code
stringlengths
1
13.8M
NULL make.name.tree <- function (x, recursive, what.names) { if (!is.character(what.names) || length(what.names) != 1) stop("'what.names' must be a single string") what.names <- match.arg(what.names, c("inherited", "full")) .make.name.tree.rec <- function(x, parent_name, depth) { if (length(x) == 0) return(character(0)) x_names <- names(x) if (is.null(x_names)) x_names <- rep.int(parent_name, length(x)) else if (what.names == "full") x_names <- paste0(parent_name, x_names) else x_names[x_names == ""] <- parent_name if (!is.list(x) || (!recursive && depth >= 1L)) return(x_names) if (what.names == "full") x_names <- paste0(x_names, ".") lapply(seq_len(length(x)), function(i) .make.name.tree.rec(x[[i]], x_names[i], depth + 1L)) } .make.name.tree.rec(x, "", 0L) } .unlist2 <- function (x, recursive = TRUE, use.names = TRUE, what.names = "inherited") { ans <- unlist(x, recursive, FALSE) if (!use.names) return(ans) if (!is.character(what.names) || length(what.names) != 1) stop("'what.names' must be a single string") what.names <- match.arg(what.names, c("inherited", "full")) names(ans) <- unlist(make.name.tree(x, recursive, what.names), recursive, FALSE) ans } unlist2 <- ns_get('AnnotationDbi::unlist2') %||% .unlist2 set_libPaths <- function(lib.loc=NULL){ ol <- Sys.getenv('R_LIBS') olib <- .libPaths() res <- list(R_LIBS=ol, .libPaths=olib) if( is_NA(lib.loc) ) return(res) if( is.null(lib.loc) ) lib.loc <- .libPaths() if( is.character(lib.loc) ){ .libPaths(lib.loc) rlibs <- paste(lib.loc, collapse=.Platform$path.sep) Sys.setenv(R_LIBS=rlibs) }else if( is.list(lib.loc) ){ Sys.setenv(R_LIBS=lib.loc$R_LIBS) .libPaths(lib.loc$.libPaths) } res } NULL R.exec <- function(..., lib.loc=NULL){ cmd <- paste(file.path(R.home('bin'), 'R'), ' ', ..., sep='', collapse='') ol <- set_libPaths(lib.loc) on.exit(set_libPaths(ol)) message(cmd) system(cmd, intern=interactive()) } R.CMD <- function(cmd, ...){ R.exec('CMD ', cmd, ' ', ...) } R.SHLIB <- function(libname, ...){ R.CMD('SHLIB', '-o ', libname, .Platform$dynlib.ext, ...) } compile_src <- function(pkg=NULL, load=TRUE){ if( !is.null(pkg) ){ p <- as.package(pkg) path <- p$path }else{ pkg <- packageName() path <- packagePath(lib=NA) } owd <- getwd() on.exit(setwd(owd)) srcdir <- file.path(path, 'src') message(" if( !file.exists(srcdir) ){ message("NO") } else { message("YES") message(" setwd(srcdir) Sys.setenv(R_PACKAGE_DIR=path) R.SHLIB(pkg, " *.cpp ") message(" if( load ){ if( existsFunction('load_dll', where='package:devtools') ){ f <- getFunction('load_dll', where='package:devtools') f(pkg) }else{ f <- getFunction('load_c', where='package:devtools') f(pkg) } } } } packageEnv <- function(pkg, skip=FALSE, verbose=FALSE){ if( !missing(pkg) && !is.null(pkg) ){ env <- if( is.environment(pkg) ) topenv(pkg) else if( isLoadingNamespace(pkg) ) getLoadingNamespace(env=TRUE) else if( !is.null(path.package(pkg, quiet=TRUE)) ) asNamespace(pkg) else if( isNamespaceLoaded(pkg) ) asNamespace(pkg) else if( pkg %in% search() ) as.environment(pkg) else as.environment(str_c('package:', pkg)) return(env) } envir = parent.frame() pkgmakerEnv <- topenv() n <- 1 skipEnv <- pkgmakerEnv while( identical(e <- topenv(envir), skipEnv) && !identical(e, emptyenv()) && !identical(e, .GlobalEnv) ){ if( verbose > 1 ) print(e) n <- n + 1 envir <- parent.frame(n) } if( !skip ){ if( identical(e, .BaseNamespaceEnv) ){ if( verbose ) message("packageEnv - Inferred ", str_ns(skipEnv)) return( skipEnv ) } if( verbose ) message("packageEnv - Detected ", str_ns(e)) return(e) } if( verbose > 1 ) message("Skipping ", str_ns(skipEnv)) skipEnv <- e while( identical(e <- topenv(envir), skipEnv) && !identical(e, emptyenv()) && !identical(e, .GlobalEnv) ){ if( verbose > 1 ) print(e) n <- n + 1 envir <- parent.frame(n) } if( identical(e, .BaseNamespaceEnv) ){ if( verbose ) message("packageEnv - Inferred ", str_ns(skipEnv)) return( skipEnv ) } if( verbose ) message("packageEnv - Detected ", str_ns(e)) return(e) } topns_name <- function(n=1L, strict=TRUE, unique=TRUE){ if( n==1L && !is.null(ns <- getLoadingNamespace()) ){ return(ns) } nf <- sys.nframe() i <- 0 res <- character() while( i <= nf && length(res) < n ){ e <- sys.frame(i) if( !strict || !identical(e, .GlobalEnv) ){ pkg <- methods::getPackageName(e, create=FALSE) if( pkg != '' ){ res <- c(res, pkg) } } i <- i + 1 } if( !length(res) ){ e <- packageEnv(skip=TRUE) if( isNamespace(e) ){ res <- methods::getPackageName(e) }else{ return('') } } if( unique || n==1L ) res <- match.fun('unique')(res) if( length(res) || n>1L ) res else '' } topns <- function(strict=TRUE){ ns <- topns_name(n=1L, strict=strict) if( ns == '.GlobalEnv' ) return( .GlobalEnv ) else if( nchar(ns) ) asNamespace(ns) } packageName <- function(envir=packageEnv(), .Global=FALSE, rm.prefix=TRUE){ if( is.null(envir) ) envir <- packageEnv() if( is.character(envir) ){ return( sub("^package:", "", envir) ) } e <- envir nm <- environmentName(e) if( identical(e, .GlobalEnv) && .Global ) return(nm) else if( isNamespace(e) || identical(e, baseenv()) ) return(nm) else if( grepl("^package:", nm) ){ if( rm.prefix ) nm <- sub("^package:", "", nm) return(nm) } if( exists('.packageName', e) && .packageName != 'datasets' ){ if( .packageName != '' ) return(.packageName) } info <- getLoadingNamespace(info=TRUE) if( !is.null(info) ) info$pkgname else{ stop("Could not reliably determine package name [", nm, "]") } } str_ns <- function(envir=packageEnv()){ if( !is.environment(envir) ) stop("Invalid argument: must be an environment [", class(envir), ']') str_c(if( isNamespace(envir) ) 'namespace' else 'environment', " '", packageName(envir, rm.prefix=FALSE), "'") } packagePath <- function(..., package=NULL, lib.loc=NULL, check = TRUE){ pname <- packageName(package) path <- NULL if( !is.null(info <- getLoadingNamespace(info=TRUE)) && info$pkgname == pname ){ path <- info$path }else { path <- find.package(package=pname, lib.loc=lib.loc, quiet=TRUE) } if( !length(path) || path == '' ){ if( !is.null(info <- getLoadingNamespace(info=TRUE)) ){ path <- info$path } } if( !length(path) || !nzchar(path) ){ if( check ) stop("Could not find path to package ", package) return(NULL) } if( isDevNamespace(pname) ){ dots <- list(...) Rdirs <- c('data', 'R', 'src', 'exec', 'tests', 'demo' , 'exec', 'libs', 'man', 'help', 'html' , 'Meta') if( length(dots) && !sub("^/?([^/]+).*", "\\1", ..1) %in% Rdirs) path <- file.path(path,'inst') } file.path(path, ...) } isPackageInstalled <- function(..., lib.loc=NULL){ inst <- utils::installed.packages(lib.loc=lib.loc) pattern <- '^([a-zA-Z.]+)(_([0-9.]+)?)?$'; res <- sapply(list(...), function(p){ vers <- gsub(pattern, '\\3', p) print(vers) pkg <- gsub(pattern, '\\1', p) print(pkg) if( !(pkg %in% rownames(inst)) ) return(FALSE); p.desc <- inst[pkg,] if( (vers != '') && compareVersion(vers, p.desc['Version']) > 0 ) return(FALSE); TRUE }) all(res) } as_package <- function(x, ..., quiet=FALSE, extract=FALSE){ if( !requireNamespace('devtools', quietly = TRUE) ) stop("Package 'devtools' is required to load development packages") if( is.null(x) ) return( devtools::as.package() ) if( devtools::is.package(x) ) return(x) if( extract && grepl("\\.tar\\.gz$", x) ){ tmp <- tempfile(x) on.exit( unlink(tmp, recursive=TRUE) ) pkg <- basename(sub("_[0-9.]+\\.tar\\.gz$", '', x)) desc <- file.path(pkg, 'DESCRIPTION') untar(x, desc, exdir=tmp) return(devtools::as.package(file.path(tmp, pkg))) } else { if( grepl('^package:', x) ){ libs <- .libPaths() pkg <- sub('^package:', '', x) p <- lapply(libs, find.package, package=pkg, quiet=TRUE, verbose=FALSE) p <- unlist(p[sapply(p, length)>0]) if( !length(p) ){ if( !quiet ) stop("Could not find installed package ", pkg) return() } x <- p[1L] } } res <- try(devtools::as.package(x), silent=TRUE) if( !is(res, 'try-error') ) return(res) if( length(res <- find.package(package=x, quiet=TRUE)) ) return(devtools::as.package(res)) if( quiet ) stop("Could not find package ", x) NULL } as.package <- as_package NotImplemented <- function(msg){ stop("Not implemented - ", msg) } packageData <- function(list, envir = .GlobalEnv, ..., options = NULL, stringsAsFactors = getOption('stringsAsFactors')){ if( is.null(stringsAsFactors) ){ stringsAsFactors <- testRversion("<=3.6.3") } if( !length(options) ){ options <- setNames(list(1), tempfile()) } withr::with_options(options, { if( missing(list) ) return( data(..., envir=envir) ) data(list=list, ..., envir = envir) .get <- function(x, envir, ...){ res <- get(x, ..., envir = envir) if( !stringsAsFactors && is.data.frame(res) ){ for(n in colnames(res)[sapply(res, is.factor)]){ res[[n]] <- as.character(res[[n]]) } } assign(x, value = res, envir = envir) res } if( length(list) == 1L ) .get(list, envir=envir) else sapply(list, .get, envir=envir, simplify=FALSE) }) } ldata <- function(list, ..., package = NULL, error = TRUE, simplify = TRUE){ if( missing(list) ) list <- NULL assert_that(is.null(list) || (is.vector(list) && is.character(list)) , msg = "Invalid argument 'list': value must be NULL or a character vector.") assert_that(is.null(package) || isNZString(package), msg = "Invalid argument 'package': value must be NULL or a non-empty string.") assert_that(is.scalar(error) && is.logical(error), msg = "Invalid argument 'error': value must be a single logical.") assert_that(is.scalar(simplify) && is.logical(simplify), msg = "Invalid argument 'simplify': value must be a single logical.") if( is.null(package) || qrequire(package, character.only = TRUE) ){ dlist <- list.data(package = package)[["data"]] }else{ msg <- sprintf("Could not find data objects %s in package '%s': package not found.", str_out(list, Inf), package) if( error ) stop(msg) else warning(msg) dlist <- character() } if( !missing(list) || length(list) ){ dlist <- dlist[dlist %in% list] } if( !error ){ res <- sapply(list, function(x) NULL, simplify = FALSE) list <- intersect(list, dlist) } e <- parent.frame() res_data <- sapply(list, function(l) packageData(list=l, ..., envir=e, package = package), simplify = FALSE) if( error ){ if( simplify && length(res_data) == 1L ) res_data <- res_data[[1L]] return(res_data) }else{ if( length(miss <- setdiff(names(res), names(res_data))) ){ pkg_str <- "in the currently loaded packages" if( !is.null(package) ) pkg_str <- paste0("in package ", package) warning(sprintf("Could not find data object(s) %s: %s", pkg_str, str_out(miss, Inf))) } for(n in names(res_data)){ res[[n]] <- res_data[[n]] } if( simplify && length(res) == 1L ) res <- res[[1L]] res } } list.data <- function(package = NULL){ dlist <- data(package = package)[["results"]] m <- str_match(dlist[, "Item"], "^(([^(]+)|(([^(]+)\\(([^)]+)\\)))$") key <- ifelse(!is.na(m[, 3L]), m[, 3L], m[, 6L]) stopifnot(!anyNA(key)) obj_name <- ifelse(!is.na(m[, 3L]), m[, 3L], m[, 5L]) stopifnot(!anyNA(obj_name)) data.frame(package = dlist[, "Package"], data = key, object = obj_name, stringsAsFactors = FALSE) } load_all_file <- function(path = path.package(package), package, dest = NULL){ if( !missing(path) && !missing(package) ){ stop("Arguments 'path' and 'package' are exclusive: only one of them can be provided.") } if( !requireNamespace('devtools', quietly = TRUE) ) stop("Package 'devtools' is required to load development package information.") if( !missing(package) ) path <- path.package(package) pkg <- devtools::as.package(path) if( is.null(dest) ) dest <- tempfile(paste0("load_all_", pkg[["package"]], "_"), fileext = ".R") cat(sprintf(" , date(), dest, pkg[["package"]], pkg[["path"]], pkg[["path"]]) , file = dest) dest }
setClass("tskrrHeterogeneous", contains = "tskrr", slots = c(g = "eigen", lambda.g = "numeric", Hg = "matrix"), prototype = list(lambda.g = 1e-4, g = structure(list(vectors = matrix(0), values = numeric(1)), class = "eigen"), Hg = matrix(0) ) ) validTskrrHeterogeneous <- function(object){ if(length([email protected]) != 1) return("lambda.g should be a single value") else if([email protected] && !valid_dimensions(object@y, object@Hk, object@Hg)) return("The dimensions of the original kernel matrices and the observations don't match.") else if( (length(object@labels$k) == 1 && !is.na(object@labels$k)) && (length(object@labels$k) != nrow(object@y)) ) return("The labels element k should either be NA or a character vector with the same number of values as there are rows in the Y matrix.") else if( (length(object@labels$g) == 1 && !is.na(object@labels$g)) && (length(object@labels$g) != ncol(object@y)) ) return("The labels element g should either be NA or a character vector with the same number of values as there are columns in the Y matrix.") else return(TRUE) } setValidity("tskrrHeterogeneous", validTskrrHeterogeneous)
pamward <- function(diss, k=3, method="ward", dist) { TraMineR.check.depr.args(alist(diss = dist)) if (!inherits(diss, "dist")) { if (!isSymmetric(diss)) stop("diss should be a dist object or a symmetric matrix") diss <- as.dist(diss) } clustw <- agnes(diss, diss=T, method=method) clw <- cutree(clustw, k=k) centers <- disscenter(diss, group=clw, medoids.index="first") return <- pam(diss, diss=T, k=k, medoids=centers) }
params <- list(EVAL = TRUE) stopifnot(require(knitr)) opts_chunk$set( comment=NA, eval = if (isTRUE(exists("params"))) params$EVAL else FALSE, dev = "png", dpi = 150, fig.asp = 0.618, fig.width = 5, out.width = "60%", fig.align = "center" ) library("rstanarm") library("bayesplot") library("loo") data(roaches) str(roaches) roaches$roach1 <- roaches$roach1 / 100 fit1 <- stan_glm( formula = y ~ roach1 + treatment + senior, offset = log(exposure2), data = roaches, family = poisson(link = "log"), prior = normal(0, 2.5, autoscale = TRUE), prior_intercept = normal(0, 5, autoscale = TRUE), seed = 12345 ) loo1 <- loo(fit1, save_psis = TRUE) print(loo1) plot(loo1) yrep <- posterior_predict(fit1) ppc_loo_pit_overlay( y = roaches$y, yrep = yrep, lw = weights(loo1$psis_object) ) fit2 <- update(fit1, family = neg_binomial_2) loo2 <- loo(fit2, save_psis = TRUE, cores = 2) print(loo2) plot(loo2, label_points = TRUE) if (any(pareto_k_values(loo2) > 0.7)) { loo2 <- loo(fit2, save_psis = TRUE, k_threshold = 0.7) } print(loo2) yrep <- posterior_predict(fit2) ppc_loo_pit_overlay(roaches$y, yrep, lw = weights(loo2$psis_object)) loo_compare(loo1, loo2)
cggm <- function(object, GoF = AIC, lambda.id, rho.id, tp.min = 1.0E-6, ntp = 100L, maxit.em = 1.0E+4, thr.em = 1.0E-3, maxit.bcd = 1.0E+5, thr.bcd = 1.0E-4, trace = 0L, ...){ this.call <- match.call() if (!inherits(object, "cglasso")) stop(sQuote("object"), " is not an object of class ", sQuote("cglasso")) Z <- object$Z n <- nobs(Z) p <- nresp(Z) q <- npred(Z) if (missing(lambda.id) & missing(rho.id)) { if (!is.element(class(GoF), c("function", "GoF"))) stop (sQuote("GoF"), " is not either a goodness-of-fit function (AIC or BIC) neither an object of class ", sQuote("GoF")) dots <- list(...) if (is.function(GoF)) { if (is.null(dots$type)) dots$type <- ifelse(q == 0L, "FD", "CC") GoF.name <- deparse(substitute(GoF)) if (!is.element(GoF.name, c("AIC", "BIC"))) stop(sQuote(GoF.name), " is not a valid function. Please, use ", sQuote("AIC"), " or ", sQuote("BIC")) GoF <- switch(GoF.name, AIC = do.call(function(...) AIC(object, ...), dots), BIC = do.call(function(...) BIC(object, ...), dots)) } object <- select.cglasso(object, GoF = GoF) nlambda <- object$nlambda lambda.id <- 1L nrho <- object$nrho rho.id <- 1L } else { nlambda <- object$nlambda if (missing(lambda.id)) { if (q == 0 | nlambda == 1L) lambda.id <- 1L else stop(sQuote("lambda.id"), " is missing") } else { if (!is.vector(lambda.id)) stop(sQuote("lambda.id"), " is not a vector") if (length(lambda.id) != 1L) stop(sQuote("lambda.id"), " is not a vector of length ", sQuote("1")) if (any(abs(as.integer(lambda.id) - lambda.id) > 0)) stop(sQuote("lambda.id"), " is not an object of type ", dQuote("integer")) if (lambda.id <= 0) stop(sQuote("lambda.id"), " is not a positive integer") if (lambda.id > nlambda) stop("some entry in ", sQuote("lambda.id"), " is larger than ", sQuote(nlambda)) } nrho <- object$nrho if (missing(rho.id)) { if (nrho == 1L) rho.id <- 1L else stop(sQuote("rho.id"), " is missing") } else { if (!is.vector(rho.id)) stop(sQuote("rho.id"), " is not a vector") if (length(rho.id) != 1L) stop(sQuote("rho.id"), " is not a vector of length ", sQuote("1")) if (any(abs(as.integer(rho.id) - rho.id) > 0)) stop(sQuote("rho.id"), " is not an object of type ", dQuote("integer")) if (rho.id <= 0L) stop(sQuote("rho.id"), " is not a positive integer") if (rho.id > nrho) stop("some entry in ", sQuote("rho.id"), " is larger than ", sQuote(nrho)) } } if (!is.vector(tp.min)) stop(sQuote("tp.min"), " is not a vector") if (length(tp.min) != 1L) stop(sQuote("tp.min"), " is not a vector of length ", sQuote("1")) if (tp.min < 0L) stop(sQuote("tp.min"), " is not a positive value") if (!is.vector(ntp)) stop(sQuote("ntp"), " is not a vector") if (length(ntp) != 1L) stop(sQuote("ntp"), " is not a vector of length ", sQuote("1")) if (any(abs(as.integer(ntp) - ntp) > 0)) stop(sQuote("ntp"), " is not an object of type ", dQuote("integer")) if (ntp <= 0L) stop(sQuote("ntp"), " is not a positive integer") if (!is.vector(maxit.em)) stop(sQuote("maxit.em"), " is not a vector") if (length(maxit.em) != 1) stop(sQuote("maxit.em"), " is not an object of length ", sQuote(1)) if (abs(as.integer(maxit.em) - maxit.em) > 0) stop(sQuote("maxit.em"), " is not an object of type ", dQuote("integer")) if (maxit.em <= 0) stop(sQuote("maxit.em"), " is not a positive integer") if (!is.vector(thr.em)) stop(sQuote("thr.em"), " is not a vector") if (length(thr.em) != 1) stop(sQuote("thr.em"), " is not an object of length ", sQuote(1)) if (thr.em <= 0 ) stop(sQuote("thr.em"), " is not a positive value") if (!is.vector(maxit.bcd)) stop(sQuote("maxit.bcd"), " is not a vector") if (length(maxit.bcd) != 1) stop(sQuote("maxit.bcd"), " is not an object of length ", sQuote(1)) if (abs(as.integer(maxit.bcd) - maxit.bcd) > 0) stop(sQuote("maxit.bcd"), " is not an object of type ", dQuote("integer")) if (maxit.bcd <= 0) stop(sQuote("maxit.bcd"), " is not a positive integer") if (!is.vector(thr.bcd)) stop(sQuote("thr.bcd"), " is not a vector") if (length(thr.bcd) != 1) stop(sQuote("thr.bcd"), " is not an object of length ", sQuote(1)) if (thr.bcd <= 0 ) stop(sQuote("thr.bcd"), " is not a positive value") if (!is.vector(trace)) stop(sQuote("trace"), " is not a vector") if (length(trace) != 1) stop(sQuote("trace"), " is not an object of length ", sQuote(1)) if (is.logical(trace)) stop(sQuote("trace"), " is not an object of type ", dQuote("integer")) if (abs(as.integer(trace) - trace) > 0) stop(sQuote("trace"), " is not an object of type ", dQuote("integer")) if (!is.element(trace, c(0L, 1L, 2L))) stop("not allowed value in ", sQuote("trace"), ". Please, choice ", sQuote("0"), ", ", sQuote("1"), " or ", sQuote("2")) pendiag <- object$diagonal lambda.max <- object$lambda[lambda.id] lambda.min <- object$lambda[nlambda] rho.max <- object$rho[rho.id] rho.min <- object$rho[nrho] B.ini <- object$B[, , lambda.id, rho.id] if (is.vector(B.ini)) B.ini <- t(B.ini) if (q > 0L) { mask.B <- B.ini[-1L, ] mask.B[abs(mask.B) > 0] <- 1 } else mask.B <- NULL Tht.ini <- object$Tht[, , lambda.id, rho.id] mask.Tht <- Tht.ini mask.Tht[abs(mask.Tht) > 0] <- 1 row.order <- Z$Info$order Yipt.ini <- object$Yipt[row.order, , lambda.id, rho.id] mu.ini <- object$mu[row.order, , lambda.id, rho.id] R.ini <- object$R[row.order, , lambda.id, rho.id] S.ini <- object$S[, , lambda.id, rho.id] Sgm.ini <- object$Sgm[, , lambda.id, rho.id] tp.min <- max(min(tp.min, lambda.min, rho.min), 1e-13) out <- cggm.fit(Z = Z, pendiag = pendiag, lambda.max = lambda.max, rho.max = rho.max, tp.min = tp.min, ntp = ntp, mask.B = mask.B, mask.Tht = mask.Tht, Yipt.ini = Yipt.ini, B.ini = B.ini, mu.ini = mu.ini, R.ini = R.ini, S.ini = S.ini, Sgm.ini = Sgm.ini, Tht.ini = Tht.ini, maxit.em = maxit.em, thr.em = thr.em, maxit.bcd = maxit.bcd, thr.bcd = thr.bcd, trace = trace) InfoStructure <- list(Adj_yy = object$InfoStructure$Adj_yy[, , lambda.id, rho.id, drop = FALSE], ncomp = object$InfoStructure$ncomp[lambda.id, rho.id, drop = FALSE], Ck = object$InfoStructure$Ck[, lambda.id, rho.id, drop = FALSE], pk = object$InfoStructure$pk[, lambda.id, rho.id, drop = FALSE], Adj_xy = object$InfoStructure$Adj_xy[, , lambda.id, rho.id, drop = FALSE]) out.cggm <- list(call = this.call, Yipt = out$Yipt, B = out$B, mu = out$mu, R = out$R, S = out$S, Sgm = out$Sgm, Tht = out$Tht, dfB = object$dfB[, lambda.id, rho.id, drop = FALSE], dfTht = object$dfTht[lambda.id, rho.id, drop = FALSE], InfoStructure = InfoStructure, nit = out$nit, Z = Z, nlambda = 1L, lambda = lambda.max, nrho = 1L, rho = rho.max, maxit.em = maxit.em, thr.em = thr.em, maxit.bcd = maxit.bcd, thr.bcd = thr.bcd, conv = out$conv, subrout = out$subrout, trace = trace, nobs = object$n, nresp = object$nresp, npred = object$npred) class(out.cggm) <- c("cggm", "cglasso") out.cggm } cggm.fit <- function(Z, pendiag, lambda.max, rho.max, tp.min, ntp, mask.B, mask.Tht, Yipt.ini, B.ini, mu.ini, R.ini, S.ini, Sgm.ini, Tht.ini, maxit.em, thr.em, maxit.bcd, thr.bcd, trace) { n <- nobs(Z) p <- nresp(Z) q <- npred(Z) Y <- getMatrix(Z, "Y", ordered = TRUE) Y[is.na(Y)] <- 0 X <- getMatrix(Z, "X", ordered = TRUE) if (!is.null(X)) X <- as.matrix(X) ynames <- colnames(Y) xnames <- colnames(X) yrnames <- rownames(Y) ym <- ColMeans(Z)$Y yv <- ColVars(Z)$Y names(ym) <- NULL names(yv) <- NULL lo <- Z$Info$lo up <- Z$Info$up Id <- event(Z, ordered = TRUE) InfoP <- Z$Info$Pattern nP <- dim(InfoP)[1L] tp_lab <- paste0("tp", seq_len(ntp)) lambda <- seq(from = lambda.max, to = tp.min, length = ntp) rho <- seq(from = rho.max, to = tp.min, length = ntp) B <- array(0, dim = c(q + 1L, p, 1L, 1L), dimnames = list(coef = c("Int.", xnames), response = ynames, lambda = "lmb", rho = "rho")) B[, , 1L, 1L] <- B.ini Yipt <- array(0, dim = c(n, p, 1L, 1L), dimnames = list(yrnames, response = ynames, lambda = "lmb", rho = "rho")) Yipt[, , 1L, 1L] <- Yipt.ini mu <- array(0, dim = c(n, p, 1L, 1L), dimnames = list(yrnames, response = ynames, lambda = "lmb", rho = "rho")) mu[, , 1L, 1L] <- mu.ini R <- array(0, dim = c(n, p, 1L, 1L), dimnames = list(yrnames, response = ynames, lambda = "lmb", rho = "rho")) R[, , 1L, 1L] <- R.ini S <- array(0, dim = c(p, p, 1L, 1L), dimnames = list(response = ynames, response = ynames, lambda = "lmb", rho = "rho")) S[, , 1L, 1L] <- S.ini Sgm <- array(0, dim = c(p, p, 1L, 1L), dimnames = list(response = ynames, response = ynames, lambda = "lmb", rho = "rho")) Sgm[, , 1L, 1L] <- Sgm.ini Tht <- array(0, dim = c(p, p, 1L, 1L), dimnames = list(response = ynames, response = ynames, lambda = "lmb", rho = "rho")) Tht[, , 1L, 1L] <- Tht.ini nit <- array(0L, dim = c(2L, ntp), dimnames = list(steps = c("EM", "nit"), tp = tp_lab)) storage.mode(n) <- "integer" storage.mode(p) <- "integer" storage.mode(Y) <- "double" storage.mode(Id) <- "integer" storage.mode(nP) <- "integer" storage.mode(InfoP) <- "integer" storage.mode(lo) <- "double" storage.mode(up) <- "double" storage.mode(ym) <- "double" storage.mode(yv) <- "double" storage.mode(pendiag) <- "integer" storage.mode(mask.Tht) <- "double" storage.mode(ntp) <- "integer" storage.mode(rho) <- "double" storage.mode(maxit.em) <- "integer" storage.mode(thr.em) <- "double" storage.mode(maxit.bcd) <- "integer" storage.mode(thr.bcd) <- "double" storage.mode(Yipt) <- "double" storage.mode(B) <- "double" storage.mode(mu) <- "double" storage.mode(R) <- "double" storage.mode(S) <- "double" storage.mode(Sgm) <- "double" storage.mode(Tht) <- "double" storage.mode(nit) <- "integer" conv <- integer(1) subrout <- integer(1) storage.mode(trace) <- "integer" if (q == 0L) { out <- .Fortran(C_cggm_v1, n = n, p = p, Y = Y, Id = Id, nP = nP, InfoP = InfoP, lo = lo, up = up, ym = ym, yv = yv, pendiag = pendiag, wTht = mask.Tht, ntp = ntp, rho = rho, maxit_em = maxit.em, thr_em = thr.em, maxit_bcd = maxit.bcd, thr_bcd = thr.bcd, Yipt = Yipt, B = B, mu = mu, R = R, S = S, Sgm = Sgm, Tht = Tht, nit = nit, conv = conv, subrout = subrout, trace = trace) out$subrout <- switch(as.character(out$subrout), "0" = "", "1" = "e_step", "2" = "glassosub", "3" = "cggm_v1") } else { storage.mode(q) <- "integer" storage.mode(X) <- "double" storage.mode(mask.B) <- "double" storage.mode(lambda) <- "double" out <- .Fortran(C_cggm_v2, n = n, q = q, X = X, p = p, Y = Y, Id = Id, nP = nP, InfoP = InfoP, lo = lo, up = up, ym = ym, yv = yv, wB = mask.B, pendiag = pendiag, wTht = mask.Tht , ntp = ntp, lambda = lambda ,rho = rho, maxit_em = maxit.em, thr_em = thr.em, maxit_bcd = maxit.bcd, thr_bcd = thr.bcd, Yipt = Yipt, B = B, mu = mu, R = R, S = S, Sgm = Sgm, Tht = Tht, nit = nit, conv = conv, subrout = subrout, trace = trace) out$subrout <- switch(as.character(out$subrout), "0" = "", "1" = "e_step", "2" = "multilasso", "3" = "glassosub", "4" = "cggm_v2") } row.order <- order(Z$Info$order) out$Yipt <- out$Yipt[row.order, , , , drop = FALSE] out$mu <- out$mu[row.order, , , , drop = FALSE] out$R <- out$R[row.order, , , , drop = FALSE] out$conv <- switch(as.character(out$conv), "-1" = "memory allocation error", "0" = "Ok", "1" = "maximum number of iterations has been exceeded", "2" = "error in E-step", "3" = "matrix inversion failed") out }
rkt_ecdf <- function(x, w) { if (missing(w)) { df <- data.table(x) df <- df[, .(w = .N), keyby = x] } else if (is.numeric(w) && any(duplicated(x))) { df <- data.table(x, w) df <- df[, .(w = sum(w)), keyby = x] } else if (is.numeric(w)) { df <- data.table(x, w) df <- df[order(x)] } else { stop("\"w\" needs to be numeric") } df <- df[!is.na(x) & w > 0] total <- sum(df$w) stopifnot(total > 0) df[, y := cumsum(w) / total] out <- approxfun(df$x, df$y, method = "constant", yleft = 0, yright = 1, f = 0, ties = "ordered") class(out) <- c("rkt_ecdf", class(out)) attr(out, "singularities") <- df$x out } print.rkt_ecdf <- function(x, ...) { cat(".:: ROCket ECDF Object \n") cat("Class:", class(x), "\n") } mean.rkt_ecdf <- function(x, ...) { weighted.mean(environment(x)$x, get_jumps(x)) } variance.rkt_ecdf <- function(x, ...) { weighted.mean((environment(x)$x - mean(x))^2, get_jumps(x)) } plot.rkt_ecdf <- function(x, ...) { inargs <- list(...) outargs <- list(f = x, ylim = c(0, 1), xlab = expression(x), ylab = expression(F[n](x)), main = 'ECDF', draw_area = FALSE, h = c(0, 1)) outargs[names(inargs)] <- inargs do.call(plot_function, outargs) invisible() }
ml_print_uid <- function(x) cat(paste0("<", x$uid, ">"), "\n") ml_print_class <- function(x, type) { type <- if (is_ml_estimator(x)) { "Estimator" } else if (is_ml_transformer(x)) { "Transformer" } else { class(x)[1] } cat(ml_short_type(x), paste0("(", type, ")\n")) } ml_print_column_name_params <- function(x) { cat(" (Parameters -- Column Names)\n") out_names <- ml_param_map(x) %>% names() %>% grep("col|cols$", ., value = TRUE) for (param in sort(out_names)) { cat(paste0( " ", param, ": ", paste0(ml_param(x, param), collapse = ", "), "\n" )) } } ml_print_params <- function(x) { cat(" (Parameters)\n") out_names <- ml_param_map(x) %>% names() %>% grep(".*(?<!col|cols)$", ., value = TRUE, perl = TRUE) for (param_name in sort(out_names)) { value <- ml_param(x, param_name, allow_null = TRUE) param_output <- switch( class(value)[[1]], spark_jobj = paste0("jobj of class ", jobj_class(value)[[1]]), NULL = "null", paste0(value, collapse = ", ") ) cat(paste0(" ", param_name, ": ", param_output, "\n")) } } ml_print_transformer_info <- function(x) { items <- names(x) %>% setdiff(c("uid", "param_map", "summary", ".jobj")) %>% grep(".*(?<!col|cols)$", ., value = TRUE, perl = TRUE) if (length(Filter(length, x[items]))) { cat(" (Transformer Info)\n") for (item in sort(items)) { if (!rlang::is_null(x[[item]])) { if (rlang::is_atomic(x[[item]])) { cat(paste0(" ", item, ": ", capture.output(str(x[[item]]))), "\n") } else { cat(paste0(" ", item, ": <", class(x[[item]])[1], ">"), "\n") } } } } } print_newline <- function() { cat("", sep = "\n") } ml_model_print_residuals <- function(model, residuals.header = "Residuals") { residuals <- model$summary$residuals %>% (function(x) if (is.function(x)) x() else x) %>% spark_dataframe() count <- invoke(residuals, "count") limit <- 1E5 isApproximate <- count > limit column <- invoke(residuals, "columns")[[1]] values <- if (isApproximate) { fraction <- limit / count residuals %>% invoke("sample", FALSE, fraction) %>% sdf_read_column(column) %>% quantile() } else { residuals %>% sdf_read_column(column) %>% quantile() } names(values) <- c("Min", "1Q", "Median", "3Q", "Max") header <- if (isApproximate) { paste(residuals.header, "(approximate):") } else { paste(residuals.header, ":", sep = "") } cat(header, sep = "\n") print(values, digits = max(3L, getOption("digits") - 3L)) invisible(values) } ml_model_print_coefficients <- function(model) { coef <- coefficients(model) cat("Coefficients:", sep = "\n") print(coef) invisible(coef) } ml_model_print_coefficients_detailed <- function(model) { columns <- c("coefficients", "standard.errors", "t.values", "p.values") values <- as.list(model[columns]) for (value in values) { if (is.null(value)) { return(ml_model_print_coefficients(model)) } } matrix <- do.call(base::cbind, values) colnames(matrix) <- c("Estimate", "Std. Error", "t value", "Pr(>|t|)") cat("Coefficients:", sep = "\n") stats::printCoefmat(matrix) } ml_model_print_centers <- function(model) { centers <- model$centers if (is.null(centers)) { return() } cat("Cluster centers:", sep = "\n") print(model$centers) }
tw_get_messages_list <- function(page = 0, page_size = 50){ base_url <- "https://api.twilio.com/" ua <- user_agent("https://github.com/seankross/twilio") path <- paste("2010-04-01", "Accounts", get_sid(), "Messages.json", sep = "/") url <- modify_url(base_url, path = path, query = list(page = page, pagesize = page_size)) resp <- GET(url, ua, authenticate(get_sid(), get_token())) if(http_type(resp) != "application/json"){ stop("Twilio API did not return JSON.", call. = FALSE) } parsed <- fromJSON(content(resp, "text", encoding = "UTF-8"), simplifyVector = FALSE) check_status(resp) structure( map(parsed$messages, twilio_message), class = "twilio_messages_list" ) }
knitr::opts_chunk$set(collapse = TRUE, comment = " require(bit) .ff.version <- try(packageVersion("ff"), silent = TRUE) .ff.is.available <- !inherits(.ff.version, "try-error") && .ff.version >= "4.0.0" && require(ff) logical() bit() bitwhich() logical(3) bit(3) bitwhich(3) bitwhich(3, TRUE) bitwhich(3, 2) bitwhich(3, -2) l <- logical(3) length(l) <- 6 l b <- bit(3) length(b) <- 6 b w <- bitwhich(3,2) length(w) <- 6 w w <- bitwhich(3,-2) length(w) <- 6 w l <- logical(3); l[6] b <- bit(3); b[6] w <- bitwhich(3); w[6] l[6] <- NA; l b[6] <- NA; b w[6] <- NA; w l[[6]] b[[6]] w[[6]] l[[9]] <- TRUE b[[9]] <- TRUE w[[9]] <- TRUE l b w l <- c(FALSE, TRUE, FALSE) i <- as.integer(l) as.logical(i) l <- c(FALSE, TRUE, FALSE) w <- as.which(l) w as.logical(w) l <- c(FALSE, TRUE, FALSE) w <- which(l) w as.logical(w) i <- c(7,3) w <- as.which(i, maxindex=12) w as.integer(w) r <- ri(1, 2^16, 2^20) all.as <- list( double = as.double , integer= as.integer , logical = as.logical , bit = as.bit , bitwhich = as.bitwhich , which = as.which , ri = function(x)x ) all.types <- lapply(all.as, function(f)f(r)) sapply(all.types, object.size) all.comb <- vector('list', length(all.types)^2) all.id <- rep(NA, length(all.types)^2) dim(all.comb) <- dim(all.id) <- c(from=length(all.types), to=length(all.types)) dimnames(all.comb) <- dimnames(all.id) <- list(from= names(all.types) , to= names(all.types)) for (i in seq_along(all.types)) for (j in seq_along(all.as)){ all.comb[[i,j]] <- all.as[[j]](all.types[[i]]) all.id[i,j] <- identical(all.as[[i]](all.comb[[i,j]]), all.types[[i]]) } all.id data.frame(booltype=sapply(all.types, booltype), is.boolean=sapply(all.types, is.booltype), row.names=names(all.types)) x <- bit(1e6) y <- x | c(FALSE, TRUE) object.size(y) / object.size(x) x <- bit(1e6) y <- x | as.bit(c(FALSE, TRUE)) object.size(y) / object.size(x) l <- logical(6) b <- bit(6) c(l,b) c(b,l) c(l, as.logical(b)) c(as.bit(l), b) c.booltype(l, b) b <- as.bit(c(FALSE,TRUE)) rev(b) rep(b, 3) rep(b, length.out=6) l <- c(NA,NA,FALSE,TRUE,TRUE) b <- as.bit(l) length(b) anyNA(b) any(b) all(b) sum(b) min(b) max(b) range(b) summary(b) min(c(FALSE,TRUE)) min.booltype(c(FALSE,TRUE)) b <- as.bit(sample(c(FALSE, TRUE), 1e6, TRUE)) summary(b,range=c(1,3e5)) sapply(chunk(b, by=3e5, method="seq"), function(i)summary(b, range=i)) sapply(chunk(b, by=3e5), function(i)summary(b, range=i)) x <- ff(vmode="single", length=length(b)) x[as.hi(b)] <- runif(sum(b)) summary(x[]) sapply(chunk(x, by=3e5), function(i)summary(x[i])) sapply(chunk(x, by=3e5), function(i)summary(x[as.hi(b, range=i)])) set.seed(1); n <- 9 x <- sample(n, replace=TRUE); x y <- sample(n, replace=TRUE); y x %in% y bit_in(x,y) bit_in(x,y, retFUN=as.logical) x <- c(NA,NA,1L,1L,2L,3L) duplicated(x) bit_duplicated(x, retFUN=as.logical) bit_duplicated(x, na.rm=NA, retFUN=as.logical) duplicated(x, incomparables = NA) bit_duplicated(x, na.rm=FALSE, retFUN=as.logical) bit_duplicated(x, na.rm=TRUE, retFUN=as.logical) x <- c(NA,NA,1L,1L,2L,3L) unique(x) bit_unique(x) unique(x, incomparables = NA) bit_unique(x, na.rm=FALSE) bit_unique(x, na.rm=TRUE) x <- c(NA,NA,1L,1L,3L) y <- c(NA,NA,2L,2L,3L) union(x,y) bit_union(x,y) x <- c(0L,NA,NA,1L,1L,3L) y <- c(NA,NA,2L,2L,3L,4L) intersect(x,y) bit_intersect(x,y) x <- c(0L,NA,NA,1L,1L,3L) y <- c(NA,NA,2L,2L,3L,4L) setdiff(x,y) bit_setdiff(x,y) x <- c(0L,NA,NA,1L,1L,3L) y <- c(NA,NA,2L,2L,3L,4L) union(setdiff(x,y),setdiff(y,x)) bit_symdiff(x,y) x <- c(0L,NA,NA,1L,1L,3L) y <- c(NA,NA,2L,2L,3L,4L) setequal(y,x) bit_setequal(x,y) bit_rangediff(c(1L,7L), (3:5)) bit_rangediff(c(7L,1L), (3:5)) bit_rangediff(c(1L,7L), -(3:5), revy=TRUE) bit_rangediff(c(1L,7L), -(3:5), revx=TRUE) bit_rangediff(c(1L,7L), (1:7)) bit_rangediff(c(1L,7L), -(1:7)) bit_rangediff(c(1L,7L), (1:7), revy=TRUE) (1:9)[-7] bit_rangediff(c(1L,9L), -7L, revy=TRUE) x <- c(NA,NA,1L,1L,2L,3L) any(duplicated(x)) anyDuplicated(x) any(bit_duplicated(x)) bit_anyDuplicated(x) x <- c(NA,NA,1L,1L,2L,3L) sum(duplicated(x)) sum(bit_duplicated(x)) bit_sumDuplicated(x) x <- sample(9, 9, TRUE) unique(sort(x)) sort(unique(x)) bit_sort_unique(x) x <- sample(9, 9, TRUE) sort(x) bit_sort(x) x = sample(12) bit_sort(x) merge_unique(bit_sort(x)) bit_sort_unique(x) x = as.integer(c(3,4,4,5)) y = as.integer(c(3,4,5)) setequal(x,y) merge_setequal(x,y) merge_setequal(x,y, method="exact") x = as.integer(c(0,1,2,2,3,3,3)) y = as.integer(c(1,2,3)) setdiff(x,y) merge_setdiff(x,y) merge_setdiff(x,y, method="exact") merge_rangediff(c(0L,4L),y) merge_rangediff(c(0L,4L),c(-3L,-2L)) merge_rangediff(c(0L,4L),c(-3L,-2L), revy=TRUE) merge_rangediff(c(0L,4L),c(-3L,-2L), revx=TRUE) x = -2:1 y = -1:2 setdiff(x,y) union(setdiff(x,y),setdiff(y,x)) merge_symdiff(x,y) merge_intersect(x,y) merge_rangesect(c(-2L,1L),y) x = as.integer(c(1,2,2,3,3,3)) y = 2:4 union(x,y) merge_union(x,y, method="unique") merge_union(x,y, method="exact") merge_union(x,y, method="all") sort(c(x,y)) c(x,y) x = 2:4 y = as.integer(c(0,1,2,2,3,3,3)) match(x,y) merge_match(x,y) x %in% y merge_in(x,y) merge_notin(x,y) x <- c(2L,4L) merge_rangein(x,y) merge_rangenotin(x,y) x <- bit_sort(sample(1000,10)) merge_first(x) merge_last(x) merge_firstnotin(c(300L,600L), x) merge_firstin(c(300L,600L), x) merge_lastin(c(300L,600L), x) merge_lastnotin(c(300L,600L), x)
shinyBS::bsCollapse( id = "collapsehelp", open = "somtype", shinyBS::bsCollapsePanel( title = "Types of self-organizing maps", value = "somtype", style = "success", p( HTML( "Different types of data require different types of maps to analyze them. <a href='http://sombrero.r-forge.r-project.org/'>SOMbrero</a> offers three types of algorithms, all based on the on-line (as opposed to batch) SOM: <ul> <li><b>Numeric</b> is the standard self-organizing map, which uses numeric variables only. The data is expected to contains variables in columns and observations in rows. <br /> It can be applied, for instance, to the four first variables of the <a href= 'http://nextcloud.nathalievilla.org/index.php/s/BWnWADSPxayGSGa' >iris dataset</a>.</li> <li><b>Korresp</b> applies the self-organizing algorithm to contingency tables between two factors.<br /> For instance, in the supplied <a href= 'http://nextcloud.nathalievilla.org/index.php/s/Tw2H2ZBKwBAPo0v' >dataset 'presidentielles 2002'</a>, which contains the results for the first round of the 2002 French prensidential elections, columns represent presidential candidates and rows represent the French districts called 'departements', so that each cell contains the number of votes for a specific candidate in a specific 'departement'.</li> <li><b>Relational</b> is used for dissimilarity matrices, in which each cell contains a measure of distance between two objects. For this method the data must be a square numeric matrix, in which rows and columns represent the same observations. The matrix must be symetric, contains only positive entries with a null diagonal.<br /> For instance, the supplied <a href='http://nextcloud.nathalievilla.org/index.php/s/R2Vyt5Vkg3xlYPD' >dataset 'Les Miserables'</a> contains the shortest path lengths between characters of Victor Hugo's novel <I>Les Misérables</I> in the co-appearance network provided <a href= 'http://www-personal.umich.edu/~mejn/netdata/lesmis.zip'>here</a>.</li> </ul>" ) ) ), shinyBS::bsCollapsePanel( title = "Data loading", value = "importdata", style = "success", p( HTML( "You can choose the data among your current environment datasets (in the class data.frame or matrix). The three examples datasets are automatically loaded so you can try the methods." ) ), p( HTML( "Data also can be imported as a table, in text or csv format (columns are separated by specific symbols such as spaces or semicolons (option 'Separator'). Row names can be included in the data set for better post-analyses of the data (some of the plots will use these names). Check at the bottom of the 'Import Data' panel to see if the data have been properly imported. If not, change the file importation options." ) ) ), shinyBS::bsCollapsePanel( title = "Training options", value = "train", style = "success", p( HTML( "The default options in the 'Self-Organize' panel are set according to the type of map and the size of the dataset, but you can modify the options at will: <ul> <li><b>Topology:</b> choose the topology of the map (squared or hexagonal).</li> <li><b>Input variables:</b> choose on which variables the map will be trained.</li> <li><b>Map dimensions:</b> choose the number of rows (X) and columns (Y) of the map, thus setting the number of prototypes. An advice value is to use the square root of one tenth the number of observations.</li> <li><b>Affectation type:</b> type of affectation used during the training. Default type is 'standard', which corresponds to a hard affectation, and the alternative is 'heskes', which is Heskes's soft affectation (see Heskes (1999) for further details).</li> <li><b>Max. iterations:</b> the number of iterations of the training process. Default is five times the number of observations.</li> <li><b>Distance type:</b> type of distance used to determine which prototypes of the map are neighbors. Default type is 'Letremy' that was originally proposed in the <a href='http://samos.univ-paris1.fr/Programmes-bases-sur-l-algorithme'>SAS programs</a> by <a href='http://samm.univ-paris1.fr/-Patrick-Letremy-'> Patrick Letremy</a> but all methods for 'dist' are also available.</li> <li><b>Radius type:</b> neighborhood type used to determine which prototypes of the map are neighbors. Default type is 'letremy' as originally implemented in the <a href='http://samos.univ-paris1.fr/Programmes-bases-sur-l-algorithme'>SAS programs</a> by <a href='http://samm.univ-paris1.fr/-Patrick-Letremy-'> Patrick Letremy</a> (it combines square and star-like neighborhoods along the learning) but a Gaussian neighborhood can also be computed.</li> <li><b>Data scaling:</b> choose how the data must be scaled before training. Scaling is used to ensure all variables have the same importance during training, regardless of absolute magnitude. 'none' means no scaling, 'center' means variables are shifted to have 0 mean, 'unitvar' means variables are centered and divided by their standard deviation to ensure they all have unit variance and '&chi;<sup>2</sup>' is used by the 'Korresp' algorithm and 'cosine' is the dissimilarity transposition of the 'cosine' transformation performed on kernels.</li> <li><b>Random seed:</b> Set the seed for the pseudorandom number generator used during the training. Be sure to remember the seed used for a training if you want to reproduce your results exactly, because running the algorithm with different seeds will result in different maps. By default the seed is itself set randomly when the interface is launched.</li> <li><b>Scaling value for gradient descent:</b> This is the 'step size' parameter used during training to determine in what proportion a winning prototype is shifted towards an observation.</li> <li><b>Number of intermediate backups:</b> Number of times during training a backup of the intermediate states of the map is saved. This can be used to monitor the progress of the training. If no backup (values 0 or 1) is saved, the energy plot is not available.</li> <li><b>Prototype initialization method:</b> choose how the prototypes of the map are initialized at the beginning of training algorithm.<br /> If 'random' is chosen, prototypes will be given random values in the range of the data. If 'obs', each prototype will be initialized to a random observation in the data. If 'pca', prototypes are chosen along the first two PC of a PCA. Advised values are 'random' for the 'Numeric' and the 'Korresp' algorithm and 'obs' for the 'Relational' algorithm.</li> </ul>" ) ) ), shinyBS::bsCollapsePanel( title = "Types of plots", value = "plots", style = "success", p( HTML( "Sombrero offers many different plots to analyze your data's topology using the self-organizing map. <br />There are two main choices of what to plot (in the plot and superclass panels): plotting <b> prototypes </b> uses the values of the neurons' prototypes of the map, which are the representative vectors of the clusters. Plotting <b> observations </b> uses the values of the observations within each cluster." ) ), p( HTML( "These are the standard types of plots: <ul> <li><b>hitmap:</b> represents circles having size proportional to the number of observations per neuron.</li> <li><b>color:</b> Neurons are filled with colors according to the prototype value or the average value level of the observations for a chosen variable.</li> <li><b>3d:</b> similar to the ‘color’ plot, but in 3-dimensions, with x and y the coordinates of the grid and z the value of the prototypes or observations for the considered variable.</li> <li><b>boxplot:</b> plots boxplots for the observations in every neuron.</li> <li><b>lines:</b> plots a line for each observation in every neuron, between variables.</li> <li><b>barplot:</b> similar to lines, here each variable value is represented by a bar. </li> <li><b>mealine:</b> plots, for each neuron, the prototype value or the average value level of the observations, with lines. Each point on the line represents a variable. </li> <li><b>names:</b> prints on the grid the names of the observations in the neuron to which they belong. <strong>Warning!</strong> If the number of observations or the size of the names is too large, some names may not be representedthey are reprensented in the center of the neuron, with a warning.</li> <li><b>poly.dist:</b> represents the distances between prototypes with polygons plotted for each neuron. The closer the polygon point is to the border, the closer the pairs of prototypes. The color used for filling the polygon shows the number of observations in each neuron. A red polygon means a high number of observations, a white polygon means there are no observations.</li> <li><b>smooth.dist:</b> depicts the average distance between a prototype and its neighbors using smooth color changes, on a map where x and y are the coordinates of the prototypes on the grid. If the topology is hexagonal, linear interpolation is done between neuron coordinates to get a full squared grid.</li> <li><b>umatrix:</b> is another way of plotting distances between prototypes. The grid is plotted and filled colors according to the mean distance between the current neuronand the neighboring neurons. Red indicates proximity.</li> <li><b>grid.dist:</b> plots all distances on a two-dimensional map. The number of points on this picture is equal to: <br> <code>number_of_neurons * (number_of_neurons-1) / 2</code><br>The x axis corresponds to the prototype distances, the y axis depicts the grid distances. </li> <li><b>MDS:</b> plots the number of the neurons according to a Multi Dimensional Scaling (MDS) projection on a two-dimensional space.</li> </ul>" ) ), p( HTML("Plots in the SuperClasses panel: the plot options are mostly the same as the ones listed above, but some are specific: <ul> <li><b>grid:</b> plots the grid of the neurons, grouped by superclasses (color).</li> <li><b>dendrogram:</b> plots the dendrogram of the hierarchical clustering applied to the prototypes, along with the scree plot which shows the proportion of unexplained variance for incremental numbers of superclasses. These are helpful in determining the optimal number of superclasses.</li> <li><b>dendro3d:</b> similar to 'dendrogram', but in three dimensions and without the scree plot.</li> </ul>" ) ), p( HTML("Plots in the 'Combine with external information' panel: the plot options are mostly the same as the ones listed above, but some are specific: <ul> <li><b>pie:</b> requires the selected variable to be a categorical variable, and plots one pie for each neuron, corresponding to the values of this variable.</li> <li><b>words:</b> needs the external data to be a contingency table or numerical values: names of the columns will be used as words and printed on the map with sizes proportional to the sum of values in the neuron.</li> <li><b>graph:</b> needs the external data to be the adjacency matrix of a graph. According to the existing edges in the graph and to the clustering obtained with the SOM algorithm, a clustered graph is built in which vertices represent neurons and edge are weighted by the number of edges in the given graph between the vertices affected to the corresponding neurons. This plot can be tested with the supplied dataset <a href= 'http://nextcloud.nathalievilla.org/index.php/s/R2Vyt5Vkg3xlYPD' >Les Miserables</a> that corresponds to the graph those adjacency table is provided at <a href= 'http://nextcloud.nathalievilla.org/index.php/s/R2Vyt5Vkg3xlYPD' >this link</a>. </li> </ul>" ) ), p( HTML( "The <b>show cluster names</b> option in the 'Plot map' panel can be selected to show the names of the neurons on the map." ) ), p( HTML( "The <b>energy</b> option in the 'Plot map' panel is used to plot the energy levels of the intermediate backups recorded during training. This is helpful in determining whether the algorithm did converge. (This option only works if a 'Number of intermediate backups' larger than 2 is chosen in the 'Self-Organize' panel.)" ) ) ), shinyBS::bsCollapsePanel( title = "Grouping prototypes into Superclasses", value = "superclasses", style = "success", p( HTML( "Use the options on the dedicated panel to group the prototypes of a trained map into a determined number of superclasses, using hierarchical clustering. The 'dendrogram' plot can help you to choose a relevant number of superclasses (or equivalently a relevant cutting height in the dendrogram)." ) ) ), shinyBS::bsCollapsePanel( title = "Combine with external information", value = "externalinfo", style = "success", p( HTML( "Plot external data on the trained map on the dedicated panel. If you have unused variables in your dataset (not used to train the map), you can select them as external data. Otherwise, or if you want to use other data, the external data importation process is similar to the one described in the <a href=' plots are described in the <a href=' Note that this is the only panel in which factors can be plotted on the self-organizing map. For instance, if the map is trained on the first four (numeric) variables of the supplied <a href= 'http://nextcloud.nathalievilla.org/index.php/s/BWnWADSPxayGSGa' >iris dataset</a>, you can select the species variable and plot the iris species on the map." ) ) ) )
library("listenv") ovars <- ls(envir = globalenv()) if (exists("x")) rm(list = "x") if (exists("y")) rm(list = "y") message("*** parse_env_subset() on multi-dim listenv ...") x <- listenv() length(x) <- 6 dim(x) <- c(2, 3) target <- parse_env_subset(x[2], substitute = TRUE) str(target) stopifnot(identical(target$envir, x), target$idx == 2, !target$exists) target <- parse_env_subset(x[[2]], substitute = TRUE) str(target) stopifnot(identical(target$envir, x), target$idx == 2, !target$exists) target <- parse_env_subset(x[1, 2], substitute = TRUE) str(target) stopifnot(identical(target$envir, x), target$idx == 3, !target$exists) target <- parse_env_subset(x[[1, 2]], substitute = TRUE) str(target) stopifnot(identical(target$envir, x), target$idx == 3, !target$exists) x[[1, 2]] <- 1.2 target <- parse_env_subset(x[1, 2], substitute = TRUE) str(target) stopifnot(identical(target$envir, x), target$idx == 3, target$exists) target <- parse_env_subset(x[[1, 2]], substitute = TRUE) str(target) stopifnot(identical(target$envir, x), target$idx == 3, target$exists) target <- parse_env_subset(x[1, 4], substitute = TRUE) str(target) stopifnot(identical(target$envir, x), is.na(target$idx), !target$exists) target <- parse_env_subset(x[[1, 4]], substitute = TRUE) str(target) stopifnot(identical(target$envir, x), is.na(target$idx), !target$exists) target <- parse_env_subset(x[1, 1:2], substitute = TRUE) str(target) stopifnot(identical(target$envir, x), length(target$idx) == 2L, all(target$idx == c(1,3)), length(target$exists) == 2L, all(target$exists == c(FALSE, TRUE))) target <- parse_env_subset(x[1, -3], substitute = TRUE) str(target) stopifnot(identical(target$envir, x), length(target$idx) == 2L, all(target$idx == c(1,3)), length(target$exists) == 2L, all(target$exists == c(FALSE, TRUE))) target <- parse_env_subset(x[[1, 4]], substitute = TRUE) str(target) target2 <- parse_env_subset(x[[c(1, 4)]], substitute = TRUE) str(target2) target$code <- target2$code <- NULL stopifnot(!isTRUE(all.equal(target2, target))) dimnames(x) <- list(c("a", "b"), c("A", "B", "C")) print(x) target <- parse_env_subset(x[["a", 2]], substitute = TRUE) str(target) stopifnot(identical(target$envir, x), target$idx == 3, target$exists) target <- parse_env_subset(x[["a", "B"]], substitute = TRUE) str(target) stopifnot(identical(target$envir, x), target$idx == 3, target$exists) target <- parse_env_subset(x["a", "B"], substitute = TRUE) str(target) stopifnot(identical(target$envir, x), target$idx == 3, target$exists) target <- parse_env_subset(x["a", 1:3], substitute = TRUE) str(target) stopifnot(identical(target$envir, x), length(target$idx) == 3, all(target$idx == c(1, 3, 5)), all(target$exists == c(FALSE, TRUE, FALSE))) target <- parse_env_subset(x["a", ], substitute = TRUE) str(target) stopifnot(identical(target$envir, x), length(target$idx) == 3, all(target$idx == c(1, 3, 5)), all(target$exists == c(FALSE, TRUE, FALSE))) target <- parse_env_subset(x["a", -1], substitute = TRUE) str(target) stopifnot(identical(target$envir, x), length(target$idx) == 2, all(target$idx == c(3, 5)), all(target$exists == c(TRUE, FALSE))) message("*** parse_env_subset() on multi-dim listenv ... DONE") message("*** parse_env_subset() on multi-dim listenv - exceptions ...") x <- listenv() res <- try(target <- parse_env_subset(x[[1, 2]], substitute = TRUE), silent = TRUE) stopifnot(inherits(res, "try-error")) x <- listenv() length(x) <- 6 dim(x) <- c(2, 3) res <- try(target <- parse_env_subset(x[[0]], substitute = TRUE), silent = TRUE) res <- try(target <- parse_env_subset(x[[1, 0]], substitute = TRUE), silent = TRUE) res <- try(target <- parse_env_subset(x[[1, 2, 3]], substitute = TRUE), silent = TRUE) message("*** parse_env_subset() on multi-dim listenv - exceptions ... DONE") rm(list = setdiff(ls(envir = globalenv()), ovars), envir = globalenv())
.draw.Z.2pl <- function( aM, bM, theta, N, I, threshlow, threshupp ){ mij <- aM * theta - bM rij <- matrix( stats::runif( N*I ), nrow=N, ncol=I ) pl <- stats::pnorm( threshlow, mean=mij) pu <- stats::pnorm( threshupp, mean=mij) pij <- pl + (pu-pl)*rij Zij <- stats::qnorm( pij, mean=mij ) return(Zij) } .draw.theta.2pl <- function( aM, bM, N, I, Z ){ vtheta <- 1 / ( rowSums( aM^2 ) + 1 ) mtheta <- rowSums( aM * ( Z + bM ) ) * vtheta theta <- stats::rnorm( N, mean=mtheta, sd=sqrt( vtheta ) ) res <- list("theta"=theta ) return(res) } .draw.itempars.2pl <- function( theta, Z, I, N, weights){ Xast <- as.matrix( cbind( theta, -1 ) ) if ( is.null(weights) ){ Sigma <- solve( crossprod(Xast) ) mj <- Sigma %*% crossprod(Xast, Z ) mj <- as.matrix( t(mj)) } if ( ! is.null( weights ) ){ Xast11 <- sum( theta^2 * weights ) Xast12 <- - sum( theta * weights ) Xast22 <- sum( weights ) Xastdet <- Xast11*Xast22 - Xast12^2 Xastinv11 <- Xast22 / Xastdet Xastinv22 <- Xast11 / Xastdet Xastinv12 <- - Xast12 / Xastdet Sigma <- matrix( c(Xastinv11, Xastinv12, Xastinv12, Xastinv22), 2,2 ) mj <- Sigma %*% crossprod( Xast * weights, Z ) mj <- as.matrix( t(mj)) } ipars <- sirt_rmvnorm( I, sigma=Sigma ) + mj a <- ipars[,1] b <- ipars[,2] return( list( "a"=a, "b"=b) ) } .mcmc.deviance.2pl <- function( aM, bM, theta, dat, dat.resp, weights, eps ){ pij <- stats::pnorm( aM * theta - bM ) llij <- log( dat.resp * ( dat*pij + ( 1-dat )*(1-pij) ) + eps ) if ( is.null( weights ) ){ deviance <- -2*sum( llij ) } if ( ! is.null( weights ) ){ deviance <- -2*sum( rowSums(llij) * weights ) } return(deviance) } .mcmc.ic.2pl <- function( a.chain, b.chain, theta.chain, N, I, dat, dat.resp, weights, eps, deviance.chain ){ aM <- matrix( colMeans( a.chain ), nrow=N, ncol=I, byrow=TRUE ) bM <- matrix( colMeans( b.chain ), nrow=N, ncol=I, byrow=TRUE ) theta <- colMeans( theta.chain ) Dhat <- .mcmc.deviance.2pl( aM, bM, theta, dat, dat.resp, weights, eps ) Dbar <- mean( deviance.chain ) pD <- Dbar - Dhat ic <- list( "Dhat"=Dhat, "Dbar"=Dbar, "pD"=pD, "DIC"=Dhat + 2*pD ) return(ic) } .mcmc.person.2pno <- function( theta.chain, weights ){ v1 <- stats::var( colMeans( theta.chain ) ) if ( is.null(weights) ){ EAP.rel <- v1 / 1 } if ( ! is.null(weights) ){ w1 <- weights / sum(weights ) m1 <- colMeans( theta.chain ) v1 <- sum( m1^2 * w1 ) - ( sum( m1*w1 ) )^2 wM <- matrix( w1, nrow=nrow(theta.chain), ncol=ncol(theta.chain), byrow=TRUE ) h1 <- rowSums( wM * theta.chain^2 ) - ( rowSums( wM * theta.chain ) )^2 h1 <- mean(h1) EAP.rel <- v1 / h1 } person <- data.frame( "EAP"=colMeans( theta.chain ), "SD"=colSds(theta.chain) ) res <- list( "EAP.rel"=EAP.rel, "person"=person ) return(res) }
recent_commit <- function(file, root, data = FALSE) { UseMethod("recent_commit", root) } recent_commit.default <- function(file, root, data = FALSE) { stop("a 'root' of class ", class(root), " is not supported", call. = FALSE) } recent_commit.git_repository <- function(file, root, data = FALSE) { assert_that(is.string(file), is.flag(data), noNA(data)) path <- unique(dirname(file)) if (path == ".") { path <- "" } if (data) { file <- clean_data_path(root = workdir(root), file, normalize = FALSE) } name <- basename(file) blobs <- odb_blobs(root) blobs <- blobs[blobs$path == path & blobs$name %in% name, ] blobs <- blobs[blobs$when <= as.data.frame(last_commit(root))$when, ] blobs <- blobs[blobs$when == max(blobs$when), c("commit", "author", "when")] blobs <- unique(blobs) if (nrow(blobs) > 1) { warning("More than one commit within the same second", call. = FALSE) } rownames(blobs) <- NULL blobs }
