14)), mode = "integer"), throwsError())
test.as.vector.562 <- function() assertThat(as.vector(quote(sin(3.14)), mode = "numeric"), throwsError())
test.as.vector.563 <- function() assertThat(as.vector(quote(sin(3.14)), mode = "double"), throwsError())
test.as.vector.564 <- function() assertThat(as.vector(quote(sin(3.14)), mode = "complex"), throwsError())
test.as.vector.565 <- function() assertThat(as.vector(quote(sin(3.14)), mode = "raw"), throwsError())
test.as.vector.566 <- function() assertThat(as.vector(quote(sin(3.14)), mode = "character"), identicalTo(c("sin", "3.14")))
test.as.vector.567 <- function() assertThat(as.vector(quote(sin(3.14)), mode = "list"), identicalTo(list(quote(sin), 3.14)))
test.as.vector.568 <- function() assertThat(as.vector(quote(sin(3.14)), mode = "expression"), deparsesTo("expression(sin(3.14))"))
test.as.vector.569 <- function() assertThat(as.vector(quote(sin(3.14)), mode = "rubish"), throwsError())
test.as.vector.570 <- function() assertThat(as.vector(quote(sin(3.14)), mode = NA_character_), throwsError())
test.as.vector.571 <- function() assertThat(as.vector("NaN", mode = "any"), identicalTo("NaN"))
test.as.vector.572 <- function() assertThat(as.vector("NaN", mode = "logical"), identicalTo(NA))
test.as.vector.573 <- function() assertThat(as.vector("NaN", mode = "integer"), identicalTo(NA_integer_))
test.as.vector.574 <- function() assertThat(as.vector("NaN", mode = "numeric"), identicalTo(NaN))
test.as.vector.575 <- function() assertThat(as.vector("NaN", mode = "double"), identicalTo(NaN))
test.as.vector.576 <- function() assertThat(as.vector("NaN", mode = "complex"), identicalTo(complex(real=NaN, imaginary=0)))
test.as.vector.577 <- function() assertThat(as.vector("NaN", mode = "raw"), identicalTo(as.raw(0x00)))
test.as.vector.578 <- function() assertThat(as.vector("NaN", mode = "character"), identicalTo("NaN"))
test.as.vector.579 <- function() assertThat(as.vector("NaN", mode = "list"), identicalTo(list("NaN")))
test.as.vector.580 <- function() assertThat(as.vector("NaN", mode = "expression"), deparsesTo("expression(\"NaN\")"))
test.as.vector.581 <- function() assertThat(as.vector("NaN", mode = "rubish"), throwsError())
test.as.vector.582 <- function() assertThat(as.vector("NaN", mode = NA_character_), throwsError())
test.as.vector.583 <- function() assertThat(as.vector("NABOOM!", mode = "any"), identicalTo("NABOOM!"))
test.as.vector.584 <- function() assertThat(as.vector("NABOOM!", mode = "logical"), identicalTo(NA))
test.as.vector.585 <- function() assertThat(as.vector("NABOOM!", mode = "integer"), identicalTo(NA_integer_))
test.as.vector.586 <- function() assertThat(as.vector("NABOOM!", mode = "numeric"), identicalTo(NA_real_))
test.as.vector.587 <- function() assertThat(as.vector("NABOOM!", mode = "double"), identicalTo(NA_real_))
test.as.vector.588 <- function() assertThat(as.vector("NABOOM!", mode = "complex"), identicalTo(NA_complex_))
test.as.vector.589 <- function() assertThat(as.vector("NABOOM!", mode = "raw"), identicalTo(as.raw(0x00)))
test.as.vector.590 <- function() assertThat(as.vector("NABOOM!", mode = "character"), identicalTo("NABOOM!"))
test.as.vector.591 <- function() assertThat(as.vector("NABOOM!", mode = "list"), identicalTo(list("NABOOM!")))
test.as.vector.592 <- function() assertThat(as.vector("NABOOM!", mode = "expression"), deparsesTo("expression(\"NABOOM!\")"))
test.as.vector.593 <- function() assertThat(as.vector("NABOOM!", mode = "rubish"), throwsError())
test.as.vector.594 <- function() assertThat(as.vector("NABOOM!", mode = NA_character_), throwsError())
test.as.vector.595 <- function() assertThat(as.vector("NaNaNabooboo", mode = "any"), identicalTo("NaNaNabooboo"))
test.as.vector.596 <- function() assertThat(as.vector("NaNaNabooboo", mode = "logical"), identicalTo(NA))
test.as.vector.597 <- function() assertThat(as.vector("NaNaNabooboo", mode = "integer"), identicalTo(NA_integer_))
test.as.vector.598 <- function() assertThat(as.vector("NaNaNabooboo", mode = "numeric"), identicalTo(NA_real_))
test.as.vector.599 <- function() assertThat(as.vector("NaNaNabooboo", mode = "double"), identicalTo(NA_real_))
test.as.vector.600 <- function() assertThat(as.vector("NaNaNabooboo", mode = "complex"), identicalTo(NA_complex_))
test.as.vector.601 <- function() assertThat(as.vector("NaNaNabooboo", mode = "raw"), identicalTo(as.raw(0x00)))
test.as.vector.602 <- function() assertThat(as.vector("NaNaNabooboo", mode = "character"), identicalTo("NaNaNabooboo"))
test.as.vector.603 <- function() assertThat(as.vector("NaNaNabooboo", mode = "list"), identicalTo(list("NaNaNabooboo")))
test.as.vector.604 <- function() assertThat(as.vector("NaNaNabooboo", mode = "expression"), deparsesTo("expression(\"NaNaNabooboo\")"))
test.as.vector.605 <- function() assertThat(as.vector("NaNaNabooboo", mode = "rubish"), throwsError())
test.as.vector.606 <- function() assertThat(as.vector("NaNaNabooboo", mode = NA_character_), throwsError())
test.as.vector.607 <- function() assertThat(as.vector("-Inf", mode = "any"), identicalTo("-Inf"))
test.as.vector.608 <- function() assertThat(as.vector("-Inf", mode = "logical"), identicalTo(NA))
test.as.vector.609 <- function() assertThat(as.vector("-Inf", mode = "integer"), identicalTo(NA_integer_))
test.as.vector.610 <- function() assertThat(as.vector("-Inf", mode = "numeric"), identicalTo(-Inf))
test.as.vector.611 <- function() assertThat(as.vector("-Inf", mode = "double"), identicalTo(-Inf))
test.as.vector.612 <- function() assertThat(as.vector("-Inf", mode = "complex"), identicalTo(-Inf+0i))
test.as.vector.613 <- function() assertThat(as.vector("-Inf", mode = "raw"), identicalTo(as.raw(0x00)))
test.as.vector.614 <- function() assertThat(as.vector("-Inf", mode = "character"), identicalTo("-Inf"))
test.as.vector.615 <- function() assertThat(as.vector("-Inf", mode = "list"), identicalTo(list("-Inf")))
test.as.vector.616 <- function() assertThat(as.vector("-Inf", mode = "expression"), deparsesTo("expression(\"-Inf\")"))
test.as.vector.617 <- function() assertThat(as.vector("-Inf", mode = "rubish"), throwsError())
test.as.vector.618 <- function() assertThat(as.vector("-Inf", mode = NA_character_), throwsError())
test.as.vector.619 <- function() assertThat(as.vector("+Infinity", mode = "any"), identicalTo("+Infinity"))
test.as.vector.620 <- function() assertThat(as.vector("+Infinity", mode = "logical"), identicalTo(NA))
test.as.vector.621 <- function() assertThat(as.vector("+Infinity", mode = "integer"), identicalTo(NA_integer_))
test.as.vector.622 <- function() assertThat(as.vector("+Infinity", mode = "numeric"), identicalTo(Inf))
test.as.vector.623 <- function() assertThat(as.vector("+Infinity", mode = "double"), identicalTo(Inf))
test.as.vector.624 <- function() assertThat(as.vector("+Infinity", mode = "complex"), identicalTo(Inf+0i))
test.as.vector.625 <- function() assertThat(as.vector("+Infinity", mode = "raw"), identicalTo(as.raw(0x00)))
test.as.vector.626 <- function() assertThat(as.vector("+Infinity", mode = "character"), identicalTo("+Infinity"))
test.as.vector.627 <- function() assertThat(as.vector("+Infinity", mode = "list"), identicalTo(list("+Infinity")))
test.as.vector.628 <- function() assertThat(as.vector("+Infinity", mode = "expression"), deparsesTo("expression(\"+Infinity\")"))
test.as.vector.629 <- function() assertThat(as.vector("+Infinity", mode = "rubish"), throwsError())
test.as.vector.630 <- function() assertThat(as.vector("+Infinity", mode = NA_character_), throwsError())
test.as.vector.631 <- function() assertThat(as.vector("Infinity and beyond!", mode = "any"), identicalTo("Infinity and beyond!"))
test.as.vector.632 <- function() assertThat(as.vector("Infinity and beyond!", mode = "logical"), identicalTo(NA))
test.as.vector.633 <- function() assertThat(as.vector("Infinity and beyond!", mode = "integer"), identicalTo(NA_integer_))
test.as.vector.634 <- function() assertThat(as.vector("Infinity and beyond!", mode = "numeric"), identicalTo(NA_real_))
test.as.vector.635 <- function() assertThat(as.vector("Infinity and beyond!", mode = "double"), identicalTo(NA_real_))
test.as.vector.636 <- function() assertThat(as.vector("Infinity and beyond!", mode = "complex"), identicalTo(NA_complex_))
test.as.vector.637 <- function() assertThat(as.vector("Infinity and beyond!", mode = "raw"), identicalTo(as.raw(0x00)))
test.as.vector.638 <- function() assertThat(as.vector("Infinity and beyond!", mode = "character"), identicalTo("Infinity and beyond!"))
test.as.vector.639 <- function() assertThat(as.vector("Infinity and beyond!", mode = "list"), identicalTo(list("Infinity and beyond!")))
test.as.vector.640 <- function() assertThat(as.vector("Infinity and beyond!", mode = "expression"), deparsesTo("expression(\"Infinity and beyond!\")"))
test.as.vector.641 <- function() assertThat(as.vector("Infinity and beyond!", mode = "rubish"), throwsError())
test.as.vector.642 <- function() assertThat(as.vector("Infinity and beyond!", mode = NA_character_), throwsError())
test.as.vector.643 <- function() assertThat(as.vector("Infi", mode = "any"), identicalTo("Infi"))
test.as.vector.644 <- function() assertThat(as.vector("Infi", mode = "logical"), identicalTo(NA))
test.as.vector.645 <- function() assertThat(as.vector("Infi", mode = "integer"), identicalTo(NA_integer_))
test.as.vector.646 <- function() assertThat(as.vector("Infi", mode = "numeric"), identicalTo(NA_real_))
test.as.vector.647 <- function() assertThat(as.vector("Infi", mode = "double"), identicalTo(NA_real_))
test.as.vector.648 <- function() assertThat(as.vector("Infi", mode = "complex"), identicalTo(NA_complex_))
test.as.vector.649 <- function() assertThat(as.vector("Infi", mode = "raw"), identicalTo(as.raw(0x00)))
test.as.vector.650 <- function() assertThat(as.vector("Infi", mode = "character"), identicalTo("Infi"))
test.as.vector.651 <- function() assertThat(as.vector("Infi", mode = "list"), identicalTo(list("Infi")))
test.as.vector.652 <- function() assertThat(as.vector("Infi", mode = "expression"), deparsesTo("expression(\"Infi\")"))
test.as.vector.653 <- function() assertThat(as.vector("Infi", mode = "rubish"), throwsError())
test.as.vector.654 <- function() assertThat(as.vector("Infi", mode = NA_character_), throwsError())
test.as.vector.655 <- function() assertThat(as.vector("0.03f", mode = "any"), identicalTo("0.03f"))
test.as.vector.656 <- function() assertThat(as.vector("0.03f", mode = "logical"), identicalTo(NA))
test.as.vector.657 <- function() assertThat(as.vector("0.03f", mode = "integer"), identicalTo(NA_integer_))
test.as.vector.658 <- function() assertThat(as.vector("0.03f", mode = "numeric"), identicalTo(NA_real_))
test.as.vector.659 <- function() assertThat(as.vector("0.03f", mode = "double"), identicalTo(NA_real_))
test.as.vector.660 <- function() assertThat(as.vector("0.03f", mode = "complex"), identicalTo(NA_complex_))
test.as.vector.661 <- function() assertThat(as.vector("0.03f", mode = "raw"), identicalTo(as.raw(0x00)))
test.as.vector.662 <- function() assertThat(as.vector("0.03f", mode = "character"), identicalTo("0.03f"))
test.as.vector.663 <- function() assertThat(as.vector("0.03f", mode = "list"), identicalTo(list("0.03f")))
test.as.vector.664 <- function() assertThat(as.vector("0.03f", mode = "expression"), deparsesTo("expression(\"0.03f\")"))
test.as.vector.665 <- function() assertThat(as.vector("0.03f", mode = "rubish"), throwsError())
test.as.vector.666 <- function() assertThat(as.vector("0.03f", mode = NA_character_), throwsError())
test.as.vector.667 <- function() assertThat(as.vector(" 0.0330 ", mode = "any"), identicalTo(" 0.0330 "))
test.as.vector.668 <- function() assertThat(as.vector(" 0.0330 ", mode = "logical"), identicalTo(NA))
test.as.vector.669 <- function() assertThat(as.vector(" 0.0330 ", mode = "integer"), identicalTo(0L))
test.as.vector.670 <- function() assertThat(as.vector(" 0.0330 ", mode = "numeric"), identicalTo(0.033, tol = 0.000100))
test.as.vector.671 <- function() assertThat(as.vector(" 0.0330 ", mode = "double"), identicalTo(0.033, tol = 0.000100))
test.as.vector.672 <- function() assertThat(as.vector(" 0.0330 ", mode = "complex"), identicalTo(0.033+0i))
test.as.vector.673 <- function() assertThat(as.vector(" 0.0330 ", mode = "raw"), identicalTo(as.raw(0x00)))
test.as.vector.674 <- function() assertThat(as.vector(" 0.0330 ", mode = "character"), identicalTo(" 0.0330 "))
test.as.vector.675 <- function() assertThat(as.vector(" 0.0330 ", mode = "list"), identicalTo(list(" 0.0330 ")))
test.as.vector.676 <- function() assertThat(as.vector(" 0.0330 ", mode = "expression"), deparsesTo("expression(\" 0.0330 \")"))
test.as.vector.677 <- function() assertThat(as.vector(" 0.0330 ", mode = "rubish"), throwsError())
test.as.vector.678 <- function() assertThat(as.vector(" 0.0330 ", mode = NA_character_), throwsError()) |
glmdev <-
function(y, ni, ci, wa, vtheta, offset=0, icase = .dFvGet()$ics)
{
if(missing(y)) messagena("y")
n <- length(y)
if(missing(ni)) ni <- integer(n)
if(missing(ci)) messagena("ci")
if(missing(wa)) messagena("wa")
if(missing(vtheta)) messagena("vtheta")
if (length(offset)==1) offset <- rep(0,n)
dev <- double(1)
thetas <- double(n)
li <- double(n)
sc <- double(n)
f.res <- .Fortran("glmdevz",
y = to.single(y),
ni = to.integer(ni),
ci = to.single(ci),
wa = to.single(wa),
vtheta = to.single(vtheta),
oi = to.single(offset),
n = to.integer(n),
icase = to.integer(icase),
dev = to.double(dev),
thetas = to.double(thetas),
li = to.double(li),
sc = to.double(sc))
sc <- f.res$sc
list(dev = f.res$dev, thetas = f.res$thetas, li = f.res$li, sc = sc)
} |
contour.RVineMatrix <- function(x, tree = "ALL", xylim = NULL, cex.nums = 1,
data = NULL, ...) {
d <- nrow(x$Matrix)
if (all(tree == "ALL"))
tree <- seq.int(d-1)
n.tree <- length(tree)
if (!is.null(list(...)$type))
stop("Only contour plots allowed. Don't use the type argument!")
usr <- par(mfrow = c(n.tree, d - min(tree)), mar = rep(0, 4))
on.exit(par(usr))
psobs <- if (!is.null(data)) vine_psobs(data, x) else NULL
TUMblue <- rgb(0, 103/255, 198/255)
tint.seq <- seq(0.5, 0.5, length.out = d - 1)
clrs <- rev(sapply(tint.seq, function(x) tint(TUMblue, x, 0.7)))
if (!is.null(list(...)$margins)) {
margins <- list(...)$margins
if (!(margins %in% c("norm", "unif", "exp", "flexp")))
contour(BiCop(0), margins = c(0, 10))
} else {
margins <- "norm"
}
if (is.null(xylim))
xylim <- switch(margins,
"norm" = c(-3, 3),
"unif" = c(0, 1 - 1e-2),
"exp" = c(0, 10),
"flexp" = c(-10, 0))
xlim <- ylim <- xylim
offs <- 0.25
mult <- 1.35
ylim[2] <- ylim[2] + offs*diff(ylim)
cnt <- 0
k <- d
e <- numeric(0)
class(e) <- "try-error"
while ("try-error" %in% class(e)) {
e <- try({
maxnums <- get_num(1, tree = max(tree), RVM = x)
for (i in rev(tree)) {
for (j in 1:(d - min(tree))) {
if (j <= d - i) {
if (is.null(psobs)) {
pcfit <- BiCop(family = x$family[d - i + 1, j],
par = x$par[d - i + 1, j],
par2 = x$par2[d - i + 1, j],
check.pars = FALSE)
} else {
pcfit <- kdecopula::kdecop(psobs[[i]][[j]])
}
args <- list(x = pcfit,
drawlabels = FALSE,
xlab = "",
ylab = "",
xlim = xlim,
ylim = ylim,
xaxt = "n",
yaxt = "n",
add = TRUE)
plot.new()
plot.window(xlim = xlim, ylim = ylim,
xaxs = "i", yaxs = "i")
do.call(contour, modifyList(args, list(...)))
