code
stringlengths 1
13.8M
|
---|
context('Check list_nm_tables')
simtab_test <- structure(
dplyr::tibble(problem = 1,
level = c(19, 20, 20, 21),
subroutine = c('sig', rep('tab', 3)),
code = c('0.3',
'ID OCC DOSE AMT SS II TIME TAD IPRED CWRES CPRED IWRES',
'EVID ONEHEADER NOPRINT FILE =my_sdtab-001a.tab',
'ID KA CL V ALAG1 ETAS(1:LAST) ONEHEADER NOPRINT FILE= some-tab_001.csv'),
comment = ''),
file = 'run001.mod', dir = 'data',
class = c('nm_model', 'tbl_df', 'tbl', 'data.frame'))
fail_test1 <- structure(simtab_test[1, ],
file = 'run001.mod', dir = 'data',
class = c('nm_model', 'tbl_df', 'tbl', 'data.frame'))
fail_test2 <- structure(simtab_test[1:2, ],
file = 'run001.mod', dir = 'data',
class = c('nm_model', 'tbl_df', 'tbl', 'data.frame'))
sdtab_test <- read_nm_model(file = 'run001.lst', dir = 'data')
null_object <- as.nm.table.list(dplyr::tibble(problem = -1, file = '',
firstonly = NA, simtab = NA))
test_that('error is returned when missing nm_model argument', {
expect_error(list_nm_tables())
})
test_that('error is returned when input is not a nm_model', {
expect_error(list_nm_tables(nm_model = dplyr::tibble(problem = 1, level = 10,
subroutine = 'tab', code = 'FILE=sdtab001',
comment = '')))
})
test_that('null object is returned no $TABLE are listed in the code', {
expect_equal(list_nm_tables(nm_model = fail_test1), null_object)
})
test_that('null object is returned no valid file names are found under $TABLE', {
expect_equal(list_nm_tables(nm_model = fail_test2), null_object)
})
test_that('works with simulation problems', {
simtab_out <- list_nm_tables(nm_model = simtab_test)
expect_true(is.nm.table.list(simtab_out))
expect_false(any(simtab_out$firstonly))
expect_true(all(simtab_out$simtab))
expect_equal(simtab_out$file, file.path('data', c('my_sdtab-001a.tab', 'some-tab_001.csv')))
})
test_that('works with estimation problems', {
sdtab_out <- list_nm_tables(nm_model = sdtab_test)
expect_true(is.nm.table.list(sdtab_out))
expect_equal(sdtab_out$firstonly, c(FALSE, FALSE, TRUE, TRUE, FALSE))
expect_equal(sdtab_out$simtab, c(FALSE, FALSE, FALSE, FALSE, TRUE))
expect_equal(sdtab_out$file, file.path('data', c('sdtab001', 'catab001.csv', 'cotab001', 'patab001', 'simtab001')))
}) |
library(testthat)
library(CNAIM)
context("matrix_adjusted_intervals")
test_that("Default case", {
risk_data_matrix <- risk_matrix_structure(2,3,NA)
set.seed(2)
risk_data_matrix$value <- sample(1:30,size=nrow(risk_data_matrix),replace = T)
y_intervals = c(0.25, 0.25, 0.25, 0.25)
x_intervals = c(0.2, 0.2, 0.2, 0.2, 0.2)
res <- matrix_adjusted_intervals(risk_data_matrix,x_intervals,y_intervals)
expected_df <- data.frame(x = c(1,2,1,2,1,2),
y = c(1,1,2,2,3,3),
value = c(21, 15, 6, 6, 8, 17),
id = c(1,2,3,4,5,6),
x_intervals = c("0.2","0.2","0.2","0.2","0.2", "na"),
y_intervals = c("0.25","0.25","0.25","0.25","na", "na"))
attr(res, "out.attrs") <- NULL
expect_equal(res, expected_df)
})
context("matrix_adjusted_circles")
test_that("Default case", {
matrix_structure <- risk_matrix_structure(2,1,NA)
risk_coordinates <- risk_calculation(matrix_dimensions = matrix_structure,
id = "Transformer1",
pof = 0.08,
cof = 18232,
asset_type = "6.6/11kV Transformer (GM)")
res <- matrix_adjusted_circles(matrix_structure,
dots_vector = risk_coordinates,
dot_radius = 4)
attr(res, "out.attrs") <- NULL
expected_df <- data.frame(x = c(1,2),
y = c(1,1),
value = c("na", "na"),
id = c(1,2),
point_x = c("20", "na"),
point_y = c("22.7513227513227", "na"),
dot_radius = c("4", "na"))
expect_equal(res, expected_df)
}) |
age_ldv <- function (x,
name = "age",
a = 1.698,
b = -0.2,
agemin = 1,
agemax = 50,
k = 1,
bystreet = F,
net,
verbose = FALSE,
namerows,
time){
x[is.na(x)] <- 0
x <- as.numeric(x)
if(length(k) > 1 & length(k) < length(x)){
stop("length of 'k' must be 1 ore equal to length of 'x'")
}
if(agemax < 1) stop("Agemax should be bigger than 1")
if (bystreet == T){
if(length(x) != length(a)){
stop("Lengths of veh and age must be the same")
}
d <- suca <- list()
for (i in seq_along(x)) {
suca[[i]] <- function (t) {1 - exp(-exp(a[i] + b[i]*t))}
anos <- seq(agemin,agemax)
d[[i]] <- (-1)*diff(suca[[i]](anos))
d[[i]][length(d[[i]])+1] <- d[[i]][length(d[[i]])]
d[[i]] <- d[[i]] + (1 - sum(d[[i]]))/length(d[[i]])
d[[i]] <- d[[i]]*x[i]
}
df <- as.data.frame(matrix(0,ncol=length(anos), nrow=1))
for (i in seq_along(x)) {
df[i,] <- d[[i]]
}
df <- as.data.frame(cbind(as.data.frame(matrix(0,ncol=agemin-1,
nrow=length(x))),
df))
names(df) <- paste(name,seq(1,agemax),sep="_")
df <- df*k
if(verbose){
message(paste("Average age of",name, "is",
round(sum(seq(1,agemax)*base::colSums(df, na.rm = T)/sum(df, na.rm = T)), 2),
sep=" "))
message(paste("Number of",name, "is",
round(sum(df, na.rm = T)/1000, 2),
"* 10^3 veh",
sep=" ")
)
cat("\n")
}
if(!missing(namerows)) {
if(length(namerows) != nrow(df)) stop("length of namerows must be the length of number of rows of veh")
row.names(df) <- namerows
}
if(!missing(net)){
netsf <- sf::st_as_sf(net)
if(!missing(time)){
dfsf <- sf::st_sf(Vehicles(df*k, time = time), geometry = sf::st_geometry(netsf))
} else {
dfsf <- sf::st_sf(Vehicles(df*k), geometry = sf::st_geometry(netsf))
}
return(dfsf)
} else {
if(!missing(time)){
return(Vehicles(df*k, time = time))
} else {
return(Vehicles(df*k))
}
}
} else {
suca <- function (t) {1 - exp(-exp(a + b*t))}
anos <- seq(agemin,agemax)
d <- (-1)*diff(suca(anos))
d[length(d)+1] <- d[length(d)]
d <- d + (1 - sum(d))/length(d)
df <- as.data.frame(as.matrix(x) %*%matrix(d,ncol=length(anos), nrow=1))
df <- as.data.frame(cbind(as.data.frame(matrix(0,ncol=agemin-1,
nrow=length(x))),
df))
names(df) <- paste(name,seq(1,agemax),sep="_")
df <- df*k
if(verbose){
message(paste("Average age of",name, "is",
round(sum(seq(1,agemax)*base::colSums(df, na.rm = T)/sum(df, na.rm = T)), 2),
sep=" "))
message(paste("Number of",name, "is",
round(sum(df, na.rm = T), 3),
" [veh]",
sep=" "))
cat("\n")
}
if(!missing(namerows)) {
if(length(namerows) != nrow(df)) stop("length of namerows must be the length of number of rows of veh")
row.names(df) <- namerows
}
df[is.na(df)] <- 0
if(!missing(net)){
netsf <- sf::st_as_sf(net)
if(!missing(time)){
dfsf <- sf::st_sf(Vehicles(df, time = time), geometry = sf::st_geometry(netsf))
} else {
dfsf <- sf::st_sf(Vehicles(df), geometry = sf::st_geometry(netsf))
}
return(dfsf)
} else {
if(!missing(time)){
return(Vehicles(df, time = time))
} else {
return(Vehicles(df))
}
}
}
} |
test_that('antecedents', {
expect_equal(antecedents(list(c('a', 'b', 'c'),
c('d'),
c('a', 'e'))),
list(c('b', 'c'),
character(0),
c('e')))
expect_error(antecedents(list(c(1, 2, 3))))
expect_error(antecedents(list(character())))
})
test_that('antecedents (single rule)', {
expect_equal(antecedents(list(c('a', 'b', 'c'))),
list(c('b', 'c')))
})
test_that('antecedents (empty list)', {
expect_equal(antecedents(list()),
list())
})
test_that('antecedents (farules)', {
f <- farules(list(letters[1:3], letters[2:5]),
matrix(0, nrow=2, ncol=3))
expect_equal(antecedents(f),
list(letters[2:3], letters[3:5]))
}) |
quantContig <- function(df, cloneCall = "gene+nt", chain = "both",
scale=FALSE, group.by = NULL,
split.by = NULL,
exportTable = FALSE) {
if (length(group.by) > 1) { stop("Only one item in the group.by variable can
be listed.") }
df <- list.input.return(df, split.by)
cloneCall <- theCall(cloneCall)
df <- checkBlanks(df, cloneCall)
if (chain != "both") {
for(i in seq_along(df)) {
df[[i]] <- off.the.chain(df[[i]], chain, cloneCall)
}
}
if (!is.null(group.by)) {
x <- group.by
labs <- group.by
Con.df <- data.frame(matrix(NA, length(df), 4))
colnames(Con.df) <- c("contigs","values", "total", group.by)
for (i in seq_along(df)) {
Con.df[i,1] <- length(unique(df[[i]][,cloneCall]))
Con.df[i,2] <- names(df)[i]
Con.df[i,3] <- length(df[[i]][,cloneCall])
location <- which(colnames(df[[i]]) == group.by)
Con.df[i,4] <- df[[i]][1,location] }
col <- length(unique(Con.df[,group.by]))
if (scale == TRUE) { y <- "scaled"
Con.df$scaled <- Con.df$contigs/Con.df$total*100
ylab <- "Percent of Unique Clonotype"
} else { y <- "contigs"
x <- group.by
ylab <- "Unique Clonotypes"}
} else {
x <- "values"
labs <- "Samples"
Con.df <- data.frame(matrix(NA, length(df), 3))
colnames(Con.df) <- c("contigs","values", "total")
for (i in seq_along(df)) {
Con.df[i,1] <- length(unique(df[[i]][,cloneCall]))
Con.df[i,2] <- names(df)[i]
Con.df[i,3] <- length(df[[i]][,cloneCall]) }
col <- length(unique(Con.df$values))
if (scale == TRUE) { y <- "scaled"
Con.df$scaled <- Con.df$contigs/Con.df$total*100
ylab <- "Percent of Unique Clonotype"
} else { y <- "contigs"
ylab <- "Unique Clonotypes" } }
if (exportTable == TRUE) { return(Con.df) }
plot <- ggplot(aes(x=Con.df[,x], y=Con.df[,y],
fill=as.factor(Con.df[,x])), data = Con.df) +
stat_summary(geom = "errorbar", fun.data = mean_se,
position = "dodge", width=.5) + labs(fill = labs) +
stat_summary(fun=mean, geom="bar", color="black", lwd=0.25)+
theme_classic() + xlab("Samples") + ylab(ylab) +
scale_fill_manual(values = colorblind_vector(col))
return(plot) }
abundanceContig <- function(df, cloneCall = "gene+nt", chain = "both",
scale=FALSE, group.by = NULL,
split.by = NULL, exportTable = FALSE) {
df <- list.input.return(df,split.by)
Con.df <- NULL
xlab <- "Abundance"
cloneCall <- theCall(cloneCall)
df <- checkBlanks(df, cloneCall)
names <- names(df)
if (!is.null(group.by)) {
for (i in seq_along(df)) {
if (chain != "both") {
df[[i]] <- off.the.chain(df[[i]], chain, cloneCall)
}
data1 <- parseContigs(df, i, names, cloneCall)
label <- df[[i]][1,group.by]
data1[,paste(group.by)] <- label
Con.df<- rbind.data.frame(Con.df, data1) }
Con.df <- data.frame(Con.df)
col <- length(unique(Con.df[,group.by]))
fill <- group.by
if (scale == TRUE) { ylab <- "Density of Clonotypes"
plot <- ggplot(Con.df, aes(x=Abundance, fill=Con.df[,group.by])) +
geom_density(aes(y=..scaled..), alpha=0.5,
lwd=0.25, color="black", bw=0.5) +
scale_fill_manual(values = colorblind_vector(col)) +
labs(fill = fill)
} else { ylab <- "Number of Clonotypes"
plot <- ggplot(Con.df, aes(x=Abundance, group.by = values,
color = Con.df[,group.by])) +
geom_line(stat="count") +
scale_color_manual(values = colorblind_vector(col)) +
labs(color = fill)}
} else{
for (i in seq_along(df)) {
if (chain != "both") {
df[[i]] <- off.the.chain(df[[i]], chain, cloneCall)
}
data1 <- parseContigs(df, i, names, cloneCall)
Con.df<- rbind.data.frame(Con.df, data1) }
col <- length(unique(Con.df$values))
fill <- "Samples"
if (scale == TRUE) { ylab <- "Density of Clonotypes"
plot <- ggplot(Con.df, aes(Abundance, fill=values)) +
geom_density(aes(y=..scaled..), alpha=0.5, lwd=0.25,
color="black", bw=0.5) +
scale_fill_manual(values = colorblind_vector(col)) +
labs(fill = fill)
} else { ylab <- "Number of Clonotypes"
plot <- ggplot(Con.df, aes(x=Abundance, group = values,
color = values)) +
geom_line(stat="count") +
scale_color_manual(values = colorblind_vector(col)) +
labs(color = fill)} }
if (exportTable == TRUE) { return(Con.df)}
plot <- plot + scale_x_log10() + ylab(ylab) + xlab(xlab) +
theme_classic()
return(plot) }
lengthContig <- function(df, cloneCall = "aa",
group.by = NULL,
split.by = NULL, scale = FALSE,
chain = "both", exportTable = FALSE) {
if(cloneCall == "nt") { cloneCall <- "CTnt"
ylab <- "CDR3 (NT)"
} else if (cloneCall == "aa") { cloneCall <- "CTaa"
ylab <- "CDR3 (AA)"
} else { stop("Please make a selection of the type of
CDR3 sequence to analyze by using `cloneCall`") }
AB <- grep("TRA", df[[1]]$TCR1)
IG <- grep("IGH", df[[1]]$TCR1)
if (length(AB) > 1 && length(IG) == 0) {
c1 <- "TRA"
c2 <- "TRB"
} else if (length(AB) > 1) {
c1 <- "IGH"
c2 <- "IGL"
} else {
c1 <- "TRD"
c2 <- "TRG"
}
xlab <- "Length"
Con.df <- NULL
df <- list.input.return(df, split.by)
Con.df <- lengthDF(df, cloneCall, chain, group.by, c1, c2)
names <- names(df)
if (!is.null(group.by)) {
fill = group.by
col <- length(unique(Con.df[,group.by]))
if (scale == TRUE) { yplus <- "Percent of "
plot <- ggplot(Con.df, aes(fill=Con.df[,group.by],
length,(..count..)/sum(..count..)*100)) +
geom_density(aes(y=..scaled..),alpha=.5,lwd=.25,color="black")
} else { yplus <- "Number of "
plot<-ggplot(Con.df,aes(as.factor(length),fill=Con.df[,group.by]))+
geom_bar(position = position_dodge2(preserve = "single"),
color="black", lwd=0.25, width=0.9) +
scale_x_discrete(breaks = round(seq(min(Con.df$length),
max(Con.df$length), by = 5),10)) }
} else if (is.null(group.by)){
fill <- "Samples"
col <- length(unique(Con.df$values))
if (scale == TRUE) { yplus <- "Percent of "
plot <- ggplot(Con.df, aes(length, (..count..)/sum(..count..)*100,
fill=values)) + geom_density(aes(y=..scaled..), alpha=0.5,
lwd=0.25, color="black")
} else { yplus <- "Number of "
plot <- ggplot(Con.df, aes(as.factor(length), fill=values)) +
geom_bar(position = position_dodge2(preserve = "single"),
color="black", lwd=0.25) +
scale_x_discrete(breaks = round(seq(min(Con.df$length),
max(Con.df$length), by = 5),10))} }
plot <- plot + scale_fill_manual(values = colorblind_vector(col)) +
labs(fill = fill) + ylab(paste(yplus, ylab, sep="")) +
xlab(xlab) + theme_classic()
if (exportTable == TRUE) { return(Con.df) }
return(plot)}
compareClonotypes <- function(df, cloneCall = "gene+nt", chain = "both", samples = NULL,
clonotypes = NULL, numbers = NULL, split.by = NULL,
graph = "alluvial", exportTable = FALSE){
df <- list.input.return(df, split.by)
cloneCall <- theCall(cloneCall)
df <- checkBlanks(df, cloneCall)
if (!is.null(numbers) & !is.null(clonotypes)) {
stop("Make sure your inputs are either numbers or clonotype sequences.")
}
Con.df <- NULL
for (i in seq_along(df)) {
if (chain != "both") {
df[[i]] <- off.the.chain(df[[i]], chain, cloneCall)
}
tbl <- as.data.frame(table(df[[i]][,cloneCall]))
tbl[,2] <- tbl[,2]/sum(tbl[,2])
colnames(tbl) <- c("Clonotypes", "Proportion")
tbl$Sample <- names(df[i])
Con.df <- rbind.data.frame(Con.df, tbl)
}
if (!is.null(samples)) {
Con.df <- Con.df[Con.df$Sample %in% samples,] }
if (!is.null(clonotypes)) {
Con.df <- Con.df[Con.df$Clonotypes %in% clonotypes,] }
if (!is.null(numbers)) {
top <- Con.df %>% top_n(n = numbers, wt = Proportion)
Con.df <- Con.df[Con.df$Clonotypes %in% top$Clonotypes,] }
if (nrow(Con.df) < length(unique(Con.df$Sample))) {
stop("Reasses the filtering strategies here, there is not
enough clonotypes to examine.") }
if (exportTable == TRUE) { return(Con.df)}
plot <- ggplot(Con.df, aes(x = Sample, fill = Clonotypes, group = Clonotypes,
stratum = Clonotypes, alluvium = Clonotypes,
y = Proportion, label = Clonotypes)) +
theme_classic() +
theme(axis.title.x = element_blank())
if (graph == "alluvial") {
plot = plot + geom_stratum() + geom_flow(stat = "alluvium")
} else if (graph == "area") {
plot = plot +
geom_area(aes(group = Clonotypes), color = "black") }
return(plot)
}
scatterClonotype <- function(df, cloneCall ="gene+nt",
x.axis = NULL, y.axis = NULL,
chain = "both",
dot.size = "total",
split.by = NULL,
graph = "proportion",
exportTable = FALSE) {
df <- list.input.return(df, split.by)
cloneCall <- theCall(cloneCall)
axes <- which(names(df) %in% c(x.axis, y.axis, dot.size))
if (chain != "both") {
for (i in axes) {
df[[i]] <- off.the.chain(df[[i]], chain, cloneCall)
}
}
x.df <- as.data.frame(table(df[[x.axis]][,cloneCall]))
colnames(x.df)[2] <- x.axis
y.df <- as.data.frame(table(df[[y.axis]][,cloneCall]))
colnames(y.df)[2] <- y.axis
combined.df <- merge(x.df, y.df, by = "Var1", all = TRUE)
if (dot.size != "total") {
if (dot.size %!in% colnames(combined.df)) {
size.df <- as.data.frame(table(df[[dot.size]][,cloneCall]))
colnames(size.df)[2] <- dot.size
combined.df <- merge(combined.df, size.df, by = "Var1", all = TRUE) }
combined.df[is.na(combined.df)] <- 0
combined.df[,paste0("size", ".fraction")] <- combined.df[,dot.size]/sum(combined.df[,dot.size])
labeling <- unique(c(x.axis, y.axis, dot.size))
} else {
combined.df[is.na(combined.df)] <- 0
labeling <- unique(c(x.axis, y.axis)) }
combined.df[,"class"] <- NA
combined.df[,"sum"] <- rowSums(combined.df[,labeling])
for (i in seq_along(labeling)) {
if (length(labeling) > 2) {
combined.df[,"class"] <- ifelse(combined.df[,labeling[i]] == 1 & rowSums(combined.df[,labeling[which(labeling != labeling[i])]]) == 0,
paste0(labeling[i], ".singlet"), combined.df[,"class"])
combined.df[,"class"] <- ifelse(combined.df[,labeling[i]] > 1 & rowSums(combined.df[,labeling[which(labeling != labeling[i])]]) == 0,
paste0(labeling[i], ".multiplet"), combined.df[,"class"])
} else if (length(labeling) == 2) {
combined.df[,"class"] <- ifelse(combined.df[,labeling[i]] == 1 & combined.df[,labeling[which(labeling != labeling[i])]] == 0,
paste0(labeling[i], ".singlet"), combined.df[,"class"])
combined.df[,"class"] <- ifelse(combined.df[,labeling[i]] > 1 & combined.df[,labeling[which(labeling != labeling[i])]] == 0,
paste0(labeling[i], ".multiplet"), combined.df[,"class"])
}}
combined.df[,"class"] <- ifelse(combined.df[,y.axis] >= 1 & combined.df[,x.axis] >= 1, paste0("dual.expanded"), combined.df[,"class"])
combined.df[,paste0(x.axis, ".fraction")] <- combined.df[,x.axis]/sum(combined.df[,x.axis])
combined.df[,paste0(y.axis, ".fraction")] <- combined.df[,y.axis]/sum(combined.df[,y.axis])
if (graph == "proportion") {
x <- combined.df[,paste0(x.axis, ".fraction")]
y <- combined.df[,paste0(y.axis, ".fraction")]
} else if (graph == "count") {
x <- combined.df[,x.axis]
y <- combined.df[,y.axis] }
if (dot.size != "total") {
size <- combined.df[,dot.size]
} else { size <- combined.df[,"sum"] }
if (exportTable == TRUE) { return(combined.df) }
plot <- ggplot(combined.df, aes(x=x, y = y, color = class)) +
theme_classic() +
scale_color_manual(values = colorblind_vector(length(unique(combined.df$class)))) +
xlab(x.axis) + ylab(y.axis) + labs(size = "Total n")
if (graph == "proportion") {
plot <- plot + geom_abline(slope = 1, intercept = 0, alpha = 0.4, lty=2) +
scale_y_sqrt() + scale_x_sqrt()
} else if (graph == "count") {
plot <- plot + ylim(0, max(x,y)) + xlim(0, max(x,y))
}
plot <- plot + geom_jitter(aes(size = size))
return(plot)
}
clonesizeDistribution <- function(df, cloneCall ="gene+nt",
chain = "both",
method = "ward.D2",
threshold = 1,
split.by = NULL,
exportTable = FALSE) {
df <- list.input.return(df, split.by)
cloneCall <- theCall(cloneCall)
df <- checkBlanks(df, cloneCall)
data <- bind_rows(df)
unique_df <- unique(data[,cloneCall])
Con.df <- data.frame(matrix(NA, length(unique_df), length(df)))
Con.df <- data.frame(unique_df, Con.df, stringsAsFactors = FALSE)
colnames(Con.df)[1] <- "clonotype"
for (i in seq_along(df)) {
if (chain != "both") {
df[[i]] <- off.the.chain(df[[i]], chain, cloneCall)
}
data <- df[[i]]
data <- data.frame(table(data[,cloneCall]),
stringsAsFactors = FALSE)
colnames(data) <- c(cloneCall, "Freq")
for (y in seq_along(unique_df)){
clonotype.y <- Con.df$clonotype[y]
location.y <- which(clonotype.y == data[,cloneCall])
Con.df[y,i+1] <- data[location.y[1],"Freq"] }
}
colnames(Con.df)[2:(length(df)+1)] <- names(df)
Con.df[is.na(Con.df)] <- 0
list <- list()
for (i in seq_along(df)) {
list[[i]] <- Con.df[,i+1]
list[[i]] <- suppressWarnings(fdiscgammagpd(list[[i]], useq = threshold))
}
names(list) <- names(df)
grid <- 0:10000
distances <- get_distances(list, grid, modelType="Spliced")
hclust <- hclust(as.dist(distances), method = method)
hcd <- as.dendrogram(hclust)
plot <- plot(hcd)
if (exportTable == TRUE) { return(distances) }
return(plot)
}
colorblind_vector <- colorRampPalette(rev(c("
"
makingLodes <- function(meta2, color, alpha, facet, set.axes) {
if (!is.null(color) & !is.null(alpha) & !is.null(facet)) {
lodes <- to_lodes_form(meta2,key="x",value="stratum",id="alluvium",
axes=set.axes,diffuse=c(as.name(color),as.name(alpha),as.name(facet)))
} else if (!is.null(color) & !is.null(alpha) & is.null(facet)) {
lodes <- to_lodes_form(meta2,key="x",value="stratum",id="alluvium",
axes = set.axes, diffuse = c(as.name(color), as.name(alpha)))
} else if (!is.null(color) & is.null(alpha) & !is.null(facet)) {
lodes <- to_lodes_form(meta2,key="x",value="stratum",id ="alluvium",
axes =set.axes, diffuse = c(as.name(color), as.name(facet)))
} else if (is.null(color) & is.null(alpha) & !is.null(facet)) {
lodes <- to_lodes_form(meta2, key = "x", value = "stratum",
id="alluvium",axes=set.axes,diffuse=c(as.name(alpha),as.name(facet)))
} else if (is.null(color) & is.null(alpha) & !is.null(facet)) {
lodes <- to_lodes_form(meta2, key = "x", value = "stratum",
id = "alluvium", axes = set.axes, diffuse = c(as.name(facet)))
} else if (!is.null(color) & is.null(alpha) & is.null(facet)) {
lodes <- to_lodes_form(meta2, key = "x", value = "stratum",
id = "alluvium", axes = set.axes, diffuse = c(as.name(color)))
} else if (is.null(color) & !is.null(alpha) & is.null(facet)) {
lodes <- to_lodes_form(meta2, key = "x", value = "stratum",
id = "alluvium", axes = set.axes, diffuse = c(as.name(alpha)))
} else { lodes <- to_lodes_form(meta2, key = "x", value = "stratum",
id = "alluvium", axes = set.axes)}
return(lodes) }
vizGenes <- function(df,
gene = "V",
chain = "TRA",
plot = "heatmap",
y.axis = "sample",
order = "gene",
scale = TRUE,
exportTable = FALSE) {
for(i in seq_along(df)) {
df[[i]] <- off.the.chain(df[[i]], chain, "CTgene")
}
df <- bound.input.return(df)
if (y.axis %!in% colnames(df) | is.null(y.axis)) {
if (y.axis %!in% c("V", "D", "J", "C")) {
y.axis <- "element.names"
} else {
df <- select.gene(df, chain, y.axis)
colnames(df)[ncol(df)] <- y.axis
}
}
df <- select.gene(df, chain, gene)
df <- subset(df, !is.na(df[,ncol(df)]))
df <- subset(df, df[,ncol(df)] != "NA")
df <- subset(df, df[,ncol(df)] != "")
if (!is.null(y.axis) && y.axis != "element.names") {
df <- df %>%
group_by(df[,ncol(df)], df[,y.axis], element.names) %>%
count()
} else {
df <- df %>%
group_by(df[,ncol(df)], element.names) %>%
count()
}
df <- df %>%
group_by(element.names) %>%
mutate(sum = sum(n))
col.lab <- "Total n"
if (scale == TRUE) {
df[,"n"] <- df[,"n"]/df[,"sum"]
col.lab <- "Scaled Values"
}
colnames(df)[1:2] <- c("Var1", "Var2")
df <- df %>%
group_by(Var1, Var2) %>%
mutate(varcount = sum(n),
sd = sd(n, na.rm = TRUE),
mean = mean(n))
if (order == "variance") {
varOrder <- order(df$varcount, decreasing = TRUE)
df$Var1 <- factor(df$Var1, levels = unique(df$Var1[varOrder]))
}
if (plot == "bar") {
df2 <- unique(df[,c("Var1", "Var2", "sd", "mean")])
plot <- ggplot(df2, aes(x=Var1, y = mean)) +
geom_bar(stat = "identity") +
geom_errorbar(aes(ymin=mean, ymax=mean+sd), width=.2,
position=position_dodge(.9)) +
theme_classic() +
theme(axis.title.x = element_blank(),
axis.title.y = element_blank(),
axis.ticks.x = element_blank(),
axis.text.x = element_text(angle = 90,
vjust = 0.5, hjust=1, size=rel(0.5))) +
facet_grid(Var2~.)
} else if (plot == "heatmap") {
plot <- ggplot(df, aes(x=Var1, y = Var2, fill = n)) +
geom_tile() +
theme_classic() +
labs(fill = col.lab) +
theme(axis.title.x = element_blank(),
axis.ticks.x = element_blank(),
axis.text.x = element_text(angle = 90,
vjust = 0.5, hjust=1, size=rel(0.5)),
axis.title.y = element_blank(),
axis.text.y = element_text(size=rel(0.5))) +
scale_fill_gradientn(colors = rev(colorblind_vector(5)))
}
if (exportTable == TRUE) { return(df) }
return(plot)
} |
anovaRMNPOptions <- if (requireNamespace("jmvcore", quietly=TRUE)) R6::R6Class(
"anovaRMNPOptions",
inherit = jmvcore::Options,
public = list(
initialize = function(
measures = NULL,
pairs = FALSE,
desc = FALSE,
plots = FALSE,
plotType = "means", ...) {
super$initialize(
package="jmv",
name="anovaRMNP",
requiresData=TRUE,
...)
private$..measures <- jmvcore::OptionVariables$new(
"measures",
measures,
suggested=list(
"continuous"),
permitted=list(
"numeric"))
private$..pairs <- jmvcore::OptionBool$new(
"pairs",
pairs,
default=FALSE)
private$..desc <- jmvcore::OptionBool$new(
"desc",
desc,
default=FALSE)
private$..plots <- jmvcore::OptionBool$new(
"plots",
plots,
default=FALSE)
private$..plotType <- jmvcore::OptionList$new(
"plotType",
plotType,
options=list(
"means",
"medians"),
default="means")
self$.addOption(private$..measures)
self$.addOption(private$..pairs)
self$.addOption(private$..desc)
self$.addOption(private$..plots)
self$.addOption(private$..plotType)
}),
active = list(
measures = function() private$..measures$value,
pairs = function() private$..pairs$value,
desc = function() private$..desc$value,
plots = function() private$..plots$value,
plotType = function() private$..plotType$value),
private = list(
..measures = NA,
..pairs = NA,
..desc = NA,
..plots = NA,
..plotType = NA)
)
anovaRMNPResults <- if (requireNamespace("jmvcore", quietly=TRUE)) R6::R6Class(
"anovaRMNPResults",
inherit = jmvcore::Group,
active = list(
table = function() private$.items[["table"]],
comp = function() private$.items[["comp"]],
desc = function() private$.items[["desc"]],
plot = function() private$.items[["plot"]]),
private = list(),
public=list(
initialize=function(options) {
super$initialize(
options=options,
name="",
title="Repeated Measures ANOVA (Non-parametric)")
self$add(jmvcore::Table$new(
options=options,
name="table",
title="Friedman",
rows=1,
clearWith=list(
"measures"),
columns=list(
list(
`name`="stat",
`title`="\u03C7\u00B2",
`type`="number"),
list(
`name`="df",
`title`="df",
`type`="integer"),
list(
`name`="p",
`title`="p",
`type`="number",
`format`="zto,pvalue"))))
self$add(jmvcore::Table$new(
options=options,
name="comp",
title="Pairwise Comparisons (Durbin-Conover)",
refs="PMCMR",
visible="(pairs)",
clearWith=list(
"measures"),
columns=list(
list(
`name`="i1",
`title`="",
`type`="text"),
list(
`name`="sep",
`title`="",
`content`="-",
`type`="text",
`format`="narrow"),
list(
`name`="i2",
`title`="",
`type`="text"),
list(
`name`="stat",
`title`="Statistic",
`type`="number"),
list(
`name`="p",
`title`="p",
`type`="number",
`format`="zto,pvalue"))))
self$add(jmvcore::Table$new(
options=options,
name="desc",
title="Descriptives",
visible="(desc)",
clearWith=list(
"measures"),
columns=list(
list(
`name`="level",
`title`="",
`type`="text"),
list(
`name`="mean",
`title`="Mean",
`type`="number"),
list(
`name`="median",
`title`="Median",
`type`="number"))))
self$add(jmvcore::Image$new(
options=options,
name="plot",
title="Descriptive Plot",
visible="(plots)",
renderFun=".plot",
clearWith=list(
"plotType",
"measures")))}))
anovaRMNPBase <- if (requireNamespace("jmvcore", quietly=TRUE)) R6::R6Class(
"anovaRMNPBase",
inherit = jmvcore::Analysis,
public = list(
initialize = function(options, data=NULL, datasetId="", analysisId="", revision=0) {
super$initialize(
package = "jmv",
name = "anovaRMNP",
version = c(1,0,0),
options = options,
results = anovaRMNPResults$new(options=options),
data = data,
datasetId = datasetId,
analysisId = analysisId,
revision = revision,
pause = NULL,
completeWhenFilled = TRUE,
requiresMissings = FALSE)
}))
anovaRMNP <- function(
data,
measures,
pairs = FALSE,
desc = FALSE,
plots = FALSE,
plotType = "means") {
if ( ! requireNamespace("jmvcore", quietly=TRUE))
stop("anovaRMNP requires jmvcore to be installed (restart may be required)")
if ( ! missing(measures)) measures <- jmvcore::resolveQuo(jmvcore::enquo(measures))
if (missing(data))
data <- jmvcore::marshalData(
parent.frame(),
`if`( ! missing(measures), measures, NULL))
options <- anovaRMNPOptions$new(
measures = measures,
pairs = pairs,
desc = desc,
plots = plots,
plotType = plotType)
analysis <- anovaRMNPClass$new(
options = options,
data = data)
analysis$run()
analysis$results
} |
algos <- eval(formals(ml_fit)$algorithm)
test_that("success = TRUE", {
minitoy <- readRDS(toy_example("Tiny"))
for (algo in algos) {
fit <- ml_fit(minitoy, algo)
expect_true(fit$success, info = algo)
expect_equal(length(fit$residuals), 5, info = algo)
expect_lt(max(abs(fit$residuals)), 1e-3)
expect_equal(length(fit$rel_residuals), 5, info = algo)
expect_lt(max(abs(fit$rel_residuals)), 1e-6)
expect_equal(length(fit$flat_weighted_values), 5, info = algo)
expect_equal(length(fit$weights), 23, info = algo)
expect_equal(length(fit$flat_weights), 8, info = algo)
expect_equal(fit$tol, 1e-6, info = algo)
expect_type(fit$iterations, "integer")
}
})
test_that("success = FALSE", {
bad_problem <- readRDS(toy_example("Conflict"))
for (algo in algos) {
fit <- ml_fit(bad_problem, algo)
expect_false(fit$success, info = algo)
}
}) |
context('alluvial_long')
test_that('alluvial_long'
,{
data = quarterly_flights
p = alluvial_long( data, key = qu, value = mean_arr_delay, id = tailnum, fill = carrier )
expect_doppelganger('long_fill_carrier', p)
p = alluvial_long( data, key = qu, value = mean_arr_delay, id = tailnum, fill_by = 'last_variable' )
expect_doppelganger('long_fill_last', p)
p = alluvial_long( data, key = qu, value = mean_arr_delay, id = tailnum, fill_by = 'first_variable' )
expect_doppelganger('long_fill_first', p)
p = alluvial_long( data, key = qu, value = mean_arr_delay, id = tailnum, fill_by = 'all_flows' )
expect_doppelganger('long_fill_value', p)
p = alluvial_long( data, key = qu, value = mean_arr_delay, id = tailnum, fill_by = 'value' )
p = alluvial_long( data, key = 'qu', value = 'mean_arr_delay', id = 'tailnum', fill = 'carrier' )
p = alluvial_long( data, qu, mean_arr_delay, tailnum, fill_by = 'value'
, col_vector_flow = palette_qualitative() %>% palette_filter(greys = F, bright = F)
, col_vector_value = palette_qualitative() %>% palette_filter(greys = F, bright = F) )
expect_doppelganger('long_sprecify_color', p)
p = alluvial_long( data, qu, mean_arr_delay, tailnum, carrier ,fill_right = F )
expect_doppelganger('long_fill_to_right', p)
p = alluvial_long( data, qu, mean_arr_delay, tailnum, fill_by = 'first_variable'
, order_levels_value = c('on_time', 'late') )
expect_doppelganger('long_reorder_y_levels', p)
p = alluvial_long( data, qu, mean_arr_delay, tailnum, fill_by = 'first_variable'
, order_levels_key = c('Q4', 'Q3', 'Q2', 'Q1') )
expect_doppelganger('long_reorder_x_levels', p)
order_by_carrier_size = data %>%
group_by(carrier) %>%
count() %>%
arrange( desc(n) ) %>%
.[['carrier']]
p = alluvial_long( data, qu, mean_arr_delay, tailnum, carrier
, order_levels_fill = order_by_carrier_size )
expect_doppelganger('long_reorder_carrier_by_size', p)
expect_equivalent( unique(data$tailnum), levels( p$data_key$tailnum ) )
data = quarterly_flights %>%
select(tailnum, qu, mean_arr_delay, carrier) %>%
sample_frac(0.9)
p = alluvial_long( data, qu, mean_arr_delay, tailnum, carrier
, NA_label = 'none'
, order_levels_value = 'none')
p = alluvial_long( data, key = qu, value = mean_arr_delay, id = tailnum, fill = carrier
, stratum_labels = FALSE, stratum_width = 1/20)
p = alluvial_long( data, key = qu, value = mean_arr_delay, id = tailnum, fill = carrier
, auto_rotate_xlabs = F )
suppressWarnings({
data_highflow = ggplot2::diamonds %>%
mutate( id = as.factor( row_number() ) ) %>%
manip_bin_numerics() %>%
gather( key = 'key', value = 'value', -id)
})
expect_warning( alluvial_long( data_highflow, key, value, id ) )
p = alluvial_long( group_by(data, carrier), key = qu, value = mean_arr_delay, id = tailnum)
expect_true( all( c('data_key', 'alluvial_type', 'alluvial_params') %in% names(p) ) )
p = alluvial_long(quarterly_sunspots, key = qu, value = spots, id = year)
expect_doppelganger('long_all_nums', p)
p = alluvial_long(quarterly_sunspots, key = qu, value = spots, id = year, fill = mean_spots_per_year)
expect_doppelganger('long_all_nums_plus_fill', p)
}) |
time_calc <- function(time_event, time_obs, units=NULL)
UseMethod("time_calc")
time_calc.numeric <- function(time_event, time_obs, units=NULL) {
if (length(time_event) == 0) {
warning("No events provided")
time_event <- NA_real_
} else if (any(order(stats::na.omit(time_event)) != seq_along(stats::na.omit(time_event)))) {
stop("`time_event` must be sorted.")
}
if (!is.numeric(time_obs)) {
stop("Both `time_event` and `time_obs` must be the same class (numeric).")
}
ret <-
data.frame(
event_number_before=
sapply(
X=time_obs,
FUN=function(x)
max_zero_len(
which(time_event <= x),
zero_length=NA_integer_
)
),
event_number_after=
sapply(
X=time_obs,
FUN=function(x)
min_zero_len(
which(time_event >= x),
zero_length=NA_integer_
)
)
)
ret$time_after_event <-
time_obs - time_event[ret$event_number_before]
ret$time_before_event <-
time_obs - time_event[ret$event_number_after]
ret$time_after_first <-
if (all(is.na(time_event))) {
NA_real_
} else {
time_obs - min(time_event, na.rm=TRUE)
}
ret
}
time_calc.POSIXt <- function(time_event, time_obs, units=NULL) {
if (is.null(units)) {
stop("`units` must be provided.")
}
if (!("POSIXt" %in% class(time_obs))) {
stop("Both `time_event` and `time_obs` must be the same class (POSIXt).")
}
first_event <- min(time_event, na.rm=TRUE)
time_calc(
time_event=difftime(time_event, first_event, units=units),
time_obs=difftime(time_obs, first_event, units=units),
units=units
)
}
time_calc.difftime <- function(time_event, time_obs, units=NULL) {
if (is.null(units)) {
stop("`units` must be provided.")
}
if (!("difftime" %in% class(time_obs))) {
stop("Both `time_event` and `time_obs` must be the same class (difftime).")
}
time_calc(
time_event=as.numeric(time_event, units=units),
time_obs=as.numeric(time_obs, units=units)
)
} |
test_that("find_y works with mlr", {
require("mlr")
data(cars, package = "datasets")
tsk <- makeRegrTask(data = cars, target = "dist")
lrn <- makeLearner("regr.rpart")
mod <- mlr::train(lrn, tsk)
expect_equal(find_y(mod), "dist")
})
test_that("find_y works with caret", {
require("caret")
data(cars, package = "caret")
mod <- caret::train(Price ~ ., data = cars, method = "rf", ntree = 1)
expect_equal(find_y(mod), "Price")
})
test_that("find_y works with lm", {
data(cars, package = "datasets")
mod <- lm(speed ~ ., data = cars)
expect_equal(find_y(mod), "speed")
})
test_that("find_y works with rpart", {
require("rpart")
data(cars, package = "datasets")
mod <- rpart(speed ~ ., data = cars)
expect_equal(find_y(mod), "speed")
}) |
event_range <- function(e) {
as_events(range(e$from, e$to))
}
event_coverage <- function(e, closed = TRUE) {
e.range <- event_range(e)
e.gaps <- event_gaps(e, closed = closed)
e.coverage <- event_gaps(e.gaps, closed = FALSE, range = e.range)
add <- e.range != event_range(e.coverage)
if (!closed) {
add[1] <- add[1] || any(rowSums(e[c("from", "to")] == e.range[[1]]) == 2)
add[2] <- add[2] || any(rowSums(e[c("from", "to")] == e.range[[2]]) == 2)
}
if (any(add)) {
e.coverage <- rbind(if_else(add[[1]], rep(e.range[[1]], 2), NULL), e.coverage, if_else(add[[2]], rep(e.range[[2]], 2), NULL))
}
e.coverage
}
event_gaps <- function(e, closed = TRUE, range = NULL) {
if (!is.null(range)) {
range <- event_range(range)
if (!nrow(e)) {
return(range)
}
e.range <- event_range(e)
if (!(range$from <= e.range$from && range$to >= e.range$to)) {
e <- crop_events(e, range)
}
if (range$from < e.range$from) {
e <- rbind(rep(range$from, 2), e[c("from", "to")])
}
if (range$to > e.range$to) {
e <- rbind(e[c("from", "to")], rep(range$to, 2))
}
}
if (is_unsorted_events(e)) {
e <- sort_events(e)
}
e$to <- cummax(e$to)
if (closed) {
isgap <- which(e$from[-1] > e$to[-nrow(e)])
} else {
isgap <- which(e$from[-1] >= e$to[-nrow(e)])
}
unique(events(e$to[isgap], e$from[isgap + 1]))
}
event_overlaps <- function(e) {
if (is_unsorted_events(e)) {
e <- sort_events(e)
}
e.cut <- cut_events(e, c(e$from, e$to))
temp <- stats::aggregate(e.cut$from, by = e.cut[c("from","to")], FUN = length)
names(temp)[3] <- "n"
temp
}
event_midpoints <- function(e) {
rowMeans(e[c("from", "to")])
} |
set.seed(1)
x <- 1L:30L
x2 <- as.numeric(1:30)
x3 <- sample(letters, 30, replace = TRUE)
x4 <- sample(c(TRUE, FALSE), 30, replace = TRUE)
lag <- sample(-10:10, 30, replace = TRUE)
idx <- cumsum(sample(seq_len(5), 30, replace = TRUE))
lag_run2 <- function(x, lag = 1, idx = seq_along(x), nearest = FALSE) {
fun <- function(x, k, idx, nearest, i) {
res <- if (nearest) {
window <- if (k > 0) {
x[idx %in% seq(idx[i] - k, idx[i] - 1, by = 1)]
} else if (k < 0) {
x[idx %in% seq(idx[i] + 1, idx[i] - k, by = 1)]
} else {
return(x[i]);
}
if (length(window) > 0) {
if (k > 0) window[1] else rev(window)[1]
} else {
NA
}
} else if (!nearest) {
window <- if (k != 0) {
x[idx == (idx[i] - k)]
} else {
return(x[i]);
}
res <- if (length(window) > 0) {
if (k > 0) window[1] else rev(window)[1]
} else {
NA
}
}
return(res)
}
sapply(seq_along(x), function(i) {
if (length(lag) == 1) {
fun(x, lag[1], idx, nearest, i)
} else {
fun(x, lag[i], idx, nearest, i)
}
})
}
expect_identical(
lag_run(x),
c(NA, x[-30])
)
expect_identical(
lag_run(as.character(x)),
as.character(c(NA_character_, x[-30]))
)
expect_identical(
lag_run(as.factor(letters)),
c(NA_integer_, 1:25)
)
expect_identical(
lag_run(as.integer(round(x))),
as.integer(round(c(NA_integer_, x[-30])))
)
expect_identical(
lag_run(as.complex(x)),
as.complex(c(NA_complex_, x[-30]))
)
expect_identical(
lag_run(x > 15),
c(NA, x[-30] > 15)
)
expect_identical(lag_run(x, lag = 3), c(rep(NA, 3), head(x, -3)))
expect_identical(lag_run(x2, lag = 3), c(rep(NA, 3), head(x2, -3)))
expect_identical(lag_run(x3, lag = 3), c(rep(NA, 3), head(x3, -3)))
expect_identical(lag_run(x4, lag = 3), c(rep(NA, 3), head(x4, -3)))
expect_identical(lag_run(x, lag = lag), lag_run2(x, lag = lag))
expect_identical(lag_run(x, lag = lag, nearest = FALSE),
lag_run2(x, lag = lag, nearest = FALSE))
expect_identical(lag_run(x2, lag = lag), lag_run2(x2, lag = lag))
expect_identical(lag_run(x2, lag = lag, nearest = FALSE),
lag_run2(x2, lag = lag, nearest = FALSE))
expect_identical(lag_run(x3, lag = lag), lag_run2(x3, lag = lag))
expect_identical(lag_run(x3, lag = lag, nearest = FALSE),
lag_run2(x3, lag = lag, nearest = FALSE))
expect_identical(lag_run(x4, lag = lag), lag_run2(x4, lag = lag))
expect_identical(lag_run(x4, lag = lag, nearest = FALSE),
lag_run2(x4, lag = lag, nearest = FALSE))
expect_identical(lag_run(x, lag = 3, idx = idx, nearest = TRUE),
lag_run2(x, lag = 3, idx = idx, nearest = TRUE))
expect_identical(lag_run(x, lag = 3, idx = idx, nearest = FALSE),
lag_run2(x, lag = 3, idx = idx, nearest = FALSE))
expect_identical(lag_run(x, lag = -3, idx = idx, nearest = TRUE),
lag_run2(x, lag = -3, idx = idx, nearest = TRUE))
expect_identical(lag_run(x, lag = -3, idx = idx, nearest = FALSE),
lag_run2(x, lag = -3, idx = idx, nearest = FALSE))
expect_identical(lag_run(x, lag = lag, idx = idx, nearest = TRUE),
lag_run2(x, lag = lag, idx = idx, nearest = TRUE))
expect_identical(lag_run(x, lag = lag, idx = idx, nearest = FALSE),
lag_run2(x, lag = lag, idx = idx, nearest = FALSE))
expect_identical(lag_run(x2, lag = 3, idx = idx, nearest = TRUE),
lag_run2(x2, lag = 3, idx = idx, nearest = TRUE))
expect_identical(lag_run(x2, lag = 3, idx = idx, nearest = FALSE),
lag_run2(x2, lag = 3, idx = idx, nearest = FALSE))
expect_identical(lag_run(x2, lag = -3, idx = idx, nearest = TRUE),
lag_run2(x2, lag = -3, idx = idx, nearest = TRUE))
expect_identical(lag_run(x2, lag = -3, idx = idx, nearest = FALSE),
lag_run2(x2, lag = -3, idx = idx, nearest = FALSE))
expect_identical(lag_run(x2, lag = lag, idx = idx, nearest = TRUE),
lag_run2(x2, lag = lag, idx = idx, nearest = TRUE))
expect_identical(lag_run(x2, lag = lag, idx = idx, nearest = FALSE),
lag_run2(x2, lag = lag, idx = idx, nearest = FALSE))
expect_identical(lag_run(x3, lag = 3, idx = idx, nearest = TRUE),
lag_run2(x3, lag = 3, idx = idx, nearest = TRUE))
expect_identical(lag_run(x3, lag = 3, idx = idx, nearest = FALSE),
lag_run2(x3, lag = 3, idx = idx, nearest = FALSE))
expect_identical(lag_run(x3, lag = -3, idx = idx, nearest = TRUE),
lag_run2(x3, lag = -3, idx = idx, nearest = TRUE))
expect_identical(lag_run(x3, lag = -3, idx = idx, nearest = FALSE),
lag_run2(x3, lag = -3, idx = idx, nearest = FALSE))
expect_identical(lag_run(x3, lag = lag, idx = idx, nearest = TRUE),
lag_run2(x3, lag = lag, idx = idx, nearest = TRUE))
expect_identical(lag_run(x3, lag = lag, idx = idx, nearest = FALSE),
lag_run2(x3, lag = lag, idx = idx, nearest = FALSE))
expect_identical(lag_run(x4, lag = 3, idx = idx, nearest = TRUE),
lag_run2(x4, lag = 3, idx = idx, nearest = TRUE))
expect_identical(lag_run(x4, lag = 3, idx = idx, nearest = FALSE),
lag_run2(x4, lag = 3, idx = idx, nearest = FALSE))
expect_identical(lag_run(x4, lag = -3, idx = idx, nearest = TRUE),
lag_run2(x4, lag = -3, idx = idx, nearest = TRUE))
expect_identical(lag_run(x4, lag = -3, idx = idx, nearest = FALSE),
lag_run2(x4, lag = -3, idx = idx, nearest = FALSE))
expect_identical(lag_run(x4, lag = lag, idx = idx, nearest = TRUE),
lag_run2(x4, lag = lag, idx = idx, nearest = TRUE))
expect_identical(lag_run(x4, lag = lag, idx = idx, nearest = FALSE),
lag_run2(x4, lag = lag, idx = idx, nearest = FALSE))
expect_error(lag_run(x, lag = (1:9)),
"length of lag and length of x differs")
expect_error(min_run(x, lag = c(NA, lag[-1])),
"Function doesn't accept NA values in lag vector")
expect_error(lag_run(x, idx = (1:9)),
"length of idx and length of x differs")
expect_error(lag_run(x, idx = c(NA, 1:29)),
"Function doesn't accept NA values in idx vector")
expect_error(lag_run(x, idx = sample(1:30)),
"idx have to be in ascending order") |
"travel_insurance" |
.onLoad <- function(libname, pkgname) {
reticulate::configure_environment(pkgname)
} |
library(httr)
nouns_app <- oauth_app("noun_project",
key = rstudioapi::askForPassword(),
secret = rstudioapi::askForPassword()
)
url <- "http://api.thenounproject.com/icon/15"
signature <- oauth_signature(url, method = "GET", app = nouns_app)
res <- GET(url, oauth_header(signature))
stop_for_status(res)
content(res)
get_nouns_api <- function(endpoint,
baseurl = "http://api.thenounproject.com/",
app = nouns_app,
...) {
url <- modify_url(baseurl, path = endpoint)
info <- oauth_signature(url, app = app)
header_oauth <- oauth_header(info)
GET(url, header_oauth, ...)
