code
stringlengths 1
13.8M
|
---|
expected <- eval(parse(text="structure(list(size = numeric(0), isdir = logical(0), mode = structure(integer(0), class = \"octmode\"), mtime = numeric(0), ctime = numeric(0), atime = numeric(0), uid = integer(0), gid = integer(0), uname = character(0), grname = character(0)), .Names = c(\"size\", \"isdir\", \"mode\", \"mtime\", \"ctime\", \"atime\", \"uid\", \"gid\", \"uname\", \"grname\"))"));
test(id=0, code={
argv <- eval(parse(text="list(character(0))"));
.Internal(file.info(argv[[1]]));
}, o=expected); |
gibbs_discrete <- function(p, i = 1, iter = 1000){
x <- matrix(0, iter, 2)
nX <- dim(p)[1]
nY <- dim(p)[2]
for(k in 1:iter){
j <- sample(1:nY, 1, prob = p[i, ])
i <- sample(1:nX, 1, prob = p[, j])
x[k, ] <- c(i, j)
}
x
} |
post_imp_diag <- function(X_orig, X_imp, scale = TRUE, n.boot = 100) {
if (!identical(dim(X_orig), dim(X_imp)))
stop(paste("Warning! The dimensions of the original and imputed dataframes are unequal!",
sep = ""))
X_orig <- as.data.frame(X_orig)
X_imp <- as.data.frame(X_imp)
factors_present <- (sum(sapply(X_orig, is.factor)) > 0)
if (factors_present & (scale == TRUE)) {
ind <- sapply(X_orig, is.numeric)
X_orig[ind] <- as.data.frame(lapply(X_orig[ind], scale)) } else if ((factors_present == FALSE) & (scale == TRUE)) {
X_orig <- as.data.frame(scale(X_orig)) }
histograms <- list()
boxplots <- list()
statistics <- list()
barcharts <- list()
X_orig_num <- X_orig[sapply(X_orig, is.numeric)]
if (factors_present == TRUE) {
X_orig_factor <- X_orig[!sapply(X_orig, is.numeric)]
}
X_imp_num <- X_imp[sapply(X_imp, is.numeric)]
if (factors_present == TRUE) {
X_imp_factor <- X_imp[!sapply(X_imp, is.numeric)]
}
if (factors_present == TRUE) {
for (i in 1:ncol(X_orig_factor)) {
pltName <- colnames(X_orig_factor)[i]
col_index <- is.na(X_orig_factor[, i])
orig_values <- X_orig_factor[, i][!col_index]
imp_values <- X_imp_factor[, i][col_index]
origvec <- rep("Original values", length(orig_values))
impvec <- rep("Imputed values", length(imp_values))
vals <- data.frame(cbind(c(orig_values, imp_values), c(origvec, impvec)))
levels(vals$X1) <- levels(orig_values)
colnames(vals) <- c(colnames(X_orig_factor)[i], "Data")
q <- ggplot(data = data.frame(x = vals[, 1], y = vals[, 2]), aes(x = factor(y), fill = factor(x))) +
geom_bar(position = "fill") +
ggtitle("Bar chart of original and imputed values") +
labs(y = "Proportion", x = colnames(X_orig_factor)[i]) +
guides(fill = guide_legend(title = "")) +
theme(plot.title = element_text(hjust = 0.5))
barcharts[[pltName]] <- q
}
}
X_orig_mat <- as.matrix(as.data.frame(scale(X_orig_num)))
X_imp_mat <- as.matrix(as.data.frame(scale(X_imp_num)))
colnames(X_orig_mat) <- colnames(X_orig_num)
colnames(X_imp_mat) <- colnames(X_imp_num)
X_orig_dendro <- stats::as.dendrogram(stats::hclust(stats::dist(t(X_orig_mat))))
X_imp_dendro <- stats::as.dendrogram(stats::hclust(stats::dist(t(X_imp_mat))))
X_orig_dendro_plot <- ggdendro::ggdendrogram(data = X_orig_dendro, rotate = TRUE) +
labs(title = "Original dataframe - variable clusters") + theme(plot.title = element_text(hjust = 0.5))
X_imp_dendro_plot <- ggdendro::ggdendrogram(data = X_imp_dendro, rotate = TRUE) +
labs(title = "Imputed dataframe - variable clusters") + theme(plot.title = element_text(hjust = 0.5))
for (i in 1:ncol(X_orig_num)) {
pltName <- colnames(X_orig_num)[i]
col_index <- is.na(X_orig_num[, i])
orig_values <- X_orig_num[, i][!col_index]
imp_values <- X_imp_num[, i][col_index]
if (length(imp_values) != 0) {
tstats <- stats::t.test(orig_values, imp_values, alternative = "two.sided",
var.equal = FALSE)
ksstats <- stats::ks.test(orig_values, imp_values, exact=TRUE)$statistic
statistics[[pltName]] <- c(Mean_original = mean(orig_values), SD_original = stats::sd(orig_values),
Mean_imputed = mean(imp_values), SD_imputed = stats::sd(imp_values),
Welch_ttest_P = tstats$p.value, KS_test = ksstats)
origvec <- rep("Original values", length(orig_values))
impvec <- rep("Imputed values", length(imp_values))
vals <- data.frame(cbind(c(orig_values, imp_values), c(origvec, impvec)))
vals$X1 <- as.numeric(as.character(vals$X1))
colnames(vals) <- c(colnames(X_orig_num)[i], "Data")
p <- ggplot(data = data.frame(x = vals[, 1], y = vals[, 2]), aes(x, fill=y)) +
geom_histogram(alpha = 0.5, binwidth = 0.5, position="identity") +
ggtitle("Overlaid histogram of original and imputed values") +
labs(x = colnames(X_orig_num)[i]) + guides(fill = guide_legend(title = "")) +
theme(plot.title = element_text(hjust = 0.5))
q <- ggplot(data = data.frame(x = vals[, 2], y = vals[, 1]), aes(x = x, y = y)) +
geom_boxplot() + stat_summary(fun.y = mean, geom = "point", shape = 3, size = 5) +
ggtitle("Boxplots of original and imputed values") +
labs(x = colnames(X_orig_num)[i], y = "") + theme(plot.title = element_text(hjust = 0.5))
histograms[[pltName]] <- p
boxplots[[pltName]] <- q
} else {
statistics[[pltName]] <- c(Mean_original = mean(orig_values), SD_original = stats::sd(orig_values),
Mean_imputed = NA, SD_imputed = NA, Welch_ttest_P = NA, KS_test = NA)
origvec <- rep("Original values", length(orig_values))
impvec <- rep("Imputed values", length(imp_values))
vals <- data.frame(cbind(c(orig_values, imp_values), c(origvec, impvec)))
vals$X1 <- as.numeric(as.character(vals$X1))
colnames(vals) <- c(colnames(X_orig_num)[i], "Data")
p <- ggplot(data = data.frame(x = vals[, 1], y = vals[, 2]), aes(x, fill=y)) +
geom_histogram(alpha = 0.5, binwidth = 0.5, position="identity") +
ggtitle("Histogram of original values") +
labs(x = colnames(X_orig_num)[i]) + guides(fill = guide_legend(title = "")) +
theme(plot.title = element_text(hjust = 0.5))
q <- ggplot(data = data.frame(x = vals[, 2], y = vals[, 1]), aes(x = x, y = y)) +
geom_boxplot() + stat_summary(fun.y = mean, geom = "point", shape = 3, size = 5) +
ggtitle("Boxplot of original values") +
labs(x = colnames(X_orig_num)[i], y = "") + theme(plot.title = element_text(hjust = 0.5))
histograms[[pltName]] <- p
boxplots[[pltName]] <- q
}
}
corrs <- NULL
meanmat <- matrix(nrow = ncol(X_orig_num), ncol = ncol(X_orig_num))
locimat <- matrix(nrow = ncol(X_orig_num), ncol = ncol(X_orig_num))
hicimat <- matrix(nrow = ncol(X_orig_num), ncol = ncol(X_orig_num))
for (i in 1:ncol(X_orig_num)) {
for (j in 1:ncol(X_orig_num)) {
for (b in 1:n.boot) {
idx <- sample.int(nrow(X_orig_num), nrow(X_orig_num), replace = TRUE)
corrs[b] <- cor(X_orig_num[idx, ], use = "pairwise.complete.obs", method = "pearson")[i,
j]
}
meanmat[i, j] <- mean(corrs)
locimat[i, j] <- quantile(corrs, c(0.025))
hicimat[i, j] <- quantile(corrs, c(0.975))
corrs <- NULL
}
}
meanmat[lower.tri(meanmat, diag = TRUE)] <- NA
y <- as.data.frame(meanmat)
colnames(y) <- colnames(X_orig_num)
rownames(y) <- colnames(X_orig_num)
y$var1 <- row.names(y)
z <- gather(data = y, key = "var2", value = "value", -var1)
correlation_results <- z[!is.na(z$value), ]
locimat[lower.tri(locimat, diag = TRUE)] <- NA
y <- as.data.frame(locimat)
colnames(y) <- colnames(X_orig_num)
rownames(y) <- colnames(X_orig_num)
y$var1 <- row.names(y)
z <- gather(data = y, key = "var2", value = "value", -var1)
z <- z[!is.na(z$value), ]
correlation_results <- cbind(correlation_results, z$value)
hicimat[lower.tri(hicimat, diag = TRUE)] <- NA
y <- as.data.frame(hicimat)
colnames(y) <- colnames(X_orig_num)
rownames(y) <- colnames(X_orig_num)
y$var1 <- row.names(y)
z <- gather(data = y, key = "var2", value = "value", -var1)
z <- z[!is.na(z$value), ]
correlation_results <- cbind(correlation_results, z$value)
meanmat <- matrix(nrow = ncol(X_imp_num), ncol = ncol(X_imp_num))
locimat <- matrix(nrow = ncol(X_imp_num), ncol = ncol(X_imp_num))
hicimat <- matrix(nrow = ncol(X_imp_num), ncol = ncol(X_imp_num))
for (i in 1:ncol(X_imp_num)) {
for (j in 1:ncol(X_imp_num)) {
for (b in 1:n.boot) {
idx <- sample.int(nrow(X_imp_num), nrow(X_imp_num), replace = TRUE)
corrs[b] <- cor(X_imp_num[idx, ], use = "pairwise.complete.obs", method = "pearson")[i,
j]
}
meanmat[i, j] <- mean(corrs)
locimat[i, j] <- quantile(corrs, c(0.025))
hicimat[i, j] <- quantile(corrs, c(0.975))
}
}
meanmat[lower.tri(meanmat, diag = TRUE)] <- NA
y <- as.data.frame(meanmat)
colnames(y) <- colnames(X_imp_num)
rownames(y) <- colnames(X_imp_num)
y$var1 <- row.names(y)
z <- gather(data = y, key = "var2", value = "value", -var1)
z <- z[!is.na(z$value), ]
correlation_results <- cbind(correlation_results, z$value)
locimat[lower.tri(locimat, diag = TRUE)] <- NA
y <- as.data.frame(locimat)
colnames(y) <- colnames(X_imp_num)
rownames(y) <- colnames(X_imp_num)
y$var1 <- row.names(y)
z <- gather(data = y, key = "var2", value = "value", -var1)
z <- z[!is.na(z$value), ]
correlation_results <- cbind(correlation_results, z$value)
hicimat[lower.tri(hicimat, diag = TRUE)] <- NA
y <- as.data.frame(hicimat)
colnames(y) <- colnames(X_imp_num)
rownames(y) <- colnames(X_imp_num)
y$var1 <- row.names(y)
z <- gather(data = y, key = "var2", value = "value", -var1)
z <- z[!is.na(z$value), ]
correlation_results <- cbind(correlation_results, z$value)
colnames(correlation_results) <- c("var1", "var2", "orig.cor", "orig.lo.ci", "orig.hi.ci",
"imp.cor", "imp.lo.ci", "imp.hi.ci")
p <- ggplot(data = correlation_results, aes(x = orig.cor, y = imp.cor)) + geom_point(alpha = 0.2) +
geom_errorbar(aes(ymin = imp.lo.ci, ymax = imp.hi.ci), alpha = 0.1) + geom_errorbarh(aes(xmin = orig.lo.ci,
xmax = orig.hi.ci), alpha = 0.1) + geom_abline(slope = 1, intercept = 0, col = "blue",
alpha = 0.5) + geom_line(stat = "smooth", method = "lm", col = "red", alpha = 0.5) +
ggtitle("Scatter plot of correlation coefficients") + theme(plot.title = element_text(hjust = 0.5)) +
labs(x = "Correlation coefficient (original)", y = "Correlation coefficient (imputed)")
list(Histograms = histograms, Boxplots = boxplots, Barcharts = barcharts, Statistics = statistics,
Variable_clusters_orig = X_orig_dendro_plot, Variable_clusters_imp = X_imp_dendro_plot,
Correlation_stats = correlation_results, Correlation_plot = p)
} |
context("mboFinalize")
options(mlrMBO.debug.mode = FALSE)
test_that("mboFinalize", {
or = NULL
assign(".counter", 0L, envir = .GlobalEnv)
f = makeSingleObjectiveFunction(
fn = function(x) {
.counter = get(".counter", envir = .GlobalEnv)
assign(".counter", .counter + 1L, envir = .GlobalEnv)
if (.counter == 12)
stop("foo")
sum(x^2)
},
par.set = makeNumericParamSet(len = 2L, lower = -2, upper = 1)
)
learner = makeLearner("regr.rpart")
save.file = tempfile("state", fileext=".RData")
ctrl = makeMBOControl(save.on.disk.at = 0:4,
save.file.path = save.file)
ctrl = setMBOControlTermination(ctrl, iters = 3L)
ctrl = setMBOControlInfill(ctrl, crit = crit.mr, opt.focussearch.points = 10L)
des = generateTestDesign(10L, getParamSet(f))
expect_error(or <- mbo(f, des, learner = learner, control = ctrl), "foo")
or = mboFinalize(save.file)
expect_equal(getOptPathLength(or$opt.path), 12L)
unlink(save.file)
assign(".counter", 0L, envir = .GlobalEnv)
f = makeMultiObjectiveFunction(
fn = function(x) {
.counter <<- .counter + 1
if (.counter == 13L)
stop ("foo")
c(sum(x^2), prod(x^2))
},
n.objectives = 2L,
par.set = makeNumericParamSet(len = 2L, lower = -2, upper = 1)
)
des = generateTestDesign(10L, getParamSet(f))
ctrl = makeMBOControl(save.on.disk.at = 0:8,
save.file.path = save.file, n.objectives = 2L)
ctrl = setMBOControlTermination(ctrl, iters = 7L)
ctrl = setMBOControlInfill(ctrl, crit = crit.mr, opt.focussearch.points = 100L)
ctrl = setMBOControlMultiObj(ctrl, method = "parego", parego.s = 100L)
or = NULL
expect_error(or <- mbo(f, des, learner = learner, control = ctrl), "foo")
or = mboFinalize(save.file)
expect_equal(getOptPathLength(or$opt.path), 12L)
unlink(save.file)
})
test_that("mboFinalize works when at end", {
f = makeSingleObjectiveFunction(
fn = function(x) sum(x^2),
par.set = makeNumericParamSet(len = 2L, lower = -2, upper = 1)
)
learner = makeLearner("regr.rpart")
save.file = tempfile(fileext = ".RData")
des = generateTestDesign(10L, getParamSet(f))
ctrl = makeMBOControl(save.on.disk.at = 0:2,
save.file.path = save.file)
ctrl = setMBOControlTermination(ctrl, iters = 1L)
ctrl = setMBOControlInfill(ctrl, crit = crit.mr, opt.focussearch.points = 10L)
or = mbo(f, des, learner = learner, control = ctrl)
expect_equal(getOptPathLength(or$opt.path), 11L)
expect_warning({or = mboFinalize(save.file)}, "No need to finalize")
expect_equal(getOptPathLength(or$opt.path), 11L)
unlink(save.file)
})
options(mlrMBO.debug.mode = TRUE) |
`dsbelpl` <-
function(x,a){
erg=c(0,0);
erg[1]=sum(x[(x[,1]>=a[1]&x[,2]<=a[2]),3]);
erg[2]=sum(x[!(x[,1]>a[2]|x[,2]<a[1]),3]);
dsbelpl=erg;
} |
qa.xdate <- function(rwl, seg.length, n, bin.floor){
if(!is.data.frame(rwl))
stop("'rwl' must be a data.frame")
if(seg.length*2 > nrow(rwl))
stop("'seg.length' can be at most 1/2 the number of years in 'rwl'")
if(as.logical(seg.length %% 2)) stop("'seg.length' must be even")
if(!is.int(seg.length)) stop("'seg.length' and 'seg.lag' must be integers")
if(seg.length <= 0) stop("'seg.length' must be positive")
if(!is.null(n)){
if(!is.int(n)) stop("'n' must be an integer")
if(!as.logical(n %% 2)) stop("'n' must be odd")
if(n <= 3) stop("'n' must be larger than 3")
}
if(!is.null(bin.floor) && (!is.int(bin.floor) || bin.floor < 0))
stop("'bin.floor' must be a non-negative integer")
} |
paf<-function(a,b){
rown<-dim(a)[1]
coln<-dim(a)[2]
res<-matrix(0,rown,coln)
counter<-0
for (i in 1:rown){
if (b[i]==1){
counter<-counter+1
res[counter,]<-a[i,]
}
}
res<-res[1:counter,]
return(res)
} |
library(sstModel)
name <- c("EURCHF", "USDCHF",
"equityCHF", "equityEUR", "equityUSD",
"kYCHF", "mYCHF",
"kYEUR", "mYEUR",
"PC1RateUSD", "PC2RateUSD",
"AAACHF", "AAAEUR", "AAAUSD")
corr.mat <- diag(rep(1, 14))
colnames(corr.mat) <- name
rownames(corr.mat) <- name
volatility <- rep(0.05, 14)
cov.mat <- diag(volatility, length(volatility), length(volatility)) %*%
corr.mat %*% diag(volatility, length(volatility), length(volatility))
colnames(cov.mat) <- rownames(cov.mat) <- colnames(corr.mat)
attr(cov.mat, "base.currency") <- "CHF"
mapping.table <- mappingTable(currency(name = "EURCHF",
from = "EUR",
to = "CHF"),
currency(name = "USDCHF",
from = "USD",
to = "CHF"),
equity(name = "equityCHF",
type = "equity",
currency = "CHF"),
equity(name = "equityEUR",
type = "equity",
currency = "EUR"),
equity(name = "equityEUR",
type = "equity",
currency = "USD",
scale = 0.4694625),
pcRate(name = c("PC1RateUSD"),
currency = "USD"),
pcRate(name = c("PC2RateUSD"),
currency = "USD"),
pcRate(name = c("PC1RateUSD"),
currency = "EUR",
scale = 1),
pcRate(name = c("PC2RateUSD"),
currency = "EUR",
scale = 1),
rate(name = "kYCHF",
currency = "CHF",
horizon = "k"),
rate(name = c("PC1RateUSD",
"PC2RateUSD"),
currency = "EUR",
horizon = "k",
scale = c(0.1,
0.7)),
rate(name = c("PC1RateUSD",
"PC2RateUSD"),
currency = "USD",
horizon = "k",
scale = c(0.2,
0.5)),
rate(name = "mYCHF",
currency = "CHF",
horizon = "m"),
rate(name = c("PC1RateUSD",
"PC2RateUSD"),
currency = "EUR",
horizon = "m",
scale = c(0.05,
0.6)),
rate(name = c("PC1RateUSD",
"PC2RateUSD"),
currency = "USD",
horizon = "m",
scale = c(0.1,
0.9)),
spread(name = "AAACHF",
currency = "CHF",
rating = "AAA"),
spread(name = "AAAEUR",
currency = "EUR",
rating = "AAA"),
spread(name = "AAAUSD",
currency = "USD",
rating = "AAA"))
initial.values <- list()
initial.values$initial.fx <- data.frame(from = c("EUR", "USD"),
to = c("CHF", "CHF"),
fx = c(1.05,1.02),
stringsAsFactors = F)
initial.values$initial.rate <- data.frame(time = c(2L, 2L, 2L, 10L, 10L, 10L),
currency = c("CHF", "EUR", "USD"),
rate = c(0.01, 0.01, 0.01, 0.03, 0.03, 0.03),
stringsAsFactors = F)
mapping.time <- data.frame(time = c(2L, 10L), mapping = c("k","m"), stringsAsFactors = F)
mr <- marketRisk(cov.mat = cov.mat,
mapping.table = mapping.table,
base.currency = "CHF",
initial.values = initial.values,
mapping.time = mapping.time)
M <- matrix(c(1, 1, 1, 1), 2)
colnames(M) <- c("storno", "invalidity")
rownames(M) <- colnames(M)
lr <- lifeRisk(corr.mat = M,
quantile = c(0.995, 0.995))
hr <- healthRisk(corr.mat = M)
list.assets <- list(asset(type = "equity", currency = "CHF", value = 30000000),
asset(type = "equity", currency = "EUR", value = 20000000),
asset(type = "equity", currency = "USD", value = 5000000))
list.liabilities <- list(liability(time = 2L, currency = "CHF", value = 400000),
liability(time = 2L, currency = "EUR", value = 700000),
liability(time = 2L, currency = "USD", value = 340000),
liability(time = 10L, currency = "CHF", value = 500000),
liability(time = 10L, currency = "EUR", value = 100000),
liability(time = 10L, currency = "USD", value = 240000))
list.asset.forward <- list(assetForward(type = "equity",
currency = "CHF",
time = 10L,
exposure = 10000,
price = 45000,
position = "long"))
list.marketItems <- append(append(append(append(list(), list.assets), list.liabilities),list.asset.forward),
list(delta(name = "EURCHF", currency = "CHF", sensitivity = 1000)))
valid.param <- list(mvm = list(mvm.life = 2, mvm.health = 4, mvm.nonlife = 3),
rtkr = 0,
rtkg = 0,
correction.term = 2,
credit.risk = 3,
expected.insurance.result = 10^6,
expected.financial.result = 10^5)
p <- portfolio(market.items = list.marketItems,
participation.item = participation(currency = "CHF", value = 3000),
life.item = life(name = c("storno", "invalidity"), currency = c("CHF", "CHF"), sensitivity = c(100, 2000)),
health.item = health(name = c("storno", "invalidity"), currency = c("CHF", "CHF"), sensitivity = c(230, 500)),
base.currency = "CHF",
portfolio.parameters = valid.param)
list.correlation.matrix <- list(base = matrix(c(1,0.15,0.075,0.15,
0.15,1,0.25,0.25,
0.075,0.25,1,0.15,
0.15,0.25,0.15,1), ncol=4, byrow = T),
scenario1 = matrix(c(1,1,1,0.35,
1,1,1,0.35,
1,1,1,0.35,
0.35,0.35,0.35,1), ncol=4, byrow = T),
scenario2 = matrix(c(1,0.6,0.5,0.25,
0.6,1,0.8,0.35,
0.5,0.8,1,0.35,
0.25,0.35,0.35,1), ncol=4, byrow = T),
scenario3 = matrix(c(1,0.25,0.25,0.5,
0.25,1,0.25,0.25,
0.25,0.25,1,0.25,
0.5,0.25,0.25,1), ncol=4, byrow = T))
list.correlation.matrix <- lapply(list.correlation.matrix, function(corr) {rownames(corr) <- colnames(corr) <- c("market", "life","health","nonlife"); corr})
region.boundaries <- matrix(c(0.2,0.3,0.3,0.5,
0.5,0.2,0.2,0.8,
0.6,0.8,0.8,0.2), nrow=3, byrow = T)
colnames(region.boundaries) <- c("market", "life","health","nonlife")
rownames(region.boundaries) <- c("scenario1", "scenario2", "scenario3")
scenario.probability = c(0.01, 0.01, 0.01)
region.probability = c(0.023, 0.034, 0.107)
model <- sstModel(portfolio = p,
market.risk = mr,
life.risk = lr,
health.risk = hr,
nonlife.risk = nonLifeRisk(type = "simulations",
param = list(simulations = c(1, 2, 3, 4)),
currency = "CHF"),
nhmr = 0.06,
reordering.parameters = list(list.correlation.matrix = list(base=list.correlation.matrix[[1]])),
scenario.risk = scenarioRisk("tornado", 0.08, "CHF", -10000),
participation.risk = participationRisk(volatility = 0.5),
standalones = list(standalone(name = "std_equityCHF", equity(name = "equityCHF",
type = "equity",
currency = "CHF")),
standalone(name = "std_spreadAAACHF", spread(name = "AAACHF",
currency = "CHF",
rating = "AAA")),
standalone(name = "std_ratekCHF", rate(name = "kYCHF",
currency = "CHF",
horizon = "k"))
))
output <- compute(object = model, nsim = as.integer(100), nested.market.computations = T)
p2 <- portfolio(market.items = list.marketItems,
participation.item = participation(currency = "CHF", value = 3000),
health.item = health(name = c("storno", "invalidity"), currency = c("CHF", "CHF"), sensitivity = c(230, 500)),
base.currency = "CHF",
portfolio.parameters = valid.param)
model2 <- sstModel(portfolio = p2,
market.risk = mr,
health.risk = hr,
nonlife.risk = nonLifeRisk(type = "simulations",
param = list(simulations = c(1, 2, 3, 4)),
currency = "CHF"),
nhmr = 0.06,
reordering.parameters = list(list.correlation.matrix = list(base=list.correlation.matrix[[1]])),
scenario.risk = scenarioRisk("tornado", 0.08, "CHF", -10000),
participation.risk = participationRisk(volatility = 0.5),
standalones = list(standalone(name = "std_equityCHF", equity(name = "equityCHF",
type = "equity",
currency = "CHF")),
standalone(name = "std_spreadAAACHF", spread(name = "AAACHF",
currency = "CHF",
rating = "AAA")),
standalone(name = "std_ratekCHF", rate(name = "kYCHF",
currency = "CHF",
horizon = "k"))
))
output2 <- compute(object = model2, nsim = as.integer(100))
p3 <- portfolio(market.items = list.marketItems,
participation.item = participation(currency = "CHF", value = 3000),
life.item = life(name = c("storno", "invalidity"), currency = c("CHF", "CHF"), sensitivity = c(100, 2000)),
base.currency = "CHF",
portfolio.parameters = valid.param)
model3 <- sstModel(portfolio = p3,
market.risk = mr,
life.risk = lr,
nonlife.risk = nonLifeRisk(type = "simulations",
param = list(simulations = c(1, 2, 3, 4)),
currency = "CHF"),
nhmr = 0.06,
reordering.parameters = list(list.correlation.matrix = list(base=list.correlation.matrix[[1]])),
scenario.risk = scenarioRisk("tornado", 0.08, "CHF", -10000),
participation.risk = participationRisk(volatility = 0.5),
standalones = list(standalone(name = "std_equityCHF", equity(name = "equityCHF",
type = "equity",
currency = "CHF")),
standalone(name = "std_spreadAAACHF", spread(name = "AAACHF",
currency = "CHF",
rating = "AAA")),
standalone(name = "std_ratekCHF", rate(name = "kYCHF",
currency = "CHF",
horizon = "k"))
))
output3 <- compute(object = model3, nsim = as.integer(100))
p4 <- portfolio(market.items = list.marketItems,
life.item = life(name = c("storno", "invalidity"), currency = c("CHF", "CHF"), sensitivity = c(100, 2000)),
health.item = health(name = c("storno", "invalidity"), currency = c("CHF", "CHF"), sensitivity = c(230, 500)),
base.currency = "CHF",
portfolio.parameters = valid.param)
model4 <- sstModel(portfolio = p4,
market.risk = mr,
life.risk = lr,
health.risk = hr,
nonlife.risk = nonLifeRisk(type = "simulations",
param = list(simulations = c(1, 2, 3, 4)),
currency = "CHF"),
nhmr = 0.06,
reordering.parameters = list(list.correlation.matrix = list(base=list.correlation.matrix[[1]])),
scenario.risk = scenarioRisk("tornado", 0.08, "CHF", -10000),
standalones = list(standalone(name = "std_equityCHF", equity(name = "equityCHF",
type = "equity",
currency = "CHF")),
standalone(name = "std_spreadAAACHF", spread(name = "AAACHF",
currency = "CHF",
rating = "AAA")),
standalone(name = "std_ratekCHF", rate(name = "kYCHF",
currency = "CHF",
horizon = "k"))
))
output4 <- compute(object = model4, nsim = as.integer(100))
p5 <- portfolio(market.items = list(list.marketItems[[1]]),
participation.item = participation(currency = "CHF", value = 3000),
life.item = life(name = c("storno", "invalidity"), currency = c("CHF", "CHF"), sensitivity = c(100, 2000)),
health.item = health(name = c("storno", "invalidity"), currency = c("CHF", "CHF"), sensitivity = c(230, 500)),
base.currency = "CHF",
portfolio.parameters = valid.param)
model5 <- sstModel(portfolio = p5,
market.risk = mr,
life.risk = lr,
health.risk = hr,
participation.risk = participationRisk(volatility = 0.5),
nonlife.risk = nonLifeRisk(type = "simulations",
param = list(simulations = c(1, 2, 3, 4)),
currency = "CHF"),
nhmr = 0.06,
reordering.parameters = list(list.correlation.matrix = list(base=list.correlation.matrix[[1]])),
scenario.risk = scenarioRisk("tornado", 0.08, "CHF", -10000),
standalones = list(standalone(name = "std_equityCHF", equity(name = "equityCHF",
type = "equity",
currency = "CHF")),
standalone(name = "std_spreadAAACHF", spread(name = "AAACHF",
currency = "CHF",
rating = "AAA")),
standalone(name = "std_ratekCHF", rate(name = "kYCHF",
currency = "CHF",
horizon = "k"))
))
output5 <- compute(object = model5, nsim = as.integer(100))
p6 <- portfolio(market.items = list(list.marketItems[[1]]),
life.item = life(name = c("storno", "invalidity"), currency = c("CHF", "CHF"), sensitivity = c(100, 2000)),
health.item = health(name = c("storno", "invalidity"), currency = c("CHF", "CHF"), sensitivity = c(230, 500)),
base.currency = "CHF",
portfolio.parameters = valid.param)
model6 <- sstModel(portfolio = p6,
market.risk = mr,
life.risk = lr,
health.risk = hr,
nonlife.risk = nonLifeRisk(type = "simulations",
param = list(simulations = c(1, 2, 3, 4)),
currency = "CHF"),
nhmr = 0.06,
reordering.parameters = list(list.correlation.matrix = list(base=list.correlation.matrix[[1]])),
scenario.risk = scenarioRisk("tornado", 0.08, "CHF", -10000),
standalones = list(standalone(name = "std_equityCHF", equity(name = "equityCHF",
type = "equity",
currency = "CHF")),
standalone(name = "std_spreadAAACHF", spread(name = "AAACHF",
currency = "CHF",
rating = "AAA")),
standalone(name = "std_ratekCHF", rate(name = "kYCHF",
currency = "CHF",
horizon = "k"))
))
output6 <- compute(object = model6, nsim = as.integer(100)) |
itemDiscrimination = function(attributeName, itemVariable, attributeProfile, profileProb){
focalAttribute = which(colnames(attributeProfile) == attributeName)
itemKLI = itemVariable$KLI(attributeProfile = attributeProfile)
possibleUprofiles1 = which(attributeProfile[,focalAttribute] == 1)
possibleVprofiles1 = which(attributeProfile[,focalAttribute] == 0)
omegaK1 = NULL
attributeList = 1:ncol(attributeProfile)
mAttributeList = attributeList[which(attributeList != focalAttribute)]
D_A1 = 0
D_B1 = 0
probSum1 = 0
for (u in 1:length(possibleUprofiles1)){
for (v in 1:length(possibleVprofiles1)){
keep = TRUE
for (m in 1:length(mAttributeList)){
if (attributeProfile[possibleUprofiles1[u], mAttributeList[m]] != attributeProfile[possibleVprofiles1[v],mAttributeList[m]]) {
keep=FALSE
break
}
}
if (keep){
omegaK1 = rbind(omegaK1, matrix(data = c(possibleUprofiles1[u], possibleVprofiles1[v]), nrow = 1))
D_A1 = D_A1 + itemKLI[possibleUprofiles1[u], possibleVprofiles1[v]]
D_B1 = D_B1 + profileProb[possibleUprofiles1[u]]*itemKLI[possibleUprofiles1[u], possibleVprofiles1[v]]
probSum1 = probSum1 + profileProb[possibleUprofiles1[u]]
}
}
}
D_A1 = D_A1/nrow(omegaK1)
D_B1 = D_B1/probSum1
possibleUprofiles0 = which(attributeProfile[,focalAttribute] == 0)
possibleVprofiles0 = which(attributeProfile[,focalAttribute] == 1)
omegaK0 = NULL
D_A0 = 0
D_B0 = 0
probSum0 = 0
for (u in 1:length(possibleUprofiles0)){
for (v in 1:length(possibleVprofiles0)){
keep = TRUE
for (m in 1:length(mAttributeList)){
if (attributeProfile[possibleUprofiles0[u], mAttributeList[m]] != attributeProfile[possibleVprofiles0[v],mAttributeList[m]]) {
keep=FALSE
break
}
}
if (keep){
omegaK0 = rbind(omegaK0, matrix(data = c(possibleUprofiles0[u], possibleVprofiles0[v]), nrow = 1))
D_A0 = D_A0 + itemKLI[possibleUprofiles0[u], possibleVprofiles0[v]]
D_B0 = D_B0 + profileProb[possibleUprofiles0[u]]*itemKLI[possibleUprofiles0[u], possibleVprofiles0[v]]
probSum0 = probSum0 + profileProb[possibleUprofiles0[u]]
}
}
}
D_A0 = D_A0/nrow(omegaK0)
D_B0 = D_B0/probSum1
D_A = D_A0+D_A1
D_B = D_B0+D_B1
return(list(D_A = D_A, D_B = D_B, D_A1 = D_A1, D_A0 = D_A0, D_B1 = D_B1, D_B0 = D_B0))
} |
density.bma <-
function (x, reg = NULL, addons = "lemsz", std.coefs = FALSE,
n = 300, plot = TRUE, hnbsteps = 30, addons.lwd = 1.5, ...)
{
dtcm = function(x, df, ncp, varp) {
sqvarp = sqrt(varp)
dt((x - ncp)/sqvarp, df = df)/sqvarp
}
dsgivenykernel <- function(sf, kpa, N, z) {
(kpa - 2)/2 * (1 - sf)^((kpa - 4)/2) * (1 - sf * z)^(-(N -
1)/2)
}
dotargs = match.call(expand.dots = FALSE)$...
bmao = x
if (!is.bma(bmao))
stop("Argument bmao needs to be a bma object")
if (hnbsteps%%2)
stop("Argument nbsteps needs to be an even integer")
nbsteps = max(hnbsteps, 2)
n = max(ceiling(n), 1)
N = bmao$info$N
K = bmao$info$K
if (is.null(reg))
reg = 1:K
nameix = 1:K
names(nameix) = bmao$reg.names
reg = nameix[reg]
ishyper = (bmao$gprior$gtype == "hyper")
tm = bmao$topmod
bools = (tm$bool_binary())
betas = tm$betas()
betas2 = tm$betas2()
if (std.coefs) {
sddata = apply(as.matrix(bmao$X.data), 2, stats::sd)
betas = diag(sddata[-1]) %*% betas/sddata[1]
betas2 = diag(sddata[-1]^2) %*% betas2/sddata[1]^2
}
sigmadiag = (betas2 - betas^2) * (N - 3)/(N - 1)
pmps = pmp.bma(bmao$topmod, oldstyle = TRUE)[, 1]
pips = c(tcrossprod(bools, t(pmps)))
Eb1 = c(tcrossprod(betas, t(pmps)))/pips
Ebsd = sqrt(c(tcrossprod(betas2, t(pmps)))/pips - Eb1^2)
Ebsd[is.nan(Ebsd)] = 0
Eb1[is.nan(Eb1)] = 0
Eball = cbind(Eb1, Ebsd)
if ((any(grep("E", addons, ignore.case = FALSE))) | (any(grep("S",
addons, ignore.case = FALSE)))) {
Eb1.mcmc = bmao$info$b1mo/bmao$info$inccount
Ebsd.mcmc = sqrt(bmao$info$b2mo/bmao$info$inccount -
Eb1.mcmc^2)
if (std.coefs) {
sddata = apply(as.matrix(bmao$X.data), 2, stats::sd)
Eb1.mcmc = Eb1.mcmc * sddata[-1]/sddata[1]
Ebsd.mcmc = Ebsd.mcmc * sddata[-1]/sddata[1]
}
}
if (ishyper) {
yXdata = as.matrix(bmao$X.data)
yXdata = yXdata - matrix(colMeans(yXdata), N, K + 1,
byrow = TRUE)
if (std.coefs)
yXdata = yXdata %*% diag(1/sddata)
yty = c(crossprod(yXdata[, 1]))
positions = lapply(lapply(as.list(as.data.frame(bools)),
as.logical), which)
olsmodels = lapply(lapply(positions, .ols.terms2, yty = yty,
N = N, K = K, XtX.big = crossprod(yXdata[, -1]),
Xty.big = c(crossprod(yXdata[, -1], yXdata[, 1]))),
function(x) x$full.results())
f21a = bmao$gprior.info$hyper.parameter
}
plotndens <- function(ix, doplot = FALSE) {
sss = function(lbound, uboundp1, nbsteps) {
s.seq = seq(lbound, uboundp1, (uboundp1 - lbound)/nbsteps)[-nbsteps]
tmat = sapply(as.list(s.seq), function(ss) {
dtcm(seqs, N - 1, ss * bhati, invdiagi * ss *
(1 - ss * z)/(N - 1) * yty)
})
smat = sapply(as.list(s.seq), dsgivenykernel, kpa = k +
f21a, N = N, z = z)
if (any(is.infinite(smat)))
smat[is.infinite(smat)] = 0
intconst = (4 * sum(smat[c(FALSE, TRUE)]) + 2 * sum(smat[c(TRUE,
FALSE)]) - 3 * smat[nbsteps] - smat[1]) * (s.seq[nbsteps] -
s.seq[1])/nbsteps/3
return(list(dv = c(4 * tmat[, c(FALSE, TRUE)] %*%
smat[c(FALSE, TRUE)] + 2 * tmat[, c(TRUE, FALSE)] %*%
smat[c(TRUE, FALSE)] - 3 * tmat[, nbsteps] *
smat[nbsteps] - tmat[, 1] * smat[1]) * (s.seq[nbsteps] -
s.seq[1])/nbsteps/3, ic = intconst))
}
if (pips[ix] == 0) {
reslist = list(x = numeric(n), y = numeric(n), n = n,
call = sys.call(), data.name = names(nameix)[ix],
has.na = FALSE)
class(reslist) = c("density", "coef.density")
return(reslist)
}
lbound = min(betas[ix, as.logical(bools[ix, ])]) - 3 *
Eball[ix, 2]
ubound = max(betas[ix, as.logical(bools[ix, ])]) + 3 *
Eball[ix, 2]
seqs = seq(lbound, ubound, (ubound - lbound)/(n - 1))
densvec = numeric(length(seqs))
for (m in 1:length(pmps)) {
if (bools[ix, m]) {
if (ishyper) {
ixadj = sum(bools[1:ix, m])
bhati = olsmodels[[m]]$bhat[[ixadj]]
invdiagi = olsmodels[[m]]$diag.inverse[[ixadj]]
k = sum(bools[, m])
Esf = betas[ix, m]/bhati
z = 1 - olsmodels[[m]]$ymy/yty
midpoint = 1 - (1 - Esf) * 4
if (midpoint < 0.5) {
dvl = sss(1e-04, 0.9999999, nbsteps * 2)
addvec = dvl$dv/dvl$ic
}
else {
dvl1 = sss(1e-04, midpoint, nbsteps)
dvl2 = sss(midpoint, 1, nbsteps)
addvec = (dvl1$dv + dvl2$dv)/(dvl1$ic + dvl2$ic)
}
}
else {
addvec = dtcm(seqs, N - 1, betas[ix, m], sigmadiag[ix,
m])
}
densvec = densvec + pmps[m] * addvec
}
}
reslist = list(x = seqs, y = densvec, bw = NULL, n = n,
call = sys.call(), data.name = names(nameix)[ix],
has.na = FALSE)
class(reslist) = "density"
if (!doplot) {
return(reslist)
}
main_default = paste("Marginal Density:", names(nameix)[ix],
"(PIP", round(c(crossprod(pmps, bools[ix, ])) * 100,
2), "%)")
if (any(grep("p", addons, ignore.case = TRUE))) {
decr = 0.12
parplt = par()$plt
parplt_temp = parplt
parplt_temp[4] = (1 - decr) * parplt[4] + decr *
parplt[3]
par(plt = parplt_temp)
main_temp = main_default
main_default = NULL
}
dotargs = .adjustdots(dotargs, type = "l", col = "steelblue4",
main = main_default, xlab = if (std.coefs)
"Standardized Coefficient"
else "Coefficient", ylab = "Density")
eval(as.call(c(list(as.name("plot"), x = as.name("seqs"),
y = as.name("densvec")), as.list(dotargs))))
leg.col = numeric(0)
leg.lty = numeric(0)
leg.legend = character(0)
if (any(grep("g", addons, ignore.case = TRUE))) {
grid()
}
if (any(grep("b", addons, ignore.case = TRUE))) {
for (m in 1:length(pmps)) {
Ebm = betas[ix, m]
if (as.logical(Ebm)) {
Ebheight = min(densvec[max(sum(seqs < Ebm),
1)], densvec[sum(seqs < Ebm) + 1])
lines(x = rep(Ebm, 2), y = c(0, Ebheight),
col = 8)
}
}
leg.col = c(leg.col, 8)
leg.lty = c(leg.lty, 1)
leg.legend = c(leg.legend, "EV Models")
}
if (any(grep("e", addons, ignore.case = FALSE))) {
abline(v = Eball[ix, 1], col = 2, lwd = addons.lwd)
leg.col = c(leg.col, 2)
leg.lty = c(leg.lty, 1)
leg.legend = c(leg.legend, "Cond. EV")
}
if (any(grep("s", addons, ignore.case = FALSE))) {
abline(v = Eball[ix, 1] - 2 * Eball[ix, 2], col = 2,
lty = 2, lwd = addons.lwd)
abline(v = Eball[ix, 1] + 2 * Eball[ix, 2], col = 2,
lty = 2, lwd = addons.lwd)
leg.col = c(leg.col, 2)
leg.lty = c(leg.lty, 2)
leg.legend = c(leg.legend, "2x Cond. SD")
}
if (any(grep("m", addons, ignore.case = TRUE))) {
median_index = sum(cumsum(densvec) < sum(densvec)/2)
abline(v = (seqs[median_index] + seqs[median_index +
1])/2, col = 3, lwd = addons.lwd)
leg.col = c(leg.col, 3)
leg.lty = c(leg.lty, 1)
leg.legend = c(leg.legend, "Median")
}
if (any(grep("z", addons, ignore.case = TRUE))) {
abline(h = 0, col = "gray", lwd = addons.lwd)
}
if (any(grep("E", addons, ignore.case = FALSE))) {
abline(v = Eb1.mcmc[ix], col = 4, lwd = addons.lwd)
leg.col = c(leg.col, 4)
leg.lty = c(leg.lty, 1)
leg.legend = c(leg.legend, "Cond. EV (MCMC)")
}
if (any(grep("S", addons, ignore.case = FALSE))) {
abline(v = Eb1.mcmc[ix] - 2 * Ebsd.mcmc[ix], col = 4,
lty = 2, lwd = addons.lwd)
abline(v = Eb1.mcmc[ix] + 2 * Ebsd.mcmc[ix], col = 4,
lty = 2, lwd = addons.lwd)
leg.col = c(leg.col, 4)
leg.lty = c(leg.lty, 2)
leg.legend = c(leg.legend, "2x SD (MCMC)")
}
if (any(grep("l", addons, ignore.case = TRUE)) & (length(leg.col) >
0)) {
leg.pos = "topright"
if (Eball[ix, 1] > seqs[floor(n/2)])
leg.pos = "topleft"
legend(x = leg.pos, lty = leg.lty, col = leg.col,
legend = leg.legend, box.lwd = 0, bty = "n",
lwd = addons.lwd)
}
if (any(grep("p", addons, ignore.case = TRUE))) {
pusr = par()$usr
rect(pusr[1], pusr[4] * (1 + decr * 0.2), pusr[2],
pusr[4] * (1 + decr), xpd = TRUE, col = 8)
rect(pusr[1], pusr[4] * (1 + decr * 0.2), pips[ix] *
pusr[2] + (1 - pips[ix]) * pusr[1], pusr[4] *
(1 + decr), xpd = TRUE, col = 9)
mtext("PIP:", side = 2, las = 2, line = 1, at = pusr[4] *
(1 + decr * 0.6))
par(plt = parplt)
title(main_temp)
}
return(reslist)
}
densres = list()
oldask = par()$ask
plots = 0
for (vbl in 1:length(reg)) {
doplot = (if (as.logical(pips[reg[vbl]]))
plot
else FALSE)
plots = plots + doplot
if (plots == 2) {
par(ask = TRUE)
}
densres[[nameix[vbl]]] = plotndens(reg[vbl], doplot)
densres[[nameix[vbl]]]$call = sys.call()
}
par(ask = oldask)
if (length(densres) == 1)
densres = densres[[1]]
else class(densres) = c("coef.density", class(densres))
if (!plot)
return(densres)
if (plot & (plots == 0)) {
warning("No plot produced as PIPs of provided variables are zero under 'exact' estimation.")
