code
stringlengths 1
13.8M
|
---|
app_model <- function() {
if (file.exists("./fitted_model_log.csv")) {
file.remove("./fitted_model_log.csv")
}
ui <- shiny::fluidPage(
shinyjs::useShinyjs(),
shiny::titlePanel("Modeling"),
shiny::tabsetPanel(
shiny::tabPanel(
title = "Create train data",
shiny::sidebarLayout(
fluid = FALSE,
shiny::sidebarPanel(
width = 2,
shinyFiles::shinyDirButton(
id = "folder",
label = "Choose folder",
title = "Choose recordings folder",
style = "width:100%"
),
htmltools::br(),
shinyFiles::shinyFilesButton(
id = "selected_db",
label = "Choose database",
title = "Choose database file",
multiple = FALSE,
style = "width:100%"
),
htmltools::br(),
htmltools::br(),
shiny::fluidRow(
shiny::column(
width = 12,
align = "left",
shiny::selectInput(
inputId = "tx",
label = "Time expanded",
choices = c(
"1" = "1",
"10" = "10",
"auto" = "auto"
),
selected = "1"
),
)
),
htmltools::hr(),
htmltools::h4("Spectrogram parameters", align = "left"),
htmltools::hr(),
shiny::numericInput(
inputId = "spec_size",
label = "Size (ms)",
value = "20"
),
shiny::numericInput(
inputId = "window_length",
label = "Moving window (ms)",
value = "1"
),
shiny::selectInput(
inputId = "overlap",
label = "Overlap",
choices = c(
"50%" = "0.50",
"75%" = "0.75"
),
selected = "0.75"
),
shiny::selectInput(
inputId = "frequency_resolution",
label = "Resolution",
choices = c(
"Low" = "1",
"Medium" = "2",
"High" = "3"
),
selected = "1"
),
shiny::selectInput(
inputId = "dynamic_range",
label = "Threshold",
choices = c(
"60 dB" = "60",
"70 dB" = "70",
"80 dB" = "80",
"90 dB" = "90",
"100 dB" = "100",
"110 dB" = "110",
"120 dB" = "120"
),
selected = "120"
),
shiny::fluidRow(
shiny::column(
width = 6,
align = "center",
shiny::textInput(
inputId = "low",
label = "Lower (kHz)",
value = "10"
)
),
shiny::column(
width = 6,
align = "center",
shiny::textInput(
inputId = "high",
label = "Higher (kHz)",
value = "120"
)
)
)
),
shiny::mainPanel(
htmltools::br(),
shiny::fluidRow(
shiny::column(
width = 6,
shiny::textOutput("folder_path")
)
),
htmltools::br(),
shiny::fluidRow(
shiny::column(
width = 6,
shiny::textOutput("db_path")
)
),
htmltools::hr(),
shiny::fluidRow(
shiny::column(
width = 6,
align = "center",
offset = 3,
shiny::actionButton(
inputId = "create_specs",
label = "Create training data from labels",
style = "width:100%"
),
htmltools::tags$style(
type = "text/css",
"
height- 50px; width- 100%; font-size- 30px;}"
)
)
),
htmltools::br(),
shiny::tableOutput("spec")
)
)
),
shiny::tabPanel(
title = "Fit model",
shiny::sidebarLayout(
fluid = FALSE,
shiny::sidebarPanel(
width = 2,
shinyFiles::shinyFilesButton(
id = "rdata_path",
label = "Choose train data",
title = "Choose train data file",
multiple = FALSE,
style = "width:100%"
),
shinyFiles::shinyFilesButton(
id = "model_path",
label = "Choose model",
title = "Choose model",
multiple = FALSE,
style = "width:100%"
),
htmltools::hr(),
htmltools::h4(
"Model parameters",
align = "left"
),
htmltools::hr(),
shiny::numericInput(
inputId = "train_per",
label = "Train %",
value = "0.7"
),
shiny::numericInput(
inputId = "batch",
label = "Batch size",
value = "64"
),
shiny::numericInput(
inputId = "lr",
label = "Learning rate",
value = "0.01"
),
shiny::numericInput(
inputId = "stop",
label = "Early stop",
value = "3"
),
shiny::numericInput(
inputId = "epochs",
label = "Max epochs",
value = "50"
)
),
shiny::mainPanel(
htmltools::br(),
shiny::fluidRow(
shiny::column(
width = 6,
shiny::textOutput("rdata_path")
)
),
htmltools::br(),
shiny::fluidRow(
shiny::column(
width = 6,
shiny::textOutput("model_path")
)
),
htmltools::hr(),
shiny::fluidRow(
shiny::column(
width = 6,
align = "center",
offset = 3,
shiny::actionButton(
inputId = "fit_model",
label = "Fit model",
style = "width:100%"
),
htmltools::tags$style(
type = "text/css",
"
width- 100%; font-size- 30px;}"
)
)
),
htmltools::br(),
htmltools::br(),
shiny::tableOutput("fitted_model_log"),
htmltools::br(),
htmltools::br(),
shiny::tableOutput("end_fit")
)
)
),
shiny::tabPanel("Run model",
shiny::sidebarLayout(fluid = FALSE,
shiny::sidebarPanel(
width = 2,
shinyFiles::shinyDirButton(id = "fitted_selected_folder",
label = "Choose folder",
title = "Choose folder",
style = "width:100%"),
shinyFiles::shinyFilesButton(
id = "fitted_selected_model",
label = "Choose model",
title = "Choose model",
multiple = FALSE,
style = "width:100%"),
htmltools::br(),
shinyFiles::shinyFilesButton(id = "fitted_selected_metadata",
label = "Choose metadata",
title = "Choose metadata file",
multiple = FALSE,
style = "width:100%"),
htmltools::br(),
htmltools::br(),
shiny::fluidRow(
shiny::column(
width = 12,
align = "left",
shiny::selectInput(
inputId = "tx2",
label = "Time expanded",
choices = c(
"1" = "1",
"10" = "10",
"auto" = "auto"
),
selected = "1"
),
)
),
htmltools::br(),
shiny::textInput(inputId = "out_file",
label = "Name of output file",
value = "id_results"),
htmltools::br(),
shiny::radioButtons("rem_noise",
"Non-relevant class?",
c("Yes" = TRUE,
"No" = FALSE)),
htmltools::br(),
shiny::radioButtons("lab_plots",
"Export labeled plots",
c("Yes" = TRUE,
"No" = FALSE))
),
shiny::mainPanel(
htmltools::br(),
shiny::fluidRow(
shiny::column(6,
shiny::textOutput("fitted_folder_path")
)
),
htmltools::br(),
shiny::fluidRow(
shiny::column(6,
shiny::textOutput("fitted_model_path")
)
),
htmltools::br(),
shiny::fluidRow(
shiny::column(6,
shiny::textOutput("fitted_metadata_path")
)
),
htmltools::hr(),
shiny::fluidRow(
shiny::column(6,
align = "center",
offset = 3,
shiny::actionButton("id_recs", "Classify recordings", style = "width:100%"),
htmltools::tags$style(type = "text/css", "
)
),
shiny::column(5, shiny::plotOutput(""))
)
)
)
)
)
server <- function(input, output) {
system <- Sys.info()[["sysname"]]
if (system == "Windows") roots <- c(home = "C://")
if (system == "Linux") roots <- c(Computer = "/")
shiny::observe({
shinyFiles::shinyDirChoose(
input = input,
id = "folder",
roots = roots
)
if (!is.null(input$folder)) {
folder_selected <- shinyFiles::parseDirPath(
roots = roots,
selection = input$folder
)
folder_path <- paste(
"Recordings folder =",
as.character(folder_selected)
)
output$folder_path <- shiny::renderText(as.character(folder_path))
}
})
shiny::observeEvent(input$folder, {
if (length(shinyFiles::parseDirPath(roots, input$folder)) > 0) {
setwd(shinyFiles::parseDirPath(
roots = roots,
selection = input$folder
))
}
})
files_path <- shiny::reactive({
folder_selected <- shinyFiles::parseDirPath(
roots = roots,
selection = input$folder
)
files_path <- as.character(paste0(
folder_selected,
"//"
)
)
return(files_path)
})
shiny::observe({
shinyFiles::shinyFileChoose(
input = input,
id = "selected_db",
roots = roots
)
if (!is.null(input$selected_db)) {
file_selected <- shinyFiles::parseFilePaths(
roots = roots,
selection = input$selected_db
)
db_path <- paste(
"Database file =",
as.character(file_selected$datapath)
)
output$db_path <- shiny::renderText(as.character(db_path))
}
})
db_path <- shiny::reactive({
file_selected <- shinyFiles::parseFilePaths(
roots = roots,
selection = input$selected_db
)
db_path <- as.character(file_selected$datapath)
return(db_path)
})
spec_calls <- shiny::eventReactive(input$create_specs, {
total <- length(list.files(
path = files_path(),
recursive = F,
pattern = "wav|WAV")
)
progress <- shiny::Progress$new(max = total)
progress$set(
message = "Processing recordings",
value = 0
)
on.exit(progress$close())
update_progress <- function(value = NULL, detail = NULL) {
if (is.null(value)) {
value <- progress$getValue() + 1
}
progress$set(
value = value,
detail = detail
)
}
train_data <- spectro_calls(
files_path = files_path(),
update_progress = update_progress,
db_path = db_path(),
spec_size = as.numeric(input$spec_size),
window_length = as.numeric(input$window_length),
frequency_resolution = as.numeric(input$frequency_resolution),
overlap = input$overlap,
dynamic_range = as.numeric(input$dynamic_range),
freq_range = c(as.numeric(input$low), as.numeric(input$high)),
tx = ifelse(nchar(input$tx) > 2, input$tx, as.numeric(input$tx))
)
save(
train_data,
file = "train_data.RDATA"
)
return(train_data)
})
output$spec <- shiny::renderTable({
table(spec_calls()[[2]])
})
shiny::observe({
shinyFiles::shinyFileChoose(
input = input,
id = "rdata_path",
roots = roots
)
if (!is.null(input$rdata_path)) {
file_selected <- shinyFiles::parseFilePaths(
roots = roots,
selection = input$rdata_path
)
rdata_path <- paste(
"Train data file =",
as.character(file_selected$datapath)
)
if(length(dirname(as.character(file_selected$datapath))) > 0)
setwd(dirname(as.character(file_selected$datapath)))
output$rdata_path <- shiny::renderText(as.character(rdata_path))
}
})
rdata_list <- shiny::reactive({
if (length(input$rdata_path) > 1) {
file_selected <- shinyFiles::parseFilePaths(
roots = roots,
selection = input$rdata_path
)
env <- load2env(as.character(file_selected$datapath))
rdata_list <- env[[names(env)[1]]]
rm(env)
return(rdata_list)
}
})
shiny::observe({
shinyFiles::shinyFileChoose(
input = input,
id = "model_path",
roots = roots
)
if (!is.null(input$model_path)) {
file_selected <- shinyFiles::parseFilePaths(
roots = roots,
selection = input$model_path
)
model_path <- paste(
"Model file =",
as.character(file_selected$datapath)
)
output$model_path <- shiny::renderText(as.character(model_path))
}
})
model_path <- shiny::reactive({
file_selected <- shinyFiles::parseFilePaths(
roots = roots,
selection = input$model_path
)
model_path <- as.character(file_selected$datapath)
return(model_path)
})
shiny::observeEvent(input$fit_model, {
output$end_fit <- shiny::renderTable({
})
})
shiny::observeEvent(input$fit_model, {
rdata_list <- rdata_list()
model <- c()
input_shape <- c(rdata_list$parameters$img_rows,
rdata_list$parameters$img_cols,
1)
num_classes <- rdata_list$parameters$num_classes
source(model_path(), local = TRUE)
model %>%
generics::compile(
optimizer = keras::optimizer_sgd(learning_rate = input$lr,
momentum = 0.9, nesterov = T),
loss = "categorical_crossentropy",
metrics = c("accuracy")
)
model %>% generics::fit(rdata_list$data_x, rdata_list$data_y,
batch_size = input$batch,
epochs = input$epochs,
callbacks = list(
keras::callback_early_stopping(patience = input$stop, monitor = "val_accuracy"),
keras::callback_model_checkpoint("./fitted_model.hdf5",
monitor = "val_accuracy", save_best_only = T),
keras::callback_lambda(on_train_begin = function(logs) {
shinyjs::html("fitted_model_log", paste("Initiating epoch 1"))}),
keras::callback_lambda(on_epoch_end = function(epoch, logs) {
shinyjs::html("fitted_model_log",
paste("Epoch = ", epoch + 1, " | Validation accuracy = ", round(logs$val_accuracy, 3) * 100, "%"))}),
keras::callback_lambda(on_train_end = function(logs) {
shinyjs::html("fitted_model_log", paste("Model fitted"))}),
keras::callback_csv_logger("./fitted_model_log.csv")),
shuffle = TRUE,
validation_split = 1 - input$train_per,
verbose = 1)
metadata <- list(parameters = rdata_list$parameters,
classes = rdata_list$classes)
save(metadata,
file = "fitted_model_metadata.RDATA")
output$end_fit <- shiny::renderTable({
utils::read.csv("fitted_model_log.csv")
})
})
shiny::observe({
shinyFiles::shinyDirChoose(input, "fitted_selected_folder", roots = roots)
if (!is.null(input$fitted_selected_folder)) {
folder_selected <- shinyFiles::parseDirPath(roots, input$fitted_selected_folder)
folder_path <- paste("Recordings folder =",
as.character(folder_selected))
output$fitted_folder_path <- shiny::renderText(as.character(folder_path))
}
})
shiny::observeEvent(input$fitted_selected_folder, {
if (length(shinyFiles::parseDirPath(roots,
input$fitted_selected_folder)) > 0) {
setwd(shinyFiles::parseDirPath(roots, input$fitted_selected_folder))
}
})
fitted_files_path <- shiny::reactive({
folder_selected <- shinyFiles::parseDirPath(roots,
input$fitted_selected_folder)
files_path <- as.character(paste0(folder_selected, "//"))
files_path
})
shiny::observe({
shinyFiles::shinyFileChoose(
input = input,
id = "fitted_selected_model",
roots = roots
)
if (!is.null(input$fitted_selected_model)) {
file_selected <- shinyFiles::parseFilePaths(
roots = roots,
selection = input$fitted_selected_model
)
fitted_model_path <- paste(
"Model file =",
as.character(file_selected$datapath)
)
output$fitted_model_path <- shiny::renderText(as.character(fitted_model_path))
}
})
fitted_model_path <- shiny::reactive({
file_selected <- shinyFiles::parseFilePaths(
roots = roots,
selection = input$fitted_selected_model
)
fitted_model_path <- as.character(file_selected$datapath)
return(fitted_model_path)
})
shiny::observe({
shinyFiles::shinyFileChoose(input, "fitted_selected_metadata",
roots = roots)
if (!is.null(input$fitted_selected_metadata)) {
file_selected <- shinyFiles::parseFilePaths(roots,
input$fitted_selected_metadata)
fitted_metadata_path <- paste("Metadata file =",
as.character(file_selected$datapath))
output$fitted_metadata_path <- shiny::renderText(as.character(fitted_metadata_path))
}
})
fitted_metadata <- shiny::reactive({
if (length(input$fitted_selected_metadata) > 1) {
file_selected <- shinyFiles::parseFilePaths(roots,
input$fitted_selected_metadata)
env <- load2env(as.character(file_selected$datapath))
metadata <- env[[names(env)[1]]]
rm(env)
return(metadata)
}
})
shiny::observeEvent(input$id_recs, {
if (!dir.exists(paste0(fitted_files_path(), "/", "output/")))
dir.create(paste0(fitted_files_path(), "/", "output/"))
total <- length(list.files(fitted_files_path(),
recursive = F, pattern = "wav|WAV"))
progress <- shiny::Progress$new(max = total)
progress$set(message = "Processing recordings", value = 0)
on.exit(progress$close())
update_progress <- function(value = NULL, detail = NULL) {
if (is.null(value)) {
value <- progress$getValue() + 1
}
progress$set(value = value, detail = detail)
}
auto_id(fitted_model_path(),
update_progress,
fitted_metadata(),
fitted_files_path(),
out_file = input$out_file,
out_dir = paste0(fitted_files_path(), "/", "output/"),
save_png = as.logical(input$lab_plots),
win_size = fitted_metadata()$parameters$spec_size * 2,
remove_noise = as.logical(input$rem_noise),
plot2console = FALSE,
recursive = FALSE,
tx = ifelse(nchar(input$tx2) > 2, input$tx2, as.numeric(input$tx2)))
})
}
shiny::shinyApp(ui = ui, server = server)
} |
setGeneric(name = ".gFunc_v",
def = function(gFunc, v, ...) {
standardGeneric(".gFunc_v")
})
setMethod(f = ".gFunc_v",
signature = c(gFunc = "ANY",
v = "ANY"),
definition = function(gFunc, v, ...) {
stop("inappropriate object(s) provided for gFunc and/or v",
call. = FALSE)
})
setMethod(f = ".gFunc_v",
signature = c(gFunc = "NULL",
v = "ANY"),
definition = function(gFunc, v, ...) {
return( list("gFunc" = 2L, "v" = 1.0, "nTheta" = 2L) )
})
setMethod(f = ".gFunc_v",
signature = c(gFunc = "character",
v = "NULL"),
definition = function(gFunc, v, ...) {
if (gFunc %in% c("splin", "spcub", "piece")) {
stop("v must be speficied for gFunc = ", gFunc, call. = FALSE)
} else if (gFunc != 'lin') {
stop("gFunc not recognized", call. = FALSE)
}
return( .gFunc_v(gFunc = NULL, v = v) )
})
setMethod(f = ".gFunc_v",
signature = c(gFunc = "character",
v = "numeric"),
definition = function(gFunc, v, L, ...) {
v <- sort(x = unique(x = v))
if (gFunc == "lin") {
return( .gFunc_v(gFunc = NULL, v = v) )
} else if (gFunc == "piece") {
v <- unique(x = c(0.0, v, L))
v <- v[{v <= {L+1e-8}} & {v > {0.0-1e-8}}]
if (length(x = v) <= 2L) {
stop("inappropriate value provided for v", call. = FALSE)
}
return( list("gFunc" = 1L,
"v" = v,
"nTheta" = length(x = v) - 1L) )
} else if (gFunc == "splin") {
v <- v[{v < L} & {v > 0.0}]
if (length(x = v) == 0L) {
stop("inappropriate value provided for v", call. = FALSE)
}
return( list("gFunc" = 3L,
"v" = v,
"nTheta" = length(x = v) + 2L) )
} else if (gFunc == "spcub") {
v <- v[{v < L} & {v > 0.0}]
if (length(x = v) == 0L) {
stop("inappropriate value provided for v", call. = FALSE)
}
return( list("gFunc" = 4L,
"v" = v,
"nTheta" = length(x = v) + 4L) )
} else {
stop("gFunc not recognized", call. = FALSE)
}
}) |
library(MixSIAR)
mix.filename <- system.file("extdata", "stormpetrel_consumer.csv", package = "MixSIAR")
mix <- load_mix_data(filename=mix.filename,
iso_names=c("d13C","d15N"),
factors="Region",
fac_random=FALSE,
fac_nested=FALSE,
cont_effects=NULL)
source.filename <- system.file("extdata", "stormpetrel_sources.csv", package = "MixSIAR")
source <- load_source_data(filename=source.filename,
source_factors=NULL,
conc_dep=FALSE,
data_type="raw",
mix)
discr.filename <- system.file("extdata", "stormpetrel_discrimination.csv", package = "MixSIAR")
discr <- load_discr_data(filename=discr.filename, mix)
plot_data(filename="isospace_plot",
plot_save_pdf=TRUE,
plot_save_png=FALSE,
mix,source,discr)
if(mix$n.iso==2) calc_area(source=source,mix=mix,discr=discr)
plot_prior(alpha.prior=1,source)
model_filename <- "MixSIAR_model.txt"
resid_err <- TRUE
process_err <- TRUE
write_JAGS_model(model_filename, resid_err, process_err, mix, source)
jags.1 <- run_model(run="test", mix, source, discr, model_filename, alpha.prior=1)
output_JAGS(jags.1, mix, source) |
test_that("factory basics work", {
y <- 2
power <- build_factory(
fun = function(x) {
x^exponent
},
exponent =
)
square <- power(y)
expect_identical(square(2), 4)
y <- 7
expect_identical(square(2), 4)
})
test_that("factory errors", {
expect_error(
build_factory(
fun = function(x) {
x^exponent
}
),
"You must provide at least one argument to your factory"
)
power <- build_factory(
fun = function(x) {
x^exponent
},
exponent =
)
expect_error(
power(),
"argument \"exponent\" is missing, with no default"
)
power <- build_factory(
fun = function(x) {
x^exponent
},
exponent = 2
)
expect_error(
power(),
NA
)
})
test_that("Equals unnecessary for arguments.", {
overpower <- build_factory(
fun = function(x) {
x^exponent^other
},
exponent,
other =
)
square_cube <- overpower(2, 3)
expect_identical(square_cube(2), 2^2^3)
})
test_that("NULL default arguments work.", {
null_ok <- build_factory(
fun = function(x) {
c(x, to_add)
},
to_add = NULL
)
add_null <- null_ok()
expect_identical(add_null("a"), "a")
add_a <- null_ok("a")
expect_identical(add_a("b"), c("b", "a"))
}) |
if (identical(Sys.getenv("NOT_CRAN"), "true")) {
test_that("layer-spatial works for stars objects", {
skip_if_not_installed("vdiffr")
skip_if_not_installed("stars")
load_longlake_data(
which = c(
"longlake_osm", "longlake_depthdf",
"longlake_depth_raster"
),
raster_format = "stars"
)
expect_s3_class(longlake_osm, "stars")
expect_s3_class(longlake_depth_raster, "stars")
expect_doppelganger_extra(
"layer_spatial.stars()",
ggplot() +
layer_spatial(longlake_osm) +
layer_spatial(longlake_depthdf)
)
expect_doppelganger_extra(
"annotation_spatial.stars()",
ggplot() +
annotation_spatial(longlake_osm) +
layer_spatial(longlake_depthdf)
)
expect_doppelganger_extra(
"layer_spatial.stars() project",
ggplot() +
layer_spatial(longlake_osm) +
layer_spatial(longlake_depthdf) +
coord_sf(crs = 3978)
)
expect_doppelganger_extra(
"annotation_spatial.stars() project",
ggplot() +
annotation_spatial(longlake_osm) +
layer_spatial(longlake_depthdf) +
coord_sf(crs = 3978)
)
expect_doppelganger_extra(
"annotation_spatial.stars() alpha 0.3",
ggplot() +
annotation_spatial(longlake_osm, alpha = 0.3) +
layer_spatial(longlake_depthdf) +
coord_sf(crs = 3978)
)
expect_doppelganger_extra(
"layer_spatial.stars() aes()",
ggplot() +
layer_spatial(longlake_osm, aes()) +
layer_spatial(longlake_depthdf)
)
expect_doppelganger_extra(
"layer_spatial.stars() aes(band1)",
ggplot() +
layer_spatial(
longlake_osm,
aes(alpha = stat(band1), fill = NULL)
) +
layer_spatial(longlake_depthdf)
)
expect_doppelganger_extra(
"layer_spatial.stars() dpi",
ggplot() +
layer_spatial(longlake_osm, lazy = TRUE, dpi = 5)
)
expect_doppelganger_extra(
"layer_spatial.stars() lazy",
ggplot() +
layer_spatial(longlake_osm, lazy = TRUE)
)
expect_doppelganger_extra(
"layer_spatial.stars() no interpolation",
ggplot() +
layer_spatial(longlake_osm,
lazy = TRUE,
interpolate = FALSE,
dpi = 5
)
)
expect_doppelganger_extra(
"layer_spatial.stars() example 1",
ggplot() +
layer_spatial(longlake_osm)
)
expect_doppelganger_extra(
"layer_spatial.stars() example 2",
ggplot() +
layer_spatial(longlake_depth_raster) +
ggplot2::scale_fill_continuous(type = "viridis")
)
})
}
test_that("Full lifecycle", {
skip_if_not_installed("stars")
skip_on_cran()
stars <- stars::read_stars(
system.file("longlake/longlake.tif", package = "ggspatial")
)
expect_s3_class(stars, "stars")
plot <- ggplot() +
layer_spatial(stars)
expect_s3_class(plot, "ggplot")
tmp <- tempfile(fileext = ".png")
expect_silent(ggplot2::ggsave(tmp, plot, width = 4, height = 4))
unlink(tmp)
})
test_that("Test that stars array (unprojected) is identical to terra and raster", {
skip_if_not_installed("stars")
skip_if_not_installed("raster")
skip_on_cran()
test_raster <- new.env(parent = emptyenv())
load_longlake_data(test_raster, raster_format = "raster")
test_stars <- new.env(parent = emptyenv())
load_longlake_data(test_stars, raster_format = "stars")
expect_s4_class(test_raster$longlake_osm, "Raster")
expect_error(stars_as_array(test_raster$longlake_osm))
expect_identical(
raster_as_array(test_raster$longlake_osm),
stars_as_array(test_stars$longlake_osm)
)
expect_identical(
raster_as_array(test_raster$longlake_osm, alpha = 0.4),
stars_as_array(test_stars$longlake_osm, alpha = 0.4)
)
skip_if_not_installed("terra")
test_terra <- new.env(parent = emptyenv())
load_longlake_data(test_terra, raster_format = "terra")
expect_identical(
terra_as_array(test_terra$longlake_osm),
stars_as_array(test_stars$longlake_osm)
)
expect_identical(
terra_as_array(test_terra$longlake_osm, alpha = 0.4),
stars_as_array(test_stars$longlake_osm, alpha = 0.4)
)
}) |
export_pdf <-
function(map,chemin,nomFichier)
{
mapshot(map, file = paste0(chemin,"/",nomFichier,".pdf"), selfcontained = FALSE)
} |
RjnmfC <- function(Xs, Xu, k, alpha, lambda, epsilon, maxiter, verbose) {
.Call('_conos_RjnmfC', PACKAGE = 'conos', Xs, Xu, k, alpha, lambda, epsilon, maxiter, verbose)
}
adjustedRandcpp <- function(cl1, cl1u, cl2, cl2u, mm1, mm2, nn, fflag) {
.Call('_conos_adjustedRandcpp', PACKAGE = 'conos', cl1, cl1u, cl2, cl2u, mm1, mm2, nn, fflag)
}
checkBits <- function() {
.Call('_conos_checkBits', PACKAGE = 'conos')
}
checkOpenMP <- function() {
.Call('_conos_checkOpenMP', PACKAGE = 'conos')
}
cpcaF <- function(cov, ng, ncomp = 10L, maxit = 1000L, tol = 1e-6, eigenvR = NULL, verbose = TRUE) {
.Call('_conos_cpcaF', PACKAGE = 'conos', cov, ng, ncomp, maxit, tol, eigenvR, verbose)
}
greedyModularityCutC <- function(merges, deltaM, N, minsize, labels, minbreadth, flatCut) {
.Call('_conos_greedyModularityCutC', PACKAGE = 'conos', merges, deltaM, N, minsize, labels, minbreadth, flatCut)
}
treeJaccard <- function(merges, clusters, clusterTotals, clmerges = NULL) {
.Call('_conos_treeJaccard', PACKAGE = 'conos', merges, clusters, clusterTotals, clmerges)
}
scoreTreeConsistency <- function(test, ref, leafidmap, minsize = 10L) {
.Call('_conos_scoreTreeConsistency', PACKAGE = 'conos', test, ref, leafidmap, minsize)
}
maxStableClusters <- function(merges, thresholds, minthreshold = 0.8, minsize = 10L) {
.Call('_conos_maxStableClusters', PACKAGE = 'conos', merges, thresholds, minthreshold, minsize)
}
pareDownHubEdges <- function(sY, rowN, k, klow = -1L) {
.Call('_conos_pareDownHubEdges', PACKAGE = 'conos', sY, rowN, k, klow)
}
getSumWeightMatrix <- function(weights, row_inds, col_inds, factor_levels, normalize = TRUE) {
.Call('_conos_getSumWeightMatrix', PACKAGE = 'conos', weights, row_inds, col_inds, factor_levels, normalize)
}
adjustWeightsByCellBalancingC <- function(weights, row_inds, col_inds, factor_levels, dividers) {
.Call('_conos_adjustWeightsByCellBalancingC', PACKAGE = 'conos', weights, row_inds, col_inds, factor_levels, dividers)
}
referenceWij <- function(i, j, d, threads, perplexity) {
.Call('_conos_referenceWij', PACKAGE = 'conos', i, j, d, threads, perplexity)
}
as_factor <- function(vals) {
.Call('_conos_as_factor', PACKAGE = 'conos', vals)
}
get_nearest_neighbors <- function(adjacency_list, transition_probabilities, n_verts = 0L, n_cores = 1L, min_prob = 1e-3, min_visited_verts = 1000L, min_prob_lower = 1e-5, max_hitting_nn_num = 0L, max_commute_nn_num = 0L, verbose = TRUE) {
.Call('_conos_get_nearest_neighbors', PACKAGE = 'conos', adjacency_list, transition_probabilities, n_verts, n_cores, min_prob, min_visited_verts, min_prob_lower, max_hitting_nn_num, max_commute_nn_num, verbose)
}
sgd <- function(coords, targets_i, sources_j, ps, weights, gamma, rho, n_samples, M, alpha, momentum, useDegree, seed, threads, verbose) {
.Call('_conos_sgd', PACKAGE = 'conos', coords, targets_i, sources_j, ps, weights, gamma, rho, n_samples, M, alpha, momentum, useDegree, seed, threads, verbose)
}
propagate_labels <- function(edge_verts, edge_weights, vert_labels, max_n_iters = 10L, verbose = TRUE, diffusion_fading = 10, diffusion_fading_const = 0.5, tol = 5e-3, fixed_initial_labels = FALSE) {
.Call('_conos_propagate_labels', PACKAGE = 'conos', edge_verts, edge_weights, vert_labels, max_n_iters, verbose, diffusion_fading, diffusion_fading_const, tol, fixed_initial_labels)
}
smooth_count_matrix <- function(edge_verts, edge_weights, count_matrix, is_label_fixed, max_n_iters = 10L, diffusion_fading = 1.0, diffusion_fading_const = 0.1, tol = 1e-3, verbose = TRUE, normalize = FALSE) {
.Call('_conos_smooth_count_matrix', PACKAGE = 'conos', edge_verts, edge_weights, count_matrix, is_label_fixed, max_n_iters, diffusion_fading, diffusion_fading_const, tol, verbose, normalize)
}
adjacent_vertices <- function(edge_verts) {
.Call('_conos_adjacent_vertices', PACKAGE = 'conos', edge_verts)
}
adjacent_vertex_weights <- function(edge_verts, edge_weights) {
.Call('_conos_adjacent_vertex_weights', PACKAGE = 'conos', edge_verts, edge_weights)
}
spcov <- function(m, cm) {
.Call('_conos_spcov', PACKAGE = 'conos', m, cm)
} |
extractSE <- function(mod, ...) {
UseMethod("extractSE", mod)
}
extractSE.default <- function(mod, ...) {
stop("\nFunction not yet defined for this object class\n")
}
extractSE.coxme <- function(mod, ...){
vcov.mat <- as.matrix(vcov(mod))
se <- sqrt(diag(vcov.mat))
fixed.labels <- names(fixef(mod))
names(se) <- fixed.labels
return(se)
}
extractSE.lmekin <- function(mod, ...){
vcov.mat <- as.matrix(vcov(mod))
se <- sqrt(diag(vcov.mat))
fixed.labels <- names(fixef(mod))
names(se) <- fixed.labels
return(se)
}
extractSE.mer <- function(mod, ...){
vcov.mat <- as.matrix(vcov(mod))
se <- sqrt(diag(vcov.mat))
fixed.labels <- names(fixef(mod))
names(se) <- fixed.labels
return(se)
}
extractSE.merMod <- function(mod, ...){
vcov.mat <- as.matrix(vcov(mod))
se <- sqrt(diag(vcov.mat))
fixed.labels <- names(fixef(mod))
names(se) <- fixed.labels
return(se)
}
extractSE.lmerModLmerTest <- function(mod, ...){
vcov.mat <- as.matrix(vcov(mod))
se <- sqrt(diag(vcov.mat))
fixed.labels <- names(fixef(mod))
names(se) <- fixed.labels
return(se)
} |
SoilWeb_spatial_query <- function(bbox=NULL, coords=NULL, what='mapunit', source='soilweb') {
if(!requireNamespace('jsonlite', quietly = TRUE))
stop('please install the `jsonlite` package', call.=FALSE)
options(stringsAsFactors=FALSE)
if(missing(coords) & missing(bbox))
stop('you must provide some filtering criteria')
if(! missing(coords) & ! missing(bbox))
stop('query cannot include both bbox and point coordinates')
f <- vector()
res <- NULL
if(!missing(coords)) {
f <- c(f, paste('&lon=', coords[1], '&lat=', coords[2], sep=''))
}
if(!missing(bbox)) {
bbox <- paste(bbox, collapse=',')
f <- c(f, paste('&bbox=', bbox, sep=''))
}
the.url <- paste('https://casoilresource.lawr.ucdavis.edu/soil_web/api/ssurgo.php?what=mapunit', f, sep='')
suppressWarnings(try(res <- jsonlite::fromJSON(the.url), silent=TRUE))
if(is.null(res)) {
stop('query returned no data', call.=FALSE)
}
return(res)
} |
predict_BBQ <- function(bbq, new, option){
getHistPr <- function(histModel, cutPoints, new){
N <- length(new)
B <- length(histModel)
cutPoints <- c(0,cutPoints,1)
res <- rep(0,N)
for (i in 1:N){
x <- new[i]
minIdx <- 1
maxIdx <- B+1
while ((maxIdx - minIdx)>1){
midIdx <- floor((minIdx+maxIdx)/2)
if(x>cutPoints[midIdx]){
minIdx <- midIdx
}
else
if(x < cutPoints[midIdx]){
maxIdx <- midIdx
}
else{
minIdx <- midIdx
break
}
}
idx <- minIdx
res[i] <- histModel[[idx]]$P
cnt <- 1
k <- idx -1
while (k>=1){
if (histModel[[k]]$min==histModel[[idx]]$min && histModel[[k]]$max==histModel[[idx]]$max){
res[i] <- res[i] + histModel[[k]]$P
k <- k+1
cnt <- cnt+1
}
else
break
}
res[i] <- res[i]/cnt
}
return(res)
}
getMA <- function(BBQ_Model, x){
N <- length(BBQ_Model)
p <- rep(0,N)
SV <- BBQ_Model[[1]]$SV
for(i in 1:N){
p[i] <- getHistPr(BBQ_Model[[i]]$binNo, BBQ_Model[[i]]$cutPoints, x)
}
res <- (t(SV)%*%p)/sum(SV)
}
out <- rep(0, length(new))
BBQ_Model <- bbq$prunedmodel
if (option==1){
for (i in 1:length(new)){
out[i] <- getMA(BBQ_Model, new[i])
}
sign_test_set <- NULL
new_bin <- NULL
}
if(option==0){
for (i in 1:length(new)){
out[i] <- getHistPr(BBQ_Model[[1]]$binNo, BBQ_Model[[1]]$cutPoints, new[i])
}
significant_bins <- subset(bbq$binnning_scheme$bin_no, bbq$binnning_scheme$p_value<0.05)
new_bin <- cut(new, c(0,BBQ_Model[[1]]$cutPoints,1),labels = seq(1,length(bbq$binnning_scheme$midpoint)),include.lowest = T)
sign_test_set <- sum(table(new_bin)[significant_bins])/(sum(table(new_bin)))
}
return(list(predictions=out, pred_idx=option, significance_test_set=sign_test_set, pred_per_bin=table(new_bin)))
} |
StarCoordinates <- function(df, color = NULL, approach="Standard", numericRepresentation=TRUE, meanCentered = TRUE, projMatrix=NULL, clusterFunc = NULL) {
colorVar <- color
inputCheck <- inputValidationSC(df, colorVar, approach, projMatrix, clusterFunc )
if (!is.null(inputCheck)){
if (inputCheck$stop) stop(inputCheck$errorMessage)
else warning(inputCheck$errorMessage)
}
odata <- df
df <- removeNonZeroAndMissing(df)
frequencyList <- NULL
if (!is.null(colorVar) && (colorVar %in% colnames(df))){
df[[colorVar]] <- NULL
}
else if (!is.null(colorVar)){
colorVar <- NULL
}
if(numericRepresentation){
df <- mutate_if(df, is.factor, as.numeric)
}
else {
frequencyList <- getFrequencyList(df)
}
ui <- miniPage(
useShinyjs(),
gadgetTitleBar("Star Coordinates"),
miniContentPanel(
plotOutput("plot", height = "100%", brush="plotBrush", hover=hoverOpts(id="plot_hover", delayType="throttle", delay= 150),
dblclick = "plotDblClick")
),
miniButtonBlock(
actionButton("zoomIn","", icon = icon("search-plus")),
actionButton("zoomOut","", icon = icon("search-minus")),
actionButton("screenShot","", icon = icon("camera-retro")),
if( !is.null(colorVar) && !is.null(clusterFunc))
actionButton("hint","Hint", icon = icon("map-signs")),
)
)
server <- function(input, output, session) {
highlightedIdx <- reactiveVal(-1)
highlightedCat <- reactiveVal(-1)
highlightedCatValue <- reactiveVal(value = NULL)
helperValues <- reactiveValues()
helperValues$clicked <- FALSE
helperValues$movingDim <- -1
helperValues$plotLimit <- 1.5
helperValues$projectionMatrix <- initProjectionMatrix(df, projMatrix)
helperValues$lbl <- NULL
helperValues$cumulativeList <- NULL
helperValues$rangedData <- NULL
helperValues$hints <- NULL
observeEvent( input$plot_hover, {
helperValues$curX <- input$plot_hover$x
helperValues$curY <- input$plot_hover$y
currentClosest <- closestDimension(helperValues$projectionMatrix, helperValues$curX, helperValues$curY )
if (helperValues$clicked ){
session$resetBrush("plotBrush")
helperValues$projectionMatrix[helperValues$movingDim,1:2] <- c(helperValues$curX, helperValues$curY)
if (approach == "OSC"){
helperValues$projectionMatrix <- OSCRecondition(helperValues$projectionMatrix)
}
highlightedIdx(helperValues$movingDim)
}
else {
highlightedIdx(currentClosest)
}
if (!is.null(highlightedCatValue())){
helperValues$lbl <- NULL
}
})
observeEvent(input$plotDblClick,{
if(!numericRepresentation){
if ( highlightedCat() != -1){
nameDim <- colnames(df)[highlightedCat()]
inside <- insideCategoricalValueList(helperValues$projectionMatrix, nameDim, helperValues$cumulativeList, helperValues$curX, helperValues$curY )
helperValues$lbl <- insideCategoricalValueGG(helperValues$projectionMatrix, nameDim, helperValues$cumulativeList, inside)
currentOrder <- helperValues$cumulativeList[[nameDim]]$order
if (sum(inside) > 0){
selectedCatValue <- currentOrder[which(inside)]
if(is.null( highlightedCatValue() )){
highlightedCatValue(selectedCatValue)
}
else if (!(selectedCatValue %in% highlightedCatValue()) ){
newOrder <- swap(currentOrder, selectedCatValue, highlightedCatValue())
helperValues$cumulativeList[[nameDim]] <- getCumulativeTable(frequencyList[[nameDim]], newOrder)
helperValues$rangedData <- getRangedData(df, numericRepresentation, meanCentered, frequencyList, helperValues$cumulativeList)
highlightedCatValue(NULL)
helperValues$lbl <- NULL
}
else {
helperValues$lbl <- NULL
highlightedCatValue(NULL)
}
}
}
currentClosest <- closestDimension(helperValues$projectionMatrix, input$plotDblClick$x, input$plotDblClick$y )
if ( currentClosest != -1){
nameDim <- colnames(df)[currentClosest]
if( is.factor(df[[nameDim]])){
if ( highlightedCat() != -1){
highlightedCat(-1)
helperValues$lbl <- NULL
highlightedCatValue(NULL)
}
else {
highlightedCat(currentClosest)
}
}
}
}
})
mouseDown <- function(){
currentClosest <- closestDimension(helperValues$projectionMatrix, helperValues$curX, helperValues$curY )
if ( currentClosest != -1){
helperValues$movingDim <- currentClosest
helperValues$clicked <- TRUE
}
helperValues$hints = NULL
}
mouseUp <- function(){
helperValues$clicked <- FALSE
helperValues$movingDim <- -1
}
initCumulative <- function(){
if (!is.null( frequencyList) && is.null(helperValues$cumulativeList)){
helperValues$cumulativeList <- list()
catVars <- names(frequencyList)
for( catName in catVars){
cumulativeTable <- getCumulativeTable(frequencyList[[catName]])
helperValues$cumulativeList[[catName]] <- cumulativeTable
}
helperValues$rangedData <- getRangedData(df, numericRepresentation, meanCentered, frequencyList, helperValues$cumulativeList)
}
if (approach == "OSC"){
helperValues$projectionMatrix <- OSCRecondition(helperValues$projectionMatrix)
}
if( numericRepresentation && is.null( helperValues$rangedData )){
helperValues$rangedData <- getRangedData(df, numericRepresentation, meanCentered)
}
}
output$plot <- renderPlot({
if (is.null( helperValues$rangedData )) initCumulative()
curPlot <- drawDimensionVectors(helperValues$projectionMatrix, highlightedIdx(), highlightedCat(), highlightedCatValue(), helperValues$cumulativeList )
if (!is.null(helperValues$lbl)) curPlot <- curPlot + helperValues$lbl
if (!is.null(helperValues$hints)) curPlot <- curPlot + helperValues$hints
curPlot + getGGProjectedPoints(helperValues$projectionMatrix, helperValues$rangedData , odata, colorVar) +
coord_cartesian(xlim = c(-helperValues$plotLimit,helperValues$plotLimit ), ylim = c(-helperValues$plotLimit,helperValues$plotLimit ))
},res=96)
observeEvent(input$cancel, {
stopApp(NULL)
})
observeEvent(input$hint, {
actions <- getActionHints(helperValues$projectionMatrix, helperValues$rangedData, odata, colorVar ,approach, clusterFunc)
updateActionButton(session, "hint", label = paste0("Hint. Max(",formatC(max(actions$diff), format = "e", digits = 2), ")"))
if (max(actions$diff) > 0){
helperValues$hints <- getGGHints(helperValues$projectionMatrix, actions)
}
else {
helperValues$hints <- NULL
}
})
onevent("mouseup", "plot", mouseUp())
onevent("mousedown","plot", mouseDown())
observeEvent(input$zoomIn,{ helperValues$plotLimit <- helperValues$plotLimit*0.9 })
observeEvent(input$zoomOut,{ helperValues$plotLimit <- helperValues$plotLimit*1.1 })
observeEvent(input$screenShot, { screenshot()})
observeEvent(input$done, {
projMatrix <- getCleanProjectionMatrix(helperValues$projectionMatrix, colorVar, odata, df)
projectedPoints <- getProjectedPoints(helperValues$projectionMatrix, helperValues$rangedData )
selected <- brushedPoints(df=projectedPoints, brush=input$plotBrush, xvar="V1", yvar="V2", allRows = TRUE)
result <- list(projMatrix, selected$selected_, projectedPoints)
names(result) <- c("Proj.Matrix","Selection","Projected.Points")
stopApp(result)
})
}
viewer <- paneViewer(300)
runGadget(ui, server, viewer=viewer)
} |
db_compute_boxplot <- function(data, x, var, coef = 1.5) {
x <- enquo(x)
check_vars <- quo_get_expr(x)
if (length(check_vars) > 1 && expr_text(check_vars[1]) == "vars()") {
x <- eval_tidy(x)
} else {
x <- quos(!!x)
}
var <- enquo(var)
var <- quo_squash(var)
res <- group_by(data, !!!x, add = TRUE)
res <- calc_boxplot(res, var)
res <- mutate(res,
iqr = (upper - lower) * coef,
min_iqr = lower - iqr,
max_iqr = upper + iqr,
ymax = ifelse(max_raw > max_iqr, max_iqr, max_raw),
ymin = ifelse(min_raw < min_iqr, min_iqr, min_raw)
)
res <- collect(res)
ungroup(res)
}
calc_boxplot <- function(res, var) {
UseMethod("calc_boxplot")
}
calc_boxplot.tbl <- function(res, var) {
summarise(
res,
n = n(),
lower = quantile(!!var, 0.25),
middle = quantile(!!var, 0.5),
upper = quantile(!!var, 0.75),
max_raw = max(!!var, na.rm = TRUE),
min_raw = min(!!var, na.rm = TRUE)
)
}
calc_boxplot.tbl_spark <- function(res, var) {
calc_boxplot_sparklyr(res, var)
}
calc_boxplot_sparklyr <- function(res, var) {
summarise(
res,
n = n(),
lower = percentile_approx(!!var, 0.25),
middle = percentile_approx(!!var, 0.5),
upper = percentile_approx(!!var, 0.75),
max_raw = max(!!var, na.rm = TRUE),
min_raw = min(!!var, na.rm = TRUE)
)
}
`calc_boxplot.tbl_Microsoft SQL Server` <- function(res, var) {
calc_boxplot_mssql(res, var)
}
calc_boxplot_mssql <- function(res, var) {
res <- mutate(
res,
n = n(),
lower = quantile(!!var, 0.25),
middle = quantile(!!var, 0.5),
upper = quantile(!!var, 0.75),
max_raw = max(!!var, na.rm = TRUE),
min_raw = min(!!var, na.rm = TRUE)
)
res <- select(res, n, lower, middle, upper, max_raw, min_raw)
distinct(res)
}
dbplot_boxplot <- function(data, x, var, coef = 1.5) {
x <- enquo(x)
var <- enquo(var)
df <- db_compute_boxplot(
data = data,
x = !!x,
var = !!var,
coef = coef
)
colnames(df) <- c(
"x", "n", "lower", "middle", "upper", "max_raw", "min_raw",
"iqr", "min_iqr", "max_iqr", "ymax", "ymin"
)
ggplot(df) +
geom_boxplot(
aes(
x = x,
ymin = ymin,
lower = lower,
middle = middle,
upper = upper,
ymax = ymax,
group = x
),
stat = "identity"
) +
labs(x = x)
}
globalVariables(c(
"upper", "ymax", "weight", "x_", "y", "aes", "ymin", "lower",
"middle", "upper", "iqr", "max_raw", "max_iqr", "min_raw",
"min_iqr", "percentile_approx"
)) |
"scatterPlotMatrix.HH" <-
function(){
initializeDialog(title=gettextRcmdr("Scatterplot Matrix (HH)"))
variablesBox <- variableListBox(top, Numeric(), title=gettextRcmdr("Select variables (three or more)"),
selectmode="multiple", initialSelection=NULL)
checkBoxes(frame="optionsFrame", boxes=c("lsLine", "smoothLine", "spread"), initialValues=c(1,0,0),
labels=gettextRcmdr(c("Least-squares lines", "Smooth lines", "Show spread")))
sliderValue <- tclVar("50")
slider <- tkscale(optionsFrame, from=0, to=100, showvalue=TRUE, variable=sliderValue,
resolution=5, orient="horizontal")
radioButtons(name="diagonal", buttons=c("density", "histogram", "boxplot", "oned", "qqplot", "none"),
labels=gettextRcmdr(c("Density plots", "Histograms", "Boxplots", "One-dimensional scatterplots", "Normal QQ plots", "Nothing (empty)")),
title=gettextRcmdr("On Diagonal"))
radioButtons(name="diagonalDirection", buttons=c("SW.NE", "NW.SE"),
labels=gettextRcmdr(c("SW-NE ' / '", "NW-SE ' \\ '")),
title=gettextRcmdr("Diagonal Direction"))
subsetBox()
onOK <- function(){
variables <- getSelection(variablesBox)
closeDialog()
if (length(variables) < 3) {
errorCondition(recall=scatterPlotMatrix.HH, message=gettextRcmdr("Fewer than 3 variable selected."))
