code
stringlengths
1
13.8M
expected <- eval(parse(text="logical(0)")); test(id=0, code={ argv <- eval(parse(text="list(NULL)")); do.call(`is.infinite`, argv); }, o=expected);
fevd.varshrinkest <- function (x, n.ahead = 10, ...) { if (!inherits(x, "varest")) { stop("\nPlease provide an object inheriting class 'varest'.\n") } n.ahead <- abs(as.integer(n.ahead)) K <- x$K p <- x$p ynames <- names(x$varresult) msey <- h_fecov(x, n.ahead = n.ahead) Psi <- Psi(x, nstep = n.ahead) mse <- matrix(NA, nrow = n.ahead, ncol = K) Omega <- array(0, dim = c(n.ahead, K, K)) for (i in 1:n.ahead) { mse[i, ] <- diag(msey[, , i]) temp <- matrix(0, K, K) for (l in 1:K) { for (m in 1:K) { for (j in 1:i) { temp[l, m] <- temp[l, m] + Psi[l, m, j]^2 } } } temp <- temp/mse[i, ] for (j in 1:K) { Omega[i, , j] <- temp[j, ] } } result <- list() for (i in 1:K) { result[[i]] <- matrix(Omega[, , i], nrow = n.ahead, ncol = K) colnames(result[[i]]) <- ynames } names(result) <- ynames class(result) <- "varfevd" return(result) }
knitr::opts_chunk$set( collapse = TRUE, comment = " ) library(ActFrag)
expected <- eval(parse(text="structure(list(fit = structure(numeric(0), .Dim = c(10L, 0L), constant = 0), se.fit = structure(numeric(0), .Dim = c(10L, 0L)), df = 10L, residual.scale = 0.523484262069588), .Names = c(\"fit\", \"se.fit\", \"df\", \"residual.scale\"))")); test(id=0, code={ argv <- eval(parse(text="list(fit = structure(numeric(0), .Dim = c(10L, 0L), constant = 0), se.fit = structure(numeric(0), .Dim = c(10L, 0L)), df = 10L, residual.scale = 0.523484262069588)")); do.call(`list`, argv); }, o=expected);
binom.blaker.limits <- function(x,n,level=.95,tol=1e-10,...) { if (n < 1 || x < 0 || x > n) stop("Parameters n = ",n,", x = ",x, " wrong!") if (level <= 0 || level >= 1) stop("Confidence level ",level," out of (0, 1)!") if (tol <= 0) stop("Numerical tolerance ",tol," nonpositive!") lower <- binom.blaker.lower.limit(x,n,level,tol,...) upper <- 1 - binom.blaker.lower.limit(n-x,n,level,tol,...) return(c(lower,upper)) }
difStd <-function(Data,group,focal.name,anchor=NULL,match="score", stdWeight="focal",thrSTD=0.1,purify=FALSE,nrIter=10, save.output=FALSE, output=c("out","default")) { if (purify & match[1] != "score") stop("purification not allowed when matching variable is not 'score'", call. = FALSE) internalSTD<-function(){ if (length(group) == 1) { if (is.numeric(group)==TRUE) { gr <- Data[, group] DATA <- Data[,(1:ncol(Data))!= group] colnames(DATA) <- colnames(Data)[(1:ncol(Data))!= group] } else { gr <- Data[, colnames(Data)==group] DATA <- Data[,colnames(Data)!= group] colnames(DATA) <- colnames(Data)[colnames(Data)!= group] } } else { gr <- group DATA <- Data } Group <- rep(0, nrow(DATA)) Group[gr == focal.name] <- 1 if (!is.null(anchor)){ dif.anchor<-anchor if (is.numeric(anchor)) ANCHOR<-anchor else{ ANCHOR<-NULL for (i in 1:length(anchor)) ANCHOR[i]<-(1:ncol(DATA))[colnames(DATA)==anchor[i]] } } else { ANCHOR<-1:ncol(DATA) dif.anchor<-NULL } if (!purify | match[1] != "score" | !is.null(anchor)) { resProv<-stdPDIF(DATA,Group,stdWeight=stdWeight,anchor=ANCHOR,match=match) STATS <- resProv$resStd ALPHA <- resProv$resAlpha if (max(abs(STATS))<=thrSTD) DIFitems<-"No DIF item detected" else DIFitems <-(1:ncol(DATA))[abs(STATS)>thrSTD] RES <-list(PDIF=STATS,stdAlpha=ALPHA,thr=thrSTD,DIFitems=DIFitems, match=resProv$match,purification=purify,names=colnames(DATA), anchor.names=dif.anchor,stdWeight=stdWeight,save.output=save.output,output=output) if (!is.null(anchor)) { RES$PDIF[ANCHOR]<-NA RES$stdAlpha[ANCHOR]<-NA for (i in 1:length(RES$DIFitems)){ if (sum(RES$DIFitems[i]==ANCHOR)==1) RES$DIFitems[i]<-NA } RES$DIFitems<-RES$DIFitems[!is.na(RES$DIFitems)] } } else{ nrPur<-0 difPur<-NULL noLoop<-FALSE resProv<-stdPDIF(DATA,Group,stdWeight=stdWeight,match=match) stats1 <-resProv$resStd alpha1<-resProv$resAlpha if (max(abs(stats1))<=thrSTD) { DIFitems<-"No DIF item detected" noLoop<-TRUE } else{ dif <-(1:ncol(DATA))[abs(stats1)>thrSTD] difPur<-rep(0,length(stats1)) difPur[dif]<-1 repeat{ if (nrPur>=nrIter) break else{ nrPur<-nrPur+1 nodif <-NULL if (is.null(dif)==TRUE) nodif<-1:ncol(DATA) else{ for (i in 1:ncol(DATA)){ if (sum(i==dif)==0) nodif<-c(nodif,i) } } resProv<-stdPDIF(DATA,Group,anchor=nodif,stdWeight=stdWeight,match=match) stats2 <-resProv$resStd alpha2<-resProv$resAlpha if (max(abs(stats2))<=thrSTD) dif2<-NULL else dif2<-(1:ncol(DATA))[abs(stats2)>thrSTD] difPur<-rbind(difPur,rep(0,ncol(DATA))) difPur[nrPur+1,dif2]<-1 if (length(dif)!=length(dif2)) dif<-dif2 else{ dif<-sort(dif) dif2<-sort(dif2) if (sum(dif==dif2)==length(dif)){ noLoop<-TRUE break } else dif<-dif2 } } } stats1<-stats2 alpha1<-alpha2 DIFitems <-(1:ncol(DATA))[abs(stats1)>thrSTD] } if (!is.null(difPur)){ ro<-co<-NULL for (ir in 1:nrow(difPur)) ro[ir]<-paste("Step",ir-1,sep="") for (ic in 1:ncol(difPur)) co[ic]<-paste("Item",ic,sep="") rownames(difPur)<-ro colnames(difPur)<-co } RES<-list(PDIF=stats1,stdAlpha=alpha1,thr=thrSTD,DIFitems=DIFitems, match=resProv$match,purification=purify,nrPur=nrPur,difPur=difPur,convergence=noLoop, names=colnames(DATA),anchor.names=NULL,stdWeight=stdWeight,save.output=save.output,output=output) } class(RES)<-"PDIF" return(RES) } resToReturn<-internalSTD() if (save.output==TRUE){ if (output[2]=="default") wd<-paste(getwd(),"/",sep="") else wd<-output[2] fileName<-paste(wd,output[1],".txt",sep="") capture.output(resToReturn,file=fileName) } return(resToReturn) } plot.PDIF <-function(x,pch=8,number=TRUE,col="red",save.plot=FALSE,save.options=c("plot","default","pdf"),...) { internalSTD<-function(){ res <- x if (!number) { plot(res$PDIF,xlab="Item",ylab="Standardization statistic",ylim=c(max(-1,min(c(res$PDIF,-res$thr)-0.2,na.rm=TRUE)),min(1,max(c(res$PDIF,res$thr)+0.2,na.rm=TRUE))),pch=pch,main="Standardization") if (!is.character(res$DIFitems)) points(res$DIFitems,res$PDIF[res$DIFitems],pch=pch,col=col) } else { plot(res$PDIF,xlab="Item",ylab="St-PDIF statistic",ylim=c(max(-1,min(c(res$PDIF,-res$thr)-0.2,na.rm=TRUE)),min(1,max(c(res$PDIF,res$thr)+0.2,na.rm=TRUE))),col="white",main="Standardization") text(1:length(res$PDIF),res$PDIF,1:length(res$PDIF)) if (!is.character(res$DIFitems)) text(res$DIFitems,res$PDIF[res$DIFitems],res$DIFitems,col=col) } abline(h=res$thr) abline(h=-res$thr) abline(h=0,lty=2) } internalSTD() if (save.plot){ plotype<-NULL if (save.options[3]=="pdf") plotype<-1 if (save.options[3]=="jpeg") plotype<-2 if (is.null(plotype)) cat("Invalid plot type (should be either 'pdf' or 'jpeg').","\n","The plot was not captured!","\n") else { if (save.options[2]=="default") wd<-paste(getwd(),"/",sep="") else wd<-save.options[2] fileName<-paste(wd,save.options[1],switch(plotype,'1'=".pdf",'2'=".jpg"),sep="") if (plotype==1){ { pdf(file=fileName) internalSTD() } dev.off() } if (plotype==2){ { jpeg(filename=fileName) internalSTD() } dev.off() } cat("The plot was captured and saved into","\n"," '",fileName,"'","\n","\n",sep="") } } else cat("The plot was not captured!","\n",sep="") } print.PDIF<-function(x, ...){ res <- x cat("\n") cat("Detection of Differential Item Functioning using standardization method","\n") if (res$purification & is.null(res$anchor.names)) pur<-"with " else pur<-"without " cat(pur, "item purification","\n","\n",sep="") if (res$stdWeight=="total") wt<-"both groups (the total group)" else wt<-paste("the ",res$stdWeight," group",sep="") cat("Weights based on",wt,"\n" ,"\n") if (res$purification & is.null(res$anchor.names)){ if (res$nrPur<=1) word<-" iteration" else word<-" iterations" if (!res$convergence) { cat("WARNING: no item purification convergence after ",res$nrPur,word,"\n",sep="") loop<-NULL for (i in 1:res$nrPur) loop[i]<-sum(res$difPur[1,]==res$difPur[i+1,]) if (max(loop)!=length(res$PDIF)) cat("(Note: no loop detected in less than ",res$nrPur,word,")","\n",sep="") else cat("(Note: loop of length ",min((1:res$nrPur)[loop==length(res$PDIF)])," in the item purification process)","\n",sep="") cat("WARNING: following results based on the last iteration of the purification","\n","\n") } else cat("Convergence reached after ",res$nrPur,word,"\n","\n",sep="") } if (res$match[1] == "score") cat("Matching variable: test score", "\n", "\n") else cat("Matching variable: specified matching variable", "\n", "\n") if (is.null(res$anchor.names)) { itk<-1:length(res$PDIF) cat("No set of anchor items was provided", "\n", "\n") } else { itk<-(1:length(res$PDIF))[!is.na(res$PDIF)] cat("Anchor items (provided by the user):", "\n") if (is.numeric(res$anchor.names)) mm<-res$names[res$anchor.names] else mm<-res$anchor.names mm <- cbind(mm) rownames(mm) <- rep("", nrow(mm)) colnames(mm) <- "" print(mm, quote = FALSE) cat("\n", "\n") } cat("Standardized P-DIF statistic:","\n","\n") symb<-symnum(abs(res$PDIF),c(0,0.04,0.05,0.1,0.2,1),symbols=c("",".","*","**","***")) m1<-cbind(round(res$PDIF[itk],4)) m1<-noquote(cbind(format(m1,justify="right"),symb[itk])) if (!is.null(res$names)) rownames(m1)<-res$names[itk] else{ rn<-NULL for (i in 1:nrow(m1)) rn[i]<-paste("Item",i,sep="") rownames(m1)<-rn[itk] } colnames(m1)<-c("Stat.","") print(m1) cat("\n") cat("Signif. codes (abs. values): 0 ' ' 0.04 '.' 0.05 '*' 0.1 '**' 0.2 '***' 1 ","\n") cat("\n","Detection thresholds: ",-round(res$thr,4)," and ",round(res$thr,4),"\n","\n",sep="") if (is.character(res$DIFitems)) cat("Items detected as DIF items:",res$DIFitems,"\n","\n") else { cat("Items detected as DIF items:","\n") if (!is.null(res$names)) m2 <- res$names else { rn <- NULL for (i in 1:length(res$PDIF)) rn[i] <- paste("Item", i, sep = "") m2 <- rn } m2<-cbind(m2[res$DIFitems]) rownames(m2)<-rep("",nrow(m2)) colnames(m2)<-"" print(m2,quote=FALSE) cat("\n","\n") } cat("Effect sizes:", "\n", "\n") cat("Effect size code:", "\n") cat(" 'A': negligible effect", "\n") cat(" 'B': moderate effect", "\n") cat(" 'C': large effect", "\n", "\n") r2 <- round(-2.35*log(res$stdAlpha),4) symb1 <- symnum(abs(res$PDIF), c(0, 0.05, 0.1, Inf), symbols = c("A", "B", "C")) symb2 <- symnum(abs(r2), c(0, 1, 1.5, Inf), symbols = c("A", "B", "C")) matR2<-cbind(round(res$PDIF[itk],4),round(res$stdAlpha[itk],4),r2[itk]) matR2<- noquote(cbind(format(matR2, justify="right"), symb1[itk], symb2[itk])) if (!is.null(res$names)) rownames(matR2) <- res$names[itk] else { rn <- NULL for (i in 1:nrow(matR2)) rn[i] <- paste("Item", i, sep = "") rownames(matR2) <- rn[itk] } colnames(matR2) <- c("St-P-DIF","alphaStd","deltaStd","DSB","ETS") print(matR2) cat("\n") cat("Effect size codes:", "\n") cat(" Dorans, Schmitt & Bleistein (DSB): 0 'A' 0.05 'B' 0.10 'C'","\n") cat(" (for absolute values of 'St-P-DIF')","\n") cat(" ETS Delta Scale (ETS): 0 'A' 1 'B' 1.5 'C'","\n") cat(" (for absolute values of 'deltaStd')","\n") if (!x$save.output) cat("\n","Output was not captured!","\n") else { if (x$output[2]=="default") wd<-paste(getwd(),"/",sep="") else wd<-x$output[2] fileName<-paste(wd,x$output[1],".txt",sep="") cat("\n","Output was captured and saved into file","\n"," '",fileName,"'","\n","\n",sep="") } }
xtable.fdt <- function(x,caption = NULL, label = NULL, align = NULL, digits = NULL, display = NULL, auto = FALSE,...){ res_DF <- x$table newclass1 <- res_DF[,1] newclass2 <- gsub("\\[","$[",newclass1) newclass3 <- gsub("\\)",")$",newclass2) res_DF[,1] <- newclass3 newnames <- names(res_DF) newnames1 <- gsub("\\%","\\\\%",newnames) names(res_DF) <- newnames1 return(xtable(res_DF,caption = caption, label = label, align = align, digits = digits, display = display, auto = auto, ...)) }
coord.interp.linear <- function(coords1,coords2,step,num.steps){ return (coords1 + ((coords2-coords1)*(step/num.steps))) } coord.interp.smoothstep <- function(coords1,coords2,step,num.steps){ t <-step/num.steps return (coords1 + ((coords2-coords1)*(t^2 * (3-2*t)))) }
setMethodS3("removeDirectory", "default", function(path, recursive=FALSE, mustExist=TRUE, ...) { path <- Arguments$getReadablePath(path, mustExist=mustExist) path <- path.expand(path) path <- Arguments$getReadablePath(path, mustExist=mustExist) recursive <- Arguments$getLogical(recursive) pathT <- Sys.readlink2(path, what="corrected") isSymlink <- (!is.na(pathT) && nchar(pathT, type="chars") > 0L) if (isSymlink) { if (.Platform$OS.type == "windows") { cmd <- sprintf("rmdir %s", dQuote(normalizePath(path))) shell(cmd, shell=Sys.getenv("COMSPEC"), intern=TRUE, mustWork=TRUE) } else { file.remove(path) } return(invisible(!isDirectory(path))) } pathnames <- list.files(path=path, all.files=TRUE, full.names=FALSE) pathnames <- setdiff(pathnames, c(".", "..")) isEmpty <- (length(pathnames) == 0) if (!isEmpty && !recursive) { throw("Cannot remove directory. Directory is not empty: ", path) } res <- unlink(path, recursive=TRUE) return(invisible(!isDirectory(path))) })
"GPDIC1"
slm.class <- setClass("slm", slots=list(method_cov_st="character", cov_st = "numeric", Cov_ST = "matrix", model_selec = "numeric", norm_matrix = "matrix", design_qr = "matrix"), contains = "lm" ) slm <- function(myformula, data = NULL, model = TRUE, x = FALSE, y = FALSE, qr = TRUE, method_cov_st="fitAR", cov_st = NULL, Cov_ST = NULL, model_selec = -1, model_max = 50, kernel_fonc = NULL, block_size = NULL, block_n = NULL, plot = FALSE){ lm_call <- lm(myformula, data = data, model = model, x = x, y = y, qr = qr) lm_call$call = "slm(formula = myformula, data = data, x = x, y = y)" Y = lm_call$model[[1]] design = model.matrix(lm_call) p <- lm_call$rank Qr <- qr(lm_call) p1 <- 1L:p design_qr <- chol2inv(Qr$qr[p1, p1, drop = FALSE]) norm_matrix = diag(sqrt(apply(design^2,2,sum)), nrow=dim(design)[2]) if (is.null(cov_st) && is.null(Cov_ST)){ if (method_cov_st=="hac") { model_selec = NA_real_ cov_st = NA_real_ Cov_ST = matrix(NA_real_) } else { mylist = cov_method(epsilon = lm_call$residuals, method_cov_st = method_cov_st, model_selec = model_selec, model_max = model_max, kernel_fonc = kernel_fonc, block_size = block_size, block_n = block_n, plot = plot) cov_st = mylist$cov_st Cov_ST = matrix(NA_real_) model_selec = mylist$model_selec } } else { if (is.null(Cov_ST)) { epsilon = lm_call$residuals method_cov_st = "manual" model_selec = NA_real_ cov_st = cov_st Cov_ST = matrix(NA_real_) } else if (is.null(cov_st)) { epsilon = lm_call$residuals method_cov_st = "manual_matrix" model_selec = NA_real_ cov_st = NA_real_ Cov_ST = Cov_ST } else { epsilon = lm_call$residuals method_cov_st = "manual_matrix" model_selec = NA_real_ cov_st = NA_real_ Cov_ST = Cov_ST } } out <- slm.class(lm_call, method_cov_st=method_cov_st, cov_st = cov_st, Cov_ST = Cov_ST, model_selec = model_selec, norm_matrix = norm_matrix, design_qr = design_qr ) return(out) } cov_method <- function(epsilon, method_cov_st = "fitAR", model_selec = -1, model_max=NULL, kernel_fonc = NULL, block_size = NULL, block_n = NULL, plot = FALSE){ switch(method_cov_st, fitAR={out = cov_AR(epsilon,model_selec = model_selec,plot=plot)}, spectralproj={out = cov_spectralproj(epsilon,model_selec = model_selec,model_max = model_max,plot=plot)}, efromovich={out = cov_efromovich(epsilon,plot=plot)}, kernel={out = cov_kernel(epsilon,model_selec = model_selec,model_max = model_max,kernel_fonc = kernel_fonc ,block_size = block_size,block_n = block_n,plot=plot)}, select={out = cov_select(epsilon,model_selec = model_selec,plot=plot)} ) return(out) } cov_AR <- function(epsilon, model_selec = -1, plot=FALSE){ if (plot == TRUE) { acf(epsilon, lag.max=sqrt(length(epsilon)), type="correlation", main=" ") pacf(epsilon, lag.max=sqrt(length(epsilon)), main=" ") } n = length(epsilon) if (model_selec == -1){ my_ar = ar(epsilon, aic = TRUE) if (my_ar$order==0) { cov_st = rep(0,n) cov_st[1] = var(epsilon) model_selec = my_ar$order } else { coef_ar = my_ar$ar cov_st = ltsa::tacvfARMA(phi=coef_ar, maxLag=n-1, sigma2=my_ar$var.pred) model_selec = my_ar$order } } else { if (model_selec == 0){ cov_st = rep(0,n) cov_st[1] = var(epsilon) } else { my_ar = ar(epsilon, aic = FALSE, order.max = model_selec) coef_ar = my_ar$ar cov_st = ltsa::tacvfARMA(phi=coef_ar, maxLag=n-1, sigma2=my_ar$var.pred) } } return(list(model_selec=model_selec,cov_st=cov_st)) } cov_spectralproj <- function(epsilon, model_selec = -1, model_max = min(100,length(epsilon)/2), plot=FALSE){ n = length(epsilon) cov_epsilon = as.vector(acf(epsilon,type="covariance",lag.max = n-1,plot=FALSE)$acf) if (model_selec==-1) { mat_a = matrix(0, nrow=model_max, ncol=model_max) contrast = rep(0,model_max) pen = rep(0,model_max) pen_contrast = rep(0,model_max) for(d in seq(1,model_max)) { a_hat = rep(0,d) for (j in seq(1,d)) { vec = rep(0,n-1) for (r in seq(1,n-1)) { vec[r] = (cov_epsilon[r+1]/r)*(sin((pi*j*r)/d) - sin((pi*(j-1)*r)/d)) } a_hat[j] = sqrt(d/pi)*(cov_epsilon[1]/(2*d) + (1/pi)*sum(vec)) } mat_a[d,1:d] = a_hat pen[d] = d contrast[d] = (-1)*sum(mat_a[d,1:d]^2) pen_contrast[d] = contrast[d] + pen[d] } datacap = matrix(0,nrow=model_max,ncol=4,dimnames = list(seq(1,model_max),c("model","pen","complexity","contrast"))) datacap[,1] = pen datacap[,2] = pen datacap[,3] = pen datacap[,4] = contrast d_hat = capushe::Djump(datacap) dhat = as.numeric(d_hat@model) model_selec = dhat spec_dens = sqrt(dhat/pi)*mat_a[dhat,(1:dhat)] } else { dhat = model_selec a_hat = rep(0,dhat) for (j in seq(1,dhat)) { vec = rep(0,n-1) for (r in seq(1,n-1)) { vec[r] = (cov_epsilon[r+1]/r)*(sin((pi*j*r)/dhat) - sin((pi*(j-1)*r)/dhat)) } a_hat[j] = sqrt(dhat/pi)*(cov_epsilon[1]/(2*dhat) + (1/pi)*sum(vec)) } spec_dens = sqrt(dhat/pi)*a_hat } if (plot==TRUE) { x = seq(0,pi-(pi/dhat),by=pi/dhat) plot(x,spec_dens,type="s",ylab="spectral density") } cov_st = rep(0,n) cov_st[1] = ((2*pi)/dhat)*sum(spec_dens) interm = rep(0,dhat) for (k in seq(2,n)) { for (j in seq(1,dhat)) { interm[j] = spec_dens[j]*(sin(((k-1)*pi*j)/dhat) - sin(((k-1)*pi*(j-1))/dhat)) } cov_st[k] = (2/(k-1))*sum(interm) } return(list(model_selec=model_selec,cov_st=cov_st)) } cov_select <- function(epsilon, model_selec, plot=FALSE){ n = length(epsilon) if (plot==TRUE) { acf(epsilon,type="correlation",lag.max=max(model_selec)+1,main=" ") } cov_epsilon = as.vector(acf(epsilon,type="covariance",lag.max = n-1,plot=FALSE)$acf) cov_st = rep(0,n) cov_st[1] = cov_epsilon[1] cov_st[model_selec+1] = cov_epsilon[model_selec+1] return(list(model_selec=model_selec,cov_st=cov_st)) } cov_kernel <- function(epsilon, model_selec = -1, model_max = min(50,length(epsilon)/2), kernel_fonc = triangle, block_size = length(epsilon)/2, block_n = 100, plot=FALSE){ n = length(epsilon) if (model_selec==-1) { risk = rep(0,model_max) SE = rep(0,model_max) for (treshold in seq(1,model_max)) { result = Rboot(epsilon,treshold,block_size,block_n,model_max,kernel_fonc) risk[treshold] = result[1] SE[treshold] = result[2] } model_selec = which.min(risk) if (plot==TRUE) { plot(seq(0,model_max-1),risk,type="l",xlab="lag") acf(epsilon,type="correlation",lag.max=model_selec-1,main=" ") } cov_st = rep(0,n) cov_st[1:model_selec] = acf(epsilon,type="covariance",lag.max=model_selec-1,plot=FALSE)$acf kern = rep(0,n) kern[1:model_selec] = kernel_fonc((0:(model_selec-1))/model_selec) cov_st = kern*cov_st return(list(model_selec=model_selec-1,cov_st=cov_st)) } else { if (plot==TRUE) { acf(epsilon,lag.max=sqrt(length(epsilon)),type="correlation", main=" ") } model_selec = model_selec + 1 cov_st = rep(0,n) cov_st[1:model_selec] = acf(epsilon,type="covariance",lag.max=model_selec-1,plot=FALSE)$acf kern = rep(0,n) kern[1:model_selec] = kernel_fonc((0:(model_selec-1))/model_selec) cov_st = kern*cov_st return(list(model_selec=model_selec-1,cov_st=cov_st)) } } cov_efromovich <- function(epsilon, plot = FALSE) { n = length(epsilon) Jn = floor((log(n))^(5/4)) cov_epsilon = as.vector(acf(epsilon,type="covariance",lag.max=n-1,plot=FALSE)$acf) dn_hat = cov_epsilon[1]^2 + 2*sum(cov_epsilon[2:(Jn+1)]^2) Gamma_hat = rep(0,(Jn+1)) for (j in seq(1:(Jn+1))) { Gamma_hat[j] = max(0,(cov_epsilon[j]^2 - dn_hat/n)) } wn_hat = rep(0,n) for (j in seq(1:(Jn+1))) { wn_hat[j] = Gamma_hat[j]/(cov_epsilon[j]^2) } sum_jn = rep(0,(Jn+1)) sum_jn[1] = 2*dn_hat/n - (cov_epsilon[1])^2 for (j in seq(2,(Jn+1))) { sum_jn[j] = sum_jn[j-1] + 2*(2*dn_hat/n - cov_epsilon[j]^2) } Jn_hat = which.min(sum_jn) wn_hat_2 = rep(0,n) for (j in seq(1:(Jn_hat))) { wn_hat_2[j] = wn_hat[j] } cov_st = wn_hat_2*cov_epsilon model_selec = Jn_hat - 1 if (plot==TRUE) { acf(epsilon,type="correlation",lag.max=model_selec,main=" ") } return(list(model_selec=model_selec,cov_st=cov_st)) }
NULL signer_add_profile_permission <- function(profileName, profileVersion = NULL, action, principal, revisionId = NULL, statementId) { op <- new_operation( name = "AddProfilePermission", http_method = "POST", http_path = "/signing-profiles/{profileName}/permissions", paginator = list() ) input <- .signer$add_profile_permission_input(profileName = profileName, profileVersion = profileVersion, action = action, principal = principal, revisionId = revisionId, statementId = statementId) output <- .signer$add_profile_permission_output() config <- get_config() svc <- .signer$service(config) request <- new_request(svc, op, input, output) response <- send_request(request) return(response) } .signer$operations$add_profile_permission <- signer_add_profile_permission signer_cancel_signing_profile <- function(profileName) { op <- new_operation( name = "CancelSigningProfile", http_method = "DELETE", http_path = "/signing-profiles/{profileName}", paginator = list() ) input <- .signer$cancel_signing_profile_input(profileName = profileName) output <- .signer$cancel_signing_profile_output() config <- get_config() svc <- .signer$service(config) request <- new_request(svc, op, input, output) response <- send_request(request) return(response) } .signer$operations$cancel_signing_profile <- signer_cancel_signing_profile signer_describe_signing_job <- function(jobId) { op <- new_operation( name = "DescribeSigningJob", http_method = "GET", http_path = "/signing-jobs/{jobId}", paginator = list() ) input <- .signer$describe_signing_job_input(jobId = jobId) output <- .signer$describe_signing_job_output() config <- get_config() svc <- .signer$service(config) request <- new_request(svc, op, input, output) response <- send_request(request) return(response) } .signer$operations$describe_signing_job <- signer_describe_signing_job signer_get_signing_platform <- function(platformId) { op <- new_operation( name = "GetSigningPlatform", http_method = "GET", http_path = "/signing-platforms/{platformId}", paginator = list() ) input <- .signer$get_signing_platform_input(platformId = platformId) output <- .signer$get_signing_platform_output() config <- get_config() svc <- .signer$service(config) request <- new_request(svc, op, input, output) response <- send_request(request) return(response) } .signer$operations$get_signing_platform <- signer_get_signing_platform signer_get_signing_profile <- function(profileName, profileOwner = NULL) { op <- new_operation( name = "GetSigningProfile", http_method = "GET", http_path = "/signing-profiles/{profileName}", paginator = list() ) input <- .signer$get_signing_profile_input(profileName = profileName, profileOwner = profileOwner) output <- .signer$get_signing_profile_output() config <- get_config() svc <- .signer$service(config) request <- new_request(svc, op, input, output) response <- send_request(request) return(response) } .signer$operations$get_signing_profile <- signer_get_signing_profile signer_list_profile_permissions <- function(profileName, nextToken = NULL) { op <- new_operation( name = "ListProfilePermissions", http_method = "GET", http_path = "/signing-profiles/{profileName}/permissions", paginator = list() ) input <- .signer$list_profile_permissions_input(profileName = profileName, nextToken = nextToken) output <- .signer$list_profile_permissions_output() config <- get_config() svc <- .signer$service(config) request <- new_request(svc, op, input, output) response <- send_request(request) return(response) } .signer$operations$list_profile_permissions <- signer_list_profile_permissions signer_list_signing_jobs <- function(status = NULL, platformId = NULL, requestedBy = NULL, maxResults = NULL, nextToken = NULL, isRevoked = NULL, signatureExpiresBefore = NULL, signatureExpiresAfter = NULL, jobInvoker = NULL) { op <- new_operation( name = "ListSigningJobs", http_method = "GET", http_path = "/signing-jobs", paginator = list() ) input <- .signer$list_signing_jobs_input(status = status, platformId = platformId, requestedBy = requestedBy, maxResults = maxResults, nextToken = nextToken, isRevoked = isRevoked, signatureExpiresBefore = signatureExpiresBefore, signatureExpiresAfter = signatureExpiresAfter, jobInvoker = jobInvoker) output <- .signer$list_signing_jobs_output() config <- get_config() svc <- .signer$service(config) request <- new_request(svc, op, input, output) response <- send_request(request) return(response) } .signer$operations$list_signing_jobs <- signer_list_signing_jobs signer_list_signing_platforms <- function(category = NULL, partner = NULL, target = NULL, maxResults = NULL, nextToken = NULL) { op <- new_operation( name = "ListSigningPlatforms", http_method = "GET", http_path = "/signing-platforms", paginator = list() ) input <- .signer$list_signing_platforms_input(category = category, partner = partner, target = target, maxResults = maxResults, nextToken = nextToken) output <- .signer$list_signing_platforms_output() config <- get_config() svc <- .signer$service(config) request <- new_request(svc, op, input, output) response <- send_request(request) return(response) } .signer$operations$list_signing_platforms <- signer_list_signing_platforms signer_list_signing_profiles <- function(includeCanceled = NULL, maxResults = NULL, nextToken = NULL, platformId = NULL, statuses = NULL) { op <- new_operation( name = "ListSigningProfiles", http_method = "GET", http_path = "/signing-profiles", paginator = list() ) input <- .signer$list_signing_profiles_input(includeCanceled = includeCanceled, maxResults = maxResults, nextToken = nextToken, platformId = platformId, statuses = statuses) output <- .signer$list_signing_profiles_output() config <- get_config() svc <- .signer$service(config) request <- new_request(svc, op, input, output) response <- send_request(request) return(response) } .signer$operations$list_signing_profiles <- signer_list_signing_profiles signer_list_tags_for_resource <- function(resourceArn) { op <- new_operation( name = "ListTagsForResource", http_method = "GET", http_path = "/tags/{resourceArn}", paginator = list() ) input <- .signer$list_tags_for_resource_input(resourceArn = resourceArn) output <- .signer$list_tags_for_resource_output() config <- get_config() svc <- .signer$service(config) request <- new_request(svc, op, input, output) response <- send_request(request) return(response) } .signer$operations$list_tags_for_resource <- signer_list_tags_for_resource signer_put_signing_profile <- function(profileName, signingMaterial = NULL, signatureValidityPeriod = NULL, platformId, overrides = NULL, signingParameters = NULL, tags = NULL) { op <- new_operation( name = "PutSigningProfile", http_method = "PUT", http_path = "/signing-profiles/{profileName}", paginator = list() ) input <- .signer$put_signing_profile_input(profileName = profileName, signingMaterial = signingMaterial, signatureValidityPeriod = signatureValidityPeriod, platformId = platformId, overrides = overrides, signingParameters = signingParameters, tags = tags) output <- .signer$put_signing_profile_output() config <- get_config() svc <- .signer$service(config) request <- new_request(svc, op, input, output) response <- send_request(request) return(response) } .signer$operations$put_signing_profile <- signer_put_signing_profile signer_remove_profile_permission <- function(profileName, revisionId, statementId) { op <- new_operation( name = "RemoveProfilePermission", http_method = "DELETE", http_path = "/signing-profiles/{profileName}/permissions/{statementId}", paginator = list() ) input <- .signer$remove_profile_permission_input(profileName = profileName, revisionId = revisionId, statementId = statementId) output <- .signer$remove_profile_permission_output() config <- get_config() svc <- .signer$service(config) request <- new_request(svc, op, input, output) response <- send_request(request) return(response) } .signer$operations$remove_profile_permission <- signer_remove_profile_permission signer_revoke_signature <- function(jobId, jobOwner = NULL, reason) { op <- new_operation( name = "RevokeSignature", http_method = "PUT", http_path = "/signing-jobs/{jobId}/revoke", paginator = list() ) input <- .signer$revoke_signature_input(jobId = jobId, jobOwner = jobOwner, reason = reason) output <- .signer$revoke_signature_output() config <- get_config() svc <- .signer$service(config) request <- new_request(svc, op, input, output) response <- send_request(request) return(response) } .signer$operations$revoke_signature <- signer_revoke_signature signer_revoke_signing_profile <- function(profileName, profileVersion, reason, effectiveTime) { op <- new_operation( name = "RevokeSigningProfile", http_method = "PUT", http_path = "/signing-profiles/{profileName}/revoke", paginator = list() ) input <- .signer$revoke_signing_profile_input(profileName = profileName, profileVersion = profileVersion, reason = reason, effectiveTime = effectiveTime) output <- .signer$revoke_signing_profile_output() config <- get_config() svc <- .signer$service(config) request <- new_request(svc, op, input, output) response <- send_request(request) return(response) } .signer$operations$revoke_signing_profile <- signer_revoke_signing_profile signer_start_signing_job <- function(source, destination, profileName, clientRequestToken, profileOwner = NULL) { op <- new_operation( name = "StartSigningJob", http_method = "POST", http_path = "/signing-jobs", paginator = list() ) input <- .signer$start_signing_job_input(source = source, destination = destination, profileName = profileName, clientRequestToken = clientRequestToken, profileOwner = profileOwner) output <- .signer$start_signing_job_output() config <- get_config() svc <- .signer$service(config) request <- new_request(svc, op, input, output) response <- send_request(request) return(response) } .signer$operations$start_signing_job <- signer_start_signing_job signer_tag_resource <- function(resourceArn, tags) { op <- new_operation( name = "TagResource", http_method = "POST", http_path = "/tags/{resourceArn}", paginator = list() ) input <- .signer$tag_resource_input(resourceArn = resourceArn, tags = tags) output <- .signer$tag_resource_output() config <- get_config() svc <- .signer$service(config) request <- new_request(svc, op, input, output) response <- send_request(request) return(response) } .signer$operations$tag_resource <- signer_tag_resource signer_untag_resource <- function(resourceArn, tagKeys) { op <- new_operation( name = "UntagResource", http_method = "DELETE", http_path = "/tags/{resourceArn}", paginator = list() ) input <- .signer$untag_resource_input(resourceArn = resourceArn, tagKeys = tagKeys) output <- .signer$untag_resource_output() config <- get_config() svc <- .signer$service(config) request <- new_request(svc, op, input, output) response <- send_request(request) return(response) } .signer$operations$untag_resource <- signer_untag_resource
set.seed(1) knitr::opts_chunk$set(fig.width = 8, fig.height = 6) library(GillespieSSA) parms <- c(c = 1) M <- 50 simName <- "Linear Chain System" tf <- 5 x0 <- c(1000, rep(0, M)) names(x0) <- paste0("x", seq_len(M+1)) nu <- matrix(rep(0, M * (M+1)), ncol = M) nu[cbind(seq_len(M), seq_len(M))] <- -1 nu[cbind(seq_len(M)+1, seq_len(M))] <- 1 a <- paste0("c*x", seq_len(M)) set.seed(1) out <- ssa( x0 = x0, a = a, nu = nu, parms = parms, tf = tf, method = ssa.d(), simName = simName, verbose = FALSE, consoleInterval = 1 ) ssa.plot(out, show.title = TRUE, show.legend = FALSE) set.seed(1) out <- ssa( x0 = x0, a = a, nu = nu, parms = parms, tf = tf, method = ssa.etl(tau = .1), simName = simName, verbose = FALSE, consoleInterval = 1 ) ssa.plot(out, show.title = TRUE, show.legend = FALSE) set.seed(1) out <- ssa( x0 = x0, a = a, nu = nu, parms = parms, tf = tf, method = ssa.btl(f = 50), simName = simName, verbose = FALSE, consoleInterval = 1 ) ssa.plot(out, show.title = TRUE, show.legend = FALSE) set.seed(1) out <- ssa( x0 = x0, a = a, nu = nu, parms = parms, tf = tf, method = ssa.otl(), simName = simName, verbose = FALSE, consoleInterval = 1 ) ssa.plot(out, show.title = TRUE, show.legend = FALSE)
calculate_level_vector = function(design, model, nointercept) { factornames = attr(terms(model), "term.labels") factormatrix = attr(terms(model), "factors") interactionterms = factornames[apply(factormatrix, 2, sum) > 1] higherorderterms = factornames[!(gsub("`", "", factornames, fixed = TRUE) %in% colnames(design)) & !(apply(factormatrix, 2, sum) > 1)] levelvector = sapply(lapply(design, unique), length) levelvector[lapply(design, class) == "numeric"] = 2 if (!nointercept) { levelvector = c(1, levelvector - 1) } else { levelvector = levelvector - 1 for (i in 1:ncol(design)) { if (class(design[, i]) %in% c("character", "factor")) { levelvector[i] = levelvector[i] + 1 break } } } higherorderlevelvector = rep(1, length(higherorderterms)) names(higherorderlevelvector) = higherorderterms levelvector = c(levelvector, higherorderlevelvector) for (interaction in interactionterms) { numberlevels = 1 for (term in unlist(strsplit(interaction, split = "(\\s+)?:(\\s+)?|(\\s+)?\\*(\\s+)?"))) { numberlevels = numberlevels * levelvector[gsub("`", "", term, fixed = TRUE)] } levelvector = c(levelvector, numberlevels) } levelnames = names(levelvector) if(length(interactionterms) > 0) { levelnames[(length(levelnames)-length(interactionterms)+1):length(levelnames)] = interactionterms } levelvector = stats::setNames(levelvector, levelnames) levelvector }
NULL .apigatewayv2$create_api_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(ApiKeySelectionExpression = structure(logical(0), tags = list(locationName = "apiKeySelectionExpression", type = "string")), CorsConfiguration = structure(list(AllowCredentials = structure(logical(0), tags = list(locationName = "allowCredentials", type = "boolean")), AllowHeaders = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(locationName = "allowHeaders", type = "list")), AllowMethods = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(locationName = "allowMethods", type = "list")), AllowOrigins = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(locationName = "allowOrigins", type = "list")), ExposeHeaders = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(locationName = "exposeHeaders", type = "list")), MaxAge = structure(logical(0), tags = list(locationName = "maxAge", type = "integer"))), tags = list(locationName = "corsConfiguration", type = "structure")), CredentialsArn = structure(logical(0), tags = list(locationName = "credentialsArn", type = "string")), Description = structure(logical(0), tags = list(locationName = "description", type = "string")), DisableSchemaValidation = structure(logical(0), tags = list(locationName = "disableSchemaValidation", type = "boolean")), DisableExecuteApiEndpoint = structure(logical(0), tags = list(locationName = "disableExecuteApiEndpoint", type = "boolean")), Name = structure(logical(0), tags = list(locationName = "name", type = "string")), ProtocolType = structure(logical(0), tags = list(locationName = "protocolType", type = "string")), RouteKey = structure(logical(0), tags = list(locationName = "routeKey", type = "string")), RouteSelectionExpression = structure(logical(0), tags = list(locationName = "routeSelectionExpression", type = "string")), Tags = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(locationName = "tags", type = "map")), Target = structure(logical(0), tags = list(locationName = "target", type = "string")), Version = structure(logical(0), tags = list(locationName = "version", type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .apigatewayv2$create_api_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(ApiEndpoint = structure(logical(0), tags = list(locationName = "apiEndpoint", type = "string")), ApiGatewayManaged = structure(logical(0), tags = list(locationName = "apiGatewayManaged", type = "boolean")), ApiId = structure(logical(0), tags = list(locationName = "apiId", type = "string")), ApiKeySelectionExpression = structure(logical(0), tags = list(locationName = "apiKeySelectionExpression", type = "string")), CorsConfiguration = structure(list(AllowCredentials = structure(logical(0), tags = list(locationName = "allowCredentials", type = "boolean")), AllowHeaders = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(locationName = "allowHeaders", type = "list")), AllowMethods = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(locationName = "allowMethods", type = "list")), AllowOrigins = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(locationName = "allowOrigins", type = "list")), ExposeHeaders = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(locationName = "exposeHeaders", type = "list")), MaxAge = structure(logical(0), tags = list(locationName = "maxAge", type = "integer"))), tags = list(locationName = "corsConfiguration", type = "structure")), CreatedDate = structure(logical(0), tags = list(locationName = "createdDate", type = "timestamp", timestampFormat = "iso8601")), Description = structure(logical(0), tags = list(locationName = "description", type = "string")), DisableSchemaValidation = structure(logical(0), tags = list(locationName = "disableSchemaValidation", type = "boolean")), DisableExecuteApiEndpoint = structure(logical(0), tags = list(locationName = "disableExecuteApiEndpoint", type = "boolean")), ImportInfo = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(locationName = "importInfo", type = "list")), Name = structure(logical(0), tags = list(locationName = "name", type = "string")), ProtocolType = structure(logical(0), tags = list(locationName = "protocolType", type = "string")), RouteSelectionExpression = structure(logical(0), tags = list(locationName = "routeSelectionExpression", type = "string")), Tags = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(locationName = "tags", type = "map")), Version = structure(logical(0), tags = list(locationName = "version", type = "string")), Warnings = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(locationName = "warnings", type = "list"))), tags = list(type = "structure")) return(populate(args, shape)) } .apigatewayv2$create_api_mapping_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(ApiId = structure(logical(0), tags = list(locationName = "apiId", type = "string")), ApiMappingKey = structure(logical(0), tags = list(locationName = "apiMappingKey", type = "string")), DomainName = structure(logical(0), tags = list(location = "uri", locationName = "domainName", type = "string")), Stage = structure(logical(0), tags = list(locationName = "stage", type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .apigatewayv2$create_api_mapping_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(ApiId = structure(logical(0), tags = list(locationName = "apiId", type = "string")), ApiMappingId = structure(logical(0), tags = list(locationName = "apiMappingId", type = "string")), ApiMappingKey = structure(logical(0), tags = list(locationName = "apiMappingKey", type = "string")), Stage = structure(logical(0), tags = list(locationName = "stage", type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .apigatewayv2$create_authorizer_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(ApiId = structure(logical(0), tags = list(location = "uri", locationName = "apiId", type = "string")), AuthorizerCredentialsArn = structure(logical(0), tags = list(locationName = "authorizerCredentialsArn", type = "string")), AuthorizerPayloadFormatVersion = structure(logical(0), tags = list(locationName = "authorizerPayloadFormatVersion", type = "string")), AuthorizerResultTtlInSeconds = structure(logical(0), tags = list(locationName = "authorizerResultTtlInSeconds", type = "integer")), AuthorizerType = structure(logical(0), tags = list(locationName = "authorizerType", type = "string")), AuthorizerUri = structure(logical(0), tags = list(locationName = "authorizerUri", type = "string")), EnableSimpleResponses = structure(logical(0), tags = list(locationName = "enableSimpleResponses", type = "boolean")), IdentitySource = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(locationName = "identitySource", type = "list")), IdentityValidationExpression = structure(logical(0), tags = list(locationName = "identityValidationExpression", type = "string")), JwtConfiguration = structure(list(Audience = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(locationName = "audience", type = "list")), Issuer = structure(logical(0), tags = list(locationName = "issuer", type = "string"))), tags = list(locationName = "jwtConfiguration", type = "structure")), Name = structure(logical(0), tags = list(locationName = "name", type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .apigatewayv2$create_authorizer_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(AuthorizerCredentialsArn = structure(logical(0), tags = list(locationName = "authorizerCredentialsArn", type = "string")), AuthorizerId = structure(logical(0), tags = list(locationName = "authorizerId", type = "string")), AuthorizerPayloadFormatVersion = structure(logical(0), tags = list(locationName = "authorizerPayloadFormatVersion", type = "string")), AuthorizerResultTtlInSeconds = structure(logical(0), tags = list(locationName = "authorizerResultTtlInSeconds", type = "integer")), AuthorizerType = structure(logical(0), tags = list(locationName = "authorizerType", type = "string")), AuthorizerUri = structure(logical(0), tags = list(locationName = "authorizerUri", type = "string")), EnableSimpleResponses = structure(logical(0), tags = list(locationName = "enableSimpleResponses", type = "boolean")), IdentitySource = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(locationName = "identitySource", type = "list")), IdentityValidationExpression = structure(logical(0), tags = list(locationName = "identityValidationExpression", type = "string")), JwtConfiguration = structure(list(Audience = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(locationName = "audience", type = "list")), Issuer = structure(logical(0), tags = list(locationName = "issuer", type = "string"))), tags = list(locationName = "jwtConfiguration", type = "structure")), Name = structure(logical(0), tags = list(locationName = "name", type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .apigatewayv2$create_deployment_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(ApiId = structure(logical(0), tags = list(location = "uri", locationName = "apiId", type = "string")), Description = structure(logical(0), tags = list(locationName = "description", type = "string")), StageName = structure(logical(0), tags = list(locationName = "stageName", type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .apigatewayv2$create_deployment_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(AutoDeployed = structure(logical(0), tags = list(locationName = "autoDeployed", type = "boolean")), CreatedDate = structure(logical(0), tags = list(locationName = "createdDate", type = "timestamp", timestampFormat = "iso8601")), DeploymentId = structure(logical(0), tags = list(locationName = "deploymentId", type = "string")), DeploymentStatus = structure(logical(0), tags = list(locationName = "deploymentStatus", type = "string")), DeploymentStatusMessage = structure(logical(0), tags = list(locationName = "deploymentStatusMessage", type = "string")), Description = structure(logical(0), tags = list(locationName = "description", type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .apigatewayv2$create_domain_name_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(DomainName = structure(logical(0), tags = list(locationName = "domainName", type = "string")), DomainNameConfigurations = structure(list(structure(list(ApiGatewayDomainName = structure(logical(0), tags = list(locationName = "apiGatewayDomainName", type = "string")), CertificateArn = structure(logical(0), tags = list(locationName = "certificateArn", type = "string")), CertificateName = structure(logical(0), tags = list(locationName = "certificateName", type = "string")), CertificateUploadDate = structure(logical(0), tags = list(locationName = "certificateUploadDate", type = "timestamp", timestampFormat = "iso8601")), DomainNameStatus = structure(logical(0), tags = list(locationName = "domainNameStatus", type = "string")), DomainNameStatusMessage = structure(logical(0), tags = list(locationName = "domainNameStatusMessage", type = "string")), EndpointType = structure(logical(0), tags = list(locationName = "endpointType", type = "string")), HostedZoneId = structure(logical(0), tags = list(locationName = "hostedZoneId", type = "string")), SecurityPolicy = structure(logical(0), tags = list(locationName = "securityPolicy", type = "string"))), tags = list(type = "structure"))), tags = list(locationName = "domainNameConfigurations", type = "list")), MutualTlsAuthentication = structure(list(TruststoreUri = structure(logical(0), tags = list(locationName = "truststoreUri", type = "string")), TruststoreVersion = structure(logical(0), tags = list(locationName = "truststoreVersion", type = "string"))), tags = list(locationName = "mutualTlsAuthentication", type = "structure")), Tags = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(locationName = "tags", type = "map"))), tags = list(type = "structure")) return(populate(args, shape)) } .apigatewayv2$create_domain_name_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(ApiMappingSelectionExpression = structure(logical(0), tags = list(locationName = "apiMappingSelectionExpression", type = "string")), DomainName = structure(logical(0), tags = list(locationName = "domainName", type = "string")), DomainNameConfigurations = structure(list(structure(list(ApiGatewayDomainName = structure(logical(0), tags = list(locationName = "apiGatewayDomainName", type = "string")), CertificateArn = structure(logical(0), tags = list(locationName = "certificateArn", type = "string")), CertificateName = structure(logical(0), tags = list(locationName = "certificateName", type = "string")), CertificateUploadDate = structure(logical(0), tags = list(locationName = "certificateUploadDate", type = "timestamp", timestampFormat = "iso8601")), DomainNameStatus = structure(logical(0), tags = list(locationName = "domainNameStatus", type = "string")), DomainNameStatusMessage = structure(logical(0), tags = list(locationName = "domainNameStatusMessage", type = "string")), EndpointType = structure(logical(0), tags = list(locationName = "endpointType", type = "string")), HostedZoneId = structure(logical(0), tags = list(locationName = "hostedZoneId", type = "string")), SecurityPolicy = structure(logical(0), tags = list(locationName = "securityPolicy", type = "string"))), tags = list(type = "structure"))), tags = list(locationName = "domainNameConfigurations", type = "list")), MutualTlsAuthentication = structure(list(TruststoreUri = structure(logical(0), tags = list(locationName = "truststoreUri", type = "string")), TruststoreVersion = structure(logical(0), tags = list(locationName = "truststoreVersion", type = "string")), TruststoreWarnings = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(locationName = "truststoreWarnings", type = "list"))), tags = list(locationName = "mutualTlsAuthentication", type = "structure")), Tags = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(locationName = "tags", type = "map"))), tags = list(type = "structure")) return(populate(args, shape)) } .apigatewayv2$create_integration_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(ApiId = structure(logical(0), tags = list(location = "uri", locationName = "apiId", type = "string")), ConnectionId = structure(logical(0), tags = list(locationName = "connectionId", type = "string")), ConnectionType = structure(logical(0), tags = list(locationName = "connectionType", type = "string")), ContentHandlingStrategy = structure(logical(0), tags = list(locationName = "contentHandlingStrategy", type = "string")), CredentialsArn = structure(logical(0), tags = list(locationName = "credentialsArn", type = "string")), Description = structure(logical(0), tags = list(locationName = "description", type = "string")), IntegrationMethod = structure(logical(0), tags = list(locationName = "integrationMethod", type = "string")), IntegrationSubtype = structure(logical(0), tags = list(locationName = "integrationSubtype", type = "string")), IntegrationType = structure(logical(0), tags = list(locationName = "integrationType", type = "string")), IntegrationUri = structure(logical(0), tags = list(locationName = "integrationUri", type = "string")), PassthroughBehavior = structure(logical(0), tags = list(locationName = "passthroughBehavior", type = "string")), PayloadFormatVersion = structure(logical(0), tags = list(locationName = "payloadFormatVersion", type = "string")), RequestParameters = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(locationName = "requestParameters", type = "map")), RequestTemplates = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(locationName = "requestTemplates", type = "map")), ResponseParameters = structure(list(structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "map"))), tags = list(locationName = "responseParameters", type = "map")), TemplateSelectionExpression = structure(logical(0), tags = list(locationName = "templateSelectionExpression", type = "string")), TimeoutInMillis = structure(logical(0), tags = list(locationName = "timeoutInMillis", type = "integer")), TlsConfig = structure(list(ServerNameToVerify = structure(logical(0), tags = list(locationName = "serverNameToVerify", type = "string"))), tags = list(locationName = "tlsConfig", type = "structure"))), tags = list(type = "structure")) return(populate(args, shape)) } .apigatewayv2$create_integration_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(ApiGatewayManaged = structure(logical(0), tags = list(locationName = "apiGatewayManaged", type = "boolean")), ConnectionId = structure(logical(0), tags = list(locationName = "connectionId", type = "string")), ConnectionType = structure(logical(0), tags = list(locationName = "connectionType", type = "string")), ContentHandlingStrategy = structure(logical(0), tags = list(locationName = "contentHandlingStrategy", type = "string")), CredentialsArn = structure(logical(0), tags = list(locationName = "credentialsArn", type = "string")), Description = structure(logical(0), tags = list(locationName = "description", type = "string")), IntegrationId = structure(logical(0), tags = list(locationName = "integrationId", type = "string")), IntegrationMethod = structure(logical(0), tags = list(locationName = "integrationMethod", type = "string")), IntegrationResponseSelectionExpression = structure(logical(0), tags = list(locationName = "integrationResponseSelectionExpression", type = "string")), IntegrationSubtype = structure(logical(0), tags = list(locationName = "integrationSubtype", type = "string")), IntegrationType = structure(logical(0), tags = list(locationName = "integrationType", type = "string")), IntegrationUri = structure(logical(0), tags = list(locationName = "integrationUri", type = "string")), PassthroughBehavior = structure(logical(0), tags = list(locationName = "passthroughBehavior", type = "string")), PayloadFormatVersion = structure(logical(0), tags = list(locationName = "payloadFormatVersion", type = "string")), RequestParameters = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(locationName = "requestParameters", type = "map")), RequestTemplates = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(locationName = "requestTemplates", type = "map")), ResponseParameters = structure(list(structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "map"))), tags = list(locationName = "responseParameters", type = "map")), TemplateSelectionExpression = structure(logical(0), tags = list(locationName = "templateSelectionExpression", type = "string")), TimeoutInMillis = structure(logical(0), tags = list(locationName = "timeoutInMillis", type = "integer")), TlsConfig = structure(list(ServerNameToVerify = structure(logical(0), tags = list(locationName = "serverNameToVerify", type = "string"))), tags = list(locationName = "tlsConfig", type = "structure"))), tags = list(type = "structure")) return(populate(args, shape)) } .apigatewayv2$create_integration_response_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(ApiId = structure(logical(0), tags = list(location = "uri", locationName = "apiId", type = "string")), ContentHandlingStrategy = structure(logical(0), tags = list(locationName = "contentHandlingStrategy", type = "string")), IntegrationId = structure(logical(0), tags = list(location = "uri", locationName = "integrationId", type = "string")), IntegrationResponseKey = structure(logical(0), tags = list(locationName = "integrationResponseKey", type = "string")), ResponseParameters = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(locationName = "responseParameters", type = "map")), ResponseTemplates = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(locationName = "responseTemplates", type = "map")), TemplateSelectionExpression = structure(logical(0), tags = list(locationName = "templateSelectionExpression", type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .apigatewayv2$create_integration_response_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(ContentHandlingStrategy = structure(logical(0), tags = list(locationName = "contentHandlingStrategy", type = "string")), IntegrationResponseId = structure(logical(0), tags = list(locationName = "integrationResponseId", type = "string")), IntegrationResponseKey = structure(logical(0), tags = list(locationName = "integrationResponseKey", type = "string")), ResponseParameters = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(locationName = "responseParameters", type = "map")), ResponseTemplates = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(locationName = "responseTemplates", type = "map")), TemplateSelectionExpression = structure(logical(0), tags = list(locationName = "templateSelectionExpression", type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .apigatewayv2$create_model_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(ApiId = structure(logical(0), tags = list(location = "uri", locationName = "apiId", type = "string")), ContentType = structure(logical(0), tags = list(locationName = "contentType", type = "string")), Description = structure(logical(0), tags = list(locationName = "description", type = "string")), Name = structure(logical(0), tags = list(locationName = "name", type = "string")), Schema = structure(logical(0), tags = list(locationName = "schema", type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .apigatewayv2$create_model_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(ContentType = structure(logical(0), tags = list(locationName = "contentType", type = "string")), Description = structure(logical(0), tags = list(locationName = "description", type = "string")), ModelId = structure(logical(0), tags = list(locationName = "modelId", type = "string")), Name = structure(logical(0), tags = list(locationName = "name", type = "string")), Schema = structure(logical(0), tags = list(locationName = "schema", type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .apigatewayv2$create_route_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(ApiId = structure(logical(0), tags = list(location = "uri", locationName = "apiId", type = "string")), ApiKeyRequired = structure(logical(0), tags = list(locationName = "apiKeyRequired", type = "boolean")), AuthorizationScopes = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(locationName = "authorizationScopes", type = "list")), AuthorizationType = structure(logical(0), tags = list(locationName = "authorizationType", type = "string")), AuthorizerId = structure(logical(0), tags = list(locationName = "authorizerId", type = "string")), ModelSelectionExpression = structure(logical(0), tags = list(locationName = "modelSelectionExpression", type = "string")), OperationName = structure(logical(0), tags = list(locationName = "operationName", type = "string")), RequestModels = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(locationName = "requestModels", type = "map")), RequestParameters = structure(list(structure(list(Required = structure(logical(0), tags = list(locationName = "required", type = "boolean"))), tags = list(type = "structure"))), tags = list(locationName = "requestParameters", type = "map")), RouteKey = structure(logical(0), tags = list(locationName = "routeKey", type = "string")), RouteResponseSelectionExpression = structure(logical(0), tags = list(locationName = "routeResponseSelectionExpression", type = "string")), Target = structure(logical(0), tags = list(locationName = "target", type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .apigatewayv2$create_route_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(ApiGatewayManaged = structure(logical(0), tags = list(locationName = "apiGatewayManaged", type = "boolean")), ApiKeyRequired = structure(logical(0), tags = list(locationName = "apiKeyRequired", type = "boolean")), AuthorizationScopes = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(locationName = "authorizationScopes", type = "list")), AuthorizationType = structure(logical(0), tags = list(locationName = "authorizationType", type = "string")), AuthorizerId = structure(logical(0), tags = list(locationName = "authorizerId", type = "string")), ModelSelectionExpression = structure(logical(0), tags = list(locationName = "modelSelectionExpression", type = "string")), OperationName = structure(logical(0), tags = list(locationName = "operationName", type = "string")), RequestModels = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(locationName = "requestModels", type = "map")), RequestParameters = structure(list(structure(list(Required = structure(logical(0), tags = list(locationName = "required", type = "boolean"))), tags = list(type = "structure"))), tags = list(locationName = "requestParameters", type = "map")), RouteId = structure(logical(0), tags = list(locationName = "routeId", type = "string")), RouteKey = structure(logical(0), tags = list(locationName = "routeKey", type = "string")), RouteResponseSelectionExpression = structure(logical(0), tags = list(locationName = "routeResponseSelectionExpression", type = "string")), Target = structure(logical(0), tags = list(locationName = "target", type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .apigatewayv2$create_route_response_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(ApiId = structure(logical(0), tags = list(location = "uri", locationName = "apiId", type = "string")), ModelSelectionExpression = structure(logical(0), tags = list(locationName = "modelSelectionExpression", type = "string")), ResponseModels = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(locationName = "responseModels", type = "map")), ResponseParameters = structure(list(structure(list(Required = structure(logical(0), tags = list(locationName = "required", type = "boolean"))), tags = list(type = "structure"))), tags = list(locationName = "responseParameters", type = "map")), RouteId = structure(logical(0), tags = list(location = "uri", locationName = "routeId", type = "string")), RouteResponseKey = structure(logical(0), tags = list(locationName = "routeResponseKey", type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .apigatewayv2$create_route_response_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(ModelSelectionExpression = structure(logical(0), tags = list(locationName = "modelSelectionExpression", type = "string")), ResponseModels = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(locationName = "responseModels", type = "map")), ResponseParameters = structure(list(structure(list(Required = structure(logical(0), tags = list(locationName = "required", type = "boolean"))), tags = list(type = "structure"))), tags = list(locationName = "responseParameters", type = "map")), RouteResponseId = structure(logical(0), tags = list(locationName = "routeResponseId", type = "string")), RouteResponseKey = structure(logical(0), tags = list(locationName = "routeResponseKey", type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .apigatewayv2$create_stage_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(AccessLogSettings = structure(list(DestinationArn = structure(logical(0), tags = list(locationName = "destinationArn", type = "string")), Format = structure(logical(0), tags = list(locationName = "format", type = "string"))), tags = list(locationName = "accessLogSettings", type = "structure")), ApiId = structure(logical(0), tags = list(location = "uri", locationName = "apiId", type = "string")), AutoDeploy = structure(logical(0), tags = list(locationName = "autoDeploy", type = "boolean")), ClientCertificateId = structure(logical(0), tags = list(locationName = "clientCertificateId", type = "string")), DefaultRouteSettings = structure(list(DataTraceEnabled = structure(logical(0), tags = list(locationName = "dataTraceEnabled", type = "boolean")), DetailedMetricsEnabled = structure(logical(0), tags = list(locationName = "detailedMetricsEnabled", type = "boolean")), LoggingLevel = structure(logical(0), tags = list(locationName = "loggingLevel", type = "string")), ThrottlingBurstLimit = structure(logical(0), tags = list(locationName = "throttlingBurstLimit", type = "integer")), ThrottlingRateLimit = structure(logical(0), tags = list(locationName = "throttlingRateLimit", type = "double"))), tags = list(locationName = "defaultRouteSettings", type = "structure")), DeploymentId = structure(logical(0), tags = list(locationName = "deploymentId", type = "string")), Description = structure(logical(0), tags = list(locationName = "description", type = "string")), RouteSettings = structure(list(structure(list(DataTraceEnabled = structure(logical(0), tags = list(locationName = "dataTraceEnabled", type = "boolean")), DetailedMetricsEnabled = structure(logical(0), tags = list(locationName = "detailedMetricsEnabled", type = "boolean")), LoggingLevel = structure(logical(0), tags = list(locationName = "loggingLevel", type = "string")), ThrottlingBurstLimit = structure(logical(0), tags = list(locationName = "throttlingBurstLimit", type = "integer")), ThrottlingRateLimit = structure(logical(0), tags = list(locationName = "throttlingRateLimit", type = "double"))), tags = list(type = "structure"))), tags = list(locationName = "routeSettings", type = "map")), StageName = structure(logical(0), tags = list(locationName = "stageName", type = "string")), StageVariables = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(locationName = "stageVariables", type = "map")), Tags = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(locationName = "tags", type = "map"))), tags = list(type = "structure")) return(populate(args, shape)) } .apigatewayv2$create_stage_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(AccessLogSettings = structure(list(DestinationArn = structure(logical(0), tags = list(locationName = "destinationArn", type = "string")), Format = structure(logical(0), tags = list(locationName = "format", type = "string"))), tags = list(locationName = "accessLogSettings", type = "structure")), ApiGatewayManaged = structure(logical(0), tags = list(locationName = "apiGatewayManaged", type = "boolean")), AutoDeploy = structure(logical(0), tags = list(locationName = "autoDeploy", type = "boolean")), ClientCertificateId = structure(logical(0), tags = list(locationName = "clientCertificateId", type = "string")), CreatedDate = structure(logical(0), tags = list(locationName = "createdDate", type = "timestamp", timestampFormat = "iso8601")), DefaultRouteSettings = structure(list(DataTraceEnabled = structure(logical(0), tags = list(locationName = "dataTraceEnabled", type = "boolean")), DetailedMetricsEnabled = structure(logical(0), tags = list(locationName = "detailedMetricsEnabled", type = "boolean")), LoggingLevel = structure(logical(0), tags = list(locationName = "loggingLevel", type = "string")), ThrottlingBurstLimit = structure(logical(0), tags = list(locationName = "throttlingBurstLimit", type = "integer")), ThrottlingRateLimit = structure(logical(0), tags = list(locationName = "throttlingRateLimit", type = "double"))), tags = list(locationName = "defaultRouteSettings", type = "structure")), DeploymentId = structure(logical(0), tags = list(locationName = "deploymentId", type = "string")), Description = structure(logical(0), tags = list(locationName = "description", type = "string")), LastDeploymentStatusMessage = structure(logical(0), tags = list(locationName = "lastDeploymentStatusMessage", type = "string")), LastUpdatedDate = structure(logical(0), tags = list(locationName = "lastUpdatedDate", type = "timestamp", timestampFormat = "iso8601")), RouteSettings = structure(list(structure(list(DataTraceEnabled = structure(logical(0), tags = list(locationName = "dataTraceEnabled", type = "boolean")), DetailedMetricsEnabled = structure(logical(0), tags = list(locationName = "detailedMetricsEnabled", type = "boolean")), LoggingLevel = structure(logical(0), tags = list(locationName = "loggingLevel", type = "string")), ThrottlingBurstLimit = structure(logical(0), tags = list(locationName = "throttlingBurstLimit", type = "integer")), ThrottlingRateLimit = structure(logical(0), tags = list(locationName = "throttlingRateLimit", type = "double"))), tags = list(type = "structure"))), tags = list(locationName = "routeSettings", type = "map")), StageName = structure(logical(0), tags = list(locationName = "stageName", type = "string")), StageVariables = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(locationName = "stageVariables", type = "map")), Tags = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(locationName = "tags", type = "map"))), tags = list(type = "structure")) return(populate(args, shape)) } .apigatewayv2$create_vpc_link_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(Name = structure(logical(0), tags = list(locationName = "name", type = "string")), SecurityGroupIds = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(locationName = "securityGroupIds", type = "list")), SubnetIds = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(locationName = "subnetIds", type = "list")), Tags = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(locationName = "tags", type = "map"))), tags = list(type = "structure")) return(populate(args, shape)) } .apigatewayv2$create_vpc_link_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(CreatedDate = structure(logical(0), tags = list(locationName = "createdDate", type = "timestamp", timestampFormat = "iso8601")), Name = structure(logical(0), tags = list(locationName = "name", type = "string")), SecurityGroupIds = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(locationName = "securityGroupIds", type = "list")), SubnetIds = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(locationName = "subnetIds", type = "list")), Tags = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(locationName = "tags", type = "map")), VpcLinkId = structure(logical(0), tags = list(locationName = "vpcLinkId", type = "string")), VpcLinkStatus = structure(logical(0), tags = list(locationName = "vpcLinkStatus", type = "string")), VpcLinkStatusMessage = structure(logical(0), tags = list(locationName = "vpcLinkStatusMessage", type = "string")), VpcLinkVersion = structure(logical(0), tags = list(locationName = "vpcLinkVersion", type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .apigatewayv2$delete_access_log_settings_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(ApiId = structure(logical(0), tags = list(location = "uri", locationName = "apiId", type = "string")), StageName = structure(logical(0), tags = list(location = "uri", locationName = "stageName", type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .apigatewayv2$delete_access_log_settings_output <- function(...) { list() } .apigatewayv2$delete_api_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(ApiId = structure(logical(0), tags = list(location = "uri", locationName = "apiId", type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .apigatewayv2$delete_api_output <- function(...) { list() } .apigatewayv2$delete_api_mapping_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(ApiMappingId = structure(logical(0), tags = list(location = "uri", locationName = "apiMappingId", type = "string")), DomainName = structure(logical(0), tags = list(location = "uri", locationName = "domainName", type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .apigatewayv2$delete_api_mapping_output <- function(...) { list() } .apigatewayv2$delete_authorizer_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(ApiId = structure(logical(0), tags = list(location = "uri", locationName = "apiId", type = "string")), AuthorizerId = structure(logical(0), tags = list(location = "uri", locationName = "authorizerId", type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .apigatewayv2$delete_authorizer_output <- function(...) { list() } .apigatewayv2$delete_cors_configuration_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(ApiId = structure(logical(0), tags = list(location = "uri", locationName = "apiId", type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .apigatewayv2$delete_cors_configuration_output <- function(...) { list() } .apigatewayv2$delete_deployment_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(ApiId = structure(logical(0), tags = list(location = "uri", locationName = "apiId", type = "string")), DeploymentId = structure(logical(0), tags = list(location = "uri", locationName = "deploymentId", type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .apigatewayv2$delete_deployment_output <- function(...) { list() } .apigatewayv2$delete_domain_name_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(DomainName = structure(logical(0), tags = list(location = "uri", locationName = "domainName", type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .apigatewayv2$delete_domain_name_output <- function(...) { list() } .apigatewayv2$delete_integration_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(ApiId = structure(logical(0), tags = list(location = "uri", locationName = "apiId", type = "string")), IntegrationId = structure(logical(0), tags = list(location = "uri", locationName = "integrationId", type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .apigatewayv2$delete_integration_output <- function(...) { list() } .apigatewayv2$delete_integration_response_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(ApiId = structure(logical(0), tags = list(location = "uri", locationName = "apiId", type = "string")), IntegrationId = structure(logical(0), tags = list(location = "uri", locationName = "integrationId", type = "string")), IntegrationResponseId = structure(logical(0), tags = list(location = "uri", locationName = "integrationResponseId", type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .apigatewayv2$delete_integration_response_output <- function(...) { list() } .apigatewayv2$delete_model_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(ApiId = structure(logical(0), tags = list(location = "uri", locationName = "apiId", type = "string")), ModelId = structure(logical(0), tags = list(location = "uri", locationName = "modelId", type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .apigatewayv2$delete_model_output <- function(...) { list() } .apigatewayv2$delete_route_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(ApiId = structure(logical(0), tags = list(location = "uri", locationName = "apiId", type = "string")), RouteId = structure(logical(0), tags = list(location = "uri", locationName = "routeId", type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .apigatewayv2$delete_route_output <- function(...) { list() } .apigatewayv2$delete_route_request_parameter_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(ApiId = structure(logical(0), tags = list(location = "uri", locationName = "apiId", type = "string")), RequestParameterKey = structure(logical(0), tags = list(location = "uri", locationName = "requestParameterKey", type = "string")), RouteId = structure(logical(0), tags = list(location = "uri", locationName = "routeId", type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .apigatewayv2$delete_route_request_parameter_output <- function(...) { list() } .apigatewayv2$delete_route_response_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(ApiId = structure(logical(0), tags = list(location = "uri", locationName = "apiId", type = "string")), RouteId = structure(logical(0), tags = list(location = "uri", locationName = "routeId", type = "string")), RouteResponseId = structure(logical(0), tags = list(location = "uri", locationName = "routeResponseId", type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .apigatewayv2$delete_route_response_output <- function(...) { list() } .apigatewayv2$delete_route_settings_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(ApiId = structure(logical(0), tags = list(location = "uri", locationName = "apiId", type = "string")), RouteKey = structure(logical(0), tags = list(location = "uri", locationName = "routeKey", type = "string")), StageName = structure(logical(0), tags = list(location = "uri", locationName = "stageName", type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .apigatewayv2$delete_route_settings_output <- function(...) { list() } .apigatewayv2$delete_stage_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(ApiId = structure(logical(0), tags = list(location = "uri", locationName = "apiId", type = "string")), StageName = structure(logical(0), tags = list(location = "uri", locationName = "stageName", type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .apigatewayv2$delete_stage_output <- function(...) { list() } .apigatewayv2$delete_vpc_link_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(VpcLinkId = structure(logical(0), tags = list(location = "uri", locationName = "vpcLinkId", type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .apigatewayv2$delete_vpc_link_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(), tags = list(type = "structure")) return(populate(args, shape)) } .apigatewayv2$export_api_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(ApiId = structure(logical(0), tags = list(location = "uri", locationName = "apiId", type = "string")), ExportVersion = structure(logical(0), tags = list(location = "querystring", locationName = "exportVersion", type = "string")), IncludeExtensions = structure(logical(0), tags = list(location = "querystring", locationName = "includeExtensions", type = "boolean")), OutputType = structure(logical(0), tags = list(location = "querystring", locationName = "outputType", type = "string")), Specification = structure(logical(0), tags = list(location = "uri", locationName = "specification", type = "string")), StageName = structure(logical(0), tags = list(location = "querystring", locationName = "stageName", type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .apigatewayv2$export_api_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(body = structure(logical(0), tags = list(type = "blob"))), tags = list(type = "structure", payload = "body")) return(populate(args, shape)) } .apigatewayv2$reset_authorizers_cache_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(ApiId = structure(logical(0), tags = list(location = "uri", locationName = "apiId", type = "string")), StageName = structure(logical(0), tags = list(location = "uri", locationName = "stageName", type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .apigatewayv2$reset_authorizers_cache_output <- function(...) { list() } .apigatewayv2$get_api_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(ApiId = structure(logical(0), tags = list(location = "uri", locationName = "apiId", type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .apigatewayv2$get_api_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(ApiEndpoint = structure(logical(0), tags = list(locationName = "apiEndpoint", type = "string")), ApiGatewayManaged = structure(logical(0), tags = list(locationName = "apiGatewayManaged", type = "boolean")), ApiId = structure(logical(0), tags = list(locationName = "apiId", type = "string")), ApiKeySelectionExpression = structure(logical(0), tags = list(locationName = "apiKeySelectionExpression", type = "string")), CorsConfiguration = structure(list(AllowCredentials = structure(logical(0), tags = list(locationName = "allowCredentials", type = "boolean")), AllowHeaders = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(locationName = "allowHeaders", type = "list")), AllowMethods = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(locationName = "allowMethods", type = "list")), AllowOrigins = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(locationName = "allowOrigins", type = "list")), ExposeHeaders = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(locationName = "exposeHeaders", type = "list")), MaxAge = structure(logical(0), tags = list(locationName = "maxAge", type = "integer"))), tags = list(locationName = "corsConfiguration", type = "structure")), CreatedDate = structure(logical(0), tags = list(locationName = "createdDate", type = "timestamp", timestampFormat = "iso8601")), Description = structure(logical(0), tags = list(locationName = "description", type = "string")), DisableSchemaValidation = structure(logical(0), tags = list(locationName = "disableSchemaValidation", type = "boolean")), DisableExecuteApiEndpoint = structure(logical(0), tags = list(locationName = "disableExecuteApiEndpoint", type = "boolean")), ImportInfo = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(locationName = "importInfo", type = "list")), Name = structure(logical(0), tags = list(locationName = "name", type = "string")), ProtocolType = structure(logical(0), tags = list(locationName = "protocolType", type = "string")), RouteSelectionExpression = structure(logical(0), tags = list(locationName = "routeSelectionExpression", type = "string")), Tags = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(locationName = "tags", type = "map")), Version = structure(logical(0), tags = list(locationName = "version", type = "string")), Warnings = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(locationName = "warnings", type = "list"))), tags = list(type = "structure")) return(populate(args, shape)) } .apigatewayv2$get_api_mapping_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(ApiMappingId = structure(logical(0), tags = list(location = "uri", locationName = "apiMappingId", type = "string")), DomainName = structure(logical(0), tags = list(location = "uri", locationName = "domainName", type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .apigatewayv2$get_api_mapping_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(ApiId = structure(logical(0), tags = list(locationName = "apiId", type = "string")), ApiMappingId = structure(logical(0), tags = list(locationName = "apiMappingId", type = "string")), ApiMappingKey = structure(logical(0), tags = list(locationName = "apiMappingKey", type = "string")), Stage = structure(logical(0), tags = list(locationName = "stage", type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .apigatewayv2$get_api_mappings_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(DomainName = structure(logical(0), tags = list(location = "uri", locationName = "domainName", type = "string")), MaxResults = structure(logical(0), tags = list(location = "querystring", locationName = "maxResults", type = "string")), NextToken = structure(logical(0), tags = list(location = "querystring", locationName = "nextToken", type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .apigatewayv2$get_api_mappings_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(Items = structure(list(structure(list(ApiId = structure(logical(0), tags = list(locationName = "apiId", type = "string")), ApiMappingId = structure(logical(0), tags = list(locationName = "apiMappingId", type = "string")), ApiMappingKey = structure(logical(0), tags = list(locationName = "apiMappingKey", type = "string")), Stage = structure(logical(0), tags = list(locationName = "stage", type = "string"))), tags = list(type = "structure"))), tags = list(locationName = "items", type = "list")), NextToken = structure(logical(0), tags = list(locationName = "nextToken", type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .apigatewayv2$get_apis_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(MaxResults = structure(logical(0), tags = list(location = "querystring", locationName = "maxResults", type = "string")), NextToken = structure(logical(0), tags = list(location = "querystring", locationName = "nextToken", type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .apigatewayv2$get_apis_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(Items = structure(list(structure(list(ApiEndpoint = structure(logical(0), tags = list(locationName = "apiEndpoint", type = "string")), ApiGatewayManaged = structure(logical(0), tags = list(locationName = "apiGatewayManaged", type = "boolean")), ApiId = structure(logical(0), tags = list(locationName = "apiId", type = "string")), ApiKeySelectionExpression = structure(logical(0), tags = list(locationName = "apiKeySelectionExpression", type = "string")), CorsConfiguration = structure(list(AllowCredentials = structure(logical(0), tags = list(locationName = "allowCredentials", type = "boolean")), AllowHeaders = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(locationName = "allowHeaders", type = "list")), AllowMethods = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(locationName = "allowMethods", type = "list")), AllowOrigins = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(locationName = "allowOrigins", type = "list")), ExposeHeaders = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(locationName = "exposeHeaders", type = "list")), MaxAge = structure(logical(0), tags = list(locationName = "maxAge", type = "integer"))), tags = list(locationName = "corsConfiguration", type = "structure")), CreatedDate = structure(logical(0), tags = list(locationName = "createdDate", type = "timestamp", timestampFormat = "iso8601")), Description = structure(logical(0), tags = list(locationName = "description", type = "string")), DisableSchemaValidation = structure(logical(0), tags = list(locationName = "disableSchemaValidation", type = "boolean")), DisableExecuteApiEndpoint = structure(logical(0), tags = list(locationName = "disableExecuteApiEndpoint", type = "boolean")), ImportInfo = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(locationName = "importInfo", type = "list")), Name = structure(logical(0), tags = list(locationName = "name", type = "string")), ProtocolType = structure(logical(0), tags = list(locationName = "protocolType", type = "string")), RouteSelectionExpression = structure(logical(0), tags = list(locationName = "routeSelectionExpression", type = "string")), Tags = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(locationName = "tags", type = "map")), Version = structure(logical(0), tags = list(locationName = "version", type = "string")), Warnings = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(locationName = "warnings", type = "list"))), tags = list(type = "structure"))), tags = list(locationName = "items", type = "list")), NextToken = structure(logical(0), tags = list(locationName = "nextToken", type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .apigatewayv2$get_authorizer_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(ApiId = structure(logical(0), tags = list(location = "uri", locationName = "apiId", type = "string")), AuthorizerId = structure(logical(0), tags = list(location = "uri", locationName = "authorizerId", type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .apigatewayv2$get_authorizer_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(AuthorizerCredentialsArn = structure(logical(0), tags = list(locationName = "authorizerCredentialsArn", type = "string")), AuthorizerId = structure(logical(0), tags = list(locationName = "authorizerId", type = "string")), AuthorizerPayloadFormatVersion = structure(logical(0), tags = list(locationName = "authorizerPayloadFormatVersion", type = "string")), AuthorizerResultTtlInSeconds = structure(logical(0), tags = list(locationName = "authorizerResultTtlInSeconds", type = "integer")), AuthorizerType = structure(logical(0), tags = list(locationName = "authorizerType", type = "string")), AuthorizerUri = structure(logical(0), tags = list(locationName = "authorizerUri", type = "string")), EnableSimpleResponses = structure(logical(0), tags = list(locationName = "enableSimpleResponses", type = "boolean")), IdentitySource = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(locationName = "identitySource", type = "list")), IdentityValidationExpression = structure(logical(0), tags = list(locationName = "identityValidationExpression", type = "string")), JwtConfiguration = structure(list(Audience = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(locationName = "audience", type = "list")), Issuer = structure(logical(0), tags = list(locationName = "issuer", type = "string"))), tags = list(locationName = "jwtConfiguration", type = "structure")), Name = structure(logical(0), tags = list(locationName = "name", type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .apigatewayv2$get_authorizers_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(ApiId = structure(logical(0), tags = list(location = "uri", locationName = "apiId", type = "string")), MaxResults = structure(logical(0), tags = list(location = "querystring", locationName = "maxResults", type = "string")), NextToken = structure(logical(0), tags = list(location = "querystring", locationName = "nextToken", type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .apigatewayv2$get_authorizers_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(Items = structure(list(structure(list(AuthorizerCredentialsArn = structure(logical(0), tags = list(locationName = "authorizerCredentialsArn", type = "string")), AuthorizerId = structure(logical(0), tags = list(locationName = "authorizerId", type = "string")), AuthorizerPayloadFormatVersion = structure(logical(0), tags = list(locationName = "authorizerPayloadFormatVersion", type = "string")), AuthorizerResultTtlInSeconds = structure(logical(0), tags = list(locationName = "authorizerResultTtlInSeconds", type = "integer")), AuthorizerType = structure(logical(0), tags = list(locationName = "authorizerType", type = "string")), AuthorizerUri = structure(logical(0), tags = list(locationName = "authorizerUri", type = "string")), EnableSimpleResponses = structure(logical(0), tags = list(locationName = "enableSimpleResponses", type = "boolean")), IdentitySource = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(locationName = "identitySource", type = "list")), IdentityValidationExpression = structure(logical(0), tags = list(locationName = "identityValidationExpression", type = "string")), JwtConfiguration = structure(list(Audience = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(locationName = "audience", type = "list")), Issuer = structure(logical(0), tags = list(locationName = "issuer", type = "string"))), tags = list(locationName = "jwtConfiguration", type = "structure")), Name = structure(logical(0), tags = list(locationName = "name", type = "string"))), tags = list(type = "structure"))), tags = list(locationName = "items", type = "list")), NextToken = structure(logical(0), tags = list(locationName = "nextToken", type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .apigatewayv2$get_deployment_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(ApiId = structure(logical(0), tags = list(location = "uri", locationName = "apiId", type = "string")), DeploymentId = structure(logical(0), tags = list(location = "uri", locationName = "deploymentId", type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .apigatewayv2$get_deployment_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(AutoDeployed = structure(logical(0), tags = list(locationName = "autoDeployed", type = "boolean")), CreatedDate = structure(logical(0), tags = list(locationName = "createdDate", type = "timestamp", timestampFormat = "iso8601")), DeploymentId = structure(logical(0), tags = list(locationName = "deploymentId", type = "string")), DeploymentStatus = structure(logical(0), tags = list(locationName = "deploymentStatus", type = "string")), DeploymentStatusMessage = structure(logical(0), tags = list(locationName = "deploymentStatusMessage", type = "string")), Description = structure(logical(0), tags = list(locationName = "description", type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .apigatewayv2$get_deployments_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(ApiId = structure(logical(0), tags = list(location = "uri", locationName = "apiId", type = "string")), MaxResults = structure(logical(0), tags = list(location = "querystring", locationName = "maxResults", type = "string")), NextToken = structure(logical(0), tags = list(location = "querystring", locationName = "nextToken", type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .apigatewayv2$get_deployments_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(Items = structure(list(structure(list(AutoDeployed = structure(logical(0), tags = list(locationName = "autoDeployed", type = "boolean")), CreatedDate = structure(logical(0), tags = list(locationName = "createdDate", type = "timestamp", timestampFormat = "iso8601")), DeploymentId = structure(logical(0), tags = list(locationName = "deploymentId", type = "string")), DeploymentStatus = structure(logical(0), tags = list(locationName = "deploymentStatus", type = "string")), DeploymentStatusMessage = structure(logical(0), tags = list(locationName = "deploymentStatusMessage", type = "string")), Description = structure(logical(0), tags = list(locationName = "description", type = "string"))), tags = list(type = "structure"))), tags = list(locationName = "items", type = "list")), NextToken = structure(logical(0), tags = list(locationName = "nextToken", type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .apigatewayv2$get_domain_name_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(DomainName = structure(logical(0), tags = list(location = "uri", locationName = "domainName", type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .apigatewayv2$get_domain_name_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(ApiMappingSelectionExpression = structure(logical(0), tags = list(locationName = "apiMappingSelectionExpression", type = "string")), DomainName = structure(logical(0), tags = list(locationName = "domainName", type = "string")), DomainNameConfigurations = structure(list(structure(list(ApiGatewayDomainName = structure(logical(0), tags = list(locationName = "apiGatewayDomainName", type = "string")), CertificateArn = structure(logical(0), tags = list(locationName = "certificateArn", type = "string")), CertificateName = structure(logical(0), tags = list(locationName = "certificateName", type = "string")), CertificateUploadDate = structure(logical(0), tags = list(locationName = "certificateUploadDate", type = "timestamp", timestampFormat = "iso8601")), DomainNameStatus = structure(logical(0), tags = list(locationName = "domainNameStatus", type = "string")), DomainNameStatusMessage = structure(logical(0), tags = list(locationName = "domainNameStatusMessage", type = "string")), EndpointType = structure(logical(0), tags = list(locationName = "endpointType", type = "string")), HostedZoneId = structure(logical(0), tags = list(locationName = "hostedZoneId", type = "string")), SecurityPolicy = structure(logical(0), tags = list(locationName = "securityPolicy", type = "string"))), tags = list(type = "structure"))), tags = list(locationName = "domainNameConfigurations", type = "list")), MutualTlsAuthentication = structure(list(TruststoreUri = structure(logical(0), tags = list(locationName = "truststoreUri", type = "string")), TruststoreVersion = structure(logical(0), tags = list(locationName = "truststoreVersion", type = "string")), TruststoreWarnings = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(locationName = "truststoreWarnings", type = "list"))), tags = list(locationName = "mutualTlsAuthentication", type = "structure")), Tags = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(locationName = "tags", type = "map"))), tags = list(type = "structure")) return(populate(args, shape)) } .apigatewayv2$get_domain_names_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(MaxResults = structure(logical(0), tags = list(location = "querystring", locationName = "maxResults", type = "string")), NextToken = structure(logical(0), tags = list(location = "querystring", locationName = "nextToken", type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .apigatewayv2$get_domain_names_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(Items = structure(list(structure(list(ApiMappingSelectionExpression = structure(logical(0), tags = list(locationName = "apiMappingSelectionExpression", type = "string")), DomainName = structure(logical(0), tags = list(locationName = "domainName", type = "string")), DomainNameConfigurations = structure(list(structure(list(ApiGatewayDomainName = structure(logical(0), tags = list(locationName = "apiGatewayDomainName", type = "string")), CertificateArn = structure(logical(0), tags = list(locationName = "certificateArn", type = "string")), CertificateName = structure(logical(0), tags = list(locationName = "certificateName", type = "string")), CertificateUploadDate = structure(logical(0), tags = list(locationName = "certificateUploadDate", type = "timestamp", timestampFormat = "iso8601")), DomainNameStatus = structure(logical(0), tags = list(locationName = "domainNameStatus", type = "string")), DomainNameStatusMessage = structure(logical(0), tags = list(locationName = "domainNameStatusMessage", type = "string")), EndpointType = structure(logical(0), tags = list(locationName = "endpointType", type = "string")), HostedZoneId = structure(logical(0), tags = list(locationName = "hostedZoneId", type = "string")), SecurityPolicy = structure(logical(0), tags = list(locationName = "securityPolicy", type = "string"))), tags = list(type = "structure"))), tags = list(locationName = "domainNameConfigurations", type = "list")), MutualTlsAuthentication = structure(list(TruststoreUri = structure(logical(0), tags = list(locationName = "truststoreUri", type = "string")), TruststoreVersion = structure(logical(0), tags = list(locationName = "truststoreVersion", type = "string")), TruststoreWarnings = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(locationName = "truststoreWarnings", type = "list"))), tags = list(locationName = "mutualTlsAuthentication", type = "structure")), Tags = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(locationName = "tags", type = "map"))), tags = list(type = "structure"))), tags = list(locationName = "items", type = "list")), NextToken = structure(logical(0), tags = list(locationName = "nextToken", type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .apigatewayv2$get_integration_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(ApiId = structure(logical(0), tags = list(location = "uri", locationName = "apiId", type = "string")), IntegrationId = structure(logical(0), tags = list(location = "uri", locationName = "integrationId", type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .apigatewayv2$get_integration_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(ApiGatewayManaged = structure(logical(0), tags = list(locationName = "apiGatewayManaged", type = "boolean")), ConnectionId = structure(logical(0), tags = list(locationName = "connectionId", type = "string")), ConnectionType = structure(logical(0), tags = list(locationName = "connectionType", type = "string")), ContentHandlingStrategy = structure(logical(0), tags = list(locationName = "contentHandlingStrategy", type = "string")), CredentialsArn = structure(logical(0), tags = list(locationName = "credentialsArn", type = "string")), Description = structure(logical(0), tags = list(locationName = "description", type = "string")), IntegrationId = structure(logical(0), tags = list(locationName = "integrationId", type = "string")), IntegrationMethod = structure(logical(0), tags = list(locationName = "integrationMethod", type = "string")), IntegrationResponseSelectionExpression = structure(logical(0), tags = list(locationName = "integrationResponseSelectionExpression", type = "string")), IntegrationSubtype = structure(logical(0), tags = list(locationName = "integrationSubtype", type = "string")), IntegrationType = structure(logical(0), tags = list(locationName = "integrationType", type = "string")), IntegrationUri = structure(logical(0), tags = list(locationName = "integrationUri", type = "string")), PassthroughBehavior = structure(logical(0), tags = list(locationName = "passthroughBehavior", type = "string")), PayloadFormatVersion = structure(logical(0), tags = list(locationName = "payloadFormatVersion", type = "string")), RequestParameters = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(locationName = "requestParameters", type = "map")), RequestTemplates = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(locationName = "requestTemplates", type = "map")), ResponseParameters = structure(list(structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "map"))), tags = list(locationName = "responseParameters", type = "map")), TemplateSelectionExpression = structure(logical(0), tags = list(locationName = "templateSelectionExpression", type = "string")), TimeoutInMillis = structure(logical(0), tags = list(locationName = "timeoutInMillis", type = "integer")), TlsConfig = structure(list(ServerNameToVerify = structure(logical(0), tags = list(locationName = "serverNameToVerify", type = "string"))), tags = list(locationName = "tlsConfig", type = "structure"))), tags = list(type = "structure")) return(populate(args, shape)) } .apigatewayv2$get_integration_response_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(ApiId = structure(logical(0), tags = list(location = "uri", locationName = "apiId", type = "string")), IntegrationId = structure(logical(0), tags = list(location = "uri", locationName = "integrationId", type = "string")), IntegrationResponseId = structure(logical(0), tags = list(location = "uri", locationName = "integrationResponseId", type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .apigatewayv2$get_integration_response_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(ContentHandlingStrategy = structure(logical(0), tags = list(locationName = "contentHandlingStrategy", type = "string")), IntegrationResponseId = structure(logical(0), tags = list(locationName = "integrationResponseId", type = "string")), IntegrationResponseKey = structure(logical(0), tags = list(locationName = "integrationResponseKey", type = "string")), ResponseParameters = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(locationName = "responseParameters", type = "map")), ResponseTemplates = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(locationName = "responseTemplates", type = "map")), TemplateSelectionExpression = structure(logical(0), tags = list(locationName = "templateSelectionExpression", type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .apigatewayv2$get_integration_responses_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(ApiId = structure(logical(0), tags = list(location = "uri", locationName = "apiId", type = "string")), IntegrationId = structure(logical(0), tags = list(location = "uri", locationName = "integrationId", type = "string")), MaxResults = structure(logical(0), tags = list(location = "querystring", locationName = "maxResults", type = "string")), NextToken = structure(logical(0), tags = list(location = "querystring", locationName = "nextToken", type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .apigatewayv2$get_integration_responses_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(Items = structure(list(structure(list(ContentHandlingStrategy = structure(logical(0), tags = list(locationName = "contentHandlingStrategy", type = "string")), IntegrationResponseId = structure(logical(0), tags = list(locationName = "integrationResponseId", type = "string")), IntegrationResponseKey = structure(logical(0), tags = list(locationName = "integrationResponseKey", type = "string")), ResponseParameters = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(locationName = "responseParameters", type = "map")), ResponseTemplates = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(locationName = "responseTemplates", type = "map")), TemplateSelectionExpression = structure(logical(0), tags = list(locationName = "templateSelectionExpression", type = "string"))), tags = list(type = "structure"))), tags = list(locationName = "items", type = "list")), NextToken = structure(logical(0), tags = list(locationName = "nextToken", type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .apigatewayv2$get_integrations_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(ApiId = structure(logical(0), tags = list(location = "uri", locationName = "apiId", type = "string")), MaxResults = structure(logical(0), tags = list(location = "querystring", locationName = "maxResults", type = "string")), NextToken = structure(logical(0), tags = list(location = "querystring", locationName = "nextToken", type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .apigatewayv2$get_integrations_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(Items = structure(list(structure(list(ApiGatewayManaged = structure(logical(0), tags = list(locationName = "apiGatewayManaged", type = "boolean")), ConnectionId = structure(logical(0), tags = list(locationName = "connectionId", type = "string")), ConnectionType = structure(logical(0), tags = list(locationName = "connectionType", type = "string")), ContentHandlingStrategy = structure(logical(0), tags = list(locationName = "contentHandlingStrategy", type = "string")), CredentialsArn = structure(logical(0), tags = list(locationName = "credentialsArn", type = "string")), Description = structure(logical(0), tags = list(locationName = "description", type = "string")), IntegrationId = structure(logical(0), tags = list(locationName = "integrationId", type = "string")), IntegrationMethod = structure(logical(0), tags = list(locationName = "integrationMethod", type = "string")), IntegrationResponseSelectionExpression = structure(logical(0), tags = list(locationName = "integrationResponseSelectionExpression", type = "string")), IntegrationSubtype = structure(logical(0), tags = list(locationName = "integrationSubtype", type = "string")), IntegrationType = structure(logical(0), tags = list(locationName = "integrationType", type = "string")), IntegrationUri = structure(logical(0), tags = list(locationName = "integrationUri", type = "string")), PassthroughBehavior = structure(logical(0), tags = list(locationName = "passthroughBehavior", type = "string")), PayloadFormatVersion = structure(logical(0), tags = list(locationName = "payloadFormatVersion", type = "string")), RequestParameters = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(locationName = "requestParameters", type = "map")), RequestTemplates = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(locationName = "requestTemplates", type = "map")), ResponseParameters = structure(list(structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "map"))), tags = list(locationName = "responseParameters", type = "map")), TemplateSelectionExpression = structure(logical(0), tags = list(locationName = "templateSelectionExpression", type = "string")), TimeoutInMillis = structure(logical(0), tags = list(locationName = "timeoutInMillis", type = "integer")), TlsConfig = structure(list(ServerNameToVerify = structure(logical(0), tags = list(locationName = "serverNameToVerify", type = "string"))), tags = list(locationName = "tlsConfig", type = "structure"))), tags = list(type = "structure"))), tags = list(locationName = "items", type = "list")), NextToken = structure(logical(0), tags = list(locationName = "nextToken", type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .apigatewayv2$get_model_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(ApiId = structure(logical(0), tags = list(location = "uri", locationName = "apiId", type = "string")), ModelId = structure(logical(0), tags = list(location = "uri", locationName = "modelId", type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .apigatewayv2$get_model_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(ContentType = structure(logical(0), tags = list(locationName = "contentType", type = "string")), Description = structure(logical(0), tags = list(locationName = "description", type = "string")), ModelId = structure(logical(0), tags = list(locationName = "modelId", type = "string")), Name = structure(logical(0), tags = list(locationName = "name", type = "string")), Schema = structure(logical(0), tags = list(locationName = "schema", type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .apigatewayv2$get_model_template_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(ApiId = structure(logical(0), tags = list(location = "uri", locationName = "apiId", type = "string")), ModelId = structure(logical(0), tags = list(location = "uri", locationName = "modelId", type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .apigatewayv2$get_model_template_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(Value = structure(logical(0), tags = list(locationName = "value", type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .apigatewayv2$get_models_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(ApiId = structure(logical(0), tags = list(location = "uri", locationName = "apiId", type = "string")), MaxResults = structure(logical(0), tags = list(location = "querystring", locationName = "maxResults", type = "string")), NextToken = structure(logical(0), tags = list(location = "querystring", locationName = "nextToken", type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .apigatewayv2$get_models_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(Items = structure(list(structure(list(ContentType = structure(logical(0), tags = list(locationName = "contentType", type = "string")), Description = structure(logical(0), tags = list(locationName = "description", type = "string")), ModelId = structure(logical(0), tags = list(locationName = "modelId", type = "string")), Name = structure(logical(0), tags = list(locationName = "name", type = "string")), Schema = structure(logical(0), tags = list(locationName = "schema", type = "string"))), tags = list(type = "structure"))), tags = list(locationName = "items", type = "list")), NextToken = structure(logical(0), tags = list(locationName = "nextToken", type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .apigatewayv2$get_route_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(ApiId = structure(logical(0), tags = list(location = "uri", locationName = "apiId", type = "string")), RouteId = structure(logical(0), tags = list(location = "uri", locationName = "routeId", type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .apigatewayv2$get_route_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(ApiGatewayManaged = structure(logical(0), tags = list(locationName = "apiGatewayManaged", type = "boolean")), ApiKeyRequired = structure(logical(0), tags = list(locationName = "apiKeyRequired", type = "boolean")), AuthorizationScopes = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(locationName = "authorizationScopes", type = "list")), AuthorizationType = structure(logical(0), tags = list(locationName = "authorizationType", type = "string")), AuthorizerId = structure(logical(0), tags = list(locationName = "authorizerId", type = "string")), ModelSelectionExpression = structure(logical(0), tags = list(locationName = "modelSelectionExpression", type = "string")), OperationName = structure(logical(0), tags = list(locationName = "operationName", type = "string")), RequestModels = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(locationName = "requestModels", type = "map")), RequestParameters = structure(list(structure(list(Required = structure(logical(0), tags = list(locationName = "required", type = "boolean"))), tags = list(type = "structure"))), tags = list(locationName = "requestParameters", type = "map")), RouteId = structure(logical(0), tags = list(locationName = "routeId", type = "string")), RouteKey = structure(logical(0), tags = list(locationName = "routeKey", type = "string")), RouteResponseSelectionExpression = structure(logical(0), tags = list(locationName = "routeResponseSelectionExpression", type = "string")), Target = structure(logical(0), tags = list(locationName = "target", type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .apigatewayv2$get_route_response_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(ApiId = structure(logical(0), tags = list(location = "uri", locationName = "apiId", type = "string")), RouteId = structure(logical(0), tags = list(location = "uri", locationName = "routeId", type = "string")), RouteResponseId = structure(logical(0), tags = list(location = "uri", locationName = "routeResponseId", type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .apigatewayv2$get_route_response_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(ModelSelectionExpression = structure(logical(0), tags = list(locationName = "modelSelectionExpression", type = "string")), ResponseModels = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(locationName = "responseModels", type = "map")), ResponseParameters = structure(list(structure(list(Required = structure(logical(0), tags = list(locationName = "required", type = "boolean"))), tags = list(type = "structure"))), tags = list(locationName = "responseParameters", type = "map")), RouteResponseId = structure(logical(0), tags = list(locationName = "routeResponseId", type = "string")), RouteResponseKey = structure(logical(0), tags = list(locationName = "routeResponseKey", type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .apigatewayv2$get_route_responses_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(ApiId = structure(logical(0), tags = list(location = "uri", locationName = "apiId", type = "string")), MaxResults = structure(logical(0), tags = list(location = "querystring", locationName = "maxResults", type = "string")), NextToken = structure(logical(0), tags = list(location = "querystring", locationName = "nextToken", type = "string")), RouteId = structure(logical(0), tags = list(location = "uri", locationName = "routeId", type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .apigatewayv2$get_route_responses_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(Items = structure(list(structure(list(ModelSelectionExpression = structure(logical(0), tags = list(locationName = "modelSelectionExpression", type = "string")), ResponseModels = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(locationName = "responseModels", type = "map")), ResponseParameters = structure(list(structure(list(Required = structure(logical(0), tags = list(locationName = "required", type = "boolean"))), tags = list(type = "structure"))), tags = list(locationName = "responseParameters", type = "map")), RouteResponseId = structure(logical(0), tags = list(locationName = "routeResponseId", type = "string")), RouteResponseKey = structure(logical(0), tags = list(locationName = "routeResponseKey", type = "string"))), tags = list(type = "structure"))), tags = list(locationName = "items", type = "list")), NextToken = structure(logical(0), tags = list(locationName = "nextToken", type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .apigatewayv2$get_routes_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(ApiId = structure(logical(0), tags = list(location = "uri", locationName = "apiId", type = "string")), MaxResults = structure(logical(0), tags = list(location = "querystring", locationName = "maxResults", type = "string")), NextToken = structure(logical(0), tags = list(location = "querystring", locationName = "nextToken", type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .apigatewayv2$get_routes_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(Items = structure(list(structure(list(ApiGatewayManaged = structure(logical(0), tags = list(locationName = "apiGatewayManaged", type = "boolean")), ApiKeyRequired = structure(logical(0), tags = list(locationName = "apiKeyRequired", type = "boolean")), AuthorizationScopes = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(locationName = "authorizationScopes", type = "list")), AuthorizationType = structure(logical(0), tags = list(locationName = "authorizationType", type = "string")), AuthorizerId = structure(logical(0), tags = list(locationName = "authorizerId", type = "string")), ModelSelectionExpression = structure(logical(0), tags = list(locationName = "modelSelectionExpression", type = "string")), OperationName = structure(logical(0), tags = list(locationName = "operationName", type = "string")), RequestModels = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(locationName = "requestModels", type = "map")), RequestParameters = structure(list(structure(list(Required = structure(logical(0), tags = list(locationName = "required", type = "boolean"))), tags = list(type = "structure"))), tags = list(locationName = "requestParameters", type = "map")), RouteId = structure(logical(0), tags = list(locationName = "routeId", type = "string")), RouteKey = structure(logical(0), tags = list(locationName = "routeKey", type = "string")), RouteResponseSelectionExpression = structure(logical(0), tags = list(locationName = "routeResponseSelectionExpression", type = "string")), Target = structure(logical(0), tags = list(locationName = "target", type = "string"))), tags = list(type = "structure"))), tags = list(locationName = "items", type = "list")), NextToken = structure(logical(0), tags = list(locationName = "nextToken", type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .apigatewayv2$get_stage_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(ApiId = structure(logical(0), tags = list(location = "uri", locationName = "apiId", type = "string")), StageName = structure(logical(0), tags = list(location = "uri", locationName = "stageName", type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .apigatewayv2$get_stage_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(AccessLogSettings = structure(list(DestinationArn = structure(logical(0), tags = list(locationName = "destinationArn", type = "string")), Format = structure(logical(0), tags = list(locationName = "format", type = "string"))), tags = list(locationName = "accessLogSettings", type = "structure")), ApiGatewayManaged = structure(logical(0), tags = list(locationName = "apiGatewayManaged", type = "boolean")), AutoDeploy = structure(logical(0), tags = list(locationName = "autoDeploy", type = "boolean")), ClientCertificateId = structure(logical(0), tags = list(locationName = "clientCertificateId", type = "string")), CreatedDate = structure(logical(0), tags = list(locationName = "createdDate", type = "timestamp", timestampFormat = "iso8601")), DefaultRouteSettings = structure(list(DataTraceEnabled = structure(logical(0), tags = list(locationName = "dataTraceEnabled", type = "boolean")), DetailedMetricsEnabled = structure(logical(0), tags = list(locationName = "detailedMetricsEnabled", type = "boolean")), LoggingLevel = structure(logical(0), tags = list(locationName = "loggingLevel", type = "string")), ThrottlingBurstLimit = structure(logical(0), tags = list(locationName = "throttlingBurstLimit", type = "integer")), ThrottlingRateLimit = structure(logical(0), tags = list(locationName = "throttlingRateLimit", type = "double"))), tags = list(locationName = "defaultRouteSettings", type = "structure")), DeploymentId = structure(logical(0), tags = list(locationName = "deploymentId", type = "string")), Description = structure(logical(0), tags = list(locationName = "description", type = "string")), LastDeploymentStatusMessage = structure(logical(0), tags = list(locationName = "lastDeploymentStatusMessage", type = "string")), LastUpdatedDate = structure(logical(0), tags = list(locationName = "lastUpdatedDate", type = "timestamp", timestampFormat = "iso8601")), RouteSettings = structure(list(structure(list(DataTraceEnabled = structure(logical(0), tags = list(locationName = "dataTraceEnabled", type = "boolean")), DetailedMetricsEnabled = structure(logical(0), tags = list(locationName = "detailedMetricsEnabled", type = "boolean")), LoggingLevel = structure(logical(0), tags = list(locationName = "loggingLevel", type = "string")), ThrottlingBurstLimit = structure(logical(0), tags = list(locationName = "throttlingBurstLimit", type = "integer")), ThrottlingRateLimit = structure(logical(0), tags = list(locationName = "throttlingRateLimit", type = "double"))), tags = list(type = "structure"))), tags = list(locationName = "routeSettings", type = "map")), StageName = structure(logical(0), tags = list(locationName = "stageName", type = "string")), StageVariables = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(locationName = "stageVariables", type = "map")), Tags = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(locationName = "tags", type = "map"))), tags = list(type = "structure")) return(populate(args, shape)) } .apigatewayv2$get_stages_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(ApiId = structure(logical(0), tags = list(location = "uri", locationName = "apiId", type = "string")), MaxResults = structure(logical(0), tags = list(location = "querystring", locationName = "maxResults", type = "string")), NextToken = structure(logical(0), tags = list(location = "querystring", locationName = "nextToken", type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .apigatewayv2$get_stages_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(Items = structure(list(structure(list(AccessLogSettings = structure(list(DestinationArn = structure(logical(0), tags = list(locationName = "destinationArn", type = "string")), Format = structure(logical(0), tags = list(locationName = "format", type = "string"))), tags = list(locationName = "accessLogSettings", type = "structure")), ApiGatewayManaged = structure(logical(0), tags = list(locationName = "apiGatewayManaged", type = "boolean")), AutoDeploy = structure(logical(0), tags = list(locationName = "autoDeploy", type = "boolean")), ClientCertificateId = structure(logical(0), tags = list(locationName = "clientCertificateId", type = "string")), CreatedDate = structure(logical(0), tags = list(locationName = "createdDate", type = "timestamp", timestampFormat = "iso8601")), DefaultRouteSettings = structure(list(DataTraceEnabled = structure(logical(0), tags = list(locationName = "dataTraceEnabled", type = "boolean")), DetailedMetricsEnabled = structure(logical(0), tags = list(locationName = "detailedMetricsEnabled", type = "boolean")), LoggingLevel = structure(logical(0), tags = list(locationName = "loggingLevel", type = "string")), ThrottlingBurstLimit = structure(logical(0), tags = list(locationName = "throttlingBurstLimit", type = "integer")), ThrottlingRateLimit = structure(logical(0), tags = list(locationName = "throttlingRateLimit", type = "double"))), tags = list(locationName = "defaultRouteSettings", type = "structure")), DeploymentId = structure(logical(0), tags = list(locationName = "deploymentId", type = "string")), Description = structure(logical(0), tags = list(locationName = "description", type = "string")), LastDeploymentStatusMessage = structure(logical(0), tags = list(locationName = "lastDeploymentStatusMessage", type = "string")), LastUpdatedDate = structure(logical(0), tags = list(locationName = "lastUpdatedDate", type = "timestamp", timestampFormat = "iso8601")), RouteSettings = structure(list(structure(list(DataTraceEnabled = structure(logical(0), tags = list(locationName = "dataTraceEnabled", type = "boolean")), DetailedMetricsEnabled = structure(logical(0), tags = list(locationName = "detailedMetricsEnabled", type = "boolean")), LoggingLevel = structure(logical(0), tags = list(locationName = "loggingLevel", type = "string")), ThrottlingBurstLimit = structure(logical(0), tags = list(locationName = "throttlingBurstLimit", type = "integer")), ThrottlingRateLimit = structure(logical(0), tags = list(locationName = "throttlingRateLimit", type = "double"))), tags = list(type = "structure"))), tags = list(locationName = "routeSettings", type = "map")), StageName = structure(logical(0), tags = list(locationName = "stageName", type = "string")), StageVariables = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(locationName = "stageVariables", type = "map")), Tags = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(locationName = "tags", type = "map"))), tags = list(type = "structure"))), tags = list(locationName = "items", type = "list")), NextToken = structure(logical(0), tags = list(locationName = "nextToken", type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .apigatewayv2$get_tags_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(ResourceArn = structure(logical(0), tags = list(location = "uri", locationName = "resource-arn", type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .apigatewayv2$get_tags_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(Tags = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(locationName = "tags", type = "map"))), tags = list(type = "structure")) return(populate(args, shape)) } .apigatewayv2$get_vpc_link_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(VpcLinkId = structure(logical(0), tags = list(location = "uri", locationName = "vpcLinkId", type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .apigatewayv2$get_vpc_link_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(CreatedDate = structure(logical(0), tags = list(locationName = "createdDate", type = "timestamp", timestampFormat = "iso8601")), Name = structure(logical(0), tags = list(locationName = "name", type = "string")), SecurityGroupIds = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(locationName = "securityGroupIds", type = "list")), SubnetIds = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(locationName = "subnetIds", type = "list")), Tags = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(locationName = "tags", type = "map")), VpcLinkId = structure(logical(0), tags = list(locationName = "vpcLinkId", type = "string")), VpcLinkStatus = structure(logical(0), tags = list(locationName = "vpcLinkStatus", type = "string")), VpcLinkStatusMessage = structure(logical(0), tags = list(locationName = "vpcLinkStatusMessage", type = "string")), VpcLinkVersion = structure(logical(0), tags = list(locationName = "vpcLinkVersion", type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .apigatewayv2$get_vpc_links_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(MaxResults = structure(logical(0), tags = list(location = "querystring", locationName = "maxResults", type = "string")), NextToken = structure(logical(0), tags = list(location = "querystring", locationName = "nextToken", type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .apigatewayv2$get_vpc_links_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(Items = structure(list(structure(list(CreatedDate = structure(logical(0), tags = list(locationName = "createdDate", type = "timestamp", timestampFormat = "iso8601")), Name = structure(logical(0), tags = list(locationName = "name", type = "string")), SecurityGroupIds = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(locationName = "securityGroupIds", type = "list")), SubnetIds = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(locationName = "subnetIds", type = "list")), Tags = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(locationName = "tags", type = "map")), VpcLinkId = structure(logical(0), tags = list(locationName = "vpcLinkId", type = "string")), VpcLinkStatus = structure(logical(0), tags = list(locationName = "vpcLinkStatus", type = "string")), VpcLinkStatusMessage = structure(logical(0), tags = list(locationName = "vpcLinkStatusMessage", type = "string")), VpcLinkVersion = structure(logical(0), tags = list(locationName = "vpcLinkVersion", type = "string"))), tags = list(type = "structure"))), tags = list(locationName = "items", type = "list")), NextToken = structure(logical(0), tags = list(locationName = "nextToken", type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .apigatewayv2$import_api_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(Basepath = structure(logical(0), tags = list(location = "querystring", locationName = "basepath", type = "string")), Body = structure(logical(0), tags = list(locationName = "body", type = "string")), FailOnWarnings = structure(logical(0), tags = list(location = "querystring", locationName = "failOnWarnings", type = "boolean"))), tags = list(type = "structure")) return(populate(args, shape)) } .apigatewayv2$import_api_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(ApiEndpoint = structure(logical(0), tags = list(locationName = "apiEndpoint", type = "string")), ApiGatewayManaged = structure(logical(0), tags = list(locationName = "apiGatewayManaged", type = "boolean")), ApiId = structure(logical(0), tags = list(locationName = "apiId", type = "string")), ApiKeySelectionExpression = structure(logical(0), tags = list(locationName = "apiKeySelectionExpression", type = "string")), CorsConfiguration = structure(list(AllowCredentials = structure(logical(0), tags = list(locationName = "allowCredentials", type = "boolean")), AllowHeaders = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(locationName = "allowHeaders", type = "list")), AllowMethods = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(locationName = "allowMethods", type = "list")), AllowOrigins = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(locationName = "allowOrigins", type = "list")), ExposeHeaders = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(locationName = "exposeHeaders", type = "list")), MaxAge = structure(logical(0), tags = list(locationName = "maxAge", type = "integer"))), tags = list(locationName = "corsConfiguration", type = "structure")), CreatedDate = structure(logical(0), tags = list(locationName = "createdDate", type = "timestamp", timestampFormat = "iso8601")), Description = structure(logical(0), tags = list(locationName = "description", type = "string")), DisableSchemaValidation = structure(logical(0), tags = list(locationName = "disableSchemaValidation", type = "boolean")), DisableExecuteApiEndpoint = structure(logical(0), tags = list(locationName = "disableExecuteApiEndpoint", type = "boolean")), ImportInfo = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(locationName = "importInfo", type = "list")), Name = structure(logical(0), tags = list(locationName = "name", type = "string")), ProtocolType = structure(logical(0), tags = list(locationName = "protocolType", type = "string")), RouteSelectionExpression = structure(logical(0), tags = list(locationName = "routeSelectionExpression", type = "string")), Tags = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(locationName = "tags", type = "map")), Version = structure(logical(0), tags = list(locationName = "version", type = "string")), Warnings = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(locationName = "warnings", type = "list"))), tags = list(type = "structure")) return(populate(args, shape)) } .apigatewayv2$reimport_api_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(ApiId = structure(logical(0), tags = list(location = "uri", locationName = "apiId", type = "string")), Basepath = structure(logical(0), tags = list(location = "querystring", locationName = "basepath", type = "string")), Body = structure(logical(0), tags = list(locationName = "body", type = "string")), FailOnWarnings = structure(logical(0), tags = list(location = "querystring", locationName = "failOnWarnings", type = "boolean"))), tags = list(type = "structure")) return(populate(args, shape)) } .apigatewayv2$reimport_api_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(ApiEndpoint = structure(logical(0), tags = list(locationName = "apiEndpoint", type = "string")), ApiGatewayManaged = structure(logical(0), tags = list(locationName = "apiGatewayManaged", type = "boolean")), ApiId = structure(logical(0), tags = list(locationName = "apiId", type = "string")), ApiKeySelectionExpression = structure(logical(0), tags = list(locationName = "apiKeySelectionExpression", type = "string")), CorsConfiguration = structure(list(AllowCredentials = structure(logical(0), tags = list(locationName = "allowCredentials", type = "boolean")), AllowHeaders = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(locationName = "allowHeaders", type = "list")), AllowMethods = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(locationName = "allowMethods", type = "list")), AllowOrigins = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(locationName = "allowOrigins", type = "list")), ExposeHeaders = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(locationName = "exposeHeaders", type = "list")), MaxAge = structure(logical(0), tags = list(locationName = "maxAge", type = "integer"))), tags = list(locationName = "corsConfiguration", type = "structure")), CreatedDate = structure(logical(0), tags = list(locationName = "createdDate", type = "timestamp", timestampFormat = "iso8601")), Description = structure(logical(0), tags = list(locationName = "description", type = "string")), DisableSchemaValidation = structure(logical(0), tags = list(locationName = "disableSchemaValidation", type = "boolean")), DisableExecuteApiEndpoint = structure(logical(0), tags = list(locationName = "disableExecuteApiEndpoint", type = "boolean")), ImportInfo = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(locationName = "importInfo", type = "list")), Name = structure(logical(0), tags = list(locationName = "name", type = "string")), ProtocolType = structure(logical(0), tags = list(locationName = "protocolType", type = "string")), RouteSelectionExpression = structure(logical(0), tags = list(locationName = "routeSelectionExpression", type = "string")), Tags = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(locationName = "tags", type = "map")), Version = structure(logical(0), tags = list(locationName = "version", type = "string")), Warnings = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(locationName = "warnings", type = "list"))), tags = list(type = "structure")) return(populate(args, shape)) } .apigatewayv2$tag_resource_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(ResourceArn = structure(logical(0), tags = list(location = "uri", locationName = "resource-arn", type = "string")), Tags = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(locationName = "tags", type = "map"))), tags = list(type = "structure")) return(populate(args, shape)) } .apigatewayv2$tag_resource_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(), tags = list(type = "structure")) return(populate(args, shape)) } .apigatewayv2$untag_resource_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(ResourceArn = structure(logical(0), tags = list(location = "uri", locationName = "resource-arn", type = "string")), TagKeys = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(location = "querystring", locationName = "tagKeys", type = "list"))), tags = list(type = "structure")) return(populate(args, shape)) } .apigatewayv2$untag_resource_output <- function(...) { list() } .apigatewayv2$update_api_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(ApiId = structure(logical(0), tags = list(location = "uri", locationName = "apiId", type = "string")), ApiKeySelectionExpression = structure(logical(0), tags = list(locationName = "apiKeySelectionExpression", type = "string")), CorsConfiguration = structure(list(AllowCredentials = structure(logical(0), tags = list(locationName = "allowCredentials", type = "boolean")), AllowHeaders = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(locationName = "allowHeaders", type = "list")), AllowMethods = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(locationName = "allowMethods", type = "list")), AllowOrigins = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(locationName = "allowOrigins", type = "list")), ExposeHeaders = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(locationName = "exposeHeaders", type = "list")), MaxAge = structure(logical(0), tags = list(locationName = "maxAge", type = "integer"))), tags = list(locationName = "corsConfiguration", type = "structure")), CredentialsArn = structure(logical(0), tags = list(locationName = "credentialsArn", type = "string")), Description = structure(logical(0), tags = list(locationName = "description", type = "string")), DisableSchemaValidation = structure(logical(0), tags = list(locationName = "disableSchemaValidation", type = "boolean")), DisableExecuteApiEndpoint = structure(logical(0), tags = list(locationName = "disableExecuteApiEndpoint", type = "boolean")), Name = structure(logical(0), tags = list(locationName = "name", type = "string")), RouteKey = structure(logical(0), tags = list(locationName = "routeKey", type = "string")), RouteSelectionExpression = structure(logical(0), tags = list(locationName = "routeSelectionExpression", type = "string")), Target = structure(logical(0), tags = list(locationName = "target", type = "string")), Version = structure(logical(0), tags = list(locationName = "version", type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .apigatewayv2$update_api_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(ApiEndpoint = structure(logical(0), tags = list(locationName = "apiEndpoint", type = "string")), ApiGatewayManaged = structure(logical(0), tags = list(locationName = "apiGatewayManaged", type = "boolean")), ApiId = structure(logical(0), tags = list(locationName = "apiId", type = "string")), ApiKeySelectionExpression = structure(logical(0), tags = list(locationName = "apiKeySelectionExpression", type = "string")), CorsConfiguration = structure(list(AllowCredentials = structure(logical(0), tags = list(locationName = "allowCredentials", type = "boolean")), AllowHeaders = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(locationName = "allowHeaders", type = "list")), AllowMethods = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(locationName = "allowMethods", type = "list")), AllowOrigins = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(locationName = "allowOrigins", type = "list")), ExposeHeaders = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(locationName = "exposeHeaders", type = "list")), MaxAge = structure(logical(0), tags = list(locationName = "maxAge", type = "integer"))), tags = list(locationName = "corsConfiguration", type = "structure")), CreatedDate = structure(logical(0), tags = list(locationName = "createdDate", type = "timestamp", timestampFormat = "iso8601")), Description = structure(logical(0), tags = list(locationName = "description", type = "string")), DisableSchemaValidation = structure(logical(0), tags = list(locationName = "disableSchemaValidation", type = "boolean")), DisableExecuteApiEndpoint = structure(logical(0), tags = list(locationName = "disableExecuteApiEndpoint", type = "boolean")), ImportInfo = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(locationName = "importInfo", type = "list")), Name = structure(logical(0), tags = list(locationName = "name", type = "string")), ProtocolType = structure(logical(0), tags = list(locationName = "protocolType", type = "string")), RouteSelectionExpression = structure(logical(0), tags = list(locationName = "routeSelectionExpression", type = "string")), Tags = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(locationName = "tags", type = "map")), Version = structure(logical(0), tags = list(locationName = "version", type = "string")), Warnings = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(locationName = "warnings", type = "list"))), tags = list(type = "structure")) return(populate(args, shape)) } .apigatewayv2$update_api_mapping_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(ApiId = structure(logical(0), tags = list(locationName = "apiId", type = "string")), ApiMappingId = structure(logical(0), tags = list(location = "uri", locationName = "apiMappingId", type = "string")), ApiMappingKey = structure(logical(0), tags = list(locationName = "apiMappingKey", type = "string")), DomainName = structure(logical(0), tags = list(location = "uri", locationName = "domainName", type = "string")), Stage = structure(logical(0), tags = list(locationName = "stage", type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .apigatewayv2$update_api_mapping_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(ApiId = structure(logical(0), tags = list(locationName = "apiId", type = "string")), ApiMappingId = structure(logical(0), tags = list(locationName = "apiMappingId", type = "string")), ApiMappingKey = structure(logical(0), tags = list(locationName = "apiMappingKey", type = "string")), Stage = structure(logical(0), tags = list(locationName = "stage", type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .apigatewayv2$update_authorizer_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(ApiId = structure(logical(0), tags = list(location = "uri", locationName = "apiId", type = "string")), AuthorizerCredentialsArn = structure(logical(0), tags = list(locationName = "authorizerCredentialsArn", type = "string")), AuthorizerId = structure(logical(0), tags = list(location = "uri", locationName = "authorizerId", type = "string")), AuthorizerPayloadFormatVersion = structure(logical(0), tags = list(locationName = "authorizerPayloadFormatVersion", type = "string")), AuthorizerResultTtlInSeconds = structure(logical(0), tags = list(locationName = "authorizerResultTtlInSeconds", type = "integer")), AuthorizerType = structure(logical(0), tags = list(locationName = "authorizerType", type = "string")), AuthorizerUri = structure(logical(0), tags = list(locationName = "authorizerUri", type = "string")), EnableSimpleResponses = structure(logical(0), tags = list(locationName = "enableSimpleResponses", type = "boolean")), IdentitySource = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(locationName = "identitySource", type = "list")), IdentityValidationExpression = structure(logical(0), tags = list(locationName = "identityValidationExpression", type = "string")), JwtConfiguration = structure(list(Audience = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(locationName = "audience", type = "list")), Issuer = structure(logical(0), tags = list(locationName = "issuer", type = "string"))), tags = list(locationName = "jwtConfiguration", type = "structure")), Name = structure(logical(0), tags = list(locationName = "name", type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .apigatewayv2$update_authorizer_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(AuthorizerCredentialsArn = structure(logical(0), tags = list(locationName = "authorizerCredentialsArn", type = "string")), AuthorizerId = structure(logical(0), tags = list(locationName = "authorizerId", type = "string")), AuthorizerPayloadFormatVersion = structure(logical(0), tags = list(locationName = "authorizerPayloadFormatVersion", type = "string")), AuthorizerResultTtlInSeconds = structure(logical(0), tags = list(locationName = "authorizerResultTtlInSeconds", type = "integer")), AuthorizerType = structure(logical(0), tags = list(locationName = "authorizerType", type = "string")), AuthorizerUri = structure(logical(0), tags = list(locationName = "authorizerUri", type = "string")), EnableSimpleResponses = structure(logical(0), tags = list(locationName = "enableSimpleResponses", type = "boolean")), IdentitySource = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(locationName = "identitySource", type = "list")), IdentityValidationExpression = structure(logical(0), tags = list(locationName = "identityValidationExpression", type = "string")), JwtConfiguration = structure(list(Audience = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(locationName = "audience", type = "list")), Issuer = structure(logical(0), tags = list(locationName = "issuer", type = "string"))), tags = list(locationName = "jwtConfiguration", type = "structure")), Name = structure(logical(0), tags = list(locationName = "name", type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .apigatewayv2$update_deployment_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(ApiId = structure(logical(0), tags = list(location = "uri", locationName = "apiId", type = "string")), DeploymentId = structure(logical(0), tags = list(location = "uri", locationName = "deploymentId", type = "string")), Description = structure(logical(0), tags = list(locationName = "description", type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .apigatewayv2$update_deployment_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(AutoDeployed = structure(logical(0), tags = list(locationName = "autoDeployed", type = "boolean")), CreatedDate = structure(logical(0), tags = list(locationName = "createdDate", type = "timestamp", timestampFormat = "iso8601")), DeploymentId = structure(logical(0), tags = list(locationName = "deploymentId", type = "string")), DeploymentStatus = structure(logical(0), tags = list(locationName = "deploymentStatus", type = "string")), DeploymentStatusMessage = structure(logical(0), tags = list(locationName = "deploymentStatusMessage", type = "string")), Description = structure(logical(0), tags = list(locationName = "description", type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .apigatewayv2$update_domain_name_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(DomainName = structure(logical(0), tags = list(location = "uri", locationName = "domainName", type = "string")), DomainNameConfigurations = structure(list(structure(list(ApiGatewayDomainName = structure(logical(0), tags = list(locationName = "apiGatewayDomainName", type = "string")), CertificateArn = structure(logical(0), tags = list(locationName = "certificateArn", type = "string")), CertificateName = structure(logical(0), tags = list(locationName = "certificateName", type = "string")), CertificateUploadDate = structure(logical(0), tags = list(locationName = "certificateUploadDate", type = "timestamp", timestampFormat = "iso8601")), DomainNameStatus = structure(logical(0), tags = list(locationName = "domainNameStatus", type = "string")), DomainNameStatusMessage = structure(logical(0), tags = list(locationName = "domainNameStatusMessage", type = "string")), EndpointType = structure(logical(0), tags = list(locationName = "endpointType", type = "string")), HostedZoneId = structure(logical(0), tags = list(locationName = "hostedZoneId", type = "string")), SecurityPolicy = structure(logical(0), tags = list(locationName = "securityPolicy", type = "string"))), tags = list(type = "structure"))), tags = list(locationName = "domainNameConfigurations", type = "list")), MutualTlsAuthentication = structure(list(TruststoreUri = structure(logical(0), tags = list(locationName = "truststoreUri", type = "string")), TruststoreVersion = structure(logical(0), tags = list(locationName = "truststoreVersion", type = "string"))), tags = list(locationName = "mutualTlsAuthentication", type = "structure"))), tags = list(type = "structure")) return(populate(args, shape)) } .apigatewayv2$update_domain_name_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(ApiMappingSelectionExpression = structure(logical(0), tags = list(locationName = "apiMappingSelectionExpression", type = "string")), DomainName = structure(logical(0), tags = list(locationName = "domainName", type = "string")), DomainNameConfigurations = structure(list(structure(list(ApiGatewayDomainName = structure(logical(0), tags = list(locationName = "apiGatewayDomainName", type = "string")), CertificateArn = structure(logical(0), tags = list(locationName = "certificateArn", type = "string")), CertificateName = structure(logical(0), tags = list(locationName = "certificateName", type = "string")), CertificateUploadDate = structure(logical(0), tags = list(locationName = "certificateUploadDate", type = "timestamp", timestampFormat = "iso8601")), DomainNameStatus = structure(logical(0), tags = list(locationName = "domainNameStatus", type = "string")), DomainNameStatusMessage = structure(logical(0), tags = list(locationName = "domainNameStatusMessage", type = "string")), EndpointType = structure(logical(0), tags = list(locationName = "endpointType", type = "string")), HostedZoneId = structure(logical(0), tags = list(locationName = "hostedZoneId", type = "string")), SecurityPolicy = structure(logical(0), tags = list(locationName = "securityPolicy", type = "string"))), tags = list(type = "structure"))), tags = list(locationName = "domainNameConfigurations", type = "list")), MutualTlsAuthentication = structure(list(TruststoreUri = structure(logical(0), tags = list(locationName = "truststoreUri", type = "string")), TruststoreVersion = structure(logical(0), tags = list(locationName = "truststoreVersion", type = "string")), TruststoreWarnings = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(locationName = "truststoreWarnings", type = "list"))), tags = list(locationName = "mutualTlsAuthentication", type = "structure")), Tags = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(locationName = "tags", type = "map"))), tags = list(type = "structure")) return(populate(args, shape)) } .apigatewayv2$update_integration_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(ApiId = structure(logical(0), tags = list(location = "uri", locationName = "apiId", type = "string")), ConnectionId = structure(logical(0), tags = list(locationName = "connectionId", type = "string")), ConnectionType = structure(logical(0), tags = list(locationName = "connectionType", type = "string")), ContentHandlingStrategy = structure(logical(0), tags = list(locationName = "contentHandlingStrategy", type = "string")), CredentialsArn = structure(logical(0), tags = list(locationName = "credentialsArn", type = "string")), Description = structure(logical(0), tags = list(locationName = "description", type = "string")), IntegrationId = structure(logical(0), tags = list(location = "uri", locationName = "integrationId", type = "string")), IntegrationMethod = structure(logical(0), tags = list(locationName = "integrationMethod", type = "string")), IntegrationSubtype = structure(logical(0), tags = list(locationName = "integrationSubtype", type = "string")), IntegrationType = structure(logical(0), tags = list(locationName = "integrationType", type = "string")), IntegrationUri = structure(logical(0), tags = list(locationName = "integrationUri", type = "string")), PassthroughBehavior = structure(logical(0), tags = list(locationName = "passthroughBehavior", type = "string")), PayloadFormatVersion = structure(logical(0), tags = list(locationName = "payloadFormatVersion", type = "string")), RequestParameters = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(locationName = "requestParameters", type = "map")), RequestTemplates = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(locationName = "requestTemplates", type = "map")), ResponseParameters = structure(list(structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "map"))), tags = list(locationName = "responseParameters", type = "map")), TemplateSelectionExpression = structure(logical(0), tags = list(locationName = "templateSelectionExpression", type = "string")), TimeoutInMillis = structure(logical(0), tags = list(locationName = "timeoutInMillis", type = "integer")), TlsConfig = structure(list(ServerNameToVerify = structure(logical(0), tags = list(locationName = "serverNameToVerify", type = "string"))), tags = list(locationName = "tlsConfig", type = "structure"))), tags = list(type = "structure")) return(populate(args, shape)) } .apigatewayv2$update_integration_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(ApiGatewayManaged = structure(logical(0), tags = list(locationName = "apiGatewayManaged", type = "boolean")), ConnectionId = structure(logical(0), tags = list(locationName = "connectionId", type = "string")), ConnectionType = structure(logical(0), tags = list(locationName = "connectionType", type = "string")), ContentHandlingStrategy = structure(logical(0), tags = list(locationName = "contentHandlingStrategy", type = "string")), CredentialsArn = structure(logical(0), tags = list(locationName = "credentialsArn", type = "string")), Description = structure(logical(0), tags = list(locationName = "description", type = "string")), IntegrationId = structure(logical(0), tags = list(locationName = "integrationId", type = "string")), IntegrationMethod = structure(logical(0), tags = list(locationName = "integrationMethod", type = "string")), IntegrationResponseSelectionExpression = structure(logical(0), tags = list(locationName = "integrationResponseSelectionExpression", type = "string")), IntegrationSubtype = structure(logical(0), tags = list(locationName = "integrationSubtype", type = "string")), IntegrationType = structure(logical(0), tags = list(locationName = "integrationType", type = "string")), IntegrationUri = structure(logical(0), tags = list(locationName = "integrationUri", type = "string")), PassthroughBehavior = structure(logical(0), tags = list(locationName = "passthroughBehavior", type = "string")), PayloadFormatVersion = structure(logical(0), tags = list(locationName = "payloadFormatVersion", type = "string")), RequestParameters = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(locationName = "requestParameters", type = "map")), RequestTemplates = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(locationName = "requestTemplates", type = "map")), ResponseParameters = structure(list(structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "map"))), tags = list(locationName = "responseParameters", type = "map")), TemplateSelectionExpression = structure(logical(0), tags = list(locationName = "templateSelectionExpression", type = "string")), TimeoutInMillis = structure(logical(0), tags = list(locationName = "timeoutInMillis", type = "integer")), TlsConfig = structure(list(ServerNameToVerify = structure(logical(0), tags = list(locationName = "serverNameToVerify", type = "string"))), tags = list(locationName = "tlsConfig", type = "structure"))), tags = list(type = "structure")) return(populate(args, shape)) } .apigatewayv2$update_integration_response_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(ApiId = structure(logical(0), tags = list(location = "uri", locationName = "apiId", type = "string")), ContentHandlingStrategy = structure(logical(0), tags = list(locationName = "contentHandlingStrategy", type = "string")), IntegrationId = structure(logical(0), tags = list(location = "uri", locationName = "integrationId", type = "string")), IntegrationResponseId = structure(logical(0), tags = list(location = "uri", locationName = "integrationResponseId", type = "string")), IntegrationResponseKey = structure(logical(0), tags = list(locationName = "integrationResponseKey", type = "string")), ResponseParameters = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(locationName = "responseParameters", type = "map")), ResponseTemplates = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(locationName = "responseTemplates", type = "map")), TemplateSelectionExpression = structure(logical(0), tags = list(locationName = "templateSelectionExpression", type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .apigatewayv2$update_integration_response_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(ContentHandlingStrategy = structure(logical(0), tags = list(locationName = "contentHandlingStrategy", type = "string")), IntegrationResponseId = structure(logical(0), tags = list(locationName = "integrationResponseId", type = "string")), IntegrationResponseKey = structure(logical(0), tags = list(locationName = "integrationResponseKey", type = "string")), ResponseParameters = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(locationName = "responseParameters", type = "map")), ResponseTemplates = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(locationName = "responseTemplates", type = "map")), TemplateSelectionExpression = structure(logical(0), tags = list(locationName = "templateSelectionExpression", type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .apigatewayv2$update_model_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(ApiId = structure(logical(0), tags = list(location = "uri", locationName = "apiId", type = "string")), ContentType = structure(logical(0), tags = list(locationName = "contentType", type = "string")), Description = structure(logical(0), tags = list(locationName = "description", type = "string")), ModelId = structure(logical(0), tags = list(location = "uri", locationName = "modelId", type = "string")), Name = structure(logical(0), tags = list(locationName = "name", type = "string")), Schema = structure(logical(0), tags = list(locationName = "schema", type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .apigatewayv2$update_model_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(ContentType = structure(logical(0), tags = list(locationName = "contentType", type = "string")), Description = structure(logical(0), tags = list(locationName = "description", type = "string")), ModelId = structure(logical(0), tags = list(locationName = "modelId", type = "string")), Name = structure(logical(0), tags = list(locationName = "name", type = "string")), Schema = structure(logical(0), tags = list(locationName = "schema", type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .apigatewayv2$update_route_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(ApiId = structure(logical(0), tags = list(location = "uri", locationName = "apiId", type = "string")), ApiKeyRequired = structure(logical(0), tags = list(locationName = "apiKeyRequired", type = "boolean")), AuthorizationScopes = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(locationName = "authorizationScopes", type = "list")), AuthorizationType = structure(logical(0), tags = list(locationName = "authorizationType", type = "string")), AuthorizerId = structure(logical(0), tags = list(locationName = "authorizerId", type = "string")), ModelSelectionExpression = structure(logical(0), tags = list(locationName = "modelSelectionExpression", type = "string")), OperationName = structure(logical(0), tags = list(locationName = "operationName", type = "string")), RequestModels = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(locationName = "requestModels", type = "map")), RequestParameters = structure(list(structure(list(Required = structure(logical(0), tags = list(locationName = "required", type = "boolean"))), tags = list(type = "structure"))), tags = list(locationName = "requestParameters", type = "map")), RouteId = structure(logical(0), tags = list(location = "uri", locationName = "routeId", type = "string")), RouteKey = structure(logical(0), tags = list(locationName = "routeKey", type = "string")), RouteResponseSelectionExpression = structure(logical(0), tags = list(locationName = "routeResponseSelectionExpression", type = "string")), Target = structure(logical(0), tags = list(locationName = "target", type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .apigatewayv2$update_route_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(ApiGatewayManaged = structure(logical(0), tags = list(locationName = "apiGatewayManaged", type = "boolean")), ApiKeyRequired = structure(logical(0), tags = list(locationName = "apiKeyRequired", type = "boolean")), AuthorizationScopes = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(locationName = "authorizationScopes", type = "list")), AuthorizationType = structure(logical(0), tags = list(locationName = "authorizationType", type = "string")), AuthorizerId = structure(logical(0), tags = list(locationName = "authorizerId", type = "string")), ModelSelectionExpression = structure(logical(0), tags = list(locationName = "modelSelectionExpression", type = "string")), OperationName = structure(logical(0), tags = list(locationName = "operationName", type = "string")), RequestModels = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(locationName = "requestModels", type = "map")), RequestParameters = structure(list(structure(list(Required = structure(logical(0), tags = list(locationName = "required", type = "boolean"))), tags = list(type = "structure"))), tags = list(locationName = "requestParameters", type = "map")), RouteId = structure(logical(0), tags = list(locationName = "routeId", type = "string")), RouteKey = structure(logical(0), tags = list(locationName = "routeKey", type = "string")), RouteResponseSelectionExpression = structure(logical(0), tags = list(locationName = "routeResponseSelectionExpression", type = "string")), Target = structure(logical(0), tags = list(locationName = "target", type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .apigatewayv2$update_route_response_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(ApiId = structure(logical(0), tags = list(location = "uri", locationName = "apiId", type = "string")), ModelSelectionExpression = structure(logical(0), tags = list(locationName = "modelSelectionExpression", type = "string")), ResponseModels = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(locationName = "responseModels", type = "map")), ResponseParameters = structure(list(structure(list(Required = structure(logical(0), tags = list(locationName = "required", type = "boolean"))), tags = list(type = "structure"))), tags = list(locationName = "responseParameters", type = "map")), RouteId = structure(logical(0), tags = list(location = "uri", locationName = "routeId", type = "string")), RouteResponseId = structure(logical(0), tags = list(location = "uri", locationName = "routeResponseId", type = "string")), RouteResponseKey = structure(logical(0), tags = list(locationName = "routeResponseKey", type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .apigatewayv2$update_route_response_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(ModelSelectionExpression = structure(logical(0), tags = list(locationName = "modelSelectionExpression", type = "string")), ResponseModels = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(locationName = "responseModels", type = "map")), ResponseParameters = structure(list(structure(list(Required = structure(logical(0), tags = list(locationName = "required", type = "boolean"))), tags = list(type = "structure"))), tags = list(locationName = "responseParameters", type = "map")), RouteResponseId = structure(logical(0), tags = list(locationName = "routeResponseId", type = "string")), RouteResponseKey = structure(logical(0), tags = list(locationName = "routeResponseKey", type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .apigatewayv2$update_stage_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(AccessLogSettings = structure(list(DestinationArn = structure(logical(0), tags = list(locationName = "destinationArn", type = "string")), Format = structure(logical(0), tags = list(locationName = "format", type = "string"))), tags = list(locationName = "accessLogSettings", type = "structure")), ApiId = structure(logical(0), tags = list(location = "uri", locationName = "apiId", type = "string")), AutoDeploy = structure(logical(0), tags = list(locationName = "autoDeploy", type = "boolean")), ClientCertificateId = structure(logical(0), tags = list(locationName = "clientCertificateId", type = "string")), DefaultRouteSettings = structure(list(DataTraceEnabled = structure(logical(0), tags = list(locationName = "dataTraceEnabled", type = "boolean")), DetailedMetricsEnabled = structure(logical(0), tags = list(locationName = "detailedMetricsEnabled", type = "boolean")), LoggingLevel = structure(logical(0), tags = list(locationName = "loggingLevel", type = "string")), ThrottlingBurstLimit = structure(logical(0), tags = list(locationName = "throttlingBurstLimit", type = "integer")), ThrottlingRateLimit = structure(logical(0), tags = list(locationName = "throttlingRateLimit", type = "double"))), tags = list(locationName = "defaultRouteSettings", type = "structure")), DeploymentId = structure(logical(0), tags = list(locationName = "deploymentId", type = "string")), Description = structure(logical(0), tags = list(locationName = "description", type = "string")), RouteSettings = structure(list(structure(list(DataTraceEnabled = structure(logical(0), tags = list(locationName = "dataTraceEnabled", type = "boolean")), DetailedMetricsEnabled = structure(logical(0), tags = list(locationName = "detailedMetricsEnabled", type = "boolean")), LoggingLevel = structure(logical(0), tags = list(locationName = "loggingLevel", type = "string")), ThrottlingBurstLimit = structure(logical(0), tags = list(locationName = "throttlingBurstLimit", type = "integer")), ThrottlingRateLimit = structure(logical(0), tags = list(locationName = "throttlingRateLimit", type = "double"))), tags = list(type = "structure"))), tags = list(locationName = "routeSettings", type = "map")), StageName = structure(logical(0), tags = list(location = "uri", locationName = "stageName", type = "string")), StageVariables = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(locationName = "stageVariables", type = "map"))), tags = list(type = "structure")) return(populate(args, shape)) } .apigatewayv2$update_stage_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(AccessLogSettings = structure(list(DestinationArn = structure(logical(0), tags = list(locationName = "destinationArn", type = "string")), Format = structure(logical(0), tags = list(locationName = "format", type = "string"))), tags = list(locationName = "accessLogSettings", type = "structure")), ApiGatewayManaged = structure(logical(0), tags = list(locationName = "apiGatewayManaged", type = "boolean")), AutoDeploy = structure(logical(0), tags = list(locationName = "autoDeploy", type = "boolean")), ClientCertificateId = structure(logical(0), tags = list(locationName = "clientCertificateId", type = "string")), CreatedDate = structure(logical(0), tags = list(locationName = "createdDate", type = "timestamp", timestampFormat = "iso8601")), DefaultRouteSettings = structure(list(DataTraceEnabled = structure(logical(0), tags = list(locationName = "dataTraceEnabled", type = "boolean")), DetailedMetricsEnabled = structure(logical(0), tags = list(locationName = "detailedMetricsEnabled", type = "boolean")), LoggingLevel = structure(logical(0), tags = list(locationName = "loggingLevel", type = "string")), ThrottlingBurstLimit = structure(logical(0), tags = list(locationName = "throttlingBurstLimit", type = "integer")), ThrottlingRateLimit = structure(logical(0), tags = list(locationName = "throttlingRateLimit", type = "double"))), tags = list(locationName = "defaultRouteSettings", type = "structure")), DeploymentId = structure(logical(0), tags = list(locationName = "deploymentId", type = "string")), Description = structure(logical(0), tags = list(locationName = "description", type = "string")), LastDeploymentStatusMessage = structure(logical(0), tags = list(locationName = "lastDeploymentStatusMessage", type = "string")), LastUpdatedDate = structure(logical(0), tags = list(locationName = "lastUpdatedDate", type = "timestamp", timestampFormat = "iso8601")), RouteSettings = structure(list(structure(list(DataTraceEnabled = structure(logical(0), tags = list(locationName = "dataTraceEnabled", type = "boolean")), DetailedMetricsEnabled = structure(logical(0), tags = list(locationName = "detailedMetricsEnabled", type = "boolean")), LoggingLevel = structure(logical(0), tags = list(locationName = "loggingLevel", type = "string")), ThrottlingBurstLimit = structure(logical(0), tags = list(locationName = "throttlingBurstLimit", type = "integer")), ThrottlingRateLimit = structure(logical(0), tags = list(locationName = "throttlingRateLimit", type = "double"))), tags = list(type = "structure"))), tags = list(locationName = "routeSettings", type = "map")), StageName = structure(logical(0), tags = list(locationName = "stageName", type = "string")), StageVariables = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(locationName = "stageVariables", type = "map")), Tags = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(locationName = "tags", type = "map"))), tags = list(type = "structure")) return(populate(args, shape)) } .apigatewayv2$update_vpc_link_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(Name = structure(logical(0), tags = list(locationName = "name", type = "string")), VpcLinkId = structure(logical(0), tags = list(location = "uri", locationName = "vpcLinkId", type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .apigatewayv2$update_vpc_link_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(CreatedDate = structure(logical(0), tags = list(locationName = "createdDate", type = "timestamp", timestampFormat = "iso8601")), Name = structure(logical(0), tags = list(locationName = "name", type = "string")), SecurityGroupIds = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(locationName = "securityGroupIds", type = "list")), SubnetIds = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(locationName = "subnetIds", type = "list")), Tags = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(locationName = "tags", type = "map")), VpcLinkId = structure(logical(0), tags = list(locationName = "vpcLinkId", type = "string")), VpcLinkStatus = structure(logical(0), tags = list(locationName = "vpcLinkStatus", type = "string")), VpcLinkStatusMessage = structure(logical(0), tags = list(locationName = "vpcLinkStatusMessage", type = "string")), VpcLinkVersion = structure(logical(0), tags = list(locationName = "vpcLinkVersion", type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) }
