code
stringlengths 1
13.8M
|
---|
AIC.ssym <-
function(object, ...){
gle <- sum(object$gle.mu) + sum(object$gle.phi)
AIC <- round(-2*sum(object$lpdf) + 2*(gle), digits=3)
y <- object$z_es*sqrt(object$phi.fitted) + object$mu.fitted
if(object$censored==FALSE) attr(AIC,"log") <- round(-2*sum(object$lpdf) + 2*(gle) + 2*sum(y), digits=3)
else attr(AIC,"log") <- round(-2*sum(object$lpdf) + 2*(gle) + 2*sum(y[object$event==0]), digits=3)
AIC
} |
fieldsmissing <-
function (dat, fields)
{
ck <- checkdatastr(dat)
if (any(ck$Present == FALSE)==TRUE) {
fa <- ck[ck$Present == FALSE,1]
fd<-as.character(fa)
msg<-paste(fd,collapse=", ")
stop(paste("Fields missing: ", msg))
}
} |
context("CRPS for gpd distribution")
FF <- function(shape) {
if (shape == 0) {
function(x) {
x <- exp(-x)
x[x > 1] <- 1
1 - x
}
} else {
function(x) {
x <- 1 + shape * x
x[x < 0] <- 0
x <- x^(-1/shape)
x[x > 1] <- 1
1 - x
}
}
}
test_that("computed values are correct", {
const <- 0.281636441
expect_equal(crps_gpd(.3, 0), const)
expect_equal(crps_gpd(.3 + .1, 0, location = .1), const)
expect_equal(crps_gpd(.3 * .9, 0, scale = .9), const * .9)
const <- 0.546254141
expect_equal(crps_gpd(.3, .7), const)
expect_equal(crps_gpd(.3 + .1, .7, location = .1), const)
expect_equal(crps_gpd(.3 * .9, .7, scale = .9), const * .9)
const <- 0.157583485
expect_equal(crps_gpd(.3, -.7), const)
expect_equal(crps_gpd(.3 + .1, -.7, location = .1), const)
expect_equal(crps_gpd(.3 * .9, -.7, scale = .9), const * .9)
}) |
infl_result <- eventReactive(input$submit_infl, {
if (input$infl_use_prev) {
k <- model()
} else {
data <- final_split$train
k <- glm(input$infl_fmla, data = data, family = binomial(link = "logit"))
}
return(k)
})
output$infl_out <- renderPlot({
blorr::blr_plot_diag_influence(infl_result())
})
lev_result <- eventReactive(input$submit_lev, {
if (input$lev_use_prev) {
k <- model()
} else {
data <- final_split$train
k <- glm(input$lev_fmla, data = data, family = binomial(link = "logit"))
}
return(k)
})
output$lev_out <- renderPlot({
blorr::blr_plot_diag_leverage(lev_result())
})
fit_result <- eventReactive(input$submit_fit, {
if (input$fit_use_prev) {
k <- model()
} else {
data <- final_split$train
k <- glm(input$fit_fmla, data = data, family = binomial(link = "logit"))
}
return(k)
})
output$fit_out <- renderPlot({
blorr::blr_plot_diag_fit(fit_result())
})
dfbetas_result <- eventReactive(input$submit_dfbetas, {
if (input$dfbetas_use_prev) {
k <- model()
} else {
data <- final_split$train
k <- glm(input$dfbetas_fmla, data = data, family = binomial(link = "logit"))
}
return(k)
})
output$dfbetas_out <- renderPlot({
blorr::blr_plot_dfbetas_panel(dfbetas_result())
}) |
context("Check that NCA calculations are working")
test_that("Extravascular single dose data is computed corectly",{
exvas_sd_dat <- readr::read_table("data_exvas_sd.txt",skip = 1)
exvas_sd_true_result <- readr::read_csv("results_exvas_sd_true.csv")
exvas_sd_true_result <- exvas_sd_true_result %>%
tidyr::gather(var, val, 2:ncol(.)) %>%
tidyr::spread_(names(.)[1], "val")
out <- ncappc(obsFile=exvas_sd_dat,
psnOut=TRUE,
method="linear",
evid = FALSE,
onlyNCA = T,
extrapolate = T,
printOut = F,
noPlot = T)
calc_vals <- out$ncaOutput %>% tibble::as_tibble() %>%
dplyr::mutate_all(dplyr::funs(as.numeric(as.character(.))))
true_vals <- exvas_sd_true_result %>%
dplyr::filter(var=="Linear_trapezoidal_WinNonlin") %>%
dplyr::rename("ID"=var) %>% dplyr::mutate(ID=1)
expect_length(names(true_vals)[!(names(true_vals) %in% names(calc_vals))],0)
calc_vals_sub <- calc_vals %>% dplyr::select(names(calc_vals)[(names(calc_vals) %in% names(true_vals))]) %>%
dplyr::select(names(true_vals))
expect_equal(data.frame(calc_vals_sub),data.frame(true_vals),tolerance=0.005)
out <- ncappc(obsFile=exvas_sd_dat,
psnOut=TRUE,
method="linearup-logdown",
evid = FALSE,
onlyNCA = T,
extrapolate = T,
printOut = F,
noPlot = T)
calc_vals <- out$ncaOutput %>% tibble::as_tibble() %>%
dplyr::mutate_all(dplyr::funs(as.numeric(as.character(.))))
true_vals <- exvas_sd_true_result %>%
dplyr::filter(var=="Linear_log_trapezoidal_WinNonlin") %>%
dplyr::rename("ID"=var) %>% dplyr::mutate(ID=1)
expect_length(names(true_vals)[!(names(true_vals) %in% names(calc_vals))],0)
calc_vals_sub <- calc_vals %>% dplyr::select(names(calc_vals)[(names(calc_vals) %in% names(true_vals))]) %>%
dplyr::select(names(true_vals))
expect_equal(data.frame(calc_vals_sub),data.frame(true_vals),tolerance=0.005)
})
test_that("Extravascular multiple dose data is computed corectly",{
exvas_md_dat <- readr::read_table("data_exvas_md.txt",skip = 1)
exvas_md_dat[9,"TIME"] <- 96
exvas_md_true_result <- readr::read_csv("results_exvas_md_true.csv")
exvas_md_true_result <- exvas_md_true_result %>%
tidyr::gather(var, val, 2:ncol(.)) %>%
tidyr::spread_(names(.)[1], "val")
out <- ncappc(obsFile=exvas_md_dat,
psnOut=TRUE,
method="linear",
doseType = "ss",
doseTime = 96,
Tau = 12,
evid = TRUE,
onlyNCA = T,
extrapolate = T,
printOut = F,
noPlot = T)
calc_vals <- out$ncaOutput %>% tibble::as_tibble() %>%
dplyr::mutate_all(dplyr::funs(as.numeric(as.character(.))))
true_vals <- exvas_md_true_result %>%
dplyr::filter(var=="Linear_trapezoidal_WinNonlin") %>%
dplyr::rename("ID"=var) %>% dplyr::mutate(ID=1)
expect_length(names(true_vals)[!(names(true_vals) %in% names(calc_vals))],0)
calc_vals_sub <- calc_vals %>% dplyr::select(names(calc_vals)[(names(calc_vals) %in% names(true_vals))]) %>%
dplyr::select(names(true_vals))
expect_equal(data.frame(calc_vals_sub),data.frame(true_vals),tolerance=0.005)
out <- ncappc(obsFile=exvas_md_dat,
psnOut=TRUE,
method="linearup-logdown",
doseType = "ss",
doseTime = 96,
Tau = 12,
evid = TRUE,
onlyNCA = T,
extrapolate = T,
printOut = F,
noPlot = T)
calc_vals <- out$ncaOutput %>% tibble::as_tibble() %>%
dplyr::mutate_all(dplyr::funs(as.numeric(as.character(.))))
true_vals <- exvas_md_true_result %>%
dplyr::filter(var=="Linear_log_trapezoidal_WinNonlin") %>%
dplyr::rename("ID"=var) %>% dplyr::mutate(ID=1)
expect_length(names(true_vals)[!(names(true_vals) %in% names(calc_vals))],0)
calc_vals_sub <- calc_vals %>% dplyr::select(names(calc_vals)[(names(calc_vals) %in% names(true_vals))]) %>%
dplyr::select(names(true_vals))
expect_equal(data.frame(calc_vals_sub),data.frame(true_vals),tolerance=0.005)
})
test_that("IV single dose data is computed corectly",{
iv_sd_dat <- readr::read_table("data_iv_sd.txt",skip = 1)
iv_sd_true_result <- readr::read_csv("results_iv_sd_true.csv")
iv_sd_true_result <- iv_sd_true_result %>%
tidyr::gather(var, val, 2:ncol(.)) %>%
tidyr::spread_(names(.)[1], "val")
out <- ncappc(obsFile=iv_sd_dat,
psnOut=TRUE,
method="linear",
adminType = "iv-bolus",
evid = FALSE,
onlyNCA = T,
extrapolate = T,
printOut = F,
noPlot = T)
calc_vals <- out$ncaOutput %>% tibble::as_tibble() %>%
dplyr::mutate_all(dplyr::funs(as.numeric(as.character(.))))
true_vals <- iv_sd_true_result %>%
dplyr::filter(var=="Linear_trapezoidal_WinNonlin") %>%
dplyr::rename("ID"=var) %>% dplyr::mutate(ID=1)
expect_length(names(true_vals)[!(names(true_vals) %in% names(calc_vals))],0)
calc_vals_sub <- calc_vals %>% dplyr::select(names(calc_vals)[(names(calc_vals) %in% names(true_vals))]) %>%
dplyr::select(names(true_vals))
expect_equal(data.frame(calc_vals_sub),data.frame(true_vals),tolerance=0.005)
out <- ncappc(obsFile=iv_sd_dat,
psnOut=TRUE,
method="linearup-logdown",
adminType = "iv-bolus",
evid = FALSE,
onlyNCA = T,
extrapolate = T,
printOut = F,
noPlot = T)
calc_vals <- out$ncaOutput %>% tibble::as_tibble() %>%
dplyr::mutate_all(dplyr::funs(as.numeric(as.character(.))))
true_vals <- iv_sd_true_result %>%
dplyr::filter(var=="Linear_log_trapezoidal_WinNonlin") %>%
dplyr::rename("ID"=var) %>% dplyr::mutate(ID=1)
expect_length(names(true_vals)[!(names(true_vals) %in% names(calc_vals))],0)
calc_vals_sub <- calc_vals %>% dplyr::select(names(calc_vals)[(names(calc_vals) %in% names(true_vals))]) %>%
dplyr::select(names(true_vals))
expect_equal(data.frame(calc_vals_sub),data.frame(true_vals),tolerance=0.005)
})
test_that("IV multiple dose data is computed corectly",{
iv_md_dat <- readr::read_table("data_iv_md.txt",skip = 1)
iv_md_dat[9,"TIME"] <- 96
iv_md_true_result <- readr::read_csv("results_iv_md_true.csv")
iv_md_true_result <- iv_md_true_result %>%
tidyr::gather(var, val, 2:ncol(.)) %>%
tidyr::spread_(names(.)[1], "val")
out <- ncappc(obsFile=iv_md_dat,
psnOut=TRUE,
method="linear",
adminType = "iv-bolus",
doseType = "ss",
doseTime = 96,
backExtrp = T,
Tau = 12,
onlyNCA = T,
extrapolate = T,
printOut = F,
noPlot = T)
calc_vals <- out$ncaOutput %>% tibble::as_tibble() %>%
dplyr::mutate_all(dplyr::funs(as.numeric(as.character(.))))
true_vals <- iv_md_true_result %>%
dplyr::filter(var=="Linear_trapezoidal_WinNonlin") %>%
dplyr::rename("ID"=var) %>% dplyr::mutate(ID=1)
expect_length(names(true_vals)[!(names(true_vals) %in% names(calc_vals))],0)
calc_vals_sub <- calc_vals %>% dplyr::select(names(calc_vals)[(names(calc_vals) %in% names(true_vals))]) %>%
dplyr::select(names(true_vals))
expect_equal(data.frame(calc_vals_sub),data.frame(true_vals),tolerance=0.005)
out <- ncappc(obsFile=iv_md_dat,
psnOut=TRUE,
method="linearup-logdown",
adminType = "iv-bolus",
doseType = "ss",
doseTime = 96,
backExtrp = T,
Tau = 12,
onlyNCA = T,
extrapolate = T,
printOut = F,
noPlot = T)
calc_vals <- out$ncaOutput %>% tibble::as_tibble() %>%
dplyr::mutate_all(dplyr::funs(as.numeric(as.character(.))))
true_vals <- iv_md_true_result %>%
dplyr::filter(var=="Linear_log_trapezoidal_WinNonlin") %>%
dplyr::rename("ID"=var) %>% dplyr::mutate(ID=1)
expect_length(names(true_vals)[!(names(true_vals) %in% names(calc_vals))],0)
calc_vals_sub <- calc_vals %>% dplyr::select(names(calc_vals)[(names(calc_vals) %in% names(true_vals))]) %>%
dplyr::select(names(true_vals))
expect_equal(data.frame(calc_vals_sub),data.frame(true_vals),tolerance=0.005)
})
test_that("IV infusion single dose data is computed corectly",{
iv_inf_sd_dat <- readr::read_table("data_iv_inf_sd.txt",skip = 1)
iv_inf_sd_true_result <- readr::read_csv("results_iv_inf_sd_true.csv")
iv_inf_sd_true_result <- iv_inf_sd_true_result %>%
tidyr::gather(var, val, 2:ncol(.)) %>%
tidyr::spread_(names(.)[1], "val")
out <- ncappc(obsFile=iv_inf_sd_dat,
psnOut=TRUE,
method="linear",
adminType = "iv-infusion",
evid = FALSE,
onlyNCA = T,
extrapolate = T,
printOut = F,
noPlot = T)
calc_vals <- out$ncaOutput %>% tibble::as_tibble() %>%
dplyr::mutate_all(dplyr::funs(as.numeric(as.character(.))))
true_vals <- iv_inf_sd_true_result %>%
dplyr::filter(var=="Linear_trapezoidal_WinNonlin") %>%
dplyr::rename("ID"=var) %>% dplyr::mutate(ID=1)
expect_length(names(true_vals)[!(names(true_vals) %in% names(calc_vals))],0)
calc_vals_sub <- calc_vals %>% dplyr::select(names(calc_vals)[(names(calc_vals) %in% names(true_vals))]) %>%
dplyr::select(names(true_vals))
expect_equal(data.frame(calc_vals_sub),data.frame(true_vals),tolerance=0.005)
out <- ncappc(obsFile=iv_inf_sd_dat,
psnOut=TRUE,
method="linearup-logdown",
adminType = "iv-infusion",
evid = FALSE,
onlyNCA = T,
extrapolate = T,
printOut = F,
noPlot = T)
calc_vals <- out$ncaOutput %>% tibble::as_tibble() %>%
dplyr::mutate_all(dplyr::funs(as.numeric(as.character(.))))
true_vals <- iv_inf_sd_true_result %>%
dplyr::filter(var=="Linear_log_trapezoidal_WinNonlin") %>%
dplyr::rename("ID"=var) %>% dplyr::mutate(ID=1)
expect_length(names(true_vals)[!(names(true_vals) %in% names(calc_vals))],0)
calc_vals_sub <- calc_vals %>% dplyr::select(names(calc_vals)[(names(calc_vals) %in% names(true_vals))]) %>%
dplyr::select(names(true_vals))
expect_equal(data.frame(calc_vals_sub),data.frame(true_vals),tolerance=0.005)
})
test_that("IV infusion multiple dose data is computed corectly",{
iv_inf_md_dat <- readr::read_table("data_iv_inf_md.txt",skip = 1)
iv_inf_md_dat[9,"TIME"] <- 96
iv_inf_md_true_result <- readr::read_csv("results_iv_inf_md_true.csv")
iv_inf_md_true_result <- iv_inf_md_true_result %>%
tidyr::gather(var, val, 2:ncol(.)) %>%
tidyr::spread_(names(.)[1], "val")
out <- ncappc(obsFile=iv_inf_md_dat,
psnOut=TRUE,
method="linear",
adminType = "iv-infusion",
doseType = "ss",
doseTime = 96,
backExtrp = T,
Tau = 12,
TI=2,
onlyNCA = T,
extrapolate = T,
printOut = F,
noPlot = T)
calc_vals <- out$ncaOutput %>% tibble::as_tibble() %>%
dplyr::mutate_all(dplyr::funs(as.numeric(as.character(.))))
true_vals <- iv_inf_md_true_result %>%
dplyr::filter(var=="Linear_trapezoidal_WinNonlin") %>%
dplyr::rename("ID"=var) %>% dplyr::mutate(ID=1)
expect_length(names(true_vals)[!(names(true_vals) %in% names(calc_vals))],0)
calc_vals_sub <- calc_vals %>% dplyr::select(names(calc_vals)[(names(calc_vals) %in% names(true_vals))]) %>%
dplyr::select(names(true_vals))
expect_equal(data.frame(calc_vals_sub),data.frame(true_vals),tolerance=0.005)
out <- ncappc(obsFile=iv_inf_md_dat,
psnOut=TRUE,
method="linearup-logdown",
adminType = "iv-infusion",
doseType = "ss",
doseTime = 96,
backExtrp = T,
Tau = 12,
TI=2,
onlyNCA = T,
extrapolate = T,
printOut = F,
noPlot = T)
calc_vals <- out$ncaOutput %>% tibble::as_tibble() %>%
dplyr::mutate_all(dplyr::funs(as.numeric(as.character(.))))
true_vals <- iv_inf_md_true_result %>%
dplyr::filter(var=="Linear_log_trapezoidal_WinNonlin") %>%
dplyr::rename("ID"=var) %>% dplyr::mutate(ID=1)
expect_length(names(true_vals)[!(names(true_vals) %in% names(calc_vals))],0)
calc_vals_sub <- calc_vals %>% dplyr::select(names(calc_vals)[(names(calc_vals) %in% names(true_vals))]) %>%
dplyr::select(names(true_vals))
expect_equal(data.frame(calc_vals_sub),data.frame(true_vals),tolerance=0.005)
})
test_that("force_extrapolate works corectly",{
data_1 <- tibble::tibble(
ID=1,
TIME = c(0,0.25,0.5,1,1.5,2,3,4,6,8,12,16,24),
DV=c(0, 0.07, 0.14, 0.21, 0.24, 0.27, 0.26, 0.25, 0.22, 0.19, 0.13, 0.081, 0.033)
)
out_1 <- ncappc(obsFile=data_1,
onlyNCA = T,
extrapolate = T,
printOut = F,
evid = FALSE,
noPlot = T)
out_2 <- ncappc(obsFile=data_1,
onlyNCA = T,
extrapolate = T,
printOut = F,
evid = FALSE,
noPlot = T,
force_extrapolate=T)
expect_true(all(out_1$ncaOutput==out_2$ncaOutput,na.rm = T))
data_2 <- data_1 %>% dplyr::filter(TIME<3)
expect_message(out_2 <- ncappc(obsFile=data_2,
onlyNCA = T,
extrapolate = T,
printOut = F,
evid = FALSE,
noPlot = T,
force_extrapolate=T))
expect_true(is.na(out_2$ncaOutput$AUCINF_obs))
data_3 <- data_1 %>% dplyr::filter(TIME>17|TIME<3)
out_3 <- ncappc(obsFile=data_3,
onlyNCA = T,
extrapolate = T,
printOut = F,
evid = FALSE,
noPlot = T,
force_extrapolate=T)
expect_true(!is.na(out_3$ncaOutput$AUCINF_obs))
data_4 <- data_1 %>% dplyr::filter(TIME>15|TIME<3)
out_4 <- ncappc(obsFile=data_4,
onlyNCA = T,
extrapolate = T,
printOut = F,
evid = FALSE,
noPlot = T,
force_extrapolate=T)
expect_true(!is.na(out_4$ncaOutput$AUCINF_obs))
})
|
multiverse.plot <- function(multiverse,
title = "",
vline = "none",
heights = c(4,5),
SE = FALSE) {
if(SE == TRUE & length(heights) != 3) {
stop("heights must be length 3 is SE = TRUE")
}
if(class(multiverse) == "list") {
x <- length(multiverse)
for(i in 1:x){
if(class(multiverse[[i]]) != "multiverse")
stop("not all list objects are of class multiverse")
}
estimate <- 0
low <- 0
high <- 0
ns <- 0
time <- 0
Bigdecision <- 0
Decision <- 0
final <- NULL
final2 <- NULL
ord <- order(multiverse[[1]]$estimates[,"estimate"])
for(x in 1:length(multiverse)) {
final <- multiverse[[x]]$estimates
final$time <- toString(x)
final <- final[ord,]
final$ns <- 1:nrow(final)
final2 <- rbind(final2, final)
}
}
if(class(multiverse) == "multiverse"){
final2 <- multiverse$estimates
final2 <- final2[order(final2[,"estimate"]),]
final2$SE <- multiverse$SE
}
suppressWarnings({
if(class(multiverse) == "multiverse"){
final2$ns <- 1:multiverse$nS
reliability_plot <- ggplot(data = final2,
aes(x = 1:multiverse$nS, y = estimate)) +
geom_ribbon(aes(ymin = low, ymax = high), fill = "grey80", alpha = .8) +
{if(vline!="none")geom_vline(aes(), xintercept = round(multiverse$nS * vline), linetype = "dashed", colour = "black")} +
geom_point() +
scale_color_manual(values = c("
labs(x = " ") +
theme(legend.position = "none",
strip.text.x = element_blank(),
strip.text.y = element_blank(),
strip.background = element_blank(),
text = element_text(size=10)) +
geom_hline(yintercept = 0)
if(SE == FALSE)
reliability_plot <- reliability_plot +
ggtitle(title) +
theme(plot.title = element_text(hjust = 0.5, face = "bold"))
}
if(class(multiverse) == "list"){
reliability_plot <- ggplot(data = final2,
aes(x = ns, y = estimate, fill = time)) +
geom_ribbon(aes(ymin = low, ymax = high, fill = time), alpha = .1) +
{if(vline!="none")geom_vline(aes(), xintercept = round(multiverse[[1]]$nS * vline), linetype = "dashed", colour = "black")} +
geom_point(aes(colour = time)) +
labs(x = " ") +
theme(legend.position = "top",
legend.title = element_blank(),
strip.text.x = element_blank(),
strip.text.y = element_blank(),
strip.background = element_blank(),
text = element_text(size=10)) +
geom_hline(yintercept = 0) +
ggtitle(title) +
theme(plot.title = element_text(hjust = 0.5, face = "bold"))
}
})
suppressWarnings({
if(class(multiverse) == "multiverse"){
final2$ns <- 1:multiverse$nS
final3 <- final2 %>%
gather(key = "Bigdecision",
value = "Decision",
-ns, -estimate, -low, -high)
}
if(class(multiverse) == "list"){
final3 <- final2 %>%
dplyr::filter(time == 1) %>%
tidyr::gather(key = "Bigdecision",
value = "Decision",
-ns, -estimate, -low, -high)
}
})
final3$Bigdecision <- factor(final3$Bigdecision, levels = c("ACC_cutoff",
"RT_min",
"RT_max",
"RT_sd_cutoff",
"split_by",
"averaging_method"))
suppressWarnings({
if(class(multiverse) == "multiverse"){
dashboard <- ggplot(data = subset(final3, Bigdecision %in% multiverse$cols),
aes(x = ns, y = Decision, colour = Bigdecision)) +
facet_grid(Bigdecision ~ ., scales = "free", space = "free", drop = ) +
{if(vline!="none")geom_vline(aes(), xintercept = round(multiverse$nS*vline), linetype = "dashed", colour = "black")} +
geom_point(aes(colour = Bigdecision), shape = 108, size = 6) +
labs(x = "specification number") +
theme_minimal() +
theme(legend.position = "none",
strip.text.x = element_blank(),
strip.text.y = element_blank(),
strip.background = element_blank(),
text = element_text(size=10))
}
if(class(multiverse) == "list"){
dashboard <- ggplot(data = subset(final3, Bigdecision %in% multiverse[[1]]$cols),
aes(x = ns, y = Decision, colour = Bigdecision)) +
facet_grid(Bigdecision ~ ., scales = "free", space = "free", drop = ) +
{if(vline!="none")geom_vline(aes(), xintercept = round(multiverse[[1]]$nS*vline), linetype = "dashed", colour = "black")} +
geom_point(aes(colour = Bigdecision), shape = 108, size = 6) +
labs(x = "specification number") +
theme_minimal() +
theme(legend.position = "none",
strip.text.x = element_blank(),
strip.text.y = element_blank(),
strip.background = element_blank(),
text = element_text(size=10))
}
})
if(SE == TRUE) {
SE_plot <- ggplot(data = final2,
aes(x = 1:multiverse$nS, y = SE)) +
geom_point() +
scale_color_manual(values = c("
labs(x = " ") +
theme(legend.position = "none",
strip.text.x = element_blank(),
strip.text.y = element_blank(),
strip.background = element_blank(),
text = element_text(size=10)) +
geom_hline(yintercept = 0) +
ggtitle(title) +
theme(plot.title = element_text(hjust = 0.5, face = "bold"))
}
if(SE == FALSE) {
final_plot <- reliability_plot / dashboard + plot_layout(heights = heights)
}
if(SE == TRUE) {
final_plot <- SE_plot / reliability_plot / dashboard + plot_layout(heights = heights)
}
return(final_plot)
} |
get_javascripts <- function(deck){
make_path <- function(asset, url){
html_file = file.path(url, asset, sprintf("%s.html", asset))
file_there = file.exists(html_file)
return(html_file[file_there])
}
asset_js = dir(file.path(deck$url$assets, 'js'), full.names = T, pattern = '.js$')
widget_js = with(deck, make_path(widgets, url$widgets))
hilite_js = with(deck, make_path(highlighter, url$highlighters))
javascripts = lapply(c(widget_js, hilite_js), read_file)
paste(paste(javascripts, collapse = '\n'), "\n")
}
add_stylesheets <- function(deck){
asset_css = dir(file.path(deck$url$assets, 'css'), full.names = T)
widget_css = lapply(file.path(deck$url$widgets, deck$widgets, 'css'),
dir, full = T)
css = c(unlist(widget_css), asset_css)
tpl = '{{
deck$stylesheets = whisker.render(tpl)
return(deck)
}
get_stylesheets <- function(deck){
asset_css = dir(file.path(deck$url$assets, 'css'), full.names = T)
widget_css = lapply(file.path(deck$url$widgets, deck$widgets, 'css'),
dir, full = T)
c(unlist(widget_css), asset_css)
} |
ideoView_buildMain <- function(data_frame, chromosome,
chr_txt_angle=chr_txt_angle,
chr_txt_size=chr_txt_size, layers=NULL)
{
theme <- theme(axis.text.x=element_blank(),
axis.text.y=element_blank(),
axis.title.x=element_blank(),
axis.ticks.x=element_blank(),
axis.ticks.y=element_blank(),
legend.position='right')
legend <- scale_fill_manual("Giemsa stain",
values=c('gneg'='grey100', 'stalk'='brown3',
'acen'='brown4', 'gpos'='grey0',
'gvar'='grey0', 'gpos1'='
'gpos2'='
'gpos4'='
'gpos6'='
'gpos8'='
'gpos10'='
'gpos12'='
'gpos14'='
'gpos16'='
'gpos18'='
'gpos20'='
'gpos22'='
'gpos24'='
'gpos26'='
'gpos28'='
'gpos30'='
'gpos32'='
'gpos34'='
'gpos36'='
'gpos38'='
'gpos40'='
'gpos42'='
'gpos44'='
'gpos46'='
'gpos48'='
'gpos50'='
'gpos52'='
'gpos54'='
'gpos56'='
'gpos58'='
'gpos60'='
'gpos62'='
'gpos64'='
'gpos66'='
'gpos68'='
'gpos70'='
'gpos72'='
'gpos74'='
'gpos76'='
'gpos78'='
'gpos80'='
'gpos82'='
'gpos84'='
'gpos86'='
'gpos88'='
'gpos90'='
'gpos92'='
'gpos94'='
'gpos96'='
'gpos98'='
'gpos100'='
P_arm_text <- geom_text(data=subset(data_frame,
data_frame$alternate == 'top'),
mapping=aes_string(x='band_center',
y='text_y',
label='name'),
angle=chr_txt_angle,
hjust=0,
size=chr_txt_size)
Q_arm_text <- geom_text(data=subset(data_frame,
data_frame$alternate == 'bottom'),
mapping=aes_string(x='band_center',
y='text_y',
label='name'),
angle=chr_txt_angle,
hjust=1,
size=chr_txt_size)
text_line_seg_p <- geom_segment(data=subset(data_frame,
data_frame$alternate == 'top'),
mapping=aes_string(x='band_center',
y='text_y',
xend='band_center',
yend='height_max'))
text_line_seg_q <- geom_segment(data=subset(data_frame,
data_frame$alternate == 'bottom'),
mapping=aes_string(x='band_center',
y='text_y',
xend='band_center',
yend='height_min'))
ylabel <- ylab(chromosome)
if(!is.null(layers))
{
layers <- layers
} else {
layers <- geom_blank()
}
chr <- ggplot(data_frame,
aes_string(xmin='chromStart', xmax='chromEnd',
ymin='height_min', ymax='height_max')) +
geom_rect(aes_string(fill='gieStain'), colour='black') + ylim(-1.2, 1.2)
chr <- chr + P_arm_text + Q_arm_text + text_line_seg_p + text_line_seg_q +
theme_bw() + theme + ylabel + legend + layers
return(chr)
} |
library(captioner)
table_nums <- captioner(prefix = "Table")
table_nums(name = "iris", caption = "Edgar Anderson's iris data. All measurements are in centimetres.")
table_nums("iris")
iris_cap <- table_nums("iris")
table_nums("peony", display = FALSE)
fig_nums <- captioner()
fig_nums("apple", "Relationship between the number of apple seeds and the size of the apple.")
fig_nums("milk_fat", "Average percentage of fat in milk from various animals.")
fig_nums("tree_height", "Distribution of heights in common restinga tree species.")
table_nums("world_pop", "World populations ordered from greatest to least.")
table_nums("dolphins", "List of dolphin species and their brain sizes.")
fig_nums("milk_fat", display = "cite")
fig_nums("snuff", display = "cite")
fig_nums("bounce", "Bounce height (cm) of balls made of various types of rubber.")
fig_nums("snuff", "Average size of snuff boxes used from 1808 to 1908.")
fig_nums("bounce", display = "cite")
figs_2 <- captioner(levels = 3, type = c("n", "n", "n"), infix = "-")
figs_2("A", "The letter A in several typefaces.")
figs_2("B", display = "cite", level = 2)
bump(figs_2, level = 1)
figs_2("C", "The letter C shown in fixed-width fonts.") |
lkLCCRcon <- function(th,np1,np2,model,H,J,S,L,M,X,nv,n,Y1,A,B,sc=FALSE){
be = th[1:np2]
la = th[np2+(1:np1)]
if(H>1){
Piv = matrix(0,S,H)
for(s in 1:S){
Ls = as.matrix(L[s,,])
tmp = exp(Ls%*%be)
Piv[s,] = tmp/sum(tmp)
}
}
Q = array(0,c(S,2^J,H))
Pm = matrix(0,S,2^J)
for(s in 1:S){
for(h in 1:H){
if(is.null(X)) Msh = as.matrix(M[,,h,1]) else Msh = as.matrix(M[,,h,s])
if(model=="loglin"){
tmp = exp(c(Msh%*%la))
Q[s,,h] = tmp/sum(tmp)
}
if(model=="logit") Q[s,,h] = exp(A%*%Msh%*%la-B%*%log(1+exp(Msh%*%la)))
}
if(H>1) Pm[s,] = Q[s,,]%*%Piv[s,]
}
if(H==1) Pm = Q[,,1]
phiv = Pm[,1]
Pm1 = Pm[,-1]
Qm1 = (1/(1-phiv))*Pm1
lk = sum(Y1*log(Qm1))
out = lk
if(sc){
if(H>1){
dPiv = array(0,c(S,H,np1+np2))
for(s in 1:S){
Ls = as.matrix(L[s,,])
dPiv[s,,1:np2] = (diag(Piv[s,])-Piv[s,]%o%Piv[s,])%*%Ls
}
}
dQ = array(0,c(S,2^J,H,np1+np2))
dPm = array(0,c(S,2^J,np1+np2))
for(s in 1:S){
for(h in 1:H){
if(is.null(X)) Msh = as.matrix(M[,,h,1]) else Msh = as.matrix(M[,,h,s])
if(model=="loglin") dQ[s,,h,np2+(1:np1)] = (diag(Q[s,,h])-Q[s,,h]%o%Q[s,,h])%*%Msh
if(model=="logit"){
tmp = c(exp(Msh%*%la)/(1+exp(Msh%*%la)))
dQ[s,,h,np2+(1:np1)] = Q[s,,h]*(A%*%Msh-B%*%(tmp*Msh))
}
}
if(H>1) for(j in 1:(np1+np2)) dPm[s,,j] = dQ[s,,,j]%*%Piv[s,]+Q[s,,]%*%dPiv[s,,j]
}
if(H==1) dPm = array(dQ[,,1,],c(S,2^J,np1+np2))
dphiv = dPm[,1,]
dPm1 = array(dPm[,-1,],c(S,2^J-1,np1+np2))
dQm1 = array(0,c(S,2^J-1,np1+np2))
for(s in 1:S) for(j in 1:(2^J-1)){
dQm1[s,j,] = (1/(1-phiv[s])^2)*dphiv[s,]*Pm1[s,j]+(1/(1-phiv[s]))*dPm1[s,j,]
}
Dyb = 0
for(s in 1:S) Dyb = Dyb+t(dQm1[s,,])%*%(Y1[s,]/Qm1[s,])
out = list(lk=lk,st=Dyb,dphiv=dphiv)
}
return(out)
} |
sampler_RW_PF <- nimbleFunction(
name = 'sampler_RW_PF',
contains = sampler_BASE,
setup = function(model, mvSaved, target, control) {
adaptive <- extractControlElement(control, 'adaptive', TRUE)
adaptInterval <- extractControlElement(control, 'adaptInterval', 200)
scale <- extractControlElement(control, 'scale', 1)
m <- extractControlElement(control, 'pfNparticles', 1000)
existingPF <- extractControlElement(control, 'pf', NULL)
filterType <- extractControlElement(control, 'pfType', 'bootstrap')
filterControl <- extractControlElement(control, 'pfControl', list())
optimizeM <- extractControlElement(control, 'pfOptimizeNparticles', FALSE)
latents <- extractControlElement(control, 'latents', error = 'RW_PF sampler missing required control argument: latents')
if('pfLookahead' %in% names(control)) {
warning("The `pfLookahead` control list argument is deprecated and will not be supported in future versions of `nimbleSMC`. Please specify the lookahead function via the pfControl argument instead.")
filterControl$lookahead <- control[['pfLookahead']]
}
else if(!('lookahead' %in% names(filterControl))) {
filterControl$lookahead <- 'simulate'
}
targetAsScalar <- model$expandNodeNames(target, returnScalarComponents = TRUE)
calcNodes <- model$getDependencies(target)
latentSamp <- FALSE
MCMCmonitors <- tryCatch(parent.frame(2)$conf$monitors, error = function(e) e)
if(identical(MCMCmonitors, TRUE))
latentSamp <- TRUE
else if(any(model$expandNodeNames(latents) %in% model$expandNodeNames(MCMCmonitors)))
latentSamp <- TRUE
latentDep <- model$getDependencies(latents)
topParams <- model$getNodeNames(stochOnly=TRUE, includeData=FALSE, topOnly=TRUE)
optimizeM <- as.integer(optimizeM)
scaleOriginal <- scale
timesRan <- 0
timesAccepted <- 0
timesAdapted <- 0
prevLL <- 0
nVarEsts <- 0
itCount <- 0
optimalAR <- 0.44
gamma1 <- 0
storeParticleLP <- -Inf
storeLLVar <- 0
nVarReps <- 7
mBurnIn <- 15
d <- length(targetAsScalar)
if(optimizeM) m <- 3000
my_setAndCalculate <- setAndCalculateOne(model, target)
my_decideAndJump <- decideAndJump(model, mvSaved, target, calcNodes)
if(!is.null(existingPF)) {
my_particleFilter <- existingPF
} else {
if(latentSamp == TRUE) {
filterControl$saveAll <- TRUE
filterControl$smoothing <- TRUE
} else {
filterControl$saveAll <- FALSE
filterControl$smoothing <- FALSE
}
filterControl$initModel <- FALSE
if(is.character(filterType) && filterType == 'auxiliary') {
my_particleFilter <- buildAuxiliaryFilter(model, latents,
control = filterControl)
}
else if(is.character(filterType) && filterType == 'bootstrap') {
my_particleFilter <- buildBootstrapFilter(model, latents,
control = filterControl)
}
else if(is.nfGenerator(filterType)){
my_particleFilter <- filterType(model, latents,
control = filterControl)
}
else stop('filter type must be either "bootstrap", "auxiliary", or a
user defined filtering algorithm created by a call to
nimbleFunction(...).')
}
particleMV <- my_particleFilter$mvEWSamples
if(any(target%in%model$expandNodeNames(latents))) stop('PMCMC \'target\' argument cannot include latent states')
if(length(targetAsScalar) > 1) stop('more than one top-level target; cannot use RW_PF sampler, try RW_PF_block sampler')
},
run = function() {
storeParticleLP <<- my_particleFilter$getLastLogLik()
modelLP0 <- storeParticleLP + getLogProb(model, target)
propValue <- rnorm(1, mean = model[[target]], sd = scale)
my_setAndCalculate$run(propValue)
particleLP <- my_particleFilter$run(m)
modelLP1 <- particleLP + getLogProb(model, target)
jump <- my_decideAndJump$run(modelLP1, modelLP0, 0, 0)
if(!jump) {
my_particleFilter$setLastLogLik(storeParticleLP)
}
if(jump & latentSamp){
index <- ceiling(runif(1, 0, m))
copy(particleMV, model, latents, latents, index)
calculate(model, latentDep)
copy(from = model, to = mvSaved, nodes = latentDep, row = 1, logProb = TRUE)
}
else if(!jump & latentSamp){
copy(from = mvSaved, to = model, nodes = latentDep, row = 1, logProb = TRUE)
}
if(jump & optimizeM) optimM()
if(adaptive) adaptiveProcedure(jump)
},
methods = list(
optimM = function() {
tempM <- 15000
declare(LLEst, double(1, nVarReps))
if(nVarEsts < mBurnIn) {
for(i in 1:nVarReps)
LLEst[i] <- my_particleFilter$run(tempM)
if(nVarEsts == 1)
storeLLVar <<- var(LLEst)/mBurnIn
else {
LLVar <- storeLLVar
LLVar <- LLVar + var(LLEst)/mBurnIn
storeLLVar<<- LLVar
}
nVarEsts <<- nVarEsts + 1
}
else {
m <<- m*storeLLVar/(0.92^2)
m <<- ceiling(m)
storeParticleLP <<- my_particleFilter$run(m)
optimizeM <<- 0
}
},
adaptiveProcedure = function(jump = logical()) {
timesRan <<- timesRan + 1
if(jump) timesAccepted <<- timesAccepted + 1
if(timesRan %% adaptInterval == 0) {
acceptanceRate <- timesAccepted / timesRan
timesAdapted <<- timesAdapted + 1
gamma1 <<- 1/((timesAdapted + 3)^0.8)
gamma2 <- 10 * gamma1
adaptFactor <- exp(gamma2 * (acceptanceRate - optimalAR))
scale <<- scale * adaptFactor
timesRan <<- 0
timesAccepted <<- 0
}
},
reset = function() {
scale <<- scaleOriginal
timesRan <<- 0
timesAccepted <<- 0
timesAdapted <<- 0
storeParticleLP <<- -Inf
gamma1 <<- 0
}
)
)
sampler_RW_PF_block <- nimbleFunction(
name = 'sampler_RW_PF_block',
contains = sampler_BASE,
setup = function(model, mvSaved, target, control) {
adaptive <- extractControlElement(control, 'adaptive', TRUE)
adaptScaleOnly <- extractControlElement(control, 'adaptScaleOnly', FALSE)
adaptInterval <- extractControlElement(control, 'adaptInterval', 200)
adaptFactorExponent <- extractControlElement(control, 'adaptFactorExponent', 0.8)
scale <- extractControlElement(control, 'scale', 1)
propCov <- extractControlElement(control, 'propCov', 'identity')
existingPF <- extractControlElement(control, 'pf', NULL)
m <- extractControlElement(control, 'pfNparticles', 1000)
filterType <- extractControlElement(control, 'pfType', 'bootstrap')
filterControl <- extractControlElement(control, 'pfControl', list())
optimizeM <- extractControlElement(control, 'pfOptimizeNparticles', FALSE)
latents <- extractControlElement(control, 'latents', error = 'RW_PF sampler missing required control argument: latents')
if('pfLookahead' %in% names(control)) {
warning("The `pfLookahead` control list argument is deprecated and will not be supported in future versions of `nimbleSMC`. Please specify the lookahead function via the pfControl argument instead.")
filterControl$lookahead <- control[['pfLookahead']]
}
else if(!('lookahead' %in% names(filterControl))) {
filterControl$lookahead <- 'simulate'
}
targetAsScalar <- model$expandNodeNames(target, returnScalarComponents = TRUE)
calcNodes <- model$getDependencies(target)
latentSamp <- FALSE
MCMCmonitors <- tryCatch(parent.frame(2)$conf$monitors, error = function(e) e)
if(identical(MCMCmonitors, TRUE))
latentSamp <- TRUE
else if(any(model$expandNodeNames(latents) %in% model$expandNodeNames(MCMCmonitors)))
latentSamp <- TRUE
latentDep <- model$getDependencies(latents)
topParams <- model$getNodeNames(stochOnly=TRUE, includeData=FALSE, topOnly=TRUE)
target <- model$expandNodeNames(target)
optimizeM <- as.integer(optimizeM)
scaleOriginal <- scale
timesRan <- 0
timesAccepted <- 0
timesAdapted <- 0
prevLL <- 0
nVarEsts <- 0
itCount <- 0
d <- length(targetAsScalar)
if(is.character(propCov) && propCov == 'identity') propCov <- diag(d)
propCovOriginal <- propCov
chol_propCov <- chol(propCov)
chol_propCov_scale <- scale * chol_propCov
empirSamp <- matrix(0, nrow=adaptInterval, ncol=d)
storeParticleLP <- -Inf
storeLLVar <- 0
nVarReps <- 7
mBurnIn <- 15
if(optimizeM) m <- 3000
my_setAndCalculate <- setAndCalculate(model, target)
my_decideAndJump <- decideAndJump(model, mvSaved, target, calcNodes)
my_calcAdaptationFactor <- calcAdaptationFactor(d, adaptFactorExponent)
if(!is.null(existingPF)) {
my_particleFilter <- existingPF
} else {
if(latentSamp == TRUE) {
filterControl$saveAll <- TRUE
filterControl$smoothing <- TRUE
} else {
filterControl$saveAll <- FALSE
filterControl$smoothing <- FALSE
}
filterControl$initModel <- FALSE
if(is.character(filterType) && filterType == 'auxiliary') {
my_particleFilter <- buildAuxiliaryFilter(model, latents, control = filterControl)
}
else if(is.character(filterType) && filterType == 'bootstrap') {
my_particleFilter <- buildBootstrapFilter(model, latents, control = filterControl)
}
else if(is.nfGenerator(filterType)){
my_particleFilter <- filterType(model, latents, control = filterControl)
}
else stop('filter type must be either "bootstrap", "auxiliary", or a
user defined filtering algorithm created by a call to
nimbleFunction(...).')