abline(h = ylim[2] - diff(ylim)/mult*offs)
ci <- min(length(clrs) + 1 - i, 10)
polygon(x = c(xlim[1] - diff(xlim),
xlim[1] - diff(xlim),
xlim[2] + diff(xlim),
xlim[2] + diff(xlim)),
y = c(ylim[2] + diff(ylim)/mult*offs,
ylim[2] - diff(ylim)/mult*offs,
ylim[2] - diff(ylim)/mult*offs,
ylim[2] + diff(ylim)/mult*offs),
col = clrs[ci])
abline(v = xlim)
abline(h = ylim)
cx1 <- 0.75 * diff(xlim) / strwidth(maxnums)
ty <- ylim[2] - diff(ylim)/mult*offs
cx2 <- 0.75 * (ylim[2] - ty) / strheight(maxnums)
cx <- min(cx1, cx2)
text(x = sum(xlim)/2,
y = ty + 0.225 / cex.nums * (ylim[2] - ty),
cex = cex.nums * cx,
labels = get_num(j, tree = i, RVM = x),
pos = 3,
offset = 0)
} else {
plot.new()
}
}
}
}
, silent = TRUE)
if (length(tree) < 1)
stop("Error in plot.new() : figure margins too large")
if ("try-error" %in% class(e)) {
cnt <- cnt + 1
tree <- tree[-which(tree == max(tree))]
par(mfrow = c(n.tree - cnt, d - min(tree)))
}
}
if (length(tree) != n.tree) {
nmbr.msg <- as.character(tree[1])
if (length(tree) > 2) {
for (i in tree[-c(1, length(tree))]) {
nmbr.msg <- paste(nmbr.msg, i, sep=", ")
}
}
if (length(tree) > 1) {
s.msg <- "s "
nmbr.msg <- paste(nmbr.msg,
"and",
tree[length(tree)],
"were plotted. ")
} else {
s.msg <- " "
nmbr.msg <- paste(nmbr.msg, "was plotted. ", sep=" ")
}
msg.space <- "There is not enough space."
msg.tree <- paste("Only Tree",
s.msg,
nmbr.msg,
"Use the 'tree' argument or enlarge figure margins",
" to see the others.",
sep = "")
message(paste(msg.space, msg.tree))
}
}
vine_psobs <- function (uev, object) {
uev <- as.matrix(uev)
if (ncol(uev) == 1)
uev <- matrix(uev, 1, nrow(uev))
if (any(uev > 1) || any(uev < 0))
stop("Data has be in the interval [0,1].")
n <- ncol(uev)
N <- nrow(uev)
if (ncol(uev) != ncol(object$Matrix))
stop("Dimensions of 'data' and 'object' do not match.")
if (!is(object,"RVineMatrix"))
stop("'object' has to be an RVineMatrix object")
o <- diag(object$Matrix)
oldobject <- object
if (any(o != length(o):1)) {
object <- normalizeRVineMatrix(object)
uev <- matrix(uev[, o[length(o):1]], N, n)
}
CondDistr <- neededCondDistr(object$Matrix)
val <- array(1, dim = c(n, n, N))
out <- lapply(1:(n - 1), list)
V <- list()
V$direct <- array(NA, dim = c(n, n, N))
V$indirect <- array(NA, dim = c(n, n, N))
V$direct[n, , ] <- t(uev[, n:1])
for (i in (n - 1):1) {
for (k in n:(i + 1)) {
m <- object$MaxMat[k, i]
zr1 <- V$direct[k, i, ]
if (m == object$Matrix[k, i]) {
zr2 <- V$direct[k, (n - m + 1), ]
} else {
zr2 <- V$indirect[k, (n - m + 1), ]
}
out[[n - k + 1]][[i]] <- cbind(zr2, zr1)
if (CondDistr$direct[k - 1, i])
V$direct[k - 1, i, ] <- BiCopHfunc1(zr2, zr1,
object$family[k, i],
object$par[k, i],
object$par2[k, i],
check.pars = FALSE)
if (CondDistr$indirect[k - 1, i])
V$indirect[k - 1, i, ] <- BiCopHfunc2(zr2, zr1,
object$family[k, i],
object$par[k, i],
object$par2[k, i],
check.pars = FALSE)
}
}
out
} |
cvi_evaluators <- function(type = "valid", fuzzy = FALSE, ground.truth = NULL) {
if (fuzzy) {
external <- c("RI", "ARI", "VI", "NMIM")
internal <- c("MPC", "K", "T", "SC", "PBMF")
minimize <- c("VI", "K", "T")
}
else {
external <- c("RI", "ARI", "J", "FM", "VI")
internal <- c("Sil", "D", "COP", "DB", "DBstar", "CH", "SF")
minimize <- c("VI", "COP", "DB", "DBstar")
}
if ("valid" %in% type) {
type <- if (is.null(ground.truth)) internal else c(external, internal)
}
else if ("external" %in% type) {
if (is.null(ground.truth))
stop("The ground.truth is needed for external CVIs.")
type <- external
}
else if ("internal" %in% type) {
type <- internal
}
else {
type <- match.arg(type, c(external, internal), several.ok = TRUE)
if (any(external %in% type) && is.null(ground.truth))
stop("The ground.truth is needed for external CVIs.")
}
majority <- function(x) {
ux <- unique(x)
ux[which.max(tabulate(match(x, ux)))]
}
score <- function(objs, ...) {
do.call(rbind, lapply(objs, function(obj) {
internal <- intersect(type, internal)
external <- intersect(type, external)
if (length(internal) > 0L)
cvis <- cvi(a = obj, type = internal, ...)
else
cvis <- numeric()
if (length(external) > 0L) {
if (fuzzy)
cvis <- c(cvis, cvi(obj@fcluster, ground.truth, external, ...))
else
cvis <- c(cvis, cvi(obj@cluster, ground.truth, external, ...))
}
minimized <- names(cvis) %in% minimize
if (length(minimized) > 0L && any(minimized))
cvis[minimized] <- 1 / cvis[minimized]
cvis
}))
}
pick <- function(results, objs, ...) {
objs_missing <- missing(objs)
best_by_type <- sapply(results, function(result) {
score <- result[type]
best_by_cvi <- apply(score, 2L, which.max)
if (length(type) > 1L && length(unique(best_by_cvi)) == length(best_by_cvi))
stop("All votes are distinct, so majority voting is inconclusive.")
majority(best_by_cvi)
})
best_overall <- Map(results, best_by_type, f = function(result, row_id) {
result[row_id, type, drop = FALSE]
})
best_overall <- do.call(rbind, best_overall)
best_overall <- apply(best_overall, 2L, which.max)
if (length(type) > 1L && length(unique(best_overall)) == length(best_overall))
stop("All votes are distinct, so majority voting is inconclusive.")
best_overall <- majority(best_overall)
if (objs_missing)
results[[best_overall]][best_by_type[best_overall], , drop = FALSE]
else
list(
object = objs[[best_overall]][[best_by_type[best_overall]]],
config = results[[best_overall]][best_by_type[best_overall], , drop = FALSE]
)
}
list(score = score, pick = pick)
} |
"mahasuhab" <- function(x, pts, type=c("distance", "probability"))
{
type<-match.arg(type)
if (!inherits(x, "SpatialPixelsDataFrame"))
stop("should be an object of class SpatialPixelsDataFrame")
gridded(x) <- TRUE
gr <- gridparameters(x)
if (nrow(gr) > 2)
stop("x should be defined in two dimensions")
if ((gr[1, 2] - gr[2, 2])> get(".adeoptions", envir=.adehabitatMAEnv)$epsilon)
stop("the cellsize should be the same in x and y directions")
if (!inherits(pts, "SpatialPoints"))
stop("should inherit from class \"SpatialPoints\"")
hihi<-join(pts, x)
hihi <- hihi[!is.na(hihi[,1]),]
used<-list()
for (i in 1:ncol(hihi)) {
if (is.factor(hihi[,i]))
used[[i]]<-acm.disjonctif(data.frame(hihi[,i]))[,-1]
else
used[[i]]<-hihi[,i]
}
used[[i+1]]<-rep(1, nrow(hihi))
hihi<-as.data.frame(used)
hihi<-hihi[!is.na(hihi[,1]),]
mu<-apply(hihi,2, function(x) mean(x, na.rm=TRUE))
varcov<-t(as.matrix(hihi))%*%as.matrix(hihi)/nrow(hihi)
kasc <- slot(x,"data")
ava<-list()
for (i in 1:ncol(kasc)) {
if (is.factor(kasc[,i]))
ava[[i]]<-acm.disjonctif(data.frame(kasc[,i]))[,-1]
else
ava[[i]]<-kasc[,i]
}
ava[[i+1]]<-rep(1, nrow(kasc))
df<-as.data.frame(ava)
map<-mahalanobis(as.matrix(df), mu, varcov)
if (type=="probability")
map<-1-pchisq(map, ncol(hihi)-1)
map <- data.frame(MD=map)
coordinates(map) <- coordinates(x)
gridded(map) <- TRUE
return(map)
} |
curvep_defaults <- function() {
defaults <- list(
TRSH = 15,
RNGE = -1000000,
MXDV = 5,
CARR = 0,
BSFT = 3,
USHP = 4,
TrustHi = TRUE,
StrictImp = TRUE,
DUMV = -999,
TLOG = -24,
seed = NA_integer_
)
class(defaults) <- "curvep_config"
return(defaults)
}
run_rcurvep <- function(d, mask = 0, config = curvep_defaults(), keep_sets = c("act_set", "resp_set", "fp_set"), ...) {
d <- na.omit(d)
d <- .check_dat_base(d)
mask <- .check_mask_input(mask, d)
config <- .check_config_name(config = config, ...)
config <- .check_config_value(config)
keep_sets <- .check_keep_sets(keep_sets, c("act_set", "resp_set", "fp_set"), must_set = "act_set")
d <- create_resp_mask(d, mask)
out <- cal_curvep_dataset(d, config = config)
result <- clean_curvep_output(out, config = config)
merge_result <- merge_rcurvep_output(d = result, keep_sets = keep_sets)
out_result <- list(result = merge_result, config = config)
class(out_result) <- c("rcurvep", class(out_result))
return(out_result)
}
create_resp_mask <- function(d, mask) {
if (any(is.null(mask))) {
result <- d
} else if (any(mask == 0)) {
result <- d %>% dplyr::mutate(mask = 0)
} else {
result <- d %>%
dplyr::arrange(.data$endpoint, .data$chemical, dplyr::desc(.data$conc)) %>%
tidyr::nest(data = -c(.data$endpoint, .data$chemical)) %>%
dplyr::mutate(
mask = purrr::map(data, function(x, mask) replace(rep(0, nrow(x)), mask, 1), mask = mask)
) %>%
tidyr::unnest(cols = c("data", "mask"))
}
return(result)
}
cal_curvep_dataset <- function(d, config) {
d <- d %>%
dplyr::arrange(.data$endpoint, .data$chemical, .data$conc) %>%
tidyr::nest(input = -c(.data$endpoint, .data$chemical))
result <- d %>%
dplyr::mutate(
output = purrr::map(
.data$input,
function(x, config) call_curvep(x$conc, x$resp, x$mask, config), config = config)
)
return(result)
}
clean_curvep_output <- function(d, config) {
result <- d %>%
dplyr::mutate(
out_resp = purrr::map(.data$output, extract_curvep_outresp),
in_summary = purrr::map(.data$input, extract_input_summary),
fingerprint = purrr::map(.data$output, extract_curvep_fingerprint, config = config),
activity = purrr::map(.data$output, extract_curvep_activity, config = config)
) %>%
dplyr::select(-.data$output)
return(result)
}
call_curvep <- function(concs, resps, masks, paras) {
result <- do.call(curvep, c(list(concs), list(resps), list(masks), paras))
result[['Settings']] <- NULL
return(result)
}
extract_curvep_fingerprint <- function(x, config) {
outp <- x
vals <- outp[names(outp) %in% c('xx', 'ECxx', 'Cxx')]
result <- vals %>% tibble::as_tibble()
result[result == config$DUMV] <- NA
return(result)
}
extract_curvep_outresp <- function(x) {
outp <- x
vals <- outp[names(outp) %in% c('resp', 'corr')]
result <- vals %>% tibble::as_tibble()
result <- result %>%
dplyr::rename(
corrected_resp = .data$resp,
correction = .data$corr
)
return(result)
}
extract_input_summary <- function(x) {
result <- tibble::tibble(
lowest_conc = head(x$conc, 1),
highest_conc = tail(x$conc, 1),
max_resp = max(x$resp),
min_resp = min(x$resp),
n_conc = length(unique(x$conc)),
mean_conc_spacing = mean(diff(unique(x$conc)))
)
return(result)
}
extract_curvep_activity <- function(x, config) {
outp <- x
vals <- outp[!names(outp) %in% c('resp', 'corr', 'xx', 'ECxx', 'Cxx','Settings')]
result <- vals %>% tibble::as_tibble()
result[result == config$DUMV] <- NA
return(result)
} |
find_peaks <- function(data, n_peaks=3){
.SD = peak = NULL
out <- data.table::copy(data)
out[ , peak := find_peaks_wapped(.SD, n_peaks = n_peaks), by = c(data.table::key(out))]
out[, peak := ifelse(is.na(peak), 0L, peak)]
}
find_peaks_wapped <- function(d, n_peaks = 3){
signif_threshold = NULL
x <- d[, power - signif_threshold]
peak_mat <- pracma::findpeaks(x,
peakpat = "[+]{1,}[0]*[-]{1,}",
sortstr = TRUE,
minpeakheight = 0
)
peak_idx <- rep(NA_real_,n_peaks)
out <- rep(NA_integer_, nrow(d))
if(!is.null(peak_mat))
out[peak_mat[,2]] <- 1:nrow(peak_mat)
out
}
findpeaks_pval <- function (x,
nups = 1, ndowns = nups, zero = "0", peakpat = "[+]{1,}[0]*[-]{1,}",
minpeakdistance = 1, threshold = 0, npeaks = 0, sortstr = FALSE){
stopifnot(is.vector(x, mode = "numeric") || length(is.na(x)) ==
0)
if (!zero %in% c("0", "+", "-"))
stop("Argument 'zero' can only be '0', '+', or '-'.")
xc <- paste(as.character(sign(diff(x))), collapse = "")
xc <- gsub("1", "+", gsub("-1", "-", xc))
if (zero != "0")
xc <- gsub("0", zero, xc)
if (is.null(peakpat)) {
peakpat <- sprintf("[+]{%d,}[-]{%d,}", nups, ndowns)
}
rc <- gregexpr(peakpat, xc)[[1]]
if (rc[1] < 0)
return(NULL)
x1 <- rc
x2 <- rc + attr(rc, "match.length")
attributes(x1) <- NULL
attributes(x2) <- NULL
n <- length(x1)
xv <- xp <- numeric(n)
for (i in 1:n) {
xp[i] <- which.max(x[x1[i]:x2[i]]) + x1[i] - 1
xv[i] <- x[xp[i]]
}
inds <- which( xv - pmax(x[x1], x[x2]) >=
threshold)
X <- cbind(xv[inds], xp[inds], x1[inds], x2[inds])
if (minpeakdistance < 1)
warning("Handling 'minpeakdistance < 1' is logically not possible.")
if (sortstr || minpeakdistance > 1) {
sl <- sort.list(X[, 1], na.last = NA, decreasing = TRUE)
X <- X[sl, , drop = FALSE]
}
if (length(X) == 0)
return(c())
if (minpeakdistance > 1) {
no_peaks <- nrow(X)
badpeaks <- rep(FALSE, no_peaks)
for (i in 1:no_peaks) {
ipos <- X[i, 2]
if (!badpeaks[i]) {
dpos <- abs(ipos - X[, 2])
badpeaks <- badpeaks | (dpos > 0 & dpos < minpeakdistance)
}
}
X <- X[!badpeaks, ]
}
if (npeaks > 0 && npeaks < nrow(X)) {
X <- X[1:npeaks, , drop = FALSE]
}
return(X)
} |
NULL
bq_dataset <- function(project, dataset) {
assert_that(is.string(project), is.string(dataset))
structure(
list(
project = project,
dataset = dataset
),
class = "bq_dataset"
)
}
setOldClass("bq_dataset")
print.bq_dataset <- function(x, ...) {
cat_line("<bq_dataset> ", x$project, ".", x$dataset)
invisible(x)
}
as_bq_dataset <- function(x) UseMethod("as_bq_dataset")
as_bq_dataset.bq_dataset <- function(x) x
as_bq_dataset.character <- function(x) {
x <- bq_from_string(x, 2, "bq_dataset")
bq_dataset(x[[1]], x[[2]])
}
as_bq_dataset.list <- function(x) {
x <- bq_from_list(x, c("projectId", "datasetId"), "bq_dataset")
bq_dataset(x$projectId, x$datasetId)
}
bq_table <- function(project, dataset, table = NULL) {
if (inherits(project, "bq_dataset") && is.null(table)) {
return(bq_table(project$project, project$dataset, dataset))
}
assert_that(is.string(project), is.string(dataset), is.string(table))
structure(
list(
project = project,
dataset = dataset,
table = table
),
class = "bq_table"
)
}
setOldClass("bq_table")
print.bq_table <- function(x, ...) {
cat_line("<bq_table> ", x$project, ".", x$dataset, ".", x$table)
invisible(x)
}
as_bq_table <- function(x, ...) UseMethod("as_bq_table")
as_bq_table.bq_table <- function(x, ...) {
x
}
as_bq_table.character <- function(x, ...) {
x <- bq_from_string(x, 3, "bq_table")
bq_table(x[[1]], x[[2]], x[[3]])
}
as_bq_table.list <- function(x, ...) {
x <- bq_from_list(x, c("projectId", "datasetId", "tableId"), "bq_table")
bq_table(x$projectId, x$datasetId, x$tableId)
}
bq_job <- function(project, job, location = "US") {
structure(
list(
project = project,
job = job,
location = location
),
class = "bq_job"
)
}
as_bq_job <- function(x) UseMethod("as_bq_job")
as_bq_job.bq_job <- function(x) x
as_bq_job.list <- function(x) {
x <- bq_from_list(x, c("projectId", "jobId", "location"), "bq_job")
bq_job(x$projectId, x$jobId, x$location)
}
as_bq_job.character <- function(x) {
x <- bq_from_string(x, 3, "bq_job")
bq_job(x[[1]], x[[2]], x[[3]])
}
print.bq_job <- function(x, ...) {
cat_line("<bq_job> ", as.character(x))
invisible(x)
}
as.character.bq_job <- function(x, ...) {
paste0(x$project, ".", x$job, ".", x$location)
}
datasetReference <- function(x) {
x <- as_bq_dataset(x)
list(
projectId = unbox(x$project),
datasetId = unbox(x$dataset)
)
}
tableReference <- function(x) {
x <- as_bq_table(x)
list(
projectId = unbox(x$project),
datasetId = unbox(x$dataset),
tableId = unbox(x$table)
)
}
bq_from_list <- function(x, names, type) {
names(x) <- camelCase(names(x))
if (length(setdiff(names, names(x))) == 0)
return(x)
names_str <- glue_collapse(names, sep = ", ", last = " and ")
stop(glue("List <{type}> must have components {names_str}"), call. = FALSE)
}
bq_from_string <- function(x, n, type) {
assert_that(is.string(x))
pieces <- strsplit(x, ".", fixed = TRUE)[[1]]
if (length(pieces) != n) {
stop(
glue("Character <{type}> must contain {n} components when split by `.`"),
call. = FALSE
)
}
pieces
} |
library(dreamerr)
test_err = function(x){
a = try(x, silent = TRUE)
if(!any(class(a) == "try-error")) stop("Expected an error that did not occur.")