gevcdn.reshape <- function (x, weights, n.hidden) { N11 <- ncol(x) + 1 N12 <- n.hidden N1 <- N11*N12 W1 <- weights[1:N1] W1 <- matrix(W1, nrow = N11, ncol = N12) N21 <- n.hidden + 1 N22 <- 3 N2 <- N1 + N21*N22 W2 <- weights[(N1 + 1):N2] W2 <- matrix(W2, nrow = N21, ncol = N22) list(W1 = W1, W2 = W2) }
context("spark-apply-ext") test_requires("dplyr") sc <- testthat_spark_connection() iris_tbl <- testthat_tbl("iris") dates <- data.frame(dates = c(as.Date("2015/12/19"), as.Date(NA), as.Date("2015/12/19"))) dates_tbl <- testthat_tbl("dates") colnas <- data.frame(c1 = c("A", "B"), c2 = c(NA, NA)) colnas_tbl <- testthat_tbl("colnas") test_that("'spark_apply' can filter columns", { expect_equivalent( iris_tbl %>% spark_apply(function(e) e[1:1]) %>% collect(), iris_tbl %>% select(Sepal_Length) %>% collect() ) }) test_that("'spark_apply' can add columns", { expect_equivalent( iris_tbl %>% spark_apply(function(e) cbind(e, 1), names = c(colnames(iris_tbl), "new")) %>% collect(), iris_tbl %>% mutate(new = 1) %>% collect() ) }) test_that("'spark_apply' can concatenate", { expect_equivalent( iris_tbl %>% spark_apply(function(e) apply(e, 1, paste, collapse = " "), names = "s") %>% collect(), iris_tbl %>% transmute(s = paste(Sepal_Length, Sepal_Width, Petal_Length, Petal_Width, Species)) %>% collect() ) }) test_that("'spark_apply' can filter", { expect_equivalent( iris_tbl %>% spark_apply(function(e) e[e$Species == "setosa", ]) %>% collect(), iris_tbl %>% filter(Species == "setosa") %>% collect() ) }) test_that("'spark_apply' works with 'sdf_repartition'", { id <- random_string("id") expect_equivalent( iris_tbl %>% sdf_with_sequential_id(id) %>% sdf_repartition(2L) %>% spark_apply(function(e) e) %>% collect() %>% arrange(!!rlang::sym(id)), iris_tbl %>% sdf_with_sequential_id(id) %>% collect() ) }) test_that("'spark_apply' works with 'group_by' over multiple columns", { iris_tbl_ints <- iris_tbl %>% mutate(Petal_Width_Int = as.integer(Petal_Width)) grouped_lm <- spark_apply( iris_tbl_ints, function(e, species, petal_width) { lm(Petal_Width ~ Petal_Length, e)$coefficients[["(Intercept)"]] }, names = "Intercept", group_by = c("Species", "Petal_Width_Int") ) %>% collect() iris_int <- iris %>% mutate( Petal_Width_Int = as.integer(Petal.Width), GroupBy = paste(Species, Petal_Width_Int, sep = "|") ) lapply( unique(iris_int$GroupBy), function(group_by_entry) { parts <- strsplit(group_by_entry, "\\|") species_test <- parts[[1]][[1]] petal_width_test <- as.integer(parts[[1]][[2]]) expect_equal( grouped_lm[grouped_lm$Species == species_test & grouped_lm$Petal_Width_Int == petal_width_test, ]$Intercept, lm(Petal.Width ~ Petal.Length, iris_int[iris_int$Species == species_test & iris_int$Petal_Width_Int == petal_width_test, ])$coefficients[["(Intercept)"]] ) } ) }) test_that("'spark_apply' works over empty partitions", { skip_slow("takes too long to measure coverage") expect_equal( sdf_len(sc, 2, repartition = 4) %>% spark_apply(function(e) e) %>% collect() %>% as.data.frame(), data.frame(id = seq_len(2)) ) }) test_that("'spark_apply' works over 'tryCatch'", { skip_slow("takes too long to measure coverage") expect_equal( sdf_len(sc, 1) %>% spark_apply(function(e) { tryCatch( { stop("x") }, error = function(e) { 100 } ) }) %>% pull() %>% as.integer(), 100 ) }) test_that("'spark_apply' can filter data.frame", { skip_slow("takes too long to measure coverage") expect_equal( sdf_len(sc, 10) %>% spark_apply(function(e) as.data.frame(e[e$id > 1, ])) %>% collect() %>% nrow(), 9 ) }) test_that("'spark_apply' can filter using dplyr", { skip_slow("takes too long to measure coverage") expect_equal( sdf_len(sc, 10) %>% spark_apply(function(e) dplyr::filter(e, id > 1)) %>% collect() %>% as.data.frame(), data.frame(id = c(2:10)) ) }) test_that("'spark_apply' can return 'NA's", { skip_slow("takes too long to measure coverage") expect_equal( dates_tbl %>% spark_apply(function(e) e) %>% collect() %>% nrow(), nrow(dates) ) }) test_that("'spark_apply' can return 'NA's for dates", { skip_slow("takes too long to measure coverage") expect_equal( sdf_len(sc, 1) %>% spark_apply(function(e) data.frame(dates = c(as.Date("2001/1/1"), NA))) %>% collect() %>% nrow(), 2 ) }) test_that("'spark_apply' can roundtrip dates", { skip_slow("takes too long to measure coverage") expect_equal( dates_tbl %>% spark_apply(function(e) as.Date(e[[1]], origin = "1970-01-01")) %>% spark_apply(function(e) e) %>% collect() %>% pull() %>% class(), "Date" ) }) test_that("'spark_apply' can roundtrip Date-Time", { skip_slow("takes too long to measure coverage") expect_equal( dates_tbl %>% spark_apply(function(e) as.POSIXct(e[[1]], origin = "1970-01-01")) %>% spark_apply(function(e) e) %>% collect() %>% pull() %>% class() %>% first(), "POSIXct" ) }) test_that("'spark_apply' supports grouped empty results", { skip_slow("takes too long to measure coverage") process_data <- function(DF, exclude) { DF <- subset(DF, select = colnames(DF)[!colnames(DF) %in% exclude]) DF[complete.cases(DF), ] } data <- data.frame( grp = rep(c("A", "B", "C"), each = 5), x1 = 1:15, x2 = c(1:9, rep(NA, 6)), stringsAsFactors = FALSE ) data_spark <- sdf_copy_to(sc, data, "grp_data", memory = TRUE, overwrite = TRUE) collected <- data_spark %>% spark_apply( process_data, group_by = "grp", columns = c("x1", "x2"), packages = FALSE, context = { exclude <- "grp" } ) %>% collect() expect_equivalent( collected %>% arrange(x1), data %>% group_by(grp) %>% do(process_data(., exclude = "grp")) %>% arrange(x1) ) }) test_that("'spark_apply' can use anonymous functions", { skip_slow("takes too long to measure coverage") expect_equal( sdf_len(sc, 3) %>% spark_apply(~ .x + 1) %>% collect(), tibble(id = c(2, 3, 4)) ) }) test_that("'spark_apply' can apply function with 'NA's column", { skip_slow("takes too long to measure coverage") if (spark_version(sc) < "2.0.0") skip("automatic column types supported in Spark 2.0+") expect_equivalent( colnas_tbl %>% mutate(c2 = as.integer(c2)) %>% spark_apply(~ class(.x[[2]])) %>% pull(), "integer" ) expect_equivalent( colnas_tbl %>% mutate(c2 = as.integer(c2)) %>% spark_apply(~ dplyr::mutate(.x, c1 = tolower(c1))) %>% collect(), colnas_tbl %>% mutate(c2 = as.integer(c2)) %>% mutate(c1 = tolower(c1)) %>% collect() ) }) test_that("can infer R package dependencies", { fn1 <- function(x) { library(utf8) x + 1 } expect_true("utf8" %in% sparklyr:::infer_required_r_packages(fn1)) fn2 <- function(x) { require(utf8) x + 2 } expect_true("utf8" %in% sparklyr:::infer_required_r_packages(fn2)) fn3 <- function(x) { requireNamespace("utf8") x + 3 } expect_true("utf8" %in% sparklyr:::infer_required_r_packages(fn3)) fn4 <- function(x) { library("sparklyr", quietly = FALSE) x + 4 } expected_deps <- tools::package_dependencies( "sparklyr", db = installed.packages(), recursive = TRUE ) testthat::expect_setequal( union(expected_deps$sparklyr, c("base", "sparklyr")), sparklyr:::infer_required_r_packages(fn4) ) })
context("ez_labels") test_that("ez_labels works", { expect_equal(ez_labels(1), "1") expect_equal(ez_labels(1000), "1k") expect_equal(ez_labels(2000000), "2m") expect_equal(ez_labels(1234567), "1.234567m") expect_equal(ez_labels(1234567, signif = 3), "1.23m") expect_equal(ez_labels(c(10, 2), as_factor = TRUE), factor(c(10, 2), c("2", "10"))) expect_equal(superscript(321), "\u00B3\u00B2\u00B9") })
context("GPModel_grouped_random_effects") if(Sys.getenv("GPBOOST_ALL_TESTS") == "GPBOOST_ALL_TESTS"){ sim_rand_unif <- function(n, init_c=0.1){ mod_lcg <- 134456 sim <- rep(NA, n) sim[1] <- floor(init_c * mod_lcg) for(i in 2:n) sim[i] <- (8121 * sim[i-1] + 28411) %% mod_lcg return(sim / mod_lcg) } n <- 1000 m <- 100 group <- rep(1,n) for(i in 1:m) group[((i-1)*n/m+1):(i*n/m)] <- i Z1 <- model.matrix(rep(1,n) ~ factor(group) - 1) b1 <- qnorm(sim_rand_unif(n=m, init_c=0.546)) n_gr <- n/20 group2 <- rep(1,n) for(i in 1:(n/n_gr)) group2[(1:n_gr)+n_gr*(i-1)] <- 1:n_gr Z2 <- model.matrix(rep(1,n)~factor(group2)-1) b2 <- qnorm(sim_rand_unif(n=length(unique(group2)), init_c=0.46)) x <- cos((1:n-n/2)^2*5.5*pi/n) Z3 <- diag(x) %*% Z1 b3 <- qnorm(sim_rand_unif(n=m, init_c=0.69)) xi <- sqrt(0.5) * qnorm(sim_rand_unif(n=n, init_c=0.1)) X <- cbind(rep(1,n),sin((1:n-n/2)^2*2*pi/n)) beta <- c(2,2) cluster_ids <- c(rep(1,0.4*n),rep(2,0.6*n)) test_that("single level grouped random effects model ", { y <- as.vector(Z1 %*% b1) + xi gp_model <- GPModel(group_data = group) fit(gp_model, y = y, params = list(std_dev = TRUE, optimizer_cov = "fisher_scoring", convergence_criterion = "relative_change_in_parameters")) cov_pars <- c(0.49348532, 0.02326312, 1.22299521, 0.17995161) expect_lt(sum(abs(as.vector(gp_model$get_cov_pars())-cov_pars)),1E-6) expect_equal(dim(gp_model$get_cov_pars())[2], 2) expect_equal(dim(gp_model$get_cov_pars())[1], 2) expect_equal(gp_model$get_num_optim_iter(), 6) gp_model <- fitGPModel(group_data = group, y = y, params = list(optimizer_cov = "gradient_descent", std_dev = FALSE, lr_cov = 0.1, use_nesterov_acc = FALSE, maxit = 1000, convergence_criterion = "relative_change_in_parameters")) cov_pars_est <- as.vector(gp_model$get_cov_pars()) expect_lt(sum(abs(cov_pars_est-cov_pars[c(1,3)])),1E-5) expect_equal(class(cov_pars_est), "numeric") expect_equal(length(cov_pars_est), 2) expect_equal(gp_model$get_num_optim_iter(), 9) gp_model <- fitGPModel(group_data = group, y = y, params = list(optimizer_cov = "gradient_descent", std_dev = FALSE, lr_cov = 0.2, use_nesterov_acc = TRUE, acc_rate_cov = 0.1, maxit = 1000, convergence_criterion = "relative_change_in_parameters")) expect_lt(sum(abs(as.vector(gp_model$get_cov_pars())-cov_pars[c(1,3)])),1E-5) expect_equal(gp_model$get_num_optim_iter(), 10) gp_model <- fitGPModel(group_data = group, y = y, params = list(optimizer_cov = "gradient_descent", std_dev = FALSE, lr_cov = 10, use_nesterov_acc = FALSE, maxit = 1000, convergence_criterion = "relative_change_in_parameters")) expect_lt(sum(abs(as.vector(gp_model$get_cov_pars())-cov_pars[c(1,3)])),1E-6) expect_equal(gp_model$get_num_optim_iter(), 32) gp_model <- fitGPModel(group_data = group, y = y, params = list(optimizer_cov = "fisher_scoring", std_dev = TRUE, convergence_criterion = "relative_change_in_log_likelihood")) expect_lt(sum(abs(as.vector(gp_model$get_cov_pars())-cov_pars)),1E-6) expect_equal(gp_model$get_num_optim_iter(), 5) gp_model <- fitGPModel(group_data = group, y = y, params = list(optimizer_cov = "nelder_mead", std_dev = TRUE)) expect_lt(sum(abs(as.vector(gp_model$get_cov_pars())-cov_pars)),1E-3) expect_equal(gp_model$get_num_optim_iter(), 12) ll <- gp_model$neg_log_likelihood(y=y,cov_pars=gp_model$get_cov_pars()[1,]) expect_lt(abs(ll-(1228.293)),1E-2) gp_model <- GPModel(group_data = group) group_test <- c(1,2,m+1) expect_error(predict(gp_model, y=y, cov_pars = c(0.5,1.5))) pred <- predict(gp_model, y=y, group_data_pred = group_test, cov_pars = c(0.5,1.5), predict_cov_mat = TRUE) expected_mu <- c(-0.1553877, -0.3945731, 0) expected_cov <- c(0.5483871, 0.0000000, 0.0000000, 0.0000000, 0.5483871, 0.0000000, 0.0000000, 0.0000000, 2) expect_lt(sum(abs(pred$mu-expected_mu)),1E-6) expect_lt(sum(abs(as.vector(pred$cov)-expected_cov)),1E-6) pred <- predict(gp_model, y=y, group_data_pred = group_test, cov_pars = c(0.5,1.5), predict_var = TRUE) expect_lt(sum(abs(pred$mu-expected_mu)),1E-6) expect_lt(sum(abs(as.vector(pred$var)-expected_cov[c(1,5,9)])),1E-6) gp_model <- fitGPModel(group_data = group, y = y, params = list(optimizer_cov = "fisher_scoring", convergence_criterion = "relative_change_in_parameters")) group_test <- c(1,2,m+1) pred <- predict(gp_model, group_data_pred = group_test, predict_cov_mat = TRUE) expected_mu <- c(-0.1543396, -0.3919117, 0.0000000) expected_cov <- c(0.5409198 , 0.0000000000, 0.0000000000, 0.0000000000, 0.5409198 , 0.0000000000, 0.0000000000, 0.0000000000, 1.7164805) expect_lt(sum(abs(pred$mu-expected_mu)),1E-6) expect_lt(sum(abs(as.vector(pred$cov)-expected_cov)),1E-6) nll <- gp_model$neg_log_likelihood(cov_pars=c(0.1,1),y=y) expect_lt(abs(nll-2282.073),1E-2) gp_model <- GPModel(group_data = group) opt <- optim(par=c(1,1), fn=gp_model$neg_log_likelihood, y=y, method="Nelder-Mead") expect_lt(sum(abs(opt$par-cov_pars[c(1,3)])),1E-3) expect_lt(abs(opt$value-(1228.293)),1E-2) expect_equal(as.integer(opt$counts[1]), 49) set.seed(1) shuffle_ind <- sample.int(n=n,size=n,replace=FALSE) gp_model <- GPModel(group_data = group[shuffle_ind]) fit(gp_model, y = y[shuffle_ind], params = list(optimizer_cov = "fisher_scoring", std_dev = TRUE, convergence_criterion = "relative_change_in_parameters")) expect_lt(sum(abs(as.vector(gp_model$get_cov_pars())-cov_pars)),1E-6) expect_equal(gp_model$get_num_optim_iter(), 6) }) test_that("linear mixed effects model with grouped random effects ", { y <- Z1 %*% b1 + X%*%beta + xi gp_model <- fitGPModel(group_data = group, y = y, X = X, params = list(optimizer_cov = "fisher_scoring", optimizer_coef = "wls", std_dev = TRUE, convergence_criterion = "relative_change_in_parameters")) cov_pars <- c(0.49205230, 0.02319557, 1.22064076, 0.17959832) coef <- c(2.07499902, 0.11269252, 1.94766255, 0.03382472) expect_lt(sum(abs(as.vector(gp_model$get_cov_pars())-cov_pars)),1E-6) expect_lt(sum(abs(as.vector(gp_model$get_coef())-coef)),1E-6) expect_equal(gp_model$get_num_optim_iter(), 7) group_test <- c(1,2,m+1) X_test <- cbind(rep(1,3),c(-0.5,0.2,0.4)) expect_error(predict(gp_model,group_data_pred = group_test)) pred <- predict(gp_model, group_data_pred = group_test, X_pred = X_test, predict_cov_mat = TRUE) expected_mu <- c(0.886494, 2.043259, 2.854064) expected_cov <- c(0.5393509 , 0.0000000000, 0.0000000000, 0.0000000000, 0.5393509 , 0.0000000000, 0.0000000000, 0.0000000000, 1.712693) expect_lt(sum(abs(pred$mu-expected_mu)),1E-6) expect_lt(sum(abs(as.vector(pred$cov)-expected_cov)),1E-6) gp_model <- fitGPModel(group_data = group, y = y, X = X, params = list(optimizer_cov = "gradient_descent", maxit=1000, std_dev = TRUE, optimizer_coef = "gradient_descent", lr_coef=1, use_nesterov_acc=TRUE)) cov_pars <- c(0.49205012, 0.02319547, 1.22089504, 0.17963425) coef <- c(2.07513927, 0.11270379, 1.94322756, 0.03382466) expect_lt(sum(abs(as.vector(gp_model$get_cov_pars())-cov_pars)),1E-6) expect_lt(sum(abs(as.vector(gp_model$get_coef())-coef)),1E-6) expect_equal(gp_model$get_num_optim_iter(), 110) gp_model <- fitGPModel(group_data = group, y = y, X = X, params = list(optimizer_cov = "nelder_mead", optimizer_coef = "nelder_mead", std_dev = TRUE)) cov_pars <- c(0.47524382, 0.02240321, 2.38806490, 0.34445163) coef <- c(1.45083178, 0.15606729, 1.95360294, 0.03327804) expect_lt(sum(abs(as.vector(gp_model$get_cov_pars())-cov_pars)),1E-6) expect_lt(sum(abs(as.vector(gp_model$get_coef())-coef)),1E-6) expect_equal(gp_model$get_num_optim_iter(), 133) gp_model <- fitGPModel(group_data = group, y = y, X = X, params = list(optimizer_cov = "bfgs", std_dev = TRUE)) cov_pars <- c(0.49205229, 0.02319557, 1.22064060, 0.17959830) coef <- c(2.07499895, 0.11269251, 1.94766254, 0.03382472) expect_lt(sum(abs(as.vector(gp_model$get_cov_pars())-cov_pars)),1E-6) expect_lt(sum(abs(as.vector(gp_model$get_coef())-coef)),1E-6) expect_equal(gp_model$get_num_optim_iter(), 12) }) test_that("Multiple grouped random effects ", { y <- Z1%*%b1 + Z2%*%b2 + xi gp_model <- fitGPModel(group_data = cbind(group,group2), y = y, params = list(optimizer_cov = "fisher_scoring", std_dev = TRUE)) expected_values <- c(0.49792062, 0.02408196, 1.21972166, 0.18357646, 1.06962710, 0.22567292) expect_lt(sum(abs(as.vector(gp_model$get_cov_pars())-expected_values)),1E-6) expect_equal(gp_model$get_num_optim_iter(), 5) group_data_pred = cbind(c(1,1,m+1),c(2,1,length(group2)+1)) pred <- gp_model$predict(y = y, group_data_pred=group_data_pred, predict_var = TRUE) expected_mu <- c(0.7509175, -0.4208015, 0.0000000) expected_var <- c(0.5677178, 0.5677178, 2.7872694) expect_lt(sum(abs(pred$mu-expected_mu)),1E-6) expect_lt(sum(abs(as.vector(pred$var)-expected_var)),1E-4) gp_model <- GPModel(group_data = cbind(group,group2)) pred <- gp_model$predict(y = y, group_data_pred=group_data_pred, cov_pars = c(0.1,1,2), predict_cov_mat = TRUE) expected_mu <- c(0.7631462, -0.4328551, 0.000000000) expected_cov <- c(0.114393721, 0.009406189, 0.0000000, 0.009406189, 0.114393721 , 0.0000000, 0.0000000, 0.0000000, 3.100000000) expect_lt(sum(abs(pred$mu-expected_mu)),1E-6) expect_lt(sum(abs(as.vector(pred$cov)-expected_cov)),1E-3) group_data_pred_in = cbind(c(1,1),c(2,1)) pred <- gp_model$predict(y = y, group_data_pred=group_data_pred_in, cov_pars = c(0.1,1,2), predict_cov_mat = TRUE) expected_mu <- c(0.7631462, -0.4328551) expected_cov <- c(0.114393721, 0.009406189, 0.009406189, 0.114393721) expect_lt(sum(abs(pred$mu-expected_mu)),1E-6) expect_lt(sum(abs(as.vector(pred$cov)-expected_cov)),1E-3) group_data_pred_out = cbind(c(m+1,m+1,m+1),c(length(group2)+1,length(group2)+2,length(group2)+1)) pred <- gp_model$predict(y = y, group_data_pred=group_data_pred_out, cov_pars = c(0.1,1,2), predict_cov_mat = TRUE) expected_mu <- c(rep(0,3)) expected_cov <- c(3.1, 1.0, 3.0, 1.0, 3.1, 1.0, 3.0, 1.0, 3.1) expect_lt(sum(abs(pred$mu-expected_mu)),1E-6) expect_lt(sum(abs(as.vector(pred$cov)-expected_cov)),1E-3) y <- Z1%*%b1 + Z2%*%b2 + Z3%*%b3 + xi gp_model <- fitGPModel(group_data = cbind(group,group2), group_rand_coef_data = x, ind_effect_group_rand_coef = 1, y = y, params = list(optimizer_cov = "fisher_scoring", maxit=5, std_dev = TRUE)) expected_values <- c(0.49554952, 0.02546769, 1.24880860, 0.18983953, 1.05505134, 0.22337199, 1.13840014, 0.17950490) expect_lt(sum(abs(as.vector(gp_model$get_cov_pars())-expected_values)),1E-6) expect_equal(gp_model$get_num_optim_iter(), 5) gp_model <- GPModel(group_data = cbind(group,group2), group_rand_coef_data = x, ind_effect_group_rand_coef = 1) group_data_pred = cbind(c(1,1,m+1),c(2,1,length(group2)+1)) group_rand_coef_data_pred = c(0,10,0.3) expect_error(gp_model$predict(group_data_pred = group_data_pred, cov_pars = c(0.1,1,2,1.5), y=y)) pred <- gp_model$predict(y = y, group_data_pred=group_data_pred, group_rand_coef_data_pred=group_rand_coef_data_pred, cov_pars = c(0.1,1,2,1.5), predict_cov_mat = TRUE) expected_mu <- c(0.7579961, -0.2868530, 0.000000000) expected_cov <- c(0.11534086, -0.01988167, 0.0000000, -0.01988167, 2.4073302, 0.0000000, 0.0000000, 0.0000000, 3.235) expect_lt(sum(abs(pred$mu-expected_mu)),1E-6) expect_lt(sum(abs(as.vector(pred$cov)-expected_cov)),1E-3) pred <- gp_model$predict(y = y, group_data_pred=group_data_pred, group_rand_coef_data_pred=group_rand_coef_data_pred, cov_pars = c(0.1,1,2,1.5), predict_var = TRUE) expect_lt(sum(abs(pred$mu-expected_mu)),1E-6) expect_lt(sum(abs(as.vector(pred$var)-expected_cov[c(1,5,9)])),1E-3) gp_model <- fitGPModel(group_data = cbind(group,group2), group_rand_coef_data = x, ind_effect_group_rand_coef = 1, y = y, params = list(optimizer_cov = "gradient_descent", std_dev = FALSE)) cov_pars <- c(0.4958303, 1.2493181, 1.0543343, 1.1388604 ) expect_lt(sum(abs(as.vector(gp_model$get_cov_pars())-cov_pars)),1E-6) expect_equal(gp_model$get_num_optim_iter(),8) gp_model <- fitGPModel(group_data = cbind(group,group2), group_rand_coef_data = x, ind_effect_group_rand_coef = 1, y = y, params = list(optimizer_cov = "nelder_mead", std_dev = FALSE)) cov_pars <- c(0.4959521, 1.2408579, 1.0560989, 1.1373089 ) expect_lt(sum(abs(as.vector(gp_model$get_cov_pars())-cov_pars)),1E-6) gp_model <- fitGPModel(group_data = cbind(group,group2), group_rand_coef_data = x, ind_effect_group_rand_coef = 1, y = y, params = list(optimizer_cov = "bfgs", std_dev = FALSE)) cov_pars <- c(0.4955502, 1.2488000, 1.0550351, 1.1383709 ) expect_lt(sum(abs(as.vector(gp_model$get_cov_pars())-cov_pars)),1E-6) nll <- gp_model$neg_log_likelihood(cov_pars=c(0.1,1,2,1.5),y=y) expect_lt(abs(nll-2335.803),1E-2) }) test_that("not constant cluster_id's for grouped random effects ", { y <- Z1 %*% b1 + xi gp_model <- fitGPModel(group_data = group, cluster_ids = cluster_ids, y = y, params = list(optimizer_cov = "fisher_scoring", maxit=100, std_dev = TRUE, convergence_criterion = "relative_change_in_parameters")) expected_values <- c(0.49348532, 0.02326312, 1.22299521, 0.17995161) expect_lt(sum(abs(as.vector(gp_model$get_cov_pars())-expected_values)),1E-6) expect_equal(gp_model$get_num_optim_iter(), 6) gp_model <- fitGPModel(group_data = group, cluster_ids = cluster_ids, y = y, params = list(optimizer_cov = "gradient_descent", std_dev = TRUE, lr_cov = 0.1, use_nesterov_acc = FALSE, maxit = 1000, convergence_criterion = "relative_change_in_parameters")) cov_pars_expected <- c(0.49348532, 0.02326312, 1.22299520, 0.17995161) expect_lt(sum(abs(as.vector(gp_model$get_cov_pars())-cov_pars_expected)),1E-6) expect_equal(gp_model$get_num_optim_iter(), 9) group_data_pred = c(1,1,m+1) cluster_ids_pred = c(1,3,1) gp_model <- GPModel(group_data = group, cluster_ids = cluster_ids) expect_error(gp_model$predict(group_data_pred = group_data_pred, cov_pars = c(0.75,1.25), y=y)) pred <- gp_model$predict(y = y, group_data_pred = group_data_pred, cluster_ids_pred = cluster_ids_pred, cov_pars = c(0.75,1.25), predict_cov_mat = TRUE) expected_mu <- c(-0.1514786, 0.000000, 0.000000) expected_cov <- c(0.8207547, 0.000000, 0.000000, 0.000000, 2.000000, 0.000000, 0.000000, 0.000000, 2.000000) expect_lt(sum(abs(pred$mu-expected_mu)),1E-6) expect_lt(sum(abs(as.vector(pred$cov)-expected_cov)),1E-6) cluster_ids_string <- paste0(as.character(cluster_ids),"_s") gp_model <- fitGPModel(group_data = group, cluster_ids = cluster_ids_string, y = y, params = list(optimizer_cov = "fisher_scoring", maxit=100, std_dev = TRUE, convergence_criterion = "relative_change_in_parameters")) expect_lt(sum(abs(as.vector(gp_model$get_cov_pars())-cov_pars_expected)),1E-6) expect_equal(gp_model$get_num_optim_iter(), 6) group_data_pred = c(1,1,m+1) cluster_ids_pred_string = paste0(as.character(c(1,3,1)),"_s") pred <- gp_model$predict(y = y, group_data_pred = group_data_pred, cluster_ids_pred = cluster_ids_pred_string, cov_pars = c(0.75,1.25), predict_cov_mat = TRUE) expect_lt(sum(abs(pred$mu-expected_mu)),1E-6) expect_lt(sum(abs(as.vector(pred$cov)-expected_cov)),1E-6) group_data_pred = c(1,1,m,m) cluster_ids_pred = c(2,2,1,2) gp_model <- GPModel(group_data = group, cluster_ids = cluster_ids) pred <- gp_model$predict(y = y, group_data_pred = group_data_pred, cluster_ids_pred = cluster_ids_pred, cov_pars = c(0.75,1.25), predict_var = TRUE) expected_mu <- c(rep(0,3), 1.179557) expected_var <- c(rep(2,3), 0.8207547) expect_lt(sum(abs(pred$mu-expected_mu)),1E-6) expect_lt(sum(abs(as.vector(pred$var)-expected_var)),1E-6) group_data_pred = c(1,1,m,m) cluster_ids_pred_string = paste0(as.character(c(2,2,1,2)),"_s") gp_model <- GPModel(group_data = group, cluster_ids = cluster_ids_string) pred <- gp_model$predict(y = y, group_data_pred = group_data_pred, cluster_ids_pred = cluster_ids_pred_string, cov_pars = c(0.75,1.25), predict_var = TRUE) expect_lt(sum(abs(pred$mu-expected_mu)),1E-6) expect_lt(sum(abs(as.vector(pred$var)-expected_var)),1E-6) y <- Z1%*%b1 + Z3%*%b3 + xi gp_model <- fitGPModel(group_data = group, cluster_ids = cluster_ids, group_rand_coef_data = x, ind_effect_group_rand_coef = 1, y = y, params = list(optimizer_cov = "gradient_descent", std_dev = FALSE, lr_cov = 0.1, use_nesterov_acc = TRUE, maxit = 1000, convergence_criterion = "relative_change_in_parameters")) expected_values <- c(0.4927786, 1.2565095, 1.1333656) expect_lt(sum(abs(as.vector(gp_model$get_cov_pars())-expected_values)),1E-6) expect_equal(gp_model$get_num_optim_iter(), 14) }) }
mat.mc <- function (inModern,modTaxa=c(NULL,NULL),probs=c(0.05,0.025,0.01,0.001),freqint=seq(0, 2, 0.02),sampleSize=length(inModern[,1]),method="sawada",withReplace=T,counts=F) { outvec = vector("numeric") if (counts) { inModern[,modTaxa]=inModern[,modTaxa]/rowSums(inModern[,modTaxa]) } if(method == "sawada") { set1=inModern[sample(1:length(inModern[,1]),sampleSize,withReplace),modTaxa] set2=inModern[sample(1:length(inModern[,1]),sampleSize,withReplace),modTaxa] set1=sqrt(set1) set2=sqrt(set2) set3=set1-set2 set3=set3*set3 sqvec=rowSums(set3) } else if (method=="bartlein"){ sqvec = mattools.roc(inModern,inModern,modTaxa,numAnalogs=length(inModern[,1])) } tlen=length(sqvec) for (i in freqint) { outvec = c(outvec, length(sqvec[sqvec <= i])/tlen) } cumcurve = cbind(sqdist=freqint, problteq=outvec) critvalue=approx(cumcurve[,2],cumcurve[,1],probs) list(sqdist=sqvec,cumcurve=cumcurve,cutoffs=critvalue,method=method,samplesize=sampleSize,replacement=withReplace,probabilities=probs,wascounts=counts) }
shorten_url.semnar <- function(object, service = "Is.gd") { service <- match.arg(service, choices = c("Is.gd", "V.gd")) fun <- switch(service, "Is.gd" = isgd_LinksShorten, "V.gd" = vgd_LinksShorten) object$long_link <- object$link object$link <- sapply(object$link, function(link) { out <- fun(link) ifelse(is.null(out), NA, out) }) object }
covLCA <- function(formula1,formula2,data,nclass=2,maxiter=1000,tol=1e-10, beta.start=NULL,alpha.start=NULL,gamma.start=NULL,beta.auto=TRUE,alpha.auto=TRUE,gamma.auto=TRUE,nrep=1,verbose=TRUE,calc.se=TRUE) { starttime <- Sys.time() mf1 <- model.response(model.frame(formula1,data,na.action=NULL)) mf2 <- model.response(model.frame(formula2,data,na.action=NULL)) if (any((as.numeric(mf1)-as.numeric(mf2))!=0,na.rm=TRUE)) { stop("\n ALERT: manifest variables in both formulae must be identical. \n \n") ret <- NULL } if (any(mf1<1,na.rm=TRUE) | any(round(mf1) != mf1,na.rm=TRUE)){ cat("\n ALERT: some manifest variables contain values that are not positive integers. For covLCA to run, please recode categorical outcome variables to increment from 1 to the maximum number of outcome categories for each variable. \n \n") ret <- NULL}else { mframe1 <- model.frame(formula1,data,na.action=NULL) miss1=is.na(mframe1) ind.miss1=(apply(miss1,1,sum)>0) mframe2 <- model.frame(formula2,data,na.action=NULL) miss2=is.na(mframe2) ind.miss2=(apply(miss2,1,sum)>0) mframe1=mframe1[!(ind.miss1)& !(ind.miss2),] mframe2=mframe2[!(ind.miss1)& !(ind.miss2),] y <- model.response(mframe1) if (any(sapply(lapply(as.data.frame(y),table),length)==1)) { y <- y[,!(sapply(apply(y,2,table),length)==1)] cat("\n ALERT: at least one manifest variable contained only one outcome category, and has been removed from the analysis. \n \n") } x <- model.matrix(formula1,mframe1) z <- model.matrix(formula2,mframe2) if (ncol(z)==2){z <- array(z[,2],dim=c(dim(z)[1],1))}else {z <- z[,2:dim(z)[2]]} N <- nrow(y) J <- ncol(y) K.j <- t(matrix(apply(y,2,max))) if (length(unique(as.vector(K.j)))>1) { cat("\n ALERT: all manifest variables must have the same number of outcome categories. \n \n") ret <- NULL } R <- nclass S1 <- ncol(x) S2=ncol(z) eflag <- FALSE probs.start.ok <- TRUE ret <- list() ret$llik <- -Inf ret$attempts <- NULL for (repl in 1:nrep) { error <- TRUE; firstrun <- TRUE bet <- beta.init <- beta.start alph <- alpha.init <- alpha.start gamm <- gamma.init <- gamma.start if (beta.auto) { bet <- covLCA.initialBeta(y,R,x) beta.initAuto <- bet } if (alpha.auto) { alphgamm=covLCA.initialAlphaGamma(y,z,R,K.j,S2) alph <- alphgamm$Alpha alpha.initAuto <- alph } if (gamma.auto) { gamm <- alphgamm$Gamma gamma.initAuto <- gamm } while (error) { error <- FALSE if ((is.null(beta.start)&!beta.auto) | (!firstrun) | (repl>1)) { bet <- beta.init <- rnorm(S1*(R-1)) } if ((is.null(alpha.start)& !alpha.auto) | (!firstrun) | (repl>1)) { alph <- alpha.init <- array(data=rnorm(J*S2*(K.j[1]-1)),dim=c(J,S2*(K.j[1]-1))) } if ((is.null(gamma.start)& !gamma.auto) | (!firstrun) | (repl>1)) { gamm <- gamma.init <- array(data=rnorm(J*K.j[1]*R), dim=c(J,(K.j[1]-1)*R)) } prior <- covLCA.updatePrior(bet,x,R) probs <- covLCA.updateCond(alph,gamm,z,R,J,K.j,S2,N) iter <- 1 llik <- matrix(NA,nrow=maxiter,ncol=1) llik[iter] <- -Inf dll <- Inf while ((iter <= maxiter) & (dll > tol) & (!error)) { iter <- iter+1 cat("Iteration number ",iter,"\n") flush.console() cat("\n") rgivy <- covLCA.postClass(prior,probs,y,K.j) dd.bet <- covLCA.dQdBeta(rgivy,prior,x) bet <- bet + ginv(-dd.bet$hess) %*% dd.bet$grad prior <- covLCA.updatePrior(bet,x,R) for (m in 1:J) { dd.gam <- covLCA.dQdGamma(rgivy,probs,y,K.j,m) dd.alph <- covLCA.dQdAlpha(rgivy,probs,z,K.j,m,y,S2) dd.alph.gam <- covLCA.dQdAlphaGamma(rgivy,probs,z,K.j,m,S2) hess1=cbind(dd.gam$hess,dd.alph.gam) hess2=cbind(t(dd.alph.gam),dd.alph$hess) hess=rbind(hess1,hess2) new <- c(gamm[m,],alph[m,]) + ginv(-hess) %*% c(dd.gam$grad,dd.alph$grad) gamm[m,] <- new[1:dim(gamm)[2]] alph[m,] <- new[(dim(gamm)[2]+1):length(new)] } probs <- covLCA.updateCond(alph,gamm,z,R,J,K.j,S2,N) llik[iter] <- sum(log(rowSums(prior*covLCA.ylik(probs,y,K.j)))) cat("Llik=",llik[iter],"\n") dll <- llik[iter]-llik[iter-1] cat("dll=",dll,"\n") if (is.na(dll)) { error <- TRUE }else if ((S1>1) & (dll < -1e-7)) { error <- TRUE } } rgivy2 <- covLCA.postClass(prior,probs,y,K.j) if (!error) { if (calc.se) { ParamVar <- covLCA.paramVariance(prior,probs,rgivy2,R,S1,S2,J,K.j,x,y,z,N) } else { ParamVar <- NA } } else if (error) { eflag <- TRUE } firstrun <- FALSE } ret$attempts <- c(ret$attempts,llik[iter]) if (llik[iter] > ret$llik) { ret$llik <- llik[iter] ret$beta.start <- beta.init ret$alpha.start <- alpha.init ret$gamma.start <- gamma.init ret$beta.auto <- beta.auto ret$alpha.auto <- alpha.auto ret$gamma.auto <- gamma.auto if(beta.auto) ret$beta.initAuto <- beta.initAuto if(alpha.auto)ret$alpha.initAuto <- alpha.initAuto if(gamma.auto)ret$gamma.initAuto <- gamma.initAuto ret$probs <- probs ret$prior <- prior ret$posterior <- rgivy ret$posterior2 <- rgivy2 ret$predclass <- apply(ret$posterior,1,which.max) ret$P <- colMeans(ret$posterior) names(ret$P) <- paste("Latent class",1:R,sep=" ") ret$numiter <- iter-1 if (S1>1) { b <- matrix(bet,nrow=S1) rownames(b) <- colnames(x) colnames(b) <- paste(1:(R-1),"vs",R,sep=" ") ret$coeffBeta <- b ret$param.se <- sqrt(diag(ParamVar)) ret$param.V <- ParamVar } if (S2>=1) { g <- gamm rownames(g) <- colnames(y) colnames(g) <- paste("LC ",rep(seq(1,R),rep((K.j[1]-1),R)),", k=",rep(1:(K.j[1]-1),R),sep="") ret$coeffGamma <- g a <- alph rownames(a) <- colnames(y) colnames(a) <- paste("Var. ",rep(seq(1,S2),rep((K.j[1]-1),S2)),", k=",rep(1:(K.j[1]-1),S2),sep="") ret$coeffAlpha <- a ret$meanProbs=covLCA.meanCond(a,g,z,J,K.j,R,S2,N) dimnames(ret$meanProbs)[[1]]=colnames(y) dimnames(ret$meanProbs)[[2]]=paste("Pr(",1:K.j[1],")",sep="") dimnames(ret$meanProbs)[[3]]=paste("Latent class",1:R,sep=" ") } ret$eflag <- eflag } if (nrep>1 & verbose) { cat("Model ",repl,": llik = ",llik[iter]," ... best llik = ",ret$llik,"\n",sep=""); flush.console() } } ret$npar <- S1*(R-1)+S2*J*(K.j[1]-1)+J*(K.j[1]-1)*R ret$aic <- (-2 * ret$llik) + (2 * ret$npar) ret$bic <- (-2 * ret$llik) + (log(N) * ret$npar) ret$Nobs <- sum(rowSums(y==0)==0) ret$identifiability <- covLCA.identifiability(J,K.j,R,x,z,ret$npar,ret$coeffAlpha,ret$coeffBeta,ret$coeffGamma) ret$y <- data.frame(y) ret$x <- data.frame(x) ret$z <- data.frame(z) ret$N <- N ret$maxiter <- maxiter if (ret$numiter==ret$maxiter) cat("ALERT: iterations finished, MAXIMUM LIKELIHOOD NOT FOUND \n \n") ret$resid.df <- min(ret$N,(prod(K.j)-1))-ret$npar class(ret) <- "covLCA" ret$time <- Sys.time()-starttime } return(ret) }
.plotSpace <- function(asp=1, legend.mar = 3.1, legend.width = 0.5, legend.shrink = 0.5) { pars <- graphics::par() char.size <- pars$cin[1] / pars$din[1] offset <- char.size * pars$mar[4] legend.width <- char.size * legend.width legend.mar <- legend.mar * char.size legendPlot <- pars$plt legendPlot[2] <- 1 - legend.mar legendPlot[1] <- legendPlot[2] - legend.width pr <- (legendPlot[4] - legendPlot[3]) * ((1 - legend.shrink)/2) legendPlot[4] <- legendPlot[4] - pr legendPlot[3] <- legendPlot[3] + pr bp <- pars$plt bp[2] <- min(bp[2], legendPlot[1] - offset) aspbp = (bp[4]-bp[3]) / (bp[2]-bp[1]) adj = aspbp / asp if (adj < 1) { adjust = (bp[4]-bp[3]) - ((bp[4]-bp[3]) * adj) } else { adjust = (bp[4]-bp[3]) / adj - ((bp[4]-bp[3])) } adjust <- adjust / 2 bp[3] <- bp[3] + adjust bp[4] <- bp[4] - adjust dp <- legendPlot[2] - legendPlot[1] legendPlot[1] <- min(bp[2] + 0.5 * offset, legendPlot[1]) legendPlot[2] <- legendPlot[1] + dp return(list(legendPlot = legendPlot, mainPlot = bp)) } .plotLegend <- function(z, col, legend.at='classic', lab.breaks = NULL, axis.args = NULL, legend.lab = NULL, legend.args = NULL, ...) { horizontal=FALSE ix <- 1 zlim <- range(z, na.rm = TRUE, finite=TRUE) zrange <- zlim[2]-zlim[1] if (zrange > 10) { decs <- 0 } else if (zrange > 1) { decs <- 1 } else { decs <- ceiling(abs(log10(zrange)) + 1) } pow <- 10^decs minz <- floor(zlim[1] * pow) / pow maxz <- ceiling(zlim[2] * pow) / pow zrange <- maxz - minz nlevel = length(col) binwidth <- c(0, 1:nlevel * (1/nlevel)) iy <- minz + zrange * binwidth iz <- matrix(iy, nrow = 1, ncol = length(iy)) breaks <- list(...)$breaks if (!is.null(breaks) & !is.null(lab.breaks)) { axis.args <- c(list(side = ifelse(horizontal, 1, 4), mgp = c(3, 1, 0), las = ifelse(horizontal, 0, 2), at = breaks, labels = lab.breaks), axis.args) } else { if (legend.at == 'quantile') { z <- z[is.finite(z)] at = stats::quantile(z, names=F, na.rm=TRUE) axis.args <- c(list(side = ifelse(horizontal, 1, 4), mgp = c(3, 1, 0), las = ifelse(horizontal, 0, 2), at=at), axis.args) } else { at <- graphics::axTicks(2, c(minz, maxz, 4)) } at <- round(at, decs) axis.args <- c(list(side = ifelse(horizontal, 1, 4), mgp = c(3, 1, 0), las = ifelse(horizontal, 0, 2), at=at), axis.args) } if (!horizontal) { if (is.null(breaks)) { image(ix, iy, iz, xaxt="n", yaxt="n", xlab = "", ylab = "", col = col) } else { image(ix, iy, iz, xaxt="n", yaxt="n", xlab = "", ylab = "", col = col, breaks = breaks) } } else { if (is.null(breaks)) { image(iy, ix, t(iz), xaxt = "n", yaxt = "n", xlab = "", ylab = "", col = col) } else { image(iy, ix, t(iz), xaxt = "n", yaxt = "n", xlab = "", ylab = "", col = col, breaks = breaks) } } axis.args = c(axis.args, cex.axis=0.75, tcl=-0.15, list(mgp=c(3, 0.4, 0)) ) do.call("axis", axis.args) graphics::box() if (!is.null(legend.lab)) { legend.args <- list(text = legend.lab, side=3, line=0.75) } if (!is.null(legend.args)) { } } .plot2 <- function(x, maxpixels=100000, col=rev(terrain.colors(25)), xlab='', ylab='', asp, box=TRUE, add=FALSE, legend=TRUE, legend.at='', ...) { if (!add & missing(asp)) { if (couldBeLonLat(x)) { ym <- mean(x@extent@ymax + x@extent@ymin) asp <- min(5, 1/cos((ym * pi)/180)) } else { asp = 1 } } plotArea <- .plotSpace(asp) x <- sampleRegular(x, maxpixels, asRaster=TRUE, useGDAL=TRUE) xticks <- graphics::axTicks(1, c(xmin(x), xmax(x), 4)) yticks <- graphics::axTicks(2, c(ymin(x), ymax(x), 4)) if (xres(x) %% 1 == 0) xticks = round(xticks) if (yres(x) %% 1 == 0) yticks = round(yticks) y <- yFromRow(x, nrow(x):1) z <- t((getValues(x, format='matrix'))[nrow(x):1,]) x <- xFromCol(x,1:ncol(x)) if (add) { image(x=x, y=y, z=z, col=col, axes=FALSE, xlab=xlab, ylab=ylab, add=TRUE, ...) } else { if (legend) { graphics::par(pty = "m", plt=plotArea$legendPlot, err = -1) .plotLegend(z, col, legend.at=legend.at, ...) graphics::par(new=TRUE, plt=plotArea$mainPlot) } image(x=x, y=y, z=z, col=col, axes=FALSE, xlab=xlab, ylab=ylab, asp=asp, ...) graphics::axis(1, at=xticks, cex.axis=0.67, tcl=-0.3, mgp=c(3, 0.25, 0)) las = ifelse(max(nchar(as.character(yticks)))> 5, 0, 1) graphics::axis(2, at=yticks, las = las, cex.axis=0.67, tcl=-0.3, mgp=c(3, 0.75, 0) ) if (box) graphics::box() } }
expected <- eval(parse(text="c(NA, 1, 0, 0, NA, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0)")); test(id=0, code={ argv <- eval(parse(text="list(structure(c(FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, NA, TRUE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, TRUE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, FALSE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, NA, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE), .Dim = c(16L, 16L), .Dimnames = list(NULL, NULL)), 16, 16, FALSE)")); .Internal(rowSums(argv[[1]], argv[[2]], argv[[3]], argv[[4]])); }, o=expected);
polycFast <- function(x,y,w,ML=FALSE) { lnl <- function(xytab, cc, rc, corr) { cc <- c(-Inf, cc, Inf) rc <- c(-Inf, rc, Inf) pm <- sapply(1:(length(cc)-1), function(c) { sapply(1:(length(rc)-1), function(r) { biv.nt.prob(df=Inf, lower=c(cc[c], rc[r]), upper=c(cc[c+1], rc[r+1]), mean=c(0,0), S=matrix(c(1,corr,corr,1), nrow=2, ncol=2, byrow=TRUE)) }) }) lnlFast(xytab, pm) } optf_all <- function(par, xytab) { c1 <- ncol(xytab)-1 c2 <- c1 + nrow(xytab)-1 -1 * lnl(xytab, cc=fscale_cutsFast(par[1:c1]), rc=fscale_cutsFast(par[(c1+1):c2]), corr=fscale_corr(par[length(par)] )) } optf_corr <- function(par, xytab, theta1, theta2) { c1 <- ncol(xytab)-1 c2 <- c1 + nrow(xytab)-1 -1 * lnl(xytab, cc=fscale_cutsFast(theta2), rc=fscale_cutsFast(theta1), corr=fscale_corr(par)) } fscale_corr <- function(par) { tanh(par) } xytab <- tableFast(x,y,w) temp <- discord(xytab) if(temp==-1 | temp == 1) return(temp) ux <- sort(unique(x)) cut1 <- imapThetaFast( sapply(ux[-length(ux)],function(z) qnorm(sum(w[x<=z])/sum(w)) )) uy <- sort(unique(y)) cut2 <- imapThetaFast( sapply(uy[-length(uy)],function(z) qnorm(sum(w[y<=z])/sum(w)) )) cor0 <- atanh(cor(as.numeric(x),as.numeric(y))) if(ML) { bob <- bobyqa(c(cut1,cut2,cor0), fn=optf_all, xytab=xytab) return(fscale_corr(bob$par[length(bob$par)])) } else { opt <- optimize(optf_corr, interval=cor0+c(-3,3), xytab=xytab, theta1=cut1,theta2=cut2) return( fscale_corr(opt$minimum)) } }
cdn_cooper<-function(order){ x<-get_cooper(order) if(is.null(x$m)==F){ if(is.null(x$n)==F) ret_value<-11 return(ret_value) }else return(NULL) }
isPositiveNumberOrInfVector <- function(argument, default = NULL, stopIfNot = FALSE, n = NA, message = NULL, argumentName = NULL) { checkarg(argument, "N", default = default, stopIfNot = stopIfNot, nullAllowed = FALSE, n = NA, zeroAllowed = TRUE, negativeAllowed = FALSE, positiveAllowed = TRUE, nonIntegerAllowed = TRUE, naAllowed = FALSE, nanAllowed = FALSE, infAllowed = TRUE, message = message, argumentName = argumentName) }
roofDiff = function(image, bandwidth, blur = FALSE){ if (!is.matrix(image)) stop("image data must be a matrix") n1 = as.integer(dim(image)[1]) n2 = as.integer(dim(image)[2]) if (n1 != n2) stop("image data must be a square matrix") if (!is.numeric(bandwidth)) stop("bandwidth must be numeric") if (as.integer(bandwidth) < 1) stop("bandwidth must be a positive integer") if (length(bandwidth) != 1) stop("bandwidth must be a positive integer") if (n1 + 2 * bandwidth + 2 > 600) stop("bandwidth is too large or the resolution of the image is too high.") n1 = dim(image)[1] z = matrix(as.double(image), ncol = n1) k = as.integer(bandwidth) if (blur == FALSE) { out = .Fortran('roofDiff_denoise', n = as.integer(n1 - 1), obsImg = z, bandwidth = as.integer(k), diff = z) } else { out = .Fortran('roofDiff_deblur', n = as.integer(n1 - 1), obsImg = z, bandwidth = as.integer(k), diff = z) } return(out$diff) }
`pvalcombination` <- function(esets, classes, moderated=c("limma","SMVar","t")[1],BHth=0.05) { nbstudies=length(esets) if (!(moderated %in% c("limma","SMVar","t"))) { print("Wrong argument for \"moderated\" in pvalcombi->by default, limma moderated t-tests will be used") moderated="limma" } if (nbstudies != length(classes)) stop("Length of classes must be equal to length of esets.") for (i in 1:nbstudies) { if(length(which(apply(esets[[i]],1,FUN=function(x) sum(is.na(x)))[1:10]==dim(esets[[i]])[2]))!=0) {stop("Please delete genes with complete missing data in at least one of the studies. Only missing at random values are allowed in this package")} if (!is.factor(classes[[i]])) { classes[[i]] <- factor(classes[[i]]) } if (nlevels(classes[[i]]) != 2) { stop("Error: Each list in the argument \"classes\" must contain exactly 2 levels.") } else { Ref <- levels(classes[[i]])[1] classes[[i]] <- sapply(classes[[i]], function(x) ifelse(x == Ref, 0, 1)) } } listgd=vector("list", (nbstudies+3)) if (moderated=="limma") { for (i in 1:nbstudies) { group <- as.factor(classes[[i]]) design <- model.matrix(~-1 + group) fit = lmFit(esets[[i]], design) contrast.matrix <- makeContrasts("group0 - group1", levels = design) fit2i <- contrasts.fit(fit, contrast.matrix) fit2i <- eBayes(fit2i) listgd[[i]]=which(p.adjust(fit2i$p.value,method="BH")<=BHth) p1sidedLimma=pt(fit2i$t,df=(fit2i$df.prior+fit2i$df.residual)) assign(paste("p1sidedLimma",i,sep=""),p1sidedLimma) } tempvec=paste("p1sidedLimma",1:nbstudies,sep="") } if (moderated=="SMVar") { for (i in 1:nbstudies) { tempC1=esets[[i]][,which(classes[[i]]==1)] tempC2=esets[[i]][,which(classes[[i]]==0)] stati=as.data.frame(SMVar.unpaired(paste("gene",rep(1:dim(tempC1)[1],1),sep=""), list(tempC1,tempC2),threshold=BHth)) listgd[[i]]=stati$GeneId[which(stati$AdjPValue<=BHth)] p1sidedSMVartemp=as.vector(pt(stati$TestStat,stati$DegOfFreedom)) p1sidedSMVar=p1sidedSMVartemp[order(stati$GeneId)] assign(paste("p1sidedSMVar",i,sep=""),p1sidedSMVar) } tempvec=paste("p1sidedSMVar",1:nbstudies,sep="") } if (moderated=="t") { for (i in 1:nbstudies) { sti=row.ttest.stat(esets[[i]][,which(classes[[i]]==1)], esets[[i]][,which(classes[[i]]==0)]) p1sidedsti=pt(sti,df=(length(classes[[i]])-2)) assign(paste("p1sidedst",i,sep=""),p1sidedsti) rpvalsti=2*(1-pt(abs(sti),df=(length(classes[[i]])-2))) listgd[[i]]=which(p.adjust(rpvalsti,method="BH")<=BHth) } tempvec=paste("p1sidedst",1:nbstudies,sep="") } lsinglep=lapply(tempvec,FUN=function(x) get(x,inherits=TRUE)) nrep=unlist(lapply(classes,FUN=function(x)length(x))) listgd[[(nbstudies+1)]]=unique(unlist(listgd[1:nbstudies])) restempdirect=directpvalcombi(lsinglep,nrep,BHth) listgd[[(nbstudies+2)]]=restempdirect$DEindices listgd[[(nbstudies+3)]]=restempdirect$TestStatistic names(listgd)=c(paste("study",1:nbstudies,sep=""),"AllIndStudies","Meta","TestStatistic") restemp=IDDIRR(listgd$Meta,listgd$AllIndStudies) print(restemp) invisible(listgd) }
setClass( "ODBCResult", contains = "DBIResult", slots= list( connection="ODBCConnection", sql="character", state="environment" ) ) is_done <- function(x) { x@state$is_done } `is_done<-` <- function(x, value) { x@state$is_done <- value x } setMethod("dbFetch", "ODBCResult", function(res, n = -1, ...) { result <- sqlQuery(res@connection@odbc, res@sql, max=ifelse(n==-1, 0, n)) is_done(res) <- TRUE result }) setMethod("dbHasCompleted", "ODBCResult", function(res, ...) { is_done(res) }) setMethod("dbClearResult", "ODBCResult", function(res, ...) { name <- deparse(substitute(res)) is_done(res) <- FALSE TRUE }) NULL setMethod("dbGetRowCount", "ODBCResult", function(res, ...) { df <- sqlQuery(res@connection@odbc, res@sql) nrow(df) }) setMethod("dbGetStatement", "ODBCResult", function(res, ...) { res@sql }) setMethod("dbGetInfo", "ODBCResult", function(dbObj, ...) { dbGetInfo(dbObj@connection) }) setMethod("dbColumnInfo", "ODBCResult", function(res, ...) { df <- sqlQuery(res@connection@odbc, res@sql, max=1) data_type <- sapply(df, class) data.frame( name=colnames(df), data.type=data_type, field.type=-1, len=-1, precision=-1, scale=-1, nullOK=sapply(df, function(x){any(is.null(x))}) ) })
tam_linking_function_haebara_loss <- function(x, type, pow_rob_hae=1, eps=1e-4) { if (type=="Hae"){ y <- x^2 } if (type=="RobHae"){ y <- (x^2 + eps)^(pow_rob_hae/2) } return(y) }
qat_call_lim_rule <- function(measurement_vector, workflowlist_part, element=-999, time=NULL, height= NULL, lat=NULL, lon=NULL, vec1=NULL,vec2=NULL,vec3=NULL,vec4=NULL,resultlist=list(), resultlistcounter=1) { if(!is.null(workflowlist_part$minimum_vector) || !is.null(workflowlist_part$maximum_vector)) { if (is.null(workflowlist_part$minimum_vector)) { min_vec <- measurement_vector - 1 } else { if(workflowlist_part$minimum_vector=='vec1') { min_vec <- vec1 } if(workflowlist_part$minimum_vector=='vec2') { min_vec <- vec2 } if(workflowlist_part$minimum_vector=='vec3') { min_vec <- vec3 } if(workflowlist_part$minimum_vector=='vec4') { min_vec <- vec4 } } if (is.null(workflowlist_part$maximum_vector)) { max_vec <- measurement_vector + 1 } else { if(workflowlist_part$maximum_vector=='vec1') { max_vec <- vec1 } if(workflowlist_part$maximum_vector=='vec2') { max_vec <- vec2 } if(workflowlist_part$maximum_vector=='vec3') { max_vec <- vec3 } if(workflowlist_part$maximum_vector=='vec4') { max_vec <- vec4 } } if (is.null(dim(measurement_vector))) { resultlist[[resultlistcounter <- resultlistcounter+1]] <- list(element=element, method='lim_dynamic', result =qat_analyse_lim_rule_dynamic_1d(measurement_vector, min_vec, max_vec,workflowlist_part$minimum_vector_name, workflowlist_part$maximum_vector_name, workflowlist_part$minimum_vector, workflowlist_part$maximum_vector)) } if (length(dim(measurement_vector))==2) { resultlist[[resultlistcounter <- resultlistcounter+1]] <- list(element=element, method='lim_dynamic', result =qat_analyse_lim_rule_dynamic_2d(measurement_vector, min_vec, max_vec,workflowlist_part$minimum_vector_name, workflowlist_part$maximum_vector_name, workflowlist_part$minimum_vector, workflowlist_part$maximum_vector)) } } if(!is.null(workflowlist_part$minimum_value) || !is.null(workflowlist_part$maximum_value)) { if (is.null(workflowlist_part$minimum_value)) { min_val <- min(measurement_vector) - 1 } else { min_val <- as.numeric(workflowlist_part$minimum_value) } if (is.null(workflowlist_part$maximum_value)) { max_val <- max(measurement_vector) + 1 } else { max_val <- as.numeric(workflowlist_part$maximum_value) } if (mode(min_val)=="list") { min_val <- as.numeric(min_val$value) } if (mode(max_val)=="list") { max_val <- as.numeric(max_val$value) } if (is.null(dim(measurement_vector))) { resultlist[[resultlistcounter <- resultlistcounter+1]] <- list(element=element, method='lim_static', result=qat_analyse_lim_rule_static_1d(measurement_vector, min_val, max_val)) } if (length(dim(measurement_vector))==2) { resultlist[[resultlistcounter <- resultlistcounter+1]] <- list(element=element, method='lim_static', result=qat_analyse_lim_rule_static_2d(measurement_vector, min_val, max_val)) } } if(!is.null(workflowlist_part$sigma_factor)) { sigma_factor <- as.numeric(workflowlist_part$sigma_factor) if (mode(sigma_factor)=="list") { sigma_factor <- as.numeric(as.character(workflowlist_part$sigma_factor)[6]) } if (is.null(dim(measurement_vector))) { resultlist[[resultlistcounter <- resultlistcounter+1]] <- list(element=element, method='lim_sigma', result=qat_analyse_lim_rule_sigma_1d(measurement_vector,sigma_factor)) } if (length(dim(measurement_vector)) ==2) { resultlist[[resultlistcounter <- resultlistcounter+1]] <- list(element=element, method='lim_sigma', result=qat_analyse_lim_rule_sigma_2d(measurement_vector,sigma_factor)) } } return(resultlist) }