}
return(invisible(densres))
} |
setMethodS3("findNeutralCopyNumberState", "default", function(C, isAI, weights=NULL, ..., minDensity=1e-10, flavor=c("firstPeak", "maxPeak"), verbose=FALSE) {
C <- Arguments$getNumerics(C)
nbrOfLoci <- length(C)
length2 <- rep(nbrOfLoci, times=2)
isAI <- Arguments$getLogicals(isAI, length=length2, disallow=NULL)
if (!is.null(weights)) {
weights <- Arguments$getNumerics(weights, range=c(0, Inf), length=length2)
}
minDensity <- Arguments$getDouble(minDensity)
flavor <- match.arg(flavor)
verbose <- Arguments$getVerbose(verbose)
if (verbose) {
pushState(verbose)
on.exit(popState(verbose))
}
verbose && enter(verbose, "Identifying segments that are copy neutral states")
isAB <- !isAI
isNA <- (is.na(isAB) | is.na(C))
isNeutral <- isAB
idxs <- which(isAB)
n <- length(idxs)
verbose && cat(verbose, "Number of segments in allelic balance: ", n)
if (n == 0) {
verbose && exit(verbose)
return(isNeutral)
} else if (n == 1) {
verbose && exit(verbose)
return(isNeutral)
} else if (n < 5) {
warning("The calling of regions in a copy-neutral state is uncertain, because there are less than five (5) regions in allelic balance: ", n)
}
if (!is.null(weights)) {
weights <- weights[idxs]
weights <- weights / sum(weights)
}
y <- C[idxs]
idxs <- NULL
if (verbose) {
cat(verbose, "Data points:")
df <- data.frame(C=y, weights=weights)
print(verbose, head(df))
str(verbose, df)
df <- NULL
}
fit <- findPeaksAndValleys(y, weights=weights, ...)
verbose && cat(verbose, "Fit:")
verbose && cat(verbose, "Fit filtered by 'minDensity':")
ok <- (fit[,"density"] > minDensity)
verbose && print(verbose, fit[ok,])
isPeak <- (fit[,"type"] == "peak") & ok
idxs <- which(isPeak)
.stop_if_not(length(idxs) >= 1)
if (flavor == "firstPeak") {
idx <- idxs[1]
} else if (flavor == "maxPeak") {
idx <- idxs[which.max(fit[idxs,"density"])]
}
neutralC <- fit[idx,"x"]
verbose && cat(verbose, "Neutral copy number:")
verbose && cat(verbose, "Mode at: ", neutralC)
verbose && cat(verbose, "Mode ampliture: ", fit[idx,"density"])
if (idx+1 <= nrow(fit)) {
nextValleyC <- fit[idx+1, "x"]
} else {
nextValleyC <- Inf
}
verbose && cat(verbose, "Upper range at: ", nextValleyC)
isNeutral <- isNeutral & (C < nextValleyC)
isNeutral[isNA] <- NA
verbose && cat(verbose, "Neutral region calls:")
verbose && summary(verbose, isNeutral)
verbose && exit(verbose)
isNeutral
}) |
Titanic <-
array(c( 0, 0, 35, 0,
0, 0, 17, 0,
118, 154, 387, 670,
4, 13, 89, 3,
5, 11, 13, 0,
1, 13, 14, 0,
57, 14, 75, 192,
140, 80, 76, 20),
dim = c(4, 2, 2, 2),
dimnames =
list(Class = c("1st", "2nd", "3rd", "Crew"),
Sex = c("Male", "Female"),
Age = c("Child", "Adult"),
Survived = c("No", "Yes")))
class(Titanic) <- "table" |
UnoC <- function(Surv.rsp, Surv.rsp.new, lpnew, time = NULL)
{
if(is.null(time)){
tau <- max(Surv.rsp.new[,1])
}else{
tau <- time
}
time <- Surv.rsp[,1]
event <- 1-Surv.rsp[,2]
time.new <- Surv.rsp.new[,1]
event.new <- Surv.rsp.new[,2]
n <- length(time)
n.new <- length(time.new)
n_lp <- length(lpnew)
n_tau <- length(tau)
if(n.new != n_lp)
stop(" 'Surv.rsp' and 'linear predictors' must have the same length!\n")
if(n_tau > 1){
UnoC <- vector("numeric",length=n_tau)
}else{
UnoC <- 0
}
ans <- .C("UnoC",
as.numeric(time),
as.numeric(event),
as.integer(n),
as.numeric(time.new),
as.numeric(event.new),
as.integer(n.new),
as.numeric(lpnew),
as.numeric(tau),
as.integer(n_tau),
as.numeric(UnoC),
PACKAGE="survAUC")
ans[[10]]
} |
CompPVs <-
function(T){
tmp <- sort(T)
ind <- order(T)
m <- length(T)
pv <- rep(1, length(T))
i <-1
for(j in seq_len(m-1)) {
if (tmp[j] < tmp[j + 1]) {
pv[ind[i:j]] <- j / m
i <- j + 1
}
}
pv
} |
library(tiledb)
array_name <- tempfile()
create_array <- function() {
if (tiledb_object_type(array_name) == "ARRAY") {
message("Array already exists.")
return(invisible(NULL))
}
dom <- tiledb_domain(dims = c(tiledb_dim("rows", c(1L, 4L), 4L, "INT32"),
tiledb_dim("cols", c(1L, 4L), 4L, "INT32")))
attr <- tiledb_attr("a", type = "FLOAT64")
tiledb:::libtiledb_attribute_set_cell_val_num(attr@ptr, NA)
ctx <- tiledb_ctx()
schptr <- tiledb:::libtiledb_array_schema_create(ctx@ptr, "DENSE")
tiledb:::libtiledb_array_schema_set_domain(schptr, dom@ptr)
tiledb:::libtiledb_array_schema_set_cell_order(schptr, "ROW_MAJOR")
tiledb:::libtiledb_array_schema_set_tile_order(schptr, "ROW_MAJOR")
tiledb:::libtiledb_array_schema_add_attribute(schptr, attr@ptr)
tiledb:::libtiledb_array_create(array_name, schptr)
invisible(NULL)
}
write_array <- function() {
data <- c(1.1, 1.1, 2.2, 2.2, 3.3, 4.4, 5.5, 6.6, 6.6, 7.7, 7.7, 8.8, 8.8, 8.8, 9.9, 9.0, 10.0,
11.1, 12.2, 12.2, 13.3, 14.4, 14.4, 14.4, 15.5, 16.6)
offsets <- c(0L, 2L, 4L, 5L, 6L, 7L, 9L, 11L, 14L, 16L, 17L, 18L, 20L, 21L, 24L, 25L)
offsets <- offsets * 8
ctx <- tiledb_ctx()
arrptr <- tiledb:::libtiledb_array_open(ctx@ptr, array_name, "WRITE")
qryptr <- tiledb:::libtiledb_query(ctx@ptr, arrptr, "WRITE")
qryptr <- tiledb:::libtiledb_query_set_layout(qryptr, "ROW_MAJOR")
bufptr <- tiledb:::libtiledb_query_buffer_var_vec_create(offsets, data)
qryptr <- tiledb:::libtiledb_query_set_buffer_var_vec(qryptr, "a", bufptr)
qryptr <- tiledb:::libtiledb_query_submit(qryptr)
tiledb:::libtiledb_array_close(arrptr)
invisible(NULL)
}
read_array <- function(txt="", subarr=NULL) {
cat("\nReading", txt, "\n")
ctx <- tiledb_ctx()
arrptr <- tiledb:::libtiledb_array_open(ctx@ptr, array_name, "READ")
if (is.null(subarr)) {
schptr <- tiledb:::libtiledb_array_get_schema(arrptr)
domptr <- tiledb:::libtiledb_array_schema_get_domain(schptr)
lst <- tiledb:::libtiledb_domain_get_dimensions(domptr)
subarr <- c(tiledb:::libtiledb_dim_get_domain(lst[[1]]),
tiledb:::libtiledb_dim_get_domain(lst[[2]]))
}
bufptr <- tiledb:::libtiledb_query_buffer_var_vec_alloc(arrptr, subarr, "a")
qryptr <- tiledb:::libtiledb_query(ctx@ptr, arrptr, "READ")
qryptr <- tiledb:::libtiledb_query_set_subarray(qryptr, subarr)
qryptr <- tiledb:::libtiledb_query_set_layout(qryptr, "ROW_MAJOR")
qryptr <- tiledb:::libtiledb_query_set_buffer_var_vec(qryptr, "a", bufptr)
qryptr <- tiledb:::libtiledb_query_submit(qryptr)
tiledb:::libtiledb_array_close(arrptr)
rl <- tiledb:::libtiledb_query_get_buffer_var_vec(qryptr, "a", bufptr)
invisible(rl)
}
write_subarray <- function() {
data <- c(11.1, 11.1, 22.2, 22.2, 33.3, 44.4)
offsets <- c(0L, 2L, 4L, 5L)
offsets <- offsets * 4
subarr <- c(2L,3L, 2L,3L)
ctx <- tiledb_ctx()
arrptr <- tiledb:::libtiledb_array_open(ctx@ptr, array_name, "WRITE")
qryptr <- tiledb:::libtiledb_query(ctx@ptr, arrptr, "WRITE")
qryptr <- tiledb:::libtiledb_query_set_subarray(qryptr, subarr)
qryptr <- tiledb:::libtiledb_query_set_layout(qryptr, "ROW_MAJOR")
bufptr <- tiledb:::libtiledb_query_buffer_var_vec_create(offsets, data)
qryptr <- tiledb:::libtiledb_query_set_buffer_var_vec(qryptr, "a", bufptr)
qryptr <- tiledb:::libtiledb_query_submit(qryptr)
tiledb:::libtiledb_array_close(arrptr)
invisible(NULL)
}
create_array()
write_array()
print(read_array("original"))
write_subarray()
print(read_array("after subarray"))
print(read_array("after subarray, subset", c(2L,3L, 2L,3L)))
cat("Done.\n") |
write.simmap<-function(tree,file=NULL,append=FALSE,map.order=NULL,quiet=FALSE,format="phylip",version=1.0){
if(!(inherits(tree,"simmap")||inherits(tree,"multiSimmap")))
stop("tree should be an object of class \"simmap\" or \"multiSimmap\".")
if(inherits(tree,"multiPhylo")) N<-length(tree)
else {
N<-1
tree<-list(tree)
}
n<-sapply(tree,Ntip)
if(format=="nexus"){
trans<-unique(sort(sapply(tree,function(x) x$tip.label)))
nn<-length(trans)
write("
write(paste("[R-package PHYTOOLS, ",date(),"]\n",sep=""),file,append=TRUE)
write("BEGIN TAXA;",file,append=TRUE)
write(paste("\tDIMENSIONS NTAX = ",nn,";",sep=""),file,append=TRUE)
write("\tTAXLABELS",file,append=TRUE)
for(i in 1:length(trans)) write(paste("\t\t",trans[i],sep=""),file,append=TRUE)
write("\t;",file,append=TRUE)
write("END;",file,append=TRUE)
if(version==1.0) write("BEGIN SMPTREES;\n\tTRANSLATE",file,append=TRUE)
else write("BEGIN TREES;\n\tTRANSLATE",file,append=TRUE)
for(i in 1:(nn-1)) write(paste("\t\t",i,"\t",trans[i],",",sep=""),file,
append=TRUE)
write(paste("\t\t",i+1,"\t",trans[i+1],sep=""),file,append=TRUE)
write("\t;",file,append=TRUE)
for(i in 1:N){
tree[[i]]$tip.label<-sapply(tree[[i]]$tip.label,function(x)
which(x==trans))
tree.string<-if(version==1.0) write.v1(tree[[i]],map.order=map.order,
quiet=quiet) else write.v2(tree[[i]],map.order=map.order,
quiet=quiet)
write(paste("\tTREE * UNTITLED = [&R] ",tree.string,sep=""),file,
append=TRUE)
}
write("END;",file,append=TRUE)
} else {
for(i in 1:N){
if(version==1.0)
write(write.v1(tree[[i]],map.order=map.order,quiet=quiet),file,append=append)
else
write(write.v2(tree[[i]],map.order=map.order,quiet=quiet),file,append=append)
}
}
}
write.v1<-function(tree,map.order,quiet){
if(is.null(map.order)){
if(!is.null(attr(tree,"map.order")))
map.order<-attr(tree,"map.order")
else {
if(!quiet)
message("map order should be specified in function call or by tree attribute \"map.order\".\nAssuming right-to-left order.")
map.order<-"R"
}
}
map.order<-toupper(unlist(strsplit(map.order,NULL))[1])
if(map.order!="R"&&map.order!="L"){
if(!quiet) message("do not recognize map order. Assuming right-to-left order.")
map.order<-"R"
}
tree<-reorderSimmap(tree,"cladewise")
n<-Ntip(tree)
string<-vector()
string[1]<-"("
j<-2
for(i in 1:nrow(tree$edge)){
if(tree$edge[i,2]<=n){
string[j]<-tree$tip.label[tree$edge[i,2]]
j<-j+1
string[j]<-":{"
j<-j+1
if(map.order=="L"){
for(l in 1:length(tree$maps[[i]])){
string[j]<-paste(c(names(tree$maps[[i]])[l],",",
round(tree$maps[[i]][l],8)),collapse="")
string[j+1]<-":"
j<-j+2
}
} else {
for(l in length(tree$maps[[i]]):1){
string[j]<-paste(c(names(tree$maps[[i]])[l],",",
round(tree$maps[[i]][l],8)),collapse="")
string[j+1]<-":"
j<-j+2
}
}
string[j-1]<-"}"
v<-which(tree$edge[,1]==tree$edge[i,1])
k<-i
while(length(v)>0&&k==v[length(v)]){
string[j]<-")"
j<-j+1
w<-which(tree$edge[,2]==tree$edge[k,1])
if(length(w)>0){
string[j]<-":{"
j<-j+1
if(map.order=="L"){
for(l in 1:length(tree$maps[[w]])){
string[j]<-paste(c(names(tree$maps[[w]])[l],",",
round(tree$maps[[w]][l],8)),collapse="")
string[j+1]<-":"
j<-j+2
}
} else {
for(l in length(tree$maps[[w]]):1){
string[j]<-paste(c(names(tree$maps[[w]])[l],",",
round(tree$maps[[w]][l],8)),collapse="")
string[j+1]<-":"
j<-j+2
}
}
string[j-1]<-"}"
}
v<-which(tree$edge[,1]==tree$edge[w,1])
k<-w
}
string[j]<-","
j<-j+1
} else if(tree$edge[i,2]>=n){
string[j]<-"("
j<-j+1
}
}
string<-c(string[1:(length(string)-1)],";")
string<-paste(string,collapse="")
string
}
write.v2<-function(tree,map.order,quiet){
if(is.null(map.order)){
if(!is.null(attr(tree,"map.order")))
map.order<-attr(tree,"map.order")
else {
if(!quiet)
message("map order should be specified in function call or by tree attribute \"map.order\".\nAssuming right-to-left order.")
map.order<-"R"
}
}
map.order<-toupper(unlist(strsplit(map.order,NULL))[1])
if(map.order!="R"&&map.order!="L"){
if(!quiet) message("do not recognize map order. Assuming right-to-left order.")
map.order<-"R"
}
tree<-reorderSimmap(tree,"cladewise")
n<-Ntip(tree)
string<-vector()
string[1]<-"("
j<-2
for(i in 1:nrow(tree$edge)){
if(tree$edge[i,2]<=n){
string[j]<-tree$tip.label[tree$edge[i,2]]
j<-j+1
string[j]<-":[&map={"
j<-j+1
nn<-length(tree$maps[[i]])
if(nn==1){
string[j]<-names(tree$maps[[i]])[1]
j<-j+1
} else {
if(map.order=="L"){
for(l in 1:(nn-1)){
string[j]<-paste(c(names(tree$maps[[i]])[l],",",
round(tree$maps[[i]][l],8)),collapse="")
string[j+1]<-","
j<-j+2
}
string[j]<-names(tree$maps[[i]])[nn]
j<-j+1
} else {
for(l in nn:2){
string[j]<-paste(c(names(tree$maps[[i]])[l],",",
round(tree$maps[[i]][l],8)),collapse="")
string[j+1]<-","
j<-j+2
}
string[j]<-names(tree$maps[[i]])[1]
j<-j+1
}
}
string[j]<-paste(c("}]",round(tree$edge.length[i],8)),collapse="")
j<-j+1
v<-which(tree$edge[,1]==tree$edge[i,1])
k<-i
while(length(v)>0&&k==v[length(v)]){
string[j]<-")"
j<-j+1
w<-which(tree$edge[,2]==tree$edge[k,1])
if(length(w)>0){
nn<-length(tree$maps[[w]])
string[j]<-":[&map={"
j<-j+1
if(nn==1){
string[j]<-names(tree$maps[[w]])[1]
j<-j+1
} else {
if(map.order=="L"){
for(l in 1:(nn-1)){
string[j]<-paste(c(names(tree$maps[[w]])[l],",",
round(tree$maps[[w]][l],8)),collapse="")
string[j+1]<-","
j<-j+2
}
string[j]<-names(tree$maps[[w]])[nn]
j<-j+1
} else {
for(l in nn:2){
string[j]<-paste(c(names(tree$maps[[w]])[l],",",
round(tree$maps[[w]][l],8)),collapse="")
string[j+1]<-","
j<-j+2
}
string[j]<-names(tree$maps[[w]])[1]
j<-j+1
}
}
string[j]<-paste(c("}]",round(tree$edge.length[w],8)),collapse="")
j<-j+1
}
v<-which(tree$edge[,1]==tree$edge[w,1])
k<-w
}
string[j]<-","
j<-j+1
} else if(tree$edge[i,2]>=n){
string[j]<-"("
j<-j+1
}
}
string<-c(string[1:(length(string)-1)],";")
string<-paste(string,collapse="")
string
} |
test_that("fredr_series()", {
skip_if_no_key()
series <- fredr_series(series_id = "GNPCA")
expect_s3_class(series, c("tbl_df", "tbl", "data.frame"))
expect_true(ncol(series) == 15)
expect_true(nrow(series) == 1)
})
test_that("input is validated", {
expect_error(fredr_series())
}) |
context("make_log")
testthat::test_that(
"Default make_log works",
testthat::expect_true(
grepl("dummy", make_log("dummy"))
)
)
testthat::test_that(
"make_Log works with endNewLine",
testthat::expect_true(
grepl("\n$", make_log("dummy", endNewLine = TRUE))
)
)
testthat::test_that(
"make_Log works with newLine",
testthat::expect_true(
grepl("^\n", make_log("dummy", newLine = TRUE))
)
)
testthat::test_that(
"emit_log is silent when it should be",
testthat::expect_equal(
capture.output(
emit_log("test", lvl = 30, trh = 40),
type = "message"
),
character(0)
)
)
testthat::test_that(
"emit_log logs when it should",
testthat::expect_message(
emit_log("test", lvl = 30, trh = 0),
"test"
)
)
testthat::test_that(
"log_i works", {
optVal <- getOption("nhlapi_log_threshold")
options(nhlapi_log_threshold = 0L)
expect_message(
log_i("test"),
"test"
)
options(nhlapi_log_threshold = optVal)
}
) |
TradePlot <- function(MSEobj, ..., Lims=c(0.2, 0.2, 0.8, 0.8),
Title=NULL,
Labels=NULL,
Satisficed=FALSE,
Show='both',
point.size=2,
lab.size=4,
axis.title.size=12,
axis.text.size=10,
legend=TRUE,
legend.title.size=12,
position = c("right", "bottom"),
cols=NULL,
fill="gray80",
alpha=0.4,
PMlist=NULL,
Refs=NULL,
Yrs=NULL
) {
if (class(MSEobj) != 'MSE' & class(MSEobj) !='MMSE')
stop("Object must be class `MSE` or class `MMSE`", call.=FALSE)
if (class(MSEobj)=='MMSE') legend <- FALSE
if (!requireNamespace("ggrepel", quietly = TRUE)) {
stop("Package \"ggrepel\" needed for this function to work. Please install it.",
call. = FALSE)
}
if (is.null(PMlist)) {
PMlist <- unlist(list(...))
} else {
PMlist <- unlist(PMlist)
}
position <- match.arg(position)
if(length(PMlist) == 0) PMlist <- c("STY", "LTY", "P10", "AAVY")
if (class(PMlist) != 'character') stop("Must provide names of PM methods")
if (length(PMlist)<2) stop("Must provided more than 1 PM method")
if (is.null(cols)) {
cols <- c("
}
if (length(cols) == MSEobj@nMPs) {
Col <- 'MP'
} else {
Col <- 'Class'
}
nPMs <- length(PMlist)
if (nPMs %% 2 != 0) {
message("Odd number of PMs. Recycling first PM")
PMlist <- c(PMlist, PMlist[1])
nPMs <- length(PMlist)
}
if (length(Lims) < nPMs) {
message("Recycling limits")
Lims <- rep(Lims,10)[1:nPMs]
}
if (length(Lims) > nPMs) {
Lims <- Lims[1:nPMs]
}
runPM <- vector("list", length(PMlist))
for (X in 1:length(PMlist)) {
ref <- Refs[[PMlist[X]]]
yrs <- Yrs[[PMlist[X]]]
if (is.null(ref)) {
if (is.null(yrs)) {
runPM[[X]] <- eval(call(PMlist[X], MSEobj))
} else {
runPM[[X]] <- eval(call(PMlist[X], MSEobj, Yrs=yrs))
}
} else {
if (is.null(yrs)) {
runPM[[X]] <- eval(call(PMlist[X], MSEobj, Ref=ref))
} else {
runPM[[X]] <- eval(call(PMlist[X], MSEobj, Ref=ref, Yrs=yrs))
}
}
}
nplots <- nPMs/2
n.col <- ceiling(sqrt(nplots))
n.row <- ceiling(nplots/n.col)
m <- matrix(1:(n.col*n.row), ncol=n.col, nrow=n.row, byrow=FALSE)
xmin <- xmax <- ymin <- ymax <- x <- y <- Class <- label <- fontface <- NULL
plots <- listout <- list()
xInd <- seq(1, by=2, length.out=nplots)
yInd <- xInd + 1
if (!(is.null(Title))) Title <- rep(Title, nplots)[1:nplots]
for (pp in 1:nplots) {
yPM <- PMlist[yInd[pp]]
yvals <- runPM[[match(yPM, PMlist)]]@Mean
ycap <- runPM[[match(yPM, PMlist)]]@Caption
yname <- runPM[[match(yPM, PMlist)]]@Name
yline <- Lims[match(yPM, PMlist)]
xPM <- PMlist[xInd[pp]]
xvals <- runPM[[match(xPM, PMlist)]]@Mean
xcap <- runPM[[match(xPM, PMlist)]]@Caption
xname <- runPM[[match(xPM, PMlist)]]@Name
xline <- Lims[match(xPM, PMlist)]
xlim <- c(0, max(max(xvals, 1)))
ylim <- c(0, max(max(yvals, 1)))
xrect <- data.frame(xmin=0, xmax=xline, ymin=0, ymax=max(ylim))
yrect <- data.frame(xmin=0, xmax=max(xlim), ymin=0, ymax=yline)
if(legend) {
MPType <- MPtype(MSEobj@MPs)
Class <- MPType[match(MSEobj@MPs, MPType[,1]),2]
} else {
Class <- rep('', MSEobj@nMPs)
}
if (class(MSEobj) =='MSE') {
labels <- MSEobj@MPs
if (class(Labels) == "list") {
repnames <- names(Labels)
invalid <- repnames[!repnames %in% labels]
if (length(invalid >0)) {
warning("Labels: ", paste(invalid, collapse=", "), " are not MPs in MSE")
Labels[invalid] <- NULL
repnames <- names(Labels)
}
labels[labels %in% repnames] <- Labels %>% unlist()
}
} else {
labels <- runPM[[1]]@MPs
}
df <- data.frame(x=xvals, y=yvals, label=labels, Class=Class,
pass=xvals>xline & yvals>yline, fontface="plain", xPM=xPM, yPM=yPM)
df$fontface <- as.character(df$fontface)
df$fontface[!df$pass] <- "italic"
df$fontface <- factor(df$fontface)
listout[[pp]] <- df
if (Satisficed) {
xlim <- c(xline, 1)
ylim <- c(yline, 1)
plots[[pp]] <- ggplot2::ggplot()
} else {
plots[[pp]] <- ggplot2::ggplot() +
ggplot2::geom_rect(data=xrect, ggplot2::aes(xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax), fill=fill, alpha=alpha) +
ggplot2::geom_rect(data=yrect, ggplot2::aes(xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax), fill=fill, alpha=alpha)
}
if (Col == "Class") {
plots[[pp]] <- plots[[pp]] +
ggplot2::geom_point(data=df, ggplot2::aes(x, y, shape=Class, color=Class), size=point.size, na.rm=TRUE)
if (!is.null(lab.size))
plots[[pp]] <- plots[[pp]] +
ggrepel::geom_text_repel(data=df, ggplot2::aes(x, y, color=Class, label=label,
fontface = fontface),
show.legend=FALSE, size=lab.size, na.rm=TRUE)
} else if (Col == "MP") {
plots[[pp]] <- plots[[pp]] +
ggplot2::geom_point(data=df, ggplot2::aes(x, y, shape=Class, color=label), size=point.size, na.rm=TRUE)
if (!is.null(lab.size))
plots[[pp]] <- plots[[pp]] +
ggrepel::geom_text_repel(data=df, ggplot2::aes(x, y, color=label, label=label,
fontface = fontface),
show.legend=FALSE, size=lab.size, na.rm=TRUE)
}
plots[[pp]] <- plots[[pp]] +
ggplot2::xlab(xcap) + ggplot2::ylab(ycap) +
ggplot2::xlim(xlim) + ggplot2::ylim(ylim) +
ggplot2::theme_classic() +
ggplot2::theme(axis.title = ggplot2::element_text(size=axis.title.size),
axis.text = ggplot2::element_text(size=axis.text.size),
legend.text=ggplot2::element_text(size=legend.title.size),
legend.title = ggplot2::element_text(size=legend.title.size)) +
ggplot2::labs(shape= "MP Type", color="MP Type")
if (Col == "Class") {
plots[[pp]] <- plots[[pp]] + ggplot2::scale_colour_manual(values=cols)
} else if (Col == "MP") {
plots[[pp]] <- plots[[pp]] + ggplot2::scale_colour_manual(values=cols) + ggplot2::guides(color='none')
}
if (!is.null(Title))
plots[[pp]] <- plots[[pp]] + ggplot2::labs(title=Title[pp])
if (legend==FALSE)
plots[[pp]] <- plots[[pp]] + ggplot2::theme(legend.position="none")
}
out <- do.call("rbind", listout)
tab <- table(out$label, out$pass)
passall <- rownames(tab)[tab[,ncol(tab)] == nplots]
if (class(MSEobj)=='MSE') {
Results <- summary(MSEobj, PMlist, silent=TRUE, Refs=Refs)
Results$Satisificed <- FALSE
Results$Satisificed[match(passall, Results$MP)] <- TRUE
Results <- Results[,unique(colnames(Results))]
} else {
Results <- 'Summary table of results only available for objects of class `MSE`'
}
out <- list(Results=Results, Plots=plots)
if (Show == "plots") {
join_plots(plots, n.col, n.row, position = position, legend=legend)
} else if (Show == "table") {
print(Results)
} else if (Show == "none") {
return(invisible(out))
} else {
join_plots(plots, n.col, n.row, position = position, legend=legend)
if (class(MSEobj) =='MSE') print(Results)
}
invisible(out)
}
Tplot <- function(MSEobj, Lims=c(0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5), ...) {
if (class(Lims)!="numeric") stop("Second argument must be numeric")
TradePlot(MSEobj, Lims=Lims, PMlist=list("PNOF", "LTY", "P100", "LTY", "P50", "LTY", "P10", "LTY"), ...)
}
Tplot2 <- function(MSEobj, Lims=c(0.2, 0.2, 0.8, 0.8), ...) {
if (class(Lims)!="numeric") stop("Second argument must be numeric")
TradePlot(MSEobj, Lims=Lims, PMlist=list("STY", "LTY", "P10", "AAVY"), ...)
}
Tplot3 <- function(MSEobj, Lims=c(0.5, 0.5, 0.8, 0.5), ...) {
if (class(Lims)!="numeric") stop("Second argument must be numeric")
TradePlot(MSEobj, Lims=Lims, PMlist=list("PNOF", "LTY", "P50", "AAVY"), ...)
}
NOAA_plot2 <- function(MSEobj) {
TradePlot(MSEobj, Lims=c(0.5, 0, 0.8, 0.5), PMlist=list("PNOF", "LTY", "P50", "AAVY"), Refs=list(AAVY=0.15))
}
Cplot <- function(MSEobj, MPs = NA, lastYrs = 5,
point.size=2,
lab.size=4,
axis.title.size=12,
axis.text.size=10,
legend.title.size=12) {
if (!all(is.na(MPs))) MSEobj <- Sub(MSEobj, MPs = MPs)
if (!requireNamespace("ggrepel", quietly = TRUE)) {
stop("Package \"ggrepel\" needed for this function to work. Please install it.",
call. = FALSE)
}
mp <- Catch <- Biomass <- mB <- mC <- NULL
nsim <- MSEobj@nsim
nMPs <- MSEobj@nMPs
MPs <- MSEobj@MPs
nyears <- MSEobj@nyears
proyears <- MSEobj@proyears
RefYd <- MSEobj@OM$RefY
MPType <- MPtype(MSEobj@MPs)
Class <- MPType[match(MSEobj@MPs, MPType[,1]),2]
pastC <- MSEobj@CB_hist/RefYd
temp <- aperm( replicate(nMPs, pastC), c(1, 3, 2))
lastYr <- temp[, , nyears, drop = FALSE]
Yield <- abind::abind(lastYr, MSEobj@Catch[, , , drop = FALSE]/RefYd, along = 3)
ny <- MSEobj@proyears + 1
relYield <- Yield[, , , drop = FALSE]/Yield[, , rep(1, ny), drop = FALSE]
relYield <- relYield[,,(proyears - lastYrs + 1):proyears]
bio <- MSEobj@SB_SBMSY[,,(proyears - lastYrs + 1):proyears]
histSSB <- MSEobj@SSB_hist
relSSB <- histSSB[,nyears]/ MSEobj@OM$SSBMSY
temp <- array(replicate(nMPs, relSSB), dim=dim(bio))
relbio <- bio/temp
dimnames(relbio) <- list(1:nsim, MPs, 1:lastYrs)
Bdf <- as.data.frame.table(relbio)
names(Bdf) <- c("sim", "mp", "yr", 'Biomass')
dimnames(relYield) <- list(1:nsim, MPs, 1:lastYrs)
Cdf <- as.data.frame.table(relYield)
names(Cdf) <- c("sim", "mp", "yr", 'Catch')
DF <- dplyr::left_join(Cdf, Bdf,by = c("sim", "mp", "yr"))
DF <- DF %>% dplyr::group_by(mp) %>% dplyr::summarize(mC=median(Catch),
upC=quantile(Catch, 0.95),
lowC=quantile(Catch, 0.05),
mB=median(Biomass),
upB=quantile(Biomass, 0.95),
lowB=quantile(Biomass, 0.05),
.groups='keep')
DF$class <- Class
p1 <- ggplot2::ggplot(DF, ggplot2::aes(x=mB, y=mC, color=class, shape=class)) +
ggplot2::geom_point() +
ggplot2::expand_limits(x=0, y=0) +
ggplot2::geom_vline(xintercept = 1, color="gray") +
ggplot2::geom_hline(yintercept = 1, color="gray") +
ggplot2::theme_classic() +
ggplot2::theme(axis.title = ggplot2::element_text(size=axis.title.size),
axis.text = ggplot2::element_text(size=axis.text.size),
legend.text=ggplot2::element_text(size=legend.title.size),
legend.title = ggplot2::element_text(size=legend.title.size)) +
ggrepel::geom_text_repel(ggplot2::aes(label=mp), show.legend=FALSE) +
ggplot2::labs(x=paste("Median Spawning Biomass (last", lastYrs,
"years)\n relative to current"),
y=paste("Median Yield (last", lastYrs, "years)\n relative to current"),
shape= "MP Type", color="MP Type")
print(p1)
} |
gutenberg_download <- function(gutenberg_id, mirror = NULL, strip = TRUE,
meta_fields = NULL, verbose = TRUE,
files = NULL, ...) {
if (is.null(mirror)) {
mirror <- gutenberg_get_mirror(verbose = verbose)
}
if (inherits(gutenberg_id, "data.frame")) {
gutenberg_id <- gutenberg_id[["gutenberg_id"]]
}
id <- as.character(gutenberg_id)
path <- id %>%
stringr::str_sub(1, -2) %>%
stringr::str_split("") %>%
sapply(stringr::str_c, collapse = "/")
path <- ifelse(nchar(id) == 1, "0", path)
full_url <- stringr::str_c(mirror, path, id,
stringr::str_c(id, ".zip"),
sep = "/")
names(full_url) <- id
try_download <- function(url) {
ret <- read_zip_url(url)
if (!is.null(ret)) {
return(ret)
}
base_url <- stringr::str_replace(url, ".zip$", "")
for (suffix in c("-8", "-0")) {
new_url <- paste0(base_url, suffix, ".zip")
ret <- read_zip_url(new_url)
if (!is.null(ret)) {
return(ret)
}
}
warning("Could not download a book at ", url)
NULL
}
if (!is.null(files)) {
downloaded <- files %>%
stats::setNames(id) %>%
purrr::map(readr::read_lines)
} else {
downloaded <- full_url %>%
purrr::map(try_download)
}
ret <- downloaded %>%
purrr::discard(is.null) %>%
purrr::map_df(~tibble(text = .), .id = "gutenberg_id") %>%
mutate(gutenberg_id = as.integer(gutenberg_id))
if (strip) {
ret <- ret %>%
group_by(gutenberg_id) %>%
do(tibble(text = gutenberg_strip(.$text, ...))) %>%
ungroup()
}
if (length(meta_fields) > 0) {
meta_fields <- unique(c("gutenberg_id", meta_fields))
utils::data("gutenberg_metadata", package = "gutenbergr", envir = environment())
md <- gutenberg_metadata[meta_fields]
ret <- ret %>%
inner_join(md, by = "gutenberg_id")
}
ret
}
gutenberg_strip <- function(text) {
text[is.na(text)] <- ""
starting_regex <- "(^\\*\\*\\*.*PROJECT GUTENBERG|END.*SMALL PRINT)"
text <- discard_start_while(text, !stringr::str_detect(text, starting_regex))[-1]
text <- discard_start_while(text, text != "")
ending_regex <- "^(End of .*Project Gutenberg.*|\\*\\*\\*.*END OF.*PROJECT GUTENBERG)"
text <- keep_while(text, !stringr::str_detect(text, ending_regex))
text <- discard_start_while(text, text == "")
start_paragraph_regex <- "(produced by|prepared by|transcribed from|project gutenberg|^special thanks|^note: )"
while (length(text) > 0 &&
stringr::str_detect(stringr::str_to_lower(text[1]), start_paragraph_regex)) {
text <- discard_start_while(text, text != "")
text <- discard_start_while(text, text == "")
}
text <- discard_end_while(text, text == "")
text
}
gutenberg_get_mirror <- function(verbose = TRUE) {
mirror <- getOption("gutenberg_mirror")
if (!is.null(mirror)) {
return(mirror)
}
if (verbose) {
message("Determining mirror for Project Gutenberg from ",
"http://www.gutenberg.org/robot/harvest")
}
wget_url <- "http://www.gutenberg.org/robot/harvest?filetypes[]=txt"
lines <- readr::read_lines(wget_url)
a <- lines[stringr::str_detect(lines, stringr::fixed("<a href="))][1]
mirror_full_url <- stringr::str_match(a, "href=\"(.*?)\"")[2]
parsed <- urltools::url_parse(mirror_full_url)
mirror <- paste0(parsed$scheme, "://", parsed$domain)
if (mirror == "http://www.gutenberg.lib.md.us") {
mirror <- "http://aleph.gutenberg.org"
}
if (verbose) {
message("Using mirror ", mirror)
}
options(gutenberg_mirror = mirror)
return(mirror)
} |
edar <- function() {
edar_pack <- c("psych", "Hmisc", "PerformanceAnalytics")
for (i in 1:length(edar_pack)){
requireNamespace(edar_pack[i], quietly = TRUE)
}
appDir <- system.file("shiny-apps", "EDAR", package = "Statsomat")
if (appDir == "") {
stop("Could not find example directory. Try re-installing Statsomat.", call. = FALSE)
}
shiny::runApp(appDir, display.mode = "normal")
} |
`ensembleValidDates` <-
function (x) {
UseMethod("ensembleValidDates")
} |
input_mats <- function(X, ...){
object <- new_input_mats(X, ...)
check(object)
return(object)
}
new_input_mats <- function(X, ...){
stopifnot(is.matrix(X) | is.list(X) | is.null(X))
object <- c(list(X = X),
do.call("new_id_attributes", list(...)))
object[sapply(object, is.null)] <- NULL
class(object) <- "input_mats"
return(object)
}
check.input_mats <- function(object){
if (!is.list(object$X)){
stop("'X' must be a list or a list of lists.", call. = FALSE)
}
X <- flatten_lists(object$X)
if(!all(sapply(X, function(y) inherits(y, "matrix")))){
stop("'X' must be a list or list of lists of matrices.", call. = FALSE)
}
X_nrows <- sapply(X, nrow)
if (is.list(object$X)){
if (!all(X_nrows[1] == X_nrows)){
stop("The number of rows in each matrix in 'X' must be the same.",
call. = FALSE)
}
}
id_vars <- c("strategy_id", "patient_id", "state_id", "transition_id",
"time_id")
id_vars_n <- c("n_strategies", "n_patients", "n_states", "n_transitions",
"n_times")
for (i in 1:length(id_vars)){
if (!is.null(object[[id_vars[i]]])){
if(length(object[[id_vars[i]]]) != X_nrows[1]){
msg <- paste0("The length of '", id_vars[i], "' does not equal the number of rows in the ",
"'X' matrices.")
stop(msg, call. = FALSE)
}
}
}
id_args <- object[names(object)[names(object) != "X"]]
check(do.call("id_attributes", id_args))
}
as.data.table.input_mats <- function(x, ...) {
id_dt <- make_id_data_table(x)
xl <- lapply(flatten_lists(x$X), as.data.table)
x_dt <- NULL
for (i in 1:length(xl)) {
cols_i <- colnames(xl[[i]])
new_cols <- cols_i[!cols_i %in% colnames(x_dt)]
if (length(new_cols) > 0) {
x_dt <- cbind(x_dt, xl[[i]][, new_cols, with = FALSE])
}
}
tbl <- cbind(id_dt, x_dt)
setattr(tbl, "id_vars", attr(id_dt, "id_vars"))
tbl
}
print.input_mats <- function(x, ...) {
x_dt <- as.data.table(x)
id_vars <- attr(x_dt, "id_vars")
size <- unlist(x[grepl("n_", names(x))])
cat("An \"input_mats\" object \n\n")
cat("Column binding the ID variables with all variables contained in the X matrices:\n")
print(as.data.table(x), ...)
cat("\n")
cat("Number of unique values of ID variables:\n")
print(size)
cat("\n")
if ("time_intervals" %in% names(x)) {
cat("Time intervals:\n")
print(x$time_intervals)
}
invisible(x)
}
size_id_map <- function(){
c(strategy_id = "n_strategies",
patient_id = "n_patients",
state_id = "n_states",
transition_id = "n_transitions",
time_id = "n_times")
}
get_input_mats_id_vars <- function(data){
map <- size_id_map()
res <- list()
id_vars <- attr(data, "id_vars")
for (i in 1:length(id_vars)){
res[[id_vars[i]]] <- data[[id_vars[i]]]
res[[map[id_vars[i]]]] <- length(unique(data[[id_vars[i]]]))
if (id_vars[[i]] == "time_id"){
res[["time_intervals"]] <- attr(data, "time_intervals")
}
}
if ("grp_id" %in% colnames(data)) res[["grp_id"]] <- data[["grp_id"]]
if ("patient_wt" %in% colnames(data)) res[["patient_wt"]] <- data[["patient_wt"]]
return(res)
}
check_input_data <- function(input_data){
if (!inherits(input_data, "expanded_hesim_data")){
stop("'input_data' must be of class 'expanded_hesim_data'.")
}
if (!inherits(input_data, "data.table") & !inherits(input_data, "data.frame")){
stop("'input_data' must inherit from either 'data.table' or 'data.frame'.")
}
if (!inherits(input_data, "data.table")){
setattr(input_data, "class", c("expanded_hesim_data", "data.table", "data.frame"))
}
}
extract_X <- function(coef_mat, data){
varnames <- colnames(coef_mat)
if (is.null(varnames)){
stop("Variable names for coefficients cannot be NULL.",
call. = FALSE)
}
if(!all(varnames %in% colnames(data))){
stop("Not all variables in 'object' are contained in 'input_data'.",
call. = FALSE)
}
X <- as.matrix(data[, varnames, with = FALSE])
if (!is.numeric(X)) {
stop("'input_data' must only include numeric variables.",
call. = FALSE)
}
return(X)
}
get_terms <- function(object){
tt <- stats::terms(object)
return(stats::delete.response(tt))
}
create_input_mats <- function (object, ...) {
if (missing(object)){
stop("'object' is missing with no default.")
}
UseMethod("create_input_mats", object)
}
formula_list_rec <- function(object, input_data, ...){
x <- vector(mode = "list", length = length(object))
names(x) <- names(object)
for (i in 1:length(x)){
if (inherits(object[[i]], "formula")){
x[[i]] <- stats::model.matrix(object[[i]], data = input_data, ...)
} else{
x[[i]] <- formula_list_rec(object[[i]], data = input_data, ...)
}
}
return(x)
}
create_input_mats.formula_list <- function(object, input_data, ...){
check_input_data(input_data)
X_list <- formula_list_rec(object, input_data, ...)
args <- c(list(X = X_list),
get_input_mats_id_vars(input_data))
return(do.call("new_input_mats", args))
}
create_input_mats.lm <- function(object, input_data, ...){
check_input_data(input_data)
terms <- get_terms(object)
X <- stats::model.matrix(terms, data = input_data, ...)
args <- c(list(X = list(mu = X)),
get_input_mats_id_vars(input_data))
return(do.call("new_input_mats", args))
}
create_input_mats_flexsurvreg_X <- function(object, input_data, ...){
mfo <- stats::model.frame(object)
covnames <- attr(mfo, "covnames")
missing.covs <- unique(covnames[!covnames %in% names(input_data)])
if (length(missing.covs) > 0){
missing.covs <- sprintf("\"%s\"", missing.covs)
plural <- if (length(missing.covs)>1) "s" else ""
stop(sprintf("Value%s of covariate%s ",plural, plural),
paste(missing.covs, collapse=", "), " not supplied in \"input_data\"")
}
tt <- attr(mfo, "terms")
Terms <- stats::delete.response(tt)
mf <- stats::model.frame(Terms, input_data, xlev = stats::.getXlevels(tt, mfo))
if (!is.null(cl <- attr(Terms, "dataClasses")))
stats::.checkMFClasses(cl, mf)
pars <- object$dlist$pars
X_list <- vector(mode = "list", length = length(pars))
names(X_list) <- pars
for (i in 1:length(pars)){
form <- object$all.formulae[[pars[i]]]
if (is.null(form)){
form <- stats::formula(~1)
} else{
form <- stats::delete.response(stats::terms(form))
}
X_list[[i]] <- stats::model.matrix(form, mf, ...)
}
return(X_list)
}
create_input_mats.flexsurvreg <- function(object, input_data,...){
check_input_data(input_data)
X_list <- create_input_mats_flexsurvreg_X(object, input_data, ...)
args <- c(list(X = X_list),
get_input_mats_id_vars(input_data))
return(do.call("new_input_mats", args))
}
create_input_mats.flexsurvreg_list <- function(object, input_data,...){
check_input_data(input_data)
X_list_2d <- vector(mode = "list", length = length(object))
names(X_list_2d) <- names(object)
for (i in 1:length(object)){
X_list_2d[[i]] <- create_input_mats_flexsurvreg_X(object[[i]], input_data, ...)
}
args <- c(list(X = X_list_2d),
get_input_mats_id_vars(input_data))
return(do.call("new_input_mats", args))
}
create_input_mats.partsurvfit <- function(object, input_data, ...){
check_input_data(input_data)
return(create_input_mats.flexsurvreg_list(object$models, input_data, ...))
}
create_input_mats.params_lm <- function(object, input_data, ...){
check_input_data(input_data)
X <- extract_X(object$coefs, input_data)
args <- c(list(X = list(mu = X)),
get_input_mats_id_vars(input_data))
return(do.call("new_input_mats", args))
}
create_input_mats_params_surv_X <- function(object, input_data){
X_list <- vector(mode = "list", length = length(object$coefs))
names(X_list) <- names(object$coefs)
for (i in 1:length(X_list)){
X_list[[i]] <- extract_X(object$coefs[[i]], input_data)
}
return(X_list)
}
create_input_mats.params_surv <- function(object, input_data, ...){
check_input_data(input_data)
X_list <- create_input_mats_params_surv_X(object, input_data)
args <- c(list(X = X_list),
get_input_mats_id_vars(input_data))
return(do.call("new_input_mats", args))
}
create_input_mats.params_surv_list <- function(object, input_data, ...){
X_list_2d <- vector(mode = "list", length = length(object))
names(X_list_2d) <- names(object)
for (i in 1:length(object)){
X_list_2d[[i]] <- create_input_mats_params_surv_X(object[[i]], input_data)
}
args <- c(list(X = X_list_2d),
get_input_mats_id_vars(input_data))
return(do.call("new_input_mats", args))
}
create_input_mats_multinom_X <- function(object, input_data, ...){
check_input_data(input_data)
terms <- get_terms(object)
if (!is.null(attr(terms(object), "offset"))){
stop("An offset is not supported.", call. = FALSE)
}
m <- stats::model.frame(terms, input_data, na.action = stats::na.omit,
xlev = object$xlevels)
if (!is.null(cl <- attr(terms, "dataClasses")))
stats::.checkMFClasses(cl, m)
return(stats::model.matrix(terms, m, contrasts = object$contrasts))
}
create_input_mats.multinom <- function(object, input_data, ...){
X <- create_input_mats_multinom_X(object, input_data, ...)
args <- c(list(X = X),
get_input_mats_id_vars(input_data))
return(do.call("new_input_mats", args))
}
create_input_mats.multinom_list <- function(object, input_data, ...){
X_list <- vector(mode = "list", length = length(object))
names(X_list) <- names(object)
for (i in 1:length(object)){
X_list[[i]] <- create_input_mats_multinom_X(object[[i]], input_data, ...)
}
args <- c(list(X = X_list),
get_input_mats_id_vars(input_data))
return(do.call("new_input_mats", args))
}
create_input_mats.params_mlogit_list <- function(object, input_data, ...){
X_list <- vector(mode = "list", length = length(object))
for (i in 1:length(object)){
X_list[[i]] <- extract_X(object[[i]]$coefs[, , 1], input_data)
}
args <- c(list(X = X_list),
get_input_mats_id_vars(input_data))
return(do.call("new_input_mats", args))
} |
mww_eval<-function(d,x,filter,LU=NULL){
if(is.matrix(x)){
N <- dim(x)[1]
k <- dim(x)[2]
}else{
N <- length(x)
k <- 1
}
x <- as.matrix(x,dim=c(N,k))
xwav <- matrix(0,N,k)
for(j in 1:k){
xx <- x[,j]
resw <- DWTexact(xx,filter)
xwav_temp <- resw$dwt
index <- resw$indmaxband
Jmax <- resw$Jmax
xwav[1:index[Jmax],j] <- xwav_temp
}
new_xwav <- matrix(0,min(index[Jmax],N),k)
if(index[Jmax]<N){
new_xwav[(1:(index[Jmax])),] <- xwav[(1:(index[Jmax])),]
}
xwav <- new_xwav
index <- c(0,index)
if(is.null(LU)==TRUE){
LU <- c(1,Jmax)
}
L <- max(LU[1],1)
U <- min(LU[2],Jmax)
nscale <- U-L+1
n <- index[U+1]-index[L]
if(k==1){
res<-mww_wav_eval(d,as.vector(xwav),index,LU)
}else{
res<-mww_wav_eval(d,xwav,index,LU)
}
return(res)
} |
dtmod <- function(x, mu = 0, sigma = 1, nu = 30, log = FALSE){
if (log == TRUE){
x <- log(x)
}
nenner1 <- try(sigma*beta(1/2, nu/2))
zaehler1 <- try(nu^(-1/2))
nenner2 <- try(nu*sigma^2)
zaehler2 <- try((x-mu)^2)
dtmod <- try(zaehler1/nenner1*(1+zaehler2/nenner2)^(-1*(nu+1)/2))
return (dtmod)
} |
context("Profile")
test_that("renv/profile is read and used to select a profile", {
project <- renv_tests_scope()
init(profile = "testing")
renv_imbue_self(project)
expect_true(file.exists("renv/profile"))
contents <- readLines("renv/profile")
expect_equal(contents, "testing")
renv_scope_envvars(R_PROFILE_USER = NULL)
script <- renv_test_code({
writeLines(Sys.getenv("RENV_PROFILE"))
})
args <- c("-s", "-f", shQuote(script))
output <- renv_system_exec(R(), args, action = "reading profile")
})
test_that("a profile changes the default library / lockfile path", {
renv_tests_scope()
renv_scope_envvars(RENV_PROFILE = "testing")
project <- getwd()
init()
profile <- file.path(project, "renv/profile")
expect_false(file.exists(profile))
prefix <- "renv/profiles/testing"
expect_equal(
paths$lockfile(project = project),
file.path(project, prefix, "renv.lock")
)
expect_equal(
paths$library(project = project),
file.path(project, prefix, "renv/library", renv_platform_prefix())
)
expect_equal(
paths$settings(project = project),
file.path(project, prefix, "renv/settings.dcf")
)
})
test_that("profile-specific dependencies can be written", {
renv_tests_scope()
renv_scope_envvars(RENV_PROFILE = "testing")
init()
path <- renv_paths_renv("_dependencies.R")
ensure_parent_directory(path)
writeLines("library(toast)", con = path)
deps <- dependencies(quiet = TRUE)
expect_true("toast" %in% deps$Package)
renv_scope_envvars(RENV_PROFILE = "other")
deps <- dependencies(quiet = TRUE)
expect_false("toast" %in% deps$Package)
})
test_that("profile-specific dependencies can be declared in DESCRIPTION", {
renv_tests_scope()
renv_scope_envvars(RENV_PROFILE = "testing")
init()
writeLines(
"Config/renv/profiles/testing/dependencies: toast",
con = "DESCRIPTION"
)
deps <- dependencies()
expect_true("toast" %in% deps$Package)
})
test_that("profile-specific remotes are parsed", {
project <- renv_tests_scope()
renv_scope_envvars(RENV_PROFILE = "testing")
init()
desc <- heredoc('
Type: Project
Config/renv/profiles/testing/dependencies: bread
Config/renv/profiles/testing/remotes: [email protected]
')
writeLines(desc, con = "DESCRIPTION")
remotes <- renv_project_remotes(project)
actual <- remotes$bread
expected <- list(Package = "bread", Version = "0.1.0", Source = "Repository")
expect_equal(actual, expected)
}) |
require(copula)
source(system.file("Rsource", "utils.R", package="copula", mustWork=TRUE))
showProc.time()
(doExtras <- copula:::doExtras())
tC2.F <- tCopula(df=2, df.fixed=TRUE)
(cm <- setTheta(tC2.F, value=-0.5, freeOnly=TRUE))
(cp <- setTheta(tC2.F, value= 0.5, freeOnly=TRUE))
(c2 <- setTheta(tC2.F, value=c(0.5,3), freeOnly=FALSE))
stopifnot(all.equal(getTheta(cm), -0.5), all.equal(getTheta(cp), +0.5),
all.equal(getTheta(cm, freeOnly=FALSE, named=TRUE),
c(rho.1 = -0.5, df = 2)),
all.equal(getTheta(cp, freeOnly=FALSE), c(0.5, 2)),
all.equal(getTheta(c2, freeOnly=FALSE, named=TRUE),
c(rho.1 = 0.5, df = 3)))
(N3 <- normalCopula(c(0.5,0.3,0.2), dim=3, dispstr = "un"))
fixedParam(N3) <- c(TRUE, FALSE, FALSE); N3
(N3.2 <- setTheta(N3, c( 0.4, 0.2) -> t2))
(N3.3 <- setTheta(N3, c(0.6, 0.4, 0.2) -> t3, freeOnly=FALSE))
stopifnot(all.equal(getTheta(N3.2), t2),
all.equal(getTheta(N3.3), t3[-1]),
all.equal(getTheta(N3.2, freeOnly=FALSE), c(0.5, t2)),
all.equal(getTheta(N3.3, freeOnly=FALSE), t3))
(tC3 <- tCopula(c(0.5,0.3,0.2), dim=3, dispstr = "un"))
fixedParam(tC3) <- c(TRUE, FALSE, FALSE, TRUE); tC3
(tC3.2 <- setTheta(tC3, c( 0.4, 0.1) -> t2))
(tC3.3 <- setTheta(tC3, c(0.6, 0.4, 0.1, 3) -> t3, freeOnly=FALSE))
stopifnot(all.equal(getTheta(tC3.2), t2),
all.equal(getTheta(tC3.3), t3[-c(1,4)]),
all.equal(getTheta(tC3.2, freeOnly=FALSE), c(0.5, t2, 4)),
all.equal(getTheta(tC3.3, freeOnly=FALSE), t3))
fixedParam(tC3) <- c(TRUE, FALSE, FALSE, FALSE); tC3
(tC3u.2 <- setTheta(tC3, c( 0.4, 0.2, 5) -> t2))
(tC3u.3 <- setTheta(tC3, c(0.6, 0.4, 0.2, 3) -> t3, freeOnly=FALSE))
stopifnot(all.equal(getTheta(tC3u.2), t2),
all.equal(getTheta(tC3u.3), t3[-1]),
all.equal(getTheta(tC3u.2, freeOnly=FALSE), c(0.5, t2)),
all.equal(getTheta(tC3u.3, freeOnly=FALSE), t3))
n <- 100
nc3 <- normalCopula(dim = 3, c(.6,.3,.2), dispstr = "un")
nc3@parameters
set.seed(4521)
x <- rCopula(n, nc3)
u <- pobs(x)
fitCopula(nc3, data = u)
fitCopula(nc3, data = u, estimate.variance = FALSE)
fitCopula(nc3, data = x, method = "ml")
fitCopula(nc3, data = x, method = "ml", estimate.variance = FALSE)
fitCopula(nc3, data = u, method = "itau")
fitCopula(nc3, data = u, method = "itau", estimate.variance = FALSE)
fitCopula(nc3, data = u, method = "irho")
fitCopula(nc3, data = u, method = "irho", estimate.variance = FALSE)
showProc.time()
nc2 <- normalCopula(dim = 3, fixParam(c(.6,.3,.2), c(TRUE, FALSE, FALSE)),
dispstr = "un")
nc2@parameters
fitCopula(nc2, data = u)
fitCopula(nc2, data = u, estimate.variance = FALSE)
fitCopula(nc2, data = x, method = "ml")
fitCopula(nc2, data = x, method = "ml", estimate.variance = FALSE)
fitCopula(nc2, data = u, method = "itau")
fitCopula(nc2, data = u, method = "itau", estimate.variance = FALSE)
fitCopula(nc2, data = u, method = "irho")
fitCopula(nc2, data = u, method = "irho", estimate.variance = FALSE)
showProc.time()
nc1 <- normalCopula(dim = 3, fixParam(c(.6,.3,.2), c(TRUE, TRUE, FALSE)),
dispstr = "un")
nc1@parameters
fitCopula(nc1, data = u)
fitCopula(nc1, data = x, method = "ml")
fitCopula(nc1, data = u, method = "itau")
fitCopula(nc1, data = u, method = "irho")
showProc.time()
tc3df <- tCopula(dim = 3, c(.6,.3,.2), dispstr = "un")
tc3df@parameters
set.seed(4521)
x <- rCopula(n, tc3df)
u <- pobs(x)
fitCopula(tc3df, data = u)
fitCopula(tc3df, data = x, method = "ml")
fitCopula(tc3df, data = u, method = "itau")
fitCopula(tc3df, data = u, estimate.variance = FALSE)
fitCopula(tc3df, data = x, method = "ml", estimate.variance = FALSE)
fitCopula(tc3df, data = u, method = "itau", estimate.variance = FALSE)
fitCopula(tc3df, data = u, method = "itau.mpl")
showProc.time()
tc2df <- tCopula(dim = 3, fixParam(c(.6,.3,.2), c(TRUE, FALSE, FALSE)),
dispstr = "un")
tc2df@parameters
fitCopula(tc2df, data = u)
fitCopula(tc2df, data = x, method = "ml")
fitCopula(tc2df, data = u, method = "itau")
fitCopula(tc2df, data = u, estimate.variance = FALSE)
fitCopula(tc2df, data = x, method = "ml", estimate.variance = FALSE)
fitCopula(tc2df, data = u, method = "itau", estimate.variance = FALSE)
fitCopula(tc2df, data = u, method = "itau.mpl")
showProc.time()
tc1df <- tCopula(dim = 3, fixParam(c(.6,.3,.2), c(TRUE, TRUE, FALSE)),
dispstr = "un")
tc1df@parameters
fitCopula(tc1df, data = u)
fitCopula(tc1df, data = x, method = "ml")
fitCopula(tc1df, data = u, method = "itau")
fitCopula(tc1df, data = u, method = "itau.mpl")
showProc.time()
tc2 <- tCopula(dim = 3, fixParam(c(.6,.3,.2), c(TRUE, FALSE, FALSE)),
dispstr = "un", df.fixed = TRUE)
tc2@parameters
fitCopula(tc2, data = u)
fitCopula(tc2, data = u, method = "itau")
showProc.time()
tc1 <- tCopula(dim = 3, fixParam(c(.6,.3,.2), c(TRUE, TRUE, FALSE)),
dispstr = "un", df.fixed = TRUE)
tc1@parameters
fitCopula(tc1, data = u)
fitCopula(tc1, data = u, method = "itau")
showProc.time()
testdCdc <- function(cop, v, cop.unfixed) {
fixed <- attr(cop@parameters, "fixed")
if (.hasSlot(cop, "df.fixed")) fixed <- fixed[-length(fixed)]
stopifnot(all.equal(copula:::dCdu(cop, v), copula:::dCdu(cop.unfixed, v)),
all.equal(copula:::dCdtheta(cop, v),
copula:::dCdtheta(cop.unfixed, v)[, !fixed, drop = FALSE]),
all.equal(copula:::dlogcdu(cop, v), copula:::dlogcdu(cop.unfixed, v)),
all.equal(copula:::dlogcdtheta(cop, v),
copula:::dlogcdtheta(cop.unfixed, v)[, !fixed, drop = FALSE]))
}
set.seed(7615)
v <- matrix(runif(15), 5, 3)
testdCdc(nc2, v, nc3)
testdCdc(nc1, v, nc3)
tc3 <- tCopula(dim = 3, c(.6,.3,.2), dispstr = "un", df.fixed = TRUE)
testdCdc(tc2, v, tc3)
testdCdc(tc1, v, tc3)
showProc.time()
cD <- rbind(
Nc2 = comparederiv(nc2, v),
Nc1 = comparederiv(nc1, v),
tc2 = comparederiv(tc2, v),
tc1 = comparederiv(tc1, v))
cD
stopifnot(
cD[,"dCdu" ] < 0.3,
cD[,"dCdtheta"] < 0.2,
cD[,"dlogcdu" ] < 7e-8,
cD[,"dlogcdtheta"] < 4e-8)
showProc.time()
if (doExtras) {
do1 <- function(n, cop) {
u <- pobs(rCopula(n, cop))
gofCopula(cop, pobs(u), sim = "mult")$p.value
}
n <- 100
M <- 10
mM <- sapply(list(nc2=nc2, nc1=nc1, tc2=tc2, tc1=tc1
), function(COP) mean(replicate(M, do1(n, COP))))
print(mM)
print(mM < 0.05)
showProc.time()
} |
xpose.panel.histogram <- function(x,
object,
breaks=NULL,
dens=TRUE,
hidlty = object@[email protected]$hidlty,
hidcol = object@[email protected]$hidcol,
hidlwd = object@[email protected]$hidlwd,
hiborder = object@[email protected]$hiborder,
hilty = object@[email protected]$hilty,
hicol = object@[email protected]$hicol,
hilwd = object@[email protected]$hilwd,
math.dens=NULL,
vline= NULL,
vllwd= 3,
vllty= 1,
vlcol= "grey",
hline= NULL,
hllwd= 3,
hllty= 1,
hlcol= "grey",
bins.per.panel.equal = TRUE,
showMean = FALSE,
meanllwd= 3,
meanllty= 1,
meanlcol= "orange",
showMedian = FALSE,
medianllwd= 3,
medianllty= 1,
medianlcol= "black",
showPCTS = FALSE,
PCTS = c(0.025,0.975),
PCTSllwd= 2,
PCTSllty= hidlty,
PCTSlcol= "black",
vdline= NULL,
vdllwd= 3,
vdllty= 1,
vdlcol= "red",
...,
groups) {
if(length(unique(x)) <= object@[email protected]){
x <- as.factor(x)
}
if(is.factor(x)) {
nint <- length(levels(x))
breaks <- seq(0.5, length = length(levels(x))+1)
} else {
if(!bins.per.panel.equal){
nint <- round(log2(length(x))+1)
endpoints <- range(x[!is.na(x)])
breaks <- do.breaks(endpoints, nint)
}
}
panel.histogram(x,
breaks=breaks,
lty = hilty,
lwd = hilwd,
col = hicol,
border = hiborder,
...