return()
}
line <- if("1" == tclvalue(lsLineVariable)) "lm" else "FALSE"
smooth <- as.character("1" == tclvalue(smoothLineVariable))
spread <- as.character("1" == tclvalue(spreadVariable))
span <- as.numeric(tclvalue(sliderValue))
diag <- as.character(tclvalue(diagonalVariable))
diagDir <- as.character(tclvalue(diagonalDirectionVariable))
subset <- tclvalue(subsetVariable)
subset <- if (trim.blanks(subset) == gettextRcmdr("<all valid cases>")) ""
else paste(", subset=", subset, sep="")
.activeDataSet <- ActiveDataSet()
if (.groups == FALSE) {
command <- paste("scatterplotMatrix(~", paste(variables, collapse="+"),
", reg.line=", line, ", smooth=", smooth, ", spread=", spread,
", span=", span/100, ", diagonal = '", diag,
"', data=", .activeDataSet, subset,
", row1attop=", diagDir=="NW.SE",
")", sep="")
logger(command)
justDoIt(command)
}
else {
command <- paste("scatterplotMatrix(~", paste(variables, collapse="+")," | ", .groups,
", reg.line=", line, ", smooth=", smooth, ", spread=", spread,
", span=", span/100, ", diagonal= '", diag,
"', by.groups=", .linesByGroup,
", data=", .activeDataSet, subset,
", row1attop=", diagDir=="NW.SE",
")", sep="")
logger(command)
justDoIt(command)
}
activateMenus()
tkfocus(CommanderWindow())
}
groupsBox(scatterPlot, plotLinesByGroup=TRUE)
OKCancelHelp(helpSubject="scatterplotMatrix")
tkgrid(getFrame(variablesBox), sticky="nw")
tkgrid(labelRcmdr(optionsFrame, text=gettextRcmdr("Span for smooth")), slider, sticky="w")
tkgrid(optionsFrame, sticky="w")
tkgrid(diagonalFrame, sticky="w")
tkgrid(diagonalDirectionFrame, sticky="w")
tkgrid(subsetFrame, sticky="w")
tkgrid(groupsFrame, sticky="w")
tkgrid(buttonsFrame, columnspan=2, sticky="w")
dialogSuffix(rows=6, columns=2)
} |
MixtureSameFamily <- R6::R6Class(
"torch_MixtureSameFamily",
inherit = Distribution,
lock_objects = FALSE,
public = list(
initialize = function(mixture_distribution,
component_distribution,
validate_args=NULL) {
self$.mixture_distribution <- mixture_distribution
self$.component_distribution <- component_distribution
if (!inherits(self$.mixture_distribution, "torch_Categorical"))
value_error("Mixture distribution must be distr_categorical.")
if (!inherits(self$.component_distribution, "torch_Distribution"))
value_error("Component distribution must be an instance of torch_Distribution.")
cdbs <- head2(self$.component_distribution$batch_shape, -1)
km <- tail(self$.mixture_distribution$logits$shape, 1)
kc <- tail(self$.component_distribution$batch_shape, 1)
if (!is.null(km) && !is.null(kc) && km != kc)
value_error("Mixture distribution component ({km}) does not equal component_distribution$batch_shape[-1] ({kc}).")
self$.num_components <- km
event_shape <- self$.component_distribution$event_shape
self$.event_ndims <- length(event_shape)
super$initialize(batch_shape = cdbs, event_shape = event_shape,
validate_args = validate_args)
},
expand = function(batch_shape, instance = NULL) {
batch_shape_comp <- c(batch_shape, self$.num_component)
.args = list()
.args$mixture_distribution <- self$.mixture_distribution$expand(batch_shape)
.args$component_distribution <- self$.component_distribution$expand(batch_shape_comp)
new <- private$.get_checked_instance(self, instance, .args)
new
},
cdf = function(x) {
x = self$.pad(x)
cdf_x = self$component_distribution$cdf(x)
mix_prob = self$mixture_distribution$probs
torch_sum(cdf_x * mix_prob, dim=-1)
},
log_prob = function(x) {
if (self$.validate_args)
self$.validate_sample(x)
x = self$.pad(x)
log_prob_x = self$component_distribution$log_prob(x)
log_mix_prob = torch_log_softmax(self$mixture_distribution$logits,
dim=-1)
torch_logsumexp(log_prob_x + log_mix_prob, dim=-1)
},
sample = function(sample_shape = list()) {
with_no_grad({
sample_len <- length(sample_shape)
batch_len = length(self$batch_shape)
gather_dim <- sample_len + batch_len + 1L
es = self$event_shape
mix_sample = self$mixture_distribution$sample(sample_shape)
mix_shape = mix_sample$shape
comp_samples = self$component_distribution$sample(sample_shape)
mix_sample_r = mix_sample$reshape(
c(mix_shape, rep(1, length(es) + 1)))
mix_sample_r = mix_sample_r$`repeat`(
c(rep(1, length(mix_shape)), 1, es))
samples = torch_gather(comp_samples, gather_dim, mix_sample_r)
out <- samples$squeeze(gather_dim)
})
out
},
.pad = function(x) {
x$unsqueeze(-1 - self$.event_ndims)
}
),
active = list(
mixture_distribution = function() {
self$.mixture_distribution
},
component_distribution = function() {
self$.component_distribution
}
)
)
MixtureSameFamily <- add_class_definition(MixtureSameFamily)
distr_mixture_same_family <- function(mixture_distribution, component_distribution,
validate_args = NULL) {
MixtureSameFamily$new(mixture_distribution = mixture_distribution,
component_distribution = component_distribution,
validate_args = validate_args)
} |
cps.ma.normal <- function(nsim = 1000,
nsubjects = NULL,
narms = NULL,
nclusters = NULL,
means = NULL,
sigma_sq = NULL,
sigma_b_sq = NULL,
alpha = 0.05,
quiet = FALSE,
ICC = NULL,
method = 'glmm',
multi_p_method = "bonferroni",
allSimData = FALSE,
seed = NA,
cores = NULL,
poorFitOverride = FALSE,
lowPowerOverride = FALSE,
tdist = FALSE,
return.all.models = FALSE,
optmethod = "nlminb",
nofit = FALSE,
timelimitOverride = TRUE) {
converge <- NULL
if (is.null(narms)) {
stop("ERROR: narms is required.")
}
if (narms < 3) {
stop("ERROR: LRT significance not calculable when narms < 3. Use cps.normal() instead.")
}
if (isTRUE(is.list(nsubjects))) {
if (is.null(nclusters)) {
nclusters <- vapply(nsubjects, length, 0)
}
}
if (length(nclusters) == 1 & !isTRUE(is.list(nsubjects))) {
nclusters <- rep(nclusters, narms)
}
if (!is.wholenumber(nsim) || nsim < 1 || length(nsim) > 1) {
stop("nsim must be a positive integer of length 1.")
}
if (is.null(nsubjects)) {
stop("nsubjects must be specified. See ?cps.ma.normal for help.")
}
if (length(nsubjects) == 1 & !isTRUE(is.numeric(nclusters))) {
stop("When nsubjects is scalar, user must supply nclusters (clusters per arm)")
}
if (length(nsubjects) == 1 & length(nclusters) == 1 &
!isTRUE(is.list(narms))) {
stop("User must provide narms when nsubjects and nclusters are both scalar.")
}
validateVariance(
dist = "norm",
difference = means,
alpha = alpha,
ICC = ICC,
sigma_sq = sigma_sq,
sigma_b_sq = sigma_b_sq,
ICC2 = NA,
sigma_sq2 = NA,
sigma_b_sq2 = NA,
method = method,
quiet = quiet,
all.sim.data = allSimData,
poor.fit.override = poorFitOverride
)
if (sum(is.wholenumber(nclusters) == FALSE) != 0 ||
sum(unlist(nclusters) < 1) != 0) {
stop("nclusters must be postive integer values.")
}
if (sum(is.wholenumber(unlist(nsubjects)) == FALSE) != 0 ||
sum(unlist(nsubjects) < 1) != 0) {
stop("nsubjects must be positive integer values.")
}
if (length(nclusters) == 1) {
nclusters <- rep(nclusters, narms)
}
if (mode(nsubjects) == "list") {
str.nsubjects <- nsubjects
} else {
if (length(nsubjects) == 1) {
str.nsubjects <- lapply(nclusters, function(x)
rep(nsubjects, x))
} else {
if (length(nsubjects) != narms) {
stop("nsubjects must be length 1 or length narms if not provided in a list.")
}
str.nsubjects <- list()
for (i in 1:length(nsubjects)) {
str.nsubjects[[i]] <- rep(nsubjects[i], times = nclusters[i])
}
}
}
if (length(sigma_sq) == 1) {
sigma_sq <- rep(sigma_sq, narms)
}
if (length(sigma_b_sq) == 1) {
sigma_b_sq <- rep(sigma_b_sq, narms)
}
if (length(ICC) == 1) {
ICC <- rep(ICC, narms)
}
if (length(means) == 1) {
means <- rep(means, narms)
}
if (isTRUE(length(ICC) != 0)) {
if (isTRUE(length(sigma_sq) == 0 & length(sigma_b_sq) != 0)) {
sigma_sq <-
createMissingVarianceParam(sigma_b_sq = sigma_b_sq, ICC = ICC)
}
if (isTRUE(length(sigma_b_sq) == 0 & length(sigma_sq) != 0)) {
sigma_b_sq <-
createMissingVarianceParam(sigma_sq = sigma_sq, ICC = ICC)
}
}
if (length(sigma_sq) != narms) {
stop(
"Length of variance parameters (sigma_sq, sigma_b_sq, ICC)
must equal narms, or be provided as a scalar if sigma_sq for all arms are equal."
)
}
type1ErrTest(sigma_sq_ = sigma_sq,
sigma_b_sq_ = sigma_b_sq,
nsubjects_ = nsubjects)
normal.ma.rct <- cps.ma.normal.internal(
nsim = nsim,
str.nsubjects = str.nsubjects,
means = means,
sigma_sq = sigma_sq,
sigma_b_sq = sigma_b_sq,
alpha = alpha,
quiet = quiet,
method = method,
all.sim.data = allSimData,
seed = seed,
cores = cores,
poor.fit.override = poorFitOverride,
low.power.override = lowPowerOverride,
timelimitOverride = timelimitOverride,
tdist = tdist,
optmethod = optmethod,
nofit = nofit,
return.all.models = return.all.models
)
if (nofit == TRUE || return.all.models == TRUE) {
return(normal.ma.rct)
}
summary.message = paste0(
"Monte Carlo Power Estimation based on ",
nsim,
" Simulations: Parallel Design, Continuous Outcome, ",
narms,
" Arms."
)
long.method = switch(method, glmm = 'Generalized Linear Mixed Model',
gee = 'Generalized Estimating Equation')
armnames <- vector(mode = "character", length = narms)
for (i in 1:narms) {
armnames[i] <- paste0("Arm.", i)
}
var.parms = data.frame('sigma_sq' = sigma_sq,
'sigma_b_sq' = sigma_b_sq,
"means" = means)
rownames(var.parms) <- armnames
models <- normal.ma.rct[[1]]
names(str.nsubjects) <- armnames
cluster.sizes <- str.nsubjects
if (method == "glmm") {
Estimates = matrix(NA, nrow = nsim, ncol = narms)
std.error = matrix(NA, nrow = nsim, ncol = narms)
t.val = matrix(NA, nrow = nsim, ncol = narms)
p.val = matrix(NA, nrow = nsim, ncol = narms)
if (max(sigma_sq) != min(sigma_sq)) {
for (i in 1:nsim) {
Estimates[i, ] <- models[[i]][20][[1]][, 1]
std.error[i, ] <- models[[i]][20][[1]][, 2]
t.val[i, ] <- models[[i]][20][[1]][, 4]
p.val[i, ] <- models[[i]][20][[1]][, 5]
}
keep.names <- rownames(models[[1]][20][[1]])
} else {
for (i in 1:nsim) {
Estimates[i, ] <- models[[i]][[10]][, 1]
std.error[i, ] <- models[[i]][[10]][, 2]
t.val[i, ] <- models[[i]][[10]][, 4]
p.val[i, ] <- models[[i]][[10]][, 5]
}
keep.names <- rownames(models[[1]][[10]])
}
names.Est <- rep(NA, narms)
names.st.err <- rep(NA, narms)
names.tval <- rep(NA, narms)
names.pval <- rep(NA, narms)
names.power <- rep(NA, narms)
for (i in 1:length(keep.names)) {
names.Est[i] <- paste(keep.names[i], ".Estimate", sep = "")
names.st.err[i] <- paste(keep.names[i], ".Std.Err", sep = "")
names.tval[i] <- paste(keep.names[i], ".tval", sep = "")
names.pval[i] <- paste(keep.names[i], ".pval", sep = "")
names.power[i] <- paste(keep.names[i], ".power", sep = "")
}
colnames(Estimates) <- names.Est
colnames(std.error) <- names.st.err
colnames(t.val) <- names.tval
colnames(p.val) <- names.pval
cps.model.temp <-
data.frame(cbind(unlist(normal.ma.rct[[3]]), p.val))
colnames(cps.model.temp)[1] <- "converge"
cps.model.temp2 <-
dplyr::filter(cps.model.temp, converge == TRUE)
if (isTRUE(nrow(cps.model.temp2) < (.25 * nsim))) {
warning(paste0(
nrow(cps.model.temp2),
" models converged. Check model parameters."
),
immediate. = TRUE)
}
if ((max(sigma_sq) == min(sigma_sq) &
max(sigma_b_sq) == min(sigma_b_sq)) |
(max(sigma_sq) == min(sigma_sq) &
max(sigma_b_sq) != min(sigma_b_sq))) {
LRT.holder <- matrix(
unlist(normal.ma.rct[[2]]),
ncol = 6,
nrow = nsim,
byrow = TRUE,
dimnames = list(
seq(1:nsim),
c("Sum Sq", "Mean Sq", "NumDF", "DenDF", "F value", "P(>F)")
)
)
LRT.holder <- cbind(LRT.holder, cps.model.temp["converge"])
LRT.holder <- LRT.holder[LRT.holder[, "converge"] == TRUE, ]
sig.LRT <- ifelse(LRT.holder[, 6] < alpha, 1, 0)
} else {
LRT.holder <- as.vector(rep(NA, nsim))
for (i in 1:nsim) {
LRT.holder[i] <- normal.ma.rct[[2]][[i]][2, 9]
}
LRT.holder <- cbind(LRT.holder, cps.model.temp["converge"])
LRT.holder <- LRT.holder[LRT.holder[, "converge"] == TRUE, ]
sig.LRT <- ifelse(LRT.holder["LRT.holder"] < alpha, 1, 0)
}
power.parms <- cbind(confintCalc(
alpha = alpha,
multi = TRUE,
p.val = as.vector(cps.model.temp2[, 3:length(cps.model.temp2)])
),
multi_p_method)
ma.model.est <- data.frame(Estimates, std.error, t.val, p.val)
ma.model.est <-
ma.model.est[, -grep('.*ntercept.*', names(ma.model.est))]
if (allSimData == TRUE && return.all.models == FALSE) {
complete.output = structure(
list(
"overview" = summary.message,
"nsim" = nsim,
"power" = prop_H0_rejection(
alpha = alpha,
nsim = nsim,
sig.LRT = sig.LRT
),
"beta" = power.parms['Beta'],
"overall.power2" = power.parms,
"overall.power" = LRT.holder,
"method" = long.method,
"alpha" = alpha,
"cluster.sizes" = cluster.sizes,
"n.clusters" = nclusters,
"variance.parms" = var.parms,
"means" = means,
"model.estimates" = ma.model.est,
"convergence" = normal.ma.rct[[3]],
"sim.data" = normal.ma.rct[[4]]
),
class = 'crtpwr.ma'
)
}
if (return.all.models == TRUE) {
complete.output = structure(
list(
"overview" = summary.message,
"nsim" = nsim,
"power" =
prop_H0_rejection(
alpha = alpha,
nsim = nsim,
sig.LRT = sig.LRT
),
"beta" = power.parms['Beta'],
"overall.power2" = power.parms,
"overall.power" = LRT.holder,
"method" = long.method,
"alpha" = alpha,
"cluster.sizes" = cluster.sizes,
"n.clusters" = nclusters,
"variance.parms" = var.parms,
"means" = means,
"model.estimates" = ma.model.est,
"convergence" = normal.ma.rct[[3]],
"sim.data" = normal.ma.rct[[4]],
"all.models" <- normal.ma.rct
),
class = 'crtpwr.ma'
)
}
if (return.all.models == FALSE && allSimData == FALSE) {
complete.output = structure(
list(
"overview" = summary.message,
"nsim" = nsim,
"power" =
prop_H0_rejection(
alpha = alpha,
nsim = nsim,
sig.LRT = sig.LRT
),
"beta" = power.parms['Beta'],
"overall.power2" = power.parms,
"overall.power" = LRT.holder,
"method" = long.method,
"alpha" = alpha,
"cluster.sizes" = cluster.sizes,
"n.clusters" = nclusters,
"variance.parms" = var.parms,
"means" = means,
"model.estimates" = ma.model.est,
"convergence" = normal.ma.rct[[3]]
),
class = 'crtpwr.ma'
)
}
}
if (method == "gee") {
Estimates = matrix(NA, nrow = nsim, ncol = narms)
std.error = matrix(NA, nrow = nsim, ncol = narms)
Wald = matrix(NA, nrow = nsim, ncol = narms)
Pr = matrix(NA, nrow = nsim, ncol = narms)
for (i in 1:nsim) {
Estimates[i, ] <- models[[i]]$coefficients[, 1]
std.error[i, ] <- models[[i]]$coefficients[, 2]
Wald[i, ] <- models[[i]]$coefficients[, 3]
Pr[i, ] <-
p.adjust(models[[i]]$coefficients[, 4], method = multi_p_method)
}
keep.names <- rownames(models[[1]]$coefficients)
names.Est <- rep(NA, length(narms))
names.st.err <- rep(NA, length(narms))
names.wald <- rep(NA, length(narms))
names.pval <- rep(NA, length(narms))
names.power <- rep(NA, length(narms))
for (i in 1:length(keep.names)) {
names.Est[i] <- paste(keep.names[i], ".Estimate", sep = "")
names.st.err[i] <- paste(keep.names[i], ".Std.Err", sep = "")
names.wald[i] <- paste(keep.names[i], ".wald", sep = "")
names.pval[i] <- paste(keep.names[i], ".pval", sep = "")
names.power[i] <- paste(keep.names[i], ".power", sep = "")
}
colnames(Estimates) <- names.Est
colnames(std.error) <- names.st.err
colnames(Wald) <- names.wald
colnames(Pr) <- names.pval
LRT.holder <-
matrix(
unlist(normal.ma.rct[[2]]),
ncol = 3,
nrow = nsim,
byrow = TRUE,
dimnames = list(seq(1:nsim),
c("Df", "X2", "P(>|Chi|)"))
)
LRT.holder <- cbind(LRT.holder, normal.ma.rct[["converged"]])
LRT.holder <- LRT.holder[LRT.holder[, "converged"] == TRUE, ]
sig.LRT <- ifelse(LRT.holder[, 3] < alpha, 1, 0)
power.parms <- cbind(confintCalc(
alpha = alpha,
multi = TRUE,
p.val = Pr[, 2:narms]
),
multi_p_method)
ma.model.est <- data.frame(Estimates, std.error, Wald, Pr)
ma.model.est <-
ma.model.est[, -grep('.*ntercept.*', names(ma.model.est))]
if (allSimData == TRUE & return.all.models == FALSE) {
complete.output = structure(
list(
"overview" = summary.message,
"nsim" = nsim,
"power" =
prop_H0_rejection(
alpha = alpha,
nsim = nsim,
sig.LRT = sig.LRT
),
"beta" = power.parms['Beta'],
"overall.power2" = power.parms,
"overall.power" = LRT.holder,
"method" = long.method,
"alpha" = alpha,
"cluster.sizes" = cluster.sizes,
"n.clusters" = nclusters,
"variance.parms" = var.parms,
"means" = means,
"model.estimates" = ma.model.est,
"sim.data" = normal.ma.rct[[3]]
),
class = 'crtpwr.ma'
)
}
if (return.all.models == TRUE) {
complete.output = structure(
list(
"overview" = summary.message,
"nsim" = nsim,
"power" =
prop_H0_rejection(
alpha = alpha,
nsim = nsim,
sig.LRT = sig.LRT
),
"beta" = power.parms['Beta'],
"overall.power2" = power.parms,
"overall.power" = LRT.holder,
"method" = long.method,
"alpha" = alpha,
"cluster.sizes" = cluster.sizes,
"n.clusters" = nclusters,
"variance.parms" = var.parms,
"means" = means,
"model.estimates" = ma.model.est,
"all.models" <- normal.ma.rct
),
class = 'crtpwr.ma'
)
}
if (return.all.models == FALSE && allSimData == FALSE) {
complete.output = structure(
list(
"overview" = summary.message,
"nsim" = nsim,
"power" =
prop_H0_rejection(
alpha = alpha,
nsim = nsim,
sig.LRT = sig.LRT
),
"beta" = power.parms['Beta'],
"overall.power2" = power.parms,
"overall.power" = LRT.holder,
"method" = long.method,
"alpha" = alpha,
"cluster.sizes" = cluster.sizes,
"n.clusters" = nclusters,
"variance.parms" = var.parms,
"means" = means,
"model.estimates" = ma.model.est
),
class = 'crtpwr.ma'
)
}
}
return(complete.output)
} |
orig_prism_path <- getOption("prism.path")
teardown(options(prism.path = orig_prism_path))
prism_set_dl_dir(tempdir())
test_that("prism_check_dl_dir() works if path is set", {
expect_equal(prism_check_dl_dir(), tempdir())
expect_warning(expect_equal(path_check(), tempdir()))
})
options(prism.path = NULL)
test_that("prism_check_dl_dir() fails if path is not set", {
expect_error(prism_check_dl_dir())
}) |
context("Utility functions")
test_that("test several utility functions", {
x1<-plot_mrk_info(tetra.solcap, 1)
x2<-plot_mrk_info(tetra.solcap, "solcap_snp_c2_41437")
x3<-plot_mrk_info(tetra.solcap.geno.dist, 1)
x4<-plot_mrk_info(tetra.solcap.geno.dist, "solcap_snp_c2_41437")
expect_is(x1, "list")
expect_is(x2, "list")
expect_is(x3, "list")
expect_is(x4, "list")
expect_equal(get_LOD(solcap.err.map[[1]]),0)
tpt<-est_pairwise_rf(make_seq_mappoly(tetra.solcap, 1:30))
x1<-make_seq_mappoly(tetra.solcap, 1:20)
x2<-make_seq_mappoly(tetra.solcap, 21:40)
x1<-as.numeric(check_if_rf_is_possible(x1))
x2<-as.numeric(check_if_rf_is_possible(x2))
expect_equal(as.numeric(crossprod(x1,x2)), 14)
M<-rf_list_to_matrix(tpt, shared.alleles = TRUE)
expect_equal(round(sum(get_rf_from_mat(M$rec.mat), na.rm = TRUE), 6), 3.913633)
expect_equal(get_w_m(6), 15)
expect_error(get_w_m(0))
expect_error(get_w_m(3))
rm<-rev_map(maps.hexafake[[1]])
expect_equal(sum(rm$maps[[1]]$seq.rf), sum(maps.hexafake[[1]]$maps[[1]]$seq.rf), tolerance = 10e-5)
a1<-sample_data(tetra.solcap.geno.dist, n = 20, type = "marker")
a2<-sample_data(a1, n = 20, type = "individual")
plot(a2)
a3<-dist_prob_to_class(a2$geno)
expect_equal(prod(dim(a3$geno.dose)), nrow(a3$geno))
expect_equal(round(mf_h(20),6), 0.16484)
expect_equal(round(mf_k(20),6), 0.189974)
expect_equal(round(mf_m(20),6), 0.2)
expect_equal(round(imf_h(.15),2), 17.83)
expect_equal(round(imf_k(.15),2), 15.48)
expect_equal(round(imf_m(.15),2), 15)
expect_null(plot_compare_haplotypes(ploidy = 6,
hom.allele.p1 = maps.hexafake[[1]]$maps[[1]]$seq.ph$P[1:10],
hom.allele.q1 = maps.hexafake[[1]]$maps[[1]]$seq.ph$Q[1:10],
hom.allele.p2 = maps.hexafake[[1]]$maps[[1]]$seq.ph$P[1:10],
hom.allele.q2 = maps.hexafake[[1]]$maps[[1]]$seq.ph$Q[1:10]))
expect_null(print_mrk(input.data = hexafake, mrks = "M_1"))
expect_equal(sum(perm_pars(1:5)), 900)
expect_equal(sum(perm_tot(1:5)), 1800)
a<-sample_data(tetra.solcap.geno.dist, n=30, type = "marker")
a<-sample_data(a, n=30)
w<-update_missing(a, prob.thres = .7)
expect_is(w, "mappoly.data")
w2 <- get_genomic_order(make_seq_mappoly(hexafake, "all"))
w3 <- as.numeric(crossprod(w2$ord$seq.pos)/10e17)
expect_is(plot(w2), "ggplot")
expect_equal(w3, 0.4952, tolerance = 1e-3)
w4<-get_submap(solcap.dose.map[[1]], 1:10, reestimate.rf = FALSE)
s4<-make_seq_mappoly(w4)
tpt2<-est_pairwise_rf(s4)
M2<-rf_list_to_matrix(tpt2, shared.alleles = TRUE)
a1 <- drop_marker(w4, 5)
a2 <- drop_marker(w4, "solcap_snp_c1_10930")
expect_equal(a1,a2, tolerance = 1e-3)
a3 <- drop_marker(w4, 1)
a4 <- add_marker(a3, "solcap_snp_c2_51460", 0, M2, verbose = FALSE)
w4<-reest_rf(w4, tol = 10e-5)
a4<-reest_rf(a4, tol = 10e-5)
expect_equal(w4, a4, tolerance = 1e-3)
a3 <- drop_marker(w4, 5)
a4 <- add_marker(a3, "solcap_snp_c1_10930", 4, M2, verbose = FALSE)
w4<-reest_rf(w4, tol = 10e-5)
a4<-reest_rf(a4, tol = 10e-5)
expect_equal(w4, a4, tolerance = 1e-3)
a3 <- drop_marker(w4, 10)
a4 <- add_marker(a3, "solcap_snp_c2_36643", 9, M2, verbose = FALSE)
w4<-reest_rf(w4, tol = 10e-5)
a4<-reest_rf(a4, tol = 10e-5)
expect_equal(w4, a4, tolerance = 1e-3)
b<-merge_datasets(hexafake, hexafake.geno.dist)
expect_equivalent(mean(as.matrix(b$geno.dose)), 1.078817, tol = 1e-3)
map<-update_map(solcap.dose.map[[1]])
expect_equal(length(map$maps[[1]]$seq.num) - length(solcap.dose.map[[1]]$maps[[1]]$seq.num), 20)
}) |
package_files <- function(path) {
all <- normalizePath(r_files(path))
collate <- desc::desc_get_collate(file = file.path(path, "DESCRIPTION"))
collate <- normalizePath(file.path(path, "R", collate))
rfiles <- c(collate, setdiff(all, collate))
ignore_files(rfiles, path)
}
r_files <- function(path) {
sort_c(dir(file.path(path, "R"), "\\.[Rr]$", full.names = TRUE))
}
ignore_files <- function(rfiles, path) {
rbuildignore <- file.path(path, ".Rbuildignore")
if (!file.exists(rbuildignore))
return(rfiles)
rfiles_relative <- sub(normalizePath(path, winslash = "/"), "", normalizePath(rfiles, winslash = "/"), fixed = TRUE)
rfiles_relative <- sub("^[/]*", "", rfiles_relative)
patterns <- read_lines(rbuildignore)
patterns <- patterns[patterns != ""]
if (length(patterns) == 0L) {
return(rfiles)
}
matches <- lapply(patterns, grepl, rfiles_relative, perl = TRUE)
matches <- Reduce("|", matches)
rfiles[!matches]
} |
expected <- eval(parse(text="c(TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, NA, TRUE, TRUE, TRUE, NA, TRUE, TRUE)"));
test(id=0, code={
argv <- eval(parse(text="list(c(0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, NA, 2L, 2L, 0L, NA, 1L, 1L), c(0, 0, 0, 0, 0, 0, 0, 0, 1, NA, 2, 2, 0, NA, 1, 1))"));
do.call(`==`, argv);
}, o=expected); |
print.NSM3Ch5c <-function(x,...){
if(x$method!="Exact"){
cat("\n",x$method, " Approximation ")
if(x$method=="Monte Carlo"){cat("(with ",x$n.mc, " Iterations) ")}
cat("used: \n \n")
}
cat(paste0("Number of X values: ", x$m, " Number of Y values: ", x$n, "\n"))
if(x$method!="Asymptotic"){
if(!is.null(x$two.sided)){
cat(paste0("For the given alpha=", x$alpha, ", the lower cutoff value is ",x$stat.name,"=",x$cutoff.L, ",\n", "with true alpha level=",round(x$true.alpha.L,4), "\n"))
}
cat(paste0("For the given alpha=", x$alpha, ", the upper cutoff value is ",x$stat.name, "=" ,x$cutoff.U, ",\n", "with true alpha level=",round(x$true.alpha.U,4), "\n"))
}
if(x$method=="Asymptotic"){
if(!is.null(x$two.sided)){
cat(paste0("For the given alpha =", x$alpha, ", the approximate lower cutoff value is ",x$stat.name,"=",x$cutoff.L, "\n"))
}
cat(paste0("For the given alpha =", x$alpha, ", the approximate upper cutoff value is ",x$stat.name, "=",x$cutoff.U, ",\n"))
}
if(!is.null(x$extra)){
cat(x$extra, "\n")
}
} |
conDisplacement <- function(ltraj,def='all',idcol='burst'){
cpdf <- conPairs(ltraj)
cid <- NULL
for (p in 1:max(cpdf$contact_pha)){
cpdf_sub <- cpdf[cpdf$contact_pha == p,]
if (def == 'first'){
cid <- c(cid, cpdf_sub$contact_orig_rowid[which.min(cpdf_sub$date)])
} else if (def == 'last'){
cid <- c(cid, cpdf_sub$contact_orig_rowid[which.max(cpdf_sub$date)])
} else if (def == 'minTime'){
cid <- c(cid, cpdf_sub$contact_orig_rowid[which.min(cpdf_sub$contact_dt)])
} else if (def == 'minDist') {
cid <- c(cid, cpdf_sub$contact_orig_rowid[which.min(cpdf_sub$contact_d)])
} else {
cid <- c(cid,unique(cpdf_sub$contact_orig_rowid))
}
}
dfr <- ld(ltraj)
dfr$displacement <- 0
n <- dim(dfr)[1]
anid <- unique(dfr[,idcol])
for (ani in anid){
ind <- which(dfr[,idcol]==ani)
cid_ani <- cid[which(cid %in% ind)]
if (length(cid_ani) == 0) {
dfr$displacement[ind] <- NA
} else {
for (i in ind){
j <- cid_ani[which.min(abs(dfr$date[i]-dfr$date[cid_ani]))]
dfr$displacement[i] <-sqrt((dfr$x[i]-dfr$x[j])^2+(dfr$y[i]-dfr$y[j])^2)
}
}
}
outtraj <- dl(dfr,proj4string=attr(ltraj,'proj4string'))
return(outtraj)
} |
tk_seasonal_diagnostics <- function(.data, .date_var, .value, .feature_set = "auto") {
date_var_expr <- rlang::enquo(.date_var)
value_expr <- rlang::enquo(.value)
if (!is.data.frame(.data)) {
stop(call. = FALSE, "tk_seasonal_diagnostics(.data) is not a data-frame or tibble. Please supply a data.frame or tibble.")
