code
stringlengths
1
13.8M
dprime_compare <- function(correct, total, protocol, conf.level=0.95, statistic = c("likelihood", "Pearson", "Wald.p", "Wald.d"), estim = c("ML", "weighted.avg")) { stat <- match.arg(statistic) estim <- match.arg(estim) stopifnot(is.numeric(conf.level) && length(conf.level) == 1 && 0 < conf.level && conf.level < 1) .data <- dprime_table(correct, total, protocol) dExp.list <- dprime_estim(data=.data, estim=estim) res1 <- dprime_testStat(data=.data, res=dExp.list, conf.level=conf.level, dprime0=0, statistic="likelihood") res2 <- dprime_compareStat(data=.data, dExp=dExp.list$dExp, statistic=stat) res <- c(res2, list(data=.data, coefficients=coef(res1), conf.level=res1$conf.level, conf.int=res1$conf.int, estim=estim, conf.method=res1$conf.method)) class(res) <- "dprime_compare" res } dprime_test <- function(correct, total, protocol, conf.level = 0.95, dprime0 = 0, statistic = c("likelihood", "Wald"), alternative = c("difference", "similarity", "two.sided", "less", "greater"), estim = c("ML", "weighted.avg")) { stat <- match.arg(statistic) alt <- match.arg(alternative) estim <- match.arg(estim) stopifnot(is.numeric(conf.level) && length(conf.level) == 1 && 0 < conf.level && conf.level < 1) stopifnot(is.numeric(dprime0) && length(dprime0) == 1 && dprime0 >= 0) z <- 1 if(isTRUE(all.equal(dprime0, 0)) && !alt %in% c("difference", "greater")) stop("'alternative' has to be 'difference'/'greater' if 'dprime0' is 0") if(alt == "difference") alt <- "greater" if(alt == "similarity") alt <- "less" .data <- dprime_table(correct, total, protocol) dExp.list <- dprime_estim(data=.data, estim=estim) res <- dprime_testStat(data=.data, res=dExp.list, conf.level=conf.level, dprime0=dprime0, statistic=stat) res <- c(res, dExp.list, list(data=.data, alternative=alt)) res$p.value <- normalPvalue(res$stat.value, alternative=alt) class(res) <- "dprime_test" res } posthoc <- function(x, ...) { UseMethod("posthoc") } posthoc.dprime_compare <- function(x, alpha = .05, test = c("pairwise", "common", "base", "zero"), base = 1, alternative = c("two.sided", "less", "greater"), statistic = c("likelihood", "Wald"), padj.method = c("holm", "bonferroni", "none"), ...) { stat <- match.arg(statistic) alt <- match.arg(alternative) p.meth <- match.arg(padj.method[1], p.adjust.methods) stopifnot(round(base) == base) base <- as.integer(round(base)) dprime0 <- 0 if(is.character(test)) { test <- match.arg(test) } else if(is.numeric(test)) { dprime0 <- test test <- "value" stopifnot(length(dprime0) == 1 && dprime0 >= 0) } else stop("'test' has to be numeric or character") N <- NROW(x$data) if(test == "base") dprime0 <- x$data[base, "dhat"] fit <- getPosthoc(data=x$data, base=base, dprime0=dprime0, type=test, statistic=stat) coef <- fit$coef.table pval <- normalPvalue(fit$statistic, alternative=alt) coef[["p-value"]] <- p.adjust(pval, method=p.meth) res <- c(x, list(posthoc=coef, test=test, padj.method=p.meth, base=base, posthoc.stat=statistic)) res$alternative <- alt if(test == "pairwise" && alt == "two.sided") { signifs <- setNames(coef[["p-value"]] < alpha, rownames(coef)) ia.res <- insert_absorb(signifs, decreasing=TRUE) letterOrder <- order(as.numeric(substring(names(ia.res$Letters), 6))) res$Letters <- ia.res$Letters[letterOrder] } if(!test %in% c("pairwise", "common")) res$dprime0 <- dprime0 class(res) <- c(paste0("posthoc.", class(x)), class(x)) res } posthoc.dprime_test <- posthoc.dprime_compare dprime_table <- function(correct, total, protocol, restrict.above.guess = TRUE) { stopifnot(is.numeric(correct) && is.numeric(total)) stopifnot(all(is.finite(c(correct, total)))) if(is.factor(protocol)) protocol <- as.character(protocol) if(!is.character(protocol)) stop("'protocol' should be a factor or a character vector") stopifnot(is.logical(restrict.above.guess)) restrict.above.guess <- restrict.above.guess[1] stopifnot(all(correct == round(correct))) correct <- as.integer(round(correct)) stopifnot(all(total == round(total))) total <- as.integer(round(total)) stopifnot(length(correct) == length(total)) stopifnot(length(correct) == length(protocol)) stopifnot(length(correct) >= 1) stopifnot(all(correct <= total) && all(correct >= 0) && all(total > 0)) protValid <- c("triangle", "duotrio", "threeAFC", "twoAFC", "tetrad") stopifnot(all(protocol %in% protValid)) .data <- data.frame("correct"=correct, "total"=total, "protocol"=protocol, stringsAsFactors=FALSE) rownames(.data) <- paste("group", 1:NROW(.data), sep="") x <- correct n <- total pHat <- correct/total if(restrict.above.guess) { pG <- ifelse(protocol %in% c("duotrio", "twoAFC"), 1/2, 1/3) OK <- pHat > pG pHat[!OK] <- pG[!OK] } .data$pHat <- pHat .data$se.pHat <- se.pHat <- sqrt(pHat * (1 - pHat) / total) .data$dprime <- sapply(1:NROW(.data), function(i) psyinv(pHat[i], protocol[i])) se.dprime <- sapply(1:NROW(.data), function(i) { se.pHat[i] / psyderiv(.data$dprime[i], protocol[i]) }) se.dprime[!is.finite(se.dprime)] <- NA .data$se.dprime <- se.dprime .data } dprime_estim <- function(data, estim = c("ML", "weighted.avg")) { estim <- match.arg(estim) res <- list(estim=estim) if(estim == "ML") { fit <- nlminb(start=1, objective=dprime_nll, df=data, lower=0) res$dExp <- fit$par res$se.dExp <- if(fit$par < 1e-4) NA else as.vector(sqrt(1/hessian(func=dprime_nll, x=fit$par, df=data))) res$nll.dExp <- fit$objective } if(estim == "weighted.avg") { dprime <- data$dprime se.dprime <- data$se.dprime if(!all(is.finite(c(dprime, se.dprime)))) stop("Boundary cases occured: use 'estim = ML' instead") w <- se.dprime^2 w.prime <- w / sum(w) res$dExp <- sum(dprime / w) / sum(1 / w) res$se.dExp <- sqrt(sum(w.prime^2 * w)) } res } dprime_nll <- function(dp, df) { meth <- as.character(df[, 3]) nll.i <- sapply(1:nrow(df), function(i) { - dbinom(x=df[i, 1], size=df[i, 2], prob=psyfun(dp, method=meth[i]), log=TRUE) } ) sum(nll.i) } dprime_testStat <- function(data, res, conf.level=0.95, dprime0=0, statistic = c("likelihood", "Wald")) { stat <- match.arg(statistic) dExp <- res$dExp se.dExp <- res$se.dExp if(stat == "likelihood") { nll.0 <- dprime_nll(dprime0, data) if(is.null(nll.dExp <- res$nll.dExp)) nll.dExp <- dprime_nll(dExp, data) LR <- 2 * (nll.0 - nll.dExp) statis <- sign(dExp - dprime0) * sqrt(abs(LR)) } if(stat == "Wald") { if(!all(is.finite(c(dExp, se.dExp)))) stop("Boundary cases occured: use 'statistic = likelihood' instead", call.=FALSE) statis <- (dExp - dprime0) / se.dExp } a <- (1 - conf.level)/2 ci <- dExp + c(1, -1) * qnorm(a) * se.dExp ci <- delimit(ci, 0, Inf) .coef <- data.frame(dExp, se.dExp, ci[1], ci[2]) colnames(.coef) <- c("Estimate", "Std. Error", "Lower", "Upper") rownames(.coef) <- "d-prime" list(coefficients=.coef, stat.value=statis, conf.int=ci, statistic=stat, dprime0=dprime0, conf.level=conf.level, conf.method="Wald") } dprime_compareStat <- function(data, dExp, statistic = c("likelihood", "Pearson", "Wald.p", "Wald.d")) { stat <- match.arg(statistic) x <- data$correct n <- data$total O <- c(x, n-x) prot <- as.character(data$protocol) if(stat == "likelihood") { pExp <- sapply(prot, function(x) psyfun(dExp, method = x)) E <- n * c(pExp, 1 - pExp) X <- 2 * sum(O * log(O/E)) } if(stat == "Pearson") { pExp <- sapply(prot, function(x) psyfun(dExp, method = x)) E <- n * c(pExp, 1 - pExp) X <- sum( (O - E)^2 / E) } if(stat == "Wald.p") { pExp <- sapply(prot, function(x) psyfun(dExp, method = x)) X <- sum( (data$pHat - pExp)^2/(data$pHat * (1 - data$pHat) / n)) } if(stat == "Wald.d") { dprime <- data$dprime se.dprime <- data$se.dprime if(!all(is.finite(c(dprime, se.dprime)))) stop("Boundary cases occured: use 'likelihood' or 'Pearson' instead") X <- sum( ((dprime - dExp)/se.dprime)^2 ) } df <- NROW(data) - 1 pval <- if(df >= 1) pchisq(X, df=NROW(data)-1, lower.tail=FALSE) else NA list(stat.value=X, df=df, p.value=pval, statistic=stat) } getPosthoc <- function(data, base = 1, dprime0 = 0, type = c("pairwise", "common", "base", "zero", "value"), statistic = c("likelihood", "Wald"), ...) { type <- match.arg(type) stat <- match.arg(statistic) N <- NROW(data) nll.alt0 <- sapply(1:N, function(i) dprime_nll(data$dprime[i], df=data[i, 1:3])) if(type %in% c("pairwise", "base")) { K <- switch(EXPR = type, "pairwise" = contrMat(setNames(1:N, rownames(data)), type="Tukey"), "base" = contrMat(setNames(1:N, rownames(data)), type="Dunnett", base=base)) coef <- data.frame("Estimate" = K %*% data[, "dprime"]) coef$"Std. Error" <- sqrt(abs(K) %*% data[, "se.dprime"]^2) if(stat == "likelihood") { select.list <- lapply(1:nrow(K), function(i) which(K[i, ] != 0)) nll.0 <- sapply(select.list, function(sel) { nlminb(start=1, objective=dprime_nll, df=data[sel, ], lower=0)$objective }) nll.alt <- sapply(select.list, function(sel) sum(nll.alt0[sel])) LR <- -2 * (nll.alt - nll.0) statis <- sign(K %*% data[, "dprime"]) * sqrt(abs(LR)) } else statis <- coef[, "Estimate"] / coef[, "Std. Error"] } else { coef <- data[, c("dprime", "se.dprime")] colnames(coef) <- c("Estimate", "Std. Error") pd0 <- sapply(1:N, function(i) { meth <- data$protocol[i] pg <- ifelse(meth %in% c("duotrio", "twoAFC"), .5, 1/3) pc <- psyfun(dprime0, method=meth) pc2pd(pc, pg) }) discrim.list <- lapply(1:N, function(i) { discrim(data[i, 1], data[i, 2], method=data[i, 3], pd0=pd0[i], statistic=stat) }) coef$"Lower" <- sapply(discrim.list, function(dl) coef(dl)[3, 3] ) coef$"Upper" <- sapply(discrim.list, function(dl) coef(dl)[3, 4] ) if(type == "common") { fit2 <- nlminb(start=1, objective=dprime_nll, df=data, lower=0) nll.0c <- fit2$objective alt <- sapply(seq_len(nrow(data)), function(sel) { nlminb(start=1, objective=dprime_nll, df=data[-sel, ], lower=0)$objective }) nll.altc <- alt + nll.alt0 LR <- -2 * (nll.altc - nll.0c) statis <- sign(data[, "dprime"] - dprime0) * sqrt(abs(LR)) } else statis <- sapply(discrim.list, "[[", "stat.value") } list(statistic=statis, coef.table=coef) } print.dprime_compare <- function(x, digits = max(3, getOption("digits") - 3), ...) { cat("\n\tTest of multiple d-primes:\n\n") Estim <- if(x$estim == "ML") "Maximum likelihood" else "Weighted average" cat(paste("Estimation method: ", Estim, "\n", sep="")) cat(paste(format(x$conf.level, digits=2), "% ", "two-sided confidence interval method: ", x$conf.method, "\n", sep="")) cat("\nEstimate of common d-prime:\n") print(x$coefficients, quote = FALSE, digits = digits, ...) cat("\nSignificance test:\n") cat(" Null hypothesis: All d-primes are equal\n") cat(" Alternative: At least 2 d-primes are different\n") stat.chr <- if(x$statistic == "likelihood") "Likelihood Ratio" else x$statistic cat(paste(" Chi-square statistic (", stat.chr,") = ", format(x$stat.value, digits=digits), ", df = ", x$df, "\n p-value = ", format.pval(x$p.value), "\n", sep="")) cat("\n") invisible(x) } print.dprime_test <- function(x, digits = max(3, getOption("digits") - 3), ...) { cat("\n\tTest of common d-prime:\n\n") Estim <- if(x$estim == "ML") "Maximum likelihood" else "Weighted average" cat(paste("Estimation method: ", Estim, "\n", sep="")) cat(paste(format(x$conf.level, digits=2), "% ", "two-sided confidence interval method: ", x$conf.method, "\n", sep="")) cat("\nEstimate of common d-prime:\n") print(x$coefficients, quote = FALSE, digits = digits, ...) cat("\nSignificance test:\n") stat.chr <- if(x$statistic == "likelihood") "Likelihood root" else "Wald" alt.chr <- switch(x$alternative, "two.sided" = "different from", "greater" = "greater than", "less" = "less than", "similarity" = "less than", "difference" = "greater than") cat(paste(" ", stat.chr, " statistic = ", format(x$stat.value, digits=digits), ", p-value: ", format.pval(x$p.value, digits=digits), "\n", sep="")) cat(paste(" Alternative hypothesis: d-prime is", alt.chr, format(x$dprime0, digits=digits), "\n")) cat("\n") invisible(x) } print.posthoc.dprime_compare <- function(x, digits = max(3, getOption("digits") - 3), ...) { cat("\n\tPost-hoc comparison of d-primes:\n\n") if(x$test == "pairwise") cat("Pairwise d-prime differences:\n") else if(x$test == "base") cat(paste("Differences to group ", x$base, ":\n", sep="")) else cat("Group-wise d-primes:\n") ph.mat <- x$posthoc ph.mat["p-value"] <- format.pval(ph.mat$"p-value", digits=digits) print(ph.mat, quote = FALSE, digits = digits, ...) cat("---\n") if(x$padj.method == "none") cat("p-values are not adjusted for multiplicity\n") else cat(paste("p-values are adjusted with ", x$padj.method, "'s method\n", sep="")) cat("\n") cat("Alternative hypotheses:\n") alt.mess <- switch(x$alternative, "two.sided" = "different from", "greater" = "greater than", "less" = "less than") if(x$test == "pairwise") cat(paste(" pairwise differences are", alt.mess, "zero\n")) if(x$test == "common") cat(paste(" d-primes are", alt.mess, "common d-prime\n")) if(x$test == "base") cat(paste(" d-primes differences are", alt.mess, "zero\n")) if(x$test %in% c("zero", "value")) cat(paste(" d-primes are", alt.mess, format(x$dprime0, digits=digits), "\n")) if(x$test == "pairwise" && !is.null(x$Letters)) { cat("\nLetter display based on pairwise comparisons:\n ") print(x$Letters) } cat("\n") invisible(x) } print.posthoc.dprime_test <- print.posthoc.dprime_compare insert_absorb <- function( x, Letters=c(letters, LETTERS), separator=".", decreasing = decreasing ){ obj_x <- deparse(substitute(x)) namx <- names(x) namx <- gsub(" ", "", names(x)) if(length(namx) != length(x)) stop("Names required for ", obj_x) split_names <- strsplit(namx, "-") stopifnot( sapply(split_names, length) == 2 ) comps <- t(as.matrix(as.data.frame(split_names))) rownames(comps) <- names(x) lvls <- unique(as.vector(comps)) n <- length(lvls) lmat <- array(TRUE, dim=c(n,1), dimnames=list(lvls, NULL) ) if( sum(x) == 0 ){ ltrs <- rep(get_letters(1, Letters=Letters, separator=separator), length(lvls) ) names(ltrs) <- lvls colnames(lmat) <- ltrs[1] msl <- ltrs ret <- list(Letters=ltrs, monospacedLetters=msl, LetterMatrix=lmat) class(ret) <- "multcompLetters" return(ret) } else{ signifs <- comps[x,,drop=FALSE] absorb <- function(m){ for(j in 1:(ncol(m)-1)){ for(k in (j+1):ncol(m)){ if( all(m[which(m[,k]),k] & m[which(m[,k]),j]) ){ m <- m[,-k, drop=FALSE] return(absorb(m)) } else if( all(m[which(m[,j]),k] & m[which(m[,j]),j]) ){ m <- m[,-j, drop=FALSE] return(absorb(m)) } } } return(m) } for( i in 1:nrow(signifs) ){ tmpcomp <- signifs[i,] wassert <- which(lmat[tmpcomp[1],] & lmat[tmpcomp[2],]) if(any(wassert)){ tmpcols <- lmat[,wassert,drop=FALSE] tmpcols[tmpcomp[2],] <- FALSE lmat[tmpcomp[1],wassert] <- FALSE lmat <- cbind(lmat, tmpcols) colnames(lmat) <- get_letters( ncol(lmat), Letters=Letters, separator=separator) if(ncol(lmat) > 1){ lmat <- absorb(lmat) colnames(lmat) <- get_letters( ncol(lmat), Letters=Letters, separator=separator ) } } } } lmat <- lmat[,order(apply(lmat, 2, sum))] lmat <- sweepLetters(lmat) lmat <- lmat[,names(sort(apply(lmat,2, function(x) return(min(which(x))))))] colnames(lmat) <- get_letters( ncol(lmat), Letters=Letters, separator=separator) lmat <- lmat[,order(apply(lmat, 2, sum))] lmat <- sweepLetters(lmat) lmat <- lmat[,names(sort(apply(lmat,2, function(x) return(min(which(x)))), decreasing = decreasing))] colnames(lmat) <- get_letters( ncol(lmat), Letters=Letters, separator=separator) ltrs <- apply(lmat,1,function(x) return(paste(names(x)[which(x)], sep="", collapse="") ) ) msl <- matrix(ncol=ncol(lmat), nrow=nrow(lmat)) for( i in 1:nrow(lmat) ){ msl[i,which(lmat[i,])] <- colnames(lmat)[which(lmat[i,])] absent <- which(!lmat[i,]) if( length(absent) < 2 ){ if( length(absent) == 0 ) next else{ msl[i,absent] <- paste( rep(" ", nchar(colnames(lmat)[absent])), collapse="" ) } } else{ msl[i,absent] <- unlist( lapply( sapply( nchar(colnames(lmat)[absent]), function(x) return(rep( " ",x)) ), paste, collapse="") ) } } msl <- apply(msl, 1, paste, collapse="") names(msl) <- rownames(lmat) ret <- list( Letters=ltrs, monospacedLetters=msl, LetterMatrix=lmat, aLetters = Letters, aseparator = separator ) class(ret) <- "multcompLetters" return(ret) } sweepLetters <- function(mat, start.col=1, Letters=c(letters, LETTERS), separator="."){ stopifnot( all(start.col %in% 1:ncol(mat)) ) locked <- matrix(rep(0,ncol(mat)*nrow(mat)), ncol=ncol(mat)) cols <- 1:ncol(mat) cols <- cols[c( start.col, cols[-start.col] )] if( any(is.na(cols) ) ) cols <- cols[-which(is.na(cols))] for( i in cols){ tmp <- matrix(rep(0,ncol(mat)*nrow(mat)), ncol=ncol(mat)) tmp[which(mat[,i]),] <- mat[which(mat[,i]),] one <- which(tmp[,i]==1) if( all(apply(tmp[,-i,drop=FALSE], 1, function(x) return( any(x==1) ))) ){ next } for( j in one ){ if( locked[j,i] == 1 ){ next } chck <- 0 lck <- list() for( k in one ){ if( j==k ){ next } else{ rows <- tmp[c(j,k),] dbl <- rows[1,] & rows[2,] hit <- which(dbl) hit <- hit[-which(hit==i)] dbl <- rows[1,-i,drop=FALSE] & rows[2,-i,drop=FALSE] if( any(dbl) ){ chck <- chck + 1 lck[[chck]] <- list(c(j,hit[length(hit)]), c(k,hit[length(hit)])) } } } if( (chck == (length(one)-1)) && chck != 0 ){ for( k in 1:length(lck) ){ locked[ lck[[k]][[1]][1], lck[[k]][[1]][2] ] <- 1 locked[ lck[[k]][[2]][1], lck[[k]][[2]][2] ] <- 1 } mat[j,i] <- FALSE } } if(all(mat[,i]==FALSE)){ mat <- mat[,-i,drop=FALSE] colnames(mat) <- get_letters( ncol(mat), Letters=Letters, separator=separator) return(sweepLetters(mat, Letters=Letters, separator=separator)) } } onlyF <- apply(mat, 2, function(x) return(all(!x))) if( any(onlyF) ){ mat <- mat[,-which(onlyF),drop=FALSE] colnames(mat) <- get_letters( ncol(mat), Letters=Letters, separator=separator) } return( mat ) } get_letters <- function( n, Letters=c(letters, LETTERS), separator="." ){ n.complete <- floor(n / length(Letters)) n.partial <- n %% length(Letters) lett <- character() separ="" if( n.complete > 0 ){ for( i in 1:n.complete ){ lett <- c(lett, paste(separ, Letters, sep="") ) separ <- paste( separ, separator, sep="" ) } } if(n.partial > 0 ) lett <- c(lett, paste(separ, Letters[1:n.partial], sep="") ) return(lett) }
