code
stringlengths 1
13.8M
|
---|
NULL
db_copy_to <- function(con, table, values,
overwrite = FALSE, types = NULL, temporary = TRUE,
unique_indexes = NULL, indexes = NULL,
analyze = TRUE, ...,
in_transaction = TRUE) {
UseMethod("db_copy_to")
}
db_copy_to.DBIConnection <- function(con, table, values,
overwrite = FALSE, types = NULL, temporary = TRUE,
unique_indexes = NULL, indexes = NULL,
analyze = TRUE, ...,
in_transaction = TRUE) {
new <- db_table_temporary(con, table, temporary)
table <- new$table
temporary <- new$temporary
with_transaction(con, in_transaction, {
table <- dplyr::db_write_table(con, table,
types = types,
values = values,
temporary = temporary,
overwrite = overwrite
)
create_indexes(con, table, unique_indexes, unique = TRUE)
create_indexes(con, table, indexes)
if (analyze) dbplyr_analyze(con, table)
})
table
}
db_compute <- function(con,
table,
sql,
temporary = TRUE,
unique_indexes = list(),
indexes = list(),
analyze = TRUE,
...) {
UseMethod("db_compute")
}
db_compute.DBIConnection <- function(con,
table,
sql,
temporary = TRUE,
unique_indexes = list(),
indexes = list(),
analyze = TRUE,
...) {
new <- db_table_temporary(con, table, temporary)
table <- new$table
temporary <- new$temporary
table <- dbplyr_save_query(con, sql, table, temporary = temporary)
create_indexes(con, table, unique_indexes, unique = TRUE)
create_indexes(con, table, indexes)
if (analyze) dbplyr_analyze(con, table)
table
}
db_collect <- function(con, sql, n = -1, warn_incomplete = TRUE, ...) {
UseMethod("db_collect")
}
db_collect.DBIConnection <- function(con, sql, n = -1, warn_incomplete = TRUE, ...) {
res <- dbSendQuery(con, sql)
tryCatch({
out <- dbFetch(res, n = n)
if (warn_incomplete) {
res_warn_incomplete(res, "n = Inf")
}
}, finally = {
dbClearResult(res)
})
out
}
db_write_table.DBIConnection <- function(con, table, types, values, temporary = TRUE, overwrite = FALSE, ...) {
dbWriteTable(
con,
name = dbi_quote(table, con),
value = values,
field.types = types,
temporary = temporary,
overwrite = overwrite,
row.names = FALSE
)
table
}
dbi_quote <- function(x, con) UseMethod("dbi_quote")
dbi_quote.ident <- function(x, con) DBI::dbQuoteIdentifier(con, as.character(x))
dbi_quote.character <- function(x, con) DBI::dbQuoteString(con, x)
dbi_quote.sql <- function(x, con) DBI::SQL(as.character(x))
create_indexes <- function(con, table, indexes = NULL, unique = FALSE, ...) {
if (is.null(indexes)) {
return()
}
indexes <- as.list(indexes)
for (index in indexes) {
dbplyr_create_index(con, table, index, unique = unique, ...)
}
}
with_transaction <- function(con, in_transaction, code) {
if (in_transaction) {
dbBegin(con)
on.exit(dbRollback(con))
}
code
if (in_transaction) {
on.exit()
dbCommit(con)
}
}
db_table_temporary <- function(con, table, temporary) {
UseMethod("db_table_temporary")
}
db_table_temporary.DBIConnection <- function(con, table, temporary) {
list(
table = table,
temporary = temporary
)
} |
download_idbank_list = function(dataset = NULL, label = FALSE){
insee_data_dir = tempdir()
dir_creation_fail = try(create_insee_folder(), silent = TRUE)
insee_local_dir = file.path(rappdirs::user_data_dir(), "R", "insee", "insee")
if(("try-error" %in% class(dir_creation_fail))|(!file.exists(insee_local_dir))){
insee_local_dir = tempdir()
}
file_to_dwn = Sys.getenv("INSEE_idbank_dataset_path")
idbank_list_file_cache = file.path(insee_data_dir,
paste0(openssl::md5(file_to_dwn), ".rds"))
if(!file.exists(idbank_list_file_cache)){
mapping = dwn_idbank_files()
mapping = mapping[,c(1:3)]
names(mapping) = c("nomflow", "idbank", "cleFlow")
saveRDS(mapping, file = idbank_list_file_cache)
}else{
mapping = readRDS(idbank_list_file_cache)
}
idbank_list_defaul_value = FALSE
if(!is.null(dataset)){
dataset_list = unique(mapping[, "nomflow"])
dataset_param_in_list = which(dataset %in% dataset_list)
if(length(dataset_param_in_list) > 0){
dataset_in_list = dataset[dataset_param_in_list]
mapping = mapping[which(mapping[, "nomflow"] %in% dataset_in_list),]
dot_vector = stringr::str_count(mapping$cleFlow, pattern = "\\.")
n_col = max(dot_vector) + 1
mapping = separate_col(df = mapping, col = "cleFlow",
sep = "\\.", into = paste0("dim", 1:n_col))
if(length(dataset_in_list) > 1){
pb = utils::txtProgressBar(min = 1, max = length(dataset_in_list), initial = 1, style = 3)
}
mapping_final =
dplyr::bind_rows(
lapply(1:length(dataset_in_list),
function(j){
dataset_name = dataset_in_list[j]
new_col_names = get_dataset_dimension(dataset = dataset_name)
mapping_dataset = dplyr::filter(.data = mapping, .data$nomflow == dataset_name)
if(!is.null(new_col_names)){
mapping_dataset_sep =
separate_col(df = mapping_dataset, col = "cleFlow",
sep = "\\.", into = new_col_names)
if(label == TRUE){
for(new_col_name in new_col_names){
i_col = which(new_col_names == new_col_name)
cl_col = attr(new_col_names,'cl')[i_col]
dimension_labels = get_dimension_values(dimension = cl_col, col_name = new_col_name)
if(!is.null(dimension_labels)){
mapping_dataset_sep = dplyr::left_join(mapping_dataset_sep, dimension_labels, by = new_col_name)
}
}
}
mapping_dataset_sep = clean_table(set_metadata_col(mapping_dataset_sep))
dataset_metadata_file_cache = file.path(insee_local_dir,
paste0(openssl::md5(sprintf("%s_metadata_file", dataset_name)), ".rds"))
saveRDS(mapping_dataset_sep, file = dataset_metadata_file_cache)
if(length(dataset_in_list) > 1){
utils::setTxtProgressBar(pb, j)
}
return(mapping_dataset_sep)
}else{
return(mapping_dataset)
}
}))
}else{
idbank_list_defaul_value = TRUE
warning("Dataset names do not exist, the table by default is provided")
}
}else{
idbank_list_defaul_value = TRUE
}
if(idbank_list_defaul_value == TRUE){
dot_vector = stringr::str_count(mapping$cleFlow, pattern = "\\.")
n_col = max(dot_vector) + 1
mapping_final = separate_col(df = mapping, col = "cleFlow",
sep = "\\.", into = paste0("dim", 1:n_col))
if(label == TRUE){
warning("Dataset names are missing, labels will not be provided")
}
}
mapping_final = set_metadata_col(mapping_final)
return(mapping_final)
} |
haplo.phase.known <- function(X, ploidy = 2){
X.names <- apply(X, 1, paste, collapse="")
unique.X <- unique(X)
unique.X.names <- apply(unique.X, 1, paste, collapse="")
X.summary <- as.data.frame(table(X.names))
X.summary$prob <- X.summary$Freq / sum(X.summary$Freq)
haplo <- NULL
haplo$haplotype <- unique.X
haplo$hap.prob <- X.summary$prob[match(unique.X.names, as.character(X.summary$X.names))]
haplo$post <- rep(1, nrow(X))
if(ploidy == 1){
haplo$hap1code <- match(X.names, unique.X.names)
haplo$hap2code <- haplo$hap1code
haplo$indx.subj <- 1:nrow(X)
} else if(ploidy == 2){
tmp <- matrix(match(X.names, unique.X.names), nrow = 2)
haplo$hap1code <- tmp[1,]
haplo$hap2code <- tmp[2,]
haplo$indx.subj <- rep(1:(nrow(X)/2), each = 2)
} else{
stop("ploidy = 1 or 2")
}
haplo
}
haplo.post.prob <- function(X, ploidy = 2, skip.haplo = 1e-7, K = NULL){
haplo <- haplo.phase.known(X, ploidy)
nhap <- nrow(X)
n.loci <- ncol(X)
n.subj <- nrow(X)
digit <- 1
H.names<-apply(haplo$haplotype, 1, paste, collapse="")
Pcscn <-haplo$hap.prob; names(Pcscn)<-H.names
pcscn <-rev(sort(Pcscn))
if(is.null(K)){
pos <-getcut.fun(pcscn, 2*nhap, plot=0)
} else{
tl.K <- length(pcscn)
if(K < 1 || K > (tl.K - 1)){
stop(paste("K should be in [", 1, ", ", tl.K - 1, "]", sep = ""))
}
pos <- K
}
reserv <-names(pcscn)[1:pos]
hap1 <- haplo$hap1code
hap2 <- haplo$hap2code
indx <- haplo$indx.subj
post <- haplo$post
uhap <- sort(unique(c(hap1, hap2)))
which.haplo<- haplo$hap.prob >= skip.haplo
p.cscn <- Pcscn[which.haplo]
h.names <- names(p.cscn)
uhap <- uhap[which.haplo]
BigMatB <- final.BigMatB.matC.fun(p.cscn, reserv, n.loci, digit)
matB <- BigMatB$BigMatB.cscn
x <- 0.5* (outer(hap1, uhap, "==") + outer(hap2, uhap, "==")); colnames(x)<-h.names
x <- x[,match(rownames(matB), h.names)]
xRD <- x %*% matB
n.xRD <- ncol(xRD)
xRD.post <- matrix(rep(NA, n.subj * n.xRD), ncol = n.xRD);for(j in 1:n.xRD){ xRD.post[,j]<-tapply(xRD[,j]*post,indx,sum)}
n.x <- ncol(x)
x.post <- matrix(rep(NA, n.subj * n.x), ncol = n.x);for(j in 1:n.x){ x.post[,j]<-tapply(x[,j]*post,indx,sum)};
list(haplo = haplo,
FD.id = match(rownames(matB), H.names),
RD.id = match(colnames(matB), H.names),
FD.post = x.post,
RD.post = xRD.post,
g.truncate = ncol(matB))
} |
library(spdep)
GT <- GridTopology(c(1, 1), c(1, 1), c(10, 50))
SPix <- as(SpatialGrid(GT), "SpatialPixels")
nb_rook_cont <- poly2nb(as(SPix, "SpatialPolygons"), queen=FALSE)
nb_rook_dist <- dnearneigh(coordinates(SPix), 0, 1.01)
expect_true(all.equal(nb_rook_cont, nb_rook_dist, check.attributes=FALSE))
t.nb <- cell2nb(GT, type='rook', legacy=TRUE)
expect_false(isTRUE(all.equal(nb_rook_cont, t.nb, check.attributes=FALSE)))
t.nb <- cell2nb(GT, type='rook')
expect_true(isTRUE(all.equal(nb_rook_cont, t.nb, check.attributes=FALSE)))
c <- 20:21
r <- 11:12
set.seed(1)
for (i in c) {
for (j in r) {
GT <- GridTopology(c(1, 1), c(1, 1), c(i, j))
print(GT)
SPix <- as(SpatialGrid(GT), "SpatialPixels")
x <- rnorm(prod(slot(GT, "cells.dim")))
SPixDF <- SpatialPixelsDataFrame(SPix, data=data.frame(x=x))
SGDF <- as(SPixDF, "SpatialGridDataFrame")
SPolDF <- as(SPixDF, "SpatialPolygonsDataFrame")
nb_rook_cont <- poly2nb(SPolDF, queen=FALSE)
M_cont <- moran.test(SPolDF$x, nb2listw(nb_rook_cont))
nb_rook_dist <- dnearneigh(coordinates(SPix), 0, 1.01)
M_dist <- moran.test(SPixDF$x, nb2listw(nb_rook_dist))
print(expect_true(isTRUE(all.equal(nb_rook_cont, nb_rook_dist,
check.attributes=FALSE))))
print(expect_equal(M_cont$estimate[1], M_dist$estimate[1]))
nb_legacy <- cell2nb(GT, type='rook', legacy=TRUE)
print(expect_false(isTRUE(all.equal(nb_rook_cont, nb_legacy,
check.attributes=FALSE))))
M_cell_legacy <- moran.test(SGDF$x, nb2listw(nb_legacy))
print(expect_false(isTRUE(all.equal(M_cont$estimate[1],
M_cell_legacy$estimate[1]))))
nb <- cell2nb(GT, type='rook')
print(expect_true(isTRUE(all.equal(nb_rook_cont, nb,
check.attributes=FALSE))))
M_cell <- moran.test(SGDF$x, nb2listw(nb))
print(expect_equal(M_cont$estimate[1], M_cell$estimate[1]))
}
}
NIN <- data.frame(row = rep(1:11, 22), col = rep(1:22, each = 11))
NIN$id <- paste(NIN$col, NIN$row, sep=":")
xy.rook <- cell2nb(nrow = max(NIN$row), ncol = max(NIN$col), type="rook")
GT <- GridTopology(c(1, 1), c(1, 1), c(max(NIN$col), max(NIN$row)))
xy.rook1 <- cell2nb(GT, type="rook")
expect_true(isTRUE(all.equal(xy.rook, xy.rook1, check.attributes=FALSE)))
NIN_sf <- st_as_sf(NIN, coords=c("col", "row"))
xy.dist <- dnearneigh(NIN_sf, 0, 1.01, row.names=NIN_sf$id)
expect_false(isTRUE(all.equal(xy.dist, xy.rook, check.attributes=FALSE)))
expect_false(isTRUE(all.equal(attr(xy.rook, "region.id"),
attr(xy.dist, "region.id"))))
NINa <- data.frame(row = rep(1:11, each = 22), col = rep(1:22, 11))
NINa$id <- paste(NINa$col, NINa$row, sep=":")
xy.rooka <- cell2nb(nrow = max(NINa$row), ncol = max(NINa$col), type="rook")
expect_true(isTRUE(all.equal(xy.rook, xy.rooka, check.attributes=FALSE)))
NIN_sfa <- st_as_sf(NINa, coords=c("col", "row"))
xy.dista <- dnearneigh(NIN_sfa, 0, 1.01, row.names=NIN_sfa$id)
expect_true(isTRUE(all.equal(xy.dista, xy.rooka, check.attributes=FALSE)))
expect_true(isTRUE(all.equal(attr(xy.rooka, "region.id"),
attr(xy.dista, "region.id")))) |
raSab_cbin_fc<-
function (Z, Y, a, b, Sab, odmax, odobs, Sab0=NULL, eta0=NULL,SS = round(sqrt(nrow(Z))))
{
if(is.null(Sab0)){ Sab0<-diag(2) }
if(is.null(eta0)){ eta0<-4 }
E <- Z - a %*% t(rep(1, nrow(Z)))
MEL <- MEU <- -E
MEL[!is.na(Y) & Y == 0] <- -Inf
MEU[!is.na(Y) & Y == 1] <- Inf
MEL[is.na(Y)] <- -Inf
MEU[is.na(Y)] <- Inf
lba <- apply(MEL, 1, max)
lba[is.na(lba)] <- -Inf
uba <- apply(MEU, 1, min)
uba[is.na(uba)] <- Inf
uba[odobs == odmax] <- Inf
for (ss in 1:SS) {
ea <- b * Sab[1, 2]/Sab[2, 2]
sa <- sqrt(Sab[1, 1] - Sab[1, 2]^2/Sab[2, 2])
a <- ea + sa * qnorm(runif(nrow(Z), pnorm((lba - ea)/sa),
pnorm((uba - ea)/sa)))
Sab <- solve(rwish(solve(eta0*Sab0 + crossprod(cbind(a,
b))), eta0 + nrow(Z)))
}
list(Z = E + a %*% t(rep(1, nrow(Z))), a = a, Sab = Sab)
} |
\dontrun{
library(dplyr)
library(sparkline)
library(formattable)
mtcars %>%
group_by(cyl) %>%
summarise(
hp = spk_chr(
hp, type="box",
chartRangeMin=0, chartRangeMax=max(mtcars$hp)
),
mpg = spk_chr(
mpg, type="box",
chartRangeMin=0, chartRangeMax=max(mtcars$mpg)
)
) %>%
formattable() %>%
formattable::as.htmlwidget() %>%
spk_add_deps()
} |
cor.fd <- function(evalarg1, fdobj1, evalarg2=evalarg1, fdobj2=fdobj1)
{
if (!(is.fd(fdobj1) || is.fdPar(fdobj1)))
stop("Second argument is neither an fd object or an fdPar object")
if (!(is.fd(fdobj2) || is.fdPar(fdobj2)))
stop("Fourth argument is neither an fd object or an fdPar object")
var1 <- var.fd(fdobj1)
print(class(var1))
evalVar1 <- eval.bifd(evalarg1, evalarg1, var1)
{
if(missing(fdobj2)){
dimV1 <- dim(evalVar1)
ndV1 <- length(dimV1)
{
if(ndV1<3){
s1 <- sqrt(diag(evalVar1))
return(evalVar1/outer(s1, s1))
}
else{
if(dimV1[3] != 1)
stop("Bug in cor.fd: Programmed only for ",
"matrices or 4-d arrays with dim[3]==1. oops.")
dim1 <- dim(fdobj1$coefs)
nVars <- dim1[3]
evalV.diag <- choose(2:(nVars+1), 2)
nPts <- length(evalarg1)
s1 <- array(NA, dim=c(nPts, nVars))
for(i in 1:nVars)
s1[, i] <- sqrt(diag(evalVar1[,,1,evalV.diag[i]]))
cor1 <- evalVar1
m <- 0
for(i in 1:nVars)for(j in 1:i){
m <- m+1
cor1[,,1,m] <- (evalVar1[,,1,m] / outer(s1[, i], s1[, j]))
}
return(cor1)
}
}
}
else {
var2 <- var.fd(fdobj2)
evalVar2 <- eval.bifd(evalarg2, evalarg2, var2)
var12 <- var.fd(fdobj1, fdobj2)
evalVar12 <- eval.bifd(evalarg1, evalarg2, var12)
s1 <- sqrt(diag(evalVar1))
s2 <- sqrt(diag(evalVar2))
return(evalVar12 / outer(s1, s2))
}
}
} |
train_gam <- function(X,y,pars = list(numBasisFcts = 10))
{
if(!("numBasisFcts" %in% names(pars) ))
{
pars$numBasisFcts = 10
}
p <- dim(as.matrix(X))
if(p[1]/p[2] < 3*pars$numBasisFcts)
{
pars$numBasisFcts <- ceiling(p[1]/(3*p[2]))
cat("changed number of basis functions to ", pars$numBasisFcts, "
in order to have enough samples per basis function\n")
}
dat <- data.frame(as.matrix(y),as.matrix(X))
coln <- rep("null",p[2]+1)
for(i in 1:(p[2]+1))
{
coln[i] <- paste("var",i,sep="")
}
colnames(dat) <- coln
labs<-"var1 ~ "
if(p[2] > 1)
{
for(i in 2:p[2])
{
labs<-paste(labs,"s(var",i,",k = ",pars$numBasisFcts,") + ",sep="")
}
}
labs<-paste(labs,"s(var",p[2]+1,",k = ",pars$numBasisFcts,")",sep="")
mod_gam <- FALSE
try(mod_gam <- mgcv::gam(formula=formula(labs), data=dat),silent = TRUE)
if(typeof(mod_gam) == "logical")
{
cat("There was some error with gam. The smoothing parameter is set to zero.\n")
labs<-"var1 ~ "
if(p[2] > 1)
{
for(i in 2:p[2])
{
labs<-paste(labs,"s(var",i,",k = ",pars$numBasisFcts,",sp=0) + ",sep="")
}
}
labs<-paste(labs,"s(var",p[2]+1,",k = ",pars$numBasisFcts,",sp=0)",sep="")
mod_gam <- mgcv::gam(formula=formula(labs), data=dat)
}
result <- list()
result$Yfit <- as.matrix(mod_gam$fitted.values)
result$residuals <- as.matrix(mod_gam$residuals)
result$model <- mod_gam
result$df <- mod_gam$df.residual
result$edf <- mod_gam$edf
result$edf1 <- mod_gam$edf1
return(result)
} |
ls_apply_script_bits <- function(data,
scriptBits,
setVarNames = TRUE,
setLabels = TRUE,
convertToCharacter = FALSE,
convertToFactor = FALSE,
categoricalQuestions = NULL,
massConvertToNumeric = TRUE,
silent=limonaid::opts$get("silent"),
sticky = limonaid::opts$get("sticky")) {
if (!is.data.frame(data)) {
stop("`data` must be a data.frame, but has class `", class(data), "`.");
}
if (!("lsScriptBits" %in% class(scriptBits))) {
stop("`scriptBits` must have class `scriptBits`, but has class ",
vecTxt(class(scriptBits), useQuote="`"), ".");
}
varNamesScript <- scriptBits$varNamesScript;
varLabelsScript <- scriptBits$varLabelsScript;
toCharScript <- scriptBits$toCharScript;
toFactorScript <- scriptBits$toFactorScript;
valueLabels <- scriptBits$valueLabels;
varLabels <- scriptBits$varLabels;
if (setVarNames) {
if (!silent) {
cat0("\nSetting variable names.");
}
eval(parse(text=varNamesScript));
}
if (convertToCharacter) {
if (!silent) {
cat0("\nConverting columns to character.");
}
eval(parse(text=toCharScript));
}
if (convertToFactor || (!is.null(categoricalQuestions))) {
if (!silent) {
cat0("\nConverting columns to factors.");
}
if (massConvertToNumeric) {
data <- massConvertToNumeric(data);
}
if (!is.null(categoricalQuestions)) {
if (setVarNames) {
varNames <- names(data);
} else {
stop("You can't set setVarNames to FALSE and also set ",
"categoricalQuestions to anything else than NULL, ",
"because the content of categoricalQuestions should ",
"be the LimeSurvey variables names!");
}
toFactorScript <- unlist(lapply(as.list(categoricalQuestions),
function(x, string=toFactorScript,
varNms=varNames) {
return(grep(paste0("data\\[, ",
which(varNms==x),
"\\] <-"),
string, value=TRUE));
}));
}
eval(parse(text=toFactorScript));
}
if (sticky) {
if (requireNamespace("sticky", quietly = TRUE)) {
data <- sticky::sticky_all(data);
} else {
warning("The `sticky` package is not installed. Without this ",
"package, the variable and value labels that will be ",
"attached to every variable (i.e. data frame column) ",
"will be lost when the data frame is subset, for example ",
"when selecting specific rows or columns.\n\n",
"You can install the `sticky` package (34KB) with:\n\n",
" install.packages('sticky');\n\n",
"You can disable this warning by setting the `sticky` ",
"argument to `FALSE`.");
}
}
if (setLabels) {
if (!silent) {
cat0("\nSetting variable labels.");
}
eval(parse(text=varLabelsScript));
varLabelsScript <- gsub("variable\\.labels",
"label",
varLabelsScript);
eval(parse(text=varLabelsScript));
if (!silent) {
cat0("\nStoring variable labels as variable attributes following `labeler` convention.");
}
for (i in names(varLabels)) {
attr(data[, as.numeric(i)], "label") <-
varLabels[[i]];
}
if (!silent) {
cat0("\nStoring value labels as variable attributes following `labeler` convention.");
}
for (i in names(valueLabels)) {
attr(data[, as.numeric(i)], "labels") <-
valueLabels[[i]];
}
}
return(data);
} |
lbart=function(
x.train, y.train, x.test=matrix(0.0,0,0),
sparse=FALSE, a=0.5, b=1, augment=FALSE, rho=NULL,
xinfo=matrix(0.0,0,0), usequants=FALSE,
cont=FALSE, rm.const=TRUE, tau.interval=0.95,
k=2.0, power=2.0, base=.95,
binaryOffset=NULL,
ntree=200L, numcut=100L,
ndpost=1000L, nskip=100L,
keepevery=1L,
nkeeptrain=ndpost, nkeeptest=ndpost,
nkeeptreedraws=ndpost,
printevery=100, transposed=FALSE
)
{
n = length(y.train)
if(length(binaryOffset)==0) binaryOffset=qlogis(mean(y.train))
if(!transposed) {
temp = bartModelMatrix(x.train, numcut, usequants=usequants,
cont=cont, xinfo=xinfo, rm.const=rm.const)
x.train = t(temp$X)
numcut = temp$numcut
xinfo = temp$xinfo
if(length(x.test)>0) {
x.test = bartModelMatrix(x.test)
x.test = t(x.test[ , temp$rm.const])
}
rm.const <- temp$rm.const
rm(temp)
}
if(n!=ncol(x.train))
stop('The length of y.train and the number of rows in x.train must be identical')
p = nrow(x.train)
np = ncol(x.test)
if(length(rho)==0) rho <- p
if(length(rm.const)==0) rm.const <- 1:p
if(tau.interval>0.5) tau.interval=1-tau.interval
tau=qlogis(1-0.5*tau.interval)/(k*sqrt(ntree))
if((nkeeptrain!=0) & ((ndpost %% nkeeptrain) != 0)) {
nkeeptrain=ndpost
cat('*****nkeeptrain set to ndpost\n')
}
if((nkeeptest!=0) & ((ndpost %% nkeeptest) != 0)) {
nkeeptest=ndpost
cat('*****nkeeptest set to ndpost\n')
}
if((nkeeptreedraws!=0) & ((ndpost %% nkeeptreedraws) != 0)) {
nkeeptreedraws=ndpost
cat('*****nkeeptreedraws set to ndpost\n')
}
res = .Call("clbart",
n,
p,
np,
x.train,
as.integer(2*y.train-1),
x.test,
ntree,
numcut,
ndpost*keepevery,
nskip,
power,
base,
binaryOffset,
tau,
sparse,
a,
b,
rho,
augment,
nkeeptrain,
nkeeptest,
nkeeptreedraws,
printevery,
xinfo
)
if(nkeeptrain>0) {
res$yhat.train = res$yhat.train+binaryOffset
res$prob.train = plogis(res$yhat.train)
res$prob.train.mean <- apply(res$prob.train, 2, mean)
} else {
res$yhat.train <- NULL
}
if(np>0) {
res$yhat.test = res$yhat.test+binaryOffset
res$prob.test = plogis(res$yhat.test)
res$prob.test.mean <- apply(res$prob.test, 2, mean)
} else {
res$yhat.test <- NULL
}
if(nkeeptreedraws>0)
names(res$treedraws$cutpoints) = dimnames(x.train)[[1]]
dimnames(res$varcount)[[2]] = as.list(dimnames(x.train)[[1]])
dimnames(res$varprob)[[2]] = as.list(dimnames(x.train)[[1]])
res$varcount.mean <- apply(res$varcount, 2, mean)
res$varprob.mean <- apply(res$varprob, 2, mean)
res$binaryOffset=binaryOffset
res$rm.const <- rm.const
attr(res, 'class') <- 'lbart'
return(res)
} |
MockCI <- R6Class(
"MockCI",
inherit = CI,
public = list(
get_branch = function() {
"mock-ci-branch"
},
get_tag = function() {
"mock-ci-tag"
},
is_tag = function() {
FALSE
},
get_slug = function() {
"user/repo"
},
get_build_number = function() {
"mock build"
},
get_build_url = function() {
"http://build.url"
},
get_commit = function() {
"00000000000000000000000000000000"
},
can_push = function(name = "TIC_DEPLOY_KEY") {
self$has_env(name)
},
get_env = function(env) {
Sys.getenv(env)
},
is_env = function(env, value) {
self$get_env(env) == value
},
has_env = function(env) {
self$get_env(env) != ""
},
is_interactive = function() {
TRUE
}
)
) |
SequenomMarkers <- function(vcf1=NULL, vcf2=NULL, outdir=NULL, platform="sq"){
perl_module <- system.file("SequenomMarkers_v2", package="genotypeR")
if(is.null(vcf1) & is.null(vcf2)){stop("must provide vcf files")}
if(!is.null(vcf1) & is.null(vcf2)){print("using population marker designer")}
if(!is.null(vcf1) & !is.null(vcf2)){print("using two sample marker designer")}
files <- dir(perl_module, full.names=TRUE)
if(dir.exists(outdir)==FALSE){
dir.create(outdir, showWarnings = TRUE, recursive = FALSE, mode = "0777")
}
if(is.null(vcf1) & is.null(vcf2)){stop("must provide vcf files")}
if(!is.null(vcf1) & is.null(vcf2)){
pop_sample_path <- paste(perl_module, "pop_sample", sep="/")
finding_snps <- paste(pop_sample_path, "Finding_SNPs_pop_sample.pl", sep="/")
grandmaster_snps <- paste(pop_sample_path, "Grandmaster_SNPs_pop_sample.pl", sep="/")
pop_or_two <- "pop"
}
if(!is.null(vcf1) & !is.null(vcf2)){
two_sample_path <- paste(perl_module, "two_sample", sep="/")
finding_snps <- paste(two_sample_path, "Finding_SNPs_two_sample.pl", sep="/")
grandmaster_snps <- paste(two_sample_path, "Grandmaster_SNPs_two_sample.pl", sep="/")
sort_by_chr <- paste(two_sample_path, "sort_by_chr.sh", sep="/")
pop_or_two <- "two"
}
setwd(outdir)
if(pop_or_two=="pop"){
cmd_finding_snps <- paste(shQuote(finding_snps), shQuote(vcf1), shQuote(platform), sep=" ")
cmd_grandmaster_snps <- paste(shQuote(grandmaster_snps), shQuote(vcf1), sep=" ")
}
if(pop_or_two=="two"){
vcf_tools_output <- paste(outdir, "Sample1_v_Sample2.out", sep="/")
cmd_vcftools <- paste(shQuote("vcftools"), shQuote("--vcf"), shQuote(vcf1), shQuote("--diff"), shQuote(vcf2), shQuote("--diff-site"), shQuote("--out"), shQuote(vcf_tools_output), sep=" ")
system(cmd_vcftools)
awesome_vcf_name_change <- paste(outdir, "Sample1_v_Sample2.out.diff.sites_in_files", sep="/")
cmd_finding_snps <- paste(shQuote(finding_snps), shQuote(awesome_vcf_name_change), shQuote(platform), sep=" ")
cmd_grandmaster_snps <- paste(shQuote(grandmaster_snps), shQuote(vcf2), shQuote(vcf1), sep=" ")
system(paste("cp", sort_by_chr, "."))
}
system(cmd_finding_snps)
system(cmd_grandmaster_snps)
} |
test_that("the wrapper behaves as expected", {
expect_error("asdf" %>% wrap())
t0 <- trajectory() %>%
seize("server", 1) %>%
set_attribute("attr", 1) %>%
release("server", 1)
t1 <- trajectory() %>%
seize("server", 1) %>%
timeout(1) %>%
rollback(1, times = Inf)
env <- simmer(verbose = TRUE) %>%
add_resource("server", 1, 0) %>%
add_generator("dummy", t0, at(1:10), mon = 2) %>%
add_generator("rollback", t1, at(11)) %>%
run(11.5) %>%
wrap()
expect_output(print(env))
expect_equal(env %>% now(), 11.5)
expect_equal(env %>% peek(), 12)
arrivals <- env %>% get_mon_arrivals(ongoing = TRUE)
arrivals_res <- env %>% get_mon_arrivals(TRUE, ongoing = TRUE)
expect_equal(nrow(arrivals), 11)
expect_equal(nrow(arrivals_res), 11)
arrivals <- env %>% get_mon_arrivals(ongoing = FALSE)
arrivals_res <- env %>% get_mon_arrivals(TRUE, ongoing = FALSE)
attributes <- env %>% get_mon_attributes()
resources <- env %>% get_mon_resources()
expect_equal(nrow(arrivals), 10)
expect_equal(nrow(arrivals_res), 10)
expect_equal(nrow(attributes), 10)
expect_equal(nrow(resources), 21)
expect_equal(env %>% get_sources(), c("dummy", "rollback"))
expect_error(env %>% get_n_generated("asdf"))
expect_equal(env %>% get_n_generated("dummy"), 10)
expect_equal(env %>% get_resources(), "server")
expect_error(env %>% get_capacity("asdf"))
expect_equal(env %>% get_capacity("server"), 1)
expect_error(env %>% get_queue_size("asdf"))
expect_equal(env %>% get_queue_size("server"), 0)
expect_error(env %>% get_server_count("asdf"))
expect_equal(env %>% get_server_count("server"), 1)
expect_error(env %>% get_queue_count("asdf"))
expect_equal(env %>% get_queue_count("server"), 0)
}) |
context("test-summary-manyglm.R")
test_that("gamma summary", {
shape <- 1; rate <- 1; nVar <- 5; n <- 100
SEED <- 1001
FAMILY <- 'gamma'
set.seed(SEED)
Y2 <- mvabund(sapply(rep(1,nVar), function(rate) rgamma(n, shape, rate)))
junk <- rnorm(n)
mglmg <- manyglm(Y2 ~ junk, family=FAMILY)
tests <- c('wald', 'score', 'LR')
summaries <- lapply(tests, function(t)
summary(mglmg,nBoot=1000,
test=t,
rep.seed = TRUE))
expect_equal_to_reference(summaries, 'gamma_summaries.rds')
}) |
cat("\014")
rm(list = ls())
setwd("~/git/of_dollars_and_data")
source(file.path(paste0(getwd(),"/header.R")))
library(readxl)
library(dplyr)
df <- read_excel(paste0(importdir, "0063_sector_returns/sp500_sector_data.xlsx"), skip = 1) %>%
filter(!(is.na(`Start Date`) | `Start Date` == 'Totals')) %>%
mutate(sector = trimws(gsub("TR\\s?USD \\(USD\\)",
"",
gsub("S&P 500 Sec/",
"",
`Security Name`
)
)),
date = as.Date(as.numeric(`Start Date`), origin = "1899-12-31"),
ret = `Total Return %`/100) %>%
select(sector, date, ret)
saveRDS(df, paste0(localdir, "0063_sp500_sector_returns.Rds")) |
infor_design <- function(design,t,...){
UseMethod('infor_design',t)
}
infor_design.default <- function(design,t){
stop('Please specific your model')
}
infor_design.dropout <- function(design,
t,
...
){
infor_point <- function(point,
t,
p,
l
){
X <- matrix(0,nrow = p, ncol = p + t + t)
X[,1:p] <- diag(rep(1, p))
for (i in 1:p) {
y <- point[i]
X[i, p + y] <- 1
}
X[-1,p + t + 1:t] <- X[-p,p + 1:t]
M <- diag(c(rep(1, l), rep(0, p - l)))
out <- t(X) %*% (M - M %*% matrix(1/l, nrow = p, ncol = p) %*% M) %*% X
return(out)
}
infor_drop <- function(point,
t,
...
){
drop <- list(...)[[1]]
p <- length(point)
out <- matrix(0, ncol = 2*t + p,nrow = 2*t + p)
for (i in 1:p) {
tmp <- infor_point(point, t, p, i)
out <- out + drop[i]*tmp
}
return(out)
}
d <- dim(design)
p <- d[2] - 1
n <- d[1]
infor1 <- matrix(0, ncol = 2*t + p, nrow = 2*t + p)
weight <- design[, p + 1, drop = F]
design <- design[, 1:p,drop = F]
for (j in 1:n) {
infor1 = infor1 + weight[j]*infor_drop(design[j,,drop = F], t,...)
}
return(infor1)
}
infor_design.interference <- function(design,
t,
...
){
infor_point <- function(point,
t,
sigma
){
p <- length(point)
if (missing(sigma)) {sigma <- diag(1,p)}
X <- matrix(0,nrow = p,ncol = t + t + t)
for (i in 1:p) {
y <- point[i]
X[i,y] <- 1
}
X[2:p,t + 1:t] <- X[1:(p - 1),1:t]
X[1:(p - 1),t + t + 1:t] <- X[2:p,1:t]
sig_inv <- solve(sigma)
out <- t(X) %*% (sig_inv - sig_inv %*% matrix(1/sum(sig_inv),ncol = p, nrow = p) %*% sig_inv) %*% X
return(out)
}
d <- dim(design)
p <- d[2] - 1
n <- d[1]
paras <- list(...)
sigma <- paras[[1]]
infor1 <- matrix(0,ncol = 3*t,nrow = 3*t)
weight <- design[, p + 1, drop = F]
design <- design[, 1:p, drop = F]
for (j in 1:n) {
infor1 = infor1 + weight[j]*infor_point(design[j,,drop = F],t,sigma)
}
return(infor1)
}
infor_design.proportional <- function(design,
t,
...
){
infor_point <- function(point,
t,
sigma,
lambda,
tau
){
p <- length(point)
tau <- matrix(tau,ncol = 1)
X <- matrix(0,nrow = p,ncol = p + t + 1)
pr <- diag(rep(1,p))
Fd <- Rd <- matrix(0,ncol = t, nrow = p)
for (i in 1:p) {
y <- point[i]
Fd[i,y] <- 1
}
Rd[2:p,] = Fd[1:(p - 1),]
X[,1:p] <- pr
X[,p + 1:t] <- Fd + lambda*Rd
X[,p + t + 1] <- Rd %*% tau
sig_inv <- solve(sigma)
out <- t(X) %*% (sig_inv %*% diag(1,p) - matrix(1/sum(sig_inv),ncol = p,nrow = p) %*% sig_inv) %*% X
return(out)
}
d <- dim(design)
p <- d[2] - 1
n <- d[1]
paras <- list(...)
sigma <- paras$sigma
lambda <- paras$lambda
tau <- paras$tau
infor1 <- matrix(0,ncol = 1 + t + p,nrow = 1 + t + p)
weight <- design[, p + 1, drop = F]
design <- design[,1:p, drop = F]
for (j in 1:n) {
infor1 = infor1 + weight[j]*infor_point(design[j,,drop = F],t,sigma,lambda,tau)
}
return(infor1)
}
generate_contrast <- function(opt,t,p) {
UseMethod('generate_contrast',t)
}
generate_contrast.interference <- function(opt, t,p){
if (opt == 0) {
g_part <- matrix(0,nrow = t - 1,ncol = 3*t)
g_part[,1:t] <- cbind(diag(1,t - 1),-1)
}
if (opt == 1) {
g_part <- matrix(0,nrow = t,ncol = 3*t)
g_part[,1:t] <- diag(1,t)
}
return(g_part)
}
generate_contrast.dropout <- function(opt,t,p){
if (opt == 0) {
g_part <- matrix(0,nrow = t - 1 ,ncol = 2*t + p)
g_part[,(t + 1):(2*t)] <- cbind(diag(1,t - 1),-1)
}
if (opt == 1) {
g_part <- matrix(0,nrow = t,ncol = 2*t + p)
g_part[,(t + 1):(2*t)] <- diag(1,t)
}
return(g_part)
}
generate_contrast.proportional <- function(opt,t,p) {
if (opt == 0) {
g_part <- matrix(0,nrow = t - 1, ncol = 1 + t + p)
g_part[,(t + 1):(2*t)] <- cbind(diag(1,t - 1),-1)
}
if (opt == 1) {
g_part <- matrix(0,nrow = t,ncol = 1 + t + p )
g_part[,(t + 1):(2*t)] <- diag(1,t)
}
return(g_part)
} |
A2=function(d){
A=array(F,dim=c(d,d))
for (i in 1:(d-1)) {
for (j in (i+1):d) {A[i,j]=T
}
}
return(A)
}
A4=function(d){
A=array(F,dim=c(d,d,d))
if(d>2){
for (i in 1:(d-2)) {
for (j in (i+1):(d-1)) {
for (k in (j+1):d) { A[i,j,k]=T
}
}
}}
return(A)
}
A5=function(d){
A=array(F,dim=c(d,d))
if (d>2){
for (i in 2:(d-1)) {
for (j in (i+1):d) {A[i,j]=T
}
}}
return(A)
}
A13=function(d){
A=array(F,dim=c(d,d,d))
if (d>3){
for (i in 2:(d-2)) {
for (j in (i+1):(d-1)) {
for (k in (j+1):d) { A[i,j,k]=T
}
}
}}
return(A)
}
A12=function(d){
A=array(F,dim=c(d,d,d,d))
if(d>3){
for (i in 1:(d-3)) {
for (j in (i+1):(d-2)) {
for (k in (j+1):(d-1)) {
for (l in (k+1):d){ A[i,j,k,l]=T
}
}
}
}}
return(A)
}
H3=function(d){
I=matrix(1,d,d)
S=lower.tri(I)
S=S*I
diag(S)=c(0:-(d-1))
return(S)}
H6=function(d){
I=matrix(1,d,d)
S=lower.tri(I)
S=S*I
diag(S)=c(-2:-(d+1))
return(S)}
H7=function(d){
I=matrix(1,d,d)
S=lower.tri(I)
S=S*I
return(S)}
H9=function(d){
I=matrix(1,d,d)
S=lower.tri(I)
S=S*I*3
diag(S)=c(-2:-(d+1))
return(S)}
H10=function(d){
I=matrix(1,d,d)
S=lower.tri(I)
S=S*I
diag(S)=c(-4:-(d+3))
return(S)}
H15=function(d){
I=matrix(1,d,d)
S=lower.tri(I)
S=S*I*3
diag(S)=c(0:-(d-1))
return(S)} |
cps.count = function(nsim = NULL,
nsubjects = NULL,
nclusters = NULL,
c1 = NULL,
c2 = NULL,
cDiff = NULL,
sigma_b_sq = NULL,
sigma_b_sq2 = NULL,
family = 'poisson',
negBinomSize = 1,
analysis = 'poisson',
method = 'glmm',
alpha = 0.05,
quiet = FALSE,
allSimData = FALSE,
irgtt = FALSE,
seed = NA,
nofit = FALSE,
poorFitOverride = FALSE,
lowPowerOverride = FALSE,
timelimitOverride = TRUE,
optmethod = "Nelder_Mead") {
if (!is.na(seed)) {
set.seed(seed = seed)
}
est.vector <- NULL
se.vector <- NULL
stat.vector <- NULL
pval.vector <- NULL
converge.vector <- NULL
simulated.datasets <- list()
converge <- NULL
prog.bar = progress::progress_bar$new(
format = "(:spin) [:bar] :percent eta :eta",
total = nsim,
clear = FALSE,
width = 100
)
prog.bar$tick(0)
is.wholenumber = function(x, tol = .Machine$double.eps ^ 0.5)
abs(x - round(x)) < tol
sim.data.arg.list = list(nsim, nclusters, nsubjects, sigma_b_sq)
sim.data.args = unlist(lapply(sim.data.arg.list, is.null))
if (sum(sim.data.args) > 0) {
stop(
"NSIM, NSUBJECTS, NCLUSTERS & sigma_b_sq must all be specified. Please review your input values."
)
}
min1.warning = " must be an integer greater than or equal to 1"
if (!is.wholenumber(nsim) || nsim < 1) {
stop(paste0("NSIM", min1.warning))
}
if (!is.wholenumber(nclusters) || nclusters < 1) {
stop(paste0("NCLUSTERS", min1.warning))
}
if (!is.wholenumber(nsubjects) || nsubjects < 1) {
stop(paste0("NSUBJECTS", min1.warning))
}
if (length(nclusters) > 2) {
stop(
"NCLUSTERS can only be a vector of length 1 (equal
)
}
if (length(nclusters) == 1) {
if (irgtt == TRUE) {
nclusters[2] = nclusters[1]
nclusters[1] = 1
} else {
nclusters[2] = nclusters[1]
}
}
if (length(nsubjects) == 1) {
nsubjects[1:sum(nclusters)] = nsubjects
}
if (length(nsubjects) == 2) {
nsubjects = c(rep(nsubjects[1], nclusters[1]), rep(nsubjects[2], nclusters[2]))
}
if (nclusters[1] == nclusters[2] &&
length(nsubjects) == nclusters[1]) {
nsubjects = rep(nsubjects, 2)
}
if (length(nclusters) == 2 &&
length(nsubjects) != 1 &&
length(nsubjects) != sum(nclusters)) {
stop(
"A cluster size must be specified for each cluster. If all cluster sizes are equal, please provide a single value for NSUBJECTS"
)
}
if (length(sigma_b_sq) > 1 || length(sigma_b_sq2) > 1) {
errorCondition("The lengths of sigma_b_sq and sigma_b_sq2 cannot be larger than 1.")