}
res <- get_nouns_api("collections")
stop_for_status(res)
content(res)
url <- "http://api.thenounproject.com/notify/publish?test=1"
signature <- oauth_signature(url, method = "POST", app = nouns_app)
res <- POST(url, oauth_header(signature), body = list(icons = 15), encode = "json")
stop_for_status(res)
content(res) |
library("lorentz")
u <- as.3vel(c(0.6,0,0))
u
as.4vel(u)
(B <- boost(u))
B %*% c(1,0,0,0)
B %*% c(4,6,-8,9)
B %*% c(1,1,0,0)
B %*% c(1,-1,0,0)
(B <- boost(as.3vel(c(0.8,0,0))))
solve(B) %*% c(1,0,0,0)
u <- as.3vel(c(0.3,-0.4,+0.8))
v <- as.3vel(c(0.4,+0.2,-0.1))
L <- boost(u) %*% boost(v)
L
(P <- pureboost(L))
P - t(P)
(U <- orthog(L))
U[2:4,2:4]
round(crossprod(U) - diag(4),10)
sol(299792458)
sol()
u <- as.3vel(c(100,200,300))
as.4vel(u)
gam(u)
gam(u)-1
gamm1(u)
boost(u)
sol(299792458)
disp <- c(1,1,0,0)
ptm(to_natural=TRUE) %*% disp
ptm(to_natural=TRUE,change_time=FALSE) %*% disp
sol(1)
B1 <- boost((2:4)/10) %*% boost(c(-5,1,3)/10)
orthog(B1)[2:4,2:4]
sol(10)
B2 <- boost(2:4) %*% boost(c(-5,1,3))
orthog(B2)[2:4,2:4]
sol(Inf)
u <- as.3vel(1:3)
v <- as.3vel(c(-6,8,3))
u+v
boost(u)
gamm1(1e100)
set.seed(0)
options(digits=3)
(B <- rboost(1))
orthog(B)
pureboost(B)
sol(10)
u <- as.3vel(c(5,-6,4))
(U <- as.4vel(u))
B <- boost(U)
B %*% as.vector(U)
u <- 1:7
jj <- cbind(gam(u),gam(u)*u,0,0)
(U <- as.4vel(jj))
(B <- boost(as.3vel(c(6,0,0))))
U %*% t(B)
is.consistent.4vel(U %*% t(B))
tcrossprod(U,B)
solve(B)
tcrossprod(U,solve(B))
is.consistent.4vel(tcrossprod(U,solve(B)))
sol(100)
B1 <- boost(r3vel(1)) %*% boost(r3vel(1))
B2 <- boost(r3vel(1)) %*% boost(r3vel(1))
(U <- r4vel(5))
U %*% t(B1) %*% t(B2)
U %*% t(B2 %*% B1)
tcrossprod(U, B2 %*% B1)
U %>% tcrossprod(B2 %*% B1)
U %*% B
sol(1)
D <- dust(1)
D
B <- boost(as.3vel(c(0.0,0.8,0.0)))
transform_uu(D,B)
pg <- photongas(3)
pg
transform_uu(pg,B)
raise(transform_dd(lower(pg),lower(B)))
raise(transform_dd(lower(pg),lower(B))) - transform_uu(pg,B)
B1 <- boost(as.3vel(c(0.5,-0.4,0.6)))
B2 <- boost(as.3vel(c(0.1,-0.1,0.3)))
pf <- perfectfluid(4,1)
pf
pf %>% transform_uu(B1) %>% transform_uu(B2)
pf %>% transform_uu(B2 %*% B1)
lower(pf) %>% transform_dd(lower(B1) %*% lower(B2)) %>% raise()
sol(10)
pf_rest <- perfectfluid(1,4)
pf_rest
u <- as.3vel(3:5)
pf_moving <- perfectfluid(1,4,u)
pf_moving
transform_uu(perfectfluid(1,4,u),boost(u))
sol(1)
(A <- as.photon(as.3vel(cbind(0.9,1:5/40,5:1/40))))
inner4(A)
tcrossprod(A,boost(as.3vel(c(0.7,0,0))))
tcrossprod(A,boost(as.3vel(c(-0.7,0,0))))
tcrossprod(A,solve(boost(as.3vel(c(0.7,0,0)))))
m <- c(1,1,1)
B <- boost(as.3vel(c(0.5,0,0)))
A
(A <- as.4mom(A %*% t(B)))
(A <- reflect(A,m))
(A <- as.4mom(A %*% solve(t(B))))
A <- as.photon(as.3vel(cbind(0.9,1:5/40,5:1/40)))
A %>% tcrossprod(B) %>% reflect(m) %>% tcrossprod(solve(B)) %>% as.4mom
disco <- matrix(rnorm(3000),ncol=3) %>% sweep(1, sqrt(rowSums(.^2)),`/`)
head(disco)
p <- as.photon(c(1,0,0))
reflect(p,head(disco))
table(reflect(p,disco)[,2]>0)
B <- boost(as.3vel(c(0.5,0,0)))
p %>% tcrossprod(B) %>% reflect(head(disco)) %>% tcrossprod(solve(B))
sol(1)
light_start <- as.photon(as.3vel(cbind(0.9,1:5/40,5:1/40)))
m <- c(1,0,0)
B1 <- boost(as.3vel(c(-0.5, 0.1, 0.0)))
B2 <- boost(as.3vel(c( 0.2, 0.0, 0.0)))
B3 <- boost(as.3vel(c( 0.0, 0.0, 0.6)))
B <- B1 %*% B2 %*% B3
light <- light_start %*% t(B)
light <- reflect(light,m)
light <- as.4mom(light %*% solve(t(B)))
light
light_start %>% tcrossprod(B) %>% reflect(m) %>% tcrossprod(solve(B)) %>% as.4mom
sol(Inf)
light_start <- as.photon(as.3vel(cbind(0.9,1:5/40,5:1/40)))
B1 <- boost(as.3vel(c(-0.5, 0.1, 0.0)))
B2 <- boost(as.3vel(c( 0.2, 0.0, 0.0)))
B3 <- boost(as.3vel(c( 0.0, 0.0, 0.6)))
B <- B1 %*% B2 %*% B3
light_start
light_start %>% tcrossprod(B) %>% reflect(m) %>% tcrossprod(solve(B)) %>% as.4mom
sol(1)
u <- as.3vel(c(-0.7,+0.2,-0.3))
v <- as.3vel(c(+0.3,+0.3,+0.4))
w <- as.3vel(c(+0.1,+0.3,+0.8))
x <- as.3vel(c(-0.2,-0.1,-0.9))
u
u+v
v+u
(u+v)-gyr(u,v,v+u)
f <- gyrfun(u,v)
(u+v)-f(v+u)
u9 <- r3vel(9)
u9
f <- gyrfun(u9,v)
f(x)
u9+x
(u+v)+w
u+(v+w)
(u+(v+w)) - ((u+v)+gyr(u,v,w))
((u+v)+w) - (u+(v+gyr(v,u,w)))
u <- as.3vel(c(0.4,0,0))
v <- seq(as.3vel(c(0.4,-0.2,0)), as.3vel(c(-0.3,0.9,0)),len=20)
w <- as.3vel(c(0.8,-0.4,0))
comm_fail1(u=u, v=v)
comm_fail2(u=u, v=v)
ass_fail(u=u, v=v, w=w, bold=10)
u <- as.3vel(c(+0.5,0.1,-0.2))
v <- as.3vel(c(+0.4,0.3,-0.2))
w <- as.3vel(c(-0.3,0.2,+0.2))
jj1 <- u %>% add(v)
jj2 <- u+v
speed(jj1-jj2)
jj1 <- u %>% add(v) %>% add(w)
jj2 <- (u+v)+w
speed(jj1-jj2)
jj1 <- u %>% add(v %>% add(w))
jj2 <- u+(v+w)
speed(jj1-jj2)
x <- as.3vel(c(0.7, 0.0, -0.7))
y <- as.3vel(c(0.1, 0.3, -0.6))
u <- as.3vel(c(0.0, 0.8, +0.1))
v <- r3vel(5,0.9)
w <- r3vel(5,0.8)
f <- gyrfun(u,v)
g <- gyrfun(v,u)
max(speed((u+v) - f(v+u)))
max(abs(prod3(f(x),f(y)) - prod3(x,y)))
max(speed(f(x+y) - (f(x)+f(y))))
max(speed(f(g(x)) - g(f(x))))
max(speed((u+(v+w)) - ((u+v)+f(w))))
max(speed(((u+v)+w) - (u+(v+g(w))))) |
context("Aug nb families")
test_that("graph 2 families nominal", {
g <- test_dag()
f <- graphNEL2families(dag = g, class = 'A')
expect_equal(names(f), c('B', 'A'))
})
test_that("graph 2 families class not in dag ", {
g <- test_dag()
expect_error(graphNEL2families(dag = g, class = 'C'), 'last not found')
})
test_that("graph 2 families class length > 1 ", {
g <- test_dag()
expect_error(graphNEL2families(dag = g, class = LETTERS[1:2]),
'string')
})
test_that("graph 2 families Undirected graph" , {
e <- list(A = 'B', B = 'A')
edges <- graph_from_to_to_edges(c('A', 'B'), c('B', 'A'))
g <- graph_internal(nodes = LETTERS[1:2], edges, weights = NULL, edgemode = "directed")
if (!skip_testing()) expect_error(graphNEL2families(dag = g, class = LETTERS[1]), 'is_dag_graph')
g <- graph_internal(nodes = LETTERS[1:2], edges, weights = NULL, edgemode = "undirected")
if (!skip_testing()) expect_error(graphNEL2families(dag = g, class = LETTERS[1]), 'is_dag_graph')
})
test_that("check families", {
tvars <- setNames(nm = letters[1:6])
tfams <- lapply(tvars[-6], function(x) c(x, 'f'))
tfams <- append(tfams, list(f = 'f'))
check_anb_families(tfams, 'f')
tvars <- setNames(nm = letters[1:6])
tfams <- lapply(tvars[-6], function(x) c(x, 'f'))
tfams <- append(tfams, list(f = 'f'))
tfams$b <- 'b'
if (!skip_assert()) expect_error(check_anb_families(tfams, 'f'), 'fams_ok')
tvars <- setNames(nm = letters[1:6])
tfams <- lapply(tvars[-6], function(x) c(x, 'f'))
tfams <- append(tfams, list(f='f'))
tfams <- tfams[6:1]
if (!skip_assert()) expect_error(check_anb_families(tfams, 'f'), 'last')
})
test_that("is is family nominal", {
f <- letters[1:6]
expect_true(is_anb_family(f, 'a', 'f'))
})
test_that("is is family wrong var", {
f <- letters[1:6]
expect_true(!is_anb_family(f, 'b', 'f'))
})
test_that("is is family wrong class", {
f <- letters[1:6]
expect_true(!is_anb_family(f, 'a', 'e'))
})
test_that("is is family missing values", {
f <- c(letters[1:6], NA, 'g')
expect_true(!is_anb_family(f, 'a', 'g'))
})
test_that("Unique families some in common", {
a <- families(nbcar())
b <- families(nbcarp(car[, 4:7]))
fams <- unique_families(list(a, b))
expect_equal(length(fams), 7)
expect_equivalent(fams, a)
})
test_that("Unique families none in common", {
cr <- families(nbcar())
vt <- families(nbvote())
fams <- unique_families(list(cr, vt))
expect_equal(length(fams), 7 + 17)
})
test_that("Tag families nominal", {
cr <- families(nbcar())
fms <- make_families_ids(cr)
expect_equal(length(fms), 7)
expect_equal(fms[['persons']], "personsclass")
})
test_that("Acyclic order nominal", {
n <- nbcar()
o <- order_acyclic(families(n))
expect_equal(o, c('class', colnames(car)[1:6]))
})
test_that("Acyclic order a cycle", {
n <- nbcar()
n <- add_feature_parents('safety', 'lug_boot', n)
n <- add_feature_parents('lug_boot', 'doors', n)
f <- families(n)
f[['safety']] <- c('safety', 'doors', 'class')
o <- order_acyclic(f)
expect_null(o)
})
test_that("Acyclic order 0 node is a DAG", {
o <- order_acyclic(list())
expect_equal(o, character())
})
test_that("Find ancestors not in graph nominal", {
a <- tan_cl('class', car)
b <- get_ancestors('doors', families(a))
expect_true(is_perm(b, c('lug_boot', 'safety', 'buying', 'class')))
b <- get_ancestors('safety', families(a))
expect_true(is_perm(b, c('buying', 'class')))
b <- get_ancestors('class', families(a))
expect_equal(b, character())
})
test_that("Find ancestors", {
a <- nbcarclass()
b <- get_ancestors('class', families(a))
expect_equal(b, character())
})
test_that("Find ancestors not in graph", {
a <- nbcarclass()
expect_error(get_ancestors('p', families(a)), "families")
}) |
scale_color_see <- function(palette = "contrast",
discrete = TRUE,
reverse = FALSE,
...) {
pal <- palette_see(palette = palette, reverse = reverse)
if (discrete) {
discrete_scale("colour", paste0("see_", palette), palette = pal, ...)
} else {
scale_color_gradientn(colours = pal(256), ...)
}
}
scale_color_see_d <- function(palette = "contrast",
discrete = TRUE,
reverse = FALSE,
...) {
scale_color_see(
palette = palette,
discrete = discrete,
reverse = reverse,
...
)
}
scale_color_see_c <- function(palette = "contrast",
discrete = FALSE,
reverse = FALSE,
...) {
scale_color_see(
palette = palette,
discrete = discrete,
reverse = reverse,
...
)
}
scale_colour_see <- scale_color_see
scale_colour_see_c <- scale_color_see_c
scale_colour_see_d <- scale_color_see_d
scale_fill_see <- function(palette = "contrast",
discrete = TRUE,
reverse = FALSE,
...) {
pal <- palette_see(palette = palette, reverse = reverse)
if (discrete) {
discrete_scale("fill", paste0("see_", palette), palette = pal, ...)
} else {
scale_fill_gradientn(colours = pal(256), ...)
}
}
scale_fill_see_d <- function(palette = "contrast",
discrete = TRUE,
reverse = FALSE,
...) {
scale_fill_see(
palette = palette,
discrete = discrete,
reverse = reverse,
...
)
}
scale_fill_see_c <- function(palette = "contrast",
discrete = FALSE,
reverse = FALSE,
...) {
scale_fill_see(
palette = palette,
discrete = discrete,
reverse = reverse,
...
)
}
see_colors_list <- c(
`red` = "
`pink` = "
`purple` = "
`deep purple` = "
`indigo` = "
`blue` = "
`light blue` = "
`cyan` = "
`green` = "
`light green` = "
`lime` = "
`yellow` = "
`amber` = "
`orange` = "
`grey` = "
`blue grey` = "
)
see_colors <- function(...) {
cols <- c(...)
if (is.null(cols)) {
return(see_colors_list)
}
see_colors_list[cols]
}
see_palettes <- list(
`full` = see_colors(),
`ice` = see_colors("indigo", "blue", "blue grey", "cyan", "light blue"),
`rainbow` = see_colors("purple", "deep purple", "indigo", "blue", "light blue", "green", "light green", "lime", "amber", "orange", "red", "pink"),
`contrast` = see_colors("blue", "orange", "yellow", "green", "red"),
`complement` = see_colors("blue", "blue grey", "green", "light green", "yellow", "amber", "red"),
`light` = see_colors("light blue", "pink", "lime", "light green", "orange")
)
palette_see <- function(palette = "contrast", reverse = FALSE, ...) {
pal <- see_palettes[[palette]]
if (reverse) pal <- rev(pal)
grDevices::colorRampPalette(pal, ...)
} |
count_target <- function(df,
col.target = Target,
add.df = TRUE) {
df_count <- df %>%
dplyr::add_count({{col.target}}) %>%
dplyr::arrange(desc(n)) %>%
dplyr::rename("Target_count" = n) %>%
dplyr::select({{col.target}}, Target_count) %>%
dplyr::distinct()
if (add.df == FALSE) {
return(df_count)
} else {
df_merged <- dplyr::left_join(df, df_count)
return(df_merged)
}
}
count_target_helper <- function(df,
threshold = NULL,
top = NULL,
col.target = Target) {
if(is.null(top) & is.null(threshold)) {
top <- 5
}
if(!is.null(top) & !is.null(threshold)) {
stop("'top' and 'threshold' cannot be specified at the same time.
Please specify either 'top' or 'threshold'.")
}
df_count <- df %>%
dplyr::count({{col.target}}, name = "Target_count") %>%
dplyr::arrange(desc(Target_count))
if(!is.null(threshold)) {
df_count <- df_count %>%
dplyr::filter(Target_count >= threshold)
} else if(!is.null(top)) {
df_count <- df_count %>%
dplyr::top_n(n = top, wt = Target_count)
}
return(df_count)
}
plot_target_count <- function(df,
top = NULL,
threshold = NULL,
colour = "steelblue3",
col.target = Target,
title = NULL) {
if(is.null(top) & is.null(threshold)) {
top <- 5
}
if(!is.null(top) & !is.null(threshold)) {
stop("'top' and 'threshold' cannot be specified at the same time.
Please specify either 'top' or 'threshold'.")
}
if(is.null(title)) {
title <- "Top validated targets"
}
df_count <- count_target_helper(df,
top = top,
threshold = threshold,
col.target = {{col.target}}) %>%
dplyr::mutate(Target = forcats::fct_reorder(Target, Target_count))
plot <- ggplot(df_count, aes(x = Target,
y = Target_count)) +
geom_col(show.legend = FALSE,
fill = colour) +
coord_flip() +
xlab("Target") +
ylab("Validated in at least
theme_classic() +
ggtitle(title)
plot <- pretty_breaks_miretrieve(plot, df_count$Target_count)
return(plot)
}
plot_target_mir_scatter <- function(df,
mir = NULL,
target = NULL,
top = NULL,
threshold = NULL,
filter_for = "target",
col.target = Target,
col.mir = miRNA,
col.topic = Topic,
col.pmid = PMID,
title = NULL,
height = 0.05,
width = 0.05,
alpha = 0.6) {
filter_for <- stringr::str_to_lower(filter_for)
if(is.null(title)) {
title <- "miRNA-target interaction"
}
if(is.null(top) & is.null(threshold)) {
top <- 5
}
if(!is.null(top) & !is.null(threshold)) {
stop("'top' and 'threshold' cannot be specified at the same time.
Please specify either 'top' or 'threshold'.")
}
if(filter_for != "target" & filter_for != "mirna") {
stop("'filter_for' must be either 'Target'/'target' or 'miRNA'.")
}
if(!"Topic" %in% colnames(df)) {
df <- df %>%
dplyr::mutate(Topic = "NA")
}
df <- df %>%
dplyr::mutate({{col.target}}:= stringr::str_to_upper({{col.target}}))
if(!is.null(mir)) {
df <- df %>%
dplyr::filter({{col.mir}} %in% mir)
}
if(!is.null(target)) {
df <- df %>%
dplyr::filter({{col.target}} %in% target)
}
if(filter_for == "mirna") {
df <- df %>%
tidyr::drop_na({{col.mir}})
} else {
df <- df %>%
tidyr::drop_na({{col.target}})
}
df_count <- df %>%
dplyr::select({{col.target}}, {{col.mir}}, {{col.topic}}, {{col.pmid}}) %>%
dplyr::add_count({{col.target}}, name = "Target_count") %>%
dplyr::add_count({{col.mir}}, name = "miRNA_count") %>%
dplyr::mutate(miRNA = forcats::fct_reorder({{col.mir}}, miRNA_count)) %>%
dplyr::mutate(Target = forcats::fct_reorder({{col.target}}, Target_count))
if(filter_for == "target") {
df_count <- df_count %>%
dplyr::select(Target, miRNA, Target_count, {{col.topic}}, {{col.pmid}}) %>%
dplyr::rename(n = 3)
} else if(filter_for == "mirna") {
df_count <- df_count %>%
dplyr::select(Target, miRNA, miRNA_count, {{col.topic}}, {{col.pmid}}) %>%
dplyr::rename(n = 3)
}
if(!is.null(threshold)) {
df_count <- df_count %>%
dplyr::filter(n >= threshold)
} else if(!is.null(top)) {
if(filter_for == "mirna") {
vector <- df_count %>%
dplyr::select(-Target, -{{col.pmid}}, -{{col.topic}}) %>%
dplyr::distinct() %>%
dplyr::top_n(n = top, wt = n) %>%
dplyr::select(miRNA) %>%
dplyr::pull() %>%
unique()
df_count <- df_count %>%
dplyr::filter(miRNA %in% vector)
} else {
vector <- df_count %>%
dplyr::select(-miRNA, -{{col.pmid}}, -{{col.topic}}) %>%
dplyr::distinct() %>%
dplyr::top_n(n = top, wt = n) %>%
dplyr::select(Target) %>%
dplyr::pull() %>%
unique()
df_count <- df_count %>%
dplyr::filter(Target %in% vector)
}
}
df_count <- df_count %>%
dplyr::distinct({{col.pmid}}, miRNA, Target, {{col.topic}})
plot <- ggplot(df_count, aes(x = Target,
y = miRNA,
color = {{col.topic}})) +
geom_jitter(height = height,
width = width,
alpha = alpha,
size = 2,
show.legend = TRUE) +
theme_minimal() +
theme(axis.text.x = element_text(angle = 60,
hjust = 1)) +
xlab("Target") +
ylab("miRNA") +
ggtitle(title)
return(plot)
} |
anemia_df <- function(env = parent.frame()) {
tibble::tribble(
~Hb, ~age, ~male,
12.5, 20, TRUE,
13.5, 20, TRUE,
11.5, 20, FALSE,
12.5, 20, FALSE,
11.5, 13, TRUE,
12.5, 13, TRUE,
11.0, 7, TRUE,
12.0, 7, TRUE,
10.5, 3, TRUE,
11.5, 3, TRUE,
) %>%
dplyr::mutate(
Hb = units::set_units(Hb, "g/dl"),
age = units::set_units(age, "years")
)
}
anemia_ep <- function(env = parent.frame()) {
rep(c(TRUE, FALSE), 5)
}
test_that("anemia() for data.frame", {
expect_identical(
anemia(anemia_df(), "Hb", "age", "male"),
anemia_ep()
)
expect_identical(
anemia(anemia_df(), Hb, age, male),
anemia_ep()
)
expect_identical(
anemia_df() %>% anemia(Hb, age, male),
anemia_ep()
)
})
test_that("anemia() for units vector", {
expect_identical(
anemia(
anemia_df()$Hb,
anemia_df()$age,
anemia_df()$male
),
anemia_ep()
)
})
test_that("anemia() for dplyr::mutate on units", {
expect_identical(
anemia_df() %>%
dplyr::mutate(anemia = anemia(Hb, age, male)) %>%
dplyr::pull(anemia),
anemia_ep()
)
})
test_that("anemia() for dplyr::mutate on numeric", {
expect_identical(
anemia_df() %>%
dplyr::mutate(dplyr::across(c(Hb, age), as.numeric)) %>%
dplyr::mutate(anemia = anemia(Hb, age, male)) %>%
dplyr::pull(anemia),
anemia_ep()
)
}) |
med.filter <- function(y, width, minNonNAs = 5, online=FALSE, extrapolate=TRUE)
{return(robreg.filter(y=y, width=width, minNonNAs=minNonNAs, method="MED", online=online, extrapolate=extrapolate))} |
PresentationModel.default = function(...) {
args = list(...)
if (length(args) > 0) {
stop("Presentation Model doesn't know how to deal with the parameters")
}
else {
presentationmodel = structure(
list(project = list(username = "[Unknown User]", title = "[Unknown title]", description = "[No description]"),
section.by = NULL,
subsection.by = NULL,
table.by = NULL,
custom.label = NULL),
class = "PresentationModel")
}
return(presentationmodel)
} |
findMultiLims<-function(...){
.Defunct(msg="This function is defunct. See Esarey and Sumner, \"Corrigendum to 'Marginal Effects in Interaction Models: Determining and Controlling the False Positive Rate.'\" for details.")
} |
fixedCalib <- function(data, model = 1, old_mod, PAU = 'MWU', NEMC = "MEM",
technical = list(), ...){
stopifnot(PAU %in% c('NWU', 'OWU', 'MWU'))
stopifnot(NEMC %in% c("OEM", "MEM"))
global_prior <- NULL
custom_den_const <- function(obj, Theta) global_prior
custom_den_EH <- function(obj, Theta) {
ret <- if(length(obj@rr) == 0L)
global_prior
else obj@rr / sum(obj@rr)
ret
}
nfact <- extract.mirt(old_mod, 'nfact')
stopifnot(nfact == 1L)
old_itemnames <- extract.mirt(old_mod, 'itemnames')
stopifnot(all(old_itemnames %in% colnames(data)))
olddata <- extract.mirt(old_mod, 'data')
tmp <- t(data.frame(rep(NA, ncol(data) - ncol(olddata))))
rownames(tmp) <- NULL
olddata <- data.frame(olddata, tmp)
colnames(olddata) <- c(old_itemnames,
colnames(data)[!(colnames(data) %in% old_itemnames)])
fulldata <- rbind(olddata, data)
sv <- mod2values(old_mod)
sv$est <- FALSE
sv2 <- mirt(fulldata, model, pars='values', ...)
for(item in c(old_itemnames, 'GROUP')){
pick1 <- sv$item == item
pick2 <- sv2$item == item
sv2$value[pick2] <- sv$value[pick1]
sv2$est[pick2] <- FALSE
}
if(is.null(technical$NCYCLES))
if(NEMC == 'OEM') technical$NCYCLES <- 1L
technical$message <- FALSE
if(PAU %in% c('OWU', 'MWU')){
FC_mod_den <- mirt(data=extract.mirt(old_mod, 'data'),
model=extract.mirt(old_mod, 'model'),
pars=sv, dentype = 'EH', verbose=FALSE,
technical = list(NCYCLES = 1L, message = FALSE),
...)
global_prior <- FC_mod_den@Internals$Prior[[1L]]
den <- if(PAU == 'OWU') custom_den_const else custom_den_EH
par <- c(MEAN_1 = 0, COV_11 = 1)
est <- c(FALSE, FALSE)
grp <- createGroup(par, est, den, nfact = 1L)
}
mod <- if(PAU == "NWU"){
mirt(fulldata, model, pars=sv2, technical=technical, ...)
} else if(PAU %in% c("OWU", "MWU")){
mirt(fulldata, model, pars=sv2, customGroup=grp, dentype='EH',
technical=technical, ...)
}
sv_final <- mod2values(mod)
FC_mod_den <- mirt(fulldata, model, pars=sv_final,
dentype='EH', TOL=NaN, ...)
FC_mod_den
} |
gbm2sas <-
function(
gbmobject,
data=NULL,
sasfile=NULL,
ntrees=NULL,
mysasdata="mysasdata",
treeval="treeval",
prefix="do_"
) {
if(is.null(ntrees)) ntrees<-gbmobject$n.trees
maxhmmt<-0
hasprefix<-prefix!="do_"
hasmysasdata<-mysasdata!="mysasdata"
hastreeval<-treeval!="treeval"
prepwords<-"data mysasdata; set mysasdata;"
if(hasmysasdata) prepwords<-gsub("mysasdata", mysasdata, prepwords)
write.table(prepwords, sasfile, row.names=FALSE, col.names=FALSE, quote=FALSE)
numtrees<-ntrees
for(treeloop in 1:numtrees) {
pgt<-pretty.gbm.tree(gbmobject,i.tree = treeloop)[1:7]
hmmt<-dim(pgt)[1]
maxhmmt<-max(maxhmmt, hmmt)
wordsa<-"do_x=0;"
for(loop in 0:(hmmt-1)) {
if(loop>0) {
wordsb<-gsub("x", loop, wordsa)
} else {
wordsb<-"do_0=1;"
}
if(hasprefix) wordsb<-gsub("do_", prefix, wordsb)
write.table(wordsb, sasfile, row.names=FALSE, col.names=FALSE, quote=FALSE, append=TRUE)
}
words0<-"if missing(V A R1) then do_V A R5=1; else do;"
words1<-"if V A R1 lt V A R2 then do_V A R3=1; else do_V A R4=1; end;"
words2<-"if V A R1 in (V A R2) then do_V A R3=1; else do_V A R4=1; end;"
words2b<-"do_V A R4=1; end;"
words3<-"end;"
if(hasprefix) {
words0<-gsub("do_", prefix, words0)
words1<-gsub("do_", prefix, words1)
words2<-gsub("do_", prefix, words2)
words2b<-gsub("do_", prefix, words2b)
words3<-gsub("do_", prefix, words3)
}
thevarnames<-gbmobject$var.names
types<-lapply (lapply(data[,gbmobject$var.names],class), function(i) ifelse (strsplit(i[1]," ")[1]=="ordered","ordered",i))
levels<-lapply(data[,gbmobject$var.names],levels)
for(loop in 1:hmmt) {
prepwords<-paste("if do_", (loop-1), ">0 then do;", sep="")
if(hasprefix) prepwords<-gsub("do_", prefix, prepwords)
write.table(prepwords, sasfile, row.names=FALSE, col.names=FALSE, quote=FALSE, append=TRUE)
splitvar<-1+as.numeric(as.vector(pgt[loop,]$SplitVar))
splitcodepred<-as.numeric(as.vector(pgt[loop,]$SplitCodePred))
leftnode<-as.numeric(as.vector(pgt[loop,]$LeftNode))
rightnode<-as.numeric(as.vector(pgt[loop,]$RightNode))
missingnode<-as.numeric(as.vector(pgt[loop,]$MissingNode))
if(splitvar>0) {
words0a<-gsub("V A R1", thevarnames[splitvar], words0)
words1a<-gsub("V A R1", thevarnames[splitvar], words1)
words2a<-gsub("V A R1", thevarnames[splitvar], words2)
words0a<-gsub("V A R5", missingnode, words0a)
words1a<-gsub("V A R3", leftnode, words1a)
words2a<-gsub("V A R3", leftnode, words2a)
words1a<-gsub("V A R4", rightnode, words1a)
words2a<-gsub("V A R4", rightnode, words2a)
words2ab<-gsub("V A R4", rightnode, words2b)
thistype<-types[[splitvar]]
leftstring<-" "
rightstring<-" "
write.table(words0a, sasfile, row.names=FALSE, col.names=FALSE, quote=FALSE, append=TRUE)
if(thistype=="numeric") {
words1a<-gsub("V A R2", splitcodepred, words1a)
write.table(words1a, sasfile, row.names=FALSE, col.names=FALSE, quote=FALSE, append=TRUE)
} else {
if(thistype=="ordered") {
splitcodepred<-ceiling(splitcodepred)
if(splitcodepred>=1) {
theleft<-c(levels[[splitvar]][1:splitcodepred], NA)
} else {
theleft<-rep(NA, 2)
}
} else {
describer<-unlist(gbmobject$c.splits[1+splitcodepred])
theleft<-c(levels[[splitvar]][describer==-1], NA)
}
logic<-!is.na(theleft)
if(sum(as.numeric(logic))>0) {
theleft<-theleft[logic]
hmmt2<-length(theleft)
leftstring<-NULL
for(loop2 in 1:hmmt2) {
leftstring<-paste(leftstring, "'", theleft[loop2], "'", sep="")
if(loop2<hmmt2) leftstring<-paste(leftstring, ", ", sep="")
}
} else {
leftstring<-"blah"
}
if(leftstring!="blah") {
words2a<-gsub("V A R2", leftstring, words2a)
write.table(words2a, sasfile, row.names=FALSE, col.names=FALSE, quote=FALSE, append=TRUE)
} else {
write.table(words2ab, sasfile, row.names=FALSE, col.names=FALSE, quote=FALSE, append=TRUE)
}
}
} else {
prepwords<-paste("treeval", treeloop, "=", splitcodepred, ";", sep="")
if(hastreeval) prepwords<-gsub("treeval", treeval, prepwords)
write.table(prepwords, sasfile, row.names=FALSE, col.names=FALSE, quote=FALSE, append=TRUE)
}
write.table(words3, sasfile, row.names=FALSE, col.names=FALSE, quote=FALSE, append=TRUE)
}
}
wordsa<-"drop do_x;"
for(loop in 0:(maxhmmt-1)) {
if(loop>0) {
wordsb<-gsub("x", loop, wordsa)
} else {
wordsb<-"drop do_0;"
}
if(hasprefix) wordsb<-gsub("do_", prefix, wordsb)
write.table(wordsb, sasfile, row.names=FALSE, col.names=FALSE, quote=FALSE, append=TRUE)
}
write.table("run;", sasfile, row.names=FALSE, col.names=FALSE, quote=FALSE, append=TRUE)
} |
context("Print functions")
test_that("print.dcm", {
param <- param.dcm(inf.prob = 0.2, act.rate = 0.25)
init <- init.dcm(s.num = 500, i.num = 1)
control <- control.dcm(type = "SI", nsteps = 500)
mod <- dcm(param, init, control)
expect_output(print(mod), "EpiModel Simulation")
expect_output(print(mod), "Model class: dcm")
expect_output(print(mod), "Model type: SI")
expect_output(print(mod), "inf.prob = 0.2")
expect_output(print(mod), "act.rate = 0.25")
expect_output(print(mod), "Variables: s.num i.num si.flow num")
})
test_that("print.icm", {
param <- param.icm(inf.prob = 0.2, act.rate = 0.25)
init <- init.icm(s.num = 500, i.num = 1)
control <- control.icm(type = "SI", nsteps = 10, nsims = 2, verbose = FALSE)
mod <- icm(param, init, control)
expect_output(print(mod), "EpiModel Simulation")
expect_output(print(mod), "Model class: icm")
expect_output(print(mod), "Model type: SI")
expect_output(print(mod), "inf.prob = 0.2")
expect_output(print(mod), "act.rate = 0.25")
expect_output(print(mod), "Variables: s.num i.num num si.flow")
})
test_that("print.netest", {
nw <- network_initialize(n = 100)
formation <- ~edges
target.stats <- 50
coef.diss <- dissolution_coefs(dissolution = ~offset(edges), duration = 10)
est <- netest(nw, formation, target.stats, coef.diss, verbose = FALSE)
expect_output(print(est), "EpiModel Network Estimation")
expect_output(print(est), "Model class: netest")
expect_output(print(est), "Estimation Method: ERGM with Edges Approximation")
expect_output(print(est), "Formation: ~edges")
expect_output(print(est), "Target Statistics: 50")
expect_output(print(est), "Target Statistics: 10")
})
test_that("print.netsim", {
nw <- network_initialize(n = 100)
nw <- set_vertex_attribute(nw, "group", rep(c(1, 2), each = 50))
formation <- ~edges
target.stats <- 50
coef.diss <- dissolution_coefs(dissolution = ~offset(edges), duration = 20)
est <- netest(nw, formation, target.stats, coef.diss, verbose = FALSE)
param <- param.net(inf.prob = 0.3, inf.prob.g2 = 0.15)
init <- init.net(i.num = 10, i.num.g2 = 10)
control <- control.net(type = "SI", nsteps = 10, nsims = 1, verbose = FALSE)
mod <- netsim(est, param, init, control)
expect_output(print(mod), "EpiModel Simulation")
expect_output(print(mod), "Model class: netsim")
expect_output(print(mod), "Model type: SI")
expect_output(print(mod), "No. NW groups: 2")
expect_output(print(mod),
"Variables: s.num i.num num s.num.g2 i.num.g2 num.g2")
})
test_that("print.disscoefs", {
o <- dissolution_coefs(dissolution = ~offset(edges), duration = 25)
expect_output(print(o), "Dissolution Coefficients")
expect_output(print(o), "Crude Coefficient: 3.178054")
expect_output(print(o), "Mortality/Exit Rate: 0")
o <- dissolution_coefs(dissolution = ~offset(edges), duration = 25,
d.rate = 0.001)
expect_is(o, "disscoef")
expect_output(print(o), "Mortality/Exit Rate: 0.001")
o <- dissolution_coefs(dissolution =
~offset(edges) + offset(nodematch("race")),
duration = c(20, 10))
expect_output(print(o), "2.944439 -0.7472144")
expect_output(print(o), "Mortality/Exit Rate: 0")
expect_output(print(o), "Target Statistics: 20 10")
o <- dissolution_coefs(dissolution =
~offset(edges) + offset(nodematch("race")),
duration = c(20, 10), d.rate = 0.001)
expect_output(print(o), "Crude Coefficient: 2.944439 -0.7472144")
expect_output(print(o), "Adjusted Coefficient: 2.98524 -0.7678231")
})
test_that("print.param", {
p <- param.dcm(inf.prob = 0.1, rec.rate = 0.1)
expect_output(print(p), "DCM Parameters")
p <- param.icm(inf.prob = 0.1, rec.rate = 0.1)
expect_output(print(p), "ICM Parameters")
p <- param.net(inf.prob = 0.1, rec.rate = 0.1)
expect_output(print(p), "Fixed Parameters")
expect_output(print(p), "act.rate = 1")
})
test_that("print.init", {
i <- init.dcm(s.num = 10, i.num = 10)
expect_output(print(i), "DCM Initial Conditions")
i <- init.icm(s.num = 10, i.num = 10)
expect_output(print(i), "ICM Initial Conditions")
i <- init.net(s.num = 10, i.num = 10)
expect_output(print(i), "Network Model Initial Conditions")
})
test_that("print.control", {
co <- control.dcm(type = "SI", nsteps = 10)
expect_output(print(co), "DCM Control Settings")
expect_output(print(co), "odemethod = rk4")
co <- control.icm(type = "SI", nsteps = 10)
expect_output(print(co), "ICM Control Settings")
expect_output(print(co), "Base Modules: initialize.FUN")
co <- control.net(type = "SI", nsteps = 10)
expect_output(print(co), "Network Model Control Settings")
}) |
print.regtest <- function(x, digits=x$digits, ret.fit=x$ret.fit, ...) {
mstyle <- .get.mstyle("crayon" %in% .packages())
.chkclass(class(x), must="regtest")
digits <- .get.digits(digits=digits, xdigits=x$digits, dmiss=FALSE)
if (!exists(".rmspace"))
cat("\n")
cat(mstyle$section("Regression Test for Funnel Plot Asymmetry"))
cat("\n\n")
if (x$model == "lm") {
cat(mstyle$text("Model: weighted regression with multiplicative dispersion"))
} else {
cat(mstyle$text(paste("Model: ", ifelse(is.element(x$method, c("FE","EE","CE")), "fixed-effects", "mixed-effects"), "meta-regression model")))
}
cat("\n")
if (x$predictor == "sei")
cat(mstyle$text("Predictor: standard error"))
if (x$predictor == "vi")
cat(mstyle$text("Predictor: sampling variance"))
if (x$predictor == "ni")
cat(mstyle$text("Predictor: sample size"))
if (x$predictor == "ninv")
cat(mstyle$text("Predictor: inverse of the sample size"))
if (x$predictor == "sqrtni")
cat(mstyle$text("Predictor: square root sample size"))
if (x$predictor == "sqrtninv")
cat(mstyle$text("Predictor: inverse of the square root sample size"))
cat("\n")
if (ret.fit) {
if (exists(".rmspace"))
cat("\n")
if (x$model == "lm") {
print(summary(x$fit))
} else {
print(x$fit)
}
if (exists(".rmspace"))
cat("\n")
} else {
cat("\n")
}
cat(mstyle$text("Test for Funnel Plot Asymmetry: "))
if (is.na(x$ddf)) {
cat(mstyle$result(paste0("z = ", .fcf(x$zval, digits[["test"]]), ", p ", .pval(x$pval, digits[["pval"]], showeq=TRUE, sep=" "))))
} else {
cat(mstyle$result(paste0("t = ", .fcf(x$zval, digits[["test"]]), ", df = ", x$ddf, ", p ", .pval(x$pval, digits[["pval"]], showeq=TRUE, sep=" "))))
}
cat("\n")
if (!is.null(x$est)) {
if (x$predictor == "sei")
cat(mstyle$text("Limit Estimate (as sei -> 0): "))
if (x$predictor == "vi")
cat(mstyle$text("Limit Estimate (as vi -> 0): "))
if (x$predictor %in% c("ninv", "sqrtninv"))
cat(mstyle$text("Limit Estimate (as ni -> inf): "))
cat(mstyle$result(paste0("b = ", .fcf(x$est, digits[["est"]]), " (CI: ", .fcf(x$ci.lb, digits[["est"]]), ", ", .fcf(x$ci.ub, digits[["est"]]), ")")))
cat("\n")
}
if (!exists(".rmspace"))
cat("\n")
invisible()
} |
cholInv <- function (mat,
eliminate = numeric(0),
onlyFirstCol = FALSE,
onlyNonElim = FALSE)
{
.Deprecated(msg = paste("'cholInv' is deprecated as it is no longer used ",
"by gnm."))
m <- nrow(mat)
n <- ncol(mat)
if (length(eliminate) == 0) {
if (!is.matrix(mat))
stop("mat is not a matrix")
Rownames <- rownames(mat)
Colnames <- colnames(mat)
result <- chol2inv(chol(mat))
if (!is.null(Rownames))
colnames(result) <- Rownames
if (!is.null(Colnames))
rownames(result) <- Colnames
if (onlyFirstCol)
result <- result[, 1, drop = FALSE]
return(result)
}
if (m != n)
stop("mat must be a symmetric matrix")
n <- nrow(mat)
elim <- 1:n %in% eliminate
diag.indices <- (n * (0:(n - 1)) + 1:n)
Tmat <- mat[diag.indices[eliminate]]
if (any(Tmat == 0))
stop("an eliminated submatrix must have all diagonal entries non-zero.")
W <- mat[!elim, !elim, drop = FALSE]
U <- mat[elim, !elim, drop = FALSE]
Ti <- 1/Tmat
k <- length(Tmat)
Ti.U <- Ti * U
V.Ti <- t(Ti.U)
Qmat <- W - crossprod(Ti.U, U)
Qi <- cholInv(Qmat)
result <- matrix(NA, if (onlyNonElim)
n - k
else n, if (onlyFirstCol)
1
else if (onlyNonElim)
n - k
else n)
cols.notElim <- if (onlyFirstCol)
1
else if (onlyNonElim)
1:(n - k)
else !elim
rows.notElim <- if (onlyNonElim)
1:(n - k)
else !elim
if (onlyFirstCol)
Qi <- Qi[, 1, drop = FALSE]
result[rows.notElim, cols.notElim] <- Qi
if (!onlyNonElim) {
temp <- -crossprod(Qi, V.Ti)
result[elim, cols.notElim] <- t(temp)
}
if (!onlyFirstCol && !onlyNonElim) {
result[!elim, elim] <- temp
temp <- crossprod(V.Ti, Qi) %*% V.Ti
diag.indices <- k * (0:(k - 1)) + 1:k
temp[diag.indices] <- Ti + temp[diag.indices]
result[elim, elim] <- temp
}
theNames <- colnames(mat)
rownames(result) <- if (onlyNonElim)
theNames[!elim]
else theNames
colnames(result) <- if (onlyFirstCol)
theNames[!elim][1]
else if (onlyNonElim)
theNames[!elim]
else theNames
result
} |
directFeatureSelection <- function(data, class, directSearcher, evaluator){
if(!class%in%colnames(data)){
stop('The dependent variable does not exist in the dataset.')
}
if((ncol(data)-1)<2){
stop('The feature selection process requires more than 1 feature')
}
if( any( apply(data, 2, function(x) { any(is.na(x)) } ) ) ){
stop('Feature selection cannot be performed with missing values. Try to impute them previously with the preProcces function of the caret package')
}
t <- proc.time()
dfsp <- directSearcher(data, class, evaluator)
time <- proc.time()-t
res <- list()
res[[1]] <- dfsp$bestFeatures
res[[2]] <- dfsp$featuresSelected
res[[3]] <- dfsp$valuePerFeature
aux <- attr(evaluator,"name")
auxSeparate <- strsplit(aux, " ")
if(auxSeparate[[1]][length(auxSeparate[[1]])]=="Wrapper"){
res[[4]] <- "Wrapper"
res[[5]] <- auxSeparate[[1]][1]
}else{
res[[4]] <- "Filter"
res[[5]] <- aux
}
res[[6]] <- attr(directSearcher,"name")
res[[7]] <- attr(evaluator,"target")
res[[8]] <- ncol(data)-1
column.names <- names(data)
class.position <- which(column.names == class)
res[[9]] <- column.names[-class.position]
res[[10]] <- column.names[class.position]
res[[11]] <- time
names(res) <- c("bestFeatures", "featuresSelected", "valuePerFeature", "evaluationType", "evaluationMethod", "searchMethod", "target", "numFeatures", "xNames", "yName", "time")
return(res)
} |
library(knitr)
knit(
"vignettes/articles/_dates-and-times.Rmd.orig.Rmd",
"vignettes/articles/dates-and-times.Rmd"
) |
NULL
if(getRversion() >= "2.15.1") utils::globalVariables(c("."))