tabPanel('3D Pie Chart', value = 'tab_pie3d', fluidPage( fluidRow( column(12, align = 'left', h4('3D Pie Chart') ) ), hr(), fluidRow( column(12, tabsetPanel(type = 'tabs', tabPanel('Variable', column(4, column(6, selectInput('pie3_select', 'Select Variable', choices = "", selected = "" ), numericInput('pie3_radius', 'Radius', min = 0.1, step = 0.1, value = 1) ), column(6, selectInput('pie3_label', 'Select Labels', choices = "", selected = "" ), numericInput('pie3_height', 'Height', min = 0.1, step = 0.1, value = 0.1) ) ), column(8, plotOutput('pie3_1', '500px') ) ), tabPanel('Options', column(4, fluidRow( column(6, textInput('pie3_border', 'Border Color', value = "black"), numericInput('pie3_start', 'Start', min = 0, step = 1, value = 0), numericInput('pie3_explode', 'Explode', min = 0, step = 0.1, value = 0), numericInput('pie3_shade', 'Shade', min = 0, step = 0.1, value = 0.8), numericInput('pie3_edges', 'Edges', min = 0, step = 1, value = 200) ) ) ), column(8, plotOutput('pie3_2', '500px') ) ), tabPanel('Color', column(4, fluidRow( column(6, numericInput("ncolpie3", "Number of Colors", value = 0, min = 0)), column(6, uiOutput("ui_ncolpie3")) ) ), column(8, plotOutput('pie3_3', '500px') ) ), tabPanel('Label', column(4, fluidRow( column(6, textInput('pie3_labcol', 'Label Color', value = "black"), numericInput('pie3_labcex', 'Label Size', min = 0.1, step = 0.1, value = 1.5), numericInput('pie3_labrad', 'Label Radius', min = 0.1, step = 0.01, value = 1.25) ) ), fluidRow( column(6, numericInput("nlabpospie3", "Number of Labels", value = 0, min = 0)), column(6, uiOutput("ui_nlabpospie3")) ) ), column(8, plotOutput('pie3_4', '500px') ) ), tabPanel('Title', column(4, column(6, textInput('pie3_title', 'Title', value = 'title'), textInput('pie3_titlecol', 'Title Color', value = 'black') ), column(6, numericInput('pie3_font', 'Font', min = 1, step = 1, value = 1, max = 5), numericInput('pie3_cex', 'Size', min = 0.1, step = 0.1, value = 1) ) ), column(8, plotOutput('pie3_5', '500px') ) ), tabPanel('Plot', fluidRow( column(8, offset = 2, plotOutput('pie3_final', '600px') ) ) ) ) ) ) ) )
context("Chapter 2") test_that("Chapter 2 functions basically work", { expect_error(Wald_CI_1x2(100)) expect_output( object = Wald_CI_1x2(1, 2), regexp = "estimate = 0.5000 \\(95% CI 0.0000 to 1.0000\\)" ) expect_error(AgrestiCoull_CI_1x2(19)) expect_output( object = AgrestiCoull_CI_1x2(19, 20, .15), regexp = "estimate = 0.8750 \\(85% CI 0.7778 to 0.9722\\)" ) expect_error(Arcsine_CI_1x2(500)) expect_output( object = Arcsine_CI_1x2(100, 5e3, .1), regexp = "estimate = 0.0200 \\(90% CI 0.0169 to 0.0235\\)" ) expect_error(Blaker_exact_CI_1x2(1)) expect_output( object = Blaker_exact_CI_1x2(1, 100), regexp = "estimate = 0.0100 \\(95% CI 0.0005 to 0.0513\\)" ) expect_error(Blaker_exact_test_1x2(1)) expect_output( object = Blaker_exact_test_1x2(1, 10, .5), regexp = "P = 0.02148" ) expect_error(Blaker_midP_CI_1x2(100)) expect_output( object = Blaker_midP_CI_1x2(100, 500, .5), regexp = "estimate = 0.2000 \\(50% CI 0.1881 to 0.2121\\)" ) expect_error(Blaker_midP_test_1x2(100)) expect_output( object = Blaker_midP_test_1x2(X=13, n=16, pi0=0.5), regexp = "P = 0.00845" ) expect_error(ClopperPearson_exact_CI_1x2(100)) expect_output( object = ClopperPearson_exact_CI_1x2(X=13, n=16), regexp = "estimate = 0.8125 \\(95% CI 0.5435 to 0.9595\\)" ) expect_error(ClopperPearson_midP_CI_1x2(100)) expect_output( object = ClopperPearson_midP_CI_1x2(X=13, n=16), regexp = "estimate = 0.8125 \\(95% CI 0.5699 to 0.9500\\)" ) expect_error(Exact_binomial_test_1x2(100)) expect_output( object = Exact_binomial_test_1x2(X = 13, n = 16, pi0 = 0.5), regexp = "P = 0.02127" ) expect_error(Jeffreys_CI_1x2(100)) expect_output( object = Jeffreys_CI_1x2(X = 13, n = 16), regexp = "estimate = 0.8125 \\(95% CI 0.5792 to 0.9442\\)" ) expect_error(LR_CI_1x2(100)) expect_output( object = LR_CI_1x2(X = 13, n = 16), regexp = "estimate = 0.8125 \\(95% CI 0.5828 to 0.9497\\)" ) expect_error(LR_test_1x2(100)) expect_output( object = LR_test_1x2(X = 13, n = 16, pi0 = .5), regexp = "P = 0.00944, T = 6.738 \\(df <- 1\\)" ) expect_error(MidP_binomial_test_1x2(100)) expect_output( object = MidP_binomial_test_1x2(X = 13, n = 16, pi0 = .5), regexp = "P = 0.01273" ) expect_error(Score_test_1x2(100)) expect_output( object = Score_test_1x2(X = 13, n = 16, pi0 = .5), regexp = "P = 0.01242, Z = 2.500" ) expect_error(Score_test_CC_1x2(100)) expect_output( object = Score_test_CC_1x2(X = 13, n = 16, pi0 = .5), regexp = "P = 0.02445, Z = 2.250" ) expect_error(Wald_CI_CC_1x2(100)) expect_output( object = Wald_CI_CC_1x2(X = 13, n = 16, alpha = .1), regexp = "estimate = 0.8125 \\(90% CI 0.6207 to 1.0000\\)" ) expect_error(Wilson_score_CI_1x2(100)) expect_output( object = Wilson_score_CI_1x2(X=13, n=16), regexp = "estimate = 0.8125 \\(95% CI 0.5699 to 0.9341\\)" ) expect_error(Wilson_score_CI_CC_1x2(100)) expect_output( object = Wilson_score_CI_CC_1x2(X=13, n=16), regexp = "estimate = 0.8125 \\(95% CI 0.5369 to 0.9503\\)" ) expect_error(the_1x2_table_CIs(100)) expect_output( object = the_1x2_table_CIs(X=13, n=16), regexp = "Estimate of pi: 13 / 16 = 0.812 " ) expect_error(Wald_test_1x2(100)) expect_output( object = Wald_test_1x2(X=13, n=16, pi0=0.1), regexp = "P = 0.00000, Z = 7.302" ) expect_error(Wald_test_CC_1x2(100)) expect_output( object = Wald_test_CC_1x2(X=13, n=16, pi0=0.1), regexp = "P = 0.00000, Z = 6.982" ) expect_error(the_1x2_table_tests(100)) expect_output( object = the_1x2_table_tests(X=13, n=16, pi0=0.5), regexp = "H_0: pi = 0.500 vs H_A: pi ~= 0.500" ) })
setGeneric("toCControlList", function(object) { standardGeneric("toCControlList"); }); setMethod("toCControlList", signature(object = "GenAlgPLSEvaluator"), function(object) { return(list( "evaluatorClass" = 1L, "numReplications" = object@numReplications, "innerSegments" = object@innerSegments, "outerSegments" = object@outerSegments, "testSetSize" = object@testSetSize, "sdfact" = object@sdfact, "plsMethod" = object@methodId, "numThreads" = object@numThreads, "maxNComp" = object@maxNComp, "userEvalFunction" = function() {NULL;}, "statistic" = 0L )); }); setMethod("toCControlList", signature(object = "GenAlgFitEvaluator"), function(object) { return(list( "evaluatorClass" = 3L, "numReplications" = 0L, "innerSegments" = object@numSegments, "outerSegments" = 0L, "testSetSize" = 0.0, "sdfact" = object@sdfact, "plsMethod" = 0L, "numThreads" = object@numThreads, "maxNComp" = object@maxNComp, "userEvalFunction" = function() {NULL;}, "statistic" = object@statisticId )); }); setMethod("toCControlList", signature(object = "GenAlgUserEvaluator"), function(object) { return(list( "evaluatorClass" = 0L, "numReplications" = 0L, "innerSegments" = 0L, "outerSegments" = 0L, "testSetSize" = 0.0, "sdfact" = 0.0, "plsMethod" = 0L, "numThreads" = 1L, "maxNComp" = 0L, "userEvalFunction" = object@evalFunction, "statistic" = 0L )); }); setMethod("toCControlList", signature(object = "GenAlgLMEvaluator"), function(object) { return(list( "evaluatorClass" = 2L, "numReplications" = 0L, "innerSegments" = 0L, "outerSegments" = 0L, "testSetSize" = 0.0, "sdfact" = 0.0, "plsMethod" = 0L, "numThreads" = object@numThreads, "maxNComp" = 0L, "userEvalFunction" = function() {NULL;}, "statistic" = object@statisticId )); }); setMethod("toCControlList", signature(object = "GenAlgControl"), function(object) { return(list( "populationSize" = object@populationSize, "numGenerations" = object@numGenerations, "minVariables" = object@minVariables, "maxVariables" = object@maxVariables, "elitism" = object@elitism, "mutationProb" = object@mutationProbability, "crossover" = object@crossoverId, "maxDuplicateEliminationTries" = object@maxDuplicateEliminationTries, "badSolutionThreshold" = object@badSolutionThreshold, "verbosity" = object@verbosity, "fitnessScaling" = object@fitnessScalingId )); });
fssc05Z <- function(fslist, k=2, nnbd=5){ myk = max(1, round(k)) mynnbd = max(1, round(nnbd)) if (inherits(fslist, "dist")){ pdmat = fslist } else { dtype = check_list_summaries("fssc05Z", fslist) pdmat = TDAkit::fsdist(fslist, p=2, as.dist=TRUE) } run_sc = T4cluster::sc05Z(pdmat, k=myk, nnbd=mynnbd) output = as.vector(run_sc$cluster) return(output) }
S_func <- function(x, a) { return((abs(x) - a) * sign(x) * (abs(x) > a)) }
dm.ddf <- function(xdata, ydata, rts = "crs", g = NULL, wd = NULL, se = FALSE, sg = "ssm", date = NULL, cv = "convex", o = NULL){ if(is.na(match(rts, c("crs", "vrs", "irs", "drs")))) stop('rts must be "crs", "vrs", "irs", or "drs".') if(is.na(match(se, c(0, 1, FALSE, TRUE)))) stop('se must be either 0(FALSE) or 1(TRUE).') if(is.na(match(sg, c("ssm", "max", "min")))) stop('sg must be "ssm", "max", or "min".') if(is.na(match(cv, c("convex", "fdh")))) stop('cv must be "convex" or "fdh".') if(!is.null(o) && !all(o <= nrow(xdata))) stop('o must be element(s) of n.') xdata <- as.matrix(xdata) ydata <- as.matrix(ydata) g <- if(is.null(g)) cbind(xdata, ydata) else as.matrix(g) date <- if(!is.null(date)) as.matrix(date) n <- nrow(xdata) m <- ncol(xdata) s <- ncol(ydata) wd <- if(is.null(wd)) matrix(c(0), ncol = s) else matrix(wd, 1) se <- ifelse(is.logical(se), ifelse(isTRUE(se), 1, 0), se) rts <- ifelse(cv == "fdh", "vrs", rts) o <- if(is.null(o)) c(1:n) else as.vector(o) results.efficiency <- matrix(NA, nrow = n, ncol = 1) results.lambda <- matrix(NA, nrow = n, ncol = n) results.mu <- matrix(NA, nrow = n, ncol = n) results.xslack <- matrix(NA, nrow = n, ncol = m) results.yslack <- matrix(NA, nrow = n, ncol = s) results.beta <- matrix(NA, nrow = n, ncol = m) results.gamma <- matrix(NA, nrow = n, ncol = s) for (k in o){ lp.ddf <- make.lp(0, n + n + m + s + m + s) set.objfn(lp.ddf, c(rep(-1, m + s)), indices = c((n + n + 1):(n + n + m + s))) if(rts == "vrs") add.constraint(lp.ddf, c(rep(1, n * 2)), indices = c(1:(n * 2)), "=", 1) if(rts == "crs") set.constr.type(lp.ddf, 0, 1) if(rts == "irs") add.constraint(lp.ddf, c(rep(1, n * 2)), indices = c(1:(n * 2)), ">=", 1) if(rts == "drs") add.constraint(lp.ddf, c(rep(1, n * 2)), indices = c(1:(n * 2)), "<=", 1) if(cv == "fdh") set.type(lp.ddf, 1:n, "binary") if(rts == "crs" || rts == "drs" || sum(wd) == 0) add.constraint(lp.ddf, c(rep(1, n)), indices = c((n + 1):(n + n)), "=", 0) for(i in 1:m){ add.constraint(lp.ddf, c(xdata[, i], xdata[, i], g[k, i], 1), indices = c(1:(n + n), n + n + i, n + n + m + s + i), "=", xdata[k, i]) } for(r in 1:s){ if(wd[1, r] == 1){ add.constraint(lp.ddf, c(ydata[, r], g[k, m + r]), indices = c(1:n, n + n + m + r), "=", ydata[k, r]) add.constraint(lp.ddf, c(1), indices = c(n + n + m + s + m + r), "=", 0) }else{ add.constraint(lp.ddf, c(ydata[, r], -g[k, m + r], -1), indices = c(1:n, n + n + m + r, n + n + m + s + m + r), "=", ydata[k, r]) } if(se == 1) add.constraint(lp.ddf, c(ydata[, r], -1), indices = c(1:n, n + n + m + s + m + r), ">=", 0) } if(se == 1) add.constraint(lp.ddf, c(1), indices = c(k), "=", 0) set.bounds(lp.ddf, lower = c(rep(0, n + n + m + s + m + s))) solve.lpExtPtr(lp.ddf) results.efficiency[k] <- -1 * get.objective(lp.ddf) temp.p <- get.variables(lp.ddf) results.lambda[k,] <- temp.p[1: n] results.mu[k,] <- temp.p[(n + 1):(n + n)] results.beta[k,] <- temp.p[(n + n + 1):(n + n + m)] results.gamma[k,] <- temp.p[(n + n + m + 1):(n + n + m + s)] results.xslack[k,] <- temp.p[(n + n + m + s + 1):(n + n + m + s + m)] results.yslack[k,] <- temp.p[(n + n + m + s + m + 1):(n + n + m + s + m + s)] if(exists("sg")){ add.constraint(lp.ddf, c(rep(1, m + s)), indices = c((n + n + 1):(n + n + m + s)), "=", results.efficiency[k]) if(sg == "max") set.objfn(lp.ddf, c(-date[1:n], -date[1:n]), indices = c(1:(n + n))) if(sg == "min") set.objfn(lp.ddf, c(date[1:n], date[1:n]), indices = c(1:(n + n))) if(sg == "ssm") set.objfn(lp.ddf, c(rep(-1, m + s)), indices = c((n + n + m + s + 1):(n + n + m + s + m + s))) solve.lpExtPtr(lp.ddf) temp.s <- get.variables(lp.ddf) results.lambda[k,] <- temp.s[1:n] results.mu[k,] <- temp.s[(n + 1):(n + n)] results.beta[k,] <- temp.s[(n + n + 1):(n + n + m)] results.gamma[k,] <- temp.s[(n + n + m + 1):(n + n + m + s)] results.xslack[k,] <- temp.s[(n + n + m + s + 1):(n + n + m + s + m)] results.yslack[k,] <- temp.s[(n + n + m + s + m + 1):(n + n + m + s + m + s)] } } results <- list(eff = results.efficiency, lambda = results.lambda, mu = results.mu, beta = results.beta, gamma = results.gamma, xslack = results.xslack, yslack = results.yslack) return(results) }
library(data.table) file_path <- "50_Data/mhlw_houdou.csv" news <- fread(input = file_path) news[, id := 1:.N] fwrite(x = news, file = file_path)
library(tidyverse) library(dynbenchmark) dataset_preprocessing("real/fly-blastoderm-atac_cusanovich") txt_location <- download_dataset_source_file( "2to4_files.tar.gz", "http://krishna.gs.washington.edu/content/members/cusanovich/fly_embryogenesis/updated_data/vignette/2to4_files.tar.gz" ) system(paste0("tar -xzf ", txt_location, " -C ", dataset_source_file(""), " --strip-components=1")) cds_2to4 = readRDS(dataset_source_file("2to4_files/cds_2to4_aggregated.rds")) overlapped_sites = read.table(dataset_source_file('./2to4_files/2to4.overlapped_sites.bed')) cell_classification = read.table(dataset_source_file('./2to4_files/2to4.germlayers.txt')) table(cell_classification$V2) DA_monocle_list = lapply(seq(1,7,1), FUN = function(x) { DA_file_name = paste0(dataset_source_file('./2to4_files/2to4.sigopen.cluster'), x, '.txt') DA_file = read.csv(DA_file_name, sep = '\t', header = F) DA_file$GL = x return (DA_file) }) DA_monocle = data.table::rbindlist(DA_monocle_list) colnames(DA_monocle) = c('chr','start', 'end', 'qvalue', 'GL') DA_monocle$coord = paste(DA_monocle$chr, DA_monocle$start, DA_monocle$end, sep = '_') get_top_DA = function(cluster = 1, DA_results=DA_GL, num = 500){ DA_this_cluster = subset(DA_results, GL == cluster) DA_this_cluster = DA_this_cluster[order(DA_this_cluster[,qvalue]),] if (num > nrow(DA_this_cluster)){ return (DA_this_cluster[c(1:nrow(DA_this_cluster)),]$coord) }else {return (DA_this_cluster[c(1:num),]$coord)} } DA_sites_to_order = unlist(lapply(c(1,3,4,5,6), get_top_DA, DA_results = DA_monocle,num=100)) overlapped_DA_sites_to_order = subset(overlapped_sites, V4 %in% DA_sites_to_order)$V8 rownames(cell_classification) = cell_classification$V1 germ_layer_pallet = c('Unknown'=' 'Mesoderm'= ' cell_classification = cell_classification[rownames(pData(cds_2to4)),] cds_2to4$germ_layer_name = cell_classification$V2 fData(cds_2to4)$use_for_ordering = FALSE cds_2to4 = setOrderingFilter(cds_2to4, overlapped_DA_sites_to_order)
MVBinomDist = function(parameter) { if (missing(parameter)) stop("Data model: MVBinomDist distribution: List of parameters must be provided.") if (is.null(parameter[[2]]$par)) stop("Data model: MVBinomDist distribution: Parameter list (prop) must be specified.") if (is.null(parameter[[2]]$par)) stop("Data model: MVBinomDist distribution: Correlation matrix must be specified.") par = parameter[[2]]$par corr = parameter[[2]]$corr m = length(par) if (ncol(corr) != m) stop("Data model: MVBinomDist distribution: The size of the proportion vector is different to the dimension of the correlation matrix.") if (sum(dim(corr) == c(m, m)) != 2) stop("Data model: MVBinomDist distribution: Correlation matrix is not correctly defined.") if (det(corr) <= 0) stop("Data model: MVBinomDist distribution: Correlation matrix must be positive definite.") if (any(corr < -1 | corr > 1)) stop("Data model: MVBinomDist distribution: Correlation values must be comprised between -1 and 1.") call = (parameter[[1]] == "description") if (call == FALSE) { n = parameter[[1]] if (n%%1 != 0) stop("Data model: MVBinomDist distribution: Number of observations must be an integer.") if (n <= 0) stop("Data model: MVBinomDist distribution: Number of observations must be positive.") multnorm = mvtnorm::rmvnorm(n = n, mean = rep(0, m), sigma = corr) mvbinom = matrix(0, n, m) for (i in 1:m) { uniform = stats::pnorm(multnorm[, i]) if (is.null(par[[i]]$prop)) stop("Data model: MVBinomDist distribution: Proportion must be specified.") prop = as.numeric(par[[i]]$prop) if (prop < 0 | prop > 1) stop("Data model: MVBinomDist distribution: proportion in the binomial distribution must be between 0 and 1.") mvbinom[, i] = (uniform <= prop) } result = mvbinom } else { if (call == TRUE) { par.labels = list() for (i in 1:m) { par.labels[[i]] = list(prop = "prop") } result = list(list(par = par.labels, corr = "corr"),list("Multivariate Binomial")) } } return(result) }
select_topics <- function(match_strings, topics, check = FALSE) { n <- nrow(topics) if (length(match_strings) == 0) { return(integer()) } indexes <- purrr::map(match_strings, match_eval, env = match_env(topics)) if (purrr::every(indexes, is_empty)) { if (check) { warn("No topics matched in '_pkgdown.yml'. No topics selected.") } return(integer()) } sel <- switch( all_sign(indexes[[1]], match_strings[[1]]), "+" = integer(), "-" = seq_len(n)[!topics$internal] ) for (i in seq2(1, length(indexes))) { index <- indexes[[i]] if (check && length(index) == 0) { topic_must("match a function or concept", match_strings[[i]]) } sel <- switch(all_sign(index, match_strings[[i]]), "+" = union(sel, index), "-" = setdiff(sel, -index) ) } sel } all_sign <- function(x, text) { if (is.numeric(x)) { if (all(x < 0)) { return("-") } if (all(x > 0)) { return("+") } } stop("Must be all negative or all positive: ", text, call. = FALSE) } match_env <- function(topics) { out <- env(empty_env(), "-" = function(x) -x, "c" = function(...) c(...) ) topic_index <- seq_along(topics$name) topics$alias <- lapply(topics$alias, unique) aliases <- set_names( rep(topic_index, lengths(topics$alias)), unlist(topics$alias) ) env_bind(out, !!!aliases) env_bind(out, !!!set_names(topic_index, topics$name)) any_alias <- function(f, ..., .internal = FALSE) { alias_match <- topics$alias %>% unname() %>% purrr::map(f, ...) %>% purrr::map_lgl(any) name_match <- topics$name %>% purrr::map_lgl(f, ...) which((alias_match | name_match) & is_public(.internal)) } is_public <- function(internal) { if (!internal) !topics$internal else rep(TRUE, nrow(topics)) } out$starts_with <- function(x, internal = FALSE) { any_alias(~ grepl(paste0("^", x), .), .internal = internal) } out$ends_with <- function(x, internal = FALSE) { any_alias(~ grepl(paste0(x, "$"), .), .internal = internal) } out$matches <- function(x, internal = FALSE) { any_alias(~ grepl(x, .), .internal = internal) } out$contains <- function(x, internal = FALSE) { any_alias(~ grepl(x, ., fixed = TRUE), .internal = internal) } out$has_keyword <- function(x) { which(purrr::map_lgl(topics$keywords, ~ any(. %in% x))) } out$has_concept <- function(x, internal = FALSE) { match <- topics$concepts %>% purrr::map(~ str_trim(.) == x) %>% purrr::map_lgl(any) which(match & is_public(internal)) } out$lacks_concepts <- function(x, internal = FALSE) { nomatch <- topics$concepts %>% purrr::map(~ match(str_trim(.), x, nomatch = FALSE)) %>% purrr::map_lgl(~ length(.) == 0L | all(. == 0L)) which(nomatch & is_public(internal)) } out } match_eval <- function(string, env) { if (env_has(env, string)) { val <- env[[string]] if (is.integer(val)) { return(val) } } expr <- tryCatch(parse_expr(string), error = function(e) NULL) if (is.null(expr)) { topic_must("be valid R code", string) return(integer()) } if (is_string(expr) || is_symbol(expr)) { expr <- as.character(expr) val <- env_get(env, expr, default = NULL) if (is.integer(val)) { val } else { topic_must("be a known topic name or alias", string) integer() } } else if (is_call(expr)) { value <- tryCatch(eval(expr, env), error = function(e) NULL) if (is.null(value)) { topic_must("be a known selector function", string) integer() } else { value } } else { topic_must("be a string or function call", string) integer() } } topic_must <- function(message, topic) { warn(c( paste0("In '_pkgdown.yml', topic must ", message), x = paste0("Not ", encodeString(topic, quote = "'")) )) } content_info <- function(content_entry, index, pkg, section) { if (!grepl("::", content_entry, fixed = TRUE)) { topics <- pkg$topics[select_topics(content_entry, pkg$topics),] tibble::tibble( path = topics$file_out, aliases = purrr::map2(topics$funs, topics$name, ~ if (length(.x) > 0) .x else .y), name = topics$name, title = topics$title, icon = find_icons(topics$alias, path(pkg$src_path, "icons")) ) } else { names <- strsplit(content_entry, "::")[[1]] pkg_name <- names[1] topic <- names[2] check_package_presence(pkg_name) rd_href <- find_rd_href(sub("\\(\\)$", "", topic), pkg_name) rd <- get_rd(rd_href, pkg_name) rd_title <- extract_title(rd) rd_aliases <- find_rd_aliases(rd) tibble::tibble( path = rd_href, aliases = rd_aliases, name = content_entry, title = sprintf("%s (from %s)", rd_title, pkg_name), icon = list(content_entry = NULL) ) } } check_package_presence <- function(pkg_name) { rlang::check_installed( pkg = pkg_name, reason = "as it is mentioned in the reference index." ) } get_rd <- function(rd_href, pkg_name) { rd_name <- fs::path_ext_set(fs::path_file(rd_href), "Rd") db <- tools::Rd_db(pkg_name) Rd <- db[[rd_name]] set_classes(Rd) } find_rd_aliases <- function(rd) { funs <- topic_funs(rd) if (length(funs) > 0) { list(funs) } else { extract_tag(rd, "tag_name") } } find_rd_href <- function(topic, pkg_name) { href <- downlit::href_topic(topic, pkg_name) if (is.na(href)) { abort( sprintf( "Could not find an href for topic %s of package %s", topic, pkg_name ) ) } href }
knitr::opts_chunk$set( collapse = TRUE, comment = " ) library(hetu) example_pin <- "111111-111C" hetu(example_pin) knitr::kable(hetu(example_pin)) example_pins <- c("010101-0101", "111111-111C") knitr::kable(hetu(example_pins)) hetu(example_pins, extract = "sex") hetu(example_pins, extract = "checksum") hetu_sex(example_pins) hetu_age(example_pins) hetu_age(example_pins, date = "2012-01-01") hetu_age(example_pins, timespan = "months") hetu_date(example_pins) hetu_ctrl(c("010101-0101", "111111-111C")) hetu_ctrl("010101-1010") example_temp_pin <- "010101A900R" knitr::kable(hetu(example_temp_pin, allow.temp = TRUE)) knitr::kable(hetu(example_temp_pins, allow.temp = TRUE)) hetu_ctrl("010101A900R", allow.temp = TRUE) rhetu(n = 4) rhetu(n = 4, start_date = "1990-01-01", end_date = "2005-01-01") random_sample <- rhetu(n = 4, p.male = 0.8) table(random_sample) temp_sample <- rhetu(n = 4, p.temp = 0.5) table(hetu(temp_sample, allow.temp = TRUE, extract = "is.temp")) bid_sample <- rbid(3) bid_sample bid_ctrl(c("0737546-2", "1572860-0")) bid_ctrl("0737546-1") citation("hetu") sessionInfo()
SamplerHierarchical = R6Class("SamplerHierarchical", inherit = Sampler, public = list( samplers = NULL, initialize = function(param_set, samplers) { assert_param_set(param_set, no_untyped = TRUE) assert_list(samplers, types = "Sampler1D") ids1 = param_set$ids() ids2 = map_chr(samplers, function(s) s$param$id) if (!setequal(ids1, ids2)) { stop("IDs of params in samplers to not correspond to IDs of params in set!") } super$initialize(param_set) self$samplers = samplers } ), private = list( .sample = function(n) map_dtc(self$samplers, function(s) s$sample(n)$data) ) )
library(alakazam) library(shazam) library(dplyr) library(ggplot2) data(ExampleDb, package="alakazam") db <- subset(ExampleDb, c_call %in% c("IGHA", "IGHG") & sample_id == "+7d") db_obs <- observedMutations(db, sequenceColumn="sequence_alignment", germlineColumn="germline_alignment_d_mask", regionDefinition=NULL, frequency=FALSE, nproc=1) db_obs %>% select(sequence_id, starts_with("mu_count_")) %>% head(n=4) db_obs <- observedMutations(db_obs, sequenceColumn="sequence_alignment", germlineColumn="germline_alignment_d_mask", regionDefinition=NULL, frequency=TRUE, nproc=1) db_obs %>% select(sequence_id, starts_with("mu_freq_")) %>% head(n=4) db_obs <- observedMutations(db, sequenceColumn="sequence_alignment", germlineColumn="germline_alignment_d_mask", regionDefinition=NULL, frequency=TRUE, combine=TRUE, nproc=1) db_obs %>% select(sequence_id, starts_with("mu_freq_")) %>% head(n=4) g1 <- ggplot(db_obs, aes(x=c_call, y=mu_freq, fill=c_call)) + theme_bw() + ggtitle("Total mutations") + xlab("Isotype") + ylab("Mutation frequency") + scale_fill_manual(name="Isotype", values=IG_COLORS) + geom_boxplot() plot(g1) db_obs_v <- observedMutations(db, sequenceColumn="sequence_alignment", germlineColumn="germline_alignment_d_mask", regionDefinition=IMGT_V_BY_REGIONS, frequency=FALSE, nproc=1) db_obs_v %>% select(sequence_id, starts_with("mu_count_fwr")) %>% head(n=4) db_obs_v <- observedMutations(db_obs_v, sequenceColumn="sequence_alignment", germlineColumn="germline_alignment_d_mask", regionDefinition=IMGT_V, frequency=TRUE, nproc=1) db_obs_v %>% select(sequence_id, starts_with("mu_freq_")) %>% head(n=4) g2 <- ggplot(db_obs_v, aes(x=c_call, y=mu_freq_cdr_s, fill=c_call)) + theme_bw() + ggtitle("CDR silent mutations") + xlab("Isotype") + ylab("Mutation frequency") + scale_fill_manual(name="Isotype", values=IG_COLORS) + geom_boxplot() g3 <- ggplot(db_obs_v, aes(x=c_call, y=mu_freq_cdr_r, fill=c_call)) + theme_bw() + ggtitle("CDR replacement mutations") + xlab("Isotype") + ylab("Mutation frequency") + scale_fill_manual(name="Isotype", values=IG_COLORS) + geom_boxplot() alakazam::gridPlot(g2, g3, ncol=2) db_obs_ch <- observedMutations(db, sequenceColumn="sequence_alignment", germlineColumn="germline_alignment_d_mask", regionDefinition=NULL, mutationDefinition=CHARGE_MUTATIONS, frequency=TRUE, nproc=1) db_obs_ch %>% select(sequence_id, starts_with("mu_freq_")) %>% head(n=4) g4 <- ggplot(db_obs_ch, aes(x=c_call, y=mu_freq_seq_r, fill=c_call)) + theme_bw() + ggtitle("Charge replacement mutations") + xlab("Isotype") + ylab("Mutation frequency") + scale_fill_manual(name="Isotype", values=IG_COLORS) + geom_boxplot() plot(g4)
CalcConPwrNonMix <- function(theta.0, d1, o1.stroke, O1.stroke.star, c1.hat, d2, o2.stroke, O2.stroke.star, O2.stroke.star.null, n.star, alpha) { min <- exp(min(log(theta.0), - log(theta.0)) - 1) max <- exp(max(log(theta.0), - log(theta.0)) + 1) if ((max - min) / 0.01 <= 1000) { theta <- seq(from = min, to = max, by = 0.01) } else { theta <- seq(from = min, to = max, length.out = 1000) } mu.theta.null <- (log((d2 - log(c1.hat) * O2.stroke.star.null) / (o2.stroke + O2.stroke.star.null)) - log((d1 - log(c1.hat) * O1.stroke.star) / (o1.stroke + O1.stroke.star))) sigma.theta.null <- (sqrt(1 / (n.star * (1 - exp(- (d1 - log(c1.hat) * O1.stroke.star) / (o1.stroke + O1.stroke.star)) * (1 + ((d1 - log(c1.hat) * O1.stroke.star) / (o1.stroke + O1.stroke.star))^2))) + 1 / (n.star * (1 - exp(- (d2 - log(c1.hat) * O2.stroke.star.null) / (o2.stroke + O2.stroke.star.null)) * (1 + ((d2 - log(c1.hat) * O2.stroke.star.null) / (o2.stroke + O2.stroke.star.null))^2))))) mu.theta.alter <- (log((d2 - theta * log(c1.hat) * O2.stroke.star) / (o2.stroke + O2.stroke.star)) - log((d1 - log(c1.hat) * O1.stroke.star) / (o1.stroke + O1.stroke.star))) sigma.theta.alter <- (sqrt(1 / (n.star * (1 - exp(- (d1 - log(c1.hat) * O1.stroke.star) / (o1.stroke + O1.stroke.star)) * (1 + ((d1 - log(c1.hat) * O1.stroke.star) / (o1.stroke + O1.stroke.star))^2))) + 1 / (n.star * (1 - exp(- (d2 - theta * log(c1.hat) * O2.stroke.star) / (o2.stroke + O2.stroke.star)) * (1 + ((d2 - theta * log(c1.hat) * O2.stroke.star) / (o2.stroke + O2.stroke.star))^2))))) gamma.theta <- (stats::pnorm((stats::qnorm(alpha / 2) * sigma.theta.null + mu.theta.null - mu.theta.alter) / sigma.theta.alter) + 1 - stats::pnorm((stats::qnorm(1 - alpha / 2) * sigma.theta.null + mu.theta.null - mu.theta.alter) / sigma.theta.alter)) mu.theta.0 <- (log((d2 - theta.0 * log(c1.hat) * O2.stroke.star) / (o2.stroke + O2.stroke.star)) - log((d1 - log(c1.hat) * O1.stroke.star) / (o1.stroke + O1.stroke.star))) sigma.theta.0 <- (sqrt(1 / (n.star * (1 - exp(- (d1 - log(c1.hat) * O1.stroke.star) / (o1.stroke + O1.stroke.star)) * (1 + ((d1 - log(c1.hat) * O1.stroke.star) / (o1.stroke + O1.stroke.star))^2))) + 1 / (n.star * (1 - exp(- (d2 - theta.0 * log(c1.hat) * O2.stroke.star) / (o2.stroke + O2.stroke.star)) * (1 + ((d2 - theta.0 * log(c1.hat) * O2.stroke.star) / (o2.stroke + O2.stroke.star))^2))))) gamma.theta.0 <- (stats::pnorm((stats::qnorm(alpha / 2) * sigma.theta.null + mu.theta.null - mu.theta.0) / sigma.theta.0) + 1 - stats::pnorm((stats::qnorm(1 - alpha / 2) * sigma.theta.null + mu.theta.null - mu.theta.0) / sigma.theta.0)) return(list(theta, gamma.theta, gamma.theta.0)) }
'focal_min' <- function(x,size=3,cover=1e-6,fillNA=FALSE,saveMargin=TRUE ,verbose=0L) { focal_extrem(x=x,kind="min",size=size,cover=cover,fillNA=fillNA ,saveMargin=saveMargin,verbose=verbose) } 'focal_max' <- function(x,size=3,cover=1e-6,fillNA=FALSE,saveMargin=TRUE ,verbose=0L) { focal_extrem(x=x,kind="max",size=size,cover=cover,fillNA=fillNA ,saveMargin=saveMargin,verbose=verbose) } 'focal_extrem' <- function(x,kind=c("min","max"),size=3,cover=1e-6 ,fillNA=FALSE,saveMargin=TRUE,verbose=0L) { kind <- match.arg(kind) fun <- 'focalExtrem' if (!is.ursa(x)) return(NULL) sparse <- attr(x$value,"sparse") if ((!is.null(sparse))&&(any(na.omit(sparse)!=0))) stop("TODO: expand compression") if (!is.na(x$con$posZ[1])) nb <- length(x$con$posZ) else nb <- x$dim[2] if (!is.na(x$con$posR[1])) nr <- length(x$con$posR) else nr <- x$grid$rows if (!is.na(x$con$posC[1])) nc <- length(x$con$posC) else nc <- x$grid$columns dimy <- c(nc,nr,nb) dim(x$value) <- dimy x$value <- as.numeric(x$value) if (verbose>2) .elapsedTime(paste0("start:nodata:",fun)) nodata <- x$con$nodata if (is.na(nodata)) nodata <- max(x$value,na.rm=TRUE)+1 x$value[is.na(x$value)] <- nodata if (verbose>2) .elapsedTime(paste0("finish:nodata:",fun)) if (verbose>1) print(summary(x$value)) if (verbose) .elapsedTime(paste0("start:",fun)) x$value <- .Cursa("focalExtrem",x=x$value ,kind=switch(kind,min=-1L,max=1L) ,nodata=as.numeric(nodata) ,dim=as.integer(dimy) ,size=as.integer(size) ,cover=as.numeric(cover) ,fillNA=as.integer(fillNA) ,saveMargin=as.integer(saveMargin) ,verbose=as.integer(verbose) ,res=numeric(prod(dimy)),NAOK=FALSE)$res if (verbose) .elapsedTime(paste0("finish:",fun)) if (verbose>1) print(summary(x$value)) if (verbose>2) .elapsedTime(paste0("start:nodata:",fun)) if (abs(nodata)<1) x$value[abs(x$value-nodata)<1e-27] <- NA else x$value[abs(x$value/nodata-1)<1e-6] <- NA if (verbose>2) .elapsedTime(paste0("finish:nodata:",fun)) dim(x$value) <- c(dimy[1]*dimy[2],dimy[3]) class(x$value) <- "ursaNumeric" x }
library("mlt") library("survival") library("flexsurv") chk <- function(x, y, ...) { ret <- all.equal(x, y, ...) if (isTRUE(ret)) return(ret) print(ret) return(TRUE) } tol <- .001 fit1 <- coxph(Surv(time, status) ~ karno + age + trt, veteran) fit2 <- survreg(Surv(time, status) ~ karno + age + trt, veteran, dist = "exponential") fit3 <- flexsurvreg(Surv(time, status) ~ karno + age + trt, data= veteran, dist = "exponential") veteran$ytime <- with(veteran, Surv(time, status)) dy <- numeric_var("ytime", support = c(0.1, 1000)) by <- log_basis(dy, ui = "increasing") m <- mlt(ctm(by, shift = ~ karno + age + trt, data = veteran, todistr = "MinExtr"), data = veteran, fixed = c("log(ytime)" = 1)) stopifnot(chk(fit3$logliki, m$logliki(coef(m)[-2], weights(m)), tol = tol, check.attributes = FALSE)) stopifnot(chk(logLik(fit2), logLik(m), tol = tol)) stopifnot(chk(logLik(fit3), logLik(m), tol = tol, check.attributes = FALSE)) fit2 <- survreg(Surv(time, status) ~ karno + age + trt, veteran, dist = "weibull") fit3 <- flexsurvreg(Surv(time, status) ~ karno + age + trt, data= veteran, dist = "weibull") veteran$ytime <- with(veteran, Surv(time, status)) dy <- numeric_var("ytime", support = c(0.1, 1000)) by <- log_basis(dy, ui = "increasing") m <- mlt(ctm(by, shift = ~ karno + age + trt, data = veteran, todistr = "MinExtr"), data = veteran) stopifnot(chk(fit3$logliki, m$logliki(coef(m), weights(m)), tol = tol, check.attributes = FALSE)) stopifnot(chk(logLik(fit2), logLik(m), tol = tol)) stopifnot(chk(logLik(fit3), logLik(m), tol = tol, check.attributes = FALSE)) vet2 <- survSplit(Surv(time, status) ~., veteran, cut=c(60, 120), episode ="timegroup") vet2$timegroup <- factor(vet2$timegroup) vet2$ytime <- with(vet2, Surv(tstart, time, status)) suppressWarnings(fit3 <- flexsurvreg(Surv(tstart, time, status) ~ karno + karno:timegroup + age + trt, data= vet2, dist = "exponential")) m <- mlt(ctm(by, shift = ~ karno + karno:timegroup + age + trt, data = vet2, todistr = "MinExtr"), data = vet2, fixed = c("log(ytime)" = 1)) stopifnot(chk(fit3$logliki, m$logliki(coef(m)[-2], weights(m)), tol = tol, check.attributes = FALSE)) stopifnot(chk(logLik(fit3), logLik(m), tol = tol, check.attributes = FALSE)) fit3 <- flexsurvreg(Surv(tstart, time, status) ~ karno + karno:timegroup + age + trt, data= vet2, dist = "weibull") m <- mlt(ctm(by, shift = ~ karno + karno:timegroup + age + trt, data = vet2, todistr = "MinExtr"), data = vet2, scale = TRUE) stopifnot(chk(fit3$logliki, m$logliki(coef(m), weights(m)), tol = tol, check.attributes = FALSE)) stopifnot(chk(logLik(fit3), logLik(m), tol = tol, check.attributes = FALSE)) fit1 <- coxph(Surv(tstart, time, status) ~ karno + karno:strata(timegroup) + age + trt, data= vet2) btg <- as.basis(vet2$timegroup) by <- Bernstein_basis(dy, order = 3, ui = "increasing") m <- mlt(ctm(by, interacting = btg, shift = ~ karno + karno:timegroup + age + trt, data = vet2, todistr = "MinExtr"), data = vet2, scale = TRUE) max(abs(coef(fit1) - coef(m)[-(1:12)])) < 1e-1 max(abs(diag(vcov(m))[-(1:12)] - diag(vcov(fit1)))) < 1e-2
library(psych) library(car) library(lsr) setwd("c:/Users/Dima/Documents/R/coursera") AB <- read.table("stats1_datafiles_Stats1.13.Lab.09.txt", header = T) edit(AB) leveneTest(AB$errors ~ AB$driving * AB$conversation) AB.model <- aov(AB$errors ~ AB$driving * AB$conversation) summary(AB.model) AB1 <- subset(AB, AB$driving == "Easy") AB2 <- subset(AB, AB$driving == "Difficult") aov.AB1 <- aov(AB1$errors ~ AB1$conversation) summary(aov.AB1) aov.AB2 <- aov(AB2$errors ~ AB2$conversation) summary(aov.AB2) etaSquared(aov.AB1, anova = T) etaSquared(aov.AB2, anova = T) TukeyHSD(aov.AB1) TukeyHSD(aov.AB2)
ic.varianza <- function(x, variable = NULL, introducir = FALSE, media_poblacion = c("desconocida","conocida"), confianza = 0.95, grafico = FALSE){ media_poblacion <- tolower(media_poblacion) media_poblacion <- match.arg(media_poblacion) if(confianza >= 0 & confianza <=1){ confianza <- confianza alfa_2 <- (1-confianza)/2 } else{ stop("El nivel de confianza debe fijarse entre 0 y 1") } if(isFALSE(introducir)) { x <- data.frame(x) varnames <- names(x) if(is.null(variable)){ if(length(x) == 1){ x <- x } else{ warning("Para calcular el intervalo de confianza hay que seleccionar una variable") stop("El conjunto de datos seleccionado tiene mas de 1 variable.") } } else if(length(variable) == 1){ if(is.numeric(variable)){ if(variable <= length(x)){ variable <- variable } else{ stop("Selecci\u00f3n err\u00f3nea de variable") } } if(is.character(variable)){ if(all(variable %in% varnames)){ variable = match(variable,varnames) } else { stop("El nombre de la variable no es v\u00e1lido") } } x <- x[,variable] %>% as.data.frame() names(x) <- varnames[variable] } else{ warning("Para calcular el intervalo de confianza hay que seleccionar una variable") stop("El conjunto de datos seleccionado tiene mas de 1 variable.") } x <- na.omit(x) clase <- sapply(x, class) if (!clase %in% c("numeric","integer")) { stop("No puede calcularse el intervalo de confianza porque la variable seleccionada no es cuantitativa") } n <- nrow(x) gl <- n-1 if(media_poblacion == "desconocida"){ varianza_muestral <- as.numeric(readline('Selecciona el valor que quieres utilizar: \n 1. "Varianza muestral" \n 2. "Cuasivarianza muestral" \n')) if(varianza_muestral == 1){ var_mu <- as.numeric(varianza(x)) } else{ var_mu <- as.numeric(varianza(x, tipo = "cuasi")) n <- n-1 print("Este es el intervalo de confianza que generalmente calculan los softwares (SPSS, Excel, Stata, ...)") } } else{ print("La media poblacional no suele conocerse, este supuesto es te\u00f3rico") media <- readline(prompt = "Introducir el valor de la media poblacional: ") media <- as.numeric(media) sumatorio <- sum((x - media)^2) } } else{ n <- readline(prompt = "Introducir el tama\u00f1o de la muestra: ") n <- as.numeric(n) gl <- n-1 if(media_poblacion == "desconocida"){ varianza_muestral <- as.numeric(readline('Selecciona el valor que quieres utilizar: \n 1. "Varianza muestral" \n 2. "Cuasivarianza muestral" \n')) if(varianza_muestral == 1){ var_mu <- readline("Introduce el valor de la varianza muestral: ") var_mu <- as.numeric(var_mu) n <- n } else{ var_mu <- readline("Introduce el valor de la cuasivarianza muestral: ") var_mu <- as.numeric(var_mu) n <- n-1 print("Este es el intervalo de confianza que generalmente calculan los softwares (SPSS, Stata, Excel,...)") } } else{ print("La media poblacional no suele conocerse, este supuesto es te\u00f3rico") media <- readline(prompt = "Introducir el valor de la media poblacional: ") media <- as.numeric(media) sumatorio <- readline(prompt = "Introducir el valor de la suma cuadratica de las desviaciones de los valores muestrales respecto a la media poblacional: ") sumatorio <- as.numeric(sumatorio) } } if(media_poblacion == "desconocida"){ print("Intervalo de confianza para la varianza poblacional, supuesta desconocida la media poblacional.") valor_critico1 <- qchisq(alfa_2,lower.tail = F, df= gl) valor_critico2 <- qchisq(1-alfa_2, lower.tail = F, df= gl) limite_inferior <- (n * var_mu) / valor_critico1 limite_superior <- (n * var_mu) / valor_critico2 } else{ print("Intervalo de confianza para la varianza poblacional, supuesta conocida la media poblacional. n peque\u00f1a") gl <- gl +1 valor_critico1 <- qchisq(alfa_2,lower.tail = F, df= gl) valor_critico2 <- qchisq(1-alfa_2, lower.tail = F, df= gl) limite_inferior <- sumatorio / valor_critico1 limite_superior <- sumatorio / valor_critico2 } if(grafico){ percentil99 <- qchisq(.9999, gl) df <- data.frame(x=seq(from = 0, to = percentil99, percentil99/200)) df$y <-dchisq(df$x, gl) plot1 <- ggplot(df) + geom_path(aes(x,y))+ geom_area(stat = "function", fun = dchisq, args = list(df = gl), fill = "darkgreen", xlim = c(valor_critico2, valor_critico1)) + geom_area(stat = "function", fun = dchisq, args = list(df = gl), fill = "grey", xlim = c(0, valor_critico2)) + geom_area(stat = "function", fun = dchisq, args = list(df = gl), fill = "grey", xlim = c(valor_critico1, percentil99)) + geom_vline(xintercept = 0, color = "black") + labs(title = paste("Distribuci\u00f3n chi con ", gl, " grados de libertad",sep=""), x = "", y = "") + scale_y_continuous(breaks = NULL) + scale_x_continuous(breaks = c(0L,round(valor_critico2,4),round(valor_critico1,4))) + theme(axis.text.x = element_text(angle = 45))+ geom_point(aes(x= valor_critico2 , y=0), color = "orange4", size = 3) + geom_point(aes(x= valor_critico1 , y=0), color = "lightblue4", size = 3) intervalo <- data.frame(ic = round(c(inferior=limite_inferior,superior=limite_superior),4),y=c(0,0)) plot2 <- ggplot(intervalo,aes(x= ic,y)) + geom_line(aes(group = y), color = "grey",size = 3)+ geom_point(aes(color=ic), size=3,show.legend = FALSE) + geom_text(aes(label = ic), size = 2.5, vjust=2) + scale_y_continuous(expand=c(0,0)) + scale_color_gradientn(colours=c("red","blue"))+ labs(y="",x="Intervalo de confianza") + tema_blanco plot <- grid::grid.draw(rbind(ggplotGrob(plot1), ggplotGrob(plot2), size = "last")) } IC <- cbind(limite_inferior,limite_superior) IC <- as.data.frame(IC) row.names(IC) <- NULL if(grafico){ return(list(IC,plot)) } else{ return(IC) } }
print.UComp = function(x, ...){ x = UCvalidate(x, TRUE) } summary.UComp = function(object, ...){ print(object) } plot.UComp = function(x, ...){ if (length(x$comp) < 2){ x = UCcomponents(x) } if (is.ts(x$comp)){ plot(x$comp, main = "Time Series Decomposition") } else { plot(ts(x$comp, frequency = x$periods[1]), main = "Time Series Decomposition") } } fitted.UComp = function(object, ...){ if (length(object$yFit) < 2){ object = UCsmooth(object) } return(object$yFit) } residuals.UComp = function(object, ...){ if (length(object$yFit) < 2){ object = UCfilter(object) } return(object$v) } logLik.UComp = function(object, ...){ out = object$criteria[1] class(out) = "logLik" attr(out, "df") = length(object$p) - 1 attr(out, "nobs") = length(object$y) return(out) } AIC.UComp = function(object, ..., k = 2){ return(object$criteria[2]) } BIC.UComp = function(object, ...){ return(object$criteria[3]) } coef.UComp = function(object, ...){ if (length(object$table) < 2){ object = UCvalidate(object, FALSE) } return(object$p) } predict.UComp = function(object, newdata = NULL, n.ahead = NULL, level = 0.95, ...){ cnst = qt(level + (1 - level) / 2, length(object$y) - length(object$p)) if (!is.null(newdata)){ object$y = newdata } if (!is.null(n.ahead) && length(size(n.ahead)) == 1){ object$h = n.ahead } if (!is.null(n.ahead) && length(size(n.ahead)) > 1){ object$u = n.ahead } m = UCfilter(object) pred = as.numeric(tail(m$yFit, m$h)) predS = as.numeric(sqrt(tail(m$yFitV, m$h))) out = cbind(pred, pred - cnst * predS, pred + cnst * predS) if (is.ts(object$y)){ aux = ts(matrix(0, length(object$y) + 1), start = start(object$y), frequency = frequency(object$y)) stDate = end(aux) freq = frequency(object$y) out = ts(out, start = stDate, frequency = freq) } colnames(out) = c("frcst", "lower", "upper") return(out) } tsdiag.UComp = function(object, gof.lag = NULL, ...){ if (length(object$v) < 2){ object = UCfilter(object) } nu = dim(object$u)[1] if (dim(object$u)[2] == 2){ nu = 0 } nPar = length(object$p) - 1 + nu aux = list(residuals = object$v, sigma2 = 1, nobs = length(object$y) - nPar, coef = object$p, x = object$y, fitted = object$yFit) if (is.null(gof.lag)){ tsdiag(structure(aux, class = "Arima")) } else { tsdiag(structure(aux, class = "Arima"), gof.lag) } } getp0 = function(y, model = "llt/equal/arma(0,0)", periods = NA){ if (any(utf8ToInt(model) == utf8ToInt("?"))){ stop("UComp ERROR: Model should not contain any \'?\'!!!") } sys = UCsetup(y, model = model, periods = periods, verbose = FALSE) sys = UCestim(sys) p0 = as.vector(sys$p0) p1 = coef(sys) names(p0) = names(p1) return(p0) } size = function(y){ out = dim(y) if (is.null(out)) out = length(y) return(out) }
aur<-function (formula, k, data = NULL, na.action, ...) { k <- as.matrix(k) k1 <- k[1L] aures <- function(formula, k1, data = NULL, na.action, ...) { cal <- match.call(expand.dots = FALSE) mat <- match(c("formula", "data", "na.action"), names(cal)) cal <- cal[c(1L, mat)] cal[[1L]] <- as.name("model.frame") cal <- eval(cal) y <- model.response(cal) md <- attr(cal, "terms") x <- model.matrix(md, cal, contrasts) s <- t(x) %*% x xin <- solve(s) bb <- xin %*% t(x) %*% y I <- diag(NCOL(x)) tk <- solve(s + k1 * I) %*% s bar <- (I - k1^2 * solve(s + k1 * I) %*% solve(s + k1 * I)) %*% bb colnames(bar) <- c("Estimate") ev <- (t(y) %*% y - t(bb) %*% t(x) %*% y)/(NROW(x) - NCOL(x)) ev <- diag(ev) dbb <- ev * (I + k1 * solve(s + k1 * I)) %*% tk %*% xin %*% tk %*% (I + k1 * solve(s + k1 * I)) bibet <- -k1^2 * solve(s + k1 * I) %*% solve(s + k1 * I) %*% bb bibets <- bibet %*% t(bibet) mse <- dbb + bibets mse1 <- sum(diag(mse)) mse1 <- round(mse1, digits <- 4L) names(mse1) <- c("MSE") Standard_error <- sqrt(diag(abs(dbb))) dbt <- t(bar) sdbd_inv <- (sqrt(diag(abs(dbb))))^-1 sdbd_inv_mat <- diag(sdbd_inv) if (NCOL(dbt) == 1L) tbb <- dbt * sdbd_inv else tbb <- dbt %*% sdbd_inv_mat hggh <- t(tbb) tst <- t(2L * pt(-abs(tbb), df <- (NROW(x) - NCOL(x)))) colnames(tst) <- c("p_value") colnames(hggh) <- c("t_statistic") ans1 <- cbind(bar, Standard_error, hggh, tst) ans <- round(ans1, digits = 4L) adw <- list(`*****Almost Unbiased Ridge Estimator******` = ans, `*****Mean square error value*****` = mse1) return(adw) } npt <- aures(formula, k1, data, na.action) plotaur <- function(formula, k, data = NULL, na.action, ...) { j <- 0 arr <- 0 for (j in 1:nrow(k)) { aurm <- function(formula, k, data, na.action, ...) { cal <- match.call(expand.dots = FALSE) mat <- match(c("formula", "data", "na.action"), names(cal)) cal <- cal[c(1L, mat)] cal[[1L]] <- as.name("model.frame") cal <- eval(cal) y <- model.response(cal) md <- attr(cal, "terms") x <- model.matrix(md, cal, contrasts) s <- t(x) %*% x xin <- solve(s) bb <- xin %*% t(x) %*% y I <- diag(NCOL(x)) tk <- solve(s + k * I) %*% s bar <- (I - k^2 * solve(s + k * I) %*% solve(s + k * I)) %*% bb ev <- (t(y) %*% y - t(bb) %*% t(x) %*% y)/(NROW(x) - NCOL(x)) ev <- diag(ev) dbb <- ev * (I + k * solve(s + k * I)) %*% tk %*% xin %*% tk %*% (I + k * solve(s + k * I)) bibet <- -k^2 * solve(s + k * I) %*% solve(s + k * I) %*% bb bibets <- bibet %*% t(bibet) mse <- dbb + bibets mse1 <- sum(diag(mse)) return(mse1) } arr[j] <- aurm(formula, k[j], data, na.action) } MSE <- arr parameter <- k pvl <- cbind(parameter, MSE) colnames(pvl) <- c("Parameter", "MSE") sval <- pvl return(sval) } paur <- plotaur(formula, k, data, na.action) if (nrow(k) > 1L) val <- paur else val <- npt val }
rotpole_nc_point_to_dt <- function(filename, variable, point_lon, point_lat, interpolate_to_standard_calendar = FALSE, verbose = FALSE, add_grid_coord = FALSE){ ncobj <- nc_open(filename, readunlim = FALSE) if(verbose) cat("Succesfully opened file:", filename, "\n") grid_lon <- ncvar_get(ncobj, "lon") grid_lat <- ncvar_get(ncobj, "lat") grid_squared_dist <- (grid_lat - point_lat)^2 + (grid_lon - point_lon)^2 cell_xy <- arrayInd(which.min(grid_squared_dist), dim(grid_squared_dist)) if(verbose){ cat("Point longitude = ", point_lon, " cat("Point latitude = ", point_lat, " cat("Euclidean distance in degrees = ", sqrt(grid_squared_dist[cell_xy]), "\n") } values <- as.vector(nc.get.var.subset.by.axes(ncobj, variable, list(X = cell_xy[1], Y = cell_xy[2]))) times <- nc.get.time.series(ncobj, variable) if(all(is.na(times))){ if(verbose) cat("No time information found in nc file.\n") dates <- NA } else if(! attr(times, "cal") %in% c("gregorian", "proleptic_gregorian")){ if(verbose) cat("Non-standard calendar found:", attr(times, "cal"), "\n") if(interpolate_to_standard_calendar){ if(verbose) cat("Interpolating to standard calendar.\n") dtx <- map_non_standard_calendar(times) dates <- dtx$dates_full values <- values[dtx$idx_pcict] } else { dates <- as.character(trunc(times, "day")) } } else { times %>% PCICt::as.POSIXct.PCICt() %>% as.Date -> dates } nc_close(ncobj) dat <- data.table(date = dates, value = values) setnames(dat, "value", variable) if(add_grid_coord){ dat[, ":="(grid_lon = grid_lon[cell_xy], grid_lat = grid_lat[cell_xy])] } return(dat) }
frobenius.norm <- function(x){ return(entrywise.norm(x, 2)) } entrywise.norm <- function(x, p) { if (!is.numeric(x)) { stop("argument x is not numeric") } if (is.matrix(x)) { Xmat <- x } else { if (is.vector(x)) { Xmat <- matrix(x, nrow = length(x), ncol = 1) } else { stop("argument x is neither vector nor matrix") } } if (p == 0) { stop("exponent p is zero") } if (is.infinite(p)) { return(maximum.norm(x)) } return((sum(abs(Xmat)^p))^(1/p)) } maximum.norm <- function (x) { if (!is.numeric(x)) { stop("argument x is not numeric") } if (is.matrix(x)) { Xmat <- x } else { if (is.vector(x)) { X.mat <- x } else { stop("argument is neither a matrix nor a vector") } } norm <- max(abs(Xmat)) return(norm) } frobenius.prod <- function (x, y){ return(sum(hadamard.prod(x, y))) } hadamard.prod <- function (x, y) { if (!is.numeric(x)) { stop("argument x is not numeric") } if (!is.numeric(y)) { stop("argument y is not numeric") } if (is.matrix(x)) { Xmat <- x } else { if (is.vector(x)) { Xmat <- matrix(x, nrow = length(x), ncol = 1) } else { stop("argument x is neither a matrix or a vector") } } if (is.matrix(y)) { Ymat <- y } else { if (is.vector(y)) { Ymat <- matrix(y, nrow = length(x), ncol = 1) } else { stop("argument x is neither a matrix or a vector") } } if (nrow(Xmat) != nrow(Ymat)) stop("argumentx x and y do not have the same row order") if (ncol(Xmat) != ncol(Ymat)) stop("arguments x and y do not have the same column order") return(Xmat * Ymat) }
plotDispEsts.DESeqDataSet <- function( object, ymin, CV=FALSE, genecol = "black", fitcol = "red", finalcol = "dodgerblue", legend=TRUE, xlab, ylab, log = "xy", cex = 0.45, ... ) { if (missing(xlab)) xlab <- "mean of normalized counts" if (missing(ylab)) { if (CV) { ylab <- "coefficient of variation" } else { ylab <- "dispersion" } } px = mcols(object)$baseMean sel = (px>0) px = px[sel] f <- if (CV) sqrt else I py = f(mcols(object)$dispGeneEst[sel]) if(missing(ymin)) ymin = 10^floor(log10(min(py[py>0], na.rm=TRUE))-0.1) plot(px, pmax(py, ymin), xlab=xlab, ylab=ylab, log=log, pch=ifelse(py<ymin, 6, 20), col=genecol, cex=cex, ... ) pchOutlier <- ifelse(mcols(object)$dispOutlier[sel],1,16) cexOutlier <- ifelse(mcols(object)$dispOutlier[sel],2*cex,cex) lwdOutlier <- ifelse(mcols(object)$dispOutlier[sel],2,1) if (!is.null(dispersions(object))) { points(px, f(dispersions(object)[sel]), col=finalcol, cex=cexOutlier, pch=pchOutlier, lwd=lwdOutlier) } if (!is.null(mcols(object)$dispFit)) { points(px, f(mcols(object)$dispFit[sel]), col=fitcol, cex=cex, pch=16) } if (legend) { legend("bottomright",c("gene-est","fitted","final"),pch=16, col=c(genecol,fitcol,finalcol),bg="white") } } setMethod("plotDispEsts", signature(object="DESeqDataSet"), plotDispEsts.DESeqDataSet) plotMA.DESeqDataSet <- function(object, alpha=.1, main="", xlab="mean of normalized counts", ylim, colNonSig="gray60", colSig="blue", colLine="grey40", returnData=FALSE, MLE=FALSE, ...) { res <- results(object, ...) plotMA.DESeqResults(res, alpha=alpha, main=main, xlab=xlab, ylim=ylim, MLE=MLE) } plotMA.DESeqResults <- function(object, alpha, main="", xlab="mean of normalized counts", ylim, colNonSig="gray60", colSig="blue", colLine="grey40", returnData=FALSE, MLE=FALSE, ...) { sval <- "svalue" %in% names(object) if (sval) { test.col <- "svalue" } else { test.col <- "padj" } if (MLE) { if (is.null(object$lfcMLE)) { stop("lfcMLE column is not present: you should first run results() with addMLE=TRUE") } lfc.col <- "lfcMLE" } else { lfc.col <- "log2FoldChange" } if (missing(alpha)) { if (sval) { alpha <- 0.005 message("thresholding s-values on alpha=0.005 to color points") } else { if (is.null(metadata(object)$alpha)) { alpha <- 0.1 } else { alpha <- metadata(object)$alpha } } } isDE <- ifelse(is.na(object[[test.col]]), FALSE, object[[test.col]] < alpha) df <- data.frame(mean = object[["baseMean"]], lfc = object[[lfc.col]], isDE = isDE) if (returnData) { return(df) } if (missing(ylim)) { plotMA(df, colNonSig=colNonSig, colSig=colSig, colLine=colLine, xlab=xlab, main=main, ...) } else { plotMA(df, ylim=ylim, colNonSig=colNonSig, colSig=colSig, colLine=colLine, xlab=xlab, main=main, ...) } } setMethod("plotMA", signature(object="DESeqDataSet"), plotMA.DESeqDataSet) setMethod("plotMA", signature(object="DESeqResults"), plotMA.DESeqResults) plotPCA.DESeqTransform = function(object, intgroup="condition", ntop=500, returnData=FALSE) { rv <- rowVars(assay(object)) select <- order(rv, decreasing=TRUE)[seq_len(min(ntop, length(rv)))] pca <- prcomp(t(assay(object)[select,])) percentVar <- pca$sdev^2 / sum( pca$sdev^2 ) if (!all(intgroup %in% names(colData(object)))) { stop("the argument 'intgroup' should specify columns of colData(dds)") } intgroup.df <- as.data.frame(colData(object)[, intgroup, drop=FALSE]) group <- if (length(intgroup) > 1) { factor(apply( intgroup.df, 1, paste, collapse=":")) } else { colData(object)[[intgroup]] } d <- data.frame(PC1=pca$x[,1], PC2=pca$x[,2], group=group, intgroup.df, name=colnames(object)) if (returnData) { attr(d, "percentVar") <- percentVar[1:2] return(d) } ggplot(data=d, aes_string(x="PC1", y="PC2", color="group")) + geom_point(size=3) + xlab(paste0("PC1: ",round(percentVar[1] * 100),"% variance")) + ylab(paste0("PC2: ",round(percentVar[2] * 100),"% variance")) + coord_fixed() } setMethod("plotPCA", signature(object="DESeqTransform"), plotPCA.DESeqTransform) plotCounts <- function(dds, gene, intgroup="condition", normalized=TRUE, transform=TRUE, main, xlab="group", returnData=FALSE, replaced=FALSE, pc, ...) { stopifnot(length(gene) == 1 & (is.character(gene) | (is.numeric(gene) & (gene >= 1 & gene <= nrow(dds))))) if (!all(intgroup %in% names(colData(dds)))) stop("all variables in 'intgroup' must be columns of colData") if (!returnData) { if (!all(sapply(intgroup, function(v) is(colData(dds)[[v]], "factor")))) { stop("all variables in 'intgroup' should be factors, or choose returnData=TRUE and plot manually") } } if (missing(pc)) { pc <- if (transform) 0.5 else 0 } if (is.null(sizeFactors(dds)) & is.null(normalizationFactors(dds))) { dds <- estimateSizeFactors(dds) } cnts <- counts(dds,normalized=normalized,replaced=replaced)[gene,] group <- if (length(intgroup) == 1) { colData(dds)[[intgroup]] } else if (length(intgroup) == 2) { lvls <- as.vector(t(outer(levels(colData(dds)[[intgroup[1]]]), levels(colData(dds)[[intgroup[2]]]), function(x,y) paste(x,y,sep=":")))) droplevels(factor(apply( as.data.frame(colData(dds)[, intgroup, drop=FALSE]), 1, paste, collapse=":"), levels=lvls)) } else { factor(apply( as.data.frame(colData(dds)[, intgroup, drop=FALSE]), 1, paste, collapse=":")) } data <- data.frame(count=cnts + pc, group=as.integer(group)) logxy <- if (transform) "y" else "" if (missing(main)) { main <- if (is.numeric(gene)) { rownames(dds)[gene] } else { gene } } ylab <- ifelse(normalized,"normalized count","count") if (returnData) return(data.frame(count=data$count, colData(dds)[intgroup])) plot(data$group + runif(ncol(dds),-.05,.05), data$count, xlim=c(.5,max(data$group)+.5), log=logxy, xaxt="n", xlab=xlab, ylab=ylab, main=main, ...) axis(1, at=seq_along(levels(group)), levels(group)) } plotSparsity <- function(x, normalized=TRUE, ...) { if (is(x, "DESeqDataSet")) { x <- counts(x, normalized=normalized) } rs <- rowSums(x) rmx <- apply(x, 1, max) plot(rs[rs > 0], (rmx/rs)[rs > 0], log="x", ylim=c(0,1), xlab="sum of counts per gene", ylab="max count / sum", main="Concentration of counts over total sum of counts", ...) }
angle2hms <- function(angle) { hourDecimal <- 24 * angle / 360 hour <- floor(hourDecimal) minute <- floor(60*(hourDecimal - hour)) second <- 3600*(hourDecimal - hour - minute / 60) floorSecond <- floor(second) centiSecond <- round(100 * (second - floorSecond)) string <- sprintf("%.0fh%.0fm%.0fs.%.0f", hour, minute, floorSecond, centiSecond) list(hourDecimal=hourDecimal, hour=hour, minute=minute, second=second, string=string) } eclipticalToEquatorial <- function(lambda, beta, epsilon) { if (is.data.frame(lambda)) { beta <- lambda$beta epsilon <- lambda$epsilon lambda <- lambda$lambda } RPD <- atan2(1, 1) / 45 alpha <- atan2(sin(RPD * lambda) * cos(RPD * epsilon) - tan(RPD * beta) * sin(RPD * epsilon), cos(RPD * lambda)) delta <- asin(sin(RPD * beta) * cos(RPD * epsilon) + cos(RPD * beta) * sin(RPD * epsilon) * sin(RPD * lambda)) data.frame(rightAscension=alpha/RPD, declination=delta/RPD) } equatorialToLocalHorizontal <- function(rightAscension, declination, t, longitude, latitude) { RPD <- atan2(1, 1) / 45 theta0 <- siderealTime(t) H <- theta0 * 15 + longitude - rightAscension A <- atan2(sin(RPD * H), cos(RPD * H) * sin(RPD * latitude) - tan(RPD * declination) * cos(RPD * latitude)) h <- asin(sin(RPD * latitude) * sin(RPD * declination) + cos(RPD * latitude) * cos(RPD * declination) * cos(RPD * H)) data.frame(azimuth=A/RPD, altitude=h/RPD) } siderealTime <- function(t) { tt <- as.POSIXlt(t) n <- length(tt$hour) tt$hour <- rep(0, n) tt$min <- rep(0, n) tt$sec <- rep(0, n) jd <- julianDay(t) jd0 <- julianDay(tt) T <- (jd0 - 2415020.0) / 36525 hoursLeftOver <- 24 * (jd - jd0) res <- 6.6460656 + 2400.051262 * T + 0.00002581 * T * T res <- res + 1.002737908 * hoursLeftOver res <- res %% 24 res } julianDay <- function(t, year=NA, month=NA, day=NA, hour=NA, min=NA, sec=NA, tz="UTC") { if (missing(t)) { if (is.na(year) || is.na(month) || is.na(day) || is.na(hour) || is.na(min) || is.na(sec)) stop("must supply year, month, day, hour, min, and sec") t <- ISOdatetime(year, month, day, hour, min, sec, tz=tz) } tt <- as.POSIXlt(t, tz=tz) year <- tt$year + 1900 month <- tt$mon + 1 day <- tt$mday + (tt$hour + tt$min / 60 + tt$sec / 3600) / 24 m <- ifelse(month <= 2, month + 12, month) y <- ifelse(month <= 2, year - 1, year) A <- floor(y / 100) B <- 2 - A + floor(A / 4) jd <- floor(365.25 * y) + floor(30.6001 * (m + 1)) + day + 1720994.5 jd <- ifelse(tt > ISOdatetime(1582, 10, 15, 0, 0, 0), jd + B, jd) jd } julianCenturyAnomaly <- function(jd) { (jd - 2415020.0) / 36525 }
get_scheds_and_rosters <- function(season, type) { out <- tibble::tibble() tryCatch( expr = { if (type == "schedule") { path <- glue::glue("https://github.com/nflverse/nflfastR-data/blob/master/schedules/sched_{season}.rds?raw=true") } else if (type == "roster") { path <- glue::glue("https://github.com/nflverse/nflfastR-roster/blob/master/data/seasons/roster_{season}.rds?raw=true") } warn <- 0 fetched <- curl::curl_fetch_memory(path) if (fetched$status_code == 404) { warning(warn <- 2) } else if (fetched$status_code == 500) { warning(warn <- 1) } out <- read_raw_rds(fetched$content) }, error = function(e) { message("The following error has occured:") message(e) }, warning = function(w) { if (warn == 1) { message("Warning: The data hosting servers are down, please try again later!") } else if (warn == 2) { message(glue::glue("Warning: Either the requested season {season} is invalid or no data available at this time!")) } else { message("The following warning has occured:") message(w) } }, finally = { } ) return(out) }