invisible(NULL)
}
test_scalar = function(x1, x2, x3, x4, x5){
check_arg(x1, "numeric scalar")
check_arg(x2, "integer scalar na ok")
check_arg(x3, "scalar(factor, logical)")
check_arg(x4, "scalar(integer, character, logical)")
check_arg(x5, "integer scalar GT{-3} LE{3}")
invisible(NULL)
}
test_scalar(x1 = 1)
test_scalar(x1 = -1)
test_scalar(x1 = exp(55))
test_scalar(x2 = 1)
test_scalar(x2 = NA)
test_scalar(x3 = factor("a", "a"))
test_scalar(x3 = TRUE)
test_scalar(x4 = 5)
test_scalar(x4 = "bon")
test_scalar(x4 = TRUE)
test_scalar(x5 = -2)
test_scalar(x5 = 3)
test_err(test_scalar("5"))
test_err(test_scalar(NA))
test_err(test_scalar(iris))
test_err(test_scalar(x2 = 1.1))
test_err(test_scalar(x2 = c(NA, 1)))
test_err(test_scalar(x3 = "5"))
test_err(test_scalar(x3 = 1))
test_err(test_scalar(x4 = 5.5))
test_err(test_scalar(x5 = -3))
test_err(test_scalar(x5 = 3.1))
test_vec = function(x1, x2, x3, x4, x5, x6){
check_arg(x1, "integer vector")
check_arg(x2, "numeric vector no na GE{0}")
check_arg(x3, "vector(logical, character)")
check_arg(x4, "vector len(2,5)")
check_arg(x5, "numeric vector len(data)", .data = iris)
check_arg(x6, "integer vector len(value) no na GT{5}", .value = 3)
invisible(NULL)
}
test_vec(x1 = 5)
test_vec(x1 = 5:6)
test_vec(x1 = TRUE)
test_vec(x2 = 1.1)
test_vec(x2 = iris$Sepal.Length)
test_vec(x2 = c(55, 32))
test_vec(x3 = c(TRUE, NA, FALSE))
test_vec(x3 = TRUE)
test_vec(x3 = c("bon", NA, "jour"))
test_vec(x4 = c(TRUE, NA))
test_vec(x4 = c("bon", NA, "jour", NA, NA))
test_vec(x5 = iris$Sepal.Width)
test_vec(x6 = c(6, 7, 8))
test_err(test_vec(x1 = 5.5))
test_err(test_vec(x1 = 0.5 + 1:2))
test_err(test_vec(x2 = -1.1))
test_err(test_vec(x2 = c(NA, 55)))
test_err(test_vec(x3 = 55))
test_err(test_vec(x4 = TRUE))
test_err(test_vec(x5 = iris$Species))
test_err(test_vec(x5 = 1:5))
test_err(test_vec(x6 = c(6, NA, 8)))
test_err(test_vec(x6 = c(5, 7, 8)))
test_err(test_vec(x6 = c(7, 8)))
test_list = function(x1, x2, x3){
check_arg(x1, "list l0")
check_arg(x2, "list len(2)")
check_arg(x3, "list len(value)", .value = 2)
invisible(NULL)
}
test_list(x1 = iris)
test_list(x1 = list())
test_list(x2 = iris[1:2])
test_list(x2 = list(a = 5, b = 6))
test_list(x3 = list(a = 5, b = 6))
test_err(test_list(x1 = 1:5))
test_err(test_list(x2 = iris[1]))
test_err(test_list(x3 = list(a = 5, b = 6, c = 9)))
test_df = function(x1, x2){
check_arg(x1, "data.frame nrow(10,) ncol(,2)")
check_arg(x2, "vdata.frame no na")
invisible(NULL)
}
test_df(x1 = iris[, 1:2])
test_df(x1 = data.frame(a = 1:10))
test_df(x2 = iris[, 1:2])
test_df(x2 = 1:5)
test_df(x2 = iris$Sepal.Length)
test_err(test_df(x1 = iris[1:5, 1:2]))
test_err(test_df(x1 = iris))
test_err(test_df(x2 = data.frame(a = c(NA, 1:5))))
test_err(test_df(x2 = c(NA, 1:5)))
test_mat = function(x1, x2, x3, x4, x5){
check_arg(x1, "square numeric matrix GT{0}")
check_arg(x2, "vmatrix no na nrow(10, )")
invisible(NULL)
}
test_mat(x1 = matrix(5, 5, 5))
test_mat(x1 = matrix(c(NA, 5), 6, 6))
test_mat(x2 = 1:10)
test_mat(x2 = matrix(rnorm(20*25), 20, 25))
test_err(test_mat(x1 = matrix(-5, 5, 5)))
test_err(test_mat(x1 = matrix(5, 6, 5)))
test_err(test_mat(x1 = matrix("bonjour", 6, 5)))
test_err(test_mat(x1 = 1))
test_err(test_mat(x2 = 1:5))
test_err(test_mat(x2 = c(NA, 1:10)))
test_err(test_mat(x2 = matrix(55, 5, 20)))
test_fml = function(x1, x2, x3, x4, x5){
check_arg(x1, "ts formula")
check_arg(x2, "os formula right(2)")
check_arg(x3, "formula left(, 1)")
check_arg(x4, "formula var(data)", .data = iris)
check_arg(x5, "formula var(env)")
invisible(NULL)
}
test_fml(x1 = a ~ b + c)
test_fml(x1 = a | b ~ b + c | d + e)
test_fml(x2 = ~ b + c | d)
test_fml(x3 = a ~ b + c)
test_fml(x3 = a ~ 1 | 0 | z)
test_fml(x4 = Petal.Length ~ Sepal.Length | Species)
x = y = 5
test_fml(x5 = y ~ x)
test_err(test_fml(x1 = iris))
test_err(test_fml(x1 = 1:5))
test_err(test_fml(x1 = ~ b + c))
test_err(test_fml(x2 = ~ b + c | d | e))
test_err(test_fml(x2 = a ~ b + c | d))
test_err(test_fml(x3 = a | b ~ b + c))
test_err(test_fml(x4 = Petol.Length ~ Sepal.Length | Species))
test_err(test_fml(x4 = Petol.Length ~ Sepal.Length | species))
x = y = 5
test_err(test_fml(x5 = y ~ xxx))
test_charin = function(x1, x2){
check_arg(x1, "charin", .choices = c("bon", "jour", "so", "leil"))
check_arg(x2, "multi charin(bon, jour, so, leil)")
invisible(NULL)
}
test_charin(x1 = "bon")
test_charin(x1 = "jour")
test_charin(x2 = c("bon", "jour"))
test_err(test_charin(x1 = "bonj"))
test_err(test_charin(x1 = "Bon"))
test_err(test_charin(x1 = c("bon", "jour")))
test_err(test_charin(x2 = 55))
test_match = function(x1 = c("bon", "jour", "soleil"), x2, x3){
check_arg_plus(x1, "match")
check_arg_plus(x2, "strict match(bon, jour, soleil)")
check_arg_plus(x3, "multi match", .choices = c("bon", "jour", "soleil"))
invisible(NULL)
}
test_match(x1 = "jour")
test_match(x1 = "s")
test_match(x1 = "So")
test_match(x1 = "Bo")
test_match(x2 = "jour")
test_match(x2 = "s")
test_match(x3 = c("jour", "bo"))
test_err(test_match(x1 = "jouro"))
test_err(test_match(x1 = 55))
test_err(test_match(x1 = ".+"))
test_err(test_match(x2 = "Jour"))
test_err(test_match(x2 = c("jour", "b")))
test_err(test_match(x3 = NA))
test_na = function(x1){
check_arg(x1, "NA")
invisible(NULL)
}
test_na(x1 = NA)
test_err(test_na(x1 = 5))
test_err(test_na(x1 = 5:55))
test_err(test_na(x1 = iris))
test_err(test_na(x1 = c(NA, 2)))
test_err(test_na(x1 = lis(NA)))
test_fun = function(x1, x2, x3, x4, x5){
check_arg(x1, "function")
check_arg(x2, "function arg(1,)")
invisible(NULL)
}
test_fun(x1 = sum)
test_fun(x2 = merge)
test_err(test_fun(x1 = 1:5))
test_err(test_fun(x2 = function() 5)) |
`HierarchicalSparseCluster` <-
function(x=NULL, dists=NULL, method=c("average", "complete", "single","centroid"), wbound=NULL,niter=15,dissimilarity=c("squared.distance", "absolute.value"), uorth=NULL, silent=FALSE, cluster.features=FALSE, method.features=c("average", "complete", "single","centroid"),output.cluster.files=FALSE, outputfile.prefix="output",genenames=NULL, genedesc=NULL,standardize.arrays=FALSE){
method <- match.arg(method)
method.features <- match.arg(method.features)
dissimilarity <- match.arg(dissimilarity)
if (is.null(x) && is.null(dists)) stop("x or dists must be given!!!")
xorig <- x
if(standardize.arrays){
if(is.null(x)) stop("Cannot standardize arrays if x not given.")
dists <- NULL
x <- sweep(x,1,apply(x,1,mean,na.rm=TRUE),"-")
x <- sweep(x,1,apply(x,1,sd,na.rm=TRUE),"/")
}
if(is.null(dists)){
xnona <- x
xnona[is.na(x)] <- 0
dists <- matrix(distfun(xnona), ncol=ncol(x))
if(sum(is.na(x))>0){
xbinary <- matrix(1, nrow=nrow(x),ncol=ncol(x))
xbinary[is.na(x)] <- 0
mult <- matrix(multfun(xbinary),ncol=ncol(x))
if(dissimilarity=="squared.distance"){
dists <- sweep(dists,1,sqrt(ncol(dists)/apply(mult!=0,1,sum)),"*")
} else if (dissimilarity=="absolute.value"){
dists <- sweep(dists,1,ncol(dists)/apply(mult!=0,1,sum),"*")
}
dists[mult==0] <- 0
mult <- NULL
xbinary <- NULL
xnona <- NULL
}
}
if(is.null(wbound)) wbound <- .5*sqrt(ncol(dists))
if(wbound<=1) stop("Cannot have wbound <= 1")
if (dissimilarity == "squared.distance") out <- GetUW(dists^2, wbound, niter = niter, uorth = uorth, silent = silent)
if (dissimilarity == "absolute.value") out <- GetUW(dists, wbound, niter = niter, uorth = uorth, silent = silent)
out <- list(hc = hclust(as.dist(out$u), method = method), ws = out$w, u = out$u, crit = out$crit, dists = dists, uorth = uorth, wbound = wbound)
if(cluster.features){
if(is.null(x)) stop("Cannot cluster features unless x is given.")
rho=cor(xorig[,out$ws!=0],use="pairwise.complete.obs")
out2 <- hclust(as.dist(2*(1-rho)), method=method.features)
out$hc.features <- out2
}
if(output.cluster.files){
if(is.null(x)) stop("Cannot output files unless x is given.")
output.cluster.files.fun(xorig,out,outputfile.prefix,genenames=genenames,genedesc=genedesc)
}
if(!silent) cat(fill=TRUE)
class(out) <- "HierarchicalSparseCluster"
return(out)
}
plot.HierarchicalSparseCluster <- function(x,...){
par(mfrow=c(1,2))
plot(x$hc,xlab="",ylab="",sub="", main="Sparse Clustering", labels=rep("", nrow(x$u)))
plot(x$ws, main=paste("Wbound is ", sep="", round(x$wbound,3)), xlab="Feature Index", ylab="Wj")
}
print.HierarchicalSparseCluster <- function(x,...){
cat("Wbound is ", x$wbound, ":", fill=TRUE)
cat("Number of non-zero weights: ", sum(x$ws!=0), fill=TRUE)
cat("Sum of weights: ", sum(x$ws), fill=TRUE)
cat(fill=TRUE)
} |
glm.scoretest <- function(fit, x2, dispersion=NULL)
{
w <- fit$weights
r <- fit$residuals
if(any(w <= 0)) {
r <- r[w>0]
x2 <- x2[w>0]
w <- w[w>0]
}
if (is.null(dispersion)) {
fixed.dispersion <- (fit$family$family %in% c("poisson","binomial"))
if(fixed.dispersion)
dispersion <- 1
else if(fit$df.residual > 0) {
dispersion <- sum(w*r^2)/fit$df.residual
} else {
stop("No residual df available to estimate dispersion")
}
}
ws <- sqrt(w)
x2.1w <- qr.resid(fit$qr,ws*x2)
zw <- ws*r
colSums(as.matrix(x2.1w*zw))/sqrt(colSums(as.matrix(x2.1w * x2.1w)))/sqrt(dispersion)
} |
NULL
append_rhs.formula <- function(object = NULL, newterms, keep.onesided = FALSE, env = environment(object)){
if(is.null(object)) keep.onesided <- TRUE
if(inherits(newterms,"formula")) newterms <- list_rhs.formula(newterms)
for(i in seq_along(newterms)){
newterm <- newterms[[i]]
termsign <- if(NVL(attr(newterms, "sign")[i], +1)>0) "+" else "-"
if(length(object)==0){
if(termsign == "-") newterm <- call(termsign, newterm)
object <- as.formula(call("~", newterm), env = env)
}else if(length(object)==3) object[[3L]]<-call(termsign,object[[3L]],newterm)
else if(keep.onesided) object[[2L]]<-call(termsign,object[[2L]],newterm)
else object[[3L]]<- if(termsign=="+") newterm else call(termsign,newterm)
}
object
}
append.rhs.formula<-function(object,newterms,keep.onesided=FALSE){
.Deprecate_once("append_rhs.formula")
append_rhs.formula(object,newterms,keep.onesided)
}
filter_rhs.formula <- function(object, f, ...){
rhs <- ult(object)
SnD <- function(x){
if(!f(x, ...)) return(NULL)
if(is(x, "call")){
op <- x[[1L]]
if(! as.character(op)%in%c("+","-")) return(x)
else if(length(x)==2){
arg <- SnD(x[[2L]])
if(is.null(arg)) return(NULL)
else return(call(as.character(op), arg))
}else if(length(x)==3){
arg1 <- SnD(x[[2L]])
arg2 <- SnD(x[[3L]])
if(is.null(arg2)) return(arg1)
else if(is.null(arg1)){
if(as.character(op)=="+") return(arg2)
else return(call(as.character(op), arg2))
}
else return(call(as.character(op), arg1, arg2))
}else stop("Unsupported type of formula passed.")
}else return(x)
}
rhs <- SnD(rhs)
ult(object) <- rhs
object
}
nonsimp_update.formula<-function (object, new, ..., from.new=FALSE){
old.lhs <- if(length(object)==2) NULL else object[[2L]]
old.rhs <- if(length(object)==2) object[[2L]] else object[[3L]]
new.lhs <- if(length(new)==2) NULL else new[[2L]]
new.rhs <- if(length(new)==2) new[[2L]] else new[[3L]]
sub.dot <- function(c, dot){
if(is.name(c) && c==".") dot
else if(is.call(c)) as.call(c(list(c[[1L]]), lapply(c[-1], sub.dot, dot)))
else c
}
deparen<- function(c, ops = c("+","*")){
if(is.call(c)){
if(as.character(c[[1L]]) %in% ops){
op <- as.character(c[[1L]])
if(length(c)==2 && is.call(c[[2L]]) && c[[2L]][[1L]]==op)
return(deparen(c[[2L]], ops))
else if(length(c)==3 && is.call(c[[3L]]) && c[[3L]][[1L]]==op){
if(length(c[[3L]])==3)
return(call(op, call(op, deparen(c[[2L]],ops), deparen(c[[3L]][[2L]],ops)), deparen(c[[3L]][[3L]],ops)))
else
return(call(op, deparen(c[[2L]],ops), deparen(c[[3L]][[2L]],ops)))
}
}
return(as.call(c(list(c[[1L]]), lapply(c[-1], deparen, ops))))
}else return(c)
}
out <- if(length(new)==2) call("~", deparen(sub.dot(new.rhs, old.rhs)))
else if(length(object)==2) call("~", deparen(sub.dot(new.lhs, quote(expr=))), deparen(sub.dot(new.rhs, old.rhs)))
else call("~", deparen(sub.dot(new.lhs, old.lhs)), deparen(sub.dot(new.rhs, old.rhs)))
if(identical(out[[2]], quote(expr=))) out <- out[-2]
if(identical(from.new,FALSE)){
e <- environment(object)
}else{
e <- new.env(parent=environment(object))
if(identical(from.new,TRUE)) from.new <- setdiff(ls(pos=environment(new), all.names=TRUE), "...")
for(name in from.new)
assign(name, get(name, pos=environment(new)), pos=e)
}
as.formula(out, env = e)
}
nonsimp.update.formula<-function (object, new, ..., from.new=FALSE){
.Deprecate_once("nonsimp_update.formula")
nonsimp_update.formula(object, new, ..., from.new=from.new)
}
.recurse_summation <- function(x, sign){
if(length(x)==1) {out <- list(x); attr(out,"sign")<-sign; out}
else if(length(x)==2 && x[[1L]]=="+") .recurse_summation(x[[2L]],sign)
else if(length(x)==2 && x[[1L]]=="-") .recurse_summation(x[[2L]],-sign)
else if(length(x)==3 && x[[1L]]=="+") {
l1 <- .recurse_summation(x[[2L]],sign)
l2 <- .recurse_summation(x[[3L]],sign)
out <- c(l1, l2)
attr(out,"sign") <- c(attr(l1,"sign"), attr(l2,"sign"))
out
}
else if(length(x)==3 && x[[1L]]=="-"){
l1 <- .recurse_summation(x[[2L]],sign)
l2 <- .recurse_summation(x[[3L]],-sign)
out <- c(l1, l2)
attr(out,"sign") <- c(attr(l1,"sign"), attr(l2,"sign"))
out
}
else if(x[[1L]]=="(") .recurse_summation(x[[2L]], sign)
else {out <- list(x); attr(out,"sign")<-sign; out}
}
term.list.formula<-function(rhs, sign=+1){
.Deprecate_once("list_rhs.formula")
.recurse_summation(rhs, sign)
}
list_summands.call<-function(object){
.recurse_summation(object, sign=+1)
}
list_rhs.formula<-function(object){
if (!is(object, "formula"))
stop("Invalid formula of class ",sQuote(class(object)),".")