.onAttach <- function(libname, pkgname) {
packageStartupMessage("\nSupport women in science: 500womenscientists.org")
}
.onUnload <- function (libpath) {
library.dynam.unload("CENFA", libpath)
} |
loss_h_gradient = function(Y, Theta_h, mean_coefs, knots, beta.inner, family = "gaussian",
t_min, t_max){
Di = length(Y)
Kh = dim(Theta_h)[2]
beta = c(t_min, beta.inner, t_max)
Theta_h = cbind(1, Theta_h)
hinv_tstar = Theta_h %*% beta
mean_coefs = matrix(mean_coefs, ncol = 1)
Theta_phi = bs(hinv_tstar, knots = knots, intercept = TRUE)
Theta_phi_deriv = bs_deriv(hinv_tstar, knots)
if(family == "binomial"){
varphi = 1
b_g_deriv = plogis(Theta_phi %*% mean_coefs)
}else if (family == "gaussian"){
varphi = 1
b_g_deriv = Theta_phi %*% mean_coefs
}else{
stop("Package currently handles only 'binomial' or 'gaussian' families.")
}
gradient_mat = matrix(NA, Kh + 1, Di)
for(j in 1:Di){
gradient_mat[, j] = (Y - b_g_deriv)[j] * (Theta_phi_deriv %*% mean_coefs)[j] * Theta_h[j,]
}
grad = 1/varphi * rowSums(gradient_mat)
grad.last = length(grad)
grad.inner = grad[-c(1, grad.last)]
return(-1 * grad.inner)
} |
mdp_Q_learning <- function(P, R, discount, N) {
if ( discount <= 0 | discount > 1 ) {
print('--------------------------------------------------------')
print('MDP Toolbox ERROR: Discount rate must be in ]0; 1]')
print('--------------------------------------------------------')
} else if ( nargs() >= 4 & ifelse(!missing(N), N < 10000, F) ) {
print('--------------------------------------------------------')
print('MDP Toolbox ERROR: N must be upper than 10000')
print('--------------------------------------------------------')
} else {
if (nargs() < 4) {
N <- 10000
}
if (is.list(P)) {
S <- dim(P[[1]])[1]
A <- length(P)
} else {
S <- dim(P)[1]
A <- dim(P)[3]
}
Q <- matrix(0,S,A)
dQ <- matrix(0,S,A)
mean_discrepancy <- NULL
discrepancy <- NULL
state <- sample(1:S, 1, replace=T)
for (n in 1:N) {
if ( n %% 100 == 0 ) {
state <- sample(1:S, 1, replace=T)
}
pn <- runif(1)
if ( pn < (1-(1/log(n+2))) ) {
optimal_action <- max(Q[state,])
a <- which.max(Q[state,])
} else {
a <- sample(1:A, 1, replace=T)
}
p_s_new <- runif(1)
p <- 0
s_new <- 0
while ((p < p_s_new) & (s_new < S)) {
s_new <- s_new + 1
if (is.list(P)) {
p <- p + P[[a]][state,s_new]
} else {
p <- p + P[state,s_new,a]
}
}
if (is.list(R)) {
r <- R[[a]][state,s_new]
} else {
if(length(dim(R)) == 3) {
r <- R[state,s_new,a]
} else {
r <- R[state,a]
}
}
delta <- r + discount*max(Q[s_new,]) - Q[state,a]
dQ <- (1/sqrt(n+2))*delta
Q[state,a] <- Q[state,a] + dQ
state <- s_new
discrepancy[(n %% 100) + 1] = abs(dQ)
if(length(discrepancy) == 100) {
mean_discrepancy <- c(mean_discrepancy, mean(discrepancy))
discrepancy <- NULL
}
}
V <- apply(Q, 1, max)
policy <- apply(Q, 1, which.max)
}
return(list("Q"=Q, "V"=V, "policy"=policy, "mean_discrepancy"=mean_discrepancy))
} |
TEX.sde <- function(object, ...) UseMethod("TEX.sde")
TEX.sde.default <- function(object, ...)
{
greek <- c("alpha", "theta", "tau", "beta", "vartheta", "pi", "upsilon",
"gamma", "varpi", "phi", "delta", "kappa", "rho","iota",
"varphi", "epsilon", "lambda", "varrho", "chi", "varepsilon",
"mu", "sigma", "psi", "zeta", "nu", "varsigma", "omega", "eta",
"xi", "Gamma", "Lambda", "Sigma", "Psi", "Delta", "Xi",
"Upsilon", "Omega", "Theta", "Pi", "Phi")
greek0 <- c(paste0(greek,"0"))
greek1 <- c(paste0(greek,"1"))
greek2 <- c(paste0(greek,"2"))
greek3 <- c(paste0(greek,"3"))
greek4 <- c(paste0(greek,"4"))
greek5 <- c(paste0(greek,"5"))
greek6 <- c(paste0(greek,"6"))
greek7 <- c(paste0(greek,"7"))
greek8 <- c(paste0(greek,"8"))
greek9 <- c(paste0(greek,"9"))
greek10 <- c(paste0(greek,"10"))
greek11 <- c(paste0(greek,"11"))
greek12 <- c(paste0(greek,"12"))
greek13 <- c(paste0(greek,"13"))
greek14 <- c(paste0(greek,"14"))
greek15 <- c(paste0(greek,"15"))
greek16 <- c(paste0(greek,"16"))
greek17 <- c(paste0(greek,"17"))
greek18 <- c(paste0(greek,"18"))
greek19 <- c(paste0(greek,"19"))
greek20 <- c(paste0(greek,"20"))
greek21 <- c(paste0(greek,"21"))
greek22 <- c(paste0(greek,"22"))
greek23 <- c(paste0(greek,"23"))
greek24 <- c(paste0(greek,"24"))
greek25 <- c(paste0(greek,"25"))
greek26 <- c(paste0(greek,"26"))
greek27 <- c(paste0(greek,"27"))
greek28 <- c(paste0(greek,"28"))
greek29 <- c(paste0(greek,"29"))
greek30 <- c(paste0(greek,"30"))
greek_list <- setNames(paste0("\\", greek),greek)
greek_list0 <- setNames(paste0("\\", greek,"_","{0}"), greek0)
greek_list1 <- setNames(paste0("\\", greek,"_","{1}"), greek1)
greek_list2 <- setNames(paste0("\\", greek,"_","{2}"), greek2)
greek_list3 <- setNames(paste0("\\", greek,"_","{3}"), greek3)
greek_list4 <- setNames(paste0("\\", greek,"_","{4}"), greek4)
greek_list5 <- setNames(paste0("\\", greek,"_","{5}"), greek5)
greek_list6 <- setNames(paste0("\\", greek,"_","{6}"), greek6)
greek_list7 <- setNames(paste0("\\", greek,"_","{7}"), greek7)
greek_list8 <- setNames(paste0("\\", greek,"_","{8}"), greek8)
greek_list9 <- setNames(paste0("\\", greek,"_","{9}"), greek9)
greek_list10 <- setNames(paste0("\\", greek,"_","{10}"), greek10)
greek_list11 <- setNames(paste0("\\", greek,"_","{11}"), greek11)
greek_list12 <- setNames(paste0("\\", greek,"_","{12}"), greek12)
greek_list13 <- setNames(paste0("\\", greek,"_","{13}"), greek13)
greek_list14 <- setNames(paste0("\\", greek,"_","{14}"), greek14)
greek_list15 <- setNames(paste0("\\", greek,"_","{15}"), greek15)
greek_list16 <- setNames(paste0("\\", greek,"_","{16}"), greek16)
greek_list17 <- setNames(paste0("\\", greek,"_","{17}"), greek17)
greek_list18 <- setNames(paste0("\\", greek,"_","{18}"), greek18)
greek_list19 <- setNames(paste0("\\", greek,"_","{19}"), greek19)
greek_list20 <- setNames(paste0("\\", greek,"_","{20}"), greek20)
greek_list21 <- setNames(paste0("\\", greek,"_","{21}"), greek21)
greek_list22 <- setNames(paste0("\\", greek,"_","{22}"), greek22)
greek_list23 <- setNames(paste0("\\", greek,"_","{23}"), greek23)
greek_list24 <- setNames(paste0("\\", greek,"_","{24}"), greek24)
greek_list25 <- setNames(paste0("\\", greek,"_","{25}"), greek25)
greek_list26 <- setNames(paste0("\\", greek,"_","{26}"), greek26)
greek_list27 <- setNames(paste0("\\", greek,"_","{27}"), greek27)
greek_list28 <- setNames(paste0("\\", greek,"_","{28}"), greek28)
greek_list29 <- setNames(paste0("\\", greek,"_","{29}"), greek29)
greek_list30 <- setNames(paste0("\\", greek,"_","{30}"), greek30)
mem_sde <- c("m","S","m1","m2","m3","S1","S2","S3","C12","C13","C23")
mem_sde_tex <- c("m(t)","S(t)","m_{1}(t)","m_{2}(t)","m_{3}(t)","S_{1}(t)","S_{2}(t)","S_{3}(t)","C_{12}(t)","C_{13}(t)","C_{23}(t)")
mem_sde_list <- setNames(mem_sde_tex, mem_sde)
var_sde <- c("x","y","z","w","w1","w2","w3","X","Y","Z","W","W1","W2","W3")
var_sde_tex <- c("X_{t}","Y_{t}","Z_{t}","W_{t}","W_{1,t}","W_{2,t}",
"W_{3,t}","X_{t}","Y_{t}","Z_{t}","W_{t}","W_{1,t}","W_{2,t}",
"W_{3,t}")
var_sde_list <- setNames(var_sde_tex, var_sde)
greek_env <- list2env(as.list(c(greek_list,greek_list0,greek_list1,greek_list2,greek_list3,greek_list4,greek_list5,
greek_list6,greek_list7,greek_list8,greek_list9,greek_list10,greek_list11,greek_list12,
greek_list13,greek_list14,greek_list15,greek_list16,greek_list17,greek_list18,greek_list19,
greek_list20,greek_list21,greek_list22,greek_list23,greek_list24,greek_list25,greek_list26,
greek_list27,greek_list28,greek_list29,greek_list30,
mem_sde_list,var_sde_list)), parent = emptyenv())
unary_op <- function(left, right) {
force(left)
force(right)
function(e1) {
paste0(left, e1, right)
}
}
binary_op <- function(sep) {
force(sep)
function(e1, e2) {
if(missing(e2)){ paste0(" - ", e1) }else{ paste0(e1,sep,e2)}
}
}
f_env <- new.env(parent = emptyenv())
f_env$"+" <- binary_op(" + ")
f_env$"-" <- binary_op(" - ")
f_env$"*" <- binary_op(" \\, ")
f_env$"/" <- binary_op(" / ")
f_env$"^" <- binary_op("^")
f_env$"[" <- binary_op("_")
f_env$"==" <- binary_op("=")
f_env$"<=" <- binary_op(" \\leq ")
f_env$">=" <- binary_op(" \\geq ")
f_env$"&" <- binary_op(" \\,\\&\\, ")
f_env$"|" <- binary_op(" \\mid ")
f_env$"," <- binary_op(" \\, ")
f_env$"{" <- unary_op("\\left{ ", " \\right}")
f_env$"(" <- unary_op("\\left( ", " \\right)")
f_env$sin <- unary_op("\\sin(", ")")
f_env$cos <- unary_op("\\cos(", ")")
f_env$tan <- unary_op("\\tan(", ")")
f_env$exp <- unary_op("\\exp(", ")")
f_env$expm1 <- unary_op("\\left(\\exp(", ")-1\\right)")
f_env$sqrt <- unary_op("\\sqrt{", "}")
f_env$log <- unary_op("\\log(", ")")
f_env$log1p <- unary_op("\\log\\left(1+","\\right)")
f_env$abs <- unary_op("\\left| ", "\\right| ")
f_env$sign <- unary_op("\\mathop{\\mathrm{sgn}}(", ")")
f_env$"/" <- function(a, b) {
paste0("\\frac{", a, "}{", b, "}")
}
f_env$"P" <- unary_op(" \\mathsf{P}(",")")
f_env$"F" <- unary_op(" \\mathsf{F}(",")")
f_env$"f" <- unary_op(" \\mathsf{f}(",")")
f_env$"S" <- unary_op(" \\mathsf{S}(",")")
f_env$"H" <- unary_op(" \\mathsf{H}(",")")
f_env$"h" <- unary_op(" \\mathsf{h}(",")")
f_env$"E" <- unary_op(" \\mathsf{E}(",")")
f_env$"V" <- unary_op(" \\mathsf{V}(",")")
f_env$"COV" <- unary_op(" \\mathsf{COV}(",")")
clone_env <- function(env, parent = parent.env(env)) {
list2env(as.list(env), parent = parent)
}
latex_env <- function(expr) {
greek_env
}
if (class(object) == "data.frame"){
cat("%%% LaTeX table generated in R",strsplit(version[['version.string']], ' ')[[1]][3],"by TEX.sde() method",
"\n")
cat("%%% Copy and paste the following output in your LaTeX file",
"\n\n")
cat(knitr::kable(object, format = "latex",...),
"\n")
}else if (class(object) == "MCM.sde"){
tab <- object$MC
expr <- parse(text = rownames(tab))
names <- all.names(expr )
greek_env <- list2env(as.list(c(greek_list,greek_list1,greek_list2,greek_list3,greek_list4,greek_list5,
greek_list6,greek_list7,greek_list8,greek_list9,greek_list10,
mem_sde_list)), parent = emptyenv())
symbol_list <- setNames(as.list(names), names)
symbol_env <- list2env(symbol_list, parent = f_env)
greek_env <- clone_env(greek_env, parent = symbol_env)
rownames(tab) <- sapply(1:length(expr),function(i) eval(expr[i], latex_env(expr[i])))
greek_test <- as.list(c(mem_sde,mem_sde_tex,
greek,greek1,greek2,greek3,greek4,greek5,
greek6,greek7,greek8,greek9,greek10,greek_list,
greek_list1,greek_list2,greek_list3,greek_list4,greek_list5,
greek_list6,greek_list7,greek_list8,greek_list9,greek_list10))
rownames(tab) <- sapply(1:length(expr),function(i) ifelse(rownames(tab)[i]%in%greek_test,paste0("$", rownames(tab)[i],"$") ,rownames(tab)[i]) )
colnames(tab)[length(names(tab))] <- "CI( 2.5 \\% , 97.5 \\% )"
cat("%%% LaTeX table generated in R",strsplit(version[['version.string']], ' ')[[1]][3],"by TEX.sde() method",
"\n")
cat("%%% Copy and paste the following output in your LaTeX file",
"\n\n")
cat(knitr::kable(tab, format = "latex", escape = FALSE,...),
"\n")
}else if (class(object) == "expression"){
expr <- object
names <- all.names(expr)
symbol_list <- setNames(as.list(names), names)
symbol_env <- list2env(symbol_list, parent = f_env)
greek_env <- clone_env(greek_env, parent = symbol_env)
if (length(expr)== 2){
dr = eval(expr[[1]], latex_env(expr[[1]]))
df = eval(expr[[2]], latex_env(expr[[2]]))
body <- paste("%%% LaTeX equation generated in R",strsplit(version[['version.string']], ' ')[[1]][3],"by TEX.sde() method")
body <- c(body,paste("%%% Copy and paste the following output in your LaTeX file\n"))
body <- c(body, paste("\\begin{equation}\\label{eq:}"))
body <- c(body,paste("dX_{t} =",dr,"\\:dt + ",df,"\\:dW_{t}"))
body <- c(body, paste("\\end{equation}"))
structure(body, class = "Latex")} else
if (length(expr)== 4){
dr1 = eval(expr[[1]], latex_env(expr[[1]]))
dr2 = eval(expr[[2]], latex_env(expr[[2]]))
df1 = eval(expr[[3]], latex_env(expr[[3]]))
df2 = eval(expr[[4]], latex_env(expr[[4]]))
body <- paste("%%% LaTeX equation generated in R",strsplit(version[['version.string']], ' ')[[1]][3],"by TEX.sde() method")
body <- c(body,paste("%%% Copy and paste the following output in your LaTeX file\n"))
body <- c(body, paste("\\begin{equation}\\label{eq:}"))
body <- c(body, paste("\\begin{cases}"))
body <- c(body, paste("\\begin{split}"))
body <- c(body,paste("dX_{t} &=",dr1,"\\:dt + ",df1,"\\:dW_{1,t}","\\\\"))
body <- c(body,paste("dY_{t} &=",dr2,"\\:dt + ",df2,"\\:dW_{2,t}"))
body <- c(body, paste("\\end{split}"))
body <- c(body, paste("\\end{cases}"))
body <- c(body, paste("\\end{equation}"))
structure(body, class = "Latex")} else
if (length(expr)== 6){
dr1 = eval(expr[[1]], latex_env(expr[[1]]))
dr2 = eval(expr[[2]], latex_env(expr[[2]]))
dr3 = eval(expr[[3]], latex_env(expr[[3]]))
df1 = eval(expr[[4]], latex_env(expr[[4]]))
df2 = eval(expr[[5]], latex_env(expr[[5]]))
df3 = eval(expr[[6]], latex_env(expr[[6]]))
body <- paste("%%% LaTeX equation generated in R",strsplit(version[['version.string']], ' ')[[1]][3],"by TEX.sde() method")
body <- c(body,paste("%%% Copy and paste the following output in your LaTeX file\n"))
body <- c(body, paste("\\begin{equation}\\label{eq:}"))
body <- c(body, paste("\\begin{cases}"))
body <- c(body, paste("\\begin{split}"))
body <- c(body,paste("dX_{t} &=",dr1,"\\:dt + ",df1,"\\:dW_{1,t}","\\\\"))
body <- c(body,paste("dY_{t} &=",dr2,"\\:dt + ",df2,"\\:dW_{2,t}","\\\\"))
body <- c(body,paste("dZ_{t} &=",dr3,"\\:dt + ",df3,"\\:dW_{3,t}"))
body <- c(body, paste("\\end{split}"))
body <- c(body, paste("\\end{cases}"))
body <- c(body, paste("\\end{equation}"))
structure(body, class = "Latex")}
}else if (class(object) == "MEM.sde"){
if (object$dim==1){
expr <- c(parse(text = deparse(object$Means)),parse(text = deparse(object$Var)))
names <- all.names(expr)
symbol_list <- setNames(as.list(names), names)
symbol_env <- list2env(symbol_list, parent = f_env)
greek_env <- clone_env(greek_env, parent = symbol_env)
dm = eval(expr[[1]], latex_env(expr[[1]]))
dS = eval(expr[[2]], latex_env(expr[[2]]))
body <- paste("%%% LaTeX equation generated in R",strsplit(version[['version.string']], ' ')[[1]][3],"by TEX.sde() method")
body <- c(body,paste("%%% Copy and paste the following output in your LaTeX file\n"))
body <- c(body, paste("\\begin{equation}\\label{eq:}"))
body <- c(body, paste("\\begin{cases}"))
body <- c(body, paste("\\begin{split}"))
body <- c(body,paste("\\frac{d}{dt} m(t) &=",dm,"\\\\"))
body <- c(body,paste("\\frac{d}{dt} S(t) &=",dS))
body <- c(body, paste("\\end{split}"))
body <- c(body, paste("\\end{cases}"))
body <- c(body, paste("\\end{equation}"))
structure(body, class = "Latex")
} else if (object$dim==2){
expr <- c(parse(text = deparse(object$Means[[1]])),parse(text = deparse(object$Means[[2]])),
parse(text = deparse(object$Var[[1]])),parse(text = deparse(object$Var[[2]])),
parse(text = deparse(object$Var[[3]])))
names <- all.names(expr)
symbol_list <- setNames(as.list(names), names)
symbol_env <- list2env(symbol_list, parent = f_env)
greek_env <- clone_env(greek_env, parent = symbol_env)
dm1 = eval(expr[[1]], latex_env(expr[[1]]))
dm2 = eval(expr[[2]], latex_env(expr[[2]]))
dS1 = eval(expr[[3]], latex_env(expr[[3]]))
dS2 = eval(expr[[4]], latex_env(expr[[4]]))
dC12 = eval(expr[[5]], latex_env(expr[[5]]))
body <- paste("%%% LaTeX equation generated in R",strsplit(version[['version.string']], ' ')[[1]][3],"by TEX.sde() method")
body <- c(body,paste("%%% Copy and paste the following output in your LaTeX file\n"))
body <- c(body, paste("\\begin{equation}\\label{eq:}"))
body <- c(body, paste("\\begin{cases}"))
body <- c(body, paste("\\begin{split}"))
body <- c(body,paste("\\frac{d}{dt} m_{1}(t) ~&=",dm1,"\\\\"))
body <- c(body,paste("\\frac{d}{dt} m_{2}(t) ~&=",dm2,"\\\\"))
body <- c(body,paste("\\frac{d}{dt} S_{1}(t) ~&=",dS1,"\\\\"))
body <- c(body,paste("\\frac{d}{dt} S_{2}(t) ~&=",dS2,"\\\\"))
body <- c(body,paste("\\frac{d}{dt} C_{12}(t) &=",dC12))
body <- c(body, paste("\\end{split}"))
body <- c(body, paste("\\end{cases}"))
body <- c(body, paste("\\end{equation}"))
structure(body, class = "Latex")
} else if (object$dim==3){
expr <- c(parse(text = deparse(object$Means[[1]])),parse(text = deparse(object$Means[[2]])),parse(text =deparse(object$Means[[3]])),
parse(text = deparse(object$Var[[1]])),parse(text = deparse(object$Var[[2]])),parse(text = deparse(object$Var[[3]])),
parse(text = deparse(object$Var[[4]])),parse(text = deparse(object$Var[[5]])),parse(text =deparse(object$Var[[6]])))
names <- all.names(expr)
symbol_list <- setNames(as.list(names), names)
symbol_env <- list2env(symbol_list, parent = f_env)
greek_env <- clone_env(greek_env, parent = symbol_env)
dm1 = eval(expr[[1]], latex_env(expr[[1]]))
dm2 = eval(expr[[2]], latex_env(expr[[2]]))
dm3 = eval(expr[[3]], latex_env(expr[[3]]))
dS1 = eval(expr[[4]], latex_env(expr[[4]]))
dS2 = eval(expr[[5]], latex_env(expr[[5]]))
dS3 = eval(expr[[6]], latex_env(expr[[6]]))
dC12 = eval(expr[[7]], latex_env(expr[[7]]))
dC13 = eval(expr[[8]], latex_env(expr[[8]]))
dC23 = eval(expr[[9]], latex_env(expr[[9]]))
body <- paste("%%% LaTeX equation generated in R",strsplit(version[['version.string']], ' ')[[1]][3],"by TEX.sde() method")
body <- c(body,paste("%%% Copy and paste the following output in your LaTeX file\n"))
body <- c(body, paste("\\begin{equation}\\label{eq:}"))
body <- c(body, paste("\\begin{cases}"))
body <- c(body, paste("\\begin{split}"))
body <- c(body,paste("\\frac{d}{dt} m_{1}(t) ~&=",dm1,"\\\\"))
body <- c(body,paste("\\frac{d}{dt} m_{2}(t) ~&=",dm2,"\\\\"))
body <- c(body,paste("\\frac{d}{dt} m_{3}(t) ~&=",dm3,"\\\\"))
body <- c(body,paste("\\frac{d}{dt} S_{1}(t) ~&=",dS1,"\\\\"))
body <- c(body,paste("\\frac{d}{dt} S_{2}(t) ~&=",dS2,"\\\\"))
body <- c(body,paste("\\frac{d}{dt} S_{3}(t) ~&=",dS3,"\\\\"))
body <- c(body,paste("\\frac{d}{dt} C_{12}(t) &=",dC12,"\\\\"))
body <- c(body,paste("\\frac{d}{dt} C_{13}(t) &=",dC13,"\\\\"))
body <- c(body,paste("\\frac{d}{dt} C_{23}(t) &=",dC23))
body <- c(body, paste("\\end{split}"))
body <- c(body, paste("\\end{cases}"))
body <- c(body, paste("\\end{equation}"))
structure(body, class = "Latex")
}
}else {return(paste0("TEX.sde() function not available for this class."))}
} |
test_that(
desc = "checking ggcorrmat - without NAs - pearson's r",
code = {
skip_if_not_installed("ggcorrplot")
set.seed(123)
p <- ggcorrmat(
data = iris,
cor.vars.names = "x",
type = "p",
title = "Iris dataset",
subtitle = "By Edgar Anderson",
sig.level = 0.001,
matrix.type = "full",
p.adjust.method = "fdr",
colors = NULL,
k = 4,
ggcorrplot.args = list(
lab_col = "white",
pch.col = "white"
)
)
pb <- ggplot2::ggplot_build(p)
p_legend_title <- pb$plot$plot_env$legend.title
set.seed(123)
expect_snapshot(pb$data)
expect_snapshot(list(p$labels, pb$plot$plot_env$legend.title))
}
)
test_that(
desc = "checking ggcorrmat - without NAs - robust r",
code = {
skip_if_not_installed("ggcorrplot")
set.seed(123)
p <- ggcorrmat(
data = anscombe,
type = "r",
partial = TRUE,
cor.vars.names = names(anscombe)
)
pb <- ggplot2::ggplot_build(p)
set.seed(123)
expect_snapshot(pb$data)
expect_snapshot(list(p$labels, pb$plot$plot_env$legend.title))
}
)
test_that(
desc = "checking ggcorrmat - with NAs - robust r - partial",
code = {
skip_if_not_installed("ggcorrplot")
skip_on_ci()
set.seed(123)
p <- ggcorrmat(
data = ggplot2::msleep,
type = "r",
sig.level = 0.01,
partial = TRUE,
p.adjust.method = "hommel",
matrix.type = "upper"
) +
labs(caption = NULL)
pb <- ggplot2::ggplot_build(p)
set.seed(123)
expect_snapshot(pb$data)
expect_snapshot(list(p$labels, pb$plot$plot_env$legend.title))
}
)
test_that(
desc = "checking ggcorrmat - with NAs - spearman's rho",
code = {
skip_if_not_installed("ggcorrplot")
set.seed(123)
p <-
suppressWarnings(ggcorrmat(
data = ggplot2::msleep,
cor.vars = sleep_total:awake,
cor.vars.names = "sleep_total",
type = "np",
sig.level = 0.01,
matrix.type = "full",
p.adjust.method = "hommel",
caption.default = FALSE,
colors = NULL,
package = "wesanderson",
palette = "Rushmore1"
))
pb <- ggplot2::ggplot_build(p)
set.seed(123)
expect_snapshot(pb$data)
expect_snapshot(list(p$labels, pb$plot$plot_env$legend.title))
}
)
test_that(
desc = "checking Bayesian pearson (with NA)",
code = {
skip_if_not_installed("ggcorrplot")
set.seed(123)
p <- suppressWarnings(ggcorrmat(dplyr::select(ggplot2::msleep, brainwt, bodywt),
type = "bayes"
))
pb <- ggplot2::ggplot_build(p)
set.seed(123)
expect_snapshot(list(p$labels, pb$plot$plot_env$legend.title))
}
)
test_that(
desc = "checking all dataframe outputs",
code = {
skip_on_cran()
options(tibble.width = Inf)
skip_if_not(.Platform$OS.type == "windows")
set.seed(123)
expect_snapshot(suppressWarnings(purrr::pmap(
.l = list(
data = list(dplyr::select(ggplot2::msleep, brainwt, sleep_rem, bodywt)),
type = list("p", "p", "np", "np", "r", "r", "bf", "bayes"),
output = list("dataframe"),
partial = list(TRUE, FALSE, TRUE, FALSE, TRUE, FALSE, TRUE, FALSE)
),
.f = ggcorrmat
)))
}
) |
fetch_hook_gh_description <- function(key, namespace) {
if (!isTRUE(unname(capabilities("libcurl")))) {
stop("This vignette requires libcurl support in R to run")
}
fmt <- "https://raw.githubusercontent.com/%s/master/DESCRIPTION"
path <- tempfile("gh_description_")
on.exit(file.remove(path))
code <- download.file(sprintf(fmt, key), path, mode = "wb")
if (code != 0L) {
stop("Error downloading file")
}
as.list(read.dcf(path)[1, ])
}
st <- storr::storr_external(storr::driver_environment(),
fetch_hook_gh_description)
st$list()
d <- st$get("richfitz/storr")
identical(st$get("richfitz/storr"), d)
st$list()
tryCatch(st$get("richfitz/no_such_repo"),
KeyErrorExternal = function(e)
message(sprintf("** Repository %s not found", e$key)))
st_rds <- st$export(storr::storr_rds(tempfile(), mangle_key = TRUE))
st_rds$list()
st_rds$get("richfitz/storr")$Version
st_rds$destroy()
f <- function(a, b) {
message(sprintf("Computing f(%.3f, %.3f)", a, b))
list(a, b)
}
pars <- data.frame(id = as.character(1:10), a = runif(10), b = runif(10),
stringsAsFactors = FALSE)
hook <- function(key, namespace) {
p <- pars[match(key, pars$id), -1]
f(p$a, p$b)
}
st <- storr::storr_external(storr::driver_environment(), hook)
x <- st$get("1")
identical(st$get("1"), x)
st <- storr::storr_environment()
st$set("experiment1", pars, namespace = "parameters")
st$set("experiment1", f, namespace = "functions")
hook2 <- function(key, namespace) {
f <- st$get(namespace, namespace = "functions")
pars <- st$get(namespace, namespace = "parameters")
p <- pars[match(key, pars$id), -1]
f(p$a, p$b)
}
st_use <- storr::storr_external(st$driver, hook2)
x1 <- st_use$get("1", "experiment1")
x2 <- st_use$get("1", "experiment1")
memoise <- function(f, driver = storr::driver_environment()) {
force(f)
st <- storr::storr(driver)
function(...) {
key <- digest::digest(list(...))
tryCatch(
st$get(key),
KeyError = function(e) {
ans <- f(...)
st$set(key, ans)
ans
})
}
}
f <- function(x) {
message("computing...")
x * 2
}
g <- memoise(f)
g(1)
g(1) |
cwres.vs.cov <-
function(object,
ylb = "CWRES",
smooth=TRUE,
type="p",
main="Default",
...) {
if(is.null(check.vars(c("covariates","cwres"),
object,silent=FALSE))) {
return()
}
number.of.plots <- 0
for (i in xvardef("covariates", object)) {
number.of.plots <- number.of.plots + 1
}
plotList <- vector("list",number.of.plots)
plot.num <- 0
for (j in xvardef("covariates", object)) {
xplot <- xpose.plot.default(j,
xvardef("cwres",object),
object,
main=NULL,
ylb = ylb,
smooth=smooth,
type=type,
pass.plot.list=TRUE,
...)
plot.num <- plot.num+1
plotList[[plot.num]] <- xplot
}
default.plot.title <- paste(xlabel(xvardef("cwres",object),object),
" vs ",
"Covariates",
sep="")
plotTitle <- xpose.multiple.plot.title(object=object,
plot.text = default.plot.title,
main=main,
...)
obj <- xpose.multiple.plot(plotList,plotTitle,...)
return(obj)
} |
.onLoad <- function(libname, pkgname) {
onLoadSetCenterOnScalar()
onLoadSetCenterOnUse()
onLoadSetVarsFormulaFreq()
onLoadSetVarsFormulaOnMistake()
action <- Sys.getenv("R_MATRIXSTATS_VALIDATEINDICES", NA_character_)
if (!is.na(action)) {
action <- match.arg(action, choices = c("deprecated", "defunct"))
options(matrixStats.validateIndices = action)
}
}
.onUnload <- function(libpath) {
library.dynam.unload("matrixStats", libpath)
} |
aa.compare <-
function(x, seqlength){
specimen = nrow(x)
aa <- c("A", "C", "D", "E", "F", "G", "H", "I", "K", "L", "M", "N", "P", "Q", "R", "S", "T", "V", "W", "Y")
VLF.count = mat.or.vec(nr = 20, nc = seqlength)
single <- rep(0,216)
shared <- rep(0,216)
for(i in 1:seqlength){
for(n in 1:nrow(x)){
if(is.na(x[n,i+2]) == FALSE){
z = 1
match = FALSE
while(match == FALSE && z <= length(aa)){
if(x[n, i+2] == aa[z]){
VLF.count[z,i] = VLF.count[z,i] + 1
match = TRUE
}
else{
z = z + 1
}
}
}
}
}
for(i in 1:seqlength){
for(z in 1:20){
if(VLF.count[z,i] == 1)
{
single[i] = single[i] + 1
}
else{
if(VLF.count[z,i] > 1){
shared[i] = shared[i] + VLF.count[z,i]
}
}
}
}
return(rbind(single,shared))
} |
qreg.hit = function(DATA1, DATA2, vecA)
{
Tsize = nrow(DATA1)
p1 = ncol(DATA1)
p2 = ncol(DATA2)
qfit1 = rq(DATA1[,1] ~ DATA1[,2:p1], vecA[1])
qfit2 = rq(DATA2[,1] ~ DATA2[,2:p2], vecA[2])
vecRes1 = qfit1$residuals
vecRes2 = qfit2$residuals
matRes = data.matrix( cbind(vecRes1, vecRes2) )
vecI = matrix(1, Tsize, 1)
mat0 = matrix(0, nrow = Tsize, 2)
matQhit = (matRes <= mat0 ) - vecI %*% t(vecA)
return(matQhit)
} |
library(soundgen)
s1 = soundgen(sylLen = 900, temperature = 0.001,
pitch = list(time = c(0, .3, .8, 1),
value = c(300, 900, 400, 1300)),
noise = c(-40, -20),
subFreq = 100, subDep = 20, jitterDep = 0.5,
plot = TRUE, ylim = c(0, 4))
osc(s1, samplingRate = 16000, dB = TRUE)
seewave::meanspec(s1, f = 16000, dB = 'max0', main = 'Spectrum')
spectrogram(
s1, samplingRate = 16000,
osc = 'dB',
heights = c(2, 1),
noiseReduction = .5,
brightness = -1,
contrast = .5,
colorTheme = 'heat.colors',
cex.lab = .75, cex.axis = .75,
grid = 5,
ylim = c(0, 5),
main = 'Spectrogram'
)
audSpectrogram(s1, samplingRate = 16000,
nFilters = 128, step = 5,
colorTheme = 'terrain.colors',
main = 'Auditory spectrogram')
modulationSpectrum(s1, samplingRate = 16000, colorTheme = 'seewave',
plot = TRUE, main = 'Modulation spectrum')
ssm(s1, samplingRate = 16000, main = 'Self-similarity matrix')
a1 = analyze(s1, samplingRate = 16000, plot = TRUE, ylim = c(0, 4))
median(a1$detailed$pitch, na.rm = TRUE)
spec = seewave::spec(s1, f = 16000, plot = FALSE)
avSpec = seewave::meanspec(s1, f = 16000, plot = FALSE)
head(avSpec)
spgm = spectrogram(s1, samplingRate = 16000, output = 'original', plot = FALSE)
str(spgm)
spgm_norm = apply(spgm, 2, function(x) x / sum(x))
out = data.frame(skew = rep(NA, ncol(spgm)),
quantile66 = NA,
ratio500 = NA)
for (i in 1:ncol(spgm_norm)) {
df = data.frame(
freq = as.numeric(rownames(spgm_norm)),
d = spgm_norm[, i]
)
m = sum(df$freq * df$d)
out$skew[i] = sum((df$freq - m)^3 * df$d)
out$quantile66[i] = df$freq[min(which(cumsum(df$d) >= 2/3))]
out$ratio500[i] = sum(df$d[df$freq >= .5]) / sum(df$d[df$freq < .5])
}
summary(out)
a = analyze(s1, samplingRate = 16000, priorSD = 24,
pitchMethods = c('autocor', 'cep', 'dom', 'spec', 'hps', 'zc'),
plot = TRUE, ylim = c(0, 4))
par(mfrow = c(1, 2))
getPrior(priorMean = 300, priorSD = 6)
getPrior(priorMean = 2000, priorSD = 1)
par(mfrow = c(1, 1))
a = analyze(s1, samplingRate = 16000,
plot = TRUE, ylim = c(0, 2), osc = FALSE,
priorMean = NA, priorAdapt = FALSE,
pitchMethods = 'autocor',
pitchAutocor = list(autocorThres = .45,
col = 'green'),
nCands = 3)
a = analyze(s1, samplingRate = 16000,
plot = TRUE, ylim = c(0, 2), osc = FALSE,
priorMean = NA, priorAdapt = FALSE,
pitchMethods = 'dom',
pitchDom = list(domThres = .1, domSmooth = 500, cex = 1.5))
a = analyze(s1, samplingRate = 16000,
plot = TRUE, ylim = c(0, 2), osc = FALSE,
priorMean = NA, priorAdapt = FALSE,
pitchMethods = 'cep',
pitchCep = list(cepThres = .6),
nCands = 3)
a = analyze(s1, samplingRate = 16000,
plot = TRUE, ylim = c(0, 2), osc = FALSE,
priorMean = NA, priorAdapt = FALSE,
pitchMethods = 'spec',
pitchSpec = list())
a = analyze(s1, samplingRate = 16000,
plot = TRUE, ylim = c(0, 2), osc = FALSE,
priorMean = NA, priorAdapt = FALSE,
pitchMethods = 'hps',
pitchHps = list(hpsNum = 2,
hpsThres = .2))
a = analyze(s1, samplingRate = 16000,
plot = TRUE, ylim = c(0, 2), osc = FALSE,
priorMean = NA, priorAdapt = FALSE,
pitchMethods = 'zc',
pitchCeiling = 600,
pitchZc = list(zcWin = 3, zcThres = 0))
s_withoutf0 = soundgen(sylLen = 600, pitch = 300,
rolloffExact = c(0, 1, 1, 1), formants = NULL, lipRad = 0)
seewave::meanspec(s_withoutf0, f = 16000, dB = 'max0', flim = c(0, 3))
a_withoutf0 = analyze(s_withoutf0, 16000, priorMean = NA, priorAdapt = FALSE,
pitchMethods = c('autocor', 'dom', 'cep', 'spec', 'hps', 'zc'),
pitchSpec = list(specMethod = 'BaNa'),
plot = TRUE, ylim = c(0, 2), dynamicRange = 60, osc = FALSE)
a = analyze(
s1,
samplingRate = 16000, plot = TRUE, ylim = c(0, 4), priorMean = NA,
shortestSyl = 0,
interpol = NULL,
pathfinding = 'none',
snakeStep = 0,
smooth = 0
)
a1 = analyze(s1, samplingRate = 16000, step = 10, priorMean = NA,
pitchMethods = 'cep', pitchCep = list(cepThres = .8),
interpol = NULL,
pathfinding = 'none',
snakeStep = 0, smooth = 0, plot = FALSE)
a2 = analyze(s1, samplingRate = 16000, step = 10, priorMean = NA,
pitchMethods = 'cep', pitchCep = list(cepThres = .8),
interpol = list(win = 100, tol = .1),
pathfinding = 'none',
snakeStep = 0, smooth = 0, plot = FALSE)
plot(a1$detailed$time, a1$detailed$pitch, type = 'l', main = 'Interpolation',
xlab = 'Time, ms', ylab = 'Pitch, Hz')
points(a2$detailed$time, a2$detailed$pitch, type = 'l',
col = 'red', lty = 3)
a1 = analyze(s1, samplingRate = 16000, priorMean = NA,
pitchMethods = 'cep', pitchCep = list(cepThres = .7), nCands = 3,
pathfinding = 'none', snakeStep = 0, interpolTol = Inf,
smooth = 0,
summaryFun = NULL, plot = FALSE)
a1$detailed$medianSmooth = soundgen:::medianSmoother(
data.frame(pitch = a1$detailed$pitch), smoothing_ww = 3, smoothingThres = 1
)$pitch
plot(pitch ~ time, data = a1$detailed, type = 'l', main = 'Median smoothing',
xlab = 'Time, ms', ylab = 'Pitch, Hz')
points(medianSmooth ~ time, data = a1$detailed, type = 'l',
col = 'red', lty = 3, lwd = 2)
a1$detailed$ps = pitchSmoothPraat(
a1$detailed$pitch,
bandwidth = 5,
samplingRate = 1000/25)
plot(pitch ~ time, data = a1$detailed, type = 'l', main = 'Low-pass smoothing',
xlab = 'Time, ms', ylab = 'Pitch, Hz')
points(ps ~ time, data = a1$detailed, type = 'l', col = 'red', lty = 3, lwd = 2)
a = analyze(
s1, samplingRate = 16000, plot = TRUE, priorMean = NA,
xlab = 'Time (ms)',
main = 'My spectrogram',
dynamicRange = 90,
contrast = .5,
brightness = -0.3,
colorTheme = 'seewave',
ylim = c(0, 4),
osc = 'dB',
heights = c(3, 1),
pitchPlot = list(
col = 'black',
lwd = 5,
lty = 3
),
pitchAutocor = list(col = rgb(0, 1, 0, .5), pch = 16, cex = 2),
pitchDom = list(col = 'red', cex = 4)
)
pd = pitchDescriptives(
a1$detailed$pitch, step = a1$detailed$time[2] - a1$detailed$time[1],
timeUnit = 'ms',
smoothBW = c(10, 1),
inflThres = .2,
plot = TRUE
)
colnames(pd)
s2 = soundgen(nSyl = 8, sylLen = 50, pauseLen = 70, temperature = 0,
pitch = c(368, 284), amplGlobal = c(0, -20))
s2 = s2 + runif(length(s2), -10 ^ (-20 / 20), 10 ^ (-20 / 20))
a = segment(s2, samplingRate = 16000, plot = TRUE)
a1 = segment(s2, samplingRate = 16000, plot = TRUE,
SNR = 0.1, main = 'SNR very low')
a2 = suppressWarnings(segment(s2, samplingRate = 16000, plot = TRUE,
SNR = 14, main = 'SNR very high'))
a1 = segment(s2, samplingRate = 16000, plot = TRUE,
windowLength = 40, overlap = 0, main = 'overlap too low')
a2 = suppressWarnings(segment(s2, samplingRate = 16000, plot = TRUE,
windowLength = 5, overlap = 80, main = 'window too short'))
a3 = segment(s2, samplingRate = 16000, plot = TRUE,
windowLength = 150, overlap = 80, main = 'window too long')
a1 = segment(s2, samplingRate = 16000, plot = TRUE,
shortestSyl = 80, main = 'shortestSyl too long')
a2 = segment(s2, samplingRate = 16000, plot = TRUE,
shortestPause = 80, main = 'shortestPause too long')
dur = .5
samplingRate = 16000
f0 = getSmoothContour(c(70, 8000), len = samplingRate * dur, thisIsPitch = TRUE)
sweep = sin(2 * pi * cumsum(f0) / samplingRate)
a = analyze(sweep, samplingRate = samplingRate, pitchMethods = NULL, plot = FALSE)
par(mfrow = c(1, 2))
plot(a$detailed$time, a$detailed$ampl, type = 'l', ylim = c(0, 1), main = 'RMS')
plot(a$detailed$time, a$detailed$loudness, type = 'l', main = 'Loudness')
par(mfrow = c(1, 1))
l = getLoudness(sweep, samplingRate = 16000)
s = soundgen(pitch = 70, amFreq = 25, amDep = 80, rolloff = -15)
ms = modulationSpectrum(s, samplingRate = 16000, logWarp = NULL,
windowLength = 25, step = 25, amRes = NULL)
ms = modulationSpectrum(s, samplingRate = 16000, logWarp = NULL,
windowLength = 40, step = 10, amRes = NULL)
ms = modulationSpectrum(
s, samplingRate = 16000, windowLength = 15, step = 5,
amRes = NULL,
logSpec = FALSE,
power = 2,
roughRange = c(30, 150),
amRange = c(10, 70),
logWarp = 2,
kernelSize = 7,
quantiles = c(.5, .8, .95, .99),
colorTheme = 'terrain.colors'
)
ms[c('roughness', 'amFreq', 'amDep')]
s3 = c(soundgen(), soundgen(nSyl = 4, sylLen = 50, pauseLen = 70,
formants = NA, pitch = c(500, 330)))
m = ssm(s3, samplingRate = 16000)
par(mfrow = c(2, 1))
m1 = ssm(s3, samplingRate = 16000,
input = 'melspec', simil = 'cor', norm = FALSE,
ssmWin = 10, kernelLen = 150)
m2 = ssm(s3, samplingRate = 16000,
input = 'mfcc', simil = 'cosine', norm = TRUE,
ssmWin = 50, kernelLen = 600)
par(mfrow = c(1, 1)) |
"ucedergreen" <- function(
fixed = c(NA, NA, NA, NA, NA), names = c("b", "c", "d", "e", "f"),
method = c("1", "2", "3", "4"), ssfct = NULL,
alpha)
{
numParm <- 5
if (!is.character(names) | !(length(names) == numParm)) {stop("Not correct 'names' argument")}
if (!(length(fixed) == numParm)) {stop("Not correct 'fixed' argument")}
if (missing(alpha)) {stop("'alpha' argument must be specified")}
notFixed <- is.na(fixed)
parmVec <- rep(0, numParm)
parmVec[!notFixed] <- fixed[!notFixed]
parmVec1 <- parmVec
parmVec2 <- parmVec
fct <- function(dose, parm)
{
parmMat <- matrix(parmVec, nrow(parm), numParm, byrow = TRUE)
parmMat[, notFixed] <- parm
numTerm <- parmMat[, 3] - parmMat[, 2] + parmMat[, 5]*exp(-1/dose^alpha)
denTerm <- 1 + exp(parmMat[, 1]*(log(dose) - log(parmMat[, 4])))
parmMat[, 3] - numTerm/denTerm
}
if (!is.null(ssfct))
{
ssfct <- ssfct
} else {
ssfct <- function(dframe)
{
initval <- llogistic()$ssfct(dframe)
initval[1] <- -initval[1]
initval[5] <- 0
return(initval[notFixed])
}
}
deriv1 <- function(dose, parm)
{
parmMat <- matrix(parmVec, nrow(parm), numParm, byrow=TRUE)
parmMat[, notFixed] <- parm
t0 <- exp(-1/(dose^alpha))
t1 <- parmMat[, 3] - parmMat[, 2] + parmMat[, 5]*t0
t2 <- exp(parmMat[, 1]*(log(dose) - log(parmMat[, 4])))
t3 <- 1 + t2
t4 <- (1 + t2)^(-2)
cbind( t1*xlogx(dose/parmMat[, 4], parmMat[, 1])*t4,
1/t3,
1 - 1/t3,
-t1*t2*(parmMat[, 1]/parmMat[, 4])*t4,
-t0/t3 )[, notFixed]
}
deriv2 <- NULL
edfct <- function(parm, p, lower = 1e-4, upper = 10000, ...)
{
cedergreen(fixed = fixed, names = names, alpha = alpha)$edfct(parm, 100 - p, lower, upper, ...)
}
maxfct <- function(parm, upper, interval)
{
retVal <- cedergreen(fixed = fixed, names = names, alpha = alpha)$maxfct(parm, upper, interval)
retVal[2] <- (parm[2] + parm[3]) - retVal[2]
return(retVal)
}
returnList <-
list(fct = fct, ssfct = ssfct, names = names[notFixed], edfct = edfct, maxfct = maxfct,
name = "ucedergreen",
text = "U-shaped Cedergreen-Ritz-Streibig",
noParm = sum(is.na(fixed)))
class(returnList) <- "UCRS"
invisible(returnList)
}
"UCRS.4a" <-
function(names = c("b", "d", "e", "f"), ...)
{
if (!is.character(names) | !(length(names) == 4)) {stop("Not correct 'names' argument")}
return(ucedergreen(names = c(names[1], "c", names[2:4]), fixed = c(NA, 0, NA, NA, NA), alpha = 1, ...))
}
uml3a <- UCRS.4a
"UCRS.4b" <-
function(names = c("b", "d", "e", "f"), ...)
{
if (!is.character(names) | !(length(names) == 4)) {stop("Not correct 'names' argument")}
return(ucedergreen(names = c(names[1], "c", names[2:4]), fixed = c(NA, 0, NA, NA, NA), alpha = 0.5, ...))
}
uml3b <- UCRS.4b
"UCRS.4c" <-
function(names = c("b", "d", "e", "f"), ...)
{
if (!is.character(names) | !(length(names) == 4)) {stop("Not correct 'names' argument")}
return(ucedergreen(names = c(names[1], "c", names[2:4]), fixed = c(NA, 0, NA, NA, NA), alpha = 0.25, ...))
}
uml3c <- UCRS.4c
"UCRS.5a" <-
function(names = c("b", "c", "d", "e", "f"), ...)
{
if (!is.character(names) | !(length(names) == 5)) {stop("Not correct 'names' argument")}
return(ucedergreen(names = names, fixed = c(NA, NA, NA, NA, NA), alpha = 1, ...))
}
uml4a <- UCRS.5a
"UCRS.5b" <-
function(names = c("b", "c", "d", "e", "f"), ...)