)
if(dens){
if (is.numeric(x)) {
panel.densityplot(x,
lty=hidlty,
col=hidcol,
lwd=hidlwd,
...)
}
}
if (!is.null(math.dens)){
panel.mathdensity(dmath = dnorm,
args = list(mean=math.dens$mean,sd=math.dens$sd),
col.line="black",lwd=3,
...)
}
if(!is.null(vline)) {
panel.abline(v=vline,col=vlcol,lwd=vllwd,lty=vllty)
}
if(!is.null(hline)) {
panel.abline(h=hline,col=hlcol,lwd=hllwd,lty=hllty)
}
if(!is.null(hline)) {
panel.abline(h=hline,col=hlcol,lwd=hllwd,lty=hllty)
}
if(showMean | showMedian) sp <- summary(x)
if(showMean) panel.abline(v=sp[4],col=meanlcol,lwd=meanllwd,lty=meanllty)
if(showMedian) panel.abline(v=sp[3],col=medianlcol,lwd=medianllwd,lty=medianllty)
if(showPCTS){
qu <- quantile(x, PCTS, na.rm=T)
panel.abline(v=qu,col=PCTSlcol,lwd=PCTSllwd,lty=PCTSllty)
}
if(!is.null(vdline)) {
panel.abline(v=vdline[groups = panel.number()],
col=vdlcol,lwd=vdllwd,lty=vdllty)
}
}
|
library(checkargs)
context("isNonZeroIntegerOrNaOrNanVector")
test_that("isNonZeroIntegerOrNaOrNanVector works for all arguments", {
expect_identical(isNonZeroIntegerOrNaOrNanVector(NULL, stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE)
expect_identical(isNonZeroIntegerOrNaOrNanVector(TRUE, stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE)
expect_identical(isNonZeroIntegerOrNaOrNanVector(FALSE, stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE)
expect_identical(isNonZeroIntegerOrNaOrNanVector(NA, stopIfNot = FALSE, message = NULL, argumentName = NULL), TRUE)
expect_identical(isNonZeroIntegerOrNaOrNanVector(0, stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE)
expect_identical(isNonZeroIntegerOrNaOrNanVector(-1, stopIfNot = FALSE, message = NULL, argumentName = NULL), TRUE)
expect_identical(isNonZeroIntegerOrNaOrNanVector(-0.1, stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE)
expect_identical(isNonZeroIntegerOrNaOrNanVector(0.1, stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE)
expect_identical(isNonZeroIntegerOrNaOrNanVector(1, stopIfNot = FALSE, message = NULL, argumentName = NULL), TRUE)
expect_identical(isNonZeroIntegerOrNaOrNanVector(NaN, stopIfNot = FALSE, message = NULL, argumentName = NULL), TRUE)
expect_identical(isNonZeroIntegerOrNaOrNanVector(-Inf, stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE)
expect_identical(isNonZeroIntegerOrNaOrNanVector(Inf, stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE)
expect_identical(isNonZeroIntegerOrNaOrNanVector("", stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE)
expect_identical(isNonZeroIntegerOrNaOrNanVector("X", stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE)
expect_identical(isNonZeroIntegerOrNaOrNanVector(c(TRUE, FALSE), stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE)
expect_identical(isNonZeroIntegerOrNaOrNanVector(c(FALSE, TRUE), stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE)
expect_identical(isNonZeroIntegerOrNaOrNanVector(c(NA, NA), stopIfNot = FALSE, message = NULL, argumentName = NULL), TRUE)
expect_identical(isNonZeroIntegerOrNaOrNanVector(c(0, 0), stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE)
expect_identical(isNonZeroIntegerOrNaOrNanVector(c(-1, -2), stopIfNot = FALSE, message = NULL, argumentName = NULL), TRUE)
expect_identical(isNonZeroIntegerOrNaOrNanVector(c(-0.1, -0.2), stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE)
expect_identical(isNonZeroIntegerOrNaOrNanVector(c(0.1, 0.2), stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE)
expect_identical(isNonZeroIntegerOrNaOrNanVector(c(1, 2), stopIfNot = FALSE, message = NULL, argumentName = NULL), TRUE)
expect_identical(isNonZeroIntegerOrNaOrNanVector(c(NaN, NaN), stopIfNot = FALSE, message = NULL, argumentName = NULL), TRUE)
expect_identical(isNonZeroIntegerOrNaOrNanVector(c(-Inf, -Inf), stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE)
expect_identical(isNonZeroIntegerOrNaOrNanVector(c(Inf, Inf), stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE)
expect_identical(isNonZeroIntegerOrNaOrNanVector(c("", "X"), stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE)
expect_identical(isNonZeroIntegerOrNaOrNanVector(c("X", "Y"), stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE)
expect_error(isNonZeroIntegerOrNaOrNanVector(NULL, stopIfNot = TRUE, message = NULL, argumentName = NULL))
expect_error(isNonZeroIntegerOrNaOrNanVector(TRUE, stopIfNot = TRUE, message = NULL, argumentName = NULL))
expect_error(isNonZeroIntegerOrNaOrNanVector(FALSE, stopIfNot = TRUE, message = NULL, argumentName = NULL))
expect_identical(isNonZeroIntegerOrNaOrNanVector(NA, stopIfNot = TRUE, message = NULL, argumentName = NULL), TRUE)
expect_error(isNonZeroIntegerOrNaOrNanVector(0, stopIfNot = TRUE, message = NULL, argumentName = NULL))
expect_identical(isNonZeroIntegerOrNaOrNanVector(-1, stopIfNot = TRUE, message = NULL, argumentName = NULL), TRUE)
expect_error(isNonZeroIntegerOrNaOrNanVector(-0.1, stopIfNot = TRUE, message = NULL, argumentName = NULL))
expect_error(isNonZeroIntegerOrNaOrNanVector(0.1, stopIfNot = TRUE, message = NULL, argumentName = NULL))
expect_identical(isNonZeroIntegerOrNaOrNanVector(1, stopIfNot = TRUE, message = NULL, argumentName = NULL), TRUE)
expect_identical(isNonZeroIntegerOrNaOrNanVector(NaN, stopIfNot = TRUE, message = NULL, argumentName = NULL), TRUE)
expect_error(isNonZeroIntegerOrNaOrNanVector(-Inf, stopIfNot = TRUE, message = NULL, argumentName = NULL))
expect_error(isNonZeroIntegerOrNaOrNanVector(Inf, stopIfNot = TRUE, message = NULL, argumentName = NULL))
expect_error(isNonZeroIntegerOrNaOrNanVector("", stopIfNot = TRUE, message = NULL, argumentName = NULL))
expect_error(isNonZeroIntegerOrNaOrNanVector("X", stopIfNot = TRUE, message = NULL, argumentName = NULL))
expect_error(isNonZeroIntegerOrNaOrNanVector(c(TRUE, FALSE), stopIfNot = TRUE, message = NULL, argumentName = NULL))
expect_error(isNonZeroIntegerOrNaOrNanVector(c(FALSE, TRUE), stopIfNot = TRUE, message = NULL, argumentName = NULL))
expect_identical(isNonZeroIntegerOrNaOrNanVector(c(NA, NA), stopIfNot = TRUE, message = NULL, argumentName = NULL), TRUE)
expect_error(isNonZeroIntegerOrNaOrNanVector(c(0, 0), stopIfNot = TRUE, message = NULL, argumentName = NULL))
expect_identical(isNonZeroIntegerOrNaOrNanVector(c(-1, -2), stopIfNot = TRUE, message = NULL, argumentName = NULL), TRUE)
expect_error(isNonZeroIntegerOrNaOrNanVector(c(-0.1, -0.2), stopIfNot = TRUE, message = NULL, argumentName = NULL))
expect_error(isNonZeroIntegerOrNaOrNanVector(c(0.1, 0.2), stopIfNot = TRUE, message = NULL, argumentName = NULL))
expect_identical(isNonZeroIntegerOrNaOrNanVector(c(1, 2), stopIfNot = TRUE, message = NULL, argumentName = NULL), TRUE)
expect_identical(isNonZeroIntegerOrNaOrNanVector(c(NaN, NaN), stopIfNot = TRUE, message = NULL, argumentName = NULL), TRUE)
expect_error(isNonZeroIntegerOrNaOrNanVector(c(-Inf, -Inf), stopIfNot = TRUE, message = NULL, argumentName = NULL))
expect_error(isNonZeroIntegerOrNaOrNanVector(c(Inf, Inf), stopIfNot = TRUE, message = NULL, argumentName = NULL))
expect_error(isNonZeroIntegerOrNaOrNanVector(c("", "X"), stopIfNot = TRUE, message = NULL, argumentName = NULL))
expect_error(isNonZeroIntegerOrNaOrNanVector(c("X", "Y"), stopIfNot = TRUE, message = NULL, argumentName = NULL))
}) |
getTestedLanguages =
function()
{
.TestedLanguages
}
wordStem =
function(words, language = character(), warnTested = FALSE)
{
if(length(language)) {
if(length(language) == 1) {
langs = getStemLanguages()
idx = pmatch(language, langs)
if(is.na(idx))
stop("No such language: ", language, ". See the documentation for wordStem() and getStemLanguages().")
language = langs[idx]
if(warnTested && !(language %in% getTestedLanguages()))
warning("Currently, ", language, " is not tested. It may work, but you will need support for UTF characters.")
} else {
if(!is.character(language)) {
if(!is.list(language) && !all(sapply(language, function(x) inherits(x, "NativeSymbol"))))
stop("Require two native symbols or names of native symbols")
} else {
language = lapply(language, function(x) getNativeSymbolInfo(x)$address)
}
}
}
lens = nchar(words, "bytes")
lim = .Call("S_getMaxWordLength", PACKAGE = "RTextTools")
if(any(lens > lim))
stop("There is a limit of ", lim, "characters on the number of characters in a word being stemmed")
.Call("S_stemWords", words, lens, language, PACKAGE="RTextTools")
}
getStemLanguages =
function()
{
.Call("S_getLanguages", PACKAGE = "RTextTools")
} |
print.summary.tmatrix <-
function(x,...){
cat(paste("transition matrix",x$name.mat,"\n\n"))
cat(paste("lambda:", round(x$lambda, 3),"\n\n"))
cat("stable stage distribution: \n")
names(x$stable.stage.distribution)<- x$m.names
print(noquote(format(round(x$stable.stage.distribution,3)))); cat("\n\n")
cat("reproductive value:\n")
names(x$reproductive.value)<- x$m.names
print(noquote(format(round(x$reproductive.value,3)))); cat("\n\n")
cat("sensitivities:\n")
dimnames(x$sensitivity) <-list(x$m.names, x$m.names)
print(round(x$sensitivity,3)); cat("\n\n")
cat("elasticities:\n")
class(x$elasticity) <-"matrix"
dimnames(x$elasticity) <-list(x$m.names, x$m.names)
print(round(x$elasticity,3)); cat("\n\n")
} |
slide.layouts.pptx = function( doc, layout, ... ) {
if( length( doc$styles ) == 0 ){
stop("You must defined layout in your pptx template.")
}
if( !missing( layout ) ){
if( !is.element( layout, doc$styles ) ){
stop("Slide layout '", layout, "' does not exist in defined layouts.")
}
if( !is.character(layout) ) stop("argument 'layout' must be a single string value.")
if( length(layout) != 1 ) stop("argument 'layout' must be a single string value.")
if( !is.element(layout, doc$styles)) {
stop(shQuote(layout),
" does not exists in the of available layout names of the template pptx file. ",
"Use slide.layouts(", deparse(substitute(doc)), ") to list them." )
}
plotSlideLayout( doc, layout )
}
doc$styles
} |
setGeneric(name = 'hm_get',
def = function(obj, slot_name = NA_character_)
{
standardGeneric('hm_get')
}
)
setMethod(f = 'hm_get',
signature = 'hydromet',
definition = function(obj, slot_name = NA_character_)
{
check_class(argument = obj, target = 'hydromet', arg_name = 'obj')
check_class(argument = slot_name, target = 'character', arg_name = 'slot_name')
check_string(argument = slot_name, target = slotNames(obj), arg_name = 'slot_name')
check_length(argument = slot_name, max_allow = 1, arg_name = 'slot_name')
out <- eval( parse( text = paste0('obj', '@', slot_name) ) )
return(out)
}
)
setMethod(f = 'hm_get',
signature = 'hydromet_station',
definition = function(obj, slot_name = NA_character_)
{
check_class(argument = obj, target = 'hydromet_station', arg_name = 'obj')
check_class(argument = slot_name, target = 'character', arg_name = 'slot_name')
check_string(argument = slot_name, target = slotNames(obj), arg_name = 'slot_name')
check_length(argument = slot_name, max_allow = 1, arg_name = 'slot_name')
out <- eval( parse( text = paste0('obj', '@', slot_name) ) )
return(out)
}
)
setMethod(f = 'hm_get',
signature = 'hydromet_compact',
definition = function(obj, slot_name = NA_character_)
{
check_class(argument = obj, target = 'hydromet_compact', arg_name = 'obj')
check_class(argument = slot_name, target = 'character', arg_name = 'slot_name')
check_string(argument = slot_name, target = slotNames(obj), arg_name = 'slot_name')
check_length(argument = slot_name, max_allow = 1, arg_name = 'slot_name')
out <- eval( parse( text = paste0('obj', '@', slot_name) ) )
return(out)
}
) |
stopifnot(all.equal(
exp(stat.extend:::lsubfactorial(1:7)),
c(0, 1, 2, 9, 44, 265, 1854)
))
stopifnot(all.equal(
exp(stat.extend:::lsubfactorial(c(0, NA, 2, -1, 3))),
c(1, NA, 1, NA, 2)
)) |
context("Statistical meta-features")
test_that("statistical.result", {
aux = statistical(Species ~ ., iris)
expect_named(aux, ls.statistical())
expect_equal(aux, statistical(iris[1:4], iris[5]))
expect_named(statistical(Species ~ ., iris, ls.statistical()[1:3]),
ls.statistical()[1:3])
})
test_that("byclass.result", {
aux = statistical(Species ~ ., iris, by.class=TRUE)
expect_named(aux, ls.statistical())
expect_equal(aux, statistical(iris[1:4], iris[5], by.class=TRUE))
expect_named(statistical(Species ~ ., iris, ls.statistical()[1:3]),
ls.statistical()[1:3])
})
test_that("statistical.transform", {
aux <- cbind(class=iris$Species, iris)
expect_equal(
statistical(Species ~ ., aux, ls.statistical()[1:5], transform=FALSE),
statistical(Species ~ ., iris, ls.statistical()[1:5], transform=FALSE)
)
expect_false(isTRUE(all.equal(
statistical(Species ~ ., aux, "sp", transform=FALSE),
statistical(Species ~ ., iris, "sp", transform=FALSE)
)))
})
test_that("statistical.errors",{
expect_error(statistical(iris[1:130, 1:4], iris[5]))
expect_error(statistical(as.matrix(iris[, c(1,2)]), iris$Species))
expect_error(statistical(Species ~ ., iris, features=c("abc", "xdef")))
}) |
context("util")
test_that("template filler", {
tmpl = "this is my {{ template }}"
values = list(template = "filled")
filled = fill_template(tmpl, values)
expect_equal(filled, "this is my filled")
expect_error(fill_template(tmpl, list(key="unrelated")))
})
test_that("template default values", {
tmpl = "this is my {{ template | default }}"
values = list(template = "filled")
filled1 = fill_template(tmpl, values)
expect_equal(filled1, "this is my filled")
filled2 = fill_template(tmpl, list())
expect_equal(filled2, "this is my default")
})
test_that("template required key", {
tmpl = "this is my {{ template }}"
values = list(template = "filled")
expect_error(fill_template(tmpl, values, required="missing"))
}) |
library(dplyr)
library(magrittr)
library(jsonlite)
library(data.table)
scale01 = function(x){
scaleToInt(x,1,0)
}
scaleToInt = function(x, max,min){
scaleFun = scaleIntervals(max(x),min(x),max,min)
scaleFun(x)
}
scaleIntervals = function(max,min,maxOut,minOut){
a = (max - min)/(maxOut - minOut)
b = max - maxOut*a
hede = teval(paste0("function(x){(x - ",b,")/",a,'}'))
hede
}
trimNAs = function(aVector) {
return(aVector[!is.na(aVector)])
}
teval = function(daString){
eval(parse(text=daString))
}
returnGameData = function(gameID){
playByPlay = fread('data/playByPlayTrim.csv',stringsAsFactors = F,data.table = F)
games = fread('data/cfl_games_trim.csv',data.table=F)
games %<>% filter(sked_id==gameID)
playByPlay %<>% filter(game_id==gameID) %>%
arrange(play_id)
playByPlay$secondsQuarter = playByPlay$time %>% strsplit(':') %>% sapply(function(x){
x %<>% as.numeric()
900 - (x[1]*60*60 + x[2]*60 + x[3])
}) + playByPlay$play_id * 0.00001
playByPlay %<>% mutate(secondsTotal = secondsQuarter + (quarter-1)*15*60)
home = games$home_initial
homeID = games$home_id
toYardFromHome = function(x){
x %>% sapply(function(x){
team = gsub("([0-9])*",'',x)
yard = gsub("([A-Z]|[a-z])*",'',x) %>% as.numeric
if (tolower(team)==home){
return(yard)
} else {
return(110-yard)
}
})
}
playByPlay$yardsFromHome = playByPlay$yardline %>% toYardFromHome
playByPlay$end_yardsFromHome = playByPlay$end_yardline %>% toYardFromHome
playByPlay %<>% mutate(homeIsHappy = home_score_after - home_score_before,
awayIsHappy = away_score_after - away_score_before,
isHome = playByPlay$end_possession_id == homeID)
playByPlay$epicEvent = playByPlay$name
playByPlay$epicEvent[playByPlay$homeIsHappy >0 | playByPlay$awayIsHappy > 0] = 'SCORE!!!111'
playByPlay$epicEvent[!(playByPlay$epicEvent %in% c('Pass','Rush') | playByPlay$homeIsHappy>0 | playByPlay$awayIsHappy >0)] = NA
playByPlay$epicness = 0
playByPlay$epicness[is.na(playByPlay$epicEvent)] = -9999
playByPlay$epicness[playByPlay$homeIsHappy > 0 | playByPlay$awayIsHappy > 0] = 10
playByPlay$epicness[playByPlay$homeIsHappy > 1 | playByPlay$awayIsHappy > 1] = 15
playByPlay$epicness[playByPlay$homeIsHappy > 2 | playByPlay$awayIsHappy > 2] = 20
playByPlay$epicness[playByPlay$homeIsHappy ==6 | playByPlay$awayIsHappy ==6 ] = 30
outliers = (trimNAs(playByPlay$yards[playByPlay$epicness ==0]) %>% boxplot %>% .$out)
outliers = outliers[outliers>0]
outIds = playByPlay$play_id[playByPlay$epicness ==0][playByPlay$yards[playByPlay$epicness ==0] %in% outliers]
playByPlay$epicness[playByPlay$play_id %in% outIds] = 20
playByPlay$epicness[ playByPlay$epicness ==0] = (((playByPlay$yards[playByPlay$epicness==0] %>% scale01)*8 ))+5
playByPlay$epicness[playByPlay$epicness == -9999] = NA
location = games$home_team
if (location == "BC"){
location = 'Vancouver'
}
return(list(playByPlay = playByPlay,
game = games))
} |
context("canvasXpress Charts - Precalculated Barplot")
precalc.data <- data.frame(mean = c(5, 50, 250, 100, NA),
stdev = c(20, 10, 20, 15, NA),
stringsAsFactors = F,
row.names = c("Group1", "Group2", "Group3", "Group4", "Missing"))
precalc.data.l <- as.list(precalc.data)
precalc.data <- as.data.frame(t(precalc.data))
smp.data <- data.frame(level = c("Lev1", "Lev2", "Lev3", "Lev4", "NA"), stringsAsFactors = F)
rownames(smp.data) <- colnames(precalc.data)
test_that("precalculated barplot - dataframe data", {
result <- canvasXpress(data = precalc.data,
graphType = "Bar",
graphOrientation = "vertical",
smpLabelFontStyle = "italic",
smpLabelRotate = 90,
showLegend = FALSE,
title = "Precalculated barplot - data without smpAnnot",
titleScaleFontFactor = 0.5)
check_ui_test(result)
result <- canvasXpress(data = precalc.data,
smpAnnot = smp.data,
graphType = "Bar",
graphOrientation = "vertical",
smpLabelFontStyle = "italic",
smpLabelRotate = 90,
showLegend = FALSE,
title = "Precalculated barplot - data with smpAnnot",
titleScaleFontFactor = 0.5)
check_ui_test(result)
})
test_that("precalculated barplot - list data", {
result <- canvasXpress(data = precalc.data.l,
graphType = "Bar",
graphOrientation = "vertical",
smpLabelFontStyle = "italic",
smpLabelRotate = 90,
showLegend = FALSE,
title = "Precalculated barplot - list data without smpAnnot",
titleScaleFontFactor = 0.5)
check_ui_test(result)
result <- canvasXpress(data = precalc.data.l,
smpAnnot = colnames(precalc.data),
graphType = "Bar",
graphOrientation = "vertical",
smpLabelFontStyle = "italic",
smpLabelRotate = 90,
showLegend = FALSE,
title = "Precalculated barplot - list data with smpAnnot",
titleScaleFontFactor = 0.5)
check_ui_test(result)
result <- canvasXpress(data = precalc.data.l,
smpAnnot = smp.data,
graphType = "Bar",
graphOrientation = "vertical",
smpLabelFontStyle = "italic",
smpLabelRotate = 90,
showLegend = FALSE,
title = "Precalculated barplot - list data with smpAnnot",
titleScaleFontFactor = 0.5)
check_ui_test(result)
}) |
"diffChange" <-
function (modellist, diffsadd)
{
for(diffs in diffsadd) {
if(length(diffs$type) == 0)
diffs$type <- "perd"
for(i in 1:length(diffs$dataset))
slot(modellist[[diffs$dataset[i] ]],
diffs$what) <- diffs$spec
}
newl <- list()
for(i in 1:length(diffsadd)) {
if(length(diffsadd[[i]]$type) == 0)
diffsadd[[i]]$type <- "perdataset"
if(diffsadd[[i]]$type == "multifree") {
for(j in 1:length(diffsadd[[i]]$dataset)){
newl[[length(newl)+1]] <- diffsadd[[i]]
newl[[length(newl)]]$dataset <- diffsadd[[i]]$dataset[j]
}
}
else
newl[[length(newl)+1]] <- diffsadd[[i]]
}
list(modellist=modellist, diffsadd = newl)
} |
url_to_json <- function(url) url |>
throttle() |>
utils::URLencode() |>
readLines(warn = FALSE) |>
RJSONIO::fromJSON() |>
tryCatch(error = function(e) stop("Cannot read from Reddit, check your inputs or internet connection")) |
context("standard bootstrap test: regression, single mediator, covariates")
library("robmed", quietly = TRUE)
n <- 250
a <- c <- 0.2
b <- 0
R <- 1000
seed <- 20150601
set.seed(seed)
X <- rnorm(n)
M <- a * X + rnorm(n)
Y <- b * M + c * X + rnorm(n)
C1 <- rnorm(n)
C2 <- rnorm(n)
test_data <- data.frame(X, Y, M, C1, C2)
set.seed(seed)
level <- c(0.9, 0.95)
boot <- test_mediation(test_data, x = "X", y = "Y", m = "M",
covariates = c("C1", "C2"), test = "boot", R = R,
level = level[1], type = "bca", method = "regression",
robust = FALSE)
summary_boot <- summary(boot, type = "boot")
summary_data <- summary(boot, type = "data")
boot_less <- retest(boot, alternative = "less", level = level[2])
boot_greater <- retest(boot, alternative = "greater", level = level[2])
boot_perc <- retest(boot, type = "perc", level = level[2])
ci <- setup_ci_plot(boot)
ci_perc <- setup_ci_plot(boot_perc, p_value = TRUE)
density <- setup_density_plot(boot)
ellipse <- setup_ellipse_plot(boot)
coef_names <- c("a", "b", "Direct", "Total", "ab")
mx_names <- c("(Intercept)", "X", "C1", "C2")
ymx_names <- c("(Intercept)", "M", "X", "C1", "C2")
test_that("output has correct structure", {
expect_s3_class(boot, "boot_test_mediation")
expect_s3_class(boot, "test_mediation")
expect_s3_class(boot$fit, "reg_fit_mediation")
expect_s3_class(boot$fit, "fit_mediation")
expect_s3_class(boot$reps, "boot")
})
test_that("arguments are correctly passed", {
expect_identical(boot$alternative, "twosided")
expect_identical(boot$R, as.integer(R))
expect_identical(boot$level, level[1])
expect_identical(boot$type, "bca")
expect_identical(boot$fit$x, "X")
expect_identical(boot$fit$y, "Y")
expect_identical(boot$fit$m, "M")
expect_identical(boot$fit$covariates, c("C1", "C2"))
expect_false(boot$fit$robust)
expect_identical(boot$fit$family, "gaussian")
expect_null(boot$fit$control)
})
test_that("dimensions are correct", {
expect_length(boot$ab, 1L)
expect_length(boot$ci, 2L)
d_boot <- dim(boot$reps$t)
expect_identical(d_boot, c(as.integer(R), 11L))
})
test_that("values of coefficients are correct", {
expect_equivalent(boot$ab, mean(boot$reps$t[, 1]))
})
test_that("output of coef() method has correct attributes", {
coef_boot <- coef(boot, type = "boot")
coef_data <- coef(boot, type = "data")
expect_length(coef_boot, 5L)
expect_named(coef_boot, coef_names)
expect_length(coef_data, 5L)
expect_named(coef_data, coef_names)
})
test_that("coef() method returns correct values of coefficients", {
expect_equivalent(coef(boot, parm = "a", type = "boot"),
mean(boot$reps$t[, 3]))
expect_equivalent(coef(boot, parm = "b", type = "boot"),
mean(boot$reps$t[, 7]))
expect_equivalent(coef(boot, parm = "Direct", type = "boot"),
mean(boot$reps$t[, 8]))
expect_equivalent(coef(boot, parm = "Total", type = "boot"),
mean(boot$reps$t[, 11]))
expect_equivalent(coef(boot, parm = "ab", type = "boot"),
boot$ab)
expect_equivalent(coef(boot, parm = "a", type = "data"),
boot$fit$a)
expect_equivalent(coef(boot, parm = "b", type = "data"),
boot$fit$b)
expect_equivalent(coef(boot, parm = "Direct", type = "data"),
boot$fit$direct)
expect_equivalent(coef(boot, parm = "Total", type = "data"),
boot$fit$total)
expect_equivalent(coef(boot, parm = "ab", type = "data"),
boot$fit$a * boot$fit$b)
})
test_that("output of confint() method has correct attributes", {
ci_boot <- confint(boot, type = "boot")
ci_data <- confint(boot, type = "data")
expect_equal(dim(ci_boot), c(5L, 2L))
expect_equal(rownames(ci_boot), coef_names)
expect_equal(colnames(ci_boot), c("5 %", "95 %"))
expect_equal(dim(ci_data), c(5L, 2L))
expect_equal(rownames(ci_data), coef_names)
expect_equal(colnames(ci_data), c("5 %", "95 %"))
})
test_that("confint() method returns correct values of confidence intervals", {
expect_equivalent(confint(boot, parm = "ab", type = "boot"), boot$ci)
expect_equivalent(confint(boot, parm = "ab", type = "data"), boot$ci)
})
test_that("summary has correct structure", {
expect_s3_class(summary_boot, "summary_test_mediation")
expect_s3_class(summary_data, "summary_test_mediation")
expect_identical(summary_boot$object, boot)
expect_identical(summary_data$object, boot)
expect_s3_class(summary_boot$summary, "summary_reg_fit_mediation")
expect_s3_class(summary_boot$summary, "summary_fit_mediation")
expect_s3_class(summary_data$summary, "summary_reg_fit_mediation")
expect_s3_class(summary_data$summary, "summary_fit_mediation")
expect_s3_class(summary_boot$summary$fit_mx, "summary_lm")
expect_s3_class(summary_boot$summary$fit_ymx, "summary_lm")
expect_type(summary_boot$summary$fit_ymx$s, "list")
expect_named(summary_boot$summary$fit_ymx$s, c("value", "df"))
expect_type(summary_data$summary$fit_ymx$s, "list")
expect_named(summary_data$summary$fit_ymx$s, c("value", "df"))
expect_type(summary_boot$summary$fit_ymx$R2, "list")
expect_named(summary_boot$summary$fit_ymx$R2, c("R2", "adj_R2"))
expect_type(summary_data$summary$fit_ymx$R2, "list")
expect_named(summary_data$summary$fit_ymx$R2, c("R2", "adj_R2"))
expect_type(summary_boot$summary$fit_ymx$F_test, "list")
expect_named(summary_boot$summary$fit_ymx$F_test,
c("statistic", "df", "p_value"))
df_test_boot <- summary_boot$summary$fit_ymx$F_test$df
expect_identical(df_test_boot[1], 4L)
expect_identical(df_test_boot[2], summary_boot$summary$fit_ymx$s$df)
expect_type(summary_data$summary$fit_ymx$F_test, "list")
expect_named(summary_data$summary$fit_ymx$F_test,
c("statistic", "df", "p_value"))
df_test_data <- summary_data$summary$fit_ymx$F_test$df
expect_identical(df_test_data[1], 4L)
expect_identical(df_test_data[2], summary_data$summary$fit_ymx$s$df)
expect_null(summary_boot$plot)
expect_null(summary_data$plot)
})
test_that("attributes are correctly passed through summary", {
expect_false(summary_boot$summary$robust)
expect_false(summary_data$summary$robust)
expect_identical(summary_boot$summary$n, as.integer(n))
expect_identical(summary_data$summary$n, as.integer(n))
expect_identical(summary_boot$summary$x, "X")
expect_identical(summary_boot$summary$y, "Y")
expect_identical(summary_boot$summary$m, "M")
expect_identical(summary_boot$summary$covariates, c("C1", "C2"))
expect_identical(summary_data$summary$x, "X")
expect_identical(summary_data$summary$y, "Y")
expect_identical(summary_data$summary$m, "M")
expect_identical(summary_data$summary$covariates, c("C1", "C2"))
})
test_that("effect summaries have correct names", {
expect_identical(dim(summary_boot$summary$fit_mx$coefficients),
c(4L, 5L))
expect_identical(rownames(summary_boot$summary$fit_mx$coefficients),
mx_names)
expect_identical(colnames(summary_boot$summary$fit_mx$coefficients)[1:2],
c("Data", "Boot"))
expect_identical(dim(summary_data$summary$fit_mx$coefficients),
c(4L, 4L))
expect_identical(rownames(summary_data$summary$fit_mx$coefficients),
mx_names)
expect_identical(colnames(summary_data$summary$fit_mx$coefficients)[1],
"Estimate")
expect_identical(dim(summary_boot$summary$fit_ymx$coefficients),
c(5L, 5L))
expect_identical(rownames(summary_boot$summary$fit_ymx$coefficient),
ymx_names)
expect_identical(colnames(summary_boot$summary$fit_ymx$coefficient)[1:2],
c("Data", "Boot"))
expect_identical(dim(summary_data$summary$fit_ymx$coefficient),
c(5L, 4L))
expect_identical(rownames(summary_data$summary$fit_ymx$coefficient),
ymx_names)
expect_identical(colnames(summary_data$summary$fit_ymx$coefficient)[1],
"Estimate")
expect_identical(dim(summary_boot$summary$direct),
c(1L, 5L))
expect_identical(rownames(summary_boot$summary$direct),
"X")
expect_identical(colnames(summary_boot$summary$direct)[1:2],
c("Data", "Boot"))
expect_identical(dim(summary_data$summary$direct),
c(1L, 4L))
expect_identical(rownames(summary_data$summary$direct),
"X")
expect_identical(colnames(summary_data$summary$direct)[1],
"Estimate")
expect_identical(dim(summary_boot$summary$total),
c(1L, 5L))
expect_identical(rownames(summary_boot$summary$total),
"X")
expect_identical(colnames(summary_boot$summary$total)[1:2],
c("Data", "Boot"))
expect_identical(dim(summary_data$summary$total),
c(1L, 4L))
expect_identical(rownames(summary_data$summary$total),
"X")
expect_identical(colnames(summary_data$summary$total)[1],
"Estimate")
})
test_that("effect summaries contain correct coefficient values", {
expect_equivalent(summary_boot$summary$fit_mx$coefficients[2, "Data"],
boot$fit$a)
expect_identical(summary_boot$summary$fit_ymx$coefficients[2, "Data"],
boot$fit$b)
expect_identical(summary_boot$summary$direct["X", "Data"],
boot$fit$direct)
expect_identical(summary_boot$summary$total["X", "Data"],
boot$fit$total)
expect_equivalent(summary_data$summary$fit_mx$coefficients[2, "Estimate"],
boot$fit$a)
expect_identical(summary_data$summary$fit_ymx$coefficients[2, "Estimate"],
boot$fit$b)
expect_identical(summary_data$summary$direct["X", "Estimate"],
boot$fit$direct)
expect_identical(summary_data$summary$total["X", "Estimate"],
boot$fit$total)
expect_equivalent(summary_boot$summary$fit_mx$coefficients[2, "Boot"],
mean(boot$reps$t[, 3]))
expect_equivalent(summary_boot$summary$fit_ymx$coefficients[2, "Boot"],
mean(boot$reps$t[, 7]))
expect_equal(summary_boot$summary$direct["X", "Boot"],
mean(boot$reps$t[, 8]))
expect_equal(summary_boot$summary$total["X", "Boot"],
mean(boot$reps$t[, 11]))
})
test_that("output of retest() has correct structure", {
expect_identical(class(boot_less), class(boot))
expect_identical(class(boot_greater), class(boot))
expect_identical(class(boot_perc), class(boot))
expect_identical(boot_less$fit, boot$fit)
expect_identical(boot_greater$fit, boot$fit)
expect_identical(boot_perc$fit, boot$fit)
expect_identical(boot_less$reps, boot$reps)
expect_identical(boot_greater$reps, boot$reps)
expect_identical(boot_perc$reps, boot$reps)
})
test_that("arguments of retest() are correctly passed", {
expect_identical(boot_less$alternative, "less")
expect_identical(boot_greater$alternative, "greater")
expect_identical(boot_perc$alternative, "twosided")
expect_identical(boot_less$level, level[2])
expect_identical(boot_greater$level, level[2])
expect_identical(boot_perc$level, level[2])
expect_identical(boot_less$type, "bca")
expect_identical(boot_greater$type, "bca")
expect_identical(boot_perc$type, "perc")
expect_identical(boot_less$ab, boot$ab)
expect_identical(boot_greater$ab, boot$ab)
expect_identical(boot_perc$ab, boot$ab)
expect_identical(length(boot_less$ci), length(boot$ci))
expect_equivalent(boot_less$ci[1], -Inf)
expect_equal(boot_less$ci[2], boot$ci[2])
expect_identical(colnames(confint(boot_less)), c("Lower", "Upper"))
expect_identical(length(boot_greater$ci), length(boot$ci))
expect_equal(boot_greater$ci[1], boot$ci[1])
expect_equivalent(boot_greater$ci[2], Inf)
expect_identical(colnames(confint(boot_greater)), c("Lower", "Upper"))
expect_identical(length(boot_perc$ci), length(boot$ci))
})
test_that("output of p_value() method has correct attributes", {
digits <- 3
p_boot <- p_value(boot_perc, type = "boot", digits = digits)
p_data <- p_value(boot_perc, type = "data", digits = digits)
expect_length(p_boot, 5L)
expect_named(p_boot, coef_names)
expect_equal(p_boot["ab"], round(p_boot["ab"], digits = digits))
expect_length(p_data, 5L)
expect_named(p_data, coef_names)
expect_equal(p_data["ab"], round(p_data["ab"], digits = digits))
})
test_that("objects returned by setup_xxx_plot() have correct structure", {
expect_s3_class(ci$ci, "data.frame")
expect_identical(dim(ci$ci), c(2L, 4L))
expect_named(ci$ci, c("Effect", "Estimate", "Lower", "Upper"))
effect_names <- c("Direct", "ab")
effect_factor <- factor(effect_names, levels = effect_names)
expect_identical(ci$ci$Effect, effect_factor)
expect_identical(ci$level, level[1])
expect_false(ci$have_methods)
expect_s3_class(ci_perc$ci, "data.frame")
expect_s3_class(ci_perc$p_value, "data.frame")
expect_identical(dim(ci_perc$ci), c(2L, 5L))
expect_identical(dim(ci_perc$p_value), c(2L, 3L))
expect_named(ci_perc$ci, c("Label", "Effect", "Estimate", "Lower", "Upper"))
expect_named(ci_perc$p_value, c("Label", "Effect", "Value"))
label_names <- c("Confidence interval", "p-Value")
expect_identical(ci_perc$ci$Label,
factor(rep.int(label_names[1], 2), levels = label_names))
expect_identical(ci_perc$p_value$Label,
factor(rep.int(label_names[2], 2), levels = label_names))
effect_names <- c("Direct", "ab")
effect_factor <- factor(effect_names, levels = effect_names)
expect_identical(ci_perc$ci$Effect, effect_factor)
expect_identical(ci_perc$p_value$Effect, effect_factor)
expect_identical(ci$level, level[1])
expect_false(ci$have_methods)
expect_s3_class(density$density, "data.frame")
expect_identical(ncol(density$density), 2L)
expect_gt(nrow(density$density), 0L)
expect_named(density$density, c("ab", "Density"))
expect_s3_class(density$ci, "data.frame")
expect_identical(dim(density$ci), c(1L, 3L))
expect_named(density$ci, c("Estimate", "Lower", "Upper"))
expect_identical(density$test, "boot")
expect_identical(density$level, level[1])
expect_false(density$have_effect)
expect_false(density$have_methods)
expect_identical(ellipse, setup_ellipse_plot(boot$fit))
expect_error(setup_weight_plot(boot))
})
set.seed(seed)
boot_f1 <- test_mediation(Y ~ m(M) + X + covariates(C1, C2),
data = test_data, test = "boot", R = R,
level = 0.9, type = "bca", method = "regression",
robust = FALSE)
set.seed(seed)
boot_f2 <- test_mediation(Y ~ m(M) + X + covariates(C1, C2),
test = "boot", R = R, level = 0.9, type = "bca",
method = "regression", robust = FALSE)
med <- m(M)
cov <- covariates(C1, C2)
set.seed(seed)
boot_f3 <- test_mediation(Y ~ med + X + cov, data = test_data,
test = "boot", R = R, level = 0.9, type = "bca",
method = "regression", robust = FALSE)
test_that("formula interface works correctly", {
expect_equal(boot_f1, boot)
expect_equal(boot_f2, boot)
expect_equal(boot_f3, boot)
}) |
res_boot1 <- resampleData(.data = satisfaction)
str(res_boot1, max.level = 3, list.len = 3)
res_boot1a <- resampleData(.data = satisfaction, .seed = 2364)
res_boot1b <- resampleData(.data = satisfaction, .seed = 2364)
identical(res_boot1, res_boot1a)
res_jack <- resampleData(.data = satisfaction, .resample_method = "jackknife")
str(res_jack, max.level = 3, list.len = 3)
dat <- data.frame(
"x1" = rnorm(100),
"x2" = rnorm(100),
"group" = sample(c("male", "female"), size = 100, replace = TRUE),
stringsAsFactors = FALSE)
cv_10a <- resampleData(.data = dat, .resample_method = "cross-validation",
.R = 100)
str(cv_10a, max.level = 3, list.len = 3)
cv_10 <- resampleData(.data = dat, .resample_method = "cross-validation",
.id = "group", .R = 100)
cv_loocv <- resampleData(.data = dat[, -3],
.resample_method = "cross-validation",
.cv_folds = nrow(dat),
.R = 50)
str(cv_loocv, max.level = 2, list.len = 3)
res_perm <- resampleData(.data = dat, .resample_method = "permutation",
.id = "group")
str(res_perm, max.level = 2, list.len = 3)
\dontrun{
res_perm <- resampleData(.data = dat, .resample_method = "permutation")
}
model <- "
QUAL ~ EXPE
EXPE ~ IMAG
SAT ~ IMAG + EXPE + QUAL + VAL
LOY ~ IMAG + SAT
VAL ~ EXPE + QUAL
EXPE =~ expe1 + expe2 + expe3 + expe4 + expe5
IMAG =~ imag1 + imag2 + imag3 + imag4 + imag5
LOY =~ loy1 + loy2 + loy3 + loy4
QUAL =~ qual1 + qual2 + qual3 + qual4 + qual5
SAT =~ sat1 + sat2 + sat3 + sat4
VAL =~ val1 + val2 + val3 + val4
"
a <- csem(satisfaction, model)
res_boot <- resampleData(a, .resample_method = "bootstrap", .R = 499)
res_jack <- resampleData(a, .resample_method = "jackknife")
res_boot_data <- resampleData(.data = satisfaction, .seed = 2364)
res_boot_object <- resampleData(a, .seed = 2364)
identical(res_boot_data, res_boot_object) |
latlong_footprint <-
function(departure_lat,
departure_long,
arrival_lat,
arrival_long,
flightClass = "Unknown",
output = "co2e") {
if (!(all(is.numeric(c(departure_long, arrival_long))) &&
departure_long >= -180 &&
arrival_long >= -180 &&
departure_long <= 180 &&
arrival_long <= 180)) {
stop("Airport longitude must be numeric and has values between -180 and 180")
}
if (!(all(is.numeric(c(departure_lat, arrival_lat))) &&
departure_lat >= -90 &&
arrival_lat >= -90 &&
departure_lat <= 90 &&
arrival_lat <= 90)) {
stop("Airport latitude must be numeric and has values between -90 and 90")
}
lon1 = departure_long * pi / 180
lat1 = departure_lat * pi / 180
lon2 = arrival_long * pi / 180
lat2 = arrival_lat * pi / 180
radius = 6373
dlon = lon2 - lon1
dlat = lat2 - lat1
a = (sin(dlat / 2)) ^ 2 + cos(lat1) * cos(lat2) * (sin(dlon / 2)) ^ 2
b = 2 * atan2(sqrt(a), sqrt(1 - a))
distance = radius * b
distance_type <-
dplyr::case_when(distance <= 483 ~ "short",
distance >= 3700 ~ "long",
TRUE ~ "medium")
emissions_vector <- conversion_factors %>%
dplyr::filter(.data$distance == distance_type) %>%
dplyr::filter(.data$flightclass == flightClass) %>%
dplyr::pull(output)
round(distance * emissions_vector, 3)
} |
count.excellent <- function(indices){
rmseaE <- ifelse(indices[4] < .05, 1, 0)
srmrE <- ifelse(indices[5] < .05, 1, 0)
nnfiE <- ifelse(indices[6] > .95, 1, 0)
cfiE <- ifelse(indices[7] > .95, 1, 0)
excellent <- sum(rmseaE, srmrE, nnfiE, cfiE, na.rm = TRUE)
return(excellent)
} |
ray <- function(betam,
u,
lat,
x0,
y0,
K,
dt,
itime,
direction,
interpolation = "trin",
tl = 1,
a = 6371000,
verbose = FALSE,
ofile){
dt <- dt * 60 * 60
if(!is.unsorted(lat)) {
message("Sorting latitude from north to south")
betamz <- rev(colMeans(betam, na.rm = TRUE))
uz <- rev(colMeans(u, na.rm = TRUE))
lat <- lat[order(lat, decreasing = TRUE)]
} else {
betamz <- colMeans(betam, na.rm = TRUE)
uz <- colMeans(u, na.rm = TRUE)
}
phirad <- lat*pi/180
k <- K/a
k2 <- (K/a)^2
x_ini <- x0
y_ini <- y0
l_time <- list()
l_x0 <- list()
l_y0 <- list()
count <- 0
while(TRUE) {
count <- count + 1
if(abs(y0) > 90) break
if(interpolation == "trin") {
beta_y0 <- trin(y = y0, yk = betamz)
u_y0 <- trin(y = y0, yk = uz, mercator = TRUE)
} else if(interpolation == "ypos"){
beta_y0 <- ypos(y = y0, lat = lat, yk = betamz)
u_y0 <- ypos(y = y0, lat = lat, yk = uz, mercator = TRUE)
}
Ks2_y0 <- beta_y0/u_y0
l2_y0 <- Ks2_y0 - k2
if(count == 1 & l2_y0 < 0) next
if(round(l2_y0, 13) <= 0) tl <- -1
if(Ks2_y0 < 0) break
ug0 <-(2 * beta_y0 * k2 / Ks2_y0^2 ) * 180 / (a*pi)
vg0 <- (direction * tl *
2 * beta_y0 * k * sqrt(abs(l2_y0))*
cos(y0*pi/180)/Ks2_y0^2)*(180/(pi*a))
y1 <- y0 + dt*vg0
if(interpolation == "trin") {
beta_y1 <- trin(y = y1, yk = betamz)
u_y1 <- trin(y = y1, yk = uz, mercator = TRUE)
} else if(interpolation == "ypos"){
beta_y1 <- ypos(y = y1, lat = lat, yk = betamz)
u_y1 <- ypos(y = y1, lat = lat, yk = uz, mercator = TRUE)
}
Ks2_y1 <- beta_y1/u_y1
l2_y1 <- Ks2_y1 - k2
if(count == 1 & l2_y1 < 0) next
if(round(l2_y1, 13) < 0) tl <- -1
if(Ks2_y1 < 0) break
ug1 <- (2 * beta_y1 * k2 / Ks2_y1^2 ) * 180 / (a*pi)
vg1 <- (direction * tl *
2 * beta_y1 * k * sqrt(abs(l2_y1))*
cos(y1*pi/180)/Ks2_y1^2)*(180/(pi*a))
x2 <- x0 + 0.5*dt*(ug0+ug1)
y2 <- y0 + 0.5*dt*(vg0+vg1)
x0 <- x2
y0 <- y2
l_time[[count]] <- count
l_x0[[count]] <- x0
l_y0[[count]] <- y0
if(count == itime) break
}
count <- c(0, unlist(l_time))
df <- data.frame(
K = K,
lat_ini = y_ini,
lon_ini = x_ini,
time = dt*count/(60*60),
iday = rep(seq(0, 23, dt/(60*60)), length(count))[1:length(count)],
lat = c(y_ini, unlist(l_y0)),
lon = c(x_ini, unlist(l_x0))
)
df$lon_shift <- ifelse(df$lon < 0, df$lon + 360, df$lon)
df$y0 <- df$lat
df$x0 <- df$lon
pontos <- sf::st_as_sf(df,
coords = c("x0", "y0"),
crs = 4326)
if(!missing(ofile)) {
utils::write.csv(x = pontos, file = ofile, row.names = FALSE)
}
return(pontos)
} |
library(RcppHNSW)
context("search with small test set")
index <- hnsw_build(ui10)
expect_equal(index$size(), 10)
res <- hnsw_search(ui10[1, , drop = FALSE], index, k = 4)
expect_equal(res$idx, self_nn_index4[1, , drop = FALSE], tol = 1e-6)
expect_equal(res$dist, self_nn_dist4[1, , drop = FALSE], tol = 1e-6)
expect_error(hnsw_search(ui10[1, , drop = FALSE], index, k = 500))
index$markDeleted(1)
res <- hnsw_search(ui10[1, , drop = FALSE], index, k = 4)
expect_equal(res$idx[1, ], c(6, 10, 3, 7), tol = 1e-6)
expect_equal(res$dist[1, ], c(self_nn_dist4[1, 2:4], 0.812404), tol = 1e-6)
expect_error(index$markDeleted(0))
expect_error(index$markDeleted(11)) |
preview.pls <- function(x, y, L, scale.x = TRUE, scale.y = TRUE){
if (class(x) != "list") { stop("x should be of list type.") }
if (class(y) != "list") { stop("y should be of list type.") }
x <- lapply(x, as.matrix)
y <- lapply(y, as.matrix)
nl <- as.numeric(lapply(x, nrow))
pl <- as.numeric(lapply(x, ncol))
ql <- as.numeric(lapply(y, ncol))
p <- unique(pl)
q <- unique(ql)
if(length(p) > 1){ stop("The dimension of data x should be consistent among different datasets.")}
if(length(q) > 1){ stop("The dimension of data y should be consistent among different datasets.")}
ip <- c(1:p)
meanx <- lapply(1:L, function(l) drop( matrix(1, 1, nl[l]) %*% x[[l]] / nl[l] ) )
meany <- lapply(1:L, function(l) drop( matrix(1, 1, nl[l]) %*% y[[l]] / nl[l] ) )
x <- lapply(1:L, function(l) scale(x[[l]], meanx[[l]], FALSE) )
y <- lapply(1:L, function(l) scale(y[[l]], meany[[l]], FALSE) )
x.scale <- function(l){
one <- matrix(1, 1, nl[l])
normx <- sqrt(drop(one %*% (x[[l]]^2)) / (nl[l] - 1))
if (any(normx < .Machine$double.eps)) {
stop("Some of the columns of the predictor matrix have zero variance.")