rf_prep <- function(x, y,...){ rf <- randomForest(x, y, localImp = TRUE, proximity = TRUE, ...) return(list(rf = rf, x = x, y = y)) }
download.file2 <- function(...) { Call <- as.list(match.call(download.file)) Call[[1]] <- as.symbol("download.file") the_url <- eval.parent(Call[["url"]]) Call[["url"]] <- the_url Call[["quiet"]] <- TRUE destfile <- eval.parent(Call[["destfile"]]) tmpfile <- tempfile() on.exit(unlink(tmpfile)) Call[["destfile"]] <- tmpfile retval <- try(eval.parent(as.call(Call)), silent = TRUE) if (inherits(retval, "try-error") || retval != 0 || !file.exists(tmpfile) || file.info(tmpfile)[["size"]] == 0) { success <- FALSE for (method in c("wget", "curl")) { sw <- Sys.which(method) if (is.na(sw) || !grepl(method, sw, fixed = TRUE)) { next } Call[["method"]] <- method retval <- try(eval.parent(as.call(Call)), silent = TRUE) if (!inherits(retval, "try-error") && retval == 0 && file.exists(tmpfile) && file.info(tmpfile)[["size"]] > 0) { success <- TRUE break } } if (!success && !inherits(try(loadNamespace("RCurl"), silent = TRUE), "try-error")) { bytes <- try(RCurl::getBinaryURL(the_url), silent = TRUE) if (!inherits(bytes, "try-error")) { if (length(bytes) == 0L && grepl("^[hH][tT][tT][pP]:", the_url)) { url2 <- sub("^[hH][tT][tT][pP]", "https", the_url) bytes <- try(RCurl::getBinaryURL(url2), silent = TRUE) } if (!inherits(bytes, "try-error") && length(bytes) > 0L) { writeBin(bytes, tmpfile) success <- TRUE } } } } else { success <- TRUE } if (success) { file.copy(tmpfile, destfile, overwrite = TRUE) invisible(0) } else { warning(gettextf("could not download %s", the_url), domain = NA) invisible(1) } } fromJSON2 <- function(...) { Call <- as.list(match.call(fromJSON)) Call[[1]] <- as.symbol("fromJSON") the_url <- eval.parent(Call[["content"]]) tmpfile <- tempfile() on.exit(unlink(tmpfile)) stopifnot(download.file2(the_url, tmpfile) == 0) Call[["content"]] <- tmpfile eval.parent(as.call(Call)) } read.xkcd <- function(file = NULL) { if(!is.null(file) && file.exists(file)) { xkcd <- file } else { path <- system.file("xkcd", package = "RXKCD") datafiles <- list.files(path) if(!is.null(file) && file.exists(file.path(path, file))) { xkcd <- file.path(path, file) } else { if(!is.null(file)) stop("sorry, ", sQuote(file), " not found") file <- datafiles xkcd <- file.path(path, file) } } out <- readRDS(xkcd) return(out) } load.xkcd <- function(file = NULL) { if(!is.null(file) && file.exists(file)) { xkcd <- file } else { path <- system.file("xkcd", package = "RXKCD") datafiles <- list.files(path) if(!is.null(file) && file.exists(file.path(path, file))) { xkcd <- file.path(path, file) } else { if(!is.null(file)) stop("sorry, ", sQuote(file), " not found") file <- datafiles xkcd <- file.path(path, file) } } out <-readRDS(xkcd) return(out) } updateConfig <- function(){ home <- Sys.getenv("HOME") if( !file.exists( paste(home, ".Rconfig/rxkcd.rda", sep="/") ) ) { stop("Use saveConfig() to save your xkcd database locally!") } else xkcd.df <- readRDS( paste(home, ".Rconfig/rxkcd.rda", sep="/") ) from <- dim(xkcd.df)[[1]] current <- getXKCD("current", display=FALSE) if ( current$num == xkcd.df$id[dim(xkcd.df)[[1]]] ) stop("Your local xkcd is already updated!") tmp <- NULL for( i in c((from+1):(current$num)) ){ if (is.null(tmp)) tmp <- data.frame(unclass(getXKCD(i, display=FALSE))) else tmp <- plyr::rbind.fill(tmp, data.frame(unclass(getXKCD(i, display=FALSE)))) } xkcd2add <- cbind( "id"=unlist(tmp[["num"]]), "img"=unlist(tmp[["img"]]), "title"=unlist(tmp[["title"]]), "month"=unlist(tmp[["month"]]), "num"=unlist(tmp[["num"]]), "link"=unlist(tmp[["link"]]), "year"=unlist(tmp[["year"]]), "news"=unlist(tmp[["news"]]), "safe_title"=unlist(tmp[["safe_title"]]), "transcript"=unlist(tmp[["transcript"]]), "alt"=unlist(tmp[["alt"]]), "day"=unlist(tmp[["day"]]) ) suppressWarnings(xkcd2add <- data.frame(xkcd2add)) xkcd.updated <- rbind(xkcd.df,xkcd2add) xkcd.updated <- plyr::rbind.fill(xkcd.df,xkcd2add) xkcd.df <- xkcd.updated saveRDS( xkcd.df, file=paste(home, ".Rconfig/rxkcd.rda", sep="/") , compress=TRUE) } saveConfig <- function(){ home <- Sys.getenv("HOME") if( file.exists( paste(home, ".Rconfig/rxkcd.rda", sep="/") ) ) stop("Use updateConfig() for updating your local xkcd database") else { dir.create( paste(home, ".Rconfig", sep="/") ) xkcd.df <- read.xkcd() saveRDS( xkcd.df, file=paste(home, ".Rconfig/rxkcd.rda", sep="/") , compress=TRUE) } } searchXKCD <- function(which="significant"){ xkcd.df <- NULL home <- Sys.getenv("HOME") if( file.exists( paste(home, ".Rconfig/rxkcd.rda", sep="/") ) ) { tryCatch(readRDS( paste(home, ".Rconfig/rxkcd.rda", sep="/")), error = function(e) { e$message <- paste0(e$message, "(RXKCD < 1.9) archive input format! You need to delete", home, "/.Rconfig/rxkcd.rda by typing, for example, file.remove('~/.Rconfig/rxkcd.rda')") stop(e) }) xkcd.df <- readRDS( paste(home, ".Rconfig/rxkcd.rda", sep="/")) } else xkcd.df <- read.xkcd() if(is.character(which)) { if(length(which) > 1) which <- sample(which) which.tt <- grep(which, xkcd.df["title"][[1]], ignore.case = TRUE, useBytes = TRUE) which.tr <- grep(which, xkcd.df["transcript"][[1]], ignore.case =TRUE, useBytes = TRUE) which.all <- unique(c(which.tr, which.tt)) } out <- data.frame(num=xkcd.df[which.all, "num"], title=xkcd.df[which.all, "title"]) return(out) } getXKCD <- function(which = "current", display = TRUE, html = FALSE, saveImg = FALSE) { if (which=="current") xkcd <- fromJSON2("https://xkcd.com/info.0.json") else if(which=="random" || which=="") { current <- fromJSON2("https://xkcd.com/info.0.json") num <- sample(1:current["num"][[1]], 1) xkcd <- fromJSON2(paste("https://xkcd.com/",num,"/info.0.json",sep="")) } else xkcd <- fromJSON2(paste("https://xkcd.com/",which,"/info.0.json",sep="")) class(xkcd) <- "rxkcd" if(html) { display <- FALSE browseURL( paste("https://xkcd.com/", as.numeric(xkcd["num"][[1]]),sep="") ) } if (display || saveImg) { if(grepl(".png",xkcd["img"][[1]])){ download.file2(url=xkcd["img"][[1]], quiet=TRUE, mode="wb", destfile=paste(tempdir(),"xkcd.png",sep="/")) xkcd.img <- readPNG( paste(tempdir(),"xkcd.png",sep="/") ) } else if(grepl(".jpg",xkcd["img"][[1]])){ download.file2(url=xkcd["img"][[1]], quiet=TRUE, mode="wb", destfile=paste(tempdir(),"xkcd.jpg",sep="/")) xkcd.img <- readJPEG( paste(tempdir(),"xkcd.jpg",sep="/") ) } else stop("Unsupported image format! Try html = TRUE") if(display){ img_dim <- dim(xkcd.img) plot(c(0, img_dim[2]), c(0, img_dim[1]), type = "n", axes = FALSE, asp = 1, xaxs = "i", yaxs = "i", xaxt = "n", yaxt = "n", xlab = "", ylab = "") rasterImage(xkcd.img, xleft = 0, ybottom = 0, xright = img_dim[2], ytop = img_dim[1]) } if(saveImg) writePNG( image=xkcd.img, target=paste(xkcd$title,".png",sep="") ) } return(xkcd) } print.rxkcd <- function(x, ...){ cat("image.url = ", x$img, "\n", sep="") cat("title = ", x$title, "\n", sep="") cat("num = ", x$num, "\n", sep="") cat("year = ", x$year, "\n", sep="") cat("transcript = ", x$transcript,"\n", sep="") cat("alt = ", x$alt, "\n", sep="") }
bare_combine <- function(){ dados_documento = rstudioapi::getActiveDocumentContext() texto = dados_documento$selection[[1]]$text while(endsWith(texto,"\n")){ texto = stringr::str_sub(texto,end=-2) } while(endsWith(texto," ")){ texto = stringr::str_sub(texto,end=-1) } if(stringr::str_detect(texto,stringr::fixed("\n"))){ texto = stringr::str_split(texto,stringr::fixed("\n"))[[1]] if(sum(stringr::str_detect(texto,stringr::fixed(";"))) > 0){ texto = stringr::str_split(texto,stringr::fixed(";")) } else if(sum(stringr::str_detect(texto,stringr::fixed(","))) > 0){ texto = stringr::str_split(texto,stringr::fixed(",")) } } else if(stringr::str_detect(texto,stringr::fixed(";"))){ texto = stringr::str_split(texto,stringr::fixed(";")) } else if(stringr::str_detect(texto,stringr::fixed(","))){ texto = stringr::str_split(texto,stringr::fixed(",")) } else if(stringr::str_detect(texto,stringr::fixed(" "))){ texto = stringr::str_split(texto,stringr::fixed(" ")) } texto = stringr::str_trim(purrr::as_vector(texto)) df = data.frame(texto) df = dplyr::filter(df,texto != "") string = 'c("' for (i in 1:length(df$texto)){ if(i!=1){ string=stringr::str_c(string,', "') } string = stringr::str_c(string,df[i,1]) string = stringr::str_c(string,'"') } string = stringr::str_c(string,")") rstudioapi::insertText(text = string, id = NULL) }
exceedance.ci <- function(statistic.sim.obj, conf.level = .95, type = "null") { alternative <- statistic.sim.obj$alternative cv <- statistic.cv(statistic.sim.obj, conf.level = conf.level) if(alternative == "less") { if(type == "null") { set <- which(statistic.sim.obj$statistic >= cv) }else { set <- which(statistic.sim.obj$statistic < cv) } }else if(alternative == "greater") { if(type == "null") { set <- which(statistic.sim.obj$statistic <= cv) }else { set <- which(statistic.sim.obj$statistic > cv) } } else { if(type == "null") { set <- which(statistic.sim.obj$statistic <= cv) }else { set <- which(statistic.sim.obj$statistic > cv) } } return(set) }
suppressPackageStartupMessages(library("argparse")) parser = ArgumentParser() parser$add_argument("--infercnv_obj", help="infercnv_obj file", required=TRUE, nargs=1) args = parser$parse_args() library(infercnv) library(ggplot2) library(dplyr) infercnv_obj_file = args$infercnv_obj infercnv_obj = readRDS(infercnv_obj_file) if (! is.null([email protected])) { hspike_obj = [email protected] pdf(paste0(infercnv_obj_file, '.hspike.dist_by_numcells.pdf')) gene_expr_by_cnv <- infercnv:::.get_gene_expr_by_cnv(hspike_obj) cnv_level_to_mean_sd = list() for (ncells in c(1,2,3,4,5,10,20,50,100)) { cnv_to_means = list() cnv_mean_sd = list() for (cnv_level in names(gene_expr_by_cnv) ) { expr_vals = gene_expr_by_cnv[[ cnv_level ]] nrounds = 100 means = c() for(i in 1:nrounds) { vals = sample(expr_vals, size=ncells, replace=T) m_val = mean(vals) means = c(means, m_val) } cnv_to_means[[ cnv_level ]] = means cnv_mean_sd[[ cnv_level ]] = list(sd=sd(means), mean=mean(means)) } df = do.call(rbind, lapply(names(cnv_to_means), function(x) { data.frame(cnv=x, expr=cnv_to_means[[x]]) })) p = df %>% ggplot(aes(expr, fill=cnv, colour=cnv)) + geom_density(alpha=0.1) p = p + stat_function(fun=dnorm, color='black', args=list('mean'=cnv_mean_sd[["cnv:0.01"]]$mean,'sd'=cnv_mean_sd[["cnv:0.01"]]$sd)) + stat_function(fun=dnorm, color='black', args=list('mean'=cnv_mean_sd[["cnv:0.5"]]$mean,'sd'=cnv_mean_sd[["cnv:0.5"]]$sd)) + stat_function(fun=dnorm, color='black', args=list('mean'=cnv_mean_sd[["cnv:1"]]$mean,'sd'=cnv_mean_sd[["cnv:1"]]$sd)) + stat_function(fun=dnorm, color='black', args=list('mean'=cnv_mean_sd[["cnv:1.5"]]$mean,'sd'=cnv_mean_sd[["cnv:1.5"]]$sd)) + stat_function(fun=dnorm, color='black', args=list('mean'=cnv_mean_sd[["cnv:2"]]$mean,'sd'=cnv_mean_sd[["cnv:2"]]$sd)) + stat_function(fun=dnorm, color='black', args=list('mean'=cnv_mean_sd[["cnv:3"]]$mean,'sd'=cnv_mean_sd[["cnv:3"]]$sd)) p = p + ggtitle(sprintf("num cells: %g", ncells)) plot(p) } dev.off() } else { message("no hspike to plot") }
setClass("covastat", slots = c(G = "matrix", cova.h = "matrix", cova.u = "matrix", f.G = "array", B = "array", A = "matrix", typetest = "character")) covastat <- function(matdata, pardata1, pardata2, stpairs, typetest = "sym") { is.wholenumber <- function(x, tol = .Machine$double.eps^0.5) {abs(x - round(x)) < tol} is.scalar <- function (x){length(x) == 1L && is.vector(x, mode = "numeric")} if (is.scalar(pardata1) == FALSE || is.scalar(pardata2) == FALSE) { message("Start error message. Some of the arguments are not numeric.") stop("End error message. Stop running.") } if(pardata1 != as.integer(pardata1) || pardata2 != as.integer(pardata2)){ pardata1 <- as.integer(pardata1) pardata2 <- as.integer(pardata2) message("Warning message: the arguments expected to be integer are forced to be integer numbers.") } if (!inherits(stpairs, "couples")){ message("Start error message. stpairs argument has to be of class couples.") stop("End error message. Stop running.") } if(stpairs@typetest != typetest){ message("Warning message: the argument typetest is different from the one defined in stpairs.") } selstaz <- [email protected] couples <- [email protected] nstaz <- length(selstaz) if (is.character(typetest) == FALSE) { message("Start error message. The argument for typetest is not admissible.") stop("End error message. Stop running.") } if (typetest != "sym" && typetest != "sep" && typetest != "tnSep") { message("Start error message. The argument for typetest is not admissible.") stop("End error message. Stop running.") } if (typetest == "sym") { type.test <- 0 }else{if (typetest == "sep"){ type.test <- 1 }else{ type.test <- 2 } } if (class(matdata) == "matrix" || class(matdata) == "data.frame") { iclsp.id <- as.integer(pardata1) iclvr <- as.integer(pardata2) } info.na <- NA info.nna29 <- NA info.nna89 <- NA if (is.vector(selstaz) && length(selstaz) >= 2) { for (i in 1:length(selstaz)) { if (class(matdata) == "matrix" || class(matdata) == "data.frame") { if (is.numeric(matdata[, iclvr]) == TRUE) { if (i == 1) { selstaz.names <- matdata[, iclsp.id] selstaz.inter <- intersect(selstaz.names, selstaz) if (length(selstaz.inter) != length(selstaz)) { message("Start error message. No data for some of the selected spatial points. Please go back to the function 'couples' and revise the vector of the selected spatial points.") stop("End error message. Stop running.") } } datistaz <- matdata[matdata[, iclsp.id] == selstaz[i], iclvr] } else { message("Start error message. Check the column in which the values of the variable are stored. Data must be numeric.") stop("End error message. Stop running.") } } else { if (class(matdata) == "STFDF") { if (i == 1) { selstaz.names <- row.names(matdata@sp) selstaz.inter <- intersect(selstaz.names, selstaz) if (length(selstaz.inter) != length(selstaz)) { message("Start error message. No data for some of the selected spatial points. Please go back to the function 'couples' and revise the vector of the selected spatial points.") stop("End error message. Stop running.") } nvr <- as.integer(pardata1) iclvr <- as.integer(pardata2) if (nvr == 1) { iclvr <- 1 } } datistaz <- matrix(matdata[selstaz[i], ], ncol = (1 + nvr))[, iclvr] } else { if (class(matdata) == "STSDF") { matdata <- as(matdata, "STFDF") if (i == 1) { selstaz.names <- row.names(matdata@sp) selstaz.inter <- intersect(selstaz.names, selstaz) if (length(selstaz.inter) != length(selstaz)) { message("Start error message. No data for some of the selected spatial points. Please go back to the function 'couples' and revise the vector of the selected spatial points.") stop("End error message. Stop running.") } nvr <- as.integer(pardata1) iclvr <- as.integer(pardata2) if (nvr == 1) { iclvr <- 1 } } datistaz <- matrix(matdata[selstaz[i], ], ncol = (1 + nvr))[, iclvr] } else { message("Start error message. The class of data must be matrix (gslib format), data.frame, STFDF or STSDF.") stop("End error message. Stop running.") } } } if (i == 1) { lt <- length(datistaz) if (lt <= 29) { message("Start error message. The length of the time series (equal to ", lt,") for each spatial point must be greater than 29.") stop("End error message. Stop running.") } if (lt <= 89 && lt > 29) { message("*****************************************************************************") message("* The length of the time series (equal to ",lt, ") for each spatial point *") message("* is low and may not guarantee the reliability of the some tests. *") message("* See the manual for more details. *") message("*****************************************************************************") }} count.na <- matrix(0, nrow = lt, ncol = 1) count.cons.na <- 0 count.nna <- matrix(0, nrow = lt, ncol = 1) count.cons.nna <- 0 for (ii in 1:lt) { if(is.na(datistaz[ii]) == TRUE){ count.cons.na <- count.cons.na + 1 count.na[ii, 1] <- count.cons.na }else{count.cons.na<- 0} if(is.na(datistaz[ii]) == FALSE){ count.cons.nna <- count.cons.nna + 1 count.nna[ii, 1] <- count.cons.nna }else{count.cons.nna<- 0} } max.count.na <- max(count.na[,])/lt max.count.nna <- max(count.nna[,]) if(max.count.nna > 29){ if(max.count.nna <= 89){ if(is.na(info.nna89[1]) == TRUE){ info.nna89 <- selstaz[i] }else{ info.nna89 <- rbind(info.nna89, selstaz[i]) } } if(max.count.na > 0.75){ if(is.na(info.na[1]) == TRUE){ info.na <- selstaz[i] }else{info.na <- rbind(info.na, selstaz[i]) } } if (i == 1) { matdata.sel <- datistaz } if (i > 1) { matdata.sel <- cbind(matdata.sel, datistaz) } }else{ if(is.na(info.nna29[1]) == TRUE){ info.nna29 <- selstaz[i] }else{ info.nna29 <- rbind(info.nna29, selstaz[i]) } } } if(is.na(info.na[1]) == FALSE){ message("Start error message. The following spatial points are non-admissible. Too many consecutive NAs (greater than 75%).") for (i in 1:length(info.na)){ message((info.na[i])) } message("Please exclude/change the non-admissible spatial points from the selection.") stop("End error message. Stop running.") } if(is.na(info.nna29[1]) == FALSE){ message("Start error message. The following spatial points are non-admissible. The number of valid consecutive values must be greater than 29.") for (i in 1:length(info.nna29)){ message((info.nna29[i])) } message("Please exclude/change the non-admissible spatial points from the selection.") stop("End error message. Stop running.") } if(is.na(info.nna89[1]) == FALSE){ message("Warning message: the number of valid consecutive values of the following spatial points is low (<=89) and may not guarantee the reliability of the some tests.") for (i in 1:length(info.nna89)){ message((info.nna89[i])) } } }else { message("Start error message. The number of spatial points selected in function 'couples' must be a vector with at least two components.") stop("End error message. Stop running.") } couples.nrow <- nrow(couples) nct <- 0 for (i in 1:nrow(couples)) { for (j in 3:ncol(couples)) { if (couples[i, j] != 0) { nct <- nct + 1 } } } array.matdata.sel <- array(matdata.sel, dim = c(length(datistaz), 1, length(selstaz))) cova.nv <- matrix(data = "-", nrow = nrow(couples), ncol = ncol(couples)) vec.na <- matrix(NA, length(datistaz), 1) info.na.all <- matrix(NA, 1, 5) nflag.cova.nv <- 0 if (type.test == 0 || type.test == 1 || type.test == 2 || type.test == 3) { if (type.test == 0 || type.test == 1 || type.test == 2 || type.test == 3) { cova <- matrix(0, nrow = nct, ncol = 1) couples.ncol <- as.integer((ncol(couples) - 2)) couples.ncol.r <- 0 for (i in 1:couples.nrow) { couples.nrow.r <- 0 nf <- 0 for (j in 1:couples.ncol) { if (couples[i, j + 2] != 0) { couples.nrow.r <- couples.nrow.r + 1 cov.n <- as.integer(couples.nrow.r + couples.ncol.r) if (couples[i, j + 2] > 0) { cova[cov.n, ] <- cov(array.matdata.sel[-(nrow(matdata.sel) - couples[i, j + 2] + 1:nrow(matdata.sel)), , couples[i, 1]], array.matdata.sel[-(1:couples[i, j + 2]), , couples[i, 2]], use = "pairwise.complete.obs") if(is.na(cova[cov.n, ]) == TRUE){ if(is.na(info.na.all[1,1]) == TRUE){ info.na.all[1,1] <- couples[i,1] info.na.all[1,2] <- couples[i,2] info.na.all[1,5] <- couples[i,j +2] if(identical(vec.na,array.matdata.sel[-(nrow(matdata.sel) - couples[i, j + 2] + 1:nrow(matdata.sel)), , couples[i, 1]]) == TRUE){info.na.all[1,3] <- 1} if(identical(vec.na,array.matdata.sel[-(1:couples[i, j + 2]), , couples[i, 2]]) == TRUE){info.na.all[1,4] <- 2} }else{ info.na <- rbind(info.na, c(couples[i,1:2],NA,NA,NA)) info.na[1,5] <- couples[i,j +2] if(identical(vec.na,array.matdata.sel[-(nrow(matdata.sel) - couples[i, j + 2] + 1:nrow(matdata.sel)), , couples[i, 1]]) == FALSE){info.na.all[1,3] <- 1} if(identical(vec.na,array.matdata.sel[-(1:couples[i, j + 2]), , couples[i, 2]]) == FALSE){info.na.all[1,4] <- 2} } } } if (couples[i, j + 2] < 0) { cova[cov.n, ] <- cov(array.matdata.sel[-(1:(-couples[i, j + 2])), , couples[i, 1]], array.matdata.sel[-(nrow(matdata.sel) + couples[i, j + 2] + 1:nrow(matdata.sel)), , couples[i, 2]], use = "pairwise.complete.obs") if(is.na(cova[cov.n, ]) == TRUE){ if(is.na(info.na.all[1,1]) == TRUE){ info.na.all[1,1] <- couples[i,1] info.na.all[1,2] <- couples[i,2] info.na.all[1,5] <- couples[i,j +2] if(identical(vec.na,array.matdata.sel[-(1:(-couples[i, j + 2])), , couples[i, 1]]) == TRUE){info.na.all[1,3] <- 1} if(identical(vec.na,array.matdata.sel[-(nrow(matdata.sel) + couples[i, j + 2] + 1:nrow(matdata.sel)), , couples[i, 2]]) == TRUE){info.na.all[1,4] <- 2} }else{ info.na <- rbind(info.na, c(couples[i,1:2],NA,NA,NA)) info.na[1,5] <- couples[i,j +2] if(identical(vec.na,array.matdata.sel[-(1:(-couples[i, j + 2])), , couples[i, 1]]) == FALSE){info.na.all[1,3] <- 1} if(identical(vec.na,array.matdata.sel[-(nrow(matdata.sel) + couples[i, j + 2] + 1:nrow(matdata.sel)), , couples[i, 2]]) == FALSE){info.na.all[1,4] <- 2} } } } if (cova[cov.n,] < 0) { nflag.cova.nv <- nflag.cova.nv + 1 cova.nv[i,1:2] <- selstaz[couples[i,1:2]] cova.nv[i,j+2] <- couples[i,j+2] } } } if (nf == 0) { couples.ncol.r <- couples.ncol.r + couples.nrow.r } nf <- 1 } if(is.na(info.na.all[1,1]) == FALSE){ message("Start error message. There are no enough data for computing the covariance: spatial couples, for (i in 1:length(info.na.all)){ print(info.na.all[i,]) } message("Please exclude/change the non-valid spatial couples/points/temporal lag from the selection.") stop("End error message. Stop running.") } if (nflag.cova.nv != 0) { message("Warning message: ", nflag.cova.nv, " negative spatio-temporal covariance/es are detected.") message("In the following the spatial points and the temporal lags involved are visualized.") for (i in 1:couples.nrow) { if(cova.nv[i,1] != "-" && cova.nv[i,2] != "-"){ print(cova.nv[i,]) } } } } cova00_vec <- matrix(0, nrow = length(selstaz), ncol = 1) for (i in 1:length(selstaz)) { cova00_vec[i, 1] <- var(array.matdata.sel[, , i], na.rm = TRUE) } cova00 <- mean(cova00_vec, na.rm = TRUE) nflag.cova.h.nv <- 0 nflag.cova.u.nv <- 0 if (type.test == 1 || type.test == 2 || type.test == 3) { cova.h <- matrix(0, nrow(couples), 1) cova.h.nv <- matrix(NA, nrow(couples), 2) for (i in 1:nrow(couples)) { cova.h[i, ] <- cov(array.matdata.sel[, , couples[i, 1]], array.matdata.sel[, , couples[i, 2]], use = "pairwise.complete.obs") if(cova.h[i, ] < 0){ nflag.cova.h.nv <- nflag.cova.h.nv + 1 cova.h.nv[i,] <- selstaz[couples[i,1:2]] } } if (nflag.cova.h.nv != 0) { message("Warning message: ", nflag.cova.h.nv, " negative spatial covariances are detected.") message("In the following the spatial points and the temporal lags involved are visualized.") for (i in 1:couples.nrow) { if(is.na(cova.h.nv[i, 1]) == FALSE && is.na(cova.h.nv[i, 2]) == FALSE){ print(cova.h.nv[i, ]) } } } nstaz <- length(selstaz) cova.u.ncol <- as.integer(couples.ncol/2) cova.u <- matrix(0, cova.u.ncol, 1) cova.u.nv <- matrix(NA, cova.u.ncol, 1) cova.ui <- matrix(0, nstaz, 1) jj <- -1 for (j in 1:(couples.ncol/2)) { jj <- jj + 2 i <- 1 while (couples[i, jj + 2] == 0 && i <= (nrow(couples) - 1)) { i <- i + 1 } if (i <= nrow(couples) && couples[i, jj + 2] != 0) { for (z in 1:length(selstaz)) { cova.ui[z, ] <- cov(array.matdata.sel[-(nrow(matdata.sel) - couples[i, jj + 2] + 1:nrow(matdata.sel)), , z], array.matdata.sel[-(1:couples[i, jj + 2]), , z], use = "pairwise.complete.obs") } } cova.u[j, ] <- mean(cova.ui, na.rm = TRUE) if(cova.u[j, ] < 0){ nflag.cova.u.nv <- nflag.cova.u.nv + 1 cova.u.nv[j,] <- couples[i,jj+2] } } } if (nflag.cova.u.nv != 0) { message("Warning message: ", nflag.cova.u.nv, " negative temporal covariances are detected.") message("In the following the spatial points and the temporal lags involved are visualized.") for (i in 1:cova.u.ncol) { if(is.na(cova.u.nv[i, ]) == FALSE){ print(cova.u.nv[i, ]) } } } if (type.test == 1 || type.test == 2) { f.cova <- matrix(0, nrow = nct + (couples.ncol/2), ncol = 1) couples.ncol.r <- 0 for (i in 1:couples.nrow) { couples.nrow.r <- 0 nf <- 0 for (j in 1:couples.ncol) { if (couples[i, j + 2] != 0) { couples.nrow.r <- couples.nrow.r + 1 cov.n <- as.integer(couples.nrow.r + couples.ncol.r) f.cova[cov.n, ] <- cova[cov.n, ]/cova.h[i, ] } } if (nf == 0) { couples.ncol.r <- couples.ncol.r + couples.nrow.r } nf <- 1 } for (i in 1:(couples.ncol/2)) { f.cova[nct + i, ] <- cova.u[i, ]/cova00 } B <- matrix(0, nrow = (1 + nct + nrow(couples) + (couples.ncol/2)), ncol = nct + (couples.ncol/2)) for (i in (nct + 1):(nct + couples.ncol/2)) { B[1, i] <- -f.cova[i, 1]/cova00 } for (i in 1:nct) { B[i + 1, i] <- f.cova[i, 1]/cova[i, 1] } jj <- 0 couples.ncol.r <- 0 for (i in 1:couples.nrow) { couples.nrow.r <- 0 nf <- 0 for (j in 1:couples.ncol) { if (couples[i, j + 2] != 0) { couples.nrow.r <- couples.nrow.r + 1 cov.n <- as.integer(couples.nrow.r + couples.ncol.r) jj <- jj + 1 B[i + 1 + nct, jj] <- -f.cova[cov.n, 1]/cova.h[i, ] } } if (nf == 0) { couples.ncol.r <- couples.ncol.r + couples.nrow.r } nf <- 1 } for (i in 1:(couples.ncol/2)) { B[i + 1 + nct + nrow(couples), nct + i] <- 1/cova00 } } if (type.test == 3) { B <- matrix(0, nrow = nct + nrow(couples) + (couples.ncol/2), ncol = 2 * nct) ii <- -1 for (i in 1:nct) { ii <- ii + 2 B[i, ii] <- 1 B[i, ii + 1] <- 1 } jj <- -1 couples.ncol.r <- 0 for (i in 1:couples.nrow) { couples.nrow.r <- 0 for (j in 1:couples.ncol) { if (couples[i, j + 2] != 0) { jj <- jj + 2 B[i + nct, jj] <- -1 } } } couples.ncol.r <- 0 kk <- -1 for (j in 1:((couples.ncol)/2)) { kk <- kk + 2 lagt <- sort(couples[, kk + 2], decreasing = TRUE) jj <- -1 for (k in 1:couples.nrow) { for (i in 1:couples.ncol) { if (couples[k, i + 2] != 0) { jj <- jj + 2 } if (couples[k, i + 2] == lagt[1]) { B[j + couples.nrow + nct, jj + 1] <- -1 } } } } } if (type.test == 1 || type.test == 2) { cova <- rbind(cova00, cova, cova.h, cova.u) row.names(cova) <- NULL } if (type.test == 3) { cova <- rbind(cova, cova.h, cova.u) } } if (type.test == 0) { nct <- 0 for (i in 1:nrow(couples)) { for (j in 3:ncol(couples)) { if (couples[i, j] != 0) { nct <- nct + 1 } } } A.0.nrow <- as.integer(nct/2) A.0 <- matrix(0, nrow = A.0.nrow, ncol = nct) n2 <- 1 for (i in 1:A.0.nrow) { A.0[i, n2] <- (1) A.0[i, n2 + 1] <- (-1) n2 <- n2 + 2 } } if (type.test == 1 || type.test == 2) { nct <- 0 for (i in 1:nrow(couples)) { for (j in 3:ncol(couples)) { if (couples[i, j] != 0) { nct <- nct + 1 } } } couples.ncol <- as.integer((ncol(couples) - 2)) A.1 <- matrix(0, nrow = nct, ncol = nct + (couples.ncol/2)) for (i in 1:nct) { A.1[i, i] <- 1 } jj <- 0 for (i in 1:nrow(couples)) { for (j in 1:couples.ncol) { if (couples[i, j + 2] != 0) { jj <- jj + 1 kk <- as.integer((j - 1)/2) + 1 A.1[jj, kk + nct] <- -1 } } } } if (type.test == 3) { nct <- 0 for (i in 1:nrow(couples)) { for (j in 3:ncol(couples)) { if (couples[i, j] != 0) { nct <- nct + 1 } } } couples.ncol <- as.integer((ncol(couples) - 2)) A.3 <- matrix(0, nrow = 2 * nct, ncol = nct + nrow(couples) + (couples.ncol/2)) jj <- -1 for (i in 1:nct) { jj <- jj + 2 A.3[jj, i] <- 1 A.3[jj + 1, i] <- 1 } jj <- -1 for (i in 1:nrow(couples)) { for (j in 1:couples.ncol) { if (couples[i, j + 2] != 0) { jj <- jj + 2 kk <- as.integer((j - 1)/2) + 1 A.3[jj, i + nct] <- -1 A.3[jj + 1, kk + nct + nrow(couples)] <- -1 } } } A.3bis.nrow <- as.integer(nct) A.3bis <- matrix(0, nrow = A.3bis.nrow, ncol = nct * 2) n2 <- 1 for (i in 1:A.3bis.nrow) { A.3bis[i, n2] <- (1) A.3bis[i, n2 + 1] <- (-1) n2 <- n2 + 2 } } if (type.test == 0) { cova.h <- matrix(NA, 1, 1) cova.u <- matrix(NA, 1, 1) f.G <- matrix(NA, 1, 1) B <- matrix(NA, 1, 1) A <- A.0 } if (type.test == 1 || type.test == 2) { f.G <- f.cova A <- A.1 } if (type.test == 3) { f.G <- matrix(NA, 1, 1) A <- A.3 } new("covastat", G = cova, cova.h = cova.h, cova.u = cova.u, f.G = f.G, B = B, A = A, typetest = typetest) } NULL setMethod(f="show", signature="covastat", definition=function(object) { cat("An object of class covastat", "\n") cat("\n") cat("Slot 'G':") cat("\n") print(object@G) cat("\n") cat("Slot 'cova.h':") cat("\n") if(object@typetest == "sym"){ print("This slot is not available for the required typetest") }else{ print([email protected]) } cat("\n") cat("Slot 'cov.u':") cat("\n") if(object@typetest == "sym"){ print("This slot is not available for the required typetest") }else{ print([email protected]) } cat("\n") cat("Slot 'f.G':") cat("\n") if(object@typetest == "sym"){ print("This slot is not available for the required typetest") }else{ print([email protected]) } cat("\n") cat("Slot 'B':") cat("\n") if(object@typetest == "sym"){ print("This slot is not available for the required typetest") }else{ print(object@B) } cat("\n") cat("Slot 'A':") cat("\n") print(object@A) cat("\n") cat("Slot 'typetest':") cat("\n") print(object@typetest) } )
context("APR") test_that("APR correctly produces values, no FV", { check <- 0.1766 expect_true(round(APR(12, -10, 110), 4) == check) check <- c(0.1766, 0.0884) df <- data.frame(nper = c(12, 24), pmt = c(-10, -10), pv = c(110, 220)) expect_true(identical(round(APR(df$nper, df$pmt, df$pv), 4), check)) }) test_that("APR correctly produces values, FV", { check <- 0.0895 expect_true(round(APR(12, -10, 110, 5), 4) == check) check <- c(0.0895, 0.0674) df <- data.frame(nper = c(12, 24), pmt = c(-10, -10), pv = c(110, 220), fv = c(5, 5)) expect_true(identical(round(APR(df$nper, df$pmt, df$pv, df$fv), 4), check)) }) test_that("APR errors given incorrect inputs", { expect_error(APR(0, -500, 3000)) expect_error(APR(1, 500, 3000)) expect_error(APR(1, -500, -3000)) expect_error(APR("0", -500, 3000)) expect_error(APR(1, "500", 3000)) expect_error(APR(1, -500, "-3000")) })
test_that("Subsetting cuts rowspan and colspan", { ht <- hux(a = 1:3, b = 1:3, d = 1:3) rowspan(ht)[1, 1] <- 3 colspan(ht)[1, 2] <- 2 ss <- ht[1:2, 1:2] expect_equivalent(rowspan(ss)[1, 1], 2) expect_equivalent(colspan(ss)[1, 2], 1) }) test_that("Subsetting works with multirow/multicolumn cells", { ht <- hux(a = 1:3, b = 1:3) rowspan(ht)[1, 1] <- 2 expect_silent(ht[c(1, 3), ]) }) test_that("Copying a whole span creates two separate spans", { ht <- hux(a = 1:2, b = 1:2) rowspan(ht)[1, 1] <- 2 expect_silent(ht2 <- ht[c(1:2, 1:2), ]) expect_equivalent(rowspan(ht2)[1, 1], 2) expect_equivalent(rowspan(ht2)[3, 1], 2) ht3 <- hux(a = 1:2, b = 1:2) expect_silent(ht4 <- ht3[c(1,1), ]) expect_equivalent(colspan(ht4)[1, 1], 1) }) test_that("Reordering rows/cols within a span preserves the span unchanged", { ht <- hux(a = 1:3, b = 1:3) rowspan(ht)[1, 1] <- 3 expect_silent(ht2 <- ht[c(2, 3, 1), ]) expect_equivalent(rowspan(ht2)[1, 1], 3) }) test_that("Repeating rows/cols within a span, without reordering, extends the span", { ht <- hux(a = 1:3, b = 1:3) rowspan(ht)[1, 1] <- 2 expect_silent(ht2 <- ht[c(1, 1, 2, 3), ]) expect_equivalent(rowspan(ht2)[1, 1], 3) })
plot.clusterlm <- function(x, effect = "all", type = "statistic", multcomp = x$multcomp[1], alternative = "two.sided", enhanced_stat = FALSE, nbbaselinepts=0, nbptsperunit=1, distinctDVs=NULL, ...) { par0 <- par() dotargs <- list(...) dotargs_par <- dotargs[names(dotargs)%in%names(par())] dotargs <- dotargs[!names(dotargs)%in%names(par())] if("all" %in% effect){effect = names(x$multiple_comparison)} else if(sum(names(x$multiple_comparison)%in%effect) == 0){ warning(" the specified effects do not exist. Plot 'all' effects.") effect = names(x$multiple_comparison) } effect_sel <- names(x$multiple_comparison)%in%effect switch(alternative, "two.sided" = {multiple_comparison = x$multiple_comparison[effect_sel]}, "greater" = {multiple_comparison = x$multiple_comparison_greater[effect_sel]}, "less" = {multiple_comparison = x$multiple_comparison_less[effect_sel]}) pvalue = t(sapply(multiple_comparison,function(m){ m[[multcomp]]$main[,2]})) statistic = t(sapply(multiple_comparison,function(m){ m[["uncorrected"]]$main[,1]})) if(enhanced_stat){ statistic = t(sapply(multiple_comparison,function(m){ m[[multcomp]]$main[,1]})) } switch(type, "coef"={ data <- x$coef[effect_sel,] title <- "coefficients" hl <- NULL }, "statistic" ={ data <- statistic title <- paste(x$test, " statistic",sep="",collapse = "") if(multcomp=="clustermass"){ switch(x$test, "fisher"={hl <- x$threshold}, "t"={ switch (alternative, "less" ={hl <- -c(abs(x$threshold))}, "greater" ={hl <- c(abs(x$threshold))}, "two.sided" ={hl <- c(abs(x$threshold))} )})} }) title =paste(title," : ", multcomp, " correction",sep="", collapse = "") p = sum(NROW(data)) rnames = row.names(data) cnames = colnames(data) nbDV = ncol(data) if (is.null(distinctDVs)){ if (multcomp %in% c("clustermass", "tfce")) distinctDVs = FALSE else distinctDVs = (nbDV<16) } if ((distinctDVs==TRUE) && (multcomp %in% c("clustermass", "tfce"))) warning("Computations and corrections have been based on adjacency of DVs but the the plot will show separated DVs") par0 <- list(mfcol = par()$mfcol,mar = par()$mar,oma = par()$oma) if(is.null(dotargs_par$mfcol)){dotargs_par$mfcol = c(p,1)} if(is.null(dotargs_par$mar)){dotargs_par$mar = c(0,4,0,0)} if(is.null(dotargs_par$oma)){dotargs_par$oma = c(4,0,4,1)} par(dotargs_par) for (i in 1:p) { if (distinctDVs) { plot((1:ncol(data)-nbbaselinepts)/nbptsperunit, data[i,],type = "p", xaxt = "n",xlab = "",ylab = rnames[i], pch=18, cex=2, ) if(i==p) axis(1, at= (1:ncol(data)-nbbaselinepts)/nbptsperunit, labels=cnames) } else{ if(i==p){xaxt = NULL}else{xaxt = "n"} plot((1:ncol(data)-nbbaselinepts)/nbptsperunit, data[i,],type = "l", xaxt = xaxt,xlab = "",ylab = rnames[i], ... = ... ) } if(type == "statistic"){ xi = which(pvalue[i,]< x$alpha) y = data[i,xi] col="red" points(x = (xi-nbbaselinepts)/nbptsperunit, y = y, pch=18,col=col, cex=distinctDVs+1) if(multcomp=="clustermass"){ abline(h=hl[i],lty=3) if(x$test=="t"&alternative=="two.sided"){ abline(h=-hl[i],lty=3) } } }} title(title,outer = T,cex = 2) par0 <- par0[!names(par0)%in%c("cin","cra","csi","cxy","din","page")] par(par0) }
oneEdgeDeletedSubgraphComplexity <- function(g, one.eds=NULL) { if (class(g)[1] != "graphNEL") stop("'g' has to be a 'graphNEL' object") stopifnot(.validateGraph(g)) if(numEdges(g)==0) stop("No edges in current graph object") if (is.null(one.eds)) one.eds <- edgeDeletedSubgraphs(g) n <- numNodes(g) count <- length(one.eds) lap <- laplaceMatrix(g) nST_g <- det(lap[2:n, 2:n]) data <- lapply(one.eds, function(M_1e) { diag_1e <- diag(rowSums(M_1e, na.rm = FALSE, dims = 1)) lap_1e <- diag_1e - M_1e nST_1e <- det(lap_1e[2:n, 2:n]) EV_lap_1e <- as.double(eigen(lap_1e, only.values = TRUE)$values) signless_lap_1e <- diag_1e + M_1e EV_signless_lap_1e <- as.double(eigen(signless_lap_1e, only.values = TRUE)$values) list(nST = nST_1e, EV_lap = EV_lap_1e, EV_signless_lap = EV_signless_lap_1e) }) sST <- 0 sSpec <- 0 for (k in 1:(count-1)) { for (l in (k+1):count) { if (data[[k]]$nST == data[[l]]$nST) { sST <- sST + 1 break } } for (l in (k+1):count) { if (setequal(data[[k]]$EV_lap, data[[l]]$EV_lap) && setequal(data[[k]]$EV_signless_lap, data[[l]]$EV_signless_lap)) { sSpec <- sSpec + 1 break } } } N_1eST <- count - sST N_1eSpec <- count - sSpec m_cu <- n^1.68 - 10 C_1eST <- (N_1eST - 1) / (m_cu - 1) C_1eSpec <- (N_1eSpec - 1) / (m_cu - 1) list(`C_1eST` = C_1eST, `C_1eSpec` = C_1eSpec) }
NAME <- "html" source(file.path('_helper', 'init.R')) all.equal( as.character( diffPrint( letters[1:3], LETTERS[1:3], style=StyleHtmlLightYb(html.output="diff.only") ) ), rdsf(100) ) all.equal( as.character( diffPrint( letters[1:6], LETTERS[1:6], style=StyleHtmlLightYb(html.output="diff.w.style") ) ), rdsf(200) ) all.equal( as.character( diffPrint( letters[1:6], LETTERS[1:6], style=StyleHtmlLightYb(html.output="page") ) ), rdsf(300) ) all.equal( as.character( diffPrint( letters[1:6], LETTERS[1:6], mode="unified", style=StyleHtmlLightYb(html.output="page") ) ), rdsf(350) ) local({ f <- tempfile() on.exit(unlink(f)) cat("div.row {background-color: red;}\n", file=f) all.equal( as.character( diffPrint( letters, LETTERS, style=StyleHtmlLightYb(css=f, html.output="diff.w.style") ) ), rdsf(400) ) }) div_a <- div_f("A", c(color="red")) all.equal( div_a(c("a", "b")), c( "<div class='A' style='color: red;'>a</div>", "<div class='A' style='color: red;'>b</div>" ) ) span_a <- span_f() all.equal(span_a(c("a", "b")), c("<span>a</span>", "<span>b</span>")) try(div_a(TRUE)) all.equal(div_a(character()),character()) all.equal(nchar_html("<a href='blahblah'>25</a>"), 2) all.equal(nchar_html("<a href='blahblah'>25&nbsp;</a>"), 3) try(cont_f("hello")(1:3))
delayedAssign("guaguas", local({ if (requireNamespace("tibble", quietly = TRUE)) { tibble::as_tibble(guaguas:::guaguas) } else { guaguas:::guaguas } })) delayedAssign("guaguas_frecuentes", local({ if (requireNamespace("tibble", quietly = TRUE)) { tibble::as_tibble(guaguas:::guaguas_frecuentes) } else { guaguas:::guaguas_frecuentes } }))
poststrata<-function(data, postnames = NULL) { if (missing(data) | missing(postnames)) stop("incomplete input") data = data.frame(data) if(is.null(colnames(data))) stop("the column names in data are missing") index = 1:nrow(data) m = match(postnames, colnames(data)) if (any(is.na(m))) stop("the names of the poststrata are wrong") data2 = cbind.data.frame(data[, m]) x1 = data.frame(unique(data[, m])) colnames(x1) = postnames nr_post=0 post=numeric(nrow(data)) nh=numeric(nrow(x1)) for(i in 1:nrow(x1)) { expr=rep(FALSE, nrow(data2)) for(j in 1:nrow(data2)) expr[j]=all(data2[j, ]==x1[i, ]) y=index[expr] if(is.matrix(y)) nh[i]=nrow(y) else nh[i]=length(y) post[expr]=i } result=cbind.data.frame(data,post) names(result)=c(names(data),"poststratum") list(data=result, npost=nrow(x1)) }
ci.gamma.profile.likelihood <- function (x, shape.mle, scale.mle, ci.type, conf.level, LCL.start, UCL.start) { n <- length(x) mean.mle <- shape.mle * scale.mle cv.mle <- 1/sqrt(shape.mle) sd.mle <- sqrt(shape.mle)/scale.mle loglik.at.mle <- loglikComplete(theta = c(mean = mean.mle, cv = cv.mle), x = x, distribution = "gammaAlt") fcn <- function(CL, loglik.at.mle, mean.mle, cv.mle, x, conf.level) { cv.mle.at.CL <- egammaAlt.cv.mle.at.fixed.mean(fixed.mean = CL, mean.mle = mean.mle, cv.mle = cv.mle, x = x) (2 * (loglik.at.mle - loglikComplete(theta = c(CL, cv.mle.at.CL), x = x, distribution = "gammaAlt")) - qchisq(conf.level, df = 1))^2 } switch(ci.type, `two-sided` = { LCL <- nlminb(start = LCL.start, objective = fcn, lower = .Machine$double.eps, upper = mean.mle, loglik.at.mle = loglik.at.mle, mean.mle = mean.mle, cv.mle = cv.mle, x = x, conf.level = conf.level)$par UCL <- nlminb(start = UCL.start, objective = fcn, lower = mean.mle, loglik.at.mle = loglik.at.mle, mean.mle = mean.mle, cv.mle = cv.mle, x = x, conf.level = conf.level)$par }, lower = { LCL <- nlminb(start = LCL.start, objective = fcn, lower = .Machine$double.eps, upper = mean.mle, loglik.at.mle = loglik.at.mle, mean.mle = mean.mle, cv.mle = cv.mle, x = x, conf.level = 1 - 2 * (1 - conf.level))$par UCL <- Inf }, upper = { LCL <- 0 UCL <- nlminb(start = UCL.start, objective = fcn, lower = mean.mle, loglik.at.mle = loglik.at.mle, mean.mle = mean.mle, cv.mle = cv.mle, x = x, conf.level = 1 - 2 * (1 - conf.level))$par }) ci.limits <- c(LCL, UCL) names(ci.limits) <- c("LCL", "UCL") interval <- list(name = "Confidence", parameter = "mean", limits = ci.limits, type = ci.type, method = "Profile Likelihood", conf.level = conf.level) oldClass(interval) <- "intervalEstimate" interval }
context("test-melt_list") test_that("melt_list works", { expect_silent({ df <- data.frame(year = 2010, day = 1:3, month = 1, site = "A") l <- list(a = df, b = df) df_new <- melt_list(l, "id") df <- data.table(year = 2010, day = 1:3, month = 1, site = "A") l <- list(a = df, b = df) df_new <- melt_list(l, "id") }) })
isNumberOrNaOrInfScalarOrNull <- function(argument, default = NULL, stopIfNot = FALSE, message = NULL, argumentName = NULL) { checkarg(argument, "N", default = default, stopIfNot = stopIfNot, nullAllowed = TRUE, n = 1, zeroAllowed = TRUE, negativeAllowed = TRUE, positiveAllowed = TRUE, nonIntegerAllowed = TRUE, naAllowed = TRUE, nanAllowed = FALSE, infAllowed = TRUE, message = message, argumentName = argumentName) }
interaction_to_edges = function(df,a = 1,b = 2,sep = ","){ gs = str_split(df[,b],sep) edges = data.frame(a1 = rep(df[,a],times = sapply(gs,length)), a2 = unlist(gs)) edges = distinct(edges,a1,a2) return(edges) } utils::globalVariables(c("a1","a2")) edges_to_nodes = function(edges){ if(!is.null(colnames(edges))){ m = colnames(edges) }else{ m = c("A1","A2") } a = unique(edges[,1]) b = unique(edges[,2]) nodes = data.frame(gene = c(a,b), type = c(rep(m[1],times = length(a)), rep(m[2],times = length(b)))) return(nodes) }
knitr::opts_chunk$set(fig.height = 6, fig.width = 6, fig.align = "center") library("briskaR") library("ggplot2") library("sf") library("raster") library("sp") library("dplyr") data("sfMaize65") ggplot() + theme_minimal() + scale_fill_manual(values = c("grey", "orange"), name = "Maize") + geom_sf(data = sfMaize65, aes(fill = as.factor(maize))) sfMaize65$maize_GM<-sfMaize65$maize*c(0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,1,0,1,0,0,1,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,1,1,0,0,0,0,0,1,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,1,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,1,0,0,0,1,1,0,0,1,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,1,0,0,0,0,1,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0) sfMaize65_GM <- sfMaize65[sfMaize65$maize_GM == 1,] plt_GM <- ggplot() + theme_minimal() + scale_fill_manual(values = c("grey", "red"), name = "GM maize") + geom_sf(data = sfMaize65, aes(fill = as.factor(maize_GM))) plt_GM + geom_sf_text(data = sfMaize65_GM, aes(label = label)) squareFrame_sfMaize65 <- st_squared_geometry(list(sfMaize65), buffer = 200) plt_GM + geom_sf(data = squareFrame_sfMaize65, fill = NA) stack_dispersal <- brk_dispersal(sfMaize65_GM, size_raster = 2^8, kernel = "geometric", kernel.options = list("a" = -2.63), squared_frame = squareFrame_sfMaize65) raster::plot(stack_dispersal[[1:6]]) brk_emission <- function(sf, keyTime, key, FUN ){ if("stackTimeline" %in% colnames(sf)) { stop("Please rename column 'stackTimeline' in sf object.") } sf[["key_temp"]] <- lapply(1:nrow(sf), FUN) if(all(sapply(sf[[keyTime]], length) != sapply(sf[["key_temp"]], length))){ stop(paste0("element within list returned by FUN' has not the same length as list element of '", keyTime, "' column")) } stackTimeline = sort(unique(do.call("c", sf[[keyTime]]))) sf[[key]] = lapply(1:nrow(sf), function(i){ index_matching = match(sf[[keyTime]][[i]], stackTimeline) res = rep(0,length(stackTimeline)) res[index_matching] = sf[["key_temp"]][[i]] return(res) }) sf[[keyTime]] = lapply(1:nrow(sf), function(i) stackTimeline) warning(paste("The column variable", keyTime, "may have changed")) sf[["key_temp"]] = NULL return(sf) } sfMaize65_GM_Pollen <- brk_timeline(sf = sfMaize65_GM, key = "timeline", from = as.Date("01-07-2018", format = "%d-%m-%y"), to = as.Date("01-09-2018", format = "%d-%m-%y"), by = "days") data("maize.proportion_pollen") graphics::plot(maize.proportion_pollen, type= "l") funTimePollen <- function(time){ density = runif(1, 7, 11) pollen = rgamma(1, shape = 1.6, scale = 1 / (2 * 10 ^ -7)) nbr_days = length(time) deb = sample(1:(nbr_days - length(maize.proportion_pollen)), 1) end = (deb + length(maize.proportion_pollen) - 1) pollen_emission <- rep(0, nbr_days) pollen_emission[deb:end] <- as.numeric(pollen * density * maize.proportion_pollen) return(pollen_emission) } sfMaize65_GM_Pollen <- brk_emission(sf = sfMaize65_GM_Pollen, keyTime = "timeline", key = "EMISSION", FUN = function(i){ funTimePollen(sfMaize65_GM_Pollen$timeline[[i]]) }) stackTimeline = seq(from = min(do.call("c", sfMaize65_GM_Pollen[["timeline"]])), to = max(do.call("c", sfMaize65_GM_Pollen[["timeline"]])), by = "days") stack_exposure <- brk_exposure(stack_dispersal, sfMaize65_GM_Pollen, key = "EMISSION", keyTime = "timeline", loss = 0.1, beta = 0.2, quiet = TRUE) raster::plot(stack_exposure[[1:6]]) sfMaize65_outGM <- st_sf(geometry = st_difference(x = st_geometry(squareFrame_sfMaize65), y = st_union(st_geometry(sfMaize65_GM)))) gridPOINT_squareFrame <- st_make_grid(squareFrame_sfMaize65, n = 30, what = "centers") gridPOINT_outGM <- st_sf(geometry = st_intersection(x = st_geometry(gridPOINT_squareFrame), y = st_union(st_geometry(sfMaize65_outGM)))) ggplot() + theme_minimal() + geom_sf(data = sfMaize65_outGM, fill = "grey30") + geom_sf(data = gridPOINT_outGM) df_outGM = as.data.frame(raster::extract(x = stack_exposure, y = sf::as_Spatial(gridPOINT_outGM))) sf_outGM = st_as_sf(geometry = st_geometry(gridPOINT_outGM), df_outGM) ggplot() + theme_minimal() + labs(title = paste("Exposure at", colnames(df_outGM)[40])) + scale_color_continuous(low = "green", high = "red", trans = "log", name = "log scaled") + geom_sf(data = sf_outGM, aes(color = df_outGM[,40])) sfMaize65_receptor = st_multibuffer(sfMaize65_GM, dist = rep(100, nrow(sfMaize65_GM))) plt_GMreceptor <- ggplot() + theme_minimal() + geom_sf(data = sfMaize65_GM, fill = "red") + geom_sf(data = sfMaize65_receptor, fill = " plt_GMreceptor nbrSite = 100 sfLarvae <- brk_newPoints(sf = sfMaize65_receptor, size = nbrSite) plt_GMreceptor + geom_sf(data = sfLarvae) DateEmergence = sample(seq(as.Date("01-07-2018", format = "%d-%m-%y"), as.Date("01-09-2018", format = "%d-%m-%y"), by = "days"), size = nbrSite, replace = TRUE) sfLarvae = brk_timeline( sf = sfLarvae, key = "Date", from = DateEmergence, to = DateEmergence + 20, by = "days") stackTimelineEMISSION = sort(unique(do.call("c", sfMaize65_GM_Pollen[["timeline"]]))) exposureINDIVIDUAL <- brk_exposureMatch(stackRaster_exposure = stack_exposure, sf = sfLarvae, stackTimeline = stackTimelineEMISSION, keyTime = "Date", key = "EXPOSURE") damageLethal = function(x,LC50, slope){ return(1/(1+(x/LC50)^slope)) } LC50DR = 451*10^4 slopeDR = -2.63 damageINDIVIDUAL <- exposureINDIVIDUAL %>% dplyr::mutate(DAMAGE = lapply(EXPOSURE, function(expos){damageLethal(expos, LC50DR, slopeDR)})) DFdamage = data.frame( DAMAGE = do.call("c", damageINDIVIDUAL[["DAMAGE"]]), Date = do.call("c", damageINDIVIDUAL[["Date"]]) ) %>% dplyr::group_by(Date) %>% dplyr::summarise(mean_DAMAGE = mean(DAMAGE, na.rm = TRUE), q025_DAMAGE = quantile(DAMAGE, probs = 0.025, na.rm = TRUE), q975_DAMAGE = quantile(DAMAGE, probs = 0.975, na.rm = TRUE), min_DAMAGE = min(DAMAGE, na.rm = TRUE), max_DAMAGE = max(DAMAGE, na.rm = TRUE)) minDateDAMAGE = data.frame(Date = do.call("c", damageINDIVIDUAL[["Date"]])) ggplot() + theme_minimal() + labs(x = "Time", y = "Probability Distribution of Damage") + geom_line(data = DFdamage, aes(x = Date, y = mean_DAMAGE), color = "red") + geom_ribbon(data = DFdamage, aes(x = Date, ymin = q025_DAMAGE, ymax = q975_DAMAGE), alpha = 0.5, color = NA, fill = "grey10") + geom_ribbon(data = DFdamage, aes(x = Date, ymin = min_DAMAGE, ymax = max_DAMAGE), alpha = 0.5, color = NA, fill = "grey90")
setMethodS3("getBaseline", "ChipEffectSet", function(this, force=FALSE, verbose=FALSE, ...) { verbose <- Arguments$getVerbose(verbose) if (verbose) { pushState(verbose) on.exit(popState(verbose)) } verbose && enter(verbose, "Getting CEL file to store baseline signals") key <- list(dataset=getFullName(this), samples=getNames(this)) id <- getChecksum(key) filename <- sprintf(".baseline,%s.CEL", id) verbose && enter(verbose, "Searching for an existing file") path <- getPath(this) paths <- c(path) if (getOption(aromaSettings, "devel/dropRootPathTags", TRUE)) { path <- dropRootPathTags(path, depth=2, verbose=less(verbose, 5)) paths <- c(paths, path) paths <- unique(paths) } verbose && cat(verbose, "Paths:") verbose && print(verbose, paths) verbose && cat(verbose, "Filename: ", filename) pathname <- NULL for (kk in seq_along(paths)) { path <- paths[kk] verbose && enter(verbose, sprintf("Searching path verbose && cat(verbose, "Path: ", path) pathnameT <- Arguments$getReadablePathname(filename, path=path, mustExist=FALSE) verbose && cat(verbose, "Pathname: ", pathnameT) if (isFile(pathnameT)) { pathname <- pathnameT verbose && cat(verbose, "Found an existing file.") verbose && exit(verbose) break } verbose && exit(verbose) } verbose && cat(verbose, "Located pathname: ", pathname) verbose && exit(verbose) df <- getOneFile(this) if (isFile(pathname)) { verbose && enter(verbose, "Loading existing data file") res <- newInstance(df, pathname) verbose && exit(verbose) } else { verbose && enter(verbose, "Allocating empty data file") path <- paths[length(paths)] verbose && cat(verbose, "Path: ", path) verbose && cat(verbose, "Filename: ", filename) pathname <- Arguments$getWritablePathname(filename, path=path, mustNotExist=TRUE) verbose && enter(verbose, "Retrieving CEL file") res <- createFrom(df, filename=pathname, path=NULL, methods="create", clear=TRUE, force=force, verbose=less(verbose)) verbose && print(verbose, res) verbose && exit(verbose) verbose && exit(verbose) } df <- NULL verbose && exit(verbose) res }, protected=TRUE) setMethodS3("getBaseline", "SnpChipEffectSet", function(this, ...) { res <- NextMethod("getBaseline") res$mergeStrands <- getMergeStrands(this) res }, protected=TRUE) setMethodS3("getBaseline", "CnChipEffectSet", function(this, ...) { res <- NextMethod("getBaseline") res$combineAlleles <- getCombineAlleles(this) res }, protected=TRUE)
simulate.jointNmix <- function(object, ...) { lam2transform <- object$lam2transform includepsi <- object$includepsi parms <- coef(object) np1 <- ncol(object$Xp1) np2 <- ncol(object$Xp2) nl1 <- ncol(object$Xl1) nl2 <- ncol(object$Xl2) npsi <- ncol(object$Xpsi) pr1 <- as.numeric(plogis(object$Xp1 %*% parms[1:np1])) pr2 <- as.numeric(plogis(object$Xp2 %*% parms[(np1+1):(np1+np2)])) lam1 <- as.numeric(exp(object$Xl1 %*% parms[(np1+np2+1):(np1+np2+nl1)])) lam2 <- as.numeric(exp(object$Xl2 %*% parms[(np1+np2+nl1+1):(np1+np2+nl1+nl2)])) if(lam2transform) lam2 <- lam2/(1+lam2) if(includepsi) psi <- as.numeric(exp(object$Xpsi %*% parms[(length(parms)-npsi+1):(length(parms))])) theta1 <- exp(parms[(np1+np2+nl1+nl2+1)]) theta2 <- exp(parms[length(parms)]) R <- dim(object$sp1)[1] T_ <- dim(object$sp1)[2] pr1 <- matrix(pr1, byrow=TRUE, ncol=T_) pr2 <- matrix(pr2, byrow=TRUE, ncol=T_) if(object$mixture[1]=="P") Ni1 <- rpois(R, lam1) if(object$mixture[1]=="NB") Ni1 <- rnbinom(R, mu=lam1, size=theta1) if(object$mixture[2]=="P") { if(!includepsi) { Ni2 <- rpois(R, lam2 * Ni1) } else { Ni2 <- rpois(R, psi + lam2 * Ni1) } } if(object$mixture[2]=="NB") { if(!includepsi) { Ni2 <- rnbinom(R, mu=lam2 * Ni1, size=theta2) } else { Ni2 <- rnbinom(R, mu=psi + lam2 * Ni1, size=theta2) } } sdata1 <- matrix(0, ncol=T_, nrow=R) sdata2 <- matrix(0, ncol=T_, nrow=R) for(i in 1:T_) sdata1[,i] <- rbinom(R, Ni1, pr1[,i]) for(i in 1:T_) sdata2[,i] <- rbinom(R, Ni2, pr2[,i]) return(list("sp1"=sdata1, "sp2"=sdata2)) }
library(benchr) p <- benchr:::timer_precision() e <- benchr:::timer_error() expect_equal(class(p), "numeric") expect_equal(length(p), 1L) expect_true(p < 0.001) expect_equal(class(e), "numeric") expect_equal(length(e), 1L) expect_true(e > 0) if (.Platform$OS.type != "windows") { expect_true(benchr:::do_timing(quote(Sys.sleep(0.1)), .GlobalEnv) >= 0.1) expect_true(benchr:::do_timing(quote(Sys.sleep(0.2)), .GlobalEnv) >= 0.2) expect_true(benchr:::do_timing(quote(Sys.sleep(0.3)), .GlobalEnv) >= 0.3) expect_true(benchr:::do_timing(quote(Sys.sleep(0.1)), .GlobalEnv) >= e) }
library(OpenMx) dn <- paste("m",1:2, sep="") dataCov <- matrix(c(1,.2,.2,1.5), nrow=2, dimnames=list(dn,dn)) dataMeans <- c(-.2, .3) names(dataMeans) <- dn n2 <- mxModel("normal2", mxData(observed=dataCov, type="cov", means=dataMeans, numObs=35), mxMatrix(name="cov", "Symm", 2, 2, free=T, values = c(1, 0, 1), labels = c("var1", "cov12", "var2"), dimnames=list(dn,dn)), mxMatrix(name="mean", "Full", 1, 2, free=T, labels=dn, dimnames=list(NULL,dn)), mxFitFunctionML(), mxExpectationNormal("cov", "mean")) plan <- mxComputeSequence(list( mxComputeNewtonRaphson(), mxComputeOnce('fitfunction', 'information', 'hessian'), mxComputeStandardError(), mxComputeHessianQuality(), mxComputeReportDeriv())) for (retry in 1:2) { if (retry == 2) n2 <- mxModel(n2, plan) n2Fit <- mxRun(n2) omxCheckCloseEnough(n2Fit$output$fit, 81.216, .01) omxCheckCloseEnough(n2Fit$cov$values, (34/35) * dataCov, 1e-4) omxCheckCloseEnough(c(n2Fit$mean$values), dataMeans, 1e-4) omxCheckCloseEnough(log(n2Fit$output$conditionNumber), 1.63, .2) omxCheckCloseEnough(c(n2Fit$output$standardErrors), c(0.232, 0.203, 0.348, 0.166, 0.204), .01) }