{
if (!is.character(names) | !(length(names) == 5)) {stop("Not correct 'names' argument")}
return(ucedergreen(names = names, fixed = c(NA, NA, NA, NA, NA), alpha = 0.5, ...))
}
uml4b <- UCRS.5b
"UCRS.5c" <-
function(names = c("b", "c", "d", "e", "f"), ...)
{
if (!is.character(names) | !(length(names) == 5)) {stop("Not correct 'names' argument")}
return(ucedergreen(names = names, fixed = c(NA, NA, NA, NA, NA), alpha = 0.25, ...))
}
uml4c <- UCRS.5c |
context("test-color-spaces")
hex_codes <- c("
"
"
test_that("Colour space conversions pass without error", {
expect_equal(sum(is.na(hex_to_lab(hex_codes))), 0)
expect_equal(sum(is.na(hex_to_rgb(hex_codes))), 0)
expect_equal(sum(is.na(hex_to_lab(hex_codes, transformation = "Adobe"))), 0)
expect_equal(sum(is.na(rgb_to_hex(hex_to_rgb(hex_codes)))), 0)
expect_equal(sum(is.na(lab_to_hex(hex_to_lab(hex_codes)))), 0)
expect_equal(sum(is.na(lab_to_hex(hex_to_lab(hex_codes, transformation = "Adobe"), transformation = "Adobe"))), 0)
})
test_that("Colour space conversions and back again with sRGB", {
expect_equal(rgb_to_hex(hex_to_rgb(hex_codes)), tolower(hex_codes))
expect_equal(xyz_to_hex(hex_to_xyz(hex_codes)), tolower(hex_codes))
expect_equal(lab_to_hex(hex_to_lab(hex_codes)), tolower(hex_codes))
})
test_that("Colour space conversions and back again with sRGB", {
expect_equal(xyz_to_hex(hex_to_xyz(hex_codes, transformation = "Adobe"), transformation = "Adobe"), tolower(hex_codes))
expect_equal(lab_to_hex(hex_to_lab(hex_codes, transformation = "Adobe"), transformation = "Adobe"), tolower(hex_codes))
}) |
csPlot <- function(cs1,
cs2,
group = NULL,
data = NULL,
ylab = "CRs",
col = c("black", "grey"),
legend = c("cs1", "cs2")) {
if (!is.null(data)) {
cs1 <- data[, deparse(substitute(cs1))]
cs2 <- data[, deparse(substitute(cs2))]
if (deparse(substitute(group)) != "NULL") {
group <- as.factor(data[, deparse(substitute(group))])
}
}
if (!is.null(group)) {
ng <- length(unique(stats::na.omit(group)))
if (ng %in% c(0, 1)) {
group <- NULL
} else {
if (ng > 2) {
stop("You can define up to two groups.
Number of groups defined: ",
as.character(ng))
}
}
}
if (!is.null(group)) {
desc <-
by(
data.frame(cs1, cs2, stringsAsFactors = FALSE),
group,
psych::describe,
skew = FALSE,
ranges = FALSE
)
} else {
desc <-
psych::describe(
data.frame(cs1, cs2, stringsAsFactors = FALSE),
skew = FALSE,
ranges = FALSE
)
}
opmar <- graphics::par()$mar
opmgp <- graphics::par()$mgp
on.exit(graphics::par(mar = opmar, mgp = opmgp))
graphics::par(mar = c(6, 10, 4.1, 8.1), mgp = c(2, 1, .5))
if (length(col) != length(legend)) {
warning(
"The length of the color argument,
(i.e., ",
length(col),
"), is different than the length
of the legend argument, (i.e.,",
length(legend),
").
The plotted legends may not correspond to the right bars."
)
}
if (!is.null(group)) {
meanz <- c(desc[[1]]["mean"], desc[[2]]["mean"])
sdz <- c(desc[[1]]["se"], desc[[2]]["se"])
graphics::barplot(
matrix(unlist(meanz), 2, 2),
col = col,
beside = TRUE,
names.arg = unlist(attr(table(group), "dimnames")),
cex.names = 1.5,
cex.main = 1.5,
las = 1,
cex.lab = 2,
cex.axis = 1,
bty = "n",
lwd = 1,
xpd = TRUE,
pch = 19
)
graphics::mtext(ylab,
2,
line = 3,
cex = 1.5,
las = 0)
graphics::legend(
x = "topright",
legend = legend,
inset = c(-0.2, 0),
title = "Stimulus",
bty = "n",
pch = 15,
bg = "black",
col = col,
cex = 1.5,
xpd = TRUE
)
} else {
meanz <- desc["mean"]
sdz <- desc["se"]
graphics::barplot(
as.numeric(unlist(meanz)),
col = col,
names.arg = NULL,
cex.main = 1.5,
las = 1,
cex.lab = 2,
cex.axis = 1,
bty = "n",
lwd = 1,
xpd = TRUE,
pch = 19
)
graphics::mtext(ylab,
2,
line = 3,
cex = 1.5,
las = 0)
graphics::legend(
x = "topright",
legend = legend,
inset = c(-0.2, 0),
title = "Stimulus",
bty = "n",
pch = 15,
bg = "black",
col = col,
cex = 1.5,
xpd = TRUE
)
}
} |
generateJAGSlhd.gamma <- function(jags.model.args,
mean.model,
dispersion.model,
rounding,
residuals,
include.checks){
string <- c("\t\t
"\t\t y[i] ~ dgamma(ry[i], lambday[i])\n\n")
if(rounding){
string <- c(string,
generateJAGSrounding(jags.model.args))
}
string <- c(string,
"\t\t
if(is.null(dispersion.model$weights))
string <- c(string,
"\t\t lambday[i] <- weights[i]/phi[i]\n",
"\t\t ry[i] <- weights[i] * muy[i] * lambday[i]\n")
else
string <- c(string,
"\t\t lambday[i] <- 1/phi[i]\n",
"\t\t ry[i] <- muy[i] * lambday[i]\n")
string <- c(string,
"\t\t vary[i] <- phi[i] * muy[i]\n",
"\t\t sdy[i] <- sqrt(vary[i])\n\n")
if(include.checks){
string <- c(string,
generateJAGSchecks(jags.model.args,
"(muy[i] > 0)",
"(phi[i] > 0)"))
}
if(residuals){
string <- c(string,
"\t\t
"\t\t resid[i] <- (y[i] - muy[i])/sdy[i]\n\n")
}
string
}
|
library(xpectr)
context("element descriptors")
test_that("num_total_elements() works", {
l <- list(list(list(1, 2, 3), list(2, list(3, 2))),
list(1, list(list(2, 4), list(7, 1, list(3, 8)))),
list(list(2, 7, 8), list(10, 2, list(18, 1, 4))))
expect_equal(num_total_elements(l), 21)
expect_equal(num_total_elements(l, deduplicated = TRUE), 8)
l <- list(list(list("1", "2", "3"), list("2", list("3", "2"))),
list("1", list(list("2", "4"), list("7", "1", list("3", "8")))),
list(list("2", "7", "8"), list("10", "2", list("18", "1", "4"))))
expect_equal(num_total_elements(l), 21)
expect_equal(num_total_elements(l, deduplicated = TRUE), 8)
})
test_that("element_lengths() works", {
l <- list(list(list(1, 2, 3), list(2, list(3, 2))),
list(1, list(list(2, 4), list(7, 1, list(3, 8)))),
list(list(2, 7, 8), list(10, 2, list(18, 1, 4))))
expect_equal(element_lengths(l), c(2, 2, 2))
expect_equal(element_lengths(l, keep_names = TRUE), c(2, 2, 2))
l <- list("x" = list(list(1, 2, 3), list(2, list(3, 2))),
"y" = list(1, list(list(2, 4), list(7, 1, list(3, 8)))),
"z" = list(list(2, 7, 8), list(10, 2, list(18, 1, 4))))
expect_equal(element_lengths(l), c(2, 2, 2))
expect_equal(element_lengths(l, keep_names = TRUE),
c(x = 2L, y = 2L, z = 2L))
vec <- list("a" = c(1,2,3), "b" = c(4,3,2), "c" = c(7,6,5,4,3,2))
expect_equal(element_lengths(vec), c(3, 3, 6))
})
test_that("element_types() works", {
l <- list("a" = c(1,2,3), "b" = "a", "c" = NULL, "d" = NA, "e" = formula(x ~ b))
expect_equal(element_types(l),
c("double", "character", "NULL", "logical", "language"))
expect_equal(element_types(l, keep_names = TRUE),
c(a = "double", b = "character", c = "NULL",
d = "logical", e = "language"))
})
test_that("element_classes() works", {
l <- list("a" = c(1,2,3), "b" = "a", "c" = NULL, "d" = NA,
"e" = formula(x ~ b))
expect_equal(element_classes(l),
c("numeric", "character", "NULL", "logical", "formula"))
expect_equal(element_classes(l, keep_names = TRUE),
c(a = "numeric", b = "character",
c = "NULL", d = "logical", e = "formula"))
}) |
install.python = function (page_with_download_url = "https://www.python.org/downloads/windows/",
version_number = 3,
x64 = TRUE,
...)
{
page <- readLines(page_with_download_url, warn = FALSE)
pat <- paste0("Latest Python ",version_number," Release")
pat_exact_version <- paste0("Python ",version_number,"[0-9.]+")
target_line <- grep(pat, page, value = TRUE)
m <- regexpr(pat_exact_version, target_line)
VersionNo <- regmatches(target_line, m)[1]
VersionNo <- gsub("Python ", "", VersionNo)
file_extension <- switch(as.character(version_number),
"2" = "msi",
"3" = "exe")
URL <- paste0("https://www.python.org/ftp/python/",VersionNo, "/python-",VersionNo , ".", file_extension)[1]
if(x64){
URL <- sub(".exe", "-amd64.exe", URL)
URL <- sub(".msi", ".amd64.msi", URL)
}
install.URL(URL, ...)
} |
kolmogorov.unif.test<-function(x, nrepl=2000,k=0)
{
DNAME <- deparse(substitute(x))
l<-0
n<-length(x)
if (k==1) {
d<-max(c(1:n)/(n+1)-x)
for(i in 1:nrepl)
{
z<-runif(n)
D<-max(c(1:n)/(n+1)-z)
if (D>d) l=l+1
}
}
if (k==0) {
d<-max(abs(c(1:n)/(n+1)-x))
for(i in 1:nrepl)
{
z<-runif(n)
D<-max(abs(c(1:n)/(n+1)-z))
if (D>d) l=l+1
}
}
if (k==-1) {
d<-max(x-c(1:n)/(n+1))
for(i in 1:nrepl)
{
z<-runif(n)
D<-max(z-c(1:n)/(n+1))
if (D>d) l=l+1
}
}
p.value<-l/nrepl
RVAL<-list(statistic=c(D=d), p.value=p.value, method="Kolmogorov-Smirnov test for uniformity",data.name = DNAME)
class(RVAL)<-"htest"
return(RVAL)
} |
rfNews <- function() {
newsfile <- file.path(system.file(package="randomForest"), "NEWS")
file.show(newsfile)
} |
diferencia_cuadrada <- function(x, y=2) {
x^2 - y^2
} |
conditional_did_pretest <- function(yname,
tname,
idname=NULL,
gname,
xformla=NULL,
data,
panel=TRUE,
allow_unbalanced_panel=FALSE,
control_group=c("nevertreated","notyettreated"),
weightsname=NULL,
alp=0.05,
bstrap=TRUE,
cband=TRUE,
biters=1000,
clustervars=NULL,
est_method="ipw",
print_details=FALSE,
pl=FALSE,
cores=1) {
message("We are no longer updating this function. It should continue to work, but most users find the pre-tests already reported by the `att_gt` function to be sufficient for most empirical applications.")
dp <- pre_process_did(yname=yname,
tname=tname,
idname=idname,
gname=gname,
xformla=xformla,
data=data,
panel=panel,
allow_unbalanced_panel=allow_unbalanced_panel,
control_group=control_group,
weightsname=weightsname,
alp=alp,
bstrap=bstrap,
cband=cband,
biters=biters,
clustervars=clustervars,
est_method=est_method,
print_details=print_details,
pl=pl,
cores=cores
)
data <- dp$data
tlist <- dp$tlist
glist <- dp$glist
n <- dp$n
if ( max(glist) <= tlist[2] ) {
stop("There are no pre-treatment periods to use to conduct test.")
}
weightfun <- indicator
if (allow_unbalanced_panel) {
stop("Conditional pre-test not currently supported for unbalanced panel.")
}
ifelse(panel & (allow_unbalanced_panel==FALSE),
dta <- data[ data[,tname]==tlist[1], ],
dta <- data
)
X <- model.matrix(xformla, dta)
X1 <- X
cat("Step 1 of 2: Computing test statistic....\n")
out <- pbapply::pblapply(1:nrow(X), function(i) {
www <- as.numeric(weightfun(X1, X[i,]))
rightids <- dta[,idname][www==1]
thisdata <- data
thisdata[,yname] <- 0
thisdata[ thisdata[,idname] %in% rightids,yname] <- data[ thisdata[,idname] %in% rightids,yname]
thisdata$y <- thisdata[,yname]
thisdp <- dp
thisdp$data <- thisdata
thisdp$print_details <- FALSE
Jres <- compute.att_gt(thisdp)
J.results <- process_attgt(Jres$attgt.list)
group <- J.results$group
att <- J.results$att
tt <- J.results$tt
inf.func <- Jres$inffunc
list(J=att, group=group, t=tt, inf.func=inf.func)
}, cl=cores)
out <- lapply(out, function(Js) {
keepers <- Js$group > Js$t
this.group <- Js$group[keepers]
this.t <- Js$t[keepers]
this.J <- as.matrix(Js$J[keepers])
this.inf.func <- as.matrix(Js$inf.func[,keepers])
list(J=this.J, group=this.group, t=this.t, inf.func=this.inf.func)
})
Jinf.func <- simplify2array(BMisc::getListElement(out, "inf.func"))
J.inner <- sapply(out, function(o) o$J)
ifelse(class(J.inner)=="matrix", J <- t(J.inner), J <- as.matrix(J.inner))
CvM <- n*sum(apply(J^2, 2, mean))
cat("Step 2 of 2: Simulating limiting distribution of test statistic....\n")
boot.res <- test.mboot(Jinf.func, dp, cores=cores)
CvMb <- boot.res$bres
CvM.crit.val <- boot.res$crit.val
CvMpval <- 1-ecdf(CvMb)(CvM)
out <- MP.TEST(CvM=CvM, CvMb=CvMb, CvMcval=CvM.crit.val, CvMpval=CvMpval, clustervars=clustervars, xformla=xformla)
out
}
indicator <- function(X, u) {
cond <- t(apply( X, 1, function(x) x <= u))
1*apply(cond, 1, all)
}
test.mboot <- function(inf.func, DIDparams, cores=1) {
data <- DIDparams$data
idname <- DIDparams$idname
clustervars <- DIDparams$clustervars
biters <- DIDparams$biters
tname <- DIDparams$tname
tlist <- unique(data[,tname])[order(unique(data[,tname]))]
alp <- DIDparams$alp
panel <- DIDparams$panel
ifelse(panel,
dta <- data[ data[,tname]==tlist[1], ],
dta <- data)
n <- nrow(dta)
if (idname %in% clustervars) {
clustervars <- clustervars[-which(clustervars==idname)]
}
if (length(clustervars) > 1) {
stop("can't handle that many cluster variables")
}
bout <- pbapply::pbsapply(1:biters, FUN=function(b) {
if (length(clustervars) > 0) {
n1 <- length(unique(dta[,clustervars]))
Vb <- matrix(sample(c(-1,1), n1, replace=T))
Vb <- cbind.data.frame(unique(dta[,clustervars]), Vb)
Ub <- data.frame(dta[,clustervars])
Ub <- Vb[match(Ub[,1], Vb[,1]),]
Ub <- Ub[,-1]
} else {
Ub <- sample(c(-1,1), n, replace=T)
}
Jb <- t(apply(Ub*inf.func, c(2,3), mean))
CvMb <- n*sum(apply(Jb^2, 2, mean))
CvMb
}, cl=cores)
crit.val <- quantile(bout, 1-alp, type=1)
list(bres=bout, crit.val=crit.val)
} |
summary.cover <-
function(object, ...) {
summary(cover2incidence(object))
} |
grid_legend <- function (x, y, pch = NA, col = par('col'), labels, frame = TRUE, hgap = unit(0.8, "lines"), vgap = unit(0.8, "lines"), default_units = "lines", gp = gpar(), draw = TRUE, title = NULL, just = 'center', lwd = NA, lty = NA, size = 1, gp_title = NULL, gp_labels = NULL, gp_frame = gpar(fill = "transparent"), inset = c(0, 0))
{
inset <- rep(inset, length.out = 2)
if((length(x) > 1) && missing(y)) {
y <- x[2]
x <- x[1]
}
if(is.character(x))
switch(x,
left = {x = unit(0 + inset[1],'npc'); y = unit(0.5 + inset[2],'npc'); just = c("left","center")},
topleft = {x = unit(0 + inset[1],'npc'); y = unit(1 - inset[2],'npc'); just = c(0,1)},
top = {x = unit(0.5 + inset[1],'npc'); y = unit(1 - inset[2],'npc'); just = c("center", "top")},
topright = {x = unit(1 - inset[1],'npc'); y = unit(1 - inset[2],'npc'); just = c(1,1)},
center = {x = unit(0.5 + inset[1],'npc'); y = unit(0.5 + inset[2],'npc'); just = c("center","center")},
bottom = {x = unit(0.5 - inset[1],'npc'); y = unit(0 + inset[2],'npc'); just = c("center","bottom")},
bottomright = {x = unit(1 - inset[1],'npc'); y = unit(0 + inset[2],'npc'); just = c(1,0)},
right = {x = unit(1 - inset[1],'npc'); y = unit(0.5 + inset[2],'npc'); just = c("right","center")},
bottomleft = {x = unit(0 + inset[1],'npc'); y = unit(0 + inset[2],'npc'); just = c(0,0)})
labels <- as.character(labels)
nlabs <- length(labels)
if(length(pch) == 1)
pch <- rep(pch, nlabs)
if(length(lwd) == 1)
lwd <- rep(lwd, nlabs)
if(length(lty) == 1)
lty <- rep(lty, nlabs)
if(length(col) == 1)
col <- rep(col, nlabs)
if(length(gp_labels) == 1)
gp_labels <- rep(list(gp_labels), nlabs)
if (is.logical(title) && !title)
title <- NULL
if(is.null(title))
tit <- 0
else
tit <- 1
if (!is.unit(hgap))
hgap <- unit(hgap, default_units)
if (length(hgap) != 1)
stop("hgap must be single unit")
if (!is.unit(vgap))
vgap <- unit(vgap, default_units)
if (length(vgap) != 1)
stop("vgap must be single unit")
if(tit)
legend.layout <- grid.layout(nlabs + tit, 3,
widths = unit.c(unit(2, "lines"),
max(unit(rep(1, nlabs), "strwidth", as.list(c(labels))),
unit(1, "strwidth", title) - unit(2, "lines")), hgap),
heights = unit.pmax(unit(1, "lines"),
vgap + unit(rep(1, nlabs + tit ),
"strheight", as.list(c(labels,title)))))
else
legend.layout <- grid.layout(nlabs, 3,
widths = unit.c(unit(2, "lines"),
max(unit(rep(1, nlabs), "strwidth", as.list(labels))), hgap),
heights = unit.pmax(unit(1, "lines"),
vgap + unit(rep(1, nlabs), "strheight", as.list(labels))))
fg <- frameGrob(layout = legend.layout, gp = gp)
if (frame)
fg <- placeGrob(fg, rectGrob(gp = gp_frame))
if (tit)
fg <- placeGrob(fg, textGrob(title, x = .2, y = 0.5, just = c("left", "center"), gp = gp_title), col = 1, row = 1)
for (i in 1:nlabs) {
if(!is.na(pch[i]))
fg <- placeGrob(fg, pointsGrob(0.5, 0.5, pch = pch[i],
size = unit(size, "char"),
gp = gpar(col = col[i])), col = 1, row = i + tit)
else if(!is.na(lwd[i]) || !is.na(lty[i]))
fg <- placeGrob(fg, linesGrob( unit(c(0.2, .8), "npc"), unit(c(.5), "npc"),
gp = gpar(col = col[i], lwd = lwd[i], lty=lty[i])), col = 1, row = i + tit)
fg <- placeGrob(fg, textGrob(labels[i], x = .1, y = 0.5, just = c("left", "center"), gp = gp_labels[[i]]), col = 2, row = i + tit)
}
pushViewport(viewport(x, y, height = grobHeight(fg), width = grobWidth(fg), just = just ))
if (draw)
grid.draw(fg)
popViewport(1)
invisible(fg)
} |
NULL
LiftCurvePlot = function(frame, xvar, truthVar, title,
...,
large_count = 1000,
include_wizard = TRUE,
truth_target = NULL,
model_color='darkblue',
wizard_color='darkgreen') {
frame <- check_frame_args_list(...,
frame = frame,
name_var_list = list(xvar = xvar, truthVar = truthVar),
title = title,
funname = "WVPlots::LiftCurvePlot")
pct_outcome <- pctpop <- sort_criterion <- NULL
if(!is.null(truth_target)) {
truthcol <- as.numeric(frame[[truthVar]]==truth_target)
} else {
truthcol <- as.numeric(frame[[truthVar]])
}
predcol <- as.numeric(frame[[xvar]])
d = data.frame(predcol = predcol, truthcol = truthcol)
n <- nrow(d)
predord = order(d[['predcol']],
sample.int(n, n, replace = FALSE),
decreasing = TRUE)
wizard = order(d[['truthcol']],
sample.int(n, n, replace = FALSE),
decreasing = TRUE)
npop = dim(d)[1]
results = data.frame(
pctpop = (1:npop) / npop,
model = cumsum(d[predord, 'truthcol']) / sum(d[['truthcol']]),
wizard = cumsum(d[wizard, 'truthcol']) / sum(d[['truthcol']])
)
results$model_lift <- results$model/results$pctpop
results$wizard_lift <- results$wizard/results$pctpop
r1 <- data.frame(pctpop = results$pctpop,
pct_outcome = results$model_lift,
sort_criterion = "model",
stringsAsFactors = FALSE)
r2 <- data.frame(pctpop = results$pctpop,
pct_outcome = results$wizard_lift,
sort_criterion = "wizard",
stringsAsFactors = FALSE)
results <- rbind(r1, r2, stringsAsFactors = FALSE)
msort_str <- paste('model: sort by', xvar)
sortKeyM <- c('model' = msort_str,
'wizard' = paste('wizard: sort by', truthVar))
results$sort_criterion <- sortKeyM[results$sort_criterion]
colorKey = as.character(sortKeyM) %:=% c(model_color, wizard_color)
names(colorKey) = c(paste('model: sort by', xvar),
paste('wizard: sort by', truthVar))
modelKey = names(colorKey)[[1]]
if(!include_wizard) {
results <- results[results$sort_criterion==msort_str, , drop=FALSE]
}
results <- thin_frame_by_orders(results,
c("pctpop", "pct_outcome"),
"sort_criterion",
large_count)
gplot = ggplot2::ggplot(data = results) +
ggplot2::geom_point(
mapping = ggplot2::aes(
x = pctpop,
y = pct_outcome,
color = sort_criterion,
shape = sort_criterion
),
alpha = 0.5
) +
ggplot2::geom_line(
mapping = ggplot2::aes(
x = pctpop,
y = pct_outcome,
color = sort_criterion,
linetype = sort_criterion
)
) +
ggplot2::ggtitle(
title,
subtitle =
paste0(
truthVar,
'~',
xvar)) +
ggplot2::xlab("fraction items in sort order") +
ggplot2::ylab("lift") +
ggplot2::geom_hline(yintercept=1) +
ggplot2::scale_x_continuous(breaks = seq(0, 1, 0.1)) +
ggplot2::scale_color_manual(values = colorKey) +
ggplot2::theme(legend.position = "bottom")
gplot
}
LiftCurvePlotList = function(frame, xvars, truthVar, title,
...,
truth_target = NULL,
palette = 'Dark2') {
frame <- check_frame_args_list(...,
frame = frame,
name_var_list = c(xvars = xvars, truthVar = truthVar),
title = title,
funname = "WVPlots::LiftCurvePlot")
curve <- lift <- percent_total <- NULL
pct_outcome <- pctpop <- sort_criterion <- NULL
if(!is.null(truth_target)) {
truthcol <- as.numeric(frame[[truthVar]]==truth_target)
} else {
truthcol <- as.numeric(frame[[truthVar]])
}
n <- nrow(frame)
results <- data.frame(
pctpop = (1:n) / n
)
for(xvar in xvars) {
predcol <- as.numeric(frame[[xvar]])
d = data.frame(predcol = predcol, truthcol = truthcol)
predord <- order(d$predcol,
sample.int(n, n, replace = FALSE),
decreasing = TRUE)
gain <- cumsum(d[predord, 'truthcol']) / sum(d[['truthcol']])
results[[xvar]] <- gain/results$pctpop
}
results <- cdata::pivot_to_blocks(results,
nameForNewKeyColumn = 'curve',
nameForNewValueColumn = 'lift',
columnsToTakeFrom = setdiff(colnames(results), 'pctpop'))
gplot = ggplot2::ggplot(
data = results,
mapping = ggplot2::aes(
x = pctpop,
y = lift,
color = curve)) +
ggplot2::geom_point(alpha = 0.5) +
ggplot2::geom_line() +
ggplot2::scale_color_brewer(palette = palette) +
ggplot2::xlab("fraction items in sort order") +
ggplot2::ylab("lift") +
ggplot2::geom_hline(yintercept=1, alpha=0.5) +
ggplot2::theme(legend.position = "bottom")
gplot
}
LiftCurveListPlot <- LiftCurvePlotList |
surplusSectors <- function(x, sectors = c("thermal", "renewable"),
timeStep = "annual", synthesis = FALSE,
groupByDistrict = FALSE, clusterDesc = NULL, opts = NULL) {
.checkAttrs(x, timeStep = "hourly", synthesis = FALSE)
x <- .checkColumns(x, list(areas = "MRG. PRICE"))
if(is.null(opts))
{
opts <- simOptions(x)
}
if (any(sectors == "renewable")) {
sectors <- sectors[!sectors == "renewable"]
sectors <- union(sectors, pkgEnv$ren)
}
fatalProdVars <- intersect(sectors, names(x$areas))
idVars <- .idCols(x$areas)
if (length(fatalProdVars) > 0) {
x <- .checkColumns(x, list(areas = c(fatalProdVars)))
res <- x$areas[, c(idVars, fatalProdVars, "MRG. PRICE"), with = FALSE]
for (v in fatalProdVars) res[, c(v) := get(v) * `MRG. PRICE`]
res$`MRG. PRICE` <- NULL
res <- melt(res, id.vars = idVars, variable.name = "sector", value.name = "surplus")
res$cost <- 0
} else {
res <- NULL
}
if("thermal" %in% sectors) {
surplusThermal <- surplusClusters(x, "hourly")
if (is.null(clusterDesc)) clusterDesc <- readClusterDesc(opts)
surplusThermal <- merge(surplusThermal,
clusterDesc[, .(area, cluster, sector = group)],
by = c("area", "cluster"))
surplusThermal <- surplusThermal[,.(surplus = sum(totalSurplus),
cost = sum(variableCost + fixedCost + startupCost)),
by = c(idVars, "sector")]
if (is.null(res)) res <- surplusThermal
else res <- rbind(res, surplusThermal)
}
if (groupByDistrict) res <- .groupByDistrict(res, opts)
res <- .addClassAndAttributes(res, FALSE, "hourly", opts, type = "surplusSectors")
res <- changeTimeStep(res, timeStep)
if (synthesis) res <- synthesize(res)
res
} |
source("ESEUR_config.r")
library(gamlss)
library(gamlss.tr)
library("plyr")
plot_layout(2, 1)
pal_col=rainbow(2)
get_node_uptimes=function(nodes)
{
t.order=order(as.numeric(strptime(nodes$Prob.Started, format=time.format)))
t=nodes[t.order, ]
uptime=as.numeric(strptime(t$Prob.Started[-1], format=time.format))-
as.numeric(strptime(t$Prob.Fixed[1:(nrow(t)-1)], format=time.format))
t=t[-1, ]
t$Uptime=uptime
return(t)
}
get_system_uptimes=function(sys.num)
{
t=subset(fail.rec, System == sys.num)
uptimes=ddply(t, "nodenumz", function(df) get_node_uptimes(df))
return(uptimes)
}
profile.sys=function(sys.num)
{
sys.n=get_system_uptimes(sys.num)
sys.n=subset(sys.n, Uptime > 0)
return(sys.n)
}
plot.data=function(sys.body, sys.num)
{
ct=subset(sys.body, Uptime >= 0)$Uptime %/% 3600
ct=ct %/% 10
c=table(ct)
plot(as.vector(c)+0.1, col=point_col,
xlim=c(1, 1000), ylim=c(1, max(c)), log="xy",
xlab="10 hour bins", ylab="Occurrences\n")
legend(x="topright", legend=paste("system", sys.num), bty="n", cex=1.2)
}
fit.data=function(sys.body, distr.str, col.str)
{
ct=subset(sys.body, Uptime >= 0)$Uptime %/% 3600
ct=ct %/% 10
fd=fitdist(ct, distr=distr.str, method="mle")
if (distr.str == "nbinom")
{
size.ct=fd$estimate[1]
mu.ct=fd$estimate[2]
distr.vals=dnbinom(1:1000, size=size.ct, mu=mu.ct)*length(ct)
}
else
{
rate.ct=fd$estimate[1]
distr.vals=dexp(1:1000, rate=rate.ct)*length(ct)
}
lines(distr.vals, col=col.str)
}
fit_NBII=function(sys_body, sys_num)
{
ct=subset(sys_body, Uptime >= 0)$Uptime %/% 3600
ct=1+(ct %/% 10)
c_nodes=as.vector(table(ct))
g_NBIItr=gamlss(ct ~ 1, family=NBIItr)
NBII_mu=exp(coef(g_NBIItr, "mu"))
NBII_sigma=exp(coef(g_NBIItr, "sigma"))
plot(c_nodes, log="xy", type="p", col=pal_col[2],
xlab="10 hour bins", ylab="Occurrences\n")
lines(dNBIItr(1:1e3, mu=NBII_mu, sigma=NBII_sigma)*length(ct),
col=pal_col[1])
legend(x="topright", legend=paste("system", sys_num), bty="n", cex=1.2)
return(g_NBIItr)
}
time.format="%m/%d/%Y %H:%M"
day.start=as.integer(as.Date("04/06/1996 00:01", format=time.format))
fail.rec=read.csv(paste0(ESEUR_dir, "reliability/LA-UR-05-7318-failure-data-1996-2005.csv.xz"), as.is=TRUE)
plot_and_fit=function(sys.body, sys.num)
{
plot.data(sys.body, sys.num)
fit.data(sys.body, "nbinom", "red")
}
sys.2=profile.sys(2)
sys.18=profile.sys(18)
gen.trun(par=0, family=NBII)
dummy=fit_NBII(sys.2, 2)
dummy=fit_NBII(sys.18, 18) |
mod_medidas_repetidas_Ui <- function(id){
ns <- NS(id)
tagList(
uiOutput(ns("medidas_repetidas_ui_sided")) %>%
shinycssloaders::withSpinner(type = 5)
)
}
mod_medidas_repetidas_server <- function(id, tipo){
shiny::moduleServer(
id,
function(input, output, session){
ns <- session$ns
text_input_to_vector <- function(input_text){
input_text %>%
strsplit(",") %>%
unlist() %>%
strsplit("\\n") %>%
unlist() %>%
as.numeric() %>%
na.omit()
}
check_text_input_to_vector <- function(id){
paste0("observeEvent(input$", id, ", {
vetor_teste <- text_input_to_vector(input$", id, ")
if(length(vetor_teste) == 0){
shinyFeedback::showFeedbackWarning(
inputId = '", id, "',
text = 'Entrada inválida.',
color = 'red')
} else {
shinyFeedback::hideFeedback('", id, "')
}
})
"
)
}
warning_prop <- function(id, entre0e1 = FALSE){
if(!entre0e1){
paste0(
'observeEvent(input$', id,', {
shinyFeedback::hideFeedback("', id, '")
if(is.na(input$', id,')){
shinyFeedback::showFeedbackWarning(
inputId = "', id, '",
text = "Deve ser fornecido um valor para o %.",
color = "red"
)
} else if (input$', id,' >= 100) {
shinyFeedback::showFeedbackWarning(
inputId = "', id, '",
text = "Deve ser menor do que 100%.",
color = "red"
)
} else if (input$', id,' <= 0) {
shinyFeedback::showFeedbackWarning(
inputId = "', id, '",
text = "Deve ser maior do que 0%.",
color = "red"
)
}
})
'
)
} else{
paste0(
'observeEvent(input$', id,', {
shinyFeedback::hideFeedback("', id, '")
if(is.na(input$', id,')){
shinyFeedback::showFeedbackWarning(
inputId = "', id, '",
text = "Deve ser fornecido um valor entre 0 e 1.",
color = "red"
)
} else if (input$', id,' > 1) {
shinyFeedback::showFeedbackWarning(
inputId = "', id, '",
text = "Deve ser menor do que 1.",
color = "red"
)
} else if (input$', id,' < 0) {
shinyFeedback::showFeedbackWarning(
inputId = "', id, '",
text = "Deve ser maior do que 0.",
color = "red"
)
}
})
'
)
}
}
warning_numero_positivo <- function(id){
paste0(
'observeEvent(input$', id,', {
shinyFeedback::hideFeedback("', id, '")
if(is.na(input$', id,')){
shinyFeedback::showFeedbackWarning(
inputId = "', id, '",
text = "Deve ser fornecido um valor.",
color = "red"
)
} else if (input$', id,' <= 0) {
shinyFeedback::showFeedbackWarning(
inputId = "', id, '",
text = "Deve ser maior do que 0.",
color = "red"
)
}
})
'
)
}
warning_numero <- function(id){
paste0(
'observeEvent(input$', id,', {
shinyFeedback::hideFeedback("', id, '")
if(is.na(input$', id,')){
shinyFeedback::showFeedbackWarning(
inputId = "', id, '",
text = "Deve ser fornecido um valor.",
color = "red"
)
}
})
'
)
}
warning_inteiro <- function(id){
paste0(
'observeEvent(input$', id,', {
shinyFeedback::hideFeedback("', id,'")
if(is.na(input$', id,')){
shinyFeedback::showFeedbackWarning(
inputId = "', id,'",
text = "Deve ser um número.",
color = "red"
)
} else if(input$', id,'%%1 != 0 | input$', id,' < 1){
shinyFeedback::showFeedbackWarning(
inputId = "', id,'",
text = "Deve ser um número inteiro positivo.",
color = "red"
)
}
})'
)
}
warning_perdas <- function(id){
paste0(
'observeEvent(input$', id,', {
shinyFeedback::hideFeedback("', id, '")
if(is.na(input$', id,')){
shinyFeedback::showFeedbackWarning(
inputId = "', id, '",
text = "Tem certeza que não considerarás perdas?"
)
} else if (input$', id,' >= 100) {
shinyFeedback::showFeedbackWarning(
inputId = "', id, '",
text = "Deve ser menor do que 100%."
)
} else if (input$', id,' <= 0) {
shinyFeedback::showFeedbackWarning(
inputId = "', id, '",
text = "Tem certeza que não considerarás perdas?"
)
}
})
'
)
}
n_perdas <- function(n, perdas){
ceiling(n/(1 - perdas/100))
}
observeEvent(input$show_th_rep, {
showModal(
modalDialog(
title = "Ajustes",
fluidPage(
HTML("<b>Preencha os campos abaixo de acordo com seu estudo para que sirvam de guia no preenchimento dos demais campos</b>."),
br(), br(),
textInput(inputId = ns("rep_nome_desfecho"),
label = "Descreva o nome do desfecho",
value = ifelse(input$show_th_rep == 0, "Y", rep_nome_desfecho())),
HTML(paste0("<i>", str_remove_all(.txt_desfecho, "<br><br>"), "</i>")),
br(), br(),
textInput(inputId = ns("rep_grupoTratamento"),
label = "Descreva um nome para o grupo Tratamento",
value = ifelse(input$show_th_rep == 0, "Tratamento", rep_grupoTratamento())),
HTML("<i>Em alguns estudos o grupo Tratamento também pode ser chamadado de grupo Intervenção ou grupo Exposto.</i><br><br>"),
textInput(inputId = ns("rep_grupoControle"),
label = "Descreva um nome para o grupo Controle",
value = ifelse(input$show_th_rep == 0, "Controle", rep_grupoControle())),
HTML("<i>Em alguns estudos o grupo Controle também pode ser chamadado de grupo Placebo/ Sham ou grupo Não exposto.</i>"),
),
easyClose = TRUE,
footer = NULL
)
)
})
rep_grupoControle <- reactive({
ifelse(is.null(input$rep_grupoControle), "Controle", input$rep_grupoControle)
})
rep_grupoTratamento <- reactive({
ifelse(is.null(input$rep_grupoTratamento), "Tratamento", input$rep_grupoTratamento)
})
rep_nome_desfecho <- reactive({
ifelse(is.null(input$rep_nome_desfecho), "Y", input$rep_nome_desfecho)
})
output$rep_formula1 <- renderUI({
withMathJax(
paste0("$$H_0: \\mu_{", rep_grupoTratamento(), "} = \\mu_{", rep_grupoControle(), "} $$"))
})
output$rep_formula2 <- renderUI({
withMathJax(
paste0("$$H_1: \\mu_{", rep_grupoTratamento(), "} \\neq \\mu_{", rep_grupoControle(), "} $$"))
})
observeEvent(input$rep_n_tempos, {
shinyFeedback::hideFeedback("rep_n_tempos")
if(is.na(input$rep_n_tempos)){
shinyFeedback::showFeedbackWarning(
inputId = ns("rep_n_tempos"),
text = "Deve ser fornecido um valor.",
color = "red"
)
} else if (input$rep_n_tempos < 2) {
shinyFeedback::showFeedbackWarning(
inputId = ns("rep_n_tempos"),
text = "Devem haver pelo menos 2 momentos.",
color = "red"
)
} else if(input$rep_n_tempos%%1 != 0){
shinyFeedback::showFeedbackWarning(
inputId = ns("rep_n_tempos"),
text = "Deve ser um número inteiro positivo.",
color = "red"
)
}
})
eval(parse(text = warning_numero("rep_dif_medias")))
eval(parse(text = warning_numero_positivo("rep_sigma1")))
eval(parse(text = warning_numero_positivo("rep_sigma2")))
eval(parse(text = warning_numero_positivo("rep_ratio")))
eval(parse(text = warning_prop("rep_ar1_rho1", entre0e1 = TRUE)))
eval(parse(text = warning_prop("rep_ar1_rho2", entre0e1 = TRUE)))
eval(parse(text = warning_prop("rep_cs_rho1", entre0e1 = TRUE)))
eval(parse(text = warning_prop("rep_cs_rho2", entre0e1 = TRUE)))
eval(parse(text = warning_prop("rep_power")))
eval(parse(text = warning_prop("rep_sig")))
eval(parse(text = warning_perdas("rep_perdas_recusa")))
correlation_R1 <- reactiveValues(mcor = data.frame(a = 1))
observeEvent(input$rep_n_tempos, {
req(!is.na(input$rep_n_tempos))
req(input$rep_n_tempos%%1 == 0 & input$rep_n_tempos > 1)
tempos <- ifelse(is.null(input$rep_n_tempos), 4, input$rep_n_tempos)
exponent <- abs(matrix(1:tempos - 1, nrow = tempos, ncol = tempos, byrow = TRUE) - (1:tempos - 1))
M_correlation <- as.data.frame(0.9^exponent)
colnames(M_correlation) <- paste0("Momento ", 1:tempos)
rownames(M_correlation) <- paste0("Momento ", 1:tempos)
correlation_R1$mcor <- M_correlation
})
output$rep_cor_grupo1 <- DT::renderDT({
temp <- input$rep_cor_grupo1_cell_edit
DT::datatable(correlation_R1$mcor,
editable = "cell",
extensions = c('FixedColumns'),
rownames = TRUE,
filter = "none",
options = list(autoWidth = FALSE,
searching = FALSE,
ordering = FALSE,
pageLength = 15,
dom = 't',
columnDefs = list(list(className = 'dt-center', targets = "_all"))))
})
observeEvent(input$rep_cor_grupo1_cell_edit, {
cell <- input$rep_cor_grupo1_cell_edit
newdf <- correlation_R1$mcor
new_value <- cell$value %>%
as.character() %>%
str_replace(",", ".") %>%
gsub("[^0-9.-]", "", .) %>%
as.numeric()
newdf[cell$row, cell$col] <- new_value
newdf[cell$col, cell$row] <- new_value
correlation_R1$mcor <- newdf
})
rep_problemas_matriz_correlacao1 <- reactive({
problemas <- ""
if(any(is.na(correlation_R1$mcor))){
problemas <- paste0('<font color = "red"><b>Todas as células devem ser preenchidas.</b></font><br/>')
} else if(any(abs(correlation_R1$mcor) > 1)){
problemas <- paste0('<font color = "red"><b>Todas as correlações devem estar entre -1 e 1.</b></font><br/>')
} else if(any(abs(correlation_R1$mcor) > 1)){
problemas <- paste0('<font color = "red"><b>Os valores da diagonal devem ser igual a 1.</b></font><br/>')
}
problemas
})
correlation_R2 <- reactiveValues(mcor = data.frame(a = 1))
observeEvent(input$rep_n_tempos, {
req(!is.na(input$rep_n_tempos))
req(input$rep_n_tempos%%1 == 0 & input$rep_n_tempos > 1)
tempos <- ifelse(is.null(input$rep_n_tempos), 4, input$rep_n_tempos)
exponent <- abs(matrix(1:tempos - 1, nrow = tempos, ncol = tempos, byrow = TRUE) - (1:tempos - 1))
M_correlation <- as.data.frame(0.9^exponent)
colnames(M_correlation) <- paste0("Momento ", 1:tempos)
rownames(M_correlation) <- paste0("Momento ", 1:tempos)
correlation_R2$mcor <- M_correlation
})
output$rep_cor_grupo2 <- DT::renderDT({
temp <- input$rep_cor_grupo2_cell_edit
DT::datatable(correlation_R2$mcor,
editable = "cell",
extensions = c('FixedColumns'),
rownames = TRUE,
filter = "none",
options = list(autoWidth = FALSE,
searching = FALSE,
ordering = FALSE,
pageLength = 15,
dom = 't',
columnDefs = list(list(className = 'dt-center', targets = "_all"))))
})
observeEvent(input$rep_cor_grupo2_cell_edit, {
cell <- input$rep_cor_grupo2_cell_edit
newdf <- correlation_R2$mcor
new_value <- cell$value %>%
as.character() %>%
str_replace(",", ".") %>%
gsub("[^0-9.-]", "", .) %>%
as.numeric()
newdf[cell$row, cell$col] <- new_value
newdf[cell$col, cell$row] <- new_value
correlation_R2$mcor <- newdf
})
rep_problemas_matriz_correlacao2 <- reactive({
problemas <- ""
if(any(is.na(correlation_R2$mcor))){
problemas <- paste0('<font color = "red"><b>Todas as células devem ser preenchidas.</b></font><br/>')
} else if(any(abs(correlation_R2$mcor) > 1)){
problemas <- paste0('<font color = "red"><b>Todas as correlações devem estar entre -1 e 1.</b></font><br/>')
} else if(any(abs(correlation_R2$mcor) > 1)){
problemas <- paste0('<font color = "red"><b>Os valores da diagonal devem ser igual a 1.</b></font><br/>')
}
problemas
})
output$rep_print_matriz_cor <- renderUI({
req(input$rep_tipo_matriz_cor == 'Não estruturada')
fluidPage(fluidRow(wellPanel(
if(rep_problemas_matriz_correlacao1() != ""){
HTML(paste0('<font size = "+0.1"><font color = "red">', "<b>Matriz de correlação do grupo ", rep_grupoTratamento(), ":</b>", '</font></font><br/>'))
} else{
HTML(paste0("<b>Matriz de correlação do grupo ", rep_grupoTratamento()), ":</b>")
},
DT::dataTableOutput(ns("rep_cor_grupo1")),
if(rep_problemas_matriz_correlacao1() != ""){
HTML(rep_problemas_matriz_correlacao1())
},
br(), br(),
if(rep_problemas_matriz_correlacao2() != ""){
HTML(paste0('<font size = "+0.1"><font color = "red">', "<b>Matriz de correlação do grupo ", rep_grupoTratamento(), ":</b>", '</font></font><br/>'))
} else{
HTML(paste0("<b>Matriz de correlação do grupo ", rep_grupoControle()), ":</b>")
},
DT::dataTableOutput(ns("rep_cor_grupo2")),
if(rep_problemas_matriz_correlacao2() != ""){
HTML(rep_problemas_matriz_correlacao2())
},
br(), br()
)))
})
output$rep_retencao1 <- renderUI({
len <- as.integer(input$rep_n_tempos)
lapply(2:len, function(i) {
div(
numericInput(
inputId = ns(paste0("retencao1_", i)),
label = paste0("Momento ", i),
value = 100 + 1 - i
)
)
})
})
output$rep_retencao2 <- renderUI({
len <- as.integer(input$rep_n_tempos)
lapply(2:len, function(i) {
div(
numericInput(
inputId = ns(paste0("retencao2_", i)),
label = paste0("Momento ", i),
value = 100 + 1 - i
)
)
})
})
observe({
req(!is.null(input$rep_n_tempos))
req(!is.na(input$rep_n_tempos))
len <- as.integer(input$rep_n_tempos)
req(!is.null(input[[ns(paste0("retencao1_", len))]]))
lapply(2:len, function(i) {
shinyFeedback::hideFeedback(paste0("retencao1_", i))
if(is.na(input[[paste0("retencao1_", i)]])){
shinyFeedback::showFeedbackWarning(
inputId = paste0("retencao1_", i),
text = "Deve ser fornecido um valor.",
color = "red"
)
} else if(input[[paste0("retencao1_", i)]] > 100){
shinyFeedback::showFeedbackWarning(
inputId = paste0("retencao1_", i),
text = "Deve ser fornecido um valor menor do que 100%",
color = "red"
)
} else if(input[[paste0("retencao1_", i)]] < 0){
shinyFeedback::showFeedbackWarning(
inputId = paste0("retencao1_", i),
text = "Deve ser fornecido um valor maior do que 0%",
color = "red"
)
}
})
})
observe({
req(!is.null(input$rep_n_tempos))
req(!is.na(input$rep_n_tempos))
len <- as.integer(input$rep_n_tempos)
req(!is.null(input[[paste0("retencao2_", len)]]))
lapply(2:len, function(i) {
shinyFeedback::hideFeedback(paste0("retencao2_", i))
if(is.na(input[[paste0("retencao2_", i)]])){
shinyFeedback::showFeedbackWarning(
inputId = paste0("retencao2_", i),
text = "Deve ser fornecido um valor.",
color = "red"
)
} else if(input[[paste0("retencao2_", i)]] > 100){
shinyFeedback::showFeedbackWarning(
inputId = paste0("retencao2_", i),
text = "Deve ser fornecido um valor menor do que 100%",
color = "red"
)
} else if(input[[paste0("retencao2_", i)]] <= 0){
shinyFeedback::showFeedbackWarning(
inputId = paste0("retencao2_", i),
text = "Deve ser fornecido um valor maior do que 0%",
color = "red"
)
}
})
})
output$chamada_matriz_correlacao <- renderUI({
selectInput(
ns('rep_tipo_matriz_cor'),
"Selecione o tipo de matriz de correlação",
choices = c("AR(1)",
"Componente permutável",
"Não estruturada"),
selected = 'AR(1)'
) %>%
.help_buttom(
body = paste0(
"Indique a correlação esperada entre as medidas nos diferentes momentos. As opções disponíveis são: <br><br>",
"<ul>",
"<li><b>Componente permutável:</b> a correlação entre as medidas é sempre a mesma em todos os momentos);</li><br>",
"<li><b>AR(1) - Auto-Regressiva de 1\u00AA Ordem:</b> a correlação entre medidas de momentos adjacentes é mais forte e vai enfraquecendo de acordo com o aumento da distância entre as mesmas;</li><br>",
"<li><b>Não estruturada:</b> as correlações entre as medidas de diferentes momentos podem assumir qualquer valor.</li>",
"</ul>",
.txt_definido_pesquisador_OU_literatura),
title = "Matriz de correlação entre as medidas")
})
output$tipo_matriz_correlcao <- renderUI({
req(!is.null(input$rep_tipo_matriz_cor))
if (input$rep_tipo_matriz_cor == 'Não estruturada') {
HTML("<i><b>ATENÇÃO!</b> Edite as matrizes de correlação no painel principal ao lado. As matrizes são editáveis, basta clicar duas vezes sobre a célula --> </i><br><br>")
} else if (input$rep_tipo_matriz_cor == 'AR(1)') {
fluidPage(fluidRow(
HTML(paste0("<b><font size = '2.95'>Parâmetro autorregressivo no grupo</font></b><br>")),
div(style = "display: inline-block;vertical-align:bottom;vertical-align:bottom; width: 49%;",
numericInput(ns("rep_ar1_rho1"),
rep_grupoTratamento(),
value = 0.4,
min = 0,
max = 1,
step = .1
)
),
div(style = "display: inline-block;vertical-align:top; width: 49%;",
numericInput( ns("rep_ar1_rho2"),
rep_grupoControle(),
value = 0.2,
min = 0,
max = 1,
step = .1
)
)
))
} else {
fluidPage(fluidRow(
HTML(paste0("<b><font size = '2.95'>Valor da correlação entre as medidas no grupo</font></b><br>")),
div(style = "display: inline-block;vertical-align:bottom;vertical-align:bottom; width: 49%;",
numericInput( ns("rep_cs_rho1"),
rep_grupoTratamento(),
value = 0.7,
min = -1,
max = 1,
step = .1
)
),
div(style = "display: inline-block;vertical-align:top; width: 49%;",
numericInput(ns( "rep_cs_rho2"),
rep_grupoControle(),
value = 0.7,
min = -1,
max = 1,
step = .1
)
)
))
}
})
output$medidas_repetidas_ui_sided <- renderUI({
fluidPage(fluidRow(
sidebarLayout(
sidebarPanel(
wellPanel(
HTML("<b><font size = '2.8'>Hipóteses a serem testadas*</font></b>"),
uiOutput(ns("rep_formula1")),
uiOutput(ns("rep_formula2")),
HTML("<i><font size = '2.8'>*Resposta média no último tempo</font></i>"),
),
actionLink(ns("show_th_rep"), "Mudar nomes"), br(), br(),
numericInput( ns("rep_n_tempos"),
"Número de momentos a ser avaliado",
value = 4,
min = 2,
max = Inf,
step = 1
),
numericInput(ns("rep_dif_medias"),
paste0("Diferença do ", rep_nome_desfecho(), " a ser detectada no último tempo de avaliação: (Média do ", rep_grupoTratamento(),
") - (Média do grupo ", rep_grupoControle(), ")"),
value = 0.5,
min = -Inf,
max = Inf,
step = .5
) %>% .help_buttom(body = paste0("É a menor diferença considerada clinicamente relevante (que tenha algum valor clínico) no último tempo de internação.", .txt_definido_pesquisador)),
if (tipo == "poder") {
fluidPage(fluidRow(
HTML(paste0("<b><font size = '2.95'>Tamanho amostral do grupo no último momento</font></b><br>")),
div(style = "display: inline-block;vertical-align:bottom;vertical-align:bottom; width: 49%;",
numericInput( ns("n1"),
rep_grupoTratamento(),
value = 50,
min = 0,
max = Inf,
step = 1
)
),
div(style = "display: inline-block;vertical-align:top; width: 49%;",
numericInput( ns("n2"),
rep_grupoControle(),
value = 60,
min = 0,
max = Inf,
step = 1
) %>% .help_buttom(body = "Tamanho amostral", title = "Tamanho amostral")
)
))
},
HTML(paste0("<b><font size = '2.95'>Desvio padrão esperado de ", rep_nome_desfecho(), " no grupo</font></b><br>")),
div(style = "display: inline-block;vertical-align:bottom;vertical-align:bottom; width: 49%;",
numericInput( ns("rep_sigma1"),
rep_grupoTratamento(),
value = 1,
min = 0,
max = Inf,
step = 1
)
),
div(style = "display: inline-block;vertical-align:top; width: 49%;",
numericInput( ns("rep_sigma2"),
rep_grupoControle(),
value = 1,
min = 0,
max = Inf,
step = 1
) %>% .help_buttom(body = .txt_dp, title = "Desvio padrão esperado")
),
wellPanel(
uiOutput(ns("chamada_matriz_correlacao")),
uiOutput(ns("tipo_matriz_correlcao"))
),
wellPanel(
HTML(paste0("<b>Retenção esperada (%) no grupo</b><br><br>")) %>%
.help_buttom(body = paste0("Percentual de indivíduos que é esperado ter naquele momento. ", .txt_definido_pesquisador_OU_literatura),
title = "Retenção esperada"),
fluidPage(fluidRow(
div(style = "display: inline-block;vertical-align:top; width: 49%;",
wellPanel(
HTML(paste0("<b>", rep_grupoTratamento(), ":</b>")),
br(), br(),
uiOutput(ns("rep_retencao1"))
)),
div(style = "display: inline-block;vertical-align:top; width: 49%;", wellPanel(
HTML(paste0("<b>", rep_grupoControle(), ":</b>")),
br(), br(),
uiOutput(ns("rep_retencao2"))
))
))
),
if (tipo == "tamanho_amostral") {
fluidPage(fluidRow(
numericInput( ns("rep_ratio"),
paste0("Balanceamento (", rep_grupoTratamento(), ":", rep_grupoControle(), ")"),
value = 1,
min = 0,
max = Inf,
step = 0.5
) %>% .help_buttom(body = .txt_balanceamento, title = "Balanceamento"),
numericInput( ns("rep_power"),
"Poder (%)",
value = 80,
min = 0,
max = 100,
step = 1
) %>% .help_buttom(body = .txt_power, title = "Poder (%)")
))
},
numericInput( ns("rep_sig"),
"Nível de significância (%)",
value = 5,
min = 0,
max = 100,
step = 1
) %>% .help_buttom(body = .txt_significancia, title = "Nível de significância (%)"),
numericInput( ns("rep_perdas_recusa"),
"Perdas/ Recusa (%)",
value = 10,
min = 0,
max = 100,
step = 1
) %>% .help_buttom(body = .txt_perdas_recusas, title = "Perdas/ Recusas (%)")
),
mainPanel(
uiOutput(ns("rep_print_matriz_cor")) %>%
shinycssloaders::withSpinner(type = 5),
shinycssloaders::withSpinner(htmlOutput(ns("rep_outout_text")), type = 5),
shinycssloaders::withSpinner(uiOutput(ns("rep_corr_matrix_out")), type = 5),
shinycssloaders::withSpinner(htmlOutput(ns("rep_out_codigo")), type = 5),
uiOutput(ns("cenarios_medidas_rep_thUi"))
)
)
))
})
correlation_Ra <- reactive({
req(!is.null(input$rep_tipo_matriz_cor))
if(input$rep_tipo_matriz_cor == 'Não estruturada'){
correlation_Ra_v <- unlist(c(correlation_R1$mcor))
} else if(input$rep_tipo_matriz_cor == 'AR(1)'){
tempos <- input$rep_n_tempos
exponent <- abs(matrix(1:tempos - 1, nrow = tempos, ncol = tempos, byrow = TRUE) - (1:tempos - 1))
correlation_Ra_v <- c(input$rep_ar1_rho1^exponent)
} else if(input$rep_tipo_matriz_cor == 'Componente permutável'){
tempos <- input$rep_n_tempos
exponent <- matrix(1, nrow = tempos, ncol = tempos, byrow = TRUE)
diag(exponent) <- 0
correlation_Ra_v <- c(input$rep_cs_rho1^exponent)
}
correlation_Ra_v
})
correlation_Rb <- reactive({
if(input$rep_tipo_matriz_cor == 'Não estruturada'){
correlation_Rb_v <- unlist(c(correlation_R2$mcor))
} else if (input$rep_tipo_matriz_cor == 'AR(1)'){
tempos <- input$rep_n_tempos
exponent <- abs(matrix(1:tempos - 1, nrow = tempos, ncol = tempos, byrow = TRUE) - (1:tempos - 1))
correlation_Rb_v <- c(input$rep_ar1_rho2^exponent)
} else if(input$rep_tipo_matriz_cor == 'Componente permutável'){
tempos <- input$rep_n_tempos
exponent <- matrix(1, nrow = tempos, ncol = tempos, byrow = TRUE)
diag(exponent) <- 0
correlation_Rb_v <- c(input$rep_cs_rho2^exponent)
}
correlation_Rb_v
})
rep_retencao_A <- reactive({
req(!is.null(input$retencao1_2))
rete <- lapply(2:input$rep_n_tempos, function(i) {
input[[paste0("retencao1_", i)]]
}) %>% unlist()
c(100, rete)
})
rep_retencao_B <- reactive({
req(!is.null(input$retencao2_2))
rete <- lapply(2:input$rep_n_tempos, function(i) {
input[[paste0("retencao2_", i)]]
}) %>% unlist()
c(100, rete)
})
rep_n_calc <- reactive({
req(!is.null(input$rep_n_tempos))
req(rep_problemas_matriz_correlacao1() == "")
if (tipo == "tamanho_amostral"){
n <- longpower::power.mmrm(
Ra = matrix(data = correlation_Ra(), nrow = input$rep_n_tempos, byrow = TRUE),
ra = rep_retencao_A()/100,
sigmaa = input$rep_sigma1,
Rb = matrix(data = correlation_Rb(), nrow = input$rep_n_tempos, byrow = TRUE),
rb = rep_retencao_B()/100,
sigmab = input$rep_sigma2,
delta = input$rep_dif_medias,
lambda = input$rep_ratio,
sig.level = input$rep_sig/100,
power = input$rep_power/100
)
} else {
n <- longpower::power.mmrm(
N = input$n1 + input$n2,
Ra = matrix(data = correlation_Ra(), nrow = input$rep_n_tempos, byrow = TRUE),
ra = rep_retencao_A()/100,
sigmaa = input$rep_sigma1,
Rb = matrix(data = correlation_Rb(), nrow = input$rep_n_tempos, byrow = TRUE),
rb = rep_retencao_B()/100,
sigmab = input$rep_sigma2,
delta = input$rep_dif_medias,
lambda = input$n1/input$n2,
sig.level = input$rep_sig/100
)
}
validate(need(!is.na(n$n1), 'Não foi possível calcular sua solicitação. Verifique as entradas no painel lateral. Se o erro persistir, por favor, envie um e-mail para [email protected].'))