.recurse_summation(ult(object), sign=+1)
}
eval_lhs.formula <- function(object){
if (!is(object, "formula"))
stop("Invalid formula of class ",sQuote(class(object)),".")
if(length(object)<3)
stop("Formula given is one-sided.")
eval(object[[2L]],envir=environment(object))
}
trim_env <- function(object, keep=NULL, ...){
UseMethod("trim_env")
}
trim_env.environment <- function(object, keep=NULL, ...){
e <- new.env(parent=baseenv())
for(vn in keep){
try(assign(vn, get(vn, envir=object), envir=e), silent=TRUE)
}
e
}
trim_env.default <- function(object, keep=NULL, ...){
environment(object) <- trim_env(environment(object), keep, ...)
object
}
empty_env <- function(object){
environment(object) <- emptyenv()
object
}
base_env <- function(object){
environment(object) <- baseenv()
object
} |
gboot_block<-function(data,var,model,B=1000,L1=2,L2=2){
lat=long=block=value=Distance=Semivariance=NULL
if(is.geodata(data) == T){
}else{
stop("Object data is not of the class geodata")
}
if(isTRUE(class(var) == "variogram")){
}else{
stop("Object var is not of the class variogram")
}
if(isTRUE(class(model)[1] == "variomodel") & isTRUE(class(model)[2] == "variofit")){
}else{
stop("Object model is not of the class variomodel/variofit")
}
if(B >0 ){
}else{
stop("Object B must be positive")
}
quiet<-function(x){
invisible(capture.output(x))}
model_name<-substr(model$cov.model,1,3)
max_dist<-var$max.dist
bin<-length(var$u)
var_df<-matrix(0,
nrow=B,
ncol=bin)
pars<-data.frame(C0=rep(0,B),
C1=rep(0,B),
a=rep(0,B),
Sill=rep(0,B),
`Pratical Range`=rep(0,B))
x<-var$u
c0<-model$nugget
c1<-model$cov.pars[1]
a<-model$cov.pars[2]
pars_or<-data.frame(C0=c0,
Sill=c0+c1,
C1=c1,
a=a,
PR=model$practicalRange)
df_new <- data.frame(lat=data[[1]][,1],
long=data[[1]][,2],
value=data[[2]])
df_new <- within(df_new, {
x = cut(lat , L1, labels = FALSE)
y = cut(long, L2, labels = FALSE)
})
df_new$block<-paste0(df_new$y,df_new$x)
df_new %>%
group_by(x) %>%
mutate(lat=max(lat)) %>%
group_by(y) %>%
mutate(long=max(long)) ->teste
p1<-df_new %>%
ggplot(aes(lat,long,col=block))+
geom_point()+
labs(x="Latitude",y="Longitude",col="Block:")+
coord_equal()+
theme_minimal()+
geom_vline(data=teste,aes(xintercept=lat),linetype="dashed")+
geom_hline(data=teste,aes(yintercept=long),linetype="dashed")+
ylim(min(df_new$long),max(df_new$long))+
xlim(min(df_new$lat),max(df_new$lat))
sample<-data
for(i in 1:B ){
sample$data<- df_new %>%
group_by(block) %>%
nest() %>%
sample_frac() %>%
unnest() %>%
select(value)
quiet(var_new<-variog(sample,
max.dist=max_dist))
var_df[i,]<-var_new$v
quiet(mod_new<-variofit(var_new,
ini.cov.pars=c(c1,a),
nugget=c0,
cov.model=model_name))
pars[i,]<-c(as.numeric(summary(mod_new)$estimated.pars[1]),
sum(as.numeric(c(summary(mod_new)$estimated.pars)[1:2])),
as.numeric(c(summary(mod_new)$estimated.pars[2:3])),
mod_new$practicalRange)
}
var_df<-as.data.frame(var_df)
names(var_df)<-paste("Class",letters[1:bin])
var_df<-gather(var_df,Distance,Semivariance)
var_df$B<-rep(1:B,bin)
var_aux<-data.frame(Distance=paste("Class",letters[1:bin]),Semivariance=var$v)
var_aux$Length<-var$u
names(pars)<-c("Nugget","Sill","Contribution","Range","Practical Range")
names(pars_or)<-c("Nugget","Sill","Contribution","Range","Practical Range")
print(p1)
return(list(variogram_boot=var_df,
variogram_or=var_aux,
pars_boot=pars,
pars_or=pars_or))
} |
library(generator)
context("r_ipv4_addresses()")
test_that("Produces the correct output.", {
expect_equal(length(r_ipv4_addresses(100)), 100)
})
test_that("Produces the correct output type.", {
expect_is(r_ipv4_addresses(100), "character")
})
test_that("Produces the correct errors.", {
}) |
calculateAT6 <- function(data, ref, amount = NULL, weighted = TRUE, alpha = 0.05,
ignore.case = TRUE, debug = FALSE) {
if (debug) {
print(paste("IN:", match.call()[[1]]))
print("Parameters:")
print("data")
print(str(data))
print("ref")
print(str(ref))
print("amount")
print(str(amount))
print("weighted")
print(weighted)
print("alpha")
print(alpha)
print("ignore.case")
print(ignore.case)
}
if (!"Sample.Name" %in% names(data)) {
stop("'data' must contain a column 'Sample.Name'")
}
if (!"Marker" %in% names(data)) {
stop("'data' must contain a column 'Marker'")
}
if (!"Allele" %in% names(data)) {
stop("'data' must contain a column 'Allele'")
}
if (!"Height" %in% names(data)) {
stop("'data' must contain a column 'Height'")
}
if (is.null(amount)) {
if (!"Amount" %in% names(data)) {
stop("'data' must contain a column 'Amount'")
}
} else {
if (!"Sample.Name" %in% names(amount)) {
stop("'amount' must contain a column 'Sample.Name'")
}
if (!"Amount" %in% names(amount)) {
stop("'amount' must contain a column 'Amount'")
}
}
if (sum(grepl("Allele", names(data))) > 1) {
stop("'data' must be in 'slim' format",
call. = TRUE
)
}
if (sum(grepl("Height", names(data))) > 1) {
stop("'data' must be in 'slim' format",
call. = TRUE
)
}
if (!"Sample.Name" %in% names(ref)) {
stop("'ref' must contain a column 'Sample.Name'")
}
if (!"Marker" %in% names(ref)) {
stop("'ref' must contain a column 'Marker'")
}
if (!"Allele" %in% names(ref)) {
stop("'ref' must contain a column 'Allele'")
}
if (sum(grepl("Allele", names(ref))) > 1) {
stop("'ref' must be in 'slim' format",
call. = TRUE
)
}
if (!is.logical(weighted)) {
stop("'weighted' must be logical",
call. = TRUE
)
}
if (!is.numeric(alpha) | alpha < 0 | alpha > 1) {
stop("'alpha' must be numeric [0,1]",
call. = TRUE
)
}
if (!is.logical(ignore.case)) {
stop("'ignore.case' must be logical",
call. = TRUE
)
}
dfHeight <- calculateHeight(
data = data, ref = ref, na.replace = 0,
add = FALSE, exclude = NULL, sex.rm = FALSE,
qs.rm = FALSE, kit = NULL,
ignore.case = ignore.case,
exact = FALSE, debug = debug
)
if (is.null(amount)) {
dfHeight <- addData(
data = dfHeight, new.data = data, by.col = "Sample.Name",
then.by.col = NULL, exact = TRUE, ignore.case = ignore.case,
what = "Amount", debug = debug
)
message("Amount added to 'data'.")
} else {
dfHeight <- addData(
data = dfHeight, new.data = amount, by.col = "Sample.Name",
then.by.col = NULL, exact = TRUE, ignore.case = ignore.case,
what = "Amount", debug = debug
)
message("Amount added to 'data'.")
}
message("Processed data to be used in regression:")
print(dfHeight)
if (!is.numeric(dfHeight$H)) {
dfHeight$H <- as.numeric(dfHeight$H)
message("'H' must be numeric. 'data' converted!")
}
if (!is.numeric(dfHeight$Amount)) {
dfHeight$Amount <- as.numeric(dfHeight$Amount)
message("'Amount' must be numeric. 'data' converted!")
}
if (any(is.na(dfHeight$Amount))) {
dfHeight <- dfHeight[!is.na(dfHeight$Amount), ]
message("Removed rows where Amount=NA.")
}
dt <- data.table::data.table(dfHeight)
dfSd <- dt[, list(H = mean(H), Sd = sd(H)), by = Amount]
n <- nrow(dfSd)
if (weighted) {
weight <- 1 / dfSd$Sd^2
fit <- lm(dfSd$H ~ dfSd$Amount, weights = weight)
coeff <- c(summary(fit)$coef[1:2], summary(fit)$sigma)
if (debug) {
print("coeff:")
print(coeff)
print("Intercept:")
print(coeff[1])
print("Slope:")
print(coeff[2])
print("Std.Error:")
print(coeff[3])
}
res <- data.frame(
Amount = dfSd$Amount, Height = dfSd$H, Sd = dfSd$Sd, Weight = weight, N = n, Alpha = alpha,
Lower = as.numeric(coeff[1] - qt(alpha, n - 1, lower.tail = FALSE) * coeff[3]),
Intercept = as.numeric(coeff[1]),
AT6 = as.numeric(coeff[1] + qt(alpha, n - 1, lower.tail = FALSE) * coeff[3]),
Std.Error = coeff[3], Slope = coeff[2]
)
} else {
fit <- lm(dfSd$H ~ dfSd$Amount)
coeff <- c(summary(fit)$coef[1:2], summary(fit)$sigma)
if (debug) {
print("coeff:")
print(coeff)
print("Intercept:")
print(coeff[1])
print("Slope:")
print(coeff[2])
print("Std.Error:")
print(coeff[3])
}
res <- data.frame(
Amount = dfSd$Amount, Height = dfSd$H, Sd = dfSd$Sd, Weight = NA, N = n, Alpha = alpha,
Lower = as.numeric(coeff[1] - qt(alpha, n - 1, lower.tail = FALSE) * coeff[3]),
Intercept = as.numeric(coeff[1]),
AT6 = as.numeric(coeff[1] + qt(alpha, n - 1, lower.tail = FALSE) * coeff[3]),
Std.Error = coeff[3], Slope = coeff[2]
)
}
if (debug) {
print("str(res)")
print(str(res))
print("head(res)")
print(head(res))
print("tail(res)")
print(tail(res))
}
res <- auditTrail(obj = res, f.call = match.call(), package = "strvalidator")
if (debug) {
print(paste("EXIT:", match.call()[[1]]))
}
return(res)
} |
mtabulate <- function(vects) {
lev <- sort(unique(unlist(vects)))
dat <- do.call(rbind, lapply(vects, function(x, lev){
tabulate(factor(x, levels = lev, ordered = TRUE),
nbins = length(lev))}, lev = lev))
colnames(dat) <- sort(lev)
data.frame(dat, check.names = FALSE)
} |
setClass("studentDist", slots = c(df = "numeric", mu = "numeric", sd = "numeric"))
setValidity("studentDist",
function(object) {
if (object@sd <= 0) return("sd parameter must be positive.")
if (object@df <= 0) return("df parameter must be positive.")
return(TRUE)
}
) |
local_conditional_expectations <- function(explainer, observations, y = NULL, variable_splits = NULL, variables = NULL, grid_points = 101) {
if (!("explainer" %in% class(explainer)))
stop("The local_conditional_expectations() function requires an object created with explain() function.")
predict_function <- explainer$predict_function
model <- explainer$model
if (is.null(variable_splits)) {
if (is.null(explainer$data))
stop("The local_conditional_expectations() function requires explainers created with specified 'data'.")
if (is.null(variables))
variables <- intersect(colnames(explainer$data),
colnames(observations))
variable_splits <- calculate_variable_splits(explainer$data, variables = variables, grid_points = grid_points)
}
profiles <- calculate_profiles_lce(observations, variable_splits, model, dataset = explainer$data, predict_function)
profiles$`_label_` <- explainer$label
observations$`_yhat_` <- predict_function(model, observations)
if (!is.null(y)) observations$`_y_` <- y
observations$`_label_` <- explainer$label
attr(profiles, "observations") <- observations
class(profiles) = c("ceteris_paribus_explainer", "data.frame")
profiles
} |
NULL
class.name = "Cat"
setClassUnion("logicalORnumeric", c("numeric","logical"))
setClassUnion("numericORlist", c("numeric","list"))
setClass("Cat",
slots = list(
ids = "character",
guessing = "numeric",
discrimination = "numeric",
difficulty = "numericORlist",
answers = "logicalORnumeric",
priorName = "character",
priorParams = "numeric",
lowerBound = "numeric",
upperBound = "numeric",
model = "character",
estimation = "character",
estimationDefault = "character",
selection = "character",
z = "numeric",
lengthThreshold = "logicalORnumeric",
seThreshold = "logicalORnumeric",
infoThreshold = "logicalORnumeric",
gainThreshold = "logicalORnumeric",
lengthOverride = "logicalORnumeric",
gainOverride = "logicalORnumeric"),
prototype = prototype(
ids = paste0("Q", 1:10),
guessing = rep(0, 10),
discrimination = rep(0, 10),
difficulty = rep(0, 10),
answers = rep(NA, 10),
priorName = "NORMAL",
priorParams = c(0,1),
lowerBound = -5,
upperBound = 5,
model = "ltm",
estimation = "EAP",
estimationDefault = "MAP",
selection = "EPV",
z = 0.9,
lengthThreshold = NA,
seThreshold = NA,
infoThreshold = NA,
gainThreshold = NA,
lengthOverride = NA,
gainOverride = NA))
setMethod("initialize", "Cat", function(.Object, ...) {
.Object <- callNextMethod()
validObject(.Object)
return(.Object)
})
setValidity("Cat", function(object){
if(length(unique(object@ids)) != length(object@answers)){
stop("Question id's must be unique.")
}
if(object@model == "ltm" | object@model == "tpm"){
if(any(!object@answers %in% c(0, 1, NA, -1))){
stop("Answer for binary model is not valid.")
}
}
if(object@model == "grm" | object@model == "gpcm"){
for(i in 1:length(object@answers)){
max_option <- length(object@difficulty[[i]])+1
if(!object@answers[i] %in% c(NA, -1:max_option)){
stop("Answer for categorical model is not valid.")
}
}
}
if(! length(object@discrimination) > 1){
stop("Discrimination needs length greater than 1.")
}
if(! length(object@discrimination) == length(object@guessing)){
stop("Discrimination and guessing need to be same length.")
}
if(! length(object@discrimination) == length(object@answers)){
stop("Discrimination and answers need to be same length.")
}
if(! length(object@discrimination)==length(object@difficulty)){
stop("Discrimination and difficulty need to be same length.")
}
if(object@model == "grm" | object@model == "gpcm"){
if(class(object@difficulty) != "list") stop("Difficulty needs to be a list.")
}
if(object@upperBound < object@lowerBound){
stop("Lower bound value must be less than upper bound value.")
}
if(object@model == "grm"){
for(i in object@difficulty){
sorted <- sort(i)
uniques <- unique(sorted)
if(sum(sorted != i) > 0){
stop("Difficulty values must be increasing.")
}
if(length(uniques) != length(i)){
stop("Difficulty values must be unique within each item.")
}
}
}
if(sum(is.na(object@discrimination)) > 0){
stop("Discrimination values cannot be NA.")
}
if(object@priorName == 'UNIFORM'){
if(object@estimation != "EAP"){
stop("Uniform prior requires EAP estimation.")
}
}
if(sum(is.na(object@guessing)) > 0){
stop("Guessing values cannot be NA.")
}
if(sum(object@guessing < 0) > 0 | sum(object@guessing > 1) > 0){
stop("Guessing values must be between 0 and 1.")
}
model_options = c("ltm", "grm", "gpcm", "tpm")
if(! object@model %in% model_options){
stop("Model is not valid. Must be 'ltm', 'tpm', 'grm' or 'gpcm'.")
}
estimation_options = c("EAP", "MAP", "MLE", "WLE")
if(! object@estimation %in% estimation_options){
stop("Estimation method is not valid. Must be 'EAP', 'MAP', 'MLE', or 'WLE'.")