context("Empirical checkerboard copula") test_that("ECBC returns a matrix of correct dimension", { x <- runif(10) y <- runif(10) expect_type(qad::ECBC(x,y), "double") expect_equal(dim(qad::ECBC(x,y)), c(3,3)) expect_equal(dim(qad::ECBC(x,y, resolution = 2)), c(2,2)) expect_equal(dim(qad::ECBC(x,y, resolution = 1)), c(1,1)) expect_equal(dim(qad::ECBC(x,y, resolution = 10)), c(10, 10)) expect_warning(qad::ECBC(x,y, resolution = 11), "Resolution cannot exceed sample size") }) test_that("ECBC returns uniform margins", { x <- runif(100) y <- runif(100) expect_equal(colSums(qad::ECBC(x,y)), rep(1/10, 10)) expect_equal(rowSums(qad::ECBC(x,y)), rep(1/10, 10)) expect_equal(colSums(qad::ECBC(x,y, resolution = 4)), rep(1/4, 4)) expect_equal(rowSums(qad::ECBC(x,y, resolution = 4)), rep(1/4, 4)) expect_equal(colSums(qad::ECBC(x,y, resolution = 100)), rep(1/100, 100)) expect_equal(rowSums(qad::ECBC(x,y, resolution = 100)), rep(1/100, 100)) x <- c(1,1,1,2,2,3,3,3) y <- c(1,2,3,4,5,6,6,7) expect_equal(rowSums(qad::ECBC(x,y, resolution = 3)), rep(1/3, 3)) expect_equal(colSums(qad::ECBC(x,y, resolution = 3)), rep(1/3, 3)) }) test_that("ECBC.eval returns correct results", { M <- diag(1/5, 5) expect_equal(qad::ECBC.eval(M, eval.points = cbind(c(0,0.2,0.3,0.5,0.7,1), c(0.3,0.5,0.6,0.8,0,1))), c(0,0.2,0.3,0.5,0,1)) })
`[.ensembleData` <- function (x, i, j) { ncolx <- ncol(x) matchCall <- match.call() matchCall[[1]] <- as.name("[.data.frame") if (missing(i)) matchCall$i <- 1:nrow(x) nForcs <- nForecasts <- ensembleSize(x) exchangeable <- attr(x, "exchangeable") forecastHour <- attr(x, "forecastHour") initializationTime <- attr(x, "initializationTime") startupSpeed <- attr(x, "startupSpeed") if (!missing(j) && !is.null(j)) { if (is.logical(j)) { if (length(j) != nForecasts) stop("logical index must refer to the forecasts") j <- (1:nForecasts)[j] nForcs <- length(j) exchangeable <- exchangeable[j] } else if (is.character(j)) { m <- match(j, names(x)[1:nForecasts], nomatch = 0) if (any(!m)) stop("character index must refer to the forecasts") if (any(duplicated(j))) stop("repeated indexes not allowed") nForcs <- length(j) I <- 1:nForecasts names(I) <- ensembleMembers(x) j <- I[j] names(j) <- NULL exchangeable <- exchangeable[j] } else { if (any(abs(j) > nForcs)) stop("column index must be confined to the forecasts") if (any(duplicated(j))) stop("repeated indexes not allowed") j <- (1:nForecasts)[j] nForcs <- length(j) exchangeable <- exchangeable[j] } if (nForcs < ncolx) { matchCall$j <- c(j, (nForecasts+1):ncolx) } else matchCall$j <- j } else matchCall$j <- 1:ncolx if (!missing(i)) { v <- (1:nrow(x)) names(v) <- dimnames(x)[[1]] i <- v[i] names(i) <- NULL if (any(duplicated(i))) stop("repeated entries not allowed") } matchCall$drop <- FALSE listCall <- as.list(matchCall) nam <- names(listCall) listCall <- listCall[c(1,2,which(nam == "i"), which(nam == "j"), length(listCall))] names(listCall) <- NULL x <- eval(as.call(listCall), parent.frame()) attr(x, "initializationTime") <- initializationTime attr(x, "forecastHour") <- forecastHour attr(x, "startupSpeed") <- startupSpeed attr(x, "exchangeable") <- exchangeable attr(x, "ensembleSize") <- nForcs x }
sample_k_uniform_hypergraph <- function(n,m,k,prob) { if(n<k) stop("n must be at least as large as k") if(missing(prob)){ prob <- rep(1/n,n) } M <- Matrix::Matrix(0,nrow=m,ncol=n) for(i in 1:m){ M[i,sample(n,k,replace=FALSE,prob=prob)] <- 1 } hypergraph_from_incidence_matrix(M) } sample_k_regular_hypergraph <- function(n,m,k,prob) { if(m<k) stop("m must be at least as large as k") if(missing(prob)){ prob <- rep(1/m,m) } M <- Matrix::Matrix(0,nrow=m,ncol=n) for(i in 1:n){ M[sample(m,k,replace=FALSE,prob=prob),i] <- 1 } hypergraph_from_incidence_matrix(M) }
get.win.stat_t<-function(trt, con, ep_type, Z_t_trt = NULL, Z_t_con = NULL, priority = c(1,2), Ctimej = Inf, Start_time_trt = NULL, Start_time_con = NULL, alpha = 0.05, tau = 0, weight = c("unstratified","MH-type","wt.stratum1","wt.stratum2","equal"), censoring_adjust = c("No","IPCW","CovIPCW"), pvalue = c("one-sided","two-sided"), win.strategy = NULL, status_only = FALSE, return_CI = FALSE, return_pvalue = FALSE, ...){ n_ep = length(priority) colname.trt = colnames(trt) ind.delta1 = which(colname.trt == "Delta_1_trt") ind.time1 = which(colname.trt == "Y_1_trt") for(ind.ep in which(ep_type == "tte")){ delta_new_trt = trt[,ind.delta1+ind.ep-1] * (trt[,ind.time1+ind.ep-1] <= (Ctimej - Start_time_trt)) time_new_trt = apply(cbind(trt[,ind.time1+ind.ep-1],(Ctimej - Start_time_trt)),1, func<-function(x) ifelse(min(x)>0,min(x),0)) trt[,ind.delta1+ind.ep-1] = delta_new_trt trt[,ind.time1+ind.ep-1] = time_new_trt delta_new_con = con[,ind.delta1+ind.ep-1] * (con[,ind.time1+ind.ep-1] <= (Ctimej - Start_time_con)) time_new_con = apply(cbind(con[,ind.time1+ind.ep-1],(Ctimej - Start_time_con)),1, func<-function(x) ifelse(min(x)>0,min(x),0)) con[,ind.delta1+ind.ep-1] = delta_new_con con[,ind.time1+ind.ep-1] = time_new_con } trt_con = merge(trt,con,by="stratum") if(is.null(win.strategy)){ win_status = win.strategy.default(trt_con = trt_con, priority = priority, tau = tau) }else{ win_status = win.strategy(trt_con = trt_con, priority = priority, ...) } res_KL = switch (censoring_adjust, "No" = original.KL(win_status = win_status, trt_con = trt_con, n_ep = n_ep), "IPCW" = ipcw.adjusted.KL(win_status = win_status, trt = trt, con = con, trt_con = trt_con, priority = priority, n_ep = n_ep, ep_type = ep_type), "CovIPCW" = covipcw.adjusted.KL(win_status = win_status, trt = trt,con = con,trt_con = trt_con, Z_t_trt = Z_t_trt, Z_t_con = Z_t_con, priority = priority, n_ep = n_ep, ep_type = ep_type) ) KL = res_KL$KL status_KL = res_KL$status_KL N_trt = as.data.frame(table(trt$stratum))[,2] N_con = as.data.frame(table(con$stratum))[,2] N_trt_con = cbind(as.numeric(levels(factor(trt_con$stratum))), N_trt, N_con ) colnames(N_trt_con)=c('stratum', 'N2_trt', 'N2_con') KL.summary = apply(cbind(KL$K,KL$L), 2, func<-function(x){ temp = aggregate(x, by=list(Category=trt_con[[1]]), FUN=sum) as.matrix(temp)[,2] }) KL.summary = matrix(KL.summary,ncol = 2) n_str = nrow(KL.summary) for(stri in 1:n_str){ sum_KL_str = sum(KL.summary[stri,])/(N_trt[stri]*N_con[stri]) if(sum_KL_str>=1){ KL$K[which(KL$stratum==stri)] = KL$K[which(KL$stratum==stri)]/sum_KL_str KL$L[which(KL$stratum==stri)] = KL$L[which(KL$stratum==stri)]/sum_KL_str status_KL[which(KL$stratum==stri),] = status_KL[which(KL$stratum==stri),]/sum_KL_str KL.summary[stri,] = KL.summary[stri,]/sum_KL_str } } win_trt = KL.summary[,1] win_con = KL.summary[,2] if(status_only){ return(list(win_status = status_KL)) }else{ P_trt = win_trt/(N_trt*N_con) P_con = win_con/(N_trt*N_con) WR = win_trt/win_con NB = P_trt - P_con WO = (P_trt + 0.5*(1-P_trt-P_con))/(P_con + 0.5*(1-P_trt-P_con)) N = N_trt + N_con ind.trt = which(colnames(trt)=="Delta_1_trt") event_trt = apply(trt[,ind.trt:(ind.trt+n_ep-1)], 1, function(x) max(x)>0) N_event_trt = tapply(event_trt,trt$stratum,sum) ind.con = which(colnames(con)=="Delta_1_con") event_con = apply(con[,ind.con:(ind.con+n_ep-1)], 1, function(x) max(x)>0) N_event_con = tapply(event_con,con$stratum,sum) N_event = N_event_trt + N_event_con w_stratum = switch(weight, "unstratified" = 1, "equal" = rep(1/length(N),length(N)), "MH-type" = (1/N)/sum(1/N), "wt.stratum1" = N/sum(N), "wt.stratum2" = N_event/sum(N_event) ) stratified_WR = switch(weight, "unstratified" = sum(P_trt*w_stratum)/sum(P_con*w_stratum), "equal" = sum(P_trt*w_stratum)/sum(P_con*w_stratum), "MH-type" = sum(P_trt*w_stratum)/sum(P_con*w_stratum), "wt.stratum1" = sum(w_stratum*WR_stratum), "wt.stratum2" = sum(w_stratum*WR_stratum) ) stratified_NB = switch(weight, "unstratified" = sum(P_trt*w_stratum)-sum(P_con*w_stratum), "equal" = sum(P_trt*w_stratum)-sum(P_con*w_stratum), "MH-type" = sum(P_trt*w_stratum)-sum(P_con*w_stratum), "wt.stratum1" = sum(w_stratum*NB_stratum), "wt.stratum2" = sum(w_stratum*NB_stratum) ) stratified_WO = switch(weight, "unstratified" = sum((P_trt + 0.5*(1-P_trt-P_con))*w_stratum)/ sum((P_con + 0.5*(1-P_trt-P_con))*w_stratum), "equal" = sum((P_trt + 0.5*(1-P_trt-P_con))*w_stratum)/ sum((P_con + 0.5*(1-P_trt-P_con))*w_stratum), "MH-type" = sum((P_trt + 0.5*(1-P_trt-P_con))*w_stratum)/ sum((P_con + 0.5*(1-P_trt-P_con))*w_stratum), "wt.stratum1" = sum(w_stratum*WO_stratum), "wt.stratum2" = sum(w_stratum*WO_stratum) ) Win_statisitc = list(Win_Ratio = stratified_WR, Net_Benefit = stratified_NB, Win_Odds = stratified_WO, win_status = win_status) if(return_CI == TRUE){ theta_KL_0 = (win_trt + win_con)/(2*N_trt*N_con) theta_KL_0 = cbind(as.numeric(levels(factor(trt_con$stratum))), theta_KL_0) colnames(theta_KL_0)=c('stratum', 'theta_KL_0') sum_k_trt = aggregate(KL$K, by=list(trt_con$stratum, trt_con$pid_trt), FUN = sum) sum_k_con = aggregate(KL$K, by=list(trt_con$stratum, trt_con$pid_con), FUN = sum) sum_L_trt = aggregate(KL$L, by=list(trt_con$stratum, trt_con$pid_trt), FUN = sum) sum_L_con = aggregate(KL$L, by=list(trt_con$stratum, trt_con$pid_con), FUN = sum) names(sum_k_trt) = c('stratum', 'pid_trt', 'sum_k_trt') names(sum_k_con) = c('stratum', 'pid_con', 'sum_k_con') names(sum_L_trt) = c('stratum', 'pid_trt', 'sum_l_trt') names(sum_L_con) = c('stratum', 'pid_con', 'sum_l_con') KL = merge(KL, sum_k_trt, by=c('stratum', 'pid_trt')) KL = merge(KL, sum_k_con, by=c('stratum', 'pid_con')) KL = merge(KL, sum_L_trt, by=c('stratum', 'pid_trt')) KL = merge(KL, sum_L_con, by=c('stratum', 'pid_con')) KL = merge(KL, theta_KL_0, by=c('stratum')) KL = merge(KL, N_trt_con, by=c('stratum')) sig2_trt_1 = N_trt*N_con*aggregate( (KL$K-KL$theta_KL_0)*(KL$sum_k_trt - KL$K - (KL$N2_con - 1)*KL$theta_KL_0 ), by=list(KL$stratum), FUN = sum)[,2]/(N_con-1) sig2_trt_2 = N_trt*N_con*aggregate( (KL$K-KL$theta_KL_0)*(KL$sum_k_con - KL$K - (KL$N2_trt - 1)*KL$theta_KL_0 ), by=list(KL$stratum), FUN = sum)[,2]/(N_trt-1) sig2_con_1 = N_trt*N_con*aggregate( (KL$L-KL$theta_KL_0)*(KL$sum_l_con - KL$L - (KL$N2_trt - 1)*KL$theta_KL_0 ), by=list(KL$stratum), FUN = sum)[,2]/(N_trt-1) sig2_con_2 = N_trt*N_con*aggregate( (KL$L-KL$theta_KL_0)*(KL$sum_l_trt - KL$L - (KL$N2_con - 1)*KL$theta_KL_0 ), by=list(KL$stratum), FUN = sum)[,2]/(N_con-1) sig_trt_con_1 = N_trt*N_con*aggregate( (KL$K-KL$theta_KL_0)*(KL$sum_l_trt - KL$L - (KL$N2_con - 1)*KL$theta_KL_0 ), by=list(KL$stratum), FUN = sum)[,2]/(N_con-1) sig_trt_con_2 = N_trt*N_con*aggregate( (KL$K-KL$theta_KL_0)*(KL$sum_l_con - KL$L - (KL$N2_trt - 1)*KL$theta_KL_0 ), by=list(KL$stratum), FUN = sum)[,2]/(N_trt-1) sig2_trt = sig2_trt_1/N_trt + sig2_trt_2/N_con sig2_con = sig2_con_1/N_con + sig2_con_2/N_trt sig_trt_con = sig_trt_con_1/N_trt + sig_trt_con_2/N_con theta_tc = (win_trt + win_con)/2 gam = theta_tc + 0.5*(N_trt*N_con-theta_tc-theta_tc) if(weight%in%c("wt.stratum1","wt.stratum2")){ sig2_wr = (sig2_trt + sig2_con - 2*sig_trt_con)/((theta_tc)^2) sig2_wo = (sig2_trt + sig2_con - 2*sig_trt_con)*(((N_trt*N_con)/(2*(gam^2)))^2) sig2_nb = (sig2_trt + sig2_con - 2*sig_trt_con)/((N_trt*N_con)^2) stratified_sig2_log_wr = sum(((w_stratum)^2)*sig2_wr)/(stratified_WR^2) stratified_sig2_log_wo = sum(((w_stratum)^2)*sig2_wo)/(stratified_WO^2) stratified_sig2_nb = sum(((w_stratum)^2)*sig2_nb) }else{ stratified_sig2_log_wr = sum(((w_stratum)^2)*(sig2_trt + sig2_con - 2*sig_trt_con))/ ((sum(w_stratum*theta_tc))^2) stratified_sig2_log_wo = sum(((w_stratum)^2)*(sig2_trt + sig2_con - 2*sig_trt_con))* ((0.5/sum(w_stratum*gam)+0.5/sum(w_stratum*(N_trt*N_con-gam)))^2) stratified_sig2_nb = sum(((w_stratum)^2)*(sig2_trt + sig2_con - 2*sig_trt_con))/ ((sum(w_stratum*N_trt*N_con))^2) } stratified_WR_L = exp(log(stratified_WR) - qnorm(1-alpha/2)*sqrt(stratified_sig2_log_wr)) stratified_WR_U = exp(log(stratified_WR) + qnorm(1-alpha/2)*sqrt(stratified_sig2_log_wr)) stratified_WO_L = exp(log(stratified_WO) - qnorm(1-alpha/2)*sqrt(stratified_sig2_log_wo)) stratified_WO_U = exp(log(stratified_WO) + qnorm(1-alpha/2)*sqrt(stratified_sig2_log_wo)) stratified_NB_L = stratified_NB - qnorm(1-alpha/2)*sqrt(stratified_sig2_nb) stratified_NB_U = stratified_NB + qnorm(1-alpha/2)*sqrt(stratified_sig2_nb) CI_t = list(WR = c(stratified_WR_L,stratified_WR_U), NB = c(stratified_NB_L,stratified_NB_U), WO = c(stratified_WO_L,stratified_WO_U)) if(return_pvalue){ pvalue_WR = switch(pvalue, "one-sided" = 1 - pnorm((log(stratified_WR)/sqrt(stratified_sig2_log_wr)), mean = 0, sd = 1), "two-sided" = 2 - 2*pnorm(abs(log(stratified_WR)/sqrt(stratified_sig2_log_wr)), mean = 0, sd = 1)) pvalue_WO = switch(pvalue, "one-sided" = 1 - pnorm((log(stratified_WO)/sqrt(stratified_sig2_log_wo)), mean = 0, sd = 1), "two-sided" = 2 - 2*pnorm(abs(log(stratified_WO)/sqrt(stratified_sig2_log_wo)), mean = 0, sd = 1)) pvalue_NB = switch(pvalue, "one-sided" = 1 - pnorm((stratified_NB/sqrt(stratified_sig2_nb)), mean = 0, sd = 1), "two-sided" = 2 - 2*pnorm(abs(stratified_NB/sqrt(stratified_sig2_nb)), mean = 0, sd = 1)) p_value_t = c(pvalue_WR,pvalue_NB,pvalue_WO) return(list(Win_statisitc = Win_statisitc, p_value_t = p_value_t, CI_t = CI_t)) }else{ return(list(Win_statisitc = Win_statisitc, CI_t = CI_t)) } }else{ return(Win_statisitc = Win_statisitc) } } }
installed.versions <- function (pkgs, lib) { if (missing(lib) || is.null(lib)) { lib <- .libPaths()[1L] if (length(.libPaths()) > 1L) message(sprintf(ngettext(length(pkgs), "Checking package in %s\n(as %s is unspecified)", "Checking packages in %s\n(as %s is unspecified)"), sQuote(lib), sQuote("lib")), domain = NA) } if (length(pkgs) > 1) { ans <- sapply(pkgs, installed.versions, lib) return (ans) } desc_path <- sprintf('%s/%s/DESCRIPTION', lib, pkgs) if (!file.exists(desc_path)) { return (NA) } else { lines <- readLines(desc_path) vers_line <- lines[grep('^Version: *', lines)] vers <- gsub('Version: ', '', vers_line) return (vers) } }
install_version <- function(package, version = NA, compare = NA, repos = getOption("repos"), type = getOption("pkgType"), ...) { contriburl <- contrib.url(repos, type) available <- available.packages(contriburl) validate_compare(compare) should_install <- validate_installed_package(package, version, compare) if(should_install) { available_versions <- find_available_versions(package, repos, type) version_to_install <- determine_version_to_install(available_versions$version, version, compare) url <- available_versions[available_versions$version == version_to_install, 'url'] install_url(url, ...) } should_install } validate_installed_package <- function(package, version, compare) { should_install <- TRUE packages <- as.data.frame(installed.packages(), stringsAsFactors=FALSE) if(package %in% row.names(packages)) { installed_package <- packages[package,] message( sprintf( "Package [%s] with version [%s] is already installed in library [%s].", package, installed_package$Version, installed_package$LibPath ) ) if(is.na(compare)) { should_install <- FALSE } else { if(compare_versions(installed_package$Version, compare, version)) { should_install <- FALSE } else { stop( sprintf( "Installed package [%s] is of the wrong version. Required: [%s]. Actual: [%s]", package, version, installed_package$Version ) ) } } } should_install } validate_compare <- function(compare) { if(is.null(compare)) { stop("Compare clause cannot be NULL") } if (!(is.na(compare) || compare %in% c('==', '<', '>', '>=', '<='))) { stop(sprintf("Invalid compare clause: [%s]", compare)) } } determine_version_to_install <- function(available_versions, version, compare) { if(is.na(compare)) { matching_versions <- available_versions } else { matching_version_indices <- sapply( available_versions, FUN = function(d) { compare_versions(d, compare, version) } ) matching_versions <- available_versions[matching_version_indices] } max(matching_versions) } compare_versions <- function(requested, compare, version) { eval( parse( text = sprintf( "'%s' %s '%s'", requested, compare, version ) ) ) } find_available_versions <- function(package, repos = getOption('repos'), type = getOption('pkgType')) { contriburl <- contrib.url(repos, type) available <- as.data.frame(available.packages(contriburl, filters=c("R_version", "OS_type", "subarch")), stringsAsFactors=FALSE) root_versions <- data.frame(version=available[available$Package == package,]$Version, source='root', stringsAsFactors=FALSE) root_versions$url <- file.path(contriburl, paste(package, "_", root_versions$version, switch(type, source = ".tar.gz", mac.binary = ".tgz", win.binary = ".zip"), sep = "")) archive <- read_archive_rds(repos) if (length(archive) != 0) { archiveurl <- contrib.url(repos, 'source') package_tarball_path <- row.names(archive[[package]]) archive_versions <- data.frame(version = sub(".*_(.*).tar.gz", '\\1', package_tarball_path), source='archive', stringsAsFactors=FALSE) archive_versions$url <- file.path(archiveurl, 'Archive', package_tarball_path) versions <- merge(root_versions, archive_versions, all=TRUE) } else { versions <- root_versions } versions } read_archive_rds <- function(repos) { tryCatch({ con <- gzcon(url(sprintf("%s/src/contrib/Meta/archive.rds", repos), "rb")); on.exit(close(con)) archive <- readRDS(con) return(archive) }, warning = function(warning) { return(list()) }, error = function(error) { return(list()) } ) }
is_equal_knownComp <- function(comp.dist, comp.param) { stopifnot( (length(comp.dist) == 4) & (length(comp.param) == 4) ) if (comp.dist[[2]] == comp.dist[[4]]) { vect.par <- FALSE if ( any(sapply(comp.param[[2]], length) != 1) | any(sapply(comp.param[[4]], length) != 1) ) vect.par <- TRUE if (!vect.par) { param_matrix <- as.matrix(sapply(comp.param[[2]], "==", comp.param[[4]])) if ( (all(diag(param_matrix) == TRUE)) & (nrow(param_matrix) != 0) & (ncol(param_matrix) != 0) ) { G1equalG2 <- TRUE } else { G1equalG2 <- FALSE } } else { G1equalG2 <- all(unlist(comp.param[[2]][which(sapply(comp.param[[2]],length) !=1 )]) == unlist(comp.param[[4]][which(sapply(comp.param[[4]],length) !=1 )])) } } else { G1equalG2 <- FALSE } return(G1equalG2) }
ggplot(data = mtcars, mapping = aes(x = mpg, y = vs)) + geom_point() ggplot(data = mtcars, mapping = aes(x = mpg, y = vs)) + geom_point() ggplot2::ggplot(data = mtcars, mapping = aes(x = mpg, y = vs)) + geom_point() ggplot(data = mtcars, mapping = aes(x = mpg, y = vs)) + ggplot2::geom_point() ggplot(data = mtcars, mapping = aes(x = mpg, y = vs)) + ggplot2::geom_point() + g() ggplot(data = mtcars, mapping = aes(x = mpg, y = vs)) + ggplot2::geom_point() + g() ggplot(data = mtcars, mapping = aes(x = mpg, y = vs)) + ggplot2::geom_point() + g() ggplot(data = mtcars, mapping = aes(x = mpg, y = vs)) + ggplot2::geom_point() + g() + geom_oint() x[1]+ c() g() + x[1] g()[2] + x[1] +sin(x) qqjflk( log(y + 1) + sqrt(x2) + x4 + sqrt(x5) )
generate_chained_crescent_I_function <- function(dimensions) soo_function(name="Chained Crescent I", id=sprintf("chained-crescent-I-%id", dimensions), fun=f_chained_crescent_I, dimensions=dimensions, lower_bounds=rep(-Inf, dimensions), upper_bounds=rep(Inf, dimensions), best_par=rep(0, dimensions), best_value=0) class(generate_chained_crescent_I_function) <- c("soo_function_generator", "function") attr(generate_chained_crescent_I_function, "id") <- "chained_crescent_I" attr(generate_chained_crescent_I_function, "name") <- "Chained Crescent I test function" f_chained_crescent_I <- function(x, ...) { n = length(x) s1 = s2 = 0 for (i in 1:(n-1)) { tmp = (x[i+1] - 1)^2 + x[i+1] s1 = s1 + x[i]^2 + tmp - 1 s2 = s2 - x[i]^2 - tmp + 1 } max(s1, s2) }
fit_sa <- function(Z, mrfi, family = "onepar", gamma_seq, init = 0, cycles = 5, refresh_each = length(gamma_seq)+1, refresh_cycles = 60, verbose = interactive()){ if(!family %in% mrf2d_families){ stop("'", family, "' is not an implemented family.") } if(!is.numeric(init)) { stop("Argument 'init' must be numeric.") } C <- length(na.omit(unique(as.vector(Z)))) - 1 R <- mrfi@Rmat n_R <- nrow(R) gamma_seq <- gamma_seq/prod(dim(Z)) if(is.vector(init)) { if(identical(init, 0)){ init <- array(0, dim = c(C+1, C+1, n_R)) } else { init <- vec_to_array(init, family, C, n_R) } } else if(!is_valid_array(init, family)) { stop("'init' array is incompatible with family '", family,"'") } arr_Z <- table_relative_3d(Z, mrfi@Rmat, C) S <- suf_stat(arr_Z, family) d <- numeric(length(gamma_seq)) Zseq <- thetaseq <- matrix(NA, nrow = length(gamma_seq), ncol = length(S)) is_sub <- any(is.na(Z)) if(is_sub){ subr <- !is.na(Z) } theta_t <- array_to_vec(init, family) if(!is_sub){ Z_t <- rmrf2d(dim(Z), mrfi, vec_to_array(theta_t, family, C, n_R), cycles) } else { Z_t <- rmrf2d(dim(Z), mrfi, vec_to_array(theta_t, family, C, n_R), cycles, sub_region = subr) } for(t in seq_along(gamma_seq)){ cat(ifelse(verbose, paste("\r Iteration:", t), "")) arr_Z_t <- table_relative_3d(Z_t, mrfi@Rmat, C) S_t <- suf_stat(arr_Z_t, family) theta_t <- theta_t - gamma_seq[t]*(S_t - S) if(t%%refresh_each == 0){ if(!is_sub){ Z_t <- rmrf2d(dim(Z), mrfi, vec_to_array(theta_t, family, C, n_R), refresh_cycles) } else { Z_t <- rmrf2d(dim(Z), mrfi, vec_to_array(theta_t, family, C, n_R), refresh_cycles, sub_region = subr) } } else { Z_t <- rmrf2d(Z_t, mrfi, vec_to_array(theta_t, family, C, n_R), cycles) } Zseq[t,] <- S_t thetaseq[t,] <- theta_t d[t] <- sqrt(sum((S_t - S)^2)) } cat(ifelse(verbose, "\n", "")) theta_out <- vec_to_array(theta_t, family, C, n_R) dimnames(theta_out)[[3]] <- mrfi_to_char(mrfi) out <- list(theta = theta_out, mrfi = mrfi, family = family, method = "Stochastic Approximation", metrics = data.frame(t = seq_along(gamma_seq), distance = d), Zseq = Zseq, thetaseq = thetaseq, Z = Z, ncycles = length(gamma_seq)) class(out) <- "mrfout" return(out) }
Gnambs18 <- structure(list(data = structure(list(Carmines1979 = structure(c(1, 0.233, 0.204, 0.374, 0.221, 0.189, 0.332, 0.27, 0.311, 0.425, 0.233, 1, 0.361, 0.299, 0.358, 0.502, 0.276, 0.277, 0.577, 0.317, 0.204, 0.361, 1, 0.352, 0.399, 0.263, 0.451, 0.185, 0.394, 0.413, 0.374, 0.299, 0.352, 1, 0.28, 0.214, 0.427, 0.05, 0.315, 0.457, 0.221, 0.358, 0.399, 0.28, 1, 0.415, 0.35, 0.209, 0.469, 0.446, 0.189, 0.502, 0.263, 0.214, 0.415, 1, 0.209, 0.246, 0.474, 0.338, 0.332, 0.276, 0.451, 0.427, 0.35, 0.209, 1, 0.048, 0.381, 0.399, 0.27, 0.277, 0.185, 0.05, 0.209, 0.246, 0.048, 1, 0.23, 0.248, 0.311, 0.577, 0.394, 0.315, 0.469, 0.474, 0.381, 0.23, 1, 0.369, 0.425, 0.317, 0.413, 0.457, 0.446, 0.338, 0.399, 0.248, 0.369, 1), .Dim = c(10L, 10L), .Dimnames = list(c("I1", "I2", "I3", "I4", "I5", "I6", "I7", "I8", "I9", "I10"), c("I1", "I2", "I3", "I4", "I5", "I6", "I7", "I8", "I9", "I10"))), Donnellan2016 = structure(c(1, 0.419, 0.487, 0.378, 0.449, 0.395, 0.45, 0.36, 0.447, 0.663, 0.419, 1, 0.358, 0.295, 0.524, 0.71, 0.345, 0.483, 0.555, 0.5, 0.487, 0.358, 1, 0.494, 0.483, 0.284, 0.701, 0.239, 0.431, 0.586, 0.378, 0.295, 0.494, 1, 0.347, 0.297, 0.451, 0.192, 0.363, 0.462, 0.449, 0.524, 0.483, 0.347, 1, 0.483, 0.418, 0.335, 0.61, 0.519, 0.395, 0.71, 0.284, 0.297, 0.483, 1, 0.281, 0.519, 0.469, 0.46, 0.45, 0.345, 0.701, 0.451, 0.418, 0.281, 1, 0.252, 0.432, 0.523, 0.36, 0.483, 0.239, 0.192, 0.335, 0.519, 0.252, 1, 0.391, 0.399, 0.447, 0.555, 0.431, 0.363, 0.61, 0.469, 0.432, 0.391, 1, 0.551, 0.663, 0.5, 0.586, 0.462, 0.519, 0.46, 0.523, 0.399, 0.551, 1 ), .Dim = c(10L, 10L), .Dimnames = list(c("I1", "I2", "I3", "I4", "I5", "I6", "I7", "I8", "I9", "I10"), c("I1", "I2", "I3", "I4", "I5", "I6", "I7", "I8", "I9", "I10"))), Gnambs2017 = structure(c(1, 0.387, 0.38, 0.345, 0.357, 0.426, 0.365, 0.304, 0.409, 0.569, 0.387, 1, 0.255, 0.247, 0.42, 0.58, 0.294, 0.368, 0.498, 0.414, 0.38, 0.255, 1, 0.486, 0.319, 0.272, 0.355, 0.179, 0.293, 0.413, 0.345, 0.247, 0.486, 1, 0.287, 0.249, 0.314, 0.16, 0.271, 0.369, 0.357, 0.42, 0.319, 0.287, 1, 0.475, 0.314, 0.312, 0.431, 0.375, 0.426, 0.58, 0.272, 0.249, 0.475, 1, 0.309, 0.362, 0.569, 0.459, 0.365, 0.294, 0.355, 0.314, 0.314, 0.309, 1, 0.174, 0.318, 0.412, 0.304, 0.368, 0.179, 0.16, 0.312, 0.362, 0.174, 1, 0.406, 0.328, 0.409, 0.498, 0.293, 0.271, 0.431, 0.569, 0.318, 0.406, 1, 0.492, 0.569, 0.414, 0.413, 0.369, 0.375, 0.459, 0.412, 0.328, 0.492, 1), .Dim = c(10L, 10L), .Dimnames = list(c("I1", "I2", "I3", "I4", "I5", "I6", "I7", "I8", "I9", "I10"), c("I1", "I2", "I3", "I4", "I5", "I6", "I7", "I8", "I9", "I10"))), Hesketh2012 = structure(c(1, 0.204, 0.331, 0.337, 0.155, 0.209, 0.29, -0.33, 0.23, 0.437, 0.204, 1, 0.188, 0.17, 0.282, 0.618, 0.169, -0.159, 0.35, 0.198, 0.331, 0.188, 1, 0.364, 0.15, 0.192, 0.455, -0.284, 0.17, 0.362, 0.337, 0.17, 0.364, 1, 0.084, 0.17, 0.285, -0.312, 0.152, 0.352, 0.155, 0.282, 0.15, 0.084, 1, 0.275, 0.102, -0.059, 0.307, 0.144, 0.209, 0.618, 0.192, 0.17, 0.275, 1, 0.147, -0.151, 0.366, 0.202, 0.29, 0.169, 0.455, 0.285, 0.102, 0.147, 1, -0.233, 0.147, 0.299, -0.33, -0.159, -0.284, -0.312, -0.059, -0.151, -0.233, 1, -0.122, -0.346, 0.23, 0.35, 0.17, 0.152, 0.307, 0.366, 0.147, -0.122, 1, 0.189, 0.437, 0.198, 0.362, 0.352, 0.144, 0.202, 0.299, -0.346, 0.189, 1), .Dim = c(10L, 10L), .Dimnames = list(c("I1", "I2", "I3", "I4", "I5", "I6", "I7", "I8", "I9", "I10"), c("I1", "I2", "I3", "I4", "I5", "I6", "I7", "I8", "I9", "I10"))), Jamil2006 = structure(c(1, 0.28, 0.4, 0.23, 0.11, 0.32, 0.41, -0.14, 0.22, 0.43, 0.28, 1, 0.21, 0.27, 0.48, 0.68, 0.27, -0.14, 0.37, 0.36, 0.4, 0.21, 1, 0.44, 0.27, 0.22, 0.36, -0.31, 0.36, 0.57, 0.23, 0.27, 0.44, 1, 0.35, 0.23, 0.28, -0.16, 0.28, 0.34, 0.11, 0.48, 0.27, 0.35, 1, 0.52, 0.1, -0.09, 0.2, 0.28, 0.32, 0.68, 0.22, 0.23, 0.52, 1, 0.34, -0.16, 0.33, 0.39, 0.41, 0.27, 0.36, 0.28, 0.1, 0.34, 1, -0.22, 0.28, 0.42, -0.14, -0.14, -0.31, -0.16, -0.09, -0.16, -0.22, 1, -0.07, -0.23, 0.22, 0.37, 0.36, 0.28, 0.2, 0.33, 0.28, -0.07, 1, 0.48, 0.43, 0.36, 0.57, 0.34, 0.28, 0.39, 0.42, -0.23, 0.48, 1), .Dim = c(10L, 10L), .Dimnames = list(c("I1", "I2", "I3", "I4", "I5", "I6", "I7", "I8", "I9", "I10"), c("I1", "I2", "I3", "I4", "I5", "I6", "I7", "I8", "I9", "I10"))), Liss2008 = structure(c(1, 0.498, 0.501, 0.433, 0.436, 0.479, 0.525, 0.475, 0.496, 0.763, 0.498, 1, 0.376, 0.313, 0.459, 0.725, 0.421, 0.533, 0.576, 0.488, 0.501, 0.376, 1, 0.543, 0.399, 0.327, 0.693, 0.305, 0.382, 0.517, 0.433, 0.313, 0.543, 1, 0.34, 0.291, 0.481, 0.257, 0.322, 0.443, 0.436, 0.459, 0.399, 0.34, 1, 0.45, 0.378, 0.426, 0.488, 0.405, 0.479, 0.725, 0.327, 0.291, 0.45, 1, 0.373, 0.523, 0.544, 0.472, 0.525, 0.421, 0.693, 0.481, 0.378, 0.373, 1, 0.363, 0.428, 0.534, 0.475, 0.533, 0.305, 0.257, 0.426, 0.523, 0.363, 1, 0.515, 0.514, 0.496, 0.576, 0.382, 0.322, 0.488, 0.544, 0.428, 0.515, 1, 0.512, 0.763, 0.488, 0.517, 0.443, 0.405, 0.472, 0.534, 0.514, 0.512, 1), .Dim = c(10L, 10L), .Dimnames = list(c("I1", "I2", "I3", "I4", "I5", "I6", "I7", "I8", "I9", "I10"), c("I1", "I2", "I3", "I4", "I5", "I6", "I7", "I8", "I9", "I10"))), Liss2009 = structure(c(1, 0.511, 0.556, 0.457, 0.383, 0.455, 0.549, 0.47, 0.515, 0.756, 0.511, 1, 0.395, 0.323, 0.5, 0.756, 0.426, 0.546, 0.609, 0.469, 0.556, 0.395, 1, 0.514, 0.253, 0.361, 0.668, 0.381, 0.397, 0.513, 0.457, 0.323, 0.514, 1, 0.255, 0.216, 0.491, 0.253, 0.319, 0.425, 0.383, 0.5, 0.253, 0.255, 1, 0.472, 0.384, 0.482, 0.532, 0.375, 0.455, 0.756, 0.361, 0.216, 0.472, 1, 0.392, 0.557, 0.59, 0.463, 0.549, 0.426, 0.668, 0.491, 0.384, 0.392, 1, 0.437, 0.489, 0.53, 0.47, 0.546, 0.381, 0.253, 0.482, 0.557, 0.437, 1, 0.593, 0.507, 0.515, 0.609, 0.397, 0.319, 0.532, 0.59, 0.489, 0.593, 1, 0.519, 0.756, 0.469, 0.513, 0.425, 0.375, 0.463, 0.53, 0.507, 0.519, 1), .Dim = c(10L, 10L), .Dimnames = list(c("I1", "I2", "I3", "I4", "I5", "I6", "I7", "I8", "I9", "I10"), c("I1", "I2", "I3", "I4", "I5", "I6", "I7", "I8", "I9", "I10"))), Liss2010 = structure(c(1, 0.426, 0.479, 0.384, 0.355, 0.437, 0.512, 0.409, 0.47, 0.746, 0.426, 1, 0.288, 0.283, 0.389, 0.728, 0.33, 0.505, 0.566, 0.447, 0.479, 0.288, 1, 0.477, 0.299, 0.307, 0.69, 0.251, 0.298, 0.492, 0.384, 0.283, 0.477, 1, 0.282, 0.255, 0.433, 0.236, 0.247, 0.424, 0.355, 0.389, 0.299, 0.282, 1, 0.431, 0.3, 0.417, 0.459, 0.331, 0.437, 0.728, 0.307, 0.255, 0.431, 1, 0.323, 0.499, 0.551, 0.431, 0.512, 0.33, 0.69, 0.433, 0.3, 0.323, 1, 0.321, 0.37, 0.511, 0.409, 0.505, 0.251, 0.236, 0.417, 0.499, 0.321, 1, 0.511, 0.426, 0.47, 0.566, 0.298, 0.247, 0.459, 0.551, 0.37, 0.511, 1, 0.478, 0.746, 0.447, 0.492, 0.424, 0.331, 0.431, 0.511, 0.426, 0.478, 1), .Dim = c(10L, 10L), .Dimnames = list(c("I1", "I2", "I3", "I4", "I5", "I6", "I7", "I8", "I9", "I10"), c("I1", "I2", "I3", "I4", "I5", "I6", "I7", "I8", "I9", "I10"))), Liss2011 = structure(c(1, 0.472, 0.42, 0.287, 0.402, 0.441, 0.47, 0.456, 0.445, 0.722, 0.472, 1, 0.4, 0.174, 0.561, 0.708, 0.47, 0.556, 0.597, 0.529, 0.42, 0.4, 1, 0.444, 0.475, 0.322, 0.707, 0.252, 0.334, 0.401, 0.287, 0.174, 0.444, 1, 0.337, 0.133, 0.334, 0.15, 0.136, 0.245, 0.402, 0.561, 0.475, 0.337, 1, 0.411, 0.406, 0.427, 0.442, 0.387, 0.441, 0.708, 0.322, 0.133, 0.411, 1, 0.34, 0.606, 0.572, 0.525, 0.47, 0.47, 0.707, 0.334, 0.406, 0.34, 1, 0.284, 0.352, 0.517, 0.456, 0.556, 0.252, 0.15, 0.427, 0.606, 0.284, 1, 0.491, 0.511, 0.445, 0.597, 0.334, 0.136, 0.442, 0.572, 0.352, 0.491, 1, 0.472, 0.722, 0.529, 0.401, 0.245, 0.387, 0.525, 0.517, 0.511, 0.472, 1), .Dim = c(10L, 10L), .Dimnames = list(c("I1", "I2", "I3", "I4", "I5", "I6", "I7", "I8", "I9", "I10"), c("I1", "I2", "I3", "I4", "I5", "I6", "I7", "I8", "I9", "I10"))), Liss2012 = structure(c(1, 0.5, 0.445, 0.366, 0.409, 0.457, 0.473, 0.462, 0.497, 0.774, 0.5, 1, 0.333, 0.278, 0.493, 0.738, 0.384, 0.539, 0.653, 0.516, 0.445, 0.333, 1, 0.474, 0.37, 0.305, 0.664, 0.288, 0.346, 0.457, 0.366, 0.278, 0.474, 1, 0.268, 0.284, 0.443, 0.241, 0.287, 0.403, 0.409, 0.493, 0.37, 0.268, 1, 0.442, 0.345, 0.44, 0.524, 0.4, 0.457, 0.738, 0.305, 0.284, 0.442, 1, 0.367, 0.53, 0.621, 0.502, 0.473, 0.384, 0.664, 0.443, 0.345, 0.367, 1, 0.365, 0.421, 0.505, 0.462, 0.539, 0.288, 0.241, 0.44, 0.53, 0.365, 1, 0.562, 0.523, 0.497, 0.653, 0.346, 0.287, 0.524, 0.621, 0.421, 0.562, 1, 0.558, 0.774, 0.516, 0.457, 0.403, 0.4, 0.502, 0.505, 0.523, 0.558, 1), .Dim = c(10L, 10L), .Dimnames = list(c("I1", "I2", "I3", "I4", "I5", "I6", "I7", "I8", "I9", "I10"), c("I1", "I2", "I3", "I4", "I5", "I6", "I7", "I8", "I9", "I10"))), Liss2013 = structure(c(1, 0.615, 0.614, 0.547, 0.46, 0.525, 0.66, 0.389, 0.545, 0.774, 0.615, 1, 0.535, 0.451, 0.584, 0.802, 0.551, 0.571, 0.597, 0.533, 0.614, 0.535, 1, 0.564, 0.517, 0.473, 0.697, 0.359, 0.446, 0.594, 0.547, 0.451, 0.564, 1, 0.39, 0.36, 0.457, 0.236, 0.277, 0.472, 0.46, 0.584, 0.517, 0.39, 1, 0.486, 0.451, 0.427, 0.547, 0.428, 0.525, 0.802, 0.473, 0.36, 0.486, 1, 0.509, 0.6, 0.601, 0.509, 0.66, 0.551, 0.697, 0.457, 0.451, 0.509, 1, 0.402, 0.485, 0.642, 0.389, 0.571, 0.359, 0.236, 0.427, 0.6, 0.402, 1, 0.502, 0.47, 0.545, 0.597, 0.446, 0.277, 0.547, 0.601, 0.485, 0.502, 1, 0.559, 0.774, 0.533, 0.594, 0.472, 0.428, 0.509, 0.642, 0.47, 0.559, 1), .Dim = c(10L, 10L), .Dimnames = list(c("I1", "I2", "I3", "I4", "I5", "I6", "I7", "I8", "I9", "I10"), c("I1", "I2", "I3", "I4", "I5", "I6", "I7", "I8", "I9", "I10"))), Liss2014 = structure(c(1, 0.538, 0.491, 0.409, 0.465, 0.509, 0.544, 0.483, 0.565, 0.769, 0.538, 1, 0.401, 0.309, 0.47, 0.705, 0.464, 0.544, 0.63, 0.518, 0.491, 0.401, 1, 0.501, 0.368, 0.361, 0.615, 0.285, 0.341, 0.5, 0.409, 0.309, 0.501, 1, 0.285, 0.33, 0.465, 0.285, 0.318, 0.448, 0.465, 0.47, 0.368, 0.285, 1, 0.469, 0.407, 0.412, 0.518, 0.407, 0.509, 0.705, 0.361, 0.33, 0.469, 1, 0.412, 0.537, 0.593, 0.507, 0.544, 0.464, 0.615, 0.465, 0.407, 0.412, 1, 0.404, 0.445, 0.557, 0.483, 0.544, 0.285, 0.285, 0.412, 0.537, 0.404, 1, 0.565, 0.514, 0.565, 0.63, 0.341, 0.318, 0.518, 0.593, 0.445, 0.565, 1, 0.584, 0.769, 0.518, 0.5, 0.448, 0.407, 0.507, 0.557, 0.514, 0.584, 1), .Dim = c(10L, 10L), .Dimnames = list(c("I1", "I2", "I3", "I4", "I5", "I6", "I7", "I8", "I9", "I10"), c("I1", "I2", "I3", "I4", "I5", "I6", "I7", "I8", "I9", "I10"))), Liss2015 = structure(c(1, 0.637, 0.605, 0.503, 0.539, 0.587, 0.55, 0.446, 0.563, 0.825, 0.637, 1, 0.577, 0.474, 0.591, 0.836, 0.523, 0.606, 0.69, 0.603, 0.605, 0.577, 1, 0.613, 0.552, 0.525, 0.673, 0.378, 0.564, 0.641, 0.503, 0.474, 0.613, 1, 0.377, 0.409, 0.615, 0.26, 0.428, 0.505, 0.539, 0.591, 0.552, 0.377, 1, 0.577, 0.45, 0.472, 0.604, 0.493, 0.587, 0.836, 0.525, 0.409, 0.577, 1, 0.466, 0.615, 0.677, 0.55, 0.55, 0.523, 0.673, 0.615, 0.45, 0.466, 1, 0.369, 0.454, 0.606, 0.446, 0.606, 0.378, 0.26, 0.472, 0.615, 0.369, 1, 0.546, 0.451, 0.563, 0.69, 0.564, 0.428, 0.604, 0.677, 0.454, 0.546, 1, 0.585, 0.825, 0.603, 0.641, 0.505, 0.493, 0.55, 0.606, 0.451, 0.585, 1), .Dim = c(10L, 10L), .Dimnames = list(c("I1", "I2", "I3", "I4", "I5", "I6", "I7", "I8", "I9", "I10"), c("I1", "I2", "I3", "I4", "I5", "I6", "I7", "I8", "I9", "I10"))), Neps2010b = structure(c(1, 0.555, 0.395, 0.33, 0.489, 0.551, 0.386, 0.421, 0.527, 0.632, 0.555, 1, 0.347, 0.288, 0.564, 0.679, 0.371, 0.484, 0.667, 0.56, 0.395, 0.347, 1, 0.577, 0.486, 0.313, 0.422, 0.202, 0.346, 0.449, 0.33, 0.288, 0.577, 1, 0.393, 0.252, 0.356, 0.17, 0.297, 0.325, 0.489, 0.564, 0.486, 0.393, 1, 0.63, 0.434, 0.376, 0.563, 0.497, 0.551, 0.679, 0.313, 0.252, 0.63, 1, 0.366, 0.413, 0.663, 0.467, 0.386, 0.371, 0.422, 0.356, 0.434, 0.366, 1, 0.319, 0.375, 0.427, 0.421, 0.484, 0.202, 0.17, 0.376, 0.413, 0.319, 1, 0.542, 0.492, 0.527, 0.667, 0.346, 0.297, 0.563, 0.663, 0.375, 0.542, 1, 0.607, 0.632, 0.56, 0.449, 0.325, 0.497, 0.467, 0.427, 0.492, 0.607, 1), .Dim = c(10L, 10L), .Dimnames = list(c("I1", "I2", "I3", "I4", "I5", "I6", "I7", "I8", "I9", "I10"), c("I1", "I2", "I3", "I4", "I5", "I6", "I7", "I8", "I9", "I10"))), Neps2010c = structure(c(1, 0.319, 0.21, 0.158, 0.238, 0.358, 0.218, 0.272, 0.324, 0.425, 0.319, 1, 0.176, 0.133, 0.364, 0.566, 0.225, 0.414, 0.53, 0.405, 0.21, 0.176, 1, 0.372, 0.234, 0.185, 0.373, 0.207, 0.211, 0.328, 0.158, 0.133, 0.372, 1, 0.233, 0.156, 0.297, 0.148, 0.168, 0.242, 0.238, 0.364, 0.234, 0.233, 1, 0.403, 0.265, 0.384, 0.366, 0.307, 0.358, 0.566, 0.185, 0.156, 0.403, 1, 0.253, 0.404, 0.522, 0.42, 0.218, 0.225, 0.373, 0.297, 0.265, 0.253, 1, 0.207, 0.261, 0.393, 0.272, 0.414, 0.207, 0.148, 0.384, 0.404, 0.207, 1, 0.452, 0.384, 0.324, 0.53, 0.211, 0.168, 0.366, 0.522, 0.261, 0.452, 1, 0.445, 0.425, 0.405, 0.328, 0.242, 0.307, 0.42, 0.393, 0.384, 0.445, 1), .Dim = c(10L, 10L), .Dimnames = list(c("I1", "I2", "I3", "I4", "I5", "I6", "I7", "I8", "I9", "I10"), c("I1", "I2", "I3", "I4", "I5", "I6", "I7", "I8", "I9", "I10"))), Neps2010d = structure(c(1, 0.263, 0.3947, 0.375, 0.231, 0.333, 0.3199, 0.1423, 0.319, 0.455, 0.263, 1, 0.1469, 0.17, 0.355, 0.511, 0.1625, 0.319, 0.46, 0.255, 0.3947, 0.1469, 1, 0.46, 0.164, 0.21, 0.2818, 0.0856, 0.207, 0.367, 0.375, 0.17, 0.46, 1, 0.159, 0.245, 0.2789, 0.1134, 0.242, 0.35, 0.231, 0.355, 0.164, 0.159, 1, 0.424, 0.1862, 0.3207, 0.423, 0.23, 0.333, 0.511, 0.21, 0.245, 0.424, 1, 0.1999, 0.325, 0.584, 0.321, 0.3199, 0.1625, 0.2818, 0.2789, 0.1862, 0.1999, 1, 0.0285, 0.189, 0.352, 0.1423, 0.319, 0.0856, 0.1134, 0.3207, 0.325, 0.0285, 1, 0.346, 0.11, 0.319, 0.46, 0.207, 0.242, 0.423, 0.584, 0.189, 0.346, 1, 0.301, 0.455, 0.255, 0.367, 0.35, 0.23, 0.321, 0.352, 0.11, 0.301, 1), .Dim = c(10L, 10L), .Dimnames = list(c("I1", "I2", "I3", "I4", "I5", "I6", "I7", "I8", "I9", "I10"), c("I1", "I2", "I3", "I4", "I5", "I6", "I7", "I8", "I9", "I10"))), Neps2010e = structure(c(1, 0.47, 0.522, 0.452, 0.472, 0.434, 0.446, 0.371, 0.534, 0.628, 0.47, 1, 0.372, 0.354, 0.516, 0.626, 0.367, 0.45, 0.598, 0.5, 0.522, 0.372, 1, 0.602, 0.435, 0.421, 0.465, 0.306, 0.416, 0.519, 0.452, 0.354, 0.602, 1, 0.388, 0.388, 0.444, 0.257, 0.387, 0.442, 0.472, 0.516, 0.435, 0.388, 1, 0.614, 0.407, 0.419, 0.559, 0.474, 0.434, 0.626, 0.421, 0.388, 0.614, 1, 0.395, 0.422, 0.655, 0.538, 0.446, 0.367, 0.465, 0.444, 0.407, 0.395, 1, 0.224, 0.401, 0.488, 0.371, 0.45, 0.306, 0.257, 0.419, 0.422, 0.224, 1, 0.504, 0.405, 0.534, 0.598, 0.416, 0.387, 0.559, 0.655, 0.401, 0.504, 1, 0.551, 0.628, 0.5, 0.519, 0.442, 0.474, 0.538, 0.488, 0.405, 0.551, 1), .Dim = c(10L, 10L), .Dimnames = list(c("I1", "I2", "I3", "I4", "I5", "I6", "I7", "I8", "I9", "I10"), c("I1", "I2", "I3", "I4", "I5", "I6", "I7", "I8", "I9", "I10"))), Neps2010f = structure(c(1, 0.376, 0.251, 0.156, 0.301, 0.374, 0.247, 0.361, 0.369, 0.531, 0.376, 1, 0.207, 0.139, 0.377, 0.572, 0.238, 0.409, 0.506, 0.419, 0.251, 0.207, 1, 0.323, 0.31, 0.214, 0.308, 0.186, 0.24, 0.308, 0.156, 0.139, 0.323, 1, 0.229, 0.14, 0.223, 0.143, 0.146, 0.212, 0.301, 0.377, 0.31, 0.229, 1, 0.428, 0.283, 0.326, 0.396, 0.34, 0.374, 0.572, 0.214, 0.14, 0.428, 1, 0.245, 0.392, 0.517, 0.422, 0.247, 0.238, 0.308, 0.223, 0.283, 0.245, 1, 0.236, 0.28, 0.32, 0.361, 0.409, 0.186, 0.143, 0.326, 0.392, 0.236, 1, 0.48, 0.458, 0.369, 0.506, 0.24, 0.146, 0.396, 0.517, 0.28, 0.48, 1, 0.475, 0.531, 0.419, 0.308, 0.212, 0.34, 0.422, 0.32, 0.458, 0.475, 1), .Dim = c(10L, 10L), .Dimnames = list(c("I1", "I2", "I3", "I4", "I5", "I6", "I7", "I8", "I9", "I10"), c("I1", "I2", "I3", "I4", "I5", "I6", "I7", "I8", "I9", "I10"))), Opd2014a = structure(c(1, 0.552, 0.513, 0.455, 0.568, 0.502, 0.577, 0.463, 0.59, 0.725, 0.552, 1, 0.471, 0.416, 0.581, 0.732, 0.535, 0.515, 0.616, 0.584, 0.513, 0.471, 1, 0.518, 0.495, 0.41, 0.668, 0.328, 0.475, 0.552, 0.455, 0.416, 0.518, 1, 0.421, 0.39, 0.539, 0.304, 0.441, 0.47, 0.568, 0.581, 0.495, 0.421, 1, 0.545, 0.528, 0.42, 0.633, 0.558, 0.502, 0.732, 0.41, 0.39, 0.545, 1, 0.468, 0.496, 0.573, 0.522, 0.577, 0.535, 0.668, 0.539, 0.528, 0.468, 1, 0.404, 0.547, 0.621, 0.463, 0.515, 0.328, 0.304, 0.42, 0.496, 0.404, 1, 0.451, 0.493, 0.59, 0.616, 0.475, 0.441, 0.633, 0.573, 0.547, 0.451, 1, 0.596, 0.725, 0.584, 0.552, 0.47, 0.558, 0.522, 0.621, 0.493, 0.596, 1), .Dim = c(10L, 10L), .Dimnames = list(c("I1", "I2", "I3", "I4", "I5", "I6", "I7", "I8", "I9", "I10"), c("I1", "I2", "I3", "I4", "I5", "I6", "I7", "I8", "I9", "I10"))), Opd2014b = structure(c(1, 0.562, 0.525, 0.501, 0.548, 0.482, 0.596, 0.466, 0.579, 0.75, 0.562, 1, 0.453, 0.428, 0.551, 0.729, 0.527, 0.508, 0.594, 0.571, 0.525, 0.453, 1, 0.545, 0.483, 0.388, 0.68, 0.323, 0.473, 0.559, 0.501, 0.428, 0.545, 1, 0.423, 0.396, 0.578, 0.313, 0.457, 0.508, 0.548, 0.551, 0.483, 0.423, 1, 0.5, 0.523, 0.412, 0.617, 0.545, 0.482, 0.729, 0.388, 0.396, 0.5, 1, 0.456, 0.487, 0.539, 0.509, 0.596, 0.527, 0.68, 0.578, 0.523, 0.456, 1, 0.4, 0.555, 0.628, 0.466, 0.508, 0.323, 0.313, 0.412, 0.487, 0.4, 1, 0.444, 0.497, 0.579, 0.594, 0.473, 0.457, 0.617, 0.539, 0.555, 0.444, 1, 0.591, 0.75, 0.571, 0.559, 0.508, 0.545, 0.509, 0.628, 0.497, 0.591, 1), .Dim = c(10L, 10L), .Dimnames = list(c("I1", "I2", "I3", "I4", "I5", "I6", "I7", "I8", "I9", "I10"), c("I1", "I2", "I3", "I4", "I5", "I6", "I7", "I8", "I9", "I10"))), Opd2014c = structure(c(1, 0.491, 0.418, 0.439, 0.603, 0.427, 0.521, 0.383, 0.611, 0.679, 0.491, 1, 0.273, 0.347, 0.562, 0.705, 0.424, 0.417, 0.53, 0.538, 0.418, 0.273, 1, 0.409, 0.384, 0.214, 0.575, 0.151, 0.421, 0.397, 0.439, 0.347, 0.409, 1, 0.408, 0.333, 0.477, 0.206, 0.437, 0.418, 0.603, 0.562, 0.384, 0.408, 1, 0.477, 0.459, 0.337, 0.646, 0.532, 0.427, 0.705, 0.214, 0.333, 0.477, 1, 0.32, 0.386, 0.478, 0.451, 0.521, 0.424, 0.575, 0.477, 0.459, 0.32, 1, 0.315, 0.531, 0.554, 0.383, 0.417, 0.151, 0.206, 0.337, 0.386, 0.315, 1, 0.414, 0.431, 0.611, 0.53, 0.421, 0.437, 0.646, 0.478, 0.531, 0.414, 1, 0.605, 0.679, 0.538, 0.397, 0.418, 0.532, 0.451, 0.554, 0.431, 0.605, 1), .Dim = c(10L, 10L), .Dimnames = list(c("I1", "I2", "I3", "I4", "I5", "I6", "I7", "I8", "I9", "I10"), c("I1", "I2", "I3", "I4", "I5", "I6", "I7", "I8", "I9", "I10"))), Opd2014d = structure(c(1, 0.532, 0.503, 0.478, 0.556, 0.473, 0.577, 0.443, 0.576, 0.744, 0.532, 1, 0.41, 0.427, 0.544, 0.732, 0.491, 0.495, 0.584, 0.55, 0.503, 0.41, 1, 0.526, 0.469, 0.37, 0.643, 0.292, 0.448, 0.516, 0.478, 0.427, 0.526, 1, 0.411, 0.404, 0.528, 0.329, 0.431, 0.481, 0.556, 0.544, 0.469, 0.411, 1, 0.502, 0.498, 0.398, 0.62, 0.537, 0.473, 0.732, 0.37, 0.404, 0.502, 1, 0.418, 0.475, 0.549, 0.49, 0.577, 0.491, 0.643, 0.528, 0.498, 0.418, 1, 0.369, 0.515, 0.59, 0.443, 0.495, 0.292, 0.329, 0.398, 0.475, 0.369, 1, 0.415, 0.477, 0.576, 0.584, 0.448, 0.431, 0.62, 0.549, 0.515, 0.415, 1, 0.573, 0.744, 0.55, 0.516, 0.481, 0.537, 0.49, 0.59, 0.477, 0.573, 1 ), .Dim = c(10L, 10L), .Dimnames = list(c("I1", "I2", "I3", "I4", "I5", "I6", "I7", "I8", "I9", "I10"), c("I1", "I2", "I3", "I4", "I5", "I6", "I7", "I8", "I9", "I10"))), Opd2014e = structure(c(1, 0.557, 0.538, 0.477, 0.569, 0.504, 0.577, 0.466, 0.584, 0.732, 0.557, 1, 0.476, 0.415, 0.579, 0.732, 0.511, 0.526, 0.618, 0.579, 0.538, 0.476, 1, 0.552, 0.51, 0.42, 0.668, 0.323, 0.463, 0.581, 0.477, 0.415, 0.552, 1, 0.433, 0.387, 0.553, 0.302, 0.411, 0.483, 0.569, 0.579, 0.51, 0.433, 1, 0.555, 0.529, 0.443, 0.63, 0.551, 0.504, 0.732, 0.42, 0.387, 0.555, 1, 0.449, 0.505, 0.579, 0.496, 0.577, 0.511, 0.668, 0.553, 0.529, 0.449, 1, 0.384, 0.522, 0.626, 0.466, 0.526, 0.323, 0.302, 0.443, 0.505, 0.384, 1, 0.46, 0.48, 0.584, 0.618, 0.463, 0.411, 0.63, 0.579, 0.522, 0.46, 1, 0.558, 0.732, 0.579, 0.581, 0.483, 0.551, 0.496, 0.626, 0.48, 0.558, 1), .Dim = c(10L, 10L), .Dimnames = list(c("I1", "I2", "I3", "I4", "I5", "I6", "I7", "I8", "I9", "I10"), c("I1", "I2", "I3", "I4", "I5", "I6", "I7", "I8", "I9", "I10"))), Opd2014f = structure(c(1, 0.389, 0.394, 0.361, 0.365, 0.389, 0.378, 0.253, 0.436, 0.615, 0.389, 1, 0.262, 0.195, 0.438, 0.706, 0.294, 0.414, 0.485, 0.379, 0.394, 0.262, 1, 0.46, 0.266, 0.201, 0.576, 0.11, 0.305, 0.481, 0.361, 0.195, 0.46, 1, 0.194, 0.166, 0.457, 0.09, 0.232, 0.447, 0.365, 0.438, 0.266, 0.194, 1, 0.442, 0.264, 0.309, 0.492, 0.371, 0.389, 0.706, 0.201, 0.166, 0.442, 1, 0.26, 0.419, 0.486, 0.386, 0.378, 0.294, 0.576, 0.457, 0.264, 0.26, 1, 0.207, 0.333, 0.49, 0.253, 0.414, 0.11, 0.09, 0.309, 0.419, 0.207, 1, 0.332, 0.238, 0.436, 0.485, 0.305, 0.232, 0.492, 0.486, 0.333, 0.332, 1, 0.433, 0.615, 0.379, 0.481, 0.447, 0.371, 0.386, 0.49, 0.238, 0.433, 1), .Dim = c(10L, 10L), .Dimnames = list(c("I1", "I2", "I3", "I4", "I5", "I6", "I7", "I8", "I9", "I10"), c("I1", "I2", "I3", "I4", "I5", "I6", "I7", "I8", "I9", "I10"))), Opd2014g = structure(c(1, 0.463, 0.452, 0.457, 0.521, 0.435, 0.568, 0.44, 0.524, 0.756, 0.463, 1, 0.3, 0.322, 0.503, 0.721, 0.423, 0.494, 0.597, 0.471, 0.452, 0.3, 1, 0.518, 0.43, 0.241, 0.685, 0.216, 0.375, 0.499, 0.457, 0.322, 0.518, 1, 0.37, 0.269, 0.583, 0.285, 0.391, 0.444, 0.521, 0.503, 0.43, 0.37, 1, 0.444, 0.478, 0.413, 0.594, 0.523, 0.435, 0.721, 0.241, 0.269, 0.444, 1, 0.353, 0.46, 0.503, 0.409, 0.568, 0.423, 0.685, 0.583, 0.478, 0.353, 1, 0.328, 0.503, 0.606, 0.44, 0.494, 0.216, 0.285, 0.413, 0.46, 0.328, 1, 0.469, 0.458, 0.524, 0.597, 0.375, 0.391, 0.594, 0.503, 0.503, 0.469, 1, 0.538, 0.756, 0.471, 0.499, 0.444, 0.523, 0.409, 0.606, 0.458, 0.538, 1), .Dim = c(10L, 10L), .Dimnames = list(c("I1", "I2", "I3", "I4", "I5", "I6", "I7", "I8", "I9", "I10"), c("I1", "I2", "I3", "I4", "I5", "I6", "I7", "I8", "I9", "I10"))), Opd2014h = structure(c(1, 0.361, 0.479, 0.422, 0.309, 0.307, 0.515, 0.115, 0.343, 0.621, 0.361, 1, 0.195, 0.1558, 0.476, 0.693, 0.212, 0.327, 0.552, 0.33, 0.479, 0.195, 1, 0.53, 0.243, 0.183, 0.677, 0.03, 0.211, 0.532, 0.422, 0.1558, 0.53, 1, 0.184, 0.153, 0.546, 0.012, 0.189, 0.463, 0.309, 0.476, 0.243, 0.184, 1, 0.49, 0.257, 0.338, 0.594, 0.362, 0.307, 0.693, 0.183, 0.153, 0.49, 1, 0.178, 0.328, 0.528, 0.286, 0.515, 0.212, 0.677, 0.546, 0.257, 0.178, 1, 0.051, 0.257, 0.559, 0.115, 0.327, 0.03, 0.012, 0.338, 0.328, 0.051, 1, 0.317, 0.09, 0.343, 0.552, 0.211, 0.189, 0.594, 0.528, 0.257, 0.317, 1, 0.383, 0.621, 0.33, 0.532, 0.463, 0.362, 0.286, 0.559, 0.09, 0.383, 1), .Dim = c(10L, 10L), .Dimnames = list(c("I1", "I2", "I3", "I4", "I5", "I6", "I7", "I8", "I9", "I10"), c("I1", "I2", "I3", "I4", "I5", "I6", "I7", "I8", "I9", "I10"))), Opd2014i = structure(c(1, 0.273, 0.546, 0.385, 0.247, 0.223, 0.54, 0.084, 0.339, 0.7, 0.273, 1, 0.054, 0.108, 0.54, 0.641, 0.172, 0.375, 0.538, 0.266, 0.546, 0.054, 1, 0.453, 0.074, 0.047, 0.632, -0.027, 0.091, 0.598, 0.385, 0.108, 0.453, 1, 0.084, 0.112, 0.557, 0.025, 0.086, 0.438, 0.247, 0.54, 0.074, 0.084, 1, 0.438, 0.179, 0.404, 0.557, 0.198, 0.223, 0.641, 0.047, 0.112, 0.438, 1, 0.062, 0.431, 0.523, 0.233, 0.54, 0.172, 0.632, 0.557, 0.179, 0.062, 1, 0.048, 0.167, 0.517, 0.084, 0.375, -0.027, 0.025, 0.404, 0.431, 0.048, 1, 0.377, 0.114, 0.339, 0.538, 0.091, 0.086, 0.557, 0.523, 0.167, 0.377, 1, 0.264, 0.7, 0.266, 0.598, 0.438, 0.198, 0.233, 0.517, 0.114, 0.264, 1), .Dim = c(10L, 10L), .Dimnames = list(c("I1", "I2", "I3", "I4", "I5", "I6", "I7", "I8", "I9", "I10"), c("I1", "I2", "I3", "I4", "I5", "I6", "I7", "I8", "I9", "I10"))), Opd2014j = structure(c(1, 0.134, 0.46, 0.503, 0.097, 0.184, 0.572, -0.058, 0.213, 0.681, 0.134, 1, 0.31, 0.132, 0.529, 0.698, 0.308, 0.463, 0.717, 0.296, 0.46, 0.31, 1, 0.521, 0.174, 0.132, 0.677, 0, 0.302, 0.579, 0.503, 0.132, 0.521, 1, 0.076, 0.095, 0.515, -0.092, 0.162, 0.548, 0.097, 0.529, 0.174, 0.076, 1, 0.526, 0.177, 0.355, 0.606, 0.09, 0.184, 0.698, 0.132, 0.095, 0.526, 1, 0.254, 0.432, 0.663, 0.218, 0.572, 0.308, 0.677, 0.515, 0.177, 0.254, 1, 0.062, 0.284, 0.609, -0.058, 0.463, 0, -0.092, 0.355, 0.432, 0.062, 1, 0.457, -0.041, 0.213, 0.717, 0.302, 0.162, 0.606, 0.663, 0.284, 0.457, 1, 0.269, 0.681, 0.296, 0.579, 0.548, 0.09, 0.218, 0.609, -0.041, 0.269, 1), .Dim = c(10L, 10L), .Dimnames = list(c("I1", "I2", "I3", "I4", "I5", "I6", "I7", "I8", "I9", "I10"), c("I1", "I2", "I3", "I4", "I5", "I6", "I7", "I8", "I9", "I10"))), Portes2012 = structure(c(1, 0.32, 0.373, 0.316, 0.275, 0.292, 0.253, 0.245, 0.338, 0.541, 0.32, 1, 0.245, 0.213, 0.336, 0.604, 0.154, 0.358, 0.397, 0.328, 0.373, 0.245, 1, 0.436, 0.32, 0.224, 0.442, 0.183, 0.341, 0.414, 0.316, 0.213, 0.436, 1, 0.267, 0.199, 0.304, 0.167, 0.291, 0.368, 0.275, 0.336, 0.32, 0.267, 1, 0.312, 0.232, 0.262, 0.438, 0.301, 0.292, 0.604, 0.224, 0.199, 0.312, 1, 0.146, 0.381, 0.34, 0.314, 0.253, 0.154, 0.442, 0.304, 0.232, 0.146, 1, 0.152, 0.211, 0.279, 0.245, 0.358, 0.183, 0.167, 0.262, 0.381, 0.152, 1, 0.264, 0.27, 0.338, 0.397, 0.341, 0.291, 0.438, 0.34, 0.211, 0.264, 1, 0.333, 0.541, 0.328, 0.414, 0.368, 0.301, 0.314, 0.279, 0.27, 0.333, 1), .Dim = c(10L, 10L), .Dimnames = list(c("I1", "I2", "I3", "I4", "I5", "I6", "I7", "I8", "I9", "I10"), c("I1", "I2", "I3", "I4", "I5", "I6", "I7", "I8", "I9", "I10"))), Shahni1990 = structure(c(1, 0.33, 0.23, 0.23, 0.23, 0.31, 0.15, 0.35, 0.29, 0.56, 0.33, 1, 0.12, 0.15, 0.3, 0.57, 0.06, 0.41, 0.38, 0.27, 0.23, 0.12, 1, 0.36, 0.12, 0.08, 0.55, 0.12, 0.2, 0.31, 0.23, 0.15, 0.36, 1, 0.11, 0.13, 0.26, 0.16, 0.16, 0.26, 0.23, 0.3, 0.12, 0.11, 1, 0.33, 0.1, 0.31, 0.04, 0.21, 0.31, 0.57, 0.08, 0.13, 0.33, 1, 0.06, 0.44, 0.32, 0.24, 0.15, 0.06, 0.55, 0.26, 0.1, 0.06, 1, 0.1, 0.15, 0.21, 0.35, 0.41, 0.12, 0.16, 0.31, 0.44, 0.1, 1, 0.3, 0.32, 0.29, 0.38, 0.2, 0.16, 0.04, 0.32, 0.15, 0.3, 1, 0.28, 0.56, 0.27, 0.31, 0.26, 0.21, 0.24, 0.21, 0.32, 0.28, 1), .Dim = c(10L, 10L), .Dimnames = list(c("I1", "I2", "I3", "I4", "I5", "I6", "I7", "I8", "I9", "I10"), c("I1", "I2", "I3", "I4", "I5", "I6", "I7", "I8", "I9", "I10"))), Song2011a = structure(c(1, 0.47, 0.52, 0.44, 0.56, 0.45, 0.58, 0.44, 0.51, 0.62, 0.47, 1, 0.37, 0.37, 0.47, 0.61, 0.38, 0.46, 0.53, 0.48, 0.52, 0.37, 1, 0.52, 0.55, 0.36, 0.46, 0.38, 0.41, 0.55, 0.44, 0.37, 0.52, 1, 0.46, 0.35, 0.49, 0.35, 0.39, 0.43, 0.56, 0.47, 0.55, 0.46, 1, 0.48, 0.55, 0.43, 0.57, 0.52, 0.45, 0.61, 0.36, 0.35, 0.48, 1, 0.4, 0.58, 0.56, 0.43, 0.58, 0.38, 0.46, 0.49, 0.55, 0.4, 1, 0.38, 0.5, 0.48, 0.44, 0.46, 0.38, 0.35, 0.43, 0.58, 0.38, 1, 0.49, 0.47, 0.51, 0.53, 0.41, 0.39, 0.57, 0.56, 0.5, 0.49, 1, 0.5, 0.62, 0.48, 0.55, 0.43, 0.52, 0.43, 0.48, 0.47, 0.5, 1), .Dim = c(10L, 10L), .Dimnames = list(c("I1", "I2", "I3", "I4", "I5", "I6", "I7", "I8", "I9", "I10"), c("I1", "I2", "I3", "I4", "I5", "I6", "I7", "I8", "I9", "I10"))), Song2011b = structure(c(1, 0.29, 0.44, 0.38, 0.22, 0.24, 0.4, 0.17, 0.43, 0.41, 0.29, 1, 0.28, 0.34, 0.33, 0.58, 0.26, 0.33, 0.47, 0.41, 0.44, 0.28, 1, 0.46, 0.3, 0.29, 0.36, 0.12, 0.4, 0.46, 0.38, 0.34, 0.46, 1, 0.19, 0.23, 0.51, 0.02, 0.4, 0.37, 0.22, 0.33, 0.3, 0.19, 1, 0.4, 0.23, 0.07, 0.47, 0.34, 0.24, 0.58, 0.29, 0.23, 0.4, 1, 0.3, 0.23, 0.5, 0.41, 0.4, 0.26, 0.36, 0.51, 0.23, 0.3, 1, 0.03, 0.39, 0.44, 0.17, 0.33, 0.12, 0.02, 0.07, 0.23, 0.03, 1, 0.16, 0.14, 0.43, 0.47, 0.4, 0.4, 0.47, 0.5, 0.39, 0.16, 1, 0.62, 0.41, 0.41, 0.46, 0.37, 0.34, 0.41, 0.44, 0.14, 0.62, 1), .Dim = c(10L, 10L), .Dimnames = list( c("I1", "I2", "I3", "I4", "I5", "I6", "I7", "I8", "I9", "I10" ), c("I1", "I2", "I3", "I4", "I5", "I6", "I7", "I8", "I9", "I10"))), Vasconcelos2012 = structure(c(1, 0.27, 0.44, 0.42, 0.23, 0.3, 0.37, 0.22, 0.34, 0.47, 0.27, 1, 0.31, 0.26, 0.41, 0.52, 0.26, 0.38, 0.42, 0.32, 0.44, 0.31, 1, 0.52, 0.31, 0.36, 0.48, 0.25, 0.37, 0.46, 0.42, 0.26, 0.52, 1, 0.27, 0.29, 0.49, 0.2, 0.37, 0.44, 0.23, 0.41, 0.31, 0.27, 1, 0.46, 0.27, 0.36, 0.49, 0.35, 0.3, 0.52, 0.36, 0.29, 0.46, 1, 0.29, 0.39, 0.57, 0.38, 0.37, 0.26, 0.48, 0.49, 0.27, 0.29, 1, 0.18, 0.4, 0.47, 0.22, 0.38, 0.25, 0.2, 0.36, 0.39, 0.18, 1, 0.42, 0.28, 0.34, 0.42, 0.37, 0.37, 0.49, 0.57, 0.4, 0.42, 1, 0.44, 0.47, 0.32, 0.46, 0.44, 0.35, 0.38, 0.47, 0.28, 0.44, 1), .Dim = c(10L, 10L ), .Dimnames = list(c("I1", "I2", "I3", "I4", "I5", "I6", "I7", "I8", "I9", "I10"), c("I1", "I2", "I3", "I4", "I5", "I6", "I7", "I8", "I9", "I10"))), Welsh2011 = structure(c(1, 0.408, 0.431, 0.451, 0.287, 0.46, 0.428, 0.388, 0.401, 0.579, 0.408, 1, 0.326, 0.264, 0.41, 0.632, 0.362, 0.528, 0.471, 0.425, 0.431, 0.326, 1, 0.401, 0.284, 0.304, 0.594, 0.316, 0.341, 0.467, 0.451, 0.264, 0.401, 1, 0.237, 0.369, 0.395, 0.227, 0.227, 0.374, 0.287, 0.41, 0.284, 0.237, 1, 0.415, 0.294, 0.45, 0.437, 0.311, 0.46, 0.632, 0.304, 0.369, 0.415, 1, 0.359, 0.535, 0.485, 0.435, 0.428, 0.362, 0.594, 0.395, 0.294, 0.359, 1, 0.399, 0.409, 0.505, 0.388, 0.528, 0.316, 0.227, 0.45, 0.535, 0.399, 1, 0.506, 0.462, 0.401, 0.471, 0.341, 0.227, 0.437, 0.485, 0.409, 0.506, 1, 0.463, 0.579, 0.425, 0.467, 0.374, 0.311, 0.435, 0.505, 0.462, 0.463, 1), .Dim = c(10L, 10L), .Dimnames = list(c("I1", "I2", "I3", "I4", "I5", "I6", "I7", "I8", "I9", "I10"), c("I1", "I2", "I3", "I4", "I5", "I6", "I7", "I8", "I9", "I10"))), Whiteside2003a = structure(c(1, 0.3, 0.39, 0.51, 0.17, 0.33, 0.29, 0, 0.42, 0.44, 0.3, 1, 0.15, 0.37, 0.56, 0.24, 0.15, 0.5, 0.28, 0.49, 0.39, 0.15, 1, 0.32, 0.23, 0.38, 0.17, 0.31, 0.4, 0.25, 0.51, 0.37, 0.32, 1, 0.28, 0.38, 0, 0.51, 0.46, 0.4, 0.17, 0.56, 0.23, 0.28, 1, 0.25, 0.26, 0.39, 0.24, 0.25, 0.33, 0.24, 0.38, 0.38, 0.25, 1, 0.26, 0.39, 0.44, 0.29, 0.29, 0.15, 0.17, 0, 0.26, 0.26, 1, 0.05, 0.32, 0.38, 0, 0.5, 0.31, 0.51, 0.39, 0.39, 0.05, 1, 0.08, 0.07, 0.42, 0.28, 0.4, 0.46, 0.24, 0.44, 0.32, 0.08, 1, 0.37, 0.44, 0.49, 0.25, 0.4, 0.25, 0.29, 0.38, 0.07, 0.37, 1), .Dim = c(10L, 10L), .Dimnames = list( c("I1", "I2", "I3", "I4", "I5", "I6", "I7", "I8", "I9", "I10" ), c("I1", "I2", "I3", "I4", "I5", "I6", "I7", "I8", "I9", "I10"))), Whiteside2003b = structure(c(1, 0.07, 0.28, 0.21, 0.17, 0.23, 0.25, 0.14, 0.22, 0.41, 0.07, 1, 0.26, 0.23, 0.46, 0.56, 0.23, 0.42, 0.52, 0.26, 0.28, 0.26, 1, 0.53, 0.28, 0.24, 0.43, 0.16, 0.43, 0.47, 0.21, 0.23, 0.53, 1, 0.25, 0.27, 0.35, 0.15, 0.37, 0.4, 0.17, 0.46, 0.28, 0.25, 1, 0.47, 0.29, 0.41, 0.59, 0.34, 0.23, 0.56, 0.24, 0.27, 0.47, 1, 0.3, 0.38, 0.5, 0.34, 0.25, 0.23, 0.43, 0.35, 0.29, 0.3, 1, 0.13, 0.38, 0.42, 0.14, 0.42, 0.16, 0.15, 0.41, 0.38, 0.13, 1, 0.45, 0.28, 0.22, 0.52, 0.43, 0.37, 0.59, 0.5, 0.38, 0.45, 1, 0.43, 0.41, 0.26, 0.47, 0.4, 0.34, 0.34, 0.42, 0.28, 0.43, 1), .Dim = c(10L, 10L ), .Dimnames = list(c("I1", "I2", "I3", "I4", "I5", "I6", "I7", "I8", "I9", "I10"), c("I1", "I2", "I3", "I4", "I5", "I6", "I7", "I8", "I9", "I10"))), Bagley1997a = structure(c(1, 0.4623, 0.4485, 0.4071, 0.4899, 0.4554, 0.3795, 0.4416, 0.5175, 0.5175, 0.4623, 1, 0.4355, 0.3953, 0.4757, 0.4422, 0.3685, 0.4288, 0.5025, 0.5025, 0.4485, 0.4355, 1, 0.3835, 0.4615, 0.429, 0.3575, 0.416, 0.4875, 0.4875, 0.4071, 0.3953, 0.3835, 1, 0.4189, 0.3894, 0.3245, 0.3776, 0.4425, 0.4425, 0.4899, 0.4757, 0.4615, 0.4189, 1, 0.4686, 0.3905, 0.4544, 0.5325, 0.5325, 0.4554, 0.4422, 0.429, 0.3894, 0.4686, 1, 0.363, 0.4224, 0.495, 0.495, 0.3795, 0.3685, 0.3575, 0.3245, 0.3905, 0.363, 1, 0.352, 0.4125, 0.4125, 0.4416, 0.4288, 0.416, 0.3776, 0.4544, 0.4224, 0.352, 1, 0.48, 0.48, 0.5175, 0.5025, 0.4875, 0.4425, 0.5325, 0.495, 0.4125, 0.48, 1, 0.5625, 0.5175, 0.5025, 0.4875, 0.4425, 0.5325, 0.495, 0.4125, 0.48, 0.5625, 1), .Dim = c(10L, 10L), .Dimnames = list(c("I1", "I2", "I3", "I4", "I5", "I6", "I7", "I8", "I9", "I10"), c("I1", "I2", "I3", "I4", "I5", "I6", "I7", "I8", "I9", "I10"))), Bagley1997b = structure(c(1, 0.4864, 0.5548, 0.494, 0.5624, 0.4788, 0.5092, 0.5016, 0.5852, 0.608, 0.4864, 1, 0.4672, 0.416, 0.4736, 0.4032, 0.4288, 0.4224, 0.4928, 0.512, 0.5548, 0.4672, 1, 0.4745, 0.5402, 0.4599, 0.4891, 0.4818, 0.5621, 0.584, 0.494, 0.416, 0.4745, 1, 0.481, 0.4095, 0.4355, 0.429, 0.5005, 0.52, 0.5624, 0.4736, 0.5402, 0.481, 1, 0.4662, 0.4958, 0.4884, 0.5698, 0.592, 0.4788, 0.4032, 0.4599, 0.4095, 0.4662, 1, 0.4221, 0.4158, 0.4851, 0.504, 0.5092, 0.4288, 0.4891, 0.4355, 0.4958, 0.4221, 1, 0.4422, 0.5159, 0.536, 0.5016, 0.4224, 0.4818, 0.429, 0.4884, 0.4158, 0.4422, 1, 0.5082, 0.528, 0.5852, 0.4928, 0.5621, 0.5005, 0.5698, 0.4851, 0.5159, 0.5082, 1, 0.616, 0.608, 0.512, 0.584, 0.52, 0.592, 0.504, 0.536, 0.528, 0.616, 1), .Dim = c(10L, 10L), .Dimnames = list(c("I1", "I2", "I3", "I4", "I5", "I6", "I7", "I8", "I9", "I10"), c("I1", "I2", "I3", "I4", "I5", "I6", "I7", "I8", "I9", "I10"))), Chao2017a = structure(c(1, 0.2968, 0.3752, 0.3024, 0.2968, 0.3584, 0.3304, 0.2856, 0.3696, 0.3864, 0.2968, 1, 0.3551, 0.2862, 0.2809, 0.3392, 0.3127, 0.2703, 0.3498, 0.3657, 0.3752, 0.3551, 1, 0.3618, 0.3551, 0.4288, 0.3953, 0.3417, 0.4422, 0.4623, 0.3024, 0.2862, 0.3618, 1, 0.2862, 0.3456, 0.3186, 0.2754, 0.3564, 0.3726, 0.2968, 0.2809, 0.3551, 0.2862, 1, 0.3392, 0.3127, 0.2703, 0.3498, 0.3657, 0.3584, 0.3392, 0.4288, 0.3456, 0.3392, 1, 0.3776, 0.3264, 0.4224, 0.4416, 0.3304, 0.3127, 0.3953, 0.3186, 0.3127, 0.3776, 1, 0.3009, 0.3894, 0.4071, 0.2856, 0.2703, 0.3417, 0.2754, 0.2703, 0.3264, 0.3009, 1, 0.3366, 0.3519, 0.3696, 0.3498, 0.4422, 0.3564, 0.3498, 0.4224, 0.3894, 0.3366, 1, 0.4554, 0.3864, 0.3657, 0.4623, 0.3726, 0.3657, 0.4416, 0.4071, 0.3519, 0.4554, 1), .Dim = c(10L, 10L), .Dimnames = list(c("I1", "I2", "I3", "I4", "I5", "I6", "I7", "I8", "I9", "I10"), c("I1", "I2", "I3", "I4", "I5", "I6", "I7", "I8", "I9", "I10"))), Chao2017b = structure(c(1, 0.4284, 0.3906, 0.3591, 0.3843, 0.4221, 0.2646, 0.3654, 0.3906, 0.4284, 0.4284, 1, 0.4216, 0.3876, 0.4148, 0.4556, 0.2856, 0.3944, 0.4216, 0.4624, 0.3906, 0.4216, 1, 0.3534, 0.3782, 0.4154, 0.2604, 0.3596, 0.3844, 0.4216, 0.3591, 0.3876, 0.3534, 1, 0.3477, 0.3819, 0.2394, 0.3306, 0.3534, 0.3876, 0.3843, 0.4148, 0.3782, 0.3477, 1, 0.4087, 0.2562, 0.3538, 0.3782, 0.4148, 0.4221, 0.4556, 0.4154, 0.3819, 0.4087, 1, 0.2814, 0.3886, 0.4154, 0.4556, 0.2646, 0.2856, 0.2604, 0.2394, 0.2562, 0.2814, 1, 0.2436, 0.2604, 0.2856, 0.3654, 0.3944, 0.3596, 0.3306, 0.3538, 0.3886, 0.2436, 1, 0.3596, 0.3944, 0.3906, 0.4216, 0.3844, 0.3534, 0.3782, 0.4154, 0.2604, 0.3596, 1, 0.4216, 0.4284, 0.4624, 0.4216, 0.3876, 0.4148, 0.4556, 0.2856, 0.3944, 0.4216, 1), .Dim = c(10L, 10L), .Dimnames = list(c("I1", "I2", "I3", "I4", "I5", "I6", "I7", "I8", "I9", "I10"), c("I1", "I2", "I3", "I4", "I5", "I6", "I7", "I8", "I9", "I10"))), Dobson1979 = structure(c(1, 0.2112, 0.2356, 0.1778, 0.235, 0.1876, 0.2464, 0.1656, 0.2156, 0.197, 0.2112, 1, 0.1827, 0.2616, 0.3885, 0.5502, 0.2013, 0.3582, 0.3267, 0.246, 0.2356, 0.1827, 1, 0.2602, 0.3249, 0.1526, 0.4323, 0.1914, 0.3113, 0.3078, 0.1778, 0.2616, 0.2602, 1, 0.2731, 0.2338, 0.2728, 0.198, 0.2486, 0.2237, 0.235, 0.3885, 0.3249, 0.2731, 1, 0.35, 0.3421, 0.2802, 0.3333, 0.2927, 0.1876, 0.5502, 0.1526, 0.2338, 0.35, 1, 0.1694, 0.3276, 0.2926, 0.217, 0.2464, 0.2013, 0.4323, 0.2728, 0.3421, 0.1694, 1, 0.2046, 0.3267, 0.3212, 0.1656, 0.3582, 0.1914, 0.198, 0.2802, 0.3276, 0.2046, 1, 0.2442, 0.2004, 0.2156, 0.3267, 0.3113, 0.2486, 0.3333, 0.2926, 0.3267, 0.2442, 1, 0.2706, 0.197, 0.246, 0.3078, 0.2237, 0.2927, 0.217, 0.3212, 0.2004, 0.2706, 1), .Dim = c(10L, 10L), .Dimnames = list(c("I1", "I2", "I3", "I4", "I5", "I6", "I7", "I8", "I9", "I10"), c("I1", "I2", "I3", "I4", "I5", "I6", "I7", "I8", "I9", "I10"))), Farid2013 = structure(c(1, -0.01072, 0.452756, 0.392052, -0.08666, -0.080088, 0.572268, 0.032256, -0.064992, 0.488544, -0.01072, 1, 0.126594, 0.168022, 0.325578, 0.451936, 0.013738, 0.267692, 0.454888, 