library(treeman) library(testthat) tree <- randTree(100, wndmtrx=sample(c(TRUE, FALSE), 1)) context('Testing \'TreeMan Class\'') test_that('vaildObject() works', { expect_true(validObject(tree)) tree@ndlst[['n2']][['id']] <- 'oh oh.... invalid ID' expect_error(validObject(tree)) }) test_that('[[ works', { nd <- sample(names(tree@ndlst), 1) nd <- tree[[nd]] expect_that(class(nd)[[1]], equals('Node')) }) test_that('[ works', { expect_error(tree['not a valid slot name']) expect_type(tree['age'], 'double') expect_type(tree['ultr'], 'logical') expect_that(tree['ntips'], equals(100)) expect_that(tree['nnds'], equals(99)) })
xsplineTangent.s1pos.s2neg.noA0.A3.y <- function(px0, px1, px2, px3, py0, py1, py2, py3, s1, s2, t) { (((((1/(1 + s1) * ((t + s1)/(1 + s1)) + ((t + s1)/(1 + s1)) * (1/(1 + s1))) * ((t + s1)/(1 + s1)) + ((t + s1)/(1 + s1)) * ((t + s1)/(1 + s1)) * (1/(1 + s1))) * (10 - (2 * (1 + s1) * (1 + s1)) + (2 * (2 * (1 + s1) * (1 + s1)) - 15) * ((t + s1)/(1 + s1)) + (6 - (2 * (1 + s1) * (1 + s1))) * ((t + s1)/(1 + s1)) * ((t + s1)/(1 + s1))) + ((t + s1)/(1 + s1)) * ((t + s1)/(1 + s1)) * ((t + s1)/(1 + s1)) * ((2 * (2 * (1 + s1) * (1 + s1)) - 15) * (1/(1 + s1)) + ((6 - (2 * (1 + s1) * (1 + s1))) * (1/(1 + s1)) * ((t + s1)/(1 + s1)) + (6 - (2 * (1 + s1) * (1 + s1))) * ((t + s1)/(1 + s1)) * (1/(1 + s1))))) * py2 - ((1 - t) * ((1 - t) * ((1 - t) * ((1 - t) * (4 - 5 * (-s2)) + (14 * (-s2) - 11 + (1 - t) * (4 - 5 * (-s2)))) + (8 - 12 * (-s2) + (1 - t) * (14 * (-s2) - 11 + (1 - t) * (4 - 5 * (-s2))))) + (2 * (-s2) + (1 - t) * (8 - 12 * (-s2) + (1 - t) * (14 * (-s2) - 11 + (1 - t) * (4 - 5 * (-s2)))))) + ((-s2) + (1 - t) * (2 * (-s2) + (1 - t) * (8 - 12 * (-s2) + (1 - t) * (14 * (-s2) - 11 + (1 - t) * (4 - 5 * (-s2))))))) * py1 + (((-s2) + (t - 1) * (2 * (-s2) + (t - 1) * (t - 1) * (-2 * (-s2) - (t - 1) * (-s2)))) + (t - 1) * ((2 * (-s2) + (t - 1) * (t - 1) * (-2 * (-s2) - (t - 1) * (-s2))) + (t - 1) * (((t - 1) + (t - 1)) * (-2 * (-s2) - (t - 1) * (-s2)) - (t - 1) * (t - 1) * (-s2)))) * py3)/(0 + (1 - t) * ((-s2) + (1 - t) * (2 * (-s2) + (1 - t) * (8 - 12 * (-s2) + (1 - t) * (14 * (-s2) - 11 + (1 - t) * (4 - 5 * (-s2)))))) + ((t + s1)/(1 + s1)) * ((t + s1)/(1 + s1)) * ((t + s1)/(1 + s1)) * (10 - (2 * (1 + s1) * (1 + s1)) + (2 * (2 * (1 + s1) * (1 + s1)) - 15) * ((t + s1)/(1 + s1)) + (6 - (2 * (1 + s1) * (1 + s1))) * ((t + s1)/(1 + s1)) * ((t + s1)/(1 + s1))) + (t - 1) * ((-s2) + (t - 1) * (2 * (-s2) + (t - 1) * (t - 1) * (-2 * (-s2) - (t - 1) * (-s2))))) - (0 * py0 + (1 - t) * ((-s2) + (1 - t) * (2 * (-s2) + (1 - t) * (8 - 12 * (-s2) + (1 - t) * (14 * (-s2) - 11 + (1 - t) * (4 - 5 * (-s2)))))) * py1 + ((t + s1)/(1 + s1)) * ((t + s1)/(1 + s1)) * ((t + s1)/(1 + s1)) * (10 - (2 * (1 + s1) * (1 + s1)) + (2 * (2 * (1 + s1) * (1 + s1)) - 15) * ((t + s1)/(1 + s1)) + (6 - (2 * (1 + s1) * (1 + s1))) * ((t + s1)/(1 + s1)) * ((t + s1)/(1 + s1))) * py2 + (t - 1) * ((-s2) + (t - 1) * (2 * (-s2) + (t - 1) * (t - 1) * (-2 * (-s2) - (t - 1) * (-s2)))) * py3) * (((1/(1 + s1) * ((t + s1)/(1 + s1)) + ((t + s1)/(1 + s1)) * (1/(1 + s1))) * ((t + s1)/(1 + s1)) + ((t + s1)/(1 + s1)) * ((t + s1)/(1 + s1)) * (1/(1 + s1))) * (10 - (2 * (1 + s1) * (1 + s1)) + (2 * (2 * (1 + s1) * (1 + s1)) - 15) * ((t + s1)/(1 + s1)) + (6 - (2 * (1 + s1) * (1 + s1))) * ((t + s1)/(1 + s1)) * ((t + s1)/(1 + s1))) + ((t + s1)/(1 + s1)) * ((t + s1)/(1 + s1)) * ((t + s1)/(1 + s1)) * ((2 * (2 * (1 + s1) * (1 + s1)) - 15) * (1/(1 + s1)) + ((6 - (2 * (1 + s1) * (1 + s1))) * (1/(1 + s1)) * ((t + s1)/(1 + s1)) + (6 - (2 * (1 + s1) * (1 + s1))) * ((t + s1)/(1 + s1)) * (1/(1 + s1)))) - ((1 - t) * ((1 - t) * ((1 - t) * ((1 - t) * (4 - 5 * (-s2)) + (14 * (-s2) - 11 + (1 - t) * (4 - 5 * (-s2)))) + (8 - 12 * (-s2) + (1 - t) * (14 * (-s2) - 11 + (1 - t) * (4 - 5 * (-s2))))) + (2 * (-s2) + (1 - t) * (8 - 12 * (-s2) + (1 - t) * (14 * (-s2) - 11 + (1 - t) * (4 - 5 * (-s2)))))) + ((-s2) + (1 - t) * (2 * (-s2) + (1 - t) * (8 - 12 * (-s2) + (1 - t) * (14 * (-s2) - 11 + (1 - t) * (4 - 5 * (-s2))))))) + (((-s2) + (t - 1) * (2 * (-s2) + (t - 1) * (t - 1) * (-2 * (-s2) - (t - 1) * (-s2)))) + (t - 1) * ((2 * (-s2) + (t - 1) * (t - 1) * (-2 * (-s2) - (t - 1) * (-s2))) + (t - 1) * (((t - 1) + (t - 1)) * (-2 * (-s2) - (t - 1) * (-s2)) - (t - 1) * (t - 1) * (-s2)))))/(0 + (1 - t) * ((-s2) + (1 - t) * (2 * (-s2) + (1 - t) * (8 - 12 * (-s2) + (1 - t) * (14 * (-s2) - 11 + (1 - t) * (4 - 5 * (-s2)))))) + ((t + s1)/(1 + s1)) * ((t + s1)/(1 + s1)) * ((t + s1)/(1 + s1)) * (10 - (2 * (1 + s1) * (1 + s1)) + (2 * (2 * (1 + s1) * (1 + s1)) - 15) * ((t + s1)/(1 + s1)) + (6 - (2 * (1 + s1) * (1 + s1))) * ((t + s1)/(1 + s1)) * ((t + s1)/(1 + s1))) + (t - 1) * ((-s2) + (t - 1) * (2 * (-s2) + (t - 1) * (t - 1) * (-2 * (-s2) - (t - 1) * (-s2)))))^2) }
tNSS.SD <- function(x, n.cuts = NULL) { dim_x <- dim(x) r <- length(dim_x) - 1 n <- dim_x[r + 1] if(length(dim_x) == 2){ Xmu <- rowMeans(x) returnlist <- NSS.SD(t(x), n.cut = n.cuts) returnlist$S <- t(returnlist$S) returnlist2 <- list(S = returnlist$S, W = returnlist$W, EV = returnlist$EV, n.cuts = returnlist$n.cut, Xmu = Xmu, datatype = "ts") class(returnlist2) <- c("tbss", "bss") return(returnlist2) } if(any(is.null(n.cuts))){ n.cuts <- c(0, floor((n + 1)/2), n) } slices <- as.numeric(cut(1:n, breaks = n.cuts, labels = 1:2)) Xmu <- apply(x, 1:r, mean) x_center <- tensorCentering(x) W_list <- vector("list", r) for(m in 1:r) { x_slice_1 <- arraySelectLast(x_center, (slices == 1)) x_slice_2 <- arraySelectLast(x_center, (slices == 2)) mMAC_1 <- mModeCovariance(x_slice_1, m, center = TRUE) symm_mMAC_1 <- 0.5*(mMAC_1 + t(mMAC_1)) mMAC_2 <- mModeCovariance(x_slice_2, m, center = TRUE) symm_mMAC_2 <- 0.5*(mMAC_2 + t(mMAC_2)) eig_mMAC_1 <- eigen(mMAC_1, symmetric = TRUE) mMAC_1_root <- eig_mMAC_1$vectors%*%diag(eig_mMAC_1$values^(-1/2))%*%t(eig_mMAC_1$vectors) eig_final <- eigen(tcrossprod(crossprod(mMAC_1_root, mMAC_2), mMAC_1_root), symmetric = TRUE) U <- eig_final$vectors W_list[[m]] <- crossprod(U, mMAC_1_root) } S <- x_center for(m in 1:r) { S <- tensorTransform(S, W_list[[m]], m) } returnlist <- list(S = S, W = W_list, EV = eig_final$values, n.cuts = n.cuts, Xmu = Xmu, datatype = "ts") class(returnlist) <- c("tbss", "bss") return(returnlist) }
setClass("dictionary2", contains = "list", slots = c( meta = "list" ), prototype = prototype( meta = list(system = list(), object = list(), user = list()) ) ) setValidity("dictionary2", function(object) { validate_dictionary(object) }) validate_dictionary <- function(dict) { attrs <- attributes(dict) dict <- unclass(dict) if (is.null(names(dict))) { stop("Dictionary elements must be named: ", paste(unlist(dict, recursive = TRUE), collapse = " ")) } if (any(names(dict) == "")) { unnamed <- dict[which(names(dict) == "")] stop("Unnamed dictionary entry: ", paste(unlist(unnamed, use.names = FALSE), collapse = " ")) } if (field_object(attrs)[["separator"]] == "") { stop("Concatenator cannot be null or an empty string") } check_entries(dict) } check_entries <- function(dict) { for (i in seq_along(dict)) { entry <- dict[[i]] is_category <- vapply(entry, is.list, logical(1)) if (any(!is_category)) { word <- unlist(entry[!is_category], use.names = FALSE) if (!is.character(word) || any(is.na(word))) { stop("Non-character entries found in dictionary key \'", names(dict[i]), "\'") } } if (any(is_category)) { category <- entry[is_category] check_entries(category) } } } dictionary <- function(x, file = NULL, format = NULL, separator = " ", tolower = TRUE, encoding = "utf-8") { UseMethod("dictionary") } dictionary.default <- function(x, file = NULL, format = NULL, separator = " ", tolower = TRUE, encoding = "utf-8") { if (!missing(x) & is.null(file)) stop("x must be a list if file is not specified") separator <- check_character(separator, min_nchar = 1) tolower <- check_logical(tolower) formats <- c(cat = "wordstat", dic = "LIWC", ykd = "yoshikoder", lcd = "yoshikoder", lc3 = "lexicoder", yml = "YAML") if (!file.exists(file)) stop("File does not exist: ", file) if (is.null(format)) { ext <- stri_trans_tolower(tools::file_ext(file)) if (ext %in% names(formats)) { format <- formats[[ext]] } else { stop("Unknown dictionary file extension: ", ext) } } else { format <- match.arg(format, formats) } if (format == "wordstat") { x <- read_dict_wordstat(file, encoding) } else if (format == "LIWC") { x <- read_dict_liwc(file, encoding) } else if (format == "yoshikoder") { x <- read_dict_yoshikoder(file) } else if (format == "lexicoder") { x <- read_dict_lexicoder(file) } else if (format == "YAML") { x <- yaml::yaml.load_file(file, as.named.list = TRUE) x <- list2dictionary(x) } if (tolower) x <- lowercase_dictionary_values(x) x <- merge_dictionary_values(x) build_dictionary2(x, separator = separator) } dictionary.list <- function(x, file = NULL, format = NULL, separator = " ", tolower = TRUE, encoding = "utf-8") { separator <- check_character(separator, min_nchar = 1) tolower <- check_logical(tolower) if (!is.null(file) || !is.null(format) || encoding != "utf-8") stop("cannot specify file, format, or encoding when x is a list") x <- list2dictionary(x) if (tolower) x <- lowercase_dictionary_values(x) x <- replace_dictionary_values(x, separator, " ") x <- merge_dictionary_values(x) build_dictionary2(x, separator = separator) } dictionary.dictionary2 <- function(x, file = NULL, format = NULL, separator = " ", tolower = TRUE, encoding = "utf-8") { x <- as.dictionary(x) dictionary(as.list(x), separator = separator, tolower = tolower, encoding = encoding) } setMethod("as.list", signature = c("dictionary2"), function(x, flatten = FALSE, levels = 1:100) { x <- as.dictionary(x) if (flatten) { result <- flatten_dictionary(x, levels) attributes(result)[setdiff(names(attributes(result)), "names")] <- NULL return(result) } else { simplify_dictionary(x) } }) as.dictionary <- function(x, format = c("tidytext"), separator = " ", tolower = FALSE) { UseMethod("as.dictionary") } as.dictionary.default <- function(x, format = c("tidytext"), separator = " ", tolower = FALSE) { check_class(class(x), "as.dictionary") } as.dictionary.dictionary2 <- function(x, ...) { check_dots(...) upgrade_dictionary2(x) } as.dictionary.data.frame <- function(x, format = c("tidytext"), separator = " ", tolower = FALSE) { format <- match.arg(format) separator <- check_character(separator) tolower <- check_logical(tolower) if (format == "tidytext") { if (!all(c("word", "sentiment") %in% names(x))) stop("data.frame must contain word and sentiment columns") if ("lexicon" %in% names(x) && length(unique(x[["lexicon"]])) > 1) warning("multiple values found in a \'lexicon\' column; ", "you may be mixing different dictionaries") if (all(is.na(x[["sentiment"]]))) stop("sentiment values are missing") } dictionary(split(as.character(x$word), factor(x$sentiment)), separator = separator, tolower = tolower) } is.dictionary <- function(x) { is(x, "dictionary2") } setMethod("print", signature(x = "dictionary2"), function(x, max_nkey = quanteda_options("print_dictionary_max_nkey"), max_nval = quanteda_options("print_dictionary_max_nval"), show_summary = quanteda_options("print_dictionary_summary"), ...) { x <- as.dictionary(x) max_nkey <- check_integer(max_nkey, min = -1) max_nval <- check_integer(max_nval, min = -1) show_summary <- check_logical(show_summary) check_dots(...) if (show_summary) { depth <- dictionary_depth(x) lev <- if (depth > 1L) " primary" else "" nkey <- length(names(x)) cat("Dictionary object with ", nkey, lev, " key entr", if (nkey == 1L) "y" else "ies", sep = "") if (lev != "") cat(" and ", depth, " nested levels", sep = "") cat(".\n") } invisible(print_dictionary(x, 1, max_nkey, max_nval, show_summary, ...)) }) setMethod("show", signature(object = "dictionary2"), function(object) print(object)) print_dictionary <- function(entry, level = 1, max_nkey, max_nval, show_summary, ...) { nkey <- length(entry) entry <- unclass(entry) if (max_nkey >= 0) entry <- head(unclass(entry), max_nkey) if (!length(entry)) return() is_category <- vapply(entry, is.list, logical(1)) category <- entry[is_category] pad <- rep(" ", level - 1) word <- unlist(entry[!is_category], use.names = FALSE) if (length(word)) { if (max_nval < 0) max_nval <- length(word) cat(pad, "- ", paste(head(word, max_nval), collapse = ", "), sep = "") nval_rem <- length(word) - max_nval if (nval_rem > 0) cat(" [ ... and ", format(nval_rem, big.mark = ","), " more ]", sep = "") cat("\n", sep = "") } for (i in seq_along(category)) { cat(pad, "- [", names(category[i]), "]:\n", sep = "") print_dictionary(category[[i]], level + 1, max_nkey, max_nval, show_summary) } nkey_rem <- nkey - length(entry) if (nkey_rem > 0) { cat(pad, "[ reached max_nkey ... ", format(nkey_rem, big.mark = ","), " more key", if (nkey_rem > 1) "s", " ]\n", sep = "") } } setMethod("[", signature = c("dictionary2", i = "index"), function(x, i) { x <- as.dictionary(x) x <- unclass(x) attrs <- attributes(x) is_category <- vapply(x[i], function(y) is.list(y), logical(1)) result <- build_dictionary2(x[i][is_category], separator = field_object(attrs, "separator"), valuetype = field_object(attrs, "valuetype")) meta(result) <- attrs[["meta"]][["user"]] result@meta$object <- attrs[["meta"]][["object"]] result }) setMethod("[[", signature = c("dictionary2", i = "index"), function(x, i) { x <- as.dictionary(x) x <- unclass(x) attrs <- attributes(x) is_category <- vapply(x[[i]], function(y) is.list(y), logical(1)) if (all(is_category == FALSE)) { unlist(x[[i]], use.names = FALSE) } else { build_dictionary2(x[[i]][is_category], separator = field_object(attrs, "separator"), valuetype = field_object(attrs, "valuetype")) } }) `$.dictionary2` <- function(x, name) { x[[name]] } setMethod("c", signature = c("dictionary2"), function(x, ...) { x <- as.dictionary(x) attrs <- attributes(x) y <- list(...) if (length(y) == 0) return(x) result <- c(unclass(x), unclass(y[[1]])) if (length(y) > 1) { for (i in 2:length(y)) { result <- c(result, unclass(y[[i]])) } } result <- merge_dictionary_values(result) build_dictionary2(result, valuetype = field_object(attrs, "valuetype"), separator = field_object(attrs, "separator")) }) split_values <- function(dict, concatenator_dictionary, concatenator_tokens) { key <- rep(names(dict), lengths(dict)) value <- unlist(dict, use.names = FALSE) is_multi <- stri_detect_fixed(value, concatenator_dictionary) if (any(is_multi)) { result <- vector("list", length(value) + sum(is_multi)) l <- !seq_along(result) %in% (seq_along(value) + cumsum(is_multi)) result[l] <- stri_split_fixed(value[is_multi], concatenator_dictionary) result[!l] <- as.list(stri_replace_all_fixed(value, concatenator_dictionary, concatenator_tokens)) names(result) <- key[rep(seq_along(value), 1 + is_multi)] } else { result <- as.list(stri_replace_all_fixed(value, concatenator_dictionary, concatenator_tokens)) names(result) <- key } return(result) } flatten_dictionary <- function(dict, levels = 1:100, level = 1, key_parent = "", dict_flat = list()) { dict <- unclass(dict) for (i in seq_along(dict)) { key <- names(dict[i]) entry <- dict[[i]] if (key == "" || !length(entry)) next if (level %in% levels) { if (key_parent != "") { key_entry <- paste(key_parent, key, sep = ".") } else { key_entry <- key } } else { key_entry <- key_parent } is_category <- vapply(entry, is.list, logical(1)) dict_flat[[key_entry]] <- c(dict_flat[[key_entry]], unlist(entry[!is_category], use.names = FALSE)) dict_flat <- flatten_dictionary(entry[is_category], levels, level + 1, key_entry, dict_flat) } dict_flat <- dict_flat[names(dict_flat) != ""] attributes(dict_flat, FALSE) <- attributes(dict) return(dict_flat) } lowercase_dictionary_values <- function(dict) { dict <- unclass(dict) for (i in seq_along(dict)) { if (is.list(dict[[i]])) { dict[[i]] <- lowercase_dictionary_values(dict[[i]]) } else { if (is.character(dict[[i]])) { dict[[i]] <- stri_trans_tolower(dict[[i]]) } } } dict } replace_dictionary_values <- function(dict, from, to) { dict <- unclass(dict) for (i in seq_along(dict)) { if (is.list(dict[[i]])) { dict[[i]] <- replace_dictionary_values(dict[[i]], from, to) } else { if (is.character(dict[[i]])) { dict[[i]] <- stri_replace_all_fixed(dict[[i]], from, to) } } } return(dict) } merge_dictionary_values <- function(dict) { if (is.null(names(dict))) return(dict) if (any(duplicated(names(dict)))) { dict <- lapply(split(dict, names(dict)), function(x) { names(x) <- NULL unlist(x, recursive = FALSE) }) } for (i in seq_along(dict)) { dict_temp <- dict[[i]] if (is.null(names(dict_temp))) { dict[[i]] <- list(unlist_character(dict_temp, use.names = FALSE)) } else { is_value <- names(dict_temp) == "" dict[[i]] <- merge_dictionary_values(dict_temp[!is_value]) if (any(is_value)) { dict[[i]] <- c( dict[[i]], list(unlist_character(dict_temp[is_value], use.names = FALSE)) ) } } } return(dict) } list2dictionary <- function(dict) { for (i in seq_along(dict)) { if (is.list(dict[[i]])) { dict[[i]] <- list2dictionary(dict[[i]]) } else { if (is.character(dict[[i]])) { dict[[i]] <- list(unique(stri_trim_both(stri_enc_toutf8(dict[[i]])))) } else { dict[[i]] <- list(dict[[i]]) } } } return(dict) } NULL read_dict_lexicoder <- function(path) { lines <- stri_read_lines(path, encoding = "utf-8") lines <- stri_trim_both(lines) lines_yaml <- ifelse(stri_detect_regex(lines, "^\\+"), stri_replace_all_regex(lines, "^+(.