}
if (irgtt == FALSE) {
min0.warning = " must be a numeric value greater than 0"
if (!is.numeric(sigma_b_sq) || sigma_b_sq <= 0) {
stop("sigma_b_sq", min0.warning)
}
if (!is.null(sigma_b_sq2) && sigma_b_sq2 <= 0) {
stop("sigma_b_sq2", min0.warning)
}
}
if (!is.numeric(alpha) || alpha < 0 || alpha > 1) {
stop("ALPHA must be a numeric value between 0 - 1")
}
parm1.arg.list = list(c1, c2, cDiff)
parm1.args = unlist(lapply(parm1.arg.list, is.null))
if (sum(parm1.args) > 1) {
stop("At least two of the following terms must be specified: C1, C2, cDiff")
}
if (sum(parm1.args) == 0 && cDiff != abs(c1 - c2)) {
stop("At least one of the following terms has be misspecified: C1, C2, cDiff")
}
if (!is.element(family, c('poisson', 'neg.binom'))) {
stop(
"FAMILY must be either 'poisson' (Poisson distribution)
or 'neg.binom'(Negative binomial distribution)"
)
}
if (!is.element(analysis, c('poisson', 'neg.binom'))) {
stop(
"ANALYSIS must be either 'poisson' (Poisson regression)
or 'neg.binom'(Negative binomial regression)"
)
}
if (!is.element(method, c('glmm', 'gee'))) {
stop(
"METHOD must be either 'glmm' (Generalized Linear Mixed Model)
or 'gee'(Generalized Estimating Equation)"
)
}
if (!is.logical(quiet)) {
stop(
"QUIET must be either TRUE (No progress information shown) or FALSE (Progress information shown)"
)
}
if (family == 'neg.binom' && negBinomSize < 0) {
stop("negBinomSize must be positive")
}
if (is.null(c1)) {
c1 = abs(cDiff - c2)
}
if (is.null(c2)) {
c2 = abs(c1 - cDiff)
}
if (is.null(cDiff)) {
cDiff = c1 - c2
}
if (is.null(sigma_b_sq2)) {
sigma_b_sq[2] = sigma_b_sq
} else{
sigma_b_sq[2] = sigma_b_sq2
}
trt = c(rep(1, length.out = sum(nsubjects[1:nclusters[1]])),
rep(2, length.out = sum(nsubjects[(nclusters[1] + 1):(nclusters[1] + nclusters[2])])))
clust = unlist(lapply(1:sum(nclusters), function(x)
rep(x, length.out = nsubjects[x])))
est.vector <- vector(mode = "numeric", length = nsim)
se.vector <- vector(mode = "numeric", length = nsim)
stat.vector <- vector(mode = "numeric", length = nsim)
pval.vector <- vector(mode = "numeric", length = nsim)
converge.vector <- vector(mode = "logical", length = nsim)
for (i in 1:nsim) {
randint.0 = stats::rnorm(nclusters[1], mean = 0, sd = sqrt(sigma_b_sq[1]))
randint.1 = stats::rnorm(nclusters[2], mean = 0, sd = sqrt(sigma_b_sq[2]))
y0.intercept <- list()
for (j in 1:length(nsubjects[1:nclusters[1]])) {
y0.intercept[[j]] <- rep(randint.0[j], each = nsubjects[j])
}
y0.intercept <- unlist(y0.intercept)
y0.linpred = y0.intercept + log(c1)
y0.prob = exp(y0.linpred)
if (family == 'poisson') {
y0 = stats::rpois(length(y0.prob), y0.prob)
}
if (family == 'neg.binom') {
y0 = stats::rnbinom(length(y0.prob), size = negBinomSize, mu = y0.prob)
}
y1.intercept <- list()
for (j in 1:length(nsubjects[(nclusters[1] + 1):length(nsubjects)])) {
y1.intercept[[j]] <-
rep(randint.1[j], each = nsubjects[nclusters[1] + j])
}
y1.intercept <- unlist(y1.intercept)
y1.linpred = y1.intercept + log(c2)
y1.prob = exp(y1.linpred)
if (family == 'poisson') {
y1 = stats::rpois(length(y1.prob), y1.prob)
}
if (family == 'neg.binom') {
y1 = stats::rnbinom(length(y1.prob), size = 1, mu = y1.prob)
}
y = c(y0, y1)
sim.dat = data.frame(trt = as.factor(trt),
clust = as.factor(clust),
y = as.integer(y))
if (allSimData == TRUE) {
simulated.datasets[[i]] = list(sim.dat)
}
if (nofit == TRUE) {
if (!exists("nofitop")) {
nofitop <- data.frame(trt = trt,
clust = clust,
y1 = y)
} else {
nofitop[, length(nofitop) + 1] <- y
}
if (length(nofitop) == (nsim + 2)) {
temp1 <- seq(1:nsim)
temp2 <- paste0("y", temp1)
colnames(nofitop) <- c("arm", "cluster", temp2)
}
if (length(nofitop) != (nsim + 2)) {
next()
}
return(nofitop)
}
options(warn = -1)
start.time = Sys.time()
if (method == 'glmm') {
if (i == 1) {
if (isTRUE(optmethod == "auto")) {
if (irgtt == FALSE) {
if (analysis == 'poisson') {
my.mod = try(lme4::glmer(
y ~ as.factor(trt) + (1 | clust),
data = sim.dat,
family = stats::poisson(link = 'log')
))
}
if (analysis == 'neg.binom') {
my.mod = try(lme4::glmer.nb(y ~ as.factor(trt) + (1 |
clust), data = sim.dat))
}
}
if (irgtt == TRUE) {
if (analysis == 'poisson') {
my.mod <-
try(lme4::glmer(
y ~ trt + (0 + as.factor(trt) | clust),
data = sim.dat,
family = stats::poisson(link = 'log')
))
}
if (analysis == 'neg.binom') {
my.mod = try(lme4::glmer.nb(y ~ trt + (0 + as.factor(trt) |
clust), data = sim.dat))
}
}
optmethod <- optimizerSearch(my.mod)
}
}
if (irgtt == FALSE) {
if (analysis == 'poisson') {
my.mod = try(lme4::glmer(
y ~ trt + (1 | clust),
data = sim.dat,
family = stats::poisson(link = 'log'),
control = lme4::glmerControl(
optimizer = optmethod
)
))
}
if (analysis == 'neg.binom') {
my.mod = try(lme4::glmer.nb(
y ~ trt + (1 | clust),
data = sim.dat,
control = lme4::glmerControl(
optimizer = optmethod
)
))
}
glmm.values <- summary(my.mod)$coefficient
est.vector[i] <- glmm.values['trt2', 'Estimate']
se.vector[i] <- glmm.values['trt2', 'Std. Error']
stat.vector[i] <- glmm.values['trt2', 'z value']
pval.vector[i] <- glmm.values['trt2', 'Pr(>|z|)']
converge.vector[i] <- ifelse(is.null(my.mod@optinfo$conv$lme4$messages),
TRUE,
FALSE)
}
if (irgtt == TRUE) {
if (analysis == 'poisson') {
my.mod <-
try(MASS::glmmPQL(
y ~ trt,
random = ~ 0 + trt | clust,
data = sim.dat,
family = stats::poisson(link = 'log')
))
if (length(my.mod)==1 & class(my.mod) == "try-error") {
converge.vector[i] <- FALSE
next
} else{
converge.vector[i] <- TRUE
}
glmm.values <- summary(my.mod)$tTable
est.vector[i] <- glmm.values['trt2', 'Value']
se.vector[i] <- glmm.values['trt2', 'Std.Error']
stat.vector[i] <- glmm.values['trt2', 't-value']
pval.vector[i] <- glmm.values['trt2', 'p-value']
}
if (analysis == 'neg.binom') {
my.mod = try(lme4::glmer.nb(
y ~ trt + (0 + trt | clust),
data = sim.dat,
control = lme4::glmerControl(
optimizer = optmethod
)
))
}
}
}
if (method == 'gee') {
sim.dat = dplyr::arrange(sim.dat, clust)
my.mod = geepack::geeglm(
y ~ trt,
data = sim.dat,
family = stats::poisson(link = 'log'),
id = clust,
corstr = "exchangeable"
)
gee.values <- summary(my.mod)$coefficients
est.vector[i] <- gee.values['trt2', 'Estimate']
se.vector[i] <- gee.values['trt2', 'Std.err']
stat.vector[i] <- gee.values['trt2', 'Wald']
pval.vector[i] <- gee.values['trt2', 'Pr(>|W|)']
converge.vector[i] <-
ifelse(my.mod$geese$error != 0, FALSE, TRUE)
}
if (lowPowerOverride == FALSE && i > 50 && (i %% 10 == 0)) {
sig.val.temp <-
ifelse(pval.vector < alpha, 1, 0)
pval.power.temp <- sum(sig.val.temp, na.rm = TRUE) / i
if (pval.power.temp < 0.5) {
stop(
paste(
"Calculated power is < ",
pval.power.temp,
". Set lowPowerOverride == TRUE to run the simulations anyway.",
sep = ""
)
)
}
}
if (poorFitOverride == FALSE &&
converge.vector[i] == FALSE && i > 12) {
if (sum(converge.vector == FALSE, na.rm = TRUE) > (nsim * .25)) {
stop("more than 25% of simulations are singular fit: check model specifications")
}
}
options(warn = 0)
if (quiet == FALSE) {
if (i == 1) {
avg.iter.time = as.numeric(difftime(Sys.time(), start.time, units = 'secs'))
time.est = avg.iter.time * (nsim - 1) / 60
hr.est = time.est %/% 60
min.est = round(time.est %% 60, 3)
if (min.est > 2 && timelimitOverride == FALSE) {
stop(paste0(
"Estimated completion time: ",
hr.est,
'Hr:',
min.est,
'Min'
))
}
message(
paste0(
'Begin simulations :: Start Time: ',
Sys.time(),
' :: Estimated completion time: ',
hr.est,
'Hr:',
min.est,
'Min'
)
)
}
prog.bar$update(i / nsim)
Sys.sleep(1 / 100)
if (i == nsim) {
message(paste0("Simulations Complete! Time Completed: ", Sys.time()))
}
}
}
if (irgtt == FALSE) {
summary.message = paste0(
"Monte Carlo Power Estimation based on ",
nsim,
" Simulations: Simple Design, Count Outcome. Data Simulated from ",
switch(family, poisson = 'Poisson', neg.binom = 'Negative Binomial'),
" distribution. Analyzed using ",
switch(analysis, poisson = 'Poisson', neg.binom = 'Negative Binomial'),
" regression"
)
} else {
summary.message = paste0(
"Monte Carlo Power Estimation based on ",
nsim,
" Simulations: IRGTT Design, Count Outcome. Data Simulated from ",
switch(family, poisson = 'Poisson', neg.binom = 'Negative Binomial'),
" distribution. Analyzed using glmm fit with penalized quasi-likelihood.",
switch(analysis, poisson = 'Poisson', neg.binom = 'Negative Binomial'),
" regression"
)
}
long.method = switch(method, glmm = 'Generalized Linear Mixed Model',
gee = 'Generalized Estimating Equation')
cps.model.est = data.frame(
Estimate = as.vector(unlist(est.vector)),
Std.err = as.vector(unlist(se.vector)),
Test.statistic = as.vector(unlist(stat.vector)),
p.value = as.vector(unlist(pval.vector)),
converge = as.vector(unlist(converge.vector))
)
if (!is.na(any(cps.model.est$converge))) {
cps.model.temp <- dplyr::filter(cps.model.est, converge == TRUE)
} else {
cps.model.temp <- cps.model.est
}
power.parms <- confintCalc(alpha = alpha,
nsim = nsim,
p.val = cps.model.temp[, 'p.value'])
c1.c2.rr = round(exp(log(c1) - log(c2)), 3)
c2.c1.rr = round(exp(log(c2) - log(c1)), 3)
inputs = t(data.frame(
'Arm1' = c("count" = c1, "risk.ratio" = c1.c2.rr),
'Arm2' = c("count" = c2, 'risk.ratio' = c2.c1.rr),
'Difference' = c("count" = cDiff, 'risk.ratio' = c2.c1.rr - c1.c2.rr)
))
cluster.sizes = list('Arm1' = nsubjects[1:nclusters[1]],
'Arm2' = nsubjects[(1 + nclusters[1]):(nclusters[1] + nclusters[2])])
n.clusters = t(data.frame(
"Arm1" = c("n.clust" = nclusters[1]),
"Arm2" = c("n.clust" = nclusters[2])
))
var.parms = t(data.frame(
'Arm1' = c('sigma_b_sq' = sigma_b_sq[1]),
'Arm2' = c('sigma_b_sq' = sigma_b_sq[2])
))
dist.parms = rbind(
'Family:' = paste0(switch(
family, poisson = 'Poisson', neg.binom = 'Negative Binomial'
), ' distribution'),
'Analysis:' = paste0(switch(
analysis, poisson = 'Poisson', neg.binom = 'Negative Binomial'
), ' distribution')
)
colnames(dist.parms) = "Data Simuation & Analysis Parameters"
complete.output = structure(
list(
"overview" = summary.message,
"nsim" = nsim,
"power" = power.parms,
"method" = long.method,
"dist.parms" = dist.parms,
"alpha" = alpha,
"cluster.sizes" = cluster.sizes,
"n.clusters" = n.clusters,
"variance.parms" = var.parms,
"inputs" = inputs,
"model.estimates" = cps.model.est,
"sim.data" = simulated.datasets,
"convergence" = converge.vector
),
class = 'crtpwr'
)
return(complete.output)
} |
pipeline_install_directory <- function(
directory, dest, upgrade = TRUE, force = FALSE, ...){
directory <- normalizePath(directory, mustWork = TRUE)
config_path <- file.path(directory, "DESCRIPTION")
if(!file.exists(config_path)){
stop("A RAVE pipeline must contains a RAVE-CONFIG or DESCRIPTION file")
}
desc <- pipeline_description(config_path)
if(!length(desc$Type)){
stop("Cannot find `type` in the configuration file. ")
}
type <- desc$Type[[1]]
remotes::install_deps(directory, upgrade = upgrade, force = force, ...)
if( desc$Type == "rave-pipeline-collection" ){
if(length(desc$SubPipelines)){
sub_pipes <- strsplit(desc$SubPipelines, "[,\n]+")[[1]]
for(pname in sub_pipes){
pdir <- file.path(directory, pname)
pipeline_install_directory(pdir, dest, upgrade = FALSE, force = force, ...)
}
}
} else {
pipeline_root <- file.path(dest, desc$Package, desc$Version)
if(dir.exists(pipeline_root)){
if(!force){
stop("Pipeline ", desc$Package, " - version ", desc$Version,
' already exists. Please use `force=TRUE` to force install')
}
unlink(pipeline_root, recursive = TRUE, force = TRUE)
}
dir_create2(pipeline_root)
fs <- list.files(directory, all.files = TRUE, full.names = FALSE, recursive = FALSE, include.dirs = FALSE, no.. = TRUE)
file.copy(file.path(directory, fs), pipeline_root, recursive = TRUE, copy.date = TRUE)
version_file <- file.path(dest, desc$Package, "versions.yaml")
save_yaml(desc, version_file)
}
}
pipeline_root <- local({
root <- NULL
function(root_path){
if(!missing(root_path)){
if(is.na(root_path)){ stop("pipeline root cannot be NA") }
if('.' %in% root_path){
root_path <- root_path[root_path != '.']
root <<- c(".", normalizePath(root_path))
} else {
root <- normalizePath(root_path)
}
} else {
if(is.null(root)){
root <<- c(".", file.path(R_user_dir('raveio', "data"), "pipelines"))
}
}
root
}
})
pipeline_list <- function(root_path = pipeline_root()){
names <-
unlist(lapply(
root_path,
list.dirs,
full.names = FALSE,
recursive = FALSE
))
names <- names[!stringr::str_starts(names, "[.~_]")]
names <- names[!names %in% c("R", "src", "inst", "man", "doc")]
names <- names[vapply(names, function(nm){
try({
pipeline_find(nm, root_path = root_path)
return(TRUE)
}, silent = TRUE)
return(FALSE)
}, FALSE)]
names
}
pipeline_find <- function(name, root_path = pipeline_root()){
paths <- file.path(root_path, name)
paths <- paths[dir.exists(paths)]
for(path in paths){
path <- tryCatch({
vpath <- file.path(path, "versions.yaml")
if(file.exists(vpath)){
v <- load_yaml(file.path(path, "versions.yaml"))
path <- file.path(path, v$Version)
}
path <- activate_pipeline(path)
return(path)
}, error = function(e){
NULL
})
if(!is.null(path)){
return(path)
}
}
stop("Cannot find RAVE pipeline `", name, "`. Have you installed it?")
}
pipeline_attach <- function(name, root_path = pipeline_root()){
path <- pipeline_find(name, root_path)
Sys.setenv("RAVE_PIPELINE" = path)
} |
mastermix<-function()
{
font0 <- tkfont.create(family="times",size=35,weight="bold",slant="italic")
font1<-tkfont.create(family="times",size=14,weight="bold")
font2<-tkfont.create(family="times",size=16,weight="bold",slant="italic")
font3<-tkfont.create(family="times",size=10,weight="bold")
font4<-tkfont.create(family="times",size=10)
tt <- tktoplevel()
tkwm.title(tt,"forensic DNA mixtures resolution")
dudioutvar <- tclVar()
dudivar <- tclVar()
facvar <- tclVar()
nfvar <- tclVar()
scannfvar <- tclVar(1)
TFrame <- tkframe(tt, relief="groove")
labh <- tklabel(TFrame)
font0 <- tkfont.create(family="times",size=35,weight="bold",slant="italic")
font1<-tkfont.create(family="times",size=14,weight="bold")
font2<-tkfont.create(family="times",size=16,weight="bold",slant="italic")
tkgrid(tklabel(TFrame,text="MasterMix", font=font0, foreground="red"), labh)
tkgrid(tklabel(TFrame,text="Two-person DNA mixtures resolution using allele peak height/ or area information", font=font2, foreground="red"), labh)
tkgrid(TFrame)
RCSFrame <- tkframe(tt, relief="groove")
A2.but <- tkbutton(RCSFrame, text="Two-allele model", font=font1, command=A2.simu)
tkbind(A2.but, "<Button-3>", function() print(help("A2.simu")))
A3.but <- tkbutton(RCSFrame, text="Three-allele model",font=font1, command=A3.simu)
tkbind(A3.but, "<Button-3>", function() print(help("A3.simu")))
A4.but <- tkbutton(RCSFrame, text="Four-allele model", font=font1,command=A4.simu)
tkbind(A4.but, "<Button-3>", function() print(help("A4.simu")))
tkgrid(A2.but, A3.but,A4.but,ipadx=20)
tkgrid(RCSFrame)
}
|
logLik.SSModel <- function(object, marginal=FALSE, nsim = 0,
antithetics = TRUE, theta, check.model = TRUE,
transform = c("ldl", "augment"), maxiter = 50, seed, convtol = 1e-8,
expected = FALSE, H_tol = 1e15, transform_tol, ...) {
if (check.model) {
if (!is.SSModel(object, na.check = TRUE)) {
return(-.Machine$double.xmax ^ 0.75)
}
}
if (!is.logical(expected))
stop("Argument expected should be logical. ")
expected <- as.integer(expected)
p <- attr(object, "p")
m <- attr(object, "m")
k <- attr(object, "k")
n <- attr(object, "n")
ymiss <- array(is.na(object$y), dim = c(n, p))
storage.mode(ymiss) <- "integer"
tv <- attr(object, "tv")
if (all(object$distribution == "gaussian")) {
if (all(c(object$Q, object$H) < .Machine$double.eps^0.75) || all(c(object$R, object$H) < .Machine$double.eps^0.75))
return(-.Machine$double.xmax ^ 0.75)
if(missing(transform_tol)) {
transform_tol <- max(100, max(apply(object$H, 3, diag))) * .Machine$double.eps
}
if (p > 1 && any(abs(apply(object$H, 3, "[", !diag(p))) > transform_tol)) {
object <-
tryCatch(transformSSM(object,
type = match.arg(arg = transform, choices = c("ldl", "augment")),
tol = transform_tol),
error = function(e) e)
if (!inherits(object, "SSModel")) {
warning(object$message)
return(-.Machine$double.xmax ^ 0.75)
}
m <- attr(object, "m")
k <- attr(object, "k")
tv <- attr(object, "tv")
}
out <- .Fortran(fgloglik, NAOK = TRUE, t(object$y), t(ymiss), tv,
aperm(object$Z,c(2,1,3)), object$H, object$T, object$R, object$Q, object$a1, object$P1,
object$P1inf, p, m, k, n,
lik = double(1), object$tol, as.integer(sum(object$P1inf)))
if (marginal) {
logdetxx <- .Fortran(fmarginalxx, NAOK = TRUE, object$P1inf, object$Z, object$T, m, p, n,
as.integer(sum(object$P1inf)), tv, lik = double(1), info = integer(1))
if (logdetxx$info == -1) {
warning("Computation of marginal likelihood failed, could not compute the additional term.")
return(-.Machine$double.xmax ^ 0.75)
} else {
out$lik <- out$lik + logdetxx$lik
}
}
} else {
if (maxiter < 1)
stop("Argument maxiter must a positive integer. ")
if (all(c(object$Q, object$u) == .Machine$double.eps^0.75) || all(c(object$R, object$u) == .Machine$double.eps^0.75) ||
any(!is.finite(c(object$R, object$Q, object$u) == .Machine$double.eps^0.75)))
return(-.Machine$double.xmax ^ 0.75)
if (missing(theta) || is.null(theta)) {
theta <- initTheta(object$y, object$u, object$distribution)
} else theta <- array(theta, dim = c(n, p))
if (nsim == 0) {
nsim <- 1
sim <- 0
simtmp <- list(epsplus = array(0, c(1, 1, 1)), etaplus = array(0, c(1, 1, 1)),
aplus1 = array(0, dim = c(1, 1)), c2 = numeric(1),
nonzeroP1 = which(diag(object$P1) > object$tol),
nNonzeroP1 = length(which(diag(object$P1) > object$tol)),
zeroP1inf = which(diag(object$P1inf) > 0),
nNonzeroP1inf = as.integer(sum(object$P1inf)))
} else {
sim <- 1
if (missing(seed))
seed <- 123
runif(1)
old_seed <- get0(".Random.seed", envir = .GlobalEnv, inherits = FALSE)
on.exit(assign(".Random.seed", old_seed, envir = .GlobalEnv, inherits = FALSE))
set.seed(seed)
simtmp <- simHelper(object, nsim, antithetics)
}
nsim2 <- as.integer(max(sim * (3 * antithetics * nsim + nsim), 1))
out <- .Fortran(fngloglik, NAOK = TRUE, object$y, ymiss, tv,
object$Z, object$T, object$R, object$Q, object$a1, object$P1, object$P1inf,
p, m, k, n, lik = double(1),
theta = theta, object$u,
pmatch(x = object$distribution,
table = c("gaussian", "poisson", "binomial", "gamma", "negative binomial"),
duplicates.ok = TRUE),
maxiter = as.integer(maxiter), simtmp$nNonzeroP1inf, convtol,
simtmp$nNonzeroP1, as.integer(nsim), simtmp$epsplus, simtmp$etaplus,
simtmp$aplus1, simtmp$c2, object$tol,
info = integer(1), as.integer(antithetics), as.integer(sim), nsim2,
diff = double(1),
marginal = as.integer(marginal), expected, H_tol = H_tol)
if(out$info!=0){
warning(switch(as.character(out$info),
"-5" = paste0("Gaussian approximation converged to a degenerate case with max(H) = ",out$H_tol, ".",
"\nReturning ", -.Machine$double.xmax^0.75, "."),
"-3" = paste0("Couldn't compute LDL decomposition of P1.",
"\nReturning ", -.Machine$double.xmax^0.75, "."),
"-2" = paste0("Couldn't compute LDL decomposition of Q.",
"\nReturning ", -.Machine$double.xmax^0.75, "."),
"1" = paste0("Gaussian approximation failed due to non-finite value in linear predictor.",
"\nReturning ", -.Machine$double.xmax^0.75, "."),
"2" = paste0("Gaussian approximation failed due to non-finite value of p(theta|y).",
"\nReturning ", -.Machine$double.xmax^0.75, "."),
"3" = "Maximum number of iterations reached, the approximation did not converge.",
"5" = paste0("Computation of marginal likelihood failed, could not compute the additional term.",
"\nReturning ", -.Machine$double.xmax^0.75, ".")
))
if(out$info!=3) {
return(-.Machine$double.xmax^0.75)
}
}
}
out$lik
} |
efftox_priors <- function(alpha_mean, alpha_sd,
beta_mean, beta_sd,
gamma_mean, gamma_sd,
zeta_mean, zeta_sd,
eta_mean, eta_sd,
psi_mean, psi_sd) {
l <- list(alpha_mean = alpha_mean, alpha_sd = alpha_sd,
beta_mean = beta_mean, beta_sd = beta_sd,
gamma_mean = gamma_mean, gamma_sd = gamma_sd,
zeta_mean = zeta_mean, zeta_sd = zeta_sd,
eta_mean = eta_mean, eta_sd = eta_sd,
psi_mean = psi_mean, psi_sd = psi_sd)
class(l) <- c('efftox_priors')
l
} |
structure(list(url = "https://api.twitter.com/2/users/45648666/following?max_results=1000&user.fields=created_at%2Cdescription%2Centities%2Cid%2Clocation%2Cname%2Cpinned_tweet_id%2Cprofile_image_url%2Cprotected%2Cpublic_metrics%2Curl%2Cusername%2Cverified%2Cwithheld&pagination_token=8EOQORH82UA1CZZZ",
status_code = 200L, headers = structure(list(date = "Sun, 04 Jul 2021 12:24:55 UTC",
server = "tsa_o", `content-type` = "application/json; charset=utf-8",
`cache-control` = "no-cache, no-store, max-age=0", `content-length` = "202323",
`x-access-level` = "read", `x-frame-options` = "SAMEORIGIN",
`content-encoding` = "gzip", `x-xss-protection` = "0",
`x-rate-limit-limit` = "15", `x-rate-limit-reset` = "1625402278",
`content-disposition` = "attachment; filename=json.json",
`x-content-type-options` = "nosniff", `x-rate-limit-remaining` = "12",
`strict-transport-security` = "max-age=631138519", `x-connection-hash` = "358099e7ee27d3f1daf675083a1379c26cfd5d6955da63ec8b1cae9cb6b5f130"), class = c("insensitive",
"list")), all_headers = list(list(status = 200L, version = "HTTP/2",
headers = structure(list(date = "Sun, 04 Jul 2021 12:24:55 UTC",
server = "tsa_o", `content-type` = "application/json; charset=utf-8",
`cache-control` = "no-cache, no-store, max-age=0",
`content-length` = "202323", `x-access-level` = "read",
`x-frame-options` = "SAMEORIGIN", `content-encoding` = "gzip",
`x-xss-protection` = "0", `x-rate-limit-limit` = "15",
`x-rate-limit-reset` = "1625402278", `content-disposition` = "attachment; filename=json.json",
`x-content-type-options` = "nosniff", `x-rate-limit-remaining` = "12",
`strict-transport-security` = "max-age=631138519",
`x-connection-hash` = "358099e7ee27d3f1daf675083a1379c26cfd5d6955da63ec8b1cae9cb6b5f130"), class = c("insensitive",
"list")))), cookies = structure(list(domain = c(".twitter.com",
".twitter.com"), flag = c(TRUE, TRUE), path = c("/", "/"),
secure = c(TRUE, TRUE), expiration = structure(c(1688456705,
1688456705), class = c("POSIXct", "POSIXt")), name = c("personalization_id",
"guest_id"), value = c("REDACTED", "REDACTED")), row.names = c(NA,
-2L), class = "data.frame"), content = charToRaw("{\"data\":[{\"profile_image_url\":\"https://pbs.twimg.com/profile_images/811636493777309697/tZLcGm_w_normal.jpg\",\"url\":\"https://t.co/5Ztsx13Qdu\",\"description\":\"Mom, Flint pediatrician, public health advocate & immigrant. Author of “What the Eyes Don’t See.”\",\"verified\":true,\"location\":\"Flint, MI\",\"entities\":{\"url\":{\"urls\":[{\"start\":0,\"end\":23,\"url\":\"https://t.co/5Ztsx13Qdu\",\"expanded_url\":\"http://monahannaattisha.com\",\"display_url\":\"monahannaattisha.com\"}]}},\"pinned_tweet_id\":\"1260174318790737920\",\"created_at\":\"2012-03-30T02:30:02.000Z\",\"id\":\"540458083\",\"username\":\"MonaHannaA\",\"public_metrics\":{\"followers_count\":20092,\"following_count\":1458,\"tweet_count\":4939,\"listed_count\":303},\"protected\":false,\"name\":\"Mona Hanna-Attisha\"},{\"profile_image_url\":\"https://pbs.twimg.com/profile_images/496621759580626944/aKN4H7UN_normal.jpeg\",\"url\":\"https://t.co/2J2G4roGmX\",\"description\":\"Archaeologist & Wayne State Univ. Anthropology professor by day. Music geek & history nerd by night. Mom & wife 24/7.\",\"verified\":false,\"location\":\"Detroit \",\"entities\":{\"url\":{\"urls\":[{\"start\":0,\"end\":23,\"url\":\"https://t.co/2J2G4roGmX\",\"expanded_url\":\"http://clasweb.clas.wayne.edu/Krysta-Ryzewski\",\"display_url\":\"clasweb.clas.wayne.edu/Krysta-Ryzewski\"}]}},\"created_at\":\"2014-08-01T21:37:21.000Z\",\"id\":\"2731073285\",\"username\":\"KrystaRyzew\",\"public_metrics\":{\"followers_count\":630,\"following_count\":1343,\"tweet_count\":502,\"listed_count\":14},\"protected\":false,\"name\":\"Dr. Krysta Ryzewski\"},{\"profile_image_url\":\"https://pbs.twimg.com/profile_images/992454836435156993/xJfDC2a8_normal.jpg\",\"url\":\"http://t.co/KPF3cm6S9A\",\"description\":\"Invest Detroit finances and supports business development, commercial real estate, and entrepreneurs in Detroit and the region.\",\"verified\":false,\"location\":\"Detroit\",\"entities\":{\"url\":{\"urls\":[{\"start\":0,\"end\":22,\"url\":\"http://t.co/KPF3cm6S9A\",\"expanded_url\":\"http://www.investdetroit.com\",\"display_url\":\"investdetroit.com\"}]}},\"created_at\":\"2014-06-06T01:51:22.000Z\",\"id\":\"2549014572\",\"username\":\"InvestDet\",\"public_metrics\":{\"followers_count\":1685,\"following_count\":348,\"tweet_count\":679,\"listed_count\":55},\"protected\":false,\"name\":\"Invest Detroit\"},{\"profile_image_url\":\"https://pbs.twimg.com/profile_images/527136831607824384/KAbPxq-q_normal.png\",\"url\":\"http://t.co/fQ0aMJk78l\",\"description\":\"Research and education center dedicated to solving environmental problems at the land-water interface and bay-lake exchanges in the Great Lakes\",\"verified\":false,\"location\":\"Oregon, Ohio\",\"entities\":{\"url\":{\"urls\":[{\"start\":0,\"end\":22,\"url\":\"http://t.co/fQ0aMJk78l\",\"expanded_url\":\"http://www.utoledo.edu/nsm/lec\",\"display_url\":\"utoledo.edu/nsm/lec\"}]}},\"created_at\":\"2009-03-04T17:07:40.000Z\",\"id\":\"22800555\",\"username\":\"lakeeriecenter\",\"public_metrics\":{\"followers_count\":1843,\"following_count\":1170,\"tweet_count\":475,\"listed_count\":51},\"protected\":false,\"name\":\"UT Lake Erie Center\"},{\"profile_image_url\":\"https://pbs.twimg.com/profile_images/494886574564179968/qROYU2p1_normal.jpeg\",\"url\":\"http://t.co/Ikpz7ylbfr\",\"description\":\"Environmental writer\",\"verified\":false,\"location\":\"The (Toledo) Blade\",\"entities\":{\"url\":{\"urls\":[{\"start\":0,\"end\":22,\"url\":\"http://t.co/Ikpz7ylbfr\",\"expanded_url\":\"http://toledoblade.typepad.com/ripple-effect/\",\"display_url\":\"toledoblade.typepad.com/ripple-effect/\"}]}},\"created_at\":\"2014-07-31T15:56:23.000Z\",\"id\":\"2696042311\",\"username\":\"ecowriterohio\",\"public_metrics\":{\"followers_count\":2406,\"following_count\":3550,\"tweet_count\":6706,\"listed_count\":106},\"protected\":false,\"name\":\"Tom Henry\"},{\"profile_image_url\":\"https://pbs.twimg.com/profile_images/1295357090303746049/YgO4pY3R_normal.jpg\",\"url\":\"https://t.co/q9pcfbnIwq\",\"description\":\"Lifelong Michigander. Proud mom. Governor of Michigan. This is my personal account. For my official account, visit @GovWhitmer.\",\"verified\":true,\"location\":\"East Lansing, MI\",\"entities\":{\"url\":{\"urls\":[{\"start\":0,\"end\":23,\"url\":\"https://t.co/q9pcfbnIwq\",\"expanded_url\":\"http://gretchenwhitmer.com\",\"display_url\":\"gretchenwhitmer.com\"}]},\"description\":{\"mentions\":[{\"start\":115,\"end\":126,\"username\":\"GovWhitmer\"}]}},\"created_at\":\"2019-02-07T21:14:39.000Z\",\"id\":\"1093619068148559872\",\"username\":\"gretchenwhitmer\",\"public_metrics\":{\"followers_count\":144410,\"following_count\":56,\"tweet_count\":315,\"listed_count\":429},\"protected\":false,\"name\":\"Gretchen Whitmer\"},{\"profile_image_url\":\"https://pbs.twimg.com/profile_images/1410352589854724096/3qzSjS2P_normal.jpg\",\"url\":\"http://t.co/lOItIfcqtH\",\"description\":\"Michigan's Department of Health and Human Services\",\"verified\":true,\"location\":\"Lansing, Michigan\",\"entities\":{\"url\":{\"urls\":[{\"start\":0,\"end\":22,\"url\":\"http://t.co/lOItIfcqtH\",\"expanded_url\":\"http://www.michigan.gov/mdhhs\",\"display_url\":\"michigan.gov/mdhhs\"}]}},\"pinned_tweet_id\":\"1411008311663730694\",\"created_at\":\"2009-07-16T13:48:27.000Z\",\"id\":\"57338289\",\"username\":\"MichiganHHS\",\"public_metrics\":{\"followers_count\":32977,\"following_count\":2132,\"tweet_count\":9192,\"listed_count\":550},\"protected\":false,\"name\":\"Michigan HHS Dept\"},{\"profile_image_url\":\"https://pbs.twimg.com/profile_images/1285220097620152322/hy3KzMCL_normal.jpg\",\"url\":\"https://t.co/7nHJndtfQP\",\"description\":\"Candidate for Detroit City Council Dis. 6 | Policy & Research Director @WeThePeople_MI | MSW @UMSocialWork | Photographer | I talk a lot about change (she/her)\",\"verified\":false,\"location\":\"Detroit\",\"entities\":{\"url\":{\"urls\":[{\"start\":0,\"end\":23,\"url\":\"https://t.co/7nHJndtfQP\",\"expanded_url\":\"https://secure.actblue.com/donate/gabriela-santiago-romero\",\"display_url\":\"secure.actblue.com/donate/gabriel…\"}]},\"description\":{\"mentions\":[{\"start\":71,\"end\":86,\"username\":\"WeThePeople_MI\"},{\"start\":93,\"end\":106,\"username\":\"UMSocialWork\"}]}},\"pinned_tweet_id\":\"1384543770763534336\",\"created_at\":\"2010-12-15T13:46:17.000Z\",\"id\":\"226940716\",\"username\":\"gabysantiromero\",\"public_metrics\":{\"followers_count\":1204,\"following_count\":1980,\"tweet_count\":32390,\"listed_count\":26},\"protected\":false,\"name\":\"Gabriela Santiago-Romero\"},{\"profile_image_url\":\"https://pbs.twimg.com/profile_images/925389735216013313/AxniKLXX_normal.jpg\",\"url\":\"https://t.co/pye7tIPgOP\",\"description\":\"We're a hub of info that highlight America's common
date = structure(1625401495, class = c("POSIXct", "POSIXt"
), tzone = "GMT"), times = c(redirect = 0, namelookup = 9.6e-05,
connect = 1e-04, pretransfer = 0.000378, starttransfer = 0.691889,
total = 0.920125)), class = "response") |
library(DHARMa)
library(MASS)
library(lme4)
library(mgcv)
testData = createData(sampleSize = 200, overdispersion = 0, randomEffectVariance = 0, family = binomial(), binomialTrials = 20)
fittedModelGLM <- glm(cbind(observedResponse1,observedResponse0) ~ Environment1 , family = "binomial", data = testData)
fittedModelGAM <- gam(cbind(observedResponse1,observedResponse0) ~ s(Environment1) ,family = "binomial", data = testData)
out = simulate(fittedModelGLM, nsim = 10)
out2 = simulate(fittedModelGAM, nsim = 10)
dim(out)
dim(out2)
out2 = data.frame(out2)
x = out2
convertGam <- function(x){
nSim = ncol(x)
nObs = nrow(x[[1]])
df = list()
for(i in 1:nSim){
rownames(x[[i]]) <- as.character(1:200)
}
df= as.data.frame(df)
return(df)
}
fitted.gam <- function(object, ...){
class(object) = "glm"
out = stats::fitted(object, ...)
names(out) = as.character(1:length(out))
out
} |
test_that("drive_rm() copes with no input", {
expect_identical(drive_rm(), dribble())
})
test_that("drive_rm() copes when there are no matching files", {
skip_if_no_token()
skip_if_offline()
expect_identical(drive_rm("non-existent-file-name"), dribble())
}) |
fdt_cat.data.frame <- function (x,
by,
sort=TRUE,
decreasing=TRUE, ...)
{
stopifnot(is.data.frame(x))
res <- list()
if (missing(by)) {
logCol <- sapply(x,
is.factor)
for (i in 1:ncol(x)) {
if (logCol[i]) {
m <- as.data.frame(x[, i])
fdt <- make.fdt_cat.multiple(m,
sort,
decreasing)
tmpres <- list(table=fdt[[1]])
res <- c(res,
list(tmpres))
}
}
valCol <- logCol[logCol]
names(res) <- names(valCol)
}
else {
nameF <- character()
nameY <- character()
namesdf <- names(x)
pos <- which(namesdf == by)
stopifnot(is.factor((x[[pos]])))
numF <- table(x[[pos]])
for (i in 1:length(numF)) {
tmpdf <- subset(x,
x[[pos]] == names(numF[i]))
tmpdf <- tmpdf[-pos]
logCol <- sapply(tmpdf,
is.factor)
for (j in 1:ncol(tmpdf)) {
if (logCol[j]) {
m <- as.data.frame(tmpdf[, j])
fdt <- make.fdt_cat.multiple(m,
sort,
decreasing)
newFY <- list(fdt)
nameF <- names(numF[i])
nameY <- names(logCol[j])
nameFY <- paste(nameF,
'.',
nameY,
sep="")
names(newFY) <- sub(' +$',
'',
nameFY)
res <- c(res,
newFY)
}
}
}
}
class(res) <- c('fdt_cat.multiple',
'fdt_cat',
'list')
invisible(res)
} |
step_impute_roll <-
function(recipe,
...,
role = NA,
trained = FALSE,
columns = NULL,
statistic = median,
window = 5,
skip = FALSE,
id = rand_id("impute_roll")) {
if (!is_tune(window) & !is_varying(window)) {
if (window < 3 | window %% 2 != 1) {
rlang::abort("`window` should be an odd integer >= 3")
}
window <- as.integer(floor(window))
}
add_step(
recipe,
step_impute_roll_new(
terms = ellipse_check(...),
role = role,
trained = trained,
columns = columns,
statistic = statistic,
window = window,
skip = skip,
id = id
)
)
}
step_rollimpute <-
function(recipe,
...,
role = NA,
trained = FALSE,
columns = NULL,
statistic = median,
window = 5,
skip = FALSE,
id = rand_id("impute_roll")) {
lifecycle::deprecate_warn(
when = "0.1.16",
what = "recipes::step_rollimpute()",
with = "recipes::step_impute_roll()"
)
step_impute_roll(
recipe,
...,
role = role,
trained = trained,
columns = columns,
statistic = statistic,
window = window,
skip = skip,
id = id
)
}
step_impute_roll_new <-
function(terms, role, trained, columns, statistic, window, skip, id) {
step(
subclass = "impute_roll",
terms = terms,
role = role,
trained = trained,
columns = columns,
statistic = statistic,
window = window,
skip = skip,
id = id
)
}
prep.step_impute_roll <- function(x, training, info = NULL, ...) {
col_names <- recipes_eval_select(x$terms, training, info)
check_type(training[, col_names])
dbl_check <- vapply(training[, col_names], is.double, logical(1))
if (any(!dbl_check))
rlang::abort("All columns must be double precision for rolling imputation")
step_impute_roll_new(
terms = x$terms,
role = x$role,
trained = TRUE,
columns = col_names,
statistic = x$statistic,
window = x$window,
skip = x$skip,
id = x$id
)
}
prep.step_rollimpute <- prep.step_impute_roll
get_window_ind <- function(i, n, k) {
sides <- (k - 1) / 2
if (i - sides >= 1 & i + sides <= n)
return((i - sides):(i + sides))
if (i - sides < 1)
return(1:k)
if (i + sides > n)
return((n - k + 1):n)
}
get_rolling_ind <- function(inds, n, k)
map(inds, get_window_ind, n = n, k = k)
window_est <- function(inds, x, statfun) {
x <- x[inds]
x <- x[!is.na(x)]
out <- if(length(x) == 0)
na_dbl
else
statfun(x)
if(!is.double(out))
out <- as.double(out)
out
}
impute_rolling <- function(inds, x, statfun) {
map_dbl(inds, window_est, x = x, statfun = statfun)
}
bake.step_impute_roll <- function(object, new_data, ...) {
n <- nrow(new_data)
missing_ind <- lapply(new_data[, object$columns],
function(x) which(is.na(x)))
has_missing <- map_lgl(missing_ind, function(x) length(x) > 0)
missing_ind <- missing_ind[has_missing]
roll_ind <- lapply(missing_ind, get_rolling_ind, n = n, k = object$window)
for(i in seq(along.with = roll_ind)) {
imp_var <- names(roll_ind)[i]
estimates <-
impute_rolling(roll_ind[[i]], new_data[[imp_var]], object$statistic)
new_data[missing_ind[[i]], imp_var] <- estimates
}
as_tibble(new_data)
}
bake.step_rollimpute <- bake.step_impute_roll
print.step_impute_roll <-
function(x, width = max(20, options()$width - 30), ...) {
cat("Rolling Imputation for ", sep = "")
printer(x$columns, x$terms, x$trained, width = width)
invisible(x)
}
print.step_rollimpute <- print.step_impute_roll
tidy.step_impute_roll <- function(x, ...) {
if (is_trained(x)) {
res <- tibble(terms = unname(x$columns), window = x$window)
} else {
term_names <- sel2char(x$terms)
res <- tibble(terms = term_names, window = x$window)
}
res$id <- x$id
res
}
tidy.step_rollimpute <- tidy.step_impute_roll
tunable.step_impute_roll <- function(x, ...) {
tibble::tibble(
name = c("statistic", "window"),
call_info = list(
list(pkg = "dials", fun = "location_stat"),
list(pkg = "dials", fun = "window")
),
source = "recipe",
component = "step_impute_roll",
component_id = x$id
)
}
tunable.step_rollimpute <- tunable.step_impute_roll |
\donttest{
if (bru_safe_inla(multicore = FALSE)) {
input.df <- data.frame(x = cos(1:10))
input.df <- within(input.df, y <- 5 + 2 * x + rnorm(10, mean = 0, sd = 0.1))
fit <- bru(y ~ x + Intercept, family = "gaussian", data = input.df)
fit$summary.fixed
}
if (bru_safe_inla(multicore = FALSE)) {
lik <- like(family = "gaussian", formula = y ~ x + Intercept, data = input.df)
fit <- bru(~ x + Intercept(1), lik)
fit$summary.fixed
}
if (bru_safe_inla(multicore = FALSE)) {
z <- 2
input.df <- within(input.df, y <- 5 + exp(z) * x + rnorm(10, mean = 0, sd = 0.1))
lik <- like(
family = "gaussian", data = input.df,
formula = y ~ exp(z) * x + Intercept
)
fit <- bru(~ z(1) + Intercept(1), lik)
fit$summary.fixed
}
} |
acc = read.csv("path to data")
View(acc)
set.seed(1)
index <- sample(1:nrow(acc), round(0.75*nrow(acc)))
train <- acc[index,]
test <- acc[-index,]
fitTrn <- glm(isOneday~., data=train, family=binomial(link="logit"))
fitted.results <- predict(fitTrn, newdata=test, type='response')
library(ROCR)
p <- predict(fitTrn, newdata=test, type="response")
pr <- prediction(p, test$isOneday)
prf <- performance(pr, measure="tpr", x.measure="fpr")
auc <- performance(pr, measure="auc") |
NULL
load_task_pima = function(id = "pima") {
b = as_data_backend(load_dataset("PimaIndiansDiabetes2", "mlbench"))
task = TaskClassif$new(id, b, target = "diabetes", positive = "pos")
b$hash = task$man = "mlr3::mlr_tasks_pima"
task
}
mlr_tasks$add("pima", load_task_pima) |
by.ppp <- function(data, INDICES=marks(data), FUN, ...) {
if(missing(INDICES))
INDICES <- marks(data, dfok=FALSE)
if(missing(FUN))
stop("FUN is missing")
y <- split(data, INDICES)
z <- list()
for(i in seq_along(y))
z[[i]] <- FUN(y[[i]], ...)
names(z) <- names(y)
z <- as.solist(z, demote=TRUE)
return(z)
} |
m <- matrix(1:10/10, ncol=2, byrow=TRUE)
colnames(m) <- c('a', 'b')
d <- as.data.frame(m)
test_that('lcut on vector', {
testedHedges <- c("ex", "si", "ve", "-", "ml", "ro", "qr", "vr", "ty")
testedAtomic <- c("sm", "me", "bi")
smHedgeNames <- c("ex", "si", "ve", "", "ml", "ro", "qr", "vr")
meHedgeNames <- c("ty", "", "ml", "ro", "qr", "vr")
biHedgeNames <- smHedgeNames
res <- lcut(d$a,
context=ctx3(0, 0.5, 1),
atomic=testedAtomic,
hedges=testedHedges,
name='a')
expectedAttrs <- c(paste(smHedgeNames, 'sm', 'a', sep='.'),
paste(meHedgeNames, 'me', 'a', sep='.'),
paste(biHedgeNames, 'bi', 'a', sep='.'))