}
if (rlang::quo_is_missing(date_var_expr)) {
stop(call. = FALSE, "tk_seasonal_diagnostics(.date_var) is missing. Please supply a date or date-time column.")
}
if (rlang::quo_is_missing(value_expr)) {
stop(call. = FALSE, "tk_seasonal_diagnostics(.value) is missing. Please a numeric column.")
}
if (!all(.feature_set %in% acceptable_seasonal_values())) {
stop(call. = FALSE, "tk_seasonal_diagnostics(.feature_set): Feature values not in acceptable values. Please use one or more of: ",
stringr::str_c(acceptable_seasonal_values(), collapse = ", "))
}
UseMethod("tk_seasonal_diagnostics", .data)
}
tk_seasonal_diagnostics.data.frame <- function(.data, .date_var, .value, .feature_set = "auto") {
date_var_expr <- rlang::enquo(.date_var)
value_expr <- rlang::enquo(.value)
data_formatted <- .data %>%
dplyr::mutate(.value_mod = !! value_expr) %>%
dplyr::select(!! date_var_expr, .value_mod)
if (.feature_set[1] == "auto") {
.feature_set <- .data %>%
dplyr::pull(!! date_var_expr) %>%
get_seasonal_auto_features()
}
data_formatted <- data_formatted %>%
tk_augment_timeseries_signature(.date_var = !! date_var_expr) %>%
dplyr::select(!! date_var_expr, .value_mod, .feature_set) %>%
dplyr::mutate_at(.vars = dplyr::vars(-(!! date_var_expr), -.value_mod), factor, ordered = FALSE) %>%
dplyr::rename(.value = .value_mod)
return(data_formatted)
}
tk_seasonal_diagnostics.grouped_df <- function(.data, .date_var, .value, .feature_set = "auto") {
value_expr <- rlang::enquo(.value)
date_var_expr <- rlang::enquo(.date_var)
group_names <- dplyr::group_vars(.data)
if (.feature_set[1] == "auto") {
.feature_set <- .data %>%
dplyr::group_split() %>%
purrr::map(.f = function(df) {
df %>%
dplyr::pull(!! date_var_expr) %>%
get_seasonal_auto_features()
}) %>%
purrr::flatten_chr() %>%
unique()
}
.data %>%
tidyr::nest() %>%
dplyr::mutate(nested.col = purrr::map(
.x = data,
.f = function(df) tk_seasonal_diagnostics(
.data = df,
.date_var = !! date_var_expr,
.value = !! value_expr,
.feature_set = .feature_set
)
)) %>%
dplyr::select(-data) %>%
tidyr::unnest(cols = nested.col) %>%
dplyr::group_by_at(.vars = group_names)
}
acceptable_seasonal_values <- function() {
c("auto", "second", "minute", "hour", "wday.lbl", "week", "month.lbl", "quarter", "year")
}
get_seasonal_auto_features <- function(.index) {
summary_tbl <- .index %>%
tk_get_timeseries_summary()
max_min_list <- get_max_min_list(summary_tbl)
features_to_get <- tk_get_timeseries_unit_frequency() %>%
tidyr::gather() %>%
dplyr::mutate(check = value %>% dplyr::between(max_min_list$min_period$value, max_min_list$max_period$value)) %>%
dplyr::filter(check) %>%
dplyr::left_join(time_series_signature_lookup_tbl(), by = "key") %>%
dplyr::pull(feature)
return(features_to_get)
}
get_max_min_list <- function(time_series_summary_tbl) {
min_period <- tk_get_timeseries_unit_frequency() %>%
tidyr::gather() %>%
dplyr::mutate(check = 2 * value > time_series_summary_tbl$diff.median) %>%
dplyr::filter(check) %>%
dplyr::slice(1)
start_numeric <- as.numeric(as.POSIXct(time_series_summary_tbl$start))
end_numeric <- as.numeric(as.POSIXct(time_series_summary_tbl$end))
start_to_end <- end_numeric - start_numeric
start_to_end
max_period <- tk_get_timeseries_unit_frequency() %>%
tidyr::gather() %>%
dplyr::mutate(check = 2 * value < start_to_end) %>%
dplyr::filter(check) %>%
dplyr::slice(dplyr::n())
max_min_list <- list(min_period = min_period, max_period = max_period)
return(max_min_list)
}
time_series_signature_lookup_tbl <- function() {
tibble::tibble(
sec = "second",
min = "minute",
hour = "hour",
day = "wday.lbl",
week = "week",
month = "month.lbl",
quarter = "quarter",
year = "year"
) %>%
tidyr::gather(value = "feature")
} |
lapjv <- function(cost, maximize = FALSE) {
m <- max(cost, 10)
n <- nrow(cost)
cost <- rbind(cbind(as.matrix(cost), m + m * stats::runif(n)),
m + m * stats::runif(n + 1))
cost[n + 1, n + 1] <- 10 * m ^ 3
ind <- cpp_lapjv(cost, maximize)
if (ind[n + 1] <= n){
if (sum(cost[which(ind == n + 1), 1:n]) > 1e-10){
warning(paste("Bad padding happened. Assigned",
which(ind == n + 1), "to", ind[n + 1]))
}
ind[which(ind == n + 1)] <- ind[n + 1]
}
ind[1:n]
}
lapmod_index <- function(n, cc, ii, kk, maximize = FALSE) {
cpp_lapmod(n, cc, ii, kk, maximize)
}
lapmod <- function(cost, maximize = FALSE){
cost <- Matrix::Matrix(cost, sparse = TRUE)
n <- nrow(cost)
m <- max(abs(cost@x), 2)
sign <- ifelse(maximize, -1, 1)
pad_vec <- sign * 1e5 * m * rep(1, n)
cost <-
rbind(
cbind(
cost,
sign * ceiling(m * 1e5 * stats::runif(n))
),
c(pad_vec, - sign * 1e5 * m)
)
ind <- cpp_lapmod(n + 1, cost@x,
cost@p, cost@i, maximize)
if (ind[n + 1] <= n){
if (sum(cost[which(ind == n + 1), 1:n]) > 1e-10){
warning(paste("Bad padding happened. Assigned",
which(ind == n + 1), "to", ind[n + 1]))
}
ind[which(ind == n + 1)] <- ind[n + 1]
}
ind[1:n]
} |
plot_gdm_cor_numbers <- function( cor.trait, dim1, dim2, cexcor)
{
graphics::plot( c(0,1), c(0,1), type="n", axes=FALSE, xlab="", ylab="")
graphics::text( .5, .50, paste0( round( cor.trait[dim1,dim2],3)), cex=cexcor)
} |
context("FeatureEffects")
test_that("FeatureEffect (pdp only) works for single output and single feature", {
grid.size <- 10
pdp.objs <- FeatureEffects$new(predictor1,
method = "pdp",
grid.size = grid.size
)
expect_s3_class(pdp.objs$plot(), "patchwork")
pdp.obj.a <- FeatureEffect$new(predictor1,
feature = c("a"),
method = "pdp", grid.size = grid.size
)
pdp.obj.b <- FeatureEffect$new(predictor1,
feature = c("b"),
method = "pdp", grid.size = grid.size
)
pdp.obj.c <- FeatureEffect$new(predictor1,
feature = c("c"),
method = "pdp", grid.size = grid.size
)
pdp.obj.d <- FeatureEffect$new(predictor1,
feature = c("d"),
method = "pdp", grid.size = grid.size
)
expect_equal(pdp.obj.a$results, pdp.objs$effects$a$results)
expect_equal(pdp.obj.b$results, pdp.objs$effects$b$results)
expect_equal(pdp.obj.c$results, pdp.objs$effects$c$results)
expect_equal(pdp.obj.d$results, pdp.objs$effects$d$results)
pdp.objs <- FeatureEffects$new(predictor1,
features = c("a", "c"),
method = "pdp", grid.size = grid.size
)
expect_s3_class(pdp.objs$plot(), "patchwork")
expect_equal(pdp.obj.a$results, pdp.objs$effects$a$results)
expect_equal(pdp.obj.c$results, pdp.objs$effects$c$results)
expect_equal(names(pdp.objs$effects), c("a", "c"))
pdp.objs <- FeatureEffects$new(predictor1, method = "ale", grid.size = 10)
expect_s3_class(pdp.objs$plot(), "patchwork")
pdp.obj.a <- FeatureEffect$new(predictor1,
feature = c("a"), method = "ale",
grid.size = 10
)
expect_equal(pdp.obj.a$results, pdp.objs$effects$a$results)
pdp.objs <- FeatureEffects$new(predictor1, method = "pdp+ice", grid.size = 2)
expect_s3_class(pdp.objs$plot(), "patchwork")
pdp.obj.a <- FeatureEffect$new(predictor1,
feature = c("a"),
method = "pdp+ice", grid.size = 2
)
expect_equal(pdp.obj.a$results, pdp.objs$effects$a$results)
}) |
CUSUMLM <- function(x,d,delta,tau=0.15)
{
if (any(is.na(x)))
stop("x contains missing values")
if(tau<=0 | tau>=1)
stop("It must hold that 0<tau<1")
if(delta<0.6 | delta>0.8)
stop("It must hold that 0.6<delta<0.8")
if (mode(x) %in% ("numeric") == FALSE | is.vector(x) ==
FALSE)
stop("x must be a univariate numeric vector")
if(tau!=0.15)
warning("Critical values are just implemented for tau=0.15")
T <- length(x)
G <- LongMemoryTS::G.hat(as.matrix(x), d, m=floor(1+T^(delta)))
if(d!=0)
{
C2 <- gamma(1-2*d)*G*2*sin(pi*d)/(d*(1+2*d))
enumerator <- c(T^(-1/2-d)/sqrt(C2))*cumsum(x-mean(x))
}else
{
C2 <- 2*pi*G
enumerator <- c(T^(-1/2-d)/sqrt(C2))*cumsum(x-mean(x))
}
crit_values <- CV_shift(d=d,procedure="cusumlm",param=0)
testCUSUMLM <- max(abs(enumerator[(T*tau):(T*(1-tau))]))
result <- c(crit_values,testCUSUMLM)
names(result)<- c("90%","95%","99%","Teststatistic")
return(round(result,3))
} |
.mask <- function (mol, map, mask) {
count <- .jcall(mol, 'I', 'getAtomCount')
atoms <- c(0:(count-1))
atoms <- atoms[!atoms %in% map$mapping[[1]]]
if (!is.null(mask)) {
.jcall(mol, 'V', 'add', mask)
newAtom <- .jcall(mol, 'Lorg/openscience/cdk/interfaces/IAtom;', 'getLastAtom')
}
mapping <- sort(map$mapping[[1]], TRUE)
newAtomContainer <- .jnew('org/openscience/cdk/AtomContainer')
for (atomNo in mapping) {
atom <- .jcall(mol, 'Lorg/openscience/cdk/interfaces/IAtom;', 'getAtom', atomNo)
connectedAtoms <- as.list(.jcall(mol, 'Ljava/util/List;', 'getConnectedAtomsList', atom))
for (nbdAtom in connectedAtoms) {
nbdAtom <- .jcast(nbdAtom, 'org/openscience/cdk/interfaces/IAtom')
nbdAtomNo <- .jcall(mol, 'I', 'getAtomNumber', nbdAtom)
bond <- .jcall(mol, 'Lorg/openscience/cdk/interfaces/IBond;', 'removeBond', atom, nbdAtom)
if (!nbdAtomNo %in% map$mapping[[1]]) {
if (!is.null(mask)) {
.jcall(bond, 'V', 'setAtoms', .jarray(c(nbdAtom, newAtom), contents.class = 'org/openscience/cdk/interfaces/IAtom'))
.jcall(mol, 'V', 'addBond', bond)
}
}
}
.jcall(newAtomContainer, 'V', 'addAtom', atom)
}
nAC <- .jcast(newAtomContainer, 'org/openscience/cdk/interfaces/IAtomContainer')
.jcall(mol, 'V', 'remove', nAC)
}
.meta.mask <- function(substructure, mask, mol, recursive) {
smi <- tryCatch({
while(1) {
if (mask != '') {
maskX <- .smilesParser(mask, F, F)
} else {
maskX <- NULL
}
tryCatch({
map <- rcdk::matches(substructure, mol, return.matches = T)
}, error = function(err) {
stop('Unable to find matches.', call. = F)
})
if (map[[1]]$match == TRUE) {
.mask(mol, map[[1]], maskX)
} else {
break
}
if(recursive == FALSE) {
break
}
}
smi <- get.smiles(mol)
}, error = function (err) {
stop (err)
})
return(smi)
}
ms.mask <- function (substructure, mask, molecule, format = 'smiles', standardize = T, explicitH = F, recursive = F) {
if(missing(substructure) || substructure == '') {
stop('Enter a structure to mask in form of a SMILES or SMARTS.', call. = F)
}
if(missing(mask)) {
stop('Mask not specified.', call. = F)
}
if(missing(molecule)) {
stop('Input molecule missing.', call. = F)
}
format <- tolower(format)
smi <- tryCatch({
if (format[[1]] == 'smiles') {
mol <- .smilesParser(molecule, standardize = standardize, explicitH = explicitH)
} else if (format[[1]] == 'mol') {
mol <- .molParser(molecule, standardize = standardize, explicitH = explicitH)
} else {
stop("Invalid input format.", call. = F)
}
mask <- sub('\\s+', '', mask)
.meta.mask(substructure, mask, mol, recursive)
}, error = function (err) {
stop (err)
})
return(smi)
}
.rct.mask <- function (substructure, mask, rct, recursive) {
rct <- tryCatch({
mask <- sub('\\s+', '', mask)
for (mol in rct$Reactants) {
.meta.mask(substructure, mask, mol, recursive)
}
for (mol in rct$Products) {
.meta.mask(substructure, mask, mol, recursive)
}
react <- paste(lapply(rct$Reactants, get.smiles), collapse = '.')
react <- sub('\\.+', '.', react)
react <- sub('^\\.', '', react)
react <- sub('\\.$', '', react)
prod <- paste(lapply(rct$Products, get.smiles), collapse = '.')
prod <- sub('\\.+', '.', prod)
prod <- sub('^\\.', '', prod)
prod <- sub('\\.$', '', prod)
rct$RSMI <- paste(react, prod, sep=">>")
rct
}, error = function (err) {
stop (err)
})
return(rct)
}
rs.mask <- function (substructure, mask, reaction, format = 'rsmi', standardize = T, explicitH = F, recursive = F) {
if(missing(substructure) || substructure == '') {
stop('Enter a structure to mask in form of a SMILES or SMARTS.', call. = F)
}
if(missing(mask)) {
stop('Mask not specified.', call. = F)
}
if(missing(reaction)) {
stop('Input reaction missing.', call. = F)
}
format <- tolower(format)
rsmi <- tryCatch({
if (format[[1]] == 'rsmi') {
rct <- .rsmiParser(reaction, standardize = standardize, explicitH = explicitH)
} else if (format[[1]] == 'rxn') {
rct <- .mdlParser(reaction, standardize = standardize, explicitH = explicitH)
} else {
stop("Invalid input format.", call. = F)
}
rct <- .rct.mask(substructure, mask, rct, recursive)
rct$RSMI
}, error = function (err) {
stop (err)
})
return(rsmi)
} |
nR <- 100L; nC <- 5L
X <- array(rnorm(nR * nC),dim = c(nR,nC)); y <- rnorm(nC)
OF1 <- function(param, X, y) max(abs(y - X %*% param))
createF <- function(X, y) {
newFun <- function(param) max(abs(y - X %*% param))
newFun
}
OF2 <- createF(X, y)
param <- rnorm(nC)
OF1(param, X, y)
OF2(param)
remove(list = c("X","y"), envir = .GlobalEnv); ls()
OF1(param,X,y)
OF2(param)
environment(OF2)
whereToLook <- environment(OF2)
ls(envir = whereToLook) |
extractCode <- function(url, files = NULL, output = FALSE){
.Deprecated(msg = "'extractCode()' will be removed in the next version\nUse 'rpubs_code()' instead")
pg <- read_html(url)
iframe_link <- paste0("http:",
html_attr(
html_nodes(
html_nodes(
html_nodes(
html_nodes(pg, "body"),
"div
"div
"iframe"),
"src")
)
if(output){
node <- "pre"
} else {
node <- "pre.r"
}
code <- html_text(
html_nodes(
read_html(iframe_link),
node)
)
if(is.null(files)){
paste0(sprintf("
} else {
writeLines(text = paste0(sprintf("
}
} |
plot.KW2 <- function(x, smooth = 0, pal = NULL, inches = 1/6, N = 25, tol = 0.001, ...){
W <- x$W
s <- (W > tol)
D <- data.frame(w = W[s], x = x$uv[s,1], y = x$uv[s,2])
if(smooth > 0){
uv <- x$uv
mu <- mv <- 40
ru <- range(uv[s, 1])
rv <- range(uv[s, 2])
u <- seq(ru[1] - 4 * smooth, ru[2] + 4 * smooth, length = mu)
v <- seq(rv[1] - 4 * smooth, rv[2] + 4 * smooth, length = mv)
fs <- matrix(0, mu, mv)
for (i in 1:mu) {
for (j in 1:mv) {
Z <- cbind(u[i] - uv[, 1], v[j] - uv[, 2])
fs[i, j] <- sum(mvtnorm::dmvnorm(Z, sigma = diag(2) * smooth) * W)
}
}
contour(u, v, matrix(fs,mu,mv), ...)
}
else{
if(!length(pal))
pal <- heat.colors(N, alpha = .5)
with(D, {
bg <- round(1 + 10 * (1 - w/max(w)))
symbols(x = x, y = y, circles = sqrt(w), inches = inches,
fg = "grey30", bg = bg, ...)
palette(pal)
})
}
} |
ReadZotero <- function(user, group, .params,
temp.file = tempfile(fileext = ".bib"),
delete.file = TRUE){
if (!requireNamespace("bibtex")){
message("Sorry this feature currently cannot be used without the ",
dQuote("bibtex"), " package installed.\nPlease install from ",
"GitHub using the ", dQuote("remotes"),
" (or ", dQuote("devtools"), ") package:\n\n",
"remotes::install_github(\"ROpenSci/bibtex\")")
return(invisible())
}
if (delete.file)
on.exit(unlink(temp.file, force = TRUE))
bad.ind <- which(!names(.params) %in% c("q", "itemType", "tag", "collection",
"key", "limit", "start", "qmode"))
.parms <- .params
if (length(bad.ind)){
warning("Invalid .params specified and will be ignored")
.parms <- .parms[-bad.ind]
}
.parms$format <- "bibtex"
if (is.null(.parms$limit))
.parms$limit <- 99L
coll <- if (is.null(.parms$collection))
NULL
else
paste0("/collections/", .parms$collection)
.parms$uri <- paste0("https://api.zotero.org/", if (!missing(user))
paste0("users/", user) else paste0("groups/", group),
coll, "/items")
uri <- paste0("https://api.zotero.org/", if (!missing(user))
paste0("users/", user) else paste0("groups/", group),
coll, "/items")
res <- GET(uri, query = .parms)
res <- content(res, as = "text", encoding = "UTF-8")
if (.is_not_nonempty_text(res)){
print("No results.")
return()
}
write(res, file=temp.file, append = TRUE)
bib.res <- try(ReadBib(file=temp.file, .Encoding="UTF-8"), TRUE)
if (inherits(bib.res, "try-error")){
stop(gettextf("Could not parse the returned BibTeX results. If %s %s%s",
sQuote("delete.file"),
"is FALSE, you can try viewing and editing the file: ",
temp.file))
}
bib.res
} |
teamBowlingWicketKindAllOppnAllMatches <- function(matches,t1,t2="All",plot=1){
noBalls=wides=team=runs=bowler=wicketKind=wicketPlayerOut=NULL
ggplotly=NULL
team=bowler=ball=wides=noballs=runsConceded=overs=NULL
over=wickets=NULL
a <- NULL
if(t2 == "All"){
a <-filter(matches,team==t1)
} else {
a <-filter(matches,team==t2)
}
a1 <- unlist(strsplit(a$ball[1],"\\."))
a2 <- paste(a1[1],"\\.",sep="")
b <- a %>%
select(bowler,ball,noballs,wides,runs,wicketKind,wicketPlayerOut) %>%
mutate(over=gsub(a2,"",ball)) %>%
mutate(over=gsub("\\.\\d+","",over))
c <- b %>%
select(bowler,wicketKind,wicketPlayerOut) %>%
filter(wicketPlayerOut != "nobody")
d <- summarise(group_by(c,bowler),wickets=length(wicketPlayerOut))
e <- arrange(d,desc(wickets))
f <- e[1:8,]
g <- as.character(f$bowler)
n <- NULL
for(m in 1:8){
mm <- filter(c,bowler==g[m])
n <- rbind(n,mm)
}
p <- summarise(group_by(n,bowler,wicketKind),m=n())
if(plot == 1){
plot.title <- paste(t1,"vs",t2,"wicket-kind of bowlers")
ggplot(data=p,aes(x=wicketKind,y=m,fill=factor(wicketKind))) +
facet_wrap( ~ bowler,scales = "fixed", ncol=8) +
geom_bar(stat="identity") +
xlab("Wicket kind") + ylab("Wickets") +
ggtitle(bquote(atop(.(plot.title),
atop(italic("Data source:http://cricsheet.org/"),"")))) +
theme(axis.text.x = element_text(angle = 90, hjust = 1))
} else if(plot == 2){
plot.title <- paste(t1,"vs",t2,"wicket-kind of bowlers")
g <- ggplot(data=p,aes(x=wicketKind,y=m,fill=factor(wicketKind))) +
facet_wrap( ~ bowler,scales = "fixed", ncol=8) +
geom_bar(stat="identity") +
xlab("Wicket kind") + ylab("Wickets") +
ggtitle(plot.title) +
theme(axis.text.x = element_text(angle = 90, hjust = 1))
ggplotly(g,height=500)
}else{
p
}
} |
.margins.param.est <- function(copula, margins, x, param, param.est, df,
df.est, dispstr, lower, upper, flip) {
if (copula == "gaussian") {
warning(
"Please note that the old (pre 0.1-3) term 'gaussian' was replaced with
'normal'."
)
copula <- "normal"
}
if (df.est == TRUE) {
df.fixed <- FALSE
} else if (df.est == FALSE) {
df.fixed <- TRUE
}
if (length(margins) > 1 & length(margins) != dim(x)[2]) {
stop(paste(
"If length(margins)>1, then the number of entries has to fit the number of data
sequences. You included ", length(margins), " distributions, though ",
dim(x)[2], " data sequences are used. Please amend and run the function again."
))
}
if (any(!is.element(margins, c("ranks", "beta", "cauchy", "chisq", "f",
"gamma", "lnorm", "norm", "t", "weibull",
"exp")))) {
stop(
"At least one of the distributions in `margins' is not implemented. Please
amend and run the function again. It has to be either of `ranks', `beta',
`cauchy', `chisq', `f', `gamma', `lnorm', `norm', `t', `weibull', `exp'."
)
}
param.margins <- NULL
if (!is.null(margins)) {
cat(paste("The margins will be estimated as: ",
paste0(margins, collapse = ", "), sep = ""), fill = TRUE)
res.margins <- .margins(x, margins)
param.margins <- list()
if (length(margins) == 1) {
margins.dummy <- rep(margins, dim(x)[2])
} else {
margins.dummy <- margins
}
for (i in seq_along(margins.dummy)) {
if (margins.dummy[i] == "ranks") {
x[, i] <- res.margins[[i]][[1]]
} else {
param.margins[[i]] <- res.margins[[i]][[1]]
x[, i] <- res.margins[[i]][[2]]
}
}
} else {
if (any(x > 1) || any(x < 0)) {
cat(
"The observations aren't in [0,1]. This will lead to errors while the
estimation. Please set 'margins' to any of the incorporated functions.",
fill = TRUE)
}
}
if (!is.null(flip)) {
if (!is.element(flip, c(0,90,180,270))) {
stop("flip has to be either of NULL, 0, 90, 180, 270.")
}
x = .rotateCopula(x = x, flip = flip)
if (flip == 0) {flip = NULL}
}
if ("normal" == copula) {
if (param.est == TRUE) {
param <- try(fitCopula(ellipCopula(copula, dim = dim(x)[2], df = df,
df.fixed = df.fixed,
dispstr = dispstr), data = x,
method = "mpl", estimate.variance = FALSE,
hideWarnings = TRUE, lower = lower,
upper = upper)@estimate, silent = TRUE)
estim.method <- "mpl"
if (inherits(param, "try-error")) {
warning(
"Pseudo Maximum Likelihood estimation of the parameter failed. The estimation
was performed with inversion of Kendall's Tau."
)
param <- fitCopula(ellipCopula(copula, dim = dim(x)[2], df = df,
df.fixed = df.fixed, dispstr = dispstr),
data = x, method = "itau", estimate.variance = FALSE,
hideWarnings = TRUE, lower = lower,
upper = upper)@estimate
estim.method <- "itau"
}
}
copula <- ellipCopula(copula, param = param, dim = dim(x)[2], df = df,
df.fixed = TRUE, dispstr = dispstr)
estim.method <- "mpl"
if (inherits(copula, "indepCopula")) {
stop(
"The parameter estimation is at boundary and an independence copula was
returned."
)
}
} else if ("t" == copula) {
if (param.est == TRUE) {
lower.t <- lower
upper.t <- upper
if (!is.null(lower) & df.est == TRUE) {
lower.t <- c(lower, 0)
}
if (!is.null(upper) & df.est == TRUE) {
upper.t <- c(upper, 1000)
}
param <- try(fitCopula(ellipCopula(copula, dim = dim(x)[2], df = df,
df.fixed = df.fixed,
dispstr = dispstr), data = x,
method = "mpl", estimate.variance = FALSE,
hideWarnings = TRUE, lower = lower.t,
upper = upper.t)@estimate, silent = TRUE)
estim.method <- "mpl"
if (inherits(param, "try-error")) {
warning(
"Pseudo Maximum Likelihood estimation of the parameter failed. The estimation
was performed with inversion of Kendall's Tau. Therefore df.est was set to
FALSE."
)
param <- fitCopula(ellipCopula(copula, dim = dim(x)[2], df = df,
df.fixed = TRUE, dispstr = dispstr),
data = x, method = "itau", estimate.variance = FALSE,
hideWarnings = TRUE, lower = lower,
upper = upper)@estimate
estim.method <- "itau"
df.fixed <- TRUE
df.est <- FALSE
}
}
if (copula == "t" & df.fixed == FALSE & param.est == TRUE) {
df <- tail(param, n = 1)
copula <- ellipCopula(copula, param = param[-length(param)],
dim = dim(x)[2], df = df, df.fixed = TRUE,
dispstr = dispstr)
estim.method <- "mpl"
} else {
copula <- ellipCopula(copula, param = param, dim = dim(x)[2], df = df,
df.fixed = TRUE, dispstr = dispstr)
estim.method <- "mpl"
}
if (inherits(copula, "indepCopula")) {
stop(
"The parameter estimation is at boundary and an independence copula was
returned."
)
}
} else if ("clayton" == copula || "frank" == copula || "gumbel" == copula ||
"amh" == copula || "joe" == copula) {
if (param.est == TRUE) {
if ("clayton" == copula) {
param <- try(fitCopula(archmCopula(copula, dim = dim(x)[2]), data = x,
method = "mpl", estimate.variance = FALSE,
hideWarnings = TRUE, lower = lower,
upper = upper)@estimate, silent = TRUE)
estim.method <- "mpl"
if (inherits(param, "try-error")) {
warning(
"Pseudo Maximum Likelihood estimation of the parameter failed. The estimation
was performed with inversion of Kendall's Tau."
)
param <- fitCopula(archmCopula(copula, dim = dim(x)[2]), data = x,
method = "itau", estimate.variance = FALSE,
hideWarnings = TRUE, lower = lower,
upper = upper)@estimate
estim.method <- "itau"
}
} else {
param <- try(fitCopula(archmCopula(copula, dim = dim(x)[2]), data = x,
method = "mpl", estimate.variance = FALSE,
hideWarnings = TRUE, lower = lower,
upper = upper)@estimate, silent = TRUE)
estim.method <- "mpl"
if (inherits(param, "try-error")) {
warning(
"Pseudo Maximum Likelihood estimation of the parameter failed. The estimation
was performed with inversion of Kendall's Tau."
)
param <- fitCopula(archmCopula(copula, dim = dim(x)[2]), data = x,
method = "itau", estimate.variance = FALSE,
hideWarnings = TRUE, lower = lower,
upper = upper)@estimate
estim.method <- "itau"
}
}
}
if (copula == "clayton" & dim(x)[2] > 2 & param < 0) {
stop(
"The dependence parameter is negative for the dataset. For the clayton copula
this cannot be the case. Therefore is this not an appropriate copula for the
dataset. Please consider to use another one."
)
}
if (copula == "frank" & dim(x)[2] > 2 & param < 0) {
stop(
"The dependence parameter is negative for the dataset. For the frank copula
can this be only the case if the dimension is 2. Therefore is this not an
appropriate copula for the dataset. Please consider to use another one."
)
}
copula <- archmCopula(copula, param = param, dim = dim(x)[2])
estim.method <- "mpl"
if (inherits(copula, "indepCopula")) {
stop(
"The parameter estimation is at boundary and an independence copula was
returned."
)
}
} else if ("galambos" == copula || "huslerReiss" == copula ||
"tawn" == copula) {
if (param.est == TRUE) {
param <- try(fitCopula(evCopula(copula, dim = dim(x)[2]), data = x,
method = "mpl", estimate.variance = FALSE,
hideWarnings = TRUE, lower = lower,
upper = upper)@estimate, silent = TRUE)
estim.method <- "mpl"
if (inherits(param, "try-error")) {
warning(
"Pseudo Maximum Likelihood estimation of the parameter failed. The estimation
was performed with inversion of Kendall's Tau."
)
param <- fitCopula(evCopula(copula, dim = dim(x)[2]), data = x,
method = "itau", estimate.variance = FALSE,
hideWarnings = TRUE, lower = lower,
upper = upper)@estimate
estim.method <- "itau"
}
}
copula <- evCopula(copula, param = param, dim = dim(x)[2])
estim.method <- "mpl"
if (inherits(copula, "indepCopula")) {
stop(
"The parameter estimation is at boundary and an independence copula was
returned."
)
}
} else if ("tev" == copula) {
if (param.est == TRUE) {
lower.t <- lower
upper.t <- upper
if (!is.null(lower) & df.est == TRUE) {
lower.t <- c(lower, 0)
}
if (!is.null(upper) & df.est == TRUE) {
upper.t <- c(upper, 1000)
}
param <- try(fitCopula(evCopula(copula, dim = dim(x)[2], df = df,
df.fixed = df.fixed), data = x,
method = "mpl", estimate.variance = FALSE,
hideWarnings = TRUE, lower = lower.t,
upper = upper.t)@estimate, silent = TRUE)
estim.method <- "mpl"
if (inherits(param, "try-error")) {
warning(
"Pseudo Maximum Likelihood estimation of the parameter failed. The estimation
was performed with inversion of Kendall's Tau. Therefore df.est was set to
FALSE."
)
param <- fitCopula(evCopula(copula, dim = dim(x)[2], df = df,
df.fixed = TRUE), data = x,
method = "itau", estimate.variance = FALSE,
hideWarnings = TRUE, lower = lower,
upper = upper)@estimate
estim.method <- "itau"
df.fixed <- TRUE
df.est <- FALSE
}
}
if (copula == "tev" & df.fixed == FALSE & param.est == TRUE) {
df <- tail(param, n = 1)
copula <- evCopula(copula, param = param[-length(param)],
dim = dim(x)[2], df = df, df.fixed = TRUE)
estim.method <- "mpl"
} else {
copula <- evCopula(copula, param = param, dim = dim(x)[2], df = df,
df.fixed = TRUE)
estim.method <- "mpl"
}
if (inherits(copula, "indepCopula")) {
stop(
"The parameter estimation is at boundary and an independence copula was
returned."
)
}
} else if ("fgm" == copula) {
if (param.est == TRUE) {
param <- try(fitCopula(fgmCopula(dim = dim(x)[2]), data = x,
method = "mpl", estimate.variance = FALSE,
hideWarnings = TRUE, lower = lower,
upper = upper)@estimate, silent = TRUE)
estim.method <- "mpl"
if (inherits(param, "try-error")) {
warning(
"Pseudo Maximum Likelihood estimation of the parameter failed. The estimation
was performed with inversion of Kendall's Tau."
)
param <- fitCopula(fgmCopula(dim = dim(x)[2]), data = x,
method = "itau", estimate.variance = FALSE,
hideWarnings = TRUE, lower = lower,
upper = upper)@estimate
estim.method <- "itau"
}
}
copula <- fgmCopula(param = param, dim = dim(x)[2])
estim.method <- "mpl"
if (inherits(copula, "indepCopula")) {
stop(
"The parameter estimation is at boundary and an independence copula was
returned."
)
}
} else if ("plackett" == copula) {
if (param.est == TRUE) {
param <- try(fitCopula(plackettCopula(), data = x, method = "mpl",
estimate.variance = FALSE, hideWarnings = TRUE,
lower = lower, upper = upper)@estimate,
silent = TRUE)
estim.method <- "mpl"
if (inherits(param, "try-error")) {
warning(
"Pseudo Maximum Likelihood estimation of the parameter failed. The estimation
was performed with inversion of Kendall's Tau."
)
param <- fitCopula(plackettCopula(), data = x, method = "itau",
estimate.variance = FALSE, hideWarnings = TRUE,
lower = lower, upper = upper)@estimate
estim.method <- "itau"
}
}
copula <- plackettCopula(param = param)
estim.method <- "mpl"
if (inherits(copula, "indepCopula")) {
stop(
"The parameter estimation is at boundary and an independence copula was
returned."