n
})
rep_erro_inputs <- reactive({
req(!is.null(input$rep_n_tempos))
erros <- input$rep_n_tempos != sqrt(length(correlation_Ra())) |
input$rep_n_tempos != sqrt(length(correlation_Rb())) |
!all(diff(rep_retencao_A()) <= 0) | !all(rep_retencao_A() > 0) | !all(rep_retencao_A() <= 100) |
!all(diff(rep_retencao_B()) <= 0) | !all(rep_retencao_B() > 0) | !all(rep_retencao_B() <= 100) |
input$rep_sigma1 <= 0 |
input$rep_sigma2 <= 0 |
input$rep_sig <= 0 | input$rep_sig >= 100 |
input$rep_ar1_rho2 <= 0 | input$rep_ar1_rho2 >= 1 |
rep_problemas_matriz_correlacao1() != "" |
input$rep_n_tempos%%1 != 0 | input$rep_n_tempos < 1
if (tipo == "tamanho_amostral") {
erros |
input$rep_ratio <= 0 |
input$rep_power <= 0 | input$rep_power >= 100
} else {
erros |
input$n1 <= 0 |
input$n2 <= 0
}
})
eval(parse(text = warning_inteiro("rep_n_tempos")))
output$rep_outout_text <- renderText({
validate(need(!rep_erro_inputs(), "Não foi possível calcular sua solicitação. Verifique as entradas no painel lateral. Se o erro persistir, por favor, envie um e-mail para [email protected]."))
if (tipo == "tamanho_amostral"){
n <- rep_n_calc()
n1 <- ceiling(n$n1)
n2 <- ceiling(n$n2)
n <- n1 + n2
nperdas1 <- n_perdas(n1, input$rep_perdas_recusa)
nperdas2 <- n_perdas(n2, input$rep_perdas_recusa)
} else {
poder <- rep_n_calc()
poder <- round(poder$power*100, 1)
}
retencaoA <- paste0(rep_retencao_A()[-1], "%", collapse = ", ") %>%
stringi::stri_replace_last_fixed(",", " e ") %>%
stringr::str_trim() %>% stringr::str_squish()
retencaoB <- paste0(rep_retencao_B()[-1], "%", collapse = ", ") %>%
stringi::stri_replace_last_fixed(",", " e ") %>%
stringr::str_trim() %>% stringr::str_squish()
momentos <- paste0(1:input$rep_n_tempos, collapse = ", ") %>%
stringi::stri_replace_last_fixed(",", " e ") %>%
stringr::str_trim() %>% stringr::str_squish()
momentos2 <- paste0(2:input$rep_n_tempos, collapse = ", ") %>%
stringi::stri_replace_last_fixed(",", " e ") %>%
stringr::str_trim() %>% stringr::str_squish()
paste0(
if (tipo == "tamanho_amostral") {
paste0(
"<b><font size = '5'>Tamanho amostral calculado: ", n, " (<i>", n1, " no grupo ", rep_grupoTratamento(),
" e ", n2, " no grupo ", rep_grupoControle(),"</i>)"
)
} else {
paste0(
"<b><font size = '5'>Poder calculado: ", poder, "%"
)
},
"</font></b></br></br><i>Sugestão de texto:</i></br></br>",
"Tendo em vista um estudo longitudinal que avaliará o (a) <b>", rep_nome_desfecho(), "</b> entre os grupos ", rep_grupoTratamento(), " e ", rep_grupoControle(),
" em <b>", input$rep_n_tempos, "</b> momentos, ",
if (tipo == "tamanho_amostral") {
"foi calculado o tamanho de amostra "
} else {
"foi calculado o poder "
},
"para detectar diferenças na resposta média de <b>", rep_nome_desfecho(), "</b> entre esses grupos no tempo final (momento ", input$rep_n_tempos,
"), tendo uma diferença de <b>", input$rep_dif_medias, " u.m.</b> como relevante para o estudo. ",
"Para isso foi utilizado a ", .txt_citacao_tap, ". ",
"Considerando os seguintes valores esperados para o grupo ", rep_grupoControle(), ":",
"<ul>",
if (tipo == "poder") {
paste0(
"<li> tamanho amostral de <b>", input$n2, "</b> no momento ", input$rep_n_tempos, ",</li>"
)
},
"<li> desvio padrão de <b>", input$rep_sigma2, " u.m.</b>,</li>",
"<li> retenção de ", retencaoB, " nos momentos ", momentos2,", respectivamente,</li>",
if(input$rep_tipo_matriz_cor == 'Não estruturada'){
paste0("<li> matriz de correlação não estruturada (definida abaixo),</li>")
} else if(input$rep_tipo_matriz_cor == 'AR(1)'){
paste0("<li> matriz de correlação autorregressiva de parâmetro ",
input$rep_ar1_rho2, " (definida abaixo),</li>")
} else if(input$rep_tipo_matriz_cor == 'Componente permutável'){
paste0("<li> matriz de correlação permutável com correlação ",
input$rep_cs_rho2, " (definida abaixo),</li>")
},
"</ul>",
"e para o grupo ", rep_grupoTratamento(), " (dados de Fulano (1900)):",
"<ul>",
if (tipo == "poder") {
paste0(
"<li> tamanho amostral de <b>", input$n1, "</b> no momento ", input$rep_n_tempos, ",</li>"
)
},
"<li> desvio padrão de <b>", input$rep_sigma1, " u.m.</b>,</li>",
"<li> retenção de ", retencaoA, " nos momentos ", momentos2,", respectivamente,</li>",
if(input$rep_tipo_matriz_cor == 'Não estruturada'){
"<li> matriz de correlação não estruturada (definida abaixo),</li>"
} else if(input$rep_tipo_matriz_cor == 'AR(1)'){
paste0("<li> matriz de correlação autorregressiva de parâmetro ",
input$rep_ar1_rho1, " (definida abaixo),</li>")
} else if(input$rep_tipo_matriz_cor == 'Componente permutável'){
paste0("<li> matriz de correlação permutável com correlação ",
input$rep_cs_rho1, " (definida abaixo),</li>")
},
"</ul>",
if (tipo == "tamanho_amostral") {
paste0("poder de <b>", input$rep_power, "%</b> ")
} ,
" e nível de significância de <b>", input$rep_sig, "%</b>, ",
if (tipo == "tamanho_amostral") {
ifelse(input$rep_ratio == 1,
paste0(
"chegou-se ao tamanho de amostra total de <b>", n , "</b> sujeitos, sendo <b>", n1, "</b> em cada grupo.",
" Acrescentando <b>", input$rep_perdas_recusa, "%</b> para possíveis perdas e recusas o tamanho de amostra ",
"deverá ser <b>", nperdas1 + nperdas2, "</b> (", nperdas1, " em cada grupo)."
),
paste0(
"chegou-se ao tamanho de amostra total de <b>", n , "</b> sujeitos, sendo <b>", n1, "</b> no ", rep_grupoTratamento(), " e <b>", n2, "</b> no ", rep_grupoControle(), ".",
" Acrescentando <b>", input$rep_perdas_recusa, "%</b> para possíveis perdas e recusas o tamanho de amostra ",
"deverá ser <b>", nperdas1 + nperdas2, "</b> (", nperdas1, " no ", rep_grupoTratamento(), " e ", nperdas2, " no ", rep_grupoControle(), ")."
)
)
} else {
paste0("chegou-se ao poder de <b>", poder , "%</b>.")
},
"<br>", "<br>"
)
})
output$rep_corr_matrix_out <- renderUI({
req(!rep_erro_inputs())
fluidPage(
HTML(paste0("Matriz de correlação do grupo ", rep_grupoTratamento(), ":<br>")),
renderTable({
df_ <- matrix(data = correlation_Ra(), nrow = input$rep_n_tempos, byrow = TRUE) %>%
as.data.frame()
rownames(df_) <- paste0("Momento ", 1:input$rep_n_tempos)
colnames(df_) <- paste0("Momento ", 1:input$rep_n_tempos)
df_
},
rownames = TRUE,
colnames = TRUE
),
HTML(paste0("Matriz de correlação do grupo ", rep_grupoControle(), ":<br>")), renderTable({
df2_ <- matrix(data = correlation_Rb(), nrow = input$rep_n_tempos, byrow = TRUE) %>%
as.data.frame()
rownames(df2_) <- paste0("Momento ", 1:input$rep_n_tempos)
colnames(df2_) <- paste0("Momento ", 1:input$rep_n_tempos)
df2_
},
rownames = TRUE,
colnames = TRUE
)
)
})
output$rep_out_codigo <- renderText({
req(!rep_erro_inputs())
if (tipo == "tamanho_amostral") {
code <- paste0(
"longpower::power.mmrm(",
"Ra = Ra, ",
"ra = c(", paste0(rep_retencao_A(), collapse = ", "), ")/100, ",
"sigmaa = ", input$rep_sigma1, ", ",
"Rb = Rb, ",
"rb = c(", paste0(rep_retencao_B(), collapse = ", "), ")/100, ",
"sigmab = ", input$rep_sigma2, ", ",
"delta = ", input$rep_dif_medias, ", ",
"lambda = ", input$rep_ratio, ", ",
"sig.level = ", input$rep_sig, "/100, ",
"power = ", input$rep_power, "/100)"
)
} else {
code <- paste0(
"longpower::power.mmrm(",
"N = ", input$n1, " + ", input$n2, ", ",
"Ra = Ra, ",
"ra = c(", paste0(rep_retencao_A(), collapse = ", "), ")/100, ",
"sigmaa = ", input$rep_sigma1, ", ",
"Rb = Rb, ",
"rb = c(", paste0(rep_retencao_B(), collapse = ", "), ")/100, ",
"sigmab = ", input$rep_sigma2, ", ",
"delta = ", input$rep_dif_medias, ", ",
"lambda = ", input$n1, "/ ", input$n2, ", ",
"sig.level = ", input$rep_sig, "/100)"
)
}
paste0(
.txt_referencia_tap,
"</br></br>",
"<i>Comando R utilizado:</i><br>",
"<p style=\"font-family:'Courier New';font-size:100% \">",
code(paste0("Ra <- matrix(data = c(", paste0(correlation_Ra(), collapse = ", "),
"), nrow = ", input$rep_n_tempos, ", byrow = TRUE)")),
"<br>",
code(paste0("Rb <- matrix(data = c(", paste0(correlation_Rb(), collapse = ", "),
"), nrow = ", input$rep_n_tempos, ", byrow = TRUE)")),
"<br>",
code(code),
"</p>"
)
})
output$cenarios_medidas_rep_thUi <- renderUI({
req(tipo == "tamanho_amostral")
req(!rep_erro_inputs())
if(input$rep_dif_medias > 0){
dif_start <- input$rep_dif_medias
dif_end <- input$rep_dif_medias + 2
dif_by <- 0.4
} else{
dif_start <- input$rep_dif_medias - 2
dif_end <- input$rep_dif_medias
dif_by <- 0.4
}
fluidPage(fluidRow(
br(),
HTML('<hr style="color: black;">'),
br(),br(),
titlePanel("Construção de cenários"),
br(),
wellPanel(paste0(
"Utilize os argumentos abaixo para construir diferentes cenários. ",
"Você pode definir um intervalo de diferença a ser detectada no último tempo de avaliação e especificar diferentes valores para o desvio padrão do grupo ", rep_grupoTratamento(), ". ",
"Demais informações serão recuperadas do painel lateral.")),
HTML("<b>Defina a sequência de valores para a diferença a ser detectada no último tempo de avaliação:</b>"),
br(),
div(style = "display: inline-block;vertical-align:bottom;vertical-align:bottom; width: 80px;",
numericInput(ns("rep_th_from"), "Mínimo", value = dif_start, step = 1)
),
div(style = "display: inline-block;vertical-align:top; width: 80px;",
numericInput(ns("rep_th_to"), "Máximo", value = dif_end, step = 1)
),
div(style = "display: inline-block;vertical-align:top; width: 80px;",
numericInput(ns("rep_th_by"), "Intervalo", value = dif_by, min = 0, step = 0.5) %>%
.help_buttom(body = "Defina a sequência de margem de erro absoluta. Essa sequência será utilizada para compor o eixo x do gráfico. A sequência irá do valor <b>Mínimo</b> até o valor <b>Máximo</b> em intervalos definidos no <b>Intervalo</b>.",
title = "Sequência da margem de erro absoluta")
),
fluidRow(
column(6,
textInput(inputId = ns("rep_sd_plot"),
label = paste0("Digite valores de desvio padrão (DP) do grupo ", rep_grupoTratamento(), " para fazer o gráfico:"),
value = paste0(c(input$rep_sigma1, input$rep_sigma1 + 0.2, input$rep_sigma1 + 0.5), collapse = ", "),
width = "100%") %>%
.help_buttom(body = "Defina os valores de desvio padrão.
Esses valores serão utilizados para criar diferentes linhas no gráfico.
Separe os valores por vírgula ',' e utilize ponto '.' como decimal.")
)
),
plotly::plotlyOutput(ns("rep_th_plot"), width = "80%") %>%
shinycssloaders::withSpinner(type = 5),
br(), br(),
downloadButton(ns("download_rep_th_tab"),"Download tabela"),
DT::dataTableOutput(ns("rep_th_tab"), width = "100%") %>%
shinycssloaders::withSpinner(type = 5)
))
})
eval(parse(text = check_text_input_to_vector("rep_sd_plot")))
tab_rep_th_cenarios <- reactive({
desvios_plot <- text_input_to_vector(input$rep_sd_plot)
req(length(desvios_plot) > 0)
grid <- expand.grid(`Diferença a ser detectada` = seq(from = input$rep_th_from, to = input$rep_th_to, by = input$rep_th_by),
`Desvio padrão 1` = desvios_plot,
`Desvio padrão 2` = input$rep_sigma2,
`Nível de significância (%)` = input$rep_sig,
`Poder (%)` = input$rep_power,
`Balanceamento` = input$rep_ratio)
grid_n <- grid %$%
purrr::pmap_dfr(
.l = list(`Diferença a ser detectada`,
`Desvio padrão 1`,
`Desvio padrão 2`,
`Nível de significância (%)`,
`Poder (%)`,
`Balanceamento`),
.f = function(delta, sigmaa, sigmab, sig.level, power, lambda){
tryCatch({
n <- longpower::power.mmrm(
Ra = matrix(data = correlation_Ra(), nrow = input$rep_n_tempos, byrow = TRUE),
ra = rep_retencao_A()/100,
sigmaa = sigmaa,
Rb = matrix(data = correlation_Rb(), nrow = input$rep_n_tempos, byrow = TRUE),
rb = rep_retencao_B()/100,
sigmab = sigmab,
delta = delta,
lambda = lambda,
sig.level = sig.level/100,
power = power/100
)
tibble(`n Tratamento` = ceiling(n$n1), `n Controle` = ceiling(n$n2))
},
warning = function(warning_condition) { NA },
error = function(error_condition) { NA })
})
bind_cols(grid, grid_n) %>%
mutate(`Tamanho da amostra` = `n Tratamento` + `n Controle`,
`Matriz correlação Tratamento` = paste0("matrix(data = c(", paste0(correlation_Ra(), collapse = ", "),"), nrow = ", input$rep_n_tempos, ", byrow = TRUE)"),
`Matriz correlação Controle` = paste0("matrix(data = c(", paste0(correlation_Rb(), collapse = ", "),"), nrow = ", input$rep_n_tempos, ", byrow = TRUE)")
)
})
output$rep_th_plot <- plotly::renderPlotly({
req(!is.null(tab_rep_th_cenarios()))
g1 <- tab_rep_th_cenarios() %>%
mutate(DP = factor(`Desvio padrão 1`)) %>%
ggplot(aes(x = `Diferença a ser detectada`,
y = `Tamanho da amostra`,
color = DP,
`n Tratamento` = `n Tratamento`,
`n Controle` = `n Controle`)) +
geom_line() +
geom_point() +
scale_x_continuous(breaks = seq(from = input$rep_th_from, to = input$rep_th_to, by = input$rep_th_by)) +
xlab("Diferença a ser detectada") +
ylab("Tamanho total da amostra*") +
theme_bw() +
theme(axis.text = element_text(colour = "black")) +
scale_color_brewer(palette = "Set1")
plotly::ggplotly(g1, tooltip = c("x", "colour", "y", "n Tratamento", "n Controle")) %>%
plotly::layout(annotations = list(x = 1, y = -0.1, text = "* sem considerar perdas/ recusas.",
showarrow = F, xref='paper', yref='paper',
xanchor='right', yanchor='auto', xshift=0, yshift=0,
font=list(size=10)))
})
output$rep_th_tab <- DT::renderDataTable({
req(!is.null(tab_rep_th_cenarios()))
tab_rep_th_cenarios() %>%
DT::datatable(
rownames = FALSE,
filter = "none",
class = "display nowrap",
options = list(pageLength = 10,
scrollX = TRUE,
scrollY = TRUE,
searching = FALSE,
dom = 'B<"dwnld">frtip'))
})
output$download_rep_th_tab <- downloadHandler(
filename = function() { "Cenarios_tamanho_amostra_medidas_repetidas.xlsx"},
content = function(file) {writexl::write_xlsx(tab_rep_th_cenarios(), path = file)}
)
}
)
} |
knitr::opts_chunk$set(echo = TRUE,
eval = TRUE,
cache = TRUE,
fig.pos = 'H')
library(data.table)
library(ggplot2)
library(knitr)
library(kableExtra)
options(width=50)
theme_set(theme_gray(base_size = 9))
update_geom_defaults("point", list(size = 0.5))
update_geom_defaults("boxplot", list(outlier.size = 0.5))
op <- options()
options(datatable.print.topn=3, width=50)
include_graphics("figures/RStudio-Screenshot.png")
apropos("mean")
options(prompt="> ")
example(mean)
options(prompt="R> ")
height <- 173
height
age <- 10
AgE <- 50
age
AgE
Name <- "Leo"; Age <- 25; City <- "Lisbon"
Name; Age; City
City
2 + 3
(5*11)/4 - 7
7^3
sqrt(2)
floor(8.6178)
round(8.6178, 2)
roomLength <- 7.8
roomWidth <- 6.4
roomArea <- roomLength * roomWidth
roomArea
Greeting <- "Hello World!"
Greeting
x1 <- c(26, 10, 4, 7, 41, 19)
x1
x2 <- c("Peru", "Italy", "Cuba", "Ghana")
x2
r1 <- rep(c(2, 6, 7, 4), times=3)
r1
s1 <- seq(from=-2, to=3, by=0.5)
s1
x1 * 2
round(sqrt(x1*2.6), 2)
x2 <- c(3, -7, NA, 5, 1, 1)
x2
x3 <- c("Rat", NA, "Mouse", "Hamster")
x3
ls()
rm(x, x1, x2, x3, xm, r1, s1, AgE, age)
ls()
seq(from = 5, to = 8, by = 0.4)
seq(from = 5, to = 8, length.out = 16)
CW <- data.table(ChickWeight)
if (!file.exists("ChickWeight.csv"))
fwrite(CW[, .(Chick, Diet, Time, weight)],
file="ChickWeight.csv")
suppressMessages(library(data.table))
cw <- fread("ChickWeight.csv")
cw
str <- function(object, ...) {
if (!is.data.frame(object)) {
warning("str.data.frame() called with non-data.frame -- coercing to one.")
object <- data.frame(object)
}
cl <- oldClass(object)
cl <- cl[cl != "data.frame"]
if (0 < length(cl))
cat("Classes", paste(sQuote(cl), collapse = ", "), "and ")
cat("'data.frame':\n ", nrow(object), " obs. of ", (p <- length(object)),
" variable", if (p != 1) "s", if (p > 0) ":", "\n", sep = "")
utils:::str.default(object, vec.len=2, strict.width="wrap", ...)
}
options(digits=5,width=45)
str(cw)
summary(cw)
options(digits=6,width=50)
suppressMessages(library(ggplot2))
ggplot(cw, aes(Time, weight))
ggplot(cw, aes(Time, weight)) + geom_point()
ggplot(cw, aes(Time,weight,colour=factor(Diet))) +
geom_point()
options(digits=2)
cw[, Diet := factor(Diet)]
cw[, Time := factor(Time)]
summary(cw)
options(digits=6)
ggplot(cw, aes(Time, weight, colour=Diet)) +
geom_point() +
facet_wrap(~ Diet) +
theme(legend.position = "bottom")
ggplot(cw, aes(Time, weight,
group=Diet, colour=Diet)) +
stat_summary(fun.y="mean", geom="line")
ggplot(cw, aes(Time, weight, colour=Diet)) +
facet_wrap(~ Diet) +
geom_boxplot() +
theme(legend.position = "none") +
ggtitle("Chick Weight over Time by Diet")
ggplot(cw, aes(Time, weight, group=Diet,
colour=Diet)) +
facet_wrap(~ Diet) +
geom_jitter() +
stat_summary(fun.y="mean", geom="line",
colour="black") +
theme(legend.position = "none") +
ggtitle("Chick Weight over Time by Diet") +
xlab("Time (days)") +
ylab("Weight (grams)")
cw[, weightKg := weight/1000 ]
cw
cw[, Diet := paste0("Diet_", Diet)]
cw
cw[, .(Chick, Time, Diet, weightKg)]
cw[, .(Mean=mean(weight),SDev=sd(weight)),by=Diet]
setnames(cw, c("Diet", "weight"),
c("Group", "Weight"))
cw
cw[ Time == 21 & Weight > 300, ]
cw[order(Weight), ]
setkey(cw, Chick, Time)
cw
cw <- fread("ChickWeight.csv")
cw[Time %in% c(0,21),][
, Weight := weight][
, Group := factor(paste0("Diet_", Diet))][
, .(Chick,Group,Time,Weight)][
order(Chick,Time)][
1:5,]
cw[, .(N = .N,
Mean = mean(weight)),
by=.(Diet, Time)][
1:5, ]
options(digits=3)
cws <- cw[Time %in% c(0,21),
.(N = .N,
Mean = mean(weight),
SDev = sd(weight),
Median = median(weight),
Min = min(weight),
Max = max(weight) ),
by=.(Diet, Time)]
cws
cws[, Mean_SD := paste0(format(Mean,digits=1),
" (",
format(SDev,digits=2),
")")]
cws[, Range := paste(Min, "-", Max)]
prettySum <- cws[ , .(Diet, Time, N, Mean_SD,
Median, Range)][
order(Diet, Time)]
prettySum
tbl <- kable(prettySum[Time %in% c(0,21), ], "latex",
booktabs = TRUE, linesep = "", align = "crrrrr")
tbl <- kable_styling(tbl, position = "center")
tbl <- row_spec(tbl, 0, bold = TRUE)
tbl <- row_spec(tbl, c(2, 4, 6, 8), background = "lightgray")
tbl
options(op) |
met2model.MAESPA <- function(in.path, in.prefix, outfolder, start_date, end_date,
overwrite = FALSE, verbose = FALSE, ...) {
print("START met2model.MAESPA")
start.date <- as.POSIXlt(start_date, tz = "GMT")
end.date <- as.POSIXlt(end_date, tz = "GMT")
out.file <- paste(in.prefix,
strptime(start.date, "%Y-%m-%d"),
strptime(end.date, "%Y-%m-%d"),
"dat",
sep = ".")
out.file.full <- file.path(outfolder, out.file)
results <- data.frame(file = out.file.full,
host = PEcAn.remote::fqdn(),
mimetype = "text/plain",
formatname = "maespa.met",
startdate = start_date,
enddate = end_date,
dbfile.name = out.file,
stringsAsFactors = FALSE)
print("internal results")
print(results)
if (file.exists(out.file.full) && !overwrite) {
PEcAn.logger::logger.debug("File '", out.file.full, "' already exists, skipping to next file.")
return(invisible(results))
}
if (!file.exists(outfolder)) {
dir.create(outfolder)
}
out <- NULL
start_year <- lubridate::year(start.date)
end_year <- lubridate::year(end.date)
for (year in start_year:end_year) {
print(year)
old.file <- file.path(in.path, paste(in.prefix, year, "nc", sep = "."))
if (file.exists(old.file)) {
nc <- ncdf4::nc_open(old.file)
sec <- nc$dim$time$vals
sec <- udunits2::ud.convert(sec, unlist(strsplit(nc$dim$time$units, " "))[1], "seconds")
dt <- PEcAn.utils::seconds_in_year(year) / length(sec)
tstep <- round(86400 / dt)
dt <- 86400 / tstep
lat <- ncdf4::ncvar_get(nc, "latitude")
lon <- ncdf4::ncvar_get(nc, "longitude")
RAD <- ncdf4::ncvar_get(nc, "surface_downwelling_shortwave_flux_in_air")
PAR <- try(ncdf4::ncvar_get(nc, "surface_downwelling_photosynthetic_photon_flux_in_air"))
TAIR <- ncdf4::ncvar_get(nc, "air_temperature")
QAIR <- ncdf4::ncvar_get(nc, "specific_humidity")
PPT <- ncdf4::ncvar_get(nc, "precipitation_flux")
CA <- try(ncdf4::ncvar_get(nc, "mole_fraction_of_carbon_dioxide_in_air"))
PRESS <- ncdf4::ncvar_get(nc, "air_pressure")
RH <- PEcAn.data.atmosphere::qair2rh(QAIR, TAIR, PRESS)
if (!is.numeric(PAR)) {
PAR <- PEcAn.data.atmosphere::sw2par(RAD)
} else {
PAR <- udunits2::ud.convert(PAR, "mol", "umol")
}
TAIR <- udunits2::ud.convert(TAIR, "kelvin", "celsius")
defaultCO2 <- 400
if (!is.numeric(CA)) {
print("Atmospheric CO2 concentration will be set to constant value set in ENVIRON namelist ")
rm(CA)
} else {
CA <- CA * 1e+06
}
ncdf4::nc_close(nc)
} else {
print("Skipping to next year")
next
}
if (exists("CA")) {
tmp <- cbind(TAIR, PPT, RAD, PRESS, PAR, RH, CA)
} else {
tmp <- cbind(TAIR, PPT, RAD, PRESS, PAR, RH)
}
if (is.null(out)) {
out <- tmp
} else {
out <- rbind(out, tmp)
}
}
if (anyNA(out)) {
PEcAn.logger::logger.debug("NA introduced in met data. Maespa will not be able to run properly. Please change Met Data Source or Site")
} else {
PEcAn.logger::logger.debug("No NA values contained in data")
}
columnnames <- colnames(out)
timesteps <- tstep
difsky <- 0.5
startdate <- paste0(format(as.Date(start_date), "%d/%m/%y"))
enddate <- paste0(format(as.Date(end_date), "%d/%m/%y"))
if (nc$dim$latitude$units == "degree_north") {
latunits <- "N"
} else {
latunits <- "S"
}
if (nc$dim$longitude$units == "degree_east") {
lonunits <- "E"
} else {
lonunits <- "W"
}
metfile <- system.file("met.dat", package = "PEcAn.MAESPA")
met.dat <- Maeswrap::replacemetdata(out, oldmetfile = metfile, newmetfile = out.file.full)
Maeswrap::replacePAR(out.file.full, "difsky", "environ", newval = difsky, noquotes = TRUE)
Maeswrap::replacePAR(out.file.full, "ca", "environ", newval = defaultCO2, noquotes = TRUE)
Maeswrap::replacePAR(out.file.full, "lat", "latlong", newval = lat, noquotes = TRUE)
Maeswrap::replacePAR(out.file.full, "long", "latlong", newval = lon, noquotes = TRUE)
Maeswrap::replacePAR(out.file.full, "lonhem", "latlong", newval = lonunits, noquotes = TRUE)
Maeswrap::replacePAR(out.file.full, "lathem", "latlong", newval = latunits, noquotes = TRUE)
Maeswrap::replacePAR(out.file.full, "startdate", "metformat", newval = startdate, noquotes = TRUE)
Maeswrap::replacePAR(out.file.full, "enddate", "metformat", newval = enddate, noquotes = TRUE)
Maeswrap::replacePAR(out.file.full, "columns", "metformat", newval = columnnames, noquotes = TRUE)
return(invisible(results))
} |
is.lconnect <- function(x) inherits(x, "lconnect") |
context("layout_with_sugiyama")
test_that("layout_with_sugiyama does not demote matrices to vectors in res$layout.dummy", {
ex <- graph.formula( A -+ B:C, B -+ C:D)
layex <- layout.sugiyama(ex, layers=NULL)
expect_that(nrow(layex$layout.dummy), equals(1))
}) |
PSEkNUCdi_RNA<-function(seqs,selectedIdx=c("Rise (RNA)", "Roll (RNA)", "Shift (RNA)", "Slide (RNA)", "Tilt (RNA)","Twist (RNA)"),lambda=3,w = 0.05,l=2,ORF=FALSE,reverseORF=TRUE,threshold=1,label=c()){
path.pack=system.file("extdata",package="ftrCOOL")
if(length(seqs)==1&&file.exists(seqs)){
seqs<-fa.read(seqs,alphabet="rna")
seqs_Lab<-alphabetCheck(seqs,alphabet = "rna",label)
seqs<-seqs_Lab[[1]]
label<-seqs_Lab[[2]]
}
else if(is.vector(seqs)){
seqs<-sapply(seqs,toupper)
seqs_Lab<-alphabetCheck(seqs,alphabet = "rna",label)
seqs<-seqs_Lab[[1]]
label<-seqs_Lab[[2]]
}
else {
stop("ERROR: Input sequence is not in the correct format. It should be a FASTA file or a string vector.")
}
flag=0
if(ORF==TRUE){
if(length(label)==length(seqs)){
names(label)=names(seqs)
flag=1
}
seqs=maxORF_RNA(seqs,reverse=reverseORF)
if(flag==1)
label=label[names(seqs)]
}
dict<-list("A"=1,"C"=2,"G"=3,"U"=4)
numSeqs<-length(seqs)
aaIdxAD<-paste0(path.pack,"/DI_RNA.csv")
aaIdx<-read.csv(aaIdxAD)
row.names(aaIdx)<-aaIdx[,1]
aaIdx<-aaIdx[selectedIdx,-1]
aaIdx<-as.matrix(aaIdx)
aaIdx<-type.convert(aaIdx)
if(threshold!=1){
aaIdx<-t(aaIdx)
corr<-cor(aaIdx)
corr2<-corr^2
tmp<-corr2
tmp[upper.tri(tmp)]<-0
for(i in 1:ncol(tmp)){
tmp[i,i]=0
}
aaIdx<- aaIdx[,!apply(tmp,2,function(x) any(x > threshold))]
aaIdx<- t(aaIdx)
}
minFea<-apply(aaIdx, 1, min)
maxFea<-apply(aaIdx, 1, max)
aaIdx<-(aaIdx-minFea)/(maxFea-minFea)
numFea<-nrow(aaIdx)
start<-4^l+1
end<-4^l+lambda
featureMatrix<-matrix(0,nrow = numSeqs,ncol = ((4^l)+lambda))
for(n in 1:numSeqs){
seq<-seqs[n]
N<-nchar(seq)
if (lambda>N || lambda<=0){
stop("Error: lambda should be between [1,N]. N is the minimum of sequence lengths")
}
small_theta<-vector(mode = "numeric", length = lambda)
chars<-unlist(strsplit(seq,NULL))
temp1<-chars[1:(N-1)]
temp2<-chars[2:N]
dimers<-paste0(temp1,temp2)
lenDimer=N-1
for(k in 1:lambda){
vecti=1:(lenDimer-k)
vectj=vecti+k
tempMat<-matrix(0,nrow = numFea,ncol = (lenDimer-k))
for(m in 1:numFea){
tempMat[m,]=(aaIdx[m,dimers[vecti]]-aaIdx[m,dimers[vectj]])^2
}
bigThetaVect<-apply(tempMat, 2, sum)
sumbigThetas<-sum(bigThetaVect)
small_theta[k]<-(1/(N-k))*sumbigThetas
}
sum_small_th<-sum(small_theta)
NUC<-kNUComposition_RNA(seq,rng=l,normalized = FALSE,upto = FALSE)
featureVector <- vector(mode = "numeric", length = (length(NUC)+lambda))
featureVector[1:length(NUC)]<-(NUC)/(N+w*(sum_small_th))
featureVector[start:end]<- (w*small_theta)/(N+w*(sum_small_th))
featureMatrix[n,]=featureVector
}
namNUC<-nameKmer(k=l,type = "rna")
temp=1:lambda
colnam=c(namNUC,paste("lambda",temp,sep=""))
colnames(featureMatrix)=colnam
if(length(label)==numSeqs){
featureMatrix<-as.data.frame(featureMatrix)
featureMatrix<-cbind(featureMatrix,label)
}
row.names(featureMatrix)<-names(seqs)
return(featureMatrix)
} |
gamVineStructureSelect <- function(udata, lin.covs = NULL, smooth.covs = NULL,
simplified = TRUE, type = 0, familyset = NA,
rotations = TRUE, familycrit = "AIC",
treecrit = "tau", level = 0.05,
trunclevel = NA, tau = TRUE, method = "FS",
tol.rel = 0.001, n.iters = 10,
parallel = FALSE, verbose = FALSE,
select.once = TRUE) {
tmp <- valid.gamVineStructureSelect(
udata, lin.covs, smooth.covs, simplified,
type, familyset, rotations, familycrit,
treecrit, level, trunclevel,
tau, method, tol.rel, n.iters,
parallel, verbose, select.once
)
if (tmp != TRUE) {
stop(tmp)
}
tmp <- prepare.data2(
udata, lin.covs, smooth.covs,
trunclevel, familyset, rotations
)
n <- tmp$n
d <- tmp$d
l <- tmp$l
nn <- tmp$nn
data <- tmp$data
covariates <- tmp$covariates
trunclevel <- tmp$trunclevel
familyset <- tmp$familyset
if (type == 0) {
type <- "RVine"
} else {
type <- "CVine"
}
out <- list(Tree = vector("list", d - 1), Graph = vector("list", d - 1))
if (is.null(colnames(udata))) {
colnames(udata) <- paste0("V", 1:ncol(udata))
}
graph <- initFirstGraph(udata, treecrit)
mst <- findMST(graph, type)
tree <- fitFirstTree(
mst, udata, lin.covs, smooth.covs, l, covariates,
familyset, familycrit, treecrit, level,
tau, method, tol.rel, n.iters, parallel, verbose
)
out$Tree[[1]] <- tree
out$Graph[[1]] <- graph
oldtree <- tree
for (i in 2:(d - 1)) {
if (trunclevel == i - 1) {
familyset <- 0
}
graph <- buildNextGraph(
tree, udata, l, lin.covs, smooth.covs,
simplified, treecrit
)
mst <- findMST(graph, type)
tree <- fitTree(
mst, tree, udata, l, lin.covs, smooth.covs, simplified,
familyset, familycrit, treecrit, level,
tau, method, tol.rel, n.iters, parallel, verbose
)
out$Tree[[i]] <- tree
out$Graph[[i]] <- graph
}
return(as.GVC(out, covariates))
}
initFirstGraph <- function(data, treecrit) {
if (treecrit == "tau") {
C <- TauMatrix(data)
}
if (treecrit == "rho") {
C <- cor(data, method = "spearman")
}
rownames(C) <- colnames(C) <- colnames(data)
g <- graph.adjacency(C, mode = "lower", weighted = TRUE, diag = FALSE)
E(g)$tau <- E(g)$weight
E(g)$weight <- 1 - abs(E(g)$weight)
E(g)$name <- paste(get.edgelist(g)[, 1], get.edgelist(g)[, 2], sep = ",")
for (i in 1:ecount(g)) {
E(g)$conditionedSet[[i]] <- ends(g, i, FALSE)
}
return(g)
}
findMST <- function(g, mode = "RVine") {
if (mode == "RVine") {
return(minimum.spanning.tree(g, weights = E(g)$weight))
} else {
M <- abs(get.adjacency(g, attr = "weight", sparse = 0))
root <- which.min(rowSums(M))
Ecken <- ends(g, 1:ecount(g), FALSE)
pos <- Ecken[, 2] == root | Ecken[, 1] == root
return(delete.edges(g, E(g)[!pos]))
}
}
fitFirstTree <- function(mst, udata, lin.covs, smooth.covs, l, covariates,
familyset, familycrit, treecrit, level,
tau, method, tol.rel, n.iters, parallel, verbose) {
d <- ecount(mst)
parameterForACopula <- vector("list", d)
for (i in 1:d) {
a <- ends(mst, i, FALSE)
if (is.null(V(mst)[a[1]]$name)) {
E(mst)[i]$CondName1 <- a[1]
} else {
E(mst)[i]$CondName1 <- V(mst)[a[1]]$name
}
if (is.null(V(mst)[a[2]]$name)) {
E(mst)[i]$CondName2 <- a[2]
} else {
E(mst)[i]$CondName2 <- V(mst)[a[2]]$name
}
if (is.null(V(mst)[a[1]]$name) || is.null(V(mst)[a[2]]$name)) {
E(mst)[i]$Name <- paste(a[1], a[2], sep = " , ")
} else {
E(mst)[i]$Name <- paste(V(mst)[a[1]]$name,
V(mst)[a[2]]$name,
sep = " , "
)
}
if (l == 0) {
parameterForACopula[[i]] <- list()
parameterForACopula[[i]]$zr1 <- udata[, a[1]]
parameterForACopula[[i]]$zr2 <- udata[, a[2]]
} else {
parameterForACopula[[i]] <- list(
cbind(
as.numeric(udata[, a[1]]),
as.numeric(udata[, a[2]])
),
lin.covs,
smooth.covs
)
}
}
if (l == 0) {
outForACopula <- lapply(
parameterForACopula, wrapper.fitACopula,
familyset, familycrit, level
)
} else {
outForACopula <- lapply(
parameterForACopula, wrapper.fitACopula,
familyset, familycrit, level,
tau, method, tol.rel, n.iters, parallel
)
}
for (i in 1:d) {
E(mst)[i]$model <- list(outForACopula[[i]]$model)
E(mst)[i]$CondData1 <- list(outForACopula[[i]]$CondOn1)
E(mst)[i]$CondData2 <- list(outForACopula[[i]]$CondOn2)
}
return(mst)
}
fitTree <- function(mst, oldVineGraph, udata, l, lin.covs, smooth.covs,
simplified, familyset, familycrit, treecrit, level,
tau, method, tol.rel, n.iters, parallel, verbose) {
d <- ecount(mst)
parameterForACopula <- list()
for (i in 1:d) {
con <- ends(mst, i, FALSE)
tmp <- ends(oldVineGraph, con, FALSE)
if ((tmp[1, 1] == tmp[2, 1]) || (tmp[1, 2] == tmp[2, 1])) {
same <- tmp[2, 1]
} else {
if ((tmp[1, 1] == tmp[2, 2]) || (tmp[1, 2] == tmp[2, 2])) {
same <- tmp[2, 2]
}
}
other1 <- tmp[1, tmp[1, ] != same]
other2 <- tmp[2, tmp[2, ] != same]
if (tmp[1, 1] == same) {
zr1 <- E(oldVineGraph)[con[1]]$CondData2
n1 <- E(oldVineGraph)[con[1]]$CondName2
} else {
zr1 <- E(oldVineGraph)[con[1]]$CondData1
n1 <- E(oldVineGraph)[con[1]]$CondName1
}
if (tmp[2, 1] == same) {
zr2 <- E(oldVineGraph)[con[2]]$CondData2
n2 <- E(oldVineGraph)[con[2]]$CondName2
} else {
zr2 <- E(oldVineGraph)[con[2]]$CondData1
n2 <- E(oldVineGraph)[con[2]]$CondName1
}
if (is.list(zr1)) {
zr1a <- as.vector(zr1[[1]])
zr2a <- as.vector(zr2[[1]])
n1a <- as.vector(n1[[1]])
n2a <- as.vector(n2[[1]])
}
else {
zr1a <- zr1
zr2a <- zr2
n1a <- n1
n2a <- n2
}
if (verbose == TRUE) message(n1a, " + ", n2a, " --> ", E(mst)[i]$name)
E(mst)[i]$CondName2 <- n1a
E(mst)[i]$CondName1 <- n2a
tmp <- E(mst)$conditioningSet[[i]]
if (simplified) {
if (l == 0) {
parameterForACopula[[i]] <- list()
parameterForACopula[[i]]$zr1 <- as.numeric(zr1a)
parameterForACopula[[i]]$zr2 <- as.numeric(zr2a)
} else {
parameterForACopula[[i]] <- list(
cbind(
as.numeric(zr1a),
as.numeric(zr2a)
),
lin.covs,
smooth.covs
)
}
} else {
temp <- as.data.frame(udata[, tmp])
colnames(temp) <- colnames(udata)[tmp]
if (!is.null(smooth.covs)) {
temp <- cbind(temp, smooth.covs)
}
parameterForACopula[[i]] <- list(
cbind(
as.numeric(zr1a),
as.numeric(zr2a)
),
lin.covs, temp
)
}
}
outForACopula <- lapply(
parameterForACopula, wrapper.fitACopula,
familyset, familycrit, level,
tau, method, tol.rel, n.iters, parallel
)
for (i in 1:d) {
E(mst)[i]$model <- list(outForACopula[[i]]$model)
E(mst)[i]$CondData2 <- list(outForACopula[[i]]$CondOn2)
E(mst)[i]$CondData1 <- list(outForACopula[[i]]$CondOn1)
}
return(mst)
}
buildNextGraph <- function(graph, udata, l, lin.covs, smooth.covs, simplified,
treecrit) {
EL <- get.edgelist(graph)
d <- ecount(graph)
g <- graph.full(d)
V(g)$name <- E(graph)$name
V(g)$conditionedSet <- E(graph)$conditionedSet
if (!is.null(E(graph)$conditioningSet)) {
V(g)$conditioningSet <- E(graph)$conditioningSet
}
for (i in 1:ecount(g)) {
con <- ends(g, i, FALSE)
tmp <- ends(graph, con, FALSE)
ok <- FALSE
if ((tmp[1, 1] == tmp[2, 1]) || (tmp[1, 2] == tmp[2, 1])) {
ok <- TRUE
same <- tmp[2, 1]
} else {
if ((tmp[1, 1] == tmp[2, 2]) || (tmp[1, 2] == tmp[2, 2])) {
ok <- TRUE
same <- tmp[2, 2]
}
}
if (ok) {
other1 <- tmp[1, tmp[1, ] != same]
other2 <- tmp[2, tmp[2, ] != same]
if (tmp[1, 1] == same) {
zr1 <- E(graph)[con[1]]$CondData2
} else {
zr1 <- E(graph)[con[1]]$CondData1
}
if (tmp[2, 1] == same) {
zr2 <- E(graph)[con[2]]$CondData2
} else {
zr2 <- E(graph)[con[2]]$CondData1
}
if (is.list(zr1)) {
zr1a <- as.vector(zr1[[1]])
zr2a <- as.vector(zr2[[1]])
} else {
zr1a <- zr1
zr2a <- zr2
}
noNAs <- !(is.na(zr1a) | is.na(zr2a))
name.node1 <- strsplit(V(g)[con[1]]$name, split = " *[,|] *")[[1]]
name.node2 <- strsplit(V(g)[con[2]]$name, split = " *[,|] *")[[1]]
intersection <- c()
for (j in 1:length(name.node1)) {
for (k in 1:length(name.node2)) {
if (name.node1[j] == name.node2[k]) {
intersection <- c(intersection, name.node1[j])
name.node1[j] <- ""
name.node2[k] <- ""
break
}
}
}
difference <- c()
for (j in 1:length(name.node1)) {
if (name.node1[j] != "") {
difference <- c(difference, name.node1[j])
}
}
for (j in 1:length(name.node2)) {
if (name.node2[j] != "") {
difference <- c(difference, name.node2[j])
}
}
E(g)[i]$name <- paste(paste(difference, collapse = ","),
paste(intersection, collapse = ","),
sep = " | "
)
if (is.list(V(g)[con[1]]$conditionedSet)) {
l1 <- c(
as.vector(V(g)[con[1]]$conditionedSet[[1]]),
as.vector(V(g)[con[1]]$conditioningSet[[1]])
)
l2 <- c(
as.vector(V(g)[con[2]]$conditionedSet[[1]]),
as.vector(V(g)[con[2]]$conditioningSet[[1]])
)
} else {
l1 <- c(V(g)[con[1]]$conditionedSet, V(g)[con[1]]$conditioningSet)
l2 <- c(V(g)[con[2]]$conditionedSet, V(g)[con[2]]$conditioningSet)
}
out <- intersectDifference(l1, l2)
suppressWarnings({
E(g)$conditionedSet[i] <- list(out$difference)
})
suppressWarnings({
E(g)$conditioningSet[i] <- list(out$intersection)
})
if (treecrit == "tau") {
E(g)[i]$weight <- 1 - abs(fasttau(zr1a[noNAs], zr2a[noNAs]))
} else if (treecrit == "rho") {
E(g)[i]$weight <- 1 - abs(cor(zr1a[noNAs], zr2a[noNAs], method = "spearman"))
}
}
E(g)[i]$todel <- !ok
}
E(g)$tau <- E(g)$weight
g <- delete.edges(g, E(g)[E(g)$todel])
return(g)
}
wrapper.fitACopula <- function(parameterForACopula, ...) {
if (length(parameterForACopula) == 2) {
return(fitACopula(parameterForACopula$zr1, parameterForACopula$zr2, ...))
