code
stringlengths 1
13.8M
|
---|
tau2h_ml <- function(y, se, maxiter = 100) {
tau2h <- tau2h_dl(y, se)$tau2h
r <- 0
autoadj <- 0
stepadj <- 0.5
while(1) {
wi <- (se^2 + tau2h)^-1
ti <- sum(wi^2 * ((y - sum(wi*y)/sum(wi))^2 - se^2)) / sum(wi^2)
if (ti <= 0) {
tau2h <- 0.0
break
} else {
if (abs(ti - tau2h)/(1.0 + tau2h) < 1e-5) {
break
} else if (r == maxiter && autoadj == 1) {
stop("The heterogeneity variance (tau^2) could not be calculated.")
break
} else if (r == maxiter && autoadj == 0) {
r <- 0
autoadj <- 1
} else if (autoadj == 1) {
r <- r + 1
tau2h <- tau2h + (ti - tau2h)*stepadj
} else {
r <- r + 1
tau2h <- ti
}
}
}
return(list(tau2h = tau2h))
} |
test_that("predict method works", {
task = tsk("sonar")
lrn = lrn("classif.featureless")$train(task)
newdata = task$data(1:3)
expect_factor(predict(lrn, newdata = newdata), len = 3)
expect_factor(predict(lrn, newdata = newdata, predict_type = "response"), len = 3)
expect_error(predict(lrn, newdata = newdata, predict_type = "prob"), "'prob'")
lrn = lrn("classif.featureless", predict_type = "prob")$train(task)
expect_factor(predict(lrn, newdata = newdata), len = 3)
expect_factor(predict(lrn, newdata = newdata, predict_type = "response"), len = 3)
expect_matrix(predict(lrn, newdata = newdata, predict_type = "prob"), nrows = 3, ncols = 2)
expect_true(uniqueN(predict(lrn, newdata, method = "mode")) == 1L)
})
test_that("missing predictions are handled gracefully / classif", {
task = tsk("sonar")
learner = lrn("classif.debug", predict_missing = 1, predict_missing_type = "na", predict_type = "prob")
learner$train(task)
p = learner$predict(task)
expect_factor(p$response, levels = task$class_names)
expect_true(all(is.na(p$response)))
expect_true(all(is.na(p$prob)))
expect_error(p$score(), "missing")
learner = lrn("classif.debug", predict_missing = 0.5, predict_missing_type = "omit", predict_type = "prob")
learner$train(task)
expect_error(learner$predict(task), "observations")
})
test_that("missing predictions are handled gracefully / regr", {
task = tsk("mtcars")
learner = lrn("regr.debug", predict_missing = 1, predict_missing_type = "na", predict_type = "se")
learner$train(task)
p = learner$predict(task)
expect_numeric(p$response)
expect_numeric(p$se)
expect_true(all(is.na(p$response)))
expect_true(all(is.na(p$se)))
expect_error(p$score(), "missing")
learner = lrn("regr.debug", predict_missing = 0.5, predict_missing_type = "omit", predict_type = "se")
learner$train(task)
expect_error(learner$predict(task), "observations")
})
test_that("predict_newdata with weights (
task = tsk("boston_housing")
task$set_col_roles("nox", "weight")
learner = lrn("regr.featureless")
learner$train(task)
expect_prediction(learner$predict(task))
expect_prediction(learner$predict_newdata(task$data()))
expect_prediction(learner$predict_newdata(task$data(cols = c(task$target_names, task$feature_names, "nox"))))
})
test_that("parallel predict works", {
skip_if_not_installed("future")
task = tsk("sonar")
lrn = lrn("classif.featureless")$train(task)
lrn$parallel_predict = FALSE
p1 = lrn$predict(task, row_ids = 20:1)
lrn$parallel_predict = TRUE
p2 = with_future(future::multisession,
lrn$predict(task, row_ids = 20:1)
)
expect_equal(as.data.table(p1), as.data.table(p2))
}) |
genwhisker<-function(x,y=NA,input="openair",method="mqm",pollutant=NA,distr="norm",by.years=FALSE,col="
quantile05<-function(x) {
quantile(x, 0.05, names=FALSE, na.rm=TRUE)
}
quantile25<-function(x) {
quantile(x, 0.25, names=FALSE, na.rm=TRUE)
}
quantile75<-function(x) {
quantile(x, 0.75, names=FALSE, na.rm=TRUE)
}
quantile95<-function(x) {
quantile(x, 0.95, names=FALSE, na.rm=TRUE)
}
trimean<-function(x) {
(quantile25+2*median(x,na.rm=TRUE)+quantile75)/4
}
if (class(x)=="data.frame"&input=="genasis") {
compounds<-as.character(unique(x[,2]))
initial<-as.numeric(substr(min(gendate(x[,3]),na.rm=TRUE)+(min(gendate(x[,4]),na.rm=TRUE)-min(gendate(x[,3]),na.rm=TRUE))/2,1,4))
final<-as.numeric(substr(max(gendate(x[,4]),na.rm=TRUE)-(max(gendate(x[,4]),na.rm=TRUE)-max(gendate(x[,3]),na.rm=TRUE))/2,1,4))
}
if (class(x)=="data.frame"&input=="openair") {
compounds<-colnames(x)[-which(is.element(colnames(x),c("date","date_end","temp","wind","note")))]
x[,"date"]<-gendate(x[,"date"])
if (is.element("date_end",colnames(x))) {
x[,"date_end"]<-gendate(x[,"date_end"])
initial<-as.numeric(substr(min(x[,"date"],na.rm=TRUE)+(min(x[,"date_end"],na.rm=TRUE)-min(x[,"date"],na.rm=TRUE))/2,1,4))
final<-as.numeric(substr(max(x[,"date_end"],na.rm=TRUE)-(max(x[,"date_end"],na.rm=TRUE)-max(x[,"date"],na.rm=TRUE))/2,1,4))
} else {
initial<-min(as.numeric(substr(x[,"date"],1,4)),na.rm=TRUE)
final<-max(as.numeric(substr(x[,"date"],1,4)),na.rm=TRUE)
}
}
if (class(x)!="data.frame") {
compounds<-NA
initial<-min(as.numeric(substr(gendate(y),1,4)),na.rm=TRUE)
final<-max(as.numeric(substr(gendate(y),1,4)),na.rm=TRUE)
}
if (length(pollutant)==1) {
if(is.na(pollutant)|pollutant=="") {
pollutant<-compounds
}
}
if (class(x)=="data.frame") {
compos<-pollutant[which(is.element(pollutant,compounds))]
if (length(pollutant)>length(compos)) {
warning(paste0("One or more pollutants (",pollutant[which(!is.element(pollutant,compos))],") was not recognized."))
}
} else {
compos<-pollutant
}
if (class(x)=="data.frame"&input=="genasis") {
valu <-as.numeric(x[,1])
comp <-as.character(x[,2])
date_start<-gendate(x[,3])
date_end <-gendate(x[,4])
}
if (class(x)=="data.frame"&input=="openair") {
valu <-c()
comp <-c()
date_start<-c()
date_end <-c()
for (compound in compos) {
valu <-c(valu,as.numeric(x[,compound]))
comp <-c(comp,as.character(rep(compound,nrow(x))))
date_start<-as.Date(c(as.character(date_start),as.character(x[,"date"])))
if (is.element("date_end",colnames(x))) {
date_end<-as.Date(c(as.character(date_end),as.character(x[,"date_end"])))} else {
date_end<-as.Date(c(as.character(date_end),as.character(x[,"date"])))
}
}
}
if (class(x)!="data.frame") {
valu <-x
comp <-rep(pollutant,length(x))
date_start<-gendate(y)
date_end <-gendate(y)
}
date<-as.Date((as.numeric(date_start)+as.numeric(date_end))/2,origin="1970-01-01")
if (distr=="lnorm") {
valu<-log(valu)
}
highest<-max(valu,na.rm=TRUE)
lowest<-min(valu,na.rm=TRUE)
unit<-(highest-lowest)/100
if(method=="mqm") {
f1<-"median"
f2<-"quantile25"
f3<-"quantile75"
f4<-"min"
f5<-"max"
}
if(method=="tqm") {
f1<-"trimean"
f2<-"quantile25"
f3<-"quantile75"
f4<-"min"
f5<-"max"
}
if(method=="mqq") {
f1<-"median"
f2<-"quantile25"
f3<-"quantile75"
f4<-"quantile05"
f5<-"quantile95"
}
par(mar=c(9,4,4,2),mfrow=c(1,1))
if (distr=="lnorm") {
if (by.years==TRUE&legend==TRUE) {
plot(c(1:(length(compos)+1)),c(rep(lowest,length(compos)),highest+0.2*(highest-lowest)),cex=0,xaxt="n",yaxt="n",xlab=xlab,ylab=ylab,main=main)
} else {
plot(c(1:(length(compos)+1)),c(rep(lowest,length(compos)),highest),cex=0,xaxt="n",yaxt="n",xlab=xlab,ylab=ylab,main=main)
}
axis(2,at=axis(2,labels=NA),round(exp(axis(2,labels=NA)),2))
} else {
if (by.years==TRUE&legend==TRUE) {
plot(c(1:(length(compos)+1)),c(rep(lowest,length(compos)),highest+0.2*(highest-lowest)),cex=0,xaxt="n",xlab=xlab,ylab=ylab,main=main)
} else {
plot(c(1:(length(compos)+1)),c(rep(lowest,length(compos)),highest),cex=0,xaxt="n",xlab=xlab,ylab=ylab,main=main)
}
}
axis(1,at=c(1:length(compos)+0.5),labels=compos,las=2)
for (compound in compos) {
if (class(x)=="data.frame") {
i<-which(compos==compound)
} else {
i<-1
}
svalu<-valu[which(comp==compound)]
scomp<-comp[which(comp==compound)]
sdate<-date[which(comp==compound)]
if (class(x)!="data.frame") {
svalu<-valu
scomp<-pollutant
sdate<-y
}
valid<-which(!is.na(svalu)&!is.na(sdate))
svalu<-svalu[valid]
scomp<-scomp[valid]
sdate<-sdate[valid]
if (by.years==FALSE) {
rect(i-0.4+0.5,apply(as.matrix(svalu),2,FUN=f1)-0.5*unit,i+0.4+0.5,apply(as.matrix(svalu),2,FUN=f1)+0.5*unit,border=NA,col=paste0(rgb(t(col2rgb(col)/255)),"84"))
rect(i-0.1+0.5,apply(as.matrix(svalu),2,FUN=f3),i+0.1+0.5,apply(as.matrix(svalu),2,FUN=f5)-0.5*unit,border=NA,col=paste0(rgb(t(col2rgb(col)/255)),"60"))
rect(i-0.1+0.5,apply(as.matrix(svalu),2,FUN=f4)+0.5*unit,i+0.1+0.5,apply(as.matrix(svalu),2,FUN=f2),border=NA,col=paste0(rgb(t(col2rgb(col)/255)),"60"))
rect(i-0.4+0.5,apply(as.matrix(svalu),2,FUN=f2),i+0.4+0.5,apply(as.matrix(svalu),2,FUN=f3),border=NA,col=paste0(rgb(t(col2rgb(col)/255)),"60"))
rect(i-0.4+0.5,apply(as.matrix(svalu),2,FUN=f4)-0.5*unit,i+0.4+0.5,apply(as.matrix(svalu),2,FUN=f4)+0.5*unit,border=NA,col=paste0(rgb(t(col2rgb(col)/255)),"60"))
rect(i-0.4+0.5,apply(as.matrix(svalu),2,FUN=f5)-0.5*unit,i+0.4+0.5,apply(as.matrix(svalu),2,FUN=f5)+0.5*unit,border=NA,col=paste0(rgb(t(col2rgb(col)/255)),"60"))
}
if (by.years==TRUE) {
if (length(col)!=final-initial+1) {
col<-hsv((1:(final-initial+1))/(final-initial+1),1,1)
}
for (j in initial:final) {
ssvalu<-svalu[which(as.numeric(substr(sdate,1,4))==j)]
if (length(ssvalu)>0) {
rect(i-0.4+0.5,apply(as.matrix(ssvalu),2,FUN=f1)-0.5*unit,i+0.4+0.5,apply(as.matrix(ssvalu),2,FUN=f1)+0.5*unit,border=NA,col=paste0(rgb(t(col2rgb(col[j-initial+1])/255)),"84"))
rect(i-0.1+0.5,apply(as.matrix(ssvalu),2,FUN=f3),i+0.1+0.5,apply(as.matrix(ssvalu),2,FUN=f5)-0.5*unit,border=NA,col=paste0(rgb(t(col2rgb(col[j-initial+1])/255)),"60"))
rect(i-0.1+0.5,apply(as.matrix(ssvalu),2,FUN=f4)+0.5*unit,i+0.1+0.5,apply(as.matrix(ssvalu),2,FUN=f2),border=NA,col=paste0(rgb(t(col2rgb(col[j-initial+1])/255)),"60"))
rect(i-0.4+0.5,apply(as.matrix(ssvalu),2,FUN=f2),i+0.4+0.5,apply(as.matrix(ssvalu),2,FUN=f3),border=NA,col=paste0(rgb(t(col2rgb(col[j-initial+1])/255)),"60"))
rect(i-0.4+0.5,apply(as.matrix(ssvalu),2,FUN=f4)-0.5*unit,i+0.4+0.5,apply(as.matrix(ssvalu),2,FUN=f4)+0.5*unit,border=NA,col=paste0(rgb(t(col2rgb(col[j-initial+1])/255)),"60"))
rect(i-0.4+0.5,apply(as.matrix(ssvalu),2,FUN=f5)-0.5*unit,i+0.4+0.5,apply(as.matrix(ssvalu),2,FUN=f5)+0.5*unit,border=NA,col=paste0(rgb(t(col2rgb(col[j-initial+1])/255)),"60"))
}
}
if (legend==TRUE) {
for (j in (initial:final-initial+1)) {
legend((j-1)/(final-initial+1)*length(compos)*0.9+1,highest+0.3*(highest-lowest),(initial:final)[j],horiz=TRUE,text.col=paste0(rgb(t(col2rgb(col[j])/255)),"60"),bty="n")
}
}
}
}
par(mar=c(5,4,4,2))
} |
merge_sistec_rfept <- function(x){
x$sistec_rfept_linked <- dplyr::inner_join(x$sistec, x$rfept,
by = c("S_NU_CPF" = "R_NU_CPF")) %>%
link_courses() %>%
link_ciclos() %>%
remove_duplicated_courses() %>%
remove_duplicated_link()
x$sistec <- dplyr::anti_join(x$sistec, x$sistec_rfept_linked,
by = c("S_NU_CPF", "S_CO_CICLO_MATRICULA"))
x$rfept <- dplyr::anti_join(x$rfept, x$sistec_rfept_linked,
by = c("R_NU_CPF" = "S_NU_CPF", "R_CO_MATRICULA"))
x
}
link_courses <- function(x){
x <- x %>%
dplyr::filter(!!sym("R_DT_INICIO_CURSO") == !!sym("S_DT_INICIO_CURSO"))
x %>%
dplyr::group_by(!!sym("R_NO_CURSO"), !!sym("S_NO_CURSO")) %>%
dplyr::tally() %>%
dplyr::filter(!!sym("n") > 10) %>%
dplyr::rename(S_NO_CURSO_LINKED = !!sym("S_NO_CURSO"), S_QT_ALUNOS_LINKED = !!sym("n")) %>%
dplyr::inner_join(x, by = "R_NO_CURSO") %>%
dplyr::filter(!!sym("S_NO_CURSO_LINKED") == !!sym("S_NO_CURSO")) %>%
dplyr::ungroup()
}
link_ciclos <- function(x){
ciclos <- x %>%
dplyr::group_by(!!sym("S_CO_CICLO_MATRICULA"), !!sym("S_QT_ALUNOS_LINKED")) %>%
dplyr::tally() %>%
dplyr::arrange(!!sym("S_CO_CICLO_MATRICULA") , dplyr::desc(!!sym("n"))) %>%
dplyr::distinct(!!sym("S_CO_CICLO_MATRICULA"), .keep_all = TRUE)
dplyr::semi_join(x, ciclos, by = c("S_CO_CICLO_MATRICULA", "S_QT_ALUNOS_LINKED"))
}
remove_duplicated_courses <- function(x){
courses <- x %>%
dplyr::group_by(!!sym("R_NO_CURSO"), !!sym("S_NO_CURSO")) %>%
dplyr::tally() %>%
dplyr::filter(!!sym("n") > 8)
dplyr::semi_join(x, courses, by = c("R_NO_CURSO", "S_NO_CURSO"))
}
remove_duplicated_link <- function(x){
duplicated_link <- x %>%
dplyr::group_by(!!sym("S_NU_CPF"), !!sym("R_CO_MATRICULA")) %>%
dplyr::tally() %>%
dplyr::filter(!!sym("n") > 1)
dplyr::anti_join(x, duplicated_link, by = c("S_NU_CPF", "R_CO_MATRICULA"))
}
complete_campus <- function(x){
dplyr::mutate(x, R_NO_CAMPUS = ifelse(!!sym("R_NO_CAMPUS") == "SEM CAMPUS",
!!sym("S_NO_CAMPUS"),
!!sym("R_NO_CAMPUS")))
} |
rmcol.folder <- function(object, name) {
if (!is.folder(object))
stop("rmcol.folder applies to an object of class 'folder'.")
xf <- lapply(object, function(x)x[!(colnames(x) %in% name)])
attributes(xf) <- attributes(object)
return(xf)
} |
context("findvar")
test_that("findvar_fun", {
expect_that(findvar_fun(cars)("sp"), is_equivalent_to("speed"))
expect_that(findvar_fun(iris)("petal"), is_equivalent_to(c("Petal.Length", "Petal.Width")))
})
test_that("findvar_in_df", {
expect_that(findvar_in_df("sp", cars), is_equivalent_to("speed"))
expect_that(findvar_in_df("petal", iris), is_equivalent_to(c("Petal.Length", "Petal.Width")))
})
suppressMessages(
test_that("findvar_anywhere", {
expect_that(findvar_anywhere("sp"), is_equivalent_to(NULL))
expect_that(findvar_anywhere("petal"), is_equivalent_to(NULL))
expect_that(findvar_anywhere("sp"), shows_message())
expect_that(findvar_anywhere("petal"), shows_message())
})
) |
cpg.perm <-
function(beta.values,indep,covariates=NULL,nperm,data=NULL,seed=NULL,
logit.transform=FALSE,chip.id=NULL,subset=NULL,random=FALSE,fdr.cutoff=.05,fdr.method="BH",large.data=TRUE) {
name.holder<-list(deparse(substitute(beta.values)),deparse(substitute(chip.id)),cpg.everything(deparse(substitute(indep))))
if(is.null(ncol(beta.values))) {beta.values<-as.matrix(beta.values)}
beta.row<-nrow(beta.values)
beta.col<-ncol(beta.values)
if(class(covariates)=="formula") {
variables<-gsub("[[:blank:]]","",strsplit(as.character(covariates)[2],"+",fixed=TRUE)[[1]])
covariates<-data.frame(eval(parse(text=variables[1])))
names(covariates)=variables[1]
if(length(variables)>1) {
for(i in 2:length(variables)) {
covariates<-cbind(covariates,eval(parse(text=variables[i])))
names(covariates)=variables[1:i]
}
}
}
cpg.length(indep,beta.col,covariates, chip.id)
if(is.character(indep)) {warnings("\nindep is a character class, converting to factor\n")
indep<-as.factor(indep)
}
if(!is.null(data)){
nameofdata<-deparse(substitute(data))
thecheck<-nameofdata %in% search()
if(!thecheck) stop("\nMust attach data before using data option in CpGassoc package",
"\nPlease attach and resubmit command\n")
}
if(is.matrix(covariates)| length(covariates)==length(indep) ) {
if(is.character(covariates) & is.matrix(covariates)) {
stop("\nCan not analyze data with covariates given.\nNo characters allowed within",
" a matrix")
}
else {
covariates<-data.frame(covariates)
}}
levin<-is.factor(indep)
Problems<-which(beta.values<0 |beta.values >1)
ob.data<-cpg.assoc(beta.values,indep,covariates,data,logit.transform,chip.id,subset,random,fdr.cutoff,fdr.method=fdr.method,large.data=large.data)
ob.data$info$Phenotype<-name.holder[[3]]
Min.P.Observed<-ob.data$info[1,1]
fdr <- beta.row>= 100
if(fdr.method=="qvalue" & !fdr) {
fdr.method="BH"
warning("\nCan not perform qvalue method with less than a 100 CpG sites\n")
}
if(nperm>=100) {
perm.pval<-matrix(NA,beta.row,nperm)
if(!levin) {perm.tstat<-matrix(NA,beta.row,nperm)}
}
cpg.everything(complex(1),first=TRUE,logit.transform,Problems,beta.values)
if(logit.transform) {
beta.values<-as.matrix(beta.values)
if (length(Problems)!=0) {
beta.values[Problems]<-NA
}
onevalues<-which(beta.values==1)
zerovalues<-which(beta.values==0)
if(length(onevalues)>0 | length(zerovalues)>0) {
if(length(onevalues)>0) {
beta.values[onevalues]<-NA
beta.values[onevalues]<-max(beta.values,na.rm=T)
}
if(length(zerovalues)>0) {
beta.values[zerovalues]<-NA
beta.values[zerovalues]<-min(beta.values,na.rm=T)
}
}
beta.values=log(beta.values/(1-beta.values))
beta.values<-data.frame(beta.values)
}
if(!is.null(subset)){
if(!is.null(chip.id)) {
chip.id<-chip.id[subset]
}
beta.values<-beta.values[,subset]
indep<-indep[subset]
if(!is.null(covariates)) {
covariates<-covariates[subset,]
}
subset=NULL
}
Permutation <- matrix(nrow = nperm,ncol = 3)
compleval<-design(covariates,indep,chip.id,random)[[3]]
gc.Permutation<-matrix(nrow=nperm,ncol=3)
indep<-indep[compleval]
covariates<-data.frame(covariates[compleval,])
if(ncol(covariates)==0 & nrow(covariates)==0) {covariates=NULL}
beta.values<-beta.values[,compleval]
if(is.null(dim(beta.values))) {beta.values<-as.matrix(beta.values)}
chip.id<-chip.id[compleval]
for(i in 1:nperm) {
if (!is.null(seed)) {
set.seed(i*22424-seed)
}
Perm.var <- sample(indep);
answers<-cpg.assoc(beta.values,Perm.var,covariates,data,logit.transform=FALSE
,chip.id,subset,random,fdr.cutoff,fdr.method=fdr.method,logitperm=TRUE,large.data=large.data)
if(random) {
problems<-sum(is.na(answers$results$P.value))
if (problems>0){
cpg.everything(complex(1),first=FALSE,logit.transform,problems)
}
}
if(nperm>=100 ) {
perm.pval[,i]<-answers$results$P.value
if(!levin) {perm.tstat[,i]<-answers$results$T.statistic}
}
Permutation[i,1:3] <- c(answers$info$Min.P.Observed,nrow(answers$Holm.sig),nrow(answers$FDR.sig))
if (fdr.method=="qvalue") {
fdr.adj<-tryCatch(qvalue::qvalue(answers$results$gc.p.value), error = function(e) NULL)
if(is.null(fdr.adj)) {
fdr.adj <- tryCatch(qvalue::qvalue(answers$results$gc.p.value, pi0.method = "bootstrap"),
error = function(e) NULL)
if(is.null(fdr.adj)) {
fdr.method="BH"
}}}
if(fdr.method!="qvalue") {
fdr.adj<-p.adjust(answers$results$gc.p.value,fdr.method)
}
if(fdr.method=="qvalue"){
fdr.adj<-fdr.adj$qvalue
}
gc.Permutation[i,1:3]<-c(min(answers$results$gc.p.value,na.rm=TRUE),
sum(p.adjust(answers$results$gc.p.value,"holm")<.05),
sum(fdr.adj<.05))
rm(answers)
gc()
}
Permutation<-data.frame(Permutation)
p.value.p <- sum(Permutation[,1]<=Min.P.Observed)/nperm
p.value.holm <- sum(Permutation[,2]>=nrow(ob.data$Holm.sig))/nperm
p.value.FDR <- sum(Permutation[,3]>=nrow(ob.data$FDR.sig))/nperm
if(is.null(seed)) {seed<-"NULL"}
p.value.matrix <- data.frame(p.value.p,p.value.holm,p.value.FDR,nperm,seed)
names(Permutation)<-cpg.everything(fdr,perm=TRUE)
colnames(gc.Permutation)<-names(Permutation)
perm.data<-list(permutation.matrix=Permutation,perm.p.values=p.value.matrix,gc.permutation.matrix=gc.Permutation)
perm.data<-append(perm.data,ob.data)
names(perm.data)<-c("permutation.matrix","perm.p.values","gc.permutation.matrix",names(ob.data))
if(nperm>=100) {
perm.pval<-apply(perm.pval,2,sort)
perm.pval<- -log(perm.pval,base=10)
perm.data$perm.pval<-t(apply(perm.pval,1,quantile,probs=c(.025,.975)))
if(!levin ) {
perm.tstat<-apply(perm.tstat,2,sort)
perm.data$perm.tstat<-t(apply(perm.tstat,1,quantile,probs=c(.025,.975)))
}}
perm.data$info$betainfo<-name.holder[[1]]
rm(Permutation,ob.data,p.value.matrix)
gc()
class(perm.data)<-"cpg.perm"
perm.data
} |
context("Testing random.estimate()")
set.seed(100)
n= 10000
tolerance=3/sqrt(n)
test_that("3d - standard normal distribution (correlated) is generated correctly from the 0.05 and 0.95 quantiles", {
profitEstimate<-estimate_read_csv("profit-4.csv")
meanProductPrice <- mean(c(profitEstimate$marginal["productprice","lower"], profitEstimate$marginal["productprice","upper"]) )
meanCostPrice <- mean(c(profitEstimate$marginal["costprice","lower"], profitEstimate$marginal["costprice","upper"]) )
meanSales <- mean(c(profitEstimate$marginal["sales","lower"], profitEstimate$marginal["sales","upper"]) )
mean <- c(productprice=meanProductPrice, costprice=meanCostPrice, sales=meanSales)
sdProductPrice <- 0.5 * (profitEstimate$marginal["productprice","upper"] - profitEstimate$marginal["productprice","lower"]) / qnorm(0.95)
sdCostPrice <- 0.5 * (profitEstimate$marginal["costprice","upper"] - profitEstimate$marginal["costprice","lower"]) / qnorm(0.95)
sdSales <- 0.5 * (profitEstimate$marginal["sales","upper"] - profitEstimate$marginal["sales","lower"]) / qnorm(0.95)
sd <- c(productprice=sdProductPrice, costprice=sdCostPrice, sales=sdSales)
cor<-corMat(profitEstimate)
x<-random(rho=profitEstimate,n=n)
expect_equal(colMeans(x), mean, tolerance=tolerance)
expect_equal(apply(X=x, MARGIN=2, sd), sd, tolerance=tolerance)
expect_equal(cor(x),cor, tolerance=0.05)
}) |
chrom <- function(c){
p <- length(c)
P <- matrix(0,p,p)
I <- p*seq(from = 0, to = (p-1), by = 1)+c
P[I] <- 1
return(P)
} |
context("Penalty matrices")
test_that("Penalty matrix for Lasso", {
expect_equal(.pen.mat.lasso(5),
diag(5))
})
test_that("Penalty matrix for Group Lasso", {
expect_equal(.pen.mat.grouplasso(6),
diag(6))
})
test_that("Penalty matrix for Fused Lasso", {
expect_equal(.pen.mat.flasso(4),
rbind(c(1, 0, 0, 0), c(-1, 1, 0, 0), c(0, -1, 1, 0), c(0, 0, -1, 1)))
expect_equal(.pen.mat.flasso(4, refcat = 3),
rbind(c(-1, 1, 0, 0), c(0, -1, 0, 0), c(0, 0, 1, 0), c(0, 0, -1, 1)))
})
test_that("Penalty matrix for Generalized Fused Lasso", {
a <- .pen.mat.gflasso(4)
dimnames(a) <- NULL
expect_equal(a,
rbind(c(1, 0, 0, 0), c(-1, 1, 0, 0), c(0, -1, 1, 0), c(0, 0, -1, 1),
c(0, 1, 0, 0), c(-1, 0, 1, 0), c(0, -1, 0, 1),
c(0, 0, 1, 0), c(-1, 0, 0, 1), c(0, 0, 0, 1)))
b <- .pen.mat.gflasso(4, refcat = FALSE)
dimnames(b) <- NULL
expect_equal(b,
rbind(c(-1, 1, 0, 0), c(0, -1, 1, 0), c(0, 0, -1, 1),
c(-1, 0, 1, 0), c(0, -1, 0, 1), c(-1, 0, 0, 1)))
})
test_that("Penalty matrix for 2D Fused Lasso", {
expect_equal(.pen.mat.2dflasso(3, 2),
rbind(c(1, 0, 0, 0, 0, 0), c(-1, 1, 0, 0, 0, 0),
c(-1, 0, 0, 1, 0, 0), c(0, 1, 0, 0, 0, 0),
c(0, -1, 1, 0, 0, 0), c(0, -1, 0, 0, 1, 0),
c(0, 0, 1, 0, 0, 0), c(0, 0, -1, 0, 0, 1),
c(0, 0, 0, 1, 0, 0), c(0, 0, 0, -1, 1, 0), c(0, 0, 0, 0, -1, 1)))
})
test_that("Penalty matrix for Graph-Guided Fused Lasso", {
adj <- matrix(0, 10, 10)
adj[1, 2] <- adj[2, 1] <- 1
adj[2, 3] <- adj[3, 2] <- 1
adj[2, 5] <- adj[5, 2] <- 1
adj[1, 3] <- adj[3, 1] <- 1
adj[6, 7] <- adj[7, 6] <- 1
pen.exp <- matrix(0, 5, 9)
pen.exp[1, 1] <- 1
pen.exp[2, 2] <- 1
pen.exp[3, 1] <- -1; pen.exp[3, 2] <- 1
pen.exp[4, 1] <- -1; pen.exp[4, 4] <- 1
pen.exp[5, 5] <- -1; pen.exp[5, 6] <- 1
expect_equal(.pen.mat.ggflasso(adj),
pen.exp)
pen.exp2 <- matrix(0, 5, 9)
pen.exp2[1, 2] <- 1
pen.exp2[2, 1] <- -1; pen.exp2[2, 2] <- 1
pen.exp2[3, 1] <- -1; pen.exp2[3, 3] <- 1
pen.exp2[4, 2] <- -1; pen.exp2[4, 3] <- 1
pen.exp2[5, 5] <- -1; pen.exp2[5, 6] <- 1
expect_equal(.pen.mat.ggflasso(adj, refcat = 5),
pen.exp2)
}) |
Compute.Model<-function( tree,
utilities,
weights ) {
model<-NULL
criteria<-1:length( V(tree) )
index<-which( V(tree)$leaf == 1 )
with( utilities, {
for ( i in criteria ) {
nl<-unlist( neighborhood( tree, 100, V(tree)[i], mode = 'out' ) )
code<-V(tree)[ nl[ nl %in% index ] ]$code
W<-weights[ code ]
RW<-W / sum( W )
uname<-paste( 'u', code, sep = '' )
u<-utilities[ , list( utility = unlist( lapply( .SD * W, sum ) ),
relative.utility = unlist( lapply( .SD * RW, sum ) ) ),
by = cod, .SDcols = uname ]
u<-u[ , list( utility = sum( utility ),
relative.utility = sum( relative.utility ) ),
by = cod ]
u[ , id := V(tree)[i]$id ]
u[ , index := ifelse( V(tree)[i]$code == 0, NA, V(tree)[i]$code ) ]
u[ , deep := V(tree)[i]$deep ]
u[ , weight := V(tree)[i]$weight ]
u[ , relative.weight := V(tree)[i]$rweight ]
u[ , name := V(tree)[i]$name ]
u<-u[ , list( id, name, cod, index, deep, utility, relative.utility, weight, relative.weight ) ]
model<-rbind( model, u )
}
return( model )
})
} |
httpget_session_tar <- function(sessionpath, requri){
setwd(sessionpath);
tmptar <- tempfile(fileext=".tar.gz");
utils::tar(tmptar, files=".", compression="gzip");
res$setbody(file=tmptar);
res$setheader("Content-Type", "application/x-gzip")
res$setheader("Content-Disposition", paste('attachment; filename="', basename(sessionpath), '.tar.gz"', sep=""));
res$finish();
} |
find_course <- function(course){
file.path(find.package("swirl"), "Courses", gsub(" ", "_", course))
}
display_swirl_file <- function(filename, course, lesson=""){
fname <- filename
if(lesson != "")fname <- file.path(lesson, filename)
loc <- gsub(" ", "_", file.path( find_course(course), fname))
toloc <- file.path("swirl_temp", filename)
if(!file.exists("swirl_temp"))dir.create("swirl_temp")
file.copy(loc, "swirl_temp", overwrite=TRUE)
if(isTRUE(1 == grep("*[.]R$", filename))){
file.edit(toloc, title=filename)
} else {
file.show(toloc, title=filename)
}
message(paste("(Se ha copiado el archivo", filename, "a la ruta", file.path(getwd(), toloc), ")."))
}
display_swirl_file("distributions.txt", "programacion-estadistica-r", "Simulacion") |
print.summary.Lifedata.MLE <-
function(x,...){
cat("Call:\n")
print(x$call)
cat("\n")
cat("Parameters:\n")
print(x$coefmat)
cat("\n")
cat("Loglikelihod:\n")
print(as.numeric(-x$min))
cat("\n")
cat("Covariance matrix:\n")
print(x$vcov)
cat("\n")
cat("Survival probability:\n")
print(x$surv)
} |
ly_hexbin <- function(
fig, x, y = NULL, data = figure_data(fig),
xbins = 30, shape = 1, xbnds = NULL, ybnds = NULL,
style = "colorscale",
trans = NULL, inv = NULL, lname = NULL,
palette = "RdYlGn11", line = FALSE, alpha = 1,
hover = TRUE
) {
args <- sub_names(fig, data,
grab(
x,
y,
xbins,
shape,
hover,
line,
alpha,
dots = lazy_dots()
),
process_data_and_names = FALSE
)
minarea <- 0.04; maxarea <- 0.8; mincnt <- 1; maxcnt <- NULL
if (!inherits(args$data$x, "hexbin")) {
xy_names <- get_xy_names(args$data$x, args$data$y,
deparse(substitute(x)), deparse(substitute(y)), NULL)
xy <- get_xy_data(args$data$x, args$data$y)
args$data$x <- xy$x
args$data$y <- xy$y
args$info$x_name <- xy_names$x
args$info$y_name <- xy_names$y
hbd <- get_hexbin_data(x = xy$x, y = xy$y, xbins = xbins,
shape = shape, xbnds = xbnds, ybnds = ybnds)
} else {
args$info$x_name <- "x"
args$info$y_name <- "y"
hbd <- args$data$x
}
hbd <- get_from_hexbin(hbd, maxcnt = maxcnt,
mincnt = mincnt, trans = trans, inv = inv, style = style,
minarea = minarea, maxarea = maxarea)
if (is.character(palette)) {
if (valid_color(palette)) {
col <- palette
} else {
if (!palette %in% bk_gradient_palette_names)
stop(
"'palette' specified in ly_hexbin is not a valid color name or palette ",
"- see here: https://docs.bokeh.org/en/latest/docs/reference/palettes.html",
call. = FALSE)
palette <- colorRampPalette(bk_gradient_palettes[[palette]])
}
}
if (is.function(palette)) {
colorcut <- seq(0, 1, length = 100)
colgrp <- cut(hbd$rcnt, colorcut, labels = FALSE, include.lowest = TRUE)
clrs <- palette(length(colorcut) - 1)
col <- clrs[colgrp]
}
if (args$info$x_name == args$info$y_name) {
args$info$x_name <- paste(args$info$x_name, "(x)")
args$info$y_name <- paste(args$info$y_name, "(y)")
}
names(hbd$data)[1:2] <- c(args$info$x_name, args$info$y_name)
if (!line) {
line_color <- NA
} else {
line_color <- col
}
if (is.logical(hover) && !hover)
hbd$data <- NULL
fig %>% ly_polygons(
xs = hbd$xs, ys = hbd$ys, color = NULL,
fill_color = col, alpha = NULL,
fill_alpha = args$params$alpha, line_color = line_color,
hover = hbd$data, xlab = args$info$x_name, ylab = args$info$y_name,
lname = lname
)
}
get_hexbin_data <- function(x, y, xbins = 30, shape = 1,
xbnds = range(x, na.rm = TRUE),
ybnds = range(y, na.rm = TRUE)) {
if (is.null(xbnds))
xbnds <- range(x, na.rm = TRUE)
if (is.null(ybnds))
ybnds <- range(y, na.rm = TRUE)
ind <- stats::complete.cases(x, y)
hexbin(x[ind], y[ind], shape = shape, xbins = xbins, xbnds = xbnds, ybnds = ybnds)
}
get_from_hexbin <- function(dat, maxcnt = NULL, mincnt = 1, trans = identity,
inv = identity, maxarea = 0.8, minarea = 0.04, style = style) {
cnt <- dat@count
xbins <- dat@xbins
shape <- dat@shape
tmp <- hcell2xy(dat)
if (is.null(maxcnt))
maxcnt <- max(dat@count)
ok <- cnt >= mincnt & cnt <= maxcnt
xnew <- tmp$x[ok]
ynew <- tmp$y[ok]
cnt <- cnt[ok]
sx <- xbins / diff(dat@xbnds)
sy <- (xbins * shape) / diff(dat@ybnds)
if (is.null(trans)) {
if (min(cnt, na.rm = TRUE) < 0) {
pcnt <- cnt + min(cnt)
rcnt <- {
if (maxcnt == mincnt) rep.int(1, length(cnt)) else (pcnt - mincnt) / (maxcnt - mincnt)
}
} else rcnt <- {
if (maxcnt == mincnt) rep.int(1, length(cnt)) else (cnt - mincnt) / (maxcnt - mincnt)
}
} else {
rcnt <- (trans(cnt) - trans(mincnt)) / (trans(maxcnt) - trans(mincnt))
if (any(is.na(rcnt))) stop("bad count transformation")
}
if (style == "lattice") {
area <- minarea + rcnt * (maxarea - minarea)
area <- pmin(area, maxarea)
radius <- sqrt(area)
} else {
radius <- rep(1, length(xnew))
}
inner <- 0.5
outer <- (2 * inner) / sqrt(3)
dx <- inner / sx
dy <- outer / (2 * sy)
hex_c <- hexcoords(dx, dy, sep = NULL)
xs <- lapply(seq_along(xnew), function(i)
hex_c$x * radius[i] + xnew[i])
ys <- lapply(seq_along(xnew), function(i)
hex_c$y * radius[i] + ynew[i])
list(xs = xs, ys = ys, data = data.frame(x = xnew, y = ynew, count = cnt), rcnt = rcnt)
} |
pdb_make_proto_ipm <- function(pdb,
ipm_id = NULL,
det_stoch = "det",
kern_param = "kern") {
if(!is.null(ipm_id)) {
pdb <- lapply(pdb, function(x, ipm_id) {
out <- x[x$ipm_id %in% ipm_id, ]
return(out)
},
ipm_id = ipm_id)
class(pdb) <- c("pdb", "list")
}
out <- list()
unique_ids <- unique(pdb[[1]]$ipm_id)
if(length(det_stoch) < length(unique_ids)) {
det_stoch <- rep_len(det_stoch, length.out = length(unique_ids))
}
if(length(kern_param) < length(det_stoch) && any(det_stoch == "stoch")) {
kern_param <- rep_len(kern_param, length.out = length(det_stoch))
kern_param[det_stoch == "det"] <- NA_character_
}
for(i in seq_along(unique_ids)) {
out[[i]] <- .make_proto(pdb,
id = unique_ids[i],
det_stoch[i],
kern_param[i])
attr(out[[i]], "species_accepted") <- pdb$Metadata$species_accepted[i]
names(out)[i] <- unique_ids[i]
out[[i]]$id <- unique_ids[i]
}
class(out) <- c("pdb_proto_ipm_list", "list")
return(out)
} |
haplo.binomial <- function (link = "logit")
{
save <- binomial()
save$initialize <- expression({
if (NCOL(y) == 1) {
if (is.factor(y)) y <- y != levels(y)[1L]
n <- rep.int(1, nobs)
y[weights == 0] <- 0
mustart <- (weights * y + 0.5)/(weights + 1)
m <- weights * y
} else if (NCOL(y) == 2) {
n <- y[, 1] + y[, 2]
y <- ifelse(n == 0, 0, y[, 1]/n)
weights <- weights * n
mustart <- (n * y + 0.5)/(n + 1)
} else stop("for the binomial family, y must be a vector of 0 and 1's\n",
"or a 2 column matrix where col 1 is no. successes and col 2 is no. failures")
})
return(save)
} |
library(vcfR)
data(vcfR_example)
my_genind <- vcfR2genind(vcf)
class(my_genind)
my_genind
my_genclone <- poppr::as.genclone(my_genind)
class(my_genclone)
my_genclone
vcf_file <- system.file("extdata", "pinf_sc50.vcf.gz", package = "pinfsc50")
vcf <- read.vcfR(vcf_file, verbose = FALSE)
x <- vcfR2genlight(vcf)
x
library(poppr)
x <- as.snpclone(x)
x
vcf_file <- system.file("extdata", "pinf_sc50.vcf.gz", package = "pinfsc50")
dna_file <- system.file("extdata", "pinf_sc50.fasta", package = "pinfsc50")
gff_file <- system.file("extdata", "pinf_sc50.gff", package = "pinfsc50")
vcf <- read.vcfR(vcf_file, verbose = FALSE)
dna <- ape::read.dna(dna_file, format="fasta")
gff <- read.table(gff_file, sep="\t", quote = "")
record <- 130
my_dnabin1 <- vcfR2DNAbin(vcf, consensus = TRUE, extract.haps = FALSE, ref.seq=dna[,gff[record,4]:gff[record,5]], start.pos=gff[record,4], verbose=FALSE)
my_dnabin1
par(mar=c(5,8,4,2))
ape::image.DNAbin(my_dnabin1[,ape::seg.sites(my_dnabin1)])
par(mar=c(5,4,4,2))
my_dnabin1 <- vcfR2DNAbin(vcf, consensus=FALSE, extract.haps=TRUE, ref.seq=dna[,gff[record,4]:gff[record,5]], start.pos=gff[record,4], verbose=FALSE)
par(mar=c(5,8,4,2))
ape::image.DNAbin(my_dnabin1[,ape::seg.sites(my_dnabin1)])
par(mar=c(5,4,4,2)) |
scenarioGenerator <- function(n, type = c("none", "up", "updown", "rand1"), nbSeg = 20, jumpSize = 1) {
type <- match.arg(type)
if (type == "rand1") {
set.seed(42)
rand1CP <- rpois(nbSeg, lambda = 10)
r1 <- pmax(round(rand1CP * n / sum(rand1CP)), 1)
s <- sum(r1)
if(s > n)
{
while(sum(r1) > n)
{
p <- sample(x = nbSeg, size = 1)
if(r1[p]> 1){r1[p] <- r1[p] - 1}
}
} else if(s < n) {
for(i in 1:(n-s))
{
p <- sample(x = nbSeg, size = 1)
r1[p] <- r1[p] + 1
}
}
set.seed(43)
rand1Jump <- runif(nbSeg, min = 0.5, max = 1) * sample(c(-1,1), size = nbSeg, replace = TRUE)
}
switch(
type,
none = rep(0, n),
up = unlist(lapply(0:(nbSeg-1), function (k) rep(k * jumpSize, n * 1 / nbSeg))),
updown = unlist(lapply(0:(nbSeg-1), function(k) rep((k %% 2) * jumpSize, n * 1 / nbSeg))),
rand1 = unlist(sapply(1:nbSeg, function(i) rep(rand1Jump[i] * jumpSize, r1[i])))
)
} |
summary.test_dim <-function(object, ...){
out0 = object$out0
out1 = object$out1
out = object
cat("\nCall:\n")
print(out$call)
cat("\nTesting dimension output:\n")
table = c(round(out0$lk,3),round(out0$aic,3),round(out0$bic,3),round(out0$np,0),
round(out1$lk,3),round(out1$aic,3),round(out1$bic,3),round(out1$np,0),
round(out$dev,3),out$df,round(out$pv,3))
table = matrix(table,11,1)
colnames(table) = ""
rownames(table) = c("Log-likelihood of the constrained model","AIC of the constrained model",
"BIC of the constrained model","N.parameters of the constrained model",
"Log-likelihood of the unconstrained model","AIC of the unconstrained model",
"BIC of the unconstrained model","N.parameters of the unconstrained model",
"Deviance","Degrees of freedom","p-value")
print(table)
cat("\n")
} |
plot.riskRegression <- function(x,
cause,
newdata,
xlab,
ylab,
xlim,
ylim,
lwd,
col,
lty,
axes=TRUE,
percent=TRUE,
legend=TRUE,
add=FALSE,
...){
if ("CauseSpecificCox"%in%class(x))
plot.times <- x$eventTimes
else
plot.times <- x$timeVaryingEffects$coef[,"time"]
if (class(x)=="predictedRisk")
Y <- split(x$risk,1:NROW(x$risk))
else{
if (missing(newdata)){
ff <- eval(x$call$formula)
xdat <- unique(eval(x$call$data)[all.vars(update(ff,NULL~.))])
if (NROW(xdat)<5){
if ("CauseSpecificCox"%in%class(x)){
p1 <- predictRisk(x,newdata=xdat,times=plot.times,cause=cause)
}
else{
p1 <- stats::predict(x,newdata=xdat,times=plot.times)$risk}
rownames(p1) <- paste("id",1:NROW(xdat))
}
else{
if ("CauseSpecificCox"%in%class(x)){
P1 <- predictRisk(x,newdata=eval(x$call$data),times=plot.times,cause=cause)
}
else{
P1 <- stats::predict(x,
newdata=eval(x$call$data),
times=plot.times)$risk
}
medianP1 <- P1[,prodlim::sindex(plot.times,median(plot.times))]
P1 <- P1[order(medianP1),]
p1 <- P1[round(quantile(1:NROW(P1))),]
rownames(p1) <- paste("Predicted risk",c("Min","q25","Median","q75","Max"),sep="=")
warning("Argument newdata is missing.\n",
"Shown are the cumulative incidence curves from the original data set.\nSelected are curves based on individual risk (min,q25,median,q75,max) at the median time:",
median(plot.times))
}
}
else{
p1 <- stats::predict(x,newdata=newdata,time=plot.times)$risk
}
Y <- lapply(1:NROW(p1),function(i){p1[i,]})
if (!is.null(rownames(p1)))
names(Y) <- rownames(p1)
}
nlines <- NROW(Y)
if (missing(ylab)) ylab <- "Cumulative incidence"
if (missing(xlab)) xlab <- "Time"
if (missing(xlim)) xlim <- c(0, max(plot.times))
if (missing(ylim)) ylim <- c(0, 1)
if (missing(lwd)) lwd <- rep(3,nlines)
if (missing(col)) col <- 1:nlines
if (missing(lty)) lty <- rep(1, nlines)
if (length(lwd) < nlines) lwd <- rep(lwd, nlines)
if (length(lty) < nlines) lty <- rep(lty, nlines)
if (length(col) < nlines) col <- rep(col, nlines)
plot.DefaultArgs <- list(x=0,y=0,type = "n",ylim = ylim,xlim = xlim,xlab = xlab,ylab = ylab)
lines.DefaultArgs <- list(type="s")
axis1.DefaultArgs <- list()
axis2.DefaultArgs <- list(at=seq(0,1,.25),side=2)
legend.DefaultArgs <- list(legend=names(Y),
lwd=lwd,
col=col,
lty=lty,
cex=1.5,
bty="n",
y.intersp=1.3,
x="topleft",
trimnames=TRUE)
smartA <- prodlim::SmartControl(call= list(...),
keys=c("plot","lines","legend","conf.int","marktime","axis1","axis2"),
ignore=c("x","type","cause","newdata","add","col","lty","lwd","ylim","xlim","xlab","ylab","legend","marktime","conf.int","automar","atrisk","timeOrigin","percent","axes","atrisk.args","conf.int.args","legend.args"),
ignore.case=TRUE,
defaults=list("plot"=plot.DefaultArgs,
"axis1"=axis1.DefaultArgs,
"axis2"=axis2.DefaultArgs,
"legend"=legend.DefaultArgs,
"lines"=lines.DefaultArgs),
forced=list("plot"=list(axes=FALSE),
"axis1"=list(side=1)),
verbose=TRUE)
if (!add) {
do.call("plot",smartA$plot)
if (axes){
do.call("axis",smartA$axis1)
if (percent & is.null(smartA$axis1$labels))
smartA$axis2$labels <- paste(100*smartA$axis2$at,"%")
do.call("axis",smartA$axis2)
}
}
lines.type <- smartA$lines$type
nix <- lapply(1:nlines, function(s) {
lines(x = plot.times,
y = Y[[s]],
type = lines.type,
col = col[s],
lty = lty[s],
lwd = lwd[s])
})
if(legend[[1]]==TRUE && !add[[1]] && !is.null(names(Y))){
if (all(smartA$legend$trimnames==TRUE) && all(sapply((nlist <- strsplit(names(Y),"=")),function(x)length(x))==2)){
smartA$legend$legend <- sapply(nlist,function(x)x[[2]])
smartA$legend$title <- unique(sapply(nlist,function(x)x[[1]]))
}
smartA$legend <- smartA$legend[-match("trimnames",names(smartA$legend))]
save.xpd <- par()$xpd
par(xpd=TRUE)
do.call("legend",smartA$legend)
par(xpd=save.xpd)
}
} |
"df_tmin" |
s2_mask <- function(infiles,
maskfiles,
mask_type,
smooth = 0,
buffer = 0,
max_mask = 100,
outdir = "./masked",
tmpdir = NA,
rmtmp = TRUE,
save_binary_mask = FALSE,
format = NA,
subdirs = NA,
compress = "DEFLATE",
bigtiff = FALSE,
parallel = FALSE,
overwrite = FALSE,
.log_message = NA,
.log_output = NA) {
.s2_mask(infiles = infiles,
maskfiles = maskfiles,
mask_type = mask_type,
smooth = smooth,
buffer = buffer,
max_mask = max_mask,
outdir = outdir,
tmpdir = tmpdir,
rmtmp = rmtmp,
save_binary_mask = save_binary_mask,
format = format,
subdirs = subdirs,
compress = compress,
bigtiff = bigtiff,
parallel = parallel,
overwrite = overwrite,
output_type = "s2_mask",
.log_message = .log_message,
.log_output = .log_output)
}
.s2_mask <- function(infiles,
maskfiles,
mask_type = "cloud_medium_proba",
smooth = 250,
buffer = 250,
max_mask = 80,
outdir = "./masked",
tmpdir = NA,
rmtmp = TRUE,
save_binary_mask = FALSE,
format = NA,
subdirs = NA,
compress = "DEFLATE",
bigtiff = FALSE,
parallel = FALSE,
overwrite = FALSE,
output_type = "s2_mask",
.log_message = NA,
.log_output = NA) {
. <- NULL
if (!any(sapply(infiles, file.exists))) {
print_message(
type="error",
if (!all(sapply(infiles, file.exists))) {"The "} else {"Some of the "},
"input files (\"",
paste(infiles[!sapply(infiles, file.exists)], collapse="\", \""),
"\") do not exists locally; please check file names and paths.")
}
gdal_formats <- fromJSON(
system.file("extdata/settings/gdal_formats.json",package="sen2r")
)$drivers
if (!is.na(format)) {
sel_driver <- gdal_formats[gdal_formats$name==format,]
if (nrow(sel_driver)==0) {
print_message(
type="error",
"Format \"",format,"\" is not recognised; ",
"please use one of the formats supported by your GDAL installation.\n\n",
"To list them, use the following command:\n",
"\u00A0\u00A0gdalUtils::gdalinfo(formats=TRUE)\n\n",
"To search for a specific format, use:\n",
"\u00A0\u00A0gdalinfo(formats=TRUE)[grep(\"yourformat\", gdalinfo(formats=TRUE))]")
}
}
if (is.na(tmpdir)) {
tmpdir <- if (all(!is.na(format), format == "VRT")) {
if (!missing(outdir)) {
autotmpdir <- FALSE
file.path(outdir, ".vrt")
} else {
autotmpdir <- TRUE
tempfile(pattern="s2mask_")
}
} else {
autotmpdir <- FALSE
tempfile(pattern="s2mask_")
}
} else {
if (dir.exists(tmpdir)) {
tmpdir <- file.path(tmpdir, basename(tempfile(pattern="s2mask_")))
}
autotmpdir <- FALSE
}
if (all(!is.na(format), format == "VRT")) {
rmtmp <- FALSE
}
dir.create(tmpdir, recursive=FALSE, showWarnings=FALSE)
infiles_meta_sen2r <- sen2r_getElements(infiles, format="data.table")
infiles_meta_raster <- raster_metadata(infiles, c("res", "outformat", "unit"), format="data.table")
maskfiles_meta_sen2r <- sen2r_getElements(maskfiles, format="data.table")
suppressWarnings(outdir <- expand_path(outdir, parent=comsub(infiles,"/"), silent=TRUE))
if (!dir.exists(dirname(outdir))) {
print_message(
type = "error",
"The parent folder of 'outdir' (",outdir,") does not exist; ",
"please create it."
)
}
dir.create(outdir, recursive=FALSE, showWarnings=FALSE)
prod_types <- unique(infiles_meta_sen2r$prod_type)
if (is.na(subdirs)) {
subdirs <- ifelse(length(prod_types)>1, TRUE, FALSE)
}
if (subdirs) {
sapply(file.path(outdir,prod_types), dir.create, showWarnings=FALSE)
}
if (anyNA(smooth)) {smooth <- 0}
if (anyNA(buffer)) {buffer <- 0}
if (mask_type == "nomask") {
req_masks <- list()
} else if (mask_type == "nodata") {
req_masks <- list("SCL"=c(0:1))
} else if (mask_type == "cloud_high_proba") {
req_masks <- list("SCL"=c(0:1,9))
} else if (mask_type == "cloud_medium_proba") {
req_masks <- list("SCL"=c(0:1,8:9))
} else if (mask_type == "cloud_low_proba") {
req_masks <- list("SCL"=c(0:1,7:9))
} else if (mask_type == "cloud_and_shadow") {
req_masks <- list("SCL"=c(0:1,3,8:9))
} else if (mask_type == "clear_sky") {
req_masks <- list("SCL"=c(0:1,3,7:10))
} else if (mask_type == "land") {
req_masks <- list("SCL"=c(0:3,6:11))
} else if (grepl("^scl\\_", mask_type)) {
req_masks <- list("SCL"=strsplit(mask_type,"_")[[1]][-1])
}
if (output_type == "s2_mask") {
outfiles <- character(0)
outfiles_toomasked <- character(0)
} else if (output_type == "perc") {
outpercs <- numeric(0)
}
for (i in seq_along(infiles)) {try({
sel_infile <- infiles[i]
sel_infile_meta_sen2r <- c(infiles_meta_sen2r[i,])
sel_infile_meta_raster <- c(infiles_meta_raster[i,])
sel_format <- if (is.na(format)) {
sel_infile_meta_raster$outformat
} else {
format
}
sel_rmtmp <- ifelse(sel_format == "VRT", FALSE, rmtmp)
sel_out_ext <- gdal_formats[gdal_formats$name==sel_format,"ext"][1]
sel_naflag <- s2_defNA(sel_infile_meta_sen2r$prod_type)
sel_maskfiles <- sapply(names(req_masks), function(m) {
sel1 <- maskfiles_meta_sen2r$prod_type==m &
maskfiles_meta_sen2r$type==sel_infile_meta_sen2r$type &
maskfiles_meta_sen2r$mission==sel_infile_meta_sen2r$mission &
maskfiles_meta_sen2r$sensing_date==sel_infile_meta_sen2r$sensing_date &
maskfiles_meta_sen2r$id_orbit==sel_infile_meta_sen2r$id_orbit
if (!is.null(maskfiles_meta_sen2r$res) & !is.null(sel_infile_meta_sen2r$res)) {
sel1 <- sel1 &
maskfiles_meta_sen2r$res==sel_infile_meta_sen2r$res
}
maskfiles[which(sel1)][1]
})
out_subdir <- ifelse(subdirs, file.path(outdir,infiles_meta_sen2r[i,"prod_type"]), outdir)
sel_outfile <- file.path(
out_subdir,
gsub(paste0("\\.",infiles_meta_sen2r[i,"file_ext"],"$"),
paste0(".",sel_out_ext),
basename(sel_infile)))
if (!file.exists(sel_outfile) | overwrite==TRUE) {
print_message(
type = "message",
date = TRUE,
paste0("Masking file ", basename(sel_outfile),"...")
)
if (length(sel_maskfiles)==0) {
gdalUtil(
"translate",
source = sel_infile,
destination = sel_outfile,
options = c(
"-of", sel_format,
if (sel_format == "GTiff") {c(
"-co", paste0("COMPRESS=",toupper(compress)),
"-co", "TILED=YES"
)},
if (sel_format=="GTiff" & bigtiff==TRUE) {c("-co", "BIGTIFF=YES")}
),
quiet = TRUE
)
} else {
inmask <- raster::stack(sel_maskfiles)
if (Sys.info()["sysname"] == "Windows" & gsub(".*\\.([^\\.]+)$","\\1",sel_infile)=="vrt") {
gdalUtil(
"translate",
source = sel_infile,
destination = gsub("\\.vrt$",".tif",sel_infile),
options = c(
"-of", "GTiff",
"-co", paste0("COMPRESS=",toupper(compress)),
"-co", "TILED=YES",
if (bigtiff == TRUE) {c("-co", "BIGTIFF=YES")}
),
quiet = TRUE
)
sel_infile <- gsub("\\.vrt$",".tif",sel_infile)
}
sel_tmpdir <- if (autotmpdir) {
file.path(out_subdir, ".vrt")
} else {
tmpdir
}
dir.create(sel_tmpdir, showWarnings=FALSE)
mask_tmpfiles <- character(0)
naval_tmpfiles <- character(0)
for (j in seq_along(inmask@layers)) {
mask_tmpfiles <- c(
mask_tmpfiles,
file.path(sel_tmpdir, basename(tempfile(pattern = "mask_", fileext = ".tif")))
)
suppress_warnings(
raster::calc(
inmask[[j]],
function(x){as.integer(!is.na(nn(x)) & !x %in% req_masks[[j]])},
filename = mask_tmpfiles[j],
options = c(
"COMPRESS=LZW",
if (bigtiff==TRUE) {"BIGTIFF=YES"}
),
datatype = "INT1U",
overwrite = TRUE
),
"NOT UPDATED FOR PROJ >\\= 6"
)
naval_tmpfiles <- c(
naval_tmpfiles,
file.path(sel_tmpdir, basename(tempfile(pattern = "naval_", fileext = ".tif")))
)
suppress_warnings(
raster::calc(
inmask[[j]],
function(x){as.integer(!is.na(nn(x)))},
filename = naval_tmpfiles[j],
options = "COMPRESS=LZW",
datatype = "INT1U"
),
"NOT UPDATED FOR PROJ >\\= 6"
)
}
if(length(mask_tmpfiles)==1) {
outmask <- mask_tmpfiles
outnaval <- naval_tmpfiles
} else {
outmask <- file.path(sel_tmpdir, basename(tempfile(pattern = "mask_", fileext = ".tif")))
outnaval <- file.path(sel_tmpdir, basename(tempfile(pattern = "naval_", fileext = ".tif")))
raster::overlay(stack(mask_tmpfiles),
fun = sum,
filename = outmask,
options = "COMPRESS=LZW",
datatype = "INT1U")
raster::overlay(stack(naval_tmpfiles),
fun = sum,
filename = outnaval,
options = "COMPRESS=LZW",
datatype = "INT1U")
}
mean_values_naval <- raster::cellStats(raster(outnaval), "mean", na.rm = TRUE)
mean_values_mask <- raster::cellStats(raster(outmask), "mean", na.rm = TRUE)
perc_mask <- 100 * (mean_values_naval - mean_values_mask) / mean_values_naval
if (!is.finite(perc_mask)) {perc_mask <- 100}
if (output_type == "perc") {
names(perc_mask) <- sel_infile
outpercs <- c(outpercs, perc_mask)
} else if (output_type == "s2_mask") {
if (is.na(max_mask) | perc_mask <= max_mask) {
if (any(
unlist(sel_infile_meta_raster[c("res.x","res.y")]) !=
unlist(raster_metadata(outmask, "res", format = "list")[[1]]$res)
)) {
gdal_warp(
outmask,
outmask_res <- file.path(sel_tmpdir, basename(tempfile(pattern = "mask_", fileext = ".tif"))),
ref = sel_infile
)
} else {
outmask_res <- outmask
}
if (any(
unlist(sel_infile_meta_raster[c("res.x","res.y")]) !=
unlist(raster_metadata(outnaval, "res", format = "list")[[1]]$res)
)) {
gdal_warp(
outnaval,
outnaval_res <- file.path(sel_tmpdir, basename(tempfile(pattern = "naval_", fileext = ".tif"))),
ref = sel_infile
)
} else {
outnaval_res <- outnaval
}
outmask_smooth <- if (smooth > 0 | buffer != 0) {
if (sel_infile_meta_raster$unit == "degree") {
buffer <- buffer * 8.15e-6
smooth <- smooth * 8.15e-6
}
min_values_naval <- raster::cellStats(raster(outnaval), "min", na.rm = TRUE)
smooth_mask(
outmask_res,
radius = smooth, buffer = buffer,
namask = if (min_values_naval==0) {outnaval_res} else {NULL},
tmpdir = sel_tmpdir,
bigtiff = bigtiff
)
} else {
outmask_res
}
if (save_binary_mask == TRUE) {
binmask <- file.path(
ifelse(subdirs, file.path(outdir,"MSK"), outdir),
gsub(paste0("\\.",infiles_meta_sen2r[i,"file_ext"],"$"),
paste0(".",sel_out_ext),
gsub(paste0("\\_",infiles_meta_sen2r[i,"prod_type"],"\\_"),
"_MSK_",
basename(sel_infile)))
)
if (subdirs & !dir.exists(file.path(outdir,"MSK"))) {
dir.create(file.path(outdir,"MSK"))
}
if (any(!file.exists(binmask), overwrite == TRUE)) {
suppress_warnings(
raster::mask(
raster(outmask_smooth),
raster(outnaval_res),
filename = binmask,
maskvalue = 0,
updatevalue = sel_naflag,
updateNA = TRUE,
NAflag = 255,
datatype = "INT1U",
format = sel_format,
options = if(sel_format == "GTiff") {paste0("COMPRESS=",compress)},
overwrite = overwrite
),
"NOT UPDATED FOR PROJ >\\= 6"
)
}
}
inraster <- raster::brick(sel_infile)
maskapply_serial <- function(
x, y, na, out_file = '', datatype, minrows = NULL,
overwrite = overwrite
) {
if (inherits(x, "RasterStackBrick")) {
out <- brick(x, values = FALSE)
}
else {
out <- raster(x)
out@legend <- x@legend
}
if (grepl("\\.vrt$", out_file)) {
out_file <- gsub("\\.vrt$", ".tif", out_file)
}
suppress_warnings(
out <- writeStart(
out,
out_file,
NAflag=na,
datatype = datatype,
format = ifelse(sel_format=="VRT","GTiff",sel_format),
if (sel_format %in% c("GTiff","VRT")) {
options = c(
"COMPRESS=LZW",
if (bigtiff==TRUE) {"BIGTIFF=YES"}
)
},
overwrite = overwrite
),
"NOT UPDATED FOR PROJ >\\= 6"
)
bs <- blockSize(out, minblocks = 8)
if (all(inherits(stdout(), "terminal"), interactive())) {
pb <- txtProgressBar(0, bs$n, style = 3)
}
for (j in seq_len(bs$n)) {
m <- raster::getValuesBlock(y, row = bs$row[j], nrows = bs$nrows[j])
v <- raster::getValuesBlock(x, row = bs$row[j], nrows = bs$nrows[j])
v[m == 0] <- NA
out <- writeValues(out, v, bs$row[j])
gc()
if (all(inherits(stdout(), "terminal"), interactive())) {
setTxtProgressBar(pb, j)
}
}
if (all(inherits(stdout(), "terminal"), interactive())) {
message("")
}
out <- writeStop(out)
}
out <- maskapply_serial(
x = inraster,
y = raster(outmask_smooth),
out_file = sel_outfile,
na = sel_naflag,
datatype = dataType(inraster),
overwrite = TRUE
)
if (grepl("\\.vrt$", sel_outfile)) {
file.rename(gsub("\\.vrt$", ".tif", sel_outfile), sel_outfile)
}
if (sel_format=="ENVI") {fix_envi_format(sel_outfile)}
} else {
outfiles_toomasked <- c(outfiles_toomasked, sel_outfile)
}
}
if (sel_rmtmp == TRUE) {
unlink(sel_tmpdir, recursive=TRUE)
}
}
}
if (output_type == "s2_mask" & file.exists(sel_outfile)) {
outfiles <- c(outfiles, sel_outfile)
}
})}
if (rmtmp == TRUE) {
unlink(tmpdir, recursive=TRUE)
}
if (output_type == "s2_mask") {
attr(outfiles, "toomasked") <- outfiles_toomasked
return(outfiles)
} else if (output_type == "perc") {
return(outpercs)
}
}
s2_perc_masked <- function(infiles,
maskfiles,
mask_type = "cloud_medium_proba",
tmpdir = NA,
rmtmp = TRUE,
parallel = FALSE) {
.s2_mask(infiles = infiles,
maskfiles = maskfiles,
mask_type = mask_type,
smooth = 0,
buffer = 0,
max_mask = 100,
tmpdir = tmpdir,
rmtmp = rmtmp,
parallel = parallel,
output_type = "perc")
} |
bootstrap.gain <- function(df1, df2, df3, opt.cov, n.rep, p1.beg, p1.end, p2.beg,
p2.end, ratedPW, AEP, pw.freq, freq.id = 3, time.format = "%Y-%m-%d %H:%M:%S",
k.fold = 5, col.time = 1, col.turb = 2, free.sec = NULL, neg.power = FALSE, pred.return = FALSE) {
res <- rep(list(c()), n.rep)
for (i in 1:n.rep) {
message("Bootstrap Replication: ", i)
data <- arrange.data(df1, df2, df3, p1.beg, p1.end, p2.beg, p2.end, time.format,
k.fold, col.time, col.turb, bootstrap = i, free.sec, neg.power)
if (is.na(data$train)[1]) {
gain.res <- list(gainCurve = NA, gain = NA)
res[[i]] <- gain.res
} else {
id.circ <- which(opt.cov %in% c("D", "hour"))
message("Period 1 Prediction")
message(" Period 1 Prediction - REF Model")
n.dots <- floor(10/k.fold)
pred.REF <- lapply(1:k.fold, function(x) {
pred <- pred.akern(data$train[[x]]$yr, as.matrix(data$train[[x]][,
opt.cov]), as.matrix(data$test[[x]][, opt.cov]), id.circ, k = "gcv",
kernel = "gauss")
return(cbind(data$test[[x]][, c(opt.cov, "yr")], pred = pred))
})
message(" Period 1 Prediction - CTR-b Model")
pred.CTR <- lapply(1:k.fold, function(x) {
pred <- pred.akern(data$train[[x]]$yb, as.matrix(data$train[[x]][,
opt.cov]), as.matrix(data$test[[x]][, opt.cov]), id.circ, k = "gcv",
kernel = "gauss")
return(cbind(data$test[[x]][, c(opt.cov, "yb")], pred = pred))
})
bin.ref <- c(seq(0, ratedPW - 100, 100), ratedPW + 100)
bins <- lapply(pred.CTR, function(df) .bincode(df$yb, bin.ref))
bin.biasREF <- t(sapply(1:k.fold, function(x) get.biasCurve(pred.REF[[x]],
bins[[x]], bin.ref, "yr")))
bin.biasCTR <- t(sapply(1:k.fold, function(x) get.biasCurve(pred.CTR[[x]],
bins[[x]], bin.ref, "yb")))
p1.res <- list(opt.cov = opt.cov, pred.REF = pred.REF, pred.CTR = pred.CTR,
biasCurve.REF = bin.biasREF, biasCurve.CTR = bin.biasCTR)
p2.res <- analyze.p2(data$per1, data$per2, p1.res$opt.cov)
gain.res <- quantify.gain(p1.res, p2.res, ratedPW = ratedPW, AEP = AEP,
pw.freq = pw.freq)
p1.res <- p1.res[2:3]
if (pred.return)
res[[i]] <- list(gain.res = gain.res, p1.pred = p1.res, p2.pred = p2.res) else res[[i]] <- list(gain.res = gain.res)
}
}
return(res)
} |
obsv <- function(A, C) {
obsm <- t(ctrb (t(A), t(C)))
return(obsm)
} |
spec_knit_hooks <- function(
knit_hook_source = NULL, results_folding = c("none", "show", "hide")
) {
results_folding = match.arg(results_folding)
if (results_folding == "none") return(NULL)
list(
source = hook_start_results_folding(knit_hook_source),
results.folding = hook_end_results_folding()
)
} |
gfac2<-function(covlevels){
nrows<-1
ncov<-length(covlevels)
levmult <- cumprod(covlevels)
totlev<-levmult[ncov]
levmult<-c(1,levmult[-ncov])
cov<-NULL
for (j in 1:ncov) {
scov<-gl(covlevels[j],levmult[j],totlev*nrows)
cov<-cbind(cov,scov)
}
cov
} |
defaultCorrectionParams<-function() {
return(list(
varmethods = list(MeanTemperature = "unbias",
MinTemperature = "quantmap",
MaxTemperature = "quantmap",
Precipitation = "quantmap",
MeanRelativeHumidity = "unbias",
Radiation = "unbias",
WindSpeed = "quantmap"),
qstep = 0.01,
fill_wind = TRUE,
allow_saturated = FALSE,
wind_height = 10
))
} |
source(here::here("R/00_base_join.R"))
y_extra <- bind_rows(y, tibble(id = 2, y = "y5"))
anim_df <- tibble::tribble(
~.y, ~label, ~value, ~.x, ~.id, ~color, ~frame, ~obj,
-1L, "id", "1", 1, "x", "
-2L, "id", "2", 1, "x", "
-2L, "id", "2", 1, "x", "
-3L, "id", "3", 1, "x", "
-1L, "x", "x1", 2, "x", "
-2L, "x", "x2", 2, "x", "
-3L, "x", "x3", 2, "x", "
-2L, "x", "x2", 2, "x", "
-1L, "id", "1", 4, "y", "
-2L, "id", "2", 4, "y", "
-3L, "id", "4", 4, "y", "
-4L, "id", "2", 4, "y", "
-1L, "y", "y1", 5, "y", "
-2L, "y", "y2", 5, "y", "
-3L, "y", "y4", 5, "y", "
-4L, "y", "y5", 5, "y", "
-1L, "id", "1", 2, "x", "
-2L, "id", "2", 2, "x", "
-3L, "id", "2", 2, "x", "
-4L, "id", "3", 2, "x", "
-1L, "x", "x1", 3, "x", "
-2L, "x", "x2", 3, "x", "
-3L, "x", "x2", 3, "x", "
-4L, "x", "x3", 3, "x", "
-1L, "y", "y1", 4, "x", "
-2L, "y", "y2", 4, "x", "
-3L, "y", "y5", 4, "x", "
-1L, "id", "1", 2, "y", "
-2L, "id", "2", 2, "y", "
-3L, "id", "2", 2, "y", "
)
lj_extra <- anim_df %>%
arrange(obj, frame) %>%
plot_data("left_join(x, y)") %>%
animate_plot()
lj_extra <- animate(lj_extra)
anim_save(here::here("images", "left-join-extra.gif"), lj_extra)
df_names <- tibble(
.x = c(1.5, 4.5), .y = 0.25,
value = c("x", "y"),
size = 12,
color = "black"
)
g_input <- proc_data(y_extra) %>%
mutate(.x = .x + 3) %>%
bind_rows(proc_data(x)) %>%
plot_data() +
geom_text(data = df_names, family = "Fira Mono", size = 24) +
annotate("text", label = "↑ duplicate keys in y", x = 4.5, y = -4.75,
family = "Fira Sans", color = "grey45")
save_static_plot(g_input, "left-join-extra-input")
lj_g <- left_join(x, y_extra, by = "id") %>%
proc_data() %>%
mutate(.x = .x + 1) %>%
plot_data_join("left_join(x, y)", ylims = ylim(-4.5, -0.5))
save_static_plot(lj_g, "left-join-extra") |
print.ipcwsurvivalROC <- function(x,No.lines=5,digits=2,...){
if(x$iid==TRUE){
tab_ou_print<-round(cbind(x$Stats,x$AUC*100,x$inference$vect_sd_1*100),digits=digits)
colnames(tab_ou_print)<-c("Cases","Survivors","Censored","AUC (%)","se")
}
else{
tab_ou_print<-round(cbind(x$Stats,x$AUC*100),digits=digits)
colnames(tab_ou_print)<-c("Cases","Survivors","Censored","AUC (%)")
}
cat(paste("Time-dependent-Roc curve estimated using IPCW (n=",x$n, ", without competing risks). \n",sep=""))
l<-length(x$times)
if(l<=No.lines){ print(tab_ou_print) }
else{print(tab_ou_print[unique(round(quantile(1:length(x$times),probs=seq(0,1,length.out=No.lines)),0)),])}
cat("\n")
cat("Method used for estimating IPCW:")
cat(paste(x$weights$method,"\n"))
cat("\n")
cat("Total computation time :",round(x$computation_time,2)," secs.")
cat("\n")
} |
NULL
dev.curc <- function()
{
evalc(grDevices::dev.cur())
}
dev.listc <- function()
{
evalc(grDevices::dev.list())
}
dev.nextc <- function(which = grDevices::dev.cur())
{
evalc(grDevices::dev.next(which = which))
}
dev.prevc <- function(which = grDevices::dev.cur())
{
evalc(grDevices::dev.prev(which = which))
}
dev.offc <- function(which = grDevices::dev.cur())
{
if(iam("local"))
tryCatch(grDevices::dev.off(which = which))
}
dev.setc <- function(which = grDevices::dev.cur())
{
evalc(grDevices::dev.set(which = which))
}
dev.newc <- function(..., noRstudioGD = FALSE)
{
if(iam("local"))
tryCatch(grDevices::dev.new(..., noRstudioGD = noRstudioGD))
}
dev.sizec <- function(units = c("in", "cm", "px"))
{
evalc(grDevices::dev.size(units = units))
} |
library(gt)
iris_tbl <-
gt(iris) %>%
tab_spanner_delim(delim = ".") %>%
cols_move_to_start(columns = Species) %>%
fmt_number(
columns = c(Sepal.Length, Sepal.Width, Petal.Length, Petal.Width),
decimals = 1
) %>%
tab_header(
title = md("The **iris** dataset"),
subtitle = md("[All about *Iris setosa*, *versicolor*, and *virginica*]")
) %>%
tab_source_note(
source_note = md("The data were collected by *Anderson* (1935).")