}
particleMV <- my_particleFilter$mvEWSamples
if(!inherits(propCov, 'matrix')) stop('propCov must be a matrix\n')
if(!inherits(propCov[1,1], 'numeric')) stop('propCov matrix must be numeric\n')
if(!all(dim(propCov) == d)) stop('propCov matrix must have dimension ', d, 'x', d, '\n')
if(!isSymmetric(propCov)) stop('propCov matrix must be symmetric')
if(length(targetAsScalar) < 2) stop('less than two top-level targets; cannot use RW_PF_block sampler, try RW_PF sampler')
if(any(target%in%model$expandNodeNames(latents))) stop('PMCMC \'target\' argument cannot include latent states')
},
run = function() {
storeParticleLP <<- my_particleFilter$getLastLogLik()
modelLP0 <- storeParticleLP + getLogProb(model, target)
propValueVector <- generateProposalVector()
my_setAndCalculate$run(propValueVector)
particleLP <- my_particleFilter$run(m)
modelLP1 <- particleLP + getLogProb(model, target)
jump <- my_decideAndJump$run(modelLP1, modelLP0, 0, 0)
if(!jump) {
my_particleFilter$setLastLogLik(storeParticleLP)
}
if(jump & latentSamp) {
index <- ceiling(runif(1, 0, m))
copy(particleMV, model, latents, latents, index)
calculate(model, latentDep)
copy(from = model, to = mvSaved, nodes = latentDep, row = 1, logProb = TRUE)
}
else if(!jump & latentSamp) {
copy(from = mvSaved, to = model, nodes = latentDep, row = 1, logProb = TRUE)
}
if(jump & optimizeM) optimM()
if(adaptive) adaptiveProcedure(jump)
},
methods = list(
optimM = function() {
tempM <- 15000
declare(LLEst, double(1, nVarReps))
if(nVarEsts < mBurnIn) {
for(i in 1:nVarReps)
LLEst[i] <- my_particleFilter$run(tempM)
if(nVarEsts == 1)
storeLLVar <<- var(LLEst)/mBurnIn
else {
LLVar <- storeLLVar
LLVar <- LLVar + var(LLEst)/mBurnIn
storeLLVar <<- LLVar
}
nVarEsts <<- nVarEsts + 1
}
else {
m <<- m*storeLLVar/(0.92^2)
m <<- ceiling(m)
storeParticleLP <<- my_particleFilter$run(m)
optimizeM <<- 0
}
},
generateProposalVector = function() {
propValueVector <- rmnorm_chol(1, values(model,target), chol_propCov_scale, 0)
returnType(double(1))
return(propValueVector)
},
adaptiveProcedure = function(jump = logical()) {
timesRan <<- timesRan + 1
if(jump) timesAccepted <<- timesAccepted + 1
if(!adaptScaleOnly) empirSamp[timesRan, 1:d] <<- values(model, target)
if(timesRan %% adaptInterval == 0) {
acceptanceRate <- timesAccepted / timesRan
timesAdapted <<- timesAdapted + 1
adaptFactor <- my_calcAdaptationFactor$run(acceptanceRate)
scale <<- scale * adaptFactor
if(!adaptScaleOnly) {
gamma1 <- my_calcAdaptationFactor$getGamma1()
for(i in 1:d) empirSamp[, i] <<- empirSamp[, i] - mean(empirSamp[, i])
empirCov <- (t(empirSamp) %*% empirSamp) / (timesRan-1)
propCov <<- propCov + gamma1 * (empirCov - propCov)
chol_propCov <<- chol(propCov)
}
chol_propCov_scale <<- chol_propCov * scale
timesRan <<- 0
timesAccepted <<- 0
}
},
reset = function() {
scale <<- scaleOriginal
propCov <<- propCovOriginal
chol_propCov <<- chol(propCov)
chol_propCov_scale <<- chol_propCov * scale
storeParticleLP <<- -Inf
timesRan <<- 0
timesAccepted <<- 0
timesAdapted <<- 0
my_calcAdaptationFactor$reset()
}
)
) |
is.ggedit <- function(x) inherits(x, 'ggedit')
as.ggedit <- function(plot) {
UseMethod('as.ggedit')
}
as.ggedit.ggedit <- function(plot) {
plot
}
as.ggedit.list <- function(plot) {
structure(plot, class = c("ggedit", "gglist"))
}
as.ggedit.ggplot <- function(plot) {
plot <- list(plot)
structure(plot, class = c("ggedit", "gglist","gg","ggplot"))
} |
impute.wrapper.KNN = function(dataSet.mvs,K){
resultKNN = impute.knn(dataSet.mvs ,k = K, rowmax = 0.99, colmax = 0.99, maxp = 1500, rng.seed = sample(1:1000,1))
dataSet.imputed = resultKNN[[1]]
return(dataSet.imputed)
} |
navbarPage("Multiple [R] Terminals Demo",
tabPanel("Terminal 1",
editorUI("termone")
),
tabPanel("Terminal 2",
editorUI("termtwo")
),
tabPanel("Terminal 3",
editorUI("termthree")
)
) |
`initPCA` <-
function(Y, scale = FALSE)
{
Y <- as.matrix(Y)
Y <- scale(Y, scale = scale)
if (scale && any(is.nan(Y)))
Y[is.nan(Y)] <- 0
Y <- Y / sqrt(nrow(Y) - 1)
attr(Y, "METHOD") <- "PCA"
Y
}
`initCAP` <-
function(Y)
{
Y <- as.matrix(Y)
Y <- scale(Y, scale = FALSE)
attr(Y, "METHOD") <- "CAPSCALE"
Y
}
`initCA` <-
function(Y)
{
Y <- as.matrix(Y)
tot <- sum(Y)
Y <- Y/tot
rw <- rowSums(Y)
cw <- colSums(Y)
rc <- outer(rw, cw)
Y <- (Y - rc)/sqrt(rc)
attr(Y, "tot") <- tot
attr(Y, "RW") <- rw
attr(Y, "CW") <- cw
attr(Y, "METHOD") <- "CA"
Y
}
`initDBRDA` <-
function(Y)
{
Y <- as.matrix(Y)
dims <- dim(Y)
if (dims[1] != dims[2] || !isSymmetric(unname(Y)))
stop("input Y must be distances or a symmetric square matrix")
Y <- -0.5 * GowerDblcen(Y^2)
attr(Y, "METHOD") <- "DISTBASED"
Y
}
`ordHead`<- function(Y)
{
method <- attr(Y, "METHOD")
headmethod <- switch(method,
"CA" = "cca",
"PCA" = "rda",
"CAPSCALE" = "capscale",
"DISTBASED" = "dbrda")
if (method == "DISTBASED")
totvar <- sum(diag(Y))
else
totvar <- sum(Y^2)
head <- list("tot.chi" = totvar, "Ybar" = Y, "method" = headmethod)
if (method == "CA")
head <- c(list("grand.total" = attr(Y, "tot"),
"rowsum" = attr(Y, "RW"),
"colsum" = attr(Y, "CW")),
head)
else if (method == "PCA")
head <- c(list("colsum" = sqrt(colSums(Y^2))),
head)
head
}
`ordPartial` <-
function(Y, Z)
{
ZERO <- sqrt(.Machine$double.eps)
DISTBASED <- attr(Y, "METHOD") == "DISTBASED"
RW <- attr(Y, "RW")
if (!is.null(RW)) {
envcentre <- apply(Z, 2, weighted.mean, w = RW)
Z <- scale(Z, center = envcentre, scale = FALSE)
Z <- sweep(Z, 1, sqrt(RW), "*")
} else {
envcentre <- colMeans(Z)
Z <- scale(Z, center = envcentre, scale = FALSE)
}
Q <- qr(Z)
if (Q$rank == 0)
return(list(Y = Y, result = NULL))
Yfit <- qr.fitted(Q, Y)
if (DISTBASED) {
Yfit <- qr.fitted(Q, t(Yfit))
totvar <- sum(diag(Yfit))
} else {
totvar <- sum(Yfit^2)
}
if (totvar < ZERO)
totvar <- 0
Y <- qr.resid(Q, Y)
if (DISTBASED)
Y <- qr.resid(Q, t(Y))
result <- list(
rank = if (totvar > 0) Q$rank else 0,
tot.chi = totvar,
QR = Q,
envcentre = envcentre)
list(Y = Y, result = result)
}
`ordConstrain` <- function(Y, X, Z)
{
DISTBASED <- attr(Y, "METHOD") == "DISTBASED"
RW <- attr(Y, "RW")
CW <- attr(Y, "CW")
ZERO <- sqrt(.Machine$double.eps)
if (!is.null(Z)) {
X <- cbind(Z, X)
zcol <- ncol(Z)
} else {
zcol <- 0
}
if (!is.null(RW)) {
envcentre <- apply(X, 2, weighted.mean, w = RW)
X <- scale(X, center = envcentre, scale = FALSE)
X <- sweep(X, 1, sqrt(RW), "*")
} else {
envcentre <- colMeans(X)
X <- scale(X, center = envcentre, scale = FALSE)
}
Q <- qr(X)
rank <- sum(Q$pivot[seq_len(Q$rank)] > zcol)
if (rank == 0)
return(list(Y = Y, result = NULL))
if (length(Q$pivot) > Q$rank)
alias <- colnames(Q$qr)[-seq_len(Q$rank)]
else
alias <- NULL
kept <- seq_along(Q$pivot) <= Q$rank & Q$pivot > zcol
if (zcol > 0)
envcentre <- envcentre[-seq_len(zcol)]
Yfit <- qr.fitted(Q, Y)
if (DISTBASED) {
Yfit <- qr.fitted(Q, t(Yfit))
sol <- eigen(Yfit, symmetric = TRUE)
lambda <- sol$values
u <- sol$vectors
} else {
sol <- svd(Yfit)
lambda <- sol$d^2
u <- sol$u
v <- sol$v
}
zeroev <- abs(lambda) < max(ZERO, ZERO * lambda[1L])
if (any(zeroev)) {
lambda <- lambda[!zeroev]
u <- u[, !zeroev, drop = FALSE]
if (!DISTBASED)
v <- v[, !zeroev, drop = FALSE]
}
posev <- lambda > 0
if (DISTBASED) {
wa <- Y %*% u[, posev, drop = FALSE] %*%
diag(1/lambda[posev], sum(posev))
v <- matrix(NA, 0, sum(posev))
} else {
wa <- Y %*% v %*% diag(1/sqrt(lambda), sum(posev))
}
xx <- X[, Q$pivot[kept], drop = FALSE]
bp <- (1/sqrt(colSums(xx^2))) * crossprod(xx, u[, posev, drop=FALSE])
if (!is.null(RW)) {
u <- sweep(u, 1, sqrt(RW), "/")
if (all(!is.na(wa)))
wa <- sweep(wa, 1, sqrt(RW), "/")
}
if (!is.null(CW) && nrow(v)) {
v <- sweep(v, 1, sqrt(CW), "/")
}
axnam <- paste0(switch(attr(Y, "METHOD"),
"PCA" = "RDA",
"CA" = "CCA",
"CAPSCALE" = "CAP",
"DISTBASED" = "dbRDA"),
seq_len(sum(posev)))
if (DISTBASED && any(!posev))
negnam <- paste0("idbRDA", seq_len(sum(!posev)))
else
negnam <- NULL
dnam <- dimnames(Y)
if (any(posev))
names(lambda) <- c(axnam, negnam)
if (ncol(u))
dimnames(u) <- list(dnam[[1]], c(axnam, negnam))
if (nrow(v) && ncol(v))
dimnames(v) <- list(dnam[[2]], axnam)
if (ncol(wa))
colnames(wa) <- axnam
if (ncol(bp))
colnames(bp) <- axnam
result <- list(
eig = lambda,
poseig = if (DISTBASED) sum(posev) else NULL,
u = u,
v = v,
wa = wa,
alias = alias,
biplot = bp,
rank = length(lambda),
qrank = rank,
tot.chi = sum(lambda),
QR = Q,
envcentre = envcentre)
Y <- qr.resid(Q, Y)
if (DISTBASED)
Y <- qr.resid(Q, t(Y))
list(Y = Y, result = result)
}
`ordResid` <-
function(Y)
{
DISTBASED <- attr(Y, "METHOD") == "DISTBASED"
RW <- attr(Y, "RW")
CW <- attr(Y, "CW")
ZERO <- sqrt(.Machine$double.eps)
if (DISTBASED) {
sol <- eigen(Y, symmetric = TRUE)
lambda <- sol$values
u <- sol$vectors
} else {
sol <- svd(Y)
lambda <- sol$d^2
u <- sol$u
v <- sol$v
}
zeroev <- abs(lambda) < max(ZERO, ZERO * lambda[1L])
if (any(zeroev)) {
lambda <- lambda[!zeroev]
u <- u[, !zeroev, drop = FALSE]
if (!DISTBASED)
v <- v[, !zeroev, drop = FALSE]
}
posev <- lambda > 0
if (DISTBASED)
v <- matrix(NA, 0, sum(posev))
if (!is.null(RW)) {
u <- sweep(u, 1, sqrt(RW), "/")
}
if (!is.null(CW) && nrow(v)) {
v <- sweep(v, 1, sqrt(CW), "/")
}
axnam <- paste0(switch(attr(Y, "METHOD"),
"PCA" = "PC",
"CA" = "CA",
"CAPSCALE" = "MDS",
"DISTBASED" = "MDS"),
seq_len(sum(posev)))
if (DISTBASED && any(!posev))
negnam <- paste0("iMDS", seq_len(sum(!posev)))
else
negnam <- NULL
dnam <- dimnames(Y)
if (any(posev))
names(lambda) <- c(axnam, negnam)
if (ncol(u))
dimnames(u) <- list(dnam[[1]], c(axnam, negnam))
if (nrow(v) && ncol(v))
dimnames(v) <- list(dnam[[2]], axnam)
out <- list(
"eig" = lambda,
"poseig" = if (DISTBASED) sum(posev) else NULL,
"u" = u,
"v" = v,
"rank" = length(lambda),
"tot.chi" = sum(lambda))
out
}
`ordConstrained` <-
function(Y, X = NULL, Z = NULL,
method = c("cca", "rda", "capscale", "dbrda", "pass"),
arg = FALSE)
{
method = match.arg(method)
partial <- constraint <- resid <- NULL
Y <- switch(method,
"cca" = initCA(Y),
"rda" = initPCA(Y, scale = arg),
"capscale" = initCAP(Y),
"dbrda" = initDBRDA(Y),
"pass" = Y)
if (!is.numeric(Y))
stop("dependent data (community) must be numeric")
if (!is.null(X)) {
if (!is.numeric(X))
stop("constraints must be numeric or factors")
if (nrow(Y) != nrow(X))
stop("dependent data and constraints must have the same number of rows")
}
if (!is.null(Z)) {
if (!is.numeric(Z))
stop("conditions must be numeric or factors")
if (nrow(Y) != nrow(Z))
stop("dependent data and conditions must have the same number of rows")
}
head <- ordHead(Y)
if (!is.null(Z) && ncol(Z)) {
out <- ordPartial(Y, Z)
Y <- out$Y
partial <- out$result
}
if (!is.null(X) && ncol(X)) {
out <- ordConstrain(Y, X, Z)
Y <- out$Y
constraint <- out$result
}
resid <- ordResid(Y)
out <- c(head,
call = match.call(),
list("pCCA" = partial, "CCA" = constraint, "CA" = resid))
class(out) <- switch(attr(Y, "METHOD"),
"CA" = "cca",
"PCA" = c("rda", "cca"),
"CAPSCALE" = c("capscale", "rda", "cca"),
"DISTBASED" = c("dbrda", "rda", "cca"))
out
} |
pcf.boundary<-function(dendat,N=rep(10,dim(dendat)[2]-1),
rho=0,m=dim(dendat)[1],seed=1)
{
n<-dim(dendat)[1]
d<-dim(dendat)[2]
set.seed(seed)
mc<-max(1,round(m/n))
M<-n*mc
data<-matrix(0,M,d-1)
distat<-matrix(0,M,1)
dendat.mc<-matrix(0,M,d)
for (i in 1:n){
obs<-dendat[i,]
for (j in 1:mc){
diro<-2*pi*runif(1)
riro<-rho*runif(1)
newobs<-obs+riro*sphere.map(diro)
len<-sqrt(sum(newobs^2))
ii<-mc*(i-1)+j
data[ii,]<-sphere.para(newobs/len)
distat[ii]<-len
dendat.mc[ii,]<-newobs
}
}
support<-matrix(0,2*(d-1),1)
for (i in 1:(d-1)){
support[2*i-1]<-min(data[,i])
support[2*i]<-max(data[,i])
}
step<-matrix(0,d-1,1)
for (i in 1:(d-1)) step[i]<-(support[2*i]-support[2*i-1])/N[i]
recnum<-prod(N)
rowpointer<-matrix(0,recnum,1)
value<-matrix(0,recnum,1)
index<-matrix(0,recnum,d-1)
inde<-matrix(0,d-1,1)
numpositive<-0
for (i in 1:M){
point<-data[i,]
for (k in 1:(d-1)) inde[k]<-min(floor((point[k]-support[2*k-1])/step[k]),N[k]-1)
recnum<-0
for (kk in 1:(d-1)){
if (kk==1) tulo<-1 else tulo<-prod(N[1:(kk-1)])
recnum<-recnum+inde[kk]*tulo
}
recnum<-recnum+1
row<-rowpointer[recnum]
if (row>0) value[row]<-max(value[row],distat[i])
else{
numpositive<-numpositive+1
rowpointer[recnum]<-numpositive
value[numpositive]<-distat[i]
index[numpositive,]<-inde
}
}
value<-value[1:numpositive]
index<-index[1:numpositive,]
if (d==2) index<-matrix(index,length(index),1)
down<-index
high<-index+1
pcf<-list(
value=value,index=NULL,
down=down,high=high,
support=support,N=N,data=data,dendat.mc=dendat.mc)
return(pcf)
} |
expected <- eval(parse(text="FALSE"));
test(id=0, code={
argv <- eval(parse(text="list(list(structure(c(0, 1, 1, 2, 2, 4, NA), .Names = c(\"ddiMatrix\", \"diagonalMatrix\", \"dMatrix\", \"sparseMatrix\", \"Matrix\", \"mMatrix\", \"ANY\")), structure(c(0, 1, 1, 1, 2, 2, 2, 3, 4, NA), .Names = c(\"dgCMatrix\", \"CsparseMatrix\", \"dsparseMatrix\", \"generalMatrix\", \"dMatrix\", \"sparseMatrix\", \"compMatrix\", \"Matrix\", \"mMatrix\", \"ANY\"))), TRUE)"));
.Internal(islistfactor(argv[[1]], argv[[2]]));
}, o=expected); |
library(knitr)
opts_chunk$set(fig.align = "center",
fig.width = 6, fig.height = 5,
dev.args = list(pointsize=10),
par = TRUE,
message = FALSE,
warning = FALSE)
knit_hooks$set(par = function(before, options, envir)
{ if(before && options$fig.show != "none")
par(mar=c(4.1,4.1,1.1,1.1), mgp=c(3,1,0), tcl=-0.5)
})
library(qcc)
data(pistonrings)
diameter = with(pistonrings, qcc.groups(diameter, sample))
head(diameter)
q1 = qcc(diameter[1:25,], type="xbar", newdata=diameter[26:40,])
plot(q1, chart.all=FALSE)
plot(q1, add.stats=FALSE)
q1 = qcc(diameter[1:25,], type="xbar", newdata=diameter[26:40,],
confidence.level=0.99)
q1 = qcc(diameter[1:25,], type="xbar", newdata=diameter[26:40,], plot=FALSE)
(warn.limits = limits.xbar(q1$center, q1$std.dev, q1$sizes, 2))
plot(q1, restore.par = FALSE)
abline(h = warn.limits, lty = 3, col = "chocolate")
q2 = qcc(diameter[1:25,], type="R")
summary(q2)
q3 = qcc(diameter[1:25,], type="R", newdata=diameter[26:40,])
summary(q3)
q4 = qcc(diameter[1:25,], type="S")
summary(q4)
q5 = qcc(diameter[1:25,], type="S", newdata=diameter[26:40,])
summary(q5)
out = c(9, 10, 30, 35, 45, 64, 65, 74, 75, 85, 99, 100)
diameter2 = with(pistonrings, qcc.groups(diameter[-out], sample[-out]))
summary(qcc(diameter2[1:25,], type="xbar"))
summary(qcc(diameter2[1:25,], type="R"))
data(orangejuice)
q1 = with(orangejuice,
qcc(D[trial], sizes=size[trial], type="p"))
summary(q1)
q2 = with(orangejuice,
qcc(D[trial], sizes=size[trial], type="np"))
summary(q2)
inc = setdiff(which(orangejuice$trial), c(15,23))
q2 = with(orangejuice,
qcc(D[inc], sizes=size[inc], type="p",
newdata=D[!trial], newsizes=size[!trial]))
data(orangejuice2)
q1 = with(orangejuice2,
qcc(D[trial], sizes=size[trial], type="p",
newdata=D[!trial], newsizes=size[!trial]))
summary(q1)
data(circuit)
q1 = with(circuit,
qcc(x[trial], sizes=size[trial], type="c"))
summary(q1)
inc = setdiff(which(circuit$trial), c(6,20))
q2 = with(circuit,
qcc(x[inc], sizes=size[inc], type="c", labels=inc,
newdata=x[!trial], newsizes=size[!trial], newlabels=which(!trial)))
summary(q2)
q3 = with(circuit,
qcc(x[inc], sizes=size[inc], type="u", labels=inc,
newdata=x[!trial], newsizes=size[!trial], newlabels=which(!trial)))
summary(q3)
data(pcmanufact)
q1 = with(pcmanufact,
qcc(x, sizes=size, type="u"))
summary(q1)
x = c(33.75, 33.05, 34, 33.81, 33.46, 34.02, 33.68, 33.27, 33.49, 33.20,
33.62, 33.00, 33.54, 33.12, 33.84)
q1 = qcc(x, type="xbar.one")
summary(q1)
q2 = qcc(x, type="xbar.one", std.dev = "SD")
summary(q2)
stats.p.std = function(data, sizes)
{
data = as.vector(data)
sizes = as.vector(sizes)
pbar = sum(data)/sum(sizes)
z = (data/sizes - pbar)/sqrt(pbar*(1-pbar)/sizes)
list(statistics = z, center = 0)
}
sd.p.std = function(data, sizes, ...) { return(1) }
limits.p.std = function(center, std.dev, sizes, conf)
{
if(conf >= 1)
{ lcl = -conf
ucl = +conf
}
else
{ if(conf > 0 & conf < 1)
{ nsigmas = qnorm(1 - (1 - conf)/2)
lcl = -nsigmas
ucl = +nsigmas }
else stop("invalid 'conf' argument.")
}
limits = matrix(c(lcl, ucl), ncol = 2)
rownames(limits) = rep("", length = nrow(limits))
colnames(limits) = c("LCL", "UCL")
return(limits)
}
n = c(rep(50,5), rep(100,5), rep(25, 5))
x = rbinom(length(n), n, 0.2)
summary(qcc(x, type="p", size=n))
summary(qcc(x, type="p.std", size=n))
data(pistonrings)
diameter = with(pistonrings, qcc.groups(diameter, sample))
q = qcc(diameter, type="xbar", nsigmas=3, plot=FALSE)
beta = oc.curves.xbar(q)
print(round(beta, digits=4))
data(orangejuice)
q = with(orangejuice, qcc(D[trial], sizes=size[trial], type="p", plot=FALSE))
beta = oc.curves(q)
print(round(beta, digits=4))
data(circuit)
q = with(circuit, qcc(x[trial], sizes=size[trial], type="c", plot=FALSE))
beta = oc.curves(q)
print(round(beta, digits=4))
data(pistonrings)
diameter = with(pistonrings, qcc.groups(diameter, sample))
q1 = cusum(diameter[1:25,], decision.interval = 4, se.shift = 1)
summary(q1)
q2 = cusum(diameter[1:25,], newdata=diameter[26:40,])
summary(q2)
plot(q2, chart.all=FALSE)
data(pistonrings)
diameter = with(pistonrings, qcc.groups(diameter, sample))
q1 = ewma(diameter[1:25,], lambda=0.2, nsigmas=3)
summary(q1)
q2 = ewma(diameter[1:25,], lambda=0.2, nsigmas=2.7,
newdata=diameter[26:40,])
summary(q2)
x = c(33.75, 33.05, 34, 33.81, 33.46, 34.02, 33.68, 33.27,
33.49, 33.20, 33.62, 33.00, 33.54, 33.12, 33.84)
q3 = ewma(x, lambda=0.2, nsigmas=2.7)
summary(q3)
data(pistonrings)
diameter = with(pistonrings, qcc.groups(diameter, sample))
q1 = qcc(diameter[1:25,], type="xbar", nsigmas=3, plot=FALSE)
process.capability(q1, spec.limits=c(73.95,74.05))
process.capability(q1, spec.limits=c(73.95,74.05), target=74.02)
process.capability(q1, spec.limits=c(73.99,74.01))
process.capability(q1, spec.limits = c(73.99, 74.1))
X1 = matrix(c(72, 56, 55, 44, 97, 83, 47, 88, 57, 26, 46,
49, 71, 71, 67, 55, 49, 72, 61, 35, 84, 87, 73, 80, 26, 89, 66,
50, 47, 39, 27, 62, 63, 58, 69, 63, 51, 80, 74, 38, 79, 33, 22,
54, 48, 91, 53, 84, 41, 52, 63, 78, 82, 69, 70, 72, 55, 61, 62,
41, 49, 42, 60, 74, 58, 62, 58, 69, 46, 48, 34, 87, 55, 70, 94,
49, 76, 59, 57, 46), ncol = 4)
X2 = matrix(c(23, 14, 13, 9, 36, 30, 12, 31, 14, 7, 10,
11, 22, 21, 18, 15, 13, 22, 19, 10, 30, 31, 22, 28, 10, 35, 18,
11, 10, 11, 8, 20, 16, 19, 19, 16, 14, 28, 20, 11, 28, 8, 6,
15, 14, 36, 14, 30, 8, 35, 19, 27, 31, 17, 18, 20, 16, 18, 16,
13, 10, 9, 16, 25, 15, 18, 16, 19, 10, 30, 9, 31, 15, 20, 35,
12, 26, 17, 14, 16), ncol = 4)
X = list(X1 = X1, X2 = X2)
q = mqcc(X, type = "T2")
summary(q)
ellipseChart(q)
ellipseChart(q, show.id = TRUE)
q = mqcc(X, type = "T2", pred.limits = TRUE)
q1 = qcc(X1, type = "xbar", confidence.level = q$confidence.level^(1/2))
summary(q1)
q2 = qcc(X2, type = "xbar", confidence.level = q$confidence.level^(1/2))
summary(q2)
Xnew = list(X1 = matrix(NA, 10, 4), X2 = matrix(NA, 10, 4))
for(i in 1:4)
{ x = MASS::mvrnorm(10, mu = q$center, Sigma = q$cov)
Xnew$X1[,i] = x[,1]
Xnew$X2[,i] = x[,2]
}
qq = mqcc(X, type = "T2", newdata = Xnew, pred.limits = TRUE)
summary(qq)
ellipseChart(qq, show.id = TRUE)
Xnew = list(X1 = matrix(NA, 10, 4), X2 = matrix(NA, 10, 4))
for(i in 1:4)
{ x = MASS::mvrnorm(10, mu = 1.2*q$center, Sigma = q$cov)
Xnew$X1[,i] = x[,1]
Xnew$X2[,i] = x[,2]
}
qq = mqcc(X, type = "T2", newdata = Xnew, pred.limits = TRUE)
summary(qq)
ellipseChart(qq, show.id = TRUE)
data(boiler)
q1 = mqcc(boiler, type = "T2.single", confidence.level = 0.999)
summary(q1)
boilerNew = MASS::mvrnorm(10, mu = q1$center, Sigma = q1$cov)
q2 = mqcc(boiler, type = "T2.single", confidence.level = 0.999,
newdata = boilerNew, pred.limits = TRUE)
summary(q2)
boilerNew = MASS::mvrnorm(10, mu = 1.01*q1$center, Sigma = q1$cov)
q3 = mqcc(boiler, type = "T2.single", confidence.level = 0.999,
newdata = boilerNew, pred.limits = TRUE)
summary(q3)
rob = MASS::cov.rob(boiler)
q4 = mqcc(boiler, type = "T2.single", center = rob$center, cov = rob$cov)
summary(q4)
defect = c(80, 27, 66, 94, 33)
names(defect) = c("price code", "schedule date", "supplier code", "contact num.", "part num.")
pareto.chart(defect, ylab = "Error frequency")
cause.and.effect(cause = list(Measurements = c("Micrometers", "Microscopes", "Inspectors"),
Materials = c("Alloys", "Lubricants", "Suppliers"),
Personnel = c("Shifts", "Supervisors", "Training", "Operators"),
Environment = c("Condensation", "Moisture"),
Methods = c("Brake", "Engager", "Angle"),
Machines = c("Speed", "Lathes", "Bits", "Sockets")),
effect = "Surface Flaws")
set.seed(123)
mu = 100
sigma_W = 10
epsilon = rnorm(500)
x = matrix(mu + sigma_W*epsilon, ncol=10, byrow=TRUE)
q = qcc(x, type="xbar")
q = qcc(x, type="R")
q = qcc(x, type="S")
mu = 100
sigma_W = 10
sigma_B = 5
epsilon = rnorm(500)
u = as.vector(sapply(rnorm(50), rep, 10))
x = mu + sigma_B*u + sigma_W*epsilon
x = matrix(x, ncol=10, byrow=TRUE)
q = qcc(x, type="xbar")
q = qcc(x, type="R")
q = qcc(x, type="S")
mu = 100
rho = 0.8
sigma_W = 10
sigma_B = 5
epsilon = rnorm(500)
u = rnorm(500)
W = rep(0,100)
for(i in 2:length(W))
W[i] = rho*W[i-1] + sigma_B*u[i]
x = mu + sigma_B*u + sigma_W*epsilon
x = matrix(x, ncol=10, byrow=TRUE)
q = qcc(x, type="xbar")
q = qcc(x, type="R")
q = qcc(x, type="S")
mu = 100
sigma_W = 10
epsilon = rnorm(120, sd=0.3)
W = c(-4, 0, 1, 2, 4, 2, 0, -2)
W = rep(rep(W, rep(5,8)), 3)
x = mu + W + sigma_W*epsilon
x = matrix(x, ncol=5, byrow=TRUE)
q = qcc(x, type="xbar")
q = qcc(x, type="R")
q = qcc(x, type="S")
mu = 100
sigma_W = 10
epsilon = rnorm(500)
W = rep(0.2*1:100, rep(5,100))
x = mu + W + sigma_W*epsilon
x = matrix(x, ncol=10, byrow=TRUE)
q = qcc(x, type="xbar")
q = qcc(x, type="R")
q = qcc(x, type="S")
mu1 = 90
mu2 = 110
sigma_W = 10
epsilon = rnorm(500)
p = rbinom(50, 1, 0.5)
mu = mu1*p + mu2*(1-p)
x = rep(mu, rep(10, length(mu))) + sigma_W*epsilon
x = matrix(x, ncol=10, byrow=TRUE)
q = qcc(x, type="xbar")
q = qcc(x, type="R")
q = qcc(x, type="S")
mu = rep(c(95,110,100,90), c(20,35,25,20))
sigma_W = 10
epsilon = rnorm(500)
x = rep(mu, rep(5, length(mu))) + sigma_W*epsilon
x = matrix(x, ncol=10, byrow=TRUE)
q = qcc(x, type="xbar")
q = qcc(x, type="R")
q = qcc(x, type="S") |
StatSf <- ggproto("StatSf", Stat,
compute_layer = function(self, data, params, layout) {
params$coord <- layout$coord
ggproto_parent(Stat, self)$compute_layer(data, params, layout)
},
compute_group = function(data, scales, coord) {
geometry_data <- data[[ geom_column(data) ]]
geometry_crs <- sf::st_crs(geometry_data)
bbox <- sf::st_bbox(geometry_data)
if (inherits(coord, "CoordSf")) {
coord$record_bbox(
xmin = bbox[["xmin"]], xmax = bbox[["xmax"]],
ymin = bbox[["ymin"]], ymax = bbox[["ymax"]]
)
bbox_trans <- sf_transform_xy(
list(
x = c(rep(0.5*(bbox[["xmin"]] + bbox[["xmax"]]), 2), bbox[["xmin"]], bbox[["xmax"]]),
y = c(bbox[["ymin"]], bbox[["ymax"]], rep(0.5*(bbox[["ymin"]] + bbox[["ymax"]]), 2))
),
coord$get_default_crs(),
geometry_crs
)
data$xmin <- min(bbox_trans$x)
data$xmax <- max(bbox_trans$x)
data$ymin <- min(bbox_trans$y)
data$ymax <- max(bbox_trans$y)
} else {
data$xmin <- bbox[["xmin"]]
data$xmax <- bbox[["xmax"]]
data$ymin <- bbox[["ymin"]]
data$ymax <- bbox[["ymax"]]
}
data
},
required_aes = c("geometry")
)
stat_sf <- function(mapping = NULL, data = NULL, geom = "rect",
position = "identity", na.rm = FALSE, show.legend = NA,
inherit.aes = TRUE, ...) {
layer_sf(
stat = StatSf,
data = data,
mapping = mapping,
geom = geom,
position = position,
show.legend = show.legend,
inherit.aes = inherit.aes,
params = list(
na.rm = na.rm,
...
)
)
} |
gbmokgbmidwpred <- function (longlat, trainx, trainy, longlatpredx, predx,
var.monotone = rep(0, ncol(trainx)),
family = "gaussian",
n.trees = 3000,
learning.rate = 0.001,
interaction.depth = 2,
bag.fraction = 0.5,
train.fraction = 1.0,
n.minobsinnode = 10,
cv.fold = 0,
weights = rep(1, nrow(trainx)),
keep.data = FALSE,
verbose = TRUE,
idp = 2,
nmaxidw = 12,
nmaxok = 12,
vgm.args = ("Sph"),
block = 0,
n.cores = 6, ...) {
names(longlat) <- c("LON", "LAT")
names(longlatpredx) <- c("LON", "LAT")
gbm1 <- gbm::gbm(trainy ~ ., data=trainx,
var.monotone = var.monotone,
distribution = as.character(family),
n.trees = n.trees,
shrinkage = learning.rate,
interaction.depth = interaction.depth,
bag.fraction = bag.fraction,
train.fraction = train.fraction,
n.minobsinnode = n.minobsinnode,
weights = weights,
cv.folds = cv.fold,
n.cores = n.cores)
best.iter <- gbm::gbm.perf(gbm1, method = "cv")
print(best.iter)
pred.gbm1 <- gbm::predict.gbm(gbm1, predx, n.trees =
best.iter, type = "response")
data.dev <- longlat
data.pred <- longlatpredx
data.dev$var1 <- trainy - gbm::predict.gbm(gbm1, trainx, n.trees = best.iter,
type = "response")
gstat1 <- gstat::gstat(id = "var1", formula = var1 ~ 1, locations = ~ LON +
LAT, data = data.dev, set = list(idp = idp), nmax = nmaxidw)
idw.pred <- stats::predict(gstat1, data.pred)$var1.pred
sp::coordinates(data.dev) = ~ LON + LAT
vgm1 <- gstat::variogram(var1 ~ 1, data.dev)
model.1 <- gstat::fit.variogram(vgm1, gstat::vgm(vgm.args))
if (model.1$range[2] <= 0) (cat("A zero or negative range was fitted to
variogram. To allow gstat running, the range was set to be positive by
using min(vgm1$dist). ", "\n"))
if (model.1$range[2] <= 0) (model.1$range[2] <- min(vgm1$dist))
sp::coordinates(data.pred) = ~ LON + LAT
ok.pred <- gstat::krige(var1 ~ 1, data.dev, data.pred, model = model.1,
nmax = nmaxok, block = block)
gbmokgbmidw.pred1 <- pred.gbm1 + (idw.pred + ok.pred$var1.pred) / 2
gbmokgbmidw.pred <- cbind(longlatpredx, gbmokgbmidw.pred1, ok.pred$var1.var)
names(gbmokgbmidw.pred) <- c("LON", "LAT", "Predictions", "Variances")
gbmokgbmidw.pred
} |
dbgumbel <- function(x, mu, sigma, delta) {
gama = .5772156649015328606065120900824024310421593359399235988057672348848677267776646709369470632917467495146
z_delta = 1 + (delta * sigma * pi)^2 / 6 + (delta * mu + delta * sigma * gama - 1)^2
y = (z_delta^-1) * ( (1 - delta * x)^2 + 1 ) * (sigma^-1) * exp( -(x - mu) / sigma - exp( -(x - mu) / sigma ) )
return(y)
}
dbgumbel <- Vectorize(dbgumbel, 'x') |
"SMBassWB1" |
getfolderstructure = function(datadir=c(),referencefnames=c()) {
filelist = isfilelist(datadir)
if (filelist == FALSE) {
fnamesfull = dir(datadir, recursive = TRUE, pattern = "[.](csv|bin|Rda|wav|cw|gt3)")
} else {
fnamesfull = datadir
}
fullfilenames = foldername = rep("",length(referencefnames))
if (length(fnamesfull) > 0) {
fnamesshort = apply(X=as.matrix(fnamesfull),MARGIN=1,FUN=function(X) basename(X))
foldername_new = apply(X=as.matrix(fnamesfull),MARGIN=1,FUN=function(X) basename(dirname(X)))
for (i in 1:length(referencefnames)) {
index_match = which(fnamesshort == referencefnames[i] & referencefnames[i] %in% c("", " ",NA) == FALSE)
if (length(index_match) > 0) {
fullfilenames[i] = fnamesfull[index_match]
foldername[i] = foldername_new[index_match]
}
}
}
invisible(list(fullfilenames=fullfilenames,foldername=foldername))
} |
test_that("captures error before first test", {
skip_on_covr()
skip_if(is.null(attr(rlang::eval_bare, "srcref")))
local_output_override()
expect_snapshot_reporter(
ProgressReporter$new(update_interval = 0, min_time = Inf),
test_path("reporters/error-setup.R")
)
})
test_that("gracefully handles multiple contexts", {
expect_snapshot_reporter(
ProgressReporter$new(update_interval = 0, min_time = Inf),
test_path("reporters/context.R")
)
})
test_that("can control max fails with env var or option", {
withr::local_envvar(TESTTHAT_MAX_FAILS = 11)
expect_equal(testthat_max_fails(), 11)
withr::local_options(testthat.progress.max_fails = 12)
expect_equal(testthat_max_fails(), 12)
})
test_that("fails after max_fail tests", {
withr::local_options(testthat.progress.max_fails = 10)
expect_snapshot_reporter(
ProgressReporter$new(update_interval = 0, min_time = Inf),
test_path(c("reporters/fail-many.R", "reporters/fail.R"))
)
})
test_that("can fully suppress incremental updates", {
expect_snapshot_reporter(
ProgressReporter$new(update_interval = 0, min_time = Inf),
test_path("reporters/successes.R")
)
expect_snapshot_reporter(
ProgressReporter$new(update_interval = Inf, min_time = Inf),
test_path("reporters/successes.R")
)
})
test_that("reports backtraces", {
skip_on_covr()
skip_if(is.null(attr(rlang::eval_bare, "srcref")))
expect_snapshot_reporter(
ProgressReporter$new(update_interval = 0, min_time = Inf),
test_path("reporters/backtraces.R")
)
})
test_that("records skips", {
expect_snapshot_reporter(
ProgressReporter$new(update_interval = 0, min_time = Inf),
test_path("reporters/skips.R")
)
})
test_that("compact display is informative", {
expect_snapshot_reporter(
CompactProgressReporter$new(),
test_path("reporters/tests.R")
)
})
test_that("display of successes only is compact", {
expect_snapshot_reporter(
CompactProgressReporter$new(),
test_path("reporters/successes.R")
)
expect_snapshot_reporter(
CompactProgressReporter$new(rstudio = TRUE),
test_path("reporters/successes.R")
)
}) |
readBinTemplates <-
function(
files=NULL,
dir='.',
ext='bt',
parallel=FALSE
) {
if(parallel) {
lapplyfun <- function(X, FUN) parallel::mclapply(X, FUN, mc.cores=parallel::detectCores())
} else lapplyfun <- lapply
if(is.null(files)) {
filesfull <- list.files(path=dir, full.names=TRUE, pattern=paste('\\.', ext, '$', sep=''))
files <- list.files(path=dir, pattern=paste('\\.', ext, '$', sep=''))
names(filesfull) <- gsub("\\.[^.]*$", "", files)
} else {
filesfull <- paste(dir, '/', files, sep='')
names(filesfull) <- if(is.null(names(files))) gsub("\\.[^.]*$", "", files) else names(files)
}
template.L <- lapplyfun(filesfull, function(x) readOneBinTemplate(file=x))
templates <- new('binTemplateList', templates=template.L)
return(templates)
} |
"england_club_data" |
parse_netstat <- function(netstat_output) {
os <- Sys.info()['sysname']
switch(os,
Windows = {
ActiveConnections <- netstat_output[-c(1:3)]
temp <- paste0(gsub("\\s+", ",", ActiveConnections), collapse="\n")
read.table(text = temp, sep=",", stringsAsFactors = FALSE,
header=TRUE, fill = TRUE)
},
{
ActiveConnections <- netstat_output[3: (which(netstat_output == "Active Multipath Internet connections") - 1)]
temp <- paste0(gsub("\\s+", ",", ActiveConnections), collapse="\n")
read.table(text = temp, sep=",", stringsAsFactors = FALSE,
header=FALSE, fill = TRUE)
}
)
} |
knitr::opts_chunk$set(echo = TRUE)
library(CB2)
library(dplyr)
library(readr)
data("Evers_CRISPRn_RT112")
head(Evers_CRISPRn_RT112$count)
Evers_CRISPRn_RT112$design
sgrna_stats <- measure_sgrna_stats(Evers_CRISPRn_RT112$count, Evers_CRISPRn_RT112$design, "before", "after")
gene_stats <- measure_gene_stats(sgrna_stats)
head(gene_stats)
df <- read_csv("https://raw.githubusercontent.com/hyunhwaj/CB2-Experiments/master/01_gene-level-analysis/data/Evers/CRISPRn-RT112.csv")
df
head(measure_sgrna_stats(df, Evers_CRISPRn_RT112$design, "before", "after", ge_id = 'gene', sg_id = 'sgRNA')) |
sunterpi2 <-
function(x,n)
{
xo<-sort(x,decreasing=TRUE)
if(xo[1]*n/sum(xo)>1) stop("There are some units with inclusion probability >1")
N<-length(xo)
t<-rev(cumsum(rev(xo)))
xbar<-t/(N:1)
kk0<-n*xo/t
k0<-which(kk0>=1,arr.ind = FALSE)[1]
kstar<-min(k0,N-n+1)
g<-numeric(kstar)
g[1]<-1/t[2]
for(i in 2:kstar)
{
g[i]<-prod(1-xo[1:(i-1)]/t[2:i])/t[i+1]
}
piij<-matrix(0,N,N)
for(k in 1:(N-1))
{
for(l in (k+1):N)
{
if(k<l & l<kstar)
{
piij[k,l]<-n*(n-1)/t[1]*g[k]*xo[k]*xo[l]
}
else if(k<kstar & kstar<=l)
{
piij[k,l]<-n*(n-1)/t[1]*g[k]*xo[k]*xbar[kstar]
}
else if(kstar<=k & k<l)
{
piij[k,l]<-n*(n-1)/t[1]*g[kstar-1]*(t[kstar]-xo[kstar-1])/(t[kstar]-xbar[kstar])*xbar[kstar]^2
}
piij[l,k]<-piij[k,l]
}
}
ord<-N+1-rank(x,ties.method="random")
piij<-piij[ord,ord]
diag(piij)<-apply(piij,1,sum)/(n-1)
piij
} |
itriplot <-
function(p, indID=NULL, group=NULL, chartOpts=NULL, digits=5)
{
if(!is.matrix(p)) p <- as.matrix(p)
stopifnot(ncol(p) == 3)
n <- nrow(p)
if(is.null(indID))
indID <- get_indID(n, rownames(p), names(group))
stopifnot(length(indID) == n)
indID <- as.character(indID)
if(!is.null(colnames(p))) {
chartOpts <- add2chartOpts(chartOpts, labels=colnames(p))
}
if(is.null(group)) group <- rep(1, n)
group_levels <- sort(unique(group))
group <- group2numeric(group)
dimnames(p) <- NULL
names(group) <- NULL
names(indID) <- NULL
x <- list(data=list(p=p, indID=indID, group=group),
chartOpts=chartOpts)
if(!is.null(digits))
attr(x, "TOJSON_ARGS") <- list(digits=digits)
defaultAspect <- 2/sqrt(3)
browsersize <- getPlotSize(defaultAspect)
htmlwidgets::createWidget("itriplot", x,
width=chartOpts$width,
height=chartOpts$height,
sizingPolicy=htmlwidgets::sizingPolicy(
browser.defaultWidth=browsersize$width,
browser.defaultHeight=browsersize$height,
knitr.defaultWidth=1000,
knitr.defaultHeight=1000/defaultAspect),
package="qtlcharts")
}
itriplot_output <- function(outputId, width="100%", height="530") {
htmlwidgets::shinyWidgetOutput(outputId, "itriplot", width, height, package="qtlcharts")
}
itriplot_render <- function(expr, env=parent.frame(), quoted=FALSE) {
if(!quoted) { expr <- substitute(expr) }
htmlwidgets::shinyRenderWidget(expr, itriplot_output, env, quoted=TRUE)
} |
attribute.prob.bin<- function(x, ...){
res <- attribute.default(x$y.i, obar.i=x$obar.i, prob.y=x$prob.y, obar=x$obar,
class="prob.bin", obs=x$obs, pred=x$pred, thres=x$thres, bins=x$bins, ...)