}
estdefault_options = c("EAP", "MAP")
if(! object@estimationDefault %in% estdefault_options){
stop("Estimation default method is not valid. Must be 'EAP' or 'MAP'.")
}
prior_options <- c("NORMAL", "STUDENT_T", "UNIFORM")
if(! object@priorName %in% prior_options){
stop("Prior name is not valid.")
}
selection_options = c("EPV", "MEI", "MFI", "MPWI", "MLWI",
"KL", "LKL", "PKL", "MFII", "RANDOM")
if(!object@selection %in% selection_options){
stop("Selection method is not valid.")
}
})
NULL
setGeneric("setGuessing<-", function(catObj, value) standardGeneric("setGuessing<-"))
setReplaceMethod("setGuessing", "Cat", definition = function(catObj, value){
slot(catObj, "guessing") <- value
validObject(catObj)
return(catObj)
})
setGeneric("setDiscrimination<-", function(catObj, value) standardGeneric("setDiscrimination<-"))
setReplaceMethod("setDiscrimination", "Cat", definition = function(catObj, value){
slot(catObj, "discrimination") <- value
validObject(catObj)
return(catObj)
})
setGeneric("setDifficulty<-", function(catObj, value) standardGeneric("setDifficulty<-"))
setReplaceMethod("setDifficulty", "Cat", definition = function(catObj, value){
slot(catObj, "difficulty") <- value
validObject(catObj)
return(catObj)
})
setGeneric("setAnswers<-", function(catObj, value) standardGeneric("setAnswers<-"))
setReplaceMethod("setAnswers", "Cat", definition = function(catObj, value){
slot(catObj, "answers") <- value
validObject(catObj)
return(catObj)
})
setGeneric("setIds<-", function(catObj, value) standardGeneric("setIds<-"))
setReplaceMethod("setIds", "Cat", definition = function(catObj, value){
slot(catObj, "ids") <- value
validObject(catObj)
return(catObj)
})
setGeneric("setModel<-", function(catObj, value) standardGeneric("setModel<-"))
setReplaceMethod("setModel", "Cat", definition = function(catObj, value){
slot(catObj, "model") <- value
validObject(catObj)
return(catObj)
})
setGeneric("setPriorName<-", function(catObj, value) standardGeneric("setPriorName<-"))
setReplaceMethod("setPriorName", "Cat", definition = function(catObj, value){
slot(catObj, "priorName") <- value
validObject(catObj)
return(catObj)
})
setGeneric("setPriorParams<-", function(catObj, value) standardGeneric("setPriorParams<-"))
setReplaceMethod("setPriorParams", "Cat", definition = function(catObj, value){
slot(catObj, "priorParams") <- value
validObject(catObj)
return(catObj)
})
setGeneric("setLowerBound<-", function(catObj, value) standardGeneric("setLowerBound<-"))
setReplaceMethod("setLowerBound", "Cat", definition = function(catObj, value){
slot(catObj, "lowerBound") <- value
validObject(catObj)
return(catObj)
})
setGeneric("setUpperBound<-", function(catObj, value) standardGeneric("setUpperBound<-"))
setReplaceMethod("setUpperBound", "Cat", definition = function(catObj, value){
slot(catObj, "upperBound") <- value
validObject(catObj)
return(catObj)
})
setGeneric("setEstimation<-", function(catObj, value) standardGeneric("setEstimation<-"))
setReplaceMethod("setEstimation", "Cat", definition = function(catObj, value){
slot(catObj, "estimation") <- value
validObject(catObj)
return(catObj)
})
setGeneric("setEstimationDefault<-", function(catObj, value) standardGeneric("setEstimationDefault<-"))
setReplaceMethod("setEstimationDefault", "Cat", definition = function(catObj, value){
slot(catObj, "estimationDefault") <- value
validObject(catObj)
return(catObj)
})
setGeneric("setSelection<-", function(catObj, value) standardGeneric("setSelection<-"))
setReplaceMethod("setSelection", "Cat", definition = function(catObj, value){
slot(catObj, "selection") <- value
validObject(catObj)
return(catObj)
})
setGeneric("setZ<-", function(catObj, value) standardGeneric("setZ<-"))
setReplaceMethod("setZ", "Cat", definition = function(catObj, value){
slot(catObj, "z") <- value
validObject(catObj)
return(catObj)
})
setGeneric("setLengthThreshold<-", function(catObj, value) standardGeneric("setLengthThreshold<-"))
setReplaceMethod("setLengthThreshold", "Cat", definition = function(catObj, value){
slot(catObj, "lengthThreshold") <- value
validObject(catObj)
return(catObj)
})
setGeneric("setSeThreshold<-", function(catObj, value) standardGeneric("setSeThreshold<-"))
setReplaceMethod("setSeThreshold", "Cat", definition = function(catObj, value){
slot(catObj, "seThreshold") <- value
validObject(catObj)
return(catObj)
})
setGeneric("setGainThreshold<-", function(catObj, value) standardGeneric("setGainThreshold<-"))
setReplaceMethod("setGainThreshold", "Cat", definition = function(catObj, value){
slot(catObj, "gainThreshold") <- value
validObject(catObj)
return(catObj)
})
setGeneric("setInfoThreshold<-", function(catObj, value) standardGeneric("setInfoThreshold<-"))
setReplaceMethod("setInfoThreshold", "Cat", definition = function(catObj, value){
slot(catObj, "infoThreshold") <- value
validObject(catObj)
return(catObj)
})
setGeneric("setLengthOverride<-", function(catObj, value) standardGeneric("setLengthOverride<-"))
setReplaceMethod("setLengthOverride", "Cat", definition = function(catObj, value){
slot(catObj, "lengthOverride") <- value
validObject(catObj)
return(catObj)
})
setGeneric("setGainOverride<-", function(catObj, value) standardGeneric("setGainOverride<-"))
setReplaceMethod("setGainOverride", "Cat", definition = function(catObj, value){
slot(catObj, "gainThreshold") <- value
validObject(catObj)
return(catObj)
})
NULL
setGeneric("getModel", function(catObj) standardGeneric("getModel"))
setMethod("getModel", "Cat", function(catObj) return(catObj@model))
setGeneric("getGuessing", function(catObj) standardGeneric("getGuessing"))
setMethod("getGuessing", "Cat", function(catObj) return(catObj@guessing))
setGeneric("getDiscrimination", function(catObj) standardGeneric("getDiscrimination"))
setMethod("getDiscrimination", "Cat", function(catObj) return(catObj@discrimination))
setGeneric("getDifficulty", function(catObj) standardGeneric("getDifficulty"))
setMethod("getDifficulty", "Cat", function(catObj) return(catObj@difficulty))
setGeneric("getAnswers", function(catObj) standardGeneric("getAnswers"))
setMethod("getAnswers", "Cat", function(catObj) return(catObj@answers))
setGeneric("getIds", function(catObj) standardGeneric("getIds"))
setMethod("getIds", "Cat", function(catObj) return(catObj@ids))
setGeneric("getPriorName", function(catObj) standardGeneric("getPriorName"))
setMethod("getPriorName", "Cat", function(catObj) return(catObj@priorName))
setGeneric("getPriorParams", function(catObj) standardGeneric("getPriorParams"))
setMethod("getPriorParams", "Cat", function(catObj) return(catObj@priorParams))
setGeneric("getLowerBound", function(catObj) standardGeneric("getLowerBound"))
setMethod("getLowerBound", "Cat", function(catObj) return(catObj@lowerBound))
setGeneric("getUpperBound", function(catObj) standardGeneric("getUpperBound"))
setMethod("getUpperBound", "Cat", function(catObj) return(catObj@upperBound))
setGeneric("getEstimation", function(catObj) standardGeneric("getEstimation"))
setMethod("getEstimation", "Cat", function(catObj) return(catObj@estimation))
setGeneric("getEstimationDefault", function(catObj) standardGeneric("getEstimationDefault"))
setMethod("getEstimationDefault", "Cat", function(catObj) return(catObj@estimationDefault))
setGeneric("getSelection", function(catObj) standardGeneric("getSelection"))
setMethod("getSelection", "Cat", function(catObj) return(catObj@selection))
setGeneric("getZ", function(catObj) standardGeneric("getZ"))
setMethod("getZ", "Cat", function(catObj) return(catObj@z))
setGeneric("getLengthThreshold", function(catObj) standardGeneric("getLengthThreshold"))
setMethod("getLengthThreshold", "Cat", function(catObj) return(catObj@lengthThreshold))
setGeneric("getSeThreshold", function(catObj) standardGeneric("getSeThreshold"))
setMethod("getSeThreshold", "Cat", function(catObj) return(catObj@seThreshold))
setGeneric("getInfoThreshold", function(catObj) standardGeneric("getInfoThreshold"))
setMethod("getInfoThreshold", "Cat", function(catObj) return(catObj@infoThreshold))
setGeneric("getGainThreshold", function(catObj) standardGeneric("getGainThreshold"))
setMethod("getGainThreshold", "Cat", function(catObj) return(catObj@gainThreshold))
setGeneric("getLengthOverride", function(catObj) standardGeneric("getLengthOverride"))
setMethod("getLengthOverride", "Cat", function(catObj) return(catObj@lengthOverride))
setGeneric("getGainOverride", function(catObj) standardGeneric("getGainOverride"))
setMethod("getGainOverride", "Cat", function(catObj) return(catObj@gainOverride) ) |
gauge_color <- function(g2, colors = NULL, callback = NULL){
opts <- list(colors = colors, callback = callback)
make_scale(g2, vars = opts, method = "color")
}
gauge_color_viridis <- function(g2, option = c("viridis", "magma", "plasma", "inferno", "cividis"), reverse = FALSE, callback = NULL){
colors <- get_viridis_color(match.arg(option), reverse)
opts <- list(colors = colors, callback = callback)
make_scale(g2, vars = opts, method = "color")
}
get_viridis_color <- function(opts, rev = FALSE){
viridis <- c("
"
magma <- c("
"
inferno <- c("
"
plasma <- c("
"
cividis <- c("
"
color <- viridis
if(opts == "magma")
color <- magma
else if(opts == "inferno")
color <- inferno
else if(opts == "plasma")
color <- plasma
else if(opts == "cividis")
color <- cividis
if(rev)
color <- rev(color)
return(color)
}
gauge_size <- function(g2, range = NULL, callback = NULL){
opts <- list(range = range, callback = callback)
make_scale(g2, vars = opts, method = "size")
}
gauge_opacity <- function(g2, callback = NULL){
opts <- list(callback = callback)
make_scale(g2, vars = opts, method = "opacity")
}
gauge_shape <- function(g2, shapes = NULL, callback = NULL){
opts <- list(shapes = shapes, callback = callback)
make_scale(g2, vars = opts, method = "shape")
}
gauge_label <- function(g2, ..., callback = NULL){
opts <- list(callback = callback, cfg = list(...))
make_scale(g2, vars = opts, method = "label")
}
gauge_style <- function(g2, ...){
opts <- list(cfg = list(...))
make_scale(g2, vars = opts, method = "style")
}
gauge_tooltip <- function(g2, callback = NULL){
make_scale(g2, vars = list(callback = callback), method = "tooltip")
}
make_scale <- function(g2, vars, method = "color"){
vars <- vars[lapply(vars, length) > 0]
g2$x$scales[[method]] <- vars
return(g2)
} |
library(random)
options(SweaveHooks=list(twofig=function() {par(mfrow=c(1,2))},
twofig2=function() {par(mfrow=c(2,1))},
onefig=function() {par(mfrow=c(1,1))}))
if ( !(file.exists("random.Rdata")) ) {
randomOrg <- randomNumbers(n=5000, min=1, max=1e6, col=2)/1e6
save(randomOrg, file="random.Rdata")
} else {
load("random.Rdata")
}
summary(randomOrg)
apply(randomOrg, 2, function(X) quantile(X,c(0.01, 0.05, 0.1, 0.25, 0.5, 0.75, 0.9, 0.95, 0.99), digits=4))
getOption("SweaveHooks")[["twofig"]]()
plot(randomOrg, ylab="", xlab="", main="5000 random,org U(0,1) draws", pch='.')
hist(matrix(randomOrg, ncol=1), xlab = "", ylab = "", main="Histogram") |
findLogMargLik <-
function (data, tData, graph, dimens, tools) {
cliques <- maximal.cliques (graph)
nCliques <- length(cliques)
separators <- minimal.st.separators (graph)
nSeparators <- length(separators)
m <- multiplicity (graph, cliques, separators, tools)
alpha <- tools$alpha
term1 <- 0
term2 <- 0
for (i in 1:nCliques) {
margFreqs <- findMargFreqs (data, tData, cliques[[i]], dimens)
nMargFreqs <- length(margFreqs)
term1 <- term1 + sum(lgamma(margFreqs + alpha / nMargFreqs))
term2 <- term2 + nMargFreqs * lgamma (alpha / nMargFreqs)
}
for (i in 1:nSeparators)
if (length(separators[[i]]) > 0) {
margFreqs <- findMargFreqs (data, tData, separators[[i]], dimens)
nMargFreqs <- length(margFreqs)
term1 <- term1 - m[i] * sum(lgamma(margFreqs + alpha / nMargFreqs))
term2 <- term2 - m[i] * nMargFreqs * lgamma (alpha / nMargFreqs)
}
else {
term1 <- term1 - m[i] * lgamma(sum(data$freq) + alpha)
term2 <- term2 - m[i] * lgamma(alpha)
}
return(term1 - term2)
} |
context("test-snpclip")
test_that("snpclip throws an error w/ bad rsID", {
skip_on_cran()
expect_error(SNPclip(c("rs3", "rs4", "148890987"), "YRI", 0.1, "0.01", token = Sys.getenv("LDLINK_TOKEN")))
})
test_that("snpclip throws an error", {
skip_on_cran()
expect_named(SNPclip(c("rs3", "rs4", "rs148890987"), "YRI", 0.1, "0.01", token = Sys.getenv("LDLINK_TOKEN")))
})
test_that("snpclip works", {
skip_on_cran()
expect_named(SNPclip(c("rs3", "rs4", "rs148890987"), "YRI", "0.1", "0.01", token = Sys.getenv("LDLINK_TOKEN")))
})
test_that("snpclip works w/ gen coord & no threshold", {
skip_on_cran()
expect_named(SNPclip(c("chr13:32446842", "Rs4", "rs148890987"), "YRI", token = Sys.getenv("LDLINK_TOKEN")))
}) |
byf.hist <- function(formula,data,sep=FALSE,density=TRUE,xlab=NULL,ylab=NULL,col=NULL) {
if (missing(formula)||(length(formula)!=3)) {stop("missing or incorrect formula")}
m <- match.call(expand.dots=FALSE)
m$sep <- m$density <- m$col <- NULL
if (is.matrix(eval(m$data,parent.frame()))) {m$data <- as.data.frame(m$data)}
m[[1]] <- as.name("model.frame")
m$... <- m$xlab <- m$ylab <- NULL
mf <- eval(m,parent.frame())
dname <- c(names(mf)[1],paste(names(mf)[2:ncol(mf)],collapse=":"))
resp <- mf[,1]
fact <- interaction(mf[,2:ncol(mf)],sep=":")
nlev <- nlevels(fact)
if (is.null(xlab)) {xlab <- dname[1]}
if (is.null(ylab)) {ylab <- "Density"}
if (sep) {
opar <- par(no.readonly=TRUE)
on.exit(par(opar))
par(mfrow=grDevices::n2mfrow(nlevels(fact)))
if (density) {
if (is.null(col)) {col <- rep("black",nlev)}
if (length(col)==1) {col <- rep(col,nlev)}
for (i in 1:nlev) {
y <- resp[as.numeric(fact)==i]
h <- suppressWarnings(hist(y,freq=FALSE,plot=FALSE))
plot(0,xlim=range(h$breaks),ylim=c(0,max(h$density)),xlab=xlab,
ylab=ylab,main=levels(fact)[i],cex=0)
dens <- density(y)
col2 <- grDevices::col2rgb(col[i])
col3 <- grDevices::rgb(col2[1,],col2[2,],col2[3,],alpha=0.4*255,maxColorValue=255)
polygon(dens$x,dens$y,col=col3,border=NA)
rug(y,col=i)
}
} else {
if (is.null(col)) {col <- rep("white",nlev)}
if (length(col)==1) {col <- rep(col,nlev)}
for (i in 1:nlevels(fact)) {
y <- resp[as.numeric(fact)==i]
hist(y,xlab=xlab,main=levels(fact)[i],col=col[i])
}
}
} else {
if (density) {
if (is.null(col)) {col <- 1:nlev}
if (length(col)==1) {col <- rep(col,nlev)}
dhist(resp,fac=fact,col=col,legend=TRUE,pos.legend="topright",xlab=xlab,ylab=ylab)
} else {
if (is.null(col)) {col <- rep(grDevices::palette(),nlev%/%length(grDevices::palette())+1)[1:nlev]}
if (length(col)==1) {col <- rep(col,nlev)}
angles <- seq(20,160,140/(nlev-1))
dens <- integer(nlev)
for (i in 1:nlev) {
x.i <- resp[as.numeric(fact)==i]
dens[i] <- max(hist(x.i,plot=FALSE)$counts)
}
x.1 <- resp[as.numeric(fact)==1]
hist(x.1,xlab=xlab,ylab=ylab,density=10,angle=angles[1],col=col[1],
xlim=range(resp),ylim=c(0,max(dens)),main="")
box()
for (i in 2:nlev) {
x.i <- resp[as.numeric(fact)==i]
hist(x.i,xlab="",ylab="",main="",density=10,angle=angles[i],col=col[i],
add=TRUE)
}
legend("topright",levels(fact),fill=col)
}
}
} |
foo <- packageDescription("citbcmst")
library(citbcmst)
data(citbcmst)
summary(citbcmst)
load(list.files(system.file("extdata", package="citbcmst"), full.names=TRUE)[1])
exp.annot.bertheau07 <- data.frame(id=rownames(exp.norm.bertheau07), stringsAsFactors=F, row.names=rownames(exp.norm.bertheau07) )
citbcmst.bertheau07 <- cit.assignBcmst( data=exp.norm.bertheau07,
data.annot=exp.annot.bertheau07,
data.colId="id",
data.colMap="id" ,
citbcmst.colMap="Probe.Set.ID",
dist.method="dlda",
plot=TRUE
)
str(citbcmst.bertheau07)
table(citbcmst.bertheau07$citbcmst)
table(citbcmst.bertheau07$citbcmst.mixte)
table(citbcmst.bertheau07$citbcmst.core)
table(citbcmst.bertheau07$citbcmst.confidence)
citbcmst.bertheau07 <- cit.assignBcmst( data=exp.norm.bertheau07,
data.annot=exp.annot.bertheau07,
data.colId="id",
data.colMap="id" ,
citbcmst.colMap="Probe.Set.ID",
dist.method="dlda",
plot=TRUE
)
load(list.files(system.file("extdata", package="citbcmst"), full.names=TRUE)[2])
exp.annot.chanrion08 <- data.frame(id=rownames(exp.norm.chanrion08), gs=rownames(exp.norm.chanrion08), stringsAsFactors=F, row.names=rownames(exp.norm.chanrion08) )
citbcmst.chanrion08 <- cit.assignBcmst( data=exp.norm.chanrion08,
data.annot=exp.annot.chanrion08,
data.colId="id",
data.colMap="gs" ,
citbcmst.colMap="Gene.Symbol",
dist.method="pearson",
plot=TRUE
)
str(citbcmst.chanrion08)
table(citbcmst.chanrion08$citbcmst)
table(citbcmst.chanrion08$citbcmst.mixte)
table(citbcmst.chanrion08$citbcmst.core)
table(citbcmst.chanrion08$citbcmst.confidence)
citbcmst.chanrion08 <- cit.assignBcmst( data=exp.norm.chanrion08,
data.annot=exp.annot.chanrion08,
data.colId="id",
data.colMap="gs" ,
citbcmst.colMap="Gene.Symbol",
dist.method="pearson",
plot=TRUE
) |
tidy.lsmobj <- function(x, conf.int = FALSE, conf.level = .95, ...) {
tidy_emmeans(x, infer = c(conf.int, TRUE), level = conf.level, ...)