)
iris_tbl |
context("Nonlinear mixed-effects models")
test_that("Print methods work", {
expect_known_output(print(fits[, 2:3], digits = 2), "print_mmkin_parent.txt")
expect_known_output(print(mmkin_biphasic_mixed, digits = 2), "print_mmkin_biphasic_mixed.txt")
expect_known_output(print(nlme_biphasic, digits = 1), "print_nlme_biphasic.txt")
})
test_that("nlme results are reproducible to some degree", {
test_summary <- summary(nlme_biphasic)
test_summary$nlmeversion <- "Dummy 0.0 for testing"
test_summary$mkinversion <- "Dummy 0.0 for testing"
test_summary$Rversion <- "Dummy R version for testing"
test_summary$date.fit <- "Dummy date for testing"
test_summary$date.summary <- "Dummy date for testing"
test_summary$time <- c(elapsed = "test time 0")
expect_known_output(print(test_summary, digits = 1), "summary_nlme_biphasic_s.txt")
dfop_sfo_pop <- as.numeric(dfop_sfo_pop)
ci_dfop_sfo_n <- summary(nlme_biphasic)$confint_back
expect_true(all(ci_dfop_sfo_n[, "upper"] > dfop_sfo_pop))
}) |
test.set.props <- function() {
m <- parse.smiles("CCCC")[[1]]
set.property(m, "foo", "bar")
checkEquals(get.property(m,"foo"), "bar")
}
test.get.properties <- function() {
m <- parse.smiles("CCCC")[[1]]
set.property(m, "foo", "bar")
set.property(m, "baz", 1.23)
props <- get.properties(m)
checkEquals(length(props), 3)
checkTrue(all(sort(names(props)) == c('baz','cdk:Title','foo')))
checkEquals(props$foo,'bar')
checkEquals(props$baz,1.23)
} |
context( "test Rank timePoints " )
seedFile <- system.file( "dataForTesting" , "seed.rds" , package = "microsamplingDesign" )
seed <- readRDS( seedFile )
rankTimePointsFile <- system.file( "dataForTesting" , "rankedTimePoints.rds" , package = "microsamplingDesign" )
rankTimePointsOrig <- readRDS( rankTimePointsFile )
suppressWarnings(RNGversion("3.5.0"))
set.seed( seed , kind = "Mersenne-Twister", normal.kind = "Inversion")
fullTimePoints <- 0:10
setOfTimePoints <- getExampleSetOfTimePoints( fullTimePoints)
pkDataExample <- getPkData( getExamplePkModel() , getTimePoints( setOfTimePoints ) , nSubjectsPerScheme = 5 , nSamples = 17 )
suppressWarnings(RNGversion("3.5.0"))
set.seed( seed , kind = "Mersenne-Twister", normal.kind = "Inversion")
rankedTimePointsNew <- rankObject( object = setOfTimePoints , pkData = pkDataExample , nGrid = 75 , nSamplesAvCurve = 13)
suppressWarnings(RNGversion("3.5.0"))
set.seed( seed , kind = "Mersenne-Twister", normal.kind = "Inversion")
rankedTimePointsNew2 <- rankObject( object = setOfTimePoints , pkData = pkDataExample , nGrid = 75 , nSamplesAvCurve = 13)
suppressWarnings(RNGversion("3.5.0"))
set.seed( seed , kind = "Mersenne-Twister", normal.kind = "Inversion")
rankedTimePointsNewDiffGrid <- rankObject( object = setOfTimePoints , pkData = pkDataExample , nGrid = 10 , nSamplesAvCurve = 13)
suppressWarnings(RNGversion("3.5.0"))
set.seed( seed , kind = "Mersenne-Twister", normal.kind = "Inversion")
rankedTimePointsNewDiffCurves <- rankObject( object = setOfTimePoints , pkData = pkDataExample , nGrid = 75 , nSamplesAvCurve = 20)
test_that( "Equal ranking timePoints" , {
expect_equal( rankTimePointsOrig@ranking , rankedTimePointsNew@ranking )
}
)
test_that( "Different ranking timePoints with different number of grid poings" , {
expect_false( identical( rankedTimePointsNew , rankedTimePointsNewDiffGrid ) )
}
)
test_that( "Different ranking timePoints with different number of sample curves" , {
expect_false( identical( rankedTimePointsNew , rankedTimePointsNewDiffCurves) )
}
) |
gemTwoCountryPureExchange_Bond <- function(...) sdm2(...) |
listFromLong <- function(foo, unit.variable, time.variable,
unit.names.variable=NULL,exclude.columns=NULL) {
if(!is.data.frame(foo)) stop("foo must be a data.frame")
DFtoList <- function(input,rowcol,colcol,colnamecol=NULL,exclude=NULL) {
stopifnot(length(dim(input))==2)
datcols <- setdiff(seq_len(ncol(input)),
c(rowcol,colcol,colnamecol,exclude))
res <- vector("list",length(datcols))
names(res) <- if (!is.null(colnames(input))) colnames(input)[datcols] else
as.character(datcols)
if (!is.null(colnamecol)) {
c2n <- na.omit(unique(input[,colnamecol]))
names(c2n) <- na.omit(unique(input[,colcol]))
}
for (i in seq_along(res)) {
idx <- !is.na(input[,datcols[i]])
rown <- unique(input[idx,rowcol])
coln <- unique(input[idx,colcol])
res[[i]] <- matrix(NA,nrow=length(rown),ncol=length(coln))
rownames(res[[i]]) <- rown
colnames(res[[i]]) <- coln
for (j in which(idx))
res[[i]][as.character(input[j,rowcol]),as.character(input[j,colcol])] <-
input[j,datcols[i]]
if (!is.null(colnamecol)) colnames(res[[i]]) <- c2n[as.character(coln)]
res[[i]] <- res[[i]][order(rownames(res[[i]])),,drop=FALSE]
}
res
}
nam2idx <- function(...,id,type="numeric") {
if (missing(id)) id <- as.character(match.call())[2]
obj <- list(`...`)[[1]]
if (length(obj)!=1) stop(paste0("\n Please specify only one ",id,"\n"))
if (!(mode(foo[,obj]) %in% type)) stop("\n ",id," not found as ",type,
" variable in foo.\n")
if (mode(obj) == "character") which(names(foo)==obj) else obj
}
unit.variable <- nam2idx(unit.variable)
time.variable <- nam2idx(time.variable,type=c("numeric","character"))
if (!is.null(unit.names.variable)) {
idx <- !(is.na(foo[,unit.variable])|is.na(foo[,unit.names.variable]))
unit.names.variable <- nam2idx(unit.names.variable,type="character")
if (length(unique(foo[idx,unit.names.variable])) !=
length(unique(foo[idx,unit.variable])))
stop("lengths of unit.names and unit.names.variable do not match")
if (length(unique(paste(foo[idx,unit.variable],foo[idx,unit.names.variable],
sep="----------"))) !=
length(unique(foo[idx,unit.variable])))
stop("unit.names and unit.names.variable do not match")
}
DFtoList(foo,rowcol=time.variable,colcol=unit.variable,
colnamecol=unit.names.variable,exclude=exclude.columns)
} |
knitr::opts_chunk$set(
collapse = TRUE,
comment = "
fig.width=6,
fig.height=4
)
options(scipen = 9999)
library(sf)
library(dplyr)
library(ncdfgeom)
prcp_data <- readRDS(system.file("extdata/climdiv-pcpndv.rds", package = "ncdfgeom"))
print(prcp_data, n_extra = 0)
plot(prcp_data$date, prcp_data$`0101`, col = "red",
xlab = "date", ylab = "monthly precip (inches)", main = "Sample Timeseries for 0101-'Northern Valley'")
lines(prcp_data$date, prcp_data$`0101`)
climdiv_poly <- read_sf(system.file("extdata/climdiv.gpkg", package = "ncdfgeom"))
print(climdiv_poly)
plot(st_geometry(climdiv_poly), main = "Climate Divisions with 0101-'Northern Valley' Highlighted")
plot(st_geometry(filter(climdiv_poly, CLIMDIV == "0101")), col = "red", add = TRUE)
climdiv_centroids <- climdiv_poly %>%
st_transform(5070) %>%
st_set_agr("constant") %>%
st_centroid() %>%
st_transform(4269) %>%
st_coordinates() %>%
as.data.frame()
nc_file <- "climdiv_prcp.nc"
prcp_dates <- prcp_data$date
prcp_data <- select(prcp_data, -date)
prcp_meta <- list(name = "climdiv_prcp_inches",
long_name = "Estimated Monthly Precipitation (Inches)")
write_timeseries_dsg(nc_file = nc_file,
instance_names = climdiv_poly$CLIMDIV,
lats = climdiv_centroids$Y,
lons = climdiv_centroids$X,
times = prcp_dates,
data = prcp_data,
data_unit = rep("inches", (ncol(prcp_data) - 1)),
data_prec = "float",
data_metadata = prcp_meta,
attributes = list(title = "Demonstation of ncdfgeom"),
add_to_existing = FALSE)
climdiv_poly <- st_sf(st_cast(climdiv_poly, "MULTIPOLYGON"))
write_geometry(nc_file = "climdiv_prcp.nc",
geom_data = climdiv_poly,
variables = "climdiv_prcp_inches")
try({ncdump <- system(paste("ncdump -h", nc_file), intern = TRUE)
cat(ncdump, sep = "\n")}, silent = TRUE)
prcp_data <- read_timeseries_dsg("climdiv_prcp.nc")
climdiv_poly <- read_geometry("climdiv_prcp.nc")
names(prcp_data)
class(prcp_data$time)
names(prcp_data$varmeta$climdiv_prcp_inches)
prcp_data$data_unit
prcp_data$data_prec
str(names(prcp_data$data_frames$climdiv_prcp_inches))
prcp_data$global_attributes
names(climdiv_poly)
p_colors <- function (n, name = c("precip_colors")) {
p_rgb <- col2rgb(c("
"
"
"
precip_colors = rgb(p_rgb[1,],p_rgb[2,],p_rgb[3,],maxColorValue = 255)
name = match.arg(name)
orig = eval(parse(text = name))
rgb = t(col2rgb(orig))
temp = matrix(NA, ncol = 3, nrow = n)
x = seq(0, 1, , length(orig))
xg = seq(0, 1, , n)
for (k in 1:3) {
hold = spline(x, rgb[, k], n = n)$y
hold[hold < 0] = 0
hold[hold > 255] = 255
temp[, k] = round(hold)
}
palette = rgb(temp[, 1], temp[, 2], temp[, 3], maxColorValue = 255)
palette
}
climdiv_poly <- climdiv_poly %>%
st_transform(3857) %>%
st_simplify(dTolerance = 5000)
title <- paste0("\n Sum of: ", prcp_data$varmeta$climdiv_prcp_inches$long_name, "\n",
format(prcp_data$time[1],
"%Y-%m", tz = "UTC"), " - ",
format(prcp_data$time[length(prcp_data$time)],
"%Y-%m", tz = "UTC"))
prcp_sum <- apply(prcp_data$data_frames$climdiv_prcp_inches,
2, sum, na.rm = TRUE)
prcp <- data.frame(CLIMDIV = names(prcp_sum),
prcp = as.numeric(prcp_sum),
stringsAsFactors = FALSE) %>%
right_join(climdiv_poly, by = "CLIMDIV") %>%
st_as_sf()
plot(prcp["prcp"], lwd = 0.1, pal = p_colors,
breaks = seq(0, 14000, 1000),
main = title,
key.pos = 3, key.length = lcm(20))
unlink("climdiv_prcp.nc") |
separate_rows <- function(data,
...,
sep = "[^[:alnum:].]+",
convert = FALSE) {
ellipsis::check_dots_unnamed()
UseMethod("separate_rows")
}
separate_rows.data.frame <- function(data,
...,
sep = "[^[:alnum:].]+",
convert = FALSE) {
vars <- tidyselect::eval_select(expr(c(...)), data)
out <- purrr::modify_at(data, vars, str_split_n, pattern = sep)
out <- unchop(as_tibble(out), any_of(vars))
if (convert) {
out[vars] <- map(out[vars], type.convert, as.is = TRUE)
}
reconstruct_tibble(data, out, names(vars))
} |
require(Rmpfr)
require(DPQmpfr)
stopifnot(all.equal(DPQ:::dntJKBf(mpfr(0, 64), 5,10),
3.66083172640611114864e-23, tol=1e-20))
dt(0, 5, 10)
(dt5.10m <- dntJKBm(mpfr(-4:4, 256), 5, 10))
stopifnot(all.equal(dt5.10m, tolerance = 1e-7 ,
c(2.604112e-29, 1.40239e-28, 1.423497e-27, 5.449437e-26,
3.660832e-23,
1.035962e-16, 2.85854e-10, 3.656286e-06, 0.0006233252)))
cbind(x = -4:4,
dt.log = dt(-4:4, 5, 10, log=TRUE),
log.dt.M = asNumeric(log(dt5.10m))) |
setMethodS3("isZero", "default", function(x, neps=1, eps=.Machine$double.eps, ...) {
if (is.character(eps)) {
eps <- match.arg(eps, choices=c("double.eps", "single.eps"))
if (eps == "double.eps") {
eps <- .Machine$double.eps
} else if (eps == "single.eps") {
eps <- sqrt(.Machine$double.eps)
}
}
(abs(x) < neps*eps)
}) |
marginalize <-
function(members, beta, weights) {
w <- weights[members]/sum(weights[members])
pvec <- colSums(beta[members,,drop=FALSE]*w)
words <- order(pvec, decreasing=TRUE)
return(list(beta=pvec, indices=words))
} |
VDJ_assemble_for_PnP <- function(VDJ.mixcr.matrix,
id.column,
species,
manual_IgKC,
manual_2A,
manual_VDJLeader,
write.to.disk,
filename,
verbose){
Nr_of_VDJ_chains <- NULL
Nr_of_VJ_chains <- NULL
platypus.version <- "v3"
if(missing(verbose)) verbose <- F
if(missing(species)) species <- "mouse"
if(missing(manual_IgKC)) manual_IgKC <- "none"
if(missing(manual_2A)) manual_2A <- "none"
if(missing(manual_VDJLeader)) manual_VDJLeader <- "none"
if(missing(write.to.disk)) write.to.disk <- T
if(missing(id.column)) id.column <- "barcode"
if(missing(filename)) filename <- "PnP_assembled_seqs"
VDJ.matrix <- VDJ.mixcr.matrix
if(all(c("Nr_of_VJ_chains", "Nr_of_VDJ_chains") %in% names(VDJ.matrix))){
if(verbose) message("\n Excluded cells with more or less than 1 VDJ 1 VJ chain")
VDJ.matrix <- subset(VDJ.matrix, Nr_of_VDJ_chains == 1 & Nr_of_VJ_chains == 1)
}
if(any(!c("VDJ_nSeqFR1", "VDJ_nSeqFR2","VDJ_nSeqFR3","VDJ_nSeqFR4","VDJ_nSeqCDR1","VDJ_nSeqCDR2","VDJ_nSeqCDR3","VJ_nSeqFR1", "VJ_nSeqFR2","VJ_nSeqFR3","VJ_nSeqFR4","VJ_nSeqCDR1","VJ_nSeqCDR2","VJ_nSeqCDR3") %in% names(VDJ.matrix))){
stop(paste0("At least one of the neccessary columns in the input matrix are missing. Neccessary columns are: VDJ_nSeqFR1, VDJ_nSeqFR2,VDJ_nSeqFR3,VDJ_nSeqFR4,VDJ_nSeqCDR1,VDJ_nSeqCDR2,VDJ_nSeqCDR3,VJ_nSeqFR1, VJ_nSeqFR2,VJ_nSeqFR3,VJ_nSeqFR4,VJ_nSeqCDR1,VJ_nSeqCDR2,VJ_nSeqCDR3"))
}
if(!id.column %in% names(VDJ.matrix)) stop("id.column not found in input matrix")
if(manual_IgKC == "none"){
if(species == "human"){ IgKC <- "CGAACTGTGGCTGCACCATCTGTCTTCATCTTCCCGCCATCTGATGAGCAGTTGAAATCTGGAACTGCCTCTGTTGTGTGCCTGCTGAATAACTTCTATCCCAGAGAGGCCAAAGTACAGTGGAAGGTGGATAACGCCCTCCAATCGGGTAACTCCCAGGAGAGTGTCACAGAGCAGGACAGCAAGGACAGCACCTACAGCCTCAGCAGCACCCTGACGCTGAGCAAAGCAGACTACGAGAAACACAAAGTCTACGCCTGCGAAGTCACCCATCAGGGCCTGAGCTCGCCCGTCACAAAGAGCTTCAACAGGGGAGAGTGT"
} else if(species == "mouse") { IgKC <- "CGGGCCGACGCGGCCCCAACTGTATCCATCTTCCCACCATCCAGTGAGCAGTTAACATCTGGAGGTGCCTCAGTCGTGTGCTTCTTGAACAACTTCTACCCCAAAGACATCAATGTCAAGTGGAAGATTGATGGCAGTGAACGACAAAATGGCGTCCTGAACAGTTGGACTGATCAGGACAGCAAAGACAGCACCTACAGCATGAGCAGCACCCTCACGTTGACCAAGGACGAGTATGAACGACATAACAGCTATACCTGTGAGGCCACTCACAAGACATCAACTTCACCCATTGTCAAGAGCTTCAACAGGAATGAGTGT"
} else {
stop("Please enter either mouse or human as the species parameter")
}
} else{
IgKC <- manual_IgKC
}
if(manual_2A == "none"){
Fur_2A <- "AGGAAAAGACGACACAAACAGAAAATTGTGGCACCGGTGAAACAGACTTTGAATTTTGACCTTCTCAAGTTGGCGGGAGACGTCGAGTCCAACCCTGGGCCC"
} else{
Fur_2A <- manual_2A
}
if(manual_VDJLeader == "none"){
VDJLeader <- "ATGATGGTGTTAAGTCTTCTGTACCTGTTGACAGCACTTCCGGGTGAGTGTTTCCATTTCATACATGTGCCATGAGGATTTTTCAAAATGTGTGATTGACAGATTTGATTCTTTTTGTCTAAAGGTATCCTGTCA"
} else{
VDJLeader <- manual_VDJLeader
}
VJLeader <- "ATGGATTTTCAGGTGCAGATTTTCAGCTTCCTGCTAATCAGCGCTTCAGTTATAATGTCCCGGGGG"
if(verbose) message("\n Got sequences; starting assembly...")
seq_frame <- VDJ.matrix[,which(names(VDJ.matrix) %in% c(id.column, "VDJ_nSeqFR1", "VDJ_nSeqFR2","VDJ_nSeqFR3","VDJ_nSeqFR4","VDJ_nSeqCDR1","VDJ_nSeqCDR2","VDJ_nSeqCDR3","VJ_nSeqFR1", "VJ_nSeqFR2","VJ_nSeqFR3","VJ_nSeqFR4","VJ_nSeqCDR1","VJ_nSeqCDR2","VJ_nSeqCDR3"))]
seq_length_check <- NULL
seq_frame$seq_length_check <- "passed"
for(i in 1:nrow(seq_frame)){
if(any(nchar(seq_frame[i,2:ncol(seq_frame)]) < 6)){
if(verbose) warning(paste0("At least one FR or CDR3 seq of cell id ",seq_frame[i,1]), " is less than 9 nt long. Please check for possible issues or missing sequences")
seq_frame$seq_length_check[i] <- "FAILED"
}
}
seq_codon_check <- NULL
seq_frame$seq_codon_check <- "passed"
for(i in 1:nrow(seq_frame)){
if(sum(nchar(seq_frame[i,2:ncol(seq_frame)]) %% 3 != 0) > 2){
if(verbose) warning(paste0("At least one FR or CDR3 seq of cell id ",seq_frame[i,1]), " does contain partial codons (i.e. sequence length not divisible by 3")
seq_frame$seq_codon_check[i] <- "FAILED"
}
}
VJ_nSeqFR4.lastnttrimmed <- NULL
VDJ_nSeqFR4.lastnttrimmed <- NULL
seq_frame$VJ_nSeqFR4.lastnttrimmed <- substr(seq_frame$VJ_nSeqFR4, start = 0, stop = nchar(seq_frame$VJ_nSeqFR4)-1)
seq_frame$VDJ_nSeqFR4.lastnttrimmed <- substr(seq_frame$VDJ_nSeqFR4, start = 0, stop = nchar(seq_frame$VDJ_nSeqFR4)-1)
pasted_seqs <- paste0(seq_frame$VJ_nSeqFR1,seq_frame$VJ_nSeqCDR1,seq_frame$VJ_nSeqFR2,seq_frame$VJ_nSeqCDR2,seq_frame$VJ_nSeqFR3,seq_frame$VJ_nSeqCDR3,seq_frame$VJ_nSeqFR4.lastnttrimmed,IgKC, Fur_2A,VDJLeader,seq_frame$VDJ_nSeqFR1,seq_frame$VDJ_nSeqCDR1,seq_frame$VDJ_nSeqFR2,seq_frame$VDJ_nSeqCDR2,seq_frame$VDJ_nSeqFR3,seq_frame$VDJ_nSeqCDR3,seq_frame$VDJ_nSeqFR4.lastnttrimmed)
nchar_frame <- seq_frame
nchar_frame$IgKC <- IgKC
nchar_frame$Fur_2A <- Fur_2A
nchar_frame$VDJLeader <- VDJLeader
nchar_frame <- nchar_frame[,c("VJ_nSeqFR1","VJ_nSeqCDR1", "VJ_nSeqFR2","VJ_nSeqCDR2","VJ_nSeqFR3","VJ_nSeqCDR3","VJ_nSeqFR4.lastnttrimmed","IgKC","Fur_2A","VDJLeader","VDJ_nSeqFR1","VDJ_nSeqCDR1", "VDJ_nSeqFR2","VDJ_nSeqCDR2","VDJ_nSeqFR3","VDJ_nSeqCDR3","VDJ_nSeqFR4.lastnttrimmed")]
for(i in 1:nrow(nchar_frame)){
nchar_frame[i,] <- cumsum(nchar(nchar_frame[i,]))
}
pasted_annotations <- paste0(
"VJ_FR1 -> ",nchar_frame$VJ_nSeqFR1," | VJ_CDRL -> ",nchar_frame$VJ_nSeqCDR1,
" | VJ_FR2 -> ",nchar_frame$VJ_nSeqFR2," | VJ_CDR2 -> ",nchar_frame$VJ_nSeqCDR2,
" | VJ_FR3 -> ",nchar_frame$VJ_nSeqFR3," | VJ_CDR3 -> ",nchar_frame$VJ_nSeqCDR3,
" | VJ_FRL4.lastnttrimmed -> ",nchar_frame$VJ_nSeqFR4.lastnttrimmed,
" | IgKC -> ",nchar_frame$IgKC, " | Fur 2A -> ",nchar_frame$Fur_2A,
" | VDJLeader -> ",nchar_frame$VDJLeader,
" | VDJ_FRH1 -> ",nchar_frame$VDJ_nSeqFR1," | VDJ_CDR1 -> ",nchar_frame$VDJ_nSeqCDR1,
" | VDJ_FR2 -> ",nchar_frame$VDJ_nSeqFR2," | VDJ_CDR2 -> ",nchar_frame$VDJ_nSeqCDR2,
" | VDJ_FR3 -> ",nchar_frame$VDJ_nSeqFR3," | VDJ_CDR3 -> ",nchar_frame$VDJ_nSeqCDR3,
" | VDJ_FR4.lastnttrimmed -> ",nchar_frame$VDJ_nSeqFR4.lastnttrimmed)
PnP_assembled_seqs <- NULL
PnP_assembled_annotations <- NULL
seq_frame$PnP_assembled_seqs <- pasted_seqs
seq_frame$PnP_assembled_annotations <- pasted_annotations
leader_seqs_pasted <- paste0(VJLeader, seq_frame$PnP_assembled_seqs)
trans_test <- as.character(Biostrings::translate(Biostrings::DNAStringSet(leader_seqs_pasted)))
trans_VJ_CDR3s <- as.character(Biostrings::translate(Biostrings::DNAStringSet(seq_frame$VJ_nSeqCDR3)))
trans_VDJ_CDR3s <- as.character(Biostrings::translate(Biostrings::DNAStringSet(seq_frame$VDJ_nSeqCDR3)))
PnP_assembled_translations <- NULL
seq_frame$PnP_assembled_translations <- trans_test
if(verbose) message("\n Please note: the sequences in the PnP_assembled_translations column resulted from pasting the VJ leader sequence (contained in the PnP vector backbone) and the PnP_assembled_seqs (The insert itself)")
seq_VJCDR3_check <- NULL
seq_frame$seq_VJCDR3_check <- "passed"
seq_Fur2A_check <- NULL
seq_frame$seq_Fur2A_check <- "passed"
seq_VDJCDR3_check <- NULL
seq_frame$seq_VDJCDR3_check <- "passed"
seq_splicesite_check <- NULL
seq_frame$seq_splicesite_check <- "passed"
for(i in 1:nrow(seq_frame)){
if(!stringr::str_detect(seq_frame$PnP_assembled_translations[i], pattern = trans_VJ_CDR3s[i])){
if(verbose) warning(paste0("Correct VJ CDR3 AA seq not found in the assembled sequence for cell id ", seq_frame[i,1]), "!")
seq_frame$seq_VJCDR3_check[i] <- "FAILED"
}
if(!stringr::str_detect(seq_frame$PnP_assembled_translations[i], pattern = as.character(Biostrings::translate(Biostrings::DNAStringSet(Fur_2A))))){
if(verbose) warning(paste0("Correct Furine 2A AA seq not found in the assembled sequence for cell id ", seq_frame[i,1]), "!")
seq_frame$seq_Fur2A_check[i] <- "FAILED"
}
if(!stringr::str_detect(seq_frame$PnP_assembled_translations[i], pattern = trans_VDJ_CDR3s[i])){
if(verbose) warning(paste0("Correct VDJ CDR3 AA seq not found in the assembled sequence for cell id ", seq_frame[i,1]), "!")
seq_frame$seq_VDJCDR3_check[i] <- "FAILED"
}
if(!substr(seq_frame$PnP_assembled_seqs[i], start = nchar(seq_frame$PnP_assembled_seqs[i])-5, stop = 10000) %in% c("TCCTCA", "TCTTCA","TCGTCA","TCATCA")){
if(verbose) warning(paste0("Splicing site not found at end of VDJ FR4 in the assembled sequence for cell id ", seq_frame[i,1]), "! Valid splicing site requires a TCA at the sequence end")
seq_frame$seq_splicesite_check[i] <- "FAILED"
}
}
cat("\n Assembly and checks done")
if(verbose) message("\n Adding additional columns to VDJ.mixcr.matrix input")
VDJ.matrix <- cbind(VDJ.matrix, seq_frame)
if(write.to.disk == F){
if(verbose) message("\n Done")
return(VDJ.matrix)
} else {
if(verbose) message("\n Building .FASTA and .csv file")
fasta_names <- paste0("Seq ID: ", seq_frame[,1], " | seq_length_check: ", seq_frame$seq_length_check," | seq_codon_check: ", seq_frame$seq_codon_check, " | seq_VJCDR3_check: ", seq_frame$seq_VJCDR3_check," | seq_Fur2A_check: ", seq_frame$seq_Fur2A_check," | seq_VDJCDR3_check: ", seq_frame$seq_VDJCDR3_check," | seq_splicesite_check: ", seq_frame$seq_splicesite_check, " Annotations: ", seq_frame$PnP_assembled_annotations)
seqinr::write.fasta(as.list(unlist(seq_frame$PnP_assembled_seqs)), names = fasta_names, file.out = paste0(filename,".fasta"))
utils::write.csv(seq_frame, file = paste0(filename,".csv"))
if(verbose) message("\n Done \n")
return(VDJ.matrix)
}
} |
bag_o_words <-
function(text.var, apostrophe.remove = FALSE, ...) {
if (identical(list(), list(...))) {
bag_o_words1(x = text.var, apostrophe.remove = apostrophe.remove, ...)
} else {
bag_o_words2(x = text.var, apostrophe.remove = apostrophe.remove)
}
}
bag_o_words1 <-
function(x, apostrophe.remove = FALSE) {
x <- gsub("\\|", "", x[!is.na(x)])
x <- paste(x, collapse=" ")
if(apostrophe.remove) {
reg <- "[^[:alpha:]]"
x <- gsub("'", "", x)
} else {
reg <- "[^[:alpha:]|\\']"
}
x <- strsplit(tolower(gsub(reg, " ", x)), "\\s+")[[1]]
x[x != ""]
}
bag_o_words2 <-
function(x, apostrophe.remove = FALSE, ...) {
unblanker(words(strip(clean(x),
apostrophe.remove = apostrophe.remove, ...)))
}
unbag <- function(text.var, na.rm = TRUE) {
text.var <- unlist(text.var)
if (na.rm) text.var <- text.var[!is.na(text.var)]
paste(text.var, collapse=" ")
}
breaker <-
function(text.var) {
unblanker(unlist(strsplit(as.character(text.var),
"[[:space:]]|(?=[|.!?*-])", perl=TRUE)))
}
word_split <-
function (text.var) {
x <- reducer(Trim(clean(text.var)))
sapply(x, function(x) {
unblanker(unlist(strsplit(x, "[[:space:]]|(?=[.!?*-])", perl = TRUE)))
}, simplify = FALSE
)
} |
comment_out <- function(m, pattern = ".*") {
m %>% gsub_ctl(paste0("(", pattern, ")"), "; \\1")
}
uncomment <- function(m, pattern = ".*") {
m %>% gsub_ctl(paste0("^;+\\s*(", pattern, ")"), "\\1")
}
gsub_ctl <- function(m, pattern, replacement, ..., dollar = NA_character_) {
UseMethod("gsub_ctl")
}
gsub_ctl.nm_generic <- function(m, pattern, replacement, ..., dollar = NA_character_) {
text <- get_target_text(m)
text <- gsub(pattern, replacement, text, ...)
m <- m %>% set_target_text(text)
m
}
gsub_ctl.nm_list <- Vectorize_nm_list(gsub_ctl.nm_generic, SIMPLIFY = FALSE)
search_ctl_name <- function(r, models_dir = nm_dir("models")) {
if (inherits(r, "nm")) ctl_name <- r$ctl
if (inherits(r, "numeric") | inherits(r, "character")) {
r <- as.character(r)
rtemp <- normalizePath(r, mustWork = FALSE)
if (file.exists2(rtemp)) {
ctl_name <- rtemp
} else {
stop("cant find ctl_name")
}
}
ctl_name
}
is_dollar_line <- function(l) grepl("^\\s*;*\\s*\\$", l)
is_nm_comment_line <- function(l) grepl("^\\s*;", l)
rem_dollars <- function(s) gsub("\\s*\\$\\S*\\s*", "", s)
rem_comment <- function(s, char = ";") gsub(paste0("^([^", char, "]*)", char, "*.*$"), "\\1", s)
get_comment <- function(s, char = ";") gsub(paste0("^[^", char, "]*", char, "*(.*)$"), "\\1", s)
setup_dollar <- function(x, type, add_dollar_text = TRUE) {
if (add_dollar_text) {
if (!grepl(paste0("\\s*\\", type), x[1], ignore.case = TRUE)) {
if (grepl("THETA|OMEGA|SIGMA|PK|PRED|ERROR|DES", type)) {
x <- c(type, x)
} else {
x[1] <- paste(type, x[1])
}
}
}
x <- strsplit(x, "\n")
x <- sapply(x, function(i) {
if (length(i) == 0) "" else i
})
names(x) <- NULL
class(x) <- c(paste0("nm.", tolower(gsub("^\\$", "", type))), "nm_subroutine")
x
}
ctl_character <- function(r) {
if (inherits(r, "ctl_character")) {
return(r)
}
if (inherits(r, "nmexecute")) {
ctl <- readLines(r$ctl)
class(ctl) <- c("ctl_character", "character")
attr(ctl, "file_name") <- r$ctl
return(ctl)
}
if (inherits(r, "ctl_list")) {
file_name <- attributes(r)$file_name
ctl <- ctl_r2nm(r)
attr(ctl, "file_name") <- file_name
return(ctl)
}
if (inherits(r, "character")) {
if (length(r) == 1) {
ctl_name <- search_ctl_name(r)
ctl <- readLines(ctl_name)
class(ctl) <- c("ctl_character", "character")
attr(ctl, "file_name") <- ctl_name
return(ctl)
} else {
class(r) <- c("ctl_character", "character")
return(r)
}
}
stop("cannot coerce to ctl_character")
}
ctl_list <- function(r) {
UseMethod("ctl_list")
}
ctl_list.ctl_character <- function(r) {
ctl <- ctl_nm2r(r)
attr(ctl, "file_name") <- attributes(r)$file_name
ctl
}
ctl_list.ctl_list <- function(r) {
r
}
ctl_list.character <- function(r) {
if (length(r) == 1) {
ctl <- ctl_character(r)
file_name <- attributes(ctl)$file_name
ctl <- ctl_nm2r(ctl)
attr(ctl, "file_name") <- file_name
return(ctl)
} else {
stop("cannot coerce to ctl_list")
}
}
ctl_nm2r <- function(ctl) {
ctl0 <- ctl
dol <- grep("^\\s*\\$", ctl)
dol <- which(is_dollar_line(ctl))
dol[1] <- 1
dol.type <- function(ctl) {
sc <- paste(ctl, collapse = " ")
type <- gsub("^[^\\$]*\\$([\\S]+).*$", "\\1", sc, perl = TRUE)
type <- getOption("available_nm_types")[grep(substr(type, 1, 3), getOption("available_nm_types"))]
if (length(type) == 0) type <- NA
type
}
ctl2 <- list()
start <- dol[1]
finish <- dol[2] - 1
for (i in seq_along(dol)) {
start <- dol[i]
if (finish + 1 < start) start <- finish + 1
finish <- dol[i + 1] - 1
if (i == length(dol)) {
finish <- length(ctl)
} else {
last.line <- ctl[finish]
while (is_nm_comment_line(last.line) & !is_dollar_line(last.line)) {
finish <- finish - 1
last.line <- ctl[finish]
}
}
tmp <- ctl[start:finish]
type <- dol.type(tmp)
if (is.na(type)) type <- paste0("UNKNOWN", i)
class(tmp) <- c(paste0("nm.", tolower(gsub("^\\$", "", type))), "nm_subroutine")
ctl2[[i]] <- tmp
}
ctl <- ctl2
x <- lapply(ctl, function(s) class(s))
for (i in rev(seq_along(x))) {
if (i == 1) break
if (identical(x[i], x[i - 1])) {
ctl[[i - 1]] <- c(ctl[[i - 1]], ctl[[i]])
class(ctl[[i - 1]]) <- class(ctl[[i]])
ctl[[i]] <- NULL
}
}
names(ctl) <- sapply(ctl, function(s) gsub("NM\\.", "", toupper(class(s)[1])))
class(ctl) <- "ctl_list"
ctl
}
ctl_r2nm <- function(x) {
ctl <- unlist(x, use.names = FALSE)
class(ctl) <- c("ctl_character")
ctl
}
theta_nm2r <- function(x) {
x <- rem_dollars(x)
x <- gsub("FIX", "", x)
x <- x[!grepl("^\\s*$", x)]
x <- gsub("\\t", " ", x)
x <- x[!grepl("^\\s*;.*", x)]
x0 <- x
x <- rem_comment(x, ";")
x <- paste(x, collapse = " ")
x <- gsub("\\(\\s*\\S*(\\s*)\\S*(\\s\\)S*\\s)\\)", "\\(~", x)
x <- gsub("\\(", "\\(~", x)
x <- strsplit(x, "\\(|\\)")[[1]]
x <- x[!grepl("^\\s*$", x)]
x <- lapply(x, function(x) {
if (substr(x, 1, 1) != "~") {
x <- strsplit(x, "[ ,]")[[1]]
x <- x[!x %in% c("", "FIX")]
x <- suppressWarnings(as.numeric(x))
x <- data.frame(lower = NA, init = x, upper = NA)
} else {
x <- gsub("~", "", x)
x <- strsplit(x, "[ ,]")[[1]]
x <- x[!x %in% c("", "FIX")]
x <- suppressWarnings(as.numeric(x))
if (length(x) == 1) {
x <- data.frame(lower = NA, init = x, upper = NA)
} else
if (length(x) == 2) {
x <- data.frame(lower = x[1], init = x[2], upper = NA)
} else
if (length(x) == 3) x <- data.frame(lower = x[1], init = x[2], upper = x[3])
if (!length(x) %in% 1:3) stop("can't figure out bounds")
}
x
})
x <- do.call(rbind, x)
x$N <- 1:nrow(x)
class(x) <- c(class(x), "r.theta")
comments <- get_comment(x0, ";")
if (length(comments) > max(x$N)) {
warning("More comments than THETAs found. Something wrong")
comments <- rep("", max(x$N))
}
tmp <- strsplit(comments, ";")
x$name <- sapply(tmp, "[", 1)
x$name <- rem_trailing_spaces(x$name)
x$unit <- sapply(tmp, "[", 2)
x$unit <- rem_trailing_spaces(x$unit)
x$trans <- sapply(tmp, "[", 3)
x$trans <- rem_trailing_spaces(x$trans)
x$trans[is.na(x$trans) & x$lower %in% 0] <- "RATIO"
x$parameter <- paste0("THETA", x$N)
x
}
rem_trailing_spaces <- function(x) {
x <- gsub("\\s(?!\\S)", "", x, perl = TRUE)
x <- gsub("^\\s*", "", x, perl = TRUE)
x[grepl("^ *$", x)] <- NA
x
}
param_info <- function(ctl) {
UseMethod("param_info")
}
param_info.default <- function(ctl) {
ctl <- ctl_list(ctl)
if ("THETA" %in% names(ctl)) {
return(theta_nm2r(ctl$THETA))
} else {
return(data.frame())
}
}
param_info.nm_generic <- function(ctl) {
ctl <- ctl_list2(ctl)
if ("THETA" %in% names(ctl)) {
return(theta_nm2r(ctl$THETA))
} else {
return(data.frame())
}
}
param_info.nm_list <- function(ctl) param_info(as_nm_generic(ctl))
nonmem_code_to_r <- function(code, eta_to_0 = TRUE) {
pk_block <- rem_comment(code)
pk_block <- pk_block[!grepl("^\\s*\\$.*", pk_block)]
if (eta_to_0) {
pk_block <- gsub("\\bETA\\(([0-9]+)\\)", "0", pk_block)
}
pk_block <- gsub("ETA\\(([0-9]+)\\)", "ETA\\1", pk_block)
pk_block <- gsub("\\bLOG\\b", "log", pk_block)
pk_block <- gsub("\\bEXP\\b", "exp", pk_block)
pk_block <- gsub("\\bIF\\b", "if", pk_block)
pk_block <- gsub("\\bTHEN\\b", "{", pk_block)
pk_block <- gsub("\\bENDIF\\b", "}", pk_block)
pk_block <- gsub("\\bELSE\\b", "} else {", pk_block)
pk_block <- gsub("\\.EQ\\.", "==", pk_block)
pk_block <- gsub("\\.NE\\.", "!=", pk_block)
pk_block <- gsub("\\.EQN\\.", "==", pk_block)
pk_block <- gsub("\\.NEN\\.", "!=", pk_block)
pk_block <- gsub("\\./E\\.", "!=", pk_block)
pk_block <- gsub("\\.GT\\.", ">", pk_block)
pk_block <- gsub("\\.LT\\.", "<", pk_block)
pk_block <- gsub("\\.GE\\.", ">=", pk_block)
pk_block <- gsub("\\.LE\\.", "<=", pk_block)
pk_block
}
print.nm_subroutine <- function(x, ...) {
cat(paste0(format(seq_along(x), width = 3), "| ", x), sep = "\n")
}
grab_variables0 <- function(text, pattern) {
text_separated <- text %>%
paste0(collapse = "\n") %>%
stringr::str_split("(\n|\\s|\\+|\\-|\\=|\\*|\\/)") %>%
unlist()
text_separated <- text_separated[grepl(pattern, text_separated)]
text_separated <- gsub(paste0(".*(", pattern, ").*"), "\\1", text_separated)
unique(text_separated)
}
grab_variables <- function(m, pattern) {
text <- m %>% text()
grab_variables0(text, pattern)
} |
factory <- function (fun, debug=FALSE,
errval="An error occurred in the factory function",
types=c("message","warning","error")) {
function(...) {
errorOccurred <- FALSE
warn <- err <- msg <- NULL
res <- withCallingHandlers(tryCatch(fun(...),
error = function(e) {
if (debug) cat("error: ",conditionMessage(e),"\n")
err <<- conditionMessage(e)
errorOccurred <<- TRUE
NULL
}), warning = function(w) {
if (!"warning" %in% types) {
warning(conditionMessage(w))
} else {
warn <<- append(warn, conditionMessage(w))
invokeRestart("muffleWarning")
}
},
message = function(m) {
if (debug) cat("message: ",conditionMessage(m),"\n")
if (!"message" %in% types) {
message(conditionMessage(m))
} else {
msg <<- append(msg, conditionMessage(m))
invokeRestart("muffleMessage")
}
})
if (errorOccurred) {
if (!"error" %in% types) stop(err)
res <- errval
}
setattr <- function(x, attrib, value) {
attr(x,attrib) <- value
x
}
attr_fun <- function(x,str,msg) {
setattr(x,paste0("factory-",str), if(is.character(msg)) msg else NULL)
}
res <- attr_fun(res, "message", msg)
res <- attr_fun(res, "warning", warn)
res <- attr_fun(res, "error", err)
return(res)
}
}
|
weighted_colSums <- function( mat, wgt=NULL)
{
wgt <- weighted_stats_extend_wgt( wgt=wgt, mat=mat )
mat1 <- colSums( mat * wgt, na.rm=TRUE)
return(mat1)
} |
plot.mudens <- function (x, ...) {
y <- x$haz.est
if (x$pin$dens == 0) {
plot(x$est.grid, y, type = "l", ylim = c(0, max(y)),
xlab = "Follow-up Time", ylab = "Hazard Rate", ...)
}
else {
plot(x$est.grid, y, type = "l", ylim = c(0, max(y)),
xlab = "Follow-up Time", ylab = "Density", ...)
}
return(invisible())
} |
makeRLearner.classif.__mlrmocklearners__1 = function() {
makeRLearnerClassif(
cl = "classif.__mlrmocklearners__1", package = character(0L), par.set = makeParamSet(),
properties = c("twoclass", "multiclass", "missings", "numerics", "factors", "prob")
)
}
trainLearner.classif.__mlrmocklearners__1 = function(.learner, .task, .subset, .weights = NULL, ...) list()
predictLearner.classif.__mlrmocklearners__1 = function(.learner, .model, .newdata, ...) stop("foo")
registerS3method("makeRLearner", "classif.__mlrmocklearners__1", makeRLearner.classif.__mlrmocklearners__1)
registerS3method("trainLearner", "classif.__mlrmocklearners__1", trainLearner.classif.__mlrmocklearners__1)
registerS3method("predictLearner", "classif.__mlrmocklearners__1", predictLearner.classif.__mlrmocklearners__1)
makeRLearner.classif.__mlrmocklearners__2 = function() {
makeRLearnerClassif(
cl = "classif.__mlrmocklearners__2", package = character(0L),
par.set = makeParamSet(
makeNumericLearnerParam("alpha", lower = 0, upper = 1)
),
properties = c("twoclass", "multiclass", "missings", "numerics", "factors", "prob")
)
}
trainLearner.classif.__mlrmocklearners__2 = function(.learner, .task, .subset, .weights = NULL, alpha, ...) {
if (alpha < 0.5) {
stop("foo")
}
list()
}
predictLearner.classif.__mlrmocklearners__2 = function(.learner, .model, .newdata, ...) {
as.factor(sample(.model$task.desc$class.levels, nrow(.newdata), replace = TRUE))
}
registerS3method("makeRLearner", "classif.__mlrmocklearners__2", makeRLearner.classif.__mlrmocklearners__2)
registerS3method("trainLearner", "classif.__mlrmocklearners__2", trainLearner.classif.__mlrmocklearners__2)
registerS3method("predictLearner", "classif.__mlrmocklearners__2", predictLearner.classif.__mlrmocklearners__2)
makeRLearner.classif.__mlrmocklearners__3 = function() {
makeRLearnerClassif(
cl = "classif.__mlrmocklearners__3", package = character(0L), par.set = makeParamSet(),
properties = c("twoclass", "multiclass", "missings", "numerics", "factors", "prob")
)
}
trainLearner.classif.__mlrmocklearners__3 = function(.learner, .task, .subset, .weights = NULL, ...) stop("foo")
predictLearner.classif.__mlrmocklearners__3 = function(.learner, .model, .newdata, ...) 1L
registerS3method("makeRLearner", "classif.__mlrmocklearners__3", makeRLearner.classif.__mlrmocklearners__3)
registerS3method("trainLearner", "classif.__mlrmocklearners__3", trainLearner.classif.__mlrmocklearners__3)
registerS3method("predictLearner", "classif.__mlrmocklearners__3", predictLearner.classif.__mlrmocklearners__3)
makeRLearner.regr.__mlrmocklearners__4 = function() {
makeRLearnerRegr(
cl = "regr.__mlrmocklearners__4", package = character(0L),
par.set = makeParamSet(
makeNumericLearnerParam("p1", when = "train"),
makeNumericLearnerParam("p2", when = "predict"),
makeNumericLearnerParam("p3", when = "both")
),
properties = c("missings", "numerics", "factors")
)
}
trainLearner.regr.__mlrmocklearners__4 = function(.learner, .task, .subset, .weights = NULL, p1, p3, ...) {
list(foo = p1 + p3)
}
predictLearner.regr.__mlrmocklearners__4 = function(.learner, .model, .newdata, p2, p3) {
y = rep(1, nrow(.newdata))
y * .model$learner.model$foo + p2 + p3
}
registerS3method("makeRLearner", "regr.__mlrmocklearners__4", makeRLearner.regr.__mlrmocklearners__4)
registerS3method("trainLearner", "regr.__mlrmocklearners__4", trainLearner.regr.__mlrmocklearners__4)
registerS3method("predictLearner", "regr.__mlrmocklearners__4", predictLearner.regr.__mlrmocklearners__4)
makeRLearner.classif.__mlrmocklearners__5 = function() {
makeRLearnerClassif(
cl = "classif.__mlrmocklearners__5",
package = "mlr",
par.set = makeParamSet(
makeDiscreteLearnerParam(id = "a", values = c("x", "y")),
makeNumericLearnerParam(id = "b", lower = 0.0, upper = 1.0, requires = expression(a == "x"))
),
properties = c("twoclass", "multiclass", "numerics", "factors", "prob")
)
}
trainLearner.classif.__mlrmocklearners__5 = function(.learner, .task, .subset, .weights = NULL, ...) {
}
predictLearner.classif.__mlrmocklearners__5 = function(.learner, .model, .newdata) {
rep(factor(.model$factor.levels[[.model$task.desc$target]][1]), nrow(.newdata))
}
registerS3method("makeRLearner", "classif.__mlrmocklearners__5", makeRLearner.classif.__mlrmocklearners__5)
registerS3method("trainLearner", "classif.__mlrmocklearners__5", trainLearner.classif.__mlrmocklearners__5)
registerS3method("predictLearner", "classif.__mlrmocklearners__5", predictLearner.classif.__mlrmocklearners__5)
makeRLearner.regr.__mlrmocklearners__6 = function() {
makeRLearnerRegr(
cl = "regr.__mlrmocklearners__6", package = character(0L),
par.set = makeParamSet(),
properties = c("missings", "numerics", "factors", "weights")
)
}
trainLearner.regr.__mlrmocklearners__6 = function(.learner, .task, .subset, .weights = NULL, ...) {
list(weights = .weights)
}
predictLearner.regr.__mlrmocklearners__6 = function(.learner, .model, .newdata) {
rep(1, nrow(.newdata))
}
registerS3method("makeRLearner", "regr.__mlrmocklearners__6", makeRLearner.regr.__mlrmocklearners__6)
registerS3method("trainLearner", "regr.__mlrmocklearners__6", trainLearner.regr.__mlrmocklearners__6)
registerS3method("predictLearner", "regr.__mlrmocklearners__6", predictLearner.regr.__mlrmocklearners__6)
makeRLearner.classif.__mlrmocklearners__6 = function() {
makeRLearnerClassif(
cl = "classif.__mlrmocklearners__6", package = character(0L),
par.set = makeParamSet(),
properties = c("missings", "numerics", "factors", "weights", "twoclass", "multiclass")
)
}
trainLearner.classif.__mlrmocklearners__6 = function(.learner, .task, .subset, .weights = NULL, ...) {
list(weights = .weights)
}
predictLearner.classif.__mlrmocklearners__6 = function(.learner, .model, .newdata) {
rep(1, nrow(.newdata))
}
registerS3method("makeRLearner", "classif.__mlrmocklearners__6", makeRLearner.classif.__mlrmocklearners__6)
registerS3method("trainLearner", "classif.__mlrmocklearners__6", trainLearner.classif.__mlrmocklearners__6)
registerS3method("predictLearner", "classif.__mlrmocklearners__6", predictLearner.classif.__mlrmocklearners__6) |
"sse.bridges" <- function(sse, type="helix", hbond=TRUE,
energy.cut=-1.0 ) {
if(missing(sse))
stop("sse missing")
if(is.null(sse$hbonds))
stop("sse$hbonds does not exists. run dssp with 'resno=FALSE' and 'full=TRUE'")
natoms <- nrow(sse$hbonds)
if(type=="helix") {
sse2 <- sse$helix
stype <- "H"
lim <- 4
}
if(type=="sheet") {
sse2 <- sse$sheet
stype <- "S"
lim <- 2
}
if(length(sse2$start)==0)
return(NULL)
simple.sse <- sse$sse
simple.sse[ !(sse$sse %in% c("H", "E", "G", "I")) ] <- "L"
simple.sse[ sse$sse %in% c("E") ] <- "S"
simple.sse[ sse$sse %in% c("H", "I", "G") ] <- "H"
inds <- NULL
for ( i in 1:(natoms-lim) ) {
if(simple.sse[i]!=stype)
next;
paired <- NULL
if(type=="helix") {
paired <- i+4
if(simple.sse[paired]!=stype)
next;
}
if (type=="sheet") {
paired <- sse$hbonds[i,c("BP1", "BP2")]
paired <- paired[ !is.na(paired) ]
if(length(paired)==0)
next;
}
if(hbond) {
resid <- sse$hbonds[i, c(3,5,7,9)]
energ <- sse$hbonds[i, c(4,6,8,10)]
energ <- energ[ !is.na(resid) ]
resid <- resid[ !is.na(resid) ]
inds.tmp <- which(resid %in% paired)
resid <- resid[inds.tmp]
energ <- energ[inds.tmp]
dups <- duplicated(resid)
resid <- resid[ !dups ]
energ <- energ[ !dups ]
if(length(resid)==0)
next;
for( j in 1:length(resid) ) {
if(energ[j] < energy.cut)
inds <- c(inds, i, resid[j])
}
}
else {
for ( j in 1:length(paired) ) {
inds <- c(inds, i, paired[j])
}
}
}
if(length(inds)==0)
return(NULL)
mat <- matrix(inds, ncol=2, byrow=T)
mat <- t(apply(mat, 1, sort))
pair.ids <- apply(mat, 1, function(x) paste(x, collapse="-"))
mat <- matrix(mat[!duplicated(pair.ids), ], ncol=2)
return(mat)
} |
snr_rms <- function(int, baseline, gauge) {
SNR <- 0
int <- sort(int - baseline)
Signal <- max(int)
xN <- which(int/Signal < (1-gauge))
NVec <- int[xN]
Noise <- sqrt(sum(NVec^2)/length(NVec))
if (is.na(Noise) == FALSE) {
if (Noise != 0) {
SNR <- Signal/Noise
} else {
SNR <- Inf
}
}
return(SNR)
} |
tidy.lmRob <- function(x, ...) {
co <- stats::coef(summary(x))
ret <- as_tibble(co, rownames = "term")
names(ret) <- c("term", "estimate", "std.error", "statistic", "p.value")
ret
}
augment.lmRob <- function(x, data = model.frame(x), newdata = NULL, ...) {
passed_newdata <- !is.null(newdata)
df <- if (passed_newdata) newdata else data
df <- as_augment_tibble(df)
rows <- split(df, 1:nrow(df))
preds <- purrr::map(rows, ~ predict(x, newdata = .x))
no_pred <- purrr::map_lgl(preds, ~ length(.x) == 0)
preds[no_pred] <- NA
df$.fitted <- as.numeric(preds)
resp <- safe_response(x, df)
if (!is.null(resp)) {
df$.resid <- df$.fitted - resp
}
df
}
glance.lmRob <- function(x, ...) {
as_glance_tibble(
r.squared = x$r.squared,
deviance = x$dev,
sigma = summary(x)$sigma,
df.residual = x$df.residual,
nobs = stats::nobs(x),
na_types = "rrrii"
)
} |
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL |
test_that("dictionary constructors fail if all elements unnamed: explicit", {
expect_error(dictionary(list(c("a", "b"), "c")),
"Dictionary elements must be named: a b c")
expect_error(dictionary(list(first = c("a", "b"), "c")),
"Unnamed dictionary entry: c")
})
test_that("dictionary constructors fail if all elements unnamed: implicit", {
expect_error(dictionary(list(c("a", "b"), "c")),
"Dictionary elements must be named: a b c")
expect_error(dictionary(list(first = c("a", "b"), "c")),
"Unnamed dictionary entry: c")
})
test_that("dictionary constructors fail if a value is numeric", {
expect_error(dictionary(list(first = c("a", "b"), second = 2016)),
"Non-character entries found in dictionary key 'second'")
expect_error(dictionary(list(first = c("a", "b"), second = c("c", NA))),
"Non-character entries found in dictionary key 'second'")
})
test_that("dictionary constructor ignores extra arguments", {
expect_error(
dictionary(list(first = c("a", "b"), second = "c"), something = TRUE),
"unused argument \\(something = TRUE\\)"
)
})
marydict <- dictionary(list("A CATEGORY" = c("more", "lamb", "little"),
"ANOTHER CATEGORY" = c("had", "mary")))
test_that("dictionary constructor works with wordstat format", {
expect_equivalent(dictionary(file = "../data/dictionaries/mary.cat"),
marydict)
})
test_that("dictionary constructor works with Yoshikoder format", {
expect_equivalent(dictionary(file = "../data/dictionaries/mary.ykd"),
marydict)
})
test_that("dictionary constructor works with YAML format", {
expect_equivalent(dictionary(file = "../data/dictionaries/mary.yml"),
marydict)
})
test_that("dictionary constructor works with LIWC format", {
expect_equivalent(dictionary(file = "../data/dictionaries/mary.dic"),
dictionary(list(A_CATEGORY = c("lamb", "little", "more"),
ANOTHER_CATEGORY = c("had", "mary"))))
})
test_that("dictionary constructor works with Lexicoder format", {
expect_equivalent(dictionary(file = "../data/dictionaries/mary.lcd"),
marydict)
})
test_that("read a dictionary with NA as a key", {
testdict <- dictionary(file = "../data/dictionaries/issue-459.cat")
expect_true("NA" %in% names(testdict$SOUTH))
})
test_that("as.yaml is working", {
expect_equivalent(quanteda::as.yaml(marydict),
"A CATEGORY:\n - more\n - lamb\n - little\nANOTHER CATEGORY:\n - had\n - mary\n")
})
test_that("dictionary works with different encoding", {
skip_on_os("windows")
suppressWarnings({
expect_equivalent(dictionary(file = "../data/dictionaries/iso-8859-1.cat", tolower = FALSE),
dictionary(list("LATIN" = c("B", "C", "D"), "NON-LATIN" = c("Bh", "Ch", "Dh")), tolower = FALSE))
expect_equivalent(dictionary(file = "../data/dictionaries/windows-1252.cat", tolower = FALSE,
encoding = "windows-1252"),
dictionary(list("LATIN" = c("S", "Z", "Y"), "NON-LATIN" = c("Š", "Ž", "Ÿ")), tolower = FALSE))
expect_equivalent(dictionary(file = "../data/dictionaries/iso-8859-2.cat", encoding = "iso-8859-2",
tolower = FALSE),
dictionary(list("LATIN" = c("C", "D", "E"), "NON-LATIN" = c("Č", "Ď", "Ě")), tolower = FALSE))
expect_equivalent(dictionary(file = "../data/dictionaries/iso-8859-14.cat", encoding = "iso-8859-14",
tolower = FALSE),
dictionary(list("LATIN" = c("B", "C", "D"), "NON-LATIN" = c("Ḃ", "Ċ", "Ḋ")), tolower = FALSE))
expect_equivalent(dictionary(file = "../data/dictionaries/shift-jis.cat", encoding = "shift-jis", tolower = FALSE),
dictionary(list("LATIN" = c("A", "I", "U"), "NON-LATIN" = c("あ", "い", "う")), tolower = FALSE))
expect_equivalent(dictionary(file = "../data/dictionaries/euc-jp.cat", encoding = "euc-jp", tolower = FALSE),
dictionary(list("LATIN" = c("A", "I", "U"), "NON-LATIN" = c("あ", "い", "う")), tolower = FALSE))
})
})
test_that("tolower is working", {
list <- list(KEY1 = list(SUBKEY1 = c("A", "B"),
SUBKEY2 = c("C", "D")),
KEY2 = list(SUBKEY3 = c("E", "F"),
SUBKEY4 = c("G", "F", "I")),
KEY3 = list(SUBKEY5 = list(SUBKEY7 = c("J", "K")),
SUBKEY6 = list(SUBKEY8 = c("L"))))
dict <- dictionary(list, tolower = FALSE)
dict_lower <- dictionary(list, tolower = TRUE)
expect_equal(names(unlist(list)), names(unlist(dict)))
expect_equal(names(unlist(dict_lower)), names(unlist(dict)))
expect_equal(unlist(list, use.names = FALSE),
unlist(dict, use.names = FALSE))
expect_equal(stringi::stri_trans_tolower(unlist(list, use.names = FALSE)),
unlist(dict_lower, use.names = FALSE))
})
test_that("indexing for dictionary objects works", {
testdict <- dictionary(file = "../data/dictionaries/laver-garry.cat")
expect_true(is.dictionary(testdict[1:2]))
expect_equal(names(testdict[1]), "CULTURE")
expect_equal(names(testdict[[1]][1]), "CULTURE-HIGH")
expect_equal(names(testdict[2]), "ECONOMY")
expect_equal(names(testdict[[2]][1]), "+STATE+")
expect_output(
print(testdict),
"Dictionary object with 9 primary key entries and 2 nested levels"
)
expect_output(
print(testdict[1]),
"Dictionary object with 1 primary key entry and 2 nested levels"
)
})
test_that("dictionary printing works", {
dict <- dictionary(list(one = c("a", "b"), two = c("c", "d")))
expect_true(is.dictionary(dict[1]))
expect_output(
print(dict),
paste0(
"Dictionary object with 2 key entries.\n",
"- [one]:\n",
" - a, b\n",
"- [two]:\n",
" - c, d"
),
fixed = TRUE
)
expect_output(
print(dict, max_nkey = 1),
paste0(
"Dictionary object with 2 key entries.\n",
"- [one]:\n",
" - a, b\n",
"[ reached max_nkey ... 1 more key ]"
),
fixed = TRUE
)
expect_output(
print(dict, max_nkey = -1, max_nval = -1),
paste0(
"Dictionary object with 2 key entries.\n",
"- [one]:\n",
" - a, b\n",
"- [two]:\n",
" - c, d"
),
fixed = TRUE
)
expect_output(
print(dict, max_nkey = 1, max_nval = 1),
paste0(
"Dictionary object with 2 key entries.\n",
"- [one]:\n",
" - a [ ... and 1 more ]\n",
"[ reached max_nkey ... 1 more key ]"
),
fixed = TRUE
)
expect_output(
print(dict, max_nkey = 1, max_nval = 1, show_summary = FALSE),
paste0(
"- [one]:\n",
" - a [ ... and 1 more ]\n",
"[ reached max_nkey ... 1 more key ]"
),
fixed = TRUE
)
lis <- as.list(letters[1:10])
names(lis) <- LETTERS[1:10]
dict2 <- dictionary(list("letters" = lis))
expect_output(
print(dict2),
"- [letters]:\n",
fixed = TRUE
)
expect_output(
print(dict2, max_nkey = 5),
"[ reached max_nkey ... 5 more keys ]",
fixed = TRUE
)
expect_output(
print(dict2, max_nkey = -1),
paste0(
" - [J]:\n",
" - j"
),
fixed = TRUE
)
expect_output(
print(dict, 0, 0),
"Dictionary object with 2 key entries.",
fixed = TRUE
)
})
test_that("dictionary_depth works correctly", {
dict1 <- dictionary(list(one = c("a", "b"), two = c("c", "d")))
expect_equal(quanteda:::dictionary_depth(dict1), 1)
dict2 <- dictionary(list(one = c("a", "b"),
two = list(sub1 = c("c", "d"),
sub2 = c("e", "f"))))
expect_equal(quanteda:::dictionary_depth(dict2), 2)
expect_output(
print(dict2),
"Dictionary object with 2 primary key entries and 2 nested levels\\."