+)$", '"$1":'), stri_replace_all_regex(lines, "^(.+)$", ' - "$1"')) lines_yaml <- stri_replace_all_regex(lines_yaml, "[[:control:]]", "") yaml <- paste0(lines_yaml, collapse = "\n") dict <- yaml::yaml.load(yaml, as.named.list = TRUE) dict <- list2dictionary(dict) return(dict) } read_dict_wordstat <- function(path, encoding = "utf-8") { lines <- stri_read_lines(path, encoding = encoding) lines <- stri_trim_right(lines) lines_yaml <- ifelse(stri_detect_regex(lines, " \\(\\d\\)$"), stri_replace_all_regex(lines, "^(\\t*)(.+) \\(\\d\\)$", '$1- "$2"'), stri_replace_all_regex(lines, "^(\\t*)(.+)$", '$1- "$2": ')) lines_yaml <- stri_replace_all_regex(lines_yaml, "\t", " ") lines_yaml <- stri_replace_all_regex(lines_yaml, "[[:control:]]", "") yaml <- paste0(lines_yaml, collapse = "\n") dict <- yaml::yaml.load(yaml, as.named.list = TRUE) dict <- list2dictionary_wordstat(dict, FALSE) return(dict) } list2dictionary_wordstat <- function(entry, omit = TRUE, dict = list()) { if (omit) { for (i in seq_along(entry)) { key <- names(entry[i]) if (is.list(entry[i])) { dict[[key]] <- list2dictionary_wordstat(entry[[i]], FALSE) } } } else { if (length(entry)) { is_category <- vapply(entry, is.list, logical(1)) category <- entry[is_category] for (i in seq_along(category)) { dict <- list2dictionary_wordstat(category[[i]], TRUE, dict) } dict[[length(dict) + 1]] <- unlist(entry[!is_category], use.names = FALSE) } } return(dict) } remove_empty_keys <- function(dict) { for (i in rev(seq_along(dict))) { if (identical(dict[[i]], list(character(0)))) { message("note: removing empty key: ", paste(names(dict[i]), collapse = ", ")) dict <- dict[i * -1] } else { if (!is.character(dict[[i]])) { dict[[i]] <- remove_empty_keys(dict[[i]]) } } } return(dict) } nest_dictionary <- function(dict, depth) { if (length(dict) != length(depth)) stop("Depth vectot must have the same length as dictionary") depth_max <- max(depth) while (depth_max > 1) { i_max <- which(depth == depth_max) for (i in i_max) { i_parent <- tail(which(head(depth, i - 1) < depth_max), 1) if (!length(dict[[i_parent]][[1]])) dict[[i_parent]][[1]] <- NULL dict[[i_parent]] <- c(dict[[i_parent]], dict[i]) } dict <- dict[i_max * -1] depth <- depth[i_max * -1] depth_max <- max(depth) } return(dict) } read_dict_liwc <- function(path, encoding = "utf-8") { line <- stri_read_lines(path, encoding = encoding) tab <- stri_extract_first_regex(line, "^\t+") line <- stri_trim_both(line) line <- line[line != ""] section <- which(line == "%") if (length(section) < 2) { stop("Start and end of a category legend should be marked by '%' but none were found") } line_key <- line[(section[1] + 1):(section[2] - 1)] tab_key <- tab[(section[1] + 1):(section[2] - 1)] line_value <- line[(section[2] + 1):(length(line))] has_oftag <- stri_detect_fixed(line_value, "<of>") if (any(has_oftag)) { catm("note: ", sum(has_oftag), " term", if (sum(has_oftag) > 1L) "s" else "", " ignored because contains unsupported <of> tag\n", sep = "") line_value <- line_value[!has_oftag] } has_paren <- stri_detect_regex(line_value, "\\(.+\\)") if (any(has_paren)) { catm("note: ignoring parenthetical expressions in lines:\n") for (i in which(has_paren)) catm(" [line ", i + section[2] + 1, "] ", line_value[i], "\n", sep = "") line_value <- stri_replace_all_regex(line_value, "\\(.+\\)", " ") } line_key <- stri_replace_all_regex(line_key, "(\\d+)\\s+", "$1\t") key_id <- as.integer(stri_extract_first_regex(line_key, "\\d+")) key <- stri_extract_last_regex(line_key, "[^\t]+") depth <- ifelse(is.na(tab_key), 0, stri_length(tab_key)) + 1 line_value <- stri_replace_all_regex(line_value, "\\s+(\\d+)", "\t$1") value <- stri_extract_first_regex(line_value, "[^\t]+") line_value <- stri_replace_first_regex(line_value, ".+?\t", "") values_id <- stri_extract_all_regex(line_value, "\\d+") value_id <- as.integer(unlist(values_id, use.names = FALSE)) value_rep <- rep(value, lengths(values_id)) key <- stri_trim_both(stri_replace_all_regex(key, "[[:control:]]", "")) value <- stri_trim_both(stri_replace_all_regex(value, "[[:control:]]", "")) key_match <- key[match(value_id, key_id)] is_undef <- is.na(key_match) if (any(is_undef)) { catm("note: ignoring undefined categories:\n") for (i in which(is_undef)) catm(" ", value_id[i], " for ", value_rep[i], "\n", sep = "") } dict <- split(value_rep, factor(key_match, levels = key)) dict <- lapply(dict, function(x) sort(unique(x))) dict <- list2dictionary(dict) if (any(depth != max(depth))) { dict <- nest_dictionary(dict, depth) } dict <- remove_empty_keys(dict) dict } read_dict_yoshikoder <- function(path) { xml <- xml2::read_xml(path) root <- xml2::xml_find_first(xml, paste0("/", "dictionary")) dict <- nodes2list(root) dict <- list2dictionary(dict) return(dict) } nodes2list <- function(node, dict = list()) { nodes <- xml2::xml_find_all(node, "cnode") if (length(nodes)) { for (i in seq_along(nodes)) { key <- xml2::xml_attrs(nodes[[i]])["name"] dict[[key]] <- nodes2list(nodes[[i]], dict) } } else { dict <- unname(unlist(xml2::xml_attrs(xml2::xml_find_all(node, "pnode"), "name"))) } return(dict) } as.yaml <- function(x) { UseMethod("as.yaml") } as.yaml.dictionary2 <- function(x) { yaml <- yaml::as.yaml(simplify_dictionary(x, TRUE), indent.mapping.sequence = TRUE) yaml <- stri_enc_toutf8(yaml) return(yaml) } simplify_dictionary <- function(entry, omit = TRUE, dict = list()) { entry <- unclass(entry) if (omit) { dict <- simplify_dictionary(entry, FALSE) } else { if (length(entry)) { is_category <- vapply(entry, is.list, logical(1)) category <- entry[is_category] if (any(is_category)) { for (i in seq_along(category)) { dict[[names(category[i])]] <- simplify_dictionary(category[[i]], TRUE, dict) } dict[["__"]] <- unlist(entry[!is_category], use.names = FALSE) } else { dict <- unlist(entry, use.names = FALSE) } } } return(dict) } dictionary_depth <- function(dict, depth = -1) { dict <- unclass(dict) if (is.list(dict) && length(dict) > 0) { return(max(unlist(lapply(dict, dictionary_depth, depth = depth + 1)))) } else { return(depth) } } has_multiword <- function(dict) { any(stri_detect_fixed(unlist(dict, use.names = FALSE), attr(dict, "concatenator"))) }
knitr::opts_chunk$set( collapse = TRUE, comment = " ) library(bbreg) fit <- bbreg(agreement ~ priming + eliciting, data = WT) fit fit_beta <- bbreg(agreement ~ priming + eliciting, data = WT, model = "beta") fit_beta fit_priming <- bbreg(agreement ~ priming + eliciting | priming, data = WT) fit_priming fit_priming_eliciting <- bbreg(agreement ~ priming + eliciting | priming + eliciting, data = WT) fit_priming_eliciting summary(fit) summary(fit_beta) summary(fit_priming) fit_cloglog <- bbreg(agreement ~ priming + eliciting, data = WT, link.mean = "cloglog") fit_cloglog fit_cloglog_sqrt <- bbreg(agreement ~ priming + eliciting, data = WT, link.mean = "cloglog", link.precision = "sqrt") fit_cloglog_sqrt fit_priming_sqrt <- bbreg(agreement ~ priming + eliciting| priming, data = WT, link.precision = "sqrt") fit_priming_sqrt fitted_means <- fitted(fit) head(fitted_means) fitted_variances <- fitted(fit, type = "variance") head(fitted_variances) new_data_example <- data.frame(priming = c(0,0,1), eliciting = c(0,1,1)) predict(fit_priming_eliciting, newdata = new_data_example) predict(fit_priming_eliciting, newdata = new_data_example, type = "variance") predict(fit, newdata = new_data_example) predict(fit, newdata = new_data_example, type = "variance") predict_without_newdata <- predict(fit) identical(predict_without_newdata, fitted_means) fit_envelope <- bbreg(agreement ~ priming + eliciting, envelope = 300, data = WT) summary(fit_envelope) plot(fit) plot(fit_envelope, which = 2) plot(fit, which = c(1,4), ask = FALSE)
backgroundCondition <- function(lower = NULL, upper = NULL, center = NULL, radius = NULL, transparent = NULL, alpha_channel = FALSE, quietly = TRUE) { if (!isTRUE(alpha_channel)) { alpha_channel <- NULL } args_list <- list(lower = lower, upper = upper, center = center, radius = radius, transparent = transparent, alpha_channel = alpha_channel) null_count <- which(!unlist(lapply(args_list, is.null))) null_count <- paste(null_count, collapse = "") combos <- data.frame(vec = c("", "12", "34", "5", "125", "345", "56", "1256", "3456"), category = c("none", "rect", "sphere", "none", "rect", "sphere", rep("transparent", 3))) category_idx <- match(null_count, combos$vec) if (is.na(category_idx)) { warning("Could not parse background parameters; no pixels will be masked") category <- "none" } else { category <- combos$category[category_idx] } if (category == "transparent") { bg_condition <- "transparent" class(bg_condition) <- "bg_t" msg <- "Using transparency to mask pixels" } else if (category == "rect") { bg_condition <- list(lower = lower, upper = upper) class(bg_condition) <- "bg_rect" msg <- paste("Masking pixels in range:\n", paste("R: ", paste(lower[1], "-", upper[1], sep = ""), "; G: ", paste(lower[2], "-", upper[2], sep = ""), "; B: ", paste(lower[3], "-", upper[3], sep = ""), sep = "")) } else if (category == "sphere") { bg_condition <- list(center = center, radius = radius) class(bg_condition) <- "bg_sphere" msg <- paste("Masking pixels in range:\n", paste("Center: ", paste(center, collapse = ", "), " +/- ", radius * 100, "%", sep = "")) } else if (category == "none") { bg_condition <- NA class(bg_condition) <- "bg_none" msg <- "Using all pixels" } else { stop("uh oh!!") } if (!quietly) { message(msg) } return(bg_condition) }
HTestimator<-function(y,pik) { if(any(is.na(pik))) stop("there are missing values in pik") if(any(is.na(y))) stop("there are missing values in y") if(length(y)!=length(pik)) stop("y and pik have different sizes") crossprod(y,1/pik) }
meta.retrieval <- function(db = "refseq", kingdom, group = NULL, type = "genome", restart_at_last = TRUE, reference = FALSE, combine = FALSE, path = NULL) { division <- subgroup <- NULL subfolders <- getKingdoms(db = db) if (!is.element(kingdom, subfolders)) stop(paste0( "Please select a valid kingdom: ", paste0(subfolders, collapse = ", ") ), call. = FALSE) if (!is.null(group)) if (!is.element(group, getGroups(kingdom = kingdom, db = db))) stop( "Please specify a group that is supported by getGroups(). Your specification '", group, "' does not exist in getGroups(kingdom = '", kingdom, "', db = '", db, "'). Maybe you used a different db argument in getGroups()?", call. = FALSE ) if (!is.element(type, c("genome", "proteome", "CDS","cds", "gff", "rna", "assemblystats", "gtf", "rm"))) stop( "Please choose either type: type = 'genome', type = 'proteome', type = 'CDS', type = 'gff', type = 'gtf', type = 'rna', type = 'rm', or type = 'assemblystats'.", call. = FALSE ) if (!is.element(db, c("refseq", "genbank", "ensembl"))) stop( "Please select einter db = 'refseq', db = 'genbank', or db = 'ensembl'.", call. = FALSE ) if ((stringr::str_to_upper(type) == "CDS") && (db == "genbank")) stop("Genbank does not store CDS data. Please choose 'db = 'refseq''.", call. = FALSE) if ((type == "gtf") && (is.element(db, c("genbank", "refseq")))) stop("GTF files are only available for type = 'ensembl' and type = 'ensemblgebomes'.") if (type == "assemblystats" && !is.element(db, c("refseq", "genbank"))) stop( "Unfortunately, assembly stats files are only available for db = 'refseq' and db = 'genbank'.", call. = FALSE ) if (combine && type != "assemblystats") stop( "Only option type = 'assemblystats' can use combine = TRUE. Please specify: type = 'assemblystats' and combine = TRUE.", call. = FALSE ) if ((type == "rm") && (!is.element(db, c("refseq", "genbank")))) stop("Repeat Masker output files can only be retrieved from 'refseq'", " or 'genbank'.", call. = FALSE) if (is.element(db, c("refseq", "genbank"))) { if (is.null(group)) { assembly.summary.file <- getSummaryFile(db = db, kingdom = kingdom) FinalOrganisms <- unique(assembly.summary.file$organism_name) } if (!is.null(group)) { groups.selection <- listGroups(kingdom = kingdom, db = db, details = TRUE) groups.selection <- dplyr::filter(groups.selection, subgroup %in% group) FinalOrganisms <- unique(groups.selection$organism_name) } } if (db == "ensembl") { summary.file <- get.ensembl.info() FinalOrganisms <- unique(summary.file$name) FinalOrganisms <- stringr::str_replace_all(FinalOrganisms, "_", " ") stringr::str_sub(FinalOrganisms, 1, 1) <- stringr::str_to_upper(stringr::str_sub(FinalOrganisms, 1, 1)) } if (db == "ensemblgenomes") { summary.file <- get.ensemblgenome.info() summary.file <- dplyr::filter(summary.file, division == kingdom) FinalOrganisms <- unique(summary.file$accession) } if (is.null(group)) message(paste0( "Starting meta retrieval of all ", type, " files for kingdom: ", kingdom, " from database: ", db, "." )) if (!is.null(group)) message( paste0( "Starting meta retrieval of all ", type, " files within kingdom '", kingdom, "' and subgroup '", group,"' ", " from database: ", db, "." ) ) message("\n") if (!is.null(path)) { if (!file.exists(path)) { message("Generating folder ", path, " ...") dir.create(path, recursive = TRUE) } if (!file.exists(file.path(path, "documentation"))) dir.create(file.path(path, "documentation")) } else { if (!file.exists(kingdom)) { message("Generating folder ", kingdom, " ...") dir.create(kingdom, recursive = TRUE) } if (!file.exists(file.path(kingdom, "documentation"))) dir.create(file.path(kingdom, "documentation")) } paths <- vector("character", length(FinalOrganisms)) if (is.element(db, c("refseq", "genbank"))) { if (type == "genome") internal_type <- "genomic" if (type == "proteome") internal_type <- "protein" if (stringr::str_to_upper(type) == "CDS") internal_type <- "cds" if (type == "gff") internal_type <- "genomic" if (type == "gtf") internal_type <- db if (type == "rna") internal_type <- "rna" if (type == "rm") internal_type <- "rm" if (type == "assemblystats") internal_type <- "assembly" if (!is.null(path)) { .existingOrgs <- existingOrganisms(path = path, .type = internal_type) } else { .existingOrgs <- existingOrganisms(path = kingdom, .type = internal_type) } } if (db == "ensembl") { if (type == "genome") internal_type <- "dna" if (type == "proteome") internal_type <- "pep" if (stringr::str_to_upper(type) == "CDS") internal_type <- "cds" if (type == "gff") internal_type <- "ensembl" if (type == "gtf") internal_type <- "ensembl" if (type == "rna") internal_type <- "ncrna" if (!is.null(path)) { .existingOrgs <- existingOrganisms_ensembl(path = path, .type = internal_type) } else { .existingOrgs <- existingOrganisms_ensembl(path = kingdom, .type = internal_type) } } if (db == "ensemblgenomes") { if (type == "genome") internal_type <- "dna" if (type == "proteome") internal_type <- "pep" if (stringr::str_to_upper(type) == "CDS") internal_type <- "cds" if (type == "gff") internal_type <- "ensemblgenomes" if (type == "gtf") internal_type <- "ensemblgenomes" if (type == "rna") internal_type <- "ncrna" if (!is.null(path)) { .existingOrgs <- existingOrganisms_ensembl(path = path, .type = internal_type) } else { .existingOrgs <- existingOrganisms_ensembl(path = kingdom, .type = internal_type) } } if (length(.existingOrgs) > 0) { if (restart_at_last) { FinalOrganisms <- dplyr::setdiff(FinalOrganisms, .existingOrgs) if (length(FinalOrganisms) > 0) { message("Skipping already downloaded species: ", paste0(.existingOrgs, collapse = ", ")) message("\n") } } } if (length(FinalOrganisms) > 0) { if (type == "genome") { if (is.null(path)) { for (i in seq_len(length(FinalOrganisms))) { paths[i] <- getGenome(db = db, organism = FinalOrganisms[i], reference = reference, path = kingdom) message("\n") } } if (!is.null(path)) { for (i in seq_len(length(FinalOrganisms))) { paths[i] <- getGenome(db = db, organism = FinalOrganisms[i], reference = reference, path = path) message("\n") } } } if (type == "proteome") { if (is.null(path)) { for (i in seq_len(length(FinalOrganisms))) { paths[i] <- getProteome(db = db, organism = FinalOrganisms[i], reference = reference, path = kingdom) message("\n") } } if (!is.null(path)) { for (i in seq_len(length(FinalOrganisms))) { paths[i] <- getProteome(db = db, organism = FinalOrganisms[i], reference = reference, path = path) message("\n") } } } if (stringr::str_to_upper(type) == "CDS") { if (is.null(path)) { for (i in seq_len(length(FinalOrganisms))) { paths[i] <- getCDS(db = db, organism = FinalOrganisms[i], reference = reference, path = kingdom) message("\n") } } if (!is.null(path)) { for (i in seq_len(length(FinalOrganisms))) { paths[i] <- getCDS(db = db, organism = FinalOrganisms[i], reference = reference, path = path) message("\n") } } } if (type == "gff") { if (is.null(path)) { for (i in seq_len(length(FinalOrganisms))) { paths[i] <- getGFF(db = db, organism = FinalOrganisms[i], reference = reference, path = kingdom) message("\n") } } if (!is.null(path)) { for (i in seq_len(length(FinalOrganisms))) { paths[i] <- getGFF(db = db, organism = FinalOrganisms[i], reference = reference, path = path) message("\n") } } } if (type == "gtf") { if (is.null(path)) { for (i in seq_len(length(FinalOrganisms))) { paths[i] <- getGTF(db = db, organism = FinalOrganisms[i], path = kingdom) message("\n") } } if (!is.null(path)) { for (i in seq_len(length(FinalOrganisms))) { paths[i] <- getGTF(db = db, organism = FinalOrganisms[i], path = path) message("\n") } } } if (type == "rm") { if (is.null(path)) { for (i in seq_len(length(FinalOrganisms))) { paths[i] <- getRepeatMasker(db = db, organism = FinalOrganisms[i], reference = reference, path = kingdom) message("\n") } } if (!is.null(path)) { for (i in seq_len(length(FinalOrganisms))) { paths[i] <- getRepeatMasker(db = db, organism = FinalOrganisms[i], reference = reference, path = path) message("\n") } } } if (type == "rna") { if (is.null(path)) { for (i in seq_len(length(FinalOrganisms))) { paths[i] <- getRNA(db = db, organism = FinalOrganisms[i], reference = reference, path = kingdom) message("\n") } } if (!is.null(path)) { for (i in seq_len(length(FinalOrganisms))) { getRNA(db = db, organism = FinalOrganisms[i], reference = reference, path = path) message("\n") } } } if (type == "assemblystats") { stats.files <- vector("list", length(FinalOrganisms)) if (is.null(path)) { for (i in seq_len(length(FinalOrganisms))) { if (combine) { stats.files[i] <- list( getAssemblyStats( db = db, organism = FinalOrganisms[i], reference = reference, path = kingdom, type = "import" ) ) names(stats.files[i]) <- FinalOrganisms[i] message("\n") } else { paths[i] <- getAssemblyStats( db = db, organism = FinalOrganisms[i], reference = reference, path = kingdom ) message("\n") } } } if (!is.null(path)) { for (i in seq_len(length(FinalOrganisms))) { if (combine) { stats.files[i] <- list( getAssemblyStats( db = db, organism = FinalOrganisms[i], reference = reference, path = path, type = "import" ) ) names(stats.files[i]) <- FinalOrganisms[i] } else { paths[i] <- getAssemblyStats( db = db, reference = reference, organism = FinalOrganisms[i], path = path ) } } } } if (!is.null(path)) { meta_files <- list.files(path) meta_files <- meta_files[stringr::str_detect(meta_files, "doc_")] file.rename(from = file.path(path, meta_files), to = file.path(path, "documentation", meta_files)) doc_tsv_files <- file.path(path,"documentation", meta_files[stringr::str_detect(meta_files, "[.]tsv")]) summary_log <- dplyr::bind_rows(lapply(doc_tsv_files, function(data) { if (fs::file_size(data) > 0) suppressMessages(readr::read_tsv(data)) })) readr::write_excel_csv(summary_log, file.path(path, "documentation", paste0(kingdom, "_summary.csv"))) message("A summary file (which can be used as supplementary information file in publications) containig retrieval information for all ",kingdom," species has been stored at '",file.path(path, "documentation", paste0(kingdom, "_summary.csv")),"'.") } else { meta_files <- list.files(kingdom) meta_files <- meta_files[stringr::str_detect(meta_files, "doc_")] file.rename(from = file.path(kingdom, meta_files), to = file.path(kingdom, "documentation", meta_files)) doc_tsv_files <- file.path(kingdom,"documentation", meta_files[stringr::str_detect(meta_files, "[.]tsv")]) summary_log <- dplyr::bind_rows(lapply(doc_tsv_files, function(data) { if (fs::file_size(data) > 0) suppressMessages(readr::read_tsv(data)) })) readr::write_excel_csv(summary_log, file.path(kingdom, "documentation", paste0(kingdom, "_summary.csv"))) message("A summary file (which can be used as supplementary information file in publications) containig retrieval information for all ",kingdom," species has been stored at '",file.path(kingdom, "documentation", paste0(kingdom, "_summary.csv")),"'.") } if (combine) { stats.files <- dplyr::bind_rows(stats::na.omit(stats.files)) message("Finished meta retieval process.") return(stats.files) } message("Finished meta retieval process.") return(paths[!is.element(paths, c("FALSE", "Not available"))]) } else { if (!is.null(path)) { meta_files <- list.files(path) meta_files <- meta_files[stringr::str_detect(meta_files, "doc_")] file.rename(from = file.path(path, meta_files), to = file.path(path, "documentation", meta_files)) doc_tsv_files <- file.path(path,"documentation", meta_files[stringr::str_detect(meta_files, "[.]tsv")]) summary_log <- dplyr::bind_rows(lapply(doc_tsv_files, function(data) { if (fs::file_size(data) > 0) suppressMessages(readr::read_tsv(data)) })) readr::write_excel_csv(summary_log, file.path(path, "documentation", paste0(kingdom, "_summary.csv"))) message("A summary file (which can be used as supplementary information file in publications) containig retrieval information for all ",kingdom," species has been stored at '",file.path(path, "documentation", paste0(kingdom, "_summary.csv")),"'.") } else { meta_files <- list.files(kingdom) meta_files <- meta_files[stringr::str_detect(meta_files, "doc_")] file.rename(from = file.path(kingdom, meta_files), to = file.path(kingdom, "documentation", meta_files)) doc_tsv_files <- file.path(kingdom,"documentation", meta_files[stringr::str_detect(meta_files, "[.]tsv")]) summary_log <- dplyr::bind_rows(lapply(doc_tsv_files, function(data) { if (fs::file_size(data) > 0) suppressMessages(readr::read_tsv(data)) })) readr::write_excel_csv(summary_log, file.path(kingdom, "documentation", paste0(kingdom, "_summary.csv"))) message("A summary file (which can be used as supplementary information file in publications) containig retrieval information for all ",kingdom," species has been stored at '",file.path(kingdom, "documentation", paste0(kingdom, "_summary.csv")),"'.") } message("The ", type,"s of all species have already been downloaded! You are up to date!") } }
get_swsheet <- function() { futile.logger::flog.info("Loading 'single_cell_software.csv'...") swsheet <- readr::read_csv("single_cell_software.csv", col_types = readr::cols( .default = readr::col_logical(), Name = readr::col_character(), Platform = readr::col_character(), DOIs = readr::col_character(), PubDates = readr::col_character(), Code = readr::col_character(), Description = readr::col_character(), License = readr::col_character(), Added = readr::col_date(format = ""), Updated = readr::col_date(format = "") )) } get_pkgs <- function() { `%>%` <- magrittr::`%>%` futile.logger::flog.info("Getting package repositories...") futile.logger::flog.info("Getting Bioconductor package list...") bioc.url <- "https://bioconductor.org/packages/release/bioc/" bioc.pkgs <- xml2::read_html(bioc.url) %>% rvest::html_nodes("table") %>% rvest::html_nodes("a") %>% rvest::html_text() names(bioc.pkgs) <- stringr::str_to_lower(bioc.pkgs) futile.logger::flog.info("Getting CRAN package list...") cran.url <- "https://cran.r-project.org/web/packages/available_packages_by_name.html" cran.pkgs <- xml2::read_html(cran.url) %>% rvest::html_nodes("a") %>% rvest::html_text() %>% setdiff(LETTERS) names(cran.pkgs) <- stringr::str_to_lower(cran.pkgs) futile.logger::flog.info("Getting PyPI package list...") pypi.pkgs <- xml2::read_html("https://pypi.python.org/simple/") %>% rvest::html_nodes("a") %>% rvest::html_text() names(pypi.pkgs) <- stringr::str_to_lower(pypi.pkgs) futile.logger::flog.info("Getting Anaconda package list...") pages <- xml2::read_html("https://anaconda.org/anaconda/repo") %>% rvest::html_nodes(".unavailable:nth-child(2)") %>% rvest::html_text() %>% stringr::str_split(" ") %>% unlist() pages <- as.numeric(pages[4]) conda.pkgs <- pbapply::pbsapply(seq_len(pages), function(p) { url <- paste0("https://anaconda.org/anaconda/repo?sort=_name&sort_order=asc&page=", p) xml2::read_html(url) %>% rvest::html_nodes(".packageName") %>% rvest::html_text() }) conda.pkgs <- unlist(conda.pkgs) names(conda.pkgs) <- stringr::str_to_lower(conda.pkgs) pkgs <- list(BioC = bioc.pkgs, CRAN = cran.pkgs, PyPI = pypi.pkgs, Conda = conda.pkgs) } get_descriptions <- function() { futile.logger::flog.info("Getting category descriptions...") descs <- jsonlite::read_json("docs/data/descriptions.json", simplifyVector = TRUE) }
setClass("VanderPol", slots = c( mu = "numeric" ), contains = c("ODE") ) setMethod("initialize", "VanderPol", function(.Object, ...) { .Object@mu <- 1.0 .Object@state <- vector("numeric", 3) return(.Object) }) setMethod("getState", "VanderPol", function(object, ...) { return(object@state) }) setMethod("getRate", "VanderPol", function(object, state, ...) { object@rate[1] <- state[2] object@rate[2] <- object@mu* (1 - state[1]^2) * state[2] - state[1] object@rate[3] <- 1 object@rate }) VanderPol <- function(y1, y2) { VanderPol <- new("VanderPol") VanderPol@state[1] = y1 VanderPol@state[2] = y2 VanderPol@state[3] = 0 return(VanderPol) }
expected <- eval(parse(text="FALSE")); test(id=0, code={ argv <- eval(parse(text="list(structure(\"BunchKaufman\", class = structure(\"signature\", package = \"methods\"), .Names = \"x\", package = \"methods\"), structure(\"Matrix\", .Names = \"x\", package = \"Matrix\", class = structure(\"signature\", package = \"methods\")), TRUE, TRUE, TRUE, TRUE, FALSE)")); .Internal(identical(argv[[1]], argv[[2]], argv[[3]], argv[[4]], argv[[5]], argv[[6]], argv[[7]])); }, o=expected);
NULL qc_fails <- function(object, element = c("sample", "module"), compact = TRUE){ .check_object(object) element <- match.arg(element) qc_problems (object, element = element, status = "FAIL", compact = compact) } qc_warns <- function(object, element = c("sample", "module"), compact = TRUE){ .check_object(object) element <- match.arg(element) qc_problems (object, element = element, status = "WARN", compact = compact) } qc_problems <- function(object, element = c("sample", "module"), name = NULL, status = c("FAIL", "WARN"), compact = TRUE) { .check_object(object) element <- match.arg(element) not_element <- base::setdiff(c("sample", "module"), element) if(!all(status %in% c("FAIL", "WARN"))) stop("status should be one of c('FAIL', 'WARN')") sample <- nb_problems <- module <- NULL status. <- status problems <- object %>% dplyr::filter(status %in% status.) %>% dplyr::select(sample, module, status) if(nrow(problems) == 0){ message("There is no problem. All samples pass the QC tests.") return(problems) } if(!is.null(name)){ all.valid.names <- c(problems$sample, problems$module) %>% unique() name <- grep(pattern= paste(name, collapse = "|"), all.valid.names, ignore.case = TRUE, value = TRUE) %>% unique() if(length(name) == 0) stop("Incorect names provided.") problems <- problems %>% dplyr::filter(sample %in% name | module %in% name) if(missing(compact)) compact <- FALSE } nb_problems <- problems %>% dplyr::group_by_(element) %>% dplyr::summarise(nb_problems = n()) %>% dplyr::arrange(desc(nb_problems)) module <- sample <- NULL if(element == "sample") .formula <- module~sample else .formula <- sample~module modules_with_problem <- stats::aggregate(.formula, data = problems, paste, collapse = ", ") if(compact) left_join(nb_problems, modules_with_problem, by = element) else left_join(problems, nb_problems, by = element) %>% dplyr::arrange_("desc(nb_problems)", element, "status") %>% dplyr::select_(element, "nb_problems", not_element, "status") }
mr_format <- function(rsid, xbeta, ybeta, xse, yse) { if (missing(rsid)) { rsid <- 1:length(ybeta) message("SNP id variable generated equal to row number in data frame") } datm <- data.frame(rsid, xbeta, ybeta, xse, yse) names(datm) <- c("rsid", "beta.exposure", "beta.outcome", "se.exposure", "se.outcome") class(datm) <- append(class(datm), "mr_format") return(datm) }
selection_criteria <- function(x, K, G){ K <- x$K G <- x$G lb <- x$info$lb penKG <- penalty(x) BIC <- lb - penKG ent_ZW <- x$info$ent_ZW vICL <- BIC - ent_ZW a_tilde <- x$info$a_tilde return(cbind(vICL = vICL, BIC = BIC, penKG = penKG, lb = lb, entZW = ent_ZW, K = K, G = G)) }
context("layers") test_call_succeeds("layer_input", { layer_input(shape = c(32)) input <- layer_input(shape = c(32), ragged = TRUE) }) test_call_succeeds("layer_dense", { layer_dense(keras_model_sequential(), 32, input_shape = c(784)) }) test_call_succeeds("layer_activation", { keras_model_sequential() %>% layer_dense(32, input_shape = c(784)) %>% layer_activation('relu') }) test_call_succeeds("layer_activation_relu", required_version = "2.2.0", { keras_model_sequential() %>% layer_dense(32, input_shape = c(784)) %>% layer_activation_relu() }) test_call_succeeds("layer_activation_selu", required_version = "2.2.0", { keras_model_sequential() %>% layer_dense(32, input_shape = c(784)) %>% layer_activation_selu() }) test_call_succeeds("layer_activation_leaky_relu", { keras_model_sequential() %>% layer_dense(32, input_shape = c(784)) %>% layer_activation_leaky_relu() }) test_call_succeeds("layer_activation_parametric_relu", { keras_model_sequential() %>% layer_dense(32, input_shape = c(784)) %>% layer_activation_parametric_relu() }) test_call_succeeds("layer_activation_thresholded_relu", { keras_model_sequential() %>% layer_dense(32, input_shape = c(784)) %>% layer_activation_thresholded_relu() }) test_call_succeeds("layer_activation_elu", { keras_model_sequential() %>% layer_dense(32, input_shape = c(784)) %>% layer_activation_elu() }) test_call_succeeds("layer_activity_regularization", { keras_model_sequential() %>% layer_dense(32, input_shape = c(784)) %>% layer_activity_regularization() }) test_call_succeeds("layer_dropout", { keras_model_sequential() %>% layer_dense(32, input_shape = c(784)) %>% layer_dropout(rate = 0.5, noise_shape = c(1)) }) test_call_succeeds("layer_spatial_dropout_1d", { keras_model_sequential() %>% layer_dense(32, input_shape = c(784)) %>% layer_reshape(target_shape = c(2,16)) %>% layer_spatial_dropout_1d(rate = 0.5) }) test_call_succeeds("layer_spatial_dropout_2d", { keras_model_sequential() %>% layer_dense(32, input_shape = c(784)) %>% layer_reshape(target_shape = c(2,4,4)) %>% layer_spatial_dropout_2d(rate = 0.5) }) test_call_succeeds("layer_spatial_dropout_3d", { keras_model_sequential() %>% layer_dense(32, input_shape = c(784)) %>% layer_reshape(target_shape = c(2,2,2,4)) %>% layer_spatial_dropout_3d(rate = 0.5) }) test_call_succeeds("layer_lambda", { keras_model_sequential() %>% layer_dense(32, input_shape = c(784)) %>% layer_lambda(function(t) t, output_shape = c(784)) }) test_call_succeeds("layer_masking", { keras_model_sequential() %>% layer_dense(32, input_shape = c(784)) %>% layer_masking(mask_value = 0.5) }) test_call_succeeds("layer_repeat_vector", { keras_model_sequential() %>% layer_dense(32, input_shape = c(784)) %>% layer_repeat_vector(3) }) test_call_succeeds("layer_reshape", { keras_model_sequential() %>% layer_dense(32, input_shape = c(784)) %>% layer_reshape(target_shape = c(2,16)) }) test_call_succeeds("layer_permute", { keras_model_sequential() %>% layer_dense(32, input_shape = c(784)) %>% layer_permute(dims = c(1)) }) test_call_succeeds("layer_flatten", { keras_model_sequential() %>% layer_dense(32, input_shape = c(784)) %>% layer_reshape(target_shape = c(2,16)) %>% layer_flatten() }) test_call_succeeds("layer_conv_1d", { keras_model_sequential() %>% layer_dense(32, input_shape = c(784)) %>% layer_reshape(target_shape = c(2,16)) %>% layer_conv_1d(filters = 3, kernel_size = 2) }) test_call_succeeds("layer_conv_2d", { keras_model_sequential() %>% layer_dense(32, input_shape = c(784)) %>% layer_reshape(target_shape = c(2,4,4)) %>% layer_conv_2d(filters = 3, kernel_size = c(2, 2)) }) test_call_succeeds("layer_conv_3d", { keras_model_sequential() %>% layer_dense(32, input_shape = c(784)) %>% layer_reshape(target_shape = c(2,2,2,4)) %>% layer_conv_3d(filters = 3, kernel_size = c(2, 2, 2)) }) test_call_succeeds("layer_conv_1d_transpose", { if (tensorflow::tf_version() < "2.3") skip("Needs TF >= 2.3") keras_model_sequential() %>% layer_dense(32, input_shape = 100) %>% layer_reshape(target_shape = c(8,4)) %>% layer_conv_1d_transpose(filters = 3, kernel_size = 2) }) test_call_succeeds("layer_conv_2d_transpose", { keras_model_sequential() %>% layer_dense(32, input_shape = c(784)) %>% layer_reshape(target_shape = c(2,4,4)) %>% layer_conv_2d_transpose(filters = 3, kernel_size = c(2, 2)) }) test_call_succeeds("layer_conv_3d_transpose", required_version = "2.0.6", { keras_model_sequential() %>% layer_dense(32, input_shape = c(784)) %>% layer_reshape(target_shape = c(2,2,2,4)) %>% layer_conv_3d_transpose(filters = 3, kernel_size = c(2, 2, 2)) }) test_call_succeeds("layer_separable_conv_2d", { if (is_tensorflow_implementation()) { keras_model_sequential() %>% layer_dense(32, input_shape = c(784)) %>% layer_reshape(target_shape = c(2,4,4)) %>% layer_separable_conv_2d(filters = 4, kernel_size = c(2,2)) } }) test_call_succeeds("layer_depthwise_conv_2d", required_version = "2.1.5", { if (is_tensorflow_implementation()) { keras_model_sequential() %>% layer_dense(32, input_shape = c(784)) %>% layer_reshape(target_shape = c(2,4,4)) %>% layer_depthwise_conv_2d(kernel_size = c(2,2)) } }) if(tf_version() >= "2.8") test_call_succeeds("layer_depthwise_conv_1d", { keras_model_sequential() %>% layer_dense(32, input_shape = c(784)) %>% layer_reshape(target_shape = c(4, -1)) %>% layer_depthwise_conv_1d(kernel_size = 2) }) if(tf_version() >= "2.6") test_call_succeeds("layer_conv_lstm_1d", { keras_model_sequential() %>% layer_dense(32, input_shape = c(784)) %>% layer_reshape(target_shape = c(2,4,4)) %>% layer_conv_lstm_1d(filters = 3, kernel_size = c(2)) }) test_call_succeeds("layer_conv_lstm_2d", { keras_model_sequential() %>% layer_dense(16, input_shape = c(784)) %>% layer_reshape(target_shape = c(2,2,2,2)) %>% layer_conv_lstm_2d(filters = 3, kernel_size = c(1, 1)) }) if(tf_version() >= "2.6") test_call_succeeds("layer_conv_lstm_3d", { keras_model_sequential() %>% layer_dense(32, input_shape = c(784)) %>% layer_reshape(target_shape = c(2,2,2,2,2)) %>% layer_conv_lstm_3d(filters = 3, kernel_size = c(1, 1, 2)) }) test_call_succeeds("layer_upsampling_1d", { keras_model_sequential() %>% layer_dense(32, input_shape = c(784)) %>% layer_reshape(target_shape = c(2,16)) %>% layer_upsampling_1d() }) test_call_succeeds("layer_upsampling_2d", { keras_model_sequential() %>% layer_dense(32, input_shape = c(784)) %>% layer_reshape(target_shape = c(2,4,4)) %>% layer_upsampling_2d() }) test_call_succeeds("layer_upsampling_3d", { keras_model_sequential() %>% layer_dense(32, input_shape = c(784)) %>% layer_reshape(target_shape = c(2,4,2,2)) %>% layer_upsampling_3d() }) test_call_succeeds("layer_zero_padding_1d", { keras_model_sequential() %>% layer_dense(32, input_shape = c(784)) %>% layer_reshape(target_shape = c(2,16)) %>% layer_zero_padding_1d() }) test_call_succeeds("layer_zero_padding_2d", { keras_model_sequential() %>% layer_dense(32, input_shape = c(784)) %>% layer_reshape(target_shape = c(2,4,4)) %>% layer_zero_padding_2d() }) test_call_succeeds("layer_zero_padding_3d", { keras_model_sequential() %>% layer_dense(32, input_shape = c(784)) %>% layer_reshape(target_shape = c(2,4,2,2)) %>% layer_zero_padding_3d() }) test_call_succeeds("layer_cropping_1d", { skip_if_cntk() keras_model_sequential() %>% layer_dense(64, input_shape = c(784)) %>% layer_reshape(target_shape = c(4,16)) %>% layer_cropping_1d() }) test_call_succeeds("layer_cropping_2d", { keras_model_sequential() %>% layer_dense(32, input_shape = c(784)) %>% layer_reshape(target_shape = c(2,4,4)) %>% layer_cropping_2d() }) test_call_succeeds("layer_cropping_3d", { skip_if_cntk() keras_model_sequential() %>% layer_dense(32, input_shape = c(784)) %>% layer_reshape(target_shape = c(2,4,2,2)) %>% layer_cropping_3d() }) test_call_succeeds("layer_max_pooling_1d", { keras_model_sequential() %>% layer_dense(32, input_shape = c(784)) %>% layer_reshape(target_shape = c(2,16)) %>% layer_max_pooling_1d() }) test_call_succeeds("layer_max_pooling_2d", { keras_model_sequential() %>% layer_dense(32, input_shape = c(784)) %>% layer_reshape(target_shape = c(2,4,4)) %>% layer_max_pooling_2d() }) test_call_succeeds("layer_max_pooling_3d", { keras_model_sequential() %>% layer_dense(32, input_shape = c(784)) %>% layer_reshape(target_shape = c(2,2,2,4)) %>% layer_max_pooling_3d() }) test_call_succeeds("layer_average_pooling_1d", { keras_model_sequential() %>% layer_dense(32, input_shape = c(784)) %>% layer_reshape(target_shape = c(2,16)) %>% layer_average_pooling_1d() }) test_call_succeeds("layer_average_pooling_2d", { keras_model_sequential() %>% layer_dense(32, input_shape = c(784)) %>% layer_reshape(target_shape = c(2,4,4)) %>% layer_average_pooling_2d() }) test_call_succeeds("layer_average_pooling_3d", { keras_model_sequential() %>% layer_dense(32, input_shape = c(784)) %>% layer_reshape(target_shape = c(2,2,2,4)) %>% layer_average_pooling_3d() }) test_call_succeeds("layer_global_average_pooling_1d", { keras_model_sequential() %>% layer_dense(32, input_shape = c(784)) %>% layer_reshape(target_shape = c(2,16)) %>% layer_global_average_pooling_1d() }) test_call_succeeds("layer_global_average_pooling_2d", { keras_model_sequential() %>% layer_dense(32, input_shape = c(784)) %>% layer_reshape(target_shape = c(2,4,4)) %>% layer_global_average_pooling_2d() }) test_call_succeeds("layer_global_average_pooling_3d", { keras_model_sequential() %>% layer_dense(32, input_shape = c(784)) %>% layer_reshape(target_shape = c(2,2,2,4)) %>% layer_global_average_pooling_3d() }) test_call_succeeds("layer_global_max_pooling_1d", { keras_model_sequential() %>% layer_dense(32, input_shape = c(784)) %>% layer_reshape(target_shape = c(2,16)) %>% layer_global_max_pooling_1d() }) test_call_succeeds("layer_global_max_pooling_2d", { keras_model_sequential() %>% layer_dense(32, input_shape = c(784)) %>% layer_reshape(target_shape = c(2,4,4)) %>% layer_global_max_pooling_2d() }) test_call_succeeds("layer_global_max_pooling_3d", { keras_model_sequential() %>% layer_dense(32, input_shape = c(784)) %>% layer_reshape(target_shape = c(2,2,2,4)) %>% layer_global_max_pooling_3d() }) test_call_succeeds("layer_locally_connected_1d", { keras_model_sequential() %>% layer_dense(32, input_shape = c(784)) %>% layer_reshape(target_shape = c(2,16)) %>% layer_locally_connected_1d(filters = 3, kernel_size = 2) }) test_call_succeeds("layer_locally_connected_2d", { keras_model_sequential() %>% layer_dense(32, input_shape = c(784)) %>% layer_reshape(target_shape = c(2,4,4)) %>% layer_locally_connected_2d(filters = 3, kernel_size = c(2, 2)) }) test_call_succeeds("layer_simple_rnn", { keras_model_sequential() %>% layer_dense(32, input_shape = c(784)) %>% layer_reshape(target_shape = c(2,16)) %>% layer_simple_rnn(units = 2) }) test_call_succeeds("layer_gru", { keras_model_sequential() %>% layer_dense(32, input_shape = c(784)) %>% layer_reshape(target_shape = c(2,16)) %>% layer_gru(units = 2) }) test_call_succeeds("layer_lstm", { keras_model_sequential() %>% layer_dense(32, input_shape = c(784)) %>% layer_reshape(target_shape = c(2,16)) %>% layer_lstm(units = 2) }) test_call_succeeds("layer_embedding", { keras_model_sequential() %>% layer_embedding(1000, 64, input_length = 10) }) get_merge_inputs <- function() { c(layer_input(shape = c(4, 5)), layer_input(shape = c(4, 5)), layer_input(shape = c(4, 5))) } test_call_succeeds("layer_add", { merge_inputs <- get_merge_inputs() output <- layer_add(merge_inputs) keras_model(merge_inputs, output) output <- layer_add()(merge_inputs) keras_model(merge_inputs, output) }) test_call_succeeds(required_version = "2.0.7", "layer_subtract", { merge_inputs <- c(layer_input(shape = c(4, 5)), layer_input(shape = c(4, 5))) output <- layer_subtract(merge_inputs) keras_model(merge_inputs, output) output <- layer_subtract()(merge_inputs) keras_model(merge_inputs, output) }) test_call_succeeds("layer_multiply", { merge_inputs <- get_merge_inputs() output <- layer_multiply(merge_inputs) keras_model(merge_inputs, output) output <- layer_multiply()(merge_inputs) keras_model(merge_inputs, output) }) test_call_succeeds("layer_maximum", { merge_inputs <- get_merge_inputs() output <- layer_maximum(merge_inputs) keras_model(merge_inputs, output) output <- layer_maximum()(merge_inputs) keras_model(merge_inputs, output) }) test_call_succeeds("layer_minumum", required_version = "2.0.9", { merge_inputs <- get_merge_inputs() output <- layer_minimum(merge_inputs) keras_model(merge_inputs, output) output <- layer_minimum()(merge_inputs) keras_model(merge_inputs, output) }) test_call_succeeds("layer_average", { merge_inputs <- get_merge_inputs() output <- layer_average(merge_inputs) keras_model(merge_inputs, output) output <- layer_average()(merge_inputs) keras_model(merge_inputs, output) }) test_call_succeeds("layer_concatenate", { merge_inputs <- get_merge_inputs() output <- layer_concatenate(merge_inputs) keras_model(merge_inputs, output) output <- layer_concatenate()(merge_inputs) keras_model(merge_inputs, output) }) test_call_succeeds("layer_batch_normalization", { keras_model_sequential() %>% layer_dense(32, input_shape = c(784)) %>% layer_reshape(target_shape = c(2,16)) %>% layer_batch_normalization() }) test_call_succeeds("layer_gaussian_noise", { skip_if_cntk() keras_model_sequential() %>% layer_dense(32, input_shape = c(784)) %>% layer_reshape(target_shape = c(2,16)) %>% layer_gaussian_noise(stddev = 0.5) }) test_call_succeeds("layer_gaussian_dropout", { skip_if_cntk() keras_model_sequential() %>% layer_dense(32, input_shape = c(784)) %>% layer_reshape(target_shape = c(2,16)) %>% layer_gaussian_dropout(rate = 0.5) }) test_call_succeeds("layer_alpha_dropout", required_version = "2.0.6", { skip_if_cntk() keras_model_sequential() %>% layer_dense(32, input_shape = c(784)) %>% layer_reshape(target_shape = c(2,16)) %>% layer_alpha_dropout(rate = 0.5) }) test_call_succeeds("time_distributed", { keras_model_sequential() %>% time_distributed(layer_dense(units = 8), input_shape = c(10, 16)) }) test_call_succeeds("bidirectional", { keras_model_sequential() %>% bidirectional(layer_lstm(units = 10, return_sequences = TRUE), input_shape = c(5, 10)) %>% bidirectional(layer_lstm(units = 10)) %>% layer_dense(units = 5) %>% layer_activation(activation = "softmax") }) test_call_succeeds("layer_activation_softmax", required_version = "2.1.3", { if (is_tensorflow_implementation()) { keras_model_sequential() %>% layer_dense(32, input_shape = c(784)) %>% layer_activation_softmax() } }) test_call_succeeds("layer_separable_conv_1d", required_version = "2.1.3", { if (is_tensorflow_implementation()) { keras_model_sequential() %>% layer_dense(32, input_shape = c(784)) %>% layer_reshape(target_shape = c(4, 8)) %>% layer_separable_conv_1d(filters = 4, kernel_size = c(4)) } }) test_call_succeeds('layer_attention',{ if (is_tensorflow_implementation() && tensorflow::tf_version() >= "1.14"){ input_1 = layer_input(shape=c(4,5)) input_2 = layer_input(shape=c(4,5)) layer_attention(c(input_1,input_2)) } }) test_call_succeeds("layer_dense_features", required_version = "2.1.3", { if (is_tensorflow_implementation() && tensorflow::tf_version() >= "1.14") { fc <- list(tensorflow::tf$feature_column$numeric_column("mpg")) input <- list(mpg = layer_input(1)) out <- input %>% layer_dense_features(feature_columns = fc) feature_layer <- layer_dense_features(feature_columns = fc) model <- keras_model_sequential(list( feature_layer, layer_dense(units = 1) )) model %>% compile(loss = "mae", optimizer = "adam") model %>% fit(x = list(mpg = 1:10), y = 1:10, verbose = 0) } }) test_succeeds("Can serialize a model that contains dense_features", { if (tensorflow::tf_version() < "2.0") skip("TensorFlow 2.0 is required.") fc <- list(tensorflow::tf$feature_column$numeric_column("mpg")) input <- list(mpg = layer_input(1)) out <- input %>% layer_dense_features(feature_columns = fc) feature_layer <- layer_dense_features(feature_columns = fc) model <- keras_model_sequential(list( feature_layer, layer_dense(units = 1) )) model %>% compile(loss = "mae", optimizer = "adam") model %>% fit(x = list(mpg = 1:10), y = 1:10, verbose = 0) pred <- predict(model, list(mpg = 1:10)) fname <- tempfile() save_model_tf(model, fname) loaded <- load_model_tf(fname) pred2 <- predict(loaded, list(mpg = 1:10)) expect_equal(pred, pred2) })
ResamplingVariance=function(output,pi,type=c("total","mean"),option=1,N=NULL,pij=NULL,str=NULL,clu=NULL,srswr=FALSE){ if(!is.list(output)){stop("output must be a list.")} if(any(is.na(output))){stop("There are missing values in output.")} if(!is.character(type)){stop("type must be a character")} if((type!="total")&(type!="mean")){stop("The value of type must be total or mean.")} if((option<1)|(option>3)){stop("The value of option must be between 1 and 3.")} if(!is.logical(srswr)){srswr=as.logical(srswr)} if((srswr!=TRUE)&(srswr!=FALSE)){stop("The value of srswr must be TRUE or FALSE")} if((is.null(pij))&(option!=1)){ warning("If you do not introduce pij you must choose the jackknife method. The output given is done with the jackknife method without strata nor cluster.") option=1 } if(is.null(N)){ N=round(sum(1/pi)) } if(option==1){ strata=FALSE if(!is.null(str)){ strata=TRUE if(!is.factor(str)){str=as.factor(str)} } cluster=FALSE if(!is.null(clu)){ cluster=TRUE if(!is.factor(clu)){clu=as.factor(clu)} } if((strata==FALSE)&(cluster==FALSE)){ Rve=JackknifeVariance(length(pi),output$TransformedVariable,pi) } if((strata==TRUE)&(cluster==FALSE)){ nh=table(str) ve=vector() for(i in levels(str)){ ve[i]=JackknifeVariance(nh[i],output$TransformedVariable[str==i],pi[str==i],strata) } Rve=sum(ve) } if((strata==FALSE)&(cluster==TRUE)){ Rve=JackknifeVariance(length(levels(clu)),output$TransformedVariable,pi,cluster=cluster,clu=clu) } if((strata==TRUE)&(cluster==TRUE)){ ve=vector() for(i in levels(str)){ cl_sti=droplevels(clu[str==i]) ve[i]=JackknifeVariance(nlevels(cl_sti),output$TransformedVariable[str==i],pi[str==i],strata,cluster,cl_sti) } Rve=sum(ve) } if(type=="mean"){ if(length(N)!=1){stop("N must be a scalar.")} if(N<0){stop("N must be a positive number.")} Rve=Rve/N^2 } } if(option==2){ Rve=EscobarBergerVariance(N,output$TransformedVariable,pi,pij,type) } if(option==3){ Rve=CampbellBergerSkinnerVariance(N,output$TransformedVariable,pi,pij,type) } if(srswr==TRUE){ Rve=Rve/(1-mean(pi)) } return(Rve) }