0.00886000000000001, 0.452756, 0.126594, 1, 0.39674, 0.058054, 0.114347, 0.48608, 0.134653, 0.12821, 0.413813, 0.392052, 0.168022, 0.39674, 1, 0.106357, 0.177007, 0.425239, 0.163067, 0.189574, 0.361531, -0.08666, 0.325578, 0.058054, 0.106357, 1, 0.445261, -0.067097, 0.252557, 0.445978, -0.060035, -0.080088, 0.451936, 0.114347, 0.177007, 0.445261, 1, -0.050807, 0.353588, 0.615328, -0.047204, 0.572268, 0.013738, 0.48608, 0.425239, -0.067097, -0.050807, 1, 0.053813, -0.034694, 0.515029, 0.032256, 0.267692, 0.134653, 0.163067, 0.252557, 0.353588, 0.053813, 1, 0.357068, 0.043658, -0.064992, 0.454888, 0.12821, 0.189574, 0.445978, 0.615328, -0.034694, 0.357068, 1, -0.033476, 0.488544, 0.00886000000000001, 0.413813, 0.361531, -0.060035, -0.047204, 0.515029, 0.043658, -0.033476, 1), .Dim = c(10L, 10L), .Dimnames = list(c("I1", "I2", "I3", "I4", "I5", "I6", "I7", "I8", "I9", "I10"), c("I1", "I2", "I3", "I4", "I5", "I6", "I7", "I8", "I9", "I10"))), Franck2008 = structure(c(1, 0.3016, 0.3132, 0.3074, 0.4002, 0.3364, 0.4292, 0.377, 0.3944, 0.4176, 0.3016, 1, 0.2808, 0.2756, 0.3588, 0.3016, 0.3848, 0.338, 0.3536, 0.3744, 0.3132, 0.2808, 1, 0.2862, 0.3726, 0.3132, 0.3996, 0.351, 0.3672, 0.3888, 0.3074, 0.2756, 0.2862, 1, 0.3657, 0.3074, 0.3922, 0.3445, 0.3604, 0.3816, 0.4002, 0.3588, 0.3726, 0.3657, 1, 0.4002, 0.5106, 0.4485, 0.4692, 0.4968, 0.3364, 0.3016, 0.3132, 0.3074, 0.4002, 1, 0.4292, 0.377, 0.3944, 0.4176, 0.4292, 0.3848, 0.3996, 0.3922, 0.5106, 0.4292, 1, 0.481, 0.5032, 0.5328, 0.377, 0.338, 0.351, 0.3445, 0.4485, 0.377, 0.481, 1, 0.442, 0.468, 0.3944, 0.3536, 0.3672, 0.3604, 0.4692, 0.3944, 0.5032, 0.442, 1, 0.4896, 0.4176, 0.3744, 0.3888, 0.3816, 0.4968, 0.4176, 0.5328, 0.468, 0.4896, 1), .Dim = c(10L, 10L), .Dimnames = list(c("I1", "I2", "I3", "I4", "I5", "I6", "I7", "I8", "I9", "I10"), c("I1", "I2", "I3", "I4", "I5", "I6", "I7", "I8", "I9", "I10"))), Goldsmith1982 = structure(c(1, 0.4103, 0.6459, 0.519, 0.5876, 0.4634, 0.667, 0.358, 0.6658, 0.6819, 0.4103, 1, 0.2366, 0.33, 0.4069, 0.5737, 0.3345, 0.4478, 0.4003, 0.4771, 0.6459, 0.2366, 1, 0.573, 0.6279, 0.3369, 0.7925, 0.2574, 0.7495, 0.7256, 0.519, 0.33, 0.573, 1, 0.507, 0.381, 0.585, 0.294, 0.579, 0.588, 0.5876, 0.4069, 0.6279, 0.507, 1, 0.4576, 0.65, 0.3536, 0.65, 0.6669, 0.4634, 0.5737, 0.3369, 0.381, 0.4576, 1, 0.419, 0.4364, 0.4706, 0.5349, 0.667, 0.3345, 0.7925, 0.585, 0.65, 0.419, 1, 0.322, 0.759, 0.7525, 0.358, 0.4478, 0.2574, 0.294, 0.3536, 0.4364, 0.322, 1, 0.3628, 0.4134, 0.6658, 0.4003, 0.7495, 0.579, 0.65, 0.4706, 0.759, 0.3628, 1, 0.7535, 0.6819, 0.4771, 0.7256, 0.588, 0.6669, 0.5349, 0.7525, 0.4134, 0.7535, 1), .Dim = c(10L, 10L), .Dimnames = list(c("I1", "I2", "I3", "I4", "I5", "I6", "I7", "I8", "I9", "I10"), c("I1", "I2", "I3", "I4", "I5", "I6", "I7", "I8", "I9", "I10"))), Goldsmith1986a = structure(c(1, 0.1554, 0.7028, 0.588, 0.3178, 0.1064, 0.7252, 0.3626, 0.4942, 0.5502, 0.1554, 1, 0.00430000000000001, 0.0897, 0.2232, 0.4837, 0.1554, 0.3626, 0.2786, 0.2697, 0.7028, 0.00430000000000001, 1, 0.5817, 0.2573, -0.0475, 0.7028, 0.2583, 0.4225, 0.4836, 0.588, 0.0897, 0.5817, 1, 0.2451, 0.0489, 0.588, 0.2709, 0.3867, 0.4338, 0.3178, 0.2232, 0.2573, 0.2451, 1, 0.2063, 0.3178, 0.2576, 0.2764, 0.2937, 0.1064, 0.4837, -0.0475, 0.0489, 0.2063, 1, 0.1064, 0.3465, 0.2503, 0.237, 0.7252, 0.1554, 0.7028, 0.588, 0.3178, 0.1064, 1, 0.3626, 0.4942, 0.5502, 0.3626, 0.3626, 0.2583, 0.2709, 0.2576, 0.3465, 0.3626, 1, 0.357, 0.3717, 0.4942, 0.2786, 0.4225, 0.3867, 0.2764, 0.2503, 0.4942, 0.357, 1, 0.4335, 0.5502, 0.2697, 0.4836, 0.4338, 0.2937, 0.237, 0.5502, 0.3717, 0.4335, 1), .Dim = c(10L, 10L), .Dimnames = list(c("I1", "I2", "I3", "I4", "I5", "I6", "I7", "I8", "I9", "I10"), c("I1", "I2", "I3", "I4", "I5", "I6", "I7", "I8", "I9", "I10"))), Gray1997 = structure(c(1, 0.47734813, 0.50893787, 0.44261371, 0.52859212, 0.43360849, 0.51651369, 0.43796816, 0.55610807, 0.55224869, 0.47734813, 1, 0.47561159, 0.41363047, 0.49397884, 0.40521493, 0.48269133, 0.40928912, 0.51969299, 0.51608633, 0.50893787, 0.47561159, 1, 0.44100353, 0.52666916, 0.43203107, 0.51463467, 0.43637488, 0.55408501, 0.55023967, 0.44261371, 0.41363047, 0.44100353, 1, 0.45803428, 0.37572931, 0.44756811, 0.37950704, 0.48187733, 0.47853311, 0.52859212, 0.49397884, 0.52666916, 0.45803428, 1, 0.44871532, 0.53450892, 0.45322688, 0.57548276, 0.57148892, 0.43360849, 0.40521493, 0.43203107, 0.37572931, 0.44871532, 1, 0.43846209, 0.37178576, 0.47207327, 0.46879709, 0.51651369, 0.48269133, 0.51463467, 0.44756811, 0.53450892, 0.43846209, 1, 0.44287056, 0.56233287, 0.55843029, 0.43796816, 0.40928912, 0.43637488, 0.37950704, 0.45322688, 0.37178576, 0.44287056, 1, 0.47681968, 0.47351056, 0.55610807, 0.51969299, 0.55408501, 0.48187733, 0.57548276, 0.47207327, 0.56233287, 0.47681968, 1, 0.60123787, 0.55224869, 0.51608633, 0.55023967, 0.47853311, 0.57148892, 0.46879709, 0.55843029, 0.47351056, 0.60123787, 1), .Dim = c(10L, 10L), .Dimnames = list(c("I1", "I2", "I3", "I4", "I5", "I6", "I7", "I8", "I9", "I10"), c("I1", "I2", "I3", "I4", "I5", "I6", "I7", "I8", "I9", "I10"))), Hensley1976 = structure(c(1, 0.1856, 0.4106, 0.4359, 0.1946, 0.1677, 0.3888, 0.2133, 0.1847, 0.345, 0.1856, 1, 0.1376, 0.1491, 0.389, 0.4179, 0.1878, 0.4671, 0.4889, 0.1932, 0.4106, 0.1376, 1, 0.4847, 0.1674, 0.1317, 0.424, 0.1773, 0.1407, 0.3722, 0.4359, 0.1491, 0.4847, 1, 0.1798, 0.1422, 0.4501, 0.1908, 0.1522, 0.3953, 0.1946, 0.389, 0.1674, 0.1798, 1, 0.318, 0.1982, 0.36, 0.37, 0.1942, 0.1677, 0.4179, 0.1317, 0.1422, 0.318, 1, 0.1701, 0.3807, 0.3963, 0.1719, 0.3888, 0.1878, 0.424, 0.4501, 0.1982, 0.1701, 1, 0.2169, 0.1871, 0.3556, 0.2133, 0.4671, 0.1773, 0.1908, 0.36, 0.3807, 0.2169, 1, 0.4437, 0.2151, 0.1847, 0.4889, 0.1407, 0.1522, 0.37, 0.3963, 0.1871, 0.4437, 1, 0.1909, 0.345, 0.1932, 0.3722, 0.3953, 0.1942, 0.1719, 0.3556, 0.2151, 0.1909, 1), .Dim = c(10L, 10L), .Dimnames = list(c("I1", "I2", "I3", "I4", "I5", "I6", "I7", "I8", "I9", "I10"), c("I1", "I2", "I3", "I4", "I5", "I6", "I7", "I8", "I9", "I10"))), Hensley1977a = structure(c(1, 0.324, 0.318, 0.276, 0.318, 0.324, 0.372, 0.384, 0.39, 0.402, 0.324, 1, 0.2862, 0.2484, 0.2862, 0.2916, 0.3348, 0.3456, 0.351, 0.3618, 0.318, 0.2862, 1, 0.2438, 0.2809, 0.2862, 0.3286, 0.3392, 0.3445, 0.3551, 0.276, 0.2484, 0.2438, 1, 0.2438, 0.2484, 0.2852, 0.2944, 0.299, 0.3082, 0.318, 0.2862, 0.2809, 0.2438, 1, 0.2862, 0.3286, 0.3392, 0.3445, 0.3551, 0.324, 0.2916, 0.2862, 0.2484, 0.2862, 1, 0.3348, 0.3456, 0.351, 0.3618, 0.372, 0.3348, 0.3286, 0.2852, 0.3286, 0.3348, 1, 0.3968, 0.403, 0.4154, 0.384, 0.3456, 0.3392, 0.2944, 0.3392, 0.3456, 0.3968, 1, 0.416, 0.4288, 0.39, 0.351, 0.3445, 0.299, 0.3445, 0.351, 0.403, 0.416, 1, 0.4355, 0.402, 0.3618, 0.3551, 0.3082, 0.3551, 0.3618, 0.4154, 0.4288, 0.4355, 1), .Dim = c(10L, 10L), .Dimnames = list(c("I1", "I2", "I3", "I4", "I5", "I6", "I7", "I8", "I9", "I10"), c("I1", "I2", "I3", "I4", "I5", "I6", "I7", "I8", "I9", "I10"))), Hensley1977b = structure(c(1, 0.4402, 0.4047, 0.3621, 0.3337, 0.4118, 0.4757, 0.4331, 0.4331, 0.5112, 0.4402, 1, 0.3534, 0.3162, 0.2914, 0.3596, 0.4154, 0.3782, 0.3782, 0.4464, 0.4047, 0.3534, 1, 0.2907, 0.2679, 0.3306, 0.3819, 0.3477, 0.3477, 0.4104, 0.3621, 0.3162, 0.2907, 1, 0.2397, 0.2958, 0.3417, 0.3111, 0.3111, 0.3672, 0.3337, 0.2914, 0.2679, 0.2397, 1, 0.2726, 0.3149, 0.2867, 0.2867, 0.3384, 0.4118, 0.3596, 0.3306, 0.2958, 0.2726, 1, 0.3886, 0.3538, 0.3538, 0.4176, 0.4757, 0.4154, 0.3819, 0.3417, 0.3149, 0.3886, 1, 0.4087, 0.4087, 0.4824, 0.4331, 0.3782, 0.3477, 0.3111, 0.2867, 0.3538, 0.4087, 1, 0.3721, 0.4392, 0.4331, 0.3782, 0.3477, 0.3111, 0.2867, 0.3538, 0.4087, 0.3721, 1, 0.4392, 0.5112, 0.4464, 0.4104, 0.3672, 0.3384, 0.4176, 0.4824, 0.4392, 0.4392, 1), .Dim = c(10L, 10L), .Dimnames = list(c("I1", "I2", "I3", "I4", "I5", "I6", "I7", "I8", "I9", "I10"), c("I1", "I2", "I3", "I4", "I5", "I6", "I7", "I8", "I9", "I10"))), Kaplan1969 = structure(c(1, 0.3373, 0.1067, 0.1255, 0.2273, 0.3254, 0.1387, 0.2969, 0.2834, 0.2389, 0.3373, 1, -0.0231, 0.0316, 0.2806, 0.5858, 0.0547, 0.4678, 0.3488, 0.3118, 0.1067, -0.0231, 1, 0.5303, 0.3237, -0.0614, 0.5297, 0.1341, 0.4066, 0.2921, 0.1255, 0.0316, 0.5303, 1, 0.3152, -0.00339999999999999, 0.4801, 0.1616, 0.3956, 0.2896, 0.2273, 0.2806, 0.3237, 0.3152, 1, 0.2554, 0.3263, 0.3074, 0.4024, 0.3194, 0.3254, 0.5858, -0.0614, -0.00339999999999999, 0.2554, 1, 0.0194, 0.4522, 0.3172, 0.2882, 0.1387, 0.0547, 0.5297, 0.4801, 0.3263, 0.0194, 1, 0.1799, 0.4094, 0.3019, 0.2969, 0.4678, 0.1341, 0.1616, 0.3074, 0.4522, 0.1799, 1, 0.3832, 0.3242, 0.2834, 0.3488, 0.4066, 0.3956, 0.4024, 0.3172, 0.4094, 0.3832, 1, 0.3992, 0.2389, 0.3118, 0.2921, 0.2896, 0.3194, 0.2882, 0.3019, 0.3242, 0.3992, 1), .Dim = c(10L, 10L), .Dimnames = list(c("I1", "I2", "I3", "I4", "I5", "I6", "I7", "I8", "I9", "I10"), c("I1", "I2", "I3", "I4", "I5", "I6", "I7", "I8", "I9", "I10"))), Meurer2012 = structure(c(1, 0.406364, 0.34074, 0.27764, 0.402578, 0.439176, 0.326227, 0.406364, 0.455582, 0.410781, 0.406364, 1, 0.34776, 0.28336, 0.410872, 0.448224, 0.332948, 0.414736, 0.464968, 0.419244, 0.34074, 0.34776, 1, 0.2376, 0.34452, 0.37584, 0.27918, 0.34776, 0.38988, 0.35154, 0.27764, 0.28336, 0.2376, 1, 0.28072, 0.30624, 0.22748, 0.28336, 0.31768, 0.28644, 0.402578, 0.410872, 0.34452, 0.28072, 1, 0.444048, 0.329846, 0.410872, 0.460636, 0.415338, 0.439176, 0.448224, 0.37584, 0.30624, 0.444048, 1, 0.359832, 0.448224, 0.502512, 0.453096, 0.326227, 0.332948, 0.27918, 0.22748, 0.329846, 0.359832, 1, 0.332948, 0.373274, 0.336567, 0.406364, 0.414736, 0.34776, 0.28336, 0.410872, 0.448224, 0.332948, 1, 0.464968, 0.419244, 0.455582, 0.464968, 0.38988, 0.31768, 0.460636, 0.502512, 0.373274, 0.464968, 1, 0.470022, 0.410781, 0.419244, 0.35154, 0.28644, 0.415338, 0.453096, 0.336567, 0.419244, 0.470022, 1), .Dim = c(10L, 10L ), .Dimnames = list(c("I1", "I2", "I3", "I4", "I5", "I6", "I7", "I8", "I9", "I10"), c("I1", "I2", "I3", "I4", "I5", "I6", "I7", "I8", "I9", "I10"))), Mimura2007a = structure(c(1, 0.4725, 0.4905, 0.4979, 0.5153, 0.406, 0.5195, 0.4427, 0.569, 0.5309, 0.4725, 1, 0.2961, 0.3563, 0.4893, 0.6776, 0.4123, 0.5999, 0.567, 0.5649, 0.4905, 0.2961, 1, 0.6246, 0.5391, 0.1647, 0.6156, 0.3033, 0.5715, 0.5013, 0.4979, 0.3563, 0.6246, 1, 0.5429, 0.2421, 0.5988, 0.3523, 0.5825, 0.5207, 0.5153, 0.4893, 0.5391, 0.5429, 1, 0.4126, 0.5633, 0.4607, 0.608, 0.5645, 0.406, 0.6776, 0.1647, 0.2421, 0.4126, 1, 0.3071, 0.5958, 0.4915, 0.5068, 0.5195, 0.4123, 0.6156, 0.5988, 0.5633, 0.3071, 1, 0.3999, 0.6095, 0.5519, 0.4427, 0.5999, 0.3033, 0.3523, 0.4607, 0.5958, 0.3999, 1, 0.53, 0.5231, 0.569, 0.567, 0.5715, 0.5825, 0.608, 0.4915, 0.6095, 0.53, 1, 0.629, 0.5309, 0.5649, 0.5013, 0.5207, 0.5645, 0.5068, 0.5519, 0.5231, 0.629, 1), .Dim = c(10L, 10L), .Dimnames = list(c("I1", "I2", "I3", "I4", "I5", "I6", "I7", "I8", "I9", "I10"), c("I1", "I2", "I3", "I4", "I5", "I6", "I7", "I8", "I9", "I10"))), Mimura2007b = structure(c(1, 0.3503, 0.4705, 0.4124, 0.4544, 0.386, 0.444, 0.2178, 0.3827, 0.4162, 0.3503, 1, 0.2159, 0.2376, 0.3594, 0.5266, 0.2008, 0.4686, 0.5195, 0.382, 0.4705, 0.2159, 1, 0.4856, 0.479, 0.2798, 0.5544, 0.0594, 0.2789, 0.4084, 0.4124, 0.2376, 0.4856, 1, 0.4202, 0.2854, 0.4592, 0.1056, 0.2838, 0.3678, 0.4544, 0.3594, 0.479, 0.4202, 1, 0.3955, 0.452, 0.2244, 0.3921, 0.4251, 0.386, 0.5266, 0.2798, 0.2854, 0.3955, 1, 0.2616, 0.4356, 0.5131, 0.4061, 0.444, 0.2008, 0.5544, 0.4592, 0.452, 0.2616, 1, 0.0528, 0.2608, 0.3848, 0.2178, 0.4686, 0.0594, 0.1056, 0.2244, 0.4356, 0.0528, 1, 0.429, 0.264, 0.3827, 0.5195, 0.2789, 0.2838, 0.3921, 0.5131, 0.2608, 0.429, 1, 0.4021, 0.4162, 0.382, 0.4084, 0.3678, 0.4251, 0.4061, 0.3848, 0.264, 0.4021, 1), .Dim = c(10L, 10L), .Dimnames = list(c("I1", "I2", "I3", "I4", "I5", "I6", "I7", "I8", "I9", "I10"), c("I1", "I2", "I3", "I4", "I5", "I6", "I7", "I8", "I9", "I10"))), Mlacic2006 = structure(c(1, 0.5325, 0.4686, 0.4331, 0.5254, 0.5112, 0.4686, 0.4047, 0.5609, 0.4473, 0.5325, 1, 0.495, 0.4575, 0.555, 0.54, 0.495, 0.4275, 0.5925, 0.4725, 0.4686, 0.495, 1, 0.4026, 0.4884, 0.4752, 0.4356, 0.3762, 0.5214, 0.4158, 0.4331, 0.4575, 0.4026, 1, 0.4514, 0.4392, 0.4026, 0.3477, 0.4819, 0.3843, 0.5254, 0.555, 0.4884, 0.4514, 1, 0.5328, 0.4884, 0.4218, 0.5846, 0.4662, 0.5112, 0.54, 0.4752, 0.4392, 0.5328, 1, 0.4752, 0.4104, 0.5688, 0.4536, 0.4686, 0.495, 0.4356, 0.4026, 0.4884, 0.4752, 1, 0.3762, 0.5214, 0.4158, 0.4047, 0.4275, 0.3762, 0.3477, 0.4218, 0.4104, 0.3762, 1, 0.4503, 0.3591, 0.5609, 0.5925, 0.5214, 0.4819, 0.5846, 0.5688, 0.5214, 0.4503, 1, 0.4977, 0.4473, 0.4725, 0.4158, 0.3843, 0.4662, 0.4536, 0.4158, 0.3591, 0.4977, 1), .Dim = c(10L, 10L), .Dimnames = list(c("I1", "I2", "I3", "I4", "I5", "I6", "I7", "I8", "I9", "I10"), c("I1", "I2", "I3", "I4", "I5", "I6", "I7", "I8", "I9", "I10"))), Obrien1985 = structure(c(1, 0.396, 0.4554, 0.3762, 0.4356, 0.3762, 0.5214, 0.5148, 0.495, 0.5346, 0.396, 1, 0.414, 0.342, 0.396, 0.342, 0.474, 0.468, 0.45, 0.486, 0.4554, 0.414, 1, 0.3933, 0.4554, 0.3933, 0.5451, 0.5382, 0.5175, 0.5589, 0.3762, 0.342, 0.3933, 1, 0.3762, 0.3249, 0.4503, 0.4446, 0.4275, 0.4617, 0.4356, 0.396, 0.4554, 0.3762, 1, 0.3762, 0.5214, 0.5148, 0.495, 0.5346, 0.3762, 0.342, 0.3933, 0.3249, 0.3762, 1, 0.4503, 0.4446, 0.4275, 0.4617, 0.5214, 0.474, 0.5451, 0.4503, 0.5214, 0.4503, 1, 0.6162, 0.5925, 0.6399, 0.5148, 0.468, 0.5382, 0.4446, 0.5148, 0.4446, 0.6162, 1, 0.585, 0.6318, 0.495, 0.45, 0.5175, 0.4275, 0.495, 0.4275, 0.5925, 0.585, 1, 0.6075, 0.5346, 0.486, 0.5589, 0.4617, 0.5346, 0.4617, 0.6399, 0.6318, 0.6075, 1), .Dim = c(10L, 10L), .Dimnames = list(c("I1", "I2", "I3", "I4", "I5", "I6", "I7", "I8", "I9", "I10"), c("I1", "I2", "I3", "I4", "I5", "I6", "I7", "I8", "I9", "I10"))), Pullmann2000 = structure(c(1, 0.4104, 0.4032, 0.4104, 0.54, 0.4392, 0.504, 0.3528, 0.5112, 0.5328, 0.4104, 1, 0.3192, 0.3249, 0.4275, 0.3477, 0.399, 0.2793, 0.4047, 0.4218, 0.4032, 0.3192, 1, 0.3192, 0.42, 0.3416, 0.392, 0.2744, 0.3976, 0.4144, 0.4104, 0.3249, 0.3192, 1, 0.4275, 0.3477, 0.399, 0.2793, 0.4047, 0.4218, 0.54, 0.4275, 0.42, 0.4275, 1, 0.4575, 0.525, 0.3675, 0.5325, 0.555, 0.4392, 0.3477, 0.3416, 0.3477, 0.4575, 1, 0.427, 0.2989, 0.4331, 0.4514, 0.504, 0.399, 0.392, 0.399, 0.525, 0.427, 1, 0.343, 0.497, 0.518, 0.3528, 0.2793, 0.2744, 0.2793, 0.3675, 0.2989, 0.343, 1, 0.3479, 0.3626, 0.5112, 0.4047, 0.3976, 0.4047, 0.5325, 0.4331, 0.497, 0.3479, 1, 0.5254, 0.5328, 0.4218, 0.4144, 0.4218, 0.555, 0.4514, 0.518, 0.3626, 0.5254, 1), .Dim = c(10L, 10L), .Dimnames = list(c("I1", "I2", "I3", "I4", "I5", "I6", "I7", "I8", "I9", "I10"), c("I1", "I2", "I3", "I4", "I5", "I6", "I7", "I8", "I9", "I10"))), Rojas2009 = structure(c(1, 0, 0.529505, 0.563517, 0, 0, 0.500131, 0, 0, 0.60294, 0, 1, 0, 0, 0.500226, 0.635145, 0, 0.389766, 0.525474, 0, 0.529505, 0, 1, 0.499365, 0, 0, 0.443195, 0, 0, 0.5343, 0.563517, 0, 0.499365, 1, 0, 0, 0.471663, 0, 0, 0.56862, 0, 0.500226, 0, 0, 1, 0.51037, 0, 0.313196, 0.422244, 0, 0, 0.635145, 0, 0, 0.51037, 1, 0, 0.39767, 0.53613, 0, 0.500131, 0, 0.443195, 0.471663, 0, 0, 1, 0, 0, 0.50466, 0, 0.389766, 0, 0, 0.313196, 0.39767, 0, 1, 0.329004, 0, 0, 0.525474, 0, 0, 0.422244, 0.53613, 0, 0.329004, 1, 0, 0.60294, 0, 0.5343, 0.56862, 0, 0, 0.50466, 0, 0, 1), .Dim = c(10L, 10L), .Dimnames = list( c("I1", "I2", "I3", "I4", "I5", "I6", "I7", "I8", "I9", "I10" ), c("I1", "I2", "I3", "I4", "I5", "I6", "I7", "I8", "I9", "I10"))), Sarkova2006a = structure(c(1, 0.2885, 0.3096, 0.414, 0.2964, 0.2942, 0.4629, 0.1513, 0.458, 0.3395, 0.2885, 1, -0.0495, 0.2025, 0.4335, 0.514, 0.2715, 0.4265, 0.37, 0.133, 0.3096, -0.0495, 1, 0.391, 0.0298, -0.043, 0.3981, -0.1627, 0.306, 0.3493, 0.414, 0.2025, 0.391, 1, 0.235, 0.209, 0.4845, 0.0605, 0.45, 0.3745, 0.2964, 0.4335, 0.0298, 0.235, 1, 0.4358, 0.2955, 0.3419, 0.366, 0.1687, 0.2942, 0.514, -0.043, 0.209, 0.4358, 1, 0.2784, 0.426, 0.376, 0.1386, 0.4629, 0.2715, 0.3981, 0.4845, 0.2955, 0.2784, 1, 0.1143, 0.51, 0.4032, 0.1513, 0.4265, -0.1627, 0.0605, 0.3419, 0.426, 0.1143, 1, 0.218, 0.0154, 0.458, 0.37, 0.306, 0.45, 0.366, 0.376, 0.51, 0.218, 1, 0.364, 0.3395, 0.133, 0.3493, 0.3745, 0.1687, 0.1386, 0.4032, 0.0154, 0.364, 1), .Dim = c(10L, 10L), .Dimnames = list( c("I1", "I2", "I3", "I4", "I5", "I6", "I7", "I8", "I9", "I10" ), c("I1", "I2", "I3", "I4", "I5", "I6", "I7", "I8", "I9", "I10"))), Sarkova2006b = structure(c(1, 0.1476, 0.3438, 0.3504, 0.1244, 0.3115, 0.3958, -0.1706, 0.282, 0.4028, 0.1476, 1, 0.0056, 0.1765, 0.3841, 0.4486, 0.1423, 0.1861, 0.4288, 0.0452, 0.3438, 0.0056, 1, 0.3008, -0.0184, 0.1538, 0.362, -0.2524, 0.1304, 0.4072, 0.3504, 0.1765, 0.3008, 1, 0.1561, 0.3274, 0.3631, -0.1259, 0.2992, 0.3572, 0.1244, 0.3841, -0.0184, 0.1561, 1, 0.4374, 0.1179, 0.2025, 0.4192, 0.018, 0.3115, 0.4486, 0.1538, 0.3274, 0.4374, 1, 0.3128, 0.1124, 0.55, 0.2188, 0.3958, 0.1423, 0.362, 0.3631, 0.1179, 0.3128, 1, -0.1861, 0.2824, 0.4228, -0.1706, 0.1861, -0.2524, -0.1259, 0.2025, 0.1124, -0.1861, 1, 0.1192, -0.266, 0.282, 0.4288, 0.1304, 0.2992, 0.4192, 0.55, 0.2824, 0.1192, 1, 0.1904, 0.4028, 0.0452, 0.4072, 0.3572, 0.018, 0.2188, 0.4228, -0.266, 0.1904, 1), .Dim = c(10L, 10L), .Dimnames = list(c("I1", "I2", "I3", "I4", "I5", "I6", "I7", "I8", "I9", "I10"), c("I1", "I2", "I3", "I4", "I5", "I6", "I7", "I8", "I9", "I10"))), Schmitt2005a = structure(c(1, 0.5037, 0.4347, 0.4347, 0.2553, 0.4485, 0.3312, 0.3657, 0.4623, 0.4623, 0.5037, 1, 0.4599, 0.4599, 0.2701, 0.4745, 0.3504, 0.3869, 0.4891, 0.4891, 0.4347, 0.4599, 1, 0.3969, 0.2331, 0.4095, 0.3024, 0.3339, 0.4221, 0.4221, 0.4347, 0.4599, 0.3969, 1, 0.2331, 0.4095, 0.3024, 0.3339, 0.4221, 0.4221, 0.2553, 0.2701, 0.2331, 0.2331, 1, 0.2405, 0.1776, 0.1961, 0.2479, 0.2479, 0.4485, 0.4745, 0.4095, 0.4095, 0.2405, 1, 0.312, 0.3445, 0.4355, 0.4355, 0.3312, 0.3504, 0.3024, 0.3024, 0.1776, 0.312, 1, 0.2544, 0.3216, 0.3216, 0.3657, 0.3869, 0.3339, 0.3339, 0.1961, 0.3445, 0.2544, 1, 0.3551, 0.3551, 0.4623, 0.4891, 0.4221, 0.4221, 0.2479, 0.4355, 0.3216, 0.3551, 1, 0.4489, 0.4623, 0.4891, 0.4221, 0.4221, 0.2479, 0.4355, 0.3216, 0.3551, 0.4489, 1), .Dim = c(10L, 10L), .Dimnames = list(c("I1", "I2", "I3", "I4", "I5", "I6", "I7", "I8", "I9", "I10"), c("I1", "I2", "I3", "I4", "I5", "I6", "I7", "I8", "I9", "I10"))), Schmitt2005aa = structure(c(1, 0.3796, 0.3848, 0.2964, 0.364, 0.4056, 0.364, 0.0208, 0.3016, 0.3328, 0.3796, 1, 0.5402, 0.4161, 0.511, 0.5694, 0.511, 0.0292, 0.4234, 0.4672, 0.3848, 0.5402, 1, 0.4218, 0.518, 0.5772, 0.518, 0.0296, 0.4292, 0.4736, 0.2964, 0.4161, 0.4218, 1, 0.399, 0.4446, 0.399, 0.0228, 0.3306, 0.3648, 0.364, 0.511, 0.518, 0.399, 1, 0.546, 0.49, 0.028, 0.406, 0.448, 0.4056, 0.5694, 0.5772, 0.4446, 0.546, 1, 0.546, 0.0312, 0.4524, 0.4992, 0.364, 0.511, 0.518, 0.399, 0.49, 0.546, 1, 0.028, 0.406, 0.448, 0.0208, 0.0292, 0.0296, 0.0228, 0.028, 0.0312, 0.028, 1, 0.0232, 0.0256, 0.3016, 0.4234, 0.4292, 0.3306, 0.406, 0.4524, 0.406, 0.0232, 1, 0.3712, 0.3328, 0.4672, 0.4736, 0.3648, 0.448, 0.4992, 0.448, 0.0256, 0.3712, 1), .Dim = c(10L, 10L), .Dimnames = list(c("I1", "I2", "I3", "I4", "I5", "I6", "I7", "I8", "I9", "I10"), c("I1", "I2", "I3", "I4", "I5", "I6", "I7", "I8", "I9", "I10"))), Schmitt2005aaa = structure(c(1, 0.3648, 0.342, 0.3135, 0.3135, 0.3534, 0.3705, 0.1653, 0.3192, 0.3306, 0.3648, 1, 0.384, 0.352, 0.352, 0.3968, 0.416, 0.1856, 0.3584, 0.3712, 0.342, 0.384, 1, 0.33, 0.33, 0.372, 0.39, 0.174, 0.336, 0.348, 0.3135, 0.352, 0.33, 1, 0.3025, 0.341, 0.3575, 0.1595, 0.308, 0.319, 0.3135, 0.352, 0.33, 0.3025, 1, 0.341, 0.3575, 0.1595, 0.308, 0.319, 0.3534, 0.3968, 0.372, 0.341, 0.341, 1, 0.403, 0.1798, 0.3472, 0.3596, 0.3705, 0.416, 0.39, 0.3575, 0.3575, 0.403, 1, 0.1885, 0.364, 0.377, 0.1653, 0.1856, 0.174, 0.1595, 0.1595, 0.1798, 0.1885, 1, 0.1624, 0.1682, 0.3192, 0.3584, 0.336, 0.308, 0.308, 0.3472, 0.364, 0.1624, 1, 0.3248, 0.3306, 0.3712, 0.348, 0.319, 0.319, 0.3596, 0.377, 0.1682, 0.3248, 1 ), .Dim = c(10L, 10L), .Dimnames = list(c("I1", "I2", "I3", "I4", "I5", "I6", "I7", "I8", "I9", "I10"), c("I1", "I2", "I3", "I4", "I5", "I6", "I7", "I8", "I9", "I10"))), Schmitt2005b = structure(c(1, 0.5475, 0.5325, 0.465, 0.57, 0.5475, 0.5175, 0.5175, 0.5475, 0.5925, 0.5475, 1, 0.5183, 0.4526, 0.5548, 0.5329, 0.5037, 0.5037, 0.5329, 0.5767, 0.5325, 0.5183, 1, 0.4402, 0.5396, 0.5183, 0.4899, 0.4899, 0.5183, 0.5609, 0.465, 0.4526, 0.4402, 1, 0.4712, 0.4526, 0.4278, 0.4278, 0.4526, 0.4898, 0.57, 0.5548, 0.5396, 0.4712, 1, 0.5548, 0.5244, 0.5244, 0.5548, 0.6004, 0.5475, 0.5329, 0.5183, 0.4526, 0.5548, 1, 0.5037, 0.5037, 0.5329, 0.5767, 0.5175, 0.5037, 0.4899, 0.4278, 0.5244, 0.5037, 1, 0.4761, 0.5037, 0.5451, 0.5175, 0.5037, 0.4899, 0.4278, 0.5244, 0.5037, 0.4761, 1, 0.5037, 0.5451, 0.5475, 0.5329, 0.5183, 0.4526, 0.5548, 0.5329, 0.5037, 0.5037, 1, 0.5767, 0.5925, 0.5767, 0.5609, 0.4898, 0.6004, 0.5767, 0.5451, 0.5451, 0.5767, 1), .Dim = c(10L, 10L), .Dimnames = list(c("I1", "I2", "I3", "I4", "I5", "I6", "I7", "I8", "I9", "I10"), c("I1", "I2", "I3", "I4", "I5", "I6", "I7", "I8", "I9", "I10"))), Schmitt2005bb = structure(c(1, 0.4554, 0.3933, 0.3243, 0.3795, 0.4416, 0.4071, 0.3381, 0.4623, 0.5658, 0.4554, 1, 0.3762, 0.3102, 0.363, 0.4224, 0.3894, 0.3234, 0.4422, 0.5412, 0.3933, 0.3762, 1, 0.2679, 0.3135, 0.3648, 0.3363, 0.2793, 0.3819, 0.4674, 0.3243, 0.3102, 0.2679, 1, 0.2585, 0.3008, 0.2773, 0.2303, 0.3149, 0.3854, 0.3795, 0.363, 0.3135, 0.2585, 1, 0.352, 0.3245, 0.2695, 0.3685, 0.451, 0.4416, 0.4224, 0.3648, 0.3008, 0.352, 1, 0.3776, 0.3136, 0.4288, 0.5248, 0.4071, 0.3894, 0.3363, 0.2773, 0.3245, 0.3776, 1, 0.2891, 0.3953, 0.4838, 0.3381, 0.3234, 0.2793, 0.2303, 0.2695, 0.3136, 0.2891, 1, 0.3283, 0.4018, 0.4623, 0.4422, 0.3819, 0.3149, 0.3685, 0.4288, 0.3953, 0.3283, 1, 0.5494, 0.5658, 0.5412, 0.4674, 0.3854, 0.451, 0.5248, 0.4838, 0.4018, 0.5494, 1), .Dim = c(10L, 10L), .Dimnames = list(c("I1", "I2", "I3", "I4", "I5", "I6", "I7", "I8", "I9", "I10"), c("I1", "I2", "I3", "I4", "I5", "I6", "I7", "I8", "I9", "I10"))), Schmitt2005c = structure(c(1, 0.4692, 0.414, 0.4623, 0.4416, 0.4692, 0.3864, 0.4416, 0.4761, 0.4899, 0.4692, 1, 0.408, 0.4556, 0.4352, 0.4624, 0.3808, 0.4352, 0.4692, 0.4828, 0.414, 0.408, 1, 0.402, 0.384, 0.408, 0.336, 0.384, 0.414, 0.426, 0.4623, 0.4556, 0.402, 1, 0.4288, 0.4556, 0.3752, 0.4288, 0.4623, 0.4757, 0.4416, 0.4352, 0.384, 0.4288, 1, 0.4352, 0.3584, 0.4096, 0.4416, 0.4544, 0.4692, 0.4624, 0.408, 0.4556, 0.4352, 1, 0.3808, 0.4352, 0.4692, 0.4828, 0.3864, 0.3808, 0.336, 0.3752, 0.3584, 0.3808, 1, 0.3584, 0.3864, 0.3976, 0.4416, 0.4352, 0.384, 0.4288, 0.4096, 0.4352, 0.3584, 1, 0.4416, 0.4544, 0.4761, 0.4692, 0.414, 0.4623, 0.4416, 0.4692, 0.3864, 0.4416, 1, 0.4899, 0.4899, 0.4828, 0.426, 0.4757, 0.4544, 0.4828, 0.3976, 0.4544, 0.4899, 1), .Dim = c(10L, 10L), .Dimnames = list(c("I1", "I2", "I3", "I4", "I5", "I6", "I7", "I8", "I9", "I10"), c("I1", "I2", "I3", "I4", "I5", "I6", "I7", "I8", "I9", "I10"))), Schmitt2005cc = structure(c(1, 0.4026, 0.3498, 0.3828, 0.4554, 0.4092, 0.3564, 0.4026, 0.4356, 0.429, 0.4026, 1, 0.3233, 0.3538, 0.4209, 0.3782, 0.3294, 0.3721, 0.4026, 0.3965, 0.3498, 0.3233, 1, 0.3074, 0.3657, 0.3286, 0.2862, 0.3233, 0.3498, 0.3445, 0.3828, 0.3538, 0.3074, 1, 0.4002, 0.3596, 0.3132, 0.3538, 0.3828, 0.377, 0.4554, 0.4209, 0.3657, 0.4002, 1, 0.4278, 0.3726, 0.4209, 0.4554, 0.4485, 0.4092, 0.3782, 0.3286, 0.3596, 0.4278, 1, 0.3348, 0.3782, 0.4092, 0.403, 0.3564, 0.3294, 0.2862, 0.3132, 0.3726, 0.3348, 1, 0.3294, 0.3564, 0.351, 0.4026, 0.3721, 0.3233, 0.3538, 0.4209, 0.3782, 0.3294, 1, 0.4026, 0.3965, 0.4356, 0.4026, 0.3498, 0.3828, 0.4554, 0.4092, 0.3564, 0.4026, 1, 0.429, 0.429, 0.3965, 0.3445, 0.377, 0.4485, 0.403, 0.351, 0.3965, 0.429, 1), .Dim = c(10L, 10L), .Dimnames = list(c("I1", "I2", "I3", "I4", "I5", "I6", "I7", "I8", "I9", "I10"), c("I1", "I2", "I3", "I4", "I5", "I6", "I7", "I8", "I9", "I10"))), Schmitt2005d = structure(c(1, 0.1106, 0.6636, 0.6241, 0.5135, 0.2923, 0.6715, -0.3792, 0.4266, 0.7031, 0.1106, 1, 0.1176, 0.1106, 0.091, 0.0518, 0.119, -0.0672, 0.0756, 0.1246, 0.6636, 0.1176, 1, 0.6636, 0.546, 0.3108, 0.714, -0.4032, 0.4536, 0.7476, 0.6241, 0.1106, 0.6636, 1, 0.5135, 0.2923, 0.6715, -0.3792, 0.4266, 0.7031, 0.5135, 0.091, 0.546, 0.5135, 1, 0.2405, 0.5525, -0.312, 0.351, 0.5785, 0.2923, 0.0518, 0.3108, 0.2923, 0.2405, 1, 0.3145, -0.1776, 0.1998, 0.3293, 0.6715, 0.119, 0.714, 0.6715, 0.5525, 0.3145, 1, -0.408, 0.459, 0.7565, -0.3792, -0.0672, -0.4032, -0.3792, -0.312, -0.1776, -0.408, 1, -0.2592, -0.4272, 0.4266, 0.0756, 0.4536, 0.4266, 0.351, 0.1998, 0.459, -0.2592, 1, 0.4806, 0.7031, 0.1246, 0.7476, 0.7031, 0.5785, 0.3293, 0.7565, -0.4272, 0.4806, 1), .Dim = c(10L, 10L), .Dimnames = list( c("I1", "I2", "I3", "I4", "I5", "I6", "I7", "I8", "I9", "I10" ), c("I1", "I2", "I3", "I4", "I5", "I6", "I7", "I8", "I9", "I10"))), Schmitt2005dd = structure(c(1, 0.276, 0.3312, 0.2829, 0.3864, 0.4485, 0.345, 0.3312, 0.4968, 0.4692, 0.276, 1, 0.192, 0.164, 0.224, 0.26, 0.2, 0.192, 0.288, 0.272, 0.3312, 0.192, 1, 0.1968, 0.2688, 0.312, 0.24, 0.2304, 0.3456, 0.3264, 0.2829, 0.164, 0.1968, 1, 0.2296, 0.2665, 0.205, 0.1968, 0.2952, 0.2788, 0.3864, 0.224, 0.2688, 0.2296, 1, 0.364, 0.28, 0.2688, 0.4032, 0.3808, 0.4485, 0.26, 0.312, 0.2665, 0.364, 1, 0.325, 0.312, 0.468, 0.442, 0.345, 0.2, 0.24, 0.205, 0.28, 0.325, 1, 0.24, 0.36, 0.34, 0.3312, 0.192, 0.2304, 0.1968, 0.2688, 0.312, 0.24, 1, 0.3456, 0.3264, 0.4968, 0.288, 0.3456, 0.2952, 0.4032, 0.468, 0.36, 0.3456, 1, 0.4896, 0.4692, 0.272, 0.3264, 0.2788, 0.3808, 0.442, 0.34, 0.3264, 0.4896, 1), .Dim = c(10L, 10L), .Dimnames = list( c("I1", "I2", "I3", "I4", "I5", "I6", "I7", "I8", "I9", "I10" ), c("I1", "I2", "I3", "I4", "I5", "I6", "I7", "I8", "I9", "I10"))), Schmitt2005e = structure(c(1, 0.568, 0.528, 0.488, 0.608, 0.544, 0.6, 0.552, 0.6, 0.656, 0.568, 1, 0.4686, 0.4331, 0.5396, 0.4828, 0.5325, 0.4899, 0.5325, 0.5822, 0.528, 0.4686, 1, 0.4026, 0.5016, 0.4488, 0.495, 0.4554, 0.495, 0.5412, 0.488, 0.4331, 0.4026, 1, 0.4636, 0.4148, 0.4575, 0.4209, 0.4575, 0.5002, 0.608, 0.5396, 0.5016, 0.4636, 1, 0.5168, 0.57, 0.5244, 0.57, 0.6232, 0.544, 0.4828, 0.4488, 0.4148, 0.5168, 1, 0.51, 0.4692, 0.51, 0.5576, 0.6, 0.5325, 0.495, 0.4575, 0.57, 0.51, 1, 0.5175, 0.5625, 0.615, 0.552, 0.4899, 0.4554, 0.4209, 0.5244, 0.4692, 0.5175, 1, 0.5175, 0.5658, 0.6, 0.5325, 0.495, 0.4575, 0.57, 0.51, 0.5625, 0.5175, 1, 0.615, 0.656, 0.5822, 0.5412, 0.5002, 0.6232, 0.5576, 0.615, 0.5658, 0.615, 1), .Dim = c(10L, 10L), .Dimnames = list( c("I1", "I2", "I3", "I4", "I5", "I6", "I7", "I8", "I9", "I10" ), c("I1", "I2", "I3", "I4", "I5", "I6", "I7", "I8", "I9", "I10"))), Schmitt2005ee = structure(c(1, 0.4032, 0.3472, 0.3528, 0.4032, 0.3416, 0.2632, -0.1904, 0.28, 0.4088, 0.4032, 1, 0.4464, 0.4536, 0.5184, 0.4392, 0.3384, -0.2448, 0.36, 0.5256, 0.3472, 0.4464, 1, 0.3906, 0.4464, 0.3782, 0.2914, -0.2108, 0.31, 0.4526, 0.3528, 0.4536, 0.3906, 1, 0.4536, 0.3843, 0.2961, -0.2142, 0.315, 0.4599, 0.4032, 0.5184, 0.4464, 0.4536, 1, 0.4392, 0.3384, -0.2448, 0.36, 0.5256, 0.3416, 0.4392, 0.3782, 0.3843, 0.4392, 1, 0.2867, -0.2074, 0.305, 0.4453, 0.2632, 0.3384, 0.2914, 0.2961, 0.3384, 0.2867, 1, -0.1598, 0.235, 0.3431, -0.1904, -0.2448, -0.2108, -0.2142, -0.2448, -0.2074, -0.1598, 1, -0.17, -0.2482, 0.28, 0.36, 0.31, 0.315, 0.36, 0.305, 0.235, -0.17, 1, 0.365, 0.4088, 0.5256, 0.4526, 0.4599, 0.5256, 0.4453, 0.3431, -0.2482, 0.365, 1), .Dim = c(10L, 10L), .Dimnames = list(c("I1", "I2", "I3", "I4", "I5", "I6", "I7", "I8", "I9", "I10"), c("I1", "I2", "I3", "I4", "I5", "I6", "I7", "I8", "I9", "I10"))), Schmitt2005f = structure(c(1, 0.3185, 0.416, 0.429, 0.234, 0.3965, 0.299, 0.052, 0.351, 0.4485, 0.3185, 1, 0.3136, 0.3234, 0.1764, 0.2989, 0.2254, 0.0392, 0.2646, 0.3381, 0.416, 0.3136, 1, 0.4224, 0.2304, 0.3904, 0.2944, 0.0512, 0.3456, 0.4416, 0.429, 0.3234, 0.4224, 1, 0.2376, 0.4026, 0.3036, 0.0528, 0.3564, 0.4554, 0.234, 0.1764, 0.2304, 0.2376, 1, 0.2196, 0.1656, 0.0288, 0.1944, 0.2484, 0.3965, 0.2989, 0.3904, 0.4026, 0.2196, 1, 0.2806, 0.0488, 0.3294, 0.4209, 0.299, 0.2254, 0.2944, 0.3036, 0.1656, 0.2806, 1, 0.0368, 0.2484, 0.3174, 0.052, 0.0392, 0.0512, 0.0528, 0.0288, 0.0488, 0.0368, 1, 0.0432, 0.0552, 0.351, 0.2646, 0.3456, 0.3564, 0.1944, 0.3294, 0.2484, 0.0432, 1, 0.3726, 0.4485, 0.3381, 0.4416, 0.4554, 0.2484, 0.4209, 0.3174, 0.0552, 0.3726, 1), .Dim = c(10L, 10L), .Dimnames = list(c("I1", "I2", "I3", "I4", "I5", "I6", "I7", "I8", "I9", "I10"), c("I1", "I2", "I3", "I4", "I5", "I6", "I7", "I8", "I9", "I10"))), Schmitt2005ff = structure(c(1, 0.5325, 0.48, 0.51, 0.525, 0.51, 0.495, 0.45, 0.54, 0.5925, 0.5325, 1, 0.4544, 0.4828, 0.497, 0.4828, 0.4686, 0.426, 0.5112, 0.5609, 0.48, 0.4544, 1, 0.4352, 0.448, 0.4352, 0.4224, 0.384, 0.4608, 0.5056, 0.51, 0.4828, 0.4352, 1, 0.476, 0.4624, 0.4488, 0.408, 0.4896, 0.5372, 0.525, 0.497, 0.448, 0.476, 1, 0.476, 0.462, 0.42, 0.504, 0.553, 0.51, 0.4828, 0.4352, 0.4624, 0.476, 1, 0.4488, 0.408, 0.4896, 0.5372, 0.495, 0.4686, 0.4224, 0.4488, 0.462, 0.4488, 1, 0.396, 0.4752, 0.5214, 0.45, 0.426, 0.384, 0.408, 0.42, 0.408, 0.396, 1, 0.432, 0.474, 0.54, 0.5112, 0.4608, 0.4896, 0.504, 0.4896, 0.4752, 0.432, 1, 0.5688, 0.5925, 0.5609, 0.5056, 0.5372, 0.553, 0.5372, 0.5214, 0.474, 0.5688, 1), .Dim = c(10L, 10L), .Dimnames = list(c("I1", "I2", "I3", "I4", "I5", "I6", "I7", "I8", "I9", "I10"), c("I1", "I2", "I3", "I4", "I5", "I6", "I7", "I8", "I9", "I10"))), Schmitt2005g = structure(c(1, 0.3213, 0.4032, 0.2583, 0.4158, 0.315, 0.3465, 0.1827, 0.4032, 0.3276, 0.3213, 1, 0.3264, 0.2091, 0.3366, 0.255, 0.2805, 0.1479, 0.3264, 0.2652, 0.4032, 0.3264, 1, 0.2624, 0.4224, 0.32, 0.352, 0.1856, 0.4096, 0.3328, 0.2583, 0.2091, 0.2624, 1, 0.2706, 0.205, 0.2255, 0.1189, 0.2624, 0.2132, 0.4158, 0.3366, 0.4224, 0.2706, 1, 0.33, 0.363, 0.1914, 0.4224, 0.3432, 0.315, 0.255, 0.32, 0.205, 0.33, 1, 0.275, 0.145, 0.32, 0.26, 0.3465, 0.2805, 0.352, 0.2255, 0.363, 0.275, 1, 0.1595, 0.352, 0.286, 0.1827, 0.1479, 0.1856, 0.1189, 0.1914, 0.145, 0.1595, 1, 0.1856, 0.1508, 0.4032, 0.3264, 0.4096, 0.2624, 0.4224, 0.32, 0.352, 0.1856, 1, 0.3328, 0.3276, 0.2652, 0.3328, 0.2132, 0.3432, 0.26, 0.286, 0.1508, 0.3328, 1), .Dim = c(10L, 10L), .Dimnames = list(c("I1", "I2", "I3", "I4", "I5", "I6", "I7", "I8", "I9", "I10"), c("I1", "I2", "I3", "I4", "I5", "I6", "I7", "I8", "I9", "I10"))), Schmitt2005gg = structure(c(1, 0.265, 0.3127, 0.3445, 0.2014, 0.3021, 0.3604, 0.1166, 0.3869, 0.3498, 0.265, 1, 0.295, 0.325, 0.19, 0.285, 0.34, 0.11, 0.365, 0.33, 0.3127, 0.295, 1, 0.3835, 0.2242, 0.3363, 0.4012, 0.1298, 0.4307, 0.3894, 0.3445, 0.325, 0.3835, 1, 0.247, 0.3705, 0.442, 0.143, 0.4745, 0.429, 0.2014, 0.19, 0.2242, 0.247, 1, 0.2166, 0.2584, 0.0836, 0.2774, 0.2508, 0.3021, 0.285, 0.3363, 0.3705, 0.2166, 1, 0.3876, 0.1254, 0.4161, 0.3762, 0.3604, 0.34, 0.4012, 0.442, 0.2584, 0.3876, 1, 0.1496, 0.4964, 0.4488, 0.1166, 0.11, 0.1298, 0.143, 0.0836, 0.1254, 0.1496, 1, 0.1606, 0.1452, 0.3869, 0.365, 0.4307, 0.4745, 0.2774, 0.4161, 0.4964, 0.1606, 1, 0.4818, 0.3498, 0.33, 0.3894, 0.429, 0.2508, 0.3762, 0.4488, 0.1452, 0.4818, 1), .Dim = c(10L, 10L), .Dimnames = list(c("I1", "I2", "I3", "I4", "I5", "I6", "I7", "I8", "I9", "I10"), c("I1", "I2", "I3", "I4", "I5", "I6", "I7", "I8", "I9", "I10"))), Schmitt2005h = structure(c(1, 0.3498, 0.4488, 0.3168, 0.5214, 0.297, 0.4554, 0.2442, 0.4884, 0.3564, 0.3498, 1, 0.3604, 0.2544, 0.4187, 0.2385, 0.3657, 0.1961, 0.3922, 0.2862, 0.4488, 0.3604, 1, 0.3264, 0.5372, 0.306, 0.4692, 0.2516, 0.5032, 0.3672, 0.3168, 0.2544, 0.3264, 1, 0.3792, 0.216, 0.3312, 0.1776, 0.3552, 0.2592, 0.5214, 0.4187, 0.5372, 0.3792, 1, 0.3555, 0.5451, 0.2923, 0.5846, 0.4266, 0.297, 0.2385, 0.306, 0.216, 0.3555, 1, 0.3105, 0.1665, 0.333, 0.243, 0.4554, 0.3657, 0.4692, 0.3312, 0.5451, 0.3105, 1, 0.2553, 0.5106, 0.3726, 0.2442, 0.1961, 0.2516, 0.1776, 0.2923, 0.1665, 0.2553, 1, 0.2738, 0.1998, 0.4884, 0.3922, 0.5032, 0.3552, 0.5846, 0.333, 0.5106, 0.2738, 1, 0.3996, 0.3564, 0.2862, 0.3672, 0.2592, 0.4266, 0.243, 0.3726, 0.1998, 0.3996, 1), .Dim = c(10L, 10L), .Dimnames = list(c("I1", "I2", "I3", "I4", "I5", "I6", "I7", "I8", "I9", "I10"), c("I1", "I2", "I3", "I4", "I5", "I6", "I7", "I8", "I9", "I10"))), Schmitt2005hh = structure(c(1, 0.4288, 0.2546, 0.3819, 0.3886, 0.4489, 0.2412, 0.2747, 0.3685, 0.4154, 0.4288, 1, 0.2432, 0.3648, 0.3712, 0.4288, 0.2304, 0.2624, 0.352, 0.3968, 0.2546, 0.2432, 1, 0.2166, 0.2204, 0.2546, 0.1368, 0.1558, 0.209, 0.2356, 0.3819, 0.3648, 0.2166, 1, 0.3306, 0.3819, 0.2052, 0.2337, 0.3135, 0.3534, 0.3886, 0.3712, 0.2204, 0.3306, 1, 0.3886, 0.2088, 0.2378, 0.319, 0.3596, 0.4489, 0.4288, 0.2546, 0.3819, 0.3886, 1, 0.2412, 0.2747, 0.3685, 0.4154, 0.2412, 0.2304, 0.1368, 0.2052, 0.2088, 0.2412, 1, 0.1476, 0.198, 0.2232, 0.2747, 0.2624, 0.1558, 0.2337, 0.2378, 0.2747, 0.1476, 1, 0.2255, 0.2542, 0.3685, 0.352, 0.209, 0.3135, 0.319, 0.3685, 0.198, 0.2255, 1, 0.341, 0.4154, 0.3968, 0.2356, 0.3534, 0.3596, 0.4154, 0.2232, 0.2542, 0.341, 1), .Dim = c(10L, 10L), .Dimnames = list(c("I1", "I2", "I3", "I4", "I5", "I6", "I7", "I8", "I9", "I10"), c("I1", "I2", "I3", "I4", "I5", "I6", "I7", "I8", "I9", "I10"))), Schmitt2005i = structure(c(1, 0.364, 0.3432, 0.2444, 0.3016, 0.182, 0.3536, 0.3068, 0.3484, 0.3796, 0.364, 1, 0.462, 0.329, 0.406, 0.245, 0.476, 0.413, 0.469, 0.511, 0.3432, 0.462, 1, 0.3102, 0.3828, 0.231, 0.4488, 0.3894, 0.4422, 0.4818, 0.2444, 0.329, 0.3102, 1, 0.2726, 0.1645, 0.3196, 0.2773, 0.3149, 0.3431, 0.3016, 0.406, 0.3828, 0.2726, 1, 0.203, 0.3944, 0.3422, 0.3886, 0.4234, 0.182, 0.245, 0.231, 0.1645, 0.203, 1, 0.238, 0.2065, 0.2345, 0.2555, 0.3536, 0.476, 0.4488, 0.3196, 0.3944, 0.238, 1, 0.4012, 0.4556, 0.4964, 0.3068, 0.413, 0.3894, 0.2773, 0.3422, 0.2065, 0.4012, 1, 0.3953, 0.4307, 0.3484, 0.469, 0.4422, 0.3149, 0.3886, 0.2345, 0.4556, 0.3953, 1, 0.4891, 0.3796, 0.511, 0.4818, 0.3431, 0.4234, 0.2555, 0.4964, 0.4307, 0.4891, 1), .Dim = c(10L, 10L), .Dimnames = list(c("I1", "I2", "I3", "I4", "I5", "I6", "I7", "I8", "I9", "I10"), c("I1", "I2", "I3", "I4", "I5", "I6", "I7", "I8", "I9", "I10"))), Schmitt2005ii = structure(c(1, 0.5328, 0.5032, 0.4514, 0.5328, 0.4144, 0.5032, 0.518, 0.5402, 0.5476, 0.5328, 1, 0.4896, 0.4392, 0.5184, 0.4032, 0.4896, 0.504, 0.5256, 0.5328, 0.5032, 0.4896, 1, 0.4148, 0.4896, 0.3808, 0.4624, 0.476, 0.4964, 0.5032, 0.4514, 0.4392, 0.4148, 1, 0.4392, 0.3416, 0.4148, 0.427, 0.4453, 0.4514, 0.5328, 0.5184, 0.4896, 0.4392, 1, 0.4032, 0.4896, 0.504, 0.5256, 0.5328, 0.4144, 0.4032, 0.3808, 0.3416, 0.4032, 1, 0.3808, 0.392, 0.4088, 0.4144, 0.5032, 0.4896, 0.4624, 0.4148, 0.4896, 0.3808, 1, 0.476, 0.4964, 0.5032, 0.518, 0.504, 0.476, 0.427, 0.504, 0.392, 0.476, 1, 0.511, 0.518, 0.5402, 0.5256, 0.4964, 0.4453, 0.5256, 0.4088, 0.4964, 0.511, 1, 0.5402, 0.5476, 0.5328, 0.5032, 0.4514, 0.5328, 0.4144, 0.5032, 0.518, 0.5402, 1), .Dim = c(10L, 10L), .Dimnames = list(c("I1", "I2", "I3", "I4", "I5", "I6", "I7", "I8", "I9", "I10"), c("I1", "I2", "I3", "I4", "I5", "I6", "I7", "I8", "I9", "I10"))), Schmitt2005j = structure(c(1, 0.5475, 0.4891, 0.438, 0.1752, 0.4818, 0.438, 0.3869, 0.5402, 0.5402, 0.5475, 1, 0.5025, 0.45, 0.18, 0.495, 0.45, 0.3975, 0.555, 0.555, 0.4891, 0.5025, 1, 0.402, 0.1608, 0.4422, 0.402, 0.3551, 0.4958, 0.4958, 0.438, 0.45, 0.402, 1, 0.144, 0.396, 0.36, 0.318, 0.444, 0.444, 0.1752, 0.18, 0.1608, 0.144, 1, 0.1584, 0.144, 0.1272, 0.1776, 0.1776, 0.4818, 0.495, 0.4422, 0.396, 0.1584, 1, 0.396, 0.3498, 0.4884, 0.4884, 0.438, 0.45, 0.402, 0.36, 0.144, 0.396, 1, 0.318, 0.444, 0.444, 0.3869, 0.3975, 0.3551, 0.318, 0.1272, 0.3498, 0.318, 1, 0.3922, 0.3922, 0.5402, 0.555, 0.4958, 0.444, 0.1776, 0.4884, 0.444, 0.3922, 1, 0.5476, 0.5402, 0.555, 0.4958, 0.444, 0.1776, 0.4884, 0.444, 0.3922, 0.5476, 1), .Dim = c(10L, 10L), .Dimnames = list(c("I1", "I2", "I3", "I4", "I5", "I6", "I7", "I8", "I9", "I10"), c("I1", "I2", "I3", "I4", "I5", "I6", "I7", "I8", "I9", "I10"))), Schmitt2005jj = structure(c(1, 0.497, 0.483, 0.455, 0.448, 0.42, 0.455, 0.42, 0.518, 0.553, 0.497, 1, 0.4899, 0.4615, 0.4544, 0.426, 0.4615, 0.426, 0.5254, 0.5609, 0.483, 0.4899, 1, 0.4485, 0.4416, 0.414, 0.4485, 0.414, 0.5106, 0.5451, 0.455, 0.4615, 0.4485, 1, 0.416, 0.39, 0.4225, 0.39, 0.481, 0.5135, 0.448, 0.4544, 0.4416, 0.416, 1, 0.384, 0.416, 0.384, 0.4736, 0.5056, 0.42, 0.426, 0.414, 0.39, 0.384, 1, 0.39, 0.36, 0.444, 0.474, 0.455, 0.4615, 0.4485, 0.4225, 0.416, 0.39, 1, 0.39, 0.481, 0.5135, 0.42, 0.426, 0.414, 0.39, 0.384, 0.36, 0.39, 1, 0.444, 0.474, 0.518, 0.5254, 0.5106, 0.481, 0.4736, 0.444, 0.481, 0.444, 1, 0.5846, 0.553, 0.5609, 0.5451, 0.5135, 0.5056, 0.474, 0.5135, 0.474, 0.5846, 1), .Dim = c(10L, 10L), .Dimnames = list( c("I1", "I2", "I3", "I4", "I5", "I6", "I7", "I8", "I9", "I10" ), c("I1", "I2", "I3", "I4", "I5", "I6", "I7", "I8", "I9", "I10"))), Schmitt2005k = structure(c(1, 0.3149, 0.4087, 0.3283, 0.1072, 0.2077, 0.3618, -0.3886, 0.2345, 0.3752, 0.3149, 1, 0.2867, 0.2303, 0.0752, 0.1457, 0.2538, -0.2726, 0.1645, 0.2632, 0.4087, 0.2867, 1, 0.2989, 0.0976, 0.1891, 0.3294, -0.3538, 0.2135, 0.3416, 0.3283, 0.2303, 0.2989, 1, 0.0784, 0.1519, 0.2646, -0.2842, 0.1715, 0.2744, 0.1072, 0.0752, 0.0976, 0.0784, 1, 0.0496, 0.0864, -0.0928, 0.056, 0.0896, 0.2077, 0.1457, 0.1891, 0.1519, 0.0496, 1, 0.1674, -0.1798, 0.1085, 0.1736, 0.3618, 0.2538, 0.3294, 0.2646, 0.0864, 0.1674, 1, -0.3132, 0.189, 0.3024, -0.3886, -0.2726, -0.3538, -0.2842, -0.0928, -0.1798, -0.3132, 1, -0.203, -0.3248, 0.2345, 0.1645, 0.2135, 0.1715, 0.056, 0.1085, 0.189, -0.203, 1, 0.196, 0.3752, 0.2632, 0.3416, 0.2744, 0.0896, 0.1736, 0.3024, -0.3248, 0.196, 1), .Dim = c(10L, 10L), .Dimnames = list(c("I1", "I2", "I3", "I4", "I5", "I6", "I7", "I8", "I9", "I10"), c("I1", "I2", "I3", "I4", "I5", "I6", "I7", "I8", "I9", "I10"))), Schmitt2005kk = structure(c(1, 0.511, 0.5256, 0.4672, 0.3504, 0.5183, 0.4526, 0.3139, 0.5402, 0.5986, 0.511, 1, 0.504, 0.448, 0.336, 0.497, 0.434, 0.301, 0.518, 0.574, 0.5256, 0.504, 1, 0.4608, 0.3456, 0.5112, 0.4464, 0.3096, 0.5328, 0.5904, 0.4672, 0.448, 0.4608, 1, 0.3072, 0.4544, 0.3968, 0.2752, 0.4736, 0.5248, 0.3504, 0.336, 0.3456, 0.3072, 1, 0.3408, 0.2976, 0.2064, 0.3552, 0.3936, 0.5183, 0.497, 0.5112, 0.4544, 0.3408, 1, 0.4402, 0.3053, 0.5254, 0.5822, 0.4526, 0.434, 0.4464, 0.3968, 0.2976, 0.4402, 1, 0.2666, 0.4588, 0.5084, 0.3139, 0.301, 0.3096, 0.2752, 0.2064, 0.3053, 0.2666, 1, 0.3182, 0.3526, 0.5402, 0.518, 0.5328, 0.4736, 0.3552, 0.5254, 0.4588, 0.3182, 1, 0.6068, 0.5986, 0.574, 0.5904, 0.5248, 0.3936, 0.5822, 0.5084, 0.3526, 0.6068, 1), .Dim = c(10L, 10L), .Dimnames = list(c("I1", "I2", "I3", "I4", "I5", "I6", "I7", "I8", "I9", "I10"), c("I1", "I2", "I3", "I4", "I5", "I6", "I7", "I8", "I9", "I10"))), Schmitt2005l = structure(c(1, 0.5183, 0.3905, 0.3834, 0.4402, 0.5183, 0.3692, 0.4473, 0.4686, 0.5325, 0.5183, 1, 0.4015, 0.3942, 0.4526, 0.5329, 0.3796, 0.4599, 0.4818, 0.5475, 0.3905, 0.4015, 1, 0.297, 0.341, 0.4015, 0.286, 0.3465, 0.363, 0.4125, 0.3834, 0.3942, 0.297, 1, 0.3348, 0.3942, 0.2808, 0.3402, 0.3564, 0.405, 0.4402, 0.4526, 0.341, 0.3348, 1, 0.4526, 0.3224, 0.3906, 0.4092, 0.465, 0.5183, 0.5329, 0.4015, 0.3942, 0.4526, 1, 0.3796, 0.4599, 0.4818, 0.5475, 0.3692, 0.3796, 0.286, 0.2808, 0.3224, 0.3796, 1, 0.3276, 0.3432, 0.39, 0.4473, 0.4599, 0.3465, 0.3402, 0.3906, 0.4599, 0.3276, 1, 0.4158, 0.4725, 0.4686, 0.4818, 0.363, 0.3564, 0.4092, 0.4818, 0.3432, 0.4158, 1, 0.495, 0.5325, 0.5475, 0.4125, 0.405, 0.465, 0.5475, 0.39, 0.4725, 0.495, 1), .Dim = c(10L, 10L), .Dimnames = list(c("I1", "I2", "I3", "I4", "I5", "I6", "I7", "I8", "I9", "I10"), c("I1", "I2", "I3", "I4", "I5", "I6", "I7", "I8", "I9", "I10"))), Schmitt2005m = structure(c(1, 0.5159, 0.5005, 0.4851, 0.5467, 0.5467, 0.4389, 0.5313, 0.6083, 0.6391, 0.5159, 1, 0.4355, 0.4221, 0.4757, 0.4757, 0.3819, 0.4623, 0.5293, 0.5561, 0.5005, 0.4355, 1, 0.4095, 0.4615, 0.4615, 0.3705, 0.4485, 0.5135, 0.5395, 0.4851, 0.4221, 0.4095, 1, 0.4473, 0.4473, 0.3591, 0.4347, 0.4977, 0.5229, 0.5467, 0.4757, 0.4615, 0.4473, 1, 0.5041, 0.4047, 0.4899, 0.5609, 0.5893, 0.5467, 0.4757, 0.4615, 0.4473, 0.5041, 1, 0.4047, 0.4899, 0.5609, 0.5893, 0.4389, 0.3819, 0.3705, 0.3591, 0.4047, 0.4047, 1, 0.3933, 0.4503, 0.4731, 0.5313, 0.4623, 0.4485, 0.4347, 0.4899, 0.4899, 0.3933, 1, 0.5451, 0.5727, 0.6083, 0.5293, 0.5135, 0.4977, 0.5609, 0.5609, 0.4503, 0.5451, 1, 0.6557, 0.6391, 0.5561, 0.5395, 0.5229, 0.5893, 0.5893, 0.4731, 0.5727, 0.6557, 1), .Dim = c(10L, 10L), .Dimnames = list(c("I1", "I2", "I3", "I4", "I5", "I6", "I7", "I8", "I9", "I10"), c("I1", "I2", "I3", "I4", "I5", "I6", "I7", "I8", "I9", "I10"))), Schmitt2005mm = structure(c(1, 0.481, 0.4736, 0.4366, 0.3996, 0.5032, 0.481, 0.4144, 0.5328, 0.5698, 0.481, 1, 0.416, 0.3835, 0.351, 0.442, 0.4225, 0.364, 0.468, 0.5005, 0.4736, 0.416, 1, 0.3776, 0.3456, 0.4352, 0.416, 0.3584, 0.4608, 0.4928, 0.4366, 0.3835, 0.3776, 1, 0.3186, 0.4012, 0.3835, 0.3304, 0.4248, 0.4543, 0.3996, 0.351, 0.3456, 0.3186, 1, 0.3672, 0.351, 0.3024, 0.3888, 0.4158, 0.5032, 0.442, 0.4352, 0.4012, 0.3672, 1, 0.442, 0.3808, 0.4896, 0.5236, 0.481, 0.4225, 0.416, 0.3835, 0.351, 0.442, 1, 0.364, 0.468, 0.5005, 0.4144, 0.364, 0.3584, 0.3304, 0.3024, 0.3808, 0.364, 1, 0.4032, 0.4312, 0.5328, 0.468, 0.4608, 0.4248, 0.3888, 0.4896, 0.468, 0.4032, 1, 0.5544, 0.5698, 0.5005, 0.4928, 0.4543, 0.4158, 0.5236, 0.5005, 0.4312, 0.5544, 1), .Dim = c(10L, 10L), .Dimnames = list(c("I1", "I2", "I3", "I4", "I5", "I6", "I7", "I8", "I9", "I10"), c("I1", "I2", "I3", "I4", "I5", "I6", "I7", "I8", "I9", "I10"))), Schmitt2005n = structure(c(1, 0.4278, 0.4002, 0.4554, 0.483, 0.4071, 0.4554, 0.2829, 0.4002, 0.5313, 0.4278, 1, 0.3596, 0.4092, 0.434, 0.3658, 0.4092, 0.2542, 0.3596, 0.4774, 0.4002, 0.3596, 1, 0.3828, 0.406, 0.3422, 0.3828, 0.2378, 0.3364, 0.4466, 0.4554, 0.4092, 0.3828, 1, 0.462, 0.3894, 0.4356, 0.2706, 0.3828, 0.5082, 0.483, 0.434, 0.406, 0.462, 1, 0.413, 0.462, 0.287, 0.406, 0.539, 0.4071, 0.3658, 0.3422, 0.3894, 0.413, 1, 0.3894, 0.2419, 0.3422, 0.4543, 0.4554, 0.4092, 0.3828, 0.4356, 0.462, 0.3894, 1, 0.2706, 0.3828, 0.5082, 0.2829, 0.2542, 0.2378, 0.2706, 0.287, 0.2419, 0.2706, 1, 0.2378, 0.3157, 0.4002, 0.3596, 0.3364, 0.3828, 0.406, 0.3422, 0.3828, 0.2378, 1, 0.4466, 0.5313, 0.4774, 0.4466, 0.5082, 0.539, 0.4543, 0.5082, 0.3157, 0.4466, 1), .Dim = c(10L, 10L), .Dimnames = list(c("I1", "I2", "I3", "I4", "I5", "I6", "I7", "I8", "I9", "I10"), c("I1", "I2", "I3", "I4", "I5", "I6", "I7", "I8", "I9", "I10"))), Schmitt2005nn = structure(c(1, 0.5624, 0.3922, 0.4218, 0.4958, 0.5328, 0.4588, 0.444, 0.5328, 0.555, 0.5624, 1, 0.4028, 0.4332, 0.5092, 0.5472, 0.4712, 0.456, 0.5472, 0.57, 0.3922, 0.4028, 1, 0.3021, 0.3551, 0.3816, 0.3286, 0.318, 0.3816, 0.3975, 0.4218, 0.4332, 0.3021, 1, 0.3819, 0.4104, 0.3534, 0.342, 0.4104, 0.4275, 0.4958, 0.5092, 0.3551, 0.3819, 1, 0.4824, 0.4154, 0.402, 0.4824, 0.5025, 0.5328, 0.5472, 0.3816, 0.4104, 0.4824, 1, 0.4464, 0.432, 0.5184, 0.54, 0.4588, 0.4712, 0.3286, 0.3534, 0.4154, 0.4464, 1, 0.372, 0.4464, 0.465, 0.444, 0.456, 0.318, 0.342, 0.402, 0.432, 0.372, 1, 0.432, 0.45, 0.5328, 0.5472, 0.3816, 0.4104, 0.4824, 0.5184, 0.4464, 0.432, 1, 0.54, 0.555, 0.57, 0.3975, 0.4275, 0.5025, 0.54, 0.465, 0.45, 0.54, 1), .Dim = c(10L, 10L), .Dimnames = list(c("I1", "I2", "I3", "I4", "I5", "I6", "I7", "I8", "I9", "I10"), c("I1", "I2", "I3", "I4", "I5", "I6", "I7", "I8", "I9", "I10"))), Schmitt2005o = structure(c(1, 0.5226, 0.5382, 0.5304, 0.624, 0.468, 0.4992, 0.39, 0.624, 0.6318, 0.5226, 1, 0.4623, 0.4556, 0.536, 0.402, 0.4288, 0.335, 0.536, 0.5427, 0.5382, 0.4623, 1, 0.4692, 0.552, 0.414, 0.4416, 0.345, 0.552, 0.5589, 0.5304, 0.4556, 0.4692, 1, 0.544, 0.408, 0.4352, 0.34, 0.544, 0.5508, 0.624, 0.536, 0.552, 0.544, 1, 0.48, 0.512, 0.4, 0.64, 0.648, 0.468, 0.402, 0.414, 0.408, 0.48, 1, 0.384, 0.3, 0.48, 0.486, 0.4992, 0.4288, 0.4416, 0.4352, 0.512, 0.384, 1, 0.32, 0.512, 0.5184, 0.39, 0.335, 0.345, 0.34, 0.4, 0.3, 0.32, 1, 0.4, 0.405, 0.624, 0.536, 0.552, 0.544, 0.64, 0.48, 0.512, 0.4, 1, 0.648, 0.6318, 0.5427, 0.5589, 0.5508, 0.648, 0.486, 0.5184, 0.405, 0.648, 1), .Dim = c(10L, 10L), .Dimnames = list( c("I1", "I2", "I3", "I4", "I5", "I6", "I7", "I8", "I9", "I10" ), c("I1", "I2", "I3", "I4", "I5", "I6", "I7", "I8", "I9", "I10"))), Schmitt2005oo = structure(c(1, 0.4148, 0.4012, 0.4216, 0.4352, 0.3468, 0.4012, 0.102, 0.4964, 0.5372, 0.4148, 1, 0.3599, 0.3782, 0.3904, 0.3111, 0.3599, 0.0915, 0.4453, 0.4819, 0.4012, 0.3599, 1, 0.3658, 0.3776, 0.3009, 0.3481, 0.0885, 0.4307, 0.4661, 0.4216, 0.3782, 0.3658, 1, 0.3968, 0.3162, 0.3658, 0.093, 0.4526, 0.4898, 0.4352, 0.3904, 0.3776, 0.3968, 1, 0.3264, 0.3776, 0.096, 0.4672, 0.5056, 0.3468, 0.3111, 0.3009, 0.3162, 0.3264, 1, 0.3009, 0.0765, 0.3723, 0.4029, 0.4012, 0.3599, 0.3481, 0.3658, 0.3776, 0.3009, 1, 0.0885, 0.4307, 0.4661, 0.102, 0.0915, 0.0885, 0.093, 0.096, 0.0765, 0.0885, 1, 0.1095, 0.1185, 0.4964, 0.4453, 0.4307, 0.4526, 0.4672, 0.3723, 0.4307, 0.1095, 1, 0.5767, 0.5372, 0.4819, 0.4661, 0.4898, 0.5056, 0.4029, 0.4661, 0.1185, 0.5767, 1), .Dim = c(10L, 10L), .Dimnames = list(c("I1", "I2", "I3", "I4", "I5", "I6", "I7", "I8", "I9", "I10"), c("I1", "I2", "I3", "I4", "I5", "I6", "I7", "I8", "I9", "I10"))), Schmitt2005p = structure(c(1, 0.444, 0.288, 0.33, 0.222, 0.342, 0.24, 0.198, 0.288, 0.27, 0.444, 1, 0.3552, 0.407, 0.2738, 0.4218, 0.296, 0.2442, 0.3552, 0.333, 0.288, 0.3552, 1, 0.264, 0.1776, 0.2736, 0.192, 0.1584, 0.2304, 0.216, 0.33, 0.407, 0.264, 1, 0.2035, 0.3135, 0.22, 0.1815, 0.264, 0.2475, 0.222, 0.2738, 0.1776, 0.2035, 1, 0.2109, 0.148, 0.1221, 0.1776, 0.1665, 0.342, 0.4218, 0.2736, 0.3135, 0.2109, 1, 0.228, 0.1881, 0.2736, 0.2565, 0.24, 0.296, 0.192, 0.22, 0.148, 0.228, 1, 0.132, 0.192, 0.18, 0.198, 0.2442, 0.1584, 0.1815, 0.1221, 0.1881, 0.132, 1, 0.1584, 0.1485, 0.288, 0.3552, 0.2304, 0.264, 0.1776, 0.2736, 0.192, 0.1584, 1, 0.216, 0.27, 0.333, 0.216, 0.2475, 0.1665, 0.2565, 0.18, 0.1485, 0.216, 1), .Dim = c(10L, 10L), .Dimnames = list(c("I1", "I2", "I3", "I4", "I5", "I6", "I7", "I8", "I9", "I10"), c("I1", "I2", "I3", "I4", "I5", "I6", "I7", "I8", "I9", "I10"))), Schmitt2005pp = structure(c(1, 0.5625, 0.42, 0.39, 0.525, 0.5925, 0.3675, 0.495, 0.495, 0.585, 0.5625, 1, 0.42, 0.39, 0.525, 0.5925, 0.3675, 0.495, 0.495, 0.585, 0.42, 0.42, 1, 0.2912, 0.392, 0.4424, 0.2744, 0.3696, 0.3696, 0.4368, 0.39, 0.39, 0.2912, 1, 0.364, 0.4108, 0.2548, 0.3432, 0.3432, 0.4056, 0.525, 0.525, 0.392, 0.364, 1, 0.553, 0.343, 0.462, 0.462, 0.546, 0.5925, 0.5925, 0.4424, 0.4108, 0.553, 1, 0.3871, 0.5214, 0.5214, 0.6162, 0.3675, 0.3675, 0.2744, 0.2548, 0.343, 0.3871, 1, 0.3234, 0.3234, 0.3822, 0.495, 0.495, 0.3696, 0.3432, 0.462, 0.5214, 0.3234, 1, 0.4356, 0.5148, 0.495, 0.495, 0.3696, 0.3432, 0.462, 0.5214, 0.3234, 0.4356, 1, 0.5148, 0.585, 0.585, 0.4368, 0.4056, 0.546, 0.6162, 0.3822, 0.5148, 0.5148, 1), .Dim = c(10L, 10L), .Dimnames = list(c("I1", "I2", "I3", "I4", "I5", "I6", "I7", "I8", "I9", "I10"), c("I1", "I2", "I3", "I4", "I5", "I6", "I7", "I8", "I9", "I10"))), Schmitt2005q = structure(c(1, 0.3876, 0.3933, 0.3192, 0.3021, 0.3078, 0.3306, 0.228, 0.2337, 0.3705, 0.3876, 1, 0.4692, 0.3808, 0.3604, 0.3672, 0.3944, 0.272, 0.2788, 0.442, 0.3933, 0.4692, 1, 0.3864, 0.3657, 0.3726, 0.4002, 0.276, 0.2829, 0.4485, 0.3192, 0.3808, 0.3864, 1, 0.2968, 0.3024, 0.3248, 0.224, 0.2296, 0.364, 0.3021, 0.3604, 0.3657, 0.2968, 1, 0.2862, 0.3074, 0.212, 0.2173, 0.3445, 0.3078, 0.3672, 0.3726, 0.3024, 0.2862, 1, 0.3132, 0.216, 0.2214, 0.351, 0.3306, 0.3944, 0.4002, 0.3248, 0.3074, 0.3132, 1, 0.232, 0.2378, 0.377, 0.228, 0.272, 0.276, 0.224, 0.212, 0.216, 0.232, 1, 0.164, 0.26, 0.2337, 0.2788, 0.2829, 0.2296, 0.2173, 0.2214, 0.2378, 0.164, 1, 0.2665, 0.3705, 0.442, 0.4485, 0.364, 0.3445, 0.351, 0.377, 0.26, 0.2665, 1), .Dim = c(10L, 10L), .Dimnames = list(c("I1", "I2", "I3", "I4", "I5", "I6", "I7", "I8", "I9", "I10"), c("I1", "I2", "I3", "I4", "I5", "I6", "I7", "I8", "I9", "I10"))), Schmitt2005qq = structure(c(1, 0.504, 0.322, 0.385, 0.455, 0.434, 0.427, 0.238, 0.483, 0.476, 0.504, 1, 0.3312, 0.396, 0.468, 0.4464, 0.4392, 0.2448, 0.4968, 0.4896, 0.322, 0.3312, 1, 0.253, 0.299, 0.2852, 0.2806, 0.1564, 0.3174, 0.3128, 0.385, 0.396, 0.253, 1, 0.3575, 0.341, 0.3355, 0.187, 0.3795, 0.374, 0.455, 0.468, 0.299, 0.3575, 1, 0.403, 0.3965, 0.221, 0.4485, 0.442, 0.434, 0.4464, 0.2852, 0.341, 0.403, 1, 0.3782, 0.2108, 0.4278, 0.4216, 0.427, 0.4392, 0.2806, 0.3355, 0.3965, 0.3782, 1, 0.2074, 0.4209, 0.4148, 0.238, 0.2448, 0.1564, 0.187, 0.221, 0.2108, 0.2074, 1, 0.2346, 0.2312, 0.483, 0.4968, 0.3174, 0.3795, 0.4485, 0.4278, 0.4209, 0.2346, 1, 0.4692, 0.476, 0.4896, 0.3128, 0.374, 0.442, 0.4216, 0.4148, 0.2312, 0.4692, 1), .Dim = c(10L, 10L), .Dimnames = list(c("I1", "I2", "I3", "I4", "I5", "I6", "I7", "I8", "I9", "I10"), c("I1", "I2", "I3", "I4", "I5", "I6", "I7", "I8", "I9", "I10"))), Schmitt2005r = structure(c(1, 0.366, 0.4209, 0.4148, 0.427, 0.3355, 0.4636, 0.3965, 0.4453, 0.4758, 0.366, 1, 0.414, 0.408, 0.42, 0.33, 0.456, 0.39, 0.438, 0.468, 0.4209, 0.414, 1, 0.4692, 0.483, 0.3795, 0.5244, 0.4485, 0.5037, 0.5382, 0.4148, 0.408, 0.4692, 1, 0.476, 0.374, 0.5168, 0.442, 0.4964, 0.5304, 0.427, 0.42, 0.483, 0.476, 1, 0.385, 0.532, 0.455, 0.511, 0.546, 0.3355, 0.33, 0.3795, 0.374, 0.385, 1, 0.418, 0.3575, 0.4015, 0.429, 0.4636, 0.456, 0.5244, 0.5168, 0.532, 0.418, 1, 0.494, 0.5548, 0.5928, 0.3965, 0.39, 0.4485, 0.442, 0.455, 0.3575, 0.494, 1, 0.4745, 0.507, 0.4453, 0.438, 0.5037, 0.4964, 0.511, 0.4015, 0.5548, 0.4745, 1, 0.5694, 0.4758, 0.468, 0.5382, 0.5304, 0.546, 0.429, 0.5928, 0.507, 0.5694, 1), .Dim = c(10L, 10L), .Dimnames = list(c("I1", "I2", "I3", "I4", "I5", "I6", "I7", "I8", "I9", "I10"), c("I1", "I2", "I3", "I4", "I5", "I6", "I7", "I8", "I9", "I10"))), Schmitt2005rr = structure(c(1, 0.5472, 0.504, 0.4536, 0.4248, 0.468, 0.5544, 0.4392, 0.5256, 0.576, 0.5472, 1, 0.532, 0.4788, 0.4484, 0.494, 0.5852, 0.4636, 0.5548, 0.608, 0.504, 0.532, 1, 0.441, 0.413, 0.455, 0.539, 0.427, 0.511, 0.56, 0.4536, 0.4788, 0.441, 1, 0.3717, 0.4095, 0.4851, 0.3843, 0.4599, 0.504, 0.4248, 0.4484, 0.413, 0.3717, 1, 0.3835, 0.4543, 0.3599, 0.4307, 0.472, 0.468, 0.494, 0.455, 0.4095, 0.3835, 1, 0.5005, 0.3965, 0.4745, 0.52, 0.5544, 0.5852, 0.539, 0.4851, 0.4543, 0.5005, 1, 0.4697, 0.5621, 0.616, 0.4392, 0.4636, 0.427, 0.3843, 0.3599, 0.3965, 0.4697, 1, 0.4453, 0.488, 0.5256, 0.5548, 0.511, 0.4599, 0.4307, 0.4745, 0.5621, 0.4453, 1, 0.584, 0.576, 0.608, 0.56, 0.504, 0.472, 0.52, 0.616, 0.488, 0.584, 1), .Dim = c(10L, 10L), .Dimnames = list(c("I1", "I2", "I3", "I4", "I5", "I6", "I7", "I8", "I9", "I10"), c("I1", "I2", "I3", "I4", "I5", "I6", "I7", "I8", "I9", "I10"))), Schmitt2005s = structure(c(1, 0.5325, 0.4275, 0.2775, 0.51, 0.465, 0.48, 0.36, 0.45, 0.5625, 0.5325, 1, 0.4047, 0.2627, 0.4828, 0.4402, 0.4544, 0.3408, 0.426, 0.5325, 0.4275, 0.4047, 1, 0.2109, 0.3876, 0.3534, 0.3648, 0.2736, 0.342, 0.4275, 0.2775, 0.2627, 0.2109, 1, 0.2516, 0.2294, 0.2368, 0.1776, 0.222, 0.2775, 0.51, 0.4828, 0.3876, 0.2516, 1, 0.4216, 0.4352, 0.3264, 0.408, 0.51, 0.465, 0.4402, 0.3534, 0.2294, 0.4216, 1, 0.3968, 0.2976, 0.372, 0.465, 0.48, 0.4544, 0.3648, 0.2368, 0.4352, 0.3968, 1, 0.3072, 0.384, 0.48, 0.36, 0.3408, 0.2736, 0.1776, 0.3264, 0.2976, 0.3072, 1, 0.288, 0.36, 0.45, 0.426, 0.342, 0.222, 0.408, 0.372, 0.384, 0.288, 1, 0.45, 0.5625, 0.5325, 0.4275, 0.2775, 0.51, 0.465, 0.48, 0.36, 0.45, 1), .Dim = c(10L, 10L), .Dimnames = list( c("I1", "I2", "I3", "I4", "I5", "I6", "I7", "I8", "I9", "I10" ), c("I1", "I2", "I3", "I4", "I5", "I6", "I7", "I8", "I9", "I10"))), Schmitt2005ss = structure(c(1, 0.4692, 0.4485, 0.414, 0.483, 0.4692, 0.3933, 0.1725, 0.4968, 0.5106, 0.4692, 1, 0.442, 0.408, 0.476, 0.4624, 0.3876, 0.17, 0.4896, 0.5032, 0.4485, 0.442, 1, 0.39, 0.455, 0.442, 0.3705, 0.1625, 0.468, 0.481, 0.414, 0.408, 0.39, 1, 0.42, 0.408, 0.342, 0.15, 0.432, 0.444, 0.483, 0.476, 0.455, 0.42, 1, 0.476, 0.399, 0.175, 0.504, 0.518, 0.4692, 0.4624, 0.442, 0.408, 0.476, 1, 0.3876, 0.17, 0.4896, 0.5032, 0.3933, 0.3876, 0.3705, 0.342, 0.399, 0.3876, 1, 0.1425, 0.4104, 0.4218, 0.1725, 0.17, 0.1625, 0.15, 0.175, 0.17, 0.1425, 1, 0.18, 0.185, 0.4968, 0.4896, 0.468, 0.432, 0.504, 0.4896, 0.4104, 0.18, 1, 0.5328, 0.5106, 0.5032, 0.481, 0.444, 0.518, 0.5032, 0.4218, 0.185, 0.5328, 1), .Dim = c(10L, 10L), .Dimnames = list( c("I1", "I2", "I3", "I4", "I5", "I6", "I7", "I8", "I9", "I10" ), c("I1", "I2", "I3", "I4", "I5", "I6", "I7", "I8", "I9", "I10"))), Schmitt2005t = structure(c(1, 0.5624, 0.4736, 0.444, 0.4514, 0.555, 0.4884, 0.5328, 0.5476, 0.5772, 0.5624, 1, 0.4864, 0.456, 0.4636, 0.57, 0.5016, 0.5472, 0.5624, 0.5928, 0.4736, 0.4864, 1, 0.384, 0.3904, 0.48, 0.4224, 0.4608, 0.4736, 0.4992, 0.444, 0.456, 0.384, 1, 0.366, 0.45, 0.396, 0.432, 0.444, 0.468, 0.4514, 0.4636, 0.3904, 0.366, 1, 0.4575, 0.4026, 0.4392, 0.4514, 0.4758, 0.555, 0.57, 0.48, 0.45, 0.4575, 1, 0.495, 0.54, 0.555, 0.585, 0.4884, 0.5016, 0.4224, 0.396, 0.4026, 0.495, 1, 0.4752, 0.4884, 0.5148, 0.5328, 0.5472, 0.4608, 0.432, 0.4392, 0.54, 0.4752, 1, 0.5328, 0.5616, 0.5476, 0.5624, 0.4736, 0.444, 0.4514, 0.555, 0.4884, 0.5328, 1, 0.5772, 0.5772, 0.5928, 0.4992, 0.468, 0.4758, 0.585, 0.5148, 0.5616, 0.5772, 1), .Dim = c(10L, 10L), .Dimnames = list( c("I1", "I2", "I3", "I4", "I5", "I6", "I7", "I8", "I9", "I10" ), c("I1", "I2", "I3", "I4", "I5", "I6", "I7", "I8", "I9", "I10"))), Schmitt2005tt = structure(c(1, 0.4402, 0.4118, 0.4544, 0.3479, 0.4331, 0.3053, 0.3834, 0.5041, 0.5538, 0.4402, 1, 0.3596, 0.3968, 0.3038, 0.3782, 0.2666, 0.3348, 0.4402, 0.4836, 0.4118, 0.3596, 1, 0.3712, 0.2842, 0.3538, 0.2494, 0.3132, 0.4118, 0.4524, 0.4544, 0.3968, 0.3712, 1, 0.3136, 0.3904, 0.2752, 0.3456, 0.4544, 0.4992, 0.3479, 0.3038, 0.2842, 0.3136, 1, 0.2989, 0.2107, 0.2646, 0.3479, 0.3822, 0.4331, 0.3782, 0.3538, 0.3904, 0.2989, 1, 0.2623, 0.3294, 0.4331, 0.4758, 0.3053, 0.2666, 0.2494, 0.2752, 0.2107, 0.2623, 1, 0.2322, 0.3053, 0.3354, 0.3834, 0.3348, 0.3132, 0.3456, 0.2646, 0.3294, 0.2322, 1, 0.3834, 0.4212, 0.5041, 0.4402, 0.4118, 0.4544, 0.3479, 0.4331, 0.3053, 0.3834, 1, 0.5538, 0.5538, 0.4836, 0.4524, 0.4992, 0.3822, 0.4758, 0.3354, 0.4212, 0.5538, 1), .Dim = c(10L, 10L), .Dimnames = list(c("I1", "I2", "I3", "I4", "I5", "I6", "I7", "I8", "I9", "I10"), c("I1", "I2", "I3", "I4", "I5", "I6", "I7", "I8", "I9", "I10"))), Schmitt2005u = structure(c(1, 0.4818, 0.4964, 0.4745, 0.3796, 0.5256, 0.4234, 0.4891, 0.5621, 0.5548, 0.4818, 1, 0.4488, 0.429, 0.3432, 0.4752, 0.3828, 0.4422, 0.5082, 0.5016, 0.4964, 0.4488, 1, 0.442, 0.3536, 0.4896, 0.3944, 0.4556, 0.5236, 0.5168, 0.4745, 0.429, 0.442, 1, 0.338, 0.468, 0.377, 0.4355, 0.5005, 0.494, 0.3796, 0.3432, 0.3536, 0.338, 1, 0.3744, 0.3016, 0.3484, 0.4004, 0.3952, 0.5256, 0.4752, 0.4896, 0.468, 0.3744, 1, 0.4176, 0.4824, 0.5544, 0.5472, 0.4234, 0.3828, 0.3944, 0.377, 0.3016, 0.4176, 1, 0.3886, 0.4466, 0.4408, 0.4891, 0.4422, 0.4556, 0.4355, 0.3484, 0.4824, 0.3886, 1, 0.5159, 0.5092, 0.5621, 0.5082, 0.5236, 0.5005, 0.4004, 0.5544, 0.4466, 0.5159, 1, 0.5852, 0.5548, 0.5016, 0.5168, 0.494, 0.3952, 0.5472, 0.4408, 0.5092, 0.5852, 1), .Dim = c(10L, 10L), .Dimnames = list(c("I1", "I2", "I3", "I4", "I5", "I6", "I7", "I8", "I9", "I10"), c("I1", "I2", "I3", "I4", "I5", "I6", "I7", "I8", "I9", "I10"))), Schmitt2005uu = structure(c(1, 0.624, 0.424, 0.392, 0.456, 0.64, 0.192, 0.624, 0.424, 0.664, 0.624, 1, 0.4134, 0.3822, 0.4446, 0.624, 0.1872, 0.6084, 0.4134, 0.6474, 0.424, 0.4134, 1, 0.2597, 0.3021, 0.424, 0.1272, 0.4134, 0.2809, 0.4399, 0.392, 0.3822, 0.2597, 1, 0.2793, 0.392, 0.1176, 0.3822, 0.2597, 0.4067, 0.456, 0.4446, 0.3021, 0.2793, 1, 0.456, 0.1368, 0.4446, 0.3021, 0.4731, 0.64, 0.624, 0.424, 0.392, 0.456, 1, 0.192, 0.624, 0.424, 0.664, 0.192, 0.1872, 0.1272, 0.1176, 0.1368, 0.192, 1, 0.1872, 0.1272, 0.1992, 0.624, 0.6084, 0.4134, 0.3822, 0.4446, 0.624, 0.1872, 1, 0.4134, 0.6474, 0.424, 0.4134, 0.2809, 0.2597, 0.3021, 0.424, 0.1272, 0.4134, 1, 0.4399, 0.664, 0.6474, 0.4399, 0.4067, 0.4731, 0.664, 0.1992, 0.6474, 0.4399, 1), .Dim = c(10L, 10L), .Dimnames = list(c("I1", "I2", "I3", "I4", "I5", "I6", "I7", "I8", "I9", "I10"), c("I1", "I2", "I3", "I4", "I5", "I6", "I7", "I8", "I9", "I10"))), Schmitt2005v = structure(c(1, 0.429, 0.3894, 0.396, 0.3498, 0.4554, 0.297, 0.2046, 0.396, 0.5016, 0.429, 1, 0.3835, 0.39, 0.3445, 0.4485, 0.2925, 0.2015, 0.39, 0.494, 0.3894, 0.3835, 1, 0.354, 0.3127, 0.4071, 0.2655, 0.1829, 0.354, 0.4484, 0.396, 0.39, 0.354, 1, 0.318, 0.414, 0.27, 0.186, 0.36, 0.456, 0.3498, 0.3445, 0.3127, 0.318, 1, 0.3657, 0.2385, 0.1643, 0.318, 0.4028, 0.4554, 0.4485, 0.4071, 0.414, 0.3657, 1, 0.3105, 0.2139, 0.414, 0.5244, 0.297, 0.2925, 0.2655, 0.27, 0.2385, 0.3105, 1, 0.1395, 0.27, 0.342, 0.2046, 0.2015, 0.1829, 0.186, 0.1643, 0.2139, 0.1395, 1, 0.186, 0.2356, 0.396, 0.39, 0.354, 0.36, 0.318, 0.414, 0.27, 0.186, 1, 0.456, 0.5016, 0.494, 0.4484, 0.456, 0.4028, 0.5244, 0.342, 0.2356, 0.456, 1), .Dim = c(10L, 10L), .Dimnames = list(c("I1", "I2", "I3", "I4", "I5", "I6", "I7", "I8", "I9", "I10"), c("I1", "I2", "I3", "I4", "I5", "I6", "I7", "I8", "I9", "I10"))), Schmitt2005vv = structure(c(1, 0.4958, 0.5624, 0.4588, 0.4366, 0.518, 