)
})
test_that("as.list is working", {
lis <- list(top1 = c("a", "b"), top2 = c("c", "d"),
top3 = list(sub1 = c("e", "f"),
sub2 = c("f", "h")))
dict <- dictionary(lis)
expect_equal(
as.list(dict),
lis
)
expect_equal(
as.list(dict, flatten = FALSE, levels = 1),
lis
)
expect_equal(
as.list(dict, flatten = TRUE),
list(top1 = c("a", "b"),
top2 = c("c", "d"),
top3.sub1 = c("e", "f"),
top3.sub2 = c("f", "h"))
)
expect_equal(
as.list(dict, flatten = TRUE, levels = 1),
list(top1 = c("a", "b"),
top2 = c("c", "d"),
top3 = c("e", "f", "f", "h"))
)
expect_equal(
as.list(dict, flatten = TRUE, levels = 2),
list(sub1 = c("e", "f"),
sub2 = c("f", "h"))
)
})
test_that("error if empty separator is given", {
expect_error(dictionary(list(one = c("a", "b"), two = c("c", "d")), separator = ""),
"The value of separator must be between 1 and Inf character")
expect_error(dictionary(list(one = c("a", "b"), two = c("c", "d")), separator = NULL),
"The length of separator must be 1")
expect_error(dictionary(file = "../data/dictionaries/mary.yml", separator = ""),
"The value of separator must be between 1 and Inf character")
expect_error(dictionary(file = "../data/dictionaries/mary.yml", separator = NULL),
"The length of separator must be 1")
})
test_that("dictionary woks with the Yoshicoder format", {
testdict <- dictionary(file = "../data/dictionaries/laver-garry.ykd")
expect_equal(names(testdict), "Laver and Garry")
expect_equal(names(testdict[["Laver and Garry"]]),
c("State in Economy", "Institutions", "Values", "Law and Order", "Environment",
"Culture", "Groups", "Rural", "Urban"))
})
test_that("dictionary constructor works with LIWC format w/doubled terms", {
expect_equivalent(
dictionary(file = "../data/dictionaries/mary_doubleterm.dic"),
dictionary(list(A_CATEGORY = c("lamb", "little", "more"),
ANOTHER_CATEGORY = c("had", "little", "mary")))
)
})
test_that("dictionary constructor works with LIWC format zero padding", {
expect_equivalent(
dictionary(file = "../data/dictionaries/mary_zeropadding.dic"),
dictionary(list(A_CATEGORY = c("lamb", "little", "more"),
ANOTHER_CATEGORY = c("had", "little", "mary")))
)
})
test_that("dictionary constructor reports mssing cateogries in LIWC format", {
expect_message(
dictionary(file = "../data/dictionaries/mary_missingcat.dic"),
"note: ignoring undefined categories:"
)
})
test_that("dictionary constructor works with LIWC format w/multiple tabs, spaces, etc", {
expect_equivalent(
dictionary(file = "../data/dictionaries/mary_multipletabs.dic"),
dictionary(list(A_CATEGORY = c("lamb", "little", "more"),
ANOTHER_CATEGORY = c("had", "little", "mary")))
)
})
test_that("dictionary constructor works with LIWC format w/extra codes", {
expect_message(
dictionary(file = "../data/dictionaries/liwc_extracodes.dic"),
"note: 1 term ignored because contains unsupported <of> tag"
)
expect_message(
dictionary(file = "../data/dictionaries/liwc_extracodes.dic"),
"note: ignoring parenthetical expressions in lines:"
)
expect_message(
dictionary(file = "../data/dictionaries/liwc_extracodes.dic"),
"note: removing empty key: filler"
)
expect_message(
dictionary(file = "../data/dictionaries/liwc_extracodes.dic"),
"note: removing empty key: discrep"
)
expect_message(
dictionary(file = "../data/dictionaries/liwc_extracodes.dic"),
"note: removing empty key: cause"
)
expect_message(
dictionary(file = "../data/dictionaries/liwc_extracodes.dic"),
"note: removing empty key: insight"
)
expect_message(
dictionary(file = "../data/dictionaries/liwc_extracodes.dic"),
"note: removing empty key: humans"
)
expect_message(
dictionary(file = "../data/dictionaries/liwc_extracodes.dic"),
"note: removing empty key: friend"
)
dict <- dictionary(file = "../data/dictionaries/liwc_extracodes.dic")
expect_equal(
length(dict),
10
)
expect_true(setequal(
names(dict),
c("verb", "past", "whatever", "family", "affect", "posemo", "cogmech", "tentat", "whatever2", "time")
))
})
test_that("dictionary constructor works with LIWC format w/extra codes and nesting", {
expect_message(
dictionary(file = "../data/dictionaries/liwc_hierarchical.dic"),
"note: 1 term ignored because contains unsupported <of> tag"
)
expect_message(
dictionary(file = "../data/dictionaries/liwc_hierarchical.dic"),
"note: ignoring parenthetical expressions in lines:"
)
expect_message(
dictionary(file = "../data/dictionaries/liwc_extracodes.dic"),
"note: removing empty key: filler"
)
expect_message(
dictionary(file = "../data/dictionaries/liwc_extracodes.dic"),
"note: removing empty key: discrep"
)
expect_message(
dictionary(file = "../data/dictionaries/liwc_extracodes.dic"),
"note: removing empty key: cause"
)
expect_message(
dictionary(file = "../data/dictionaries/liwc_extracodes.dic"),
"note: removing empty key: insight"
)
expect_message(
dictionary(file = "../data/dictionaries/liwc_extracodes.dic"),
"note: removing empty key: humans"
)
expect_message(
dictionary(file = "../data/dictionaries/liwc_extracodes.dic"),
"note: removing empty key: friend"
)
dict <- dictionary(file = "../data/dictionaries/liwc_hierarchical.dic")
expect_equal(length(dict), 4)
expect_equal(length(dict[[1]]), 1)
expect_equal(length(dict[[2]]), 4)
expect_equal(length(dict[[3]]), 2)
expect_equal(length(dict[[4]]), 2)
})
test_that("dictionary works with yoshicoder, issue 819", {
expect_equal(
as.list(dictionary(file = "../data/dictionaries/issue-819.ykd")),
list("Dictionary" = list("pos" = list("A" = "a word", "B" = "b word"))))
})
test_that("dictionary constructor works on a dictionary", {
dictlist <- list(one = LETTERS[1:2], Two = letters[1:3], three = c("E f", "g"))
dict <- dictionary(dictlist, tolower = FALSE)
expect_identical(
dict,
dictionary(dict, tolower = FALSE)
)
dictlist2 <- list(one = LETTERS[1:2], Two = letters[1:3], three = c("E_f", "g"))
dict2 <- dictionary(dictlist, tolower = FALSE)
expect_equal(
dictionary(dictlist, tolower = FALSE, separator = "_"),
dictionary(dict2, tolower = FALSE, separator = "_")
)
expect_equal(
as.list(dictionary(dict2, separator = "_", tolower = FALSE)),
dictlist
)
})
test_that("combine method is working with dictionary objects", {
dict1 <- dictionary(list(A = c("aa", "aaa")), separator = "+")
dict2 <- dictionary(list(B = c("b", "bb")), separator = "-")
dict3 <- dictionary(list(A = c("aaaa", "aaaaa")))
expect_equal(c(dict1, dict2),
dictionary(list(A = c("aa", "aaa"), B = c("b", "bb")), separator = "+"))
expect_equal(c(dict1, dict2, dict3),
dictionary(list(A = c("aa", "aaa"), B = c("b", "bb"), A = c("aaaa", "aaaaa")),
separator = "+"))
})
test_that("dictionary constructor clean values", {
dict1 <- dictionary(list(A = c("aa ", " aaa ")))
dict2 <- dictionary(list(B = c("b", "bb", "bb")))
expect_equal(dict1,
dictionary(list(A = c("aa", "aaa"))))
expect_equal(dict2,
dictionary(list(B = c("b", "bb"))))
})
test_that("dictionary merge values in duplicate keys", {
dict <- dictionary(list(A = "a",
A = "aa",
A = "aaa",
B = list(BB = "bb"),
B = list(BB = "bbb"),
C = "c"))
expect_equal(dict,
dictionary(list(A = c("a", "aa", "aaa"),
B = list(BB = c("bb", "bbb")),
C = "c")))
})
test_that("dictionary allows empty keys", {
dict <- dictionary(list(A = "a",
B = list(),
C = character()))
expect_equal(names(dict),
c("A", "B", "C"))
})
test_that("object2id() preserves the order of keys and values", {
type <- stopwords()
dict1 <- dictionary(list(th = c("tho*", "the"), wh = "wh*", ng = "not *"))
dict2 <- dictionary(list(ng = "not *", th = c("tho*", "the"), wh = "wh*"))
dict3 <- dictionary(list(ng = "not *", wh = "wh* is", th = c("tho*", "the")))
dict4 <- dictionary(list(ng = "not *", th = c("tho*", "the"), wh = "wh* is"))
ids1 <- quanteda:::object2id(dict1, type, "glob", FALSE)
expect_identical(unique(names(ids1)), names(dict1))
ids2 <- quanteda:::object2id(dict2, type, "glob", FALSE)
expect_identical(unique(names(ids2)), names(dict2))
ids3 <- quanteda:::object2id(dict3, type, "glob", FALSE)
expect_identical(unique(names(ids3)), names(dict3))
ids4 <- quanteda:::object2id(dict4, type, "glob", FALSE)
expect_identical(unique(names(ids4)), names(dict4))
})
test_that("split_values() handle concatenators correctly", {
expect_identical(
quanteda:::split_values(list(A = "a_a", "b_b"), "_", " "),
list(A = c("a", "a"), A = "a a", c("b", "b"), "b b")
)
expect_identical(
quanteda:::split_values(list(A = "a_a", B = "b_b"), "_", " "),
list(A = c("a", "a"), A = "a a", B = c("b", "b"), B = "b b")
)
expect_identical(
quanteda:::split_values(list(A = "a_a", "A_A"), "_", "-"),
list(A = c("a", "a"), A = "a-a", c("A", "A"), "A-A")
)
expect_identical(
quanteda:::split_values(list(A = "a_a", "A_A"), " ", " "),
list(A = "a_a", "A_A")
)
}) |
dlms.bcn <- function(x, lambda = 1, mu = 0, sigma = 1,
tol0 = 0.001, log = FALSE) {
if (!is.logical(log.arg <- log) || length(log) != 1)
stop("bad input for argument 'log'")
rm(log)
zedd <- ((x/mu)^lambda - 1) / (lambda * sigma)
log.dz.dy <- (lambda - 1) * log(x/mu) - log(mu * sigma)
is.eff.0 <- abs(lambda) < tol0
if (any(is.eff.0)) {
zedd[is.eff.0] <- log(x[is.eff.0] / mu[is.eff.0]) / sigma[is.eff.0]
log.dz.dy[is.eff.0] <- -log(x[is.eff.0] * sigma[is.eff.0])
}
logden <- dnorm(zedd, log = TRUE) + log.dz.dy
if (log.arg) logden else exp(logden)
}
qlms.bcn <- function(p, lambda = 1, mu = 0, sigma = 1) {
answer <- mu * (1 + lambda * sigma * qnorm(p))^(1/lambda)
answer
}
lms.bcn.control <-
lms.bcg.control <-
lms.yjn.control <- function(trace = TRUE, ...)
list(trace = trace)
lms.bcn <- function(percentiles = c(25, 50, 75),
zero = c("lambda", "sigma"),
llambda = "identitylink",
lmu = "identitylink",
lsigma = "loglink",
idf.mu = 4,
idf.sigma = 2,
ilambda = 1,
isigma = NULL,
tol0 = 0.001) {
llambda <- as.list(substitute(llambda))
elambda <- link2list(llambda)
llambda <- attr(elambda, "function.name")
lmu <- as.list(substitute(lmu))
emu <- link2list(lmu)
lmu <- attr(emu, "function.name")
lsigma <- as.list(substitute(lsigma))
esigma <- link2list(lsigma)
lsigma <- attr(esigma, "function.name")
if (!is.Numeric(tol0, positive = TRUE, length.arg = 1))
stop("bad input for argument 'tol0'")
if (!is.Numeric(ilambda))
stop("bad input for argument 'ilambda'")
if (length(isigma) &&
!is.Numeric(isigma, positive = TRUE))
stop("bad input for argument 'isigma'")
new("vglmff",
blurb = c("LMS ",
"quantile",
" regression (Box-Cox transformation to normality)\n",
"Links: ",
namesof("lambda", link = llambda, earg = elambda), ", ",
namesof("mu", link = lmu, earg = emu), ", ",
namesof("sigma", link = lsigma, earg = esigma)),
constraints = eval(substitute(expression({
constraints <- cm.zero.VGAM(constraints, x = x, .zero , M = M,
predictors.names = predictors.names,
M1 = 3)
}), list( .zero = zero))),
infos = eval(substitute(function(...) {
list(M1 = 3,
Q1 = 1,
expected = TRUE,
multipleResponses = FALSE,
parameters.names = c("lambda", "mu", "sigma"),
llambda = .llambda ,
lmu = .lmu ,
lsigma = .lsigma ,
percentiles = .percentiles ,
true.mu = FALSE,
zero = .zero )
}, list( .zero = zero,
.percentiles = percentiles,
.llambda = llambda, .lmu = lmu, .lsigma = lsigma ))),
initialize = eval(substitute(expression({
w.y.check(w = w, y = y,
Is.positive.y = TRUE,
ncol.w.max = 1, ncol.y.max = 1)
predictors.names <-
c(namesof("lambda", .llambda, earg = .elambda, short= TRUE),
namesof("mu", .lmu, earg = .emu, short= TRUE),
namesof("sigma", .lsigma, earg = .esigma, short= TRUE))
extra$percentiles <- .percentiles
if (!length(etastart)) {
Fit5 <- vsmooth.spline(x = x[, min(ncol(x), 2)],
y = y, w = w, df = .idf.mu )
fv.init <- c(predict(Fit5, x = x[, min(ncol(x), 2)])$y)
lambda.init <- if (is.Numeric( .ilambda )) .ilambda else 1.0
sigma.init <- if (is.null(.isigma)) {
myratio <- ((y/fv.init)^lambda.init - 1) / lambda.init
if (is.Numeric( .idf.sigma )) {
fit600 <- vsmooth.spline(x = x[, min(ncol(x), 2)],
y = myratio^2,
w = w, df = .idf.sigma)
sqrt(c(abs(predict(fit600, x = x[, min(ncol(x), 2)])$y)))
} else {
sqrt(var(myratio))
}
} else {
.isigma
}
etastart <-
cbind(theta2eta(lambda.init, .llambda , earg = .elambda ),
theta2eta(fv.init, .lmu , earg = .emu ),
theta2eta(sigma.init, .lsigma , earg = .esigma ))
}
}), list( .llambda = llambda, .lmu = lmu, .lsigma = lsigma,
.elambda = elambda, .emu = emu, .esigma = esigma,
.idf.mu = idf.mu,
.idf.sigma = idf.sigma,
.ilambda = ilambda, .isigma = isigma,
.percentiles = percentiles ))),
linkinv = eval(substitute(function(eta, extra = NULL) {
pcent <- extra$percentiles
eta[, 1] <- eta2theta(eta[, 1], .llambda , earg = .elambda )
eta[, 2] <- eta2theta(eta[, 2], .lmu , earg = .emu )
eta[, 3] <- eta2theta(eta[, 3], .lsigma , earg = .esigma )
qtplot.lms.bcn(percentiles = pcent, eta = eta)
}, list( .llambda = llambda, .lmu = lmu, .lsigma = lsigma,
.elambda = elambda, .emu = emu, .esigma = esigma
))),
last = eval(substitute(expression({
misc$links <- c(lambda = .llambda , mu = .lmu , sigma = .lsigma )
misc$earg <- list(lambda = .elambda , mu = .emu , sigma = .esigma )
misc$tol0 <- .tol0
misc$percentiles <- .percentiles
if (control$cdf) {
post$cdf <-
cdf.lms.bcn(y,
eta0 = matrix(c(lambda, mymu, sigma), ncol = 3,
dimnames = list(dimnames(x)[[1]], NULL)))
}
}), list( .llambda = llambda, .lmu = lmu, .lsigma = lsigma,
.elambda = elambda, .emu = emu, .esigma = esigma,
.percentiles = percentiles,
.tol0 = tol0 ))),
loglikelihood = eval(substitute(
function(mu, y, w, residuals = FALSE, eta,
extra = NULL,
summation = TRUE) {
lambda <- eta2theta(eta[, 1], .llambda , earg = .elambda )
muvec <- eta2theta(eta[, 2], .lmu , earg = .emu )
sigma <- eta2theta(eta[, 3], .lsigma , earg = .esigma )
if (residuals) {
stop("loglikelihood residuals not implemented yet")
} else {
ll.elts <- dlms.bcn(x = y, lambda = lambda, mu = mu, sigma = sigma,
tol0 = .tol0 , log = TRUE)
if (summation) {
sum(ll.elts)
} else {
ll.elts
}
}
}, list( .llambda = llambda, .lmu = lmu, .lsigma = lsigma,
.elambda = elambda, .emu = emu, .esigma = esigma,
.tol0 = tol0 ))),
vfamily = c("lms.bcn", "lmscreg"),
validparams = eval(substitute(function(eta, y, extra = NULL) {
lambda <- eta2theta(eta[, 1], .llambda , earg = .elambda )
mymu <- eta2theta(eta[, 2], .lmu , earg = .emu )
sigma <- eta2theta(eta[, 3], .lsigma , earg = .esigma )
okay1 <- all(is.finite(mymu )) &&
all(is.finite(sigma )) && all(0 < sigma) &&
all(is.finite(lambda))
okay1
}, list( .llambda = llambda, .lmu = lmu, .lsigma = lsigma,
.elambda = elambda, .emu = emu, .esigma = esigma,
.tol0 = tol0 ))),
deriv = eval(substitute(expression({
lambda <- eta2theta(eta[, 1], .llambda , earg = .elambda )
mymu <- eta2theta(eta[, 2], .lmu , earg = .emu )
sigma <- eta2theta(eta[, 3], .lsigma , earg = .esigma )
zedd <- ((y / mymu)^lambda - 1) / (lambda * sigma)
z2m1 <- zedd * zedd - 1
dl.dlambda <- zedd * (zedd - log(y/mymu) / sigma) / lambda -
z2m1 * log(y/mymu)
dl.dmu <- zedd / (mymu * sigma) + z2m1 * lambda / mymu
dl.dsigma <- z2m1 / sigma
dlambda.deta <- dtheta.deta(lambda, .llambda , earg = .elambda )
dmu.deta <- dtheta.deta(mymu, .lmu , earg = .emu )
dsigma.deta <- dtheta.deta(sigma, .lsigma , earg = .esigma )
c(w) * cbind(dl.dlambda * dlambda.deta,
dl.dmu * dmu.deta,
dl.dsigma * dsigma.deta)
}), list( .llambda = llambda, .lmu = lmu, .lsigma = lsigma,
.elambda = elambda, .emu = emu, .esigma = esigma ))),
weight = eval(substitute(expression({
wz <- matrix(NA_real_, n, 6)
wz[,iam(1, 1, M)] <- (7 * sigma^2 / 4) * dlambda.deta^2
wz[,iam(2, 2, M)] <- (1 + 2*(lambda*sigma)^2)/(mymu*sigma)^2 *
dmu.deta^2
wz[,iam(3, 3, M)] <- (2 / sigma^2) * dsigma.deta^2
wz[,iam(1, 2, M)] <- (-1 / (2 * mymu)) * dlambda.deta * dmu.deta
wz[,iam(1, 3, M)] <- (lambda * sigma) * dlambda.deta * dsigma.deta
wz[,iam(2, 3, M)] <- (2*lambda/(mymu * sigma)) *
dmu.deta * dsigma.deta
c(w) * wz
}), list( .llambda = llambda, .lmu = lmu, .lsigma = lsigma,
.elambda = elambda, .emu = emu, .esigma = esigma ))))
}
lms.bcg <- function(percentiles = c(25, 50, 75),
zero = c("lambda", "sigma"),
llambda = "identitylink",
lmu = "identitylink",
lsigma = "loglink",
idf.mu = 4,
idf.sigma = 2,
ilambda = 1,
isigma = NULL) {
llambda <- as.list(substitute(llambda))
elambda <- link2list(llambda)
llambda <- attr(elambda, "function.name")
lmu <- as.list(substitute(lmu))
emu <- link2list(lmu)
lmu <- attr(emu, "function.name")
lsigma <- as.list(substitute(lsigma))
esigma <- link2list(lsigma)
lsigma <- attr(esigma, "function.name")
if (!is.Numeric(ilambda))
stop("bad input for argument 'ilambda'")
if (length(isigma) && !is.Numeric(isigma, positive = TRUE))
stop("bad input for argument 'isigma'")
new("vglmff",
blurb = c("LMS Quantile Regression ",
"(Box-Cox transformation to a Gamma distribution)\n",
"Links: ",
namesof("lambda", link = llambda, earg = elambda), ", ",
namesof("mu", link = lmu, earg = emu), ", ",
namesof("sigma", link = lsigma, earg = esigma)),
constraints = eval(substitute(expression({
constraints <- cm.zero.VGAM(constraints, x = x, .zero , M = M,
predictors.names = predictors.names,
M1 = 3)
}), list(.zero = zero))),
infos = eval(substitute(function(...) {
list(M1 = 3,
Q1 = 1,
expected = TRUE,
multipleResponses = FALSE,
parameters.names = c("lambda", "mu", "sigma"),
llambda = .llambda ,
lmu = .lmu ,
lsigma = .lsigma ,
percentiles = .percentiles ,
true.mu = FALSE,
zero = .zero )
}, list( .zero = zero,
.percentiles = percentiles,
.llambda = llambda, .lmu = lmu, .lsigma = lsigma ))),
initialize = eval(substitute(expression({
w.y.check(w = w, y = y,
Is.positive.y = TRUE,
ncol.w.max = 1, ncol.y.max = 1)
predictors.names <- c(
namesof("lambda", .llambda, earg = .elambda, short = TRUE),
namesof("mu", .lmu, earg = .emu, short = TRUE),
namesof("sigma", .lsigma, earg = .esigma, short = TRUE))
extra$percentiles <- .percentiles
if (!length(etastart)) {
Fit5 <- vsmooth.spline(x = x[, min(ncol(x), 2)],
y = y, w = w, df = .idf.mu )
fv.init <- c(predict(Fit5, x = x[, min(ncol(x), 2)])$y)
lambda.init <- if (is.Numeric( .ilambda )) .ilambda else 1.0
sigma.init <- if (is.null( .isigma )) {
myratio <- ((y/fv.init)^lambda.init-1) / lambda.init
if (is.numeric( .idf.sigma ) &&
is.finite( .idf.sigma )) {
fit600 <- vsmooth.spline(x = x[, min(ncol(x), 2)],
y = (myratio)^2,
w = w, df = .idf.sigma )
sqrt(c(abs(predict(fit600, x = x[, min(ncol(x), 2)])$y)))
} else {
sqrt(var(myratio))
}
} else .isigma
etastart <-
cbind(theta2eta(lambda.init, .llambda , earg = .elambda ),
theta2eta(fv.init, .lmu , earg = .emu ),
theta2eta(sigma.init, .lsigma , earg = .esigma ))
}
}), list( .llambda = llambda, .lmu = lmu, .lsigma = lsigma,
.elambda = elambda, .emu = emu, .esigma = esigma,
.idf.mu = idf.mu,
.idf.sigma = idf.sigma,
.ilambda = ilambda, .isigma = isigma,
.percentiles = percentiles ))),
linkinv = eval(substitute(function(eta, extra = NULL) {
pcent <- extra$percentiles
eta[, 1] <- eta2theta(eta[, 1], .llambda , earg = .elambda )
eta[, 2] <- eta2theta(eta[, 2], .lmu , earg = .emu )
eta[, 3] <- eta2theta(eta[, 3], .lsigma , earg = .esigma )
qtplot.lms.bcg(percentiles = pcent, eta = eta)
}, list( .llambda = llambda, .lmu = lmu, .lsigma = lsigma,
.elambda = elambda, .emu = emu, .esigma = esigma ))),
last = eval(substitute(expression({
misc$link <- c(lambda = .llambda , mu = .lmu , sigma = .lsigma )
misc$earg <- list(lambda = .elambda , mu = .emu , sigma = .esigma )
misc$percentiles <- .percentiles
if (control$cdf) {
post$cdf <- cdf.lms.bcg(y, eta0 = matrix(c(lambda, mymu, sigma),
ncol = 3, dimnames = list(dimnames(x)[[1]], NULL)))
}
}), list( .llambda = llambda, .lmu = lmu, .lsigma = lsigma,
.elambda = elambda, .emu = emu, .esigma = esigma,
.percentiles = percentiles ))),
loglikelihood = eval(substitute(
function(mu, y, w, residuals = FALSE, eta,
extra = NULL,
summation = TRUE) {
lambda <- eta2theta(eta[, 1], .llambda , earg = .elambda )
mu <- eta2theta(eta[, 2], .lmu , earg = .emu )
sigma <- eta2theta(eta[, 3], .lsigma , earg = .esigma )
Gee <- (y / mu)^lambda
theta <- 1 / (sigma * lambda)^2
if (residuals) {
stop("loglikelihood residuals not implemented yet")
} else {
ll.elts <- c(w) * (log(abs(lambda)) + theta * (log(theta) +
log(Gee)-Gee) - lgamma(theta) - log(y))
if (summation) {
sum(ll.elts)
} else {
ll.elts
}
}
}, list( .llambda = llambda, .lmu = lmu, .lsigma = lsigma,
.elambda = elambda, .emu = emu, .esigma = esigma ))),
vfamily = c("lms.bcg", "lmscreg"),
validparams = eval(substitute(function(eta, y, extra = NULL) {
lambda <- eta2theta(eta[, 1], .llambda , earg = .elambda )
mymu <- eta2theta(eta[, 2], .lmu , earg = .emu )
sigma <- eta2theta(eta[, 3], .lsigma , earg = .esigma )
okay1 <- all(is.finite(mymu )) &&
all(is.finite(sigma )) && all(0 < sigma) &&
all(is.finite(lambda))
okay1
}, list( .llambda = llambda, .lmu = lmu, .lsigma = lsigma,
.elambda = elambda, .emu = emu, .esigma = esigma ))),
deriv = eval(substitute(expression({
lambda <- eta2theta(eta[, 1], .llambda, earg = .elambda )
mymu <- eta2theta(eta[, 2], .lmu, earg = .emu )
sigma <- eta2theta(eta[, 3], .lsigma, earg = .esigma )
Gee <- (y / mymu)^lambda
theta <- 1 / (sigma * lambda)^2
dd <- digamma(theta)
dl.dlambda <- (1 + 2 * theta * (dd + Gee -1 -log(theta) -
0.5 * (Gee + 1) * log(Gee))) / lambda
dl.dmu <- lambda * theta * (Gee-1) / mymu
dl.dsigma <- 2*theta*(dd + Gee - log(theta * Gee)-1) / sigma
dlambda.deta <- dtheta.deta(lambda, link = .llambda , earg = .elambda )
dmu.deta <- dtheta.deta(mymu, link = .lmu , earg = .emu )
dsigma.deta <- dtheta.deta(sigma, link = .lsigma , earg = .esigma )
cbind(dl.dlambda * dlambda.deta,
dl.dmu * dmu.deta,
dl.dsigma * dsigma.deta) * w
}), list( .llambda = llambda, .lmu = lmu, .lsigma = lsigma,
.elambda = elambda, .emu = emu, .esigma = esigma ))),
weight = eval(substitute(expression({
tritheta <- trigamma(theta)
wz <- matrix(0, n, 6)
if (TRUE) {
part2 <- dd + 2/theta - 2*log(theta)
wz[,iam(1, 1, M)] <- ((1 + theta*(tritheta*(1+4*theta) -
4*(1+1/theta) - log(theta)*(2/theta -
log(theta)) + dd*part2)) / lambda^2) *
dlambda.deta^2
} else {
temp <- mean( Gee*(log(Gee))^2 )
wz[,iam(1, 1, M)] <- ((4 * theta * (theta * tritheta-1) - 1 +
theta*temp) / lambda^2) * dlambda.deta^2
}
wz[,iam(2, 2, M)] <- dmu.deta^2 / (mymu * sigma)^2
wz[,iam(3, 3, M)] <- (4 * theta * (theta * tritheta - 1) / sigma^2) *
dsigma.deta^2
wz[,iam(1, 2, M)] <- (-theta * (dd + 1 / theta - log(theta)) / mymu) *
dlambda.deta * dmu.deta
wz[,iam(1, 3, M)] <- 2 * theta^1.5 * (2 * theta * tritheta - 2 -
1 / theta) * dlambda.deta * dsigma.deta
c(w) * wz
}), list( .llambda = llambda, .lmu = lmu, .lsigma = lsigma,
.elambda = elambda, .emu = emu, .esigma = esigma ))))
}
dy.dpsi.yeojohnson <- function(psi, lambda) {
L <- max(length(psi), length(lambda))
if (length(psi) != L) psi <- rep_len(psi, L)
if (length(lambda) != L) lambda <- rep_len(lambda, L)
ifelse(psi > 0, (1 + psi * lambda)^(1/lambda - 1),
(1 - (2-lambda) * psi)^((lambda - 1) / (2-lambda)))
}
dyj.dy.yeojohnson <- function(y, lambda) {
L <- max(length(y), length(lambda))
if (length(y) != L) y <- rep_len(y, L)
if (length(lambda) != L) lambda <- rep_len(lambda, L)
ifelse(y>0, (1 + y)^(lambda - 1), (1 - y)^(1 - lambda))
}
yeo.johnson <- function(y, lambda, derivative = 0,
epsilon = sqrt(.Machine$double.eps),
inverse = FALSE) {
if (!is.Numeric(derivative, length.arg = 1,
integer.valued = TRUE) ||
derivative < 0)
stop("argument 'derivative' must be a non-negative integer")
ans <- y
if (!is.Numeric(epsilon, length.arg = 1, positive = TRUE))
stop("argument 'epsilon' must be a single positive number")
L <- max(length(lambda), length(y))
if (length(y) != L) y <- rep_len(y, L)
if (length(lambda) != L) lambda <- rep_len(lambda, L)
if (inverse) {
if (derivative != 0)
stop("argument 'derivative' must 0 when inverse = TRUE")
if (any(index <- y >= 0 & abs(lambda ) > epsilon))
ans[index] <- (y[index]*lambda[index] + 1)^(1/lambda[index]) - 1
if (any(index <- y >= 0 & abs(lambda ) <= epsilon))
ans[index] <- expm1(y[index])
if (any(index <- y < 0 & abs(lambda-2) > epsilon))
ans[index] <- 1 - (-(2-lambda[index]) *
y[index]+1)^(1/(2-lambda[index]))
if (any(index <- y < 0 & abs(lambda-2) <= epsilon))
ans[index] <- -expm1(-y[index])
return(ans)
}
if (derivative == 0) {
if (any(index <- y >= 0 & abs(lambda ) > epsilon))
ans[index] <- ((y[index]+1)^(lambda[index]) - 1) / lambda[index]
if (any(index <- y >= 0 & abs(lambda ) <= epsilon))
ans[index] <- log1p(y[index])
if (any(index <- y < 0 & abs(lambda-2) > epsilon))
ans[index] <- -((-y[index]+1)^(2-lambda[index]) - 1)/(2 -
lambda[index])
if (any(index <- y < 0 & abs(lambda-2) <= epsilon))
ans[index] <- -log1p(-y[index])
} else {
psi <- Recall(y = y, lambda = lambda, derivative = derivative - 1,
epsilon = epsilon, inverse = inverse)
if (any(index <- y >= 0 & abs(lambda ) > epsilon))
ans[index] <- ( (y[index]+1)^(lambda[index]) *
(log1p(y[index]))^(derivative) - derivative *
psi[index] ) / lambda[index]
if (any(index <- y >= 0 & abs(lambda ) <= epsilon))
ans[index] <- (log1p(y[index]))^(derivative + 1) / (derivative + 1)
if (any(index <- y < 0 & abs(lambda-2) > epsilon))
ans[index] <- -( (-y[index]+1)^(2-lambda[index]) *
(-log1p(-y[index]))^(derivative) - derivative *
psi[index] ) / (2-lambda[index])
if (any(index <- y < 0 & abs(lambda-2) <= epsilon))
ans[index] <- (-log1p(-y[index]))^(derivative + 1) / (derivative + 1)
}
ans
}
dpsi.dlambda.yjn <- function(psi, lambda, mymu, sigma,
derivative = 0, smallno = 1.0e-8) {
if (!is.Numeric(derivative, length.arg = 1,
integer.valued = TRUE) ||
derivative < 0)
stop("argument 'derivative' must be a non-negative integer")
if (!is.Numeric(smallno, length.arg = 1, positive = TRUE))
stop("argument 'smallno' must be a single positive number")
L <- max(length(psi), length(lambda), length(mymu), length(sigma))
if (length(psi) != L) psi <- rep_len(psi, L)
if (length(lambda) != L) lambda <- rep_len(lambda, L)
if (length(mymu) != L) mymu <- rep_len(mymu, L)
if (length(sigma) != L) sigma <- rep_len(sigma, L)
answer <- matrix(NA_real_, L, derivative+1)
CC <- psi >= 0
BB <- ifelse(CC, lambda, -2+lambda)
AA <- psi * BB
temp8 <- if (derivative > 0) {
answer[,1:derivative] <-
Recall(psi = psi, lambda = lambda, mymu = mymu, sigma = sigma,
derivative = derivative-1, smallno = smallno)
answer[,derivative] * derivative
} else {
0
}
answer[, 1+derivative] <- ((AA+1) *
(log1p(AA)/BB)^derivative - temp8) / BB
pos <- (CC & abs(lambda) <= smallno) | (!CC & abs(lambda-2) <= smallno)
if (any(pos))
answer[pos,1+derivative] =
(answer[pos, 1]^(1+derivative))/(derivative+1)
answer
}
gh.weight.yjn.11 <- function(z, lambda, mymu, sigma, derivmat = NULL) {
if (length(derivmat)) {
((derivmat[, 2]/sigma)^2 +
sqrt(2) * z * derivmat[, 3] / sigma) / sqrt(pi)
} else {
psi <- mymu + sqrt(2) * sigma * z
(1 / sqrt(pi)) *
(dpsi.dlambda.yjn(psi, lambda, mymu, sigma,
derivative = 1)[, 2]^2 +
(psi - mymu) *
dpsi.dlambda.yjn(psi, lambda, mymu, sigma,
derivative = 2)[, 3]) / sigma^2
}
}
gh.weight.yjn.12 <- function(z, lambda, mymu, sigma, derivmat = NULL) {
if (length(derivmat)) {
(-derivmat[, 2]) / (sqrt(pi) * sigma^2)
} else {
psi <- mymu + sqrt(2) * sigma * z
(1 / sqrt(pi)) * (-dpsi.dlambda.yjn(psi, lambda, mymu, sigma,
derivative = 1)[, 2]) / sigma^2
}
}
gh.weight.yjn.13 <- function(z, lambda, mymu, sigma, derivmat = NULL) {
if (length(derivmat)) {
sqrt(8 / pi) * (-derivmat[, 2]) * z / sigma^2
} else {
psi <- mymu + sqrt(2) * sigma * z
(1 / sqrt(pi)) *
(-2 * dpsi.dlambda.yjn(psi, lambda, mymu, sigma,
derivative = 1)[, 2]) *
(psi - mymu) / sigma^3
}
}
glag.weight.yjn.11 <- function(z, lambda, mymu, sigma, derivmat = NULL) {
if (length(derivmat)) {
derivmat[, 4] * (derivmat[, 2]^2 + sqrt(2) * sigma * z * derivmat[, 3])
} else {
psi <- mymu + sqrt(2) * sigma * z
discontinuity <- -mymu / (sqrt(2) * sigma)
(1 / (2 * sqrt((z-discontinuity^2)^2 + discontinuity^2))) *
(1 / sqrt(pi)) *
(dpsi.dlambda.yjn(psi, lambda, mymu, sigma, derivative = 1)[, 2]^2 +
(psi - mymu) *
dpsi.dlambda.yjn(psi, lambda, mymu,
sigma, derivative = 2)[, 3]) / sigma^2
}
}
glag.weight.yjn.12 <- function(z, lambda, mymu, sigma, derivmat = NULL) {
discontinuity <- -mymu / (sqrt(2) * sigma)
if (length(derivmat)) {
derivmat[, 4] * (-derivmat[, 2])
} else {
psi <- mymu + sqrt(2) * sigma * z
(1 / (2 * sqrt((z-discontinuity^2)^2 + discontinuity^2))) *
(1 / sqrt(pi)) *
(- dpsi.dlambda.yjn(psi, lambda, mymu,
sigma, derivative = 1)[, 2]) / sigma^2
}
}
glag.weight.yjn.13 <- function(z, lambda, mymu, sigma, derivmat = NULL) {
if (length(derivmat)) {
derivmat[, 4] * (-derivmat[, 2]) * sqrt(8) * z
} else {
psi <- mymu + sqrt(2) * sigma * z
discontinuity <- -mymu / (sqrt(2) * sigma)
(1 / (2 * sqrt((z-discontinuity^2)^2 + discontinuity^2))) *
(1 / sqrt(pi)) *
(-2 * dpsi.dlambda.yjn(psi, lambda, mymu,
sigma, derivative = 1)[, 2]) *
(psi - mymu) / sigma^3
}
}
gleg.weight.yjn.11 <- function(z, lambda, mymu, sigma, derivmat = NULL) {
if (length(derivmat)) {
derivmat[, 4] * (derivmat[, 2]^2 + sqrt(2) * sigma*z* derivmat[, 3])
} else {
psi <- mymu + sqrt(2) * sigma * z
(exp(-z^2) / sqrt(pi)) *
(dpsi.dlambda.yjn(psi, lambda, mymu, sigma, derivative = 1)[, 2]^2 +
(psi - mymu) *
dpsi.dlambda.yjn(psi, lambda, mymu, sigma,
derivative = 2)[, 3]) / sigma^2
}
}
gleg.weight.yjn.12 <- function(z, lambda, mymu, sigma, derivmat = NULL) {
if (length(derivmat)) {
derivmat[, 4] * (- derivmat[, 2])
} else {
psi <- mymu + sqrt(2) * sigma * z
(exp(-z^2) / sqrt(pi)) *
(- dpsi.dlambda.yjn(psi, lambda, mymu, sigma,
derivative = 1)[, 2]) / sigma^2
}
}
gleg.weight.yjn.13 <- function(z, lambda, mymu, sigma, derivmat = NULL) {
if (length(derivmat)) {
derivmat[, 4] * (-derivmat[, 2]) * sqrt(8) * z
} else {
psi <- mymu + sqrt(2) * sigma * z
(exp(-z^2) / sqrt(pi)) *
(-2 * dpsi.dlambda.yjn(psi, lambda, mymu,
sigma, derivative = 1)[, 2]) *
(psi - mymu) / sigma^3
}
}
lms.yjn2.control <- function(save.weights = TRUE, ...) {
list(save.weights = save.weights)
}
lms.yjn2 <- function(percentiles = c(25, 50, 75),
zero = c("lambda", "sigma"),
llambda = "identitylink",
lmu = "identitylink",
lsigma = "loglink",
idf.mu = 4,
idf.sigma = 2,
ilambda = 1.0,
isigma = NULL,
yoffset = NULL,
nsimEIM = 250) {
llambda <- as.list(substitute(llambda))
elambda <- link2list(llambda)
llambda <- attr(elambda, "function.name")
lmu <- as.list(substitute(lmu))
emu <- link2list(lmu)
lmu <- attr(emu, "function.name")
lsigma <- as.list(substitute(lsigma))
esigma <- link2list(lsigma)
lsigma <- attr(esigma, "function.name")
if (!is.Numeric(ilambda))
stop("bad input for argument 'ilambda'")
if (length(isigma) &&
!is.Numeric(isigma, positive = TRUE))
stop("bad input for argument 'isigma'")
new("vglmff",
blurb = c("LMS Quantile Regression (Yeo-Johnson transformation",
" to normality)\n",
"Links: ",
namesof("lambda", link = llambda, earg = elambda), ", ",
namesof("mu", link = lmu, earg = emu ), ", ",
namesof("sigma", link = lsigma, earg = esigma )),
constraints = eval(substitute(expression({
constraints <- cm.zero.VGAM(constraints, x = x, .zero , M = M,
predictors.names = predictors.names,
M1 = 3)
}), list( .zero = zero ))),
infos = eval(substitute(function(...) {
list(M1 = 3,
Q1 = 1,
expected = TRUE,
multipleResponses = FALSE,
parameters.names = c("lambda", "mu", "sigma"),
llambda = .llambda ,
lmu = .lmu ,
lsigma = .lsigma ,
percentiles = .percentiles ,
true.mu = FALSE,
zero = .zero )
}, list( .zero = zero,
.percentiles = percentiles,
.llambda = llambda, .lmu = lmu, .lsigma = lsigma ))),
initialize = eval(substitute(expression({
w.y.check(w = w, y = y,
ncol.w.max = 1, ncol.y.max = 1)
extra$percentiles <- .percentiles
predictors.names <-
c(namesof("lambda", .llambda, earg = .elambda, short= TRUE),
namesof("mu", .lmu, earg = .emu, short= TRUE),
namesof("sigma", .lsigma, earg = .esigma, short= TRUE))
y.save <- y
yoff <- if (is.Numeric( .yoffset)) .yoffset else -median(y)
extra$yoffset <- yoff
y <- y + yoff
if (!length(etastart)) {
lambda.init <- if (is.Numeric( .ilambda )) .ilambda else 1.
y.tx <- yeo.johnson(y, lambda.init)
fv.init =
if (smoothok <-
(length(unique(sort(x[, min(ncol(x), 2)]))) > 7)) {
fit700 <- vsmooth.spline(x = x[, min(ncol(x), 2)],
y = y.tx, w = w, df = .idf.mu )
c(predict(fit700, x = x[, min(ncol(x), 2)])$y)
} else {
rep_len(weighted.mean(y, w), n)
}
sigma.init <- if (!is.Numeric(.isigma)) {
if (is.Numeric( .idf.sigma) && smoothok) {
fit710 = vsmooth.spline(x = x[, min(ncol(x), 2)],
y = (y.tx - fv.init)^2,
w = w, df = .idf.sigma)
sqrt(c(abs(predict(fit710,
x = x[, min(ncol(x), 2)])$y)))
} else {
sqrt( sum( w * (y.tx - fv.init)^2 ) / sum(w) )
}
} else
.isigma
etastart <- matrix(0, n, 3)
etastart[, 1] <- theta2eta(lambda.init, .llambda, earg = .elambda)
etastart[, 2] <- theta2eta(fv.init, .lmu, earg = .emu)
etastart[, 3] <- theta2eta(sigma.init, .lsigma, earg = .esigma)
}
}), list(.llambda = llambda, .lmu = lmu, .lsigma = lsigma,
.elambda = elambda, .emu = emu, .esigma = esigma,
.ilambda = ilambda, .isigma = isigma,
.idf.mu = idf.mu,
.idf.sigma = idf.sigma,
.yoffset = yoffset,
.percentiles = percentiles ))),
linkinv = eval(substitute(function(eta, extra = NULL) {
pcent <- extra$percentiles
eta[, 1] <- eta2theta(eta[, 1], .llambda, earg = .elambda)
eta[, 3] <- eta2theta(eta[, 3], .lsigma, earg = .esigma)
qtplot.lms.yjn(percentiles = pcent, eta = eta,
yoffset = extra$yoff)
}, list( .esigma = esigma, .elambda = elambda,
.llambda = llambda,
.lsigma = lsigma ))),
last = eval(substitute(expression({
misc$link <- c(lambda = .llambda, mu = .lmu, sigma = .lsigma)
misc$earg <- list(lambda = .elambda, mu = .emu, sigma = .esigma)
misc$nsimEIM <- .nsimEIM
misc$percentiles <- .percentiles
misc[["yoffset"]] <- extra$yoffset
y <- y.save
if (control$cdf) {
post$cdf <- cdf.lms.yjn(y + misc$yoffset,
eta0=matrix(c(lambda,mymu,sigma),
ncol=3, dimnames = list(dimnames(x)[[1]], NULL)))
}
}), list(.percentiles = percentiles,
.elambda = elambda, .emu = emu, .esigma = esigma,
.nsimEIM=nsimEIM,
.llambda = llambda, .lmu = lmu, .lsigma = lsigma ))),
loglikelihood = eval(substitute(
function(mu, y, w, residuals = FALSE, eta,
extra = NULL,
summation = TRUE) {
lambda <- eta2theta(eta[, 1], .llambda , earg = .elambda )
mu <- eta2theta(eta[, 2], .lmu , earg = .emu )
sigma <- eta2theta(eta[, 3], .lsigma , earg = .esigma )
psi <- yeo.johnson(y, lambda)
if (residuals) {
stop("loglikelihood residuals not implemented yet")
} else {
ll.elts <- c(w) * (-log(sigma) - 0.5 * ((psi-mu)/sigma)^2 +
(lambda-1) * sign(y) * log1p(abs(y)))
if (summation) {
sum(ll.elts)
} else {
ll.elts
}
}
}, list( .elambda = elambda, .emu = emu, .esigma = esigma,
.llambda = llambda, .lmu = lmu,
.lsigma = lsigma ))),
vfamily = c("lms.yjn2", "lmscreg"),
validparams = eval(substitute(function(eta, y, extra = NULL) {
lambda <- eta2theta(eta[, 1], .llambda , earg = .elambda )
mymu <- eta2theta(eta[, 2], .lmu , earg = .emu )
sigma <- eta2theta(eta[, 3], .lsigma , earg = .esigma )
okay1 <- all(is.finite(mymu )) &&
all(is.finite(sigma )) && all(0 < sigma) &&
all(is.finite(lambda))
okay1
}, list( .elambda = elambda, .emu = emu, .esigma = esigma,
.llambda = llambda, .lmu = lmu,
.lsigma = lsigma ))),
deriv = eval(substitute(expression({
lambda <- eta2theta(eta[, 1], .llambda , earg = .elambda )
mymu <- eta2theta(eta[, 2], .lmu , earg = .emu )
sigma <- eta2theta(eta[, 3], .lsigma , earg = .esigma )
dlambda.deta <- dtheta.deta(lambda, link = .llambda, earg = .elambda)
dmu.deta <- dtheta.deta(mymu, link = .lmu, earg = .emu)
dsigma.deta <- dtheta.deta(sigma, link = .lsigma, earg = .esigma)
psi <- yeo.johnson(y, lambda)
d1 <- yeo.johnson(y, lambda, deriv = 1)
AA <- (psi - mymu) / sigma
dl.dlambda <- -AA * d1 /sigma + sign(y) * log1p(abs(y))
dl.dmu <- AA / sigma
dl.dsigma <- (AA^2 -1) / sigma
dthetas.detas <- cbind(dlambda.deta, dmu.deta, dsigma.deta)
c(w) * cbind(dl.dlambda, dl.dmu, dl.dsigma) * dthetas.detas
}), list( .elambda = elambda, .emu = emu, .esigma = esigma,
.llambda = llambda, .lmu = lmu,
.lsigma = lsigma ))),
weight = eval(substitute(expression({
run.varcov <- 0
ind1 <- iam(NA, NA, M = M, both = TRUE, diag = TRUE)
for (ii in 1:( .nsimEIM )) {
psi <- rnorm(n, mymu, sigma)
ysim <- yeo.johnson(y = psi, lam = lambda, inverse = TRUE)
d1 <- yeo.johnson(ysim, lambda, deriv = 1)
AA <- (psi - mymu) / sigma
dl.dlambda <- -AA * d1 /sigma + sign(ysim) * log1p(abs(ysim))
dl.dmu <- AA / sigma
dl.dsigma <- (AA^2 -1) / sigma
rm(ysim)
temp3 <- cbind(dl.dlambda, dl.dmu, dl.dsigma)
run.varcov <- ((ii-1) * run.varcov +
temp3[,ind1$row.index]*temp3[,ind1$col.index]) / ii
}
if (intercept.only)
run.varcov <- matrix(colMeans(run.varcov),
n, ncol(run.varcov), byrow = TRUE)
wz <- run.varcov * dthetas.detas[,ind1$row] * dthetas.detas[,ind1$col]
dimnames(wz) <- list(rownames(wz), NULL)
c(w) * wz
}), list(.lsigma = lsigma,
.esigma = esigma, .elambda = elambda,
.nsimEIM=nsimEIM,
.llambda = llambda))))
}
lms.yjn <-
function(percentiles = c(25, 50, 75),
zero = c("lambda", "sigma"),
llambda = "identitylink",
lsigma = "loglink",
idf.mu = 4,
idf.sigma = 2,
ilambda = 1.0,
isigma = NULL,
rule = c(10, 5),
yoffset = NULL,
diagW = FALSE, iters.diagW = 6) {
llambda <- as.list(substitute(llambda))
elambda <- link2list(llambda)
llambda <- attr(elambda, "function.name")
lsigma <- as.list(substitute(lsigma))
esigma <- link2list(lsigma)
lsigma <- attr(esigma, "function.name")
rule <- rule[1]
if (rule != 5 && rule != 10)
stop("only rule=5 or 10 is supported")
new("vglmff",
blurb = c("LMS Quantile Regression ",
"(Yeo-Johnson transformation to normality)\n",
"Links: ",
namesof("lambda", link = llambda, earg = elambda), ", ",
namesof("mu", link = "identitylink", earg = list()), ", ",
namesof("sigma", link = lsigma, earg = esigma)),
constraints = eval(substitute(expression({
constraints <- cm.zero.VGAM(constraints, x = x, .zero , M = M,
predictors.names = predictors.names,
M1 = 3)
}), list(.zero = zero))),
infos = eval(substitute(function(...) {
list(M1 = 3,
Q1 = 1,
expected = TRUE,
multipleResponses = FALSE,
parameters.names = c("lambda", "mu", "sigma"),
llambda = .llambda ,
lmu = "identitylink",
lsigma = .lsigma ,
percentiles = .percentiles ,
true.mu = FALSE,
zero = .zero )
}, list( .zero = zero,
.percentiles = percentiles,
.llambda = llambda, .lsigma = lsigma ))),
initialize = eval(substitute(expression({
w.y.check(w = w, y = y,
ncol.w.max = 1, ncol.y.max = 1)
predictors.names <-
c(namesof("lambda", .llambda, earg = .elambda , short = TRUE),
"mu",
namesof("sigma", .lsigma, earg = .esigma , short = TRUE))
extra$percentiles <- .percentiles
y.save <- y
yoff <- if (is.Numeric( .yoffset )) .yoffset else -median(y)
extra$yoffset <- yoff
y <- y + yoff
if (!length(etastart)) {
lambda.init <- if (is.Numeric( .ilambda )) .ilambda else 1.0
y.tx <- yeo.johnson(y, lambda.init)
if (smoothok <-
(length(unique(sort(x[, min(ncol(x), 2)]))) > 7)) {
fit700 <- vsmooth.spline(x = x[, min(ncol(x), 2)],
y = y.tx, w = w, df = .idf.mu )
fv.init <- c(predict(fit700, x = x[, min(ncol(x), 2)])$y)
} else {
fv.init <- rep_len(weighted.mean(y, w), n)
}
sigma.init <- if (!is.Numeric( .isigma )) {
if (is.Numeric( .idf.sigma) &&
smoothok) {
fit710 = vsmooth.spline(x = x[, min(ncol(x), 2)],
y = (y.tx - fv.init)^2,
w = w, df = .idf.sigma)
sqrt(c(abs(predict(fit710,
x = x[, min(ncol(x), 2)])$y)))
} else {
sqrt( sum( w * (y.tx - fv.init)^2 ) / sum(w) )
}
} else
.isigma
etastart <-
cbind(theta2eta(lambda.init, .llambda , earg = .elambda ),
fv.init,
theta2eta(sigma.init, .lsigma , earg = .esigma ))
}
}), list( .llambda = llambda, .lsigma = lsigma,
.elambda = elambda, .esigma = esigma,
.ilambda = ilambda, .isigma = isigma,
.idf.mu = idf.mu,
.idf.sigma = idf.sigma,
.yoffset = yoffset,
.percentiles = percentiles ))),
linkinv = eval(substitute(function(eta, extra = NULL) {
pcent <- extra$percentiles
eta[, 1] <- eta2theta(eta[, 1], .llambda , earg = .elambda )
eta[, 3] <- eta2theta(eta[, 3], .lsigma , earg = .esigma )
qtplot.lms.yjn(percentiles = pcent,
eta = eta, yoffset = extra$yoff)
}, list(.percentiles = percentiles,
.esigma = esigma,
.elambda = elambda,
.llambda = llambda,
.lsigma = lsigma))),
last = eval(substitute(expression({
misc$link <- c(lambda = .llambda ,
mu = "identitylink",
sigma = .lsigma )
misc$earg <- list(lambda = .elambda ,
mu = list(theta = NULL),
sigma = .esigma )
misc$percentiles <- .percentiles
misc$true.mu <- FALSE
misc[["yoffset"]] <- extra$yoff
y <- y.save
if (control$cdf) {
post$cdf =
cdf.lms.yjn(y + misc$yoffset,
eta0 = matrix(c(lambda,mymu,sigma),
ncol = 3,
dimnames = list(dimnames(x)[[1]], NULL)))
}
}), list( .percentiles = percentiles,
.elambda = elambda, .esigma = esigma,
.llambda = llambda, .lsigma = lsigma))),
loglikelihood = eval(substitute(
function(mu, y, w, residuals = FALSE, eta,
extra = NULL, summation = TRUE) {
lambda <- eta2theta(eta[, 1], .llambda , earg = .elambda )
mu <- eta[, 2]
sigma <- eta2theta(eta[, 3], .lsigma , earg = .esigma )
psi <- yeo.johnson(y, lambda)
if (residuals) {
stop("loglikelihood residuals not implemented yet")
} else {
ll.elts <- c(w) * (-log(sigma) - 0.5 * ((psi-mu)/sigma)^2 +
(lambda-1) * sign(y) * log1p(abs(y)))
if (summation) {
sum(ll.elts)
} else {
ll.elts
}
}
}, list( .esigma = esigma, .elambda = elambda,
.lsigma = lsigma, .llambda = llambda))),
vfamily = c("lms.yjn", "lmscreg"),
validparams = eval(substitute(function(eta, y, extra = NULL) {
lambda <- eta2theta(eta[, 1], .llambda , earg = .elambda )
mymu <- eta[, 2]
sigma <- eta2theta(eta[, 3], .lsigma , earg = .esigma )
okay1 <- all(is.finite(mymu )) &&
all(is.finite(sigma )) && all(0 < sigma) &&
all(is.finite(lambda))
okay1
}, list( .esigma = esigma, .elambda = elambda,
.lsigma = lsigma, .llambda = llambda))),
deriv = eval(substitute(expression({
lambda <- eta2theta(eta[, 1], .llambda , earg = .elambda )
mymu <- eta[, 2]
sigma <- eta2theta(eta[, 3], .lsigma , earg = .esigma )
psi <- yeo.johnson(y, lambda)
d1 <- yeo.johnson(y, lambda, deriv = 1)
AA <- (psi - mymu) / sigma
dl.dlambda <- -AA * d1 /sigma + sign(y) * log1p(abs(y))
dl.dmu <- AA / sigma
dl.dsigma <- (AA^2 -1) / sigma
dlambda.deta <- dtheta.deta(lambda, link = .llambda, earg = .elambda )
dsigma.deta <- dtheta.deta(sigma, link = .lsigma, earg = .esigma )
cbind(dl.dlambda * dlambda.deta,
dl.dmu,
dl.dsigma * dsigma.deta) * c(w)
}), list( .esigma = esigma, .elambda = elambda,
.lsigma = lsigma, .llambda = llambda ))),
weight = eval(substitute(expression({
wz <- matrix(0, n, 6)
wz[,iam(2, 2, M)] <- 1 / sigma^2
wz[,iam(3, 3, M)] <- 2 * wz[,iam(2, 2, M)]
if ( .rule == 10) {
glag.abs = c(0.13779347054,0.729454549503,
1.80834290174,3.40143369785,
5.55249614006,8.33015274676,
11.8437858379,16.2792578314,
21.996585812, 29.9206970123)
glag.wts = c(0.308441115765, 0.401119929155, 0.218068287612,
0.0620874560987, 0.00950151697517, 0.000753008388588,
2.82592334963e-5,
4.24931398502e-7, 1.83956482398e-9, 9.91182721958e-13)
} else {
glag.abs = c(0.2635603197180449, 1.4134030591060496,
3.5964257710396850,
7.0858100058570503, 12.6408008442729685)
glag.wts = c(5.217556105826727e-01, 3.986668110832433e-01,
7.594244968176882e-02,
3.611758679927785e-03, 2.336997238583738e-05)
}
if ( .rule == 10) {
sgh.abs = c(0.03873852801690856, 0.19823332465268367,
0.46520116404433082,
0.81686197962535023, 1.23454146277833154,
1.70679833036403172,
2.22994030591819214, 2.80910399394755972,
3.46387269067033854,
4.25536209637269280)
sgh.wts = c(9.855210713854302e-02, 2.086780884700499e-01,
2.520517066468666e-01,
1.986843323208932e-01,9.719839905023238e-02,
2.702440190640464e-02,
3.804646170194185e-03, 2.288859354675587e-04,
4.345336765471935e-06,
1.247734096219375e-08)
} else {
sgh.abs = c(0.1002421519682381, 0.4828139660462573,
1.0609498215257607,
1.7797294185202606, 2.6697603560875995)
sgh.wts = c(0.2484061520284881475,0.3923310666523834311,
0.2114181930760276606,
0.0332466603513424663, 0.0008248533445158026)
}
if ( .rule == 10) {
gleg.abs = c(-0.973906528517, -0.865063366689, -0.679409568299,
-0.433395394129, -0.148874338982)
gleg.abs = c(gleg.abs, rev(-gleg.abs))
gleg.wts = c(0.0666713443087, 0.149451349151, 0.219086362516,
0.26926671931, 0.295524224715)
gleg.wts = c(gleg.wts, rev(gleg.wts))
} else {
gleg.abs = c(-0.9061798459386643,-0.5384693101056820, 0,
0.5384693101056828, 0.9061798459386635)
gleg.wts = c(0.2369268850561853,0.4786286704993680,
0.5688888888888889,
0.4786286704993661, 0.2369268850561916)
}
discontinuity = -mymu/(sqrt(2)*sigma)
LL <- pmin(discontinuity, 0)
UU <- pmax(discontinuity, 0)
if (FALSE) {
AA <- (UU-LL)/2
for (kk in seq_along(gleg.wts)) {
temp1 <- AA * gleg.wts[kk]
abscissae <- (UU+LL)/2 + AA * gleg.abs[kk]
psi <- mymu + sqrt(2) * sigma * abscissae
temp9 <- dpsi.dlambda.yjn(psi, lambda, mymu, sigma,
derivative = 2)
temp9 <- cbind(temp9, exp(-abscissae^2) / (sqrt(pi) * sigma^2))
wz[,iam(1, 1, M)] <- wz[,iam(1, 1, M)] + temp1 *
gleg.weight.yjn.11(abscissae, lambda, mymu, sigma, temp9)
wz[,iam(1, 2, M)] <- wz[,iam(1, 2, M)] + temp1 *
gleg.weight.yjn.12(abscissae, lambda, mymu, sigma, temp9)
wz[,iam(1, 3, M)] <- wz[,iam(1, 3, M)] + temp1 *
gleg.weight.yjn.13(abscissae, lambda, mymu, sigma, temp9)
}
} else {
temp9 <- .Fortran("yjngintf", as.double(LL),
as.double(UU),
as.double(gleg.abs), as.double(gleg.wts), as.integer(n),
as.integer(length(gleg.abs)), as.double(lambda),
as.double(mymu), as.double(sigma), answer = double(3*n),
eps = as.double(1.0e-5))$ans
dim(temp9) <- c(3, n)
wz[,iam(1, 1, M)] <- temp9[1,]
wz[,iam(1, 2, M)] <- temp9[2,]
wz[,iam(1, 3, M)] <- temp9[3,]
}
for (kk in seq_along(sgh.wts)) {
abscissae <- sign(-discontinuity) * sgh.abs[kk]
psi <- mymu + sqrt(2) * sigma * abscissae
temp9 <- dpsi.dlambda.yjn(psi, lambda, mymu, sigma,
derivative = 2)
wz[,iam(1, 1, M)] <- wz[,iam(1, 1, M)] + sgh.wts[kk] *
gh.weight.yjn.11(abscissae, lambda, mymu, sigma, temp9)
wz[,iam(1, 2, M)] <- wz[,iam(1, 2, M)] + sgh.wts[kk] *
gh.weight.yjn.12(abscissae, lambda, mymu, sigma, temp9)
wz[,iam(1, 3, M)] <- wz[,iam(1, 3, M)] + sgh.wts[kk] *
gh.weight.yjn.13(abscissae, lambda, mymu, sigma, temp9)
}
temp1 <- exp(-discontinuity^2)
for (kk in seq_along(glag.wts)) {
abscissae <- sign(discontinuity) * sqrt(glag.abs[kk]) +
discontinuity^2
psi <- mymu + sqrt(2) * sigma * abscissae
temp9 <- dpsi.dlambda.yjn(psi, lambda, mymu, sigma, derivative = 2)
temp9 <- cbind(temp9,
1 / (2 * sqrt((abscissae-discontinuity^2)^2 +
discontinuity^2) *
sqrt(pi) * sigma^2))
temp7 <- temp1 * glag.wts[kk]
wz[,iam(1, 1, M)] <- wz[,iam(1, 1, M)] + temp7 *
glag.weight.yjn.11(abscissae, lambda, mymu, sigma, temp9)
wz[,iam(1, 2, M)] <- wz[,iam(1, 2, M)] + temp7 *
glag.weight.yjn.12(abscissae, lambda, mymu, sigma, temp9)
wz[,iam(1, 3, M)] <- wz[,iam(1, 3, M)] + temp7 *
glag.weight.yjn.13(abscissae, lambda, mymu, sigma, temp9)
}
wz[, iam(1, 1, M)] <- wz[, iam(1, 1, M)] * dlambda.deta^2
wz[, iam(1, 2, M)] <- wz[, iam(1, 2, M)] * dlambda.deta
wz[, iam(1, 3, M)] <- wz[, iam(1, 3, M)] * dsigma.deta * dlambda.deta
if ( .diagW && iter <= .iters.diagW) {
wz[,iam(1, 2, M)] <- wz[, iam(1, 3, M)] <- 0
}
wz[, iam(2, 3, M)] <- wz[, iam(2, 3, M)] * dsigma.deta
wz[, iam(3, 3, M)] <- wz[, iam(3, 3, M)] * dsigma.deta^2
c(w) * wz
}), list( .lsigma = lsigma, .llambda = llambda,
.esigma = esigma, .elambda = elambda,
.rule = rule, .diagW = diagW,
.iters.diagW = iters.diagW ))))
}
lmscreg.control <- function(cdf = TRUE, at.arg = NULL, x0 = NULL, ...) {
if (!is.logical(cdf)) {
warning("'cdf' is not logical; using TRUE instead")
cdf <- TRUE
}
list(cdf = cdf, at.arg = at.arg, x0 = x0)
}
Wr1 <- function(r, w) ifelse(r <= 0, 1, w)
Wr2 <- function(r, w) (r <= 0) * 1 + (r > 0) * w
amlnormal.deviance <- function(mu, y, w, residuals = FALSE,
eta, extra = NULL) {
M <- length(extra$w.aml)
if (M > 1) y <- matrix(y, extra$n, extra$M)
devi <- cbind((y - mu)^2)
if (residuals) {
stop("not sure here")
wz <- VGAM.weights.function(w = w, M = extra$M, n = extra$n)
return((y - mu) * sqrt(wz) * matrix(extra$w.aml,extra$n,extra$M))
} else {
all.deviances <- numeric(M)
myresid <- matrix(y,extra$n,extra$M) - cbind(mu)
for (ii in 1:M)
all.deviances[ii] <- sum(c(w) * devi[, ii] *
Wr1(myresid[, ii],
w = extra$w.aml[ii]))
}
if (is.logical(extra$individual) && extra$individual)
all.deviances else sum(all.deviances)
}
amlnormal <- function(w.aml = 1, parallel = FALSE,
lexpectile = "identitylink",
iexpectile = NULL,
imethod = 1, digw = 4) {
if (!is.Numeric(w.aml, positive = TRUE))
stop("argument 'w.aml' must be a vector of positive values")
if (!is.Numeric(imethod, length.arg = 1,
integer.valued = TRUE, positive = TRUE) ||
imethod > 3)
stop("argument 'imethod' must be 1, 2 or 3")
lexpectile <- as.list(substitute(lexpectile))
eexpectile <- link2list(lexpectile)
lexpectile <- attr(eexpectile, "function.name")
if (length(iexpectile) && !is.Numeric(iexpectile))
stop("bad input for argument 'iexpectile'")
new("vglmff",
blurb = c("Asymmetric least squares quantile regression\n\n",
"Links: ",
namesof("expectile", link = lexpectile, earg = eexpectile)),
constraints = eval(substitute(expression({
constraints <- cm.VGAM(matrix(1, M, 1), x = x,
bool = .parallel ,
constraints = constraints)
}), list( .parallel = parallel ))),
deviance = function(mu, y, w, residuals = FALSE, eta,
extra = NULL) {
amlnormal.deviance(mu = mu, y = y, w = w, residuals = residuals,
eta = eta, extra = extra)
},
initialize = eval(substitute(expression({
extra$w.aml <- .w.aml
temp5 <-
w.y.check(w = w, y = y,
ncol.w.max = 1, ncol.y.max = 1,
out.wy = TRUE,
maximize = TRUE)
w <- temp5$w
y <- temp5$y
extra$M <- M <- length(extra$w.aml)
extra$n <- n
extra$y.names <- y.names <-
paste("w.aml = ", round(extra$w.aml, digits = .digw ), sep = "")
predictors.names <- c(namesof(
paste("expectile(",y.names,")", sep = ""), .lexpectile ,
earg = .eexpectile, tag = FALSE))
if (!length(etastart)) {
mean.init <-
if ( .imethod == 1)
rep_len(median(y), n) else
if ( .imethod == 2 || .imethod == 3)
rep_len(weighted.mean(y, w), n) else {
junk <- lm.wfit(x = x, y = c(y), w = c(w))
junk$fitted
}
if ( .imethod == 3)
mean.init <- abs(mean.init) + 0.01
if (length( .iexpectile))
mean.init <- matrix( .iexpectile, n, M, byrow = TRUE)
etastart <-
matrix(theta2eta(mean.init, .lexpectile,
earg = .eexpectile), n, M)
}
}), list( .lexpectile = lexpectile, .eexpectile = eexpectile,
.iexpectile = iexpectile,
.imethod = imethod, .digw = digw, .w.aml = w.aml ))),
linkinv = eval(substitute(function(eta, extra = NULL) {
ans <- eta <- as.matrix(eta)
for (ii in 1:ncol(eta))
ans[, ii] <- eta2theta(eta[, ii], .lexpectile , earg = .eexpectile )
dimnames(ans) <- list(dimnames(eta)[[1]], extra$y.names)
ans
}, list( .lexpectile = lexpectile, .eexpectile = eexpectile ))),
last = eval(substitute(expression({
misc$link <- rep_len(.lexpectile , M)
names(misc$link) <- extra$y.names
misc$earg <- vector("list", M)
for (ilocal in 1:M)
misc$earg[[ilocal]] <- list(theta = NULL)
names(misc$earg) <- names(misc$link)
misc$parallel <- .parallel
misc$expected <- TRUE
extra$percentile <- numeric(M)
misc$multipleResponses <- TRUE
for (ii in 1:M) {
use.w <- if (M > 1 && NCOL(w) == M) w[, ii] else w
extra$percentile[ii] <- 100 *
weighted.mean(myresid[, ii] <= 0, use.w)
}
names(extra$percentile) <- names(misc$link)
extra$individual <- TRUE
if (!(M > 1 && NCOL(w) == M)) {
extra$deviance <-
amlnormal.deviance(mu = mu, y = y, w = w,
residuals = FALSE, eta = eta, extra = extra)
names(extra$deviance) <- extra$y.names
}
}), list( .lexpectile = lexpectile,
.eexpectile = eexpectile, .parallel = parallel ))),
vfamily = c("amlnormal"),
validparams = eval(substitute(function(eta, y, extra = NULL) {
mymu <- eta2theta(eta, .lexpectile , earg = .eexpectile )
okay1 <- all(is.finite(mymu))
okay1
}, list( .lexpectile = lexpectile,