} else {
return(fitAGAMCopula(parameterForACopula, ...))
}
}
intersectDifference <- function(liste1, liste2) {
out <- list()
out$intersection <- c()
out$difference <- c()
for (j in 1:length(liste1)) {
for (k in 1:length(liste2)) {
if (!is.na(liste2[k]) && liste1[j] == liste2[k]) {
out$intersection <- c(out$intersection, liste1[j])
liste1[j] <- NA
liste2[k] <- NA
break
}
}
}
for (j in 1:length(liste1)) {
if (!is.na(liste1[j])) {
out$difference <- c(out$difference, liste1[j])
}
}
for (j in 1:length(liste2)) {
if (!is.na(liste2[j])) {
out$difference <- c(out$difference, liste2[j])
}
}
return(out)
}
fitACopula <- function(u1, u2, familyset = NA, familycrit = "AIC",
level = 0.05, rotation = TRUE) {
fams <- famTrans(familyset, inv = FALSE, set = TRUE)
out <- BiCopSelect(u1, u2,
fams,
familycrit,
indeptest = TRUE,
level = level,
rotations = FALSE
)
fam <- famTrans(out$family,
inv = TRUE,
par = cor(u1, u2), familyset = familyset
)
if (rotation == TRUE) {
if (fam %in% c(301, 303, 401, 403)) {
fam <- fam + 1
} else if (fam %in% c(302, 304, 402, 404)) {
fam <- fam - 1
}
}
out$family <- fam
tmp <- bicoppd1d2(cbind(u1, u2, out$par, out$par2), out$family, p = FALSE, h = TRUE)
model <- list(family = out$family, par = out$par, par2 = out$par2)
out <- list(model = model, CondOn1 = tmp[2, ], CondOn2 = tmp[1, ])
return(out)
}
fitAGAMCopula <- function(data, familyset, familycrit, level, tau,
method, tol.rel, n.iters, parallel, rotation = TRUE,
select.once = TRUE, ...) {
out <- list()
u1 <- data[[1]][, 1]
u2 <- data[[1]][, 2]
udata <- cbind(u1, u2)
lin.covs <- data[[2]]
smooth.covs <- data[[3]]
data <- do.call(cbind, data[!(sapply(data, is.null))])
if (length(familyset) == 1 && familyset == 0) {
out$model <- list(family = 0, par = 0, par2 = 0)
par <- rep(0, length(u1))
fam <- 0
par2 <- 0
} else {
fams <- famTrans(familyset, inv = FALSE, set = TRUE)
tmp <- gamBiCopSelect(udata, lin.covs, smooth.covs,
familyset, FALSE, familycrit, level, 1.5, tau,
method, tol.rel, n.iters, parallel,
select.once = select.once, FALSE, ...
)
if (!is.character(tmp)) {
nvar <- unique(all.vars(tmp$res@model$pred.formula))
}
if (!is.character(tmp) && length(nvar) > 0) {
out$model <- tmp$res
par <- gamBiCopPredict(out$model, target = "par")$par
fam <- out$model@family
par2 <- out$model@par2
} else {
tmp <- BiCopSelect(u1, u2, fams,
selectioncrit = familycrit,
indeptest = TRUE, level = level, rotations = FALSE
)
par <- rep(tmp$par, length(u1))
out$model$par <- tmp$par
out$model$family <- fam <- tmp$family
out$model$par2 <- par2 <- tmp$par2
}
fam <- famTrans(fam, inv = TRUE, par = cor(u1, u2), familyset = familyset)
if (rotation == TRUE) {
if (fam %in% c(301, 303, 401, 403)) {
fam <- fam + 1
} else if (fam %in% c(302, 304, 402, 404)) {
fam <- fam - 1
}
}
if (isS4(out$model)) {
attr(out$model, "family") <- fam
} else {
out$model$family <- fam
}
}
fams <- vapply(1:length(par), function(j)
famTrans(fam, inv = FALSE, par = par[j]), numeric(1))
out$CondOn1 <- BiCopHfunc(u1, u2, fams, par, par2, check.pars = FALSE)$hfunc2
out$CondOn2 <- BiCopHfunc(u1, u2, fams, par, par2, check.pars = FALSE)$hfunc1
return(out)
}
as.GVC <- function(GVC, covariates) {
n <- length(GVC$Tree) + 1
con <- list()
nam <- V(GVC$Tree[[1]])$name
conditionedSets <- NULL
correspondingModel <- NULL
if (is.list(E(GVC$Tree[[n - 1]])$conditionedSet)) {
conditionedSets[[n - 1]][[1]] <- (E(GVC$Tree[[n - 1]])$conditionedSet[[1]])
}
else {
conditionedSets[[n - 1]][[1]] <- (E(GVC$Tree[[n - 1]])$conditionedSet)
}
for (k in 1:(n - 2)) {
conditionedSets[[k]] <- E(GVC$Tree[[k]])$conditionedSet
correspondingModel[[k]] <- as.list(E(GVC$Tree[[k]])$model)
}
correspondingModel[[n - 1]] <- E(GVC$Tree[[n - 1]])$model
model.count <- get.modelCount(n)
model <- vector("list", n * (n - 1) / 2)
M <- matrix(NA, n, n)
for (k in 1:(n - 1)) {
w <- conditionedSets[[n - k]][[1]][1]
M[k, k] <- w
M[(k + 1), k] <- conditionedSets[[n - k]][[1]][2]
model[[model.count[(k + 1), k]]] <- correspondingModel[[n - k]][[1]]
if (k == (n - 1)) {
M[(k + 1), (k + 1)] <- conditionedSets[[n - k]][[1]][2]
} else {
for (i in (k + 2):n) {
for (j in 1:length(conditionedSets[[n - i + 1]])) {
cs <- conditionedSets[[n - i + 1]][[j]]
tmp <- correspondingModel[[n - i + 1]][[j]]
if (cs[1] == w) {
M[i, k] <- cs[2]
model[[model.count[i, k]]] <- tmp
break
} else if (cs[2] == w) {
M[i, k] <- cs[1]
if (isS4(tmp)) {
fam <- attr(tmp, "family")
} else {
fam <- tmp$family
}
if (fam %in% c(301, 303, 401, 403)) {
fam <- fam + 1
} else if (fam %in% c(302, 304, 402, 404)) {
fam <- fam - 1
}
if (isS4(tmp)) {
attr(tmp, "family") <- fam
} else {
tmp$family <- fam
}
model[[model.count[i, k]]] <- tmp
break
}
}
conditionedSets[[n - i + 1]][[j]] <- NULL
correspondingModel[[n - i + 1]][[j]] <- NULL
}
}
}
M[is.na(M)] <- 0
return(gamVine(M, model, nam, covariates))
}
valid.gamVineStructureSelect <- function(data, lin.covs, smooth.covs,
simplified, type,
familyset, rotations, familycrit,
treecrit, level, trunclevel,
tau, method, tol.rel, n.iters,
parallel, verbose, select.once) {
if (!is.matrix(data) && !is.data.frame(data)) {
return("data has to be either a matrix or a data frame")
}
tmp <- valid.gamBiCopSelect(
data[, 1:2], lin.covs, smooth.covs, rotations,
familyset, familycrit, level, 2, tau, method,
tol.rel, n.iters, parallel, verbose, select.once
)
if (tmp != TRUE) {
return(tmp)
}
n <- dim(data)[1]
d <- dim(data)[2]
if (d < 2) {
return("Number of dimensions has to be at least 2.")
}
if (n < 2) {
return("Number of observations has to be at least 2.")
}
if (any(data[, 1:d] > 1) || any(data[, 1:d] < 0)) {
return("Data has be in the interval [0,1].")
}
if (!valid.logical(simplified)) {
return(msg.logical(var2char(simplified)))
}
if (is.null(lin.covs) && is.null(smooth.covs) && simplified == TRUE) {
return("When there are no covariates, the vine can't be simplified.")
}
if (is.null(type) || length(type) != 1 || !is.element(type, c(0, 1))) {
return("Vine model not implemented.")
}
if (length(treecrit) != 1 || (treecrit != "tau" && treecrit != "rho")) {
return("Selection criterion for the pair selection not implemented.")
}
if (!is.na(trunclevel) && !valid.posint(trunclevel)) {
return("'trunclevel' should be a positive integer or NA.")
}
if (!is.logical(select.once)) {
return("'select.once' must be logical")
}
return(TRUE)
} |
ABlineD <-
function(behavior){
targetindex<-dev.cur()
targetindex<-recordPlot()
writeLines("-------------------------------------------------------------------------------------")
writeLines("Click the mouse in the gap between the phases you want the line in.")
writeLines("-------------------------------------------------------------------------------------")
l<-locator(1)
ymin=min(behavior,na.rm = TRUE)
ymax=max(behavior,na.rm = TRUE)
ymax=ymax+1
segments(x0=l$x,y0=ymin,y1=rep(ymin:ymax),lty=2)
u<-readline("accept line? (y/n) ")
if (u=="n")
{replayPlot(targetindex)}
} |
context("getPossibleCols")
library(testthat)
library(stringi)
cols <- c("id", "sire", "dam", "sex", "gen", "birth", "exit", "age",
"ancestry", "population", "origin", "status", "condition",
"spf", "vasxOvx", "pedNum", "first", "second", "first_name",
"second_name", "recordStatus")
cols <- c("id", "sire", "dam", "sex", "gen", "birth", "exit", "death",
"age", "ancestry", "population", "origin", "status", "condition",
"departure", "spf", "vasxOvx", "pedNum", "first", "second",
"first_name",
"second_name", "recordStatus")
test_that("getPossibleCols returns the right columns", {
expect_equal(getPossibleCols(), cols)
}) |
ZoonModuleParse <- function(modulePath) {
lines <- readLines(modulePath, -1)
roc <- roxygen2::rd_roclet()
rd <- roxygen2::roc_proc_text(roc, lines)[[1]]
if(packageVersion("roxygen2") >= "7.0.0"){
rds <- rd$sections
res <- lapply(
names(rds),
function(field, x) x[[field]]$value,
x = rds
)
names(res) <- names(rd$sections)
if ("section" %in% names(res)) {
sections <- paste0(res$section$title, ":", res$section$content)
names(sections) <- rep("section", length(sections))
res[["section"]] <- NULL
res <- append(res, sections)
}
} else {
if ("fields" %in% names(rd)) {
field_fun <- function (field, x) {
if ("values" %in% names(x[[field]])) {
named_tag <- list(x[[field]]$values)
names(named_tag) <- field
return (unlist(named_tag))
} else {
list_tag <- list()
for (i in seq_along(x[[field]]$title)) {
list_tag <- c(list_tag,
list(list(name = x[[field]]$title[i],
content = x[[field]]$content[i])))
}
return (list_tag)
}
}
res <- lapply(names(rd$fields),
field_fun,
rd$fields)
names(res) <- names(rd$fields)
if ("param" %in% names(res))
names(res$param) <- gsub("^param.", "", names(res$param))
} else if(length(rd)==1){
res <- lapply(
names(rd),
function(field, x) x[[1]][[field]]$values,
rd
)
} else {
res <- lapply(
names(rd),
function(field, x) x[field]$values,
x = rd
)
}
if ("section" %in% names(res)) {
sections <- lapply(
res$section,
function (x) {
paste0(x$name, ":", x$content)
}
)
names(sections) <- rep("section", length(sections))
res[["section"]] <- NULL
res <- append(res, sections)
}
}
if ("param" %in% names(res)) {
params <- lapply(
names(res$param),
function (field, x) {
list(name = field,
description = as.character(x[field]))
},
res$param
)
names(params) <- rep("param", length(params))
res[["param"]] <- NULL
res <- append(params, res)
}
return(res)
} |
knitr::opts_chunk$set(
collapse = TRUE,
comment = "
)
library(logisticRR)
n <- 500
set.seed(1234)
X <- rbinom(n, 1, 0.3)
W <- rbinom(n, 1, 0.3); W[sample(1:n, n/3)] = 2
Z <- rep(0, n)
Z[sample(1:n, n/2)] <- "female"; Z <- ifelse(Z == 0, "male", Z)
dummyZ <- ifelse(Z == "female", 1, 0)
Y <- rbinom(n, 1, plogis(X - W + 2*dummyZ))
dat <- as.data.frame(cbind(Y, X, W, Z))
dat$X <- as.numeric(dat$X); dat$X <- ifelse(dat$X == 2, 1, 0)
dat$Y <- as.numeric(dat$Y); dat$Y <- ifelse(dat$Y == 2, 1, 0)
dat$W <- as.factor(dat$W)
dat$Z <- as.factor(dat$Z)
head(dat) |
"Psi2phi" <-
function(z){Psi(z)^2*dnorm(z)} |
revolution <- c(CRAN = "https://cloud.r-project.org")
revolution
pkgs <- c("foreach")
pkgTypes <- c("source", "win.binary")
if (interactive()) {
if (!is.online()) {
message("MRAN seems to be not available. Check your internet connection.")
} else {
pdb <- pkgAvail(repos = revolution, type = "source")
}
} else {
pdb <- cranJuly2014
}
if (interactive()) {
if (!is.online()) {
message("MRAN seems to be not available. Check your internet connection.")
} else {
pkgList <- pkgDep(pkgs, availPkgs = pdb, repos = revolution, type = "source", suggests = FALSE)
pkgList
}
}
if (interactive()) {
if (!is.online()) {
message("MRAN seems to be not available. Check your internet connection.")
} else {
dir.create(pth <- file.path(tempdir(), "miniCRAN"))
makeRepo(pkgList, path = pth, repos = revolution, type = pkgTypes)
oldVers <- data.frame(
package = c("foreach", "codetools", "iterators"),
version = c("1.4.0", "0.2-7", "1.0.5"),
stringsAsFactors = FALSE
)
pkgs <- oldVers$package
addOldPackage(pkgs, path = pth, vers = oldVers$version, repos = revolution, type = "source")
pkgVersionsSrc <- checkVersions(pkgs, path = pth, type = "source")
pkgVersionsBin <- checkVersions(pkgs, path = pth, type = "win.binary")
basename(pkgVersionsSrc$source)
basename(pkgVersionsBin$win.binary)
file.remove(c(pkgVersionsSrc$source[1], pkgVersionsBin$win.binary[1]))
updateRepoIndex(pth, type = pkgTypes, Rversion = R.version)
pkgAvail(pth, type = "source")
addPackage("Matrix", path = pth, repos = revolution, type = pkgTypes)
unlink(pth, recursive = TRUE)
}
} |
library(shiny)
library(plotly)
ui <- fluidPage(
h3("R Plotly demo - disabling the Plolty tool bar"),
br(),
plotlyOutput("myplot")
)
server <- function(input, output, session) {
output$myplot <- renderPlotly(
plot_ly(data = pressure, x=~temperature, y=~pressure, type = "scatter",
mode=c("line", "points"), marker = list(color = "
line = list(width = 2, color="red"),
hoverinfo = "text",
text = paste("Temperature ", pressure$temperature, "<br>", "Pressure ", pressure$pressure)) %>%
layout(title = "Pressure vs Temperature Plotly",
xaxis = list(title="Temperature", range=c(0,400), showgrid=F),
yaxis=list(title="Pressure", showgrid=F, titlefont=list(family="Arial", size=18, color="brown")),
annotations = list(xref = "Temperature", yref = "Pressure", x = 350, y = 100, align = "right",
text = "Temperature vs Pressure <br> Source : Pressure dataset ",
showarrow = F, ax = 0, ay = 0)
)
%>%
config(displayModeBar=FALSE)
)
}
shinyApp(ui, server) |
setPosteriorPredictiveCheckOptions = function(estimatePPMC = TRUE, PPMCsamples = 1000,
PPMCtypes = c("mean", "covariance", "univariate", "bivariate", "tetrachoric", "pearson"),
lowPPMCpercentile = c(.025, .025, 0, 0, .025, .025),
highPPMCpercentile = c(.975, .975, 1, 1, .975, .975)
){
defaultPosteriorPredictiveChecks = list(estimatePPMC = estimatePPMC, PPMCsamples = PPMCsamples, PPMCtypes = PPMCtypes, lowPPMCpercentile = lowPPMCpercentile,
highPPMCpercentile = highPPMCpercentile)
return(defaultPosteriorPredictiveChecks)
} |
uncondPower2x2<-function(n1,n2, theta1, theta2, alpha, ...){
pval<-as.vector( uncondExact2x2Pvals(n1,n2,...) )
f1<- dbinom(0:n1,n1, theta1)
f2<- dbinom(0:n2, n2, theta2)
f<- rep(f1,n2+1)*rep(f2, each=n1+1)
power<- sum(f[pval<=alpha])
power
}
Power2x2<-function(n1,n2, theta1, theta2, alpha, pvalFunc, ...){
allx<-rep(0:n1,n2+1)
ally<-rep(0:n2, each=n1+1)
pvals<-rep(NA, length(allx))
for (i in 1:length(allx)){
pvals[i]<-pvalFunc(allx[i],n1, ally[i], n2)
}
f1<- dbinom(0:n1,n1, theta1)
f2<- dbinom(0:n2, n2, theta2)
f<- rep(f1,n2+1)*rep(f2, each=n1+1)
power<- sum(f[pvals<=alpha])
power
}
SS2x2<-function(theta1, theta2, alpha, pvalFunc, power=0.90, n1start=10, increaseby=1, n2.over.n1=1,
maxiter=50, printSteps=TRUE, ...){
n1<-n1start
n2<- round(n2.over.n1*n1)
pow<- Power2x2(n1,n2, theta1,theta2, alpha, pvalFunc, ...)
if (printSteps){
message("n1=",n1,"n2=",n2,"power=",pow)
}
if (pow>power){
warning("power calculated at n1start is greater than 'power', there may be a smaller sample size")
} else {
for (i in 1:maxiter){
n1<- n1+increaseby
n2<- round(n2.over.n1*n1)
pow<- Power2x2(n1,n2, theta1,theta2, alpha, pvalFunc, ...)
if (printSteps){
message("n1=",n1,"n2=",n2,"power=",pow)
}
if (pow>power){
break()
}
if (i==maxiter) warning("reached maxiter without achieving desired power")
}
}
out<-list(power=pow,theta1=theta1,theta2=theta2,
n1=n1,n2=n2,
sig.level=alpha, method="rejection determined by pvalFunc")
class(out)<-"power.htest"
out
} |
pitch2 <-
function(x,y,z,roll){
pitch = atan((-x)/((y*sin(roll))+(z*cos(roll))) )
return(pitch)
} |
mon_num_wrapper <- function(op, var, thld, infile, outfile, nc34, overwrite, verbose, p = NULL, nc = NULL) {
calc_time_start <- Sys.time()
check_variable(var)
check_constant(thld)
if(is.null(nc)) check_infile(infile)
check_outfile(outfile)
outfile <- correct_filename(outfile)
check_overwrite(outfile, overwrite)
check_nc_version(nc34)
file_data <- read_file(infile, var, nc = nc)
date_time <- get_date_time(file_data$dimension_data$t, file_data$time_info$units)
months_all <- date_time$months
months_unique <- sort(unique(months_all))
years_all <- date_time$years
years_unique <- sort(unique(years_all))
nmonmeans <- length(years_unique) * length(months_unique)
mul <- months_all * years_all
testnum <- mul
test_count <- 0
test <- -999
for (i in seq_along(mul)) {
if (sum(testnum == mul[i]) >= 1) {
test_count <- test_count + 1
test <- cbind(test, mul[i])
testnum[testnum == mul[i]] <- -999
}
}
data_placeholder <- array(
file_data$variable$attributes$missing_value,
dim = c(length(file_data$dimension_data$x),
length(file_data$dimension_data$y),
test_count)
)
time_bnds <- get_time_bounds_mul(
file_data$dimension_data$t, test, test_count, mul
)
vars_data <- list(result = data_placeholder, time_bounds = time_bnds)
nc_format <- get_nc_version(nc34)
cmsaf_info <- switch(
op,
paste0("cmsafops::mon_num_above for variable ", file_data$variable$name),
paste0("cmsafops::mon_num_below for variable ", file_data$variable$name),
paste0("cmsafops::mon_num_equal for variable ", file_data$variable$name),
)
time_data <- time_bnds[1, ]
global_att_list <- names(file_data$global_att)
global_att_list <- global_att_list[toupper(global_att_list) %in% toupper(GLOBAL_ATT_DEFAULT)]
global_attributes <- file_data$global_att[global_att_list]
dims <- define_dims(file_data$grid$is_regular,
file_data$dimension_data$x,
file_data$dimension_data$y,
time_data,
NB2,
file_data$time_info$units)
vars <- define_vars(file_data$variable, dims, nc_format$compression)
write_output_file(
outfile,
nc_format$force_v4,
vars,
vars_data,
file_data$variable$name,
file_data$grid$vars, file_data$grid$vars_data,
cmsaf_info,
file_data$time_info$calendar,
file_data$variable$attributes,
global_attributes
)
nc_out <- nc_open(outfile, write = TRUE)
dummy_vec <- seq_along(months_all)
count <- 1
for (j in seq_len(test_count)) {
mon_dummy <- which(mul == test[j + 1])
if (length(mon_dummy) < 1) {
if (verbose) message(paste0("length of month ", j, " not sufficient"))
next()
}
startt <- min(dummy_vec[mon_dummy])
countt <- length(mon_dummy)
if (!is.null(nc)) nc_in <- nc
else nc_in <- nc_open(infile)
dum_dat <- ncvar_get(nc_in, file_data$variable$name, start = c(1, 1, startt), count = c(-1, -1, countt), collapse_degen = FALSE)
dum_dat <- switch(op,
dum_dat >= thld,
dum_dat <= thld,
dum_dat == thld
)
switch(op,
{
if (verbose) message(paste0("apply monthly number above threshold ", count))
data <- rowSums(dum_dat, dims = 2, na.rm = TRUE)
},
{
if (verbose) message(paste0("apply monthly number below threshold ", count))
data <- rowSums(dum_dat, dims = 2, na.rm = TRUE)
},
{
if (verbose) message(paste0("apply monthly number equal threshold ", count))
data <- rowSums(dum_dat, dims = 2, na.rm = TRUE)
}
)
data[is.na(data)] <- file_data$variable$attributes$missing_value
ncvar_put(nc_out, vars[[1]], data, start = c(1, 1, count), count = c(-1, -1, 1))
count <- count + 1
if (is.null(nc)) nc_close(nc_in)
}
nc_close(nc_out)
calc_time_end <- Sys.time()
if (verbose) message(get_processing_time_string(calc_time_start, calc_time_end))
} |
library(Polychrome)
try( memberPlot( rep(0:1, 20)))
try( memberPlot(matrix(LETTERS, ncol = 2 )) )
try( memberPlot(matrix(1:30, ncol = 5), pal = palette()) )
temp <- t(data.frame(
A = c(rep(1, 500), rep(0, 100)),
B = c(rep(1, 500), rep(0, 100)),
C = c(rep(1, 300), rep(0, 300)),
D = c(rep(1, 300), rep(0, 300)),
E = c(rep(1, 300), rep(0, 300)),
F = c(rep(1, 180), rep(0, 320), rep(1, 40), rep(0, 60)),
G = c(rep(1, 180), rep(0, 320), rep(1, 40), rep(0, 60)),
H = c(rep(1, 180), rep(0, 320), rep(1, 40), rep(0, 60))
))
set.seed(54321)
noise <- matrix(rbinom(prod(dim(temp)), 1, 0.05),
ncol = ncol(temp))
meme <- 1*(temp | noise)
memberPlot(meme) |
oadmin.install_package <- function(opal, pkg, repos=NULL, profile = NULL) {
if(is.list(opal)){
lapply(opal, function(o){oadmin.install_package(o, pkg, repos)})
} else if (opal.version_compare(opal, "4.0")<0) {
defaultrepos <- c(getOption("repos"), "http://cran.obiba.org", "http://cloud.r-project.org")
if (getOption("repos") != "@CRAN@") {
defaultrepos <- append(defaultrepos, getOption("repos"))
}
repostr <- paste('"', append(defaultrepos, repos),'"',collapse=',',sep='')
cmd <- paste('install.packages("', pkg, '", repos=c(', repostr ,'), dependencies=TRUE)', sep='')
resp <- opal.execute(opal, cmd, FALSE)
oadmin.installed_package(opal, pkg)
} else {
oadmin.install_cran_package(opal, pkg, profile = profile)
oadmin.installed_package(opal, pkg, profile = profile)
}
}
oadmin.remove_package <- function(opal, pkg, profile = NULL) {
if (opal.version_compare(opal, "4.0")<0)
ignore <- tryCatch(opal.execute(opal, paste('remove.packages("', pkg, '")', sep=''), FALSE), error=function(e){})
else {
cluster <- .toSafeProfile(opal, profile)
ignore <- opal.delete(opal, "service", "r", "cluster", cluster, "package", pkg)
}
}
oadmin.installed_package <- function(opal, pkg, profile = NULL) {
if (opal.version_compare(opal, "4.0")<0)
opal.execute(opal, paste('require("', pkg, '", character.only=TRUE)', sep=''), FALSE)
else {
cluster <- .toSafeProfile(opal, profile)
dto <- tryCatch(opal.get(opal, "service", "r", "cluster", cluster, "package", pkg), error = function(e) { NULL })
!is.null(dto)
}
}
oadmin.installed_packages <- function(opal, profile = NULL) {
if (opal.version_compare(opal, "4.0")<0)
opal.execute(opal, "installed.packages()")
else {
cluster <- .toSafeProfile(opal, profile)
dtos <- opal.get(opal, "service", "r", "cluster", cluster, "packages")
n <- length(dtos)
name <- replicate(n, NA)
cluster <- replicate(n, NA)
rserver <- replicate(n, NA)
fields <- list()
if (n>0) {
for (i in 1:n) {
for (fieldName in sapply(dtos[[i]]$description, function(f) f$key))
if (!(fieldName %in% names(fields)))
fields[[fieldName]] <- replicate(n, NA)
}
for (i in 1:n) {
name[i] <- dtos[[i]]$name
cluster[i] <- dtos[[i]]$cluster
rserver[i] <- dtos[[i]]$rserver
for (field in dtos[[i]]$description)
fields[[field$key]][i] <- .nullToNA(field$value)
}
}
df <- data.frame(name = name, cluster = cluster, rserver = rserver, stringsAsFactors = FALSE)
for (fieldName in names(fields))
df[[fieldName]] <- fields[[fieldName]]
df
}
}
oadmin.package_description <- function(opal, pkg, fields=NULL, profile = NULL) {
if(is.list(opal)){
lapply(opal, function(o){oadmin.package_description(o, pkg, fields=fields)})
} else if (opal.version_compare(opal, "4.0")<0) {
fields <- append(c("Title","Description","Author","Maintainer","Date/Publication","AggregateMethods","AssignMethods"), fields)
inst <- opal.execute(opal, paste('installed.packages(fields=c("', paste(fields, collapse='","') ,'"))', sep=''), FALSE)
desc <- NULL
for (i in 1:nrow(inst)) {
if(inst[i]==pkg) {
desc <- strsplit(inst[i,],"\n")
break
}
}
return(desc)
} else {
cluster <- .toSafeProfile(opal, profile)
dto <- opal.get(opal, "service", "r", "cluster", cluster, "package", pkg)
description <- list()
for (entry in dto$description) {
description[[entry$key]] <- .nullToNA(entry$value)
}
description
}
}
oadmin.install_devtools <- function(opal, profile = NULL) {
oadmin.install_cran_package(opal, 'devtools', profile = profile)
}
oadmin.installed_devtools <- function(opal, profile = NULL) {
oadmin.installed_package(opal, 'devtools', profile = profile)
}
oadmin.install_cran_package <- function(opal, pkg, profile = NULL) {
if (opal.version_compare(opal, "4.0")<0)
opal.post(opal, "service", "r", "packages", query = list(name = pkg, manager = "cran"))
else {
cluster <- .toSafeProfile(opal, profile)
opal.post(opal, "service", "r", "cluster", cluster, "packages", query = list(name = pkg, manager = "cran"))
}
oadmin.installed_package(opal, pkg, profile = profile)
}
oadmin.install_github_package <- function(opal, pkg , username=getOption("github.user"), ref="master", profile = NULL) {
if (opal.version_compare(opal, "4.0")<0)
opal.post(opal, "service", "r", "packages", query = list(name = paste0(username, "%2F", pkg), ref = ref, manager = "gh"))
else {
cluster <- .toSafeProfile(opal, profile)
opal.post(opal, "service", "r", "cluster", cluster, "packages", query = list(name = paste0(username, "%2F", pkg), ref = ref, manager = "gh"))
}
oadmin.installed_package(opal, pkg, profile = profile)
}
oadmin.install_bioconductor_package <- function(opal, pkg, profile = NULL) {
if (opal.version_compare(opal, "4.0")<0)
opal.post(opal, "service", "r", "packages", query = list(name = pkg, manager = "bioc"))
else {
cluster <- .toSafeProfile(opal, profile)
opal.post(opal, "service", "r", "cluster", cluster, "packages", query = list(name = pkg, manager = "bioc"))
}
oadmin.installed_package(opal, pkg, profile = profile)
}
oadmin.install_local_package <- function(opal, path, profile = NULL) {
if (!file.exists(path)) {
stop("Package archive file cannot be found at: ", path)
}
filename <- basename(path)
if (!endsWith(filename, ".tar.gz")) {
stop("Not a package archive file: ", filename)
}
pkg <- strsplit(filename, "\\.")[[1]][1]
pkg <- strsplit(pkg, "_")[[1]][1]
tmp <- opal.file_mkdir_tmp(opal)
opal.file_upload(opal, path, tmp)
if (opal.version_compare(opal, "4.2")<0) {
opal.file_write(opal, paste0(tmp, filename))
opal.execute(opal, paste0("install.packages('", filename, "', repos = NULL, type ='source')"))
} else {
cluster <- .toSafeProfile(opal, profile)
opal.post(opal, "service", "r", "cluster", cluster, "packages", query = list(name = paste0(tmp, filename), manager = "local"))
}
opal.file_rm(opal, tmp)
oadmin.installed_package(opal, pkg, profile = .toSafeProfile(opal, profile))
}
oadmin.r_perm_add <- function(opal, subject, type = "user", permission = 'use') {
if (!(tolower(type) %in% c("user", "group"))) {
stop("Not a valid subject type: ", type)
}
perms <- list('use' = 'R_USE')
perm <- perms[[permission]]
if (is.null(perm)) {
stop("Not a valid R permission name: ", permission)
}
oadmin.r_perm_delete(opal, subject, type)
for (i in 1:length(subject)) {
ignore <- opal.post(opal, "system", "permissions", "r", query = list(principal = subject[i], type = toupper(type), permission = perm))
}
}
oadmin.r_perm <- function(opal) {
perms <- list('R_USE' = 'use')
acls <- opal.get(opal, "system", "permissions", "r")
.aclsToDataFrame(perms, acls)
}
oadmin.r_perm_delete <- function(opal, subject, type = "user") {
if (!(tolower(type) %in% c("user", "group"))) {
stop("Not a valid subject type: ", type)
}
if (length(subject)<1) {
stop("At least one subject is required")
}
for (i in 1:length(subject)) {
ignore <- opal.delete(opal, "system", "permissions", "r", query = list(principal = subject[i], type = toupper(type)))
}
}
oadmin.system_metrics <- function(opal) {
opal.get(opal, "system", "status")
}
oadmin.system_perm_add <- function(opal, subject, type = "user", permission) {
if (!(tolower(type) %in% c("user", "group"))) {
stop("Not a valid subject type: ", type)
}
perms <- list('project_add' = 'PROJECT_ADD', 'administrate' = 'SYSTEM_ALL')
perm <- perms[[permission]]
if (is.null(perm)) {
stop("Not a valid system permission name: ", permission)
}
oadmin.system_perm_delete(opal, subject, type)
for (i in 1:length(subject)) {
ignore <- opal.post(opal, "system", "permissions", "administration", query = list(principal = subject[i], type = toupper(type), permission = perm))
}
}
oadmin.system_perm <- function(opal) {
perms <- list('PROJECT_ADD' = 'project_add', 'SYSTEM_ALL' = 'administrate')
acls <- opal.get(opal, "system", "permissions", "administration")
.aclsToDataFrame(perms, acls)
}
oadmin.system_perm_delete <- function(opal, subject, type = "user") {
if (!(tolower(type) %in% c("user", "group"))) {
stop("Not a valid subject type: ", type)
}
if (length(subject)<1) {
stop("At least one subject is required")
}
for (i in 1:length(subject)) {
ignore <- opal.delete(opal, "system", "permissions", "administration", query = list(principal = subject[i], type = toupper(type)))
}
}
oadmin.perm_add <- function(opal, subject, type = "user", permission) {
warning("Deprecated: use oadmin.r_perm_add()")
oadmin.r_perm_add(opal, subject, type, permission)
}
oadmin.perm <- function(opal) {
warning("Deprecated: use oadmin.r_perm()")
oadmin.r_perm(opal)
}
oadmin.perm_delete <- function(opal, subject, type = "user") {
oadmin.perm_delete(opal, subject, type)
} |
config_params <- function(conn, name, param = NULL, set = NULL,
unset = NULL, update = NULL, ...) {
conn$config_params(name, param, set, unset, update, ...)
}
name_by <- function(x, y) {
if (is.null(x)) {
NULL
} else {
stats::setNames(list(y = x), y)
}
} |
addWaterYear <- function(rawData){
allowedDateColNames <- c("dateTime", "Date", "ActivityStartDate", "ActivityEndDate")
allowedWYColNames <- c("waterYear", "waterYear", "ActivityStartWaterYear", "ActivityEndWaterYear")
names(allowedWYColNames) <- allowedDateColNames
if(all(!allowedDateColNames %in% names(rawData))){
stop("specified date column does not exist in supplied data frame")
}
dateColNames <- names(rawData)[names(rawData) %in% allowedDateColNames]
dateColNames <- dateColNames[!allowedWYColNames[dateColNames] %in% names(rawData)]
for(dateCol in dateColNames){
dateColWY <- allowedWYColNames[dateCol]
rawData[[dateColWY]] <- calcWaterYear(rawData[[dateCol]])
dateCol_i <- which(names(rawData) == dateCol)
dateColWY_i <- which(names(rawData) == dateColWY)
everything_else <- which(!(names(rawData) %in% c(dateCol,dateColWY)))
everything_else <- everything_else[!everything_else %in% c(1:dateCol_i, dateColWY_i)]
rawData <- rawData[, c(1:dateCol_i, dateColWY_i, everything_else)]
}
return(rawData)
}
calcWaterYear <- function(dateVec){
if(is.numeric(dateVec)){
message("dateVec is numeric, with insufficient information to determine water year.")
return(rep(NA, length(dateVec)))
}
dateTimeVec <- tryCatch({
as.POSIXlt(dateVec)
},
error = function(e){
date_vec <- tryCatch({
as.Date(dateVec)
},
error = function(e){
return(rep(NA, length(dateVec)))
})
if(any(is.na(date_vec))){
dateVec <- as.character(dateVec)
dateVec[grep("^(\\d{4}-\\d{2}$)", dateVec)] <- paste0(dateVec[grep("^(\\d{4}-\\d{2}$)", dateVec)],"-01")
dateVec <- as.Date(dateVec)
}
dateTimeVec <- as.POSIXlt(dateVec)
return(dateTimeVec)
})
calYear <- dateTimeVec$year + 1900
calMon <- dateTimeVec$mon + 1
whichPastOct <- calMon >= 10
whichPastOct[is.na(whichPastOct)] <- FALSE
waterYear <- calYear
waterYear[whichPastOct] <- calYear[whichPastOct] + 1
return(waterYear)
} |
data(sysdata, envir=environment())
horn.outliers = function (data)
{
boxcox = car::powerTransform(data);
lambda = boxcox$lambda;
transData = data^lambda;
descriptives = summary(transData);
Q1 = descriptives[[2]];
Q3 = descriptives[[5]];
IQR = Q3 - Q1;
out = transData[transData <= (Q1 - 1.5*IQR) | transData >= (Q3 + 1.5*IQR)];
sub = transData[transData > (Q1 - 1.5*IQR) & transData < (Q3 + 1.5*IQR)];
return(list(outliers = out^(1/lambda), subset = sub^(1/lambda)));
}
dixon.outliers = function (data)
{
d = sort(data);
dixResult = outliers::dixon.test(data);
pResult = dixResult[[3]];
result = strsplit(dixResult[[2]], " ");
if(pResult <= 0.05) {
out = result[[1]][3];
if(result[[1]][1] == "highest") {
sub = data[data < d[length(d)]];
}
else {
sub = data[data > d[1]];
}
}
else {
out = as.numeric(c());
sub = data;
}
return(list(outliers = out, subset = sub));
}
cook.outliers = function (data)
{
fit = lm(data ~ 1);
cooks_dist = cooks.distance(fit);
out = data[as.numeric(names(cooks_dist[cooks_dist > (4/length(cooks_dist)) |
cooks_dist > 1]))];
sub = data[as.numeric(names(cooks_dist[cooks_dist <= (4/length(cooks_dist)) &
cooks_dist <= 1]))];
return(list(outliers = out, subset = sub));
}
vanderLoo.outliers = function (data)
{
result = extremevalues::getOutliers(data, method = "I");
indices = c(result$iLeft, result$iRight);
out = data[indices];
sub = data[!data %in% out];
return(list(outliers = out, subset = sub));
}
robust = function (data, indices = c(1:length(data)), refConf = 0.95)
{
data = sort(data[indices]);
n = length(data);
median = summary(data)[[3]];
Tbi = median;
TbiNew = 10000;
c = 3.7;
MAD = summary(abs(data - median))[[3]];
MAD = MAD / 0.6745;
smallDiff = FALSE;
repeat {
ui = (data - Tbi) / (c * MAD);
ui[ui < -1] = 1;
ui[ui > 1] = 1;
wi = (1 - ui^2)^2;
TbiNew = (sum(data * wi) / sum(wi));
if(!is.finite(TbiNew) | (abs(TbiNew - Tbi)) < 0.000001){
break;
}
Tbi = TbiNew;
};
ui = NULL;
ui = (data - median) / (205.6 * MAD);
sbi205.6 = 205.6 * MAD * sqrt((n * sum(((1-ui[ui>-1 & ui<1]^2)^4)*ui[ui>-1 & ui<1]^2)) /
(sum((1-ui[ui>-1 & ui<1]^2)*(1-5*ui[ui>-1 & ui<1]^2)) *
max(c(1, -1 + sum((1-ui[ui>-1 & ui<1]^2)*(1-5*ui[ui>-1 & ui<1]^2))))));
ui = NULL;
ui = (data - median) / (3.7 * MAD);
sbi3.7 = 3.7 * MAD * sqrt((n * sum(((1-ui[ui>-1 & ui<1]^2)^4)*ui[ui>-1 & ui<1]^2)) /
(sum((1-ui[ui>-1 & ui<1]^2)*(1-5*ui[ui>-1 & ui<1]^2)) *
max(c(1, -1 + sum((1-ui[ui>-1 & ui<1]^2)*(1-5*ui[ui>-1 & ui<1]^2))))));
ui = NULL;
ui = (data - Tbi) / (3.7 * sbi3.7);
St3.7 = 3.7 * sbi3.7 * sqrt((sum(((1-ui[ui>-1 & ui<1]^2)^4)*ui[ui>-1 & ui<1]^2)) /
(sum((1-ui[ui>-1 & ui<1]^2)*(1-5*ui[ui>-1 & ui<1]^2)) *
max(c(1, -1 + sum((1-ui[ui>-1 & ui<1]^2)*(1-5*ui[ui>-1 & ui<1]^2))))));
tStatistic = qt(1 - ((1 - refConf)/2), (n-1));
margin = tStatistic * sqrt(sbi205.6^2 + St3.7^2);
robustLower = Tbi - margin;
robustUpper = Tbi + margin;
RefInterval = c(robustLower, robustUpper);
return (RefInterval);
}
nonparRI = function(data, indices = 1:length(data), refConf = 0.95)
{
d = data[indices];
results = c(quantile(d, (1 - refConf)/2, type = 6), quantile(d, 1-((1 - refConf)/2), type = 6));
return (results);
}
refLimit = function(data, out.method = "horn", out.rm = FALSE, RI = "p", CI = "p",
refConf = 0.95, limitConf = 0.90, bootStat = "basic"){
cl = class(data);
if(cl == "data.frame"){
frameLabels = colnames(data);
dname = deparse(substitute(data));
result = lapply(data, singleRefLimit, dname, out.method, out.rm, RI, CI, refConf, limitConf, bootStat);
for(i in 1:length(data)){
result[[i]]$dname = frameLabels[i];
}
class(result) = "interval";
}
else{
frameLabels = NULL;
dname = deparse(substitute(data));
result = singleRefLimit(data, dname, out.method, out.rm, RI, CI, refConf, limitConf, bootStat);
}
return(result);
}
singleRefLimit = function(data, dname = "default", out.method = "horn", out.rm = FALSE,
RI = "p", CI = "p", refConf = 0.95, limitConf = 0.90, bootStat = "basic")
{
if(out.method == "dixon"){
output = dixon.outliers(data);
}
else if(out.method == "cook"){
output = cook.outliers(data);
}
else if(out.method == "vanderLoo"){
output = vanderLoo.outliers(data);
}
else{
output = horn.outliers(data);
}
if(out.rm == TRUE){
data = output$subset;
}
if(!bootStat %in% c("basic", "norm", "perc", "stud", "bca")) {
bootStat = "basic";
}
outliers = output$outliers;
n = length(data);
mean = mean(data, na.rm = TRUE);
sd = sd(data, na.rm = TRUE);
norm = NULL;
if(RI == "n"){
methodRI = "Reference Interval calculated nonparametrically";
data = sort(data);
holder = nonparRI(data, indices = 1:length(data), refConf);
lowerRefLimit = holder[1];
upperRefLimit = holder[2];
if(CI == "p"){
CI = "n";
}
}
if(RI == "r"){
methodRI = "Reference Interval calculated using Robust algorithm";
holder = robust(data, 1:length(data), refConf);
lowerRefLimit = holder[1];
upperRefLimit = holder[2];
CI = "boot";
}
if(RI == "p"){
methodRI = "Reference Interval calculated parametrically";
methodCI = "Confidence Intervals calculated parametrically";
refZ = qnorm(1 - ((1 - refConf) / 2));
limitZ = qnorm(1 - ((1 - limitConf) / 2));
lowerRefLimit = mean - refZ * sd;
upperRefLimit = mean + refZ * sd;
se = sqrt(((sd^2)/n) + (((refZ^2)*(sd^2))/(2*n)));
lowerRefLowLimit = lowerRefLimit - limitZ * se;
lowerRefUpperLimit = lowerRefLimit + limitZ * se;
upperRefLowLimit = upperRefLimit - limitZ * se;
upperRefUpperLimit = upperRefLimit + limitZ * se;
shap_normalcy = shapiro.test(data);
shap_output = paste(c("Shapiro-Wilk: W = ", format(shap_normalcy$statistic,
digits = 6), ", p-value = ", format(shap_normalcy$p.value,
digits = 6)), collapse = "");
ks_normalcy = suppressWarnings(ks.test(data, "pnorm", m = mean, sd = sd));
ks_output = paste(c("Kolmorgorov-Smirnov: D = ", format(ks_normalcy$statistic,
digits = 6), ", p-value = ", format(ks_normalcy$p.value,
digits = 6)), collapse = "");
if(shap_normalcy$p.value < 0.05 | ks_normalcy$p.value < 0.05){
norm = list(shap_output, ks_output);
}
else{
norm = list(shap_output, ks_output);
}
}
if(CI == "n"){
if(n < 120){
cat("\nSample size too small for non-parametric confidence intervals,
bootstrapping instead\n");
CI = "boot";
}
else{
methodCI = "Confidence Intervals calculated nonparametrically";
ranks = nonparRanks[which(nonparRanks$SampleSize == n),];
lowerRefLowLimit = data[ranks$Lower];
lowerRefUpperLimit = data[ranks$Upper];
upperRefLowLimit = data[(n+1) - ranks$Upper];
upperRefUpperLimit = data[(n+1) - ranks$Lower];
}
}
if(CI == "boot" & (RI == "n" | RI == "r")){
methodCI = "Confidence Intervals calculated by bootstrapping, R = 5000";
if(RI == "n"){
bootresult = boot::boot(data = data, statistic = nonparRI, refConf = refConf, R = 5000);
}
if(RI == "r"){
bootresult = boot::boot(data = data, statistic = robust, refConf = refConf, R = 5000);
}
bootresultlower = boot::boot.ci(bootresult, conf = limitConf, type=bootStat, index = c(1,2));
bootresultupper = boot::boot.ci(bootresult, conf = limitConf, type=bootStat, index = c(2,2));
bootresultlength = length(bootresultlower[[4]]);
lowerRefLowLimit = bootresultlower[[4]][bootresultlength - 1];
lowerRefUpperLimit = bootresultlower[[4]][bootresultlength];
upperRefLowLimit = bootresultupper[[4]][bootresultlength - 1];
upperRefUpperLimit = bootresultupper[[4]][bootresultlength];
}
RVAL = list(size = n, dname = dname, out.method = out.method, out.rm = out.rm,
outliers = outliers, methodRI = methodRI, methodCI = methodCI,
norm = norm, refConf = refConf, limitConf = limitConf,
Ref_Int = c(lowerRefLimit = lowerRefLimit, upperRefLimit = upperRefLimit),
Conf_Int = c(lowerRefLowLimit = lowerRefLowLimit,
lowerRefUpperLimit = lowerRefUpperLimit,
upperRefLowLimit = upperRefLowLimit,
upperRefUpperLimit = upperRefUpperLimit));
class(RVAL) = "interval";
return(RVAL);
}
print.interval = function (x, digits = 4L, quote = TRUE, prefix = "", ...)