0.5254, 0.407, 0.4958, 0.5402, 0.4958, 1, 0.5092, 0.4154, 0.3953, 0.469, 0.4757, 0.3685, 0.4489, 0.4891, 0.5624, 0.5092, 1, 0.4712, 0.4484, 0.532, 0.5396, 0.418, 0.5092, 0.5548, 0.4588, 0.4154, 0.4712, 1, 0.3658, 0.434, 0.4402, 0.341, 0.4154, 0.4526, 0.4366, 0.3953, 0.4484, 0.3658, 1, 0.413, 0.4189, 0.3245, 0.3953, 0.4307, 0.518, 0.469, 0.532, 0.434, 0.413, 1, 0.497, 0.385, 0.469, 0.511, 0.5254, 0.4757, 0.5396, 0.4402, 0.4189, 0.497, 1, 0.3905, 0.4757, 0.5183, 0.407, 0.3685, 0.418, 0.341, 0.3245, 0.385, 0.3905, 1, 0.3685, 0.4015, 0.4958, 0.4489, 0.5092, 0.4154, 0.3953, 0.469, 0.4757, 0.3685, 1, 0.4891, 0.5402, 0.4891, 0.5548, 0.4526, 0.4307, 0.511, 0.5183, 0.4015, 0.4891, 1), .Dim = c(10L, 10L), .Dimnames = list(c("I1", "I2", "I3", "I4", "I5", "I6", "I7", "I8", "I9", "I10"), c("I1", "I2", "I3", "I4", "I5", "I6", "I7", "I8", "I9", "I10"))), Schmitt2005w = structure(c(1, 0.4473, 0.3465, 0.4032, 0.3906, 0.4473, 0.2835, 0.2331, 0.4347, 0.4536, 0.4473, 1, 0.3905, 0.4544, 0.4402, 0.5041, 0.3195, 0.2627, 0.4899, 0.5112, 0.3465, 0.3905, 1, 0.352, 0.341, 0.3905, 0.2475, 0.2035, 0.3795, 0.396, 0.4032, 0.4544, 0.352, 1, 0.3968, 0.4544, 0.288, 0.2368, 0.4416, 0.4608, 0.3906, 0.4402, 0.341, 0.3968, 1, 0.4402, 0.279, 0.2294, 0.4278, 0.4464, 0.4473, 0.5041, 0.3905, 0.4544, 0.4402, 1, 0.3195, 0.2627, 0.4899, 0.5112, 0.2835, 0.3195, 0.2475, 0.288, 0.279, 0.3195, 1, 0.1665, 0.3105, 0.324, 0.2331, 0.2627, 0.2035, 0.2368, 0.2294, 0.2627, 0.1665, 1, 0.2553, 0.2664, 0.4347, 0.4899, 0.3795, 0.4416, 0.4278, 0.4899, 0.3105, 0.2553, 1, 0.4968, 0.4536, 0.5112, 0.396, 0.4608, 0.4464, 0.5112, 0.324, 0.2664, 0.4968, 1), .Dim = c(10L, 10L), .Dimnames = list(c("I1", "I2", "I3", "I4", "I5", "I6", "I7", "I8", "I9", "I10"), c("I1", "I2", "I3", "I4", "I5", "I6", "I7", "I8", "I9", "I10"))), Schmitt2005ww = structure(c(1, 0.1037, 0.5124, 0.4636, 0.1098, 0.0732, 0.4758, -0.305, 0.0244, 0.5002, 0.1037, 1, 0.1428, 0.1292, 0.0306, 0.0204, 0.1326, -0.085, 0.0068, 0.1394, 0.5124, 0.1428, 1, 0.6384, 0.1512, 0.1008, 0.6552, -0.42, 0.0336, 0.6888, 0.4636, 0.1292, 0.6384, 1, 0.1368, 0.0912, 0.5928, -0.38, 0.0304, 0.6232, 0.1098, 0.0306, 0.1512, 0.1368, 1, 0.0216, 0.1404, -0.09, 0.0072, 0.1476, 0.0732, 0.0204, 0.1008, 0.0912, 0.0216, 1, 0.0936, -0.06, 0.0048, 0.0984, 0.4758, 0.1326, 0.6552, 0.5928, 0.1404, 0.0936, 1, -0.39, 0.0312, 0.6396, -0.305, -0.085, -0.42, -0.38, -0.09, -0.06, -0.39, 1, -0.02, -0.41, 0.0244, 0.0068, 0.0336, 0.0304, 0.0072, 0.0048, 0.0312, -0.02, 1, 0.0328, 0.5002, 0.1394, 0.6888, 0.6232, 0.1476, 0.0984, 0.6396, -0.41, 0.0328, 1), .Dim = c(10L, 10L), .Dimnames = list(c("I1", "I2", "I3", "I4", "I5", "I6", "I7", "I8", "I9", "I10"), c("I1", "I2", "I3", "I4", "I5", "I6", "I7", "I8", "I9", "I10"))), Schmitt2005x = structure(c(1, 0.3213, 0.3366, 0.2958, 0.3162, 0.3825, 0.2601, -0.0612, 0.3927, 0.3468, 0.3213, 1, 0.4158, 0.3654, 0.3906, 0.4725, 0.3213, -0.0756, 0.4851, 0.4284, 0.3366, 0.4158, 1, 0.3828, 0.4092, 0.495, 0.3366, -0.0792, 0.5082, 0.4488, 0.2958, 0.3654, 0.3828, 1, 0.3596, 0.435, 0.2958, -0.0696, 0.4466, 0.3944, 0.3162, 0.3906, 0.4092, 0.3596, 1, 0.465, 0.3162, -0.0744, 0.4774, 0.4216, 0.3825, 0.4725, 0.495, 0.435, 0.465, 1, 0.3825, -0.09, 0.5775, 0.51, 0.2601, 0.3213, 0.3366, 0.2958, 0.3162, 0.3825, 1, -0.0612, 0.3927, 0.3468, -0.0612, -0.0756, -0.0792, -0.0696, -0.0744, -0.09, -0.0612, 1, -0.0924, -0.0816, 0.3927, 0.4851, 0.5082, 0.4466, 0.4774, 0.5775, 0.3927, -0.0924, 1, 0.5236, 0.3468, 0.4284, 0.4488, 0.3944, 0.4216, 0.51, 0.3468, -0.0816, 0.5236, 1), .Dim = c(10L, 10L), .Dimnames = list( c("I1", "I2", "I3", "I4", "I5", "I6", "I7", "I8", "I9", "I10" ), c("I1", "I2", "I3", "I4", "I5", "I6", "I7", "I8", "I9", "I10"))), Schmitt2005xx = structure(c(1, 0.518, 0.4958, 0.4736, 0.5106, 0.5402, 0.4588, 0.4292, 0.5846, 0.5846, 0.518, 1, 0.469, 0.448, 0.483, 0.511, 0.434, 0.406, 0.553, 0.553, 0.4958, 0.469, 1, 0.4288, 0.4623, 0.4891, 0.4154, 0.3886, 0.5293, 0.5293, 0.4736, 0.448, 0.4288, 1, 0.4416, 0.4672, 0.3968, 0.3712, 0.5056, 0.5056, 0.5106, 0.483, 0.4623, 0.4416, 1, 0.5037, 0.4278, 0.4002, 0.5451, 0.5451, 0.5402, 0.511, 0.4891, 0.4672, 0.5037, 1, 0.4526, 0.4234, 0.5767, 0.5767, 0.4588, 0.434, 0.4154, 0.3968, 0.4278, 0.4526, 1, 0.3596, 0.4898, 0.4898, 0.4292, 0.406, 0.3886, 0.3712, 0.4002, 0.4234, 0.3596, 1, 0.4582, 0.4582, 0.5846, 0.553, 0.5293, 0.5056, 0.5451, 0.5767, 0.4898, 0.4582, 1, 0.6241, 0.5846, 0.553, 0.5293, 0.5056, 0.5451, 0.5767, 0.4898, 0.4582, 0.6241, 1), .Dim = c(10L, 10L), .Dimnames = list(c("I1", "I2", "I3", "I4", "I5", "I6", "I7", "I8", "I9", "I10"), c("I1", "I2", "I3", "I4", "I5", "I6", "I7", "I8", "I9", "I10"))), Schmitt2005y = structure(c(1, 0.567, 0.6075, 0.5832, 0.5832, 0.5913, 0.6156, 0.4293, 0.648, 0.648, 0.567, 1, 0.525, 0.504, 0.504, 0.511, 0.532, 0.371, 0.56, 0.56, 0.6075, 0.525, 1, 0.54, 0.54, 0.5475, 0.57, 0.3975, 0.6, 0.6, 0.5832, 0.504, 0.54, 1, 0.5184, 0.5256, 0.5472, 0.3816, 0.576, 0.576, 0.5832, 0.504, 0.54, 0.5184, 1, 0.5256, 0.5472, 0.3816, 0.576, 0.576, 0.5913, 0.511, 0.5475, 0.5256, 0.5256, 1, 0.5548, 0.3869, 0.584, 0.584, 0.6156, 0.532, 0.57, 0.5472, 0.5472, 0.5548, 1, 0.4028, 0.608, 0.608, 0.4293, 0.371, 0.3975, 0.3816, 0.3816, 0.3869, 0.4028, 1, 0.424, 0.424, 0.648, 0.56, 0.6, 0.576, 0.576, 0.584, 0.608, 0.424, 1, 0.64, 0.648, 0.56, 0.6, 0.576, 0.576, 0.584, 0.608, 0.424, 0.64, 1), .Dim = c(10L, 10L), .Dimnames = list( c("I1", "I2", "I3", "I4", "I5", "I6", "I7", "I8", "I9", "I10" ), c("I1", "I2", "I3", "I4", "I5", "I6", "I7", "I8", "I9", "I10"))), Schmitt2005yy = structure(c(1, 0.5621, 0.539, 0.5236, 0.5929, 0.5467, 0.5621, 0.5313, 0.5852, 0.6237, 0.5621, 1, 0.511, 0.4964, 0.5621, 0.5183, 0.5329, 0.5037, 0.5548, 0.5913, 0.539, 0.511, 1, 0.476, 0.539, 0.497, 0.511, 0.483, 0.532, 0.567, 0.5236, 0.4964, 0.476, 1, 0.5236, 0.4828, 0.4964, 0.4692, 0.5168, 0.5508, 0.5929, 0.5621, 0.539, 0.5236, 1, 0.5467, 0.5621, 0.5313, 0.5852, 0.6237, 0.5467, 0.5183, 0.497, 0.4828, 0.5467, 1, 0.5183, 0.4899, 0.5396, 0.5751, 0.5621, 0.5329, 0.511, 0.4964, 0.5621, 0.5183, 1, 0.5037, 0.5548, 0.5913, 0.5313, 0.5037, 0.483, 0.4692, 0.5313, 0.4899, 0.5037, 1, 0.5244, 0.5589, 0.5852, 0.5548, 0.532, 0.5168, 0.5852, 0.5396, 0.5548, 0.5244, 1, 0.6156, 0.6237, 0.5913, 0.567, 0.5508, 0.6237, 0.5751, 0.5913, 0.5589, 0.6156, 1), .Dim = c(10L, 10L), .Dimnames = list(c("I1", "I2", "I3", "I4", "I5", "I6", "I7", "I8", "I9", "I10"), c("I1", "I2", "I3", "I4", "I5", "I6", "I7", "I8", "I9", "I10"))), Schmitt2005z = structure(c(1, 0.4818, 0.5037, 0.4161, 0.365, 0.511, 0.4672, 0.3796, 0.3504, 0.5475, 0.4818, 1, 0.4554, 0.3762, 0.33, 0.462, 0.4224, 0.3432, 0.3168, 0.495, 0.5037, 0.4554, 1, 0.3933, 0.345, 0.483, 0.4416, 0.3588, 0.3312, 0.5175, 0.4161, 0.3762, 0.3933, 1, 0.285, 0.399, 0.3648, 0.2964, 0.2736, 0.4275, 0.365, 0.33, 0.345, 0.285, 1, 0.35, 0.32, 0.26, 0.24, 0.375, 0.511, 0.462, 0.483, 0.399, 0.35, 1, 0.448, 0.364, 0.336, 0.525, 0.4672, 0.4224, 0.4416, 0.3648, 0.32, 0.448, 1, 0.3328, 0.3072, 0.48, 0.3796, 0.3432, 0.3588, 0.2964, 0.26, 0.364, 0.3328, 1, 0.2496, 0.39, 0.3504, 0.3168, 0.3312, 0.2736, 0.24, 0.336, 0.3072, 0.2496, 1, 0.36, 0.5475, 0.495, 0.5175, 0.4275, 0.375, 0.525, 0.48, 0.39, 0.36, 1), .Dim = c(10L, 10L ), .Dimnames = list(c("I1", "I2", "I3", "I4", "I5", "I6", "I7", "I8", "I9", "I10"), c("I1", "I2", "I3", "I4", "I5", "I6", "I7", "I8", "I9", "I10"))), Schmitt2005zz = structure(c(1, 0.5625, 0.525, 0.4575, 0.51, 0.5325, 0.525, 0.495, 0.5325, 0.6, 0.5625, 1, 0.525, 0.4575, 0.51, 0.5325, 0.525, 0.495, 0.5325, 0.6, 0.525, 0.525, 1, 0.427, 0.476, 0.497, 0.49, 0.462, 0.497, 0.56, 0.4575, 0.4575, 0.427, 1, 0.4148, 0.4331, 0.427, 0.4026, 0.4331, 0.488, 0.51, 0.51, 0.476, 0.4148, 1, 0.4828, 0.476, 0.4488, 0.4828, 0.544, 0.5325, 0.5325, 0.497, 0.4331, 0.4828, 1, 0.497, 0.4686, 0.5041, 0.568, 0.525, 0.525, 0.49, 0.427, 0.476, 0.497, 1, 0.462, 0.497, 0.56, 0.495, 0.495, 0.462, 0.4026, 0.4488, 0.4686, 0.462, 1, 0.4686, 0.528, 0.5325, 0.5325, 0.497, 0.4331, 0.4828, 0.5041, 0.497, 0.4686, 1, 0.568, 0.6, 0.6, 0.56, 0.488, 0.544, 0.568, 0.56, 0.528, 0.568, 1), .Dim = c(10L, 10L), .Dimnames = list( c("I1", "I2", "I3", "I4", "I5", "I6", "I7", "I8", "I9", "I10" ), c("I1", "I2", "I3", "I4", "I5", "I6", "I7", "I8", "I9", "I10"))), Schmitt2055ll = structure(c(1, 0.403, 0.3286, 0.4588, 0.4092, 0.3906, 0.2852, 0.279, 0.4216, 0.434, 0.403, 1, 0.3445, 0.481, 0.429, 0.4095, 0.299, 0.2925, 0.442, 0.455, 0.3286, 0.3445, 1, 0.3922, 0.3498, 0.3339, 0.2438, 0.2385, 0.3604, 0.371, 0.4588, 0.481, 0.3922, 1, 0.4884, 0.4662, 0.3404, 0.333, 0.5032, 0.518, 0.4092, 0.429, 0.3498, 0.4884, 1, 0.4158, 0.3036, 0.297, 0.4488, 0.462, 0.3906, 0.4095, 0.3339, 0.4662, 0.4158, 1, 0.2898, 0.2835, 0.4284, 0.441, 0.2852, 0.299, 0.2438, 0.3404, 0.3036, 0.2898, 1, 0.207, 0.3128, 0.322, 0.279, 0.2925, 0.2385, 0.333, 0.297, 0.2835, 0.207, 1, 0.306, 0.315, 0.4216, 0.442, 0.3604, 0.5032, 0.4488, 0.4284, 0.3128, 0.306, 1, 0.476, 0.434, 0.455, 0.371, 0.518, 0.462, 0.441, 0.322, 0.315, 0.476, 1), .Dim = c(10L, 10L ), .Dimnames = list(c("I1", "I2", "I3", "I4", "I5", "I6", "I7", "I8", "I9", "I10"), c("I1", "I2", "I3", "I4", "I5", "I6", "I7", "I8", "I9", "I10"))), Sinclair2010 = structure(c(1, 0.608, 0.592, 0.528, 0.56, 0.544, 0.608, 0.584, 0.616, 0.68, 0.608, 1, 0.5624, 0.5016, 0.532, 0.5168, 0.5776, 0.5548, 0.5852, 0.646, 0.592, 0.5624, 1, 0.4884, 0.518, 0.5032, 0.5624, 0.5402, 0.5698, 0.629, 0.528, 0.5016, 0.4884, 1, 0.462, 0.4488, 0.5016, 0.4818, 0.5082, 0.561, 0.56, 0.532, 0.518, 0.462, 1, 0.476, 0.532, 0.511, 0.539, 0.595, 0.544, 0.5168, 0.5032, 0.4488, 0.476, 1, 0.5168, 0.4964, 0.5236, 0.578, 0.608, 0.5776, 0.5624, 0.5016, 0.532, 0.5168, 1, 0.5548, 0.5852, 0.646, 0.584, 0.5548, 0.5402, 0.4818, 0.511, 0.4964, 0.5548, 1, 0.5621, 0.6205, 0.616, 0.5852, 0.5698, 0.5082, 0.539, 0.5236, 0.5852, 0.5621, 1, 0.6545, 0.68, 0.646, 0.629, 0.561, 0.595, 0.578, 0.646, 0.6205, 0.6545, 1), .Dim = c(10L, 10L), .Dimnames = list(c("I1", "I2", "I3", "I4", "I5", "I6", "I7", "I8", "I9", "I10"), c("I1", "I2", "I3", "I4", "I5", "I6", "I7", "I8", "I9", "I10")))), .Names = c("Carmines1979", "Donnellan2016", "Gnambs2017", "Hesketh2012", "Jamil2006", "Liss2008", "Liss2009", "Liss2010", "Liss2011", "Liss2012", "Liss2013", "Liss2014", "Liss2015", "Neps2010b", "Neps2010c", "Neps2010d", "Neps2010e", "Neps2010f", "Opd2014a", "Opd2014b", "Opd2014c", "Opd2014d", "Opd2014e", "Opd2014f", "Opd2014g", "Opd2014h", "Opd2014i", "Opd2014j", "Portes2012", "Shahni1990", "Song2011a", "Song2011b", "Vasconcelos2012", "Welsh2011", "Whiteside2003a", "Whiteside2003b", "Bagley1997a", "Bagley1997b", "Chao2017a", "Chao2017b", "Dobson1979", "Farid2013", "Franck2008", "Goldsmith1982", "Goldsmith1986a", "Gray1997", "Hensley1976", "Hensley1977a", "Hensley1977b", "Kaplan1969", "Meurer2012", "Mimura2007a", "Mimura2007b", "Mlacic2006", "Obrien1985", "Pullmann2000", "Rojas2009", "Sarkova2006a", "Sarkova2006b", "Schmitt2005a", "Schmitt2005aa", "Schmitt2005aaa", "Schmitt2005b", "Schmitt2005bb", "Schmitt2005c", "Schmitt2005cc", "Schmitt2005d", "Schmitt2005dd", "Schmitt2005e", "Schmitt2005ee", "Schmitt2005f", "Schmitt2005ff", "Schmitt2005g", "Schmitt2005gg", "Schmitt2005h", "Schmitt2005hh", "Schmitt2005i", "Schmitt2005ii", "Schmitt2005j", "Schmitt2005jj", "Schmitt2005k", "Schmitt2005kk", "Schmitt2005l", "Schmitt2005m", "Schmitt2005mm", "Schmitt2005n", "Schmitt2005nn", "Schmitt2005o", "Schmitt2005oo", "Schmitt2005p", "Schmitt2005pp", "Schmitt2005q", "Schmitt2005qq", "Schmitt2005r", "Schmitt2005rr", "Schmitt2005s", "Schmitt2005ss", "Schmitt2005t", "Schmitt2005tt", "Schmitt2005u", "Schmitt2005uu", "Schmitt2005v", "Schmitt2005vv", "Schmitt2005w", "Schmitt2005ww", "Schmitt2005x", "Schmitt2005xx", "Schmitt2005y", "Schmitt2005yy", "Schmitt2005z", "Schmitt2005zz", "Schmitt2055ll", "Sinclair2010" )), n = c(340, 1127, 12437, 7097, 122, 6776, 424, 1371, 194, 1156, 173, 1556, 213, 469, 5264, 4435, 2311, 13028, 22131, 6584, 411, 2344, 2899, 1285, 460, 1073, 298, 204, 5006, 1726, 551, 380, 1763, 3066, 414, 900, 1084, 1024, 255, 269, 1332, 396, 442, 101, 87, 1234, 479, 487, 707, 500, 292, 222, 1320, 706, 206, 616, 473, 431, 519, 246, 259, 193, 485, 192, 466, 257, 145, 94, 514, 136, 179, 327, 213, 211, 93, 173, 1032, 239, 310, 272, 183, 206, 222, 59, 812, 234, 252, 183, 251, 229, 200, 159, 180, 120, 180, 130, 487, 782, 271, 229, 208, 200, 209, 200, 135, 104, 409, 389, 480, 200, 2782, 277, 503), Year = c(1979, 2016, 2017, 2012, 2006, 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2010, 2010, 2010, 2010, 2010, 2014, 2014, 2014, 2014, 2014, 2014, 2014, 2014, 2014, 2014, 2012, 1990, 2011, 2011, 2012, 2011, 2003, 2003, 1997, 1997, 2017, 2017, 1979, 2013, 2008, 1982, 1986, 1997, 1976, 1977, 1977, 1969, 2012, 2007, 2007, 2007, 1985, 2000, 2009, 2006, 2006, 2005, 2005, 2005, 2005, 2005, 2005, 2005, 2005, 2005, 2005, 2005, 2005, 2005, 2005, 2005, 2005, 2005, 2005, 2005, 2005, 2005, 2005, 2005, 2005, 2005, 2005, 2005, 2005, 2005, 2005, 2005, 2005, 2005, 2005, 2005, 2005, 2005, 2005, 2005, 2005, 2005, 2005, 2005, 2005, 2005, 2005, 2005, 2005, 2005, 2005, 2005, 2005, 2005, 2010), Country = c("USA", "USA", "Germany", "China", "Malaysia", "Netherlands", "Netherlands", "Netherlands", "Netherlands", "Netherlands", "Netherlands", "Netherlands", "Netherlands", "Germany", "Germany", "Germany", "Germany", "Germany", "USA", "England", "Ireland", "Australia", "Canada", "India", "New Zealand", "Philippines", "Pakistan", "Hongkong", "US Immigrants", "USA", "USA", "China", "Portugal", "England", "USA", "USA", "Canada", "Canada", "USA", "USA", "USA", "Pakistan", "Belgium", "USA", "USA", "USA", "USA", "USA", "USA", "USA", "Brazil", "England", "Japan", "Croatia", "USA", "Estonia", "Chile", "Hungary", "Slovakia", "Argentina", "Japan", "Zimbabwe", "Australia", "Latvia", "Austria", "Lebanon", "Bangladesh", "Lithuania", "Belgium", "Malaysia", "Bolivia", "Malta", "Botswana", "Mexico", "Brazil", "Morocco", "Canada", "Netherlands", "Chile", "New Zealand", "Dem. Rep. Congo", "Peru", "Croatia", "Cyprus", "Poland", "Czech Rep.", "Portugal", "Estonia", "Romania", "Ethiopia", "Serbia", "Fiji", "Slovakia", "Finland", "Slovenia", "France", "South Korea", "Germany", "Spain", "Greece", "Switzerland", "Hongkong", "Taiwan", "India", "Tanzania", "Indonesia", "Turkey", "Israel", "England", "Italy", "USA", "Philippenes", "USA" ), Language = c("English", "English", "German", "Chinese", "Malay", "Dutch", "Dutch", "Dutch", "Dutch", "Dutch", "Dutch", "Dutch", "Dutch", "German", "German", "German", "German", "German", "English", "English", "English", "English", "English", "English", "English", "English", "English", "English", "English", "English", "English", "Chinese", "Portuguese", "English", "English", "English", "English", "English", "English", "English", "English", "English", "Dutch", "English", "English", "English", "English", "English", "English", "English", "Portuguese", "English", "Japanese", "Croatian", "English", "Estonian", "Spanish", "Hungarian", "Slovak", "Spanish", "Japanese", "English", "English", "Latvian", "German", "English", "Bangla", "Lithuanian", "Dutch", "Malay", "Spanish", "English", "English", "Spanish", "Portuguese", "English", "English, French", "Dutch", "Spanish", "English", "French", "Spanish", "Croatian", "Greek", "Polish", "Czech", "Portuguese", "Estonian", "Romanian", "English", "Serbian", "English", "Slovak", "Finnish", "Slovenian", "French", "Korean", "German", "Spanish", "Greek", "German", "English", "Mandarin", "Hindi", "English", "Indonesian", "Turkish", "Hebrew", "English", "Italian", "English", "English", "English"), Publication = c(1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1), MeanAge = c(NA, 18.31, 14.68, 28.61, 14.23, 46.02, 33.69, 48.1, 32.08, 45.33, 27.6, 40.68, 26.85, 17.52, 49.59, 10.49, 14.51, 23.47, 26.43, 28.53, 29.21, 27, 27.46, 26.26, 27.7, 21.93, 22.88, 25.96, 14.23, NA, NA, NA, NA, 56.1, 14.8, 33, NA, NA, 20.56, 20.67, NA, NA, 36.1, NA, 40.9, NA, NA, NA, NA, NA, 67.54, 22.1, 20.6, 16.9, NA, 19.8618506493507, NA, 11.5, 11.5, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 44.7), FemaleProp = c(NA, 3.99290150842946, 0.40202621210903, 0.745103564886572, 40.1639344262295, 0.801062573789846, 11.6816037735849, 4.04595185995624, 25.9072164948454, 4.66349480968858, 33.271676300578, 3.49293059125964, 22.3098591549296, 10.865671641791, 0.963145896656535, 1.08387824126268, 2.17092167892687, 0.463770340804421, 0.293389363336496, 0.94365127582017, 13.9464720194647, 2.78156996587031, 2.17316315971024, 3.82101167315175, 13.754347826087, 6.54147250698975, 20.7181208053691, 29.2205882352941, 1.02237315221734, 4.40324449594438, 11.978221415608, 20.7894736842105, 3.32028277741654, 1.76060013046314, 13.5265700483092, 10.7777777777778, 0, 9.765625, 25.6862745098039, 25.5762081784387, 0, 14.2842567084991, 14.9321266968326, 63.8773554774832, 79.3103448275862, NA, NA, 0, 14.1442715700141, NA, 27.5614561831488, 39.3693693693694, 5.84090909090909, 7.64872521246459, 48.5436893203884, 10.3305785123967, 10.5931729905377, 10.9744779582367, 9.46050096339114, 22.479674796748, 15.2123552123552, 26.0621761658031, 12.0824742268041, 27.9166666666667, 11.931330472103, 20.8949416342412, 29.5172413793103, 53.1914893617021, 13.2879377431907, 47.0588235294118, 27.4860335195531, 18.1345565749235, 25.5868544600939, 23.7914691943128, 63.5483870967742, 29.0751445086705, 6.21124031007752, 21.8828451882845, 21.9677419354839, 21.2132352941176, 17.9234972677596, 23.5436893203883, 22.1171171171171, 103.389830508475, 7.75862068965517, 23.5470085470085, 22.3412698412698, 31.6939890710383, 20.3187250996016, 17.3362445414847, 25, 32.0754716981132, 30.2222222222222, 61.8333333333333, 33, 43.2307692307692, 12.3613963039014, 8.0306905370844, 24.2435424354244, 34.6724890829694, 29.375, 25, 21.2918660287081, 25, 23.6296296296296, 48.0769230769231, 12.200488997555, 13.9331619537275, 14.9375, 27, 2.30769230769231, 20.7220216606498, 10.3180914512922), Individualism = c(33, 33, 102, -31, -89, 182, 182, 182, 182, 182, 182, 182, 182, 102, 102, 102, 102, 102, 33, 93, 27, 83, 78, -101, 68, -126, NA, -5, NA, 33, 33, -31, 30, 93, 33, 33, 78, 78, 33, 33, 33, NA, 110, 33, 33, 33, 33, 33, 33, 33, -56, 93, 42, NA, 33, NA, -8, 72, NA, -5, 42, NA, 83, NA, 95, NA, NA, NA, 110, -89, NA, NA, NA, -63, -56, NA, 78, 182, -8, 68, NA, -117, NA, NA, -15, 70, 30, NA, -19, NA, 58, NA, NA, 88, NA, 86, 25, 102, 58, 30, 105, -5, -43, -101, NA, -171, -18, 16, 93, 5, 33, -126, 33), CorMat = c(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)), .Names = c("data", "n", "Year", "Country", "Language", "Publication", "MeanAge", "FemaleProp", "Individualism", "CorMat"))
estimate.MSTT <- function(y,X,max.iter=1000,prec=1e-4,est.var=TRUE,nu.fixed=3,nu.min=2.0001){ y.or<-y; X.or<-X logsttnu<-function(nu,Y,X,beta0,Sigma,lambda){ n=nrow(Y) p=ncol(Y) B=matrix.sqrt(Sigma) Binv=solve2(B) mu=matrix(0,n,p) d<-matrix(0,n,1) res<-matrix(0,n,p) for(i in 1:n){ mu[i,]<-X[[i]]%*%beta0 res[i,]<-Y[i,]-X[[i]]%*%beta0 d[i]<-t(res[i,])%*%Binv%*%Binv%*%res[i,] } A=as.vector(t(lambda)%*%solve2(B)%*%t(res)) fy=2*mvtnorm::dmvt(res, sigma = Sigma, df = nu, log = FALSE)*pt(sqrt((nu+p)/(nu+d))*A, nu+p) return(sum(log(fy)))} mstt.logL <- function(theta,Y,X){ n=nrow(Y) p=ncol(Y) q0=ncol(X[[1]]) pth=length(theta)-1 beta0=as.matrix(theta[1:q0],q0,1) p1=p*(p+1)/2 B= xpnd(theta[(q0+1):(q0+p1)]) Sigma=B%*%B invSigma=solve2(Sigma) Binv=matrix.sqrt(invSigma) lambda=as.matrix(theta[(q0+p1+1):pth],p,1) nu=as.numeric(theta[pth+1]) mu=matrix(0,n,p) d<-matrix(0,n,1) res<-matrix(0,n,p) for(i in 1:n){ mu[i,]<-X[[i]]%*%beta0 res[i,]<-Y[i,]-X[[i]]%*%beta0 d[i]<-t(res[i,])%*%Binv%*%Binv%*%res[i,]} A=as.vector(t(lambda)%*%solve2(B)%*%t(res)) fy=2*mvtnorm::dmvt(res, sigma = Sigma, df = nu, log = FALSE)*pt(sqrt((nu+p)/(nu+d))*A, nu+p) return(sum(log(fy))) } y<-as.matrix(y) if(!is.numeric(nu.min) | nu.min<=0) stop("nu.min should be a positive number") if(nu.fixed!=FALSE & !is.numeric(nu.fixed)) stop("nu fixed must be a number greater than 1") if(is.numeric(nu.fixed) & as.numeric(nu.fixed)<1) stop("nu fixed must be a number greater than 1") if(!is.matrix(y)) stop("y must have at least one element") if(is.null(X)){X<-array(c(diag(ncol(y))),c(ncol(y),ncol(y),nrow(y)))} if(is.array(X)==FALSE & is.list(X)==FALSE) stop("X must be an array or a list") if(is.array(X)) {Xs<-list() if(ncol(y)>1 | !is.matrix(X)){ for (i in 1:nrow(y)){ Xs[[i]]<- matrix(t(X[,,i]),nrow=ncol(y))}} if(ncol(y)==1 & is.matrix(X)){ for (i in 1:nrow(y)){ Xs[[i]]<- matrix(t(X[i,]),nrow=1)}} X<-Xs} if (ncol(y) != nrow(X[[1]])) stop("y does not have the same number of columns than X") if (nrow(y) != length(X)) stop("y does not have the same number of observations than X") if(!nu.fixed){ aa=system.time({ n=nrow(y) p=ncol(y) q=ncol(X[[n]]) b0<-matrix(0,q,q) b1<-matrix(0,q,1) for(i in 1:n){ b0<-b0+t(X[[i]])%*%X[[i]] b1<-b1+t(X[[i]])%*%y[i,] } beta0<-solve2(b0)%*%b1 e<-matrix(0,n,p) for(i in 1:n){ e[i,]<-y[i,]-X[[i]]%*%beta0 } S<-cov(e) invS<-solve2(S) B<-matrix.sqrt(S) lambda<-as.matrix(moments::skewness(e)) nu=5 theta0<-c(as.vector(beta0),vech(B),as.vector(lambda),nu) log0= mstt.logL(theta0,y,X) Sigma=B%*%B delta=lambda/sqrt(1+sum(as.vector(lambda)^2)) Delta= matrix.sqrt(solve2(Sigma))%*%delta a1=Sigma-Delta%*%t(Delta) bb=eigen(a1)$values { if (sum(bb>0)==p) Gama=a1 else Gama=Sigma } criterio=1 cont=0 bb=1 mu=matrix(0,n,p) d<-rep(0,n) res<-matrix(0,n,p) while((criterio>=prec)&&(cont<=max.iter)&&(bb>=0)){ cont=cont+1 Binv=solve2(B) for (i in 1:n){ mu[i,]<-X[[i]]%*%beta0 res[i,]<-y[i,]-X[[i]]%*%beta0 d[i]<-as.numeric(t(res[i,])%*%Binv%*%Binv%*%res[i,]) } Gamainv=solve2(Gama) A=as.vector(t(lambda)%*%solve2(B)%*%t(res)) u=2*gamma((nu+p+2)/2)/gamma((nu+p)/2)/(nu+d)*pt(sqrt((nu+p+2)/(nu+d))*A, nu+p+2)/pt(sqrt((nu+p)/(nu+d))*A, nu+p) eta1=1/pt(sqrt((nu+p)/(nu+d))*A, nu+p)/sqrt(pi)*gamma((nu+p+1)/2)/gamma((nu+p)/2)*((nu+d)^((nu+p)/2))/((nu+d+A^2)^((nu+p+1)/2)) MT2=1/(1+as.numeric(t(Delta)%*%Gamainv%*%Delta)) muT=MT2*as.vector(t(Delta)%*%solve2(Gama)%*%t(res)) ut = u*muT+sqrt(MT2)*eta1 ut2=u*(muT^2)+MT2+muT*sqrt(MT2)*eta1 beta01=matrix(0,q,q) beta02=matrix(0,q,1) Delta1=matrix(0,p,1) Gama0=matrix(0,p,p) for (i in 1:n){ yi=as.matrix(y[i,]) Xi=X[[i]] resi=as.matrix(res[i,]) beta01=beta01+u[i]*t(Xi)%*%Gamainv%*%Xi beta02=beta02+t(Xi)%*%Gamainv%*%(u[i]*yi-ut[i]*Delta) Delta1=Delta1+ut[i]*resi Gama0=Gama0+u[i]*resi%*%t(resi)-ut[i]*(Delta%*%t(resi)+resi%*%t(Delta))+ut2[i]*Delta%*%t(Delta) } beta0=solve2(beta01)%*%beta02 Delta=Delta1/sum(ut2) Gama=Gama0/n Sigma=Gama+Delta%*%t(Delta) B=matrix.sqrt(Sigma) Binv=solve2(B) delta=Binv%*%Delta lambda=delta/sqrt(1-as.numeric(t(delta)%*%delta)) nu=optimize(logsttnu,c(nu.min,100),y,X,beta0,Sigma,lambda,maximum=T) nu=as.numeric(nu$maximum) theta=c(as.vector(beta0),vech(B),as.vector(lambda),nu) logL=mstt.logL(theta,y,X) criterio=abs(logL-log0) bb=sum(eigen(Gama)$values>0)-p theta0=theta log0=logL } })} if(is.numeric(nu.fixed)){ aa=system.time({ n=nrow(y) p=ncol(y) q=ncol(X[[n]]) b0<-matrix(0,q,q) b1<-matrix(0,q,1) for(i in 1:n){ b0<-b0+t(X[[i]])%*%X[[i]] b1<-b1+t(X[[i]])%*%y[i,] } beta0<-solve2(b0)%*%b1 e<-matrix(0,n,p) for(i in 1:n){ e[i,]<-y[i,]-X[[i]]%*%beta0 } S<-cov(e) invS<-solve2(S) B<-matrix.sqrt(S) lambda<-as.matrix(moments::skewness(e)) nu=nu.fixed theta0<-c(as.vector(beta0),vech(B),as.vector(lambda),nu) log0= mstt.logL(theta0,y,X) Sigma=B%*%B delta=lambda/sqrt(1+sum(as.vector(lambda)^2)) Delta= matrix.sqrt(solve2(Sigma))%*%delta a1=Sigma-Delta%*%t(Delta) bb=eigen(a1)$values { if (sum(bb>0)==p) Gama=a1 else Gama=Sigma } criterio=1 cont=0 bb=1 mu=matrix(0,n,p) d<-rep(0,n) res<-matrix(0,n,p) while((criterio>=prec)&&(cont<=max.iter)&&(bb>=0)){ cont=cont+1 Binv=solve2(B) for (i in 1:n){ mu[i,]<-X[[i]]%*%beta0 res[i,]<-y[i,]-X[[i]]%*%beta0 d[i]<-as.numeric(t(res[i,])%*%Binv%*%Binv%*%res[i,]) } Gamainv=solve2(Gama) A=as.vector(t(lambda)%*%solve2(B)%*%t(res)) u=2*gamma((nu+p+2)/2)/gamma((nu+p)/2)/(nu+d)*pt(sqrt((nu+p+2)/(nu+d))*A, nu+p+2)/pt(sqrt((nu+p)/(nu+d))*A, nu+p) eta1=1/pt(sqrt((nu+p)/(nu+d))*A, nu+p)/sqrt(pi)*gamma((nu+p+1)/2)/gamma((nu+p)/2)*((nu+d)^((nu+p)/2))/((nu+d+A^2)^((nu+p+1)/2)) MT2=1/(1+as.numeric(t(Delta)%*%Gamainv%*%Delta)) muT=MT2*as.vector(t(Delta)%*%solve2(Gama)%*%t(res)) ut = u*muT+sqrt(MT2)*eta1 ut2=u*(muT^2)+MT2+muT*sqrt(MT2)*eta1 beta01=matrix(0,q,q) beta02=matrix(0,q,1) Delta1=matrix(0,p,1) Gama0=matrix(0,p,p) for (i in 1:n){ yi=as.matrix(y[i,]) Xi=X[[i]] resi=as.matrix(res[i,]) beta01=beta01+u[i]*t(Xi)%*%Gamainv%*%Xi beta02=beta02+t(Xi)%*%Gamainv%*%(u[i]*yi-ut[i]*Delta) Delta1=Delta1+ut[i]*resi Gama0=Gama0+u[i]*resi%*%t(resi)-ut[i]*(Delta%*%t(resi)+resi%*%t(Delta))+ut2[i]*Delta%*%t(Delta) } beta0=solve2(beta01)%*%beta02 Delta=Delta1/sum(ut2) Gama=Gama0/n Sigma=Gama+Delta%*%t(Delta) B=matrix.sqrt(Sigma) Binv=solve2(B) delta=Binv%*%Delta lambda=delta/sqrt(1-as.numeric(t(delta)%*%delta)) theta=c(as.vector(beta0),vech(B),as.vector(lambda),nu) logL=mstt.logL(theta,y,X) criterio=abs(logL-log0) bb=sum(eigen(Gama)$values>0)-p theta0=theta log0=logL } })} npar=length(theta) AIC=-2*logL+2*npar BIC=-2*logL+log(n)*npar tempo=as.numeric(aa[3]) conv<-ifelse(cont<=max.iter & criterio<=prec, 0, 1) aux=as.list(sapply(1:p,seq,by=1,to=p)) indices=c() for(j in 1:p) {indices=c(indices,paste(j,aux[[j]],sep=""))} P<-matrix(theta[-length(theta)],ncol=1) nu<-theta[length(theta)] rownames(P)<-c(paste("beta",1:q,sep=""),paste("alpha",indices,sep=""),paste("lambda",1:p,sep="")) colnames(P)<-c("estimate") conv.problem=1 if(est.var) { MI.obs<- FI.MSTT(P,y,X,nu) test=try(solve2(MI.obs),silent=TRUE) se=c() if(is.numeric(test) & max(diag(test))<0) { conv.problem=0 se=sqrt(-diag(test)) P<-cbind(P,se) colnames(P)<-c("estimate","s.e.") } } if(conv.problem==0) ll<-list(coefficients=P[,1],se=P[,2],nu=nu,logLik=logL,AIC=AIC,BIC=BIC,iterations=cont,time=tempo,conv=conv,dist="MSTT",class="MSMSN",n=nrow(y)) else{ ll<-list(coefficients=P[,1],nu=nu,logLik=logL,AIC=AIC,BIC=BIC,iterations=cont,time=tempo,conv=conv,dist="MSTT",class="MSMSN",n=nrow(y)) ll$warnings="Standard errors can't be estimated: Numerical problems with the inversion of the information matrix" } object.out<-ll class(object.out) <- "skewMLRM" object.out$y<-y.or object.out$X<-X.or object.out$"function"<-"estimate.MSTT" object.out }
cpCommunityGraph <- function(list.of.communities, node.size.method = c("proportional","normal"), max.node.size = 10, ...){ if (length(list.of.communities) < 2) { stop("Less than two communities. Thus, no network is plotted.") } if (node.size.method != "proportional" & node.size.method != "normal") { stop("node.size.method must be 'proportional' or 'normal'.") } if (length(list.of.communities) > 1) { W <- matrix(c(0), nrow = length(list.of.communities), ncol = length(list.of.communities), byrow = TRUE) for (i in 1:(length(list.of.communities) - 1)) { for (j in (i + 1):length(list.of.communities)) { overlap <- Reduce(intersect, list(list.of.communities[[i]],list.of.communities[[j]])) if (length(overlap) > 0) { W[i,j] <- length(overlap) W[j,i] <- length(overlap) } } } if (node.size.method == "proportional") { size_communities <- c() for (i in 1:length(list.of.communities)) { size_communities[i] <- length(list.of.communities[[i]]) } divider <- max(size_communities) / max.node.size qgraph::qgraph(W, vsize = size_communities/divider, ...) } if (node.size.method == "normal") { qgraph::qgraph(W, ...) } invisible(list(community.weights.matrix = W)) } }
mmenubd.mae<-function(){ fontHeading<- tkfont.create(family="times",size=40,weight="bold") fontHeading3<-tkfont.create(family="times",size=10,weight="bold") AMVDEopt.top<-tktoplevel() tkwm.title(AMVDEopt.top,"Optimal Block Designs For Microarray Experiments") tkgrid(tklabel(AMVDEopt.top,text=" optbdmaeAT 1.0.1 ",font=fontHeading)) tkgrid(tklabel(AMVDEopt.top,text="",font=fontHeading)) Fixp.butA<-tkbutton(AMVDEopt.top,text="A-Optimal Block Design",font=fontHeading3,command=function()fixparbd.mae("A"),width=30) Fixp.butMV<-tkbutton(AMVDEopt.top,text="MV-Optimal Block Design",font=fontHeading3,command=function() fixparbd.mae("MV"),width=30) Fixp.butD<-tkbutton(AMVDEopt.top,text="D-Optimal Block Design",font=fontHeading3,command=function() fixparbd.mae("D"),width=30) Fixp.butE<-tkbutton(AMVDEopt.top,text="E-Optimal Block Design",font=fontHeading3,command=function() fixparbd.mae("E"),width=30) ExitWind.1<-function(){ tkmessageBox(title="Bye...", message=paste("Bye..., Enjoy your optimal design")) tkdestroy(AMVDEopt.top) } ExitWin.but<-tkbutton(AMVDEopt.top,text="Exit",font=fontHeading3,command=ExitWind.1,width=15) tkgrid(Fixp.butA) tkgrid(Fixp.butMV) tkgrid(Fixp.butD) tkgrid(Fixp.butE) tkgrid(ExitWin.but) tkgrid(tklabel(AMVDEopt.top,text="",font=fontHeading)) } mmenubd.mae()
rd <- lsa[which(lsa[,"domain"] == "reading"),] rdN1 <- rd[which(rd[,"nest"] == 1),] rdN1y10<- rdN1[which(rdN1[,"year"] == 2010),] test_that("No se_correction for jk2.table", { suppressMessages(tab1_old <- repTable(datL = rdN1y10, ID = "idstud", wgt = "wgt", imp="imp", type = "JK2", PSU = "jkzone", repInd = "jkrep", groups = "country", group.splits = 0:1, group.differences.by = "country", dependent = "comp", chiSquare = FALSE, cross.differences = TRUE, verbose=FALSE, progress = FALSE, crossDiffSE = "old")) mess <- capture_messages(tab1_wec <- repTable(datL = rdN1y10, ID = "idstud", wgt = "wgt", imp="imp", type = "JK2", PSU = "jkzone", repInd = "jkrep", groups = "country", group.splits = 0:1, group.differences.by = "country", dependent = "comp", chiSquare = FALSE, cross.differences = TRUE, crossDiffSE = "wec", verbose=FALSE, progress = FALSE)) expect_equal(mess, "To date, only method 'old' is applicable for cross level differences in frequency tables.\n") expect_equal(tab1_old$SE_correction[[1]], NULL) expect_equal(tab1_wec$SE_correction[[1]], NULL) })
test_that("autotest", { with_seed(1, { learner = mlr_learners$get("surv.ranger") expect_learner(learner) learner$param_set$values = list(importance = "impurity") result = run_autotest(learner, check_replicable = FALSE) expect_true(result, info = result$error) }) }) test_that("importance", { learner = mlr_learners$get("surv.ranger") expect_error(learner$importance(), "No model stored") expect_error(learner$train(tsk("rats"))$importance(), "No importance stored") }) test_that("mtry.ratio", { task = mlr3::tsk("rats") learner = mlr3::lrn("surv.ranger", mtry.ratio = 0.5) res = convert_ratio(learner$param_set$values, "mtry", "mtry.ratio", length(task$feature_names)) expect_equal( res$mtry, 2 ) expect_null(res$mtry.ratio) learner$train(task) expect_equal( learner$model$mtry, 2 ) })
library(testthat) library(recipes) library(modeldata) library(modeldata) data(credit_data) set.seed(342) in_training <- sample(1:nrow(credit_data), 2000) credit_tr <- credit_data[ in_training, ] credit_te <- credit_data[-in_training, ] test_that('simple mean', { rec <- recipe(Price ~ ., data = credit_tr) impute_rec <- rec %>% step_impute_mean(Age, Assets, Income, id = "") imputed <- prep(impute_rec, training = credit_tr, verbose = FALSE) te_imputed <- bake(imputed, new_data = credit_te) expect_equal(te_imputed$Age, credit_te$Age) assets_pred <- mean(credit_tr$Assets, na.rm = TRUE) assets_pred <- recipes:::cast(assets_pred, credit_tr$Assets) expect_equal(te_imputed$Assets[is.na(credit_te$Assets)], rep(assets_pred, sum(is.na(credit_te$Assets)))) inc_pred <- mean(credit_tr$Income, na.rm = TRUE) inc_pred <- recipes:::cast(inc_pred, credit_tr$Assets) expect_equal(te_imputed$Income[is.na(credit_te$Income)], rep(inc_pred, sum(is.na(credit_te$Income)))) means <- vapply(credit_tr[, c("Age", "Assets", "Income")], mean, numeric(1), na.rm = TRUE) means <- purrr::map2(means, credit_tr[, c("Age", "Assets", "Income")], recipes:::cast) means <- unlist(means) imp_tibble_un <- tibble(terms = c("Age", "Assets", "Income"), model = rep(NA_real_, 3), id = "") imp_tibble_tr <- tibble(terms = c("Age", "Assets", "Income"), model = means, id = "") expect_equal(as.data.frame(tidy(impute_rec, 1)), as.data.frame(imp_tibble_un)) expect_equal(tidy(imputed, 1), imp_tibble_tr) }) test_that('trimmed mean', { rec <- recipe(Price ~ ., data = credit_tr) impute_rec <- rec %>% step_impute_mean(Assets, trim = .1) imputed <- prep(impute_rec, training = credit_tr, verbose = FALSE) te_imputed <- bake(imputed, new_data = credit_te) mean_val <- mean(credit_tr$Assets, na.rm = TRUE, trim = .1) mean_val <- recipes:::cast(mean_val, credit_tr$Assets) expect_equal(te_imputed$Assets[is.na(credit_te$Assets)], rep(mean_val, sum(is.na(credit_te$Assets)))) }) test_that('non-numeric', { rec <- recipe(Price ~ ., data = credit_tr) impute_rec <- rec %>% step_impute_mean(Assets, Job) expect_error(prep(impute_rec, training = credit_tr, verbose = FALSE)) }) test_that('all NA values', { rec <- recipe(Price ~ ., data = credit_tr) impute_rec <- rec %>% step_impute_mean(Age, Assets) imputed <- prep(impute_rec, training = credit_tr, verbose = FALSE) imputed_te <- bake(imputed, new_data = credit_te %>% mutate(Age = NA)) expect_equal(unique(imputed_te$Age), imputed$steps[[1]]$means$Age) }) test_that('printing', { impute_rec <- recipe(Price ~ ., data = credit_tr) %>% step_impute_mean(Age, Assets, Income) expect_output(print(impute_rec)) expect_output(prep(impute_rec, training = credit_tr, verbose = TRUE)) }) test_that('tunable', { rec <- recipe(~ ., data = iris) %>% step_impute_mean(all_predictors()) rec_param <- tunable.step_impute_mean(rec$steps[[1]]) expect_equal(rec_param$name, c("trim")) expect_true(all(rec_param$source == "recipe")) expect_true(is.list(rec_param$call_info)) expect_equal(nrow(rec_param), 1) expect_equal( names(rec_param), c('name', 'call_info', 'source', 'component', 'component_id') ) })
add_cow_alliance <- function(data) { if (length(attributes(data)$ps_data_type) > 0 && attributes(data)$ps_data_type %in% c("dyad_year", "leader_dyad_year")) { if (!all(i <- c("ccode1", "ccode2") %in% colnames(data))) { stop("add_cow_alliance() merges on two Correlates of War codes (ccode1, ccode2), which your data don't have right now. Make sure to run create_dyadyears() at the top of the pipe. You'll want the default option, which returns Correlates of War codes.") } else { cow_alliance %>% left_join(data, .) %>% mutate_at(vars("cow_defense", "cow_neutral", "cow_nonagg", "cow_entente"), ~ifelse(is.na(.), 0, .)) -> data } } else if (length(attributes(data)$ps_data_type) > 0 && attributes(data)$ps_data_type == "state_year") { stop("Right now, there is only support for dyad-year data.") } else { stop("add_cow_alliance() requires a data/tibble with attributes$ps_data_type of dyad_year. Try running create_dyadyears() at the start of the pipe.") } return(data) }
discrepancyPlot <- function(object, observed, simulated, ...) { objName <- deparse(substitute(object)) object <- mcmcOutput(object) nms <- colnames(object) if(!(observed %in% nms)) stop("Can't find the node ", sQuote(observed), " in ", sQuote(objName), call.=FALSE ) if(!(simulated %in% nms)) stop("Can't find the node ", sQuote(simulated), " in ", sQuote(objName), call.=FALSE ) obs <- object[, observed] sim <- object[, simulated] lims <- range(obs, sim) pval <- mean(sim > obs) dots <- list(...) if(length(dots) == 1 && class(dots[[1]]) == "list") dots <- dots[[1]] defaultArgs <- list( xlim=lims, ylim=lims, pch=16, cex=0.8, col=rgb(0, 0, 0, 0.3), bty='l', las=1, cex.lab=1.2, xlab=paste("Observed:", sQuote(observed)), ylab=paste("Simulated:", sQuote(simulated)), main="Posterior Predictive GOF check") useArgs <- modifyList(defaultArgs, dots) useArgs$x <- obs useArgs$y <- sim do.call(graphics::plot, useArgs) abline(0, 1, lwd = 2) where <- if (pval < 0.5) { "topleft" } else { "bottomright" } graphics::legend(where, paste("P =", round(pval, 2)), bty = "n", cex = 1.5) return(pval) }
isLetter <- function(ch) isUppercase(ch) || isLowercase(ch)
normalizeWeight.details <- function(normalize,weight,data){ message("\n This function normalizes weight values. \n") if(!is.null(weight)){ message("\n This are the initial weights: \n") for (i in c(1:length(weight))) { message(" ", weight[i]) } } message("\n It checks if there is a weights vector. If not, it creates a vector with ", ncol(data), " '1's. \n") if(is.null(weight)){ weight <- c() value <- 1 for (j in c(1:ncol(data))) { weight <- c(weight, value) } } res <- c() if(normalize){ message("\n Due to the fact that 'normalize' = TRUE, weight vector changes every weight as the \n initial value divided between the total sum of the vector. \n") message("\n FinalWeight[i] = WeightValue[i]/TotalSum \n") total <- sum(weight) for (index in c(1:length(weight))) { currentValue <- weight[index] normalizedValue <- currentValue/total res <- c(res, normalizedValue) } } else { message("\n Due to the fact that 'normalize' = FALSE, weight vector does not change. \n") res <- weight } message("\n These are the new weights: \n") for (i in c(1:length(res))) { message(" ", res[[i]]) } res }
bprobgHsCont3 <- function(params, respvec, VC, ps, AT = FALSE){ p1 <- p2 <- pdf1 <- pdf2 <- c.copula.be2 <- c.copula.be1 <- c.copula2.be1be2 <- NA eta1 <- VC$X1%*%params[1:VC$X1.d2] eta2 <- VC$X2%*%params[(VC$X1.d2+1):(VC$X1.d2+VC$X2.d2)] etad <- etas <- etan <- NULL if(is.null(VC$X3)){ sigma2.st <- etas <- params[(VC$X1.d2 + VC$X2.d2 + 1)] nu.st <- etan <- params[(VC$X1.d2 + VC$X2.d2 + 2)] teta.st <- etad <- params[(VC$X1.d2 + VC$X2.d2 + 3)] } if(!is.null(VC$X3)){ sigma2.st <- etas <- VC$X3%*%params[(VC$X1.d2+VC$X2.d2+1):(VC$X1.d2+VC$X2.d2+VC$X3.d2)] nu.st <- etan <- VC$X4%*%params[(VC$X1.d2+VC$X2.d2+VC$X3.d2+1):(VC$X1.d2+VC$X2.d2+VC$X3.d2+VC$X4.d2)] teta.st <- etad <- VC$X5%*%params[(VC$X1.d2+VC$X2.d2+VC$X3.d2+VC$X4.d2+1):(VC$X1.d2+VC$X2.d2+VC$X3.d2+VC$X4.d2+VC$X5.d2)] } sstr1 <- esp.tr(sigma2.st, VC$margins[2]) sigma2.st <- sstr1$vrb.st sigma2 <- sstr1$vrb sstr1 <- enu.tr(nu.st, VC$margins[2]) nu.st <- sstr1$vrb.st nu <- sstr1$vrb eta2 <- eta.tr(eta2, VC$margins[2]) dHs <- distrHs(respvec$y2, eta2, sigma2, sigma2.st, nu, nu.st, margin2=VC$margins[2], naive = FALSE, min.dn = VC$min.dn, min.pr = VC$min.pr, max.pr = VC$max.pr) pdf2 <- dHs$pdf2 p2 <- dHs$p2 derpdf2.dereta2 <- dHs$derpdf2.dereta2 derpdf2.dersigma2.st <- dHs$derpdf2.dersigma2.st derp2.dersigma.st <- dHs$derp2.dersigma.st derpdf2.dernu.st <- dHs$derpdf2.dernu.st derp2.dernu.st <- dHs$derp2.nu.st derp2.dereta2 <- dHs$derp2.dereta2 der2p2.dereta2eta2 <- dHs$der2p2.dereta2eta2 der2pdf2.dereta2 <- dHs$der2pdf2.dereta2 der2p2.dersigma2.st2 <- dHs$der2p2.dersigma2.st2 der2pdf2.dersigma2.st2 <- dHs$der2pdf2.dersigma2.st2 der2p2.dernu.st2 <- dHs$der2p2.dernu.st2 der2pdf2.dernu.st2 <- dHs$der2pdf2.dernu.st2 der2p2.dereta2dersigma2.st <- dHs$der2p2.dereta2dersigma2.st der2pdf2.dereta2dersigma2.st <- dHs$der2pdf2.dereta2dersigma2.st der2p2.dereta2dernu.st <- dHs$der2p2.dereta2dernu.st der2pdf2.dereta2dernu.st <- dHs$der2pdf2.dereta2dernu.st der2p2.dersigma2.stdernu.st <- dHs$der2p2.dersigma2.stdernu.st der2pdf2.dersigma2.stdernu.st <- dHs$der2pdf2.sigma2.st2dernu.st pd1 <- probm(eta1, VC$margins[1], bc = TRUE, min.dn = VC$min.dn, min.pr = VC$min.pr, max.pr = VC$max.pr) p1 <- 1 - pd1$pr resT <- teta.tr(VC, teta.st) teta.st1 <- teta.st2 <- teta.st <- resT$teta.st teta1 <- teta2 <- teta <- resT$teta Cop1 <- Cop2 <- VC$BivD teta.ind1 <- as.logical(c(1,0,round(runif(VC$n-2))) ) teta.ind2 <- teta.ind1 == FALSE if(!(VC$BivD %in% VC$BivD2) && length(teta.st) > 1){ teta.st1 <- teta.st[teta.ind1] teta.st2 <- teta.st[teta.ind2] teta1 <- teta[teta.ind1] teta2 <- teta[teta.ind2] } if(VC$BivD %in% VC$BivD2){ if(VC$BivD %in% VC$BivD2[c(1:4,13:16)]) teta.ind1 <- ifelse(VC$my.env$signind*teta > exp(VC$zerov), TRUE, FALSE) if(VC$BivD %in% VC$BivD2[5:12]) teta.ind1 <- ifelse(VC$my.env$signind*teta > exp(VC$zerov) + 1, TRUE, FALSE) teta.ind2 <- teta.ind1 == FALSE VC$my.env$signind <- ifelse(teta.ind1 == TRUE, 1, -1) teta1 <- teta[teta.ind1] teta2 <- -teta[teta.ind2] teta.st1 <- teta.st[teta.ind1] teta.st2 <- teta.st[teta.ind2] if(length(teta) == 1) teta.ind2 <- teta.ind1 <- rep(TRUE, VC$n) Cop1Cop2R <- Cop1Cop2(VC$BivD) Cop1 <- Cop1Cop2R$Cop1 Cop2 <- Cop1Cop2R$Cop2 } if( length(teta1) != 0) dH1 <- copgHs(p1[teta.ind1], p2[teta.ind1], eta1=NULL, eta2=NULL, teta1, teta.st1, Cop1, VC$dof, min.dn = VC$min.dn, min.pr = VC$min.pr, max.pr = VC$max.pr) if( length(teta2) != 0) dH2 <- copgHs(p1[teta.ind2], p2[teta.ind2], eta1=NULL, eta2=NULL, teta2, teta.st2, Cop2, VC$dof, min.dn = VC$min.dn, min.pr = VC$min.pr, max.pr = VC$max.pr) h <- NA if( length(teta1) != 0) h[teta.ind1] <- dH1$c.copula.be2 if( length(teta2) != 0) h[teta.ind2] <- dH2$c.copula.be2 l.par <- VC$weights*( respvec$cy*log(h) + respvec$y1*log(1 - h) + log(pdf2) ) c.copula2.be2 <- c.copula2.be1be2 <- c.copula2.be2th <- NA if( length(teta1) != 0){ c.copula2.be2[teta.ind1] <- dH1$c.copula2.be2 c.copula2.be1be2[teta.ind1] <- dH1$c.copula2.be1be2 c.copula2.be2th[teta.ind1] <- dH1$c.copula2.be2th } if( length(teta2) != 0){ c.copula2.be2[teta.ind2] <- dH2$c.copula2.be2 c.copula2.be1be2[teta.ind2] <- dH2$c.copula2.be1be2 c.copula2.be2th[teta.ind2] <- dH2$c.copula2.be2th } derp1.dereta1 <- pd1$derp1.dereta1 derh.dereta1 <- c.copula2.be1be2 * derp1.dereta1 derh.dereta2 <- c.copula2.be2 * derp2.dereta2 dl.dbe1 <- VC$weights*( derh.dereta1 *(respvec$cy/h - respvec$y1/(1-h)) ) dl.dbe2 <- VC$weights*( derh.dereta2 * (respvec$cy/h - respvec$y1/(1-h)) + derpdf2.dereta2/pdf2 ) dl.dsigma.st <- VC$weights*( c.copula2.be2 * derp2.dersigma.st *(respvec$cy/h - respvec$y1/(1-h)) + derpdf2.dersigma2.st/pdf2 ) dl.dnu.st <- VC$weights*( c.copula2.be2 * derp2.dernu.st *(respvec$cy/h - respvec$y1/(1-h)) + derpdf2.dernu.st/pdf2 ) dl.dteta.st <- VC$weights*( c.copula2.be2th*(respvec$cy/h - respvec$y1/(1-h)) ) der2h.derp2p2 <- der2h.derteta.teta.st <- derteta.derteta.st <- der2teta.derteta.stteta.st <- der2h.derp1p2 <- der2h.derp1teta <- der2h.derp2teta <- der2h.derp1p1 <- NA if( length(teta1) != 0) BITS1 <- copgHsCont(p1[teta.ind1], p2[teta.ind1], teta1, teta.st1, Cop1, par2 = VC$dof, nu.st = log(VC$dof-2)) if( length(teta2) != 0) BITS2 <- copgHsCont(p1[teta.ind2], p2[teta.ind2], teta2, teta.st2, Cop2, par2 = VC$dof, nu.st = log(VC$dof-2)) if( length(teta1) != 0){ der2h.derp2p2[teta.ind1] <- BITS1$der2h.derp2p2 der2h.derteta.teta.st[teta.ind1] <- BITS1$der2h.derteta.teta.st derteta.derteta.st[teta.ind1] <- BITS1$derteta.derteta.st der2teta.derteta.stteta.st[teta.ind1] <- BITS1$der2teta.derteta.stteta.st der2h.derp1p2[teta.ind1] <- BITS1$der2h.derp1p2 der2h.derp1teta[teta.ind1] <- BITS1$der2h.derp1teta der2h.derp2teta[teta.ind1] <- BITS1$der2h.derp2teta der2h.derp1p1[teta.ind1] <- BITS1$der2h.derp1p1 } if( length(teta2) != 0){ der2h.derp2p2[teta.ind2] <- BITS2$der2h.derp2p2 der2h.derteta.teta.st[teta.ind2] <- BITS2$der2h.derteta.teta.st derteta.derteta.st[teta.ind2] <- BITS2$derteta.derteta.st der2teta.derteta.stteta.st[teta.ind2] <- BITS2$der2teta.derteta.stteta.st der2h.derp1p2[teta.ind2] <- BITS2$der2h.derp1p2 der2h.derp1teta[teta.ind2] <- BITS2$der2h.derp1teta der2h.derp2teta[teta.ind2] <- BITS2$der2h.derp2teta der2h.derp1p1[teta.ind2] <- BITS2$der2h.derp1p1 } der2p1.dereta1eta1 <- pd1$der2p1.dereta1eta1 der2h.dereta2.dereta2 <- der2h.derp2p2*derp2.dereta2^2 + c.copula2.be2*der2p2.dereta2eta2 der2h.derteta.st2 <- der2h.derteta.teta.st*derteta.derteta.st^2 + c.copula2.be2th/derteta.derteta.st* der2teta.derteta.stteta.st der2h.derp2dersigma2.st <- der2h.derp2p2*derp2.dersigma.st der2h.derp2dernu.st <- der2h.derp2p2*derp2.dernu.st der2h.dersigma2.st2 <- der2h.derp2dersigma2.st*derp2.dersigma.st + c.copula2.be2*der2p2.dersigma2.st2 der2h.dernu.st2 <- der2h.derp2dernu.st*derp2.dernu.st + c.copula2.be2*der2p2.dernu.st2 derh.dersigma2.st <- c.copula2.be2 * derp2.dersigma.st derh.dernu.st <- c.copula2.be2 * derp2.dernu.st der2h.dereta1.dereta2 <- der2h.derp1p2*derp1.dereta1*derp2.dereta2 der2h.dereta1.derteta.st <- der2h.derp1teta*derp1.dereta1*derteta.derteta.st der2h.dereta1.dersigma2.st <- der2h.derp1p2 * derp2.dersigma.st*derp1.dereta1 der2h.dereta1.dernu.st <- der2h.derp1p2 * derp2.dernu.st*derp1.dereta1 der2h.dereta2.derteta.st <- der2h.derp2teta*derp2.dereta2*derteta.derteta.st der2h.derteta.st.dersigma2.st <- der2h.derp2teta* derteta.derteta.st*derp2.dersigma.st der2h.derteta.st.dernu.st <- der2h.derp2teta* derteta.derteta.st*derp2.dernu.st der2h.dersigma2.st.dernu.st <- der2h.derp2dernu.st*derp2.dersigma.st + c.copula2.be2*der2p2.dersigma2.stdernu.st der2h.dereta2.dersigma2.st <- der2h.derp2dersigma2.st*derp2.dereta2 + c.copula2.be2*der2p2.dereta2dersigma2.st der2h.dereta2.dernu.st <- der2h.derp2dernu.st*derp2.dereta2 + c.copula2.be2*der2p2.dereta2dernu.st der2h.dereta1.dereta1 <- der2h.derp1p1*derp1.dereta1^2 + c.copula2.be1be2*der2p1.dereta1eta1 d2l.be1.be1 <- -VC$weights*(der2h.dereta1.dereta1 *(respvec$cy/h - respvec$y1/(1-h)) - derh.dereta1^2 * (respvec$cy/h^2 + respvec$y1/(1-h)^2) ) d2l.be2.be2 <- -VC$weights*(der2h.dereta2.dereta2 *(respvec$cy/h - respvec$y1/(1-h)) - derh.dereta2^2 * (respvec$cy/h^2 + respvec$y1/(1-h)^2) + (der2pdf2.dereta2*pdf2-(derpdf2.dereta2)^2)/(pdf2)^2 ) d2l.rho.rho <- -VC$weights*(der2h.derteta.st2*(respvec$cy/h - respvec$y1/(1-h)) - c.copula2.be2th^2 * (respvec$cy/h^2 + respvec$y1/(1-h)^2) ) d2l.sigma.sigma <- -VC$weights*(der2h.dersigma2.st2 *(respvec$cy/h - respvec$y1/(1-h)) - derh.dersigma2.st^2 * (respvec$cy/h^2 + respvec$y1/(1-h)^2) + (der2pdf2.dersigma2.st2*pdf2-(derpdf2.dersigma2.st)^2)/(pdf2)^2 ) d2l.nu.nu <- -VC$weights*(der2h.dernu.st2 *(respvec$cy/h - respvec$y1/(1-h)) - derh.dernu.st^2 * (respvec$cy/h^2 + respvec$y1/(1-h)^2) + (der2pdf2.dernu.st2*pdf2-(derpdf2.dernu.st)^2)/(pdf2)^2 ) d2l.be1.be2 <- -VC$weights*(der2h.dereta1.dereta2 *(respvec$cy/h - respvec$y1/(1-h)) - derh.dereta1*derh.dereta2 * (respvec$cy/h^2 + respvec$y1/(1-h)^2) ) d2l.be1.rho <- -VC$weights*(der2h.dereta1.derteta.st *(respvec$cy/h - respvec$y1/(1-h)) - derh.dereta1 * c.copula2.be2th* (respvec$cy/h^2 + respvec$y1/(1-h)^2) ) d2l.be1.sigma <- -VC$weights*(der2h.dereta1.dersigma2.st *(respvec$cy/h - respvec$y1/(1-h)) - derh.dereta1 * derh.dersigma2.st* (respvec$cy/h^2 + respvec$y1/(1-h)^2) ) d2l.be1.nu <- -VC$weights*(der2h.dereta1.dernu.st *(respvec$cy/h - respvec$y1/(1-h)) - derh.dereta1 * derh.dernu.st* (respvec$cy/h^2 + respvec$y1/(1-h)^2) ) d2l.be2.rho <- -VC$weights*(der2h.dereta2.derteta.st *(respvec$cy/h - respvec$y1/(1-h)) - derh.dereta2*c.copula2.be2th * (respvec$cy/h^2 + respvec$y1/(1-h)^2) ) d2l.be2.sigma <- -VC$weights*(der2h.dereta2.dersigma2.st *(respvec$cy/h - respvec$y1/(1-h)) - derh.dereta2*derh.dersigma2.st * (respvec$cy/h^2 + respvec$y1/(1-h)^2) + (der2pdf2.dereta2dersigma2.st*pdf2-(derpdf2.dereta2*derpdf2.dersigma2.st))/(pdf2)^2 ) d2l.be2.nu <- -VC$weights*(der2h.dereta2.dernu.st *(respvec$cy/h - respvec$y1/(1-h)) - derh.dereta2*derh.dernu.st * (respvec$cy/h^2 + respvec$y1/(1-h)^2) + (der2pdf2.dereta2dernu.st*pdf2-(derpdf2.dereta2*derpdf2.dernu.st))/(pdf2)^2 ) d2l.rho.sigma <- -VC$weights*(der2h.derteta.st.dersigma2.st *(respvec$cy/h - respvec$y1/(1-h)) - derh.dersigma2.st * c.copula2.be2th* (respvec$cy/h^2 + respvec$y1/(1-h)^2) ) d2l.rho.nu <- -VC$weights*(der2h.derteta.st.dernu.st *(respvec$cy/h - respvec$y1/(1-h)) - derh.dernu.st * c.copula2.be2th* (respvec$cy/h^2 + respvec$y1/(1-h)^2) ) d2l.sigma.nu <- -VC$weights*(der2h.dersigma2.st.dernu.st *(respvec$cy/h - respvec$y1/(1-h)) - derh.dersigma2.st * derh.dernu.st * (respvec$cy/h^2 + respvec$y1/(1-h)^2) + (der2pdf2.dersigma2.stdernu.st*pdf2-(derpdf2.dersigma2.st*derpdf2.dernu.st))/(pdf2)^2 ) if( is.null(VC$X3) ){ be1.be1 <- crossprod(VC$X1*c(d2l.be1.be1),VC$X1) be2.be2 <- crossprod(VC$X2*c(d2l.be2.be2),VC$X2) be1.be2 <- crossprod(VC$X1*c(d2l.be1.be2),VC$X2) be1.rho <- t(t(rowSums(t(VC$X1*c(d2l.be1.rho))))) be1.sigma <- t(t(rowSums(t(VC$X1*c(d2l.be1.sigma))))) be2.rho <- t(t(rowSums(t(VC$X2*c(d2l.be2.rho))))) be2.sigma <- t(t(rowSums(t(VC$X2*c(d2l.be2.sigma))))) be2.nu <- t(t(rowSums(t(VC$X2*c(d2l.be2.nu))))) be1.nu <- t(t(rowSums(t(VC$X1*c(d2l.be1.nu))))) H <- rbind( cbind( be1.be1 , be1.be2 , be1.sigma , be1.nu, be1.rho ), cbind( t(be1.be2) , be2.be2 , be2.sigma , be2.nu, be2.rho ), cbind( t(be1.sigma), t(be2.sigma), sum(d2l.sigma.sigma) , sum(d2l.sigma.nu), sum(d2l.rho.sigma) ), cbind( t(be1.nu), t(be2.nu), sum(d2l.sigma.nu) , sum(d2l.nu.nu), sum(d2l.rho.nu) ), cbind( t(be1.rho) , t(be2.rho) , sum(d2l.rho.sigma), sum(d2l.rho.nu), sum(d2l.rho.rho) ) ) G <- -c( colSums( c(dl.dbe1)*VC$X1 ) , colSums( c(dl.dbe2)*VC$X2 ) , sum( dl.dsigma.st ), sum( dl.dnu.st ), sum( dl.dteta.st ) ) } if( !is.null(VC$X3) ){ be1.be1 <- crossprod(VC$X1*c(d2l.be1.be1),VC$X1) be2.be2 <- crossprod(VC$X2*c(d2l.be2.be2),VC$X2) be1.be2 <- crossprod(VC$X1*c(d2l.be1.be2),VC$X2) be1.rho <- crossprod(VC$X1*c(d2l.be1.rho), VC$X5) be1.sigma <- crossprod(VC$X1*c(d2l.be1.sigma),VC$X3) be1.nu <- crossprod(VC$X1*c(d2l.be1.nu),VC$X4) be2.rho <- crossprod(VC$X2*c(d2l.be2.rho), VC$X5) be2.sigma <- crossprod(VC$X2*c(d2l.be2.sigma),VC$X3) be2.nu <- crossprod(VC$X2*c(d2l.be2.nu),VC$X4) sigma.sigma <- crossprod(VC$X3*c(d2l.sigma.sigma),VC$X3) sigma.nu <- crossprod(VC$X3*c(d2l.sigma.nu),VC$X4) sigma.rho <- crossprod(VC$X3*c(d2l.rho.sigma),VC$X5) rho.rho <- crossprod(VC$X5*c(d2l.rho.rho), VC$X5) rho.nu <- crossprod(VC$X4*c(d2l.rho.nu), VC$X5) nu.nu <- crossprod(VC$X4*c(d2l.nu.nu), VC$X4) H <- rbind( cbind( be1.be1 , be1.be2 , be1.sigma , be1.nu , be1.rho ), cbind( t(be1.be2) , be2.be2 , be2.sigma , be2.nu , be2.rho ), cbind( t(be1.sigma), t(be2.sigma), sigma.sigma , sigma.nu , sigma.rho ), cbind( t(be1.nu) , t(be2.nu) , t(sigma.nu) , nu.nu , rho.nu ), cbind( t(be1.rho) , t(be2.rho) , t(sigma.rho), t(rho.nu) , rho.rho ) ) G <- -c( colSums( c(dl.dbe1)*VC$X1 ) , colSums( c(dl.dbe2)*VC$X2 ) , colSums( c(dl.dsigma.st)*VC$X3 ) , colSums( c(dl.dnu.st)*VC$X4 ) , colSums( c(dl.dteta.st)*VC$X5 ) ) } res <- -sum(l.par) if(VC$extra.regI == "pC") H <- regH(H, type = 1) S.h <- ps$S.h if( length(S.h) != 1){ S.h1 <- 0.5*crossprod(params,S.h)%*%params S.h2 <- S.h%*%params } else S.h <- S.h1 <- S.h2 <- 0 S.res <- res res <- S.res + S.h1 G <- G + S.h2 H <- H + S.h if(VC$extra.regI == "sED") H <- regH(H, type = 2) list(value=res, gradient=G, hessian=H, S.h=S.h, S.h1=S.h1, S.h2=S.h2, l=S.res, l.par=l.par, ps = ps, etas = etas, eta1 = eta1, eta2 = eta2, etad = etad, etan = etan, dl.dbe1=dl.dbe1, dl.dbe2=dl.dbe2, dl.dsigma.st = dl.dsigma.st, dl.dnu.st = dl.dnu.st, dl.dteta.st = dl.dteta.st, BivD=VC$BivD, theta.star = teta.st, p1 = 1-p1, p2 = p2, pdf1 = pdf1, pdf2 = pdf2, c.copula.be2 = c.copula.be2, c.copula.be1 = c.copula.be1, c.copula2.be1be2 = c.copula2.be1be2, teta.ind2 = teta.ind2, teta.ind1 = teta.ind1, Cop1 = Cop1, Cop2 = Cop2, teta1 = teta1, teta2 = teta2) }
summary.BayesMassBal <- function(object, export = NA,...){ ybal <- object$ybal ans <- list() components <- names(ybal) components <- c(components, "Total") locations <- nrow(ybal[[1]]) ybal_total <- Reduce("+", ybal) ybal[["Total"]] <- ybal_total ans$`Mass Flow Rates` <- list() template_df <- data.frame(matrix(NA, ncol = 4, nrow = locations)) names(template_df) <- c("Sampling Location", "Expected Value", "95% LB", "95% UB") template_df[,1] <- 1:locations cat("Mass Flow Rates:\n") for(i in 1:(length(components))){ cat(paste("\n",components[i],":\n", sep = "")) temp <- template_df temp[,2] <- apply(ybal[[components[i]]],1,mean) temp[,3:4] <- unname(t(apply(ybal[[components[[i]]]],1,hdi))) cat(paste(c(rep("-", times = 20),"\n"), sep = "", collapse = "")) print(temp, row.names = FALSE) ans[[1]][[components[i]]] <- temp } cat("\n\nlog-marginal likelihood:\n") cat(paste(c(object$lml,"\n"))) if(is.character(export)){ csv.check <- strsplit(export, split ="[.]")[[1]] if(length(csv.check) == 1){ export <- paste(export,"csv", sep = ".") csv.check <- strsplit(export, split ="[.]")[[1]] } if(csv.check[[2]] != "csv"){warning("Only a .csv format can be output. Output not saved. Check spelling of export argument", immediate. = TRUE)} if(length(csv.check) == 2 & csv.check[2] == "csv"){ export.df <- do.call("rbind",ans[[1]]) export.df <- cbind.data.frame(`Sample Component` = rep(components, each = locations), export.df) write.csv(export.df, file = export, row.names = FALSE) } }else if(!is.na(export) & !is.character(export)){ warning("\nPlease specify a character string or NA for the export argument.") } }
"lamp.generate_tau" <- function(object) { lambda <- object@lambda alpha <- object@alpha n <- [email protected] if (object@beta==1 & lambda<=2) stop("lambda=2 beta=1 is not supported") sd.factor <- if ([email protected]==0) lamp.sd_factor(object) else 1 g <- if (alpha < 1) cos(pi*alpha/2)^(1/alpha) else 1 if (alpha==1) g <- 1/8 if (object@beta==1) { rs <- rstable(n, alpha, 1, gamma=g/sd.factor, pm=object@pm) bi <- sign(runif(n)-0.5) object@tau <- rs*bi object@tm <- Sys.time() return(object) } object@tau <- rstable(n, alpha, object@beta, gamma=g/sd.factor, pm=object@pm) object@tau_i <- 1 object@tm <- Sys.time() return(object) }
test_that('ppv', { lst <- data_altman() pathology <- lst$pathology path_tbl <- lst$path_tbl expect_equal( ppv(pathology, truth = "pathology", estimate = "scan")[[".estimate"]], 0.87832, tolerance = .001 ) expect_equal( ppv(path_tbl)[[".estimate"]], 0.87832, tolerance = .001 ) expect_equal( ppv(pathology, truth = pathology, estimate = "scan_na")[[".estimate"]], 0.87744, tolerance = .001 ) expect_equal( ppv(pathology, truth = pathology, estimate = "scan", prevalence = .5)[[".estimate"]], 0.70642, tolerance = .001 ) }) test_that("`event_level = 'second'` works", { lst <- data_altman() df <- lst$pathology df_rev <- df df_rev$pathology <- relevel(df_rev$pathology, "norm") df_rev$scan <- relevel(df_rev$scan, "norm") expect_equal( ppv_vec(df$pathology, df$scan), ppv_vec(df_rev$pathology, df_rev$scan, event_level = "second") ) }) test_that('Three class', { multi_ex <- data_three_by_three() micro <- data_three_by_three_micro() micro$prev <- (micro$tp + micro$fn) / (micro$p + micro$n) expect_equal( ppv(multi_ex, estimator = "macro")[[".estimate"]], macro_metric(ppv_binary) ) expect_equal( ppv(multi_ex, estimator = "macro_weighted")[[".estimate"]], macro_weighted_metric(ppv_binary) ) expect_equal( ppv(multi_ex, estimator = "micro")[[".estimate"]], precision(multi_ex, estimator = "micro")[[".estimate"]] ) expect_equal( ppv(multi_ex, estimator = "micro")[[".estimate"]], with(micro, ((sum(tp) / sum(p)) * sum(prev)) / ( (sum(tp) / sum(p)) * sum(prev) + ((1 - sum(tn) / sum(n)) * sum((1 - prev))) ) ) ) expect_equal( ppv(multi_ex, estimator = "micro", prevalence = .4)[[".estimate"]], with(micro, ((sum(tp) / sum(p)) * sum(.4)) / ( (sum(tp) / sum(p)) * sum(.4) + ((1 - sum(tn) / sum(n)) * sum((1 - .4))) ) ) ) }) test_that("Binary `ppv()` returns `NA` with a warning when `sens()` is undefined (tp + fn = 0) ( levels <- c("a", "b") truth <- factor(c("b", "b"), levels = levels) estimate <- factor(c("a", "b"), levels = levels) expect_snapshot( out <- ppv_vec(truth, estimate) ) expect_identical(out, NA_real_) })
run.models <- function(model.list=NULL,type=NULL, save=TRUE, ...) { lx=ls(envir=parent.frame()) model.list=collect.model.names(lx, type) if(is.null(model.list)) stop("No models need to be run") run=FALSE for(i in 1:length(model.list)) { model=eval(parse(text=model.list[i]),envir=parent.frame()) if(is.null(model$output)) { run=TRUE eval(parse(text=paste(model.list[i],"=run.mark.model(",model.list[i],"...)")),envir=parent.frame()) if(save)save.image() } } if(!run)message("All defined models have been run\n") invisible() }
string_2_matrix <- function(new_matrix, supplied_string, self = 0){ result.matrix = new_matrix for (i in 1:length(colnames(new_matrix))){ result.matrix[,i] = string_2_matrix_x(new_matrix, supplied_string, coord_x = i, self = self) } return(result.matrix) }
context("geom_hex") test_that("density and value summaries are available", { df <- data_frame(x = c(1, 1, 1, 2), y = c(1, 1, 1, 2)) base <- ggplot(df, aes(x, y)) + geom_hex() out <- layer_data(base) expect_equal(nrow(out), 2) expect_equal(out$density, c(0.75, 0.25), tolerance = 1e-7) expect_equal(out$count, c(3, 1), tolerance = 1e-7) }) test_that("size and linetype are applied", { df <- data_frame(x = c(1, 1, 1, 2), y = c(1, 1, 1, 2)) plot <- ggplot(df, aes(x, y)) + geom_hex(color = "red", size = 4, linetype = 2) gpar <- layer_grob(plot)[[1]]$children[[1]]$gp expect_equal(gpar$lwd, c(4, 4) * .pt, tolerance = 1e-7) expect_equal(gpar$lty, c(2, 2), tolerance = 1e-7) })