return(res)
} |
add_p <- function(x, ...) {
UseMethod("add_p")
}
add_p.tbl_summary <- function(x, test = NULL, pvalue_fun = NULL,
group = NULL, include = everything(), test.args = NULL,
exclude = NULL, ...) {
updated_call_list <- c(x$call_list, list(add_p = match.call()))
if (!rlang::quo_is_null(rlang::enquo(exclude))) {
lifecycle::deprecate_stop(
"1.2.5",
"gtsummary::add_p(exclude = )",
"add_p(include = )",
details = paste0(
"The `include` argument accepts quoted and unquoted expressions similar\n",
"to `dplyr::select()`. To exclude variable, use the minus sign.\n",
"For example, `include = -c(age, stage)`"
)
)
}
test <- test %||% get_theme_element("add_p.tbl_summary-arg:test")
pvalue_fun <-
pvalue_fun %||%
get_theme_element("add_p.tbl_summary-arg:pvalue_fun") %||%
get_theme_element("pkgwide-fn:pvalue_fun") %||%
getOption("gtsummary.pvalue_fun", default = style_pvalue) %>%
gts_mapper("add_p(pvalue_fun=)")
group <-
.select_to_varnames(
select = {{ group }},
data = x$inputs$data,
var_info = x$table_body,
arg_name = "group",
select_single = TRUE
)
include <-
.select_to_varnames(
select = {{ include }},
data = select(x$inputs$data, any_of(x$meta_data$variable)),
var_info = x$table_body,
arg_name = "include"
)
if (!is.null(group) && group %in% x$meta_data$variable) {
glue::glue(
"The `group=` variable is no longer auto-removed from the summary table as of v1.3.1.\n",
"The following syntax is now preferred:\n",
"tbl_summary(..., include = -{group}) %>% add_p(..., group = {group})"
) %>%
rlang::inform()
}
if (is.null(x$df_by)) {
paste(
"Cannot add a p-value when no 'by' variable",
"in original `tbl_summary(by=)` call."
) %>%
stop(call. = FALSE)
}
if ("add_difference" %in% names(x$call_list) &&
"p.value" %in% names(x$table_body)) {
paste("`add_p()` cannot be run after `add_difference()` when a",
"'p.value' column is already present.") %>%
stop(call. = FALSE)
}
test <-
.formula_list_to_named_list(
x = test,
data = select(x$inputs$data, any_of(include)),
var_info = x$table_body,
arg_name = "test",
type_check = chuck(type_check, "is_function_or_string", "fn"),
type_check_msg = chuck(type_check, "is_function_or_string", "msg")
)
if (!is.function(pvalue_fun)) {
stop("Input 'pvalue_fun' must be a function.", call. = FALSE)
}
caller_env <- rlang::caller_env()
meta_data <-
x$meta_data %>%
select(.data$variable, .data$summary_type) %>%
filter(.data$variable %in% include) %>%
mutate(
test =
map2(
.data$variable, .data$summary_type,
function(variable, summary_type) {
.assign_test_tbl_summary(
data = x$inputs$data, variable = variable, summary_type = summary_type,
by = x$by, group = group, test = test
)
}
),
test_info =
map(
.data$test,
function(test) .get_add_p_test_fun("tbl_summary", test = test, env = caller_env)
),
test_name = map_chr(.data$test_info, ~ pluck(.x, "test_name"))
)
x$table_body <-
x$table_body %>%
select(-any_of(c("test_name", "test_result"))) %>%
left_join(meta_data[c("variable", "test_name")], by = "variable") %>%
select(.data$variable, .data$test_name, everything())
test.args <-
.formula_list_to_named_list(
x = test.args,
data = select(x$inputs$data, any_of(include)),
var_info = x$table_body,
arg_name = "test.args",
type_check = chuck(type_check, "is_named", "fn"),
type_check_msg = chuck(type_check, "is_named", "msg")
)
x$meta_data <-
meta_data %>%
mutate(
test_result = pmap(
list(.data$test_info, .data$variable, .data$summary_type),
function(test_info, variable, summary_type) {
.run_add_p_test_fun(
x = test_info, data = .env$x$inputs$data,
by = .env$x$by, variable = variable,
group = group, type = summary_type,
test.args = test.args[[variable]], tbl = x
)
}
),
p.value = map_dbl(.data$test_result, ~ pluck(.x, "df_result", "p.value")),
stat_test_lbl = map_chr(.data$test_result, ~ pluck(.x, "df_result", "method"))
) %>%
select(.data$variable, .data$test_result, .data$p.value, .data$stat_test_lbl) %>%
{
left_join(
x$meta_data %>% select(-any_of(c("test_result", "p.value", "stat_test_lbl"))),
.,
by = "variable")
}
x$call_list <- updated_call_list
add_p_merge_p_values(x, meta_data = x$meta_data, pvalue_fun = pvalue_fun)
}
footnote_add_p <- function(meta_data) {
if (!"test_result" %in% names(meta_data)) {
return(NA_character_)
}
footnotes <-
meta_data$test_result %>%
map_chr(~ pluck(., "df_result", "method") %||% NA_character_) %>%
stats::na.omit() %>%
unique()
if (length(footnotes) > 0) {
language <- get_theme_element("pkgwide-str:language", default = "en")
return(paste(map_chr(footnotes, ~ translate_text(.x, language)), collapse = "; "))
}
else {
return(NA_character_)
}
}
add_p_merge_p_values <- function(x, lgl_add_p = TRUE,
meta_data, pvalue_fun,
estimate_fun = NULL,
conf.level = 0.95,
adj.vars = NULL) {
x <-
modify_table_body(
x,
left_join,
meta_data %>%
select(.data$variable, .data$test_result) %>%
mutate(
df_result = map(.data$test_result, ~pluck(.x, "df_result")),
row_type = "label"
) %>%
unnest(.data$df_result) %>%
select(
-any_of("method"),
-any_of(names(x$table_body) %>% setdiff(c("variable", "row_type")))
),
by = c("variable", "row_type")
) %>%
modify_table_styling(
columns = any_of("p.value"),
label = paste0("**", translate_text("p-value"), "**"),
hide = FALSE,
fmt_fun = pvalue_fun,
footnote = footnote_add_p(meta_data)
)
if (lgl_add_p == FALSE) {
x <- x %>%
modify_table_styling(
columns = any_of("estimate"),
label = ifelse(is.null(adj.vars),
paste0("**", translate_text("Difference"), "**"),
paste0("**", translate_text("Adjusted Difference"), "**")
),
hide = FALSE,
fmt_fun = switch(is_function(estimate_fun),
estimate_fun
),
footnote = footnote_add_p(meta_data)
)
if (is.list(estimate_fun)) {
x$table_styling$fmt_fun <-
x$table_styling$fmt_fun %>%
bind_rows(
estimate_fun %>%
tibble::enframe("variable", "fmt_fun") %>%
rowwise() %>%
mutate(
column =
c("estimate", "conf.low", "conf.high") %>%
intersect(names(x$table_body)) %>%
list(),
rows = glue(".data$variable == '{variable}'") %>% rlang::parse_expr() %>% list()
) %>%
ungroup() %>%
select(.data$column, .data$rows, .data$fmt_fun) %>%
unnest(cols = .data$column)
)
}
if (all(c("conf.low", "conf.high") %in% names(x$table_body)) &&
!"ci" %in% names(x$table_body)) {
ci.sep <- get_theme_element("pkgwide-str:ci.sep", default = ", ")
x <- x %>%
modify_table_body(
~ .x %>%
mutate(
ci = pmap_chr(
list(variable, conf.low, conf.high),
~ case_when(
!is.na(..2) | !is.na(..3) ~
paste(do.call(estimate_fun[[..1]], list(..2)),
do.call(estimate_fun[[..1]], list(..3)),
sep = ci.sep
)
)
)
)
) %>%
modify_table_body(dplyr::relocate, .data$ci, .before = "conf.low") %>%
modify_table_styling(
any_of("ci"),
label = paste0("**", conf.level * 100, "% ", translate_text("CI"), "**"),
hide = FALSE,
footnote = footnote_add_p(meta_data),
footnote_abbrev = translate_text("CI = Confidence Interval")
)
}
}
x
}
add_p.tbl_cross <- function(x, test = NULL, pvalue_fun = NULL,
source_note = NULL,
test.args = NULL, ...) {
updated_call_list <- c(x$call_list, list(add_p = match.call()))
test <- test %||% get_theme_element("add_p.tbl_cross-arg:test")
source_note <- source_note %||%
get_theme_element("add_p.tbl_cross-arg:source_note", default = FALSE)
if (source_note == FALSE) {
pvalue_fun <-
pvalue_fun %||%
get_theme_element("add_p.tbl_cross-arg:pvalue_fun") %||%
get_theme_element("pkgwide-fn:pvalue_fun") %||%
getOption("gtsummary.pvalue_fun", default = style_pvalue) %>%
gts_mapper("add_p(pvalue_fun=)")
} else {
pvalue_fun <-
pvalue_fun %||%
get_theme_element("pkgwide-fn:prependpvalue_fun") %||%
(function(x) style_pvalue(x, prepend_p = TRUE)) %>%
gts_mapper("add_p(pvalue_fun=)")
}
input_test <- switch(!is.null(test),
rlang::expr(everything() ~ !!test)
)
input_test.args <- switch(!is.null(test.args),
rlang::expr(everything() ~ !!test.args)
)
x_copy <- x
x$inputs$data <- x$tbl_data
x <-
expr(
add_p.tbl_summary(x,
test = !!input_test,
test.args = !!input_test.args,
pvalue_fun = !!pvalue_fun,
include = -any_of("..total.."))
) %>%
eval()
x$inputs$data <- x_copy$inputs$data
if (source_note == TRUE) {
test_name <-
x$meta_data$stat_test_lbl %>%
discard(is.na) %>%
translate_text()
x <-
modify_table_styling(
x,
columns = "p.value",
footnote = NA_character_,
hide = TRUE
)
x$table_styling$source_note <-
paste(test_name, pvalue_fun(discard(x$meta_data$p.value, is.na)), sep = ", ")
attr(x$table_styling$source_note, "text_interpret") <- "md"
}
x$call_list <- updated_call_list
x
}
add_p.tbl_survfit <- function(x, test = "logrank", test.args = NULL,
pvalue_fun = style_pvalue,
include = everything(), quiet = NULL, ...) {
updated_call_list <- c(x$call_list, list(add_p = match.call()))
quiet <- quiet %||% get_theme_element("pkgwide-lgl:quiet") %||% FALSE
pvalue_fun <-
pvalue_fun %||%
get_theme_element("pkgwide-fn:pvalue_fun") %||%
getOption("gtsummary.pvalue_fun", default = style_pvalue) %>%
gts_mapper("add_p(pvalue_fun=)")
include <- .select_to_varnames(select = {{ include }}, var_info = x$meta_data)
if (rlang::is_string(test)) {
test <- expr(everything() ~ !!test) %>% eval()
if (!is.null(test.args)) {
test.args <- expr(everything() ~ !!test.args) %>% eval()
}
}
test <-
.formula_list_to_named_list(
x = test,
var_info = x$table_body,
arg_name = "test",
type_check = chuck(type_check, "is_function_or_string", "fn"),
type_check_msg = chuck(type_check, "is_function_or_string", "msg")
)
caller_env <- rlang::caller_env()
meta_data <-
x$meta_data %>%
filter(.data$stratified == TRUE & .data$variable %in% include) %>%
select(.data$variable, .data$survfit) %>%
mutate(
test = map(.data$variable, ~ test[[.x]] %||% "logrank"),
test_info = map(
.data$test,
function(test) .get_add_p_test_fun("tbl_survfit", test = test, env = caller_env)
),
test_name = map_chr(.data$test_info, ~ pluck(.x, "test_name"))
)
x$table_body <-
left_join(x$table_body, meta_data[c("variable", "test_name")], by = "variable") %>%
select(.data$variable, .data$test_name, everything())
test.args <-
.formula_list_to_named_list(
x = test.args,
var_info = x$table_body,
arg_name = "test.args",
type_check = chuck(type_check, "is_named", "fn"),
type_check_msg = chuck(type_check, "is_named", "msg")
)
purrr::walk(
x$meta_data$survfit,
function(suvfit) {
survfit_call <- suvfit$call %>% as.list()
call_index <- names(survfit_call) %in% c("formula", "data") %>% which()
rlang::call2(rlang::expr(stats::model.frame), !!!survfit_call[call_index]) %>%
safe_survfit_eval()
}
)
x$meta_data <-
meta_data %>%
mutate(
test_result = pmap(
list(.data$test_info, .data$variable, .data$survfit),
function(test_info, variable, survfit) {
.run_add_p_test_fun(
x = test_info, data = survfit,
variable = variable,
test.args = test.args[[variable]]
)
}
),
p.value = map_dbl(.data$test_result, ~ pluck(.x, "df_result", "p.value")),
stat_test_lbl = map_chr(.data$test_result, ~ pluck(.x, "df_result", "method"))
) %>%
select(.data$variable, .data$test_result, .data$p.value, .data$stat_test_lbl) %>%
{
left_join(x$meta_data, ., by = "variable")
}
x$call_list <- updated_call_list
add_p_merge_p_values(x, meta_data = x$meta_data, pvalue_fun = pvalue_fun)
}
add_p.tbl_svysummary <- function(x, test = NULL, pvalue_fun = NULL,
include = everything(), test.args = NULL, ...) {
updated_call_list <- c(x$call_list, list(add_p = match.call()))
assert_package("survey", "add_p.tbl_svysummary()")
test <- test %||%
get_theme_element("add_p.tbl_svysummary-arg:test") %||%
get_theme_element("add_p.tbl_summary-arg:test")
pvalue_fun <-
pvalue_fun %||%
get_theme_element("add_p.tbl_svysummary-arg:pvalue_fun") %||%
get_theme_element("add_p.tbl_summary-arg:pvalue_fun") %||%
get_theme_element("pkgwide-fn:pvalue_fun") %||%
getOption("gtsummary.pvalue_fun", default = style_pvalue) %>%
gts_mapper("add_p(pvalue_fun=)")
include <-
.select_to_varnames(
select = {{ include }},
data = select(x$inputs$data$variables, any_of(x$meta_data$variable)),
var_info = x$table_body,
arg_name = "include"
)
if (is.null(x$df_by)) {
stop(paste0(
"Cannot add comparison when no 'by' variable ",
"in original `tbl_svysummary()` call"
), call. = FALSE)
}
test <-
.formula_list_to_named_list(
x = test,
data = select(x$inputs$data$variables, any_of(x$meta_data$variable)),
var_info = x$table_body,
arg_name = "test",
type_check = chuck(type_check, "is_function_or_string", "fn"),
type_check_msg = chuck(type_check, "is_function_or_string", "msg")
)
if (!is.function(pvalue_fun)) {
stop("Input 'pvalue_fun' must be a function.", call. = FALSE)
}
caller_env <- rlang::caller_env()
meta_data <-
x$meta_data %>%
select(.data$variable, .data$summary_type) %>%
filter(.data$variable %in% include) %>%
mutate(
test = map2(
.data$variable, .data$summary_type,
function(variable, summary_type) {
.assign_test_tbl_svysummary(
data = x$inputs$data, variable = variable, summary_type = summary_type,
by = x$by, test = test
)
}
),
test_info = map(
.data$test,
function(test) .get_add_p_test_fun("tbl_svysummary", test = test, env = caller_env)
),
test_name = map_chr(.data$test_info, ~ pluck(.x, "test_name"))
)
x$table_body <-
left_join(x$table_body, meta_data[c("variable", "test_name")], by = "variable") %>%
select(.data$variable, .data$test_name, everything())
test.args <-
.formula_list_to_named_list(
x = test.args,
data = select(x$inputs$data, any_of(include)),
var_info = x$table_body,
arg_name = "test.args",
type_check = chuck(type_check, "is_named", "fn"),
type_check_msg = chuck(type_check, "is_named", "msg")
)
x$meta_data <-
meta_data %>%
mutate(
test_result = pmap(
list(.data$test_info, .data$variable, .data$summary_type),
function(test_info, variable, summary_type) {
.run_add_p_test_fun(
x = test_info, data = .env$x$inputs$data,
by = .env$x$inputs$by, variable = variable,
type = summary_type,
test.args = test.args[[variable]]
)
}
),
p.value = map_dbl(.data$test_result, ~ pluck(.x, "df_result", "p.value")),
stat_test_lbl = map_chr(.data$test_result, ~ pluck(.x, "df_result", "method"))
) %>%
select(.data$variable, .data$test_result, .data$p.value, .data$stat_test_lbl) %>%
{
left_join(x$meta_data, ., by = "variable")
}
x$call_list <- updated_call_list
add_p_merge_p_values(x, meta_data = x$meta_data, pvalue_fun = pvalue_fun)
}
add_p.tbl_continuous <- function(x, test = NULL, pvalue_fun = NULL,
include = everything(), test.args = NULL,
group = NULL, ...) {
updated_call_list <- c(x$call_list, list(add_p = match.call()))
pvalue_fun <-
pvalue_fun %||%
get_theme_element("pkgwide-fn:pvalue_fun", default = style_pvalue) %>%
gts_mapper("add_p(pvalue_fun=)")
include <-
.select_to_varnames(
select = {{ include }},
data = select(x$inputs$data, any_of(x$meta_data$variable)),
var_info = x$table_body,
arg_name = "include"
)
group <-
.select_to_varnames(
select = {{ group }},
data = x$inputs$data,
arg_name = "group"
)
test <-
.formula_list_to_named_list(
x = test,
data = select(x$inputs$data, any_of(x$meta_data$variable)),
var_info = x$table_body,
arg_name = "test",
type_check = chuck(type_check, "is_function_or_string", "fn"),
type_check_msg = chuck(type_check, "is_function_or_string", "msg")
)
if (!is.function(pvalue_fun)) {
stop("Input 'pvalue_fun' must be a function.", call. = FALSE)
}
caller_env <- rlang::caller_env()
meta_data <-
x$meta_data %>%
select(.data$variable, .data$summary_type) %>%
filter(.data$variable %in% .env$include) %>%
mutate(
test =
map(
.data$variable,
function(variable) {
.assign_test_tbl_continuous(
data = x$inputs$data, continuous_variable = x$inputs$variable,
variable = variable,
by = x$inputs$by, group = group, test = test
)
}
),
test_info =
map(
.data$test,
function(test) .get_add_p_test_fun("tbl_continuous", test = test, env = caller_env)
),
test_name = map_chr(.data$test_info, ~ pluck(.x, "test_name"))
)
x$table_body <-
x$table_body %>%
select(-any_of(c("test_name", "test_result"))) %>%
left_join(meta_data[c("variable", "test_name")], by = "variable") %>%
select(.data$variable, .data$test_name, everything())
test.args <-
.formula_list_to_named_list(
x = test.args,
data = select(x$inputs$data, any_of(include)),
var_info = x$table_body,
arg_name = "test.args",
type_check = chuck(type_check, "is_named", "fn"),
type_check_msg = chuck(type_check, "is_named", "msg")
)
x$meta_data <-
meta_data %>%
mutate(
test_result = pmap(
list(.data$test_info, .data$variable, .data$summary_type),
function(test_info, variable, summary_type) {
.run_add_p_test_fun(
x = test_info, data = .env$x$inputs$data,
by = .env$x$inputs$by, variable = variable,
group = group, type = summary_type,
test.args = test.args[[variable]], tbl = x,
continuous_variable = x$inputs$variable
)
}
),
p.value = map_dbl(.data$test_result, ~ pluck(.x, "df_result", "p.value")),
stat_test_lbl = map_chr(.data$test_result, ~ pluck(.x, "df_result", "method"))
) %>%
select(.data$variable, .data$test_result, .data$p.value, .data$stat_test_lbl) %>%
{
left_join(
x$meta_data %>% select(-any_of(c("test_result", "p.value", "stat_test_lbl"))),
.,
by = "variable")
}
x$call_list <- updated_call_list
add_p_merge_p_values(x, meta_data = x$meta_data, pvalue_fun = pvalue_fun)
} |
hyper_tibble <- function(x, ..., na.rm = TRUE) {
UseMethod("hyper_tibble")
}
hyper_tibble.character <- function(x, ..., na.rm = TRUE) {
tidync(x) %>% hyper_filter(...) %>% hyper_tibble()
}
hyper_tibble.tidync<- function(x, ..., na.rm = TRUE) {
slabs <- hyper_array(x, ...)
if (na.rm) all_na <- Reduce(`&`, lapply(slabs,
function(a) is.na(as.vector(a))))
total_prod <- prod(dim(slabs[[1]]))
out <- tibble::as_tibble(lapply(slabs, as.vector))
prod_dims <- 1
trans <- attr(slabs, "transforms")
for (i in seq_along(trans)) {
nm <- names(trans)[i]
nr <- sum(trans[[i]]$selected)
out[[nm]] <- rep(dplyr::filter(trans[[nm]], .data$selected)[[nm]],
each = prod_dims, length.out = total_prod)
prod_dims <- prod_dims * nr
}
if (na.rm) out <- dplyr::filter(out, !all_na)
out
} |
test_that("XY plot and Cat groups works", {
g1 <- plot_xy_CatGroup(mtcars,
disp, hp,
cyl,
TextXAngle = 45)
expect_s3_class(g1, "ggplot")
expect_equal(g1$theme$text$size, 20)
expect_equal(g1$labels$x[1], "disp")
expect_equal(g1$labels$y[1], "hp")
expect_equal(g1$guides$x$angle, 45)
}) |
bootstrapHet <-
function(datafile,ndigit=3, nrepet=1000)
{
input=read.table(file=datafile, sep='\t', colClasses='character')
noext= gsub("[.].*$","",datafile)
nloci=ncol(input)-2
whereNbSamples=grep('NbSamples',input[,1])
npops=gsub( "[^0123456789]", "", input[whereNbSamples,1])
npops=as.numeric(npops)
whereSampleSize =grep('SampleSize',input[,1])
popsizes=as.numeric(c(gsub('[^0123456789]', "", input[whereSampleSize,1])))
whereSampleName =grep('SampleName',input[,1])
popnames=(c(gsub('SampleName=', "", input[whereSampleName,1])))
matinput=input[,3:ncol(input)]
xsums=rep(NA,times=nrow(matinput))
for (i in 1:nrow(matinput)){ xsums[i]=sum(nchar(matinput[i,])) }
emptyrows=which(xsums==0)
matinput=matinput[-emptyrows,]
kvec=vector(mode='numeric',nloci)
for (i in 1:nloci)
{
alleles=matinput[,i]
vec=unique(alleles)
vec=paste(vec,collapse='')
vec=gsub( "[^[:alnum:]]", "", vec)
k=nchar(vec)/ndigit
kvec[i]=k
}
MAX=max(kvec)
results=matrix(NA,2*nloci,MAX)
missing=rep(NA, times=nloci)
nbk=rep(NA, times=nloci)
n.alleles=rep(NA, times=nloci)
for (j in 1:nloci)
{
alleles=matinput[,j]
totaln=length(alleles)
vec=unique(alleles)
vec=paste(vec,collapse='')
vec=gsub( "[^[:alnum:]]", "", vec)
k=nchar(vec)/ndigit
sampsize=paste(alleles,collapse='')
sampsize=gsub( "[^[:alnum:]]", "", sampsize)
sampsize=(nchar(sampsize)/ndigit)
missingABS=length(grep('[?]',alleles))
missing[j]=round((100*(missingABS/totaln)),2)
nbk[j]=k
n.alleles[j]=sampsize/2
for (m in 1:k)
{
alleleID=substr(vec,(m*ndigit)-(ndigit-1),m*ndigit)
results[(2*j)-1,m]=alleleID
count=0
for (z in 1:length(alleles))
{
if (alleles[z]==alleleID) count=count+1
}
results[2*j,m]=round(count/sampsize,3)
}
}
for (j in 1:nloci)
{
ordre=order(results[(2*j)-1,])
results[(2*j)-1,]=results[(2*j)-1,ordre]
results[(2*j),]=results[(2*j),ordre]
}
loc.col=NULL
missing.col=NULL
k.col=NULL
n.alleles.col=NULL
for (i in 1:nloci)
{
loc.col=c(loc.col,i,NA)
missing.col=c(missing.col,missing[i],NA)
k.col=c(k.col,nbk[i],NA)
n.alleles.col=c(n.alleles.col,n.alleles[i],NA)
}
allpopresults=NULL
matpopresults=NULL
matpopcounts=NULL
popsizes2=2*popsizes
for (v in 1:npops)
{
popmissing=rep(NA,times=nloci)
popnbk=rep(NA,times=nloci)
pop.n.alleles=rep(NA,times=nloci)
popresults=matrix(NA,2*nloci,MAX)
popcounts=matrix(NA,2*nloci,MAX)
popno=v
if (v==1) first=1
if (v>1) first=sum(popsizes2[1:(popno-1)])+1
last=sum(popsizes2[1:popno])
popdata=matinput[first:last,]
for (j in 1:nloci)
{
alleles=popdata[,j]
vecalleles=results[(2*j)-1,]
k=nbk[j]
sampsize=paste(alleles,collapse='')
sampsize=gsub( "[^0123456789]", "", sampsize)
sampsize=(nchar(sampsize)/ndigit)
missingABS=length(grep('[?]',alleles))
popmissing[j]=round((100*(missingABS/popsizes2[v])),2)
pop.n.alleles[j]=sampsize/2
for (m in 1:k)
{
alleleID=vecalleles[m]
count=0
for (z in 1:length(alleles))
{
if (alleles[z]==alleleID) count=count+1
}
popresults[(2*j),m]= round(count/sampsize,3)
popresults[(2*j)-1,]=vecalleles
popcounts[(2*j),m]= count
popcounts[(2*j)-1,]=vecalleles
if (popresults[2*j,m]=='NaN') popresults[2*j,m]=0
}
popnbk[j]= length(which(popresults[2*j,]>0))
}
pop.missing.col=NULL
pop.k.col=NULL
pop.n.alleles.col=NULL
for (i in 1:nloci) {
pop.missing.col=c(pop.missing.col,popmissing[i],NA)
pop.k.col=c(pop.k.col,popnbk[i],NA)
pop.n.alleles.col=c(pop.n.alleles.col,pop.n.alleles[i],NA)
}
table.popresults=cbind(loc.col,pop.n.alleles.col,pop.missing.col, pop.k.col, popresults)
blank.row=rep(NA,times=ncol(table.popresults))
blank.row[1]=popnames[v]
allpopresults=rbind(allpopresults,blank.row,table.popresults)
matpopresults=rbind(matpopresults,popresults)
matpopcounts=rbind(matpopcounts,popcounts)
}
NAallpopresults=allpopresults
allpopn=NAallpopresults[,2]
allpopn=allpopn[!is.na(allpopn)]
allpopk=NAallpopresults[,4]
allpopk=allpopk[!is.na(allpopk)]
first.col=NAallpopresults[,1]
first.col=first.col[!is.na(first.col)]
allpopHo=NULL
allpopSampN=NULL
for (v in 1:npops)
{
popHo=rep(NA,times=nloci)
popSampN=rep(NA, times=nloci)
popno=v
if (v==1) first=1
if (v>1) first=sum(popsizes2[1:(popno-1)])+1
last=sum(popsizes2[1:popno])
popdata=matinput[first:last,]
for (j in 1:nloci)
{
if (allpopk[((v-1)*nloci)+j]>0) {
alleles=popdata[,j]
vec.missing=(which(alleles[]=='?'))
if (sum(vec.missing)==0) alleles2=alleles else alleles2=alleles[-vec.missing]
true.n=length(alleles2)/2
count=0
for (n in 1:(true.n))
{
second.allele= alleles2[(2*n)]
if (alleles2[(2*n)-1]!=second.allele) count=count+1
}
popHo[j]= round(count/true.n, 3)
popSampN[j]=true.n
}}
allpopHo=cbind(allpopHo,popHo)
allpopSampN=cbind(allpopSampN, popSampN)
}
allpopHe=NULL
for (v in 1:npops)
{
popHe=rep(NA,times=nloci)
popno=v
first=(((2*popno)-2)*nloci)+1
last=2*popno*nloci
freqdata=matpopresults[first:last,]
for (j in 1:nloci)
{
if (allpopk[((v-1)*nloci)+j]>0) {
popHe[j]=round(1-sum(as.numeric(freqdata[2*j,])^2, na.rm=T),3)
}}
allpopHe=cbind(allpopHe,popHe)
}
table.Ho=as.matrix(as.vector(allpopHo), ncol=1)
table.He=as.matrix(as.vector(allpopHe), ncol=1)
MeanHo=rep(NA,times=npops)
MeanHe=rep(NA,times=npops)
for (v in 1:npops)
{
MeanHo[v]=round(sum(allpopHo[,v]*(allpopSampN[,v]/sum(allpopSampN[,v]))),3)
MeanHe[v]=round(sum(allpopHe[,v]*(allpopSampN[,v]/sum(allpopSampN[,v]))),3)
}
table.stats=cbind(table.Ho,table.He)
if (npops>1) {
for (p in 2:npops)
{ table.stats=rbind(table.stats[1:(((p-1)*nloci)+p-2),], NA, table.stats[(((p-1)*nloci)+p-1):nrow(table.stats),]) } }
table.stats=rbind(NA,table.stats)
table.stats=cbind(first.col,table.stats)
col.name=rep('',times=ncol(table.stats))
col.name[1]= 'Locus
col.name[2]= 'Ho'
col.name[3]= 'He'
colnames(table.stats)=col.name
filename3=paste(noext,'_bootHe.txt',sep='')
for (r in 1:nrow(table.stats))
{
for (c in 1:ncol(table.stats))
{
if (is.na(table.stats[r,c])==T) table.stats[r,c]=''
}
}
write.table(table.stats, file=filename3, quote=F, row.names=F, col.names=T, sep='\t')
simHo=matrix(NA, nrow=npops, ncol=nrepet)
simHe=matrix(NA, nrow=npops, ncol=nrepet)
for (repn in 1:nrepet)
{
allpopresults=NULL
matpopresults=NULL
matpopcounts=NULL
popsizes2=2*popsizes
for (v in 1:npops)
{
popmissing=rep(NA,times=nloci)
popnbk=rep(NA,times=nloci)
pop.n.alleles=rep(NA,times=nloci)
popresults=matrix(NA,2*nloci,MAX)
popcounts=matrix(NA,2*nloci,MAX)
popno=v
if (v==1) first=1
if (v>1) first=sum(popsizes2[1:(popno-1)])+1
last=sum(popsizes2[1:popno])
popdata=matinput[first:last,]
popdatacopy=popdata
ech=sample(1:(nrow(popdata)/2), (nrow(popdata)/2), replace=T)
for (x in 1:length(ech))
{
popdata[((2*x)-1),]=popdatacopy[((ech[x]*2)-1),]
popdata[(2*x),]=popdatacopy[(ech[x]*2),]
}
locsimHo=rep(NA,times=nloci)
for (j in 1:nloci)
{
if (allpopk[((v-1)*nloci)+j]>0)
{
alleles=popdata[,j]
vec.missing=(which(alleles[]=='?'))