readDcp <- function(con, fields=c("rawIntensities", "normalizedIntensities", "calls", "thetas", "thetaStds", "excludes"), cells=NULL, units=NULL, .nbrOfUnits=NULL, ...) { readElements <- function(con, idxs, nbrOfElements, size=1, skip=FALSE, ..., drop=TRUE) { readBin2 <- function(con, what, size, signed, n) { if (mode(what) == "raw") { n <- n * size; size <- 1; } readBin(con, what=what, size=size, signed=signed, n=n, endian="little") } if (skip) { seek(con, where=size*nbrOfElements, origin="current", rw="read") return(NULL); } values <- readBin2(con=con, size=size, ..., n=nbrOfElements); if (mode(values) == "raw") { if (length(values) %% size != 0) { stop("File format error/read error: The number of bytes read is not a multiple of ", size, ": ", length(values)); } dim(values) <- c(size, (length(values) %/% size)); if (!is.null(idxs)) { values <- values[,idxs,drop=FALSE]; } if (drop) values <- drop(values); } else { if (!is.null(idxs)) values <- values[idxs]; } values; } readCells <- function(con, cells, what=integer(), size=2, signed=FALSE, ...) { readElements(con=con, idxs=cells, nbrOfElements=nbrOfCells, what=what, size=size, signed=signed, ...); } readUnits <- function(con, units, what=double(), size=2, signed=FALSE, ...) { readElements(con=con, idxs=units, nbrOfElements=nbrOfUnits, what=what, size=size, signed=signed, ...); } if (is.character(con)) { pathname <- con; if (!file.exists(pathname)) { stop("File not found: ", pathname); } con <- file(con, open="rb"); on.exit({ if (!is.null(con)) close(con); con <- NULL; }); } if (!inherits(con, "connection")) { stop("Argument 'con' must be either a connection or a pathname: ", mode(con)); } fields <- match.arg(fields, several.ok=TRUE); res <- list(); res$header <- readDcpHeader(con=con); nbrOfCells <- res$header$CellDim^2; stopifnot(nbrOfCells >= 0) if (is.null(.nbrOfUnits)) { conInfo <- summary(con); if (conInfo$class != "file") { stop("Cannot infer the value of '.nbrOfUnits' from the connection, because it is not a file: ", conInfo$class); } pathname <- conInfo$description; if (!is.element(res$header$Format, c(3,4))) { stop("Cannot infer the value of '.nbrOfUnits' from the file. The file format is not v3 or v4 but v", res$header$Format, ": ", pathname); } nbrOfBytes <- file.info(pathname)$size; fileHeaderSize <- 3028; nbrOfUnitBytes <- nbrOfBytes - fileHeaderSize - 2*2*nbrOfCells; .nbrOfUnits <- as.integer(nbrOfUnitBytes / 13); if (nbrOfUnitBytes %% 13 != 0) { stop("Internal file format assumption error: Cannot infer the value of '.nbrOfUnits' from the file. The number of inferred bytes storing unit data is not a multiple of 13: ", nbrOfUnitBytes); } } else { .nbrOfUnits <- .argAssertRange(as.integer(.nbrOfUnits), range=c(1, nbrOfCells)); if (length(.nbrOfUnits) != 1) stop("Argument '.nbrOfUnits' must be a single integer."); } nbrOfUnits <- .nbrOfUnits; if (!is.null(cells)) { cells <- .argAssertRange(as.integer(cells), range=c(1, nbrOfCells)); } if (!is.null(units)) { units <- .argAssertRange(as.integer(units), range=c(1, nbrOfCells)); } for (field in c("rawIntensities", "normalizedIntensities")) { res[[field]] <- readCells(con, cells=cells, skip=(!field %in% fields), drop=TRUE); } field <- "calls"; res[[field]] <- readUnits(con, units=units, what=raw(), size=1, skip=(!field %in% fields), drop=TRUE); skip <- !any(c("thetas", "thetaStds", "excludes") %in% fields); raw <- readUnits(con, units=units, what=raw(), size=12, skip=skip); if (!skip) { n <- ncol(raw); field <- "thetas"; if (field %in% fields) { res[[field]] <- .readFloat(con=raw[1:4,], n=n); } raw <- raw[-(1:4),,drop=FALSE]; field <- "thetaStds"; if (field %in% fields) { res[[field]] <- .readFloat(con=raw[1:4,], n=n); } raw <- raw[-(1:4),,drop=FALSE]; field <- "excludes"; if (field %in% fields) { res[[field]] <- .readInt(raw[1:4,], n=n); } } raw <- NULL res; }
if (require("testthat") && require("sjmisc")) { data(efc) efc$ID <- sample(1:4, nrow(efc), replace = TRUE) test_that("de_mean", { de_mean(efc, c12hour, barthtot, grp = ID) de_mean(efc, c12hour, barthtot, grp = ID, append = FALSE) de_mean(efc, c12hour, barthtot, grp = ID, append = FALSE, suffix.dm = "dm", suffix.gm = "gm") de_mean(efc, c12hour, barthtot, grp = ID, suffix.dm = "dm", suffix.gm = "gm") de_mean(efc, c12hour, barthtot, grp = "ID") }) }
.laser.gsr<- function (Source, Search, Replace, char = FALSE) { if (length(Search) != length(Replace)) stop("Search and Replace Must Have Equal Number of Items\n") Changed <- as.character(Source) if (char == FALSE) { for (i in 1:length(Search)) { Changed <- replace(Changed, Changed == Search[i], Replace[i]) } } else if (char == TRUE) { for (i in 1:length(Search)) { Changed <- replace(Changed, Changed == Search[i], paste(Replace[i])) } } Changed } .laser.gettipdata<- function (tipdata, phy) { if (is.data.frame(tipdata)) { x <- as.vector(tipdata[, 1]) names(x) <- row.names(tipdata) } else { x <- tipdata } if (class(phy) != "phylo") stop("object \"phy\" is not of class \"phylo\"") if (is.null(phy$edge.length)) stop("your tree has no branch lengths: invalid input") tmp <- phy$edge nb.tip <- length(phy$tip.label) if (phy$Nnode != nb.tip - 1) stop("\"phy\" is not fully dichotomous") if (length(x) != nb.tip) stop("length of phenotypic and of phylogenetic data do not match") if (any(is.na(x))) stop("method can't be used with missing data...") phenotype <- as.numeric(rep(NA, nb.tip + phy$Nnode)) names(phenotype) <- 1:max(phy$edge) if (is.null(names(x))) { phenotype[1:nb.tip] <- x } else { if (!any(is.na(match(names(x), phy$tip.label)))) phenotype[1:nb.tip] <- x[phy$tip.label] else { phenotype[1:nb.tip] <- x warning("the names of argument \"x\" and the names of the tip labels\ndid not match\n") } } phy$phenotype <- rep(NA, (nb.tip + phy$Nnode - 1)) for (i in 1:length(phenotype)) { phy$phenotype[as.numeric(phy$edge[, 2]) == names(phenotype[i])] <- phenotype[i] } return(phy) } .laser.splitedgematrix<- function (phy, node) { x <- branching.times(phy) rootnode <- length(phy$tip.label) + 1 phy$tag <- rep(1, nrow(phy$edge)) if (node >= rootnode) { node.desc <- node pos <- 1 phy$tag[phy$edge[, 1] == node.desc[1]] <- 2 while (pos != (length(node.desc) + 1)) { temp <- .get.desc.of.node(node.desc[pos], phy) temp <- temp[temp > rootnode] for (k in 1:length(temp)) { phy$tag[phy$edge[, 1] == temp[k]] <- 2 } node.desc <- c(node.desc, temp) pos <- pos + 1 } } else if (node > 0) phy$tag[phy$edge[, 2] == node] <- 2 z <- cbind(phy$edge, .laser.gsr(phy$edge[, 1], names(x), x), phy$edge.length, phy$phenotype, phy$tag) z <- matrix(as.numeric(z), dim(z)) z <- as.data.frame(z) return(z) } .laser.getlambda<- function (zmat, rootnode, rbounds, para = 0.01, eps, combined = TRUE) { int <- zmat[zmat[, 2] > rootnode, ] term <- zmat[zmat[, 2] < rootnode, ] nint <- nrow(int) nterm <- nrow(term) betaF <- function(r, t1) { xf <- (exp(r * t1) - 1)/(exp(r * t1) - eps) xf } Lfunc_tax <- function(p) { r <- p (sum(log(1 - betaF(r, term[1:nterm, 4]))) + sum((term[1:nterm, 5] - 1) * log(betaF(r, term[1:nterm, 4])))) } Lfunc_phy <- function(p) { r <- p (nint * log(r) - r * sum(int[1:nint, 4]) - sum(log(1 - (eps * exp(-r * int[1:nint, 3]))))) } Lfunc_comb <- function(p) { r <- p (sum(log(1 - betaF(r, term[1:nterm, 4]))) + sum((term[1:nterm, 5] - 1) * log(betaF(r, term[1:nterm, 4]))) + nint * log(r) - r * sum(int[1:nint, 4]) - sum(log(1 - (eps * exp(-r * int[1:nint, 3]))))) } res <- list() if (combined == TRUE) { if (nrow(int) == 0) tempres <- optimize(Lfunc_tax, interval = rbounds, maximum = TRUE) else tempres <- optimize(Lfunc_comb, interval = rbounds, maximum = TRUE) } else { tempres <- optimize(Lfunc_tax, interval = rbounds, maximum = TRUE) } res$LH <- tempres$objective res$lambda <- tempres$maximum/(1 - eps) res$r <- tempres$maximum res$eps <- eps res <- as.data.frame(res) return(res) } .laser.fitNDR_1rate<- function (phy, eps = 0, rbounds = c(1e-04, 0.5), combined = TRUE) { z <- .laser.splitedgematrix(phy, phy$Nnode) r1 <- .laser.getlambda(z, rootnode = (length(phy$tip.label) + 1), rbounds = rbounds, para = 0.01, eps, combined = combined) res <- list() res$LH <- r1$LH res$aic <- (-2 * r1$LH) + 2 res$r <- r1$r res$lambda <- r1$lambda res$eps <- eps res <- as.data.frame(res) return(res) } sim.mecca <- function(phy, richness, cladeAges, model, prop, makeNewTipTrees = TRUE, mytiptrees = NULL, hotBranches = NULL) { root.age = max(node.depth.edgelength(phy)); if(makeNewTipTrees == FALSE & is.null(mytiptrees)) stop("there are no tip trees provided"); cladeAncStates <- .mecca.nodesim(phy, model, prop, hotBranches); Svar <- numeric(length(richness)); Smean <- numeric(length(richness)); if(makeNewTipTrees == TRUE) { treelist<-list(); treelist[which(richness==1)] <- cladeAges[richness==1]; for(i in which(richness>1)) { treelist[[i]]<- .mecca.fasttreesim(n=richness[i], lambda = prop$birth, mu=prop$death, rho = 1, origin = cladeAges[i]); } } else { treelist <- mytiptrees; } for(i in 1:length(treelist)) { if(!is.numeric(treelist[[i]])) { if(!model == "twoRate") dat <- .mecca.tipsim(treelist[[i]], model, prop, cladeAncStates[i], root.age); if(model == "twoRate") { if (i %in% hotBranches) { Branch = "hot" } else { Branch <- "not" } dat <- .mecca.tipsim(phy = treelist[[i]], model = model, prop = prop, cladeAncStates[i], BranchState = Branch); } Svar[i]<-var(dat); Smean[i]<-mean(dat); } else { if(model == "twoRate") { if (i %in% hotBranches) { Branch = "hot" } else { Branch <- "not" } dat <- .mecca.singletiptrait(model, prop, cladeAges[i], cladeAncStates[i], root.age, BranchState = Branch); } else { dat <- .mecca.singletiptrait(model, prop, cladeAges[i], cladeAncStates[i], root.age); } Smean[i] <- dat; Svar[i] <- 0; } } return(list("trees" = treelist, "Smean" = Smean, "Svar" = Svar)); } .mecca.makecaloutput<- function(model, Ncalibrations, Nclades) { if(model == "BM") k <- 5; if(model == "Trend" | model == "twoRate") k <- 6; output <- matrix(NA, nrow = Ncalibrations, ncol = k + 2*Nclades); if(model == "BM") colnames(output) <- c("birth", "death","logLk", "sigmasq","root", paste("var", seq(1, Nclades), sep = ""), paste("Mean", seq(1, Nclades), sep = "")); if(model == "Trend") colnames(output) <- c("birth", "death","logLk", "sigmasq","root","mu", paste("var", seq(1, Nclades), sep = ""), paste("Mean", seq(1, Nclades), sep = "")); if(model == "twoRate") colnames(output) <- c("birth", "death","logLk", "sigmasq1","sigmasq2","root", paste("var", seq(1, Nclades), sep = ""), paste("Mean", seq(1, Nclades), sep = "")); return(output); } .mecca.proposal<- function(model, trait.params, trait.widths, prior.list, SigmaBounds, scale, ngen) { if(model == "BM") { if (ngen %% 2 == 1) { trait.params$sigmasq <- .mecca.getproposal(trait.params$sigmasq, trait.widths$sigmasq * scale, min = SigmaBounds[1], max = SigmaBounds[2]) } else { trait.params$root <- .mecca.getproposal(trait.params$root, trait.widths$root * scale, min = prior.list$priorMean[1], max = prior.list$priorMean[2]) } } if(model == "twoRate") { if (ngen %% 2 == 1) { trait.params$sigmasq1 <- .mecca.getproposal(trait.params$sigmasq1, trait.widths$sigmasq1 * scale, min = SigmaBounds[1], max = SigmaBounds[2]) trait.params$sigmasq2 <- .mecca.getproposal(trait.params$sigmasq2, trait.widths$sigmasq2 * scale, min = SigmaBounds[1], max = SigmaBounds[2]) } else { trait.params$root <- .mecca.getproposal(trait.params$root, trait.widths$root * scale, min = prior.list$priorMean[1], max = prior.list$priorMean[2]) } } if(model == "Trend"){ if (ngen %% 2 == 1) { trait.params$sigmasq <- .mecca.getproposal(as.numeric(trait.params$sigmasq), as.numeric(trait.widths$sigmasq) * scale, min = SigmaBounds[1], max = SigmaBounds[2]) trait.params$mu <- .mecca.getproposal(trait.params$mu, trait.widths$mu * scale, min = prior.list$priorMu[1], max = prior.list$priorMu[2]) } else { trait.params$root <- .mecca.getproposal(trait.params$root, trait.widths$root * scale, min = prior.list$priorMean[1], max = prior.list$priorMean[2]) } } return(trait.params) } .mecca.calproposal <- function(model, prior.list, sigmaPriorType, SigmaBounds, rootPriorType, thetaB, thetaD, propWidth) { while(1) { birth = .mecca.getproposal(thetaB,propWidth, 0, Inf); death = .mecca.getproposal(thetaD, propWidth, 0, Inf); if(birth > death) (break); } sigma = .mecca.priordrawsig(prior.list$priorSigma[1], prior.list$priorSigma[2], sigmaPriorType, SigmaBounds) root = .mecca.priordrawmean(prior.list$priorMean[1], prior.list$priorMean[2], rootPriorType); if(model == "BM") return(prop = list(birth = birth, death = death, sigmasq = sigma, root = root)); if(model == "Trend") return(prop = list(birth = birth, death = death, sigmasq = sigma, root = root, mu = runif(1, min = prior.list$priorMu[1],max = prior.list$priorMu[2]))); if(model == "twoRate") return(prop = list(birth = birth, death = death, sigmasq1 = sigma, sigmasq2 =.mecca.priordrawsig(prior.list$priorSigma[1], prior.list$priorSigma[2], sigmaPriorType, SigmaBounds), root = root)); } startingpt.mecca <- function(calibrationOutput, phy, cladeMean, cladeVariance, tolerance = 0.01, plsComponents, BoxCox = TRUE) { if(BoxCox == TRUE & length(calibrationOutput) < 6) stop("there are no parameters in the calibration output to do boxcox transformation. Try rerunning calibration with BoxCox = TRUE"); m <- match(phy$tip.label, names(cladeMean)); cladeMean <- cladeMean[m]; m <- match(phy$tip.label, names(cladeVariance)); cladeVariance <- cladeVariance[m]; if( length(which(cladeVariance == 0))>0) { cladeVariance <- cladeVariance[-which(cladeVariance==0)]; } obs <- c(cladeVariance, cladeMean); names(obs) <- c(paste(names(cladeVariance), "var", sep = "_"), paste(names(cladeMean), "mean", sep = "_")); stdobs <- obs; bdcal <- as.matrix(calibrationOutput$diversification); bmcal <- as.matrix(calibrationOutput$trait); startingBirth <- as.numeric(bdcal[1,1]); startingDeath <- as.numeric(bdcal[1,2]); if(BoxCox == TRUE) { stdz <- calibrationOutput$stdz; lambda <- calibrationOutput$lambda; GM <- calibrationOutput$GM; boxcox <- calibrationOutput$BoxCox; } K <- ncol(plsComponents); Nsims <- nrow(bdcal) if(BoxCox == TRUE) { for(i in 1:length(stdobs)) { stdobs[i] <- 1 + (stdobs[i] - stdz$min[i]) / (stdz$max[i] - stdz$min[i]); stdobs[i] <-(stdobs[i]^lambda[i] - 1) / (lambda[i] * GM[i]^(lambda[i]-1)); stdobs[i] <- (stdobs[i] - boxcox$BCmeans[i])/boxcox$BCstd[i]; } } obsPLS <- numeric(K); for(i in 1:length(obsPLS)) { obsPLS[i] <- sum(stdobs * plsComponents[, i]); } plsSim <- matrix(NA, nrow = Nsims, ncol = K); params <- bmcal[ , 1: K]; stats <- bmcal[ , - seq(1, K)]; for(i in 1:Nsims) { plsSim[i, ] <- .mecca.extractpls(stats[i,], plsComponents, K); } dmat <- numeric(Nsims); for (i in 1:Nsims) { dmat[i] <- dist(rbind(obsPLS, plsSim[i, ])); } pdmat <- cbind(params, dmat); bmretained <- pdmat[order(as.data.frame(pdmat)$dmat),][seq(1, Nsims * tolerance) , ]; tuning <- matrix(data = NA, nrow = K, ncol = 2); rownames(tuning) <- colnames(bmretained)[1:K]; colnames(tuning) <- c("starting", "width"); for(i in 1:K) { tuning[i, 1] <- as.numeric(bmretained[1,i]); tuning[i, 2] <- sd(bmretained[, i]); } if(BoxCox == TRUE) { return(list("tuning" = tuning, "startingBirth" = startingBirth, "startingDeath" = startingDeath, "dcrit" = max(bmretained[,K+1]), "obsTraits" = obs, "plsObserved" = obsPLS, "plsLoadings" = plsComponents, "stdz" = stdz, "lambda" = lambda, "GM" = GM, "BoxCox" = boxcox)); } if(BoxCox == FALSE) { return(list("tuning" = tuning, "startingBirth" = startingBirth, "startingDeath" = startingDeath, "dcrit" = max(bmretained[,K+1]), "obsTraits" = obs, "plsObserved" = obsPLS, "plsLoadings" = plsComponents)); } } .mecca.nodestatestworate <- function(phy, prop, hotBranches) { cbind(phy$edge, phy$edge.length) -> edge.mat edge.mat <- edge.mat[- which(edge.mat[ ,2] <= length(phy$tip.label)), ]; rootNode <- length(phy$tip.label) + 1; rootState <- prop$root; currentNode <- rootNode; nodeStates <- numeric(length(phy$tip.label) - 1); names(nodeStates) <- seq(length(phy$tip.label) + 1, (length(phy$tip.label) * 2) - 1, 1); nodeStates[1] <- rootState for (i in 2:length(nodeStates)) { currentNode <- currentNode + 1; parent <- edge.mat[which(edge.mat[ ,2] == currentNode), 1]; parentValue <- nodeStates[which(names(nodeStates) == parent)]; if(currentNode %in% hotBranches) { sigma <- prop$sigmasq2; } else { sigma <- prop$sigmasq1 } nodeStates[i] <- rnorm(1, parentValue, sqrt(sigma * edge.mat[which(edge.mat[ ,2] == currentNode), 3])); } return(nodeStates); } .mecca.normalpriorratio <- function(currentState, proposedState, mean, sd) { h <- dnorm(proposedState, mean, sd) / dnorm(currentState, mean, sd); if(h > 1) { currentState <- proposedState } if (h < 1) { rnum <- runif(1); if (h < rnum) { currentState <- proposedState; }else{ currentState <- currentState; } } return(currentState); } .mecca.tipsim<- function(phy, model, prop, node.state, root.age, BranchState = "not") { if(model == "BM") { dat <- .mecca.fastbm(phy, node.state, prop$sigmasq, mu = 0)$tipStates; } if(model == "Trend") { dat <- .mecca.fastbm(phy, node.state, prop$sigmasq, prop$mu)$tipStates; } if(model == "twoRate") { if(BranchState == "not") { dat <- .mecca.fastbm(phy, node.state, prop$sigmasq1, mu = 0)$tipStates; } else if(BranchState == "hot") { dat <- .mecca.fastbm(phy, node.state, prop$sigmasq2, mu = 0)$tipStates; } } return(dat); } .mecca.acceptance <- function(trait.params, prop.params, distribution, params) { if(distribution == "uniform") { return("accept"); } if(distribution == "normal") { curr.rates <- trait.params[grep("sigma", colnames(trait.params))]; prop.rates <- prop.params[grep("sigma", colnames(prop.params))]; k <- length(curr.rates); priorden <- numeric(k) for(i in 1:k) { priorden[i] <- dnorm(as.numeric(prop.rates[i]), mean = params[1], sd = params[2]) / dnorm(as.numeric(curr.rates[i]), mean = params[1], sd = params[2]); } priorden <- prod(priorden); p <- runif(1); if(priorden >= p) { return("accept") } else { return("reject") } } } .mecca.allbranches <- function(phy, node) { node <- as.numeric(node); n <- length(phy$tip.label); if(node <= n) return(node); l <- .get.desc.of.node(node, phy); for(j in l) { if(j > n) l<-c(l, .mecca.allbranches(phy, j)); } return(l); } .mecca.boxcox <- function(summaries, stdz, lambda, GM, boxcox) { for(i in 1:length(summaries)) { summaries[i] <- 1 + (summaries[i] - stdz$min[i]) / (stdz$max[i] - stdz$min[i]); summaries[i] <-(summaries[i]^lambda[i] - 1) / (lambda[i] * GM[i]^(lambda[i]-1)); summaries[i] <- (summaries[i] - boxcox$BCmeans[i])/boxcox$BCstd[i]; } return(summaries); } calibrate.mecca <- function(phy, richness, model = c("BM", "Trend", "twoRate"), prior.list = list(priorSigma = c(-4.961845, 4.247066), priorMean = c(-10, 10)), Ncalibrations = 10000, sigmaPriorType = "uniform", rootPriorType = "uniform", divSampleFreq = 0, initPars = "ML", propWidth = 0.1, SigmaBounds = c(-4.961845, 4.247066), hotclade = NULL, BOXCOX = TRUE, optimRange =c(-1000, 10)) { name.check(phy, richness)->nc; if(!nc == "OK") { stop("names in tree and data do not match") } if(!sum(is.na(richness) == 0)) { stop("richness contains missing values") } Nclades <- length(richness); phy$node.label <- NULL; hotBranches <- NULL; match(phy$tip.label, names(richness)) -> m; richness[m] -> richness; cladeAges <- .mecca.cladeage(phy); if(model =="BM") k <- 2; if(model == "ACDC"| model == "Trend"| model == "twoRate" | model == "SSP") k <- 3; if(model == "OU") k <- 4; if(model=="twoRate") { if(is.null(hotclade)) { stop("if using a two rate model you need to specify the hot clade") } hotBranches <- .mecca.gethotbranches(phy, hotclade[1], hotclade[2]); } if(model == "Trend") { if (is.null(prior.list$priorMu)) {prior.list$priorMu = c(-0.5,0.5); warning("No mu prior specified for Trend model. Using default prior of -0.5:0.5") } } output <- .mecca.makecaloutput(model, Ncalibrations, Nclades); if (length(initPars) > 1) { thetaB <- initPars[1]; thetaD <- initPars[2]; } else if (initPars == "ML") { mleBD <- .mecca.getdivMLE(phy, richness); thetaB <- mleBD$lamda; thetaD <- mleBD$mu } Lk <- .mecca.logLP(phy, thetaB, thetaD) + .mecca.logLT(phy, richness, thetaB, thetaD); pb <- txtProgressBar(min = 0, max = Ncalibrations, char = "-", style = 3); for(ncal in 1:Ncalibrations) { cvar <- numeric(length(richness)); cmeans <- numeric(length(richness)); prop <- .mecca.calproposal(model, prior.list, sigmaPriorType, SigmaBounds, rootPriorType, thetaB, thetaD, propWidth) propLk <- .mecca.logLP(phy, prop$birth, prop$death) + .mecca.logLT(phy, richness, prop$birth, prop$death); if(propLk== - Inf) { LKratio <- 0 ; } else { LKratio <- exp(propLk - Lk); } if(LKratio >= 1) { thetaB <- prop$birth; thetaD <- prop$death; Lk <- propLk; } if (LKratio < 1) { p <- runif(1); if (p <= LKratio) { thetaB <- prop$birth; thetaD <- prop$death; Lk <- propLk; } else { prop$birth <- thetaB; prop$death <- thetaD; } } if(ncal == 1 | divSampleFreq == 0 |ncal %% divSampleFreq == 0) { calSim <- sim.mecca(phy = phy, richness = richness, cladeAges = cladeAges, model = model, prop = prop, makeNewTipTrees = TRUE, mytiptrees = NULL, hotBranches = hotBranches); tipTrees <- calSim$trees; } else { calSim <- .mecca.generatetipsummaries(phy, model, tipTrees, prop = prop, hotBranches = hotBranches, richness=richness); } output[ncal, ] <- .mecca.paramsample(model, prop, Lk, calSim); setTxtProgressBar(pb, ncal); } close(pb); div.cal <- output[, c(1,2,3)]; trait.cal <- output[, -c(1,2,3)]; if(length(which(apply(trait.cal, 2, function(x) sum(x) == 0) == TRUE))>0) { trait.cal <- trait.cal[, -which(apply(trait.cal, 2, function(x) sum(x) == 0) == TRUE)]; } if(BOXCOX == TRUE) { trait.cal <- as.data.frame(trait.cal) stat <- trait.cal[, -(1:k)]; param <- trait.cal[ ,1:k]; myMax<-array(0, dim = length(stat)); myMin<-array(0, dim = length(stat)); lambda<-array(0, dim = length(stat)); myGM<-array(0, dim = length(stat)); myBCMeans <- array(0, dim = length(stat)); myBCSDs <- array(0, dim = length(stat)); for(i in 1:length(stat)){ myMax[i]<-max(stat[,i]); myMin[i]<-min(stat[,i]); stat[ ,i] <- 1+(stat[ ,i] - myMin[i])/(myMax[i]-myMin[ i]); } mecca.lm <- mecca.env <- NULL lmreturn=function(stati, param, ...){ mecca.dat=as.data.frame(cbind(y=stati, param)) mecca.lm<-as.formula(mecca.dat) mecca.env<-environment(mecca.lm) optimize(.mecca.maxboxcox, ..., env=mecca.env)$maximum } for(i in 1:length(stat)) { lambda[i] = lmreturn(stat[,i], param, interval = optimRange, maximum = TRUE) print(paste(colnames(stat)[i], lambda[i])) } for(i in 1:length(stat)) { myGM[i]<-exp(mean(log(stat[,i]))); stat[,i]<-(stat[ ,i]^lambda[i] - 1) / (lambda[i] * myGM[i]^(lambda[i]-1)); myBCSDs[i] <- sd(stat[,i]); myBCMeans[i] <- mean(stat[,i]); stat[,i]<-(stat[,i] -myBCMeans[i])/myBCSDs[i]; } res=list("diversification" = div.cal, "trait" = cbind(param, stat), "stdz" = list("min" = myMin, "max" = myMax), "lambda" = lambda, "GM"=myGM, "BoxCox" = list("BCmeans" = myBCMeans, "BCstd" = myBCSDs)); } if(BOXCOX == FALSE) { res=list("diversification" = div.cal, "trait" = trait.cal); } class(res)=c("mecca", "calibration", class(res)) return(res) } .mecca.maxboxcox <- function(lambda, env) { myboxcox<-boxcox(env$rval, lambda=lambda, data=env$object, interp=T, eps=1/50, plotit = FALSE); return(myboxcox$y[1]); } .mecca.cladeage <- function(phy) { which(phy$edge[ ,2] <= length(phy$tip.label)) -> tips; cladeAges <- phy$edge.length[tips]; tipNumbers <- phy$edge[tips, 2]; names(cladeAges) <- phy$tip.label[tipNumbers]; match(phy$tip.label, names(cladeAges)) -> m; cladeAges[m]->cladeAges; return(cladeAges) } .mecca.cladestates <- function(nodeStates, phy) { cladeAncStates <- numeric(length(phy$tip.label)); for(k in 1:length(cladeAncStates)) { parent <- .mecca.parentnode(phy, k); cladeAncStates[k] <- nodeStates[which(names(nodeStates) == parent)]; } return(cladeAncStates); } .mecca.extractpls <- function(p, plsdat, Ncomp) { x <- numeric(Ncomp); for(i in 1:Ncomp) { x[i] <- sum(p * plsdat[, i]) } return(x) } .mecca.fastbm <- function(tree, alpha, sig2, mu) { n <- length(tree$edge.length); x <- rnorm(n=n, mean = mu * tree$edge.length, sd=sqrt(sig2*tree$edge.length)) y <- array(alpha, dim=n+1); for(i in 1:n){ y[tree$edge[i,2]]<-y[tree$edge[i,1]]+x[i]; } nodeStates<-y[(length(tree$tip.label)+1):(n+1)]; names(nodeStates)<-as.character((length(tree$tip.label)+1):(n+1)); tipStates<-y[1:length(tree$tip.label)]; names(tipStates)<-tree$tip.label; return(list(nodeStates=nodeStates, tipStates=tipStates)); } .mecca.fasttreesim <- function (n, lambda, mu, rho, origin) { edge<-matrix(data=NA, nrow=2*n-1, ncol=2); edge[1,]<- c(-1, -2); leaves <- c(-2) timecreation <- array(data=0, dim=2*n); time <- 0 maxspecies <- -2 edge.length <- array(data=0, dim=2*n-1); specevents = array(dim=n) specevents[1]<-origin; r<-runif(n-1, 0,1); if (lambda > mu) { lamb1 <- rho * lambda mu1 <- mu - lambda * (1 - rho) AA<-exp((-lamb1 + mu1) * origin); YY<-lamb1 - mu1 * AA; XX<-(1 - AA) * r; specevents[2:n] <- 1/(lamb1 - mu1) * log((YY - mu1 * XX)/(YY - lamb1 * XX)); } else { specevents[2:n] <- (origin * r)/(1 + lambda * rho * origin * (1 + r)); } specevents <- sort(specevents, decreasing = TRUE) for (index in 2:n) { time = time + (specevents[index - 1] - specevents[index]); species <- sample(leaves, 1) del <- which(leaves == species) edge.length[which(edge[,2] == species)] <- time - timecreation[-species] edge[2*index-2,]<-c(species, maxspecies - 1); edge[2*index-1,]<-c(species, maxspecies - 2); leaves <- c(leaves[-del], maxspecies - 1, maxspecies - 2) maxspecies <- maxspecies - 2 timecreation[2*index-1]<-time; timecreation[2*index]<-time; } m<-match(leaves, edge[,2]); edge.length[m]<-specevents[1]-timecreation[-edge[m,2]]; nodes <- (length(leaves)) * 2 leaf = 1 interior = length(leaves) + 1 if (nodes != 2) { for (j in 1:nodes) { if (sum(match(leaves, -j, 0)) == 0) { posvalue <- interior; interior <- interior + 1; } else { posvalue <- leaf leaf <- leaf + 1 } edge[which(edge == -j)] <- posvalue; } } phy <- list(edge = edge) phy$tip.label <- paste("t", sample(length(leaves)), sep = "") phy$edge.length <- edge.length; phy$Nnode <- length(leaves) class(phy) <- "phylo" return(phy) } .mecca.generatetipsummaries <- function(phy, model, cladeAges, treelist, prop, hotBranches = NULL, richness=richness) { Smean <- numeric(length(treelist)) Svar <- numeric(length(treelist)) root.age <- max(node.depth.edgelength(phy)); cladeAncStates <- .mecca.nodesim(phy, model, prop, hotBranches); for(i in 1:length(treelist)) { if(!is.numeric(treelist[[i]])) { if(!model == "twoRate") dat <- .mecca.tipsim(treelist[[i]], model, prop, cladeAncStates[i], root.age); if(model == "twoRate") { tipNum <- which(phy$tip.label == names(richness)[i]); if (tipNum %in% hotBranches) { Branch = "hot" } else { Branch <- "not" } dat <- .mecca.tipsim(phy = treelist[[i]], model = model, prop = prop, cladeAncStates[i], BranchState = Branch); } Svar[i]<-var(dat); Smean[i]<-mean(dat); } else { if(model == "twoRate") { if (i %in% hotBranches) { Branch = "hot" } else { Branch = "not" } dat <- .mecca.singletiptrait(model, prop, cladeAges[i], cladeAncStates[i], root.age, BranchState = Branch); } else { dat <- .mecca.singletiptrait(model, prop, cladeAges[i], cladeAncStates[i], root.age); } Smean[i] <- dat; Svar[i] <- 0; } } return(list("Smean" = Smean, "Svar" = Svar)); } .mecca.gethotbranches <- function(phy, tip1, tip2) { if(is.null(tip2)) { if(is.numeric(tip1)) { return(tip1); } else { return(which(phy$tip.label==tip1)); } } else { mrca <- .mecca.getmrca(phy, tip1, tip2); return(.mecca.allbranches(phy, mrca)) } } .mecca.getdivMLE <- function(phy, richness) { phy2 <- .laser.gettipdata(richness, phy); ext <- seq(0, 0.99, 0.005); lik<-numeric(length(ext)); div<-numeric(length(ext)); lam<-numeric(length(ext)); for(i in 1:length(ext)) { .laser.fitNDR_1rate(phy2, eps = ext[i], rbounds = c(0.0001, .5), combined = TRUE) -> fit; lik[i] <- fit$LH; div[i] <- fit$r; lam[i] <- fit$lambda; } names(lik) <- ext; names(div) <- ext; names(lam) <- ext; return(list("lik" = max(lik), "div" = div[which(lik==max(lik))],"lamda" = lam[which(lik==max(lik))], "mu" = ext[which(lik==max(lik))] * lam[which(lik==max(lik))] )); } .mecca.getproposal <- function(currentState, psi, min, max) { prop <- currentState + ((runif(1) - 0.5) * psi); if (prop < min) { prop <- min + (min - prop) } if (prop > max) { prop <- max - (prop - max) } return(prop); } .mecca.getmrca <- function(phy, tip1, tip2) { if(is.null(tip2)) { bb<-which(phy$tip.label==tip1); mrca<-.mecca.parentnode(phy, bb); } else { nn <- phy$Nnode; nt <- length(phy$tip.label); minLeaves <- nt; mrca <- NULL; for(i in 1:nn) { leaves <- node.leaves(phy, i + nt); if(tip1 %in% leaves & tip2 %in% leaves) { ll <- length(leaves); if(ll < minLeaves) { mrca <- i + nt; minLeaves <- ll } } } } return(mrca); } .mecca.logLP <- function(phy, b, d) { r <- b - d; a <- d / b; N <- phy$Nnode - 1; Xi <- cbind(phy$edge, phy$edge.length); Xi <- Xi[-which(Xi[ ,2] <= length(phy$tip.label)), ]; Xi <- cbind(Xi, numeric(length(Xi[ ,3]))); bt <- branching.times(phy); for (i in 1: length(Xi[ ,4])) { Xi[i, 4] <- bt[which(names(bt)==Xi[i, 1])]; } part3 <- numeric(length(Xi[ ,4])); for (p in 1:length(part3)) { part3[p]<- log(1 - a * exp(-r*Xi[p, 4])); } logLp <- (N * log(r) - r * sum(Xi[ ,3]) - sum(part3)); return(logLp); } .mecca.logLT <- function(phy, richness, b, d) { r <- b-d; a <- d/b; t <- .mecca.cladeage(phy); n <- richness[match(phy$tip.label, names(richness))]; beta <- (exp(r * t) - 1) / (exp(r * t) - a); logLT <- sum(log(1-beta)) + sum((n-1)*log(beta)); return(logLT); } .mecca.nodesim <- function(phy, model, prop, hotBranches = NULL) { if(model == "BM") { cladeAncStates <- .mecca.cladestates(.mecca.fastbm(phy, prop$root, prop$sigmasq, mu = 0)$nodeStates, phy); } if(model == "Trend") { cladeAncStates <- .mecca.cladestates(.mecca.fastbm(phy, prop$root, prop$sigma, prop$mu)$nodeStates, phy); } if(model == "twoRate") { cladeAncStates <- .mecca.cladestates(.mecca.nodestatestworate(phy, prop, hotBranches), phy); } return(cladeAncStates) } .mecca.paramsample <- function(model, prop, Lk, calSim) { if(model == "BM") x <- c(prop$birth, prop$death, Lk, log(prop$sigmasq),prop$root, calSim$Svar, calSim$Smean); if(model == "Trend") x <- c(prop$birth, prop$death, Lk,log(prop$sigmasq), prop$root, prop$mu, calSim$Svar, calSim$Smean); if(model == "twoRate") x <- c(prop$birth, prop$death, Lk, log(prop$sigmasq1),log(prop$sigmasq2), prop$root, calSim$Svar, calSim$Smean); return(x); } .mecca.parentnode <- function(phy, tip){ return(phy$edge[which(phy$edge[ ,2] == tip), 1]); } .mecca.priordrawbirth <- function(min, max) { return(runif(1, min, max)); } .mecca.priordrawdeath <- function(min, max ) { return(runif(1, min, max)); } .mecca.priordrawmean <- function(rootA, rootB, rootPriorType = "uniform") { if (rootPriorType == "uniform") { return(runif(1, rootA, rootB)); } if(rootPriorType == "normal") { return(rnorm(1, mean = rootA, sd = rootB)); } } .mecca.priordrawsig <- function(min , max, sigmaPriorType, SigmaBounds) { if(sigmaPriorType == "uniform") return(exp(runif(1, min, max))); if(sigmaPriorType == "normal") { if(is.null(SigmaBounds)) { return(exp(rnorm(1, mean = min, sd = max))) } else { while(1) { s <- rnorm(1, mean = min, sd = max) if(s > SigmaBounds[1] & s < SigmaBounds[2]) (break) } return(exp(s)) } } } mecca <- function(phy, richness, cladeMean, cladeVariance, model = c("BM", "Trend", "twoRate"), prior.list = list(priorSigma = c(-4.961845, 4.247066), priorMean = c(-10, 10)), start = start, Ngens = 10000, printFreq = 100, sigmaPriorType = "uniform", rootPriorType = "uniform", SigmaBounds = c(-4.961845, 4.247066),hotclade = NULL, divPropWidth = 0.1, scale = 1, divSampleFreq = 0, BoxCox = TRUE, outputName ="mecca") { name.check(phy, richness) -> nc; if(!nc == "OK") { stop("names in tree and data do not match") } if(!sum(is.na(richness) == 0)) { stop("richness contains missing values") } if(!sum(is.na(cladeMean) == 0)) { stop("cladeMeans contains missing values") } if(!sum(is.na(cladeVariance) == 0)) { stop("cladeVariance contains missing values") } phy$node.label <- NULL; hotBranches <- NULL; match(phy$tip.label, names(richness)) -> m; richness[m] -> richness; cladeMean[m] -> cladeMean; cladeVariance[m] -> cladeVariance; cladeVariance <- cladeVariance[-which(cladeVariance==0)]; if(sigmaPriorType == "uniform") SigmaBounds <- prior.list$priorSigma; cladeAges <- .mecca.cladeage(phy); dcrit <- start$dcrit; obs <- start$obsTraits; plsobs <- start$plsObserved pls <- start$plsLoadings; tuning <- as.data.frame(t(start$tuning)); ncomp <- ncol(pls); if(BoxCox == TRUE) { stdz <- start$stdz; lambda <- start$lambda; GM <- start$GM; boxcox <- start$BoxCox; } if(model =="BM") k <- 2; if(model == "Trend"|model == "twoRate") k <- 3; if(model=="twoRate") { if(is.null(hotclade)) { stop("if using a two rate model you need to specify the hot clade") } hotBranches <- .mecca.gethotbranches(phy, hotclade[1], hotclade[2]); } if(model == "Trend") { if (is.null(prior.list$priorMu)) {prior.list$priorMu = c(-0.5,0.5); warning("No mu prior specified for Trend model. Using default prior of -0.5:0.5") } } distSim <- file(paste(outputName, "distSimFile.txt", sep = "_"), "w"); cat(colnames(tuning), paste("pls", 1:length(plsobs), sep = ""), file = distSim, sep = "\t","\n"); bmSim <- file(paste(outputName, "bmSimFile.txt", sep = "_"), "w"); cat(colnames(tuning), names(obs), file = bmSim, sep = "\t","\n"); bdSim <- file(paste(outputName, "bdSimFile.txt", sep = "_"), "w"); cat(paste("Lambda", "Mu", "lkl"), file = bdSim, sep = "\t","\n"); names(plsobs) <- c(paste("pls", 1:length(plsobs), sep = "")); write.table(t(plsobs), paste(outputName, "distObsFile.txt", sep = "_"), row.names = F, sep = "\t", quote = F); write.table(t(obs), paste(outputName, "ObsFile.txt", sep = "_"), row.names = F, sep = "\t", quote = F); nAcceptBD = 0; nAcceptSigma = 0; nAcceptRoot = 0; thetaB <- start$startingBirth; thetaD <- start$startingDeath; trait.params <- tuning[1,]; trait.widths <- tuning[2,]; Lk <- .mecca.logLP(phy, thetaB, thetaD) + .mecca.logLT(phy, richness, thetaB, thetaD); for(ngen in 1:Ngens) { while(1) { thetaBprop<-.mecca.getproposal(thetaB, divPropWidth, min = 0, max = Inf); thetaDprop<-.mecca.getproposal(thetaD, divPropWidth, min = 0, max = Inf); if(thetaBprop > thetaDprop) break; } propLk <- .mecca.logLP(phy, thetaBprop, thetaDprop) + .mecca.logLT(phy, richness, thetaBprop, thetaDprop); if(propLk== - Inf) { LKratio <- 0 ; } else { LKratio <- exp(propLk - Lk); } if(LKratio >= 1 || runif(1) < LKratio) { thetaB <- thetaBprop; thetaD <- thetaDprop; Lk <- propLk; nAcceptBD <- nAcceptBD + 1; } cat(thetaB, thetaD, Lk, file = bdSim, sep = "\t","\n") prop.params <- .mecca.proposal(model, trait.params, trait.widths, prior.list, SigmaBounds, scale, ngen); sim.props <- .mecca.simparamlist(thetaB, thetaD, prop.params); while(1) { if(ngen == 1 || divSampleFreq == 0 || ngen %% divSampleFreq == 0) { Sim <- sim.mecca(phy, richness, cladeAges, model, sim.props, makeNewTipTrees = TRUE, mytiptrees = NULL, hotBranches = hotBranches); tipTrees <- Sim$trees; } else { Sim <- .mecca.generatetipsummaries(phy, model, cladeAges, tipTrees, prop = sim.props, hotBranches = hotBranches, richness=richness); } if(sum(Sim$Svar==0)>0) Sim$Svar <- Sim$Svar[-which(Sim$Svar==0)]; sims <- c(Sim$Svar, Sim$Smean); names(sims) <- names(obs) if(BoxCox == TRUE) { bxsims <- .mecca.boxcox(as.numeric(sims), stdz, lambda, GM, boxcox) } if(sum(is.na(bxsims))==0) break; } plsSim <- .mecca.extractpls(as.numeric(bxsims), pls, ncomp); dSim <- abs(dist(rbind(plsobs, plsSim))[1]); if(dSim <= dcrit) { if(ngen %% 2 == 1) { acc <- .mecca.acceptance(trait.params, prop.params, sigmaPriorType, prior.list$priorSigma); } else acc <- "accept"; } else if(dSim > dcrit) { acc <- "reject"; } if(acc == "accept") { trait.params <- prop.params; if(ngen %%2 == 1) nAcceptSigma = nAcceptSigma + 1; if(ngen %% 2 == 0) nAcceptRoot = nAcceptRoot + 1; cat(as.numeric(trait.params), plsSim, file = distSim, sep = "\t", "\n"); cat(as.numeric(trait.params), sims, file = bmSim, sep = "\t", "\n"); } if(acc == "reject") { sim.curr <- .mecca.simparamlist(thetaB, thetaD, trait.params); while(1) { Sim <- .mecca.generatetipsummaries(phy,model, cladeAges, tipTrees, sim.curr, hotBranches = hotBranches, richness=richness) if(sum(Sim$Svar==0)>0) Sim$Svar <- Sim$Svar[-which(Sim$Svar==0)]; sims <- c(Sim$Svar, Sim$Smean); if(BoxCox == TRUE) { bxsims <- .mecca.boxcox(sims, stdz, lambda, GM, boxcox) } if(sum(is.na(bxsims))==0) break; } plsSim <- .mecca.extractpls(bxsims, pls, ncomp); cat(as.numeric(trait.params), plsSim, file = distSim, sep = "\t", "\n"); cat(as.numeric(trait.params), sims, file = bmSim, sep = "\t", "\n"); } if(ngen %% printFreq == 0) { cat("Generation", ngen, "/", round(nAcceptBD/ngen, 2), round(nAcceptSigma/(ngen/2), 2), round(nAcceptRoot/(ngen/2), 2), "\n\n"); } } close(bmSim); close(bdSim); close(distSim); } .mecca.simparamlist <- function(birth, death, trait) { rates <- grep("sigma", colnames(trait)); trait[,rates] <- exp(trait[,rates]); trait <- as.list(trait); trait$birth <- birth; trait$death <- death; return(trait); } .mecca.singletiptrait <- function(model, prop, clade.age, clade.anc.state, root.age, BranchState="not") { if(model == "BM") { dat <- rnorm(1, mean = clade.anc.state, sd = sqrt(prop$sigmasq * clade.age)); } if(model == "Trend") { dat <- clade.anc.state + rnorm(1, mean = clade.age*prop$mu, sd =sqrt(prop$sigma * clade.age)) } if(model == "twoRate") { if(BranchState == "not") { dat <- rnorm(1, mean = clade.anc.state, sd = sqrt(prop$sigmasq1 * clade.age)); } else if(BranchState == "hot") { dat <- rnorm(1, mean = clade.anc.state, sd = sqrt(prop$sigmasq2 * clade.age)); } } return(dat); }
mHMM <- function(s_data, gen, xx = NULL, start_val, mcmc, return_path = FALSE, print_iter = FALSE, gamma_hyp_prior = NULL, emiss_hyp_prior = NULL, gamma_sampler = NULL, emiss_sampler = NULL){ n_dep <- gen$n_dep dep_labels <- colnames(s_data[,2:(n_dep+1)]) id <- unique(s_data[,1]) n_subj <- length(id) subj_data <- rep(list(NULL), n_subj) if(sum(sapply(s_data, is.factor)) > 0 ){ stop("Your data contains factorial variables, which cannot be used as input in the function mHMM. All variables have to be numerical.") } for(s in 1:n_subj){ subj_data[[s]]$y <- as.matrix(s_data[s_data[,1] == id[s],][,-1], ncol = n_dep) } ypooled <- n <- NULL n_vary <- numeric(n_subj) m <- gen$m q_emiss <- gen$q_emiss emiss_int_mle <- rep(list(NULL), n_dep) emiss_mhess <- rep(list(NULL), n_dep) for(q in 1:n_dep){ emiss_int_mle[[q]] <- matrix(, m, (q_emiss[q] - 1)) emiss_mhess[[q]] <- matrix(, (q_emiss[q] - 1) * m, (q_emiss[q] - 1)) } for(s in 1:n_subj){ ypooled <- rbind(ypooled, subj_data[[s]]$y) n <- dim(subj_data[[s]]$y)[1] n_vary[s] <- n subj_data[[s]] <- c(subj_data[[s]], n = n, list(gamma_converge = numeric(m), gamma_int_mle = matrix(, m, (m - 1)), gamma_mhess = matrix(, (m - 1) * m, (m - 1)), emiss_converge = rep(list(numeric(m)), n_dep), emiss_int_mle = emiss_int_mle, emiss_mhess = emiss_mhess)) } n_total <- dim(ypooled)[1] n_dep1 <- 1 + n_dep nx <- numeric(n_dep1) if (is.null(xx)){ xx <- rep(list(matrix(1, ncol = 1, nrow = n_subj)), n_dep1) nx[] <- 1 } else { if(!is.list(xx) | length(xx) != n_dep1){ stop("If xx is specified, xx should be a list, with the number of elements equal to the number of dependent variables + 1") } for(i in 1:n_dep1){ if (is.null(xx[[i]])){ xx[[i]] <- matrix(1, ncol = 1, nrow = n_subj) nx[i] <- 1 } else { nx[i] <- ncol(xx[[i]]) if (sum(xx[[i]][,1] != 1)){ stop("If xx is specified, the first column in each element of xx has to represent the intercept. That is, a column that only consists of the value 1") } if(nx[i] > 1){ for(j in 2:nx[i]){ if(is.factor(xx[[i]][,j])){ stop("Factors currently cannot be used as covariates, see help file for alternatives") } if((length(unique(xx[[i]][,j])) == 2) & (sum(xx[[i]][,j] != 0 & xx[[i]][,j] !=1) > 0)){ stop("Dichotomous covariates in xx need to be coded as 0 / 1 variables. That is, only conisting of the values 0 and 1") } if(length(unique(xx[[i]][,j])) > 2){ xx[[i]][,j] <- xx[[i]][,j] - mean(xx[[i]][,j]) } } } } } } J <- mcmc$J burn_in <- mcmc$burn_in if(is.null(gamma_sampler)) { gamma_int_mle0 <- rep(0, m - 1) gamma_scalar <- 2.93 / sqrt(m - 1) gamma_w <- .1 } else { gamma_int_mle0 <- gamma_sampler$gamma_int_mle0 gamma_scalar <- gamma_sampler$gamma_scalar gamma_w <- gamma_sampler$gamma_w } if(is.null(emiss_sampler)){ emiss_int_mle0 <- rep(list(NULL), n_dep) emiss_scalar <- rep(list(NULL), n_dep) for(q in 1:n_dep){ emiss_int_mle0[[q]] <- rep(0, q_emiss[q] - 1) emiss_scalar[[q]] <- 2.93 / sqrt(q_emiss[q] - 1) } emiss_w <- .1 } else { emiss_int_mle0 <- emiss_sampler$emiss_int_mle0 emiss_scalar <- emiss_sampler$emiss_scalar emiss_w <- emiss_sampler$emiss_w } if(is.null(gamma_hyp_prior)){ gamma_mu0 <- rep(list(matrix(0,nrow = nx[1], ncol = m - 1)), m) gamma_K0 <- diag(1, nx[1]) gamma_nu <- 3 + m - 1 gamma_V <- gamma_nu * diag(m - 1) } else { gamma_mu0 <- gamma_hyp_prior$gamma_mu0 gamma_K0 <- gamma_hyp_prior$gamma_K0 gamma_nu <- gamma_hyp_prior$gamma_nu gamma_V <- gamma_hyp_prior$gamma_V } emiss_mu0 <- rep(list(vector("list", m)), n_dep) emiss_nu <- rep(list(NULL), n_dep) emiss_V <- rep(list(NULL), n_dep) emiss_K0 <- rep(list(NULL), n_dep) if(is.null(emiss_hyp_prior)){ for(q in 1:n_dep){ for(i in 1:m){ emiss_mu0[[q]][[i]] <- matrix(0, ncol = q_emiss[q] - 1, nrow = nx[1 + q]) } emiss_nu[[q]] <- 3 + q_emiss[q] - 1 emiss_V[[q]] <- emiss_nu[[q]] * diag(q_emiss[q] - 1) emiss_K0[[q]] <- diag(1, nx[1 + q]) } } else { for(q in 1:n_dep){ emiss_mu0[[q]] <- emiss_hyp_prior[[q]]$emiss_mu0 emiss_nu[[q]] <- emiss_hyp_prior[[q]]$emiss_nu emiss_V[[q]] <- emiss_hyp_prior[[q]]$emiss_V emiss_K0[[q]] <- diag(emiss_hyp_prior$emiss_K0, nx[1 + q]) } } c <- llk <- numeric(1) sample_path <- lapply(n_vary, dif_matrix, cols = J) trans <- rep(list(vector("list", m)), n_subj) gamma_mle_pooled <-gamma_int_mle_pooled <- gamma_mhess_pooled <- gamma_pooled_ll <- vector("list", m) gamma_c_int <- rep(list(matrix(, n_subj, (m-1))), m) gamma_mu_int_bar <- gamma_V_int <- vector("list", m) gamma_mu_prob_bar <- rep(list(numeric(m)), m) gamma_naccept <- matrix(0, n_subj, m) cond_y <- lapply(rep(n_dep, n_subj), nested_list, m = m) emiss_mle_pooled <- emiss_int_mle_pooled <- emiss_mhess_pooled <- emiss_pooled_ll <- rep(list(vector("list", n_dep)), m) emiss_c_int <- rep(list(lapply(q_emiss - 1, dif_matrix, rows = n_subj)), m) emiss_mu_int_bar <- emiss_V_int <- rep(list(vector("list", n_dep)), m) emiss_mu_prob_bar <- rep(list(lapply(q_emiss, dif_vector)), m) emiss_naccept <- rep(list(matrix(0, n_subj, m)), n_dep) if(length(start_val) != n_dep + 1){ stop("The number of elements in the list start_val should be equal to 1 + the number of dependent variables, and should not contain nested lists (i.e., lists within lists)") } PD <- matrix(, nrow = J, ncol = sum(m * q_emiss) + m * m + 1) PD_emiss_names <- paste("q", 1, "_emiss", rep(1:q_emiss[1], m), "_S", rep(1:m, each = q_emiss[1]), sep = "") if(n_dep > 1){ for(q in 2:n_dep){ PD_emiss_names <- c(PD_emiss_names, paste("q", q, "_emiss", rep(1:q_emiss[q], m), "_S", rep(1:m, each = q_emiss[q]), sep = "")) } } colnames(PD) <- c(PD_emiss_names, paste("S", rep(1:m, each = m), "toS", rep(1:m, m), sep = ""), "LL") PD[1, ((sum(m * q_emiss) + 1)) :((sum(m * q_emiss) + m * m))] <- unlist(sapply(start_val, t))[1:(m*m)] PD[1, 1:((sum(m * q_emiss)))] <- unlist(sapply(start_val, t))[(m*m + 1): (m*m + sum(m * q_emiss))] PD_subj <- rep(list(PD), n_subj) gamma_prob_bar <- matrix(, nrow = J, ncol = (m * m)) colnames(gamma_prob_bar) <- paste("S", rep(1:m, each = m), "toS", rep(1:m, m), sep = "") gamma_prob_bar[1,] <- PD[1,(sum(m*q_emiss) + 1):(sum(m * q_emiss) + m * m)] emiss_prob_bar <- lapply(q_emiss * m, dif_matrix, rows = J) names(emiss_prob_bar) <- dep_labels for(q in 1:n_dep){ colnames(emiss_prob_bar[[q]]) <- paste("Emiss", rep(1:q_emiss[q], m), "_S", rep(1:m, each = q_emiss[q]), sep = "") start <- c(0, q_emiss * m) emiss_prob_bar[[q]][1,] <- PD[1,(sum(start[1:q]) + 1):(sum(start[1:q]) + (m * q_emiss[q]))] } gamma_int_bar <- matrix(, nrow = J, ncol = ((m-1) * m)) colnames(gamma_int_bar) <- paste("int_S", rep(1:m, each = m-1), "toS", rep(2:m, m), sep = "") gamma_int_bar[1,] <- as.vector(prob_to_int(matrix(gamma_prob_bar[1,], byrow = TRUE, ncol = m, nrow = m))) if(nx[1] > 1){ gamma_cov_bar <- matrix(, nrow = J, ncol = ((m-1) * m) * (nx[1] - 1)) colnames(gamma_cov_bar) <- paste( paste("cov", 1 : (nx[1] - 1), "_", sep = ""), "S", rep(1:m, each = (m-1) * (nx[1] - 1)), "toS", rep(2:m, m * (nx[1] - 1)), sep = "") gamma_cov_bar[1,] <- 0 } else{ gamma_cov_bar <- "No covariates where used to predict the transition probability matrix" } emiss_int_bar <- lapply((q_emiss-1) * m, dif_matrix, rows = J) names(emiss_int_bar) <- dep_labels for(q in 1:n_dep){ colnames(emiss_int_bar[[q]]) <- paste("int_Emiss", rep(2:q_emiss[q], m), "_S", rep(1:m, each = q_emiss[q] - 1), sep = "") emiss_int_bar[[q]][1,] <- as.vector(prob_to_int(matrix(emiss_prob_bar[[q]][1,], byrow = TRUE, ncol = q_emiss[q], nrow = m))) } if(sum(nx[-1]) > n_dep){ emiss_cov_bar <- lapply((q_emiss-1) * m * (nx[-1] - 1 ), dif_matrix, rows = J) names(emiss_cov_bar) <- dep_labels for(q in 1:n_dep){ if(nx[1 + q] > 1){ colnames(emiss_cov_bar[[q]]) <- paste( paste("cov", 1 : (nx[1 + q] - 1), "_", sep = ""), "emiss", rep(2:q_emiss[q], m * (nx[1 + q] - 1)), "_S", rep(1:m, each = (q_emiss[q] - 1) * (nx[1 + q] - 1)), sep = "") emiss_cov_bar[[q]][1,] <- 0 } else { emiss_cov_bar[[q]] <- "No covariates where used to predict the emission probabilities for this outcome" } } } else{ emiss_cov_bar <- "No covariates where used to predict the emission probabilities" } gamma_int_subj <- rep(list(gamma_int_bar), n_subj) emiss_int_subj <- rep(list(emiss_int_bar), n_subj) emiss_sep <- vector("list", n_dep) for(q in 1:n_dep){ start <- c(0, q_emiss * m) emiss_sep[[q]] <- matrix(PD[1,(sum(start[1:q]) + 1):(sum(start[1:q]) + (m * q_emiss[q]))], byrow = TRUE, ncol = q_emiss[q], nrow = m) } emiss <- rep(list(emiss_sep), n_subj) gamma <- rep(list(matrix(PD[1,(sum(m*q_emiss) + 1):(sum(m * q_emiss) + m * m)], byrow = TRUE, ncol = m)), n_subj) delta <- rep(list(solve(t(diag(m) - gamma[[1]] + 1), rep(1, m))), n_subj) itime <- proc.time()[3] for (iter in 2 : J){ for(s in 1:n_subj){ forward <- cat_Mult_HMM_fw(x = subj_data[[s]]$y, m = m, emiss = emiss[[s]], gamma = gamma[[s]], n_dep = n_dep, delta=NULL) alpha <- forward$forward_p c <- max(forward$la[, subj_data[[s]]$n]) llk <- c + log(sum(exp(forward$la[, subj_data[[s]]$n] - c))) PD_subj[[s]][iter, sum(m * q_emiss) + m * m + 1] <- llk trans[[s]] <- vector("list", m) sample_path[[s]][n_vary[[s]], iter] <- sample(1:m, 1, prob = c(alpha[, n_vary[[s]]])) for(t in (subj_data[[s]]$n - 1):1){ sample_path[[s]][t,iter] <- sample(1:m, 1, prob = (alpha[, t] * gamma[[s]][,sample_path[[s]][t + 1, iter]])) trans[[s]][[sample_path[[s]][t,iter]]] <- c(trans[[s]][[sample_path[[s]][t, iter]]], sample_path[[s]][t + 1, iter]) } for (i in 1:m){ trans[[s]][[i]] <- c(trans[[s]][[i]], 1:m) trans[[s]][[i]] <- rev(trans[[s]][[i]]) for(q in 1:n_dep){ cond_y[[s]][[i]][[q]] <- c(subj_data[[s]]$y[sample_path[[s]][, iter] == i, q], 1:q_emiss[q]) } } } for(i in 1:m){ trans_pooled <- factor(c(unlist(sapply(trans, "[[", i)), c(1:m))) gamma_mle_pooled[[i]] <- optim(gamma_int_mle0, llmnl_int, Obs = trans_pooled, n_cat = m, method = "BFGS", hessian = TRUE, control = list(fnscale = -1)) gamma_int_mle_pooled[[i]] <- gamma_mle_pooled[[i]]$par gamma_pooled_ll[[i]] <- gamma_mle_pooled[[i]]$value for(q in 1:n_dep){ cond_y_pooled <- numeric() for(s in 1:n_subj){ cond_y_pooled <- c(cond_y_pooled, cond_y[[s]][[i]][[q]]) } emiss_mle_pooled[[i]][[q]] <- optim(emiss_int_mle0[[q]], llmnl_int, Obs = c(cond_y_pooled, c(1:q_emiss[q])), n_cat = q_emiss[q], method = "BFGS", hessian = TRUE, control = list(fnscale = -1)) emiss_int_mle_pooled[[i]][[q]] <- emiss_mle_pooled[[i]][[q]]$par emiss_pooled_ll[[i]][[q]] <- emiss_mle_pooled[[i]][[q]]$value } for (s in 1:n_subj){ wgt <- subj_data[[s]]$n / n_total gamma_out <- optim(gamma_int_mle_pooled[[i]], llmnl_int_frac, Obs = c(trans[[s]][[i]], c(1:m)), n_cat = m, pooled_likel = gamma_pooled_ll[[i]], w = gamma_w, wgt = wgt, method="BFGS", hessian = TRUE, control = list(fnscale = -1)) if(gamma_out$convergence == 0){ subj_data[[s]]$gamma_converge[i] <- 1 subj_data[[s]]$gamma_mhess[(1 + (i - 1) * (m - 1)):((m - 1) + (i - 1) * (m - 1)), ] <- mnlHess_int(int = gamma_out$par, Obs = c(trans[[s]][[i]], c(1:m)), n_cat = m) subj_data[[s]]$gamma_int_mle[i,] <- gamma_out$par } else { subj_data[[s]]$gamma_converge[i] <- 0 subj_data[[s]]$gamma_mhess[(1 + (i - 1) * (m - 1)):((m - 1) + (i - 1) * (m - 1)),] <- diag(m-1) subj_data[[s]]$gamma_int_mle[i,] <- rep(0, m - 1) } if (iter == 2){ gamma_c_int[[i]][s,] <- gamma_out$par } for(q in 1:n_dep){ emiss_out <- optim(emiss_int_mle_pooled[[i]][[q]], llmnl_int_frac, Obs = c(cond_y[[s]][[i]][[q]], c(1:q_emiss[q])), n_cat = q_emiss[q], pooled_likel = emiss_pooled_ll[[i]][[q]], w = emiss_w, wgt = wgt, method = "BFGS", hessian = TRUE, control = list(fnscale = -1)) if(emiss_out$convergence == 0){ subj_data[[s]]$emiss_converge[[q]][i] <- 1 subj_data[[s]]$emiss_mhess[[q]][(1 + (i - 1) * (q_emiss[q] - 1)):((q_emiss[q] - 1) + (i - 1) * (q_emiss[q] - 1)), ] <- mnlHess_int(int = emiss_out$par, Obs = c(cond_y[[s]][[i]][[q]], c(1:q_emiss[q])), n_cat = q_emiss[q]) subj_data[[s]]$emiss_int_mle[[q]][i,] <- emiss_out$par } else { subj_data[[s]]$emiss_converge[[q]][i] <- 0 subj_data[[s]]$emiss_mhess[[q]][(1 + (i - 1) * (q_emiss[q] - 1)):((q_emiss[q] - 1) + (i - 1) * (q_emiss[q] - 1)), ] <- diag(q_emiss[q] - 1) subj_data[[s]]$emiss_int_mle[[q]][i,] <- rep(0, q_emiss[q] - 1) } if (iter == 2){ emiss_c_int[[i]][[q]][s,] <- emiss_out$par } } } gamma_mu0_n <- solve(t(xx[[1]]) %*% xx[[1]] + gamma_K0) %*% (t(xx[[1]]) %*% gamma_c_int[[i]] + gamma_K0 %*% gamma_mu0[[i]]) gamma_V_n <- gamma_V + t(gamma_c_int[[i]] - xx[[1]] %*% gamma_mu0_n) %*% (gamma_c_int[[i]] - xx[[1]] %*% gamma_mu0_n) + t(gamma_mu0_n - gamma_mu0[[i]]) %*% gamma_K0 %*% (gamma_mu0_n - gamma_mu0[[i]]) gamma_V_int[[i]] <- solve(rwish(S = solve(gamma_V_n), v = gamma_nu + n_subj)) gamma_mu_int_bar[[i]] <- gamma_mu0_n + solve(chol(t(xx[[1]]) %*% xx[[1]] + gamma_K0)) %*% matrix(rnorm((m - 1) * nx[1]), nrow = nx[1]) %*% t(solve(chol(solve(gamma_V_int[[i]])))) gamma_exp_int <- matrix(exp(c(0, gamma_mu_int_bar[[i]][1,] )), nrow = 1) gamma_mu_prob_bar[[i]] <- gamma_exp_int / as.vector(gamma_exp_int %*% c(rep(1,(m)))) for(q in 1:n_dep){ emiss_mu0_n <- solve(t(xx[[1 + q]]) %*% xx[[1 + q]] + emiss_K0[[q]]) %*% (t(xx[[1 + q]]) %*% emiss_c_int[[i]][[q]] + emiss_K0[[q]] %*% emiss_mu0[[q]][[i]]) emiss_V_n <- emiss_V[[q]] + t(emiss_c_int[[i]][[q]] - xx[[1 + q]] %*% emiss_mu0_n) %*% (emiss_c_int[[i]][[q]] - xx[[1 + q]] %*% emiss_mu0_n) + t(emiss_mu0_n - emiss_mu0[[q]][[i]]) %*% emiss_K0[[q]] %*% (emiss_mu0_n - emiss_mu0[[q]][[i]]) emiss_V_int[[i]][[q]] <- solve(rwish(S = solve(emiss_V_n), v = emiss_nu[[q]] + n_subj)) emiss_mu_int_bar[[i]][[q]] <- emiss_mu0_n + solve(chol(t(xx[[1 + q]]) %*% xx[[1 + q]] + emiss_K0[[q]])) %*% matrix(rnorm((q_emiss[q] - 1) * nx[1 + q]), nrow = nx[1 + q]) %*% t(solve(chol(solve(emiss_V_int[[i]][[q]])))) emiss_exp_int <- matrix(exp(c(0, emiss_mu_int_bar[[i]][[q]][1, ])), nrow = 1) emiss_mu_prob_bar[[i]][[q]] <- emiss_exp_int / as.vector(emiss_exp_int %*% c(rep(1, (q_emiss[q])))) } for (s in 1:n_subj){ gamma_candcov_comb <- chol2inv(chol(subj_data[[s]]$gamma_mhess[(1 + (i - 1) * (m - 1)):((m - 1) + (i - 1) * (m - 1)), ] + chol2inv(chol(gamma_V_int[[i]])))) gamma_RWout <- mnl_RW_once(int1 = gamma_c_int[[i]][s,], Obs = trans[[s]][[i]], n_cat = m, mu_int_bar1 = c(t(gamma_mu_int_bar[[i]]) %*% xx[[1]][s,]), V_int1 = gamma_V_int[[i]], scalar = gamma_scalar, candcov1 = gamma_candcov_comb) gamma[[s]][i,] <- PD_subj[[s]][iter, c((sum(m * q_emiss) + 1 + (i - 1) * m):(sum(m * q_emiss) + (i - 1) * m + m))] <- gamma_RWout$prob gamma_naccept[s, i] <- gamma_naccept[s, i] + gamma_RWout$accept gamma_c_int[[i]][s,] <- gamma_RWout$draw_int gamma_int_subj[[s]][iter, (1 + (i - 1) * (m - 1)):((m - 1) + (i - 1) * (m - 1))] <- gamma_c_int[[i]][s,] start <- c(0, q_emiss * m) for(q in 1:n_dep){ emiss_candcov_comb <- chol2inv(chol(subj_data[[s]]$emiss_mhess[[q]][(1 + (i - 1) * (q_emiss[q] - 1)):((q_emiss[q] - 1) + (i - 1) * (q_emiss[q] - 1)), ] + chol2inv(chol(emiss_V_int[[i]][[q]])))) emiss_RWout <- mnl_RW_once(int1 = emiss_c_int[[i]][[q]][s,], Obs = cond_y[[s]][[i]][[q]], n_cat = q_emiss[q], mu_int_bar1 = c(t(emiss_mu_int_bar[[i]][[q]]) %*% xx[[1 + q]][s,]), V_int1 = emiss_V_int[[i]][[q]], scalar = emiss_scalar[[q]], candcov1 = emiss_candcov_comb) emiss[[s]][[q]][i,] <- PD_subj[[s]][iter, (sum(start[1:q]) + 1 + (i - 1) * q_emiss[q]):(sum(start[1:q]) + (i - 1) * q_emiss[q] + q_emiss[q])] <- emiss_RWout$prob emiss_naccept[[q]][s, i] <- emiss_naccept[[q]][s, i] + emiss_RWout$accept emiss_c_int[[i]][[q]][s,] <- emiss_RWout$draw_int emiss_int_subj[[s]][[q]][iter, (1 + (i - 1) * (q_emiss[q] - 1)) : ((q_emiss[q] - 1) + (i - 1) * (q_emiss[q] - 1))] <- emiss_c_int[[i]][[q]][s,] } if(i == m){ delta[[s]] <- solve(t(diag(m) - gamma[[s]] + 1), rep(1, m)) } } } gamma_int_bar[iter, ] <- unlist(lapply(gamma_mu_int_bar, "[",1,)) if(nx[1] > 1){ gamma_cov_bar[iter, ] <- unlist(lapply(gamma_mu_int_bar, "[",-1,)) } gamma_prob_bar[iter,] <- unlist(gamma_mu_prob_bar) for(q in 1:n_dep){ emiss_int_bar[[q]][iter, ] <- as.vector(unlist(lapply( lapply(emiss_mu_int_bar, "[[", q), "[",1,) )) if(nx[1+q] > 1){ emiss_cov_bar[[q]][iter, ] <- as.vector(unlist(lapply( lapply(emiss_mu_int_bar, "[[", q), "[",-1,) )) } emiss_prob_bar[[q]][iter,] <- as.vector(unlist(sapply(emiss_mu_prob_bar, "[[", q))) } if(is.whole(iter/10) & print_iter == TRUE){ if(iter == 10){ cat("Iteration:", "\n") } cat(c(iter), "\n") } } ctime = proc.time()[3] message(paste("Total time elapsed (hh:mm:ss):", hms(ctime-itime))) if(return_path == TRUE){ out <- list(input = list(m = m, n_dep = n_dep, q_emiss = q_emiss, J = J, burn_in = burn_in, n_subj = n_subj, n_vary = n_vary, dep_labels = dep_labels), PD_subj = PD_subj, gamma_int_subj = gamma_int_subj, emiss_int_subj = emiss_int_subj, gamma_int_bar = gamma_int_bar, gamma_cov_bar = gamma_cov_bar, emiss_int_bar = emiss_int_bar, emiss_cov_bar = emiss_cov_bar, gamma_prob_bar = gamma_prob_bar, emiss_prob_bar = emiss_prob_bar, gamma_naccept = gamma_naccept, emiss_naccept = emiss_naccept, sample_path = sample_path) } else { out <- list(input = list(m = m, n_dep = n_dep, q_emiss = q_emiss, J = J, burn_in = burn_in, n_subj = n_subj, n_vary = n_vary, dep_labels = dep_labels), PD_subj = PD_subj, gamma_int_subj = gamma_int_subj, emiss_int_subj = emiss_int_subj, gamma_int_bar = gamma_int_bar, gamma_cov_bar = gamma_cov_bar, emiss_int_bar = emiss_int_bar, emiss_cov_bar = emiss_cov_bar, gamma_prob_bar = gamma_prob_bar, emiss_prob_bar = emiss_prob_bar, gamma_naccept = gamma_naccept, emiss_naccept = emiss_naccept) } class(out) <- append(class(out), "mHMM") return(out) }