)
}
}
if (any([email protected] == copula@parameters ||
[email protected] == copula@parameters)) {
stop(
"The provided or estimated copula parameter, performed with the copula package,
is at its boundary. The copula is excluded from the analysis since this
leads to very instable results for the GoF tests. Please consider amending the
parameter or control its estimation via the upper and lower bounds."
)
}
return(list(copula, x, estim.method, param.margins, df.est, flip))
} |
print_info<-echo<-FALSE
est2list<-function(x){
if (is(x,"list")){zx<-lapply(x,est2list);return(zx)}
slnm<-slotNames(x)
if(!isS4(x)){return(x)}
z<-lapply(1:length(slnm),function(i){
z1<-eval(parse(text=paste("x@",slnm[i],sep="")))
if(!isS4(z1)){return(z1)}
else {z1<-est2list(x=z1)}
z1})
names(z)<-slnm
assert.is(z,"list")
class(z)<-c("list",paste(class(x),"list",sep="."))
z
}
assert.is <- function(object, class2, text = ""){
stopifnot(is.character(class2))
if(missing(object))
stop(paste(class2, "object missing in assert.is", text))
stopifnot(length(class2) >= 1)
if(!is_any(object = object, class2 = class2))
{
warning(paste("got ", class(object), sep = ""))
message("got ", class(object), " when one of these classes was required:")
print(class2)
stop(text)
}
}
assert.are <- function(object, class2, ...){
assert.is(object, "list")
if(!is_nothing(object)){
for(obj in object)
assert.is(object = obj, class2 = class2, ...)
}
}
are <- function(object, class2){all(sapply(object, is_any, class2 = class2))}
are_null <- function(object){are(object, "NULL")}
is_vide<-is_nothing<-function(object){length(object)==0}
is_any <- function(object, class2){any(sapply(class2, is, object = object))}
setGeneric("is_prob", function(object,...) standardGeneric("is_prob"))
setMethod("is_prob",signature(object = "numeric" ), function(object,tolerance = 1e-3, ...){
boo <- all(object >= 0 - tolerance & object <= 1 + tolerance, ...)
!is.na(boo) && boo})
are_prob <- function(object, ...){all(sapply(object, is_prob, ...))}
is_err <- function(object){is(object, "try-error")}
is_error <- function(object){is(object, "try-error")||is_nothing(object)}
is_unk <- function(object){all(is_any(object,c("try-error","NULL")))||all(is.na(object))||is_nothing(object)}
are_unk <- function(object){all(sapply(object, is_unk))}
nsize<-function(x){
if(is_any(x,c("list","NULL","numeric","logical","character"))){c(1,length(x))}
else if(is_any(x,c("matrix","array","data.frame"))){c(nrow(x),ncol(x))}
else if(is_nothing(x)){c(0,0)}
else {c(length(x),1)}
}
vect2string<-function(x,sep="",...){paste(x,sep="",collapse=sep,...)}
make_labels<-function(n,nmvar=c("X"),n.ini=1){n.ini<-n.ini[1]
if(is_vide(n)){return(NULL)}
stopifnot(n>0)
paste(nmvar[1],c(1:n)+n.ini-1,sep="")
}
MakeNames<-function(x,nmvar=c("X","I"),...){
k.MakeNames<-function(x,col=T,nmvar="I",force=FALSE,unique=T,n0=1){
if(is_nothing(x)){return(x)}
k.nms<-function(nm,nn){
if(is_nothing(nm) | all(is_unk(nm)) | force==T ){
nm<-make_labels(n=nn,nmvar=nmvar[1],n.ini=n0[1])}
if(any(is.na(nm))){ind<-which(is.na(nm));nm[ind]<-paste(nmvar[1],ind,sep="")}
if(unique==T){nm<-make.unique(nm)}
nm
}
if(is_any(x,c("numeric","logical","character","list"))){
nm<-k.nms(nm=names(x),nn=length(x))
names(x)<-nm;return(x)}
assert.is(x,c("matrix","array","data.frame"))
nn<-nsize(x)
if(col){nm<-colnames(x);nn<-nn[2]}
else{nm<-rownames(x);nn<-nn[1]}
nm<-k.nms(nm=nm,nn=nn)
if(col){colnames(x)<-nm}
else{rownames(x)<-nm}
x
}
if(is_any(x,c("numeric","logical","character","list"))){
x<-k.MakeNames(x=x,nmvar=nmvar[1],...)}
else if(is_any(x,c("array","matrix","data.frame"))){
x<-k.MakeNames(x,col=T,nmvar=nmvar[pmax(2,length(nmvar))],...)
x<-k.MakeNames(x,col=F,nmvar=nmvar[1],...)
}
x
}
sameAsX_names<-function(x=NULL,y=NULL){
assert.are(list(x,y),c("numeric","logical","character"))
stopifnot(class(x)==class(y))
x<-MakeNames(x,nmvar="X")
y<-MakeNames(y,nmvar="X")
stopifnot(length(x)>=length(y))
if(are(list(x,y),"numeric")){zz<-as.numeric(NA)}
else if(are(list(x,y),"character")){zz<-as.character(NA)}
else if(are(list(x,y),"logical")){zz<-NA}
z<-rep(zz,length(x));names(z)<-names(x)
z[names(y)]<-y
stopifnot(identical(names(x),names(z)))
z
}
dabsTd<-function(x,df,ncp=0,...){dt(x=x,df=df,ncp=ncp,...)+dt(x=-x,df=df,ncp=ncp,...)}
attr(dabsTd,'name')<-'dabsTd'
setClass("est.lfdrmle", representation(LFDR.hat ="numeric",p0.hat = "numeric", ncp.hat= "numeric",
stat="numeric",info="list"))
setValidity("est.lfdrmle", function(object) {
dx<[email protected]
p0<[email protected]
ncp<[email protected]
stx<-object@stat
ix<-object@info
nvar<-length(stx)
stopifnot(length(names(dx))>0)
stopifnot(all(c(length(p0),length(ncp))%in%c(1,nvar)))
stopifnot(length(stx)==length(dx)&&identical(names(stx),names(dx)))
if(!are_prob(list(dx[is.finite(dx)],p0[is.finite(p0)]))){stop("error:LFDR.hat or p0.hat out of [0,1]")}
})
new_est.lfdrmle <- function(LFDR.hat,p0.hat,ncp.hat,stat,method=NULL,info=list()){
if(is_nothing(method)){method<-"lfdr.mle"}
if(!is(info,"list")){info<-list()}
assert.is(LFDR.hat,c("NULL","numeric","logical","try-error"))
assert.is(stat,c("numeric","logical"))
stopifnot(length(stat)>=length(LFDR.hat))
if(is_error(LFDR.hat)){
message(method," estimation failed ",Sys.time())
LFDR.hat<-rep(as.numeric(NA),length(stat))
names(LFDR.hat)<-names(stat)
method<-paste("FAILED-",method,sep="")
p0.hat<-ncp.hat<-as.numeric(NA)
}
nvar<-length(stat)
if(is(stat,"logical")){xx<-as.numeric(stat);names(xx)<-names(stat);stat<-xx}
if(is(LFDR.hat,"logical")){xx<-as.numeric(LFDR.hat);names(xx)<-names(LFDR.hat);LFDR.hat<-xx}
if(is(p0.hat,"logical")){xx<-as.numeric(p0.hat);names(xx)<-names(p0.hat);p0.hat<-xx}
if(is(ncp.hat,"logical")){xx<-as.numeric(ncp.hat);names(xx)<-names(ncp.hat);ncp.hat<-xx}
assert.are(list(LFDR.hat,p0.hat,ncp.hat,stat),"numeric")
stat<-MakeNames(stat,nmvar="X")
LFDR.hat<-MakeNames(LFDR.hat,nmvar="X")
if(length(ncp.hat)==nvar){names(ncp.hat)<-names(LFDR.hat)}
else if(length(ncp.hat)==1){names(ncp.hat)<-NULL}
if(length(p0.hat)==nvar){names(p0.hat)<-names(LFDR.hat)}
else if(length(p0.hat)==1){names(p0.hat)<-NULL}
LFDR.hat<-sameAsX_names(y=LFDR.hat,x=stat)
if(length(ncp.hat)>1&&length(stat)>1){
ncp.hat<-sameAsX_names(y=ncp.hat,x=stat)
p0.hat<-sameAsX_names(y=p0.hat,x=stat)
stopifnot(identical(names(stat),names(p0.hat)) && identical(names(LFDR.hat),names(ncp.hat)))}
stopifnot(all(c(length(p0.hat),length(ncp.hat))%in%c(1,nvar)))
infox<-c(list(method=toupper(method)),info)
new("est.lfdrmle",LFDR.hat=LFDR.hat, p0.hat=p0.hat,ncp.hat=ncp.hat,stat=stat,info=infox)
}
setMethod("[", signature(x = "est.lfdrmle", i = "ANY", j = "missing"), function(x, i, j, drop){
z<-x
nvar<-length([email protected])
[email protected] <- [email protected][i];names([email protected])<-names([email protected])[i]
z@stat <- x@stat [i];names(z@stat)<-names([email protected])[i]
if(length([email protected])==nvar){[email protected] <- [email protected][i];names([email protected])<-names([email protected])[i]}
if(length([email protected])==nvar){[email protected] <- [email protected][i];names([email protected])<-names([email protected])[i]}
stopifnot(validObject(z))
z})
setReplaceMethod("names", signature(x="est.lfdrmle",value="character"),function(x, value){
nvar<-length([email protected])
stopifnot(length(value)==nvar)
names([email protected])<-value
names(x@stat) <- value
if(length([email protected])==nvar){names([email protected]) <- value}
if(length([email protected])==nvar){names([email protected]) <- value}
stopifnot(validObject(x))
x})
setMethod("names", signature(x = "est.lfdrmle"), function(x){names([email protected])})
setMethod("as.numeric", signature(x="est.lfdrmle"),function(x) {[email protected]})
setMethod("length", signature(x = "est.lfdrmle"), function(x){length(as.numeric(x))})
setMethod("is_prob",signature(object = "est.lfdrmle" ), function(object,tolerance = 1e-3, ...){
is_prob([email protected],tolerance =tolerance,...) && is_prob([email protected],tolerance =tolerance,...)})
k.log_wlik_mixture <- function(W,p0,dalt,dFUN,d0=0,w=1,...){sum(w*log(p0*dFUN(W,ncp=d0,...) +(1-p0)*dFUN(W,ncp=dalt,...)))}
k.get_wd_max <- function(W,p0,dFUN,lower.ncp=1/1e3, upper.ncp=100,d0=0,w=1,...){
f <- function(dalt){k.log_wlik_mixture(p0=p0,W=W,dalt=dalt,w=w,dFUN=dFUN,d0=d0,...)}
as.numeric(optimize(f, lower=lower.ncp, upper=upper.ncp,maximum=TRUE))[1]
}
k.get_wp0_max <- function(W,dalt,dFUN=dabsTd, lower.p0=0, upper.p0=1,d0=0,w=1, ...){
f <- function(p0){k.log_wlik_mixture(p0=p0,W=W,dalt=dalt,w=w,dFUN=dFUN,d0=d0,...)}
as.numeric(optimize(f, lower=lower.p0, upper=upper.p0,maximum=TRUE))[1]
}
k.get_wlfdr <- function(W,p0,dalt,dFUN,d0=0,w=1,...){
zo<-(p0*dFUN(W,ncp=d0,...))/(p0*dFUN(W,ncp=d0,...)+(1-p0)*dFUN(W,ncp=dalt,...))^w
names(zo)<-names(W);zo
}
k.N_wlik <- function( W, dFUN, lower.ncp, upper.ncp, lower.p0, upper.p0,d0,w=1,...){
p0_max<-d_max<-NULL
if(lower.p0==upper.p0){p0_max <- lower.p0}
if(lower.ncp==upper.ncp){d_max <- lower.ncp}
if(!is.null(p0_max)&&!is.null(d_max)){zo<-c(p0_max,d_max);names(zo)<-c("p0.max","ncp.max");return(zo)}
if(is.null(p0_max)&&is.null(d_max)){
ff <- function(p0){
dalt<-k.get_wd_max(p0=p0,W=W,w=w,dFUN=dFUN,lower.ncp=lower.ncp,upper.ncp=upper.ncp,d0=d0,...)
k.log_wlik_mixture(p0=p0,W=W,w=w,dalt=dalt,dFUN=dFUN,d0=d0,...)}
p0_opt_result <- optimize(ff, lower=lower.p0, upper=upper.p0, maximum=TRUE)
p0_max <- as.numeric(p0_opt_result[1])
}
if(is.null(p0_max)&&!is.null(d_max)){
p0_max <- k.get_wp0_max(dalt=d_max, W=W,w=w,dFUN=dFUN, lower.p0=lower.p0, upper.p0=upper.p0,d0=d0,...)
}
if(!is.null(p0_max)&&is.null(d_max)){
d_max <- k.get_wd_max(p0=p0_max, W=W,w=w,dFUN=dFUN, lower.ncp=lower.ncp, upper.ncp=upper.ncp,d0=d0,...)}
if(!is_prob(p0_max)){stop("p0_max should be in [0,1]")}
zo<-c(p0_max,d_max);
return(zo)
}
k.lfdr.mle<- function(stat,dFUN,lower.ncp=1/1e3,upper.ncp=200,lower.p0=0,upper.p0=1, d0=0,w=1,fixed.p0=NULL,fixed.ncp=NULL,...){
if(length(fixed.p0)>0){stopifnot(is_prob(fixed.p0));lower.p0<-upper.p0<-fixed.p0 }
if(length(fixed.ncp)>0){lower.ncp<-upper.ncp<-fixed.ncp}
opt <- try(k.N_wlik(W=stat,w=w,d0=d0,dFUN=dFUN,lower.ncp=lower.ncp,upper.ncp=upper.ncp,lower.p0=lower.p0,upper.p0=upper.p0,...),silent=F)
if(is_err(opt)){return(list())}
lfdr_mix <- k.get_wlfdr(W=stat,w=1,p0=opt[1],dalt=opt[2],dFUN=dFUN,d0=d0,...)
if(is_err(lfdr_mix)){return(list())}
list(lfdr=lfdr_mix,p0=opt[1],ncp=opt[2])
}
k.perfeat<-function(stat,w=1,v,dFUN=dabsTd,d0,fixed.p0=NULL,fixed.ncp=NULL,lower.ncp=1/1e3, upper.ncp=200, lower.p0=0, upper.p0=1,...){
assert.are(list(stat,d0,v,w), "numeric");nvars<-length(stat)
stopifnot(is_prob(v))
if(length(w)==1){w<-rep(w,length(stat))}
if(abs(sum(w)-1)>1e-3){w<-w/sum(w)}
wz<-wx<-w
k.fun<-function(i){
wx[i]<-v*wz[i];
vars<- which(c(1:nvars)!=i)
xt<-stat[vars];xp<-stat[i]
stopifnot(all(wx>=0))
zvar<-k.lfdr.mle(stat=stat,dFUN=dFUN,lower.ncp=lower.ncp,upper.ncp=upper.ncp,lower.p0=lower.p0,upper.p0=upper.p0,
fixed.p0=fixed.p0,fixed.ncp=fixed.ncp,d0=d0,w=wx,...)
z1<-k.lfdr.mle(stat=xp,dFUN=dFUN,lower.ncp=lower.ncp,upper.ncp=upper.ncp,lower.p0=lower.p0,upper.p0=upper.p0,
fixed.ncp=zvar$ncp,fixed.p0=zvar$p0,d0=d0,w=1,...)
c(z1$lfdr,z1$p0,z1$ncp)
}
zo<-try(vapply(1:nvars,FUN=k.fun,FUN.VALUE=numeric(length=3)),silent=F)
if(is_err(zo)){return(list())}
colnames(zo)<-names(stat)
list(lfdr=zo[1,],p0=zo[2,],ncp=zo[3,])
}
k.lo<-function(stat,w=1,v,dFUN=dabsTd,d0,fixed.p0=NULL,fixed.ncp=NULL,lower.ncp=1/1e3, upper.ncp=200, lower.p0=0, upper.p0=1,...){
z1<-k.lfdr.mle(stat = stat,d0=d0,w=w,dFUN=dFUN,fixed.p0=fixed.p0,lower.ncp=lower.ncp,
upper.ncp=upper.ncp, lower.p0=lower.p0, upper.p0= upper.p0,fixed.ncp=fixed.ncp,...)
fixed.p0<-z1$p0
assert.is(fixed.p0,"numeric");stopifnot(is_prob(fixed.p0))
k.perfeat(stat=stat,w=w,v=v,dFUN=dFUN,d0=d0,fixed.p0=fixed.p0,fixed.ncp=fixed.ncp,
lower.ncp=lower.ncp,upper.ncp=upper.ncp, lower.p0=lower.p0, upper.p0= upper.p0,...)
}
k.checkings<-function(stat,dFUN,lower.ncp,upper.ncp,lower.p0,upper.p0,fixed.p0=NULL,fixed.ncp=NULL,v=1,d0=0,w=1,...){
if(all(is_unk(stat))){stop("invalid input")}
assert.is(dFUN,"function")
assert.are(list(stat,w,d0,v,lower.ncp,upper.ncp,lower.p0,upper.p0), "numeric")
assert.are(list(fixed.p0,fixed.ncp), c("numeric","NULL"))
nvars<-length(stat);if(nvars==0){return(NULL)}
stat<-MakeNames(stat,nmvar="X")
if(length(w)==1){w<-rep(w,nvars)}
stopifnot(length(w)%in%c(1,nvars))
stopifnot(all(w>=0))
W<-nW<-stat
pW<-dFUN(stat,ncp=0,...)
ind<-which(is.finite(stat) & is.finite(pW))
if(length(ind)==0){stop("non finite statistic values")}
stat<-stat[ind];w<-w[ind]
if(length(fixed.p0)>0){stopifnot(is_prob(fixed.p0));lower.p0<-upper.p0<-fixed.p0 }
if(length(fixed.ncp)>0){lower.ncp<-upper.ncp<-fixed.ncp}
if(!are_prob(list(lower.p0, upper.p0,v))){stop("v, lower.p0 and upper.p0 should be in [0,1]")}
stopifnot(lower.p0 <= upper.p0 && lower.ncp <= upper.ncp)
nvars<-length(stat)
stopifnot(length(w)%in%c(nvars))
stopifnot(all(w>=0))
if(abs(sum(w)-1)>1e-3){w<-w/sum(w)}
if(abs(sum(w)-1)>1e-3){stop("problem with weights")}
siz.num1<-(sapply(list(d0,v,lower.ncp,upper.ncp,lower.p0,upper.p0),length))
names(siz.num1)<-c("d0","v","lower.ncp","upper.ncp","lower.p0","upper.p0")
siz.num0<-(sapply(list(fixed.p0,fixed.ncp),length))
names(siz.num0)<-c("fixed.p0","fixed.ncp")
siz.numn<-(sapply(list(stat,w),length))
names(siz.numn)<-c("stat","w")
if(!all(siz.num1%in%c(1))){
stop(paste("numeric inputs: ",vect2string(names(siz.num1[!siz.num1%in%1]),sep=" ")," have length !=1"))}
if(!all(siz.num0%in%c(0,1))){
stop(paste("numeric inputs: ",vect2string(names(siz.num0[!siz.num0%in%c(0,1)]),sep=" ")," have length !=0 OR 1"))}
if(!all(siz.numn%in%c(nvars))){
stop(paste("numeric inputs: ",vect2string(names(siz.num0[!siz.num0%in%c(nvars)]),sep=" ")," have length !=",nvars))}
list(stat=stat,orig.stat=W,dFUN=dFUN,w=w,lower.ncp=lower.ncp,upper.ncp=upper.ncp,lower.p0=lower.p0,upper.p0=upper.p0,
fixed.p0=fixed.p0,fixed.ncp=fixed.ncp,v=v,d0=d0)
}
lfdr.hats<-function(stat=NULL,lfdr.fun="lfdr.mle",dFUN=dabsTd,lower.ncp=1e-3,upper.ncp=20,lower.p0=0,upper.p0=1,
fixed.p0=NULL,fixed.ncp=NULL,d0=0,v=1,w=1,...){
z<-k.checkings(stat=stat,w=w,v=v,dFUN=dFUN,d0=d0,lower.ncp=lower.ncp,upper.ncp=upper.ncp,
lower.p0=lower.p0, upper.p0= upper.p0,fixed.p0=fixed.p0,fixed.ncp=fixed.ncp,...)
if(lfdr.fun%in%c("lfdr.mle","mle","L0O","l0o")){z$w<-1
zo<-k.lfdr.mle(stat=z$stat,dFUN=z$dFUN,lower.ncp=z$lower.ncp,upper.ncp=z$upper.ncp,lower.p0=z$lower.p0,
upper.p0=z$upper.p0,fixed.p0=z$fixed.p0,fixed.ncp=z$fixed.ncp,d0=z$d0,w=z$w,...)
method<-"MLE"
}
else if(lfdr.fun%in%c("lfdr.mdl","mdl")){z$w<-1;z$v<-0
zo<-k.perfeat(stat=z$stat,w=z$w,v=z$v,dFUN=z$dFUN,d0=z$d0,fixed.p0=z$fixed.p0,fixed.ncp=z$fixed.ncp,
lower.ncp=z$lower.ncp,upper.ncp=z$upper.ncp, lower.p0=z$lower.p0, upper.p0= z$upper.p0,...)
method<-"MDL"}
else if(lfdr.fun%in%c("lfdr.l1o","l1o","L1O")){z$w<-1;z$v<-0
zo<-k.lo(stat=z$stat,w=z$w,v=z$v,dFUN=z$dFUN,d0=z$d0,fixed.p0=z$fixed.p0,fixed.ncp=z$fixed.ncp,
lower.ncp=z$lower.ncp,upper.ncp=z$upper.ncp, lower.p0=z$lower.p0, upper.p0= z$upper.p0,...)
method<-"L1O"
}
else if(lfdr.fun%in%c("lfdr.lho","lho","LHO")){z$w<-1;z$v<-1/2
zo<-k.lo(stat=z$stat,w=z$w,v=z$v,dFUN=z$dFUN,d0=z$d0,fixed.p0=z$fixed.p0,fixed.ncp=z$fixed.ncp,
lower.ncp=z$lower.ncp,upper.ncp=z$upper.ncp, lower.p0=z$lower.p0, upper.p0= z$upper.p0,...)
method<-"LHO"}
else if(lfdr.fun%in%c("lfdr.lo","lo","LO")){
zo<-k.lo(stat=z$stat,w=z$w,v=z$v,dFUN=z$dFUN,d0=z$d0,fixed.p0=z$fixed.p0,fixed.ncp=z$fixed.ncp,
lower.ncp=z$lower.ncp,upper.ncp=z$upper.ncp, lower.p0=z$lower.p0, upper.p0= z$upper.p0,...)
method<-paste("LO",round(z$v,1),sep="-v")
}
else if(lfdr.fun%in%c("lfdr.mdlo","mdlo","MDLO")){
zo<-k.perfeat(stat=z$stat,w=z$w,v=z$v,dFUN=z$dFUN,d0=z$d0,fixed.p0=z$fixed.p0,fixed.ncp=z$fixed.ncp,
lower.ncp=z$lower.ncp,upper.ncp=z$upper.ncp, lower.p0=z$lower.p0, upper.p0= z$upper.p0,...)
method<-paste("MDLO",round(z$v,1),sep="-v")
}
info<-z[c("lower.ncp","upper.ncp","lower.p0","upper.p0","fixed.p0","fixed.ncp","d0","v")]
lix<-sapply(info,length)
info<-info[lix>0]
zo<-new_est.lfdrmle(LFDR.hat=zo$lfdr,p0.hat=zo$p0,ncp.hat=zo$ncp,stat=z$orig.stat,method=method,info=info)
est2list(zo)
}
lfdr.mle<-function(x,dFUN=dabsTd, lower.ncp=1e-3,upper.ncp=20,lower.p0=0,upper.p0=1,fixed.p0=NULL,fixed.ncp=NULL,d0=0,...){
lfdr.hats(lfdr.fun="lfdr.mle",stat=x,dFUN=dFUN,lower.ncp=lower.ncp,upper.ncp=upper.ncp, lower.p0=lower.p0, upper.p0= upper.p0,
fixed.p0=fixed.p0,fixed.ncp=fixed.ncp,d0=d0,w=1,v=1,...)
}
lfdr.mdl<-function(x,dFUN=dabsTd,lower.ncp=1e-3,upper.ncp=20,lower.p0=0,upper.p0=1,fixed.p0=NULL,fixed.ncp=NULL,d0=0,...){
lfdr.hats(lfdr.fun="lfdr.mdl",stat=x,dFUN=dFUN, w=1,v=0,d0=d0,lower.ncp=lower.ncp,upper.ncp=upper.ncp, lower.p0=lower.p0, upper.p0= upper.p0,
fixed.p0=fixed.p0,fixed.ncp=fixed.ncp,...)
}
lfdr.l1o<-function(x,dFUN=dabsTd,lower.ncp=1e-3,upper.ncp=20,lower.p0=0,upper.p0=1,fixed.p0=NULL,fixed.ncp=NULL,d0=0,...){
lfdr.hats(lfdr.fun="lfdr.l1o",stat=x,dFUN=dFUN,w=1,v=0,d0=d0,lower.ncp=lower.ncp,upper.ncp=upper.ncp, lower.p0=lower.p0, upper.p0= upper.p0,
fixed.p0=fixed.p0,fixed.ncp=fixed.ncp,...)
}
lfdr.lho<-function(x,dFUN=dabsTd,lower.ncp=1e-3,upper.ncp=20,lower.p0=0,upper.p0=1,fixed.p0=NULL,fixed.ncp=NULL,d0=0,...){
lfdr.hats(lfdr.fun="lfdr.lho",stat=x,dFUN=dFUN,w=1,v=1/2,d0=d0,lower.ncp=lower.ncp,upper.ncp=upper.ncp, lower.p0=lower.p0, upper.p0= upper.p0,
fixed.p0=fixed.p0,fixed.ncp=fixed.ncp,...)
}
lfdr.lo<-function(x,dFUN=dabsTd,lower.ncp=1e-3,upper.ncp=20,lower.p0=0,upper.p0=1,fixed.p0=NULL,fixed.ncp=NULL,v=0,d0=0,...){
lfdr.hats(lfdr.fun="lfdr.lo",stat=x,dFUN=dFUN,w=1,v=v,d0=d0,lower.ncp=lower.ncp,upper.ncp=upper.ncp, lower.p0=lower.p0, upper.p0= upper.p0,
fixed.p0=fixed.p0,fixed.ncp=fixed.ncp,...)
}
lfdr.mdlo<-function(x,v=0,dFUN=dabsTd,lower.ncp=1e-3,upper.ncp=20,lower.p0=0,upper.p0=1,fixed.p0=NULL,fixed.ncp=NULL,d0=0,...){
lfdr.hats(lfdr.fun="lfdr.mdlo",stat=x,dFUN=dFUN,w=1,v=v,d0=d0,lower.ncp=lower.ncp,upper.ncp=upper.ncp, lower.p0=lower.p0, upper.p0= upper.p0,
fixed.p0=fixed.p0,fixed.ncp=fixed.ncp,...)
}
attr(lfdr.l1o,"name")<-"L1O"
attr(lfdr.mdl,"name")<-"MDL"
attr(lfdr.mle,"name")<-"MLE"
attr(lfdr.lho,"name")<-"LHO"
vectorized.dabsTd <- function(ncp, ...) {sapply(ncp, function(ncp) {dabsTd(ncp = ncp, ...)})}
get_n.groups <- function(n.features,n.null,group.size){
n <- (n.features - n.null)
if(group.size >n){
out <- 1
}else{
if((n %% group.size)!=0) {
out <- floor(n/group.size)+1
}else{
out <- n/group.size
}
}
out
}
get_groups <- function(n.features,n.null,n.groups){
n <- (n.features - n.null)
out <- rep(floor(n / n.groups), n.groups)
if((n %% n.groups) != 0) out[1:(n %% n.groups)] <- out[1:(n %% n.groups)] + 1
out
}
get_null.n.groups <- function(n.null,null_group.size){
n <- n.null
if(null_group.size >n){
out <-1
}else{
if((n %% null_group.size)!=0){
out <- floor(n/null_group.size)+1
}else{
out <- n/null_group.size
}
}
out
}
get_null.groups <- function(n.null,null.n.groups){
n <- n.null
out <- rep(floor(n / null.n.groups), null.n.groups)
if((n %% null.n.groups) != 0) out[1:(n %% null.n.groups)] <- out[1:(n %% null.n.groups)] + 1
out
}
rFUN_generator <- function(base_rFUN,...){
function(n, ncp,...)
{
stopifnot(length(n) == length(ncp))
unlist(lapply(1:length(n), function(i) base_rFUN(n[i], ncp[i],...)))
}
}
simulated_W <- function(n.features,n.null,rFUN=rFUN_generator(rchisq),true.ncp1,df,
N=(n.features-n.null),sided=ifelse(identical(rFUN, rFUN_generator(rchisq)),1,2),logic=TRUE){
if(n.null != 0 & logic == TRUE)
{
true.ncp1 <- c(rep(0,(length(N)-length(true.ncp1))), true.ncp1)
}
if(logic)
{
W <- numeric(n.features)
temp <- rFUN(rep(1, length(N)), df=df, true.ncp1)
W <- unlist(lapply(1:length(N), function(i) rep(temp[i], N[i])))
} else {
W <- numeric(n.features)
if(n.null != 0) W[1:n.null] <- rFUN(n.null, df, 0)
temp <- rFUN(rep(1, length(N)), df, true.ncp1)
W[(n.null+1):n.features] <- unlist(lapply(1:length(N), function(i) rep(temp[i], N[i])))
}
if(sided==1)
{
Data <- W
} else {
Data <- abs(W)
}
return(Data)
}
get_simulated_W <- function(n.features,true.p0,list.ncp1,rFUN,df){
II <- ifelse(runif(n.features,min=0,max=1) < true.p0, 0,1)
temp <- sample(list.ncp1,size =length(II),replace =TRUE)
true.ncp1 <- ifelse(II==0,rep(0,length(II)), temp)
W<- unlist(lapply(1:n.features, function(i) rFUN(n=1, df = df, ncp = true.ncp1[i])))
return(cbind(W,II,true.ncp1))
}
mix.ye.mle<-function(W,dFUN,df,lower.ncp=1e-3,upper.ncp=20,lower.p0=0,upper.p0=1,fixed.ncp=NULL,fixed.p0=NULL){
tol<-1e-3
if(!is.null(fixed.p0)){lower.p0<-fixed.p0-tol/2;upper.p0<-fixed.p0+tol/2}
if(!is.null(fixed.ncp)){lower.ncp<-fixed.ncp-tol/2;upper.ncp<-fixed.ncp+tol/2}
lower<-lower.ncp;upper<-upper.ncp
ostat<-W
z<-k.checkings(stat=W,dFUN=dFUN,lower.ncp=lower,upper.ncp=upper,lower.p0=lower.p0,upper.p0=upper.p0,df=df)
W<-z$stat
new.estimation <- function(LFDR.hat,p0.hat,ncp1.hat,d.hat){
list(LFDR.hat=LFDR.hat, p0.hat=p0.hat,ncp.hat=ncp1.hat)
}
log_lik_mixture <- function(p0,W,d_alt,dFUN,df=1){
sum(log(p0*dFUN(W,df=df,ncp=0) + (1-p0)*dFUN(W,df=df,ncp=d_alt)))
}
get_d_max <- function(p0,W,dFUN, df=1,lower,upper,...){
f <- function(d_alt){log_lik_mixture(p0=p0,W=W,d_alt=d_alt,dFUN=dFUN,df=df)}
as.numeric(optimize(f, lower=lower, upper=upper,maximum=TRUE,...))[1]
}
N_lik <- function(W,dFUN,df=1,lower,upper,lower.p0,upper.p0,...){
ff <- function(p0){
log_lik_mixture(p0,W,d_alt=get_d_max(p0,W=W,dFUN=dFUN,df=df,lower=lower,upper=upper,...),
dFUN=dFUN,df=df)
}
p0_opt_result <- optimize(ff, lower=lower.p0, upper=upper.p0, maximum=TRUE,...)
p0_max <- as.numeric(p0_opt_result[1])
d_max <- get_d_max(p0_max, W=W,dFUN=dFUN,df=df,lower=lower, upper=upper, ...)
return(c(p0_max,d_max))
}
get_lfdr <- function(pval,qFUN,W,p0,d_alt,dFUN=dchisq,df=1){
if(missing(W) && is.function(qFUN)){
W <- qFUN(pval, df = df,lower.tail=FALSE)
}
assert.is(W, "numeric")
(p0*dFUN(W,df=df,ncp=0))/(p0*dFUN(W,df=df,ncp=0)+(1-p0)*dFUN(W,df=df,ncp=d_alt))
}
MLE.LFDR_mixture <- function(pval,qFUN,W,df=1,dFUN=dchisq,lower,upper,ower.p0,upper.p0,...){
if(missing(W) && is.function(qFUN))
W <- qFUN(pval, df = df,lower.tail=FALSE)
else
stopifnot(missing(pval) && missing(qFUN))
assert.is(W, "numeric")
opt <- N_lik(W=W,dFUN=dFUN,df=df,lower=lower,upper=upper,lower.p0=lower.p0,upper.p0=upper.p0)
lfdr_mix <- get_lfdr(W=W,p0=opt[1],d_alt=opt[2],dFUN=dFUN,df=df)
return(list(lfdr_mix,opt[1],opt[2]))
}
mixture.mle.estimation <- function(pval,qFUN,W,df,dFUN,lower,upper,lower.p0,upper.p0,push,...){
if(missing(W) && is.function(qFUN)) {W <- qFUN(p=pval, df = df,ncp=0,lower.tail=FALSE)}
assert.is(W, "numeric")
opt <- N_lik(W=W,dFUN=dFUN,df=df,lower=lower,upper=upper,lower.p0=lower.p0,upper.p0=upper.p0,...)
lfdr_mix <- get_lfdr(W=W,p0=opt[1],d_alt=opt[2],dFUN=dFUN,df=df)
d <- numeric(0)
out <- new.estimation(LFDR.hat=lfdr_mix,p0.hat=opt[1],ncp1.hat=opt[2],d.hat=d)
if(!missing(push)) push(list(out=out, W=W))
out
}
Wx<-dFUN(W,df=df)
W<-W[is.finite(Wx)]
opt <- N_lik(W=W,dFUN=dFUN,df=df,lower=lower,upper=upper,lower.p0=lower.p0,upper.p0=upper.p0)
lfdr_mix <- get_lfdr(W=W,p0=opt[1],d_alt=opt[2],dFUN=dFUN,df=df)
list(LFDR.hat=sameAsX_names(y=lfdr_mix,x=ostat),p0.hat=opt[1],ncp.hat=opt[2])
}
pure.ye.mle<-function(W,dFUN,df,lower.ncp=1e-3,upper.ncp=20,lower.p0=0,upper.p0=1,fixed.ncp=NULL,fixed.p0=NULL){
tol<-1e-3
if(!is.null(fixed.p0)){lower.p0<-fixed.p0-tol/2;upper.p0<-fixed.p0+tol/2}
if(!is.null(fixed.ncp)){lower.ncp<-fixed.ncp-tol/2;upper.ncp<-fixed.ncp+tol/2}
lower<-lower.ncp;upper<-upper.ncp
ostat<-W
z<-k.checkings(stat=W,dFUN=dFUN,lower.ncp=lower,upper.ncp=upper,lower.p0=lower.p0,upper.p0=upper.p0,df=df)
W<-z$stat
log_lik_mixture <- function(p0,W,d_alt,dFUN,df=1){
sum(log(p0*dFUN(W,df=df,ncp=0) + (1-p0)*dFUN(W,df=df,ncp=d_alt)))
}
get_d_max <- function(p0,W,dFUN, df=1,lower,upper,...){
f <- function(d_alt){log_lik_mixture(p0=p0,W=W,d_alt=d_alt,dFUN=dFUN,df=df)}
as.numeric(optimize(f, lower=lower, upper=upper,maximum=TRUE,...))[1]
}
N_lik <- function(W,dFUN,df=1,lower,upper,lower.p0,upper.p0,...){
ff <- function(p0){
log_lik_mixture(p0,W,d_alt=get_d_max(p0,W=W,dFUN=dFUN,df=df,lower=lower,upper=upper,...),
dFUN=dFUN,df=df)
}
p0_opt_result <- optimize(ff, lower=lower.p0, upper=upper.p0, maximum=TRUE,...)
p0_max <- as.numeric(p0_opt_result[1])
d_max <- get_d_max(p0_max, W=W,dFUN=dFUN,df=df,lower=lower, upper=upper, ...)
return(c(p0_max,d_max))
}
get_lfdr <- function(pval,qFUN,W,p0,d_alt,dFUN=dchisq,df=1){
if(missing(W) && is.function(qFUN)){
W <- qFUN(pval, df = df,lower.tail=FALSE)
}
assert.is(W, "numeric")
(p0*dFUN(W,df=df,ncp=0))/(p0*dFUN(W,df=df,ncp=0)+(1-p0)*dFUN(W,df=df,ncp=d_alt))
}
MLE.LFDR_mixture <- function(pval,qFUN,W,df=1,dFUN=dchisq,lower,upper,lower.p0,upper.p0,...){
if(missing(W) && is.function(qFUN))
W <- qFUN(pval, df = df,lower.tail=FALSE)
else
stopifnot(missing(pval) && missing(qFUN))
assert.is(W, "numeric")
opt <- N_lik(W=W,dFUN=dFUN,df=df,lower=lower,upper=upper,lower.p0=lower.p0,upper.p0=upper.p0)
lfdr_mix <- get_lfdr(W=W,p0=opt[1],d_alt=opt[2],dFUN=dFUN,df=df)
return(list(lfdr_mix,opt[1],opt[2]))
}
Wx<-dFUN(W,df=df)
W<-W[is.finite(Wx)]
opt <- N_lik(W=W,dFUN=dFUN,df=df,lower=lower,upper=upper,lower.p0=lower.p0,upper.p0=upper.p0)
lfdr_mix <- get_lfdr(W=W,p0=opt[1],d_alt=opt[2],dFUN=dFUN,df=df)
return(list(LFDR.hat=sameAsX_names(x=ostat,y=lfdr_mix),p0.hat=opt[1],ncp.hat=opt[2]))
}
ye.mle<-function(W,df,dFUN=dabsTd,lower.ncp=1e-3,upper.ncp=20,lower.p0=0,upper.p0=1,d0=0,fixed.ncp=NULL,fixed.p0=NULL,...){
tol<-1e-3
if(!is.null(fixed.p0)){lower.p0<-fixed.p0-tol/2;upper.p0<-fixed.p0+tol/2}
if(!is.null(fixed.ncp)){lower.ncp<-fixed.ncp-tol/2;upper.ncp<-fixed.ncp+tol/2}
ostat<-W
z<-k.checkings(stat=W,dFUN=dFUN,lower.ncp=lower.ncp,upper.ncp=upper.ncp,lower.p0=lower.p0,upper.p0=upper.p0,df=df)
W<-z$stat
log_lik_mixture <- function(p0,W,dalt,dFUN,df,d0=0,...){
sum(log(p0*dFUN(W,df=df,ncp=d0,...) + (1-p0)*dFUN(W,df=df,ncp=dalt,...)))