}
tidy.ref.grid <- function(x, conf.int = FALSE, conf.level = .95, ...) {
tidy_emmeans(x, infer = c(conf.int, TRUE), level = conf.level, ...)
}
tidy.emmGrid <- function(x, conf.int = FALSE, conf.level = .95, ...) {
tidy_emmeans(x, infer = c(conf.int, TRUE), level = conf.level, ...)
}
tidy.summary_emm <- function(x, null.value = NULL, ...) {
tidy_emmeans_summary(x, null.value = null.value)
}
tidy_emmeans <- function(x, ...) {
s <- summary(x, ...)
if (".offset." %in% colnames(x@grid)) {
null.value <- x@grid[, ".offset."]
} else {
null.value <- 0
}
term_names <- names(x@misc$orig.grid)
tidy_emmeans_summary(s, null.value = null.value, term_names = term_names)
}
tidy_emmeans_summary <- function(x, null.value = NULL, term_names = NULL) {
ret <- as.data.frame(x)
repl <- list(
"lsmean" = "estimate",
"emmean" = "estimate",
"pmmean" = "estimate",
"prediction" = "estimate",
"effect.size" = "estimate",
"SE" = "std.error",
"lower.CL" = "conf.low",
"asymp.LCL" = "conf.low",
"upper.CL" = "conf.high",
"asymp.UCL" = "conf.high",
"z.ratio" = "statistic",
"t.ratio" = "statistic",
"F.ratio" = "statistic",
"df1" = "num.df",
"df2" = "den.df",
"model term" = "term"
)
mc_adjusted <- any(
grepl(
"conf-level adjustment|p value adjustment",
attr(x, "mesg"),
ignore.case = TRUE
)
)
if (mc_adjusted) {
repl <- c(repl, "p.value" = "adj.p.value")
}
colnames(ret) <- dplyr::recode(colnames(ret), !!!(repl))
if ("contrast" %in% colnames(ret)) {
if (length(null.value) < nrow(ret)) null.value <- rep_len(null.value, nrow(ret))
ret <- bind_cols(contrast = ret[, "contrast"], null.value = null.value, select(ret, -contrast))
}
if ("term" %in% colnames(ret)) {
ret <- ret %>%
mutate(term = stringr::str_trim(term))
} else if (!is.null(term_names)) {
term <- term_names[!term_names %in% colnames(ret)]
if (length(term) != 0) {
term <- paste(term_names[!term_names %in% colnames(ret)], collapse = "*") %>%
rep_len(nrow(ret))
} else {
term <- apply(ret, 1, function(x) colnames(ret)[which(x == ".")])
}
ret <- bind_cols(ret[, colnames(ret) %in% term_names, drop = FALSE],
term = term,
ret[, !colnames(ret) %in% term_names, drop = FALSE])
}
as_tibble(ret) %>%
mutate_if(is.factor, as.character)
} |
hdist <- function(x, y, ...) UseMethod("hdist")
hdist.sfc <- function(x, y, method="rghosh", gres=5, ditself=FALSE, maxsample=2.5e4, proj=NULL, parallel=FALSE, cores=NULL, verbose=TRUE, ...){
method <- match.arg(method,c("ghosh","rghosh","points","centroids","combined"),several.ok = FALSE)
if(missing(proj)){
if(!identical(st_crs(x),st_crs(y))) stop("x and y do not use the same coordinate reference system.")
if(is.na(st_crs(x)$input)){stop("Don't know how to compute distances because no coordinate reference system was found. Define a coordinate reference system (using st_crs()) or define 'proj' argument.")}
if(st_crs(x)$input=="EPSG:4326"){proj=FALSE}else{proj=TRUE}
}
if(method=="ghosh"){
if(!(all(st_geometry_type(x) == c("POLYGON")) & all(st_geometry_type(y) == c("POLYGON")))) stop("Geometry type has to be a POLYGON if method 'rghosh' is used.")
if(verbose) cat("Sampling the catchments at a resolution of about",gres,"pts/km2\n")
size <- round(units::set_units(gres,"1/km^2")*units::set_units(st_area(st_union(c(x,y))),"km^2"))
xydisc <- st_sample(st_union(c(x,y)),size=units::drop_units(size),type="regular")
xdisc <- list()
ydisc <- list()
for(i in 1:length(x)) xdisc[[i]] <- xydisc[x[i]]
for(i in 1:length(y)) ydisc[[i]] <- xydisc[y[i]]
if(identical(x,y)){
for(i in 1:length(xdisc)) if(length(xdisc[[i]])>maxsample){
xdisc[[i]] <- ydisc[[i]] <- xdisc[[i]][sort(sample.int(length(xdisc[[i]]), size = maxsample, replace = FALSE))]
if(verbose) cat("Random resampling of catchment",i,"with a maximum size sample of",maxsample,"points.\n")}
}else{
for(i in 1:length(xdisc)){
if(length(xdisc[[i]])>maxsample){
xdisc[[i]] <- xdisc[[i]][sort(sample.int(length(xdisc[[i]]), size = maxsample, replace = FALSE))]
if(verbose) cat("Random resampling of catchment x[",i,"] with a maximum size sample of ",maxsample," points.\n",sep="")}
}
for(i in 1:length(ydisc)){
if(length(ydisc[[i]])>maxsample){
ydisc[[i]] <- ydisc[[i]][sort(sample.int(length(ydisc[[i]]), size = maxsample, replace = FALSE))]
if(verbose) cat("Random resampling of catchment y[",i,"] with a maximum size sample of ",maxsample," points.\n",sep="")}
}
}
if(verbose) cat("Computing Ghosh distance between catchments\n")
if(parallel){
if(missing(cores)|is.null(cores)) cores=parallel::detectCores()
cl <- parallel::makeCluster(cores)
doParallel::registerDoParallel(cl=cl)
on.exit(parallel::stopCluster(cl))
if(!identical(x,y)){
res <- foreach::"%dopar%"(foreach::foreach(i=1:length(x),.packages="sf"),
sapply(ydisc,FUN=function(x){.Fortran("gdist",coord1=st_coordinates(x),coord2=st_coordinates(xdisc[[i]]),n1=length(x),n2=length(xdisc[[i]]),proj=proj,rescale=FALSE,diag=FALSE,mdist=0)$mdist}))
gdist <- matrix(unlist(res), nrow = length(x), ncol = length(y), byrow = TRUE)
}else{
res <- foreach::"%dopar%"(foreach::foreach(i=1:length(x),.packages="sf"),{
tmp <- sapply(ydisc[i:length(x)],FUN=function(x){.Fortran("gdist",coord1=st_coordinates(x),coord2=st_coordinates(xdisc[[i]]),n1=length(x),n2=length(xdisc[[i]]),proj=proj,rescale=FALSE,diag=FALSE,mdist=0)$mdist})
c(rep(NA,i-1),tmp)
})
gdist <- matrix(unlist(res), nrow = length(x), ncol = length(y), byrow = TRUE)
for(i in 1:length(x)) gdist[,i] <- gdist[i,]
}
}else{
gdist <- matrix(NA,nrow=length(x),ncol=length(y))
if(!identical(x,y)){
for(i in 1:length(x)) gdist[i,] <- sapply(ydisc,FUN=function(x){.Fortran("gdist",coord1=st_coordinates(x),coord2=st_coordinates(xdisc[[i]]),n1=length(x),n2=length(xdisc[[i]]),proj=proj,rescale=FALSE,diag=FALSE,mdist=0)$mdist})
}else{
for(i in 1:length(x)) gdist[i,i:length(x)] <- gdist[i:length(x),i] <- sapply(ydisc[i:length(x)],FUN=function(x){.Fortran("gdist",coord1=st_coordinates(x),coord2=st_coordinates(xdisc[[i]]),n1=length(x),n2=length(xdisc[[i]]),proj=proj,rescale=FALSE,diag=FALSE,mdist=0)$mdist})
}
}
if(ditself){
if(verbose) cat(paste0("Computing Ghosh distance within catchments\n"))
if(!identical(x,y)){
gdist <- cbind(gdist,sapply(xdisc,FUN=function(x){.Fortran("gdist",coord1=st_coordinates(x),coord2=st_coordinates(x),n1=length(x),n2=length(x),proj=proj,rescale=FALSE,diag=TRUE,mdist=0)$mdist}))
gdist <- rbind(gdist,c(sapply(ydisc,FUN=function(x){.Fortran("gdist",coord1=st_coordinates(x),coord2=st_coordinates(x),n1=length(x),n2=length(x),proj=proj,rescale=FALSE,diag=TRUE,mdist=0)$mdist}),NA))
}else{
gdist <- cbind(gdist,diag(gdist))
gdist <- rbind(gdist,c(diag(gdist),NA))
}
}
units(gdist) <- units(st_distance(xdisc[[1]][1],ydisc[[1]][1]))
return(gdist)
}
if(method=="rghosh"){
gdist <- hdist(x=x, y=y, method="ghosh", gres=gres, ditself=TRUE, maxsample=maxsample, proj=proj, parallel=parallel, cores=cores)
if(verbose) cat("Rescaling Ghosh distance\n")
rgdist <- matrix(NA,nrow=length(x),ncol=length(y))
if(identical(x,y)){
for(i in 1:length(x)){
for(j in 1:i){
rgdist[i,j] <- gdist[i,j]-0.5*(gdist[i,length(y)+1]+gdist[length(x)+1,j])
rgdist[j,i] <- rgdist[i,j]
}
}
}else{
for(i in 1:length(x)){
for(j in 1:length(y)){
rgdist[i,j] <- gdist[i,j]-0.5*(gdist[i,length(y)+1]+gdist[length(x)+1,j])
}
}
}
units(rgdist) <- units(gdist)
return(rgdist)
}
if(method=="points"){
if(!all(st_geometry_type(x) == c("POINT") & st_geometry_type(y) == c("POINT"))) stop("Geometry type has to be a POINT if method 'points' is used.")
mdist <- st_distance(x,y)
return(mdist)
}
if(method=="centroids"){
if(!all(st_geometry_type(x) == c("POLYGON") & st_geometry_type(y) == c("POLYGON"))) stop("Geometry type has to be a POLYGON if method 'centroids' is used.")
mdist <- hdist(x=st_centroid(x), y=st_centroid(y), method="points")
return(mdist)
}
if(method=="combined") stop("The class of 'x' and 'y' has to be 'transfR' if method 'combined' is used.")
}
hdist.sf <- function(x, y, ...){
mdist <- hdist(x=st_geometry(x), y=st_geometry(y), ...)
return(mdist)
}
hdist.stars <- function(x, y, ...){
mdist <- hdist(x=st_geometry(x), y=st_geometry(y), ...)
return(mdist)
}
hdist.transfR <- function(x, y, method="rghosh", weightO=0.8, weightC=0.2, ...){
if(method=="combined"){
if(!"outlet"%in%names(x)) stop("Outlet attribute is missing in 'x' argument. See as_transfr().")
if(!"outlet"%in%names(y)) stop("Outlet attribute is missing in 'y' argument. See as_transfr().")
if(!"centroid"%in%names(x)) stop("Centroid attribute is missing in 'x' argument. See as_transfr().")
if(!"centroid"%in%names(y)) stop("Centroid attribute is missing in 'y' argument. See as_transfr().")
odist <- hdist(x$outlet, y$outlet, method = "points", ...)
cdist <- hdist(x$centroid, y$centroid, method = "points", ...)
mdist <- odist*weightO + cdist*weightC
}else{
if(!"st"%in%names(x)) stop("Spatio-temporal arrays (st) of class stars is missing in 'x' argument. See as_transfr().")
if(!"st"%in%names(y)) stop("Spatio-temporal arrays (st) of class stars is missing in 'y' argument. See as_transfr().")
mdist <- hdist(x=x$st, y=y$st, ...)
}
return(mdist)
} |
PDI_validation <- function(lcp, comparison, reverse = FALSE) {
if (!inherits(lcp, "SpatialLines")) {
stop("lcp argument is invalid. Expecting SpatialLines* object")
}
if (!inherits(comparison, "SpatialLines")) {
stop("Comparison argument is invalid. Expecting a SpatialLines* object")
}
lcp_pts <- methods::as(lcp, "SpatialPoints")
comparison_pts <- methods::as(comparison, "SpatialPoints")
lcp_coords <- sp::coordinates(lcp_pts)
comparison_coords <- sp::coordinates(comparison_pts)
lcp_coords <- base::unname(lcp_coords)
comparison_coords <- base::unname(comparison_coords)
if (reverse) {
lcp_coords[1, ] <- comparison_coords[1, ]
lcp_coords[nrow(lcp_coords), ] <- comparison_coords[nrow(comparison_coords), ]
comparison_coords <- comparison_coords[nrow(comparison_coords):1, ]
} else {
lcp_coords[1, ] <- comparison_coords[nrow(comparison_coords), ]
lcp_coords[nrow(lcp_coords), ] <- comparison_coords[1, ]
}
start <- lcp_coords[1, ]
end <- lcp_coords[base::nrow(lcp_coords), ]
coords <- base::rbind(lcp_coords, comparison_coords)
p = sp::Polygon(coords)
ps = sp::Polygons(list(p), 1)
sps = sp::SpatialPolygons(list(ps), proj4string = crs(comparison))
if (!suppressWarnings(rgeos::gIsValid(sps))) {
if (any(identical(coordinates(lcp), coordinates(comparison)), identical(lcp_coords, comparison_coords[nrow(comparison_coords):1, ]))) {
sps <- as(sps, "SpatialLines")
} else {
sps <- rgeos::gPolygonize(rgeos::gNode(rgeos::gBoundary(sps)))
sps <- rgeos::gUnaryUnion(spgeom = sps)
}
}
PDI_area <- rgeos::gArea(sps, byid = FALSE)
max_distance <- raster::pointDistance(p1 = start, p2 = end, type = "Euclidean", lonlat = FALSE)
PDI <- PDI_area/max_distance
sps$area <- PDI_area
sps$PDI <- PDI
sps$max_distance <- max_distance
norm_PDI <- (PDI_area/max_distance)/max_distance * 100
sps$normalised_PDI <- norm_PDI
return(sps)
} |
NULL
setMethod("TableFilter", c("ANY", "missing"), function(object) {as(object, ".tableFilter")})
setMethod("TableFilter", c(".query", "missing"), function(object) {
object@filters
})
setMethod("TableFilter", c(".query", "ANY"), function(object, value) {
use_class <- class(object@filters)
object@filters <- as(value, use_class)
validObject(object)
object
})
setMethod(
f = "TableFilter<-",
signature = c(".query", "ANY"),
definition = function(object, value) {
value <- switch(
class(object),
"gaQuery" = as(value, "gaFilter"),
"rtQuery" = as(value, "rtFilter"),
"mcfQuery" = as(value, "mcfFilter")
)
object@filters <- value
validObject(object)
object
}
) |
BIC.GNARfit <- function(object,...){
stopifnot(is.GNARfit(object))
nnodes.in <- object$frbic$nnodes
alphas.in <- object$frbic$alphas.in
betas.in <- object$frbic$betas.in
fact.var <- object$frbic$fact.var
tot.time <- object$frbic$time.in
globalalpha <- object$frbic$globalalpha
dotarg <- list(...)