fv_dsc_box_rank <- function(width = 12, collapsible = T, collapsed = F) { box(title = HTML('<p style="font-size:120%;">Deep Statistical Comparison (DSC) analysis - Ranking per Function</p>'), width = width, solidHeader = T, status = "primary", collapsible = collapsible, collapsed = collapsed, sidebarPanel( width = 3, selectInput('FV_Stats.DSC.ID', 'IDs to compare', choices = NULL, selected = NULL, multiple = T), selectInput('FV_Stats.DSC.Funcid', 'Functions to use', choices = NULL, selected = NULL, multiple = T), selectInput('FV_Stats.DSC.Dim', 'Dimensions to use', choices = NULL, selected = NULL, multiple = T), hr(), numericInput('FV_Stats.DSC.Alpha_rank', label = "Threshold for statistical significance", value = 0.05, min = 0, max = 0.5), numericInput('FV_Stats.DSC.Epsilon_rank', label = "Threshold for practical significance (pDSC)", value = 0) %>% shinyInput_label_embed( custom_icon() %>% bs_embed_popover( title = "Practical Significance", content = Pdsc_info, placement = "auto" ) ), numericInput('FV_Stats.DSC.MCsamples_rank', label = "Number of monte carlo samples to use in the DSC procdure", value = 0) %>% shinyInput_label_embed( custom_icon() %>% bs_embed_popover( title = "Monte Carlo Samples", content = Pdsc_mc_info, placement = "auto" ) ), selectInput("FV_Stats.DSC.Test_rank", "Test Type", choices = c("Anderson-Darling", "Kolmogorov-Smirnov"), selected = "Anderson-Darling"), actionButton('FV_Stats.DSC.Create_rank', 'Create Ranking'), hr(), selectInput('FV_Stats.DSC.Format_rank', label = 'Select the figure format', choices = supported_fig_format, selected = supported_fig_format[[1]]), downloadButton('FV_Stats.DSC.Download_rank', label = 'Download the figure'), selectInput('FV_Stats.DSC.TableFormat_rank', label = 'Select the table format', choices = supported_table_format, selected = supported_table_format[[1]]), downloadButton('FV_Stats.DSC.Download_rank_table', label = 'Download the raw ranking data') ), mainPanel( width = 9, HTML_P("The <b>DSC</b> comparison is described in the paper: 'DSCTool: A web-service-based framework for statistical comparison of stochastic optimization algorithms.' by T. Eftimov et al. This is the first of 3 parts of the process: the per-function ranking procedure. The two other processes are the omnibus test and the post-hoc processing, which are shown in the two boxes below this one. Note that both of these are impacted by the settings selected for this ranking procedure!"), HTML_P("The chosen <b>budget values</b> per (function, dimension)-pair are as follows (double click an entry to edit it):"), DT::dataTableOutput("FV_Stats.DSC.Targets"), hr(), HTML_P("The results of the ranking are shown in the following plot, using the visualization techniques as described in the paper: 'PerformViz: A Machine Learning Approach to Visualize and Understand the Performance of Single-objective Optimization Algorithms' By T. Eftimov et al. Performviz allows one to clearly see, from a single plot, which algorithms are most suited for a given problem, the influence of each problem on the overall algorithm performance and similarities among both algorithms and problems."), plotOutput("FV_Stats.DSC.PerformViz", height = "800px") ) ) } fv_dsc_box_omni <- function(width = 12, collapsible = T, collapsed = F) { box(title = HTML('<p style="font-size:120%;">Deep Statistical Comparison (DSC) analysis - Omnibus Test</p>'), width = width, solidHeader = T, status = "primary", collapsible = collapsible, collapsed = collapsed, sidebarPanel( width = 3, selectInput('FV_Stats.DSC.Omni_options', "Select which statistical test to use", choices = NULL, selected = NULL), numericInput('FV_Stats.DSC.Alpha_omni', label = "Threshold for statistical significance", value = 0.05, min = 0, max = 0.5), actionButton('FV_Stats.DSC.Create_omni', 'Perform Omnibus Test') ), mainPanel( width = 9, HTML_P('This is the result of the omnibus test on the data from the ranking procedure above. Note that this test has to be performed before doing the post-hoc comparison!'), hr(), textOutput('FV_Stats.DSC.Output_omni') ) ) } fv_dsc_box_posthoc <- function(width = 12, collapsible = T, collapsed = F) { box(title = HTML('<p style="font-size:120%;">Deep Statistical Comparison (DSC) analysis - Posthoc comparison</p>'), width = width, solidHeader = T, status = "primary", collapsible = collapsible, collapsed = collapsed, sidebarPanel( width = 3, selectInput('FV_Stats.DSC.Posthoc_test', 'Post-hoc Test', choices = c('friedman', 'friedman-aligned-rank'), selected = 'friedman', multiple = F), selectInput('FV_Stats.DSC.Posthoc_method', 'Post-hoc P-value Correction Method', choices = c('Holm', 'Hochberg', 'unadjusted P'), selected = 'Holm', multiple = F), numericInput('FV_Stats.DSC.Alpha_posthoc', label = "Threshold for statistical significance", value = 0.05, min = 0, max = 0.5), actionButton('FV_Stats.DSC.Create_posthoc', 'Create Comparison'), hr(), selectInput('FV_Stats.DSC.Format', label = 'Select the figure format', choices = supported_fig_format, selected = supported_fig_format[[1]]), downloadButton('FV_Stats.DSC.Download', label = 'Download the figure'), hr(), selectInput('FV_Stats.DSC.TableFormat', label = 'Select the table format', choices = supported_table_format, selected = supported_table_format[[1]]), downloadButton('FV_Stats.DSC.DownloadTable', label = 'Download the table') ), mainPanel( width = 9, HTML_P("The results of the post-hoc comparison are:"), plotlyOutput.IOHanalyzer("FV_Stats.DSC.PosthocViz"), DT::dataTableOutput('FV_Stats.DSC.PosthocTable') ) ) } rt_dsc_box_rank <- function(width = 12, collapsible = T, collapsed = F) { box(title = HTML('<p style="font-size:120%;">Deep Statistical Comparison (DSC) analysis - Ranking per Function</p>'), width = width, solidHeader = T, status = "primary", collapsible = collapsible, collapsed = collapsed, sidebarPanel( width = 3, selectInput('RT_Stats.DSC.ID', 'Algorithms to compare', choices = NULL, selected = NULL, multiple = T), selectInput('RT_Stats.DSC.Funcid', 'Functions to use', choices = NULL, selected = NULL, multiple = T), selectInput('RT_Stats.DSC.Dim', 'Dimensions to use', choices = NULL, selected = NULL, multiple = T), hr(), selectInput('RT_Stats.DSC.Value_type', "Select which type of hitting times to use", choices = c('PAR-10', 'ERT', 'Remove-na', 'PAR-1')), numericInput('RT_Stats.DSC.Alpha_rank', label = "Threshold for statistical significance", value = 0.05, min = 0, max = 0.5), numericInput('RT_Stats.DSC.Epsilon_rank', label = "Threshold for practical significance (pDSC)", value = 0) %>% shinyInput_label_embed( custom_icon() %>% bs_embed_popover( title = "Practical Significance", content = Pdsc_info, placement = "auto" ) ), numericInput('RT_Stats.DSC.MCsamples_rank', label = "Number of monte carlo samples to use in the DSC procdure", value = 0) %>% shinyInput_label_embed( custom_icon() %>% bs_embed_popover( title = "Monte Carlo Samples", content = Pdsc_mc_info, placement = "auto" ) ), selectInput("RT_Stats.DSC.Test_rank", "Test Type", choices = c("Anderson-Darling", "Kolmogorov-Smirnov"), selected = "Anderson-Darling"), actionButton('RT_Stats.DSC.Create_rank', 'Create Ranking'), hr(), selectInput('RT_Stats.DSC.Format_rank', label = 'Select the figure format', choices = c("pdf"), selected = 'pdf'), downloadButton('RT_Stats.DSC.Download_rank', label = 'Download the figure'), selectInput('RT_Stats.DSC.TableFormat_rank', label = 'Select the table format', choices = c('csv','tex'), selected = 'csv'), downloadButton('RT_Stats.DSC.Download_rank_table', label = 'Download the raw ranking data') ), mainPanel( width = 9, HTML_P("The <b>DSC</b> comparison is described in the paper: 'DSCTool: A web-service-based framework for statistical comparison of stochastic optimization algorithms.' by T. Eftimov et al. This is the first of 3 parts of the process: the per-function ranking procedure. The two other processes are the omnibus test and the post-hoc processing, which are shown in the two boxes below this one. Note that both of these are impacted by the settings selected for this ranking procedure!"), HTML_P("The chosen <b>budget values</b> per (function, dimension)-pair are as follows (double click an entry to edit it):"), DT::dataTableOutput("RT_Stats.DSC.Targets"), hr(), HTML_P("The results of the ranking are shown in the following plot, using the visualization techniques as described in the paper: 'PerformViz: A Machine Learning Approach to Visualize and Understand the Performance of Single-objective Optimization Algorithms' By T. Eftimov et al. Performviz allows one to clearly see, from a single plot, which algorithms are most suited for a given problem, the influence of each problem on the overall algorithm performance and similarities among both algorithms and problems."), plotOutput("RT_Stats.DSC.PerformViz", height = "800px") ) ) } rt_dsc_box_omni <- function(width = 12, collapsible = T, collapsed = F) { box(title = HTML('<p style="font-size:120%;">Deep Statistical Comparison (DSC) analysis - Omnibus Test</p>'), width = width, solidHeader = T, status = "primary", collapsible = collapsible, collapsed = collapsed, sidebarPanel( width = 3, selectInput('RT_Stats.DSC.Omni_options', "Select which statistical test to use", choices = NULL, selected = NULL), numericInput('RT_Stats.DSC.Alpha_omni', label = "Threshold for statistical significance", value = 0.05, min = 0, max = 0.5), actionButton('RT_Stats.DSC.Create_omni', 'Perform Omnibus Test') ), mainPanel( width = 9, HTML_P('This is the result of the omnibus test on the data from the ranking procedure above. Note that this test has to be performed before doing the post-hoc comparison!'), hr(), textOutput('RT_Stats.DSC.Output_omni') ) ) } rt_dsc_box_posthoc <- function(width = 12, collapsible = T, collapsed = F) { box(title = HTML('<p style="font-size:120%;">Deep Statistical Comparison (DSC) analysis - Posthoc comparison</p>'), width = width, solidHeader = T, status = "primary", collapsible = collapsible, collapsed = collapsed, sidebarPanel( width = 3, selectInput('RT_Stats.DSC.Posthoc_test', 'Post-hoc Test', choices = c('friedman', 'friedman-aligned-rank'), selected = 'friedman', multiple = F), selectInput('RT_Stats.DSC.Posthoc_method', 'Post-hoc Method', choices = c('Holm', 'Hochberg', 'unadjusted P'), selected = 'Holm', multiple = F), numericInput('RT_Stats.DSC.Alpha_posthoc', label = "Threshold for statistical significance", value = 0.05, min = 0, max = 0.5), actionButton('RT_Stats.DSC.Create_posthoc', 'Create Comparison'), hr(), selectInput('RT_Stats.DSC.Format', label = 'Select the figure format', choices = supported_fig_format, selected = supported_fig_format[[1]]), downloadButton('RT_Stats.DSC.Download', label = 'Download the figure'), hr(), selectInput('RT_Stats.DSC.TableFormat', label = 'Select the table format', choices = supported_table_format, selected = supported_table_format[[1]]), downloadButton('RT_Stats.DSC.DownloadTable', label = 'Download the table') ), mainPanel( width = 9, HTML_P("The results of the post-hoc comparison are:"), plotlyOutput.IOHanalyzer("RT_Stats.DSC.PosthocViz"), DT::dataTableOutput('RT_Stats.DSC.PosthocTable') ) ) }
library(buildmer) library(testthat) test_that('buildgls',{ skip_on_cran() library(nlme) vowels$event <- with(vowels,interaction(participant,word)) model <- buildgls(f1 ~ timepoint*following,correlation=corAR1(form=~1|event),data=vowels) buildmer:::testthat.compare.df(model@p$results,'buildgls') })
buildModelClass <- function(x, var.names, init.cond, model.parms, probWeights, emigrRule, prop.func = NULL, state.var = NULL, infl.var = NULL, state.change.matrix = NULL) UseMethod("buildModelClass")
context("test-cell_combos") user_opts <- faux_options("sep", "verbose", "plot", "connection") on.exit(faux_options(user_opts)) test_that("0 factors", { expect_equal(cell_combos(list()), "y") expect_equal(cell_combos(list(), "DV"), "DV") }) test_that("1 factor", { fac <- list(c(A = "A", B = "B", C = "C")) expect_equal(cell_combos(fac), LETTERS[1:3]) fac <- list(pet = c(cat = "Has a Cat", dog = "Has a Dog")) expect_equal(cell_combos(fac), c("cat", "dog")) }) test_that("2 factors", { factors <- list(pet = c(cat = "a cat", dog = "a dog"), time = c(day = "the day", night = "the night")) cells <- cell_combos(factors) expect_equal(cells, c("cat_day", "cat_night", "dog_day", "dog_night")) }) test_that("3 factors", { factors <- list(pet = c(dog = "a dog", cat = "a cat"), time = c(day = "the day", night = "the night"), condition = c(A = "AA", B = "BB")) cells <- cell_combos(factors) expect_equal(cells, c("dog_day_A", "dog_day_B", "dog_night_A", "dog_night_B", "cat_day_A", "cat_day_B", "cat_night_A", "cat_night_B")) }) test_that("sep", { faux_options(sep = ".") factors <- list(pet = c(dog = "a dog", cat = "a cat"), time = c(day = "the day", night = "the night"), condition = c(A = "AA", B = "BB")) cells <- cell_combos(factors) expect_equal(cells, c("dog.day.A", "dog.day.B", "dog.night.A", "dog.night.B", "cat.day.A", "cat.day.B", "cat.night.A", "cat.night.B")) factors <- list(A = c(A.1 = "A.1", A.2 = "A.2"), B = c(B_1 = "B_1", B_2 = "B_2")) cells <- cell_combos(factors) expect_equal(cells, c("A.1.B_1", "A.1.B_2", "A.2.B_1", "A.2.B_2")) faux_options(sep = "_") cells <- cell_combos(factors) expect_equal(cells, c("A.1_B_1", "A.1_B_2", "A.2_B_1", "A.2_B_2")) })
context("simplify_rules") test_that("simplify rules works", { rules <- validator( x > 0 , if (x > 0) y == 1 , A %in% c("a1", "a2") , if (A == "a1") y > 1 ) rules_s <- simplify_rules(rules) exprs_s <- to_exprs(rules_s) expect_equal(length(exprs_s), 3) expect_equal(exprs_s$V1, quote(x > 0)) expect_equal(exprs_s$.const_y, quote(y == 1)) expect_equal(exprs_s$.const_A, quote(A == "a2")) })
gamRR.boot=function( fit, ref, est, data, n.points=10, n.boot=50, plot=TRUE, ylim=NULL){ ref=data.frame(t(ref)) form=as.character(fit$formula) x.list=strsplit(form[3],"\\+")[[1]] x.list=gsub(" ","",x.list) x.list=sapply(strsplit(x.list,"\\,"),"[",1) x.list=gsub("s\\(","",x.list) x.list=gsub("as.factor\\(","",x.list) x.list=gsub("factor\\(","",x.list) x.list=gsub("offset\\(","",x.list) x.list=gsub("log\\(","",x.list) x.list=gsub("\\)","",x.list) if(length(names(ref))!=length(x.list)){ stop("The number of variables in the 'ref' argument is not equal to those in the model!") } if(any(!(names(ref) %in% x.list))){ stop("Some variables in the 'ref' argument are not in the model!") } rrref=predict(fit,type="response",newdata=ref) rangE=range(data[,est]) est.seq=seq(from=rangE[1],to=rangE[2],length.out=n.points) seq.ind=which(abs(est.seq-as.numeric(ref[est]))==min(abs(est.seq-as.numeric(ref[est])))) est.seq[seq.ind]=as.numeric(ref[est]) ndata=matrix(rep(0,n.points*length(names(ref))),ncol=length(names(ref))) ndata=data.frame(ndata) names(ndata)=names(ref) ndata[,est]=est.seq ndata[,-match(est,names(ref))]=ref[,-match(est,names(ref))] dzc.boot=function(data.boot,i){ fit.boot=gam(fit$formula,family=fit$family,method=fit$method,data=data.boot[i,]) c(predict(fit.boot,type="response",newdata=ndata)/as.numeric(rrref)) } rr.boot=boot(data=data,statistic=dzc.boot,R=n.boot,stype="i") t=data.frame(t(rr.boot$t)) rr=apply(t,1,FUN="mean") rr.se=apply(t,1,FUN="sd") rr.l=rr-1.96*rr.se rr.u=rr+1.96*rr.se rr[seq.ind]=1 rr.l[seq.ind]=1 rr.u[seq.ind]=1 if(plot){ if(is.null(ylim)){ylim=c(min(rr.l),max(rr.u))} plot(spline(est.seq,rr,xmax=as.numeric(ref[,est])),type="l",xlim=c(min(est.seq),max(est.seq)),ylim=ylim,xlab=est,ylab="RR") lines(spline(est.seq,rr.l,xmax=as.numeric(ref[,est])),lty=2) lines(spline(est.seq,rr.u,xmax=as.numeric(ref[,est])),lty=2) lines(spline(est.seq,rr,xmin=as.numeric(ref[,est])),lty=1) lines(spline(est.seq,rr.l,xmin=as.numeric(ref[,est])),lty=2) lines(spline(est.seq,rr.u,xmin=as.numeric(ref[,est])),lty=2) } xy=data.frame(x=est.seq,rr=rr,u=rr.u,l=rr.l) return(xy) }
retrieve_calanguize_genomes <- function(target.dir, method = "auto", unzip = getOption("unzip")){ assertthat::assert_that(is.character(target.dir), length(url) == 1) if(!dir.exists(target.dir)){ dir.create(target.dir, recursive = TRUE) } else { filelist <- dir(target.dir, full.names = TRUE) unlink(filelist, recursive = TRUE, force = TRUE) } url <- "https://github.com/fcampelo/CALANGO/raw/master/inst/extdata/calanguize_genomes.zip" res1 <- utils::download.file(url, quiet = TRUE, destfile = paste0(target.dir, "/tmpdata.zip"), cacheOK = FALSE, method = method) if(res1 != 0) stop("Error downloading file \n", url) utils::unzip(paste0(target.dir, "/tmpdata.zip"), unzip = unzip, exdir = target.dir) unlink(paste0(target.dir, "/__MACOSX"), recursive = TRUE, force = TRUE) file.remove(paste0(target.dir, "/tmpdata.zip")) invisible(TRUE) }
theme_edi <- function(base_size = 14, base_family = "Helvetica") { half_line <- base_size/2 theme(line = element_line(colour = "black", size = 0.5, linetype = 1, lineend = "butt"), rect = element_rect(fill = "white", colour = "black", size = 0.5, linetype = 1), text = element_text(family = base_family, face = "plain", colour = "black", size = base_size, lineheight = 0.9, hjust = 0.5, vjust = 0.5, angle = 0, margin = margin(), debug = FALSE), axis.line = element_line(), axis.line.x = element_blank(), axis.line.y = element_blank(), axis.text = element_text(size = rel(1.1), colour = "grey30"), axis.text.x = element_text(margin = margin(t = 0.8 * half_line/2), vjust = 0, face = 'bold'), axis.text.y = element_text(margin = margin(r = 0.8 * half_line/2), hjust = 1, vjust = 1, face = 'bold'), axis.ticks = element_line(colour = "black"), axis.ticks.length = unit(half_line/2, "pt"), axis.title.x = element_text(size = rel(1.2), margin = margin(t = 0.8 * half_line, b = 0.8 * half_line/2)), axis.title.y = element_text(size = rel(1.2), angle = 90, margin = margin(r = 0.8 * half_line, l = 0.8 * half_line/2)), legend.background = element_rect(colour = NA), legend.spacing = unit(0.4, "cm"), legend.spacing.x = NULL, legend.spacing.y = NULL, legend.margin = margin(0.2, 0.2, 0.2, 0.2, "cm"), legend.key = element_blank(), legend.key.size = unit(1.2, "lines"), legend.key.height = NULL, legend.key.width = NULL, legend.text = element_text(size = rel(0.8)), legend.text.align = NULL, legend.title = element_text(hjust = 0), legend.title.align = NULL, legend.position = "right", legend.direction = NULL, legend.justification = "center", legend.box = NULL, panel.background = element_rect(fill = "white", colour = NA), panel.border = element_rect(fill = NA, colour = "grey50"), panel.grid.major = element_line(colour = "grey90"), panel.grid.minor = element_blank(), panel.spacing = unit(half_line, "pt"), panel.spacing.x = NULL, panel.spacing.y = NULL, panel.ontop = FALSE, strip.background = element_blank(), strip.text = element_text(colour = "grey10", size = rel(1.2), face = 'bold'), strip.text.x = element_text(margin = margin(t = half_line, b = half_line)), strip.text.y = element_text(angle = -90, margin = margin(l = half_line, r = half_line)), strip.switch.pad.grid = unit(0.1, "cm"), strip.switch.pad.wrap = unit(0.1, "cm"), plot.background = element_rect(colour = "white"), plot.title = element_text(size = rel(1.2), hjust = 0, vjust = 1, margin = margin(b = half_line * 1.2)), plot.subtitle = element_text(size = rel(0.9), hjust = 0, vjust = 1, margin = margin(b = half_line * 0.9)), plot.caption = element_text(size = rel(0.9), hjust = 1, vjust = 1, margin = margin(t = half_line * 0.9)), plot.margin = margin(half_line, half_line, half_line, half_line), complete = TRUE ) }