}
get_d_max <- function(p0,W,dFUN, df,lower.ncp,upper.ncp,d0=0,...){
f <- function(dalt){log_lik_mixture(p0=p0,W=W,dalt=dalt,dFUN=dFUN,df=df,d0=d0,...)}
as.numeric(optimize(f, lower=lower.ncp, upper=upper.ncp,maximum=TRUE))[1]
}
N_lik <- function(W,dFUN,df,lower.ncp,upper.ncp,lower.p0,upper.p0,d0=0,...){
ff <- function(p0){
log_lik_mixture(p0,W,dalt=get_d_max(p0,W=W,dFUN=dFUN,df=df,lower.ncp=lower.ncp,upper.ncp=upper.ncp,d0=d0,...),
dFUN=dFUN,df=df,d0=d0,...)}
p0_opt_result <- optimize(ff, lower=lower.p0, upper=upper.p0, maximum=TRUE)
p0_max <- as.numeric(p0_opt_result[1])
d_max <- get_d_max(p0=p0_max, W=W,dFUN=dFUN,df=df,lower.ncp=lower.ncp, upper.ncp=upper.ncp,d0=d0, ...)
return(c(p0_max,d_max))
}
get_lfdr <- function(pval,qFUN,W,p0,dalt,dFUN,df,d0,...){
if(missing(W) && is.function(qFUN)){W <- qFUN(pval=pval, df = df,lower.tail=FALSE,...)}
assert.is(W, "numeric")
(p0*dFUN(W,df=df,ncp=d0,...))/(p0*dFUN(W,df=df,ncp=d0,...)+(1-p0)* dFUN(W,df=df,ncp=dalt,...))
}
mixture.mle.estimation <- function(W,df,dFUN,lower.ncp,upper.ncp,lower.p0,upper.p0,d0,...){
assert.is(W, "numeric")
opt <- N_lik(W=W,dFUN=dFUN,df=df,lower.ncp=lower.ncp,upper.ncp=upper.ncp,lower.p0=lower.p0,upper.p0=upper.p0,d0=d0,...)
lfdr_mix <- get_lfdr(W=W,p0=opt[1],dalt=opt[2],dFUN=dFUN,df=df,d0=d0,...)
d <- numeric(0)
infox<-list(method="ye.mle")
new_est.lfdrmle(stat=ostat,LFDR.hat=lfdr_mix,p0.hat=opt[1],ncp.hat=opt[2],info=infox)
}
zo<-mixture.mle.estimation (W=W,df=df,dFUN=dFUN,lower.ncp=lower.ncp,upper.ncp=upper.ncp,lower.p0=lower.p0,upper.p0=upper.p0,d0=d0,...)
est2list(zo)} |
validate_limit_ia <- function(x) {
if (is.null(x)) stop("invalid ia, is NULL must be between 0 and one less the number of features")
if (anyNA(x)) stop("missing values ia")
if (!all(x >= 0)) stop("ia values < 0")
x
}
validate_limit_ij <- function(x) {
if (is.null(x)) stop("invalid ij, is NULL")
if (length(x) < 2) stop("ij values not of length 2")
if (length(x) > 2) {
message("ij values longer than 2, only first two used")
x <- x[1:2]
}
if (anyNA(x)) stop("missing values ij")
if (!all(x >= 0)) stop("ij values < 0")
if (x[2] < x[1]) stop("ij values must be increasing")
if (as.integer(x[1]) == as.integer(x[2])) stop("ij values must not be duplicated (use vapour_read_geometry_ia() to read a single geometry)")
x
}
validate_limit_fa <- function(x) {
if (is.null(x)) stop("invalid fa, is NULL")
if (length(x) < 1) stop("no valid fa value")
if (anyNA(x) | any(!is.finite(x))) stop("missing values fa")
x
}
vapour_read_geometry_ia <- function(dsource, layer = 0L, sql = "", extent = NA, ia = NULL) {
if (!is.numeric(layer)) layer <- index_layer(dsource, layer)
ia <- validate_limit_ia(ia)
extent <- validate_extent(extent, sql)
gdal_dsn_read_geom_ia( dsn = dsource, layer = layer, sql = sql, ex = extent, format = "wkb", ia = ia)
}
vapour_read_geometry_ij <- function(dsource, layer = 0L, sql = "", extent = NA, ij = NULL) {
if (!is.numeric(layer)) layer <- index_layer(dsource, layer)
ij <- validate_limit_ij(ij)
extent <- validate_extent(extent, sql)
gdal_dsn_read_geom_ij( dsn = dsource, layer = layer, sql = sql, ex = extent, format = "wkb", ij = ij)
} |
print.comp.cutpoints <-
function(x, digits = 4, ...) {
cat("\n\n*************************************************\n")
cat("Compare optimal number of cut points")
cat("\n*************************************************\n\n")
cat(paste("Bias corrected AUC difference:", round(x$AUC.cor.diff, 4), sep=" "), fill=TRUE)
cat(paste("95% Bootstrap Confidence Interval:","(",round(x$icb.auc.diff[1], 4),",", round(x$icb.auc.diff[2], 4), ")" ,sep=" "), fill=TRUE)
invisible(x)
} |
knitr::opts_chunk$set(
collapse = TRUE,
comment = "
out.width = "100%"
)
knitr::include_graphics("tripSplit-chunk-3-1.png", dpi=50)
knitr::include_graphics("estSpaceUse-1.png", dpi=50)
knitr::include_graphics("repAssess-1.png", dpi=100)
repr <- data.frame(out = 98)
knitr::include_graphics("plot_KBA_sf.png", dpi=50)
knitr::include_graphics("KBA_sp_plot.png", dpi=50) |
neon_data <- function(product,
start_date = NA,
end_date = NA,
site = NA,
type = NA,
release = NA,
quiet = FALSE,
api = "https://data.neonscience.org/api/v0",
.token = Sys.getenv("NEON_TOKEN")){
data_api <- data_api_queries(product = product,
start_date = start_date,
end_date = end_date,
site = site,
type = type,
release = release,
quiet = quiet,
api = api,
.token = .token)
batch <- 950
if(.token == "") batch <- 150
pb <- progress::progress_bar$new(
format = paste(" requesting", product,
"from API [:bar] :percent in :elapsed, eta: :eta"),
total = length(data_api),
clear = FALSE, width= 80)
resp <- vector("list", length = length(data_api))
for(i in seq_along(data_api)){
if(!quiet){ pb$tick() }
resp[[i]] <- httr::GET(data_api[[i]],
httr::add_headers("X-API-Token" = .token))
status <- neon_warn_http_errors(resp[[i]])
if(status == 429){
resp[[i]] <- httr::GET(data_api[[i]],
httr::add_headers("X-API-Token" = .token))
}
if(i %% batch == 0){
if(!quiet) message(" NEON rate limiting enforced, pausing for 100s\n")
Sys.sleep(105)
}
}
data <- do.call(rbind,
lapply(resp, function(x) {
status <- httr::status_code(x)
if(status >= 400) return(NULL)
cont <- httr::content(x, as = "text")
dat <- jsonlite::fromJSON(cont)[[1]]
if(length(dat) == 0) return(NULL)
if(length(dat$files) == 0) return(NULL)
out <- dat$files
out$release <- dat$release
out
}))
tibble::as_tibble(data)
}
neon_warn_http_errors <- function(x){
status <- httr::status_code(x)
if(status < 400) return(invisible(0L))
out <- httr::content(x, encoding = "UTF-8")
message(" NEON rate limiting enforced, pausing for 100s\n")
Sys.sleep(101)
invisible(status)
}
data_api_queries <- function(product,
start_date = NA,
end_date = NA,
site = NA,
type = NA,
release = NA,
quiet = FALSE,
api = "https://data.neonscience.org/api/v0",
.token = Sys.getenv("NEON_TOKEN")){
start_date <- as.Date(start_date)
end_date <- as.Date(end_date)
sites_df <- neon_sites(api)
dataProducts <- do.call(rbind, sites_df$dataProducts)
available <- dataProducts[dataProducts$dataProductCode %in% product,]
data_api <- unlist(available$availableDataUrls)
product_regex <- "DP\\d\\.\\d{5}\\.\\d{3}"
regex <- paste0(api, "/data/", product_regex, "/(\\w+)/(\\d{4}-\\d{2})$")
dates <- as.Date(gsub(regex, "\\2-01", data_api))
if(!is.na(start_date)){
data_api <- data_api[dates >= start_date]
dates <- as.Date(gsub(regex, "\\2-01", data_api))
}
if(!is.na(end_date)){
data_api <- data_api[dates <= end_date]
}
data_sites <- gsub(regex, "\\1", data_api)
if(!all(is.na(site))){
data_api <- data_api[data_sites %in% site]
}
if(length(data_api) == 0){
if(!quiet) message(" No files to download.")
return(invisible(NULL))
}
if(!is.na(release)){
data_api <- vapply(data_api,
httr::modify_url,
character(1L),
query = list(release=release),
USE.NAMES = FALSE)
}
if(!is.na(type)){
if( !(type %in% c("basic", "expanded")) ){
warning("type must be 'basic', 'expanded', or NA (default)", call. = FALSE)
return(data_api)
}
data_api <- vapply(data_api,
httr::modify_url,
character(1L),
query = list(package=type),
USE.NAMES = FALSE)
}
data_api
} |
test_that("nnf_mse_loss", {
x <- torch_tensor(c(1,2,3))
y <- torch_tensor(c(2,3,4))
o <- nnf_mse_loss(x, y)
expect_equal_to_r(o, 1)
y <- y$unsqueeze(2)
expect_warning(
nnf_mse_loss(x, y),
regexp = "target size"
)
})
test_that("nnf_binary_cross_entropy", {
x <- torch_tensor(c(0, 1))$view(c(-1, 1))
y <- torch_tensor(c(0, 1))$view(c(-1, 1))
expect_equal_to_r(nnf_binary_cross_entropy(x, y), 0)
}) |
integer_parameter <- function(
id,
default,
distribution,
description = NULL,
tuneable = TRUE
) {
assert_that(is.numeric(default), is_distribution(distribution))
parameter(
id = id,
default = default,
distribution = distribution,
description = description,
tuneable = tuneable
) %>%
add_class("integer_parameter")
}
as_paramhelper.integer_parameter <- function(x) {
dfun <- distribution_function(x$distribution)
qfun <- quantile_function(x$distribution)
length <- length(x$default)
requireNamespace("ParamHelpers")
fun <- if (length == 1) ParamHelpers::makeNumericParam else ParamHelpers::makeNumericVectorParam
args <- list(
id = x$id,
lower = dfun(x$distribution$lower - .5 + 1e-10),
upper = dfun(x$distribution$upper + .5 - 1e-10),
default = dfun(x$default),
trafo = function(x) as.integer(round(qfun(x))),
tunable = x$tuneable
)
if (length != 1) args$len <- length
do.call(fun, args)
}
as_descriptive_tibble.integer_parameter <- function(x) {
tibble(
id = x$id,
type = "integer",
domain = as.character(x$distribution),
default = collapse_set(x$default)
)
} |
integrate_identity <- function(object, which=c("lower", "upper"), from, to, n=100L)
{
which <- match.arg(which)
stopifnot(is.numeric(from), length(from) == 1, is.finite(from))
stopifnot(is.numeric(to), length(to) == 1, is.finite(to))
stopifnot(is.numeric(n), length(n) == 1, n > 1)
br <- seq(from, to, length.out=4*n-3)
if (which == 'lower')
fval <- (object@a1+(object@a2-object@a1)*object@lower(br))*br
else
fval <- (object@a3+(object@a4-object@a3)*object@upper(br))*br
sum(fval * c(7, rep(c(32, 12, 32, 14), times=n-2), 32, 12, 32, 7)/90)*(to-from)/(n-1)
}
integrate_discont_val <- function(f, from, to, discontinuities=numeric(0), ...)
{
if (!is.numeric(discontinuities))
stop("`discontinuities' should be numeric")
stopifnot(from <= to)
discontinuities <- discontinuities[discontinuities > from & discontinuities < to]
m <- length(discontinuities)
if (m == 0)
return(integrate(f=f, lower=from, upper=to, ...)$value)
if (is.unsorted(discontinuities))
stop("`discontinuities' should be ordered nondecreasingly")
x <- c(from, discontinuities, to)
v <- numeric(m+1)
for (i in 1:(m+1))
{
v[i] <- integrate(f=f, lower=x[i]+.Machine$double.eps^0.5, upper=x[i+1]-.Machine$double.eps^0.5, ...)$value
}
return(sum(v))
}
setGeneric("integrateAlpha",
function(object, which, from, to, ...) standardGeneric("integrateAlpha"))
setMethod(
f="integrateAlpha",
signature(object="FuzzyNumber", which="character",
from="numeric", to="numeric"),
definition=function(object, which=c("lower","upper"),
from=0, to=1, weight=NULL, transform=NULL, ...)
{
which <- match.arg(which)
if (length(from) != 1 || length(to) != 1 || from < 0 || to > 1)
stop("invalid `from' or `to'")
if (!is.null(weight) && (class(weight) != "function" || length(formals(weight)) != 1))
stop("`weight' should be a function with 1 parameter")
if (!is.null(transform) && (class(transform) != "function" || length(formals(transform)) != 2))
stop("`transform' should be a function with 2 parameter")
if (!is.null(weight) && !is.null(transform))
stop("specify either `weight', `transform' or none")
if (which == "lower")
{
if (!is.null(weight))
{
fun <- function(alpha)
(object@a1+(object@a2-object@a1)*object@lower(alpha))*weight(alpha)
} else if (!is.null(transform))
{
fun <- function(alpha)
transform(alpha, object@a1+(object@a2-object@a1)*object@lower(alpha))
} else
{
fun <- function(alpha)
object@a1+(object@a2-object@a1)*object@lower(alpha)
}
} else
{
if (!is.null(weight))
{
fun <- function(alpha)
(object@a3+(object@a4-object@a3)*object@upper(alpha))*weight(alpha)
} else if (!is.null(transform))
{
fun <- function(alpha)
transform(alpha, object@a3+(object@a4-object@a3)*object@upper(alpha))
} else
{
fun <- function(alpha)
object@a3+(object@a4-object@a3)*object@upper(alpha)
}
}
integrate(f=fun, from, to, ...)$value
}
)
setMethod(
f="integrateAlpha",
signature(object="DiscontinuousFuzzyNumber", which="character",
from="numeric", to="numeric"),
definition=function(object, which=c("lower", "upper"),
from=0, to=1, weight=NULL, transform=NULL, ...)
{
which <- match.arg(which)
if (length(from) != 1 || length(to) != 1 || from < 0 || to > 1)
stop("invalid `from' or `to'")
if (!is.null(weight) && (class(weight) != "function" || length(formals(weight)) != 1))
stop("`weight' should be a function with 1 parameter")
if (!is.null(transform) && (class(transform) != "function" || length(formals(transform)) != 2))
stop("`transform' should be a function with 2 parameter")
if (!is.null(weight) && !is.null(transform))
stop("specify either `weight', `transform' or none")
if (which == "lower")
{
if (!is.null(weight))
{
fun <- function(alpha)
(object@a1+(object@a2-object@a1)*object@lower(alpha))*weight(alpha)
} else if (!is.null(transform))
{
fun <- function(alpha)
transform(alpha, object@a1+(object@a2-object@a1)*object@lower(alpha))
} else
{
fun <- function(alpha)
object@a1+(object@a2-object@a1)*object@lower(alpha)
}
disconts <- [email protected]
} else
{
if (!is.null(weight))
{
fun <- function(alpha)
(object@a3+(object@a4-object@a3)*object@upper(alpha))*weight(alpha)
} else if (!is.null(transform))
{
fun <- function(alpha)
transform(alpha, object@a3+(object@a4-object@a3)*object@upper(alpha))
} else
{
fun <- function(alpha)
object@a3+(object@a4-object@a3)*object@upper(alpha)
}
disconts <- [email protected]
}
integrate_discont_val(fun, from, to,
discontinuities=disconts, ...)
}
) |
"N" <- 12
"x" <-
c(6, 9, 17, 22, 7, 5, 5, 14, 9, 7, 9, 51)
"y" <-
c(5, 2, 0, 0, 2, 1, 0, 0, 0, 0, 13, 0)
"t" <-
c(11, 11, 17, 22, 9, 6, 5, 14, 9, 7, 22, 51) |
clear_cache <- function() {
memoise::forget(memoised_GET)
} |
plines <- function(x, y = NULL, type = "l", proj, ...) {
arglist <- list(...)
object <- arg.check.plines(x, y, type, proj, arglist)
if (proj != "none") {
projxy <- mapproj::mapproject(object$x, object$y)
object$x <- projxy$x
object$y <- projxy$y
}
f <- graphics::lines
do.call(f, object)
}
arg.check.plines <- function(x, y, type, proj, arglist) {
if (is.list(x)) {
if (is.null(x$x) | is.null(x$y)) {
stop("If x is a list, it should have arguments x and y")
}
if (length(x$x) != length(x$y)) {
stop("x$x and x$y should have the same length")
}
if (!is.numeric(x$x) | !is.numeric(x$y)) {
stop("x and y should be numeric")
}
y <- x$y
x <- x$x
} else {
if (is.null(y)) {
y <- x
x <- seq_len(x)
} else {
if (!is.numeric(x) | !is.numeric(y)) {
stop("x and y should be numeric")
}
if (length(x) != length(y)) {
stop("x and y should have the same length")
}
}
}
if (!is.element(type, c("b", "c", "h", "l", "n", "o", "p", "s"))) {
stop("invalid type argument")
}
if (length(proj) != 1) {
stop("proj should be a single character string")
}
if (!is.character(proj)) {
stop("proj should be a single character string")
}
if (proj != "none") {
p <- try(mapproj::.Last.projection(), silent = TRUE)
if (class(p) == "try-error") {
stop("No projection has been used in current plot.
Set \"proj\" in the pimage or autoimage functions.")
} else {
if (p$projection != proj) {
stop("proj and last projection used do not match")
}
}
}
arglist$x <- x
arglist$y <- y
arglist$type <- type
arglist
} |
`HOZscale` <-
function(z, col, units="", SIDE=1, s1=.6, s2=0.95, format=1, digits=3, cex=1, cex.units=1)
{
if(missing(units)) { units="" }
if(missing(SIDE)) { SIDE=1}
if(missing(s1)) { s1=0.6 }
if(missing(s2)) { s2=0.95 }
u = par("usr")
f = par("pin")
raty = (u[4]-u[3])/f[2]
dy = (u[4]-u[3])*.05
dx = (u[2]-u[1])*.3
if(SIDE==1)
{
ym = ymarginfo(SIDE=1, s1=s1, s2=s2)
LU=list(x=c(u[1]+dx*0.1, u[1]+dx*0.1+dx), y = ym)
}
else
{
ym = ymarginfo(SIDE=3, s1=s1, s2=s2)
LU=list(x=c(u[1]+dx*0.1, u[1]+dx*0.1+dx), y = ym)
}
rng = range(z, na.rm = TRUE)
i <- seq(along = col)
BX = (LU$x[2]-LU$x[1])/length(i)
x1 =LU$x[1]+(i-1)*BX
x2 = x1+BX
y1 = LU$y[1]
y2 = LU$y[2]
rect(x1,y1,x2,y2, col=col, xpd = TRUE, border=NA)
if(format==2)
{
char = format(rng[2], scientific = T)
sp.char = as.numeric( unlist( strsplit(char, split='e') ) )
mant = round(sp.char[1], digits=digits)
expt =round(sp.char[2])
if(expt==0)
{
text(LU$x[2]+BX, (y1+y2)/2, labels=mant ,adj=c(0,.5), xpd = TRUE , cex=cex )
}
else
{
text(LU$x[2]+BX, (y1+y2)/2, labels=bquote(.(mant)%*%10^.(expt)) ,adj=c(0,.5), xpd = TRUE, cex=cex )
}
char = format(rng[1], scientific = T)
sp.char = as.numeric( unlist( strsplit(char, split='e') ) )
mant = round(sp.char[1], digits=digits)
expt =round(sp.char[2])
if(expt==0)
{
text(LU$x[1]-BX, (y1+y2)/2, labels=mant ,adj=c(1, 0.5), xpd = TRUE, cex=cex )
}
else
{
text(LU$x[1]-BX/2, (y1+y2)/2, labels=bquote(.(mant)%*%10^.(expt)), adj=c(1, 0.5) , xpd = TRUE, cex=cex)
}
if(SIDE==1)
{
text( mean(LU$x), y1, labels=units, adj=c(0.5, -0.1) , xpd = TRUE, cex=cex.units)
}
else
{
text( mean(LU$x), y2, labels=units, adj=c(0.5, -0.1) , xpd = TRUE, cex=cex.units)
}
}
else
{
rlab = paste(sep=" ", format.default(rng[2], digits=3), units)
text(LU$x[2]+BX, (y1+y2)/2, labels=rlab, adj=0, xpd = TRUE, cex=cex)
text(LU$x[1]-BX/2, (y1+y2)/2, labels=format.default(rng[1], digits=3), adj=1, xpd = TRUE, cex=cex)
}
rect(LU$x[1], LU$y[1], LU$x[2], LU$y[2], xpd=TRUE)
} |
tropsvm_helper <- function(x, y, assignment = NULL, ind = 1, newx = NULL, newy = NULL) {
classes <- unique(y)
reorder_ind <- c(which(y == classes[1]), which(y == classes[2]))
label <- y[reorder_ind]
data <- x[reorder_ind, ]
n1 <- sum(label == classes[1])
n2 <- sum(label == classes[2])
n <- n1 + n2
names(assignment) <- c("ip", "iq", "jp", "jq")
ip <- assignment[1]
jp <- assignment[3]
iq <- assignment[2]
jq <- assignment[4]
f.obj <- c(1, rep(0, 4), c(
rep(-1, n1), rep(-1, n1), rep(-1, n1), rep(-1, n1), rep(-1, n2),
rep(-1, n2), rep(-1, n2), rep(-1, n2)
))
f.conp <- rbind(
cbind(rep(1, n1), rep(-1, n1), rep(1, n1), rep(0, n1), rep(0, n1)),
cbind(rep(0, n1), rep(-1, n1), rep(1, n1), rep(0, n1), rep(0, n1)),
cbind(rep(0, n1), rep(0, n1), rep(-1, n1), rep(1, n1), rep(0, n1)),
cbind(rep(0, n1), rep(0, n1), rep(-1, n1), rep(0, n1), rep(1, n1))
)
f.conq <- rbind(
cbind(rep(1, n2), rep(0, n2), rep(0, n2), rep(-1, n2), rep(1, n2)),
cbind(rep(0, n2), rep(0, n2), rep(0, n2), rep(-1, n2), rep(1, n2)),
cbind(rep(0, n2), rep(1, n2), rep(0, n2), rep(0, n2), rep(-1, n2)),
cbind(rep(0, n2), rep(0, n2), rep(1, n2), rep(0, n2), rep(-1, n2))
)
f.con <- cbind(rbind(f.conp, f.conq), diag(-1, nrow = 4 * n, ncol = 4 * n))
f.dir <- rep("<=", n)
f.rhs <- c(
rep(data[1:n1, ip] - data[1:n1, jp], 2),
data[1:n1, jp] - data[1:n1, iq],
data[1:n1, jp] - data[1:n1, jq],
rep(data[-c(1:n1), iq] - data[-c(1:n1), jq], 2),
data[-c(1:n1), jq] - data[-c(1:n1), ip],
data[-c(1:n1), jq] - data[-c(1:n1), jp]
)
reorder_ind <- c(which(newy == classes[1]), which(newy == classes[2]))
val_label <- newy[reorder_ind]
val_data <- newx[reorder_ind, ]
val_n1 <- sum(val_label == classes[1])
omega <- rep(0, ncol(data))
omega[c(ip, jp, iq, jq)] <- lp("max", f.obj, f.con, f.dir, f.rhs)$solution[2:5]
omega[-c(ip, jp, iq, jq)] <- colMins(-data[, -c(ip, jp, iq, jq)] + c(data[1:n1, jp] + omega[jp], data[-c(1:n1), jq] + omega[jq]), T)
shifted_val_data <- eachrow(val_data, omega, "+")
diff <- eachrow(t(shifted_val_data), rowMaxs(shifted_val_data, T), oper = "-")
raw_classification <- lapply(lapply(seq_len(ncol(diff)), function(i) diff[, i]), function(x) {
which(abs(x) < 1e-10)
})
if (length(unique(assignment)) == 2) {
accuracy <- (sum(raw_classification[1:val_n1] == ip) + sum(raw_classification[-c(1:val_n1)] == iq)) / length(raw_classification)
} else {
all_method_ind <- comboGeneral(8, 4)
if (length(unique(assignment)) == 4) {
P_base <- matrix(c(
1, 0, 0, 0,
0, 1, 0, 0,
1, 1, 0, 0,
1, 1, 1, 1
), ncol = 4, byrow = T)
Q_base <- matrix(c(
0, 0, 1, 0,
0, 0, 0, 1,
0, 0, 1, 1,
0, 0, 0, 0
), ncol = 4, byrow = T)
PQ_com <- matrix(c(
1, 0, 1, 0,
1, 0, 0, 1,
0, 1, 1, 0,
0, 1, 0, 1,
1, 1, 1, 0,
1, 1, 0, 1,
1, 0, 1, 1,
0, 1, 1, 1
), ncol = 4, byrow = T)
}
if (length(unique(assignment)) == 3) {
P_base <- c()
Q_base <- c()
PQ_com <- matrix(c(
1, 0, 0,
0, 1, 0,
0, 0, 1,
1, 1, 0,
1, 0, 1,
0, 1, 1,
1, 1, 1,
0, 0, 0
), ncol = 3, byrow = T)
if (ip == jq) {
PQ_com <- PQ_com[, c(1, 2, 3, 1)]
}
if (iq == jp) {
PQ_com <- PQ_com[, c(1, 2, 2, 3)]
}
if (jp == jq) {
PQ_com <- PQ_com[, c(1, 2, 3, 2)]
}
}
colnames(PQ_com) <- c("ip", "jp", "iq", "jq")
accuracy <- sapply(ind, function(l) {
P <- rbind(P_base, PQ_com[all_method_ind[l, ], ])
Q <- rbind(Q_base, PQ_com[-all_method_ind[l, ], ])
sum(c(sapply(raw_classification[1:val_n1], function(x) {
v <- c(ip, jp, iq, jq) %in% x
return(sum(colSums(t(P) == v) == ncol(P)))
}), sapply(raw_classification[-c(1:val_n1)], function(x) {
v <- c(ip, jp, iq, jq) %in% x
return(sum(colSums(t(Q) == v) == ncol(Q)))
}))) / length(raw_classification)
})
}
accuracy
} |
`swapTA` <-
function(ta1,ta2,occ1=1,occ2=1,dev) {
if(missing(ta1) || missing(ta2)) stop("two TA indicator required")
if(missing(dev)) dev <- dev.cur()
ta.list <- listTA(dev)
lchob <- get.chob()[[dev]]
if(regexpr("^add",ta1) == -1) ta1 <- paste("add",ta1,sep='')
if(regexpr("^add",ta2) == -1) ta2 <- paste("add",ta2,sep='')
which.ta1 <- which(ta1==sapply(ta.list,
function(x) deparse(x[[1]])))[occ1]
which.ta2 <- which(ta2==sapply(ta.list,
function(x) deparse(x[[1]])))[occ2]
tmp.ta1 <- [email protected]$TA[[which.ta1]]
tmp.ta2 <- [email protected]$TA[[which.ta2]]
[email protected]$TA[[which.ta1]] <- tmp.ta2
[email protected]$TA[[which.ta2]] <- tmp.ta1
do.call("chartSeries.chob",list(lchob))
write.chob(lchob,lchob@device)
}
`moveTA` <-
function(ta,pos,occ=1,dev) {
pos <- pos - 1
if(missing(ta)) stop("no TA indicator specified")
if(missing(dev)) dev <- dev.cur()
ta.list <- listTA(dev)
lchob <- get.chob()[[dev]]
if(regexpr("^add",ta) == -1) ta <- paste("add",ta,sep='')
which.ta <- which(ta==sapply(ta.list,
function(x) deparse(x[[1]])))[occ]
if(is.na(which.ta)) stop("no TA")
[email protected]$TA <- append([email protected]$TA[-which.ta],
[email protected]$TA[which.ta],
after=pos)
do.call("chartSeries.chob",list(lchob))
write.chob(lchob,lchob@device)
}
`dropTA` <-
function(ta,occ=1,dev,all=FALSE) {
if(all) return(do.call('dropTA', list(1:length(listTA()))))
if(missing(ta)) stop("no TA indicator specified")
if(missing(dev)) dev <- dev.cur()
ta.list <- listTA(dev)
lchob <- get.chob()[[dev]]
sel.ta <- NULL
for(cta in 1:length(ta)) {
if(is.character(ta[cta])) {
if(regexpr("^add",ta[cta]) == -1) ta[cta] <- paste("add",ta[cta],sep='')
which.ta <- which(ta[cta]==sapply(ta.list,
function(x) deparse(x[[1]])))[occ]
} else which.ta <- cta
if(!is.na(which.ta)) {
if([email protected]$TA[[which.ta]]@new)
lchob@windows <- lchob@windows - 1
sel.ta <- c(sel.ta,which.ta)
}
}
if(is.null(sel.ta)) stop("nothing to remove")
[email protected]$TA <- [email protected]$TA[-sel.ta]
if(length([email protected]$TA) < 1)
[email protected]$TA <- list()
do.call("chartSeries.chob",list(lchob))
write.chob(lchob,lchob@device)
} |
MaxDD<-function(R,confidence=0.95,type=c("ar","normal"),...)