{
if(class(x[[1]]) == "interval"){
lapply(x, print.interval.sub);
}
else{
print.interval.sub(x);
}
}
print.interval.sub = function (x, digits = 4L, quote = TRUE, prefix = "", ...)
{
cat("\n");
cat(strwrap(x$methodRI, prefix = "\t"), sep = "\n");
cat(strwrap(x$methodCI, prefix = "\t"), sep = "\n");
cat("\n");
cat("data: ", x$dname, "\n", sep = "");
cat("N: ", x$size, "\n", sep = "");
if (!is.null(x$refConf)) {
cat(format(100 * x$refConf), "% Reference Interval", "\n", sep = "");
}
if (!is.null(x$limitConf)) {
cat(format(100 * x$limitConf), "% Confidence Intervals\n", "\n", sep = "");
}
if (!is.null(x$out.method)) {
cat("Outlier detection method:", x$out.method, "\n");
}
if (!is.null(x$outliers) & length(x$outliers) > 0) {
if(x$out.rm){
cat("Removed outliers: ");
}
else{
cat("Suspected outliers: ");
}
cat(strwrap(paste(format(x$outliers, digits = 6), collapse = ", ")), sep = "\n");
}
else {
cat("No outliers detected\n");
}
if (!is.null(x$norm)) {
cat(strwrap(x$norm, prefix = "\n"), "\n\n");
}
if (!is.null(x$Ref_Int)) {
cat("\nReference Interval: ");
cat(strwrap(paste(format(x$Ref_Int, digits = 6), collapse = ", ")), sep = "\n");
}
if (!is.null(x$Conf_Int)) {
cat("Lower Confidence Interval: ");
cat(strwrap(paste(format(x$Conf_Int[1:2], digits = 6), collapse = ", ")), sep = "\n");
cat("Upper Confidence Interval: ");
cat(strwrap(paste(format(x$Conf_Int[3:4], digits = 6), collapse = ", ")), sep = "\n");
}
cat("\n");
invisible(x);
}
plot.interval = function (x, main = NULL, ...)
{
original.parameters = par();
if(class(x[[1]]) != "interval"){
range = max(x[["Conf_Int"]][[4]]) - min(x[["Conf_Int"]][[1]]);
y_low = min(x[["Conf_Int"]][[1]]) - 0.05 * range;
y_high = max(x[["Conf_Int"]][[4]]) + 0.05 * range;
plot.new();
plot.window(xlim=c(0,2), ylim=c(y_low,y_high));
segments(1, min(x[["Ref_Int"]]), 1, max(x[["Ref_Int"]]), col = "red");
segments(1-0.05, x[["Conf_Int"]][[1]], 1+0.05, x[["Conf_Int"]][[1]], col = "blue");
segments(1-0.05, x[["Conf_Int"]][[2]], 1+0.05, x[["Conf_Int"]][[2]], col = "blue");
segments(1-0.05, x[["Conf_Int"]][[3]], 1+0.05, x[["Conf_Int"]][[3]], col = "blue");
segments(1-0.05, x[["Conf_Int"]][[4]], 1+0.05, x[["Conf_Int"]][[4]], col = "blue");
axis(1, at=1:1, labels=x[["dname"]]);
axis(2);
if(!is.null(main)){
title(main = main);
}
else {
title(main="Reference Range");
}
title(xlab="Parameter");
title(ylab="Units");
legend("topright", col = c("red", "blue"), lty = 1, inset = c(0, -0.09),
legend = c("Reference Interval", "Confidence Interval"), cex = 0.6,
xpd = TRUE);
box();
}
if(class(x[[1]]) == "interval"){
numRanges = length(x);
intervals = unlist(sapply(x, "[", "Conf_Int"));
labels = unlist(sapply(x, "[", "dname"));
range = max(intervals) - min(intervals);
y_low = min(intervals) - 0.05 * range;
y_high = max(intervals) + 0.05 * range;
plot.new();
plot.window(xlim=c(0,numRanges + 1), ylim=c(y_low,y_high));
for(i in 1:numRanges){
segments(i, x[[i]]$Ref_Int[1], i, x[[i]]$Ref_Int[2], col = "red");
segments(i-0.05, x[[i]]$Conf_Int[[1]], i+0.05, x[[i]]$Conf_Int[[1]], col = "blue");
segments(i-0.05, x[[i]]$Conf_Int[[2]], i+0.05, x[[i]]$Conf_Int[[2]], col = "blue");
segments(i-0.05, x[[i]]$Conf_Int[[3]], i+0.05, x[[i]]$Conf_Int[[3]], col = "blue");
segments(i-0.05, x[[i]]$Conf_Int[[4]], i+0.05, x[[i]]$Conf_Int[[4]], col = "blue");
}
axis(1, at=1:numRanges, labels = FALSE);
text(x = seq(1, numRanges, by=1), par("usr")[3] - 0.2, labels = labels,
cex = 0.75, srt = 90, pos = 1, offset = 2, xpd = TRUE);
axis(2);
if(!is.null(main)){
title(main = main);
}
else {
title(main="Reference Range");
}
title(xlab="Parameter");
title(ylab="Units");
legend("topright", col = c("red", "blue"), lty = 1, inset = c(0, -0.09),
legend = c("Reference Interval", "Confidence Interval"), cex = 0.6,
xpd = TRUE);
box();
}
par(original.parameters[-c(13, 19, 21:23, 54)]);
} |
context("Base image helper functions")
test_that("Installed packages can be read from a Docker image", {
skip_if_not(stevedore::docker_available())
output <- capture_output(pkgs <- get_installed_packages(image = "rocker/geospatial:3.4.4"))
expect_equal(dim(pkgs), c(257,2))
expect_true("sf" %in% pkgs$pkg)
expect_true("maps" %in% pkgs$pkg)
expect_true("rgeos" %in% pkgs$pkg)
expect_true("maptools" %in% pkgs$pkg)
expect_false("adehabitatLT" %in% pkgs$pkg)
expect_false("cshapes" %in% pkgs$pkg)
})
test_that("Installed packages are a data.frame with the image as an attribute", {
skip_if_not(stevedore::docker_available())
.image <- "rocker/geospatial:3.4.4"
output <- capture_output(pkgs <- get_installed_packages(image = .image))
expect_s3_class(pkgs, "data.frame")
expect_true("image" %in% names(attributes(pkgs)))
expect_equal(.image, attributes(pkgs)$image)
})
packages_df <- data.frame(name = c("sp", "ggplot2", "rgdal", "coxrobust"),
version = c("10.10.10", "tidyverse/ggplot2@abcdef", "3", "0"),
source = c("CRAN", "github", "CRAN", "CRAN"),
stringsAsFactors = FALSE)
test_that("List of installed packages can be filtered when creating a Dockerfile", {
skip_if_not(stevedore::docker_available())
output <- capture_output(the_dockerfile <- dockerfile(from = "package_markdown/sfr/",
maintainer = "o2r",
image = "rocker/geospatial:3.6.0",
filter_baseimage_pkgs = TRUE))
the_dockerfile_string <- toString(the_dockerfile)
expect_true(object = any(grepl("
expect_true(object = any(grepl("^
unlink("package_markdown/sfr/nc1.*")
unlink("package_markdown/sfr/*.html")
unlink("package_markdown/sfr/sf2_files", recursive = TRUE)
})
test_that("Filtered list of installed packages does not filter GitHub packages", {
skip_if_not(stevedore::docker_available())
output <- capture_output(the_dockerfile <- dockerfile(from = packages_df,
maintainer = "o2r",
image = "rocker/geospatial:3.5.1",
filter_baseimage_pkgs = TRUE))
the_dockerfile_string <- toString(the_dockerfile)
expect_false(object = any(grepl("^
expect_true(object = any(grepl("^RUN.*installGithub.*tidyverse/ggplot2", x = the_dockerfile_string)), info = "ggplot is in installGithub command")
})
test_that("Filtered list of installed packages is alphabetical", {
skip_if_not(stevedore::docker_available())
output <- capture_output(the_dockerfile <- dockerfile(from = packages_df,
maintainer = "o2r",
image = "rocker/geospatial:3.5.1",
filter_baseimage_pkgs = TRUE))
expect_true(object = any(grepl("^
})
test_that("System dependencies of filtered packages are not installed", {
skip_if_not(stevedore::docker_available())
output <- capture_output(the_dockerfile <- dockerfile(from = packages_df,
maintainer = "o2r",
image = "rocker/geospatial:3.6.0",
filter_baseimage_pkgs = TRUE))
expect_false(object = any(grepl(".*gdal-bin.*", x = toString(the_dockerfile))))
}) |
is.claiminfo <- function(x) {
inherits(x, 'claiminfo')
} |
trainMaxnet <- function(data, reg = 1, fc = "lqph") {
result <- SDMmodel(data = data)
x <- data@data
p <- data@pa
model <- maxnet::maxnet(p, x, f = maxnet::maxnet.formula(p, x, classes = fc),
regmult = reg, addsamplestobackground = FALSE)
model_object <- Maxnet(reg = reg, fc = fc, model = model)
result@model <- model_object
return(result)
} |
downloadTau <- function(subtype="paper") {
settings <- list( paper = list( title = "Tau Factor (cellular, crop-specific)",
description = "Cellular (0.5deg), crop-specific land use intensity (tau) for 1995 and 2000",
url = "https://zenodo.org/record/4282581/files/tau-paper.zip",
doi = "10.5281/zenodo.4282581"),
historical = list( title = "Tau Factor (historic trends)",
description = "Historic land use intensity (tau) development",
url = "https://zenodo.org/record/4282548/files/tau-historical.zip",
doi = "10.5281/zenodo.4282548"))
meta <- toolSubtypeSelect(subtype,settings)
download.file(meta$url, destfile = "tau.zip", quiet = testthat::is_testing())
unzip("tau.zip")
unlink("tau.zip")
return(list(url = meta$url,
doi = meta$doi,
title = meta$title,
description = meta$description,
author = person("Jan Philipp","Dietrich", email="[email protected]", comment="https://orcid.org/0000-0002-4309-6431"),
unit = "1",
version = "1.0",
release_date = "2012-05-10",
license = "Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA 4.0)",
reference = bibentry("Article",
title="Measuring agricultural land-use intensity - A global analysis using a model-assisted approach",
author=c(person("Jan Philipp","Dietrich", email="[email protected]", comment="https://orcid.org/0000-0002-4309-6431"),
person("Christoph","Schmitz"),
person("Christoph","Mueller"),
person("Marianela","Fader"),
person("Hermann","Lotze-Campen"),
person("Alexander","Popp")),
year="2012",
journal="Ecological Modelling",
volume="232",
pages="109-118",
url="https://doi.org/10.1016/j.ecolmodel.2012.03.002",
doi="10.1016/j.ecolmodel.2012.03.002"))
)
} |
k <- function(z,h=1,type="gaussian") {
u <- z/h
if (type=="gaussian") {
dnorm(u)*(abs(u)<=1)
} else if (type=="epanechnikov") {
0.75*(1-u^2)*(abs(u)<=1)
}
}
G <- function(z) {
vapply(z, FUN=function(x) {
if (exp(x) == Inf) {
return(1)
} else {
exp(x)/(1+exp(x))
}
}, 1.0)
}
dg <- function(z) {
exp(z)/((1+exp(z))^2)
}
wll <- function(bet,y,x,thisx,h) {
idx <- bet[1] + bet[2]*x
-sum( (y*log(G(idx)) + log((1-G(idx)))*(1-y)) * k(x-thisx,h) )
}
wscore <- function(bet,y,x,thisx,h) {
idx <- bet[1] + bet[2]*x
X <- cbind(1,x)
kh <- k(x-thisx,h)
( ( as.numeric(y*(dg(idx)/G(idx))) - (1-y)*(dg(idx)/(1-G(idx))) )*kh )*X
}
wgr <- function(bet,y,x,thisx,h) {
colSums(-wscore(bet,y,x,thisx,h))
}
F.Y1 <- function(ytmin1, y.seq, Y1t, Y0tmin1, h=NULL, method="level") {
n <- length(Y1t)
if (method=="rank") {
Y0tmin1 <- order(Y0tmin1)/n
}
X <- cbind(1, Y0tmin1-ytmin1)
if (is.null(h)) {
h <- 1.06*sd(Y0tmin1)*n^(-1/4)
}
K <- diag(k(Y0tmin1 - ytmin1,h), n, n)
Fy1tcondy0tmin1.vals <- vapply(y.seq, FUN=function(y) {
IY <- 1*(Y1t <= y)
o <- optim(c(0,0), wll, gr=wgr, y=IY, x=(Y0tmin1-ytmin1), thisx=0, h=h,
control=list(maxit=1000, reltol=1e-2),
method="BFGS")
thet <- o$par
G(thet[1])
} , 1.0)
Fy1tcondy0tmin1.vals <- Fy1tcondy0tmin1.vals[order(Fy1tcondy0tmin1.vals)]
BMisc::makeDist(y.seq, Fy1tcondy0tmin1.vals, TRUE)
}
F.Y0 <- function(ytmin1, y.seq, Y0tmin1, Y0tmin2, Y0tqteobj, h=NULL,
method="level") {
ddid <- Y0tqteobj
n <- length(Y0tmin1)
if (method=="rank") {
Y0tmin2 <- order(Y0tmin2)/n
xtmin1 <- ytmin1
} else {
xtmin1 <- quantile(ddid$F.treated.tmin2,
probs=ddid$F.treated.tmin1(ytmin1), type=1)
}
X <- cbind(1, Y0tmin2-xtmin1)
if (is.null(h)) {
h <- 1.06*sd(Y0tmin2)*n^(-1/4)
}
K <- diag(k(Y0tmin2-xtmin1, h), n, n)
Fy0tcondy0tmin1.vals <- vapply(y.seq, FUN=function(y) {
Z <- 1*(Y0tmin1 <= quantile(ddid$F.treated.tmin1,
probs=ddid$F.treated.t.cf(y),
type=1))
o <- optim(c(0,0), wll, gr=wgr, y=Z, x=(Y0tmin2-xtmin1), thisx=0, h=h,
control=list(maxit=1000, reltol=1e-2),
method="BFGS")
thet <- o$par
G(thet[1])
} , 1.0)
Fy0tcondy0tmin1.vals <- Fy0tcondy0tmin1.vals[order(Fy0tcondy0tmin1.vals)]
BMisc::makeDist(y.seq, Fy0tcondy0tmin1.vals, TRUE)
}
l.inner <- function(y, ytmin1, delt, ytmin1.seq,
Y1t, Y0tmin1, Y0tmin2, Y0tqteobj, F.y1, F.y0) {
i <- which(ytmin1.seq==ytmin1)[1]
max(F.y1[[i]](y) - F.y0[[i]](y-delt),0)
}
l.ytmin1 <- function(ytmin1, delt, y.seq, ytmin1.seq, Y1t, Y0tmin1, Y0tmin2,
Y0tqteobj, F.y1, F.y0) {
max(vapply(y.seq, l.inner, 1.0, ytmin1, delt, ytmin1.seq,
Y1t, Y0tmin1, Y0tmin2,
Y0tqteobj, F.y1, F.y0))
}
l <- function(delt, y.seq, ytmin1.seq,
Y1t, Y0tmin1, Y0tmin2, Y0tqteobj, F.y1, F.y0) {
mean(vapply(Y0tmin1, l.ytmin1, 1.0, delt, y.seq, ytmin1.seq,
Y1t, Y0tmin1, Y0tmin2,
Y0tqteobj, F.y1, F.y0))
}
u.inner <- function(y, ytmin1, delt, ytmin1.seq,
Y1t, Y0tmin1, Y0tmin2, Y0tqteobj,
F.y1, F.y0) {
i <- which(ytmin1.seq==ytmin1)[1]
1 + min((F.y1[[i]](y) - F.y0[[i]](y-delt)),0)
}
u.ytmin1 <- function(ytmin1, delt, y.seq, ytmin1.seq,
Y1t, Y0tmin1, Y0tmin2, Y0tqteobj,
F.y1, F.y0) {
min(vapply(y.seq, u.inner, 1.0, ytmin1, delt, ytmin1.seq,
Y1t, Y0tmin1, Y0tmin2,
Y0tqteobj, F.y1, F.y0))
}
u <- function(delt, y.seq, ytmin1.seq,
Y1t, Y0tmin1, Y0tmin2, Y0tqteobj, F.y1, F.y0) {
mean(vapply(Y0tmin1, u.ytmin1, 1.0, delt, y.seq, ytmin1.seq,
Y1t, Y0tmin1, Y0tmin2,
Y0tqteobj, F.y1, F.y0))
}
wd.l.inner <- function(y, delt, Y1t, Y0tqteobj) {
max(ecdf(Y1t)(y) - Y0tqteobj$F.treated.t.cf(y-delt),0)
}
wd.l <- function(delt, y.seq, Y1t, ddid) {
max(vapply(y.seq, wd.l.inner, 1.0, delt, Y1t, ddid))
}
wd.u.inner <- function(y, delt, Y1t, ddid) {
1 + min(ecdf(Y1t)(y) - ddid$F.treated.t.cf(y-delt),0)
}
wd.u <- function(delt, y.seq, Y1t, ddid) {
min(vapply(y.seq, wd.u.inner, 1.0, delt, Y1t, ddid))
}
csa.bounds <- function(formla, t, tmin1, tmin2, tname, idname,
data, delt.seq, y.seq, Y0tqteobj,
F.y0=NULL, F.y1=NULL, h=NULL,
method=c("level","rank"), cl=1) {
form <- as.formula(formla)
dta <- model.frame(terms(form,data=data),data=data)
colnames(dta) <- c("y","treat")
data <- cbind.data.frame(dta,data)
data <- subset(data, treat==1)
Y1t <- data[data[,tname]==t,]$y
Y0tmin1 <- data[data[,tname]==tmin1,]$y
Y0tmin2 <- data[data[,tname]==tmin2,]$y
n <- length(Y1t)
ytmin1.seq <- Y0tmin1
ytmin1.seq <- ytmin1.seq[order(ytmin1.seq)]
if (method=="rank") {
ytmin1.seq <- order(ytmin1.seq)/length(ytmin1.seq)
}
print("Step 1 of 4: Calculating conditional distribution of treated potential outcomes...")
if (is.null(F.y1)) {
F.y1 <- pbapply::pblapply(ytmin1.seq, F.Y1, y.seq,
Y1t, Y0tmin1, h=h, method=method,
cl=cl)
}
print("Step 2 of 4: Calculating conditional distribution of untreated potential outcomes...")
if (is.null(F.y0)) {
F.y0 <- pbapply::pblapply(ytmin1.seq, F.Y0, y.seq, Y0tmin1,
Y0tmin2, Y0tqteobj, h=h, method=method,
cl=cl)
}
if (method=="rank") {
Y0tmin1r <- order(Y0tmin1)/length(Y0tmin1)
} else {
Y0tmin1r <- Y0tmin1
}
print("Step 3 of 4: Calculating lower bound")
l.vec <- pbapply::pblapply(delt.seq, l, y.seq, ytmin1.seq,
Y1t, Y0tmin1r, Y0tmin2, Y0tqteobj,
F.y1, F.y0, cl=cl)
l.vec <- unlist(l.vec)
print("Step 4 of 4: Calculating upper bound")
u.vec <- pbapply::pblapply(delt.seq, u, y.seq, ytmin1.seq,
Y1t, Y0tmin1r, Y0tmin2, Y0tqteobj,
F.y1, F.y0, cl=cl)
u.vec <- unlist(u.vec)
F.l <- BMisc::makeDist(delt.seq, l.vec)
F.u <- BMisc::makeDist(delt.seq, u.vec)
wd.l.vec <- vapply(delt.seq, wd.l, 1.0, y.seq, Y1t, Y0tqteobj)
wd.u.vec <- vapply(delt.seq, wd.u, 1.0, y.seq, Y1t, Y0tqteobj)
F.wd.l <- BMisc::makeDist(delt.seq, wd.l.vec)
F.wd.u <- BMisc::makeDist(delt.seq, wd.u.vec)
return(list(F.l=F.l, F.u=F.u, F.wd.l=F.wd.l, F.wd.u=F.wd.u))
}
ggCSABounds <- function(csaboundsobj, tau=seq(.05,.95,.05), wdbounds=FALSE,
otherdist1=NULL, otherdist2=NULL) {
tau <- seq(0.05, 0.95, .05)
c <- csaboundsobj
qu <- quantile(c$F.l, tau, type=1)
ql <- quantile(c$F.u, tau, type=1)
qwdu <- quantile(c$F.wd.l, tau, type=1)
qwdl <- quantile(c$F.wd.u, tau, type=1)
cmat <- data.frame(tau=tau, qu=qu, ql=ql, group="CSA Bounds")
cmat2 <- data.frame(tau=tau, qu=qwdu, ql=qwdl, group="WD Bounds")
if (wdbounds) {
cmat <- rbind.data.frame(cmat2, cmat)
}
if (!is.null(otherdist1)) {
cmat3 <- data.frame(tau=tau, qu=quantile(otherdist1, tau, type=1),
ql=ql, group="CS PPD")
cmat <- rbind.data.frame(cmat3, cmat)
}
if (!is.null(otherdist2)) {
cmat4 <- data.frame(tau=tau, qu=quantile(otherdist2, tau, type=1),
ql=ql, group="Panel PPD")
cmat <- rbind.data.frame(cmat4, cmat)
}
p <- ggplot(data=cmat) +
geom_line(aes(x=tau, y=qu, color=factor(group)), size=1) +
geom_line(aes(x=tau, y=ql, color=factor(group)), size=1) +
scale_x_continuous(limits=c(0,1)) +
theme_bw() +
theme(legend.title=element_blank())
p
} |
NULL
reduce_common <- function(x, msg = "Objects must be identical",
operator = identical) {
reduce(x, function(.x, .y) {
if (!operator(.x, .y)) {
stop(msg, call. = FALSE)
}
.y
})
}
has_name <- function(x) {
nms <- names(x)
if (is.null(nms)) {
rep(FALSE, length(x))
} else {
!(is.na(nms) | nms == "")
}
}
big_mark <- function(x, ...) {
mark <- if (identical(getOption("OutDec"), ",")) "." else ","
formatC(x, big.mark = mark, ...)
}
id <- function(n) {
width <- nchar(n)
sprintf(paste0("%0", width, "d"), seq_len(n))
} |
setMethod(f='get.problemInstance', signature=c('problemInstance', 'character'),
definition=function(object, type) {
if ( !type %in% c('strID', 'nrVars', 'freq', 'w', 'numVars', 'sdcStatus',
'lb', 'ub', 'LPL', 'SPL', 'UPL', 'primSupps', 'secondSupps',
'forcedCells', 'hasPrimSupps', 'hasSecondSupps', 'hasForcedCells',
'weight', 'suppPattern') ) {
stop("get.problemInstance:: argument 'type' is not valid!\n")
}
if ( type == 'strID' ) {
return(g_strID(object))
}
if ( type == 'nrVars' ) {
return(g_nrVars(object))
}
if ( type == 'freq' ) {
return(g_freq(object))
}
if ( type == 'w' ) {
return(g_w(object))
}
if ( type == 'numVars' ) {
return(g_numVars(object))
}
if ( type == 'sdcStatus' ) {
return(g_sdcStatus(object))
}
if ( type == 'lb' ) {
return(g_lb(object))
}
if ( type == 'ub' ) {
return(g_ub(object))
}
if ( type == 'LPL' ) {
return(g_LPL(object))
}
if ( type == 'UPL' ) {
return(g_UPL(object))
}
if ( type == 'SPL' ) {
return(g_SPL(object))
}
if ( type == 'primSupps' ) {
return(g_primSupps(object))
}
if ( type == 'secondSupps' ) {
return(g_secondSupps(object))
}
if ( type == 'forcedCells' ) {
return(g_forcedCells(object))
}
if ( type == 'hasPrimSupps' ) {
return(g_hasPrimSupps(object))
}
if ( type == 'hasSecondSupps' ) {
return(g_hasSecondSupps(object))
}
if ( type == 'hasForcedCells' ) {
return(g_hasForcedCells(object))
}
if ( type == 'weight' ) {
return(g_weight(object))
}
if ( type == 'suppPattern' ) {
return(g_suppPattern(object))
}
}
)
setMethod(f='set.problemInstance', signature=c('problemInstance', 'character', 'list'),
definition=function(object, type, input) {
index <- input[[1]]
values <- input[[2]]
if ( !type %in% c('lb', 'ub', 'LPL', 'UPL', 'SPL', 'sdcStatus') ) {
stop("set.problemInstance:: check argument 'type'!\n" )
}
if ( !is.null(index) & length(values) != length(index) ) {
stop("set.problemInstance:: arguments 'values' and 'index' differ in length!\n")
}
if ( !all(index %in% 1:g_nrVars(object)) ) {
stop("set.problemInstance:: argument 'index' does not fit to given problem!\n")
}
if ( type == 'lb' ) {
s_lb(object) <- list(index=index, vals=values)
}
if ( type == 'ub' ) {
s_ub(object) <- list(index=index, vals=values)
}
if ( type == 'LPL' ) {
s_LPL(object) <- list(index=index, vals=values)
}
if ( type == 'UPL' ) {
s_UPL(object) <- list(index=index, vals=values)
}
if ( type == 'SPL' ) {
s_SPL(object) <- list(index=index, vals=values)
}
if ( type == 'sdcStatus' ) {
s_sdcStatus(object) <- list(index=index, vals=values)
}
object
}
)
setMethod(f='calc.problemInstance', signature=c('problemInstance', 'character','list'),
definition=function(object, type, input) {
if ( !type %in% c('makeMasterProblem', 'isProtectedSolution') ) {
stop("calc.problemInstance:: check argument 'type'!\n" )
}
if ( type == 'makeMasterProblem' ) {
return(c_make_masterproblem(object, input))
}
if ( type == 'isProtectedSolution' ) {
return(c_is_protected_solution(object, input))
}
}
)
setMethod("g_sdcStatus", signature="problemInstance", definition=function(object) {
object@sdcStatus
})
setMethod("g_primSupps", signature="problemInstance", definition=function(object) {
which(g_sdcStatus(object)=="u")
})
setMethod("g_secondSupps", signature="problemInstance", definition=function(object) {
which(g_sdcStatus(object)=="x")
})
setMethod("g_forcedCells", signature="problemInstance", definition=function(object) {
which(g_sdcStatus(object)=="z")
})
setMethod("g_type", signature="problemInstance", definition=function(object) {
object@type
})
setMethod("g_freq", signature="problemInstance", definition=function(object) {
object@Freq
})
setMethod("g_strID", signature="problemInstance", definition=function(object) {
object@strID
})
setMethod("g_UPL", signature="problemInstance", definition=function(object) {
object@UPL
})
setMethod("g_LPL", signature="problemInstance", definition=function(object) {
object@LPL
})
setMethod("g_SPL", signature="problemInstance", definition=function(object) {
object@SPL
})
setMethod("g_nrVars", signature="problemInstance", definition=function(object) {
length(g_strID(object))
})
setMethod("g_lb", signature="problemInstance", definition=function(object) {
object@lb
})
setMethod("g_ub", signature="problemInstance", definition=function(object) {
object@ub
})
setMethod("g_w", signature="problemInstance", definition=function(object) {
object@w
})
setMethod("g_numVars", signature="problemInstance", definition=function(object) {
object@numVars
})
setMethod("g_hasPrimSupps", signature="problemInstance", definition=function(object) {
return(length(g_primSupps(object)) > 0)
})
setMethod("g_hasSecondSupps", signature="problemInstance", definition=function(object) {
return(length(g_secondSupps(object)) > 0)
})
setMethod("g_hasForcedCells", signature="problemInstance", definition=function(object) {
return(length(g_forcedCells(object)) > 0)
})
setMethod("g_weight", signature="problemInstance", definition=function(object) {
wg <- g_w(object)
if ( !is.null(wg) ) {
return(wg)
} else {
return(g_freq(object))
}
})
setMethod("g_suppPattern", signature="problemInstance", definition=function(object) {
suppPattern <- rep(0, g_nrVars(object))
if ( g_hasPrimSupps(object) ) {
suppPattern[g_primSupps(object)] <- 1
}
secondSupps <- g_secondSupps(object)
if ( length(secondSupps) > 0 ) {
suppPattern[secondSupps] <- 1
}
return(suppPattern)
})
setReplaceMethod("s_sdcStatus", signature=c("problemInstance", "list"), definition=function(object, value) {
sdcStatus <- g_sdcStatus(object)
index <- value$index
values <- value$vals
if ( length(values) > length(sdcStatus) ) {
stop("s_sdcStatus:: length of 'sdcVec' must be <=",length(sdcStatus),"\n")
}
if ( is.null(index) ) {
indexVec <- 1:length(sdcStatus)
if ( length(values) != length(sdcStatus) ) {
stop("s_sdcStatus:: length of 'values' must be ==",length(sdcStatus), "if 'index' is NULL!\n")
}
object@sdcStatus[indexVec] <- values
}
if ( !is.null(index) ) {
if ( !all(index %in% 1:length(sdcStatus)) ) {
stop("s_sdcStatus:: elements of 'index' must be in 1:",length(sdcStatus),"!\n")
}
object@sdcStatus[index] <- values
}
validObject(object)
object
})
setReplaceMethod("s_lb", signature=c("problemInstance", "list"), definition=function(object, value) {
object@lb[value$index] <- value$vals
validObject(object)
object
})
setReplaceMethod("s_ub", signature=c("problemInstance", "list"), definition=function(object, value) {
object@ub[value$index] <- value$vals
validObject(object)
object
})
setReplaceMethod("s_LPL", signature=c("problemInstance", "list"), definition=function(object, value) {
object@LPL[value$index] <- value$vals
validObject(object)
object
})
setReplaceMethod("s_UPL", signature=c("problemInstance", "list"), definition=function(object, value) {
object@UPL[value$index] <- value$vals
validObject(object)
object
})
setReplaceMethod("s_SPL", signature=c("problemInstance", "list"), definition=function(object, value) {
object@SPL[value$index] <- value$vals
validObject(object)
object
})
setMethod("c_make_masterproblem", signature=c("problemInstance", "list"), definition=function(object, input) {
mProb <- NULL
if ( g_hasPrimSupps(object) ) {
objective <- g_weight(object)
primSupps <- g_primSupps(object)
nrVars <- g_nrVars(object)
M <- init.simpleTriplet(type='simpleTriplet', input=list(mat=matrix(0, nrow=0, ncol=nrVars)))
direction <- rep("==", g_nr_rows(M))
rhs <- rep(1, g_nr_rows(M))
if ( g_hasForcedCells(object) ) {
forcedCells <- g_forcedCells(object)
if ( length(forcedCells) > 0 ) {
for ( i in seq_along(forcedCells) ) {
M <- c_add_row(M, input=list(index=forcedCells[i], values=1))
}
direction <- c(direction, rep("==", length(forcedCells)))
rhs <- c(rhs, rep(0, length(forcedCells)))
}
}
types <- rep("C", nrVars)
boundsLower <- list(ind=1:nrVars, val=rep(0, nrVars))
boundsUpper <- list(ind=1:nrVars, val=rep(1, nrVars))
if ( length(primSupps) > 0 ) {
boundsLower$val[primSupps] <- 1
}
mProb <- new("linProb",
objective=objective,
constraints=M,
direction=direction,
rhs=rhs,
boundsLower=boundsLower,
boundsUpper=boundsUpper,
types=types)
}
return(mProb)
})
setMethod("c_is_protected_solution", signature=c("problemInstance", "list"), definition=function(object, input) {
input1 <- input$input1
input2 <- input$input2
primSupps <- g_primSupps(object)
if ( length(input1) != length(input2) ) {
stop("c_is_protected_solution:: parameters 'input1 (~limitsDown)' and 'input2 (~limitsUp)' differ in length!\n")
}
if ( length(input1) != length(primSupps) ) {
stop("c_is_protected_solution:: parameter 'limits.x' and length of primary suppressed cells differ!\n")
}
protected <- TRUE
weights <- g_weight(object)[primSupps]
limits <- list()
limits$LPL <- g_LPL(object)[primSupps]
limits$UPL <- g_UPL(object)[primSupps]
limits$SPL <- g_SPL(object)[primSupps]
if ( any(weights - input1 < limits[[1]]) == TRUE ) {
protected <- FALSE
}
if ( any(input2 - weights < limits[[2]]) == TRUE ) {
protected <- FALSE
}
if ( any(input2 - input1 < limits[[3]]) == TRUE ) {
protected <- FALSE
}
return(protected)
}) |
rboTopics = function(topics, k, p, progress = TRUE, pm.backend, ncpus){
assert_matrix(topics, mode = "integerish", any.missing = FALSE,
col.names = "strict", min.cols = 2, min.rows = 2)
assert_integerish(topics, lower = 0, any.missing = FALSE)
assert_flag(progress)
assert_number(p, lower = .Machine$double.eps, upper = 1 - .Machine$double.eps)
assert_int(k, lower = 0, upper = nrow(topics))
if (missing(ncpus)) ncpus = NULL
if (!missing(pm.backend) && !is.null(pm.backend)){
rboTopics.parallel(topics = topics, k = k, p = p, pm.backend = pm.backend, ncpus = ncpus)
}else{
rboTopics.serial(topics = topics, k = k, p = p, progress = progress)
}
}
rboTopics.parallel = function(topics, k, p, pm.backend, ncpus){
assert_choice(pm.backend, choices = c("multicore", "socket", "mpi"))
if (missing(ncpus) || is.null(ncpus)) ncpus = future::availableCores()
assert_int(ncpus, lower = 1)
N = ncol(topics)
if(ncpus > N-2){
ncpus = N-2
message("The selected number of cores exceeds the parallelizable complexity of the task, set ncpus to ", ncpus, ".")
}
if(ncpus == 1){
message("There is only one core on the running system or one core selected, falling back to serial version.")
rboTopics.serial(topics = topics, k = k, p = p)
}
ranks = apply(-topics, 2, frank, ties.method = "min")
parallelMap::parallelStart(mode = pm.backend, cpus = ncpus)
fun = function(s){
lapply(s, function(i){
tmp = do.call(rbind, lapply(1:k, function(d){
tmp1 = ranks[,i] < d+1
tmp2 = ranks[,(i+1):N] < d+1
2 * colSums(tmp1&tmp2) / (sum(tmp1)+colSums(tmp2)) * p^d
}))
tmp[k,] + colSums(tmp) * (1-p) / p
})
}
parallelMap::parallelExport("ranks", "N")
sequences = lapply(seq_len(max(ncpus, 2)), function(x) seq(x, N-2, max(ncpus, 2)))
val = parallelMap::parallelMap(fun = fun, sequences)
parallelMap::parallelStop()
rearrangedlist = list()
for (i in seq_along(sequences)){
rearrangedlist[sequences[[i]]] = val[[i]]
}
rm(val)
sims = matrix(nrow = N, ncol = N)
colnames(sims) = rownames(sims) = colnames(topics)
tmp = sapply(1:k, function(d){
tmp1 = ranks[,N-1] < d+1
tmp2 = ranks[,N] < d+1
2 * sum(tmp1&tmp2) / (sum(tmp1)+sum(tmp2)) * p^d
})
sims[lower.tri(sims)] = c(unlist(rearrangedlist), tmp[k] + sum(tmp) * (1-p) / p)
wordsconsidered = colSums(ranks < k+1)
res = list(sims = sims, wordslimit = wordsconsidered, wordsconsidered = wordsconsidered,
param = list(type = "RBO Similarity", k = k, p = p))
class(res) = "TopicSimilarity"
res
}
rboTopics.serial = function(topics, k, p, progress = TRUE){
N = ncol(topics)
ranks = apply(-topics, 2, frank, ties.method = "min")
sims = matrix(nrow = N, ncol = N)
colnames(sims) = rownames(sims) = colnames(topics)
pb = .makeProgressBar(progress = progress,
total = N-1, format = "Calculate Similarities [:bar] :percent eta: :eta")
for(i in seq_len(N - 2)){
tmp = do.call(rbind, lapply(1:k, function(d){
tmp1 = ranks[,i] < d+1
tmp2 = ranks[,(i+1):N] < d+1
2 * colSums(tmp1&tmp2) / (sum(tmp1)+colSums(tmp2)) * p^d
}))
sims[(i+1):N,i] = tmp[k,] + colSums(tmp) * (1-p) / p
pb$tick()
}
tmp = sapply(1:k, function(d){
tmp1 = ranks[,N-1] < d+1
tmp2 = ranks[,N] < d+1
2 * sum(tmp1&tmp2) / (sum(tmp1)+sum(tmp2)) * p^d
})
sims[N, N-1] = tmp[k] + sum(tmp) * (1-p) / p
pb$tick()
wordsconsidered = colSums(ranks < k+1)
res = list(sims = sims, wordslimit = wordsconsidered, wordsconsidered = wordsconsidered,
param = list(type = "RBO Similarity", k = k, p = p))
class(res) = "TopicSimilarity"
res
} |
REaptU<-function(custo,nand,aptand){
resultado=custo/(nand*aptand)
return(resultado)
} |
context("test-editions")
test_that("editions works", {
skip_on_cran()
options("gu.API.key" = "test")
eds <- gu_editions()
expect_true(tibble::is_tibble(eds))
expect_true("AU" %in% eds$edition)
uk_ed <- gu_editions("UK")
expect_true(tibble::is_tibble(uk_ed))
expect_true("UK" %in% uk_ed$edition)
expect_equal(nrow(uk_ed), 1)
uk_ed2 <- gu_editions("uk")
expect_equal(uk_ed, uk_ed2)
int_ed <- gu_editions("international")
expect_true(tibble::is_tibble(int_ed))
expect_true("International" %in% int_ed$edition)
expect_equal(nrow(int_ed), 1)
}) |
AutoH2oGBMClassifier <- function(OutputSelection = c("EvalMetrics", "PDFs", "Score_TrainData"),
data = NULL,
TrainOnFull = FALSE,
ValidationData = NULL,
TestData = NULL,
TargetColumnName = NULL,
FeatureColNames = NULL,
WeightsColumn = NULL,
MaxMem = {gc();paste0(as.character(floor(as.numeric(system("awk '/MemFree/ {print $2}' /proc/meminfo", intern=TRUE)) / 1000000)),"G")},
NThreads = max(1L, parallel::detectCores()-2L),
model_path = NULL,
metadata_path = NULL,
ModelID = "FirstModel",
NumOfParDepPlots = 3L,
ReturnModelObjects = TRUE,
SaveModelObjects = FALSE,
SaveInfoToPDF = FALSE,
IfSaveModel = "mojo",
H2OShutdown = FALSE,
H2OStartUp = TRUE,
DebugMode = FALSE,
GridStrategy = "Cartesian",
MaxRunTimeSecs = 60*60*24,
StoppingRounds = 10,
MaxModelsInGrid = 2,
eval_metric = "auc",
CostMatrixWeights = c(1,0,0,1),
Trees = 50L,
GridTune = FALSE,
LearnRate = 0.10,
LearnRateAnnealing = 1,
Distribution = "bernoulli",
MaxDepth = 20,
SampleRate = 0.632,
ColSampleRate = 1,
ColSampleRatePerTree = 1,
ColSampleRatePerTreeLevel = 1,
MinRows = 1,
NBins = 20,
NBinsCats = 1024,
NBinsTopLevel = 1024,
HistogramType = "AUTO",
CategoricalEncoding = "AUTO") {
if(DebugMode) print("Args check ----")
Decreasing <- H2OArgsCheck(ModelType="gbm", TargetType = "classification", model_path.=model_path, metadata_path.=metadata_path, eval_metric.=eval_metric, MaxModelsInGrid.=MaxModelsInGrid, ModelID.=ModelID, NumOfParDepPlots.=NumOfParDepPlots, ReturnModelObjects.=ReturnModelObjects, SaveModelObjects.=SaveModelObjects, GridTune.=GridTune, GridStrategy.=GridStrategy, CostMatrixWeights.=CostMatrixWeights, IfSaveModel.=IfSaveModel, Trees.=Trees, MaxDepth.=MaxDepth, SampleRate.=SampleRate, MTries.=MTries, ColSampleRatePerTree.=ColSampleRatePerTree, ColSampleRatePerTreeLevel.=ColSampleRatePerTreeLevel, MinRows.=MinRows, NBins.=NBins, NBinsCats.=NBinsCats, NBinsTopLevel.=NBinsTopLevel, HistogramType.=HistogramType, CategoricalEncoding.=CategoricalEncoding)
ArgsList <- c(as.list(environment()))
ArgsList[['data']] <- NULL
ArgsList[['ValidationData']] <- NULL
ArgsList[['TestData']] <- NULL
if(SaveModelObjects) {
if(!is.null(metadata_path)) {
save(ArgsList, file = file.path(metadata_path, paste0(ModelID, "_ArgsList.Rdata")))
} else if(!is.null(model_path)) {
save(ArgsList, file = file.path(model_path, paste0(ModelID, "_ArgsList.Rdata")))
}
}
if(DebugMode) print("Data Prepare ----")
Output <- H2ODataPrep(TargetType.="classifier", TargetColumnName.=TargetColumnName, data.=data, ValidationData.=ValidationData, TestData.=TestData, TrainOnFull.=TrainOnFull, FeatureColNames.=FeatureColNames, SaveModelObjects.=SaveModelObjects, model_path.=model_path, ModelID.=ModelID)
TargetColumnName <- Output$TargetColumnName; Output$TargetColumnName <- NULL
dataTrain <- Output$dataTrain; Output$dataTrain <- NULL
dataTest <- Output$dataTest; Output$dataTest <- NULL
TestData <- Output$TestData; Output$TestData <- NULL
Names <- Output$Names; rm(Output)
if(GridTune & !TrainOnFull) {
if(DebugMode) print("Grid tune ----")
if(H2OStartUp) localHost <- h2o::h2o.init(nthreads = NThreads, max_mem_size = MaxMem, enable_assertions = FALSE)
datatrain <- h2o::as.h2o(dataTrain)
if(!TrainOnFull) datavalidate <- h2o::as.h2o(dataTest, use_datatable = TRUE) else datavalidate <- NULL
if(!is.null(TestData)) datatest <- h2o::as.h2o(TestData, use_datatable = TRUE) else datatest <- NULL
search_criteria <- list(
strategy = GridStrategy,
max_runtime_secs = MaxRunTimeSecs,
max_models = MaxModelsInGrid,
seed = 1234,
stopping_rounds = StoppingRounds,
stopping_metric = toupper(eval_metric),
stopping_tolerance = 1e-3)
hyper_params <- list()
hyper_params[["ntrees"]] <- Trees
hyper_params[["max_depth"]] <- MaxDepth
hyper_params[["learn_rate"]] <- LearnRate
hyper_params[["learn_rate_annealing"]] <- LearnRateAnnealing
hyper_params[["sample_rate"]] <- SampleRate
hyper_params[["col_sample_rate"]] <- ColSampleRate
hyper_params[["col_sample_rate_per_tree"]] <- ColSampleRatePerTree
hyper_params[["col_sample_rate_change_per_level"]] <- ColSampleRatePerTreeLevel
hyper_params[["min_rows"]] <- MinRows
hyper_params[["nbins"]] <- NBins
hyper_params[["nbins_cats"]] <- NBinsCats
hyper_params[["histogram_type"]] <- HistogramType
hyper_params[["nbins_top_level"]] <- NBinsTopLevel
hyper_params[["categorical_encoding"]] <- CategoricalEncoding
hyper_params[["distribution"]] <- Distribution
grid <- h2o::h2o.grid(
hyper_params = hyper_params,
search_criteria = search_criteria,
is_supervised = TRUE,
algorithm = "gbm",
grid_id = paste0(ModelID, "_Grid"),
x = FeatureColNames,
y = TargetColumnName,
training_frame = datatrain,
validation_frame = datavalidate,
max_runtime_secs = 3600 * 24 * 7,
stopping_rounds = 10L,
stopping_tolerance = 1e-3,
stopping_metric = eval_metric,
score_tree_interval = 10L,
seed = 1234)
Grid_Out <- h2o::h2o.getGrid(grid_id = paste0(ModelID, "_Grid"), sort_by = eval_metric, decreasing = Decreasing)
base_model <- h2o::h2o.getModel(Grid_Out@model_ids[[1L]])
}
if(!GridTune) {
if(DebugMode) print("Build Model ----")
if(H2OStartUp) localHost <- h2o::h2o.init(nthreads = NThreads, max_mem_size = MaxMem, enable_assertions = FALSE)
datatrain <- h2o::as.h2o(dataTrain, use_datatable = TRUE)
if(!TrainOnFull) datavalidate <- h2o::as.h2o(dataTest, use_datatable = TRUE) else datavalidate <- NULL
if(!is.null(TestData)) datatest <- h2o::as.h2o(TestData, use_datatable = TRUE) else datatest <- NULL
H2OArgs <- list()
H2OArgs[["x"]] <- FeatureColNames
H2OArgs[["y"]] <- TargetColumnName
H2OArgs[["weights_column"]] <- WeightsColumn[1L]
H2OArgs[["training_frame"]] <- datatrain
H2OArgs[["validation_frame"]] <- datavalidate
H2OArgs[["distribution"]] <- Distribution[1L]
H2OArgs[["model_id"]] <- ModelID[1L]
H2OArgs[["ntrees"]] <- Trees[1L]
H2OArgs[["max_depth"]] <- MaxDepth[1L]
H2OArgs[["learn_rate"]] <- LearnRate[1L]
H2OArgs[["learn_rate_annealing"]] <- LearnRateAnnealing[1L]
H2OArgs[["sample_rate"]] <- SampleRate[1L]
H2OArgs[["col_sample_rate"]] <- ColSampleRate[1L]
H2OArgs[["col_sample_rate_per_tree"]] <- ColSampleRatePerTree[1L]
H2OArgs[["col_sample_rate_change_per_level"]] <- ColSampleRatePerTreeLevel[1L]
H2OArgs[["min_rows"]] <- MinRows[1L]
H2OArgs[["nbins"]] <- NBins[1L]
H2OArgs[["nbins_cats"]] <- NBinsCats[1L]
H2OArgs[["nbins_top_level"]] <- NBinsTopLevel[1L]
H2OArgs[["histogram_type"]] <- HistogramType[1L]
H2OArgs[["categorical_encoding"]] <- CategoricalEncoding[1L]
base_model <- do.call(h2o::h2o.gbm, H2OArgs)
}
if(DebugMode) print("Save Final Model ----")
H2OSaveModel(SaveModelObjects.=SaveModelObjects, IfSaveModel.=IfSaveModel, base_model.=base_model, model_path.=model_path, ModelID.=ModelID)
if(DebugMode) print("Score Final Test Data ----")
if("score_traindata" %chin% tolower(OutputSelection) && !TrainOnFull) {
Predict <- data.table::as.data.table(h2o::h2o.predict(object = base_model, newdata = datatrain))
}
if(DebugMode) print("Create Validation Data ----")
if("score_traindata" %chin% tolower(OutputSelection) && !TrainOnFull) {
Output <- H2OValidationData(Predict.=Predict, TestData.=NULL, dataTest.=NULL, dataTrain.=dataTrain, TrainOnFull.=TRUE, SaveModelObjects.=SaveModelObjects, metadata_path.=metadata_path, model_path.=model_path, ModelID.=ModelID, TransformNumericColumns.=NULL, TransformationResults.=NULL, TargetColumnName.=NULL, data.=NULL)
TrainData <- Output$ValidationData; rm(Output)
}
Predict <- data.table::as.data.table(h2o::h2o.predict(object = base_model, newdata = if(!is.null(TestData)) datatest else if(!TrainOnFull) datavalidate else datatrain))
data.table::set(Predict, j = "p0", value = NULL)
Output <- H2OValidationData(Predict.=Predict, TestData.=TestData, dataTest.=dataTest, dataTrain.=dataTrain, TrainOnFull.=TrainOnFull, SaveModelObjects.=SaveModelObjects, metadata_path.=metadata_path, model_path.=model_path, ModelID.=ModelID, TransformNumericColumns.=NULL, TransformationResults.=NULL, TargetColumnName.=NULL, data.=NULL)
ValidationData <- Output$ValidationData; rm(Output)
if(DebugMode) print("Variable Importance ----")
VariableImportance <- H2OVariableImportance(TrainOnFull.=TrainOnFull, base_model.=base_model, SaveModelObjects.=SaveModelObjects, metadata_path.=metadata_path, model_path.=model_path, ModelID.=ModelID)
if(DebugMode) print("H2O Explain TrainData ----")
ExplainList <- list()
if("score_traindata" %chin% tolower(OutputSelection) && !TrainOnFull) {
ExplainList[["Train_Explain"]] <- h2o::h2o.explain(base_model, newdata = datatrain)
}
if(DebugMode) print("H2O Explain ValidationData ----")
if(!TrainOnFull) {
ExplainList[["Test_Explain"]] <- h2o::h2o.explain(base_model, newdata = if(!is.null(TestData)) datatest else if(!is.null(ValidationData) && !TrainOnFull) datavalidate else datatrain)
}
if(DebugMode) print("H2O Shutdown ----")
if(H2OShutdown) h2o::h2o.shutdown(prompt = FALSE)
if(DebugMode) print("Running BinaryMetrics()")
EvalMetricsList <- list()
EvalMetrics2List <- list()
if("evalmetrics" %chin% tolower(OutputSelection)) {
if("score_traindata" %chin% tolower(OutputSelection) && !TrainOnFull) {
EvalMetricsList[["TrainData"]] <- BinaryMetrics(ClassWeights.=NULL, CostMatrixWeights.=CostMatrixWeights, SaveModelObjects.=FALSE, ValidationData.=TrainData, TrainOnFull.=TrainOnFull, TargetColumnName.=TargetColumnName, ModelID.=ModelID, model_path.=model_path, metadata_path.=metadata_path, Method = "threshold")
EvalMetrics2List[["TrainData"]] <- BinaryMetrics(ClassWeights.=NULL, CostMatrixWeights.=CostMatrixWeights, SaveModelObjects.=FALSE, ValidationData.=TrainData, TrainOnFull.=TrainOnFull, TargetColumnName.=TargetColumnName, ModelID.=ModelID, model_path.=model_path, metadata_path.=metadata_path, Method = "bins")
if(SaveModelObjects) {
if(!is.null(metadata_path)) {
data.table::fwrite(EvalMetricsList[['TestData']], file = file.path(metadata_path, paste0(ModelID, "_Test_EvaluationMetrics.csv")))
} else if(!is.null(model_path)) {
data.table::fwrite(EvalMetricsList[['TestData']], file = file.path(model_path, paste0(ModelID, "_Test_EvaluationMetrics.csv")))
}
}
}
EvalMetricsList[["TestData"]] <- BinaryMetrics(ClassWeights.=NULL, CostMatrixWeights.=CostMatrixWeights, SaveModelObjects.=FALSE, ValidationData.=ValidationData, TrainOnFull.=TrainOnFull, TargetColumnName.=TargetColumnName, ModelID.=ModelID, model_path.=model_path, metadata_path.=metadata_path, Method = "threshold")
EvalMetrics2List[["TestData"]] <- BinaryMetrics(ClassWeights.=NULL, CostMatrixWeights.=CostMatrixWeights, SaveModelObjects.=FALSE, ValidationData.=ValidationData, TrainOnFull.=TrainOnFull, TargetColumnName.=TargetColumnName, ModelID.=ModelID, model_path.=model_path, metadata_path.=metadata_path, Method = "bins")
if(SaveModelObjects) {
if(!is.null(metadata_path)) {
data.table::fwrite(EvalMetricsList[['TestData']], file = file.path(metadata_path, paste0(ModelID, "_Test_EvaluationMetrics.csv")))
} else if(!is.null(model_path)) {
data.table::fwrite(EvalMetricsList[['TestData']], file = file.path(model_path, paste0(ModelID, "_Test_EvaluationMetrics.csv")))
}
}
}
if(DebugMode) print("Running CatBoostPDF()")
if("pdfs" %chin% tolower(OutputSelection) && SaveModelObjects) {
CatBoostPDF(ModelClass = "h2o", ModelType="classification", TrainOnFull.=TrainOnFull, SaveInfoToPDF.=SaveInfoToPDF, PlotList.=NULL, VariableImportance.=VariableImportance, EvalMetricsList.=EvalMetricsList, Interaction.=NULL, model_path.=model_path, metadata_path.=metadata_path)
}
if(DebugMode) print("Return Objects ----")
if(ReturnModelObjects) {
return(list(
Model = base_model,
TrainData = if(exists("TrainData") && !is.null(TrainData)) TrainData else NULL,
TestData = if(exists("ValidationData") && !is.null(ValidationData)) ValidationData else NULL,
H2OExplain = if(exists("ExplainList")) ExplainList else NULL,
EvaluationMetrics = if(exists("EvalMetricsList")) EvalMetricsList else NULL,
EvaluationMetrics2 = if(exists("EvalMetrics2List")) EvalMetrics2List else NULL,
VariableImportance = if(exists("VariableImportance")) VariableImportance else NULL,
ColNames = if(exists("Names")) Names else NULL))
}
} |
resource_frequency_log <- function(eventlog) {
freq <- NULL
eventlog %>%
group_by(!!resource_id_(eventlog), !!activity_instance_id_(eventlog)) %>%
summarize() %>%
summarize(freq = n()) -> raw
output <- raw %>%
pull(freq) %>%
summary_statistics()
attr(output, "raw") <- raw
return(output)
} |
md_bayes_draw_lambda <- function(dat, race_vote_split, form, ntunes = 10, totaldraws = 1e+05,
seed = 12345, sample = 1e+05, thin = 100, burnin = 1e+05,
ret.mcmc = TRUE) {
left_dat <- apply(dat[, 1:race_vote_split[1]], 1, sum)
right_dat <- apply(
dat[, race_vote_split[2]:ncol(dat)], 1,
sum
)
stopifnot(all.equal(left_dat, right_dat))
formula1 <- form
set.seed(seed)
tune.nocov <- eiPack::tuneMD(formula1,
data = dat, ntunes = ntunes,
totaldraws = totaldraws
)
md.out <- eiPack::ei.MD.bayes(formula1,
data = dat, sample = sample,
thin = thin, burnin = burnin, ret.mcmc = ret.mcmc, tune.list = tune.nocov
)
cat(paste("Taking first ", race_vote_split[1], " names from dat object\n", sep = ""))
lmd <- eiPack::lambda.MD(md.out, columns = names(dat[, 1:race_vote_split[1]]))
return(lmd)
} |
getRNA <-
function(db = "refseq",
organism,
reference = FALSE,
release = NULL,
path = file.path("_ncbi_downloads", "RNA")) {
if (!is.element(db, c("refseq", "genbank", "ensembl")))
stop(
"Please select one of the available data bases:
'refseq', 'genbank', or 'ensembl'.",
call. = FALSE
)
if (db == "ensemblgenomes") {
organism_name <- is.genome.available(db = db, organism = organism, details = TRUE)$display_name[1]
if (!is.na(organism_name))
message("Starting RNA retrieval of '", organism_name, "' from ", db, " ...")