}
return(normx)
}
y.scale <- function(l){
one <- matrix(1, 1, nl[l])
normy <- sqrt(drop(one %*% (y[[l]]^2)) / (nl[l] - 1))
if (any(normy < .Machine$double.eps)) {
stop("Some of the columns of the response matrix have zero variance.")
}
return(normy)
}
if (scale.x) { normx <- lapply(1:L, x.scale ) } else { normx <- rep(list(rep(1,p)), L) }
if (scale.y) { normy <- lapply(1:L, y.scale ) } else { normy <- rep(list(rep(1,q)), L) }
if (scale.x) { x <- lapply(1:L, function(l) scale(x[[l]], FALSE, normx[[l]]) ) }
if (scale.y) { y <- lapply(1:L, function(l) scale(y[[l]], FALSE, normy[[l]]) ) }
fun.1 <- function(l) {
Z_l <- t(x[[l]]) %*% y[[l]]
Z_l <- Z_l / nl[l]
}
Z <- matrix(mapply(fun.1, c(1:L)), nrow = p)
c <- mapply(function(l) svd(Z[, ((l - 1) * q + 1):(l * q)] %*% t(Z[, ((l - 1) * q + 1):(l * q)] ), nu = 1)$u, 1:L)
what <- c
listname <- mapply(function(l) paste("Dataset ", l), 1:L)
names(meanx) <- listname
names(meany) <- listname
names(normx) <- listname
names(normy) <- listname
names(x) <- listname
names(y) <- listname
for (l in 1:L) {
plot(x = 1:p, y = as.numeric(what[,l]),
main = paste("Dataset ", l, "\n", "The first direction vector"),
xlab = "Dimension", ylab = "Value", pch = 15)
}
object <- list(
x = x, y = y, loading = what,
meanx = meanx, normx = normx, meany = meany, normy = normy
)
class(object) <- "preview.spls"
return(object)
} |
extractCTDC <- function(x) {
if (protcheck(x) == FALSE) {
stop("x has unrecognized amino acid type")
}
group1 <- list(
"hydrophobicity" = c("R", "K", "E", "D", "Q", "N"),
"normwaalsvolume" = c("G", "A", "S", "T", "P", "D", "C"),
"polarity" = c("L", "I", "F", "W", "C", "M", "V", "Y"),
"polarizability" = c("G", "A", "S", "D", "T"),
"charge" = c("K", "R"),
"secondarystruct" = c("E", "A", "L", "M", "Q", "K", "R", "H"),
"solventaccess" = c("A", "L", "F", "C", "G", "I", "V", "W")
)
group2 <- list(
"hydrophobicity" = c("G", "A", "S", "T", "P", "H", "Y"),
"normwaalsvolume" = c("N", "V", "E", "Q", "I", "L"),
"polarity" = c("P", "A", "T", "G", "S"),
"polarizability" = c("C", "P", "N", "V", "E", "Q", "I", "L"),
"charge" = c(
"A", "N", "C", "Q", "G", "H", "I", "L",
"M", "F", "P", "S", "T", "W", "Y", "V"
),
"secondarystruct" = c("V", "I", "Y", "C", "W", "F", "T"),
"solventaccess" = c("R", "K", "Q", "E", "N", "D")
)
group3 <- list(
"hydrophobicity" = c("C", "L", "V", "I", "M", "F", "W"),
"normwaalsvolume" = c("M", "H", "K", "F", "R", "Y", "W"),
"polarity" = c("H", "Q", "R", "K", "N", "E", "D"),
"polarizability" = c("K", "M", "H", "F", "R", "Y", "W"),
"charge" = c("D", "E"),
"secondarystruct" = c("G", "N", "P", "S", "D"),
"solventaccess" = c("M", "S", "P", "T", "H", "Y")
)
xSplitted <- strsplit(x, split = "")[[1]]
n <- nchar(x)
g1 <- lapply(group1, function(g) length(which(xSplitted %in% g)))
names(g1) <- paste(names(g1), "Group1", sep = ".")
g2 <- lapply(group2, function(g) length(which(xSplitted %in% g)))
names(g2) <- paste(names(g2), "Group2", sep = ".")
g3 <- lapply(group3, function(g) length(which(xSplitted %in% g)))
names(g3) <- paste(names(g3), "Group3", sep = ".")
CTDC <- unlist(c(g1, g2, g3)) / n
ids <- unlist(lapply(1:7, function(x) x + c(0, 7, 14)))
CTDC[ids]
} |
census <- pick_top(fgeo.x::stem5, sp, 2)
elevation <- fgeo.x::elevation$col
context("plot_each_species")
test_that("works with species parameters", {
spp <- unique(census$sp)
elev <- elevation
cns <- census
expect_silent(
plot_each_species(
cns, elev,
species = spp, fill = "white", shape = 21, point_size = 5
)[[1]]
)
})
test_that("works with elevation parameters", {
spp <- unique(census$sp)
elev <- elevation
cns <- census
expect_silent(
plot_each_species(
cns, elev,
species = spp, fill = "white", shape = 21, point_size = 5,
contour_size = 1, low = "grey", high = "black", hide_color_legend =
TRUE, bins = 7, add_elevation_labels = FALSE
)[[1]]
)
expect_silent(
plot_each_species(
cns, elev,
species = spp, fill = "white", shape = 21, point_size = 5,
contour_size = 1, low = "grey", high = "black", hide_color_legend =
TRUE, bins = NULL, add_elevation_labels = TRUE, label_color = "black",
xyjust = 1, fontface = "bold", xlim = c(0, 500), ylim = c(0, 400),
custom_theme = ggplot2::theme_bw()
)[[1]]
)
})
test_that("outputs a list of ggplots", {
p <- plot_each_species(census)
expect_type(p, "list")
expect_is(p[[1]], "gg")
})
test_that("errs with wrong inputs", {
expect_error(plot_each_species(1), "is not TRUE")
expect_error(plot_each_species(census, 1), "Can't deal with data of class")
expect_error(plot_each_species(census, NULL, 1), "is not TRUE")
expect_error(plot_each_species(census, xlim = 0), "Limits must be in a")
})
context("plot_sp_elev")
test_that("outputs a ggplot", {
expect_is(plot_sp_elev(census), "gg")
})
test_that("errs with wrong inputs", {
expect_error(plot_sp_elev(1), "is not TRUE")
expect_error(plot_sp_elev(census, 1), "Can't deal with data of class")
expect_error(plot_sp_elev(census, xlim = 0), "Limits must be in a")
})
context("plot_elev")
test_that("outputs a ggplot", {
p <- plot_elev(elevation)
expect_is(p, "gg")
})
test_that("errs with wrong inputs", {
expect_error(plot_elev(1), "Can't deal with data of class")
expect_error(plot_elev(census), "Ensure your data set has these variables")
expect_error(plot_elev(list(not_col = census)), "Your list must contain")
expect_error(plot_elev(elevation, xlim = 0), "Limits must be in a")
})
context("plot_base_elevation")
test_that("works with raw elevation data", {
elevation_ls <- fgeo.x::elevation
expect_silent(plot_base_elevation(elevation_ls))
expect_silent(plot_base_elevation(elevation_ls))
})
test_that("errs if elevation data is confused with census data", {
expect_error(plot_base_elevation(census), "Ensure your data set has")
}) |
model.bayesbr = function(Y,X = NULL,W = NULL,name_y,names_x = NULL,names_w = NULL){
model = Y
verification = name_y
if(!is.null(X)){
if(is.null(ncol(X))){
tam = 1
}
else{
tam = ncol(X)
}
for (i in 1:tam) {
aux = TRUE
for(name in verification){
if (name == names_x[i]) {
aux = FALSE
break
}
}
if(aux && names_x[i]!="(Intercept)"){
if(!is.null(ncol(X))){
model = cbind(model,X[,i])
}
else{
model = cbind(model,X[i])
}
verification = c(verification,names_x[i])
}
}
}
if(!is.null(W)){
if(is.null(ncol(W))){
tam = 1
}
else{
tam = ncol(W)
}
for (i in 1:tam) {
aux = TRUE
for(name in verification){
if (name == names_w[i]) {
aux = FALSE
break
}
}
if(aux && names_w[i]!="(Intercept)"){
if(!is.null(ncol(W))){
model = cbind(model,W[,i])
}
else{
model = cbind(model,W[i])
}
verification = c(verification,names_w[i])
}
}
}
model = data.frame(model)
colnames(model) = verification
return(model)
} |
plot.lordif.MC <-
function(x,mfrow=c(3,1),width=7,height=7,...) {
if (class(x)!="lordif.MC") stop(paste(deparse(substitute(x))," must be of class lordif.MC"))
nr<-x$nr
Item<-1:dim(x$cutoff)[1]
sysname<-Sys.info()[["sysname"]]
if(sysname=="Windows") {
dev.new(width=width,height=height,record=TRUE)
} else if (sysname=="Linux") {
dev.new(width=width,height=height)
par(ask=TRUE)
} else {
dev.new(width=width,height=height)
}
par(mfrow=mfrow)
par(mar=c(2,5,1,2)+0.1)
max.chi<-max(pretty(c(x$cutoff$chi12,x$cutoff$chi13,x$cutoff$chi23)))
plot(Item,x$cutoff$chi12,ylab=substitute(paste0("Pr(",chi[12]^2,")")),ylim=c(0,max.chi),type="b",...)
abline(h=x$alpha,col="red")
plot(Item,x$cutoff$chi13,ylab=substitute(paste0("Pr(",chi[13]^2,")")),ylim=c(0,max.chi),type="b",...)
abline(h=x$alpha,col="red")
plot(Item,x$cutoff$chi23,ylab=substitute(paste0("Pr(",chi[23]^2,")")),ylim=c(0,max.chi),type="b",...)
abline(h=x$alpha,col="red")
max.R2<-max(pretty(c(x$cutoff$pseudo13.McFadden,x$cutoff$pseudo13.Nagelkerke,x$cutoff$pseudo13.CoxSnell)))
plot(Item,x$cutoff$pseudo12.McFadden,ylab=substitute(paste0(R[2]^2," - ",R[1]^2)),type="b",col="black",lty=1,ylim=c(0,max.R2))
points(Item,x$cutoff$pseudo12.Nagelkerke,type="b",col="blue",lty=2,pch=2)
points(Item,x$cutoff$pseudo12.CoxSnell,type="b",col="red",lty=3,pch=3)
legend("topleft",c("McFadden","Nagelkerke","Cox & Snell"),lty=1:3,col=c("black","blue","red"),pch=1:3,bg="white")
plot(Item,x$cutoff$pseudo13.McFadden,ylab=substitute(paste0(R[3]^2," - ",R[1]^2)),type="b",col="black",lty=1,ylim=c(0,max.R2))
points(Item,x$cutoff$pseudo13.Nagelkerke,type="b",col="blue",lty=2,pch=2)
points(Item,x$cutoff$pseudo13.CoxSnell,type="b",col="red",lty=3,pch=3)
plot(Item,x$cutoff$pseudo23.McFadden,ylab=substitute(paste0(R[3]^2," - ",R[2]^2)),type="b",col="black",lty=1,ylim=c(0,max.R2))
points(Item,x$cutoff$pseudo23.Nagelkerke,type="b",col="blue",lty=2,pch=2)
points(Item,x$cutoff$pseudo23.CoxSnell,type="b",col="red",lty=3,pch=3)
max.beta<-max(pretty(x$cutoff$beta12))
plot(Item,x$cutoff$beta12,ylab=substitute(Delta(beta[1])),type="b",ylim=c(0,max.beta),...)
} |
context("SortArgs")
test_that("SortArgs works.", {
x <- SortArgs(
PasteAndDep(substitute(UKAnophelesPlumbeus)),
PasteAndDep(substitute(UKAir)),
PasteAndDep(substitute(OneHundredBackground)),
PasteAndDep(substitute(LogisticRegression)),
PasteAndDep(substitute(PrintMap)),
TRUE
)
expect_equal(x,
paste("workflow(occurrence = UKAnophelesPlumbeus,",
"covariate = UKAir, process = OneHundredBackground,",
"model = LogisticRegression, output = PrintMap,",
"forceReproducible = TRUE)"))
w <- eval(parse(text = x))
expect_true(inherits(w, "zoonWorkflow"))
expect_false(any(vapply(w, is.null, FUN.VALUE = FALSE)))
y <- SortArgs(
PasteAndDep(substitute(UKAnophelesPlumbeus)),
PasteAndDep(substitute("UKAir")),
PasteAndDep(substitute(BackgroundAndCrossvalid(k = 2))),
PasteAndDep(substitute(list(LogisticRegression, LogisticRegression))),
PasteAndDep(substitute(Chain(PrintMap, PrintMap))),
TRUE
)
expect_true(length(y) == 1)
expect_true(inherits(y, "character"))
w2 <- eval(parse(text = y))
expect_true(inherits(w2, "zoonWorkflow"))
expect_false(any(vapply(w2, is.null, FUN.VALUE = FALSE)))
}) |
sim.taxonomy = function(tree, beta = 0, lambda.a = 0, kappa = 0, root.edge = TRUE){
if(!"phylo" %in% class(tree))
stop("tree must be an object of class \"phylo\"")
if(!(beta >= 0 && beta <= 1))
stop("beta must be a probability between 0 and 1")
if(lambda.a < 0)
stop("lambda.a must be zero or positive")
if(!(kappa >= 0 && kappa <= 1))
stop("kappa must be a probability between 0 and 1")
if(is.null(tree$edge.length))
stop("tree must have edge lengths")
if(!ape::is.rooted(tree))
stop("tree must be rooted")
node.ages = n.ages(tree)
species<-data.frame(sp = integer(),
edge = integer(),
parent = integer(),
start = numeric(),
end = numeric(),
mode = character(),
cryptic = logical(),
cryptic.id = integer()
)
root = length(tree$tip.label) + 1
if(root.edge && exists("root.edge",tree)){
start = node.ages[root] + tree$root.edge
mode = "o"
} else {
start = node.ages[root]
mode = "r"
}
species <- rbind(species, data.frame(sp = root, edge = root, parent = 0, start = start, end = node.ages[root],
mode = mode, cryptic = 0, cryptic.id = root))
aux = function(node, p) {
descendants = tree$edge[which(tree$edge[,1] == node), 2]
if(length(descendants) == 0) {
return(p)
}
d1 <- descendants[1]
d2 <- descendants[2]
if(beta == 1 || (beta > 0 && runif(1) > (1 - beta))){
a <- p$sp[which(p$edge == node)]
p <- rbind(p, data.frame(sp = d1, edge = d1, parent = a, start = node.ages[a], end = node.ages[d1],
mode="s", cryptic = 0, cryptic.id = d1))
p <- rbind(p, data.frame(sp = d2, edge = d2, parent = a, start = node.ages[a], end = node.ages[d2],
mode="s", cryptic = 0, cryptic.id = d2))
} else{
p$sp[which(p$sp == node)] = d1
p$parent[which(p$parent == node)] = d1
p$cryptic.id[which(p$cryptic.id == node)] = d1
a <- p$parent[which(p$edge == node)]
m <- p$mode[which(p$sp == d1)][1]
p <- rbind(p, data.frame(sp = d1, edge = d1, parent = a, start = node.ages[ancestor(d1, tree)], end = node.ages[d1],
mode = m, cryptic = 0, cryptic.id = d1))
start = node.ages[ancestor(d2, tree)]
p <- rbind(p, data.frame(sp = d2, edge = d2, parent = d1, start = start, end = node.ages[d2],
mode="b", cryptic = 0, cryptic.id = d2))
}
p = aux(d1, p)
p = aux(d2, p)
p
}
species = aux(root, species)
species = species[order(species$sp),]
species = taxonomy(species)
if(lambda.a > 0) species = sim.anagenetic.species(tree, species, lambda.a)
if(kappa > 0) species = sim.cryptic.species(species, kappa)
rownames(species) = NULL
return(species)
}
sim.anagenetic.species = function(tree, species, lambda.a){
if(!"phylo" %in% class(tree))
stop("tree must be an object of class \"phylo\"")
if(!"taxonomy" %in% class(species))
stop("species must be an object of class \"taxonomy\"")
if(any(species$mode=="a"))
stop("taxonomy object already contains anagenetic species")
if(lambda.a < 0)
stop("lambda.a must be zero or positive")
node.ages = n.ages(tree)
if(lambda.a > 0){
root = root(tree)
species.counter = max(as.numeric(names(node.ages))) + 1
edges = data.frame(edge = numeric(), start = numeric(), end = numeric())
for(i in unique(species$edge)){
edges = rbind(edges, data.frame(edge = i, start = species$start[which(species$edge == i)][1],
end = species$end[which(species$edge == i)][1]))
}
for(i in unique(species$sp)){
sp.start = max(species$start[which(species$sp == i)])
sp.end = min(species$end[which(species$sp == i)])
rand = rpois(1, (sp.start - sp.end) * lambda.a)
if (rand > 0) {
potential.edges = species$edge[which(species$sp == i)]
p = subset(edges, edges$edge %in% potential.edges)
p = p[order(p$end, decreasing = TRUE),]
s = subset(species, species$edge %in% potential.edges)
species = subset(species, !species$edge %in% potential.edges)
h = runif(rand, min = sp.end, max = sp.start)
h = sort(h, decreasing = T)
for(j in 1:(length(h)+1)){
if(j == 1){
sp = species.counter
start = sp.start
end = h[j]
edge = p$edge[which(p$start == start)]
edge = c(edge, p$edge[which(p$start < start & p$start > end)])
edge.start = p$start[which(p$edge %in% edge)]
edge.end = p$end[which(p$edge %in% edge)]
edge.end[length(edge.end)] = end
mode = s$mode[1]
parent = s$parent[1]
species <- rbind(species, data.frame(sp = sp, edge = edge, parent = parent, start = edge.start, end = edge.end,
mode = mode, cryptic = 0, cryptic.id = sp))
if(any(species$parent == i & species$start <= start & species$start > end)) {
species$parent[which(species$parent == i & species$start <= start
& species$start > end)] = sp
}
species.counter = species.counter + 1
} else if (j == (length(h)+1)){
sp = i
start = h[j-1]
end = sp.end
edge = p$edge[which(p$start > start & p$end < start)]
edge = c(edge, p$edge[which(p$start < start & p$start > end)])
edge.start = p$start[which(p$edge %in% edge)]
edge.end = p$end[which(p$edge %in% edge)]
edge.start[1] = start
mode = "a"
parent = species.counter - 1
species <- rbind(species, data.frame(sp = sp, edge = edge, parent = parent, start = edge.start, end = edge.end,
mode = mode, cryptic = 0, cryptic.id = sp))
} else {
sp = species.counter
start = h[j-1]
end = h[j]
edge = p$edge[which(p$start > start & p$end < start)]
edge = c(edge, p$edge[which(p$start < start & p$start > end)])
edge.start = p$start[which(p$edge %in% edge)]
edge.end = p$end[which(p$edge %in% edge)]
edge.start[1] = start
edge.end[length(edge.end)] = end
mode = "a"
parent = species.counter - 1
species <- rbind(species, data.frame(sp = sp, edge = edge, parent = parent, start = edge.start, end = edge.end,
mode = mode, cryptic = 0, cryptic.id = sp))
if(any(species$parent == i & species$start < start & species$start > end)) {
species$parent[which(species$parent == i & species$start < start
& species$start > end)] = sp
}
species.counter = species.counter + 1
}
}
}
}
}
rownames(species) = NULL
return(species)
}
sim.cryptic.species = function(species, kappa){
if(!"taxonomy" %in% class(species))
stop("species must be an object of class \"taxonomy\"")
if(any(species$cryptic == 1))
stop("taxonomy object already contains cryptic species")
if(!(kappa >= 0 && kappa <= 1))
stop("kappa must be a probability between 0 and 1")
if(kappa > 0){
for(i in unique(species$sp)){
if(species$mode[which(species$sp == i)][1] == "o") next
if(species$mode[which(species$sp == i)][1] == "r") next
if(runif(1) < kappa){
species$cryptic[which(species$sp == i)] = 1
parent = species$parent[which(species$sp == i)][1]
c = species$cryptic.id[which(species$sp == parent)][1]
species$cryptic.id[which(species$sp == i)] = c
species$cryptic.id[which(species$cryptic.id == i)] = c
}
}
}
return(species)
} |
Collect.youtube <- function(credential, videoIDs, verbose = FALSE, writeToFile = FALSE,
maxComments = 1e10, ...) {
cat("Collecting comment threads for youtube videos...\n")
flush.console()
apiKey <- credential$auth
if (is.null(apiKey) || nchar(apiKey) < 1) {
stop("Please provide a valid youtube api key.", call. = FALSE)
}
if (missing(videoIDs) || !is.vector(videoIDs) || length(videoIDs) < 1) {
stop("Please provide a vector of one or more youtube video ids.", call. = FALSE)
}
api_cost <- total_api_cost <- 0
dataCombined <- data.frame(Comment = "foo",
AuthorDisplayName = "bar",
AuthorProfileImageUrl = NA,
AuthorChannelUrl = NA,
AuthorChannelID = NA,
ReplyCount = "99999999",
LikeCount = "99999999",
PublishedAt = "timestamp",
UpdatedAt = "timestamp",
CommentID = "99999999123456789",
ParentID = "foobar",
VideoID = "foobarfoobar",
stringsAsFactors = FALSE)
for (k in 1:length(videoIDs)) {
cat(paste0("Video ", k, " of ", length(videoIDs), "\n", sep = ""))
cat("---------------------------------------------------------------\n")
rObj <- yt_scraper(videoIDs, apiKey, k, verbose)
rObj$scrape_all(maxComments)
api_cost <- rObj$api_cost
if (length(rObj$data) == 0) {
cat("\n")
next
}
if (verbose) { cat(paste0("** Creating dataframe from threads of ", videoIDs[k], ".\n")) }
tempData <- lapply(rObj$data, function(x) {
data.frame(Comment = x$snippet$topLevelComment$snippet$textDisplay,
AuthorDisplayName = x$snippet$topLevelComment$snippet$authorDisplayName,
AuthorProfileImageUrl = x$snippet$topLevelComment$snippet$authorProfileImageUrl,
AuthorChannelUrl = x$snippet$topLevelComment$snippet$authorChannelUrl,
AuthorChannelID = ifelse(is.null(x$snippet$topLevelComment$snippet$authorChannelId$value),
"[NoChannelId]", x$snippet$topLevelComment$snippet$authorChannelId$value),
ReplyCount = x$snippet$totalReplyCount,
LikeCount = x$snippet$topLevelComment$snippet$likeCount,
PublishedAt = x$snippet$topLevelComment$snippet$publishedAt,
UpdatedAt = x$snippet$topLevelComment$snippet$updatedAt,
CommentID = x$snippet$topLevelComment$id,
ParentID = NA,
VideoID = videoIDs[k],
stringsAsFactors = FALSE)
})
core_df <- do.call("rbind", tempData)
commentIDs <- core_df$CommentID
commentIDs_with_replies <- core_df[which(core_df$ReplyCount > 0), ]
commentIDs_with_replies <- commentIDs_with_replies$CommentID
if (length(commentIDs_with_replies) > 0) {
cat(paste0("** Collecting replies for ", length(commentIDs_with_replies),
" threads with replies. Please be patient.\n"))
base_url <- "https://www.googleapis.com/youtube/v3/comments"
dataRepliesAll <- data.frame(Comment = "foo",
AuthorDisplayName = "bar",
AuthorProfileImageUrl = NA,
AuthorChannelUrl = NA,
AuthorChannelID = NA,
ReplyCount = "99999999",
LikeCount = "99999999",
PublishedAt = "timestamp",
UpdatedAt = "timestamp",
CommentID = "99999999123456789",
ParentID = "foobar",
VideoID = videoIDs[k],
stringsAsFactors = FALSE)
total_replies <- 0
for (i in 1:length(commentIDs_with_replies)) {
api_opts <- list(part = "snippet",
textFormat = "plainText",
parentId = commentIDs_with_replies[i],
key = apiKey)
req <- httr::GET(base_url, query = api_opts)
init_results <- httr::content(req)
err <- FALSE
if (req$status_code != 200) {
err <- TRUE
cat(paste0("\nComment error: ", init_results$error$code, "\nDetail: ", init_results$error$message, "\n"))
cat(paste0("parentId: ", commentIDs_with_replies[i], "\n\n"))
} else {
api_cost <- api_cost + 2
}
num_items <- length(init_results$items)
if (verbose) {
if (i == 1) {
cat("Comment replies ")
}
cat(paste(num_items, ""))
flush.console()
} else {
cat(".")
flush.console()
}
total_replies <- total_replies + num_items
tempDataReplies <- lapply(init_results$items, function(x) {
data.frame(Comment = x$snippet$textDisplay,
AuthorDisplayName = x$snippet$authorDisplayName,
AuthorProfileImageUrl = x$snippet$authorProfileImageUrl,
AuthorChannelUrl = x$snippet$authorChannelUrl,
AuthorChannelID = ifelse(is.null(x$snippet$authorChannelId$value),
"[NoChannelId]", x$snippet$authorChannelId$value),
ReplyCount = 0,
LikeCount = x$snippet$likeCount,
PublishedAt = x$snippet$publishedAt,
UpdatedAt = x$snippet$updatedAt,
CommentID = x$id,
ParentID = x$snippet$parentId,
VideoID = videoIDs[k],
stringsAsFactors = FALSE)
})
tempDataRepliesBinded <- do.call("rbind", tempDataReplies)
dataRepliesAll <- rbind(dataRepliesAll, tempDataRepliesBinded)
if (err || rObj$api_error) { break }
}
total_api_cost <- total_api_cost + api_cost
cat(paste0("\n** Collected replies: ", total_replies, "\n"))
cat(paste0("** Total video comments: ", length(commentIDs) + total_replies, "\n"))
if (verbose) { cat(paste0("(Video API unit cost: ", api_cost, ")\n")) }
cat("---------------------------------------------------------------\n")
dataRepliesAll <- dataRepliesAll[-1, ]
dataCombinedTemp <- rbind(core_df, dataRepliesAll)
dataCombined <- rbind(dataCombined, dataCombinedTemp)
} else {
total_api_cost <- total_api_cost + api_cost
dataCombined <- rbind(dataCombined, core_df)
cat("\n")
}
}
cat(paste0("** Total comments collected for all videos ", nrow(dataCombined)-1, ".\n", sep = ""))
dataCombined <- dataCombined[-1, ]
if (nrow(dataCombined) == 0) {
stop(paste0("No comments could be collected from the given video Ids: ",
paste0(videoIDs, collapse = ", "), "\n"), call. = FALSE)
} else {
cat(paste0("(Estimated API unit cost: ", total_api_cost, ")\n"))
}
if (writeToFile) { writeOutputFile(dataCombined, "rds", "YoutubeData") }
dataCombined <- tibble::as_tibble(dataCombined)
class(dataCombined) <- append(class(dataCombined), c("datasource", "youtube"))
cat("Done.\n")
flush.console()
dataCombined
}
yt_scraper <- setRefClass(
"yt_scraper",
fields = list(
base_url = "character",
api_opts = "list",
nextPageToken = "character",
page_count = "numeric",
data = "list",
unique_count = "numeric",
done = "logical",
core_df = "data.frame",
verbose = "logical",
api_cost = "numeric",
api_error = "logical"),
methods = list(
scrape = function() {
opts <- api_opts
if (is.null(nextPageToken) || length(trimws(nextPageToken)) == 0L || trimws(nextPageToken) == "") {
if (page_count >= 1) {
if (verbose) { cat(paste0("-- No nextPageToken. Returning. page_count is: ", page_count, "\n")) }
return(0)
} else {
if (verbose) { cat("-- First thread page. No pageToken.\n") }
}
} else {
opts$pageToken <- trimws(nextPageToken)
if (verbose) { cat(paste0("-- Value of pageToken: ", opts$pageToken, "\n")) }
}
page_count <<- page_count + 1
req <- httr::GET(base_url, query = opts)
res <- httr::content(req)
if (req$status_code != 200) {
api_error <<- TRUE
nextPageToken <<- ""
cat(paste0("\nThread error: ", res$error$code, "\nDetail: ", res$error$message, "\n"))
cat(paste0("videoId: ", opts$videoId, "\n\n"))
return(0)
} else {
api_cost <<- api_cost + 3
}
if (is.null(res$nextPageToken)) {
nextPageToken <<- ""
} else {
nextPageToken <<- res$nextPageToken
}
data <<- c(data, res$items)
return(length(res$items))
},
scrape_all = function(maxComments) {
cat(paste0("** video Id: ", api_opts$videoId ,"\n", sep = ""))
if (verbose) {
cat(paste0(" [results per page: ", api_opts$maxResults, " | max comments per video: ", maxComments, "]\n",
sep = ""))
}
thread_count <- 0
while (TRUE) {
thread_count <- scrape()
if (verbose) { cat(paste0("-- Collected threads from page: ", thread_count, "\n", sep = "")) }
if (thread_count == 0 | length(data) > maxComments | api_error) {
done <<- TRUE
nextPageToken <<- ""
if (length(data) > maxComments) {
cat(paste0("-- API returned more than max comments. Results truncated to first ", maxComments,
" threads.\n", sep = ""))
data <<- data[1:maxComments]
}
if (verbose) { cat(paste0("-- Done collecting threads.\n", sep = "")) }
break
}
}
if (verbose) { cat(paste0("** Results page count: ", page_count, "\n")) }
cat(paste0("** Collected threads: ", length(data), "\n"))
if (verbose) { cat(paste0("(Threads API unit cost: ", api_cost, ")\n")) }
},
initialize = function(videoIDs, apiKey, k, verbose = FALSE) {
base_url <<- "https://www.googleapis.com/youtube/v3/commentThreads/"
api_opts <<- list(part = "snippet",
maxResults = 100,
textFormat = "plainText",
videoId = videoIDs[k],
key = apiKey,
fields = "items,nextPageToken",
orderBy = "published")
page_count <<- 0
nextPageToken <<- ""
data <<- list()
unique_count <<- 0
done <<- FALSE
core_df <<- data.frame()
verbose <<- verbose
api_cost <<- 0
api_error <<- FALSE
},
reset = function() {
data <<- list()
page_count <<- 0
nextPageToken <<- ""
unique_count <<- 0
done <<- FALSE
core_df <<- data.frame()
api_cost <<- 0
api_error <<- FALSE
},
cache_core_data = function() {
if (nrow(core_df) < unique_count) {
sub_data <- lapply(data, function(x) {
data.frame(
Comment = x$snippet$topLevelComment$snippet$textDisplay,
AuthorDisplayName = x$snippet$topLevelComment$snippet$authorDisplayName,
AuthorProfileImageUrl = x$snippet$topLevelComment$snippet$authorProfileImageUrl,
AuthorChannelUrl = x$snippet$topLevelComment$snippet$authorChannelUrl,
AuthorChannelID = ifelse(is.null(x$snippet$topLevelComment$snippet$authorChannelId$value),
"[NoChannelId]", x$snippet$topLevelComment$snippet$authorChannelId$value),
ReplyCount = x$snippet$totalReplyCount,
LikeCount = x$snippet$topLevelComment$snippet$likeCount,
PublishedAt = x$snippet$topLevelComment$snippet$publishedAt,
UpdatedAt = x$snippet$topLevelComment$snippet$updatedAt,
CommentID = x$snippet$topLevelComment$id,
stringsAsFactors = FALSE)
})
core_df <<- do.call("rbind", sub_data)
} else {
message("core_df is already up to date.\n")
}
}
)
) |
plot_intensities_ratio <-
function(spectral_count_object, target_variable, list_conditions, force = FALSE){
spectral_count_object <- spectral_count_object
if (!force && interactive()) {
response <-
select.list(c("yes", "no"), title = "Do you allow to create a pdf file with log2 abundance ratios?")
if (response == "yes") {
if (length(spectral_count_object) == 4) {
if (spectral_count_object[[4]] == "spectral_count_object") {
target_variable <- target_variable
metadata <- spectral_count_object[[2]]
if (target_variable %in% colnames(metadata) == TRUE) {
if (all((unique(list_conditions)) %in% metadata[[target_variable]]) == TRUE) {
if ((length(list_conditions) == 2) &
(length(unique(list_conditions)) == 2)) {
sc_data <- spectral_count_object[[1]]
colnames(sc_data) <- metadata[[target_variable]]
sc_data <- as.data.frame(sapply(split.default(sc_data, names(sc_data)), rowMeans))
ref <- list_conditions[1]
cond <- list_conditions[2]
sc_data_pairwise <- sc_data[-which(sc_data[[ref]] == 0 & sc_data[[cond]] == 0), c(ref, cond)]
ref_log <- log2(sc_data_pairwise[, 1] + 1)
cond_log <- log2(sc_data_pairwise[, 2] + 1)
to_plot <- matrix(NA, length(ref_log), 3)
to_plot[, 1] <- ref_log
to_plot[, 2] <- cond_log
to_plot[, 3] <- cond_log - ref_log
to_plot <- to_plot[rev(order(to_plot[, 1])),]
pepsprots <- spectral_count_object[[3]]
if("species" %in% colnames(pepsprots)){
taxa <- "Species"
}
else if("genus" %in% colnames(pepsprots)){
taxa <- "Genus"
}
else if("family" %in% colnames(pepsprots)){
taxa <- "Family"
}
else if("order" %in% colnames(pepsprots)){
taxa <- "Order"
}
else if("class" %in% colnames(pepsprots)){
taxa <- "Class"
}
else if("phylum" %in% colnames(pepsprots)){
taxa <- "Phylum"
}
else if("superkingdom" %in% colnames(pepsprots)){
taxa <- "Superkingdom"
}
else{
taxa <- ""
}
if (names(spectral_count_object[1]) == "SC_subgroups") {
if (nchar(taxa) == 0){
elements <- "Subgroup"
}
else{
elements <- paste(c(taxa, "(from subgroups)"), collapse = " ")
}
}
else if (names(spectral_count_object[1]) == "SC_groups") {
if (nchar(taxa) == 0){
elements <- "Group"
}
else{
elements <- paste(c(taxa, "(from groups)"), collapse = " ")
}
}
else{
if (nchar(taxa) == 0){
elements <- "Peptide"
}
else{
elements <- paste(c(taxa, "(from peptides)"), collapse = " ")
}
}
number <- paste(c("n=", length(ref_log)), collapse = "")
xlab <- paste(c(elements, " by decreasing abundance in ", ref, " (", number, ")"), collapse = "")
ylab <- paste(c("log2(ratio ", cond, "/", ref, " )"), collapse = "")
main <- paste(c("Abudances in ", cond, " versus ", ref), collapse = "")
filename <- paste(elements, "ratios", cond, "VS", ref, sep = "_")
filename <- paste(filename, ".pdf", sep = "")
old_par <- par(no.readonly = TRUE)
on.exit(suppressWarnings(par(old_par)))
pdf(filename, width = 7.5, height = 6)
par(fig = c(0, 0.85, 0, 1))
plot(to_plot[, 3], pch = ".", cex = 2, xlab = xlab, ylab = ylab, main = main)
abline(h = 0, col = "blue", lwd = 0.5)
abline(h = -1.584963, col = "blue", lwd = 1)
abline(h = 1.584963, col = "blue", lwd = 1)
par(fig = c(0.70, 1, 0, 1), new = TRUE)
boxplot(to_plot[, 3], axes = FALSE)
abline(h = 0, col = "blue", lwd = 0.5)
abline(h = -1.584963, col = "blue", lwd = 1)
abline(h = 1.584963, col = "blue", lwd = 1)
dev.off()
print(paste("The figure", filename, "was generated", sep = " "))
}
else{
stop("Precise only TWO conditions in list_conditions argument")
}
}
else{
vars <- paste(list_conditions, collapse = ", ")
stop(paste(c("The variables [", vars, "] must be present in: '", target_variable, "'"), collapse = " "))
}
}
else{
options <- colnames(metadata)
stop(paste(c("Change target_variable for ONE of these options: ", options), collapse = "' '"))
}
}
else {
stop("Invalid spectral count object")
}
}
else{
stop("Invalid spectral count object")
}
}
else{
stop("No file was created")
}
}
} |
intg1.TMLW <-
function(x){ (exp(x)-1)*dlweibul(x)} |
setClass(
Class = "Muller94BoundaryKernel",
representation = representation(),
contains = "BoundaryKernel"
)
setMethod(
f = "leftBoundaryKernelFunction",
signature = "Muller94BoundaryKernel",
definition = function(.Object,q,u){
if (.Object@mu == 0){
2/((1+q)^3)*(3*(1-q)*u+2*(1-q+q^2))
}else if (.Object@mu == 1){
12/((1+q)^4)*(u+1)*((1-2*q)*u+(1-2*q+3*q^2)*0.5)
}else if (.Object@mu == 2){
15*(1+u)^2*(q-u)*(1/(1+q)^5)*(2*u*(5*((1-q)/(1+q))-1)+3*q-1+(5*(1-q)^2)/(1+q))
}else if (.Object@mu == 3){
70*(1+u)^3*(q-u)^2*(1/(1+q)^7)*(2*u*(7*((1-q)/(1+q))-1)+3*q-1+(7*(1-q)^2)/(1+q))
}else {
stop("Mu can only take values 0,1,2 or 3")
}
})
setMethod(
f = "interiorKernelFunction",
signature = "Muller94BoundaryKernel",
definition = function(.Object,u){
if (.Object@mu == 0){
rep(1/2,times=length(u))
}else if (.Object@mu == 1){
(3/4)*(1-u^2)
}else if (.Object@mu == 2){
(15/16)*(1-u^2)^2
}else if (.Object@mu == 3){
(35/32)*(1-u^2)^3
}else {
stop("Mu can only take values 0,1,2 or 3")
}
})
setMethod(
f = "rightBoundaryKernelFunction",
signature = "Muller94BoundaryKernel",
definition = function(.Object,q,u){
leftBoundaryKernelFunction(.Object,q,-u)
})
muller94BoundaryKernel <- function(dataPoints, mu=1, b=length(dataPoints)^(-2/5), dataPointsCache=NULL, lower.limit=0,upper.limit=1){
dataPoints.scaled <- dataPoints
dataPointsCache.scaled <- dataPointsCache
if(is.null(dataPointsCache)){
dataPointsCache.scaled <- seq(0,1,0.01)
}
if(lower.limit!=0 || upper.limit!=1){
dataPoints.scaled <- (dataPoints-lower.limit)/(upper.limit-lower.limit)
if(!is.null(dataPointsCache)){
dataPointsCache.scaled <- (dataPointsCache-lower.limit)/(upper.limit-lower.limit)
}
}
kernel <- new(Class="Muller94BoundaryKernel",dataPoints = dataPoints.scaled, b = b,
dataPointsCache = dataPointsCache.scaled, mu = mu, lower.limit=lower.limit,upper.limit=upper.limit)
setDensityCache(kernel, densityFunction=NULL)
return(kernel)
} |
makeJennrichSampsonFunction = function() {
makeSingleObjectiveFunction(
name = "Jennrich-Sampson Function",
id = "jennrichSampson_2d",
fn = function(x) {
assertNumeric(x, len = 2L, any.missing = FALSE, all.missing = FALSE)
i = 1:10
sum((2 + 2 * i - (exp(i * x[1]) + exp(i * x[2])))^2)
},
par.set = makeNumericParamSet(
len = 2L,
id = "x",
lower = c(-1, -1),
upper = c(1, 1),
vector = TRUE
),
tags = attr(makeJennrichSampsonFunction, "tags"),
global.opt.params = c(0.25782521321500883, 0.25782521381356827),
global.opt.value = 124.36218235561473896
)
}
class(makeJennrichSampsonFunction) = c("function", "smoof_generator")
attr(makeJennrichSampsonFunction, "name") = c("Jennrich-Sampson")
attr(makeJennrichSampsonFunction, "type") = c("single-objective")
attr(makeJennrichSampsonFunction, "tags") = c("single-objective", "continuous", "differentiable", "non-separable", "non-scalable", "unimodal") |
clean.Gspline <- function(dir, label, care.of.y=TRUE){
FILES <- dir(dir)
if (paste("mixmoment", label, ".sim", sep="") %in% FILES) file.remove(paste(dir, "/mixmoment", label, ".sim", sep = ""))
if (paste("mweight", label, ".sim", sep="") %in% FILES) file.remove(paste(dir, "/mweight", label, ".sim", sep = ""))
if (paste("mlogweight", label, ".sim", sep="") %in% FILES) file.remove(paste(dir, "/mlogweight", label, ".sim", sep = ""))
if (paste("mmean", label, ".sim", sep="") %in% FILES) file.remove(paste(dir, "/mmean", label, ".sim", sep = ""))
if (paste("gspline", label, ".sim", sep="") %in% FILES) file.remove(paste(dir, "/gspline", label, ".sim", sep = ""))
if (paste("lambda", label, ".sim", sep="") %in% FILES) file.remove(paste(dir, "/lambda", label, ".sim", sep = ""))
if ((paste("Y", label, ".sim", sep="") %in% FILES) & care.of.y) file.remove(paste(dir, "/Y", label, ".sim", sep = ""))
if (paste("logposter", label, ".sim", sep="") %in% FILES) file.remove(paste(dir, "/logposter", label, ".sim", sep = ""))
if (paste("r", label, ".sim", sep="") %in% FILES) file.remove(paste(dir, "/r", label, ".sim", sep = ""))
}
write.headers.Gspline <- function(dir, dim, nP, label, gparmi, store.a, store.y, store.r, care.of.y=TRUE){
FILES <- dir(dir)
sink(paste(dir, "/mixmoment", label, ".sim", sep = ""), append = FALSE)
mname <- paste("Mean.", 1:dim, " ", sep="")
D <- diag(dim)
rows <- row(D)[lower.tri(row(D), diag = TRUE)]
cols <- col(D)[lower.tri(col(D), diag = TRUE)]
dname <- paste("D.", rows, ".", cols, sep = "")
cat("k", mname, dname, "\n", sep = " "); sink()
total.length <- ifelse(dim == 1, 2*gparmi["K1"] + 1,
(2*gparmi["K1"] + 1)*(2*gparmi["K2"] + 1))
sink(paste(dir, "/mweight", label, ".sim", sep = ""), append = FALSE)
cat(paste("w", 1:min(total.length, 9), sep = ""), sep = " ")
if (total.length >= 10){
cat(" ")
cat(paste("w", 10:total.length, sep = ""), "\n", sep = " ")
}
else{
cat("\n")
}
sink()
if (store.a){
sink(paste(dir, "/mlogweight", label, ".sim", sep = ""), append = FALSE)
cat(paste("a", 1:min(total.length, 9), sep = ""), sep = " ")
if (total.length >= 10){
cat(" ")
cat(paste("a", 10:total.length, sep = ""), "\n", sep = " ")
}
else{
cat("\n")
}
sink()
}
else
if (paste("mlogweight", label, ".sim", sep="") %in% FILES) file.remove(paste(dir, "/mlogweight", label, ".sim", sep = ""))
ind1 <- rep(1:total.length, rep(dim, total.length))
ind2 <- rep(1:dim, total.length)
sink(paste(dir, "/mmean", label, ".sim", sep = ""), append = FALSE)
cat(paste("mu", ind1, ".", ind2, sep = ""), "\n", sep = " "); sink()
sink(paste(dir, "/gspline", label, ".sim", sep = ""), append = FALSE)
gname <- paste(" gamma", 1:dim, sep = "")
sname <- paste(" sigma", 1:dim, sep = "")
dname <- paste(" delta", 1:dim, sep = "")
intcptname <- paste(" intercept", 1:dim, sep = "")
scname <- paste(" scale", 1:dim, sep = "")
cat(gname, sname, dname, intcptname, scname, "\n", sep = " "); sink()
sink(paste(dir, "/lambda", label, ".sim", sep = ""), append = FALSE)
lname <- if(gparmi["equal.lambda"]) "lambda" else paste("lambda", 1:dim, sep = "")
cat(lname, "\n", sep = " "); sink()
if (care.of.y){
ind1 <- rep(1:nP, rep(dim, nP))
ind2 <- rep(1:dim, nP)
if (store.y){
sink(paste(dir, "/Y", label, ".sim", sep = ""), append = FALSE)
cat(paste("Y.", ind1, ".", ind2, sep = ""), "\n", sep = " ")
sink()
}
else{
if (paste("Y", label, ".sim", sep="") %in% FILES) file.remove(paste(dir, "/Y", label, ".sim", sep = ""))
}
}
if (store.r){
sink(paste(dir, "/r", label, ".sim", sep = ""), append = FALSE)
cat(paste("r.", ind1, ".", ind2, sep = ""), "\n", sep = " ")
sink()
}
else{
if (paste("r", label, ".sim", sep="") %in% FILES) file.remove(paste(dir, "/r", label, ".sim", sep = ""))
}
pname <- if (gparmi["equal.lambda"]) "penalty" else paste("penalty", 1:dim, sep = "")
pname <- c("loglik ", pname, " logprw")
sink(paste(dir, "/logposter", label, ".sim", sep = ""), append = FALSE)
cat(pname, "\n", sep = " "); sink()
} |
NULL
storagegateway_activate_gateway <- function(ActivationKey, GatewayName, GatewayTimezone, GatewayRegion, GatewayType = NULL, TapeDriveType = NULL, MediumChangerType = NULL, Tags = NULL) {
op <- new_operation(
name = "ActivateGateway",
http_method = "POST",
http_path = "/",
paginator = list()
)
input <- .storagegateway$activate_gateway_input(ActivationKey = ActivationKey, GatewayName = GatewayName, GatewayTimezone = GatewayTimezone, GatewayRegion = GatewayRegion, GatewayType = GatewayType, TapeDriveType = TapeDriveType, MediumChangerType = MediumChangerType, Tags = Tags)
output <- .storagegateway$activate_gateway_output()
config <- get_config()
svc <- .storagegateway$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.storagegateway$operations$activate_gateway <- storagegateway_activate_gateway
storagegateway_add_cache <- function(GatewayARN, DiskIds) {
op <- new_operation(
name = "AddCache",
http_method = "POST",
http_path = "/",
paginator = list()
)
input <- .storagegateway$add_cache_input(GatewayARN = GatewayARN, DiskIds = DiskIds)
output <- .storagegateway$add_cache_output()
config <- get_config()
svc <- .storagegateway$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.storagegateway$operations$add_cache <- storagegateway_add_cache
storagegateway_add_tags_to_resource <- function(ResourceARN, Tags) {
op <- new_operation(
name = "AddTagsToResource",
http_method = "POST",
http_path = "/",
paginator = list()
)
input <- .storagegateway$add_tags_to_resource_input(ResourceARN = ResourceARN, Tags = Tags)
output <- .storagegateway$add_tags_to_resource_output()
config <- get_config()
svc <- .storagegateway$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.storagegateway$operations$add_tags_to_resource <- storagegateway_add_tags_to_resource
storagegateway_add_upload_buffer <- function(GatewayARN, DiskIds) {
op <- new_operation(
name = "AddUploadBuffer",
http_method = "POST",
http_path = "/",
paginator = list()
)
input <- .storagegateway$add_upload_buffer_input(GatewayARN = GatewayARN, DiskIds = DiskIds)
output <- .storagegateway$add_upload_buffer_output()
config <- get_config()
svc <- .storagegateway$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.storagegateway$operations$add_upload_buffer <- storagegateway_add_upload_buffer
storagegateway_add_working_storage <- function(GatewayARN, DiskIds) {
op <- new_operation(
name = "AddWorkingStorage",
http_method = "POST",
http_path = "/",
paginator = list()
)
input <- .storagegateway$add_working_storage_input(GatewayARN = GatewayARN, DiskIds = DiskIds)
output <- .storagegateway$add_working_storage_output()
config <- get_config()
svc <- .storagegateway$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.storagegateway$operations$add_working_storage <- storagegateway_add_working_storage
storagegateway_assign_tape_pool <- function(TapeARN, PoolId, BypassGovernanceRetention = NULL) {
op <- new_operation(
name = "AssignTapePool",
http_method = "POST",
http_path = "/",
paginator = list()
)
input <- .storagegateway$assign_tape_pool_input(TapeARN = TapeARN, PoolId = PoolId, BypassGovernanceRetention = BypassGovernanceRetention)
output <- .storagegateway$assign_tape_pool_output()
config <- get_config()
svc <- .storagegateway$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.storagegateway$operations$assign_tape_pool <- storagegateway_assign_tape_pool
storagegateway_attach_volume <- function(GatewayARN, TargetName = NULL, VolumeARN, NetworkInterfaceId, DiskId = NULL) {
op <- new_operation(
name = "AttachVolume",
http_method = "POST",
http_path = "/",
paginator = list()
)
input <- .storagegateway$attach_volume_input(GatewayARN = GatewayARN, TargetName = TargetName, VolumeARN = VolumeARN, NetworkInterfaceId = NetworkInterfaceId, DiskId = DiskId)
output <- .storagegateway$attach_volume_output()
config <- get_config()
svc <- .storagegateway$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.storagegateway$operations$attach_volume <- storagegateway_attach_volume
storagegateway_cancel_archival <- function(GatewayARN, TapeARN) {
op <- new_operation(
name = "CancelArchival",
http_method = "POST",
http_path = "/",
paginator = list()
)
input <- .storagegateway$cancel_archival_input(GatewayARN = GatewayARN, TapeARN = TapeARN)
output <- .storagegateway$cancel_archival_output()
config <- get_config()
svc <- .storagegateway$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.storagegateway$operations$cancel_archival <- storagegateway_cancel_archival
storagegateway_cancel_retrieval <- function(GatewayARN, TapeARN) {
op <- new_operation(
name = "CancelRetrieval",
http_method = "POST",
http_path = "/",
paginator = list()
)
input <- .storagegateway$cancel_retrieval_input(GatewayARN = GatewayARN, TapeARN = TapeARN)
output <- .storagegateway$cancel_retrieval_output()
config <- get_config()
svc <- .storagegateway$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.storagegateway$operations$cancel_retrieval <- storagegateway_cancel_retrieval
storagegateway_create_cachedi_scsi_volume <- function(GatewayARN, VolumeSizeInBytes, SnapshotId = NULL, TargetName, SourceVolumeARN = NULL, NetworkInterfaceId, ClientToken, KMSEncrypted = NULL, KMSKey = NULL, Tags = NULL) {
op <- new_operation(
name = "CreateCachediSCSIVolume",
http_method = "POST",
http_path = "/",
paginator = list()
)
input <- .storagegateway$create_cachedi_scsi_volume_input(GatewayARN = GatewayARN, VolumeSizeInBytes = VolumeSizeInBytes, SnapshotId = SnapshotId, TargetName = TargetName, SourceVolumeARN = SourceVolumeARN, NetworkInterfaceId = NetworkInterfaceId, ClientToken = ClientToken, KMSEncrypted = KMSEncrypted, KMSKey = KMSKey, Tags = Tags)
output <- .storagegateway$create_cachedi_scsi_volume_output()
config <- get_config()
svc <- .storagegateway$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.storagegateway$operations$create_cachedi_scsi_volume <- storagegateway_create_cachedi_scsi_volume
storagegateway_create_nfs_file_share <- function(ClientToken, NFSFileShareDefaults = NULL, GatewayARN, KMSEncrypted = NULL, KMSKey = NULL, Role, LocationARN, DefaultStorageClass = NULL, ObjectACL = NULL, ClientList = NULL, Squash = NULL, ReadOnly = NULL, GuessMIMETypeEnabled = NULL, RequesterPays = NULL, Tags = NULL, FileShareName = NULL, CacheAttributes = NULL, NotificationPolicy = NULL) {
op <- new_operation(
name = "CreateNFSFileShare",
http_method = "POST",
http_path = "/",
paginator = list()
)
input <- .storagegateway$create_nfs_file_share_input(ClientToken = ClientToken, NFSFileShareDefaults = NFSFileShareDefaults, GatewayARN = GatewayARN, KMSEncrypted = KMSEncrypted, KMSKey = KMSKey, Role = Role, LocationARN = LocationARN, DefaultStorageClass = DefaultStorageClass, ObjectACL = ObjectACL, ClientList = ClientList, Squash = Squash, ReadOnly = ReadOnly, GuessMIMETypeEnabled = GuessMIMETypeEnabled, RequesterPays = RequesterPays, Tags = Tags, FileShareName = FileShareName, CacheAttributes = CacheAttributes, NotificationPolicy = NotificationPolicy)
output <- .storagegateway$create_nfs_file_share_output()
config <- get_config()
svc <- .storagegateway$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.storagegateway$operations$create_nfs_file_share <- storagegateway_create_nfs_file_share
storagegateway_create_smb_file_share <- function(ClientToken, GatewayARN, KMSEncrypted = NULL, KMSKey = NULL, Role, LocationARN, DefaultStorageClass = NULL, ObjectACL = NULL, ReadOnly = NULL, GuessMIMETypeEnabled = NULL, RequesterPays = NULL, SMBACLEnabled = NULL, AccessBasedEnumeration = NULL, AdminUserList = NULL, ValidUserList = NULL, InvalidUserList = NULL, AuditDestinationARN = NULL, Authentication = NULL, CaseSensitivity = NULL, Tags = NULL, FileShareName = NULL, CacheAttributes = NULL, NotificationPolicy = NULL) {
op <- new_operation(
name = "CreateSMBFileShare",
http_method = "POST",
http_path = "/",
paginator = list()
)
input <- .storagegateway$create_smb_file_share_input(ClientToken = ClientToken, GatewayARN = GatewayARN, KMSEncrypted = KMSEncrypted, KMSKey = KMSKey, Role = Role, LocationARN = LocationARN, DefaultStorageClass = DefaultStorageClass, ObjectACL = ObjectACL, ReadOnly = ReadOnly, GuessMIMETypeEnabled = GuessMIMETypeEnabled, RequesterPays = RequesterPays, SMBACLEnabled = SMBACLEnabled, AccessBasedEnumeration = AccessBasedEnumeration, AdminUserList = AdminUserList, ValidUserList = ValidUserList, InvalidUserList = InvalidUserList, AuditDestinationARN = AuditDestinationARN, Authentication = Authentication, CaseSensitivity = CaseSensitivity, Tags = Tags, FileShareName = FileShareName, CacheAttributes = CacheAttributes, NotificationPolicy = NotificationPolicy)
output <- .storagegateway$create_smb_file_share_output()
config <- get_config()
svc <- .storagegateway$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.storagegateway$operations$create_smb_file_share <- storagegateway_create_smb_file_share
storagegateway_create_snapshot <- function(VolumeARN, SnapshotDescription, Tags = NULL) {
op <- new_operation(
name = "CreateSnapshot",
http_method = "POST",
http_path = "/",
paginator = list()
)
input <- .storagegateway$create_snapshot_input(VolumeARN = VolumeARN, SnapshotDescription = SnapshotDescription, Tags = Tags)
output <- .storagegateway$create_snapshot_output()
config <- get_config()
svc <- .storagegateway$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.storagegateway$operations$create_snapshot <- storagegateway_create_snapshot
storagegateway_create_snapshot_from_volume_recovery_point <- function(VolumeARN, SnapshotDescription, Tags = NULL) {
op <- new_operation(
name = "CreateSnapshotFromVolumeRecoveryPoint",
http_method = "POST",
http_path = "/",
paginator = list()
)
input <- .storagegateway$create_snapshot_from_volume_recovery_point_input(VolumeARN = VolumeARN, SnapshotDescription = SnapshotDescription, Tags = Tags)
output <- .storagegateway$create_snapshot_from_volume_recovery_point_output()
config <- get_config()
svc <- .storagegateway$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.storagegateway$operations$create_snapshot_from_volume_recovery_point <- storagegateway_create_snapshot_from_volume_recovery_point
storagegateway_create_storedi_scsi_volume <- function(GatewayARN, DiskId, SnapshotId = NULL, PreserveExistingData, TargetName, NetworkInterfaceId, KMSEncrypted = NULL, KMSKey = NULL, Tags = NULL) {
op <- new_operation(
name = "CreateStorediSCSIVolume",
http_method = "POST",
http_path = "/",
paginator = list()
)
input <- .storagegateway$create_storedi_scsi_volume_input(GatewayARN = GatewayARN, DiskId = DiskId, SnapshotId = SnapshotId, PreserveExistingData = PreserveExistingData, TargetName = TargetName, NetworkInterfaceId = NetworkInterfaceId, KMSEncrypted = KMSEncrypted, KMSKey = KMSKey, Tags = Tags)
output <- .storagegateway$create_storedi_scsi_volume_output()
config <- get_config()
svc <- .storagegateway$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.storagegateway$operations$create_storedi_scsi_volume <- storagegateway_create_storedi_scsi_volume
storagegateway_create_tape_pool <- function(PoolName, StorageClass, RetentionLockType = NULL, RetentionLockTimeInDays = NULL, Tags = NULL) {
op <- new_operation(
name = "CreateTapePool",
http_method = "POST",
http_path = "/",
paginator = list()
)
input <- .storagegateway$create_tape_pool_input(PoolName = PoolName, StorageClass = StorageClass, RetentionLockType = RetentionLockType, RetentionLockTimeInDays = RetentionLockTimeInDays, Tags = Tags)
output <- .storagegateway$create_tape_pool_output()
config <- get_config()
svc <- .storagegateway$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.storagegateway$operations$create_tape_pool <- storagegateway_create_tape_pool
storagegateway_create_tape_with_barcode <- function(GatewayARN, TapeSizeInBytes, TapeBarcode, KMSEncrypted = NULL, KMSKey = NULL, PoolId = NULL, Worm = NULL, Tags = NULL) {
op <- new_operation(
name = "CreateTapeWithBarcode",
http_method = "POST",
http_path = "/",
paginator = list()
)
input <- .storagegateway$create_tape_with_barcode_input(GatewayARN = GatewayARN, TapeSizeInBytes = TapeSizeInBytes, TapeBarcode = TapeBarcode, KMSEncrypted = KMSEncrypted, KMSKey = KMSKey, PoolId = PoolId, Worm = Worm, Tags = Tags)
output <- .storagegateway$create_tape_with_barcode_output()
config <- get_config()
svc <- .storagegateway$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.storagegateway$operations$create_tape_with_barcode <- storagegateway_create_tape_with_barcode
storagegateway_create_tapes <- function(GatewayARN, TapeSizeInBytes, ClientToken, NumTapesToCreate, TapeBarcodePrefix, KMSEncrypted = NULL, KMSKey = NULL, PoolId = NULL, Worm = NULL, Tags = NULL) {
op <- new_operation(
name = "CreateTapes",
http_method = "POST",