expectedAttrs <- sub('^\\.', '', expectedAttrs)
expect_true(is.fsets(res))
expect_equal(ncol(res), 22)
expect_equal(nrow(res), 5)
expect_equal(colnames(res), expectedAttrs)
expect_equal(vars(res), rep('a', 22))
s <- matrix(c(0,1,1,1,1,1,1,1, 0,0,0,0,0,0, 0,0,0,0,0,0,0,0,
0,0,1,1,1,1,1,1, 0,0,0,0,0,0, 0,0,0,0,0,0,0,0,
0,0,0,1,1,1,1,1, 0,0,0,0,0,0, 0,0,0,0,0,0,0,0,
0,0,0,0,1,1,1,1, 0,0,0,0,0,0, 0,0,0,0,0,0,0,0,
0,0,0,0,0,1,1,1, 0,0,0,0,0,0, 0,0,0,0,0,0,0,0,
0,0,0,0,0,0,1,1, 0,0,0,0,0,0, 0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,1, 0,0,0,0,0,0, 0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0, 0,0,0,0,0,0, 0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0, 0,1,1,1,1,1, 0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0, 0,0,1,1,1,1, 0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0, 0,0,0,1,1,1, 0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0, 0,0,0,0,1,1, 0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0, 0,0,0,0,0,1, 0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0, 0,0,0,0,0,0, 0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0, 0,0,0,0,0,0, 0,1,1,1,1,1,1,1,
0,0,0,0,0,0,0,0, 0,0,0,0,0,0, 0,0,1,1,1,1,1,1,
0,0,0,0,0,0,0,0, 0,0,0,0,0,0, 0,0,0,1,1,1,1,1,
0,0,0,0,0,0,0,0, 0,0,0,0,0,0, 0,0,0,0,1,1,1,1,
0,0,0,0,0,0,0,0, 0,0,0,0,0,0, 0,0,0,0,0,1,1,1,
0,0,0,0,0,0,0,0, 0,0,0,0,0,0, 0,0,0,0,0,0,1,1,
0,0,0,0,0,0,0,0, 0,0,0,0,0,0, 0,0,0,0,0,0,0,1,
0,0,0,0,0,0,0,0, 0,0,0,0,0,0, 0,0,0,0,0,0,0,0),
nrow=22,
ncol=22,
byrow=TRUE)
expect_equal(specs(res), s)
})
test_that('lcut on vector (some hedges disabled)', {
testedHedges <- c("ex", "ve", "ml", "vr", "ty")
testedAtomic <- c("me", "bi")
meHedgeNames <- c("ty", "ml", "vr")
biHedgeNames <- c("ex", "ve", "ml", "vr")
expectedAttrs <- c(paste(meHedgeNames, 'me', 'a', sep='.'),
paste(biHedgeNames, 'bi', 'a', sep='.'))
res <- lcut(d$a,
context=ctx3(0, 0.5, 1),
atomic=testedAtomic,
hedges=testedHedges,
name='a')
expect_true(is.fsets(res))
expect_equal(ncol(res), 7)
expect_equal(nrow(res), 5)
expect_equal(colnames(res), expectedAttrs)
expect_equal(vars(res), rep('a', 7))
s <- matrix(c(0,1,1, 0,0,0,0,
0,0,1, 0,0,0,0,
0,0,0, 0,0,0,0,
0,0,0, 0,1,1,1,
0,0,0, 0,0,1,1,
0,0,0, 0,0,0,1,
0,0,0, 0,0,0,0),
nrow=7,
ncol=7,
byrow=TRUE)
expect_equal(specs(res), s)
expect_true(is.fsets(res))
})
test_that('lcut on matrix', {
testedHedges <- c("ex", "si", "ve", "-", "ml", "ro", "qr", "vr", "ty")
testedAtomic <- c("sm", "me", "bi")
smHedgeNames <- c("ex", "si", "ve", "", "ml", "ro", "qr", "vr")
meHedgeNames <- c("ty", "", "ml", "ro", "qr", "vr")
biHedgeNames <- smHedgeNames
expectedAttrs <- c(paste(smHedgeNames, 'sm', 'a', sep='.'),
paste(meHedgeNames, 'me', 'a', sep='.'),
paste(biHedgeNames, 'bi', 'a', sep='.'),
paste(smHedgeNames, 'sm', 'b', sep='.'),
paste(meHedgeNames, 'me', 'b', sep='.'),
paste(biHedgeNames, 'bi', 'b', sep='.'))
expectedAttrs <- sub('^\\.', '', expectedAttrs)
res <- lcut(as.matrix(m),
context=ctx3(0, 0.5, 1),
hedges=testedHedges)
expect_true(is.fsets(res))
expect_equal(ncol(res), 44)
expect_equal(nrow(res), 5)
expect_equal(colnames(res), expectedAttrs)
expect_equal(vars(res), c(rep('a', 22), rep('b', 22)))
s <- matrix(c(0,1,1,1,1,1,1,1, 0,0,0,0,0,0, 0,0,0,0,0,0,0,0,
0,0,1,1,1,1,1,1, 0,0,0,0,0,0, 0,0,0,0,0,0,0,0,
0,0,0,1,1,1,1,1, 0,0,0,0,0,0, 0,0,0,0,0,0,0,0,
0,0,0,0,1,1,1,1, 0,0,0,0,0,0, 0,0,0,0,0,0,0,0,
0,0,0,0,0,1,1,1, 0,0,0,0,0,0, 0,0,0,0,0,0,0,0,
0,0,0,0,0,0,1,1, 0,0,0,0,0,0, 0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,1, 0,0,0,0,0,0, 0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0, 0,0,0,0,0,0, 0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0, 0,1,1,1,1,1, 0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0, 0,0,1,1,1,1, 0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0, 0,0,0,1,1,1, 0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0, 0,0,0,0,1,1, 0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0, 0,0,0,0,0,1, 0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0, 0,0,0,0,0,0, 0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0, 0,0,0,0,0,0, 0,1,1,1,1,1,1,1,
0,0,0,0,0,0,0,0, 0,0,0,0,0,0, 0,0,1,1,1,1,1,1,
0,0,0,0,0,0,0,0, 0,0,0,0,0,0, 0,0,0,1,1,1,1,1,
0,0,0,0,0,0,0,0, 0,0,0,0,0,0, 0,0,0,0,1,1,1,1,
0,0,0,0,0,0,0,0, 0,0,0,0,0,0, 0,0,0,0,0,1,1,1,
0,0,0,0,0,0,0,0, 0,0,0,0,0,0, 0,0,0,0,0,0,1,1,
0,0,0,0,0,0,0,0, 0,0,0,0,0,0, 0,0,0,0,0,0,0,1,
0,0,0,0,0,0,0,0, 0,0,0,0,0,0, 0,0,0,0,0,0,0,0),
byrow=TRUE,
nrow=22,
ncol=22)
sfill <- matrix(0, nrow=22, ncol=22)
s <- cbind(rbind(s, sfill), rbind(sfill, s))
expect_equal(specs(res), s)
})
test_that('lcut on data frame', {
testedHedges <- c("ex", "si", "ve", "-", "ml", "ro", "qr", "vr", "ty")
testedAtomic <- c("sm", "me", "bi")
smHedgeNames <- c("ex", "si", "ve", "", "ml", "ro", "qr", "vr")
meHedgeNames <- c("ty", "", "ml", "ro", "qr", "vr")
biHedgeNames <- smHedgeNames
expectedAttrs <- c(paste(smHedgeNames, 'sm', 'a', sep='.'),
paste(meHedgeNames, 'me', 'a', sep='.'),
paste(biHedgeNames, 'bi', 'a', sep='.'),
paste(smHedgeNames, 'sm', 'b', sep='.'),
paste(meHedgeNames, 'me', 'b', sep='.'),
paste(biHedgeNames, 'bi', 'b', sep='.'))
expectedAttrs <- sub('^\\.', '', expectedAttrs)
res <- lcut(as.data.frame(m),
context=ctx3(0, 0.5, 1),
hedges=testedHedges)
expect_true(is.fsets(res))
expect_equal(ncol(res), 44)
expect_equal(nrow(res), 5)
expect_equal(colnames(res), expectedAttrs)
expect_equal(vars(res), c(rep('a', 22), rep('b', 22)))
s <- matrix(c(0,1,1,1,1,1,1,1, 0,0,0,0,0,0, 0,0,0,0,0,0,0,0,
0,0,1,1,1,1,1,1, 0,0,0,0,0,0, 0,0,0,0,0,0,0,0,
0,0,0,1,1,1,1,1, 0,0,0,0,0,0, 0,0,0,0,0,0,0,0,
0,0,0,0,1,1,1,1, 0,0,0,0,0,0, 0,0,0,0,0,0,0,0,
0,0,0,0,0,1,1,1, 0,0,0,0,0,0, 0,0,0,0,0,0,0,0,
0,0,0,0,0,0,1,1, 0,0,0,0,0,0, 0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,1, 0,0,0,0,0,0, 0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0, 0,0,0,0,0,0, 0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0, 0,1,1,1,1,1, 0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0, 0,0,1,1,1,1, 0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0, 0,0,0,1,1,1, 0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0, 0,0,0,0,1,1, 0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0, 0,0,0,0,0,1, 0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0, 0,0,0,0,0,0, 0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0, 0,0,0,0,0,0, 0,1,1,1,1,1,1,1,
0,0,0,0,0,0,0,0, 0,0,0,0,0,0, 0,0,1,1,1,1,1,1,
0,0,0,0,0,0,0,0, 0,0,0,0,0,0, 0,0,0,1,1,1,1,1,
0,0,0,0,0,0,0,0, 0,0,0,0,0,0, 0,0,0,0,1,1,1,1,
0,0,0,0,0,0,0,0, 0,0,0,0,0,0, 0,0,0,0,0,1,1,1,
0,0,0,0,0,0,0,0, 0,0,0,0,0,0, 0,0,0,0,0,0,1,1,
0,0,0,0,0,0,0,0, 0,0,0,0,0,0, 0,0,0,0,0,0,0,1,
0,0,0,0,0,0,0,0, 0,0,0,0,0,0, 0,0,0,0,0,0,0,0),
byrow=TRUE,
nrow=22,
ncol=22)
sfill <- matrix(0, nrow=22, ncol=22)
s <- cbind(rbind(s, sfill), rbind(sfill, s))
expect_equal(specs(res), s)
})
test_that('lcut on single row data frame', {
testedHedges <- c("ex", "si", "ve", "-", "ml", "ro", "qr", "vr", "ty")
testedAtomic <- c("sm", "me", "bi")
smHedgeNames <- c("ex", "si", "ve", "", "ml", "ro", "qr", "vr")
meHedgeNames <- c("ty", "", "ml", "ro", "qr", "vr")
biHedgeNames <- smHedgeNames
expectedAttrs <- c(paste(smHedgeNames, 'sm', 'a', sep='.'),
paste(meHedgeNames, 'me', 'a', sep='.'),
paste(biHedgeNames, 'bi', 'a', sep='.'),
paste(smHedgeNames, 'sm', 'b', sep='.'),
paste(meHedgeNames, 'me', 'b', sep='.'),
paste(biHedgeNames, 'bi', 'b', sep='.'))
expectedAttrs <- sub('^\\.', '', expectedAttrs)
res <- lcut(m[1, , drop=FALSE],
context=ctx3(0, 0.5, 1),
hedges=testedHedges)
expect_true(is.fsets(res))
expect_equal(ncol(res), 44)
expect_equal(nrow(res), 1)
expect_equal(colnames(res), expectedAttrs)
expect_equal(vars(res), c(rep('a', 22), rep('b', 22)))
s <- matrix(c(0,1,1,1,1,1,1,1, 0,0,0,0,0,0, 0,0,0,0,0,0,0,0,
0,0,1,1,1,1,1,1, 0,0,0,0,0,0, 0,0,0,0,0,0,0,0,
0,0,0,1,1,1,1,1, 0,0,0,0,0,0, 0,0,0,0,0,0,0,0,
0,0,0,0,1,1,1,1, 0,0,0,0,0,0, 0,0,0,0,0,0,0,0,
0,0,0,0,0,1,1,1, 0,0,0,0,0,0, 0,0,0,0,0,0,0,0,
0,0,0,0,0,0,1,1, 0,0,0,0,0,0, 0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,1, 0,0,0,0,0,0, 0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0, 0,0,0,0,0,0, 0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0, 0,1,1,1,1,1, 0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0, 0,0,1,1,1,1, 0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0, 0,0,0,1,1,1, 0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0, 0,0,0,0,1,1, 0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0, 0,0,0,0,0,1, 0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0, 0,0,0,0,0,0, 0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0, 0,0,0,0,0,0, 0,1,1,1,1,1,1,1,
0,0,0,0,0,0,0,0, 0,0,0,0,0,0, 0,0,1,1,1,1,1,1,
0,0,0,0,0,0,0,0, 0,0,0,0,0,0, 0,0,0,1,1,1,1,1,
0,0,0,0,0,0,0,0, 0,0,0,0,0,0, 0,0,0,0,1,1,1,1,
0,0,0,0,0,0,0,0, 0,0,0,0,0,0, 0,0,0,0,0,1,1,1,
0,0,0,0,0,0,0,0, 0,0,0,0,0,0, 0,0,0,0,0,0,1,1,
0,0,0,0,0,0,0,0, 0,0,0,0,0,0, 0,0,0,0,0,0,0,1,
0,0,0,0,0,0,0,0, 0,0,0,0,0,0, 0,0,0,0,0,0,0,0),
byrow=TRUE,
nrow=22,
ncol=22)
sfill <- matrix(0, nrow=22, ncol=22)
s <- cbind(rbind(s, sfill), rbind(sfill, s))
expect_equal(specs(res), s)
})
test_that('lcut on empty row data frame', {
testedHedges <- c("ex", "si", "ve", "-", "ml", "ro", "qr", "vr", "ty")
testedAtomic <- c("sm", "me", "bi")
smHedgeNames <- c("ex", "si", "ve", "", "ml", "ro", "qr", "vr")
meHedgeNames <- c("ty", "", "ml", "ro", "qr", "vr")
biHedgeNames <- smHedgeNames
expectedAttrs <- c(paste(smHedgeNames, 'sm', 'a', sep='.'),
paste(meHedgeNames, 'me', 'a', sep='.'),
paste(biHedgeNames, 'bi', 'a', sep='.'),
paste(smHedgeNames, 'sm', 'b', sep='.'),
paste(meHedgeNames, 'me', 'b', sep='.'),
paste(biHedgeNames, 'bi', 'b', sep='.'))
expectedAttrs <- sub('^\\.', '', expectedAttrs)
res <- lcut(m[FALSE, , drop=FALSE],
context=ctx3(0, 0.5, 1),
hedges=testedHedges)
expect_true(is.fsets(res))
expect_equal(ncol(res), 44)
expect_equal(nrow(res), 0)
expect_equal(colnames(res), expectedAttrs)
expect_equal(vars(res), c(rep('a', 22), rep('b', 22)))
s <- matrix(c(0,1,1,1,1,1,1,1, 0,0,0,0,0,0, 0,0,0,0,0,0,0,0,
0,0,1,1,1,1,1,1, 0,0,0,0,0,0, 0,0,0,0,0,0,0,0,
0,0,0,1,1,1,1,1, 0,0,0,0,0,0, 0,0,0,0,0,0,0,0,
0,0,0,0,1,1,1,1, 0,0,0,0,0,0, 0,0,0,0,0,0,0,0,
0,0,0,0,0,1,1,1, 0,0,0,0,0,0, 0,0,0,0,0,0,0,0,
0,0,0,0,0,0,1,1, 0,0,0,0,0,0, 0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,1, 0,0,0,0,0,0, 0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0, 0,0,0,0,0,0, 0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0, 0,1,1,1,1,1, 0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0, 0,0,1,1,1,1, 0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0, 0,0,0,1,1,1, 0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0, 0,0,0,0,1,1, 0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0, 0,0,0,0,0,1, 0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0, 0,0,0,0,0,0, 0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0, 0,0,0,0,0,0, 0,1,1,1,1,1,1,1,
0,0,0,0,0,0,0,0, 0,0,0,0,0,0, 0,0,1,1,1,1,1,1,
0,0,0,0,0,0,0,0, 0,0,0,0,0,0, 0,0,0,1,1,1,1,1,
0,0,0,0,0,0,0,0, 0,0,0,0,0,0, 0,0,0,0,1,1,1,1,
0,0,0,0,0,0,0,0, 0,0,0,0,0,0, 0,0,0,0,0,1,1,1,
0,0,0,0,0,0,0,0, 0,0,0,0,0,0, 0,0,0,0,0,0,1,1,
0,0,0,0,0,0,0,0, 0,0,0,0,0,0, 0,0,0,0,0,0,0,1,
0,0,0,0,0,0,0,0, 0,0,0,0,0,0, 0,0,0,0,0,0,0,0),
byrow=TRUE,
nrow=22,
ncol=22)
sfill <- matrix(0, nrow=22, ncol=22)
s <- cbind(rbind(s, sfill), rbind(sfill, s))
expect_equal(specs(res), s)
})
test_that('lcut empty data.frame', {
testedHedges <- c("ex", "-", "ml", "ro", "qr", "vr")
hedgeNames <- c("ex", "", "ml", "ro", "qr", "vr")
smHedgeNames <- hedgeNames
biHedgeNames <- hedgeNames
attrs <- c(paste(smHedgeNames, 'sm', sep='.'),
paste(biHedgeNames, 'bi', sep='.'))
d <- d[FALSE, , drop=FALSE]
res <- lcut(d,
atomic=c('sm', 'bi'),
context=ctx3(0, 0.5, 1),
hedges=testedHedges)
expectedAttrs <- c(paste(attrs, '.a', sep=''),
paste(attrs, '.b', sep=''))
expectedAttrs <- sub('^\\.', '', expectedAttrs)
expect_true(is.matrix(res))
expect_equal(ncol(res), 24)
expect_equal(nrow(res), 0)
expect_equal(sort(colnames(res)), sort(expectedAttrs))
expect_true(inherits(res, 'fsets'))
expect_equivalent(vars(res), c(rep('a', 12), rep('b', 12)))
s <- matrix(c(0,1,1,1,1,1, 0,0,0,0,0,0,
0,0,1,1,1,1, 0,0,0,0,0,0,
0,0,0,1,1,1, 0,0,0,0,0,0,
0,0,0,0,1,1, 0,0,0,0,0,0,
0,0,0,0,0,1, 0,0,0,0,0,0,
0,0,0,0,0,0, 0,0,0,0,0,0,
0,0,0,0,0,0, 0,1,1,1,1,1,
0,0,0,0,0,0, 0,0,1,1,1,1,
0,0,0,0,0,0, 0,0,0,1,1,1,
0,0,0,0,0,0, 0,0,0,0,1,1,
0,0,0,0,0,0, 0,0,0,0,0,1,
0,0,0,0,0,0, 0,0,0,0,0,0),
byrow=TRUE,
nrow=12,
ncol=12)
sfill <- matrix(0, nrow=12, ncol=12)
s <- cbind(rbind(s, sfill), rbind(sfill, s))
mapper <- seq_along(expectedAttrs)
names(mapper) <- expectedAttrs
s <- s[mapper[colnames(res)], mapper[colnames(res)]]
expect_equal(specs(res), s)
expect_true(is.fsets(res))
}) |
change_to_name <- function(x, column=1){
child_list <- lapply(
x$children,
function(y) {
y <- dplyr::mutate(y, "colname" = colnames(y)[column])
dplyr::rename(y,"name" = colnames(y)[column])
}
)
dplyr::mutate(x, children = child_list)
}
promote_na_one <- function(x){
na_child_loc <- which(is.na(x$children[[1]]$name))
if(length(na_child_loc)){
na_child <- x$children[[1]][na_child_loc,]
x <- dplyr::bind_cols(
x,
na_child[1,setdiff(colnames(na_child),c("name","children","colname"))]
)
x$children[[1]] <- x$children[[1]][-na_child_loc,]
x
} else {
x
}
}
promote_na <- function(x){
lapply(
seq_len(nrow(x)),
function(row){promote_na_one(x[row,])}
)
}
d3_nest <- function(
data=NULL,
value_cols=character(),
root = "root",
json = TRUE
) {
stopifnot(!is.null(data), inherits(data, "data.frame"))
nonnest_cols <- dplyr::setdiff(colnames(data),value_cols)
data <- dplyr::as_tibble(data)
data <- dplyr::mutate_if(data, is.factor, as.character)
if(utils::packageVersion("tidyr") > "0.8.3") {
data_nested <- dplyr::bind_rows(promote_na(
change_to_name(
tidyr::nest(
.data=data,
children = dplyr::one_of(c(nonnest_cols[length(nonnest_cols)], value_cols))
)
)
))
} else {
data_nested <- dplyr::bind_rows(promote_na(
change_to_name(
tidyr::nest(
data=data,
dplyr::one_of(c(nonnest_cols[length(nonnest_cols)], value_cols)),
.key="children"
)
)
))
}
for(x in rev(
colnames(data_nested)[
-which(colnames(data_nested) %in% c("children","colname",value_cols))
]
)){
if(utils::packageVersion("tidyr") > "0.8.3") {
data_nested <- dplyr::bind_rows(promote_na(
change_to_name(
tidyr::nest(
.data = data_nested,
children = dplyr::one_of(colnames(data_nested)[colnames(data_nested) %in% c(x,"children",value_cols)])
)
)
))
} else {
data_nested <- dplyr::bind_rows(promote_na(
change_to_name(
tidyr::nest(
data_nested,
dplyr::one_of(colnames(data_nested)[colnames(data_nested) %in% c(x,"children",value_cols)]),
.key = "children"
)
)
))
}
}
data_nested$name = root
if(json){
d3_json(data_nested,strip=TRUE)
} else {
data_nested
}
} |
mapkeyIconDependency <- function() {
list(
htmltools::htmlDependency(
"lfx-mapkeyicon", version = "1.0.0",
src = system.file("htmlwidgets/lfx-mapkeyicon", package = "leaflet.extras2"),
script = c("L.Icon.Mapkey.js",
"lfx-mapkeyicon-bindings.js"),
stylesheet = c("L.Icon.Mapkey.css"),
all_files = TRUE
)
)
}
mapkeyIconList = function(...) {
res = structure(
list(...),
class = "leaflet_mapkey_icon_set"
)
cls = unlist(lapply(res, inherits, "leaflet_mapkey_icon"))
if (any(!cls))
stop("Arguments passed to mapkeyIconList() must be icon objects returned from makeMapkeyIcon()")
res
}
`[.leaflet_mapkey_icon_set` = function(x, i) {
if (is.factor(i)) {
i = as.character(i)
}
if (!is.character(i) && !is.numeric(i) && !is.integer(i)) {
stop("Invalid subscript type '", typeof(i), "'")
}
structure(.subset(x, i), class = "leaflet_mapkey_icon_set")
}
mapkeyIconSetToMapkeyIcons = function(x) {
cols = names(formals(makeMapkeyIcon))
cols = structure(as.list(cols), names = cols)
leaflet::filterNULL(lapply(cols, function(col) {
colVals = unname(sapply(x, `[[`, col))
if (length(unique(colVals)) == 1) {
return(colVals[[1]])
} else {
return(colVals)
}
}))
}
makeMapkeyIcon <- function(
icon = 'mapkey',
color = "
iconSize = 12,
background = '
borderRadius = '100%',
hoverScale = 1.4,
hoverEffect = TRUE,
additionalCSS = NULL,
hoverCSS = NULL,
htmlCode = NULL,
boxShadow = TRUE
) {
icon = leaflet::filterNULL(list(
icon = icon,
color = color,
size = iconSize,
background = background,
borderRadius = borderRadius,
hoverScale = hoverScale,
hoverEffect = hoverEffect,
additionalCSS = additionalCSS,
hoverCSS = hoverCSS,
htmlCode = htmlCode,
boxShadow = boxShadow
))
structure(icon, class = "leaflet_mapkey_icon")
}
mapkeyIcons <- function(
icon = 'mapkey',
color = "
iconSize = 12,
background = '
borderRadius = '100%',
hoverScale = 1.4,
hoverEffect = TRUE,
hoverCSS = NULL,
additionalCSS = NULL,
htmlCode = NULL,
boxShadow = TRUE
) {
leaflet::filterNULL(list(
icon = icon,
color = color,
size = iconSize,
background = background,
borderRadius = borderRadius,
hoverScale = hoverScale,
hoverEffect = hoverEffect,
hoverCSS = hoverCSS,
additionalCSS = additionalCSS,
htmlCode = htmlCode,
boxShadow = boxShadow
))
}
addMapkeyMarkers = function(
map, lng = NULL, lat = NULL, layerId = NULL, group = NULL,
icon = NULL,
popup = NULL,
popupOptions = NULL,
label = NULL,
labelOptions = NULL,
options = leaflet::markerOptions(),
clusterOptions = NULL,
clusterId = NULL,
data = leaflet::getMapData(map)
) {
map$dependencies <- c(map$dependencies,
mapkeyIconDependency())
if (!is.null(icon)) {
icon = leaflet::evalFormula(list(icon), data)[[1]]
if (inherits(icon, "leaflet_mapkey_icon_set")) {
icon = mapkeyIconSetToMapkeyIcons(icon)
}
icon = leaflet::filterNULL(icon)
}
if (!is.null(clusterOptions))
map$dependencies = c(map$dependencies, leaflet::leafletDependencies$markerCluster())
pts = leaflet::derivePoints(
data, lng, lat, missing(lng), missing(lat), "addMapkeyMarkers")
leaflet::invokeMethod(
map, data, "addMapkeyMarkers", pts$lat, pts$lng, icon, layerId,
group, options, popup, popupOptions,
clusterOptions, clusterId, leaflet::safeLabel(label, data), labelOptions
) %>%
expandLimits(pts$lat, pts$lng)
} |
nosim <- 1000
cfunc <- function(x, n) 2 * sqrt(n) * (mean(x) - 0.5)
dat <- data.frame(
x = c(apply(matrix(sample(0:1, nosim * 10, replace = TRUE),
nosim), 1, cfunc, 10),
apply(matrix(sample(0:1, nosim * 20, replace = TRUE),
nosim), 1, cfunc, 20),
apply(matrix(sample(0:1, nosim * 30, replace = TRUE),
nosim), 1, cfunc, 30)
),
size = factor(rep(c(10, 20, 30), rep(nosim, 3))))
g <- ggplot(dat, aes(x = x, fill = size)) + geom_histogram(binwidth=.3, colour = "black", aes(y = ..density..))
g <- g + stat_function(fun = dnorm, size = 2)
g <- g + facet_grid(. ~ size)
print(g) |
draw_key_borderpath <- function(data, params, size) {
if (is.null(data$linetype)) {
data$linetype <- 0
} else {
data$linetype[is.na(data$linetype)] <- 0
}
grobTree(
segmentsGrob(
0.1, 0.5, 0.9, 0.5,
arrow = params$arrow,
gp = gpar(
col = alpha(data$bordercolour %||% data$fill %||% "white", data$alpha),
fill = alpha(params$arrow.fill %||% data$colour
%||% data$fill %||% "white", data$alpha),
lwd = (data$size %||% 0.5 + (data$bordersize %||% 0.5) * 2) * .pt,
lty = data$linetype %||% 1,
lineend = "butt"
)
),
segmentsGrob(
0.1, 0.5, 0.9, 0.5,
arrow = params$arrow,
gp = gpar(
col = alpha(data$colour %||% data$fill %||% "black", data$alpha),
fill = alpha(params$arrow.fill %||% data$colour
%||% data$fill %||% "black", data$alpha),
lwd = (data$size %||% 0.5) * .pt,
lty = data$linetype %||% 1,
lineend = "butt"
)
)
)
}
geom_borderpath <- function(mapping = NULL, data = NULL,
stat = "identity", position = "identity",
...,
lineend = "butt",
linejoin = "round",
linemitre = 10,
arrow = NULL,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE) {
layer(
data = data,
mapping = mapping,
stat = stat,
geom = GeomBorderpath,
position = position,
show.legend = show.legend,
inherit.aes = inherit.aes,
params = list(
lineend = lineend,
linejoin = linejoin,
linemitre = linemitre,
arrow = arrow,
na.rm = na.rm,
...
)
)
}
GeomBorderpath <- ggproto("GeomBorderpath", GeomPath,
default_aes = aes(
colour = "black", size = 0.5, linetype = 1, alpha = NA,
bordercolour = "white", bordersize = 0.2
),
draw_panel = function(data, panel_params, coord, arrow = NULL,
lineend = "butt", linejoin = "round", linemitre = 10,
na.rm = FALSE) {
if (!anyDuplicated(data$group)) {
message_wrap("geom_path: Each group consists of only one observation. ",
"Do you need to adjust the group aesthetic?")
}
data <- data[order(data$group), , drop = FALSE]
munched <- coord_munch(coord, data, panel_params)
if (!all(is.na(munched$alpha) | munched$alpha == 1)) {
warning(
"Use of alpha with borderlines is discouraged - use with caution!",
call. = FALSE
)
}
rows <- stats::ave(seq_len(nrow(munched)), munched$group, FUN = length)
munched <- munched[rows >= 2, ]
if (nrow(munched) < 2) return(zeroGrob())
attr <- ggplot2:::dapply(munched, "group", function(df) {
linetype <- unique(df$linetype)
ggplot2:::new_data_frame(list(
solid = identical(linetype, 1) || identical(linetype, "solid"),
constant = nrow(unique(df[, c("alpha", "colour","size", "linetype")])) == 1
), n = 1)
})
solid_lines <- all(attr$solid)
constant <- all(attr$constant)
if (!solid_lines && !constant) {
abort("geom_path: If you are using dotted or dashed lines, colour, size and linetype must be constant over the line")
}
n <- nrow(munched)
group_diff <- munched$group[-1] != munched$group[-n]
start <- c(TRUE, group_diff)
end <- c(group_diff, TRUE)
if (!constant) {
gList(
segmentsGrob(
munched$x[!end], munched$y[!end], munched$x[!start], munched$y[!start],
default.units = "native", arrow = arrow,
gp = gpar(
col = alpha(munched$bordercolour, munched$alpha)[!end],
fill = alpha(munched$bordercolour, munched$alpha)[!end],
lwd = (munched$size[start] + munched$bordersize[start] * 2) * .pt,
lty = "solid",
lineend = lineend,
linejoin = linejoin,
linemitre = linemitre
)
),
segmentsGrob(
munched$x[!end], munched$y[!end], munched$x[!start], munched$y[!start],
default.units = "native", arrow = arrow,
gp = gpar(
col = alpha(munched$bordercolour, munched$alpha)[!end],
fill = alpha(munched$bordercolour, munched$alpha)[!end],
lwd = munched$size[start] * .pt,
lty = munched$linetype[!end],
lineend = lineend,
linejoin = linejoin,
linemitre = linemitre
)
)
)
} else {
id <- match(munched$group, unique(munched$group))
out <- lapply(unique(munched$group), function(g) {
m <- subset(munched, group == g)
id <- match(m$group, g)
list(
polylineGrob(
m$x, m$y, id = id,
default.units = "native", arrow = arrow,
gp = gpar(
col = alpha(m$bordercolour, m$alpha)[start],
fill = alpha(m$bordercolour, m$alpha)[start],
lwd = (m$size[start] + m$bordersize[start] * 2) * .pt,
lty = "solid",
lineend = lineend,
linejoin = linejoin,
linemitre = linemitre
)
),
polylineGrob(
m$x, m$y, id = id,
default.units = "native", arrow = arrow,
gp = gpar(
col = alpha(m$colour, m$alpha)[start],
fill = alpha(m$colour, m$alpha)[start],
lwd = m$size[start] * .pt,
lty = m$linetype[start],
lineend = lineend,
linejoin = linejoin,
linemitre = linemitre
)
)
)
})
out <- unlist(out, recursive = FALSE)
do.call(gList, out)
}
},
draw_key = draw_key_borderpath
)
geom_borderline <- function(mapping = NULL, data = NULL,
stat = "identity", position = "identity",
...,
lineend = "butt",
linejoin = "round",
linemitre = 10,
arrow = NULL,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE) {
layer(
data = data,
mapping = mapping,
stat = stat,
geom = GeomBorderline,
position = position,
show.legend = show.legend,
inherit.aes = inherit.aes,
params = list(
lineend = lineend,
linejoin = linejoin,
linemitre = linemitre,
arrow = arrow,
na.rm = na.rm,
...
)
)
}
GeomBorderline <- ggproto("GeomBorderline", GeomBorderpath,
setup_params = function(data, params) {
params$flipped_aes <- has_flipped_aes(data, params, ambiguous = TRUE)
params
},
extra_params = c("na.rm", "orientation"),
setup_data = function(data, params) {
data$flipped_aes <- params$flipped_aes
data <- flip_data(data, params$flipped_aes)
data <- data[order(data$PANEL, data$group, data$x), ]
flip_data(data, params$flipped_aes)
}
)
geom_borderstep <- function(mapping = NULL, data = NULL, stat = "identity",
position = "identity", direction = "hv",
na.rm = FALSE, show.legend = NA, inherit.aes = TRUE, ...) {
layer(
data = data,
mapping = mapping,
stat = stat,
geom = GeomBorderstep,
position = position,
show.legend = show.legend,
inherit.aes = inherit.aes,
params = list(
direction = direction,
na.rm = na.rm,
...
)
)
}
GeomBorderstep <- ggproto("GeomBorderstep", GeomBorderpath,
draw_panel = function(data, panel_params, coord, direction = "hv") {
data <- ggplot2:::dapply(data, "group", ggplot2:::stairstep, direction = direction)
GeomBorderpath$draw_panel(data, panel_params, coord)
}
)
scale_bordercolour_continuous <- function(..., aesthetics = "bordercolour") {
out <- scale_colour_continuous(...)
out$aesthetics <- aesthetics
out
}
scale_bordercolour_discrete <- function(..., aesthetics = "bordercolour") {
out <- scale_colour_discrete(...)
out$aesthetics = aesthetics
out
}
scale_bordersize_continuous <- function(..., aesthetics = "bordersize") {
out <- scale_size_continuous(...)
out$aesthetics <- aesthetics
out
}
scale_bordersize_discrete <- function(..., aesthetics = "bordersize") {
out <- scale_size_discrete(...)
out$aesthetics <- aesthetics
out
} |
clusterSamples <- function(object, k, factors = "all",...) {
if (!is(object, "MOFAmodel")) stop("'object' has to be an instance of MOFAmodel")
if (paste0(factors,collapse="") == "all") { factors <- factorNames(object) }
else if(is.numeric(factors)) {
factors <- factorNames(object)[factors]
}
else{ stopifnot(all(factors %in% factorNames(object))) }
Z <- getFactors(object, factors=factors)
N <- getDimensions(object)[["N"]]
haveAllZ <- apply(Z,1, function(x) all(!is.na(x)))
if(!all(haveAllZ)) warning(paste("Removing", sum(!haveAllZ), "samples with missing values on at least one factor"))
Z_sub <- Z[haveAllZ,]
kmeans.out <- kmeans(Z_sub, centers=k, ...)
clusters <- rep(NA, length(sampleNames(object)))
names(clusters) <- sampleNames(object)
clusters[haveAllZ] <- kmeans.out$cluster
return(clusters)
} |
library(micompr)
context("assumptions")
test_that("assumptions_manova constructs the expected objects", {
if (!requireNamespace("MVN", quietly = TRUE) ||
!requireNamespace("biotools", quietly = TRUE) ) {
expect_message(assumptions_manova(iris[, 1:4], iris[, 5]),
"MANOVA assumptions require 'MVN' and 'biotools' packages.")
expect_null(assumptions_manova(iris[, 1:4], iris[, 5]))
} else {
amnv <- assumptions_manova(iris[, 1:4], iris[, 5])
expect_is(amnv, "assumptions_manova")
for (rt in amnv$mvntest) {
expect_is(rt, "data.frame")
}
expect_is(amnv$vartest, "boxM")
}
})
test_that("assumptions_manova throws the expected warnings", {
bogus_data <- matrix(rnorm(100), ncol = 10)
factors <- c(rep("A", 3), rep("B", 3), rep("C", 4))
if (!requireNamespace("MVN", quietly = TRUE) ||
!requireNamespace("biotools", quietly = TRUE) ) {
expect_message(assumptions_manova(bogus_data, factors),
"MANOVA assumptions require 'MVN' and 'biotools' packages.")
expect_null(assumptions_manova(bogus_data, factors))
} else {
expect_warning(assumptions_manova(bogus_data, factors),
"Royston test requires at least 4 observations",
fixed = TRUE)
expect_warning(assumptions_manova(bogus_data, factors),
"Royston test requires more observations than (dependent)",
fixed = TRUE)
}
})
test_that("assumptions_paruv constructs the expected objects", {
auv <- assumptions_paruv(iris[, 1:4], iris[, 5])
expect_is(auv, "assumptions_paruv")
for (dv in auv$uvntest) {
for (swt in dv) {
expect_is(swt, "htest")
expect_output(print(swt),
"Shapiro-Wilk normality test",
fixed = TRUE)
}
}
for (bt in auv$vartest) {
expect_is(bt, "htest")
expect_output(print(bt),
"Bartlett test of homogeneity of variances",
fixed = TRUE)
}
}) |
model.tables.lmm <- function(x, ...){
confint(x, ..., columns = c("estimate","se","df","lower","upper","p.value"))
} |
prodStack <- function(x,
stack = "eco2mix",
areas = NULL,
mcYear = "average",
dateRange = NULL,
yMin = NULL, yMax = NULL, customTicks=NULL,
main = .getLabelLanguage("Production stack", language),
unit = c("MWh", "GWh", "TWh"),
compare = NULL,
compareOpts = list(),
interactive = getInteractivity(),
legend = TRUE, legendId = sample(1e9, 1),
groupId = legendId,
updateLegendOnMouseOver = TRUE,
legendItemsPerRow = 5,
width = NULL, height = NULL, xyCompare = c("union", "intersect"),
h5requestFiltering = list(), stepPlot = FALSE, drawPoints = FALSE,
timeSteph5 = "hourly",
mcYearh5 = NULL,
tablesh5 = c("areas", "links"), language = "en",
hidden = NULL,
refStudy = NULL,
...) {
prodStackValHidden <- c("H5request", "timeSteph5", "tables", "mcYearH5", "mcYear", "main", "dateRange",
"stack", "unit", "areas", "legend", "stepPlot", "drawPoints")
prodStackValCompare <- c("mcYear", "main", "unit", "areas", "legend", "stack", "stepPlot", "drawPoints")
listParamsCheck <- list(
x = x,
compare = compare,
interactive = interactive,
language = language,
hidden = hidden,
valHidden = prodStackValHidden,
valCompare = prodStackValCompare,
mcYear = mcYear,
h5requestFiltering = h5requestFiltering,
compareOptions = compareOpts
)
listParamsCheck <- .check_params_A_get_cor_val(listParamsCheck)
x <- listParamsCheck$x
compare <- listParamsCheck$compare
compareOptions <- listParamsCheck$compareOptions
h5requestFiltering <- listParamsCheck$h5requestFiltering
mcYear <- listParamsCheck$mcYear
xyCompare <- match.arg(xyCompare)
unit <- match.arg(unit)
init_areas <- areas
init_dateRange <- dateRange
processFun <- function(x) {
.check_x_antaresData(x)
if (is(x, "antaresDataTable")) {
if (!attr(x, "type") %in% c("areas", "districts")) stop("'x' should contain area or district data")
} else if (is(x, "antaresDataList")) {
if (is.null(x$areas) & is.null(x$districts)) stop("'x' should contain area or district data")
if (!is.null(x$areas)) x <- x$areas
else x <- x$districts
}
if (is.null(x$area)) x$area <- x$district
timeStep <- attr(x, "timeStep")
opts <- simOptions(x)
if (is.null(init_areas)) {
init_areas <- unique(x$area)[1]
}
displayMcYear <- !attr(x, "synthesis") && length(unique(x$mcYear)) > 1
dataDateRange <- as.Date(.timeIdToDate(range(x$timeId), timeStep, opts))
if (length(init_dateRange) < 2) init_dateRange <- dataDateRange
plotWithLegend <- function(id, areas, main = "", unit, stack, dateRange, mcYear, legend, stepPlot, drawPoints, updateLegendOnMouseOver, yMin, yMax, customTicks) {
if (length(areas) == 0) return (combineWidgets(.getLabelLanguage("Please choose an area", language)))
stackOpts <- .aliasToStackOptions(stack)
dt <- x[area %in% areas]
if (length(mcYear) == 0){
mcYear <- "average"
}
if (mcYear == "average") dt <- synthesize(dt)
else if ("mcYear" %in% names(dt)) {
mcy <- mcYear
dt <- dt[mcYear == mcy]
}else{
.printWarningMcYear()
}
if ("annual" %in% attr(dt, "timeStep")){
dateRange <- NULL
}
if (!is.null(dateRange)) {
dt <- dt[as.Date(.timeIdToDate(dt$timeId, timeStep, opts = opts)) %between% dateRange]
}
if (nrow(dt) == 0){
return (combineWidgets(.getLabelLanguage("No data for this selection", language)))
}
if (!is.null(stackOpts$variables)) {
names(stackOpts$variables) <- sapply(names(stackOpts$variables), function(x){
.getColumnsLanguage(x, language)
})
}
if (!is.null(stackOpts$lines)) {
names(stackOpts$lines) <- sapply(names(stackOpts$lines), function(x){
.getColumnsLanguage(x, language)
})
}
p <- try(.plotProdStack(dt,
stackOpts$variables,
stackOpts$colors,
stackOpts$lines,
stackOpts$lineColors,
stackOpts$lineWidth,
main = main,
unit = unit,
legendId = legendId + id - 1,
groupId = groupId,
updateLegendOnMouseOver = updateLegendOnMouseOver,
dateRange = dateRange,
yMin = yMin, yMax = yMax, customTicks=customTicks,
stepPlot = stepPlot, drawPoints = drawPoints, language = language), silent = TRUE)
if ("try-error" %in% class(p)){
return (
combineWidgets(paste0(.getLabelLanguage("Can't visualize stack", language), " '", stack, "'<br>", p[1]))
)
}
if (legend & !"ramcharts_base" %in% class(p)) {
l <- prodStackLegend(stack, legendItemsPerRow, legendId = legendId + id - 1,
language = language)
} else {
l <- NULL
}
combineWidgets(p, footer = l, width = width, height = height)
}
list(
plotWithLegend = plotWithLegend,
x = x,
timeStep = timeStep,
opts = opts,
areas = init_areas,
displayMcYear = displayMcYear,
dataDateRange = dataDateRange,
dateRange = init_dateRange
)
}
if (!interactive) {
listParamH5NoInt <- list(
timeSteph5 = timeSteph5,
mcYearh5 = mcYearh5,
tablesh5 = tablesh5,
h5requestFiltering = h5requestFiltering
)
params <- .getParamsNoInt(x = x,
refStudy = refStudy,
listParamH5NoInt = listParamH5NoInt,
compare = compare,
compareOptions = compareOptions,
processFun = processFun)
L_w <- lapply(seq_along(params$x), function(i){
myData <- params$x[[i]]
myData$plotWithLegend(i, areas, main, unit,
stack, params$x[[1]]$dateRange,
mcYear, legend, stepPlot, drawPoints, updateLegendOnMouseOver, yMin, yMax, customTicks)
})
return(combineWidgets(list = L_w))
} else {
}
table <- NULL
mcYearH5 <- NULL
paramsH5 <- NULL
sharerequest <- NULL
timeStepdataload <- NULL
timeSteph5 <- NULL
x_in <- NULL
x_tranform <- NULL
meanYearH5 <- NULL
manipulateWidget(
{
.tryCloseH5()
if(!is.null(params)){
ind <- .id %% length(params$x)
if(ind == 0) ind <- length(params$x)
widget <- params$x[[ind]]$plotWithLegend(.id, areas, main,
unit, stack, dateRange,
mcYear, legend,
stepPlot, drawPoints, updateLegendOnMouseOver, yMin, yMax, customTicks)
controlWidgetSize(widget, language)
} else {
return (combineWidgets(.getLabelLanguage("No data for this selection", language)))
}
},
x = mwSharedValue({x}),
x_in = mwSharedValue({
.giveListFormat(x)
}),
h5requestFiltering = mwSharedValue({
h5requestFiltering
}),
paramsH5 = mwSharedValue({
tmp <- .h5ParamList(X_I = x_in, xyCompare = xyCompare,
h5requestFilter = h5requestFiltering)
tmp
}),
H5request = mwGroup(
label = .getLabelLanguage("H5request", language),
timeSteph5 = mwSelect(
{
if (length(paramsH5) > 0){
choices = paramsH5$timeStepS
names(choices) <- sapply(choices, function(x) .getLabelLanguage(x, language))
choices
} else {
NULL
}
},
value = if (.initial) {paramsH5$timeStepS[1]}else{NULL},
label = .getLabelLanguage("timeStep", language),
multiple = FALSE, .display = !"timeSteph5" %in% hidden
),
tables = mwSelect(
{
if (length(paramsH5) > 0){
choices = paramsH5[["tabl"]][paramsH5[["tabl"]] %in% c("areas", "districts")]
names(choices) <- sapply(choices, function(x) .getLabelLanguage(x, language))
choices
} else {
NULL
}
},
value = {
if (.initial) {paramsH5[["tabl"]][paramsH5[["tabl"]] %in% c("areas", "districts")][1]}else{NULL}
},
label = .getLabelLanguage("table", language),
multiple = FALSE, .display = !"tables" %in% hidden
),
mcYearH5 = mwSelectize(
choices = {
ch <- c("Average" = "", paramsH5[["mcYearS"]])
names(ch)[1] <- .getLabelLanguage("Average", language)
ch
},
value = {
if (.initial){paramsH5[["mcYearS"]][1]}else{NULL}
},
label = .getLabelLanguage("mcYears to be imported", language),
multiple = TRUE, options = list(maxItems = 4),
.display = (!"mcYearH5" %in% hidden & !meanYearH5)
),
meanYearH5 = mwCheckbox(value = FALSE,
label = .getLabelLanguage("Average mcYear", language),
.display = !"meanYearH5" %in% hidden),
.display = {
any(unlist(lapply(x_in, .isSimOpts))) & !"H5request" %in% hidden
}
),
sharerequest = mwSharedValue({
tmp_tables <- tables
if(is.null(tmp_tables) | (!is.null(tmp_tables) && is.function(tmp_tables))){
tmp_tables <- paramsH5[["tabl"]][paramsH5[["tabl"]] %in% c("areas", "districts")][1]
}
tmp_timeSteph5 <- timeSteph5
if(is.null(tmp_timeSteph5)){
tmp_timeSteph5 <- paramsH5$timeStepS[1]
}
if (length(meanYearH5) > 0){
if (meanYearH5){
list(timeSteph5_l = tmp_timeSteph5, mcYearh_l = NULL, tables_l = tmp_tables)
} else {
list(timeSteph5_l = tmp_timeSteph5, mcYearh_l = mcYearH5, tables_l = tmp_tables)
}
} else {
list(timeSteph5_l = tmp_timeSteph5, mcYearh_l = mcYearH5, tables_l = tmp_tables)
}
}),
x_tranform = mwSharedValue({
h5requestFilteringTp <- paramsH5$h5requestFilter
if (!is.null(sharerequest))
{
for (i in 1:length(h5requestFilteringTp))
{
if (sharerequest$tables == "areas"){
h5requestFilteringTp[[i]]$districts = NULL
}
if (sharerequest$tables == "districts"){
h5requestFilteringTp[[i]]$areas = NULL
}
}
}
resXT <- .get_x_transform(x_in = x_in,
sharerequest = sharerequest,
refStudy = refStudy,
h5requestFilter = h5requestFilteringTp )
resXT
}),
params = mwSharedValue({
.getDataForComp(x_tranform, NULL, compare,
compareOpts = compareOptions,
processFun = processFun)
}),
mcYear = mwSelect({
allMcY <- .compareOperation(lapply(params$x, function(vv){
unique(vv$x$mcYear)
}), xyCompare)
allMcY=c("average",allMcY)
names(allMcY) <- allMcY
if (is.null(allMcY)){
allMcY <- "average"
names(allMcY) <- .getLabelLanguage("average", language)
}
allMcY
}, value = {
if (.initial) mcYear
else NULL
}, label = .getLabelLanguage("mcYear to be displayed", language), .display = !"mcYear" %in% hidden),
main = mwText(main, label = .getLabelLanguage("title", language), .display = !"main" %in% hidden),
dateRange = mwDateRange(value = {
if (.initial){
res <- NULL
if (!is.null(params)){
res <- c(.dateRangeJoin(params = params, xyCompare = xyCompare, "min", tabl = table),
.dateRangeJoin(params = params, xyCompare = xyCompare, "max", tabl = table))
if (params$x[[1]]$timeStep == "hourly"){
if (params$x[[1]]$dateRange[2] - params$x[[1]]$dateRange[1] > 7){
res[1] <- params$x[[1]]$dateRange[2] - 7
}
}
}
res
}else{NULL}
},
min = {
if (!is.null(params)){
if (params$x[[1]]$timeStep != "annual"){
.dateRangeJoin(params = params, xyCompare = xyCompare, "min", tabl = table)
} else {
NULL
}
}
},
max = {
if (!is.null(params)){
if (params$x[[1]]$timeStep != "annual"){
.dateRangeJoin(params = params, xyCompare = xyCompare, "max", tabl = table)
} else {
NULL
}
}
},
language = eval(parse(text = "language")),
separator = " : ",
label = .getLabelLanguage("dateRange", language),
.display = timeStepdataload != "annual" & !"dateRange" %in% hidden
),
stack = mwSelect(names(pkgEnv$prodStackAliases), stack,
label = .getLabelLanguage("stack", language), .display = !"stack" %in% hidden),
unit = mwSelect(c("MWh", "GWh", "TWh"), unit,
label = .getLabelLanguage("unit", language), .display = !"unit" %in% hidden),
areas = mwSelect({
as.character(.compareOperation(lapply(params$x, function(vv){
unique(vv$x$area)
}), xyCompare))
},
value = {
if (.initial){
if (!is.null(areas)){
areas
} else {
as.character(.compareOperation(lapply(params$x, function(vv){
unique(vv$x$area)
}), xyCompare))[1]
}
}
else NULL
},
multiple = TRUE,
label = .getLabelLanguage("areas", language),
.display = !"areas" %in% hidden
),
yMin= mwNumeric(value=yMin,label="yMin",
.display = !"yMin" %in% hidden),
yMax= mwNumeric(value=yMax,label="yMax",
.display = !"yMax" %in% hidden),
timeStepdataload = mwSharedValue({
attributes(x_tranform[[1]])$timeStep
}),
legend = mwCheckbox(legend, label = .getLabelLanguage("legend", language),
.display = !"legend" %in% hidden),
stepPlot = mwCheckbox(stepPlot, label = .getLabelLanguage("stepPlot", language),
.display = !"stepPlot" %in% hidden),
drawPoints = mwCheckbox(drawPoints, label =.getLabelLanguage("drawPoints", language),
.display = !"drawPoints" %in% hidden),
updateLegendOnMouseOver = mwCheckbox(updateLegendOnMouseOver, label =.getLabelLanguage("updateLegendOnMouseOver", language),
.display = !"updateLegendOnMouseOver" %in% hidden),
.compare = {
compare
},
.compareOpts = {
compareOptions
},
...