.eexpectile = eexpectile ))),
deriv = eval(substitute(expression({
mymu <- eta2theta(eta, .lexpectile , earg = .eexpectile )
dexpectile.deta <- dtheta.deta(mymu, .lexpectile ,
earg = .eexpectile )
myresid <- matrix(y,extra$n,extra$M) - cbind(mu)
wor1 <- Wr2(myresid, w = matrix(extra$w.aml, extra$n, extra$M,
byrow = TRUE))
c(w) * myresid * wor1 * dexpectile.deta
}), list( .lexpectile = lexpectile,
.eexpectile = eexpectile ))),
weight = eval(substitute(expression({
wz <- c(w) * wor1 * dexpectile.deta^2
wz
}), list( .lexpectile = lexpectile,
.eexpectile = eexpectile ))))
}
amlpoisson.deviance <- function(mu, y, w, residuals = FALSE, eta,
extra = NULL) {
M <- length(extra$w.aml)
if (M > 1) y <- matrix(y,extra$n,extra$M)
nz <- y > 0
devi <- cbind(-(y - mu))
devi[nz] <- devi[nz] + y[nz] * log(y[nz]/mu[nz])
if (residuals) {
stop("not sure here")
return(sign(y - mu) * sqrt(2 * abs(devi) * w) *
matrix(extra$w,extra$n,extra$M))
} else {
all.deviances <- numeric(M)
myresid <- matrix(y,extra$n,extra$M) - cbind(mu)
for (ii in 1:M) all.deviances[ii] <- 2 * sum(c(w) * devi[, ii] *
Wr1(myresid[, ii], w=extra$w.aml[ii]))
}
if (is.logical(extra$individual) && extra$individual)
all.deviances else sum(all.deviances)
}
amlpoisson <- function(w.aml = 1, parallel = FALSE, imethod = 1,
digw = 4, link = "loglink") {
if (!is.Numeric(w.aml, positive = TRUE))
stop("'w.aml' must be a vector of positive values")
link <- as.list(substitute(link))
earg <- link2list(link)
link <- attr(earg, "function.name")
new("vglmff",
blurb = c("Poisson expectile regression by",
" asymmetric maximum likelihood estimation\n\n",
"Link: ", namesof("expectile", link, earg = earg)),
constraints = eval(substitute(expression({
constraints <- cm.VGAM(matrix(1, M, 1), x = x,
bool = .parallel ,
constraints = constraints)
}), list( .parallel = parallel ))),
deviance = function(mu, y, w, residuals = FALSE, eta, extra = NULL) {
amlpoisson.deviance(mu = mu, y = y, w = w, residuals = residuals,
eta = eta, extra = extra)
},
initialize = eval(substitute(expression({
extra$w.aml <- .w.aml
temp5 <-
w.y.check(w = w, y = y,
ncol.w.max = 1, ncol.y.max = 1,
out.wy = TRUE,
maximize = TRUE)
w <- temp5$w
y <- temp5$y
extra$M <- M <- length(extra$w.aml)
extra$n <- n
extra$y.names <- y.names <-
paste("w.aml = ", round(extra$w.aml, digits = .digw ), sep = "")
extra$individual <- FALSE
predictors.names <-
c(namesof(paste("expectile(",y.names,")", sep = ""),
.link , earg = .earg , tag = FALSE))
if (!length(etastart)) {
mean.init <- if ( .imethod == 2)
rep_len(median(y), n) else
if ( .imethod == 1)
rep_len(weighted.mean(y, w), n) else {
junk = lm.wfit(x = x, y = c(y), w = c(w))
abs(junk$fitted)
}
etastart <-
matrix(theta2eta(mean.init, .link , earg = .earg ), n, M)
}
}), list( .link = link, .earg = earg, .imethod = imethod,
.digw = digw, .w.aml = w.aml ))),
linkinv = eval(substitute(function(eta, extra = NULL) {
mu.ans <- eta <- as.matrix(eta)
for (ii in 1:ncol(eta))
mu.ans[, ii] <- eta2theta(eta[, ii], .link , earg = .earg )
dimnames(mu.ans) <- list(dimnames(eta)[[1]], extra$y.names)
mu.ans
}, list( .link = link, .earg = earg ))),
last = eval(substitute(expression({
misc$multipleResponses <- TRUE
misc$expected <- TRUE
misc$parallel <- .parallel
misc$link <- rep_len( .link , M)
names(misc$link) <- extra$y.names
misc$earg <- vector("list", M)
for (ilocal in 1:M)
misc$earg[[ilocal]] <- list(theta = NULL)
names(misc$earg) <- names(misc$link)
extra$percentile <- numeric(M)
for (ii in 1:M)
extra$percentile[ii] <- 100 * weighted.mean(myresid[, ii] <= 0, w)
names(extra$percentile) <- names(misc$link)
extra$individual <- TRUE
extra$deviance <- amlpoisson.deviance(mu = mu, y = y, w = w,
residuals = FALSE,
eta = eta, extra = extra)
names(extra$deviance) <- extra$y.names
}), list( .link = link, .earg = earg, .parallel = parallel ))),
linkfun = eval(substitute(function(mu, extra = NULL) {
theta2eta(mu, link = .link , earg = .earg )
}, list( .link = link, .earg = earg ))),
vfamily = c("amlpoisson"),
validparams = eval(substitute(function(eta, y, extra = NULL) {
mymu <- eta2theta(eta, .link , earg = .earg )
okay1 <- all(is.finite(mymu)) && all(0 < mymu)
okay1
}, list( .link = link, .earg = earg ))),
deriv = eval(substitute(expression({
mymu <- eta2theta(eta, .link , earg = .earg )
dexpectile.deta <- dtheta.deta(mymu, .link , earg = .earg )
myresid <- matrix(y,extra$n,extra$M) - cbind(mu)
wor1 <- Wr2(myresid, w = matrix(extra$w.aml, extra$n, extra$M,
byrow = TRUE))
c(w) * myresid * wor1 * (dexpectile.deta / mymu)
}), list( .link = link, .earg = earg ))),
weight = eval(substitute(expression({
use.mu <- mymu
use.mu[use.mu < .Machine$double.eps^(3/4)] <-
.Machine$double.eps^(3/4)
wz <- c(w) * wor1 * use.mu * (dexpectile.deta / mymu)^2
wz
}), list( .link = link, .earg = earg ))))
}
amlbinomial.deviance <- function(mu, y, w, residuals = FALSE,
eta, extra = NULL) {
M <- length(extra$w.aml)
if (M > 1) y <- matrix(y,extra$n,extra$M)
devy <- y
nz <- y != 0
devy[nz] <- y[nz] * log(y[nz])
nz <- (1 - y) != 0
devy[nz] <- devy[nz] + (1 - y[nz]) * log1p(-y[nz])
devmu <- y * log(mu) + (1 - y) * log1p(-mu)
if (any(small <- mu * (1 - mu) < .Machine$double.eps)) {
warning("fitted values close to 0 or 1")
smu <- mu[small]
sy <- y[small]
smu <- ifelse(smu < .Machine$double.eps,
.Machine$double.eps, smu)
onemsmu <- ifelse((1 - smu) < .Machine$double.eps,
.Machine$double.eps, 1 - smu)
devmu[small] <- sy * log(smu) + (1 - sy) * log(onemsmu)
}
devi <- 2 * (devy - devmu)
if (residuals) {
stop("not sure here")
return(sign(y - mu) * sqrt(abs(devi) * w))
} else {
all.deviances <- numeric(M)
myresid <- matrix(y,extra$n,extra$M) - matrix(mu,extra$n,extra$M)
for (ii in 1:M) all.deviances[ii] <- sum(c(w) * devi[, ii] *
Wr1(myresid[, ii], w=extra$w.aml[ii]))
}
if (is.logical(extra$individual) && extra$individual)
all.deviances else sum(all.deviances)
}
amlbinomial <- function(w.aml = 1, parallel = FALSE, digw = 4,
link = "logitlink") {
if (!is.Numeric(w.aml, positive = TRUE))
stop("'w.aml' must be a vector of positive values")
link <- as.list(substitute(link))
earg <- link2list(link)
link <- attr(earg, "function.name")
new("vglmff",
blurb = c("Logistic expectile regression by ",
"asymmetric maximum likelihood estimation\n\n",
"Link: ", namesof("expectile", link, earg = earg)),
constraints = eval(substitute(expression({
constraints <- cm.VGAM(matrix(1, M, 1), x = x,
bool = .parallel ,
constraints = constraints)
}), list( .parallel = parallel ))),
deviance = function(mu, y, w, residuals = FALSE, eta, extra = NULL) {
amlbinomial.deviance(mu = mu, y = y, w = w, residuals = residuals,
eta = eta, extra = extra)
},
initialize = eval(substitute(expression({
{
NCOL <- function (x)
if (is.array(x) && length(dim(x)) > 1 ||
is.data.frame(x)) ncol(x) else as.integer(1)
if (NCOL(y) == 1) {
if (is.factor(y)) y <- y != levels(y)[1]
nn <- rep_len(1, n)
if (!all(y >= 0 & y <= 1))
stop("response values must be in [0, 1]")
if (!length(mustart) && !length(etastart))
mustart <- (0.5 + w * y) / (1 + w)
no.successes <- w * y
if (any(abs(no.successes - round(no.successes)) > 0.001))
stop("Number of successes must be integer-valued")
} else if (NCOL(y) == 2) {
if (any(abs(y - round(y)) > 0.001))
stop("Count data must be integer-valued")
nn <- y[, 1] + y[, 2]
y <- ifelse(nn > 0, y[, 1]/nn, 0)
w <- w * nn
if (!length(mustart) && !length(etastart))
mustart <- (0.5 + nn * y) / (1 + nn)
} else
stop("Response not of the right form")
}
extra$w.aml <- .w.aml
if (ncol(y <- cbind(y)) != 1)
stop("response must be a vector or a one-column matrix")
extra$M <- M <- length(extra$w.aml)
extra$n <- n
extra$y.names <- y.names <-
paste("w.aml = ", round(extra$w.aml, digits = .digw ),
sep = "")
extra$individual <- FALSE
predictors.names <-
c(namesof(paste("expectile(", y.names, ")", sep = ""),
.link , earg = .earg , tag = FALSE))
if (!length(etastart)) {
etastart <- matrix(theta2eta(mustart, .link , earg = .earg ),
n, M)
mustart <- NULL
}
}), list( .link = link, .earg = earg,
.digw = digw, .w.aml = w.aml ))),
linkinv = eval(substitute(function(eta, extra = NULL) {
mu.ans <- eta <- as.matrix(eta)
for (ii in 1:ncol(eta))
mu.ans[, ii] <- eta2theta(eta[, ii], .link , earg = .earg )
dimnames(mu.ans) <- list(dimnames(eta)[[1]], extra$y.names)
mu.ans
}, list( .link = link, .earg = earg ))),
last = eval(substitute(expression({
misc$link <- rep_len(.link , M)
names(misc$link) <- extra$y.names
misc$earg <- vector("list", M)
for (ilocal in 1:M)
misc$earg[[ilocal]] <- list(theta = NULL)
names(misc$earg) <- names(misc$link)
misc$parallel <- .parallel
misc$expected <- TRUE
extra$percentile <- numeric(M)
for (ii in 1:M)
extra$percentile[ii] <- 100 * weighted.mean(myresid[, ii] <= 0, w)
names(extra$percentile) <- names(misc$link)
extra$individual <- TRUE
extra$deviance <- amlbinomial.deviance(mu = mu, y = y, w = w,
residuals = FALSE, eta = eta, extra = extra)
names(extra$deviance) <- extra$y.names
}), list( .link = link, .earg = earg, .parallel = parallel ))),
linkfun = eval(substitute(function(mu, extra = NULL) {
theta2eta(mu, link = .link , earg = .earg )
}, list( .link = link, .earg = earg ))),
vfamily = c("amlbinomial"),
validparams = eval(substitute(function(eta, y, extra = NULL) {
mymu <- eta2theta(eta, .link , earg = .earg )
okay1 <- all(is.finite(mymu)) && all(0 < mymu & mymu < 1)
okay1
}, list( .link = link, .earg = earg ))),
deriv = eval(substitute(expression({
mymu <- eta2theta(eta, .link , earg = .earg )
use.mu <- mymu
use.mu[use.mu < .Machine$double.eps^(3/4)] = .Machine$double.eps^(3/4)
dexpectile.deta <- dtheta.deta(use.mu, .link , earg = .earg )
myresid <- matrix(y,extra$n,extra$M) - cbind(mu)
wor1 <- Wr2(myresid, w = matrix(extra$w.aml, extra$n, extra$M,
byrow = TRUE))
c(w) * myresid * wor1 * (dexpectile.deta / (use.mu * (1-use.mu)))
}), list( .link = link, .earg = earg ))),
weight = eval(substitute(expression({
wz <- c(w) * wor1 * (dexpectile.deta^2 / (use.mu * (1 - use.mu)))
wz
}), list( .link = link, .earg = earg))))
}
amlexponential.deviance <- function(mu, y, w, residuals = FALSE,
eta, extra = NULL) {
M <- length(extra$w.aml)
if (M > 1) y <- matrix(y,extra$n,extra$M)
devy <- cbind(-log(y) - 1)
devi <- cbind(-log(mu) - y / mu)
if (residuals) {
stop("not sure here")
return(sign(y - mu) * sqrt(2 * abs(devi) * w) *
matrix(extra$w,extra$n,extra$M))
} else {
all.deviances <- numeric(M)
myresid <- matrix(y,extra$n,extra$M) - cbind(mu)
for (ii in 1:M) all.deviances[ii] = 2 * sum(c(w) *
(devy[, ii] - devi[, ii]) *
Wr1(myresid[, ii], w=extra$w.aml[ii]))
}
if (is.logical(extra$individual) && extra$individual)
all.deviances else sum(all.deviances)
}
amlexponential <- function(w.aml = 1, parallel = FALSE, imethod = 1,
digw = 4, link = "loglink") {
if (!is.Numeric(w.aml, positive = TRUE))
stop("'w.aml' must be a vector of positive values")
if (!is.Numeric(imethod, length.arg = 1,
integer.valued = TRUE, positive = TRUE) ||
imethod > 3)
stop("argument 'imethod' must be 1, 2 or 3")
link <- as.list(substitute(link))
earg <- link2list(link)
link <- attr(earg, "function.name")
y.names <- paste("w.aml = ", round(w.aml, digits = digw), sep = "")
predictors.names <- c(namesof(
paste("expectile(", y.names,")", sep = ""), link, earg = earg))
predictors.names <- paste(predictors.names, collapse = ", ")
new("vglmff",
blurb = c("Exponential expectile regression by",
" asymmetric maximum likelihood estimation\n\n",
"Link: ", predictors.names),
constraints = eval(substitute(expression({
constraints <- cm.VGAM(matrix(1, M, 1), x = x,
bool = .parallel ,
constraints = constraints)
}), list( .parallel = parallel ))),
deviance = function(mu, y, w, residuals = FALSE, eta, extra = NULL) {
amlexponential.deviance(mu = mu, y = y, w = w,
residuals = residuals,
eta = eta, extra = extra)
},
initialize = eval(substitute(expression({
extra$w.aml <- .w.aml
temp5 <-
w.y.check(w = w, y = y,
Is.positive.y = TRUE,
ncol.w.max = 1, ncol.y.max = 1,
out.wy = TRUE,
maximize = TRUE)
w <- temp5$w
y <- temp5$y
extra$M <- M <- length(extra$w.aml)
extra$n <- n
extra$y.names <- y.names <-
paste("w.aml = ", round(extra$w.aml, digits = .digw ), sep = "")
extra$individual = FALSE
predictors.names <- c(namesof(
paste("expectile(", y.names, ")", sep = ""),
.link , earg = .earg , tag = FALSE))
if (!length(etastart)) {
mean.init <- if ( .imethod == 1)
rep_len(median(y), n) else
if ( .imethod == 2)
rep_len(weighted.mean(y, w), n) else {
1 / (y + 1)
}
etastart <- matrix(theta2eta(mean.init, .link , earg = .earg ),
n, M)
}
}), list( .link = link, .earg = earg, .imethod = imethod,
.digw = digw, .w.aml = w.aml ))),
linkinv = eval(substitute(function(eta, extra = NULL) {
mu.ans <- eta <- as.matrix(eta)
for (ii in 1:ncol(eta))
mu.ans[, ii] <- eta2theta(eta[, ii], .link , earg = .earg )
dimnames(mu.ans) <- list(dimnames(eta)[[1]], extra$y.names)
mu.ans
}, list( .link = link, .earg = earg ))),
last = eval(substitute(expression({
misc$multipleResponses <- TRUE
misc$expected <- TRUE
misc$parallel <- .parallel
misc$link <- rep_len( .link , M)
names(misc$link) <- extra$y.names
misc$earg <- vector("list", M)
for (ilocal in 1:M)
misc$earg[[ilocal]] <- list(theta = NULL)
names(misc$earg) <- names(misc$link)
extra$percentile <- numeric(M)
for (ii in 1:M)
extra$percentile[ii] <- 100 * weighted.mean(myresid[, ii] <= 0, w)
names(extra$percentile) <- names(misc$link)
extra$individual <- TRUE
extra$deviance =
amlexponential.deviance(mu = mu, y = y, w = w,
residuals = FALSE, eta = eta, extra = extra)
names(extra$deviance) <- extra$y.names
}), list( .link = link, .earg = earg, .parallel = parallel ))),
linkfun = eval(substitute(function(mu, extra = NULL) {
theta2eta(mu, link = .link , earg = .earg )
}, list( .link = link, .earg = earg ))),
vfamily = c("amlexponential"),
validparams = eval(substitute(function(eta, y, extra = NULL) {
mymu <- eta2theta(eta, .link , earg = .earg )
okay1 <- all(is.finite(mymu)) && all(0 < mymu)
okay1
}, list( .link = link, .earg = earg ))),
deriv = eval(substitute(expression({
mymu <- eta2theta(eta, .link , earg = .earg )
bigy <- matrix(y,extra$n,extra$M)
dl.dmu <- (bigy - mymu) / mymu^2
dmu.deta <- dtheta.deta(mymu, .link , earg = .earg )
myresid <- bigy - cbind(mymu)
wor1 <- Wr2(myresid, w = matrix(extra$w.aml, extra$n, extra$M,
byrow = TRUE))
c(w) * wor1 * dl.dmu * dmu.deta
}), list( .link = link, .earg = earg ))),
weight = eval(substitute(expression({
ned2l.dmu2 <- 1 / mymu^2
wz <- c(w) * wor1 * ned2l.dmu2 * dmu.deta^2
wz
}), list( .link = link, .earg = earg ))))
}
rho1check <- function(u, tau = 0.5)
u * (tau - (u <= 0))
dalap <- function(x, location = 0, scale = 1, tau = 0.5,
kappa = sqrt(tau/(1-tau)), log = FALSE) {
if (!is.logical(log.arg <- log) || length(log) != 1)
stop("bad input for argument 'log'")
rm(log)
NN <- max(length(x), length(location), length(scale), length(kappa),
length(tau))
if (length(x) != NN) x <- rep_len(x, NN)
if (length(location) != NN) location <- rep_len(location, NN)
if (length(scale) != NN) scale <- rep_len(scale, NN)
if (length(kappa) != NN) kappa <- rep_len(kappa, NN)
if (length(tau) != NN) tau <- rep_len(tau, NN)
logconst <- 0.5 * log(2) - log(scale) + log(kappa) - log1p(kappa^2)
exponent <- -(sqrt(2) / scale) * abs(x - location) *
ifelse(x >= location, kappa, 1/kappa)
indexTF <- (scale > 0) & (tau > 0) & (tau < 1) & (kappa > 0)
logconst[!indexTF] <- NaN
if (log.arg) logconst + exponent else exp(logconst + exponent)
}
ralap <- function(n, location = 0, scale = 1, tau = 0.5,
kappa = sqrt(tau/(1-tau))) {
use.n <- if ((length.n <- length(n)) > 1) length.n else
if (!is.Numeric(n, integer.valued = TRUE,
length.arg = 1, positive = TRUE))
stop("bad input for argument 'n'") else n
location <- rep_len(location, use.n)
scale <- rep_len(scale, use.n)
tau <- rep_len(tau, use.n)
kappa <- rep_len(kappa, use.n)
ans <- location + scale *
log(runif(use.n)^kappa / runif(use.n)^(1/kappa)) / sqrt(2)
indexTF <- (scale > 0) & (tau > 0) & (tau < 1) & (kappa > 0)
ans[!indexTF] <- NaN
ans
}
palap <- function(q, location = 0, scale = 1, tau = 0.5,
kappa = sqrt(tau/(1-tau)),
lower.tail = TRUE, log.p = FALSE) {
if (!is.logical(lower.tail) || length(lower.tail ) != 1)
stop("bad input for argument 'lower.tail'")
if (!is.logical(log.p) || length(log.p) != 1)
stop("bad input for argument 'log.p'")
NN <- max(length(q), length(location), length(scale), length(kappa),
length(tau))
if (length(q) != NN) q <- rep_len(q, NN)
if (length(location) != NN) location <- rep_len(location, NN)
if (length(scale) != NN) scale <- rep_len(scale, NN)
if (length(kappa) != NN) kappa <- rep_len(kappa, NN)
if (length(tau) != NN) tau <- rep_len(tau, NN)
exponent <- -(sqrt(2) / scale) * abs(q - location) *
ifelse(q >= location, kappa, 1/kappa)
temp5 <- exp(exponent) / (1 + kappa^2)
index1 <- (q < location)
if (lower.tail) {
if (log.p) {
ans <- log1p(-exp(exponent) / (1 + kappa^2))
logtemp5 <- exponent - log1p(kappa^2)
ans[index1] <- 2 * log(kappa[index1]) + logtemp5[index1]
} else {
ans <- (kappa^2 - expm1(exponent)) / (1 + kappa^2)
ans[index1] <- (kappa[index1])^2 * temp5[index1]
}
} else {
if (log.p) {
ans <- exponent - log1p(kappa^2)
ans[index1] <- log1p(-(kappa[index1])^2 * temp5[index1])
} else {
ans <- temp5
ans[index1] <- (1 + (kappa[index1])^2 *
(-expm1(exponent[index1]))) / (1+(kappa[index1])^2)
}
}
indexTF <- (scale > 0) & (tau > 0) & (tau < 1) & (kappa > 0)
ans[!indexTF] <- NaN
ans
}
qalap <- function(p, location = 0, scale = 1, tau = 0.5,
kappa = sqrt(tau / (1 - tau)),
lower.tail = TRUE, log.p = FALSE) {
if (!is.logical(lower.tail) || length(lower.tail ) != 1)
stop("bad input for argument 'lower.tail'")
if (!is.logical(log.p) || length(log.p) != 1)
stop("bad input for argument 'log.p'")
NN <- max(length(p), length(location), length(scale), length(kappa),
length(tau))
if (length(p) != NN) p <- rep_len(p, NN)
if (length(location) != NN) location <- rep_len(location, NN)
if (length(scale) != NN) scale <- rep_len(scale, NN)
if (length(kappa) != NN) kappa <- rep_len(kappa, NN)
if (length(tau) != NN) tau <- rep_len(tau, NN)
temp5 <- kappa^2 / (1 + kappa^2)
if (lower.tail) {
if (log.p) {
ans <- exp(p)
index1 <- (exp(p) <= temp5)
exponent <- exp(p[index1]) / temp5[index1]
ans[index1] <- location[index1] + (scale[index1] * kappa[index1]) *
log(exponent) / sqrt(2)
ans[!index1] <- location[!index1] -
(scale[!index1] / kappa[!index1]) *
(log1p((kappa[!index1])^2) +
log(-expm1(p[!index1]))) / sqrt(2)
} else {
ans <- p
index1 <- (p <= temp5)
exponent <- p[index1] / temp5[index1]
ans[index1] <- location[index1] + (scale[index1] * kappa[index1]) *
log(exponent) / sqrt(2)
ans[!index1] <- location[!index1] -
(scale[!index1] / kappa[!index1]) *
(log1p((kappa[!index1])^2) +
log1p(-p[!index1])) / sqrt(2)
}
} else {
if (log.p) {
ans <- -expm1(p)
index1 <- (-expm1(p) <= temp5)
exponent <- -expm1(p[index1]) / temp5[index1]
ans[index1] <- location[index1] + (scale[index1] * kappa[index1]) *
log(exponent) / sqrt(2)
ans[!index1] <- location[!index1] -
(scale[!index1] / kappa[!index1]) *
(log1p((kappa[!index1])^2) +
p[!index1]) / sqrt(2)
} else {
ans <- exp(log1p(-p))
index1 <- (p >= (1 / (1+kappa^2)))
exponent <- exp(log1p(-p[index1])) / temp5[index1]
ans[index1] <- location[index1] +
(scale[index1] * kappa[index1]) * log(exponent) / sqrt(2)
ans[!index1] <- location[!index1] -
(scale[!index1] / kappa[!index1]) *
(log1p((kappa[!index1])^2) +
log(p[!index1])) / sqrt(2)
}
}
indexTF <- (scale > 0) & (tau > 0) & (tau < 1) & (kappa > 0)
ans[!indexTF] <- NaN
ans
}
rloglap <- function(n, location.ald = 0, scale.ald = 1, tau = 0.5,
kappa = sqrt(tau/(1-tau))) {
use.n <- if ((length.n <- length(n)) > 1) length.n else
if (!is.Numeric(n, integer.valued = TRUE,
length.arg = 1, positive = TRUE))
stop("bad input for argument 'n'") else n
location.ald <- rep_len(location.ald, use.n)
scale.ald <- rep_len(scale.ald, use.n)
tau <- rep_len(tau, use.n)
kappa <- rep_len(kappa, use.n)
ans <- exp(location.ald) *
(runif(use.n)^kappa / runif(use.n)^(1/kappa))^(scale.ald / sqrt(2))
indexTF <- (scale.ald > 0) & (tau > 0) & (tau < 1) & (kappa > 0)
ans[!indexTF] <- NaN
ans
}
dloglap <- function(x, location.ald = 0, scale.ald = 1, tau = 0.5,
kappa = sqrt(tau/(1-tau)), log = FALSE) {
if (!is.logical(log.arg <- log) || length(log) != 1)
stop("bad input for argument 'log'")
rm(log)
scale <- scale.ald
location <- location.ald
NN <- max(length(x), length(location),
length(scale), length(kappa), length(tau))
if (length(x) != NN) x <- rep_len(x, NN)
if (length(location) != NN) location <- rep_len(location, NN)
if (length(scale) != NN) scale <- rep_len(scale, NN)
if (length(kappa) != NN) kappa <- rep_len(kappa, NN)
if (length(tau) != NN) tau <- rep_len(tau, NN)
Alpha <- sqrt(2) * kappa / scale.ald
Beta <- sqrt(2) / (scale.ald * kappa)
Delta <- exp(location.ald)
exponent <- ifelse(x >= Delta, -(Alpha+1), (Beta-1)) *
(log(x) - location.ald)
logdensity <- -location.ald + log(Alpha) + log(Beta) -
log(Alpha + Beta) + exponent
indexTF <- (scale.ald > 0) & (tau > 0) & (tau < 1) & (kappa > 0)
logdensity[!indexTF] <- NaN
logdensity[x < 0 & indexTF] <- -Inf
if (log.arg) logdensity else exp(logdensity)
}
qloglap <- function(p, location.ald = 0, scale.ald = 1,
tau = 0.5, kappa = sqrt(tau/(1-tau)),
lower.tail = TRUE, log.p = FALSE) {
if (!is.logical(lower.tail) || length(lower.tail ) != 1)
stop("bad input for argument 'lower.tail'")
if (!is.logical(log.p) || length(log.p) != 1)
stop("bad input for argument 'log.p'")
NN <- max(length(p), length(location.ald), length(scale.ald),
length(kappa))
p <- rep_len(p, NN)
location <- rep_len(location.ald, NN)
scale <- rep_len(scale.ald, NN)
kappa <- rep_len(kappa, NN)
tau <- rep_len(tau, NN)
Alpha <- sqrt(2) * kappa / scale.ald
Beta <- sqrt(2) / (scale.ald * kappa)
Delta <- exp(location.ald)
temp9 <- Alpha + Beta
if (lower.tail) {
if (log.p) {
ln.p <- p
ans <- ifelse((exp(ln.p) > Alpha / temp9),
Delta * (-expm1(ln.p) * temp9 / Beta)^(-1/Alpha),
Delta * (exp(ln.p) * temp9 / Alpha)^(1/Beta))
ans[ln.p > 0] <- NaN
} else {
ans <- ifelse((p > Alpha / temp9),
Delta * exp((-1/Alpha) * (log1p(-p) +
log(temp9/Beta))),
Delta * (p * temp9 / Alpha)^(1/Beta))
ans[p < 0] <- NaN
ans[p == 0] <- 0
ans[p == 1] <- Inf
ans[p > 1] <- NaN
}
} else {
if (log.p) {
ln.p <- p
ans <- ifelse((-expm1(ln.p) > Alpha / temp9),
Delta * (exp(ln.p) * temp9 / Beta)^(-1/Alpha),
Delta * (-expm1(ln.p) * temp9 / Alpha)^(1/Beta))
ans[ln.p > 0] <- NaN
} else {
ans <- ifelse((p < (temp9 - Alpha) / temp9),
Delta * (p * temp9 / Beta)^(-1/Alpha),
Delta * exp((1/Beta)*(log1p(-p) + log(temp9/Alpha))))
ans[p < 0] <- NaN
ans[p == 0] <- Inf
ans[p == 1] <- 0
ans[p > 1] <- NaN
}
}
indexTF <- (scale.ald > 0) & (tau > 0) & (tau < 1) & (kappa > 0)
ans[!indexTF] <- NaN
ans
}
ploglap <- function(q, location.ald = 0, scale.ald = 1,
tau = 0.5, kappa = sqrt(tau/(1-tau)),
lower.tail = TRUE, log.p = FALSE) {
if (!is.logical(lower.tail) || length(lower.tail ) != 1)
stop("bad input for argument 'lower.tail'")
if (!is.logical(log.p) || length(log.p) != 1)
stop("bad input for argument 'log.p'")
NN <- max(length(q), length(location.ald), length(scale.ald),
length(kappa))
location <- rep_len(location.ald, NN)
scale <- rep_len(scale.ald, NN)
kappa <- rep_len(kappa, NN)
q <- rep_len(q, NN)
tau <- rep_len(tau, NN)
Alpha <- sqrt(2) * kappa / scale.ald
Beta <- sqrt(2) / (scale.ald * kappa)
Delta <- exp(location.ald)
temp9 <- Alpha + Beta
index1 <- (Delta <= q)
if (lower.tail) {
if (log.p) {
ans <- log((Alpha / temp9) * (q / Delta)^(Beta))
ans[index1] <- log1p((-(Beta/temp9) * (Delta/q)^(Alpha))[index1])
ans[q <= 0 ] <- -Inf
ans[q == Inf] <- 0
} else {
ans <- (Alpha / temp9) * (q / Delta)^(Beta)
ans[index1] <- -expm1((log(Beta/temp9) +
Alpha * log(Delta/q)))[index1]
ans[q <= 0] <- 0
ans[q == Inf] <- 1
}
} else {
if (log.p) {
ans <- log1p(-(Alpha / temp9) * (q / Delta)^(Beta))
ans[index1] <- log(((Beta/temp9) * (Delta/q)^(Alpha))[index1])
ans[q <= 0] <- 0
ans[q == Inf] <- -Inf
} else {
ans <- -expm1(log(Alpha/temp9) + Beta * log(q/Delta))
ans[index1] <- ((Beta/temp9) * (Delta/q)^(Alpha))[index1]
ans[q <= 0] <- 1
ans[q == Inf] <- 0
}
}
indexTF <- (scale.ald > 0) & (tau > 0) & (tau < 1) & (kappa > 0)
ans[!indexTF] <- NaN
ans
}
rlogitlap <- function(n, location.ald = 0, scale.ald = 1, tau = 0.5,
kappa = sqrt(tau/(1-tau))) {
logitlink(ralap(n = n, location = location.ald, scale = scale.ald,
tau = tau, kappa = kappa),
inverse = TRUE)
}
dlogitlap <- function(x, location.ald = 0, scale.ald = 1, tau = 0.5,
kappa = sqrt(tau/(1-tau)), log = FALSE) {
if (!is.logical(log.arg <- log) || length(log) != 1)
stop("bad input for argument 'log'")
rm(log)
NN <- max(length(x), length(location.ald),
length(scale.ald), length(kappa))
location <- rep_len(location.ald, NN)
scale <- rep_len(scale.ald, NN)
kappa <- rep_len(kappa, NN)
x <- rep_len(x, NN)
tau <- rep_len(tau, NN)
Alpha <- sqrt(2) * kappa / scale.ald
Beta <- sqrt(2) / (scale.ald * kappa)
Delta <- logitlink(location.ald, inverse = TRUE)
exponent <- ifelse(x >= Delta, -Alpha, Beta) *
(logitlink(x) -
location.ald)
logdensity <- log(Alpha) + log(Beta) - log(Alpha + Beta) -
log(x) - log1p(-x) + exponent
indexTF <- (scale.ald > 0) & (tau > 0) & (tau < 1) & (kappa > 0)
logdensity[!indexTF] <- NaN
logdensity[x < 0 & indexTF] <- -Inf
logdensity[x > 1 & indexTF] <- -Inf
if (log.arg) logdensity else exp(logdensity)
}
qlogitlap <- function(p, location.ald = 0, scale.ald = 1,
tau = 0.5, kappa = sqrt(tau/(1-tau))) {
qqq <- qalap(p = p, location = location.ald, scale = scale.ald,
tau = tau, kappa = kappa)
ans <- logitlink(qqq, inverse = TRUE)
ans[(p < 0) | (p > 1)] <- NaN
ans[p == 0] <- 0
ans[p == 1] <- 1
ans
}
plogitlap <- function(q, location.ald = 0, scale.ald = 1,
tau = 0.5, kappa = sqrt(tau/(1-tau))) {
NN <- max(length(q), length(location.ald), length(scale.ald),
length(kappa))
location.ald <- rep_len(location.ald, NN)
scale.ald <- rep_len(scale.ald, NN)
kappa <- rep_len(kappa, NN)
q <- rep_len(q, NN)
tau <- rep_len(tau, NN)
indexTF <- (q > 0) & (q < 1)
qqq <- logitlink(q[indexTF])
ans <- q
ans[indexTF] <- palap(q = qqq, location = location.ald[indexTF],
scale = scale.ald[indexTF],
tau = tau[indexTF], kappa = kappa[indexTF])
ans[q >= 1] <- 1
ans[q <= 0] <- 0
ans
}
rprobitlap <- function(n, location.ald = 0, scale.ald = 1, tau = 0.5,
kappa = sqrt(tau/(1-tau))) {
probitlink(ralap(n = n, location = location.ald, scale = scale.ald,
tau = tau, kappa = kappa),
inverse = TRUE)
}
dprobitlap <-
function(x, location.ald = 0, scale.ald = 1, tau = 0.5,
kappa = sqrt(tau/(1-tau)), log = FALSE,
meth2 = TRUE) {
if (!is.logical(log.arg <- log) || length(log) != 1)
stop("bad input for argument 'log'")
rm(log)
NN <- max(length(x), length(location.ald), length(scale.ald),
length(kappa))
location.ald <- rep_len(location.ald, NN)
scale.ald <- rep_len(scale.ald, NN)
kappa <- rep_len(kappa, NN)
x <- rep_len(x, NN)
tau <- rep_len(tau, NN)
logdensity <- x * NaN
index1 <- (x > 0) & (x < 1)
indexTF <- (scale.ald > 0) & (tau > 0) & (tau < 1) & (kappa > 0)
if (meth2) {
dx.dy <- x
use.x <- probitlink(x[index1])
logdensity[index1] <-
dalap(x = use.x, location = location.ald[index1],
scale = scale.ald[index1], tau = tau[index1],
kappa = kappa[index1], log = TRUE)
} else {
Alpha <- sqrt(2) * kappa / scale.ald
Beta <- sqrt(2) / (scale.ald * kappa)
Delta <- pnorm(location.ald)
use.x <- qnorm(x)
log.dy.dw <- dnorm(use.x, log = TRUE)
exponent <- ifelse(x >= Delta, -Alpha, Beta) *
(use.x - location.ald) - log.dy.dw
logdensity[index1] <- (log(Alpha) + log(Beta) -
log(Alpha + Beta) + exponent)[index1]
}
logdensity[!indexTF] <- NaN
logdensity[x < 0 & indexTF] <- -Inf
logdensity[x > 1 & indexTF] <- -Inf
if (meth2) {
dx.dy[index1] <- probitlink(x[index1],
inverse = TRUE,
deriv = 1)
dx.dy[!index1] <- 0
dx.dy[!indexTF] <- NaN
if (log.arg) logdensity - log(abs(dx.dy)) else
exp(logdensity) / abs(dx.dy)
} else {
if (log.arg) logdensity else exp(logdensity)
}
}
qprobitlap <- function(p, location.ald = 0, scale.ald = 1,
tau = 0.5, kappa = sqrt(tau/(1-tau))) {
qqq <- qalap(p = p, location = location.ald, scale = scale.ald,
tau = tau, kappa = kappa)
ans <- probitlink(qqq, inverse = TRUE)
ans[(p < 0) | (p > 1)] = NaN
ans[p == 0] <- 0
ans[p == 1] <- 1
ans
}
pprobitlap <- function(q, location.ald = 0, scale.ald = 1,
tau = 0.5, kappa = sqrt(tau/(1-tau))) {
NN <- max(length(q), length(location.ald), length(scale.ald),
length(kappa))
location.ald <- rep_len(location.ald, NN)
scale.ald <- rep_len(scale.ald, NN)
kappa <- rep_len(kappa, NN)
q <- rep_len(q, NN)
tau <- rep_len(tau, NN)
indexTF <- (q > 0) & (q < 1)
qqq <- probitlink(q[indexTF])
ans <- q
ans[indexTF] <- palap(q = qqq, location = location.ald[indexTF],
scale = scale.ald[indexTF],
tau = tau[indexTF], kappa = kappa[indexTF])
ans[q >= 1] <- 1
ans[q <= 0] <- 0
ans
}
rclogloglap <- function(n, location.ald = 0, scale.ald = 1, tau = 0.5,
kappa = sqrt(tau/(1-tau))) {
clogloglink(ralap(n = n, location = location.ald, scale = scale.ald,
tau = tau, kappa = kappa),
inverse = TRUE)
}
dclogloglap <- function(x, location.ald = 0, scale.ald = 1, tau = 0.5,
kappa = sqrt(tau/(1-tau)), log = FALSE,
meth2 = TRUE) {
if (!is.logical(log.arg <- log) || length(log) != 1)
stop("bad input for argument 'log'")
rm(log)
NN <- max(length(x), length(location.ald), length(scale.ald),
length(kappa))
location.ald <- rep_len(location.ald, NN)
scale.ald <- rep_len(scale.ald, NN)
kappa <- rep_len(kappa, NN)
x <- rep_len(x, NN)
tau <- rep_len(tau, NN)
logdensity <- x * NaN
index1 <- (x > 0) & (x < 1)
indexTF <- (scale.ald > 0) & (tau > 0) & (tau < 1) & (kappa > 0)
if (meth2) {
dx.dy <- x
use.w <- clogloglink(x[index1])
logdensity[index1] <-
dalap(x = use.w, location = location.ald[index1],
scale = scale.ald[index1],
tau = tau[index1],
kappa = kappa[index1], log = TRUE)
} else {
Alpha <- sqrt(2) * kappa / scale.ald
Beta <- sqrt(2) / (scale.ald * kappa)
Delta <- clogloglink(location.ald, inverse = TRUE)
exponent <- ifelse(x >= Delta, -(Alpha+1), Beta-1) *
log(-log1p(-x)) +
ifelse(x >= Delta, Alpha, -Beta) * location.ald
logdensity[index1] <- (log(Alpha) + log(Beta) -
log(Alpha + Beta) - log1p(-x) + exponent)[index1]
}
logdensity[!indexTF] <- NaN
logdensity[x < 0 & indexTF] <- -Inf
logdensity[x > 1 & indexTF] <- -Inf
if (meth2) {
dx.dy[index1] <- clogloglink(x[index1],
inverse = TRUE, deriv = 1)
dx.dy[!index1] <- 0
dx.dy[!indexTF] <- NaN
if (log.arg) logdensity - log(abs(dx.dy)) else
exp(logdensity) / abs(dx.dy)
} else {
if (log.arg) logdensity else exp(logdensity)
}
}
qclogloglap <- function(p, location.ald = 0, scale.ald = 1,
tau = 0.5, kappa = sqrt(tau/(1-tau))) {
qqq <- qalap(p = p, location = location.ald, scale = scale.ald,
tau = tau, kappa = kappa)
ans <- clogloglink(qqq, inverse = TRUE)
ans[(p < 0) | (p > 1)] <- NaN
ans[p == 0] <- 0
ans[p == 1] <- 1
ans
}
pclogloglap <- function(q, location.ald = 0, scale.ald = 1,
tau = 0.5, kappa = sqrt(tau/(1-tau))) {
NN <- max(length(q), length(location.ald), length(scale.ald),
length(kappa))
location.ald <- rep_len(location.ald, NN)
scale.ald <- rep_len(scale.ald, NN)
kappa <- rep_len(kappa, NN)
q <- rep_len(q, NN)
tau <- rep_len(tau, NN)
indexTF <- (q > 0) & (q < 1)
qqq <- clogloglink(q[indexTF])
ans <- q
ans[indexTF] <- palap(q = qqq, location = location.ald[indexTF],
scale = scale.ald[indexTF],
tau = tau[indexTF], kappa = kappa[indexTF])
ans[q >= 1] <- 1
ans[q <= 0] <- 0
ans
}
alaplace2.control <- function(maxit = 100, ...) {
list(maxit = maxit)
}
alaplace2 <-
function(tau = NULL,
llocation = "identitylink", lscale = "loglink",
ilocation = NULL, iscale = NULL,
kappa = sqrt(tau / (1-tau)),
ishrinkage = 0.95,
parallel.locat = TRUE ~ 0,
parallel.scale = FALSE ~ 0,
digt = 4,
idf.mu = 3,
imethod = 1,
zero = "scale") {
apply.parint.locat <- FALSE
apply.parint.scale <- TRUE
llocat <- as.list(substitute(llocation))
elocat <- link2list(llocat)
llocat <- attr(elocat, "function.name")
lscale <- as.list(substitute(lscale))
escale <- link2list(lscale)
lscale <- attr(escale, "function.name")
ilocat <- ilocation
if (!is.Numeric(kappa, positive = TRUE))
stop("bad input for argument 'kappa'")
if (!is.Numeric(imethod, length.arg = 1,
integer.valued = TRUE, positive = TRUE) ||
imethod > 4)
stop("argument 'imethod' must be 1, 2 or ... 4")
if (length(iscale) &&
!is.Numeric(iscale, positive = TRUE))
stop("bad input for argument 'iscale'")
if (!is.Numeric(ishrinkage, length.arg = 1) ||
ishrinkage < 0 ||
ishrinkage > 1)
stop("bad input for argument 'ishrinkage'")
if (length(tau) &&
max(abs(kappa - sqrt(tau / (1 - tau)))) > 1.0e-6)
stop("arguments 'kappa' and 'tau' do not match")
fittedMean <- FALSE
if (!is.logical(fittedMean) || length(fittedMean) != 1)
stop("bad input for argument 'fittedMean'")
new("vglmff",
blurb = c("Two-parameter asymmetric Laplace distribution\n\n",
"Links: ",
namesof("location", llocat, earg = elocat), ", ",
namesof("scale", lscale, earg = escale),
"\n\n",
"Mean: ",
"location + scale * (1/kappa - kappa) / sqrt(2)", "\n",
"Quantiles: location", "\n",
"Variance: scale^2 * (1 + kappa^4) / (2 * kappa^2)"),
constraints = eval(substitute(expression({
onemat <- matrix(1, Mdiv2, 1)
constraints.orig <- constraints
cm1.locat <- kronecker(diag(Mdiv2), rbind(1, 0))
cmk.locat <- kronecker(onemat, rbind(1, 0))
con.locat <- cm.VGAM(cmk.locat,
x = x, bool = .parallel.locat ,
constraints = constraints.orig,
apply.int = .apply.parint.locat ,
cm.default = cm1.locat,
cm.intercept.default = cm1.locat)
cm1.scale <- kronecker(diag(Mdiv2), rbind(0, 1))
cmk.scale <- kronecker(onemat, rbind(0, 1))
con.scale <- cm.VGAM(cmk.scale,
x = x, bool = .parallel.scale ,
constraints = constraints.orig,
apply.int = .apply.parint.scale ,
cm.default = cm1.scale,
cm.intercept.default = cm1.scale)
con.use <- con.scale
for (klocal in seq_along(con.scale)) {
con.use[[klocal]] <- cbind(con.locat[[klocal]],
con.scale[[klocal]])
}
constraints <- con.use
constraints <- cm.zero.VGAM(constraints, x = x, .zero , M = M,
predictors.names = predictors.names,
M1 = M1)
}), list( .parallel.locat = parallel.locat,
.parallel.scale = parallel.scale,
.zero = zero,
.apply.parint.scale = apply.parint.scale,
.apply.parint.locat = apply.parint.locat ))),
infos = eval(substitute(function(...) {
list(M1 = 2,
Q1 = 1,
summary.pvalues = FALSE,
expected = TRUE,
multipleResponses = TRUE,
parameters.names = c("location", "scale"),
true.mu = .fittedMean ,
zero = .zero ,
tau = .tau ,
kappa = .kappa )
}, list( .tau = tau,
.kappa = kappa,
.fittedMean = fittedMean,
.zero = zero ))),
initialize = eval(substitute(expression({
M1 <- 2
temp5 <-
w.y.check(w = w, y = y,
ncol.w.max = if (length( .kappa ) > 1) 1 else Inf,
ncol.y.max = if (length( .kappa ) > 1) 1 else Inf,
out.wy = TRUE,
colsyperw = 1,
maximize = TRUE)
w <- temp5$w
y <- temp5$y
extra$ncoly <- ncoly <- ncol(y)
if ((ncoly > 1) && (length( .kappa ) > 1))
stop("response must be a vector if 'kappa' or 'tau' ",
"has a length greater than one")
extra$kappa <- .kappa
extra$tau <- extra$kappa^2 / (1 + extra$kappa^2)
extra$Mdiv2 <- Mdiv2 <- max(ncoly, length( .kappa ))
extra$M <- M <- M1 * Mdiv2
extra$n <- n
extra$tau.names <- tau.names <-
paste("(tau = ", round(extra$tau, digits = .digt), ")", sep = "")
extra$Y.names <- Y.names <- if (ncoly > 1) dimnames(y)[[2]] else "y"
if (is.null(Y.names) || any(Y.names == ""))
extra$Y.names <- Y.names <- paste("y", 1:ncoly, sep = "")
extra$y.names <- y.names <-
if (ncoly > 1) paste(Y.names, tau.names, sep = "") else tau.names
extra$individual <- FALSE
mynames1 <- param.names("location", Mdiv2, skip1 = TRUE)
mynames2 <- param.names("scale", Mdiv2, skip1 = TRUE)
predictors.names <-
c(namesof(mynames1, .llocat , earg = .elocat , tag = FALSE),
namesof(mynames2, .lscale , earg = .escale , tag = FALSE))
predictors.names <-
predictors.names[interleave.VGAM(M, M1 = M1)]
locat.init <- scale.init <- matrix(0, n, Mdiv2)
if (!length(etastart)) {
for (jay in 1:Mdiv2) {
y.use <- if (ncoly > 1) y[, jay] else y
Jay <- if (ncoly > 1) jay else 1
if ( .imethod == 1) {
locat.init[, jay] <- weighted.mean(y.use, w[, Jay])
scale.init[, jay] <- sqrt(var(y.use) / 2)
} else if ( .imethod == 2) {
locat.init[, jay] <- median(y.use)
scale.init[, jay] <- sqrt(sum(c(w[, Jay]) *
abs(y - median(y.use))) / (sum(w[, Jay]) * 2))
} else if ( .imethod == 3) {
Fit5 <- vsmooth.spline(x = x[, min(ncol(x), 2)],
y = y.use, w = w[, Jay],
df = .idf.mu )
locat.init[, jay] <- predict(Fit5, x = x[, min(ncol(x), 2)])$y
scale.init[, jay] <- sqrt(sum(c(w[, Jay]) *
abs(y.use - median(y.use))) / (
sum(w[, Jay]) * 2))
} else {
use.this <- weighted.mean(y.use, w[, Jay])
locat.init[, jay] <- (1 - .ishrinkage ) * y.use +
.ishrinkage * use.this
scale.init[, jay] <-
sqrt(sum(c(w[, Jay]) *
abs(y.use - median(y.use ))) / (sum(w[, Jay]) * 2))
}
}
if (length( .ilocat )) {
locat.init <- matrix( .ilocat , n, Mdiv2, byrow = TRUE)
}
if (length( .iscale )) {
scale.init <- matrix( .iscale , n, Mdiv2, byrow = TRUE)
}
etastart <-
cbind(theta2eta(locat.init, .llocat , earg = .elocat ),
theta2eta(scale.init, .lscale , earg = .escale ))
etastart <- etastart[, interleave.VGAM(M, M1 = M1), drop = FALSE]
}
}), list( .imethod = imethod,
.idf.mu = idf.mu,
.ishrinkage = ishrinkage, .digt = digt,
.elocat = elocat, .escale = escale,
.llocat = llocat, .lscale = lscale, .kappa = kappa,
.ilocat = ilocat, .iscale = iscale ))),
linkinv = eval(substitute(function(eta, extra = NULL) {
M1 <- 2
Mdiv2 <- ncol(eta) / M1
vTF <- c(TRUE, FALSE)
locat <- eta2theta(eta[, vTF, drop = FALSE], .llocat ,
earg = .elocat )
dimnames(locat) <- list(dimnames(eta)[[1]], extra$y.names)
myans <- if ( .fittedMean ) {
kappamat <- matrix(extra$kappa, extra$n, extra$Mdiv2,
byrow = TRUE)
Scale <- eta2theta(eta[, !vTF, drop = FALSE], .lscale ,
earg = .escale )
locat + Scale * (1/kappamat - kappamat)
} else {
locat
}
dimnames(myans) <- list(dimnames(myans)[[1]], extra$y.names)
myans
}, list( .elocat = elocat, .llocat = llocat,
.escale = escale, .lscale = lscale,
.fittedMean = fittedMean,
.kappa = kappa ))),
last = eval(substitute(expression({
M1 <- 2
Mdiv2 <- ncol(eta) / M1
misc$link <- setNames(c(rep_len( .llocat , Mdiv2),
rep_len( .lscale , Mdiv2)),
c(mynames1, mynames2))[interleave.VGAM(M, M1 = M1)]
misc$earg <- vector("list", M)
for (ii in 1:Mdiv2) {
misc$earg[[M1 * ii - 1]] <- .elocat
misc$earg[[M1 * ii ]] <- .escale
}
names(misc$earg) <- names(misc$link)
extra$kappa <- misc$kappa <- .kappa
extra$tau <- misc$tau <- misc$kappa^2 / (1 + misc$kappa^2)
extra$percentile <- numeric(Mdiv2)
locat <- as.matrix(locat)
for (ii in 1:Mdiv2) {
y.use <- if (ncoly > 1) y[, ii] else y
Jay <- if (ncoly > 1) ii else 1
extra$percentile[ii] <- 100 * weighted.mean(y.use <= locat[, ii],
w[, Jay])
}
names(extra$percentile) <- y.names
}), list( .elocat = elocat, .llocat = llocat,
.escale = escale, .lscale = lscale,
.fittedMean = fittedMean,
.kappa = kappa ))),
loglikelihood = eval(substitute(
function(mu, y, w, residuals = FALSE, eta,
extra = NULL,
summation = TRUE) {
M1 <- 2
Mdiv2 <- ncol(eta) / M1
ymat <- matrix(y, extra$n, extra$Mdiv2)
kappamat <- matrix(extra$kappa, extra$n, extra$Mdiv2, byrow = TRUE)
vTF <- c(TRUE, FALSE)
locat <- eta2theta(eta[, vTF, drop = FALSE], .llocat ,
earg = .elocat )
Scale <- eta2theta(eta[, !vTF, drop = FALSE], .lscale ,
earg = .escale )
if (residuals) {
stop("loglikelihood residuals not implemented yet")
} else {
ll.elts <- c(w) * dalap(x = c(ymat), location = c(locat),
scale = c(Scale), kappa = c(kappamat),
log = TRUE)
if (summation) {
sum(ll.elts)
} else {
ll.elts
}
}
}, list( .elocat = elocat, .llocat = llocat,
.escale = escale, .lscale = lscale,
.kappa = kappa ))),
vfamily = c("alaplace2"),
validparams = eval(substitute(function(eta, y, extra = NULL) {
vTF <- c(TRUE, FALSE)
locat <- eta2theta(eta[, vTF, drop = FALSE], .llocat ,
earg = .elocat )
Scale <- eta2theta(eta[, !vTF, drop = FALSE], .lscale ,
earg = .escale )
okay1 <- all(is.finite(locat)) &&
all(is.finite(Scale)) && all(0 < Scale)
okay1
}, list( .elocat = elocat, .llocat = llocat,
.escale = escale, .lscale = lscale,
.kappa = kappa ))),
simslot = eval(substitute(
function(object, nsim) {
pwts <- if (length(pwts <- [email protected]) > 0)
pwts else weights(object, type = "prior")
if (any(pwts != 1))
warning("ignoring prior weights")
eta <- predict(object)
extra <- object@extra
vTF <- c(TRUE, FALSE)
locat <- eta2theta(eta[, vTF, drop = FALSE], .llocat , earg = .elocat )
Scale <- eta2theta(eta[, !vTF, drop = FALSE], .lscale , earg = .escale )
kappamat <- matrix(extra$kappa, extra$n, extra$Mdiv2, byrow = TRUE)
ralap(nsim * length(Scale), location = c(locat),
scale = c(Scale), kappa = c(kappamat))
}, list( .elocat = elocat, .llocat = llocat,
.escale = escale, .lscale = lscale,
.kappa = kappa ))),
deriv = eval(substitute(expression({
M1 <- 2
Mdiv2 <- ncol(eta) / M1
ymat <- matrix(y, n, Mdiv2)
vTF <- c(TRUE, FALSE)
locat <- eta2theta(eta[, vTF, drop = FALSE], .llocat , earg = .elocat )
Scale <- eta2theta(eta[, !vTF, drop = FALSE], .lscale , earg = .escale )
kappamat <- matrix(extra$kappa, n, Mdiv2, byrow = TRUE)
zedd <- abs(ymat - locat) / Scale
dl.dlocat <- sqrt(2) * ifelse(ymat >= locat, kappamat, 1/kappamat) *
sign(ymat - locat) / Scale
dl.dscale <- sqrt(2) * ifelse(ymat >= locat, kappamat, 1/kappamat) *
zedd / Scale - 1 / Scale
dlocat.deta <- dtheta.deta(locat, .llocat , earg = .elocat )
dscale.deta <- dtheta.deta(Scale, .lscale , earg = .escale )
ans <- c(w) * cbind(dl.dlocat * dlocat.deta,
dl.dscale * dscale.deta)
ans[, interleave.VGAM(ncol(ans), M1 = M1)]
}), list( .escale = escale, .lscale = lscale,
.elocat = elocat, .llocat = llocat,
.kappa = kappa ))),
weight = eval(substitute(expression({
wz <- matrix(NA_real_, n, M)
d2l.dlocat2 <- 2 / Scale^2
d2l.dscale2 <- 1 / Scale^2
wz[, vTF] <- d2l.dlocat2 * dlocat.deta^2
wz[, !vTF] <- d2l.dscale2 * dscale.deta^2
c(w) * wz
}), list( .escale = escale, .lscale = lscale,
.elocat = elocat, .llocat = llocat ))))
}
alaplace1.control <- function(maxit = 100, ...) {
list(maxit = maxit)
}
alaplace1 <-
function(tau = NULL,
llocation = "identitylink",
ilocation = NULL,
kappa = sqrt(tau/(1-tau)),
Scale.arg = 1,
ishrinkage = 0.95,
parallel.locat = TRUE ~ 0,
digt = 4,
idf.mu = 3,
zero = NULL,
imethod = 1) {
apply.parint.locat <- FALSE
if (!is.Numeric(kappa, positive = TRUE))
stop("bad input for argument 'kappa'")
if (length(tau) &&
max(abs(kappa - sqrt(tau/(1-tau)))) > 1.0e-6)
stop("arguments 'kappa' and 'tau' do not match")
if (!is.Numeric(imethod, length.arg = 1,
integer.valued = TRUE, positive = TRUE) ||
imethod > 4)
stop("argument 'imethod' must be 1, 2 or ... 4")
llocation <- llocation
llocat <- as.list(substitute(llocation))
elocat <- link2list(llocat)
llocat <- attr(elocat, "function.name")
ilocat <- ilocation
if (!is.Numeric(ishrinkage, length.arg = 1) ||
ishrinkage < 0 ||
ishrinkage > 1)
stop("bad input for argument 'ishrinkage'")
if (!is.Numeric(Scale.arg, positive = TRUE))
stop("bad input for argument 'Scale.arg'")
fittedMean <- FALSE
if (!is.logical(fittedMean) || length(fittedMean) != 1)
stop("bad input for argument 'fittedMean'")
new("vglmff",
blurb = c("One-parameter asymmetric Laplace distribution\n\n",
"Links: ",
namesof("location", llocat, earg = elocat),
"\n", "\n",
"Mean: location + scale * (1/kappa - kappa) / ",
"sqrt(2)", "\n",
"Quantiles: location", "\n",
"Variance: scale^2 * (1 + kappa^4) / (2 * kappa^2)"),
constraints = eval(substitute(expression({
onemat <- matrix(1, M, 1)
constraints.orig <- constraints
cm1.locat <- diag(M)
cmk.locat <- onemat
con.locat <- cm.VGAM(cmk.locat,
x = x, bool = .parallel.locat ,
constraints = constraints.orig,
apply.int = .apply.parint.locat ,
cm.default = cm1.locat,
cm.intercept.default = cm1.locat)
constraints <- con.locat
constraints <- cm.zero.VGAM(constraints, x = x, .zero , M = M,
predictors.names = predictors.names,
M1 = 1)
}), list( .parallel.locat = parallel.locat,
.zero = zero,
.apply.parint.locat = apply.parint.locat ))),
infos = eval(substitute(function(...) {
list(M1 = 1,
Q1 = 1,
summary.pvalues = FALSE,
tau = .tau ,
multipleResponses = FALSE,
parameters.names = c("location"),
kappa = .kappa)
}, list( .kappa = kappa,
.tau = tau ))),
initialize = eval(substitute(expression({
extra$M1 <- M1 <- 1
temp5 <-
w.y.check(w = w, y = y,
ncol.w.max = if (length( .kappa ) > 1) 1 else Inf,
ncol.y.max = if (length( .kappa ) > 1) 1 else Inf,
out.wy = TRUE,
maximize = TRUE)
w <- temp5$w
y <- temp5$y
extra$ncoly <- ncoly <- ncol(y)
if ((ncoly > 1) && (length( .kappa ) > 1 ||
length( .Scale.arg ) > 1))
stop("response must be a vector if 'kappa' or 'Scale.arg' ",
"has a length greater than one")
extra$kappa <- .kappa
extra$tau <- extra$kappa^2 / (1 + extra$kappa^2)
extra$M <- M <- max(length( .Scale.arg ),
ncoly,
length( .kappa ))
extra$Scale <- rep_len( .Scale.arg , M)
extra$kappa <- rep_len( .kappa , M)
extra$tau <- extra$kappa^2 / (1 + extra$kappa^2)
extra$n <- n
extra$tau.names <- tau.names <-
paste("(tau = ", round(extra$tau, digits = .digt), ")", sep = "")
extra$Y.names <- Y.names <- if (ncoly > 1) dimnames(y)[[2]] else "y"
if (is.null(Y.names) || any(Y.names == ""))
extra$Y.names <- Y.names <- paste("y", 1:ncoly, sep = "")
extra$y.names <- y.names <-
if (ncoly > 1) paste(Y.names, tau.names, sep = "") else tau.names
extra$individual <- FALSE
mynames1 <- param.names("location", M, skip1 = TRUE)
predictors.names <-
c(namesof(mynames1, .llocat , earg = .elocat , tag = FALSE))
locat.init <- matrix(0, n, M)
if (!length(etastart)) {
for (jay in 1:M) {
y.use <- if (ncoly > 1) y[, jay] else y
if ( .imethod == 1) {
locat.init[, jay] <- weighted.mean(y.use, w[, min(jay, ncol(w))])
} else if ( .imethod == 2) {
locat.init[, jay] <- median(y.use)
} else if ( .imethod == 3) {
Fit5 <- vsmooth.spline(x = x[, min(ncol(x), 2)],
y = y.use, w = w, df = .idf.mu )
locat.init[, jay] <- c(predict(Fit5,
x = x[, min(ncol(x), 2)])$y)
} else {
use.this <- weighted.mean(y.use, w[, min(jay, ncol(w))])
locat.init[, jay] <- (1- .ishrinkage ) * y.use +
.ishrinkage * use.this
}
if (length( .ilocat )) {
locat.init <- matrix( .ilocat , n, M, byrow = TRUE)
}
if ( .llocat == "loglink") locat.init <- abs(locat.init)
etastart <-
cbind(theta2eta(locat.init, .llocat , earg = .elocat ))
}
}
}), list( .imethod = imethod,
.idf.mu = idf.mu,
.ishrinkage = ishrinkage, .digt = digt,
.elocat = elocat, .Scale.arg = Scale.arg,
.llocat = llocat, .kappa = kappa,
.ilocat = ilocat ))),
linkinv = eval(substitute(function(eta, extra = NULL) {
if ( .fittedMean ) {
kappamat <- matrix(extra$kappa, extra$n, extra$M, byrow = TRUE)
locat <- eta2theta(eta, .llocat , earg = .elocat )
Scale <- matrix(extra$Scale, extra$n, extra$M, byrow = TRUE)
locat + Scale * (1/kappamat - kappamat)
} else {
locat <- eta2theta(eta, .llocat , earg = .elocat )
if (length(locat) > extra$n)
dimnames(locat) <- list(dimnames(eta)[[1]], extra$y.names)
locat
}
}, list( .elocat = elocat, .llocat = llocat,
.fittedMean = fittedMean, .Scale.arg = Scale.arg,
.kappa = kappa ))),
last = eval(substitute(expression({
M1 <- extra$M1
misc$M1 <- M1
misc$multipleResponses <- TRUE
misc$link <- setNames(rep_len( .llocat , M), mynames1)
misc$earg <- vector("list", M)
names(misc$earg) <- names(misc$link)
for (ii in 1:M) {
misc$earg[[ii]] <- .elocat
}
misc$expected <- TRUE
extra$kappa <- misc$kappa <- .kappa
extra$tau <- misc$tau <- misc$kappa^2 / (1 + misc$kappa^2)
misc$true.mu <- .fittedMean
extra$percentile <- numeric(M)
locat <- as.matrix(locat)
for (ii in 1:M) {
y.use <- if (ncoly > 1) y[, ii] else y
extra$percentile[ii] <-
100 * weighted.mean(y.use <= locat[, ii], w[, min(ii, ncol(w))])
}
names(extra$percentile) <- y.names
extra$Scale.arg <- .Scale.arg
}), list( .elocat = elocat,
.llocat = llocat,
.Scale.arg = Scale.arg, .fittedMean = fittedMean,
.kappa = kappa ))),
loglikelihood = eval(substitute(
function(mu, y, w, residuals = FALSE, eta,
extra = NULL,
summation = TRUE) {
ymat <- matrix(y, extra$n, extra$M)
locat <- eta2theta(eta, .llocat , earg = .elocat )
kappamat <- matrix(extra$kappa, extra$n, extra$M, byrow = TRUE)
Scale <- matrix(extra$Scale, extra$n, extra$M, byrow = TRUE)
if (residuals) {
stop("loglikelihood residuals not implemented yet")
} else {
ll.elts <- c(w) * dalap(x = c(ymat), locat = c(locat),
scale = c(Scale), kappa = c(kappamat),
log = TRUE)
if (summation) {
sum(ll.elts)
} else {
ll.elts
}
}
}, list( .elocat = elocat,
.llocat = llocat,
.Scale.arg = Scale.arg, .kappa = kappa ))),
vfamily = c("alaplace1"),
validparams = eval(substitute(function(eta, y, extra = NULL) {
locat <- eta2theta(eta, .llocat , earg = .elocat )
okay1 <- all(is.finite(locat))
okay1
}, list( .elocat = elocat,
.llocat = llocat,
.Scale.arg = Scale.arg, .kappa = kappa ))),
simslot = eval(substitute(
function(object, nsim) {
pwts <- if (length(pwts <- [email protected]) > 0)
pwts else weights(object, type = "prior")
if (any(pwts != 1))
warning("ignoring prior weights")
eta <- predict(object)
extra <- object@extra
locat <- eta2theta(eta, .llocat , .elocat )
Scale <- matrix(extra$Scale, extra$n, extra$M, byrow = TRUE)
kappamat <- matrix(extra$kappa, extra$n, extra$M, byrow = TRUE)
ralap(nsim * length(Scale), location = c(locat),
scale = c(Scale), kappa = c(kappamat))
}, list( .elocat = elocat, .llocat = llocat,
.Scale.arg = Scale.arg, .kappa = kappa ))),
deriv = eval(substitute(expression({
ymat <- matrix(y, n, M)
Scale <- matrix(extra$Scale, extra$n, extra$M, byrow = TRUE)
locat <- eta2theta(eta, .llocat , earg = .elocat )
kappamat <- matrix(extra$kappa, n, M, byrow = TRUE)
zedd <- abs(ymat-locat) / Scale
dl.dlocat <- ifelse(ymat >= locat, kappamat, 1/kappamat) *
sqrt(2) * sign(ymat - locat) / Scale
dlocat.deta <- dtheta.deta(locat, .llocat , earg = .elocat )
c(w) * cbind(dl.dlocat * dlocat.deta)
}), list( .Scale.arg = Scale.arg, .elocat = elocat,
.llocat = llocat, .kappa = kappa ))),
weight = eval(substitute(expression({
d2l.dlocat2 <- 2 / Scale^2
wz <- cbind(d2l.dlocat2 * dlocat.deta^2)
c(w) * wz
}), list( .Scale.arg = Scale.arg,
.elocat = elocat, .llocat = llocat ))))
}
alaplace3.control <- function(maxit = 100, ...) {
list(maxit = maxit)
}
alaplace3 <-
function(llocation = "identitylink", lscale = "loglink", lkappa = "loglink",
ilocation = NULL, iscale = NULL, ikappa = 1.0,
imethod = 1, zero = c("scale", "kappa")) {
llocat <- as.list(substitute(llocation))
elocat <- link2list(llocat)
llocat <- attr(elocat, "function.name")
ilocat <- ilocation
lscale <- as.list(substitute(lscale))
escale <- link2list(lscale)
lscale <- attr(escale, "function.name")
lkappa <- as.list(substitute(lkappa))
ekappa <- link2list(lkappa)
lkappa <- attr(ekappa, "function.name")
if (!is.Numeric(imethod, length.arg = 1,
integer.valued = TRUE, positive = TRUE) ||
imethod > 2)
stop("argument 'imethod' must be 1 or 2")
if (length(iscale) &&
!is.Numeric(iscale, positive = TRUE))
stop("bad input for argument 'iscale'")
new("vglmff",
blurb = c("Three-parameter asymmetric Laplace distribution\n\n",
"Links: ",
namesof("location", llocat, earg = elocat), ", ",
namesof("scale", lscale, earg = escale), ", ",
namesof("kappa", lkappa, earg = ekappa),
"\n", "\n",
"Mean: location + scale * (1/kappa - kappa) / sqrt(2)",
"\n",
"Variance: Scale^2 * (1 + kappa^4) / (2 * kappa^2)"),
constraints = eval(substitute(expression({
constraints <- cm.zero.VGAM(constraints, x = x, .zero , M = M,
predictors.names = predictors.names,
M1 = 3)
}), list( .zero = zero ))),