http_path = "/",
paginator = list()
)
input <- .storagegateway$create_tapes_input(GatewayARN = GatewayARN, TapeSizeInBytes = TapeSizeInBytes, ClientToken = ClientToken, NumTapesToCreate = NumTapesToCreate, TapeBarcodePrefix = TapeBarcodePrefix, KMSEncrypted = KMSEncrypted, KMSKey = KMSKey, PoolId = PoolId, Worm = Worm, Tags = Tags)
output <- .storagegateway$create_tapes_output()
config <- get_config()
svc <- .storagegateway$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.storagegateway$operations$create_tapes <- storagegateway_create_tapes
storagegateway_delete_automatic_tape_creation_policy <- function(GatewayARN) {
op <- new_operation(
name = "DeleteAutomaticTapeCreationPolicy",
http_method = "POST",
http_path = "/",
paginator = list()
)
input <- .storagegateway$delete_automatic_tape_creation_policy_input(GatewayARN = GatewayARN)
output <- .storagegateway$delete_automatic_tape_creation_policy_output()
config <- get_config()
svc <- .storagegateway$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.storagegateway$operations$delete_automatic_tape_creation_policy <- storagegateway_delete_automatic_tape_creation_policy
storagegateway_delete_bandwidth_rate_limit <- function(GatewayARN, BandwidthType) {
op <- new_operation(
name = "DeleteBandwidthRateLimit",
http_method = "POST",
http_path = "/",
paginator = list()
)
input <- .storagegateway$delete_bandwidth_rate_limit_input(GatewayARN = GatewayARN, BandwidthType = BandwidthType)
output <- .storagegateway$delete_bandwidth_rate_limit_output()
config <- get_config()
svc <- .storagegateway$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.storagegateway$operations$delete_bandwidth_rate_limit <- storagegateway_delete_bandwidth_rate_limit
storagegateway_delete_chap_credentials <- function(TargetARN, InitiatorName) {
op <- new_operation(
name = "DeleteChapCredentials",
http_method = "POST",
http_path = "/",
paginator = list()
)
input <- .storagegateway$delete_chap_credentials_input(TargetARN = TargetARN, InitiatorName = InitiatorName)
output <- .storagegateway$delete_chap_credentials_output()
config <- get_config()
svc <- .storagegateway$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.storagegateway$operations$delete_chap_credentials <- storagegateway_delete_chap_credentials
storagegateway_delete_file_share <- function(FileShareARN, ForceDelete = NULL) {
op <- new_operation(
name = "DeleteFileShare",
http_method = "POST",
http_path = "/",
paginator = list()
)
input <- .storagegateway$delete_file_share_input(FileShareARN = FileShareARN, ForceDelete = ForceDelete)
output <- .storagegateway$delete_file_share_output()
config <- get_config()
svc <- .storagegateway$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.storagegateway$operations$delete_file_share <- storagegateway_delete_file_share
storagegateway_delete_gateway <- function(GatewayARN) {
op <- new_operation(
name = "DeleteGateway",
http_method = "POST",
http_path = "/",
paginator = list()
)
input <- .storagegateway$delete_gateway_input(GatewayARN = GatewayARN)
output <- .storagegateway$delete_gateway_output()
config <- get_config()
svc <- .storagegateway$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.storagegateway$operations$delete_gateway <- storagegateway_delete_gateway
storagegateway_delete_snapshot_schedule <- function(VolumeARN) {
op <- new_operation(
name = "DeleteSnapshotSchedule",
http_method = "POST",
http_path = "/",
paginator = list()
)
input <- .storagegateway$delete_snapshot_schedule_input(VolumeARN = VolumeARN)
output <- .storagegateway$delete_snapshot_schedule_output()
config <- get_config()
svc <- .storagegateway$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.storagegateway$operations$delete_snapshot_schedule <- storagegateway_delete_snapshot_schedule
storagegateway_delete_tape <- function(GatewayARN, TapeARN, BypassGovernanceRetention = NULL) {
op <- new_operation(
name = "DeleteTape",
http_method = "POST",
http_path = "/",
paginator = list()
)
input <- .storagegateway$delete_tape_input(GatewayARN = GatewayARN, TapeARN = TapeARN, BypassGovernanceRetention = BypassGovernanceRetention)
output <- .storagegateway$delete_tape_output()
config <- get_config()
svc <- .storagegateway$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.storagegateway$operations$delete_tape <- storagegateway_delete_tape
storagegateway_delete_tape_archive <- function(TapeARN, BypassGovernanceRetention = NULL) {
op <- new_operation(
name = "DeleteTapeArchive",
http_method = "POST",
http_path = "/",
paginator = list()
)
input <- .storagegateway$delete_tape_archive_input(TapeARN = TapeARN, BypassGovernanceRetention = BypassGovernanceRetention)
output <- .storagegateway$delete_tape_archive_output()
config <- get_config()
svc <- .storagegateway$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.storagegateway$operations$delete_tape_archive <- storagegateway_delete_tape_archive
storagegateway_delete_tape_pool <- function(PoolARN) {
op <- new_operation(
name = "DeleteTapePool",
http_method = "POST",
http_path = "/",
paginator = list()
)
input <- .storagegateway$delete_tape_pool_input(PoolARN = PoolARN)
output <- .storagegateway$delete_tape_pool_output()
config <- get_config()
svc <- .storagegateway$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.storagegateway$operations$delete_tape_pool <- storagegateway_delete_tape_pool
storagegateway_delete_volume <- function(VolumeARN) {
op <- new_operation(
name = "DeleteVolume",
http_method = "POST",
http_path = "/",
paginator = list()
)
input <- .storagegateway$delete_volume_input(VolumeARN = VolumeARN)
output <- .storagegateway$delete_volume_output()
config <- get_config()
svc <- .storagegateway$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.storagegateway$operations$delete_volume <- storagegateway_delete_volume
storagegateway_describe_availability_monitor_test <- function(GatewayARN) {
op <- new_operation(
name = "DescribeAvailabilityMonitorTest",
http_method = "POST",
http_path = "/",
paginator = list()
)
input <- .storagegateway$describe_availability_monitor_test_input(GatewayARN = GatewayARN)
output <- .storagegateway$describe_availability_monitor_test_output()
config <- get_config()
svc <- .storagegateway$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.storagegateway$operations$describe_availability_monitor_test <- storagegateway_describe_availability_monitor_test
storagegateway_describe_bandwidth_rate_limit <- function(GatewayARN) {
op <- new_operation(
name = "DescribeBandwidthRateLimit",
http_method = "POST",
http_path = "/",
paginator = list()
)
input <- .storagegateway$describe_bandwidth_rate_limit_input(GatewayARN = GatewayARN)
output <- .storagegateway$describe_bandwidth_rate_limit_output()
config <- get_config()
svc <- .storagegateway$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.storagegateway$operations$describe_bandwidth_rate_limit <- storagegateway_describe_bandwidth_rate_limit
storagegateway_describe_bandwidth_rate_limit_schedule <- function(GatewayARN) {
op <- new_operation(
name = "DescribeBandwidthRateLimitSchedule",
http_method = "POST",
http_path = "/",
paginator = list()
)
input <- .storagegateway$describe_bandwidth_rate_limit_schedule_input(GatewayARN = GatewayARN)
output <- .storagegateway$describe_bandwidth_rate_limit_schedule_output()
config <- get_config()
svc <- .storagegateway$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.storagegateway$operations$describe_bandwidth_rate_limit_schedule <- storagegateway_describe_bandwidth_rate_limit_schedule
storagegateway_describe_cache <- function(GatewayARN) {
op <- new_operation(
name = "DescribeCache",
http_method = "POST",
http_path = "/",
paginator = list()
)
input <- .storagegateway$describe_cache_input(GatewayARN = GatewayARN)
output <- .storagegateway$describe_cache_output()
config <- get_config()
svc <- .storagegateway$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.storagegateway$operations$describe_cache <- storagegateway_describe_cache
storagegateway_describe_cachedi_scsi_volumes <- function(VolumeARNs) {
op <- new_operation(
name = "DescribeCachediSCSIVolumes",
http_method = "POST",
http_path = "/",
paginator = list()
)
input <- .storagegateway$describe_cachedi_scsi_volumes_input(VolumeARNs = VolumeARNs)
output <- .storagegateway$describe_cachedi_scsi_volumes_output()
config <- get_config()
svc <- .storagegateway$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.storagegateway$operations$describe_cachedi_scsi_volumes <- storagegateway_describe_cachedi_scsi_volumes
storagegateway_describe_chap_credentials <- function(TargetARN) {
op <- new_operation(
name = "DescribeChapCredentials",
http_method = "POST",
http_path = "/",
paginator = list()
)
input <- .storagegateway$describe_chap_credentials_input(TargetARN = TargetARN)
output <- .storagegateway$describe_chap_credentials_output()
config <- get_config()
svc <- .storagegateway$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.storagegateway$operations$describe_chap_credentials <- storagegateway_describe_chap_credentials
storagegateway_describe_gateway_information <- function(GatewayARN) {
op <- new_operation(
name = "DescribeGatewayInformation",
http_method = "POST",
http_path = "/",
paginator = list()
)
input <- .storagegateway$describe_gateway_information_input(GatewayARN = GatewayARN)
output <- .storagegateway$describe_gateway_information_output()
config <- get_config()
svc <- .storagegateway$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.storagegateway$operations$describe_gateway_information <- storagegateway_describe_gateway_information
storagegateway_describe_maintenance_start_time <- function(GatewayARN) {
op <- new_operation(
name = "DescribeMaintenanceStartTime",
http_method = "POST",
http_path = "/",
paginator = list()
)
input <- .storagegateway$describe_maintenance_start_time_input(GatewayARN = GatewayARN)
output <- .storagegateway$describe_maintenance_start_time_output()
config <- get_config()
svc <- .storagegateway$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.storagegateway$operations$describe_maintenance_start_time <- storagegateway_describe_maintenance_start_time
storagegateway_describe_nfs_file_shares <- function(FileShareARNList) {
op <- new_operation(
name = "DescribeNFSFileShares",
http_method = "POST",
http_path = "/",
paginator = list()
)
input <- .storagegateway$describe_nfs_file_shares_input(FileShareARNList = FileShareARNList)
output <- .storagegateway$describe_nfs_file_shares_output()
config <- get_config()
svc <- .storagegateway$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.storagegateway$operations$describe_nfs_file_shares <- storagegateway_describe_nfs_file_shares
storagegateway_describe_smb_file_shares <- function(FileShareARNList) {
op <- new_operation(
name = "DescribeSMBFileShares",
http_method = "POST",
http_path = "/",
paginator = list()
)
input <- .storagegateway$describe_smb_file_shares_input(FileShareARNList = FileShareARNList)
output <- .storagegateway$describe_smb_file_shares_output()
config <- get_config()
svc <- .storagegateway$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.storagegateway$operations$describe_smb_file_shares <- storagegateway_describe_smb_file_shares
storagegateway_describe_smb_settings <- function(GatewayARN) {
op <- new_operation(
name = "DescribeSMBSettings",
http_method = "POST",
http_path = "/",
paginator = list()
)
input <- .storagegateway$describe_smb_settings_input(GatewayARN = GatewayARN)
output <- .storagegateway$describe_smb_settings_output()
config <- get_config()
svc <- .storagegateway$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.storagegateway$operations$describe_smb_settings <- storagegateway_describe_smb_settings
storagegateway_describe_snapshot_schedule <- function(VolumeARN) {
op <- new_operation(
name = "DescribeSnapshotSchedule",
http_method = "POST",
http_path = "/",
paginator = list()
)
input <- .storagegateway$describe_snapshot_schedule_input(VolumeARN = VolumeARN)
output <- .storagegateway$describe_snapshot_schedule_output()
config <- get_config()
svc <- .storagegateway$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.storagegateway$operations$describe_snapshot_schedule <- storagegateway_describe_snapshot_schedule
storagegateway_describe_storedi_scsi_volumes <- function(VolumeARNs) {
op <- new_operation(
name = "DescribeStorediSCSIVolumes",
http_method = "POST",
http_path = "/",
paginator = list()
)
input <- .storagegateway$describe_storedi_scsi_volumes_input(VolumeARNs = VolumeARNs)
output <- .storagegateway$describe_storedi_scsi_volumes_output()
config <- get_config()
svc <- .storagegateway$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.storagegateway$operations$describe_storedi_scsi_volumes <- storagegateway_describe_storedi_scsi_volumes
storagegateway_describe_tape_archives <- function(TapeARNs = NULL, Marker = NULL, Limit = NULL) {
op <- new_operation(
name = "DescribeTapeArchives",
http_method = "POST",
http_path = "/",
paginator = list()
)
input <- .storagegateway$describe_tape_archives_input(TapeARNs = TapeARNs, Marker = Marker, Limit = Limit)
output <- .storagegateway$describe_tape_archives_output()
config <- get_config()
svc <- .storagegateway$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.storagegateway$operations$describe_tape_archives <- storagegateway_describe_tape_archives
storagegateway_describe_tape_recovery_points <- function(GatewayARN, Marker = NULL, Limit = NULL) {
op <- new_operation(
name = "DescribeTapeRecoveryPoints",
http_method = "POST",
http_path = "/",
paginator = list()
)
input <- .storagegateway$describe_tape_recovery_points_input(GatewayARN = GatewayARN, Marker = Marker, Limit = Limit)
output <- .storagegateway$describe_tape_recovery_points_output()
config <- get_config()
svc <- .storagegateway$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.storagegateway$operations$describe_tape_recovery_points <- storagegateway_describe_tape_recovery_points
storagegateway_describe_tapes <- function(GatewayARN, TapeARNs = NULL, Marker = NULL, Limit = NULL) {
op <- new_operation(
name = "DescribeTapes",
http_method = "POST",
http_path = "/",
paginator = list()
)
input <- .storagegateway$describe_tapes_input(GatewayARN = GatewayARN, TapeARNs = TapeARNs, Marker = Marker, Limit = Limit)
output <- .storagegateway$describe_tapes_output()
config <- get_config()
svc <- .storagegateway$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.storagegateway$operations$describe_tapes <- storagegateway_describe_tapes
storagegateway_describe_upload_buffer <- function(GatewayARN) {
op <- new_operation(
name = "DescribeUploadBuffer",
http_method = "POST",
http_path = "/",
paginator = list()
)
input <- .storagegateway$describe_upload_buffer_input(GatewayARN = GatewayARN)
output <- .storagegateway$describe_upload_buffer_output()
config <- get_config()
svc <- .storagegateway$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.storagegateway$operations$describe_upload_buffer <- storagegateway_describe_upload_buffer
storagegateway_describe_vtl_devices <- function(GatewayARN, VTLDeviceARNs = NULL, Marker = NULL, Limit = NULL) {
op <- new_operation(
name = "DescribeVTLDevices",
http_method = "POST",
http_path = "/",
paginator = list()
)
input <- .storagegateway$describe_vtl_devices_input(GatewayARN = GatewayARN, VTLDeviceARNs = VTLDeviceARNs, Marker = Marker, Limit = Limit)
output <- .storagegateway$describe_vtl_devices_output()
config <- get_config()
svc <- .storagegateway$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.storagegateway$operations$describe_vtl_devices <- storagegateway_describe_vtl_devices
storagegateway_describe_working_storage <- function(GatewayARN) {
op <- new_operation(
name = "DescribeWorkingStorage",
http_method = "POST",
http_path = "/",
paginator = list()
)
input <- .storagegateway$describe_working_storage_input(GatewayARN = GatewayARN)
output <- .storagegateway$describe_working_storage_output()
config <- get_config()
svc <- .storagegateway$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.storagegateway$operations$describe_working_storage <- storagegateway_describe_working_storage
storagegateway_detach_volume <- function(VolumeARN, ForceDetach = NULL) {
op <- new_operation(
name = "DetachVolume",
http_method = "POST",
http_path = "/",
paginator = list()
)
input <- .storagegateway$detach_volume_input(VolumeARN = VolumeARN, ForceDetach = ForceDetach)
output <- .storagegateway$detach_volume_output()
config <- get_config()
svc <- .storagegateway$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.storagegateway$operations$detach_volume <- storagegateway_detach_volume
storagegateway_disable_gateway <- function(GatewayARN) {
op <- new_operation(
name = "DisableGateway",
http_method = "POST",
http_path = "/",
paginator = list()
)
input <- .storagegateway$disable_gateway_input(GatewayARN = GatewayARN)
output <- .storagegateway$disable_gateway_output()
config <- get_config()
svc <- .storagegateway$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.storagegateway$operations$disable_gateway <- storagegateway_disable_gateway
storagegateway_join_domain <- function(GatewayARN, DomainName, OrganizationalUnit = NULL, DomainControllers = NULL, TimeoutInSeconds = NULL, UserName, Password) {
op <- new_operation(
name = "JoinDomain",
http_method = "POST",
http_path = "/",
paginator = list()
)
input <- .storagegateway$join_domain_input(GatewayARN = GatewayARN, DomainName = DomainName, OrganizationalUnit = OrganizationalUnit, DomainControllers = DomainControllers, TimeoutInSeconds = TimeoutInSeconds, UserName = UserName, Password = Password)
output <- .storagegateway$join_domain_output()
config <- get_config()
svc <- .storagegateway$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.storagegateway$operations$join_domain <- storagegateway_join_domain
storagegateway_list_automatic_tape_creation_policies <- function(GatewayARN = NULL) {
op <- new_operation(
name = "ListAutomaticTapeCreationPolicies",
http_method = "POST",
http_path = "/",
paginator = list()
)
input <- .storagegateway$list_automatic_tape_creation_policies_input(GatewayARN = GatewayARN)
output <- .storagegateway$list_automatic_tape_creation_policies_output()
config <- get_config()
svc <- .storagegateway$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.storagegateway$operations$list_automatic_tape_creation_policies <- storagegateway_list_automatic_tape_creation_policies
storagegateway_list_file_shares <- function(GatewayARN = NULL, Limit = NULL, Marker = NULL) {
op <- new_operation(
name = "ListFileShares",
http_method = "POST",
http_path = "/",
paginator = list()
)
input <- .storagegateway$list_file_shares_input(GatewayARN = GatewayARN, Limit = Limit, Marker = Marker)
output <- .storagegateway$list_file_shares_output()
config <- get_config()
svc <- .storagegateway$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.storagegateway$operations$list_file_shares <- storagegateway_list_file_shares
storagegateway_list_gateways <- function(Marker = NULL, Limit = NULL) {
op <- new_operation(
name = "ListGateways",
http_method = "POST",
http_path = "/",
paginator = list()
)
input <- .storagegateway$list_gateways_input(Marker = Marker, Limit = Limit)
output <- .storagegateway$list_gateways_output()
config <- get_config()
svc <- .storagegateway$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.storagegateway$operations$list_gateways <- storagegateway_list_gateways
storagegateway_list_local_disks <- function(GatewayARN) {
op <- new_operation(
name = "ListLocalDisks",
http_method = "POST",
http_path = "/",
paginator = list()
)
input <- .storagegateway$list_local_disks_input(GatewayARN = GatewayARN)
output <- .storagegateway$list_local_disks_output()
config <- get_config()
svc <- .storagegateway$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.storagegateway$operations$list_local_disks <- storagegateway_list_local_disks
storagegateway_list_tags_for_resource <- function(ResourceARN, Marker = NULL, Limit = NULL) {
op <- new_operation(
name = "ListTagsForResource",
http_method = "POST",
http_path = "/",
paginator = list()
)
input <- .storagegateway$list_tags_for_resource_input(ResourceARN = ResourceARN, Marker = Marker, Limit = Limit)
output <- .storagegateway$list_tags_for_resource_output()
config <- get_config()
svc <- .storagegateway$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.storagegateway$operations$list_tags_for_resource <- storagegateway_list_tags_for_resource
storagegateway_list_tape_pools <- function(PoolARNs = NULL, Marker = NULL, Limit = NULL) {
op <- new_operation(
name = "ListTapePools",
http_method = "POST",
http_path = "/",
paginator = list()
)
input <- .storagegateway$list_tape_pools_input(PoolARNs = PoolARNs, Marker = Marker, Limit = Limit)
output <- .storagegateway$list_tape_pools_output()
config <- get_config()
svc <- .storagegateway$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.storagegateway$operations$list_tape_pools <- storagegateway_list_tape_pools
storagegateway_list_tapes <- function(TapeARNs = NULL, Marker = NULL, Limit = NULL) {
op <- new_operation(
name = "ListTapes",
http_method = "POST",
http_path = "/",
paginator = list()
)
input <- .storagegateway$list_tapes_input(TapeARNs = TapeARNs, Marker = Marker, Limit = Limit)
output <- .storagegateway$list_tapes_output()
config <- get_config()
svc <- .storagegateway$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.storagegateway$operations$list_tapes <- storagegateway_list_tapes
storagegateway_list_volume_initiators <- function(VolumeARN) {
op <- new_operation(
name = "ListVolumeInitiators",
http_method = "POST",
http_path = "/",
paginator = list()
)
input <- .storagegateway$list_volume_initiators_input(VolumeARN = VolumeARN)
output <- .storagegateway$list_volume_initiators_output()
config <- get_config()
svc <- .storagegateway$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.storagegateway$operations$list_volume_initiators <- storagegateway_list_volume_initiators
storagegateway_list_volume_recovery_points <- function(GatewayARN) {
op <- new_operation(
name = "ListVolumeRecoveryPoints",
http_method = "POST",
http_path = "/",
paginator = list()
)
input <- .storagegateway$list_volume_recovery_points_input(GatewayARN = GatewayARN)
output <- .storagegateway$list_volume_recovery_points_output()
config <- get_config()
svc <- .storagegateway$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.storagegateway$operations$list_volume_recovery_points <- storagegateway_list_volume_recovery_points
storagegateway_list_volumes <- function(GatewayARN = NULL, Marker = NULL, Limit = NULL) {
op <- new_operation(
name = "ListVolumes",
http_method = "POST",
http_path = "/",
paginator = list()
)
input <- .storagegateway$list_volumes_input(GatewayARN = GatewayARN, Marker = Marker, Limit = Limit)
output <- .storagegateway$list_volumes_output()
config <- get_config()
svc <- .storagegateway$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.storagegateway$operations$list_volumes <- storagegateway_list_volumes
storagegateway_notify_when_uploaded <- function(FileShareARN) {
op <- new_operation(
name = "NotifyWhenUploaded",
http_method = "POST",
http_path = "/",
paginator = list()
)
input <- .storagegateway$notify_when_uploaded_input(FileShareARN = FileShareARN)
output <- .storagegateway$notify_when_uploaded_output()
config <- get_config()
svc <- .storagegateway$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.storagegateway$operations$notify_when_uploaded <- storagegateway_notify_when_uploaded
storagegateway_refresh_cache <- function(FileShareARN, FolderList = NULL, Recursive = NULL) {
op <- new_operation(
name = "RefreshCache",
http_method = "POST",
http_path = "/",
paginator = list()
)
input <- .storagegateway$refresh_cache_input(FileShareARN = FileShareARN, FolderList = FolderList, Recursive = Recursive)
output <- .storagegateway$refresh_cache_output()
config <- get_config()
svc <- .storagegateway$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.storagegateway$operations$refresh_cache <- storagegateway_refresh_cache
storagegateway_remove_tags_from_resource <- function(ResourceARN, TagKeys) {
op <- new_operation(
name = "RemoveTagsFromResource",
http_method = "POST",
http_path = "/",
paginator = list()
)
input <- .storagegateway$remove_tags_from_resource_input(ResourceARN = ResourceARN, TagKeys = TagKeys)
output <- .storagegateway$remove_tags_from_resource_output()
config <- get_config()
svc <- .storagegateway$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.storagegateway$operations$remove_tags_from_resource <- storagegateway_remove_tags_from_resource
storagegateway_reset_cache <- function(GatewayARN) {
op <- new_operation(
name = "ResetCache",
http_method = "POST",
http_path = "/",
paginator = list()
)
input <- .storagegateway$reset_cache_input(GatewayARN = GatewayARN)
output <- .storagegateway$reset_cache_output()
config <- get_config()
svc <- .storagegateway$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.storagegateway$operations$reset_cache <- storagegateway_reset_cache
storagegateway_retrieve_tape_archive <- function(TapeARN, GatewayARN) {
op <- new_operation(
name = "RetrieveTapeArchive",
http_method = "POST",
http_path = "/",
paginator = list()
)
input <- .storagegateway$retrieve_tape_archive_input(TapeARN = TapeARN, GatewayARN = GatewayARN)
output <- .storagegateway$retrieve_tape_archive_output()
config <- get_config()
svc <- .storagegateway$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.storagegateway$operations$retrieve_tape_archive <- storagegateway_retrieve_tape_archive
storagegateway_retrieve_tape_recovery_point <- function(TapeARN, GatewayARN) {
op <- new_operation(
name = "RetrieveTapeRecoveryPoint",
http_method = "POST",
http_path = "/",
paginator = list()
)
input <- .storagegateway$retrieve_tape_recovery_point_input(TapeARN = TapeARN, GatewayARN = GatewayARN)
output <- .storagegateway$retrieve_tape_recovery_point_output()
config <- get_config()
svc <- .storagegateway$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.storagegateway$operations$retrieve_tape_recovery_point <- storagegateway_retrieve_tape_recovery_point
storagegateway_set_local_console_password <- function(GatewayARN, LocalConsolePassword) {
op <- new_operation(
name = "SetLocalConsolePassword",
http_method = "POST",
http_path = "/",
paginator = list()
)
input <- .storagegateway$set_local_console_password_input(GatewayARN = GatewayARN, LocalConsolePassword = LocalConsolePassword)
output <- .storagegateway$set_local_console_password_output()
config <- get_config()
svc <- .storagegateway$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.storagegateway$operations$set_local_console_password <- storagegateway_set_local_console_password
storagegateway_set_smb_guest_password <- function(GatewayARN, Password) {
op <- new_operation(
name = "SetSMBGuestPassword",
http_method = "POST",
http_path = "/",
paginator = list()
)
input <- .storagegateway$set_smb_guest_password_input(GatewayARN = GatewayARN, Password = Password)
output <- .storagegateway$set_smb_guest_password_output()
config <- get_config()
svc <- .storagegateway$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.storagegateway$operations$set_smb_guest_password <- storagegateway_set_smb_guest_password
storagegateway_shutdown_gateway <- function(GatewayARN) {
op <- new_operation(
name = "ShutdownGateway",
http_method = "POST",
http_path = "/",
paginator = list()
)
input <- .storagegateway$shutdown_gateway_input(GatewayARN = GatewayARN)
output <- .storagegateway$shutdown_gateway_output()
config <- get_config()
svc <- .storagegateway$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.storagegateway$operations$shutdown_gateway <- storagegateway_shutdown_gateway
storagegateway_start_availability_monitor_test <- function(GatewayARN) {
op <- new_operation(
name = "StartAvailabilityMonitorTest",
http_method = "POST",
http_path = "/",
paginator = list()
)
input <- .storagegateway$start_availability_monitor_test_input(GatewayARN = GatewayARN)
output <- .storagegateway$start_availability_monitor_test_output()
config <- get_config()
svc <- .storagegateway$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.storagegateway$operations$start_availability_monitor_test <- storagegateway_start_availability_monitor_test
storagegateway_start_gateway <- function(GatewayARN) {
op <- new_operation(
name = "StartGateway",
http_method = "POST",
http_path = "/",
paginator = list()
)
input <- .storagegateway$start_gateway_input(GatewayARN = GatewayARN)
output <- .storagegateway$start_gateway_output()
config <- get_config()
svc <- .storagegateway$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.storagegateway$operations$start_gateway <- storagegateway_start_gateway
storagegateway_update_automatic_tape_creation_policy <- function(AutomaticTapeCreationRules, GatewayARN) {
op <- new_operation(
name = "UpdateAutomaticTapeCreationPolicy",
http_method = "POST",
http_path = "/",
paginator = list()
)
input <- .storagegateway$update_automatic_tape_creation_policy_input(AutomaticTapeCreationRules = AutomaticTapeCreationRules, GatewayARN = GatewayARN)
output <- .storagegateway$update_automatic_tape_creation_policy_output()
config <- get_config()
svc <- .storagegateway$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.storagegateway$operations$update_automatic_tape_creation_policy <- storagegateway_update_automatic_tape_creation_policy
storagegateway_update_bandwidth_rate_limit <- function(GatewayARN, AverageUploadRateLimitInBitsPerSec = NULL, AverageDownloadRateLimitInBitsPerSec = NULL) {
op <- new_operation(
name = "UpdateBandwidthRateLimit",
http_method = "POST",
http_path = "/",
paginator = list()
)
input <- .storagegateway$update_bandwidth_rate_limit_input(GatewayARN = GatewayARN, AverageUploadRateLimitInBitsPerSec = AverageUploadRateLimitInBitsPerSec, AverageDownloadRateLimitInBitsPerSec = AverageDownloadRateLimitInBitsPerSec)
output <- .storagegateway$update_bandwidth_rate_limit_output()
config <- get_config()
svc <- .storagegateway$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.storagegateway$operations$update_bandwidth_rate_limit <- storagegateway_update_bandwidth_rate_limit
storagegateway_update_bandwidth_rate_limit_schedule <- function(GatewayARN, BandwidthRateLimitIntervals) {
op <- new_operation(
name = "UpdateBandwidthRateLimitSchedule",
http_method = "POST",
http_path = "/",
paginator = list()
)
input <- .storagegateway$update_bandwidth_rate_limit_schedule_input(GatewayARN = GatewayARN, BandwidthRateLimitIntervals = BandwidthRateLimitIntervals)
output <- .storagegateway$update_bandwidth_rate_limit_schedule_output()
config <- get_config()
svc <- .storagegateway$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.storagegateway$operations$update_bandwidth_rate_limit_schedule <- storagegateway_update_bandwidth_rate_limit_schedule
storagegateway_update_chap_credentials <- function(TargetARN, SecretToAuthenticateInitiator, InitiatorName, SecretToAuthenticateTarget = NULL) {
op <- new_operation(
name = "UpdateChapCredentials",
http_method = "POST",
http_path = "/",
paginator = list()
)
input <- .storagegateway$update_chap_credentials_input(TargetARN = TargetARN, SecretToAuthenticateInitiator = SecretToAuthenticateInitiator, InitiatorName = InitiatorName, SecretToAuthenticateTarget = SecretToAuthenticateTarget)
output <- .storagegateway$update_chap_credentials_output()
config <- get_config()
svc <- .storagegateway$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.storagegateway$operations$update_chap_credentials <- storagegateway_update_chap_credentials
storagegateway_update_gateway_information <- function(GatewayARN, GatewayName = NULL, GatewayTimezone = NULL, CloudWatchLogGroupARN = NULL) {
op <- new_operation(
name = "UpdateGatewayInformation",
http_method = "POST",
http_path = "/",
paginator = list()
)
input <- .storagegateway$update_gateway_information_input(GatewayARN = GatewayARN, GatewayName = GatewayName, GatewayTimezone = GatewayTimezone, CloudWatchLogGroupARN = CloudWatchLogGroupARN)
output <- .storagegateway$update_gateway_information_output()
config <- get_config()
svc <- .storagegateway$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.storagegateway$operations$update_gateway_information <- storagegateway_update_gateway_information
storagegateway_update_gateway_software_now <- function(GatewayARN) {
op <- new_operation(
name = "UpdateGatewaySoftwareNow",
http_method = "POST",
http_path = "/",
paginator = list()
)
input <- .storagegateway$update_gateway_software_now_input(GatewayARN = GatewayARN)
output <- .storagegateway$update_gateway_software_now_output()
config <- get_config()
svc <- .storagegateway$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.storagegateway$operations$update_gateway_software_now <- storagegateway_update_gateway_software_now
storagegateway_update_maintenance_start_time <- function(GatewayARN, HourOfDay, MinuteOfHour, DayOfWeek = NULL, DayOfMonth = NULL) {
op <- new_operation(
name = "UpdateMaintenanceStartTime",
http_method = "POST",
http_path = "/",
paginator = list()
)
input <- .storagegateway$update_maintenance_start_time_input(GatewayARN = GatewayARN, HourOfDay = HourOfDay, MinuteOfHour = MinuteOfHour, DayOfWeek = DayOfWeek, DayOfMonth = DayOfMonth)
output <- .storagegateway$update_maintenance_start_time_output()
config <- get_config()
svc <- .storagegateway$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.storagegateway$operations$update_maintenance_start_time <- storagegateway_update_maintenance_start_time
storagegateway_update_nfs_file_share <- function(FileShareARN, KMSEncrypted = NULL, KMSKey = NULL, NFSFileShareDefaults = NULL, DefaultStorageClass = NULL, ObjectACL = NULL, ClientList = NULL, Squash = NULL, ReadOnly = NULL, GuessMIMETypeEnabled = NULL, RequesterPays = NULL, FileShareName = NULL, CacheAttributes = NULL, NotificationPolicy = NULL) {
op <- new_operation(
name = "UpdateNFSFileShare",
http_method = "POST",
http_path = "/",
paginator = list()
)
input <- .storagegateway$update_nfs_file_share_input(FileShareARN = FileShareARN, KMSEncrypted = KMSEncrypted, KMSKey = KMSKey, NFSFileShareDefaults = NFSFileShareDefaults, DefaultStorageClass = DefaultStorageClass, ObjectACL = ObjectACL, ClientList = ClientList, Squash = Squash, ReadOnly = ReadOnly, GuessMIMETypeEnabled = GuessMIMETypeEnabled, RequesterPays = RequesterPays, FileShareName = FileShareName, CacheAttributes = CacheAttributes, NotificationPolicy = NotificationPolicy)
output <- .storagegateway$update_nfs_file_share_output()
config <- get_config()
svc <- .storagegateway$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.storagegateway$operations$update_nfs_file_share <- storagegateway_update_nfs_file_share
storagegateway_update_smb_file_share <- function(FileShareARN, KMSEncrypted = NULL, KMSKey = NULL, DefaultStorageClass = NULL, ObjectACL = NULL, ReadOnly = NULL, GuessMIMETypeEnabled = NULL, RequesterPays = NULL, SMBACLEnabled = NULL, AccessBasedEnumeration = NULL, AdminUserList = NULL, ValidUserList = NULL, InvalidUserList = NULL, AuditDestinationARN = NULL, CaseSensitivity = NULL, FileShareName = NULL, CacheAttributes = NULL, NotificationPolicy = NULL) {
op <- new_operation(
name = "UpdateSMBFileShare",
http_method = "POST",
http_path = "/",
paginator = list()
)
input <- .storagegateway$update_smb_file_share_input(FileShareARN = FileShareARN, KMSEncrypted = KMSEncrypted, KMSKey = KMSKey, DefaultStorageClass = DefaultStorageClass, ObjectACL = ObjectACL, ReadOnly = ReadOnly, GuessMIMETypeEnabled = GuessMIMETypeEnabled, RequesterPays = RequesterPays, SMBACLEnabled = SMBACLEnabled, AccessBasedEnumeration = AccessBasedEnumeration, AdminUserList = AdminUserList, ValidUserList = ValidUserList, InvalidUserList = InvalidUserList, AuditDestinationARN = AuditDestinationARN, CaseSensitivity = CaseSensitivity, FileShareName = FileShareName, CacheAttributes = CacheAttributes, NotificationPolicy = NotificationPolicy)
output <- .storagegateway$update_smb_file_share_output()
config <- get_config()
svc <- .storagegateway$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.storagegateway$operations$update_smb_file_share <- storagegateway_update_smb_file_share
storagegateway_update_smb_file_share_visibility <- function(GatewayARN, FileSharesVisible) {
op <- new_operation(
name = "UpdateSMBFileShareVisibility",
http_method = "POST",
http_path = "/",
paginator = list()
)
input <- .storagegateway$update_smb_file_share_visibility_input(GatewayARN = GatewayARN, FileSharesVisible = FileSharesVisible)
output <- .storagegateway$update_smb_file_share_visibility_output()
config <- get_config()
svc <- .storagegateway$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.storagegateway$operations$update_smb_file_share_visibility <- storagegateway_update_smb_file_share_visibility
storagegateway_update_smb_security_strategy <- function(GatewayARN, SMBSecurityStrategy) {
op <- new_operation(
name = "UpdateSMBSecurityStrategy",
http_method = "POST",
http_path = "/",
paginator = list()
)
input <- .storagegateway$update_smb_security_strategy_input(GatewayARN = GatewayARN, SMBSecurityStrategy = SMBSecurityStrategy)
output <- .storagegateway$update_smb_security_strategy_output()
config <- get_config()
svc <- .storagegateway$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.storagegateway$operations$update_smb_security_strategy <- storagegateway_update_smb_security_strategy
storagegateway_update_snapshot_schedule <- function(VolumeARN, StartAt, RecurrenceInHours, Description = NULL, Tags = NULL) {
op <- new_operation(
name = "UpdateSnapshotSchedule",
http_method = "POST",
http_path = "/",
paginator = list()
)
input <- .storagegateway$update_snapshot_schedule_input(VolumeARN = VolumeARN, StartAt = StartAt, RecurrenceInHours = RecurrenceInHours, Description = Description, Tags = Tags)
output <- .storagegateway$update_snapshot_schedule_output()
config <- get_config()
svc <- .storagegateway$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.storagegateway$operations$update_snapshot_schedule <- storagegateway_update_snapshot_schedule
storagegateway_update_vtl_device_type <- function(VTLDeviceARN, DeviceType) {
op <- new_operation(
name = "UpdateVTLDeviceType",
http_method = "POST",
http_path = "/",
paginator = list()
)
input <- .storagegateway$update_vtl_device_type_input(VTLDeviceARN = VTLDeviceARN, DeviceType = DeviceType)
output <- .storagegateway$update_vtl_device_type_output()
config <- get_config()
svc <- .storagegateway$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.storagegateway$operations$update_vtl_device_type <- storagegateway_update_vtl_device_type |
Chao1_sharedFun <-
function(x1, x2, conf=0.95) {
f2p <- sum(x1 == 2 & x2 >= 1)
fp2 <- sum(x1 >= 1 & x2 == 2)
est <- Chao1_sharedEstFun(x1, x2)
if (f2p == 0 || fp2 == 0) {
se <- VarEstFun(x1, x2, diffFun=diff_Chao1bc, FunName=Chao1_bcEstFun)
} else {
se <- VarEstFun(x1, x2, diff_Chao1, FunName=Chao1_sharedEstFun)
}
CI <- logCI(x1, x2, est, se, conf)
out <- matrix(c(est, se, CI), nrow = 1)
rownames(out) <- c("Chao1(shared)")
colnames(out) <- c("Estimator", "Est_s.e.",
paste(conf*100, "% Lower"), paste(conf*100, "% Upper"))
return(out)
} |
library(testthat)
library(MOFA2)
test_check("MOFA2") |
context("Summarizing table structure")
test_that("path summaries", {
lyt <- basic_table() %>% split_cols_by("ARM") %>%
split_cols_by("SEX", "Gender", labels_var = "gend_label") %>%
add_colcounts() %>%
split_rows_by("RACE", "Ethnicity", labels_var = "ethn_label", label_pos = "hidden") %>%
summarize_row_groups("RACE", label_fstr = "%s (n)") %>%
split_rows_by("FACTOR2", "Factor2",
split_fun = remove_split_levels("C"),
labels_var = "fac2_label",
label_pos = "hidden") %>%
summarize_row_groups("FACTOR2") %>%
analyze("AGE", "Age Analysis", afun = function(x) list(mean = mean(x),
median = median(x)),
format = "xx.xx") %>%
analyze("AGE", "Age Analysis redux", afun = range, format = "xx.x - xx.x", table_names = "AgeRedux") %>%
analyze("VAR3", "Var3 Counts", afun = list_wrap_x(table), nested = FALSE)
tbl <- build_table(lyt, rawdat)
cpathsum <- col_paths_summary(tbl)
arm1tmp <- c("ARM", "ARM1")
arm2tmp <- c("ARM", "ARM2")
expect_identical(cpathsum,
data.frame(label = c("ARM1", "Male", "Female",
"ARM2", "Male", "Female"),
path = I(list(arm1tmp,
c(arm1tmp, c("SEX", "M")),
c(arm1tmp, c("SEX", "F")),
arm2tmp,
c(arm2tmp, c("SEX", "M")),
c(arm2tmp, c("SEX", "F")))),
stringsAsFactors = FALSE))
cpval <- col_paths(tbl)
expect_identical(cpval, cpathsum$path[-c(1, 4)])
rpathsum <- row_paths_summary(tbl)
expect_identical(complx_lyt_rnames,
rpathsum$label)
expect_identical(row_paths(tbl),
rpathsum$path)
}) |
knitr::opts_chunk$set(
collapse = TRUE,
comment = "
eval = TRUE
)
library(antaresEditObject)
path <- tempdir()
createStudy(path = path, study_name = "my-study")
updateGeneralSettings(nbyears = 10)
createArea("earth")
createCluster(area = "earth", cluster_name = "america", add_prefix = FALSE)
createCluster(area = "earth", cluster_name = "africa", add_prefix = FALSE)
createCluster(area = "earth", cluster_name = "europe", add_prefix = FALSE)
createArea("moon")
createCluster(area = "moon", cluster_name = "tranquility", add_prefix = FALSE)
createCluster(area = "moon", cluster_name = "serenety", add_prefix = FALSE)
getAreas()
readClusterDesc()
readScenarioBuilder()
scenarioBuilder(n_scenario = 3)
scenarioBuilder(n_scenario = 5)
scenarioBuilder(n_scenario = 3, areas = "earth")
scenarioBuilder(n_scenario = 3, areas_rand = "earth")
my_scenario <- scenarioBuilder(n_scenario = 3)
updateScenarioBuilder(ldata = my_scenario, series = "load")
updateScenarioBuilder(ldata = list(l = my_scenario))
my_scenario <- scenarioBuilder(n_scenario = 3)
updateScenarioBuilder(
ldata = my_scenario,
series = c("load", "hydro", "solar")
)
load_scenario <- scenarioBuilder(n_scenario = 3)
hydro_scenario <- scenarioBuilder(n_scenario = 4)
solar_scenario <- scenarioBuilder(n_scenario = 5)
updateScenarioBuilder(ldata = list(
l = load_scenario,
h = hydro_scenario,
s = solar_scenario
))
readScenarioBuilder()
my_scenario <- scenarioBuilder(n_scenario = 3)
updateScenarioBuilder(
ldata = my_scenario,
series = "thermal"
)
readScenarioBuilder()$t
updateScenarioBuilder(
ldata = my_scenario,
series = "thermal",
clusters_areas = data.table::data.table(
area = c("earth", "earth"),
cluster = c("africa", "europe")
)
)
readScenarioBuilder()$t
clearScenarioBuilder()
unlink(file.path(path, "my-study"), recursive = TRUE) |
data("SATcoaching", package = "clubSandwich")
suppressPackageStartupMessages(library(robumeta))
full_model <- robu(d ~ 0 + study_type + hrs + test,
studynum = study,
var.eff.size = V,
small = FALSE,
data = SATcoaching)
res <- Wald_test_cwb(full_model = full_model,
constraints = constrain_equal(1:3),
R = 99)
test_that("plot() returns a ggplot2 object when run on a Wald_test_wildemeta",{
x <- plot(res)
y <-
plot(res, fill = "purple", alpha = 0.5) +
ggplot2::theme_light()
expect_s3_class(x, "ggplot")
expect_s3_class(y, "ggplot")
})
test_that("plot() throws an error if ggplot2 is not installed.", {
mockery::stub(plot.Wald_test_wildmeta, 'ggplot2_is_missing', TRUE)
expect_error(plot(res))
}) |
vector.alpha <-
function(x, set, type="cor", CI=.95, CItype="xci", minval=-1.0) {
comb.data <- data.frame(cbind(x, set))
comp.data <- subset(comb.data, complete.cases(comb.data))
N <- nrow(comp.data)
if(type=="cor") {
std.data <- data.frame(scale2(comp.data))
Zcross.prod <- std.data$x * std.data[2:length(std.data)]
tZcross.prod <- data.frame(t(Zcross.prod))
Zcov.mat <- cov(tZcross.prod)
Zcor.mat <- cor(tZcross.prod)
Zavg.r <- mean(Zcor.mat[upper.tri(Zcor.mat)])
Zalpha <- alpha.cov(Zcov.mat)
Zalpha <- ifelse(Zalpha >= minval, Zalpha, minval)
if(CItype=="xci") {
ZCIs <- alpha.xci(Zalpha, k=N, n=ncol(set), CI=CI)
}
if(CItype=="aci") {
ZCIs <- alpha.aci(Zalpha, k=N, n=ncol(set), CI=CI)
}
out <- rbind(N, Zavg.r, Zalpha, ZCIs[1], ZCIs[2])
}
if(type=="cov") {
cnt.data <- data.frame(scale2(comp.data, scale=F))
Ccross.prod <- cnt.data$x * cnt.data[2:length(cnt.data)]
tCcross.prod <- data.frame(t(Ccross.prod))
Ccov.mat <- cov(tCcross.prod)
Ccor.mat <- cor(tCcross.prod)
Cavg.r <- mean(Ccor.mat[upper.tri(Ccor.mat)])
Calpha <- alpha.cov(Ccov.mat)
Calpha <- ifelse(Calpha >= minval, Calpha, minval)
if(CItype=="xci") {
CCIs <- alpha.xci(Calpha, k=N, n=ncol(set), CI=CI)
}
if(CItype=="aci") {
CCIs <- alpha.aci(Calpha, k=N, n=ncol(set), CI=CI)
}
out <- rbind(N, Cavg.r, Calpha, CCIs[1], CCIs[2])
}
if(type=="XY") {
cnt.data <- data.frame(scale2(comp.data, scale=F))
Ccross.prod <- cnt.data$x * cnt.data[2:length(cnt.data)]
XYelems <- Ccross.prod / (var(comp.data$x)*(N-1)/N)
tXYelems <- data.frame(t(XYelems))
XYcov.mat <- cov(tXYelems)
XYcor.mat <- cor(tXYelems)
XYavg.r <- mean(XYcor.mat[upper.tri(XYcor.mat)])
XYalpha <- alpha.cov(XYcov.mat)
XYalpha <- ifelse(XYalpha >= minval, XYalpha, minval)
if(CItype=="xci") {
XYCIs <- alpha.xci(XYalpha, k=N, n=ncol(set), CI=CI)
}
if(CItype=="aci") {
XYCIs <- alpha.aci(XYalpha, k=N, n=ncol(set), CI=CI)
}
out <- rbind(N, XYavg.r, XYalpha, XYCIs[1], XYCIs[2])
}
if(type=="YX") {
cnt.data <- data.frame(scale2(comp.data, scale=F))
y.vars <- diag(var(cnt.data[2:length(cnt.data)]))*(N-1)/N
y.mat <- matrix(rep(y.vars, N), nrow=N, ncol=length(y.vars), byrow=T)
YXelems <- cnt.data$x * cnt.data[2:length(cnt.data)] / y.mat
tYXelems <- data.frame(t(YXelems))
YXcov.mat <- cov(tYXelems)
YXcor.mat <- cor(tYXelems)
YXavg.r <- mean(YXcor.mat[upper.tri(YXcor.mat)])
YXalpha <- alpha.cov(YXcov.mat)
YXalpha <- ifelse(YXalpha >= minval, YXalpha, minval)
if(CItype=="xci") {
YXCIs <- alpha.xci(YXalpha, k=N, n=ncol(set), CI=CI)
}
if(CItype=="aci") {
YXCIs <- alpha.aci(YXalpha, k=N, n=ncol(set), CI=CI)
}
out <- rbind(N, YXavg.r, YXalpha, YXCIs[1], YXCIs[2])
}
colnames(out) <- c("Results")
rownames(out) <- c("N", "Average r", "Alpha", "Lower Limit", "Upper Limit")
return(out)
} |
duncan.test <-
function (y, trt, DFerror, MSerror, alpha=0.05, group=TRUE,main = NULL,console=FALSE)
{
name.y <- paste(deparse(substitute(y)))
name.t <- paste(deparse(substitute(trt)))
if(is.null(main))main<-paste(name.y,"~", name.t)
clase<-c("aov","lm")
if("aov"%in%class(y) | "lm"%in%class(y)){
if(is.null(main))main<-y$call
A<-y$model
DFerror<-df.residual(y)
MSerror<-deviance(y)/DFerror
y<-A[,1]
ipch<-pmatch(trt,names(A))
nipch<- length(ipch)
for(i in 1:nipch){
if (is.na(ipch[i]))
return(if(console)cat("Name: ", trt, "\n", names(A)[-1], "\n"))
}
name.t<- names(A)[ipch][1]
trt <- A[, ipch]
if (nipch > 1){
trt <- A[, ipch[1]]
for(i in 2:nipch){
name.t <- paste(name.t,names(A)[ipch][i],sep=":")
trt <- paste(trt,A[,ipch[i]],sep=":")
}}
name.y <- names(A)[1]
}
junto <- subset(data.frame(y, trt), is.na(y) == FALSE)
Mean<-mean(junto[,1])
CV<-sqrt(MSerror)*100/Mean
medians<-tapply.stat(junto[,1],junto[,2],stat="median")
for(i in c(1,5,2:4)) {
x <- tapply.stat(junto[,1],junto[,2],function(x)quantile(x)[i])
medians<-cbind(medians,x[,2])
}
medians<-medians[,3:7]
names(medians)<-c("Min","Max","Q25","Q50","Q75")
means <- tapply.stat(junto[,1],junto[,2],stat="mean")
sds <- tapply.stat(junto[,1],junto[,2],stat="sd")
nn <- tapply.stat(junto[,1],junto[,2],stat="length")
means<-data.frame(means,std=sds[,2],r=nn[,2],medians)
names(means)[1:2]<-c(name.t,name.y)
ntr<-nrow(means)
Tprob<-NULL
k<-0
for(i in 2:ntr){
k<-k+1
x <- suppressWarnings(warning(qtukey((1-alpha)^(i-1), i, DFerror)))
if(x=="NaN")break
else Tprob[k]<-x
}
if(k<(ntr-1)){
for(i in k:(ntr-1)){
f <- Vectorize(function(x)ptukey(x,i+1,DFerror)-(1-alpha)^i)
Tprob[i]<-uniroot(f, c(0,100))$root
}
}
Tprob<-as.numeric(Tprob)
nr <- unique(nn[,2])
if(console){
cat("\nStudy:", main)
cat("\n\nDuncan's new multiple range test\nfor",name.y,"\n")
cat("\nMean Square Error: ",MSerror,"\n\n")
cat(paste(name.t,",",sep="")," means\n\n")
print(data.frame(row.names = means[,1], means[,2:6]))
}
if(length(nr) == 1 ) sdtdif <- sqrt(MSerror/nr)
else {
nr1 <- 1/mean(1/nn[,2])
sdtdif <- sqrt(MSerror/nr1)
}
DUNCAN <- Tprob * sdtdif
names(DUNCAN)<-2:ntr
duncan<-data.frame(Table=Tprob,CriticalRange=DUNCAN)
if ( group & length(nr) == 1 & console){
cat("\nAlpha:",alpha,"; DF Error:",DFerror,"\n")
cat("\nCritical Range\n")
print(DUNCAN)
}
if ( group & length(nr) != 1 & console) cat("\nGroups according to probability of means differences and alpha level(",alpha,")\n")
if ( length(nr) != 1) duncan<-NULL
Omeans<-order(means[,2],decreasing = TRUE)
Ordindex<-order(Omeans)
comb <-utils::combn(ntr,2)
nn<-ncol(comb)
dif<-rep(0,nn)
DIF<-dif
LCL<-dif
UCL<-dif
pvalue<-dif
odif<-dif
sig<-NULL
for (k in 1:nn) {
i<-comb[1,k]
j<-comb[2,k]
dif[k]<-means[i,2]-means[j,2]
DIF[k]<-abs(dif[k])
nx<-abs(i-j)+1
odif[k] <- abs(Ordindex[i]- Ordindex[j])+1
pvalue[k]<- round(1-ptukey(DIF[k]/sdtdif,odif[k],DFerror)^(1/(odif[k]-1)),4)
LCL[k] <- dif[k] - DUNCAN[odif[k]-1]
UCL[k] <- dif[k] + DUNCAN[odif[k]-1]
sig[k]<-" "
if (pvalue[k] <= 0.001) sig[k]<-"***"
else if (pvalue[k] <= 0.01) sig[k]<-"**"
else if (pvalue[k] <= 0.05) sig[k]<-"*"
else if (pvalue[k] <= 0.1) sig[k]<-"."