dashboardSidebar <- function(..., disable = FALSE, width = NULL, collapsed = FALSE, minified = TRUE, id = NULL) { width <- shiny::validateCssUnit(width) if (is.null(id)) id <- "sidebarCollapsed" custom_css <- NULL if (!is.null(width)) { custom_css <- shiny::tags$head(shiny::tags$style(shiny::HTML(gsub("_WIDTH_", width, fixed = TRUE, ' .main-sidebar, .left-side { width: _WIDTH_; } @media (min-width: 768px) { .content-wrapper, .right-side, .main-footer { margin-left: _WIDTH_; } .main-sidebar, .left-side { width: _WIDTH_; } } @media (max-width: 767px) { .sidebar-open .content-wrapper, .sidebar-open .right-side, .sidebar-open .main-footer { -webkit-transform: translate(_WIDTH_, 0); -ms-transform: translate(_WIDTH_, 0); -o-transform: translate(_WIDTH_, 0); transform: translate(_WIDTH_, 0); } } @media (max-width: 767px) { .main-sidebar, .left-side { -webkit-transform: translate(-_WIDTH_, 0); -ms-transform: translate(-_WIDTH_, 0); -o-transform: translate(-_WIDTH_, 0); transform: translate(-_WIDTH_, 0); } } @media (min-width: 768px) { .sidebar-collapse .main-sidebar, .sidebar-collapse .left-side { -webkit-transform: translate(-_WIDTH_, 0); -ms-transform: translate(-_WIDTH_, 0); -o-transform: translate(-_WIDTH_, 0); transform: translate(-_WIDTH_, 0); } } ')))) } dataValue <- shiny::restoreInput(id = id, default = collapsed) if (disable) dataValue <- TRUE dataValueString <- if (dataValue) "true" else "false" shiny::tags$aside( id = id, class = "main-sidebar", `data-minified` = if (minified) "true" else "false", `data-collapsed` = dataValueString, custom_css, shiny::tags$section( id = "sidebarItemExpanded", class = "sidebar", `data-disable` = if (disable) 1 else NULL, list(...) ) ) } updateSidebar <- function(id, session = shiny::getDefaultReactiveDomain()) { message <- list(value = !session$input[[id]]) session$sendInputMessage(id, message) }
mvJointModelBayes <- function (mvglmerObject, survObject, timeVar, Formulas = list(NULL), Interactions = list(NULL), transFuns = NULL, priors = NULL, multiState = FALSE, data_MultiState = NULL, idVar_MultiState = "id", control = NULL, ...) { cl <- match.call() con <- list(temps = 1.0, n_iter = 300, n_burnin = 1000, n_block = 50, n_thin = 300, target_acc = 0.234, c0 = 1, c1 = 0.8, eps1 = 1e-06, eps2 = 1e-05, eps3 = 1e04, adaptCov = FALSE, knots = NULL, ObsTimes.knots = TRUE, lng.in.kn = 15L, ordSpline = 4L, diff = 2L, speed_factor = 0.6, GQsurv = "GaussKronrod", GQsurv.k = 15L, seed = 1L, n_cores = max(1, parallel::detectCores() - 1), update_RE = TRUE, light = FALSE, equal.strata.knots = FALSE, equal.strata.bound.knots = FALSE, lng.in.kn.multiState = 5L) control <- c(control, list(...)) namC <- names(con) con[(namc <- names(control))] <- control if (length(noNms <- namc[!namc %in% namC]) > 0) warning("unknown names in control: ", paste(noNms, collapse = ", ")) if (is.null(survObject$model)) { stop("'survObject' must be a 'coxph' or 'survreg' object fitted with argument 'model'", " set to TRUE.\n") } dataS <- survObject$model Terms <- attr(dataS, "terms") environment(Terms) <- NULL SurvInf <- model.response(dataS) typeSurvInf <- attr(SurvInf, "type") TimeVar <- all.vars(Terms)[1L] if (typeSurvInf == "right") { if (class(survObject)[1L] == 'survreg') { stop("Please refit the survival submodel using coxph().\n") } Time <- SurvInf[, "time"] Time[Time < 1e-04] <- 1e-04 nT <- length(Time) event <- SurvInf[, "status"] LongFormat <- FALSE TimeLl <- rep(0.0, length(Time)) } if (typeSurvInf == "counting" && !multiState) { if (class(survObject) == 'survreg') { stop("Please refit the survival submodel using coxph().\n") } if (is.null(survObject$model$`(cluster)`)) { stop("you need to refit the Cox and include in the right hand side of the ", "formula the 'cluster()' function using as its argument the subjects' ", "id indicator. These ids need to be the same as the ones used to fit ", "the mixed effects model.\n") } idT <- survObject$model$`(cluster)` LongFormat <- length(idT) > length(unique(idT)) TimeL <- TimeLl <- SurvInf[, "start"] fidT <- factor(idT, levels = unique(idT)) TimeL <- tapply(TimeL, fidT, head, n = 1) anyLeftTrunc <- any(TimeL > 1e-07) TimeR <- SurvInf[, "stop"] TimeR[TimeR < 1e-04] <- 1e-04 Time <- tapply(TimeR, fidT, tail, n = 1) nT <- length(Time) eventLong <- SurvInf[, "status"] event <- c(tapply(eventLong, fidT, tail, n = 1)) } if (typeSurvInf == "counting" && multiState) { if (class(survObject) == 'survreg') { stop("Please refit the survival submodel using coxph(). \n") } if (is.null(survObject$model$`(cluster)`)) { stop("you need to refit the Cox and include in the right hand side of the ", "formula the 'cluster()' function using as its argument the subjects' ", "id indicator. These ids need to be the same as the ones used in the ", "data_MultiState dataset. \n") } con$lng.in.kn <- con$lng.in.kn.multiState idT <- survObject$model$`(cluster)` LongFormat <- length(idT) > length(unique(idT)) TimeL <- TimeLl <- SurvInf[, "start"] fidT <- factor(idT, levels = unique(idT)) anyLeftTrunc <- any(TimeL > 1e-07) TimeR <- SurvInf[, "stop"] nT <- length(unique(fidT)) nT.long <- length(idT) event <- eventLong <- SurvInf[, "status"] nRisks <- length(unique(survObject$strata)) state.id <- gsub("^strata*\\((.*)\\).*", "\\1", colnames(dataS)[grep("^strata", colnames(dataS))]) state.id2 <- colnames(dataS)[grep("^strata", colnames(dataS))] } if (typeSurvInf == "interval") { Time1 <- SurvInf[, "time1"] Time2 <- SurvInf[, "time2"] Time <- Time1 Time[Time2 != 1] <- Time2[Time2 != 1] TimeL <- Time1 TimeL[Time2 == 1] <- 0.0 Time[Time < 1e-04] <- 1e-04 nT <- length(Time) event <- SurvInf[, "status"] LongFormat <- FALSE TimeLl <- rep(0.0, length(Time)) } GQsurv <- if (con$GQsurv == "GaussKronrod") gaussKronrod() else gaussLegendre(con$GQsurv.k) wk <- GQsurv$wk sk <- GQsurv$sk K <- length(sk) if (typeSurvInf == "counting" && !multiState) { P <- (Time - TimeL) / 2 } else if (typeSurvInf == "counting" && multiState) { P <- (TimeR - TimeL) / 2 } else { P <- Time / 2 } st <- if (typeSurvInf == "counting" && !multiState) { outer(P, sk) + c(Time + TimeL) / 2 } else if (typeSurvInf == "counting" && multiState) { outer(P, sk) + c(TimeR + TimeL) / 2 } else { outer(P, sk + 1) } if (typeSurvInf == "interval") { P_int <- TimeL / 2 st_int <- outer(P_int, sk + 1) } if (typeSurvInf == "counting" && multiState) { idGK <- rep(seq_along(TimeR), each = K) strat <- survObject$strata n.strat <- length(levels(strat)) split.TimeR <- split(TimeR, strat) split.TimeL <- split(TimeL, strat) ind.t <- unlist(tapply(idT, idT, FUN = function(x) c(as.logical(data_MultiState[data_MultiState[, idVar_MultiState] %in% x, "status"])))) Time <- TimeR idGK_fast <- c(idGK[-length(idGK)] != idGK[-1L], TRUE) } else { idGK <- rep(seq_len(nT), each = K) idGK_fast <- c(idGK[-length(idGK)] != idGK[-1L], TRUE) } if (typeSurvInf == "counting" && multiState) { kn <- if (con$equal.strata.knots) { kk <- if (is.null(con$knots)) { tt <- if (con$ObsTimes.knots) Time else Time[ind.t] pp <- quantile(tt, c(0.05, 0.95), names = FALSE) tail(head(seq(pp[1L], pp[2L], length.out = con$lng.in.kn), -1L), -1L) } else { con$knots } kk <- kk[kk < max(Time)] if (!con$equal.strata.bound.knots) { st.split <- split(st, strat) rr <- mapply(FUN = function(x, y) sort(c(rep(range(x, y), con$ordSpline), kk)), split.TimeR, st.split, SIMPLIFY = FALSE) } else { rr <- rep(list(sort(c(rep(range(Time, st), con$ordSpline), kk))), n.strat) } names(rr) <- names(split.TimeR) con$knots <- rr } else { sptt <- if (con$ObsTimes.knots) { split(TimeR[event == 1], strat[event == 1]) } else { mapply(function(x, y) {x[y]}, split.TimeR, split(ind.t, strat)) } if (!con$equal.strata.bound.knots) { st.split <- split(st, strat) rr <- mapply(FUN =function (t, y){ kk <- if (is.null(con$knots)) { pp <- quantile(t, c(0.05, 0.95), names = FALSE) tail(head(seq(pp[1L], pp[2L], length.out = con$lng.in.kn), -1L), -1L) } else { con$knots } kk <- kk[kk < max(t)] sort(c(rep(range(t, y), con$ordSpline), kk)) }, sptt, st.split, SIMPLIFY = FALSE) } else { rr <- lapply(sptt, function(t) { kk <- if (is.null(con$knots)) { pp <- quantile(t, c(0.05, 0.95), names = FALSE) tail(head(seq(pp[1L], pp[2L], length.out = con$lng.in.kn), -1L), -1L) } else { con$knots } kk <- kk[kk < max(t)] sort(c(rep(range(Time, st), con$ordSpline), kk)) }) names(rr) <- names(split.TimeR) } con$knots <- rr } } else { kn <- if (is.null(con$knots)) { tt <- if (con$ObsTimes.knots) Time else Time[event == 1] pp <- quantile(tt, c(0.05, 0.95), names = FALSE) tail(head(seq(pp[1L], pp[2L], length.out = con$lng.in.kn), -1L), -1L) } else { con$knots } kn <- kn[kn < max(Time)] rr <- sort(c(rep(range(Time, st), con$ordSpline), kn)) con$knots <- rr } dataL <- mvglmerObject$data components <- mvglmerObject$components families <- mvglmerObject$families n_outcomes <- length(families) seq_n_outcomes <- seq_len(n_outcomes) idL <- components[paste0("id", seq_n_outcomes)] y <- components[paste0("y", seq_n_outcomes)] X <- components[paste0("X", seq_n_outcomes)] Z <- components[paste0("Z", seq_n_outcomes)] idVar <- components$idVar1 if (is.null(dataL[[timeVar]])) { stop("variable '", timeVar, "' not in the data.frame extracted from 'mvglmerObject'.\n") } dataL <- dataL[order(dataL[[idVar]], dataL[[timeVar]]), ] if (typeSurvInf == "counting" && multiState) { dataL.id <- right_rows_mstate(dataL, dataL[[timeVar]], dataL[[idVar]], as.matrix(TimeR), idT) dataL.id[[state.id]] <- data_MultiState$trans } else { dataL.id <- last_rows(dataL, dataL[[idVar]]) } dataL.id[[timeVar]] <- Time if (typeSurvInf == "interval") { dataL_int.id <- dataL.id dataL_int.id[[timeVar]] <- TimeL } if (typeSurvInf == "counting" && multiState) { dataL.id2 <- right_rows_mstate(dataL, dataL[[timeVar]], dataL[[idVar]], st, idT) dataL.id2[[timeVar]] <- c(t(st)) } else { dataL.id2 <- right_rows(dataL, dataL[[timeVar]], dataL[[idVar]], st) dataL.id2[[timeVar]] <- c(t(st)) } if (typeSurvInf == "interval") { dataL_int.id2 <- right_rows(dataL, dataL[[timeVar]], dataL[[idVar]], st_int) dataL_int.id2[[timeVar]] <- c(t(st_int)) } if (typeSurvInf == "right" || typeSurvInf == "interval") { idT <- dataS[[idVar]] <- unique(dataL[[idVar]]) } else { if (!all(idT %in% unique(dataL[[idVar]]))) { stop("it seems there are some ids in the survival data set that cannot be ", "found in the longitudinal data set.\n") } dataS[[idVar]] <- idT } if (typeSurvInf == "counting" & multiState) { dataS.id <- data_MultiState dataS.split <- split(dataS, strat) st.strat.split <- split(rownames(st), strat) dataS.id.long <- NULL for (i in 1:n.strat) { dataS.id.long[[i]] <- right_rows(dataS.split[[i]], split.TimeL[[i]], dataS.split[[i]][[idVar_MultiState]], st[st.strat.split[[i]], ]) } dataS.id2 <- do.call(rbind, dataS.id.long) dataS.id2 <- dataS.id2[order(dataS.id2[[idVar_MultiState]]), ] survVars_notin_long <- survVars_notin_long2 <- !names(dataS) %in% names(dataL) survVars_notin_long[names(dataS) == idVar] <- TRUE dataS.id.long2 <- lapply(dataS.split, FUN = function (x) x[survVars_notin_long]) dataL.id.split <- split(dataL.id, dataL.id[[state.id]]) dataLS.id <- mapply(merge, dataL.id.split, dataS.id.long2, by = idVar, all = FALSE, SIMPLIFY = FALSE, sort = FALSE) dataLS.id <- do.call(rbind, dataLS.id) dataLS.id <- dataLS.id[order(dataLS.id[[idVar]]), ] dataLS.id[[TimeVar]] <- dataLS.id[[timeVar]] dataS.id2[["id2merge"]] <- paste(dataS.id2[[idVar]], round(c(t(st)), 8), sep = ":") dataL.id2[["id2merge"]] <- paste(dataL.id2[[idVar]], round(c(t(st)), 8), sep = ":") dataS.id2.split <- split(dataS.id2, dataS.id2[[state.id2]]) dataS.id2.split <- lapply(dataS.id2.split, FUN = function (x) x[survVars_notin_long]) dataL.id2[[state.id2]] <- rep(dataS.id[[state.id]], each = K) dataL.id2.split <- split(dataL.id2, dataL.id2[[state.id2]]) dataLS.id2 <- mapply(merge, dataL.id2.split, dataS.id2.split, by = "id2merge", all = FALSE, SIMPLIFY = FALSE, sort = FALSE) dataLS.id2 <- do.call(rbind, dataLS.id2) col.rm1 <- colnames(dataLS.id2)[grep(paste0(state.id2, "*"), colnames(dataLS.id2))] col.rm2 <- colnames(dataLS.id2)[grep(paste0(idVar, ".", "[x | y]"), colnames(dataLS.id2))] col.rm.x <- c(col.rm1[grep("*.x", col.rm1)], col.rm2[grep("*.x", col.rm2)]) col.rm.y <- c(col.rm1[grep("*.y", col.rm1)], col.rm2[grep("*.y", col.rm2)]) col.rm <- unname(sapply(col.rm.y, FUN = function (x) gsub(".y", "", x))) dataLS.id2 <- dataLS.id2[, !colnames(dataLS.id2) %in% col.rm.x] colnames(dataLS.id2)[colnames(dataLS.id2) %in% col.rm.y] <- col.rm dataLS.id2 <- dataLS.id2[order(dataLS.id2[[idVar]]), ] colnames(dataLS.id2) <- gsub("^strata*\\((.*)\\).*", "\\1", colnames(dataLS.id2)) dataLS.id2[[TimeVar]] <- dataLS.id2[[timeVar]] } else { dataS.id <- last_rows(dataS, dataS[[idVar]]) dataS.id2 <- right_rows(dataS, TimeLl, idT, st) survVars_notin_long <- survVars_notin_long2 <- !names(dataS) %in% names(dataL) survVars_notin_long[names(dataS) == idVar] <- TRUE dataLS <- merge(dataL, dataS.id[survVars_notin_long], all = TRUE, sort = FALSE) dataLS.id <- merge(dataL.id, dataS.id[survVars_notin_long], by = idVar, all = TRUE, sort = FALSE) dataLS.id[[TimeVar]] <- dataLS.id[[timeVar]] dataS.id2[["id2merge"]] <- paste(dataS.id2[[idVar]], round(c(t(st)), 8), sep = ":") dataL.id2[["id2merge"]] <- paste(dataL.id2[[idVar]], round(c(t(st)), 8), sep = ":") dataLS.id2 <- merge(dataL.id2, dataS.id2[survVars_notin_long2], by = "id2merge", sort = FALSE, all = FALSE) dataLS.id2[[TimeVar]] <- dataLS.id2[[timeVar]] } if (typeSurvInf == "interval") { dataS_int.id <- last_rows(dataS, dataS[[idVar]]) dataS_int.id2 <- right_rows(dataS, TimeLl, idT, st_int) dataLS_int <- merge(dataL, dataS_int.id[survVars_notin_long], all = TRUE, sort = FALSE) dataLS_int.id <- merge(dataL_int.id, dataS_int.id[survVars_notin_long], by = idVar, all = TRUE, sort = FALSE) uu <- runif(length(st_int)) dataS_int.id2[["id2merge"]] <- paste(dataS_int.id2[[idVar]], uu, sep = ":") dataL_int.id2[["id2merge"]] <- paste(dataL.id2[[idVar]], uu, sep = ":") dataLS_int.id2 <- merge(dataL_int.id2, dataS_int.id2[survVars_notin_long2], by = "id2merge", sort = FALSE, all = FALSE) dataLS_int.id2[[TimeVar]] <- dataLS_int.id2[[timeVar]] } if (typeSurvInf == "counting" && multiState) { W1 <- mapply(FUN = function (x, y) splines::splineDesign(x, y, ord = con$ordSpline, outer.ok = TRUE), con$knots, split.TimeR, SIMPLIFY = FALSE) W1 <- mapply(FUN = function (w1, ind) { out <- matrix(0, length(Time), ncol(w1)) out[strat == ind, ] <- w1 out }, W1, levels(strat), SIMPLIFY = FALSE) knots_strat <- lapply(W1, ncol) knots_strat <- do.call(c, knots_strat) W1 <- do.call(cbind, W1) strat_GQ <- rep(strat, each = con$GQsurv.k) split.TimeR_GQ <- split(c(t(st)), strat_GQ) W1s <- mapply(FUN = function (x, y) splines::splineDesign(x, y, ord = con$ordSpline, outer.ok = TRUE), con$knots, split.TimeR_GQ, SIMPLIFY = FALSE) W1s <- mapply(FUN = function (w1s, ind) { out <- matrix(0, length(Time) * con$GQsurv.k, ncol(w1s)) out[strat_GQ == ind, ] <- w1s out }, W1s, levels(strat), SIMPLIFY = FALSE) knots_strat_GQ <- lapply(W1s, ncol) knots_strat_GQ <- do.call(c, knots_strat_GQ) W1s <- do.call(cbind, W1s) dataS.id.clone <- dataS Terms <- drop.terms(Terms, attr(Terms, "specials")$strata - 1, keep.response = TRUE) W2 <- model.matrix(Terms, data = dataS.id.clone)[, -1, drop = FALSE] W2s <- model.matrix(Terms, data = dataS.id2)[, -1, drop = FALSE] } else { W1 <- splines::splineDesign(con$knots, Time, ord = con$ordSpline, outer.ok = TRUE) W1s <- splines::splineDesign(con$knots, c(t(st)), ord = con$ordSpline, outer.ok = TRUE) knots_strat <- ncol(W1) W2 <- model.matrix(Terms, data = dataS.id)[, -1, drop = FALSE] W2s <- model.matrix(Terms, data = dataS.id2)[, -1, drop = FALSE] } if (typeSurvInf == "interval") { W1_int <- splines::splineDesign(con$knots, TimeL, ord = con$ordSpline, outer.ok = TRUE) W1s_int <- splines::splineDesign(con$knots, c(t(st_int)), ord = con$ordSpline, outer.ok = TRUE) W2_int <- model.matrix(Terms, data = dataS_int.id)[, -1, drop = FALSE] W2s_int <- model.matrix(Terms, data = dataS_int.id2)[, -1, drop = FALSE] } extract_component <- function (component, fixed = TRUE) { components[grep(component, names(components), fixed = fixed)] } respVars <- unlist(extract_component("respVar"), use.names = FALSE) if (any(!names(Formulas) %in% respVars)) { stop("unknown names in the list provided in the 'Formulas' argument; as names ", "of the elements of this list you need to use the response variables from ", "the multivariate mixed model.\n") } not_specified <- !respVars %in% names(Formulas) Formulas_ns <- rep(list("value"), length = sum(not_specified)) names(Formulas_ns) <- respVars[not_specified] Formulas <- c(Formulas, Formulas_ns) Formulas <- Formulas[order(match(names(Formulas), respVars))] Formulas <- Formulas[!sapply(Formulas, is.null)] TermsX <- extract_component("TermsX") X <- extract_component("^X[1-9]", FALSE) TermsZ <- extract_component("TermsZ") Z <- extract_component("^Z[1-9]", FALSE) names(TermsX) <- names(X) <- names(TermsZ) <- names(Z) <- respVars which_value <- sapply(Formulas, function (x) any(x == "value")) names_which_value <- names(which_value)[which_value] replace_value <- function (termsx, x, termsz, z) { list(fixed = formula(termsx), indFixed = seq_len(ncol(x)), random = formula(termsz), indRandom = seq_len(ncol(z)), name = "value") } Formulas[which_value] <- mapply(replace_value, TermsX[names_which_value], X[names_which_value], TermsZ[names_which_value], Z[names_which_value], SIMPLIFY = FALSE) names_alphas <- function (Form) { name_term <- ifelse(!sapply(Form, is.list), "value", "extra") ind_extra <- name_term == "extra" user_names <- lapply(Form[ind_extra], "[[", "name") ind_usernames <- !sapply(user_names, is.null) name_term[ind_extra][ind_usernames] <- unlist(user_names[ind_usernames], use.names = FALSE) out <- paste0(names(Form), "_", name_term) which_dupl <- unique(out[duplicated(out)]) replc <- function (x) { paste(x, seq_along(x), sep = ".") } replacement <- unlist(lapply(which_dupl, function (dbl) replc(out[out == dbl])), use.names = FALSE) out[out %in% which_dupl] <- replacement out } outcome <- match(names(Formulas), respVars) names(Formulas) <- names_alphas(Formulas) TermsFormulas <- function (input_terms, dataOrig, which) { out <- vector("list", length(input_terms)) for (i in seq_along(input_terms)) { MF <- model.frame.default(terms(input_terms[[i]][[which]]), dataOrig) out[[i]] <- terms(MF) } out } TermsFormulas_fixed <- TermsFormulas(Formulas, dataL, "fixed") TermsFormulas_random <- TermsFormulas(Formulas, dataL, "random") XX <- build_model_matrix(Formulas, dataL, dataL.id, "fixed") XXs <- build_model_matrix(Formulas, dataL, dataL.id2, "fixed") ZZ <- build_model_matrix(Formulas, dataL, dataL.id, "random") ZZs <- build_model_matrix(Formulas, dataL, dataL.id2, "random") if (typeSurvInf == "interval") { XXs_int <- build_model_matrix(Formulas, dataL, dataL_int.id2, "fixed") ZZs_int <- build_model_matrix(Formulas, dataL, dataL_int.id2, "random") } possible_names <- unique(c(respVars, paste0(respVars, "_value"), names(Formulas))) if (any(!names(Interactions) %in% possible_names)) { stop("unknown names in the list provided in the 'Interactions' argument; as names ", "of the elements of this list you need to use the response variables from ", "the multivariate mixed model or the induced names from the 'Formulas' ", "argument; these are: ", paste(names(Formulas), collapse = ", "), ".\n") } ind_nams <- unlist(lapply(respVars, function (nam) which(names(Interactions) == nam))) names(Interactions)[ind_nams] <- paste0(names(Interactions)[ind_nams], "_value") if (any(duplicated(names(Interactions)))) { stop("duplicated names in argument 'Interactions'; check the help page.\n") } not_specified <- !names(Formulas) %in% names(Interactions) Interactions_ns <- rep(list(~ 1), length = sum(not_specified)) names(Interactions_ns) <- names(Formulas)[not_specified] Interactions <- c(Interactions, Interactions_ns) Interactions <- Interactions[order(match(names(Interactions), names(Formulas)))] Interactions <- Interactions[!sapply(Interactions, is.null)] TermsU <- lapply(Interactions, function (form) { MF <- model.frame.default(terms(form), data = dataLS.id) terms(MF) }) Interactions <- lapply(Interactions, function (x) {environment(x) <- NULL; x}) U <- lapply(TermsU, function (term) { model.matrix(term, data = dataLS.id) }) Us <- lapply(TermsU, function (term) { model.matrix(term, data = dataLS.id2) }) if (typeSurvInf == "interval") { Us_int <- lapply(Interactions, function (form) { MF <- model.frame.default(terms(form), data = dataLS.id) Terms <- terms(MF) model.matrix(Terms, data = dataLS_int.id2) }) } id <- lapply(seq_len(n_outcomes), function (i) seq_len(nT)) ids <- rep(list(idGK), n_outcomes) betas <- mvglmerObject$mcmc[grep("betas", names(mvglmerObject$mcmc), fixed = TRUE)] colmns_HC <- components[grep("colmns_HC", names(components), fixed = TRUE)] RE_inds <- mapply(function (sq, incr) seq_len(sq) + incr, sq = components[grep("ncz", names(components), fixed = TRUE)], incr = cumsum(c(0, head(sapply(colmns_HC, length), -1))), SIMPLIFY = FALSE) bb <- mvglmerObject$mcmc$b b <- lapply(RE_inds, function (ind) bb[, , ind, drop = FALSE]) inv_D <- mvglmerObject$mcmc[grep("inv_D", names(mvglmerObject$mcmc), fixed = TRUE)] sigmas <- vector("list", n_outcomes) if (any(which_gaussian <- sapply(families, "[[", "family") == "gaussian")) { sigmas[which_gaussian] <- mvglmerObject$mcmc[grep("sigma", names(mvglmerObject$mcmc), fixed = TRUE)] } trans_Funs <- rep("identity", length(XX)) names(trans_Funs) <- names(Formulas) if (!is.null(transFuns)) { if (is.null(names(transFuns)) || !all(names(transFuns) %in% names(trans_Funs))) { stop("unknown names in 'transFuns'; valid names are the ones induced by the 'Formulas' ", "argument; these are:\n", paste(names(Formulas), collapse = ", ")) } valid_funs <- c("identity", "expit", "exp", "log", "log2", "log10", "sqrt") if (!is.character(transFuns) || !all(transFuns %in% valid_funs)) { stop("invalid functions names in 'transFuns'; the functions currently supported are: ", paste(valid_funs, collapse = ", "), ".\nThese should be provided as character vector.") } trans_Funs[names(transFuns)] <- transFuns } indFixed <- lapply(Formulas, "[[", "indFixed") indRandom <- lapply(Formulas, "[[", "indRandom") RE_inds2 <- mapply(function (ind, select) ind[select], RE_inds[outcome], indRandom, SIMPLIFY = FALSE) postMean_betas <- lapply(betas, colMeans, na.rm = TRUE) postMean_b <- lapply(b, function (m) apply(m, 2:3, mean, na.rm = TRUE)) postMean_inv_D <- lapply(inv_D, function (m) apply(m, 2:3, mean, na.rm = TRUE)) mean_null <- function (x) if (is.null(x)) as.numeric(NA) else mean(x) postMean_sigmas <- lapply(sigmas, mean_null) Xbetas <- Xbetas_calc(X, postMean_betas) XXbetas <- Xbetas_calc(XX, postMean_betas, indFixed, outcome) XXsbetas <- Xbetas_calc(XXs, postMean_betas, indFixed, outcome) if (typeSurvInf == "interval") { XXsbetas_int <- Xbetas_calc(XXs_int, postMean_betas, indFixed, outcome) } fams <- sapply(families, "[[", "family") links <- sapply(families, "[[", "link") idL2 <- lapply(idL, function (x) { x <- c(x[-length(x)] != x[-1L], TRUE) which(x) - 1 }) if (typeSurvInf == "counting" && multiState) { idT.list <- rep(list(idT), times = n_outcomes) Wlong <- designMatLong(XX, postMean_betas, ZZ, postMean_b, idT.list, outcome, indFixed, indRandom, U, trans_Funs) idTs <- rep(idT, each = K) idTs.list <- rep(list(idTs), times = n_outcomes) Wlongs <- designMatLong(XXs, postMean_betas, ZZs, postMean_b, idTs.list, outcome, indFixed, indRandom, Us, trans_Funs) idT_rsum <- c(idT[-length(idT)] != idT[-1L], TRUE) idT_rsum <- which(idT_rsum) - 1 rows_wlong <- tapply(which(idT == idT), idT, c) rows_wlongs <- tapply(which(idTs == idTs), idTs, c) } else { Wlong <- designMatLong(XX, postMean_betas, ZZ, postMean_b, id, outcome, indFixed, indRandom, U, trans_Funs) Wlongs <- designMatLong(XXs, postMean_betas, ZZs, postMean_b, ids, outcome, indFixed, indRandom, Us, trans_Funs) idT.u <- unique(idT) idT_rsum <- c(idT.u[-length(idT.u)] != idT.u[-1L], TRUE) idT_rsum <- which(idT_rsum) - 1 idTs <- rep(idT.u, each = K) rows_wlong <- tapply(which(idT.u == idT.u), idT.u, c) rows_wlongs <- tapply(which(idTs == idTs), idTs, c) } if (typeSurvInf == "interval") { Wlongs_int <- designMatLong(XXs_int, postMean_betas, ZZs_int, postMean_b, ids, outcome, indFixed, indRandom, Us_int, trans_Funs) } if (typeSurvInf == "counting" && multiState) { DD <- lapply(knots_strat, diag) Tau_Bs_gammas.strt <- lapply(DD, FUN = function(x) { crossprod(diff(x, differences = con$diff)) + 1e-06 * x }) Tau_Bs_gammas <- matrix(0, nrow = sum(knots_strat), ncol = sum(knots_strat)) for (i in 1:length(knots_strat)) { tmp.first <- cumsum(knots_strat) - knots_strat + 1 tmp.last <- cumsum(knots_strat) Tau_Bs_gammas[tmp.first[i]:tmp.last[i], tmp.first[i]:tmp.last[i]] <- Tau_Bs_gammas.strt[[i]] } } else { DD <- diag(ncol(W1)) Tau_Bs_gammas <- crossprod(diff(DD, differences = con$diff)) + 1e-06 * DD } find_td_cols <- function (x) grep('tve(', colnames(x), fixed = TRUE) td_cols <- lapply(U, find_td_cols) Tau_alphas <- lapply(U, function (x) 0.01 * diag(NCOL(x))) pen_matrix <- function (td_cols, Tau_alphas) { if (ncol(Tau_alphas) == length(td_cols)) { DD <- diag(ncol(Tau_alphas)) crossprod(diff(DD, differences = con$diff)) + 1e-06 * DD } else Tau_alphas } Tau_alphas <- bdiag(mapply(pen_matrix, td_cols, Tau_alphas, SIMPLIFY = FALSE)) which_td <- as.logical(sapply(td_cols, length)) td_cols <- mapply(seq, from = c(1, head(cumsum(sapply(U, ncol)), -1) + 1), to = cumsum(sapply(U, ncol)), SIMPLIFY = FALSE)[which_td] prs <- list(mean_Bs_gammas = rep(0, ncol(W1)), Tau_Bs_gammas = Tau_Bs_gammas, mean_gammas = rep(0, ncol(W2)), Tau_gammas = 0.01 * diag(ncol(W2)), mean_alphas = rep(0, ncol(Wlong)), Tau_alphas = Tau_alphas, td_cols = unname(td_cols), rank_Tau_td_alphas = if (length(td_cols)) length(td_cols[[1]]) else 0, A_tau_Bs_gammas = 1, B_tau_Bs_gammas = 0.01, rank_Tau_Bs_gammas = qr(Tau_Bs_gammas)$rank, A_phi_Bs_gammas = 1, B_phi_Bs_gammas = 0.01, shrink_Bs_gammas = FALSE, A_tau_gammas = 0.1, B_tau_gammas = 0.1, rank_Tau_gammas = ncol(W2), A_phi_gammas = 0.5, B_phi_gammas = 0.01, shrink_gammas = FALSE, A_tau_alphas = 0.5, B_tau_alphas = 0.1, rank_Tau_alphas = ncol(Wlong), shrink_alphas = FALSE, A_phi_alphas = 0.5, B_phi_alphas = 0.01, double_gamma_alphas = FALSE, A_nu_alphas = 0.5, B_nu_alphas = 1, A_xi_alphas = 0.5, B_xi_alphas = 1) if (!is.null(priors)) { lngths <- lapply(prs[(nam.prs <- names(priors))], length) if (!is.list(priors) || !isTRUE(all.equal(lngths, lapply(priors, length)))) { warning("'priors' is not a list with elements numeric vectors of appropriate ", "length; default priors are used instead.\n") } else { prs[nam.prs] <- priors } } if (mvglmerObject$engine == "JAGS") { tau_betas <- mvglmerObject$priors[grep("tau_betas", names(mvglmerObject$priors), fixed = TRUE)] prs$Tau_betas <- diag(rep(unlist(tau_betas, use.names = FALSE), sapply(betas, ncol))) } else { scale_betas <- mvglmerObject$priors[grep("scale_betas", names(mvglmerObject$priors), fixed = TRUE)] prs$Tau_betas <- diag(rep(1 / unlist(scale_betas, use.names = FALSE)^2, sapply(betas, ncol))) } prs$priorK_D <- mvglmerObject$priors$priorK_D if (typeSurvInf == "counting" && multiState) { Data <- list(y = y, Xbetas = Xbetas, X = X, Z = Z, RE_inds = RE_inds, RE_inds2 = RE_inds2, idL = idL, idL2 = idL2, sigmas = postMean_sigmas, invD = postMean_inv_D[[1]], fams = fams, links = links, Time = Time, event = event, idGK_fast = which(idGK_fast) - 1, W1 = W1, W1s = W1s, event_colSumsW1 = colSums(event * W1), W2 = W2, W2s = W2s, event_colSumsW2 = if (ncol(W2)) colSums(event * W2), Wlong = Wlong, Wlongs = Wlongs, event_colSumsWlong = colSums(event * Wlong), U = U, Us = Us, col_inds = attr(Wlong, "col_inds"), row_inds_U = seq_len(nrow(Wlong)), row_inds_Us = seq_len(nrow(Wlongs)), XXbetas = XXbetas, XXsbetas = XXsbetas, XX = XX, XXs = XXs, ZZ = ZZ, ZZs = ZZs, P = P[ids[[1]]], w = rep(wk, nT.long), Pw = P[ids[[1]]] * rep(wk, nT.long), idT = id[outcome], idTs = ids[outcome], idT2 = idT.list[outcome], idT2s = idTs.list[outcome], idT_rsum = idT_rsum, outcome = outcome, indFixed = indFixed, indRandom = indRandom, trans_Funs = trans_Funs, nRisks = nRisks, kn_strat_last = cumsum(knots_strat) - 1, kn_strat_first = cumsum(knots_strat) - knots_strat, rows_wlong = rows_wlong, rows_wlongs = rows_wlongs) } else { Data <- list(y = y, Xbetas = Xbetas, X = X, Z = Z, RE_inds = RE_inds, RE_inds2 = RE_inds2, idL = idL, idL2 = idL2, sigmas = postMean_sigmas, invD = postMean_inv_D[[1]], fams = fams, links = links, Time = Time, event = event, idGK_fast = which(idGK_fast) - 1, W1 = W1, W1s = W1s, event_colSumsW1 = colSums(event * W1), W2 = W2, W2s = W2s, event_colSumsW2 = if (ncol(W2)) colSums(event * W2), Wlong = Wlong, Wlongs = Wlongs, event_colSumsWlong = colSums(event * Wlong), U = U, Us = Us, col_inds = attr(Wlong, "col_inds"), row_inds_U = seq_len(nrow(Wlong)), row_inds_Us = seq_len(nrow(Wlongs)), XXbetas = XXbetas, XXsbetas = XXsbetas, XX = XX, XXs = XXs, ZZ = ZZ, ZZs = ZZs, P = P[ids[[1]]], w = rep(wk, nT), Pw = P[ids[[1]]] * rep(wk, nT), idT = id[outcome], idTs = ids[outcome], outcome = outcome, indFixed = indFixed, indRandom = indRandom, trans_Funs = trans_Funs, nRisks = 1, kn_strat_last = cumsum(knots_strat) - 1, kn_strat_first = cumsum(knots_strat) - knots_strat, idT_rsum = idT_rsum, idT2 = id[outcome], idT2s = ids[outcome], rows_wlong = rows_wlong, rows_wlongs = rows_wlongs) } if (typeSurvInf == "interval") { Data <- c(Data, list(Levent1 = event == 1, Levent01 = event == 1 | event == 0, Levent2 = event == 2, Levent3 = event == 3, W1s_int = W1s_int, W2s_int = W2s_int, Wlongs_int = Wlongs_int, Us_int = Us_int, XXsbetas_int = XXsbetas_int, XXs_int = XXs_int, ZZs_int = ZZs_int, P_int = P_int[ids[[1]]], Pw_int = P_int[ids[[1]]] * rep(wk, nT))) } else { Data <- c(Data, list(Levent1 = logical(0), Levent01 = logical(0), Levent2 = logical(0), Levent3 = logical(0), W1s_int = matrix(nrow = 0, ncol = 0), W2s_int = matrix(nrow = 0, ncol = 0), Wlongs_int = matrix(nrow = 0, ncol = 0), Us_int = list(matrix(nrow = 0, ncol = 0)), XXsbetas_int = list(numeric(0)), XXs_int = list(matrix(nrow = 0, ncol = 0)), ZZs_int = list(matrix(nrow = 0, ncol = 0)), P_int = numeric(0), Pw_int = numeric(0))) } inits <- list(Bs_gammas = rep(0, ncol(W1)), tau_Bs_gammas = 200, phi_Bs_gammas = rep(1, ncol(W1)), gammas = rep(0, ncol(W2)), tau_gammas = 1, phi_gammas = rep(1, ncol(W2)), alphas = rep(0, ncol(Wlong)), tau_alphas = 1, phi_alphas = rep(1, ncol(Wlong)), tau_td_alphas = rep(200, length(td_cols))) inits2 <- marglogLik2(inits[c("Bs_gammas", "gammas", "alphas", "tau_Bs_gammas")], Data, prs, fixed_tau_Bs_gammas = TRUE) inits[names(attr(inits2, "inits"))] <- attr(inits2, "inits") if (multiState) { inits$tau_Bs_gammas <- rep(inits$tau_Bs_gammas, nRisks) } Cvs <- attr(inits2, "Covs") nRE <- sum(sapply(Z, ncol)) Cvs$b <- array(0.0, c(nRE, nRE, nT)) for (i in seq_len(nT)) Cvs$b[, , i] <- chol(var(bb[, i, ])) if (is.null(Cvs$gammas)) Cvs$gammas <- matrix(nrow = 0, ncol = 0) inits$b <- do.call("cbind", postMean_b) scales <- list(b = rep(5.76 / nRE, nT), Bs_gammas = 5.76 / ncol(W1), gammas = 5.76 / ncol(W2), alphas = 5.76 / ncol(Wlong)) sampl <- function (x, m) { lapply(x, function (obj) { d <- dim(obj) if (is.null(d)) { obj[m] } else { if (is.matrix(obj)) obj[m, ] else obj[m, , ] } }) } runParallel <- function (block, betas, b, sigmas, inv_D, inits, data, priors, scales, Covs, control, interval_cens, multiState) { M <- length(block) LogLiks <- numeric(M) out <- vector("list", M) new_scales <- vector("list", M) inits_Laplace <- inits[c("Bs_gammas", "gammas", "alphas", "tau_Bs_gammas")] inits_Laplace[["tau_Bs_gammas"]] <- log(inits_Laplace[["tau_Bs_gammas"]]) inits_Laplace[["b"]] <- NULL any_gammas <- as.logical(length(priors[["mean_gammas"]])) set.seed(control$seed) on.exit(rm(list = ".Random.seed", envir = globalenv())) for (i in seq_len(M)) { ii <- block[i] if (control$update_RE) { betas. <- sampl(betas, ii) data$Xbetas <- Xbetas_calc(data$X, betas.) outcome <- data$outcome indFixed <- data$indFixed data$XXbetas <- Xbetas_calc(data$XX, betas., indFixed, outcome) data$XXsbetas <- Xbetas_calc(data$XXs, betas., indFixed, outcome) if (interval_cens) { data$XXsbetas_int <- Xbetas_calc(data$XXs_int, betas., indFixed, outcome) } data$sigmas <- sampl(sigmas, ii) data$invD <- as.matrix(sampl(inv_D, ii)[[1]]) oo <- lap_rwm_C(inits, data, priors, scales, Covs, control, interval_cens, multiState) current_betas <- unlist(betas., use.names = FALSE) n_betas <- length(current_betas) pr_betas <- c(dmvnorm2(rbind(current_betas), rep(0, n_betas), priors$Tau_betas, logd = TRUE)) pr_invD <- dwish(data$invD, diag(nrow(data$invD)), priors$priorK_D, log = TRUE) LogLiks[i] <- c(oo$logWeights) - pr_betas - pr_invD out[[i]] <- oo$mcmc new_scales[[i]] <- oo$scales$sigma } else { betas. <- sampl(betas, ii) b. <- sampl(b, ii) outcome <- data$outcome indFixed <- data$indFixed indRandom <- data$indRandom data$Wlong <- designMatLong(data$XX, betas., data$ZZ, b., data$idT, outcome, indFixed, indRandom, data$U, trans_Funs) data$Wlongs <- designMatLong(data$XXs, betas., data$ZZs, b., data$idTs, outcome, indFixed, indRandom, data$Us, trans_Funs) data$event_colSumsWlong <- colSums(data$event * data$Wlong) LogLiks[i] <- marglogLik2(inits_Laplace, data, priors) oo <- if (any_gammas) { lap_rwm_C_woRE(inits, data, priors, scales, Covs, control) } else { lap_rwm_C_woRE_nogammas(inits, data, priors, scales, Covs, control) } out[[i]] <- oo$mcmc new_scales[[i]] <- oo$scales$sigma } } out <- lapply(unlist(out, recursive = FALSE), drop) new_scales <- lapply(unlist(new_scales, recursive = FALSE), drop) nams <- names(out) if (!is.null(out$b)) { b_out <- array(0.0, c(dim(as.matrix(out$b)), M)) for (i in seq_len(M)) b_out[, , i] <- out[nams == "b"][[i]] } else b_out <- NULL out <- list("b" = b_out, "Bs_gammas" = do.call("rbind", out[nams == "Bs_gammas"]), "gammas" = if (any_gammas) do.call("rbind", out[nams == "gammas"]), "alphas" = do.call("rbind", out[nams == "alphas"]), "tau_Bs_gammas" = do.call("rbind", out[nams == "tau_Bs_gammas"]), "tau_gammas" = if (any_gammas)do.call("rbind", out[nams == "tau_gammas"]), "tau_alphas" = do.call("rbind", out[nams == "tau_alphas"]), "tau_td_alphas" = do.call("rbind", out[nams == "tau_td_alphas"]), "phi_Bs_gammas" = do.call("rbind", out[nams == "phi_Bs_gammas"]), "phi_gammas" = if (any_gammas) do.call("rbind", out[nams == "phi_gammas"]), "phi_alphas" = do.call("rbind", out[nams == "phi_alphas"])) out$LogLiks <- LogLiks nams <- names(scales) out$scales <- list("b" = do.call("rbind", new_scales[nams == "b"]), "Bs_gammas" = do.call("rbind", new_scales[nams == "Bs_gammas"]), "gammas" = if (any_gammas) do.call("rbind", new_scales[nams == "gammas"]), "alphas" = do.call("rbind", new_scales[nams == "alphas"]) ) out <- out[!sapply(out, is.null)] list(mcmc = out) } any_gammas <- ncol(W2) combine <- function(lis) { f <- function (lis, nam) { if (nam == "LogLiks") { lis <- unlist(lis, recursive = FALSE) nam <- paste0("mcmc.", nam) unname(do.call("c", lis[names(lis) == nam])) } else { lis <- unlist(lis[names(lis) == "mcmc"], recursive = FALSE) nam <- paste0("mcmc.", nam) if (nam == "mcmc.b") abind(lis[names(lis) == nam]) else unname(do.call("rbind", lis[names(lis) == nam])) } } list("b" = f(lis, "b"), "Bs_gammas" = f(lis, "Bs_gammas"), "tau_Bs_gammas" = f(lis, "tau_Bs_gammas"), "phi_Bs_gammas" = f(lis, "phi_Bs_gammas"), "gammas" = if (any_gammas) f(lis, "gammas"), "tau_gammas" = if (any_gammas) f(lis, "tau_gammas"), "phi_gammas" = if (any_gammas) f(lis, "phi_gammas"), "alphas" = f(lis, "alphas"), "tau_alphas" = f(lis, "tau_alphas"), "tau_td_alphas" = f(lis, "tau_td_alphas"), "phi_alphas" = f(lis, "phi_alphas"), "LogLiks" = f(lis, "LogLiks")) } M <- nrow(betas[[1L]]) blocks <- split(seq_len(M), rep(seq_len(con$n_cores + 1L), each = ceiling(M / (con$n_cores + 1L)), length.out = M)) block1 <- split(blocks[[1L]], rep(seq_len(con$n_cores), each = ceiling(length(blocks[[1L]]) / con$n_cores), length.out = length(blocks[[1L]]))) blocks <- blocks[-1L] elapsed_time <- system.time({ registerDoParallel(con$n_cores) out1 <- foreach(i = block1, .packages = "JMbayes", .combine = c) %dopar% { runParallel(i, betas, b, sigmas, inv_D, inits, Data, prs, scales, Cvs, con, typeSurvInf == "interval", multiState) } stopImplicitCluster() if (con$speed_factor < 1) { calc_new_scales <- function (parm) { if (parm == "b") { apply(do.call("rbind", lapply(new_scales, "[[", "b")), 2L, median) } else { median(do.call("c", lapply(new_scales, "[[", parm))) } } new_scales <- lapply(out1, "[[", "scales") new_scales <- list("b" = if (con$update_RE) calc_new_scales("b"), "Bs_gammas" = calc_new_scales("Bs_gammas"), "gammas" = if (any_gammas) calc_new_scales("gammas") else Inf, "alphas" = calc_new_scales("alphas")) con$n_burnin <- round(ceiling(con$speed_factor * con$n_burnin / con$n_block) * con$n_block) } else { new_scales <- scales } registerDoParallel(con$n_cores) out <- foreach(i = blocks, .packages = "JMbayes", .combine = c) %dopar% { runParallel(i, betas, b, sigmas, inv_D, inits, Data, prs, new_scales, Cvs, con, typeSurvInf == "interval", multiState) } stopImplicitCluster() out <- c(out1, out) })["elapsed"] mcmc <- mvglmerObject$mcmc keep <- unlist(sapply(c("betas", "sigma", "D"), grep, x = names(mcmc), fixed = TRUE)) mcmc <- c(mcmc[keep], combine(out)) colnames(mcmc$Bs_gammas) <- paste0("bs", seq_len(ncol(mcmc$Bs_gammas))) colnames(mcmc$gammas) <- colnames(W2) get_U_colnames <- unlist(lapply(U, function (u) gsub("(Intercept)", "", colnames(u), fixed = TRUE))) nam_alph <- names(U) trans_Funs <- trans_Funs[names(U)] ind <- trans_Funs != "identity" nam_alph[ind] <- paste0(trans_Funs[ind], "(", nam_alph, ")") colnames(mcmc$alphas) <- paste0(rep(nam_alph, sapply(U, ncol)), ifelse(get_U_colnames == "", "", ":"), get_U_colnames) summary_fun <- function (FUN, ...) { fun <- function (x, ...) { res <- try(FUN(x, ...), silent = TRUE) if (!inherits(res, "try-error")) res else NA } out <- lapply(mcmc, function (x) { d <- dim(x) if (!is.null(d) && length(d) > 1) { dd <- if (length(d) == 2) 2L else if (d[2L] == d[3L]) c(2L, 3L) else c(1L, 2L) apply(x, dd, fun, ...) } else if (!is.null(x)) { fun(x, ...) } }) out[!sapply(out, is.null)] } stand <- function (x) { n <- length(x) upp <- max(x, na.rm = TRUE) + log(n) w <- exp(x - upp) w / sum(w) } LogLiks <- combine(out)$LogLiks weights <- stand(LogLiks) wmean <- function (x, weights, na.rm = FALSE) sum(x * weights, na.rm = na.rm) wsd <- function (x, weights) sqrt(drop(cov.wt(cbind(x[!is.na(x)]), wt = weights)$cov)) res <- list(call = cl, mcmc = mcmc, weights = weights, mcmc_info = list( elapsed_mins = elapsed_time / 60, n_burnin = con$n_burnin, n_iter = con$n_iter + con$n_burnin, n_thin = con$n_thin, priors = prs ), statistics = list( postMeans = summary_fun(mean, na.rm = TRUE), postwMeans = summary_fun(wmean, weights = weights, na.rm = TRUE), postModes = summary_fun(modes), EffectiveSize = summary_fun(effectiveSize), StDev = summary_fun(sd, na.rm = TRUE), wStDev = summary_fun(wsd, weights = weights), StErr = summary_fun(stdErr), CIs = summary_fun(quantile, probs = c(0.025, 0.975)), wCIs = summary_fun(Hmisc::wtd.quantile, weights = weights, probs = c(0.025, 0.975), type = "i/(n+1)", na.rm = TRUE), Pvalues = summary_fun(computeP) ), model_info = list( families = families, timeVar = timeVar, TimeVar = TimeVar, Formulas = Formulas, Interactions = Interactions, RE_inds = RE_inds, RE_inds2 = RE_inds2, transFuns = trans_Funs, multiState = multiState, mvglmer_components = c(components, list(data = dataL)), coxph_components = list(data = dataS, Terms = Terms, Time = Time, event = event, TermsU = TermsU, TermsFormulas_fixed = TermsFormulas_fixed, TermsFormulas_random = TermsFormulas_random) ), control = con) if (con$light) { res$mcmc[["b"]] <- NULL } class(res) <- "mvJMbayes" res }
setOldClass("request") setClass(Class = "MovebankLogin", contains="request", validity = function(object){ if(nchar(object$headers['user'])==0 || nchar(object$headers['password']==0)) return(TRUE) } ) setGeneric("movebankLogin", function(username, password,...) standardGeneric("movebankLogin")) setMethod(f="movebankLogin", signature=c(username="character", password="character"), definition = function(username, password){ return(new("MovebankLogin", add_headers(user=username, password=password))) }) setMethod(f="movebankLogin", signature=c(username="character", password="missing"), definition = function(username, password){ pwd<-readline("password:") return(movebankLogin(username=username, password=pwd)) }) setMethod(f="movebankLogin", signature=c(username="missing", password="missing"), definition = function(username, password){ user<-readline("username:") return(movebankLogin(username=user)) }) setGeneric("getMovebank", function(entity_type, login,...) standardGeneric("getMovebank")) setMethod(f="getMovebank", signature=c(entity_type="character", login="MovebankLogin"), definition = function(entity_type, login, ...){ tmp <- list(...) if("timestamp_start" %in% names(tmp)){ if(inherits(tmp[['timestamp_start']], "POSIXt")){ tmp[['timestamp_start']]<- sub('\\.','',strftime(format="%Y%m%d%H%M%OS3", tmp[['timestamp_start']] , tz="UTC")) } } if("timestamp_end" %in% names(tmp)){ if(inherits(tmp[['timestamp_end']], "POSIXt")){ tmp[['timestamp_end']]<- sub('\\.','',strftime(format="%Y%m%d%H%M%OS3", tmp[['timestamp_end']] , tz="UTC")) } } url <- paste("https://www.movebank.org/movebank/service/direct-read?entity_type=",entity_type ,sep="") if(length(tmp)!=0){ tmp <- lapply(tmp, paste, collapse='%2C') url <- paste(url, sep="&",paste(names(tmp),tmp, collapse="&", sep="=")) } f<-GET(url, config = login) if(grepl("location_long", url)){cols<-c(location_long='numeric', location_lat='numeric')}else{cols<-NA} cont<-content(f, as='text', encoding = "UTF-8") if(grepl(pattern="The requested download may contain copyrighted material. You may only download it if you agree with the terms listed below. If study-specific terms have not been specified, read the \"General Movebank Terms of Use\".", cont[1])) stop("You need a permission to access this data set. Go to www.movebank.org and accept the license terms when downloading the data set (you only have to do this once per data set).") data <- read.csv(textConnection(cont), colClasses=cols) if(any(grepl(pattern = 'The.request.has.not.been.applied.because.it.lacks.valid.authentication.credentials.for.the.target.resource', x=colnames(data)))) stop("There are no credentials") if(any(grepl(pattern = 'The.server.understood.the.request.but.refuses.to.authorize', x=colnames(data)))) stop("There are no valid credentials") if(any(grepl(pattern="You.may.only.download.it.if.you.agree.with.the.terms", x=colnames(data)))) stop("You need a permission to access this data set. Go to www.movebank.org and accept the license terms when downloading the data set (you only have to do this once per data set).") if (any(grepl(pattern="X.html..head..title.Apache.Tomcat", colnames(data)))) stop("It looks like you are not allowed to download this data set, either by permission but maybe also an invalid password. Or there is a sensor for which no attributes are available.") if (any(grepl(pattern="are.not.available.for.download", colnames(data)))) stop("You have no permission to download this data set.") if (any(grepl(pattern="503 Service Temporarily Unavailable", unlist(head(data))))) stop("Movebank is (temporarily) unavailable") if (any(grepl(pattern="No.data.are.available.for.download", colnames(data)))) stop("Api reports: No data are available for download") if (any(grepl(pattern="By accepting this document the user agrees to the following", data[,1]))) stop("It looks like you are not allowed to download this data set, have you agreed to the license terms in the web interface?") if (any(grepl(pattern="The requested URL.s length exceeds the capacity", data[,1]))) stop("The requested URL's length exceeds the capacity limit for this server. This can for example occur when too many indviduals are requested") return(data) }) setMethod(f="getMovebank", signature=c(entity_type="character", login="missing"), definition = function(entity_type, login, ...){ d<-movebankLogin() getMovebank(entity_type=entity_type, login=d,...) }) setGeneric("searchMovebankStudies", function(x,login) standardGeneric("searchMovebankStudies")) setMethod(f="searchMovebankStudies", signature=c(x="character",login="MovebankLogin"), definition = function(x,login){ data <- getMovebank("study", login, sort="name", attributes="id%2Cname%2Ci_am_owner%2Ci_can_see_data%2Cthere_are_data_which_i_cannot_see") res <- as.character(data$name)[grepl(x,data$name,useBytes=TRUE)] if(length(res)>0){return(res)}else{"No study matches your search criteria"} }) setMethod(f="searchMovebankStudies", signature=c(x="character",login="missing"), definition = function(x,login){ login=movebankLogin() searchMovebankStudies(x=x,login=login) }) setGeneric("getMovebankStudies", function(login) standardGeneric("getMovebankStudies")) setMethod(f="getMovebankStudies", signature=c(login="missing"), definition = function(login){ login <- movebankLogin() getMovebankStudies(login=login) }) setMethod(f="getMovebankStudies", signature=c(login="MovebankLogin"), definition = function(login){ data <- getMovebank("study", login, sort="name", attributes="id%2Cname%2Ci_am_owner%2Ci_can_see_data%2Cthere_are_data_which_i_cannot_see") return(data$name) }) setGeneric("getMovebankSensors", function(study, login) standardGeneric("getMovebankSensors")) setMethod(f="getMovebankSensors", signature=c(study="ANY",login="missing"), definition = function(study,login){ login <- movebankLogin() getMovebankSensors(study=study, login=login) }) setMethod(f="getMovebankSensors", signature=c(study="missing",login="missing"), definition = function(study,login){ login <- movebankLogin() getMovebankSensors(login=login) }) setMethod(f="getMovebankSensors", signature=c(study="missing",login="MovebankLogin"), definition = function(study,login){ data <- getMovebank("tag_type", login) return(data) }) setMethod(f="getMovebankSensors", signature=c(study="character",login="MovebankLogin"), definition = function(study,login){ study <- getMovebankID(study, login) callGeneric() }) setMethod(f="getMovebankSensors", signature=c(study="numeric",login="MovebankLogin"), definition = function(study,login){ data <- getMovebank("sensor", login, tag_study_id=study) return(data) }) setGeneric("getMovebankSensorsAttributes", function(study, login, ...) standardGeneric("getMovebankSensorsAttributes")) setMethod(f="getMovebankSensorsAttributes", signature=c(study="ANY",login="missing"), definition = function(study,login,...){ login<-movebankLogin() getMovebankSensorsAttributes(study=study, login=login,...) }) setMethod(f="getMovebankSensorsAttributes", signature=c(study="character",login="MovebankLogin"), definition = function(study,login,...){ study<-getMovebankID(study, login,... ) callGeneric() }) setMethod(f="getMovebankSensorsAttributes", signature=c(study="numeric",login="MovebankLogin"), definition = function(study,login,...){ data <- getMovebank("sensor", login, tag_study_id=study,...) studySensors <- unique(data$sensor_type_id) data2 <- lapply(studySensors, function(y, login, study) {try(getMovebank("study_attribute", login, study_id=study, sensor_type_id=y), silent=T)} ,login=login, study=study) data2<-data2[(lapply(data2, class))!='try-error'] return(as.data.frame(do.call(rbind, data2))) }) setGeneric("getMovebankID", function(study, login) standardGeneric("getMovebankID")) setMethod(f="getMovebankID", signature=c(study="character", login="missing"), definition = function(study, login){ login <- movebankLogin() getMovebankID(study=study, login=login) }) setMethod(f="getMovebankID", signature=c(study="character", login="MovebankLogin"), definition = function(study=NA, login){ data <- getMovebank("study", login, sort="name", attributes="id%2Cname%2Ci_am_owner%2Ci_can_see_data%2Cthere_are_data_which_i_cannot_see") if (is.na(study)) { return(data[ ,c("id","name")]) } else { studyNUM <- data[gsub(" ","", data$name)==gsub(" ","", study),c("id")] if (length(studyNUM)>1) stop(paste("There was more than one study with the name:",study)) return(studyNUM) } }) setGeneric("getMovebankStudy", function(study, login) standardGeneric("getMovebankStudy")) setMethod(f="getMovebankStudy", signature=c(study="numeric", login="MovebankLogin"), definition = function(study, login){ data <- getMovebank("study", login, id=study) return(data) }) setMethod(f="getMovebankStudy", signature=c(study="character", login="MovebankLogin"), definition = function(study, login){ study<- getMovebankID(study, login) callGeneric() }) setMethod(f="getMovebankStudy", signature=c(study="ANY", login="missing"), definition = function(study, login){ login <- movebankLogin() getMovebankStudy(study=study,login=login) }) setGeneric("getMovebankAnimals", function(study, login) standardGeneric("getMovebankAnimals")) setMethod(f="getMovebankAnimals", c(study="character", login="MovebankLogin"), definition = function(study, login){ study <- getMovebankID(study,login) callGeneric() }) setMethod(f="getMovebankAnimals", c(study="numeric", login="MovebankLogin"), definition = function(study, login){ tags <- getMovebank(entity_type="sensor", login, tag_study_id=study) tagNames <- getMovebank(entity_type="tag", login, study_id=study)[,c("id", "local_identifier")] colnames(tagNames) <- c("tag_id","tag_local_identifier") tags <- merge.data.frame(x=tags, y=tagNames, by="tag_id") animalID <- getMovebank("individual", login, study_id=study) deploymentID <- getMovebank("deployment", login=login, study_id=study, attributes="individual_id%2Ctag_id%2Cid") names(deploymentID) <- sub('^id$','deployment_id', names(deploymentID)) if (nrow(tags)!=0){ tagdep <- merge.data.frame(x=tags, y=deploymentID, by.x="tag_id", by.y="tag_id", all=TRUE) tagdepid <- merge.data.frame(x=tagdep, y=animalID, by.x="individual_id", by.y="id", all.y=TRUE)[,-3] tagdepid$animalName<-tagdepid$local_identifier if (any(duplicated(tagdepid$individual_id)|duplicated(tagdepid$tag_id))){ tagdepid$animalName <- paste(tagdepid$animalName, tagdepid$deployment_id, sep="_") } return(tagdepid) } else { return(merge.data.frame(x=deploymentID, y=animalID, by.x="individual_id", by.y="id", all.y=TRUE)) } }) setMethod(f="getMovebankAnimals", c(study="ANY", login="missing"), definition = function(study, login){ login <- movebankLogin() getMovebankAnimals(study=study,login=login) }) setGeneric("getMovebankData", function(study,animalName,login, ...) standardGeneric("getMovebankData")) setMethod(f="getMovebankData", signature=c(study="ANY",animalName="missing", login="missing"), definition = function(study, animalName, login=login, ...){ login <- movebankLogin() getMovebankData(study = study, login = login, ...) }) setMethod(f="getMovebankData", signature=c(study="ANY",animalName="ANY", login="missing"), definition = function(study, animalName, login=login, ...){ login <- movebankLogin() getMovebankData(study = study, animalName = animalName, login = login, ...) }) setMethod(f="getMovebankData", signature=c(study="character",animalName="ANY", login="MovebankLogin"), definition = function(study, animalName, login, ...){ study <- getMovebankID(study, login) callGeneric() }) setMethod(f="getMovebankData", signature=c(study="numeric",animalName="missing", login="MovebankLogin"), definition = function(study, animalName, login, ...){ d<- getMovebank("individual", login=login, study_id=study, attributes=c('id'))$id getMovebankData(study=study, login=login, ..., animalName=d) }) setMethod(f="getMovebankData", signature=c(study="numeric",animalName="character", login="MovebankLogin"), definition = function(study, animalName, login, ...){ d<- getMovebank("individual", login=login, study_id=study, attributes=c('id','local_identifier')) animalName<-d[as.character(d$local_identifier)%in%animalName,'id'] callGeneric() }) setMethod( f = "getMovebankData", signature = c( study = "numeric", animalName = "numeric", login = "MovebankLogin" ), definition = function(study, animalName, login, removeDuplicatedTimestamps = FALSE, includeExtraSensors = FALSE, deploymentAsIndividuals = FALSE, includeOutliers = FALSE, ...) { idData <-do.call('rbind', lapply(split(animalName, ceiling((1:length(animalName))/200)), function(x,...) { getMovebank( "individual", login = login, study_id = study, id = x, ... )},...)) colnames(idData)[which(names(idData) == "id")] <- "individual_id" if (deploymentAsIndividuals) { dep <-do.call('rbind', lapply(split(animalName, ceiling((1:length(animalName))/200)), function(x,...) getMovebank( "deployment", login = login, study_id = study, individual_id = x, ... ),...)) dep <-do.call('rbind', lapply(split(animalName, ceiling((1:length(animalName))/200)), function(x,...) getMovebank( "deployment", login = login, study_id = study, individual_id = x, attributes = c("individual_id", names(which( !unlist(lapply(lapply(dep, is.na), all)) ))), ... ),...)) colnames(dep)[which(names(dep) == "id")] <- "deployment_id" if(any(colnames(dep)=='local_identifier')){ colnames(dep)[which(names(dep) == "local_identifier")] <- "deployment_local_identifier" }else{ dep$deployment_local_identifier<-dep$deployment_id } idData <- merge.data.frame(idData, dep, by = "individual_id") }else{ if(all(is.na(idData$local_identifier))){ if(any(duplicated(idData$local_identifier))){ stop('This needs checking') } idData$local_identifier<- idData$individual_id } } sensorTypes <- getMovebank("tag_type", login = login) rownames(sensorTypes) <- sensorTypes$id locSen <- sensorTypes[as.logical(sensorTypes$is_location_sensor), "id"] attribs <- unique( c( as.character(getMovebankSensorsAttributes(study, login, ...)$short_name), "sensor_type_id", 'visible', "deployment_id", 'event_id', 'individual_id', 'tag_id' ) ) trackDF <-do.call('rbind', lapply(split(animalName, ceiling(1:length(animalName)/200)), function(x,...) getMovebank( "event", login = login, study_id = study, attributes = attribs , individual_id = x, sensor_type_id = locSen, ... ), ...)) if (includeExtraSensors) { otherSen <- sensorTypes[!as.logical(sensorTypes$is_location_sensor), "id"] otherDF <-do.call('rbind', lapply(split(animalName, ceiling(1:length(animalName)/200)), function(x,...) getMovebank( "event", login = login, study_id = study, attributes = attribs , individual_id = x, sensor_type_id = otherSen, ... ), ...)) trackDF <- rbind(trackDF, otherDF) } if (nrow(trackDF) == 0) { stop('No records found for this individual/study combination') } trackDF <- merge.data.frame(trackDF, sensorTypes[, c("id", "name")], by.x = "sensor_type_id", by.y = "id") colnames(trackDF)[which(names(trackDF) == "name")] <- "sensor_type" if(!is.factor(trackDF$sensor_type)) trackDF$sensor_type<-factor(trackDF$sensor_type) trackDF$sensor_type <- droplevels(trackDF$sensor_type) trackDF <- merge.data.frame(trackDF, unique(idData[, c("individual_id", "local_identifier")]), by = "individual_id") trackDF$individual_id <- NULL tagID <- getMovebank("tag", login, study_id=study)[,c("id", "local_identifier")] colnames(tagID) <- c("tag_id","tag_local_identifier") trackDF <- merge.data.frame(trackDF,tagID,by="tag_id", all.x=T) if (deploymentAsIndividuals) { trackDF <- merge.data.frame(trackDF, idData[, c("deployment_id", "deployment_local_identifier")], by = "deployment_id") trackDF$deployment_id <- NULL } trackDF$timestamp <- as.POSIXct(strptime( as.character(trackDF$timestamp), format = "%Y-%m-%d %H:%M:%OS", tz = "UTC" ), tz = "UTC") if (!deploymentAsIndividuals) { if (any(tapply(trackDF$sensor_type_id, trackDF$local_identifier, length) != 1)) { trackDF <- trackDF[with(trackDF, order(trackDF$local_identifier, timestamp)) ,] } trackDF$local_identifier <- as.factor(trackDF$local_identifier) levels(trackDF$local_identifier) <- validNames(levels((trackDF$local_identifier))) rownames(idData) <- validNames(idData$local_identifier) } else{ if (any( tapply( trackDF$sensor_type_id, trackDF$deployment_local_identifier, length ) != 1 )) { trackDF <- trackDF[with(trackDF, order(trackDF$deployment_local_identifier, timestamp)) ,] } trackDF$deployment_local_identifier <- as.factor(trackDF$deployment_local_identifier) levels(trackDF$deployment_local_identifier) <- validNames(levels(( trackDF$deployment_local_identifier ))) rownames(idData) <- validNames(idData$deployment_local_identifier) } outliers <- is.na(trackDF$location_long) stopifnot('visible'%in%colnames(trackDF)) if(!includeOutliers){outliers[trackDF$visible == "false"] <- T} if (all(outliers)) stop("There not observed records for this study/individual") spdf <- SpatialPointsDataFrame( trackDF[!outliers, c('location_long', 'location_lat')], data = trackDF[!outliers, ], proj4string = CRS("+proj=longlat +datum=WGS84"), match.ID = T ) if (!deploymentAsIndividuals) { idCol <- "local_identifier" } else{ idCol <- "deployment_local_identifier" } id <- paste(format(trackDF$timestamp, "%Y %m %d %H %M %OS4"), trackDF[[idCol]], trackDF$sensor_type_id) if(!is.factor(spdf[[idCol]])) spdf[[idCol]]<-factor(spdf[[idCol]]) trackId <- droplevels(spdf[[idCol]]) spdf[[idCol]] <- NULL if (anyDuplicated(id)) { if (any(s <- id[outliers] %in% id[!outliers])) { warning( "There are timestamps ", sum(s), " in the unused data that are also in the real data, those records are omitted" ) outliers[outliers][s] <- F } if (any(s <- duplicated(id[outliers]))) { warning( "There are ", sum(s), " duplicated timestamps in the unused that those will be removed" ) outliers[outliers][s] <- F } } unUsed <- new( '.unUsedRecordsStack', dataUnUsedRecords = trackDF[outliers, ], timestampsUnUsedRecords = trackDF$timestamp[outliers], sensorUnUsedRecords = trackDF[outliers, 'sensor_type'], trackIdUnUsedRecords = trackDF[outliers, idCol] ) if (any(!