if(length(dotarg)!=0){
if(!is.null(names(dotarg))){
warning("... not used here, input(s) ", paste(names(dotarg), collapse=", "), " ignored")
}else{
warning("... not used here, input(s) ", paste(dotarg, collapse=", "), " ignored")
}
}
if(!is.null(fact.var)){
f.in <- length(unique(fact.var))
}else{
f.in <- 1
}
stopifnot(is.logical(globalalpha))
stopifnot(length(nnodes.in)==1)
stopifnot(floor(nnodes.in)==nnodes.in)
stopifnot(tot.time != 0)
tmp.resid <- residToMat(GNARobj=object, nnodes=nnodes.in)$resid
tmp.resid[is.na(tmp.resid)] <- 0
larg <- det((1/tot.time) * t(tmp.resid) %*% tmp.resid)
stopifnot(larg != 0)
tmp1 <- log(larg)
if(globalalpha){
tmp2 <- f.in * ( alphas.in + sum(betas.in) ) * log(tot.time) / tot.time
}else{
tmp2 <- ( ncol(tmp.resid) * alphas.in + sum(betas.in) ) * log(tot.time) / tot.time
}
return(tmp1 + tmp2)
} |
context("test-mbl")
test_that("mbl works", {
nirdata <- data("NIRsoil", package = "prospectr")
Xu <- NIRsoil$spc[!as.logical(NIRsoil$train), ]
Yu <- NIRsoil$CEC[!as.logical(NIRsoil$train)]
Yr <- NIRsoil$CEC[as.logical(NIRsoil$train)]
Xr <- NIRsoil$spc[as.logical(NIRsoil$train), ]
Xu <- Xu[!is.na(Yu), ][1:20, ]
Xr <- Xr[!is.na(Yr), ][1:40, ]
Yu <- Yu[!is.na(Yu)][1:20]
Yr <- Yr[!is.na(Yr)][1:40]
k_test <- seq(25, 35, by = 10)
k_diss_test <- 0.1
k_range_test <- c(15, 30)
ctrl_1 <- mbl_control(
validation_type = c("NNv", "local_cv"),
number = 4, p = 0.5,
allow_parallel = FALSE
)
gpr <- mbl(
Xr = Xr, Yr = Yr, Xu = Xu, Yu = Yu,
k = k_test,
method = local_fit_gpr(),
control = ctrl_1,
verbose = FALSE
)
pls <- mbl(
Xr = Xr, Yr = Yr, Xu = Xu, Yu = Yu,
k = k_test,
method = local_fit_pls(5),
control = ctrl_1,
verbose = FALSE
)
mpls <- mbl(
Xr = Xr, Yr = Yr, Xu = Xu, Yu = Yu,
k = k_test,
method = local_fit_pls(5, modified = TRUE),
control = ctrl_1,
verbose = FALSE
)
wapls <- mbl(
Xr = Xr, Yr = Yr, Xu = Xu, Yu = Yu,
k = k_test,
method = local_fit_wapls(3, 5),
control = ctrl_1,
verbose = FALSE
)
wampls <- mbl(
Xr = Xr, Yr = Yr, Xu = Xu, Yu = Yu,
k = k_test,
method = local_fit_wapls(3, 5, modified = TRUE),
control = ctrl_1,
verbose = FALSE
)
gpr_k_diss <- mbl(
Xr = Xr, Yr = Yr, Xu = Xu, Yu = Yu,
k_diss = k_diss_test, k_range = k_range_test,
method = local_fit_gpr(),
control = ctrl_1,
verbose = FALSE
)
pls_k_diss <- mbl(
Xr = Xr, Yr = Yr, Xu = Xu, Yu = Yu,
k_diss = k_diss_test, k_range = k_range_test,
method = local_fit_pls(5),
control = ctrl_1,
verbose = FALSE
)
wapls_k_diss <- mbl(
Xr = Xr, Yr = Yr, Xu = Xu, Yu = Yu,
k_diss = k_diss_test, k_range = k_range_test,
method = local_fit_wapls(3, 5),
control = ctrl_1,
verbose = FALSE
)
group_test <- mbl(
Xr = Xr, Yr = Yr, Xu = Xu, Yu = Yu,
k = k_test,
method = local_fit_pls(5),
control = ctrl_1,
group = rep(c(1, 2), length.out = nrow(Xr)),
verbose = FALSE
)
output_names <- names(gpr)
expected_names <- c(
"call", "cntrl_param", "dissimilarities", "Xu_neighbors",
"n_predictions", "gh", "validation_results", "results",
"documentation"
)
expect_is(gpr, "list")
expect_is(pls, "list")
expect_is(wapls, "list")
expect_is(mpls, "list")
expect_is(wampls, "list")
expect_is(gpr_k_diss, "list")
expect_is(pls_k_diss, "list")
expect_is(wapls_k_diss, "list")
expect_is(group_test, "list")
expect_true(all(expected_names %in% output_names))
})
test_that("mbl delivers expeted results", {
skip_on_cran()
skip_on_travis()
require(prospectr)
nirdata <- data("NIRsoil", package = "prospectr")
NIRsoil$spc <- prospectr::savitzkyGolay(NIRsoil$spc, p = 3, w = 11, m = 0)
Xu <- NIRsoil$spc[!as.logical(NIRsoil$train), ]
Yu <- NIRsoil$CEC[!as.logical(NIRsoil$train)]
Yr <- NIRsoil$CEC[as.logical(NIRsoil$train)]
Xr <- NIRsoil$spc[as.logical(NIRsoil$train), ]
Xu <- Xu[!is.na(Yu), ]
Xr <- Xr[!is.na(Yr), ]
Yu <- Yu[!is.na(Yu)]
Yr <- Yr[!is.na(Yr)]
ctrl_1 <- mbl_control(
validation_type = c("NNv", "local_cv"),
number = 4, p = 0.8,
tune_locally = TRUE,
allow_parallel = FALSE
)
k_test <- c(40, 150)
k_diss_test <- 0.1
k_range_test <- c(20, 100)
pls_wapls <- c(3, 15)
pls_pls <- c(10)
grpnoisevar <- 0.0001
tseed <- 141020
set.seed(tseed)
gpr <- mbl(
Xr = Xr, Yr = Yr, Xu = Xu, Yu = Yu,
k = k_test,
method = local_fit_gpr(grpnoisevar),
control = ctrl_1,
verbose = FALSE
)
set.seed(tseed)
pls <- mbl(
Xr = Xr, Yr = Yr, Xu = Xu, Yu = Yu,
k = k_test,
method = local_fit_pls(pls_pls),
control = ctrl_1,
verbose = FALSE
)
set.seed(tseed)
wapls <- mbl(
Xr = Xr, Yr = Yr, Xu = Xu, Yu = Yu,
k = k_test,
method = local_fit_wapls(pls_wapls[1], pls_wapls[2]),
control = ctrl_1,
verbose = FALSE
)
set.seed(tseed)
mpls <- mbl(
Xr = Xr, Yr = Yr, Xu = Xu, Yu = Yu,
k = k_test,
method = local_fit_pls(pls_pls, modified = TRUE),
control = ctrl_1,
verbose = FALSE
)
set.seed(tseed)
wampls <- mbl(
Xr = Xr, Yr = Yr, Xu = Xu, Yu = Yu,
k = k_test,
method = local_fit_wapls(pls_wapls[1], pls_wapls[2], modified = TRUE),
control = ctrl_1,
verbose = FALSE
)
set.seed(tseed)
gpr_k_diss <- mbl(
Xr = Xr, Yr = Yr, Xu = Xu, Yu = Yu,
k_diss = k_diss_test, k_range = k_range_test,
method = local_fit_gpr(),
control = ctrl_1,
verbose = FALSE
)
set.seed(tseed)
pls_k_diss <- mbl(
Xr = Xr, Yr = Yr, Xu = Xu, Yu = Yu,
k_diss = k_diss_test, k_range = k_range_test,
method = local_fit_pls(pls_pls),
control = ctrl_1,
verbose = FALSE
)
set.seed(tseed)
wapls_k_diss <- mbl(
Xr = Xr, Yr = Yr, Xu = Xu, Yu = Yu,
k_diss = k_diss_test, k_range = k_range_test,
method = local_fit_wapls(pls_wapls[1], pls_wapls[2]),
control = ctrl_1,
verbose = FALSE
)
set.seed(tseed)
xgroup <- rep((1:(floor(nrow(Xr) / 2))), each = 2)
pls_group <- mbl(
Xr = Xr, Yr = Yr, Xu = Xu, Yu = Yu,
k = k_test,
method = local_fit_pls(pls_pls),
control = ctrl_1, group = xgroup,
verbose = FALSE
)
set.seed(tseed)
pls_group_local <- mbl(
Xr = Xr, Yr = Yr, Xu = Xu, Yu = Yu,
k = k_test,
method = local_fit_pls(pls_pls),
control = ctrl_1, group = xgroup,
.local = TRUE, pre_k = 200,
verbose = FALSE
)
cv_gpr <- c(
gpr$validation_results$local_cross_validation$rmse < 1.8,
gpr$validation_results$local_cross_validation$rmse > 1.5
)
cv_pls <- c(
pls$validation_results$local_cross_validation$rmse < 1.8,
pls$validation_results$local_cross_validation$rmse > 1.4
)
cv_wapls <- c(
wapls$validation_results$local_cross_validation$rmse < 1.8,
wapls$validation_results$local_cross_validation$rmse > 1.4
)
cv_mpls <- c(
mpls$validation_results$local_cross_validation$rmse < 1.8,
mpls$validation_results$local_cross_validation$rmse > 1.5
)
cv_wampls <- c(
wampls$validation_results$local_cross_validation$rmse < 1.68,
wampls$validation_results$local_cross_validation$rmse > 1.45
)
cv_gpr_k_diss <- c(
gpr_k_diss$validation_results$local_cross_validation$rmse < 1.9,
gpr_k_diss$validation_results$local_cross_validation$rmse > 1.6
)
cv_pls_k_diss <- c(
pls_k_diss$validation_results$local_cross_validation$rmse < 1.7,
pls_k_diss$validation_results$local_cross_validation$rmse > 1.4
)
cv_wapls_k_diss <- c(
wapls_k_diss$validation_results$local_cross_validation$rmse < 2,
wapls_k_diss$validation_results$local_cross_validation$rmse > 1.4
)
cv_group <- c(
pls_group$validation_results$local_cross_validation$rmse < 2,
pls_group$validation_results$local_cross_validation$rmse > 1.4
)
cv_group_local <- c(
pls_group_local$validation_results$local_cross_validation$rmse < 2,
pls_group_local$validation_results$local_cross_validation$rmse > 1
)
nnv_group_local <- pls_group_local$validation_results$nearest_neighbor_validation$r2 > 0.4
nnv_group <- pls_group$validation_results$nearest_neighbor_validation$r2 > 0.7
nnv_gpr <- gpr$validation_results$nearest_neighbor_validation$r2 > 0.81
nnv_pls <- pls$validation_results$nearest_neighbor_validation$r2 > 0.74
nnv_wapls <- wapls$validation_results$nearest_neighbor_validation$r2 > 0.80
nnv_gpr_k_diss <- gpr_k_diss$validation_results$nearest_neighbor_validation$r2 > 0.81
nnv_pls_k_diss <- pls_k_diss$validation_results$nearest_neighbor_validation$r2 > 0.81
nnv_wapls_k_diss <- wapls_k_diss$validation_results$nearest_neighbor_validation$r2 > 0.81
yuv_gpr <- gpr$validation_results$Yu_prediction_statistics$r2 > 0.72
yuv_pls <- pls$validation_results$Yu_prediction_statistics$r2 > 0.67
yuv_wapls <- wapls$validation_results$Yu_prediction_statistics$r2 > 0.69
yuv_gpr_k_diss <- gpr_k_diss$validation_results$Yu_prediction_statistics$r2 > 0.72
yuv_pls_k_diss <- pls_k_diss$validation_results$Yu_prediction_statistics$r2 > 0.60
yuv_wapls_k_diss <- wapls_k_diss$validation_results$Yu_prediction_statistics$r2 > 0.65
expect_true(all(cv_gpr))
expect_true(all(cv_pls))
expect_true(all(cv_wapls))
expect_true(all(cv_mpls))
expect_true(all(cv_wampls))
expect_true(all(cv_gpr_k_diss))
expect_true(all(cv_pls_k_diss))
expect_true(all(cv_wapls_k_diss))
expect_true(all(cv_group))
expect_true(all(cv_group_local))
expect_true(all(nnv_gpr))
expect_true(all(nnv_pls))
expect_true(all(nnv_wapls))
expect_true(all(nnv_gpr_k_diss))
expect_true(all(nnv_pls_k_diss))
expect_true(all(nnv_wapls_k_diss))
expect_true(all(nnv_group))
expect_true(all(nnv_group_local))
expect_true(all(yuv_gpr))
expect_true(all(yuv_pls))
expect_true(all(yuv_wapls))
expect_true(all(yuv_gpr_k_diss))
expect_true(all(yuv_pls_k_diss))
expect_true(all(yuv_wapls_k_diss))
}) |
set.seed(919)
u1 = rlnorm(10)
v1 = rlnorm(10)
Y1 = u1%*%t(v1)
u2 = rlnorm(10)
v2 = rlnorm(10)
Y2 = .5+u2%*%t(v2)
Y_nn = rbind(Y1,Y2)
Y = Y_nn + array(rlnorm(prod(dim(Y_nn)),0,.05),dim(Y_nn))
library('reshape2')
library('ggplot2')
group = factor(rep(c(1,2),each=nrow(Y)/2))
levels(group) = c("group1","group2")
mY = melt(data.frame(Y,group),id.vars="group")
ggplot(data=mY,mapping=aes(x=value,fill=group))+geom_histogram(bins=100)+geom_vline(data=aggregate(value~group,data=mY,mean),mapping=aes(xintercept=value,linetype=group),size=1.5)
t.test(rowMeans(Y)[group=="group1"],rowMeans(Y)[group=="group2"])
library('rrscale')
scl = rrscale(Y)
scl$T_name
scl$par_hat
trans_Y = scl$RR
trans_Y2 = scl$rr_fn(Y)
all(trans_Y2==trans_Y,na.rm=TRUE)
tmY = melt(data.frame(trans_Y,group),id.vars="group")
ggplot(data=tmY,mapping=aes(x=value,fill=group))+geom_histogram(bins=100)+geom_vline(data=aggregate(value~group,data=tmY,mean),mapping=aes(xintercept=value,linetype=group),size=1.5)
t.test(rowMeans(trans_Y)[group=="group1"],rowMeans(trans_Y)[group=="group2"])
plot(svdc(Y)$u[,1:2],col=group,xlab="PC1",ylab="PC2")
plot(svdc(trans_Y)$u[,1:2],col=group,xlab="PC1",ylab="PC2")
cancor(model.matrix(~1+group),svdc(Y)$u[,1:2])
cancor(model.matrix(~1+group),svdc(trans_Y)$u[,1:2]) |
context("stopover mass calculator")
test_that("mismatch length throw error", {
expect_error(stopover.mass.calculator(bodyMass = c(1.1,1.2), fatMass = c(0.34),
taxon = c(1, 2), duration = 24L
))
})
test_that("negaative duration throws error", {
expect_error(stopover.mass.calculator(bodyMass = c(1.1,1.2), fatMass = c(0.34, 0.25),
taxon = c(1, 2), duration = -24L
))
})
test_that("negaative duration throws error", {
expect_error(stopover.mass.calculator(bodyMass = c(1.1,1.2), fatMass = c(0.34, 0.25),
taxon = c(1, 3), duration = 24L
))
}) |
checker = function(){
R6Checker$new()
}
R6Checker = R6::R6Class('Checker',inherit=NULL,
public=list(
initialize = function(){
},
checkHasNames = function(x,objnm = deparse(substitute(x))){
`if`(!is.character(names(x)), stop(sprintf("'%s' of type ['%s'] must be a named object",objnm,paste(class(x),collapse="', '")),call.=FALSE),invisible(x))
},
checkAllNamesAreIn = function(A,B,objnmA = deparse(substitute(A)), objnmB = deparse(substitute(B))){
self$checkHasNames(A,objnmA)
self$checkHasNames(B,objnmB)
missing = setdiff(names(A),names(B))
`if`(length(missing) > 0,{
stop(sprintf("All names in '%s' must also be in '%s'. Missing: ['%s']",
objnmA,
objnmB,
paste(missing,collapse=", ")),
call.=FALSE)
},invisible(A))
},
checkAllNamesAreUnique = function(x,objnm = deparse(substitute(A))){
self$checkHasNames(x,objnm)
`if`(!identical(length(names(x)),length(unique(names(x)))), stop(sprintf("All names in '%s' must be unique.",objnm),call.=FALSE), invisible(x))
},
checkPositiveNumericScalar = function(x, includeZero = FALSE, objnm = deparse(substitute(x))){
self$checkNumericScalar(x,objnm = objnm)
self$checkRange(x, 0, aop = `if`(includeZero,'>=','>'), objnm = objnm)
},
checkPositiveIntegerScalar = function(x,includeZero = FALSE, objnm = deparse(substitute(x))){
self$checkLength(x,1,objnm = objnm)
self$checkInteger(x,objnm=objnm)
self$checkRange(x, 0, aop = `if`(includeZero,'>=','>'), objnm = objnm)
},
checkNumericScalar = function(x, objnm = deparse(substitute(x))){
self$checkLength(x,1,objnm = objnm)
self$checkNumeric(x,objnm = objnm)
},
checkLogicalScalar = function(x,objnm = deparse(substitute(x))){
self$checkLength(x,1,objnm=objnm)
self$checkLogical(x, objnm = objnm)
},
checkCharacterScalar = function(x,objnm = deparse(substitute(x))){
self$checkLength(x,1,objnm = objnm)
self$checkCharacter(x, objnm = objnm)
},
checkScalarOfType = function(x, type = enfArg('type'), objnm = deparse(substitute(x))){
self$checkLength(x,1,objnm=objnm)
self$checkClass(x,type,objnm=objnm)
},
checkFractional = function(x, objnm = deparse(substitute(x))){
self$checkNumeric(x, objnm = objnm)
self$checkRange(x,0,1,aop='>=',bop="<=", objnm = objnm)
},
checkFractionalScalar = function(x, objnm){
self$checkScalar(x, objnm = objnm)
self$checkFractional(x, objnm = objnm)
},
checkNumeric = function(x,objnm = deparse(substitute(x))){
`if`(!all(is.numeric(x)), stop(sprintf("'%s' must be numeric",objnm),call.=FALSE), invisible(x))
},
checkInteger = function(x, objnm = deparse(substitute(x))){
`if`(!all(is.integer(x)) & !(all(is.numeric(x)) & all(x %% 1 == 0)),
stop(sprintf("'%s' must be integer",objnm),call.=FALSE), invisible(x))
},
checkIntegerScalar = function(x, objnm = deparse(substitute(x))){
self$checkInteger(x,objnm = objnm)
self$checkScalar(x,objnm = objnm)
},
checkCharacter = function(x, objnm = deparse(substitute(x))){
`if`(!is.character(x), stop(sprintf("'%s' must be character",objnm),call.=FALSE), invisible(x))
},
checkLogical = function(x, objnm = deparse(substitute(x))){