)
}
.aliasToStackOptions <- function(variables) {
if (! variables %in% names(pkgEnv$prodStackAliases)) {
stop("Unknown alias '", variables, "'.")
}
pkgEnv$prodStackAliases[[variables]]
}
.plotProdStack <- function(x, variables, colors, lines, lineColors, lineWidth,
main = NULL, unit = "MWh", legendId = "",
groupId = legendId, updateLegendOnMouseOver = TRUE, width = NULL, height = NULL, dateRange = NULL, yMin=NULL, yMax=NULL, customTicks = NULL,
stepPlot = FALSE, drawPoints = FALSE, language = "en", type = "Production") {
timeStep <- attr(x, "timeStep")
formulas <- append(variables, lines)
variables <- names(variables)
lines <- names(lines)
dt <- data.table(timeId = x$timeId)
for (n in names(formulas)) {
dt[, c(n) := x[, eval(formulas[[n]]) / switch(unit, MWh = 1, GWh = 1e3, TWh = 1e6)]]
}
p <- .plotStack(dt, timeStep, simOptions(x), colors, lines, lineColors, lineWidth, legendId,
groupId, updateLegendOnMouseOver = updateLegendOnMouseOver,
main = main, ylab = sprintf("Production (%s)", unit),
width = width, height = height, dateRange = dateRange, yMin = yMin, yMax = yMax, customTicks= customTicks, stepPlot = stepPlot,
drawPoints = drawPoints, language = language, type = type)
p
}
prodStackLegend <- function(stack = "eco2mix",
legendItemsPerRow = 5, legendId = "", language = "en") {
stackOpts <- .aliasToStackOptions(stack)
if (!is.null(stackOpts$variables)) {
names(stackOpts$variables) <- sapply(names(stackOpts$variables), function(x){
.getColumnsLanguage(x, language)
})
}
if (!is.null(stackOpts$lines)) {
names(stackOpts$lines) <- sapply(names(stackOpts$lines), function(x){
.getColumnsLanguage(x, language)
})
}
tsLegend(
labels = c(names(stackOpts$variables), names(stackOpts$lines)),
colors = c(stackOpts$colors, stackOpts$lineColors),
types = c(rep("area", length(stackOpts$variables)), rep("line", length(stackOpts$lines))),
legendItemsPerRow = legendItemsPerRow,
legendId = legendId
)
} |
test.gdi33 <- function() {
dataPath <- file.path(path.package(package="clusterCrit"),"unitTests","data","testsInternal_400_4.Rdata")
load(file=dataPath, envir=.GlobalEnv)
idx <- intCriteria(traj_400_4, part_400_4[[4]], c("GDI33"))
cat(paste("\nFound idx =",idx))
val <- 3.97505916293356
cat(paste("\nShould be =",val,"\n"))
checkEqualsNumeric(idx[[1]],val)
} |
xPosition = function (a, scale = 1) {
x <- a$cut.points[,1] - a$cut.points[1,1]
pos <- x[a$what == 2]
list("RingWidth" = x[length(x)] * scale,
"x" = (pos[-c(1,length(pos))] - a$LD / 2) * scale)
} |
test_that("request_retry() logic works as advertised", {
faux_response <- function(status_code = 200, h = NULL) {
structure(
list(status_code = status_code,
headers = if (!is.null(h)) httr::insensitive(h)),
class = "response"
)
}
faux_request_make <- function(responses = list(faux_response())) {
i <- 0
force(responses)
function(...) {
i <<- i + 1
responses[[i]]
}
}
fix_wait_time <- function(x) {
sub(
"(?<=in )[[:digit:]]+([.][[:digit:]]+)?(?= seconds)",
"{WAIT_TIME}",
x, perl = TRUE
)
}
fix_strategy <- function(x) {
sub(
", clipped to (floor|ceiling) of [[:digit:]]+([.][[:digit:]]+)? seconds",
"",
x, perl = TRUE
)
}
local_gargle_verbosity("debug")
out <- with_mock(
request_make = faux_request_make(), {
request_retry()
}
)
expect_equal(httr::status_code(out), 200)
r <- list(faux_response(429), faux_response())
with_mock(
request_make = faux_request_make(r),
gargle_error_message = function(...) "oops", {
msg_fail_once <- capture.output(
out <- request_retry(max_total_wait_time_in_seconds = 5),
type = "message"
)
}
)
expect_snapshot(
writeLines(fix_strategy(fix_wait_time(msg_fail_once)))
)
expect_equal(httr::status_code(out), 200)
r <- list(
faux_response(429, h = list(`Retry-After` = 1.4)),
faux_response()
)
with_mock(
request_make = faux_request_make(r),
gargle_error_message = function(...) "oops", {
msg_retry_after <- capture.output(
out <- request_retry(),
type = "message"
)
}
)
expect_snapshot(
writeLines(fix_strategy(fix_wait_time(msg_retry_after)))
)
expect_equal(httr::status_code(out), 200)
r <- list(
faux_response(429),
faux_response(429),
faux_response(429),
faux_response()
)
with_mock(
request_make = faux_request_make(r[1:3]),
gargle_error_message = function(...) "oops", {
msg_max_tries <- capture.output(
out <- request_retry(max_tries_total = 3, max_total_wait_time_in_seconds = 6),
type = "message"
)
}
)
expect_snapshot(
writeLines(fix_strategy(fix_wait_time(msg_max_tries)))
)
expect_equal(httr::status_code(out), 429)
})
test_that("backoff() obeys obvious bounds from min_wait and max_wait", {
faux_error <- function() {
structure(list(status_code = 429), class = "response")
}
with_mock(
gargle_error_message = function(...) "oops", {
wait_times <- vapply(
rep.int(1, 100),
backoff,
FUN.VALUE = numeric(1),
resp = faux_error(), min_wait = 3
)
}
) %>% suppressMessages()
expect_true(all(wait_times > 3))
expect_true(all(wait_times < 4))
with_mock(
gargle_error_message = function(...) "oops", {
wait_times <- vapply(
rep.int(1, 100),
backoff,
FUN.VALUE = numeric(1),
resp = faux_error(), base = 6, max_wait = 3
)
}
) %>% suppressMessages()
expect_true(all(wait_times > 1))
expect_true(all(wait_times < 3 + 1))
})
test_that("backoff() honors Retry-After header", {
faux_429 <- function(h) {
structure(
list(status_code = 429,
headers = httr::insensitive(h)),
class = "response"
)
}
out <- with_mock(
gargle_error_message = function(...) "oops", {
backoff(1, faux_429(list(`Retry-After` = "1.2")))
}
) %>% suppressMessages()
expect_equal(out, 1.2)
out <- with_mock(
gargle_error_message = function(...) "oops", {
backoff(1, faux_429(list(`retry-after` = 2.4)))
}
) %>% suppressMessages()
expect_equal(out, 2.4)
out <- with_mock(
gargle_error_message = function(...) "oops", {
backoff(3, faux_429(list(`reTry-aFteR` = 3.6)))
}
) %>% suppressMessages()
expect_equal(out, 3.6)
}) |
var <- function(x, ...) UseMethod("var")
var.default <- function(x, y = NULL, na.rm = FALSE, use, ...) stats::var(x=x, y=y, na.rm=na.rm, use=use)
var.data.frame <- function(x, ...) {
sapply(x, var, ...)
}
var.circular <- function (x, na.rm=FALSE, ...) {
if (is.matrix(x)) {
apply(x, 2, var.circular, na.rm=na.rm)
} else {
if (na.rm)
x <- x[!is.na(x)]
x <- conversion.circular(x, units="radians", zero=0, rotation="counter")
attr(x, "class") <- attr(x, "circularp") <- NULL
VarCircularRad(x=x)
}
}
VarCircularRad <- function(x) {
rbar <- RhoCircularRad(x)
circvar <- 1-rbar
return(circvar)
} |
get_incidence_from_adjacency <- function(A) {
p <- nrow(A)
m <- .5 * sum(A > 0)
E <- matrix(0, p, m)
k <- 1
for (i in c(1:(p-1))) {
for (j in c((i+1):p)) {
if (A[i, j] > 0) {
E[i, k] <- 1
E[j, k] <- -1
k <- k + 1
}
}
}
return(E)
}
learn_laplacian_gle_mm <- function(S, A_mask = NULL, alpha = 0, maxiter = 10000, reltol = 1e-5,
record_objective = FALSE, verbose = TRUE) {
p <- nrow(S)
Sinv <- MASS::ginv(S)
if (is.null(A_mask))
A_mask <- matrix(1, p, p) - diag(p)
mask <- Ainv(A_mask) > 0
w <- w_init("naive", Sinv)[mask]
wk <- w
m <- sum(mask)
J <- matrix(1, p, p) / p
H <- 2 * diag(p) - p * J
K <- S + alpha * H
E <- get_incidence_from_adjacency(A_mask)
R <- t(E) %*% K %*% E
r <- nrow(R)
G <- cbind(E, rep(1, p))
if (record_objective) {
z <- rep(0, .5 * p * (p - 1))
z[mask] <- wk
fun <- vanilla.objective(L(z), K)
}
if (verbose)
pb <- progress::progress_bar$new(format = "<:bar> :current/:total eta: :eta",
total = maxiter, clear = FALSE, width = 80)
for (k in c(1:maxiter)) {
w_aug <- c(wk, 1 / p)
G_aug_t <- t(G) * w_aug
G_aug <- t(G_aug_t)
Q <- G_aug_t %*% solve(G_aug %*% t(G), G_aug)
Q <- Q[1:m, 1:m]
wk <- sqrt(diag(Q) / diag(R))
if (record_objective) {
z <- rep(0, .5 * p * (p - 1))
z[mask] <- wk
fun <- c(fun, vanilla.objective(L(z), K))
}
if (verbose)
pb$tick()
has_converged <- norm(w - wk, "2") / norm(w, "2") < reltol
if (has_converged && k > 1) break
w <- wk
}
z <- rep(0, .5 * p * (p - 1))
z[mask] <- wk
results <- list(Laplacian = L(z), Adjacency = A(z), maxiter = k,
convergence = has_converged)
if (record_objective)
results$obj_fun <- fun
return(results)
}
obj_func <- function(E, K, w, J) {
p <- ncol(J)
EWEt <- E %*% diag(w) %*% t(E)
Gamma <- EWEt + J
lambda <- eigval_sym(Gamma)[2:p]
return(sum(diag(E %*% diag(w) %*% t(E) %*% K)) - sum(log(lambda)))
}
learn_laplacian_gle_admm <- function(S, A_mask = NULL, alpha = 0, rho = 1, maxiter = 10000,
reltol = 1e-5, record_objective = FALSE, verbose = TRUE) {
p <- nrow(S)
if (is.null(A_mask))
A_mask <- matrix(1, p, p) - diag(p)
Sinv <- MASS::ginv(S)
w <- w_init("naive", Sinv)
Theta <- L(w)
Yk <- Theta
Ck <- Theta
C <- Theta
mu <- 2
tau <- 2
J <- matrix(1, p, p) / p
H <- 2 * diag(p) - p * J
K <- S + alpha * H
if (verbose)
pb <- progress::progress_bar$new(format = "<:bar> :current/:total eta: :eta",
total = maxiter, clear = FALSE, width = 80)
if (record_objective)
fun <- c(vanilla.objective(Theta, K))
P <- qr.Q(qr(rep(1, p)), complete=TRUE)[, 2:p]
for (k in c(1:maxiter)) {
Gamma <- t(P) %*% ((K + Yk) / rho - Ck) %*% P
U <- eigvec_sym(Gamma)
lambda <- eigval_sym(Gamma)
d <- .5 * c(sqrt(lambda ^ 2 + 4 / rho) - lambda)
Xik <- crossprod(sqrt(d) * t(U))
Thetak <- P %*% Xik %*% t(P)
Ck_tmp <- Yk / rho + Thetak
Ck <- (diag(pmax(0, diag(Ck_tmp))) +
A_mask * pmin(0, Ck_tmp))
Rk <- Thetak - Ck
Yk <- Yk + rho * Rk
if (record_objective)
fun <- c(fun, vanilla.objective(Thetak, K))
has_converged <- norm(Theta - Thetak) / norm(Theta, "F") < reltol
if (has_converged && k > 1) break
s <- rho * norm(C - Ck, "F")
r <- norm(Rk, "F")
if (r > mu * s)
rho <- rho * tau
else if (s > mu * r)
rho <- rho / tau
Theta <- Thetak
C <- Ck
if (verbose)
pb$tick()
}
results <- list(Laplacian = Thetak, Adjacency = diag(diag(Thetak)) - Thetak,
convergence = has_converged)
if (record_objective)
results$obj_fun <- fun
return(results)
}
aug_lag <- function(K, P, Xi, Y, C, d, rho) {
PXiPt <- P %*% Xi %*% t(P)
return(sum(diag(Xi %*% t(P) %*% K %*% P)) - sum(log(d)) +
sum(diag(t(Y) %*% (PXiPt - C))) + .5 * rho * norm(PXiPt - C, "F") ^ 2)
} |
my_reg_data <- data.frame (
geo = c(
"BE1",
"HU102",
"FR1",
"FRB",
"DED",
"FR7",
"TR",
"DED2",
"EL",
"XK",
"GB"
),
values = runif(11)
)
validate_nuts_regions (dat = my_reg_data)
result1 <- validate_nuts_regions (
dat = data.frame (geo = c("BE1", "HU102")),
nuts_year = 2003)
test_that("correct typology is returned", {
expect_equal(result1$typology, c("nuts_level_1", NA_character_))
})
test_that("invalid dates give error message", {
expect_error(validate_nuts_regions (
dat = data.frame (geo = c("BE1", "HU102")),
nuts_year = 2002))
expect_error (validate_nuts_regions (dat = "c",
nut_year = 2013))
expect_error (validate_nuts_regions (dat = data.frame (
geo = c("HU102", "CZ1"),
values = c(1, 2)
), geo_var = "country"))
})
with_nuts_df <- data.frame (
nuts = c("DE1", "DE7", "HU1", "BE1"),
values = c(1:4),
typology = rep("nuts1", 4)
)
tested_with_nuts <- validate_nuts_regions(dat = with_nuts_df,
geo_var = "nuts")
test_that("Special column names do not cause confusion", {
expect_equal(all(tested_with_nuts$valid_2016), TRUE)
expect_equal(ncol(tested_with_nuts), 5)
}) |
setMethod(f="fitted", signature=c(object="bild"),
function (object) {
fit.i<-object@Fitted
names(fit.i) <- c(1:length(fit.i))
round(fit.i ,6)
}
) |
NULL
"qshift_b"
"qshift_b_bp"
"near_sym_b"
"near_sym_b_bp" |
estimate_cbsem <- function(data, measurement_model=NULL, structural_model=NULL, item_associations=NULL, model=NULL, lavaan_model=NULL, estimator="MLR", ...) {
message("Generating the seminr model for CBSEM")
if (is.null(lavaan_model)) {
specified_model <- extract_models(model, measurement_model, structural_model, item_associations)
measurement_model <- specified_model$measurement_model
structural_model <- specified_model$structural_model
item_associations <- specified_model$item_associations
post_interaction_object <- process_cbsem_interactions(measurement_model, data, structural_model, item_associations, estimator, ...)
names(post_interaction_object$data) <- sapply(names(post_interaction_object$data), FUN=lavaanify_name, USE.NAMES = FALSE)
mmMatrix <- post_interaction_object$mmMatrix
data <- post_interaction_object$data
structural_model[, "source"] <- sapply(structural_model[, "source"], FUN=lavaanify_name)
smMatrix <- structural_model
measurement_syntax <- lavaan_mm_syntax(mmMatrix)
structural_syntax <- lavaan_sm_syntax(smMatrix)
association_syntax <- lavaan_item_associations(item_associations)
lavaan_model <- paste(measurement_syntax, structural_syntax, association_syntax, sep="\n\n")
} else {
structural_model <- smMatrix <- lavaan2seminr(lavaan_model)$structural_model
measurement_model <- lavaan2seminr(lavaan_model)$measurement_model
post_interaction_object <- process_cbsem_interactions(measurement_model, data, structural_model, item_associations, estimator, ...)
mmMatrix <- post_interaction_object$mmMatrix
}
lavaan_output <- try_or_stop(
lavaan::sem(
model=lavaan_model, data=data, std.lv = TRUE, estimator=estimator, ...),
"estimating CBSEM using Lavaan"
)
constructs <- all_construct_names(measurement_model)
lavaan_std <- lavaan::lavInspect(lavaan_output, what="std")
loadings <- lavaan_std$lambda
class(loadings) <- "matrix"
tenB <- estimate_lavaan_ten_berge(lavaan_output)
estimates <- lavaan::standardizedSolution(lavaan_output)
path_df <- estimates[estimates$op == "~",]
all_antecedents <- all_exogenous(smMatrix)
all_outcomes <- all_endogenous(smMatrix)
path_matrix <- df_xtab_matrix(est.std ~ rhs + lhs, path_df,
all_antecedents, all_outcomes)
rownames(path_matrix) <- gsub("_x_", "*", all_antecedents)
seminr_model <- list(
data = data,
measurement_model = measurement_model,
factor_loadings = loadings,
associations = item_associations,
mmMatrix = mmMatrix,
smMatrix = smMatrix,
constructs = constructs,
construct_scores = tenB$scores,
item_weights = tenB$weights,
path_coef = path_matrix,
lavaan_model = lavaan_model,
lavaan_output = lavaan_output
)
class(seminr_model) <- c("cbsem_model", "seminr_model")
return(seminr_model)
}
estimate_cfa <- function(data, measurement_model=NULL, item_associations=NULL,
model=NULL, lavaan_model=NULL, estimator="MLR", ...) {
message("Generating the seminr model for CFA")
mmMatrix <- NULL
if (is.null(lavaan_model)) {
specified_model <- extract_models(
model = model, measurement_model = measurement_model, item_associations = item_associations
)
measurement_model <- specified_model$measurement_model
item_associations <- specified_model$item_associations
mmMatrix <- mm2matrix(measurement_model)
measurement_syntax <- lavaan_mm_syntax(mmMatrix)
association_syntax <- lavaan_item_associations(item_associations)
lavaan_model <- paste(measurement_syntax,
association_syntax,
sep="\n\n")
}
lavaan_output <- try_or_stop(
lavaan::cfa(model=lavaan_model, data=data, std.lv = TRUE,
estimator=estimator, ...),
"run CFA in Lavaan"
)
tenB <- estimate_lavaan_ten_berge(lavaan_output)
seminr_model <- list(
data = data,
measurement_model = measurement_model,
construct_scores = tenB$scores,
item_weights = tenB$weights,
lavaan_model = lavaan_model,
lavaan_output = lavaan_output
)
class(seminr_model) <- c("cfa_model", "seminr_model")
return(seminr_model)
} |
inner.hint.for.call.chain = function(stud.expr.li, cde, ps = get.ps(), ce=NULL, assign.str="",start.char="\n", end.char="\n", env=ps$stud.env, details.of.wrong..call = TRUE, compare.vals= !(isTRUE(ps$noeval) | isTRUE(ps$hint.noeval)), call=NULL,...) {
restore.point("inner.hint.for.call.chain")
op = cde$name
chain.na = sapply(cde$arg, name.of.call)
sde.li = lapply(stud.expr.li, function(se) describe.call(call.obj=se))
if (length(sde.li)>0) {
is.chain = sapply(sde.li, function(sde) sde$type=="chain")
sde.li = sde.li[is.chain]
stud.expr.li = stud.expr.li[is.chain]
}
if (length(sde.li)==0) {
chain.str = paste0(chain.na, " ...", collapse = paste0(" ",op,"\n "))
chain.str = paste0(assign.str, chain.str)
txt = paste0("My solution consists of a pipe chain of the form:\n\n", chain.str,"\n\nI have not seen any pipe operator ", op," in your solution, yet.")
display(txt)
return(invisible())
}
has.place.holders = sapply(sde.li, has.call.placeholder)
if (any(has.place.holders)) {
txt = paste0("Here is a scrambled solution:\n\n", scramble.call.chain(cde, assign.str))
display(txt)
return(invisible())
}
if (compare.vals) {
check.res.li = eval.chain.steps(de=cde, envir=env)
} else {
check.res.li = NULL
}
has.error = FALSE
compare.li = vector("list", length(sde.li))
for (i in seq_along(sde.li)) {
res = try(compare.pipe.chains(
check.chain = ce, cde=cde,
stud.chain = stud.expr.li[[i]],
sde = sde.li[[i]],
envir = env,
check.res.li = check.res.li
),silent = TRUE)
if (is(res, "try-error")) {
txt = paste0("I could not evaluate all your code without error. Here is a scrambled solution:\n\n", scramble.call.chain(cde, assign.str))
display(txt)
return(invisible())
}
compare.li[[i]] = res
}
if (length(compare.li)>1) {
fail.steps = sapply(compare.li,function(comp) {
comp$fail.step
})
compare.li = compare.li[[which.max(fail.steps)]]
}
txt = compare.li[[1]]$descr
display(txt)
return(invisible())
}
compare.pipe.chains = function(check.chain, stud.chain, cde=describe.call(check.chain), sde=describe.call(stud.chain), compare.vals = TRUE, envir=parent.frame(), check.res.li = if (compare.vals) eval.chain.steps(de=cde, envir=envir), eval.fun = eval ) {
restore.point("compare.pipe.chains")
check.names = sapply(cde$arg, name.of.call)
stud.names = sapply(sde$arg, name.of.call)
same.until = same.until.pos(check.names, stud.names)
if (same.until==0) {
return(list(same=FALSE, fail.step=1, same.until=0, descr=paste0("Please start your pipe chain with ", check.names[1], ", as in the sample solution.")))
}
j = 1
ccall = cde$arg[[j]]
scall = sde$arg[[j]]
if (compare.vals) {
sres = eval.fun(scall, envir)
ok = identical(sres, check.res.li[[j]])
} else {
res = compare.calls(stud.call = scall,check.call = ccall,compare.vals = FALSE)
ok = res$same
}
if (!ok) {
return(get.chain.failure.results(j, sde, cde,compare.vals = compare.vals, same.until=same.until))
}
while (j < same.until) {
j = j+1
ccall = cde$arg[[j]]
scall = sde$arg[[j]]
if (compare.vals) {
sres = eval.next.chain.call(sres, scall, envir)
ok = identical(sres, check.res.li[[j]])
} else {
res = compare.calls(stud.call = scall,check.call = ccall,compare.vals = FALSE)
ok = res$same
}
if (!ok) {
return(get.chain.failure.results(j, sde, cde,compare.vals = compare.vals, same.until=same.until))
}
}
if (same.until < length(cde$args)) {
step = same.until+1
if (length(sde$args)>=step) {
return(get.chain.failure.results(step, sde, cde,compare.vals = FALSE, same.until=same.until))
} else if (length(sde$args)<step) {
return(list(same=FALSE, fail.step=step, same.until=same.until, descr=paste0("You have to add another element to your pipe chain in which you call the function ", check.names[step],".")))
}
} else if (length(sde$args) > same.until) {
return(list(same=FALSE, fail.step=step, same.until=same.until, descr=paste0("You have too many elements in your pipe chain. Please stop after step ", same.until,", i.e. after the call ", deparse1(sde$args[[same.until]]))))
}
return(list(same=TRUE, fail.step=Inf, same.until=same.until, descr=paste0("Great, you entered the correct pipe chain.")))
}
get.chain.failure.results = function(step=1, sde, cde, compare.vals=TRUE, same.until=NULL, call.comp.descr = NULL, pipe.op = "%>%") {
restore.point("get.chain.failure.results")
fail = step
stud.na = name.of.call(sde$arg[[step]])
check.na = name.of.call(cde$arg[[step]])
child.sde = describe.call(call.obj = sde$arg[[step]])
is.fun = child.sde$type == "fun"
if (is.fun) {
txt = paste0("In your following pipe chain, I detect an error in the ", to_ordinal(step)," element:\n")
} else {
txt = paste0("In your following pipe chain, I detect an error in the ", to_ordinal(step)," element: ", deparse1(sde$arg[[step]]),":\n")
}
sna = sapply(sde$arg, deparse1)
err.code = rep("", length(sna))
err.code[fail] = " !! WRONG !!"
op.str = rep(pipe.op,NROW(sna))
op.str[length(op.str)] = ""
scall.str = paste0(sna[1]," ",op.str[1],err.code[1],paste0("\n ", sna[-1]," ", op.str[-1],err.code[-1], collapse=""))
txt = paste0(txt,"\n",scall.str)
if (is.null(call.comp.descr)) {
is.summarize = isTRUE(stud.na %in% c("summarize","summarise") & check.na %in% c("summarize","summarise"))
if ( ((stud.na == check.na) | is.summarize) & is.fun) {
comp.call = compare.call.args(stud.call = sde$args[[step]], check.call = cde$args[[step]],compare.vals = FALSE, from.pipe=TRUE)
call.comp.descr = paste0("It is correct to call ", check.na,". But: ", paste0(comp.call$descr,collapse="\nAlso: "))
} else if (is.fun) {
call.comp.descr = paste0("You call the function ", stud.na, " but the sample solution calls the function ", check.na,".")
} else {
call.comp.descr = paste0("The sample solution for the ", to_ordinal(step)," element is ", deparse1(cde$arg[[step]]))
}
}
txt = paste0(txt, "\n\n", call.comp.descr)
return(list(
same=FALSE,
fail.step = step,
same.until = same.until,
descr= txt
))
if (wrong.call.na=="group_by") {
display("\nNote: For group_by(...) RTutor requires the groups and their order to be equal to the sample solution. You must call ", deparse1(ccall[[1]][[fail]]),".")
}
}
same.until.pos = function(x,y) {
rows = seq_len(min(length(x), length(y)))
if (length(rows)==0) return(0)
same = which(x[rows] != y[rows])[1]
if (is.na(same)) return(length(rows))
same-1
}
example.eval.next.chain.call = function() {
x = data.frame(x=1:10)
call = quote(mutate(y=x^2))
eval.next.chain.call(x,call)
}
eval.chain.steps = function(chain=NULL, de=describe.call(chain), envir = parent.frame(), eval.fun = eval) {
restore.point("eval.chain.steps")
if (length(de$args)==0) return(NULL)
res.li = vector("list", length(de$args))
res.li[[1]] = eval.fun(de$args[[1]], envir)
for (j in setdiff(seq_along(res.li),1)) {
res.li[[j]] = eval.next.chain.call(res.li[[j-1]], de$args[[j]],envir=envir, eval.fun = eval.fun, pipe.fun = de$name)
}
res.li
}
eval.next.chain.call = function(x, call, envir=parent.frame(), eval.fun = eval, pipe.fun = "%>%") {
new.call = substitute(._._x %>% call, list(call=call))
restore.point("eval.next.chain.call")
cenv = new.env(parent=envir)
cenv$._._x = x
eval.fun(new.call, cenv)
}
scramble.call.chain = function(cde, assign.str="") {
parts = sapply(cde$args, function(call) {
call.str = deparse1(call)
scramble.text(call.str,"?",0.5, keep.char=c(" ","\n",">","%","(",")","=", "\t"))
})
str = paste0(parts, collapse = " %>%\n\t")
str = paste0(assign.str, str)
str
} |
options(width=70)
library(cubing)
hello.cube <- getCubieCube()
hello.cube
aCube <- getCubieCube("Superflip")
bCube <- getCubieCube("EasyCheckerboard")
cCube <- getCubieCube("HenrysSnake")
plot(aCube)
plot(aCube)
getOption("cubing.colors")
mycol <- c("yellow", "dodgerblue", "red",
"ghostwhite", "limegreen", "orange")
options(cubing.colors = mycol)
jcol <- c("ghostwhite", "red", "limegreen",
"dodgerblue", "orange", "yellow")
options(cubing.colors = jcol)
acol <- c("black", "darkred", "darkgreen",
"yellow", "orange", "purple")
options(cubing.colors = acol)
ocol <- c("ghostwhite", "red", "limegreen",
"yellow", "orange", "dodgerblue")
options(cubing.colors = ocol)
rCube <- getMovesCube(randMoves(1, nm = 22))
plot(getCubieCube(), numbers = TRUE, blank = TRUE)
plot(getCubieCube(), numbers = TRUE, blank = TRUE)
aCube <- getCubieCube("Wire")
bCube <- cubieCube("UUUUUUUUU RLLRRRLLR BBFFFFFBB
DDDDDDDDD LRRLLLRRL FFBBBBBFF")
cCube <- cubieCube("UUUUUUUU RLLRRLLR BBFFFFBB
DDDDDDDD LRRLLRRL FFBBBBFF")
aCube <- randCube()
aCube
as.stickerCube(aCube)
sum(sapply(randCube(100, solvable = FALSE), is.solvable))
rCube <- randCube(1, solvable = FALSE)
is.solvable(rCube, split = TRUE)
tcon <- textConnection("D2 F2 U F2 D R2 D B L' B R U L R U L2 F L' U'" )
aCube <- getMovesCube(scan(tcon, what = character()))
close(tcon)
tcon <- textConnection("x2 // inspection
D' R' L2' U' F U' F' D' U' U' R' // XXcross
y' R' U' R // 3rd pair
y' R U' R' U' R U R' // 4th pair
U' R' U' F' U F R // OLL(CP)
U' // AUF")
mv <- scan(tcon, what = character(), comment.char = "/")
close(tcon)
result <- move(aCube, mv)
is.solved(result)
scramble(3, state = TRUE)
res.seq <- move(aCube, mv, history = TRUE)
rCubes <- rotations(randCube())
aCube <- getCubieCube("EasyCheckerboard")
bCube <- move(aCube, "x2")
all.equal(aCube, bCube)
aCube == bCube
identical(aCube, bCube)
identical(aCube, getMovesCube("U2D2R2L2F2B2"))
identical(aCube, invCube(aCube))
aCube <- getCubieCube("BlackMamba")
solver(aCube, divide = TRUE)
tCube <- getCubieCube("EasyCheckerboard")
solver(aCube, tCube, collapse = "-")
solver(randCube(), type = "ZT")
solver(randCube(), type = "TF") |
get.gk.simple<- function(X.vec,Y.scaler,Ti.int,lam,beta,tau1,tau0,
FUNu, rho1, N, n1, ...){
lam<- as.vector(lam)
be<- as.vector(beta)
uk <- FUNu(as.numeric(X.vec))
gk1<- Ti.int*rho1(crossprod(lam, uk),...)*uk - uk
gk2<- (1-Ti.int)*rho1(crossprod(be, uk),...)*uk - uk
gk3<- Ti.int*rho1(crossprod(lam,uk),...)*Y.scaler- tau1
gk4<- (1-Ti.int)*rho1(crossprod(be, uk),...)*Y.scaler - tau0
gk<- c(gk1,gk2,gk3,gk4)
gk
}
get.gk.ATT<- function(X.vec,Y.scaler,Ti.int,beta,tau1,tau0,
FUNu, rho1,N,n1, ...){
be<- as.vector(beta)
uk <- FUNu(as.numeric(X.vec))
frac<-n1/N
gk1<- (1-Ti.int)*rho1(crossprod(be, uk),...)*uk - 1/frac*Ti.int*uk
gk2<- N/n1*(Ti.int*(Y.scaler- tau1))
gk3<- (1-Ti.int)*rho1(crossprod(be, uk),...)*Y.scaler - tau0
gk4<- Ti.int-frac
gk<- c(gk1,gk2,gk3,gk4)
gk
}
get.gk.MT<- function(X.vec,Y.scaler,Ti.int,lam,
FUNu, rho1, big.J, taus, ...){
lam<- as.vector(lam)
uk <- FUNu(as.numeric(X.vec))
K<- length(lam)
gk1<- rep(-uk,big.J)
gk1[(Ti.int*K + 1):((Ti.int+1)*K)]<- rho1(crossprod(lam, uk),...)*uk + gk1[(Ti.int*K + 1):((Ti.int+1)*K)]
gk2<- -taus
gk2[Ti.int+1]<- gk2[Ti.int+ 1] + rho1(crossprod(lam, uk),...)*Y.scaler
c(gk1,gk2)
}
get.cov.simple<- function(X, Y, Ti, FUNu, rho, rho1, rho2, obj,...){
N<- length(Y)
n1<- sum(Ti)
lam<- as.vector(obj$lam.p)
be<- as.vector(obj$lam.q)
tau1<- obj$Y1
tau0<- obj$Y0
umat <- t(apply(X, 1, FUNu))
K<- length(lam)
A<- matrix(0,ncol = 2*K, nrow = 2*K)
C<- matrix(0, ncol = 2*K, nrow = 2)
meat<- matrix(0, ncol = 2*K+2, nrow = 2*K+2)
for(i in 1:N){
A[(1:K),(1:K)]<- A[(1:K),(1:K)] +
Ti[i]*rho2(crossprod(lam, umat[i,]), ...)*tcrossprod(umat[i,])
A[((K+1):(2*K)),((K+1):(2*K))]<- A[((K+1):(2*K)),((K+1):(2*K))] +
(1-Ti[i])*rho2(crossprod(be, umat[i,]),...)*tcrossprod(umat[i,])
C[1,(1:K)]<- C[1,(1:K)] + Ti[i]*rho2(crossprod(lam, umat[i,]), ...)*Y[i]*umat[i,]
C[2,((K+1):(2*K))]<- C[2,((K+1):(2*K))] +
(1-Ti[i])*rho2(crossprod(be, umat[i,]), ...)*Y[i]*umat[i,]
meat<- meat + tcrossprod(get.gk.simple(X[i,], Y[i],Ti[i],
lam,be, tau1,tau0, FUNu, rho1, N, n1,...))
}
A<- A/N
C<- C/N
meat<- meat/N
bread<- matrix(0, nrow = 2*K+2, ncol = 2*K+2)
bread[1:(2*K),1:(2*K)]<- A
bread[2*K+1:2, ]<- cbind(C,diag(c(-1,-1)))
bread<- solve(bread)
(bread%*%meat%*%t(bread))/N
}
get.cov.ATT<- function(X, Y, Ti, FUNu, rho, rho1, rho2, obj,...){
N<- length(Y)
n1<- sum(Ti)
frac<-n1/N
be<- as.vector(obj$lam.q)
tau1<- obj$Y1
tau0<- obj$Y0
umat <- t(apply(X, 1, FUNu))
K<- length(be)
A<- matrix(0,ncol = K, nrow = K)
C<- matrix(0, ncol = K, nrow = 3)
q<- numeric(K)
meat<- matrix(0, ncol = K+3, nrow = K+3)
for(i in 1:N){
A<- A + (1-Ti[i])*rho2(crossprod(be, umat[i,]), ...)*tcrossprod(umat[i,])
C[2,(1:K)]<- C[2,(1:K)] + (1-Ti[i])*rho2(crossprod(be, umat[i,]), ...)*Y[i]*umat[i,]
q <- q+1/frac^2*Ti[i]*umat[i,]
meat<- meat + tcrossprod(get.gk.ATT(X[i,], Y[i], Ti[i], be, tau1, tau0,
FUNu, rho1, N, n1, ...))
}
A<- A/N
C<- C/N
meat<- meat/N
bread<- matrix(0, nrow = K+3, ncol = K+3)
bread[1:K,1:K]<- A
bread[K+1:3, ]<- cbind(C,diag(c(-1,-1,-1)))
bread[1:K,K+3]<- q/N
bread<- solve(bread)
(bread%*%meat%*%t(bread))/N
}
get.cov.MT<- function(X, Y, Ti, FUNu, rho, rho1, rho2, obj,...){
N<- length(Y)
lam.mat<- obj$lam.mat
umat <- t(apply(X, 1, FUNu))
K<- ncol(lam.mat)
J<- length(unique(Ti))
taus<- obj$Yj.hat
A<- matrix(0,ncol = J*K, nrow = J*K)
C<- matrix(0, ncol = J*K, nrow = J)
meat<- matrix(0, ncol = J*K+J, nrow = J*K+J)
for(i in 1:N){
for(j in 0:(J-1) ){
temp.Ti<- 1*(Ti[i]==j)
A[ (j*K + 1):((j + 1)*K) , (j*K + 1):((j + 1)*K) ]<- A[ (j*K + 1):((j + 1)*K) ,
(j*K + 1):((j + 1)*K) ] +
temp.Ti*rho2(crossprod(lam.mat[j+1,], umat[i,]), ...)*tcrossprod(umat[i,])
C[j+1,(j*K + 1):((j + 1)*K)]<- C[j+1,(j*K + 1):((j + 1)*K)]+
temp.Ti*rho2(crossprod(lam.mat[j+1,], umat[i,]), ...)*Y[i]*umat[i,]
}
meat<- meat + tcrossprod(get.gk.MT(X[i,], Y[i], Ti[i],
lam.mat[Ti[i]+1,],FUNu, rho1, J, taus,...))