if (sum(vec.missing)==0) alleles2=alleles else alleles2=alleles[-vec.missing]
true.n=length(alleles2)/2
count=0
for (n in 1:(true.n))
{
second.allele= alleles2[(2*n)]
if (alleles2[(2*n)-1]!=second.allele) count=count+1
}
locsimHo[j]= round(count/true.n, 3)
}
alleles=popdata[,j]
vecalleles=results[(2*j)-1,]
k=nbk[j]
sampsize=paste(alleles,collapse='')
sampsize=gsub( "[^0123456789]", "", sampsize)
sampsize=(nchar(sampsize)/ndigit)
missingABS=length(grep('[?]',alleles))
popmissing[j]=round((100*(missingABS/popsizes2[v])),2)
pop.n.alleles[j]=sampsize/2
for (m in 1:k)
{
alleleID=vecalleles[m]
count=0
for (z in 1:length(alleles))
{
if (alleles[z]==alleleID) count=count+1
}
popresults[(2*j),m]= round(count/sampsize,3)
popresults[(2*j)-1,]=vecalleles
popcounts[(2*j),m]= count
popcounts[(2*j)-1,]=vecalleles
if (popresults[2*j,m]=='NaN') popresults[2*j,m]=0
}
popnbk[j]= length(which(popresults[2*j,]>0))
}
matpopresults=rbind(matpopresults,popresults)
matpopcounts=rbind(matpopcounts,popcounts)
simHo[v,repn]=mean(locsimHo)
}
for (v in 1:npops)
{
locsimHe=rep(NA, times=nloci)
popno=v
first=(((2*popno)-2)*nloci)+1
last=2*popno*nloci
freqdata=matpopresults[first:last,]
for (j in 1:nloci)
{
if (allpopk[((v-1)*nloci)+j]>0) {
locsimHe[j]=round(1-sum(as.numeric(freqdata[2*j,])^2, na.rm=T),3)
}}
simHe[v,repn]=mean(locsimHe)
}
}
CIs=matrix(NA, nrow=npops, ncol=7)
for (j in 1:nrow(CIs))
{
CIs[j,1]=j
CIs[j,2]=MeanHo[j]
CIs[j,3]=round(quantile(simHo[j,], probs=0.025, type=8),3)
CIs[j,4]=round(quantile(simHo[j,], probs=0.975, type=8),3)
CIs[j,5]=MeanHe[j]
CIs[j,6]=round(quantile(simHe[j,], probs=0.025, type=8),3)
CIs[j,7]=round(quantile(simHe[j,], probs=0.975, type=8),3)
}
colnames(CIs)=c('Pop
write.table(CIs, file=filename3, quote=F, row.names=F, col.names=T, sep='\t', append=T)
} |
knitr::opts_chunk$set(echo = TRUE)
suppressPackageStartupMessages(library(deSolve))
suppressPackageStartupMessages(library(hisse))
load("cladeSamplingVariables.Rsave")
GetProbs <- function(yini, times){
times=times
prob.subtree.cal.full <- lsoda(yini, times, func = "maddison_DE_bisse", padded.pars, initfunc="initmod_bisse", dllname = "hisse", rtol=1e-8, atol=1e-8)
probs.out <- prob.subtree.cal.full[-1,-1]
return(probs.out)
}
times=c(0, 20)
yini <-c(E0=1-0.5, E1=1-0.5, D0=0.5, D1=0)
left.branch.probs <- GetProbs(yini, times)
left.branch.probs[1:2]
times=c(0, 10)
yini <-c(E0=1-0.5, E1=1-0.5, D0=0.5, D1=0)
right.subA.probs <- GetProbs(yini, times)
right.subB.probs <- GetProbs(yini, times)
nodeR <- c(right.subA.probs[3:4] * right.subB.probs[3:4] * c(0.1, 0.2))
phi_A <- right.subA.probs[1:2]
times=c(10, 20)
yini <-c(E0=phi_A[1], E1=phi_A[2], D0=nodeR[1], D1=nodeR[2])
right.branch.probs <- GetProbs(yini, times)
right.branch.probs[1:2]
round(left.branch.probs[1:2],4) == round(right.branch.probs[1:2],4)
times=c(0, 10)
yini <-c(E0=1-0.25, E1=1-0.25, D0=0.25, D1=0)
right.subA.probs <- GetProbs(yini, times)
right.subB.probs <- GetProbs(yini, times)
nodeR <- c(right.subA.probs[3:4] * right.subB.probs[3:4] * c(0.1, 0.2))
phi_A <- right.subA.probs[1:2]
times=c(10, 20)
yini <-c(E0=phi_A[1], E1=phi_A[2], D0=nodeR[1], D1=nodeR[2])
right.branch.probs <- GetProbs(yini, times)
right.branch.probs[1:2]
left.branch.probs[1:2]
round(left.branch.probs[1:2],4) == round(right.branch.probs[1:2],4) |
context('efa')
test_that('efa works', {
set.seed(100)
y <- rnorm(100)
z <- rnorm(100)
data <- list()
data[["y1"]] <- y + .2 * rnorm(100)
data[["y2"]] <- y + .2 * rnorm(100)
data[["y3 plus"]] <- y + .2 * rnorm(100)
data[["z1"]] <- z + .2 * rnorm(100)
data[["z2"]] <- z + .2 * rnorm(100)
attr(data, 'row.names') <- seq_len(length(data[[1]]))
attr(data, 'class') <- 'data.frame'
efa <- jmv::efa(data = data, vars = c("y1","y2","y3 plus","z1","z2"),
nFactorMethod = 'fixed', nFactors = 2, hideLoadings = .3, rotation = 'varimax')
expect_equal("", efa$loadings$getCell(rowNo=2, "pc2")$value)
expect_equal(0.969985600224343, efa$loadings$getCell(rowNo=2, "pc1")$value)
expect_equal(0.00443466058941522, efa$loadings$getCell(rowNo=4, "uniq")$value)
expect_equal("y3 plus", efa$loadings$getCell(rowNo=3, "name")$value)
expect_error(jmv::efa(data = data, vars = c("y1","y2","y3 plus","z1","z2"), nFactorMethod = "fixed", nFactors = 6),
'Number of factors cannot be bigger than number of variables', fixed=TRUE)
data('ToothGrowth')
efa2 <- jmv::efa(data = ToothGrowth, vars = c("len","dose"), factorSummary = TRUE, rotation = 'varimax')
}) |
model_parameters.MixMod <- model_parameters.glmmTMB
ci.MixMod <- function(x,
ci = .95,
component = c("all", "conditional", "zi", "zero_inflated"),
robust = FALSE,
verbose = TRUE,
...) {
component <- match.arg(component)
if (is.null(.check_component(x, component, verbose = verbose))) {
return(NULL)
}
.ci_generic(
model = x,
ci = ci,
dof = Inf,
component = component,
robust = robust
)
}
standard_error.MixMod <- function(model,
effects = c("fixed", "random"),
component = c("all", "conditional", "zi", "zero_inflated"),
robust = FALSE,
verbose = TRUE,
...) {
component <- match.arg(component)
effects <- match.arg(effects)
if (effects == "random") {
insight::check_if_installed("lme4")
rand.se <- lme4::ranef(model, post_vars = TRUE)
vars.m <- attr(rand.se, "post_vars")
all_names <- attributes(rand.se)$dimnames
if (dim(vars.m[[1]])[1] == 1) {
rand.se <- sqrt(unlist(vars.m))
} else {
rand.se <- do.call(
rbind,
lapply(vars.m, function(.x) t(as.data.frame(sqrt(diag(.x)))))
)
rownames(rand.se) <- all_names[[1]]
colnames(rand.se) <- all_names[[2]]
rand.se <- list(rand.se)
names(rand.se) <- insight::find_random(model, flatten = TRUE)
}
rand.se
} else {
if (is.null(.check_component(model, component, verbose = verbose))) {
return(NULL)
}
vc <- insight::get_varcov(model, effects = "fixed", component = "all", robust = robust)
se <- sqrt(diag(vc))
x <- .data_frame(
Parameter = names(se),
SE = as.vector(se),
Component = "conditional"
)
zi_parms <- grepl("^zi_", x$Parameter)
if (any(zi_parms)) {
x$Component[zi_parms] <- "zero_inflated"
x$Parameter[zi_parms] <- gsub("^zi_(.*)", "\\1", x$Parameter[zi_parms])
}
.filter_component(x, component)
}
}
simulate_model.MixMod <- simulate_model.glmmTMB |
test_that("Simulating 2 dim symmetric BEKK based on estimated ts object", {
obj_spec <- bekk_spec()
x1 <- bekk_fit(obj_spec, StocksBonds, QML_t_ratios = FALSE, max_iter = 50, crit = 1e-9)
x2 <- bekk_sim(x1, nobs = 100)
expect_equal(nrow(x2), 100)
expect_equal(ncol(x2), 2)
})
test_that("Simulating 2 dim symmetric BEKK based on bekk_spec", {
obj_spec <- bekk_spec(model = list(type = "bekk", asymmetric = FALSE), N = 2,
init_values = as.matrix(c(0.019783677, -0.014962718, 0.085265736, 0.178859630, -0.007691659,
-0.037152006, 0.298147337, 0.981184605, 0.001337367, 0.013260377, 0.951431611)))
x2 <- bekk_sim(obj_spec, nobs = 100)
expect_equal(nrow(x2), 100)
expect_equal(ncol(x2), 2)
})
test_that("Simulating 3 dim symmetric BEKK based on estimated xts object", {
obj_spec <- bekk_spec()
x1 <- bekk_fit(obj_spec, GoldStocksBonds, QML_t_ratios = FALSE, max_iter = 50, crit = 1e-9)
x2 <- bekk_sim(x1, nobs = 100)
expect_equal(nrow(x2), 100)
expect_equal(ncol(x2), 3)
})
test_that("Simulating 3 dim symmetric BEKK based on bekk_spec", {
obj_spec <- bekk_spec(model = list(type = "bekk", asymmetric = FALSE), N = 3,
init_values = as.matrix(c(0.0010122220, -0.0002678085, 0.0001905036, 0.0008937830, 0.0003111280,
0.0003893194, 0.2453276126, 0.0222127631, -0.0434456548, -0.0366629406,
0.2637613982, -0.0248105673, 0.0624407934, -0.0016446789, 0.1733957064,
0.9651528236, -0.0060973318, 0.0155928988, 0.0125157899, 0.9606411455,
0.0008724460, -0.0196494968, -0.0009070321, 0.9801993180)))
x2 <- bekk_sim(obj_spec, nobs = 100)
expect_equal(nrow(x2), 100)
expect_equal(ncol(x2), 3)
})
test_that("Simulating 2 dim asymmetric BEKK based on estimated ts object", {
obj_spec <- bekk_spec(model = list(type = 'bekk', asymmetric = TRUE))
x1 <- bekk_fit(obj_spec, StocksBonds, QML_t_ratios = FALSE, max_iter = 50, crit = 1e-9)
x2 <- bekk_sim(x1, nobs = 100)
expect_equal(nrow(x2), 100)
expect_equal(ncol(x2), 2)
})
test_that("Simulating 2 dim asymmetric BEKK based on bekk_spec", {
obj_spec <- bekk_spec(model = list(type = "bekk", asymmetric = TRUE), N = 2,
init_values = as.matrix(c(0.019783677, -0.014962718, 0.085265736, 0.178859630, -0.007691659,
-0.037152006, 0.298147337, 0.05234,-0.02,0.032,0.1032, 0.981184605, 0.001337367, 0.013260377, 0.951431611)))
x2 <- bekk_sim(obj_spec, nobs = 100)
expect_equal(nrow(x2), 100)
expect_equal(ncol(x2), 2)
}) |
source("common.r")
png(file="game_monthly_revenue_extra_rate.png", width=1000, height=400, res=120)
op <- par(mar=c(2.5, 2, 2, 6), lwd=2)
res <- dbGetQuery(con, "
select date_trunc('month',created_at) as month,
count(case when price > min_price then true else null end)::numeric / count(*)::numeric as p
from purchases
where status = 1 and object_type = 1 and min_price is not null and min_price > 0
group by month
order by month
")
res$month <- as.Date(res$month)
res$p <- res$p * 100
res <- truncate_dates(res, "month")
plot(res$p,
type="b",
main="Percent of payments to paid games giving extra money",
col=primary_color,
ylim=c(0,50),
axes=FALSE)
months_axis(res$month, skip=FALSE)
stops <- axis_stops(50, 5, 10)
labels <- format(floor(stops), trim=TRUE, big.mark=",", scientific=FALSE)
labels <- paste(labels, "%", sep="")
axis(4,
col=axis_color,
at=stops,
labels=labels,
las=2) |
`extractAIC.cca` <-
function (fit, scale = 0, k = 2, ...)
{
n <- nobs(fit)
edf <- 1
if (!is.null(fit$CCA$rank)) edf <- edf + fit$CCA$qrank
if (!is.null(fit$pCCA$QR)) edf <- edf + fit$pCCA$QR$rank
RSS <- deviance(fit)
dev <- if(scale > 0)
RSS/scale - n
else n * log(RSS/n)
c(edf, dev + k*edf)
} |
context("get_titles")
test_that("get titles", {
df <- data.frame(x = 1:3, y = 1:3)
p <- ggplot(df, aes(x, y)) + geom_point()
expect_s3_class(get_title(p), "zeroGrob")
expect_s3_class(get_subtitle(p), "zeroGrob")
p <- p + labs(title = "Title", subtitle = "Subtitle")
expect_s3_class(get_title(p), "titleGrob")
expect_s3_class(get_subtitle(p), "titleGrob")
}) |
library(textrecipes)
library(recipes)
library(tibble)
text <- tibble(text = c(
"I would not eat them here or there.",
"I would not eat them anywhere.",
"I would not eat green eggs and ham.",
"I do not like them, Sam-I-am."
))
test_that("lemmatization works", {
skip_on_cran()
skip_if_no_python_or_no_spacy()
rec <- recipe(~text, data = text) %>%
step_tokenize(all_predictors(), engine = "spacyr") %>%
step_lemma(all_predictors())
prepped_data <- rec %>%
prep() %>%
bake(new_data = NULL)
expect_s3_class(prepped_data$text, "textrecipes_tokenlist")
expect_equal(
vctrs::field(prepped_data$text, "tokens"),
list(
c("I", "would", "not", "eat", "they", "here", "or", "there", "."),
c("I", "would", "not", "eat", "they", "anywhere", "."),
c("I", "would", "not", "eat", "green", "egg", "and", "ham", "."),
c("I", "do", "not", "like", "they", ",", "Sam", "-", "I", "-", "am", ".")
)
)
expect_null(
attr(prepped_data$text, "lemma")
)
})
test_that("lemmatization errors if lemma attribute doesn't exists", {
rec <- recipe(~text, data = text) %>%
step_tokenize(all_predictors()) %>%
step_lemma(all_predictors())
expect_error(
prep(rec)
)
})
test_that("printing", {
skip_on_cran()
skip_if_no_python_or_no_spacy()
rec <- recipe(~text, data = text) %>%
step_tokenize(all_predictors(), engine = "spacyr") %>%
step_lemma(all_predictors())
expect_output(print(rec))
expect_output(prep(rec, verbose = TRUE))
})
test_that("empty selection prep/bake is a no-op", {
rec1 <- recipe(mpg ~ ., mtcars)
rec2 <- step_lemma(rec1)
rec1 <- prep(rec1, mtcars)
rec2 <- prep(rec2, mtcars)
baked1 <- bake(rec1, mtcars)
baked2 <- bake(rec2, mtcars)
expect_identical(baked1, baked1)
})
test_that("empty selection tidy method works", {
rec <- recipe(mpg ~ ., mtcars)
rec <- step_lemma(rec)
expect_identical(
tidy(rec, number = 1),
tibble(terms = character(), id = character())
)
rec <- prep(rec, mtcars)
expect_identical(
tidy(rec, number = 1),
tibble(terms = character(), id = character())
)
})
test_that("empty printing", {
rec <- recipe(mpg ~ ., mtcars)
rec <- step_lemma(rec)
expect_snapshot(rec)
rec <- prep(rec, mtcars)
expect_snapshot(rec)
}) |
`bootstrap.wa` <- function(object, n.boot = 1000,
verbose = TRUE, ...) {
retval <- predict(object, object$orig.x, CV = "bootstrap",
n.boot = n.boot, verbose = verbose)
.call <- match.call()
.call[[1]] <- as.name("bootstrap")
retval$call = .call
class(retval) <- "bootstrap.wa"
return(retval)
} |
estimateb <- function(data,
times,
preb,
lag,
theta,
gFunc,
v,
dObj) {
n <- nrow(x = data)
m <- length(x = theta)
nTimes <- length(x = times)
tEl <- -outer(X = data[,dObj$E] + lag, Y = times, FUN = "-")
gFuncE <- gFunction(gFunc = gFunc, u = tEl, theta = theta, knts = v)
expgE <- exp(x = theta[1L] + gFuncE$gu)
Ybt <- preb$Y * {preb$wt0 + preb$wt1*expgE}
dNbt <- preb$dNtTilde
Yb.sum <- colSums(x = Ybt)
dLambdaHat = colSums(x = dNbt) / Yb.sum
YdLambdaHat = sweep(x = Ybt,
MARGIN = 2L,
STATS = dLambdaHat,
FUN = "*")
dNmYdLambdaHat <- dNbt - YdLambdaHat
estb <- rep(x = 0.0, times = m)
influmat <- matrix(data = 0.0, nrow = n, ncol = m)
ZbmZbar <- list()
for (d in 1L:m) {
Z <- gFuncE$gutheta[[ d ]]
Z[data[,dObj$A] == 0L,] <- 0.0
Zbar <- colSums(x = Ybt*Z) / Yb.sum
ZbmZbar[[ d ]] <- t(x = t(x = Z) - Zbar)
estb[d] <- sum( ZbmZbar[[ d ]]*dNbt )
influmat[,d] <- rowSums(x = ZbmZbar[[ d ]] * {dNmYdLambdaHat})
}
meatb <- crossprod(x = influmat)
dNbt <- t(x = dNbt)
gradb <- matrix(data = 0.0, nrow = m, ncol = m)
for (d1 in 1L:m) {
for (d2 in d1:m) {
res <- colSums(x = ZbmZbar[[ d1 ]]*ZbmZbar[[ d2 ]]*Ybt) / Yb.sum
gradb[d1,d2] <- sum(dNbt*res)
gradb[d2,d1] <- gradb[d1,d2]
}
}
return( list("estb" = estb, "gradb" = gradb, "meatb" = meatb) )
} |
library(tidyverse)
library(ggforce)
rule30 <- read_csv(here::here("genuary", "2021", "2021-2", "data", "rule30.csv"), col_names = FALSE)
rule30_xy <- rule30 %>%
mutate(y = row_number()) %>%
pivot_longer(`X1`:`X101`, names_to = "x") %>%
filter(value == 1) %>%
mutate(
x = as.numeric(str_remove(x, "X")),
color1 = x %% y,
color2 = x %% 2
)
ggplot(rule30_xy) +
geom_voronoi_tile(aes(x, y, fill = color1), color = "grey20", size = 0.1) +
scale_y_reverse() +
scale_fill_viridis_c(option = "magma") +
coord_cartesian(expand = FALSE) +
theme_void() +
theme(
legend.position = "none",
plot.background = element_rect(fill = "grey10", color = NA),
plot.margin = margin(2, 2, 2, 2)
)
ggsave(here::here("genuary", "2021", "2021-2", "2021-2.png"), dpi = 320, width = 7, height = 3.7) |
esComplete <- function(dfList, lastItemList) {
dfCheck <- sapply(dfList, FUN = is.data.frame)
if(any(dfCheck == FALSE)) {
stop("Error in first argument 'dfList': All elements in the list must be of type 'data.frame'.")
}
listCheck <- sapply(lastItemList, FUN = is.list) & !sapply(lastItemList, FUN = is.data.frame)
if(any(listCheck == FALSE)) {
stop("Error in second argument 'lastItemList'. Make sure each list element is again a list, containing exactly 4 entries (for detailed information enter ?esComplete).")
}
svyNamesFromDfList <- names(dfList)
if(any(is.null(svyNamesFromDfList))){
stop("The argument 'dfList' contains at least one data.frame without a name. Prior to this function apply functions 'listES' and 'removeInvalidDf' (in this order).")
}
svyNamesFromLastItemList <- c()
for(m in 1:length(lastItemList)) {
svyNamesFromLastItemList <- c(svyNamesFromLastItemList, sapply(lastItemList[[m]][1], FUN = as.character))
}
idxOrderComplete <- match(svyNamesFromLastItemList, svyNamesFromDfList)
if(any(is.na(idxOrderComplete))) {
isNA <- which(is.na(idxOrderComplete))
cat("Prior to this function apply function 'rmInvalid'.\n")
stop(paste0(svyNamesFromLastItemList[isNA], " can't be found in the list that contains the raw event sampling data frames."))
}
if(any(duplicated(idxOrderComplete))) {
idxDupl <- which(duplicated(idxOrderComplete))
maxOccurrence <- 1
for(o in idxDupl) {
maxOccurrence_n <- length(which(idxOrderComplete == idxOrderComplete[o]))
maxOccurrence <- ifelse(maxOccurrence_n > maxOccurrence, maxOccurrence_n, maxOccurrence)
}
}
checkStructureOfLastItemList <- list()
for(n in 1:length(lastItemList)) {
checkClass <- sapply(lastItemList[[n]], FUN = class)
checkNA <- sapply(lastItemList[[n]], FUN = is.na)
colNames <- sapply(lastItemList[[n]][c(2,4)], FUN = as.character)
colNameDontExist <-
any(is.na(match(colNames[!is.na(colNames)],
names(dfList[[idxOrderComplete[n]]]))))
if(colNameDontExist) {
stop("At least one of the column names in the 2nd argument can't be found in their respective data frame.")
} else {
checkStructureOfLastItemList[[n]] <- TRUE
}
if(length(which(is.na(colNames))) == 0) {
if(!is.numeric( unlist(dfList[[idxOrderComplete[n]]][colNames[1]]))) {
stop("If there is a condition in the questionnaire that must be met in order to determine which item is the last one to contain data, the condition must be numeric, i.e. at least one value (of type integer), according to which the last item is expected to contain data.")
} else {
checkStructureOfLastItemList[[n]] <-
c(checkStructureOfLastItemList[[n]], TRUE)
}
}
}
if(any(sapply(checkStructureOfLastItemList, function(x) any(x == FALSE)))) {
stop("Error in argument 'lastItemList'. It must be a list of lists, each inner list containing exactly 4 entries (for more detailed information enter ?esComplete).")
}
lastItemList_elemNo3_list <- sapply(lastItemList, function(x) x[[3]])
lastItemList_elemNo3 <-
unlist(lastItemList_elemNo3_list)[!is.na(unlist(lastItemList_elemNo3_list))]
true_lastItemList_elemNo3 <- lastItemList_elemNo3 < 0 |
lastItemList_elemNo3%%1 != 0
if(any(true_lastItemList_elemNo3)) {
stop(paste0("Error in argument 'lastItemList': Only integers > 0 are permitted as values upon which it depends which item of the event sampling questionnaire is the last one expected to contain data. You entered: ", lastItemList_elemNo3[true_lastItemList_elemNo3], ".\n\n"))
}
svyNamesFromLastItemList <- c()
svyNameOccurrence <- c()
for(i in 1:length(lastItemList)) {
svyName_i <- unlist(lastItemList[[i]][1])
svyNamesFromLastItemList <- c(svyNamesFromLastItemList, svyName_i)
svyNameOccurrence <- c(svyNameOccurrence, length(which(svyNamesFromLastItemList%in%svyName_i)))
}
maxOccurrence <- max(svyNameOccurrence)
dfListCompleteQuestionnaires <- list()
counter <- 1
for(k in idxOrderComplete) {
esVersion_k <- esCompleteSingleVersion(
dfList[[k]],
unlist(lastItemList[[counter]][1]),
unlist(lastItemList[[counter]][2]),
unlist(lastItemList[[counter]][3]),
unlist(lastItemList[[counter]][4]))
if(maxOccurrence > 1) {
idxIncomplete <- which(names(esVersion_k) == "INCOMPLETE")
colnames(esVersion_k)[idxIncomplete] <- paste0("INCOMPLETE_", svyNameOccurrence[counter])
outListName <- paste0(as.character(svyNamesFromLastItemList[counter]), "_", svyNameOccurrence[counter])
dfListCompleteQuestionnaires[[outListName]] <- esVersion_k
counter <- counter + 1
} else {
outListName <- as.character(svyNamesFromLastItemList[counter])
dfListCompleteQuestionnaires[[outListName]] <- esVersion_k
counter <- counter + 1
}
}
dfListCompleteQuestionnaires
} |
knitr::opts_chunk$set(echo = TRUE, fig.width = 7, fig.height = 5)
library(qtl2pattern)
dirpath <- "https://raw.githubusercontent.com/rqtl/qtl2data/master/DOex"
DOex <-
subset(
qtl2::read_cross2(file.path(dirpath, "DOex.zip")),
chr = "2")
tmpfile <- tempfile()
download.file(file.path(dirpath, "DOex_genoprobs_2.rds"), tmpfile, quiet=TRUE)
pr <- readRDS(tmpfile)
unlink(tmpfile)
tmpfile <- tempfile()
download.file(file.path(dirpath, "c2_snpinfo.rds"), tmpfile, quiet=TRUE)
snpinfo <- readRDS(tmpfile)
unlink(tmpfile)
snpinfo <- dplyr::rename(snpinfo, pos = pos_Mbp)
snpinfo <- qtl2::index_snps(DOex$pmap, snpinfo)
apr <- qtl2::genoprob_to_alleleprob(pr)
snpapr <- qtl2::genoprob_to_snpprob(apr, snpinfo)
dim(snpapr[["2"]])
dimnames(snpapr[["2"]])[[2]]
snppr <- qtl2::genoprob_to_snpprob(pr, snpinfo)
dim(snppr[["2"]])
dimnames(snppr[["2"]])[[2]]
rm(snpapr)
scan_snppr <- qtl2::scan1(snppr, DOex$pheno)
qtl2::find_peaks(scan_snppr, snpinfo)
top_snps_tbl <- top_snps_pattern(scan_snppr, snpinfo)
(patterns <- summary(top_snps_tbl))
head(summary(top_snps_tbl, "best"))
scan_pat <- scan1pattern(pr, DOex$pheno,
map = DOex$pmap,
patterns = patterns)
summary(scan_pat, DOex$pmap)
pat_names <- paste(c(52,43,16,20), colnames(scan_pat$scan), sep = "_")
plot(scan_pat$scan, DOex$pmap, lodcolumn = 2, col = "red", xlim = c(90,110), type = "b")
abline(v = c(96.5, 98.5), col = "darkgray", lwd = 2, lty = 2)
plot(scan_pat$scan, DOex$pmap, lodcolumn = 1, add = TRUE, col = "blue", type = "b")
plot(scan_pat$scan, DOex$pmap, lodcolumn = 3, add = TRUE, col = "purple", type = "b")
plot(scan_pat$scan, DOex$pmap, lodcolumn = 4, add = TRUE, col = "green", type = "b")
title("Scans for SDP 52 (blue), 43 (red), 16 (purple), 20 (green)")
plot(scan_pat$scan, DOex$pmap, lodcolumn = 2, col = "red")
abline(v = c(96.5, 98.5), col = "darkgray", lwd = 2, lty = 2)
plot(scan_pat$scan, DOex$pmap, lodcolumn = 1, add = TRUE, col = "blue")
plot(scan_pat$scan, DOex$pmap, lodcolumn = 3, add = TRUE, col = "purple")
plot(scan_pat$scan, DOex$pmap, lodcolumn = 4, add = TRUE, col = "green")
title("Scans for SDP 52 (blue), 43 (red), 16 (purple), 20 (green)")
oldpar <- par(mfrow = c(2,2))
cols <- c("blue","purple","red")
for(i in 1:4) {
plot(scan_pat$coef[[i]], DOex$pmap, columns = 1:3, col = cols, xlim = c(90,110), type = "b")
title(paste("Coefficients for", pat_names[i]))
if(i == 3) {
abline(v = c(96.5, 98.5), col = "darkgray", lwd = 2, lty = 2)
legend(104, -3, legend = c("ref","het","alt"),
col = cols, lty = 1, lwd = 2)
}
}
par(oldpar)
par(mfrow = c(2,2))
cols <- c("blue","purple","red")
for(i in 1:4) {
plot(scan_pat$coef[[i]], DOex$pmap, columns = 1:3, col = cols)
title(paste("Coefficients for", pat_names[i]))
if(i == 3) {
abline(v = c(96.5, 98.5), col = "darkgray", lwd = 2, lty = 2)
legend(125, -3, legend = c("ref","het","alt"),
col = cols, lty = 1, lwd = 2)
}
}
coefs2 <- qtl2::scan1coef(pr, DOex$pheno[,"OF_immobile_pct"], zerosum = FALSE)
x <- LETTERS[1:8]
ref <- outer(x,x,paste0)
ref <- ref[upper.tri(ref, diag=TRUE)]
ss <- 2 - sapply(stringr::str_split(ref, ""), function(x) x[1] == x[2])
alt <- ref[!stringr::str_detect(ref, c("A|B|C|D|G|H"))]
het <- ref[stringr::str_detect(ref, c("A|B|C|D|G|H")) & stringr::str_detect(ref, c("E|F"))]
altw <- ss[match(alt, ref, nomatch = 0)]
hetw <- ss[match(het, ref, nomatch = 0)]
refw <- ss[!stringr::str_detect(ref, c("E|F"))]
ref <- ref[!stringr::str_detect(ref, c("E|F"))]
coefsum <- coefs2
coefsum[,"AA"] <- apply(coefsum[,ref], 1, weighted.mean, w = refw)
coefsum[,"AB"] <- apply(coefsum[,het], 1, weighted.mean, w = hetw)
coefsum[,"BB"] <- apply(coefsum[,alt], 1, weighted.mean, w = altw)
colnames(coefsum)[1:3] <- c("ref","het","alt")
plot(coefsum, DOex$pmap, c("ref", "het", "alt", alt), xlim = c(90,110), ylim = c(-500, 500),
col = c(1,8,7,2:4), type = "b")
abline(h = mean(DOex$pheno[,"OF_immobile_pct"]), lwd = 2, col = "darkgrey", lty = 2)
abline(v = c(96.5, 98.5), col = "darkgray", lwd = 2, lty = 2)
title("Allele Coefficients for OF_immobile_pct")
legend(105, 80, legend = c("ref", "het", "alt", alt),
col = c(1,8,7,2:4), lty = 1, lwd = 2)
plot(coefsum, DOex$pmap, c("ref", "het", alt[-1]), xlim = c(90,110), ylim = c(55,90),
col = c(1,8,3:4), type = "b")
abline(h = mean(DOex$pheno[,"OF_immobile_pct"]), lwd = 2, col = "darkgrey", lty = 2)
abline(v = c(96.5, 98.5), col = "darkgray", lwd = 2, lty = 2)
title("Allele Pair Coefficients for OF_immobile_pct")
legend(107, 75, legend = c("ref", "het", alt[-1]),
col = c(1,8,3:4), lty = 1, lwd = 2)
scan_apr <- qtl2::scan1(apr, DOex$pheno)
coefs <- qtl2::scan1coef(apr, DOex$pheno)
coefs2 <- qtl2::scan1coef(pr, DOex$pheno)
alleles <- allele1(probD = pr,
scanH = scan_apr, coefH = coefs, coefD = coefs2,
scan_pat = scan_pat, map = DOex$pmap, alt = "E")
ggplot2::autoplot(alleles, scan_apr, DOex$pmap, frame = FALSE)
aa <- subset(alleles, sources = levels(alleles$source)[c(1,4:6)])
ggplot2::autoplot(aa, scan_apr, DOex$pmap, frame = FALSE)
pos = patterns$max_pos[patterns$sdp == 48]
wh <- which.min(abs(pos - DOex$pmap[[1]]))
geno <- apply(snppr[[1]][,,wh], 1, function(x) which.max(x))
geno <- factor(c("ref","het","alt")[geno], c("ref","het","alt"))
dat <- data.frame(DOex$pheno, geno = geno)
dat$x <- jitter(rep(1, nrow(dat)))
ggplot2::ggplot(dat) +
ggplot2::aes(x = x, y = OF_immobile_pct, col = geno, label = geno) +
ggplot2::geom_boxplot() +
ggplot2::geom_point() +
ggplot2::facet_wrap(~ geno)
tmpfile <- tempfile()
download.file(file.path(dirpath, "c2_genes.rds"), tmpfile, quiet=TRUE)
gene_tbl <- readRDS(tmpfile)
unlink(tmpfile)
class(gene_tbl) <- c("feature_tbl", class(gene_tbl))
out <- merge_feature(top_snps_tbl, snpinfo, scan_snppr, exons = gene_tbl)
summary(out, "pattern")
out$snp_type <- sample(c(rep("intron", 40), rep("exon", nrow(out) - 40)))
ggplot2::autoplot(out, "OF_immobile_pct")
ggplot2::autoplot(out, "OF_immobile_pct", "consequence")
qtl2::plot_genes(gene_tbl, xlim = c(96,99))
ggplot2::autoplot(gene_tbl)
ggplot2::autoplot(gene_tbl, top_snps_tbl = top_snps_tbl)
out <- gene_exon(top_snps_tbl, gene_tbl)
summary(out, gene = out$gene[1])
ggplot2::autoplot(out, top_snps_tbl)
query_variants <-
qtl2::create_variant_query_func(
file.path("qtl2shinyData", "CCmouse", "cc_variants.sqlite"))
query_genes <-
qtl2::create_gene_query_func(
file.path("qtl2shinyData", "CCmouse", "mouse_genes.sqlite"))
objects(envir = environment(query_variants))
get("dbfile", envir = environment(query_variants)) |
dist <- function(x, method = "euclidean", diag = FALSE, upper = FALSE, p = 2)
{
if(!is.na(pmatch(method, "euclidian")))
method <- "euclidean"
METHODS <- c("euclidean", "maximum",
"manhattan", "canberra", "binary", "minkowski")
method <- pmatch(method, METHODS)
if(is.na(method))
stop("invalid distance method")
if(method == -1)
stop("ambiguous distance method")
x <- as.matrix(x)
N <- nrow(x)
attrs <- if(method == 6L)
list(Size = N, Labels = dimnames(x)[[1L]], Diag = diag,
Upper = upper, method = METHODS[method],
p = p, call = match.call(), class = "dist")
else
list(Size = N, Labels = dimnames(x)[[1L]], Diag = diag,
Upper = upper, method = METHODS[method],
call = match.call(), class = "dist")
.Call(C_Cdist, x, method, attrs, p)
}
format.dist <- function(x, ...) format(as.vector(x), ...)
as.matrix.dist <- function(x, ...)
{
size <- attr(x, "Size")
df <- matrix(0, size, size)
df[row(df) > col(df)] <- x
df <- df + t(df)
labels <- attr(x, "Labels")
dimnames(df) <-
if(is.null(labels)) list(seq_len(size), seq_len(size)) else list(labels,labels)
df
}
as.dist <- function(m, diag = FALSE, upper = FALSE)
UseMethod("as.dist")
as.dist.default <- function(m, diag = FALSE, upper = FALSE)
{
if (inherits(m,"dist"))
ans <- m
else {
m <- as.matrix(m)
if(!is.numeric(m))
storage.mode(m) <- "numeric"
p <- nrow(m)
if(ncol(m) != p) warning("non-square matrix")
ans <- m[row(m) > col(m)]
attributes(ans) <- NULL
if(!is.null(rownames(m)))
attr(ans,"Labels") <- rownames(m)
else if(!is.null(colnames(m)))
attr(ans,"Labels") <- colnames(m)
attr(ans,"Size") <- p
attr(ans, "call") <- match.call()
class(ans) <- "dist"
}
if(is.null(attr(ans,"Diag")) || !missing(diag))
attr(ans,"Diag") <- diag
if(is.null(attr(ans,"Upper")) || !missing(upper))
attr(ans,"Upper") <- upper
ans
}
print.dist <-
function(x, diag = NULL, upper = NULL,
digits = getOption("digits"), justify = "none", right = TRUE, ...)
{
if(length(x)) {
if(is.null(diag))
diag <- attr(x, "Diag") %||% FALSE
if(is.null(upper))
upper <- attr(x,"Upper") %||% FALSE
m <- as.matrix(x)
cf <- format(m, digits = digits, justify = justify)
if(!upper)
cf[row(cf) < col(cf)] <- ""
if(!diag)
cf[row(cf) == col(cf)] <- ""
print(if(diag || upper) cf else cf[-1, -attr(x, "Size"), drop = FALSE],
quote = FALSE, right = right, ...)
} else {
cat(data.class(x),"(0)\n", sep = "")
}
invisible(x)
}
labels.dist <- function (object, ...) attr(object,"Labels") |
def_sXaug_Matrix_QRP_CHM_scaled <- function(Xaug,weight_X,w.ranef,H_global_scale) {
n_u_h <- length(w.ranef)
Xrows <- n_u_h+seq(length(weight_X))
Xaug <- .Dvec_times_Matrix_lower_block(weight_X,Xaug,n_u_h)
attr(Xaug, "get_from") <- "get_from_MME.sXaug_Matrix_QRP_CHM_scaled"
attr(Xaug, "BLOB") <- list2env(list(), parent=environment(.sXaug_Matrix_QRP_CHM_scaled))
attr(Xaug, "w.ranef") <- w.ranef
attr(Xaug, "n_u_h") <- n_u_h
attr(Xaug, "pforpv") <- ncol(Xaug)-n_u_h
attr(Xaug, "weight_X") <- weight_X
attr(Xaug, "H_global_scale") <- H_global_scale
return( Xaug )
}
.calc_t_Q_scaled <- function(BLOB, sXaug) {
if (eval(.spaMM.data$options$presolve_cond) && .calc_denseness(sXaug,relative = TRUE)>0.004 ) {
Matrix::tcrossprod(t(BLOB$solve_R_scaled), sXaug[,BLOB$perm])
} else {
solve(t(BLOB$R_scaled),t(sXaug[,BLOB$perm]))
}
}
.calc_hatval_Z_u_h_cols_on_left <- function(BLOB, sXaug) {
n_u_h <- attr(sXaug,"n_u_h")
tmp_t_Qq_scaled <- BLOB$t_Q_scaled[BLOB$seq_n_u_h,]
tmp_t_Qq_scaled@x <- tmp_t_Qq_scaled@x*tmp_t_Qq_scaled@x
tmp <- colSums(tmp_t_Qq_scaled)
phipos <- n_u_h+seq_len(nrow(sXaug)-n_u_h)
hatval_Z_ <- list(lev_lambda=tmp[-phipos],lev_phi=tmp[phipos])
}
.calc_Z_lev_lambda <- function(BLOB) {
lev_lambda <- BLOB$inv_factor_wd2hdv2w
lev_lambda@x <- lev_lambda@x*lev_lambda@x
lev_lambda <- colSums(lev_lambda)
}
.calc_Z_lev_phi <- function(BLOB, sXaug) {
n_u_h <- attr(sXaug,"n_u_h")
phipos <- (n_u_h+1L):nrow(sXaug)
lev_phi <- .tcrossprod(BLOB$inv_factor_wd2hdv2w, sXaug[phipos, BLOB$seq_n_u_h ], chk_sparse2mat = FALSE)
lev_phi@x <- lev_phi@x*lev_phi@x
lev_phi <- colSums(lev_phi)
}
.sXaug_Matrix_QRP_CHM_scaled <- function(sXaug,which="",szAug=NULL,B=NULL) {
BLOB <- attr(sXaug,"BLOB")
if (is.null(BLOB$blob)) {
BLOB$blob <- qr(sXaug)
BLOB$perm <- BLOB$blob@q + 1L
BLOB$R_scaled <- qrR(BLOB$blob,backPermute = FALSE)
delayedAssign("sortPerm", sort.list(BLOB$perm), assign.env = BLOB )
delayedAssign("seq_n_u_h", seq(attr(sXaug,"n_u_h")), assign.env = BLOB )
delayedAssign("sortPerm_u_h", BLOB$sortPerm[ BLOB$seq_n_u_h], assign.env = BLOB )
delayedAssign("u_h_cols_on_left", (max(BLOB$sortPerm_u_h)==attr(sXaug,"n_u_h")), assign.env = BLOB )
delayedAssign("use_R_block", (BLOB$u_h_cols_on_left && FALSE) , assign.env = BLOB )
delayedAssign("invsqrtwranef", 1/sqrt(attr(sXaug,"w.ranef")), assign.env = BLOB )
delayedAssign("solve_R_scaled",
as(.rawsolve(BLOB$R_scaled),"dtCMatrix"),
assign.env = BLOB )
delayedAssign("t_Q_scaled", .calc_t_Q_scaled(BLOB, sXaug), assign.env = BLOB )
delayedAssign("CHMfactor_wd2hdv2w", {
wd2hdv2w <- .crossprod(BLOB$R_scaled[,BLOB$sortPerm_u_h, drop=FALSE], allow_as_mat = FALSE )
Cholesky(wd2hdv2w,LDL=FALSE, perm=FALSE )
}, assign.env = BLOB )
delayedAssign("inv_factor_wd2hdv2w", {
if (BLOB$use_R_block) {
sortPerm_u_h <- BLOB$sortPerm_u_h
t(BLOB$solve_R_scaled)[sortPerm_u_h,sortPerm_u_h, drop=FALSE]
} else Matrix::solve(BLOB$CHMfactor_wd2hdv2w,system="L") } , assign.env = BLOB )
delayedAssign("inv_d2hdv2", {
if (.is_evaluated("inv_factor_wd2hdv2w",BLOB)) {
inv_d2hdv2 <- .Matrix_times_Dvec(.crossprod(BLOB$inv_factor_wd2hdv2w), BLOB$invsqrtwranef)
} else inv_d2hdv2 <- Matrix::solve(BLOB$CHMfactor_wd2hdv2w, Diagonal(x=BLOB$invsqrtwranef), system="A")
inv_d2hdv2 <- .Dvec_times_Matrix( - BLOB$invsqrtwranef,inv_d2hdv2)
}, assign.env = BLOB )
delayedAssign("logdet_R_scaled_b_v", sum(log(abs(diag(x=BLOB$R_scaled)))), assign.env = BLOB )
delayedAssign("logdet_R_scaled_v", {
if (BLOB$use_R_block) {
sum(log(abs(diag(x=BLOB$R_scaled)[BLOB$seq_n_u_h])))
} else Matrix::determinant(BLOB$CHMfactor_wd2hdv2w)$modulus[1]
}, assign.env = BLOB )
delayedAssign("logdet_r22", {
if (BLOB$u_h_cols_on_left) {
sum(log(abs(diag(x=BLOB$R_scaled)[-BLOB$seq_n_u_h]))) - attr(sXaug,"pforpv")*log(attr(sXaug,"H_global_scale"))/2
} else {
BLOB$logdet_R_scaled_b_v - BLOB$logdet_R_scaled_v - attr(sXaug,"pforpv")*log(attr(sXaug,"H_global_scale"))/2
}
} , assign.env = BLOB )
delayedAssign("logdet_sqrt_d2hdv2", { sum(log(attr(sXaug,"w.ranef")))/2 + BLOB$logdet_R_scaled_v }, assign.env = BLOB )
delayedAssign("hatval", {
tmp <- BLOB$t_Q_scaled
tmp@x <- tmp@x*tmp@x
colSums(tmp)
} , assign.env = BLOB )
delayedAssign("hatval_Z_u_h_cols_on_left", .calc_hatval_Z_u_h_cols_on_left(BLOB, sXaug), assign.env = BLOB )
delayedAssign("Z_lev_lambda", .calc_Z_lev_lambda(BLOB), assign.env = BLOB )
delayedAssign("Z_lev_phi", .calc_Z_lev_phi(BLOB, sXaug), assign.env = BLOB )
if ( ! is.null(szAug)) return(qr.coef(BLOB$blob,szAug))
}
if ( ! is.null(szAug)) {
return(qr.coef(BLOB$blob,szAug))
}
if (which=="Qt_leftcols*B") {
if (.is_evaluated("solve_R_scaled", BLOB)) {
return(.crossprod(BLOB$solve_R_scaled, .crossprod(sXaug[-BLOB$seq_n_u_h,BLOB$perm], B)))
} else return(solve(t(BLOB$R_scaled), .crossprod(sXaug[-BLOB$seq_n_u_h,BLOB$perm], B)))
}
if (which=="Mg_solve_g") {
seq_n_u_h <- BLOB$seq_n_u_h
rhs <- B
rhs[seq_n_u_h] <- BLOB$invsqrtwranef * rhs[seq_n_u_h]
if (.is_evaluated("solve_R_scaled", BLOB)) {
rhs <- BLOB$solve_R_scaled %*% rhs[BLOB$perm]
} else rhs <- Matrix::solve(BLOB$R_scaled,rhs[BLOB$perm])
return(sum(rhs^2))
}
if (which=="Mg_invH_g") {
rhs <- BLOB$invsqrtwranef * B
if (.is_evaluated("inv_factor_wd2hdv2w",BLOB)) {
rhs <- BLOB$inv_factor_wd2hdv2w %*% rhs
} else rhs <- Matrix::solve(BLOB$CHMfactor_wd2hdv2w,rhs,system="L")
return(sum(rhs^2))
}
if (which=="Mg_invXtWX_g") {
seq_n_u_h <- BLOB$seq_n_u_h
if (is.null(BLOB$XtWX)) BLOB$XtWX <- .crossprod(sXaug[-seq_n_u_h,-seq_n_u_h])
Mg_invXtWX_g <- crossprod(B,solve(BLOB$XtWX,B))[1L]
return(Mg_invXtWX_g)
}
if (which=="hatval_Z") {
if (BLOB$u_h_cols_on_left) {
return(BLOB$hatval_Z_u_h_cols_on_left)
} else if (FALSE) {
if (is.null(BLOB$hatval_Z_)) {
tq <- drop0(.lmwithQR(as.matrix(BLOB$R_scaled[,BLOB$sortPerm][,BLOB$seq_n_u_h]) ,yy=NULL,returntQ=TRUE,returnR=FALSE)$t_Q_scaled,
tol=1e-16)
tmp_t_Qq_scaled <- tq %*% BLOB$t_Q_scaled
tmp_t_Qq_scaled@x <- tmp_t_Qq_scaled@x*tmp_t_Qq_scaled@x
tmp <- colSums(tmp_t_Qq_scaled)
n_u_h <- attr(sXaug,"n_u_h")
phipos <- n_u_h+seq_len(nrow(sXaug)-n_u_h)
BLOB$hatval_Z_ <- list(lev_lambda=tmp[-phipos],lev_phi=tmp[phipos])
}
return(BLOB$hatval_Z_)
} else {
hatval_Z_ <- list()
if ("lambda" %in% B) hatval_Z_$lev_lambda <- BLOB$Z_lev_lambda
if ("phi" %in% B) hatval_Z_$lev_phi <- BLOB$Z_lev_phi
return(hatval_Z_)
}
}
if (which=="solve_d2hdv2") {
if (is.null(B)) {
return(BLOB$inv_d2hdv2)
} else {
if (.is_evaluated("inv_d2hdv2", BLOB)) {
return(BLOB$inv_d2hdv2 %*% B)
} else {
not_vector <- (( ! is.null(dimB <- dim(B))) && length(dimB)==2L && dimB[2L]>1L)
if (not_vector) {
rhs <- .Dvec_times_m_Matrix(BLOB$invsqrtwranef,B)
} else rhs <- BLOB$invsqrtwranef * B
if ( BLOB$use_R_block || .is_evaluated("inv_factor_wd2hdv2w",BLOB)) {
rhs <- .crossprod(BLOB$inv_factor_wd2hdv2w, drop(BLOB$inv_factor_wd2hdv2w %*% rhs))
} else rhs <- Matrix::solve(BLOB$CHMfactor_wd2hdv2w,rhs,system="A")
if (not_vector) {
rhs <- .Dvec_times_m_Matrix(BLOB$invsqrtwranef,rhs)
} else rhs <- BLOB$invsqrtwranef * rhs
return( - rhs)
}
}
}
if (which=="hatval") {return(BLOB$hatval) }
if (which=="R_scaled_blob") {
if (is.null(BLOB$R_scaled_blob)) {
tmp <- X <- BLOB$R_scaled[ , BLOB$sortPerm]
tmp@x <- tmp@x*tmp@x
BLOB$R_scaled_blob <- list(X=X, diag_pRtRp=colSums(tmp),
XDtemplate=structure(.XDtemplate(X),upperTri=FALSE))
}
return(BLOB$R_scaled_blob)
}
if (which=="R_scaled_v_h_blob") {
if (is.null(BLOB$R_scaled_v_h_blob)) {
if (BLOB$use_R_block) {
R_scaled_v_h <- t(BLOB$R_scaled[BLOB$sortPerm_u_h,BLOB$sortPerm_u_h, drop=FALSE])
} else {
R_scaled_v_h <- t( as(BLOB$CHMfactor_wd2hdv2w,"sparseMatrix") )
}
tmp <- R_scaled_v_h
tmp@x <- tmp@x*tmp@x
diag_pRtRp_scaled_v_h <- colSums(tmp)
BLOB$R_scaled_v_h_blob <- list(R_scaled_v_h=R_scaled_v_h,diag_pRtRp_scaled_v_h=diag_pRtRp_scaled_v_h,
XDtemplate=structure(.XDtemplate(R_scaled_v_h), upperTri=NA))
}
return(BLOB$R_scaled_v_h_blob)
}
if (which=="R_beta_blob") {
if (is.null(BLOB$R_beta_blob)) {
n_u_h <- attr(sXaug,"n_u_h")
seq_n_u_h <- BLOB$seq_n_u_h
X <- as.matrix(sXaug[-seq_n_u_h,-seq_n_u_h])
R_beta <- .lmwithQR(X,yy=NULL,returntQ=FALSE,returnR=TRUE)$R_scaled
diag_pRtRp_beta <- colSums(R_beta^2)
BLOB$R_beta_blob <- list(R_beta=R_beta,diag_pRtRp_beta=diag_pRtRp_beta,
XDtemplate=structure(.XDtemplate(R_beta), upperTri=TRUE))
}
return(BLOB$R_beta_blob)
}
if (which=="logdet_sqrt_d2hdv2") { return(BLOB$logdet_sqrt_d2hdv2)}
if (which=="logdet_r22") { return(BLOB$logdet_r22) }
if (which=="t_Q_scaled") { return(BLOB$t_Q_scaled) }
if (which=="logdet_R_scaled_b_v") { return(BLOB$logdet_R_scaled_b_v)}
if (which=="beta_cov_info_from_sXaug") {
return(.calc_beta_cov_info_from_sXaug(BLOB=BLOB, sXaug=sXaug, tcrossfac=BLOB$solve_R_scaled))
}
if (which=="beta_cov_info_from_wAugX") {
tPmat <- sparseMatrix(seq_along(BLOB$sortPerm), BLOB$sortPerm, x=1)
tcrossfac_beta_v_cov <- as.matrix(tPmat %*% BLOB$solve_R_scaled)
rownames(tcrossfac_beta_v_cov) <- colnames(sXaug)
pforpv <- attr(sXaug,"pforpv")
seqp <- seq_len(pforpv)
beta_cov <- .tcrossprod(tcrossfac_beta_v_cov[seqp,,drop=FALSE])
return( list(beta_cov=beta_cov,
tcrossfac_beta_v_cov=tcrossfac_beta_v_cov) )
}
if (which=="d2hdv2") {
stop("d2hdv2 requested ")
}
stop("invalid 'which' value.")