`gq.summary` <- function(gq.output,burnin=0,quantiles=c(0.01,0.025,0.25,0.50,0.75,0.975,0.99)) { if (!is.null(gq.output$draws)){ ndraws <- nrow(gq.output$draws$mu) gq.output <- list(gq.output) } else { if (is.null(gq.output[[1]]$draws)){ stop("gq.output must be either a list of or a single return object from 'Analyze'") } ndraws <- nrow(gq.output[[1]]$draws$mu) } if ((burnin<0)||(burnin>=ndraws)){ stop("Invalid burn-in period") } gq.draws <- mcmc.list(mcmc(1)) for (i in 1:length(gq.output)){ tmp.chain <- cbind(gq.output[[i]]$draws$mu[(burnin+1):ndraws,], gq.output[[i]]$draws$Sigma[(burnin+1):ndraws,], gq.output[[i]]$draws$NNs[(burnin+1):ndraws,], gq.output[[i]]$draws$LAMBDA[(burnin+1):ndraws,], gq.output[[i]]$draws$TURNOUT[(burnin+1):ndraws,], gq.output[[i]]$draws$GAMMA[(burnin+1):ndraws,]) gq.draws[[i]] <- mcmc(tmp.chain) } return(summary(gq.draws,quantiles=quantiles)) }
summary.nparcomp <- function(object,...) { cat("\n", " "-", "Alternative Hypothesis: ", object$text.Output,"\n", "-", "Estimation Method: Global Pseudo ranks","\n", "-", "Type of Contrast", ":", object$input$type, "\n", "-", "Confidence Level:", object$input$conf.level*100,"%", "\n", "-", "Method", "=", object$AsyMethod, "\n","\n", "-", "Estimation Method: Pairwise rankings","\n", "\n", " "\n", "p(a,b)", ">", "1/2", ":", "b tends to be larger than a","\n", " "\n") cat( " print(object$Data.Info) cat("\n", " print(object$Contrast) cat("\n", " print(object$Analysis) cat("\n", " print(object$Overall) if (object$input$weight.matrix == TRUE){ cat("\n", " print(object$Weight.Matrix) cat("\n", " print(object$AllPairs) } if (object$input$correlation == TRUE){ cat("\n", " print(object$Covariance) cat("\n", " print(object$Correlation) } cat("\n", " }
f.influence <- function(io, i, j){ if(!"InputOutput" %in% class(io)) stop('io should be of "InputOutput" class. See ?as.inputoutput') if(length(i) != length(j)) stop("i must be the same length as j") n <- dim(io$L)[1] if(length(i) >= n) stop("Field of Influence is only defined up to n-1 terms, where n = if(length(i) > 1){ k <- length(i) A <- matrix(0, nrow = n, ncol = n) for(s in 1:k){ for(r in 1:k){ L = io$L Lij <- L[i[s], j[r]] A <- 1/(k-1)*( (-1)^(s+r+1) * Lij * f.influence(io, i[-s], j[-r])) + A } } return(A) } else if(length(i) == 1){ L.j <- io$L[, j] Li. <- io$L[i, ] matrix(L.j, ncol = 1) %*% matrix(Li., nrow = 1) } }
m.infos.nest.lmerMod <- function(x, my, forminter, which, fl1, fl2, sig.level, aux_mt, ...) { aux_m.inf <- aggregate(forminter, data = x@frame, function(x) c(min = min(x), max = max(x), sd = sd(x), se = sd(x)/length(x))) aux_m.inf1 <- data.frame(aux_m.inf[names(aux_m.inf) != my], means = aux_mt$coef[,1], aux_m.inf[[my]][,1:2], 'linf_sd' = aux_mt$coef[,1] - aux_m.inf[[my]][,3], 'lsup_sd' = aux_mt$coef[,1] + aux_m.inf[[my]][,3], 'linf_se' = aux_mt$coef[,1] - abs(qt(sig.level,aux_mt$coef[,3]))*aux_m.inf[[my]][,4], 'lsup_se' = aux_mt$coef[,1] + abs(qt(sig.level,aux_mt$coef[,3]))*aux_m.inf[[my]][,4], 'linf_sepool' = aux_mt$coef[,1] - abs(qt(sig.level,aux_mt$coef[,3]))*aux_mt$coef[,2], 'lsup_sepool' = aux_mt$coef[,1] + abs(qt(sig.level,aux_mt$coef[,3]))*aux_mt$coef[,2]) aux_m.inf2 <- aux_m.inf1[order(aux_m.inf1[['means']], decreasing = TRUE),] nf1 <- unlist(strsplit(which, split = ':'))[1] nf2 <- unlist(strsplit(which, split = ':'))[2] nf3 <- unlist(strsplit(which, split = ':'))[3] if(is.null(fl2)){ f2 <- levels(x@frame[[nf1]])[fl1] aux_m.inf21 <- subset(aux_m.inf2, eval(parse(text = nf1)) == f2) m.inf <- list(Means = aux_m.inf21[,c(1:3)], mm = aux_m.inf21[,c(1:2,4:5)], sd = aux_m.inf21[,c(1:2,6:7)], ic = aux_m.inf21[,c(1:2,8:9)], icpool = aux_m.inf21[,c(1:2,10:11)]) } else { f2 <- levels(x@frame[[nf2]])[fl2] f3 <- levels(x@frame[[nf1]])[fl1] aux_m.inf21 <- subset(aux_m.inf2, eval(parse(text = nf1)) == f3 & eval(parse(text = nf2)) == f2) m.inf <- list(Means = aux_m.inf21[,c(1:4)], mm = aux_m.inf21[,c(1:3,5:6)], sd = aux_m.inf21[,c(1:3,7:8)], ic = aux_m.inf21[,c(1:3,9:10)], icpool = aux_m.inf21[,c(1:3,11:12)]) } }
dby <- function(data,INPUT,...,ID=NULL,ORDER=NULL,SUBSET=NULL,SORT=0,COMBINE=!REDUCE,NOCHECK=FALSE,ARGS=NULL,NAMES,COLUMN=FALSE,REDUCE=FALSE,REGEX=mets.options()$regex,ALL=TRUE) { if (missing(INPUT)) INPUT <- .~1 val <- substitute(INPUT) INPUT <- try(eval(val),silent=TRUE) funs <- substitute(list(...))[-1] if (inherits(INPUT,"try-error")) { INPUT <- as.formula(paste0(".~1|",deparse(val))) } if (inherits(INPUT,c("formula","character"))) { INPUT <- procformdata(INPUT,sep="\\|",data=data,na.action=na.pass,do.filter=FALSE,regex=REGEX,specials="order") if (is.null(ID)) ID <- INPUT$predictor if (is.null(SUBSET)) { if (length(INPUT$group)!=0) SUBSET <- INPUT$group[[1]] } if (is.null(ORDER)) { if (length(INPUT$specials$order)!=0) ORDER <- INPUT$specials$order[[1]] } INPUT <- INPUT$response } if (inherits(ID,"formula")) ID <- model.frame(ID,data=data,na.action=na.pass) if (inherits(ORDER,"formula")) ORDER <- model.frame(ORDER,data=data,na.action=na.pass) if (inherits(SUBSET,"formula")) SUBSET <- model.frame(SUBSET,data=data,na.action=na.pass) if (is.null(INPUT)) { INPUT <- ID ID <- NULL } noID <- FALSE if (length(ID)==0) { noID <- TRUE ID = rep(1,NROW(INPUT)) } group <- NULL if (!COMBINE || length(funs)==0) group <- ID if (NCOL(ID)>1) ID <- interaction(ID) if (is.data.frame(ID)) { ID <- as.numeric(ID[,1,drop=TRUE]) } else { ID <- as.numeric(ID) } if (is.data.frame(ORDER)) { ORDER <- ORDER[,1,drop=TRUE] } if (!NOCHECK) { if (length(ORDER)>0) { ord <- order(ID,ORDER,decreasing=SORT,method="radix") } else { ord <- order(ID,decreasing=SORT,method="radix") } numerics <- unlist(lapply(INPUT[1,],is.numeric)) INPUT <- as.matrix(INPUT[ord,which(numerics),drop=FALSE]) ID <- ID[ord] if (is.null(group)) data <- data[ord,,drop=FALSE] else { if (is.vector(group)) group <- group[ord] else group <- group[ord,,drop=FALSE] } na.idx <- which(is.na(ID)) } else { INPUT <- as.matrix(INPUT) } if (length(SUBSET)>0) { SUBSET <- which(as.matrix(SUBSET)) INPUT <- INPUT[SUBSET,,drop=FALSE] ID <- ID[SUBSET] } if (length(funs)==0) { if (noID) return(INPUT) return(cbind(INPUT,group)) } if (NROW(INPUT)>0) { resl <- lapply(funs, function(fun_) { env <- new.env() isfun <- tryCatch(is.function(eval(fun_)),error=function(...) FALSE) if (isfun) { env$fun_ <- eval(fun_) if (length(ARGS)>0) { fun_ <- eval(fun_) ff <- function(...) do.call(fun_,c(list(...),ARGS)) expr <- quote(ff(x)) } else { expr <- quote(fun_(x)) } } else { expr <- fun_ } .ApplyBy2(INPUT,ID,F=expr,Env=env,Argument="x",Columnwise=COLUMN) }) res <- Reduce(cbind,resl) } else { resl <- NULL res <- NULL } dn <- NULL if (missing(NAMES)) { a <- match.call(expand.dots=FALSE) ff <- lapply(a[["..."]],deparse) fn <- lapply(ff,deparse) dn <- names(ff) if (is.null(dn)) dn <- rep("",length(ff)) idx <- which(dn=="") if (length(idx)>0) { newn <- unlist(ff[idx]) dn[idx] <- newn[seq_along(idx)] fcall <- grepl("^function",dn) if (any(fcall)) dn[which(fcall)] <- which(fcall) } numcolf <- unlist(lapply(resl, NCOL)) nn <- c() if (COLUMN) { colnames(INPUT) dn <- unlist(lapply(dn, function(x) paste(x,colnames(INPUT),sep="."))) } for (i in seq_along(resl)) { nc <- numcolf[i] curnam <- dn[i] if (COLUMN) { nc <- nc/NCOL(INPUT) pos <- NCOL(INPUT)*(i-1)+1 pos <- seq(pos,pos+NCOL(INPUT)-1) curnam <- dn[pos] } if (nc>1) { nn <- c(nn, unlist(lapply(curnam, function(x) paste0(x,seq(nc))))) } else nn <- c(nn,curnam) } NAMES <- nn } try(colnames(res) <- NAMES,silent=TRUE) numidx <- grep("^[0-9]",colnames(res)) if (length(numidx)>0) colnames(res)[numidx] <- paste0("_",colnames(res)[numidx]) if (!NOCHECK && length(na.idx)>0) { res[na.idx,] <- NA } cl <- attr(resl[[1L]],"clustersize") if (COMBINE) { if (is.null(NAMES) & is.null(res) & length(dn)>0) { res <- matrix(NA,nrow(data),length(dn)) colnames(res) <- dn } nn <- colnames(res) nc <- ifelse(is.null(res), 0, ncol(res)) res0 <- matrix(NA,nrow(data),nc) colnames(res0) <- nn didx <- which(colnames(data)%in%nn) if (length(didx)>0) { ridx <- match(colnames(data)[didx],nn) res0[,ridx] <- as.matrix(data[,didx]) data <- data[,-didx,drop=FALSE] } if (length(SUBSET)>0) { res0[SUBSET,] <- res res <- cbind(data,res0) } else { if (!is.null(res)) res <- cbind(data,res) else res <- data } } else { if (!noID) { if (length(SUBSET)>0) group <- group[SUBSET,,drop=FALSE] res <- cbind(group,res) } } if (REDUCE!=0) { if (REDUCE<0) { idx <- cumsum(cl) } else { idx <- cumsum(c(1,cl[-length(cl)])) } res <- res[unique(idx),,drop=FALSE] if (NROW(res)==1) { rownames(res) <- "" } else { rownames(res) <- NULL } } if (!ALL) { return(res[SUBSET,,drop=FALSE]) } return(res) } "dby<-" <- function(data,INPUT,...,value) { cl <- match.call() cl[[1L]] <- substitute(dby) a <- substitute(value) if (inherits(value,"formula")) { cl["value"] <- NULL names(cl)[names(cl)=="INPUT"] <- "" cl[["INPUT"]] <- value } else { if (is.list(value)) { cl[which(names(cl)=="value")] <- NULL start <- length(cl) for (i in seq_along(value)) { cl[start+i] <- value[i] } if (length(names(value))>0) names(cl)[start+seq_along(value)] <- names(value) } else { names(cl)[which(names(cl)=="value")] <- "" } } eval.parent(cl) } dby2 <- function(data,INPUT,...) { cl <- match.call() cl[[1L]] <- substitute(dby) cl[["COLUMN"]] <- TRUE eval.parent(cl) } "dby2<-" <- function(data,INPUT,...,value) { cl <- match.call() cl[[1L]] <- substitute(`dby<-`) cl[["COLUMN"]] <- TRUE eval.parent(cl) } dbyr <- function(data,INPUT,...,COLUMN=FALSE) { cl <- match.call() cl[[1L]] <- substitute(`dby`) cl[["REDUCE"]] <- TRUE cl[["COLUMN"]] <- COLUMN eval.parent(cl) }
sa_2d_plot <- function(sa_obj, history, large_sa, path = tempdir()) { params <- sa_obj %>% collect_metrics() %>% select(.iter, cost, rbf_sigma) %>% arrange(.iter) init <- params %>% filter(.iter == 0) svm_roc <- large_sa %>% collect_metrics() large_plot <- svm_roc %>% ggplot(aes(x = rbf_sigma, y = cost)) + geom_raster(aes(fill = mean), show.legend = FALSE) + scale_x_log10() + scale_y_continuous(trans = "log2") + scale_fill_distiller(palette = "Blues") + theme_minimal() + theme( legend.position = "bottom", legend.key.width = grid::unit(2, "cm"), plot.title = element_text(hjust = 0.5) ) + guides(title.position = "bottom") + labs(x = "rbf_sigma\n\n\n\n", title = "ROC AUC surface") + coord_fixed(ratio = 1/2.5) base_plot <- large_plot + geom_point(data = init, pch = 4, cex = 4) num_init <- nrow(init) num_iter <- max(history$.iter) nms <- purrr::map_chr(1:nrow(history), ~ tempfile()) for (i in (num_init + 1):nrow(history)) { current_iter <- history$.iter[i] current_res <- current_param_path(history, current_iter) current_best <- current_res %>% dplyr::filter(results == "new best") ttl <- paste0("Iteration ", current_iter) text_just <- case_when( history$results[i] == "restart from best" ~0.00, history$results[i] == "discard suboptimal" ~ 0.25, history$results[i] == "accept suboptimal" ~ 0.50, history$results[i] == "better suboptimal" ~ 0.75, history$results[i] == "new best" ~ 1.00 ) tmp <- history tmp$results <- gsub(" suboptimal", "\nsuboptimal", tmp$results) tmp$results <- gsub(" best", "\nbest", tmp$results) new_plot <- base_plot + geom_point( data = current_res %>% slice(n()), size = 3, col = "green" ) + geom_path( data = current_res, alpha = .5, arrow = arrow(length = unit(0.1, "inches")) ) + ggtitle(ttl, subtitle = tmp$results[i]) + theme(plot.subtitle = element_text(hjust = text_just)) if (nrow(current_best) > 0) { new_plot <- new_plot + geom_point(data = current_best, size = 1/3) } print(new_plot) } invisible(NULL) } current_param_path <- function(x, iter) { x <- x %>% dplyr::filter(.iter <= iter) ind <- nrow(x) param_path <- ind while(length(ind) > 0) { ind <- which(x$.config == x$.parent[ind]) param_path <- c(param_path, ind) } x %>% dplyr::slice(rev(param_path)) }
znegbin <- setRefClass("Zelig-negbin", contains = "Zelig", field = list(simalpha = "list" )) znegbin$methods( initialize = function() { callSuper() .self$fn <- quote(MASS::glm.nb) .self$name <- "negbin" .self$authors <- "Kosuke Imai, Gary King, Olivia Lau" .self$packageauthors <- "William N. Venables, and Brian D. Ripley" .self$year <- 2008 .self$category <- "count" .self$description <- "Negative Binomial Regression for Event Count Dependent Variables" .self$outcome <- "discrete" .self$wrapper <- "negbin" .self$acceptweights <- TRUE } ) znegbin$methods( zelig = function(formula, data, ..., weights=NULL, by = NULL, bootstrap = FALSE) { .self$zelig.call <- match.call(expand.dots = TRUE) .self$model.call <- .self$zelig.call callSuper(formula=formula, data=data, ..., weights=weights, by = by, bootstrap = bootstrap) rse <- lapply(.self$zelig.out$z.out, (function(x) vcovHC(x, type = "HC0"))) .self$test.statistics<- list(robust.se = rse) } ) znegbin$methods( param = function(z.out, method="mvn") { simalpha.local <- z.out$theta if(identical(method,"mvn")){ simparam.local <- mvrnorm(n = .self$num, mu = coef(z.out), Sigma = vcov(z.out)) simparam.local <- list(simparam = simparam.local, simalpha = simalpha.local) return(simparam.local) } else if(identical(method,"point")){ return(list(simparam = t(as.matrix(coef(z.out))), simalpha = simalpha.local)) } } ) znegbin$methods( qi = function(simparam, mm) { coeff <- simparam$simparam alpha <- simparam$simalpha inverse <- family(.self$zelig.out$z.out[[1]])$linkinv eta <- coeff %*% t(mm) theta <- matrix(inverse(eta), nrow=nrow(coeff)) ev <- theta pv <- matrix(NA, nrow=nrow(theta), ncol=ncol(theta)) for (i in 1:ncol(ev)) pv[, i] <- rnegbin(nrow(ev), mu = ev[i, ], theta = alpha[i]) return(list(ev = ev, pv = pv)) } ) znegbin$methods( mcfun = function(x, b0=0, b1=1, ..., sim=TRUE){ mu <- exp(b0 + b1 * x) if(sim){ y <- rnbinom(n=length(x), 1, mu=mu) return(y) }else{ return(mu) } } )