(s <- ( as.character(unUsed@trackIdUnUsedRecords) %in% levels(trackId) )))) { warning('Omiting individual(s) (n=', length(unique(unUsed@trackIdUnUsedRecords[!s])), ') that have only unUsedRecords') unUsed <- unUsed[s, ] } unUsed@trackIdUnUsedRecords <- factor(unUsed@trackIdUnUsedRecords, levels = levels(trackId)) if (removeDuplicatedTimestamps) { message( "removeDupilcatedTimestamps was set to TRUE, this will retain the first of multiple records with the same animal ID and timestamp, and remove any subsequent duplicates" ) dupsDf <- (data.frame( format(spdf$timestamp, "%Y %m %d %H %M %OS4"), spdf$sensor_type_id, trackId )) dups <- duplicated(dupsDf) spdf <- spdf[!dups, ] trackId <- trackId[!dups] warning(sum(dups), " location(s) is/are removed by removeDuplicatedTimestamps") } s <- getMovebankStudy(study, login) if(is.na(s$license_terms)){s$license_terms <- s$license_type}else{s$license_terms <- paste0(s$license_type," - ", s$license_terms)} res <- new( "MoveStack", spdf, timestamps = spdf$timestamp, sensor = spdf$sensor_type, unUsed, trackId = trackId, idData = idData[as.character(unique(trackId)), ], study = ifelse(is.na(s$name), character(), as.character(s$name)), citation = ifelse(is.na(s$citation), character(), as.character(s$citation)), license = ifelse( is.na(s$license_terms), character(), as.character(s$license_terms) ) ) if (length(n.locs(res)) == 1) res <- as(res, 'Move') return(res) } ) setGeneric("getMovebankNonLocationData", function(study,sensorID,animalName,login, ...) standardGeneric("getMovebankNonLocationData")) setMethod(f="getMovebankNonLocationData", signature=c(study="ANY",sensorID="missing",animalName="missing", login="missing"), definition = function(study, sensorID, animalName, login=login, ...){ login <- movebankLogin() getMovebankNonLocationData(study = study, login=login,...) }) setMethod(f="getMovebankNonLocationData", signature=c(study="ANY",sensorID="ANY",animalName="ANY", login="missing"), definition = function(study, sensorID, animalName, login=login, ...){ login <- movebankLogin() getMovebankNonLocationData(study = study, sensorID = sensorID, animalName = animalName, login=login,...) }) setMethod(f="getMovebankNonLocationData", signature=c(study="ANY",sensorID="ANY",animalName="missing", login="missing"), definition = function(study, sensorID, animalName, login=login, ...){ login <- movebankLogin() getMovebankNonLocationData(study = study, sensorID = sensorID, login=login,...) }) setMethod(f="getMovebankNonLocationData", signature=c(study="character", sensorID="ANY",animalName="ANY",login="MovebankLogin"), definition = function(study, sensorID, animalName, login, ...){ study <- getMovebankID(study, login) callGeneric() }) setMethod(f="getMovebankNonLocationData", signature=c(study="numeric", sensorID="missing",animalName="ANY",login="MovebankLogin"), definition = function(study, sensorID, animalName, login, ...){ allsens <- getMovebank("tag_type", login=login)[(c("id","is_location_sensor"))] allNL <- allsens$id[allsens$is_location_sensor=="false"] sensStudy <- unique(getMovebankSensors(study=study, login=login)$sensor_type_id) sensorID <- sensStudy[sensStudy%in%allNL] if(missing(animalName)){ getMovebankNonLocationData(study=study, sensorID=sensorID, login=login, ...) }else{ getMovebankNonLocationData(study=study, sensorID=sensorID, login=login, animalName=animalName, ...)} }) setMethod(f="getMovebankNonLocationData", signature=c(study="numeric", sensorID="character",animalName="ANY",login="MovebankLogin"), definition = function(study, sensorID, animalName, login, ...){ ss <- getMovebank("tag_type", login=login)[c("name","id")] sensorID<-ss[as.character(ss$name)%in%sensorID,'id'] callGeneric() }) setMethod(f="getMovebankNonLocationData", signature=c(study="numeric",sensorID="numeric",animalName="missing", login="MovebankLogin"), definition = function(study, sensorID, animalName, login, ...){ d<- getMovebank("individual", login=login, study_id=study, attributes=c('id'))$id getMovebankNonLocationData(study=study, sensorID=sensorID, login=login, ..., animalName=d) }) setMethod(f="getMovebankNonLocationData", signature=c(study="numeric",sensorID="numeric",animalName="character",login="MovebankLogin"), definition = function(study, sensorID, animalName, login, ...){ d<- getMovebank("individual", login=login, study_id=study, attributes=c('id','local_identifier')) animalName<-d[as.character(d$local_identifier)%in%animalName,'id'] callGeneric() }) setMethod(f="getMovebankNonLocationData", signature=c(study="numeric",sensorID="numeric", animalName="numeric", login="MovebankLogin"), definition = function(study, sensorID, animalName, login,...){ idData <-do.call('rbind', lapply(split(animalName, ceiling((1:length(animalName))/200)), function(x,...){ getMovebank("individual", login=login, study_id=study, id=x,...)},...)) colnames(idData)[which(names(idData) == "id")] <- "individual_id" if(length(study)>1){stop("Download only possible for a single study")} sensorTypes <- getMovebank("tag_type", login=login) if(length(sensorID)==0 | length(sensorID[!sensorID%in%sensorTypes$id])>0){stop("Sensor name(s) not valid. See 'getMovebankSensors(login)' for valid sensor names")} if(any(as.logical(sensorTypes$is_location_sensor[sensorTypes$id%in%sensorID]))){ stop("The selected sensor(s): '",paste0(sensorTypes$name[sensorTypes$id%in%sensorID & sensorTypes$is_location_sensor=="true"],collapse = ", "),"' is a/are location sensor(s). Only non location data can be downloaded with this function. Use 'getMovebankData' to download location data.")} sensorAnim <- getMovebankAnimals(study, login)[c("individual_id","sensor_type_id")] if(length(sensorID[!sensorID%in%unique(sensorAnim$sensor_type_id)])>0){ NoSens <- as.character(sensorTypes$name[sensorTypes$id%in%sensorID[!sensorID%in%unique(sensorAnim$sensor_type_id)]]) stop("Sensor(s): '",paste0(NoSens,collapse = ", "), "' is/are not available for this study")} NoDat <- idData$local_identifier[!unlist(lapply(1:nrow(idData), function(x){is.element(sensorID, sensorAnim$sensor_type_id[sensorAnim$individual_id==idData$individual_id[x]])}))] if(length(NoDat)>0){ animalName <- animalName[!animalName%in%idData$individual_id[as.character(idData$local_identifier)%in%as.character(NoDat)]] if(length(NoDat)<=90){ warning("Individual(s): '", paste0(as.character(NoDat),collapse = ", "),"' do(es) not have data for one or more of the selected sensor(s). Data for this/these individual(s) are not downloaded.") }else{ warning("Individual(s): '", paste0(as.character(NoDat[1:90]),collapse = ", "), "' ... and ", (length(NoDat)-90) ," more (total ",length(NoDat), ") do not have data for one or more of the selected sensor(s). Data for these individuals are not downloaded.")} } NonLocData <-do.call('rbind', lapply(split(animalName, ceiling(1:length(animalName)/200)), function(x,...){ getMovebank("event", login=login, study_id=study, sensor_type_id=sensorID, individual_id=x, attributes="all",...)}, ...)) if(nrow(NonLocData)==0){ stop("This Individual/All Individuals has/have 0 data points for the selected sensor(s)." )} IndivWithData <- unique(NonLocData$individual_id) if(!setequal(animalName, IndivWithData)){ indivNoData <- idData$local_identifier[!idData$individual_id%in%IndivWithData] if(length(indivNoData)<=90){ warning("Individual(s): '",paste0(as.character(indivNoData),collapse = ", "), "' have 0 data points for one or more of the selected sensor(s).") }else{ warning("Individuals: '", paste0(as.character(indivNoData[1:90]),collapse = ", "), "' ... and ", (length(indivNoData)-90) ," more (total ",length(indivNoData), ") have 0 data points for one or more of the selected sensor(s).")} } NonLocData$timestamp <- as.POSIXct(strptime(as.character(NonLocData$timestamp), format = "%Y-%m-%d %H:%M:%OS",tz="UTC"), tz="UTC") NonLocData$study_name <- as.character(getMovebankStudy(study, login)$name) for(i in unique(NonLocData$sensor_type_id)){ NonLocData$sensor_type[NonLocData$sensor_type_id==i] <- as.character(sensorTypes$name[sensorTypes$id==i]) } return(NonLocData) }) setGeneric("getMovebankLocationData", function(study,sensorID,animalName,login,...) standardGeneric("getMovebankLocationData")) setMethod(f="getMovebankLocationData", signature=c(study="ANY",sensorID="missing",animalName="missing", login="missing"), definition = function(study, sensorID, animalName, login=login, ...){ login <- movebankLogin() getMovebankLocationData(study = study, login=login,...) }) setMethod(f="getMovebankLocationData", signature=c(study="ANY",sensorID="ANY",animalName="ANY", login="missing"), definition = function(study, sensorID, animalName, login=login, ...){ login <- movebankLogin() getMovebankLocationData(study = study, sensorID = sensorID, animalName = animalName, login=login,...) }) setMethod(f="getMovebankLocationData", signature=c(study="ANY",sensorID="ANY",animalName="missing", login="missing"), definition = function(study, sensorID, animalName, login=login, ...){ login <- movebankLogin() getMovebankLocationData(study = study, sensorID = sensorID, login=login,...) }) setMethod(f="getMovebankLocationData", signature=c(study="character", sensorID="ANY",animalName="ANY",login="MovebankLogin"), definition = function(study, sensorID, animalName, login, ...){ study <- getMovebankID(study, login) callGeneric() }) setMethod(f="getMovebankLocationData", signature=c(study="numeric", sensorID="missing",animalName="ANY",login="MovebankLogin"), definition = function(study, sensorID, animalName, login, ...){ allsens <- getMovebank("tag_type", login=login)[(c("id","is_location_sensor"))] allNL <- allsens$id[allsens$is_location_sensor=="true"] sensStudy <- unique(getMovebankSensors(study=study, login=login)$sensor_type_id) sensorID <- sensStudy[sensStudy%in%allNL] if(missing(animalName)){ getMovebankLocationData(study=study, sensorID=sensorID, login=login, ...) }else{ getMovebankLocationData(study=study, sensorID=sensorID, login=login, animalName=animalName, ...)} }) setMethod(f="getMovebankLocationData", signature=c(study="numeric", sensorID="character",animalName="ANY",login="MovebankLogin"), definition = function(study, sensorID, animalName, login, ...){ ss <- getMovebank("tag_type", login=login)[c("name","id")] sensorID<-ss[as.character(ss$name)%in%sensorID,'id'] callGeneric() }) setMethod(f="getMovebankLocationData", signature=c(study="numeric",sensorID="numeric",animalName="missing", login="MovebankLogin"), definition = function(study, sensorID, animalName, login, ...){ d<- getMovebank("individual", login=login, study_id=study, attributes=c('id'))$id getMovebankLocationData(study=study, sensorID=sensorID, login=login, ..., animalName=d) }) setMethod(f="getMovebankLocationData", signature=c(study="numeric",sensorID="numeric",animalName="character",login="MovebankLogin"), definition = function(study, sensorID, animalName, login, ...){ d<- getMovebank("individual", login=login, study_id=study, attributes=c('id','local_identifier')) animalName<-d[as.character(d$local_identifier)%in%animalName,'id'] callGeneric() }) setMethod(f="getMovebankLocationData", signature=c(study="numeric",sensorID="numeric", animalName="numeric", login="MovebankLogin"), definition = function(study, sensorID, animalName, login, includeOutliers=FALSE, underscoreToDots=TRUE, ...){ idData <-do.call('rbind', lapply(split(animalName, ceiling((1:length(animalName))/200)), function(x,...){ getMovebank("individual", login=login, study_id=study, id=x ,...)}, ...)) colnames(idData)[which(names(idData) == "id")] <- "individual_id" if(length(study)>1){stop("Download only possible for a single study")} sensorTypes <- getMovebank("tag_type", login=login) if(length(sensorID)==0 | length(sensorID[!sensorID%in%sensorTypes$id])>0){stop("Sensor name(s) not valid. See 'getMovebankSensors(login)' for valid sensor names")} if(!(as.logical(sensorTypes$is_location_sensor[sensorTypes$id%in%sensorID]))){ stop("The selected sensor(s): '",paste0(sensorTypes$name[sensorTypes$id%in%sensorID & sensorTypes$is_location_sensor=="false"],collapse = ", "),"' is a/are non-location sensor(s). Only location data can be downloaded with this function. Use 'getMovebankNonLocationData' to download non-location data.")} sensorAnim <- getMovebankAnimals(study, login)[c("individual_id","sensor_type_id","taxon_canonical_name","local_identifier")] if(length(sensorID[!sensorID%in%unique(sensorAnim$sensor_type_id)])>0){ NoSens <- as.character(sensorTypes$name[sensorTypes$id%in%sensorID[!sensorID%in%unique(sensorAnim$sensor_type_id)]]) stop("Sensor(s): '",paste0(NoSens,collapse = ", "), "' is/are not available for this study" )} NoDat <- idData$local_identifier[!unlist(lapply(1:nrow(idData),function(x){is.element(sensorID,sensorAnim$sensor_type_id[sensorAnim$individual_id==idData$individual_id[x]])}))] if(length(NoDat)>0){ animalName <- animalName[!animalName%in%idData$individual_id[as.character(idData$local_identifier)%in%as.character(NoDat)]] if(length(NoDat)<=90){ warning("Individual(s): '", paste0(as.character(NoDat),collapse = ", "),"' do(es) not have data for one or more of the selected sensor(s). Data for this/these individual(s) are not downloaded.") }else{ warning("Individual(s): '", paste0(as.character(NoDat[1:90]),collapse = ", "), "' ... and ", (length(NoDat)-90) ," more (total ",length(NoDat), ") do not have data for one or more of the selected sensor(s). Data for these individuals are not downloaded.")} } LocData <-do.call('rbind', lapply(split(animalName, ceiling(1:length(animalName)/200)), function(x,...){ getMovebank("event", login=login, study_id=study, sensor_type_id=sensorID, individual_id=x, attributes="all",...)}, ...)) if(nrow(LocData)==0){ stop("This Individual/All Individuals has/have 0 data points for the selected sensor(s)." )} WithData <- unique(LocData$individual_id) if(!setequal(animalName, WithData)){ withNoData <- idData$local_identifier[!idData$individual_id%in%WithData] if(length(withNoData)<=90){ warning("Individual(s): '",paste0(as.character(withNoData),collapse = ", "), "' have 0 data points for one or more of the selected sensor(s).") }else{ warning("Individuals: '", paste0(as.character(withNoData[1:90]),collapse = ", "), "' ... and ", (length(withNoData)-90) ," more (total ",length(withNoData), ") have 0 data points for one or more of the selected sensor(s).")} } attbsFrist <- c("event_id","visible","timestamp" ,"location_long","location_lat") attribsAll <- colnames(LocData) attribs <- c(attbsFrist,attribsAll[!attribsAll%in%attbsFrist]) LocData <- LocData[, attribs] LocData$timestamp <- as.POSIXct(strptime(as.character(LocData$timestamp), format = "%Y-%m-%d %H:%M:%OS",tz="UTC"), tz="UTC") LocData$study_name <- as.character(getMovebankStudy(study, login)$name) for(i in unique(LocData$sensor_type_id)){ LocData$sensor_type[LocData$sensor_type_id==i] <- as.character(sensorTypes$name[sensorTypes$id==i]) } if(!includeOutliers ){ LocDataOutl <- LocData[LocData$visible=="true",] if(underscoreToDots){ names(LocDataOutl) <- gsub("_",".",names(LocDataOutl)) return(LocDataOutl) }else{return(LocDataOutl)} } if(includeOutliers){ if(underscoreToDots){ names(LocData) <- gsub("_",".",names(LocData)) return(LocData) }else{return(LocData)} } }) setGeneric("getMovebankReferenceTable", function(study, login, allAttributes=FALSE) standardGeneric("getMovebankReferenceTable")) setMethod(f="getMovebankReferenceTable", c(study="character", login="MovebankLogin"), definition = function(study, login, allAttributes){ study <- getMovebankID(study,login) callGeneric() }) setMethod(f="getMovebankReferenceTable", c(study="numeric", login="MovebankLogin"), definition = function(study, login, allAttributes){ tags <- getMovebank(entity_type="sensor", login, tag_study_id=study) tags$id <- NULL tagNames <- getMovebank(entity_type="tag", login, study_id=study) colnames(tagNames)[colnames(tagNames)%in%colnames(tagNames)[-grep("tag",colnames(tagNames))]] <- paste0("tag_",colnames(tagNames)[-grep("tag",colnames(tagNames))]) tagAtrb <- merge.data.frame(x=tags, y=tagNames, by="tag_id",all=T) animalAtrb <- getMovebank("individual", login, study_id=study) colnames(animalAtrb) <- paste0("animal_",colnames(animalAtrb)) deploymentID <- getMovebank("deployment", login=login, study_id=study, attributes="individual_id%2Ctag_id%2Cid") names(deploymentID) <- sub('^id$','deployment_id', names(deploymentID)) names(deploymentID) <- sub('^individual_id$','animal_id', names(deploymentID)) deploymentAtrb <- getMovebank("deployment", login=login, study_id=study) colnames(deploymentAtrb)[colnames(deploymentAtrb)%in%c("comments","id","local_identifier")] <- paste0("deployment_",c("comments","id","local_identifier")) deploymentAtrbs <- merge.data.frame(x=deploymentAtrb, y=deploymentID, by="deployment_id",all=T) tagdep <- merge.data.frame(tagAtrb,deploymentAtrbs, by="tag_id",all=T) animtagdep <- merge.data.frame(animalAtrb,tagdep, by="animal_id",all=T) colnames(animtagdep)[which(names(animtagdep) == "animal_number_of_events")] <- "number_of_location_events" Sens <- getMovebankSensors(login=login)[c("id","is_location_sensor")] nonLocSens <- Sens$id[Sens$is_location_sensor=="false"] animtagdep$number_of_location_events[animtagdep$sensor_type_id%in%nonLocSens] <- NA if(nrow(animtagdep)==0){stop("Reference data are not available: maybe you have no permission to download this dataset, or maybe password is invalid.")} if(study=="character"){animtagdep$study_id <- getMovebankID(study,login)}else{animtagdep$study_id <- study} RefData <- animtagdep[,c("animal_local_identifier","tag_local_identifier","sensor_type_id", names(animtagdep)[!names(animtagdep)%in%c("animal_local_identifier","tag_local_identifier","sensor_type_id")])] if(allAttributes){ return(RefData) }else{ RefDataRed <- RefData[, colSums(is.na(RefData)) != nrow(RefData)] return(RefDataRed) } }) setMethod(f="getMovebankReferenceTable", c(study="ANY", login="missing"), definition = function(study, login, allAttributes){ login <- movebankLogin() getMovebankReferenceTable(study=study,login=login,allAttributes=FALSE) })
context("search_common") test_that("search_common basic functionality works", { vcr::use_cassette("search_common", { aa <- search_common(x = "american bullfrog") }) expect_is(aa, "data.frame") expect_is(aa, "tbl_df") expect_is(aa$tsn, "character") expect_gt(NROW(aa), 0) }) test_that("search_common - xml works", { vcr::use_cassette("search_common-xml", { aa <- search_common(x = "american bullfrog", wt = "xml") }) expect_is(aa, "character") expect_true(grepl("xmlns", aa)) }) test_that("search_common - raw JSON works", { vcr::use_cassette("search_common-json", { aa <- search_common(x = "american bullfrog", raw = TRUE) }) expect_is(aa, "character") expect_false(grepl("xmlns", aa)) }) test_that("search_common fails well", { expect_error(search_common(), "\"x\" is missing") expect_error(search_common("asdfadf", wt = "ffa"), "'wt' must be one of") vcr::use_cassette("search_common-fails-well", { tmp <- search_common(x = "asdfadf") expect_is(tmp, "tbl_df") expect_equal(NROW(tmp), 0) }) })
PMPcomplement<-function(results){ Nhypo <- length(results$hypotheses) varnames <- names(results$estimates) equal <- vector(mode = "integer",length = Nhypo) equal[1:Nhypo] <- 0 temphypo <- results$hypotheses temphypo <- gsub("=~", "~", temphypo) for (t in 1:Nhypo){ if (!grepl("=", temphypo[t], fixed = TRUE)) equal[t] <- 1 } hypo <- results$hypotheses for (t in 1:Nhypo){ if (equal[t] == 1){ check <- checkconsist(varnames,hypo[t]) if (check == 1) equal[t] <- -1 } } Nineq <- sum(equal == 1) Ncombi <- 0 if (Nineq > 1){ for (t in 2:Nineq){ Ncombi <- Ncombi + choose(Nineq,t) } } Hcombi <- vector(mode = "character",length = Ncombi) combitel <- 0 if (Nineq > 1) { for (combi in 2:Nineq) { combies <- combn(Nhypo,combi) for (tc in 1:dim(combies)[2]){ hit <- 1 for (tr in 1:combi){ if (equal[combies[tr,tc]] != 1) hit <-0 } if (hit == 1) { combitel <- combitel + 1 Hcombi[combitel] <- paste(results$hypotheses[combies[1:combi,tc]], collapse="&") } } } } if (combitel > 0){ Process <- vector(mode = "integer",length = length(Hcombi)) Process[1:length(Hcombi)] <-1 for (t in 1:combitel){ check <- checkconsist(varnames,Hcombi[t]) if (check == 1) Process[t] <- 0 } } fit <- vector(mode = "numeric",length = (Nhypo + combitel)) com <- vector(mode = "numeric",length = (Nhypo + combitel)) fit[1:Nhypo] <- results$fit$Fit[1:Nhypo] com[1:Nhypo] <- results$fit$Com[1:Nhypo] if (combitel > 0){ Hcombisubset <- vector(mode = "character",length = sum(Process)) Subtel <- 1 for (Htel in 1:combitel){ if (Process[Htel] == 0){fit[Nhypo+Htel] <- 0 com[Nhypo+Htel] <- 0} if (Process[Htel] == 1){ Hcombisubset[Subtel] <- Hcombi[Htel] Subtel <- Subtel + 1 } } if (sum(Process) > 0) { subforbain <- paste0(Hcombisubset, collapse=";") resultscombi <-bain(results$estimates,Sigma=results$Sigma,n=results$n, subforbain, group_parameters = results$group_parameters, joint_parameters = results$joint_parameters, fraction = results$fraction,gocomplement = FALSE) Subtel <- 1 for (Htel in 1:combitel){ if (Process[Htel] == 1){ fit[Nhypo + Htel] <- resultscombi$fit$Fit[Subtel] com[Nhypo + Htel] <- resultscombi$fit$Com[Subtel] Subtel <- Subtel + 1 } } } order <- vector(mode = "integer",length = (combitel)) loctel <- 1 for (ordertel in 2:sum(equal == 1)){ numord <- choose(sum(equal == 1),ordertel) order[loctel:(loctel + numord -1)] <- ordertel loctel <- loctel + numord } } jointfit <- 0 for (tel in 1:Nhypo){ if (equal[tel] == 1){jointfit <- jointfit + fit[tel]} } if (combitel > 0){ for (tel in 1:combitel){ if (order[tel] %% 2 == 0) {jointfit <- jointfit - fit[Nhypo + tel]} if (order[tel] %% 2 == 1) {jointfit <- jointfit + fit[Nhypo + tel]} } } jointcom <- 0 for (tel in 1:Nhypo){ if (equal[tel] == 1){jointcom <- jointcom + com[tel]} } if (combitel > 0){ for (tel in 1:combitel){ if (order[tel] %% 2 == 0) {jointcom <- jointcom - com[Nhypo + tel]} if (order[tel] %% 2 == 1) {jointcom <- jointcom + com[Nhypo + tel]} } } BF <- vector(mode = "numeric", length = (Nhypo + 1)) PMPc <- vector(mode = "numeric",length = (Nhypo + 1)) results$fit["Hc",]<-NA results$fit[,"PMPc"]<-NA results <- results[names(results)!="gocomplement"] results <- results[names(results)!="fraction"] complf <- 1 - jointfit if (complf < 0){complf <- 0} complc <- 1 - jointcom if (complc < 0){complc <- 0} if (complc < .05) { BF[1:Nhypo] <- results$fit$BF.u[1:Nhypo] BF[Nhypo + 1] <- NA PMPc[1:(Nhypo + 1)] <- NA results$fit[,"PMPc"] <- c(PMPc[1:Nhypo], NA, PMPc[Nhypo+1]) results$fit["Hc","BF.u"] <- BF[Nhypo + 1] results$fit["Hc","Fit"] <- complf results$fit["Hc","Com"] <- complc } if (combitel > 0 & complc >= .05){ BF[1:Nhypo] <- results$fit$BF.u[1:Nhypo] BF[Nhypo + 1] <- complf / complc PMPc <- BF/sum(BF) results$fit[,"PMPc"] <- c(PMPc[1:Nhypo], NA, PMPc[Nhypo+1]) results$fit["Hc","BF.u"] <- BF[Nhypo + 1] results$fit["Hc","Fit"] <- complf results$fit["Hc","Com"] <- complc } if (combitel == 0 & Nineq == 0 & complc >= .05){ BF[1:Nhypo] <- results$fit$BF.u[1:Nhypo] BF[Nhypo + 1] <- NA PMPc <- results$fit$PMPb complf <- NA complc <- NA results$fit[,"PMPc"] <- c(PMPc[1:Nhypo], NA, PMPc[Nhypo+1]) results$fit["Hc","BF.u"] <- BF[Nhypo + 1] results$fit["Hc","Fit"] <- complf results$fit["Hc","Com"] <- complc } if (combitel ==0 & Nineq == 1 & complc >= .05){ BF[1:Nhypo] <- results$fit$BF.u[1:Nhypo] BF[Nhypo + 1] <- complf/complc PMPc <- BF/sum(BF) results$fit[,"PMPc"] <- c(PMPc[1:Nhypo], NA, PMPc[Nhypo+1]) results$fit["Hc","BF.u"] <- BF[Nhypo + 1] results$fit["Hc","Fit"] <- complf results$fit["Hc","Com"] <- complc } return(results) } checkconsist <- function(varnames,hypo){ Rrres <- parse_hypothesis(varnames,hypo) Rexclc <- Rrres$hyp_mat[[1]][,1:dim(Rrres$hyp_mat[[1]])[2]-1] Rinclc <- Rrres$hyp_mat[[1]][,1:dim(Rrres$hyp_mat[[1]])[2]] check <- 0 Rexabout <- split(Rexclc,Rinclc)$Rexabout Rexnone <- split(Rexclc,Rinclc)$Rexnone Rinabout <- split(Rexclc,Rinclc)$Rinabout Rinnone <- split(Rexclc,Rinclc)$Rinnone if (qr(Rexclc)$rank < Rrres$n_constraints[2] & nrow(Rinabout) > 1){ for (r1 in 1:(nrow(Rinabout)-1)){ for (r2 in (r1+1):nrow(Rinabout)){ tworow <- Rexabout[c(r1,r2),] if (qr(tworow)$rank == 1 & !identical(Rexabout[r1,],Rexabout[r2,])& (Rinabout[r1,dim(Rinabout)[2]] + Rinabout[r2,dim(Rinabout)[2]]) >= 0) {check <- 1} if (check == 1){break} } if (check == 1){break} } } if (!is.null(nrow(Rexnone))){ if (nrow(Rexnone) > 1 & check == 0){ if (qr(Rexnone)$rank < nrow(Rexnone)){ for (t in 1:nrow(Rexnone)){ allbutone <- Rexnone[(-1*t),] if (!is.null(dim(allbutone)[1])) {allbutone <- makefullrank(allbutone)} one <- Rexnone[t,] allbutoneplusone <- rbind(allbutone,one) if (qr(allbutoneplusone)$rank < nrow(allbutoneplusone)){ lincoef <- 0 if (is.null(dim(allbutone)[1])) {lincoef <- qr.solve(allbutone,one)} else {lincoef <- qr.solve(t(allbutone),one)} lincoef <- round(lincoef,2) if (all(lincoef <= 0)) {check <- 1 break} } } } } } return(check) } makefullrank <- function(consmat){ s <- 1 repeat{ if(dim(consmat)[1] == qr(consmat)$rank) { break } removeone <- consmat[(-1*s),] if (qr(consmat)$rank == qr(removeone)$rank){ consmat <- removeone } else {s <- s+1} if (is.null(dim(consmat)[1])){break} } return(consmat) } split <- function(Rexclc,Rinclc){ if (is.null(dim(Rexclc)[1])){ Ncol <- length(Rexclc) Nrows <- 1 } else { Ncol <- dim(Rexclc)[2] Nrows <- nrow(Rexclc) } abrows <- vector(mode = "integer",length = Nrows) abrows[1:Nrows] <- 0 rowcount <- 0 if (Nrows > 1){ for (r in 1:(Nrows-1)){ for (t in (r+1):Nrows){ if (!(r %in% abrows) & !(t %in% abrows)){ lincoef <- 1 for (h in 1: Ncol){ if (Rexclc[r,h] != 0 & Rexclc[t,h] != 0){ lincoef <- abs(Rexclc[r,h]/Rexclc[t,h]) } } Rtemp <- lincoef * Rexclc[r,] if (identical(Rtemp,-1*Rexclc[t,]) == TRUE){ abrows[rowcount+1] <- r abrows[rowcount+2] <- t rowcount <- rowcount + 2 } } } } } if (sum(abrows) == 0){Rexabout <- t(Rexclc)[0,] Rexnone <- Rexclc} else { Rexabout <- Rexclc[abrows,] Rexnone <- Rexclc[-1*abrows,]} if (sum(abrows) == 0){Rinabout <- t(Rinclc)[0,] Rinnone <- Rinclc} else { Rinabout <- Rinclc[abrows,] Rinnone <- Rinclc[-1*abrows,]} if (sum(abrows)>0){ Ncol <- dim(Rinabout)[2] Nrows <- nrow(Rinabout) abrowsub <- vector(mode = "integer",length = Nrows) abrowsub <- c(1:Nrows) if (Nrows > 2){ rowcount <- 0 for (r in 1:(Nrows-1)){ for (t in (r+1):Nrows){ lincoef <- 1 for (h in 1:(Ncol-1)){ if (Rinabout[r,h] != 0 & Rinabout[t,h] != 0){ lincoef <- abs(Rinabout[r,h]/Rinabout[t,h]) } } Rintemp <- lincoef * Rinabout[r,] if (identical(Rintemp,Rinabout[t,]) == TRUE){ abrowsub <- replace(abrowsub, abrowsub==t, 0) } } } Rexabout <- Rexabout[abrowsub,] Rinabout <- Rinabout[abrowsub,] } } splitres <- list("Rexabout" = Rexabout, "Rexnone" = Rexnone, "Rinabout" = Rinabout, "Rinnone" = Rinnone) return(splitres) }
ic_spTran_copula <- function(data, var_list, l=0, u, copula = "Copula2", m = 3, r = 3, method = "BFGS", iter=300, stepsize=1e-6, hes = TRUE, control = list()){ if (!is.data.frame(data)) { stop('data must be a data frame') } if ((!"id" %in% colnames(data)) | (!"ind" %in% colnames(data)) | (!"Left" %in% colnames(data)) | (!"Right" %in% colnames(data)) | (!"status" %in% colnames(data))) { stop('data must have id, ind, Left, Right and status') } if (!copula %in% c("Clayton","Gumbel","Copula2","Frank","Joe","AMH")) { stop('copula must be one of "Clayton","Gumbel","Copula2","Frank","Joe","AMH"') } if (l<0 | u <= max(data$Left[is.finite(data$Left)],data$Right[is.finite(data$Right)])) { stop('l must be >= 0 and u greater than non-infinite values of Left and Right') } if (r <= 0) { stop('r must be a positive number') } if (m != round(m)) { stop('m must be a positive integer') } if (!method %in% c("Newton","Nelder-Mead","BFGS","CG","SANN")) { stop('m.dist must be one of "Newton","Nelder-Mead","BFGS","CG","SANN"') } data_processed <- data_process_sieve(data, l, u, var_list, m) indata1 <- data_processed$indata1 indata2 <- data_processed$indata2 t1_left <- data_processed$t1_left t1_right <- data_processed$t1_right t2_left <- data_processed$t2_left t2_right <- data_processed$t2_right n <- data_processed$n p <- data_processed$p x1 <- data_processed$x1 x2 <- data_processed$x2 var_list <- data_processed$var_list bl1 <- data_processed$bl1 br1 <- data_processed$br1 bl2 <- data_processed$bl2 br2 <- data_processed$br2 if (method == "Newton") { model_step1a <- nlm(estimate_sieve_step1a, rep(0, (p+m+1)), hessian = FALSE, iterlim = iter, steptol = stepsize, p, m = m, x1 = x1, x2 = x2, bl1 = bl1, br1 = br1, bl2 = bl2, br2 = br2, indata1 = indata1, indata2 = indata2, r = r) beta <- model_step1a$estimate[1:p] phi <- model_step1a$estimate[(p+1):(p+1+m)] ep<-cumsum(exp(phi)) } if (method != "Newton") { model_step1a <- optim(par = rep(0,(p+m+1)), estimate_sieve_step1a, method = method, hessian = FALSE, p = p, m = m, x1 = x1, x2 = x2, bl1 = bl1, br1 = br1, bl2 = bl2, br2 = br2, indata1 = indata1, indata2 = indata2, r = r, control = control) beta <- model_step1a$par[1:p] phi <- model_step1a$par[(p+1):(p+1+m)] ep <- cumsum(exp(phi)) } if (copula == "AMH") { eta_ini <- 0 } else if (copula == "Copula2") { eta_ini <- c(0, 0) } else { eta_ini <- 0 } if (method == "Newton") { model_step1b <- nlm(ic_copula_log_lik_sieve_eta, eta_ini, hessian = FALSE, beta = beta, ep = ep, x1 = x1, x2 = x2, bl1 = bl1, br1 = br1, bl2 = bl2, br2 = br2, indata1 = indata1, indata2 = indata2, r = r, copula = copula) eta_ini <- exp(model_step1b$estimate) } else { model_step1b <- optim(par = eta_ini, ic_copula_log_lik_sieve_eta, method = method, control = control, hessian = FALSE, beta = beta, ep = ep, x1 = x1, x2 = x2, bl1 = bl1, br1 = br1, bl2 = bl2, br2 = br2, indata1 = indata1, indata2 = indata2, r = r, copula = copula) eta_ini <- exp(model_step1b$par) } if (copula == "AMH" & eta_ini[1] > 1) {eta_ini <- 0.5} if (copula == "Gumbel" & eta_ini[1] < 1) {eta_ini <- 1} if (copula == "Joe" & eta_ini[1] < 1) {eta_ini <- 1} if (copula == "Copula2" & eta_ini[1] > 1) {eta_ini[1] <- 0.5} if (method == "Newton") { model_step2 <- nlm(ic_copula_log_lik_sieve, c(model_step1a$estimate,eta_ini), hessian = hes, iterlim = iter ,steptol = stepsize, p, m = m, x1 = x1, x2 = x2, bl1 = bl1, br1 = br1, bl2 = bl2, br2 = br2, indata1 = indata1, indata2 = indata2, r = r, copula = copula) if (isTRUE(hes)) { inv_info <- pseudoinverse(model_step2$hessian) dih <- diag(inv_info) dih[dih < 0] <- 0 dih <- sqrt(dih) se <- if (copula != "Copula2") dih[c(1:p,length(dih))] else dih[c(1:p,length(dih)-1,length(dih))] beta <- if (copula != "Copula2") model_step2$estimate[c(1:p,length(dih))] else model_step2$estimate[c(1:p,length(dih)-1,length(dih))] llk <- -1 * model_step2$minimum AIC <- 2 * length(model_step2$estimate) - 2 * llk stat <- (beta-0)^2/se^2 pvalue <- pchisq(stat, 1, lower.tail=F) summary <- cbind(beta, se, stat, pvalue) tmp_name2 <- if (copula != "Copula2") c("eta") else c("alpha","kappa") rownames(summary) <- c(var_list, tmp_name2) colnames(summary) <- c("estimate","SE","stat","pvalue") code <- model_step2$code } if (!isTRUE(hes)) { inv_info = NULL beta <- if (copula != "Copula2") model_step2$estimate[c(1:p,length(model_step2$estimate))] else model_step2$estimate[c(1:p,length(model_step2$estimate)-1,length(model_step2$estimate))] llk <- -1 * model_step2$minimum AIC <- 2 * length(model_step2$estimate) - 2 * llk summary = cbind(beta) tmp_name2 <- if (copula != "Copula2") c("eta") else c("alpha","kappa") rownames(summary) <- c(var_list, tmp_name2) colnames(summary) <- c("estimate") code <- model_step2$code } output <- list(code = code, summary = summary, llk = llk, AIC = AIC, copula = copula, m = m, r = r, indata1 = indata1, indata2 = indata2, var_list = var_list, l = l, u = u, bl1 = bl1, br1 = br1, bl2 = bl2, br2 = br2, estimates = model_step2$estimate, x1 = x1, x2 = x2,inv_info = inv_info) } if (method != "Newton") { model_step2 <- optim(par = c(model_step1a$par,eta_ini), ic_copula_log_lik_sieve, method = method, hessian = hes, control = control, p = p, m = m, x1 = x1, x2 = x2, bl1 = bl1, br1 = br1, bl2 = bl2, br2 = br2, indata1 = indata1, indata2 = indata2, r = r, copula = copula) if (isTRUE(hes)) { inv_info <- pseudoinverse(model_step2$hessian) dih <- diag(inv_info) dih[dih < 0] = 0 dih <- sqrt(dih) se <- if (copula != "Copula2") dih[c(1:p,length(dih))] else dih[c(1:p,length(dih)-1,length(dih))] beta <- if (copula != "Copula2") model_step2$par[c(1:p,length(dih))] else model_step2$par[c(1:p,length(dih)-1,length(dih))] llk <- -1 * model_step2$value AIC <- 2 * length(model_step2$par) - 2 * llk stat = (beta-0)^2/se^2 pvalue = pchisq(stat, 1, lower.tail=F) summary = cbind(beta, se, stat, pvalue) tmp_name2 <- if (copula != "Copula2") c("eta") else c("alpha","kappa") rownames(summary) <- c(var_list, tmp_name2) colnames(summary) <- c("estimate","SE","stat","pvalue") code <- model_step2$convergence } if (!isTRUE(hes)) { inv_info = NULL beta <- if (copula != "Copula2") model_step2$par[c(1:p,length(model_step2$par))] else model_step2$par[c(1:p,length(model_step2$par)-1,length(model_step2$par))] llk <- -1 * model_step2$value AIC <- 2 * length(model_step2$par) - 2 * llk summary <- cbind(beta) tmp_name2 <- if (copula != "Copula2") c("eta") else c("alpha","kappa") rownames(summary) <- c(var_list, tmp_name2) colnames(summary) <- c("estimate") code <- model_step2$convergence } output <- list(code = code, summary = summary, llk = llk, AIC = AIC, copula = copula, m = m, r = r, indata1 = indata1, indata2 = indata2, var_list = var_list, l = l, u = u, bl1 = bl1, br1 = br1, bl2 = bl2, br2 = br2, estimates = model_step2$par, x1 = x1, x2 = x2, inv_info = inv_info) } class(output) <- "CopulaCenR" return(output) }
expected <- eval(parse(text="c(\"1\", NA, \"3\", \"4\", \"5\", \"6\", \"7\")")); test(id=0, code={ argv <- eval(parse(text="list(structure(c(0.434200949779115, NA, 0.907914219551846, 0.907914219551846, 0.907914219551846, 0.434200949779115, 0.434200949779115), .Names = c(\"1\", NA, \"3\", \"4\", \"5\", \"6\", \"7\")))")); do.call(`names`, argv); }, o=expected);
context("tests the processSSE function") test_that("processes SSE traces", { bisse_file <- system.file("extdata", "sse/primates_BiSSE_activity_period_mini.p", package="RevGadgets") pdata <- processSSE(bisse_file) expect_equal(class(pdata), "data.frame") expect_equal(ncol(pdata), 6) expect_equal(colnames(pdata), c("value", "rate", "hidden_state", "label", "observed_state", "Iteration" )) })
' Authors Torsten Pook, [email protected] Copyright (C) 2017 -- 2020 Torsten Pook This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. ' find.chromo <- function(position, length.total){ chromo <- min(sum(position<=length.total), length(length.total)-1) return(chromo) }
add_atop_alliance <- function(data) { if (length(attributes(data)$ps_data_type) > 0 && attributes(data)$ps_data_type %in% c("dyad_year", "leader_dyad_year")) { if (!all(i <- c("ccode1", "ccode2") %in% colnames(data))) { stop("add_atop_alliance() merges on two Correlates of War codes (ccode1, ccode2), which your data don't have right now. Make sure to run create_dyadyears() at the top of the pipe. You'll want the default option, which returns Correlates of War codes.") } else { atop_alliance %>% left_join(data, .) %>% mutate_at(vars("atop_defense", "atop_offense", "atop_neutral", "atop_nonagg", "atop_consul"), ~ifelse(is.na(.) & year <= 2018, 0, .)) -> data } } else if (length(attributes(data)$ps_data_type) > 0 && attributes(data)$ps_data_type %in% c("state_year", "leader_year")) { stop("Right now, there is only support for dyad-year data.") } else { stop("add_atop_alliance() requires a data/tibble with attributes$ps_data_type of dyad_year or leader_dyad_year. Try running create_dyadyears() or create_leaderdyadyears() at the start of the pipe.") } return(data) }
getClonalityWithError<-function(integerCN, beta, adm.global.thisZone, adm.global.thisZone.min, adm.global.thisZone.max, clonalityThreshold, local.error, roundDec=3){ if(integerCN == 0){ if (beta==0){ betaCorr <- NA zone.ctm.local <- NA clonality <- NA clonality.int <- interval(NULL,NULL) clonality.status <- "not.analysed" }else{ betaCorr <- beta zone.ctm.local <- beta / (2 - beta) G <- adm.global.thisZone L <- zone.ctm.local clonality <- setBetween0and1(1- ((G - ( L * G)) / ( L * ( 1 - G)))) zone.ctm.local.min <- zone.ctm.local - local.error zone.ctm.local.max <- zone.ctm.local + local.error G.int <- interval(adm.global.thisZone.min,adm.global.thisZone.max) L.int <- interval(zone.ctm.local.min,zone.ctm.local.max ) clonality.int <- 1 - ((G.int - ( L.int * G.int)) / ( L.int * ( 1 - G.int))) clonality.int <- interval(setBetween0and1(min(clonality.int)),setBetween0and1(max(clonality.int))) } } if (integerCN == 1){ betaCorr <- beta zone.ctm.local <- beta / (2 - beta) clonality <- setBetween0and1((1 - zone.ctm.local) / (1 - adm.global.thisZone)) zone.ctm.local.min <- zone.ctm.local - local.error zone.ctm.local.max <- zone.ctm.local + local.error zone.ctm.local.int <- interval(zone.ctm.local.min,zone.ctm.local.max) adm.global.thisZone.int <- interval(adm.global.thisZone.min,adm.global.thisZone.max) clonality.int <- ( 1 - zone.ctm.local.int) / (1 - adm.global.thisZone.int) clonality.int <- interval(setBetween0and1(min(clonality.int)),setBetween0and1(max(clonality.int))) } if (integerCN == 2){ betaCorr <- beta zone.ctm.local <- betaCorr clonality <- zone.ctm.local zone.ctm.local.min <- zone.ctm.local - local.error zone.ctm.local.max <- zone.ctm.local + local.error clonality.int <- interval(zone.ctm.local.min,zone.ctm.local.max) clonality.int <- interval(setBetween0and1(min(clonality.int)),setBetween0and1(max(clonality.int))) } if (integerCN == 3){ betaCorr <- 1 - (3 * (1 - beta) ) if ( betaCorr > 0){ zone.ctm.local <- ( 3 * betaCorr ) / (( 3 - 2 ) * betaCorr + 2) clonality <- setBetween0and1((1 - zone.ctm.local) / (1 - adm.global.thisZone)) zone.ctm.local.min <- zone.ctm.local - local.error zone.ctm.local.max <- zone.ctm.local + local.error zone.ctm.local.int <- interval(zone.ctm.local.min,zone.ctm.local.max) adm.global.thisZone.int <- interval(adm.global.thisZone.min,adm.global.thisZone.max) clonality.int <- ( 1 - zone.ctm.local.int) / (1 - adm.global.thisZone.int) clonality.int <- interval(setBetween0and1(min(clonality.int)),setBetween0and1(max(clonality.int))) }else{ betaCorr <- NA zone.ctm.local <- NA clonality <- NA clonality.int <- interval(NULL,NULL) clonality.status <- "not.analysed" } } if (integerCN == 4){ betaCorr <- beta zone.ctm.local <- ( 4 * betaCorr ) / ((4-2) * betaCorr +2 ) clonality <- setBetween0and1(zone.ctm.local ) zone.ctm.local.min <- zone.ctm.local - local.error zone.ctm.local.max <- zone.ctm.local + local.error clonality.int <- interval(zone.ctm.local.min,zone.ctm.local.max) clonality.int <- interval(setBetween0and1(min(clonality.int)),setBetween0and1(max(clonality.int))) } if (integerCN == 5){ betaCorr <- 1 - (5 * (1 - beta) ) if ( betaCorr > 0){ zone.ctm.local <- ( 5 * betaCorr ) / (( 5 - 2 ) * betaCorr + 2) clonality <- setBetween0and1((1 - zone.ctm.local) / (1 - adm.global.thisZone)) zone.ctm.local.min <- zone.ctm.local - local.error zone.ctm.local.max <- zone.ctm.local + local.error zone.ctm.local.int <- interval(zone.ctm.local.min,zone.ctm.local.max) adm.global.thisZone.int <- interval(adm.global.thisZone.min,adm.global.thisZone.max) clonality.int <- ( 1 - zone.ctm.local.int) / (1 - adm.global.thisZone.int) clonality.int <- interval(setBetween0and1(min(clonality.int)),setBetween0and1(max(clonality.int))) }else{ betaCorr <- NA zone.ctm.local <- NA clonality <- NA clonality.int <- interval(NULL,NULL) clonality.status <- "not.analysed" } } if (integerCN > 5){ betaCorr <- NA zone.ctm.local <- NA clonality <- NA clonality.int <- interval(NULL,NULL) clonality.status <- "not.analysed" } if (interval_is_empty(clonality.int)){ clonality.min <- NA clonality.max <- NA }else{ clonality <- round(clonality,roundDec) clonality.min <- round(min(clonality.int),roundDec) clonality.max <- round(max(clonality.int),roundDec) if ( clonality.min >= clonalityThreshold ){ clonality.status <- "clonal"} if ( clonality.max <= clonalityThreshold ){ clonality.status <- "subclonal"} if ( clonality.min <= clonalityThreshold && clonality.max >= clonalityThreshold && clonality < clonalityThreshold ) { clonality.status <- "uncertain.subclonal" } if ( clonality.min <= clonalityThreshold && clonality.max >= clonalityThreshold && clonality >= clonalityThreshold ){ clonality.status <- "uncertain.clonal"} } data<-data.frame(row.names=1,stringsAsFactors=F) data$betaCorr <- betaCorr data$zone.ctm.local <- zone.ctm.local data$clonality <- clonality data$clonality.min <- clonality.min data$clonality.max <- clonality.max data$clonality.status <- clonality.status return(data) } compute_clonality <- function(betaTable,errorTable,clonalityThreshold,betaThreshold=NULL,roundDec = 3,n_cores=1){ if (is.null(betaThreshold)){betaThreshold<-clonalityThreshold} betaTable$integerCN <- NA betaTable$clonality <- NA betaTable$clonality.min <- NA betaTable$clonality.max <- NA betaTable$clonality.status <- "not.analysed" getIndexClonality <- function(i){ zone <- betaTable[i,,drop=F] zone$adm.global <- round(zone$adm,roundDec) zone$adm.global.min <- round(zone$adm.min,roundDec) zone$adm.global.max <- round(zone$adm.max,roundDec) if (is.na(zone$beta) || is.na(zone$log2.corr) || is.na( zone$adm.global.min) || is.na(zone$adm.global.max)){ return(zone) } nsnps <- zone$nsnp cov <- zone$cov idxError <- which(errorTable$n.info.snps <= nsnps & errorTable$mean.cov <= cov) if (length(idxError) == 0 ){idxError <- 1} local.error <- errorTable$adm.estimation.error[max(idxError)] cn <- 2*2^zone$log2.corr clonCNlow <- getClonalityWithError(integerCN=floor(cn), beta=zone$beta, adm.global.thisZone=zone$adm.global, adm.global.thisZone.min=zone$adm.global.min, adm.global.thisZone.max=zone$adm.global.max, clonalityThreshold, local.error, roundDec) clonCNhigh <- getClonalityWithError(integerCN=ceiling(cn), beta=zone$beta, adm.global.thisZone=zone$adm.global, adm.global.thisZone.min=zone$adm.global.min, adm.global.thisZone.max=zone$adm.global.max, clonalityThreshold, local.error, roundDec) if (is.null(clonCNlow) | is.null(clonCNhigh) | is.na(clonCNlow$clonality) | is.na(clonCNhigh$clonality) ){ return(zone) } if (cn >= 0 & cn < 1){ if ( zone$beta >= betaThreshold ){ zone$integerCN <- 0 zone$clonality <- clonCNlow$clonality zone$clonality.min <- clonCNlow$clonality.min zone$clonality.max <- clonCNlow$clonality.max zone$clonality.status <- "clonal" }else if (cn <= 0.8) { zone$integerCN <- floor(cn) zone$clonality <- clonCNlow$clonality zone$clonality.min <- clonCNlow$clonality.min zone$clonality.max <- clonCNlow$clonality.max zone$clonality.status <- clonCNlow$clonality.status }else{ zone$integerCN <- ceiling(cn) zone$clonality <- clonCNhigh$clonality zone$clonality.min <- clonCNhigh$clonality.min zone$clonality.max <- clonCNhigh$clonality.max zone$clonality.status <- clonCNhigh$clonality.status } } if (cn >= 1 & cn < 2){ if (zone$beta <= betaThreshold){ zone$integerCN <- floor(cn) zone$clonality <- clonCNlow$clonality zone$clonality.min <- clonCNlow$clonality.min zone$clonality.max <- clonCNlow$clonality.max zone$clonality.status <- clonCNlow$clonality.status }else{ zone$integerCN <- ceiling(cn) zone$clonality <- clonCNhigh$clonality zone$clonality.min <- clonCNhigh$clonality.min zone$clonality.max <- clonCNhigh$clonality.max zone$clonality.status <- "not.analysed" } } if (cn >= 2 & cn <= 3){ if (zone$beta <= betaThreshold){ zone$integerCN <- ceiling(cn) zone$clonality <- clonCNhigh$clonality zone$clonality.min <- clonCNhigh$clonality.min zone$clonality.max <- clonCNhigh$clonality.max zone$clonality.status <- clonCNhigh$clonality.status }else{ zone$integerCN <- floor(cn) zone$clonality <- clonCNlow$clonality zone$clonality.min <- clonCNlow$clonality.min zone$clonality.max <- clonCNlow$clonality.max zone$clonality.status <- "not.analysed" } } return(zone) } clonalityTable.list <- mclapply(seq(1,nrow(betaTable),1), getIndexClonality, mc.preschedule = T, mc.cores = n_cores) clonalityTable <- fromListToDF(clonalityTable.list) return(clonalityTable) } compute_scna_clonality_table<-function(beta_table, ploidy_table, admixture_table, error_tb = error_table, clonality_threshold = 0.85, beta_threshold = 0.90, n_digits=3, n_cores=1, debug=F){ sample_id <- unique(beta_table$sample) if (length(sample_id) != 1){stop(paste("[",Sys.time() ,"] beta_table must contain exactly one sample\n",sep=""))} if (nrow(ploidy_table) !=1 || nrow(admixture_table) !=1 || (pls = ploidy_table$sample) != sample_id || (ads = admixture_table$sample) != sample_id){ stop(paste("[",Sys.time() ,"] ploidy_table and admixture_table must contain only sample ",sample_id,"\n",sep="")) } beta_table <- merge(beta_table, ploidy_table, by="sample") beta_table$log2shift <- round(-log2(beta_table$ploidy/2),n_digits) beta_table$log2.plCorr <- round(beta_table$log2 - beta_table$log2shift, n_digits) beta_table <- merge(x = beta_table, y = admixture_table, by="sample") beta_table$log2.corr <- suppressWarnings(log2(pmax(( 2 ^ (beta_table$log2.plCorr ) - admixture_table$adm[1] ) / (1 - admixture_table$adm[1]), 0))) clonality_table <- compute_clonality(betaTable = beta_table, errorTable = error_tb, clonalityThreshold = clonality_threshold, betaThreshold = beta_threshold, roundDec = n_digits, n_cores = n_cores ) if (!debug){ cols_to_save <- c("sample","chr","start","end","num.mark","log2","beta","nsnp","cov","n_beta","clonality","clonality.min","clonality.max","clonality.status") clonality_table <- clonality_table[,intersect(colnames(clonality_table),cols_to_save)] } return(clonality_table) }
"pairData"
test_that( "test.is_empty_character.a_character_vector.returns_true_when_string_is_missing_or_empty", { x <- c(missing = NA_character_, empty = "", non_empty = "a", space = " ", not_missing1 = "NA", not_missing2 = "<NA>") expected <- c(FALSE, TRUE, FALSE, FALSE, FALSE, FALSE) expect_equal( strip_attributes(actual <- is_empty_character(x)), expected ) expect_equal(names(actual), unname(x)) expect_equal( cause(actual), noquote(rep.int(c("missing", "", "nonempty"), c(1, 1, 4))) ) } ) test_that( "test.is_non_empty_character.a_character_vector.returns_true_when_string_is_missing_or_empty", { x <- c(missing = NA_character_, empty = "", non_empty = "a", space = " ", not_missing1 = "NA", not_missing2 = "<NA>") expected <- c(TRUE, FALSE, TRUE, TRUE, TRUE, TRUE) expect_equal( strip_attributes(actual <- is_non_empty_character(x)), expected ) expect_equal(names(actual), unname(x)) expect_equal( cause(actual), noquote(rep.int(c("", "empty", ""), c(1, 1, 4))) ) } ) test_that( "test.is_missing_or_empty_character.a_character_vector.returns_true_when_string_is_missing_or_empty", { x <- c(missing = NA_character_, empty = "", non_empty = "a", space = " ", not_missing1 = "NA", not_missing2 = "<NA>") expected <- c(TRUE, TRUE, FALSE, FALSE, FALSE, FALSE) expect_equal( strip_attributes(actual <- is_missing_or_empty_character(x)), expected ) expect_equal(names(actual), unname(x)) expect_equal( cause(actual), noquote(rep.int(c("", "nonempty"), c(2, 4))) ) } ) test_that( "test.is_non_missing_nor_empty_character.a_character_vector.returns_true_when_string_is_not_missing_nor_empty", { x <- c(missing = NA_character_, empty = "", non_empty = "a", space = " ", not_missing1 = "NA", not_missing2 = "<NA>") expected <- c(FALSE, FALSE, TRUE, TRUE, TRUE, TRUE) expect_equal( strip_attributes(actual <- is_non_missing_nor_empty_character(x)), expected ) expect_equal(names(actual), unname(x)) expect_equal( cause(actual), noquote(rep.int(c("missing", "empty", ""), c(1, 1, 4))) ) } )
sir_ratio <- function(x, y, digits = 3, alternative = 'two.sided', conf.level = 0.95, type = 'exact') { if(inherits(x = x, what = 'sir')){ O1 <- sum(x$observed) E1 <- sum(x$expected) } else if(is.vector(x) && length(x) == 2) { O1 <- x[1] E1 <- x[2] } else{ stop('Input x is not correct: x is neighter a vector of 2 nor sir-object') } if(inherits(y,'sir')){ O2 <- sum(y$observed) E2 <- sum(y$expected) } else if(is.vector(y) && length(y) == 2) { O2 <- y[1] E2 <- y[2] } else{ stop('Input y is not correct: y is neighter a vector of 2 nor sir-object') } type <- match.arg(type, c('asymptotic', 'exact'), several.ok = FALSE) alternative <- match.arg(alternative, c('two.sided','less', 'greater'), several.ok = FALSE) p <- O1/(O1+O2) if(type == 'asymptotic') { alpha <- (1 - conf.level)/2 Ex <- p + c(-qnorm(1-alpha),qnorm(1-alpha)) * sqrt((1/(O1+O2))*p*(1-p)) if( alternative != 'two.sided') { message('Test changed to two.sided when asymptotic.') alternative <- 'two.sided' } } if(type == 'exact') { Ex <- binom.test(c(O1,O2), p = 0.5, alternative = alternative, conf.level = conf.level)$conf.int } B = Ex/(1-Ex) res <- round(c(sir_ratio = (O1/E1)/(O2/E2), lower=(B*(E2/E1))[1], upper = (B*(E2/E1))[2]), digits = digits) return(res) }
plot.amlps <- function(x, xp, smoo.index, cred.int = 0.95, plot.cred = TRUE, np = 100, fit.col = "blue", shade.col = "gray75", show.plot = TRUE, show.info = TRUE, ...){ if (smoo.index < 1 || smoo.index > x$q) stop("smoo.index wrongly specified") smoo.index <- as.integer(smoo.index) if (!is.vector(cred.int, mode = "numeric") || length(cred.int) > 1 || is.na(cred.int) || is.infinite(cred.int) || cred.int <= 0 || cred.int >= 1) stop("cred.int must be between 0 and 1") if (!is.logical(plot.cred)) stop("plot.cred must be either TRUE or FALSE") if(np < 20 || np > 200) stop("choose np between 20 and 200") if(is.null(x$data)) { mf <- stats::model.frame(x$formula) X <- stats::model.matrix(mf) colXnames <- colnames(X) smterms <- grepl("sm(", colnames(X), fixed = TRUE) X <- cbind(X[, as.logical(1 - smterms)], X[, smterms]) colnames(X) <- colXnames } else{ mf <- stats::model.frame(x$formula, data = x$data) X <- stats::model.matrix(mf, data = x$data) colXnames <- colnames(X) smterms <- grepl("sm(", colnames(X), fixed = TRUE) X <- cbind(X[, as.logical(1 - smterms)], X[, smterms]) colnames(X) <- colXnames } q <- x$q p <- ncol(X) - q n <- x$n K <- x$K splines <- x$spline.estim j <- smoo.index xj <- as.numeric(X[, p + j]) min.xgrid <- min(xj) max.xgrid <- max(xj) if(!missing(xp)){ if (any(xp < min.xgrid) || any(xp > max.xgrid)) stop("values in xp not in the range of observed covariates") } xgrid <- seq(min.xgrid, max.xgrid, length = np) xj.fine <- seq(min.xgrid, max.xgrid, length = 1000) Bj.fine <- cubicbs(xj.fine, lower = min.xgrid, upper = max.xgrid, K = K)$Bmatrix Bj.fine.mean <- colMeans(Bj.fine) Bxgrid <- cubicbs(xgrid, lower = min.xgrid, upper = max.xgrid, K = K)$Bmatrix Bxgrid.centered <- Bxgrid - matrix(rep(Bj.fine.mean, np), nrow = np, byrow = TRUE) Bx <- Bxgrid.centered[, -K] fhat <- as.numeric(Bx %*% splines[[j]]) alpha <- 1 - cred.int latmaximum <- x$latmaximum Covmaximum <- x$Covmaximum thetaj.max <- latmaximum[((p + 1) + (j - 1) * (K - 1)) : (p + j * (K - 1))] Sigj.max <- Covmaximum[((p + 1) + (j - 1) * (K - 1)):(p + j * (K - 1)), ((p + 1) + (j - 1) * (K - 1)):(p + j * (K - 1))] postfj.mean <- as.numeric(Bx %*% thetaj.max) postfj.sd <- sqrt(diag(Bx %*% Sigj.max %*% t(Bx))) fj.lb <- fhat - stats::qnorm((1 - (alpha * .5))) * postfj.sd fj.ub <- fhat + stats::qnorm((1 - (alpha * .5))) * postfj.sd minf <- min(fj.lb) maxf <- max(fj.ub) shift.frame <- 0.3 * (maxf - minf) covariate.name <- colnames(X)[(p + 1):(p + q)][smoo.index] nchar.covariate <- nchar(covariate.name) covariate.name <- substr(covariate.name, 4, nchar.covariate - 1) if(show.plot == TRUE){ graphics::plot(xgrid, fhat, type = "l", col = fit.col, xlab = covariate.name, ylab = paste0("sm(", covariate.name, ",", format(round(x$EDf[smoo.index], 2), nsmall = 2), ")"), ...) if(plot.cred == TRUE) { graphics::polygon(x = c(xgrid, rev(xgrid)), y = c(fj.lb, rev(fj.ub)), col = shade.col, border = NA) } graphics::lines(xgrid, fhat, type="l", lwd=2, col = fit.col) graphics::rug(X[, p + smoo.index]) } if (!missing(xp)) { xxgrid <- xp xlen <- length(xp) Bxxgrid <- cubicbs(xp, lower = min.xgrid, upper = max.xgrid, K = K)$Bmatrix Bxxgrid.centered <- Bxxgrid - matrix(rep(Bj.fine.mean, xlen), nrow = xlen, byrow = TRUE) Bxx <- Bxxgrid.centered[, -K] fhatxx <- as.numeric(Bxx %*% splines[[j]]) postfjxx.mean <- as.numeric(Bxx %*% thetaj.max) postfjxx.sd <- sqrt(diag(Bxx %*% Sigj.max %*% t(Bxx))) fjxx.lb <- fhatxx - stats::qnorm((1 - (alpha * .5))) * postfjxx.sd fjxx.ub <- fhatxx + stats::qnorm((1 - (alpha * .5))) * postfjxx.sd ftable <- matrix(0, nrow = xlen, ncol = 4) colnames(ftable) <- c("xp", "sm", "sm.low", "sm.up") ftable[, 1] <- xp ftable[, 2] <- fhatxx ftable[, 3] <- fjxx.lb ftable[, 4] <- fjxx.ub ftable <- round(ftable, 4) if(show.info == TRUE){ cat("Estimated smooth function", paste0("sm(", covariate.name,")"), "at specified grid points (*): \n") cat("\n") print.table(format(ftable, nsmall = 4), right = TRUE) cat("--- \n") cat("* Bounds correspond to a", paste(format(round(cred.int * 100, 2), nsmall = 2), "%", sep = ""), "credible interval. \n") } listout <- list(xp = xp, sm.xp = fhatxx, sm.low = fjxx.lb, sm.up = fjxx.ub, cred.int = cred.int, smoo.index = smoo.index) return(invisible(listout)) } }
SL.xgboost = function(Y, X, newX, family, obsWeights, id, ntrees = 1000, max_depth = 4, shrinkage = 0.1, minobspernode = 10, params = list(), nthread = 1, verbose = 0, save_period = NULL, ...) { .SL.require("xgboost") if(packageVersion("xgboost") < 0.6) stop("SL.xgboost requires xgboost version >= 0.6, try help(\'SL.xgboost\') for details") if (!is.matrix(X)) { X = model.matrix(~ . - 1, X) } xgmat = xgboost::xgb.DMatrix(data = X, label = Y, weight = obsWeights) if (family$family == "gaussian") { if(packageVersion("xgboost") >= "1.1.1.1") { objective <- 'reg:squarederror' } else { objective <- 'reg:linear' } model = xgboost::xgboost(data = xgmat, objective=objective, nrounds = ntrees, max_depth = max_depth, min_child_weight = minobspernode, eta = shrinkage, verbose = verbose, nthread = nthread, params = params, save_period = save_period) } if (family$family == "binomial") { model = xgboost::xgboost(data = xgmat, objective="binary:logistic", nrounds = ntrees, max_depth = max_depth, min_child_weight = minobspernode, eta = shrinkage, verbose = verbose, nthread = nthread, params = params, save_period = save_period, eval_metric = "logloss") } if (family$family == "multinomial") { model = xgboost::xgboost(data = xgmat, objective="multi:softmax", nrounds = ntrees, max_depth = max_depth, min_child_weight = minobspernode, eta = shrinkage, verbose = verbose, num_class = length(unique(Y)), nthread = nthread, params = params, save_period = save_period) } if (!is.matrix(newX)) { newX = model.matrix(~ . - 1, newX) } pred = predict(model, newdata = newX) fit = list(object = model) class(fit) = c("SL.xgboost") out = list(pred = pred, fit = fit) return(out) } predict.SL.xgboost <- function(object, newdata, family, ...) { .SL.require("xgboost") if(packageVersion("xgboost") < 0.6) stop("SL.xgboost requires xgboost version >= 0.6, try help(\'SL.xgboost\') for details") if (!is.matrix(newdata)) { newdata = model.matrix(~ . - 1, newdata) } pred = predict(object$object, newdata = newdata) return(pred) } create.SL.xgboost = function(tune = list(ntrees = c(1000), max_depth = c(4), shrinkage = c(0.1), minobspernode = c(10)), detailed_names = F, env = .GlobalEnv, name_prefix = "SL.xgb") { tuneGrid = expand.grid(tune, stringsAsFactors=F) names = rep("", nrow(tuneGrid)) for (i in seq(nrow(tuneGrid))) { g = tuneGrid[i,] if (detailed_names) { name = paste(name_prefix, g$ntrees, g$max_depth, g$shrinkage, g$minobspernode, sep=".") } else { name = paste(name_prefix, i, sep=".") } names[i] = name eval(parse(text = paste0(name, "= function(..., ntrees = ", g$ntrees, ", max_depth = ", g$max_depth, ", shrinkage=", g$shrinkage, ", minobspernode=", g$minobspernode, ") SL.xgboost(..., ntrees = ntrees, max_depth = max_depth, shrinkage=shrinkage, minobspernode=minobspernode)")), envir = env) } results = list(grid = tuneGrid, names = names) invisible(results) }
{ library(vroom) data <- vroom(file, col_types = c(pickup_datetime = "c")) vroom:::vroom_materialize(data, replace = TRUE) } data.table::fwrite(data, tempfile(fileext = ".tsv"), sep = "\t")