`if`(!is.logical(x), stop(sprintf("'%s' must be logical",objnm),call.=FALSE), invisible(x))
},
checkClass = function(x,type = enfArg('type'), objnm = deparse(substitute(x))){
`if`(!inherits(x,type), stop(sprintf("'%s' must inherit one of ['%s']",objnm,paste(type,collapse="', '")),call.=FALSE), invisible(x))
},
checkDataFrame = function(x,objnm = deparse(substitute(x))){
self$checkClass(x,'data.frame',objnm = objnm)
},
checkListOfClass = function(x, type = enfArg('type'), recursive = FALSE, objnm = deparse(substitute(x))){
self$checkCharacterScalar(type, objnm = 'type')
self$checkClass(x,'list', objnm)
check = sapply( `if`(recursive, flatten(x), x) , function(o){ inherits(o,type) })
`if`(!all(check), stop(sprintf("All '%s' objects must inherit from '%s'",objnm,type),call.=FALSE), invisible(x))
},
checkNumericDataFrame = function(x,objnm = deparse(substitute(x))){
self$checkDataFrame(x,objnm = objnm)
`if`(!all(sapply(as.list(x),function(o)is.numeric(o))), stop(sprintf("All columns of '%s' must be numeric.",objnm),call.=FALSE), invisible(x))
},
checkLength = function(x,n = 1,op='==',objnm = deparse(substitute(x))){
self$checkIsIn(op,c('==','>','<','>=','<='))
n = as.integer(unique(n))
`if`(!{any(do.call(op,args=list(length(x),n)))},
stop(sprintf("'%s' must be of length/s '%s' ['%s']",objnm,op,paste(n,collapse="', '")),call.=FALSE),
invisible(x))
},
checkScalar = function(x, objnm = deparse(substitute(x))){
self$checkLength(x,1,objnm = objnm)
},
checkNotNullOrNA = function(x,objnm = deparse(substitute(x))){
`if`(is.null(x) || is.na(x),stop(sprintf("'%s' must not be NULL or NA",objnm),call.=FALSE),invisible(x))
},
checkNonZeroLength = function(x,objnm = deparse(substitute(x))){
`if`(!length(x), stop(sprintf("'%s' must not be zero length",objnm),call.=FALSE), invisible(x))
},
checkIsIn = function(x,valid = enfArg('valid'), objnm = deparse(substitute(x)),objnmB = deparse(substitute(valid))){
self$checkNonZeroLength(valid,objnm = objnmB)
self$checkNotNullOrNA(valid,objnm = objnm)
`if`(!all(x %in% valid),
stop(sprintf("All '%s' (%s) must be in: ['%s'], missing: '%s'",
objnm,
paste(x,collapse="', '"),
paste(valid,collapse="', '"),
paste(setdiff(x,valid),collapse="', '")
),call.=FALSE),
invisible(x))
},
checkAny = function(x,objnm = deparse(substitute(x))){
self$checkLogical(x,objnm=objnm)
`if`(!any(x), stop(sprintf("At least one of '%s' must be TRUE.",objnm),call.=FALSE), invisible(x))
},
checkRange = function(x, a = -Inf, b = Inf, aop = '>=', bop = '<=', objnm = deparse(substitute(x))){
self$checkNumeric(x,objnm = objnm)
self$checkNumeric(a,objnm = sprintf("%s (lower bound)",objnm))
self$checkNumeric(b,objnm = sprintf("%s (upper bound)",objnm))
vop = c('>','>=','<','<=','==')
self$checkScalarOfType(aop,'character', objnm = objnm)
self$checkIsIn(aop,vop, objnm = objmm)
self$checkScalarOfType(bop,'character', objnm = objnm)
self$checkIsIn(bop,vop, objnm = objmm)
a = `if`(is.na(a),-Inf,a)
b = `if`(is.na(b),+Inf,b)
`if`(!all(do.call(aop,args=list(x,a)) & do.call(bop,args=list(x,b))),
stop(sprintf("'%s' must be in the range ['%s' %s %s] AND ['%s' %s %s]",
objnm,
objnm,aop,a,
objnm,bop,b),call.=FALSE),
invisible(x))
},
checkPositive = function(x, objnm = deparse(substitute(x))){
self$checkRange(x, a = 0, aop='>', objnm = objnm)
},
checkNegative = function(x, objnm = deparse(substitute(x))){
self$checkRange(x, a = 0, aop="<", objnm = objnm)
}
),
private=list(
)
) |
test_that("add_fct and add_utils", {
with_dir(pkg, {
util_file <- "R/utils_ui.R"
fct_file <- "R/fct_ui.R"
mod <- "R/mod_plop.R"
remove_file(util_file)
remove_file(fct_file)
remove_file(mod)
add_fct("ui", pkg = pkg, open = FALSE, with_test = TRUE)
add_utils("ui", pkg = pkg, open = FALSE, with_test = TRUE)
expect_true(file.exists(util_file))
expect_true(file.exists(fct_file))
expect_true(file.exists("tests/testthat/test-utils_ui.R"))
expect_true(file.exists("tests/testthat/test-fct_ui.R"))
rand <- rand_name()
add_module(rand, pkg = pkg, open = FALSE)
add_fct("ui", rand, pkg = pkg, open = FALSE)
add_utils("ui", rand, pkg = pkg, open = FALSE)
expect_true(file.exists(sprintf("R/mod_%s_fct_ui.R", rand)))
expect_true(file.exists(sprintf("R/mod_%s_utils_ui.R", rand)))
expect_error(
add_fct("ui", module = "notyetcreated", pkg = pkg, open = FALSE),
regexp = "The module 'notyetcreated' does not exist."
)
expect_error(
add_utils("ui", module = "notyetcreated", pkg = pkg, open = FALSE),
regexp = "The module 'notyetcreated' does not exist."
)
mod_ploup_file <- "R/mod_ploup.R"
remove_file(mod_ploup_file)
add_module("ploup", pkg = pkg, open = FALSE)
add_fct("fct", module = basename(mod_ploup_file), pkg = pkg, open = FALSE)
add_utils("utils", module = basename(mod_ploup_file), pkg = pkg, open = FALSE)
expect_true(file.exists("R/mod_ploup_fct_fct.R"))
expect_true(file.exists("R/mod_ploup_utils_utils.R"))
remove_file(mod_ploup_file)
remove_file("R/mod_ploup_fct_fct.R")
remove_file("R/mod_ploup_utils_utils.R")
remove_file(sprintf("R/mod_%s.R", rand))
remove_file(sprintf("R/mod_%s_fct_ui.R", rand))
remove_file(sprintf("R/mod_%s_utils_ui.R", rand))
})
}) |
"SpectraDataFrame" <- function(..., wl=numeric(), nir=matrix(), id=as.character(NA), units="nm", data=data.frame()) {
dotargs <- list(...)
if (any(sapply(dotargs, inherits, "Spectra"))) {
id_spectra <- which(sapply(dotargs, inherits, "Spectra"))
if (length(id_spectra) > 1) {
ss <- dotargs[id_spectra]
s <- ss[[1]]
for (i in 2:length(id_spectra))
s <- rbind(s, ss[[i]])
}
else
s <- dotargs[[1]]
wl <- wl(s)
nir <- spectra(s)
id <- ids(s, as.vector = FALSE)
units <- wl_units(s)
}
else {
if (is(wl, "integer"))
wl <- as.numeric(wl)
if (is(nir, 'data.frame'))
nir <- as.matrix(nir)
if (!is(id, "data.frame"))
id <- data.frame(id = id)
if (all(is.na(id))) {
if (length(nir) == 1)
id <- data.frame(NULL)
else
id <- data.frame(id = as.character(seq(1, nrow(nir))))
}
else {
if (is.null(nrow(nir))) {
if (nrow(id) != 1)
stop("number of individuals and number of rows in the spectra matrix don't match")
if ((length(wl) > 1) & (length(nir) != length(wl)))
stop("number of columns in the spectra matrix and number of observed wavelengths don't match")
nir <- matrix(nir, nrow=1)
}
else {
if (nrow(nir) != nrow(id))
stop("number of individuals and number of rows in the spectra matrix don't match")
if ((length(wl) > 1) & (ncol(nir) != length(wl)))
stop("number of columns in the spectra matrix and number of observed wavelengths don't match")
colnames(nir) <- wl
rownames(nir) <- as.vector(do.call('rbind', id))
}
}
}
if (is(data, "numeric") | is(data, "integer"))
data <- as.data.frame(data)
if (!any(duplicated(id[, 1]))) {
rownames(data) <- id[, 1]
} else {
rownames(data) <- NULL
}
new("SpectraDataFrame", wl=wl, nir=nir, id=id, units=units, data=data)
}
as.data.frame.SpectraDataFrame = function(x, ..., expand = TRUE, exclude_id = FALSE) {
data <- features(x, exclude_id = exclude_id)
if (expand) {
df <- data.frame(data, spectra(x))
names(df) <- c(names(data), wl(x))
}
else {
df <- data.frame(data, NIR = I(spectra(x)))
}
df
}
setAs("SpectraDataFrame", "data.frame", function(from) {
as.data.frame.SpectraDataFrame(from)
})
if (!isGeneric("features"))
setGeneric("features", function(object, exclude_id = TRUE)
standardGeneric("features"))
setMethod("features", "SpectraDataFrame",
function(object, exclude_id = TRUE) {
if (!exclude_id) {
res <- data.frame(ids(object, as.vector = FALSE), object@data)
} else {
res <- object@data
}
res
}
)
if (!isGeneric('features<-'))
setGeneric('features<-', function(object, value, safe = TRUE, key = NULL, exclude_id = TRUE, append = TRUE)
standardGeneric('features<-')
)
setReplaceMethod("features", signature("SpectraDataFrame", "ANY"),
function(object, value, safe = TRUE, key = NULL, exclude_id = TRUE, append = TRUE) {
if (!inherits(value, "data.frame"))
stop('data must be provided as a data.frame object')
if (safe) {
if (is.null(key))
stop("In the safe mode, you need to provide either the column name of the sample ids to the key option.")
if (length(key) != 1)
stop("Please provide only ONE id column.")
if (is.numeric(key)) {
key <- names(value)[key]
}
if (append) {
d <- data.frame(ids(object, as.vector = FALSE), features(object))
names(d)[1] <- key
}
else {
d <- ids(object, as.vector = FALSE)
names(d) <- key
}
d[[key]] <- as.character(d[[key]])
value[[key]] <- as.character(value[[key]])
data <- join(d, value, by = key, type = "left", match = "first")
if (exclude_id)
data <- data[, -1*which(names(data) == key), drop = FALSE]
}
else {
warning("Sample ID check has been disabled. This mode assumes you made sure the order of the rows in your data is consistent with the order in which these samples appear in the Spectra object.")
if (append) data <- data.frame(features(object), value)
else data <- value
}
SpectraDataFrame(object, data = data)
}
)
setMethod("$", "SpectraDataFrame",
definition=function(x, name) x@data[[name]]
)
setReplaceMethod("$", "Spectra",
definition=function(x, name, value) {
if ('data' %in% slotNames(x)) {
x@data[[name]] <- value
}
else {
data <- data.frame(value)
names(data) <- name
x <- SpectraDataFrame(x, data = data)
}
x
}
)
setMethod("[[", c("SpectraDataFrame", "ANY", "missing"),
function(x, i, j, ...) {
if (!("data" %in% slotNames(x)))
stop("no [[ method for object without attributes")
x@data[[i]]
}
)
setReplaceMethod("[[", c("Spectra", "ANY", "missing", "ANY"),
function(x, i, j, value) {
if ('data' %in% slotNames(x)) {
x@data[[i]] <- value
}
else {
data <- data.frame(value)
names(data) <- i
x <- SpectraDataFrame(x, data = data)
}
x
}
)
setMethod("[", c("SpectraDataFrame", "ANY", "ANY", "missing"),
function(x, i, j, ..., k, drop = FALSE) {
.bracket <- function(x, i, j, k, ..., drop = FALSE) {
missing.i <- missing(i)
missing.j <- missing(j)
missing.k <- missing(k)
if (missing.i) {
i <- TRUE
}
else {
if (any(is.na(i))) {
stop("NAs not permitted in row index")
}
if (is.character(i)) {
i <- which(x@id %in% i)
}
}
if (missing.j) {
j <- TRUE
}
else {
if (is.numeric(j)) {
if (all(j < 0)) {
j <- setdiff(1:ncol(x), abs(j))
}
}
else {
j <- which(names(x) %in% j)
}
}
if (missing.k) {
k <- TRUE
}
else {
if (all(k < 0)) {
k <- setdiff(as.numeric(wl(x)), abs(k))
}
k <- which(as.numeric(wl(x)) %in% k)
}
SpectraDataFrame(wl = x@wl[k], nir = x@nir[i, k, drop = FALSE], id = x@id[i, , drop = FALSE], data = features(x)[i, j, drop = FALSE])
}
.bracket(x, i, j, k, ..., drop = drop)
}
)
names.SpectraDataFrame <- function(x) names(x@data)
"names<-.SpectraDataFrame" <- function(x, value) {
names(x@data) <- value
x
}
if (!isGeneric("melt_spectra"))
setGeneric("melt_spectra", function(obj, attr, ...)
standardGeneric("melt_spectra"))
setMethod("melt_spectra", "SpectraDataFrame", function(obj, attr = NULL, ...){
id.nm <- names(ids(obj, as.vector = FALSE))
if (!is.null(attr)) {
data <- subset(features(obj), select = attr)
x <- data.frame(ids(obj, as.vector = FALSE), data, spectra(obj))
names(x) <- c(id.nm, attr, wl(obj))
}
else {
x <- data.frame(ids(obj, as.vector = FALSE), spectra(obj))
names(x) <- c(id.nm, wl(obj))
}
res <- melt(x, id.vars = c(id.nm, attr), variable.name = 'wl', value.name = "nir")
res$wl <- as.numeric(as.character(res$wl))
res
})
.subset.SpectraDataFrame <- function(x, subset, select, drop = FALSE, ...) {
df <- features(x)
if (missing(subset))
r <- TRUE
else {
e <- substitute(subset)
r <- eval(e, df, parent.frame())
if (!is.logical(r))
stop("'subset' must evaluate to logical")
r <- r & !is.na(r)
}
if (missing(select))
vars <- TRUE
else {
nl <- as.list(seq_along(df))
names(nl) <- names(df)
vars <- eval(substitute(select), nl, parent.frame())
}
df_sub <- df[r, vars, drop = drop]
df_sub <- droplevels(df_sub)
id_selected <- which(rownames(df) %in% rownames(df_sub))
SpectraDataFrame(wl = wl(x), nir = spectra(x)[id_selected, , drop = FALSE], id = ids(x, as.vector = FALSE)[id_selected, 1, drop = FALSE], units = wl_units(x), data = df_sub)
}
setMethod("subset", "SpectraDataFrame", .subset.SpectraDataFrame) |
install.packages(
'gt.doc.images',
repos = c(ddsjoberg = 'https://ddsjoberg.r-universe.dev',
CRAN = 'https://cloud.r-project.org')
)
gt.doc.images::save_help_file_images(pkg = "gtsummary")
gt.doc.images::save_help_file_images(pkg = "gtsummary",
rd_files = "as_kable_extra.Rd")
gt.doc.images::shrink_help_file_images(pkg = "gtsummary")
gt.doc.images::shrink_help_file_images(pkg = "gtsummary", image_files = "tbl_strata_ex1.png")
c("as_kable_extra_ex2_pdf.png", "as_kable_extra_ex3_pdf.png",
"as_kable_extra_ex1_pdf.png", "as_flex_table_ex1.png") |>
purrr::walk(~webshot::shrink(here::here("man", "figures", .x))) |
predict.IM4E<-function(object,xx,yy,newx,sig = 1, type = "both",...){
TYPES <- c("both","response","class")
typeIdx <- pmatch(type, TYPES)
if (is.na(typeIdx)){
stop("Invalid type")
}
yy<-as.numeric(yy)
if (ncol(xx) != ncol(newx)){
stop("xx and newx have different lengths of explanatory variables")
}
if (is.list(object)){
w<-matrix(object$w)
}else{
w<-object
}
label<-unique(yy)
v<-sapply(c(1:length(label)),function(j){
sapply(c(1:nrow(newx)), function(i){
yyy<-abs(yy-label[j])
y<-rep(0,length(yyy))
y[which(yyy==0)]<-1
tmp<-matrix((y)*exp(-(t(w)%*%abs(t(xx)-as.numeric(newx[i,]))/sig) -1 ))
s<-sum(tmp)
if (s!=0) tmp<-tmp/s
(t(w)%*%abs(t(xx)-as.numeric(newx[i,])))%*%tmp
})
})
myfun<-sapply(c(1:nrow(newx)), function(i){
v[i,]<<-v[i,]/sum(v[i,])
})
pred<-sapply(c(1:nrow(newx)),function(i){
label[which.min(v[i,])]
})
if (type == "both"){
newList<-list("class"=pred,"prob"=v)
return(newList)
}else if(type == "response"){
return(v)
}else if(type == "class"){
return(pred)
}else{
stop("use wrong type")
}
} |
find_positions <- function (nams1, nams2) {
nams1 <- gsub("^", "\\^", nams1, fixed = TRUE)
vals <- c(glob2rx(nams1), glob2rx(paste0(nams1, ":*")), glob2rx(paste0("*:", nams1)))
out <- sort(unique(unlist(lapply(vals, grep, x = nams2))))
out
} |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.