}
A<- A/N
C<- C/N
meat<- meat/N
bread1<- cbind(A, matrix(0, ncol = J, nrow = J*K))
bread2<- cbind(C, diag(rep(-1, J)))
bread<- rbind(bread1,bread2)
bread<- solve(bread)
(bread%*%meat%*%t(bread))/N
} |
var.asdummy <-
function (x) {
x_length <- length(x)
x_fac <- as.factor(x)
lev <- levels(x_fac)
x_count <- nlevels(x_fac)
dummyvarnames <- list()
dummyname <- 0
for (i in 1:x_count) {
dummyname[i] <- paste (lev[i],"_DUMMY", sep="")
dummyvarnames <- rbind(dummyvarnames, dummyname[i])
}
dummydataset <- data.frame(matrix(0, nrow=x_length, ncol=x_count))
names(dummydataset) <- dummyvarnames
for (i in 1:x_count) {
positionstrue <- which(x_fac == lev[i])
dummydataset[positionstrue,i] <- 1
}
return(dummydataset)
} |
context("sf: wkt")
test_that("well-known text", {
gcol <- st_geometrycollection(list(st_point(1:2), st_linestring(matrix(1:4,2))))
expect_message(x <- print(gcol),
"GEOMETRYCOLLECTION \\(POINT \\(1 2\\), LINESTRING \\(1 3, 2 4\\)\\)", all = TRUE)
expect_equal(x, "GEOMETRYCOLLECTION (POINT (1 2), LINESTRING (1 3, 2 4))")
p1 = st_point(1:3)
p2 = st_point(5:7)
sfc = st_sfc(p1,p2)
expect_identical(st_as_text(sfc), c("POINT Z (1 2 3)", "POINT Z (5 6 7)"))
expect_equal(st_sfc(gcol), st_as_sfc(list("GEOMETRYCOLLECTION (POINT (1 2), LINESTRING (1 3, 2 4))")))
})
test_that("detect ewkt", {
expect_equal(is_ewkt(c("LINESTRING(1663106 -105415,1664320 -104617)",
"SRID=4326;POLYGON(1.0 -2.5,3.2 -5.70000)")),
c(FALSE, TRUE))
})
test_that("can parse ewkt", {
expect_equal(get_crs_ewkt("SRID=4326;POINT(1.0 -2.5,3.2 -5.7)"), 4326)
expect_equal(ewkt_to_wkt("SRID=4326;POINT(1.0 -2.5, 3.2 -5.7)"),
"POINT(1.0 -2.5, 3.2 -5.7)")
expect_equal(ewkt_to_wkt("POINT(1.0 -2.5, 3.2 -5.7)"),
"POINT(1.0 -2.5, 3.2 -5.7)")
})
test_that("can read ewkt", {
expect_equal(st_as_sfc("SRID=3879;LINESTRING(1663106 -105415,1664320 -104617)"),
st_as_sfc("LINESTRING(1663106 -105415,1664320 -104617)", 3879))
expect_equal(st_as_sfc(c("SRID=3879;LINESTRING(1663106 -105415,1664320 -104617)",
"SRID=3879;LINESTRING(0 0,1 1)")),
st_as_sfc(c("LINESTRING(1663106 -105415,1664320 -104617)",
"LINESTRING(0 0,1 1)"), 3879)
)
expect_equal(st_crs(st_as_sfc(c("SRID=3879;LINESTRING(1663106 -105415,1664320 -104617)",
"SRID=3879;LINESTRING(0 0,1 1)"))), st_crs(3879))
expect_error(st_as_sfc(c("SRID=3879;LINESTRING(1663106 -105415,1664320 -104617)",
"SRID=4326;LINESTRING(0 0,1 1)")), "3879, 4326")
}) |
binspwc <- function(y, x, w=NULL,data=NULL, estmethod="reg", family=gaussian(),
quantile=NULL, deriv=0, at=NULL, nolink=F, by=NULL,
pwc=c(3,3), testtype="two-sided", lp=Inf,
bins=c(2,2), bynbins=NULL, binspos="qs",
binsmethod="dpi", nbinsrot=NULL, samebinsby=FALSE, randcut=NULL,
nsims=500, simsgrid=20, simsseed=NULL,
vce=NULL, cluster=NULL, asyvar=F,
dfcheck=c(20,30), masspoints="on", weights=NULL, subset=NULL,
numdist=NULL, numclust=NULL, ...) {
qrot <- 2
xname <- deparse(substitute(x))
yname <- deparse(substitute(y))
byname <- deparse(substitute(by))
if (byname == "NULL") {
print("by variable is required.")
stop()
}
weightsname <- deparse(substitute(weights))
subsetname <- deparse(substitute(subset))
clustername <- deparse(substitute(cluster))
w.factor <- NULL
if (is.null(data)) {
if (is.data.frame(y)) y <- y[,1]
if (is.data.frame(x)) x <- x[,1]
if (!is.null(w)) {
if (is.vector(w)) {
w <- as.matrix(w)
if (is.character(w)) {
w <- model.matrix(~w)[,-1,drop=F]
w.factor <- rep(T, ncol(w))
}
} else if (is.formula(w)) {
w.model <- binsreg.model.mat(w)
w <- w.model$design
w.factor <- w.model$factor.colnum
}
}
} else {
if (xname %in% names(data)) x <- data[,xname]
if (yname %in% names(data)) y <- data[,yname]
if (byname != "NULL") if (byname %in% names(data)) {
by <- data[,byname]
}
if (weightsname != "NULL") if (weightsname %in% names(data)) {
weights <- data[,weightsname]
}
if (subsetname != "NULL") if (subsetname %in% names(data)) {
subset <- data[,subsetname]
}
if (clustername != "NULL") if (clustername %in% names(data)) {
cluster <- data[,clustername]
}
if (deparse(substitute(w))!="NULL") {
if (is.formula(w)) {
if (is.data.frame(at)) {
if (ncol(data)!=ncol(at)) {
data[setdiff(names(at), names(data))] <- NA
at[setdiff(names(data), names(at))] <- NA
}
data <- rbind(data, at)
}
w.model <- binsreg.model.mat(w, data=data)
w <- w.model$design
w.factor <- w.model$factor.colnum
if (is.data.frame(at)) {
eval.w <- w[nrow(w),]
w <- w[-nrow(w),, drop=F]
}
} else {
if (deparse(substitute(w)) %in% names(data)) w <- data[,deparse(substitute(w))]
w <- as.matrix(w)
if (is.character(w)) {
w <- model.matrix(~w)[,-1,drop=F]
w.factor <- rep(T, ncol(w))
}
}
}
}
if (!is.null(w)) nwvar <- ncol(w)
else nwvar <- 0
if (!is.null(subset)) {
y <- y[subset]
x <- x[subset]
w <- w[subset, , drop = F]
by <- by[subset]
if (!is.null(cluster)) cluster <- cluster[subset]
if (!is.null(weights)) weights <- weights[subset]
}
na.ok <- complete.cases(x) & complete.cases(y)
if (!is.null(w)) na.ok <- na.ok & complete.cases(w)
if (!is.null(by)) na.ok <- na.ok & complete.cases(by)
if (!is.null(weights)) na.ok <- na.ok & complete.cases(weights)
if (!is.null(cluster)) na.ok <- na.ok & complete.cases(cluster)
y <- y[na.ok]
x <- x[na.ok]
w <- w[na.ok, , drop = F]
by <- by[na.ok]
weights <- weights[na.ok]
cluster <- cluster[na.ok]
xmin <- min(x); xmax <- max(x)
if (is.null(at)) at <- "mean"
if (!is.null(family)) if (family$family!="gaussian" | family$link!="identity") {
estmethod <- "glm"
}
if (estmethod=="glm") {
familyname <- family$family
linkinv <- family$linkinv
linkinv.1 <- family$mu.eta
if (family$link=="logit") {
linkinv.2 <- function(z) linkinv.1(z)*(1-2*linkinv(z))
} else if (family$link=="probit") {
linkinv.2 <- function(z) (-z)*linkinv.1(z)
} else if (family$link=="identity") {
linkinv.2 <- function(z) 0
} else if (family$link=="log") {
linkinv.2 <- function(z) linkinv(z)
} else if (family$link=="inverse") {
linkinv.2 <- function(z) 2*z^(-3)
} else if (family$link=="1/mu^2") {
linkinv.2 <- function(z) 0.75*z^(-2.5)
} else if (family$link=="sqrt") {
linkinv.2 <- function(z) 2
} else {
print("The specified link not allowed for computing polynomial-based CIs.")
stop()
}
}
if (estmethod=="reg") {
estmethod.name <- "least squares regression"
if (is.null(vce)) vce <- "HC1"
vce.select <- vce
} else if (estmethod=="qreg") {
estmethod.name <- "quantile regression"
if (is.null(vce)) vce <- "nid"
if (vce=="iid") {
vce.select <- "const"
} else {
vce.select <- "HC1"
}
if (is.null(quantile)) quantile <- 0.5
} else if (estmethod=="glm") {
estmethod.name <- "generalized linear model"
if (is.null(vce)) vce <- "HC1"
vce.select <- vce
} else {
print("estmethod incorrectly specified.")
stop()
}
exit <- 0
if (!is.character(binspos)) {
if (min(binspos)<=xmin|max(binspos)>=xmax) {
print("knots out of allowed range")
exit <- 1
}
} else {
if (binspos!="es" & binspos!="qs") {
print("binspos incorrectly specified.")
exit <- 1
}
}
if (length(bins)==2) if (bins[1]<bins[2]) {
print("p<s not allowed.")
exit <- 1
}
if (length(pwc)==2) if (pwc[1]<pwc[2]) {
print("p<s not allowed.")
exit <- 1
}
if (length(pwc)>=1) if (pwc[1]<deriv) {
print("p for test cannot be smaller than deriv.")
exit <- 1
}
if ((length(pwc)>=1)&(length(bins)>=1)) if (pwc[1]<=bins[1]) {
warning("p for testing > p for bin selection is suggested.")
}
if (exit>0) stop()
bins.p <- bins[1]; bins.s <- bins[2]
tsha.p <- pwc[1]; tsha.s <- pwc[2]
if (binsmethod=="dpi") {
selectmethod <- "IMSE direct plug-in"
} else {
selectmethod <- "IMSE rule-of-thumb"
}
nbins_all <- NULL
if (length(bynbins)==1) nbins_all <- bynbins
if (!is.null(bynbins)) {
selectmethod <- "User-specified"
}
localcheck <- massadj <- T; fewmasspoints <- F
if (masspoints=="on") {
localcheck <- T; massadj <- T
} else if (masspoints=="off") {
localcheck <- F; massadj <- F
} else if (masspoints=="noadjust") {
localcheck <- T; massadj <- F
} else if (masspoints=="nolocalcheck") {
localcheck <- F; massadj <- T
} else if (masspoints=="veryfew") {
print("veryfew not allowed for testing.")
stop()
}
byvals <- sort(unique(by))
ngroup <- length(byvals)
xrange <- sapply(byvals, function(byv) range(x[by == byv]))
xminmat <- xrange[1,]; xmaxmat <- xrange[2,]
knot <- NULL
knotlistON <- F
if (!is.character(binspos)) {
nbins_all <- length(binspos)+1
knot <- c(xmin, sort(binspos), xmax)
position <- "User-specified"
es <- F
selectmethod <- "User-specified"
knotlistON <- T
} else {
if (binspos == "es") {
es <- T
position <- "Evenly-spaced"
} else {
es <- F
position <- "Quantile-spaced"
}
}
Ndist <- Nclust <- NA
selectfullON <- F
if (is.null(nbins_all) & samebinsby) selectfullON <- T
if (selectfullON) {
eN <- N <- length(x)
if (massadj) {
Ndist <- length(unique(x))
eN <- min(eN, Ndist)
}
if (!is.null(cluster)) {
Nclust <- length(unique(cluster))
eN <- min(eN, Nclust)
}
if (is.null(nbinsrot)) {
if (eN <= dfcheck[1]+bins.p+1+qrot) {
warning("too small effective sample size for bin selection.")
stop()
}
}
if (is.na(Ndist)) {
Ndist.sel <- NULL
} else {
Ndist.sel <- Ndist
}
if (is.na(Nclust)) {
Nclust.sel <- NULL
} else {
Nclust.sel <- Nclust
}
binselect <- binsregselect(y, x, w, deriv=deriv,
bins=bins, binspos=binspos,
binsmethod=binsmethod, nbinsrot=nbinsrot,
vce=vce.select, cluster=cluster, randcut=randcut,
dfcheck=dfcheck, masspoints=masspoints, weights=weights,
numdist=Ndist.sel, numclust=Nclust.sel)
if (is.na(binselect$nbinsrot.regul)) {
print("bin selection fails.")
stop()
}
if (binsmethod == "rot") {
nbins_all <- binselect$nbinsrot.regul
} else if (binsmethod == "dpi") {
nbins_all <- binselect$nbinsdpi
if (is.na(nbins_all)) {
warning("DPI selection fails. ROT choice used.")
nbins_all <- binselect$nbinsrot.regul
}
}
}
if ((selectfullON | (!is.null(nbins_all) & samebinsby)) & is.null(knot)) {
knotlistON <- T
if (es) {
knot <- genKnot.es(xmin, xmax, nbins_all)
} else {
knot <- genKnot.qs(x, nbins_all)
}
}
knot_all <- NULL
if (knotlistON) {
knot_all <- knot
}
if (!is.null(simsseed)) set.seed(simsseed)
uni_grid <- seq(max(xminmat), min(xmaxmat), length=simsgrid+2)[-c(1,simsgrid+2)]
if (!is.null(w)) {
if (is.character(at)) {
if (at=="mean") {
eval.w <- colWeightedMeans(x=w, w=weights)
if (!is.null(w.factor)) eval.w[w.factor] <- 0
} else if (at=="median") {
eval.w <- colWeightedMedians(x=w, w=weights)
if (!is.null(w.factor)) eval.w[w.factor] <- 0
} else if (at=="zero") {
eval.w <- rep(0, nwvar)
}
} else if (is.vector(at)) {
eval.w <- at
} else if (is.data.frame(at)) {
eval.w <- eval.w
}
} else {
eval.w <- NULL
}
N.by <- Ndist.by <- Nclust.by <- nbins.by <- cval.by <- NULL
fit.sha <- se.sha <- nummat <- denom <- list()
tstat <- matrix(NA, ngroup*(ngroup-1)/2, 3); pval <- matrix(NA, ngroup*(ngroup-1)/2, 1)
counter <- 1
for (i in 1:ngroup) {
sub <- (by == byvals[i])
y.sub <- y[sub]; x.sub <- x[sub]; w.sub <- w[sub, , drop = F]
cluster.sub <- cluster[sub]; weights.sub <- weights[sub]
xmin <- min(x.sub); xmax <- max(x.sub)
eN <- N <- length(x.sub)
N.by <- c(N.by, N)
Ndist <- NA
if (massadj) {
Ndist <- length(unique(x.sub))
eN <- min(eN, Ndist)
}
Ndist.by <- c(Ndist.by, Ndist)
Nclust <- NA
if (!is.null(cluster.sub)) {
Nclust <- length(unique(cluster.sub))
eN <- min(eN, Nclust)
}
Nclust.by <- c(Nclust.by, Nclust)
nbins <- NULL; knot <- NULL
if (!is.null(nbins_all)) nbins <- nbins_all
if (length(bynbins)>1) nbins <- bynbins[i]
if (is.null(nbins) & !knotlistON) {
if (is.null(nbinsrot)) if (eN <= dfcheck[1]+bins.p+1+qrot) {
warning("too small effective sample size for bin selection.")
stop()
}
if (is.na(Ndist)) {
Ndist.sel <- NULL
} else {
Ndist.sel <- Ndist
}
if (is.na(Nclust)) {
Nclust.sel <- NULL
} else {
Nclust.sel <- Nclust
}
binselect <- binsregselect(y.sub, x.sub, w.sub, deriv=deriv,
bins=bins, binspos=binspos,
binsmethod=binsmethod, nbinsrot=nbinsrot,
vce=vce.select, cluster=cluster.sub, randcut=randcut,
dfcheck=dfcheck, masspoints=masspoints, weights=weights.sub,
numdist=Ndist.sel, numclust=Nclust.sel)
if (is.na(binselect$nbinsrot.regul)) {
print("bin selection fails.")
stop()
}
if (binsmethod == "rot") {
nbins <- binselect$nbinsrot.regul
} else if (binsmethod == "dpi") {
nbins <- binselect$nbinsdpi
if (is.na(nbins)) {
warning("DPI selection fails. ROT choice used.")
nbins <- binselect$nbinsrot.regul
}
}
}
if (knotlistON) {
nbins <- length(knot_all)-1
knot <- knot_all
}
if ((nbins-1)*(tsha.p-tsha.s+1)+tsha.p+1+dfcheck[2]>=eN) {
warning("too small effective sample size for testing shape.")
}
if (is.null(knot)) {
if (es) knot <- genKnot.es(xmin, xmax, nbins)
else knot <- genKnot.qs(x.sub, nbins)
}
knot <- c(knot[1], unique(knot[-1]))
if (nbins!=length(knot)-1) {
warning("repeated knots. Some bins dropped.")
nbins <- length(knot)-1
}
nbins.by <- c(nbins.by, nbins)
if (localcheck) {
uniqmin <- binsreg.checklocalmass(x.sub, nbins, es, knot=knot)
if (uniqmin < tsha.p+1) {
warning("some bins have too few distinct values of x for testing.")
}
}
B <- binsreg.spdes(eval=x.sub, p=tsha.p, s=tsha.s, knot=knot, deriv=0)
k <- ncol(B)
P <- cbind(B, w.sub)
if (estmethod=="reg") {
model <- lm(y.sub ~ P-1, weights=weights.sub)
} else if (estmethod=="qreg") {
model <- rq(y.sub ~ P-1, tau=quantile, weights=weights.sub)
} else if (estmethod=="glm") {
model <- glm(y.sub ~ P-1, family=family, weights=weights.sub)
}
beta <- model$coeff[1:k]
basis.sha <- binsreg.spdes(eval=uni_grid, p=tsha.p, s=tsha.s, knot=knot, deriv=deriv)
if (estmethod=="glm" & (!nolink)) {
pred.sha <- binsreg.pred(X=basis.sha, model=model, type="all",
vce=vce, cluster=cluster.sub, deriv=deriv, wvec=eval.w, avar=asyvar)
basis.0 <- binsreg.spdes(eval=uni_grid, p=tsha.p, s=tsha.s, knot=knot, deriv=0)
fit.0 <- binsreg.pred(basis.0, model, type = "xb", vce=vce, cluster=cluster.sub, deriv=0, wvec=eval.w)$fit
pred.sha.0 <- linkinv.1(fit.0)
if (asyvar | deriv==0) {
pred.sha$se <- pred.sha.0 * pred.sha$se
if (deriv == 0) pred.sha$fit <- linkinv(pred.sha$fit)
if (deriv == 1) pred.sha$fit <- pred.sha.0 * pred.sha$fit
} else {
basis.sha.1 <- basis.sha
if (!is.null(eval.w)) {
basis.sha.0 <- cbind(basis.0, outer(rep(1, nrow(basis.0)), eval.w))
basis.sha.1 <- cbind(basis.sha.1, outer(rep(1, nrow(basis.sha.1)), rep(0, nwvar)))
}
basis.all <- linkinv.2(fit.0)*pred.sha$fit*basis.sha.0 + pred.sha.0*basis.sha.1
pred.sha$fit <- pred.sha.0 * pred.sha$fit
pred.sha$se <- binsreg.pred(basis.all, model=model, type="se",
vce=vce, cluster=cluster.sub, avar=T)$se
}
} else {
if (estmethod=="qreg") {
pred.sha <- binsreg.pred(basis.sha, model, type = "all", vce=vce,
cluster=cluster.sub, deriv=deriv, wvec=eval.w,
is.qreg=TRUE, avar=asyvar, ...)
} else {
pred.sha <- binsreg.pred(basis.sha, model, type = "all", vce=vce,
cluster=cluster.sub, deriv=deriv, wvec=eval.w, avar=asyvar)
}
}
fit.sha[[i]] <- pred.sha$fit
se.sha[[i]] <- pred.sha$se
pos <- !is.na(beta)
k.new <- sum(pos)
if (estmethod=="qreg") vcv.sha <- binsreg.vcov(model, type=vce, cluster=cluster.sub, is.qreg=TRUE, ...)[1:k.new, 1:k.new]
else vcv.sha <- binsreg.vcov(model, type=vce, cluster=cluster.sub)[1:k.new, 1:k.new]
Sigma.root <- lssqrtm(vcv.sha)
nummat[[i]] <- basis.sha[,pos,drop=F] %*% Sigma.root
denom[[i]] <- sqrt(rowSums((basis.sha[, pos, drop=F] %*% vcv.sha) * basis.sha[, pos, drop=F]))
if (i>1) {
for (j in 1:(i-1)) {
if (testtype=="left") {
tstat[counter,] <- c(max((fit.sha[[i]]-fit.sha[[j]]) / sqrt(se.sha[[i]]^2+se.sha[[j]]^2)), i, j)
} else if (testtype=="right") {
tstat[counter,] <- c(min((fit.sha[[i]]-fit.sha[[j]]) / sqrt(se.sha[[i]]^2+se.sha[[j]]^2)), i, j)
} else {
if (is.infinite(lp)) {
tstat[counter,] <- c(max(abs((fit.sha[[i]]-fit.sha[[j]]) / sqrt(se.sha[[i]]^2+se.sha[[j]]^2))), i, j)
} else {
tstat[counter,] <- c(mean(((fit.sha[[i]]-fit.sha[[j]]) / sqrt(se.sha[[i]]^2+se.sha[[j]]^2))^lp)^(1/lp), i, j)
}
}
pval[counter,1] <- binspwc.pval(nummat[[i]], nummat[[j]], denom[[i]], denom[[j]], nsims, tstat=tstat[counter,1], testtype=testtype, lp=lp)
counter <- counter+1
}
}
}
out <- list(tstat=tstat, pval=pval,
opt=list(bins.p=bins.p, bins.s=bins.s, deriv=deriv,
pwc.p=tsha.p, pwc.s=tsha.s, byname=byname, testtype=testtype,
binspos=position, binsmethod=selectmethod,
N.by=N.by, Ndist.by=Ndist.by, Nclust.by=Nclust.by,
nbins.by=nbins.by, byvals=byvals, lp=lp,
estmethod=estmethod.name, quantile=quantile, family=family))
out$call <- match.call()
class(out) <- "CCFFbinspwc"
return(out)
}
print.CCFFbinspwc <- function(x, ...) {
cat("Call: binspwc\n\n")
cat("Pairwise Group Comparison\n")
cat(paste("Group Variable = ", x$opt$byname, "\n", sep=""))
cat(paste("Estimation Method (estmethod) = ", x$opt$estmethod, "\n", sep=""))
cat(paste("degree (p) = ", x$opt$pwc.p, "\n", sep=""))
cat(paste("smooth (s) = ", x$opt$pwc.s, "\n", sep=""))
cat(paste("Derivative (deriv) = ", x$opt$deriv, "\n", sep=""))
cat(paste("Bin selection:", "\n"))
cat(paste(" Method (binsmethod) = ", x$opt$binsmethod,"\n", sep=""))
cat(paste(" Placement (binspos) = ", x$opt$binspos, "\n", sep=""))
cat(paste(" degree (p) = ", x$opt$bins.p, "\n", sep=""))
cat(paste(" smooth (s) = ", x$opt$bins.s, "\n", sep=""))
cat("\n")
for (i in 1:length(x$opt$byvals)) {
cat(paste("Group (by) = ", x$opt$byvals[i], "\n", sep=""))
cat(paste("Sample size (n) = ", x$opt$N.by[i], "\n", sep=""))
cat(paste("
cat(paste("
cat(paste("
cat("\n")
}
}
summary.CCFFbinspwc <- function(object, ...) {
x <- object
args <- list(...)
cat("Call: binspwc\n\n")
cat("Pairwise Group Comparison\n")
cat(paste("Group Variable = ", x$opt$byname, "\n", sep=""))
cat(paste("Estimation Method (estmethod) = ", x$opt$estmethod, "\n", sep=""))
cat(paste("degree (p) = ", x$opt$pwc.p, "\n", sep=""))
cat(paste("smooth (s) = ", x$opt$pwc.s, "\n", sep=""))
cat(paste("Derivative (deriv) = ", x$opt$deriv, "\n", sep=""))
cat(paste("Bin selection:", "\n"))
cat(paste(" Method (binsmethod) = ", x$opt$binsmethod,"\n", sep=""))
cat(paste(" Placement (binspos) = ", x$opt$binspos, "\n", sep=""))
cat(paste(" degree (p) = ", x$opt$bins.p, "\n", sep=""))
cat(paste(" smooth (s) = ", x$opt$bins.s, "\n", sep=""))
cat("\n")
for (i in 1:nrow(x$tstat)) {
g1 <- x$tstat[i,2]; g2 <- x$tstat[i,3]
group1 <- x$opt$byvals[g1]; group2 <- x$opt$byvals[g2]
cat(paste("Group", group1, " vs. Group", group2)); cat("\n")
cat(paste(rep("=", 22 + 12 + 12), collapse="")); cat("\n")
cat(format(paste("Group ", x$opt$byname, " =", sep=""), width = 22, justify = "left"))
cat(format(group1, width = 12, justify = "right"))
cat(format(group2, width = 12, justify = "right"))
cat("\n")
cat(paste(rep("-", 22 + 12 + 12), collapse="")); cat("\n")
cat("\n")
cat(format("Sample size", width=22, justify="left"))
cat(format(x$opt$N.by[g1], width=12, justify="right"))
cat(format(x$opt$N.by[g2], width=12, justify="right"))
cat("\n")
cat(format("
cat(format(x$opt$Ndist.by[g1], width=12, justify="right"))
cat(format(x$opt$Ndist.by[g2], width=12, justify="right"))
cat("\n")
cat(format("
cat(format(x$opt$Nclust.by[g1], width=12, justify="right"))
cat(format(x$opt$Nclust.by[g2], width=12, justify="right"))
cat("\n")
cat(format("
cat(format(x$opt$nbins.by[g1], width=12, justify="right"))
cat(format(x$opt$nbins.by[g2], width=12, justify="right"))
cat("\n")
cat(paste(rep("-", 22 + 12 + 12), collapse="")); cat("\n")
cat("\n")
cat(paste("diff = Group", group1, "- Group", group2, sep=" ")); cat("\n")
cat(paste(rep("=", 15 + 12 + 12), collapse="")); cat("\n")
if (x$opt$testtype=="left") {
cat(format("H0:", width = 15, justify = "left"))
cat(format("sup T", width = 12, justify = "right"))
cat(format("p value", width = 12, justify = "right"))
cat("\n")
cat(paste(rep("-", 15 + 12 + 12), collapse="")); cat("\n")
cat(format("diff<=0", width = 15, justify = "left"))
cat(format(sprintf("%3.3f", x$tstat[i,1]), width = 12, justify = "right"))
cat(format(sprintf("%3.3f", x$pval[i,1]), width = 12, justify = "right"))
cat("\n")
cat(paste(rep("-", 15 + 12 + 12), collapse=""))
cat("\n")
} else if (x$opt$testtype=="right") {
cat(format("H0:", width = 15, justify = "left"))
cat(format("inf T", width = 12, justify = "right"))
cat(format("p value", width = 12, justify = "right"))
cat("\n")
cat(paste(rep("-", 15 + 12 + 12), collapse="")); cat("\n")
cat(format("diff>=0", width = 15, justify = "left"))
cat(format(sprintf("%3.3f", x$tstat[i,1]), width = 12, justify = "right"))
cat(format(sprintf("%3.3f", x$pval[i,1]), width = 12, justify = "right"))
cat("\n")
cat(paste(rep("-", 15 + 12 + 12), collapse=""))
cat("\n")
} else {
if (is.infinite(x$opt$lp)) {
cat(format("H0:", width = 15, justify = "left"))
cat(format("sup |T|", width = 12, justify = "right"))
cat(format("p value", width = 12, justify = "right"))
cat("\n")
cat(paste(rep("-", 15 + 12 + 12), collapse="")); cat("\n")
cat(format("diff=0", width = 15, justify = "left"))
cat(format(sprintf("%3.3f", x$tstat[i,1]), width = 12, justify = "right"))
cat(format(sprintf("%3.3f", x$pval[i,1]), width = 12, justify = "right"))
cat("\n")
cat(paste(rep("-", 15 + 12 + 12), collapse=""))
cat("\n")
} else {
cat(format("H0:", width = 15, justify = "left"))
cat(format(paste("L", x$opt$lp, " of T", sep=""), width = 12, justify = "right"))
cat(format("p value", width = 12, justify = "right"))
cat("\n")
cat(paste(rep("-", 15 + 12 + 12), collapse="")); cat("\n")
cat(format("diff=0", width = 15, justify = "left"))
cat(format(sprintf("%3.3f", x$tstat[i,1]), width = 12, justify = "right"))
cat(format(sprintf("%3.3f", x$pval[i,1]), width = 12, justify = "right"))
cat("\n")
cat(paste(rep("-", 15 + 12 + 12), collapse=""))
cat("\n")
}
}
cat("\n"); cat("\n")
}
cat("\n")
} |
draw_grid_panel <- function(data, panel_params, coord, grob, debug) {
if (!is.null(debug)) {
coords <- coord$transform(data, panel_params)
debug(data, coords)
}
if (is.grob(grob)) {
grob
} else {
if (!is.function(grob))
stop("Invalid grob in GeomPanel")
coords <- coord$transform(data, panel_params)
grob(data, coords)
}
}
grid_panel <- function(grob=nullGrob(),
mapping = NULL, data = NULL, stat = "identity",
position = "identity", inherit.aes = TRUE,
show.legend = FALSE,
key_glyph = NULL,
debug = NULL, ...) {
if (!is.grob(grob) && !is.function(grob))
stop("Invalid 'grob' argument; must be grob or function")
if (!is.null(debug) && !is.function(debug))
stop("Invalid 'debug' argument: must be NULL or function")
if (is.null(mapping)) {
required_aes <- NULL
} else {
required_aes <- names(mapping)
}
if (packageVersion("ggplot2") <= "3.3.5") {
default_aes = aes(xmin = -Inf, xmax = -Inf)
} else {
default_aes = aes()
}
GeomGridPanel <- ggproto("GeomGridPanel", Geom,
required_aes = required_aes,
default_aes = default_aes,
draw_panel = draw_grid_panel)
layer(geom = GeomGridPanel,
mapping = mapping,
data = data,
stat = stat,
position = position,
inherit.aes = inherit.aes,
check.aes = FALSE,
show.legend = show.legend,
key_glyph = key_glyph,
params = list(grob = grob, debug = debug, ...))
} |
.plotGeneCount <- function(curve, counts = NULL, gene = NULL, clusters = NULL,
models = NULL, title = NULL){
rd <- slingshot::slingReducedDim(curve)
if (!is.null(gene)) {
logcounts <- log1p(counts[gene, ])
cols <- logcounts
scales <- scale_color_gradient(low = "yellow", high = 'red')
if (is.null(title)) title <- paste0("logged count of gene ", gene)
} else {
cols <- as.character(clusters)
scales <- NULL
if (is.null(title)) title <- "Clusters"
}
df <- data.frame(dim1 = rd[, 1], dim2 = rd[, 2], col = cols)
p <- ggplot(df, aes(x = dim1, y = dim2, col = col)) +
geom_point(size = 1) +
theme_classic() +
labs(col = title) +
scales
for (i in seq_along(slingCurves(curve))) {
curve_i <- slingCurves(curve)[[i]]
curve_i <- curve_i$s[curve_i$ord, seq_len(2)]
colnames(curve_i) <- c("dim1", "dim2")
p <- p + geom_path(data = as.data.frame(curve_i), col = "black", size = 1)
}
nCurves <- length(slingCurves(curve))
if (!is.null(models)) {
if (is(models, "list")) {
sce <- FALSE
} else if(is(models, "SingleCellExperiment")){
sce <- TRUE
}
if(!sce){
m <- .getModelReference(models)
knots <- m$smooth[[1]]$xp
} else if(sce){
knots <- S4Vectors::metadata(models)$tradeSeq$knots
}
knots_dim <- matrix(ncol = 2, nrow = nCurves * length(knots))
for (ii in seq_along(slingCurves(curve))) {
S <- project_to_curve(x = slingCurves(curve)[[ii]]$s,
s = slingCurves(curve)[[ii]]$s[slingCurves(curve)[[ii]]$ord, ],
stretch = 0)
for (jj in seq_along(knots)) {
kn <- knots[jj]
times <- S$lambda
knot <- which.min(abs(times - kn))
knots_dim[jj + (ii-1)*length(knots), ] <- S$s[knot, seq_len(2)]
}
}
knots_dim <- as.data.frame(knots_dim)
colnames(knots_dim) <- c("dim1", "dim2")
p <- p +
geom_point(data = knots_dim, col = "black", size = 2)
}
return(p)
}
setMethod(f = "plotGeneCount", signature = c(curve = "SlingshotDataSet"),
definition = function(curve,
counts = NULL,
gene = NULL,
clusters = NULL,
models = NULL,
title = NULL){
if (is.null(gene) & is.null(clusters)) {
stop("Either gene and counts, or clusters argument must be supplied")
}
if (is.null(counts) & is.null(clusters)) {
stop("Either gene and counts, or clusters argument must be supplied")
}
p <- .plotGeneCount(curve = curve,
counts = counts,
gene = gene,
clusters = clusters,
models = models,
title = title)
return(p)
}
)
setMethod(f = "plotGeneCount", signature = c(curve = "PseudotimeOrdering"),
definition = function(curve,
counts = NULL,
gene = NULL,
clusters = NULL,
models = NULL,
title = NULL){
if (is.null(gene) & is.null(clusters)) {
stop("Either gene and counts, or clusters argument must be supplied")
}
if (is.null(counts) & is.null(clusters)) {
stop("Either gene and counts, or clusters argument must be supplied")
}
p <- .plotGeneCount(curve = curve,
counts = counts,
gene = gene,
clusters = clusters,
models = models,
title = title)
return(p)
}
)
setMethod(f = "plotGeneCount", signature = c(curve = "SingleCellExperiment"),
definition = function(curve,
counts = NULL,
gene = NULL,
clusters = NULL,
models = NULL,
title = NULL){
if (!is.null(counts)) {
message(paste0("The count argument will be ignored if the curve argument",
"is a SingleCellExperiment object"))
}
p <- plotGeneCount(curve = slingshot::SlingshotDataSet(curve),
counts = SingleCellExperiment::counts(curve),
gene = gene,
clusters = clusters,
models = models,
title = title)
return(p)
}
) |
gce_make_image_source_url <- function(image_project,
image = NULL,
family = NULL){
if(is.null(image)){
stopifnot(!is.null(family))
}
if(is.null(image)){
img_obj <- gce_get_image_family(image_project, family)
} else {
img_obj <- gce_get_image(image_project, image)
}
gsub("https://www.googleapis.com/compute/v1/","",img_obj$selfLink)
}
gce_get_image <- function(image_project, image) {
url <- sprintf("https://www.googleapis.com/compute/v1/projects/%s/global/images/%s",
image_project, image)
f <- gar_api_generator(url, "GET", data_parse_function = function(x) x)
f()
}
gce_get_image_family <- function(image_project, family) {
url <- sprintf("https://www.googleapis.com/compute/v1/projects/%s/global/images/family/%s",
image_project, family)
f <- gar_api_generator(url, "GET", data_parse_function = function(x) x)
f()
}
gce_list_images <- function(image_project,
filter = NULL,
maxResults = NULL,
pageToken = NULL) {
url <- sprintf("https://www.googleapis.com/compute/v1/projects/%s/global/images",
image_project)
pars <- list(filter = filter, maxResults = maxResults,
pageToken = pageToken)
pars <- rmNullObs(pars)
f <- gar_api_generator(url,
"GET",
pars_args = pars,
data_parse_function = function(x) x)
f()
} |
summarise <- function(.data, ..., .groups = NULL) {
UseMethod("summarise")
}
summarize <- summarise
summarise.data.frame <- function(.data, ..., .groups = NULL) {
cols <- summarise_cols(.data, dplyr_quosures(...), caller_env = caller_env())
out <- summarise_build(.data, cols)
if (identical(.groups, "rowwise")) {
out <- rowwise_df(out, character())
}
out
}
summarise.grouped_df <- function(.data, ..., .groups = NULL) {
cols <- summarise_cols(.data, dplyr_quosures(...), caller_env = caller_env())
out <- summarise_build(.data, cols)
verbose <- summarise_verbose(.groups, caller_env())
if (is.null(.groups)) {
if (cols$all_one) {
.groups <- "drop_last"
} else {
.groups <- "keep"
}
}
group_vars <- group_vars(.data)
if (identical(.groups, "drop_last")) {
n <- length(group_vars)
if (n > 1) {
if (verbose) {
new_groups <- glue_collapse(paste0("'", group_vars[-n], "'"), sep = ", ")
summarise_inform("has grouped output by {new_groups}")
}
out <- grouped_df(out, group_vars[-n], group_by_drop_default(.data))
}
} else if (identical(.groups, "keep")) {
if (verbose) {
new_groups <- glue_collapse(paste0("'", group_vars, "'"), sep = ", ")
summarise_inform("has grouped output by {new_groups}")
}
out <- grouped_df(out, group_vars, group_by_drop_default(.data))
} else if (identical(.groups, "rowwise")) {
out <- rowwise_df(out, group_vars)
} else if(!identical(.groups, "drop")) {
bullets <- c(
paste0("`.groups` can't be ", as_label(.groups)),
i = 'Possible values are NULL (default), "drop_last", "drop", "keep", and "rowwise"'
)
abort(bullets)
}
out
}
summarise.rowwise_df <- function(.data, ..., .groups = NULL) {
cols <- summarise_cols(.data, dplyr_quosures(...), caller_env = caller_env())
out <- summarise_build(.data, cols)
verbose <- summarise_verbose(.groups, caller_env())
group_vars <- group_vars(.data)
if (is.null(.groups) || identical(.groups, "keep")) {
if (verbose && length(group_vars)) {
new_groups <- glue_collapse(paste0("'", group_vars, "'"), sep = ", ")
summarise_inform("has grouped output by {new_groups}")
}
out <- grouped_df(out, group_vars)
} else if (identical(.groups, "rowwise")) {
out <- rowwise_df(out, group_vars)
} else if (!identical(.groups, "drop")) {
bullets <- c(
paste0("`.groups` can't be ", as_label(.groups)),
i = 'Possible values are NULL (default), "drop", "keep", and "rowwise"'
)
abort(bullets)
}
out
}
summarise_cols <- function(.data, dots, caller_env, error_call = caller_env()) {
error_call <- dplyr_error_call(error_call)
mask <- DataMask$new(.data, caller_env, "summarise", error_call = error_call)
old_current_column <- context_peek_bare("column")
on.exit(context_poke("column", old_current_column), add = TRUE)
on.exit(mask$forget(), add = TRUE)
cols <- list()
sizes <- 1L
chunks <- vector("list", length(dots))
types <- vector("list", length(dots))
chunks <- list()
results <- list()
types <- list()
out_names <- character()
withCallingHandlers({
for (i in seq_along(dots)) {
context_poke("column", old_current_column)
quosures <- expand_across(dots[[i]])
quosures_results <- map(quosures, summarise_eval_one, mask = mask)
for (k in seq_along(quosures)) {
quo <- quosures[[k]]
quo_data <- attr(quo, "dplyr:::data")
quo_result <- quosures_results[[k]]
if (is.null(quo_result)) {
next
}
types_k <- quo_result$types
chunks_k <- quo_result$chunks
results_k <- quo_result$results
if (!quo_data$is_named && is.data.frame(types_k)) {
chunks_extracted <- .Call(dplyr_extract_chunks, chunks_k, types_k)
types_k_names <- names(types_k)
for (j in seq_along(chunks_extracted)) {
mask$add_one(
name = types_k_names[j],
chunks = chunks_extracted[[j]],
result = results_k[[j]]
)
}
chunks <- append(chunks, chunks_extracted)
types <- append(types, as.list(types_k))
results <- append(results, results_k)
out_names <- c(out_names, types_k_names)
} else {
name <- quo_data$name_auto
mask$add_one(name = name, chunks = chunks_k, result = results_k)
chunks <- append(chunks, list(chunks_k))
types <- append(types, list(types_k))
results <- append(results, list(results_k))
out_names <- c(out_names, name)
}
}
}
recycle_info <- .Call(`dplyr_summarise_recycle_chunks`, chunks, mask$get_rows(), types, results)
chunks <- recycle_info$chunks
sizes <- recycle_info$sizes
results <- recycle_info$results
for (i in seq_along(chunks)) {
result <- results[[i]] %||% vec_c(!!!chunks[[i]], .ptype = types[[i]])
cols[[ out_names[i] ]] <- result
}
},
error = function(e) {
what <- "computing"
index <- i
if (inherits(e, "dplyr:::summarise_incompatible_size")) {
index <- e$dplyr_error_data$index
what <- "recycling"
}
local_error_context(dots = dots, .index = index, mask = mask)
bullets <- c(
cnd_bullet_header(what),
summarise_bullets(e)
)
abort(bullets, call = error_call,
parent = skip_internal_condition(e)
)
})
list(new = cols, size = sizes, all_one = identical(sizes, 1L))
}
summarise_eval_one <- function(quo, mask) {
quo_data <- attr(quo, "dplyr:::data")
if (!is.null(quo_data$column)) {
context_poke("column", quo_data$column)
chunks_k <- withCallingHandlers(
mask$eval_all_summarise(quo),
error = function(cnd) {
msg <- glue("Problem while computing column `{quo_data$name_auto}`.")
abort(msg, call = call("across"), parent = cnd)
}
)
} else {
chunks_k <- mask$eval_all_summarise(quo)
}
if (is.null(chunks_k)) {
return(NULL)
}
types_k <- dplyr_vec_ptype_common(chunks_k, quo_data$name_auto)
chunks_k <- vec_cast_common(!!!chunks_k, .to = types_k)
result_k <- vec_c(!!!chunks_k, .ptype = types_k)
list(chunks = chunks_k, types = types_k, results = result_k)
}
summarise_build <- function(.data, cols) {
out <- group_keys(.data)
if (!cols$all_one) {
out <- vec_slice(out, rep(seq_len(nrow(out)), cols$size))
}
dplyr_col_modify(out, cols$new)
}
summarise_bullets <- function(cnd, ..) {
UseMethod("summarise_bullets")
}
summarise_bullets.default <- function(cnd, ...) {
c(i = cnd_bullet_cur_group_label())
}
`summarise_bullets.dplyr:::error_incompatible_combine` <- function(cnd, ...) {
c()
}
`summarise_bullets.dplyr:::summarise_unsupported_type` <- function(cnd, ...) {
result <- cnd$dplyr_error_data$result
error_name <- peek_error_context()$error_name
c(
x = glue("`{error_name}` must be a vector, not {friendly_type_of(result)}."),
i = cnd_bullet_rowwise_unlist(),
i = cnd_bullet_cur_group_label()
)
}
`summarise_bullets.dplyr:::summarise_incompatible_size` <- function(cnd, ...) {
expected_size <- cnd$dplyr_error_data$expected_size
size <- cnd$dplyr_error_data$size
group <- cnd$dplyr_error_data$group
error_context <- peek_error_context()
error_name <- error_context$error_name
peek_mask()$set_current_group(group)
c(
x = glue("`{error_name}` must be size {or_1(expected_size)}, not {size}."),
i = glue("An earlier column had size {expected_size}."),
i = cnd_bullet_cur_group_label()
)
}
`summarise_bullets.dplyr:::summarise_mixed_null` <- function(cnd, ...) {
error_name <- peek_error_context()$error_name
c(
x = glue("`{error_name}` must return compatible vectors across groups."),
x = "Can't combine NULL and non NULL results."
)
}
summarise_verbose <- function(.groups, .env) {
is.null(.groups) &&
is_reference(topenv(.env), global_env()) &&
!identical(getOption("dplyr.summarise.inform"), FALSE)
}
summarise_inform <- function(..., .env = parent.frame()) {
inform(paste0(
"`summarise()` ", glue(..., .envir = .env), '. You can override using the `.groups` argument.'
))
} |
compareCrimes <- function(Pairs,crimedata,varlist,binary=TRUE,longlat=FALSE,
show.pb=FALSE,...){
if(class(crimedata) != 'data.frame') crimedata = as.data.frame(crimedata)
if(!all(unlist(varlist) %in% colnames(crimedata)))
stop("There are names in varlist that don't match column names in crimedata")
valid.types = c("crimeID","spatial","temporal","categorical","numerical")
if( !all(names(varlist) %in% valid.types) )
warning(paste(setdiff(names(varlist),valid.types), '(from varlist)',
'is not a valid type of crime data and will not be used to',
'make evidence variables.'))
crimeID = as.character(crimedata$crimeID)
i1 = match(Pairs[,1],crimeID)
i2 = match(Pairs[,2],crimeID)
d.spat = d.temp = d.cat = d.num = NA
if(!is.null(varlist$spatial)){
spatial = crimedata[varlist$spatial]
if(ncol(spatial) != 2) stop("spatial must be a data.frame of spatial coordinates
with two columns")
d.spat = compareSpatial(spatial[i1,1:2],spatial[i2,1:2],longlat=longlat)
}
if(!is.null(varlist$temporal)){
temporal = crimedata[varlist$temporal]
if(ncol(temporal) == 1) temporal = cbind(temporal,temporal)
d.temp = compareTemporal(temporal[i1,1:2],temporal[i2,1:2],show.pb=show.pb,...)