infos = eval(substitute(function(...) {
list(M1 = 3,
Q1 = 1,
multipleResponses = FALSE,
parameters.names = c("location", "scale", "kappa"),
summary.pvalues = FALSE,
zero = .zero )
}, list( .zero = zero ))),
initialize = eval(substitute(expression({
w.y.check(w = w, y = y,
ncol.w.max = 1,
ncol.y.max = 1)
predictors.names <-
c(namesof("location", .llocat , earg = .elocat, tag = FALSE),
namesof("scale", .lscale , earg = .escale, tag = FALSE),
namesof("kappa", .lkappa , earg = .ekappa, tag = FALSE))
if (!length(etastart)) {
kappa.init <- if (length( .ikappa ))
rep_len( .ikappa , n) else
rep_len( 1.0 , n)
if ( .imethod == 1) {
locat.init <- median(y)
scale.init <- sqrt(var(y) / 2)
} else {
locat.init <- y
scale.init <- sqrt(sum(c(w)*abs(y-median(y ))) / (sum(w) *2))
}
locat.init <- if (length( .ilocat ))
rep_len( .ilocat , n) else
rep_len(locat.init, n)
scale.init <- if (length( .iscale ))
rep_len( .iscale , n) else
rep_len(scale.init, n)
etastart <-
cbind(theta2eta(locat.init, .llocat , earg = .elocat ),
theta2eta(scale.init, .lscale , earg = .escale ),
theta2eta(kappa.init, .lkappa, earg = .ekappa))
}
}), list( .imethod = imethod,
.elocat = elocat, .escale = escale, .ekappa = ekappa,
.llocat = llocat, .lscale = lscale, .lkappa = lkappa,
.ilocat = ilocat, .iscale = iscale, .ikappa = ikappa ))),
linkinv = eval(substitute(function(eta, extra = NULL) {
locat <- eta2theta(eta[, 1], .llocat , earg = .elocat )
Scale <- eta2theta(eta[, 2], .lscale , earg = .escale )
kappa <- eta2theta(eta[, 3], .lkappa, earg = .ekappa)
locat + Scale * (1/kappa - kappa) / sqrt(2)
}, list( .elocat = elocat, .llocat = llocat,
.escale = escale, .lscale = lscale,
.ekappa = ekappa, .lkappa = lkappa ))),
last = eval(substitute(expression({
misc$link <- c(location = .llocat ,
scale = .lscale ,
kappa = .lkappa )
misc$earg <- list(location = .elocat,
scale = .escale,
kappa = .ekappa )
misc$expected = TRUE
}), list( .elocat = elocat, .llocat = llocat,
.escale = escale, .lscale = lscale,
.ekappa = ekappa, .lkappa = lkappa ))),
loglikelihood = eval(substitute(
function(mu, y, w, residuals = FALSE, eta,
extra = NULL,
summation = TRUE) {
locat <- eta2theta(eta[, 1], .llocat , earg = .elocat )
Scale <- eta2theta(eta[, 2], .lscale , earg = .escale )
kappa <- eta2theta(eta[, 3], .lkappa , earg = .ekappa )
if (residuals) {
stop("loglikelihood residuals not implemented yet")
} else {
ll.elts <- c(w) * dalap(x = y, locat = locat,
scale = Scale, kappa = kappa, log = TRUE)
if (summation) {
sum(ll.elts)
} else {
ll.elts
}
}
}, list( .elocat = elocat, .llocat = llocat,
.escale = escale, .lscale = lscale,
.ekappa = ekappa, .lkappa = lkappa ))),
vfamily = c("alaplace3"),
validparams = eval(substitute(function(eta, y, extra = NULL) {
locat <- eta2theta(eta[, 1], .llocat , earg = .elocat )
Scale <- eta2theta(eta[, 2], .lscale , earg = .escale )
kappa <- eta2theta(eta[, 3], .lkappa , earg = .ekappa )
okay1 <- all(is.finite(locat)) &&
all(is.finite(Scale)) && all(0 < Scale) &&
all(is.finite(kappa)) && all(0 < kappa)
okay1
}, list( .elocat = elocat, .llocat = llocat,
.escale = escale, .lscale = lscale,
.ekappa = ekappa, .lkappa = lkappa ))),
deriv = eval(substitute(expression({
locat <- eta2theta(eta[, 1], .llocat , earg = .elocat )
Scale <- eta2theta(eta[, 2], .lscale , earg = .escale )
kappa <- eta2theta(eta[, 3], .lkappa , earg = .ekappa )
zedd <- abs(y - locat) / Scale
dl.dlocat <- sqrt(2) * ifelse(y >= locat, kappa, 1/kappa) *
sign(y-locat) / Scale
dl.dscale <- sqrt(2) * ifelse(y >= locat, kappa, 1/kappa) *
zedd / Scale - 1 / Scale
dl.dkappa <- 1 / kappa - 2 * kappa / (1+kappa^2) -
(sqrt(2) / Scale) *
ifelse(y > locat, 1, -1/kappa^2) * abs(y-locat)
dlocat.deta <- dtheta.deta(locat, .llocat , earg = .elocat )
dscale.deta <- dtheta.deta(Scale, .lscale , earg = .escale )
dkappa.deta <- dtheta.deta(kappa, .lkappa, earg = .ekappa)
c(w) * cbind(dl.dlocat * dlocat.deta,
dl.dscale * dscale.deta,
dl.dkappa * dkappa.deta)
}), list( .escale = escale, .lscale = lscale,
.elocat = elocat, .llocat = llocat,
.ekappa = ekappa, .lkappa = lkappa ))),
weight = eval(substitute(expression({
d2l.dlocat2 <- 2 / Scale^2
d2l.dscale2 <- 1 / Scale^2
d2l.dkappa2 <- 1 / kappa^2 + 4 / (1+kappa^2)^2
d2l.dkappadloc <- -sqrt(8) / ((1+kappa^2) * Scale)
d2l.dkappadscale <- -(1-kappa^2) / ((1+kappa^2) * kappa * Scale)
wz <- matrix(0, nrow = n, dimm(M))
wz[,iam(1, 1, M)] <- d2l.dlocat2 * dlocat.deta^2
wz[,iam(2, 2, M)] <- d2l.dscale2 * dscale.deta^2
wz[,iam(3, 3, M)] <- d2l.dkappa2 * dkappa.deta^2
wz[,iam(1, 3, M)] <- d2l.dkappadloc * dkappa.deta * dlocat.deta
wz[,iam(2, 3, M)] <- d2l.dkappadscale * dkappa.deta * dscale.deta
c(w) * wz
}), list( .escale = escale, .lscale = lscale,
.elocat = elocat, .llocat = llocat ))))
}
dlaplace <- function(x, location = 0, scale = 1, log = FALSE) {
if (!is.logical(log.arg <- log) || length(log) != 1)
stop("bad input for argument 'log'")
rm(log)
logdensity <- (-abs(x-location)/scale) - log(2*scale)
if (log.arg) logdensity else exp(logdensity)
}
plaplace <- function(q, location = 0, scale = 1,
lower.tail = TRUE, log.p =FALSE) {
zedd <- (q - location) / scale
if (!is.logical(lower.tail) || length(lower.tail ) != 1)
stop("bad input for argument 'lower.tail'")
if (!is.logical(log.p) || length(log.p) != 1)
stop("bad input for argument 'log.p'")
L <- max(length(q), length(location), length(scale))
if (length(q) != L) q <- rep_len(q, L)
if (length(location) != L) location <- rep_len(location, L)
if (length(scale) != L) scale <- rep_len(scale, L)
if (lower.tail) {
if (log.p) {
ans <- ifelse(q < location, log(0.5) + zedd,
log1p(- 0.5 * exp(-zedd)))
} else {
ans <- ifelse(q < location, 0.5 * exp(zedd), 1 - 0.5 * exp(-zedd))
}
} else {
if (log.p) {
ans <- ifelse(q < location, log1p(- 0.5 * exp(zedd)),
log(0.5) - zedd)
} else {
ans <- ifelse(q < location, 1 - 0.5 * exp(zedd), 0.5 * exp(-zedd))
}
}
ans[scale <= 0] <- NaN
ans
}
qlaplace <- function(p, location = 0, scale = 1,
lower.tail = TRUE, log.p = FALSE) {
if (!is.logical(lower.tail) || length(lower.tail ) != 1)
stop("bad input for argument 'lower.tail'")
if (!is.logical(log.p) || length(log.p) != 1)
stop("bad input for argument 'log.p'")
L <- max(length(p), length(location), length(scale))
if (length(p) != L) p <- rep_len(p, L)
if (length(location) != L) location <- rep_len(location, L)
if (length(scale) != L) scale <- rep_len(scale, L)
if (lower.tail) {
if (log.p) {
ln.p <- p
ans <- location - sign(exp(ln.p)-0.5) * scale *
log(2 * ifelse(exp(ln.p) < 0.5, exp(ln.p), -expm1(ln.p)))
} else {
ans <- location - sign(p-0.5) * scale *
log(2 * ifelse(p < 0.5, p, 1-p))
}
} else {
if (log.p) {
ln.p <- p
ans <- location - sign(0.5 - exp(ln.p)) * scale *
log(2 * ifelse(-expm1(ln.p) < 0.5, -expm1(ln.p), exp(ln.p)))
} else {
ans <- location - sign(0.5 - p) * scale *
log(2 * ifelse(p > 0.5, 1 - p, p))
}
}
ans[scale <= 0] <- NaN
ans
}
rlaplace <- function(n, location = 0, scale = 1) {
use.n <- if ((length.n <- length(n)) > 1) length.n else
if (!is.Numeric(n, integer.valued = TRUE,
length.arg = 1, positive = TRUE))
stop("bad input for argument 'n'") else n
if (!is.Numeric(scale, positive = TRUE))
stop("'scale' must be positive")
location <- rep_len(location, use.n)
scale <- rep_len(scale, use.n)
rrrr <- runif(use.n)
location - sign(rrrr - 0.5) * scale *
(log(2) + ifelse(rrrr < 0.5, log(rrrr), log1p(-rrrr)))
}
laplace <- function(llocation = "identitylink", lscale = "loglink",
ilocation = NULL, iscale = NULL,
imethod = 1,
zero = "scale") {
llocat <- as.list(substitute(llocation))
elocat <- link2list(llocat)
llocat <- attr(elocat, "function.name")
ilocat <- ilocation
lscale <- as.list(substitute(lscale))
escale <- link2list(lscale)
lscale <- attr(escale, "function.name")
if (!is.Numeric(imethod, length.arg = 1,
integer.valued = TRUE, positive = TRUE) ||
imethod > 3)
stop("argument 'imethod' must be 1 or 2 or 3")
if (length(iscale) &&
!is.Numeric(iscale, positive = TRUE))
stop("bad input for argument 'iscale'")
new("vglmff",
blurb = c("Two-parameter Laplace distribution\n\n",
"Links: ",
namesof("location", llocat, earg = elocat), ", ",
namesof("scale", lscale, earg = escale),
"\n", "\n",
"Mean: location", "\n",
"Variance: 2*scale^2"),
constraints = eval(substitute(expression({
constraints <- cm.zero.VGAM(constraints, x = x, .zero , M = M,
predictors.names = predictors.names,
M1 = 2)
}), list( .zero = zero ))),
infos = eval(substitute(function(...) {
list(M1 = 2,
Q1 = 1,
multipleResponses = FALSE,
parameters.names = c("location", "scale"),
summary.pvalues = FALSE,
zero = .zero )
}, list( .zero = zero ))),
initialize = eval(substitute(expression({
w.y.check(w = w, y = y,
ncol.w.max = 1,
ncol.y.max = 1)
predictors.names <-
c(namesof("location", .llocat , earg = .elocat, tag = FALSE),
namesof("scale", .lscale , earg = .escale, tag = FALSE))
if (!length(etastart)) {
if ( .imethod == 1) {
locat.init <- median(y)
scale.init <- sqrt(var(y) / 2)
} else if ( .imethod == 2) {
locat.init <- weighted.mean(y, w)
scale.init <- sqrt(var(y) / 2)
} else {
locat.init <- median(y)
scale.init <- sqrt(sum(c(w)*abs(y-median(y ))) / (sum(w) *2))
}
locat.init <- if (length( .ilocat ))
rep_len( .ilocat , n) else
rep_len(locat.init, n)
scale.init <- if (length( .iscale ))
rep_len( .iscale , n) else
rep_len(scale.init, n)
etastart <-
cbind(theta2eta(locat.init, .llocat , earg = .elocat ),
theta2eta(scale.init, .lscale , earg = .escale ))
}
}), list( .imethod = imethod,
.elocat = elocat, .escale = escale,
.llocat = llocat, .lscale = lscale,
.ilocat = ilocat, .iscale = iscale ))),
linkinv = eval(substitute(function(eta, extra = NULL) {
eta2theta(eta[, 1], .llocat , earg = .elocat )
}, list( .elocat = elocat, .llocat = llocat ))),
last = eval(substitute(expression({
misc$link <- c(location = .llocat , scale = .lscale )
misc$earg <- list(location = .elocat , scale = .escale )
misc$expected <- TRUE
misc$RegCondOK <- FALSE
}), list( .escale = escale, .lscale = lscale,
.elocat = elocat, .llocat = llocat ))),
loglikelihood = eval(substitute(
function(mu, y, w, residuals = FALSE, eta,
extra = NULL,
summation = TRUE) {
locat <- eta2theta(eta[, 1], .llocat , earg = .elocat )
Scale <- eta2theta(eta[, 2], .lscale , earg = .escale )
if (residuals) {
stop("loglikelihood residuals not implemented yet")
} else {
ll.elts <- c(w) * dlaplace(x = y, locat = locat,
scale = Scale, log = TRUE)
if (summation) {
sum(ll.elts)
} else {
ll.elts
}
}
}, list( .escale = escale, .lscale = lscale,
.elocat = elocat, .llocat = llocat ))),
vfamily = c("laplace"),
validparams = eval(substitute(function(eta, y, extra = NULL) {
Locat <- eta2theta(eta[, 1], .llocat , earg = .elocat )
Scale <- eta2theta(eta[, 2], .lscale , earg = .escale )
okay1 <- all(is.finite(Locat)) &&
all(is.finite(Scale)) && all(0 < Scale)
okay1
}, list( .escale = escale, .lscale = lscale,
.elocat = elocat, .llocat = llocat ))),
deriv = eval(substitute(expression({
Locat <- eta2theta(eta[, 1], .llocat , earg = .elocat )
Scale <- eta2theta(eta[, 2], .lscale , earg = .escale )
zedd <- abs(y-Locat) / Scale
dl.dLocat <- sign(y - Locat) / Scale
dl.dscale <- zedd / Scale - 1 / Scale
dLocat.deta <- dtheta.deta(Locat, .llocat , earg = .elocat )
dscale.deta <- dtheta.deta(Scale, .lscale , earg = .escale )
c(w) * cbind(dl.dLocat * dLocat.deta,
dl.dscale * dscale.deta)
}), list( .escale = escale, .lscale = lscale,
.elocat = elocat, .llocat = llocat ))),
weight = eval(substitute(expression({
d2l.dLocat2 <- d2l.dscale2 <- 1 / Scale^2
wz <- matrix(0, nrow = n, ncol = M)
wz[,iam(1, 1, M)] <- d2l.dLocat2 * dLocat.deta^2
wz[,iam(2, 2, M)] <- d2l.dscale2 * dscale.deta^2
c(w) * wz
}), list( .escale = escale, .lscale = lscale,
.elocat = elocat, .llocat = llocat ))))
}
fff.control <- function(save.weights = TRUE, ...) {
list(save.weights = save.weights)
}
fff <- function(link = "loglink",
idf1 = NULL, idf2 = NULL, nsimEIM = 100,
imethod = 1, zero = NULL) {
link <- as.list(substitute(link))
earg <- link2list(link)
link <- attr(earg, "function.name")
if (!is.Numeric(imethod, length.arg = 1,
integer.valued = TRUE, positive = TRUE) ||
imethod > 2)
stop("argument 'imethod' must be 1 or 2")
if (!is.Numeric(nsimEIM, length.arg = 1,
integer.valued = TRUE) ||
nsimEIM <= 10)
stop("argument 'nsimEIM' should be an integer greater than 10")
ncp <- 0
if (any(ncp != 0))
warning("not sure about ncp != 0 wrt dl/dtheta")
new("vglmff",
blurb = c("F-distribution\n\n",
"Links: ",
namesof("df1", link, earg = earg), ", ",
namesof("df2", link, earg = earg),
"\n", "\n",
"Mean: df2/(df2-2) provided df2>2 and ncp = 0", "\n",
"Variance: ",
"2*df2^2*(df1+df2-2)/(df1*(df2-2)^2*(df2-4)) ",
"provided df2>4 and ncp = 0"),
constraints = eval(substitute(expression({
constraints <- cm.zero.VGAM(constraints, x = x, .zero , M = M,
predictors.names = predictors.names,
M1 = 2)
}), list( .zero = zero ))),
infos = eval(substitute(function(...) {
list(M1 = 2,
Q1 = 1,
multipleResponses = FALSE,
parameters.names = c("df1", "df2"),
zero = .zero )
}, list( .zero = zero ))),
initialize = eval(substitute(expression({
w.y.check(w = w, y = y,
ncol.w.max = 1,
ncol.y.max = 1)
predictors.names <-
c(namesof("df1", .link , earg = .earg , tag = FALSE),
namesof("df2", .link , earg = .earg , tag = FALSE))
if (!length(etastart)) {
if ( .imethod == 1) {
df2.init <- b <- 2*mean(y) / (mean(y)-1)
df1.init <- 2*b^2*(b-2)/(var(y)*(b-2)^2 * (b-4) - 2*b^2)
if (df2.init < 4) df2.init <- 5
if (df1.init < 2) df1.init <- 3
} else {
df2.init <- b <- 2*median(y) / (median(y)-1)
summy <- summary(y)
var.est <- summy[5] - summy[2]
df1.init <- 2*b^2*(b-2)/(var.est*(b-2)^2 * (b-4) - 2*b^2)
}
df1.init <- if (length( .idf1 ))
rep_len( .idf1 , n) else
rep_len(df1.init, n)
df2.init <- if (length( .idf2 ))
rep_len( .idf2 , n) else
rep_len(1, n)
etastart <- cbind(theta2eta(df1.init, .link , earg = .earg ),
theta2eta(df2.init, .link , earg = .earg ))
}
}), list( .imethod = imethod, .idf1 = idf1, .earg = earg,
.idf2 = idf2, .link = link ))),
linkinv = eval(substitute(function(eta, extra = NULL) {
df2 <- eta2theta(eta[, 2], .link , earg = .earg )
ans <- df2 * NA
ans[df2 > 2] <- df2[df2 > 2] / (df2[df2 > 2] - 2)
ans
}, list( .link = link, .earg = earg ))),
last = eval(substitute(expression({
misc$link <- c(df1 = .link , df2 = .link )
misc$earg <- list(df1 = .earg , df2 = .earg )
misc$nsimEIM <- .nsimEIM
misc$ncp <- .ncp
}), list( .link = link, .earg = earg,
.ncp = ncp,
.nsimEIM = nsimEIM ))),
loglikelihood = eval(substitute(
function(mu, y, w, residuals = FALSE, eta,
extra = NULL,
summation = TRUE) {
df1 <- eta2theta(eta[, 1], .link , earg = .earg )
df2 <- eta2theta(eta[, 2], .link , earg = .earg )
if (residuals) {
stop("loglikelihood residuals not implemented yet")
} else {
ll.elts <- c(w) * df(x = y, df1 = df1, df2 = df2,
ncp = .ncp , log = TRUE)
if (summation) {
sum(ll.elts)
} else {
ll.elts
}
}
}, list( .link = link, .earg = earg, .ncp = ncp ))),
vfamily = c("fff"),
validparams = eval(substitute(function(eta, y, extra = NULL) {
df1 <- eta2theta(eta[, 1], .link , earg = .earg )
df2 <- eta2theta(eta[, 2], .link , earg = .earg )
okay1 <- all(is.finite(df1)) && all(0 < df1) &&
all(is.finite(df2)) && all(0 < df2)
okay1
}, list( .link = link, .earg = earg, .ncp = ncp ))),
deriv = eval(substitute(expression({
df1 <- eta2theta(eta[, 1], .link , earg = .earg )
df2 <- eta2theta(eta[, 2], .link , earg = .earg )
dl.ddf1 <- 0.5*digamma(0.5*(df1+df2)) + 0.5 + 0.5*log(df1/df2) +
0.5*log(y) - 0.5*digamma(0.5*df1) -
0.5*(df1+df2)*(y/df2) / (1 + df1*y/df2) -
0.5*log1p(df1*y/df2)
dl.ddf2 <- 0.5*digamma(0.5*(df1+df2)) - 0.5*df1/df2 -
0.5*digamma(0.5*df2) -
0.5*(df1+df2) * (-df1*y/df2^2) / (1 + df1*y/df2) -
0.5*log1p(df1*y/df2)
ddf1.deta <- dtheta.deta(df1, .link , earg = .earg )
ddf2.deta <- dtheta.deta(df2, .link , earg = .earg )
dthetas.detas <- cbind(ddf1.deta, ddf2.deta)
c(w) * dthetas.detas * cbind(dl.ddf1, dl.ddf2)
}), list( .link = link, .earg = earg ))),
weight = eval(substitute(expression({
run.varcov <- 0
ind1 <- iam(NA, NA, M = M, both = TRUE, diag = TRUE)
for (ii in 1:( .nsimEIM )) {
ysim <- rf(n = n, df1=df1, df2=df2)
dl.ddf1 <- 0.5*digamma(0.5*(df1+df2)) + 0.5 + 0.5*log(df1/df2) +
0.5*log(ysim) - 0.5*digamma(0.5*df1) -
0.5*(df1+df2)*(ysim/df2) / (1 + df1*ysim/df2) -
0.5*log1p(df1*ysim/df2)
dl.ddf2 <- 0.5*digamma(0.5*(df1+df2)) - 0.5*df1/df2 -
0.5*digamma(0.5*df2) -
0.5*(df1+df2) * (-df1*ysim/df2^2)/(1 + df1*ysim/df2) -
0.5*log1p(df1*ysim/df2)
rm(ysim)
temp3 <- cbind(dl.ddf1, dl.ddf2)
run.varcov <- ((ii-1) * run.varcov +
temp3[,ind1$row.index]*temp3[,ind1$col.index]) / ii
}
wz <- if (intercept.only)
matrix(colMeans(run.varcov),
n, ncol(run.varcov), byrow = TRUE) else run.varcov
wz <- c(w) * wz * dthetas.detas[, ind1$row] *
dthetas.detas[, ind1$col]
wz
}), list( .link = link, .earg = earg, .nsimEIM = nsimEIM,
.ncp = ncp ))))
}
hyperg <- function(N = NULL, D = NULL,
lprob = "logitlink",
iprob = NULL) {
inputN <- is.Numeric(N, positive = TRUE)
inputD <- is.Numeric(D, positive = TRUE)
if (inputD && inputN)
stop("only one of 'N' and 'D' is to be inputted")
if (!inputD && !inputN)
stop("one of 'N' and 'D' needs to be inputted")
lprob <- as.list(substitute(lprob))
earg <- link2list(lprob)
lprob <- attr(earg, "function.name")
new("vglmff",
blurb = c("Hypergeometric distribution\n\n",
"Link: ",
namesof("prob", lprob, earg = earg), "\n",
"Mean: D/N\n"),
initialize = eval(substitute(expression({
NCOL <- function (x)
if (is.array(x) && length(dim(x)) > 1 ||
is.data.frame(x)) ncol(x) else as.integer(1)
if (NCOL(y) == 1) {
if (is.factor(y)) y <- y != levels(y)[1]
nn <- rep_len(1, n)
if (!all(y >= 0 & y <= 1))
stop("response values must be in [0, 1]")
mustart <- (0.5 + w * y) / (1 + w)
no.successes <- w * y
if (any(abs(no.successes - round(no.successes)) > 0.001))
stop("Number of successes must be integer-valued")
} else if (NCOL(y) == 2) {
if (any(abs(y - round(y)) > 0.001))
stop("Count data must be integer-valued")
nn <- y[, 1] + y[, 2]
y <- ifelse(nn > 0, y[, 1]/nn, 0)
w <- w * nn
mustart <- (0.5 + nn * y) / (1 + nn)
mustart[mustart >= 1] <- 0.95
} else
stop("Response not of the right form")
predictors.names <-
namesof("prob", .lprob , earg = .earg , tag = FALSE)
extra$Nvector <- .N
extra$Dvector <- .D
extra$Nunknown <- length(extra$Nvector) == 0
if (!length(etastart)) {
init.prob <- if (length( .iprob))
rep_len( .iprob, n) else
mustart
etastart <- matrix(init.prob, n, NCOL(y))
}
}), list( .lprob = lprob, .earg = earg, .N = N, .D = D,
.iprob = iprob ))),
linkinv = eval(substitute(function(eta, extra = NULL) {
eta2theta(eta, .lprob , earg = .earg )
}, list( .lprob = lprob, .earg = earg ))),
last = eval(substitute(expression({
misc$link <- c("prob" = .lprob)
misc$earg <- list("prob" = .earg )
misc$Dvector <- .D
misc$Nvector <- .N
}), list( .N = N, .D = D, .lprob = lprob, .earg = earg ))),
linkfun = eval(substitute(function(mu, extra = NULL) {
theta2eta(mu, .lprob, earg = .earg )
}, list( .lprob = lprob, .earg = earg ))),
loglikelihood = eval(substitute(
function(mu, y, w, residuals = FALSE, eta, extra = NULL,
summation = TRUE) {
N <- extra$Nvector
Dvec <- extra$Dvector
prob <- mu
yvec <- w * y
if (residuals) {
stop("loglikelihood residuals not implemented yet")
} else {
ll.elts <-
if (extra$Nunknown) {
tmp12 <- Dvec * (1-prob) / prob
(lgamma(1+tmp12) + lgamma(1+Dvec/prob-w) -
lgamma(1+tmp12-w+yvec) - lgamma(1+Dvec/prob))
} else {
(lgamma(1+N*prob) + lgamma(1+N*(1-prob)) -
lgamma(1+N*prob-yvec) -
lgamma(1+N*(1-prob) -w + yvec))
}
if (summation) {
sum(ll.elts)
} else {
ll.elts
}
}
}, list( .lprob = lprob, .earg = earg ))),
vfamily = c("hyperg"),
validparams = eval(substitute(function(eta, y, extra = NULL) {
prob <- eta2theta(eta, .lprob , earg = .earg )
okay1 <- all(is.finite(prob)) && all(0 < prob & prob < 1)
okay1
}, list( .lprob = lprob, .earg = earg ))),
deriv = eval(substitute(expression({
prob <- mu
dprob.deta <- dtheta.deta(prob, .lprob, earg = .earg )
Dvec <- extra$Dvector
Nvec <- extra$Nvector
yvec <- w * y
if (extra$Nunknown) {
tmp72 <- -Dvec / prob^2
tmp12 <- Dvec * (1-prob) / prob
dl.dprob <- tmp72 * (digamma(1 + tmp12) +
digamma(1 + Dvec/prob -w) -
digamma(1 + tmp12-w+yvec) - digamma(1 + Dvec/prob))
} else {
dl.dprob <- Nvec * (digamma(1+Nvec*prob) -
digamma(1+Nvec*(1-prob)) -
digamma(1+Nvec*prob-yvec) +
digamma(1+Nvec*(1-prob)-w+yvec))
}
c(w) * dl.dprob * dprob.deta
}), list( .lprob = lprob, .earg = earg ))),
weight = eval(substitute(expression({
if (extra$Nunknown) {
tmp722 <- tmp72^2
tmp13 <- 2*Dvec / prob^3
d2l.dprob2 <- tmp722 * (trigamma(1 + tmp12) +
trigamma(1 + Dvec/prob - w) -
trigamma(1 + tmp12 - w + yvec) -
trigamma(1 + Dvec/prob)) +
tmp13 * (digamma(1 + tmp12) +
digamma(1 + Dvec/prob - w) -
digamma(1 + tmp12 - w + yvec) -
digamma(1 + Dvec/prob))
} else {
d2l.dprob2 <- Nvec^2 * (trigamma(1+Nvec*prob) +
trigamma(1+Nvec*(1-prob)) -
trigamma(1+Nvec*prob-yvec) -
trigamma(1+Nvec*(1-prob)-w+yvec))
}
d2prob.deta2 <- d2theta.deta2(prob, .lprob , earg = .earg )
wz <- -(dprob.deta^2) * d2l.dprob2
wz <- c(w) * wz
wz[wz < .Machine$double.eps] <- .Machine$double.eps
wz
}), list( .lprob = lprob, .earg = earg ))))
}
dbenini <- function(x, y0, shape, log = FALSE) {
if (!is.logical(log.arg <- log) || length(log) != 1)
stop("bad input for argument 'log'")
rm(log)
N <- max(length(x), length(shape), length(y0))
if (length(x) != N) x <- rep_len(x, N)
if (length(shape) != N) shape <- rep_len(shape, N)
if (length(y0) != N) y0 <- rep_len(y0, N)
logdensity <- rep_len(log(0), N)
xok <- (x > y0)
tempxok <- log(x[xok]/y0[xok])
logdensity[xok] <- log(2*shape[xok]) - shape[xok] * tempxok^2 +
log(tempxok) - log(x[xok])
logdensity[is.infinite(x)] <- log(0)
if (log.arg) logdensity else exp(logdensity)
}
pbenini <- function(q, y0, shape, lower.tail = TRUE, log.p = FALSE) {
if (!is.Numeric(q))
stop("bad input for argument 'q'")
if (!is.Numeric(shape, positive = TRUE))
stop("bad input for argument 'shape'")
if (!is.Numeric(y0, positive = TRUE))
stop("bad input for argument 'y0'")
if (!is.logical(lower.tail) || length(lower.tail ) != 1)
stop("bad input for argument 'lower.tail'")
if (!is.logical(log.p) || length(log.p) != 1)
stop("bad input for argument 'log.p'")
N <- max(length(q), length(shape), length(y0))
if (length(q) != N) q <- rep_len(q, N)
if (length(shape) != N) shape <- rep_len(shape, N)
if (length(y0) != N) y0 <- rep_len(y0, N)
ans <- y0 * 0
ok <- q > y0
if (lower.tail) {
if (log.p) {
ans[ok] <- log(-expm1(-shape[ok] * (log(q[ok]/y0[ok]))^2))
ans[q <= y0 ] <- -Inf
} else {
ans[ok] <- -expm1(-shape[ok] * (log(q[ok]/y0[ok]))^2)
}
} else {
if (log.p) {
ans[ok] <- -shape[ok] * (log(q[ok]/y0[ok]))^2
ans[q <= y0] <- 0
} else {
ans[ok] <- exp(-shape[ok] * (log(q[ok]/y0[ok]))^2)
ans[q <= y0] <- 1
}
}
ans
}
qbenini <- function(p, y0, shape, lower.tail = TRUE, log.p = FALSE) {
if (!is.logical(lower.tail) || length(lower.tail ) != 1)
stop("bad input for argument 'lower.tail'")
if (!is.logical(log.p) || length(log.p) != 1)
stop("bad input for argument 'log.p'")
if (lower.tail) {
if (log.p) {
ln.p <- p
ans <- y0 * exp(sqrt(-log(-expm1(ln.p)) / shape))
} else {
ans <- y0 * exp(sqrt(-log1p(-p) / shape))
}
} else {
if (log.p) {
ln.p <- p
ans <- y0 * exp(sqrt(-ln.p / shape))
} else {
ans <- y0 * exp(sqrt(-log(p) / shape))
}
}
ans[y0 <= 0] <- NaN
ans
}
rbenini <- function(n, y0, shape) {
y0 * exp(sqrt(-log(runif(n)) / shape))
}
benini1 <-
function(y0 = stop("argument 'y0' must be specified"),
lshape = "loglink",
ishape = NULL, imethod = 1, zero = NULL,
parallel = FALSE,
type.fitted = c("percentiles", "Qlink"),
percentiles = 50) {
type.fitted <- match.arg(type.fitted,
c("percentiles", "Qlink"))[1]
lshape <- as.list(substitute(lshape))
eshape <- link2list(lshape)
lshape <- attr(eshape, "function.name")
if (!is.Numeric(imethod, length.arg = 1,
integer.valued = TRUE, positive = TRUE) ||
imethod > 2)
stop("argument 'imethod' must be 1 or 2")
if (!is.Numeric(y0, positive = TRUE, length.arg = 1))
stop("bad input for argument 'y0'")
new("vglmff",
blurb = c("1-parameter Benini distribution\n\n",
"Link: ",
namesof("shape", lshape, earg = eshape),
"\n", "\n",
"Median: qbenini(p = 0.5, y0, shape)"),
constraints = eval(substitute(expression({
constraints <- cm.VGAM(matrix(1, M, 1), x = x,
bool = .parallel ,
constraints, apply.int = FALSE)
constraints <- cm.zero.VGAM(constraints, x = x, .zero , M = M,
predictors.names = predictors.names,
M1 = 1)
}), list( .parallel = parallel,
.zero = zero ))),
infos = eval(substitute(function(...) {
list(M1 = 1,
Q1 = 1,
expected = TRUE,
multipleResponses = TRUE,
parameters.names = c("shape"),
parallel = .parallel ,
percentiles = .percentiles ,
type.fitted = .type.fitted ,
lshape = .lshape ,
eshape = .eshape ,
zero = .zero )
}, list( .parallel = parallel,
.zero = zero,
.percentiles = percentiles ,
.type.fitted = type.fitted,
.eshape = eshape,
.lshape = lshape))),
initialize = eval(substitute(expression({
temp5 <-
w.y.check(w = w, y = y,
ncol.w.max = Inf,
ncol.y.max = Inf,
out.wy = TRUE,
colsyperw = 1,
maximize = TRUE)
w <- temp5$w
y <- temp5$y
ncoly <- ncol(y)
M1 <- 1
M <- M1 * ncoly
extra$ncoly <- ncoly
extra$type.fitted <- .type.fitted
extra$colnames.y <- colnames(y)
extra$percentiles <- .percentiles
extra$M1 <- M1
mynames1 <- paste("shape", if (ncoly > 1) 1:ncoly else "", sep = "")
predictors.names <-
namesof(mynames1, .lshape , earg = .eshape , tag = FALSE)
extra$y0 <- .y0
if (any(y <= extra$y0))
stop("some values of the response are > argument 'y0' values")
if (!length(etastart)) {
probs.y <- (1:3) / 4
qofy <- quantile(rep(y, times = w), probs = probs.y)
if ( .imethod == 1) {
shape.init <- mean(-log1p(-probs.y) / (log(qofy))^2)
} else {
shape.init <- median(-log1p(-probs.y) / (log(qofy))^2)
}
shape.init <- matrix(if (length( .ishape )) .ishape else shape.init,
n, ncoly, byrow = TRUE)
etastart <- cbind(theta2eta(shape.init, .lshape , earg = .eshape ))
}
}), list( .imethod = imethod,
.ishape = ishape,
.lshape = lshape, .eshape = eshape,
.percentiles = percentiles,
.type.fitted = type.fitted,
.y0 = y0 ))),
linkinv = eval(substitute(function(eta, extra = NULL) {
type.fitted <-
if (length(extra$type.fitted)) {
extra$type.fitted
} else {
warning("cannot find 'type.fitted'. Returning the 'median'.")
extra$percentiles <- 50
"percentiles"
}
type.fitted <- match.arg(type.fitted,
c("percentiles", "Qlink"))[1]
if (type.fitted == "Qlink") {
eta2theta(eta, link = "loglink")
} else {
shape <- eta2theta(eta, .lshape , earg = .eshape )
pcent <- extra$percentiles
perc.mat <- matrix(pcent, NROW(eta), length(pcent),
byrow = TRUE) / 100
fv <-
switch(type.fitted,
"percentiles" = qbenini(perc.mat,
y0 = extra$y0,
shape = matrix(shape, nrow(perc.mat), ncol(perc.mat))))
if (type.fitted == "percentiles")
fv <- label.cols.y(fv, colnames.y = extra$colnames.y,
NOS = NCOL(eta), percentiles = pcent,
one.on.one = FALSE)
fv
}
}, list( .lshape = lshape, .eshape = eshape ))),
last = eval(substitute(expression({
M1 <- extra$M1
misc$link <- c(rep_len( .lshape , ncoly))
names(misc$link) <- mynames1
misc$earg <- vector("list", M)
names(misc$earg) <- mynames1
for (ii in 1:ncoly) {
misc$earg[[ii]] <- .eshape
}
extra$y0 <- .y0
}), list( .lshape = lshape,
.eshape = eshape, .y0 = y0 ))),
loglikelihood = eval(substitute(
function(mu, y, w, residuals = FALSE, eta, extra = NULL,
summation = TRUE) {
shape <- eta2theta(eta, .lshape , earg = .eshape )
y0 <- extra$y0
if (residuals) {
stop("loglikelihood residuals not implemented yet")
} else {
ll.elts <- c(w) * dbenini(x = y, y0 = y0, shape = shape, log = TRUE)
if (summation) {
sum(ll.elts)
} else {
ll.elts
}
}
}, list( .lshape = lshape, .eshape = eshape ))),
vfamily = c("benini1"),
validparams = eval(substitute(function(eta, y, extra = NULL) {
shape <- eta2theta(eta, .lshape , earg = .eshape )
okay1 <- all(is.finite(shape)) && all(0 < shape)
okay1
}, list( .lshape = lshape, .eshape = eshape ))),
simslot = eval(substitute(
function(object, nsim) {
pwts <- if (length(pwts <- [email protected]) > 0)
pwts else weights(object, type = "prior")
if (any(pwts != 1))
warning("ignoring prior weights")
eta <- predict(object)
extra <- object@extra
shape <- eta2theta(eta, .lshape , earg = .eshape )
y0 <- extra$y0
rbenini(nsim * length(shape), y0 = y0, shape = shape)
}, list( .lshape = lshape, .eshape = eshape ))),
deriv = eval(substitute(expression({
shape <- eta2theta(eta, .lshape , earg = .eshape )
y0 <- extra$y0
dl.dshape <- 1/shape - (log(y/y0))^2
dshape.deta <- dtheta.deta(shape, .lshape , earg = .eshape )
c(w) * dl.dshape * dshape.deta
}), list( .lshape = lshape, .eshape = eshape ))),
weight = eval(substitute(expression({
ned2l.dshape2 <- 1 / shape^2
wz <- ned2l.dshape2 * dshape.deta^2
c(w) * wz
}), list( .lshape = lshape, .eshape = eshape ))))
}
dpolono <- function (x, meanlog = 0, sdlog = 1, bigx = 170, ...) {
mapply(function(x, meanlog, sdlog, ...) {
if (abs(x) > floor(x)) {
0
} else
if (x == Inf) {
0
} else
if (x > bigx) {
z <- (log(x) - meanlog) / sdlog
(1 + (z^2 + log(x) - meanlog - 1) / (2 * x * sdlog^2)) *
exp(-0.5 * z^2) / (sqrt(2 * pi) * sdlog * x)
} else
integrate( function(t) exp(t * x - exp(t) -
0.5 * ((t - meanlog) / sdlog)^2),
lower = -Inf, upper = Inf, ...)$value / (sqrt(2 * pi) *
sdlog * exp(lgamma(x + 1.0)))
}, x, meanlog, sdlog, ...)
}
ppolono <- function(q, meanlog = 0, sdlog = 1,
isOne = 1 - sqrt( .Machine$double.eps ), ...) {
.cumprob <- rep_len(0, length(q))
.cumprob[q == Inf] <- 1
q <- floor(q)
ii <- -1
while (any(xActive <- ((.cumprob < isOne) & (q > ii))))
.cumprob[xActive] <- .cumprob[xActive] +
dpolono(ii <- (ii+1), meanlog, sdlog, ...)
.cumprob
}
rpolono <- function(n, meanlog = 0, sdlog = 1) {
lambda <- rlnorm(n = n, meanlog = meanlog, sdlog = sdlog)
rpois(n = n, lambda = lambda)
}
dtriangle <- function(x, theta, lower = 0, upper = 1, log = FALSE) {
if (!is.logical(log.arg <- log) || length(log) != 1)
stop("bad input for argument 'log'")
rm(log)
N <- max(length(x), length(theta), length(lower), length(upper))
if (length(x) != N) x <- rep_len(x, N)
if (length(theta) != N) theta <- rep_len(theta, N)
if (length(lower) != N) lower <- rep_len(lower, N)
if (length(upper) != N) upper <- rep_len(upper, N)
denom1 <- ((upper-lower)*(theta-lower))
denom2 <- ((upper-lower)*(upper-theta))
logdensity <- rep_len(log(0), N)
xok.neg <- (lower < x) & (x <= theta)
xok.pos <- (theta <= x) & (x < upper)
logdensity[xok.neg] =
log(2 * (x[xok.neg] - lower[xok.neg]) / denom1[xok.neg])
logdensity[xok.pos] =
log(2 * (upper[xok.pos] - x[xok.pos]) / denom2[xok.pos])
logdensity[lower >= upper] <- NaN
logdensity[lower > theta] <- NaN
logdensity[upper < theta] <- NaN
if (log.arg) logdensity else exp(logdensity)
}
rtriangle <- function(n, theta, lower = 0, upper = 1) {
use.n <- if ((length.n <- length(n)) > 1) length.n else
if (!is.Numeric(n, integer.valued = TRUE,
length.arg = 1, positive = TRUE))
stop("bad input for argument 'n'") else n
if (!is.Numeric(theta))
stop("bad input for argument 'theta'")
if (!is.Numeric(lower))
stop("bad input for argument 'lower'")
if (!is.Numeric(upper))
stop("bad input for argument 'upper'")
if (!all(lower < theta & theta < upper))
stop("lower < theta < upper values are required")
N <- use.n
lower <- rep_len(lower, N)
upper <- rep_len(upper, N)
theta <- rep_len(theta, N)
t1 <- sqrt(runif(n))
t2 <- sqrt(runif(n))
ifelse(runif(n) < (theta - lower) / (upper - lower),
lower + (theta - lower) * t1,
upper - (upper - theta) * t2)
}
qtriangle <- function(p, theta, lower = 0, upper = 1,
lower.tail = TRUE, log.p = FALSE) {
if (!is.logical(lower.tail) || length(lower.tail ) != 1)
stop("bad input for argument 'lower.tail'")
if (!is.logical(log.p) || length(log.p) != 1)
stop("bad input for argument 'log.p'")
N <- max(length(p), length(theta), length(lower), length(upper))
if (length(p) != N) p <- rep_len(p, N)
if (length(theta) != N) theta <- rep_len(theta, N)
if (length(lower) != N) lower <- rep_len(lower, N)
if (length(upper) != N) upper <- rep_len(upper, N)
ans <- NA_real_ * p
if (lower.tail) {
if (log.p) {
Neg <- (exp(ln.p) <= (theta - lower) / (upper - lower))
temp1 <- exp(ln.p) * (upper - lower) * (theta - lower)
Pos <- (exp(ln.p) >= (theta - lower) / (upper - lower))
pstar <- (exp(ln.p) - (theta - lower) / (upper - lower)) /
((upper - theta) / (upper - lower))
} else {
Neg <- (p <= (theta - lower) / (upper - lower))
temp1 <- p * (upper - lower) * (theta - lower)
Pos <- (p >= (theta - lower) / (upper - lower))
pstar <- (p - (theta - lower) / (upper - lower)) /
((upper - theta) / (upper - lower))
}
} else {
if (log.p) {
ln.p <- p
Neg <- (exp(ln.p) >= (upper- theta) / (upper - lower))
temp1 <- -expm1(ln.p) * (upper - lower) * (theta - lower)
Pos <- (exp(ln.p) <= (upper- theta) / (upper - lower))
pstar <- (-expm1(ln.p) - (theta - lower) / (upper - lower)) /
((upper - theta) / (upper - lower))
} else {
Neg <- (p >= (upper- theta) / (upper - lower))
temp1 <- (1 - p) * (upper - lower) * (theta - lower)
Pos <- (p <= (upper- theta) / (upper - lower))
pstar <- ((upper- theta) / (upper - lower) - p) /
((upper - theta) / (upper - lower))
}
}
ans[ Neg] <- lower[ Neg] + sqrt(temp1[ Neg])
if (any(Pos)) {
qstar <- cbind(1 - sqrt(1-pstar), 1 + sqrt(1-pstar))
qstar <- qstar[Pos,, drop = FALSE]
qstar <- ifelse(qstar[, 1] >= 0 & qstar[, 1] <= 1,
qstar[, 1],
qstar[, 2])
ans[Pos] <- theta[Pos] + qstar * (upper - theta)[Pos]
}
ans[theta < lower | theta > upper] <- NaN
ans
}
ptriangle <- function(q, theta, lower = 0, upper = 1,
lower.tail = TRUE, log.p = FALSE) {
N <- max(length(q), length(theta), length(lower), length(upper))
if (length(q) != N) q <- rep_len(q, N)
if (length(theta) != N) theta <- rep_len(theta, N)
if (length(lower) != N) lower <- rep_len(lower, N)
if (length(upper) != N) upper <- rep_len(upper, N)
if (!is.logical(lower.tail) || length(lower.tail ) != 1)
stop("bad input for argument 'lower.tail'")
if (!is.logical(log.p) || length(log.p) != 1)
stop("bad input for argument 'log.p'")
ans <- q * 0
qstar <- (q - lower)^2 / ((upper - lower) * (theta - lower))
Neg <- (lower <= q & q <= theta)
ans[Neg] <- if (lower.tail) {
if (log.p) {
(log(qstar))[Neg]
} else {
qstar[Neg]
}
} else {
if (log.p) {
(log1p(-qstar))[Neg]
} else {
1 - qstar[Neg]
}
}
Pos <- (theta <= q & q <= upper)
qstar <- (q - theta) / (upper-theta)
if (lower.tail) {
if (log.p) {
ans[Pos] <- log(((theta-lower)/(upper-lower))[Pos] +
(qstar * (2-qstar) *
(upper-theta) / (upper - lower))[Pos])
ans[q <= lower] <- -Inf
ans[q >= upper] <- 0
} else {
ans[Pos] <- ((theta-lower)/(upper-lower))[Pos] +
(qstar * (2-qstar) *
(upper-theta) / (upper - lower))[Pos]
ans[q <= lower] <- 0
ans[q >= upper] <- 1
}
} else {
if (log.p) {
ans[Pos] <- log(((upper - theta)/(upper-lower))[Pos] +
(qstar * (2-qstar) *
(upper-theta) / (upper - lower))[Pos])
ans[q <= lower] <- 0
ans[q >= upper] <- -Inf
} else {
ans[Pos] <- ((upper - theta)/(upper-lower))[Pos] +
(qstar * (2-qstar) *
(upper-theta) / (upper - lower))[Pos]
ans[q <= lower] <- 1
ans[q >= upper] <- 0
}
}
ans[theta < lower | theta > upper] <- NaN
ans
}
triangle.control <- function(stepsize = 0.33, maxit = 100, ...) {
list(stepsize = stepsize, maxit = maxit)
}
triangle <-
function(lower = 0, upper = 1,
link = extlogitlink(min = 0, max = 1),
itheta = NULL) {
if (!is.Numeric(lower))
stop("bad input for argument 'lower'")
if (!is.Numeric(upper))
stop("bad input for argument 'upper'")
if (!all(lower < upper))
stop("lower < upper values are required")
if (length(itheta) && !is.Numeric(itheta))
stop("bad input for 'itheta'")
link <- as.list(substitute(link))
earg <- link2list(link)
link <- attr(earg, "function.name")
if (length(earg$min) && any(earg$min != lower))
stop("argument 'lower' does not match the 'link'")
if (length(earg$max) && any(earg$max != upper))
stop("argument 'upper' does not match the 'link'")
new("vglmff",
blurb = c("Triangle distribution\n\n",
"Link: ",
namesof("theta", link, earg = earg)),
infos = eval(substitute(function(...) {
list(M1 = 1,
Q1 = 1,
parameters.names = c("theta"),
link = .link )
}, list( .link = link ))),
initialize = eval(substitute(expression({
w.y.check(w = w, y = y,
ncol.w.max = 1,
ncol.y.max = 1)
extra$lower <- rep_len( .lower , n)
extra$upper <- rep_len( .upper , n)
if (any(y <= extra$lower | y >= extra$upper))
stop("some y values in [lower,upper] detected")
predictors.names <-
namesof("theta", .link , earg = .earg , tag = FALSE)
if (!length(etastart)) {
Theta.init <- if (length( .itheta )) .itheta else {
weighted.mean(y, w)
}
Theta.init <- rep_len(Theta.init, n)
etastart <- theta2eta(Theta.init, .link , earg = .earg )
}
}), list( .link = link, .earg = earg, .itheta=itheta,
.upper = upper, .lower = lower ))),
linkinv = eval(substitute(function(eta, extra = NULL) {
Theta <- eta2theta(eta, .link , earg = .earg )
lower <- extra$lower
upper <- extra$upper
mu1 <- (lower + upper + Theta) / 3
mu1
}, list( .link = link, .earg = earg ))),
last = eval(substitute(expression({
misc$link <- c(theta = .link )
misc$earg <- list(theta = .earg )
misc$expected <- TRUE
}), list( .link = link, .earg = earg ))),
loglikelihood = eval(substitute(
function(mu, y, w, residuals = FALSE, eta, extra = NULL,
summation = TRUE) {
Theta <- eta2theta(eta, .link , earg = .earg )
lower <- extra$lower
upper <- extra$upper
if (residuals) {
stop("loglikelihood residuals not implemented yet")
} else {
ll.elts <- c(w) * dtriangle(x = y, theta = Theta, lower = lower,
upper = upper, log = TRUE)
if (summation) {
sum(ll.elts)
} else {
ll.elts
}
}
}, list( .link = link, .earg = earg ))),
vfamily = c("triangle"),
validparams = eval(substitute(function(eta, y, extra = NULL) {
Theta <- eta2theta(eta, .link , earg = .earg )
okay1 <- all(is.finite(Theta)) &&
all(extra$lower < Theta & Theta < extra$upper)
okay1
}, list( .link = link, .earg = earg ))),
simslot = eval(substitute(
function(object, nsim) {
pwts <- if (length(pwts <- [email protected]) > 0)
pwts else weights(object, type = "prior")
if (any(pwts != 1))
warning("ignoring prior weights")
eta <- predict(object)
extra <- object@extra
Theta <- eta2theta(eta, .link , earg = .earg )
lower <- extra$lower
upper <- extra$upper
rtriangle(nsim * length(Theta),
theta = Theta, lower = lower, upper = upper)
}, list( .link = link, .earg = earg ))),
deriv = eval(substitute(expression({
Theta <- eta2theta(eta, .link , earg = .earg )
dTheta.deta <- dtheta.deta(Theta, .link , earg = .earg )
pos <- y > Theta
neg <- y < Theta
lower <- extra$lower
upper <- extra$upper
dl.dTheta <- 0 * y
dl.dTheta[neg] <- -1 / (Theta[neg]-lower[neg])
dl.dTheta[pos] <- 1 / (upper[pos]-Theta[pos])
c(w) * dl.dTheta * dTheta.deta
}), list( .link = link, .earg = earg ))),
weight = eval(substitute(expression({
var.dl.dTheta <- 1 / ((Theta - lower) * (upper - Theta))
wz <- var.dl.dTheta * dTheta.deta^2
c(w) * wz
}), list( .link = link, .earg = earg ))))
}
adjust0.loglaplace1 <- function(ymat, y, w, rep0) {
rangey0 <- range(y[y > 0])
ymat[ymat <= 0] <- min(rangey0[1] / 2, rep0)
ymat
}
loglaplace1.control <- function(maxit = 300, ...) {
list(maxit = maxit)
}
loglaplace1 <- function(tau = NULL,
llocation = "loglink",
ilocation = NULL,
kappa = sqrt(tau/(1-tau)),
Scale.arg = 1,
ishrinkage = 0.95,
parallel.locat = FALSE, digt = 4,
idf.mu = 3,
rep0 = 0.5,
minquantile = 0, maxquantile = Inf,
imethod = 1, zero = NULL) {
if (length(minquantile) != 1)
stop("bad input for argument 'minquantile'")
if (length(maxquantile) != 1)
stop("bad input for argument 'maxquantile'")
if (!is.Numeric(rep0, positive = TRUE, length.arg = 1) ||
rep0 > 1)
stop("bad input for argument 'rep0'")
if (!is.Numeric(kappa, positive = TRUE))
stop("bad input for argument 'kappa'")
if (length(tau) && max(abs(kappa - sqrt(tau/(1-tau)))) > 1.0e-6)
stop("arguments 'kappa' and 'tau' do not match")
llocat <- as.list(substitute(llocation))
elocat <- link2list(llocat)
llocat <- attr(elocat, "function.name")
ilocat <- ilocation
llocat.identity <- as.list(substitute("identitylink"))
elocat.identity <- link2list(llocat.identity)
llocat.identity <- attr(elocat.identity, "function.name")
if (!is.Numeric(imethod, length.arg = 1,
integer.valued = TRUE, positive = TRUE) ||
imethod > 4)
stop("argument 'imethod' must be 1, 2 or ... 4")
if (!is.Numeric(ishrinkage, length.arg = 1) ||
ishrinkage < 0 ||
ishrinkage > 1)
stop("bad input for argument 'ishrinkage'")
if (!is.Numeric(Scale.arg, positive = TRUE))
stop("bad input for argument 'Scale.arg'")
if (!is.logical(parallel.locat) ||
length(parallel.locat) != 1)
stop("bad input for argument 'parallel.locat'")
fittedMean <- FALSE
if (!is.logical(fittedMean) || length(fittedMean) != 1)
stop("bad input for argument 'fittedMean'")
mystring0 <- namesof("location", llocat, earg = elocat)
mychars <- substring(mystring0, first = 1:nchar(mystring0),
last = 1:nchar(mystring0))
mychars[nchar(mystring0)] <- ", inverse = TRUE)"
mystring1 <- paste(mychars, collapse = "")
new("vglmff",
blurb = c("One-parameter ",
if (llocat == "loglink") "log-Laplace" else
c(llocat, "-Laplace"),
" distribution\n\n",
"Links: ", mystring0, "\n", "\n",
"Quantiles: ", mystring1),
constraints = eval(substitute(expression({
constraints <- cm.VGAM(matrix(1, M, 1), x = x,
bool = .parallel.locat ,
constraints = constraints, apply.int = FALSE)
constraints <- cm.zero.VGAM(constraints, x = x, .zero , M = M,
predictors.names = predictors.names,
M1 = 1)
}), list( .parallel.locat = parallel.locat,
.Scale.arg = Scale.arg, .zero = zero ))),
infos = eval(substitute(function(...) {
list(M1 = 1,
Q1 = 1,
parameters.names = c("location"),
llocation = .llocat )
}, list( .llocat = llocat,
.zero = zero ))),
initialize = eval(substitute(expression({
extra$M <- M <- max(length( .Scale.arg ), length( .kappa ))
extra$Scale <- rep_len( .Scale.arg , M)
extra$kappa <- rep_len( .kappa , M)
extra$tau <- extra$kappa^2 / (1 + extra$kappa^2)
temp5 <-
w.y.check(w = w, y = y,
ncol.w.max = 1,
ncol.y.max = 1,
out.wy = TRUE,
maximize = TRUE)
w <- temp5$w
y <- temp5$y
extra$n <- n
extra$y.names <- y.names <-
paste("tau = ", round(extra$tau, digits = .digt), sep = "")
extra$individual <- FALSE
predictors.names <-
namesof(paste("quantile(", y.names, ")", sep = ""),
.llocat , earg = .elocat , tag = FALSE)
if (FALSE) {
if (min(y) < 0)
stop("negative response values detected")
if ((prop.0. <- weighted.mean(1*(y == 0), w)) >= min(extra$tau))
stop("sample proportion of 0s == ", round(prop.0., digits = 4),
" > minimum 'tau' value. Choose larger values for 'tau'.")
if ( .rep0 == 0.5 &&
(ave.tau <- (weighted.mean(1*(y <= 0), w) +
weighted.mean(1*(y <= 1), w))/2) >= min(extra$tau))
warning("the minimum 'tau' value should be greater than ",
round(ave.tau, digits = 4))
}
if (!length(etastart)) {
if ( .imethod == 1) {
locat.init <- quantile(rep(y, w), probs= extra$tau) + 1/16
} else if ( .imethod == 2) {
locat.init <- weighted.mean(y, w)
} else if ( .imethod == 3) {
locat.init <- median(y)
} else if ( .imethod == 4) {
Fit5 <- vsmooth.spline(x = x[, min(ncol(x), 2)],
y = y, w = w,
df = .idf.mu )
locat.init <- c(predict(Fit5, x = x[, min(ncol(x), 2)])$y)
} else {
use.this <- weighted.mean(y, w)
locat.init <- (1- .ishrinkage )*y + .ishrinkage * use.this
}
locat.init <- if (length( .ilocat ))
rep_len( .ilocat , M) else
rep_len(locat.init, M)
locat.init <- matrix(locat.init, n, M, byrow = TRUE)
if ( .llocat == "loglink")
locat.init <- abs(locat.init)
etastart <-
cbind(theta2eta(locat.init, .llocat , earg = .elocat ))
}
}), list( .imethod = imethod,
.idf.mu = idf.mu, .rep0 = rep0,
.ishrinkage = ishrinkage, .digt = digt,
.elocat = elocat, .Scale.arg = Scale.arg,
.llocat = llocat, .kappa = kappa,
.ilocat = ilocat ))),
linkinv = eval(substitute(function(eta, extra = NULL) {
locat.y = eta2theta(eta, .llocat , earg = .elocat )
if ( .fittedMean ) {
stop("Yet to do: handle 'fittedMean = TRUE'")
kappamat <- matrix(extra$kappa, extra$n, extra$M, byrow = TRUE)
Scale <- matrix(extra$Scale, extra$n, extra$M, byrow = TRUE)
locat.y + Scale * (1/kappamat - kappamat)
} else {
if (length(locat.y) > extra$n)
dimnames(locat.y) <- list(dimnames(eta)[[1]], extra$y.names)
locat.y
}
locat.y[locat.y < .minquantile] = .minquantile
locat.y[locat.y > .maxquantile] = .maxquantile
locat.y
}, list( .elocat = elocat, .llocat = llocat,
.minquantile = minquantile, .maxquantile = maxquantile,
.fittedMean = fittedMean, .Scale.arg = Scale.arg,
.kappa = kappa ))),
last = eval(substitute(expression({
misc$link <- c(location = .llocat)
misc$earg <- list(location = .elocat )
misc$expected <- TRUE
extra$kappa <- misc$kappa <- .kappa
extra$tau <- misc$tau <- misc$kappa^2 / (1 + misc$kappa^2)
extra$Scale.arg <- .Scale.arg
misc$true.mu <- .fittedMean
misc$rep0 <- .rep0
misc$minquantile <- .minquantile
misc$maxquantile <- .maxquantile
extra$percentile <- numeric(length(misc$kappa))
locat.y <- as.matrix(locat.y)
for (ii in seq_along(misc$kappa))
extra$percentile[ii] <- 100 * weighted.mean(y <= locat.y[, ii], w)
}), list( .elocat = elocat, .llocat = llocat,
.Scale.arg = Scale.arg, .fittedMean = fittedMean,
.minquantile = minquantile, .maxquantile = maxquantile,
.rep0 = rep0, .kappa = kappa ))),
loglikelihood = eval(substitute(
function(mu, y, w, residuals = FALSE, eta,
extra = NULL,
summation = TRUE) {
kappamat <- matrix(extra$kappa, extra$n, extra$M, byrow = TRUE)
Scale.w <- matrix(extra$Scale, extra$n, extra$M, byrow = TRUE)
ymat <- matrix(y, extra$n, extra$M)
if ( .llocat == "loglink")
ymat <- adjust0.loglaplace1(ymat = ymat, y = y, w = w, rep0 = .rep0)
w.mat <- theta2eta(ymat, .llocat , earg = .elocat )
if (residuals) {
stop("loglikelihood residuals not implemented yet")
} else {
ll.elts <- c(w) * dalap(x = c(w.mat), locat = c(eta),
scale = c(Scale.w), kappa = c(kappamat),
log = TRUE)
if (summation) {
sum(ll.elts)
} else {
ll.elts
}
}
}, list( .elocat = elocat, .llocat = llocat,
.rep0 = rep0,
.Scale.arg = Scale.arg, .kappa = kappa ))),
vfamily = c("loglaplace1"),
validparams = eval(substitute(function(eta, y, extra = NULL) {
locat.w <- eta
locat.y <- eta2theta(locat.w, .llocat , earg = .elocat )
okay1 <- all(is.finite(locat.y))
okay1
}, list( .elocat = elocat, .llocat = llocat,
.rep0 = rep0,
.Scale.arg = Scale.arg, .kappa = kappa ))),
deriv = eval(substitute(expression({
ymat <- matrix(y, n, M)
Scale.w <- matrix(extra$Scale, extra$n, extra$M, byrow = TRUE)
locat.w <- eta
locat.y <- eta2theta(locat.w, .llocat , earg = .elocat )
kappamat <- matrix(extra$kappa, n, M, byrow = TRUE)
ymat <- adjust0.loglaplace1(ymat = ymat, y = y, w = w, rep0= .rep0)
w.mat <- theta2eta(ymat, .llocat , earg = .elocat )
zedd <- abs(w.mat-locat.w) / Scale.w
dl.dlocat <- ifelse(w.mat >= locat.w, kappamat, 1/kappamat) *
sqrt(2) * sign(w.mat-locat.w) / Scale.w
dlocat.deta <- dtheta.deta(locat.w,
.llocat.identity ,
earg = .elocat.identity )
c(w) * cbind(dl.dlocat * dlocat.deta)
}), list( .Scale.arg = Scale.arg, .rep0 = rep0,
.llocat = llocat, .elocat = elocat,
.elocat.identity = elocat.identity,
.llocat.identity = llocat.identity,
.kappa = kappa ))),
weight = eval(substitute(expression({
ned2l.dlocat2 <- 2 / Scale.w^2
wz <- cbind(ned2l.dlocat2 * dlocat.deta^2)
c(w) * wz
}), list( .Scale.arg = Scale.arg,
.elocat = elocat, .llocat = llocat,
.elocat.identity = elocat.identity,
.llocat.identity = llocat.identity ))))
}
loglaplace2.control <- function(save.weights = TRUE, ...) {
list(save.weights = save.weights)
}
loglaplace2 <- function(tau = NULL,
llocation = "loglink", lscale = "loglink",
ilocation = NULL, iscale = NULL,
kappa = sqrt(tau/(1-tau)),
ishrinkage = 0.95,
parallel.locat = FALSE, digt = 4,
eq.scale = TRUE,
idf.mu = 3,
rep0 = 0.5, nsimEIM = NULL,
imethod = 1, zero = "(1 + M/2):M") {
warning("it is best to use loglaplace1()")
if (length(nsimEIM) &&
(!is.Numeric(nsimEIM, length.arg = 1,
integer.valued = TRUE) ||
nsimEIM <= 10))
stop("argument 'nsimEIM' should be an integer greater than 10")
if (!is.Numeric(rep0, positive = TRUE, length.arg = 1) ||
rep0 > 1)
stop("bad input for argument 'rep0'")
if (!is.Numeric(kappa, positive = TRUE))
stop("bad input for argument 'kappa'")
if (length(tau) && max(abs(kappa - sqrt(tau/(1-tau)))) > 1.0e-6)
stop("arguments 'kappa' and 'tau' do not match")
llocat <- as.list(substitute(llocation))
elocat <- link2list(llocat)
llocat <- attr(elocat, "function.name")
ilocat <- ilocation
lscale <- as.list(substitute(lscale))
escale <- link2list(lscale)
lscale <- attr(escale, "function.name")
if (!is.Numeric(imethod, length.arg = 1,
integer.valued = TRUE, positive = TRUE) ||
imethod > 4)
stop("argument 'imethod' must be 1, 2 or ... 4")
if (length(iscale) && !is.Numeric(iscale, positive = TRUE))
stop("bad input for argument 'iscale'")
if (!is.Numeric(ishrinkage, length.arg = 1) ||
ishrinkage < 0 ||
ishrinkage > 1)
stop("bad input for argument 'ishrinkage'")
if (!is.logical(eq.scale) || length(eq.scale) != 1)
stop("bad input for argument 'eq.scale'")
if (!is.logical(parallel.locat) ||
length(parallel.locat) != 1)
stop("bad input for argument 'parallel.locat'")
fittedMean <- FALSE
if (!is.logical(fittedMean) || length(fittedMean) != 1)
stop("bad input for argument 'fittedMean'")
if (llocat != "loglink")
stop("argument 'llocat' must be \"loglink\"")
new("vglmff",
blurb = c("Two-parameter log-Laplace distribution\n\n",
"Links: ",
namesof("location", llocat, earg = elocat), ", ",
namesof("scale", lscale, earg = escale),
"\n", "\n",
"Mean: zz location + scale * ",
"(1/kappa - kappa) / sqrt(2)", "\n",
"Quantiles: location", "\n",
"Variance: zz scale^2 * (1 + kappa^4) / (2 * kappa^2)"),
constraints = eval(substitute(expression({
.ZERO <- .zero
if (is.character( .ZERO ))
.ZERO <- eval(parse(text = .ZERO ))
.PARALLEL <- .parallel.locat
parelHmat <- if (is.logical( .PARALLEL ) && .PARALLEL )
matrix(1, M/2, 1) else diag(M/2)
scaleHmat <- if (is.logical( .eq.scale ) && .eq.scale )
matrix(1, M/2, 1) else diag(M/2)
mycmatrix <- cbind(rbind( parelHmat, 0*parelHmat),
rbind(0*scaleHmat, scaleHmat))
constraints <- cm.VGAM(mycmatrix, x = x,
bool = .PARALLEL ,
constraints = constraints,
apply.int = FALSE)
constraints <- cm.zero.VGAM(constraints, x = x, .ZERO , M = M,
predictors.names = predictors.names,
M1 = 2)
if ( .PARALLEL && names(constraints)[1] == "(Intercept)") {
parelHmat <- diag(M/2)
mycmatrix <- cbind(rbind( parelHmat, 0*parelHmat),
rbind(0*scaleHmat, scaleHmat))
constraints[["(Intercept)"]] <- mycmatrix
}
if (is.logical( .eq.scale) && .eq.scale &&
names(constraints)[1] == "(Intercept)") {
temp3 <- constraints[["(Intercept)"]]
temp3 <- cbind(temp3[,1:(M/2)], rbind(0*scaleHmat, scaleHmat))
constraints[["(Intercept)"]] = temp3
}
}), list( .eq.scale = eq.scale, .parallel.locat = parallel.locat,
.zero = zero ))),
initialize = eval(substitute(expression({
extra$kappa <- .kappa
extra$tau <- extra$kappa^2 / (1 + extra$kappa^2)
temp5 <-
w.y.check(w = w, y = y,
ncol.w.max = 1,
ncol.y.max = 1,
out.wy = TRUE,
maximize = TRUE)
w <- temp5$w
y <- temp5$y
extra$M <- M <- 2 * length(extra$kappa)
extra$n <- n
extra$y.names <- y.names <-
paste("tau = ", round(extra$tau, digits = .digt), sep = "")
extra$individual = FALSE
predictors.names <-
c(namesof(paste("quantile(", y.names, ")", sep = ""),
.llocat , earg = .elocat, tag = FALSE),
namesof(if (M == 2) "scale" else
paste("scale", 1:(M/2), sep = ""),
.lscale , earg = .escale, tag = FALSE))
if (weighted.mean(1 * (y < 0.001), w) >= min(extra$tau))
stop("sample proportion of 0s > minimum 'tau' value. ",
"Choose larger values for 'tau'.")