}
get_from_MME.sXaug_Matrix_QRP_CHM_scaled <- function(sXaug,which="",szAug=NULL,B=NULL,
damping, LMrhs, ...) {
resu <- switch(which,
"LevMar_step" = {
R_scaled_blob <- .sXaug_Matrix_QRP_CHM_scaled(sXaug,which="R_scaled_blob")
dampDpD <- damping*R_scaled_blob$diag_pRtRp
list(dVscaled_beta=.damping_to_solve(XDtemplate=R_scaled_blob$XDtemplate, dampDpD=dampDpD, rhs=LMrhs),
dampDpD = dampDpD)
},
"LevMar_step_v_h" = {
R_scaled_v_h_blob <- .sXaug_Matrix_QRP_CHM_scaled(sXaug,which="R_scaled_v_h_blob")
dampDpD <- damping*R_scaled_v_h_blob$diag_pRtRp_scaled_v_h
list(dVscaled = .damping_to_solve(XDtemplate=R_scaled_v_h_blob$XDtemplate, dampDpD=dampDpD, rhs=LMrhs),
dampDpD = dampDpD)
},
"LevMar_step_beta" = {
if ( ! length(LMrhs)) stop("LevMar_step_beta called with 0-length LMrhs: pforpv=0?")
R_beta_blob <- .sXaug_Matrix_QRP_CHM_scaled(sXaug,which="R_beta_blob")
dampDpD <- damping*R_beta_blob$diag_pRtRp_beta
list(dbeta = .damping_to_solve(XDtemplate=R_beta_blob$XDtemplate, dampDpD=dampDpD, rhs=LMrhs),
dampDpD = dampDpD)
} ,
.sXaug_Matrix_QRP_CHM_scaled(sXaug,which=which,szAug=szAug,B=B)
)
return(resu)
} |
searchPair <- function(signaling = c(), pairLR.use, key = c("pathway_name","ligand"), matching.exact = FALSE, pair.only = TRUE) {
key <- match.arg(key)
pairLR = future.apply::future_sapply(
X = 1:length(signaling),
FUN = function(x) {
if (!matching.exact) {
index <- grep(signaling[x], pairLR.use[[key]])
} else {
index <- which(pairLR.use[[key]] %in% signaling[x])
}
if (length(index) > 0) {
if (pair.only) {
pairLR <- dplyr::select(pairLR.use[index, ], interaction_name, pathway_name, ligand, receptor)
} else {
pairLR <- pairLR.use[index, ]
}
return(pairLR)
} else {
stop(cat(paste("Cannot find ", signaling[x], ".", "Please input a correct name!"),'\n'))
}
}
)
if (pair.only) {
pairLR0 <- vector("list", length(signaling))
for (i in 1:length(signaling)) {
pairLR0[[i]] <- matrix(unlist(pairLR[c(4*i-3, 4*i-2, 4*i-1, 4*i)]), ncol=4, byrow=F)
}
pairLR <- do.call(rbind, pairLR0)
dimnames(pairLR)[[2]] <- dimnames(pairLR.use)[[2]][1:4]
rownames(pairLR) <- pairLR[,1]
} else {
pairLR0 <- vector("list", length(signaling))
for (i in 1:length(signaling)) {
pairLR0[[i]] <- matrix(unlist(pairLR[(i*ncol(pairLR.use)-(ncol(pairLR.use)-1)):(i*ncol(pairLR.use))]), ncol=ncol(pairLR.use), byrow=F)
}
pairLR <- do.call(rbind, pairLR0)
dimnames(pairLR)[[2]] <- dimnames(pairLR.use)[[2]]
rownames(pairLR) <- pairLR[,1]
}
return(as.data.frame(pairLR, stringsAsFactors = FALSE))
}
subsetDB <- function(CellChatDB, search = c(), key = "annotation") {
interaction_input <- CellChatDB$interaction
interaction_input <- interaction_input[interaction_input[[key]] %in% search, ]
CellChatDB$interaction <- interaction_input
return(CellChatDB)
}
extractGene <- function(CellChatDB) {
interaction_input <- CellChatDB$interaction
complex_input <- CellChatDB$complex
cofactor_input <- CellChatDB$cofactor
geneIfo <- CellChatDB$geneInfo
checkGeneSymbol(geneSet = unlist(complex_input), geneIfo)
checkGeneSymbol(geneSet = unlist(cofactor_input), geneIfo)
geneL <- unique(interaction_input$ligand)
geneR <- unique(interaction_input$receptor)
geneLR <- c(geneL, geneR)
checkGeneSymbol(geneSet = geneLR[geneLR %in% rownames(complex_input) == "FALSE"], geneIfo)
geneL <- extractGeneSubset(geneL, complex_input, geneIfo)
geneR <- extractGeneSubset(geneR, complex_input, geneIfo)
geneLR <- c(geneL, geneR)
cofactor <- c(interaction_input$agonist, interaction_input$antagonist, interaction_input$co_A_receptor, interaction_input$co_I_receptor)
cofactor <- unique(cofactor[cofactor != ""])
cofactorsubunits <- select(cofactor_input[match(cofactor, rownames(cofactor_input), nomatch=0),], starts_with("cofactor"))
cofactorsubunitsV <- unlist(cofactorsubunits)
geneCofactor <- unique(cofactorsubunitsV[cofactorsubunitsV != ""])
gene.use <- unique(c(geneLR, geneCofactor))
return(gene.use)
}
extractGeneSubset <- function(geneSet, complex_input, geneIfo) {
complex <- geneSet[which(geneSet %in% geneIfo$Symbol == "FALSE")]
geneSet <- intersect(geneSet, geneIfo$Symbol)
complexsubunits <- dplyr::select(complex_input[match(complex, rownames(complex_input), nomatch=0),], starts_with("subunit"))
complex <- intersect(complex, rownames(complexsubunits))
complexsubunitsV <- unlist(complexsubunits)
complexsubunitsV <- unique(complexsubunitsV[complexsubunitsV != ""])
geneSet <- unique(c(geneSet, complexsubunitsV))
return(geneSet)
}
extractGeneSubsetFromPair <- function(pairLR, object = NULL, complex_input = NULL, geneInfo = NULL, combined = TRUE) {
if (!all(c("ligand", "receptor") %in% colnames(pairLR))) {
stop("The input data frame must contain columns named `ligand` and `receptor`")
}
if (is.null(object)) {
if (is.null(complex_input) | is.null(geneInfo)) {
stop("Either `object` or `complex_input` and `geneInfo` should be provided!")
} else {
complex <- complex_input
}
} else {
complex <- object@DB$complex
geneInfo <- object@DB$geneInfo
}
geneL <- unique(pairLR$ligand)
geneR <- unique(pairLR$receptor)
geneL <- extractGeneSubset(geneL, complex, geneInfo)
geneR <- extractGeneSubset(geneR, complex, geneInfo)
geneLR <- c(geneL, geneR)
if (combined) {
return(geneLR)
} else {
return(list(geneL = geneL, geneR = geneR))
}
}
checkGeneSymbol <- function(geneSet, geneIfo) {
geneSet <- unique(geneSet[geneSet != ""])
genes_notOfficial <- geneSet[geneSet %in% geneIfo$Symbol == "FALSE"]
if (length(genes_notOfficial) > 0) {
cat("Issue identified!! Please check the official Gene Symbol of the following genes: ", "\n", genes_notOfficial, "\n")
}
return(FALSE)
} |
CalcResD.fun <-
function(mlePP, h=NULL, nint=NULL,lint=NULL,
typeRes=NULL,modSim='FALSE')
{
n<-length(mlePP@lambdafit)
inddat<-mlePP@inddat
inddat[inddat==0]<-NA
posE<-mlePP@posE
if (is.null(h))
{
h<-1/mlePP@lambdafit**0.5
typeRes<-'Pearson'
}
if (is.null(typeRes)) stop('Please indicate argument typeRes')
if (!is.null(nint)& !is.null(lint))
stop('Error: only one of nint and lint must be supplied')
if (is.null(nint)& is.null(lint))
stop('Error: one of nint and lint must be supplied')
if (is.null(lint)) lint<-ceiling(n/nint)
if (is.null(nint)) nint<-ceiling(n/(lint))
indice<-rep(0,n)
indice[posE]<-1*h[posE]
indice<-indice*inddat
indiceR<-rep(0,n)
indiceR[posE]<-1
indiceR<-indiceR*inddat
lambdafit<-mlePP@lambdafit*h*inddat
lambdafitR<-mlePP@lambdafit*inddat
int<-floor(c(0:(n-1))/lint)
emplambda<-tapply(indice, INDEX=int, FUN=mean, na.rm = TRUE)
emplambdaR<-tapply(indiceR, INDEX=int, FUN=mean, na.rm = TRUE)
sumalfit<-tapply(lambdafit, INDEX=int, FUN=mean, na.rm = TRUE)
sumalfitR<-tapply(lambdafitR, INDEX=int, FUN=mean, na.rm = TRUE)
lintV<-tapply(inddat, INDEX=int, FUN=sum, na.rm=TRUE)
ultlint<-n-(nint-1)*lint
pm1<-floor(lint/2)
pm<-pm1+c(0,cumsum(rep(lint,(nint-2))) )
pm<-c(pm, pm[length(pm)]+ceiling(ultlint/2))
if (modSim==FALSE)
{
cat(fill=T)
cat('Number of intervals to calculate the disjoint residuals: ', nint, ' of length: ',lint, fill=T)
if(lint*nint!=n) cat(' except the las one of length ',ultlint, fill=T)
cat(fill=T)
}
ScaRes<-emplambda-sumalfit
RawRes<-emplambdaR-sumalfitR
return(list(RawRes=RawRes,ScaRes=list(ScaRes=ScaRes,typeRes=typeRes),
emplambda=emplambdaR,fittedlambda=sumalfitR,
lintV=lintV,nint=nint, lint=lint,pm=pm,typeI='Disjoint',h=h,mlePP=mlePP))
} |
qat_plot_lim_rule_dynamic_2d <-
function(flagvector, filename, measurement_vector=NULL, min_vector=NULL, max_vector=NULL, min_vector_name=NULL, max_vector_name=NULL, measurement_name="", directoryname="", plotstyle=NULL) {
if (is.null(plotstyle)) {
plotstyle<-qat_style_plot()
}
path <- paste(directoryname,filename,".png", sep="")
png(filename=path,width=800,height=600, pointsize=12, bg=plotstyle$basecolor)
par(font.lab=2,oma=c(0,0,2,0), mar=c(5.1,5.1,5.1,8), font=2)
image(1:dim(flagvector)[1], 1:dim(flagvector)[2], flagvector, col=c(plotstyle$plotcolormain,plotstyle$plotcolorbackground,plotstyle$plotcolorminor), xlab="", ylab="", col.lab=plotstyle$fontcolor, col.main=plotstyle$fontcolor, col.sub=plotstyle$fontcolor,fg=plotstyle$frontcolor, col.axis=plotstyle$fontcolor, font.axis=2, zlim=c(-1,1))
title(main=list("LIM-Rule dynamic", col=plotstyle$fontcolor), outer=TRUE)
if (length(min_vector_name) != 0) {
bordertext <- paste("Minimum vector: ", min_vector_name, " ")
} else {
bordertext<- ""
}
bordertext2<- paste("Minimum errors: ",length(which(flagvector==-1)), " ")
bordertext2<- paste(bordertext2,"Maximum errors: ",length(which(flagvector==1)))
if (length(max_vector_name) != 0) {
bordertext <- paste(bordertext,"Maximum vector: ", max_vector_name)
} else {
bordertext<- paste(bordertext,"")
}
if (bordertext != "") {
mtext(bordertext, side=3, line=2, font=2, col=plotstyle$fontcolor)
mtext(bordertext2, side=3, line=1, font=2, col=plotstyle$fontcolor)
}
if(measurement_name != "") {
bordertext3<-paste("Data: ",measurement_name, sep="")
mtext(bordertext3, side=3, line=3, font=2, col=plotstyle$fontcolor)
}
image.plot(1:dim(flagvector)[1], 1:dim(flagvector)[2], flagvector, col=c(plotstyle$plotcolormain,plotstyle$plotcolorbackground,plotstyle$plotcolorminor), xlab="", ylab="", col.lab=plotstyle$fontcolor, col.main=plotstyle$fontcolor, col.sub=plotstyle$fontcolor,fg=plotstyle$frontcolor, col.axis=plotstyle$fontcolor, font.axis=2, legend.only=T, axis.args=list(at=c(-1,0,1), labels=c("min", "ok", "max"), font=2), zlim=c(-1,1))
dev.off()
} |
solve_system <- function (mpolyList) {
pointer <- solve_system.(mpolyList)
m2_structure(
m2_name = m2_name(pointer),
m2_class = "m2_solutions",
m2_meta = list(
sols = m2_pts_str_to_list(m2_meta(pointer, "ext_str"))
)
)
}
solve_system. <- function (mpolyList) {
poly_str <- mpolyList_to_m2_str(mpolyList)
var_str <- suppressMessages(paste0(vars(mpolyList), collapse=","))
m2_code <- sprintf('
needsPackage "PHCpack"
R := CC[%s];
pts := solveSystem %s;
for i in 0..(
', var_str, listify(poly_str))
m2.(m2_code)
}
mixed_volume <- function (mpolyList) {
poly_str <- mpolyList_to_m2_str(mpolyList)
var_str <- suppressMessages(paste0(vars(mpolyList), collapse=","))
m2_code <- sprintf('
needsPackage "PHCpack"
R := CC[%s];
mixedVolume( %s )
', var_str, listify(poly_str))
m2_meta(m2.(m2_code), "ext_str")
}
m2_pts_str_to_list <-function(m2_out) {
m2_out <- str_sub(m2_out,2,-2)
m2_out <- str_replace_all(m2_out, "p53", "")
m2_out <- str_replace_all(m2_out, "\"", "")
m2_out <- str_replace_all(m2_out, "toCC\\(", "complex(real=")
m2_out <- str_replace_all(m2_out, ",complex", "Dcomplex")
m2_out <- str_replace_all(m2_out, "\\},", "\\}")
m2_out <- str_replace_all(m2_out, ",",",imaginary=")
m2_out <- str_replace_all(m2_out, "Dcomplex", ",complex")
m2_out <- str_replace_all(m2_out, "\\{", "c\\(")
m2_out <- str_replace_all(m2_out, "\\}", "\\),")
m2_out <- paste0("list(",str_sub(m2_out,0,-2),")")
m2_out <- eval(parse(text=m2_out))
m2_out
} |
`num.Terms.tsm` <-
function(object, ...)sum(object$model$AR, object$model$MA, object$seasonal$model$AR, object$seasonal$model$MA) |
times_to_netcdf <- function(times, timeunit, outdir, filename) {
dims <- list(time = ncdf4::ncdim_def(
name = "time",
units = timeunit,
vals = times))
vars <- list(Y = ncdf4::ncvar_def(
name = "Y",
units = "kg",
dim = dims,
missval = NA))
nc <- ncdf4::nc_create(
filename = file.path(outdir, filename),
vars = vars)
ncdf4::ncatt_put(nc, 0, "description", "strictly for testing")
ncdf4::ncvar_put(nc, varid = vars[["Y"]], vals = rnorm(length(times)))
ncdf4::nc_close(nc)
}
example_netcdf <- function(varnames, file_path) {
n <- 365
dims <- list(x = ncdf4::ncdim_def(
name = "time",
units = "days since 2001-01-01",
vals = seq_len(n) - 1
))
vars <- lapply(varnames, ncdf4::ncvar_def,
units = "kg", dim = dims, missval = NA)
names(vars) <- varnames
nc <- ncdf4::nc_create(filename = file_path, vars = vars)
on.exit(ncdf4::nc_close(nc), add = TRUE)
ncdf4::ncatt_put(nc, 0, "description", "strictly for testing")
for (v in varnames) {
ncdf4::ncvar_put(nc, varid = vars[[v]], vals = rnorm(n))
}
invisible(file_path)
} |
buildHeap <- function(heap, D, l) {
for (ii in floor(l/2) : 1) {
heap <- .Call("percDown", heap, D, as.integer(l), as.integer(ii), PACKAGE = "adjclust")
}
return(heap)
} |
glimem <-
function(simData, sim0, sim1, family = binomial, link = "logit", nAGQ, control = glmerControl(optimizer = "bobyqa")){
m <- NULL
n <- NULL
simData$predMu = NULL
simData$r = NULL
coefficients = NULL
rows = NULL
for (i in sim0:sim1){
Datarows = which(simData$simulation == i)
NewData <- simData[Datarows,]
NewData <- within(NewData,{
dose <- factor(dose)
Trial <- as.integer(Trial)
n <- as.numeric(n)
x <- as.numeric(x)
})
m <- glmer(x/n ~ dose + (1|Trial), data = NewData, family = family,
na.action = "na.fail", nAGQ = nAGQ, control = control, weights = n)
coefficients <- coef(m)
pred <- predict(m, type = "response")
resid <- residuals(m, type = "pearson")
simData[Datarows, "PredMu"] = pred
simData[Datarows, "r"] = resid
rows = c(rows, Datarows)
}
res <- list(m = m, coeff = coefficients, simData = simData[rows, ])
return(res)
} |
require(geometa, quietly = TRUE)
require(sf)
require(testthat)
context("GMLRectifiedGrid")
test_that("GMLRectifiedGrid",{
testthat::skip_on_cran()
md <- GMLRectifiedGrid$new()
m <- matrix(c(-180,180,-90, 90), nrow = 2, ncol = 2, byrow = TRUE,
dimnames = list(c("x", "y"), c("min","max")))
md$setGridEnvelope(m = m)
md$setAxisLabels(c("E", "N"))
md$setOrigin(15,15)
md$addOffsetVector(c(0,15))
xml <- md$encode()
expect_is(xml, "XMLInternalNode")
md2 <- GMLRectifiedGrid$new(xml = xml)
xml2 <- md2$encode()
expect_true(ISOAbstractObject$compare(md, md2))
}) |
calcAD <- function(ta,tr,vel,rh,clo,met,vAnkle){
tsv = calcPMV(ta=ta, tr=tr, vel=vel, rh=rh, clo=clo, met=met)
ppdval = (exp(-2.58 + 3.05 * vAnkle - 1.06 * tsv)/(1 + exp(-2.58 + 3.05 * vAnkle -1.06 * tsv))) * 100
ppdval = round(ppdval,1)
acceptability = ppdval <= 20
print(paste0("PMV value: ", round(tsv,3)))
print(paste0("Ankle_draft_ppd: ", ppdval))
print(paste0("Acceptability: ", acceptability))
if (vel > 0.2)
{
warning('Velocity(vel) should be less than or equal to 0.2')
}
} |
a <- function(x) {
if (x <= 1) {
1
} else {
2
}
}
TestS4 <- setClass("TestS4",
slots = list(name = "character", enabled = "logical"))
setGeneric("print2", function(x, y) {
})
setMethod("print2",
c(x = "TestS4"),
function(x) {
1 + 1
})
setMethod("print2",
c(x = "TestS4", y = "character"),
function(x, y) {
1 + 2
})
setMethod("show",
c(object = "TestS4"),
function(object) {
1 + 3
}) |
xgb.DMatrix.save <- function(dmatrix, fname) {
if (typeof(fname) != "character")
stop("fname must be character")
if (!inherits(dmatrix, "xgb.DMatrix"))
stop("dmatrix must be xgb.DMatrix")
fname <- path.expand(fname)
.Call(XGDMatrixSaveBinary_R, dmatrix, fname[1], 0L)
return(TRUE)
} |
data_processing_mst <- function(dat, mstdesign, weights, precondition, cumulative){
cumulative_i <- probabilities_i <- y_i <- na_p <- items_i <- items_l <- minSolved_i <- minSolved_stage_i <- maxSolved_i <- maxSolved_stage_i <- cs_i <- rs_i <- rf_i <- vector("list", nrow(mstdesign))
preconpar <- preconnum <- NULL
preconsize <- 0
if (!is.null(precondition)) {
preconpar <- t(precondition[,grep("precondition",colnames(precondition)),drop=FALSE])
preconnum <- t(precondition[,grep("value",colnames(precondition)), drop = FALSE])
preconsize <- nrow(preconpar)
}
for (mst in seq_len(nrow(mstdesign))) {
items_m <- as.list(strsplit(mstdesign[mst, "items"],";")[[1]])
cumulative_i[[mst]] <- rep(cumulative,length(items_m))
items_i[[mst]] <- match(unlist(strsplit(unlist(items_m),",")),colnames(dat)) - preconsize
items_l[[mst]] <- lapply(strsplit(unlist(items_m),","),FUN = function(x){
match(x,colnames(dat)) - preconsize
})
minSolved_i[[mst]] <- as.numeric(strsplit(mstdesign[mst, "minSolved"],";")[[1]])
minSolved_stage_i[[mst]] <- as.numeric(strsplit(mstdesign[mst, "minSolved_stage"],";")[[1]])
maxSolved_i[[mst]] <- as.numeric(strsplit(mstdesign[mst, "maxSolved"],";")[[1]])
maxSolved_stage_i[[mst]] <- as.numeric(strsplit(mstdesign[mst, "maxSolved_stage"],";")[[1]])
probabilities_i[[mst]] <- unlist(lapply(strsplit(mstdesign[mst, "probability"],";")[[1]],FUN = function(x) as.numeric(strsplit(x,",")[[1]])))
na_p[[mst]] <- rowSums(!is.na(dat[,items_i[[mst]] + preconsize]))==length(items_i[[mst]])
if (!is.null(precondition)) {
preconsub <- paste0("dat[,'", preconpar[,mst],"']", "==", preconnum[,mst], collapse="&")
na_p[[mst]] <- na_p[[mst]] & eval(parse(text = preconsub))
}
y_i[[mst]] <- dat[na_p[[mst]], items_i[[mst]] + preconsize, drop = FALSE]
weights_i <- weights[na_p[[mst]]]
cs_i[[mst]] <- colSums(y_i[[mst]] * weights_i)
rs_i[[mst]] <- rowSums(y_i[[mst]])
rf_i[[mst]] <- as.vector(tapply(weights_i, factor(rs_i[[mst]],
levels = 0:ncol(y_i[[mst]])), sum))
rf_i[[mst]][is.na(rf_i[[mst]])] <- 0
}
res <- list(
y_i = y_i,
na_p = na_p,
items_i = items_i,
items_l = items_l,
minSolved_i = minSolved_i,
minSolved_stage_i = minSolved_stage_i,
maxSolved_i = maxSolved_i,
maxSolved_stage_i = maxSolved_stage_i,
cs_i = cs_i,
rs_i = rs_i,
rf_i = rf_i,
probabilities_i = probabilities_i,
cumulative_i = cumulative_i
)
return(res)
} |
context("Check multinomial TS functions")
data(rodents)
lda_data <- rodents$document_term_table
lda <- LDA_set(lda_data, c(4), nseeds = 1, list(quiet = TRUE))
dct <- rodents$document_covariate_table
mts_data <- data.frame(dct)
mts_data$gamma <- lda[[1]]@gamma
timename <- "newmoon"
test_that("check packaging of chunk fits", {
TS_chunk_memo <- memoise_fun(multinom_TS_chunk, TRUE)
chunks <- prep_chunks(data = mts_data, changepoints = c(20,50),
timename = timename)
nchunks <- nrow(chunks)
fits <- vector("list", length = nchunks)
for (i in 1:nchunks){
fits[[i]] <- TS_chunk_memo(data = mts_data, formula = gamma ~ 1,
chunk = chunks[i, ], timename = timename,
weights = NULL)
}
packaged <- package_chunk_fits(chunks, fits)
expect_is(packaged, "multinom_TS_fit")
expect_equal(round(packaged$logLik, 2), -516.58)
})
test_that("check logLik for multinom_TS_fit", {
mts <- multinom_TS(data = mts_data, formula = gamma~1,
changepoints = c(20,50), timename = "newmoon", weights = NULL)
expect_is(logLik(mts), "logLik")
expect_equal(round(as.numeric(logLik(mts))), -517)
})
test_that("check good output from multinom_TS", {
mts <- multinom_TS(data = mts_data, formula = gamma~1,
changepoints = c(20,50), timename = "newmoon", weights = NULL)
expect_is(mts, "list")
expect_is(mts, "multinom_TS_fit")
expect_equal(length(mts), 3)
expect_equal(names(mts), c("chunk models", "logLik", "chunks"))
expect_equal(length(mts$"chunk models"), 3)
expect_is(mts$logLik, "numeric")
})
test_that("check check_changepoints", {
expect_silent(check_changepoints())
expect_silent(check_changepoints(1))
expect_error(check_changepoints("ok"))
expect_error(check_changepoints(0.3))
})
test_that("check failed output from multinom_TS", {
mts <- multinom_TS(data = mts_data, formula = gamma~1,
changepoints = c(50,40), timename = "newmoon", weights = NULL)
expect_is(mts, "list")
expect_equal(length(mts), 3)
expect_equal(names(mts), c("chunk models", "logLik", "chunks"))
expect_equal(mts$"chunk models", NA)
expect_equal(mts$logLik, -Inf)
})
test_that("check bad change point location catching of
verify_changepoint_locations", {
expect_equal(verify_changepoint_locations(mts_data, -1, "newmoon"), FALSE)
expect_equal(verify_changepoint_locations(mts_data, 1e5, "newmoon"), FALSE)
expect_equal(verify_changepoint_locations(mts_data, NULL, "newmoon"), TRUE)
expect_equal(verify_changepoint_locations(mts_data, 100, "newmoon"), TRUE)
expect_equal(verify_changepoint_locations(
mts_data, c(10, 50, 100), "newmoon"), TRUE)
})
test_that("check memoization of multinom_TS_chunk", {
expect_is(memoise_fun(multinom_TS_chunk, TRUE), "memoised")
})
chunk <- data.frame(start = 0, end = 40)
test_that("check multinom_TS_chunk", {
expect_is(multinom_TS_chunk(mts_data, "gamma ~ 1", chunk, timename, NULL),
"multinom")
})
test_that("check memoised multinom_TS_chunk", {
multinom_TS_chunk_memo <- memoise_fun(multinom_TS_chunk, TRUE)
expect_is(
multinom_TS_chunk_memo(mts_data, "gamma ~ 1", chunk, timename),
"multinom")
})
test_that("check prepping of chunks", {
expect_is(prep_chunks(mts_data, NULL, "newmoon"), "data.frame")
expect_equal(prep_chunks(mts_data, NULL, "newmoon")$start, 1)
expect_equal(prep_chunks(mts_data, NULL, "newmoon")$end, 467)
expect_equal(prep_chunks(mts_data, c(10), "newmoon")$start, c(1, 11))
expect_equal(prep_chunks(mts_data, c(10), "newmoon")$end, c(10, 467))
}) |
MODIStsp_addindex <- function(
new_indexbandname = "",
new_indexfullname = "",
new_indexformula = "",
new_indexnodata_out = "32767") {
indexes_file <- (system.file("ExtData",
"MODIStsp_indexes.json",
package = "MODIStsp"))
prod_opt_list <- load_prodopts()
n_products <- length(prod_opt_list)
refbands_names <- c("b1_Red", "b2_NIR", "b3_Blue", "b4_Green", "b5_SWIR",
"b6_SWIR", "b7_SWIR")
avail_refbands <- refbands_names
catch_err <- check_formula_errors(new_indexbandname,
new_indexfullname,
new_indexformula,
prod_opt_list,
refbands_names,
avail_refbands)
if (catch_err == 0) {
save_formula(refbands_names,
req_bands = attr(catch_err, "req_bands"),
new_indexbandname,
new_indexfullname,
new_indexformula,
new_indexnodata_out,
prod_opt_list)
message("The new Index was correctly added!\n It will be available at ",
"the next execution of MODIStsp().")
} else if (catch_err == 1) {
stop("The formula of the new index is wrong or not computable. ",
"Please check it.\n",
"(Valid band names are: ", paste(avail_refbands, collapse = ", "),
".")
} else if (catch_err == 2) {
stop("The index acronym and/or full name are already present;\n",
"Please specify different ones.")
} else if (catch_err == 3) {
stop("Some parameters are still blank; please provide valid values for\n",
"the index name, the index fullname and the formula.")
}
}
save_formula <- function(refbands_names,
req_bands,
new_indexbandname,
new_indexfullname,
new_indexformula,
new_indexnodata_out,
prod_opt_list) {
indexes_file <- system.file("ExtData",
"MODIStsp_indexes.json",
package = "MODIStsp")
if (file.exists(indexes_file)) {
custom_indexes <- jsonlite::read_json(indexes_file)
}
if (length(custom_indexes) == 1) {
custom_indexes <- NULL
}
if (is.null(custom_indexes)) {
custom_indexes <- list()
for (prod in names(prod_opt_list)) {
custom_indexes[[prod]] <- list()
for (vers in names(prod_opt_list[[prod]])) {
custom_indexes[[prod]][[vers]] <- list(
"indexes_bandnames" = character(0),
"indexes_fullnames" = character(0),
"indexes_formulas" = character(0),
"indexes_nodata_out" = character(0)
)
}
}
}
for (prod in names(prod_opt_list)) {
for (vers in names(prod_opt_list[[prod]])) {
check <- 0
current_custindexes <- as.list(custom_indexes[[prod]][[vers]])
for (reqband in refbands_names[req_bands]) {
if (reqband %in% prod_opt_list[[prod]][[vers]]$bandnames) {
check <- check + 1
}
}
n_req_bands <- sum(req_bands)
if (n_req_bands == check) {
tmp_indexes_bandnames <- c(current_custindexes$indexes_bandnames,
new_indexbandname)
tmp_indexes_fullnames <- c(current_custindexes$indexes_fullnames,
new_indexfullname)
tmp_indexes_formulas <- c(current_custindexes$indexes_formulas,
new_indexformula)
tmp_indexes_nodata_out <- c(current_custindexes$indexes_nodata_out,
new_indexnodata_out)
custom_indexes[[prod]][[vers]] <- list(
"indexes_bandnames" = tmp_indexes_bandnames,
"indexes_fullnames" = tmp_indexes_fullnames,
"indexes_formulas" = tmp_indexes_formulas,
"indexes_nodata_out" = tmp_indexes_nodata_out
)
rm(tmp_indexes_bandnames,
tmp_indexes_fullnames,
tmp_indexes_formulas,
tmp_indexes_nodata_out)
} else {
}
}
}
jsonlite::write_json(custom_indexes, indexes_file, pretty = TRUE,
auto_unbox = TRUE)
return(custom_indexes)
} |
html_name <- function(x) {
xml_name(x)
}
html_attr <- function(x, name, default = NA_character_) {
xml_attr(x, name, default = default)
}
html_attrs <- function(x) {
xml_attrs(x)
}
html_children <- function(x) {
xml_children(x)
} |
dev.off.crop <- function(file=NULL, warn=TRUE, ...)
{
dev.off(...)
if(!is.null(file)) {
if(.Platform$OS.type != "unix") {
if(warn) warning("dev.off.crop() only works on Unix(-like) systems; no cropping is done.")
} else {
f <- file.path(getwd(), file)
file.ext <- file_ext(file)
file.ext.low <- tolower(file.ext)
switch(file.ext.low,
"ps" =, "eps" = {
if(!command.exists("epstool")) {
if(warn) warning("Command 'epstool' for cropping PS files not found; no cropping is done.")
} else {
f. <- add_to_name(f, s="_crop")
system(paste("epstool --copy --bbox --quiet", f, f., "1>/dev/null 2>&1; mv", f., f))
}
},
"pdf" = {
if(!command.exists("pdfcrop")) {
if(warn) warning("Command 'pdfcrop' for cropping PDF files not found; no cropping is done.")
} else {
system(paste("pdfcrop --pdftexcmd pdftex", f, f, "1>/dev/null 2>&1"))
}
},
"png" = {
if(!command.exists("mogrify")) {
if(warn) warning("Command 'mogrify' for cropping PNG files not found; no cropping is done.")
} else {
system(paste("mogrify -trim", f, f, "1>/dev/null 2>&1"))
}
},
stop("Non-supported file extension."))
}
}
invisible()
} |
lr.twosigma_custom<-function(count_matrix,mean_form_alt,zi_form_alt,mean_form_null,zi_form_null
,id,lr.df,return_full_fits=TRUE,
disp_covar=NULL
,weights=rep(1,ncol(count_matrix))
,control = glmmTMBControl(),ncores=1,cluster_type="Fork",chunk_size=10,lb=FALSE,internal_call=FALSE)
{
passed_args <- names(as.list(match.call())[-1])
required_args<-c("count_matrix","mean_form_alt","zi_form_alt","mean_form_null","zi_form_null","id","lr.df")
if (any(!required_args %in% passed_args)) {
stop(paste("Argument(s)",paste(setdiff(required_args, passed_args), collapse=", "),"missing and must be specified."))
}
if(!is.matrix(count_matrix)){stop("Please ensure the input count_matrix is of class matrix.")}
if(length(id)!=ncol(count_matrix)){stop("Argument id should be a numeric vector with length equal to the number of columns of count_matrix (i.e. the number of cells).")}
ngenes<-nrow(count_matrix)
genes<-rownames(count_matrix)
if(is.null(genes)){genes<-1:ngenes}
sum_fit_alt<-vector('list',length=ngenes)
sum_fit_null<-vector('list',length=ngenes)
if(return_full_fits==TRUE){
fits_all_null<-vector('list',length=ngenes)
fits_all_alt<-vector('list',length=ngenes)
}
fit_lr<-function(chunk,id){
k<-0
num_err=0
f_n<-vector('list',length=length(chunk))
f_a<-vector('list',length=length(chunk))
gene_err<-rep(NA,length(chunk))
logLik<-rep(NA,length(chunk))
LR_stat<-rep(NA,length=length(chunk))
p.val<-rep(NA,length=length(chunk))
for(l in unlist(chunk)){
k<-k+1
count<-count_matrix[l,,drop=FALSE]
check_twosigma_custom_input(count,mean_form_alt,zi_form_alt,id,disp_covar)
check_twosigma_custom_input(count,mean_form_null,zi_form_null,id,disp_covar)
count<-as.numeric(count)
if(is.null(disp_covar)){
disp_form<- ~1
}else{
if(is.atomic(disp_covar)&length(disp_covar)==1){
if(disp_covar==0){stop("Invalid dispersion covariate option")}else{
if(disp_covar==1){
disp_form<-~1
}else{
stop("Invalid dispersion covariate option")
}
}
}
}
if(is.null(disp_form)){
disp_form<- ~ disp_covar}
formulas_alt<-list(mean_form=mean_form_alt,zi_form=zi_form_alt,disp_form=disp_form)
formulas_null<-list(mean_form=mean_form_null,zi_form=zi_form_null,disp_form=disp_form)
tryCatch({
fit_alt<-glmmTMB(formula=formulas_alt$mean_form
,ziformula=formulas_alt$zi_form
,weights=weights
,dispformula = formulas_alt$disp_form
,family=nbinom2,verbose = F
,control = control)
fit_null<-glmmTMB(formula=formulas_null$mean_form
,ziformula=formulas_null$zi_form
,weights=weights
,dispformula = formulas_null$disp_form
,family=nbinom2,verbose = F
,control = control)
tryCatch({
LR_stat[k]<- as.numeric(-2*(summary(fit_null)$logLik-summary(fit_alt)$logLik))
if(!is.na(LR_stat[k])& (LR_stat[k]<0 | (!fit_alt$sdr$pdHess) | (!fit_null$sdr$pdHess)
|is.na(fit_alt$logLik)|is.na(fit_null$logLik))){
LR_stat[k]<-NA}},error=function(e){})
p.val[k]<-1-pchisq(LR_stat[k],df=lr.df)
if(return_full_fits==TRUE){
f_n[[k]]<-fit_null
f_a[[k]]<-fit_alt
}else{
tryCatch({
f_n[[k]]<-summary(fit_null)
f_a[[k]]<-summary(fit_alt)
})
}},error=function(e){})
}
return(list(fit_null=f_n,fit_alt=f_a,p.val=p.val,LR_stat=LR_stat))
}
size=chunk_size
chunks<-split(1:ngenes,ceiling(seq_along(genes)/size))
nchunks<-length(chunks)
cl=NULL
if(cluster_type=="Sock" & ncores>1){
cl<-parallel::makeCluster(ncores)
registerDoParallel(cl)
vars<-unique(c(all.vars(mean_form_alt)[-1],all.vars(zi_form_alt)
,all.vars(mean_form_null)[-1],all.vars(zi_form_null)))
clusterExport(cl,varlist=vars,envir=environment())
}
if(cluster_type=="Fork"&ncores>1){
cl<-parallel::makeForkCluster(ncores,outfile="")
registerDoParallel(cl)
}
if(internal_call==FALSE){
print("Running Gene-Level Models")
pboptions(type="timer")
if(lb==TRUE){pboptions(use_lb=TRUE)}
a<-pblapply(chunks,FUN=fit_lr,id=id,cl=cl)
if(ncores>1){parallel::stopCluster(cl)}
}else{
a<-lapply(chunks,FUN=fit_lr,id=id)
}
fit_null<-do.call(c,sapply(a,'[',1))
fit_alt<-do.call(c,sapply(a,'[',2))
p.val<-unlist(sapply(a,'[',3))
LR_stat<-unlist(sapply(a,'[',4))
names(p.val)<-genes
names(LR_stat)<-genes
names(fit_null)<-genes
names(fit_alt)<-genes
return(list(fit_null=fit_null,fit_alt=fit_alt,LR_stat=LR_stat,LR_p.val=p.val))
} |
test.gsq <- function(observed,expected){
gsq <- 0
obs <- as.matrix(observed,rownames.force=T)
exp <- as.matrix(expected,rownames.force=T)
r <- nrow(obs)
count <- 1
while(count <= r){
for(s in count:r){
if((exp[s,count] == 0) || (obs[s,count] == 0)){
gsq <- gsq
}
if((exp[s,count] != 0) && (obs[s,count] != 0)){
gsq <- gsq + 2*obs[s,count]*log(obs[s,count]/exp[s,count])
}
}
count <- count + 1
}
return(gsq)
} |
NULL
Surv <- survival::Surv
ns <- splines::ns
bs <- splines::bs
.onLoad <- function(libname, pkgname) {
rjags::load.module("glm", quiet = TRUE)
}
.onAttach <- function(libname, pkgname) {
packageStartupMessage(
"Please report any bugs to the package maintainer (https://github.com/NErler/JointAI/issues)."