}
catNames = varlist$categorical
if(!is.null(catNames)){
d.cat = data.frame(matrix(nrow=length(i1),ncol=length(catNames),
dimnames=list(NULL,catNames)))
for(cat in catNames){
d.cat[,cat] = compareCategorical(crimedata[i1,cat],crimedata[i2,cat],
binary=binary)
}
}
numNames = varlist$numerical
if(!is.null(numNames)){
d.num = data.frame(matrix(nrow=length(i1),ncol=length(numNames),
dimnames=list(NULL,numNames)))
for(num in numNames){
d.num[,num] = compareNumeric(crimedata[i1,num],crimedata[i2,num])
}
}
Dist = data.frame(spatial=d.spat,d.temp,d.cat,d.num)
Dist[sapply(Dist,function(x) all(is.na(x)))] <- list(NULL)
E = cbind(Pairs,Dist,stringsAsFactors=FALSE)
rownames(E) <- NULL
return(E)
}
compareTemporal <- function(DT1,DT2,show.pb=FALSE,...){
L1 = as.numeric(abs(difftime(DT1[,2],DT1[,1],units='hours')))
L2 = as.numeric(abs(difftime(DT2[,2],DT2[,1],units='hours')))
day1 = as.numeric(julian(DT1[,1]))
day2 = as.numeric(julian(DT2[,1]))
tod1 = (as.numeric(DT1[,1])/3600) %% 24
tod2 = (as.numeric(DT2[,1])/3600) %% 24
dow1 = (as.numeric(DT1[,1])/(3600*24)) %% 7
dow2 = (as.numeric(DT2[,1])/(3600*24)) %% 7
n = length(L1)
temporal = tod = dow = numeric(n)
if(show.pb) pb = txtProgressBar(style=3,max=n)
for(i in 1:n){
temporal[i] = expAbsDiff(c(day1[i],day1[i]+L1[i]/24),c(day2[i],day2[i]+L2[i]/24))
tod[i] = expAbsDiff.circ(c(tod1[i],tod1[i]+L1[i]),c(tod2[i],tod2[i]+L2[i]),mod=24,...)
dow[i] = expAbsDiff.circ(c(dow1[i],dow1[i]+L1[i]/24),c(dow2[i],dow2[i]+L2[i]/24),mod=7,...)
if(show.pb) setTxtProgressBar(pb,i)
}
if(show.pb) close(pb)
return(data.frame(temporal,tod,dow) )
}
expAbsDiff <- function(X,Y){
if(X[2]<X[1]) stop("X[2] < X[1]")
if(Y[2]<Y[1]) stop("Y[2] < Y[1]")
if(X[1]<=Y[1]){
Sx = X
Sy = Y
} else{
Sx = Y
Sy = X
}
if(Sx[2] <= Sy[1]){
return(mean(Sy) - mean(Sx))
}
bks = sort(c(Sx,Sy))
sz = diff(bks)
mids = bks[-1] - sz/2
if(Sx[2] <= Sy[2]){
px = sz*c(1,1,0) / diff(Sx)
py = sz*c(0,1,1) / diff(Sy)
return(
(mids[2]-mids[1])*px[1]*py[2] +
(mids[3]-mids[1])*px[1]*py[3]+
(sz[2]/3)*px[2]*py[2] +
(mids[3]-mids[2])*px[2]*py[3] )
}
if(Sx[2] > Sy[2]){
px = sz*c(1,1,1) / diff(Sx)
return(
(mids[2]-mids[1])*px[1] +
(sz[2]/3)*px[2] +
(mids[3]-mids[2])*px[3]
)
}
}
expAbsDiff.circ <- function(X,Y,mod=24,n=2000,method="convolution"){
if(X[1]<0 | Y[1]<0) stop("X and Y must be >0")
if(diff(X)>=mod | diff(Y)>=mod) return(mod/4)
if(diff(X)==0) return(getD(X[1],Y,mod=mod))
if(diff(Y)==0) return(getD(Y[1],X,mod=mod))
if(method=="convolution"){
while((n %% 2) != 0) n = nextn(n+1)
theta = seq(0,mod,length=n+1)
delta = diff(theta[1:2])
x = diff(punif(theta,X[1],X[2])) + diff(punif(theta+mod,X[1],X[2]))
y = diff(punif(theta,Y[1],Y[2])) + diff(punif(theta+mod,Y[1],Y[2]))
conv = convolve(x,y,conj=TRUE,type="circular")
tt = ifelse(theta<=mod/2,theta,mod-theta)[-(n+1)]
d = sum(tt*conv)
}
if(method=="numerical"){
if(diff(Y)<diff(X)){
tt = seq(Y[1],Y[2],length=n)
d = mean(getD(tt,X,mod=mod))
} else{
tt = seq(X[1],X[2],length=n)
d = mean(getD(tt,Y,mod=mod))
}
}
return(d)
}
getD <- function(y,X,mod=24){
if(X[1] > mod | X[1] < 0) stop("Minimum X[1] not within limits [0,mod)")
if(X[2] < X[1]) stop("X[2] must be >= X[1]")
y = (y - X[1]) %% mod
B = X[2] - X[1]
if(B == 0) return(mod/2-abs(mod/2-abs(y)))
if(B >= mod) return(rep(mod/4,length(y)))
D = numeric(length(y))
if(diff(X)>=mod/2){
K = mod - B/2 - (mod/2)^2/B
u = y-mod/2
i1 = (y <= B-mod/2)
D[i1] = y[i1]*(1-mod/B) + K
i2 = (y > B-mod/2 & y <= mod/2)
D[i2] = (y[i2]-B/2)^2/B +B/4
i3 = (y > mod/2 & y <= B)
D[i3] = (B-y[i3])*(1-mod/B) + K
i4 = (y > B)
D[i4] = mod/2 - B/4 - ((u[i4]-B/2))^2/B
}
else{
u = y-B/2
i1 = (y<B)
D[i1] = u[i1]^2/B + B/4
i2 = (y>=B & y<=mod/2)
D[i2] = u[i2]
i3 = (y>mod/2 & y<=B+mod/2)
D[i3] = mod/2 - ((y[i3]-mod/2)^2 + (B-y[i3]+mod/2)^2) /(2*B)
i4 = (y > B+mod/2)
D[i4] = mod - u[i4]
}
return(D)
}
compareSpatial <- function(C1,C2,longlat=FALSE){
if(longlat) d = geosphere::distHaversine(C1,C2)
else d = sqrt(rowSums((C1 - C2)^2))
return(d/1000)
}
compareNumeric <- function(C1,C2) abs(C1 - C2)
compareCategorical <- function(C1,C2,levs,binary=FALSE){
if(binary){
match.na = is.na(C1) & is.na(C2)
match.value = as.character(C1)==as.character(C2)
B = ifelse(match.value | match.na,1,0)
B[is.na(B)] = 0
return(factor(B,levels=c(0,1)))
}
C1 = as.factor(C1); C2 = as.factor(C2)
if(missing(levs)) levs = sort(unique(levels(C1),levels(C2)))
A = data.frame(C1=factor(C1,levels=levs), C2=factor(C2,levels=levs))
flip = which(is.na(A[,1]) | unclass(A[,1]) > unclass(A[,2]))
A[flip,] = A[flip,2:1]
B = paste(A[,1],A[,2],sep=':')
B = factor(B,levels=catLevels(levs))
return(B)
}
catLevels <- function(levs){
levs = unique(c(levs,NA))
nlevs = length(levs)
a = NULL
for(i in 1:nlevs){
b = cbind(levs[i],levs[i:nlevs])
a = rbind(a,b)
}
levs2 = paste(a[,1],a[,2],sep=':')
return(levs2)
} |
get_girth <- function(graph) {
fcn_name <- get_calling_fcn()
if (graph_object_valid(graph) == FALSE) {
emit_error(
fcn_name = fcn_name,
reasons = "The graph object is not valid")
}
if (nrow(graph$nodes_df) == 0) {
return(as.numeric(NA))
}
ig_graph <- to_igraph(graph)
igraph::girth(ig_graph, circle = FALSE)$girth
} |
Cuestas_Garratt_unit_root<-function(x,max_lags,lsm){
x<-as.vector(x)
trend<-seq(0,length(x)-1,1)
mod=lm(x~trend+trend^2+trend^3)
x<-residuals(mod)
AICs = NULL
BICs = NULL
tstats = NULL
for(i in 1:max_lags){
z=diff(x)
n=length(z)
z.diff=embed(z, i+1)[,1]
kup=x^3
z.lag.1=kup[(i+1):n]
kare=x^2
z.lag.2=kare[(i+1):n]
k=i+1
z.diff.lag = embed(z, i+1)[, 2:k]
model<-lm(z.diff~z.lag.1+z.lag.2+0+z.diff.lag )
AICs[i+1] = AIC(model)
BICs[i+1] = BIC(model)
tstats[i+1] = summary(model)$coefficients[(i+2),4]
}
z=diff(x)
n=length(z)
z.diffzero=embed(z, 2)[,1]
kupzero=x^3
z.lag.zero.1=kupzero[2:n]
karezero=x^2
z.lag.zero.2=karezero[2:n]
model0<-lm(z.diffzero~z.lag.zero.1+z.lag.zero.2+0)
AICs[1] = AIC(model0)
BICs[1] = BIC(model0)
tstats[1] = 0.0000
if(lsm == 1){
uygun_lag=which.min(AICs)-1
}
else if(lsm == 2){
uygun_lag=which.min(BICs)-1
}
else {
for (ti in (max_lags+1):1){
if (tstats[ti] <= 0.10){
uygun_lag = ti-1
break
}
}
}
z.diff=embed(z, uygun_lag+1)[,1]
kup=x^3
z.lag.1=kup[(uygun_lag+1):n]
kare=x^2
z.lag.2=kare[(uygun_lag+1):n]
k=uygun_lag+1
if(uygun_lag == 0){
son <- lm(z.diff~z.lag.1+z.lag.2+0)
ay <- linearHypothesis(son, c("z.lag.1=0","z.lag.2=0"), test="Chisq")
} else {
z.diff.lag = embed(z, uygun_lag+1)[, 2:k]
son <- lm(z.diff~z.lag.1+z.lag.2+0+z.diff.lag)
ay <- linearHypothesis(son, c("z.lag.1=0","z.lag.2=0"), test="Chisq")
}
perc <- c("1%","5%","10%")
val <- c(22.44,17.27,14.97)
CV = cbind(perc,val)
my_list <- list("Model" = summary(son), "Selected lag"=uygun_lag, "Test Statistic"=ay$Chisq[2], "CV"=CV)
return(my_list)
} |
HR_data <- breakDown::HR_data
str(HR_data)
library(randomForest)
model_rf <- randomForest(average_montly_hours ~ last_evaluation + salary + satisfaction_level, data = HR_data)
library(xspliner)
model_xs <- xspline(
average_montly_hours ~ last_evaluation + xf(salary, transition = list(value = 2)) + satisfaction_level,
model = model_rf
)
summary(model_xs)
summary(model_xs, "salary")
plot_variable_transition(model_xs, "salary")
iris_data <- droplevels(iris[iris$Species != "setosa", ])
library(e1071)
library(xspliner)
model_svm <- svm(Species ~ Sepal.Length + Sepal.Width + Petal.Length + Petal.Width,
data = iris_data, probability = TRUE)
model_xs <- xspline(Species ~ xs(Sepal.Length) + xs(Sepal.Width) + xs(Petal.Length) + xs(Petal.Width),
model = model_svm)
summary(model_xs)
plot_variable_transition(model_xs, "Petal.Width") |
print.sparsenet=function(x,digits = max(3, getOption("digits") - 3),...){
cat("\nCall: ", deparse(x$call), "\n\n")
coeflist=x$coefficients
rsq=x$rsq
gnames=names(coeflist)
for(i in seq(along=coeflist)){
x=coeflist[[i]]
cat(gnames[i],": Gamma = ",signif(x$gamma,digits),"\n")
print(cbind(Df=x$df,"Rsq"=signif(rsq[i,],digits),Lambda=signif(x$lambda,digits)))
}
} |
expected <- c("bibtex", "tex")
test(id=0, code={
argv <- structure(list(x = c("bibtex", "tex"), y = ".svn"), .Names = c("x",
"y"))
do.call('setdiff', argv);
}, o = expected);
|
NULL
NULL
subsetConstraints <- function(x, i = NULL) {
if (!inherits(x, "constraints")) {
stop("'x' must be a 'constraints' object")
}
if (!validObject(x)) {
stop("'x' is not a valid 'constraints' object")
}
if (is.null(i)) {
return(x)
}
if (!all(i %in% 1:nrow(x@constraints))) {
stop("'i' contains constraint indices not defined in @constraints")
}
tmp <- x@constraints[i, ]
idx_to_drop <- which(toupper(names(x@constraints)) == "CONSTRAINT")
tmp <- tmp[, -idx_to_drop]
o <- loadConstraints(
tmp,
x@pool,
x@item_attrib,
x@st_attrib
)
return(o)
}
combineConstraintsData <- function(raw1, raw2) {
tmp <- setdiff(names(raw1), names(raw2))
raw2[tmp] <- NA
tmp <- setdiff(names(raw2), names(raw1))
raw1[tmp] <- NA
raw <- rbind(raw1, raw2)
idx <- which(!duplicated(raw$CONSTRAINT))
raw <- raw[idx, ]
return(raw)
}
combineConstraints <- function(x1, x2) {
if (!inherits(x1, "constraints") || !inherits(x2, "constraints")) {
stop("operands must be 'constraints' objects")
}
if (!validObject(x1)) {
stop("'x1' is not a valid 'constraints' object")
}
if (!validObject(x2)) {
stop("'x2' is not a valid 'constraints' object")
}
if (!identical(x1@pool, x2@pool)) {
stop("@pool does not match")
}
if (!identical(x1@item_attrib, x2@item_attrib)) {
stop("@item_attrib does not match")
}
if (!identical(x1@st_attrib, x2@st_attrib)) {
stop("@st_attrib does not match")
}
raw <- combineConstraintsData(x1@constraints, x2@constraints)
o <- loadConstraints(raw, x1@pool, x1@item_attrib, x1@st_attrib)
id <- c(x1@constraints$CONSTRAINT, x1@constraints$CONSTRAINT)
if (sum(duplicated(id)) > 0) {
warning(sprintf("duplicate constraint IDs were removed: %s", paste0(id[duplicated(id)], collapse = ", ")))
}
return(o)
}
setMethod(
f = "[",
signature = c("constraints", "numeric"),
definition = function(x, i, j, ...) {
return(subsetConstraints(x, i))
}
)
setMethod(
f = "c",
signature = "constraints",
definition = function(x, ...) {
arg <- list(...)
o <- x
for (tmp in arg) {
o <- combineConstraints(o, tmp)
}
return(o)
}
)
toggleConstraints <- function(object, on = NULL, off = NULL) {
nc <- nrow(object@constraints)
if (length(intersect(on, off)) > 0) {
stop("toggleConstraints: 'on' and 'off' must have no values in common")
}
if (!"ONOFF" %in% names(object@constraints)) {
object@constraints[["ONOFF"]] <- ""
}
if (inherits(on, "character")) {
on <- sapply(
on,
function(x) {
which(object@constraints[["CONSTRAINT_ID"]] == x)
}
)
}
if (inherits(off, "character")) {
off <- sapply(
off,
function(x) {
which(object@constraints[["CONSTRAINT_ID"]] == x)
}
)
}
if (!is.null(on)) {
if (any(!is.element(on, 1:nc))) {
stop(sprintf("toggleConstraints: 'on' should be within c(1:nc), nc = %s", nc))
}
for (index in on) {
object@list_constraints[[index]]@suspend <- FALSE
object@constraints[index, "ONOFF"] <- ""
}
}
if (!is.null(off)) {
if (any(!is.element(off, 1:nc))) {
stop(sprintf("toggleConstraints: 'off' should be within c(1:nc), nc = %s", nc))
}
for (index in off) {
object@list_constraints[[index]]@suspend <- TRUE
object@constraints[index, "ONOFF"] <- "OFF"
}
}
index <- NULL
mat <- NULL
dir <- NULL
rhs <- NULL
for (i in 1:nc) {
if (object@constraints[["TYPE"]][i] != "ORDER" && !object@list_constraints[[i]]@suspend) {
object@list_constraints[[i]]@nc <- nrow(object@list_constraints[[i]]@mat)
mat <- rbind(mat, object@list_constraints[[i]]@mat)
dir <- c(dir, object@list_constraints[[i]]@dir)
rhs <- c(rhs, object@list_constraints[[i]]@rhs)
index <- c(index, rep(object@list_constraints[[i]]@constraint, object@list_constraints[[i]]@nc))
}
}
object@index <- index
object@mat <- mat
object@dir <- dir
object@rhs <- rhs
return(object)
} |
ip_op <- function(ped, name_Oe = "Oe", compute_O = FALSE, name_O = "O", Fcol = NULL, ncores = 1L, genedrop = 0, seed = NULL, complex = NULL) {
check_basic(ped, "id", "dam", "sire")
F_ <- check_Fcol(ped, Fcol)
check_not_col(base::colnames(ped), name_O)
check_not_col(base::colnames(ped), name_Oe)
check_bool(compute_O)
if (!base::is.null(complex)) base::warning("Argument 'complex' was deprecated in v1.3. It will be ignored.")
pkm <- ip_Fij(ped, mode = "all", Fcol = Fcol, ncores = ncores, genedrop = genedrop, seed = seed)
.Call(`_purgeR_op`, ped, pkm, Fcol = F_, name_O, name_Oe, "_raw", compute_O)
} |
library(rstanarm)
library(lme4)
SEED <- 12345
ITER <- 100
CHAINS <- 2
CORES <- 2
REFRESH <- 0
threshold <- 0.05
source(test_path("helpers", "expect_stanreg.R"))
context("stan_nlmer")
data("Orange", package = "datasets")
Orange$circumference <- Orange$circumference / 100
Orange$age <- Orange$age / 100
fit <- stan_nlmer(circumference ~ SSlogis(age, Asym, xmid, scal) ~ Asym|Tree,
data = Orange, prior = NULL, cores = CORES, init_r = 1,
chains = CHAINS, seed = SEED, refresh = 0, QR = TRUE)
startvec <- c(Asym = 200, xmid = 725, scal = 350) / 100
ml <- nlmer(circumference ~ SSlogis(age, Asym, xmid, scal) ~ Asym|Tree,
data = Orange, start = startvec)
test_that("stan_nlmer runs for Orange example", {
expect_stanreg(fit)
})
test_that("stan_nlmer is similar to nlmer on Orange example", {
expect_equal(fixef(ml), fixef(fit), tol = threshold)
})
test_that("stan_nlmer throws error if formula includes an unknown function", {
expect_error(stan_nlmer(circumference ~ SSfoo(age, Asym, xmid, scal) ~ Asym|Tree,
data = Orange),
regexp = "self-starting nonlinear function")
})
test_that("loo/waic for stan_nlmer works", {
source(test_path("helpers", "expect_equivalent_loo.R"))
})
context("posterior_predict (stan_nlmer)")
test_that("compatible with stan_nlmer", {
source(test_path("helpers", "check_for_error.R"))
check_for_error(fit)
}) |
gam <- 0.998
gam2 <- 0.818
y <- c(0.9510650, 0.8726557, 1.0582002)
n <- length(y)
params <- gam
c1 <- computeFittedValues(y, c(0), params, "ar1")
X <- gam ^(0:(n-1))
fit <- lm(y ~ X - 1)
c2 <- fit$fitted.values
test_that("correct fitted values for ar1", {expect_equal(c1, c2)})
params <- gam
c1 <- computeFittedValues(y, c(0), params, "intercept")
X <- cbind(gam ^ (0:(n-1)), rep(1, n))
fit <- lm(y ~ X - 1)
c2 <- fit$fitted.values
test_that("correct fitted values for intercept", {expect_equal(c1, c2)}) |
my.plot.scatter3d <- function(x, y = NULL, z = NULL, color = par("col"), pch = NULL,
main = NULL, sub = NULL, xlim = NULL, ylim = NULL, zlim = NULL,
xlab = NULL, ylab = NULL, zlab = NULL, scale.y = 1, angle = 40,
axis = TRUE, tick.marks = TRUE, label.tick.marks = TRUE,
x.ticklabs = NULL, y.ticklabs = NULL, z.ticklabs = NULL,
y.margin.add = 0, grid = TRUE, box = FALSE, lab = par("lab"),
lab.z = mean(lab[1:2]), type = "p", highlight.3d = FALSE,
mar = c(5, 3, 4, 3) + 0.1, col.axis = par("col.axis"),
col.grid = "grey", col.lab = par("col.lab"), cex.symbols = par("cex"),
cex.axis = 0.8 * par("cex.axis"), cex.lab = par("cex.lab"),
font.axis = par("font.axis"), font.lab = par("font.lab"),
lty.axis = par("lty"), lty.grid = 2, lty.hide = 1,
lty.hplot = par("lty"), log = "", ...)
{
mem.par <- par(mar = mar)
x.scal <- y.scal <- z.scal <- 1
xlabel <- if (!missing(x)) deparse(substitute(x))
ylabel <- if (!missing(y)) deparse(substitute(y))
zlabel <- if (!missing(z)) deparse(substitute(z))
if(!is.null(d <- dim(x)) && (length(d) == 2) && (d[2] >= 4))
color <- x[,4]
else if(is.list(x) && !is.null(x$color))
color <- x$color
xyz <- xyz.coords(x=x, y=y, z=z, xlab=xlabel, ylab=ylabel, zlab=zlabel,
log=log)
if(is.null(xlab)) { xlab <- xyz$xlab; if(is.null(xlab)) xlab <- "" }
if(is.null(ylab)) { ylab <- xyz$ylab; if(is.null(ylab)) ylab <- "" }
if(is.null(zlab)) { zlab <- xyz$zlab; if(is.null(zlab)) zlab <- "" }
if(length(color) == 1)
color <- rep(color, length(xyz$x))
else if(length(color) != length(xyz$x))
stop("length(color) ", "must be equal length(x) or 1")
angle <- (angle %% 360) / 90
yz.f <- scale.y * abs(if(angle < 1) angle else if(angle > 3) angle - 4 else 2 - angle)
yx.f <- scale.y * (if(angle < 2) 1 - angle else angle - 3)
if(angle > 2) {
temp <- xyz$x; xyz$x <- xyz$y; xyz$y <- temp
temp <- xlab; xlab <- ylab; ylab <- temp
temp <- xlim; xlim <- ylim; ylim <- temp
}
angle.1 <- (1 < angle && angle < 2) || angle > 3
angle.2 <- 1 <= angle && angle <= 3
dat <- cbind(as.data.frame(xyz[c("x","y","z")]), col = color)
n <- nrow(dat);
y.range <- range(dat$y[is.finite(dat$y)])
if(type == "p" || type == "h") {
y.ord <- rev(order(dat$y))
dat <- dat[y.ord, ]
if(length(pch) > 1)
if(length(pch) != length(y.ord))
stop("length(pch) ", "must be equal length(x) or 1")
else pch <- pch[y.ord]
daty <- dat$y
daty[!is.finite(daty)] <- mean(daty[is.finite(daty)])
if(highlight.3d && !(all(diff(daty) == 0)))
dat$col <- rgb(seq(0, 1, length = n) * (y.range[2] - daty) / diff(y.range), g=0, b=0)
}
p.lab <- par("lab")
y.range <- range(dat$y[is.finite(dat$y)], ylim)
y.prty <- pretty(y.range, n = lab[2],
min.n = max(1, min(.5 * lab[2], p.lab[2])))
y.scal <- round(diff(y.prty[1:2]), digits = 12)
y.add <- min(y.prty)
dat$y <- (dat$y - y.add) / y.scal
y.max <- (max(y.prty) - y.add) / y.scal
x.range <- range(dat$x[is.finite(dat$x)], xlim)
x.prty <- pretty(x.range, n = lab[1],
min.n = max(1, min(.5 * lab[1], p.lab[1])))
x.scal <- round(diff(x.prty[1:2]), digits = 12)
dat$x <- dat$x / x.scal
x.range <- range(x.prty) / x.scal
x.max <- ceiling(x.range[2])
x.min <- floor(x.range[1])
if(!is.null(xlim)) {
x.max <- max(x.max, ceiling(xlim[2] / x.scal))
x.min <- min(x.min, floor(xlim[1] / x.scal))
}
x.range <- range(x.min, x.max)
z.range <- range(dat$z[is.finite(dat$z)], zlim)
z.prty <- pretty(z.range, n = lab.z,
min.n = max(1, min(.5 * lab.z, p.lab[2])))
z.scal <- round(diff(z.prty[1:2]), digits = 12)
dat$z <- dat$z / z.scal
z.range <- range(z.prty) / z.scal
z.max <- ceiling(z.range[2])
z.min <- floor(z.range[1])
if(!is.null(zlim)) {
z.max <- max(z.max, ceiling(zlim[2] / z.scal))
z.min <- min(z.min, floor(zlim[1] / z.scal))
}
z.range <- range(z.min, z.max)
plot.new()
if(angle.2) {x1 <- x.min + yx.f * y.max; x2 <- x.max}
else {x1 <- x.min; x2 <- x.max + yx.f * y.max}
plot.window(c(x1, x2), c(z.min, z.max + yz.f * y.max))
temp <- strwidth(format(rev(y.prty))[1], cex = cex.axis/par("cex"))
if(angle.2) x1 <- x1 - temp - y.margin.add
else x2 <- x2 + temp + y.margin.add
plot.window(c(x1, x2), c(z.min, z.max + yz.f * y.max))
if(angle > 2) par("usr" = par("usr")[c(2, 1, 3:4)])
usr <- par("usr")
title(main, sub, ...)
xx <- if(angle.2) c(x.min, x.max) else c(x.max, x.min)
if(grid) {
i <- x.min:x.max;
segments(i, z.min, i + (yx.f * y.max), yz.f * y.max + z.min,
col = col.grid, lty = lty.grid);
i <- 0:y.max;
segments(x.min + (i * yx.f), i * yz.f + z.min,
x.max + (i * yx.f), i * yz.f + z.min,
col = col.grid, lty = lty.grid);
temp <- yx.f * y.max;
temp1 <- yz.f * y.max;
i <- (x.min + temp):(x.max + temp);
segments(i, z.min + temp1, i, z.max + temp1,
col = col.grid, lty = lty.grid);
i <- (z.min + temp1):(z.max + temp1);
segments(x.min + temp, i, x.max + temp, i,
col = col.grid, lty = lty.grid)
i <- xx[2]:x.min;
mm <- z.min:z.max;
segments(i, mm, i + temp, mm + temp1,
col = col.grid, lty = lty.grid);
i <- 0:y.max;
segments(x.min + (i * yx.f), i * yz.f + z.min,
xx[2] + (i * yx.f), i * yz.f + z.max,
col = col.grid, lty = lty.grid)
segments(x.min, z.min, x.min + (yx.f * y.max), yz.f * y.max + z.min,
col = col.grid, lty = lty.hide);
segments(x.max, z.min, x.max + (yx.f * y.max), yz.f * y.max + z.min,
col = col.axis, lty = lty.hide);
segments(x.min + (y.max * yx.f), y.max * yz.f + z.min,
x.max + (y.max* yx.f), y.max * yz.f + z.min,
col = col.grid, lty = lty.hide);
segments(x.min + temp, z.min + temp1, x.min + temp, z.max + temp1,
col = col.grid, lty = lty.hide);
segments(x.max + temp, z.min + temp1, x.max + temp, z.max + temp1,
col = col.axis, lty = lty.hide);
segments(x.min + temp, z.max + temp1, x.max + temp, z.max + temp1,
col = col.axis, lty = lty.hide);
segments(xx[2], z.max, xx[2] + temp, z.max + temp1,
col = col.axis, lty = lty.hide);
}
if(axis) {
if(tick.marks) {
xtl <- (z.max - z.min) * (tcl <- -par("tcl")) / 50
ztl <- (x.max - x.min) * tcl / 50
mysegs <- function(x0,y0, x1,y1)
segments(x0,y0, x1,y1, col=col.axis, lty=lty.axis)
i.y <- 0:y.max
mysegs(yx.f * i.y - ztl + xx[1], yz.f * i.y + z.min,
yx.f * i.y + ztl + xx[1], yz.f * i.y + z.min)
i.x <- x.min:x.max
mysegs(i.x, -xtl + z.min, i.x, xtl + z.min)
i.z <- z.min:z.max
mysegs(-ztl + xx[2], i.z, ztl + xx[2], i.z)
if(label.tick.marks) {
las <- par("las")
mytext <- function(labels, side, at, ...)
mtext(text = labels, side = side, at = at, line = -.5,
col=col.lab, cex=cex.axis, font=font.lab, ...)
if(is.null(x.ticklabs))
x.ticklabs <- format(i.x * x.scal)
mytext(x.ticklabs, side = 1, at = i.x)
if(is.null(z.ticklabs))
z.ticklabs <- format(i.z * z.scal)
mytext(z.ticklabs, side = if(angle.1) 4 else 2, at = i.z,
adj = if(0 < las && las < 3) 1 else NA)
temp <- if(angle > 2) rev(i.y) else i.y
if(is.null(y.ticklabs))
y.ticklabs <- format(y.prty)
else if (angle > 2)
y.ticklabs <- rev(y.ticklabs)
text(i.y * yx.f + xx[1],
i.y * yz.f + z.min, y.ticklabs,
pos=if(angle.1) 2 else 4, offset=1,
col=col.lab, cex=cex.axis/par("cex"), font=font.lab)
}
}
mytext2 <- function(lab, side, line, at)
mtext(lab, side = side, line = line, at = at, col = col.lab,
cex = cex.lab, font = font.axis, las = 0)
lines(c(x.min, x.max), c(z.min, z.min), col = col.axis, lty = lty.axis)
mytext2(xlab, 1, line = 1.5, at = mean(x.range))
lines(xx[1] + c(0, y.max * yx.f), c(z.min, y.max * yz.f + z.min),
col = col.axis, lty = lty.axis)
mytext2(ylab, if(angle.1) 2 else 4, line= 0.5, at = z.min + y.max * yz.f)
lines(xx[c(2,2)], c(z.min, z.max), col = col.axis, lty = lty.axis)
mytext2(zlab, if(angle.1) 4 else 2, line= 1.5, at = mean(z.range))
}
x <- dat$x + (dat$y * yx.f)
z <- dat$z + (dat$y * yz.f)
col <- as.character(dat$col)
if(type == "h") {
z2 <- dat$y * yz.f + z.min
segments(x, z, x, z2, col = col, cex = cex.symbols, lty = lty.hplot, ...)
points(x, z, type = "p", col = col, pch = pch, cex = cex.symbols, ...)
}
else points(x, z, type = type, col = col, pch = pch, cex = cex.symbols, ...)
if(axis && box) {
lines(c(x.min, x.max), c(z.max, z.max),
col = col.axis, lty = lty.axis)
lines(c(0, y.max * yx.f) + x.max, c(0, y.max * yz.f) + z.max,
col = col.axis, lty = lty.axis)
lines(xx[c(1,1)], c(z.min, z.max), col = col.axis, lty = lty.axis)
}
ob <- ls()
rm(list = ob[!ob %in% c("angle", "mar", "usr", "x.scal", "y.scal", "z.scal", "yx.f",
"yz.f", "y.add", "z.min", "z.max", "x.min", "x.max", "y.max",
"x.prty", "y.prty", "z.prty")])
rm(ob)
invisible(list(
xyz.convert = function(x, y=NULL, z=NULL) {
xyz <- xyz.coords(x, y, z)
if(angle > 2) {
temp <- xyz$x; xyz$x <- xyz$y; xyz$y <- temp
}
y <- (xyz$y - y.add) / y.scal
return(list(x = xyz$x / x.scal + yx.f * y,
y = xyz$z / z.scal + yz.f * y))
},
points3d = function(x, y = NULL, z = NULL, type = "p", ...) {
xyz <- xyz.coords(x, y, z)
if(angle > 2) {
temp <- xyz$x; xyz$x <- xyz$y; xyz$y <- temp
}
y2 <- (xyz$y - y.add) / y.scal
x <- xyz$x / x.scal + yx.f * y2
y <- xyz$z / z.scal + yz.f * y2
mem.par <- par(mar = mar, usr = usr)
on.exit(par(mem.par))
if(type == "h") {
y2 <- z.min + yz.f * y2
segments(x, y, x, y2, ...)
points(x, y, type = "p", ...)
}
else points(x, y, type = type, ...)
},
plane3d = function(Intercept, x.coef = NULL, y.coef = NULL,
lty = "dashed", lty.box = NULL, ...){
if(!is.atomic(Intercept) && !is.null(coef(Intercept))) Intercept <- coef(Intercept)
if(is.null(lty.box)) lty.box <- lty
if(is.null(x.coef) && length(Intercept) == 3){
x.coef <- Intercept[if(angle > 2) 3 else 2]
y.coef <- Intercept[if(angle > 2) 2 else 3]
Intercept <- Intercept[1]
}
mem.par <- par(mar = mar, usr = usr)
on.exit(par(mem.par))
x <- x.min:x.max
ltya <- c(lty.box, rep(lty, length(x)-2), lty.box)
x.coef <- x.coef * x.scal
z1 <- (Intercept + x * x.coef + y.add * y.coef) / z.scal
z2 <- (Intercept + x * x.coef +
(y.max * y.scal + y.add) * y.coef) / z.scal
segments(x, z1, x + y.max * yx.f, z2 + yz.f * y.max, lty = ltya, ...)
y <- 0:y.max
ltya <- c(lty.box, rep(lty, length(y)-2), lty.box)
y.coef <- (y * y.scal + y.add) * y.coef
z1 <- (Intercept + x.min * x.coef + y.coef) / z.scal
z2 <- (Intercept + x.max * x.coef + y.coef) / z.scal
segments(x.min + y * yx.f, z1 + y * yz.f,
x.max + y * yx.f, z2 + y * yz.f, lty = ltya, ...)
},
wall3d = function(Intercept, x.coef = NULL, y.coef = NULL,
lty = "dashed", lty.box = NULL, ...){
if(!is.atomic(Intercept) && !is.null(coef(Intercept))) Intercept <- coef(Intercept)
if(is.null(lty.box)) lty.box <- lty
if(is.null(x.coef) && length(Intercept) == 3){
x.coef <- Intercept[if(angle > 2) 3 else 2]
y.coef <- Intercept[if(angle > 2) 2 else 3]
Intercept <- Intercept[1]
}
mem.par <- par(mar = mar, usr = usr)
on.exit(par(mem.par))
x <- x.min:x.max
ltya <- c(lty.box, rep(lty, length(x)-2), lty.box)
x.coef <- x.coef * x.scal
z1 <- (Intercept + x * x.coef + y.add * y.coef) / z.scal
z2 <- (Intercept + x * x.coef +
(y.max * y.scal + y.add) * y.coef) / z.scal
segments(x, z1, x + y.max * yx.f, z2 + yz.f * y.max, lty = ltya, ...)
y <- 0:y.max
ltya <- c(lty.box, rep(lty, length(y)-2), lty.box)
y.coef <- (y * y.scal + y.add) * y.coef
z1 <- (Intercept + x.min * x.coef + y.coef) / z.scal
z2 <- (Intercept + x.max * x.coef + y.coef) / z.scal
segments(x.min + y * yx.f, z1 + y * yz.f,
x.max + y * yx.f, z2 + y * yz.f, lty = ltya, ...)
},
box3d = function(...){
mem.par <- par(mar = mar, usr = usr)
on.exit(par(mem.par))
lines(c(x.min, x.max), c(z.max, z.max), ...)
lines(c(0, y.max * yx.f) + x.max, c(0, y.max * yz.f) + z.max, ...)
lines(c(0, y.max * yx.f) + x.min, c(0, y.max * yz.f) + z.max, ...)
lines(c(x.max, x.max), c(z.min, z.max), ...)
lines(c(x.min, x.min), c(z.min, z.max), ...)
lines(c(x.min, x.max), c(z.min, z.min), ...)
}
))
} |
updateableInput <- function(inputType) {
function(...) {
shinyFuncName <- as.character(as.list(match.call()[1]))
shinyFunc <- get(shinyFuncName, envir = as.environment("package:shiny"))
shiny::tagAppendAttributes(
shinyFunc(...),
`data-input-type` = inputType
)
}
}
textInput <- updateableInput("Text")
numericInput <- updateableInput("Numeric")
selectInput <- updateableInput("Select")
updateShinyInput <- function(session, id, value) {
shinyUpdateInputId <- paste0("shiny-update-input-", id)
js$getInputType(id, shinyUpdateInputId)
shiny::observeEvent(session$input[[shinyUpdateInputId]], {
inputType <- session$input[[shinyUpdateInputId]]
updateFunc <- sprintf("update%sInput", inputType)
funcParams <- list(session = session, inputId = id)
if (inputType == "Select") {
funcParams[['selected']] <- value
} else {
funcParams[['value']] <- value
}
do.call(updateFunc, funcParams)
})
}
updateShinyInputs <- function(session, updates) {
lapply(names(updates), function(id) {
updateShinyInput(session, id, updates[[id]])
})
} |
MINTknown=function(x,y,k,ky,w=FALSE,wy=FALSE,y0){
n=dim(cbind(x,y))[1]
B=dim(as.matrix(y0))[1]%/%n
nullstat=rep(0,B)
for(b in 1:B){
yb=as.matrix(y0)[((b-1)*n+1):(b*n),]
nullstat[b]=KLentropy(yb,k=ky,weights=wy)[[2]]-KLentropy(cbind(x,yb),k=k,weights=w)[[2]]
}
data=cbind(x,y)
stat=KLentropy(y,k=ky,weights=wy)[[2]]-KLentropy(data,k=k,weights=w)[[2]]
p=(1+sum(nullstat>=stat))/(B+1)
return(p)
} |
library(BoomSpikeSlab)
library(testthat)
require(MASS)
set.seed(31417)
cat("test-probit\n")
test_that("random seed gives repeatability", {
n <- 100
niter <- 1000
x <- rnorm(n)
beta0 <- -3
beta1 <- 1
probits <- beta0 + beta1*x
probabilities <- pnorm(probits)
y <- as.numeric(runif(n) <= probabilities)
model1 <- probit.spike(y ~ x, niter = niter, expected.model.size = 3,
seed = 31417, ping = -1)
model2 <- probit.spike(y ~ x, niter = niter, expected.model.size = 3,
seed = 31417, ping = -1)
expect_equal(model1$beta, model2$beta)
model1 <- probit.spike(y ~ x, niter = niter, seed = 31417, ping = -1)
model2 <- probit.spike(y ~ x, niter = niter, seed = 31417, ping = -1)
expect_equal(model1$beta, model2$beta)
})
test_that("Pima Indians", {
if (requireNamespace("MASS")) {
data(Pima.tr, package = "MASS")
data(Pima.te, package = "MASS")
pima <- rbind(Pima.tr, Pima.te)
niter <- 1000
sample.size <- nrow(pima)
m <- probit.spike(type == "Yes" ~ ., data = pima, niter = niter,
seed = 31417, ping = -1)
expect_true(!is.null(m$beta))
expect_true(is.matrix(m$beta))
expect_equal(dim(m$beta), c(1000, 8))
expect_equal(length(m$fitted.probabilities), sample.size)
expect_equal(length(m$fitted.probits), sample.size)
expect_equal(length(m$deviance.residuals), sample.size)
expect_equal(length(m$log.likelihood), niter, ping = -1)
expect_true(!is.null(m$prior))
m.summary <- summary(m)
expect_true(!is.null(m.summary$coefficients))
expect_true(is.matrix(m.summary$predicted.vs.actual))
expect_equal(ncol(m.summary$predicted.vs.actual), 2)
expect_equal(nrow(m.summary$predicted.vs.actual), 10)
expect_equal(length(m.summary$deviance.r2.distribution), 1000)
expect_equal(length(m.summary$deviance.r2), 1)
expect_true(is.numeric(m.summary$deviance.r2))
expect_true(m.summary$max.log.likelihood >= m.summary$mean.log.likelihood)
expect_true(m.summary$max.log.likelihood > m.summary$null.log.likelihood)
m <- probit.spike(type == "Yes" ~ ., data = Pima.tr, niter = niter,
seed = 31417, ping = -1)
predictions <- predict(m, newdata = Pima.te)
}
})
test_that("probit works with small number of cases", {
x <- matrix(rnorm(45), ncol = 9)
x <- cbind(1, x)
y <- rep(FALSE, nrow(x))
expect_warning(
m <- probit.spike(y ~ x, niter = 100, seed = 31417),
"Fudging around the fact that prior.success.probability is zero. Setting it to 0.14286")
}) |
d2th_dmu2_mk <- function(fml){
switch(fml,
binomial = function(mu, mi) 1 / (mi - mu)^2 - 1 / mu^2,
poisson = function(mu, mi) - 1 / mu^2,
Gamma = function(mu, mi) - 2 / mu^3,
inverse.gaussian = function(mu, mi) - 3 / mu^4
)
} |
suppressMessages(library("caret"))
suppressMessages(library("mlbench"))
suppressMessages(library("pROC"))
library("caret")
library("mlbench")
library("pROC")
data(Sonar)
set.seed(107)
inTrain <- createDataPartition(y = Sonar$Class, p = .75, list = FALSE)
training <- Sonar[ inTrain,]
testing <- Sonar[-inTrain,]
my_control <- trainControl(
method="boot",
number=25,
savePredictions="final",
classProbs=TRUE,
index=createResample(training$Class, 25),
summaryFunction=twoClassSummary
)
library("rpart")
library("caretEnsemble")
model_list <- caretList(
Class~., data=training,
trControl=my_control,
methodList=c("glm", "rpart")
)
p <- as.data.frame(predict(model_list, newdata=head(testing)))
print(p)
knitr::kable(p)
suppressMessages(library("mlbench"))
suppressMessages(library("randomForest"))
suppressMessages(library("nnet"))
library("mlbench")
library("randomForest")
library("nnet")
model_list_big <- caretList(
Class~., data=training,
trControl=my_control,
metric="ROC",
methodList=c("glm", "rpart"),
tuneList=list(
rf1=caretModelSpec(method="rf", tuneGrid=data.frame(.mtry=2)),
rf2=caretModelSpec(method="rf", tuneGrid=data.frame(.mtry=10), preProcess="pca"),
nn=caretModelSpec(method="nnet", tuneLength=2, trace=FALSE)
)
)
xyplot(resamples(model_list))
modelCor(resamples(model_list))
greedy_ensemble <- caretEnsemble(
model_list,
metric="ROC",
trControl=trainControl(
number=2,
summaryFunction=twoClassSummary,
classProbs=TRUE
))
summary(greedy_ensemble)
library("caTools")
model_preds <- lapply(model_list, predict, newdata=testing, type="prob")
model_preds <- lapply(model_preds, function(x) x[,"M"])
model_preds <- data.frame(model_preds)
ens_preds <- predict(greedy_ensemble, newdata=testing, type="prob")
model_preds$ensemble <- ens_preds
caTools::colAUC(model_preds, testing$Class)
varImp(greedy_ensemble)
knitr::kable(varImp(greedy_ensemble))
glm_ensemble <- caretStack(
model_list,
method="glm",
metric="ROC",
trControl=trainControl(
method="boot",
number=10,
savePredictions="final",
classProbs=TRUE,
summaryFunction=twoClassSummary
)
)
model_preds2 <- model_preds
model_preds2$ensemble <- predict(glm_ensemble, newdata=testing, type="prob")
CF <- coef(glm_ensemble$ens_model$finalModel)[-1]
colAUC(model_preds2, testing$Class)
CF/sum(CF)
suppressMessages(library("gbm"))
suppressMessages(library("plyr"))
library("gbm")
gbm_ensemble <- caretStack(
model_list,
method="gbm",
verbose=FALSE,
tuneLength=10,
metric="ROC",
trControl=trainControl(
method="boot",
number=10,
savePredictions="final",
classProbs=TRUE,
summaryFunction=twoClassSummary
)
)
model_preds3 <- model_preds
model_preds3$ensemble <- predict(gbm_ensemble, newdata=testing, type="prob")
colAUC(model_preds3, testing$Class) |
NULL
decisionSupport <- function(inputFilePath, outputPath, welfareFunction, numberOfModelRuns,
randomMethod="calculate",
functionSyntax="data.frameNames",
relativeTolerance=0.05,
write_table=TRUE,
plsrVipAnalysis=TRUE,
individualEvpiNames=NULL,
sortEvpiAlong=if(individualEvpiNames) individualEvpiNames[[1]] else NULL,
oldInputStandard=FALSE,
verbosity=1){
if(!oldInputStandard){
estimateObject<-estimate_read_csv(fileName=inputFilePath)
}else{
estimateObject<-estimate_read_csv_old(fileName=inputFilePath)
}
if(verbosity > 0)
cat("Estimate read from file: ",inputFilePath, "\n")
if(verbosity > 1)
print(estimateObject)
if ( !file.exists(outputPath) )
dir.create(outputPath, recursive=TRUE)
if(verbosity > 0)
cat("Performing Monte Carlo Simulation for the Welfare Decision Analysis:\n")
welfareDecisionResults<-welfareDecisionAnalysis(estimate=estimateObject,
welfare=welfareFunction,
numberOfModelRuns=numberOfModelRuns,
randomMethod=randomMethod,
functionSyntax=functionSyntax,
relativeTolerance=relativeTolerance,
verbosity=verbosity)
if(verbosity > 0)
cat("Monte Carlo Simulation for Welfare Decision Analysis done.\n")
if(verbosity > 1){
print(summary(welfareDecisionResults$mcResult))
print(summary(welfareDecisionResults))
}
if (write_table){
mcSimulationResultsFilePath<-file.path(outputPath, "mcSimulationResults.csv")
write.csv(data.frame(welfareDecisionResults$mcResult$x,welfareDecisionResults$mcResult$y),
mcSimulationResultsFilePath)
if (verbosity > 0)
cat("Monte Carlo results written into file: ", mcSimulationResultsFilePath, "\n")
}
for(i in names(welfareDecisionResults$mcResult$y)) {
png(file.path(outputPath, paste(i, "_distribution.png",sep="")), width=1000, height=500)
par(mar=c(5.1,5.1,4.1,2.1))
hist(welfareDecisionResults$mcResult, lwd=3, cex.lab=2 ,cex.axis=2, prob=FALSE, resultName=i)
dev.off()
}
mcSummary<-summary(welfareDecisionResults$mcResult, digits=2)
mcSimulationSummaryFilePath<-file.path(outputPath,"mcSummary.csv")
write.csv(mcSummary$summary,mcSimulationSummaryFilePath)
if (verbosity > 0)
cat("Monte Carlo summary written into file: ", mcSimulationSummaryFilePath, "\n")
welfareDecisionSummary<-summary(welfareDecisionResults, digits=2)
welfareDecisionSummaryFilePath<-file.path(outputPath,"welfareDecisionSummary.csv")
write.csv(welfareDecisionSummary$summary,welfareDecisionSummaryFilePath)
if (verbosity > 0)
cat("Welfare Decision Analysis summary written into file: ", welfareDecisionSummaryFilePath, "\n")
if(plsrVipAnalysis){
if (!requireNamespace("chillR", quietly = TRUE))
stop("Package \"chillR\" needed. Please install it.",
call. = FALSE)
for(i in names(welfareDecisionResults$mcResult$y)) {
plsrResult<-plsr.mcSimulation(welfareDecisionResults$mcResult, resultName=i)
vipResult<-chillR::VIP(plsrResult)["Comp 1",]
coef<-plsrResult$coefficients[,,1]
color_bars<-chillR::color_bar_maker(vipResult, coef, threshold=0.8,
col1="RED", col2="DARK GREEN", col3="DARK GREY")
vipResult_select<-vipResult[order(vipResult,decreasing=TRUE)[1:50]]
if(length(vipResult)<50) vipResult_select<-vipResult_select[1:length(vipResult)]
col_select<-color_bars[order(vipResult,decreasing=TRUE)[1:50]]
if(length(vipResult)<50) col_select<-col_select[1:length(vipResult)]
png(file.path(outputPath, paste(i, "_PLS_VIP.png",sep="")),height=1400,width=1400)
par(mar=c(5.1,55,4.1,2.1))
barplot(rev(vipResult_select),horiz=TRUE,las=1,col=rev(col_select),cex.names=2,cex.axis=1,main="VIP for most important variables",cex.main=2,axes=FALSE)
axis(side=1,cex.axis=2,lwd=5,padj=0.7)
abline(v=0.8,lwd=3)
dev.off()
if (write_table){
vipPlsResultTable<-cbind(vipResult,coef)
colnames(vipPlsResultTable)<-c("VIP","Coefficient")
write.csv(vipPlsResultTable,file.path(outputPath, paste(i,"_pls_results.csv",sep="")))
}
}
if (verbosity > 0)
cat("VIP PLSR results written into directory: ", outputPath, "\n")
}
if (!is.null(individualEvpiNames)){
if( !is.character(individualEvpiNames) )
stop("\"individualEvpiNames\" must be a character vector.")
else if( any(!individualEvpiNames %in% row.names(estimateObject)) ){
if( individualEvpiNames!="all")
stop("\"individualEvpiNames\" must be a subset of variables defined in file
\",inputFilePath\" or =\"all\".")