if (!length(etastart)) {
if ( .imethod == 1) {
locat.init.y <- weighted.mean(y, w)
scale.init <- sqrt(var(y) / 2)
} else if ( .imethod == 2) {
locat.init.y <- median(y)
scale.init <- sqrt(sum(c(w)*abs(y-median(y))) / (sum(w) *2))
} else if ( .imethod == 3) {
Fit5 <- vsmooth.spline(x = x[, min(ncol(x), 2)],
y = y, w = w,
df = .idf.mu )
locat.init.y <- c(predict(Fit5, x = x[, min(ncol(x), 2)])$y)
scale.init <- sqrt(sum(c(w)*abs(y-median(y))) / (sum(w) *2))
} else {
use.this <- weighted.mean(y, w)
locat.init.y <- (1- .ishrinkage )*y + .ishrinkage * use.this
scale.init <- sqrt(sum(c(w)*abs(y-median(y ))) / (sum(w) *2))
}
locat.init.y <- if (length( .ilocat ))
rep_len( .ilocat , n) else
rep_len(locat.init.y, n)
locat.init.y <- matrix(locat.init.y, n, M/2)
scale.init <- if (length( .iscale ))
rep_len( .iscale , n) else
rep_len(scale.init, n)
scale.init <- matrix(scale.init, n, M/2)
etastart <-
cbind(theta2eta(locat.init.y, .llocat , earg = .elocat ),
theta2eta(scale.init, .lscale , earg = .escale ))
}
}), list( .imethod = imethod,
.idf.mu = idf.mu, .kappa = kappa,
.ishrinkage = ishrinkage, .digt = digt,
.llocat = llocat, .lscale = lscale,
.elocat = elocat, .escale = escale,
.ilocat = ilocat, .iscale = iscale ))),
linkinv = eval(substitute(function(eta, extra = NULL) {
locat.y <- eta2theta(eta[, 1:(extra$M/2), drop = FALSE],
.llocat , earg = .elocat )
if ( .fittedMean ) {
kappamat <- matrix(extra$kappa, extra$n, extra$M/2,
byrow = TRUE)
Scale.y <- eta2theta(eta[,(1+extra$M/2):extra$M],
.lscale , earg = .escale )
locat.y + Scale.y * (1/kappamat - kappamat)
} else {
dimnames(locat.y) = list(dimnames(eta)[[1]], extra$y.names)
locat.y
}
}, list( .llocat = llocat, .lscale = lscale,
.elocat = elocat, .escale = escale,
.fittedMean = fittedMean,
.kappa = kappa ))),
last = eval(substitute(expression({
misc$link <- c(location = .llocat , scale = .lscale )
misc$earg <- list(location = .elocat , scale = .escale )
misc$expected <- TRUE
extra$kappa <- misc$kappa <- .kappa
extra$tau <- misc$tau <- misc$kappa^2 / (1 + misc$kappa^2)
misc$true.mu <- .fittedMean
misc$nsimEIM <- .nsimEIM
misc$rep0 <- .rep0
extra$percentile <- numeric(length(misc$kappa))
locat <- as.matrix(locat.y)
for (ii in seq_along(misc$kappa))
extra$percentile[ii] <- 100 *
weighted.mean(y <= locat.y[, ii], w)
}), list( .elocat = elocat, .llocat = llocat,
.escale = escale, .lscale = lscale,
.fittedMean = fittedMean,
.nsimEIM = nsimEIM, .rep0 = rep0,
.kappa = kappa ))),
loglikelihood = eval(substitute(
function(mu, y, w, residuals = FALSE, eta, extra = NULL,
summation = TRUE) {
kappamat <- matrix(extra$kappa, extra$n, extra$M/2, byrow = TRUE)
Scale.w <- eta2theta(eta[, (1+extra$M/2):extra$M],
.lscale , earg = .escale )
ymat <- matrix(y, extra$n, extra$M/2)
ymat[ymat <= 0] <- min(min(y[y > 0]), .rep0 )
ell.mat <- matrix(c(dloglaplace(x = c(ymat),
locat.ald = c(eta[, 1:(extra$M/2)]),
scale.ald = c(Scale.w),
kappa = c(kappamat), log = TRUE)),
extra$n, extra$M/2)
if (residuals) {
stop("loglikelihood residuals not implemented yet")
} else {
ll.elts <- c(w) * ell.mat
if (summation) {
sum(ll.elts)
} else {
ll.elts
}
}
}, list( .elocat = elocat, .llocat = llocat,
.escale = escale, .lscale = lscale,
.rep0 = rep0, .kappa = kappa ))),
vfamily = c("loglaplace2"),
validparams = eval(substitute(function(eta, y, extra = NULL) {
Scale.w <- eta2theta(eta[, (1+extra$M/2):extra$M],
.lscale , earg = .escale )
locat.w <- eta[, 1:(extra$M/2), drop = FALSE]
locat.y <- eta2theta(locat.w, .llocat , earg = .elocat )
okay1 <- all(is.finite(locat.y)) &&
all(is.finite(Scale.w)) && all(0 < Scale.w)
okay1
}, list( .elocat = elocat, .llocat = llocat,
.escale = escale, .lscale = lscale,
.rep0 = rep0, .kappa = kappa ))),
deriv = eval(substitute(expression({
ymat <- matrix(y, n, M/2)
Scale.w <- eta2theta(eta[, (1+extra$M/2):extra$M],
.lscale , earg = .escale )
locat.w <- eta[, 1:(extra$M/2), drop = FALSE]
locat.y <- eta2theta(locat.w, .llocat , earg = .elocat )
kappamat <- matrix(extra$kappa, n, M/2, byrow = TRUE)
w.mat <- ymat
w.mat[w.mat <= 0] <- min(min(w.mat[w.mat > 0]), .rep0)
w.mat <- theta2eta(w.mat, .llocat , earg = .elocat )
zedd <- abs(w.mat-locat.w) / Scale.w
dl.dlocat <- sqrt(2) *
ifelse(w.mat >= locat.w, kappamat, 1/kappamat) *
sign(w.mat-locat.w) / Scale.w
dl.dscale <- sqrt(2) *
ifelse(w.mat >= locat.w, kappamat, 1/kappamat) *
zedd / Scale.w - 1 / Scale.w
dlocat.deta <- dtheta.deta(locat.w, .llocat , earg = .elocat )
dscale.deta <- dtheta.deta(Scale.w, .lscale , earg = .escale )
c(w) * cbind(dl.dlocat * dlocat.deta,
dl.dscale * dscale.deta)
}), list( .escale = escale, .lscale = lscale,
.elocat = elocat, .llocat = llocat,
.rep0 = rep0, .kappa = kappa ))),
weight = eval(substitute(expression({
run.varcov <- 0
ind1 <- iam(NA, NA, M = M, both = TRUE, diag = TRUE)
dthetas.detas <- cbind(dlocat.deta, dscale.deta)
if (length( .nsimEIM )) {
for (ii in 1:( .nsimEIM )) {
wsim <- matrix(rloglap(n*M/2, loc = c(locat.w),
sca = c(Scale.w),
kappa = c(kappamat)), n, M/2)
zedd <- abs(wsim-locat.w) / Scale.w
dl.dlocat <- sqrt(2) *
ifelse(wsim >= locat.w, kappamat, 1/kappamat) *
sign(wsim-locat.w) / Scale.w
dl.dscale <- sqrt(2) *
ifelse(wsim >= locat.w, kappamat, 1/kappamat) *
zedd / Scale.w - 1 / Scale.w
rm(wsim)
temp3 <- cbind(dl.dlocat, dl.dscale)
run.varcov <- ((ii-1) * run.varcov +
temp3[,ind1$row.index]*temp3[,ind1$col.index]) / ii
}
wz <- if (intercept.only)
matrix(colMeans(run.varcov),
n, ncol(run.varcov), byrow = TRUE) else run.varcov
wz <- wz * dthetas.detas[,ind1$row] * dthetas.detas[,ind1$col]
wz <- c(w) * matrix(wz, n, dimm(M))
wz
} else {
d2l.dlocat2 <- 2 / (Scale.w * locat.w)^2
d2l.dscale2 <- 1 / Scale.w^2
wz <- cbind(d2l.dlocat2 * dlocat.deta^2,
d2l.dscale2 * dscale.deta^2)
c(w) * wz
}
}), list( .elocat = elocat, .escale = escale,
.llocat = llocat, .lscale = lscale,
.nsimEIM = nsimEIM) )))
}
logitlaplace1.control <- function(maxit = 300, ...) {
list(maxit = maxit)
}
adjust01.logitlaplace1 <- function(ymat, y, w, rep01) {
rangey01 <- range(y[(y > 0) & (y < 1)])
ymat[ymat <= 0] <- min(rangey01[1] / 2, rep01 / w[y <= 0])
ymat[ymat >= 1] <- max((1 + rangey01[2]) / 2, 1 - rep01 / w[y >= 1])
ymat
}
logitlaplace1 <-
function(tau = NULL,
llocation = "logitlink",
ilocation = NULL,
kappa = sqrt(tau/(1-tau)),
Scale.arg = 1,
ishrinkage = 0.95, parallel.locat = FALSE, digt = 4,
idf.mu = 3,
rep01 = 0.5,
imethod = 1, zero = NULL) {
if (!is.Numeric(rep01, positive = TRUE, length.arg = 1) ||
rep01 > 0.5)
stop("bad input for argument 'rep01'")
if (!is.Numeric(kappa, positive = TRUE))
stop("bad input for argument 'kappa'")
if (length(tau) && max(abs(kappa - sqrt(tau/(1-tau)))) > 1.0e-6)
stop("arguments 'kappa' and 'tau' do not match")
llocat <- as.list(substitute(llocation))
elocat <- link2list(llocat)
llocat <- attr(elocat, "function.name")
ilocat <- ilocation
llocat.identity <- as.list(substitute("identitylink"))
elocat.identity <- link2list(llocat.identity)
llocat.identity <- attr(elocat.identity, "function.name")
if (!is.Numeric(imethod, length.arg = 1,
integer.valued = TRUE, positive = TRUE) ||
imethod > 4)
stop("argument 'imethod' must be 1, 2 or ... 4")
if (!is.Numeric(ishrinkage, length.arg = 1) ||
ishrinkage < 0 ||
ishrinkage > 1)
stop("bad input for argument 'ishrinkage'")
if (!is.Numeric(Scale.arg, positive = TRUE))
stop("bad input for argument 'Scale.arg'")
if (!is.logical(parallel.locat) ||
length(parallel.locat) != 1)
stop("bad input for argument 'parallel.locat'")
fittedMean <- FALSE
if (!is.logical(fittedMean) ||
length(fittedMean) != 1)
stop("bad input for argument 'fittedMean'")
mystring0 <- namesof("location", llocat, earg = elocat)
mychars <- substring(mystring0, first = 1:nchar(mystring0),
last = 1:nchar(mystring0))
mychars[nchar(mystring0)] = ", inverse = TRUE)"
mystring1 <- paste(mychars, collapse = "")
new("vglmff",
blurb = c("One-parameter ", llocat, "-Laplace distribution\n\n",
"Links: ", mystring0, "\n", "\n",
"Quantiles: ", mystring1),
constraints = eval(substitute(expression({
constraints <- cm.VGAM(matrix(1, M, 1), x = x,
bool = .parallel.locat ,
constraints = constraints, apply.int = FALSE)
constraints <- cm.zero.VGAM(constraints, x = x, .zero , M = M,
predictors.names = predictors.names,
M1 = 1)
}), list( .parallel.locat = parallel.locat,
.Scale.arg = Scale.arg, .zero = zero ))),
infos = eval(substitute(function(...) {
list(M1 = 1,
Q1 = 1,
multipleResponses = FALSE,
parameters.names = c("location"),
llocation = .llocat ,
zero = .zero )
}, list( .zero = zero,
.llocat = llocat ))),
initialize = eval(substitute(expression({
extra$M <- M <- max(length( .Scale.arg ), length( .kappa ))
extra$Scale <- rep_len( .Scale.arg , M)
extra$kappa <- rep_len( .kappa , M)
extra$tau <- extra$kappa^2 / (1 + extra$kappa^2)
temp5 <-
w.y.check(w = w, y = y,
ncol.w.max = 1,
ncol.y.max = 1,
out.wy = TRUE,
maximize = TRUE)
w <- temp5$w
y <- temp5$y
extra$n <- n
extra$y.names <- y.names <-
paste("tau = ", round(extra$tau, digits = .digt), sep = "")
extra$individual <- FALSE
predictors.names <-
namesof(paste("quantile(", y.names, ")", sep = ""),
.llocat , earg = .elocat, tag = FALSE)
if (all(y == 0 | y == 1))
stop("response cannot be all 0s or 1s")
if (min(y) < 0)
stop("negative response values detected")
if (max(y) > 1)
stop("response values greater than 1 detected")
if ((prop.0. <- weighted.mean(1*(y == 0), w)) >= min(extra$tau))
stop("sample proportion of 0s == ", round(prop.0., digits = 4),
" > minimum 'tau' value. Choose larger values for 'tau'.")
if ((prop.1. <- weighted.mean(1*(y == 1), w)) >= max(extra$tau))
stop("sample proportion of 1s == ", round(prop.1., digits = 4),
" < maximum 'tau' value. Choose smaller values for 'tau'.")
if (!length(etastart)) {
if ( .imethod == 1) {
locat.init <- quantile(rep(y, w), probs= extra$tau)
} else if ( .imethod == 2) {
locat.init <- weighted.mean(y, w)
locat.init <- median(rep(y, w))
} else if ( .imethod == 3) {
use.this <- weighted.mean(y, w)
locat.init <- (1- .ishrinkage )*y + use.this * .ishrinkage
} else {
stop("this option not implemented")
}
locat.init <- if (length( .ilocat ))
rep_len( .ilocat , M) else
rep_len(locat.init, M)
locat.init <- matrix(locat.init, n, M, byrow = TRUE)
locat.init <- abs(locat.init)
etastart <-
cbind(theta2eta(locat.init, .llocat , earg = .elocat ))
}
}), list( .imethod = imethod,
.idf.mu = idf.mu,
.ishrinkage = ishrinkage, .digt = digt,
.elocat = elocat, .Scale.arg = Scale.arg,
.llocat = llocat, .kappa = kappa,
.ilocat = ilocat ))),
linkinv = eval(substitute(function(eta, extra = NULL) {
locat.y <- eta2theta(eta, .llocat , earg = .elocat )
if ( .fittedMean ) {
stop("Yet to do: handle 'fittedMean = TRUE'")
kappamat <- matrix(extra$kappa, extra$n, extra$M, byrow = TRUE)
Scale <- matrix(extra$Scale, extra$n, extra$M, byrow = TRUE)
locat.y + Scale * (1/kappamat - kappamat)
} else {
if (length(locat.y) > extra$n)
dimnames(locat.y) <- list(dimnames(eta)[[1]], extra$y.names)
locat.y
}
}, list( .elocat = elocat, .llocat = llocat,
.fittedMean = fittedMean, .Scale.arg = Scale.arg,
.kappa = kappa ))),
last = eval(substitute(expression({
misc$link <- c(location = .llocat )
misc$earg <- list(location = .elocat )
misc$expected <- TRUE
extra$kappa <- misc$kappa <- .kappa
extra$tau <- misc$tau <- misc$kappa^2 / (1 + misc$kappa^2)
extra$Scale.arg <- .Scale.arg
misc$true.mu <- .fittedMean
misc$rep01 <- .rep01
extra$percentile <- numeric(length(misc$kappa))
locat.y <- eta2theta(eta, .llocat , earg = .elocat )
locat.y <- as.matrix(locat.y)
for (ii in seq_along(misc$kappa))
extra$percentile[ii] <- 100 *
weighted.mean(y <= locat.y[, ii], w)
}), list( .elocat = elocat, .llocat = llocat,
.Scale.arg = Scale.arg, .fittedMean = fittedMean,
.rep01 = rep01,
.kappa = kappa ))),
loglikelihood = eval(substitute(
function(mu, y, w, residuals = FALSE, eta,
extra = NULL,
summation = TRUE) {
kappamat <- matrix(extra$kappa, extra$n, extra$M, byrow = TRUE)
Scale.w <- matrix(extra$Scale, extra$n, extra$M, byrow = TRUE)
ymat <- matrix(y, extra$n, extra$M)
ymat <- adjust01.logitlaplace1(ymat = ymat, y = y, w = w,
rep01 = .rep01)
w.mat <- theta2eta(ymat, .llocat , earg = .elocat )
if (residuals) {
stop("loglikelihood residuals not implemented yet")
} else {
ll.elts <-
c(w) * dalap(x = c(w.mat), location = c(eta),
scale = c(Scale.w), kappa = c(kappamat),
log = TRUE)
if (summation) {
sum(ll.elts)
} else {
ll.elts
}
}
}, list( .elocat = elocat, .llocat = llocat,
.rep01 = rep01,
.Scale.arg = Scale.arg, .kappa = kappa ))),
vfamily = c("logitlaplace1"),
validparams = eval(substitute(function(eta, y, extra = NULL) {
locat.w <- eta
okay1 <- all(is.finite(locat.w))
okay1
}, list( .Scale.arg = Scale.arg, .rep01 = rep01,
.elocat = elocat,
.llocat = llocat,
.elocat.identity = elocat.identity,
.llocat.identity = llocat.identity,
.kappa = kappa ))),
deriv = eval(substitute(expression({
ymat <- matrix(y, n, M)
Scale.w <- matrix(extra$Scale, extra$n, extra$M, byrow = TRUE)
locat.w <- eta
kappamat <- matrix(extra$kappa, n, M, byrow = TRUE)
ymat <- adjust01.logitlaplace1(ymat = ymat, y = y, w = w,
rep01 = .rep01 )
w.mat <- theta2eta(ymat, .llocat , earg = .elocat )
zedd <- abs(w.mat - locat.w) / Scale.w
dl.dlocat <- ifelse(w.mat >= locat.w, kappamat, 1/kappamat) *
sqrt(2) * sign(w.mat-locat.w) / Scale.w
dlocat.deta <- dtheta.deta(locat.w,
"identitylink",
earg = .elocat.identity )
c(w) * cbind(dl.dlocat * dlocat.deta)
}), list( .Scale.arg = Scale.arg, .rep01 = rep01,
.elocat = elocat,
.llocat = llocat,
.elocat.identity = elocat.identity,
.llocat.identity = llocat.identity,
.kappa = kappa ))),
weight = eval(substitute(expression({
d2l.dlocat2 <- 2 / Scale.w^2
wz <- cbind(d2l.dlocat2 * dlocat.deta^2)
c(w) * wz
}), list( .Scale.arg = Scale.arg,
.elocat = elocat, .llocat = llocat ))))
} |
as.party <- function(obj, ...)
UseMethod("as.party")
as.party.rpart <- function(obj, data = TRUE, ...) {
ff <- obj$frame
n <- nrow(ff)
mf <- model_frame_rpart(obj)
for(i in which(sapply(mf, function(x) class(x)[1L]) == "character")) mf[[i]] <- factor(mf[[i]])
rpart_fitted <- function() {
ret <- as.data.frame(matrix(nrow = NROW(mf), ncol = 0))
ret[["(fitted)"]] <- obj$where
ret[["(response)"]] <- model.response(mf)
ret[["(weights)"]] <- model.weights(mf)
ret
}
fitted <- rpart_fitted()
if (n == 1) {
node <- partynode(1L)
} else {
is.leaf <- (ff$var == "<leaf>")
vnames <- ff$var[!is.leaf]
index <- cumsum(c(1, ff$ncompete + ff$nsurrogate + 1*(!is.leaf)))
splitindex <- list()
splitindex$primary <- numeric(n)
splitindex$primary[!is.leaf] <- index[c(!is.leaf, FALSE)]
splitindex$surrogate <- lapply(1L:n, function(i) {
prim <- splitindex$primary[i]
if (prim < 1 || ff[i, "nsurrogate"] == 0) return(NULL)
else return(prim + ff[i, "ncompete"] + 1L:ff[i, "nsurrogate"])
})
rpart_kids <- function(i) {
if (is.leaf[i]) return(NULL)
else return(c(i + 1L,
which((cumsum(!is.leaf[-(1L:i)]) + 1L) == cumsum(is.leaf[-(1L:i)]))[1L] + 1L + i))
}
rpart_onesplit <- function(j) {
if (j < 1) return(NULL)
idj <- which(rownames(obj$split)[j] == names(mf))
if (abs(obj$split[j, "ncat"]) == 1) {
ret <- partysplit(varid = idj,
breaks = as.double(obj$split[j, "index"]),
right = FALSE,
index = if(obj$split[j, "ncat"] > 0) 2L:1L)
} else {
index <- obj$csplit[obj$split[j, "index"],]
mfj <- mf[, rownames(obj$split)[j]]
index <- index[1L:nlevels(mfj)]
index[index == 2L] <- NA
index[index == 3L] <- 2L
if(inherits(mfj, "ordered")) {
ret <- partysplit(varid = idj, breaks = which(diff(index) != 0L) + 1L,
right = FALSE, index = unique(index))
} else {
ret <- partysplit(varid = idj, index = as.integer(index))
}
}
ret
}
rpart_split <- function(i)
rpart_onesplit(splitindex$primary[i])
rpart_surrogates <- function(i)
lapply(splitindex$surrogate[[i]], rpart_onesplit)
rpart_node <- function(i) {
if (is.null(rpart_kids(i))) return(partynode(as.integer(i)))
nd <- partynode(as.integer(i), split = rpart_split(i),
kids = lapply(rpart_kids(i), rpart_node),
surrogates = rpart_surrogates(i))
left <- nodeids(kids_node(nd)[[1L]], terminal = TRUE)
right <- nodeids(kids_node(nd)[[2L]], terminal = TRUE)
nd$split$prob <- c(0, 0)
nl <- sum(fitted[["(fitted)"]] %in% left)
nr <- sum(fitted[["(fitted)"]] %in% right)
nd$split$prob <- if (nl > nr) c(1, 0) else c(0, 1)
nd$split$prob <- as.double(nd$split$prob)
return(nd)
}
node <- rpart_node(1)
}
rval <- party(node = node, data = if(data) mf else mf[0L,],
fitted = fitted, terms = obj$terms, info = list(method = "rpart"))
class(rval) <- c("constparty", class(rval))
return(rval)
}
model_frame_rpart <- function(formula, ...) {
if(!is.null(formula$model)) return(formula$model)
mf <- formula$call
mf <- mf[c(1L, match(c("formula", "data", "subset", "na.action", "weights"), names(mf), 0L))]
if (is.null(mf$na.action)) mf$na.action <- rpart::na.rpart
mf[[1L]] <- quote(stats::model.frame)
mf$formula <- formula$terms
env <- if(!is.null(environment(formula$terms))) environment(formula$terms) else parent.frame()
mf <- eval(mf, env)
return(mf)
}
as.party.Weka_tree <- function(obj, data = TRUE, ...) {
stopifnot(requireNamespace("RWeka"))
j48 <- inherits(obj, "J48")
mf <- model.frame(obj)
mf_class <- sapply(mf, function(x) class(x)[1L])
mf_levels <- lapply(mf, levels)
x <- rJava::.jcall(obj$classifier, "S", "graph")
if(j48) {
info <- NULL
} else {
info <- RWeka::parse_Weka_digraph(x, plainleaf = FALSE)$nodes[, 2L]
info <- strsplit(info, " (", fixed = TRUE)
info <- lapply(info, function(x) if(length(x) == 1L) x else c(x[1L], paste("(", x[-1L], sep = "")))
}
x <- RWeka::parse_Weka_digraph(x, plainleaf = TRUE)
nodes <- x$nodes
edges <- x$edges
is.leaf <- x$nodes[, "splitvar"] == ""
weka_tree_kids <- function(i) {
if (is.leaf[i]) return(NULL)
else return(which(nodes[,"name"] %in% edges[nodes[i,"name"] == edges[,"from"], "to"]))
}
weka_tree_split <- function(i) {
if(is.leaf[i]) return(NULL)
var_id <- which(nodes[i, "splitvar"] == names(mf))
edges <- edges[nodes[i,"name"] == edges[,"from"], "label"]
split <- Map(c, sub("^([[:punct:]]+).*$", "\\1", edges), sub("^([[:punct:]]+) *", "", edges))
if(mf_class[var_id] %in% c("ordered", "factor")) {
stopifnot(all(sapply(split, head, 1) == "="))
stopifnot(all(sapply(split, tail, 1) %in% mf_levels[[var_id]]))
split <- partysplit(varid = as.integer(var_id),
index = match(mf_levels[[var_id]], sapply(split, tail, 1)))
} else {
breaks <- unique(as.numeric(sapply(split, tail, 1)))
breaks <- if(mf_class[var_id] == "integer") as.integer(breaks) else as.double(breaks)
stopifnot(length(breaks) == 1 && !is.na(breaks))
stopifnot(all(sapply(split, head, 1) %in% c("<=", ">")))
split <- partysplit(varid = as.integer(var_id),
breaks = breaks, right = TRUE,
index = if(split[[1L]][1L] == ">") 2L:1L)
}
return(split)
}
weka_tree_node <- function(i) {
if(is.null(weka_tree_kids(i))) return(partynode(as.integer(i), info = info[[i]]))
partynode(as.integer(i),
split = weka_tree_split(i),
kids = lapply(weka_tree_kids(i), weka_tree_node))
}
node <- weka_tree_node(1)
if(j48) {
pty <- party(
node = node,
data = if(data) mf else mf[0L,],
fitted = data.frame("(fitted)" = fitted_node(node, mf),
"(response)" = model.response(mf),
check.names = FALSE),
terms = obj$terms,
info = list(method = "J4.8"))
class(pty) <- c("constparty", class(pty))
} else {
pty <- party(
node = node,
data = mf[0L,],
fitted = data.frame("(fitted)" = fitted_node(node, mf), check.names = FALSE),
terms = obj$terms,
info = list(method = class(obj)[1L]))
}
return(pty)
} |
context("getFeatureNames")
test_that("getFeatureNames", {
g = getFeatureNames(testscenario1)
}) |
context("test-read_iamc.R")
test_that("Read the file that meets the specification", {
iamc_file_path = system.file("mipplot", "ar5_db_sample_data.csv", package = "mipplot", mustWork = TRUE)
loaded_data <- mipplot_read_iamc(iamc_file_path, sep = ",", interactive = FALSE)
expect_gt(nrow(loaded_data), 0)
}) |
EdMethod = function(x) {
k <- 1
Len<- length(x)
temp <-vector("list",Len)
for (i in x) {
temp[[k]]<- i
k <- k + 1
}
temp1 <- Reduce("+",temp)
output <- temp1
return(output)
} |
eqs <- sfcr_set(
TX_s ~ TX_d,
YD ~ W * N_s - TX_s,
C_d ~ alpha1 * YD + alpha2 * H_h[-1],
H_h ~ YD - C_d + H_h[-1],
N_s ~ N_d,
N_d ~ Y / W,
C_s ~ C_d,
G_s ~ G_d,
Y ~ C_s + G_s,
TX_d ~ theta * W * N_s,
H_s ~ G_d - TX_d + H_s[-1]
)
external <- sfcr_set(G_d ~ 20, W ~ 1, alpha1 ~ 0.6, alpha2 ~ 0.4, theta ~ 0.2)
baseline <- sfcr_baseline(eqs, external, periods = 10)
expanded <- sfcr_expand(external, "alpha2", c(0.1, 0.2))
sfcr_many_baseline(eqs, expanded, periods = 10) |
Normcol<-function(m){
nrows<-nrow(m)
ncols<-ncol(m)
m1<-matrix(1,nrow=nrows,ncol = ncols)
for (i in 1:nrows){
if (m[i,1]==-1){
for (j in 1:ncols){
m1[i,j]=-m[i,j]
}
}
else {
for (j in 1:ncols){
m1[i,j]=m[i,j]
}
}
}
return(m1)
} |
HyperEstimate <- function(estimate, nuisance, family) {
if(family=="gaussian") {
mu <- mean(estimate)
vv <- nuisance^2
fit <- nlminb( start=mean(vv) , objective=nnnll,gradient=nnnll.g,hessian=nnnll.hess,
lower=0, x=(estimate-mu), sigma2=vv )
tau2 <- fit$par
hypers <- c(mu,tau2)
}
else if(family=="binomial") {
ok <- (nuisance>0)
tmp1 <- mean( (estimate/nuisance)[ok] )
tmp2 <- var( (estimate/nuisance)[ok] )
den <- tmp1*(1-tmp1)/tmp2
a0 <- den*tmp1
b0 <- den - a0
fit <- nlminb( start=c(a0,b0), objective=bbnll,
x=estimate[ok], n=nuisance[ok] , lower=c(1,1) )
hypers <- c(fit$par[1],fit$par[2])
}
else if(family=="poisson") {
a0 <- 2
b0 <- a0/( sum(estimate)/sum(nuisance) )
fit <- nlminb( start=c(a0,b0), objective=pgnll, gradient=pgnll.g,
x=estimate, eta=nuisance , lower=c(.1,.1) )
hypers <- c(fit$par[1],fit$par[2])
}
else if(family=="Gamma") {
a0 <- 4
b0 <- mean(nuisance)/((a0 - 1)*mean(estimate))
b0 <- 3
fit <- nlminb( start=c(a0,b0), objective=ggnll, gradient=ggnll.g,
x = estimate, shapes = nuisance, lower=c(.2,.2))
hypers <- c(fit$par[1], fit$par[2])
}
return(hypers)
}
bbnll <- function(shapes, x, n)
{
a <- shapes[1]
b <- shapes[2]
tt <- lgamma(a+b) - lgamma(a+b+n)+lgamma(a+x)+lgamma(b+n-x)-
lgamma(a) - lgamma(b)
return( -sum(tt) )
}
bbnll.g <- function(shapes,x,n) {
a <- shapes[1]
b <- shapes[2]
tta <- digamma(a+b) - digamma(a+b+n)+digamma(a+x) -digamma(a)
ttb <- digamma(a+b) - digamma(a+b+n)+digamma(b+n-x)-digamma(b)
return(c(tta,ttb))
}
pgnll <- function(shapes, x, eta)
{
a <- shapes[1]
b <- shapes[2]
u <- b/(b+eta)
tt <- a*log(u) + x*log(1-u) + lgamma(a+x) -lgamma(x+1) -lgamma(a)
return( -sum(tt) )
}
pgnll.g <- function(shapes, x, eta)
{
a <- shapes[1]
b <- shapes[2]
u <- b/(b+eta)
dudb <- eta/((eta + b)^2)
tta <- log(u) + digamma(a+x) - digamma(a)
ttb <- (a/u - x/(1-u))*dudb
return( c(-sum(tta),-sum(ttb)) )
}
nnnll <- function( tau2, x, sigma2 )
{
ss <- tau2 + sigma2
tmp <- sum( log(ss) ) + sum( (x^2)/ss )
nll <- (1/2)*tmp
nll
}
nnnll.g <- function(tau2,x,sigma2) {
ss <- tau2 + sigma2
ans <- sum(1/ss) - sum((x/ss)^2)
return(ans/2)
}
nnnll.hess <- function(tau2,x,sigma2) {
ss <- tau2 + sigma2
ans <- -sum(1/(ss^2)) + 2*sum((x^2)/(ss^3))
return(as.matrix(ans/2))
}
ggnll <- function(pars, x, shapes) {
a <- pars[1]
b <- pars[2]
n <- length(x)
ans <- sum((a + shapes)*log(b + x)) + n*lgamma(a) - n*a*log(b) - sum(lgamma(shapes + a))
return(ans)
}
ggnll.g <- function(pars, x, shapes) {
a <- pars[1]
b <- pars[2]
n <- length(x)
a.partial <- sum(log(b + x)) + n*digamma(a) - n*log(b) - sum(digamma(shapes + a))
b.partial <- sum((a + shapes)/(b + x)) - (n*a)/b
return(c(a.partial, b.partial))
} |
lmf = function(ws, hmin = 2, shape = c("circular", "square"))
{
shape <- match.arg(shape)
circ <- shape == "circular"
ws <- lazyeval::uq(ws)
hmin <- lazyeval::uq(hmin)
f = function(las)
{
assert_is_valid_context(LIDRCONTEXTITD, "lmf")
if (is.function(ws))
{
n <- nrow(las@data)
ws <- ws(las@data$Z)
b <- las$Z < hmin
ws[b] <- ws(hmin)
if (!is.numeric(ws)) stop("The function 'ws' did not return a correct output. ", call. = FALSE)
if (any(ws <= 0)) stop("The function 'ws' returned negative or null values.", call. = FALSE)
if (anyNA(ws)) stop("The function 'ws' returned NA values.", call. = FALSE)
if (length(ws) != n) stop("The function 'ws' did not return a correct output.", call. = FALSE)
}
else if (!is.numeric(ws))
{
stop("'ws' must be a number or a function", call. = FALSE)
}
force_autoindex(las) <- LIDRGRIDPARTITION
return(C_lmf(las, ws, hmin, circ, getThread()))
}
class(f) <- c(LIDRALGORITHMITD, LIDRALGORITHMOPENMP, LIDRALGORITHMPOINTCLOUDBASED)
return(f)
}
manual = function(detected = NULL, radius = 0.5, color = "red", button = "middle", ...)
{
f = function(las)
{
assert_is_valid_context(LIDRCONTEXTITD, "manual")
. <- X <- Y <- Z <- treeID <- NULL
stopifnotlas(las)
crs = sp::CRS()
if (!interactive())
stop("R is not being used interactively", call. = FALSE)
if (is.null(detected))
{
apice <- data.table::data.table(X = numeric(0), Y = numeric(0), Z = numeric(0))
}
else if (is(detected, "SpatialPointsDataFrame"))
{
crs <- detected@proj4string
apice <- data.table::data.table(detected@coords)
apice$Z <- detected@data[["Z"]]
names(apice) <- c("X","Y","Z")
}
else
{
stop("Input is not of the correct type.")
}
minx <- min(las$X)
miny <- min(las$Y)
las@data <- las@data[, .(X, Y, Z)]
las@data[, X := X - minx]
las@data[, Y := Y - miny]
apice[, X := X - minx]
apice[, Y := Y - miny]
plot.LAS(las, ..., clear_artifacts = FALSE)
id = numeric(nrow(apice))
for (i in 1:nrow(apice))
id[i] = rgl::spheres3d(apice$X[i], apice$Y[i], apice$Z[i], radius = radius, color = color)
apice$id <- id
repeat
{
f <- rgl::select3d(button = button)
i <- if (nrow(apice) > 0) f(apice) else FALSE
if (sum(i) > 0)
{
ii <- which(i == TRUE)
rgl::rgl.pop(id = apice[ii]$id)
apice <- apice[-ii]
}
else
{
i <- f(las@data)
if (sum(i) == 0)
break;
pts <- las@data[i, .(X,Y,Z)]
apex <- unique(pts[pts$Z == max(pts$Z)])[1]
apex$id <- as.numeric(rgl::spheres3d(apex$X, apex$Y, apex$Z, radius = radius, color = color))
apice <- rbind(apice, apex)
}
}
rgl::rgl.close()
apice[, treeID := 1:.N]
apice[, X := X + minx]
apice[, Y := Y + miny]
output <- sp::SpatialPointsDataFrame(apice[, .(X,Y)], apice[, .(treeID, Z)], proj4string = crs)
return(output)
}
class(f) <- c(LIDRALGORITHMITD, LIDRALGORITHMPOINTCLOUDBASED)
return(f)
} |
Progress <- R6Class(
'Progress',
public = list(
initialize = function(session = getDefaultReactiveDomain(),
min = 0, max = 1,
style = getShinyOption("progress.style", default = "notification"))
{
if (is.null(session))
rlang::abort("Can only use Progress$new() inside a Shiny app")
if (is.null(session$progressStack))
rlang::abort("`session` is not a ShinySession object.")
private$session <- session
private$id <- createUniqueId(8)
private$min <- min
private$max <- max
private$value <- NULL
private$style <- match.arg(style, choices = c("notification", "old"))
private$closed <- FALSE
session$sendProgress('open', list(id = private$id, style = private$style))
},
set = function(value = NULL, message = NULL, detail = NULL) {
if (private$closed) {
warning("Attempting to set progress, but progress already closed.")
return()
}
if (is.null(value) || is.na(value))
value <- NULL
if (!is.null(value)) {
private$value <- value
value <- min(1, max(0, (value - private$min) / (private$max - private$min)))
}
data <- dropNulls(list(
id = private$id,
message = message,
detail = detail,
value = value,
style = private$style
))
private$session$sendProgress('update', data)
},
inc = function(amount = 0.1, message = NULL, detail = NULL) {
if (is.null(private$value))
private$value <- private$min
value <- min(private$value + amount, private$max)
self$set(value, message, detail)
},
getMin = function() private$min,
getMax = function() private$max,
getValue = function() private$value,
close = function() {
if (private$closed) {
warning("Attempting to close progress, but progress already closed.")
return()
}
private$session$sendProgress('close',
list(id = private$id, style = private$style)
)
private$closed <- TRUE
}
),
private = list(
session = 'ShinySession',
id = character(0),
min = numeric(0),
max = numeric(0),
style = character(0),
value = numeric(0),
closed = logical(0)
)
)
withProgress <- function(expr, min = 0, max = 1,
value = min + (max - min) * 0.1,
message = NULL, detail = NULL,
style = getShinyOption("progress.style", default = "notification"),
session = getDefaultReactiveDomain(),
env = parent.frame(), quoted = FALSE)
{
if (!quoted)
expr <- substitute(expr)
if (is.null(session$progressStack))
stop("'session' is not a ShinySession object.")
style <- match.arg(style, c("notification", "old"))
p <- Progress$new(session, min = min, max = max, style = style)
session$progressStack$push(p)
on.exit({
session$progressStack$pop()
p$close()
})
p$set(value, message, detail)
eval(expr, env)
}
setProgress <- function(value = NULL, message = NULL, detail = NULL,
session = getDefaultReactiveDomain()) {
if (is.null(session$progressStack))
stop("'session' is not a ShinySession object.")
if (session$progressStack$size() == 0) {
warning('setProgress was called outside of withProgress; ignoring')
return()
}
session$progressStack$peek()$set(value, message, detail)
invisible()
}
incProgress <- function(amount = 0.1, message = NULL, detail = NULL,
session = getDefaultReactiveDomain()) {
if (is.null(session$progressStack))
stop("'session' is not a ShinySession object.")
if (session$progressStack$size() == 0) {
warning('incProgress was called outside of withProgress; ignoring')
return()
}
p <- session$progressStack$peek()
p$inc(amount, message, detail)
invisible()
} |
is_filetype <- function(x, ext) {
tools::file_ext(x) %in% ext
}
is_emptyish <- function(x) {
length(x) == 0 || !nzchar(x)
}
is_whse_object_name <- function(x) {
if (inherits(x, "bcdc_record")) {
return(FALSE)
}
grepl("^[0-9A-Z_]+\\.[0-9A-Z_]+$", x)
}
is_record <- function(x) {
class(x) == "bcdc_record"
} |
point_in_polygon <- function(x, polygon) {
point <- grDevices::xy.coords(x)
polygon <- grDevices::xy.coords(polygon)
n <- length(polygon$x)
j <- n
inside <- FALSE
for (i in seq_len(n)) {
if (((polygon$y[i] >= point$y) != (polygon$y[j] >= point$y)) &&
(point$x <= (polygon$x[j] - polygon$x[i])*(point$y - polygon$y[i]) /
(polygon$y[j] - polygon$y[i]) + polygon$x[i])) {
inside <- !inside
}
j <- i
}
inside
} |
hergm.permutation.wrapper <- function(number)
{
number_permutations <- factorial(number)
permutations <- vector(length=number_permutations*number)
for (i in 1:number) permutations[i] = i
output <- .C("Permutations",
as.integer(number),
as.integer(number_permutations),
permutations = as.integer(permutations),
PACKAGE="hergm")
permutations <- matrix(output$permutations, nrow = number_permutations, ncol = number, byrow = TRUE)
permutations
} |
optimal.portfolio.expected.shortfall <- function(model) {
n_var <- 1 + model$assets + 2*model$scenarios
ix_b <- 1
ix_x <- 2
ix_loss <- ix_x + model$assets
ix_z <- ix_loss + model$scenarios
Objective <- list()
Objective$linear <- rep(0, n_var)
Objective$linear[ix_b] <- 1
for (s in 0:(model$scenarios-1)) { Objective$linear[ix_z+s] <- -model$scenario.probabilities[s+1]/model$alpha }
Constraints <- list(n=n_var, A=NULL, b=NULL, Aeq=NULL, beq=NULL)
Constraints <- linear.constraint.eq(Constraints, c((ix_x):(ix_x+model$assets-1)), model$sum.portfolio)
if(!is.null(model$min.mean)) { Constraints <- linear.constraint.iq(Constraints, c((ix_x):(ix_x+model$assets-1)), -model$min.mean, -1*model$asset.means) }
if(!is.null(model$fix.mean)) { Constraints <- linear.constraint.eq(Constraints, c((ix_x):(ix_x+model$assets-1)), model$fix.mean, model$asset.means) }
for (s in 0:(model$scenarios-1)) { Constraints <- linear.constraint.eq(Constraints, c((ix_x:(ix_x+model$assets-1)), ix_loss+s), 0, c(as.vector(model$data[(s+1),]), -1)) }
for (s in 0:(model$scenarios-1)) { Constraints <- linear.constraint.iq(Constraints, c(ix_b, ix_loss+s, ix_z+s), 0, c(1,-1,-1)) }
Bounds <- list()
M <- 1e9
Bounds$lower <- rep(-M, n_var)
Bounds$upper <- rep(M, n_var)
Bounds$lower[(ix_x):(ix_x+model$assets-1)] <- model$asset.bound.lower
Bounds$upper[(ix_x):(ix_x+model$assets-1)] <- model$asset.bound.upper
Bounds$lower[(ix_z):(ix_z+model$scenarios-1)] <- 0
solution <- linprog(-Objective$linear, Constraints$A, Constraints$b, Constraints$Aeq, Constraints$beq, Bounds$lower, Bounds$upper)
portfolio <- list()
portfolio$x <- solution$x[ix_x:(ix_x+model$assets-1)]
portfolio$x <- round(portfolio$x, model$precision)
model$portfolio <- portfolio
return(model)
} |
welchManyOneTTest <- function(x, ...)
UseMethod("welchManyOneTTest")
welchManyOneTTest.default <-
function(x,
g,
alternative = c("two.sided", "greater", "less"),
p.adjust.method = p.adjust.methods,
...) {
if (is.list(x)) {
if (length(x) < 2L)
stop("'x' must be a list with at least 2 elements")
DNAME <- deparse(substitute(x))
x <- lapply(x, function(u)
u <- u[complete.cases(u)])
k <- length(x)
l <- sapply(x, "length")
if (any(l == 0))
stop("all groups must contain data")
g <- factor(rep(1:k, l))
if (is.null(x$alternative)){
alternative <- "two.sided"
} else {
alternative <- x$alternative
}
if(is.null(x$p.adjust.method)){
p.adjust.method <- "holm"
} else {
p.adjust.method <- x$p.adjust.method
}
x <- unlist(x)
}
else {
if (length(x) != length(g))
stop("'x' and 'g' must have the same length")
DNAME <- paste(deparse(substitute(x)), "and",
deparse(substitute(g)))
OK <- complete.cases(x, g)
x <- x[OK]
g <- g[OK]
if (!all(is.finite(g)))
stop("all group levels must be finite")
g <- factor(g)
k <- nlevels(g)
if (k < 2)
stop("all observations are in the same group")
}
alternative <- match.arg(alternative)
p.adjust.method <- match.arg(p.adjust.method)
kk <- k - 1
levNames <- levels(g)
statistic <- numeric(kk)
p.value <- numeric(kk)
x0 <- x[g == levNames[1]]
for (i in 1:kk) {
out <- t.test(
y = x0,
x = x[g == levNames[i + 1]],
alternative = alternative,
var.equal = FALSE
)
statistic[i] <- out$statistic
p.value[i] <- out$p.value
}
p.value <- p.adjust(p.value,
method = p.adjust.method)
METHOD <- "Welch's t-test"
STAT <- cbind(statistic)
colnames(STAT) <- levNames[1]
rownames(STAT) <- levNames[2:k]
PVAL <- cbind(p.value)
colnames(PVAL) <- colnames(STAT)
rownames(PVAL) <- rownames(STAT)
MODEL <- data.frame(x, g)
DIST <- "t"
ans <- list(
method = METHOD,
data.name = DNAME,
p.value = PVAL,
statistic = STAT,
p.adjust.method = p.adjust.method,
model = MODEL,
dist = DIST,
alternative = alternative
)
class(ans) <- "PMCMR"
ans
}
welchManyOneTTest.formula <-
function(formula, data, subset, na.action,
alternative = c("two.sided", "greater", "less"),
p.adjust.method = p.adjust.methods,...)
{
mf <- match.call(expand.dots = FALSE)
m <-
match(c("formula", "data", "subset", "na.action"), names(mf), 0L)
mf <- mf[c(1L, m)]
mf[[1L]] <- quote(stats::model.frame)
if (missing(formula) || (length(formula) != 3L))
stop("'formula' missing or incorrect")
mf <- eval(mf, parent.frame())
if (length(mf) > 2L)
stop("'formula' should be of the form response ~ group")
DNAME <- paste(names(mf), collapse = " by ")
names(mf) <- NULL
alternative <- match.arg(alternative)
p.adjust.method <- match.arg(p.adjust.method)
y <- do.call("welchManyOneTTest", c(as.list(mf),
alternative = alternative,
p.adjust.method = p.adjust.method))
y$data.name <- DNAME
y
}
welchManyOneTTest.aov <- function(x,
alternative = c("two.sided", "greater", "less"),
p.adjust.method = p.adjust.methods,
...) {
model <- x$model
DNAME <- paste(names(model), collapse = " by ")
names(model) <- c("x", "g")
alternative <- match.arg(alternative)
p.adjust.method <- match.arg(p.adjust.method)
parms <- c(as.list(model), list(alternative = alternative,
p.adjust.method = p.adjust.method))
y <- do.call("welchManyOneTTest", parms)
y$data.name <- DNAME
y
} |
f <- function(N) {
for (i in 1:N) {
for (j in 1:N) {
for (k in 1:N) {
i + j + k
}
}
}
} |
.inline.hook = function(x) {
if (is.numeric(x)) x = round_digits(x)
paste(as.character(x), collapse = ', ')
}
.out.hook = function(x, options) x
.plot.hook = function(x, options) paste(x, collapse = '.')
.default.hooks = list(
source = .out.hook, output = .out.hook, warning = .out.hook,
message = .out.hook, error = .out.hook, plot = .plot.hook,
inline = .inline.hook, chunk = .out.hook, text = identity,
evaluate.inline = function(code, envir = knit_global()) {
v = withVisible(eval(parse_only(code), envir = envir))
if (v$visible) knit_print(v$value, inline = TRUE, options = opts_chunk$get())
},
evaluate = function(...) evaluate::evaluate(...), document = identity
)
knit_hooks = new_defaults(.default.hooks)
render_brew = function() NULL
hook_suppress = function(x, options) {
n = options$out.lines
if (length(n) == 0 || !is.numeric(n) || length(n) > 2) return(x)
x = split_lines(x)
m = length(x)
if (length(n) == 1) {
if (m > abs(n)) {
x = if (n >= 0) c(head(x, n), '....') else c('....', tail(x, -n))
}
} else {
if (m > sum(n)) x = c(head(x, n[1]), '....', tail(x, n[2]))
}
one_string(x)
}
opts_hooks = new_defaults(list()) |
library(plotly)
barly1 <- function(x_data = NULL, data = NULL, b_name = NULL,
b_orientation = 'v', b_text = NULL, bar_col = 'blue',
bar_l_col = 'black', bar_l_wid = 1, bar_gap = 1,
bar_opacity = 1, plot_width = NULL, plot_height = NULL,
axis_range = FALSE, y_min, y_max, auto_size = TRUE,
title = NA, x_title = NA, y_title = NA,
x_showgrid = TRUE, y_showgrid = TRUE,
ax_title_font_family = 'Arial, sans-serif',
ax_title_font_size = 18, ax_title_font_color = 'black',
ax_tick_font_family = 'Arial, sans-serif',
ax_tick_font_size = 18, ax_tick_font_color = 'black',
x_autotick = TRUE, x_ticks = 'outside', x_tick0 = NULL,
x_dtick = NULL, x_ticklen = 5, x_tickwidth = 1,
x_tickcolor = '
x_tickangle = 'auto', x_zeroline = FALSE,
x_showline = TRUE, x_gridcolor = "rgb(204, 204, 204)",
x_gridwidth = 1, x_zerolinecol = "
x_zerolinewidth = 1, x_linecol = '
x_linewidth = 1,
y_autotick = TRUE, y_ticks = 'outside',
y_tick0 = NULL, y_dtick = NULL, y_ticklen = 5,
y_tickwidth = 1, y_tickcolor = '
y_showticklab = TRUE, y_tickangle = 'auto',
y_zeroline = FALSE, y_showline = TRUE,
y_gridcolor = "rgb(204, 204, 204)",
y_gridwidth = 1, y_zerolinecol = "
y_zerolinewidth = 1, y_linecol = '
y_linewidth = 1, left_margin = 80, right_margin = 80,
top_margin = 100, bottom_margin = 80, padding = 0,
add_annotate = FALSE,
x_annotate, y_annotate, text_annotate,
annotate_xanchor = 'auto', show_arrow, arrow_head = 1,
ax_annotate = 20, ay_annotate = -40,
annotate_family = 'sans-serif',
annotate_size = 14, annotate_col = 'red') {
x <- data %>%
select(x_data) %>%
unlist() %>%
levels()
y <- data %>%
select(x_data) %>%
table() %>%
as.vector()
data <- data.frame(x, y)
f1 <- list(
family = ax_title_font_family,
size = ax_title_font_size,
color = ax_title_font_color
)
f2 <- list(
family = ax_tick_font_family,
size = ax_tick_font_size,
color = ax_tick_font_color
)
xaxis <- list(
title = x_title,
showgrid = x_showgrid,
autotick = x_autotick,
ticks = x_ticks,
tick0 = x_tick0,
dtick = x_dtick,
ticklen = x_ticklen,
tickwidth = x_tickwidth,
tickcolor = x_tickcolor,
titlefont = f1,
showticklabels = x_showticklab,
tickangle = x_tickangle,
tickfont = f2,
zeroline = x_zeroline,
showline = x_showline,
gridcolor = x_gridcolor,
gridwidth = x_gridwidth,
zerolinecolor = x_zerolinecol,
zerolinewidth = x_zerolinewidth,
linecolor = x_linecol,
linewidth = x_linewidth
)
yaxis <- list(
title = y_title,
showgrid = y_showgrid,
autotick = y_autotick,
ticks = y_ticks,
tick0 = y_tick0,
dtick = y_dtick,
ticklen = y_ticklen,
tickwidth = y_tickwidth,
tickcolor = y_tickcolor,
titlefont = f1,
showticklabels = y_showticklab,
tickangle = y_tickangle,
tickfont = f2,
zeroline = y_zeroline,
showline = y_showline,
mirror = 'ticks',
gridcolor = y_gridcolor,
gridwidth = y_gridwidth,
zerolinecolor = y_zerolinecol,
zerolinewidth = y_zerolinewidth,
linecolor = y_linecol,
linewidth = y_linewidth
)
m <- list(
l = left_margin,
r = right_margin,
t = top_margin,
b = bottom_margin,
pad = padding
)
if(add_annotate) {
a <- list(
x = x_annotate,
y = y_annotate,
text = text_annotate,
xref = 'x',
yref = 'y',
xanchor = annotate_xanchor,
showarrow = show_arrow,
arrowhead = arrow_head,
ax = ax_annotate,
ay = ay_annotate,
font = list(
family = annotate_family,
size = annotate_size,
color = annotate_col
)
)
}
p <- plot_ly(data,
x = ~x,
y = ~y,
type = "bar",
name = b_name,
orientation = b_orientation,
text = b_text,
marker = list(color = bar_col,
opacity = bar_opacity,
line = list(
color = bar_l_col,
width = bar_l_wid,
gap = bar_gap
)),
width = plot_width,
height = plot_height) %>%
layout(
title = title,
xaxis = xaxis,
yaxis = yaxis,
autosize = auto_size,
margin = m
)
if(add_annotate) {
p <- p %>%
layout(annotations = a)
}
if(axis_range) {
p <- p %>%
layout(
yaxis = list(
range = list(y_min, y_max)
)
)
}
p
} |
otp_get_times <-
function(otpcon,
fromPlace,
toPlace,
mode = "CAR",
date = format(Sys.Date(), "%m-%d-%Y"),
time = format(Sys.time(), "%H:%M:%S"),
maxWalkDistance = NULL,
walkReluctance = 2,
waitReluctance = 1,
arriveBy = FALSE,
transferPenalty = 0,
minTransferTime = 0,
maxItineraries = 1,
detail = FALSE,
includeLegs = FALSE,
extra.params = list())
{
call <- sys.call()
call[[1]] <- as.name('list')
params <- eval.parent(call)
params <-
params[names(params) %in% c("mode", "detail", "includeLegs", "maxItineraries", "extra.params") == FALSE]
if (missing(otpcon)) {
stop("otpcon argument is required")
} else if (missing(fromPlace)) {
stop("fromPlace argument is required")
} else if (missing(toPlace)) {
stop("toPlace argument is required")
}
args.coll <- checkmate::makeAssertCollection()
checkmate::assert_list(extra.params)
checkmate::assert_logical(detail, add = args.coll)
checkmate::assert_integerish(maxItineraries,
lower = 1,
add = args.coll)
checkmate::reportAssertions(args.coll)
mode <- otp_check_mode(mode)
do.call(otp_check_params,
params)
routerUrl <- paste0(make_url(otpcon)$router, "/plan")
fromPlace <- paste(fromPlace, collapse = ",")
toPlace <- paste(toPlace, collapse = ",")
query <- list(
fromPlace = fromPlace,
toPlace = toPlace,
mode = mode,
date = date,
time = time,
maxWalkDistance = maxWalkDistance,
walkReluctance = walkReluctance,
waitReluctance = waitReluctance,
arriveBy = arriveBy,
transferPenalty = transferPenalty,
minTransferTime = minTransferTime
)
if (length(extra.params) > 0) {
msg <- paste("Unknown parameters were passed to the OTP API without checks:", paste(sapply(names(extra.params), paste), collapse=", "))
warning(paste(msg), call. = FALSE)
query <- append(query, extra.params)
}
req <- httr::GET(routerUrl,
query = query)
url <- urltools::url_decode(req$url)
text <- httr::content(req, as = "text", encoding = "UTF-8")
asjson <- jsonlite::fromJSON(text, flatten = TRUE)
if (!is.null(asjson$error$id)) {
response <-
list(
"errorId" = asjson$error$id,
"errorMessage" = ifelse(
otpcon$version == 1,
asjson$error$msg,
asjson$error$message
),
"query" = url
)
return (response)
} else {
error.id <- "OK"
}
if (length(asjson$plan$itineraries) == 0) {
response <-
list(
"errorId" = -9999,
"errorMessage" = "No itinerary returned. If using OTPv2 the maxWalkDistance parameter (default 800m) might be too restrictive. It
is applied by OTPv2 to BICYCLE and CAR modes in addition to WALK",
"query" = url
)
return (response)
}
if (detail == TRUE) {
num_itin <-
pmin(maxItineraries, nrow(asjson$plan[["itineraries"]]))
df <- asjson$plan$itineraries[c(1:num_itin),]
df$start <-
otp_from_epoch(df$startTime, otpcon$tz)
df$end <-
otp_from_epoch(df$endTime, otpcon$tz)
df$timeZone <- attributes(df$start)$tzone[1]
if (isTRUE(includeLegs)) {
legs <-
rrapply::rrapply(
df$legs,
f = function(x)
janitor::clean_names(x, case = "lower_camel"),
classes = "data.frame"
)
legs <-
rrapply::rrapply(
legs,
condition = function(x, .xname)
.xname %in% c("startTime", "endTime", "fromDeparture", "fromArrival"),
f = function(x)
otp_from_epoch(x, otpcon$tz)
)
legs <-
rrapply::rrapply(
legs,
f = function(x)
if (nrow(x) > 1)
dplyr::mutate(x, departureWait = round(abs((as.numeric(
.data$fromArrival - .data$fromDeparture
)) / 60
), 2))
else
dplyr::mutate(x, departureWait = 0) ,
classes = "data.frame"
)
legs <-
rrapply::rrapply(
legs,
condition = function(x, .xname)
.xname == "departureWait",
f = function(x)
replace(x, is.na(x), 0)
)
legs <-
rrapply::rrapply(
legs,
condition = function(x, .xname)
.xname == "duration",
f = function(x)
round(x / 60, 2)
)
legs <-
rrapply::rrapply(
legs,
f = function(x)
dplyr::mutate(x, timeZone = attributes(x$startTime)$tzone[1]),
classes = "data.frame"
)
leg_columns <- c(
'startTime',
'endTime',
'timeZone',
'mode',
'departureWait',
'duration',
'distance',
'routeType',
'routeId',
'routeShortName',
'routeLongName',
'headsign',
'agencyName',
'agencyUrl',
'agencyId',
'fromName',
'fromLon',
'fromLat',
'fromStopId',
'fromStopCode',
'toName',
'toLon',
'toLat',
'toStopId',
'toStopCode'
)
legs <-
rrapply::rrapply(
legs,
f = function(x)
dplyr::select(x, which(colnames(x) %in%
leg_columns)),
classes = "data.frame"
)
legs <- rrapply::rrapply(
legs,
f = function(x)
dplyr::relocate(x, any_of(leg_columns)),
classes = "data.frame"
)
}
ret.df <-
dplyr::select(
df,
c(
'start',
'end',
'timeZone',
'duration',
'walkTime',
'transitTime',
'waitingTime',
'transfers'
)
)
if (isTRUE(includeLegs)) {
ret.df$legs <- legs
}
ret.df[, 4:7] <- round(ret.df[, 4:7] / 60, digits = 2)
if (mode == "CAR") {
names(ret.df)[names(ret.df) == 'walkTime'] <- 'driveTime'
} else if (mode == "BICYCLE") {
names(ret.df)[names(ret.df) == 'walkTime'] <- 'cycleTime'
}
response <-
list("errorId" = error.id,
"itineraries" = ret.df,
"query" = url)
return (response)
} else {
response <-
list(
"errorId" = error.id,
"duration" = round(asjson$plan$itineraries[1, "duration"] / 60, digits = 2),
"query" = url
)
return (response)
}
} |
"draw.bplot" <-
function (temp, width, xpos, outlier = TRUE, style = "tukey")
{
if (temp$N < 1)
return()
if (style == "quantile") {
temp <- temp[!is.na(temp)]
quant <- c(0.05, 0.25, 0.5, 0.75, 0.95)
bb <- quantile(temp, quant)
mid <- xpos
low <- mid - width * 0.5
high <- mid + width * 0.5
if (length(temp) > 5) {
y <- c(bb[1], bb[1], NA, bb[1], bb[2], NA, bb[2],
bb[2], bb[4])
x <- c(high, low, NA, mid, mid, NA, high, low, low)
y <- c(y, bb[4], bb[2], bb[3], bb[3], NA, bb[4],
bb[5], bb[5], bb[5])
x <- c(x, high, high, high, low, NA, mid, mid, high,
low)
lines(x, y)
}
if (length(temp) > 5) {
outs <- temp[(temp < bb[1]) | (temp > bb[5])]
}
else outs <- temp
olen <- length(outs)
if ((olen > 0) & outlier)
points(rep(mid, olen), outs)
}
if (style == "tukey") {
temp <- temp[!is.na(temp)]
quant <- c(0.05, 0.25, 0.5, 0.75, 0.95)
bb <- quantile(temp, quant)
iqr <- bb[4] - bb[2]
mid <- xpos
low <- mid - width * 0.5
high <- mid + width * 0.5
bb[1] <- min(temp[temp >= bb[2] - 1.5 * iqr])
bb[5] <- max(temp[temp <= bb[4] + 1.5 * iqr])
if (length(temp) > 5) {
y <- c(bb[1], bb[1], NA, bb[1], bb[2], NA, bb[2],
bb[2], bb[4])
x <- c(high, low, NA, mid, mid, NA, high, low, low)
y <- c(y, bb[4], bb[2], bb[3], bb[3], NA, bb[4],
bb[5], bb[5], bb[5])
x <- c(x, high, high, high, low, NA, mid, mid, high,
low)
lines(x, y)
}
if (length(temp) > 5) {
outs <- temp[(temp < bb[2] - 3 * iqr) | (temp > bb[4] +
3 * iqr)]
}
else outs <- temp
olen <- length(outs)
if ((olen > 0) & outlier)
points(rep(mid, olen), outs)
}
} |
check_several <-
function(pattern,dmz,ppm=TRUE){
if(length(pattern[[1]]) < 2 || !all(colnames(pattern[[1]])[1:2] == c("m/z","abundance"))) stop("WARNING: pattern has invalid entries\n")
if(ppm==TRUE & dmz < 0) stop("\n WARNING: ppm=TRUE -> dmz must be >0\n")
if(ppm!=TRUE & ppm!=FALSE) stop("WARNING: ppm TRUE or FALSE")
if(length(pattern) < 2) stop("WARNING: nothing to compare")
getit1<-c();
getit2<-c();
getit3<-c();
for(i in 1:length(pattern)){
getit1<-c(getit1,rep(i,length(pattern[[i]][,1])))
getit2<-c(getit2,pattern[[i]][,1]);
getit3<-c(getit3,seq(1,length(pattern[[i]][,1]),1));
}
getit1<-getit1[order(getit2)];
getit3<-getit3[order(getit2)];
getit2<-getit2[order(getit2)];
get1<-rep("",length(pattern))
get2<-rep("",length(pattern))
get3<-rep("",length(pattern))
for(i in 2:length(getit1)){
if(ppm==FALSE){
if(getit1[i-1]!=getit1[i]){
if((getit2[i-1]+dmz)>=getit2[i]){
get1[getit1[i]]<-"TRUE";
get1[getit1[i-1]]<-"TRUE";
get2[getit1[i]]<-paste(get2[getit1[i]],getit1[i-1],"/",sep="")
get2[getit1[i-1]]<-paste(get2[getit1[i-1]],getit1[i],"/",sep="")
get3[getit1[i]]<-paste(get3[getit1[i]],getit3[i-1],"/",sep="")
get3[getit1[i-1]]<-paste(get3[getit1[i-1]],getit3[i],"/",sep="")
}
}
}else{
if(getit1[i=1]!=getit1[i]){
if((getit2[i-1]+(getit2[i-1]*dmz/1e6))>=getit2[i]){
get1[getit1[i]]<-"TRUE";
get1[getit1[i-1]]<-"TRUE";
get2[getit1[i]]<-paste(get2[getit1[i]],getit1[i-1],"/",sep="")
get2[getit1[i-1]]<-paste(get2[getit1[i-1]],getit1[i],"/",sep="")
get3[getit1[i]]<-paste(get3[getit1[i]],getit3[i-1],"/",sep="")
get3[getit1[i-1]]<-paste(get3[getit1[i-1]],getit3[i],"/",sep="")
}
}
}
}
if(any(get1!="")){cat("\n Overlaps detected!\n\n")}
checked<-data.frame(names(pattern),get1,get2,get3)
names(checked)<-c("compound","warning","to?","peak
return(checked)
} |
require(mgcv);set.seed(9)
dat <- gamSim(1,n=2000,dist="poisson",scale=.1)
k <- 12;bs <- "cr";ctrl <- list(nthreads=2)
system.time(b1<-gam(y~s(x0,bs=bs)+s(x1,bs=bs)+s(x2,bs=bs,k=k)
,family=poisson,data=dat,method="REML"))[3]
system.time(b2<-gam(y~s(x0,bs=bs)+s(x1,bs=bs)+s(x2,bs=bs,k=k),
family=poisson,data=dat,method="REML",control=ctrl))[3]
k <- 13;set.seed(9)
dat <- gamSim(1,n=6000,dist="poisson",scale=.1)
require(parallel)
nc <- 2
if (detectCores()>1) {
cl <- makeCluster(nc)
} else cl <- NULL
system.time(b3 <- bam(y ~ s(x0,bs=bs,k=7)+s(x1,bs=bs,k=7)+s(x2,bs=bs,k=k)
,data=dat,family=poisson(),chunk.size=5000,cluster=cl))
fv <- predict(b3,cluster=cl)
if (!is.null(cl)) stopCluster(cl)
b3
system.time(b4 <- bam(y ~ s(x0,bs=bs,k=7)+s(x1,bs=bs,k=7)+s(x2,bs=bs,k=k)
,data=dat,family=poisson(),discrete=TRUE,nthreads=2)) |
summary.Jointlcmm <- function(object,...)
{
x <- object
if (!inherits(x, "Jointlcmm")) stop("use only with \"Jointlcmm\" objects")
cat("Joint latent class model for quantitative outcome and competing risks", "\n")
cat(" fitted by maximum likelihood method", "\n")
cl <- x$call
cl$B <- NULL
if(is.data.frame(cl$data))
{
cl$data <- NULL
x$call$data <- NULL
}
cat(" \n")
dput(cl)
cat(" \n")
posfix <- eval(cl$posfix)
cat("Statistical Model:", "\n")
cat(paste(" Dataset:", as.character(as.expression(x$call$data))),"\n")
cat(paste(" Number of subjects:", x$ns),"\n")
cat(paste(" Number of observations:", x$N[9]),"\n")
cat(paste(" Number of latent classes:", x$ng), "\n")
cat(paste(" Number of parameters:", length(x$best))," \n")
if(length(posfix)) cat(paste(" Number of estimated parameters:", length(x$best)-length(posfix))," \n")
nbevt <- length(x$hazard[[1]])
nprisq <- rep(NA,nbevt)
nrisq <- rep(NA,nbevt)
typrisq <- x$hazard[[1]]
hazardtype <- x$hazard[[2]]
nz <- x$hazard[[4]]
for(ke in 1:nbevt)
{
if(typrisq[ke]==1) nprisq[ke] <- nz[ke]-1
if(typrisq[ke]==2) nprisq[ke] <- 2
if(typrisq[ke]==3) nprisq[ke] <- nz[ke]+2
if(hazardtype[ke]=="Common") nrisq[ke] <- nprisq[ke]
if(hazardtype[ke]=="PH") nrisq[ke] <- nprisq[ke]+x$ng-1
if(hazardtype[ke]=="Specific") nrisq[ke] <- nprisq[ke]*x$ng
cat(paste(" Event ",ke,": \n",sep=""))
cat(paste(" Number of events: ", x$N[9+ke],"\n",sep=""))
if(x$ng>1)
{
if (hazardtype[ke]=="Specific") cat(" Class-specific hazards and \n")
if (hazardtype[ke]=="PH") cat(" Proportional hazards over latent classes and \n")
if (hazardtype[ke]=="Common") cat(" Common hazards over classes and \n")
}
if (typrisq[ke]==2)
{
cat(" Weibull baseline risk function \n")
}
if (typrisq[ke]==1)
{
cat(" Piecewise constant baseline risk function with nodes \n")
cat(" ",x$hazard[[3]][1:nz[ke],ke]," \n")
}
if (typrisq[ke]==3)
{
cat(" M-splines constant baseline risk function with nodes \n")
cat(" ",x$hazard[[3]][1:nz[ke],ke]," \n")
}
}
ntrtot <- x$N[8]
numSPL <- 0
if(x$linktype!=-1)
{
cat(paste(" Link function for ",x$Names$Yname,": ",sep=""))
if (x$linktype==0)
{
cat("Linear \n")
}
if (x$linktype==1)
{
cat("Standardised Beta CdF \n")
}
if (x$linktype==2)
{
cat("Quadratic I-splines with nodes ", x$linknodes ,"\n")
}
}
cat(" \n")
cat("Iteration process:", "\n")
if(x$conv==1) cat(" Convergence criteria satisfied")
if(x$conv==2) cat(" Maximum number of iteration reached without convergence")
if(x$conv==3) cat(" Convergence with restrained Hessian matrix")
if(x$conv==4|x$conv==12)
{
cat(" The program stopped abnormally. No results can be displayed.\n")
}
else
{
cat(" \n")
cat(" Number of iterations: ", x$niter, "\n")
cat(" Convergence criteria: parameters=", signif(x$gconv[1],2), "\n")
cat(" : likelihood=", signif(x$gconv[2],2), "\n")
cat(" : second derivatives=", signif(x$gconv[3],2), "\n")
cat(" \n")
cat("Goodness-of-fit statistics:", "\n")
cat(paste(" maximum log-likelihood:", round(x$loglik,2))," \n")
cat(paste(" AIC:", round(x$AIC,2))," \n")
cat(paste(" BIC:", round(x$BIC,2))," \n")
if(!is.na(x$scoretest[1])&(length(x$hazard[[1]])==1)){
cat(paste(" Score test statistic for CI assumption: ", round(x$scoretest[1],3)," (p-value=",round((1-pchisq(x$scoretest[1],sum(x$idea))),4),")" ,sep=""))
}
if(!is.na(x$scoretest[1])&(length(x$hazard[[1]])>1)){
cat(paste(" Score test statistic for global CI assumption: ", round(x$scoretest[1],3)," (p-value=",round((1-pchisq(x$scoretest[1],sum(x$idea))),4),")" ,sep=""),"\n")
}
if(!is.na(x$scoretest[1])&(length(x$hazard[[1]])>1)){
cat(" Score test statistic for event-specific CI assumption: \n")
for (ke in 1:length(x$hazard[[1]])){
if(!is.na(x$scoretest[1+ke])){
cat(paste(" event ",ke,":", round(x$scoretest[1+ke],3)," (p-value=",round((1-pchisq(x$scoretest[1+ke],sum(x$idea))),4),")" ,sep=""),"\n")
}
else{
cat(paste(" event ",ke,": problem in the computation", "\n"))
}
}
}
cat(" \n")
cat(" \n")
cat("Maximum Likelihood Estimates:", "\n")
cat(" \n")
nprob <- x$N[1]
nrisqtot <- x$N[2]
nvarxevt <- x$N[3]
nef <- x$N[4]
nvc <- x$N[5]
nw <- x$N[6]
ncor <- x$N[7]
ntrtot <- x$N[8]
NPM <- length(x$best)
se <- rep(NA,NPM)
if (x$conv==1 | x$conv==3)
{
id <- 1:NPM
indice <- id*(id+1)/2
se <-sqrt(x$V[indice])
wald <- x$best/se
pwald <- 1-pchisq(wald**2,1)
coef <- x$best
}
else
{
se <- NA
wald <- NA
pwald <- NA
coef <- x$best
sech <- rep(NA,length(coef))
waldch <- rep(NA,length(coef))
pwaldch <- rep(NA,length(coef))
}
if(nw>0) coef[nprob+nrisqtot+nvarxevt+nef+nvc+1:nw] <- abs(coef[nprob+nrisqtot+nvarxevt+nef+nvc+1:nw])
if(ncor>0) coef[nprob+nrisqtot+nvarxevt+nef+nvc+nw+ncor] <- abs(coef[nprob+nrisqtot+nvarxevt+nef+nvc+nw+ncor])
if(ntrtot==1) coef[nprob+nrisqtot+nvarxevt+nef+nvc+nw+ncor+1] <- abs(coef[nprob+nrisqtot+nvarxevt+nef+nvc+nw+ncor+1])
if(x$conv!=2)
{
coefch <- format(as.numeric(sprintf("%.5f",coef)),nsmall=5,scientific=FALSE)
sech <- format(as.numeric(sprintf("%.5f",se)),nsmall=5,scientific=FALSE)
waldch <- format(as.numeric(sprintf("%.3f",wald)),nsmall=3,scientific=FALSE)
pwaldch <- format(as.numeric(sprintf("%.5f",pwald)),nsmall=5,scientific=FALSE)
}
else
{
coefch <- format(as.numeric(sprintf("%.5f",coef)),nsmall=5,scientific=FALSE)
}
if(length(posfix))
{
coefch[posfix] <- paste(coefch[posfix],"*",sep="")
sech[posfix] <- ""
waldch[posfix] <- ""
pwaldch[posfix] <- ""
}
maxchar <- function(x)
{
xx <- na.omit(x)
if(length(xx))
{
res <- max(nchar(xx))
}
else
{
res <- 2
}
return(res)
}
if(nprob>0)
{
cat("Fixed effects in the class-membership model:\n" )
cat("(the class of reference is the last class) \n")
tmp <- cbind(coefch[1:nprob],sech[1:nprob],waldch[1:nprob],pwaldch[1:nprob])
maxch <- apply(tmp,2,maxchar)
if(any(c(1:nprob) %in% posfix)) maxch[1] <- maxch[1]-1
dimnames(tmp) <- list(names(coef)[1:nprob],
c(paste(paste(rep(" ",max(maxch[1]-4,0)),collapse=""),"coef",sep=""),
paste(paste(rep(" ",max(maxch[2]-2,0)),collapse=""),"Se",sep=""),
paste(paste(rep(" ",max(maxch[3]-4,0)),collapse=""),"Wald",sep=""),
paste(paste(rep(" ",max(maxch[4]-7,0)),collapse=""),"p-value",sep="")))
cat("\n")
print(tmp,quote=FALSE,na.print="")
cat("\n")
}
cat("Parameters in the proportional hazard model:\n" )
tmp <- cbind(coefch[nprob+1:(nrisqtot+nvarxevt)],
sech[nprob+1:(nrisqtot+nvarxevt)],
waldch[nprob+1:(nrisqtot+nvarxevt)],
pwaldch[nprob+1:(nrisqtot+nvarxevt)])
maxch <- apply(tmp,2,maxchar)
if(any(c(nprob+1:(nrisqtot+nvarxevt)) %in% posfix)) maxch[1] <- maxch[1]-1
dimnames(tmp) <- list(names(coef)[nprob+1:(nrisqtot+nvarxevt)],
c(paste(paste(rep(" ",max(maxch[1]-4,0)),collapse=""),"coef",sep=""),
paste(paste(rep(" ",max(maxch[2]-2,0)),collapse=""),"Se",sep=""),
paste(paste(rep(" ",max(maxch[3]-4,0)),collapse=""),"Wald",sep=""),
paste(paste(rep(" ",max(maxch[4]-7,0)),collapse=""),"p-value",sep="")))
cat("\n")
print(tmp,quote=FALSE,na.print="")
cat("\n")
cat("Fixed effects in the longitudinal model:\n" )
if(x$linktype!=-1)
{
tmp <- matrix(c(paste(c(rep(" ",maxchar(coefch[nprob+nrisqtot+nvarxevt+1:nef])-ifelse(any(c(nprob+nrisqtot+nvarxevt+1:nef) %in% posfix),2,1)),0),collapse=""),"","",""),nrow=1,ncol=4)
tTable <- matrix(c(0,NA,NA,NA),nrow=1,ncol=4)
}
if(x$linktype==-1)
{
tmp <- NULL
tTable <-NULL
}
if (nef>0)
{
tmp2 <- cbind(coefch[nprob+nrisqtot+nvarxevt+1:nef],
sech[nprob+nrisqtot+nvarxevt+1:nef],
waldch[nprob+nrisqtot+nvarxevt+1:nef],
pwaldch[nprob+nrisqtot+nvarxevt+1:nef])
tmp <- rbind(tmp,tmp2)
tTable <- rbind(tTable,cbind(round(coef[nprob+nrisqtot+nvarxevt+1:nef],5),
round(se[nprob+nrisqtot+nvarxevt+1:nef],5),
round(wald[nprob+nrisqtot+nvarxevt+1:nef],3),
round(pwald[nprob+nrisqtot+nvarxevt+1:nef],5)))
}
interc <- "intercept"
if (x$ng>1)
{
interc <- paste(interc,"class1")
}
if(x$linktype!=-1) interc <- paste(interc,"(not estimated)")
if(x$linktype==-1) interc <- NULL
if(nef>0)
{
maxch <- apply(tmp,2,maxchar)
if(any(c(nprob+nrisqtot+nvarxevt+1:nef) %in% posfix)) maxch[1] <- maxch[1]-1
dimnames(tmp) <- list(c(interc,names(coef)[nprob+nrisqtot+nvarxevt+1:nef]),
c(paste(paste(rep(" ",max(maxch[1]-4,0)),collapse=""),"coef",sep=""),
paste(paste(rep(" ",max(maxch[2]-2,0)),collapse=""),"Se",sep=""),
paste(paste(rep(" ",max(maxch[3]-4,0)),collapse=""),"Wald",sep=""),
paste(paste(rep(" ",max(maxch[4]-7,0)),collapse=""),"p-value",sep="")))
}
else
{
dimnames(tmp) <- list(interc, c("coef", "Se", "Wald", "p-value"))
}
rownames(tTable) <- rownames(tmp)
colnames(tTable) <- c("coef", "Se", "Wald", "p-value")
cat("\n")
print(tmp,quote=FALSE,na.print="")
cat("\n")
if(nvc>0)
{
cat("\n")
cat("Variance-covariance matrix of the random-effects:\n" )
if(x$idiag==1)
{
Mat.cov <- diag(coef[nprob+nrisqtot+nvarxevt+nef+1:nvc])
Mat.cov[lower.tri(Mat.cov)] <- 0
Mat.cov[upper.tri(Mat.cov)] <- NA
if(nvc==1) Mat.cov <- matrix(coef[nprob+nrisqtot+nvarxevt+nef+1:nvc],1,1)
}
if(x$idiag==0)
{
Mat.cov<-matrix(0,ncol=sum(x$idea),nrow=sum(x$idea))
Mat.cov[upper.tri(Mat.cov,diag=TRUE)] <- coef[nprob+nrisqtot+nvarxevt+nef+1:nvc]
Mat.cov <-t(Mat.cov)
Mat.cov[upper.tri(Mat.cov)] <- NA
}
colnames(Mat.cov) <-x$Names$Xnames[x$idea==1]
rownames(Mat.cov) <-x$Names$Xnames[x$idea==1]
if(any(posfix %in% c(nprob+nrisqtot+nvarxevt+nef+1:nvc)))
{
Mat.cov <- apply(Mat.cov,2,format,digits=5,nsmall=5)
Mat.cov[upper.tri(Mat.cov)] <- ""
pf <- sort(intersect(c(nprob+nrisqtot+nvarxevt+nef+1:nvc),posfix))
p <- matrix(0,sum(x$idea),sum(x$idea))
if(x$idiag==FALSE) p[upper.tri(p,diag=TRUE)] <- c(nprob+nrisqtot+nvarxevt+nef+1:nvc)
if(x$idiag==TRUE & nvc>1) diag(p) <- c(nprob+nrisqtot+nvarxevt+nef+1:nvc)
if(x$idiag==TRUE & nvc==1) p <- matrix(c(nprob+nrisqtot+nvarxevt+nef+1),1,1)
Mat.cov[which(t(p) %in% pf)] <- paste(Mat.cov[which(t(p) %in% pf)],"*",sep="")
print(Mat.cov,quote=FALSE)
}
else
{
prmatrix(round(Mat.cov,5),na.print="")
}
cat("\n")
}
std <- NULL
nom <- NULL
if(nw>=1)
{
nom <- paste("Proportional coefficient class",c(1:(x$ng-1)),sep="")
std <-cbind(coefch[nprob+nrisqtot+nvarxevt+nef+nvc+1:nw],
sech[nprob+nrisqtot+nvarxevt+nef+nvc+1:nw])
}
if(ncor==2)
{
nom <- c(nom,"AR correlation parameter:","AR standard error:")
std <-rbind(std,c(coefch[nprob+nrisqtot+nvarxevt+nef+nvc+nw+1],
sech[nprob+nrisqtot+nvarxevt+nef+nvc+nw+1]),
c(coefch[nprob+nrisqtot+nvarxevt+nef+nvc+nw+2],
sech[nprob+nrisqtot+nvarxevt+nef+nvc+nw+2]))
}
if(ncor==1)
{
nom <- c(nom,"BM standard error:")
std <-rbind(std,c(coefch[nprob+nrisqtot+nvarxevt+nef+nvc+nw+1],
sech[nprob+nrisqtot+nvarxevt+nef+nvc+nw+1]))
}
if (!is.null(std))
{
rownames(std) <- nom
maxch <- apply(std,2,maxchar)
if(any(c(nprob+nrisqtot+nvarxevt+nef+nvc+1:(nw+ncor)) %in% posfix)) maxch[1] <- maxch[1]-1
colnames(std) <- c(paste(paste(rep(" ",max(maxch[1]-4,0)),collapse=""),"coef",sep=""),
paste(paste(rep(" ",max(maxch[2]-2,0)),collapse=""),"Se",sep=""))
print(std,quote=FALSE,na.print="")
cat("\n")
}
if(x$linktype==-1)
{
tmp <- cbind(coefch[NPM],sech[NPM])
rownames(tmp) <- "Residual standard error"
maxch <- apply(tmp,2,maxchar)
if(c(NPM) %in% posfix) maxch[1] <- maxch[1]-1
colnames(tmp) <- c(paste(paste(rep(" ",max(maxch[1]-4,0)),collapse=""),"coef",sep=""),
paste(paste(rep(" ",max(maxch[2]-2,0)),collapse=""),"Se",sep=""))
print(tmp,quote=FALSE,na.print="")
cat("\n")
}
else
{
cat("Residual standard error (not estimated) = 1\n")
cat("\n")
cat("Parameters of the link function:\n" )
tmp <- cbind(coefch[(nprob+nrisqtot+nvarxevt+nef+nvc+nw+ncor+1):NPM],
sech[(nprob+nrisqtot+nvarxevt+nef+nvc+nw+ncor+1):NPM],
waldch[(nprob+nrisqtot+nvarxevt+nef+nvc+nw+ncor+1):NPM],
pwaldch[(nprob+nrisqtot+nvarxevt+nef+nvc+nw+ncor+1):NPM])
rownames(tmp) <- names(x$best[(nprob+nrisqtot+nvarxevt+nef+nvc+nw+ncor+1):NPM])
maxch <- apply(tmp,2, maxchar)
if(any(c((nprob+nrisqtot+nvarxevt+nef+nvc+nw+ncor+1):NPM) %in% posfix)) maxch[1] <- maxch[1]-1
colnames(tmp) <- c(paste(paste(rep(" ",max(maxch[1]-4,0)),collapse=""),"coef",sep=""),
paste(paste(rep(" ",max(maxch[2]-2,0)),collapse=""),"Se",sep=""),
paste(paste(rep(" ",max(maxch[3]-4,0)),collapse=""),"Wald",sep=""),
paste(paste(rep(" ",max(maxch[4]-7,0)),collapse=""),"p-value",sep=""))
cat("\n")
print(tmp,quote=FALSE,na.print="")
cat("\n")
}
if(length(posfix))
{
cat(" * coefficient fixed by the user \n \n")
}
return(invisible(tTable))
}
} |
exp_dec <-
function(thermal_units, chill_days, b, m) {
y_pred <- b * exp(m * chill_days)
if(thermal_units >= y_pred) {
return(1)
} else {
return(0)
}
} |
google_scholar <- function(search_terms) {
message("Opening Google Scholar search for \"", search_terms, "\" in browser")
utils::browseURL(paste0("https://scholar.google.com/scholar?q=", URLencode(search_terms)))
} |
siaraddcross <-
function(x = NULL, ex = NULL, y = NULL, ey = NULL,
clr = "grey50", upch = 21) {
points(x, y, col = clr, pch = upch)
if (!is.null(ex)) {
lines(c(x - ex, x + ex), c(y, y), col = clr)
}
if (!is.null(ey)) {
lines(c(x, x), c(y - ey, y + ey), col = clr)
}
} |
data("survdata")
test_that("input checking works", {
datatrunc <- survdata
datatrunc[datatrunc$time > 360, "event"] <- 0
expect_error(with(datatrunc, cpsurv(time, event, intwd = 20, cpmax = 360)),
"No events with 'time' > 'cpmax'")
wrongevent <- survdata$event
wrongevent[5] <- 0.5
expect_error(cpsurv(survdata$time, wrongevent, intwd = 20, cpmax = 360),
"Argument 'event' has to be binary")
expect_error(cpsurv(survdata$time, survdata$event[-1], intwd = 20,
cpmax = 360),
"Vectors 'time' and 'event' must be of equal length.")