)
}
utils::globalVariables(c("i", "value", "chain", "iteration"))
NULL |
getWall <- function(owner_id='', domain='', offset='', count='', filter='owner', extended='', fields='', v=getAPIVersion()) {
.Deprecated("getWallExecute()")
query <- queryBuilder('wall.get',
owner_id = owner_id,
domain = domain,
offset = offset,
count = count,
filter = filter,
extended = extended,
fields = fields,
v = v)
request_delay()
response <- jsonlite::fromJSON(query)
if (has_error(response))
return(try_handle_error(response))
response$response
}
getWallExecute <- function(owner_id='', domain='', offset=0, count=10, filter='owner', extended='', fields='', use_db=FALSE, db_params=list(), progress_bar=FALSE, v=getAPIVersion())
{
get_posts2500 <- function(owner_id='', domain='', offset=0, max_count='', filter='owner', extended='', fields='', v=getAPIVersion())
{
if (max_count > 2500)
max_count <- 2500
if (max_count <= 100) {
execute(paste0('return API.wall.get({"owner_id":"', owner_id, '",
"domain":"', domain, '",
"offset":"', offset, '",
"count":"', max_count, '",
"filter":"', filter, '",
"extended":"', extended, '",
"v":"', v, '"}).items;'))
} else {
code <- 'var wall_records = [];'
code <- paste0(code, 'wall_records = wall_records + API.wall.get({"owner_id":"', owner_id, '",
"domain":"', domain, '",
"offset":"', offset, '",
"count":"', 100, '",
"filter":"', filter, '",
"extended":"', extended, '",
"v":"', v, '"}).items;')
code <- paste0(code, 'var offset = 100 + ', offset, ';
var count = 100; var max_offset = offset + ', max_count, ';
while (offset < max_offset && wall_records.length <= offset && offset-', offset, '<', max_count, ') {
if (', max_count, ' - wall_records.length < 100) {
count = ', max_count, ' - wall_records.length;
};
wall_records = wall_records + API.wall.get({"owner_id":"', owner_id, '",
"domain":"', domain, '",
"offset":offset,
"count":count,
"filter":"', filter, '",
"extended":"', extended, '",
"v":"', v, '"}).items;
offset = offset + 100;
};
return wall_records;')
execute(code)
}
}
code <- paste0('return API.wall.get({"owner_id":"', owner_id, '",
"domain":"', domain, '",
"offset":"', offset, '",
"count":"', 1, '",
"filter":"', filter, '",
"extended":"', extended, '",
"v":"', v, '"});')
response <- execute(code)
posts <- response$items
max_count <- ifelse((response$count - offset) > count & count != 0, count, response$count - offset)
if (max_count == 0)
return(list(posts = response$items,
count = response$count))
if (use_db) {
collection <- or(db_params[['collection']], or(domain, owner_id))
suffix <- or(db_params[['suffix']], 'wall')
key <- or(db_params[['key']], 'id')
if (collection_exists(collection, suffix))
db_update(object = posts, key = key, collection = collection, suffix = suffix, upsert = TRUE)
else
db_save(object = posts, collection = collection, suffix = suffix)
}
if (progress_bar) {
pb <- txtProgressBar(min = 0, max = max_count, style = 3)
setTxtProgressBar(pb, nrow(posts))
}
num_records <- max_count - nrow(posts)
while (nrow(posts) < max_count) {
tryCatch({ posts2500 <- get_posts2500(owner_id = owner_id,
domain = domain,
filter = filter,
extended = extended,
fields = fields,
max_count = num_records,
offset = offset + nrow(posts),
v = v)
if (use_db)
db_update(object = posts2500, key = key, collection = collection, suffix = suffix, upsert = TRUE)
posts <- jsonlite::rbind_pages(list(posts, posts2500))
num_records <- ifelse((max_count - nrow(posts)) > num_records, num_records, max_count - nrow(posts)) },
vk_error13 = function(e) {
num_records <<- as.integer(num_records / 2)
warning(simpleWarning(paste0('Parameter "count" was tuned: ', num_records, ' per request.')))
})
if (progress_bar)
setTxtProgressBar(pb, nrow(posts))
}
if (progress_bar)
close(pb)
wall <- list(posts = posts,
count = response$count)
class(wall) <- c(class(wall), "posts.list")
return(wall)
}
wallSearch <- function(owner_id='', domain='', query='', owners_only='', count='20', offset='0', extended='', fields='', v=getAPIVersion()) {
query <- queryBuilder('wall.search',
owner_id = owner_id,
domain = domain,
query = query,
owners_only = owners_only,
count = count,
offset = offset,
extended = extended,
fields = fields,
v = v)
request_delay()
response <- jsonlite::fromJSON(query)
if (has_error(response))
return(try_handle_error(response))
response$response
}
wallGetById <- function(posts='', extended='', copy_history_depth='', fields='', v=getAPIVersion()) {
query <- queryBuilder('wall.getById',
posts = posts,
extended = extended,
copy_history_depth = copy_history_depth,
fields = fields,
v = v)
request_delay()
response <- jsonlite::fromJSON(query)
if (has_error(response))
return(try_handle_error(response))
response$response
}
wallGetReposts <- function(owner_id='', post_id='', offset='', count='20', v=getAPIVersion()) {
query <- queryBuilder('wall.getReposts',
owner_id = owner_id,
post_id = post_id,
offset = offset,
count = count,
v = v)
request_delay()
response <- jsonlite::fromJSON(query)
if (has_error(response))
return(try_handle_error(response))
response$response
}
wallGetComments <- function(owner_id='', post_id='', need_likes='', start_comment_id='', offset='', count='10', sort='', preview_length='0', extended='', v=getAPIVersion()) {
query <- queryBuilder('wall.getComments',
owner_id = owner_id,
post_id = post_id,
need_likes = need_likes,
start_comment_id = start_comment_id,
offset = offset,
count = count,
sort = sort,
preview_length = preview_length,
extended = extended,
v = v)
request_delay()
response <- jsonlite::fromJSON(query)
if (has_error(response))
return(try_handle_error(response))
response$response
}
postGetComments <- function(owner_id='', post_id='', need_likes=1, start_comment_id='', offset=0, count=10, sort='', preview_length=0, extended='', progress_bar = FALSE, v=getAPIVersion()) {
get_comments2500 <- function(owner_id='', post_id='', need_likes=1, start_comment_id='', offset=0, max_count='', sort='', preview_length=0, extended='', v=getAPIVersion())
{
if (max_count > 2500)
max_count <- 2500
if (max_count <= 100) {
execute(paste0('return API.wall.getComments({
"owner_id":"', owner_id, '",
"post_id":"', post_id, '",
"count":"', max_count, '",
"offset":"', offset, '",
"need_likes":"', need_likes, '",
"start_comment_id":"', start_comment_id, '",
"sort":"', sort, '",
"preview_length":"', preview_length, '",
"extended":"', extended, '", "v":"', v, '"}).items;'))
} else {
code <- 'var comments = [];'
code <- paste0(code, 'comments = comments + API.wall.getComments({
"owner_id":"', owner_id, '",
"post_id":"', post_id, '",
"count":"', 100, '",
"offset":"', offset, '",
"need_likes":"', need_likes, '",
"start_comment_id":"', start_comment_id, '",
"sort":"', sort, '",
"preview_length":"', preview_length, '",
"extended":"', extended, '", "v":"', v, '"}).items;')
code <- paste0(code, 'var offset = 100 + ', offset, ';
var count = 100; var max_offset = offset + ', max_count, ';
while (offset < max_offset && comments.length <= offset && offset-', offset, '<', max_count, ') {
if (', max_count, ' - comments.length < 100) {
count = ', max_count, ' - comments.length;
};
comments = comments + API.wall.getComments({
"owner_id":"', owner_id, '",
"post_id":"', post_id, '",
"offset":offset,
"count":count,
"need_likes":"', need_likes, '",
"start_comment_id":"', start_comment_id, '",
"sort":"', sort, '",
"preview_length":"', preview_length, '",
"extended":"', extended, '", "v":"', v, '"}).items;
offset = offset + 100;
};
return comments;')
execute(code)
}
}
code <- paste0('return API.wall.getComments({
"owner_id":"', owner_id, '",
"post_id":"', post_id, '",
"count":"', 1, '",
"offset":"', offset, '",
"need_likes":"', need_likes, '",
"start_comment_id":"', start_comment_id, '",
"sort":"', sort, '",
"preview_length":"', preview_length, '",
"extended":"', extended, '", "v":"', v, '"});')
response <- execute(code)
comments <- response$items
max_count <- ifelse((response$count - offset) > count & count != 0, count, response$count - offset)
if (max_count == 0)
return(list(comments = response$items,
count = response$count))
offset_counter <- 0
if (progress_bar) {
pb <- txtProgressBar(min = 0, max = max_count, style = 3)
setTxtProgressBar(pb, nrow(comments))
}
while (nrow(comments) < max_count) {
tryCatch({
comments2500 <- get_comments2500(owner_id = owner_id,
post_id = post_id,
need_likes = need_likes,
extended = extended,
sort = sort,
preview_length = preview_length,
start_comment_id = start_comment_id,
max_count = (max_count - nrow(comments)),
offset = (1 + offset + offset_counter * 2500),
v = v)
comments <- jsonlite::rbind_pages(list(comments, comments2500))
offset_counter <- offset_counter + 1
}, error = function(e) {
warning(e)
})
if (progress_bar)
setTxtProgressBar(pb, nrow(comments))
}
if (progress_bar)
close(pb)
list(comments = comments,
count = response$count)
}
wallGetCommentsList <- function(posts, progress_bar = FALSE, v = getAPIVersion()) {
get_comments <- function(posts, v = getAPIVersion())
{
num_requests <- ceiling(nrow(posts) / 25)
from <- 1
to <- 25
comments <- list()
for (i in 1:num_requests) {
code <- 'var comments_per_post = {}; var comments;'
if (to > nrow(posts))
to <- nrow(posts)
for (index in from:to) {
code <- paste0(code, 'comments = API.wall.getComments({
"owner_id":"', posts[index, ]$owner_id, '",
"post_id":"', posts[index, ]$id, '",
"need_likes":"', 1, '",
"count":"', 100, '",
"v":"', v, '"}).items;
comments_per_post.post', posts[index, ]$id, "=comments;", sep = "")
}
code <- paste0(code, 'return comments_per_post;')
comments <- append(comments, execute(code))
from <- from + 25
to <- to + 25
}
obj_ids <- unlist(strsplit(names(comments), "post", fixed = T))
obj_ids <- as.integer(obj_ids[obj_ids != ""])
names(comments) <- obj_ids
comments
}
if ("posts.list" %in% class(posts))
posts <- posts$posts
cmt_groups <- split(posts, posts$comments$count > 100)
posts_le100 <- cmt_groups[['FALSE']]
posts_gt100 <- cmt_groups[['TRUE']]
comments <- list()
from <- 1
max_count <- nrow(posts_le100)
to <- ifelse(max_count >= 75, 75, max_count)
if (progress_bar) {
pb <- txtProgressBar(min = 0, max = nrow(posts), style = 3)
setTxtProgressBar(pb, 0)
}
repeat {
comments75 <- get_comments(posts_le100[from:to, ], v)
comments <- append(comments, comments75)
if (progress_bar)
setTxtProgressBar(pb, length(comments))
if (to >= max_count)
break
from <- to + 1
to <- ifelse(to + 75 >= max_count, max_count, to + 75)
}
if (!is.null(posts_gt100)) {
for (i in 1:nrow(posts_gt100)) {
owner_id <- posts_gt100$owner_id[i]
post_id <- posts_gt100$id[i]
comments[[paste0(post_id)]] <- postGetComments(owner_id = owner_id,
post_id = post_id,
count = 0,
v = v)$comments
if (progress_bar)
setTxtProgressBar(pb, length(comments))
}
}
if (progress_bar)
close(pb)
comments_ordered <- list()
for (i in 1:nrow(posts)) {
comments_ordered[[paste0(posts$id[i])]] <- comments[[paste0(posts$id[i])]]
}
class(comments_ordered) <- c(class(comments_ordered), "vk.comments")
comments_ordered
}
filterAttachments <- function(attachments, type) {
if (!requireNamespace("plyr", quietly = TRUE)) {
stop("plyr package needed for this function to work. Please install it.", .call = FALSE)
}
if (!is.character(type)) stop('type must be a character')
filtered_attachments <- data.frame()
for (i in 1:length(attachments)) {
if (!is.null(attachments[[i]])) {
for (j in 1:nrow(attachments[[i]])) {
if (attachments[[i]][j, ]$type == type) {
filtered_attachments <- plyr::rbind.fill(filtered_attachments, attachments[[i]][j, ][[type]])
}
}
}
}
filtered_attachments
} |
model_parameters.htest <- function(model,
cramers_v = NULL,
phi = NULL,
standardized_d = NULL,
hedges_g = NULL,
omega_squared = NULL,
eta_squared = NULL,
epsilon_squared = NULL,
cohens_g = NULL,
rank_biserial = NULL,
rank_epsilon_squared = NULL,
kendalls_w = NULL,
ci = .95,
alternative = NULL,
bootstrap = FALSE,
verbose = TRUE,
...) {
if (bootstrap) {
stop("Bootstrapped h-tests are not yet implemented.")
} else {
parameters <- .extract_parameters_htest(
model,
cramers_v = cramers_v,
phi = phi,
standardized_d = standardized_d,
hedges_g = hedges_g,
omega_squared = omega_squared,
eta_squared = eta_squared,
epsilon_squared = epsilon_squared,
cohens_g = cohens_g,
rank_biserial = rank_biserial,
rank_epsilon_squared = rank_epsilon_squared,
kendalls_w = kendalls_w,
ci = ci,
alternative = alternative,
verbose = verbose,
...
)
}
if (!is.null(parameters$Method)) {
parameters$Method <- trimws(gsub("with continuity correction", "", parameters$Method))
}
parameters$Alternative <- model$alternative
parameters <- .add_htest_parameters_attributes(parameters, model, ci, ...)
class(parameters) <- c("parameters_model", "see_parameters_model", class(parameters))
parameters
}
standard_error.htest <- function(model, ...) {
NULL
}
p_value.htest <- function(model, ...) {
model$p.value
}
model_parameters.pairwise.htest <- function(model, verbose = TRUE, ...) {
m <- model$p.value
parameters <-
data.frame(
Group1 = rep(rownames(m), each = ncol(m)),
Group2 = rep(colnames(m), times = nrow(m)),
p = as.numeric(t(m)),
stringsAsFactors = FALSE
)
parameters <- stats::na.omit(parameters)
parameters <- .add_htest_attributes(parameters, model, p_adjust = model$p.adjust.method)
class(parameters) <- c("parameters_model", "see_parameters_model", class(parameters))
parameters
}
.extract_parameters_htest <- function(model,
cramers_v = NULL,
phi = NULL,
standardized_d = NULL,
hedges_g = NULL,
omega_squared = NULL,
eta_squared = NULL,
epsilon_squared = NULL,
cohens_g = NULL,
rank_biserial = NULL,
rank_epsilon_squared = NULL,
kendalls_w = NULL,
ci = 0.95,
alternative = NULL,
verbose = TRUE,
...) {
m_info <- insight::model_info(model, verbose = FALSE)
if (m_info$is_correlation) {
out <- .extract_htest_correlation(model)
} else if (.is_levenetest(model)) {
out <- .extract_htest_levenetest(model)
} else if (m_info$is_ttest) {
out <- .extract_htest_ttest(model)
out <- .add_effectsize_ttest(model,
out,
standardized_d,
hedges_g,
ci = ci,
alternative = alternative,
verbose = verbose,
...
)
} else if (m_info$is_ranktest) {
out <- .extract_htest_ranktest(model)
if (grepl("^Wilcox", model$method)) {
out <- .add_effectsize_rankbiserial(model,
out,
rank_biserial,
ci = ci,
verbose = verbose,
...
)
}
if (grepl("^Kruskal", model$method)) {
out <- .add_effectsize_rankepsilon(model,
out,
rank_epsilon_squared,
ci = ci,
verbose = verbose,
...
)
}
if (grepl("^Friedman", model$method)) {
out <- .add_effectsize_kendalls_w(model,
out,
kendalls_w,
ci = ci,
verbose = verbose,
...
)
}
} else if (m_info$is_onewaytest) {
out <- .extract_htest_oneway(model)
out <- .add_effectsize_oneway(
model,
out,
omega_squared,
eta_squared,
epsilon_squared,
ci = ci,
verbose = verbose
)
} else if (m_info$is_chi2test) {
out <- .extract_htest_chi2(model)
if (grepl("^McNemar", model$method)) {
out <- .add_effectsize_mcnemar(model,
out,
cohens_g = cohens_g,
ci = ci,
verbose = verbose
)
} else {
out <- .add_effectsize_chi2(
model,
out,
cramers_v = cramers_v,
phi = phi,
ci = ci,
alternative = alternative,
verbose = verbose
)
}
} else if (m_info$is_proptest) {
out <- .extract_htest_prop(model)
} else if (m_info$is_binomtest) {
out <- .extract_htest_binom(model)
} else {
stop("model_parameters not implemented for such h-tests yet.")
}
row.names(out) <- NULL
out
}
.extract_htest_correlation <- function(model) {
names <- unlist(strsplit(model$data.name, " (and|by) "))
out <- data.frame(
"Parameter1" = names[1],
"Parameter2" = names[2],
stringsAsFactors = FALSE
)
if (model$method == "Pearson's Chi-squared test") {
out$Chi2 <- model$statistic
out$df_error <- model$parameter
out$p <- model$p.value
} else if (grepl("Pearson", model$method, fixed = TRUE)) {
out$r <- model$estimate
out$t <- model$statistic
out$df_error <- model$parameter
out$p <- model$p.value
out$CI_low <- model$conf.int[1]
out$CI_high <- model$conf.int[2]
} else if (grepl("Spearman", model$method, fixed = TRUE)) {
out$rho <- model$estimate
out$S <- model$statistic
out$df_error <- model$parameter
out$p <- model$p.value
} else {
out$tau <- model$estimate
out$z <- model$statistic
out$df_error <- model$parameter
out$p <- model$p.value
}
out$Method <- model$method
col_order <- c(
"Parameter1", "Parameter2", "Parameter", "r", "rho", "tau", "CI_low", "CI_high",
"t", "z", "S", "df_error", "p", "Method", "method"
)
out <- out[col_order[col_order %in% names(out)]]
out
}
.extract_htest_ranktest <- function(model) {
if (grepl("design-based", tolower(model$method), fixed = TRUE)) {
names <- gsub("~", "", unlist(strsplit(model$data.name, " + ", fixed = TRUE)), fixed = TRUE)
out <- data.frame(
"Parameter1" = names[1],
"Parameter2" = names[2],
"Statistic" = model$statistic[[1]],
"df_error" = model$parameter[[1]],
"Method" = model$method,
"p" = model$p.value[[1]],
stringsAsFactors = FALSE
)
out$Method <- gsub("KruskalWallis", "Kruskal-Wallis", out$Method, fixed = TRUE)
colnames(out)[colnames(out) == "Statistic"] <- names(model$statistic)[1]
} else {
if (grepl(" (and|by) ", model$data.name)) {
names <- unlist(strsplit(model$data.name, " (and|by) "))
out <- data.frame(
"Parameter1" = names[1],
"Parameter2" = names[2],
stringsAsFactors = FALSE
)
} else {
out <- data.frame(
"Parameter" = model$data.name,
stringsAsFactors = FALSE
)
}
if (grepl("Wilcoxon", model$method, fixed = TRUE)) {
out$W <- model$statistic[[1]]
out$df_error <- model$parameter[[1]]
out$p <- model$p.value[[1]]
} else if (grepl("Kruskal-Wallis", model$method, fixed = TRUE) ||
grepl("Friedman", model$method, fixed = TRUE)) {
out$Chi2 <- model$statistic[[1]]
out$df_error <- model$parameter[[1]]
out$p <- model$p.value[[1]]
}
out$Method <- model$method
}
out
}
.extract_htest_levenetest <- function(model) {
data.frame(
"df" = model$Df[1],
"df_error" = model$Df[2],
`F` = model$`F value`[1],
p = model$`Pr(>F)`[1],
Method = "Levene's Test for Homogeneity of Variance",
stringsAsFactors = FALSE
)
}
.extract_htest_ttest <- function(model, standardized_d = NULL, hedges_g = NULL) {
if (grepl("design-based", tolower(model$method), fixed = TRUE)) {
names <- unlist(strsplit(model$data.name, " ~ "))
out <- data.frame(
"Parameter1" = names[1],
"Parameter2" = names[2],
"Difference" = model$estimate[[1]],
"t" = model$statistic[[1]],
"df_error" = model$parameter[[1]],
"Method" = model$method,
"p" = model$p.value[[1]],
stringsAsFactors = FALSE
)
out$Method <- gsub("KruskalWallis", "Kruskal-Wallis", out$Method, fixed = TRUE)
colnames(out)[colnames(out) == "Statistic"] <- names(model$statistic)[1]
} else {
paired_test <- grepl("^Paired", model$method) && length(model$estimate) == 1
if (grepl(" and ", model$data.name) && isFALSE(paired_test)) {
names <- unlist(strsplit(model$data.name, " and ", fixed = TRUE))
out <- data.frame(
"Parameter1" = names[1],
"Parameter2" = names[2],
"Mean_Parameter1" = model$estimate[1],
"Mean_Parameter2" = model$estimate[2],
"Difference" = model$estimate[1] - model$estimate[2],
"CI_low" = model$conf.int[1],
"CI_high" = model$conf.int[2],
"t" = model$statistic,
"df_error" = model$parameter,
"p" = model$p.value,
"Method" = model$method,
stringsAsFactors = FALSE
)
attr(out, "mean_group_values") <- gsub("mean in group ", "", names(model$estimate), fixed = TRUE)
} else if (isTRUE(paired_test)) {
names <- unlist(strsplit(model$data.name, " (and|by) "))
out <- data.frame(
"Parameter" = names[1],
"Group" = names[2],
"Difference" = model$estimate,
"t" = model$statistic,
"df_error" = model$parameter,
"p" = model$p.value,
"CI_low" = model$conf.int[1],
"CI_high" = model$conf.int[2],
"Method" = model$method,
stringsAsFactors = FALSE
)
} else if (grepl(" by ", model$data.name, fixed = TRUE)) {
if (length(model$estimate) == 1) {
names <- unlist(strsplit(model$data.name, " by ", fixed = TRUE))
out <- data.frame(
"Parameter" = names[1],
"Group" = names[2],
"Difference" = model$estimate,
"CI" = .95,
"CI_low" = as.vector(model$conf.int[, 1]),
"CI_high" = as.vector(model$conf.int[, 2]),
"t" = model$statistic,
"df_error" = model$parameter,
"p" = model$p.value,
"CI_low" = model$conf.int[1],
"CI_high" = model$conf.int[2],
"Method" = model$method,
stringsAsFactors = FALSE
)
} else {
names <- unlist(strsplit(model$data.name, " by ", fixed = TRUE))
out <- data.frame(
"Parameter" = names[1],
"Group" = names[2],
"Mean_Group1" = model$estimate[1],
"Mean_Group2" = model$estimate[2],
"Difference" = model$estimate[1] - model$estimate[2],
"CI_low" = model$conf.int[1],
"CI_high" = model$conf.int[2],
"t" = model$statistic,
"df_error" = model$parameter,
"p" = model$p.value,
"Method" = model$method,
stringsAsFactors = FALSE
)
attr(out, "mean_group_values") <- gsub("mean in group ", "", names(model$estimate), fixed = TRUE)
}
} else {
out <- data.frame(
"Parameter" = model$data.name,
"Mean" = model$estimate,
"mu" = model$null.value,
"Difference" = model$estimate - model$null.value,
"CI_low" = model$conf.int[1],
"CI_high" = model$conf.int[2],
"t" = model$statistic,
"df_error" = model$parameter,
"p" = model$p.value,
"Method" = model$method,
stringsAsFactors = FALSE
)
}
}
attr(out, "htest_type") <- "ttest"
out
}
.extract_htest_oneway <- function(model) {
data.frame(
"F" = model$statistic,
"df" = model$parameter[1],
"df_error" = model$parameter[2],
"p" = model$p.value,
"Method" = model$method,
stringsAsFactors = FALSE
)
}
.extract_htest_chi2 <- function(model) {
if (("observed" %in% names(model) && inherits(model$observed, "svytable")) ||
grepl("^svychisq", model$data.name)) {
if (grepl("Pearson's X", model$method, fixed = TRUE)) {
model$method <- gsub("(Pearson's X\\^2: )(.*)", "Pearson's Chi2 \\(\\2\\)", model$method)
}
if (names(model$statistic) == "F") {
data.frame(
"F" = model$statistic,
"df" = model$parameter[1],
"df_error" = model$parameter[2],
"p" = model$p.value,
"Method" = model$method,
stringsAsFactors = FALSE
)
} else {
data.frame(
"Chi2" = model$statistic,
"df" = model$parameter,
"p" = model$p.value,
"Method" = model$method,
stringsAsFactors = FALSE
)
}
} else {
if (!is.null(model$estimate) && identical(names(model$estimate), "odds ratio")) {
data.frame(
"Odds Ratio" = model$estimate,
"CI_low" = model$conf.int[1],
"CI_high" = model$conf.int[2],
"p" = model$p.value,
"Method" = model$method,
stringsAsFactors = FALSE,
check.names = FALSE
)
} else {
data.frame(
"Chi2" = model$statistic,
"df" = model$parameter,
"p" = model$p.value,
"Method" = model$method,
stringsAsFactors = FALSE
)
}
}
}
.extract_htest_prop <- function(model) {
out <- data.frame(
Proportion = paste0(insight::format_value(model$estimate, as_percent = TRUE), collapse = " / "),
stringsAsFactors = FALSE
)
if (length(model$estimate) == 2) {
out$Difference <- insight::format_value(
abs(model$estimate[1] - model$estimate[2]),
as_percent = TRUE
)
}
if (!is.null(model$conf.int)) {
out$CI_low <- model$conf.int[1]
out$CI_high <- model$conf.int[2]
}
out$Chi2 <- model$statistic
out$df <- model$parameter[1]
out$Null_value <- model$null.value
out$p <- model$p.value
out$Method <- model$method
out
}
.extract_htest_binom <- function(model) {
out <- data.frame(
"Probability" = model$estimate,
"CI_low" = model$conf.int[1],
"CI_high" = model$conf.int[2],
"Success" = model$statistic,
"Trials" = model$parameter,
stringsAsFactors = FALSE
)
out$Null_value <- model$null.value
out$p <- model$p.value
out$Method <- model$method
out
}
.add_effectsize_chi2 <- function(model,
out,
cramers_v = NULL,
phi = NULL,
ci = .95,
alternative = NULL,
verbose = TRUE) {
if (!requireNamespace("effectsize", quietly = TRUE) || (is.null(cramers_v) && is.null(phi))) {
return(out)
}
if (!is.null(cramers_v)) {
es <- effectsize::effectsize(
model,
type = "cramers_v",
ci = ci,
alternative = alternative,
adjust = identical(cramers_v, "adjusted"),
verbose = verbose
)
es$CI <- NULL
ci_cols <- grepl("^CI", names(es))
names(es)[ci_cols] <- paste0("Cramers_", names(es)[ci_cols])
out <- cbind(out, es)
}
if (!is.null(phi)) {
es <- effectsize::effectsize(
model,
type = "phi",
ci = ci,
alternative = alternative,
adjust = identical(phi, "adjusted"),
verbose = verbose
)
es$CI <- NULL
ci_cols <- grepl("^CI", names(es))
names(es)[ci_cols] <- paste0("phi_", names(es)[ci_cols])
out <- cbind(out, es)
}
col_order <- c(
"Chi2", "df", "df_error", "Cramers_v", "Cramers_v_adjusted", "Cramers_CI_low",
"Cramers_CI_high", "phi", "phi_adjusted", "phi_CI_low",
"phi_CI_high", "p", "Method", "method"
)
out <- out[col_order[col_order %in% names(out)]]
out
}
.add_effectsize_mcnemar <- function(model,
out,
cohens_g = NULL,
ci = .95,
verbose = TRUE) {
if (is.null(cohens_g)) {
return(out)
}
if (requireNamespace("effectsize", quietly = TRUE)) {
es <- effectsize::effectsize(model, type = "cohens_g", ci = ci, verbose = verbose)
es$CI <- NULL
ci_cols <- grepl("^CI", names(es))
names(es)[ci_cols] <- paste0("Cohens_", names(es)[ci_cols])
out <- cbind(out, es)
}
col_order <- c(
"Chi2", "df", "df_error", "Cohens_g", "g", "Cohens_CI_low",
"Cohens_CI_high", "p", "Method", "method"
)
out <- out[col_order[col_order %in% names(out)]]
out
}
.add_effectsize_ttest <- function(model,
out,
standardized_d = NULL,
hedges_g = NULL,
ci = .95,
alternative = NULL,
verbose = TRUE,
...) {
if (is.null(standardized_d) && is.null(hedges_g)) {
return(out)
}
if (requireNamespace("effectsize", quietly = TRUE)) {
if (!is.null(standardized_d)) {
es <- effectsize::effectsize(
model,
type = "cohens_d",
ci = ci,
alternative = alternative,
verbose = verbose,
...
)
es$CI <- NULL
ci_cols <- grepl("^CI", names(es))
names(es)[ci_cols] <- paste0("d_", names(es)[ci_cols])
out <- cbind(out, es)
}
if (!is.null(hedges_g)) {
es <- effectsize::effectsize(
model,
type = "hedges_g",
ci = ci,
alternative = alternative,
verbose = verbose,
...
)
es$CI <- NULL
ci_cols <- grepl("^CI", names(es))
names(es)[ci_cols] <- paste0("g_", names(es)[ci_cols])
out <- cbind(out, es)
}
}
col_order <- c(
"Parameter1", "Parameter2", "Parameter", "Group",
"Mean_Parameter1", "Mean_Parameter2", "Mean_Group1", "Mean_Group2",
"mu", "Difference", "CI_low", "CI_high",
"t", "df_error",
"d", "Cohens_d", "d_CI_low", "d_CI_high",
"g", "Hedges_g", "g_CI_low", "g_CI_high",
"p", "Method", "method"
)
out <- out[col_order[col_order %in% names(out)]]
out
}
.add_effectsize_rankbiserial <- function(model,
out,
rank_biserial = NULL,
ci = .95,
verbose = TRUE,
...) {
if (is.null(rank_biserial)) {
return(out)
}
if (requireNamespace("effectsize", quietly = TRUE)) {
es <- effectsize::effectsize(model,
type = "rank_biserial",
ci = ci,
verbose = verbose,
...
)
es$CI <- NULL
ci_cols <- grepl("^CI", names(es))
names(es)[ci_cols] <- paste0("rank_biserial_", names(es)[ci_cols])
out <- cbind(out, es)
}
col_order <- c(
"Parameter1", "Parameter2", "Parameter", "W", "r_rank_biserial", "CI",
"rank_biserial_CI_low", "rank_biserial_CI_high", "p", "Method", "method"
)
out <- out[col_order[col_order %in% names(out)]]
out
}
.add_effectsize_rankepsilon <- function(model,
out,
rank_epsilon_squared = NULL,
ci = .95,
verbose = TRUE,
...) {
if (is.null(rank_epsilon_squared)) {
return(out)
}
if (requireNamespace("effectsize", quietly = TRUE)) {
es <- effectsize::effectsize(model,
type = "rank_epsilon_squared",
ci = ci,
verbose = verbose,
...
)
es$CI <- NULL
ci_cols <- grepl("^CI", names(es))
names(es)[ci_cols] <- paste0("rank_epsilon_squared_", names(es)[ci_cols])
out <- cbind(out, es)
}
col_order <- c(
"Parameter1", "Parameter2", "Parameter", "Chi2", "df_error",
"rank_epsilon_squared", "CI", "rank_epsilon_squared_CI_low", "rank_epsilon_squared_CI_high",
"p", "Method", "method"
)
out <- out[col_order[col_order %in% names(out)]]
out
}
.add_effectsize_kendalls_w <- function(model,
out,
kendalls_w = NULL,
ci = .95,
verbose = TRUE,
...) {
if (is.null(kendalls_w)) {
return(out)
}
if (requireNamespace("effectsize", quietly = TRUE)) {
es <- effectsize::effectsize(model,
type = "kendalls_w",
ci = ci,
verbose = verbose,
...
)
es$CI <- NULL
ci_cols <- grepl("^CI", names(es))
names(es)[ci_cols] <- paste0("Kendalls_W_", names(es)[ci_cols])
out <- cbind(out, es)
}
col_order <- c(
"Parameter1", "Parameter2", "Parameter", "Chi2", "df_error", "Kendalls_W", "CI",
"Kendalls_W_CI_low", "Kendalls_W_CI_high", "p", "Method", "method"
)
out <- out[col_order[col_order %in% names(out)]]
out
}
.add_effectsize_oneway <- function(model,
out,
omega_squared = NULL,
eta_squared = NULL,
epsilon_squared = NULL,
ci = .95,
verbose = TRUE) {
if (is.null(omega_squared) && is.null(eta_squared) && is.null(epsilon_squared)) {
return(out)
}
if (requireNamespace("effectsize", quietly = TRUE)) {
if (!is.null(omega_squared)) {
es <- effectsize::effectsize(model, ci = ci, type = "omega", partial = TRUE, verbose = verbose)
es$CI <- NULL
ci_cols <- grepl("^CI", names(es))
names(es)[ci_cols] <- paste0("Omega2_", names(es)[ci_cols])
out <- cbind(out, es)
}
if (!is.null(eta_squared)) {
es <- effectsize::effectsize(model, ci = ci, type = "eta", partial = TRUE, verbose = verbose)
es$CI <- NULL
ci_cols <- grepl("^CI", names(es))
names(es)[ci_cols] <- paste0("Eta2_", names(es)[ci_cols])
out <- cbind(out, es)
}
if (!is.null(epsilon_squared)) {
es <- effectsize::effectsize(model, ci = ci, type = "epsilon", partial = TRUE, verbose = verbose)
es$CI <- NULL
ci_cols <- grepl("^CI", names(es))
names(es)[ci_cols] <- paste0("Epsilon2_", names(es)[ci_cols])
out <- cbind(out, es)
}
}
col_order <- c(
"F", "df", "df_error", "Eta2", "Eta2_CI_low", "Eta2_CI_high",
"Omega2", "Omega2_CI_low", "Omega2_CI_high", "Epsilon2",
"Epsilon2_CI_low", "Epsilon2_CI_high", "p", "Method", "method"
)
out <- out[col_order[col_order %in% names(out)]]
out
}
.add_htest_parameters_attributes <- function(params, model, ci = 0.95, ...) {
attr(params, "title") <- unique(params$Method)
attr(params, "model_class") <- class(model)
attr(params, "alternative") <- model$alternative
if (!is.null(model$alternative)) {
h1_text <- "Alternative hypothesis: "
if (!is.null(model$null.value)) {
if (length(model$null.value) == 1L) {
alt.char <- switch(model$alternative,
two.sided = "not equal to",
less = "less than",
greater = "greater than"
)
h1_text <- paste0(h1_text, "true ", names(model$null.value), " is ", alt.char, " ", model$null.value)
} else {
h1_text <- paste0(h1_text, model$alternative)
}
} else {
h1_text <- paste0(h1_text, model$alternative)
}
attr(params, "text_alternative") <- h1_text
}
dot.arguments <- lapply(match.call(expand.dots = FALSE)$`...`, function(x) x)
if ("digits" %in% names(dot.arguments)) {
attr(params, "digits") <- eval(dot.arguments[["digits"]])
} else {
attr(params, "digits") <- 2
}
if ("ci_digits" %in% names(dot.arguments)) {
attr(params, "ci_digits") <- eval(dot.arguments[["ci_digits"]])
} else {
attr(params, "ci_digits") <- 2
}
if ("p_digits" %in% names(dot.arguments)) {
attr(params, "p_digits") <- eval(dot.arguments[["p_digits"]])
} else {
attr(params, "p_digits") <- 3
}
attr(params, "ci") <- ci
attr(params, "ci_test") <- attributes(model$conf.int)$conf.level
if (!"CI" %in% colnames(params) && length(ci) == 1) {
ci_pos <- grep("CI_low", colnames(params), fixed = TRUE)
if (length(ci_pos)) {
if (length(ci_pos) > 1) {
ci_pos <- ci_pos[1]
}
params$CI <- ci
a <- attributes(params)
params <- params[c(1:(ci_pos - 1), ncol(params), ci_pos:(ncol(params) - 1))]
attributes(params) <- utils::modifyList(a, attributes(params))
}
}
params
}
.add_htest_attributes <- function(params,
model,
p_adjust = NULL,
verbose = TRUE,
...) {
dot.arguments <- lapply(match.call(expand.dots = FALSE)$`...`, function(x) x)
attr(params, "p_adjust") <- p_adjust
attr(params, "model_class") <- class(model)
attr(params, "title") <- params$Method
if ("digits" %in% names(dot.arguments)) {
attr(params, "digits") <- eval(dot.arguments[["digits"]])
} else {
attr(params, "digits") <- 2
}
if ("ci_digits" %in% names(dot.arguments)) {
attr(params, "ci_digits") <- eval(dot.arguments[["ci_digits"]])
} else {
attr(params, "ci_digits") <- 2
}
if ("p_digits" %in% names(dot.arguments)) {
attr(params, "p_digits") <- eval(dot.arguments[["p_digits"]])
} else {
attr(params, "p_digits") <- 3
}
if ("s_value" %in% names(dot.arguments)) {
attr(params, "s_value") <- eval(dot.arguments[["s_value"]])
}
params
} |
OptSpace <- function(A,ropt=NA,niter=50,tol=1e-6,showprogress=TRUE){
if (!is.matrix(A)){
stop("* OptSpace : an input A should be a matrix.")
}
if (any(is.infinite(A))){
stop("* OptSpace : no infinite value in A is allowed.")
}
if (!any(is.na(A))){
stop("* OptSpace : there is no unobserved values as NA.")
}
idxna = (is.na(A))
M_E = array(0,c(nrow(A),ncol(A)))
M_E[!idxna] = A[!idxna]
n = nrow(A)
m = ncol(A)
nnZ.E = sum(!idxna)
E = array(0,c(nrow(A),ncol(A))); E[!idxna] = 1
eps = nnZ.E/sqrt(m*n)
if (is.na(ropt)){
if (showprogress){
print("* OptSpace: Guessing an implicit rank.")
}
r = min(max(round(guess_rank(M_E,nnZ.E)), 2), m-1)
if (showprogress){
print(paste0('* OptSpace: Guessing an implicit rank: Estimated rank : ',r))
}
} else {
r = round(ropt)
if ((!is.numeric(r))||(r<1)||(r>m)||(r>n)){
stop("* OptSpace: ropt should be an integer in [1,min(nrow(A),ncol(A))].")
}
}
if ((is.infinite(niter))||(niter<=1)||(!is.numeric(niter))){
stop("* OptSpace: invalid niter number.")
}
niter = round(niter)
m0 = 10000
rho = 0
rescal_param = sqrt(nnZ.E*r/(norm(M_E,'f')^2))
M_E = M_E*rescal_param
if (showprogress){
print("* OptSpace: Step 1: Trimming ...")
}
M_Et = M_E
d = colSums(E)
d_ = mean(d)
for (col in 1:m){
if (sum(E[,col])>(2*d_)){
listed = which(E[,col]>0)
p = sample(1:length(listed),length(listed))
M_Et[listed[p[ceiling(2*d_)]]:n,col] = 0
}
}
d = rowSums(E)
d_ = mean(d)
for (row in 1:n){
if (sum(E[row,])>2*d_){
listed = which(E[row,]>0)
p = sample(1:length(listed),length(listed))
M_Et[row,listed[p[ceiling(2*d_)]]:m] = 0
}
}
if (showprogress){
print("* OptSpace: Step 2: SVD ...")
}
svdEt = svd(M_Et)
X0 = svdEt$u[,1:r]
S0 = diag(svdEt$d[1:r])
Y0 = svdEt$v[,1:r]
if (showprogress){
print("* OptSpace: Step 3: Initial Guess ...")
}
X0 = X0*sqrt(n)
Y0 = Y0*sqrt(m)
S0 = S0/eps
if (showprogress){
print("* OptSpace: Step 4: Gradient Descent ...")
}
X = X0
Y = Y0
S = aux_getoptS(X,Y,M_E,E)
dist = array(0,c(1,(niter+1)))
dist[1] = norm((M_E - (X%*%S%*%t(Y)))*E,'f')/sqrt(nnZ.E)
for (i in 1:niter){
tmpgrad = aux_gradF_t(X,Y,S,M_E,E,m0,rho)
W = tmpgrad$W
Z = tmpgrad$Z
t = aux_getoptT(X,W,Y,Z,S,M_E,E,m0,rho)
X = X+t*W;
Y = Y+t*Z;
S = aux_getoptS(X,Y,M_E,E)
dist[i+1] = norm(((M_E - X%*%S%*%t(Y))*E),'f')/sqrt(nnZ.E)
if (showprogress){
pmsg=sprintf('* OptSpace: Step 4: Iteration %d: distortion: %e',i,dist[i+1])
}
if (dist[i+1]<tol){
dist = dist[1:(i+1)]
break
}
}
S = S/rescal_param
out = list()
out$X = X
out$S = S
out$Y = Y
out$dist = dist
if (showprogress){
print('* OptSpace: estimation finished.')