else
individualEvpiNames=row.names(estimateObject)
}
if(verbosity > 0)
cat("Performing Monte Carlo Simulation(s) for the IndividualEVPI Calculation(s):\n")
individualEvpiResults<-individualEvpiSimulation(welfare=welfareFunction,
currentEstimate=estimateObject,
perfectProspectiveNames=individualEvpiNames,
numberOfModelRuns=numberOfModelRuns,
randomMethod=randomMethod,
functionSyntax=functionSyntax,
relativeTolerance=relativeTolerance,
verbosity=verbosity)
if (verbosity > 1)
print(sort(summary(individualEvpiResults)))
individualEvpiSimulationSummaryFilePath<-file.path(outputPath,"individualEvpiSummary.csv")
write.csv(sort(summary(individualEvpiResults), along=sortEvpiAlong)$summary$evi,
individualEvpiSimulationSummaryFilePath)
if (verbosity > 0)
cat("IndividualEVPI simulation summary written into file: ",
individualEvpiSimulationSummaryFilePath, "\n")
}
} |
read.bif = function(file, debug = FALSE) {
lines = readLines(file)
read.foreign.backend(lines, format = "bif", filename = file, debug = debug)
}
write.bif = function(file, fitted) {
check.fit(fitted)
if (!is(fitted, c("bn.fit.dnet", "bn.fit.onet", "bn.fit.donet")))
stop("only discrete Bayesian networks can be exported into BIF format.")
fd = file(description = file, open = "w")
write.foreign.backend(fd, fitted = fitted, format = "bif")
close(fd)
invisible(NULL)
}
read.dsc = function(file, debug = FALSE) {
lines = readLines(file)
read.foreign.backend(lines, format = "dsc", filename = file, debug = debug)
}
write.dsc = function(file, fitted) {
check.fit(fitted)
if (!is(fitted, c("bn.fit.dnet", "bn.fit.onet", "bn.fit.donet")))
stop("only discrete Bayesian networks can be exported into DSC format.")
fd = file(description = file, open = "w")
write.foreign.backend(fd, fitted = fitted, format = "dsc")
close(fd)
invisible(NULL)
}
read.net = function(file, debug = FALSE) {
lines = readLines(file)
read.foreign.backend(lines, format = "net", filename = file, debug = debug)
}
write.net = function(file, fitted) {
check.fit(fitted)
if (!is(fitted, c("bn.fit.dnet", "bn.fit.onet", "bn.fit.donet")))
stop("only discrete Bayesian networks can be exported into DSC format.")
fd = file(description = file, open = "w")
write.foreign.backend(fd, fitted = fitted, format = "net")
close(fd)
invisible(NULL)
}
write.dot = function(file, graph) {
check.bn.or.fit(graph)
fd = file(description = file, open = "w")
write.dot.backend(fd, graph = graph)
close(fd)
invisible(NULL)
} |
library(gpuR)
context("Switching GPU vclMatrixBlock algebra")
if(detectGPUs() >= 1){
current_context <- set_device_context("gpu")
}else{
current_context <- currentContext()
}
set.seed(123)
ORDER <- 4
Aint <- matrix(sample(seq(10), ORDER^2, replace=TRUE), nrow=ORDER, ncol=ORDER)
Bint <- matrix(sample(seq(10), ORDER^2, replace=TRUE), nrow=ORDER, ncol=ORDER)
A <- matrix(rnorm(ORDER^2), nrow=ORDER, ncol=ORDER)
B <- matrix(rnorm(ORDER^2), nrow=ORDER, ncol=ORDER)
E <- matrix(rnorm(15), nrow=5)
test_that("Switching GPU vclMatrixBlock Single Precision Block Matrix multiplication", {
has_multiple_gpu_skip()
AS = A[2:4, 2:4]
BS = B[2:4, 2:4]
C <- AS %*% BS
setContext(2L)
fvclA <- vclMatrix(A, type="float")
fvclB <- vclMatrix(B, type="float")
setContext(1L)
fvclAS <- block(fvclA, 2L,4L,2L,4L)
fvclBS <- block(fvclB, 2L,4L,2L,4L)
fvclC <- fvclAS %*% fvclBS
expect_is(fvclC, "fvclMatrix")
expect_equal(fvclC[,], C, tolerance=1e-07,
info="float matrix elements not equivalent")
expect_equal([email protected]_index, 2L,
info = "context index not assigned properly")
expect_equal(currentContext(), 1L,
info = "context index has been change unintentionally")
})
test_that("Switching GPU vclMatrixBlock Single Precision Matrix Subtraction", {
has_multiple_gpu_skip()
AS = A[2:4, 2:4]
BS = B[2:4, 2:4]
C <- AS - BS
setContext(2L)
fvclA <- vclMatrix(A, type="float")
fvclB <- vclMatrix(B, type="float")
setContext(1L)
fvclAS <- block(fvclA, 2L,4L,2L,4L)
fvclBS <- block(fvclB, 2L,4L,2L,4L)
fvclE <- block(fvclA, 1L,4L,2L,4L)
fvclC <- fvclAS - fvclBS
expect_is(fvclC, "fvclMatrix")
expect_equal(fvclC[,], C, tolerance=1e-07,
info="float matrix elements not equivalent")
expect_error(fvclAS - fvclE)
expect_equal([email protected]_index, 2L,
info = "context index not assigned properly")
expect_equal(currentContext(), 1L,
info = "context index has been change unintentionally")
})
test_that("Switching GPU vclMatrixBlock Single Precision Scalar Matrix Subtraction", {
has_multiple_gpu_skip()
AS = A[2:4, 2:4]
C <- AS - 1
C2 <- 1 - AS
setContext(2L)
fvclA <- vclMatrix(A, type="float")
fvclAS <- block(fvclA, 2L,4L,2L,4L)
setContext(1L)
fvclC <- fvclAS - 1
fvclC2 <- 1 - fvclAS
expect_is(fvclC, "fvclMatrix")
expect_equal(fvclC[,], C, tolerance=1e-07,
info="float matrix elements not equivalent")
expect_is(fvclC2, "fvclMatrix")
expect_equal(fvclC2[,], C2, tolerance=1e-07,
info="float matrix elements not equivalent")
expect_equal([email protected]_index, 2L,
info = "context index not assigned properly")
expect_equal([email protected]_index, 2L,
info = "context index not assigned properly")
expect_equal(currentContext(), 1L,
info = "context index has been change unintentionally")
})
test_that("Switching GPU vclMatrixBlock Single Precision Unary Scalar Matrix Subtraction", {
has_multiple_gpu_skip()
AS = A[2:4, 2:4]
C <- -AS
setContext(2L)
fvclA <- vclMatrix(A, type="float")
setContext(1L)
fvclAS <- block(fvclA, 2L,4L,2L,4L)
fvclC <- -fvclAS
expect_is(fvclC, "fvclMatrix")
expect_equal(fvclC[,], C, tolerance=1e-07,
info="float matrix elements not equivalent")
expect_equal([email protected]_index, 2L,
info = "context index not assigned properly")
expect_equal(currentContext(), 1L,
info = "context index has been change unintentionally")
})
test_that("Switching GPU vclMatrixBlock Single Precision Matrix Addition", {
has_multiple_gpu_skip()
AS = A[2:4, 2:4]
BS = B[2:4, 2:4]
C <- AS + BS
setContext(2L)
fvclA <- vclMatrix(A, type="float")
fvclB <- vclMatrix(B, type="float")
setContext(1L)
fvclAS <- block(fvclA, 2L,4L,2L,4L)
fvclBS <- block(fvclB, 2L,4L,2L,4L)
fvclE <- block(fvclA, 1L,4L,2L,4L)
fvclC <- fvclAS + fvclBS
expect_is(fvclC, "fvclMatrix")
expect_equal(fvclC[,], C, tolerance=1e-07,
info="float matrix elements not equivalent")
expect_error(fvclA + fvclE)
expect_equal([email protected]_index, 2L,
info = "context index not assigned properly")
expect_equal(currentContext(), 1L,
info = "context index has been change unintentionally")
})
test_that("Switching GPU vclMatrixBlock Single Precision Scalar Matrix Addition", {
has_multiple_gpu_skip()
AS = A[2:4, 2:4]
C <- AS + 1
C2 <- 1 + AS
setContext(2L)
fvclA <- vclMatrix(A, type="float")
setContext(1L)
fvclAS <- block(fvclA, 2L,4L,2L,4L)
fvclC <- fvclAS + 1
fvclC2 <- 1 + fvclAS
expect_is(fvclC, "fvclMatrix")
expect_equal(fvclC[,], C, tolerance=1e-07,
info="float matrix elements not equivalent")
expect_is(fvclC2, "fvclMatrix")
expect_equal(fvclC2[,], C2, tolerance=1e-07,
info="float matrix elements not equivalent")
expect_equal([email protected]_index, 2L,
info = "context index not assigned properly")
expect_equal([email protected]_index, 2L,
info = "context index not assigned properly")
expect_equal(currentContext(), 1L,
info = "context index has been change unintentionally")
})
test_that("Switching GPU vclMatrixBlock Single Precision Matrix Element-Wise Multiplication", {
has_multiple_gpu_skip()
AS = A[2:4, 2:4]
BS = B[2:4, 2:4]
C <- AS * BS
setContext(2L)
fvclA <- vclMatrix(A, type="float")
fvclB <- vclMatrix(B, type="float")
setContext(1L)
fvclAS <- block(fvclA, 2L,4L,2L,4L)
fvclBS <- block(fvclB, 2L,4L,2L,4L)
fvclC <- fvclAS * fvclBS
expect_is(fvclC, "fvclMatrix")
expect_equal(fvclC[,], C, tolerance=1e-07,
info="float matrix elements not equivalent")
expect_error(fvclA * fvclE)
expect_equal([email protected]_index, 2L,
info = "context index not assigned properly")
expect_equal(currentContext(), 1L,
info = "context index has been change unintentionally")
})
test_that("Switching GPU vclMatrixBlock Single Precision Scalar Matrix Multiplication", {
has_multiple_gpu_skip()
AS = A[2:4, 2:4]
C <- AS * 2
C2 <- 2 * AS
setContext(2L)
fvclA <- vclMatrix(A, type="float")
fvclAS <- block(fvclA, 2L,4L,2L,4L)
setContext(1L)
fvclC <- fvclAS * 2
fvclC2 <- 2 * fvclAS
expect_is(fvclC, "fvclMatrix")
expect_equal(fvclC[,], C, tolerance=1e-07,
info="float matrix elements not equivalent")
expect_is(fvclC2, "fvclMatrix")
expect_equal(fvclC2[,], C2, tolerance=1e-07,
info="float matrix elements not equivalent")
expect_equal([email protected]_index, 2L,
info = "context index not assigned properly")
expect_equal([email protected]_index, 2L,
info = "context index not assigned properly")
expect_equal(currentContext(), 1L,
info = "context index has been change unintentionally")
})
test_that("Switching GPU vclMatrixBlock Single Precision Matrix Element-Wise Division", {
has_multiple_gpu_skip()
AS = A[2:4, 2:4]
BS = B[2:4, 2:4]
C <- AS / BS
setContext(2L)
fvclA <- vclMatrix(A, type="float")
fvclB <- vclMatrix(B, type="float")
setContext(1L)
fvclAS <- block(fvclA, 2L,4L,2L,4L)
fvclBS <- block(fvclB, 2L,4L,2L,4L)
fvclE <- block(fvclA, 1L,4L,2L,4L)
fvclC <- fvclAS / fvclBS
expect_is(fvclC, "fvclMatrix")
expect_equal(fvclC[,], C, tolerance=1e-07,
info="float matrix elements not equivalent")
expect_error(fvclA / fvclE)
expect_equal([email protected]_index, 2L,
info = "context index not assigned properly")
expect_equal(currentContext(), 1L,
info = "context index has been change unintentionally")
})
test_that("Switching GPU vclMatrixBlock Single Precision Scalar Matrix Division", {
has_multiple_gpu_skip()
AS = A[2:4, 2:4]
C <- AS/2
C2 <- 2/AS
setContext(2L)
fvclA <- vclMatrix(A, type="float")
setContext(1L)
fvclAS <- block(fvclA, 2L,4L,2L,4L)
fvclC <- fvclAS/2
fvclC2 <- 2/fvclAS
expect_is(fvclC, "fvclMatrix")
expect_equal(fvclC[,], C, tolerance=1e-07,
info="float matrix elements not equivalent")
expect_is(fvclC2, "fvclMatrix")
expect_equal(fvclC2[,], C2, tolerance=1e-07,
info="float matrix elements not equivalent")
expect_equal([email protected]_index, 2L,
info = "context index not assigned properly")
expect_equal([email protected]_index, 2L,
info = "context index not assigned properly")
expect_equal(currentContext(), 1L,
info = "context index has been change unintentionally")
})
test_that("Switching GPU vclMatrixBlock Single Precision Matrix Element-Wise Power", {
has_multiple_gpu_skip()
AS = A[2:4, 2:4]
BS = B[2:4, 2:4]
C <- AS ^ BS
setContext(2L)
fvclA <- vclMatrix(A, type="float")
fvclB <- vclMatrix(B, type="float")
setContext(1L)
fvclAS <- block(fvclA, 2L,4L,2L,4L)
fvclBS <- block(fvclB, 2L,4L,2L,4L)
fvclE <- block(fvclA, 1L,4L,2L,4L)
fvclC <- fvclAS ^ fvclBS
expect_is(fvclC, "fvclMatrix")
expect_equal(fvclC[,], C, tolerance=1e-07,
info="float matrix elements not equivalent")
expect_error(fvclA ^ fvclE)
expect_equal([email protected]_index, 2L,
info = "context index not assigned properly")
expect_equal(currentContext(), 1L,
info = "context index has been change unintentionally")
})
test_that("Switching GPU vclMatrixBlock Single Precision Scalar Matrix Power", {
has_multiple_gpu_skip()
AS = A[2:4, 2:4]
C <- AS^2
setContext(2L)
fvclA <- vclMatrix(A, type="float")
setContext(1L)
fvclAS <- block(fvclA, 2L,4L,2L,4L)
fvclC <- fvclAS^2
expect_is(fvclC, "fvclMatrix")
expect_equal(fvclC[,], C, tolerance=1e-07,
info="float matrix elements not equivalent")
expect_equal([email protected]_index, 2L,
info = "context index not assigned properly")
expect_equal(currentContext(), 1L,
info = "context index has been change unintentionally")
})
test_that("Switching GPU vclMatrixBlock Single Precision crossprod", {
has_multiple_gpu_skip()
X <- matrix(rnorm(10), nrow=2)
Y <- matrix(rnorm(10), nrow=2)
Z <- matrix(rnorm(10), nrow=5)
XS = X[1:2, 2:5]
YS = Y[1:2, 2:5]
ZS = Z[2:5, 1:2]
C <- crossprod(XS,YS)
Cs <- crossprod(XS)
setContext(2L)
fvclX <- vclMatrix(X, type="float")
fvclY <- vclMatrix(Y, type="float")
fvclZ <- vclMatrix(Z, type="float")
setContext(1L)
fvclXS <- block(fvclX, 1L,2L,2L,5L)
fvclYS <- block(fvclY, 1L,2L,2L,5L)
fvclZS <- block(fvclZ, 2L,5L,1L,2L)
fvclC <- crossprod(fvclXS, fvclYS)
fvclCs <- crossprod(fvclXS)
expect_is(fvclC, "fvclMatrix")
expect_equal(fvclC[,], C, tolerance=1e-07,
info="float matrix elements not equivalent")
expect_equal(fvclCs[,], Cs, tolerance=1e-07,
info="float matrix elements not equivalent")
expect_error(crossprod(fvclXS, fvclZS))
expect_equal([email protected]_index, 2L,
info = "context index not assigned properly")
expect_equal([email protected]_index, 2L,
info = "context index not assigned properly")
expect_equal(currentContext(), 1L,
info = "context index has been change unintentionally")
})
test_that("Switching GPU vclMatrixBlock Single Precision tcrossprod", {
has_multiple_gpu_skip()
X <- matrix(rnorm(10), nrow=2)
Y <- matrix(rnorm(10), nrow=2)
Z <- matrix(rnorm(10), nrow=5)
XS = X[1:2, 2:5]
YS = Y[1:2, 2:5]
ZS = Z[2:5, 1:2]
C <- tcrossprod(XS,YS)
Cs <- tcrossprod(XS)
setContext(2L)
fvclX <- vclMatrix(X, type="float")
fvclY <- vclMatrix(Y, type="float")
fvclZ <- vclMatrix(Z, type="float")
setContext(1L)
fvclXS <- block(fvclX, 1L,2L,2L,5L)
fvclYS <- block(fvclY, 1L,2L,2L,5L)
fvclZS <- block(fvclZ, 2L,5L,1L,2L)
fvclC <- tcrossprod(fvclXS, fvclYS)
fvclCs <- tcrossprod(fvclXS)
expect_is(fvclC, "fvclMatrix")
expect_equal(fvclC[,], C, tolerance=1e-07,
info="float matrix elements not equivalent")
expect_equal(fvclCs[,], Cs, tolerance=1e-06,
info="float matrix elements not equivalent")
expect_error(crossprod(fvclXS, fvclZS))
expect_equal([email protected]_index, 2L,
info = "context index not assigned properly")
expect_equal([email protected]_index, 2L,
info = "context index not assigned properly")
expect_equal(currentContext(), 1L,
info = "context index has been change unintentionally")
})
test_that("Switching GPU vclMatrixBlock Double Precision Block Matrix multiplication", {
has_multiple_gpu_skip()
has_multiple_double_skip()
AS = A[2:4, 2:4]
BS = B[2:4, 2:4]
C <- AS %*% BS
setContext(2L)
dvclA <- vclMatrix(A, type="double")
dvclB <- vclMatrix(B, type="double")
setContext(1L)
dvclAS <- block(dvclA, 2L,4L,2L,4L)
dvclBS <- block(dvclB, 2L,4L,2L,4L)
dvclC <- dvclAS %*% dvclBS
expect_is(dvclC, "dvclMatrix")
expect_equal(dvclC[,], C, tolerance=.Machine$double.eps ^ 0.5,
info="double matrix elements not equivalent")
expect_equal([email protected]_index, 2L,
info = "context index not assigned properly")
expect_equal(currentContext(), 1L,
info = "context index has been change unintentionally")
})
test_that("Switching GPU vclMatrixBlock Double Precision Matrix Subtraction", {
has_multiple_gpu_skip()
has_multiple_double_skip()
AS = A[2:4, 2:4]
BS = B[2:4, 2:4]
C <- AS - BS
setContext(2L)
dvclA <- vclMatrix(A, type="double")
dvclB <- vclMatrix(B, type="double")
setContext(1L)
dvclAS <- block(dvclA, 2L,4L,2L,4L)
dvclBS <- block(dvclB, 2L,4L,2L,4L)
dvclE <- block(dvclA, 1L,4L,2L,4L)
dvclC <- dvclAS - dvclBS
expect_is(dvclC, "dvclMatrix")
expect_equal(dvclC[,], C, tolerance=.Machine$double.eps ^ 0.5,
info="double matrix elements not equivalent")
expect_error(dvclAS - dvclE)
expect_equal([email protected]_index, 2L,
info = "context index not assigned properly")
expect_equal(currentContext(), 1L,
info = "context index has been change unintentionally")
})
test_that("Switching GPU vclMatrixBlock Double Precision Scalar Matrix Subtraction", {
has_multiple_gpu_skip()
has_multiple_double_skip()
AS = A[2:4, 2:4]
C <- AS - 1
C2 <- 1 - AS
setContext(2L)
dvclA <- vclMatrix(A, type="double")
setContext(1L)
dvclAS <- block(dvclA, 2L,4L,2L,4L)
dvclC <- dvclAS - 1
dvclC2 <- 1 - dvclAS
expect_is(dvclC, "dvclMatrix")
expect_equal(dvclC[,], C, tolerance=.Machine$double.eps ^ 0.5,
info="double matrix elements not equivalent")
expect_is(dvclC2, "dvclMatrix")
expect_equal(dvclC2[,], C2, tolerance=.Machine$double.eps ^ 0.5,
info="double matrix elements not equivalent")
expect_equal([email protected]_index, 2L,
info = "context index not assigned properly")
expect_equal([email protected]_index, 2L,
info = "context index not assigned properly")
expect_equal(currentContext(), 1L,
info = "context index has been change unintentionally")
})
test_that("Switching GPU vclMatrixBlock Double Precision Unary Scalar Matrix Subtraction", {
has_multiple_gpu_skip()
has_multiple_double_skip()
AS = A[2:4, 2:4]
C <- -AS
setContext(2L)
dvclA <- vclMatrix(A, type="double")
setContext(1L)
dvclAS <- block(dvclA, 2L,4L,2L,4L)
dvclC <- -dvclAS
expect_is(dvclC, "dvclMatrix")
expect_equal(dvclC[,], C, tolerance=.Machine$double.eps ^ 0.5,
info="double matrix elements not equivalent")
expect_equal([email protected]_index, 2L,
info = "context index not assigned properly")
expect_equal(currentContext(), 1L,
info = "context index has been change unintentionally")
})
test_that("Switching GPU vclMatrixBlock Double Precision Matrix Addition", {
has_multiple_gpu_skip()
has_multiple_double_skip()
AS = A[2:4, 2:4]
BS = B[2:4, 2:4]
C <- AS + BS
setContext(2L)
dvclA <- vclMatrix(A, type="double")
dvclB <- vclMatrix(B, type="double")
setContext(1L)
dvclAS <- block(dvclA, 2L,4L,2L,4L)
dvclBS <- block(dvclB, 2L,4L,2L,4L)
dvclE <- block(dvclA, 1L,4L,2L,4L)
dvclC <- dvclAS + dvclBS
expect_is(dvclC, "dvclMatrix")
expect_equal(dvclC[,], C, tolerance=.Machine$double.eps ^ 0.5,
info="double matrix elements not equivalent")
expect_error(dvclA + dvclE)
expect_equal([email protected]_index, 2L,
info = "context index not assigned properly")
expect_equal(currentContext(), 1L,
info = "context index has been change unintentionally")
})
test_that("Switching GPU vclMatrixBlock Double Precision Scalar Matrix Addition", {
has_multiple_gpu_skip()
has_multiple_double_skip()
AS = A[2:4, 2:4]
C <- AS + 1
C2 <- 1 + AS
setContext(2L)
dvclA <- vclMatrix(A, type="double")
setContext(1L)
dvclAS <- block(dvclA, 2L,4L,2L,4L)
dvclC <- dvclAS + 1
dvclC2 <- 1 + dvclAS
expect_is(dvclC, "dvclMatrix")
expect_equal(dvclC[,], C, tolerance=.Machine$double.eps ^ 0.5,
info="double matrix elements not equivalent")
expect_is(dvclC2, "dvclMatrix")
expect_equal(dvclC2[,], C2, tolerance=.Machine$double.eps ^ 0.5,
info="double matrix elements not equivalent")
expect_equal([email protected]_index, 2L,
info = "context index not assigned properly")
expect_equal([email protected]_index, 2L,
info = "context index not assigned properly")
expect_equal(currentContext(), 1L,
info = "context index has been change unintentionally")
})
test_that("Switching GPU vclMatrixBlock Double Precision Matrix Element-Wise Multiplication", {
has_multiple_gpu_skip()
has_multiple_double_skip()
AS = A[2:4, 2:4]
BS = B[2:4, 2:4]
C <- AS * BS
setContext(2L)
dvclA <- vclMatrix(A, type="double")
dvclB <- vclMatrix(B, type="double")
setContext(1L)
dvclAS <- block(dvclA, 2L,4L,2L,4L)
dvclBS <- block(dvclB, 2L,4L,2L,4L)
dvclC <- dvclAS * dvclBS
expect_is(dvclC, "dvclMatrix")
expect_equal(dvclC[,], C, tolerance=.Machine$double.eps ^ 0.5,
info="double matrix elements not equivalent")
expect_error(dvclA * dvclE)
expect_equal([email protected]_index, 2L,
info = "context index not assigned properly")
expect_equal(currentContext(), 1L,
info = "context index has been change unintentionally")
})
test_that("Switching GPU vclMatrixBlock Double Precision Scalar Matrix Multiplication", {
has_multiple_gpu_skip()
has_multiple_double_skip()
AS = A[2:4, 2:4]
C <- AS * 2
C2 <- 2 * AS
setContext(2L)
dvclA <- vclMatrix(A, type="double")
setContext(1L)
dvclAS <- block(dvclA, 2L,4L,2L,4L)
dvclC <- dvclAS * 2
dvclC2 <- 2 * dvclAS
expect_is(dvclC, "dvclMatrix")
expect_equal(dvclC[,], C, tolerance=.Machine$double.eps ^ 0.5,
info="double matrix elements not equivalent")
expect_is(dvclC2, "dvclMatrix")
expect_equal(dvclC2[,], C2, tolerance=.Machine$double.eps ^ 0.5,
info="double matrix elements not equivalent")
expect_equal([email protected]_index, 2L,
info = "context index not assigned properly")
expect_equal([email protected]_index, 2L,
info = "context index not assigned properly")
expect_equal(currentContext(), 1L,
info = "context index has been change unintentionally")
})
test_that("Switching GPU vclMatrixBlock Double Precision Matrix Element-Wise Division", {
has_multiple_gpu_skip()
has_multiple_double_skip()
AS = A[2:4, 2:4]
BS = B[2:4, 2:4]
C <- AS / BS
setContext(2L)
dvclA <- vclMatrix(A, type="double")
dvclB <- vclMatrix(B, type="double")
setContext(1L)
dvclAS <- block(dvclA, 2L,4L,2L,4L)
dvclBS <- block(dvclB, 2L,4L,2L,4L)
dvclE <- block(dvclA, 1L,4L,2L,4L)
dvclC <- dvclAS / dvclBS
expect_is(dvclC, "dvclMatrix")
expect_equal(dvclC[,], C, tolerance=.Machine$double.eps ^ 0.5,
info="double matrix elements not equivalent")
expect_error(dvclA / dvclE)
expect_equal([email protected]_index, 2L,
info = "context index not assigned properly")
expect_equal(currentContext(), 1L,
info = "context index has been change unintentionally")
})
test_that("Switching GPU vclMatrixBlock Double Precision Scalar Matrix Division", {
has_multiple_gpu_skip()
has_multiple_double_skip()
AS = A[2:4, 2:4]
C <- AS/2
C2 <- 2/AS
setContext(2L)
dvclA <- vclMatrix(A, type="double")
setContext(1L)
dvclAS <- block(dvclA, 2L,4L,2L,4L)
dvclC <- dvclAS/2
dvclC2 <- 2/dvclAS
expect_is(dvclC, "dvclMatrix")
expect_equal(dvclC[,], C, tolerance=.Machine$double.eps ^ 0.5,
info="double matrix elements not equivalent")
expect_is(dvclC2, "dvclMatrix")
expect_equal(dvclC2[,], C2, tolerance=.Machine$double.eps ^ 0.5,
info="double matrix elements not equivalent")
expect_equal([email protected]_index, 2L,
info = "context index not assigned properly")
expect_equal([email protected]_index, 2L,
info = "context index not assigned properly")
expect_equal(currentContext(), 1L,
info = "context index has been change unintentionally")
})
test_that("Switching GPU vclMatrixBlock Double Precision Matrix Element-Wise Power", {
has_multiple_gpu_skip()
has_multiple_double_skip()
AS = A[2:4, 2:4]
BS = B[2:4, 2:4]
C <- AS ^ BS
setContext(2L)
dvclA <- vclMatrix(A, type="double")
dvclB <- vclMatrix(B, type="double")
setContext(1L)
dvclAS <- block(dvclA, 2L,4L,2L,4L)
dvclBS <- block(dvclB, 2L,4L,2L,4L)
dvclE <- block(dvclA, 1L,4L,2L,4L)
dvclC <- dvclAS ^ dvclBS
expect_is(dvclC, "dvclMatrix")
expect_equal(dvclC[,], C, tolerance=.Machine$double.eps ^ 0.5,
info="double matrix elements not equivalent")
expect_error(dvclA ^ dvclE)
expect_equal([email protected]_index, 2L,
info = "context index not assigned properly")
expect_equal(currentContext(), 1L,
info = "context index has been change unintentionally")
})
test_that("Switching GPU vclMatrixBlock Double Precision Scalar Matrix Power", {
has_multiple_gpu_skip()
has_multiple_double_skip()
AS = A[2:4, 2:4]
C <- AS^2
setContext(2L)
dvclA <- vclMatrix(A, type="double")
setContext(1L)
dvclAS <- block(dvclA, 2L,4L,2L,4L)
dvclC <- dvclAS^2
expect_is(dvclC, "dvclMatrix")
expect_equal(dvclC[,], C, tolerance=.Machine$double.eps ^ 0.5,
info="double matrix elements not equivalent")
expect_equal([email protected]_index, 2L,
info = "context index not assigned properly")
expect_equal(currentContext(), 1L,
info = "context index has been change unintentionally")
})
test_that("Switching GPU vclMatrixBlock Double Precision crossprod", {
has_multiple_gpu_skip()
has_multiple_double_skip()
X <- matrix(rnorm(10), nrow=2)
Y <- matrix(rnorm(10), nrow=2)
Z <- matrix(rnorm(10), nrow=5)
XS = X[1:2, 2:5]
YS = Y[1:2, 2:5]
ZS = Z[2:5, 1:2]
C <- crossprod(XS,YS)
Cs <- crossprod(XS)
setContext(2L)
dvclX <- vclMatrix(X, type="double")
dvclY <- vclMatrix(Y, type="double")
dvclZ <- vclMatrix(Z, type="double")
setContext(1L)
dvclXS <- block(dvclX, 1L,2L,2L,5L)
dvclYS <- block(dvclY, 1L,2L,2L,5L)
dvclZS <- block(dvclZ, 2L,5L,1L,2L)
dvclC <- crossprod(dvclXS, dvclYS)
dvclCs <- crossprod(dvclXS)
expect_is(dvclC, "dvclMatrix")
expect_equal(dvclC[,], C, tolerance=.Machine$double.eps ^ 0.5,
info="double matrix elements not equivalent")
expect_equal(dvclCs[,], Cs, tolerance=.Machine$double.eps ^ 0.5,
info="double matrix elements not equivalent")
expect_error(crossprod(dvclXS, dvclZS))
expect_equal([email protected]_index, 2L,
info = "context index not assigned properly")
expect_equal([email protected]_index, 2L,
info = "context index not assigned properly")
expect_equal(currentContext(), 1L,
info = "context index has been change unintentionally")
})
test_that("Switching GPU vclMatrixBlock Double Precision tcrossprod", {
has_multiple_gpu_skip()
has_multiple_double_skip()
X <- matrix(rnorm(10), nrow=2)
Y <- matrix(rnorm(10), nrow=2)
Z <- matrix(rnorm(10), nrow=5)
XS = X[1:2, 2:5]
YS = Y[1:2, 2:5]
ZS = Z[2:5, 1:2]
C <- tcrossprod(XS,YS)
Cs <- tcrossprod(XS)
setContext(2L)
dvclX <- vclMatrix(X, type="double")
dvclY <- vclMatrix(Y, type="double")
dvclZ <- vclMatrix(Z, type="double")
setContext(1L)
dvclXS <- block(dvclX, 1L,2L,2L,5L)
dvclYS <- block(dvclY, 1L,2L,2L,5L)
dvclZS <- block(dvclZ, 2L,5L,1L,2L)
dvclC <- tcrossprod(dvclXS, dvclYS)
dvclCs <- tcrossprod(dvclXS)
expect_is(dvclC, "dvclMatrix")
expect_equal(dvclC[,], C, tolerance=.Machine$double.eps ^ 0.5,
info="double matrix elements not equivalent")
expect_equal(dvclCs[,], Cs, tolerance=.Machine$double.eps ^ 0.5,
info="double matrix elements not equivalent")
expect_error(crossprod(dvclXS, dvclZS))
expect_equal([email protected]_index, 2L,
info = "context index not assigned properly")
expect_equal([email protected]_index, 2L,
info = "context index not assigned properly")
expect_equal(currentContext(), 1L,
info = "context index has been change unintentionally")
})
setContext(current_context) |
group_age <- function(x, breaks = "decades", n = 10, labels = NULL,
include.lowest = TRUE, right = FALSE, dig.lab = 3,
ordered_result = FALSE) {
if (length(breaks) == 1 && is.character(breaks)) {
if (breaks == "decades") {
breaks <- seq(floor(min(na.omit(x))/10)*10,
ceiling(max(na.omit(x))/10)*10, 10)
} else if (breaks == "years") {
breaks <- seq(floor(min(na.omit(x))),
ceiling(max(na.omit(x))), 1)
} else if (breaks == "even") {
breaks <- quantile(na.omit(x), seq(0,1,length=n+1))
}
}
cut(x, breaks, labels, include.lowest, right, dig.lab, ordered_result)
} |
predictRestrictedMeanTime <- function(object,newdata,times,...){
UseMethod("predictRestrictedMeanTime",object)
}
predictRestrictedMeanTime.default <- function(object,newdata,times,...){
stop("No method for evaluating predicted probabilities from objects in class: ",class(object),call.=FALSE)
}
predictRestrictedMeanTime.numeric <- function(object,newdata,times,...){
if (NROW(object) != NROW(newdata) || NCOL(object) != length(times))
stop(paste("\nPrediction matrix has wrong dimensions:\nRequested newdata x times: ",NROW(newdata)," x ",length(times),"\nProvided prediction matrix: ",NROW(object)," x ",NCOL(object),"\n\n",sep=""))
object
}
predictRestrictedMeanTime.matrix <- function(object,newdata,times,...){
if (NROW(object) != NROW(newdata) || NCOL(object) != length(times)){
stop(paste("\nPrediction matrix has wrong dimensions:\nRequested newdata x times: ",NROW(newdata)," x ",length(times),"\nProvided prediction matrix: ",NROW(object)," x ",NCOL(object),"\n\n",sep=""))
}
object
}
predictRestrictedMeanTime.aalen <- function(object,newdata,times,...){
time.coef <- data.frame(object$cum)
ntime <- nrow(time.coef)
objecttime <- time.coef[,1,drop=TRUE]
ntimevars <- ncol(time.coef)-2
covanames <- names(time.coef)[-(1:2)]
notfound <- match(covanames,names(newdata),nomatch=0)==0
if (any(notfound))
stop("\nThe following predictor variables:\n\n",
paste(covanames[notfound],collapse=","),
"\n\nwere not found in newdata, which only provides the following variables:\n\n",
paste(names(newdata),collapse=","),
"\n\n")
time.vars <- cbind(1,newdata[,names(time.coef)[-(1:2)],drop=FALSE])
nobs <- nrow(newdata)
hazard <- .C("survest_cox_aalen",
timehazard=double(ntime*nobs),
as.double(unlist(time.coef[,-1])),
as.double(unlist(time.vars)),
as.integer(ntimevars+1),
as.integer(nobs),
as.integer(ntime),PACKAGE="pec")$timehazard
hazard <- matrix(hazard,ncol=ntime,nrow=nobs,dimnames=list(1:nobs,paste("TP",1:ntime,sep="")))
surv <- pmin(exp(-hazard),1)
if (missing(times)) times <- sort(unique(objecttime))
p <- surv[,prodlim::sindex(jump.times=objecttime,eval.times=times)]
if (NROW(p) != NROW(newdata) || NCOL(p) != length(times))
stop(paste("\nPrediction matrix has wrong dimensions:\nRequested newdata x times: ",NROW(newdata)," x ",length(times),"\nProvided prediction matrix: ",NROW(p)," x ",NCOL(p),"\n\n",sep=""))
p
}
predictRestrictedMeanTime.cox.aalen <- function(object,newdata,times,...){
const <- c(object$gamma)
names(const) <- substr(dimnames(object$gamma)[[1]],6,nchar(dimnames(object$gamma)[[1]])-1)
constant.part <- t(newdata[,names(const)])*const
constant.part <- exp(colSums(constant.part))
time.coef <- data.frame(object$cum)
ntime <- nrow(time.coef)
objecttime <- time.coef[,1,drop=TRUE]
ntimevars <- ncol(time.coef)-2
time.vars <- cbind(1,newdata[,names(time.coef)[-(1:2)],drop=FALSE])
nobs <- nrow(newdata)
time.part <- .C("survest_cox_aalen",timehazard=double(ntime*nobs),as.double(unlist(time.coef[,-1])),as.double(unlist(time.vars)),as.integer(ntimevars+1),as.integer(nobs),as.integer(ntime),PACKAGE="pec")$timehazard
time.part <- matrix(time.part,ncol=ntime,nrow=nobs)
surv <- pmin(exp(-time.part*constant.part),1)
if (missing(times)) times <- sort(unique(objecttime))
p <- surv[,prodlim::sindex(objecttime,times)]
if (NROW(p) != NROW(newdata) || NCOL(p) != length(times))
stop(paste("\nPrediction matrix has wrong dimensions:\nRequested newdata x times: ",NROW(newdata)," x ",length(times),"\nProvided prediction matrix: ",NROW(p)," x ",NCOL(p),"\n\n",sep=""))
p
}
predictRestrictedMeanTime.pecRpart <- function(object,newdata,times,...){
newdata$rpartFactor <- factor(predict(object$rpart,newdata=newdata),
levels=object$levels)
p <- predictRestrictedMeanTime(object$survfit,newdata=newdata,times=times)
p
}
predictRestrictedMeanTime.coxph <- function(object,newdata,times,...){
if (is.null(y <- unclass(object$y)[,1])) stop("Need 'y=TRUE' in call of 'coxph'.")
eTimes <- unique(sort(y))
pos <- prodlim::sindex(jump.times=eTimes,eval.times=times)
surv <- predictSurvProb(object,newdata=newdata,times=eTimes)
rmt <- matrix(unlist(lapply(1:length(pos), function(j) {
pos.j <- 1:(pos[j]+1)
p <- cbind(1,surv)[,pos.j,drop=FALSE]
time.diff <- diff(c(0, eTimes)[pos.j])
apply(p, 1, function(x) {sum(x[-length(x)] * time.diff)})
})), ncol = length(pos))
if ((miss.time <- (length(times) - NCOL(rmt)))>0)
rmt <- cbind(rmt,matrix(rep(NA,miss.time*NROW(rmt)),nrow=NROW(rmt)))
if (NROW(rmt) != NROW(newdata) || NCOL(rmt) != length(times))
stop(paste("\nPrediction matrix has wrong dimensions:\nRequested newdata x times: ",
NROW(newdata),
" x ",
length(times),
"\nProvided prediction matrix: ",
NROW(rmt),
" x ",
NCOL(rmt),
"\n\n",
sep=""))
rmt
}
predictRestrictedMeanTime.coxph.penal <- function(object,newdata,times,...){
frailhistory <- object$history$'frailty(cluster)'$history
frailVar <- frailhistory[NROW(frailhistory),1]
linearPred <- predict(object,newdata=newdata,se.fit=FALSE,conf.int=FALSE)
basehaz <- basehaz(object)
bhTimes <- basehaz[,2]
bhValues <- basehaz[,1]
survPred <- do.call("rbind",lapply(1:NROW(newdata),function(i){
(1+frailVar*bhValues*exp(linearPred[i]))^{-1/frailVar}
}))
where <- prodlim::sindex(jump.times=bhTimes,eval.times=times)
p <- cbind(1,survPred)[,where+1]
if ((miss.time <- (length(times) - NCOL(p)))>0)
p <- cbind(p,matrix(rep(NA,miss.time*NROW(p)),nrow=NROW(p)))
if (NROW(p) != NROW(newdata) || NCOL(p) != length(times))
stop(paste("\nPrediction matrix has wrong dimensions:\nRequested newdata x times: ",NROW(newdata)," x ",length(times),"\nProvided prediction matrix: ",NROW(p)," x ",NCOL(p),"\n\n",sep=""))
p
}
predictRestrictedMeanTime.cph <- function(object,newdata,times,...){
if (!match("surv",names(object),nomatch=0)) stop("Argument missing: set surv=TRUE in the call to cph!")
p <- rms::survest(object,times=times,newdata=newdata,se.fit=FALSE,what="survival")$surv
if (is.null(dim(p))) p <- matrix(p,nrow=NROW(newdata))
if (NROW(p) != NROW(newdata) || NCOL(p) != length(times))
stop(paste("\nPrediction matrix has wrong dimensions:\nRequested newdata x times: ",NROW(newdata)," x ",length(times),"\nProvided prediction matrix: ",NROW(p)," x ",NCOL(p),"\n\n",sep=""))
p
}
predictRestrictedMeanTime.selectCox <- function(object,newdata,times,...){
predictRestrictedMeanTime(object[[1]],newdata=newdata,times=times,...)