}
if(!group){
tr.i <- means[comb[1, ],1]
tr.j <- means[comb[2, ],1]
comparison<-data.frame("difference" = dif, pvalue=pvalue,"signif."=sig,LCL,UCL)
rownames(comparison)<-paste(tr.i,tr.j,sep=" - ")
if(console){cat("\nComparison between treatments means\n\n")
print(comparison)}
groups=NULL
}
if (group) {
comparison=NULL
Q<-matrix(1,ncol=ntr,nrow=ntr)
p<-pvalue
k<-0
for(i in 1:(ntr-1)){
for(j in (i+1):ntr){
k<-k+1
Q[i,j]<-p[k]
Q[j,i]<-p[k]
}
}
groups <- orderPvalue(means[, 1], means[, 2],alpha, Q,console)
names(groups)[1]<-name.y
if(console) {
cat("\nMeans with the same letter are not significantly different.\n\n")
print(groups)
}
}
parameters<-data.frame(test="Duncan",name.t=name.t,ntr = ntr,alpha=alpha)
statistics<-data.frame(MSerror=MSerror,Df=DFerror,Mean=Mean,CV=CV)
rownames(parameters)<-" "
rownames(statistics)<-" "
rownames(means)<-means[,1]
means<-means[,-1]
output<-list(statistics=statistics,parameters=parameters, duncan=duncan,
means=means,comparison=comparison,groups=groups)
class(output)<-"group"
invisible(output)
} |
plot_ly <- function(data=data.frame(), ..., type=NULL, name=NULL,
color=NULL, colors=NULL, alpha=NULL,
stroke=NULL, strokes=NULL, alpha_stroke=1,
size=NULL, sizes=c(10, 100),
span=NULL, spans=c(1, 20),
symbol=NULL, symbols=NULL,
linetype=NULL, linetypes=NULL,
split=NULL, frame=NULL,
width=NULL, height=NULL, source="A") {
UseMethod("plot_ly")
}
plot_ly.tbl_df <- function(data=data.frame(), ..., type=NULL, name=NULL,
color=NULL, colors=NULL, alpha=NULL,
stroke=NULL, strokes=NULL, alpha_stroke=1,
size=NULL, sizes=c(10, 100),
span=NULL, spans=c(1, 20),
symbol=NULL, symbols=NULL,
linetype=NULL, linetypes=NULL,
split=NULL, frame=NULL,
width=NULL, height=NULL, source="A") {
data %>%
drop_class("tbl_df") %>%
plotly::plot_ly(...,
type=type, name=name,
color=color, colors=colors, alpha=alpha,
stroke=stroke, strokes=strokes, alpha_stroke=alpha_stroke,
size=size, sizes=sizes,
span=span, spans=spans,
symbol=symbol, symbols=symbols,
linetype=linetype, linetypes=linetypes,
split=split, frame=frame,
width=width, height=height, source=source
)
}
plot_ly.Seurat <- function(data = data.frame(), ..., type = NULL, name= NULL,
color= NULL, colors = NULL, alpha = NULL,
stroke= NULL, strokes = NULL, alpha_stroke = 1,
size= NULL, sizes = c(10, 100),
span= NULL, spans = c(1, 20),
symbol= NULL, symbols = NULL,
linetype= NULL, linetypes = NULL,
split= NULL, frame= NULL,
width = NULL, height = NULL, source = "A") {
data %>%
as_tibble() %>%
plot_ly( ...,type = type, name = name,
color = color, colors = colors, alpha = alpha,
stroke =stroke, strokes = strokes, alpha_stroke = alpha_stroke,
size = size, sizes = sizes,
span = span, spans = spans,
symbol = symbol, symbols = symbols,
linetype = linetype, linetypes = linetypes,
split = split, frame = frame,
width = width, height = height, source =source)
} |
testthat::context(desc="Test nextBox() function")
testthat::test_that(desc="Test, if nextBox() throws errors/warnings on wrong arguments",
{
testthat::expect_error(object=nextBox())
})
testthat::test_that(desc="Test, if nextBox() returns results of same length as input",
{
testthat::expect_equivalent(object=length(nextBox(quote=rpois(1,100),status="X")),expected=1)
testthat::expect_equivalent(object=length(nextBox(quote=rpois(1,100),status="O")),expected=1)
length <- 1+rpois(1,10)
input <- rpois(length,30)
testthat::expect_equivalent(object=length(nextBox(quote=input,status="X")),expected=length)
testthat::expect_equivalent(object=length(nextBox(quote=input,status="O")),expected=length)
})
testthat::test_that(desc="Test, if nextBox() produces appropriate return values for boxsize=1 and status=X and log=F",
{
testthat::expect_equal(object=nextBox(quote=46.00,status="X",boxsize=1L,log=F),expected=47.00)
testthat::expect_equal(object=nextBox(quote=46.01,status="X",boxsize=1L,log=F),expected=47.00)
testthat::expect_equal(object=nextBox(quote=46.99,status="X",boxsize=1L,log=F),expected=47.00)
testthat::expect_equal(object=nextBox(quote=47.00,status="X",boxsize=1L,log=F),expected=48.00)
})
testthat::test_that(desc="Test, if nextBox() produces appropriate return values for boxsize=0.5 and status=X",
{
testthat::expect_equal(object=nextBox(quote=46.00,status="X",boxsize=0.5,log=F),expected=46.50)
testthat::expect_equal(object=nextBox(quote=46.01,status="X",boxsize=0.5,log=F),expected=46.50)
testthat::expect_equal(object=nextBox(quote=46.99,status="X",boxsize=0.5,log=F),expected=47.00)
testthat::expect_equal(object=nextBox(quote=47.00,status="X",boxsize=0.5,log=F),expected=47.50)
})
testthat::test_that(desc="Test, if nextBox() produces appropriate return values for boxsize=1 and status=O and log=F",
{
testthat::expect_equal(object=nextBox(quote=46.00,status="O",boxsize=1L,log=F),expected=45.00)
testthat::expect_equal(object=nextBox(quote=46.01,status="O",boxsize=1L,log=F),expected=46.00)
testthat::expect_equal(object=nextBox(quote=46.99,status="O",boxsize=1L,log=F),expected=46.00)
testthat::expect_equal(object=nextBox(quote=47.00,status="O",boxsize=1L,log=F),expected=46.00)
})
testthat::test_that(desc="Test, if nextBox() produces appropriate return values for boxsize=0.5 and status=O",
{
testthat::expect_equal(object=nextBox(quote=46.00,status="O",boxsize=0.5,log=F),expected=45.50)
testthat::expect_equal(object=nextBox(quote=46.01,status="O",boxsize=0.5,log=F),expected=46.00)
testthat::expect_equal(object=nextBox(quote=46.99,status="O",boxsize=0.5,log=F),expected=46.50)
testthat::expect_equal(object=nextBox(quote=47.00,status="O",boxsize=0.5,log=F),expected=46.50)
})
calcQuoteFromBoxnumberForLog <- function(boxnumber, eps, boxsize) {
exp((boxnumber+eps)*boxsize)
}
testthat::test_that(desc="Test, if nextBox() produces appropriate return values for boxsize=1% and status=X and log=T",
{
boxsize=getLogBoxsize(1)
boxnumber=385
testthat::expect_equal(object=nextBox(quote=calcQuoteFromBoxnumberForLog(boxnumber,0.00, boxsize),
status="X",boxsize=boxsize,log=T),
expected=calcQuoteFromBoxnumberForLog(boxnumber,1.0, boxsize))
testthat::expect_equal(object=nextBox(quote=calcQuoteFromBoxnumberForLog(boxnumber,0.01, boxsize),
status="X",boxsize=boxsize,log=T),
expected=calcQuoteFromBoxnumberForLog(boxnumber,1.0, boxsize))
testthat::expect_equal(object=nextBox(quote=calcQuoteFromBoxnumberForLog(boxnumber,0.99, boxsize),
status="X",boxsize=boxsize,log=T),
expected=calcQuoteFromBoxnumberForLog(boxnumber,1.0, boxsize))
testthat::expect_equal(object=nextBox(quote=calcQuoteFromBoxnumberForLog(boxnumber,1.00, boxsize),
status="X",boxsize=boxsize,log=T),
expected=calcQuoteFromBoxnumberForLog(boxnumber,2.0, boxsize))
})
testthat::test_that(desc="Test, if nextBox() produces appropriate return values for boxsize=1% and status=O and log=T",
{
boxsize=getLogBoxsize(1)
boxnumber=385
testthat::expect_equal(object=nextBox(quote=calcQuoteFromBoxnumberForLog(boxnumber,0.00, boxsize),
status="O",boxsize=boxsize,log=T),
expected=calcQuoteFromBoxnumberForLog(boxnumber,-1.0, boxsize))
testthat::expect_equal(object=nextBox(quote=calcQuoteFromBoxnumberForLog(boxnumber,0.01, boxsize),
status="O",boxsize=boxsize,log=T),
expected=calcQuoteFromBoxnumberForLog(boxnumber,0.0, boxsize))
testthat::expect_equal(object=nextBox(quote=calcQuoteFromBoxnumberForLog(boxnumber,0.99, boxsize),
status="O",boxsize=boxsize,log=T),
expected=calcQuoteFromBoxnumberForLog(boxnumber,0.0, boxsize))
testthat::expect_equal(object=nextBox(quote=calcQuoteFromBoxnumberForLog(boxnumber,1.00, boxsize),
status="O",boxsize=boxsize,log=T),
expected=calcQuoteFromBoxnumberForLog(boxnumber,0.0, boxsize))
}) |
is.keyvalue <- function(x){
inherits(x, "keyvalue")
}
is.keyvalue11 <- function(x){
is.keyvalue(x) && attr(x, "keyvalue11")
} |
"parties_v"
"parties_df"
"polls" |
leave1out.rma.peto <- function(x, digits, transf, targs, progbar=FALSE, ...) {
mstyle <- .get.mstyle("crayon" %in% .packages())
.chkclass(class(x), must="rma.peto")
na.act <- getOption("na.action")
if (!is.element(na.act, c("na.omit", "na.exclude", "na.fail", "na.pass")))
stop(mstyle$stop("Unknown 'na.action' specified under options()."))
if (!x$int.only)
stop(mstyle$stop("Method only applicable for models without moderators."))
if (x$k == 1)
stop(mstyle$stop("Stopped because k = 1."))
if (missing(digits)) {
digits <- .get.digits(xdigits=x$digits, dmiss=TRUE)
} else {
digits <- .get.digits(digits=digits, xdigits=x$digits, dmiss=FALSE)
}
if (missing(transf))
transf <- FALSE
if (missing(targs))
targs <- NULL
ddd <- list(...)
.chkdots(ddd, c("time"))
if (.isTRUE(ddd$time))
time.start <- proc.time()
beta <- rep(NA_real_, x$k.f)
se <- rep(NA_real_, x$k.f)
zval <- rep(NA_real_, x$k.f)
pval <- rep(NA_real_, x$k.f)
ci.lb <- rep(NA_real_, x$k.f)
ci.ub <- rep(NA_real_, x$k.f)
QE <- rep(NA_real_, x$k.f)
QEp <- rep(NA_real_, x$k.f)
I2 <- rep(NA_real_, x$k.f)
H2 <- rep(NA_real_, x$k.f)
if (progbar)
pbar <- pbapply::startpb(min=0, max=x$k.f)
for (i in seq_len(x$k.f)) {
if (progbar)
pbapply::setpb(pbar, i)
if (!x$not.na[i])
next
res <- try(suppressWarnings(rma.peto(ai=x$ai.f, bi=x$bi.f, ci=x$ci.f, di=x$di.f, add=x$add, to=x$to, drop00=x$drop00, level=x$level, subset=-i)), silent=TRUE)
if (inherits(res, "try-error"))
next
beta[i] <- res$beta
se[i] <- res$se
zval[i] <- res$zval
pval[i] <- res$pval
ci.lb[i] <- res$ci.lb
ci.ub[i] <- res$ci.ub
QE[i] <- res$QE
QEp[i] <- res$QEp
I2[i] <- res$I2
H2[i] <- res$H2
}
if (progbar)
pbapply::closepb(pbar)
if (.isTRUE(transf))
transf <- exp
if (is.function(transf)) {
if (is.null(targs)) {
beta <- sapply(beta, transf)
se <- rep(NA,x$k.f)
ci.lb <- sapply(ci.lb, transf)
ci.ub <- sapply(ci.ub, transf)
} else {
beta <- sapply(beta, transf, targs)
se <- rep(NA,x$k.f)
ci.lb <- sapply(ci.lb, transf, targs)
ci.ub <- sapply(ci.ub, transf, targs)
}
transf <- TRUE
}
tmp <- .psort(ci.lb, ci.ub)
ci.lb <- tmp[,1]
ci.ub <- tmp[,2]
if (na.act == "na.omit") {
out <- list(estimate=beta[x$not.na], se=se[x$not.na], zval=zval[x$not.na], pval=pval[x$not.na], ci.lb=ci.lb[x$not.na], ci.ub=ci.ub[x$not.na], Q=QE[x$not.na], Qp=QEp[x$not.na], I2=I2[x$not.na], H2=H2[x$not.na])
out$slab <- x$slab[x$not.na]
}
if (na.act == "na.exclude" || na.act == "na.pass") {
out <- list(estimate=beta, se=se, zval=zval, pval=pval, ci.lb=ci.lb, ci.ub=ci.ub, Q=QE, Qp=QEp, I2=I2, H2=H2)
out$slab <- x$slab
}
if (na.act == "na.fail" && any(!x$not.na))
stop(mstyle$stop("Missing values in results."))
out$digits <- digits
out$transf <- transf
if (.isTRUE(ddd$time)) {
time.end <- proc.time()
.print.time(unname(time.end - time.start)[3])
}
class(out) <- "list.rma"
return(out)
} |
summary.addreg <- function(object, correlation = FALSE, ...) {
df.r <- object$df.residual
coef.p <- object$coefficients
p <- length(object$coefficients)
dispersion <- 1
if(!object$boundary) {
if(object$family$family == "poisson") {
x <- object$x
y <- object$y
s <- if (!is.null(object$standard)) object$standard
else rep(1, NROW(y))
eta <- object$linear.predictors
info <- t(x) %*% apply(x,2,"*",s/eta)
covmat.unscaled <- try(solve(info), silent = TRUE)
} else if(object$family$family == "binomial") {
x <- object$x
s <- object$prior.weights
y <- s * object$y
eta <- object$linear.predictors
info1 <- t(x) %*% apply(x,2,"*",s/eta)
info2 <- t(x) %*% apply(x,2,"*",s/(1-eta))
info <- info1 + info2
covmat.unscaled <- try(solve(info), silent = TRUE)
} else if(substr(object$family$family,1,7) == "negbin1") {
x <- object$x
y <- object$y
s <- if (!is.null(object$standard)) object$standard
else rep(1, NROW(y))
mu <- object$fitted.values
phi <- object$scale - 1
r <- mu / phi
dgd <- tgd <- rep(0, length(y))
dgd[y > 0] <- mapply(function(r, y) sum(1/(r + seq_len(y) - 1)),
r = r[y > 0], y = y[y > 0])
tgd[y > 0] <- mapply(function(r, y) -sum(1/(r + seq_len(y) - 1)^2),
r = r[y > 0], y = y[y > 0])
info1 <- -t(apply(x, 2, "*", s^2 * tgd)) %*% x / phi^2
info2 <- t(x) %*% (s/phi^2 * (r * tgd + dgd + phi/(phi+1) - log(phi+1)))
info3 <- -sum(r/phi * (2/phi * (dgd + phi/(phi+1) - log(phi+1)) +
r/phi * tgd + phi/(phi+1)^2) - y*(2*phi+1)/(phi*(phi+1))^2)
info <- rbind(cbind(info1, info2), c(info2, info3))
covmat.full <- try(solve(info), silent = TRUE)
if(!inherits(covmat.full,"try-error") | all(is.nan(covmat.full))) {
covmat.unscaled <- covmat.full[(1:p),(1:p), drop = FALSE]
var.phi <- covmat.full[(p+1),(p+1)]
} else {
covmat.unscaled <- matrix(NaN, p, p)
var.phi <- NaN
}
}
if(!inherits(covmat.unscaled,"try-error") | all(is.nan(covmat.unscaled))) {
covmat.scaled <- dispersion * covmat.unscaled
var.cf <- diag(covmat.scaled)
s.err <- sqrt(var.cf)
tvalue <- coef.p/s.err
pvalue <- 2 * pnorm(-abs(tvalue))
coef.table <- cbind(coef.p, s.err, tvalue, pvalue)
} else {
warning("summary.addreg: information matrix is singular, could not calculate
covariance matrix", call. = FALSE)
covmat.unscaled <- matrix(NaN, p, p)
covmat.scaled <- matrix(NaN, p, p)
coef.table <- cbind(coef.p, NaN, NaN, NaN)
}
}
else {
warning("MLE on boundary of parameter space, cannot use asymptotic covariance matrix",
call. = FALSE)
covmat.unscaled <- matrix(NaN, p, p)
covmat.scaled <- matrix(NaN, p, p)
coef.table <- cbind(coef.p, NaN, NaN, NaN)
if(substr(object$family$family,1,7) == "negbin1") {
phi <- object$scale - 1
var.phi <- NaN
}
}
dimnames(covmat.unscaled) <- dimnames(covmat.scaled) <- list(names(coef.p), names(coef.p))
dimnames(coef.table) <- list(names(coef.p),
c("Estimate","Std. Error","z value","Pr(>|z|)"))
aliased <- rep(FALSE, p)
names(aliased) <- names(coef.p)
keep <- match(c("call", "family", "deviance", "aic", "aic.c", "df.residual",
"null.deviance", "df.null", "iter", "na.action", "method"), names(object), 0L)
ans <- c(object[keep], list(deviance.resid = residuals(object,type="deviance"),
coefficients = coef.table, aliased = FALSE,
dispersion = dispersion, df = c(p, df.r, p),
cov.unscaled = covmat.unscaled, cov.scaled = covmat.scaled))
if(correlation && !any(is.nan(covmat.unscaled))) {
dd <- sqrt(diag(covmat.unscaled))
ans$correlation <- covmat.unscaled/outer(dd, dd)
}
if(substr(object$family$family,1,7) == "negbin1") {
ans$phi <- phi
ans$var.phi <- var.phi
}
if(inherits(object,"addreg.smooth")) ans$knots <- object$knots
class(ans) <- c("summary.addreg", "summary.glm")
ans
} |
Gneglog=function(x,y,alpha) exp(-1/x-1/y+(x^(alpha)+y^(alpha))^(-1/alpha))
|
NMixMCMC <- function(y0, y1, censor, x_w, scale, prior,
init, init2, RJMCMC,
nMCMC = c(burn = 10, keep = 10, thin = 1, info = 10),
PED, keep.chains = TRUE, onlyInit = FALSE, dens.zero = 1e-300, parallel = FALSE, cltype)
{
thispackage <- "mixAK"
EMin <- -5
dd <- NMixMCMCdata(y0 = y0, y1 = y1, censor = censor)
rm(list=c("y0", "y1", "censor"))
if (missing(x_w)){
dd$x_w <- rep(0, dd$n)
dd$fx_w <- factor(dd$x_w)
dd$nx_w <- 1
dd$lx_w <- levels(dd$fx_w)
}else{
if (length(x_w) != dd$n) stop("argument x_w should be a vector of length ", dd$n, " (it has a length ", length(x_w),").")
if (any(is.na(x_w))) stop("NA's in a vector x_w are not allowed.")
if (is.factor(x_w)) dd$fx_w <- x_w else dd$fx_w <- factor(x_w)
dd$x_w <- as.numeric(dd$fx_w) - 1
dd$lx_w <- levels(dd$fx_w)
dd$nx_w <- length(dd$lx_w)
rm(list = "x_w")
}
tmpinity <- dd$y0
if (dd$are.Interval) tmpinity[dd$censor == 3] <- (dd$y0[dd$censor == 3] + dd$y1[dd$censor == 3])/2
if (missing(prior)) stop("prior must be given")
if (!is.list(prior)) stop("prior must be a list")
if (!length(prior)) stop("prior has a zero length")
if (missing(init)) init <- list()
if (!is.list(init)) stop("init must be a list")
inprior <- names(prior)
ipriorK <- match("priorK", inprior, nomatch=NA)
ipriormuQ <- match("priormuQ", inprior, nomatch=NA)
iKmax <- match("Kmax", inprior, nomatch=NA)
ilambda <- match("lambda", inprior, nomatch=NA)
idelta <- match("delta", inprior, nomatch=NA)
ixi <- match("xi", inprior, nomatch=NA)
ice <- match("ce", inprior, nomatch=NA)
iD <- match("D", inprior, nomatch=NA)
izeta <- match("zeta", inprior, nomatch=NA)
ig <- match("g", inprior, nomatch=NA)
ih <- match("h", inprior, nomatch=NA)
ininit <- names(init)
iy <- match("y", ininit, nomatch=NA)
iK <- match("K", ininit, nomatch=NA)
iw <- match("w", ininit, nomatch=NA)
imu <- match("mu", ininit, nomatch=NA)
iSigma <- match("Sigma", ininit, nomatch=NA)
iLi <- match("Li", ininit, nomatch=NA)
igammaInv <- match("gammaInv", ininit, nomatch=NA)
ir <- match("r", ininit, nomatch=NA)
if (is.na(ipriorK)) prior$priorK <- "fixed"
if (length(prior$priorK) != 1) stop("prior$priorK must be of length 1")
CpriorK <- pmatch(prior$priorK, table=c("fixed", "uniform", "tpoisson"), nomatch=0) - 1
if (CpriorK == -1) stop("prior$priorK must be one of fixed/uniform/tpoisson")
if (prior$priorK != "fixed" & dd$nx_w > 1) stop("covariates on mixture weights not allowed if K is not fixed.")
if (missing(PED)){
if (prior$priorK == "fixed") PED <- TRUE
else PED <- FALSE
}
if (is.na(ipriormuQ)) prior$priormuQ <- "independentC"
if (length(prior$priormuQ) != 1) stop("prior$priormuQ must be of length 1")
CpriormuQ <- pmatch(prior$priormuQ, table=c("naturalC", "independentC"), nomatch=0) - 1
if (CpriormuQ == -1) stop("prior$priormuQ must be one of naturalC/independentC")
if (is.na(iKmax)) stop("prior$Kmax must be given")
if (length(prior$Kmax) != 1) stop("prior$Kmax must be of length 1")
if (is.na(prior$Kmax)) stop("NA in prior$Kmax")
if (prior$Kmax <= 0) stop("prior$Kmax must be positive")
CKmax <- as.numeric(prior$Kmax)
if (CpriorK == 2){
if (is.na(ilambda)) stop("prior$lambda must be given when prior$priorK = tpoisson")
if (length(prior$lambda) != 1) stop("prior$lambda must be of length 1")
if (is.na(prior$lambda)) stop("NA in prior$lambda")
if (prior$lambda <= 0) stop("prior$lambda must be positive")
}else{
prior$lambda <- 0
}
Clambda <- as.numeric(prior$lambda)
names(Clambda) <- "lambda"
if (is.na(idelta)) prior$delta <- 1
if (length(prior$delta) != 1) stop("prior$delta must be of length 1")
if (is.na(prior$delta)) stop("NA in prior$delta")
if (prior$delta <= 0) stop("prior$delta must be positive")
Cdelta <- as.numeric(prior$delta)
names(Cdelta) <- "delta"
if (is.na(iy)){
init$y <- NMixMCMCinity(y0=dd$y0, y1=dd$y1, censor=dd$censor, sd.init=sd(tmpinity),
are.Censored=dd$are.Censored, are.Right=dd$are.Right, are.Exact=dd$are.Exact, are.Left=dd$are.Left, are.Interval=dd$are.Interval,
p=dd$p, n=dd$n, random=FALSE)
}else{
init$y <- NMixMCMCinity(y0=dd$y0, y1=dd$y1, censor=dd$censor, sd.init=sd(tmpinity),
are.Censored=dd$are.Censored, are.Right=dd$are.Right, are.Exact=dd$are.Exact, are.Left=dd$are.Left, are.Interval=dd$are.Interval,
p=dd$p, n=dd$n, inity=init$y)
}
if (missing(scale)){
SHIFT <- apply(init$y, 2, mean)
SCALE <- apply(init$y, 2, sd)
scale <- list(shift=SHIFT, scale=SCALE)
rm(list=c("SHIFT", "SCALE"))
}
if (!is.list(scale)) stop("scale must be a list")
if (length(scale) != 2) stop("scale must have 2 components")
inscale <- names(scale)
iscale.shift <- match("shift", inscale, nomatch=NA)
iscale.scale <- match("scale", inscale, nomatch=NA)
if (is.na(iscale.shift)) stop("scale$shift is missing")
if (length(scale$shift) == 1) scale$shift <- rep(scale$shift, dd$p)
if (length(scale$shift) != dd$p) stop(paste("scale$shift must be a vector of length ", dd$p, sep=""))
if (is.na(iscale.scale)) stop("scale$scale is missing")
if (length(scale$scale) == 1) scale$scale <- rep(scale$scale, dd$p)
if (length(scale$scale) != dd$p) stop(paste("scale$scale must be a vector of length ", dd$p, sep=""))
if (any(scale$scale <= 0)) stop("all elements of scale$scale must be positive")
z0 <- (dd$y0 - matrix(rep(scale$shift, dd$n), ncol=dd$p, byrow=TRUE))/matrix(rep(scale$scale, dd$n), ncol=dd$p, byrow=TRUE)
z1 <- (dd$y1 - matrix(rep(scale$shift, dd$n), ncol=dd$p, byrow=TRUE))/matrix(rep(scale$scale, dd$n), ncol=dd$p, byrow=TRUE)
tmpinitz <- (tmpinity - matrix(rep(scale$shift, dd$n), ncol=dd$p, byrow=TRUE))/matrix(rep(scale$scale, dd$n), ncol=dd$p, byrow=TRUE)
if (dd$p == 1){
initz <- (init$y - scale$shift)/scale$scale
zBar <- mean(initz)
zMin <- min(initz)
zMax <- max(initz)
}else{
initz <- (init$y - matrix(rep(scale$shift, dd$n), ncol=dd$p, byrow=TRUE))/matrix(rep(scale$scale, dd$n), ncol=dd$p, byrow=TRUE)
zBar <- apply(initz, 2, mean)
zMin <- apply(initz, 2, min)
zMax <- apply(initz, 2, max)
}
zBar[abs(zBar) < 1e-14] <- 0
zVar <- var(initz)
zVar[abs(zVar - 1) < 1e-14] <- 1
zR <- zMax - zMin
zMid <- 0.5*(zMin + zMax)
if (is.na(ixi)) prior$xi <- matrix(rep(zMid, CKmax), nrow=CKmax, ncol=dd$p, byrow=TRUE)
if (any(is.na(prior$xi))) stop("NA in prior$xi")
if (dd$p == 1){
if (length(prior$xi) == 1) prior$xi <- rep(prior$xi, CKmax)
if (length(prior$xi) != CKmax) stop(paste("prior$xi must be of length ", CKmax, sep=""))
prior$xi <- as.numeric(prior$xi)
names(prior$xi) <- paste("xi", 1:CKmax, sep="")
Cxi <- prior$xi
}else{
if (length(prior$xi) == dd$p) prior$xi <- matrix(rep(as.numeric(prior$xi), each=CKmax), nrow=CKmax, ncol=dd$p)
if (CKmax == 1) prior$xi <- matrix(as.numeric(prior$xi), nrow=1)
if (!is.matrix(prior$xi)) stop("prior$xi must be a matrix")
if (ncol(prior$xi) != dd$p) stop(paste("prior$xi must have ", dd$p, " columns", sep=""))
if (nrow(prior$xi) != CKmax) stop(paste("prior$xi must have ", CKmax, " rows", sep=""))
rownames(prior$xi) <- paste("j", 1:CKmax, sep="")
colnames(prior$xi) <- paste("m", 1:dd$p, sep="")
Cxi <- as.numeric(t(prior$xi))
names(Cxi) <- paste("xi", rep(1:CKmax, each=dd$p), ".", rep(1:dd$p, CKmax), sep="")
}
if (any(is.na(Cxi))) stop("NA in prior$xi")
if (CpriormuQ == 0){
if (is.na(ice)) prior$ce <- rep(1, CKmax)
if (length(prior$ce) == 1) prior$ce <- rep(prior$ce, CKmax)
if (length(prior$ce) != CKmax) stop(paste("prior$ce must be of length ", CKmax, sep=""))
if (any(is.na(prior$ce))) stop("NA in prior$ce")
if (any(prior$ce <= 0)) stop("prior$ce must be positive")
prior$ce <- as.numeric(prior$ce)
}else{
prior$ce <- rep(0, CKmax)
}
Cce <- prior$ce
names(Cce) <- names(prior$ce) <- paste("c", 1:CKmax, sep="")
if (CpriormuQ == 1){
if (is.na(iD)){
if (dd$p == 1) prior$D <- rep(zR^2, CKmax)
else prior$D <- t(matrix(rep(diag(zR^2), CKmax), nrow=dd$p, ncol=CKmax*dd$p))
}
if (any(is.na(prior$D))) stop("NA in prior$D")
if (dd$p == 1){
if (length(prior$D) == 1) prior$D <- rep(prior$D, CKmax)
if (length(prior$D) != CKmax) stop(paste("prior$D must be of length ", CKmax, sep=""))
prior$D <- as.numeric(prior$D)
names(prior$D) <- paste("D", 1:CKmax, sep="")
if (any(prior$D <= 0)) stop("prior$D must be positive")
CDinv <- 1/prior$D
names(CDinv) <- paste("Dinv", 1:CKmax, sep="")
}else{
if (!is.matrix(prior$D)) stop("prior$D must be a matrix")
if (ncol(prior$D) != dd$p) stop(paste("prior$D must have ", dd$p, " columns", sep=""))
if (nrow(prior$D) == dd$p){
if (any(prior$D[lower.tri(prior$D)] != t(prior$D)[lower.tri(prior$D)])) stop("prior$D must be a symmetric matrix")
err <- try(Dinv <- chol(prior$D), silent=TRUE)
if (class(err) == "try-error") stop("Cholesky decomposition of prior$D failed")
Dinv <- chol2inv(Dinv)
CDinv <- rep(Dinv[lower.tri(Dinv, diag=TRUE)], CKmax)
prior$D <- matrix(rep(as.numeric(t(prior$D)), CKmax), nrow=dd$p*CKmax, ncol=dd$p, byrow=TRUE)
}else{
if (nrow(prior$D) != CKmax*dd$p) stop(paste("prior$D must have ", CKmax, " times ", dd$p, " rows", sep=""))
CDinv <- numeric(0)
for (j in 1:CKmax){
Dinv <- prior$D[((j-1)*dd$p+1):(j*dd$p),]
if (any(Dinv[lower.tri(Dinv)] != t(Dinv)[lower.tri(Dinv)])) stop(paste(j, "-th block of prior$D is not symmetric", sep=""))
err <- try(Dinv <- chol(Dinv), silent=TRUE)
if (class(err) == "try-error") stop(paste("Cholesky decomposition of the ", j, "-th block of prior$D failed", sep=""))
Dinv <- chol2inv(Dinv)
CDinv <- c(CDinv, Dinv[lower.tri(Dinv, diag=TRUE)])
}
}
colnames(prior$D) <- paste("m", 1:dd$p, sep="")
rownames(prior$D) <- paste("j", rep(1:CKmax, each=dd$p), ".", rep(1:dd$p, CKmax), sep="")
names(CDinv) <- paste("Dinv", rep(1:CKmax, each=dd$LTp), rep(dd$naamLTp, CKmax), sep="")
}
}else{
if (dd$p == 1){
prior$D <- rep(1, CKmax)
names(prior$D) <- paste("D", 1:CKmax, sep="")
CDinv <- 1/prior$D
names(CDinv) <- paste("Dinv", 1:CKmax, sep="")
}else{
prior$D <- matrix(rep(as.numeric(diag(dd$p)), CKmax), nrow=dd$p*CKmax, ncol=dd$p, byrow=TRUE)
colnames(prior$D) <- paste("m", 1:dd$p, sep="")
rownames(prior$D) <- paste("j", rep(1:CKmax, each=dd$p), ".", rep(1:dd$p, CKmax), sep="")
Dinv <- diag(dd$p)
CDinv <- rep(Dinv[lower.tri(Dinv, diag=TRUE)], CKmax)
names(CDinv) <- paste("Dinv", rep(1:CKmax, each=dd$LTp), rep(dd$naamLTp, CKmax), sep="")
}
}
if (is.na(izeta)) prior$zeta <- dd$p + 1
if (length(prior$zeta) != 1) stop("prior$zeta must be of length 1")
if (is.na(prior$zeta)) stop("NA in prior$zeta")
if (prior$zeta <= dd$p - 1) stop(paste("prior$zeta must be higher than ", dd$p - 1, sep=""))
Czeta <- as.numeric(prior$zeta)
names(Czeta) <- "zeta"
if (is.na(ig)) prior$g <- rep(0.2, dd$p)
if (length(prior$g) == 1) prior$g <- rep(prior$g, dd$p)
if (length(prior$g) != dd$p) stop(paste("prior$g must be of length ", dd$p, sep=""))
if (any(is.na(prior$g))) stop("NA in prior$g")
if (any(prior$g <= 0)) stop("prior$g must be positive")
Cg <- as.numeric(prior$g)
names(Cg) <- paste("g", 1:dd$p, sep="")
if (is.na(ih)) prior$h <- 10/(zR^2)
if (length(prior$h) == 1) prior$h <- rep(prior$h, dd$p)
if (length(prior$h) != dd$p) stop(paste("prior$h must be of length ", dd$p, sep=""))
if (any(is.na(prior$h))) stop("NA in prior$h")
if (any(prior$h <= 0)) stop("prior$h must be positive")
Ch <- as.numeric(prior$h)
names(Ch) <- paste("h", 1:dd$p, sep="")
Cinteger <- c(CpriorK, CpriormuQ, CKmax)
names(Cinteger) <- c("priorK", "priormuQ", "Kmax")
Cdouble <- c(Clambda, Cdelta, Cxi, Cce, CDinv, Czeta, Cg, Ch)
if (is.na(iK)){
if (prior$priorK == "fixed") init$K <- CKmax
else init$K <- 1
}
if (prior$priorK == "fixed") init$K <- CKmax
if (length(init$K) != 1) stop("init$K must be of length 1")
if (is.na(init$K)) stop("NA in init$K")
if (init$K <= 0 | init$K > CKmax) stop("init$K out of the range")
if (is.na(iw)){
init$w <- rep(rep(1, init$K)/init$K, dd$nx_w)
}
init$w <- as.numeric(init$w)
if (length(init$w) == CKmax * dd$nx_w & CKmax > init$K) init$w <- init$w[1:(init$K * dd$nx_w)]
if (dd$nx_w > 1) names(init$w) <- paste("w", rep(1:init$K, dd$nx_w), ".", rep(1:dd$nx_w, each = init$K), sep="") else names(init$w) <- paste("w", 1:init$K, sep="")
if (any(is.na(init$w))) stop("NA in init$w")
if (length(init$w) != init$K * dd$nx_w) stop(paste("init$w must be of length ", init$K * dd$nx_w, sep=""))
if (any(init$w < 0)) stop("init$w may not be negative")
for (ff in 1:dd$nx_w) init$w[((ff - 1) * init$K + 1):(ff * init$K)] <- init$w[((ff - 1) * init$K + 1):(ff * init$K)] / sum(init$w[((ff - 1) * init$K + 1):(ff * init$K)])
if (is.na(imu)){
if (dd$p == 1){
dist <- zR/(init$K + 1)
init$mu <- seq(zMin+dist, zMax-dist, length=init$K)
}else{
dist <- zR/(init$K + 1)
init$mu <- matrix(NA, nrow=init$K, ncol=dd$p)
for (j in 1:dd$p) init$mu[,j] <- seq(zMin[j]+dist[j], zMax[j]-dist[j], length=init$K)
}
}
if (any(is.na(init$mu))) stop("NA in init$mu")
if (dd$p == 1){
init$mu <- as.numeric(init$mu)
if (length(init$mu) == CKmax & CKmax > init$K) init$mu <- init$mu[1:init$K]
if (length(init$mu) != init$K) stop(paste("init$mu must be of length ", init$K, sep=""))
names(init$mu) <- paste("mu", 1:init$K, sep="")
}else{
if (!is.matrix(init$mu)) stop("init$mu must be a matrix")
if (ncol(init$mu) != dd$p) stop(paste("init$mu must have ", dd$p, " columns", sep=""))
if (nrow(init$mu) != init$K) stop(paste("init$mu must have ", init$K, " rows", sep=""))
rownames(init$mu) <- paste("j", 1:init$K, sep="")
colnames(init$mu) <- paste("m", 1:dd$p, sep="")
}
if (is.na(iSigma)){
if (is.na(iLi)){
if (dd$p == 1){
init$Sigma <- rep(zVar, init$K)
names(init$Sigma) <- paste("Sigma", 1:init$K, sep="")
init$Li <- sqrt(1 / init$Sigma)
names(init$Li) <- paste("Li", 1:init$K, sep="")
}else{
init$Sigma <- matrix(rep(t(zVar), init$K), ncol=dd$p, byrow=TRUE)
Sigmainv <- chol(zVar)
Sigmainv <- chol2inv(Sigmainv)
Litmp <- t(chol(Sigmainv))
init$Li <- rep(Litmp[lower.tri(Litmp, diag=TRUE)], init$K)
rownames(init$Sigma) <- paste("j", rep(1:init$K, each=dd$p), ".", rep(1:dd$p, init$K), sep="")
colnames(init$Sigma) <- paste("m", 1:dd$p, sep="")
names(init$Li) <- paste("Li", rep(1:init$K, each=dd$LTp), rep(dd$naamLTp, init$K), sep="")
}
}else{
if (any(is.na(init$Li))) stop("NA in init$Li")
if (dd$p == 1){
if (length(init$Li) == 1) init$Li <- rep(init$Li, init$K)
if (length(init$Li) == CKmax & CKmax > init$K) init$Li <- init$Li[1:init$K]
if (length(init$Sigma) != init$K) stop(paste("init$Sigma must be of length ", init$K, sep=""))
init$Li <- as.numeric(init$Li)
names(init$Li) <- paste("Li", 1:init$K, sep="")
if (any(init$Li <= 0)) stop("init$Li must be positive")
init$Sigma <- (1 / init$Li)^2
names(init$Sigma) <- paste("Sigma", 1:init$K, sep="")
}else{
if (length(init$Li) == dd$LTp){
tmpSigma <- matrix(0, nrow=dd$p, ncol=dd$p)
tmpSigma[lower.tri(tmpSigma, diag=TRUE)] <- init$Li
tmpSigma <- tmpSigma %*% t(tmpSigma)
err <- try(tmpSigma <- chol(tmpSigma), silent=TRUE)
if (class(err) == "try-error") stop("init$Li does not lead to a positive definite matrix")
tmpSigma <- chol2inv(tmpSigma)
init$Sigma <- matrix(rep(t(tmpSigma), init$K), ncol=dd$p, byrow=TRUE)
init$Li <- rep(init$Li, init$K)
}else{
if (length(init$Li) == CKmax*dd$LTp & CKmax > init$K) init$Li <- init$Li[1:(init$K*dd$LTp)]
if (length(init$Li) != init$K*dd$LTp) stop(paste("init$Li must be of length ", init$K*dd$LTp, sep=""))
init$Sigma <- matrix(NA, ncol=dd$p, nrow=dd$p*init$K)
for (j in 1:init$K){
tmpSigma <- matrix(0, nrow=dd$p, ncol=dd$p)
tmpSigma[lower.tri(tmpSigma, diag=TRUE)] <- init$Li[((j-1)*dd$LTp+1):(j*dd$LTp)]
tmpSigma <- tmpSigma %*% t(tmpSigma)
err <- try(tmpSigma <- chol(tmpSigma), silent=TRUE)
if (class(err) == "try-error") stop(paste("the ", j,"-th block of init$Li does not lead to a positive definite matrix", sep=""))
tmpSigma <- chol2inv(tmpSigma)
init$Sigma[((j-1)*dd$p):(j*dd$p),] <- tmpSigma
}
}
rownames(init$Sigma) <- paste("j", rep(1:init$K, each=dd$p), ".", rep(1:dd$p, init$K), sep="")
colnames(init$Sigma) <- paste("m", 1:dd$p, sep="")
names(init$Li) <- paste("Li", rep(1:init$K, each=dd$LTp), rep(dd$naamLTp, init$K), sep="")
}
}
}else{
if (any(is.na(init$Sigma))) stop("NA in init$Sigma")
if (dd$p == 1){
if (length(init$Sigma) == 1) init$Sigma <- rep(init$Sigma, init$K)
if (length(init$Sigma) == CKmax & CKmax > init$K) init$Sigma <- init$Sigma[1:init$K]
if (length(init$Sigma) != init$K) stop(paste("init$Sigma must be of length ", init$K, sep=""))
init$Sigma <- as.numeric(init$Sigma)
names(init$Sigma) <- paste("Sigma", 1:init$K, sep="")
if (any(init$Sigma <= 0)) stop("init$Sigma must be positive")
init$Li <- sqrt(1 / init$Sigma)
names(init$Li) <- paste("Li", 1:init$K, sep="")
}else{
if (!is.matrix(init$Sigma)) stop("init$Sigma must be a matrix")
if (ncol(init$Sigma) != dd$p) stop(paste("init$Sigma must have ", dd$p, " columns", sep=""))
if (nrow(init$Sigma) == dd$p){
if (any(init$Sigma[lower.tri(init$Sigma)] != t(init$Sigma)[lower.tri(init$Sigma)])) stop("init$Sigma must be a symmetric matrix")
err <- try(Sigmainv <- chol(init$Sigma), silent=TRUE)
if (class(err) == "try-error") stop("Cholesky decomposition of init$Sigma failed")
Sigmainv <- chol2inv(Sigmainv)
Litmp <- t(chol(Sigmainv))
init$Li <- rep(Litmp[lower.tri(Litmp, diag=TRUE)], init$K)
}else{
if (nrow(init$Sigma) == CKmax*dd$p & CKmax > init$K) init$Sigma <- init$Sigma[1:(init$K*dd$p),]
if (nrow(init$Sigma) != init$K*dd$p) stop(paste("init$Sigma must have ", init$K, " times ", dd$p, " rows", sep=""))
init$Li <- numeric(0)
for (j in 1:init$K){
Sigmainv <- init$Sigma[((j-1)*dd$p+1):(j*dd$p),]
if (any(Sigmainv[lower.tri(Sigmainv)] != t(Sigmainv)[lower.tri(Sigmainv)])) stop(paste(j, "-th block of init$Sigma is not symmetric", sep=""))
err <- try(Sigmainv <- chol(Sigmainv), silent=TRUE)
if (class(err) == "try-error") stop(paste("Cholesky decomposition of the ", j, "-th block of init$Sigma failed", sep=""))
Sigmainv <- chol2inv(Sigmainv)
Litmp <- t(chol(Sigmainv))
init$Li <- c(init$Li, Litmp[lower.tri(Litmp, diag=TRUE)])
}
}
rownames(init$Sigma) <- paste("j", rep(1:init$K, each=dd$p), ".", rep(1:dd$p, init$K), sep="")
colnames(init$Sigma) <- paste("m", 1:dd$p, sep="")
names(init$Li) <- paste("Li", rep(1:init$K, each=dd$LTp), rep(dd$naamLTp, init$K), sep="")
}
}
if (dd$p == 1){
init$Q <- 1 / init$Sigma
names(init$Q) <- paste("Q", 1:init$K, sep="")
}else{
init$Q <- numeric(0)
for (j in 1:init$K){
tmpLi <- diag(dd$p)
tmpLi[lower.tri(tmpLi, diag=TRUE)] <- init$Li[((j-1)*dd$LTp + 1):(j*dd$LTp)]
tmpQ <- tmpLi %*% t(tmpLi)
init$Q <- c(init$Q, tmpQ[lower.tri(tmpQ, diag=TRUE)])
}
names(init$Q) <- paste("Q", rep(1:init$K, each=dd$LTp), rep(dd$naamLTp, init$K), sep="")
}
if (is.na(igammaInv)){
if (dd$p == 1) init$gammaInv <- Czeta * zVar
else init$gammaInv <- Czeta * diag(zVar)
}
init$gammaInv <- as.numeric(init$gammaInv)
if (length(init$gammaInv) == 1) init$gammaInv <- rep(init$gammaInv, dd$p)
if (length(init$gammaInv) != dd$p) stop(paste("init$gammaInv must be of length ", dd$p, sep=""))
if (any(is.na(init$gammaInv))) stop("NA in init$gammaInv")
names(init$gammaInv) <- paste("gammaInv", 1:dd$p, sep="")
if (is.na(ir)) init$r <- NMixMCMCinitr(z=initz, K=init$K, w=init$w[1:init$K], mu=init$mu, Sigma=init$Sigma, p=dd$p, n=dd$n)
else init$r <- NMixMCMCinitr(z=initz, K=init$K, w=init$w[1:init$K], mu=init$mu, Sigma=init$Sigma, p=dd$p, n=dd$n, initr=init$r)
rm(list="initz")
if (PED){
if (missing(init2)) init2 <- list()
if (!is.list(init2)) stop("init2 must be a list")
ininit2 <- names(init2)
iy2 <- match("y", ininit2, nomatch=NA)
iK2 <- match("K", ininit2, nomatch=NA)
iw2 <- match("w", ininit2, nomatch=NA)
imu2 <- match("mu", ininit2, nomatch=NA)
iSigma2 <- match("Sigma", ininit2, nomatch=NA)
iLi2 <- match("Li", ininit2, nomatch=NA)
igammaInv2 <- match("gammaInv", ininit2, nomatch=NA)
ir2 <- match("r", ininit2, nomatch=NA)
if (is.na(iy2)){
init2$y <- NMixMCMCinity(y0=dd$y0, y1=dd$y1, censor=dd$censor, sd.init=sd(tmpinity),
are.Censored=dd$are.Censored, are.Right=dd$are.Right, are.Exact=dd$are.Exact, are.Left=dd$are.Left, are.Interval=dd$are.Interval,
p=dd$p, n=dd$n, random=TRUE)
}else{
init2$y <- NMixMCMCinity(y0=dd$y0, y1=dd$y1, censor=dd$censor, sd.init=sd(tmpinity),
are.Censored=dd$are.Censored, are.Right=dd$are.Right, are.Exact=dd$are.Exact, are.Left=dd$are.Left, are.Interval=dd$are.Interval,
p=dd$p, n=dd$n, inity=init2$y)
}
initz2 <- (init2$y - matrix(rep(scale$shift, dd$n), ncol=dd$p, byrow=TRUE))/matrix(rep(scale$scale, dd$n), ncol=dd$p, byrow=TRUE)
if (dd$p == 1){
initz2 <- (init2$y - scale$shift)/scale$scale
zBar2 <- mean(initz2)
zMin2 <- min(initz2)
zMax2 <- max(initz2)
}else{
initz2 <- (init2$y - matrix(rep(scale$shift, dd$n), ncol=dd$p, byrow=TRUE))/matrix(rep(scale$scale, dd$n), ncol=dd$p, byrow=TRUE)
zBar2 <- apply(initz2, 2, mean)
zMin2 <- apply(initz2, 2, min)
zMax2 <- apply(initz2, 2, max)
}
zBar2[abs(zBar2) < 1e-14] <- 0
zVar2 <- var(initz2)
zVar2[abs(zVar2 - 1) < 1e-14] <- 1
zR2 <- zMax2 - zMin2
zMid2 <- 0.5*(zMin2 + zMax2)
if (is.na(iK2)){
if (prior$priorK == "fixed") init2$K <- CKmax
else init2$K <- min(c(2, CKmax))
}
if (length(init2$K) != 1) stop("init2$K must be of length 1")
if (is.na(init2$K)) stop("NA in init2$K")
if (init2$K <= 0 | init2$K > CKmax) stop("init2$K out of the range")
if (is.na(iw2)){
init2$w <- rDirichlet(1, rep(Cdelta, init2$K))
if (dd$nx_w > 1) for (ff in 2:dd$nx_w) init2$w <- c(init2$w, rDirichlet(1, rep(Cdelta, init2$K)))
}
init2$w <- as.numeric(init2$w)
if (length(init2$w) == CKmax * dd$nx_w & CKmax > init2$K) init2$w <- init2$w[1:(init2$K * dd$nx_w)]
if (dd$nx_w > 1) names(init2$w) <- paste("w", rep(1:init2$K, dd$nx_w), ".", rep(1:dd$nx_w, each = init2$K), sep="") else names(init2$w) <- paste("w", 1:init2$K, sep="")
if (any(is.na(init2$w))) stop("NA in init2$w")
if (length(init2$w) != init2$K * dd$nx_w) stop(paste("init2$w must be of length ", init2$K * dd$nx_w, sep=""))
if (any(init2$w < 0)) stop("init2$w may not be negative")
for (ff in 1:dd$nx_w) init2$w[((ff - 1) * init2$K + 1):(ff * init2$K)] <- init2$w[((ff - 1) * init2$K + 1):(ff * init2$K)] / sum(init2$w[((ff - 1) * init2$K + 1):(ff * init2$K)])
if (is.na(imu2)){
tmpsd <- apply(tmpinitz, 2, sd)/init2$K
if (dd$p == 1){
dist <- (zMax2 - zMin2)/(init2$K + 1)
tmpxi <- seq(zMin2+dist, zMax2-dist, length=init2$K)
init2$mu <- rnorm(init2$K, mean=tmpxi, sd=tmpsd)
init2$mu <- init2$mu[order(init2$mu)]
}else{
dist <- (zMax2 - zMin2)/(init2$K + 1)
init2$mu <- matrix(NA, nrow=init2$K, ncol=dd$p)
for (j in 1:dd$p){
tmpxi <- seq(zMin2[j]+dist[j], zMax2[j]-dist[j], length=init2$K)
init2$mu[,j] <- rnorm(init2$K, mean=tmpxi, sd=tmpsd[j])
init2$mu[,j] <- init2$mu[,j][order(init2$mu[,j])]
}
}
}
if (any(is.na(init2$mu))) stop("NA in init2$mu")
if (dd$p == 1){
init2$mu <- as.numeric(init2$mu)
if (length(init2$mu) == CKmax & CKmax > init2$K) init2$mu <- init2$mu[1:init2$K]
if (length(init2$mu) != init2$K) stop(paste("init2$mu must be of length ", init2$K, sep=""))
names(init2$mu) <- paste("mu", 1:init2$K, sep="")
}else{
if (!is.matrix(init2$mu)) stop("init2$mu must be a matrix")
if (ncol(init2$mu) != dd$p) stop(paste("init2$mu must have ", dd$p, " columns", sep=""))
if (nrow(init2$mu) != init2$K) stop(paste("init2$mu must have ", init2$K, " rows", sep=""))
rownames(init2$mu) <- paste("j", 1:init2$K, sep="")
colnames(init2$mu) <- paste("m", 1:dd$p, sep="")
}
if (is.na(iSigma2)){
if (is.na(iLi2)){
ctmp <- runif(init2$K, 0.1, 1.1)
if (dd$p == 1){
init2$Sigma <- ctmp*zVar2
names(init2$Sigma) <- paste("Sigma", 1:init2$K, sep="")
init2$Li <- sqrt(1 / init2$Sigma)
names(init2$Li) <- paste("Li", 1:init2$K, sep="")
}else{
init2$Sigma <- ctmp[1]*zVar2
Sigmainv <- chol(init2$Sigma)
Sigmainv <- chol2inv(Sigmainv)
Litmp <- t(chol(Sigmainv))
init2$Li <- Litmp[lower.tri(Litmp, diag=TRUE)]
if (init2$K > 1){