}
return(out)
} |
vec_inc <- c(1:10)
vec_dec<- c(10:1)
vec_ran <- c(sample(1:10))
vec_flat <- rep.int(1,10)
test_that("increasing correctly guesses", {
expect_true(increasing(vec_inc))
expect_false(increasing(vec_dec))
expect_false(increasing(vec_ran))
expect_false(increasing(vec_flat))
expect_false(increasing(1))
})
test_that("decreasing correctly guesses", {
expect_false(decreasing(vec_inc))
expect_true(decreasing(vec_dec))
expect_false(decreasing(vec_ran))
expect_false(decreasing(vec_flat))
expect_false(decreasing(1))
})
test_that("unvarying correctly guesses", {
expect_false(unvarying(vec_inc))
expect_false(unvarying(vec_dec))
expect_false(unvarying(vec_ran))
expect_true(unvarying(vec_flat))
expect_false(unvarying(1))
})
test_that("monotonic correctly guesses", {
expect_true(monotonic(vec_inc))
expect_true(monotonic(vec_dec))
expect_false(monotonic(vec_ran))
expect_false(monotonic(vec_flat))
expect_false(monotonic(1))
})
wages_monotonic <- wages %>% features(ln_wages, feat_monotonic)
test_that("wages_monotonic produces output 0 or 1",{
expect_equal(max(rowSums(wages_monotonic[ , 2:4])), 1)
expect_false(any(rowSums(wages_monotonic[ , 2:4]) > 1))
}) |
HierHe=function(x, nreg, r, ncode) {
read.genepop1 <- function(file, ncode, quiet = FALSE) {
adegenet::.readExt
adegenet::.genlab
adegenet::df2genind
adegenet::is.genind
adegenet::pop
adegenet::repool
adegenet::Hs
adegenet::seppop
adegenet::popNames
if (toupper(.readExt(file)) != "GEN")
stop("File extension .gen expected")
if (!quiet)
cat("\n Converting data from a Genepop .gen file to a genind object... \n\n")
prevcall <- match.call()
txt <- scan(file, sep = "\n", what = "character", quiet = TRUE)
if (!quiet)
cat("\nFile description: ", txt[1], "\n")
txt <- txt[-1]
txt <- gsub("\t", " ", txt)
NA.char <- paste(rep("0", ncode), collapse = "")
locinfo.idx <- 1:(min(grep("POP", toupper(txt))) - 1)
locinfo <- txt[locinfo.idx]
locinfo <- paste(locinfo, collapse = ",")
loc.names <- unlist(strsplit(locinfo, "([,]|[\n])+"))
loc.names <- trimws(loc.names)
nloc <- length(loc.names)
txt <- txt[-locinfo.idx]
pop.idx <- grep("^([[:space:]]*)POP([[:space:]]*)$", toupper(txt))
npop <- length(pop.idx)
nocomma <- which(!(1:length(txt)) %in% grep(",", txt))
splited <- nocomma[which(!nocomma %in% pop.idx)]
if (length(splited) > 0) {
for (i in sort(splited, decreasing = TRUE)) {
txt[i - 1] <- paste(txt[i - 1], txt[i], sep = " ")
}
txt <- txt[-splited]
}
pop.idx <- grep("^([[:space:]]*)POP([[:space:]]*)$", toupper(txt))
txt[length(txt) + 1] <- "POP"
nind.bypop <- diff(grep("^([[:space:]]*)POP([[:space:]]*)$", toupper(txt))) - 1
pop <- factor(rep(1:npop, nind.bypop))
txt <- txt[-c(pop.idx, length(txt))]
temp <- sapply(1:length(txt), function(i) strsplit(txt[i], ","))
ind.names <- vapply(temp, function(e) e[1], character(1))
ind.names <- trimws(ind.names)
vec.genot <- vapply(temp, function(e) e[2], character(1))
vec.genot <- trimws(vec.genot)
X <- matrix(unlist(strsplit(vec.genot, "[[:space:]]+")), ncol = nloc, byrow = TRUE)
if (any(duplicated(ind.names))) {
rownames(X) <- .genlab("", nrow(X))
} else {
rownames(X) <- ind.names
}
colnames(X) <- loc.names
pop.names.idx <- cumsum(table(pop))
pop.names <- ind.names[pop.names.idx]
levels(pop) <- pop.names
if (!all(unique(nchar(X)) == (ncode * 2)))
stop(paste("some alleles are not encoded with", ncode, "characters\nCheck 'ncode' argument"))
res <- df2genind(X = X, pop = as.character(pop), ploidy = 2, ncode = ncode, NA.char = NA.char)
res@call <- prevcall
if (!quiet)
cat("\n...done.\n\n")
return(res)
}
genfiles = read.genepop1(x, ncode, quiet = TRUE)
hierfstat::genind2hierfstat
hfiles <- genind2hierfstat(genfiles)
npops = length(levels(genfiles$pop))
nloci = length(levels(genfiles$loc.fac))
sampsize = summary(genfiles$pop)
if (length(r) != nreg)
stop("Number of regions should be equal to the number defined in the level")
if (sum(r) != npops)
stop("Number of pops should be equal to the number defined in level")
rsample = list()
for (i in 1:nreg) {
rsample[[i]] = sum(sampsize[(sum(head(r, i - 1)) + 1):(sum(head(r, i)))])
}
rsample = as.data.frame(rsample)
rsample = as.numeric(unlist(rsample))
region = list()
hierHr = list()
hierHrperloc = list()
for (i in seq_along(r)) {
region[[i]] = list()
region[[i]] = hfiles[(sum(head(rsample, i - 1)) + 1):(sum(head(rsample, i))), ]
region[[i]]$pop = factor(region[[i]]$pop)
hierHr[[i]] = list()
hierHrperloc[[i]] = list()
hierHr[[i]] = t(basic.stats(region[[i]], diploid = TRUE, digits = 4)$overall)
hierHrperloc[[i]] = basic.stats(region[[i]], diploid = TRUE, digits = 4)$perloc
}
Hrperloc = matrix(data = 0, ncol = nreg, nrow = nloci)
for (j in seq(hierHrperloc)) {
Hrperloc[, j] = hierHrperloc[[j]]$Ht
}
HierHr_T = t(basic.stats(hfiles, diploid = TRUE, digits = 4)$overall)
HierHr_Tperloc = basic.stats(hfiles, diploid = TRUE, digits = 4)$perloc
Hallperloc = cbind(HierHr_Tperloc$Ht, Hrperloc, HierHr_Tperloc$Hs)
colnames(Hallperloc) = c("Ht", paste("Hr", 1:nreg), "Hp")
rownames(Hallperloc) = c(paste("Locus", 1:nloci))
hierHr = do.call(rbind, lapply(hierHr, data.frame))
Hr = colMeans(hierHr)
Hr = as.array(Hr)
HierHr_T = as.data.frame(HierHr_T)
HieHr = cbind(HierHr_T$Ht, Hr[3], HierHr_T$Hs)
colnames(HieHr) = c("Ht", "Hr", "Hp")
rownames(HieHr) = NULL
return(list(HierHe_perloc = Hallperloc,HierHr=hierHr, Hrperloc=Hrperloc,HieHr_overall = HieHr))
} |
context("Testing input_fn")
source("helper-utils.R")
fake_canned_estimator <- structure(list(a=1), class = "tf_estimator")
fake_custom_estimator <- structure(list(a=1), class = "tf_custom_estimator")
test_succeeds("input_fn can be constructed through formula interface", {
features <- c("drat", "cyl")
input_fn1 <- input_fn(mtcars, response = mpg, features = one_of(features))(TRUE)
expect_equal(length(input_fn1()), 2)
expect_equal(length(input_fn1()[[1]]), length(features))
input_fn2 <- input_fn(mpg ~ drat + cyl, data = mtcars)(TRUE)
expect_equal(length(input_fn2()), 2)
expect_equal(length(input_fn2()[[1]]), length(features))
expect_equal(input_fn1, input_fn2)
})
test_succeeds("input_fn can be constructed correctly from data.frame objects", {
features <- c("drat", "cyl")
input_fn1 <- input_fn(mtcars, response = mpg, features = one_of(features))(TRUE)
expect_equal(length(input_fn1()), 2)
expect_length(setdiff(names(input_fn1()[[1]]), features), 0)
expect_true(is.tensor(input_fn1()[[1]][[1]]))
expect_true(is.tensor(input_fn1()[[2]]))
})
test_succeeds("input_fn can be constructed correctly from matrix objects", {
features <- c("drat", "cyl")
input_fn1 <- input_fn(
as.matrix(mtcars),
response = mpg,
features = one_of(features)
)(fake_canned_estimator)()
expect_equal(length(input_fn1), 2)
expect_length(setdiff(names(input_fn1[[1]]), features), 0)
expect_true(is.tensor(input_fn1[[1]][[1]]))
expect_true(is.tensor(input_fn1[[2]]))
input_fn2 <- input_fn(
as.matrix(mtcars),
response = mpg,
features = one_of(features)
)(fake_custom_estimator)()
expect_equal(length(input_fn2), 2)
expect_equal(names(input_fn2), NULL)
expect_true(is.tensor(input_fn2[[1]][[1]]))
expect_true(is.tensor(input_fn2[[2]]))
})
test_succeeds("input_fn can be constructed correctly from list objects", {
fake_sequence_input_fn <-
input_fn(
object = list(
features = list(
list(list(1), list(2), list(3)),
list(list(4), list(5), list(6))),
response = list(
list(1, 2, 3), list(4, 5, 6))),
features = c(features),
response = response)(fake_canned_estimator)()
expect_equal(length(fake_sequence_input_fn), 2)
expect_true(is.tensor(fake_sequence_input_fn[[1]][[1]]))
expect_true(is.tensor(fake_sequence_input_fn[[2]]))
list_data <- list(
featureA = list(
list(list(1), list(2), list(3)),
list(list(4), list(5), list(6))),
featureB = list(
list(list(7), list(8), list(9)),
list(list(10), list(11), list(12))),
response = list(
list(1, 2, 3), list(4, 5, 6))
)
fake_sequence_input_fn <- input_fn(
object = list_data,
features = c("featureA", "featureB"),
response = "response",
batch_size = 10L)(fake_canned_estimator)()
expect_equal(length(fake_sequence_input_fn), 2)
expect_true(is.tensor(fake_sequence_input_fn[[1]][[1]]))
expect_true(is.tensor(fake_sequence_input_fn[[2]]))
})
test_succeeds("R factors are coerced appropriately", {
RESPONSE <- "Species"
FEATURES <- setdiff(names(iris), RESPONSE)
classifier <- dnn_classifier(
feature_columns = lapply(FEATURES, column_numeric),
hidden_units = list(10, 20, 10),
n_classes = 3
)
train(
classifier,
input_fn = input_fn(
iris,
features = one_of(FEATURES),
response = one_of(RESPONSE)
)
)
expect_message(
train(
classifier,
input_fn = input_fn(
iris,
features = one_of(FEATURES),
response = one_of(RESPONSE)
)
),
"The following factor levels of 'Species' have been encoded:\n- 'setosa' => 0\n- 'versicolor' => 1\n- 'virginica' => 2")
}) |
plotConfidence <- function(x,
y.at,
lower,
upper,
pch=16,
cex=1,
lwd=1,
col=4,
xlim,
xlab,
labels,
title.labels,
values,
title.values,
section.pos,
section.sep,
section.title=NULL,
section.title.x,
section.title.offset,
order,
leftmargin=0.025,
rightmargin=0.025,
stripes,
factor.reference.pos,
factor.reference.label="Reference",
factor.reference.pch=16,
refline=1,
title.line=TRUE,
xratio,
y.offset=0,
y.title.offset,
digits=2,
format,
extremearrows.length=0.05,
extremearrows.angle=30,
add=FALSE,
layout=TRUE,
xaxis=TRUE,
...){
if (!is.list(x)) x <- list(x=x)
m <- x[[1]]
names(x) <- tolower(names(x))
if (missing(lower)) {
lower <- x$lower
}
if (missing(upper)) upper <- x$upper
if (missing(xlim))
xlim <- c(min(lower)-0.1*min(lower),max(upper)+0.1*min(upper))
if (missing(xlab)) xlab <- ""
NR <- length(x[[1]])
if (length(lower)!=NR)
stop(paste0("lower has wrong dimension. There are ",NR," contrasts but ",length(upper)," upper limits"))
if (length(upper)!=NR)
stop(paste0("upper has wrong dimension. There are ",NR," contrasts but ",length(upper)," upper limits"))
if (!missing(labels) && (is.logical(labels) && labels[[1]]==FALSE))
do.labels <- FALSE
else
do.labels <- TRUE
if (!do.labels || (!missing(title.labels) && (is.logical(title.labels) && title.labels[[1]]==FALSE)))
do.title.labels <- FALSE
else
do.title.labels <- TRUE
if (do.labels && missing(labels)) {
labels <- x$labels
if (is.null(labels)) do.labels <- FALSE
}
if (missing(labels)) labels <- NULL
if (!is.data.frame(labels) && is.list(labels)){
section.rows <- sapply(labels,NROW)
nsections <- length(labels)
if (sum(section.rows)!=NR) stop(paste0("Label list has wrong dimension. There are ",NR," confidence intervals but ",sum(section.rows)," labels"))
}else{
nsections <- 0
section.rows <- NULL
}
if (missing(y.at)) {at <- 1:NR
} else{
if(length(y.at)!=NR) stop(paste0("Number of y positions must match number of confidence intervals which is ",NR))
at <- y.at
}
if (nsections>0){
if (!missing(section.title) && length(section.title)>0){
names(labels) <- section.title
}
do.sections <- TRUE
section.title <- rev(names(labels))
if (!is.data.frame(labels[[1]]) && is.list(labels[[1]])){
sublevels <- names(labels)
labels <- lapply(1:length(labels),function(l){
cbind(sublevels[[l]],data.table::data.table(labels[[l]]))
})
}
labels <- data.table::rbindlist(lapply(labels,data.table::data.table),use.names=TRUE)
section.pos <- cumsum(rev(section.rows))
}else{
if (!missing(section.title) && length(section.title)>0){
if (missing(section.pos))
stop("Need y-positions for section.titles")
do.sections <- TRUE
}else{
do.sections <- FALSE
}
}
oneM <- .5
if (do.sections){
if (missing(section.title.offset)) section.title.offset <- 1.5*oneM
if (missing(section.sep)) section.sep <- 2*oneM
section.shift <- rep(cumsum(c(0,section.sep+rep(section.sep,nsections-1))),
c(section.pos[1],diff(section.pos)))
section.pos+section.shift[section.pos]
if ((sub.diff <- (length(at)-length(section.shift)))>0)
section.shift <- c(section.shift,rep(section.title.offset+section.shift[length(section.shift)],sub.diff))
}else{
section.shift <- 0
}
at <- at+section.shift
if (length(y.offset)!=NR)
y.offset <- rep(y.offset,length.out=NR)
at <- at+y.offset
if (do.sections){
section.y <- at[section.pos]
section.title.y <- section.y+section.title.offset
}else{
section.title.y <- 0
}
if (missing(y.title.offset)) {
if (do.sections){
y.title.offset <- 1.5*oneM + section.title.offset
} else{
y.title.offset <- 1.5*oneM
}
}
title.y <- max(at)+y.title.offset
rat <- rev(at)
ylim <- c(0,at[length(at)]+1)
dimensions <- list("NumberRows"=NR,xlim=xlim,ylim=ylim,y.at=at)
if (!missing(values) && (is.logical(values) && values[[1]]==FALSE))
do.values <- FALSE
else
do.values <- TRUE
if (do.values==TRUE){
if (!missing(title.values) && (is.logical(title.values) && title.values[[1]]==FALSE))
do.title.values <- FALSE
else
do.title.values <- TRUE
}else{
do.title.values <- FALSE
}
if (do.values){
if (missing(values)){
if (missing(format))
if (all(!is.na(upper)) && any(upper<0))
format <- "(u;l)"
else
format <- "(u-l)"
values.defaults <- paste(pubformat(x[[1]],digits=digits),
apply(cbind(lower,upper),
1,
function(x)formatCI(lower=x[1],upper=x[2],format=format,digits=digits)))
if (!missing(factor.reference.pos) && is.numeric(factor.reference.pos) && all(factor.reference.pos<length(values.defaults)))
values.defaults[factor.reference.pos] <- factor.reference.label
if (do.title.values && (missing(title.values)) || (!is.expression(title.values) && !is.character(title.values)))
title.values <- expression(paste(bold(Estimate)," (",bold(CI[95]),")"))
}else{
values.defaults <- values
if (missing(title.values)) title.values <- NULL
}
} else{
values.defaults <- NULL
title.values <- NULL
}
if (add==TRUE) do.values <- do.title.values <- do.labels <- do.title.labels <- FALSE
dist <- (at[2]-at[1])/2
if (missing(stripes) || is.null(stripes))
do.stripes <- FALSE
else
do.stripes <- stripes
stripes.DefaultArgs <- list(col=c(prodlim::dimColor("orange"),"white"),
horizontal=seq(min(at)-dist,max(at)+dist,1),
xlim=xlim,
border=NA)
if (xaxis) do.xaxis <- TRUE
xaxis.DefaultArgs <- list(side=1,las=1,pos=0,cex=cex)
xlab.DefaultArgs <- list(text=xlab,side=1,line=1.5,xpd=NA,cex=cex)
plot.DefaultArgs <- list(0,0,type="n",ylim=ylim,xlim=xlim,axes=FALSE,ylab="",xlab=xlab)
points.DefaultArgs <- list(x=m,y=rat,pch=16,cex=cex,col=col,xpd=NA)
arrows.DefaultArgs <- list(x0=lower,y0=rat,x1=upper,y1=rat,lwd=lwd,col=col,xpd=NA,length=0,code=3,angle=90)
refline.DefaultArgs <- list(x0=refline,y0=0,x1=refline,y1=max(at),lwd=lwd,col="gray71",xpd=NA)
if (missing(title.labels)) title.labels <- NULL
labels.DefaultArgs <- list(x=0,y=rat,cex=cex,labels=labels,xpd=NA,pos=4)
title.labels.DefaultArgs <- list(x=0,
y=at[length(at)]+y.title.offset,
cex=NULL,
labels=title.labels,
xpd=NA,
font=2,
pos=NULL)
values.DefaultArgs <- list(x=0,y=rat,labels=values.defaults,cex=cex,xpd=NA,pos=4)
title.y <- at[length(at)]+y.title.offset
title.values.DefaultArgs <- list(x=0,
y=title.y,
labels=title.values,
cex=NULL,
xpd=NA,
font=2,
pos=NULL)
if (do.sections)
title.line.y <- (title.y+max(section.title.y))/2
else
title.line.y <- title.y-.25
title.line.DefaultArgs <- list(x0=-Inf,
y0=title.line.y,
x1=Inf,
y1=title.line.y,
lwd=lwd,
col="gray71",
xpd=TRUE)
section.title.DefaultArgs <- list(x=0,y=section.title.y,labels=section.title,cex=NULL,xpd=NA,font=4,pos=4)
smartA <- prodlim::SmartControl(call= list(...),
keys=c("plot","points","arrows","refline","title.line","labels","values","title.labels","section.title","title.values","xaxis","stripes","xlab"),
ignore=c("formula","data","add","col","lty","lwd","ylim","xlim","xlab","ylab","axes","factor.reference.pos","factor.reference.label","extremearrows.angle","extremearrows.length"),
defaults=list("plot"=plot.DefaultArgs,
"points"=points.DefaultArgs,
"refline"=refline.DefaultArgs,
"title.line"=title.line.DefaultArgs,
"labels"=labels.DefaultArgs,
"title.labels"=title.labels.DefaultArgs,
"section.title"=section.title.DefaultArgs,
"stripes"=stripes.DefaultArgs,
"values"=values.DefaultArgs,
"title.values"=title.values.DefaultArgs,
"arrows"=arrows.DefaultArgs,
"xaxis"=xaxis.DefaultArgs,
"xlab"=xlab.DefaultArgs),
forced=list("plot"=list(axes=FALSE,xlab=""),"xaxis"=list(side=1)),
verbose=TRUE)
if (is.null(smartA$title.labels$pos)) smartA$title.labels$pos <- smartA$labels$pos
if (is.null(smartA$title.values$pos)) smartA$title.values$pos <- smartA$values$pos
if (is.null(smartA$title.labels$cex)) smartA$title.labels$cex <- smartA$labels$cex
if (is.null(smartA$section.title$cex)) smartA$section.title$cex <- smartA$labels$cex
if (is.null(smartA$title.values$cex)) smartA$title.values$cex <- smartA$values$cex
if (!missing(factor.reference.pos) && is.numeric(factor.reference.pos) && all(factor.reference.pos<length(values.defaults))){
if (length(smartA$points$pch)<NR)
smartA$points$pch <- rep(smartA$points$pch,length.out=NR)
smartA$points$pch[factor.reference.pos] <- factor.reference.pch
}
if (add==FALSE){
oldmar <- par()$mar
on.exit(par(mar=oldmar))
on.exit(par(mfrow=c(1,1)))
par(mar=c(0,0,0,0))
dsize <- dev.size(units="cm")
leftmarginwidth <- leftmargin*dsize[1]
rightmarginwidth <- rightmargin*dsize[1]
plotwidth <- dsize[1]-leftmarginwidth-rightmarginwidth
if (do.labels){
preplabels <- prepareLabels(labels=smartA$labels,
titles=smartA$title.labels)
}
if (do.values){
prepvalues <- prepareLabels(labels=smartA$values,
titles=smartA$title.values)
}
if (do.labels){
if (do.values){
do.stripes <- rep(do.stripes,length.out=3)
names(do.stripes) <- c("labels","ci","values")
if (missing(xratio)) {
lwidth <- sum(preplabels$columnwidth)
vwidth <- sum(prepvalues$columnwidth)
xratio <- c(lwidth/(lwidth+vwidth)*0.7,vwidth/(lwidth+vwidth)*0.7)
}
labelswidth <- plotwidth * xratio[1]
valueswidth <- plotwidth * xratio[2]
ciwidth <- plotwidth - labelswidth - valueswidth
mat <- matrix(c(0,c(1,3,2)[order],0),ncol=5)
if (!missing(order) && length(order)!=3) order <- rep(order,length.out=3)
if (layout)
layout(mat,width=c(leftmarginwidth,c(labelswidth,ciwidth,valueswidth)[order],rightmarginwidth))
} else{
do.stripes <- rep(do.stripes,length.out=2)
names(do.stripes) <- c("labels","ci")
if (missing(xratio)) xratio <- 0.618
labelswidth <- plotwidth * xratio[1]
ciwidth <- plotwidth - labelswidth
valueswidth <- 0
if (!missing(order) && length(order)!=2) order <- rep(order,length.out=2)
mat <- matrix(c(0,c(1,2)[order],0),ncol=4)
if (layout)
layout(mat,width=c(leftmarginwidth,c(labelswidth,ciwidth)[order],rightmarginwidth))
}
} else{
if (do.values){
do.stripes <- rep(do.stripes,length.out=2)
names(do.stripes) <- c("ci","values")
if (missing(xratio)) xratio <- 0.618
valueswidth <- plotwidth * (1-xratio[1])
ciwidth <- plotwidth - valueswidth
labelswidth <- 0
mat <- matrix(c(0,c(2,1)[order],0),ncol=4)
if (!missing(order) && length(order)!=2) order <- rep(order,length.out=2)
if (layout)
layout(mat,width=c(leftmarginwidth,c(ciwidth,valueswidth)[order],rightmarginwidth))
}else{
xratio <- 1
ciwidth <- plotwidth
do.stripes <- do.stripes[1]
names(do.stripes) <- "ci"
labelswidth <- 0
valueswidth <- 0
mat <- matrix(c(0,1,0),ncol=3)
if (layout)
layout(mat,width=c(leftmarginwidth,ciwidth,rightmarginwidth))
}
}
dimensions <- c(dimensions,list(xratio=xratio,
labelswidth=labelswidth,
valueswidth=valueswidth,
ciwidth=ciwidth,layout=mat))
}
if (add==FALSE) par(mar=oldmar*c(1,0,1,0))
if (do.labels){
if (do.stripes[["labels"]])
preplabels <- c(preplabels,list(width=labelswidth,ylim=ylim,stripes=smartA$stripes))
else
preplabels <- c(preplabels,list(width=labelswidth,ylim=ylim))
do.call("plotLabels",preplabels)
if ((missing(title.line) || !is.null(title.line))
&& ((add==FALSE) & is.infinite(smartA$title.line$x0))){
smartA$title.line$x0 <- par()$usr[1]
smartA$title.line$x1 <- par()$usr[2]
do.call("segments",smartA$title.line)
smartA$title.line$x0 <- -Inf
}
}
if (do.sections){
do.call("text",smartA$section.title)
}
if (do.values){
if (do.stripes[["values"]])
prepvalues <- c(prepvalues,list(width=valueswidth,ylim=ylim,stripes=smartA$stripes))
else
prepvalues <- c(prepvalues,list(width=valueswidth,ylim=ylim))
do.call("plotLabels",prepvalues)
if ((missing(title.line) || !is.null(title.line))
&& ((add==FALSE) & is.infinite(smartA$title.line$x0))){
smartA$title.line$x0 <- par()$usr[1]
smartA$title.line$x1 <- par()$usr[2]
do.call("segments",smartA$title.line)
smartA$title.line$x0 <- -Inf
}
}
if (add==FALSE){
do.call("plot",smartA$plot)
if (do.stripes[["ci"]])
do.call("stripes",smartA$stripes)
if (do.xaxis==TRUE){
oldcexaxis <- par()$cex.axis
on.exit(par(cex.axis=oldcexaxis))
par(cex.axis=smartA$xaxis$cex)
if (is.null(smartA$xaxis$labels))
do.call("axis",smartA$xaxis)
}
do.call("mtext",smartA$xlab)
}
if (add==FALSE){
if (missing(refline) || !is.null(refline))
do.call("segments",smartA$refline)
}
if (add==FALSE){
if (missing(title.line) || !is.null(title.line)){
if (is.infinite(smartA$title.line$x0)){
smartA$title.line$x0 <- par()$usr[1]
smartA$title.line$x1 <- par()$usr[2]
}
do.call("segments",smartA$title.line)
}
}
do.call("points",smartA$points)
if (any(smartA$arrows$x0>xlim[2],na.rm=TRUE)||any(smartA$arrows$x1<xlim[1],na.rm=TRUE))
warning("One or several confidence intervals are completely outside xlim. You should adjust xlim.")
tooHigh <- smartA$arrows$x1>xlim[2]
tooHigh[is.na(tooHigh)] <- FALSE
tooLow <- smartA$arrows$x0<xlim[1]
tooLow[is.na(tooLow)] <- FALSE
if (any(c(tooHigh,tooLow))){
if (length(smartA$arrows$angle)<NR)
smartA$arrows$angle <- rep(smartA$arrows$angle,length.out=NR)
if (length(smartA$arrows$length)<NR)
smartA$arrows$length <- rep(smartA$arrows$length,length.out=NR)
if (length(smartA$arrows$code)<NR)
smartA$arrows$code <- rep(smartA$arrows$code,length.out=NR)
if (length(smartA$arrows$col)<NR)
smartA$arrows$col <- rep(smartA$arrows$col,length.out=NR)
smartA$arrows$x0 <- pmax(xlim[1],smartA$arrows$x0)
smartA$arrows$x1 <- pmin(xlim[2],smartA$arrows$x1)
smartA$arrows$code[tooLow & tooHigh] <- 3
smartA$arrows$code[tooLow & !tooHigh] <- 1
smartA$arrows$code[!tooLow & tooHigh] <- 2
smartA$arrows$angle[tooLow | tooHigh] <- extremearrows.angle
smartA$arrows$length[tooLow | tooHigh] <- extremearrows.length
aargs <- smartA$arrows
for (r in 1:NR){
aargs$x0 <- smartA$arrows$x0[r]
aargs$x1 <- smartA$arrows$x1[r]
aargs$y0 <- smartA$arrows$y0[r]
aargs$y1 <- smartA$arrows$y1[r]
aargs$code <- smartA$arrows$code[r]
aargs$col <- smartA$arrows$col[r]
aargs$length <- smartA$arrows$length[r]
aargs$angle <- smartA$arrows$angle[r]
suppressWarnings(do.call("arrows",aargs))
}
} else{
suppressWarnings(do.call("arrows",smartA$arrows))
}
dimensions <- c(smartA,dimensions)
invisible(dimensions)
} |
heqb.SGB <-
function(x,d,u,bound,shape1,index,...){
h <- x[index]
return(h)
} |
DyS <- function(p.score, n.score, test, measure="topsoe", bins=seq(2,20,2), err=1e-5){
b_sizes <- bins
result <- c(1:length(b_sizes))
for(hi in 1:length(b_sizes)){
Sty_1 <- getHist(p.score, b_sizes[hi])
Sty_2 <- getHist(n.score, b_sizes[hi])
Uy <- getHist(test, b_sizes[hi])
f <- function(x){
return(DyS_distance(rbind((Sty_1*x)+ (Sty_2*(1-x)), Uy), method = measure))
}
result[hi] <- TernarySearch(0, 1, f, err)
}
result <- stats::median(result)
if(result < 0 ) result <- 0
if(result > 1 ) result <- 1
result <- c(result, 1 - result)
names(result) <- c("+", "-")
return(result)
} |
context("case_insensitive")
test_that(
"case_insensitive wraps in case insensitivity tokens",
{
expected <- as.regex("(?i)foo(?-i)")
actual <- case_insensitive("foo")
expect_equal(actual, expected)
}
)
context("free_spacing")
test_that(
"free_spacing wraps in free spacing tokens",
{
expected <- as.regex("(?x)foo(?-x)")
actual <- free_spacing("foo")
expect_equal(actual, expected)
}
)
context("single_line")
test_that(
"single_line wraps in single line tokens",
{
expected <- as.regex("(?s)foo(?-s)")
actual <- single_line("foo")
expect_equal(actual, expected)
}
)
context("multi_line")
test_that(
"multi_line wraps in multi-line tokens",
{
expected <- as.regex("(?m)foo(?-m)")
actual <- multi_line("foo")
expect_equal(actual, expected)
}
)
context("duplicate_group_names")
test_that(
"duplicate_group_names wraps in duplicate group name tokens",
{
expected <- as.regex("(?J)foo(?-J)")
actual <- duplicate_group_names("foo")
expect_equal(actual, expected)
}
)
context("no_backslash_escaping")
test_that(
"no_backslash_escaping wraps in no backslash escaping tokens",
{
expected <- as.regex("(?X)foo(?-X)")
actual <- no_backslash_escaping("foo")
expect_equal(actual, expected)
}
) |
tokenWindowOccurence <- function(tc, feature, context_level=c('document','sentence'), window.size=10, direction='<>', distance_as_value=F, batch_rows=NULL, drop_empty_terms=T){
is_tcorpus(tc)
context_level = match.arg(context_level)
feature = match.arg(feature, tc$feature_names)
if (direction == '<') shifts = -window.size:0
if (direction == '<>') shifts = -window.size:window.size
if (direction == '>') shifts = 0:window.size
feature = tc$get(feature)
if (!is.factor(feature)) feature = fast_factor(feature)
if (drop_empty_terms) feature = base::droplevels(feature)
term_index = as.numeric(feature)
position = get_global_i(tc, context_level, window.size)
rows = if (!is.null(batch_rows)) batch_rows[!is.na(feature[batch_rows])] else !is.na(feature)
position.mat = position_matrix(position, term_index, shifts = 0, rows=rows)
window.mat = position_matrix(position, term_index, shifts, distance_as_value=distance_as_value, rows=rows)
colnames(position.mat) = colnames(window.mat) = levels(feature)
rownames(position.mat) = rownames(window.mat) = position
list(position.mat=position.mat, window.mat=window.mat)
}
transform_count <- function(m, count_mode=c('normal','dicho','prob'), alpha=2){
count_mode = match.arg(count_mode)
m = methods::as(methods::as(m, 'dgCMatrix'), 'dgTMatrix')
if (count_mode == 'normal') NULL
if (count_mode == 'dicho') m@x[m@x > 0] = 1
if (count_mode == 'prob') {
get_prob <- function(x, alpha) 1 - ((1/alpha) ^ x)
m@x[m@x > 0] = get_prob(m@x[m@x > 0], alpha)
}
m
}
feature_cooccurrence <- function(tc, feature, matrix_mode=c('dtm', 'windowXwindow', 'positionXwindow'), count_mode=c('normal','dicho','prob'), mat_stats=c('sum.x','sum.y','magnitude.x','magnitude.y', 'nrow'), context_level=c('document','sentence'), direction='<>', window.size=10, n.batches=1, alpha=2){
is_tcorpus(tc)
matrix_mode = match.arg(matrix_mode)
count_mode = match.arg(count_mode)
context_level = match.arg(context_level)
if (matrix_mode == 'dtm') {
ml = cooccurrence_matrix(tc, feature, count_mode=count_mode, mat_stats=mat_stats, context_level=context_level, n.batches=n.batches, alpha=alpha)
}
if (matrix_mode %in% c('positionXwindow', 'windowXwindow')) {
ml = cooccurrence_matrix_window(tc, feature, matrix_mode=matrix_mode, count_mode=count_mode, mat_stats=mat_stats, context_level=context_level, direction=direction, window.size=window.size, n.batches=n.batches, alpha=alpha)
}
ml$mat = methods::as(methods::as(ml$mat, 'dgCMatrix'), 'dgTMatrix')
ml
}
cooccurrence_crossprod <- function(m1, m2=NULL, count_mode, mat_stats, alpha){
m1 = transform_count(methods::as(m1, 'dgTMatrix'), count_mode=count_mode, alpha=alpha)
if (is.null(m2)){
mat = Matrix::crossprod(m1)
mat_stats = get_matrix_stats(m1, mat_stats=mat_stats)
} else {
m2 = transform_count(methods::as(m2, 'dgTMatrix'), count_mode=count_mode, alpha=alpha)
mat = Matrix::crossprod(m1,m2)
mat_stats = get_matrix_stats(m1, m2=m2, mat_stats=mat_stats)
}
c(list(mat=mat), mat_stats)
}
get_matrix_stats <- function(m1, m2=NULL, mat_stats = c('sum.x','sum.y','magnitude.x','magnitude.y', 'nrow')){
r = list()
if ('nrow' %in% mat_stats) r[['nrow']] = nrow(m1)
if ('sum.x' %in% mat_stats) r[['sum.x']] = Matrix::colSums(m1)
if ('magnitude.x' %in% mat_stats) r[['magnitude.x']] = sqrt(Matrix::colSums(m1^2))
if(!is.null(m2)){
if ('sum.y' %in% mat_stats) r[['sum.y']] = Matrix::colSums(m2)
if ('magnitude.y' %in% mat_stats) r[['magnitude.y']] = sqrt(Matrix::colSums(m2^2))
} else {
if ('sum.y' %in% mat_stats) {
r[['sum.y']] = if ('sum.x' %in% names(r)) r[['sum.x']] else Matrix::colSums(m2)
}
if ('magnitude.y' %in% mat_stats) {
r[['magnitude.y']] = if ('magnitude.x' %in% names(r)) r[['magnitude.x']] else sqrt(Matrix::colSums(m2^2))
}
}
r
}
cooccurrence_matrix <- function(tc, feature, count_mode, mat_stats, context_level, n.batches, alpha, drop_empty_terms=T){
m = get_dtm(tc, feature=feature, context_level = context_level, drop_empty_terms=drop_empty_terms, context_labels = F)
if (is.na(n.batches)){
ml = cooccurrence_crossprod(m, count_mode=count_mode, mat_stats=mat_stats, alpha=alpha)
} else {
batch_i = get_batch_i(tc, n.batches=n.batches)
ml = list()
for(i in 1:nrow(batch_i)){
batch_rows = batch_i$start[i]:batch_i$end[i]
cooc = cooccurrence_crossprod(m[batch_rows,,drop=F], count_mode=count_mode, mat_stats=mat_stats, alpha=alpha)
for(n in names(cooc)) ml[[n]] = if (n %in% names(ml)) ml[[n]] + cooc[[n]] else cooc[[n]]
}
}
ml$freq = Matrix::colSums(m)
ml$doc_freq = Matrix::colSums(m)
ml
}
cooccurrence_matrix_window <- function(tc, feature, matrix_mode='position_to_window', count_mode='dicho', mat_stats=c('sum.x','sum.y','magnitude.x','magnitude.y'), context_level='document', direction='<>', window.size=10, n.batches=window.size, alpha=2, drop_empty_terms=T){
if (is.na(n.batches)){
wwo = tokenWindowOccurence(tc, feature, context_level, window.size, direction, drop_empty_terms=drop_empty_terms)
if (matrix_mode == 'windowXwindow') ml = cooccurrence_crossprod(wwo$window.mat, wwo$window.mat, count_mode=count_mode, alpha=alpha, mat_stats=mat_stats)
if (matrix_mode == 'positionXwindow') ml = cooccurrence_crossprod(wwo$position.mat, wwo$window.mat, count_mode=count_mode, alpha=alpha, mat_stats=mat_stats)
ml[['freq']] = Matrix::colSums(wwo$position.mat)
} else {
batch_i = data_batch(tc, context_level, n.batches)
ml = list()
for(i in 1:nrow(batch_i)){
batch_rows = batch_i$start[i]:batch_i$end[i]
wwo = tokenWindowOccurence(tc, feature, context_level, window.size, direction, batch_rows=batch_rows)
if (matrix_mode == 'windowXwindow') cooc = cooccurrence_crossprod(wwo$window.mat, wwo$window.mat, count_mode=count_mode, alpha=alpha, mat_stats=mat_stats)
if (matrix_mode == 'positionXwindow') cooc = cooccurrence_crossprod(wwo$position.mat, wwo$window.mat, count_mode=count_mode, alpha=alpha, mat_stats=mat_stats)
for(n in names(cooc)) ml[[n]] = if (n %in% names(ml)) ml[[n]] + cooc[[n]] else cooc[[n]]
ml[['freq']] = if ('freq' %in% names(ml)) ml[['freq']] + Matrix::colSums(wwo$position.mat) else Matrix::colSums(wwo$position.mat)
}
}
ml
}
cooccurrence_graph_freq <- function(g, m1, m2){
if (is.null(m2)) {
igraph::V(g)$sum = Matrix::colSums(m1)
igraph::V(g)$doc_freq = Matrix::colSums(m1 > 0)
} else {
m1freq = data.frame(name=colnames(m1), sum=Matrix::colSums(m1), doc_freq=Matrix::colSums(m1 > 0))
m2freq = data.frame(name=colnames(m2), sum=Matrix::colSums(m2), doc_freq=Matrix::colSums(m2 > 0))
freq = unique(rbind(m1freq,m2freq))
i = match(igraph::V(g)$name, freq$name)
igraph::V(g)$sum = freq$sum[i]
igraph::V(g)$doc_freq = freq$doc_freq[i]
}
g
}
is_symmetrical <- function(mat) identical(colnames(mat), rownames(mat))
squarify_matrix <- function(mat){
if (!is_symmetrical(mat)){
mat = methods::as(mat, 'dgTMatrix')
rnames = rownames(mat)
cnames = colnames(mat)
dnames = unique(c(rnames,cnames))
mat = summary(mat)
conv_i = match(rnames, dnames)
conv_j = match(cnames, dnames)
mat = spMatrix(length(dnames), length(dnames), conv_i[mat$i], conv_j[mat$j], mat$x)
dimnames(mat) = list(dnames, dnames)
}
mat
}
cooc_chi2 <- function(g, x_sum, y_sum=x_sum, autocorrect=T){
cooc = igraph::get.edgelist(g, names = F)
cooc = data.frame(x = cooc[,1], y = cooc[,2], cooc = igraph::E(g)$weight)
cooc$chi2 = calc_chi2(a = cooc$cooc,
b = y_sum[cooc$y] - cooc$cooc,
c = x_sum[cooc$x] - cooc$cooc,
d = igraph::ecount(g) - ((x_sum[cooc$x] + y_sum[cooc$y]) - cooc$cooc),
cochrans_criteria = autocorrect)
cooc
} |
logthresh_2_thresh <- function(x)
{
cumsum( exp(x) )
} |
`scores.metaMDS` <-
function(x, display = c("sites", "species"), shrink = FALSE, choices,
tidy = FALSE, ...)