shapley_mfoc <- function(n=NA,a=NA,d=NA,K=NA){ if (is.na(a)==T|sum(is.na(d)==T)==length(d)|sum(is.na(K)==T)==length(K)){ cat("Values for a, d and K are necessary. Please, check them.", sep="\n") } else { cat("Shapley-Value", sep="\n") dk<-order(d/K) d<-d[dk];K<-K[dk] cind<-as.vector(mfoc(n,a,d,K,cooperation=0)) shapley<-c();shapley[1]<-cind[1]/n for (i in 2:n){ aux<-0 for (j in 2:i){aux<-aux+(cind[j]-cind[j-1])/(n-j+1)} shapley[i]<-shapley[1]+aux } return(shapley) } }
tidy_beta <- function(.n = 50, .shape1 = 1, .shape2 = 1, .ncp = 0, .num_sims = 1){ n <- as.integer(.n) num_sims <- as.integer(.num_sims) shape1 <- as.numeric(.shape1) shape2 <- as.numeric(.shape2) ncp <- as.numeric(.ncp) if(!is.integer(n) | n < 0){ rlang::abort( "The parameters '.n' must be of class integer. Please pass a whole number like 50 or 100. It must be greater than 0." ) } if(!is.integer(num_sims) | num_sims < 0){ rlang::abort( "The parameter `.num_sims' must be of class integer. Please pass a whole number like 50 or 100. It must be greater than 0." ) } if(!is.numeric(shape1) | !is.numeric(shape2) | !is.numeric(ncp) | shape1 < 0 | shape2 < 0 | ncp < 0){ rlang::abort( "The parameters of '.shape1', '.shape2', and 'ncp' must be of class numeric. Please pass a numer like 1 or 1.1 etc. and must be greater than 0." ) } x <- seq(1, num_sims, 1) ps <- seq(-n, n-1, 2) qs <- seq(0, 1, (1/(n-1))) df <- dplyr::tibble(sim_number = as.factor(x)) %>% dplyr::group_by(sim_number) %>% dplyr::mutate(x = list(1:n)) %>% dplyr::mutate(y = list(stats::rbeta(n = n, shape1 = shape1, shape2 = shape2, ncp = ncp))) %>% dplyr::mutate(d = list(density(unlist(y), n = n)[c("x","y")] %>% purrr::set_names("dx","dy") %>% dplyr::as_tibble())) %>% dplyr::mutate(p = list(stats::pbeta(ps, shape1 = shape1, shape2 = shape2, ncp = ncp))) %>% dplyr::mutate(q = list(stats::qbeta(qs, shape1 = shape1, shape2 = shape2, ncp = ncp))) %>% tidyr::unnest(cols = c(x, y, d, p, q)) %>% dplyr::ungroup() attr(df, ".shape1") <- .shape1 attr(df, ".shape2") <- .shape2 attr(df, ".ncp") <- .ncp attr(df, ".n") <- .n attr(df, ".num_sims") <- .num_sims attr(df, "tibble_type") <- "tidy_beta" attr(df, "ps") <- ps attr(df, "qs") <- qs return(df) }
"plot.optMoreParMode" <- function( x, main=NULL, which=1, ... ){ if(is.null(main)) main <- deparse(substitute(x)) if(which>length(x$best)){ warning("The selected (",which,") best solution does not exist!\nOnly ", length(x$best)," best solution(s) exist(s).\nThe first best solution will be ploted.\n") which<-1 } plot.mat(x$M,clu=clu(x,which=which),IM=IM(x,which=which),main=main,...) } plot.opt.more.par.mode<-plot.optMoreParMode
data("WageData") context("wbm defaults") wages <- WageData wages <- wages[8:210,] wages$wts <- runif(nrow(wages), 0.3, 3) wages <- panel_data(wages, id = id, wave = t) wb <- wbm(wks ~ union + lwage | blk, data = wages) test_that("wbm defaults work", { expect_s4_class(wb, "wbm") }) test_that("wbm summary works (defaults)", { expect_s3_class(swb <- summary(wb), "summary.wbm") expect_output(print(swb)) }) context("wbm with lags") wb <- wbm(wks ~ lag(union) + lag(lwage) | blk, data = wages) test_that("wbm with lags works", { expect_s4_class(wb, "wbm") }) test_that("wbm summary works (with lags)", { expect_s3_class(swb <- summary(wb), "summary.wbm") expect_output(print(swb)) }) context("wbm multiple lags") wb <- wbm(wks ~ union + lag(union) + lag(lwage) | blk, data = wages) test_that("wbm with multiple lags works", { expect_s4_class(wb, "wbm") }) test_that("wbm summary works (with multiple lags)", { expect_s3_class(swb <- summary(wb), "summary.wbm") expect_output(print(swb)) }) context("wbm non-standard lags") wb <- wbm(wks ~ union + lag(union, 2) + lag(lwage) | blk, data = wages) test_that("wbm with non-standard lags works", { expect_s4_class(wb, "wbm") }) test_that("wbm summary works (with non-standard lags)", { expect_s3_class(swb <- summary(wb), "summary.wbm") expect_output(print(swb)) }) context("wbm with contextual model") wb <- wbm(wks ~ union + lag(lwage) | blk, data = wages, model = "contextual") test_that("wbm with contextual model works", { expect_s4_class(wb, "wbm") }) test_that("wbm summary works (with contextual model)", { expect_s3_class(swb <- summary(wb), "summary.wbm") expect_output(print(swb)) }) context("wbm with within model") test_that("wbm with within model works", { expect_warning(wb <- wbm(wks ~ union + lag(lwage) | blk, data = wages, model = "within")) expect_s4_class(wb, "wbm") }) test_that("wbm summary works (with within model)", { expect_s3_class(swb <- summary(wb), "summary.wbm") expect_output(print(swb)) }) context("wbm with stability model") wb <- wbm(wks ~ union + lag(lwage) | blk, data = wages, model = "stability") test_that("wbm with stability model works", { expect_s4_class(wb, "wbm") }) test_that("wbm summary works (with stability model)", { expect_s3_class(swb <- summary(wb), "summary.wbm") expect_output(print(swb)) }) context("wbm with between-model") wb <- wbm(wks ~ union + lag(lwage) | blk, data = wages, model = "between") test_that("wbm with between model works", { expect_s4_class(wb, "wbm") }) test_that("wbm summary works (with between model)", { expect_s3_class(swb <- summary(wb), "summary.wbm") expect_output(print(swb)) }) context("wbm as poisson glm") wb <- suppressWarnings(wbm(wks ~ union + lag(lwage) | fem, data = wages, family = poisson, nAGQ = 0L)) test_that("wbm with poisson family works", { expect_s4_class(wb, "wbm") }) test_that("wbm summary works (as poisson glm)", { expect_s3_class(swb <- summary(wb), "summary.wbm") expect_output(print(swb)) }) context("wbm as negbinomial glm") library(lme4) wb <- suppressWarnings(wbm(wks ~ union + lag(lwage) | blk, data = wages, family = negbinomial, nAGQ = 0L)) test_that("wbm with negbinomial family works", { expect_s4_class(wb, "wbm") }) test_that("wbm summary works (as negbinomial glm)", { expect_s3_class(swb <- summary(wb), "summary.wbm") expect_output(print(swb)) }) context("wbm with use.wave") wb <- wbm(wks ~ union + lag(lwage) | blk, data = wages, use.wave = TRUE) test_that("wbm with use.wave works", { expect_s4_class(wb, "wbm") }) test_that("wbm summary works (with use.wave)", { expect_s3_class(swb <- summary(wb), "summary.wbm") expect_output(print(swb)) }) context("wbm pseudo-R2") wb <- wbm(wks ~ union + lag(lwage) | blk, data = wages, pR2 = TRUE) test_that("wbm works", { expect_s4_class(wb, "wbm") }) test_that("wbm summary works", { expect_s3_class(swb <- summary(wb), "summary.wbm") expect_output(print(swb)) }) context("wbm p-values on/off") wb <- wbm(wks ~ union + lag(lwage) | blk, data = wages, pvals = TRUE) wb2 <- wbm(wks ~ union + lag(lwage) | blk, data = wages, pvals = FALSE) test_that("wbm works", { expect_s4_class(wb, "wbm") expect_s4_class(wb2, "wbm") }) test_that("wbm summary works", { expect_s3_class(swb <- summary(wb), "summary.wbm") expect_output(print(swb)) expect_s3_class(swb2 <- summary(wb2), "summary.wbm") expect_output(print(swb2)) }) context("wbm with weights") wb <- wbm(wks ~ union + lag(lwage) | blk, data = wages, weights = wts) test_that("wbm works", { expect_s4_class(wb, "wbm") }) test_that("wbm summary works", { expect_s3_class(swb <- summary(wb), "summary.wbm") expect_output(print(swb)) }) context("Missing data") wagesm <- wages missings <- sample(unique(wagesm$id),5) inds <- which(wagesm$id %in% missings & wagesm$t == 7) wagesm <- wagesm[!(1:length(wagesm$id) %in% inds),] wb <- wbm(wks ~ lag(union) + lag(lwage) | blk, data = wagesm) test_that("wbm with defaults works", { expect_s4_class(wb, "wbm") }) test_that("wbm summary works", { expect_s3_class(swb <- summary(wb), "summary.wbm") expect_output(print(swb)) }) context("Custom random effects") wb <- wbm(wks ~ union + lag(lwage) | blk | (union | id), data = wages) test_that("wbm works", { expect_s4_class(wb, "wbm") }) test_that("wbm summary works", { expect_s3_class(swb <- summary(wb), "summary.wbm") expect_output(print(swb)) }) test_that("wbm works with multiple random effects", { suppressWarnings({ wb <- wbm(wks ~ union + lag(lwage) | blk | (union | id) + (lag(lwage) | id), data = wages) }) expect_s4_class(wb, "wbm") }) test_that("wbm summary works", { expect_s3_class(swb <- summary(wb), "summary.wbm") expect_output(print(swb)) }) context("wbm with detrending") wb1 <- suppressWarnings(wbm(wks ~ union + lag(lwage) | blk | (union | id), data = wages, pvals = FALSE, detrend = TRUE)) wb2 <- wbm(wks ~ union + lag(lwage) | blk | (union | id), data = wages, pvals = FALSE, detrend = TRUE, balance_correction = TRUE) test_that("wbm works (detrend only)", { expect_s4_class(wb1, "wbm") }) test_that("wbm works (w/ balance_correction)", { expect_s4_class(wb2, "wbm") }) test_that("wbm summary works (detrend only)", { expect_s3_class(swb1 <- summary(wb1), "summary.wbm") expect_output(print(swb1)) }) test_that("wbm summary works (detrend only)", { expect_s3_class(swb2 <- summary(wb2), "summary.wbm") expect_output(print(swb2)) }) context("Time-varying factors") if (requireNamespace("plm")) { data(Males, package = "plm") males <- panel_data(Males, id = nr, wave = year) set.seed(2) males <- filter(males, nr %in% sample(males$nr, 100)) test_that("Models with time-varying factors work", { expect_s4_class(wbf <- wbm(wage ~ industry + exper | ethn, data = males), "wbm") expect_output(print(summary(wbf))) expect_s4_class(wbf <- wbm(wage ~ industry * exper | ethn, data = males), "wbm") expect_output(print(summary(wbf))) expect_s4_class(wbf <- wbm(wage ~ industry + exper | ethn | industry * ethn, data = males), "wbm") expect_output(print(summary(wbf))) }) } context("wbm_stan") model <- wbm_stan(lwage ~ lag(union) + wks | blk + fem | blk * lag(union), data = wages, chains = 1, iter = 2000, fit_model = FALSE) test_that("wbm_stan makes code and data", { expect_s3_class(model$stan_data, "standata") expect_s3_class(model$stan_code, "brmsmodel") }) library(brms) model <- wbm_stan(lwage ~ lag(union) + wks | blk + fem | (blk | id), data = wages, chains = 1, iter = 2000, fit_model = FALSE) test_that("wbm_stan works w/ custom random effect", { expect_s3_class(model$stan_data, "standata") expect_s3_class(model$stan_code, "brmsmodel") }) model <- wbm_stan(lwage ~ lag(union) + wks, data = wages, model = "within", fit_model = FALSE, model.cor = TRUE) model2 <- wbm_stan(lwage ~ lag(union) + wks | blk, data = wages, model = "between", fit_model = FALSE) model3 <- wbm_stan(lwage ~ lag(union) + wks | blk, data = wages, model = "contextual", fit_model = FALSE) test_that("wbm_stan works w/ other models", { expect_s3_class(model$stan_data, "standata") expect_s3_class(model$stan_code, "brmsmodel") expect_s3_class(model2$stan_data, "standata") expect_s3_class(model2$stan_code, "brmsmodel") expect_s3_class(model3$stan_data, "standata") expect_s3_class(model3$stan_code, "brmsmodel") }) model <- wbm_stan(lwage ~ lag(union) + wks | blk + fem | (blk | id), data = wages, chains = 1, iter = 2000, fit_model = FALSE, detrend = TRUE) test_that("wbm_stan works w/ detrending", { expect_s3_class(model$stan_data, "standata") expect_s3_class(model$stan_code, "brmsmodel") }) model <- wbm_stan(lwage ~ lag(union) + wks | blk + fem | (blk | id), data = wages, chains = 1, iter = 2000, fit_model = FALSE, detrend = TRUE, balance_correction = TRUE) test_that("wbm_stan works w/ balance correction", { expect_s3_class(model$stan_data, "standata") expect_s3_class(model$stan_code, "brmsmodel") }) context("wbm predictions") model <- wbm(lwage ~ lag(union) + wks, data = wages) test_that("wbm predictions work w/o newdata", { expect_is(predict(model), "numeric") }) test_that("wbm predictions work w/ non-raw newdata", { expect_is(predict(model, newdata = data.frame( union = 1:4, wks = 40, lwage = 50, id = 1, t = 5 )), "numeric") expect_is(predict(model, newdata = data.frame( union = 1:4, wks = 40, lwage = 50, id = 1, t = 5 ), re.form = ~0), "numeric") expect_is(predict(model, newdata = panel_data(data.frame( union = 1:4, wks = 40, lwage = 50, id = 1, t = 5 ), id = id, wave = t, strict = FALSE)), "numeric") expect_is(predict(model, newdata = panel_data(data.frame( union = 1:4, wks = 40, lwage = 50, id = 1, t = 5 ), id = id, wave = t, strict = FALSE), re.form = ~0), "numeric") }) test_that("wbm predictions work w/ raw newdata", { expect_is(predict(model, newdata = data.frame( `lag(union)` = -2:2, wks = 0, `imean(wks)` = 40, `imean(lag(union))` = 2, lwage = 50, id = 1, t = 5, check.names = FALSE ), raw = TRUE), "numeric") expect_is(predict(model, newdata = data.frame( `lag(union)` = -2:2, wks = 0, `imean(wks)` = 40, `imean(lag(union))` = 2, lwage = 50, id = 1, t = 5, check.names = FALSE ), raw = TRUE, re.form = ~0), "numeric") })
DNbuilder.surv <- function(model, data, clevel, m.summary, covariate, ptype, DNtitle, DNxlab, DNylab, KMtitle, KMxlab, KMylab) { mclass <- getclass.DN(model)$model.class mlinkF <- function(mu) exp(-mu) input.data <- NULL old.d <- NULL Surv.in <- length(model$terms[[2]]) != 1 if (!Surv.in) stop(paste("Error in model syntax: the Surv (survival object) object is created outside of", mclass)) coll=rep(c(" " if (mclass %in% c("cph")){ model <- update(model, x=T, y=T, surv=T) } if (length(attr(model$terms, "term.labels")) == 0) stop("Error in model syntax: the model is null") if (any(!is.null(attr(model$terms, "specials")$tt))) stop("Error in model syntax: coxph models with a time dependent covariate is not supported") if (any(attr(model$terms, "dataClasses")[[1]] == "nmatrix.3", dim(model$y)[2]==3)) stop("Error in model syntax: start/stop notation not supported") if (mclass %in% c("coxph")){ strata.l <- attr(model$terms, "specials")$strata n.strata <- length(attr(model$terms, "specials")$strata) dim.terms <- length(attr(model$terms, "dataClasses")) if ("(weights)" %in% names(attr(model$terms, "dataClasses"))){ attr(model$terms,"dataClasses") <- attr(model$terms, "dataClasses")[-c(length(attr(model$terms, "dataClasses")))] } mterms <- attr(model$terms, "dataClasses")[-1] names(mterms)=all.vars(model$terms)[-c(1,2)] } if (mclass %in% c("cph")){ strata.l <- levels(model$strata) n.strata <- length(attr(model$terms, "specials")$strat) dim.terms <- length(model$Design$units) + 1 mterms=model$Design$assume[model$Design$assume!="interaction"] names(mterms)=names(model$Design$units) } mterms[mterms %in% c("numeric", "asis", "polynomial", "integer", "double", "matrx") | grepl("nmatrix", mterms, fixed = T) | grepl("spline", mterms, fixed = T)] = "numeric" mterms[mterms %in% c("factor", "ordered", "logical", "category", "scored", "strata")] = "factor" preds <- as.list(mterms) tim <- all.vars(model$terms)[1:2] ttim <- list(v.min = floor(min(na.omit(data[tim[1]]))), v.max = ceiling(max(na.omit(data[tim[1]]))), v.mean = zapsmall(median(data[tim[1]][,1], na.rm=T), digits = 4)) for (i in 1:length(preds)){ if (preds[[i]] == "numeric"){ i.dat <- which(names(preds[i]) == names(data)) preds[[i]] <- list(dataClasses = preds[[i]], v.min = floor(min(na.omit(data[, as.numeric(i.dat)]))), v.max = ceiling(max(na.omit(data[, as.numeric(i.dat)]))), v.mean = mean(data[, as.numeric(i.dat)], na.rm=T) ) next } if (preds[[i]] == "factor"){ i.dat <- which(names(preds[i]) == names(data)) if (mclass %in% c("coxph")){ i.ifstrat <- grepl("strata(", names(attr(model$terms,"dataClasses"))[i+1], fixed=TRUE) if (grepl("strata(", names(attr(model$terms,"dataClasses"))[i+1], fixed=TRUE)) { preds[[i]] <- list(dataClasses = preds[[i]], IFstrata = T, v.levels = model$xlevels[[which(grepl(names(preds[i]), names(model$xlevels), fixed=TRUE))]]) } else{ preds[[i]] <- list(dataClasses = preds[[i]], IFstrata = F, v.levels = model$xlevels[[which(names(preds[i]) == names(model$xlevels))]]) } } if (mclass %in% c("cph")){ preds[[i]] <- list(dataClasses = preds[[i]], IFstrata = model$Design$assume[i] == "strata", v.levels = model$Design$parms[[which(names(preds[i]) == names(model$Design$parms))]]) } } } if (length(names(preds)) == 1) { input.data <- data.frame(data[0, names(preds)]) names(input.data)[1] <- names(preds) } else { input.data <- data[0, names(preds)] } input.data <- data.frame(data.frame(tim1=0)[0,], input.data) names(input.data)[1] <- tim[1] if (mclass %in% c("coxph")){ model <- update(model, data=data) } wdir <- getwd() app.dir <- paste(wdir, "DynNomapp", sep="/") message(paste("creating new directory: ", app.dir, sep="")) dir.create(app.dir) setwd(app.dir) message(paste("Export dataset: ", app.dir, "/dataset.RData", sep="")) save(data, model, preds, mlinkF, getpred.DN, getclass.DN, ttim, tim, ptype, n.strata, coll, dim.terms, strata.l, DNtitle, DNxlab, DNylab, KMtitle, KMxlab, KMylab, terms, input.data, file = "data.RData") message(paste("Export functions: ", app.dir, "/functions.R", sep="")) dump(c("getpred.DN", "getclass.DN"), file="functions.R") p1title.bl <- paste(clevel * 100, "% ", "Confidence Interval for Response", sep = "") p1msg.bl <- paste("Confidence interval is not available as there is no standard errors available by '", mclass, "' ", sep="") sumtitle.bl = paste("Cox model (", model$call[1],"): ", model$call[2], sep = "") if (m.summary == "formatted"){ sum.bi <- paste("coef.c <- exp(model$coef) ci.c <- exp(suppressMessages(confint(model, level = clevel))) stargazer(model, coef = list(coef.c), ci.custom = list(ci.c), p.auto = F, type = 'text', omit.stat = c('LL', 'ser', 'f'), ci = TRUE, ci.level = clevel, single.row = TRUE, title = '", sumtitle.bl,"')", sep="") } if (m.summary == "raw"){ sum.bi <- paste("summary(model)") } if (mclass == "cph"){ datadist.bl <- paste(paste(model$call[[3]]), "=data t.dist <- datadist(", paste(model$call[[3]]),") options(datadist = 't.dist')", sep="") } else{ datadist.bl <- "" } if (mclass == "coxph"){ library.bl <- paste("library(survival)") } if (mclass == "cph"){ library.bl <- paste("library(rms)") } if (mclass == "cph"){ stratlvl.bl <- paste("if (length(levels(model$strata)) != length(levels(attr(predict(model, new.d(), type='x', expand.na=FALSE), 'strata')))){ levels(model$strata) <- levels(attr(predict(model, new.d(), type='x', expand.na=FALSE), 'strata')) }") } else{ stratlvl.bl <- "" } if (mclass %in% c("coxph")){ nam0.bl <- paste("nam0=paste(new.d()[[names(preds[i])]], sep = '')") } if (mclass %in% c("cph")){ nam0.bl <- paste("nam0 <- paste(names(preds[i]),'=', new.d()[[names(preds[i])]], sep = '')") } if (mclass %in% c("coxph")){ nam.bl <- paste("nam <- paste(nam, ', ', nam0, sep = '')") } if (mclass %in% c("cph")){ nam.bl <- paste("nam <- paste(nam, '.', nam0, sep = '')") } if (mclass %in% c("coxph")){ stcond.bl <- paste("!try.survfit") } if (mclass %in% c("cph")){ stcond.bl <- paste("!nam %in% strata.l") } GLOBAL=paste("library(ggplot2) library(shiny) library(plotly) library(stargazer) library(compare) library(prediction) ", library.bl ," load('data.RData') source('functions.R') ", datadist.bl," m.summary <- '",m.summary,"' covariate <- '", covariate,"' clevel <- ", clevel," ", sep="") UI=paste("ui = bootstrapPage(fluidPage( titlePanel('", DNtitle,"'), sidebarLayout(sidebarPanel(uiOutput('manySliders'), checkboxInput('trans', 'Alpha blending (transparency)', value = TRUE), actionButton('add', 'Predict'), br(), br(), helpText('Press Quit to exit the application'), actionButton('quit', 'Quit') ), mainPanel(tabsetPanel(id = 'tabs', tabPanel('Survival plot', plotOutput('plot')), tabPanel('Predicted Survival', plotlyOutput('plot2')), tabPanel('Numerical Summary', verbatimTextOutput('data.pred')), tabPanel('Model Summary', verbatimTextOutput('summary')) ) ) )))", sep = "") SERVER=paste('server = function(input, output){ observe({if (input$quit == 1) stopApp()}) output$manySliders <- renderUI({ slide.bars <- list() for (j in 1:length(preds)){ if (preds[[j]]$dataClasses == "factor"){ slide.bars[[j]] <- list(selectInput(names(preds)[j], names(preds)[j], preds[[j]]$v.levels, multiple = FALSE)) } if (preds[[j]]$dataClasses == "numeric"){ if (covariate == "slider") { slide.bars[[j]] <- list(sliderInput(names(preds)[j], names(preds)[j], min = preds[[j]]$v.min, max = preds[[j]]$v.max, value = preds[[j]]$v.mean)) } if (covariate == "numeric") { slide.bars[[j]] <- list(numericInput(names(preds)[j], names(preds)[j], value = zapsmall(preds[[j]]$v.mean, digits = 4))) }}} if (covariate == "slider") { slide.bars[[length(preds) + 1]] <- list(br(), checkboxInput("times", "Predicted Survival at this Follow Up:"), conditionalPanel(condition = "input.times == true", sliderInput("tim", tim[1], min = ttim$v.min, max = ttim$v.max, value = ttim$v.mean))) } else { slide.bars[[length(preds) + 1]] <- list(br(), checkboxInput("times", "Predicted Survival at this Follow Up:"), conditionalPanel(condition = "input.times == true", numericInput("tim", tim[1], value = zapsmall(ttim$v.mean, digits = 4)))) } do.call(tagList, slide.bars) }) a <- 0 old.d <- NULL new.d <- reactive({ input$add input.v <- vector("list", length(preds) + 1) input.v[[1]] <- isolate({ input[["tim"]] }) names(input.v)[1] <- tim[1] for (i in 1:length(preds)) { input.v[[i+1]] <- isolate({ input[[names(preds)[i]]] }) names(input.v)[i+1] <- names(preds)[i] } out <- data.frame(lapply(input.v, cbind)) if (a == 0) { wher <- match(names(out), names(input.data)) out <- out[wher] input.data <<- rbind(input.data, out) } if (a > 0) { wher <- match(names(out), names(input.data)) out <- out[wher] if (!isTRUE(compare(old.d, out))) { input.data <<- rbind(input.data, out) }} a <<- a + 1 out }) p1 <- NULL old.d <- NULL data2 <- reactive({ if (input$add == 0) return(NULL) if (input$add > 0) { if (!isTRUE(compare(old.d, new.d()))) { OUT <- isolate({ new.d <- cbind(st.ind = 1, new.d()) names(new.d)[1] <- tim[2] DNpred <- getpred.DN(model, new.d) mpred <- DNpred$pred se.pred <- DNpred$SEpred pred <- mlinkF(mpred) if (is.na(se.pred)) { lwb <- NULL upb <- NULL } else { lwb <- sort(mlinkF(mpred + cbind(1, -1) * (qnorm(1 - (1 - clevel)/2) * se.pred)))[1] upb <- sort(mlinkF(mpred + cbind(1, -1) * (qnorm(1 - (1 - clevel)/2) * se.pred)))[2] if (upb > 1) { upb <- 1 }} if (ptype == "st") { d.p <- data.frame(Prediction = zapsmall(pred, digits = 2), Lower.bound = zapsmall(lwb, digits = 2), Upper.bound = zapsmall(upb, digits = 2)) } if (ptype == "1-st") { d.p <- data.frame(Prediction = zapsmall(1-pred, digits = 2), Lower.bound = zapsmall(1-upb, digits = 2), Upper.bound = zapsmall(1-lwb, digits = 2)) } old.d <<- new.d[,-1] data.p <- cbind(d.p, counter = TRUE) if (DNpred$InRange){ p1 <<- rbind(p1[,-5], data.p) } else{ p1 <<- rbind(p1[,-5], data.frame(Prediction = NA, Lower.bound = NA, Upper.bound = NA, counter = FALSE)) } p1 }) } else { p1$count <- seq(1, dim(p1)[1]) }} p1 }) s.fr <- NULL old.d2 <- NULL b <- 1 dat.p <- reactive({ if (isTRUE(compare(old.d2, new.d())) == FALSE) { ', stratlvl.bl,' try.survfit <- !any(class(try(survfit(model, newdata = new.d()), silent = TRUE)) == "try-error") if (try.survfit){ fit1 <- survfit(model, newdata = new.d()) } if (n.strata == 0) { sff <- data.frame(summary(fit1)[c("time", "n.risk", "surv")]) sff <- cbind(sff, event=1-sff$surv, part = b) if (sff$time[1] != 0){ sff <- rbind(data.frame(time=0, n.risk=sff$n.risk[1] ,surv=1, event=0, part=sff$part[1]), sff) }} if (n.strata > 0) { nam <- NULL new.sub <- T for (i in 1:(dim.terms-1)) { if (preds[[i]]$dataClasses == "factor"){ if (preds[[i]]$IFstrata){ ', nam0.bl,' if (new.sub) { nam <- paste(nam0) new.sub <- F } else { ', nam.bl,' }}}} if (try.survfit){ sub.fit1 <- subset(as.data.frame(summary(fit1)[c("time", "n.risk", "strata", "surv")]), strata == nam) } else{ sub.fit1 <- data.frame(time=NA, n.risk=NA, strata=NA, surv=NA, event=NA, part=NA)[0,] } if (', stcond.bl,'){ message("The strata levels not found in the original") sff <- cbind(sub.fit1, event=NULL, part = NULL) b <<- b - 1 } else{ sff <- cbind(sub.fit1, event=1-sub.fit1$surv, part = b) if (sff$time[1] != 0) { sff <- rbind(data.frame(time=0, n.risk=sff$n.risk[1], strata=sff$strata[1] ,surv=1, event=0, part=sff$part[1]), sff) } sff$n.risk <- sff$n.risk/sff$n.risk[1] } sff$n.risk <- sff$n.risk/sff$n.risk[1] } s.fr <<- rbind(s.fr, sff) old.d2 <<- new.d() b <<- b + 1 } s.fr }) dat.f <- reactive({ if (nrow(data2() > 0)) cbind(input.data, data2()[1:3]) }) output$plot <- renderPlot({ data2() if (input$add == 0) return(NULL) if (input$add > 0) { if (ptype == "st") { if (input$trans == TRUE) { pl <- ggplot(data = dat.p()) + geom_step(aes(x = time, y = surv, alpha = n.risk, group = part), color = coll[dat.p()$part]) } if (input$trans == FALSE) { pl <- ggplot(data = dat.p()) + geom_step(aes(x = time, y = surv, group = part), color = coll[dat.p()$part]) }} if (ptype == "1-st") { if (input$trans == TRUE) { pl <- ggplot(data = dat.p()) + geom_step(aes(x = time, y = event, alpha = n.risk, group = part), color = coll[dat.p()$part]) } if (input$trans == FALSE) { pl <- ggplot(data = dat.p()) + geom_step(aes(x = time, y = event, group = part), color = coll[dat.p()$part]) }} pl <- pl + ylim(0, 1) + xlim(0, max(dat.p()$time) * 1.05) + labs(title = "', KMtitle,'", x = "', KMxlab,'", y = "', KMylab,'") + theme_bw() + theme(text = element_text(face = "bold", size = 12), legend.position = "none", plot.title = element_text(hjust = .5)) } print(pl) }) output$plot2 <- renderPlotly({ if (input$add == 0) return(NULL) if (is.null(new.d())) return(NULL) lim <- c(0, 1) yli <- c(0 - 0.5, 10 + 0.5) input.data = input.data[data2()$counter,] in.d <- data.frame(input.data) xx=matrix(paste(names(in.d), ": ",t(in.d), sep=""), ncol=dim(in.d)[1]) text.cov=apply(xx,2,paste,collapse="<br />") if (dim(input.data)[1] > 11) yli <- c(dim(input.data)[1] - 11.5, dim(input.data)[1] - 0.5) dat2 <- data2()[data2()$counter,] dat2$count = seq(1, nrow(dat2)) p <- ggplot(data = dat2, aes(x = Prediction, y = count - 1, text = text.cov, label = Prediction, label2 = Lower.bound, label3=Upper.bound)) + geom_point(size = 2, colour = coll[dat2$count], shape = 15) + ylim(yli[1], yli[2]) + coord_cartesian(xlim = lim) + labs(title = "', p1title.bl,'", x = "', DNxlab,'", y = "', DNylab,'") + theme_bw() + theme(axis.text.y = element_blank(), text = element_text(face = "bold", size = 10)) if (is.numeric(dat2$Upper.bound)){ p <- p + geom_errorbarh(xmax = dat2$Upper.bound, xmin = dat2$Lower.bound, size = 1.45, height = 0.4, colour = coll[dat2$count]) } else{ message("', p1msg.bl,'") } if (ptype == "st") { p <- p + labs(title = paste(clevel * 100, "% ", "Confidence Interval for Survival Probability", sep = ""), x = DNxlab, y = DNylab) } if (ptype == "1-st") { p <- p + labs(title = paste(clevel * 100, "% ", "Confidence Interval for F(t)", sep = ""), x = DNxlab, y = DNylab) } gp=ggplotly(p, tooltip = c("text","label","label2","label3")) gp$elementId <- NULL dat.p() gp }) output$data.pred <- renderPrint({ if (input$add > 0) { if (nrow(data2() > 0)) { stargazer(dat.f(), summary = FALSE, type = "text") }} }) output$summary <- renderPrint({ ', sum.bi,' }) }', sep = "") output=list(ui=UI, server=SERVER, global=GLOBAL) text <- paste("This guide will describe how to deploy a shiny application using scripts generated by DNbuilder: 1. Run the shiny app by setting your working directory to the DynNomapp folder, and then run: shiny::runApp() If you are using the RStudio IDE, you can also run it by clicking the Run App button in the editor toolbar after open one of the R scripts. 2. You could modify codes to apply all the necessary changes. Run again to confirm that your application works perfectly. 3. Deploy the application by either clicking on the Publish button in the top right corner of the running app, or use the generated files and deploy it on your server if you host any. You can find a full guide of how to deploy an application on shinyapp.io server here: http://docs.rstudio.com/shinyapps.io/getting-started.html Please cite the package if using in publication.", sep="") message(paste("writing file: ", app.dir, "/README.txt", sep="")) writeLines(text, "README.txt") message(paste("writing file: ", app.dir, "/ui.R", sep="")) writeLines(output$ui, "ui.R") message(paste("writing file: ", app.dir, "/server.R", sep="")) writeLines(output$server, "server.R") message(paste("writing file: ", app.dir, "/global.R", sep="")) writeLines(output$global, "global.R") setwd(wdir) }
native_areas <- function(cb = FALSE, year = NULL, ...) { if (is.null(year)) { year <- getOption("tigris_year", 2019) } if (year < 2011) { fname <- as.character(match.call())[[1]] msg <- sprintf("%s is not currently available for years prior to 2011. To request this feature, file an issue at https://github.com/walkerke/tigris.", fname) stop(msg, call. = FALSE) } cyear <- as.character(year) if (cb == TRUE) { url <- sprintf("https://www2.census.gov/geo/tiger/GENZ%s/shp/cb_%s_us_aiannh_500k.zip", cyear, cyear) } else { url <- sprintf("https://www2.census.gov/geo/tiger/TIGER%s/AIANNH/tl_%s_us_aiannh.zip", cyear, cyear) } return(load_tiger(url, ...)) } tribal_subdivisions_national <- function(year = NULL, ...) { if (is.null(year)) { year <- getOption("tigris_year", 2019) } if (year < 2011) { fname <- as.character(match.call())[[1]] msg <- sprintf("%s is not currently available for years prior to 2011. To request this feature, file an issue at https://github.com/walkerke/tigris.", fname) stop(msg, call. = FALSE) } if (year == 2015) { url <- "https://www2.census.gov/geo/tiger/TIGER2015/AITSN/tl_2015_us_aitsn.zip" } else { url <- paste0("https://www2.census.gov/geo/tiger/TIGER", as.character(year), "/AITS/tl_", as.character(year), "_us_aitsn.zip") } return(load_tiger(url, ...)) } alaska_native_regional_corporations <- function(cb = FALSE, year = NULL, ...) { if (is.null(year)) { year <- getOption("tigris_year", 2019) } if (year < 2011) { fname <- as.character(match.call())[[1]] msg <- sprintf("%s is not currently available for years prior to 2011. To request this feature, file an issue at https://github.com/walkerke/tigris.", fname) stop(msg, call. = FALSE) } cyear <- as.character(year) if (cb == TRUE) { url <- sprintf("https://www2.census.gov/geo/tiger/GENZ%s/shp/cb_%s_02_anrc_500k.zip", cyear, cyear) } else { url <- sprintf("https://www2.census.gov/geo/tiger/TIGER%s/ANRC/tl_%s_02_anrc.zip", cyear, cyear) } return(load_tiger(url, ...)) } tribal_block_groups <- function(year = NULL, ...) { if (is.null(year)) { year <- getOption("tigris_year", 2019) } if (year < 2011) { fname <- as.character(match.call())[[1]] msg <- sprintf("%s is not currently available for years prior to 2011. To request this feature, file an issue at https://github.com/walkerke/tigris.", fname) stop(msg, call. = FALSE) } url <- sprintf("https://www2.census.gov/geo/tiger/TIGER%s/TBG/tl_%s_us_tbg.zip", as.character(year), as.character(year)) return(load_tiger(url, ...)) } tribal_census_tracts <- function(year = NULL, ...) { if (is.null(year)) { year <- getOption("tigris_year", 2019) } if (year < 2011) { fname <- as.character(match.call())[[1]] msg <- sprintf("%s is not currently available for years prior to 2011. To request this feature, file an issue at https://github.com/walkerke/tigris.", fname) stop(msg, call. = FALSE) } url <- sprintf("https://www2.census.gov/geo/tiger/TIGER%s/TTRACT/tl_%s_us_ttract.zip", as.character(year), as.character(year)) return(load_tiger(url, ...)) }
context("Text Interchange Format") test_that("Can detect a TIF compliant data.frame", { expect_true(is_corpus_df(docs_df)) bad_df <- docs_df bad_df$doc_id <- NULL expect_error(is_corpus_df(bad_df)) }) test_that("Can coerce a TIF compliant data.frame to a character vector", { output <- docs_df$text names(output) <- docs_df$doc_id expect_identical(corpus_df_as_corpus_vector(docs_df), output) }) test_that("Different methods produce identical output", { expect_identical(tokenize_words(docs_c), tokenize_words(docs_df)) expect_identical(tokenize_words(docs_l), tokenize_words(docs_df)) expect_identical(tokenize_characters(docs_c), tokenize_characters(docs_df)) expect_identical(tokenize_characters(docs_l), tokenize_characters(docs_df)) expect_identical(tokenize_sentences(docs_c), tokenize_sentences(docs_df)) expect_identical(tokenize_sentences(docs_l), tokenize_sentences(docs_df)) expect_identical(tokenize_lines(docs_c), tokenize_lines(docs_df)) expect_identical(tokenize_lines(docs_l), tokenize_lines(docs_df)) expect_identical(tokenize_paragraphs(docs_c), tokenize_paragraphs(docs_df)) expect_identical(tokenize_paragraphs(docs_l), tokenize_paragraphs(docs_df)) expect_identical(tokenize_regex(docs_c), tokenize_regex(docs_df)) expect_identical(tokenize_regex(docs_l), tokenize_regex(docs_df)) expect_identical(tokenize_tweets(docs_c), tokenize_tweets(docs_df)) expect_identical(tokenize_tweets(docs_l), tokenize_tweets(docs_df)) expect_identical(tokenize_ngrams(docs_c), tokenize_ngrams(docs_df)) expect_identical(tokenize_ngrams(docs_l), tokenize_ngrams(docs_df)) expect_identical(tokenize_skip_ngrams(docs_c), tokenize_skip_ngrams(docs_df)) expect_identical(tokenize_skip_ngrams(docs_l), tokenize_skip_ngrams(docs_df)) expect_identical(tokenize_ptb(docs_c), tokenize_ptb(docs_df)) expect_identical(tokenize_ptb(docs_l), tokenize_ptb(docs_df)) expect_identical(tokenize_character_shingles(docs_c), tokenize_character_shingles(docs_df)) expect_identical(tokenize_character_shingles(docs_l), tokenize_character_shingles(docs_df)) expect_identical(tokenize_word_stems(docs_c), tokenize_word_stems(docs_df)) expect_identical(tokenize_word_stems(docs_l), tokenize_word_stems(docs_df)) })
ghap.ancplot <- function( ancsmooth, labels=TRUE, pop.ang=45, group.ang=0, colors=NULL, pop.order=NULL, sortby=NULL, use.unk=TRUE, legend=TRUE ){ if(use.unk == TRUE){ admix <- ancsmooth$proportions1 }else{ admix <- ancsmooth$proportions2 } admix[,-c(1:2)] <- admix[,-c(1:2)]*100 npop <- ncol(admix) - 2 if(is.null(pop.order) == TRUE){ admix$POP <- factor(x = admix$POP) }else{ admix$POP <- factor(x = admix$POP, levels = unlist(pop.order)) } if(is.null(sortby) == TRUE){ admix <- admix[order(admix$POP,admix$ID),] }else{ admix <- admix[order(admix$POP,admix[,sortby]),] } if(is.null(colors) == TRUE){ colors <- c(" colors <- colors[1:npop] if(use.unk == TRUE){ colors[npop] <- "grey" } }else if(length(colors) != npop){ stop("Number of colors must match number of groups") } oldpar <- par(no.readonly = TRUE) on.exit(par(oldpar)) if(legend == TRUE){ par(mar=c(5, 4, 4, 2) + 0.1) par(xpd=T, mar=par()$mar+c(2,0,0,0)) } p <- barplot(t(admix[,-c(1:2)]), space = 0, border = NA, col = colors, las=1, ylab = "Ancestry (%)", xaxt="n", ylim=c(0,125), yaxt = "n") axis(side = 2, at = seq(0,100,by=20), labels = seq(0,100,by=20), las =1) admix$POS <- p p <- aggregate(POS ~ POP, data = admix, FUN = median) xmin <- aggregate(POS ~ POP, data = admix, FUN = min) xmax <- aggregate(POS ~ POP, data = admix, FUN = max) u <- par("usr") if(labels == TRUE){ text(x=p$POS, y=u[3]-0.1*(u[4]-u[3]), labels=p$POP, srt=pop.ang, adj=1, xpd=TRUE) } rect(xleft = min(admix$POS)-0.5, ybottom = 0, xright = max(admix$POS)+0.5, ytop = 100, col=" segments(x0 = xmax$POS+0.5, y0 = 0, x1 = xmax$POS+0.5, y1 = 100) if(is.list(pop.order) == TRUE){ labcol <- rep(c("black","darkgrey"), times = length(pop.order)) labcol <- labcol[1:length(pop.order)] for(i in 1:length(pop.order)){ segments(x0 = min(xmin$POS[which(xmin$POP %in% pop.order[[i]])])-0.5, y0 = 102.5, x1 = max(xmax$POS[which(xmax$POP %in% pop.order[[i]])])+0.5, y1 = 102.5, col = labcol[i], lwd = 3) text(x = median(p$POS[which(p$POP %in% pop.order[[i]])]), y = 108, labels = names(pop.order)[i], srt=group.ang, col = "black") } } if(legend == TRUE){ if(use.unk == TRUE){ ltext <- colnames(admix[-c(1,2,ncol(admix),ncol(admix)-1)]) ltext <- c(ltext, "?") }else{ ltext <- colnames(admix[-c(1,2,ncol(admix),ncol(admix))]) } legend(x = median(p$POS), y = -40, legend = ltext, fill = colors, bty="n", ncol=npop, xjust=0.6) par(mar=c(5, 4, 4, 2) + 0.1) } }
context("ggheatmap") test_that("ggheatmap works", { g <- ggheatmap(mtcars, dendrogram = "none") expect_is(g, "egg") g <- ggheatmap(mtcars, dendrogram = "row") expect_is(g, "egg") g <- ggheatmap(mtcars, dendrogram = "column") expect_is(g, "egg") g <- ggheatmap(mtcars, row_dend_left = TRUE) expect_is(g, "egg") g <- ggheatmap(mtcars, dendrogram = "row", row_dend_left = TRUE) expect_is(g, "egg") g <- ggheatmap(mtcars, row_side_colors = mtcars[, 2]) expect_is(g, "egg") g <- ggheatmap(mtcars, col_side_colors = t(mtcars[1, ])) expect_is(g, "egg") g <- ggheatmap(mtcars, row_side_colors = mtcars[, 2], col_side_colors = t(mtcars[1, ])) expect_is(g, "egg") })
do_break_edges <- function(nodes, edges) { sel <- function(id, attr) nodes[match(id, nodes[,1]), attr] to_break <- which(sel(edges[,2], "x") - sel(edges[,1], "x") > 1) if (length(to_break) == 0) return(list(nodes = nodes, edges = edges)) col1 <- sel(edges[to_break, 1], "col") col2 <- sel(edges[to_break, 2], "col") col <- mean_colors(col1, col2) new_nodes <- data.frame( stringsAsFactors = FALSE, id = make.unique( paste(edges[to_break, 1], sep = "-", edges[to_break, 2]), sep = "_" ), x = (sel(edges[to_break, 1], "x") + sel(edges[to_break, 2], "x")) / 2, label = "", size = 1, shape = "invisible", boxw = 0, col = col ) names(new_nodes)[1] <- names(nodes)[1] edges2 <- edges[to_break, ] edges[to_break, 2] <- new_nodes[,1] edges2[,1] <- new_nodes[,1] edges <- rbind(edges, edges2) nodes <- merge(nodes, new_nodes, all = TRUE) list(nodes = nodes, edges = edges) } mean_colors <- function(col1, col2) { vapply(seq_along(col1), FUN.VALUE = "", function(i) { mrgb <- rowMeans(cbind(col2rgb(col1[i]), col2rgb(col2[i]))) do.call(rgb, as.list(mrgb / 255)) }) }
approx.posterior <- function(trait.mcmc, priors, trait.data = NULL, outdir = NULL, filename.flag = "") { posteriors <- priors do.plot <- !is.null(outdir) if (do.plot == TRUE) { pdf(file.path(outdir, paste("posteriors", filename.flag, ".pdf", sep = ""))) } for (trait in names(trait.mcmc)) { dat <- trait.mcmc[[trait]] vname <- colnames(dat[[1]]) if ("beta.o" %in% vname) { dat <- as.matrix(dat)[, "beta.o"] } pdist <- priors[trait, "distn"] pparm <- as.numeric(priors[trait, 2:3]) ptrait <- trait zerobound <- c("exp", "gamma", "lnorm", "weibull") if (pdist %in% "beta") { m <- mean(dat) v <- var(dat) k <- (1 - m)/m a <- (k / ((1 + k) ^ 2 * v) - 1) / (1 + k) b <- a * k fit <- try(suppressWarnings(MASS::fitdistr(dat, "beta", list(shape1 = a, shape2 = b))), silent = TRUE) if (do.plot) { x <- seq(0, 1, length = 1000) plot(density(dat), col = 2, lwd = 2, main = trait) if (!is.null(trait.data)) { rug(trait.data[[trait]]$Y, lwd = 2, col = "purple") } lines(x, dbeta(x, fit$estimate[1], fit$estimate[2]), lwd = 2, type = "l") lines(x, dbeta(x, pparm[1], pparm[2]), lwd = 3, type = "l", col = 3) legend("topleft", legend = c("data", "prior", "post", "approx"), col = c("purple", 3, 2, 1), lwd = 2) } posteriors[trait, "parama"] <- fit$estimate[1] posteriors[trait, "paramb"] <- fit$estimate[2] } else if (pdist %in% zerobound || (pdist == "unif" & pparm[1] >= 0)) { dist.names <- c("exp", "lnorm", "weibull", "norm") fit <- list() fit[[1]] <- try(suppressWarnings(MASS::fitdistr(dat, "exponential")), silent = TRUE) fit[[2]] <- try(suppressWarnings(MASS::fitdistr(dat, "lognormal")), silent = TRUE) fit[[3]] <- try(suppressWarnings(MASS::fitdistr(dat, "weibull")), silent = TRUE) fit[[4]] <- try(suppressWarnings(MASS::fitdistr(dat, "normal")), silent = TRUE) if (!trait == "cuticular_cond") { fit[[5]] <- try(suppressWarnings(MASS::fitdistr(dat, "gamma")), silent = TRUE) dist.names <- c(dist.names, "gamma") } failfit.bool <- sapply(fit, class) == "try-error" fit[failfit.bool] <- NULL dist.names <- dist.names[!failfit.bool] fparm <- lapply(fit, function(x) { as.numeric(x$estimate) }) fAIC <- lapply(fit, AIC) bestfit <- which.min(fAIC) posteriors[ptrait, "distn"] <- dist.names[bestfit] posteriors[ptrait, "parama"] <- fit[[bestfit]]$estimate[1] if (bestfit == 1) { posteriors[ptrait, "paramb"] <- NA } else { posteriors[ptrait, "paramb"] <- fit[[bestfit]]$estimate[2] } if (do.plot) { .dens_plot(posteriors, priors, ptrait, dat, trait, trait.data) } } else { posteriors[trait, "distn"] <- "norm" posteriors[trait, "parama"] <- mean(dat) posteriors[trait, "paramb"] <- sd(dat) if (do.plot) { .dens_plot(posteriors, priors, ptrait, dat, trait, trait.data) } } } if (do.plot) { dev.off() } return(posteriors) } .dens_plot <- function(posteriors, priors, ptrait, dat, trait, trait.data, plot_quantiles = c(0.01, 0.99)) { f <- function(x) { cl <- call(paste0("d", posteriors[ptrait, "distn"]), x, posteriors[ptrait, "parama"], posteriors[ptrait, "paramb"]) eval(cl) } fq <- function(x) { cl <- call(paste0("q", priors[ptrait, "distn"]), x, priors[ptrait, "parama"], priors[ptrait, "paramb"]) eval(cl) } fp <- function(x) { cl <- call(paste0("d", priors[ptrait, "distn"]), x, priors[ptrait, "parama"], priors[ptrait, "paramb"]) eval(cl) } qbounds <- fq(plot_quantiles) x <- seq(qbounds[1], qbounds[2], length = 1000) rng <- range(dat) if (!is.null(trait.data)) { rng <- range(trait.data[[trait]]$Y) } plot(density(dat), col = 2, lwd = 2, main = trait, xlim = rng) if (!is.null(trait.data)) { rug(trait.data[[trait]]$Y, lwd = 2, col = "purple") } lines(x, f(x), lwd = 2, type = "l") lines(x, fp(x), lwd = 3, type = "l", col = 3) legend("topleft", legend = c("data", "prior", "post", "approx"), col = c("purple", 3, 2, 1), lwd = 2) }
get_enet = function(x,y, lambda, nonzero){ nonzero = nonzero +1 colnames(x) = paste("x", 1:ncol(x),sep=".") epsilon.enet = enet(x, y ,lambda=lambda, max.steps=nonzero)[[4]] tmp = rep(0,ncol(x)) tmp[colnames(x) %in% colnames(epsilon.enet)] = epsilon.enet[nonzero,] names(tmp) <- colnames(x) tmp }
bradford<-function(M){ SO=sort(table(M$SO),decreasing = TRUE) n=sum(SO) cumSO=cumsum(SO) cutpoints=round(c(1,n*0.33,n*0.67,Inf)) groups=cut(cumSO,breaks = cutpoints,labels=c("Zone 1", "Zone 2", "Zone 3")) a=length(which(cumSO<n*0.33))+1 b=length(which(cumSO<n*0.67))+1 Z=c(rep("Zone 1",a),rep("Zone 2",b-a),rep("Zone 3",length(cumSO)-b)) df=data.frame(SO=names(cumSO),Rank=1:length(cumSO),Freq=as.numeric(SO),cumFreq=cumSO,Zone=Z, stringsAsFactors = FALSE) x <- c(max(log(df$Rank))-0.02-diff(range(log(df$Rank)))*0.125, max(log(df$Rank))-0.02) y <- c(min(df$Freq),min(df$Freq)+diff(range(df$Freq))*0.125)+1 data("logo",envir=environment()) logo <- grid::rasterGrob(logo,interpolate = TRUE) g=ggplot2::ggplot(df, aes(x = log(.data$Rank), y = .data$Freq, text=paste("Source: ",.data$SO,"\nN. of Documents: ",.data$Freq))) + geom_line(aes(group="NA")) + geom_area(aes(group="NA"),fill = "dodgerblue", alpha = 0.5) + annotate("rect", xmin=0, xmax=log(df$Rank[a]), ymin=0, ymax=max(df$Freq), alpha=0.4)+ labs(x = 'Source log(Rank)', y = 'Articles', title = "Bradford's Law") + annotate("text",x=log(df$Rank[a])/2, y=max(df$Freq)/2, label = "Core\nSources",fontface =2,alpha=0.5,size=10)+ scale_x_continuous(breaks=log(df$Rank)[1:a],labels=as.character(substr(df$SO,1,25))[1:a]) + theme(text = element_text(color = " ,legend.position="none" ,panel.background = element_rect(fill = ' ,panel.grid.minor = element_line(color = ' ,panel.grid.major = element_line(color = ' ,plot.title = element_text(size = 24) ,axis.title = element_text(size = 14, color = ' ,axis.title.y = element_text(vjust = 1, angle = 90) ,axis.title.x = element_text(hjust = 0) ,axis.text.x = element_text(angle=90,hjust=1,size=8,face="bold") ) + annotation_custom(logo, xmin = x[1], xmax = x[2], ymin = y[1], ymax = y[2]) results=list(table=df,graph=g) return(results) }
context("check scan.sim accuracy for different distributions") set.seed(2) nsim = 499 data(nydf) coords = nydf[, c("x", "y")] nn = nnpop(as.matrix(dist(coords)), pop = nydf$pop, ubpop = 0.1) cases = floor(nydf$cases) ty = sum(cases) e = ty / sum(nydf$population) * nydf$population ein = nn.cumsum(nn, e) tpop = sum(nydf$population) popin = nn.cumsum(nn, nydf$population) sa = scan.sim(nsim, nn, ty = ty, ex = e, type = "poisson", ein = ein, eout = ty - ein, simdist = "multinomial", pop = nydf$pop) sb = scan.sim(nsim, nn, ty = ty, ex = e, type = "poisson", ein = ein, eout = ty - ein, simdist = "poisson", pop = nydf$pop) sc = scan.sim(nsim, nn, ty = ty, ex = e, type = "binomial", ein = ein, eout = ty - ein, simdist = "binomial", tpop = tpop, popin = popin, popout = tpop - popin, pop = nydf$pop) summa = summary(sa) summb = summary(sb) summc = summary(sc) test_that("check accuracy for scan.sim", { expect_true(round(summa[2], 1) - round(summb[2], 1) <= 0.1) expect_true(round(summb[2], 1) - round(summc[2], 1) <= 0.1) expect_true(round(summa[3], 1) - round(summb[3], 1) <= 0.1) expect_true(round(summb[3], 1) - round(summc[3], 1) <= 0.1) expect_true(round(summa[4], 1) - round(summb[4], 1) <= 0.1) expect_true(round(summb[4], 1) - round(summc[4], 1) <= 0.1) })
dc <- function(N, recmatrix, group.names=NA, area.names=NA, start=NA){ if(nrow(recmatrix)==ncol(recmatrix)){ nx <- recmatrix x <- solve(nx, N) } if(nrow(recmatrix)<ncol(recmatrix)) print("Number of groups must be at least the number of areas.") if(nrow(recmatrix)>ncol(recmatrix)){ ss <- function(x){ x.mat <- matrix(x, nrow=nrow(recmatrix), ncol=length(x), byrow=TRUE) sums <- recmatrix*x.mat sums1 <- apply(sums, 1, sum) sum((sums1-N)^2) } ifelse(length(start)<2, init <- N[1]/recmatrix[1,]/2, init <- start) x <- optim(par=init, ss)$par } if(length(area.names)<2) area.names <- paste(rep("Area", ncol(recmatrix)), 1:ncol(recmatrix)) rec.probs <- matrix(1/x, nrow=1) colnames(rec.probs) <- area.names x.mat <- matrix(x, nrow=nrow(recmatrix), ncol=length(x), byrow=TRUE) N.mat <- matrix(N, ncol=ncol(recmatrix), nrow=length(N)) mig.rates.obs <- x.mat*recmatrix/N.mat if(length(group.names)<2) group.names <- paste(rep("Group", nrow(recmatrix)), 1:nrow(recmatrix)) colnames(mig.rates.obs) <- area.names rownames(mig.rates.obs) <- group.names result <- list(rec.probs=rec.probs, division.coef=mig.rates.obs) result }
if(require("tcltk")) { hue <- tclVar("hue") chroma <- tclVar("chroma") luminance <- tclVar("luminance") fixup <- tclVar("fixup") hue <- tclVar(230) hue.sav <- 230 chroma <- tclVar(55) chroma.sav <- 55 luminance <- tclVar(75) luminance.sav <- 75 fixup <- tclVar(FALSE) replot <- function(...) { hue.sav <- my.h <- as.numeric(tclvalue(hue)) chroma.sav <- my.c <- as.numeric(tclvalue(chroma)) luminance.sav <- my.l <- as.numeric(tclvalue(luminance)) my.fixup <- as.logical(as.numeric(tclvalue(fixup))) barplot(1, col = hcl2hex(my.h, my.c, my.l, fixup = my.fixup), axes = FALSE) } replot.maybe <- function(...) { if(!((as.numeric(tclvalue(hue)) == hue.sav) && (as.numeric(tclvalue(chroma)) == chroma.sav) && (as.numeric(tclvalue(luminance)) == luminance.sav))) replot() } base <- tktoplevel() tkwm.title(base, "HCL Colors") spec.frm <- tkframe(base, borderwidth = 2) hue.frm <- tkframe(spec.frm, relief = "groove", borderwidth = 2) chroma.frm <- tkframe(spec.frm, relief = "groove", borderwidth = 2) luminance.frm <- tkframe(spec.frm, relief = "groove", borderwidth = 2) fixup.frm <- tkframe(spec.frm, relief = "groove", borderwidth = 2) tkpack(tklabel(hue.frm, text = "Hue")) tkpack(tkscale(hue.frm, command = replot.maybe, from = 0, to = 360, showvalue = TRUE, variable = hue, resolution = 1, orient = "horiz")) tkpack(tklabel(chroma.frm, text = "Chroma")) tkpack(tkscale(chroma.frm, command = replot.maybe, from = 0, to = 100, showvalue = TRUE, variable = chroma, resolution = 5, orient = "horiz")) tkpack(tklabel(luminance.frm, text = "Luminance")) tkpack(tkscale(luminance.frm, command = replot.maybe, from = 0, to = 100, showvalue = TRUE, variable = luminance, resolution = 5, orient = "horiz")) tkpack(tklabel(fixup.frm, text="Fixup")) for (i in c("TRUE", "FALSE") ) { tmp <- tkradiobutton(fixup.frm, command = replot, text = i, value = as.logical(i), variable = fixup) tkpack(tmp, anchor="w") } tkpack(hue.frm, chroma.frm, luminance.frm, fixup.frm, fill="x") q.but <- tkbutton(base, text = "Quit", command = function() tkdestroy(base)) tkpack(spec.frm, q.but) replot() }
E4.GGIR.Export<-function(participant_list,ziplocation,csvlocation.GGIRout,tz){ ts<-E4serial<-NULL if(participant_list[1]=="helper"){participant_list<-get("participant_list",envir=E4tools.env)} if(ziplocation=="helper"){ziplocation<-get("ziplocation",envir=E4tools.env)} if(csvlocation.GGIRout=="helper"){csvlocation.GGIRout<-get("csvlocation.GGIRout",envir=E4tools.env)} for (NUMB in participant_list) { message(paste("Starting participant",NUMB)) zipDIR<-paste(ziplocation,NUMB,sep="") zipfiles <- list.files(zipDIR, pattern="*.zip", full.names=FALSE) ACC_TEMP<-NULL for (ZIPS in zipfiles) { CURR_ZIP<-paste(ziplocation,NUMB,"/",ZIPS,sep="") if(file.size(CURR_ZIP)>6400){ if(file.size(utils::unzip(CURR_ZIP, unzip = "internal", exdir=tempdir(),files="ACC.csv"))>500){ ACC_single<-utils::read.csv(utils::unzip(CURR_ZIP, unzip = "internal",exdir=tempdir(), files="ACC.csv"),sep=",",header=FALSE) StartTime<-ACC_single[1,1] SamplingRate<-ACC_single[2,1] ACC_single<-ACC_single[-c(1:2),] ACC_single<-as.data.frame(ACC_single) E4_serial<-substring(ZIPS, regexpr("_", ZIPS) + 1) E4_serial<-substr(E4_serial,1,6) EndTime<-(StartTime+round((nrow(ACC_single)/SamplingRate),0)) ACC_single$ts<-seq(from=StartTime*1000,to=EndTime*1000,length.out=nrow(ACC_single)) TEMP_single<-utils::read.csv(utils::unzip(CURR_ZIP, unzip = "internal",exdir=tempdir(), files="TEMP.csv"),sep=",",header=FALSE) StartTime_TEMP<-TEMP_single[1,1] SamplingRate_TEMP<-TEMP_single[2,1] TEMP_single<-TEMP_single[-c(1:2),] TEMP_single<-as.data.frame(TEMP_single) EndTime_TEMP<-(StartTime_TEMP+round((nrow(TEMP_single)/SamplingRate_TEMP),0)) TEMP_single$ts<-seq(from=StartTime_TEMP*1000,to=EndTime_TEMP*1000,length.out=nrow(TEMP_single)) ACC_single_table<-data.table::as.data.table(ACC_single) TEMP_single_table<-data.table::as.data.table(TEMP_single) data.table::setkey(ACC_single_table, ts) data.table::setkey(TEMP_single_table, ts) ACC_TEMP_SINGLE<-TEMP_single_table[ACC_single_table, roll="nearest"] ACC_TEMP_SINGLE$serial<-E4_serial ACC_TEMP<-rbind(ACC_TEMP,ACC_TEMP_SINGLE) } } } ACC_TEMP$ts<-round(ACC_TEMP$ts/1000,0) names(ACC_TEMP)<-c("temp","ts","acc_x","acc_y","acc_z","E4serial") data.table::setcolorder(ACC_TEMP, c("ts","E4serial","acc_x","acc_y","acc_z","temp")) header_col1<-rbind("device_brand", "recording_ID", "device_serial_number", "N_subfiles", "timestamp_type", "timezone_tzdata_format", "acc_sample_rate", "acc_unit", "acc_dynrange_plusmin_g", "acc_bit_resolution", "temp_sample_rate", "temp_units", "temp_range_min", "temp_range_max", "temp_resolution", "starttime", "", "", "") overall_start<-((anytime::anytime(min(as.numeric((ACC_TEMP$ts))),tz=tz))) header_col2<-cbind(c("E4", NUMB, as.character(as.factor(ACC_TEMP$E4serial)[1]), levels(as.factor(ACC_TEMP$E4serial)), "unix_ms", tz, SamplingRate, "bits", 2, 8, SamplingRate_TEMP, "celsius", -40, 115, 0.2, as.character(format(overall_start,usetz=TRUE)), "", "", "")) ACC_TEMP_header<-cbind(header_col1,header_col2,"","","") ACC_TEMP_header<-rbind(ACC_TEMP_header,c("timestamp","acc_x_bits","acc_y_bits","acc_z_bits","temp")) ACC_TEMP_header<-data.table::as.data.table(ACC_TEMP_header) ACC_TEMP<-ACC_TEMP[,E4serial:=NULL] names(ACC_TEMP_header)<-names(ACC_TEMP) ACC_TEMP<-rbind(ACC_TEMP_header,ACC_TEMP) if(!dir.exists(csvlocation.GGIRout)==TRUE){dir.create(csvlocation.GGIRout,recursive=TRUE)} filename<-paste(csvlocation.GGIRout,NUMB,"_GGIR_out.csv",sep="") utils::write.table(ACC_TEMP,file=filename,quote=TRUE,col.names=FALSE,sep=" ",na="",row.names=FALSE) } }
library(hdi) suppressWarnings(RNGversion("3.5.0")) set.seed(123) x <- matrix(rnorm(100*100), nrow = 100, ncol = 100) y <- x[,1] + x[,2] + rnorm(100) suppressWarnings(RNGversion("3.5.0")) set.seed(3) ; fit.mult <- multi.split(x, y) suppressWarnings(RNGversion("3.5.0")) set.seed(3) ; fit.tmp <- multi.split(x, y, verbose = TRUE) stopifnot(all.equal(fit.mult$pval.corr,c(2.19211217621905e-10, 2.63511914584751e-08, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1))) stopifnot(all.equal(fit.mult$lci, c(0.845556485400509, 0.592654394654161, -Inf, -Inf, -0.559330600307058, -Inf, -Inf, -Inf, -Inf, -Inf, -Inf, -Inf, -Inf, -Inf, -Inf, -Inf, -Inf, -Inf, -Inf, -Inf, -Inf, -Inf, -Inf, -Inf, -Inf, -0.494058185775476, -Inf, -Inf, -Inf, -Inf, -Inf, -Inf, -Inf, -0.935987254184296, -0.686212365897482, -Inf, -Inf, -Inf, -Inf, -Inf, -Inf, -Inf, -Inf, -0.477928536514776, -Inf, -Inf, -Inf, -Inf, -Inf, -Inf, -Inf, -Inf, -Inf, -Inf, -Inf, -Inf, -Inf, -Inf, -Inf, -Inf, -Inf, -Inf, -Inf, -Inf, -0.740160526334972, -Inf, -Inf, -Inf, -0.558056531182565, -Inf, -Inf, -Inf, -Inf, -Inf, -Inf, -Inf, -Inf, -Inf, -Inf, -Inf, -Inf, -Inf, -Inf, -Inf, -Inf, -Inf, -Inf, -Inf, -Inf, -Inf, -0.476688695088987, -Inf, -Inf, -Inf, -Inf, -Inf, -Inf, -Inf, -0.353795495366226, -Inf))) stopifnot(all.equal(fit.mult$uci, c(1.48387111041928, 1.26688746702801, Inf, Inf, 0.919205974134296, Inf, Inf, Inf, Inf, Inf, Inf, Inf, Inf, Inf, Inf, Inf, Inf, Inf, Inf, Inf, Inf, Inf, Inf, Inf, Inf, 0.64068728225218, Inf, Inf, Inf, Inf, Inf, Inf, Inf, 0.782508357141595, 0.549789868734234, Inf, Inf, Inf, Inf, Inf, Inf, Inf, Inf, 0.624958772229364, Inf, Inf, Inf, Inf, Inf, Inf, Inf, Inf, Inf, Inf, Inf, Inf, Inf, Inf, Inf, Inf, Inf, Inf, Inf, Inf, 0.221415168229707, Inf, Inf, Inf, 0.545315747796322, Inf, Inf, Inf, Inf, Inf, Inf, Inf, Inf, Inf, Inf, Inf, Inf, Inf, Inf, Inf, Inf, Inf, Inf, Inf, Inf, Inf, 0.701205415738981, Inf, Inf, Inf, Inf, Inf, Inf, Inf, 0.637286715741768, Inf)))