for (k in 2:init2$K){
Sigmatmp <- ctmp[k]*zVar2
init2$Sigma <- rbind(init2$Sigma, Sigmatmp)
Sigmainv <- chol(Sigmatmp)
Sigmainv <- chol2inv(Sigmainv)
Litmp <- t(chol(Sigmainv))
init2$Li <- c(init2$Li, Litmp[lower.tri(Litmp, diag=TRUE)])
}
}
rownames(init2$Sigma) <- paste("j", rep(1:init2$K, each=dd$p), ".", rep(1:dd$p, init2$K), sep="")
colnames(init2$Sigma) <- paste("m", 1:dd$p, sep="")
names(init2$Li) <- paste("Li", rep(1:init2$K, each=dd$LTp), rep(dd$naamLTp, init2$K), sep="")
}
}else{
if (any(is.na(init2$Li))) stop("NA in init2$Li")
if (dd$p == 1){
if (length(init2$Li) == 1) init2$Li <- rep(init2$Li, init2$K)
if (length(init2$Li) == CKmax & CKmax > init2$K) init2$Li <- init2$Li[1:init2$K]
if (length(init2$Sigma) != init2$K) stop(paste("init2$Sigma must be of length ", init2$K, sep=""))
init2$Li <- as.numeric(init2$Li)
names(init2$Li) <- paste("Li", 1:init2$K, sep="")
if (any(init2$Li <= 0)) stop("init2$Li must be positive")
init2$Sigma <- (1 / init2$Li)^2
names(init2$Sigma) <- paste("Sigma", 1:init2$K, sep="")
}else{
if (length(init2$Li) == dd$LTp){
tmpSigma <- matrix(0, nrow=dd$p, ncol=dd$p)
tmpSigma[lower.tri(tmpSigma, diag=TRUE)] <- init2$Li
tmpSigma <- tmpSigma %*% t(tmpSigma)
err <- try(tmpSigma <- chol(tmpSigma), silent=TRUE)
if (class(err) == "try-error") stop("init2$Li does not lead to a positive definite matrix")
tmpSigma <- chol2inv(tmpSigma)
init2$Sigma <- matrix(rep(t(tmpSigma), init2$K), ncol=dd$p, byrow=TRUE)
init2$Li <- rep(init2$Li, init2$K)
}else{
if (length(init2$Li) == CKmax*dd$LTp & CKmax > init2$K) init2$Li <- init2$Li[1:(init2$K*dd$LTp)]
if (length(init2$Li) != init2$K*dd$LTp) stop(paste("init2$Li must be of length ", init2$K*dd$LTp, sep=""))
init2$Sigma <- matrix(NA, ncol=dd$p, nrow=dd$p*init2$K)
for (j in 1:init2$K){
tmpSigma <- matrix(0, nrow=dd$p, ncol=dd$p)
tmpSigma[lower.tri(tmpSigma, diag=TRUE)] <- init2$Li[((j-1)*dd$LTp+1):(j*dd$LTp)]
tmpSigma <- tmpSigma %*% t(tmpSigma)
err <- try(tmpSigma <- chol(tmpSigma), silent=TRUE)
if (class(err) == "try-error") stop(paste("the ", j,"-th block of init2$Li does not lead to a positive definite matrix", sep=""))
tmpSigma <- chol2inv(tmpSigma)
init2$Sigma[((j-1)*dd$p):(j*dd$p),] <- tmpSigma
}
}
rownames(init2$Sigma) <- paste("j", rep(1:init2$K, each=dd$p), ".", rep(1:dd$p, init2$K), sep="")
colnames(init2$Sigma) <- paste("m", 1:dd$p, sep="")
names(init2$Li) <- paste("Li", rep(1:init2$K, each=dd$LTp), rep(dd$naamLTp, init2$K), sep="")
}
}
}else{
if (any(is.na(init2$Sigma))) stop("NA in init2$Sigma")
if (dd$p == 1){
if (length(init2$Sigma) == 1) init2$Sigma <- rep(init2$Sigma, init2$K)
if (length(init2$Sigma) == CKmax & CKmax > init2$K) init2$Sigma <- init2$Sigma[1:init2$K]
if (length(init2$Sigma) != init2$K) stop(paste("init2$Sigma must be of length ", init2$K, sep=""))
init2$Sigma <- as.numeric(init2$Sigma)
names(init2$Sigma) <- paste("Sigma", 1:init2$K, sep="")
if (any(init2$Sigma <= 0)) stop("init2$Sigma must be positive")
init2$Li <- sqrt(1 / init2$Sigma)
names(init2$Li) <- paste("Li", 1:init2$K, sep="")
}else{
if (!is.matrix(init2$Sigma)) stop("init2$Sigma must be a matrix")
if (ncol(init2$Sigma) != dd$p) stop(paste("init2$Sigma must have ", dd$p, " columns", sep=""))
if (nrow(init2$Sigma) == dd$p){
if (any(init2$Sigma[lower.tri(init2$Sigma)] != t(init2$Sigma)[lower.tri(init2$Sigma)])) stop("init2$Sigma must be a symmetric matrix")
err <- try(Sigmainv <- chol(init2$Sigma), silent=TRUE)
if (class(err) == "try-error") stop("Cholesky decomposition of init2$Sigma failed")
Sigmainv <- chol2inv(Sigmainv)
Litmp <- t(chol(Sigmainv))
init2$Li <- rep(Litmp[lower.tri(Litmp, diag=TRUE)], init2$K)
}else{
if (nrow(init2$Sigma) == CKmax*dd$p & CKmax > init2$K) init2$Sigma <- init2$Sigma[1:(init2$K*dd$p),]
if (nrow(init2$Sigma) != init2$K*dd$p) stop(paste("init2$Sigma must have ", init2$K, " times ", dd$p, " rows", sep=""))
init2$Li <- numeric(0)
for (j in 1:init2$K){
Sigmainv <- init2$Sigma[((j-1)*dd$p+1):(j*dd$p),]
if (any(Sigmainv[lower.tri(Sigmainv)] != t(Sigmainv)[lower.tri(Sigmainv)])) stop(paste(j, "-th block of init2$Sigma is not symmetric", sep=""))
err <- try(Sigmainv <- chol(Sigmainv), silent=TRUE)
if (class(err) == "try-error") stop(paste("Cholesky decomposition of the ", j, "-th block of init2$Sigma failed", sep=""))
Sigmainv <- chol2inv(Sigmainv)
Litmp <- t(chol(Sigmainv))
init2$Li <- c(init2$Li, Litmp[lower.tri(Litmp, diag=TRUE)])
}
}
rownames(init2$Sigma) <- paste("j", rep(1:init2$K, each=dd$p), ".", rep(1:dd$p, init2$K), sep="")
colnames(init2$Sigma) <- paste("m", 1:dd$p, sep="")
names(init2$Li) <- paste("Li", rep(1:init2$K, each=dd$LTp), rep(dd$naamLTp, init2$K), sep="")
}
}
if (is.na(igammaInv2)){
if (dd$p == 1) init2$gammaInv <- Czeta * zVar2 * runif(1, 0, dd$p)
else init2$gammaInv <- Czeta * diag(zVar2) * runif(dd$p, 0, dd$p)
}
init2$gammaInv <- as.numeric(init2$gammaInv)
if (length(init2$gammaInv) == 1) init2$gammaInv <- rep(init2$gammaInv, dd$p)
if (length(init2$gammaInv) != dd$p) stop(paste("init2$gammaInv must be of length ", dd$p, sep=""))
if (any(is.na(init2$gammaInv))) stop("NA in init2$gammaInv")
names(init2$gammaInv) <- paste("gammaInv", 1:dd$p, sep="")
if (is.na(ir2)) init2$r <- NMixMCMCinitr(z=initz2, K=init2$K, w=init2$w[1:init2$K], mu=init2$mu, Sigma=init2$Sigma, p=dd$p, n=dd$n)
else init2$r <- NMixMCMCinitr(z=initz2, K=init2$K, w=init2$w[1:init2$K], mu=init2$mu, Sigma=init2$Sigma, p=dd$p, n=dd$n, initr=init2$r)
rm(list="initz2")
}else{
init2 <- NULL
}
if (missing(RJMCMC)) RJMCMC <- list()
if (!is.list(RJMCMC)) stop("RJMCMC must be a list")
inRJMCMC <- names(RJMCMC)
iPaction <- match("Paction", ininit, nomatch=NA)
iPsplit <- match("Psplit", ininit, nomatch=NA)
iPbirth <- match("Pbirth", ininit, nomatch=NA)
ipar.u1 <- match("par.u1", ininit, nomatch=NA)
ipar.u2 <- match("par.u2", ininit, nomatch=NA)
ipar.u3 <- match("par.u3", ininit, nomatch=NA)
if (is.na(iPaction)){
actionAll <- 1
RJMCMC$Paction <- c(1, 1, 1)/3
}
else{
if (is.null(RJMCMC$Paction)){
actionAll <- 1
RJMCMC$Paction <- c(1, 1, 1)/3
}else{
actionAll <- 0
}
}
if (length(RJMCMC$Paction) != 3) stop("RJMCMC$Paction must be of length 3")
if (any(RJMCMC$Paction < 0)) stop("RJMCMC$Paction must be all non-negative")
RJMCMC$Paction <- RJMCMC$Paction / sum(RJMCMC$Paction)
CPaction <- as.numeric(RJMCMC$Paction)
names(CPaction) <- names(RJMCMC$Paction) <- c("P.Gibbs.K", "P.split.combine", "P.birth.death")
if (is.na(iPsplit)){
if (CKmax == 1) RJMCMC$Psplit <- 0
else RJMCMC$Psplit <- c(1, rep(0.5, CKmax - 2), 0)
}
if (length(RJMCMC$Psplit) != CKmax) stop(paste("RJMCMC$Psplit must be of length ", CKmax, sep=""))
if (any(RJMCMC$Psplit < 0)) stop("RJMCMC$Psplit must be all non-negative")
if (any(RJMCMC$Psplit > 1)) stop("RJMCMC$Psplit must be all at most 1")
if (RJMCMC$Psplit[CKmax] != 0) stop(paste("RJMCMC$Psplit[", CKmax, "] must be zero"))
if (CKmax > 1){
if (RJMCMC$Psplit[1] != 1) stop(paste("RJMCMC$Psplit[", 1, "] must be one"))
}
CPsplit <- as.numeric(RJMCMC$Psplit)
names(CPsplit) <- names(RJMCMC$Psplit) <- paste("Psplit.", 1:CKmax, sep="")
if (is.na(iPbirth)){
if (CKmax == 1) RJMCMC$Pbirth <- 0
else RJMCMC$Pbirth <- c(1, rep(0.5, CKmax - 2), 0)
}
if (length(RJMCMC$Pbirth) != CKmax) stop(paste("RJMCMC$Pbirth must be of length ", CKmax, sep=""))
if (any(RJMCMC$Pbirth < 0)) stop("RJMCMC$Pbirth must be all non-negative")
if (any(RJMCMC$Pbirth > 1)) stop("RJMCMC$Pbirth must be all at most 1")
if (RJMCMC$Pbirth[CKmax] != 0) stop(paste("RJMCMC$Pbirth[", CKmax, "] must be zero"))
if (CKmax > 1){
if (RJMCMC$Pbirth[1] != 1) stop(paste("RJMCMC$Pbirth[", 1, "] must be one"))
}
CPbirth <- as.numeric(RJMCMC$Pbirth)
names(CPbirth) <- names(RJMCMC$Pbirth) <- paste("Pbirth.", 1:CKmax, sep="")
if (is.na(ipar.u1)) RJMCMC$par.u1 <- c(2, 2)
if (length(RJMCMC$par.u1) != 2) stop("RJMCMC$par.u1 must be of length 2")
if (any(RJMCMC$par.u1 <= 0)) stop("RJMCMC$par.u1 must be all positive")
Cpar.u1 <- as.numeric(RJMCMC$par.u1)
names(Cpar.u1) <- names(RJMCMC$par.u1) <- c("u1.1", "u1.2")
if (dd$p == 1){
if (is.na(ipar.u2)) RJMCMC$par.u2 <- c(1, 2*dd$p)
if (length(RJMCMC$par.u2) != 2) stop("RJMCMC$par.u2 must be of length 2")
if (any(RJMCMC$par.u2 <= 0)) stop("RJMCMC$par.u2 must be all positive")
Cpar.u2 <- as.numeric(RJMCMC$par.u2)
names(Cpar.u2) <- names(RJMCMC$par.u2) <- c("u2.1", "u2.2")
}else{
if (is.na(ipar.u2)) RJMCMC$par.u2 <- rbind(matrix(c(rep(-1, dd$p-1), rep(1, dd$p-1)), ncol=2), c(1, 2*dd$p))
if (!is.matrix(RJMCMC$par.u2)) stop("RJMCMC$par.u2 must be a matrix")
if (nrow(RJMCMC$par.u2) != dd$p) stop(paste("RJMCMC$par.u2 must have ", dd$p, " rows", sep=""))
if (ncol(RJMCMC$par.u2) != 2) stop(paste("RJMCMC$par.u2 must have ", 2, " columns", sep=""))
rownames(RJMCMC$par.u2) <- paste("u2.", 1:dd$p, sep="")
colnames(RJMCMC$par.u2) <- paste(c(1, 2))
if (any(RJMCMC$par.u2[dd$p,] <= 0)) stop(paste("RJMCMC$par.u2[", dd$p, ",] must be all positive", sep=""))
if (any(RJMCMC$par.u2[-dd$p,1] >= RJMCMC$par.u2[-dd$p,2])) stop(paste("The first column of RJMCMC$par.u2[-", dd$p, ",] must be strictly lower than the second column", sep=""))
Cpar.u2 <- as.numeric(t(RJMCMC$par.u2))
names(Cpar.u2) <- paste("u2.", rep(1:dd$p, each=2), ".", rep(1:2, dd$p), sep="")
}
if (dd$p == 1){
if (is.na(ipar.u3)) RJMCMC$par.u3 <- c(1, dd$p)
if (length(RJMCMC$par.u3) != 2) stop("RJMCMC$par.u3 must be of length 2")
if (any(RJMCMC$par.u3 <= 0)) stop("RJMCMC$par.u3 must be all positive")
Cpar.u3 <- as.numeric(RJMCMC$par.u3)
names(Cpar.u3) <- names(RJMCMC$par.u3) <- c("u3.1", "u3.2")
}else{
if (is.na(ipar.u3)) RJMCMC$par.u3 <- rbind(matrix(c(rep(0, dd$p-1), rep(1, dd$p-1)), ncol=2), c(1, dd$p))
if (!is.matrix(RJMCMC$par.u3)) stop("RJMCMC$par.u3 must be a matrix")
if (nrow(RJMCMC$par.u3) != dd$p) stop(paste("RJMCMC$par.u3 must have ", dd$p, " rows", sep=""))
if (ncol(RJMCMC$par.u3) != 2) stop(paste("RJMCMC$par.u3 must have ", 2, " columns", sep=""))
rownames(RJMCMC$par.u3) <- paste("u3.", 1:dd$p, sep="")
colnames(RJMCMC$par.u3) <- paste(c(1, 2))
if (any(RJMCMC$par.u3[dd$p,] <= 0)) stop(paste("RJMCMC$par.u3[", dd$p, ",] must be all positive", sep=""))
if (any(RJMCMC$par.u3[-dd$p,1] >= RJMCMC$par.u3[-dd$p,2])) stop(paste("The first column of RJMCMC$par.u3[-", dd$p, ",] must be strictly lower than the second column", sep=""))
Cpar.u3 <- as.numeric(t(RJMCMC$par.u3))
names(Cpar.u3) <- paste("u3.", rep(1:dd$p, each=2), ".", rep(1:2, dd$p), sep="")
}
CRJMCMC <- c(CPaction, CPsplit, CPbirth, Cpar.u1, Cpar.u2, Cpar.u3)
if (onlyInit) return(list(prior=prior, init=init, init2=init2, scale=scale, RJMCMC=RJMCMC))
if (length(nMCMC) != 4) stop("nMCMC must be of length 4")
if (is.null(names(nMCMC))) names(nMCMC) <- c("burn", "keep", "thin", "info")
names.nMCMC <- names(nMCMC)
if (!match("burn", names.nMCMC, nomatch=0)) stop(paste("nMCMC[", dQuote("burn"), "] must be specified", sep=""))
else n.burn <- nMCMC["burn"]
if (!match("keep", names.nMCMC, nomatch=0)) stop(paste("nMCMC[", dQuote("keep"), "] must be specified", sep=""))
else n.keep <- nMCMC["keep"]
if (!match("thin", names.nMCMC, nomatch=0)) stop(paste("nMCMC[", dQuote("thin"), "] must be specified", sep=""))
else n.thin <- nMCMC["thin"]
if (!match("info", names.nMCMC, nomatch=0)) stop(paste("nMCMC[", dQuote("info"), "] must be specified", sep=""))
else n.info <- nMCMC["info"]
nMCMC <- c(n.burn, n.keep, n.thin, n.info)
names(nMCMC) <- c("burn", "keep", "thin", "info")
if (nMCMC["burn"] < 0) stop(paste("nMCMC[", dQuote("burn"), "] must be non-negative", sep=""))
if (nMCMC["keep"] <= 0) stop(paste("nMCMC[", dQuote("keep"), "] must be positive", sep=""))
if (nMCMC["thin"] <= 0) stop(paste("nMCMC[", dQuote("thin"), "] must be positive", sep=""))
if (nMCMC["info"] <= 0 | nMCMC["info"] > max(nMCMC["burn"], nMCMC["keep"])) nMCMC["info"] <- max(nMCMC["burn"], nMCMC["keep"])
Cpar <- list(z0 = z0,
z1 = z1,
censor = dd$censor,
dimy = c(p=dd$p, n=dd$n),
priorInt = Cinteger,
priorDouble = Cdouble,
x_w = as.integer(c(dd$nx_w, dd$x_w)))
rm(list=c("Cinteger", "Cdouble"))
if (PED){
if (parallel){
if (parallel::detectCores() < 2) warning("It does not seem that at least 2 CPU cores are available needed for efficient parallel generation of the two chains.")
if (missing(cltype)) cl <- parallel::makeCluster(2) else cl <- parallel::makeCluster(2, type = cltype)
cat(paste("Parallel MCMC sampling of two chains started on ", date(), ".\n", sep=""))
RET <- parallel::parLapply(cl, 1:2, NMixMCMCwrapper,
scale = scale, prior = prior, inits = list(init, init2), Cpar = Cpar, RJMCMC = RJMCMC, CRJMCMC = CRJMCMC,
actionAll = actionAll, nMCMC = nMCMC, keep.chains = keep.chains, PED = TRUE,
dens.zero = dens.zero, lx_w = dd$lx_w)
cat(paste("Parallel MCMC sampling finished on ", date(), ".\n", sep=""))
parallel::stopCluster(cl)
}else{
RET <- lapply(1:2, NMixMCMCwrapper,
scale = scale, prior = prior, inits = list(init, init2), Cpar = Cpar, RJMCMC = RJMCMC, CRJMCMC = CRJMCMC,
actionAll = actionAll, nMCMC = nMCMC, keep.chains = keep.chains, PED = TRUE,
dens.zero = dens.zero, lx_w = dd$lx_w)
}
cat(paste("\nComputation of penalized expected deviance started on ", date(), ".\n", sep=""))
if (prior$priorK == "fixed"){
resPED <- .C(C_NMix_PED, PED = double(5),
pm.indDevObs = double(dd$n),
pm.indpopt = double(dd$n),
pm.windpopt = double(dd$n),
invalid.indDevObs = integer(dd$n),
invalid.indpopt = integer(dd$n),
invalid.windpopt = integer(dd$n),
sum.ISweight = double(dd$n),
err = integer(1),
y0 = as.double(t(z0)),
y1 = as.double(t(z1)),
censor = as.integer(t(dd$censor)),
nxw_xw = as.integer(Cpar$x_w),
dimy = as.integer(c(dd$p, dd$n)),
chK1 = as.integer(RET[[1]]$K),
chw1 = as.double(t(RET[[1]]$w)),
chmu1 = as.double(t(RET[[1]]$mu)),
chLi1 = as.double(t(RET[[1]]$Li)),
chK2 = as.integer(RET[[1]]$K),
chw2 = as.double(t(RET[[2]]$w)),
chmu2 = as.double(t(RET[[2]]$mu)),
chLi2 = as.double(t(RET[[2]]$Li)),
M = as.integer(nMCMC["keep"]),
Kmax = as.integer(CKmax),
Krandom = as.integer(0),
Dens.ZERO = as.double(dens.zero),
EMin = as.double(EMin),
PACKAGE = thispackage)
}else{
resPED <- .C(C_NMix_PED, PED = double(5),
pm.indDevObs = double(dd$n),
pm.indpopt = double(dd$n),
pm.windpopt = double(dd$n),
invalid.indDevObs = integer(dd$n),
invalid.indpopt = integer(dd$n),
invalid.windpopt = integer(dd$n),
sum.ISweight = double(dd$n),
err = integer(1),
y0 = as.double(t(z0)),
y1 = as.double(t(z1)),
censor = as.integer(t(dd$censor)),
nxw_xw = as.integer(Cpar$x_w),
dimy = as.integer(c(dd$p, dd$n)),
chK1 = as.integer(RET[[1]]$K),
chw1 = as.double(RET[[1]]$w),
chmu1 = as.double(RET[[1]]$mu),
chLi1 = as.double(RET[[1]]$Li),
chK2 = as.integer(RET[[2]]$K),
chw2 = as.double(RET[[2]]$w),
chmu2 = as.double(RET[[2]]$mu),
chLi2 = as.double(RET[[2]]$Li),
M = as.integer(nMCMC["keep"]),
Kmax = as.integer(CKmax),
Krandom = as.integer(1),
Dens.ZERO = as.double(dens.zero),
EMin = as.double(EMin),
PACKAGE = thispackage)
}
cat(paste("Computation of penalized expected deviance finished on ", date(), ".\n", sep=""))
if (resPED$err) stop("Something went wrong.")
names(resPED$PED) <- c("D.expect", "p(opt)", "PED", "wp(opt)", "wPED")
RET$PED <- resPED$PED
detS <- prod(scale$scale)
idetS <- 1 / detS
log.idetS <- -log(detS)
RET$PED["D.expect"] <- RET$PED["D.expect"] - 2*dd$n*log.idetS
RET$PED["PED"] <- RET$PED["PED"] - 2*dd$n*log.idetS
RET$PED["wPED"] <- RET$PED["wPED"] - 2*dd$n*log.idetS
RET$D <- resPED$pm.indDevObs - 2*log.idetS
RET$popt <- resPED$pm.indpopt
RET$wpopt <- resPED$pm.windpopt
RET$inv.D <- resPED$invalid.indDevObs
RET$inv.popt <- resPED$invalid.indpopt
RET$inv.wpopt <- resPED$invalid.windpopt
RET$sumISw <- resPED$sum.ISweight
class(RET) <- "NMixMCMClist"
}else{
RET <- NMixMCMCwrapper(chain = 1,
scale = scale, prior = prior, inits = list(init), Cpar = Cpar, RJMCMC = RJMCMC, CRJMCMC = CRJMCMC,
actionAll = actionAll, nMCMC = nMCMC, keep.chains = keep.chains,
PED = FALSE, dens.zero = dens.zero, lx_w = dd$lx_w)
}
return(RET)
} |
loc_title <- ph_location_type(type = "title")
loc_footer <- ph_location_type(type = "ftr")
loc_dt <- ph_location_type(type = "dt")
loc_slidenum <- ph_location_type(type = "sldNum")
loc_body <- ph_location_type(type = "body")
doc <- read_pptx()
doc <- add_slide(doc)
doc <- ph_with(x = doc, "Un titre", location = loc_title)
doc <- ph_with(x = doc, "pied de page", location = loc_footer)
doc <- ph_with(x = doc, format(Sys.Date()), location = loc_dt)
doc <- ph_with(x = doc, "slide 1", location = loc_slidenum)
doc <- ph_with(x = doc, letters[1:10], location = loc_body)
loc_subtitle <- ph_location_type(type = "subTitle")
loc_ctrtitle <- ph_location_type(type = "ctrTitle")
doc <- add_slide(doc, layout = "Title Slide", master = "Office Theme")
doc <- ph_with(x = doc, "Un sous titre", location = loc_subtitle)
doc <- ph_with(x = doc, "Un titre", location = loc_ctrtitle)
fileout <- tempfile(fileext = ".pptx")
print(doc, target = fileout ) |
lp_lin_iv <- function(endog_data,
shock = NULL,
instr = NULL,
use_twosls = FALSE,
instrum = NULL,
lags_endog_lin = NULL,
exog_data = NULL,
lags_exog = NULL,
contemp_data = NULL,
lags_criterion = NaN,
max_lags = NaN,
trend = NULL,
confint = NULL,
use_nw = TRUE,
nw_lag = NULL,
nw_prewhite = FALSE,
adjust_se = FALSE,
hor = NULL,
num_cores = 1){
if(!is.null(instr)){
shock <- instr
warning("'instr' is a deprecated input name. Use 'shock' instead.")
}
if(!(is.data.frame(endog_data))){
stop('The data has to be a data.frame().')
}
if(is.nan(lags_endog_lin) & !is.character(lags_criterion)){
stop('"lags_endog_lin" can only be NaN if a lag length criterion is given.')
}
if(is.null(shock)){
stop('You have to provide an instrument to shock with.')
}
if(!is.data.frame(shock)){
stop('The instrument has to be given as a data.frame().')
}
if(!is.null(exog_data) & !is.data.frame(exog_data)){
stop('Exogenous data has to be given as a data.frame.')
}
if(!is.null(exog_data) & is.null(lags_exog)){
stop('Please provide a lag length for the exogenous data.')
}
if(is.null(lags_criterion)){
stop('"lags_criterion" has to be NaN or a character, specifying the lag length criterion.')
}
if(is.null(trend)){
stop('Please specify whether and which type of trend to include.')
}
if(is.null(confint)){
stop('Please specify a value for the width of the confidence bands.')
}
if(is.null(hor)){
stop('Please specify the number of horizons.')
}
if(!(is.nan(lags_criterion) | lags_criterion == 'AICc'|
lags_criterion == 'AIC' | lags_criterion == 'BIC')){
stop('Possible lag length criteria are AICc, AIC or BIC. NaN if lag length is specified.')
}
if((is.character(lags_criterion)) &
(!is.na(lags_endog_lin))){
stop('You can not provide a lag criterion (AICc, AIC or BIC) and a fixed number of lags.
Please set lags_endog_lin to NaN if you want to use a lag length criterion.')
}
if(!(hor > 0) | is.nan(hor) | !(hor %% 1 == 0)){
stop('The number of horizons has to be an integer and > 0.')
}
if(!(trend %in% c(0,1,2))){
stop('For trend please enter 0 = no trend, 1 = trend, 2 = trend and quadratic trend.')
}
if(!(confint >=0)){
stop('The width of the confidence bands has to be >=0.')
}
if(isTRUE(use_twosls) & is.null(instrum)){
stop('Please specify at least one instrument to use for 2SLS.')
}
specs <- list()
specs$shock <- shock
specs$use_twosls <- use_twosls
specs$instrum <- instrum
specs$lags_endog_lin <- lags_endog_lin
specs$exog_data <- exog_data
specs$lags_exog <- lags_exog
specs$contemp_data <- contemp_data
specs$lags_criterion <- lags_criterion
specs$max_lags <- max_lags
specs$trend <- trend
specs$confint <- confint
specs$hor <- hor
specs$use_nw <- use_nw
specs$nw_prewhite <- nw_prewhite
specs$adjust_se <- adjust_se
specs$nw_lag <- nw_lag
specs$model_type <- 1
specs$starts <- 1
specs$ends <- dim(endog_data)[1]
specs$column_names <- names(endog_data)
specs$endog <- ncol(endog_data)
data_lin <- create_lin_data(specs, endog_data)
y_lin <- data_lin[[1]]
x_lin <- data_lin[[2]]
z_lin <- data_lin[[3]]
specs$y_lin <- y_lin
specs$x_lin <- x_lin
specs$z_lin <- z_lin
b1 <- matrix(NaN, specs$endog, specs$endog)
b1_low <- matrix(NaN, specs$endog, specs$endog)
b1_up <- matrix(NaN, specs$endog, specs$endog)
irf_mean <- matrix(NaN, 1, specs$hor)
irf_low <- irf_mean
irf_up <- irf_mean
irf_lin_mean <- matrix(NaN, nrow = specs$endog, ncol = specs$hor)
irf_lin_low <- irf_lin_mean
irf_lin_up <- irf_lin_mean
diagnost_ols_each_h <- matrix(NaN, specs$hor, 4)
rownames(diagnost_ols_each_h) <- paste("h", 1:specs$hor, sep = " ")
colnames(diagnost_ols_each_h) <- c("R-sqrd.", "Adj. R-sqrd.", "F-stat", " p-value")
if(is.null(num_cores)){
num_cores <- min(specs$endog, parallel::detectCores() - 1)
}
cl <- parallel::makeCluster(num_cores)
doParallel::registerDoParallel(cl)
if(is.nan(specs$lags_criterion) == TRUE){
lin_irfs <- foreach(s = 1:specs$endog,
.packages = 'lpirfs') %dopar%{
for (h in 1:(specs$hor)){
yy <- y_lin[h : dim(y_lin)[1], ]
xx <- x_lin[1 : (dim(x_lin)[1] - h + 1), ]
if(!is.matrix(xx)){
xx <- as.matrix(xx)
}
if(!is.matrix(yy)){
yy <- matrix(yy)
}
if(is.null(nw_lag)){
lag_nw <- h
} else {
lag_nw <- nw_lag
}
if(specs$use_twosls == FALSE){
get_ols_vals <- lpirfs::get_std_err(yy, xx, lag_nw, s, specs)
std_err <- get_ols_vals[[1]]
b <- get_ols_vals[[2]]
get_diagnost <- lpirfs::ols_diagnost(yy[, s], xx)
diagnost_ols_each_h[h, 1] <- get_diagnost[[3]]
diagnost_ols_each_h[h, 2] <- get_diagnost[[4]]
diagnost_ols_each_h[h, 3] <- get_diagnost[[5]]
diagnost_ols_each_h[h, 4] <- stats::pf(get_diagnost[[5]], get_diagnost[[6]], get_diagnost[[7]], lower.tail = F)
} else {
zz <- specs$z_lin[1 : (dim(z_lin)[1] - h + 1), ] %>%
as.matrix()
get_tsls_vals <- get_std_err_tsls(yy, xx, lag_nw, s, zz, specs)
b <- get_tsls_vals[[2]]
std_err <- get_tsls_vals[[1]]
get_diagnost <- lpirfs::ols_diagnost(yy[, s], xx)
diagnost_ols_each_h[h, 1] <- get_diagnost[[3]]
diagnost_ols_each_h[h, 2] <- get_diagnost[[4]]
diagnost_ols_each_h[h, 3] <- get_diagnost[[5]]
diagnost_ols_each_h[h, 4] <- stats::pf(get_diagnost[[5]], get_diagnost[[6]], get_diagnost[[7]], lower.tail = F)
}
irf_mean[1, h] <- b[2]
irf_low[1, h] <- b[2] - std_err[2]
irf_up[1, h] <- b[2] + std_err[2]
}
return(list(irf_mean, irf_low, irf_up, diagnost_ols_each_h))
}
diagnostic_list <- list()
for(i in 1:specs$endog){
irf_lin_mean[i , ] <- as.matrix(do.call(rbind, lin_irfs[[i]][1]))
irf_lin_low[i , ] <- as.matrix(do.call(rbind, lin_irfs[[i]][2]))
irf_lin_up[i , ] <- as.matrix(do.call(rbind, lin_irfs[[i]][3]))
diagnostic_list[[i]] <- lin_irfs[[i]][[4]]
}
names(diagnostic_list) <- paste("Endog. Variable:", specs$column_names , sep = " ")
} else {
lag_crit <- switch(specs$lags_criterion,
'AICc'= 1,
'AIC' = 2,
'BIC' = 3)
chosen_lags <- list()
chosen_lags_h <- matrix(NaN, specs$hor, 1)
lin_irfs <- foreach(s = 1:specs$endog,
.packages = 'lpirfs') %dopar% {
for (h in 1:specs$hor){
if(is.null(nw_lag)){
lag_nw <- h
} else {
lag_nw <- nw_lag
}
n_obs <- nrow(y_lin[[1]]) - h + 1
val_criterion <- lpirfs::get_vals_lagcrit(y_lin, x_lin, lag_crit, lag_nw, s,
specs$max_lags, n_obs)
lag_choice <- which.min(val_criterion)
yy <- y_lin[[lag_choice]][, s]
yy <- yy[h: length(yy)]
xx <- x_lin[[lag_choice]]
xx <- xx[1:(dim(xx)[1] - h + 1),]
if(specs$use_twosls == FALSE){
get_ols_vals <- lpirfs::get_std_err(yy, xx, lag_nw, 1, specs)
std_err <- get_ols_vals[[1]]
b <- get_ols_vals[[2]]
get_diagnost <- lpirfs::ols_diagnost(yy, xx)
diagnost_ols_each_h[h, 1] <- get_diagnost[[3]]
diagnost_ols_each_h[h, 2] <- get_diagnost[[4]]
diagnost_ols_each_h[h, 3] <- get_diagnost[[5]]
diagnost_ols_each_h[h, 4] <- stats::pf(get_diagnost[[5]], get_diagnost[[6]], get_diagnost[[7]], lower.tail = F)
chosen_lags_h[h, 1] <- lag_choice
} else {
zz <- z_lin[[lag_choice]]
zz <- zz[1:(dim(zz)[1] - h + 1),]
get_tsls_vals <- get_std_err_tsls(yy, xx, lag_nw, 1, zz, specs)
b <- get_tsls_vals[[2]]
std_err <- get_tsls_vals[[1]]
get_diagnost <- lpirfs::ols_diagnost(yy, xx)
diagnost_ols_each_h[h, 1] <- get_diagnost[[3]]
diagnost_ols_each_h[h, 2] <- get_diagnost[[4]]
diagnost_ols_each_h[h, 3] <- get_diagnost[[5]]
diagnost_ols_each_h[h, 4] <- stats::pf(get_diagnost[[5]], get_diagnost[[6]], get_diagnost[[7]], lower.tail = F)
chosen_lags_h[h, 1] <- lag_choice
}
irf_mean[1, h] <- b[2]
irf_low[1, h] <- b[2] - std_err[2]
irf_up[1, h] <- b[2] + std_err[2]
}
return(list(irf_mean, irf_low, irf_up,
diagnost_ols_each_h,
chosen_lags_h))
}
diagnostic_list <- list()
for(i in 1:specs$endog){
irf_lin_mean[i , ] <- as.matrix(do.call(rbind, lin_irfs[[i]][1]))
irf_lin_low[i , ] <- as.matrix(do.call(rbind, lin_irfs[[i]][2]))
irf_lin_up[i , ] <- as.matrix(do.call(rbind, lin_irfs[[i]][3]))
diagnostic_list[[i]] <- lin_irfs[[i]][[4]]
chosen_lags[[i]] <- lin_irfs[[i]][[5]]
}
names(diagnostic_list) <- paste("Endog. Variable:", specs$column_names , sep = " ")
names(chosen_lags) <- paste("Endog. Variable:", specs$column_names , sep = " ")
specs$chosen_lags <- chosen_lags
}
parallel::stopCluster(cl)
result <- list(irf_lin_mean = irf_lin_mean,
irf_lin_low = irf_lin_low,
irf_lin_up = irf_lin_up,
diagnostic_list = diagnostic_list,
specs = specs)
class(result) <- "lpirfs_lin_iv_obj"
return(result)
} |
sequentialSignatureFinder <-
function(startingGene, logFileName = "", coeffMissingAllowed = 0.75,
subsetToUse = 1:ncol(geData)) {
n <- nrow(geData)
m <- ncol(geData)
toExplore <- rep(FALSE, m)
toExplore[subsetToUse] <- TRUE
toExplore[startingGene] <- FALSE
logFileName <- paste(logFileName, "SignatureFinderLog.txt", sep = "")
cat(paste("Working on ", m, " genes observed on ", n, " samples.\n", sep = ""), file = logFileName, append = FALSE)
cat(paste("Starting on ", ttime <- Sys.time(), "\n", sep = ""), file = logFileName, append = TRUE)
cat(paste("Starting signature: ", paste(colnames(geData)[startingGene], collapse = ", "), ";\n", sep = ""),
file = logFileName, append = TRUE)
aClassify <- rep(NA, n)
ssignature <- startingGene
runs <- 0
result <- list()
result$signatureName <- (colnames(geData)[startingGene])[1]
result$startingSignature <- colnames(geData)[startingGene]
result$coeffMissingAllowed <- coeffMissingAllowed
if(length(ssignature) > 1)
notMissing <- apply(!is.na(geData[, ssignature]), 1, sum) else
notMissing <- !is.na(geData[, ssignature]) + 0
notMissing <- notMissing > 0
clusters <- classify(geData[notMissing, ssignature])$clusters
tmp1 <- min(survfit(stData[clusters == 1]~ 1)$surv)
tmp2 <- min(survfit(stData[clusters == 2]~ 1)$surv)
if(tmp1 > tmp2) {
clusters[clusters == 1] <- 0
clusters[clusters == 2] <- 1
} else clusters[clusters == 2] <- 0
runningDistance <- survdiff(stData[notMissing] ~ clusters)$chisq
result$startingTValue <- runningDistance
result$startingPValue <- 1 - pchisq(runningDistance, df = 1)
tmpClassification <- rep(NA, n)
tmpClassification[notMissing] <- clusters
result$startingClassification <- as.factor(tmpClassification)
levels(result$startingClassification) <- c("good", "poor")
cat(paste("tValue = ", runningDistance, " (", result$startingPValue, ")\n", sep = ""), file = logFileName, append = TRUE)
exitFromMain <- FALSE
repeat {
if(exitFromMain) break
runs <- runs + 1
distances <- rep(0, m)
j <- 1
while(j <= m) {
if(!toExplore[j]) { j <- j + 1; next }
distances[j] <- tValueFun(c(ssignature, j), coeffMissingAllowed = coeffMissingAllowed)
j <- j + 1
}
exitFromInner <- FALSE
repeat {
if(exitFromInner) break
maxDistance <- max(distances)
if(maxDistance >= runningDistance) {
candidate <- which(distances == maxDistance)
if(length(candidate) == 1) {
notMissing <- apply(!is.na(geData[, c(ssignature, candidate)]), 1, sum)
notMissing <- notMissing > floor(length(c(ssignature, candidate))^coeffMissingAllowed)
clusters <- classify(geData[notMissing, c(ssignature, candidate)])$clusters
checkOne <- (min(table(clusters)) > floor(0.1 * n))
sf0 <- survfit(stData[clusters == 1] ~ 1)$surv
sf1 <- survfit(stData[clusters == 2] ~ 1)$surv
checkTwo <- sum(fivenum(sf0) > fivenum(sf1))
checkTwo <- ((checkTwo == 0) | (checkTwo == 5))
if(checkOne & checkTwo) {
ssignature <- c(ssignature, candidate)
toExplore[ssignature] <- FALSE
runningDistance <- maxDistance
cat(paste("... improved signature: ",
paste(colnames(geData)[ssignature], collapse = ", "),
";\ntValue = ", runningDistance, " (",
1 - pchisq(runningDistance, df = 1), ")\n", sep = ""),
file = logFileName, append = TRUE)
exitFromInner <- TRUE
}
} else {
if(length(candidate) > 0.01*m) {
exitFromInner <- TRUE
exitFromMain <- TRUE
break
}
tmpCandidate <- findBest(runningDistance, ssignature, candidate)
if(length(tmpCandidate) > 0) {
tmp <- survdiff(stData ~ classify(geData[, c(ssignature, tmpCandidate)])$clusters)$chisq
if(tmp > runningDistance) {
candidate <- tmpCandidate
ssignature <- c(ssignature, candidate)
runningDistance <- tmp
toExplore[ssignature] <- FALSE
cat(paste("... improved signature: ",
paste(colnames(geData)[ssignature], collapse = ", "),
";\ntValue = ", runningDistance, " (",
1 - pchisq(runningDistance, df = 1), ")\n", sep = ""),
file = logFileName, append = TRUE)
exitFromInner <- TRUE
}
}
}
distances[candidate] <- 0
} else {
exitFromInner <- TRUE
exitFromMain <- TRUE
}
}
}
if(length(ssignature) > 1) {
notMissing <- apply(!is.na(geData[, ssignature]), 1, sum)
notMissing <- notMissing > floor(length(ssignature)^coeffMissingAllowed)
} else {
notMissing <- !is.na(geData[, ssignature]) + 0
notMissing <- notMissing > 0
}
clusters <- rep(NA, n)
clusters[notMissing] <- classify(geData[notMissing, ssignature])$clusters
clusters <- goodAndPoorClassification(clusters)
K <- length(ssignature)
result$signature <- colnames(geData)[ssignature]
result$tValue <- survdiff(stData[notMissing] ~ clusters[notMissing])$chisq
result$pValue <- 1-pchisq(result$tValue, df = 1)
result$signatureIDs <- ssignature
names(result$signatureIDs) <- result$signature
result$classification <- clusters
cat(paste("\n\nfinal signature: ", paste(colnames(geData)[ssignature], collapse = " "), sep = ""), file = logFileName, append = TRUE)
cat(paste("\ntValue = ", runningDistance, " (", 1 - pchisq(runningDistance, df = 1), ")\n", sep = ""), file = logFileName, append = TRUE)
cat(paste("\nlength of the signature = ", length(ssignature), sep = ""), file = logFileName, append = TRUE)
cat(paste("\nnumber of joint missing values = ", sum(!notMissing), " (", 100*round(sum(!notMissing)/n,2), "%)", sep = ""), file = logFileName, append = TRUE)
cat(paste("\n\nEnd of computation at ", t2 <- Sys.time(), "; elapsed time: ", t2 - ttime, ".", sep = ""), file = logFileName, append = TRUE)
return(result)
} |
setup.inspector <- function(config.file , validate = TRUE)
{
if (missing(config.file))
runStopCommand('Configuration file not set.')
else
configuration <- checkConfigFile(config.file)
object <- new(
"Inspector",
paths = list(
filename = configuration$paths$filename,
filename_output_tag = configuration$paths$filename_output_tag,
dir_data = configuration$paths$dir_data,
dir_output = configuration$paths$dir_output,
dir_references = configuration$paths$dir_references
),
supplementaryFiles = list(
header_translations = configuration$supplementaryFiles$header_translations,
allele_ref_std = configuration$supplementaryFiles$allele_ref_std,
allele_ref_std_population = configuration$supplementaryFiles$allele_ref_std_population,
allele_ref_alt = configuration$supplementaryFiles$allele_ref_alt,
beta_ref_std = configuration$supplementaryFiles$beta_ref_std
),
input_parameters = list(
effect_type = configuration$input_parameters$effect_type,
column_separator = configuration$input_parameters$column_separator,
na.string = configuration$input_parameters$na.string,
imputed_T = paste(configuration$input_parameters$imputed_T,collapse = '|'),
imputed_F = paste(configuration$input_parameters$imputed_F,collapse = '|'),
calculate_missing_p = configuration$input_parameters$calculate_missing_p,
file_order_string = paste(configuration$input_parameters$file_order_string,collapse = '|')
),
output_parameters = list(
save_final_dataset = configuration$output_parameters$save_final_dataset,
save_as_effectSize_reference = configuration$output_parameters$save_as_effectSize_reference,
gzip_final_dataset = configuration$output_parameters$gzip_final_dataset,
out_header = configuration$output_parameters$out_header,
out_sep = configuration$output_parameters$out_sep,
out_na = configuration$output_parameters$out_na,
out_dec = configuration$output_parameters$out_dec,
html_report = configuration$output_parameters$html_report,
object_file = configuration$output_parameters$object_file,
add_column_multiallelic = configuration$output_parameters$add_column_multiallelic,
add_column_HQ = configuration$output_parameters$add_column_HQ,
add_column_AFmismatch = configuration$output_parameters$add_column_AFmismatch,
add_column_AF = configuration$output_parameters$add_column_AF,
add_column_rsid = configuration$output_parameters$add_column_rsid,
add_column_hid = configuration$output_parameters$add_column_hid,
ordered = configuration$output_parameters$ordered
),
remove_chromosomes = list(
remove_X = configuration$remove_chromosomes$remove_X,
remove_Y = configuration$remove_chromosomes$remove_Y,
remove_XY = configuration$remove_chromosomes$remove_XY,
remove_M = configuration$remove_chromosomes$remove_M
),
plot_specs = list(
make_plots = configuration$plot_specs$make_plots,
plot_cutoff_p = configuration$plot_specs$plot_cutoff_p,
graphic_device = configuration$plot_specs$graphic_device,
plot_title = configuration$plot_specs$plot_title
),
filters = list(
HQfilter_FRQ = configuration$filters$HQfilter_FRQ,
HQfilter_HWE = configuration$filters$HQfilter_HWE,
HQfilter_cal = configuration$filters$HQfilter_cal,
HQfilter_imp = configuration$filters$HQfilter_imp,
threshold_diffEAF = configuration$filters$threshold_diffEAF,
minimal_impQ_value = configuration$filters$minimal_impQ_value,
maximal_impQ_value = configuration$filters$maximal_impQ_value
),
debug = list(
verbose = configuration$debug$verbose,
save_pre_modification_file = configuration$debug$save_pre_modification_file,
reduced.AF.plot = configuration$debug$reduced.AF.plot,
test_row_count = configuration$debug$test_row_count
),
input_files = configuration$paths$input_files,
created_at = Sys.time(),
start_time = Sys.time(),
end_time = Sys.time()
)
if(!validate)
return(object)
else if(validate.Inspector(object))
return(object)
} |
Cornfield_exact_conditional_CI_2x2 <- function(n, alpha=0.05, printresults=TRUE) {
n11 <- n[1, 1]
n1p <- n[1, 1] + n[1, 2]
n2p <- n[2, 1] + n[2, 2]
np1 <- n[1, 1] + n[2, 1]
estimate <- n[1, 1] * n[2, 2] / (n[1, 2] * n[2, 1])
tol <- 0.0000001
theta0 <- 0.00001
theta1 <- 100000
if (is.na(estimate) || estimate==Inf) {
L <- uniroot(calculate_L, c(theta0,theta1), n11=n11, np1=np1, n1p=n1p, n2p=n2p, alpha=alpha, tol=tol)$root
} else if (estimate == 0) {
L <- 0
} else {
L <- uniroot(calculate_L, c(theta0,estimate), n11=n11, np1=np1, n1p=n1p, n2p=n2p, alpha=alpha, tol=tol)$root
}
if (n[2, 1] == 0 || n[1, 2] == 0) {
U <- Inf
} else if (estimate == 0) {
U <- uniroot(calculate_U, c(theta0,theta1), n11=n11, np1=np1, n1p=n1p, n2p=n2p, alpha=alpha, tol=tol)$root
} else {
U <- uniroot(calculate_U, c(estimate,theta1), n11=n11, np1=np1, n1p=n1p, n2p=n2p, alpha=alpha, tol=tol)$root
}
if (printresults) {
print(sprintf('Cornfield exact conditional CI: estimate = %6.4f (%g%% CI %6.4f to %6.4f)',
estimate, 100 * (1 - alpha), L, U), quote=FALSE)
}
res <- data.frame(lower=L, upper=U, estimate=estimate)
invisible(res)
}
calculate_L <- function(theta0, n11, np1, n1p, n2p, alpha) {
f <- 0
for (x11 in n11:min(c(np1, n1p))) {
f <- f + noncentralhyge(x11, theta0, n1p, n2p, np1)
}
f <- f - alpha / 2
return(f)
}
calculate_U <- function(theta0, n11, np1, n1p, n2p, alpha) {
f <- 0
for (x11 in max(c(0, np1-n2p)):n11) {
f <- f + noncentralhyge(x11, theta0, n1p, n2p, np1)
}
f <- f - alpha / 2
return(f)
}
noncentralhyge <- function(x11, theta0, n1p, n2p, np1) {
numerator <- choose(n1p, x11) * choose(n2p, np1 - x11) * (theta0 ^ x11)
denominator <- 0
for (i in max(c(0, np1-n2p)):min(c(n1p, np1))) {
denominator <- denominator + choose(n1p, i) * choose(n2p, np1 - i) * (theta0 ^ i)
}
f <- numerator / denominator
return(f)
} |
CV.S=function (y, S, W = NULL, trim = 0, draw = FALSE, metric = metric.lp, ...) {
n = ncol(S)
isfdata <- is.fdata(y)
if (isfdata) {
nn<-nrow(y)
if (is.null(W)) W<-diag(nn)
y2 = t(y$data)
y.est = t(S %*% y2)
y.est <- fdata(y.est, y$argvals, y$rangeval, y$names)
e <- fdata(sweep((y - y.est)$data,2,1-diag(S),"%/%"), y$argvals, y$rangeval, y$names)
ee <- drop(norm.fdata(e, metric = metric, ...)[, 1]^2)
if (trim > 0) {
e.trunc = quantile(ee, probs = (1 - trim), na.rm = TRUE, type = 4)
ind <- ee <= e.trunc
if (draw) plot(y, col = (2 - ind))
res = mean(ee[ind])
}
else res = mean(ee)
}
else {
if (is.null(W)) W<-diag(n)
y2 <- y
y.est = S %*% y2
I = diag(n)/(1 - diag(S))^2
W = W * I
e <- y2 - y.est
if (trim > 0) {
ee = t(e)
e.trunc = quantile(abs(ee), probs = (1 - trim), na.rm = TRUE,
type = 4)
l <- which(abs(ee) <= e.trunc)
res = mean(diag(W)[l] * e[l]^2)
}
res = mean(diag(W) * e^2)
}
if (is.nan(res)) res = Inf
return(res)
} |
are_equal_tracelogs <- function(
tracelog_1, tracelog_2
) {
beautier::check_tracelog(tracelog_1)
beautier::check_tracelog(tracelog_2)
if (is.na(tracelog_1$filename)) {
if (!is.na(tracelog_2$filename)) return(FALSE)
} else {
if (tracelog_1$filename != tracelog_2$filename) return(FALSE)
}
tracelog_1$log_every == tracelog_2$log_every &&
tracelog_1$mode == tracelog_2$mode &&
tracelog_1$sanitise_headers == tracelog_2$sanitise_headers &&
tracelog_1$sort == tracelog_2$sort
} |
izoo2rzoo <-function(x, ...) UseMethod("izoo2rzoo")
izoo2rzoo.default <- function(x, from= start(x), to= end(x),
date.fmt="%Y-%m-%d", tstep ="days", ...) {
valid.class <- c("xts", "zoo")
if (length(which(!is.na(match(class(x), valid.class )))) <= 0)
stop("Invalid argument: 'class(x)' must be in c('xts', 'zoo')")
izoo2rzoo.zoo(x=x, from=from, to=to, date.fmt=date.fmt, tstep=tstep, ...)