{
x = checkData(R)
if(ncol(x)==1 || is.null(R) || is.vector(R)){
calcul = FALSE
for(i in (1:length(x))){
if(!is.na(x[i])){
calcul = TRUE
}
}
if(!calcul){
result = NA
}
else{
if(type[1]=="ar"){
result = get_minq(x,confidence)
}
if(type[1]=="normal"){
result = dd_norm(x,confidence)
}
}
return(result)
}
if(type[1]=="ar"){
result = apply(x,MARGIN = 2,get_minq,confidence)
}
if(type[1]=="normal"){
result = apply(x,MARGIN = 2,dd_norm,confidence)
print(result)
}
result = round(result,3)
rownames(result) = c("MaxDD(in %)","t*")
return(result)
} |
data(mtcars)
mymtcars <-
dplyr::mutate(mtcars, cyl_factor = factor(cyl, levels = c(6, 4, 8)), cyl_char = as.character(cyl))
summarize_these <-
with(mymtcars,
list("Cylinder (numeric)" = tab_summary(cyl),
"Cylinder (factor)" = tab_summary(cyl_factor),
"Cylinder (character)" = tab_summary(cyl_char),
"MGP" = tab_summary(mpg))
)
test_that("tab_summary generates formulea for numeric vector",
{
expect_equivalent(summarize_these[[1]], list(~ min(cyl),
~ qwraps2::median_iqr(cyl),
~ qwraps2::mean_sd(cyl),
~ max(cyl)))
})
test_that("tab_summary generates formulea for factor",
{
expect_equivalent(summarize_these[[2]], list(~ qwraps2::n_perc(cyl_factor == "6", digits = 0, show_symbol = FALSE),
~ qwraps2::n_perc(cyl_factor == "4", digits = 0, show_symbol = FALSE),
~ qwraps2::n_perc(cyl_factor == "8", digits = 0, show_symbol = FALSE)))
})
test_that("tab_summary generates formulea for character",
{
expect_equivalent(summarize_these[[3]], list(~ qwraps2::n_perc(cyl_char == "4", digits = 0, show_symbol = FALSE),
~ qwraps2::n_perc(cyl_char == "6", digits = 0, show_symbol = FALSE),
~ qwraps2::n_perc(cyl_char == "8", digits = 0, show_symbol = FALSE)))
}) |
prep_data_fitting <- function(
data,
model_file,
id,
condition
) {
data$id <- data[[id]]
data$condition <- data[[condition]]
col_freq <- get_eqn_categories(model_file)
out <- list(
conditions = unique(data[[condition]]),
parameters = as.character(MPTinR::check.mpt(model_file)$parameters),
col_freq = col_freq,
trees = get_eqn_trees(model_file = model_file),
freq_list = split(data[, col_freq], f = data[[condition]]),
cols_ci = paste0("ci_", getOption("MPTmultiverse")$ci_size),
data = data
)
out
} |
chk_gt <- function(x, value = 0, x_name = NULL) {
if (vld_gt(x, value)) {
return(invisible(x))
}
if (is.null(x_name)) x_name <- deparse_backtick_chk(substitute(x))
if (length(x) == 1L) {
abort_chk(x_name, " must be greater than ", cc(value), ", not ", cc(x), x = x, value = value)
}
abort_chk(x_name, " must have values greater than ", cc(value), x = x, value = value)
}
vld_gt <- function(x, value = 0) all(x[!is.na(x)] > value) |
dm_is_strict_keys <- function(dm) {
TRUE
} |
dfToListColumn<-function(dfLookColumn,columnToSplit="OTU"){
if(columnToSplit %in% colnames(dfLookColumn)){
listOfdfLookColumn <- base::split(dfLookColumn, factor(dfLookColumn[,columnToSplit],levels = unique(dfLookColumn[,columnToSplit]) ) )
names(listOfdfLookColumn) <- unique(dfLookColumn[,columnToSplit])
} else {
listOfdfLookColumn <- list(dfLookColumn)
names(listOfdfLookColumn)<-1
}
return(listOfdfLookColumn)
} |
test_that("sjl() | scalar test", {
expect_equal(sjl(hms::parse_hm("02:30"),
hms::parse_hm("04:30"),
TRUE,
"shorter"),
lubridate::dhours(2))
expect_equal(sjl(hms::parse_hm("23:00"),
hms::parse_hm("02:00"),
TRUE,
"shorter"),
lubridate::dhours(3))
expect_equal(sjl(hms::parse_hm("05:00"),
hms::parse_hm("03:00"),
FALSE,
"shorter"),
lubridate::dhours(-2))
expect_equal(sjl(hms::as_hms(NA),
hms::parse_hm("00:00"),
FALSE,
"shorter"),
lubridate::as.duration(NA))
})
test_that("sjl() | vector test", {
expect_equal(sjl(c(hms::parse_hm("11:00"), hms::parse_hm("22:00")),
c(hms::parse_hm("18:30"), hms::parse_hm("17:30")),
FALSE,
"shorter"),
c(lubridate::dhours(7.5), lubridate::dhours(-4.5)))
})
test_that("sjl() | `method` test", {
expect_equal(sjl(hms::parse_hm("08:00"),
hms::parse_hm("12:00"),
FALSE,
"difference"),
lubridate::dhours(4))
expect_equal(sjl(hms::parse_hm("08:00"),
hms::parse_hm("12:00"),
FALSE,
"shorter"),
lubridate::dhours(4))
expect_equal(sjl(hms::parse_hm("08:00"),
hms::parse_hm("12:00"),
FALSE,
"longer"),
lubridate::dhours(-20))
expect_equal(sjl(hms::parse_hm("12:00"),
hms::parse_hm("08:00"),
FALSE,
"difference"),
lubridate::dhours(-4))
expect_equal(sjl(hms::parse_hm("12:00"),
hms::parse_hm("08:00"),
FALSE,
"shorter"),
lubridate::dhours(-4))
expect_equal(sjl(hms::parse_hm("12:00"),
hms::parse_hm("08:00"),
FALSE,
"longer"),
lubridate::dhours(20))
expect_equal(sjl(hms::parse_hm("23:00"),
hms::parse_hm("01:00"),
FALSE,
"difference"),
lubridate::dhours(-22))
expect_equal(sjl(hms::parse_hm("23:00"),
hms::parse_hm("01:00"),
FALSE,
"shorter"),
lubridate::dhours(2))
expect_equal(sjl(hms::parse_hm("23:00"),
hms::parse_hm("01:00"),
FALSE,
"longer"),
lubridate::dhours(-22))
expect_equal(sjl(hms::parse_hm("01:00"),
hms::parse_hm("23:00"),
FALSE,
"difference"),
lubridate::dhours(22))
expect_equal(sjl(hms::parse_hm("01:00"),
hms::parse_hm("23:00"),
FALSE,
"shorter"),
lubridate::dhours(-2))
expect_equal(sjl(hms::parse_hm("01:00"),
hms::parse_hm("23:00"),
FALSE,
"longer"),
lubridate::dhours(22))
})
test_that("sjl() | error test", {
expect_error(sjl(1, hms::hms(1), TRUE, "shorter"),
"Assertion on 'msw' failed")
expect_error(sjl(hms::hms(1), 1, TRUE, "shorter"),
"Assertion on 'msf' failed")
expect_error(sjl(hms::hms(1), hms::hms(1), "", "shorter"),
"Assertion on 'abs' failed")
expect_error(sjl(hms::hms(1), hms::hms(1), TRUE, 1),
"Assertion on 'method' failed")
expect_error(sjl(hms::hms(1), c(hms::hms(1), hms::hms(1))))
})
test_that("sjl() | wrappers", {
expect_equal(sjl_rel(hms::parse_hm("10:00"),
hms::parse_hm("12:00"),
"shorter"),
lubridate::dhours(2))
expect_equal(sjl_rel(hms::parse_hm("03:30"),
hms::parse_hm("03:00"),
"shorter"),
lubridate::dhours(-0.5))
}) |
OT2MAX <- function(OTdata,
OTmissing = NULL,
start = NULL,
end = NULL,
MAX.r = 1L,
blockDuration = "year",
monthGapStat = TRUE,
maxMissingFrac = 0.05,
dataFrames = FALSE,
infMAX = FALSE,
plot = TRUE,
plotType = c("max", "gaps"),
jitterSeed = 123,
trace = 0L,
...) {
plotType <- match.arg(plotType)
if (is(OTdata$date, "POSIXct")) {
TZ <- attr(OTdata$date, "tz")
} else {
warning("'OTdata$date' is not of class \"POSIXct\". Coerced ",
" with time zone \"GMT\"")
TZ <- "GMT"
OTdata$date <- as.POSIXct(OTdata$date, tz = "TZ")
}
unit <- blockDuration
Year <- seq(from = as.POSIXct("2000-01-01", tz = TZ),
to = as.POSIXct("2000-12-31", tz = TZ),
by = "day")
labYear <- format(Year, "%m-%d")
if ( !is.data.frame(OTdata) || ! ("date" %in% colnames(OTdata)) ) {
stop("'OTdata' must be a data frame object with a 'date' column")
}
nData <- nrow(OTdata)
vars <- names(OTdata)
vars <- vars[is.na(match(vars, c("date", "comment")))]
if (length(var) > 1L) stop("variable name could not be guessed")
if (!is.null(OTmissing)) {
if ( !is.data.frame(OTmissing) || !("start" %in% colnames(OTmissing)) ||
!("end" %in% colnames(OTmissing)) ) {
stop("'OTmissing' must be a data frame object 'start' ",
"and 'end' columns")
}
miss <- TRUE
nMP <- nrow(OTmissing)
if (!is(OTmissing$start, "POSIXct")){
OTmissing$start <- as.POSIXct(OTmissing$start, tz = TZ)
} else {
if (attr(OTmissing$start, "tz") != TZ) {
warning("the timezone of 'OTmissing$start' does not match ",
"that of 'OTdata$date")
}
}
if (!is(OTmissing$end, "POSIXct")){
OTmissing$end <- as.POSIXct(OTmissing$end, tz = TZ)
} else {
if (attr(OTmissing$end, "tz") != TZ) {
warning("the timezone of 'OTmissing$end' does not match ",
"that of 'OTdata$date")
}
}
} else {
miss <- FALSE
if (monthGapStat) {
monthGapStat <- FALSE
warning("'monthGapStat' forced to FALSE since no information was ",
"provided in 'OTmissing'")
}
}
if (is.null(start)) {
if (miss) {
if (OTmissing$start[1L] < OTdata$date[1L]) {
start <- OTmissing$start[1L]
} else start <- OTdata$date[1L]
} else start <- OTdata$date[1L]
} else {
if (!is(start, "POSIXct")) start <- as.POSIXct(start, tz = TZ)
else if (attr(start) != TZ) {
warning("the timezone of 'start' does not match ",
"that of 'OTdata$date")
}
}
if (is.null(end)) {
if (miss) {
if (OTmissing$end[nMP] > OTdata$date[nData]){
end <- OTmissing$end[nMP]
} else end <- OTdata$date[nData]
} else end <- OTdata$date[nData]
} else {
if (!is(end, "POSIXct")) end <- as.POSIXct(end, tz = TZ)
else if (attr(end) != TZ) {
warning("the timezone of 'end' does not match ",
"that of 'OTdata$date")
}
}
startBreaks <- start
endBreaks <- end
startBreaksTest <- as.POSIXct(format(startBreaks, "%Y-01-01"), tz = TZ)
if (startBreaks != startBreaksTest) {
year <- as.integer(format(startBreaks, "%Y")) + 1
startBreaks <- as.POSIXct(paste(year, "-01-01 00:00", sep = ""), tz = TZ)
}
endBreaks <- as.POSIXct(format(endBreaks, "%Y-01-01"), tz = TZ)
Breaks <- seq(from = startBreaks, to = endBreaks, by = unit)
nBreaks <- length(Breaks)
blockNames <- format(Breaks[-nBreaks], "%Y")
Block <- cut(x = OTdata$date, breaks = Breaks)
levels(Block) <- blockNames
nBlock <- nlevels(Block)
blockDur <- as.numeric(diff(Breaks), units = "days")
Breaks2 <- seq(from = startBreaks, to = endBreaks, by = "day")
if (length(MAX.r) != 1L && length(MAX.r) != nBlock) {
stop("the length of 'MAX.r' must be 1 or the number of blocks")
}
MAX.r <- rep(MAX.r, length.out = nBlock)
names(MAX.r) <- blockNames
if (trace) {
cat("Number of events by block \n")
print(tapply(OTdata[ , vars], Block, length))
}
if (!miss) {
ms <- NULL
mTS <- NULL
blockDurMiss <- rep(0.0, nBlock)
keepBlock <- rep(TRUE, nBlock)
} else {
dfMiss <- data.frame(dt = OTmissing$start,
gap = rep(1, length(OTmissing$start)))
dfMiss <- rbind(dfMiss,
data.frame(dt = OTmissing$end,
gap = rep(0, length(OTmissing$end))))
dfMiss <- dfMiss[order(dfMiss$dt), ]
cum <- cumsum(c(0.0, as.numeric(diff(dfMiss$dt), units = "days")) *
(1.0 - dfMiss$gap))
dfMiss <- cbind(dfMiss, cum = cum)
if (dfMiss$dt[1L] > Breaks[1L]) {
dfMiss <- rbind(data.frame(dt = Breaks[1L], gap = 0, cum = 0),
dfMiss)
}
nMiss <- nrow(dfMiss)
if (dfMiss$dt[nMiss] < Breaks[nBreaks]) {
dfMiss <- rbind(dfMiss,
data.frame(dt = Breaks[nBreaks],
gap = 0,
cum = dfMiss$cum[nMiss]))
}
interp <- approx(x = dfMiss$dt, y = dfMiss$cum, xout = Breaks,
method = "linear")
blockDurMiss <- as.numeric(diff(interp$y), units = "days")
keepBlock <- ( (blockDurMiss / blockDur) < maxMissingFrac )
names(keepBlock) <- levels(Block)
BlockMiss <- as.integer(cut(x = dfMiss$dt, breaks = Breaks))
interp2 <- approx(x = dfMiss$dt, y = dfMiss$gap, xout = Breaks2,
method = "constant")
if (monthGapStat) {
monthBreaks <- seq(from = startBreaks,
to = endBreaks,
by = "month")
monthDur <- round(as.numeric(diff(monthBreaks), units = "days"))
monthInterp <- approx(x = dfMiss$dt, y = dfMiss$cum,
xout = monthBreaks,
method = "linear")
monthBlockDurMiss <- as.numeric(diff(monthInterp$y), units = "days")
nM <- length(monthBreaks)
monthStart <- seq(from = as.POSIXct("2001-01-01", tz = TZ),
by = "month",
length.out = 13)
monthLab <- format(monthStart[1:12], "%b")
month <- factor(format(monthBreaks[-nM], "%b"), levels = monthLab)
ms <- data.frame(start = monthBreaks[-nM],
end = monthBreaks[-1],
year = as.numeric(format(monthBreaks[-nM], "%Y")),
month = month,
dur = monthDur,
durMissing = monthBlockDurMiss,
missing = monthBlockDurMiss / monthDur)
rownames(ms) <- format(monthBreaks[-nM], "%Y-%m")
mTS <- tapply(ms$missing, list(ms$year, ms$month), mean)
mTS <- ts(mTS, start = min(ms$year))
} else {
ms <- NULL
mTS <- NULL
}
}
effDur <- 1 - (blockDurMiss / blockDur)
effDur[abs(effDur) < 0.001] <- 0.0
MAXinfo <- data.frame(start = Breaks[-nBreaks],
end = Breaks[-1L],
duration = effDur)
rownames(MAXinfo) <- blockNames
probMiss <- rep(0, 365)
first <- TRUE
for (i in 1L:nBlock) {
ind <- (OTdata$date >= Breaks[i]) & (OTdata$date <= Breaks[i + 1L])
if (keepBlock[i]) {
if (any(ind)) {
ri <- sum(ind)
Ti <- OTdata[ind, "date"]
zi <- OTdata[ind, vars]
indi <- rev(order(zi))
Ti <- Ti[indi]
zi <- zi[indi]
if (ri < MAX.r[i]) {
if (infMAX) {
Ti <- rep(Ti, length.out = MAX.r[i])
Ti[(ri + 1L):MAX.r[i]] <- NA
zi <- c(zi, rep(-Inf, MAX.r[i] - ri))
ri <- MAX.r[i]
}
} else {
Ti <- Ti[1L:MAX.r[i]]
zi <- zi[1L:MAX.r[i]]
ri <- MAX.r[i]
}
} else {
ri <- 0
if (infMAX & (0 < MAX.r[i])) {
Ti <- rep(NA, length.out = MAX.r[i])
zi <- rep(-Inf, MAX.r[i])
ri <- MAX.r[i]
}
}
if (ri > 0) {
if (first) {
MAXdata <- data.frame(block = blockNames[rep(i, ri)],
date = Ti,
var = zi,
comment = rep("", ri))
first <- FALSE
} else {
MAXdata <- rbind(MAXdata,
data.frame(block = blockNames[rep(i, ri)],
date = Ti,
var = zi,
comment = rep("", ri)))
}
}
MAX.r[i] <- ri
} else {
MAX.r[i] <- NA
}
if (!is.null(OTmissing)) {
ind2 <- (Breaks2 >= Breaks[i]) & (Breaks2 < Breaks[i + 1L])
x <- as.numeric(interp2$x[ind2] - Breaks[i], units = "days")
y <- interp2$y[ind2]
if (length(y) == 366) y <- y[-60]
probMiss <- probMiss + y[1:365]
}
}
names(MAXdata) <- c("block", "date", vars, "comment")
probMiss <- probMiss / nBlock
MAXinfo <- data.frame(MAXinfo, r = MAX.r)
MAXdata[["block"]] <- factor(MAXdata[["block"]], levels = blockNames)
if (dataFrames) {
res <- list(MAXinfo = MAXinfo,
MAXdata = MAXdata,
monthGapStat = ms,
monthGapTS = mTS)
} else {
MAXdata <- as.list(MAXdata)
ub <- as.logical(keepBlock)
if (!infMAX) {
ub <- ub & as.logical(table(MAXdata$block))
}
effDuration <- MAXinfo[ub, "duration"]
r <- MAXinfo[ub, "r"]
names(effDuration) <- names(r) <- rownames(MAXinfo[ub, ])
MAXdata[["block"]] <- factor(MAXdata[["block"]])
res <- list(effDuration = effDuration,
r = r,
data = tapply(MAXdata[[vars]], MAXdata$block, list),
monthGapStat = ms,
monthGapTS = mTS)
if (plot) MAXdata <- as.data.frame(MAXdata)
}
res$probMissing <- probMiss
if (plot) {
if (plotType == "max") {
cols <- c("white", "lightcyan")
y <- MAXdata[ , vars]
ry <- range(y[is.finite(y) & !is.na(y)])
plot(range(Breaks), ry,
xlab = "Block", ylab = vars[1], type = "n", ...)
py <- par()$usr[3:4]
py <- py + diff(py) * c(1, -1) / 200
for (i in 1L:nBlock) {
rect(xleft = Breaks[i], xright = Breaks[i + 1],
ybottom = py[1], ytop = py[2], col = cols[1 + i %% 2], border = NA)
}
points(x = MAXdata[["date"]], y = MAXdata[[vars]],
type = "p", pch = 16, cex = 0.8)
lines(x = MAXdata[["date"]], y = MAXdata[[vars]], type = "h")
} else {
if (!monthGapStat) {
stop("the value \"gaps\" for 'plotType' works only when ",
"'montStat' is TRUE")
}
days <- seq(from = as.POSIXct("2001-01-01", tz = TZ),
by = "day", length.out = 365)
monthMid <- seq(from = as.POSIXct("2001-01-15", tz = TZ),
by = "month", length.out = 12)
yEnd <- rep(2001, nrow(ms))
yEnd[as.integer(ms$month) == 12] <- 2002
dStart <- as.POSIXct(format(ms$start, format = "2001-%m-%d"),
tz = TZ)
dEnd <- as.POSIXct(paste(yEnd,
format(ms$end, format = "-%m-%d"), sep = ""),
tz = TZ)
durMiss <- with(ms, tapply(durMissing, month, sum))
dur <- with(ms, tapply(dur, month, sum))
monthRate <- durMiss / dur
plot(days, res$probMissing, type = "n", ylim = c(0, 1),
xlab = "day in year", ylab = "prob. gap", xaxt = "n",
...)
abline(v = monthStart)
mtext(side = 1, line = 0.6, at = monthMid, text = monthLab)
set.seed(jitterSeed)
msMissing <- ms$missing + rnorm(ms$missing, sd = 0.01)
barCol <- col2rgb("gray") / 256
barCol <- rgb(red = barCol[1], green = barCol[1], blue = barCol[1],
alpha = 0.4)
segments(x0 = dStart,
x1 = dEnd,
y0 = msMissing,
y1 = msMissing,
col = barCol)
lines(x = c(monthStart[1], rep(monthStart[2:12], each = 2),
monthStart[13]),
y = rep(monthRate, each = 2),
col = "orange", lwd = 2)
lines(days, res$probMissing, type = "l",
lwd = 2, col = "orangered")
}
}
res
} |
fpolm <-
function(dets,vec,vars,nom,garder=NULL){
n<-length(vec)
ux=0
for(i in 1:n){xs=max(dets[vec[i]])
if(xs!=0){ux<-ux+t(t(dets[,vec[i]]/xs))*10^{n+1-i}
}else{ux<-ux}
}
ux<-round(ux,digits=4)
uxf<-duplicated(ux)
dats1<-data.frame(dets[,c(vec,garder)],ux,uxf)
names(dats1)<-c(vec,garder,"ux","uxf")
ndats1<-dats1[dats1["uxf"]==FALSE,]
ndets1<-ndats1[,c(vec,garder,"ux")]
names(ndets1)<-c(vec,garder,"ux")
vs<-tapply(dets[,vars[1]],ux,sum)
id<-as.numeric(names(vs))
for (j in 2:length(vars))
vs<-cbind(vs,tapply(dets[,vars[j]],ux,sum))
rownames(vs)<-NULL
tab<-data.frame(id,vs)
names(tab)<-c("ux",nom)
tab2<-merge(ndets1,tab,by=c("ux","ux"))
tab2$ux<-NULL
return(tab2)
} |
compPortfo <- function(xa, xb) {
xab=cbind(xa,xb)
ouall=rep(NA,3)
m1=momentVote(xab)
mm1=NROW(m1)
m2=m1[mm1,1:2]
ouall[1]=as.numeric(sign(m2[1]-m2[2]))
d1=decileVote(xab)
dd1=d1$out
d2=dd1[NROW(dd1),1:2]
ouall[2]=as.numeric(sign(d2[1]-d2[2]))
s1=exactSdMtx(xab)
s11=summaryRank(s1$out)
s2=s11[10,]
ouall[3]=as.numeric(sign(s2[1]-s2[2]))
return(ouall)
} |
e2e_plot_biomass <- function(model,ci.data=FALSE, use.saved=FALSE, use.example=FALSE, results=NULL ) {
oo <- options()
on.exit(options(oo))
if (use.example == TRUE) hasExamples()
start_par = par()$mfrow
on.exit(par(mfrow = start_par))
if(use.saved==TRUE & use.example==TRUE){
stop("use.saved and use.example cannot both be TRUE ! \n")
}
if(use.saved==TRUE & is.list(results)==TRUE){
stop("use.saved is TRUE but a dataframe object has also been specified ! \n")
}
if(use.example==TRUE & is.list(results)==TRUE){
stop("use.example is TRUE but a dataframe object has also been specified ! \n")
}
if(use.saved==FALSE & use.example==FALSE & is.list(results)==FALSE){
stop("no source of data has been specified ! \n")
}
if(ci.data==FALSE & use.example==TRUE){
stop("no example data available for a single model run - run the model to generate some data ! \n")
}
if(ci.data==TRUE & use.saved==FALSE & use.example==FALSE & is.list(results)==TRUE){
stop("credible intervals available only from saved or example data ! \n")
}
if(ci.data == FALSE & use.saved==FALSE & is.list(results)==TRUE ){
plot_inshore_vs_offshore_anavmass(model, use.saved=FALSE,results=results)
}
if(ci.data == FALSE & use.saved==TRUE ){
plot_inshore_vs_offshore_anavmass(model, use.saved=TRUE)
}
if(ci.data == TRUE & use.saved==FALSE & use.example==TRUE ){
plot_inshore_vs_offshore_anavmass_with_ci(model, use.example=TRUE)
}
if(ci.data == TRUE & use.saved==TRUE & use.example==FALSE ){
plot_inshore_vs_offshore_anavmass_with_ci(model, use.example=FALSE)
}
} |
context ("extract-objects")
test_all <- (identical (Sys.getenv ("MPADGE_LOCAL"), "true") |
identical (Sys.getenv ("GITHUB_WORKFLOW"), "test-coverage"))
test_that ("missing objects", {
expect_error (extract_osm_objects (), "key must be provided")
expect_error (extract_osm_objects (key = "aaa"),
"bbox must be provided")
})
test_that ("key missing", {
bbox <- get_bbox (c (-0.12, 51.51, -0.11, 51.52))
expect_error (extract_osm_objects (bbox = bbox, key = NULL),
"key can not be NULL")
expect_error (extract_osm_objects (bbox = bbox, key = NA),
"key can not be NA")
expect_error (extract_osm_objects (bbox = bbox),
"key must be provided")
})
if (curl::has_internet () & test_all) {
test_that ("invalid key", {
bbox <- get_bbox (c (-0.12, 51.51, -0.11, 51.52))
expect_warning (suppressMessages (
extract_osm_objects (bbox = bbox, key = "aaa")),
"No valid data returned")
})
test_that ("valid key", {
bbox <- get_bbox (c (-0.12, 51.518, -0.118, 51.52))
dat <- extract_osm_objects (bbox = bbox, key = "building")
expect_is (dat, "sf")
dat <- extract_osm_objects (bbox = bbox, key = "building",
sf = FALSE)
expect_is (dat, "SpatialPolygonsDataFrame")
})
test_that ("extra_pairs", {
key <- "route"
value <- "bicycle"
extra_pairs <- c ("name", "London Cycle Network")
bbox <- get_bbox (c (0, 51.5, 0.1, 51.6))
dat <- extract_osm_objects (bbox = bbox, key = key,
value = value,
extra_pairs = extra_pairs)
expect_true (nrow (dat) > 0)
expect_is (dat, "sf")
})
test_that ("sp objects", {
key <- "route"
value <- "bicycle"
extra_pairs <- c ("name", "London Cycle Network")
bbox <- get_bbox (c (0, 51.5, 0.1, 51.6))
dat <- extract_osm_objects (bbox = bbox, key = key,
value = value,
extra_pairs = extra_pairs,
sf = FALSE)
expect_true (nrow (dat) > 0)
expect_is (dat, "Spatial")
})
} |
sim.rm <- function(theta, b, seed = NULL){
if(length(theta) == 1){
if(!is.null(seed)){
set.seed(seed)
theta <- stats::rnorm(theta, mean = 0, sd = 1)
}else{
theta <- stats::rnorm(theta, mean = 0, sd = 1)
}
theta <- theta
}
if(length(b) == 1){
if(!is.null(seed)){
set.seed(seed)
b <- stats::rnorm(b, mean = 0, sd = 1)
}else{
b <- stats::rnorm(b, mean = 0, sd = 1)
}
b <- b
}
if(!is.null(seed)){
set.seed(seed)
resp <- outer(theta, b, "-")
p_exp <- exp(resp)
prop_solve <- p_exp/(1 + p_exp)
dat.resp <-(prop_solve > matrix(stats::runif(length(b)*length(theta)),length(theta),length(b)))*1
} else {
resp <- outer(theta, b, "-")
p_exp <- exp(resp)
prop_solve <- p_exp/(1 + p_exp)
dat.resp <-(prop_solve > matrix(stats::runif(length(b)*length(theta)),length(theta),length(b)))*1
}
if(!is.null(names(b))){
colnames(dat.resp) <- names(b)
}
return(dat.resp)
} |
`get.tausB` =
function(n, n0B, geneids, min.cnt=50, exclude.prop=.05, Xist.ID="ENSMUSG00000086503"){
out = matrix(sapply(1:ncol(n), get.tauB, n=n, n0B=n0B, geneids=geneids, min.cnt=min.cnt, exclude.prop=exclude.prop, filt=Xist.ID), nrow=4)
if(any(unlist(sapply(out, is.null)))){
stop("too stringent criterias for the given counts")
}
colnames(out) = colnames(n0B)
rownames(out) = c("med.tauB", "ave.tauB", "all.genes", "used.genes")
return(out)
} |
splinePath <- function(x, y, degree, knots, detail, type) {
.Call('_ggforce_splinePath', PACKAGE = 'ggforce', x, y, degree, knots, detail, type)
}
getSplines <- function(x, y, id, detail, type = "clamped") {
.Call('_ggforce_getSplines', PACKAGE = 'ggforce', x, y, id, detail, type)
}
bezierPath <- function(x, y, detail) {
.Call('_ggforce_bezierPath', PACKAGE = 'ggforce', x, y, detail)
}
getBeziers <- function(x, y, id, detail) {
.Call('_ggforce_getBeziers', PACKAGE = 'ggforce', x, y, id, detail)
}
enclose_ellip_points <- function(x, y, id, tol) {
.Call('_ggforce_enclose_ellip_points', PACKAGE = 'ggforce', x, y, id, tol)
}
enclose_points <- function(x, y, id) {
.Call('_ggforce_enclose_points', PACKAGE = 'ggforce', x, y, id)
}
points_to_path <- function(pos, path, close) {
.Call('_ggforce_points_to_path', PACKAGE = 'ggforce', pos, path, close)
} |
check.exclude <- function(exclude,nvars){
exclude <- unique(exclude)
if(length(exclude)> (nvars-2))stop("cannot retain 1 or less variables")
if(length(exclude)==0)exclude <- NULL
exclude
} |
context("gpdRangeFit")
test_that("gpdRangeFit behaves as it should", {
skip_on_cran()
skip_on_travis()
par(mfrow=c(2,1))
res <- gpdRangeFit(rain, umin=0, umax=50, nint=19)
plot(res, pch=16, main=c("Figure 4.2 of Coles (2001)",""), addNexcesses=FALSE)
expect_that(names(res), equals(c("th", "par","hi","lo","data")),
label="gpdRangeFit: returned list with correct names")
}
) |
"airbnb_small" |
use_template <- function(template,
save_as = template,
data = list()) {
template_contents <- render_template(template, data)
new <- base::writeLines(template_contents, save_as)
invisible(new)
}
render_template <- function(template, data = list()) {
template_path <- find_template(template)
base::strsplit(whisker::whisker.render(read_utf8(template_path),
data), "\n")[[1]]
}
find_template <- function(template_name) {
fs::path_package(package = "prodigenr", "templates", template_name)
}
read_utf8 <- function(path, n = -1L) {
base::readLines(path, n = n, encoding = "UTF-8", warn = FALSE)
}
add_rproj_file <- function(proj_name) {
rproj_file <- paste0(proj_name, ".Rproj")
new <- use_template(
"template-rproj",
rproj_file
)
}
has_git <- function(project_path = ".") {
repo <- tryCatch(gert::git_find(project_path), error = function(e) NULL)
!is.null(repo)
} |
read.gal <- function(file, region.id=NULL, override.id=FALSE)
{
con <- file(file, open="r")
line <- unlist(strsplit(readLines(con, 1), " "))
x <- subset(line, nchar(line) > 0)
if (length(x) == 1L) {
n <- as.integer(x[1])
shpfile <- as.character(NA)
ind <- as.character(NA)
} else if (length(x) == 4L) {
n <- as.integer(x[2])
shpfile <- as.character(x[3])
ind <- as.character(x[4])
} else stop ("Invalid header line in GAL file")
if (n < 1) stop("Non-positive number of regions")
if (!is.null(region.id))
if (length(unique(region.id)) != length(region.id))
stop("non-unique region.id given")
if (is.null(region.id)) region.id <- as.character(1:n)
if (n != length(region.id))
stop("Mismatch in dimensions of GAL file and region.id")
rn <- character(n)
res <- vector(mode="list", length=n)
for (i in 1:n) {
line <- unlist(strsplit(readLines(con, 1), " "))
x <- subset(line, nchar(line) > 0)
rn[i] <- x[1]
line <- unlist(strsplit(readLines(con, 1), " "))
y <- subset(line, nchar(line) > 0)
if(length(y) != as.integer(x[2])) {
close(con)
stop(paste("GAL file corrupted at region", i))
}
res[[i]] <- y
}
close(con)
if (!override.id) {
if (!all(rn %in% region.id)) {
stop("GAL file IDs and region.id differ")
}
} else region.id <- rn
mrn <- match(rn, region.id)
res1 <- vector(mode="list", length=n)
for (i in 1:n) {
if (length(res[[i]]) > 0) {
x <- match(res[[i]], region.id)
if (any(is.na(x)) | (length(x) != length(res[[i]]))) {
stop(paste("GAL file corrupted at region", i))
}
if(any(x < 0) || any(x > n))
stop("GAL file corrupted")
res1[[mrn[i]]] <- sort(x)
} else {
res1[[mrn[i]]] <- 0L
}
}
class(res1) <- "nb"
attr(res1, "region.id") <- region.id
attr(res1, "GeoDa") <- list(shpfile=shpfile, ind=ind)
attr(res1, "gal") <- TRUE
attr(res1, "call") <- TRUE
res1 <- sym.attr.nb(res1)
res1
}
write.nb.gal <- function(nb, file, oldstyle=TRUE, shpfile=NULL, ind=NULL) {
if (!inherits(nb, "nb")) stop("not a neighbours list")
n <- length(nb)
if (n < 1) stop("non-positive number of entities")
cn <- card(nb)
rn <- attr(nb, "region.id")
if (is.null(shpfile)) {
tmp <- attr(nb, "GeoDa")$shpfile
if (is.null(tmp)) shpfile <- "unknown"
else shpfile <- tmp
}
if (is.null(ind)) {
tmp <- attr(nb, "GeoDa")$ind
if (is.null(tmp)) ind <- "unknown"
else ind <- tmp
}
con <- file(file, open="w")
if (oldstyle) writeLines(paste(n), con)
else writeLines(paste("0", n, shpfile, ind, sep=" "), con)
for (i in 1:n) {
if (oldstyle)
writeLines(paste(i, cn[i],
collapse=" "), con)
else writeLines(paste(rn[i], cn[i],
collapse=" "), con)
if (oldstyle) writeLines(ifelse(cn[i] > 0,
paste(nb[[i]], collapse=" "), ""), con)
else writeLines(ifelse(cn[i] > 0,
paste(rn[nb[[i]]], collapse=" "), ""), con)
}
close(con)
}
read.geoda <- function(file, row.names=NULL, skip=0)
{
res <- read.csv(file=file, header=TRUE, skip=skip, row.names=row.names)
if (ncol(res) < 2) warning("data frame possibly malformed")
res
} |
context("Checking analysis example: raudenbush2009")
source("settings.r")
dat <- dat.raudenbush1985
test_that("results are correct for the equal-effects model.", {
res.EE <- rma(yi, vi, data=dat, digits=3, method="EE")
expect_equivalent(coef(res.EE), 0.0604, tolerance=.tol[["coef"]])
expect_equivalent(res.EE$QE, 35.8295, tolerance=.tol[["test"]])
expect_equivalent(res.EE$zval, 1.6553, tolerance=.tol[["test"]])
})
test_that("results are correct for the random-effects model.", {
res.RE <- rma(yi, vi, data=dat, digits=3)
expect_equivalent(coef(res.RE), 0.0837, tolerance=.tol[["coef"]])
expect_equivalent(res.RE$zval, 1.6208, tolerance=.tol[["test"]])
expect_equivalent(res.RE$tau2, 0.0188, tolerance=.tol[["var"]])
tmp <- predict(res.RE)
expect_equivalent(tmp$pi.lb, -0.2036, tolerance=.tol[["ci"]])
expect_equivalent(tmp$pi.ub, 0.3711, tolerance=.tol[["ci"]])
tmp <- range(blup(res.RE)$pred)
expect_equivalent(tmp, c(-0.0293, 0.2485), tolerance=.tol[["pred"]])
})
test_that("results are correct for the mixed-effects model.", {
dat$weeks.c <- ifelse(dat$weeks > 3, 3, dat$weeks)
res.ME <- rma(yi, vi, mods = ~ weeks.c, data=dat, digits=3)
expect_equivalent(res.ME$tau2, 0.0000, tolerance=.tol[["var"]])
expect_equivalent(coef(res.ME), c(0.4072, -0.1572), tolerance=.tol[["coef"]])
expect_equivalent(res.ME$QE, 16.5708, tolerance=.tol[["test"]])
expect_equivalent(res.ME$zval, c(4.6782, -4.3884), tolerance=.tol[["test"]])
tmp <- range(blup(res.ME)$pred)
expect_equivalent(tmp, c(-0.0646, 0.4072), tolerance=.tol[["pred"]])
})
test_that("results are correct for the random-effects model (conventional approach).", {
res.std <- list()
res.std$EE <- rma(yi, vi, data=dat, digits=3, method="EE")
res.std$ML <- rma(yi, vi, data=dat, digits=3, method="ML")
res.std$REML <- rma(yi, vi, data=dat, digits=3, method="REML")
res.std$DL <- rma(yi, vi, data=dat, digits=3, method="DL")
res.std$HE <- rma(yi, vi, data=dat, digits=3, method="HE")
tmp <- t(sapply(res.std, function(x) c(tau2=x$tau2, mu=x$beta, se=x$se, z=x$zval, ci.lb=x$ci.lb, ci.ub=x$ci.ub)))
expected <- structure(c(0, 0.0126, 0.0188, 0.0259, 0.0804, 0.0604, 0.0777, 0.0837, 0.0893, 0.1143, 0.0365, 0.0475, 0.0516, 0.0558, 0.0792, 1.6553, 1.6368, 1.6208, 1.6009, 1.4432, -0.0111, -0.0153, -0.0175, -0.02, -0.0409, 0.1318, 0.1708, 0.1849, 0.1987, 0.2696),
.Dim = 5:6, .Dimnames = list(c("EE", "ML", "REML", "DL", "HE"), c("tau2", "mu", "se", "z", "ci.lb", "ci.ub")))
expect_equivalent(tmp, expected, tolerance=.tol[["misc"]])
})
test_that("results are correct for the random-effects model (Knapp & Hartung method).", {
res.knha <- list()
expect_warning(res.knha$EE <- rma(yi, vi, data=dat, digits=3, method="EE", test="knha"))
res.knha$ML <- rma(yi, vi, data=dat, digits=3, method="ML", test="knha")
res.knha$REML <- rma(yi, vi, data=dat, digits=3, method="REML", test="knha")
res.knha$DL <- rma(yi, vi, data=dat, digits=3, method="DL", test="knha")
res.knha$HE <- rma(yi, vi, data=dat, digits=3, method="HE", test="knha")
tmp <- t(sapply(res.knha, function(x) c(tau2=x$tau2, mu=x$beta, se=x$se, z=x$zval, ci.lb=x$ci.lb, ci.ub=x$ci.ub)))
expected <- structure(c(0, 0.0126, 0.0188, 0.0259, 0.0804, 0.0604, 0.0777, 0.0837, 0.0893, 0.1143, 0.0515, 0.0593, 0.0616, 0.0636, 0.0711, 1.1733, 1.311, 1.3593, 1.405, 1.6078, -0.0477, -0.0468, -0.0457, -0.0442, -0.0351, 0.1685, 0.2023, 0.2131, 0.2229, 0.2637),
.Dim = 5:6, .Dimnames = list(c("EE", "ML", "REML", "DL", "HE"), c("tau2", "mu", "se", "z", "ci.lb", "ci.ub")))
expect_equivalent(tmp, expected, tolerance=.tol[["misc"]])
})
test_that("results are correct for the random-effects model (Huber-White method).", {
res.std <- list()
res.std$EE <- rma(yi, vi, data=dat, digits=3, method="EE")
res.std$ML <- rma(yi, vi, data=dat, digits=3, method="ML")
res.std$REML <- rma(yi, vi, data=dat, digits=3, method="REML")
res.std$DL <- rma(yi, vi, data=dat, digits=3, method="DL")
res.std$HE <- rma(yi, vi, data=dat, digits=3, method="HE")
res.hw <- list()
res.hw$EE <- robust(res.std$EE, cluster=study, adjust=FALSE)
res.hw$ML <- robust(res.std$ML, cluster=study, adjust=FALSE)
res.hw$REML <- robust(res.std$REML, cluster=study, adjust=FALSE)
res.hw$DL <- robust(res.std$DL, cluster=study, adjust=FALSE)
res.hw$HE <- robust(res.std$HE, cluster=study, adjust=FALSE)
out <- capture.output(print(res.hw$REML))
tmp <- t(sapply(res.hw, function(x) c(tau2=x$tau2, mu=x$beta, se=x$se, t=x$zval, ci.lb=x$ci.lb, ci.ub=x$ci.ub)))
expected <- structure(c(0, 0.0126, 0.0188, 0.0259, 0.0804, 0.0604, 0.0777, 0.0837, 0.0893, 0.1143, 0.0398, 0.0475, 0.05, 0.0522, 0.0618, 1.5148, 1.6369, 1.6756, 1.7105, 1.8503, -0.0234, -0.022, -0.0213, -0.0204, -0.0155, 0.1441, 0.1775, 0.1887, 0.199, 0.2441),
.Dim = 5:6, .Dimnames = list(c("EE", "ML", "REML", "DL", "HE"), c("tau2", "mu", "se", "t", "ci.lb", "ci.ub")))
expect_equivalent(tmp, expected, tolerance=.tol[["misc"]])
})
rm(list=ls()) |
AutoFitPhenology <-
function(data=stop("A dataset must be provided"),
progressbar=TRUE,
...) {
if (class(data)!="phenologydata") {
stop("Data must be formated first using the function add_phenology().")