}
predictRestrictedMeanTime.prodlim <- function(object,newdata,times,...){
p <- predict(object=object,
type="surv",
newdata=newdata,
times=times,
mode="matrix",
level.chaos=1)
if (NROW(newdata)==1 && class(p)=="list"){
p <- unlist(p)
}
if (is.null(dim(p)) && NROW(newdata)>=1){
p <- as.vector(p)
if (length(p)!=length(times))
stop(paste("\nPrediction matrix has wrong dimensions:\nRequested newdata x times: ",NROW(newdata)," x ",length(times),"\nProvided prediction matrix: ",NROW(p)," x ",NCOL(p),"\n\n",sep=""))
}
else{
if (NROW(p) != NROW(newdata) || NCOL(p) != length(times))
stop(paste("\nPrediction matrix has wrong dimensions:\nRequested newdata x times: ",NROW(newdata)," x ",length(times),"\nProvided prediction matrix: ",NROW(p)," x ",NCOL(p),"\n\n",sep=""))
}
rownames(p) <- NULL
p
}
predict.survfit <- function(object,newdata,times,bytimes=TRUE,fill="last",...){
if (length(class(object))!=1 || class(object)!="survfit" || object$typ !="right")
stop("Predictions only available \nfor class 'survfit', possibly stratified Kaplan-Meier fits.\n For class 'cph' Cox models see survest.cph.")
if (missing(newdata))
npat <- 1
else
if (is.data.frame(newdata))
npat <- nrow(newdata)
else stop("If argument `newdata' is supplied it must be a dataframe." )
ntimes <- length(times)
sfit <- summary(object,times=times)
if (is.na(fill))
Fill <- function(x,len){x[1:len]}
else if (fill=="last")
Fill <- function(x,len){
y <- x[1:len]
y[is.na(y)] <- x[length(x)]
y}
else stop("Argument fill must be the string 'last' or NA.")
if (is.null(object$strata)){
pp <- Fill(sfit$surv,ntimes)
p <- matrix(rep(pp,npat),
ncol=ifelse(bytimes,ntimes,npat),
nrow=ifelse(bytimes,npat,ntimes),
byrow=bytimes)
}
else{
covars <- attr(terms(eval.parent(object$call$formula)),"term.labels")
if (!all(match(covars,names(newdata),nomatch=FALSE)))
stop("Not all strata defining variables occur in newdata.")
stratdat <- newdata[,covars,drop=FALSE]
names(stratdat) <- covars
NewStratVerb <- survival::strata(stratdat)
NewStrat <- interaction(stratdat,sep=" ")
levs <- levels(sfit$strata)
if (!all(choose <- match(NewStratVerb,levs,nomatch=F))
&&
!all(choose <- match(NewStrat,levs,nomatch=F)))
stop("Not all strata levels in newdata occur in fit.")
survlist <- split(sfit$surv,sfit$strata)
pp <- lapply(survlist[choose],Fill,ntimes)
p <- matrix(unlist(pp,use.names=FALSE),
ncol=ifelse(bytimes,ntimes,npat),
nrow=ifelse(bytimes,npat,ntimes),
byrow=bytimes)
}
if (NROW(p) != NROW(newdata) || NCOL(p) != length(times))
stop(paste("\nPrediction matrix has wrong dimensions:\nRequested newdata x times: ",NROW(newdata)," x ",length(times),"\nProvided prediction matrix: ",NROW(p)," x ",NCOL(p),"\n\n",sep=""))
p
}
predictRestrictedMeanTime.survfit <- function(object,newdata,times,...){
p <- predict.survfit(object,newdata=newdata,times=times,bytimes=TRUE,fill="last")
if (NROW(p) != NROW(newdata) || NCOL(p) != length(times))
stop(paste("\nPrediction matrix has wrong dimensions:\nRequested newdata x times: ",NROW(newdata)," x ",length(times),"\nProvided prediction matrix: ",NROW(p)," x ",NCOL(p),"\n\n",sep=""))
p
}
predictRestrictedMeanTime.psm <- function(object,newdata,times,...){
if (length(times)==1){
p <- rms::survest(object,times=c(0,times),newdata=newdata,what="survival",conf.int=FALSE)[,2]
}else{
p <- rms::survest(object,times=times,newdata=newdata,what="survival",conf.int=FALSE)
}
if (NROW(p) != NROW(newdata) || NCOL(p) != length(times))
stop(paste("\nPrediction matrix has wrong dimensions:\nRequested newdata x times: ",NROW(newdata)," x ",length(times),"\nProvided prediction matrix: ",NROW(p)," x ",NCOL(p),"\n\n",sep=""))
p
}
predictRestrictedMeanTime.riskRegression <- function(object,newdata,times,...){
if (missing(times))stop("Argument times is missing")
temp <- predict(object,newdata=newdata)
pos <- prodlim::sindex(jump.times=temp$time,eval.times=times)
p <- cbind(1,1-temp$cuminc)[,pos+1,drop=FALSE]
if (NROW(p) != NROW(newdata) || NCOL(p) != length(times))
stop(paste("\nPrediction matrix has wrong dimensions:\nRequested newdata x times: ",NROW(newdata)," x ",length(times),"\nProvided prediction matrix: ",NROW(p)," x ",NCOL(p),"\n\n",sep=""))
p
}
predictRestrictedMeanTime.rfsrc <- function(object, newdata, times, ...){
ptemp <- predict(object,newdata=newdata,importance="none",...)$survival
pos <- prodlim::sindex(jump.times=object$time.interest,eval.times=times)
p <- cbind(1,ptemp)[,pos+1,drop=FALSE]
if (NROW(p) != NROW(newdata) || NCOL(p) != length(times))
stop(paste("\nPrediction matrix has wrong dimensions:\nRequested newdata x times: ",NROW(newdata)," x ",length(times),"\nProvided prediction matrix: ",NROW(p)," x ",NCOL(p),"\n\n",sep=""))
p
}
predictProb <- function(object,newdata,times,...){
UseMethod("predictProb",object)
}
predictProb.glm <- function(object,newdata,times,...){
N <- NROW(newdata)
NT <- length(times)
if (!(unclass(family(object))$family=="gaussian"))
stop("Currently only gaussian family implemented for glm.")
betax <- predict(object,newdata=newdata,se.fit=FALSE)
pred.matrix <- matrix(rep(times,N),byrow=TRUE,ncol=NT,nrow=N)
p <- 1-pnorm(pred.matrix - betax,mean=0,sd=sqrt(var(object$y)))
if (NROW(p) != NROW(newdata) || NCOL(p) != length(times))
stop(paste("\nPrediction matrix has wrong dimensions:\nRequested newdata x times: ",NROW(newdata)," x ",length(times),"\nProvided prediction matrix: ",NROW(p)," x ",NCOL(p),"\n\n",sep=""))
p
}
predictProb.ols <- function(object,newdata,times,...){
N <- NROW(newdata)
NT <- length(times)
if (!(unclass(family(object))$family=="gaussian"))
stop("Currently only gaussian family implemented.")
betax <- predict(object,newdata=newdata,type="lp",se.fit=FALSE)
pred.matrix <- matrix(rep(times,N),byrow=TRUE,ncol=NT,nrow=N)
p <- 1-pnorm(pred.matrix - betax,mean=0,sd=sqrt(var(object$y)))
if (NROW(p) != NROW(newdata) || NCOL(p) != length(times))
stop(paste("\nPrediction matrix has wrong dimensions:\nRequested newdata x times: ",NROW(newdata)," x ",length(times),"\nProvided prediction matrix: ",NROW(p)," x ",NCOL(p),"\n\n",sep=""))
p
}
predictProb.randomForest <- function(object,newdata,times,...){
N <- NROW(newdata)
NT <- length(times)
predMean <- predict(object,newdata=newdata,se.fit=FALSE)
pred.matrix <- matrix(rep(times,N),byrow=TRUE,ncol=NT,nrow=N)
p <- 1-pnorm(pred.matrix - predMean,mean=0,sd=sqrt(var(object$y)))
if (NROW(p) != NROW(newdata) || NCOL(p) != length(times))
stop(paste("\nPrediction matrix has wrong dimensions:\nRequested newdata x times: ",NROW(newdata)," x ",length(times),"\nProvided prediction matrix: ",NROW(p)," x ",NCOL(p),"\n\n",sep=""))
p
} |
twonestgen <- function(I, sec, mat, schdist, schpar, secdist, secpar, errdist,
errpar, thetatrue) {
matre = matrix(c(0, 0), ncol = 2)
school = c(0)
class = c(0)
for (i in 1:I) {
rsch = schdist(1, schpar)
for (j in 1:sec[i]) {
rsec = secdist(1, secpar)
vecsec = rep(rsec, mat[i, j])
vecsch = rep(rsch, mat[i, j])
matt = cbind(vecsch, vecsec)
matre = rbind(matre, matt)
for (k in 1:mat[i, j]) {
school = c(school, i)
class = c(class, j)
}
}
}
np1 = length(matre[, 1])
n = np1 - 1
matre = matre[2:np1, ]
school = school[2:np1]
class = class[2:np1]
xmat = cbind(rbinom(n, 1, 0.5), rnorm(n))
errs = errdist(n, errpar)
ey = xmat %*% thetatrue
y = ey + matre[, 1] + matre[, 2] + errs
list(y = y, xmat = xmat, ey = ey, matre = matre, errs = errs,
school = school, section = class)
} |
mapdeckHeatmapDependency <- function() {
list(
createHtmlDependency(
name = "heatmap",
version = "1.0.0",
src = system.file("htmlwidgets/lib/heatmap", package = "mapdeck"),
script = c("heatmap.js"),
all_files = FALSE
)
)
}
add_heatmap <- function(
map,
data = get_map_data(map),
lon = NULL,
lat = NULL,
polyline = NULL,
weight = NULL,
colour_range = NULL,
radius_pixels = 30,
intensity = 1,
threshold = 0.05,
layer_id = NULL,
update_view = TRUE,
focus_layer = FALSE,
digits = 6,
transitions = NULL
) {
l <- list()
l[["polyline"]] <- force( polyline )
l[["weight"]] <- force( weight )
l[["lon"]] <- force( lon )
l[["lat"]] <- force( lat )
l <- resolve_data( data, l, c("POINT") )
bbox <- init_bbox()
update_view <- force( update_view )
focus_layer <- force( focus_layer )
if ( !is.null(l[["data"]]) ) {
data <- l[["data"]]
l[["data"]] <- NULL
}
if( !is.null(l[["bbox"]] ) ) {
bbox <- l[["bbox"]]
l[["bbox"]] <- NULL
}
layer_id <- layerId(layer_id, "heatmap")
if( is.null( colour_range ) ) {
colour_range <- colourvalues::colour_values(1:6, palette = "viridis")
}
if(length(colour_range) != 6)
stop("mapdeck - colour_range must have 6 hex colours")
checkHex(colour_range)
map <- addDependency(map, mapdeckHeatmapDependency())
tp <- l[["data_type"]]
l[["data_type"]] <- NULL
jsfunc <- "add_heatmap_geo"
if( tp == "sf" ) {
geometry_column <- c( "geometry" )
shape <- rcpp_aggregate_geojson( data, l, geometry_column, digits, "heatmap" )
} else if ( tp == "df" ) {
geometry_column <- list( geometry = c("lon", "lat") )
shape <- rcpp_aggregate_geojson_df( data, l, geometry_column, digits, "heatmap" )
} else if ( tp == "sfencoded" ) {
geometry_column <- "polyline"
shape <- rcpp_aggregate_polyline( data, l, geometry_column, "heatmap" )
jsfunc <- "add_heatmap_polyline"
}
js_transitions <- resolve_transitions( transitions, "heatmap" )
invoke_method(
map, jsfunc, map_type( map ), shape[["data"]], layer_id, colour_range,
radius_pixels, intensity, threshold, bbox, update_view, focus_layer, js_transitions
)
}
clear_heatmap <- function( map, layer_id = NULL) {
layer_id <- layerId(layer_id, "heatmap")
invoke_method(map, "md_layer_clear", map_type( map ), layer_id, "heatmap" )
} |
"swissexper" |
signal = GRanges(seqnames = "chr1",
ranges = IRanges(start = c(1, 4, 7, 11, 14, 17, 21, 24, 27),
end = c(2, 5, 8, 12, 15, 18, 22, 25, 28)),
score = c(1, 2, 3, 1, 2, 3, 1, 2, 3))
target = GRanges(seqnames = "chr1", ranges = IRanges(start = c(10, 25), end = c(20, 30)))
normalizeToMatrix(signal, target, extend = 10, w = 2)
normalizeToMatrix(signal, target, extend = 10, w = 2, include_target = TRUE)
normalizeToMatrix(signal, target, extend = 10, w = 2, value_column = "score")
normalizeToMatrix(signal, target, extend = 10, w = 2, target_ratio = 0.5)
normalizeToMatrix(signal, target, extend = 10, w = 2, target_ratio = 1)
normalizeToMatrix(signal, target, w = 2, extend = c(5, 5))
normalizeToMatrix(signal, target, w = 2, extend = c(0, 5))
normalizeToMatrix(signal, target, w = 2, extend = c(5, 0))
normalizeToMatrix(signal, target, w = 2, extend = c(0, 0)) |
regbetawei <- function(pa, ly, sly1, x, w) {
phi <- exp(pa[1]) ; b <- pa[-1]
m <- exp( tcrossprod(b, x) )
m <- m / ( 1 + m )
a1 <- m * phi ; a2 <- phi - a1
- lgamma(phi) + sum( w * lgamma(a1) ) + sum( w * lgamma(a2) ) - sum(a1 * ly) - phi * sly1
} |
account_albums <-
function(account = 'me',
ids = TRUE,
...){
if(!"token" %in% names(list(...)) && account == 'me')
stop("This operation can only be performed for account 'me' using an OAuth token.")
if(ids) {
out <- imgurGET(paste0('account/', account, '/albums/ids'), ...)
structure(out, class = 'imgur_basic')
} else {
out <- imgurGET(paste0('account/', account, '/albums/'), ...)
lapply(out, `class<-`, 'imgur_album')
}
} |
NuisanceData <- function(nuisPars){
if(is.null(nuisPars))
nuisPars <- nuisParsFn() else{
if(!is.null(nuisPars$mu)){
nuis.mu <- nuisPars$mu} else{
nuis.mu <- 0.01}
if(!is.null(nuisPars$sd)){
nuis.sd <- nuisPars$sd} else{
nuis.sd <- 0.05}
if(!is.null(nuisPars$c)){
nuis.c <- nuisPars$c} else{
nuis.c <- 0}
if(!is.null(nuisPars$alpha)){
nuis.alpha <- nuisPars$alpha} else{
nuis.alpha <- 0.1}
if(!is.null(nuisPars$beta)){
nuis.beta <- nuisPars$beta} else{
nuis.beta <- 0.1}
nuisPars <- nuisParsFn(nuis.mu, nuis.sd, nuis.c, nuis.alpha, nuis.beta)
}
return(nuisPars)
} |
setwd(dirname(this.dir()))
source("setup.R")
raw_data_path <- get_inpath(this.dir())
out_data_path <- get_outpath(this.dir())
roanoke <- read_excel(paste0(raw_data_path,"roanoke_police_settlements_records.xlsx"),
sheet = "amounts",
col_types = "text")
roanoke_po <- read_excel(paste0(raw_data_path,"roanoke_police_settlements_records.xlsx"),
sheet = "police_officers")
roanoke <- roanoke %>%
rename(summary_allegations = `summary_allegations (;)`) %>%
mutate(city = "Roanoke", state= "VA") %>%
mutate(amount_awarded = as.numeric(amount_awarded),
filed_date = NA,
filed_year = NA,
closed_date = NA,
incident_date = as_date(as.numeric(incident_date),origin = '1899-12-30'),
incident_year = year(incident_date),
calendar_year = as.numeric(calendar_year))
roanoke_po <- roanoke_po %>%
mutate(city = "Roanoke", state="VA") %>%
rename(calendar_year = year) %>%
mutate(closed_date = NA)
merged <- full_join(roanoke_po,roanoke)
roanoke <- roanoke %>% select(calendar_year,
city,
state,
incident_date,
incident_year,
filed_date,
filed_year,
closed_date,
amount_awarded,
other_expenses,
collection,
total_incurred,
case_outcome,
docket_number,
claim_number,
court,
plaintiff_name,
plaintiff_attorney,
matter_name,
location,
summary_allegations)
roanoke_po <- roanoke_po %>% select(-closed_date)
summary(roanoke$calendar_year)
nrow(roanoke %>% group_by_all() %>% filter(n()>1))
table(roanoke$summary_allegations)
print(paste("There are",nrow(roanoke %>% filter(is.na(closed_date))),"rows missing closed date"))
print(paste("There are",nrow(roanoke %>% filter(is.na(calendar_year))),"rows missing calendar year"))
print(paste("There are",nrow(roanoke %>% filter(is.na(amount_awarded))),"rows missing amount awarded"))
print(paste("There are",nrow(roanoke %>% filter(amount_awarded==0)),"rows with amount awarded = 0"))
print(paste("There are",nrow(roanoke %>% filter(is.na(docket_number))),"rows missing docket number"))
print("Total number of cases")
print(nrow(roanoke))
print("Total amount awarded")
sum(roanoke$amount_awarded)
write.csv(roanoke,paste0(out_data_path,"roanoke_edited.csv"), na = "", row.names = FALSE)
write.csv(roanoke_po,paste0(out_data_path,"roanoke_police_edited.csv"), na = "",row.names = FALSE) |
upper <- function(n, k = 5, x = LETTERS, prob = NULL, name = "Upper"){
stopifnot(k < length(x) || k > 0)
if (!is.null(prob) && length(prob) != k) stop("length of `prob` must equa `k`")
out <- sample(x = x[seq_len(k)], size = n, replace = TRUE, prob = prob)
varname(out, name)
}
lower <- hijack(upper,
x = letters,
name = "Lower"
)
upper_factor <- function(n, k = 5, x = LETTERS, prob = NULL, name = "Upper"){
stopifnot(k < length(x) || k > 0)
stopifnot(length(prob) != k)
out <- sample(x = x[seq_len(k)], size = n, replace = TRUE, prob = prob)
out <- factor(out, levels = x[seq_len(k)])
varname(out, name)
}
lower_factor <- hijack(upper_factor,
x = letters,
name = "Lower"
) |
x <- rprobMat(10,c(2,3,4))
test_that("aperm works as expected", {
expect_equal(aperm(x[1,], c(2,3,1)), aperm(x, c(2,3,1))[1,])
expect_equal(aperm(x, c(1,2,3)), x)
}) |
micro_PERMANOVA <- function(micro_set, beta_div, method, ..., nperm = 999){
micro_set %<>%
dplyr::filter(.data$Lib %in% rownames(beta_div)) %>%
dplyr::distinct(.data$Lib, .keep_all = T) %>%
dplyr::arrange(.data$Lib)
f <- paste("beta_div ~", suppressWarnings(adonis_formula(...)) ) %>%
stats::as.formula()
vegan::adonis2(f, data = micro_set, method = method, permutations = nperm)
} |
require(geosapi, quietly = TRUE)
require(testthat)
context("GSDataStore")
test_that("READ dataStore",{
expect_is(gsman,"GSManager")
ds <- gsman$getDataStore("topp", "taz_shapes")
expect_is(ds, "GSDataStore")
expect_true(all(c("name", "enabled", "type", "description", "connectionParameters", "full") %in% names(ds)))
expect_equal(ds$name, "taz_shapes")
})
test_that("READ dataStores",{
dslist <- gsman$getDataStores("topp")
expect_true(all(sapply(dslist, function(x){class(x)[1] == "GSDataStore"})))
dsnames <- gsman$getDataStoreNames("topp")
expect_true(all(dsnames %in% c("states_shapefile","taz_shapes")))
})
test_that("CREATE dataStore - Shapefile",{
ds = GSShapefileDataStore$new(dataStore="topp_datastore",
description = "topp_datastore description",
enabled = TRUE,
url = "file:data/shapefiles/states.shp")
created <- gsman$createDataStore("topp", ds)
expect_true(created)
ds <- gsman$getDataStore("topp", "topp_datastore")
expect_is(ds, "GSDataStore")
expect_equal(ds$description, "topp_datastore description")
expect_true(ds$enabled)
})
test_that("UPDATE datastore - Shapefile",{
dataStore <- gsman$getDataStore("topp", "topp_datastore")
dataStore$setDescription("topp_datastore updated description")
dataStore$setEnabled(FALSE)
updated <- gsman$updateDataStore("topp", dataStore)
expect_true(updated)
ds <- gsman$getDataStore("topp", "topp_datastore")
expect_is(ds, "GSDataStore")
expect_equal(ds$description, "topp_datastore updated description")
expect_false(ds$enabled)
})
test_that("DELETE dataStore - Shapefile",{
deleted <- gsman$deleteDataStore("topp", "topp_datastore", TRUE)
expect_true(deleted)
ds <- gsman$getDataStore("topp", "topp_datastore")
expect_is(ds, "NULL")
})
test_that("CREATE dataStore - Directory of Shapefiles",{
ds = GSShapefileDirectoryDataStore$new(dataStore="topp_datastore",
description = "topp_datastore description",
enabled = TRUE, url = "file:data/shapefiles")
created <- gsman$createDataStore("topp", ds)
expect_true(created)
ds <- gsman$getDataStore("topp", "topp_datastore")
expect_is(ds, "GSDataStore")
expect_equal(ds$description, "topp_datastore description")
expect_true(ds$enabled)
})
test_that("UPDATE datastore - Directory of Shapefiles",{
dataStore <- gsman$getDataStore("topp", "topp_datastore")
dataStore$setDescription("topp_datastore updated description")
dataStore$setEnabled(FALSE)
updated <- gsman$updateDataStore("topp", dataStore)
expect_true(updated)
ds <- gsman$getDataStore("topp", "topp_datastore")
expect_is(ds, "GSDataStore")
expect_equal(ds$description, "topp_datastore updated description")
expect_false(ds$enabled)
})
test_that("DELETE dataStore - Directory of Shapefiles",{
deleted <- gsman$deleteDataStore("topp", "topp_datastore", TRUE)
expect_true(deleted)
ds <- gsman$getDataStore("topp", "topp_datastore")
expect_is(ds, "NULL")
})
test_that("CREATE dataStore - GeoPackage",{
ds = GSGeoPackageDataStore$new(dataStore="topp_datastore_gpkg",
description = "topp_datastore description",
enabled = TRUE,
database = "file:data/somefile.gpkg")
created <- gsman$createDataStore("topp", ds)
expect_true(created)
ds <- gsman$getDataStore("topp", "topp_datastore_gpkg")
expect_is(ds, "GSDataStore")
expect_equal(ds$description, "topp_datastore description")
expect_true(ds$enabled)
})
test_that("UPDATE datastore - GeoPackage",{
dataStore <- gsman$getDataStore("topp", "topp_datastore_gpkg")
dataStore$setDescription("topp_datastore updated description")
dataStore$setEnabled(FALSE)
updated <- gsman$updateDataStore("topp", dataStore)
expect_true(updated)
ds <- gsman$getDataStore("topp", "topp_datastore_gpkg")
expect_is(ds, "GSDataStore")
expect_equal(ds$description, "topp_datastore updated description")
expect_false(ds$enabled)
})
test_that("DELETE dataStore - GeoPackage",{
deleted <- gsman$deleteDataStore("topp", "topp_datastore_gpkg", TRUE)
expect_true(deleted)
ds <- gsman$getDataStore("topp", "topp_datastore_gpkg")
expect_is(ds, "NULL")
}) |
ComputeBest_t.example <- function(){
AlphaBetaMatrix <- matrix(c(0.7,1.5,0,0.5),ncol=2)
nbts <- seq(20,50,10)
ComputeBest_t(AlphaBetaMatrix=AlphaBetaMatrix,
nb_ts=nbts)
}
ComputeBest_tau.example <- function(){
AlphaBetaMatrix <- matrix(c(0.7,1.5,0,0.5),ncol=2)
nbts <- seq(20,50,10)
ComputeBest_tau(AlphaBetaMatrix=AlphaBetaMatrix,
nb_ts=nbts,tScheme="uniformOpt",
Constrained=TRUE)
} |
"PreDiabetes" |
draw.boxes = function(
slice,
start,
end,
maxElements = 50,
maxDepth = 100,
label = TRUE,
labelStrand = FALSE,
labelCex = 1,
labelSrt = 0,
labelAdj = "center",
labelOverflow = TRUE,
labelFamily = "sans",
colorVal = "
colorFun = function() NULL,
border = "
cex.lab = 1,
spacing = 0.2,
bty = "o",
groupBy = NA,
groupPosition = NA,
groupSize = NA,
groupLwd = 1,
...
) {
if(is.numeric(start)) start <- as.integer(start)
if(is.numeric(end)) end <- as.integer(end)
if(!is.integer(start)) stop("'start' must be integer or numeric")
if(!is.integer(end)) stop("'end' must be integer or numeric")
if(!is.data.frame(slice)) stop("'slice' must be a data.frame")
if(isTRUE(label) && !"name" %in% names(slice)) stop("'slice' needs a 'name' column when 'label'")
if(isTRUE(label) && isTRUE(labelStrand) && !"strand" %in% names(slice)) stop("'slice' needs a 'strand' column when 'label' and 'labelStrand'")
if(!"start" %in% names(slice)) stop("'slice' needs a 'start' column")
if(!"end" %in% names(slice)) stop("'slice' needs a 'end' column")
draw.bg(
start = start,
end = end,
cex.lab = cex.lab,
bty = bty,
...
)
errorMessage <- NA
if(nrow(slice) == 0) {
errorMessage <- "No feature in the region"
} else if(nrow(slice) > maxElements) {
errorMessage <- sprintf("'maxElements' reached (%i)", nrow(slice))
} else {
if(is.na(groupBy)) {
boxes <- data.frame(
start.plot = as.integer(slice$start),
end.plot = as.integer(slice$end),
strand = as.character(slice$strand),
label = slice$name,
stringsAsFactors = FALSE
)
} else if(!groupBy %in% names(slice)) {
stop("'groupBy' must refer to an existing column")
} else if(!is.na(groupPosition) && ! groupPosition %in% names(slice)) {
stop("'groupPosition' must be NA or refer to an existing column")
} else if(!is.na(groupSize) && ! groupSize %in% names(slice)) {
stop("'groupSize' must be NA or refer to an existing column")
} else {
if(is.factor(slice[[ groupBy ]])) {
slice[[ groupBy ]] <- factor(as.character(slice[[ groupBy ]]))
} else {
slice[[ groupBy ]] <- factor(slice[[ groupBy ]])
}
boxes <- data.frame(
start.plot = as.integer(lapply(X=split(x=slice$start, f=slice[[ groupBy ]]), FUN=min, na.rm=TRUE)),
end.plot = as.integer(lapply(X=split(x=slice$end, f=slice[[ groupBy ]]), FUN=max, na.rm=TRUE)),
strand = as.character(lapply(X=split(x=as.character(slice$strand), f=slice[[ groupBy ]]), FUN="[", i=1L)),
label = levels(slice[[ groupBy ]]),
stringsAsFactors = FALSE
)
if(!is.na(groupPosition) && !is.na(groupSize)) {
start.i <- as.integer(lapply(X=split(x=slice[[ groupPosition ]], f=slice[[ groupBy ]]), FUN=min, na.rm=TRUE))
end.i <- as.integer(lapply(X=split(x=slice[[ groupPosition ]], f=slice[[ groupBy ]]), FUN=max, na.rm=TRUE))
size.i <- as.integer(lapply(X=split(x=slice[[ groupSize ]], f=slice[[ groupBy ]]), FUN="[", i=1L))
boxes[ boxes$strand == "+" & start.i > 1L , "start.plot" ] <- as.integer(graphics::par("usr")[1])
boxes[ boxes$strand == "-" & start.i > 1L , "end.plot" ] <- as.integer(graphics::par("usr")[2])
boxes[ boxes$strand == "+" & end.i < size.i , "end.plot" ] <- as.integer(graphics::par("usr")[2])
boxes[ boxes$strand == "-" & end.i < size.i , "start.plot" ] <- as.integer(graphics::par("usr")[1])
}
}
boxes <- yline(
boxes = boxes,
start = start,
end = end,
label = label,
labelStrand = labelStrand,
labelCex = labelCex,
labelSrt = labelSrt,
labelAdj = labelAdj,
labelOverflow = labelOverflow,
maxDepth = maxDepth
)
if(is(boxes, "error")) {
errorMessage <- conditionMessage(boxes)
} else {
if(is.na(groupBy)) {
slice$plotLine <- boxes$yline
} else {
slice$plotLine <- boxes$yline[ match(slice[[ groupBy ]], boxes$label) ]
}
maxLine <- max(boxes$yline) + 1L
if(is.na(colorVal)) {
environment(colorFun) <- environment()
color <- colorFun()
} else {
color <- colorVal
}
if(identical(border, "color")) border <- color
if(!is.na(groupBy)) {
graphics::segments(
x0 = boxes$start.plot,
y0 = (boxes$yline + 0.5) / maxLine,
x1 = boxes$end.plot,
y1 = (boxes$yline + 0.5) / maxLine,
col = border,
lwd = groupLwd
)
}
slice$start <- pmax(graphics::par("usr")[1], slice$start)
slice$end <- pmin(graphics::par("usr")[2], slice$end)
graphics::rect(
xleft = slice$start,
xright = slice$end,
ytop = (slice$plotLine + (1 - spacing/2)) / maxLine,
ybottom = (slice$plotLine + spacing/2) / maxLine,
col = color,
border = border
)
if(isTRUE(label)) {
if(!is.na(groupBy)) {
charHeight <- graphics::yinch(graphics::par("cin")[2]) * labelCex
graphics::rect(
xleft = boxes$start.lab,
xright = boxes$end.lab,
ybottom = (boxes$yline + 0.5) / maxLine - charHeight/2,
ytop = (boxes$yline + 0.5) / maxLine + charHeight/2,
col = "
border = border
)
}
if(isTRUE(labelStrand)) {
boxes[ boxes$strand == "-" , "label" ] <- sprintf("< %s", boxes[ boxes$strand == "-" , "label" ])
boxes[ boxes$strand == "+" , "label" ] <- sprintf("%s >", boxes[ boxes$strand == "+" , "label" ])
}
args <- with(
boxes[ (isTRUE(label) && isTRUE(labelOverflow)) | !boxes$overflow ,],
list(
x = (start.lab + end.lab) / 2,
y = (yline + 0.5) / maxLine,
label = label,
col = "
adj = c(0.5, 0.5),
cex = labelCex,
srt = labelSrt
)
)
if(labelFamily == "Hershey") { args$vfont <- c("sans serif", "bold")
} else { args$family <- labelFamily
}
do.call(graphics::text, args)
}
}
}
if(!is.na(errorMessage)) {
graphics::text(
x = mean(graphics::par("usr")[1:2]),
y = mean(graphics::par("usr")[3:4]),
label = errorMessage,
col = "
adj = c(0.5, 0.5),
cex = cex.lab
)
}
graphics::box(
which = "plot",
col = "
bty = bty
)
} |
calc_si <- function(a, b) {
calc_ed(a, b, measure = "si", prop = NULL)
}
calc_si_hidden <- function(a, b) {
comp <- encoding2matrix(a) == encoding2matrix(b)
diag(comp) <- 0
sum(comp)/(nrow(comp) * (nrow(comp) - 1))
}
encoding2matrix <- function(x) {
x_df <- encoding2df(x, sort = TRUE)
res <- sapply(sort(levels(x_df[["element"]])), function(single_element) {
x_gr <- x_df[x_df[["element"]] == single_element, "gr_id"]
x_df[["gr_id"]] == x_gr
})
diag(res) <- FALSE
res
} |
logLik.dbchoice <- function(object, ...)
{
out <- object$loglik
attr(out, "df") <- sum(!is.na(coefficients(object)))
attr(out, "nobs") <- object$nobs
class(out) <- "logLik"
out
} |
report.htest <- function(x, ...) {
table <- report_table(x, ...)
text <- report_text(x, table = table, ...)
as.report(text, table = table, ...)
}
report_effectsize.htest <- function(x, ...) {
if (insight::model_info(x)$is_ttest) {
table <- effectsize::cohens_d(x, ...)
ci <- attributes(table)$ci
estimate <- names(table)[1]
interpretation <- effectsize::interpret_cohens_d(table[[estimate]], ...)
rules <- .text_effectsize(attributes(interpretation)$rule_name)
if (estimate %in% c("d", "Cohens_d")) {
main <- paste0("Cohen's d = ", insight::format_value(table[[estimate]]))
} else {
main <- paste0(estimate, " = ", insight::format_value(table[[estimate]]))
}
statistics <- paste0(
main,
", ",
insight::format_ci(table$CI_low, table$CI_high, ci)
)
table <- datawizard::data_rename(
as.data.frame(table),
c("CI_low", "CI_high"),
paste0(estimate, c("_CI_low", "_CI_high"))
)
table <- table[c(estimate, paste0(estimate, c("_CI_low", "_CI_high")))]
}
if (insight::model_info(x)$is_ranktest && !insight::model_info(x)$is_correlation) {
table <- parameters::parameters(x, rank_biserial = TRUE, ...)
ci <- attributes(table)$ci
estimate <- "r_rank_biserial"
interpretation <- effectsize::interpret_r(table$r_rank_biserial, ...)
rules <- .text_effectsize(attributes(interpretation)$rule_name)
main <- paste0("r (rank biserial) = ", insight::format_value(table$r_rank_biserial))
statistics <- paste0(
main,
", ",
insight::format_ci(table$rank_biserial_CI_low, table$rank_biserial_CI_high, ci)
)
table <- table[c("r_rank_biserial", "rank_biserial_CI_low", "rank_biserial_CI_high")]
}
if (insight::model_info(x)$is_correlation) {
table <- parameters::parameters(x, ...)
ci <- attributes(table)$ci
estimate <- names(table)[3]
interpretation <- effectsize::interpret_r(table[[estimate]], ...)
rules <- .text_effectsize(attributes(interpretation)$rule_name)
main <- paste0(estimate, " = ", insight::format_value(table[[estimate]]))
if ("CI_low" %in% names(table)) {
statistics <- paste0(
main,
", ",
insight::format_ci(table$CI_low, table$CI_high, ci)
)
table <- table[c(estimate, "CI_low", "CI_high")]
} else {
statistics <- main
table <- table[c(estimate)]
}
}
if (insight::model_info(x)$is_chi2test || insight::model_info(x)$is_proptest ||
insight::model_info(x)$is_xtab) {
stop("This test is not yet supported. Please open an issue: https://github.com/easystats/report/issues")
}
parameters <- paste0(interpretation, " (", statistics, ")")
as.report_effectsize(
parameters,
summary = parameters,
table = table,
interpretation = interpretation,
statistics = statistics,
rules = rules,
ci = ci,
main = main
)
}
report_table.htest <- function(x, ...) {
table_full <- parameters::model_parameters(x, ...)
effsize <- report_effectsize(x, ...)
if (insight::model_info(x)$is_ttest) {
table_full <- cbind(table_full, attributes(effsize)$table)
table <- datawizard::data_remove(
table_full,
c("Parameter", "Group", "Mean_Group1", "Mean_Group2", "Method")
)
}
if (insight::model_info(x)$is_ranktest && !insight::model_info(x)$is_correlation) {
table_full <- cbind(table_full, attributes(effsize)$table)
}
as.report_table(table_full, summary = table, effsize = effsize)
}
report_statistics.htest <- function(x, table = NULL, ...) {
if (is.null(table) || is.null(attributes(table)$effsize)) {
table <- report_table(x)
}
effsize <- attributes(table)$effsize
candidates <- c("rho", "r", "tau", "Difference", "r_rank_biserial")
estimate <- candidates[candidates %in% names(table)][1]
text <- paste0(tolower(estimate), " = ", insight::format_value(table[[estimate]]))
if (!is.null(attributes(x$conf.int)$conf.level)) {
text <- paste0(
text,
", ",
insight::format_ci(table$CI_low, table$CI_high, ci = attributes(x$conf.int)$conf.level)
)
}
if ("t" %in% names(table)) {
text <- paste0(
text,
", t(",
insight::format_value(table$df, protect_integers = TRUE),
") = ",
insight::format_value(table$t)
)
} else if ("S" %in% names(table)) {
text <- paste0(text, ", S = ", insight::format_value(table$S))
} else if ("z" %in% names(table)) {
text <- paste0(text, ", z = ", insight::format_value(table$z))
} else if ("W" %in% names(table)) {
text <- paste0("W = ", insight::format_value(table$W))
} else if ("Chi2" %in% names(table)) {
text <- paste0(text, ", Chi2 = ", insight::format_value(table$Chi2))
}
text <- paste0(text, ", ", insight::format_p(table$p, stars = FALSE, digits = "apa"))
if (insight::model_info(x)$is_ttest ||
(insight::model_info(x)$is_ranktest && !insight::model_info(x)$is_correlation)) {
text_full <- paste0(text, "; ", attributes(effsize)$statistics)
text <- paste0(text, ", ", attributes(effsize)$main)
} else {
text_full <- text
}
as.report_statistics(text_full,
summary = text,
estimate = table[[estimate]],
table = table,
effsize = effsize
)
}
report_parameters.htest <- function(x, table = NULL, ...) {
stats <- report_statistics(x, table = table, ...)
table <- attributes(stats)$table
effsize <- attributes(stats)$effsize
if (insight::model_info(x)$is_correlation) {
text_full <- paste0(
effectsize::interpret_direction(attributes(stats)$estimate),
", statistically ",
effectsize::interpret_p(table$p, rules = "default"),
", and ",
effectsize::interpret_r(attributes(stats)$estimate, ...),
" (",
stats,
")"
)
text_short <- text_full
} else {
text_full <- paste0(
effectsize::interpret_direction(attributes(stats)$estimate),
", statistically ",
effectsize::interpret_p(table$p, rules = "default"),
", and ",
attributes(effsize)$interpretation,
" (",
stats,
")"
)
text_short <- paste0(
effectsize::interpret_direction(attributes(stats)$estimate),
", statistically ",
effectsize::interpret_p(table$p, rules = "default"),
", and ",
attributes(effsize)$interpretation,
" (",
summary(stats),
")"
)
}
as.report_parameters(
text_full,
summary = text_short,
table = table,
effectsize = effsize,
...
)
}
report_model.htest <- function(x, table = NULL, ...) {
if (is.null(table)) {
table <- report_table(x, ...)
}
if (insight::model_info(x)$is_correlation) {
text <- paste0(x$method, " between ", x$data.name)
}
if (insight::model_info(x)$is_ttest) {
if (names(x$null.value) == "mean") {
table$Difference <- x$estimate - x$null.value
means <- paste0(" (mean = ", insight::format_value(x$estimate), ")")
vars_full <- paste0(x$data.name, means, " and mu = ", x$null.value)
vars <- paste0(x$data.name, " and mu = ", x$null.value)
} else {
table$Difference <- x$estimate[1] - x$estimate[2]
means <- paste0(names(x$estimate), " = ",
insight::format_value(x$estimate),
collapse = ", "
)
vars_full <- paste0(x$data.name, " (", means, ")")
vars <- paste0(x$data.name)
}
text <- paste0(
trimws(x$method),
" testing the difference ",
ifelse(grepl(" by ", x$data.name), "of ", "between "),
vars_full
)
}
if (insight::model_info(x)$is_ranktest && !insight::model_info(x)$is_correlation) {
if ("Parameter1" %in% names(table)) {
vars_full <- paste0(table$Parameter1[[1]], " and ", table$Parameter2[[1]])
text <- paste0(
trimws(x$method),
" testing the difference in ranks between ",
vars_full
)
} else {
vars_full <- paste0(table$Parameter[[1]])
text <- paste0(
trimws(x$method),
" testing the difference in rank for ",
vars_full,
" and true location of 0"
)
}
}
as.report_model(text, summary = text)
}
report_info.htest <- function(x, effectsize = NULL, ...) {
if (is.null(effectsize)) {
effectsize <- report_effectsize(x, ...)
}
as.report_info(attributes(effectsize)$rules)
}
report_text.htest <- function(x, table = NULL, ...) {
params <- report_parameters(x, table = table, ...)
table <- attributes(params)$table
model <- report_model(x, table = table, ...)
info <- report_info(x, effectsize = attributes(params)$effectsize, ...)
if (insight::model_info(x)$is_correlation) {
text <- paste0(
"The ",
model,
" is ",
params
)
text_full <- paste0(
info,
"\n\n",
text
)
} else {
text_full <- paste0(
info,
"\n\nThe ",
model,
" suggests that the effect is ",
params
)
text <- paste0(
"The ",
model,
" suggests that the effect is ",
summary(params)
)
}
as.report_text(text_full, summary = text)
} |
.Random.seed <-
c(403L, 624L, -30687743L, 2142122958L, 1257173495L, 362302924L,
1421191261L, -1218344070L, 1487659699L, -1629839272L, -275849607L,
-181580826L, -301566673L, 1682848164L, -2060092331L, -545660654L,
102311275L, 1316251056L, 571432433L, 1812231934L, 815542119L,
182530172L, 1447436109L, -989136470L, 1377931043L, 138896904L,
-1486676887L, 792204566L, -1106181985L, 289706580L, -508858043L,
-598788798L, -1503395877L, 1374486880L, -1522796063L, 1452836398L,
-1658730281L, 1410842412L, 1256542781L, -250809382L, -1550100589L,
1047173048L, -54012327L, 1749166662L, 57108495L, 1646663428L,
-1632656843L, -1609132686L, -316770741L, -474904304L, -500133423L,
706568542L, -1730757049L, 166132188L, -1568521939L, 13269514L,
1684028419L, -2145438360L, 1679559753L, -1554085002L, 725658495L,
-1761753164L, -1810821339L, 2123563426L, -730888005L, 1341979840L,
-483646015L, 1309018254L, -774762569L, -1078337396L, -657724387L,
-496595910L, 225918067L, 318783256L, 2038349369L, 2019571878L,
-2137797905L, 1117168740L, -1654736875L, -1941472814L, 1883125547L,
1103780976L, 1378727345L, -695895106L, 199933223L, 867922748L,
1697731341L, -591123862L, -374908701L, -211241784L, -254874583L,
1138373078L, -1676163489L, -92558060L, -1981309691L, -831062526L,
1580302747L, 1926539296L, 1760838049L, -1265714450L, -1867004265L,
-19484180L, -1428064771L, -1081715558L, -2055761581L, -2072799624L,
-2052352487L, 1461679878L, -733766193L, 116908484L, 213564917L,
1797557810L, 900753419L, 1536614352L, -520173167L, -439040482L,
-1617941497L, 1152818332L, -389327635L, 319818442L, 523167171L,
1073472552L, -344736759L, 675481654L, -1387376321L, 320225908L,
-1398334747L, -653055390L, -136189317L, -481557632L, -477344383L,
-1530225330L, -578097801L, 1673933644L, 698216413L, 1216630010L,
383014451L, 1721540056L, -1119461895L, -2112363162L, 1227808943L,
-593375452L, -1271155755L, 264622738L, 2142046443L, 267326256L,
-107229839L, -1734131586L, -981529881L, -1523550724L, 868763341L,
-372892886L, 1580130979L, -1347370104L, 1845656553L, -1271853418L,
-677622753L, -467302444L, 566724805L, -1216379198L, -239549605L,
-1237643552L, -68400799L, 89239470L, 402883671L, -320838484L,
2037995965L, -914852518L, -389706989L, -111979208L, 944182745L,
-1025408058L, 101553039L, 485256324L, -1755735627L, 1497581298L,
745281995L, 699070096L, 50118993L, -74913058L, 1265588679L, 1770061660L,
144713901L, 855530378L, 467619715L, -127970584L, 242428873L,
-1757657866L, 1874441983L, -1660846796L, 1254155941L, -1898704094L,
938347579L, -327562688L, 1460417857L, -2000948722L, -69629129L,
1149060620L, 2062267293L, 444255674L, 1048784883L, -395330408L,
-1968849479L, 789860902L, 228046447L, 1294973412L, -175345771L,
850717522L, -1239049557L, 1604487664L, 1612293425L, -417479362L,
1528371367L, 1375746236L, -439682419L, 1288752106L, -378000285L,
1004507720L, -557986903L, -855856298L, -1503751713L, -1727913324L,
-989121403L, -1876373630L, 1387906331L, 1927296416L, -1780215519L,
-1381931922L, -1597701609L, -1057695892L, -898826883L, -1616685542L,
2001028307L, 1271518200L, -1000712807L, 675827846L, 1048922447L,
516142916L, 1246508405L, -1825390670L, 856787851L, 1420676432L,
1877637393L, -405602L, 2050246535L, -888790500L, 96517229L, 559246410L,
1949399363L, 134840744L, 1826249609L, -1660272202L, -2008884033L,
1602189300L, 1780380261L, -124404766L, 1716776443L, 575033600L,
1433132289L, -1097201970L, 2055071991L, 1688148172L, -1066059939L,
1225395834L, 239323571L, -1489396904L, 1901911417L, 1544912614L,
1401834543L, 1862296740L, 1292954453L, 2111095826L, 1432874091L,
-1750810448L, -1922614031L, -1229649410L, -1971788185L, -320160900L,
1593405005L, 648297642L, -2059192797L, 1454711048L, -1027548311L,
-1694693354L, -31549537L, -1546551980L, 1332912197L, 288544834L,
854886107L, -1081861024L, 781949153L, -767698642L, 1488732119L,
-573306324L, 1903976765L, -1832454438L, -1699299693L, -359198024L,
-1717217959L, -1005331130L, -479543537L, 1195229700L, -246247115L,
28506226L, 1801502027L, -1554029552L, 260567249L, 1206350942L,
-912329401L, 2080769244L, -1544744915L, 1591033098L, 31810307L,
-1917161368L, 1718176585L, -1502806410L, -861289857L, 1162883764L,
-964706779L, 790111394L, 349409211L, -76441664L, -1234484031L,
-886776946L, 1731724983L, -2031375476L, -1376093411L, -2064511174L,
-808049805L, 1908029976L, -1054098119L, -1512346714L, 1624416751L,
-590098588L, 1720264469L, 971332818L, 1597242923L, -558516368L,
1229231281L, -1138159938L, -782339033L, -391119300L, 1125360141L,
1476423018L, -347078685L, 2129752008L, 1506519849L, -353229610L,
-1801691809L, 1330878484L, 1555942405L, -1285709566L, 69798043L,
1927725856L, 2110972065L, 1474760174L, 766066071L, 1715338476L,
40338685L, -1281140838L, 2094659667L, 75174264L, -404220647L,
-1828443642L, 444462287L, -1860531004L, 405581045L, 1300492594L,
-1223053557L, -1669350704L, -1986713455L, -401483490L, -1754307833L,
1329637276L, 1726292973L, 742247882L, 1589316803L, 1748115240L,
450886409L, -534480074L, -760321985L, -114053772L, -609957403L,
186338658L, -1792216709L, -1363435904L, 298478721L, -216240050L,
-1882725257L, 774045260L, -1220837667L, 1056100346L, -1929757389L,
-693004072L, -1982702343L, 1764104294L, 992262063L, -244712924L,
-1380637995L, 1873196434L, -1790324757L, 462777904L, 460434545L,
1815729022L, 1837744615L, 2014314748L, -170289715L, -2119868886L,
-1788966493L, -212566392L, -1549911319L, 1234960790L, -543694049L,
-1505201452L, 1219278789L, -1352062526L, -132691365L, 600320480L,
-79042463L, -480443730L, -850658473L, 1022537644L, -789681987L,
-755468198L, 124711443L, -2009739208L, -1629317927L, 1373189830L,
-914429297L, -1223026812L, 177899701L, -546985486L, -1208196917L,
-2033266288L, 1171398737L, -1254556194L, 23433415L, -680129956L,
-1838614611L, -1974526326L, -462260605L, 909151720L, 1778281161L,
921745398L, -267334145L, -437655500L, -447900251L, 626996770L,
-115338437L, 853828928L, -1085713343L, 994100494L, -2115141065L,
-1660612340L, 267928221L, -1479782214L, 259004147L, 618641304L,
-1693401927L, -1028291290L, -1471902353L, -947723036L, 1314184853L,
-405221806L, 2036949419L, -184294160L, 1269728305L, -72918978L,
1555746727L, -1916091460L, -1693759091L, 72552170L, -1121004701L,
-1298248376L, 1610123945L, 62561878L, 349251807L, 1936723348L,
788489093L, -32148862L, 8342555L, 686313632L, -557797343L, -648038546L,
-1520142057L, 78783084L, -254735235L, -2121901798L, -466244653L,
612847352L, 1851053209L, 2102592390L, -1775394737L, 872178244L,
-732158859L, -535289166L, -808922485L, 1762437200L, 1811863569L,
1142743710L, -448692601L, 1734749468L, 708348781L, 969486154L,
-1395941309L, 1450556584L, -209413495L, 1469166774L, 982578111L,
909304564L, -549838491L, -693903646L, 309130491L, 1051454464L,
-693634047L, 1750194638L, -1956061193L, -699276340L, -1410283939L,
-1338076806L, -520638285L, 1795462744L, -2069439367L, -1890995738L,
770843439L, 970887076L, 875059797L, 725329682L, 1297265515L,
-775873616L, -507831311L, 1597086974L, 1555144039L, -593475972L,
375962957L, 13205418L, 1551949091L, 2072960008L, 245013097L,
638450454L, 705179295L, 1099589716L, -344600763L, 1478654786L,
-819917349L, -1727580320L, 536295393L, 1588538414L, -474827049L,
540824876L, 902787133L, 269285850L, 2095981971L, 1211076024L,
-973155239L, 1378979910L, -431352305L, 1115778308L, 1093763125L,
945511282L, 541000779L, 167329552L, -472166447L, -377649314L,
-524080057L, 298913756L, -233578707L, -1150550006L, -1853453821L,
-406738072L, 389188169L, -1362661002L, -2014389889L, -724656716L,
-2060817115L, 933840802L, 1926469307L, 1221735104L, 799433665L,
-15749490L, -1174798921L, -1664518516L, 1055197725L, 151622202L,
1263602291L, 2011182360L, -1772831687L, 1805819558L, 300775663L,
-482543004L, 183473685L, -2104541230L, 314950955L, -661843344L,
-1520995407L, 1268294078L, -349295833L, -682587844L, 196210957L,
1472770154L, 756328163L, -857331000L, -280729047L, 2102794198L,
-721619873L, 1532461844L, 433060613L, 911229954L, -709062757L,
1256513056L, 1991081889L, 1477140718L, 1979102359L, -1303296020L,
866751485L, -1890821478L, -78094509L, 569281656L, -710896615L,
-852173562L, -543929393L, -580307004L, -589653003L, -1863363534L,
-1960905205L, -262892080L) |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.