}
izoo2rzoo.zoo <- function(x, from= start(x), to= end(x),
date.fmt="%Y-%m-%d", tstep ="days", ... ) {
if (!is.zoo(x)) stop("Invalid argument: 'x' must be of class 'zoo'")
ifelse ( grepl("%H", date.fmt, fixed=TRUE) | grepl("%M", date.fmt, fixed=TRUE) |
grepl("%S", date.fmt, fixed=TRUE) | grepl("%I", date.fmt, fixed=TRUE) |
grepl("%p", date.fmt, fixed=TRUE) | grepl("%X", date.fmt, fixed=TRUE),
subdaily.date.fmt <- TRUE, subdaily.date.fmt <- FALSE )
if(subdaily.date.fmt) {
from <- as.POSIXct(from, format=date.fmt)
to <- as.POSIXct(to, format=date.fmt)
} else {
from <- as.Date(from, format=date.fmt)
to <- as.Date(to, format=date.fmt)
}
if ( class(time(x))[1] %in% c("factor", "character") )
ifelse(subdaily.date.fmt, time(x) <- as.POSIXct(dates, format=date.fmt),
time(x) <- as.Date(dates, format=date.fmt) )
x.freq <- sfreq(x)
if (x.freq %in% c("minute","hourly") ) {
if (!subdaily.date.fmt) stop("Invalid argument: 'date.fmt' (", date.fmt, ") is not compatible with a sub-daily time series !!")
} else
if (subdaily.date.fmt) {
time(x) <- as.POSIXct(time(x))
warning("'date.fmt' (", date.fmt, ") is sub-daily, while 'x' is a '", x.freq, "' ts => 'time(x)=as.POSIXct(time(x))'")
}
dates <- seq(from=from, to=to, by= tstep)
na.zoo <- zoo(rep(NA, length(dates)), dates)
x.sel <- window(x, start=from, end=to)
x.merged <- merge(na.zoo, x.sel)
x.merged <- x.merged[,-1]
if ( is.matrix(x) | is.data.frame(x) )
colnames(x.merged) <- colnames(x)
return( x.merged )
} |
[
{
"title": "bugsparallel",
"href": "http://ggorjan.blogspot.com/2009/06/bugsparallel.html"
},
{
"title": "Two sample Student’s t-test
"href": "http://statistic-on-air.blogspot.com/2009/07/two-sample-students-t-test-2.html"
},
{
"title": "Integration take two – Shiny application",
"href": "https://beckmw.wordpress.com/2013/05/13/integration-take-two-shiny-application/"
},
{
"title": "Visualizing Growth of a Retail Chain",
"href": "https://rstats.wordpress.com/2011/03/15/visualizing-store-growth/"
},
{
"title": "Rblpapi ‘Release Candidate’ 0.3.2.5",
"href": "http://dirk.eddelbuettel.com/blog/2016/03/06/"
},
{
"title": "Drawing pedigree examples using the kinship R package",
"href": "http://ggorjan.blogspot.com/2010/06/drawing-pedigree-examples-using-kinship.html"
},
{
"title": "How long until an R portfolio makes money?",
"href": "http://www.arilamstein.com/blog/2016/10/26/long-r-portfolio-makes-money/"
},
{
"title": "Le Monde puzzle [
"href": "https://xianblog.wordpress.com/2011/03/26/le-monde-puzzle-7/"
},
{
"title": "A Quantstrat to Build On Part 6",
"href": "http://timelyportfolio.blogspot.com/2011/07/quantstrat-to-build-on-part-6.html"
},
{
"title": "Backtesting in Excel and R",
"href": "http://blog.fosstrading.com/2011/02/backtesting-in-excel-and-r.html"
},
{
"title": "Graph Examples from Visualizing Data by William Cleveland",
"href": "http://www.wekaleamstudios.co.uk/posts/graph-examples-from-visualizing-data-by-william-cleveland/"
},
{
"title": "rbokeh Version 0.4.1 Released",
"href": "http://ryanhafen.com/blog/rbokeh-0-4-1"
},
{
"title": "And the most loyal fans in the NBA are…",
"href": "https://statofmind.wordpress.com/2014/04/11/and-the-most-loyal-fans-in-the-nba-are/"
},
{
"title": "RStudio – Infoworld 2015 Technology of the Year Award Recipient!",
"href": "https://blog.rstudio.org/2015/01/28/rstudio-infoworld-2015-technology-of-the-year-award-recipient/"
},
{
"title": "Simpler isn’t always faster",
"href": "http://jcarroll.com.au/2016/04/14/simpler-isnt-always-faster/"
},
{
"title": "Linking text, results, and analyses: Increasing transparency and efficiency",
"href": "http://jeromyanglim.blogspot.com/2009/09/linking-text-results-and-analyses.html"
},
{
"title": "self-organizing map in R",
"href": "http://onetipperday.sterding.com/2012/07/self-organizing-map-in-r.html"
},
{
"title": "Program for useR! 2011 available",
"href": "http://blog.revolutionanalytics.com/2011/07/program-for-user-2011-available.html"
},
{
"title": "Post 4: Sampling the person ability parameters",
"href": "https://web.archive.org/web/http://mcmcinirt.stat.cmu.edu/archives/283?utm_source=rss&utm_medium=rss&utm_campaign=post-4-sampling-the-student-ability-parameters"
},
{
"title": "What’s new in Revolution R Enterprise 7.4",
"href": "http://blog.revolutionanalytics.com/2015/05/announcing_rre7_4.html"
},
{
"title": "How to plot points, regression line and residuals",
"href": "http://statistic-on-air.blogspot.com/2011/06/how-to-plot-points-regression-line-and.html"
},
{
"title": "A Visualization Of The 100 Greatest Love Songs ft. D3.js",
"href": "https://aschinchon.wordpress.com/2015/10/12/a-visualization-of-the-100-greatest-love-songs-ft-d3-js/"
},
{
"title": "Extracting upstream regions of a RefSeq human gene list in R using Bioconductor",
"href": "http://tata-box-blog.blogspot.com/2012/07/extracting-upstream-regions-of-refseq.html"
},
{
"title": "Download Federal Reserve Economic Data (FRED) with Python",
"href": "https://statcompute.wordpress.com/2015/12/10/download-federal-reserve-economic-data-fred-with-python/"
},
{
"title": "Example 8.19: Referencing lists of variables",
"href": "https://feedproxy.google.com/~r/SASandR/~3/KTVoBAjS7vI/example-819-referencing-lists-of.html"
},
{
"title": "R 3.1.2 release (and upgrading for Windows users)",
"href": "https://www.r-statistics.com/2014/11/r-3-1-2-release-and-upgrading-for-windows-users/"
},
{
"title": "Good advice for security with R",
"href": "http://blog.revolutionanalytics.com/2015/08/good-advice-for-security-with-r.html"
},
{
"title": "How do I re-arrange??: Ordering a plot revisited",
"href": "https://trinkerrstuff.wordpress.com/2013/08/14/how-do-i-re-arrange-ordering-a-plot-revisited/"
},
{
"title": "Spreadsheet errors",
"href": "http://www.cybaea.net/Blogs/Spreadsheet-errors.html?utm_source=feedburner&utm_medium=feed&utm_campaign=Feed%3A+CybaeaData+%28CYBAEA+Data+and+Analysis%29"
},
{
"title": "Twenty rules for good graphics",
"href": "http://robjhyndman.com/hyndsight/graphics/?utm_source=rss&utm_medium=rss&utm_campaign=graphics"
},
{
"title": "R Hero saves Backup City with archivist and GitHub",
"href": "http://r-addict.com/2016/06/13/RHero-Saves-Backup-City-With-archivist-github.html"
},
{
"title": "Interactive Simple Networks",
"href": "http://www.moreorlessnumbers.com/2014/12/interactive-simple-networks.html"
},
{
"title": "Modeling Trick: Masked Variables",
"href": "http://www.win-vector.com/blog/2012/07/modeling-trick-masked-variables/?utm_source=rss&utm_medium=rss&utm_campaign=modeling-trick-masked-variables"
},
{
"title": "R in production systems",
"href": "https://erehweb.wordpress.com/2011/02/02/r-in-production-systems/"
},
{
"title": "Function for phylogeny resolution",
"href": "https://feedproxy.google.com/~r/github/wpna/~3/kw3X3qI_IFE/"
},
{
"title": "Mango at SQL Relay!",
"href": "http://www.mango-solutions.com/wp/2015/10/mango-at-sql-relay/"
},
{
"title": "Frazzini goes French",
"href": "http://timelyportfolio.blogspot.com/2014/09/frazzini-oes-french.html"
},
{
"title": "Macroeconomic charts by the Fed using R and Plotly",
"href": "http://moderndata.plot.ly/macroeconomic-charts-by-the-fed-using-r-and-plotly/"
},
{
"title": "Steal This Blog!",
"href": "http://www.gettinggeneticsdone.com/2011/06/steal-this-blog.html"
},
{
"title": "U-boats in WW-II",
"href": "http://wiekvoet.blogspot.com/2015/05/u-boats-in-ww-ii.html"
},
{
"title": "Sourcing Code from GitHub",
"href": "http://christophergandrud.blogspot.com/2012/07/sourcing-code-from-github.html"
},
{
"title": "Data Analysis Tools",
"href": "http://www.dataperspective.info/2014/01/data-analysis-tools.html"
},
{
"title": "Another Great Google Summer of Code 2012 R Project",
"href": "http://timelyportfolio.blogspot.com/2012/08/another-great-google-summer-of-code.html"
},
{
"title": "SparkR: Distributed data frames with Spark and R",
"href": "http://blog.revolutionanalytics.com/2015/06/sparkr-announcement.html"
},
{
"title": "a brief on naked statistics",
"href": "https://xianblog.wordpress.com/2013/04/03/a-brief-on-naked-statistics/"
},
{
"title": "Structural “Arbitrage”: Trading the Equity Curve",
"href": "https://quantstrattrader.wordpress.com/2014/10/15/structural-arbitrage-trading-the-equity-curve/"
},
{
"title": "Course: Statistical Practice in Epidemiology with R",
"href": "https://martynplummer.wordpress.com/2013/02/25/course-statistical-practice-in-epidemiology-with-r-2/"
},
{
"title": "Forest Plot (with Horizontal Bands)",
"href": "https://designdatadecisions.wordpress.com/2016/07/02/forest-plot-with-horizontal-bands/"
},
{
"title": "The Relationship between Vectorized and Devectorized Code",
"href": "http://www.johnmyleswhite.com/notebook/2013/12/22/the-relationship-between-vectorized-and-devectorized-code/"
},
{
"title": "Ryan Peek on using xts and ggplot for time-series data",
"href": "http://www.noamross.net/blog/2013/2/6/xtsmarkdown.html"
}
] |
unsmooth.region.plot = function(
plot.list,
plot.chr,
plot.start,
plot.stop,
plot.column = "R",
plot.points = TRUE,
plot.lines = TRUE,
gene.names = TRUE,
annot.colors = c("black", "red", "green", "blue", "cyan"),
vert.pad = .05,
num.ticks = 5,
ylim.low = NULL,
ylim.high = NULL,
pch.vec = NULL,
lty.vec = NULL,
lwd.vec = NULL,
plot.legend = TRUE,
legend.loc = "topright"
)
{
common.list.genes = names(which(table(unlist(lapply(plot.list, rownames))) == length(plot.list)))
for (i in (1:length(plot.list)))
{
plot.list[[i]] = plot.list[[i]][common.list.genes,]
}
chr = as.numeric(plot.list[[1]][,"chr"])
pos = as.numeric(plot.list[[1]][,"pos"])
chr.pos.perm = order(chr, pos)
for (i in (1:length(plot.list)))
{
plot.list[[i]] = plot.list[[i]][chr.pos.perm,]
}
chr.ind = as.numeric(as.numeric(plot.list[[1]][,"chr"]) == plot.chr)
start.ind = as.numeric(as.numeric(plot.list[[1]][,"pos"]) >= plot.start)
stop.ind = as.numeric(as.numeric(plot.list[[1]][,"pos"]) <= plot.stop)
plot.rows = which(chr.ind * start.ind * stop.ind == 1)
for (i in (1:length(plot.list)))
{
plot.list[[i]] = plot.list[[i]][plot.rows,]
}
plot.vals = c()
for (i in (1:length(plot.list)))
{
plot.vals = c(plot.vals, as.numeric(plot.list[[i]][,plot.column]))
}
if (!is.null(ylim.low))
{
ylim.low = min(ylim.low, min(plot.vals)) - vert.pad
} else ylim.low = min(plot.vals) - vert.pad
if (!is.null(ylim.high))
{
ylim.high = max(ylim.high, max(plot.vals)) + vert.pad
} else ylim.high = max(plot.vals) + vert.pad
if (is.null(pch.vec))
{
pch.vec = rep(1, length(plot.list))
}
plot(as.numeric(plot.list[[1]][,"pos"])/1e6,
as.numeric(plot.list[[1]][,plot.column]), axes = F,
xlab = "", ylab = "", main = "", xlim = c(plot.start, plot.stop)/1e6,
ylim = c(ylim.low, ylim.high), pch = pch.vec[1], col = annot.colors[1])
plot.matrix = matrix(NA, nrow(plot.list[[i]]), length(plot.list))
plot.matrix[,1] = as.numeric(plot.list[[1]][,plot.column])
if (plot.points && (length(plot.list) >= 2))
{
for (i in (2:length(plot.list)))
{
points(as.numeric(plot.list[[i]][,"pos"])/1e6,
as.numeric(plot.list[[i]][,plot.column]),
pch = pch.vec[i], col = annot.colors[i])
plot.matrix[,i] = as.numeric(plot.list[[i]][,plot.column])
}
}
if (is.null(lty.vec))
{
lty.vec = rep(1, length(plot.list))
}
if (is.null(lwd.vec))
{
lwd.vec = rep(1, length(plot.list))
}
if (plot.lines)
{
for (i in (1:length(plot.list)))
{
lines(as.numeric(plot.list[[i]][,"pos"])/1e6,
as.numeric(plot.list[[i]][,plot.column]),
col = annot.colors[i], lty = lty.vec[i],
lwd = lwd.vec[i])
}
}
if (gene.names)
{
text(rownames(plot.list[[1]]), x = as.numeric(plot.list[[1]][,"pos"])/1e6,
y = apply(plot.matrix, 1, max, na.rm = T), pos = 3)
}
plot.ticks = signif(seq(plot.start/1e6, plot.stop/1e6, by = (plot.stop/1e6 - plot.start/1e6)/(num.ticks - 1)), 3)
axis(side = 1, at = plot.ticks, labels = plot.ticks, cex = 1)
axis(side = 2, cex = 1)
if (plot.column == "R^2")
{
yaxis.label = expression(rho^2)
} else yaxis.label = expression(rho)
mtext(side = 1, text = paste(c("chr", plot.chr, " Position (Mb)"), collapse = ""),
line = 2.5)
mtext(side = 2, text = yaxis.label, line = 2.5)
if (plot.legend)
{
legend(legend.loc, lwd = rep(3, length(plot.list)),
col = annot.colors[1:length(plot.list)],
names(plot.list), bty = "n", inset = .05, pch = pch.vec, lty = lty.vec)
}
} |
randomNeighborShort <-
function(currentModelObject,
numChanges,
allItems,
data,
bifactor = FALSE,
init.model,
lavaan.model.specs) {
mapply(
assign,
c("factors", "itemsPerFactor"),
syntaxExtraction(initialModelSyntaxFile = init.model, items = allItems),
MoreArgs = list(envir = environment())
)
mapply(
assign,
names(lavaan.model.specs),
lavaan.model.specs,
MoreArgs = list(envir = environment())
)
internalModelObject <-
stringr::str_split(currentModelObject$model.syntax,
pattern = "\n",
simplify = T)
mapply(
assign,
c("factors", "currentItems"),
syntaxExtraction(initialModelSyntaxFile = internalModelObject, items = allItems),
MoreArgs = list(envir = environment())
)
replacePattern <- paste0("\\b",
paste0(allItems,
collapse = "\\b|\\b"
),
"\\b")
replacementItemPool <- c()
for (i in 1:length(factors)) {
if (class(allItems) == "list") {
replacementItemPool[[i]] <-
allItems[[i]][!(allItems[[i]] %in% currentItems[[i]])]
} else {
replacementItemPool[[i]] <-
allItems[!(allItems %in% currentItems[[i]])]
}
}
changingItems <- c()
replacementItem <- c()
for (i in 1:numChanges) {
if (bifactor) {
currentFactor <- sample(1:(length(factors) - 1), 1)
} else {
currentFactor <- sample(1:length(factors), 1)
}
changingItemTemp <- c()
changingItemTemp <- sample(currentItems[[currentFactor]], 1)
while (changingItemTemp %in% changingItems ||
length(changingItemTemp %in% changingItems) == 0) {
changingItemTemp <- sample(currentItems[[currentFactor]], 1)
}
changingItems <- c(changingItems, changingItemTemp)
tempReplacementItems <- sample(replacementItemPool[[currentFactor]], 1)
while (tempReplacementItems %in% replacementItem) {
tempReplacementItems <- sample(replacementItemPool[[currentFactor]], 1)
}
replacementItem <- c(replacementItem, tempReplacementItems)
}
for (i in 1:length(factors)) {
for (j in 1:numChanges) {
currentItems[[i]] <-
gsub(
pattern = paste0(changingItems[j], "\\b"),
replacement = replacementItem[j],
x = currentItems[[i]]
)
}
}
if (bifactor == TRUE) {
currentItems[[length(itemsPerFactor)]] <- unlist(currentItems[1:(length(itemsPerFactor) - 1)])
}
newModelSyntax <- as.vector(
stringr::str_split(currentModelObject$model.syntax,
"\n",
simplify = T)
)
for (i in 1:length(factors)) {
newModelSyntax[i] <- paste(
factors[i],
"=~",
paste(currentItems[[i]], collapse = " + ")
)
}
newModelSyntax <- stringr::str_flatten(newModelSyntax,
collapse = "\n")
randomNeighborModel <- modelWarningCheck(
lavaan::lavaan(
model = newModelSyntax,
data = data,
model.type = model.type,
auto.var = auto.var,
ordered = ordered,
estimator = estimator,
int.ov.free = int.ov.free,
int.lv.free = int.lv.free,
auto.fix.first = auto.fix.first,
std.lv = std.lv,
auto.fix.single = auto.fix.single,
auto.cov.lv.x = auto.cov.lv.x,
auto.th = auto.th,
auto.delta = auto.delta,
auto.cov.y = auto.cov.y
)
)
randomNeighborModel$model.syntax = newModelSyntax
return(randomNeighborModel)
}
selectionFunction <-
function(currentModelObject = currentModel,
randomNeighborModel,
currentTemp,
maximize,
fitStatistic,
consecutive) {
if (length(randomNeighborModel[[2]]) > 0 |
length(randomNeighborModel[[2]]) > 0) {
return(currentModelObject)
}
if (is.null(currentModelObject[[1]])) {
return(randomNeighborModel)
} else {
probability = exp(-(goal(randomNeighborModel[[1]], fitStatistic, maximize) - goal(currentModelObject[[1]], fitStatistic, maximize)) / currentTemp)
}
if (probability > stats::runif(1)) {
newModel = randomNeighborModel
} else {
newModel = currentModelObject
}
}
goal <- function(x, fitStatistic = 'cfi', maximize) {
if (class(x) == "lavaan" & is.character(fitStatistic) & length(fitStatistic) == 1) {
energy <- fitWarningCheck(lavaan::fitMeasures(x, fit.measures = fitStatistic),
maximize)
if (maximize == TRUE) {
return(-energy)
} else {
return(energy)
}
} else {
if (class(x) == "NULL") {
if (maximize == TRUE) {
return(-Inf)
} else {
return(Inf)
}
}
}
}
consecutiveRestart <-
function(maxConsecutiveSelection = 25, consecutive) {
if (consecutive == maxConsecutiveSelection) {
currentModel = bestModel
consecutive = 0
}
}
linearTemperature <- function(currentStep, maxSteps) {
currentTemp <- (maxSteps - (currentStep)) / maxSteps
}
quadraticTemperature <- function(currentStep, maxSteps) {
currentTemp <- ((maxSteps - (currentStep)) / maxSteps) ^ 2
}
logisticTemperature <- function(currentStep, maxSteps) {
x = 1:maxSteps
x.new = scale(x, center = T, scale = maxSteps / 12)
currentTemp <- 1 / (1 + exp((x.new[(currentStep + 1)])))
}
checkModels <- function(currentModel, fitStatistic, maximize = maximize, bestFit = bestFit, bestModel) {
if (class(currentModel) == "list") {
currentSyntax <- currentModel$model.syntax
currentModel <- currentModel[[1]]
}
if (is.null(currentModel)) {
return(bestModel)
}
currentFit = fitWarningCheck(
lavaan::fitmeasures(object = currentModel, fit.measures = fitStatistic),
maximize
)
if (maximize == TRUE) {
if (currentFit > bestFit) {
bestModel = list()
bestModel$bestModel = currentModel
bestModel$bestSyntax = currentSyntax
} else {
bestModel = bestModel
}
} else {
if (currentFit < bestFit) {
bestModel = list()
bestModel$bestModel = currentModel
bestModel$bestSyntax = currentSyntax
} else {
if (currentFit < bestFit) {
bestModel = currentModel
} else {
bestModel = bestModel
}
}
}
return(bestModel)
}
modelWarningCheck <- function(expr) {
warn <- err <- c()
value <- withCallingHandlers(
tryCatch(
expr,
error = function(e) {
err <<-
append(err, regmatches(paste(e), gregexpr("ERROR: [A-z ]{1,}", paste(e))))
NULL
}
),
warning = function(w) {
warn <<-
append(warn, regmatches(paste(w), gregexpr("WARNING: [A-z ]{1,}", paste(w))))
invokeRestart("muffleWarning")
}
)
list(
'lavaan.output' = value,
'warnings' <-
as.character(unlist(warn)),
'errors' <- as.character(unlist(err))
)
}
syntaxExtraction = function(initialModelSyntaxFile, items) {
factors = unique(lavaan::lavaanify(initialModelSyntaxFile)[lavaan::lavaanify(initialModelSyntaxFile)$op ==
"=~", 'lhs'])
vectorModelSyntax = stringr::str_split(string = initialModelSyntaxFile,
pattern = '\\n',
simplify = TRUE)
factorSyntax = c()
itemSyntax = c()
for (i in 1:length(factors)) {
chosenFactorLocation = c(1:length(vectorModelSyntax))[grepl(x = vectorModelSyntax, pattern = paste0(factors[i], "[ ]{0,}=~ "))]
factorSyntax[i] = vectorModelSyntax[chosenFactorLocation]
itemSyntax[i] <-
gsub(
pattern = paste(factors[i], "=~ "),
replacement = "",
x = factorSyntax[i]
)
}
itemsPerFactor = stringr::str_extract_all(string = itemSyntax,
pattern = paste0("(\\b", paste0(
paste0(unlist(items), collapse = "\\b)|(\\b"), "\\b)"
)))
return(list('factors' = factors, 'itemsPerFactor' = itemsPerFactor))
}
modelWarningCheck <- function(expr) {
warn <- err <- c()
value <- withCallingHandlers(tryCatch(expr, error = function(e) {
err <<- append(err, regmatches(paste(e), gregexpr("ERROR: [A-z ]{1,}",
paste(e))))
NULL
}), warning = function(w) {
warn <<- append(warn, regmatches(paste(w), gregexpr("WARNING: [A-z ]{1,}",
paste(w))))
invokeRestart("muffleWarning")
})
list(lavaan.output = value, warnings <- as.character(unlist(warn)),
errors <- as.character(unlist(err)))
}
fitWarningCheck <- function(expr, maximize) {
value <- withCallingHandlers(tryCatch(expr,
error = function(e) {
if (maximize == T) {
return(0)
} else {
return(Inf)
}
invokeRestart("muffleWarning")
}
)
)
return(value)
}
checkModelSpecs <-
function(
x
) {
requiredElements <-
c('model.type',
'auto.var',
'estimator',
'ordered',
'int.ov.free',
'int.lv.free',
'auto.fix.first',
'auto.fix.single',
'auto.cov.lv.x',
'auto.th',
'auto.delta',
'auto.cov.y',
'std.lv')
missingSpecs <-
requiredElements[
which(
!requiredElements %in% names(x)
)
]
if (length(missingSpecs) > 0) {
errorMessage <-
paste0("The following elements of lavaan.model.specs have not been specified:\n\n",
paste(missingSpecs, collapse = "\n"),
"\n\nPlease include the proper specifications for these elements, or use the default values provided.")
stop(errorMessage)
}
}
fitmeasuresCheck <-
function(
x
) {
validMeasures <-
c(
"npar", "fmin",
"chisq", "df", "pvalue",
"baseline.chisq", "baseline.df", "baseline.pvalue",
"cfi", "tli", "nnfi",
"rfi", "nfi", "pnfi",
"ifi", "rni",
"logl", "unrestricted.logl",
"aic", "bic", "ntotal", "bic2",
"rmsea", "rmsea.ci.lower", "rmsea.ci.upper", "rmsea.pvalue",
"rmr", "rmr_nomean",
"srmr", "srmr_bentler", "srmr_bentler_nomean",
"crmr", "crmr_nomean", "srmr_mplus", "srmr_mplus_nomean",
"cn_05", "cn_01",
"gfi", "agfi", "pgfi", "mfi", "ecvi",
"chisq.scaled", "df.scaled", "pvalue.scaled", "chisq.scaling.factor",
"baseline.chisq.scaled", "baseline.df.scaled", "baseline.pvalue.scaled",
"baseline.chisq.scaling.factor",
"cfi.scaled", "tli.scaled",
"cfi.robust", "tli.robust",
"nnfi.scaled", "nnfi.robust",
"rfi.scaled", "nfi.scaled", "ifi.scaled", "rni.scaled", "rni.robust",
"rmsea.scaled", "rmsea.ci.lower.scaled", "rmsea.ci.upper.scaled",
"rmsea.pvalue.scaled", "rmsea.robust", "rmsea.ci.lower.robust",
"rmsea.ci.upper.robust", "rmsea.pvalue.robust"
)
invalidMeasures <-
x[
which(
!x %in% validMeasures
)
]
if (length(invalidMeasures) > 0) {
errorMessage <-
paste0("The following elements of fit.indices or fitStatistics are not valid fit measures provided by the lavaan::fitmeasures function:\n\n",
paste(invalidMeasures, collapse = "\n"),
"\n\nPlease check the output of this function for proper spelling and capitalization of the fit measure(s) you are interested in.")
stop(errorMessage)
}
}
fitStatTestCheck <-
function(measures, test) {
tempEnv <-
new.env()
mapply(
assign,
measures,
0,
MoreArgs=list(envir = tempEnv))
checkIfEval <-
tryCatch(
expr = eval(parse(text=test),
envir = tempEnv),
error = function(e) {
stop("There was a problem with the fit.statistics.test provided. It cannot be evaluated properly. Please read the function documentation to see how to properly specify a test.")
}
)
if (!is.character(test)) {
stop("There is a problem with the fit.statistics.test provided. The fit.statistics.test was given as a logical, not a character. Please read the function documentation to see how to properly specify a test. ")
}
} |
detindex <-
function(storage, mini=c("B","D","M"), pmini=1, verbose=TRUE)
{
MC <- match.call()
if(verbose) {
print("", quote = FALSE)
print("Running detindex", quote = FALSE)
print("", quote = FALSE)
print(date(), quote = FALSE)
print("", quote = FALSE)
print("Call:", quote = FALSE)
print(MC)
print("", quote = FALSE)
}
if(!file.exists(storage)) stop("Incorrect path to storage directory")
out<- dir(path=storage)
out <- out[out != "max.created.txt"]
out <- sort(as.numeric(out))
ndirs <- length(out)
if(mini=="B" | mini=="D"){
detguide <- parseguide <- parseguidesym <- rep(0,ndirs)
subdir <- paste(storage,out,sep="/")
for(i in 1:ndirs){
filenames <- dir(path=subdir[i])
if(any(filenames=="detguide.txt")) detguide[i] <- 1
if(any(filenames=="parseguide.txt")) parseguide[i] <- 1
if(any(filenames=="parseguidesym.txt"))parseguidesym[i] <- 1
}
index=data.frame(p=out, detguide, parseguide, parseguidesym)
}
if(mini=="B" | mini=="M"){
storage <- paste(storage,pmini, sep="/")
if(!file.exists(storage)) stop("No storage for this value of pmini")
out<- dir(path=storage)
ndirs <- length(out)
minidetguide <- parseguide <- parseguidesym <- rep(0,ndirs)
subdir <- paste(storage,out,sep="/")
for(i in 1:ndirs){
filenames <- dir(path=subdir[i])
if(any(filenames=="minidetguide.txt")) minidetguide[i] <- 1
if(any(filenames=="parseguide.htm")) parseguide[i] <- 1
if(any(filenames=="parseguidesym.htm"))parseguidesym[i] <- 1
}
index2=data.frame(R1Cs=out, minidetguide, parseguide, parseguidesym)
}
if(mini=="D")outlast <- list(Detguides=index, Call=MC)
if(mini=="M")outlast <- list(Minidetguides=index2, Call=MC)
if(mini=="B")outlast <- list(Detguides=index, Minidetguides=index2, Call=MC)
if(verbose) {
print("", quote = FALSE)
print("Finished running detindex", quote = FALSE)
print("", quote = FALSE)
print(date(), quote = FALSE)
print("", quote = FALSE)
print("1 indicates file is present, 0 not present", quote=FALSE)
}
outlast
} |
multi_selectOut <- function(data, plot, out="plot", draw="FALSE")
{
if(toupper(out) == "DATA")
{
return(data)
} else if(toupper(out) == "PLOT" & isTRUE(draw)) {
return(grid::grid.draw(plot))
} else if(toupper(out) == "PLOT" & !isTRUE(draw)) {
return(plot)
} else if(toupper(out) == "GROB" & isTRUE(draw)) {
return(plot)
} else if(toupper(out) == "GROB" & !isTRUE(draw)) {
return(ggplot2::ggplotGrob(plot))
} else {
warning("Did not recognize input to out...")
if(isTRUE(draw))
{
return(grid::grid.draw(plot))
} else {
return(plot)
}
}
} |
"%<c-%" <- function(x, value) {
name <- substitute(x)
if (!is.name(name)) stop("Left-hand side must be a name")
env <- parent.frame()
assign(as.character(name), value, env)
lockBinding(name, env)
invisible(value)
} |
remove_clicks <- function(clicksDF, targetTimes, nRemove) {
for (remove_it in 1:nRemove) {
distanceToNext <- diff(clicksDF$time)
removeRow <- order(distanceToNext)[1]
if (removeRow == 1) {removeRow <- 2}
clicksDF <- rbind(clicksDF[1:(removeRow-1), ], clicksDF[(removeRow+1):nrow(clicksDF), ] )
}
return(clicksDF)
} |
irlsl1reg <-
function( G,d,L,alpha,maxiter=100,tolx=1.0e-4,tolr=1.0e-6)
{
GTG=t(G) %*% G
GTd=t(G) %*% d
m= Ainv( (2*GTG+alpha*(t(L) %*%L)) , (2*GTd) )
iter=1
while(iter < maxiter)
{
iter=iter+1
absLm=abs(L %*% m)
absLm[absLm<tolr]=tolr
R=diag(1/as.vector(absLm) )
mold=m
KADD = alpha * t(L) %*% R %*% L
m = Ainv( (2*GTG + KADD ) , (2*GTd) )
if(Vnorm(m-mold)/(1+Vnorm(mold)) < tolx)
{
mreg=m
return(mreg)
}
}
mreg=m
return(mreg)
} |
listCol_w <- function(inDT, listcol, drop = TRUE, fill = NA_character_) {
if (!is.data.table(inDT)) inDT <- as.data.table(inDT)
else inDT <- copy(inDT)
LC <- Names(inDT, listcol)
reps <- vapply(inDT[[listcol]], length, 1L)
Nam <- paste(LC, .pad(sequence(max(reps))), sep = "_fl_")
M <- matrix(fill, nrow = nrow(inDT), ncol = max(reps),
dimnames = list(NULL, Nam))
M[cbind(rep(sequence(nrow(inDT)), reps), sequence(reps))] <- unlist(
inDT[[listcol]], use.names = FALSE)
out <- cbind(inDT, M)
if (isTRUE(drop)) {
out[, (LC) := NULL]
}
out[]
}
NULL |
resampling.model <-
function(model,data,k,console=FALSE) {
modelo<-model
parte<-strsplit(model,"~")[[1]]
model<-as.formula(model)
ecuacion<-lm(model,data=data)
xx<-data.frame(anova(ecuacion),NA)
yy<-ecuacion$model[[1]]
fc<-xx[,4]
names(xx)<-c("Df","Sum Sq","Mean Sq","F value","Pr(>F)","Resampling")
m<-nrow(data)
gk<-nrow(xx)-1
f<-rep(0,gk)
cuenta <- rep(0,gk)
model <- paste("y","~",parte[2])
model<-as.formula(model)
for(i in 1:k){
y<-sample(yy,m)
resample<-lm(model,data=data)
for (j in 1:gk){
f[j]<-anova(resample)[j,4]
if(f[j] >= fc[j])cuenta[j]<-cuenta[j]+1
}
}
for( j in 1:gk){
xx[j,6]<-cuenta[j]/k
}
if(console){
cat("\nResampling of the experiments\n")
cat(rep("-",14),"\n")
cat("Proposed model:",modelo,"\n")
cat("---\n")
cat("Resampling of the analysis of variancia for the proposed model\n")
cat("Determination of the P-Value by Resampling\n")
cat("Samples:",k,"\n\n")
xx<-as.matrix(xx)
print(xx,na.print="")
cat("---\n\n")
}
out<-list(model=resample, solution=xx,acum=cuenta,samples=k)
invisible(out)
} |
sim_gen <- function(simSetup, generator) {
sim_setup(simSetup, new("sim_fun", order = 1, call = match.call(), generator))
}
sim_gen_generic <- function(simSetup, ...) {
sim_gen(simSetup, gen_generic(...))
} |
for (x in 1) {
x
for (x in k )
3
}
for (x in 1) {
x
for (x in k )
3
} |
aplsm<-function(Niter,Y.i, Y.ia,D, type){
M=ncol(Y.ia)
N=ncol(Y.i)
d <- dist(t(Y.ia))
fit <- cmdscale(d,eig=TRUE, k=D)
Z.a= fit$points
ZsMat=list("Z.i" = lsm(Y.i,D=D)$lsmEZ,"Z.a" = Z.a)
if(type == "DD"){
lsmhMat<-DDlsmh(Niter,Y.i,Y.ia,M,N,D,ZsMat)
}
if(type == "DV"){
lsmhMat<-DVlsmh(Niter,Y.i,Y.ia,M,N,D,ZsMat)
}
if(type == "VV"){
lsmhMat<-VVlsmh(Niter,Y.i,Y.ia,M,N,D,ZsMat)
}
return(lsmhMat)
} |
frommlmm_toebic<-function(XX, res.mlmm){
n.step<-length(res.mlmm)
id<-grep("selec_",names(res.mlmm[[n.step]]) )
names.snp<-names(res.mlmm[[n.step]])[id]
names.snp<-unlist(sapply(names.snp,function(x){
unlist(strsplit(x,"selec_"))[2]
}))
if(n.step>2) {
id<-which( res.mlmm[[n.step]][-(1:(n.step-2))]==min( res.mlmm[[n.step]][-(1:(n.step-2))] ,na.rm=TRUE) )
last.snp<-names( res.mlmm[[n.step]])[-(1:(n.step-2))][id]
} else {
id<-which(res.mlmm[[n.step]]==min( res.mlmm[[n.step]],na.rm=TRUE ) )
last.snp<-names( res.mlmm[[n.step]])[id]
}
names.snp<-c(names.snp,last.snp)
nb.effet<-length(XX)
selec_XX<-list()
for(ki in 1:nb.effet){
selec_XX[[ki]]<-matrix(unlist(lapply(names.snp,function(xj){
XX[[ki]][,which(colnames(XX[[ki]])==xj)]
})),ncol=length(names.snp),byrow=FALSE)
}
for(ki in 1:nb.effet){
colnames(selec_XX[[ki]])<-names.snp
rownames(selec_XX[[ki]])<-rownames(XX[[1]])
}
res<-selec_XX
} |
`update.elrm` <-
function(object,iter,burnIn=0,alpha=0.05,...)
{
r=object$r;
if(iter %% 1 != 0)
{
stop("'iter' must be an integer");
}
if(iter < 0)
{
stop("'iter' must be greater than or equal to 0");
}
if(burnIn %% 1 != 0)
{
stop("'burnIn' must be an integer");
}
if(iter+nrow(object$mc) < burnIn + 1000)
{
stop("'burnIn' must be atleast 1000 iterations smaller than the total number of Monte Carlo iterations");
}
dataset = object$dataset;
formula = as.call(object$call[[1]])[["formula"]];
zCols = as.call(object$call[[1]])[["interest"]];
info = getDesignMatrix(formula,zCols,dataset=dataset);
design.matrix = info$design.matrix;
yCol = info$yCol;
mCol = info$mCol;
zCols = info$zCols;
wCols = info$wCols;
if((r %% 2) != 0)
{
stop("'r' must be an even number");
}
if(r > length(as.vector(design.matrix[,yCol])))
{
msg = paste("'r' must be smaller than or equal to",length(as.vector(design.matrix[,yCol])),"(length of the response vector)");
stop(msg);
}
out.filename = paste("elrmout",round(runif(1,0,10000),0),".txt",sep="");
tempdata.filename = paste("elrmtempdata",round(runif(1,0,10000),0),".txt",sep="");
write.table(design.matrix,tempdata.filename,quote=FALSE,row.names=FALSE,col.names=FALSE);
Z.matrix = matrix(nrow = nrow(design.matrix), ncol = length(zCols));
Z.matrix = as.matrix(design.matrix[,zCols]);
observed.response = as.matrix(design.matrix[,yCol]);
S.matrix = NULL;
message("Generating the Markov chain ...");
t1 = format(Sys.time(),"");
last.sample = object$last;
if(iter > 0)
{
sample.size = max(floor(iter*0.05),1);
k = 0;
while(k < iter)
{
progress((k/iter)*100);
Sys.sleep(0.10);
design.matrix[,yCol]=last.sample;
write.table(design.matrix,tempdata.filename,quote=FALSE,row.names=FALSE,col.names=FALSE);
.C("MCMC", as.integer(yCol), as.integer(mCol), as.integer(wCols), as.integer(length(wCols)), as.integer(zCols), as.integer(length(zCols)), as.integer(r), as.character(tempdata.filename), as.character(out.filename), as.integer(min(sample.size,iter-k)), as.integer(0), PACKAGE="elrm");
mc = matrix(scan(out.filename,what=numeric(),skip=0,n=min(sample.size,iter-k)*nrow(object$dataset),sep="\t",quiet=T),nrow=min(sample.size,iter-k),ncol=nrow(object$dataset),byrow=T);
S.temp = mc %*% Z.matrix
k = k + sample.size;
S.matrix = rbind(S.matrix,S.temp);
last.sample = mc[nrow(mc),];
}
last = last.sample;
S.matrix = round(S.matrix,6);
progress((k/iter)*100);
Sys.sleep(0.10);
message('\n');
}
unlink(tempdata.filename);
unlink(out.filename);
t2 = format(Sys.time(),"");
dif1 = difftime(t2,t1,units="auto");
message(paste("Generation of the Markov Chain required", round(dif1,4), attr(dif1,"units")));
message("Conducting inference ...");
t3 = format(Sys.time(),"");
S.observed = round(as.vector(t(Z.matrix)%*%observed.response,mode='numeric'),6);
names(S.observed) = names(design.matrix)[zCols];
S.matrix = matrix(rbind(as.matrix(object$mc),S.matrix),ncol=ncol(object$mc));
S.begin = as.matrix(S.matrix[0:burnIn,]);
if(burnIn == 1)
{
S.begin = as.matrix(t(S.begin));
}
S.matrix = as.matrix(S.matrix[(burnIn+1):nrow(S.matrix),]);
marginal = getMarginalInf(S.matrix, S.observed, alpha);
if(length(zCols) > 1)
{
joint = getJointInf(S.matrix, S.observed);
t4 = format(Sys.time(),"");
dif2 = difftime(t4,t3,units="auto");
message(paste("Inference required", round(dif2,4), attr(dif2,"units")));
coeffs = as.vector(c(NA,marginal$estimate),mode='numeric');
names(coeffs) = c("joint",names(marginal$estimate));
pvals = as.vector(c(joint$pvalue,marginal$pvalue),mode='numeric');
pvals.se = as.vector(c(joint$pvalue.se,marginal$pvalue.se),mode='numeric');
names(pvals) = names(coeffs);
names(pvals.se) = names(coeffs);
marginal$distribution[["joint"]] = joint$distribution;
sizes = c(joint$mc.size,marginal$mc.size);
names(sizes) = c("joint",names(marginal$mc.size));
S.matrix = data.frame(rbind(S.begin,S.matrix));
colnames(S.matrix) = names(design.matrix)[zCols];
object$coeffs=coeffs;
object$coeffs.ci=marginal$estimate.ci;
object$p.values=pvals;
object$p.values.se=pvals.se;
object$mc=mcmc(S.matrix);
object$mc.size=sizes;
object$distribution=marginal$distribution;
object$last = last.sample;
object$ci.level = (1-alpha)*100;
object$call.history = c(object$call.history, match.call());
}
else
{
t4 = format(Sys.time(),"");
dif2 = difftime(t4,t3,units="auto");
message(paste("Inference required", round(dif2,4), attr(dif2,"units")));
S.matrix = data.frame(rbind(S.begin,S.matrix));
colnames(S.matrix) = names(design.matrix)[zCols];
object$coeffs = marginal$estimate;
object$coeffs.ci=marginal$estimate.ci;
object$p.values=marginal$pvalue;
object$p.values.se=marginal$pvalue.se
object$mc=mcmc(S.matrix);
object$mc.size=marginal$mc.size
object$distribution=marginal$distribution;
object$last = last.sample;
object$ci.level = (1-alpha)*100;
object$call.history = c(object$call.history, match.call());
}
return(object);
} |
siarelicit <-
function(siardata) {
if(siardata$SHOULDRUN==FALSE || siardata$GRAPHSONLY ==TRUE) {
cat("You must load in some data first (via option 1) in order to use this feature of the program. \n")
cat("Press <Enter> to continue")
readline()
invisible()
return(siardata)
}
cat("This function allows you to elicit parameters for the Dirichlet \n")
cat("distribution based on estimates for the mean proportions and the \n")
cat("standard deviations from one of them. \n\n")
sourcenames <- as.character(siardata$sources[,1])
cat(paste("There are",length(sourcenames),"current sources. They are: \n"))
cat(sourcenames,"\n \n")
cat("===========================================================================\n")
cat("Mean proportion estimates. \n")
cat("===========================================================================\n\n")
cat("Please first enter your mean estimate of the proportions of each of these \n")
cat(" sources separated by a space. (Note: these should add up to 1) \n")
propsum <- 0
while(propsum!=1) {
meanprops <- as.numeric(scan(what="list",nlines=1,quiet=TRUE,sep=" "))
propsum <- sum(meanprops)
if(length(meanprops)!=length(sourcenames)) {
cat(paste("Only",length(sourcenames),"allowed. \n"))
propsum <- 0
}
if(propsum!=1) cat("Does not sum to 1, try again. \n")
}
cat("Thank you. \n \n")
cat("===========================================================================\n")
cat("Standard deviation estimate. \n")
cat("===========================================================================\n\n")
qu <- "Which source would you like to enter the standard deviation for:"
sdans <- menu(sourcenames,title = qu)
cat(paste("Please now enter the standard deviation for source:",sourcenames[sdans],"\n"))
badsd <- TRUE
while(badsd==TRUE) {
sourcesd <- as.numeric(scan(what="",nlines=1,quiet=TRUE))
if(sourcesd < 0) {
cat("Bad standard deviation entered. Try again. \n")
} else if((meanprops[sdans]*(1-meanprops[sdans])/sourcesd^2)<1) {
cat("Standard deviation does not satisfy Dirichlet constraints. Try again. \n")
} else {
badsd <- FALSE
}
}
cat("Thank you. \n \n")
Q <- (meanprops[sdans]*(1-meanprops[sdans])/sourcesd^2)-1
alphapars <- meanprops*Q
cat("Dirichlet prior parameters are: \n")
cat(alphapars)
cat("\n")
cat("Please enter these as arguments in the siarmcmcdirichletv4 function. \n")
} |
unite. <- function(.df, col = "new_col", ..., sep = "_", remove = TRUE, na.rm = FALSE) {
UseMethod("unite.")
}
unite..tidytable <- function(.df, col = "new_col", ..., sep = "_", remove = TRUE, na.rm = FALSE) {
vec_assert(sep, character(), 1)
vec_assert(remove, logical(), 1)
vec_assert(na.rm, logical(), 1)
dots <- enquos(...)
if (length(dots) == 0) {
unite_cols <- names(.df)
} else {
unite_cols <- tidyselect_names(.df, ...)
}
if (na.rm) {
cols <- unname(map.(.df[, ..unite_cols], as.character))
rows <- transpose(cols)
.united <- map_chr.(rows, ~ paste0(.x[!is.na(.x)], collapse = sep))
.df <- mutate.(.df, !!col := .united)
} else {
.df <- mutate.(.df, !!col := paste(!!!syms(unite_cols), sep = sep))
}
if (remove) .df <- .df[, -..unite_cols]
.df
}
unite..data.frame <- function(.df, col = "new_col", ..., sep = "_", remove = TRUE, na.rm = FALSE) {
.df <- as_tidytable(.df)
unite.(.df, col = col, ..., sep = sep, remove = remove, na.rm = na.rm)
}
globalVariables("..unite_cols") |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.