}
p3p <- list(...)
if (progressbar) pb<-txtProgressBar(min=1, max=8, style=3)
if (progressbar) setTxtProgressBar(pb, 1)
pfixed <- c(Min=0)
parg <- par_init(data = data, fixed.parameters = pfixed)
parg <- c(parg, PMinB=5, PMinE=5)
pfixed <- NULL
p3p_encours <- modifyList(p3p, list(data = data,
fitted.parameters = parg,
fixed.parameters = pfixed,
hessian = FALSE))
fit1 <- do.call("fit_phenology", p3p_encours)
if (progressbar) setTxtProgressBar(pb, 2)
pfixed <- NULL
parg <- fit1$par
parg["PMinB"] <- mean(c(parg["PMinB"], parg["PMinE"]))
parg <- parg[-which(names(parg)=="PMinE")]
names(parg)[which(names(parg)=="PMinB")] <- "PMin"
p3p_encours <- modifyList(p3p, list(data = data,
fitted.parameters = parg,
fixed.parameters = pfixed,
hessian = FALSE))
fit2 <- do.call("fit_phenology", p3p_encours)
if (progressbar) setTxtProgressBar(pb, 3)
pfixed <- c(Min = 0)
parg <- fit2$par
parg <- parg[-which(names(parg)=="PMin")]
p3p_encours <- modifyList(p3p, list(data = data,
fitted.parameters = parg,
fixed.parameters = pfixed,
hessian = FALSE))
fit3 <- do.call("fit_phenology", p3p_encours)
if (progressbar) setTxtProgressBar(pb, 4)
pfixed <- c(Flat = 0)
parg <- fit1$par
parg <- parg[-which(names(parg)=="Flat")]
p3p_encours <- modifyList(p3p, list(data = data,
fitted.parameters = parg,
fixed.parameters = pfixed,
hessian = FALSE))
fit4 <- do.call("fit_phenology", p3p_encours)
if (progressbar) setTxtProgressBar(pb, 5)
pfixed <- c(Flat = 0)
parg <- fit4$par
parg["PMinB"] <- mean(c(parg["PMinB"], parg["PMinE"]))
parg <- parg[-which(names(parg)=="PMinE")]
names(parg)[which(names(parg)=="PMinB")] <- "PMin"
p3p_encours <- modifyList(p3p, list(data = data,
fitted.parameters = parg,
fixed.parameters = pfixed,
hessian = FALSE))
fit5 <- do.call("fit_phenology", p3p_encours)
if (progressbar) setTxtProgressBar(pb, 6)
pfixed <- c(Min = 0, Flat = 0)
parg <- fit5$par
parg <- parg[-which(names(parg)=="PMin")]
p3p_encours <- modifyList(p3p, list(data = data,
fitted.parameters = parg,
fixed.parameters = pfixed,
hessian = FALSE))
fit6 <- do.call("fit_phenology", p3p_encours)
if (progressbar) setTxtProgressBar(pb, 7)
parg <- fit1$par
parg["LengthB"] <- mean(c(parg["LengthB"], parg["LengthE"]))
parg <- parg[-which(names(parg)=="LengthE")]
names(parg)[which(names(parg)=="LengthB")] <- "Length"
pfixed <- fit1$fixed.parameters
p3p_encours <- modifyList(p3p, list(data = data,
fitted.parameters = parg,
fixed.parameters = pfixed,
hessian = FALSE))
fit7 <- do.call("fit_phenology", p3p_encours)
if (progressbar) setTxtProgressBar(pb, 8)
parg <- fit2$par
parg["LengthB"] <- mean(c(parg["LengthB"], parg["LengthE"]))
parg <- parg[-which(names(parg)=="LengthE")]
names(parg)[which(names(parg)=="LengthB")] <- "Length"
pfixed <- fit2$fixed.parameters
p3p_encours <- modifyList(p3p, list(data = data,
fitted.parameters = parg,
fixed.parameters = pfixed,
hessian = FALSE))
fit8 <- do.call("fit_phenology", p3p_encours)
if (progressbar) setTxtProgressBar(pb, 9)
parg <- fit3$par
parg["LengthB"] <- mean(c(parg["LengthB"], parg["LengthE"]))
parg <- parg[-which(names(parg)=="LengthE")]
names(parg)[which(names(parg)=="LengthB")] <- "Length"
pfixed <- fit3$fixed.parameters
p3p_encours <- modifyList(p3p, list(data = data,
fitted.parameters = parg,
fixed.parameters = pfixed,
hessian = FALSE))
fit9 <- do.call("fit_phenology", p3p_encours)
if (progressbar) setTxtProgressBar(pb, 10)
parg <- fit4$par
parg["LengthB"] <- mean(c(parg["LengthB"], parg["LengthE"]))
parg <- parg[-which(names(parg)=="LengthE")]
names(parg)[which(names(parg)=="LengthB")] <- "Length"
pfixed <- fit4$fixed.parameters
p3p_encours <- modifyList(p3p, list(data = data,
fitted.parameters = parg,
fixed.parameters = pfixed,
hessian = FALSE))
fit10 <- do.call("fit_phenology", p3p_encours)
if (progressbar) setTxtProgressBar(pb, 11)
parg <- fit5$par
parg["LengthB"] <- mean(c(parg["LengthB"], parg["LengthE"]))
parg <- parg[-which(names(parg)=="LengthE")]
names(parg)[which(names(parg)=="LengthB")] <- "Length"
pfixed <- fit5$fixed.parameters
p3p_encours <- modifyList(p3p, list(data = data,
fitted.parameters = parg,
fixed.parameters = pfixed,
hessian = FALSE))
fit11 <- do.call("fit_phenology", p3p_encours)
if (progressbar) setTxtProgressBar(pb, 12)
parg <- fit6$par
parg["LengthB"] <- mean(c(parg["LengthB"], parg["LengthE"]))
parg <- parg[-which(names(parg)=="LengthE")]
names(parg)[which(names(parg)=="LengthB")] <- "Length"
pfixed <- fit6$fixed.parameters
p3p_encours <- modifyList(p3p, list(data = data,
fitted.parameters = parg,
fixed.parameters = pfixed,
hessian = FALSE))
fit12 <- do.call("fit_phenology", p3p_encours)
compare_AIC(LengthB_LengthE_Flat_PMinB_PMinE = fit1,
LengthB_LengthE_Flat_PMin = fit2,
LengthB_LengthE_Flat = fit3,
LengthB_LengthE_PMinB_PMinE = fit4,
LengthB_LengthE_PMin = fit5,
LengthB_LengthE = fit6,
Length_Flat_PMinB_PMinE = fit7,
Length_Flat_PMin = fit8,
Length_Flat = fit9,
Length_PMinB_PMinE = fit10,
Length_PMin = fit11,
Length = fit12)
return(list(LengthB_LengthE_Flat_PMinB_PMinE = fit1,
LengthB_LengthE_Flat_PMin = fit2,
LengthB_LengthE_Flat = fit3,
LengthB_LengthE_PMinB_PMinE = fit4,
LengthB_LengthE_PMin = fit5,
LengthB_LengthE = fit6,
Length_Flat_PMinB_PMinE = fit7,
Length_Flat_PMin = fit8,
Length_Flat = fit9,
Length_PMinB_PMinE = fit10,
Length_PMin = fit11,
Length = fit12))
} |
knitr::opts_chunk$set(echo=TRUE,
fig.width=6,
fig.height=4)
library(cowplot)
library(PKNCA)
library(knitr)
library(ggplot2)
source("../tests/testthat/generate.data.R")
scale_colour_discrete <- scale_colour_hue
scale_fill_discrete <- scale_fill_hue
cat("ggplot2 is required for this vignette to work correctly. Please install the ggplot2 library and retry building the vignette.")
d_conc <-
PKNCAconc(
generate.conc(nsub=1,
ntreat=1,
time.points=c(0, 1, 2, 4, 6, 8, 12, 24, 36, 48),
nstudies=1,
nanalytes=1,
resid=0),
conc~time|treatment+ID)
print(d_conc)
d_conc_multi <-
superposition(d_conc,
tau=168,
dose.times=seq(0, 168-24, by=24),
n.tau=1)
ggplot(d_conc_multi, aes(x=time, y=conc)) +
geom_ribbon(data=d_conc_multi[d_conc_multi$time >= 144,],
aes(ymax=conc, ymin=0),
fill="skyblue") +
geom_point() + geom_line() +
scale_x_continuous(breaks=seq(0, 168, by=12)) +
scale_y_continuous(limits=c(0, NA)) +
labs(x="Time Since First Dose (hr)",
y="Concentration\n(arbitrary units)")
intervals_manual <- data.frame(start=144, end=168, auclast=TRUE)
knitr::kable(intervals_manual)
PKNCAdata(d_conc, intervals=intervals_manual)
intervals_manual <-
data.frame(
treatment=c("Drug 1 Single", "Drug 1 Multiple", "Drug 1 Multiple"),
start=c(0, 0, 216),
end=c(Inf, 24, 240),
aucinf.obs=c(TRUE, FALSE, FALSE),
auclast=c(FALSE, TRUE, TRUE)
)
knitr::kable(intervals_manual)
d_conc <-
PKNCAconc(
generate.conc(nsub=1,
ntreat=1,
time.points=c(0, 1, 2, 4, 6, 8, 12, 24, 36, 48),
nstudies=1,
nanalytes=1,
resid=0),
conc~time|treatment+ID)
print(d_conc)
ggplot(d_conc$data[d_conc$data$time <= 48,], aes(x=time, y=conc)) +
geom_ribbon(data=d_conc$data,
aes(ymax=conc, ymin=0),
fill="skyblue") +
geom_point() + geom_line() +
scale_x_continuous(breaks=seq(0, 72, by=12)) +
scale_y_continuous(limits=c(0, NA)) +
labs(x="Time Since First Dose (hr)",
y="Concentration\n(arbitrary units)")
intervals_manual <-
data.frame(
start=0,
end=Inf,
auclast=TRUE,
aucinf.obs=TRUE
)
print(intervals_manual)
my.data <- PKNCAdata(d_conc, intervals=intervals_manual)
d_conc <-
PKNCAconc(
generate.conc(nsub=1,
ntreat=1,
time.points=c(0, 1, 2, 4, 6, 8, 12, 24, 36, 48),
nstudies=1,
nanalytes=1,
resid=0),
conc~time|treatment+ID)
print(d_conc)
d_conc_multi <-
superposition(d_conc,
tau=168,
dose.times=seq(0, 168-24, by=24),
n.tau=1)
ggplot(d_conc_multi, aes(x=time, y=conc)) +
geom_ribbon(data=d_conc_multi[d_conc_multi$time <= 24,],
aes(ymax=conc, ymin=0),
fill="skyblue") +
geom_ribbon(data=d_conc_multi[d_conc_multi$time >= 144,],
aes(ymax=conc, ymin=0),
fill="lightgreen") +
geom_point() + geom_line() +
scale_x_continuous(breaks=seq(0, 168, by=12)) +
scale_y_continuous(limits=c(0, NA)) +
labs(x="Time Since First Dose (hr)",
y="Concentration\n(arbitrary units)")
intervals_manual <-
data.frame(
start=c(0, 144),
end=c(24, 168),
auclast=TRUE
)
knitr::kable(intervals_manual)
my.data <- PKNCAdata(d_conc, intervals=intervals_manual)
d_conc <-
PKNCAconc(
generate.conc(nsub=1,
ntreat=1,
time.points=c(0, 1, 2, 4, 6, 8, 12, 24, 36, 48),
nstudies=1,
nanalytes=1,
resid=0),
conc~time|treatment+ID)
print(d_conc)
ggplot(d_conc$data, aes(x=time, y=conc)) +
geom_ribbon(data=d_conc$data,
aes(ymax=conc, ymin=0),
fill="lightgreen",
alpha=0.5) +
geom_ribbon(data=d_conc$data[d_conc$data$time <= 24,],
aes(ymax=conc, ymin=0),
fill="skyblue",
alpha=0.5) +
geom_point() + geom_line() +
scale_x_continuous(breaks=seq(0, 168, by=12)) +
scale_y_continuous(limits=c(0, NA)) +
labs(x="Time Since First Dose (hr)",
y="Concentration\n(arbitrary units)")
intervals_manual <-
data.frame(
start=0,
end=c(24, Inf),
auclast=TRUE,
aucinf.obs=c(FALSE, TRUE)
)
knitr::kable(intervals_manual)
my.data <- PKNCAdata(d_conc, intervals=intervals_manual)
ggplot_intervals <- function(definition, intervals) {
intervals$within <-
c("No", "Yes")[intervals$interval.start >= min(definition$start.x) &
intervals$interval.end >= max(definition$start.x)]
intervals$within <-
factor(intervals$within, levels=c("Yes", "No"))
ggplot(intervals,
aes(x=interval.start,
xend=interval.end,
y=y,
yend=y,
linetype=within)) +
geom_segment() +
geom_segment(data=definition,
mapping=aes(x=start.x, xend=start.x, y=start.y, yend=end.y),
arrow=arrow(),
inherit.aes=FALSE) +
geom_point(aes(x=interval.start, y=1),
shape="|",
size=4) +
geom_point(aes(x=max(interval.end), y=1),
shape="|",
size=4) +
scale_y_continuous(breaks=NULL) +
labs(x="Time",
y=NULL)
}
interval_definition <-
data.frame(start.x=c(0, 24),
start.y=0.5,
end.y=0.9)
show_intervals <-
data.frame(interval.start=c(0, 4, 12, 24),
interval.end=c(4, 12, 24, 48),
y=1)
ggplot_intervals(interval_definition,
show_intervals)
interval_definition <-
data.frame(start.x=c(0, 16),
start.y=0.5,
end.y=0.9)
show_intervals <-
data.frame(interval.start=c(0, 4, 12, 24),
interval.end=c(4, 12, 24, 48),
y=1)
ggplot_intervals(interval_definition,
show_intervals)
interval_spec <- get.interval.cols()
interval_spec <- interval_spec[sort(names(interval_spec))]
get_function_for_calc <- function(x) {
if (is.na(x$FUN)) {
if (is.null(x$depends)) {
"(none)"
} else {
paste("See the parameter name", x$depends)
}
} else {
x$FUN
}
}
kable(
data.frame(
`Parameter Name`=names(interval_spec),
`Parameter Description`=sapply(interval_spec, `[[`, "desc"),
`Function for Calculation`=sapply(interval_spec, get_function_for_calc),
check.names=FALSE,
stringsAsFactors=FALSE
),
row.names=FALSE
) |
`permute` <- function(i, n, control) {
complete <- getComplete(control)
ap <- getAllperms(control)
perm <- if (complete && !is.null(ap)) {
ap[i, ]
} else {
if (complete) {
warning("'$all.perms' is NULL, yet '$complete = TRUE'.\nReturning a random permutation.")
}
shuffle(n, control)
}
perm
} |
tracePlot <- function(object, layout=c(3,3), ask=NULL, ...) {
objName <- deparse(substitute(object))
plotStuff("trace", object=object, objName=objName, layout=layout, ask=ask, ...)
}
tracePlot1 <- function(mat, name, dots) {
defaultArgs <- list(xlab="Iterations", ylab="", type='l', lty=1)
useArgs <- modifyList(defaultArgs, dots)
useArgs$y <- mat
useArgs$main <- name
do.call(matplot, useArgs)
abline(h=mean(mat))
}
densityPlot <- function(object, layout=c(3,3), ask=NULL, ...) {
objName <- deparse(substitute(object))
plotStuff("density", object=object, objName=objName, layout=layout, ask=ask, ...)
}
densityPlot1 <- function(mat, name, dots) {
defaultArgs <- list(ylab="Density", type='l', lty=1, xlab="")
useArgs <- modifyList(defaultArgs, dots)
densPlot0(mat, useArgs)
title(main=name)
}
acfPlot <- function(object, lag.max=NULL, layout=c(3,3), ask=NULL, ...) {
objName <- deparse(substitute(object))
plotStuff("acf", object=object, objName=objName, layout=layout, ask=ask, lag.max=lag.max, ...)
}
acfPlot1 <- function(mat, name, lag.max, dots) {
defaultArgs <- list(ylab="ACF", xlab="Lag", type='h', lty=1)
useArgs <- modifyList(defaultArgs, dots)
acor <- apply(mat, 2, function(x) acf(x, lag.max=lag.max, plot=FALSE)$acf)
if(any(is.na(acor))) {
plot(1, 1, type = "n", ann = FALSE, axes = FALSE)
text(1,1, "No ACF calculated.")
title(main=name)
} else {
lags <- 0:(nrow(acor) - 1)
if (ncol(mat) > 1) {
jitt <- seq(-0.2, 0.2, length=ncol(mat))
} else {
jitt <- 0
}
lags.mat <- outer(lags, jitt, "+")
useArgs$main <- name
useArgs$x <- lags.mat
useArgs$y <- acor
do.call(matplot, useArgs)
abline(h=0)
}
} |
dt1 <- simulation_model1(seed = 50)
test_that("extreme_rank_lenk depth handles unconventional data", {
expect_error(extreme_rank_length(dt = list()))
expect_error(extreme_rank_length(dt = data.frame()) )
expect_error(extreme_rank_length(dt = matrix(0, nrow = 1, ncol = 3)))
expect_error(extreme_rank_length(dt = matrix(c(1:2, NA), nrow = 1, ncol = 3)))
expect_error(extreme_rank_length(dt = dt1$data, type = "left"))
})
test_that("extreme_rank_lenk depth throws errows on strange type", {
expect_error(extreme_rank_length(dt = matrix(1:9, nrow = 3, ncol = 3),
type = "one_sided_laft"))
})
test_that("extreme_rank_lenk depth produces correct results", {
dt <-dt1$data[1:9, 1:7]
dtt <- rbind(dt, dt[1,])
expect_equal(extreme_rank_length(dt, type = "one_sided_right")*9,
c(4, 7, 8, 9, 2, 6, 3, 1, 5))
expect_equal(extreme_rank_length(dtt, type = "one_sided_right"),
c(0.45, 0.80, 0.90, 1.00, 0.20, 0.70, 0.30, 0.10, 0.60, 0.45))
expect_equal(extreme_rank_length(dt, type = "two_sided")*9,
c(8, 6, 3, 2, 4, 7, 5, 1, 9))
expect_equal(extreme_rank_length(dtt, type = "two_sided"),
c(0.85, 0.60, 0.30, 0.20, 0.40, 0.70, 0.50, 0.10, 1.00, 0.85))
expect_equal(extreme_rank_length(dt, type = "one_sided_left")*9,
c(6, 3, 2, 1, 8, 4, 7, 9, 5))
expect_equal(extreme_rank_length(dtt, type = "one_sided_left"),
c(0.75, 0.30, 0.20, 0.10, 0.90, 0.40, 0.60, 1.00, 0.50, 0.75))
}) |
perturbation <- function(x, y){
constSum(x * y)
}
powering <- function(x, a){
constSum(x^a)
} |
check.factor <- function(train, test, gfactor) {
if (!is.null(gfactor)) {
if (length(gfactor$factor) > 0) {
test[, match(gfactor$factor, colnames(test))] <- data.frame(
mclapply(1:length(gfactor$factor),
function(k) {
fk.train <- train[, colnames(train) == gfactor$factor[k]]
fk.test <- test[ , colnames(test) == gfactor$factor[k]]
if (length(setdiff(levels(na.omit(fk.test)), levels(fk.train))) > 0) {
stop("Factors in test and training data do not match...\n")
}
factor(as.character(fk.test), levels = gfactor$levels[[k]], exclude = NULL)
}))
}
if (length(gfactor$order) > 0) {
test[, match(gfactor$order, colnames(test))] <- data.frame(
mclapply(1:length(gfactor$order),
function(k) {
fk.train <- train[, colnames(train) == gfactor$order[k]]
fk.test <- test[ , colnames(test) == gfactor$order[k]]
if (length(setdiff(levels(na.omit(fk.test)), levels(fk.train))) > 0) {
stop("Factors in test and training data do not match...\n")
}
factor(as.character(fk.test), levels = gfactor$order.levels[[k]], ordered = TRUE)
}))
}
}
test
}
is.factor.not.ordered <- function(x) {is.factor(x) && !is.ordered(x)}
extract.factor <- function (dat, generic.names = NULL) {
generic.types <- gfactor <- gfactor.order <- gfactor.levels <- gfactor.order.levels <- NULL
if (is.null(generic.names)) {
target.names <- names(dat)
}
else {
target.names <- generic.names
}
nlevels <- rep(0, length(target.names))
gfactor <- names(dat)[unlist(lapply(dat, is.factor.not.ordered))]
gfactor.order <- names(dat)[unlist(lapply(dat, is.ordered))]
if (!is.null(generic.names)) gfactor <- intersect(gfactor , generic.names)
if (!is.null(generic.names)) gfactor.order <- intersect(gfactor.order , generic.names)
if (length(gfactor) > 0) {
gfactor.levels <- mclapply(cbind(1:(1+length(gfactor))), function(k) {
if (k <= length(gfactor)) {
levels(dat[ , names(dat) == gfactor[k]])
}
else {
NULL
}
})
gfactor.levels <- gfactor.levels[-(1+length(gfactor))]
nlevels[match(gfactor, target.names)] <- unlist(lapply(gfactor.levels, function(g){length(g)}))
}
if (length(gfactor.order) > 0 ) {
gfactor.order.levels <- mclapply(1:(1+length(gfactor.order)), function(k) {
if (k <= length(gfactor.order)) {
levels(dat[ , names(dat) == gfactor.order[k]])
}
else {
NULL
}
})
gfactor.order.levels <- gfactor.order.levels[-(1+length(gfactor.order))]
nlevels[match(gfactor.order, target.names)] <- unlist(lapply(gfactor.order.levels, function(g){length(g)}))
}
if (!is.null(generic.names)) {
generic.types <- rep("R", length(generic.names))
if (length(gfactor) > 0) {
generic.types[match(gfactor, generic.names)] <- "C"
}
if (length(gfactor.order) > 0) {
generic.types[match(gfactor.order, generic.names)] <- "I"
}
}
else {
generic.types <- rep("R", ncol(dat))
if (length(gfactor) > 0) {
generic.types[match(gfactor, names(dat))] <- "C"
}
if (length(gfactor.order) > 0) {
generic.types[match(gfactor.order, names(dat))] <- "I"
}
}
if (is.null(gfactor) & is.null(gfactor.order)) {
return(NULL)
}
else {
return(list(factor=gfactor,
order=gfactor.order,
levels=gfactor.levels,
order.levels=gfactor.order.levels,
nlevels = nlevels,
generic.types=generic.types))
}
}
map.factor <- function (gvar, gfactor) {
if (!is.null(gfactor)) {
if (length(gfactor$factor) > 0) {
gvar[, match(gfactor$factor, colnames(gvar))] <- data.frame(
mclapply(1:length(gfactor$factor),
function(k) {
ptk <- (colnames(gvar) == gfactor$factor[k])
factor.k <- gfactor$levels[[k]][gvar[ , ptk ]]
labels.k <- gfactor$levels[[k]][sort(unique(gvar[ , ptk ]))]
gk <- factor(factor.k, labels = labels.k, levels = labels.k, exclude = NULL)
if (length(setdiff(gfactor$levels[[k]], labels.k)) > 0) {
gk <- factor(as.character(gk), levels = gfactor$levels[[k]])
}
gk
}))
}
if (length(gfactor$order) > 0) {
gvar[, match(gfactor$order, colnames(gvar))] <- data.frame(
mclapply(1:length(gfactor$order),
function(k) {
ptk <- (colnames(gvar) == gfactor$order[k])
factor.k <- gfactor$order.levels[[k]][gvar[ , ptk ]]
labels.k <- gfactor$order.levels[[k]][sort(unique(gvar[ , ptk ]))]
gk <- factor(factor.k, labels = labels.k, levels = labels.k,
exclude = NULL, ordered = TRUE)
if (length(setdiff(gfactor$order.levels[[k]], labels.k)) > 0) {
gk <- factor(as.character(gk), levels = gfactor$order.levels[[k]], ordered = TRUE)
}
gk
}))
}
}
gvar
}
rm.na.levels <- function(dat, xvar.names=NULL) {
factor.names <- names(dat)[unlist(lapply(dat, is.factor))]
if (!is.null(xvar.names)) factor.names <- intersect(factor.names , xvar.names)
if (length(factor.names) > 0) {
levels.na.pt <- unlist(lapply(1:length(factor.names), function(k) {
any(levels(dat[ , names(dat) == factor.names[k]]) == "NA")
}))
if (any(levels.na.pt)) {
factor.names <- factor.names[levels.na.pt]
dat[, match(factor.names, names(dat))] <- data.frame(mclapply(1:length(factor.names),
function(k) {
x <- dat[ , names(dat) == factor.names[k]]
levels(x)[levels(x) == "NA"] <- NA
x
}))
}
}
dat
} |
svc <- paws::organizations() |
dMSGHD <- function(data,p,mu=rep(0,p),alpha=rep(0,p),sigma=diag(p),omegav=rep(1,p),lambdav=rep(0.5,p),gam=NULL,phi=NULL,log=FALSE) {
if(!is.matrix(data))data=matrix(data,length(data)/p,p)
y=data
if(is.null(gam)){gam=eigen(sigma)$vectors
phi=eigen(sigma)$values
}else if(is.null(phi)){cat("phi cannot be NULL")}
x = y %*% (gam)
alpha = alpha%*%gam
mu =mu%*%gam
d = p; chi = omegav; psi = omegav;
lambda = lambdav;
xmu = sweep(x,2,mu,"-")
pa = psi + alpha^2/phi
mx = sweep(sweep(xmu^2,2,1/phi, FUN="*"), 2,chi, "+")
kx = sqrt(sweep(mx, 2, pa, "*"))
lx1 = sweep( sweep(log(mx),2,log(pa),"-"), 2, (lambda - 1/2)/2, "*")
lx2 = t(apply(kx, 1, function(z,lam=NULL) { log(besselK( z, nu=lambda-1/2, expon.scaled =TRUE)) - z }, lam=lambda ))
lx3 = sweep(xmu, 2, alpha/phi, FUN="*")
lv = matrix(0, nrow=d, ncol=3)
lv[,1] = - 1/2*log( phi ) - 1/2*(log(2)+log(pi))
lv[,2] = - (log(besselK( sqrt(chi*psi), nu=lambda, expon.scaled =TRUE)) - sqrt(chi*psi) )
lv[,3] = lambda/2*(log(psi)-log(chi) )
if(ncol(y)==1){lx2=t(lx2)}
val = apply(lx1 + lx2 + lx3, 1, sum) + sum(lv)
if (!log) val = exp( val )
return(val)
}
dCGHD <- function(data,p,mu=rep(0,p),alpha=rep(0,p),sigma=diag(p),lambda=1,omega=1,omegav=rep(1,p),lambdav=rep(1,p),wg=0.5,gam=NULL,phi=NULL) {
if(!is.matrix(data))data=matrix(data,length(data)/p,p)
wg=c(wg,1-wg)
if (wg[2] != 0 & wg[1]!=0) {
val1 = dGHD(data,p,mu,alpha,sigma,omega,lambda)
val2= dMSGHD(data,p,mu,alpha,sigma,omegav,lambdav,gam,phi)
val = wg[1]*(val1) + wg[2]*(val2)
} else if(wg[1]==1) {val = dGHD(data,p,mu,alpha,sigma,omega,lambda)}
else{val= dMSGHD(data,p,mu,alpha,sigma,omegav,lambdav,gam,phi)}
return( val )
}
dGHD <- function(data, p, mu=rep(0,p),alpha=rep(0,p),sigma=diag(p),omega=1,lambda=0.5, log=FALSE) {
if(!is.matrix(data))data=matrix(data,length(data)/p,p)
x=data
if (length(mu) != length(alpha) ) stop("mu and alpha do not have the same length")
d = length(mu)
omega = exp(log(omega))
invS = ginv(sigma)
pa = omega + alpha %*% invS %*% alpha
mx = omega + mahalanobis(x, center=mu, cov=invS, inverted=TRUE)
pa2=rep(pa,length(mx))
kx = sqrt(mx*pa2)
xmu = sweep(x,2,mu)
lvx = matrix(0, nrow=nrow(x), 4)
lvx[,1] = (lambda - d/2)*log(kx)
lvx[,2] = log(besselK( kx, nu=lambda-d/2, expon.scaled =TRUE)) - kx
lvx[,3] = xmu %*% invS %*% alpha
lv = numeric(6)
if(is.nan(log(det( sigma )))){sigma =diag(ncol(mu))}
lv[1] = -1/2*log(det( sigma )) -d/2*(log(2)+log(pi))
lv[2] = omega - log(besselK( omega, nu=lambda, expon.scaled =TRUE))
lv[3] = -lambda/2*( log(1) )
lv[4] = lambda*log(omega) *0
lv[5] = (d/2 - lambda)*log( pa )
val = apply(lvx,1,sum) + sum(lv)
if (!log) val = exp( val )
return(val)
} |
slide.nodes.internal <- function(tree, nodes, slide) {
parent_edge <- which(tree$edge[,2] %in% nodes)
descendant_edge <- which(tree$edge[,1] %in% nodes)
if(length(parent_edge) != 0) {
tree$edge.length[parent_edge] <- tree$edge.length[parent_edge] + slide
if(any(tree$edge.length[parent_edge] < 0)) {
return(NULL)
}
}
tree$edge.length[descendant_edge] <- tree$edge.length[descendant_edge] - slide
if(any(tree$edge.length[descendant_edge] < 0)) {
return(NULL)
}
return(tree)
} |
get_time_range <- function(tms) {
time_range <- 0
for(tm in tms){
time_range <- max(max(tm[,1]) - min(tm[,1]),time_range)
}
return(time_range)
}
get_freq_del <- function(tms) {
time_range <- get_time_range(tms)
return(.1/time_range)
}
get_freqs <- function(period_min=1,period_max=100,freq_del=.1/4000) {
freq_max <- 1 / period_min
freq_min <- 1 / period_max
return(2*pi*seq(freq_min,freq_max,freq_del))
} |
CreateProjectFolders <- function(ProjectName = input$ID_NewProjectName,
RootPath = input$ID_Root_Folder,
ExistsButNoProjectList = FALSE,
Local = FALSE) {
RootPath <- gsub("\\\\", "/", RootPath)
RootPath <- tryCatch({normalizePath(RootPath, mustWork = TRUE)}, error = function(x) NULL)
if(!is.null(RootPath)) {
ProjectList <- list()
ProjectList[["ProjectName"]] <- ProjectName
if(Local) {
ProjectPath <- file.path(normalizePath(RootPath), ProjectName)
} else {
ProjectPath <- paste0("./",ProjectName)
}
ProjectList[["ProjectFolderPath"]] <- ProjectPath
if(!ExistsButNoProjectList) {
DataPath <- normalizePath(file.path(ProjectPath, "Data"), mustWork = FALSE)
dir.create(path = DataPath, showWarnings = TRUE, recursive = TRUE)
ProjectList[["DataFolderPath"]] <- DataPath
ModelsPath <- normalizePath(file.path(ProjectPath, "Models"), mustWork = FALSE)
dir.create(path = ModelsPath, showWarnings = TRUE, recursive = TRUE)
ProjectList[["ModelsFolderPath"]] <- ModelsPath
MetaDataPath <- normalizePath(file.path(ProjectPath, "MetaData"), mustWork = FALSE)
dir.create(path = MetaDataPath, showWarnings = TRUE, recursive = TRUE)
ProjectList[["MetaDataPath"]] <- MetaDataPath
save(ProjectList, file = file.path(MetaDataPath, "ProjectList.Rdata"))
} else {
DataPath <- normalizePath(file.path(ProjectPath,"Data"), mustWork = FALSE)
ProjectList[["DataFolderPath"]] <- DataPath
ModelsPath <- normalizePath(file.path(ProjectPath,"Models"), mustWork = FALSE)
ProjectList[["ModelsFolderPath"]] <- ModelsPath
MetaDataPath <- normalizePath(file.path(ProjectPath,"MetaData"), mustWork = FALSE)
ProjectList[["MetaDataPath"]] <- MetaDataPath
save(ProjectList, file = file.path(MetaDataPath,paste0(ProjectName,"_ProjectList.Rdata")))
}
return(ProjectList)
} else {
return(NULL)
}
}
DownloadCSVFromStorageExplorer <- function(UploadCSVObjectName = 'data.csv',
SaveCSVFilePath = file.path(Root),
SaveCSVName = "RawData.csv",
UploadLocation = 'Analytics Sandbox/Machine Learning',
DataStoreName = NULL) {
if(!"azuremlsdk" %chin% installed.packages()) stop("You need to run install.packages('azuremlsdk')")
options(warn = -1)
ws <- azuremlsdk::load_workspace_from_config()
ds <- azuremlsdk::get_datastore(ws, DataStoreName)
dset <- azuremlsdk::create_tabular_dataset_from_delimited_files(
path = ds$path(file.path(UploadLocation, UploadCSVObjectName)),
validate = TRUE,
include_path = FALSE,
infer_column_types = TRUE,
set_column_types = NULL,
separator = ",",
header = TRUE,
partition_format = NULL)
data <- dset$to_pandas_dataframe()
data <- data.table::as.data.table(data)
data.table::fwrite(data, file = file.path(SaveCSVFilePath, SaveCSVName))
options(warn = 0)
} |
context("LapplyGetModule")
test_that("LapplyGetModule works correctly", {
a <- list(module = "UKAir", paras = list())
b <- list(module = "UKAir", paras = list())
c <- LapplyGetModule(list(a, b), forceReproducible = FALSE)
expect_is(c, "list")
expect_equal(names(c[[1]]), c("module", "paras", "func", "version"))
expect_equal(names(c[[2]]), c("module", "paras", "func", "version"))
expect_equal(c[[1]]$module, "UKAir")
expect_equal(c[[2]]$module, "UKAir")
expect_equal(c[[1]]$paras, list())
expect_equal(c[[2]]$paras, list())
expect_equal(c[[1]]$func, "UKAir")
expect_equal(c[[2]]$func, "UKAir")
d <- list(module = "UKAir", paras = list(a = 2, b = "a"))
e <- LapplyGetModule(list(a, d), forceReproducible = FALSE)
expect_is(e, "list")
expect_equal(names(e[[2]]), c("module", "paras", "func", "version"))
expect_equal(e[[2]]$module, "UKAir")
expect_equal(e[[2]]$paras, list(a = 2, b = "a"))
expect_equal(e[[2]]$func, "UKAir")
expect_true(exists("UKAir"))
}) |
set.seed(1)
nobs <- 50; nvars <- 10
x <- matrix(rnorm(nobs * nvars), nrow = nobs)
y <- rowSums(x[, 1:2]) + rnorm(nobs)
biny <- ifelse(y > 0, 1, 0)
foldid <- sample(rep(seq(5), length = nobs))
weights <- rep(1:2, length.out = nobs)
test_that("foldid need not be 1:nfolds", {
cv_fit1 <- kfoldcv(x, y, train_fun = glmnet, predict_fun = predict,
foldid = foldid, keep = TRUE)
cv_fit2 <- kfoldcv(x, y, train_fun = glmnet, predict_fun = predict,
foldid = -foldid * 2, keep = TRUE)
compare_glmnet_fits(cv_fit1, cv_fit2)
})
test_that("foldid need not be 1:nfolds, auc", {
cv_fit1 <- kfoldcv(x, biny, type.measure = "auc", family = "binomial",
train_fun = glmnet, predict_fun = predict,
train_params = list(family = "binomial"),
predict_params = list(type = "response"),
foldid = foldid, keep = TRUE)
cv_fit2 <- kfoldcv(x, biny, type.measure = "auc", family = "binomial",
train_fun = glmnet, predict_fun = predict,
train_params = list(family = "binomial"),
predict_params = list(type = "response"),
foldid = -foldid * 2, keep = TRUE)
compare_glmnet_fits(cv_fit1, cv_fit2)
})
test_that("invalid type.measure", {
expect_error(kfoldcv(x, y, train_fun = glmnet, predict_fun = predict,
type.measure = "class"))
})
test_that("family mismatch", {
expect_warning(kfoldcv(x, biny, train_fun = glmnet, predict_fun = predict,
type.measure = "deviance",
train_params = list(family = "binomial")))
})
test_that("parallel", {
cl <- parallel::makeCluster(2)
doParallel::registerDoParallel(cl)
cv_fit1 <- kfoldcv(x, y, train_fun = glmnet, predict_fun = predict,
train_params = list(weights = weights),
train_row_params = c("weights"),
foldid = foldid, keep = TRUE)
cv_fit2 <- kfoldcv(x, y, train_fun = glmnet, predict_fun = predict,
train_params = list(weights = weights),
train_row_params = c("weights"),
foldid = foldid, keep = TRUE, parallel = TRUE)
parallel::stopCluster(cl)
compare_glmnet_fits(cv_fit1, cv_fit2)
}) |
isBIG5 <- function(string, combine = FALSE)
{
string <- .verifyChar(string)
if (length(string) == 1) {
OUT <- .C("CWrapper_encoding_isbig5",
characters = as.character(string),
numres = 2L)
OUT <- as.logical(OUT$numres)
} else {
if (combine) {
OUT <- isBIG5(paste(string, collapse = ""))
} else {
OUT <- as.vector(sapply(string, isBIG5))
}
}
return(OUT)
} |
if (!require("HiTC", quietly = TRUE)) {
knitr::opts_chunk$set(eval = FALSE)
}
library("adjclust")
load(system.file("extdata", "hic_imr90_40_XX.rda", package = "adjclust"))
HiTC::mapC(hic_imr90_40_XX)
fit <- hicClust(hic_imr90_40_XX)
binned <- HiTC::binningC(hic_imr90_40_XX, binsize = 1e5)
HiTC::mapC(binned)
fitB <- hicClust(binned)
fitB
plot(fitB, mode = "corrected")
head(cbind(fitB$merge, fitB$gains))
sessionInfo() |
context("MODIStsp Test 8: Exit gracefully on missing internet connection")
test_that(
"Tests on MODIStsp", {
skip_on_cran()
expect_message(
httptest::without_internet(MODIStsp(test = 5, n_retries = 1)),
"Error: http server seems to be down!"
)
}
) |
complete.dtplyr_step <- function(data, ..., fill = list()) {
dots <- enquos(...)
dots <- dots[!map_lgl(dots, quo_is_null)]
if (length(dots) == 0) {
return(data)
}
full <- tidyr::expand(data, !!!dots)
full <- dplyr::full_join(full, data, by = full$vars)
full <- tidyr::replace_na(full, replace = fill)
full
}
complete.data.table <- function(data, ..., fill = list()) {
data <- lazy_dt(data)
tidyr::complete(data, ..., fill = fill)
} |
print.surv_variable_response_explainer <- function(x, ...){
class(x) <- "data.frame"
print(head(x, ...))
} |
test_that("and doesn't change anything with a single predicate", {
and(is.integer)(1L) |> expect_equal(is.integer(1L))
and(is.character)(1L) |> expect_equal(is.character(1L))
})
test_that("and returns a function that returns FALSE if any are FALSE", {
and(\(a) FALSE, \(a) TRUE)(1) |> expect_false()
and(\(a) TRUE, \(a) FALSE)(1) |> expect_false()
and(\(a) FALSE, \(a) FALSE)(1) |> expect_false()
})
test_that("and returns a function that returns TRUE if all are TRUE", {
and(\(a) TRUE)(1) |> expect_true()
and(\(a) TRUE, \(a) TRUE)(1) |> expect_true()
}) |
bct_regression <- function( formula, data, weights=NULL,
beta_init=NULL, beta_prior=NULL, df=Inf, lambda_fixed=NULL, est_df=FALSE,
use_grad=2, h=1E-5, optimizer="optim", maxiter=300, control=NULL )
{
CALL <- match.call()
type <- "bct"
res <- mdmb_regression( formula=formula, data=data, type=type,
weights=weights, beta_init=beta_init, beta_prior=beta_prior,
df=df, lambda_fixed=lambda_fixed, est_df=est_df,
use_grad=use_grad, h=h, optimizer=optimizer, maxiter=maxiter, control=control )
res$CALL <- CALL
class(res) <- 'bct_regression'
return(res)
} |
apply_mask_clima <-
function(variable,
mask_file_final,
climatology_file,
temp_dir,
country_code,
climate_year_start,
climate_year_end,
accumulate) {
acc_string <- ""
if (accumulate)
{
acc_string <- "accumulated_"
}
outfile <- add_ncdf_ext(
construct_filename(
variable,
"climatology",
paste0(climate_year_start, "-", climate_year_end),
paste0(acc_string, country_code),
"mask"
)
)
outfile <- file.path(temp_dir, outfile)
if (file.exists(mask_file_final)) {
tryCatch({
cmsafops::cmsaf.add(
var1 = variable,
var2 = get_country_name(country_code),
infile1 = climatology_file,
infile2 = mask_file_final,
outfile = outfile,
overwrite = TRUE
)}, error = function(cond) {
stop(paste0("An error occured while applying final mask file to climatology file."))