expect_error(with(survdata, cpsurv(time, event, intwd = "nonsense",
cpmax = 360)),
"Argument 'intwd' is not a single numeric value")
expect_error(with(survdata, cpsurv(time, event, conf.level = 2,
cpmax = 360)),
"Value for argument 'conf.level' too high")
}) |
NULL
Conv1D <- function(filters,
kernel_size,
strides = 1,
padding = 'valid',
dilation_rate = 1,
activation = NULL,
use_bias = TRUE,
kernel_initializer = 'glorot_uniform',
bias_initializer = 'zeros',
kernel_regularizer = NULL,
bias_regularizer = NULL,
activity_regularizer = NULL,
kernel_constraint = NULL,
bias_constraint = NULL,
input_shape = NULL) {
if (is.null(input_shape)) {
res <- modules$keras.layers.convolutional$Conv1D(
filters = int32(filters),
kernel_size = int32(kernel_size),
strides = int32(strides),
padding = padding,
dilation_rate = int32(dilation_rate),
activation = activation,
use_bias = use_bias,
kernel_initializer = kernel_initializer,
bias_initializer = bias_initializer,
kernel_regularizer = kernel_regularizer,
bias_regularizer = bias_regularizer,
activity_regularizer = activity_regularizer,
kernel_constraint = kernel_constraint,
bias_constraint = bias_constraint)
} else {
input_shape <- as.list(input_shape)
input_shape <- modules$builtin$tuple(int32(input_shape))
res <- modules$keras.layers.convolutional$Conv1D(
filters = int32(filters),
kernel_size = int32(kernel_size),
strides = int32(strides),
padding = padding,
dilation_rate = int32(dilation_rate),
activation = activation,
use_bias = use_bias,
kernel_initializer = kernel_initializer,
bias_initializer = bias_initializer,
kernel_regularizer = kernel_regularizer,
bias_regularizer = bias_regularizer,
activity_regularizer = activity_regularizer,
kernel_constraint = kernel_constraint,
bias_constraint = bias_constraint,
input_shape = input_shape)
}
return(res)
}
Conv2D <- function(filters,
kernel_size,
strides = c(1, 1),
padding = 'valid',
data_format = NULL,
dilation_rate = c(1, 1),
activation = NULL,
use_bias = TRUE,
kernel_initializer = 'glorot_uniform',
bias_initializer = 'zeros',
kernel_regularizer = NULL,
bias_regularizer = NULL,
activity_regularizer = NULL,
kernel_constraint = NULL,
bias_constraint = NULL,
input_shape = NULL) {
if (is.null(input_shape)) {
res <- modules$keras.layers.convolutional$Conv2D(
filters = int32(filters),
kernel_size = int32(kernel_size),
strides = int32(strides),
padding = padding,
data_format = data_format,
dilation_rate = int32(dilation_rate),
activation = activation,
use_bias = use_bias,
kernel_initializer = kernel_initializer,
bias_initializer = bias_initializer,
kernel_regularizer = kernel_regularizer,
bias_regularizer = bias_regularizer,
activity_regularizer = activity_regularizer,
kernel_constraint = kernel_constraint,
bias_constraint = bias_constraint)
} else {
input_shape <- as.list(input_shape)
input_shape <- modules$builtin$tuple(int32(input_shape))
res <- modules$keras.layers.convolutional$Conv2D(
filters = int32(filters),
kernel_size = int32(kernel_size),
strides = int32(strides),
padding = padding,
data_format = data_format,
dilation_rate = int32(dilation_rate),
activation = activation,
use_bias = use_bias,
kernel_initializer = kernel_initializer,
bias_initializer = bias_initializer,
kernel_regularizer = kernel_regularizer,
bias_regularizer = bias_regularizer,
activity_regularizer = activity_regularizer,
kernel_constraint = kernel_constraint,
bias_constraint = bias_constraint,
input_shape = input_shape)
}
return(res)
}
SeparableConv2D <- function(filters,
kernel_size,
strides = c(1, 1),
padding = 'valid',
data_format = NULL,
depth_multiplier = 1,
dilation_rate = c(1, 1),
activation = NULL,
use_bias = TRUE,
kernel_initializer = 'glorot_uniform',
bias_initializer = 'zeros',
kernel_regularizer = NULL,
bias_regularizer = NULL,
activity_regularizer = NULL,
kernel_constraint = NULL,
bias_constraint = NULL,
input_shape = NULL) {
if (is.null(input_shape)) {
res <- modules$keras.layers.convolutional$SeparableConv2D(
filters = int32(filters),
kernel_size = int32(kernel_size),
strides = int32(strides),
padding = padding,
data_format = data_format,
depth_multiplier = int32(depth_multiplier),
dilation_rate = int32(dilation_rate),
activation = activation,
use_bias = use_bias,
kernel_initializer = kernel_initializer,
bias_initializer = bias_initializer,
kernel_regularizer = kernel_regularizer,
bias_regularizer = bias_regularizer,
activity_regularizer = activity_regularizer,
kernel_constraint = kernel_constraint,
bias_constraint = bias_constraint)
} else {
input_shape <- as.list(input_shape)
input_shape <- modules$builtin$tuple(int32(input_shape))
res <- modules$keras.layers.convolutional$SeparableConv2D(
filters = int32(filters),
kernel_size = int32(kernel_size),
strides = int32(strides),
padding = padding,
data_format = data_format,
depth_multiplier = int32(depth_multiplier),
dilation_rate = int32(dilation_rate),
activation = activation,
use_bias = use_bias,
kernel_initializer = kernel_initializer,
bias_initializer = bias_initializer,
kernel_regularizer = kernel_regularizer,
bias_regularizer = bias_regularizer,
activity_regularizer = activity_regularizer,
kernel_constraint = kernel_constraint,
bias_constraint = bias_constraint,
input_shape = input_shape)
}
return(res)
}
Conv2DTranspose <- function(filters,
kernel_size,
strides = c(1, 1),
padding = 'valid',
data_format = NULL,
dilation_rate = c(1, 1),
activation = NULL,
use_bias = TRUE,
kernel_initializer = 'glorot_uniform',
bias_initializer = 'zeros',
kernel_regularizer = NULL,
bias_regularizer = NULL,
activity_regularizer = NULL,
kernel_constraint = NULL,
bias_constraint = NULL,
input_shape = NULL) {
if (is.null(input_shape)) {
res <- modules$keras.layers.convolutional$Conv2DTranspose(
filters = int32(filters),
kernel_size = int32(kernel_size),
strides = int32(strides),
padding = padding,
data_format = data_format,
dilation_rate = int32(dilation_rate),
activation = activation,
use_bias = use_bias,
kernel_initializer = kernel_initializer,
bias_initializer = bias_initializer,
kernel_regularizer = kernel_regularizer,
bias_regularizer = bias_regularizer,
activity_regularizer = activity_regularizer,
kernel_constraint = kernel_constraint,
bias_constraint = bias_constraint)
} else {
input_shape <- as.list(input_shape)
input_shape <- modules$builtin$tuple(int32(input_shape))
res <- modules$keras.layers.convolutional$Conv2DTranspose(
filters = int32(filters),
kernel_size = int32(kernel_size),
strides = int32(strides),
padding = padding,
data_format = data_format,
dilation_rate = int32(dilation_rate),
activation = activation,
use_bias = use_bias,
kernel_initializer = kernel_initializer,
bias_initializer = bias_initializer,
kernel_regularizer = kernel_regularizer,
bias_regularizer = bias_regularizer,
activity_regularizer = activity_regularizer,
kernel_constraint = kernel_constraint,
bias_constraint = bias_constraint,
input_shape = input_shape)
}
return(res)
}
Conv3D <- function(filters,
kernel_size,
strides = c(1, 1, 1),
padding = 'valid',
data_format = NULL,
dilation_rate = c(1, 1, 1),
activation = NULL,
use_bias = TRUE,
kernel_initializer = 'glorot_uniform',
bias_initializer = 'zeros',
kernel_regularizer = NULL,
bias_regularizer = NULL,
activity_regularizer = NULL,
kernel_constraint = NULL,
bias_constraint = NULL,
input_shape = NULL) {
if (is.null(input_shape)) {
res <- modules$keras.layers.convolutional$Conv3D(
filters = int32(filters),
kernel_size = int32(kernel_size),
strides = int32(strides),
padding = padding,
data_format = data_format,
dilation_rate = int32(dilation_rate),
activation = activation,
use_bias = use_bias,
kernel_initializer = kernel_initializer,
bias_initializer = bias_initializer,
kernel_regularizer = kernel_regularizer,
bias_regularizer = bias_regularizer,
activity_regularizer = activity_regularizer,
kernel_constraint = kernel_constraint,
bias_constraint = bias_constraint)
} else {
input_shape <- as.list(input_shape)
input_shape <- modules$builtin$tuple(int32(input_shape))
res <- modules$keras.layers.convolutional$Conv3D(
filters = int32(filters),
kernel_size = int32(kernel_size),
strides = int32(strides),
padding = padding,
data_format = data_format,
dilation_rate = int32(dilation_rate),
activation = activation,
use_bias = use_bias,
kernel_initializer = kernel_initializer,
bias_initializer = bias_initializer,
kernel_regularizer = kernel_regularizer,
bias_regularizer = bias_regularizer,
activity_regularizer = activity_regularizer,
kernel_constraint = kernel_constraint,
bias_constraint = bias_constraint,
input_shape = input_shape)
}
return(res)
}
NULL
Cropping1D <- function(cropping = c(1,1), input_shape = NULL) {
if (is.null(input_shape)) {
res <- modules$keras.layers.convolutional$Cropping1D(
cropping = int32(cropping))
} else {
input_shape <- as.list(input_shape)
input_shape <- modules$builtin$tuple(int32(input_shape))
res <- modules$keras.layers.convolutional$Cropping1D(
cropping = int32(cropping),
input_shape = input_shape)
}
return(res)
}
Cropping2D <- function(cropping = 0, data_format = NULL,
input_shape = NULL) {
if (is.null(input_shape)) {
res <- modules$keras.layers.convolutional$Cropping2D(
cropping = int32(cropping),
data_format = data_format)
} else {
input_shape <- as.list(input_shape)
input_shape <- modules$builtin$tuple(int32(input_shape))
res <- modules$keras.layers.convolutional$Cropping2D(
cropping = int32(cropping),
data_format = data_format,
input_shape = input_shape)
}
return(res)
}
Cropping3D <- function(cropping = 0, data_format = NULL,
input_shape = NULL) {
if (is.null(input_shape)) {
res <- modules$keras.layers.convolutional$Cropping3D(
cropping = int32(cropping),
data_format = data_format)
} else {
input_shape <- as.list(input_shape)
input_shape <- modules$builtin$tuple(int32(input_shape))
res <- modules$keras.layers.convolutional$Cropping3D(
cropping = int32(cropping),
data_format = data_format,
input_shape = input_shape)
}
return(res)
}
NULL
UpSampling1D <- function(size = 2, input_shape = NULL) {
if (is.null(input_shape)) {
res <- modules$keras.layers.convolutional$UpSampling1D(size = int32(size))
} else {
input_shape <- as.list(input_shape)
input_shape <- modules$builtin$tuple(int32(input_shape))
res <- modules$keras.layers.convolutional$UpSampling1D(size = int32(size),
input_shape = input_shape)
}
return(res)
}
UpSampling2D <- function(size = c(2, 2), data_format = NULL,
input_shape = NULL) {
if (is.null(input_shape)) {
res <- modules$keras.layers.convolutional$UpSampling2D(size = int32(size))
} else {
input_shape <- as.list(input_shape)
input_shape <- modules$builtin$tuple(int32(input_shape))
res <- modules$keras.layers.convolutional$UpSampling2D(size = int32(size),
input_shape = input_shape)
}
return(res)
}
UpSampling3D <- function(size = c(2, 2, 2), data_format = NULL,
input_shape = NULL) {
if (is.null(input_shape)) {
res <- modules$keras.layers.convolutional$UpSampling3D(size = int32(size))
} else {
input_shape <- as.list(input_shape)
input_shape <- modules$builtin$tuple(int32(input_shape))
res <- modules$keras.layers.convolutional$UpSampling3D(size = int32(size),
input_shape = input_shape)
}
return(res)
}
NULL
ZeroPadding1D <- function(padding = 1, input_shape = NULL) {
if (is.null(input_shape)) {
res <- modules$keras.layers.convolutional$ZeroPadding1D(
padding = int32(padding))
} else {
input_shape <- as.list(input_shape)
input_shape <- modules$builtin$tuple(int32(input_shape))
res <- modules$keras.layers.convolutional$ZeroPadding1D(
padding = int32(padding),
input_shape = input_shape)
}
return(res)
}
ZeroPadding2D <- function(padding = 1, data_format = NULL,
input_shape = NULL) {
if (is.null(input_shape)) {
res <- modules$keras.layers.convolutional$ZeroPadding2D(
padding = int32(padding),
data_format = data_format)
} else {
input_shape <- as.list(input_shape)
input_shape <- modules$builtin$tuple(int32(input_shape))
res <- modules$keras.layers.convolutional$ZeroPadding2D(
padding = int32(padding),
data_format = data_format,
input_shape = input_shape)
}
return(res)
}
ZeroPadding3D <- function(padding = 1, data_format = NULL,
input_shape = NULL) {
if (is.null(input_shape)) {
res <- modules$keras.layers.convolutional$ZeroPadding3D(
padding = int32(padding),
data_format = data_format)
} else {
input_shape <- as.list(input_shape)
input_shape <- modules$builtin$tuple(int32(input_shape))
res <- modules$keras.layers.convolutional$ZeroPadding3D(
padding = int32(padding),
data_format = data_format,
input_shape = input_shape)
}
return(res)
} |
.setup.formulae <- function(formula, npar, npar2, data, trace) {
if (inherits(formula, "formula"))
formula <- list(formula)
if (npar == 1) {
if (!(length(formula) %in% c(npar, 1)))
stop("length(formula) for this family should be 1")
} else {
if (!(length(formula) %in% c(npar, 1)))
stop(paste("length(formula) for this family should be", npar, "(or 1 if all parameters are to have the same formula)"))
}
pred.vars <- unique(unlist(lapply(formula, all.vars)))
if (!all(pred.vars %in% names(data))) {
missing.vars <- pred.vars[!(pred.vars %in% names(data))]
stop(paste("Variable(s) '", paste(missing.vars, collapse=", "), "' not supplied to `data'.", sep=""))
}
terms.list <- lapply(formula, terms.formula, specials=c("s", "te", "ti"))
got.specials <- sapply(lapply(terms.list, function(x) unlist(attr(x, "specials"))), any)
termlabels.list <- lapply(terms.list, attr, "term.labels")
got.intercept <- sapply(terms.list, attr, "intercept") == 1
for (i in seq_along(termlabels.list)) {
if (length(termlabels.list[[i]]) == 0) {
if (got.intercept[i]) {
termlabels.list[[i]] <- "1"
} else {
stop(paste("formula element", i, "incorrectly specified"))
}
}
}
got.response <- sapply(terms.list, attr, "response") == 1
if (!got.response[1]) {
stop("formula has no response")
} else {
response.name <- as.character(formula[[1]])[2]
}
if (any(!got.response)) {
for (i in which(!got.response)) {
formula[[i]] <- reformulate(termlabels=termlabels.list[[i]], response=response.name)
}
}
stripped.formula <- lapply(termlabels.list, function(x) reformulate(termlabels=x))
censored <- FALSE
if (substr(response.name, 1, 5) == "cens(") {
response.name <- substr(response.name, 6, nchar(response.name) - 1)
response.name <- gsub(" ", "", response.name)
response.name <- strsplit(response.name, ",")[[1]]
if (length(response.name) > 2)
stop("Censored response can only contain two variables.")
rr <- response.name[2]
formula <- lapply(termlabels.list, function(x) reformulate(termlabels=x, response=rr))
censored <- TRUE
}
attr(formula, "response.name") <- response.name
pred.vars <- pred.vars[!(pred.vars %in% response.name)]
attr(formula, "predictor.names") <- pred.vars
attr(formula, "stripped") <- stripped.formula
attr(formula, "censored") <- censored
attr(formula, "smooths") <- got.specials
for (i in seq_along(formula)) {
attr(formula[[i]], "intercept") <- got.intercept[i]
attr(formula[[i]], "smooth") <- got.specials[i]
}
formula
}
.setup.family <- function(family, pp) {
if (family == "gev") {
lik.fns <- .gevfns
npar <- 3
nms <- c("mu", "lpsi", "xi")
} else {
if (family == "gpd") {
lik.fns <- .gpdfns
npar <- 2
nms <- c("lpsi", "xi")
} else {
if (family == "modgpd") {
stop("'family='modgpd'' will return; in the mean time use `family='gpd''")
lik.fns <- NULL
npar <- 2
nms <- c("lmodpsi", "xi")
} else {
if (family == "pp") {
lik.fns <- .ppfns
npar <- 3
nms <- c("mu", "lpsi", "xi")
} else {
if (family == "weibull") {
lik.fns <- .weibfns
npar <- 2
nms <- c("llambda", "lk")
} else {
if (family == "exi") {
lik.fns <- .exifns
npar <- 1
nms <- c("location")
} else {
if (family == "ald") {
lik.fns <- .aldfns
npar <- 2
nms <- c("mu", "lsigma")
} else {
if (family == "gamma") {
lik.fns <- NULL
npar <- 2
nms <- c("ltheta", "lk")
} else {
if (family == "orthoggpd") {
stop("'family='orthoggpd'' may not return return")
lik.fns <- NULL
npar <- 2
nms <- c("lnu", "xi")
} else {
if (family == "transxigpd") {
stop("'family='transxigpd'' may not return")
lik.fns <- NULL
npar <- 2
nms <- c("lpsi", "xi")
} else {
if (family == "transgev") {
stop("'family='transgev'' may not return")
lik.fns <- NULL
npar <- 6
nms <- c("mu", "lpsi", "xi", "A", "lB", "C")
} else {
if (family == "exponential") {
lik.fns <- .expfns
npar <- 1
nms <- c("llambda")
} else {
if (family == "gauss") {
lik.fns <- .gaussfns
npar <- 2
nms <- c("mu", "logsigma")
}
}
}
}
}
}
}
}
}
}
}
}
}
out <- list(npar=npar, npar2=npar, lik.fns=lik.fns, nms=nms)
}
.predictable.gam <- function(G, formula) {
keep <- c("dev.extra", "pterms", "nsdf", "X", "terms", "mf", "smooth", "sp")
G <- G[keep]
G$nb <- ncol(G$X)
G$coefficients <- numeric(G$nb)
old <- c("mf", "pP", "cl")
new <- c("model", "paraPen", "call")
is.in <- !is.na(match(old, names(G)))
if (any(is.in)) names(G)[match(old[is.in], names(G))] <- new[is.in]
G$formula <- formula
class(G) <- "gamlist"
G
}
.X.evgam <- function(object, newdata) {
object <- object[sapply(object, inherits, what="gamlist")]
if (missing(newdata)) {
X <- lapply(object, function(x) x$X)
} else {
for (i in seq_along(object))
class(object[[i]]) <- "gam"
X <- lapply(object, mgcv::predict.gam, newdata=newdata, type="lpmatrix")
}
names(X) <- names(object)
X
}
.setup.data <- function(data, responsename, formula, family, nms, removeData,
exiargs, aldargs, pp, knots, maxdata, maxspline, compact, sargs,
outer, trace) {
for (i in seq_along(responsename)) data <- data[!is.na(data[,responsename[i]]),]
if (nrow(data) > maxdata) {
id <- sort(sample(nrow(data), maxdata))
data <- data[id,]
if (trace >= 0)
message("`data' truncated to `maxdata' rows. Re-supply `data' to, e.g., `predict.evgam'")
}
if (compact) {
data.undup <- as.list(data[,unique(unlist(lapply(formula, function(y) unlist(lapply(mgcv::interpret.gam(y)$smooth.spec, function(x) x$term))))), drop=FALSE])
data.undup <- lapply(data.undup, function(x) as.integer(as.factor(x)))
if (length(data.undup) > 1) for (i in 2:length(data.undup)) data.undup[[1]] <- paste(data.undup[[1]], data.undup[[i]], sep=":")
data.undup <- data.undup[[1]]
gc()
unq.id <- which(!duplicated(data.undup))
data.unq <- data.undup[unq.id]
dup.id <- match(data.undup, data.unq)
}
subsampling <- FALSE
gams <- list()
if (family %in% c("pp", "ppexi"))
data <- .setup.pp.data(data, responsename, pp)
for (i in seq_along(formula)) {
if (nrow(data) > maxspline) {
id <- sample(nrow(data), maxspline)
gams[[i]] <- mgcv::gam(formula[[i]], data=data[id,], fit=FALSE, knots=knots, method="REML")
} else {
gams[[i]] <- mgcv::gam(formula[[i]], data=data, fit=FALSE, knots=knots, method="REML")
}
gams[[i]] <- .predictable.gam(gams[[i]], formula[[i]])
}
gc()
lik.data <- list()
lik.data$control <- list()
lik.data$outer <- outer
lik.data$control$outer <- list(steptol=1e-12, itlim=1e2, fntol=1e-8, gradtol=1e-2, stepmax=3)
lik.data$control$inner <- list(steptol=1e-12, itlim=1e2, fntol=1e-8, gradtol=1e-4, stepmax=1e2)
lik.data$y <- as.matrix(data[,responsename, drop=FALSE])
lik.data$Mp <- sum(unlist(sapply(gams, function(y) c(1, sapply(y$smooth, function(x) x$null.space.dim)))))
lik.data$const <- .5 * lik.data$Mp * log(2 * pi)
lik.data$nobs <- nrow(lik.data$y)
if (attr(formula, "censored")) {
lik.data$censored <- TRUE
if (any(lik.data$y[,2] < lik.data$y[,1]))
stop("For censored response need right >= left in `cens(left, right)'")
lik.data$cens.id <- lik.data$y[,2] > lik.data$y[,1]
if (trace >= 0 & sum(lik.data$cens.id) == 0) {
message("No response data appear to be censored. Switching to uncensored likelihood.")
lik.data$censored <- FALSE
}
} else {
lik.data$censored <- FALSE
}
if (family == "weibull") {
if (min(lik.data$y) <= 0)
stop(expression("Weibull distribution has support (0, \U221E) in evgam."))
}
if (family == "gpd") {
if (min(lik.data$y) <= 0)
stop(expression("GPD has support (0, \U221E) in evgam."))
}
if (family == "exi") {
if (is.null(exiargs$id)) stop("no `id' in `exi.args'.")
if (is.null(exiargs$nexi)) {
if (trace >= 0)
message("`exiargs$nexi' assumed to be 2.")
exiargs$nexi <- 2
}
if (is.null(exiargs$link)) {
if (trace >= 0)
message("`exiargs$link' assumed to be `logistic'.")
exiargs$link <- "logistic"
}
lik.data$exiname <- exiargs$id
lik.data$y <- list(lik.data$y, data[,exiargs$id])
lik.data$nexi <- exiargs$nexi
if (exiargs$link == "cloglog") {
lik.data$exilink <- 2
lik.data$linkfn <- function(x) 1 - exp(-exp(x))
attr(lik.data$linkfn, "deriv") <- function(x) exp(-exp(x)) * exp(x)
}
if (exiargs$link == "logistic") {
lik.data$exilink <- 1
lik.data$linkfn <- function(x) 1 / (1 + exp(-x))
attr(lik.data$linkfn, "deriv") <- function(x) exp(-x)/(1 + exp(-x))^2
}
if (exiargs$link == "probit") {
lik.data$exilink <- 0
lik.data$linkfn <- function(x) pnorm(x)
attr(lik.data$linkfn, "deriv") <- function(x) dnorm(x)
}
attr(lik.data$linkfn, "name") <- exiargs$link
}
if (family %in% c("pp", "ppexi")) {
lik.data$ppw <- attr(data, "weights")
lik.data$y <- as.matrix(rbind(as.matrix(attr(data, "quad")[,responsename]), lik.data$y))
lik.data$ppq <- rep(as.logical(1:0), c(nrow(attr(data, "quad")), nrow(data)))
lik.data$ppcens <- attr(data, "cens")
lik.data$weights <- attr(data, "cweights")
lik.data$exi <- attr(data, "exi")
}
if (family == "ald") {
if (is.null(aldargs$tau))
aldargs$tau <- .5
if (is.null(aldargs$C))
aldargs$C <- .5
lik.data$tau <- aldargs$tau
lik.data$C <- aldargs$C
}
lik.data$sandwich <- !is.null(sargs$id)
if (lik.data$sandwich)
lik.data$sandwich.split <- data[,sargs$id]
if (!compact) {
if (nrow(data) > maxspline) {
lik.data$X <- .X.evgam(gams, data)
} else {
lik.data$X <- .X.evgam(gams)
}
if (family %in% c("pp", "ppexi")) {
ppX <- .X.evgam(gams, attr(data, "quad"))
lik.data$X <- lapply(seq_along(ppX), function(i) rbind(ppX[[i]], lik.data$X[[i]]))
}
lik.data$dupid <- 0
lik.data$duplicate <- 0
} else {
if (family %in% c("pp", "ppexi"))
stop("Option compact = TRUE not currently possible for pp model.")
lik.data$X <- .X.evgam(gams, data[unq.id,])
lik.data$dupid <- dup.id - 1
lik.data$duplicate <- 1
}
for (i in seq_along(gams)) {
if (removeData)
gams[[i]]$y <- NULL
}
if (length(lik.data$X) == 1 & length(nms) > 1) {
for (i in 2:length(nms)) {
lik.data$X[[i]] <- lik.data$X[[1]]
gams[[i]] <- gams[[1]]
}
}
nbk <- sapply(lik.data$X, ncol)
lik.data$nb <- sum(nbk)
lik.data$idpars <- rep(seq_along(lik.data$X), nbk)
lik.data$LAid <- lik.data$idpars > 0
lik.data$subsampling <- subsampling
gotsmooth <- which(sapply(gams, function(x) length(x$sp)) > 0)
lik.data$k <- 1
if (is.null(sargs$id)) {
lik.data$adjust <- 0
} else {
if (is.null(sargs$method))
sargs$method <- "magnitude"
if (sargs$method == "curvature") {
if (trace > 0)
message(paste("Sandwich adjustment method: curvature"))
lik.data$adjust <- 2
} else {
if (trace > 0)
message(paste("Sandwich adjustment method: magnitude"))
lik.data$adjust <- 1
}
}
if (is.null(sargs$force))
sargs$force <- FALSE
lik.data$force <- sargs$force
list(lik.data=lik.data, gotsmooth=gotsmooth, data=data, gams=gams, sandwich=lik.data$adjust > 0)
}
.setup.pp.data <- function(data, responsename, pp) {
nodes <- pp$nodes
ny <- pp$ny
if (is.null(ny))
stop("Cannot have NULL pp.args$ny.")
threshold <- pp$threshold
r <- pp$r
if (is.null(threshold) & is.null(r))
stop("Both pp$threshold and pp$r cannot be NULL")
data$row <- seq_len(nrow(data))
ds <- split(data, data[,pp$id])
wts <- pp$ny
if (length(wts) == 1) {
wts <- rep(wts, length(ds))
} else {
wts <- wts[match(names(ds), names(wts))]
}
nobs2 <- sapply(ds, nrow)
data.quad <- do.call(rbind, lapply(ds, function(x) x[1,]))
if (!is.null(pp$r)) {
enough <- nobs2 >= pp$r
if (any(!enough)) warning(paste(sum(!enough), "unique pp.args$id removed for having fewer than r observations."))
ds <- ds[enough]
wts <- wts[enough]
nid <- sum(enough)
data.quad <- data.quad[enough,]
if (pp$r != -1) {
du <- sapply(ds, function(x) x[order(x[,responsename], decreasing=TRUE)[pp$r], responsename])
} else {
du <- sapply(ds, function(x) min(x[, responsename]))
}
} else {
du <- sapply(ds, function(x) x[1, pp$threshold])
nid <- length(du)
}
data.quad[,responsename] <- du
ds <- lapply(seq_len(nid), function(i) subset(ds[[i]], ds[[i]][,responsename] >= du[i]))
out <- dfbind(ds)
attr(out, "weights") <- wts
attr(out, "quad") <- data.quad
if (is.null(pp$cens)) {
attr(out, "cens") <- NULL
} else {
attr(out, "cens") <- data[out$row, pp$cens]
}
if (is.null(pp$weights)) {
attr(out, "cweights") <-rep(1, length(out$row))
} else {
attr(out, "cweights") <- pp$weights[out$row]
}
out
}
.sandwich.C <- function(H, J) {
iJ <- pinv(J)
HA <- crossprod(H, crossprod(iJ, H))
sH <- svd(H)
M <- sqrt(sH$d) * t(sH$v)
sHA <- svd(HA)
MA <- sqrt(sHA$d) * t(sHA$v)
solve(M, MA)
}
.setup.inner.inits <- function(inits, likdata, likfns, npar, family) {
likdata0 <- likdata
likdata0$X <- lapply(seq_along(likdata$X), function(i) matrix(1, nrow=nrow(likdata$X[[i]]), ncol=1))
likdata0$S <- diag(0, npar)
likdata0$idpars <- seq_len(npar)
if (is.null(inits)) {
if (npar == 1)
inits <- 2
if (npar == 2) {
if (family == "ald") {
inits <- c(quantile(likdata0$y[,1], likdata0$tau), log(sd(likdata0$y[,1])))
} else {
inits <- c(log(mean(likdata$y[,1])), .05)
if (family == "transxigpd")
inits[2] <- .9
}
}
if (npar %in% 3:4) {
inits <- c(sqrt(6) * sd(likdata0$y[,1]) / pi, .05)
inits <- c(mean(likdata0$y[,1]) - .5772 * inits[1], log(inits[1]), inits[2])
if (npar == 4)
inits <- c(inits, 1)
}
if (npar == 6) {
inits <- c(sqrt(6) * sd(likdata0$y[,1]) / pi, .05)
inits <- c(mean(likdata0$y[,1]) - .5772 * inits[1], log(inits[1]), inits[2])
inits <- c(inits, 0, 0, 1)
}
likdata0$CH <- diag(length(inits))
likdata0$compmode <- numeric(length(inits))
beta0 <- .newton_step_inner(inits, .nllh.nopen, .search.nopen, likdata=likdata0, likfns=likfns, control=likdata$control$inner)$par
} else {
if (is.list(inits)) {
betamat <- expand.grid(inits)
betanllh <- numeric(nrow(betamat))
for (i in seq_len(nrow(betamat))) {
beta0 <- unlist(betamat[i,])
betanllh[i] <- likfns$nllh(beta0, likdata0)
}
beta0 <- betamat[which.min(betanllh),]
print(beta0)
} else {
beta0 <- inits
}
}
beta0 <- unlist(lapply(seq_len(npar), function(i) c(beta0[i], rep(0, ncol(likdata$X[[i]]) - 1))))
compmode <- 0 * beta0
CH <- diag(compmode + 1)
k <- 1
likdata[c("k", "CH", "compmode")] <- list(k, CH, compmode)
diagH <- diag(.gH.nopen(beta0, likdata=likdata, likfns=likfns)[[2]])
if (likdata$sandwich) {
beta0 <- .newton_step(beta0, .nllh.nopen, .search.nopen, likdata=likdata, likfns=likfns, control=likdata$control$inner)$par
H <- .gH.nopen(beta0, likdata=likdata, likfns=likfns, sandwich=TRUE)
if (family == "pp") {
J0 <- H[[1]]
J <- J0[,!likdata$ppq]
J0 <- rowSums(J0[,likdata$ppq])
J <- split(as.data.frame(t(J)), likdata$sandwich.split)
wts <- sapply(J, nrow)
wts <- wts / sum(wts)
J <- sapply(J, colSums)
J <- J + J0 %o% wts
J <- tcrossprod(J)
} else {
J <- split(as.data.frame(t(H[[1]])), likdata$sandwich.split)
J <- sapply(J, colSums)
J <- tcrossprod(J)
}
H <- H[[2]]
diagH <- diag(H)
cholH <- try(chol(H), silent=TRUE)
if (inherits(cholH, "try-error")) {
if (!likdata$force) {
stop("Hessian of unpenalised MLE not positive definite.\n Supply `force=TRUE' to `sandwich.args' to perturb it to be positive definite.")
} else {
if (trace >= 0)
message("Hessian perturbed to be positive definite for sandwich adjustment.")
iH <- pinv(H)
}
} else {
iH <- chol2inv(cholH)
}
if (likdata$adjust == 2) {
cholJ <- try(chol(J), silent=TRUE)
if (inherits(cholJ, "try-error") & likdata$adjust == 2) {
HA <- crossprod(backsolve(cholJ, H, transpose=TRUE))
} else {
iHA <- tcrossprod(crossprod(iH, J), iH)
choliHA <- try(chol(iHA), silent=TRUE)
if (inherits(choliHA, "try-error")) {
if (!likdata$force) {
stop("Sandwich variance not positive definite.\n Supply `force=TRUE' to `sandwich.args' to perturb it to be positive definite.")
} else {
if (trace >= 0)
message("Sandwich variance perturbed to be positive definite.")
HA <- pinv(iHA)
}
} else {
HA <- chol2inv(choliHA)
}
}
sH <- svd(H)
M <- sqrt(sH$d) * t(sH$v)
sHA <- svd(HA)
MA <- sqrt(sHA$d) * t(sHA$v)
CH <- solve(M, MA)
compmode <- beta0
} else {
k <- 1 / mean(diag(crossprod(iH, J)))
}
}
attr(beta0, "k") <- k
attr(beta0, "CH") <- CH
attr(beta0, "compmode") <- compmode
attr(beta0, "diagH") <- diagH
beta0
}
.guess <- function(x, d, s) {
okay <- s != 0
val <- d / (d + exp(x) * s)
mean(val[okay]) - .4
}
.sandwich <- function(likdata, beta) {
likdata$k <- attr(beta, "k")
likdata$CH <- attr(beta, "CH")
likdata$compmode <- attr(beta, "compmode")
bigX <- do.call(cbind, likdata$X)
CHX <- bigX %*% likdata$CH
CHX <- lapply(unique(likdata$idpars), function(i) CHX[,likdata$idpars == i])
likdata$CHX <- CHX
likdata
}
.outer <- function(rho0, beta, likfns, likdata, Sdata, control, correctV, outer, trace) {
attr(rho0, "beta") <- beta
if (outer == "newton") {
fit.reml <- .newton_step_inner(rho0, .reml0, .search.reml, likfns=likfns, likdata=likdata, Sdata=Sdata, control=likdata$control$outer, trace=trace > 1)
} else {
if (outer == "fd") {
fit.reml <- .BFGS(rho0, .reml0, .reml1.fd, likfns=likfns, likdata=likdata, Sdata=Sdata, control=likdata$control$outer, trace=trace > 1)
} else {
fit.reml <- .BFGS(rho0, .reml0, .reml1, likfns=likfns, likdata=likdata, Sdata=Sdata, control=likdata$control$outer, trace=trace > 1)
}
rho1 <- fit.reml$par
attr(rho1, "beta") <- fit.reml$beta
fit.reml$Hessian <- try(.reml12(rho1, likfns=likfns, likdata=likdata, Sdata=Sdata)[[2]], silent=TRUE)
if (inherits(fit.reml$Hessian, "try-error"))
fit.reml$Hessian <- .reml2.fd(rho1, likfns=likfns, likdata=likdata, Sdata=Sdata)
}
fit.reml$invHessian <- .solve_evgam(fit.reml$Hessian)
fit.reml$trace <- trace
if (trace == 1) {
report <- "\n Final max(|grad|))"
likdata$S <- .makeS(Sdata, exp(fit.reml$par))
report <- c(report, paste(" Inner:", signif(max(abs(.gH.pen(fit.reml$beta, likdata, likfns)[[1]])), 3)))
report <- c(report, paste(" Outer:", signif(max(abs(fit.reml$gradient)), 3)))
report <- c(report, "", "")
cat(paste(report, collapse="\n"))
}
fit.reml
}
.outer.nosmooth <- function(beta, likfns, likdata, control, trace) {
fit.inner <- .newton_step(beta, .nllh.nopen, .search.nopen, likdata=likdata, likfns=likfns, control=likdata$control$inner)
list(beta=fit.inner$par)
}
.VpVc <- function(fitreml, likfns, likdata, Sdata, correctV, sandwich, smooths, trace) {
lsp <- fitreml$par
H0 <- .gH.nopen(fitreml$beta, likdata, likfns)[[2]]
if (smooths) {
sp <- exp(lsp)
H <- H0 + likdata$S
} else {
H <- H0
}
cholH <- try(chol(H), silent=TRUE)
if (inherits(cholH, "try-error") & trace >= 0)
message("Final Hessian of negative penalized log-likelihood not numerically positive definite.")
Vc <- Vp <- pinv(H)
if (smooths) {
if (correctV) {
cholVp <- try(chol(Vp), silent=TRUE)
if (inherits(cholVp, "try-error")) {
cholVp <- attr(.perturb(Vp), "chol")
}
attr(lsp, "beta") <- fitreml$beta
spSl <- Map("*", attr(Sdata, "Sl"), exp(lsp))
dbeta <- .d1beta(lsp, fitreml$beta, spSl, .Hdata(H))$d1
Vrho <- fitreml$invHessian
Vbetarho <- tcrossprod(dbeta %*% Vrho, dbeta)
VR <- matrix(0, nrow=likdata$nb, ncol=likdata$nb)
Vc <- .perturb(Vp + Vbetarho + VR)
}
} else {
Vrho <- 0
}
list(Vp=Vp, Vc=Vc, Vlsp=Vrho, H0=H0, H=H)
}
.edf <- function(beta, likfns, likdata, VpVc, sandwich) {
diag(crossprod(VpVc$Vp, VpVc$H0))
}
.swap <- function(fitreml, gams, likdata, VpVc, gotsmooth, edf, smooths) {
Vp <- VpVc$Vp
Vc <- VpVc$Vc
if (smooths) {
spl <- split(exp(fitreml$par), unlist(sapply(seq_along(gams), function(x) rep(x, length(gams[[x]]$sp)))))
sp <- replace(lapply(seq_along(gams), function(x) NULL), gotsmooth, spl)
}
for (i in seq_along(gams)) {
idi <- likdata$idpars == i
gams[[i]]$coefficients <- fitreml$beta[idi]
names(gams[[i]]$coefficients) <- gams[[i]]$term.names
gams[[i]]$Vp <- Vp[idi, idi, drop = FALSE]
gams[[i]]$Vc <- Vc[idi, idi, drop = FALSE]
if (i %in% gotsmooth) gams[[i]]$sp <- sp[[i]]
gams[[i]]$edf <- edf[idi]
}
gams
}
.finalise <- function(gams, data, likfns, likdata, Sdata, fitreml, VpVc, family, gotsmooth,
formula, responsenm, removeData, edf) {
nms <- c("location", "logscale", "shape")
if (length(gams) == 2) {
if (family %in% c("ald", "gauss")) {
nms <- nms[1:2]
} else {
nms <- nms[-1]
}}
if (length(gams) == 4) {
if (is.null(likdata$agg)) {
nms <- c(nms, "logitdep")
} else {
nms <- c(nms, "logdep")
}
}
if (family == "exponential") nms <- "lograte"
if (family == "weibull") nms[2] <- "logshape"
if (family == "exi") nms <- paste(attr(likdata$linkfn, "name"), "exi", sep="")
names(gams) <- nms
smooths <- length(gotsmooth) > 0
Vp <- VpVc$Vp
Vc <- VpVc$Vc
if (smooths) gams$sp <- exp(fitreml$par)
gams$nobs <- likdata$nobs
gams$logLik <- -1e20
fit.lik <- list(convergence=0)
if (fit.lik$convergence == 0) {
gams$logLik <- -.nllh.nopen(fitreml$beta, likdata, likfns)
gams$logLik <- gams$logLik - likdata$const
}
if (fit.lik$convergence != 0) gams$AIC <- gams$BIC <- 1e20
attr(gams, "df") <- sum(edf)
gams$simulate <- list(mu=fitreml$beta, Sigma=Vp)
gams$family <- family
gams$idpars <- likdata$idpars
nms <- names(gams)[seq_along(formula)]
logits <- substr(nms, 1, 5) == "logit"
if (any(logits))
nms[logits] <- gsub("logit", "", nms[logits])
logs <- substr(nms, 1, 3) == "log"
if (any(logs))
nms[logs] <- gsub("log", "", nms[logs])
probits <- substr(nms, 1, 6) == "probit"
if (any(probits))
nms[probits] <- gsub("probit", "", nms[probits])
gams$predictor.names <- attr(formula, "predictor.names")
formula <- attr(formula, "stripped")
names(formula) <- nms
gams$call <- formula
gams$response.name <- responsenm
gams$gotsmooth <- gotsmooth
if (!removeData) {
if (family == "pp") {
gams$data <- attr(data, "quad")
} else {
gams$data <- data
}
}
gams$Vc <- Vc
gams$Vp <- Vp
gams$Vlsp <- VpVc$Vlsp
gams$negREML <- fitreml$objective
gams$coefficients <- fitreml$beta
if (family == "ald") gams$tau <- likdata$tau
if (family == "exi") {
gams$linkfn <- likdata$linkfn
gams$exi.name <- likdata$exiname
}
for (i in seq_along(likdata$X)) {
gams[[i]]$X <- likdata$X[[i]]
if (likdata$duplicate == 1) gams[[i]]$X <- gams[[i]]$X[likdata$dupid + 1,]
gams[[i]]$fitted <- as.vector(likdata$X[[i]] %*% gams[[i]]$coefficients)
}
gams$likdata <- likdata
gams$likfns <- likfns
if (smooths) gams$Sdata <- Sdata
gams$formula <- formula
gams$compacted <- likdata$duplicate == 1
if (gams$compacted) gams$compactid <- likdata$dupid + 1
smooth.terms <- unique(lapply(lapply(gams[gotsmooth], function(x) x$smooth), function(y) lapply(y, function(z) z$term)))
smooth.terms <- unique(unlist(smooth.terms, recursive=FALSE))
gams$plotdata <- lapply(smooth.terms, function(x) unique(data[,x, drop=FALSE]))
if (family == "weibull") names(gams)[2] <- "logshape"
if (family == "exponential") names(gams)[1] <- "lograte"
gams$ngam <- length(formula)
for (i in seq_along(gams[nms])[-gotsmooth])
gams[[i]]$smooth <- NULL
class(gams) <- "evgam"
return(gams)
} |
context("pnpp_experiment-calculate_neg_freq")
test_that("calc_negative_freq_simple works", {
expect_equal(calc_negative_freq_simple(5, 45), 10)
expect_equal(calc_negative_freq_simple(5, 5), 50)
expect_equal(calc_negative_freq_simple(13, 87), 13)
})
test_that("calculate_neg_freq_single works", {
file <- system.file("sample_data", "small", "analyzed_pnpp.rds", package = "ddpcr")
plate <- load_plate(file)
expect_equal(plate %>% calculate_neg_freq_single("A05"),
list("negative_num" = 368,
"positive_num" = 1224,
"negative_freq" = calc_negative_freq_simple(368, 1224)))
})
test_that("calculate_negative_freqs works", {
file <- system.file("sample_data", "small", "analyzed_pnpp.rds", package = "ddpcr")
plate <- load_plate(file)
neg_freqs <-
plate %>%
calculate_negative_freqs %>%
plate_meta %>%
.[['negative_freq']] %>%
.[!is.na(.)]
expect_equal(neg_freqs, c(0.218, 23.1, 0.24, 19.8))
}) |
"greenrice" |
EMVS.probit=function(y,x,epsilon=.0005,v0s=.025,nu.1=100,nu.gam=1,a=1,b=ncol(x),beta.initial=NULL,
sigma.initial=1,theta.inital=.5,temp=1,p=ncol(x),n=nrow(x)){
if(length(beta.initial)==0){
beta.initial=rep(NaN,times=ncol(x))
while(sum(is.nan(beta.initial))>0)
{
beta.initial=CSDCD.logistic(p,n,x,ifelse(y==1,1,-1),rep(.0001,p),75)
}
}
scrap=0
cat("\n")
L=length(v0s)
cat("\n","Running Probit across v0's","\n")
cat(rep("",times=(L+1)),sep="|")
cat("\n")
intersects=numeric(L)
log_post=numeric(L)
sigma.Vec=numeric(L)
theta.Vec=numeric(L)
log_post=numeric(L)
index.Vec=numeric(L)
beta.Vec=matrix(0,L,p)
p.Star.Vec=matrix(0,L,p)
for (i in (1:L)){
bail.count=0
nu.0=v0s[i]
beta.Current=beta.initial
beta.new=beta.initial
sigma.EM=sigma.initial
theta.EM=theta.inital
eps=epsilon+1
iter.index=1
while(eps>epsilon && iter.index<20){
if(bail.count>=3)
{
cat("\n","Iteration scrapped!","\n",sep="")
list=list(betas=NULL,intersects=NULL,sigmas=NULL,
niters=NULL,posts=NULL,thetas=NULL,v0s=NULL,scrap=1)
return(list)
}
d.Star=rep(NA,p)
p.Star=rep(NA,p)
for(j in 1:p){
gam.one=dnorm(beta.Current[j],0,sqrt(nu.1))**temp*theta.EM**temp
gam.zero=dnorm(beta.Current[j],0,sqrt(nu.0))**temp*(1-theta.EM)**temp
p.Star[j]=gam.one/(gam.one+gam.zero)
d.Star[j]=((1-p.Star[j])/nu.0)+(p.Star[j]/nu.1)
}
M=rep(NA,n)
y.Star=rep(NA,n)
for(j in 1:n){
M[j]=ifelse(y[j]==0,-dnorm(-x[j,]%*%beta.Current,0,1)/pnorm(-x[j,]%*%beta.Current,0,1),
dnorm(-x[j,]%*%beta.Current,0,1)/(1-pnorm(-x[j,]%*%beta.Current,0,1)))
y.Star[j]=x[j,]%*%beta.Current+M[j]
}
d.Star.Mat=diag(d.Star,p)
beta.old=beta.new
beta.Current=CSDCD.random(p,n,x,y.Star,d.Star)
if(sum(is.nan(beta.Current))==0)
{
sigma.EM=1
theta.EM=(sum(p.Star)+a-1)/(a+b+p-2)
eps=max(abs(beta.new-beta.Current))
beta.new=beta.Current
iter.index=iter.index+1
}
if(sum(is.nan(beta.Current))>0){
beta.Current=beta.old
bail.count=bail.count+1
}
}
p.Star.Vec[i,]=p.Star
beta.Vec[i,]=beta.new
sigma.Vec[i]=sigma.EM
theta.Vec[i]=theta.EM
index.Vec[i]=iter.index
index=p.Star>0.5
c=sqrt(nu.1/v0s[i])
w=(1-theta.Vec[i])/theta.Vec[i]
if (w>0){
intersects[i]=sigma.Vec[i]*sqrt(v0s[i])*sqrt(2*log(w*c)*c^2/(c^2-1))}else{
intersects[i]=0}
cat("|",sep="")
}
list=list(betas=beta.Vec,intersects=intersects,sigmas=sigma.Vec,
niters=index.Vec,posts=p.Star.Vec,thetas=theta.Vec,v0s=v0s,scrap=0)
return(list)
} |
NULL
scale_xcolour_hue <- function(..., h = c(0, 360) + 15, c = 100, l = 65, h.start = 0,
direction = 1, na.value = "grey50", aesthetics = "xcolour")
{
ggplot2::discrete_scale(aesthetics, "hue",
scales::hue_pal(h, c, l, h.start, direction), na.value = na.value, ...)
}
scale_xcolour_manual <- function(..., values, aesthetics = "xcolour", breaks = waiver()) {
manual_scale(aesthetics, values, breaks, ...)
}
scale_xcolor_manual <- function(..., values, aesthetics = "xcolour", breaks = waiver()) {
manual_scale(aesthetics, values, breaks, ...)
}
scale_xcolour_gradient <- function (..., low = "
space = "Lab",na.value = "grey50",
guide = guide_colorbar(available_aes = "xcolour"), aesthetics = "xcolour")
{
continuous_scale(aesthetics,
"gradient",
scales::seq_gradient_pal(low, high, space),
na.value = na.value, guide = guide, ...)
}
scale_xcolor_gradientn <- function (..., colours, values = NULL,
space = "Lab", na.value = "grey50",
guide = guide_colorbar(available_aes = "xcolour"), aesthetics = "xcolour", colors)
{
colours <- if (missing(colours))
colors
else colours
continuous_scale(aesthetics, "gradientn",
scales::gradient_n_pal(colours,values, space),
na.value = na.value, guide = guide, ...)
}
scale_xcolour_gradientn <- function (..., colours, values = NULL,
space = "Lab", na.value = "grey50",
guide = guide_colorbar(available_aes = "xcolour"), aesthetics = "xcolour", colors)
{
colours <- if (missing(colours))
colors
else colours
continuous_scale(aesthetics, "gradientn",
scales::gradient_n_pal(colours,values, space),
na.value = na.value, guide = guide, ...)
}
scale_xcolour_discrete <- scale_xcolour_hue
scale_xcolor_discrete <- scale_xcolour_hue
scale_xcolour_continuous <- scale_xcolour_gradient
scale_xcolor_continuous <- scale_xcolour_gradient
scale_ycolour_hue <- function(..., h = c(0, 360) + 15, c = 100, l = 65, h.start = 0,
direction = 1, na.value = "grey50", aesthetics = "ycolour")
{
ggplot2::discrete_scale(aesthetics, "hue",
scales::hue_pal(h, c, l, h.start, direction), na.value = na.value, ...)
}
scale_ycolour_manual <- function(..., values, aesthetics = "ycolour", breaks = waiver()) {
manual_scale(aesthetics, values, breaks, ...)
}
scale_ycolor_manual <- function(..., values, aesthetics = "ycolour", breaks = waiver()) {
manual_scale(aesthetics, values, breaks, ...)
}
scale_ycolour_gradient <- function (..., low = "
space = "Lab",na.value = "grey50",
guide = guide_colorbar(available_aes = "ycolour"), aesthetics = "ycolour")
{
continuous_scale(aesthetics,
"gradient",
scales::seq_gradient_pal(low, high, space),
na.value = na.value, guide = guide, ...)
}
scale_ycolour_gradientn <- function (..., colours, values = NULL,
space = "Lab", na.value = "grey50",
guide = guide_colorbar(available_aes = "ycolour"), aesthetics = "ycolour", colors)
{
colours <- if (missing(colours))
colors
else colours
continuous_scale(aesthetics, "gradientn",
scales::gradient_n_pal(colours,values, space),
na.value = na.value, guide = guide, ...)
}
scale_ycolor_gradientn <- function (..., colours, values = NULL,
space = "Lab", na.value = "grey50",
guide = guide_colorbar(available_aes = "ycolour"), aesthetics = "ycolour", colors)
{
colours <- if (missing(colours))
colors
else colours
continuous_scale(aesthetics, "gradientn",
scales::gradient_n_pal(colours,values, space),
na.value = na.value, guide = guide, ...)
}
scale_ycolour_discrete <- scale_ycolour_hue
scale_ycolor_discrete <- scale_ycolour_hue
scale_ycolour_continuous <- scale_ycolour_gradient
scale_ycolor_continuous <- scale_ycolour_gradient |
getFormacaoDoutorado <- function(curriculo) {
if (!any(class(curriculo) == 'xml_document')) {
stop("The input file must be XML, imported from `xml2` package.", call. = FALSE)
}
doutorado <-
xml2::xml_find_all(curriculo, ".//FORMACAO-ACADEMICA-TITULACAO/DOUTORADO") |>
purrr::map(~ xml2::xml_attrs(.)) |>
purrr::map(~ dplyr::bind_rows(.)) |>
purrr::map(~ janitor::clean_names(.))
doutorado_area <-
xml2::xml_find_all(curriculo, ".//FORMACAO-ACADEMICA-TITULACAO/DOUTORADO") |>
purrr::map(~ xml2::xml_find_all(., ".//AREAS-DO-CONHECIMENTO")) |>
purrr::map(~ xml2::xml_children(.)) |>
purrr::map(~ xml2::xml_attrs(.)) |>
purrr::map(~ dplyr::bind_rows(.)) |>
purrr::map(~ janitor::clean_names(.))
if (nrow(doutorado_area[[1]]) == 0) doutorado_area <- tibble::tibble(nome_grande_area_do_conhecimento = NA,
nome_da_area_do_conhecimento = NA,
nome_da_sub_area_do_conhecimento = NA,
nome_da_especialidade = NA)
purrr::pmap(list(doutorado, doutorado_area), function(x, y) tibble::tibble(x, area = list(y))) |>
dplyr::bind_rows() |>
dplyr::mutate(id = getId(curriculo))
} |
set_cartesian <-
function(...)
{
if (nargs() < 2L)
return(..1)
l <- list(...)
if (!all(len <- lengths(l)))
return(set())
.make_set_of_tuples_from_list_of_lists(.cartesian_product(l))
}
gset_cartesian <-
function(...)
{
if (nargs() < 2L)
return(..1)
l <- lapply(list(...), as.list)
if (isTRUE(all(sapply(l, gset_is_set))))
return(as.gset(set_cartesian(...)))
if (any(sapply(l, gset_cardinality) == 0, na.rm = TRUE))
return(gset())
support <- .make_set_of_tuples_from_list_of_lists(.cartesian_product(l))
memberships <- lapply(l, .get_memberships)
memberships <- do.call(Map, c("list", .cartesian_product(memberships)))
memberships <-
if (all(sapply(l, gset_is_crisp, na.rm = TRUE)))
sapply(memberships, function(i) prod(unlist(i)))
else if (all(sapply(l, gset_is_fuzzy_set, na.rm = TRUE))) {
sapply(memberships, function(i) Reduce(.T., unlist(i)))
} else {
lapply(memberships, function(i) {
maxlen <- max(sapply(i, gset_cardinality, na.rm = TRUE))
m <- lapply(i, .expand_membership, len = maxlen, rep = FALSE)
mult <- unlist(do.call(Map, c(list(prod),
lapply(m, .get_memberships)
))
)
S <- Reduce(.T., m)
.make_gset_from_support_and_memberships(as.list(S), mult)
})
}
.make_gset_from_support_and_memberships(support, memberships)
}
cset_cartesian <-
function(...)
gset_cartesian(...) |
CIBinary <- function(kappa0, kappaL, kappaU=NA, props, raters=2, alpha=0.05)
{
if ( (raters != 1) && (raters !=2) && (raters !=3) && (raters != 4) && (raters != 5) && (raters != 6) )
stop("Sorry, this function is designed for between 2 to 6 raters.")
if (length(props) == 1)
{
if ((props >= 1) || (props <= 0) )
stop("Sorry, the proportion, props must lie within (0,1).")
}
if (length(props) == 2)
{
if ( abs( sum(props) - 1) >= 0.001 )
stop("Sorry, the two proportions must sum to one.")
for (i in 1:2)
{
if ((props[i] >= 1) || (props[i] <= 0) )
stop("Sorry, the proportion, props must lie within (0,1).")
}
props <- props[1];
}
if ((kappa0 >= 1) || (kappa0 <= 0) || (kappaL <= 0) || (kappaL >= 1) )
stop("Sorry, the null and lower values of kappa must lie within (0,1).")
if ((!is.na(kappaU)) && ( (kappaU <= 0) || (kappaU >= 1) ) )
stop("Sorry, the upper value of kappa must be either NA for a one-sided test or within (0,1).");
if ( (kappaL >= kappa0) || ( (!is.na(kappaU)) && (kappaU <= kappa0) ) )
stop("Remember, kappaL < kappa0 < kappaU...")
if ( (is.na(kappaL)) && (is.na(kappaU)) )
stop("Sorry, at least one of kappaL or kappaU must be specified.")
if ( (alpha >= 1) || (alpha <= 0) )
stop("Sorry, the alpha and power must lie within (0,1).")