{
display <- match.arg(display, c("sites","species"), several.ok = TRUE)
if (missing(choices))
choices <- seq_len(x$ndim)
else
choices <- choices[choices <= x$ndim]
out <- list()
if ("sites" %in% display) {
sites <- x$points[, choices, drop=FALSE]
colnames(sites) <- paste0("NMDS", choices)
out$sites <- sites
}
if ("species" %in% display && !is.null(x$species)) {
species <- x$species[, choices, drop=FALSE]
colnames(species) <- paste0("NMDS", choices)
if (shrink) {
mul <- sqrt(attr(X, "shrinkage"))
if (is.null(mul))
warning("species cannot be shrunken, because they were not expanded")
else {
mul <- mul[choices]
cnt <- attr(X, "centre")
X <- sweep(X, 2, cnt, "-")
X <- sweep(X, 2, mul, "*")
X <- sweep(X, 2, cnt, "+")
}
}
out$species <- species
}
if (tidy) {
if (length(out) == 0)
return(NULL)
group <- sapply(out, nrow)
group <- rep(names(group), group)
out <- do.call(rbind, out)
label <- rownames(out)
out <- as.data.frame(out)
out$score <- group
out$label <- label
}
switch(length(out), out[[1]], out)
} |
context("Testing acv_arma")
test_that("bogus arguments throw error",{
expect_error(acv_arma(Inf,1,10))
})
test_that("output of acv_arma is correct",{
n <- 0:9
answer <- 2^(-n) * (32/3 + 8 * n) /(32/3)
acv <- acv_arma(c(1.0, -0.25), 1.0, 10)
expect_equal(acv/acv[1], answer)
}) |
get_invitroPK_param <- function(
param,
species,
chem.name=NULL,
chem.cas=NULL,
dtxsid=NULL)
{
chem.physical_and_invitro.data <- chem.physical_and_invitro.data
if (is.null(chem.cas) &
is.null(chem.name) &
is.null(dtxsid) )
stop('Chem.name, chem.cas, or dtxsid must be specified.')
if (any(is.null(chem.cas),is.null(chem.name),is.null(dtxsid)))
{
out <- get_chem_id(
chem.cas=chem.cas,
chem.name=chem.name,
dtxsid=dtxsid)
chem.cas <- out$chem.cas
chem.name <- out$chem.name
dtxsid <- out$dtxsid
}
if (length(dtxsid)!=0) chem.physical_and_invitro.data.index <-
which(chem.physical_and_invitro.data$DTXSID == dtxsid)
else if (length(chem.cas)!=0) chem.physical_and_invitro.data.index <-
which(chem.physical_and_invitro.data$CAS == chem.cas)
else chem.physical_and_invitro.data.index <-
which(chem.physical_and_invitro.data$Compound == chem.name)
this.col.name <- tolower(paste(species,param,sep="."))
if (!(this.col.name %in% tolower(colnames(chem.physical_and_invitro.data))))
{
warning(paste("No in vitro ",param," data for ",chem.name," in ",species,".",sep=""))
for (alternate.species in c("Human","Rat","Mouse","Dog","Monkey","Rabbit"))
{
this.col.name <- tolower(paste(alternate.species,param,sep="."))
if (this.col.name %in% tolower(colnames(chem.physical_and_invitro.data)))
{
warning(paste("Substituting ",alternate.species," in vitro ",
param," data for ",chem.name," ",species,".",sep=""))
break()
}
}
}
if (this.col.name %in% tolower(colnames(chem.physical_and_invitro.data)))
{
this.col.index <- which(tolower(colnames(chem.physical_and_invitro.data))==this.col.name)
param.val <- chem.physical_and_invitro.data[chem.physical_and_invitro.data.index,this.col.index]
if (param=="Clint" & (nchar(param.val) -
nchar(gsub(",","",param.val)))==3) return(param.val)
else if (param=="Funbound.plasma" & (nchar(param.val) -
nchar(gsub(",","",param.val)))==2) return(param.val)
else if (param=="Clint.pValue") return(param.val)
else if (!is.na(as.numeric(param.val))) return(as.numeric(param.val))
}
stop(paste("Incomplete in vitro PK data for ",chem.name,
" in ",species," -- missing ",param,".",sep=""))
} |
library(MendelianRandomization)
MRInputObject <- mr_input(bx = ldlc,
bxse = ldlcse,
by = chdlodds,
byse = chdloddsse)
MRInputObject
MRInputObject.cor <- mr_input(bx = calcium,
bxse = calciumse,
by = fastgluc,
byse = fastglucse,
corr = calc.rho)
MRInputObject.cor
IVWObject <- mr_ivw(MRInputObject,
model = "default",
robust = FALSE,
penalized = FALSE,
correl = FALSE,
weights = "simple",
psi = 0,
distribution = "normal",
alpha = 0.05)
IVWObject <- mr_ivw(mr_input(bx = ldlc, bxse = ldlcse,
by = chdlodds, byse = chdloddsse))
IVWObject
IVWObject.correl <- mr_ivw(MRInputObject.cor,
model = "default",
correl = TRUE,
distribution = "normal",
alpha = 0.05)
IVWObject.correl <- mr_ivw(mr_input(bx = calcium, bxse = calciumse,
by = fastgluc, byse = fastglucse, corr = calc.rho))
IVWObject.correl
WeightedMedianObject <- mr_median(MRInputObject,
weighting = "weighted",
distribution = "normal",
alpha = 0.05,
iterations = 10000,
seed = 314159265)
WeightedMedianObject <- mr_median(mr_input(bx = ldlc, bxse = ldlcse,
by = chdlodds, byse = chdloddsse))
WeightedMedianObject
SimpleMedianObject <- mr_median(mr_input(bx = ldlc, bxse = ldlcse,
by = chdlodds, byse = chdloddsse), weighting = "simple")
SimpleMedianObject
EggerObject <- mr_egger(MRInputObject,
robust = FALSE,
penalized = FALSE,
correl = FALSE,
distribution = "normal",
alpha = 0.05)
EggerObject <- mr_egger(mr_input(bx = ldlc, bxse = ldlcse,
by = chdlodds, byse = chdloddsse))
EggerObject
EggerObject.corr <- mr_egger(MRInputObject.cor,
correl = TRUE,
distribution = "normal",
alpha = 0.05)
EggerObject.corr <- mr_egger(mr_input(bx = calcium, bxse = calciumse,
by = fastgluc, byse = fastglucse, corr = calc.rho))
EggerObject.corr
MaxLikObject <- mr_maxlik(MRInputObject,
model = "default",
correl = FALSE,
psi = 0,
distribution = "normal",
alpha = 0.05)
MaxLikObject <- mr_maxlik(mr_input(bx = ldlc, bxse = ldlcse,
by = chdlodds, byse = chdloddsse))
MaxLikObject
MaxLikObject.corr <- mr_maxlik(mr_input(bx = calcium, bxse = calciumse,
by = fastgluc, byse = fastglucse, corr = calc.rho))
MaxLikObject.corr
MRMVInputObject <- mr_mvinput(bx = cbind(ldlc, hdlc, trig),
bxse = cbind(ldlcse, hdlcse, trigse),
by = chdlodds,
byse = chdloddsse)
MRMVInputObject
MRMVObject <- mr_mvivw(MRMVInputObject,
model = "default",
correl = FALSE,
distribution = "normal",
alpha = 0.05)
MRMVObject <- mr_mvivw(MRMVInputObject)
MRMVObject
MBEObject <- mr_mbe(MRInputObject,
weighting = "weighted",
stderror = "delta",
phi = 1,
seed = 314159265,
iterations = 10000,
distribution = "normal",
alpha = 0.05)
MBEObject <- mr_mbe(mr_input(bx = ldlc, bxse = ldlcse,
by = chdlodds, byse = chdloddsse))
MBEObject
HetPenObject <- mr_hetpen(mr_input(bx = ldlc[1:10], bxse = ldlcse[1:10],
by = chdlodds[1:10], byse = chdloddsse[1:10]), CIMin = -1, CIMax = 5, CIStep = 0.01)
HetPenObject
bcrp =c(0.160, 0.236, 0.149, 0.09, 0.079, 0.072, 0.047, 0.069)
bcrpse =c(0.006, 0.009, 0.006, 0.005, 0.005, 0.005, 0.006, 0.011)
bchd =c(0.0237903, -0.1121942, -0.0711906, -0.030848, 0.0479207, 0.0238895,
0.005528, 0.0214852)
bchdse =c(0.0149064, 0.0303084, 0.0150552, 0.0148339, 0.0143077, 0.0145478,
0.0160765, 0.0255237)
HetPenObject.multimode <- mr_hetpen(mr_input(bx = bcrp, bxse = bcrpse,
by = bchd, byse = bchdse))
HetPenObject.multimode
MRInputObject <- mr_input(bx = ldlc,
bxse = ldlcse,
by = chdlodds,
byse = chdloddsse)
MRAllObject_all <- mr_allmethods(MRInputObject, method = "all")
MRAllObject_all
MRAllObject_egger <- mr_allmethods(MRInputObject, method = "egger")
MRAllObject_egger
MRAllObject_main <- mr_allmethods(MRInputObject, method = "main")
MRAllObject_main
mr_plot(mr_input(bx = ldlc, bxse = ldlcse, by = chdlodds, byse = chdloddsse),
error = TRUE, orientate = FALSE, line = "ivw", interactive = FALSE)
mr_plot(mr_input(bx = ldlc, bxse = ldlcse, by = chdlodds, byse = chdloddsse),
error = TRUE, orientate = FALSE, line = "ivw", interactive = FALSE, labels = TRUE)
mr_plot(MRAllObject_all)
mr_plot(MRAllObject_egger)
mr_plot(mr_allmethods(mr_input(bx = hdlc, bxse = hdlcse,
by = chdlodds, byse = chdloddsse)))
path.noproxy <- system.file("extdata", "vitD_snps_PhenoScanner.csv",
package = "MendelianRandomization")
path.proxies <- system.file("extdata", "vitD_snps_PhenoScanner_proxies.csv",
package = "MendelianRandomization")
extract.pheno.csv(
exposure = "log(eGFR creatinine)", pmidE = 26831199, ancestryE = "European",
outcome = "Tanner stage", pmidO = 24770850, ancestryO = "European",
file = path.noproxy)
extract.pheno.csv(
exposure = "log(eGFR creatinine)", pmidE = 26831199, ancestryE = "European",
outcome = "Tanner stage", pmidO = 24770850, ancestryO = "European",
rsq.proxy = 0.6,
file = path.proxies)
extract.pheno.csv(
exposure = "log(eGFR creatinine)", pmidE = 26831199, ancestryE = "European",
outcome = "Asthma", pmidO = 20860503, ancestryO = "European",
rsq.proxy = 0.6,
file = path.proxies) |
bekk_mc_eval <- function(object, spec, sample_sizes, iter, nc = 1) {
xx <- process_object(object)
theta <- xx$theta
mse <- rep(NA, length(sample_sizes))
index <- 1
for(j in sample_sizes) {
print(paste('Sample size: ', j))
sim_dat <- vector(mode = "list", iter)
sim_dat <- future_lapply(1:iter, function(x){bekk_sim(object, nobs = j)}, future.seed=TRUE)
dd <- future_lapply(sim_dat, function(x){bekk_fit(spec = spec, data = x, max_iter = 200)},future.seed=TRUE)
mse[index] <- sum(unlist(lapply(dd, RMSE, theta_true = theta)))/iter
print(mse[index])
index <- index +1
}
result <- data.frame(Sample_size = sample_sizes, MSE = mse)
colnames(result) <- c('Sample', 'MSE')
result <- list(result)
class(result) <- 'bekkMC'
return(result)
}
RMSE <- function(x, theta_true) {
theta_est <- x$theta
return(mean(sqrt(((theta_true - theta_est) / theta_true)^2)))
}
plot.bekkMC <- function(x, ...) {
Sample <- NULL
MSE <- NULL
msep <- x[[1]]
ggplot(msep) + geom_line(aes(x = Sample, y = MSE)) + theme_bw()
} |
popprojLow <- read.delim(file='popprojLow.txt', comment.char=' |
library("testthat")
test_package("rDEA") |
update.formula.svisit <-
function (old, new)
{
oldsta <- . ~ .
olddet <- ~.
oldsta[[2]] <- old[[2]]
oldsta[[3]] <- old[[3]][[2]]
olddet[[3]] <- old[[3]][[3]]
olddet[[2]] <- NULL
newsta <- . ~ .
newdet <- ~.
newsta[[2]] <- new[[2]]
newsta[[3]] <- new[[3]][[2]]
newdet[[3]] <- new[[3]][[3]]
newdet[[2]] <- NULL
tmpsta <- update.formula(as.formula(oldsta), as.formula(newsta))
tmpdet <- update.formula(as.formula(olddet), as.formula(newdet))
tmp <- . ~ . | .
tmp[[2]] <- tmpsta[[2]]
tmp[[3]][[2]] <- tmpsta[[3]]
tmp[[3]][[3]] <- tmpdet[[2]]
out <- formula(terms.formula(tmp, simplify = FALSE))
return(out)
} |
isd <- function(usaf, wban, year, overwrite = TRUE, cleanup = TRUE,
additional = TRUE, parallel = FALSE,
cores = getOption("cl.cores", 2), progress = FALSE,
force = FALSE, ...) {
rds_path <- isd_GET(usaf, wban, year, overwrite, force, ...)
df <- read_isd(x = rds_path, cleanup, force, additional,
parallel, cores, progress)
attr(df, "source") <- rds_path
df
}
isd_GET <- function(usaf, wban, year, overwrite, force, ...) {
isd_cache$mkdir()
rds <- isd_local(usaf, wban, year, isd_cache$cache_path_get(), ".rds")
if (!is_isd(rds) || force) {
fp <- isd_local(usaf, wban, year, isd_cache$cache_path_get(), ".gz")
cli <- crul::HttpClient$new(isd_remote(usaf, wban, year), opts = list(...))
tryget <- tryCatch(
suppressWarnings(cli$get(disk = fp)),
error = function(e) e
)
if (inherits(tryget, "error") || !tryget$success()) {
unlink(fp)
stop("download failed for\n ", isd_remote(usaf, wban, year),
call. = FALSE)
}
}
return(rds)
}
isd_remote <- function(usaf, wban, year) {
file.path(isdbase(), year, sprintf("%s-%s-%s%s", usaf, wban, year, ".gz"))
}
isd_local <- function(usaf, wban, year, path, ext) {
file.path(path, sprintf("%s-%s-%s%s", usaf, wban, year, ext))
}
is_isd <- function(x) {
if (file.exists(x)) TRUE else FALSE
}
isdbase <- function() 'https://www1.ncdc.noaa.gov/pub/data/noaa'
read_isd <- function(x, cleanup, force, additional, parallel, cores, progress) {
path_rds <- x
if (file.exists(path_rds) && !force) {
cache_mssg(path_rds)
df <- readRDS(path_rds)
} else {
df <- isdparser::isd_parse(
sub("rds", "gz", x), additional = additional, parallel = parallel,
cores = cores, progress = progress
)
cache_rds(path_rds, df)
if (cleanup) {
unlink(sub("rds", "gz", x))
}
}
return(df)
}
cache_rds <- function(x, y) {
if (!file.exists(x)) {
saveRDS(y, file = x)
}
} |
update_designinlist <- function(designsin,groupsize,ni,xt,x,a,it,iGroup){
design$xt = xt
design$a = a
design$x = x
design$groupsize = groupsize
design$ni = ni
if((it==-1) ){
design$num = length(designsin)+1
} else {
design$num = it
}
design$iGroup = iGroup
designsin=matrix(c(designsin, design),nrow=1,byrow=T)
return( designsin )
} |
p_path <-
function(package="R"){
if(!object_check(package) || !is.character(package)){
package <- as.character(substitute(package))
}
if (package == "R"){
return(.libPaths())
} else {
return(find.package(package))
}
} |
require("DEoptimR")
c.time <- function(...) cat('Time elapsed: ', ..., '\n')
S.time <- function(expr) c.time(system.time(expr))
source(system.file("xtraR/opt-test-funs.R", package = "DEoptimR"))
(doExtras <- DEoptimR:::doExtras())
set.seed(2345)
S.time(sf1. <- JDEoptim(c(-100, -100), c(100, 100), sf1,
NP = 50, tol = 1e-7, maxiter = 800))
S.time(swf. <- JDEoptim(rep(-500, 10), rep(500, 10), swf,
tol = 1e-7))
S.time(g11. <- JDEoptim(-c(1, 1), c(1, 1),
fn = g11$obj, constr = g11$con, meq = g11$eq, eps = 1e-3,
tol = 1e-7, trace = TRUE))
S.time(RND. <- JDEoptim(c(1e-5, 1e-5), c(16, 16), RND$obj, RND$con,
NP = 40, tol = 1e-7))
if (doExtras) {
S.time(HEND. <-
JDEoptim(c( 100, 1000, 1000 , 10, 10),
c(10000, 10000, 10000, 1000, 1000),
fn = HEND$obj, constr = HEND$con,
tol = 1e-4, trace = TRUE))
S.time(alkylation. <-
JDEoptim(c(1500, 1, 3000, 85, 90, 3, 145),
c(2000, 120, 3500, 93, 95, 12, 162),
fn = alkylation$obj, constr = alkylation$con,
tol = 0.1, trace = TRUE))
}
bare.p.v <- function(r) unlist(unname(r[c("par", "value")]))
stopifnot(
all.equal( bare.p.v(sf1.), c(0, 0, 0), tolerance = 1e-4 ),
all.equal( bare.p.v(swf.), c(rep(420.97, 10), -418.9829*10),
tolerance = 1e-4 ),
all.equal( bare.p.v(RND.), c(3.036504, 5.096052, -0.388812),
tolerance = 1e-2 ),
all.equal( unname(c(abs(g11.$par[1]), g11.$par[2], g11.$value)),
c(1/sqrt(2), 0.5, 0.75),
tolerance = 1e-2 )
)
if (doExtras) {
stopifnot(
all.equal( bare.p.v(HEND.),
c(579.19, 1360.13, 5109.92, 182.01, 295.60, 7049.25),
tolerance = 1e-3 ),
all.equal( bare.p.v(alkylation.),
c(1698.256922, 54.274463, 3031.357313, 90.190233,
95.0, 10.504119, 153.535355, -1766.36),
tolerance = 1e-2 )
)
}
c.time(proc.time()) |
chisqtestClust <- function(x, y=NULL, id, p = NULL,
variance = c("MoM", "sand.null", "sand.est", "emp")) {
variance <- match.arg(variance)
if (is.null(y)) {
DNAME <- deparse(substitute(x))
if (is.table(x)|is.data.frame(x)) {
if (ncol(x) < 2L)
stop("'x' must have at least 2 columns")
x <- x[stats::complete.cases(x),]
if (!(all(rowSums(x)>0)))
stop("all clusters must have counts > 0")
if (!(all(x)>=0))
stop("elements of x must be nonnegative ")
if (is.null(p))
p <- rep(1/ncol(x), ncol(x))
if (ncol(x)!=length(p))
stop("length of p must equal the number of columns of x")
tmpdat <- x
}
else {
if (length(x) != length(id))
stop("'id' and 'x' must have the same length")
OK <- stats::complete.cases(x, id)
x <- factor(x[OK])
id <- factor(id[OK])
if (length(unique(x)) == 1L)
stop("'x' must at least have 2 categories")
if (is.null(p))
p = rep(1/length(unique(x)), length(unique(x)))
if (length(unique(x)) != length(p))
stop("length of p must must equal number of categories of x")
tmpdat <- table(id, x)
}
if (any(p < 0))
stop("probabilities must be non-negative.")
if (abs(sum(p) - 1) > sqrt(.Machine$double.eps))
stop("probabilities must sum to 1.")
M <- as.integer(nrow(tmpdat))
cl.n <- apply(tmpdat, 1, sum)
phat <- tmpdat/cl.n
pbar <- apply(phat,2,mean)
dmat <- phat - matrix(rep(p,M), nrow=M, byrow=T)
dhat <- colMeans(dmat)
if (variance=="emp") {
var.hat <- stats::var(dmat)
}
else {
U <- switch(variance,
MoM = t(t(dmat)/dhat),
sand.null = t(t(phat)/p),
sand.est = t(t(phat)/pbar))
Vtmp <- apply(U, 1, function(x) x%*%t(x))
V <- matrix(apply(Vtmp, 1, mean), nrow=length(p))
Hinv <- switch(variance,
MoM = MASS::ginv(diag(-1/dhat)),
sand.null = MASS::ginv(diag(-pbar/p^2)),
sand.est = MASS::ginv(diag(-1/pbar)))
var.hat <- Hinv%*%V%*%Hinv
}
OBSERVED <- pbar
EXPECTED <- p
names(EXPECTED) <- names(pbar)
PARAMETER <- ncol(tmpdat) - 1
STATISTIC <- M*t(dhat)%*%MASS::ginv(var.hat)%*%(dhat)
PVAL <- stats::pchisq(STATISTIC, df=PARAMETER, lower.tail=F)
DNAME <- paste0(paste0(DNAME, ", M = "), as.character(M))
names(STATISTIC) <- "X-squared"
names(PARAMETER) <- "df"
METHOD <- paste0("Cluster-weighted chi-squared test for given probabilities with variance est: ", variance)
if (any(M*p < 5) && is.finite(PARAMETER))
warning("M*p < 5: Chi-squared approximation may be incorrect")
RVAL <- list(statistic = STATISTIC, parameter = PARAMETER,
p.value = PVAL, method = METHOD, data.name = DNAME, observed = OBSERVED,
expected = EXPECTED, M=M)
}
else {
DNAME <- paste(deparse(substitute(x)), "and", deparse(substitute(y)))
if (length(x) != length(y))
stop("'x' and 'y' must have the same length")
if (length(x) != length(id))
stop("'id' must have the same length as x and y")
OK <- stats::complete.cases(id,x,y)
METHOD <- paste0("Cluster-weighted Chi-squared test of independence with variance est: ", variance)
x <- factor(x[OK])
y <- factor(y[OK])
id <- factor(id[OK])
M <- length(unique(id))
if ((nlevels(x) < 2L) || (nlevels(y) < 2L))
stop("'x' and 'y' must have at least 2 levels")
tmp <- table(x, y, id)
o <- prop.table(tmp,3)
e <- apply(tmp,3,function(x) {
outer(rowSums(x)/sum(x), colSums(x)/sum(x))
})
dim(e) <- dim(o)
o.mat <- matrix(as.vector(o), nrow=M, byrow=T)
e.mat <- matrix(as.vector(e), nrow=M, byrow=T)
d.mat <- o.mat-e.mat
o.hat <- colMeans(o.mat)
e.hat <- colMeans(e.mat)
d.hat <- colMeans(d.mat)
OBSERVED <- matrix(o.hat, nrow=nlevels(x), byrow=F)
EXPECTED <- matrix(e.hat, nrow=nlevels(x), byrow=F)
rownames(OBSERVED) <- rownames(EXPECTED) <- levels(x)
colnames(OBSERVED) <- colnames(EXPECTED) <- levels(y)
if (variance=="emp") {
var.hat <- stats::var(d.mat)
} else {
U <- switch(variance,
MoM = t(t(d.mat)/d.hat),
sand.null = t(t(o.mat)/e.hat),
sand.est = t(t(o.mat)/o.hat))
Vtmp <- apply(U, 1, function(x) x%*%t(x))
V <- matrix(apply(Vtmp, 1, mean), nrow=(nlevels(y)*nlevels(x)))
Hinv <- switch(variance,
MoM = MASS::ginv(diag(-1/d.hat)),
sand.null = MASS::ginv(diag(-o.hat/e.hat^2)),
sand.est = MASS::ginv(diag(-1/o.hat)))
var.hat <- Hinv%*%V%*%Hinv
}
STATISTIC <- M*(t(d.hat) %*% MASS::ginv(var.hat) %*% d.hat)
PARAMETER <- (nlevels(x)-1)*(nlevels(y)-1)
PVAL <- stats::pchisq(STATISTIC, df=PARAMETER, lower=F)
DNAME <- paste0(paste0(DNAME, ", M = "), as.character(M))
names(STATISTIC) <- "X-squared"
names(PARAMETER) <- "df"
RVAL <- list(statistic = STATISTIC, parameter = PARAMETER,
p.value = PVAL, method = METHOD, data.name = DNAME, M = M, observed = OBSERVED, expected = EXPECTED)
}
DNAME <- paste0(paste0(DNAME, "M = "), as.character(M))
class(RVAL) <- "htest"
if (M < 30)
warning('Number of clusters < 30. Chi-squared approximation may be incorrect')
return(RVAL)
} |
.powellTestNLP <-
function()
{
start <- c(-2, 2, 2, -1, -1)
fun <- function(x) { exp(x[1]*x[2]*x[3]*x[4]*x[5]) }
eqFun <- list(
function(x) x[1]*x[1]+x[2]*x[2]+x[3]*x[3]+x[4]*x[4]+x[5]*x[5],
function(x) x[2]*x[3]-5*x[4]*x[5],
function(x) x[1]*x[1]*x[1]+x[2]*x[2]*x[2])
eqFun.bound <- c(10, 0, -1)
ans.donlp = donlp2NLP(start, fun,
eqFun = eqFun, eqFun.bound = eqFun.bound)
ans.solnp = solnpNLP(start, fun,
eqFun = eqFun, eqFun.bound = eqFun.bound)
ans.nlminb = nlminb2NLP(start, fun,
eqFun = eqFun, eqFun.bound = eqFun.bound)
result.par = round(rbind(
ans.donlp$solution, ans.solnp$solution, ans.nlminb$solution), 3)
result.fun = c(
fun(ans.donlp$solution), fun(ans.solnp$solution), fun(ans.nlminb$solution))
cbind(result.par, result.fun)
}
.wright4TestNLP <-
function()
{
start <- c(1, 1, 1, 1, 1)
fun <- function(x){
(x[1]-1)^2+(x[1]-x[2])^2+(x[2]-x[3])^3+(x[3]-x[4])^4+(x[4]-x[5])^4}
eqFun = list(
function(x) x[1]+x[2]*x[2]+x[3]*x[3]*x[3],
function(x) x[2]-x[3]*x[3]+x[4],
function(x) x[1]*x[5] )
eqFun.bound = c(2+3*sqrt(2), -2+2*sqrt(2), 2)
ans.donlp = donlp2NLP(start, fun,
eqFun = eqFun, eqFun.bound = eqFun.bound)
ans.solnp = solnpNLP(start, fun,
eqFun = eqFun, eqFun.bound = eqFun.bound)
ans.nlminb = nlminb2NLP(start, fun,
eqFun = eqFun, eqFun.bound = eqFun.bound)
result.par = round(rbind(
ans.donlp$solution, ans.solnp$solution, ans.nlminb$solution), 3)
result.fun = c(
fun(ans.donlp$solution), fun(ans.solnp$solution), fun(ans.nlminb$solution))
cbind(result.par, result.fun)
}
.boxTestNLP <-
function()
{
start <- c(1.1, 1.1, 9)
fun <- function(x) { -x[1]*x[2]*x[3] }
par.lower = rep(1, 3)
par.upper = rep(10, 3)
eqFun <- list(
function(x) 4*x[1]*x[2]+2*x[2]*x[3]+2*x[3]*x[1] )
eqFun.bound = 100
ans.donlp = donlp2NLP(start, fun,
par.lower = par.lower, par.upper = par.upper,
eqFun = eqFun, eqFun.bound = eqFun.bound)
ans.solnp = solnpNLP(start, fun,
par.lower = par.lower, par.upper = par.upper,
eqFun = eqFun, eqFun.bound = eqFun.bound)
ans.nlminb = nlminb2NLP(start, fun,
par.lower = par.lower, par.upper = par.upper,
eqFun = eqFun, eqFun.bound = eqFun.bound)
result.par = round(rbind(
ans.donlp$solution, ans.solnp$solution, ans.nlminb$solution), 3)
result.fun = c(
fun(ans.donlp$solution), fun(ans.solnp$solution), fun(ans.nlminb$solution))
cbind(result.par, result.fun)
}
.wright9TestNLP <-
function()
{
start <- c(1, 1, 1, 1, 1)
fun <- function(x){
10*x[1]*x[4]-6*x[3]*x[2]*x[2]+x[2]*(x[1]*x[1]*x[1])+
9*sin(x[5]-x[3])+x[5]^4*x[4]*x[4]*x[2]*x[2]*x[2] }
ineqFun <- list(
function(x) x[1]*x[1]+x[2]*x[2]+x[3]*x[3]+x[4]*x[4]+x[5]*x[5],
function(x) x[1]*x[1]*x[3]-x[4]*x[5],
function(x) x[2]*x[2]*x[4]+10*x[1]*x[5])
ineqFun.lower = c(-100, -2, 5)
ineqFun.upper = c( 20, 100, 100)
ans.donlp = donlp2NLP(start, fun,
ineqFun = ineqFun,
ineqFun.lower = ineqFun.lower, ineqFun.upper = ineqFun.upper)
ans.solnp = solnpNLP(start, fun,
ineqFun = ineqFun,
ineqFun.lower = ineqFun.lower, ineqFun.upper = ineqFun.upper)
ans.nlminb = nlminb2NLP(start, fun,
ineqFun = ineqFun,
ineqFun.lower = ineqFun.lower, ineqFun.upper = ineqFun.upper)
result.par = round(rbind(
ans.donlp$solution, ans.solnp$solution, ans.nlminb$solution), 3)
result.fun = c(
fun(ans.donlp$solution), fun(ans.solnp$solution), fun(ans.nlminb$solution))
cbind(result.par, result.fun)
}
.alkylationTestNLP <-
function()
{
start <- c(17.45, 12, 110, 30.5, 19.74, 89.2, 92.8, 8, 3.6, 145.2)
fun <- function(x) { -0.63*x[4]*x[7]+50.4*x[1]+3.5*x[2]+x[3]+33.6*x[5] }
par.lower <- c( 0, 0, 0, 10, 0, 85, 10, 3, 1, 145)
par.upper <- c(20, 16, 120, 50, 20, 93, 95,12, 4, 162)
eqFun <- list(
function(x) 98*x[3]-0.1*x[4]*x[6]*x[9]-x[3]*x[6],
function(x) 1000*x[2]+100*x[5]-100*x[1]*x[8],
function(x) 122*x[4]-100*x[1]-100*x[5])
eqFun.bound = c(0, 0, 0)
ineqFun <- list(
function(x) (1.12*x[1]+0.13167*x[1]*x[8]-0.00667*x[1]*x[8]*x[8])/x[4],
function(x) (1.098*x[8]-0.038*x[8]*x[8]+0.325*x[6]+57.25)/x[7],
function(x) (-0.222*x[10]+35.82)/x[9],
function(x) (3*x[7]-133)/x[10])
ineqFun.lower = c( 0.99, 0.99, 0.9, 0.99)
ineqFun.upper = c(100/99, 100/99, 10/9, 100/99)
ans.donlp = donlp2NLP(start, fun,
par.lower = par.lower, par.upper = par.upper,
eqFun = eqFun, eqFun.bound = eqFun.bound,
ineqFun = ineqFun,
ineqFun.lower = ineqFun.lower, ineqFun.upper = ineqFun.upper)
ans.solnp = solnpNLP(start, fun,
par.lower = par.lower, par.upper = par.upper,
eqFun = eqFun, eqFun.bound = eqFun.bound,
ineqFun = ineqFun,
ineqFun.lower = ineqFun.lower, ineqFun.upper = ineqFun.upper)
ans.nlminb = nlminb2NLP(start, fun,
par.lower = par.lower, par.upper = par.upper,
eqFun = eqFun, eqFun.bound = eqFun.bound,
ineqFun = ineqFun,
ineqFun.lower = ineqFun.lower, ineqFun.upper = ineqFun.upper)
result.par = round(rbind(
ans.donlp$solution, ans.solnp$solution, ans.nlminb$solution), 3)
result.fun = c(
fun(ans.donlp$solution), fun(ans.solnp$solution), fun(ans.nlminb$solution))
cbind(result.par, result.fun)
}
.entropyTestNLP <-
function()
{
set.seed(1953)
start <- runif(10, 0, 1)
fun <- function(x) {
m = length(x)
f = -sum(log(x))
vnorm = sum((x-1)^2)^(1/2)
f - log(vnorm + 0.1)
}
par.lower <- rep(0, 10)
eqFun <- list(
function(x) sum(x) )
eqFun.bound <- 10
ans.donlp = donlp2NLP(start, fun,
par.lower = par.lower,
eqFun = eqFun, eqFun.bound = eqFun.bound)
ans.solnp = solnpNLP(start, fun,
par.lower = par.lower,
eqFun = eqFun, eqFun.bound = eqFun.bound)
ans.nlminb = nlminb2NLP(start, fun,
par.lower = par.lower,
eqFun = eqFun, eqFun.bound = eqFun.bound)
result.par = round(rbind(
ans.donlp$solution, ans.solnp$solution, ans.nlminb$solution), 3)
result.fun = c(
fun(ans.donlp$solution), fun(ans.solnp$solution), fun(ans.nlminb$solution))
cbind(result.par, result.fun)
}
.rosensuzukiTestNLP <-
function()
{
start <- c(1, 1, 1, 1)
fun <- function(x)
x[1]*x[1]+x[2]*x[2]+2*x[3]*x[3]+x[4]*x[4]-5*x[1]-5*x[2]-21*x[3]+7*x[4]
ineqFun <- list(
function(x) 8-x[1]*x[1]-x[2]*x[2]-x[3]*x[3]-x[4]*x[4]-x[1]+x[2]-x[3]+x[4],
function(x) 10-x[1]*x[1]-2*x[2]*x[2]-x[3]*x[3]-2*x[4]*x[4]+x[1]+x[4],
function(x) 5-2*x[1]*x[1]-x[2]*x[2]-x[3]*x[3]-2*x[1]+x[2]+x[4] )
ineqFun.lower <- rep( 0, 3)
ineqFun.upper <- rep(10, 3)
ans.donlp = donlp2NLP(start, fun,
ineqFun = ineqFun,
ineqFun.lower = ineqFun.lower, ineqFun.upper = ineqFun.upper)
ans.solnp = solnpNLP(start, fun,
ineqFun = ineqFun,
ineqFun.lower = ineqFun.lower, ineqFun.upper = ineqFun.upper)
ans.nlminb = nlminb2NLP(start, fun,
ineqFun = ineqFun,
ineqFun.lower = ineqFun.lower, ineqFun.upper = ineqFun.upper)
result.par = round(rbind(
ans.donlp$solution, ans.solnp$solution, ans.nlminb$solution), 3)
result.fun = c(
fun(ans.donlp$solution), fun(ans.solnp$solution), fun(ans.nlminb$solution))
cbind(result.par, result.fun)
}
.sharperatioTestNLP <-
function()
{
dataSet <- data("LPP2005REC", package="timeSeries", envir=environment())
LPP2005REC <- get(dataSet, envir=environment())
ret <- as.matrix(LPP2005REC[,2:7])
Mean <- colMeans(ret)
Cov <- cov(ret)
start <- rep(1/6, times = 6)
fun <- function(x) {
return = (Mean %*% x)[[1]]
risk = sqrt ( (t(x) %*% Cov %*% x)[[1]] )
-return/risk }
par.lower <- rep(0, 6)
par.upper <- rep(1, 6)
eqFun <- list(
function(x) sum(x) )
eqFun.bound = 1
ans.donlp <- donlp2NLP(start, fun,
par.lower = par.lower, par.upper = par.upper,
eqFun = eqFun, eqFun.bound = eqFun.bound )
ans.solnp <- solnpNLP(start, fun,
par.lower = par.lower, par.upper = par.upper,
eqFun = eqFun, eqFun.bound = eqFun.bound)
ans.nlminb <- Rnlminb2::nlminb2NLP(start, fun,
par.lower = par.lower, par.upper = par.upper,
eqFun = eqFun, eqFun.bound = eqFun.bound)
result.par = round(rbind(
ans.donlp$solution,
ans.solnp$solution,
ans.nlminb$solution), 3)
result.fun = c(
fun(ans.donlp$solution),
fun(ans.solnp$solution),
fun(ans.nlminb$solution))
cbind(result.par, result.fun)
result.par <- 100*round(rbind(
ans.donlp$solution, ans.solnp$solution, ans.nlminb$solution), 4)
result.fun <- c(
fun(ans.donlp$solution), fun(ans.solnp$solution), fun(ans.nlminb$solution))
cbind(result.par, result.fun)
}
.rachevratioTestNLP <-
function()
{
dataSet <- data("LPP2005REC", package="timeSeries", envir=environment())
LPP2005REC <- get(dataSet, envir=environment())
ret = as.matrix(LPP2005REC[, 2:7])
Mean = colMeans(ret)
Cov = cov(ret)
set.seed(1953)
r = runif(6)
start <- r/sum(r)
start <- rep(1/6, times = 6)
.VaR <- function(x) {
quantile(x, probs = 0.05, type = 1) }
.CVaR <- function(x) {
VaR = .VaR(x)
VaR - 0.5 * mean(((VaR-ret) + abs(VaR-ret))) / 0.05 }
fun <- function(x) {
port = as.vector(ret %*% x)
ans = (-.CVaR(-port) / .CVaR(port))[[1]]
ans}
par.lower = rep(0, 6)
par.upper = rep(1, 6)
eqFun <- list(
function(x) sum(x) )
eqFun.bound = 1
ans.donlp = donlp2NLP(start, fun,
par.lower = par.lower, par.upper = par.upper,
eqFun = eqFun, eqFun.bound = eqFun.bound)
ans.solnp = solnpNLP(start, fun,
par.lower = par.lower, par.upper = par.upper,
eqFun = eqFun, eqFun.bound = eqFun.bound)
ans.nlminb = nlminb2NLP(start, fun,
par.lower = par.lower, par.upper = par.upper,
eqFun = eqFun, eqFun.bound = eqFun.bound)
result.par = 100*round(rbind(
ans.donlp$solution, ans.solnp$solution, ans.nlminb$solution), 4)
result.fun = c(
fun(ans.donlp$solution), fun(ans.solnp$solution), fun(ans.nlminb$solution))
cbind(result.par, result.fun)
}
.boxmarkowitzTestNLP <-
function()
{
dataSet <- data("LPP2005REC", package="timeSeries", envir=environment())
LPP2005REC <- get(dataSet, envir=environment())
ret <- 100 * as.matrix(LPP2005REC[, 2:7])
Mean <- colMeans(ret)
Cov <- cov(ret)
targetReturn <- mean(Mean)
start <- rep(1/6, times = 6)
objective <- function(x) {
risk <- (t(x) %*% Cov %*% x)[[1]]
risk }
fun <- objective
par.lower <- rep(0, 6)
par.upper <- rep(1, 6)
eqFun <- list(
function(x) sum(x),
function(x) (Mean %*% x)[[1]] )
eqFun.bound = c(1, targetReturn)
ans.donlp = donlp2NLP(start, objective,
par.lower = par.lower, par.upper = par.upper,
eqFun = eqFun, eqFun.bound = eqFun.bound)
ans.solnp = solnpNLP(start, objective,
par.lower = par.lower, par.upper = par.upper,
eqFun = eqFun, eqFun.bound = eqFun.bound)
ans.nlminb = nlminb2NLP(start, objective,
par.lower = par.lower, par.upper = par.upper,
eqFun = eqFun, eqFun.bound = eqFun.bound)
result.par <- 100*round(rbind(
ans.donlp$solution, ans.solnp$solution, ans.nlminb$solution), 4)
result.fun <- c(
fun(ans.donlp$solution), fun(ans.solnp$solution), fun(ans.nlminb$solution))
cbind(result.par, result.fun)
}
.groupmarkowitzTestNLP <-
function()
{
dataSet <- data("LPP2005REC", package="timeSeries", envir=environment())
LPP2005REC <- get(dataSet, envir=environment())
ret <- 100 * as.matrix(LPP2005REC[, 2:7])
Mean <- colMeans(ret)
Cov <- cov(ret)
targetReturn <- mean(Mean)
start <- rep(1/6, times = 6)
start[1]+start[4]
start[2]+start[5]+start[6]
start2 <- c(0, 0, 0.3, 0.3, 0, 0.4)
start2 <- start/sum(start2)
sum(start2)
start2[1]+start2[4]
start2[2]+start2[5]+start2[6]
fun <- function(x) {
risk = (t(x) %*% Cov %*% x)[[1]]
risk }
par.lower <- rep(0, 6)
par.upper <- rep(1, 6)
eqFun <- list(
function(x) sum(x),
function(x) (Mean %*% x)[[1]] )
eqFun.bound = c(1, targetReturn)
ineqFun <- list(
function(x) x[1]+x[4],
function(x) x[2]+x[5]+x[6])
ineqFun.lower <- c( 0.3, 0.0)
ineqFun.upper <- c( 1.0, 0.6)
ans.donlp = donlp2NLP(start, fun,
par.lower = par.lower, par.upper = par.upper,
eqFun = eqFun, eqFun.bound = eqFun.bound,
ineqFun = ineqFun,
ineqFun.lower = ineqFun.lower, ineqFun.upper = ineqFun.upper)
ans.solnp = solnpNLP(start, fun,
par.lower = par.lower, par.upper = par.upper,
eqFun = eqFun, eqFun.bound = eqFun.bound,
ineqFun = ineqFun,
ineqFun.lower = ineqFun.lower, ineqFun.upper = ineqFun.upper)
ans.nlminb = nlminb2NLP(start, fun,
par.lower = par.lower, par.upper = par.upper,
eqFun = eqFun, eqFun.bound = eqFun.bound,
ineqFun = ineqFun,
ineqFun.lower = ineqFun.lower, ineqFun.upper = ineqFun.upper)
result.par = 100*round(rbind(
ans.donlp$solution, ans.solnp$solution, ans.nlminb$solution), 4)
result.fun = c(
fun(ans.donlp$solution), fun(ans.solnp$solution), fun(ans.nlminb$solution))
cbind(result.par, result.fun)
} |
source("ESEUR_config.r")
library("chngpt")
pal_col=rainbow(4)
comp_recalls=read.csv(paste0(ESEUR_dir, "regression/Alemzadeh-Computer_Related_Recalls.csv.xz"), as.is=TRUE)
comp_recalls$Date=as.Date(comp_recalls$Date, format="%b-%d-%Y")
t1=cut(comp_recalls$Date, breaks=72)
t2=table(t1)
x_axis=1:length(t2)
y_axis=as.vector(t2)
y_bounds=range(y_axis)
l_mod=glm(y_axis ~ x_axis)
orig_pred=predict(l_mod)
t2[33]=round(mean(y_axis))
t2[67]=round(mean(y_axis))
y_axis=as.vector(t2)
y_bounds=range(y_axis)
plot(t2, type="p", col=pal_col[3],
ylim=y_bounds,
xlab="Fortnights", ylab="Recalls")
recall_subset=subset(comp_recalls, Date <= as.Date("2010-12-31"))
t1=cut(comp_recalls$Date, breaks=60)
t2=table(t1)
bined_recalls=data.frame(fortnight=1:length(t2), recalls=as.vector(t2))
fit=chngptm(recalls ~ 1, ~fortnight, family="gaussian", data=bined_recalls,
type="segmented",
var.type="bootstrap", save.boot=TRUE)
plot(fit, which=1) |
wrap_old_cache <- function(x) {
if (!is_old_cache(x)) {
stop("`x` must be an old-style cache.", call. = FALSE)
}
list(
digest = x$digest,
reset = x$reset,
set = x$set,
get = function(key) {
if (!x$has_key(key)) {
return(key_missing())
}
x$get(key)
},
exists = x$has_key,
remove = x$drop_key,
keys = x$keys
)
}
is_old_cache <- function(x) {
is.function(x$digest) &&
is.function(x$set) &&
is.function(x$get) &&
is.function(x$has_key)
} |
STAT2 <- function() {
rmarkdown::run(system.file("img", "STAT2.Rmd", package = "STAT2"))
Sys.setenv("R_TESTS" = "")
}
|
context("COR")
set.seed(SEED)
N <- 101
M <- 43
x <- matrix(rnorm(N * M, 100, 5), N)
test_that("equality with cor", {
for (t in TEST.TYPES) {
X <- `if`(t == "raw", asFBMcode(x), big_copy(x, type = t))
K <- big_cor(X, block.size = 10)
expect_equal(K[], cor(X[]))
}
})
test_that("equality with cor with half of the data", {
ind <- sample(M, M / 2)
for (t in TEST.TYPES) {
X <- `if`(t == "raw", asFBMcode(x), big_copy(x, type = t))
K <- big_cor(X, ind.col = ind, block.size = 10)
expect_equal(K[], cor(X[, ind]))
}
})
test_that("equality with cor with half of the data", {
ind <- sample(N, N / 2)
for (t in TEST.TYPES) {
X <- `if`(t == "raw", asFBMcode(x), big_copy(x, type = t))
K <- big_cor(X, ind.row = ind, block.size = 10)
expect_equal(K[], cor(X[ind, ]))
}
}) |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.