"sim.Krig" <- function(object, xp, M = 1, verbose = FALSE, ...) { tau2 <- object$best.model[2] sigma <- object$best.model[3] if (any(duplicated(xp))) { stop(" predictions locations should be unique") } m <- nrow(xp) n <- nrow(object$xM) N <- length(object$y) if (verbose) { cat(" m,n,N", m, n, N, fill = TRUE) } xc <- object$transform$x.center xs <- object$transform$x.scale xpM <- scale(xp, xc, xs) x <- rbind(object$xM, xpM) if (verbose) { cat("full x ", fill = TRUE) print(x) } rep.x.info <- fields.duplicated.matrix(x) x <- as.matrix(x[!duplicated(rep.x.info), ]) if (verbose) { cat("full x without duplicates ", fill = TRUE) print(x) } N.full <- nrow(x) if (verbose) { cat("N.full", N.full, fill = TRUE) } xp.ind <- rep.x.info[(1:m) + n] if (verbose) { print(N.full) print(x) } if (verbose) { cat("reconstruction of xp from collapsed locations", fill = TRUE) print(x[xp.ind, ]) } Sigma <- sigma * do.call(object$cov.function.name, c(object$args, list(x1 = x, x2 = x))) Schol <- do.call("chol", c(list(x = Sigma), object$chol.args)) N.full <- nrow(x) out <- matrix(NA, ncol = m, nrow = M) h.hat <- predict(object, xp, ...) temp.sd <- 1 if (object$correlation.model) { if (!is.na(object$sd.obj[1])) { temp.sd <- predict(object$sd.obj, x) } } W2i <- Krig.make.Wi(object)$W2i for (k in 1:M) { h <- t(Schol) %*% rnorm(N.full) h.data <- h[1:n] h.data <- h.data[object$rep.info] y.synthetic <- h.data + sqrt(tau2) * W2i %d*% rnorm(N) h.true <- (h[xp.ind]) temp.error <- predict(object, xp, y = y.synthetic, eval.correlation.model = FALSE, ...) - h.true out[k, ] <- h.hat + temp.error * temp.sd } out }
"predict.emaxsimB" <- function(object,dose, dref=0, ...){ warning(paste("\nPredicted values for doses included in the study\n", "can be obtained from the fitpredv and associated\n", "standard errors sepredv, sedifv, stored in the emaxsimB\n", "object. For other doses, emaxsimB must be re-run and\n", "the predicted values computed using custom code.\n",sep='')) return(invisible()) }
context("UNIV_LOG_REG") set.seed(SEED) options(bigstatsr.downcast.warning = FALSE) expect_warning(expect_message( gwas <- big_univLogReg(FBM(4, 1, init = 0), c(0, 1, 1, 1)))) expect_true(is.na(gwas$score)) TOL <- 1e-4 N <- 73 M <- 43 x <- matrix(rnorm(N * M, mean = 100, sd = 5), N) y <- sample(0:1, size = N, replace = TRUE) covar0 <- matrix(rnorm(N * 3), N) lcovar <- list(NULL, covar0) getGLM <- function(X, y, covar, ind = NULL) { res <- matrix(NA, M, 4) for (i in 1:M) { mod <- glm(y ~ cbind(X[, i, drop = FALSE], covar), family = "binomial", subset = ind, control = list(epsilon = 1e-10, maxit = 100)) if (mod$converged) res[i, ] <- summary(mod)$coefficients[2, ] } res } test_that("numerical problems", { X <- big_copy(x, type = "double") covar <- cbind(covar0, x[, 1:5]) expect_warning(expect_message( mod <- big_univLogReg(X, y, covar.train = covar, ncores = test_cores()), "For 5 columns"),"For 5 columns") mod$p.value <- predict(mod, log10 = FALSE) mat <- as.matrix(mod[, -3]) dimnames(mat) <- NULL expect_true(all(is.na(mat[1:5, ]))) expect_equal(mat[-(1:5), ], getGLM(X, y, covar)[-(1:5), ], tolerance = TOL) covar2 <- cbind(covar, x[, 1]) expect_error( big_univLogReg(X, y, covar.train = covar2, ncores = test_cores()), "'covar.train' is singular.", fixed = TRUE) }) test_that("equality with glm with all data", { for (t in TEST.TYPES) { X <- `if`(t == "raw", asFBMcode(x), big_copy(x, type = t)) for (covar in lcovar) { mod <- big_univLogReg(X, y, covar.train = covar, ncores = test_cores()) mod$p.value <- predict(mod, log10 = FALSE) mat <- as.matrix(mod[, -3]) dimnames(mat) <- NULL expect_equal(mat, getGLM(X, y, covar), tolerance = TOL) p <- plot(mod, type = sample(c("Manhattan", "Q-Q", "Volcano"), 1)) expect_s3_class(p, "ggplot") expect_error(predict(mod, abc = 2), "Argument 'abc' not used.") expect_error(plot(mod, abc = 2), "Argument 'abc' not used.") } } }) test_that("equality with glm with only half the data", { ind <- sample(N, N / 2) while (mean(y[ind]) < 0.2 || mean(y[ind]) > 0.8) { ind <- sample(N, N / 2) } for (t in TEST.TYPES) { X <- `if`(t == "raw", asFBMcode(x), big_copy(x, type = t)) for (covar in lcovar) { mod <- big_univLogReg(X, y[ind], covar.train = covar[ind, ], ind.train = ind, ncores = test_cores()) mod$p.value <- predict(mod, log10 = FALSE) mat <- as.matrix(mod[, -3]) dimnames(mat) <- NULL expect_equal(mat, getGLM(X, y, covar, ind), tolerance = TOL) p <- plot(mod, type = sample(c("Manhattan", "Q-Q", "Volcano"), 1)) expect_s3_class(p, "ggplot") } } })
hoover <- function (x, ref = NULL, weighting = NULL, output = "HC", na.rm = TRUE) { n <- nrow(as.matrix(x)) if ((!is.null(ref)) && (n != nrow(as.matrix((ref))))) { stop("Frequency and reference distribution differ in length", call. = FALSE) } if ((!is.null(weighting)) && (n != nrow(as.matrix((weighting))))) { stop("Frequency and reference distribution differ in length", call. = FALSE) } if ((!is.null(ref)) && (!is.null(weighting)) && (nrow(as.matrix((weighting))) != nrow(as.matrix((ref))))) { stop("Weighting and reference distribution differ in length", call. = FALSE) } hooverworkfile <- matrix (ncol = 7, nrow = n) hooverworkfile[,1] <- x if (is.null(ref)) { hooverworkfile[,2] <- rep(1, n) } else { hooverworkfile[,2] <- ref } if (is.null(weighting)) { hooverworkfile[,3] <- rep(0, n) } else { hooverworkfile[,3] <- weighting } hooverworkfile[1:n, 4:7] <- 1 if (na.rm == TRUE) { hooverworkfile <- hooverworkfile[complete.cases(hooverworkfile),] n <- nrow (hooverworkfile) } hooverworkfile[,4] <- hooverworkfile[,1]/(sum((hooverworkfile[,1]), na.rm = TRUE)) hooverworkfile[,5] <- hooverworkfile[,2]/(sum((hooverworkfile[,2]), na.rm = TRUE)) if (!is.null(weighting)) { hooverworkfile[,6] <- hooverworkfile[,3]/(sum((hooverworkfile[,3]), na.rm = TRUE)) } else { hooverworkfile[,6] <- rep(1, n) } colnames (hooverworkfile) <- c("x", "r", "w", "x_shares", "r_shares", "w_shares", "diff_xs_rs") rownames (hooverworkfile) <- 1:n hooverworkfile[,7] <- hooverworkfile[,6]*(abs(hooverworkfile[,4]-hooverworkfile[,5])) x_comp_sum <- sum(hooverworkfile[,7]) HC <- x_comp_sum/2 if (output == "data") { return(hooverworkfile) } else { return(HC) } }
getMids <- function(ID, hb, lb, ub, alpha_bound = 10/9){ ID <- as.character(ID) mids.out <- c() c.out <- c() alpha.out <- c() ID.out <- c() hb.out <- c() counter <- 0 for(id in unique(ID)){ use.id <- which(ID == id & hb >0) open.lb <- which(is.na(lb[use.id])==TRUE) open.ub <- which(is.na(ub[use.id])==TRUE) if(length(open.lb)==0&length(open.ub)==0){ mids <- (ub[use.id] + lb[use.id])/2 alpha <- NA c <- NA } if(length(open.lb)>0){ stop('The code is not written to handle left censored data',' current ID is ', id,'\n','\n') } if(length(open.ub)>2){ stop('The code is not written to handle more than 1 right censored bin',' current ID is ', id,'\n','\n') } if(length(open.ub)==1){ mids<-rep(NA, length(ub[use.id])) mids[-open.ub]<-(ub[use.id][-open.ub] + lb[use.id][-open.ub])/2 use<-which(hb[use.id]>0) hb.use<-hb[use.id][use] lb.use<-lb[use.id][use] ub.use<-ub[use.id][use] open.ub.use <- which(is.na(ub.use)==TRUE) a.num<-log((hb.use[(open.ub.use-1)]+hb.use[open.ub.use])/hb.use[open.ub.use]) a.denom<-log(lb.use[open.ub.use]/lb.use[(open.ub.use-1)]) alpha<-a.num/a.denom if(length(alpha_bound) == 0){ if(counter == 0){ cat('alpha is unbounded', '\n') counter <- 1 } }else{ alpha<-max(alpha, alpha_bound) } c = alpha/(alpha - 1) mids[open.ub]<-lb[use.id][open.ub]*c } mids.out <- c(mids.out, mids) c.out <- c(c.out, c) alpha.out <- c(alpha.out, alpha) ID.out <- c(ID.out, ID[use.id]) hb.out <- c(hb.out, hb[use.id]) } mids.return <- data.frame(ID.out,mids.out,hb.out) colnames(mids.return) <- c('ID', 'mids', 'hb') return(list('mids' = mids.return, 'c' = c.out, 'alpha' = alpha.out)) }
context("gg_miss_case") dat <- tibble::tribble( ~air, ~wind, ~water, ~month, -99, NA, 23, 1, -98, NA, NA, 1, 25, 30, 21, 2, NA, 99, NA, 2, 23, 40, NA, 2 ) gg_miss_case_plot <- gg_miss_case(dat) test_that("gg_miss_case_works",{ skip_on_cran() skip_on_ci() vdiffr::expect_doppelganger("gg_miss_case", gg_miss_case_plot) }) gg_miss_case_plot_group <- gg_miss_case(dat, facet = month) test_that("gg_miss_case_group_works",{ skip_on_cran() skip_on_ci() vdiffr::expect_doppelganger("gg_miss_case_group", gg_miss_case_plot_group) }) gg_miss_case_plot_sort <- gg_miss_case(dat, order_cases = TRUE) test_that("gg_miss_case_sort_works",{ skip_on_cran() skip_on_ci() vdiffr::expect_doppelganger("gg_miss_case_sort", gg_miss_case_plot_sort) }) gg_miss_case_plot_order_group_sort <- gg_miss_case(dat, facet = month, order_cases = TRUE) test_that("gg_miss_case_group_and_sort_works",{ skip_on_cran() skip_on_ci() vdiffr::expect_doppelganger("gg_miss_case_group_and_sort", gg_miss_case_plot_order_group_sort) }) gg_miss_case_plot_show_pct <- gg_miss_case(dat, show_pct = TRUE) test_that("gg_miss_case_show_pct_works",{ skip_on_cran() skip_on_ci() vdiffr::expect_doppelganger("gg_miss_case_plot_show_pct", gg_miss_case_plot_show_pct) }) gg_miss_case_plot_group_show_pct <- gg_miss_case(dat, facet = month, show_pct = TRUE) test_that("gg_miss_case_group_works_show_pct",{ skip_on_cran() skip_on_ci() vdiffr::expect_doppelganger("gg_miss_case_group_show_pct", gg_miss_case_plot_group_show_pct) }) gg_miss_case_plot_sort_show_pct <- gg_miss_case(dat, order_cases = TRUE, show_pct = TRUE) test_that("gg_miss_case_sort_works_show_pct",{ skip_on_cran() skip_on_ci() vdiffr::expect_doppelganger("gg_miss_case_sort_show_pct", gg_miss_case_plot_sort_show_pct) }) gg_miss_case_plot_order_group_sort_show_pct <- gg_miss_case(dat, facet = month, order_cases = TRUE, show_pct = TRUE) test_that("gg_miss_case_group_and_sort_works_show_pct",{ skip_on_cran() skip_on_ci() vdiffr::expect_doppelganger("gg_miss_case_group_and_sort_show_pct", gg_miss_case_plot_order_group_sort_show_pct) })
'.areaIncrement' <- function(x,dist=NA,mul=1,verbose=FALSE) { if (!is.ursa(x)) return(NULL) sparse <- attr(x$value,"sparse") if ((!is.null(sparse))&&(any(na.omit(sparse)!=0))) stop("TODO: expand compression") if (!is.na(x$con$posZ)) { nb <- length(x$con$posZ) bn <- x$name[x$con$posZ] } else { nb <- x$dim[2] bn <- x$name } if (any(is.na(dist))) dist <- with(x$grid,c(resx,resy)) else if (length(dist)==1) dist <- rep(dist,2) else if (length(dist)!=2) stop("unrecognized argument 'dist'") dimx <- with(x$grid,c(columns,rows,nb)) x$value <- (.Cursa("areaIncrement",x=as.numeric(x$value),dim=as.integer(dimx) ,res=as.numeric(dist),out=numeric(prod(dimx)) ,NAOK=TRUE)$out-1)*mul dim(x$value) <- with(x$grid,c(columns*rows,nb)) x }
sobolowen <- function(model = NULL, X1, X2, X3, nboot = 0, conf = 0.95, varest = 2, ...) { if ((ncol(X1) != ncol(X2)) | (nrow(X1) != nrow(X2)) | (ncol(X2) != ncol(X3)) | (nrow(X2) != nrow(X3))) stop("The samples X1, X2 and X3 must have the same dimensions") p <- ncol(X1) X <- rbind(X1, X2) for (i in 1:p) { Xb <- X1 Xb[,i] <- X3[,i] X <- rbind(X, Xb) } for (i in 1:p) { Xb <- X2 Xb[,i] <- X1[,i] X <- rbind(X, Xb) } for (i in 1:p) { Xb <- X3 Xb[,i] <- X2[,i] X <- rbind(X, Xb) } x <- list(model = model, X1 = X1, X2 = X2, X3 = X3, nboot = nboot, conf = conf, X = X, call = match.call()) class(x) <- "sobolowen" if (!is.null(x$model)) { response(x, ...) tell(x,varest=varest) } return(x) } estim.sobolowen <- function(data, i=1:nrow(data), varest=2) { d <- as.matrix(data[i, ]) n <- nrow(d) p <- (ncol(d)-2)/3 if (varest==1) { V <- var(d[, 1]) } else { V <- numeric(0) for (k in 1:p) { V[k] <- mean(apply(d[,c(1,2,2+k,2+k+p)]^2,1,mean))-(mean(apply(d[,c(1,2,2+k,2+k+p)],1,mean)))^2 } } VCE <- (colSums((d[,1] - d[, 3:(2+p)])*(d[, (3+p):(2+2*p)] - d[,2])) / n) VCE.compl <- V - (colSums((d[,2] - d[, (3+2*p):(2+3*p)])*(d[, (3+p):(2+2*p)] - d[,1])) / n) c(V, VCE, VCE.compl) } tell.sobolowen <- function(x, y = NULL, return.var = NULL, varest=2, ...) { id <- deparse(substitute(x)) if (! is.null(y)) { x$y <- y } else if (is.null(x$y)) { stop("y not found") } p <- ncol(x$X1) n <- nrow(x$X1) data <- matrix(x$y, nrow = n) if (x$nboot == 0){ V <- data.frame(original = estim.sobolowen(data,varest=varest)) } else{ func <- function(data,i) {estim.sobolowen(data,i,varest)} V.boot <- boot(data=data, statistic=func, R = x$nboot) V <- bootstats(V.boot, x$conf, "basic") } rownames(V) <- c(paste("global",colnames(x$X1)), colnames(x$X1), paste("-", colnames(x$X1), sep = "")) if (varest==1) { k <- 1 } else { k <- p } if (x$nboot == 0) { S <- V[(k + 1):(p + k), 1, drop = FALSE] / V[1:k,1] T <- V[(p + k + 1):(2 * p + k), 1, drop = FALSE] / V[1:k,1] } else { S.boot <- V.boot S.boot$t0 <- V.boot$t0[(k+1):(p + k)] / V.boot$t0[1:k] S.boot$t <- V.boot$t[,(k+1):(p + k)] / V.boot$t[,(1:k)] S <- bootstats(S.boot, x$conf, "basic") T.boot <- V.boot T.boot$t0 <- V.boot$t0[(p + k + 1):(2 * p + k)] / V.boot$t0[1:k] T.boot$t <- V.boot$t[,(p + k + 1):(2 * p + k)] / V.boot$t[,(1:k)] T <- bootstats(T.boot, x$conf, "basic") } rownames(S) <- colnames(x$X1) rownames(T) <- colnames(x$X1) x$V <- V x$S <- S x$T <- T for (i in return.var) { x[[i]] <- get(i) } assign(id, x, parent.frame()) } print.sobolowen <- function(x, ...) { cat("\nCall:\n", deparse(x$call), "\n", sep = "") if (!is.null(x$y)) { cat("\nModel runs:", length(x$y), "\n") cat("\nFirst order indices:\n") print(x$S) cat("\nTotal indices:\n") print(x$T) } } plot.sobolowen <- function(x, ylim = c(0, 1), ...) { if (!is.null(x$y)) { p <- ncol(x$X1) pch = c(21, 24) nodeplot(x$S, xlim = c(1, p + 1), ylim = ylim, pch = pch[1]) nodeplot(x$T, xlim = c(1, p + 1), ylim = ylim, labels = FALSE, pch = pch[2], at = (1:p)+.3, add = TRUE) legend(x = "topright", legend = c("main effect", "total effect"), pch = pch) } } ggplot.sobolowen <- function(x, ylim = c(0, 1), ...) { if (!is.null(x$y)) { p <- ncol(x$X1) pch = c(21, 24) nodeggplot(listx = list(x$S,x$T), xname = c("Main effet","Total effect"), ylim = ylim, pch = pch) } }
NULL omega_root <- function(x=0.5,p0_v1=0.5,p0_v2=0.5,p00=p0_v1*p0_v2,correlation=NA) { if (is.na(correlation)) { out <- p00-omega(x,p0_v1=p0_v1,p0_v2=p0_v2,correlation=FALSE) } else { out <- correlation-omega(x,p0_v1=p0_v1,p0_v2=p0_v2,correlation=TRUE) } return(out) }
ui.file_upload <- function(id, test = FALSE) { ns <- NS(id) wPanel <- wellPanel( fileInput(ns("upload_file"), "Choose CSV File", multiple = FALSE, accept = c( "text/csv", "text/comma-separated-values,text/plain", ".csv" ) ), tags$hr(), checkboxInput(ns("header"), "Header", TRUE), radioButtons(ns("sep"), "Separator", choices = c( Comma = ",", Semicolon = ";", Tab = "\t" ), selected = "," ), radioButtons(ns("quote"), "Quote", choices = c( None = "", "Double Quote" = '"', "Single Quote" = "'" ), selected = '"' ), tags$hr(), radioButtons(ns("disp"), "Display", choices = c( Head = "head", All = "all" ), selected = "head" ) ) if (test) { fluidPage( titlePanel("Module: Upload File (here for testing only)"), sidebarLayout( sidebarPanel = sidebarPanel( wPanel ), mainPanel = mainPanel( tableOutput(ns("contents")) ) ) ) } else { wPanel } } server.file_upload <- function(input, output, session) { userFile <- reactive({ validate(need(input$upload_file, message = FALSE)) input$upload_file }) output$contents <- renderTable({ message("rendering table") tryCatch( { df <- read.csv(userFile()$datapath, header = input$header, sep = input$sep, quote = input$quote, stringsAsFactors = FALSE ) }, error = function(e) { stop(safeError(e)) } ) if (input$disp == "head") { return(head(df)) } else { return(df) } }) observe({ msg <- sprintf("File %s was uploaded", userFile()$name) cat(msg, "\n") }) }
output$ui_spatial_blocks<-renderUI({ observeEvent(input$block_button,{ observeEvent(input$number_fold,{ load.occ$k<-input$number_fold }) observeEvent(input$allocation_fold,{ load.occ$allocation_fold<-input$allocation_fold }) sp_Specdata<-reactive({ dsf<-load.occ$select dsf[,load.occ$spec_select]<-as.factor(dsf[,load.occ$spec_select]) dsf<-dsf %>% dplyr::rename(lon=load.occ$lon,lat=load.occ$lat) dsf }) sp_pa_data<-reactive({ load.occ$sp_pa_data<-sf::st_as_sf(sp_Specdata(), coords = c("lon","lat"), crs = crs(data$Env)) load.occ$sp_pa_data }) spatialblock<-reactive({ a = try(withProgress(message = 'Spatial blocking', blockCV::spatialBlock(speciesData = sp_pa_data(), species = load.occ$spec_select, rasterLayer = data$var_auto, theRange = range(), k = load.occ$k, showBlocks = TRUE, selection = load.occ$allocation_fold, iteration = 100, biomod2Format = FALSE, xOffset = 0, yOffset = 0))) if(inherits(a, 'try-error')) { output$Envbug_sp <- renderUI(p('Spatial blocking failed, please check your inputs and try again!')) } else { output$Envbug_sp <- renderUI(p()) load.occ$spatialblock<-a a } }) output$sp_block<-renderPlot({ spatialblock<-spatialblock() spatialblock$plots + geom_sf(data = sp_pa_data(), alpha = 0.5) }) output$sum_fold <- DT::renderDataTable({ spatialblock<-spatialblock() sumfold<-reactive({ a = try(withProgress(message = 'Summary fold...', summarise_fold(spatialblock))) if(inherits(a, 'try-error')) { output$Envbug_fold <- renderUI(p('Spatial blocking failed, please check your inputs and try again!')) } else { output$Envbug_fold <- renderUI(p()) a } }) datatable(sumfold(), rownames = FALSE, selection="none", options = list(scrollX=TRUE, scrollY=250, lengthMenu=list(c(20, 50, 100, -1), c('20', '50', '100', 'All')), pageLength=20) )}) observeEvent(input$test_fold,{ load.occ$fold<-input$test_fold output$test_train_plot<-renderPlot({ spatialblock<-spatialblock() sdmApp::sdmApp_fold_Explorer(spatialblock, data$Env, sp_pa_data(),load.occ$fold) }) }) }) fluidRow(column(12, h4("Spatial blocking"),p("'The spatial blocking procedure can take a long time depending on the number of input variables"), align="center"), mainPanel(width = 8, tabsetPanel(type = "tabs", tabPanel("Spatial blocking", p('Set spatial bloking parameters'), sliderInput("number_fold", "folds", min=1, max=100, value=5), selectInput("allocation_fold","allocation of blocks to folds",choices = c("random","systematic"),selected="random"), sliderInput("test_fold","Select the number of fold to assign as test dataset",min = 1,max=100,value = 1), myActionButton("block_button",label=("Apply"), "primary"), uiOutput("Envbug_sp"), plotOutput("sp_block"), plotOutput("test_train_plot")), tabPanel("Fold summary", p('The percentage values indicate the percentage of data the test dataset corresponds to'), uiOutput("Envbug_fold"), DT::dataTableOutput("sum_fold")) ), id = "tabs") ) })
github.openzh.covid19 <- function(level, state){ if(state=="FL" & level!=1) return(NULL) if(state=="CH" & level!=2) return(NULL) url <- "https://raw.githubusercontent.com/openZH/covid_19/master/COVID19_Fallzahlen_CH_total_v2.csv" x <- read.csv(url) x <- map_data(x, c( 'date', 'abbreviation_canton_and_fl' = 'code', 'ncumul_conf' = 'confirmed', 'ncumul_tested' = 'tests', 'ncumul_deceased' = 'deaths', 'ncumul_released' = 'recovered', 'current_hosp' = 'hosp', 'current_icu' = 'icu', 'current_vent' = 'vent' )) if(state=="FL") x <- x[which(x$code=="FL"),] if(state=="CH") x <- x[which(x$code!="FL"),] x$date <- as.Date(x$date) return(x) }
suppressPackageStartupMessages(library(rrcovNA)) alpha <- 0.55 data(phosphor); x <- y <- phosphor[,1:2]; x[10,2] <- NA; x[15,1] <- NA mcdc <- CovMcd(y) ximp <- impSeq(x); mcds <- CovMcd(ximp) ximp <- impSeqRob(x, alpha=alpha); mcd <- CovMcd(ximp$x) mcdna <- CovNAMcd(x) as.vector(which(mcdc@wt==0)) as.vector(which(mcds@wt==0)) as.vector(which(mcd@wt==0)) as.vector(which(mcdna@wt==0)) data(heart); x <- y <- heart; x[10,2] <- NA; x[2,1] <- NA mcdc <- CovMcd(y) ximp <- impSeq(x); mcds <- CovMcd(ximp) ximp <- impSeqRob(x, alpha=alpha); mcd <- CovMcd(ximp$x) mcdna <- CovNAMcd(x) as.vector(which(mcdc@wt==0)) as.vector(which(mcds@wt==0)) as.vector(which(mcd@wt==0)) as.vector(which(mcdna@wt==0)) data(starsCYG); x <- y <- starsCYG; x[10,2] <- NA; x[2,1] <- NA; x[33,1] <- NA; x[41,1] <- NA mcdc <- CovMcd(y) ximp <- impSeq(x); mcds <- CovMcd(ximp) ximp <- impSeqRob(x, alpha=alpha); mcd <- CovMcd(ximp$x) mcdna <- CovNAMcd(x) as.vector(which(mcdc@wt==0)) as.vector(which(mcds@wt==0)) as.vector(which(mcd@wt==0)) as.vector(which(mcdna@wt==0)) data(stackloss); x <- y <- stack.x; x[10,2] <- NA; x[6,1] <- NA; x[13,3] <- NA mcdc <- CovMcd(y) ximp <- impSeq(x); mcds <- CovMcd(ximp) ximp <- impSeqRob(x, alpha=alpha); mcd <- CovMcd(ximp$x) mcdna <- CovNAMcd(x) as.vector(which(mcdc@wt==0)) as.vector(which(mcds@wt==0)) as.vector(which(mcd@wt==0)) as.vector(which(mcdna@wt==0)) data(coleman); x <- y <- data.matrix(subset(coleman, select = -Y)); x[5,2] <- NA; x[8,4] <- NA; x[13,3] <- NA mcdc <- CovMcd(y) ximp <- impSeq(x); mcds <- CovMcd(ximp) ximp <- impSeqRob(x, alpha=alpha); mcd <- CovMcd(ximp$x) mcdna <- CovNAMcd(x) data(salinity); x <- y <- data.matrix(subset(salinity, select = -Y)); x[1,2] <- NA; x[8,3] <- NA; x[13,3] <- NA mcdc <- CovMcd(y) ximp <- impSeq(x); mcds <- CovMcd(ximp) ximp <- impSeqRob(x, alpha=alpha); mcd <- CovMcd(ximp$x) mcdna <- CovNAMcd(x) as.vector(which(mcdc@wt==0)) as.vector(which(mcds@wt==0)) as.vector(which(mcd@wt==0)) as.vector(which(mcdna@wt==0)) data(wood); x <- y <- data.matrix(subset(wood, select = -y)); x[1,2] <- NA; x[10,3] <- NA; x[13,4] <- NA mcdc <- CovMcd(y) ximp <- impSeq(x); mcds <- CovMcd(ximp) ximp <- impSeqRob(x, alpha=alpha); mcd <- CovMcd(ximp$x) mcdna <- CovNAMcd(x) as.vector(which(mcdc@wt==0)) as.vector(which(mcds@wt==0)) as.vector(which(mcd@wt==0)) as.vector(which(mcdna@wt==0)) data(hbk); x <- y <- data.matrix(subset(hbk, select = -Y)); x[30,2] <- NA; x[40,3] <- NA; x[17,3] <- NA mcdc <- CovMcd(y) ximp <- impSeq(x); mcds <- CovMcd(ximp) ximp <- impSeqRob(x, alpha=alpha); mcd <- CovMcd(ximp$x) mcdna <- CovNAMcd(x) as.vector(which(mcdc@wt==0)) as.vector(which(mcds@wt==0)) as.vector(which(mcd@wt==0)) as.vector(which(mcdna@wt==0))
NormTransformation <- function(data) { data.normal=2*sqrt(data+0.25) }
ggwr <- function(formula, data = list(), coords, bandwidth, gweight=gwr.Gauss, adapt=NULL, fit.points, family=gaussian, longlat=NULL, type=c("working", "deviance", "pearson", "response")) { type <- match.arg(type) resid_name <- paste(type, "resids", sep="_") this.call <- match.call() p4s <- as.character(NA) Polys <- NULL if (is(data, "SpatialPolygonsDataFrame")) Polys <- as(data, "SpatialPolygons") if (is(data, "Spatial")) { if (!missing(coords)) warning("data is Spatial* object, ignoring coords argument") coords <- coordinates(data) p4s <- proj4string(data) if (is.null(longlat) || !is.logical(longlat)) { if (!is.na(is.projected(data)) && !is.projected(data)) { longlat <- TRUE } else { longlat <- FALSE } } data <- as(data, "data.frame") } if (is.null(longlat) || !is.logical(longlat)) longlat <- FALSE if (missing(coords)) stop("Observation coordinates have to be given") if (is.null(colnames(coords))) colnames(coords) <- c("coord.x", "coord.y") if (is.character(family)) family <- get(family, mode = "function", envir = parent.frame()) if (is.function(family)) family <- family() if (is.null(family$family)) { print(family) stop("'family' not recognized") } if (missing(data)) data <- environment(formula) mf <- match.call(expand.dots = FALSE) m <- match(c("formula", "data"), names(mf), 0) mf <- mf[c(1, m)] mf$drop.unused.levels <- TRUE mf[[1]] <- as.name("model.frame") mf <- eval(mf, parent.frame()) mt <- attr(mf, "terms") y <- model.extract(mf, "response") x <- model.matrix(mt, mf) offset <- model.offset(mf) if (!is.null(offset) && length(offset) != NROW(y)) stop("number of offsets should equal number of observations") if (is.null(offset)) offset <- rep(0, length(c(y))) glm_fit <- glm.fit(x=x, y=y, offset=offset, family=family) if (missing(fit.points)) { fp.given <- FALSE fit.points <- coords colnames(fit.points) <- colnames(coords) } else fp.given <- TRUE griddedObj <- FALSE if (is(fit.points, "Spatial")) { Polys <- NULL if (is(fit.points, "SpatialPolygonsDataFrame")) { Polys <- Polygons(fit.points) fit.points <- coordinates(fit.points) } else { griddedObj <- gridded(fit.points) fit.points <- coordinates(fit.points) } } n <- NROW(fit.points) rownames(fit.points) <- NULL if (is.null(colnames(fit.points))) colnames(fit.points) <- c("x", "y") m <- NCOL(x) if (NROW(x) != NROW(coords)) stop("Input data and coordinates have different dimensions") if (is.null(adapt)) { if (!missing(bandwidth)) { bw <- bandwidth bandwidth <- rep(bandwidth, n) } else stop("Bandwidth must be given for non-adaptive weights") } else { bandwidth <- gw.adapt(dp=coords, fp=fit.points, quant=adapt, longlat=longlat) bw <- bandwidth } if (any(bandwidth < 0)) stop("Invalid bandwidth") gwr.b <- matrix(nrow=n, ncol=m) v_resids <- numeric(n) colnames(gwr.b) <- colnames(x) lhat <- NA sum.w <- numeric(n) dispersion <- numeric(n) for (i in 1:n) { dxs <- spDistsN1(coords, fit.points[i,], longlat=longlat) if (any(!is.finite(dxs))) dxs[which(!is.finite(dxs))] <- .Machine$double.xmax/2 w.i <- gweight(dxs^2, bandwidth[i]) if (any(w.i < 0 | is.na(w.i))) stop(paste("Invalid weights for i:", i)) lm.i <- glm.fit(y=y, x=x, weights=w.i, offset=offset, family=family) sum.w[i] <- sum(w.i) gwr.b[i,] <- coefficients(lm.i) if (!fp.given) v_resids[i] <- residuals.glm(lm.i, type=type)[i] else is.na(v_resids[i]) <- TRUE df.r <- lm.i$df.residual if (lm.i$family$family %in% c("poisson", "binomial")) dispersion[i] <- 1 else { if (df.r > 0) { dispersion[i] <- sum((lm.i$weights * lm.i$residuals^2)[lm.i$weights > 0])/df.r } else { dispersion[i] <- NaN } } } df <- data.frame(sum.w=sum.w, gwr.b, dispersion=dispersion) df[[resid_name]] <- v_resids SDF <- SpatialPointsDataFrame(coords=fit.points, data=df, proj4string=CRS(p4s)) if (griddedObj) { gridded(SDF) <- TRUE } else { if (!is.null(Polys)) { df <- data.frame(SDF@data) rownames(df) <- sapply(slot(Polys, "polygons"), function(i) slot(i, "ID")) SDF <- SpatialPolygonsDataFrame(Sr=Polys, data=df) } } z <- list(SDF=SDF, lhat=lhat, lm=glm_fit, results=NULL, bandwidth=bw, adapt=adapt, hatmatrix=FALSE, gweight=deparse(substitute(gweight)), fp.given=fp.given, this.call=this.call) class(z) <- "gwr" invisible(z) }
test_that("dryad_download", { skip_on_cran() skip_on_ci() vcr::use_cassette("dryad_download", { aa <- dryad_download(dois = "10.5061/dryad.f385721n") }, match_requests_on = c("method", "uri")) expect_is(aa, "list") expect_equal(length(aa), 1) expect_named(aa, "10.5061/dryad.f385721n") expect_is(aa[[1]], "character") expect_true(any(grepl("csv", aa[[1]]))) expect_true(any(grepl("rtf", aa[[1]]))) }) test_that("dryad_download fails well", { skip_on_cran() expect_error(dryad_download()) expect_error(dryad_download(5)) })
is.gdpc <- function(object, ...) { if (any(!inherits(object, "list"), !inherits(object, "gdpc"))) { return(FALSE) } else if (any(is.null(object$f), is.null(object$initial_f), is.null(object$beta), is.null(object$alpha), is.null(object$mse), is.null(object$crit), is.null(object$k), is.null(object$expart), is.null(object$call), is.null(object$conv), is.null(object$niter))) { return(FALSE) } else if (any(!inherits(object$mse, "numeric"), !inherits(object$crit, "numeric"), !inherits(object$alpha, "numeric"), !inherits(object$beta, "matrix"), !inherits(object$call, "call"), !inherits(object$conv, "logical"), all(!inherits(object$f,"numeric"), !inherits(object$f, "ts"), !inherits(object$f, "xts"), !inherits(object$f, "zoo")), all(!inherits(object$k, "numeric"), !inherits(object$k, "integer")), !inherits(object$expart, "numeric"), all(!inherits(object$initial_f,"numeric"), !inherits(object$initial_f,"ts"), !inherits(object$initial_f,"xts"), !inherits(object$initial_f, "zoo")) )) { return(FALSE) } else if (any(length(object$alpha) != dim(object$beta)[1], dim(object$beta)[2] != object$k + 1)) { return(FALSE) } else { return(TRUE) } } construct.gdpc <- function(out, data) { k <- ncol(out$beta) - 2 out$alpha <- out$beta[, k + 2] out$beta <- out$beta[, (k + 1):1] if (k != 0) { out$initial_f <- out$f[1:k] } else { out$initial_f <- 0 } out$alpha <- as.numeric(out$alpha) out$beta <- as.matrix(out$beta) rownames(out$beta) <- colnames(data) out$f <- out$f[(k + 1):length(out$f)] out$res <- NULL if (inherits(data, "xts")) { out$f <- reclass(out$f, match.to = data) } else if (inherits(data, "zoo")) { out$f <- zoo(out$f, order.by = index(data)) } else if (inherits(data, "ts")) { out$f <- ts(out$f, start = start(data), end = end(data), frequency = frequency(data)) } class(out) <- append("gdpc", class(out)) return(out) } construct.gdpc.norm <- function(out, data, comp_num) { k <- ncol(out$beta) - 2 out$alpha <- out$beta[, k + 2] out$beta <- out$beta[, (k + 1):1] if (k != 0) { out$initial_f <- out$f[1:k] } else { out$initial_f <- 0 } sd_Z <- apply(data, 2, sd) if (comp_num == 1){ mean_Z <- apply(data, 2, mean) } else { mean_Z <- 0 } out$alpha <- out$alpha * sd_Z + mean_Z if (k == 0) { out$beta <- out$beta * sd_Z } else { out$beta <- apply(out$beta, 2, function(x, sd) { x * sd }, sd_Z) } out$alpha <- as.numeric(out$alpha) out$beta <- as.matrix(out$beta) rownames(out$beta) <- colnames(data) out$f <- out$f[(k + 1):length(out$f)] if (inherits(data, "xts")) { out$f <- reclass(out$f, match.to = data) } else if (inherits(data, "zoo")) { out$f <- zoo(out$f, order.by = index(data)) } else if (inherits(data, "ts")) { out$f <- ts(out$f, start = start(data), end = end(data), frequency = frequency(data)) } class(out) <- append("gdpc", class(out)) return(out) } fitted.gdpc <- function(object, ...) { if (!is.gdpc(object)){ stop("object should be of class gdpc") } fitted <- getFitted(object$f, object$initial_f, object$beta, object$alpha, object$k) if (inherits(object$f, "xts")) { fitted <- reclass(fitted, match.to = object$f) } else if (inherits(object$f, "zoo")) { fitted <- zoo(fitted, order.by = index(object$f)) } else if (inherits(object$f, "ts")) { fitted <- ts(fitted) attr(fitted, "tsp") <- attr(object$f, "tsp") } return(fitted) } plot.gdpc <- function(x, which = "Component", which_load = 0, ...) { if (!is.gdpc(x)) { stop("x should be of class gdpc") } if (!which %in% c("Component", "Loadings")) { stop("which should be either Component or Loadings ") } if (!inherits(which_load, "numeric")) { stop("which_load should be numeric") } else if (any(!(which_load == floor(which_load)), which_load < 0, which_load > ncol(x$beta) - 1)) { stop("which_load should be a non-negative integer, at most equal to the number of lags") } if (which == "Component"){ plot(x$f, type = "l", main = "Principal Component", ...) } else if (which == "Loadings"){ plot(x$beta[, which_load + 1], type = "l", main = c(paste(which_load, "lag loadings")), ...) } } print.gdpc <- function(x, ...) { if (!is.gdpc(x)) { stop("x should be of class gdpc") } y <- list(x) class(y) <- append("gdpcs", class(y)) print(y) } construct.gdpcs <- function(out, data, fn_call, normalize) { if (normalize == 2) { num_comp <- length(out) out[[1]] <- construct.gdpc.norm(out[[1]], data, 1) if (num_comp > 1) { for (k in 2:num_comp) { out[[k]] <- construct.gdpc.norm(out[[k]], data, k) } } out <- lapply(out, function(x, fn_call){ x$call <- fn_call; return(x)}, fn_call) out <- lapply(out, function(x){ x$res <- NULL; return(x)}) } else { out <- lapply(out, function(x, fn_call){ x$call <- fn_call; return(x)}, fn_call) out <- lapply(out, construct.gdpc, data) } class(out) <- append("gdpcs", class(out)) return(out) } is.gdpcs <- function(object, ...) { if (any(!inherits(object, "gdpcs"), !inherits(object, "list"))) { return(FALSE) } else { return(all(sapply(object, is.gdpc))) } } components <- function(object, which_comp){ UseMethod("components", object) } components.gdpcs <- function(object, which_comp = 1) { if (!is.gdpcs(object)) { stop("object should be of class gdpcs") } if (all(!inherits(which_comp, "numeric"), !inherits(which_comp, "integer"))) { stop("which_comp should be numeric") } else if (any(!(which_comp == floor(which_comp)), which_comp <= 0, which_comp > length(object))) { stop("The entries of which_comp should be positive integers, at most equal to the number of components") } object <- object[which_comp] comps <- sapply(object, function(object){ object$f }) colnames(comps) <- paste("Component number", which_comp) if (inherits(object[[1]]$f, "xts")) { comps <- reclass(comps, match.to = object[[1]]$f) } else if (inherits(object[[1]]$f, "zoo")) { comps <- zoo(comps, order.by = index(object[[1]]$f)) } else if (inherits(object[[1]]$f, "ts")) { comps <- ts(comps, start = start(object[[1]]$f), end = end(object[[1]]$f), frequency = frequency(object[[1]]$f)) } return(comps) } fitted.gdpcs <- function(object, num_comp = 1, ...) { if (!is.gdpcs(object)) { stop("object should be of class gdpcs") } if (all(!inherits(num_comp, "numeric"), !inherits(num_comp, "integer"))) { stop("num_comp should be numeric") } else if (any(!(num_comp == floor(num_comp)), num_comp <= 0, num_comp > length(object))) { stop("num_comp should be a positive integer, at most equal to the number of components") } fitted <- Reduce('+', lapply(object[1:num_comp], fitted)) if (inherits(object[[1]]$f, "xts")) { fitted <- reclass(fitted, match.to = object[[1]]$f) } else if (inherits(object[[1]]$f, "zoo")) { fitted <- zoo(fitted, order.by = index(object[[1]]$f)) } else if (inherits(object[[1]]$f, "ts")) { fitted <- ts(fitted) attr(fitted, "tsp") <- attr(object[[1]]$f, "tsp") } return(fitted) } plot.gdpcs <- function(x, which_comp = 1, plot.type = 'multiple',...) { if (!is.gdpcs(x)) { stop("x should be of class gdpcs") } if (all(!inherits(which_comp, "numeric"), !inherits(which_comp, "integer"))) { stop("which_comp should be numeric") } else if (any(!(which_comp == floor(which_comp)), which_comp <= 0, which_comp > length(x))) { stop("The entries of which_comp should be positive integers, at most equal to the number of components") } comps <- components(x, which_comp) if (inherits(comps, "xts") & length(which_comp)==1) { plot.xts(comps, main = "Principal Components", ...) } else if (inherits(comps, "zoo")) { plot.zoo(comps, main = "Principal Components", plot.type = plot.type, ...) } else if (inherits(comps, "ts")) { plot.ts(comps, main = "Principal Components", plot.type = 'multiple', ...) } else { comps <- ts(comps) plot.ts(comps, main = "Principal Components", plot.type = 'multiple', ...) } } print.gdpcs <- function(x, ...) { if (!is.gdpcs(x)) { stop("x should be of class gdpcs") } lags <- sapply(x, function(x){ round(x$k, 3) }) vars <- sapply(x, function(x){ round(x$expart, 3) }) mses <- sapply(x, function(x){ round(x$mse, 3) }) crits <- sapply(x, function(x){ round(x$crit, 3) }) mat <- cbind(lags, crits, mses, vars) nums <- paste(1:length(x)) nums <- sapply(nums, function(x){ paste("Component", x)}) fn_call <- x[[1]]$call crit_name <- fn_call$crit colnames(mat) <- c("Number of lags", crit_name, "MSE", "Explained Variance") tab <- data.frame(mat, row.names = nums) print(tab) }
expected <- eval(parse(text="2L")); test(id=0, code={ argv <- eval(parse(text="list(structure(c(NA, 87, 82, 75, 63, 50, 43, 32, 35, 60, 54, 55, 36, 39, NA, NA, 69, 57, 57, 51, 45, 37, 46, 39, 36, 24, 32, 23, 25, 32, NA, 32, 59, 74, 75, 60, 71, 61, 71, 57, 71, 68, 79, 73, 76, 71, 67, 75, 79, 62, 63, 57, 60, 49, 48, 52, 57, 62, 61, 66, 71, 62, 61, 57, 72, 83, 71, 78, 79, 71, 62, 74, 76, 64, 62, 57, 80, 73, 69, 69, 71, 64, 69, 62, 63, 46, 56, 44, 44, 52, 38, 46, 36, 49, 35, 44, 59, 65, 65, 56, 66, 53, 61, 52, 51, 48, 54, 49, 49, 61, NA, NA, 68, 44, 40, 27, 28, 25, 24, 24), .Tsp = c(1945, 1974.75, 4), class = \"ts\"))")); .Internal(which.max(argv[[1]])); }, o=expected);
mdt_moderated <- function(data, IV, DV, M, Mod) { UseMethod("mdt_moderated") } mdt_moderated.data.frame <- function(data, IV, DV, M, Mod) { IV_var <- enquo(IV) DV_var <- enquo(DV) M_var <- enquo(M) Mod_var <- enquo(Mod) IV_name <- rlang::quo_name(IV_var) DV_name <- rlang::quo_name(DV_var) M_name <- rlang::quo_name(M_var) Mod_name <- rlang::quo_name(Mod_var) IVMod_name <- glue("{IV_name}:{Mod_name}") MMod_name <- glue("{M_name}:{Mod_name}") IV_data <- data %>% dplyr::pull(!!IV_var) M_data <- data %>% dplyr::pull(!!M_var) DV_data <- data %>% dplyr::pull(!!DV_var) Mod_data <- data %>% dplyr::pull(!!Mod_var) if (!is.numeric(IV_data)) { stop(glue("Warning: IV ({IV_name}) must be numeric (see build_contrast() to convert a character vector to a contrast code).")) } if(!is.numeric(M_data)) { stop(glue("Warning: Mediator ({M_name}) must be numeric.")) } if(!is.numeric(DV_data)) { stop(glue("Warning: DV ({DV_name}) must be numeric.")) } if(!is.numeric(Mod_data)) { stop(glue("Warning: Moderator ({DV_name}) must be numeric.")) } model1 <- stats::as.formula(glue("{DV} ~ {IV} * {Mod}", IV = IV_name, DV = DV_name, Mod = Mod_name)) model2 <- stats::as.formula(glue("{M} ~ {IV} * {Mod}", IV = IV_name, M = M_name, Mod = Mod_name)) model3 <- stats::as.formula(glue("{DV} ~ ({IV} + {M}) * {Mod}", DV = DV_name, IV = IV_name, M = M_name, Mod = Mod_name)) js_models <- list("X * Mod -> Y" = model1, "X * Mod -> M" = model2, "(X + M) * Mod -> Y" = model3) %>% purrr::map(~lm(.x, data)) paths <- list("a" = create_path(js_models, "X * Mod -> M", IV_name), "a * Mod" = create_path(js_models, "X * Mod -> M", IVMod_name), "b" = create_path(js_models, "(X + M) * Mod -> Y", M_name), "b * Mod" = create_path(js_models, "(X + M) * Mod -> Y", MMod_name), "c" = create_path(js_models, "X * Mod -> Y", IV_name), "c * Mod" = create_path(js_models, "X * Mod -> Y", IVMod_name), "c'" = create_path(js_models, "(X + M) * Mod -> Y", IV_name), "c' * Mod" = create_path(js_models, "(X + M) * Mod -> Y", IVMod_name)) mediation_model( type = "moderated mediation", params = list("IV" = IV_name, "DV" = DV_name, "M" = M_name, "Mod" = Mod_name), paths = paths, js_models = js_models, data = data, subclass = "moderated_mediation" ) }
.rasterObjectFromFile <- function(x, band=1, objecttype='RasterLayer', native=FALSE, silent=TRUE, offset=NULL, ncdf=FALSE, ...) { x <- trim(x) if (x=="" | x==".") { stop('provide a valid filename') } start <- tolower(substr(x, 1, 3)) if (! start %in% c('htt', 'ftp')) { y <- NULL try( y <- normalizePath( x, mustWork=TRUE), silent=TRUE ) if (! is.null(y)) { x <- y } } fileext <- toupper(extension(x)) if (fileext %in% c(".GRD", ".GRI")) { grifile <- .setFileExtensionValues(x, 'raster') grdfile <- .setFileExtensionHeader(x, 'raster') if ( file.exists( grdfile) & file.exists( grifile)) { return ( .rasterFromRasterFile(grdfile, band=band, objecttype, ...) ) } } if (! file.exists(x) ) { if (extension(x) == '') { grifile <- .setFileExtensionValues(x, 'raster') grdfile <- .setFileExtensionHeader(x, 'raster') if ( file.exists( grdfile) & file.exists( grifile)) { return ( .rasterFromRasterFile(grdfile, band=band, objecttype, ...) ) } else { } } } if (( fileext %in% c(".HE5", ".NC", ".NCF", ".NC4", ".CDF", ".NCDF", ".NETCDF")) | (isTRUE(ncdf))) { return ( .rasterObjectFromCDF(x, type=objecttype, band=band, ...) ) } if ( fileext == ".GRD") { if (.isNetCDF(x)) { return ( .rasterObjectFromCDF(x, type=objecttype, band=band, ...) ) } } if (!is.null(offset)) { return ( .rasterFromASCIIFile(x, offset, ...) ) } if (fileext %in% c(".BIN")) { r <- .rasterFromNSIDCFile(x) if (!is.null(r)) return(r) } if(!native) { if (! .requireRgdal(FALSE) ) { native <- TRUE } } if (native) { if ( fileext == ".ASC" ) { return ( .rasterFromASCIIFile(x, ...) ) } if ( fileext %in% c(".BIL", ".BIP", ".BSQ")) { return ( .rasterFromGenericFile(x, type=objecttype, ...) ) } if ( fileext %in% c(".RST", ".RDC") ) { return ( .rasterFromIDRISIFile(x, ...) ) } if ( fileext %in% c(".DOC", ".IMG") ) { return ( .rasterFromIDRISIFile(x, old=TRUE, ...)) } if ( fileext %in% c(".SGRD", ".SDAT") ) { return ( .rasterFromSAGAFile(x, ...) ) } } if ( fileext == ".DOC" ) { if (file.exists( extension(x, '.img'))) { return( .rasterFromIDRISIFile(x, old=TRUE, ...)) } } if ( fileext %in% c(".SGRD", ".SDAT") ) { r <- .rasterFromSAGAFile(x, ...) if (r@file@toptobottom | r@data@gain != 1) { return(r) } } if (! .requireRgdal(FALSE) ) { stop("Cannot create RasterLayer object from this file; perhaps you need to install rgdal first") } test <- try( r <- .rasterFromGDAL(x, band=band, objecttype, ...), silent=silent ) if (inherits(test, "try-error")) { if (!file.exists(x)) { stop("Cannot create a RasterLayer object from this file. (file does not exist)") } stop("Cannot create a RasterLayer object from this file.") } else { return(r) } }
require("semtree") require("future") plan(multisession) data(lgcm) lgcm$agegroup <- as.ordered(lgcm$agegroup) lgcm$training <- as.factor(lgcm$training) lgcm$noise <- as.numeric(lgcm$noise) manifests <- names(lgcm)[1:5] lgcModel <- mxModel("Linear Growth Curve Model Path Specification", type="RAM", manifestVars=manifests, latentVars=c("intercept","slope"), mxPath( from=manifests, arrows=2, free=TRUE, values = c(1, 1, 1, 1, 1), labels=c("residual1","residual2","residual3","residual4","residual5") ), mxPath( from=c("intercept","slope"), connect="unique.pairs", arrows=2, free=TRUE, values=c(1, 1, 1), labels=c("vari", "cov", "vars") ), mxPath( from="intercept", to=manifests, arrows=1, free=FALSE, values=c(1, 1, 1, 1, 1) ), mxPath( from="slope", to=manifests, arrows=1, free=FALSE, values=c(0, 1, 2, 3, 4) ), mxPath( from="one", to=manifests, arrows=1, free=FALSE, values=c(0, 0, 0, 0, 0) ), mxPath( from="one", to=c("intercept", "slope"), arrows=1, free=TRUE, values=c(1, 1), labels=c("meani", "means") ), mxData(lgcm,type="raw") ) controlOptions <- semtree.control() controlOptions controlOptions$alpha <- 0.01 tree <- semtree(model=lgcModel, data=lgcm, control = controlOptions) constraints <- semtree.constraints(global.invariance = names(omxGetParameters(lgcModel))[1:5]) treeConstrained <- semtree(model=lgcModel, data=lgcm, control = controlOptions, constraints=constraints) plot(tree) summary(tree) summary(treeConstrained) print(tree) parameters(tree) parameters(tree, leafs.only=FALSE) treeSub <- subtree(tree, startNode=3) plot(treeSub)
hierarchical_correction <- function(cis_assocs, local, global, tests_per_gene=NULL) { local_pval <- NULL pvalue <- NULL n_tests <- NULL gene <- NULL statistic <- NULL global_pval <- NULL if (!is.null(tests_per_gene)) { cis_assocs <- merge(cis_assocs, tests_per_gene, by="gene") cis_assocs[, local_pval := adjust_p(pvalue, method=local, N=unique(n_tests)), by=gene] } else { cis_assocs[, local_pval := adjust_p(pvalue, method=local), by=gene] } cis_assocs <- cis_assocs[order(abs(statistic), decreasing=TRUE)] top_assocs <- cis_assocs[, .SD[which.min(local_pval)], by="gene"] top_assocs[,global_pval := adjust_p(local_pval, method=global)] cis_assocs <- merge(cis_assocs, top_assocs[,list(gene, global_pval)], by="gene") return(cis_assocs) } adjust_p <- function(pvals, method, N=NULL) { if (method == "qvalue") { qvalue::qvalue(pvals)$qvalues } else if (method == "eigenMT") { pmin(pvals * N, 1) } else { p.adjust(pvals, method, n=ifelse(is.null(N), length(pvals), N)) } } get_eSNP_threshold <- function(cis_assocs) { statistic <- NULL local_pval <- NULL global_pval <- NULL cis_assocs <- cis_assocs[order(abs(statistic), decreasing=TRUE)] top_assocs <- cis_assocs[, .SD[which.min(local_pval)], by="gene"] top_assocs <- top_assocs[order(global_pval)] n_sig <- top_assocs[,sum(global_pval < 0.05)] eSNP_threshold <- top_assocs[n_sig:(n_sig+1), mean(local_pval)] return(eSNP_threshold) }
initial.surv <- function (Time, d, W, WintF.vl, WintF.sl, id, times, method, parameterization, long = NULL, long.deriv = NULL, extra = NULL, LongFormat) { old <- options(warn = (-1)) on.exit(options(old)) if (!is.null(long)) { long.id <- tapply(long, id, tail, 1) if (parameterization == "value") longD.id <- NULL } if (!is.null(long.deriv)) { longD.id <- tapply(long.deriv, id, tail, 1) if (parameterization == "slope") long.id <- NULL } idT <- extra$ii WW <- if (!LongFormat) { cbind(W, long.id, longD.id) } else { cbind(W, long.id[idT], longD.id[idT]) } if (method %in% c("Cox-PH-GH", "weibull-PH-GH", "piecewise-PH-GH", "spline-PH-GH", "spline-PH-Laplace")) { if (!LongFormat) { DD <- data.frame(id = id, Time = Time[id], d = d[id], times = times) if (!is.null(long)) { DD$long <- long * WintF.vl[id, , drop = FALSE] k <- ncol(DD$long) } if (!is.null(long.deriv)) { DD$longD <- long.deriv * WintF.sl[id, , drop = FALSE] l <- ncol(DD$longD) } dW <- as.data.frame(W[id, , drop = FALSE], row.names = row.names(DD)) if (ncol(dW)) { names(dW) <- paste("W", seq_along(dW), sep = "") DD <- cbind(DD, dW) } } else { DD <- data.frame(Time = Time, d = d) if (!is.null(long)) { DD$long <- as.vector(long.id[idT]) * WintF.vl k <- ncol(DD$long) } if (!is.null(long.deriv)) { DD$longD <- as.vector(longD.id[idT]) * WintF.sl l <- ncol(DD$longD) } dW <- as.data.frame(W, row.names = row.names(DD)) if (ncol(dW)) { names(dW) <- paste("W", seq_along(dW), sep = "") DD <- cbind(DD, dW) } DD$strata <- extra$strata } if (!LongFormat) { DD$start <- DD$times DD$stop <- unlist(lapply(split(DD[c("id", "start", "Time")], DD$id), function (d) c(d$start[-1], d$Time[1]))) DD$event <- ave(DD$d, DD$id, FUN = function(x) { if (length(x) == 1) { x } else { x[seq(length(x) - 1)] <- 0 x } }) } baseCovs <- if (ncol(dW)) { paste("+", paste(names(dW), collapse = " + ")) } else NULL form <- if (!LongFormat) { switch(parameterization, "value" = paste("Surv(start, stop, event) ~", "long", baseCovs), "slope" = paste("Surv(start, stop, event) ~", "longD", baseCovs), "both" = paste("Surv(start, stop, event) ~", "long + longD", baseCovs)) } else { switch(parameterization, "value" = paste("Surv(Time, d) ~", "long", baseCovs), "slope" = paste("Surv(Time, d) ~", "longD", baseCovs), "both" = paste("Surv(Time, d) ~", "long + longD", baseCovs)) } if (!is.null(DD$strata)) form <- paste(form, "+ strata(strata)") form <- as.formula(form) cph <- coxph(form, data = DD) coefs <- cph$coefficients out <- switch(parameterization, "value" = list(alpha = coefs[1:k], gammas = coefs[-(1:k)]), "slope" = list(Dalpha = coefs[1:l], gammas = coefs[-(1:l)]), "both" = list(alpha = coefs[1:k], Dalpha = coefs[(k+1):(k+l)], gammas = coefs[-(1:(k+l))]) ) if (method == "Cox-PH-GH") { out$lambda0 <- basehaz(cph, FALSE)$hazard } if (method == "weibull-PH-GH") { dat <- data.frame(Time = Time, d = d) init.fit <- survreg(Surv(Time, d) ~ WW, data = dat) coefs <- - init.fit$coef / init.fit$scale out$gammas <- c(coefs[1], out$gammas) out$sigma.t <- 1 / init.fit$scale } if (method == "piecewise-PH-GH") { dat <- data.frame(Time = Time, d = d) cph. <- coxph(Surv(Time, d) ~ WW, data = dat, x = TRUE) init.fit <- piecewiseExp.ph(cph., knots = extra$control$knots) coefs <- init.fit$coef out$xi <- exp(coefs[grep("xi", names(coefs))]) } if (method == "spline-PH-GH" || method == "spline-PH-Laplace") { if (is.null(extra$strata)) { dat <- data.frame(Time = Time, d = d, as.data.frame(WW)) rn <- tapply(row.names(dat), idT, tail, 1) ind <- row.names(dat) %in% rn dat <- dat[ind, ] init.fit <- survreg(Surv(Time, d) ~ ., data = dat) coefs <- init.fit$coef xi <- 1 / init.fit$scale phi <- exp(coefs[1]) logh <- -log(phi * xi * dat$Time^(xi - 1)) out$gammas.bs <- as.vector(lm.fit(extra$W2[ind, ], logh)$coefficients) } else { dat <- data.frame(Time = Time, d = d) dat <- cbind(dat, as.data.frame(WW)) strata <- extra$strata split.dat <- split(dat, strata) gg <- NULL for (i in seq_along(split.dat)) { ii <- strata == levels(strata)[i] SpD.i <- split.dat[[i]] idT.i <- idT[ii] W2.i <- extra$W2[ii, ] rn <- tapply(row.names(SpD.i), idT.i, tail, 1) ind <- row.names(SpD.i) %in% rn SpD.i <- SpD.i[ind, ] init.fit <- survreg(Surv(Time, d) ~ ., data = SpD.i) coefs <- init.fit$coef xi <- 1 / init.fit$scale phi <- exp(coefs[1]) logh <- -log(phi * xi * SpD.i$Time^(xi - 1)) gg <- c(gg, as.vector(lm.fit(W2.i[ind, ], logh)$coefficients)) } out$gammas.bs <- gg[!is.na(gg)] } out } } if (method == "weibull-AFT-GH") { dat <- data.frame(Time = Time, d = d) if (!is.null(long.id)) { long.id <- c(long.id) * WintF.vl k <- ncol(WintF.vl) } if (!is.null(longD.id)) { longD.id <- c(longD.id) * WintF.sl l <- ncol(WintF.sl) } WW <- cbind(W, long.id, longD.id) init.fit <- survreg(Surv(Time, d) ~ WW, data = dat) coefs <- - init.fit$coef nk <- if (is.null(W)) 1 else ncol(W) + 1 out <- switch(parameterization, "value" = list(gammas = coefs[1:nk], alpha = coefs[-(1:nk)], sigma.t = 1 / init.fit$scale), "slope" = list(gammas = coefs[1:nk], Dalpha = coefs[-(1:nk)], sigma.t = 1 / init.fit$scale), "both" = list(gammas = coefs[1:nk], alpha = coefs[seq(nk+1, nk+k)], Dalpha = coefs[-seq(1, nk+k)], sigma.t = 1 / init.fit$scale) ) } if (method == "ch-Laplace") { dat <- data.frame(Time = Time, d = d) init.fit <- survreg(Surv(Time, d) ~ WW, data = dat) coefs <- - coef(init.fit) / init.fit$scale min.x <- min(logT) max.x <- max(logT) kn <- if (is.null(extra$control$knots)) { kk <- seq(0, 1, length.out = extra$control$lng.in.kn + 2)[-c(1, extra$control$lng.in.kn + 2)] quantile(log(Time)[d == 1], kk, names = FALSE) } else { extra$control$knots } kn <- sort(c(rep(c(min.x, max.x), extra$control$ord), kn)) W <- splineDesign(kn, log(Time), ord = extra$control$ord) nk <- ncol(W) nx <- NCOL(X) logH <- coefs[1] + logT / init.fit$scale coefs <- c(as.vector(lm.fit(W, logH)$coefficients), coefs[-1]) out <- list(gammas = c(sort(coefs[1:nk]), if (nx > 1) coefs[seq(nk + 1, nk + nx - 1)] else NULL), alpha = coefs[nk + nx]) } out }
make.appearance.matrix = function( result ) { mat = phrase.matrix(result) mat = mat[ result$labeling==1, ] stopifnot( all( result$model$ngram == colnames(mat) ) ) mat[ mat > 0 ] = 1 if ( !is.matrix( mat ) ) { mat = matrix( mat, ncol=1, nrow=length(mat) ) } mat } make.similarity.matrix = function( result ) { if ( is.textreg.result( result ) ) { mat = make.appearance.matrix( result ) } else { mat = result } hits = sqrt( apply( mat, 2, sum ) ) hits[hits==0] = 1 if ( length(hits) > 1 ) { dg = diag( 1/hits ) } else { dg = 1/hits } sim.mat = dg %*% t(mat) %*% mat %*% dg rownames(sim.mat) = colnames(sim.mat) = colnames(mat) dim( sim.mat ) summary( as.numeric( sim.mat ) ) stopifnot( max( sim.mat, na.rm=TRUE ) <= 1.000001 ) sim.mat[ sim.mat > 1 ] = 1 sim.mat } cluster.phrases = function( result, num.groups=5, plot=TRUE, yaxt="n", ylab="", sub="", main="Association of Phrases", ... ) { requireNamespace( "stats" ) if ( is.textreg.result( result ) ) { mat = make.appearance.matrix ( result ) sim.mat = make.similarity.matrix( result ) } else { mat = NULL sim.mat = result } d = 1 - sim.mat[-1,-1] dim( d ) d = as.dist( d ) d fit <- hclust(d, method="ward.D") if( num.groups > nrow( sim.mat ) - 1 ) { stop( gettextf( "You cannot form %d groups when you only have %d features", num.groups, length(result$rules) ) ) } groups <- cutree(fit, k=num.groups) groups if ( plot ) { par( mfrow=c(1,1) ) tots = apply( mat, 2, sum ) labs = paste( attr(d,"Labels"), " (", tots[-1], ")", sep="" ) plot( fit, labels=labs, yaxt=yaxt, ylab=ylab,sub=sub,main=main, ... ) rect.hclust(fit, k=num.groups, border="red") } colnames(sim.mat[,-1])[ fit$order ] sim.mat = sim.mat[ c(1,1+fit$order), c(1,1+fit$order) ] if ( !is.null( mat ) ) { mat = mat[ , c(1,1+fit$order) ] stopifnot( all( rownames( sim.mat ) == colnames(mat) ) ) } groups = c( NA, groups[fit$order] ) names(groups)[1] = "*intercept*" invisible( list( mat=mat, sim.mat=sim.mat, fit=fit, groups=groups) ) } make.phrase.correlation.chart = function( result, count=FALSE, num.groups=5, use.corrplot=FALSE, ... ) { lst = cluster.phrases( result, num.groups=num.groups, plot=FALSE ) nlevel = 8 if ( count || use.corrplot ) { img.mat = t(lst$mat) %*% lst$mat img.mat = img.mat[-1,-1] breaks = c( 0, seq( 1-0.000001,max(img.mat,na.rm=TRUE),length.out= nlevel ) ) } else { img.mat = lst$sim.mat[-1,-1] breaks = c( 0, seq(min(img.mat[img.mat>0]),1+0.000001,length.out= nlevel ) ) } gps = which( lst$groups[-1] != lst$groups[-length(lst$groups)] ) if ( use.corrplot ) { if (!requireNamespace("corrplot", quietly = TRUE)) { stop( "need to install corrplot to use the use.corrplot=TRUE option" ) } corrplot::corrplot( img.mat, is.corr=FALSE, type="lower", method="number", col="black",tl.pos="tp", cl.pos="n" ) corrplot::corrplot( lst$sim.mat[-1,-1], add=TRUE, is.corr=FALSE, type="upper", diag=FALSE, tl.pos="n", ... ) abline( h=(length(lst$groups)-gps) + 0.5, col="red", lty=3 ) abline( v=gps -0.5, col="red", lty=3 ) } else { np = nrow(img.mat) par( mar=c(10,10,0.3,0.3), mgp=c(2,1,0) ) image( 1:np, 1:np, img.mat, xaxt="n", yaxt="n", xlab="", ylab="", breaks=breaks, col = grey(seq(1,0,length.out= nlevel)), ... ) axis( 1, at=1:nrow(img.mat), labels=rownames(img.mat), cex.axis=0.8, las=2 ) axis( 2, at=1:nrow(img.mat), labels=rownames(img.mat), cex.axis=0.8, las=2 ) if ( count ) { nonz = which( img.mat != 0 ) corx = 1 + (nonz-1) %% ncol(img.mat) cory = 1 + (nonz-1) %/% ncol(img.mat) text( corx, cory, as.character( img.mat[nonz] ), col="red", ... ) } abline( h=gps -0.5, col="red", lty=3 ) abline( v=gps -0.5, col="red", lty=3 ) } lst$img.mat = img.mat invisible( lst ) } if ( FALSE ) { load( "recycling_results" ) nres = res_no_bale_C3 res = cluster.phrases( nres, num.groups=3 ) res$groups make.phrase.correlation.chart( nres ) make.phrase.correlation.chart( nres, count=TRUE ) mat = make.appearance.matrix( nres ) sim.mat = make.similarity.matrix( mat ) dim( sim.mat ) head( mat ) p1 = mat[, 3 ] mt = t(mat) %*% mat sum( lower.tri( mt ) ) table( mt[ lower.tri( mt ) ] ) }