X <- NULL;
X$kappa0 <- kappa0;
X$kappaL <- kappaL;
X$kappaU <- kappaU;
X$props <- props;
X$raters <- raters;
X$alpha <- alpha;
if (is.na(kappaU))
{
X$ChiCrit <- qchisq((1-2*alpha),1);
}
if ( (!is.na(kappaL)) && (!is.na(kappaU)) )
{
X$ChiCrit <- qchisq((1-alpha),1);
}
if (raters == 2)
{
.CalcIT <- function(rho0, rho1, Pi, n)
{
P0 <- function(r, p)
{
x <- (1- p)^2 + r*p*(1 - p)
return(x)
}
P1 <- function(r, p)
{
x <- 2*(1 - r)*p*(1 - p)
return(x)
}
P2 <- function(r, p)
{
x <- p^2 + r*p*(1 - p)
return(x)
}
Results <- c(0,0,0)
Results[1] <- ( (n*P0(r=rho0, p = Pi)) - (n*P0(r=rho1, p = Pi)) )^2/ (n*P0(r=rho1, p = Pi))
Results[2] <- ( (n*P1(r=rho0, p = Pi)) - (n*P1(r=rho1, p = Pi)) )^2/ (n*P1(r=rho1, p = Pi))
Results[3] <- ( (n*P2(r=rho0, p = Pi)) - (n*P2(r=rho1, p = Pi)) )^2/ (n*P2(r=rho1, p = Pi))
return(sum(Results,na.rm=TRUE))
}
}
if (raters == 3)
{
.CalcIT <- function(rho0, rho1, Pi, n)
{
P0 <- function(r, p)
{
x <- (1- p)^3 + p*r*( (1 - p)^2 + (1 - p) )
return(x)
}
P1 <- function(r, p)
{
x <- 3*p*(1 - r)*(1 - p)^2
return(x)
}
P2 <- function(r, p)
{
x <- 3*p^2*(1 - p)*(1 - r)
return(x)
}
P3 <- function(r, p)
{
x <- p^3 + r*p*(1 - p^2)
return(x)
}
Results <- c(0,0,0,0);
Results[1] <- ( n*P0(r=rho0, p = Pi) - n*P0(r=rho1, p = Pi) )^2/ (n*P0(r=rho1, p = Pi))
Results[2] <- ( n*P1(r=rho0, p = Pi) - n*P1(r=rho1, p = Pi) )^2/ (n*P1(r=rho1, p = Pi))
Results[3] <- ( n*P2(r=rho0, p = Pi) - n*P2(r=rho1, p = Pi) )^2/ (n*P2(r=rho1, p = Pi))
Results[4] <- ( n*P3(r=rho0, p = Pi) - n*P3(r=rho1, p = Pi) )^2/ (n*P3(r=rho1, p = Pi))
return(sum(Results,na.rm=TRUE))
}
}
if (raters == 4)
{
.CalcIT <- function(rho0, rho1, Pi, n)
{
P0 <- function(r, p)
{
x <- p^4 -r*p^4 -4*p^3 +4*r*p^3 +6*p^2 -6*r*p^2 -4*p +3*r*p +1
return(x)
}
P1 <- function(r, p)
{
x <- (4*(1-3*p-r+3*r*p+3*p^2-3*r*p^2-p^3+r*p^3))*p
return(x)
}
P2 <- function(r, p)
{
x <- -(6*(-1+r+2*p-2*r*p-p^2+r*p^2))*p^2
return(x)
}
P3 <- function(r, p)
{
x <- (4*(1-r-p+r*p))*p^3
return(x)
}
P4 <- function(r,p)
{
x <- -(-p^3-r+r*p^3)*p
return(x)
}
Results <- c(0,0,0,0,0);
Results[1] <- ( n*P0(r=rho0, p = Pi) - n*P0(r=rho1, p = Pi) )^2/ (n*P0(r=rho1, p = Pi))
Results[2] <- ( n*P1(r=rho0, p = Pi) - n*P1(r=rho1, p = Pi) )^2/ (n*P1(r=rho1, p = Pi))
Results[3] <- ( n*P2(r=rho0, p = Pi) - n*P2(r=rho1, p = Pi) )^2/ (n*P2(r=rho1, p = Pi))
Results[4] <- ( n*P3(r=rho0, p = Pi) - n*P3(r=rho1, p = Pi) )^2/ (n*P3(r=rho1, p = Pi))
Results[5] <- ( n*P4(r=rho0, p = Pi) - n*P4(r=rho1, p = Pi) )^2/ (n*P4(r=rho1, p = Pi))
return(sum(Results,na.rm=TRUE))
}
}
if (raters == 5)
{
.CalcIT <- function(rho0, rho1, Pi, n)
{
P0 <- function(r, p)
{
x <- -p^5+r*p^5+5*p^4-5*r*p^4+10*r*p^3-10*p^3-10*r*p^2+10*p^2+4*r*p-5*p+1
return(x)
}
P1 <- function(r, p)
{
x <- -(5*(-1+4*p+r-4*r*p-6*p^2+6*r*p^2+4*p^3-4*r*p^3-p^4+r*p^4))*p
return(x)
}
P2 <- function(r, p)
{
x <- (10*(1-r-3*p+3*r*p+3*p^2-3*r*p^2-p^3+r*p^3))*p^2
return(x)
}
P3 <- function(r, p)
{
x <- -(10*(-1+r+2*p-2*r*p-p^2+r*p^2))*p^3
return(x)
}
P4 <- function(r,p)
{
x <- (5*(1-r-p+r*p))*p^4
return(x)
}
P5 <- function(r,p)
{
x <- -(-p^4-r+r*p^4)*p
return(x)
}
Results <- c(0,0,0,0,0,0);
Results[1] <- ( n*P0(r=rho0, p = Pi) - n*P0(r=rho1, p = Pi) )^2/ (n*P0(r=rho1, p = Pi))
Results[2] <- ( n*P1(r=rho0, p = Pi) - n*P1(r=rho1, p = Pi) )^2/ (n*P1(r=rho1, p = Pi))
Results[3] <- ( n*P2(r=rho0, p = Pi) - n*P2(r=rho1, p = Pi) )^2/ (n*P2(r=rho1, p = Pi))
Results[4] <- ( n*P3(r=rho0, p = Pi) - n*P3(r=rho1, p = Pi) )^2/ (n*P3(r=rho1, p = Pi))
Results[5] <- ( n*P4(r=rho0, p = Pi) - n*P4(r=rho1, p = Pi) )^2/ (n*P4(r=rho1, p = Pi))
Results[6] <- ( n*P5(r=rho0, p = Pi) - n*P5(r=rho1, p = Pi) )^2/ (n*P5(r=rho1, p = Pi))
return(sum(Results,na.rm=TRUE))
}
}
if (raters == 6)
{
.CalcIT <- function(rho0, rho1, Pi, n)
{
P0 <- function(r, p)
{
x <- p^6-r*p^6+6*r*p^5-6*p^5-15*r*p^4+15*p^4+20*r*p^3-20*p^3-15*r*p^2+15*p^2+5*r*p-6*p+1
return(x)
}
P1 <- function(r, p)
{
x <- (6*(1-5*p-r+5*r*p+10*p^2-10*r*p^2-10*p^3+10*r*p^3+5*p^4-5*r*p^4-p^5+r*p^5))*p
return(x)
}
P2 <- function(r, p)
{
x <- -(15*(-1+r+4*p-4*r*p-6*p^2+6*r*p^2+4*p^3-4*r*p^3-p^4+r*p^4))*p^2
return(x)
}
P3 <- function(r, p)
{
x <- (20*(1-r-3*p+3*r*p+3*p^2-3*r*p^2-p^3+r*p^3))*p^3
return(x)
}
0
P4 <- function(r,p)
{
x <- -(15*(-1+r+2*p-2*r*p-p^2+r*p^2))*p^4
return(x)
}
P5 <- function(r,p)
{
x <- (6*(1-r-p+r*p))*p^5
return(x)
}
P6 <- function(r,p)
{
x <- -(-p^5-r+r*p^5)*p
return(x)
}
Results <- c(0,0,0,0,0,0,0);
Results[1] <- ( n*P0(r=rho0, p = Pi) - n*P0(r=rho1, p = Pi) )^2/ (n*P0(r=rho1, p = Pi))
Results[2] <- ( n*P1(r=rho0, p = Pi) - n*P1(r=rho1, p = Pi) )^2/ (n*P1(r=rho1, p = Pi))
Results[3] <- ( n*P2(r=rho0, p = Pi) - n*P2(r=rho1, p = Pi) )^2/ (n*P2(r=rho1, p = Pi))
Results[4] <- ( n*P3(r=rho0, p = Pi) - n*P3(r=rho1, p = Pi) )^2/ (n*P3(r=rho1, p = Pi))
Results[5] <- ( n*P4(r=rho0, p = Pi) - n*P4(r=rho1, p = Pi) )^2/ (n*P4(r=rho1, p = Pi))
Results[6] <- ( n*P5(r=rho0, p = Pi) - n*P5(r=rho1, p = Pi) )^2/ (n*P5(r=rho1, p = Pi))
Results[7] <- ( n*P6(r=rho0, p = Pi) - n*P6(r=rho1, p = Pi) )^2/ (n*P6(r=rho1, p = Pi))
return(sum(Results,na.rm=TRUE))
}
}
n <- 10;
if ( (!is.na(kappaL)) && (!is.na(kappaU)) )
{
resultsl <- 0;
resultsu <- 0;
while ( (abs(resultsl - 0.001) < X$ChiCrit) || (abs(resultsu - 0.001) < X$ChiCrit) )
{
n <- n + 1;
resultsl <- .CalcIT(rho0=kappa0, rho1 = kappaL, Pi=props, n=n)
resultsu <- .CalcIT(rho0=kappa0, rho1 = kappaU, Pi=props, n=n)
if (is.infinite(resultsu))
{
resultsu <- 0
}
if (is.infinite(resultsl))
{
resultsl <- 0
}
}
}
if (is.na(kappaU))
{
resultsl <- 0;
while (abs(resultsl - 0.001) < X$ChiCrit)
{
n <- n + 1;
resultsl <- .CalcIT(rho0=kappa0, rho1 = kappaL, Pi=props, n=n)
if (is.infinite(resultsl))
{
resultsl <- 0
}
}
}
X$n <- n;
class(X) <- "CIBinary";
return(X);
}
print.CIBinary <- function(x, ...)
{
cat("A minimum of", max(x$n, x$n), "subjects are required for this study of interobserver agreement. \n")
for (i in 1:length(x$props))
{
if (x$props[i] * x$n < 5)
{
cat("Warning: At least one expected cell count is less than five. \n")
}
}
}
summary.CIBinary <- function(object, ...)
{
cat("Confidence-Interval Based Sample Size Estimation for \n")
cat("Studies of Interobserver Agreement with a Binary Outcome \n \n")
cat("Assuming:", "\n")
cat("Kappa0:", object$kappa0, "\n")
cat("KappaL:", object$kappaL, "\n")
cat("KappaU:", object$kappaU, "\n")
cat("Event Proportion:", object$props, "\n")
cat("Type I Error Rate (alpha) = ", object$alpha, "\n \n")
if (is.na(object$kappaU))
{
cat("A minimum of", ceiling(object$n), "subjects are required to ensure the lower \n")
cat("confidence limit is at least ", object$kappaL, ". \n \n", sep="")
for (i in 1:length(object$props))
{
if (object$props[i] * object$n < 5)
{
cat("Warning: At least one expected cell count is less than five. \n")
}
}
}
if ( (!is.na(object$kappaL)) && (!is.na(object$kappaU)) )
{
cat("A minimum of", ceiling(object$n), "subjects are required to ensure the lower \n")
cat("confidence limit is at least", object$kappaL, "and the upper confidence \n")
cat("limit does not exceed ", object$kappaU, ". \n \n", sep="")
for (i in 1:length(object$props))
{
if (object$props[i] * object$n < 5)
{
cat("Warning: At least one expected cell count is less than five. \n")
}
}
}
} |
getCutoffNonNested <- function(dat1Mod1, dat1Mod2, dat2Mod1 = NULL, dat2Mod2 = NULL,
alpha = 0.05, usedFit = NULL, onetailed = FALSE, nVal = NULL, pmMCARval = NULL,
pmMARval = NULL, df = 0) {
usedFit <- cleanUsedFit(usedFit, colnames(dat1Mod1@fit), colnames(dat1Mod2@fit))
mod1 <- clean(dat1Mod1, dat1Mod2)
dat1Mod1 <- mod1[[1]]
dat1Mod2 <- mod1[[2]]
if (!isTRUE(all.equal(unique(dat1Mod1@paramValue), unique(dat1Mod2@paramValue))))
stop("'dat1Mod1' and 'dat1Mod2' are based on different data and cannot be compared, check your random seed")
if (!is.null(dat2Mod1) & !is.null(dat2Mod2)) {
mod2 <- clean(dat2Mod1, dat2Mod2)
dat2Mod1 <- mod2[[1]]
dat2Mod2 <- mod2[[2]]
if (!isTRUE(all.equal(unique(dat2Mod1@paramValue), unique(dat2Mod2@paramValue))))
stop("'dat2Mod1' and 'dat2Mod2' are based on different data and cannot be compared, check your random seed")
if (!multipleAllEqual(unique(dat1Mod1@n), unique(dat1Mod2@n), unique(dat2Mod1@n),
unique(dat2Mod2@n)))
stop("Models are based on different values of sample sizes")
if (!multipleAllEqual(unique(dat1Mod1@pmMCAR), unique(dat1Mod2@pmMCAR), unique(dat2Mod1@pmMCAR),
unique(dat2Mod2@pmMCAR)))
stop("Models are based on different values of the percent completely missing at random")
if (!multipleAllEqual(unique(dat1Mod1@pmMAR), unique(dat1Mod2@pmMAR), unique(dat2Mod1@pmMAR),
unique(dat2Mod2@pmMAR)))
stop("Models are based on different values of the percent missing at random")
} else {
if (!isTRUE(all.equal(unique(dat1Mod1@n), unique(dat1Mod2@n))))
stop("Models are based on different values of sample sizes")
if (!isTRUE(all.equal(unique(dat1Mod1@pmMCAR), unique(dat1Mod2@pmMCAR))))
stop("Models are based on different values of the percent completely missing at random")
if (!isTRUE(all.equal(unique(dat1Mod1@pmMAR), unique(dat1Mod2@pmMAR))))
stop("Models are based on different values of the percent missing at random")
}
if (is.null(nVal) || is.na(nVal))
nVal <- NULL
if (is.null(pmMCARval) || is.na(pmMCARval))
pmMCARval <- NULL
if (is.null(pmMARval) || is.na(pmMARval))
pmMARval <- NULL
Data1 <- as.data.frame((dat1Mod1@fit - dat1Mod2@fit))
Data2 <- NULL
if (!is.null(dat2Mod1) & !is.null(dat2Mod2))
Data2 <- as.data.frame((dat2Mod1@fit - dat2Mod2@fit))
condition <- c(length(unique(dat1Mod1@pmMCAR)) > 1, length(unique(dat1Mod1@pmMAR)) >
1, length(unique(dat1Mod1@n)) > 1)
condValue <- cbind(dat1Mod1@pmMCAR, dat1Mod1@pmMAR, dat1Mod1@n)
colnames(condValue) <- c("Percent MCAR", "Percent MAR", "N")
condValue <- condValue[, condition]
if (is.null(condValue) || length(condValue) == 0)
condValue <- NULL
predictorVal <- rep(NA, 3)
if (condition[3]) {
ifelse(is.null(nVal), stop("Please specify the sample size value, 'nVal', because the sample size in the result object is varying"),
predictorVal[3] <- nVal)
}
if (condition[1]) {
ifelse(is.null(pmMCARval), stop("Please specify the percent of completely missing at random, 'pmMCARval', because the percent of completely missing at random in the result object is varying"),
predictorVal[1] <- pmMCARval)
}
if (condition[2]) {
ifelse(is.null(pmMARval), stop("Please specify the percent of missing at random, 'pmMARval', because the percent of missing at random in the result object is varying"),
predictorVal[2] <- pmMARval)
}
predictorVal <- predictorVal[condition]
result <- list()
if (onetailed) {
cutoffDat1 <- getCutoffDataFrame(Data1, alpha, FALSE, usedFit, predictor = condValue,
predictorVal = predictorVal, df = df)
bound <- rep(-Inf, length(cutoffDat1))
bound[names(cutoffDat1) %in% getKeywords()$reversedFit] <- Inf
resultModel1 <- rbind(bound, cutoffDat1)
resultModel1 <- apply(resultModel1, 2, sort)
rownames(resultModel1) <- c("lower", "upper")
result$model1 <- resultModel1
if (!is.null(dat2Mod1) & !is.null(dat2Mod2)) {
cutoffDat2 <- getCutoffDataFrame(Data2, 1 - alpha, FALSE, usedFit, predictor = condValue,
predictorVal = predictorVal, df = df)
bound <- rep(Inf, length(cutoffDat2))
bound[names(cutoffDat2) %in% getKeywords()$reversedFit] <- -Inf
resultModel2 <- rbind(bound, cutoffDat2)
resultModel2 <- apply(resultModel2, 2, sort)
rownames(resultModel2) <- c("lower", "upper")
result$model2 <- resultModel2
}
} else {
lower <- alpha/2
upper <- 1 - (alpha/2)
cutoffDat1Low <- getCutoffDataFrame(Data1, lower, FALSE, usedFit, predictor = condValue,
predictorVal = predictorVal, df = df)
cutoffDat1High <- getCutoffDataFrame(Data1, upper, FALSE, usedFit, predictor = condValue,
predictorVal = predictorVal, df = df)
resultModel1 <- rbind(cutoffDat1Low, cutoffDat1High)
resultModel1 <- apply(resultModel1, 2, sort)
rownames(resultModel1) <- c("lower", "upper")
result$model1 <- resultModel1
if (!is.null(dat2Mod1) & !is.null(dat2Mod2)) {
cutoffDat2Low <- getCutoffDataFrame(Data2, lower, FALSE, usedFit, predictor = condValue,
predictorVal = predictorVal, df = df)
cutoffDat2High <- getCutoffDataFrame(Data2, upper, FALSE, usedFit, predictor = condValue,
predictorVal = predictorVal, df = df)
resultModel2 <- rbind(cutoffDat2Low, cutoffDat2High)
resultModel2 <- apply(resultModel2, 2, sort)
rownames(resultModel2) <- c("lower", "upper")
result$model2 <- resultModel2
}
}
return(result)
} |
plot.dist.matrix <- function (x, y, labels=rownames(x), show.labels=TRUE, label.pos=3, selected=attr(x, "selected"), show.selected=TRUE, col="black", cex=1, pch=20, pt.cex=1.2, selected.cex=1.2, selected.col="red", show.edges=TRUE, edges.lwd=6, edges.col="
stopifnot(inherits(x, "dist.matrix"))
if (!missing(y)) stop("plot.dist.matrix() doesn't take a second argument (y)")
if (!isTRUE(attr(x, "symmetric"))) stop("only symmetric distance matrices can be plotted")
if (isTRUE(attr(x, "similarity"))) stop("similarity matrices are not supported. Please provide a distance matrix for this plot.")
method <- match.arg(method)
if (is.null(labels)) {
show.labels <- FALSE
} else {
if (length(labels) != nrow(x)) stop("wrong number of labels specified")
}
coords <- if (method == "isomds") isoMDS(x, k=2, trace=FALSE)$points else sammon(x, k=2, trace=FALSE)$points
x.range <- extendrange(coords[, 1], f=expand)
y.range <- extendrange(coords[, 2], f=expand)
.asp <- diff(x.range) / diff(y.range)
if (.asp < aspect) {
x.range <- extendrange(x.range, f=(aspect/.asp-1)/2)
} else if (.asp > aspect) {
y.range <- extendrange(y.range, f=(.asp/aspect-1)/2)
}
plot(coords, type="n", xlim=x.range, ylim=y.range, xlab="", ylab="", xaxs="i", yaxs="i", xaxt="n", yaxt="n", ...)
if (show.edges) {
midx <- t(combn(1:nrow(x), 2))
P1 <- midx[, 1]
P2 <- midx[, 2]
len <- x[midx]
lwd.vec <- edges.lwd * (1 - len / edges.threshold)
idx <- lwd.vec > 0.1
segments(coords[P1[idx], 1], coords[P1[idx], 2], coords[P2[idx], 1], coords[P2[idx], 2], lwd=lwd.vec[idx], col=edges.col)
}
if (is.null(selected) || !show.selected) selected <- rep(FALSE, nrow(x))
col.vec <- ifelse(selected, selected.col, col)
cex.vec <- cex * pt.cex * ifelse(selected, selected.cex, 1)
points(coords, pch=pch, col=col.vec, cex=cex.vec)
if (show.labels) {
cex.vec <- cex * ifelse(selected, selected.cex, 1)
text(coords[, 1], coords[, 2], labels=labels, pos=label.pos, font=2, cex=cex.vec, col=col.vec)
}
if (!is.null(labels)) rownames(coords) <- labels
invisible(coords)
} |
addBackTile <-
function(tileFilename, libForMosaic, libForMosaicFull) {
lib <- rbind(libForMosaic, libForMosaicFull[which(libForMosaicFull[,1]==tileFilename),])
rownames(lib) <- NULL
return(lib)
} |
test_that("Bad data results in error", {
expect_error(cpp_edge_to_splits(matrix(1, 3, 3), 3))
expect_error(cpp_edge_to_splits(matrix(1, 10, 2), 0))
expect_error(cpp_edge_to_splits(matrix(1, 10, 2), -10))
expect_error(cpp_edge_to_splits(matrix(1, 2, 2), 6))
}) |
plot_dotbar_sd_sc <- function(data, xcol, ycol, colour = "ok_orange", dotsize = 1.5, dotthick = 1, bwid = 0.7, ewid = 0.2, b_alpha = 1, d_alpha = 1, TextXAngle = 0, fontsize = 20, ...){
ifelse(grepl("
a <- colour,
a <- get_graf_colours({{ colour }}))
ggplot2::ggplot(data, aes(x = factor({{ xcol }}),
y = {{ ycol }}))+
stat_summary(geom = "bar", colour = "black",
width = {{ bwid }},
fun = "mean",
alpha = {{ b_alpha }}, size = 1,
fill = a)+
geom_dotplot(dotsize = {{ dotsize }},
stroke = {{ dotthick }},
binaxis = 'y',
alpha = {{ d_alpha }},
stackdir = 'center',
fill = a,
...)+
stat_summary(geom = "errorbar", size = 1,
fun.data = "mean_sdl",
fun.args = list(mult = 1),
width = {{ ewid }}) +
labs(x = enquo(xcol))+
theme_classic(base_size = {{ fontsize }})+
theme(strip.background = element_blank())+
guides(x = guide_axis(angle = {{ TextXAngle }}))
} |
context("Check standarize call with formals")
test_that("Standarize call with formals primitive function", {
user <- rlang::get_expr(quote(mean(1:3, na.rm = TRUE)))
user_stand <- call_standardise_formals(user)
testthat::expect_equal(user_stand,
call("mean", x = 1:3, na.rm = TRUE))
user <- quote(mean(1:3, 0, TRUE))
user_stand <- call_standardise_formals(user)
testthat::expect_equal(user_stand,
call("mean", x = 1:3, 0, TRUE))
})
test_that("Standarize call with formals user function", {
my_func <- function(x, y, z=100, a = TRUE, b = 3.14, c = "s", ...) {x + y + z + b}
user <- rlang::get_expr(quote(my_func(x = 1, 20)))
user_stand <- gradethis:::call_standardise_formals(user,
env = rlang::env(my_func = my_func))
testthat::expect_equal(user_stand,
call("my_func", x = 1, y = 20, z = 100, a = TRUE, b = 3.14, c = "s"))
})
test_that("Standarize call with ... and kwargs", {
a <- quote(vapply(list(1:3, 4:6), mean, numeric(1), 0, TRUE))
b <- quote(vapply(list(1:3, 4:6), mean, numeric(1), trim = 0, TRUE))
c <- quote(vapply(list(1:3, 4:6), mean, numeric(1), 0, na.rm = TRUE))
d <- quote(vapply(list(1:3, 4:6), mean, numeric(1), trim = 0, na.rm = TRUE))
xa <- quote(vapply(X = list(1:3, 4:6), FUN = mean, FUN.VALUE = numeric(1), 0, TRUE, USE.NAMES = TRUE))
xb <- quote(vapply(X = list(1:3, 4:6), FUN = mean, FUN.VALUE = numeric(1), trim = 0, TRUE, USE.NAMES = TRUE))
xc <- quote(vapply(X = list(1:3, 4:6), FUN = mean, FUN.VALUE = numeric(1), 0, na.rm = TRUE, USE.NAMES = TRUE))
xd <- quote(vapply(X = list(1:3, 4:6), FUN = mean, FUN.VALUE = numeric(1), trim = 0, na.rm = TRUE, USE.NAMES = TRUE))
testthat::expect_equal(call_standardise_formals(a), xa)
testthat::expect_equal(call_standardise_formals(b), xb)
testthat::expect_equal(call_standardise_formals(c), xc)
testthat::expect_equal(call_standardise_formals(d), xd)
a <- quote(vapply(list(1:3, 4:6), mean, numeric(1), 0, USE.NAMES = TRUE, TRUE))
b <- quote(vapply(list(1:3, 4:6), mean, numeric(1), trim = 0, USE.NAMES = TRUE, TRUE))
c <- quote(vapply(list(1:3, 4:6), mean, numeric(1), 0, USE.NAMES = TRUE, na.rm = TRUE))
d <- quote(vapply(list(1:3, 4:6), mean, numeric(1), trim = 0, USE.NAMES = TRUE, na.rm = TRUE))
testthat::expect_equal(call_standardise_formals(a), xa)
testthat::expect_equal(call_standardise_formals(b), xb)
testthat::expect_equal(call_standardise_formals(c), xc)
testthat::expect_equal(call_standardise_formals(d), xd)
})
test_that("When an invalid function passed (i.e., corrupt language object)", {
user <- quote(1(a(1)))
testthat::expect_equal(
call_standardise_formals(user), user)
})
test_that("Standarize call with include_defaults = FALSE", {
library(purrr)
user <- rlang::get_expr(quote(insistently(mean,quiet = TRUE)))
user_stand <- gradethis:::call_standardise_formals(user)
user_stand_mini <- gradethis:::call_standardise_formals(user,include_defaults = FALSE)
testthat::expect_equal( user_stand_mini,
quote(insistently(f = mean, quiet = TRUE))
)
testthat::expect_equal( user_stand,
quote(insistently(f = mean,rate = rate_backoff(), quiet = TRUE))
)
}) |
library(grid)
HersheyLabel <- function(x, y=unit(.5, "npc")) {
lines <- strsplit(x, "\n")[[1]]
if (!is.unit(y))
y <- unit(y, "npc")
n <- length(lines)
if (n > 1) {
y <- y + unit(rev(seq(n)) - mean(seq(n)), "lines")
}
grid.text(lines, y=y, gp=gpar(fontfamily="HersheySans"))
}
grid.newpage()
pushViewport(viewport(clip=circleGrob()))
grid.rect(gp=gpar(fill="grey"))
HersheyLabel("push circle clipping path
rect
grey circle")
grid.newpage()
pushViewport(viewport(width=.5, height=.5, clip=TRUE))
grid.circle(r=.6, gp=gpar(fill="grey"))
HersheyLabel("push clipping rect
circle
squared circle")
grid.newpage()
pushViewport(viewport(clip=circleGrob(1:2/3, r=unit(.5, "in"))))
grid.rect(gp=gpar(fill="grey"))
popViewport()
HersheyLabel("push two circles clipping path
rect
two circles")
grid.newpage()
pushViewport(viewport(width=.5, height=.5,
clip=polygonGrob(c(.2, .4, .6, .2), c(.2, .6, .4, .1))))
grid.rect(gp=gpar(fill="grey"))
popViewport()
HersheyLabel("push clipping path
rect
grey wedge")
grid.newpage()
pushViewport(viewport(width=.5, height=.6, angle=45, clip=rectGrob()))
grid.circle(r=.6, gp=gpar(fill="grey"))
HersheyLabel("push rotated viewport
with clipping path
circle
square-sided circle")
grid.newpage()
pushViewport(viewport(clip=circleGrob(1:2/3, r=unit(.5, "in")),
gp=gpar(fill=linearGradient())))
grid.rect()
popViewport()
HersheyLabel("push clipping path
gradient on viewport
two circles (one gradient)")
grid.newpage()
pushViewport(viewport(clip=circleGrob(1:2/3, r=unit(.5, "in"))))
grid.rect(gp=gpar(fill=linearGradient()))
popViewport()
HersheyLabel("push clipping path
rect with gradient
two circles (one gradient)")
grid.newpage()
pushViewport(viewport(clip=circleGrob()))
pushViewport(viewport())
grid.rect(gp=gpar(fill="grey"))
HersheyLabel("push clipping path
push again (inherit clip path)
rect
grey circle")
grid.newpage()
pushViewport(viewport(clip=circleGrob()))
pushViewport(viewport())
pushViewport(viewport())
upViewport()
grid.rect(gp=gpar(fill="grey"))
HersheyLabel("push clipping path
push again (inherit clip path)
push again (inherit clip path)
up (restore inherited clip path)
rect
grey circle")
grid.newpage()
pushViewport(viewport(clip=circleGrob()))
grid.rect(gp=gpar(fill="grey"))
upViewport()
grid.rect(gp=gpar(fill=rgb(0,0,1,.2)))
HersheyLabel("push clipping path
grey circle
upViewport
page all (translucent) blue")
grid.newpage()
pushViewport(viewport(clip=circleGrob(), name="vp"))
grid.rect(height=.5, gp=gpar(fill="grey"))
upViewport()
downViewport("vp")
grid.rect(gp=gpar(fill=rgb(0,0,1,.2)))
HersheyLabel("push clipping path
rounded rect
upViewport
downViewport
blue (translucent) circle")
grid.newpage()
pushViewport(viewport(width=.5, height=.5, clip=TRUE))
pushViewport(viewport(clip=circleGrob()))
grid.rect(gp=gpar(fill="grey"))
upViewport()
grid.circle(r=.6, gp=gpar(fill=rgb(0,0,1,.2)))
HersheyLabel("push clipping rect
push clipping path
grey circle
upViewport
squared (translucent) blue circle")
grid.newpage()
pushViewport(viewport(clip=circleGrob()))
pushViewport(viewport(width=.5, height=.5, clip=TRUE))
grid.circle(r=.6, gp=gpar(fill="grey"))
upViewport()
grid.rect(gp=gpar(fill=rgb(0,0,1,.2)))
HersheyLabel("push clipping path
push clipping rect
squared circle
upViewport
grey (translucent) blue circle")
grid.newpage()
pushViewport(viewport(width=.5, height=.5, clip=TRUE))
grid.rect()
pushViewport(viewport(clip=circleGrob(r=.6)))
grid.rect(width=1.2, height=1.2, gp=gpar(fill=rgb(0,0,1,.2)))
HersheyLabel("push clip rect (small)
rect
push clip path (bigger)
rect (big)
blue (translucent) circle")
grid.newpage()
pushViewport(viewport(width=.5, height=.5, clip=TRUE))
grid.rect()
pushViewport(viewport(clip=circleGrob(r=.6, vp=viewport())))
grid.rect(width=1.2, height=1.2, gp=gpar(fill=rgb(0,0,1,.2)))
HersheyLabel("push clip rect (small)
rect
push clip path with viewport (bigger)
rect (big)
blue (translucent) circle")
grid.newpage()
pushViewport(viewport(clip=circleGrob()))
grid.rect(gp=gpar(fill="grey"))
HersheyLabel("push clip path
rect
grey circle
(for resizing)")
grid.newpage()
pushViewport(viewport(clip=circleGrob()))
grid.rect(gp=gpar(fill="grey"))
x <- recordPlot()
HersheyLabel("push clip path
rect
grey circle
(for recording)")
print(x)
HersheyLabel("push clip path
rect
record plot
replay plot
grey circle")
grid.newpage()
pushViewport(viewport(clip=circleGrob()))
grid.rect(gp=gpar(fill="grey"))
HersheyLabel("push clip path
rect
grey circle
(for grid.grab)")
x <- grid.grab()
grid.newpage()
grid.draw(x)
HersheyLabel("push clip path
rect
grey circle
grid.grab
grid.draw
grey circle")
grid.newpage()
path <- circleGrob(r=.6,
vp=viewport(width=.5, height=.5, clip=TRUE))
pushViewport(viewport(clip=path))
grid.rect(gp=gpar(fill="grey"))
popViewport()
HersheyLabel("clipping path is circle with viewport with clip=TRUE
AND circle is larger than viewport
BUT viewport clipping is ignored within clipping path
SO clipping path is just circle
draw rect
result is grey circle")
grid.newpage()
path <- circleGrob(vp=viewport(clip=rectGrob(width=.8, height=.8)))
pushViewport(viewport(clip=path))
grid.rect(gp=gpar(fill="grey"))
popViewport()
HersheyLabel("clip path is circle with viewport with clip path
viewport clip path is rect that squares off the circle
BUT clip paths are ignored within clipping path (with warning)
SO clipping path is just circle
draw rect
result is grey circle")
grid.newpage()
path <- circleGrob(vp=viewport(mask=rectGrob(width=.8, height=.8,
gp=gpar(fill="black"))))
pushViewport(viewport(clip=path))
grid.rect(gp=gpar(fill="grey"))
popViewport()
HersheyLabel("clip path is circle with viewport with mask
viewport mask is rect that squares off the circle
BUT masks are ignored within clipping path (with warning)
SO clipping path is just circle
draw rect
result is grey circle")
grid.newpage()
path <- circleGrob(vp=viewport(mask=rectGrob(width=.8, height=.8,
gp=gpar(fill="black"))))
pushViewport(viewport(clip=path, name="test"))
upViewport()
downViewport("test")
grid.rect(gp=gpar(fill="grey"))
popViewport()
HersheyLabel("same as previous test
EXCEPT that push viewport then pop then down
(and only push should warn)
draw rect
result is grey circle")
grid.newpage()
g <- gTree(cl="test")
makeContent.test <- function(x) {
setChildren(x, gList(rectGrob(gp=gpar(fill="grey"),
vp=viewport(clip=circleGrob()))))
}
grid.draw(g)
HersheyLabel("custom grob class with makeContent() method
makeContent() adds rectangle with viewport
viewport has circle clip path
result is grey circle")
grid.newpage()
path <- gTree(cl="test")
makeContent.test <- function(x) {
setChildren(x, gList(circleGrob()))
}
pushViewport(viewport(clip=path))
grid.rect(gp=gpar(fill="grey"))
popViewport()
HersheyLabel("push viewport with clip path
clip path is grob with makeContent() method
makeContent() adds circle
draw rect
result is grey circle")
grid.newpage()
pushViewport(viewport(clip=circleGrob()))
grid.rect(gp=gpar(fill="grey"))
x <- recordPlot()
HersheyLabel("push circle clipping path
rect
grey circle
(for save(recordPlot()))")
f <- tempfile()
saveRDS(x, file=f)
grid.newpage()
y <- readRDS(f)
replayPlot(y)
HersheyLabel("push circle clipping path
rect
grey circle
saveRDS(recordPlot())
replayPlot(readRDS())")
grid.newpage()
tg <- textGrob("testing", gp=gpar(fontface="bold", cex=4))
pushViewport(viewport(clip=tg))
grid.rect(gp=gpar(fill="grey"))
grid.rect(width=.1, gp=gpar(fill="2"))
popViewport()
HersheyLabel("clipping path from text
grey rect clipped to text
thin red rect (black border) also clipped to text", y=.9)
grid.newpage()
gt <- gTree(children=gList(circleGrob(),
textGrob("testing", gp=gpar(fontface="bold", cex=4)),
rectGrob(width=.8, height=.5)))
pushViewport(viewport(clip=as.path(gt, rule="evenodd")))
grid.rect(gp=gpar(fill="grey"))
grid.rect(width=.1, gp=gpar(fill="2"))
popViewport()
HersheyLabel("clipping path based on circle and text and rect
with even-odd rule
draw large grey rect and thin red rect
both clipped to text and space between circle and rect
(PDF will NOT include text in clipping path", y=.85)
grid.newpage()
gt <- gTree(children=gList(textGrob("testing", gp=gpar(fontface="bold", cex=4)),
circleGrob(),
rectGrob(width=.8, height=.5)))
pushViewport(viewport(clip=as.path(gt, rule="evenodd")))
grid.rect(gp=gpar(fill="grey"))
grid.rect(width=.1, gp=gpar(fill="2"))
popViewport()
HersheyLabel("clipping path based on text and circle and rect
with even-odd rule
draw large grey rect and thin red rect
both clipped to text and space between circle and rect
(PDF will ONLY include text in clipping path", y=.85)
grid.newpage()
for (i in 1:65) {
pushViewport(viewport(clip=circleGrob()))
grid.rect(gp=gpar(fill="grey"))
HersheyLabel(paste0("viewport ", i, " with clip path
result is grey circle"))
upViewport()
}
grid.newpage()
grid.text("testing", gp=gpar(col="grey", cex=3))
path <- circleGrob(r=.05, gp=gpar(fill=NA))
grid.draw(path)
pushViewport(viewport(clip=path))
grid.text("testing", gp=gpar(cex=3))
popViewport()
HersheyLabel("text clipped by circle", y=.8)
grid.newpage()
grid.raster(matrix(c(.5, 1, 1, .5), nrow=2),
width=.2, height=.2,
interpolate=FALSE)
path <- circleGrob(r=.05, gp=gpar(fill=NA))
grid.draw(path)
pushViewport(viewport(clip=path))
grid.raster(matrix(c(0:1, 1:0), nrow=2),
width=.2, height=.2,
interpolate=FALSE)
popViewport()
HersheyLabel("raster clipped by circle", y=.8) |
permGamma = function(target, dataset, xIndex, csIndex, wei = NULL, univariateModels = NULL , hash = FALSE, stat_hash = NULL,
pvalue_hash = NULL, threshold = 0.05, R = 999) {
pvalue = log(1)
stat = 0;
csIndex[which(is.na(csIndex))] = 0;
thres <- threshold * R + 1
if( hash ) {
csIndex2 = csIndex[which(csIndex!=0)]
csIndex2 = sort(csIndex2)
xcs = c(xIndex,csIndex2)
key = paste(as.character(xcs) , collapse=" ");
if ( !is.null(stat_hash[key]) ) {
stat = stat_hash[key];
pvalue = pvalue_hash[key];
results <- list(pvalue = pvalue, stat = stat, stat_hash=stat_hash, pvalue_hash=pvalue_hash);
return(results);
}
}
if ( !is.na( match(xIndex, csIndex) ) ) {
if( hash ) {
stat_hash[key] <- 0;
pvalue_hash[key] <- 1;
}
results <- list(pvalue = 1, stat = 0, stat_hash=stat_hash, pvalue_hash=pvalue_hash);
return(results);
}
if( any(xIndex < 0) || any(csIndex < 0) ) {
message(paste("error in testIndPois : wrong input of xIndex or csIndex"))
results <- list(pvalue = pvalue, stat = stat, stat_hash=stat_hash, pvalue_hash=pvalue_hash);
return(results);
}
xIndex = unique(xIndex);
csIndex = unique(csIndex);
x = dataset[ , xIndex];
cs = dataset[ , csIndex];
if ( length(cs)!=0 ) {
if ( is.null(dim(cs)[2]) ) {
if ( identical(x, cs) ) {
if ( hash ) {
stat_hash[key] <- 0;
pvalue_hash[key] <- 1;
}
results <- list(pvalue = 1, stat = 0, stat_hash=stat_hash, pvalue_hash=pvalue_hash);
return(results);
}
} else {
for (col in 1:dim(cs)[2]) {
if ( identical(x, cs[, col]) ) {
if ( hash ) {
stat_hash[key] <- 0;
pvalue_hash[key] <- 1;
}
results <- list(pvalue = 1, stat = 0, stat_hash=stat_hash, pvalue_hash=pvalue_hash);
return(results);
}
}
}
}
if (length(cs) == 0) {
fit2 = glm(target ~ x, family = Gamma(link = log), weights = wei, model = FALSE)
dev2 <- fit2$deviance
stat <- fit2$null.deviance - dev2
if (stat > 0) {
step <- 0
j <- 1
n <- length(target)
while (j <= R & step < thres ) {
xb <- sample(x, n)
bit2 <- glm(target ~ xb, family = Gamma(link = log), weights = wei, model = FALSE)
step <- step + ( bit2$deviance < dev2 )
j <- j + 1
}
pvalue <- log( (step + 1) / (R + 1) )
} else pvalue <- log(1)
} else {
fit1 = glm(target ~ cs, family = Gamma(link = log), weights = wei, model = FALSE)
fit2 = glm(target ~ cs + x, family = Gamma(link = log), weights = wei, model = FALSE)
dev2 <- fit2$deviance
stat = fit1$deviance - dev2
if ( stat > 0 ) {
step <- 0
j <- 1
n <- length(target)
while (j <= R & step < thres ) {
xb <- sample(x, n)
bit2 <- glm(target ~ cs + xb, family = Gamma(link = log), weights = wei, model = FALSE)
step <- step + ( bit2$deviance < dev2 )
j <- j + 1
}
pvalue <- log( (step + 1) / (R + 1) )
} else pvalue <- log(1)
}
if ( is.na(pvalue) || is.na(stat) ) {
pvalue = log(1)
stat = 0;
} else {
if ( hash ) {
stat_hash[key] <- stat;
pvalue_hash[key] <- pvalue;
}
}
results <- list(pvalue = pvalue, stat = stat, stat_hash=stat_hash, pvalue_hash=pvalue_hash);
return(results);
} |
phi.mult.it<-function(beta.0,y,Xk,M,u1,u2){
D=nrow(y)
k=ncol(y)
d=nrow(u1)
t=D/d
theta.ol=matrix(0,D,(k-1))
prmul=prmu.time(M,Xk,beta.0,u1,u2)
theta=prmul[[3]]
for (i in 1:(k-1)){
for (j in 1:D){
if ((y[j,i]==0) |(y[j,k]==0)) {theta.ol[j,i]=log(y[j,i]+1/(y[j,k]+1))} else {theta.ol[j,i]=log(y[j,i]/y[j,k])}}}
dif=(theta-theta.ol)^2
phi1.new=colSums(dif)/(2*(D-1))
return(phi.0=phi1.new)
}
initial.values<-function(d,pp,datar,mod){
Xk=datar$Xk
M=datar$n
resp=datar$y
k=ncol(resp)
D=nrow(resp)
beta=beta.new=list()
for (i in 1:(k-1)){
dep=cbind(round(resp[,i]),round(rowSums(resp)-resp[,i]))
mod1=glm(dep ~ (Xk[[i]])-1,family=binomial)
tt=coef(mod1)
beta[[i]]=as.matrix(tt)
beta.new[[i]]=(beta[[i]])
}
u=list()
for (i in 1:(k-1)){
u[[i]]=as.matrix((1:(pp[i]+1)))
rownames(beta.new[[i]])=u[[i]]}
if (mod==1){
phi.new=phi.mult(beta.new,datar$y,datar$Xk,datar$n)
phi.new=as.vector(phi.new)
u.new=rep(0.5,((k-1)*D))
dim(u.new)=c(D,k-1)
result=list(beta.0=beta.new,phi.0=phi.new,u.0=u.new)}
if (mod==2){
u1.new=rep(0.01,((k-1)*d))
dim(u1.new)=c(d,k-1)
u2.new=rep(0.01,((k-1)*D))
dim(u2.new)=c(D,k-1)
phi1.new=phi.mult.it(beta.new,resp,Xk,M,u1.new,u2.new)
phi2.new=phi1.new
result=list(beta.0=beta.new,phi1.0=phi1.new,phi2.0=phi2.new,u1.0=u1.new,u2.0=u2.new)}
if (mod==3) {
u1.new=rep(0.01,((k-1)*d))
dim(u1.new)=c(d,k-1)
u2.new=rep(0.01,((k-1)*D))
dim(u2.new)=c(D,k-1)
resul=phi.mult.ct(beta.new,resp,Xk,M,u1.new,u2.new)
phi1.new=resul[[1]]
phi2.new=phi1.new
rho=resul[[2]]
result=list(beta.0=beta.new,phi1.0=phi1.new,phi2.0=phi2.new,u1.0=u1.new,u2.0=u2.new,rho.0=rho) }
return(result)
}
prmu.time<-function(M,Xk,beta,u1,u2){
k=ncol(u1)+1
d=nrow(u1)
D=nrow(u2)
t=D/d
pr=matrix(1,D,k)
theta=matrix(0,D,(k-1))
mu=matrix(0,D,k)
salida=list()
u11=matrix(0,D,(k-1))
jj=1
for (i in 1:d){
for(j in 1:t){
u11[jj,]=u1[i,]
jj=jj+1}}
for (i in 1:(k-1)){
theta[,i]=Xk[[i]]%*%beta[[i]]+u2[,i]+u11[,i]}
suma=rowSums(exp(theta))
pr[,k]=(1+suma)^(-1)
for (i in 1:(k-1)){
pr[,i]=pr[,k]*exp(theta[,i])}
for (j in 1:D){
mu[j,]=M[j]*pr[j,]}
mu=mu[,1:k-1]
est=list(estimated.probabilities=pr,mean=mu,eta=theta)
return(est)}
Fbetaf.it<- function(sigmap,X,Z,phi1,phi2,y,mu,u1,u2){
d=nrow(u1)
D=nrow(u2)
k=ncol(u1)+1
t=D/d
A_d=list()
B_d=list()
B2_d=list()
C_d=list()
D_d=list()
S_beta_d=list()
S_u2_d=rep(0,D*(k-1))
dim(S_u2_d)=c(D,(k-1))
S_u1=matrix(0,d,(k-1))
salida=list()
for(i in 1:D){
S_beta_d[[i]]=crossprod((X[[i]]),(y[i,]-mu[i,]))
S_u2_d[i,]=(y[i,]-mu[i,])
}
S_beta=add(S_beta_d)
S_u2=S_u2_d-(u2/(matrix(rep(phi2,D),D,(k-1),byrow=TRUE)))
j=1
for (i in 1:d){
S_u1[i,]=colSums(S_u2_d[j:(j+t-1),])
j=j+t}
S_u1=S_u1-(u1/(matrix(rep(phi1,d),d,(k-1),byrow=TRUE)))
for(i in 1:D){
A_d[[i]]=crossprod((X[[i]]),sigmap[[i]])%*%X[[i]]
B_d[[i]]=crossprod((X[[i]]),sigmap[[i]])
D_d[[i]]=crossprod((Z[[i]]),(sigmap[[i]]))
}
A=as(add(A_d[1:D]),"sparseMatrix")
B=as(do.call(cbind,B_d), "sparseMatrix")
B2_d=addtolist(B_d,t,d)
B2=as(do.call(cbind,B2_d),"sparseMatrix")
DD=as(do.call(cbind,D_d),"sparseMatrix")
D2_d=addtolist(D_d,t,d)
D2=as(do.call(cbind,D2_d),"sparseMatrix")
C2_d=addtolist(D_d,t,d)
C2=do.call(cbind,C2_d)
C22=addtomatrix(C2,d,t,k)
F11=as(C22,"sparseMatrix")+as(diag(rep((1/phi1),d)),"sparseMatrix")
F22=DD+as(diag(rep((1/phi2),D)),"sparseMatrix")
Fuu=as(rbind(cbind(F11,as(t(as(D2,"matrix")),"sparseMatrix")),cbind(D2,F22)),"sparseMatrix")
Fuui=as(solve(Fuu),"sparseMatrix")
int=as(solve(F22),"sparseMatrix")
Fuubb=rbind(as(t(as(B2,"matrix")),"sparseMatrix"),as(t(as(B,"matrix")),"sparseMatrix"))
Fbb=as(solve(A-t(as(Fuubb,"matrix"))%*%Fuui%*%(Fuubb)),"sparseMatrix")
Fub=-1*Fbb%*%t(as(Fuubb,"matrix"))%*%Fuui
Fu1u1=solve(F11-t(as(D2,"matrix"))%*%int%*%D2)
Fu1u2=-1*Fu1u1%*%t(as(D2,"matrix"))%*%int
Fu2u2=int+int%*%D2%*%Fu1u1%*%t(as(D2,"matrix"))%*%int
Fiuu=rbind(cbind(Fu1u1,Fu1u2),cbind(t(as(Fu1u2,"matrix")),Fu2u2))
Fuu=Fiuu+Fiuu%*%Fuubb%*%Fbb%*%t(as(Fuubb,"matrix"))%*%Fiuu
F=rbind(cbind(Fbb,(Fub)),cbind(t(as(Fub,"matrix")),Fuu))
S_u11=matrix(t(S_u1),d*(k-1),1)
S_u22=matrix(t(S_u2),D*(k-1),1)
S=rbind(S_beta,rbind(S_u11,S_u22))
rm(A,B,B2_d,B2,DD,D2_d,D2,C2_d,C2,C22, A_d,B_d,F11,F22,Fuu,Fuui,int,Fbb,Fub,Fu1u1,Fu1u2,Fu2u2,Fiuu)
F=as(F,"matrix")
fisher=list(F=F,S=S)
return(fisher)
}
phi.direct.it<- function(pp,sigmap,X,phi1,phi2,u1,u2){
d=nrow(u1)
D=nrow(u2)
t=D/d
k=ncol(u1)+1
r=sum(pp+1)
Vd=list()
qq=matrix(0,r,r)
Ld=list()
sigmapt=list()
u=rep(t,d)
mdcum=cumsum(u)
a=list()
a[[1]]=1:t
for(i in 2:d){
a[[i]] <- (mdcum[i-1]+1):mdcum[i]}
Xd=list()
for (i in 1:d){
Xd[[i]]=X[a[[i]]]
Xd[[i]]=do.call(rbind,Xd[[i]])
}
j=1
Iq1=matrix(rep(diag(rep(1,(k-1))),t),(t*(k-1)),(k-1),byrow=TRUE)
for (i in 1:d){
phi22=diag(1/phi2)
a=matrix(0,(k-1),(k-1))
for (l in 1:t){
sigmapt[[l]]=sigmap[[j]]-sigmap[[j]]%*%solve(sigmap[[j]]+phi22)%*%sigmap[[j]]
a=a+sigmapt[[l]]
j=j+1}
Ld[[i]]=do.call("blockdiag",sigmapt)
Vd[[i]]=Ld[[i]]-Ld[[i]]%*%Iq1%*%solve(diag(1/phi1)+a)%*%t(Iq1)%*%Ld[[i]]
qq=qq+crossprod((Xd[[i]]),(Vd[[i]]))%*%Xd[[i]]
}
qq=as(solve(qq),"sparseMatrix")
Xt=as(do.call(rbind,Xd),"sparseMatrix")
W=bdiag(sigmap)
V1=list()
V2=list()
AA=list()
for(i in 1:D){
AA[[i]]=matrix(0,(k-1),(k-1)*D)
for (j in 1:(k-1)){
AA[[i]][j,((j-1)*D+i)]=1}
}
Z2=as(do.call(rbind,AA),"sparseMatrix")
AA=list()
for(i in 1:d){
AA[[i]]=matrix(0,t*(k-1),(k-1)*d)
kk=1
for (j in 1:(t*(k-1))){
AA[[i]][j,((kk-1)*d+i)]=1
kk=kk+1
if (kk>(k-1)) {kk=k-1}}
}
Z1=as(do.call(rbind,AA),"sparseMatrix")
for (i in 1:(k-1)){
V1[[i]]=(1/phi1[i])*diag(1,d)
V2[[i]]=(1/phi2[[i]])*diag(1,D)}
T1=as(solve(t(as(Z1,"matrix"))%*%W%*%Z1+bdiag(V1)),"sparseMatrix")
T2=as(solve(t(as(Z2,"matrix"))%*%W%*%Z2+bdiag(V2)),"sparseMatrix")
Treml1=T1+as(T1%*%t(as(Z1,"matrix"))%*%W%*%Xt%*%qq%*%t(as(Xt,"matrix"))%*%W%*%Z1%*%T1,"sparseMatrix")
Treml2=T2+as(T2%*%t(as(Z2,"matrix"))%*%W%*%Xt%*%qq%*%t(as(Xt,"matrix"))%*%W%*%Z2%*%T2,"sparseMatrix")
j=1
Treml1=as(Treml1,"matrix")
Treml2=as(Treml2,"matrix")
tau=list()
Trmll=list()
nr=nrow(Treml1)
for (i in 1:(k-1)){
Trmll[[i]]=Treml1[j:(j+(nr/(k-1))-1),j:(j+(nr/(k-1))-1)]
tau[i]=sum(diag(Trmll[[i]]))/phi1[i]
j=j+(nr/(k-1))
}
tau=do.call(rbind,tau)
tau=as.vector(tau)
phi1.new=diag((t(u1)%*%u1)/diag(d-tau))
tau=list()
Trmll=list()
nr=nrow(Treml2)
j=1
for (i in 1:(k-1)){
Trmll[[i]]=Treml2[j:(j+(nr/(k-1))-1),j:(j+(nr/(k-1))-1)]
tau[i]=sum(diag(Trmll[[i]]))/phi2[i]
j=j+(nr/(k-1))
}
tau=do.call(rbind,tau)
tau=as.vector(tau)
phi2.new=diag((t(u2)%*%u2)/diag((d*t)-tau))
rm(Trmll,tau,Treml2,Treml1, T1, T2,V1,V2, Z1, Z2,Xt,W,Vd,Ld,qq)
resul=list(phi1.new=phi1.new,phi2.new=phi2.new)
}
sPhikf.it<- function(d,t,pp,sigmap,X,eta,phi1,phi2){
k=ncol(eta)+1
r=sum(pp+1)
Vd=list()
F=matrix(0,(2*(k-1)),(2*(k-1)))
qq=matrix(0,r,r)
Ld=list()
sigmapt=list()
u=rep(t,d)
mdcum=cumsum(u)
a=list()
a[[1]]=1:t
for(i in 2:d){
a[[i]] <- (mdcum[i-1]+1):mdcum[i]}
Xd=list()
for (i in 1:d){
Xd[[i]]=X[a[[i]]]
Xd[[i]]=do.call(rbind,Xd[[i]])
}
thetaa=list()
j=1
for (i in 1:d){
thetaa[[i]]=matrix(t(eta[(j:(j+t-1)),]),((k-1)*t),1,byrow=TRUE)
j=j+t}
j=1
Iq1=matrix(rep(diag(rep(1,(k-1))),t),(t*(k-1)),(k-1),byrow=TRUE)
for (i in 1:d){
phi22=diag(1/phi2)
a=matrix(0,(k-1),(k-1))
for (l in 1:t){
sigmapt[[l]]=sigmap[[j]]-sigmap[[j]]%*%solve(sigmap[[j]]+phi22)%*%sigmap[[j]]
a=a+sigmapt[[l]]
j=j+1}
Ld[[i]]=do.call("blockdiag",sigmapt)
Vd[[i]]=Ld[[i]]-Ld[[i]]%*%Iq1%*%solve(diag(1/phi1)+a)%*%t(Iq1)%*%Ld[[i]]
qq=qq+crossprod((Xd[[i]]),(Vd[[i]]))%*%Xd[[i]]}
qq=solve(qq)
S1=rep(0,2*(k-1))
S2=rep(0,2*(k-1))
delta11=list()
sum1=list()
sum2=list()
sum3=list()
sum4=list()
for (i in 1:(2*(k-1))){
sum1[[i]]=matrix(0,1,r)
sum2[[i]]=matrix(0,r,1)
sum3[[i]]=matrix(0,1,r)
sum4[[i]]=matrix(0,r,r)}
o=1
for(i in 1:2){
for (j in 1:(k-1)){
delta=matrix(0,(k-1),(k-1))
for (ll in 1:(k-1)){
if (ll==j) {delta[ll,ll]=1}}
for (ll in 1:t){
delta11[[ll]]=delta
}
if (i==1) {Vakd=Iq1%*%delta%*%t(Iq1)}
if (i==2) {Vakd=do.call("blockdiag",delta11)}
for (l in 1:d){
S1[o]=S1[o]+sum(diag((Vd[[l]]-Vd[[l]]%*%Xd[[l]]%*%qq%*%t(Xd[[l]])%*%Vd[[l]])%*%Vakd))
S2[o]=S2[o]+t(thetaa[[l]])%*%Vd[[l]]%*%Vakd%*%(Vd[[l]])%*%thetaa[[l]]
sum1[[o]]=sum1[[o]]+t(thetaa[[l]])%*%Vd[[l]]%*%Vakd%*%(Vd[[l]])%*%Xd[[l]]
sum2[[o]]=sum2[[o]]+t(Xd[[l]])%*%Vd[[l]]%*%thetaa[[l]]
sum3[[o]]=sum3[[o]]+t(thetaa[[l]])%*%Vd[[l]]%*%Xd[[l]]
sum4[[o]]=sum4[[o]]+t(Xd[[l]])%*%Vd[[l]]%*%Vakd%*%(Vd[[l]])%*%Xd[[l]]}
o=o+1}}
tt=rep(0,(2*(k-1)))
for(i in 1:(2*(k-1))){
tt[i]=-2*(sum1[[i]]%*%qq%*%sum2[[i]])+sum3[[i]]%*%qq%*%sum4[[i]]%*%qq%*%sum2[[i]]}
S2=S2+tt
S=-0.5*S1+0.5*S2
F1=rep(0,((k-1)*(k-1)*4))
F2=rep(0,((k-1)*(k-1)*4))
F3=rep(0,((k-1)*(k-1)*4))
aa=1
o=1
for (i in 1:2){
for(ii in 1:(k-1)){
for(j in 1:2){
for (jj in 1:(k-1)){
delta=matrix(0,(k-1),(k-1))
for (ll in 1:(k-1)){
if (ll==ii) {delta[ll,ll]=1}}
for (ll in 1:t){
delta11[[ll]]=delta}
if (i==1) {Vakd1=Iq1%*%delta%*%t(Iq1)}
if (i==2) {Vakd1=do.call("blockdiag",delta11)}
delta=matrix(0,(k-1),(k-1))
for (ll in 1:(k-1)){
if (ll==jj) {delta[ll,ll]=1}}
for (ll in 1:t){
delta11[[ll]]=delta
}
if (j==1) {Vakd2=Iq1%*%delta%*%t(Iq1)}
if (j==2) {Vakd2=do.call("blockdiag",delta11)}
for (l in 1:d){
F1[aa]=F1[aa]+0.5*sum(diag(Vd[[l]]%*%Vakd1%*%Vd[[l]]%*%Vakd2))
F2[aa]=F2[aa]+0.5*sum(diag(Vd[[l]]%*%Vakd1%*%Vd[[l]]%*%Xd[[l]]%*%qq%*%t(Xd[[l]])%*%Vd[[l]]%*%Vakd2))
F3[aa]=F3[aa]+0.5*sum(diag(Vd[[l]]%*%Xd[[l]]%*%qq%*%sum4[[o]]%*%qq%*%t(Xd[[l]])%*%Vd[[l]]%*%Vakd2))}
aa=aa+1
}}
o=o+1}}
F=F1+2*F2+F3
FF=list()
FFF=list()
o=1
for (i in 1:2){
for (j in 1:2){
FF[[j]]=matrix(F[o:(o+(k-1)*(k-1)-1)],(k-1),(k-1))
o=o+(k-1)*(k-1)}
FFF[[i]]=do.call(cbind,FF)}
F=do.call(rbind,FFF)
F=solve(F)
S=matrix(t(S),4,1)
A=F%*%S
rm(sum1,sum2,sum3,sum4, Vakd1,Vakd2, Vakd, S1,S2,Xd,Vd,Ld,sigmapt,thetaa, Iq1)
score.F=list(S=S,F=F)
return(score.F)
}
modelfit2<-function(d,t,pp,Xk,X,Z,initial,y,M,MM){
D=d*t
beta.new=initial[[1]]
phi1.new=initial[[2]]
phi2.new=initial[[3]]
u1.new=initial[[4]]
u2.new=initial[[5]]
k=ncol(u1.new)+1
maxiter1=100
maxiter2=100
iter1=0
eps=1e-3
phi1.prim=phi1.new
phi2.prim=phi2.new
p=sum(pp+1)
cont=0
ii=1
ll=0
mm=1
aviso=0
Fk=matrix(0,(k-1),(k-1))
while (iter1<maxiter1) {
phi1.old=phi1.new
phi2.old=phi2.new
iter2=0
p1=matrix(1,p,(k-1))
p2=matrix(1,D,(k-1))
while(iter2<maxiter2 & mm>eps){
beta.old=beta.new
u1.old=u1.new
u2.old=u2.new
prmul=prmu.time(M,Xk,beta.old,u1.old,u2.old)
theta=prmul[[3]]
pr=prmul[[1]]
mu=prmul[[2]]
sigmap=wmatrix(M,pr)
for (i in 1:D){
comp=det(sigmap[[i]])
if (is.na(comp)){cont=1}
if (is.na(comp)==FALSE & (abs(comp))<0.000001 ) {cont=1}}
if (cont==0){
inversaFbeta=Fbetaf.it(sigmap,X,Z,phi1.old,phi2.old,y,mu,u1.old,u2.old)
F=inversaFbeta[[1]]
S=inversaFbeta[[2]]
rm(inversaFbeta)
beta.u.old=rbind(do.call(rbind,beta.old),rbind(matrix(t(u1.old),d*(k-1),1),matrix(t(u2.old),D*(k-1),1)))
beta.u.new=beta.u.old+F%*%S
p1=(beta.u.new-beta.u.old)/beta.u.old
mm=max(abs(p1))
if (mm<eps){iter2=maxiter2} else {iter2=iter2+1}
ucum=cumsum(pp+1)
beta_new=list()
beta.new[[1]]=as.matrix(beta.u.new[(1:ucum[1]),1])
for (i in 2:(k-1)){
beta.new[[i]]=as.matrix(beta.u.new[((ucum[i-1]+1):ucum[i]),1])
}
u1.new=matrix(beta.u.new[(ucum[k-1]+1):(ucum[k-1]+d*(k-1)),],d,k-1,byrow=TRUE)
u2.new=matrix(beta.u.new[(ucum[k-1]+1+d*(k-1)):nrow(beta.u.new),],D,k-1,byrow=TRUE)}
if (ii==1) {
beta.prim=beta.new
F.prim=F
u1.prim=u1.new
u2.prim=u2.new
}
if (cont==1){iter2=maxiter2}
}
if (cont==0){
prmul=prmu.time(M,Xk,beta.new,u1.new,u2.new)
theta=prmul[[3]]
pr=prmul[[1]]
mu=prmul[[2]]
rm(prmul)
sigmap=wmatrix(M,pr)
ii=ii+1
phi.old=rbind(data.matrix(phi1.old),data.matrix(phi2.old))
resul=phi.direct.it(pp,sigmap,X,phi1.old,phi2.old,u1.new,u2.new)
phi1.new=resul[[1]]
phi2.new=resul[[2]]
phi.new=matrix(cbind(phi1.new,phi2.new),2*(k-1),1)
phi.new=data.matrix(phi.new)
p3=(phi.new-phi.old)/phi.old
phi1.new=phi.new[1:(k-1),]
phi2.new=phi.new[k:(2*(k-1)),]
mmm=max(abs(c(p1,p3)))
if (min(phi.new)<0.001){
aviso=1
ll=ll+1
phi1.new=phi1.prim
phi2.new=phi2.prim
u1.new=u1.prim
u2.new=u2.prim
if (ll>1)
{
phi1.new=phi1.prim
phi2.new=phi2.prim
iter1=maxiter1}
iter1=iter1+1
}
if (aviso==0)
{mmm=max(abs(c(p1,p3)))
mm=1}
else
{mmm=max(abs(p3))
mm=eps/10}
if (mmm>eps){iter1=iter1+1} else {iter1=maxiter1}}
if (cont==1) {
iter1=maxiter1}
}
prmul=prmu.time(MM,Xk,beta.new,u1.new,u2.new)
mu=prmul[[2]]
pr=prmul[[1]]
colnames(mu)=paste("Yest",1:(k-1),sep="")
b2=do.call(rbind,beta.new)
cii=ci(b2,F[1:(sum(pp+1)),1:(sum(pp+1))])
resulbeta=cbind(Beta=b2,Std.dev=cii[[1]],p.value=cii[[2]])
colnames(resulbeta)=c("Estimate","Std.Error","p.value")
u=list()
for (i in 1:(k-1)){
u[[i]]=as.matrix(colnames(Xk[[i]]))
u[[i]][1]="Intercept"}
u=do.call(rbind,u)
rownames(resulbeta)=u
resulbeta
sk_F=sPhikf.it(d,t,pp,sigmap,X,theta,phi1.new,phi2.new)
Fk=sk_F[[2]]
phi.new=(rbind(as.matrix(phi1.new),as.matrix(phi2.new)))
cii=ci(phi.new,Fk)
resulphi=cbind(phi.est=phi.new,Std.dev=cii[[1]],p.value=cii[[2]])
colnames(resulphi)=c("Estimate","Std.Error","p.value")
result=list()
result=list(Estimated.probabilities=pr,u1=u1.new,u2=u2.new,mean=mu,warning1=cont,Fisher.information.matrix.beta=F,Fisher.information.matrix.phi=Fk,beta.Stddev.p.value=resulbeta,phi.Stddev.p.value=resulphi,warning2=aviso)
class(result)="mme"
return(result)
}
msef.it<-function(p,X,result,M,MM){
pr=result$Estimated.probabilities
k=ncol(pr)
phi1.old=(result[[9]][1:(k-1),1])
phi2.old=(result[[9]][k:(2*k-2),1])
F=result$Fisher.information.matrix.phi
D=nrow(MM)
d=nrow(result$u1)
t=D/d
r=sum(p+1)
Vd=list()
qq=matrix(0,(r),(r))
Ld=list()
sigmap=wmatrix(MM,pr)
sigmapMM=wmatrix(M,pr)
sigmapt=list()
u=rep(t,d)
mdcum=cumsum(u)
a=list()
a[[1]]=1:t
for(i in 2:d){
a[[i]] <- (mdcum[i-1]+1):mdcum[i]}
Xd=list()
Xaa=list()
for (i in 1:d){
Xaa[[i]]=X[a[[i]]]
Xd[[i]]=do.call(rbind,Xaa[[i]])
}
j=1
Iq1=matrix(rep(diag(rep(1,(k-1))),t),(t*(k-1)),(k-1),byrow=TRUE)
for (i in 1:d){
phi22=diag(1/phi2.old)
a=matrix(0,(k-1),(k-1))
for (l in 1:t){
sigmapt[[l]]=sigmapMM[[j]]-sigmapMM[[j]]%*%solve(sigmapMM[[j]]+phi22)%*%sigmapMM[[j]]
a=a+sigmapt[[l]]
j=j+1}
Ld[[i]]=do.call("blockdiag",sigmapt)
Vd[[i]]=Ld[[i]]-Ld[[i]]%*%Iq1%*%solve(diag(1/phi1.old)+a)%*%t(Iq1)%*%Ld[[i]]
qq=qq+crossprod((Xd[[i]]),(Vd[[i]]))%*%Xd[[i]]
}
qq=solve(qq)
Xt=do.call(rbind,Xd)
W=bdiag(sigmapMM)
H=bdiag(sigmap)
phi22=list()
for (i in 1:t){
phi22[[i]]=diag(phi2.old)}
phi22=bdiag(phi22)
z2=diag(rep(1,(t*(k-1))))
T11=list()
T22=list()
T12=list()
Z1i=list()
TT=list()
for (i in 1:d){
T11[[i]]=as(diag(phi1.old)-diag(phi1.old)%*%t(Iq1)%*%Vd[[i]]%*%Iq1%*%diag(phi1.old),"sparseMatrix")
T12[[i]]=as(-diag(phi1.old)%*%t(Iq1)%*%Vd[[i]]%*%z2%*%phi22,"sparseMatrix")
T22[[i]]=as(phi22-phi22%*%t(z2)%*%Vd[[i]]%*%z2%*%phi22,"sparseMatrix")
TT[[i]]=as(Iq1%*%T11[[i]]%*%t(Iq1)+Iq1%*%T12[[i]]%*%t(as(z2,"matrix"))+z2%*%t(as(T12[[i]],"matrix"))%*%t(Iq1)+z2%*%t(as(T22[[i]],"matrix"))%*%t(as(z2,"matrix")),"sparseMatrix")
Z1i[[i]]=as(Iq1,"sparseMatrix")}
pro=list()
prod=list()
pro2=list()
pro22=list()
prod2=list()
jj=1
for (i in 1:d){
for (j in 1:t){
pro[[jj]]=as(t(cbind(matrix(0,(k-1),(j-1)*(k-1)),sigmap[[jj]],matrix(0,(k-1),(t-j)*(k-1)))),"sparseMatrix")
pro22[[j]]=as(sigmapMM[[jj]]%*%X[[jj]],"sparseMatrix")
jj=jj+1}
pro2[[i]]=do.call(rbind,pro22)}
G1=list()
G11=list()
G12=list()
G22=list()
A21=list()
A22=list()
G2=list()
jj=1
for (i in 1:d){
for (l in 1:t){
G11[[jj]]=as(sigmap[[jj]]%*%(diag(phi1.old)-diag(phi1.old)%*%t(Iq1)%*%Vd[[i]]%*%Iq1%*%diag(phi1.old))%*%t(as(sigmap[[jj]],"matrix")),"sparseMatrix")
G12[[jj]]=as(-sigmap[[jj]]%*%diag(phi1.old)%*%t(Iq1)%*%Vd[[i]]%*%z2%*%phi22%*%(pro[[jj]]),"sparseMatrix")
G22[[jj]]=as(t(as(pro[[jj]],"matrix"))%*%(phi22-phi22%*%t(as(z2,"matrix"))%*%Vd[[i]]%*%z2%*%phi22)%*%pro[[jj]],"sparseMatrix")
A21[[jj]]=as(sigmap[[jj]]%*%X[[jj]],"sparseMatrix")
A22[[jj]]=as(t(as(pro[[jj]],"matrix"))%*%TT[[i]]%*%(pro2[[i]]),"sparseMatrix")
G2[[jj]]=as((A21[[jj]]-A22[[jj]])%*%qq%*%(t(as(A21[[jj]],"matrix"))-t(as(A22[[jj]],"matrix"))),"sparseMatrix")
G1[[jj]]=G11[[jj]]+G12[[jj]]+t(as(G12[[jj]],"matrix"))+G22[[jj]]
jj=jj+1
}}
Vu1=diag(rep(phi1.old,d))
Vu2=diag(rep(phi2.old,(d*t)))
V=bdiag(Vd)
Z1=bdiag(Z1i)
R2=Vu2%*%V
R1=Z1%*%Vu1%*%t(as(Z1,"matrix"))%*%V
aa=nrow(R1)
bb=nrow(R2)
delta11=list()
Vakd=list()
Va=list()
Lk=list()
o=1
for(i in 1:2){
for (j in 1:(k-1)){
delta=matrix(0,(k-1),(k-1))
for (ll in 1:(k-1)){
if (ll==j) {delta[ll,ll]=1}}
for (ll in 1:t){
delta11[[ll]]=delta
}
if (i==1){Vakd =as(Iq1%*%delta%*%t(Iq1),"sparseMatrix")}
if (i==2){Vakd=bdiag(delta11)}
for(l in 1:d){
Va[[l]]=Vakd}
if (i==1) {Lk[[o]]=(as(diag(rep(1,aa)),"sparseMatrix")-R1)%*%bdiag(Va)%*%V}
if (i==2) {Lk[[o]]=(as(diag(rep(1,bb)),"sparseMatrix")-R2)%*%bdiag(Va)%*%V}
o=o+1
}}
A=list()
for(i in 1:D){
n0=(k-1)*(D-i)
if (n0<0) {n0=0}
A[[i]]=cbind(matrix(0,nrow=k-1,ncol=(k-1)*(i-1)),diag(k-1),matrix(0,nrow=k-1,ncol=n0))}
aa=2*(k-1)
jj=1
gg3=list()
g3=as(matrix(0,(d*t*(k-1)),(d*t*(k-1))),"sparseMatrix")
for (i in 1:aa){
for (j in 1:aa){
g33=H%*%Lk[[i]]%*%V%*%t(as(Lk[[j]],"matrix"))%*%t(as(H,"matrix"))
g3=g3+F[i,j]*g33
jj=jj+1
}}
for (kk in 1:D){
gg3[[kk]]=A[[kk]]%*%g3%*%t(as(A[[kk]],"matrix"))}
g=list()
gg=list()
for (i in 1:D){
g[[i]]=G1[[i]]+G2[[i]]+2*gg3[[i]]
gg[[i]]=G1[[i]]+G2[[i]]}
mse.analitic=matrix(0,D,(k-1))
for (i in 1:(k-1)){
for (j in 1:D){
mse.analitic[j,i]=g[[j]][i,i]}}
colnames(mse.analitic)=paste("mse.",1:(k-1),sep="")
mse=list(mse.analitic=mse.analitic)
return(mse)
} |
`beals` <-
function(x, species=NA, reference=x, type=0, include=TRUE)
{
refX <- reference
mode <- as.numeric(match.arg(as.character(type), c("0","1","2","3")))
spIndex <- species
incSp <- include
refX <- as.matrix(refX)
x <- as.matrix(x)
if (!(is.numeric(x) || is.logical(x)))
stop("input data must be numeric")
if(mode==0 || mode ==2) refX <- ifelse(refX > 0, 1, 0)
if(mode==0 || mode ==1) x <- ifelse(x > 0, 1, 0)
if(is.na(spIndex)){
M <- crossprod(ifelse(refX > 0, 1, 0),refX)
C <-diag(M)
M <- sweep(M, 2, replace(C,C==0,1), "/")
if(!incSp)
for (i in 1:ncol(refX))
M[i,i] <- 0
} else {
C <- colSums(refX)
M <- crossprod(refX,ifelse(refX > 0, 1, 0)[,spIndex])
M <- M/replace(C,C==0,1)
if(!incSp)
M[spIndex] <- 0
}
S <- rowSums(x)
if(is.na(spIndex)) {
b <-x
for (i in 1:nrow(x)) {
b[i, ] <- rowSums(sweep(M, 2, x[i, ], "*"))
}
SM <- rep(S,ncol(x))
if(!incSp)
SM <- SM-x
b <- b/replace(SM,SM==0,1)
} else {
b <-rowSums(sweep(x,2,M,"*"))
if(!incSp)
S <- S-x[,spIndex]
b <- b/replace(S,S==0,1)
}
b
} |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.