pool.means <- function (m, se, na.rm = FALSE) { if(is.list(m)) {if(length(m) == 1) { stopifnot(length(se)==1); m <- unlist(m); se <- unlist(se)}} if(!is.list(m)) { pooled <- mice::pool.scalar(Q=m, U=se^2) pooled <- data.frame ( m.pooled = pooled$qbar, se.pooled = sqrt(pooled$t), df = pooled$df, stringsAsFactors = FALSE) } else { if(!all(unlist(lapply(m, length)) == unlist(lapply(se, length)) ) ) { if(!all ( unlist(lapply(se,length)) == 0)) { cat(paste("Some coefficients without standard error estimates. Standard errors won't be pooled.\n")) } se <- lapply(m, FUN = function ( x ) { rep(NA,length(x)) }) } M <- length(m) N <- length(m[[1]]) Q.m <- lapply(m,mean) Qbar <- mean(unlist(Q.m)) U <- mean(unlist(lapply(se, FUN = function ( x ) { mean(x^2) } ))) MS.b <- N/(M-1) * sum((unlist(Q.m) - Qbar)^2) MS.omeg<- 1/(M*(N-1)) * sum(unlist(lapply(m, FUN = function ( x ) { sum((x-mean(x))^2) }))) varT <- U+1/N*(1+1/M)*MS.b + (1-1/N)*MS.omeg dfN <- 1 / ( (1/N*(1+1/M)*MS.b / varT)^2 * 1/(M-1) + ( ((1-1/N)*MS.omeg )/varT)^2 * 1/ (M * (N-1)) ) pooled <- data.frame ( m.pooled = Qbar, se.pooled = sqrt(varT), df = dfN, stringsAsFactors = FALSE) } return(list(summary=pooled))} pool.R2 <- function ( r2, N, quiet = FALSE ) { if(!is.list(r2)) {r2 <- list(r2)} if (missing(N)) { if(quiet == FALSE ) {cat("No sample size given. Will not compute standard error of pooled R squared.\n")} N <- lapply(r2, FUN = function (x) { rep ( 1000, length( x ) ) } ) mis.N <- TRUE } if(!is.list(N)) {N <- list(N)} if (!missing(N)) { stopifnot(length(N) == length(r2) ) mis.N <- FALSE stopifnot( all ( sapply(N, length) == sapply(r2, length) ) ) } Q.i <- lapply(r2, FUN = function (x) {0.5*log( (1 + sqrt(x)) / (1-sqrt(x)) )}) Q.i.err <- lapply(N, FUN = function (n) {1 / (n-3)}) untransformed <- pool.means(m = Q.i, se = Q.i.err)$summary[c("m.pooled","se.pooled")] transformed <- as.data.frame ( ((exp(2*untransformed)-1) / (exp(2*untransformed)+1) )^2) if(mis.N) {return(transformed[1])} else {return(transformed)} } jk2.pool <- function ( datLong, allNam, forceSingularityTreatment, modus ) { retList <- do.call("rbind", by(data = datLong, INDICES = datLong[, c("group","parameter")], FUN = function ( u ) { comp <- table(u[,"comparison"], useNA="ifany") stopifnot(length(comp)==1) if(u[1,"parameter"] == "chiSquareTest") { chi <- by(u, INDICES = u[,c(allNam[["nest"]] )], FUN = function ( uN ) { uN[which(uN[,"coefficient"] == "chi2"),"value"]}) degFr<- by(u, INDICES = u[,c(allNam[["nest"]] )], FUN = function ( uN ) { uN[which(uN[,"coefficient"] == "df"),"value"]}) if ( length(table(degFr)) != 1 ) { cat(paste0("Warning for '",u[1,"group"],"': degrees of freedom vary between imputations. Min: ",min(unlist(degFr)),"; Max: ", max(unlist(degFr)),". Chi-square test will be skipped.\n")) } degFr<- unique(unlist(degFr))[1] pool <- miceadds::micombine.chisquare ( dk = unlist(chi), df=degFr, display = FALSE) ret <- data.frame ( group = names(table(u[,"group"])), depVar = allNam[["dependent"]], modus=modus, comparison = names(comp), parameter = names(table(u[,"parameter"])), coefficient = c("D2statistic","chi2Approx", "df1", "df2", "p", "pApprox"), value = pool[c("D", "chisq.approx", "df", "df2", "p", "p.approx")], u[1,allNam[["group"]],drop=FALSE], stringsAsFactors = FALSE, row.names=NULL) } else { uM <- by(u, INDICES = u[,c(allNam[["nest"]] )], FUN = function ( uN ) { uN[which(uN[,"coefficient"] == "est"),"value"]}) uSE <- by(u, INDICES = u[,c(allNam[["nest"]] )], FUN = function ( uN ) { uN[which(uN[,"coefficient"] == "se"),"value"]}) if ( "es" %in% u[,"coefficient"] ) { uES <- by(u, INDICES = u[,c(allNam[["nest"]] )], FUN = function ( uN ) { uN[which(uN[,"coefficient"] == "es"),"value"]}) esP <- mean(unlist(lapply(uES, mean))) } if(u[1,"parameter"] %in% c("R2", "R2nagel")) { getNvalid <- datLong[ intersect( intersect( which(datLong[,"group"] == u[1,"group"]), which( datLong[,"parameter"] == "Nvalid")), which( datLong[,"coefficient"] == "est") ) ,] if(nrow(getNvalid)==0) { pooled <- t(pool.R2(r2 = u[,"value"])) } else { if (forceSingularityTreatment == TRUE) { if(nrow(getNvalid) != nrow(u) ) { paste("Inconsistent number of sample size replications and/or R^2 estimates. Try workaround.\n") u <- u[which(u[,"coefficient"] == "est"),] stopifnot(nrow(getNvalid) == nrow(u)) pooled <- t(pool.R2(r2 = u[,"value"], N = getNvalid[,"value"])) } else { pooled <- t(pool.R2(r2 = u[,"value"], N = getNvalid[,"value"])) } } else { pooled <- t(pool.R2(r2 = u[,"value"], N = getNvalid[,"value"])) } } } else { pooled <- pool.means(m = uM, se = uSE)$summary[c("m.pooled","se.pooled")] } ret <- data.frame ( group = names(table(u[,"group"])), depVar = allNam[["dependent"]], modus=modus, comparison = names(comp), parameter = names(table(u[,"parameter"])), coefficient = c("est","se"), value = unlist(pooled), u[1,allNam[["group"]],drop=FALSE], stringsAsFactors = FALSE, row.names=NULL) if ( "es" %in% u[,"coefficient"] ) { retI <- ret[1,] retI[,"coefficient"] <- "es" retI[,"value"] <- esP ret <- rbind(ret, retI) } } return(ret)})) return(retList)} pool.corr <- function( corrs , N , conf.level = .05){ fisher.corrs <- 1/2*log( ( 1 + corrs) / ( 1 - corrs ) ) var.fisher <- rep( 1/(N-3) , length(corrs) ) fisher.cor.combine <- mice::pool.scalar( fisher.corrs , var.fisher) zr <- fisher.cor.combine$qbar zr.se <- sqrt( fisher.cor.combine$t ) t.zr <- zr / zr.se fisher2cor <- function(z){ ( exp(2*z) - 1 )/ ( exp(2*z) + 1 ) } res <- c( "r" = fisher2cor(zr) , "fisher_r" = zr , "fisher_rse" = zr.se , "t" = t.zr , "p" = 2 * pnorm( abs(t.zr) , lower.tail = FALSE ) , fisher2cor( zr + qnorm( ( 1 - conf.level ) / 2 ) * zr.se ) , fisher2cor( zr - qnorm( ( 1 - conf.level ) / 2 ) * zr.se ) ) names(res)[6] <- paste( "lower" , round(100*conf.level,2),sep="") names(res)[7] <- paste( "upper" , round(100*conf.level,2),sep="") res <- c( res , ( res[6] - res[7] ) / ( 2* qnorm( ( 1 - conf.level )/2 ) ) ) names(res)[8] <- "rse" res <- res[ c(1,8,2:7) ] res <- round(res, 6) return(res) }
response.BTLLasso <- function(response, first.object = NULL, second.object = NULL, subject = NULL, with.order = rep(TRUE, length(response))) { if(inherits(response, "paircomp")){ response <- as.matrix(response) model_names <- str_split(colnames(response),pattern=":") model_names <- matrix(unlist(model_names),nrow=2) subject <- paste0("Subject",rep(1:nrow(response),ncol(response))) first.object <- rep(model_names[1,],each=nrow(response)) second.object <- rep(model_names[2,],each=nrow(response)) } withS <- FALSE if (!is.null(subject)) { withS <- TRUE if (!is.character(subject)) stop("Argument subject has to be a character vector") } if (!withS) { subject <- 1:length(response) } ly <- length(response) lo1 <- length(first.object) lo2 <- length(second.object) ls <- length(subject) lorder <- length(with.order) if (!all(sapply(list(lo1, lo2, ls,lorder), identical, ly))) stop("The arguments response, first.object, second.object and (if specified) subject and with.order have to be of the same length") all.objects <- as.factor(as.character(unlist(list(first.object, second.object)))) object.names <- levels(all.objects) first.object <- as.numeric(all.objects[1:ly]) second.object <- as.numeric(all.objects[(ly + 1):(2 * ly)]) m <- length(object.names) response <- as.ordered(response) q <- length(levels(response)) - 1 k <- q + 1 subject.names <- levels(as.factor(subject)) n <- length(subject.names) RET <- list(response = response, first.object = first.object, second.object = second.object, subject = subject, withS = withS, subject.names = subject.names, object.names = object.names, n = n, m = m, k = k, q = q, with.order = with.order) class(RET) <- "responseBTLLasso" RET }
ClassMDplot <- function(Data, Cls, ColorSequence = DataVisualizations::DefaultColorSequence, ClassNames = NULL, PlotLegend = TRUE,Ordering = "Columnwise", main = 'MDplot for each Class', xlab = 'Classes', ylab = 'PDE of Data per Class', MinimalAmoutOfData=40,MinimalAmoutOfUniqueData=12,SampleSize=1e+05,...) { NoNanInd <- which(!is.nan(Data)) Data <- Data[NoNanInd] Cls <- Cls[NoNanInd] AnzData = length(Data) uniqueData=unique(Data) TrainInd <- c() if(AnzData>SampleSize){ UniqueClasses=unique(Cls) Percentage=round(SampleSize/AnzData,2) for(i in UniqueClasses){ ClassInd <- which(Cls==i) nclass=round(length(ClassInd)* Percentage,0) if(nclass>SampleSize) sampleInd <- sample(ClassInd,nclass) else sampleInd = ClassInd TrainInd=c(TrainInd,sampleInd) } Data=Data[TrainInd] Cls=Cls[TrainInd] AnzData=length(Data) } if(AnzData<3e+03){ Cls=checkCls(Cls,AnzData,Normalize=TRUE) }else{ Cls=checkCls(Cls,AnzData,Normalize=FALSE) } UniqueClasses = unique(Cls) NrOfClasses = length(UniqueClasses) if (is.null(ClassNames)) { ClassNames = unique(Cls) names(ClassNames)=paste("Class ", ClassNames, sep = "") }else{ if(!is.numeric(ClassNames)){ warning('ClassNames should be a numeric vector. Ignoring input and setting to default.') ClassNames = unique(Cls) names(ClassNames) = paste("Class ", ClassNames, sep = "") } if(is.null(names(ClassNames))){ warning('Numeric vector "ClassNames" does not have names specified. Ignoring input and setting to default.') ClassNames = unique(Cls) names(ClassNames) = paste("Class ", ClassNames, sep = "") } } if (NrOfClasses != length(ClassNames)) warning("Number of classes does not equal number of ClassNames! This might result in a wrong plot") ColorsUnique=ColorSequence[1:NrOfClasses] indMatched=match(table = ClassNames,UniqueClasses,nomatch = 0) inNomatch=which(indMatched==0) if(length(inNomatch)>0){ warning("Not all classes could be matched, not matched classes are named automatically.") ClassNamesNew=UniqueClasses names(ClassNamesNew) = paste("Class ", ClassNamesNew, sep = "") ClassNamesNew[match(table = ClassNamesNew,ClassNames)]=ClassNames ClassNames=ClassNamesNew ClassNames=ClassNames[match(table = ClassNames,UniqueClasses,nomatch = 0)] }else{ ClassNames=ClassNames[indMatched] } Colors=rep(NaN,length(Cls)) ClassNamesVec=rep(NaN,length(Cls)) for(i in 1:NrOfClasses){ Colors[Cls==UniqueClasses[i]]=ColorsUnique[i] ClassNamesVec[Cls==UniqueClasses[i]]=names(ClassNames)[i] } DataPerClassList=vector(mode="list",length = NrOfClasses) for(i in 1:NrOfClasses){ DataPerClassList[[i]]=Data[Cls==UniqueClasses[i]] } DataPerClass=as.matrix(do.call(CombineCols,DataPerClassList)) ggobject=MDplot(Data = DataPerClass,Names = names(ClassNames),Ordering = Ordering, QuantityThreshold = MinimalAmoutOfData, UniqueValuesThreshold = MinimalAmoutOfUniqueData,SampleSize = SampleSize,OnlyPlotOutput = TRUE,...) ggobject=ggobject+ylab(ylab) + xlab(xlab) + ggtitle(main)+ theme(axis.text.x = element_text(angle = 45, hjust = 1,size = rel(1.2))) if (isFALSE(PlotLegend)){ ggobject <- ggobject + theme(legend.position = "none",legend.title = NULL,legend.text = element_text(inherit.blank = T)) } print(ggobject) return(invisible(list(ClassData = DataPerClass, ggobject = ggobject))) }
computeStatistic_t <- function(var1, var2, conf.level=.95, var.equal=TRUE, ...) { if (nlevels(as.factor(var1)) == 2) { dichotomous <- factor(var1); interval <- var2; } else if (nlevels(as.factor(var2)) == 2) { dichotomous <- factor(var2); interval <- var1; } else { stop("Error: none of the two variables has only two levels!"); } res <- list(); res$object <- stats::t.test(interval ~ dichotomous, var.equal = var.equal, conf.level=conf.level); res$statistic <- res$object$statistic; res$statistic.type <- "t"; res$parameter <- res$object$parameter; res$p.raw <- res$object$p.value; return(res); } computeStatistic_r <- function(var1, var2, conf.level=.95, ...) { res <- list(); res$object <- stats::cor.test(var1, var2, use="complete.obs", conf.level=conf.level); res$statistic <- res$object$statistic; res$statistic.type <- "r"; res$parameter <- res$object$parameter; res$p.raw <- res$object$p.value; return(res); } computeStatistic_f <- function(var1, var2, conf.level=.95, ...) { if (is.factor(var1) & is.numeric(var2)) { factor <- var1; dependent <- var2; } else if (is.factor(var2) & is.numeric(var1)) { factor <- var2; dependent <- var1; } else if (nlevels(as.factor(var1)) < nlevels(as.factor(var2))) { factor <- factor(var1); dependent <- as.numeric(var2); } else { factor <- factor(var2); dependent <- as.numeric(var1); } res <- list(); res$object <- stats::aov(dependent ~ factor); res$statistic <- summary(res$object)[[1]][['F value']][1]; res$statistic.type <- "f"; res$parameter <- c(summary(res$object)[[1]][['Df']]); res$p.raw <- summary(res$object)[[1]][['Pr(>F)']][1]; return(res); } computeStatistic_chisq <- function(var1, var2, conf.level=.95, ...) { res <- list(); res$object <- stats::chisq.test(var1, var2, correct=FALSE); res$statistic <- res$object$statistic; res$statistic.type <- "chisq"; res$parameter <- res$object$parameter; res$p.raw <- res$object$p.value; return(res); } computeEffectSize_d <- function(var1, var2, conf.level=.95, var.equal=TRUE, ...) { if (length(unique(stats::na.omit(var1))) == 2) { dichotomous <- factor(var1); interval <- var2; } else if (length(unique(stats::na.omit(var2))) == 2) { dichotomous <- factor(var2); interval <- var1; } else { stop("Error: none of the two variables has only two levels!"); } res <- list(); tTest <- stats::t.test(interval ~ dichotomous, var.equal = var.equal)$statistic; dValue <- ufs::convert.t.to.d(tTest, n1 = sum(as.numeric(dichotomous)==min(as.numeric(dichotomous), na.rm=TRUE), na.rm=TRUE), n2 = sum(as.numeric(dichotomous)==max(as.numeric(dichotomous), na.rm=TRUE), na.rm=TRUE)); res$object <- ufs::confIntD(dValue, n=sum(!is.na(interval)), conf.level=conf.level); res$es <- dValue; res$es.type <- "d"; res$ci <- c(res$object[1], res$object[2]); return(res); } computeEffectSize_r <- function(var1, var2, conf.level=.95, ...) { res <- list(); res$object <- stats::cor.test(var1, var2, use="complete.obs", conf.level=conf.level); res$es <- res$object$estimate; res$es.type <- "r"; res$ci <- res$object$conf.int; return(res); } computeEffectSize_etasq <- function(var1, var2, conf.level=.95, ...) { if (is.factor(var1) & is.numeric(var2)) { factor <- var1; dependent <- var2; } else if (is.factor(var2) & is.numeric(var1)) { factor <- var2; dependent <- var1; } else if (nlevels(as.factor(var1)) < nlevels(as.factor(var2))) { factor <- factor(var1); dependent <- as.numeric(var2); } else { factor <- factor(var2); dependent <- as.numeric(var1); } res <- list(); res$realConfidence <- 1 - ((1-conf.level) * 2); res$object.aov <- stats::aov(dependent ~ factor); df_num <- summary(res$object.aov)[[1]][1,1]; df_den <- summary(res$object.aov)[[1]][2,1]; f_val <- summary(res$object.aov)[[1]][1,4]; res$es <- df_num*f_val/(df_den + df_num*f_val); res$es.type <- "etasq"; utils::capture.output(res$object <- from_MBESS_ci.pvaf(F.value=f_val, df.1=df_num, df.2=df_den, N=(df_den+df_num+1), conf.level=res$realConfidence)); res$ci <- c(res$object$Lower.Limit.Proportion.of.Variance.Accounted.for, res$object$Upper.Limit.Proportion.of.Variance.Accounted.for); return(res); } computeEffectSize_omegasq <- function(var1, var2, conf.level=.95, ...) { res$object <- ufs::confIntOmegaSq(var1, var2, conf.level=conf.level); res$es <- res$object$output$es; res$es.type <- "omegasq"; res$ci <- res$object$output$ci; return(res); } computeEffectSize_v <- function(var1, var2, conf.level=.95, bootstrap=FALSE, samples=5000, ...) { res <- list(); if (bootstrap) { res$object <- ufs::confIntV(var1, var2, method="bootstrap", samples=samples, conf.level=conf.level); res$ci <- res$object$output$confIntV.bootstrap; } else { res$object <- ufs::confIntV(var1, var2, method="fisher"); res$ci <- res$object$output$confIntV.fisher; } res$es <- res$object$intermediate$cramersV$output$cramersV res$es.type <- "V"; return(res); } associationMatrixStatDefaults <- list(dichotomous = list(dichotomous = "computeStatistic_chisq", nominal = "computeStatistic_chisq", ordinal = "computeStatistic_chisq", numeric = "computeStatistic_t"), nominal = list(dichotomous = "computeStatistic_chisq", nominal = "computeStatistic_chisq", ordinal = "computeStatistic_chisq", numeric = "computeStatistic_f"), ordinal = list(dichotomous = "computeStatistic_chisq", nominal = "computeStatistic_chisq", ordinal = "computeStatistic_chisq", numeric = "computeStatistic_f"), numeric = list(dichotomous = "computeStatistic_t", nominal = "computeStatistic_f", ordinal = "computeStatistic_f", numeric = "computeStatistic_r")); associationMatrixESDefaults <- list(dichotomous = list(dichotomous = "computeEffectSize_v", nominal = "computeEffectSize_v", ordinal = "computeEffectSize_v", numeric = "computeEffectSize_d"), nominal = list(dichotomous = "computeEffectSize_v", nominal = "computeEffectSize_v", ordinal = "computeEffectSize_v", numeric = "computeEffectSize_etasq"), ordinal = list(dichotomous = "computeEffectSize_v", nominal = "computeEffectSize_v", ordinal = "computeEffectSize_v", numeric = "computeEffectSize_etasq"), numeric = list(dichotomous = "computeEffectSize_d", nominal = "computeEffectSize_etasq", ordinal = "computeEffectSize_etasq", numeric = "computeEffectSize_r")); associationMatrix <- function(dat=NULL, x=NULL, y=NULL, conf.level = .95, correction = "fdr", bootstrapV=FALSE, info=c("full", "ci", "es"), includeSampleSize = "depends", bootstrapV.samples = 5000, digits = 2, pValueDigits=digits + 1, colNames = FALSE, type=c("R", "html", "latex"), file="", statistic = associationMatrixStatDefaults, effectSize = associationMatrixESDefaults, var.equal = TRUE) { res <- list(input = as.list(environment()), intermediate = list(), output = list()); res$intermediate$statistics <- list(); res$intermediate$effectSizes <- list(); res$intermediate$sampleSizes <- list(); if (is.null(dat)) { dat <- getData(errorMessage=paste0("No dataframe specified, and no valid datafile selected in ", "the dialog I then showed to allow selection of a dataset.", "Original error:\n\n[defaultErrorMessage]"), use.value.labels=FALSE); res$input$dat.name <- paste0("SPSS file imported from ", attr(dat, "filename")); } else { if (!is.data.frame(dat)) { stop("Argument 'dat' must be a dataframe or NULL! Class of ", "provided argument: ", class(dat)); } res$input$dat.name <- deparse(substitute(dat)); } if (is.null(x) && is.null(y)) { x <- names(dat); } if (is.null(x) && !is.null(y)) { x <- y; } if (length(x) < 1) { stop(paste0("Error: x vector has 0 elements or less; ", "make sure to specify at least one variable name!.")); } measurementLevelsX <- vector(); xCounter <- 1; for(curXvar in x) { if (stats::var(as.numeric(dat[,curXvar]), na.rm=TRUE) == 0) { stop("Variable '", curXvar, "' has no variance (everybody scores the same)! ", "This prohibits the calculation of effect size measures, so I'm aborting."); } if (is.numeric(dat[,curXvar])) { measurementLevelsX[xCounter] <- "numeric"; } else if (is.factor(dat[,curXvar])) { if (length(levels(dat[,curXvar])) == 2) { measurementLevelsX[xCounter] <- "dichotomous"; } else if (is.ordered(dat[,curXvar])) { measurementLevelsX[xCounter] <- "ordinal"; } else { measurementLevelsX[xCounter] <- "nominal"; } } else { stop(paste0("Error: variable '", curXvar, "'' does not have ", "nominal, ordinal, or interval measurement level!")); } xCounter <- xCounter + 1; } if (!is.null(y)) { if (length(y) < 1) { stop(paste0("Error: y vector has 0 elements or less; ", "make sure to specify at least one variable name!.")); } symmetric <- FALSE; measurementLevelsY <- vector(); yCounter <- 1; for(curYvar in y) { if (stats::var(as.numeric(dat[,curYvar]), na.rm=TRUE) == 0) { stop("Variable '", curYvar, "' has no variance (everybody scores the same)! ", "This prohibits the calculation of effect size measures, so I'm aborting."); } if (is.numeric(dat[,curYvar])) { measurementLevelsY[yCounter] <- "numeric"; } else if (is.factor(dat[,curYvar])) { if (length(levels(dat[,curYvar])) == 2) { measurementLevelsY[yCounter] <- "dichotomous"; } else if (is.ordered(dat[,curYvar])) { measurementLevelsY[yCounter] <- "ordinal"; } else { measurementLevelsY[yCounter] <- "nominal"; } } else { stop(paste0("Error: variable '", curYvar, "'' does not have ", "nominal, ordinal, or interval measurement level!")); } yCounter <- yCounter + 1; } } else { symmetric <- TRUE; y <- x; measurementLevelsY <- measurementLevelsX; } if (colNames) { rowNames <- x; columnNames <- y; } else { rowNames <- paste(1:length(x), x, sep=". "); columnNames <- paste0(1:length(y), "."); } res$output$matrix <- list(); res$output$matrix$es <- matrix(nrow = length(x), ncol = length(y)); rownames(res$output$matrix$es) <- rowNames; colnames(res$output$matrix$es) <- columnNames; res$output$matrix$sampleSizes <- matrix(nrow = length(x), ncol = length(y)); rownames(res$output$matrix$sampleSizes) <- rowNames; colnames(res$output$matrix$sampleSizes) <- columnNames; res$output$matrix$ci <- matrix(nrow = length(x), ncol = length(y)); rownames(res$output$matrix$ci) <- rowNames; colnames(res$output$matrix$ci) <- columnNames; res$output$matrix$full <- matrix(nrow = 2 * length(x), ncol = length(y)); rownames(res$output$matrix$full) <- rep("", 2*length(rowNames)); rownames(res$output$matrix$full)[seq(1, (2*length(rowNames)) - 1, by=2)] <- rowNames; colnames(res$output$matrix$full) <- columnNames; res$output$raw <- list(); res$output$raw$es <- matrix(nrow = length(x), ncol = length(y)); rownames(res$output$raw$es) <- rowNames; colnames(res$output$raw$es) <- columnNames; res$output$raw$esType <- matrix(nrow = length(x), ncol = length(y)); rownames(res$output$raw$esType) <- rowNames; colnames(res$output$raw$esType) <- columnNames; res$output$raw$ci.lo <- matrix(nrow = length(x), ncol = length(y)); rownames(res$output$raw$ci.lo) <- rowNames; colnames(res$output$raw$ci.lo) <- columnNames; res$output$raw$ci.hi <- matrix(nrow = length(x), ncol = length(y)); rownames(res$output$raw$ci.hi) <- rowNames; colnames(res$output$raw$ci.hi) <- columnNames; res$output$raw$n <- matrix(nrow = length(x), ncol = length(y)); rownames(res$output$raw$n) <- rowNames; colnames(res$output$raw$n) <- columnNames; res$output$raw$p <- matrix(nrow = length(x), ncol = length(y)); rownames(res$output$raw$p) <- rowNames; colnames(res$output$raw$p) <- columnNames; xCounter <- 1; for(curXvar in x) { res$intermediate$statistics[[curXvar]] <- list(); res$intermediate$effectSizes[[curXvar]] <- list(); res$intermediate$sampleSizes[[curXvar]] <- list(); yCounter <- 1; for(curYvar in y) { if (!symmetric | (yCounter < xCounter)) { statisticFunctionName <- statistic[[measurementLevelsX[xCounter]]][[measurementLevelsY[yCounter]]]; tmpFun <- get(statisticFunctionName, envir=environment(eval(parse(text=statisticFunctionName)))); res$intermediate$statistics[[curXvar]][[curYvar]] <- tmpFun(dat[,curXvar], dat[,curYvar], conf.level = conf.level); effectSizeFunctioName <- effectSize[[measurementLevelsX[xCounter]]][[measurementLevelsY[yCounter]]]; tmpFun <- get(effectSizeFunctioName, envir=environment(eval(parse(text=effectSizeFunctioName)))); res$intermediate$effectSizes[[curXvar]][[curYvar]] <- tmpFun(dat[,curXvar], dat[,curYvar], conf.level = conf.level, var.equal = var.equal); res$intermediate$sampleSizes[[curXvar]][[curYvar]] <- nrow(stats::na.omit(dat[,c(curXvar, curYvar)])); } yCounter <- yCounter + 1; } xCounter <- xCounter + 1; } res$intermediate$pvalMatrix <- matrix(nrow=length(x), ncol=length(y), dimnames=list(x, y)); for(curXvar in x) { for(curYvar in y) { if (!is.null(res$intermediate$statistics[[curXvar]][[curYvar]]$p.raw)) { res$intermediate$pvalMatrix[curXvar, curYvar] <- res$intermediate$statistics[[curXvar]][[curYvar]]$p.raw; } } } res$intermediate$pvalMatrix.adj <- matrix(stats::p.adjust(res$intermediate$pvalMatrix, method=correction), nrow(res$intermediate$pvalMatrix), ncol(res$intermediate$pvalMatrix), dimnames=dimnames(res$intermediate$pvalMatrix)); for(curXvar in x) { for(curYvar in y) { if (!is.null(res$intermediate$statistics[[curXvar]][[curYvar]]$p.raw)) { res$intermediate$statistics[[curXvar]][[curYvar]]$p.adj <- res$intermediate$pvalMatrix.adj[curXvar, curYvar]; } } } for(rowVar in 1:length(x)) { for(colVar in 1:length(y)) { if (!symmetric | (colVar < rowVar)) { res$output$matrix$ci[rowVar, colVar] <- paste0( substr(res$intermediate$effectSizes[[rowVar]][[colVar]]$es.type, 1, 1), "=[", round(res$intermediate$effectSizes[[rowVar]][[colVar]]$ci[1], digits), "; ", round(res$intermediate$effectSizes[[rowVar]][[colVar]]$ci[2], digits), "]"); res$output$raw$ci.lo[rowVar, colVar] <- res$intermediate$effectSizes[[rowVar]][[colVar]]$ci[1]; res$output$raw$ci.hi[rowVar, colVar] <- res$intermediate$effectSizes[[rowVar]][[colVar]]$ci[2]; res$output$matrix$es[rowVar, colVar] <- paste0(substr(res$intermediate$effectSizes[[rowVar]][[colVar]]$es.type, 1, 1), "=", round(res$intermediate$effectSizes[[rowVar]][[colVar]]$es, digits), ", ", formatPvalue(res$intermediate$statistics[[rowVar]][[colVar]]$p.adj, digits=pValueDigits, spaces=FALSE)); res$output$raw$es[rowVar, colVar] <- res$intermediate$effectSizes[[rowVar]][[colVar]]$es; res$output$raw$esType[rowVar, colVar] <- res$intermediate$effectSizes[[rowVar]][[colVar]]$es.type; res$output$raw$p[rowVar, colVar] <- res$intermediate$statistics[[rowVar]][[colVar]]$p.adj; res$output$matrix$sampleSizes[rowVar, colVar] <- res$intermediate$sampleSizes[[rowVar]][[colVar]]; res$output$raw$n[rowVar, colVar] <- res$intermediate$sampleSizes[[rowVar]][[colVar]]; res$output$matrix$full[(rowVar*2)-1, colVar] <- res$output$matrix$ci[rowVar, colVar]; res$output$matrix$full[(rowVar*2), colVar] <- res$output$matrix$es[rowVar, colVar]; if (((includeSampleSize == "depends") && (length(unique(unlist(res$intermediate$sampleSizes))) > 1)) || (includeSampleSize == "always")) { res$output$matrix$full[(rowVar*2), colVar] <- paste0(res$output$matrix$full[(rowVar*2), colVar], ", n=", res$output$matrix$sampleSizes[rowVar, colVar]); } } else { res$output$matrix$es[rowVar, colVar] <- ""; res$output$matrix$ci[rowVar, colVar] <- ""; res$output$matrix$full[(rowVar*2)-1, colVar] <- ""; res$output$matrix$full[rowVar*2, colVar] <- ""; } } } class(res) <- c("associationMatrix"); return(res); } print.associationMatrix <- function (x, type = x$input$type, info = x$input$info, file = x$input$file, ...) { matrixToPrint <- x$output$matrix[[info[1]]]; if (toupper(type[1])=="R") { if (file=="") { print(matrixToPrint, quote=FALSE); } else { utils::write.table(matrixToPrint, file=file, sep="\t", quote=FALSE, row.names=TRUE, col.names=TRUE); } } else { if ((tolower(type[1])=="latex") && (info[1]=='full')) { rownames(matrixToPrint)[seq(2, nrow(matrixToPrint), by=2)] <- paste0("%%% Variable ", 1:(nrow(matrixToPrint)/2), "\n"); } else if (info[1]=='full') { rownames(matrixToPrint)[seq(2, nrow(matrixToPrint), by=2)] <- paste0("<!-- Variable ", 1:(nrow(matrixToPrint)/2), " -->"); } print(matrixToPrint); } invisible(); } pander.associationMatrix <- function (x, info = x$input$info, file = x$input$file, ...) { pander(x$output$matrix[[info[1]]], missing=""); invisible(); }
expected <- TRUE test(id=678, code={ argv <- list(function (x, format = "", usetz = FALSE, ...) { if (!inherits(x, "POSIXlt")) stop("wrong class") if (format == "") { times <- unlist(unclass(x)[1L:3L]) secs <- x$sec secs <- secs[!is.na(secs)] np <- getOption("digits.secs") if (is.null(np)) np <- 0L else np <- min(6L, np) if (np >= 1L) for (i in seq_len(np) - 1L) if (all(abs(secs - round(secs, i)) < 1e-06)) { np <- i break } format <- if (all(times[!is.na(times)] == 0)) "%Y-%m-%d" else if (np == 0L) "%Y-%m-%d %H:%M:%S" else paste0("%Y-%m-%d %H:%M:%OS", np) } y <- .Internal(format.POSIXlt(x, format, usetz)) names(y) <- names(x$year) y }) do.call('is.function', argv); }, o = expected);
get_predicted.clm <- function(x, predict = "expectation", data = NULL, ...) { dots <- list(...) if (!is.null(predict)) { valid <- c("expectation", "classification") predict <- match.arg(predict, choices = valid) type_arg <- c("prob", "class")[match(predict, valid)] } else { if (!"type" %in% names(dots)) { stop("Please specify the `predict` argument.") } else { type_arg <- match.arg(dots$type, choices = c("prob", "class")) } } if (is.null(data)) { data <- get_data(x) } resp <- find_response(x) data <- data[, setdiff(colnames(data), resp), drop = FALSE] vars <- as.character(attr(x$terms, "variables"))[-1] vars[attr(x$terms, "response")] <- resp s <- paste0("list(", paste(vars, collapse = ", "), ")") new_call <- parse(text = s, keep.source = FALSE)[[1L]] attr(x$terms, "variables") <- new_call args <- list( object = x, newdata = data, type = type_arg, se.fit = (type_arg == "prob") ) pred <- do.call("predict", args) out <- .get_predicted_out(pred$fit) if (type_arg == "prob") { se <- pred$se.fit se <- as.data.frame(se) se$Row <- 1:nrow(se) se <- stats::reshape(se, direction = "long", varying = setdiff(colnames(se), "Row"), times = setdiff(colnames(se), "Row"), v.names = "SE", timevar = "Response", idvar = "Row" ) row.names(se) <- NULL attr(out, "ci_data") <- se } return(out) } get_predicted.multinom <- function(x, predict = "expectation", data = NULL, ...) { dots <- list(...) if (!is.null(predict)) { type_arg <- match.arg(predict, choices = c("classification", "expectation")) type_arg <- c("class", "probs")[c("classification", "expectation") == type_arg] } else if ("type" %in% names(dots)) { type_arg <- match.arg(dots$type, choices = c("class", "probs")) } else { stop('The `predict` argument must be either "expectation" or "classification".') } args <- c(list(x, "data" = data), list(...)) if (is.null(data)) { out <- stats::predict(x, type = type_arg) } else { out <- stats::predict(x, newdata = data, type = type_arg) } .get_predicted_out(out, args = args) } get_predicted.rlm <- function(x, predict = "expectation", ...) { if (!is.null(predict)) { predict <- match.arg(predict, choices = "expectation") get_predicted.lm(x, predict = predict, ...) } else { dots <- list(...) if (!"type" %in% names(dots)) { stop("Please specify the `predict` argument.") } dots[["type"]] <- match.arg(dots$type, choices = "response") dots[["x"]] <- x dots <- c(dots, list("predict" = NULL)) do.call("get_predicted.lm", dots) } } get_predicted.polr <- get_predicted.multinom
acronym <- function(input, dictionary = NULL, acronym_length = 3, ignore_articles = TRUE, alnum_only = TRUE, timeout = 60, bow = FALSE, bow_prop = 0.5, to_tibble = FALSE) { if(is.null(dictionary)) { dictpath <- system.file("dict", "en_US.dic", package = "hunspell") stopifnot(file.exists(dictpath)) dictionary <- dictpath %>% readr::read_lines() %>% grep("^[A-Z]", ., value = TRUE) %>% gsub("/[A-Z]*.", "", .) %>% tolower() } tmp <- mince(input = input, ignore_articles = ignore_articles, alnum_only = alnum_only, bow = bow, bow_prop = bow_prop) first_char_ind <- abs(tmp$words_len - cumsum(tmp$words_len)) + 1 probs <- rep(0.1, nchar(tmp$collapsed)) probs[first_char_ind] <- 0.9 probs[1] <- 0.95 tryCatch({ R.utils::withTimeout({ res <- find_candidate(collapsed = tmp$collapsed, acronym_length = acronym_length, probs = probs, dictionary = dictionary, words_len = tmp$words_len) if(to_tibble) { res_tibble <- dplyr::tibble( formatted = res$formatted, prefix = res$prefix, suffix = res$suffix, original = paste0(tmp$words, collapse = " ") ) return(res_tibble) } else { return(res$formatted) } }, timeout = timeout) }, TimeoutException = function(ex) { message(sprintf("Unable to find viable acronym in 'timeout' specified (%d seconds) ... ", timeout)) }) } initialism <- function(input, ignore_articles = TRUE, alnum_only = TRUE, bow = FALSE, bow_prop = 0.5, to_tibble = FALSE) { tmp <- mince(input = input, ignore_articles = ignore_articles, alnum_only = alnum_only, bow = bow, bow_prop = bow_prop) candidate <- paste0(toupper(tmp$first_chars), collapse = "") tmp_collapsed_split <- tmp$collapsed %>% strsplit(., split = "") %>% unlist(.) first_char_ind <- abs(tmp$words_len - cumsum(tmp$words_len)) + 1 tmp_collapsed_split <- tolower(tmp_collapsed_split) tmp_collapsed_split[first_char_ind] <- toupper(tmp_collapsed_split[first_char_ind]) last_letter_ind <- cumsum(tmp$words_len) tmp_collapsed_split[last_letter_ind[-length(last_letter_ind)]] <- paste0(tmp_collapsed_split[last_letter_ind[-length(last_letter_ind)]], " ") name <- paste0(tmp_collapsed_split, collapse = "") formatted <- paste0(toupper(candidate), ": ", name) if(to_tibble) { res_tibble <- dplyr::tibble( formatted = formatted, prefix = candidate, suffix = name, original = paste0(tmp$words, collapse = " ") ) return(res_tibble) } else { return(formatted) } }
source("utils.R") test_that("add img into placeholder", { skip_on_os("windows") img.file <- file.path( R.home("doc"), "html", "logo.jpg" ) doc <- read_pptx() doc <- add_slide(doc, "Title and Content", "Office Theme") doc <- ph_with(doc, value = external_img(img.file), location = ph_location(left = 1, top = 1, height = 1.06, width = 1.39) ) sm <- slide_summary(doc) expect_equal(nrow(sm), 1) expect_equal(sm$cx, 1.39) expect_equal(sm$cy, 1.06) expect_equal(sm$offx, 1) expect_equal(sm$offy, 1) })
library(gsheet) context('Test gsheet2text') test_that('Works correctly with and without sheet id', { a <- gsheet2text('docs.google.com/spreadsheets/d/1I9mJsS5QnXF2TNNntTy-HrcdHmIF9wJ8ONYvEJTXSNo') b <- gsheet2text('docs.google.com/spreadsheets/d/1I9mJsS5QnXF2TNNntTy-HrcdHmIF9wJ8ONYvEJTXSNo', sheetid=0) expect_equal(a, b) }) test_that('Throws informative error when share by link is turned off', { expect_error({gsheet2text('https://docs.google.com/spreadsheets/d/1zMvLM_dWvIHeTFi8Sct9QMmrr7Roo2tav2SE4Wt7vBQ/edit')}, "Unable to retrieve document. Is 'share by link' enabled for this sheet?" ) })
aprof <- function(src=NULL,output=NULL){ if(is.null(src)){ warning("src is empty, no source code file defined")} else { if(!file.exists(src)) {stop(paste("The specified source ", src, " does not appear to exist")) } if(is.na(file.info(src)$size)|file.info(src)$size<1){ stop("specified source file appears to be empty")} } if(!is.null(output)){ CallsInt <- readOutput(output) if(is.null(CallsInt$calls)|length(CallsInt$calls)==0){ stop(paste("Rprof outputs appears to be empty,", "were enough samples made by the profiler?"))} } else { stop("No profiling output files defined")} if(!is.null(CallsInt$mem)) { aprofobject<-list(sourcefile=src, calls=CallsInt$calls, mem=CallsInt$mem, interval=CallsInt$interval) class(aprofobject) <- c("aprof","mem.aprof","list") } else { aprofobject<-list(sourcefile=src,calls=CallsInt$calls, interval=CallsInt$interval) class(aprofobject) <- c("aprof","list") } return(aprofobject) } readOutput<-function(outputfilename="Rprof.out"){ RprofSamples<-readLines(outputfilename) if(length(grep("line profiling",RprofSamples[1]))==0){ stop(paste("Line profiling is required.", "\nPlease run the profiler with line profiling enabled"))} Mem <- grepl("memory profiling",RprofSamples[1]) if(Mem){ tosplit <- grepl(" splPos<-regexpr(pattern = "^:[0-9]+:[0-9]+:[0-9]+:[0-9]+:", text =RprofSamples[-1][tosplit]) meminfo <- !splPos==(-1) cutlength <- attr(splPos,"match.length") mem <- substr(RprofSamples[-1][tosplit][meminfo],1,cutlength[meminfo]) mem <- t(sapply(strsplit(mem,":"),function(X) as.numeric(X[-1]))) mem <- as.data.frame(mem) colnames(mem) <- c("sm_v_heap","lrg_v_heap","mem_in_node") mem$mb<-rowSums(mem)/1024^2 splPosReg <- regexpr(pattern = "\\\"|:. text =RprofSamples[-1][tosplit]) regular <- substring(RprofSamples[-1][tosplit],splPosReg) regular <- gsub(":","",regular) RprofSamples <- c(RprofSamples[1],regular) mem$calllines <- which(meminfo) } splitCalls<- sapply(RprofSamples[-1], function(X) strsplit(X, split = " "),USE.NAMES=FALSE) calls<-sapply(splitCalls, function(x) rev(gsub("\"", "", x))) Samp.Int<-as.numeric(strsplit(RprofSamples[1],"=")[[1]][2]) if(Mem){ return(list(calls=calls,mem=mem,interval=Samp.Int*1e-6)) } else { return(list(calls=calls,interval=Samp.Int*1e-6)) } } readLineDensity<-function(aprofobject=NULL,Memprof=FALSE){ if(!"aprof"%in%class(aprofobject)){ stop("no aprof object found, check function inputs")} calls <- aprofobject$calls interval <- aprofobject$interval TargetFile <- aprofobject$sourcefile idfiles<-sapply(calls,function(X) length(grep(" CallFiles <- sapply(calls[idfiles],function(X) X[1]) if(is.null(TargetFile)) { FileNumber<-"1:" warning(paste("sourcefile is null", " assuming first file in call stack is the source: ", CallFiles[1],sep="")) if(!exists(CallFiles[1])){stop("source file was not defined and does not seem to exist in the working directory.")} } else{ unlistedCalls <- unlist(calls) if(sum(unlistedCalls==TargetFile)==0){ if(sum(unlistedCalls==basename(TargetFile))>0){ TargetFile <- basename(TargetFile) } else { warning(paste("specified source file ", TargetFile, " is not in the list of files in the profiler output: \n ", CallFiles,sep="")) } } FileNumber<-unlistedCalls[which(unlistedCalls==TargetFile)+1] FileCheck<-unlistedCalls[which(unlistedCalls==TargetFile)] if(length(FileCheck)==0){ warning(paste("Some aprof functions may fail -->", " user supplied source file", TargetFile, " does not seem to correspond to any", " file in the profiler output.\n", " Possible causes: \n" , "1) Source file was not profiled?\n", "2) Spelling?\n",sep="")) } } FileNumber <- substr(FileNumber,1,1) cleancalls<-sapply(calls[!idfiles], function(x) gsub(" LineCalls<- lapply(cleancalls, function(X) unique(X[grep(paste(FileNumber," USE.NAMES=FALSE)) if(any(sapply(LineCalls,length)>1)){ LineCalls <- sapply(LineCalls,function(X) X[1]) warning("Some line calls stripped - BUGCODE: 02022016") } LineCalls <- unlist(LineCalls) Pathways<-unique(sapply(LineCalls, paste,collapse="-")) Pathways<-Pathways[grep(" filehash <- paste(FileNumber," LineDensity<-table(unlist(sapply(LineCalls,unique))) names(LineDensity)<-gsub(filehash,"", names(LineDensity)) Line.Numbers<-as.numeric(names(LineDensity)) Call.Density<-as.numeric(LineDensity) Time.Density<-Call.Density*interval if(Memprof) { MemLines <- as.integer(gsub(filehash,"", LineCalls)) TotalMem <- tapply(c(0,diff(aprofobject$mem$mb)), MemLines,function(X) sum(abs(X))) Finallist <-list(Line.Numbers=as.numeric(names(LineDensity)), Call.Density=as.numeric(LineDensity), Time.Density=Call.Density*interval, Total.Calls=sum(as.numeric(LineDensity))+1, Total.Time=sum(Call.Density*interval+interval), Files=CallFiles,Total.Mem=TotalMem) } else { Finallist <-list(Line.Numbers=as.numeric(names(LineDensity)), Call.Density=as.numeric(LineDensity), Time.Density=Call.Density*interval, Total.Calls=sum(as.numeric(LineDensity))+1, Total.Time=sum(Call.Density*interval+interval), Files=CallFiles) } return(Finallist) } print.aprof <- function(x,...){ aprofobject<-x if(!is.aprof(aprofobject)){ stop("Input does not appear to be of the class \"aprof\"")} if(!is.null(aprofobject$sourcefile)){ cat(paste0("\nSource file:\n",aprofobject$sourcefile," (", length(readLines(aprofobject$sourcefile)) ," lines).\n")) } if(!is.null(aprofobject$calls)){ interval <- aprofobject$interval Finallist <- readLineDensity(aprofobject,Memprof=FALSE) CallTable<-cbind(as.character(Finallist$Line.Numbers), Finallist$Call.Density, Finallist$Time.Density) if(nrow(CallTable)>1) {CallTable<-CallTable[order(CallTable[,2]),]} rownames(CallTable)<-NULL dimnames(CallTable)<-list(NULL, c("Line","Call Density", "Time Density (s)")) cat("\n Call Density and Execution time per line number:\n\n") print.default(format(CallTable,digits = 3),print.gap = 2L, quote = FALSE) cat(paste("\n Totals:\n", "Calls\t\t",Finallist$Total.Calls,"\n", "Time (s)\t",Finallist$Total.Time, "\t(interval = \t",interval,"(s))\n")) if(length(Finallist$Files)>1) { cat("\n Note: multiple files in the profiler output: \n") print.default(Finallist$Files,print.gap = 2L,quote = FALSE) } if(!is.null(aprofobject$mem)){ cat("\n Memory statistics per line number:\n\n") memtable <- readLineDensity(aprofobject,Memprof=TRUE)$Total.Mem prettymem <- cbind(Line=names(memtable), MB=round(as.double(memtable),3)) print.default(format(prettymem),print.gap = 2L, quote = FALSE) cat(paste("\n Total MBs (allocated and released).\n\n")) } } else { stop("No profiler sampling information (removed?). Recreate aprof object.") } } MakeBranchPlot<-function(calls,interval){ nlevel<-sapply(calls,length) minlev<-min(nlevel) maxlev<-max(nlevel) pipes<-unique(sapply(calls, paste,collapse=" ",sep=" ")) pipesize<-table(sapply(calls, paste,collapse=" ",sep=" ")) branches<-vector(maxlev,mode="list") for (i in seq_len(maxlev)){ branches[[i]]<-table(sapply(calls,function(X) X[i])) } branTh<-sapply(branches,sum) branchPropSize<-sapply(branches,function(X) X/max(branTh)*1.5) branchSize<-sapply(branchPropSize, function(X) ifelse(X<0.45,0.45,X)) xpos<-sapply(branches, function(x) if(length(x)>1){seq(-1,1,length.out=length(x))} else{0} ) tmppos<-seq(-1,1,length.out=maxlev) ypos<-sapply(1:maxlev,function(x) rep(tmppos[x],length(xpos[[x]])) ) graphics::par(mar=c(0,0,0,0)) graphics::plot(0,0,type='n') for(i in seq_len(maxlev)){ graphics::text(xpos[[i]],ypos[[i]], names(branches[[i]]), cex=branchSize[[i]]) } } PlotSourceCode<-function(SourceFilename){ CodeLines<-readLines(SourceFilename) NCodeLines<-length(CodeLines) CleanLines<-sapply(CodeLines,function(x) gsub("\t", " ",x,fixed=TRUE),USE.NAMES=FALSE) Nchar<-sapply(CleanLines,function(x) strsplit(x,""),USE.NAMES=FALSE) Nchar<-sapply(Nchar,function(x) length(x),USE.NAMES=FALSE) graphics::par(mar=c(0,0,0,0)) graphics::plot(0,0,xlim=c(-graphics::strwidth("M"), max(Nchar)+graphics::strwidth("M")), ylim=c(0,NCodeLines+0.5), type='n',xaxt='n',yaxt='n',bty='n',xlab='',ylab='') graphics::abline(h=seq_len(NCodeLines),col='white') Codewidth<-sapply(CleanLines,graphics::strwidth,USE.NAMES=FALSE) Codeheight<-sapply(CleanLines,graphics::strheight,USE.NAMES=FALSE) SizeText<-0.98*min(c( diff(graphics::par("usr")[3:4])/(sum(Codeheight)*1.5), diff(graphics::par("usr")[1:2])/(max(Codewidth)*1.1)) ) ypos<-length(CodeLines):1 graphics::text(1+graphics::strwidth("M"),ypos, labels=CleanLines,adj=c(0,0), cex=SizeText) graphics::text(0+0.5*graphics::strwidth("M"),ypos, labels=seq_len(length(CleanLines)), adj=c(1,0), cex=SizeText*0.90) } plot.aprof<-function(x,y,...){ aprofobject<-x if(!is.aprof(aprofobject)){ stop("Input does not appear to be of the class \"aprof\"")} AddMemProf<-!is.null(aprofobject$mem) SourceFilename <- aprofobject$sourcefile if(is.null(SourceFilename)){ stop("aprof object requires a defined source code file for plotting")} NCodeLines<-length(readLines(SourceFilename)) LineDensity<-readLineDensity(aprofobject,Memprof=AddMemProf) DensityData<-list(Lines=NCodeLines:1, Time.Density=rep(0,NCodeLines)) DensityData$Time.Density[LineDensity$Line.Numbers]<-LineDensity$Time.Density layoutmat<-matrix(c( 1,1,1,1,3,3, rep(c(2,2,2,2,4,4),10)), byrow=TRUE,ncol=6) graphics::layout(layoutmat) opar<-graphics::par("mar","bg") graphics::par(mar=c(0,0,0,0),bg='grey90') graphics::plot(0,0,type='n',xaxt='n',yaxt='n',bty='n',xlab='',ylab='') graphics::text(0,0.55,SourceFilename,cex=2) graphics::segments(-.75,0,.75,0,lwd=1.2) graphics::segments(c(-.75,.75),c(0,0),c(-.75,.75),c(-0.1,-0.1),lwd=1.2) PlotSourceCode(SourceFilename) graphics::plot(0,0,type='n',xaxt='n',yaxt='n',bty='n',xlab='',ylab='') graphics::plot(DensityData$Time.Density,DensityData$Lines, ylim=c(0,NCodeLines+0.5), type='n',xaxt='n',yaxt='n',bty='n',xlab='',ylab='') graphics::abline(h=seq_len(NCodeLines),col='white') graphics::axis(3) graphics::mtext("Density in execution time(s)",3,cex=.85,padj=-2.5) graphics::segments(0, DensityData$Lines, DensityData$Time.Density,DensityData$Lines ,lwd=4,col=grDevices::rgb(0,0,1,alpha=1)) graphics::points(DensityData$Time.Density,DensityData$Lines, pch=20) if(AddMemProf){ graphics::axis(3,col="blue",lwd=2) DensityData$MemStats <- rep(0,NCodeLines) MemLines <- as.integer(names(LineDensity$Total.Mem)) DensityData$MemStats[MemLines]<-LineDensity$Total.Mem DensityData$PlotStats <- DensityData$MemStats/max(DensityData$MemStats) DensityData$PlotStats <- DensityData$PlotStats* max(DensityData$Time.Density) graphics::segments(0,DensityData$Lines+0.1, DensityData$PlotStats,DensityData$Lines+0.1 ,lwd=4,col=grDevices::rgb(1,0,0,alpha=1)) graphics::par(xaxt="s") xloc <- range(DensityData$Time.Density) graphics::axis(1, at=c(xloc[1],xloc[2]/2,xloc[2]), labels=round(c(0,max(DensityData$MemStats)/2, max(DensityData$MemStats)),1), line=-3.5,col='red',lwd=2,cex.lab=0.9) graphics::mtext("Total memory usage (MB)",1,cex=.8,padj=-1.5) graphics::points(DensityData$PlotStats,DensityData$Lines+.1, pch=20) } graphics::par(opar) graphics::layout(1) } profileplot <- function(aprofobject){ if(!is.aprof(aprofobject)){ stop("Input does not appear to be of the class \"aprof\"")} SourceFilename <- aprofobject$sourcefile if(is.null(SourceFilename)){ stop("aprof object requires a defined source code file for plotting") } TargetFile <- aprofobject$sourcefile calls<-aprofobject$calls interval <- aprofobject$interval FileNumber<-unlist(calls)[which(unlist(calls)==TargetFile)+1] FileNumber <- substr(FileNumber,1,1) NCodeLines<-length(readLines(SourceFilename)) cleancalls<-sapply(calls, function(x) gsub(" LineCalls<- unlist(sapply(cleancalls, function(X) X[grep(paste(FileNumber, " ,USE.NAMES=FALSE)) nLineCalls<-as.numeric(sapply(LineCalls,function(X) strsplit(X,"1 timesteps<-seq(0,length(nLineCalls)*interval,interval) callhistory <- c(1,nLineCalls) LineDensity<-readLineDensity(aprofobject) opar<-graphics::par("mar","bg") maxtimesteps <- max(timesteps) layoutmat<-matrix(c(rep(c(1,1,1,1,2,2),10)), byrow=TRUE,ncol=6) graphics::layout(layoutmat) graphics::par(mar=c(4,4,0.1,0.1),bg='grey90') graphics::plot(0,0,xlim=c(0,maxtimesteps),ylim=c(1,NCodeLines), type='n',xaxt='s',yaxt='s', xlab='',ylab='') graphics::abline(h=1:NCodeLines,col='white') graphics::mtext("Run time(s)",1,cex=.9,padj=3.4) graphics::mtext("Line",2,cex=.9,padj=-3.4) graphics::lines(c(timesteps,maxtimesteps), c(callhistory,NCodeLines), lwd=2,col=grDevices::rgb(0,0,1,alpha=0.6)) graphics::text(0,1,"Start",col='red',adj=0,cex=1.2) graphics::text(maxtimesteps,NCodeLines,"End",col='darkgreen',cex=1.2) callcounts<-table(callhistory) maxcalls<-as.numeric(names(which(callcounts==max(callcounts)))) graphics::axis(2,at=maxcalls,labels=maxcalls,col.axis='red', lwd=1.2,col.ticks='red') graphics::plot(0,0,ylim=c(1,NCodeLines), xlim = c(0,max(LineDensity$Call.Density/LineDensity$Total.Calls)*1.1), type='n',xaxt='s',yaxt='s', xlab='',ylab='') graphics::abline(h = 1:NCodeLines, col = "white") PerLineDensity <- numeric(NCodeLines) PerLineDensity[LineDensity$Line.Numbers]<-LineDensity$Call.Density/ LineDensity$Total.Calls connectedlines <- c(1:NCodeLines)-c(0,rep(.5,NCodeLines-2),0) graphics::lines(y=connectedlines,x=PerLineDensity,type = "S",lwd=1.3) graphics::abline(v=0,col='grey30',lty=3) graphics::axis(4) graphics::mtext("Line Density", 1, cex = .9, padj = 2.7) graphics::par(opar) graphics::layout(1) } is.aprof <- function(object) { inherits(object, "aprof") } AmLaw<-function(P=1,S=2){ 1/((1-P)+P/S) } summary.aprof<-function(object,...){ aprofobject<-object LineProf<-readLineDensity(aprofobject) PropLines<-LineProf$Time.Density/LineProf$Total.Time Speedups<-2^c(0:4) SpeedTable<-sapply(Speedups,function(X) AmLaw(P=PropLines,S=X)) if(is.null(nrow(SpeedTable))) SpeedTable <- matrix(SpeedTable,nrow=1) ExecTimeTable<-LineProf$Total.Time/SpeedTable ExecTimeTable<-rbind(ExecTimeTable,LineProf$Total.Time/Speedups) SpeedTable<-cbind(SpeedTable,1/(1-PropLines)) dimnames(SpeedTable)<-list(paste("Line*:", LineProf$Line.Numbers,":"), c(Speedups,"S -> Inf**")) SpeedTable<-SpeedTable[order(PropLines,decreasing=TRUE),] dimnames(ExecTimeTable)<-list(c(paste("Line*:", LineProf$Line.Numbers,":"), "All lines"),Speedups) ExecTimeTable<-ExecTimeTable[order( c(PropLines,sum(PropLines)), decreasing=TRUE),] cat("Largest attainable speed-up factor for the entire program\n when 1 line is sped-up with factor (S): \n\n") cat("\t Speed up factor (S) of a line \n") print.default(format(SpeedTable,digits = 3),print.gap = 2L, quote = FALSE) cat("\nLowest attainable execution time for the entire program when\n lines are sped-up with factor (S):\n\n") cat("\t Speed up factor (S) of a line \n") print.default(format(ExecTimeTable,digits = 3),print.gap = 2L, quote = FALSE) cat("\n Total sampling time: ",round(LineProf$Total.Time,2) , " seconds") cat("\n * Expected improvement at current scaling") cat("\n ** Asymtotic max. improvement at current scaling\n\n") invisible(SpeedTable) } targetedSummary<-function(target=NULL,aprofobject=NULL,findParent=FALSE){ if(is.null(target)){stop("Function requires target line number")} if(is.null(aprofobject$calls)){ stop(paste("Calls appear empty - no call stack samples.", "Did the program run too fast? ")) } calls <- aprofobject$calls interval <- aprofobject$interval if(is.null(aprofobject$sourcefile)) { TargetFile<-"1 warning("sourcefile empty, assumed first file in callstack is the source") } else { sourcefile <- aprofobject$sourcefile FileNumber<-unlist(calls)[which(unlist(calls)==sourcefile)+1] TargetFile <- paste(substr(FileNumber,1,1)," } FileNames<-unlist(calls)[which(unlist(calls)==" TotalTime<-length(calls)*interval Lcalls<-sapply(calls,function(x) gsub(TargetFile,"L",x),USE.NAMES=FALSE) for(i in seq_len(length(FileNames))){ Lcalls<-sapply(Lcalls,function(x) gsub(paste(i," ,paste(FileNames[i], ' x),USE.NAMES=FALSE) } tlines <- sapply(Lcalls,function(X) paste("L",target,sep='')%in%X) TargetCalls<-Lcalls[tlines] if(sum(tlines)==0){stop("Target line not found in profiler output.\n Confirm target line and run again") } trimmedTargetCalls<-lapply(TargetCalls,function(X) X[1+max(grep(paste("L",target,sep=''), X)):length(X)]) CallCounts<-table(stats::na.omit(unlist(trimmedTargetCalls))) if(findParent==TRUE) { parentCalls <- vector(mode="character", length= length(CallCounts)) for(i in seq_len(length(CallCounts))){ parentCalls[i]<-names( sort(table(unlist( lapply(TargetCalls, function(X) X[which(names(CallCounts)[i]==X)[1]-1] ))),decreasing=TRUE)[1]) } CallOrder <- order(CallCounts,decreasing=TRUE) CallCounts <- CallCounts[CallOrder] parentCalls <- parentCalls[CallOrder] FinalTable<-data.frame(Function=names(CallCounts), Parent=parentCalls, Calls=CallCounts, Time=CallCounts*interval) } else { CallCounts <- sort(CallCounts,decreasing=TRUE) FinalTable <- data.frame(Function=names(CallCounts), Calls=CallCounts, Time=CallCounts*interval) } row.names(FinalTable) <- NULL return(FinalTable) }
library(testthat) context("Test matrix inversion") test_that("Matrix inversion gives acceptable result", { mata <- matrix(c(2,1,1,0), nrow = 2, ncol = 2, byrow = T) matb <- matrix(c(0,1,1,-2), nrow = 2, ncol = 2, byrow = T) expect_equal(ginv(mata), matb) })
"afgen" <- function (xgrid = seq(0, 1, length = 21), ygrid = seq(0, 1, length = 21), samples = 1000, binsize = 32) { af1vals <- array(0, c(length(xgrid), length(ygrid), samples)) ansc1vals <- array(0, c(length(xgrid), length(ygrid), samples)) free1vals<-ansc1vals for (i in 1:length(xgrid)) { for (j in 1:length(ygrid)) { x1vals <- rbinom(samples, binsize, xgrid[i]) x2vals <- rbinom(samples, binsize, ygrid[j]) x1x2 <- rbind(x1vals, x2vals) maxi <- which.max(c(xgrid[i], ygrid[j])) ansc1vals[i, j, ] <- ansc(x1x2[maxi, ], binsize) free1vals[i, j, ] <- free(x1x2[maxi, ], binsize) af1vals[i, j, ] <- (x2vals - x1vals)/sqrt((x1vals + x2vals) * ((2 * binsize) - (x1vals + x2vals))/(2 * binsize)) } } af1vals[which(abs(af1vals) == Inf)] <- 0 af1vals[which(is.na(af1vals))] <- 0 ansc1vals[which(abs(ansc1vals) == Inf)] <- 0 ansc1vals[which(is.na(ansc1vals))] <- 0 free1vals[which(abs(free1vals) == Inf)] <- 0 free1vals[which(is.na(free1vals))] <- 0 return(list(a = af1vals, b = ansc1vals, c = free1vals)) }
prettify_FCA <- function(contents = NA, language = NA){ if(http_error("http://www.google.com")){ stop( "This function requires an Internet connection." ) } language <- tolower(language) languages <- Languages()[["FCA"]] if(isNA(contents) && isAvailable()){ context <- RStudioContext() if(is.na(language)){ ext <- tolower(fileExt(context[["path"]])) if(ext %in% names(languages)){ language <- languages[[ext]] }else{ stop("Unrecognized or unsupported language.") } }else{ if(!is.element(language, languages)){ stop("Unrecognized or unsupported language.") } } contents <- context[["contents"]] }else if(isNA(contents)){ stop("You have to provide something for the `contents` argument.") }else{ if(is.na(language)){ if(!isFile(contents)){ stop("You have to set a language.") } ext <- tolower(fileExt(contents)) if(ext %in% names(languages)){ language <- languages[[ext]] }else{ stop("Unrecognized or unsupported language.") } }else if(!isFile(contents) && !is.element(language, languages)){ stop("Unrecognized or unsupported language.") } } if(isFile(contents)){ contents <- suppressWarnings(readLines(contents)) } code <- paste0(contents, collapse = "\n") url <- switch( language, java = "http://aozozo.com:600/java", json = "http://aozozo.com:600/json", ruby = "http://www.zafuswitchout.com:3001/ruby" ) request <- POST(url, content_type("text/plain; charset=UTF-8"), body = code) if(request$status_code == 200){ prettyCode <- URLdecode(content(request, "text")) }else{ stop("Failed to prettify.") } prettyCode }
p.grm <- function(theta, params){ p <- .Call("pgrm", theta, params) return(p) }
set.seed(5) test_data <- data.frame(patient_id = rep(1:15, each = 4), visit = rep(1:4, 15), var_1 = c(rnorm(20, -1), rnorm(20, 3), rnorm(20, 0.5)) + rep(seq(from = 0, to = 1.5, length.out = 4), 15), var_2 = c(rnorm(20, 0.5, 1.5), rnorm(20, -2, 0.3), rnorm(20, 4, 0.5)) + rep(seq(from = 1.5, to = 0, length.out = 4), 15)) model_list <- list(flexmix::FLXMRmgcv(as.formula("var_1 ~ .")), flexmix::FLXMRmgcv(as.formula("var_2 ~ ."))) clustering <- longitudinal_consensus_cluster( data = test_data, id_column = "patient_id", max_k = 3, reps = 3, model_list = model_list ) save_png <- function(code, width = 400, height = 3200) { path <- tempfile(fileext = ".png") png(path, width = width, height = height) op <- par(mfrow = c(8, 1)) on.exit(dev.off()) on.exit(par(op), add = TRUE) code path } test_that("a plot is generated in the CI", { skip_if_not(isTRUE(as.logical(Sys.getenv("CI"))), message = "simple plot generation only tested on CI") test_plot <- plot(clustering) expect_equal(test_plot, matrix(c(0.7, 1.9, 3.1, 4.3, 5.5, 6.7, 7.9), nrow = 7)) }) test_that("the plots stay the same", { skip_on_ci() expect_snapshot_file(save_png(plot(clustering)), "plot_lcc_output.png") }) test_that("plot.lcc only uses lcc objects", { expect_error(plot.lcc(1:10)) }) test_that("the color_palette argument is correct", { expect_error(plot(clustering, color_palette = 1:10), regexp = "Assertion on 'color_palette' failed") expect_silent(plot(clustering, color_palette = c(" })
port <- Sys.getenv("CI_ES_PORT", "9200") Sys.setenv(TEST_ES_PORT = port) stop_es_version <- function(conn, ver_check, fxn) { ver <- es_version(conn) if (ver < ver_check) { stop(fxn, " is not available for this Elasticsearch version", call. = FALSE) } } es_version <- function(conn, ver_check, fxn) { xx <- conn$info()$version$number xx <- gsub("[A-Za-z]", "", xx) as.numeric(gsub("\\.|-", "", xx)) } load_shakespeare <- function(conn) { if (conn$es_ver() < 600) { shakespeare <- system.file("examples", "shakespeare_data.json", package = "elastic") } else if (conn$es_ver() >= 700) { shakespeare <- system.file("examples", "shakespeare_data_.json", package = "elastic") shakespeare <- type_remover(shakespeare) } else { shakespeare <- system.file("examples", "shakespeare_data_.json", package = "elastic") } if (index_exists(conn, 'shakespeare')) index_delete(conn, 'shakespeare') invisible(suppressWarnings(elastic::docs_bulk(conn, shakespeare))) } load_plos <- function(conn) { plos <- system.file("examples", "plos_data.json", package = "elastic") if (conn$es_ver() >= 700) plos <- type_remover(plos) if (index_exists(conn, 'plos')) index_delete(conn, 'plos') invisible(suppressWarnings(elastic::docs_bulk(conn, plos))) } load_omdb <- function(conn) { omdb <- system.file("examples", "omdb.json", package = "elastic") if (!index_exists(conn, 'omdb')) invisible(suppressWarnings(elastic::docs_bulk(conn, omdb))) }
tdlnre.lnre.gigp <- function (model, x, ...) { if (! inherits(model, "lnre.gigp")) stop("first argument must be object of class 'lnre.gigp'") gamma <- model$param$gamma b <- model$param$B c <- model$param$C C <- (2 / (b*c))^(gamma+1) / (2 * besselK(b, gamma+1)) d <- C * x^(gamma-1) * exp(- x/c - (b*b*c)/(4*x)) d } dlnre.lnre.gigp <- function (model, x, ...) { if (! inherits(model, "lnre.gigp")) stop("first argument must be object of class 'lnre.gigp'") gamma <- model$param$gamma b <- model$param$B c <- model$param$C C <- (2 / (b*c))^(gamma+1) / (2 * besselK(b, gamma+1)) d <- C * x^gamma * exp(- x/c - (b*b*c)/(4*x)) d }