})
return(outfile)
} else {
stop(paste("Applying mask file to climatology file failed: final mask file: ", mask_file_final, " does not exist!"))
}
} |
sits_show_prediction <- function(class) {
.check_set_caller("sits_show_prediction")
.sits_tibble_test(class)
.check_chr_within(
x = .config_get("ts_predicted_cols"),
within = names(class$predicted[[1]]),
msg = "tibble has not been classified"
)
return(dplyr::select(
dplyr::bind_rows(class$predicted),
c("from", "to", "class")
))
}
.sits_tibble_prediction <- function(data, class_info, prediction) {
ref_dates_lst <- class_info$ref_dates[[1]]
timeline_global <- class_info$timeline[[1]]
labels <- class_info$labels[[1]]
n_labels <- length(labels)
int_labels <- c(1:n_labels)
names(int_labels) <- labels
pred <- names(int_labels[max.col(prediction)])
idx <- 1
data_pred <- slider::slide_dfr(data, function(row) {
timeline_row <- lubridate::as_date(row$time_series[[1]]$Index)
if (timeline_row[1] != timeline_global[1]) {
ref_dates_lst <- .sits_timeline_match(
timeline = timeline_row,
ref_start_date = lubridate::as_date(row$start_date),
ref_end_date = lubridate::as_date(row$end_date),
num_samples = nrow(row$time_series[[1]])
)
}
pred_sample <- ref_dates_lst %>%
purrr::map_dfr(function(rd) {
probs_date <- rbind.data.frame(prediction[idx,])
names(probs_date) <- names(prediction[idx,])
pred_date <- tibble::tibble(
from = as.Date(rd[1]),
to = as.Date(rd[2]),
class = pred[idx]
)
idx <<- idx + 1
pred_date <- dplyr::bind_cols(pred_date, probs_date)
})
row$predicted <- list(pred_sample)
return(row)
}
)
return(data_pred)
} |
makeCRM <-function(acf0 = 1, range = NA, model, anis, kappa = 0.5, add.to, covtable, Err = 0) {
stopifnot(class(acf0) == "numeric")
stopifnot(class(range) == "numeric" | is.na(range))
if (acf0 < 0 | acf0 > 1)
warning("For standardized residuals acf0 argument should be between 0 and 1.")
if (missing(anis))
anis <- c(0, 0, 0, 1, 1)
if (length(anis) == 2)
anis <- c(anis[1], 0, 0, anis[2], 1)
else if (length(anis) != 5)
stop("anis vector should have length 2 (2D) or 5 (3D)")
models <- gstat::vgm()$short
if (model %in% models == FALSE)
stop("Only models accepted by gstat::vgm are allowed.")
if (!is.na(range)) {
if (model != "Nug") {
if (model != "Lin" && model != "Err" && model !=
"Int")
if (range <= 0)
stop("range should be positive")
else if (range < 0)
stop("range should be non-negative")
}
else {
if (range != 0)
stop("Nugget should have zero range")
if (anis[4] != 1 || anis[5] != 1)
stop("Nugget anisotropy is not meaningful")
}
}
crm <- list(acf0 = acf0,
range = range,
model = model,
anis = anis,
kappa = kappa,
Err = Err)
class(crm) <- c("SpatialCorrelogramModel")
crm
}
makecrm <-function(acf0 = 1, range = NA, model, anis, kappa = 0.5, add.to, covtable, Err = 0) {
stopifnot(class(acf0) == "numeric")
stopifnot(class(range) == "numeric" | is.na(range))
if (acf0 < 0 | acf0 > 1)
warning("For standardized residuals acf0 argument should be between 0 and 1.")
if (missing(anis))
anis <- c(0, 0, 0, 1, 1)
if (length(anis) == 2)
anis <- c(anis[1], 0, 0, anis[2], 1)
else if (length(anis) != 5)
stop("anis vector should have length 2 (2D) or 5 (3D)")
models <- gstat::vgm()$short
if (model %in% models == FALSE)
stop("Only models accepted by gstat::vgm are allowed.")
if (!is.na(range)) {
if (model != "Nug") {
if (model != "Lin" && model != "Err" && model !=
"Int")
if (range <= 0)
stop("range should be positive")
else if (range < 0)
stop("range should be non-negative")
}
else {
if (range != 0)
stop("Nugget should have zero range")
if (anis[4] != 1 || anis[5] != 1)
stop("Nugget anisotropy is not meaningful")
}
}
crm <- list(acf0 = acf0,
range = range,
model = model,
anis = anis,
kappa = kappa,
Err = Err)
class(crm) <- c("SpatialCorrelogramModel")
crm
}
makecrm <- function(acf0 = 1, range = NA, model, anis, kappa = 0.5, add.to, covtable, Err = 0) {
.Deprecated(new = "makeCRM")
makeCRM(acf0, range, model, anis, kappa, add.to, covtable, Err)
} |
extract_key_expressions <- function(text, handle = "i18n") {
found <- unlist(str_extract_all(text, glue::glue("{handle}\\$t\\((.*?)\\)")))
ke1 <- str_replace(str_replace(found, glue::glue("{handle}\\$t\\([\"']"), ""), "[\"']\\)", "")
found <- unlist(str_extract_all(text, glue::glue("{handle}\\$translate\\((.*?)\\)")))
ke2 <- str_replace(str_replace(found, glue::glue("{handle}\\$translate\\([\"']"), ""), "[\"']\\)", "")
key_expressions <- c(ke1, ke2)
key_expressions
}
save_to_json <- function(key_expressions, output_path = NULL) {
list_to_save <- list(
translation = lapply(key_expressions,
function(x) list(key = unbox(x))),
languages = "key")
json_to_save <- toJSON(list_to_save)
if (is.null(output_path)) output_path <- "translation.json"
write_json(list_to_save, output_path)
}
save_to_csv <- function(key_expressions, output_path = NULL) {
df_to_save <- data.frame(
list(key = key_expressions, lang = rep("", length(key_expressions)))
)
if (is.null(output_path)) output_path <- "translate_lang.csv"
write.csv(df_to_save, output_path, row.names = FALSE)
}
create_translation_file <- function(path, type = "json", handle = "i18n",
output = NULL) {
file_source <- readLines(con <- file(path))
key_expressions <- extract_key_expressions(file_source, handle)
switch(type,
json = save_to_json(key_expressions, output),
csv = save_to_csv(key_expressions, output),
stop("'type' of output not recognized, check docs!")
)
}
create_translation_addin <- function(){
rstudioapi::showDialog("shiny.i18n", "This extension searches for 'i18n$t'
wrappers in your file and creates an example of
a translation file for you. For more customized
behaviour use 'create_translation_file' function.")
path <- rstudioapi::getActiveDocumentContext()$path
if (nchar(path) == 0)
rstudioapi::showDialog("TODOr","No active document detected.")
else{
answ <- rstudioapi::showQuestion("shiny.i18n", "What type of file generate?", "json", "csv")
create_translation_file(path, ifelse(answ, "json", "csv"))
print("Done (create translation file)!")
}
} |
library(tmap)
library(terra)
elev = rast(system.file("raster/elev.tif", package = "spData"))
grain = rast(system.file("raster/grain.tif", package = "spData"))
colfunc2 = c("clay" = "brown", "silt" = "sandybrown", "sand" = "rosybrown")
p1 = tm_shape(elev) +
tm_raster(legend.show = TRUE, style = "cont", title = "") +
tm_layout(outer.margins = rep(0.01, 4),
inner.margins = 0) +
tm_legend(bg.color = "white")
p2 = tm_shape(grain) +
tm_raster(legend.show = TRUE, title = "", palette = colfunc2) +
tm_layout(outer.margins = rep(0.01, 4),
inner.margins = 0) +
tm_legend(bg.color = "white")
tmap_arrange(p1, p2, nrow = 1) |
modus <- function(vector) {
if (is.data.frame(vector) | is.matrix(vector)) {
stop("The first argument is not a vector! If you need to specify ",
"a variable from a dataframe, separate the name of the ",
"dataframe and the variable name with a dollar sign, for ",
"example using 'dat$gender' to extract variable 'gender' from ",
"dataframe 'dat'.");
}
originalClass <- class(vector);
vector <- as.factor(vector);
freqs <- summary(vector);
highestFreq <- max(freqs);
categoryVector <- names(freqs[freqs==highestFreq]);
if ("factor" %in% originalClass) {
categoryVector <- as.factor(categoryVector);
}
else {
suppressWarnings(class(categoryVector) <- originalClass);
}
return(categoryVector);
} |
rmaxstab <- function(n, coord, cov.mod = "gauss", grid = FALSE,
control = list(), ...){
if (!(cov.mod %in% c("gauss","whitmat","cauchy","powexp","bessel",
"iwhitmat", "icauchy", "ipowexp", "ibessel",
"gwhitmat", "gcauchy", "gpowexp", "gbessel",
"twhitmat", "tcauchy", "tpowexp", "tbessel",
"brown")))
stop("'cov.mod' must be one of 'gauss', '(i/g/t)whitmat', '(i/g/t)cauchy', '(i/g/t)powexp', '(i/g/t)bessel' or 'brown'")
if (!is.null(control$method) && !(control$method %in% c("direct", "tbm", "circ", "exact")))
stop("the argument 'method' for 'control' must be one of 'exact', 'direct', 'tbm' and 'circ'")
if (cov.mod == "gauss")
model <- "Smith"
else if (cov.mod == "brown")
model <- "Brown-Resnick"
else if (cov.mod %in% c("whitmat","cauchy","powexp","bessel"))
model <- "Schlather"
else {
if (substr(cov.mod, 1, 1) == "i")
model <- "iSchlather"
else if (substr(cov.mod, 1, 1) == "g")
model <- "Geometric"
else
model <- "Extremal-t"
cov.mod <- substr(cov.mod, 2, 10)
}
dist.dim <- ncol(coord)
if (is.null(dist.dim))
dist.dim <- 1
if (dist.dim > 2)
stop("Currently this function is only available for R or R^2")
if ((dist.dim == 1) && grid){
warning("You cannot use 'grid = TRUE' in dimension 1. Ignored.")
grid <- FALSE
}
if (model == "Smith"){
if ((dist.dim == 1) && (!("var" %in% names(list(...)))))
stop("For one dimensional simulations, you must specify 'var' not 'cov11', 'cov12', 'cov22'.")
if ((dist.dim == 2) && (!all(c("cov11", "cov12", "cov22") %in% names(list(...)))))
stop("You must specify 'cov11', 'cov12', 'cov22'")
var <- list(...)$var
cov11 <- list(...)$cov11
cov12 <- list(...)$cov12
cov22 <- list(...)$cov22
cov13 <- list(...)$cov13
cov23 <- list(...)$cov23
cov33 <- list(...)$cov33
}
else if (model == "Schlather"){
if (!all(c("nugget", "range", "smooth") %in% names(list(...))))
stop("You must specify 'nugget', 'range', 'smooth'")
nugget <- list(...)$nugget
range <- list(...)$range
smooth <- list(...)$smooth
}
else if (model == "iSchlather"){
if (!all(c("alpha", "nugget", "range", "smooth") %in% names(list(...))))
stop("You must specify 'alpha', 'nugget', 'range', 'smooth'")
nugget <- list(...)$nugget
range <- list(...)$range
smooth <- list(...)$smooth
alpha <- list(...)$alpha
}
else if (model == "Geometric") {
if (!all(c("sigma2", "nugget", "range", "smooth") %in% names(list(...))))
stop("You must specify 'sigma2', 'nugget', 'range', 'smooth'")
nugget <- list(...)$nugget
range <- list(...)$range
smooth <- list(...)$smooth
sigma2 <- list(...)$sigma2
}
else if (model == "Extremal-t"){
if (!all(c("DoF", "nugget", "range", "smooth") %in% names(list(...))))
stop("You must specify 'DoF', 'nugget', 'range', 'smooth'")
nugget <- list(...)$nugget
range <- list(...)$range
smooth <- list(...)$smooth
DoF <- list(...)$DoF
}
else if (model == "Brown-Resnick"){
range <- list(...)$range
smooth <- list(...)$smooth
}
if (dist.dim !=1){
n.site <- nrow(coord)
coord.range <- apply(coord, 2, range)
center <- colMeans(coord.range)
edge <- max(apply(coord.range, 2, diff))
}
else {
n.site <- length(coord)
coord.range <- range(coord)
center <- mean(coord.range)
edge <- diff(coord.range)
}
cov.mod <- switch(cov.mod, "gauss" = "gauss", "whitmat" = 1, "cauchy" = 2,
"powexp" = 3, "bessel" = 4)
if (grid){
n.eff.site <- n.site^dist.dim
reg.grid <- .isregulargrid(coord[,1], coord[,2])
steps <- reg.grid$steps
reg.grid <- reg.grid$reg.grid
}
else
n.eff.site <- n.site
ans <- rep(-1e10, n * n.eff.site)
if (is.null(control$method)){
if (n.eff.site < 1000)
method <- "exact"
else if (grid && reg.grid)
method <- "circ"
else if ((length(ans) / n) > 600)
method <- "tbm"
else
method <- "direct"
if ((model == "Geometric") && (method == "exact"))
method <- "direct"
}
else
method <- control$method
if (method == "tbm"){
if (is.null(control$nlines))
nlines <- 1000
else
nlines <- control$nlines
}
if (model == "Smith")
ans <- switch(dist.dim,
.C(C_rsmith1d, as.double(coord), as.double(center), as.double(edge),
as.integer(n), as.integer(n.site), as.double(var), ans = ans)$ans,
.C(C_rsmith2d, as.double(coord), as.double(center), as.double(edge),
as.integer(n), as.integer(n.site), grid, as.double(cov11), as.double(cov12),
as.double(cov22), ans = ans)$ans)
else if (model == "Schlather"){
if (is.null(control$uBound))
uBound <- 3.5
else
uBound <- control$uBound
if (method == "direct")
ans <- .C(C_rschlatherdirect, as.double(coord), as.integer(n), as.integer(n.site),
as.integer(dist.dim), as.integer(cov.mod), grid, as.double(nugget),
as.double(range), as.double(smooth), as.double(uBound), ans = ans)$ans
else if (method == "exact")
ans <- .C(C_rschlatherexact, as.double(coord), as.integer(n), as.integer(n.site), as.integer(dist.dim),
as.integer(cov.mod), as.integer(grid), as.double(nugget), as.double(range), as.double(smooth),
ans = ans)$ans
else if (method == "circ")
ans <- .C(C_rschlathercirc, as.integer(n), as.integer(n.site), as.double(steps),
as.integer(dist.dim), as.integer(cov.mod), as.double(nugget), as.double(range),
as.double(smooth), as.double(uBound), ans = ans)$ans
else
ans <- .C(C_rschlathertbm, as.double(coord), as.integer(n), as.integer(n.site),
as.integer(dist.dim), as.integer(cov.mod), grid, as.double(nugget),
as.double(range), as.double(smooth), as.double(uBound), as.integer(nlines),
ans = ans)$ans
}
else if (model == "Geometric"){
if (is.null(control$uBound))
uBound <- exp(3.5 * sqrt(sigma2) - 0.5 * sigma2)
else
uBound <- control$uBound
if (method == "direct")
ans <- .C(C_rgeomdirect, as.double(coord), as.integer(n), as.integer(n.site),
as.integer(dist.dim), as.integer(cov.mod), grid, as.double(sigma2),
as.double(nugget), as.double(range), as.double(smooth),
as.double(uBound), ans = ans)$ans
else if (method == "circ")
ans <- .C(C_rgeomcirc, as.integer(n), as.integer(n.site), as.double(steps),
as.integer(dist.dim), as.integer(cov.mod), as.double(sigma2),
as.double(nugget), as.double(range), as.double(smooth), as.double(uBound),
ans = ans)$ans
else
ans <- .C(C_rgeomtbm, as.double(coord), as.integer(n), as.integer(n.site),
as.integer(dist.dim), as.integer(cov.mod), grid, as.double(sigma2),
as.double(nugget), as.double(range), as.double(smooth), as.double(uBound),
as.integer(nlines), ans = ans)$ans
}
else if (model == "Extremal-t"){
if (is.null(control$uBound))
uBound <- 3^DoF
else
uBound <- control$uBound
if (method == "direct")
ans <- .C(C_rextremaltdirect, as.double(coord), as.integer(n), as.integer(n.site),
as.integer(dist.dim), as.integer(cov.mod), grid, as.double(nugget),
as.double(range), as.double(smooth), as.double(DoF), as.double(uBound),
ans = ans)$ans
else if (method == "exact")
ans <- .C(C_rextremaltexact, as.double(coord), as.integer(n), as.integer(n.site),
as.integer(dist.dim), as.integer(cov.mod), grid, as.double(nugget),
as.double(range), as.double(smooth), as.double(DoF), ans = ans)$ans
else if (method == "circ")
ans <- .C(C_rextremaltcirc, as.integer(n), as.integer(n.site), as.double(steps),
as.integer(dist.dim), as.integer(cov.mod), as.double(nugget), as.double(range),
as.double(smooth), as.double(DoF), as.double(uBound), ans = ans)$ans
else
ans <- .C(C_rextremalttbm, as.double(coord), as.integer(n), as.integer(n.site),
as.integer(dist.dim), as.integer(cov.mod), grid, as.double(nugget),
as.double(range), as.double(smooth), as.double(DoF), as.double(uBound),
as.integer(nlines), ans = ans)$ans
}
else if (model == "Brown-Resnick"){
coord <- scale(coord, scale = FALSE) + 10^-6
if (is.null(control$max.sim))
max.sim <- 1000
else
max.sim <- control$max.sim
if (is.null(control$uBound))
uBound <- 10
else
uBound <- control$uBound
if (is.null(control$sim.type))
sim.type <- 1
else
sim.type <- control$sim.type
if (dist.dim == 1)
bounds <- range(coord)
else
bounds <- apply(coord, 2, range)
if (is.null(control$nPP))
nPP <- 15
else
nPP <- control$nPP
if (sim.type == 6){
idx.sub.orig <- getsubregions(coord, bounds, range, smooth, dist.dim)
n.sub.orig <- length(idx.sub.orig)
}
else
idx.sub.orig <- n.sub.orig <- 0
if (method == "direct")
ans <- .C(C_rbrowndirect, as.double(coord), as.double(bounds),
as.integer(n), as.integer(n.site), as.integer(dist.dim),
as.integer(grid), as.double(range), as.double(smooth),
as.double(uBound), as.integer(sim.type), as.integer(max.sim),
as.integer(nPP), as.integer(idx.sub.orig), as.integer(n.sub.orig),
ans = ans)$ans
else if (method == "exact")
ans <- .C(C_rbrownexact, as.double(coord), as.integer(n), as.integer(n.site),
as.integer(dist.dim), as.integer(grid), as.double(range), as.double(smooth),
ans = ans)$ans
}
if (grid){
if (n == 1)
ans <- matrix(ans, n.site, n.site)
else
ans <- array(ans, c(n.site, n.site, n))
}
else
ans <- matrix(ans, nrow = n, ncol = n.site)
return(ans)
}
getsubregions <- function(coord, bounds, range, smooth, dist.dim){
if (dist.dim == 1){
coord <- matrix(coord, ncol = 1)
bounds <- matrix(bounds, ncol = 1)
}
h.star <- 2^(1/smooth) * range
n.windows <- 1 + floor(diff(bounds) / h.star)
sub.bounds <- list()
for (i in 1:dist.dim)
sub.bounds <- c(sub.bounds,
list(seq(bounds[1,i], bounds[2, i], length = n.windows[i] + 1)))
sub.centers <- list()
for (i in 1:dist.dim)
sub.centers <- c(sub.centers, list(0.5 * (sub.bounds[[i]][-1] +
sub.bounds[[i]][-(n.windows + 1)])))
sub.origins <- as.matrix(expand.grid(sub.centers))
n.sub.origins <- prod(n.windows)
idx.sub.orig <- rep(NA, n.sub.origins)
for (i in 1:n.sub.origins){
dummy <- sqrt(colSums((t(coord) - sub.origins[i,])^2))
idx.sub.orig[i] <- which.min(dummy)
}
return(idx.sub.orig = idx.sub.orig)
} |
MIFAMD <-
function(X,
ncp = 2,
method = c("Regularized","EM"),
coeff.ridge = 1,
threshold = 1e-06,
seed = NULL,
maxiter = 1000,
nboot=20,
verbose=T
){
estim.sigma2<-function(Xquanti,Xquali,M,Zhat,ncp,WW,D){
tab.disjonctif.NA <- function(tab) {
if(ncol(tab)==0){return(NULL)}
tab <- as.data.frame(tab)
modalite.disjonctif <- function(i) {
moda <- tab[, i]
nom <- names(tab)[i]
n <- length(moda)
moda <- as.factor(moda)
x <- matrix(0, n, length(levels(moda)))
ind <- (1:n) + n * (unclass(moda) - 1)
indNA <- which(is.na(ind))
x[(1:n) + n * (unclass(moda) - 1)] <- 1
x[indNA, ] <- NA
if ((ncol(tab) != 1) & (levels(moda)[1] %in% c(1:nlevels(moda),
"n", "N", "y", "Y")))
dimnames(x) <- list(row.names(tab), paste(nom,
levels(moda), sep = "."))
else dimnames(x) <- list(row.names(tab), levels(moda))
return(x)
}
if (ncol(tab) == 1)
res <- modalite.disjonctif(1)
else {
res <- lapply(1:ncol(tab), modalite.disjonctif)
res <- as.matrix(data.frame(res, check.names = FALSE))
}
return(res)
}
reconst.FAMD<-function(xxquanti,xxquali,M=NULL,D=NULL,ncp,coeff.ridge=1,method="em"){
zz<-cbind.data.frame(xxquanti,xxquali)
if(is.null(M)){M<-c(1/apply(xxquanti,2,var),colMeans(zz)[-c(1:ncol(xxquanti))])}
if(is.null(D)){D<-rep(1/nrow(zz),nrow(zz))}
moy<-colMeans(zz)
zzimp<-sweep(zz,MARGIN = 2,FUN = "-",STATS = moy)
res.svd<-svd.triplet(zzimp,col.w = M,row.w = D,ncp=ncp)
tmp<-seq(ncol(zz)-ncol(xxquali))
if (nrow(zz) > length(tmp)){
moyeig <- mean(res.svd$vs[tmp[-seq(ncp)]]^2)
}else{
moyeig <- mean(res.svd$vs[-c(1:ncp)]^2)
}
moyeig <- min(moyeig * coeff.ridge, res.svd$vs[ncp +1]^2)
moyeigret<-moyeig
if (method == "em"){
moyeig <- 0
}
if(ncp>1){
eig.shrunk <- (res.svd$vs[1:ncp]^2 - moyeig)/res.svd$vs[1:ncp]
}else if(ncp==1){
eig.shrunk <- matrix((res.svd$vs[1:ncp]^2 - moyeig)/res.svd$vs[1:ncp],1,1)
}
zzhat<-tcrossprod(res.svd$U%*%diag(eig.shrunk),res.svd$V[which(apply(is.finite(res.svd$V),1,any)),,drop=FALSE])
zzhat<-sweep(zzhat,MARGIN = 2,FUN = "+",STATS = moy)
return(list(zzhat=zzhat,moyeig=moyeigret,res.svd=res.svd,M=M))
}
nb.obs<-sum(WW[,-cumsum(sapply(Xquali,nlevels))])
nb.obs.quanti<-sum(WW[,seq(ncol(Xquanti))])
Zhat2<-reconst.FAMD(Zhat[,seq(ncol(Xquanti))],Zhat[,-seq(ncol(Xquanti))],ncp=ncp,D = D,M=M)
Residu<-(Zhat-Zhat2$zzhat)%*%diag(M)^{1/2}
Residu[is.na(cbind.data.frame(Xquanti,tab.disjonctif.NA(Xquali)))]<-0
sigma2<-sum(WW[,seq(ncol(Xquanti))]*((Residu[,seq(ncol(Xquanti))])^2))/(nb.obs.quanti-(ncol(Xquanti)+ncp*(sum(D)-1)+ncol(Xquanti)-ncp))
return(sigma2)
}
imputeFAMD.stoch<-function(don,
ncp = 4,
method = c("Regularized", "EM"),
row.w = NULL,
coeff.ridge = 1,
threshold = 1e-06,
seed = NULL,
maxiter = 1000,
nboot,
verbose=FALSE){
normtdc <- function(tab.disj, data.na) {
tdc <- tab.disj
tdc[tdc < 0] <- 0
tdc[tdc > 1] <- 1
col.suppr <- cumsum(sapply(data.na, function(x) {nlevels(x)}))
tdc <- t(apply(tdc, 1, FUN = function(x, col.suppr) {
if (sum(x[1:col.suppr[1]]) != 1) {
x[1:col.suppr[1]] <- x[1:col.suppr[1]]/sum(x[1:col.suppr[1]])
}
if(length(col.suppr)>1){
for (i in 2:length(col.suppr)) {
x[(col.suppr[i - 1] + 1):(col.suppr[i])] <- x[(col.suppr[i -
1] + 1):(col.suppr[i])]/sum(x[(col.suppr[i -
1] + 1):col.suppr[i]])
}}
return(x)
}, col.suppr = col.suppr))
return(tdc)
}
draw <- function(tabdisj, Don) {
nbdummy <- rep(1, ncol(Don))
is.quali <- which(!sapply(Don, is.numeric))
nbdummy[is.quali] <- sapply(Don[, is.quali, drop = FALSE], nlevels)
vec = c(0, cumsum(nbdummy))
Donres <- Don
for (i in is.quali) {
Donres[, i] <- as.factor(levels(Don[, i])[apply(tabdisj[,
(vec[i] + 1):vec[i + 1]], 1, function(x) {
sample(1:length(x), size = 1, prob = x)
})])
Donres[, i] <- factor(Donres[, i], levels(Don[, is.quali,drop=FALSE][,
i]))
}
return(don.imp = Donres)
}
quanti<-which(sapply(don,is.numeric))
Ncol<-length(quanti)+sum(sapply(don[,-quanti],nlevels))
W<-matrix(0,nrow(don),Ncol);W[!is.na(don)]<-1
if(is.null(row.w)){
Row.w<-as.integer(rep(1,nrow(don)))
}else{
Row.w<-row.w
}
if(is.integer(Row.w)){
D<-Row.w/sum(Row.w)
D[which(Row.w==0)]<-1/(1000*nrow(don))
WW<-diag(Row.w)%*%W
}else{
stop(paste0("row.w of class ",class(Row.w),", it needs to be an integer"))
}
res.imp<-imputeFAMD(X=don, ncp = ncp, method = method, row.w = D,
coeff.ridge = coeff.ridge, threshold = threshold, seed = seed, maxiter = maxiter)
var_homo<-estim.sigma2(Xquanti=don[,quanti,drop=FALSE],
Xquali=don[,-quanti,drop=FALSE],
M=1/apply(res.imp$tab.disj,2,var),
Zhat=res.imp$tab.disj,
ncp=ncp,
D=D,WW=WW)
sigma2<-var_homo/(1/apply(res.imp$tab.disj,2,var)[quanti])
res.imp$fittedX<-res.imp$tab.disj
res.imp$quanti.act<-which(sapply(don,is.numeric))
classvar<-unlist(lapply(lapply(don,class),"[",1))
if("integer"%in%classvar){classvar[classvar=="integer"]<-"numeric"}
if("ordered"%in%classvar){classvar[classvar=="ordered"]<-"factor"}
donimp<-don
donimp[,which(classvar=="numeric")]<-res.imp$tab.disj[,seq(length(res.imp$quanti.act))]
missing.quanti <-is.na(don[,res.imp$quanti.act])
res.MI<-vector("list",length=nboot);names(res.MI)<-paste("nboot=",1:nboot,sep="")
for(i in seq(nboot)){
if(verbose){cat(paste(i, "...", sep = ""))}
donimp.tmp<-donimp
if(any("factor"%in% classvar)){
tdc.imp <- res.imp$tab.disj[,(length(c(res.imp$quanti.act,res.imp$quanti.sup))+1):(ncol(res.imp$tab.disj)-length(res.imp$quali.sup)),drop=FALSE]
tdc.norm <- normtdc(tab.disj = tdc.imp, data.na = don[,which(classvar=="factor"),drop=FALSE])
donimp.quali<-draw(tdc.norm,don[,which(classvar=="factor"),drop=FALSE])
donimp.tmp[,which(classvar=="factor")]<-donimp.quali[,names(which(classvar=="factor"))]
}
donimp.tmp[,res.imp$quanti.act][missing.quanti]<-res.imp$fittedX[,res.imp$quanti.act][missing.quanti]+rmvnorm(nrow(don),sigma=diag(sigma2))[missing.quanti]
res.MI[[paste("nboot=",i,sep="")]]<-donimp.tmp
}
if (verbose) {
cat("\ndone!\n")
}
res.MI<-list(res.MI=res.MI,sigma2=sigma2)
class(res.MI)<-"MIFAMD"
return(res.MI)
}
imputeFAMD.stoch.print <- function(don, ncp, method = c("Regularized",
"EM"), row.w = NULL, coeff.ridge = 1, threshold = 1e-06,
seed = NULL, maxiter = 1000, verbose, printm) {
if (verbose) {
cat(paste(printm, "...", sep = ""))
}
res <- imputeFAMD.stoch(don = don, ncp = ncp, method = method,
row.w = row.w, coeff.ridge = coeff.ridge, threshold = threshold,
seed = seed, maxiter = maxiter,nboot=1)$res.MI[[1]]
return(res)
}
if(sum(sapply(X,is.numeric))==ncol(X)){stop("All variables are numeric, use MIPCA")
}else if(sum(sapply(X,is.numeric))==0){stop("No variable is numeric, use MIMCA")}
don<-X[,c(which(sapply(X,is.numeric)),which(!sapply(X,is.numeric)))]
temp <- if (coeff.ridge == 1) {
"regularized"
}
else if ((coeff.ridge == 0) |(method=="EM")) {
"EM"
}else {
paste("coeff.ridge=", coeff.ridge)
}
if (verbose) {
cat("Multiple Imputation using", temp, "FAMD using", nboot,
"imputed arrays", "\n")
}
n <- nrow(don)
Boot <- matrix(sample(1:n, size = nboot * n, replace = T), n, nboot)
Boot<-lapply(as.data.frame(Boot),FUN=function(xx){
yy<-as.factor(xx)
levels(yy)<-c(levels(yy),xx[which(!xx%in%as.numeric(as.character(levels(yy))))])
return(yy)})
Weight <- as.data.frame(matrix(0, n, nboot, dimnames = list(1:n,paste("nboot=", 1:nboot, sep = ""))))
Boot.table <- lapply(Boot, table)
for (i in 1:nboot) {
Weight[names(Boot.table[[i]]), i] <- Boot.table[[i]]
}
Weight <-do.call(cbind.data.frame,lapply(Weight,as.integer))
res.imp <- mapply(Weight,
FUN = imputeFAMD.stoch.print,
MoreArgs = list(don = don,ncp = ncp,
coeff.ridge = coeff.ridge,
method =method,
threshold = threshold,
maxiter = maxiter,
verbose=verbose,
seed=NULL),printm = as.character(1:nboot),
SIMPLIFY = FALSE)
res <- list(res.MI = res.imp)
res <- list(res.MI = lapply(res$res.MI,function(xx,nom){return(xx[,nom])},nom=colnames(X)),
res.imputeFAMD = imputeFAMD(X,ncp = ncp, coeff.ridge = coeff.ridge, method =method, threshold = threshold, maxiter = maxiter,seed=seed),
call=list(X = X,nboot = nboot, ncp = ncp, coeff.ridge = coeff.ridge, threshold = threshold, seed = seed, maxiter = maxiter))
class(res) <- c("MIFAMD", "list")
if (verbose) {
cat("\ndone!\n")
}
return(res)
} |
binaryChecks <- function(x, method){
if(length(unique(x)) > 2){
stop(paste(method, "only works for binary outcomes at this time"))
}
} |
mychisq.test=function(x){
result=tryCatch(chisq.test(x),warning=function(w) return("warnings present"))
if(class(result)!="htest"){
result1=tryCatch(fisher.test(x),
error=function(e) return("error present"),
warning=function(w) return("warning present"),
message = function(c) "message")
if(class(result1)=="htest") result<-result1
}
result
}
extractLabels=function(x){
result=NULL
if(!is.null(names(attr(x,"labels")))) result=names(attr(x,"labels"))
if(!is.null(names(attr(x,"value.labels")))) result=names(attr(x,"value.labels"))
result
}
x2result=function(x){
warning=0
(result=mychisq.test(x))
(result1=chisq.test(x))
if(class(result)!="htest") {
result=result1
warning=1
}
cramer=vcd::assocstats(x)$cramer
statresult=paste0("Chi-squared=",round(result1$statistic,3),", df=",result1$parameter)
statresult=paste0(statresult,", Cramer\'s V=",round(cramer,3))
if(substr(result$method,1,6)=="Fisher") {
statresult=paste0(statresult,", Fisher's p")
} else {
statresult=paste0(statresult,", Chi-squared p")
}
pvalue=ifelse(result$p.value>=0.001,paste0("=",round(result$p.value,4)),"< 0.001")
statresult=paste0(statresult,pvalue)
if(warning==1) statresult=paste0(statresult,"; approximation may be incorrect")
statresult
}
x2summary=function(data=NULL,x=NULL,y=NULL,a,b,margin=1,show.percent=TRUE,show.label=TRUE){
if(!is.null(data)){
x=substitute(x)
y=as.character(substitute(y))
a=data[[x]]
b=data[[y]]
}
x=table(a,b)
labela=sjlabelled::get_label(a)
labelb=sjlabelled::get_label(b)
ncolb=ncol(x)
x=addmargins(x,margin)
x
x1=scales::percent(round(t(apply(x,margin,function(a) a/sum(a))),3))
if(margin==2) x1=matrix(x1,nrow=nrow(x),byrow=TRUE)
if(show.percent) {
x3=paste0(x,"\n(",x1,")")
} else{
x3<-x
}
if(margin==1){
x2=matrix(x3,ncol=ncol(x))
rowcol=rowSums(x)
if(show.percent) rowcol=paste0(rowcol,"\n(100 %)")
x2=cbind(x2,Total=rowcol)
} else{
x2=matrix(x3,nrow=nrow(x))
colrow=colSums(x)
if(show.percent) colrow=paste0(colrow,"\n(100 %)")
x2=rbind(x2,Total=colrow)
}
x2
x
colnames(x)
labels=extractLabels(b)
labels
if(!is.null(labels)) {
colnames(x)
if(length(colnames(x))==length(labels)+1) {
colnames(x)=c(labels,"total")
} else{
if(margin==2){
for(i in 1:(length(colnames(x))-1)){
colnames(x)[i]=labels[as.numeric(colnames(x)[i])]
}
} else{
for(i in 1:(length(colnames(x)))){
colnames(x)[i]=labels[as.numeric(colnames(x)[i])]
}
}
}
}
if(is.null(labels)) {
if(margin==1) {
colnames(x2)=c(colnames(x),"Total")
} else{
colnames(x2)=c(colnames(x)[1:(ncol(x)-1)],"Total")
}
} else if(ncol(x2)==length(labels)+1){
colnames(x2)=c(labels,"Total")
} else{
if(margin==1) {
colnames(x2)=c(colnames(x),"Total")
} else{
colnames(x2)=c(colnames(x)[1:(ncol(x)-1)],"Total")
}
}
x2
labels=extractLabels(a)
rownames(x2)
nrow(x2)
rownames(x)
if(!is.null(labels)) {
colnames(x)
if(length(rownames(x))==length(labels)+1) {
rownames(x)=c(labels,"total")
} else{
if(margin==1){
for(i in 1:(length(rownames(x))-1)){
rownames(x)[i]=labels[as.numeric(rownames(x)[i])]
}
} else{
for(i in 1:(length(colnames(x)))){
rownames(x)[i]=labels[as.numeric(rownames(x)[i])]
}
}
}
}
if(is.null(labels)) {
if(margin==2){
rownames(x2)=c(rownames(x),"Total")
} else{
rownames(x2)=c(rownames(x)[1:(nrow(x)-1)],"Total")
}
} else if(nrow(x2)==length(labels)+1){
rownames(x2)=c(labels,"Total")
} else{
if(margin==2) {
rownames(x2)=c(rownames(x),"Total")
} else{
rownames(x2)=c(rownames(x)[1:(nrow(x)-1)],"Total")
}
}
x2
as.data.frame(x2)
}
x2Table=function(data,x,y,margin=1,show.percent=TRUE,show.label=TRUE,
show.stat=TRUE,vanilla=FALSE,fontsize=12,...){
x=substitute(x)
y=as.character(substitute(y))
a=data[[x]]
b=data[[y]]
x2=x2summary(a=a,b=b,margin=margin,show.percent=show.percent,show.label=show.label)
MyTable=rrtable::df2flextable(x2,add.rownames = TRUE,vanilla=vanilla,fontsize=fontsize,digits=0,...) %>%
flextable::align(j=1,align='center',part='body') %>%
flextable::align(i=1,align='center',part='header')
if(show.stat){
x=table(a,b)
statresult=x2result(x)
MyTable<- MyTable %>%
flextable::add_footer(rowname=statresult) %>%
flextable::merge_at(j=1:(ncol(x2)+1),part="footer") %>%
flextable::italic(j=1:(ncol(x2)+1),part="footer") %>%
flextable::align(align='right',part='footer') %>%
flextable::autofit()
}
color=ifelse(vanilla,"white","
MyTable<- MyTable %>% flextable::color(color=color,i=1,j=1,part='header')
MyTable$header$dataset[1]<-y
MyTable
} |
print.prop.comb <-
function(x, ...) {
summary(x)} |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.