if (is.na(organism_name))
message("Starting RNA retrieval of '", organism, "' from ", db, " ...")
} else {
message("Starting RNA retrieval of '", organism, "' from ", db, " ...")
message("\n")
}
if (is.element(db, c("refseq", "genbank"))) {
AssemblyFilesAllKingdoms <-
getKingdomAssemblySummary(db = db)
suppressMessages(is.genome.available(organism = organism, db = db))
if (!file.exists(path)) {
dir.create(path, recursive = TRUE)
}
organism_name <- assembly_accession <- taxid <-
refseq_category <- version_status <- NULL
organism <-
stringr::str_replace_all(organism, "\\(", "")
organism <-
stringr::str_replace_all(organism, "\\)", "")
if (reference) {
if (!is.taxid(organism)) {
FoundOrganism <-
dplyr::filter(
AssemblyFilesAllKingdoms,
stringr::str_detect(organism_name, organism) |
stringr::str_detect(assembly_accession, organism),
((refseq_category == "representative genome") |
(refseq_category == "reference genome")
),
(version_status == "latest")
)
} else {
FoundOrganism <-
dplyr::filter(
AssemblyFilesAllKingdoms,
taxid == as.integer(organism),
((refseq_category == "representative genome") |
(refseq_category == "reference genome")
),
(version_status == "latest"))
}
} else {
if (!is.taxid(organism)) {
FoundOrganism <-
dplyr::filter(
AssemblyFilesAllKingdoms,
stringr::str_detect(organism_name, organism) |
stringr::str_detect(assembly_accession, organism),
(version_status == "latest")
)
} else {
FoundOrganism <-
dplyr::filter(
AssemblyFilesAllKingdoms,
taxid == as.integer(organism),
(version_status == "latest")
)
}
}
if (nrow(FoundOrganism) == 0) {
message(
paste0(
"----------> No reference RNA or representative RNA was found for '",
organism, "'. Thus, download for this organism has been omitted.",
" Have you tried to specify getRNA(db = '",db,"', organism = '",organism,"' , reference = FALSE) ?",
" Alternatively, you can retrieve RNA using the NCBI accession ID or NCBI Taxonomy ID.",
" See '?'is.genome.available' for examples."
)
)
return("Not available")
} else {
if (nrow(FoundOrganism) > 1) {
warnings(
"More than one entry has been found for '",
organism, "'. Only the first entry '", FoundOrganism[1, 1], "' has been used for subsequent RNA retrieval.",
" If you wish to download a different version, please use the NCBI accession ID when specifying the 'organism' argument.",
" See ?is.genome.available for examples."
)
FoundOrganism <- FoundOrganism[1, ]
}
organism <-
stringr::str_replace_all(organism, " ", "_")
download_url <-
paste0(
FoundOrganism$ftp_path,
"/",
paste0(
basename(FoundOrganism$ftp_path),
"_rna_from_genomic.fna.gz"
)
)
local.org <-
stringr::str_replace_all(organism, "-", "_")
local.org <-
stringr::str_replace_all(organism, "\\/", "_")
if (nrow(FoundOrganism) == 1) {
if (file.exists(file.path(
path,
paste0(
local.org,
"_rna_from_genomic_",
db,
".fna.gz"
)
))) {
message(
"File ",
file.path(
path,
paste0(
local.org,
"_rna_from_genomic_",
db,
".fna.gz"
)
),
" exists already. Thus, download has been skipped."
)
} else {
tryCatch({
utils::capture.output(
custom_download(
download_url,
destfile = file.path(
path,
paste0(
local.org,
"_rna_from_genomic_",
db,
".fna.gz"
)
),
mode = "wb"
)
)
message("RNA download of ", organism, " is completed!")
custom_download(
paste0(FoundOrganism$ftp_path,"/md5checksums.txt"),
file.path(path,
paste0(local.org, "_md5checksums.txt")),
mode = "wb"
)
md5_file_path <- file.path(path,
paste0(local.org,
"_md5checksums.txt"))
md5_file <-
read_md5file(md5_file_path)
file_name <- NULL
md5_sum <- dplyr::filter(md5_file,
file_name == paste0(" ./", paste0(
basename(FoundOrganism$ftp_path),
"_rna_from_genomic.fna.gz"
)))$md5
message("Checking md5 hash of file: ",
md5_file_path , " ...")
if (!(tools::md5sum(file.path(
path,
paste0(local.org, "_rna_from_genomic_", db, ".fna.gz")
)) == md5_sum))
stop(
paste0(
"Please download the file '",
md5_file_path,
"' again. The md5 hash between the downloaded file and the file ",
"stored at NCBI do not match.",
collapse = ""
)
)
unlink(md5_file_path)
message("The md5 hash of file '", md5_file_path, "' matches!")
}, error = function(e) {
message(
"The download session seems to have timed out at the FTP site '",
download_url, "'. This could be due to an overload of queries to the databases.",
" Please restart this function to continue the data retrieval process or wait ",
"for a while before restarting this function in case your IP address was logged due to an query overload on the server side."
)
return(FALSE)
})
}
docFile(
file.name = paste0(
local.org,
"_rna_from_genomic_",
db,
".fna.gz"
),
organism = organism,
url = download_url,
database = db,
path = path,
refseq_category = FoundOrganism$refseq_category,
assembly_accession = FoundOrganism$assembly_accession,
bioproject = FoundOrganism$bioproject,
biosample = FoundOrganism$biosample,
taxid = FoundOrganism$taxid,
infraspecific_name = FoundOrganism$infraspecific_name,
version_status = FoundOrganism$version_status,
release_type = FoundOrganism$release_type,
genome_rep = FoundOrganism$genome_rep,
seq_rel_date = FoundOrganism$seq_rel_date,
submitter = FoundOrganism$submitter
)
doc <- tibble::tibble(
file_name = paste0(ifelse(is.taxid(organism), paste0("taxid_", local.org), local.org), "_genomic_", db,
".fna.gz"),
organism = organism,
url = download_url,
database = db,
path = path,
refseq_category = FoundOrganism$refseq_category,
assembly_accession = FoundOrganism$assembly_accession,
bioproject = FoundOrganism$bioproject,
biosample = FoundOrganism$biosample,
taxid = FoundOrganism$taxid,
infraspecific_name = FoundOrganism$infraspecific_name,
version_status = FoundOrganism$version_status,
release_type = FoundOrganism$release_type,
genome_rep = FoundOrganism$genome_rep,
seq_rel_date = FoundOrganism$seq_rel_date,
submitter = FoundOrganism$submitter
)
readr::write_tsv(doc, path = file.path(path,paste0("doc_",local.org,"_db_",db,".tsv")))
message(
paste0(
"The genomic RNA of '",
organism,
"' has been downloaded to '",
path,
"' and has been named '",
paste0(
local.org,
"_rna_from_genomic_",
db,
".fna.gz"
),
"' ."
)
)
return(file.path(
path,
paste0(
local.org,
"_rna_from_genomic_",
db,
".fna.gz"
)
))
} else {
message(
"Something went wrong when trying to download file: ",
download_url,
" ... Sometimes the internet connection isn't stable and re-running the function might help. Otherwise, could there be an issue with the firewall?"
)
}
}
}
if (db == "ensembl") {
if (!file.exists(path)) {
dir.create(path, recursive = TRUE)
}
rna.path <-
getENSEMBL.Seq(
organism,
type = "ncrna",
id.type = "none",
release = release,
path = path
)
if (is.logical(rna.path[1])) {
if (!rna.path[1])
return(FALSE)
} else {
taxon_id <- assembly <- name <- accession <- NULL
ensembl_summary <-
suppressMessages(is.genome.available(
organism = organism,
db = "ensembl",
details = TRUE
))
if (nrow(ensembl_summary) > 1) {
if (is.taxid(organism)) {
ensembl_summary <-
dplyr::filter(ensembl_summary, taxon_id == as.integer(organism), !is.na(assembly))
} else {
ensembl_summary <-
dplyr::filter(
ensembl_summary,
(name == stringr::str_to_lower(stringr::str_replace_all(organism, " ", "_"))) |
(accession == organism), !is.na(assembly)
)
}
}
new.organism <- ensembl_summary$name[1]
new.organism <-
paste0(
stringr::str_to_upper(stringr::str_sub(new.organism, 1, 1)),
stringr::str_sub(new.organism, 2, nchar(new.organism))
)
url_api <- paste0(
"http://rest.ensembl.org/info/assembly/",
new.organism,
"?content-type=application/json"
)
if (length(url_api) > 1)
url_api <- url_api[1]
if (curl::curl_fetch_memory(url_api)$status_code != 200) {
message("The API call '",url_api,"' did not work. This might be due to a non-existing organism that you specified or a corrupted internet or firewall connection.")
return("Not available")
}
json.qry.info <- jsonlite::fromJSON(url_api)
sink(file.path(
path,
paste0("doc_", new.organism, "_db_", db, ".txt")
))
cat(paste0("File Name: ", rna.path[1]))
cat("\n")
cat(paste0("Download Path: ", rna.path[2]))
cat("\n")
cat(paste0("Organism Name: ", new.organism))
cat("\n")
cat(paste0("Database: ", db))
cat("\n")
cat(paste0("Download_Date: ", date()))
cat("\n")
cat(paste0("assembly_name: ", json.qry.info$assembly_name))
cat("\n")
cat(paste0("assembly_date: ", json.qry.info$assembly_date))
cat("\n")
cat(
paste0(
"genebuild_last_geneset_update: ",
json.qry.info$genebuild_last_geneset_update
)
)
cat("\n")
cat(paste0(
"assembly_accession: ",
json.qry.info$assembly_accession
))
cat("\n")
cat(
paste0(
"genebuild_initial_release_date: ",
json.qry.info$genebuild_initial_release_date
)
)
sink()
doc <- tibble::tibble(
file_name = rna.path[1],
download_path = rna.path[2],
organism = new.organism,
database = db,
download_data = date(),
assembly_name = ifelse(!is.null(json.qry.info$assembly_name), json.qry.info$assembly_name, "none"),
assembly_date = ifelse(!is.null(json.qry.info$assembly_date), json.qry.info$assembly_date, "none"),
genebuild_last_geneset_update = ifelse(!is.null(json.qry.info$genebuild_last_geneset_update), json.qry.info$genebuild_last_geneset_update, "none"),
assembly_accession = ifelse(!is.null(json.qry.info$assembly_accession), json.qry.info$assembly_accession, "none"),
genebuild_initial_release_date = ifelse(!is.null(json.qry.info$genebuild_initial_release_date), json.qry.info$genebuild_initial_release_date, "none")
)
readr::write_tsv(doc, file.path(
path,
paste0("doc_", new.organism, "_db_", db, ".tsv"))
)
message(
paste0(
"The RNA of '",
organism,
"' has been downloaded to '",
path,
"' and has been named '",
basename(rna.path[1]),
"'."
)
)
return(rna.path[1])
}
}
if (db == "ensemblgenomes") {
if (!file.exists(path)) {
dir.create(path, recursive = TRUE)
}
rna.path <-
getENSEMBLGENOMES.Seq(
organism,
type = "ncrna",
id.type = "none",
release = release,
path = path
)
if (is.logical(rna.path[1])) {
if (!rna.path[1])
return(FALSE)
} else {
taxon_id <- assembly <- name <- accession <- NULL
ensembl_summary <-
suppressMessages(is.genome.available(
organism = organism,
db = "ensemblgenomes",
details = TRUE
))
if (nrow(ensembl_summary) > 1) {
if (is.taxid(organism)) {
ensembl_summary <-
dplyr::filter(ensembl_summary, taxon_id == as.integer(organism), !is.na(assembly))
} else {
ensembl_summary <-
dplyr::filter(
ensembl_summary,
(name == stringr::str_to_lower(stringr::str_replace_all(organism, " ", "_"))) |
(accession == organism), !is.na(assembly)
)
}
}
new.organism <- ensembl_summary$name[1]
new.organism <-
paste0(
stringr::str_to_upper(stringr::str_sub(new.organism, 1, 1)),
stringr::str_sub(new.organism, 2, nchar(new.organism))
)
rest_url <- paste0(
"http://rest.ensembl.org/info/assembly/",
new.organism,
"?content-type=application/json"
)
if (curl::curl_fetch_memory(rest_url)$status_code != 200) {
message(
"The url: '",rest_url,"' cannot be reached. This might be due to a connection issue or incorrect url path (e.g. not valid organism name).")
return(FALSE)
}
json.qry.info <-
jsonlite::fromJSON(rest_url)
sink(file.path(
path,
paste0("doc_", new.organism, "_db_", db, ".txt")
))
cat(paste0("File Name: ", rna.path[1]))
cat("\n")
cat(paste0("Download Path: ", rna.path[2]))
cat("\n")
cat(paste0("Organism Name: ", new.organism))
cat("\n")
cat(paste0("Database: ", db))
cat("\n")
cat(paste0("Download_Date: ", date()))
cat("\n")
cat(paste0("assembly_name: ", json.qry.info$assembly_name))
cat("\n")
cat(paste0("assembly_date: ", json.qry.info$assembly_date))
cat("\n")
cat(
paste0(
"genebuild_last_geneset_update: ",
json.qry.info$genebuild_last_geneset_update
)
)
cat("\n")
cat(paste0(
"assembly_accession: ",
json.qry.info$assembly_accession
))
cat("\n")
cat(
paste0(
"genebuild_initial_release_date: ",
json.qry.info$genebuild_initial_release_date
)
)
sink()
doc <- tibble::tibble(
file_name = rna.path[1],
download_path = rna.path[2],
organism = new.organism,
database = db,
download_data = date(),
assembly_name = ifelse(!is.null(json.qry.info$assembly_name), json.qry.info$assembly_name, "none"),
assembly_date = ifelse(!is.null(json.qry.info$assembly_date), json.qry.info$assembly_date, "none"),
genebuild_last_geneset_update = ifelse(!is.null(json.qry.info$genebuild_last_geneset_update), json.qry.info$genebuild_last_geneset_update, "none"),
assembly_accession = ifelse(!is.null(json.qry.info$assembly_accession), json.qry.info$assembly_accession, "none"),
genebuild_initial_release_date = ifelse(!is.null(json.qry.info$genebuild_initial_release_date), json.qry.info$genebuild_initial_release_date, "none")
)
readr::write_tsv(doc, file.path(
path,
paste0("doc_", new.organism, "_db_", db, ".tsv"))
)
message(
paste0(
"The RNA of '",
organism,
"' has been downloaded to '",
path,
"' and has been named '",
basename(rna.path[1]),
"'."
)
)
return(rna.path[1])
}
}
} |
gcite_graph <- function(citations, ...){
UseMethod("gcite_graph")
}
gcite_graph.xml_node = function(citations, ...) {
citations = xml2::as_list(citations)
gcite_graph(citations)
}
gcite_graph.xml_document = function(citations, ...) {
citations = rvest::html_node(citations, css = "
gcite_graph(citations)
}
gcite_graph.character = function(citations, ...) {
res = httr::GET(url = citations, ...)
stop_for_status(res)
citations = httr::content(res)
gcite_graph(citations)
}
gcite_graph.default = function(citations, ...) {
cn = names(citations)
a_s = cn %in% "a"
info = lapply(citations[a_s], function(x) {
cc = x$span[[1]]
if (is.null(cc)) {
cc = 0
}
cc = as.numeric(cc)
href = attributes(x)$href
y = parse_url(href)$query[c("as_ylo", "as_yhi")]
y = unlist(unique(y))
if (length(y) == 0) {
y = NA
}
y = as.numeric(y)
data.frame(year = y, n_citations = cc,stringsAsFactors = FALSE)
})
info = as.data.frame(data.table::rbindlist(info, fill = TRUE))
info
} |
context("Hsu's Backward Construction")
test_that("Default example", {
data.graph <- data.frame(from = c("s", "s", "s", "u", "u", "w", "w", "x", "x", "v", "v", "y", "y"),
to = c("u", "w", "x", "w", "v", "v", "y", "w", "y", "y", "t", "t", "u"),
cost = c(1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L),
stringsAsFactors = FALSE)
data.fpaths <- data.frame(V1 = c("u", "u", "w", "x"), V2 = c("v", "w", "v","w"),
V3 = c("y", "y", "y", "v"), V4 = c("u", "u", NA, "y"),
V5 = c(NA, NA, NA, "t"), stringsAsFactors = FALSE)
expected.gStar <- data.frame(from = c("s", "s", "s", "w", "x", "v", "v", "y", "y", "u", "u|v",
"u", "u|w", "w", "x", "x|w", "w|v", "x|w", "x|w|v",
"u|v", "u|v|y", "u|w"),
to = c("u", "w", "x", "y", "y", "y", "t", "t", "u", "u|v",
"u|v|y", "u|w", "u|v|y", "w|v", "x|w", "x|w|v", "t",
"y", "t", "t", "t", "w|v"),
cost = c(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1),
stringsAsFactors = FALSE)
row.names(expected.gStar) <- c(1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 23L, 24L,
25L, 26L, 27L, 28L, 29L, 30L, 31L)
expect_equal(modify_graph_hsu(data.graph, data.fpaths), expected.gStar)
})
test_that("Additional example", {
data.graph <- data.frame(from = c("c", "c", "u", "u", "t", "a", "a", "r", "e", "e", "e", "p", "i", "i", "n", "o"),
to = c("u", "p", "e", "t", "a", "r", "i", "u", "r", "i", "p", "n", "n", "o", "o", "m"),
stringsAsFactors = FALSE)
data.fpaths <- data.frame(V1 = c("u", "p", "a"), V2 = c("t", "n", "i"),
V3 = c("a", "o", "n"), V4 = c("r", "m", "o"), V5 = c("u", NA, NA),
stringsAsFactors = FALSE)
expected.gStar <- data.frame(from = c("c", "c", "u", "t", "a", "r", "e", "e", "e", "i", "i",
"n", "o", "u", "u|t", "u|t|a", "p", "p|n", "a",
"a|i", "u|t|a", "a|i"),
to = c("u", "p", "e", "a", "r", "u", "r", "i", "p", "n", "o",
"o", "m", "u|t", "u|t|a", "u|t|a|r", "p|n", "p|n|o",
"a|i", "a|i|n", "a|i", "o"),
stringsAsFactors = FALSE)
row.names(expected.gStar) <- c(1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L,
13L, 27L, 28L, 29L, 30L, 31L, 32L, 33L, 34L, 35L)
expect_equal(modify_graph_hsu(data.graph, data.fpaths), expected.gStar)
})
test_that("Wrong input", {
data.graph <- data.frame(from = c("s", "s", "s", "u", "u", "w", "w", "x", "x", "v", "v", "y", "y"),
to = c("u", "w", "x", "w", "v", "v", "y", "w", "y", "y", "t", "t", "u"),
cost = c(1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L),
stringsAsFactors = FALSE)
data.fpaths <- data.frame(V1 = c("u", "u", "w", "x"), V2 = c("v", "w", "v","w"), V3 = c("y", "y", "y", "v"),
V4 = c("u", "u", NA, "y"), V5 = c(NA, NA, NA, "t"),
stringsAsFactors = FALSE)
expect_error(modify_graph_hsu(NULL, data.fpaths, 1L))
expect_error(modify_graph_hsu(NA, NA))
expect_error(modify_graph_hsu(data.graph, NULL))
expect_error(modify_graph_hsu("123", data.fpaths))
expect_error(modify_graph_hsu(data.graph, 1234))
expect_error(modify_graph_hsu(c(123,46), c(789,456)))
}) |
test_that("totp at", {
secret <- "JBSWY3DPEHPK3PXP"
p <- TOTP$new(secret)
t <- .POSIXct(1587872481)
expect_true(p$at_time(t) == "825314")
expect_true(p$at_time(1587872481) == "825314")
expect_true(p$now() != "825314")
})
test_that("totp verify", {
secret <- "JBSWY3DPEHPK3PXP"
p <- TOTP$new(secret)
t <- .POSIXct(1587872481)
trunc_t <- .POSIXct((as.double(t) %/% 30) * 30)
expect_equal(p$verify("825314", t + 30), NULL)
expect_equal(p$verify("825314", t), trunc_t)
expect_equal(p$verify("825314", t - 30), NULL)
expect_equal(p$verify("825314", t + 30, behind = 1), trunc_t)
})
test_that("totp more digits", {
secret <- "JBSWY3DPEHPK3PXP"
p <- TOTP$new(secret, digits = 8)
t <- .POSIXct(1587872481)
trunc_t <- .POSIXct((as.double(t) %/% 30) * 30)
expect_equal(p$verify("14825314", t + 30), NULL)
expect_equal(p$verify("14825314", t), trunc_t)
expect_equal(p$verify("14825314", t - 30), NULL)
expect_equal(p$verify("14825314", t + 30, behind = 1), trunc_t)
})
test_that("totp different period", {
secret <- "JBSWY3DPEHPK3PXP"
p <- TOTP$new(secret, period = 10)
t <- .POSIXct(1587872481)
trunc_t <- .POSIXct((as.double(t) %/% 10) * 10)
expect_equal(p$verify("845792", t + 10), NULL)
expect_equal(p$verify("845792", t), trunc_t)
expect_equal(p$verify("845792", t - 10), NULL)
expect_equal(p$verify("845792", t + 10, behind = 1), trunc_t)
expect_equal(p$verify("845792", t + 20, behind = 1), NULL)
expect_equal(p$verify("845792", t + 20, behind = 2), trunc_t)
})
test_that("totp different algorithm", {
secret <- "JBSWY3DPEHPK3PXP"
p <- TOTP$new(secret, algorithm = "sha256")
t <- .POSIXct(1587872481)
expect_equal(p$at_time(t), "213585")
expect_equal(p$at_time(t + 30), "759908")
p <- TOTP$new(secret, algorithm = "sha512")
t <- .POSIXct(1587872481)
expect_equal(p$at_time(t), "448289")
expect_equal(p$at_time(t + 30), "761638")
})
test_that("totp provision", {
secret <- "JBSWY3DPEHPK3PXP"
p <- TOTP$new(secret)
expect_equal(
p$provisioning_uri("Alice"),
"otpauth://totp/Alice?secret=JBSWY3DPEHPK3PXP"
)
expect_equal(
p$provisioning_uri("Alice", issuer = "example.com"),
"otpauth://totp/example.com:Alice?secret=JBSWY3DPEHPK3PXP&issuer=example.com"
)
p <- TOTP$new(secret, digits = 7, algorithm = "sha256", period = 40)
expect_equal(
p$provisioning_uri("Alice"),
"otpauth://totp/Alice?secret=JBSWY3DPEHPK3PXP&period=40&digits=7&algorithm=sha256"
)
}) |
shares.total <-
function (mcidataset, submarkets, suppliers, shares, localmarket,
plotChart = FALSE, plotChart.title = "Total sales",
plotChart.unit = "sales", check_df = TRUE)
{
if (check_df == TRUE)
{
if (exists(as.character(substitute(mcidataset)))) {
checkdf(mcidataset, submarkets, suppliers, shares, localmarket)
}
else {
stop(paste("Dataset", as.character(substitute(mcidataset))), " not found", call. = FALSE)
}
}
mciworkfile <- mcidataset
mciworkfile[[shares]][is.na(mciworkfile[[shares]])] <- 0
mciworkfile[[localmarket]][is.na(mciworkfile[[localmarket]])] <- 0
mciworkfile$E_ij <- mciworkfile[[shares]] * mcidataset[[localmarket]]
suppliers_single <- levels(as.factor(as.character(mciworkfile[[suppliers]])))
suppliers_count <- nlevels(as.factor(as.character(mciworkfile[[suppliers]])))
sum_E_j <- numeric()
for (j in 1:suppliers_count) {
location_j <- subset (mciworkfile, mciworkfile[[suppliers]] == suppliers_single[j])
sum_E_j[j] <- sum(location_j$E_ij, na.rm = TRUE)
}
E_j_output <- data.frame(suppliers_single, sum_E_j)
E_j_output$share_j <- E_j_output$sum_E_j/sum(E_j_output$sum_E_j, na.rm = TRUE)
if (plotChart == TRUE)
{
E_j_output_sorted <- E_j_output[order(E_j_output$share_j),]
max_x <- max(E_j_output_sorted$sum_E_j*1.2)
barplot(E_j_output_sorted$sum_E_j, names.arg = E_j_output_sorted$suppliers_single,
horiz = TRUE, main = plotChart.title, sub = plotChart.unit,
xlim = c(0, max_x))
}
return(E_j_output)
} |
coll <- c("
"
lwd1 <- fontt <- 2
cexx=1.3
plott = function(x,y=c(1:length(x)),add=FALSE,pch=19,xlab="",col=1,
main=NULL,ty="b",return.to.default=TRUE,...){
lwd1 <- fontt <- 2
if(add){
lines(x~y,xlab="",ylab = "",ty=ty,lwd=lwd1,col=col,pch=pch)
}
if(!add){
pardefault <- par(no.readonly = TRUE)
parr = par(bg="white", bty ="n", fg = 'black' , font.lab = fontt,
font.axis = fontt, font.main = fontt, col.axis = 'black',col.lab = 'black',
cex.axis = 1.4, pch = 21, tck = -0.02, cex.lab = 1.6 ,cex.main = 2,las=1,
mar = c(5, 4, 4, 2) + 0.4)
plot(x~y,xlab=xlab, ylab = "",ty=ty,lwd=2,main=main,pch=pch,col=col,...)
grid(col = "grey")
if(return.to.default) { par(pardefault)}
} }
tsideplot <- function(series1,series2,main="", return.to.default=T,
xaxis=NULL, col='red',...){
if (NROW(series1) != NROW(series2) ) { stop("Problem is that NROW(series1) != NROW(series2)") }
lwd1 <- fontt <- 2
pardefault <- par(no.readonly = TRUE)
par(mfrow = c(1,1),bg="white", bty ="n", fg = 'black' , font.lab = fontt,
font.axis = fontt, font.main = fontt, col.axis = 'black',col.lab = 'black',
cex.axis = 1.4, pch = 21, tck = -0.02, cex.lab = 1.6 ,cex.main = 2,las=1,
mar = c(5, 4, 4, 4) + 0.1)
if(is.null(xaxis)) {xaxis= c(1:length(series1))}
plot(series1~xaxis,ty="b",pch=19,xlab="",ylab="",col = 1,lwd=lwd1,...)
par(new=TRUE)
plot(series2~xaxis,main=main,bty="o",ty="b",pch=19,xlab="",ylab="",
axes=F,col = col,lwd=lwd1,...)
axis(4,at=pretty(series2),col=col,col.ticks=col,col.axis=col)
grid(col = "grey")
if(return.to.default){par(pardefault)}
}
mplott <- function(x,wherelegend='bottomleft',textlegend=colnames(x),main="",
return.to.default=T,...){
lwd1 <- fontt <- 2
pardefault <- par(no.readonly = TRUE)
l = NCOL(x)
pchh <- c(19,1:4)
if (l>5) {
l=5
textlegend=colnames(x)[1:5]
print("Only columns 1:5 are plotted")
}
par(bg="white", bty ="n", fg = 'black' , font.lab = fontt,
font.axis = fontt, font.main = fontt, col.axis = 'black',col.lab = 'black',
cex.axis = 1.4, pch = 21, tck = -0.02, cex.lab = 1.6 ,cex.main = 2,las=1,
mar = c(5, 4, 4, 4) + 0.1)
x <- as.matrix(x)
plot(x[,1],ty = "b",ylim = c(min(na.omit(x)),max(na.omit(x))),xlab = "",
ylab = "",lwd=2,pch=pchh[1],main=main,...)
for (i in 2:l){
if(l==1) {next}
lines(x[,i],col=i,ty = "b",lty=i,lwd=2,pch=pchh[i],...)
}
if(is.null(textlegend)) { textlegend = paste("Series", 1:l) }
legend(wherelegend,textlegend,col=1:l,lty=1:l,cex=1.3,text.font=2,
ncol=2,bty="n",text.col=1:l,lwd = rep(2,l),pch=pchh[1:l])
grid(col='grey')
if(return.to.default){par(pardefault)}
}
lagmat <- function(x,lags){
TT <- NROW(x) ; colnam <- NULL
lagmatt <- matrix(nrow = TT, ncol = lags)
for (i in 1:lags){
lagmatt[(i+1):(TT),i] <- x[1:(TT-i)]
colnam[i] <- paste('Lag',i,sep="")
}
lagmatt[1:lags,] <- NA
colnames(lagmatt) <- colnam
lagmatt
}
linpred <- function(y,x,h=1,wind=NULL,rr=c("Rec")){
if (rr != "Rol" & rr !="Rec") { stop("rr is not properly defined") }
if (NROW(y) != NROW(x) ) { stop("Problem is that NROW(y) != NROW(x)") }
if(is.null(wind)){wind=0.25*length(y)}
predd <- NULL
TT <- length(y)
x=as.matrix(x)
if(rr=='Rec'){
for (j in (1+wind):TT){
lm0 <- lm(y[1:(j-h)]~x[1:(j-h),])
predd[j] <- lm0$coef%*%c(1,x[(j-h),])
}}
if(rr=='Rol'){
for (j in 1:(TT-wind)){
lm0 <- lm(y[j:(wind+j-h)]~x[j:(wind+j-h),])
predd[(j+wind)] <- lm0$coef%*%c(1,x[(j+wind-h),])
} }
predd
}
FCIplot <- function(series,plott=TRUE,wind1=24,wind2=60,k=60,rrr1="Rec",rrr2="Rec",main="series"){
if (wind2< wind1) { stop("wind2 has to be > than wind1") }
TT <- length(series)
temp <- linpred(series[2:TT],series[1:(TT-1)],h=1, wind=wind1,rr=rrr1)
ertemp <- (series[2:TT]-temp)^2
TT2 <- length(ertemp)
sdestimate <- linpred(ertemp[2:TT2], ertemp[1:(TT2-1)],
wind = wind2, rr = rrr2)
up1 = series[(wind2+2):(TT-1)] + 1*sqrt(abs(na.omit(sdestimate)))
down1 = series[(wind2+2):(TT-1)] - 1*sqrt(abs(na.omit(sdestimate)))
up2 = series[(wind2+2):(TT-1)] + 2*sqrt(abs(na.omit(sdestimate)))
down2 = series[(wind2+2):(TT-1)] - 2*sqrt(abs(na.omit(sdestimate)))
if(k>length(down2)){k=length(down2) ; warning( "k was set to a lower value" )}
if(plott){
plot(tail(series,k),ylim=c(min(tail(down2,k)),max(tail(up2,k))),ty="b",pch=19,xlab="",
main=main,ylab="")
grid()
polygon(x = c(rev(1:k),(1:k)), y = c(rev(tail(down2,k)),tail(up2,k)),
col = rgb(0,0,0,0.2),border ='red')
polygon(x = c(rev(1:k),(1:k)), y = c(rev(tail(down1,k)),tail(up1,k)),
col = rgb(0,0,0,0.2),border ='blue')
}
return(sdestimate^.5)
} |
linesHyperb.lm <-
function(object, c.prob = .95, confidence = FALSE,
k = if(confidence) Inf else 1,
col = 2, lty = 2, do.abline = TRUE)
{
n <- length(Res <- residuals(object))
df <- object $ df.resid
s2 <- sum(Res^2)/df
s <- sqrt(s2)
if(is.null(R <- object $ R))
R <- qr.R(object $ qr)
Xm <- R[1,2]/R[1,1]
S.xx <- R[2,2]^2
ux <- par("usr")[1:2]
d.xs <- data.frame(x = xs <- seq(ux[1],ux[2], length = 100))
names(d.xs) <- attr(object$terms,"term.labels")
ys <- predict(object, new = d.xs)
pred.err <- qt(1-(1-c.prob)/2, df) * s * sqrt(1/k + 1/n + (xs-Xm)^2/S.xx)
o.p <- par(err=-1)
on.exit(par(o.p))
if(do.abline)
abline(object)
lines(xs, ys - pred.err, col=col, lty=lty)
lines(xs, ys + pred.err, col=col, lty=lty)
} |
internal.print.seqtest.mean <- function(x, print.step = 1, print.max = 1, ...) {
if (print.step == 1) {
cat("\nSequential triangular test for the arithmetic mean in",
ifelse(x$spec$sample == "one.sample", "one sample", "two samples"), "\n\n")
if (x$spec$sample == "one.sample") {
if (x$spec$alternative == "two.sided") {
cat(" H0: mu =", x$spec$mu, " versus H1: mu !=", x$spec$mu, "\n")
} else {
if (x$spec$alternative == "less") {
cat(" H0: mu >=", x$spec$mu, " versus H1: mu <", x$spec$mu, "\n")
} else {
cat(" H0: mu <=", x$spec$mu, " versus H1: mu >", x$spec$mu, "\n")
}
}
} else {
if (x$spec$alternative == "two.sided") {
cat(" H0: mu.1 = mu.2 versus H1: mu.1 != mu.2\n")
} else {
if (x$spec$alternative == "less") {
cat(" H0: mu.1 >= mu.2 versus H1: mu.1 < mu.2\n")
} else {
cat(" H0: mu.1 <= mu.2 versus H1: mu.1 > mu.2\n")
}
}
}
if (x$spec$variance == "known") {
cat(" alpha:", x$spec$alpha, " beta:", x$spec$beta, " delta:", x$spec$delta, " sigma:", x$spec$sigma, "\n\n")
} else {
cat(" alpha:", x$spec$alpha, " beta:", x$spec$beta, " theta:", x$spec$theta, "\n\n")
}
}
V.m.print <- ifelse(!is.na(x$res$V.m[x$res$step]), formatC(x$res$V.m[x$res$step], digits = 3, format = "f"), NA)
Z.m.print <- ifelse(!is.na(x$res$Z.m[x$res$step]), formatC(x$res$Z.m[x$res$step], digits = 3, format = "f"), NA)
if (!is.na(V.m.print) & !is.na(V.m.print)) {
if (x$spec$alternative == "two.sided") {
if (x$res$V.m[x$res$step] < x$tri$intersec) {
x.r <- range(c(-x$tri$a1 + 3 * x$tri$b1 * x$res$V.m[x$res$step],
-x$tri$a2 + 3 * x$tri$b2 * x$res$V.m[x$res$step],
x$tri$a1 + x$tri$b1 * x$res$V.m[x$res$step],
x$tri$a2 + x$tri$b2 * x$res$V.m[x$res$step]))
cat(" Step", x$res$step, "\n",
" V.m: ", V.m.print, paste(rep(" ", times = 10 - nchar(V.m.print)), collapse = ""),
"Z.m:", paste(rep(" ", times = 9 - nchar(Z.m.print)), collapse = ""), Z.m.print, "\n",
paste0(" Continuation range | V.m: [",
formatC(x.r[which.min(x.r)], digits = 3, format = "f"), ", ",
formatC(x.r[which.max(x.r)], digits = 3, format = "f"), "]\n\n"))
} else {
x1.1 <- formatC(-x$tri$a1 + 3 * x$tri$b1 * x$res$V.m[x$res$step], digits = 3, format = "f")
x1.2 <- formatC(-x$tri$a2 + 3 * x$tri$b2 * x$res$V.m[x$res$step], digits = 3, format = "f")
x2.1 <- formatC(x$tri$a1 + x$tri$b1 * x$res$V.m[x$res$step], digits = 3, format = "f")
x2.2 <- formatC(x$tri$a2 + x$tri$b2 * x$res$V.m[x$res$step], digits = 3, format = "f")
width.1 <- max(c(nchar(c(x1.1, x2.1)[which.min(c(x1.1, x2.1))]), nchar(formatC(c(x1.2, x2.2)[which.min(c(x1.2, x2.2))]))))
width.2 <- max(c(nchar(c(x1.1, x2.1)[which.max(c(x1.1, x2.1))]), nchar(formatC(c(x1.2, x2.2)[which.max(c(x1.2, x2.2))]))))
cat(" Step", x$res$step, "\n",
" V.m: ", V.m.print, paste(rep(" ", times = 10 - nchar(V.m.print)), collapse = ""),
"Z.m:", paste(rep(" ", times = 10 - nchar(Z.m.print)), collapse = ""), Z.m.print, "\n",
paste0(" Continuation range | V.m: [",
formatC(c(x1.1, x2.1)[which.min(c(x1.1, x2.1))], width = width.1, format = "f"), ", ",
formatC(c(x1.1, x2.1)[which.max(c(x1.1, x2.1))], width = width.2, format = "f"), "]\n",
" [",
formatC(c(x1.2, x2.2)[which.min(c(x1.2, x2.2))], width = width.1, format = "f"), ", ",
formatC(c(x1.2, x2.2)[which.max(c(x1.2, x2.2))], width = width.2, format = "f"), "]\n\n"))
}
} else {
x1 <- -x$tri$a + 3 * x$tri$b * x$res$V.m[x$res$step]
x2 <- x$tri$a + x$tri$b * x$res$V.m[x$res$step]
cat(" Step", x$res$step, "\n",
" V.m: ", V.m.print, paste(rep(" ", times = 10 - nchar(V.m.print)), collapse = ""),
"Z.m:", paste(rep(" ", times = 9 - nchar(Z.m.print)), collapse = ""), Z.m.print, "\n",
paste0(" Continuation range | V.m: [",
formatC(c(x1, x2)[which.min(c(x1, x2))], digits = 3, format = "f"), ", ",
formatC(c(x1, x2)[which.max(c(x1, x2))], digits = 3, format = "f"), "]\n\n"))
}
} else {
cat(" Step", x$res$step, "\n",
" V.m: NA Z.m: NA\n",
" Continuation range | V.m: [NA, NA]\n\n")
}
if (x$res$decision != "continue" | print.step == print.max) {
if (x$res$decision == "continue") {
cat(" Test not finished, continue by adding data via update() function\n")
if (x$spec$sample == "one.sample") {
cat(" Current sample size:", x$dat$n, "\n\n")
} else {
cat(paste0(" Current sample size for x:", x$dat$n.1, "\n",
" y:", x$dat$n.2, "\n\n"))
}
} else {
cat(" Test finished:", ifelse(x$res$decision == "H0", "Keep null hypothesis (H0)", "Accept alternative hypothesis (H1)"), "\n")
if (x$spec$sample == "one.sample") {
cat(" Final sample size:", x$dat$n, "\n\n")
} else {
cat(paste0(" Final sample size for x:", x$dat$n.1, "\n",
" y:", x$dat$n.2, "\n\n"))
}
}
}
} |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.