create.barplot <- function( formula, data, groups = NULL, stack = FALSE, filename = NULL, main = NULL, main.just = 'center', main.x = 0.5, main.y = 0.5, main.cex = 3, xlab.label = tail(sub('~', '', formula[-2]), 1), ylab.label = tail(sub('~', '', formula[-3]), 1), xlab.cex = 2, ylab.cex = 2, xlab.col = 'black', ylab.col = 'black', xlab.top.label = NULL, xlab.top.cex = 2, xlab.top.col = 'black', xlab.top.just = 'center', xlab.top.x = 0.5, xlab.top.y = 0, abline.h = NULL, abline.v = NULL, abline.lty = 1, abline.lwd = NULL, abline.col = 'black', axes.lwd = 1, add.grid = FALSE, xgrid.at = xat, ygrid.at = yat, grid.lwd = 5, grid.col = NULL, xaxis.lab = TRUE, yaxis.lab = TRUE, xaxis.col = 'black', yaxis.col = 'black', xaxis.fontface = 'bold', yaxis.fontface = 'bold', xaxis.cex = 1.5, yaxis.cex = 1.5, xaxis.rot = 0, yaxis.rot = 0, xaxis.tck = 1, yaxis.tck = 1, xlimits = NULL, ylimits = NULL, xat = TRUE, yat = TRUE, layout = NULL, as.table = FALSE, x.spacing = 0, y.spacing = 0, x.relation = 'same', y.relation = 'same', top.padding = 0.5, bottom.padding = 1, right.padding = 1, left.padding = 1, key.bottom = 0.1, ylab.axis.padding = 0.5, xlab.axis.padding = 0.5, col = 'black', border.col = 'black', border.lwd = 1, plot.horizontal = FALSE, background.col = 'transparent', origin = 0, reference = TRUE, box.ratio = 2, sample.order = 'none', group.labels = FALSE, key = list(text = list(lab = c(''))), legend = NULL, add.text = FALSE, text.labels = NULL, text.x = NULL, text.y = NULL, text.col = 'black', text.cex = 1, text.fontface = 'bold', strip.col = 'white', strip.cex = 1, y.error.up = NULL, y.error.down = y.error.up, y.error.bar.col = 'black', error.whisker.width = width / (nrow(data) * 4), error.bar.lwd = 1, error.whisker.angle = 90, add.rectangle = FALSE, xleft.rectangle = NULL, ybottom.rectangle = NULL, xright.rectangle = NULL, ytop.rectangle = NULL, col.rectangle = 'grey85', alpha.rectangle = 1, line.func = NULL, line.from = 0, line.to = 0, line.col = 'transparent', line.infront = TRUE, text.above.bars = list(labels = NULL, padding = NULL, bar.locations = NULL, rotation = 0), raster = NULL, raster.vert = TRUE, raster.just = 'center', raster.width.dim = unit(2 / 37, 'npc'), height = 6, width = 6, size.units = 'in', resolution = 1600, enable.warnings = FALSE, description = 'Created with BoutrosLab.plotting.general', style = 'BoutrosLab', preload.default = 'custom', use.legacy.settings = FALSE, inside.legend.auto = FALSE, disable.factor.sorting = FALSE ) { tryCatch({ dir.name <- '/.mounts/labs/boutroslab/private/BPGRecords/Objects'; if (!dir.exists(dir.name)) { dir.create(dir.name); } funcname <- 'create.barplot'; print.to.file(dir.name, funcname, data, filename); }, warning = function(w) { }, error = function(e) { }); rectangle.info <- list( xright = xright.rectangle, xleft = xleft.rectangle, ytop = ytop.rectangle, ybottom = ybottom.rectangle ); text.info <- list( labels = text.labels, x = text.x, y = text.y, col = text.col, cex = text.cex, fontface = text.fontface ); if (!is.null(yat) && length(yat) == 1) { if (yat == 'auto') { if (stack == TRUE) { s <- split(data, data[toString(formula[[3]])]); final.list <- list(); for (x in 1:length(s)) { final.list[[x]] <- sum(s[[x]][toString(formula[[2]])]); } out <- auto.axis(final.list, log.scaled = FALSE); yat <- out$at; yaxis.lab <- out$axis.lab; } else { out <- auto.axis(unlist(data[toString(formula[[2]])])); data[toString(formula[[2]])] <- out$x; yat <- out$at; yaxis.lab <- out$axis.lab; } } else if (yat == 'auto.linear') { if (stack == TRUE) { s <- split(data, data[toString(formula[[3]])]); final.list <- list(); for (x in 1:length(s)) { final.list[[x]] <- sum(s[[x]][toString(formula[[2]])]); } out <- auto.axis(final.list, log.scaled = FALSE); yat <- out$at; yaxis.lab <- out$axis.lab; } else { out <- auto.axis(unlist(data[toString(formula[[2]])]), log.scaled = FALSE); data[toString(formula[[2]])] <- out$x; yat <- out$at; yaxis.lab <- out$axis.lab; } } else if (yat == 'auto.log') { out <- auto.axis(unlist(data[toString(formula[[2]])]), log.scaled = TRUE); data[toString(formula[[2]])] <- out$x; yat <- out$at; yaxis.lab <- out$axis.lab; } } if (!is.null(xat) && length(xat) == 1) { if (xat == 'auto') { if (stack == TRUE) { s <- split(data, data[toString(formula[[3]])]); final.list <- list(); for (x in 1:length(s)) { final.list[[x]] <- sum(s[[x]][toString(formula[[2]])]); } out <- auto.axis(final.list, log.scaled = FALSE); xat <- out$at; xaxis.lab <- out$axis.lab; } else { out <- auto.axis(unlist(data[toString(formula[[3]])])); data[toString(formula[[3]])] <- out$x; xat <- out$at; xaxis.lab <- out$axis.lab; } } else if (xat == 'auto.linear') { if (stack == TRUE) { s <- split(data, data[toString(formula[[3]])]); final.list <- list(); for (x in 1:length(s)) { final.list[[x]] <- sum(s[[x]][toString(formula[[2]])]); } out <- auto.axis(final.list, log.scaled = FALSE); xat <- out$at; xaxis.lab <- out$axis.lab; } else { out <- auto.axis(unlist(data[toString(formula[[3]])]), log.scaled = FALSE); data[toString(formula[[3]])] <- out$x; xat <- out$at; xaxis.lab <- out$axis.lab; } } else if (xat == 'auto.log') { out <- auto.axis(unlist(data[toString(formula[[3]])]), log.scaled = TRUE); data[toString(formula[[3]])] <- out$x; xat <- out$at; xaxis.lab <- out$axis.lab; } } tryCatch( expr = { if (is.null(formula)) { stop(); } as.formula(formula); }, error = function(message) { stop('Invalid formula.'); } ); if (preload.default == 'paper') { } else if (preload.default == 'web') { } groups.new <- eval(substitute(groups), data, parent.frame()); if (!is.null(groups.new) && 1 == length(col) && col == 'grey') { col <- grey(1:nlevels(as.factor(groups.new)) / nlevels(as.factor(groups.new))); } if ('|' %in% all.names(formula)) { variable <- sub('^\\s+', '', unlist(strsplit(toString(formula[length(formula)]), '\\|'))[2]); if (variable %in% names(data)) { cond.class <- class(data[, variable]); if (cond.class %in% c('integer', 'numeric')) { warning( 'Numeric values detected for conditional variable. If text labels are desired, please convert conditional variable to character.' ); } rm(cond.class); } } trellis.object <- lattice::barchart( formula, data, panel = function(x, y, subscripts, groups = groups.new, ...) { if (add.rectangle) { panel.rect( xleft = rectangle.info$xleft, ybottom = rectangle.info$ybottom, xright = rectangle.info$xright, ytop = rectangle.info$ytop, col = col.rectangle, alpha = alpha.rectangle, border = NA ); } if (!is.null(text.above.bars$labels)) { if (!is.null(groups.new)) { stop("Argument 'text.above.bars' does not work with grouped plots."); } if (plot.horizontal) { panel.text( x[text.above.bars$bar.locations] + text.above.bars$padding, text.above.bars$bar.locations, text.above.bars$labels, srt = text.above.bars$rotation ); } else { panel.text( text.above.bars$bar.locations, y[text.above.bars$bar.locations] + text.above.bars$padding, text.above.bars$labels, srt = text.above.bars$rotation ); } } if (add.grid) { panel.abline( v = BoutrosLab.plotting.general::generate.at.final( at.input = xgrid.at, limits = xlimits, data.vector = data$x ), h = BoutrosLab.plotting.general::generate.at.final( at.input = ygrid.at, limits = ylimits, data.vector = data$y ), col = if (is.null(grid.col)) { trellis.par.get('reference.line')$col } else { grid.col }, lwd = grid.lwd, ); } panel.barchart(x, y, subscripts = subscripts, groups = groups.new, border = border.col, lwd = border.lwd, ..., origin = origin); if (length(line.func) > 0 && !line.infront) { panel.curve(expr = line.func, from = line.from, to = line.to, col = line.col); } panel.abline(h = abline.h, lty = abline.lty, lwd = abline.lwd, col = abline.col); panel.abline(v = abline.v, lty = abline.lty, lwd = abline.lwd, col = abline.col); if (length(line.func) > 0 && line.infront) { panel.curve(expr = line.func, from = line.from, to = line.to, col = line.col); } if (add.text) { panel.text( x = text.info$x, y = text.info$y, labels = text.info$labels, col = text.info$col, cex = text.info$cex, fontface = text.info$fontface ); } if (!is.null(y.error.up)) { if (!is.null(groups)) { num.groups <- length(subscripts) / length(unique(groups)); group.num <- (subscripts - 1) %/% num.groups; if (length(unique(group.num)) %% 2 == 1) { group.num <- group.num - trunc(length(unique(group.num)) / 2); } else { number.of.groups <- trunc(length(unique(group.num)) / 2); subtr <- 1 + 2 * (number.of.groups - 1); group.num <- group.num * 2 - subtr; } offset <- (6 / (nrow(data) * 4)) * (group.num) * (1.75 - (0.85 * (length(unique(groups)) + 1) %% 2)); } else { offset <- 0; } if (!plot.horizontal) { panel.arrows( x0 = as.numeric(x) + offset, y0 = y + y.error.up, x1 = as.numeric(x) + offset, y1 = y - y.error.down, length = error.whisker.width, angle = error.whisker.angle, ends = 'both', col = y.error.bar.col, lwd = error.bar.lwd ); } else { panel.arrows( y0 = as.numeric(y) + offset, x0 = x + y.error.up, y1 = as.numeric(y) + offset, x1 = x - y.error.down, length = error.whisker.width, angle = error.whisker.angle, ends = 'both', col = y.error.bar.col, lwd = error.bar.lwd ); } } if (!is.null(raster)) { if (raster.vert) { grid.raster( raster, x = x, y = 0, height = y, just = raster.just, default.units = 'native', width = raster.width.dim ); } else { grid.raster( raster, x = 0, width = x, y = y, just = raster.just, default.units = 'native', height = raster.width.dim ); } } }, horizontal = plot.horizontal, main = BoutrosLab.plotting.general::get.defaults( property = 'fontfamily', use.legacy.settings = use.legacy.settings || ('Nature' == style), add.to.list = list( label = main, fontface = if ('Nature' == style) { 'plain' } else { 'bold' }, cex = main.cex, just = main.just, x = main.x, y = main.y ) ), xlab = BoutrosLab.plotting.general::get.defaults( property = 'fontfamily', use.legacy.settings = use.legacy.settings || ('Nature' == style), add.to.list = list( label = xlab.label, fontface = if ('Nature' == style) { 'plain' } else { 'bold' }, cex = xlab.cex, col = xlab.col ) ), xlab.top = BoutrosLab.plotting.general::get.defaults( property = 'fontfamily', use.legacy.settings = use.legacy.settings || ('Nature' == style), add.to.list = list( label = xlab.top.label, cex = xlab.top.cex, col = xlab.top.col, fontface = if ('Nature' == style) { 'plain' } else { 'bold' }, just = xlab.top.just, x = xlab.top.x, y = xlab.top.y ) ), ylab = BoutrosLab.plotting.general::get.defaults( property = 'fontfamily', use.legacy.settings = use.legacy.settings || ('Nature' == style), add.to.list = list( label = ylab.label, fontface = if ('Nature' == style) { 'plain' } else { 'bold' }, cex = ylab.cex, col = ylab.col ) ), scales = list( x = BoutrosLab.plotting.general::get.defaults( property = 'fontfamily', use.legacy.settings = use.legacy.settings || ('Nature' == style), add.to.list = list( labels = xaxis.lab, cex = xaxis.cex, rot = xaxis.rot, col = xaxis.col, limits = xlimits, at = xat, tck = xaxis.tck, relation = x.relation, fontface = if ('Nature' == style) { 'plain' } else { xaxis.fontface }, alternating = FALSE ) ), y = BoutrosLab.plotting.general::get.defaults( property = 'fontfamily', use.legacy.settings = use.legacy.settings || ('Nature' == style), add.to.list = list( labels = yaxis.lab, cex = yaxis.cex, rot = yaxis.rot, col = yaxis.col, limits = ylimits, at = yat, tck = yaxis.tck, relation = y.relation, fontface = if ('Nature' == style) { 'plain' } else { yaxis.fontface }, alternating = FALSE ) ) ), between = list( x = x.spacing, y = y.spacing ), par.settings = list( axis.line = list( lwd = axes.lwd, col = if ('Nature' == style) { 'transparent' } else { 'black' } ), layout.heights = list( top.padding = top.padding, main = if (is.null(main)) { 0.3 } else { 1 }, main.key.padding = 0.1, key.top = 0.1, key.axis.padding = 0.1, axis.top = 0.7, axis.bottom = 1.0, axis.xlab.padding = xlab.axis.padding, xlab = 1, xlab.key.padding = 0.1, key.bottom = key.bottom, key.sub.padding = 0.1, sub = 0.1, bottom.padding = bottom.padding ), layout.widths = list( left.padding = left.padding, key.left = 0, key.ylab.padding = 0.5, ylab = 1, ylab.axis.padding = ylab.axis.padding, axis.left = 1, axis.panel = 0.3, strip.left = 0.3, panel = 1, between = 1, axis.right = 1, axis.key.padding = 1, key.right = 1, right.padding = right.padding ), strip.background = list( col = strip.col ), panel.background = list( col = background.col ) ), par.strip.text = list( cex = strip.cex ), col = col, layout = layout, as.table = as.table, key = key, legend = legend, pretty = TRUE, stack = stack, reference = reference, box.ratio = box.ratio ); if (disable.factor.sorting == TRUE) { sorting.param <- ''; if (plot.horizontal) { sorting.param <- 'y'; if (is.null(trellis.object$y.scales$labels) || (is.logical(trellis.object$y.scales$labels[1]) && trellis.object$y.scales$labels[1] == TRUE)) { default.labels <- unique(as.character(trellis.object$panel.args[[1]][[sorting.param]])); trellis.object$y.scales$labels <- default.labels; } } else { sorting.param <- 'x'; if (is.null(trellis.object$x.scales$labels) || (is.logical(trellis.object$x.scales$labels[1]) && trellis.object$x.scales$labels[1] == TRUE)) { default.labels <- unique(as.character(trellis.object$panel.args[[1]][[sorting.param]])); trellis.object$x.scales$labels <- default.labels; } } unique.mapping <- list(); count <- 1; for (x in trellis.object$panel.args[[1]][[sorting.param]]) { if (is.null(unique.mapping[[as.character(x)]])) { unique.mapping[as.character(x)] <- count; count <- count + 1; } } temp.data <- as.character(trellis.object$panel.args[[1]][[sorting.param]]); for (x in 1:length(temp.data)) { temp.data[x] <- as.character(unique.mapping[as.character(trellis.object$panel.args[[1]][[sorting.param]][[x]])][[1]]); } trellis.object$panel.args[[1]][[sorting.param]] <- as.numeric(temp.data); } if (inside.legend.auto) { extra.parameters <- list('data' = data, 'plot.horizontal' = plot.horizontal, 'formula' = formula, 'groups' = groups, 'stack' = stack, 'ylimits' = trellis.object$y.limits, 'xlimits' = trellis.object$x.limits); coords <- c(); coords <- .inside.auto.legend('create.barplot', filename, trellis.object, height, width, extra.parameters); trellis.object$legend$inside$x <- coords[1]; trellis.object$legend$inside$y <- coords[2]; } if (group.labels) { num.groups <- length(trellis.object$panel.args[[1]]$x) / length(unique(trellis.object$panel.args[[1]]$x)); intialaddition <- (1 / 3) / num.groups; additions <- intialaddition * 2; newxat <- NULL; if (is.logical(trellis.object$x.scales$at)) { trellis.object$x.scales$at <- c(1:length(unique(trellis.object$panel.args[[1]]$x))); } for (i in trellis.object$x.scales$at) { for (j in c(1:num.groups)) { newxat <- c(newxat, i - 1 / 3 + intialaddition + additions * (j - 1)); } } trellis.object$x.scales$at <- newxat; } if (is.null(sample.order) || is.na(sample.order)) { sample.order <- 'none'; } if (sample.order[1] != 'none') { for (i in 1:length(trellis.object$panel.args)) { if (!plot.horizontal) { num.bars <- length(unique(trellis.object$panel.args[[1]]$x)); if (length(unique(sample.order)) == num.bars) { if (length(xaxis.lab) == 1 && xaxis.lab) { ordering <- rev(match(sample.order, trellis.object$panel.args[[i]]$x)); } else { ordering <- rev(match(sample.order, trellis.object$x.scales$labels)); } } if (length(sample.order) == 1) { if (sample.order == 'decreasing') { ordering <- order(trellis.object$panel.args[[1]]$y[c(1:num.bars)]); } if (sample.order == 'increasing') { ordering <- rev(order(trellis.object$panel.args[[1]]$y[c(1:num.bars)])); } } if (xat != TRUE) { newxat <- NULL; for (j in rev(ordering)) { if (length(which(xat == j) > 0)) { newxat <- c(newxat, which(rev(ordering) == j)); } else { newxat <- c(newxat, 0); } } trellis.object$x.scales$at <- newxat; } if (length(xaxis.lab) == 1 && xaxis.lab) { trellis.object$x.scales$labels <- rep( trellis.object$panel.args[[i]]$x[rev(ordering)], length(trellis.object$panel.args[[1]]$x) / num.bars ); } else { trellis.object$x.scales$labels <- rev(trellis.object$x.scales$labels[rev(ordering)]); warning('WARNING: the label order you specified has been reordered.'); } for (j in 0:(length(trellis.object$panel.args[[1]]$x) / num.bars - 1)) { trellis.object$panel.args[[i]]$y[c( (1 + j * num.bars) : (num.bars * (j + 1) ) )] <- rev( trellis.object$panel.args[[i]]$y[ordering + num.bars * j] ); trellis.object$panel.args[[i]]$x <- rep(1:length(ordering), length(trellis.object$panel.args[[1]]$x) / num.bars); } } else { num.bars <- length(unique(trellis.object$panel.args[[1]]$y)); if (length(unique(sample.order)) == num.bars) { if (length(yaxis.lab) == 1 && yaxis.lab) { ordering <- rev(match(sample.order, sort(sample.order)[trellis.object$panel.args[[i]]$y])); } else { ordering <- rev(match(sample.order, sort(sample.order)[trellis.object$y.scales$labels])); } } if (length(sample.order) == 1 && sample.order == 'decreasing') { ordering <- order(trellis.object$panel.args[[1]]$x[c(1:num.bars)]); } if (length(sample.order) == 1 && sample.order == 'increasing') { ordering <- rev(order(trellis.object$panel.args[[1]]$x[c(1:num.bars)])); } if (yat != TRUE) { newyat <- NULL; for (j in rev(ordering)) { if (length(which(yat == j) > 0)) { newyat <- c(newyat, which(rev(ordering) == j)); } else { newyat <- c(newyat, 0); } } trellis.object$y.scales$at <- newyat; } if (length(yaxis.lab) == 1 && yaxis.lab) { trellis.object$y.scales$labels <- rep( trellis.object$panel.args[[i]]$y[ordering], length(trellis.object$panel.args[[1]]$y) / num.bars ); } else { trellis.object$y.scales$labels <- rev(trellis.object$y.scales$labels[ordering]); warning('WARNING: the label order you specified has been reordered.'); } for (j in 0:(length(trellis.object$panel.args[[1]]$y) / num.bars - 1)) { trellis.object$panel.args[[i]]$x[c( (1 + j * num.bars) : (num.bars * (j + 1) ) )] <- rev( trellis.object$panel.args[[i]]$x[ordering + num.bars * j] ); trellis.object$panel.args[[i]]$y <- rep(1:length(ordering), length(trellis.object$panel.args[[1]]$y) / num.bars); } } } y.error.up <- y.error.up[rev(ordering)]; y.error.down <- y.error.down[rev(ordering)]; } if ('Nature' == style) { trellis.object$axis <- function(side, line.col = 'black', ...) { if (side %in% c('bottom', 'left')) { axis.default(side = side, line.col = 'black', ...); lims <- current.panel.limits(); panel.abline(h = lims$ylim[1], v = lims$xlim[1]); } } if (resolution < 1200) { resolution <- 1200; warning('Setting resolution to 1200 dpi.'); } warning('Nature also requires italicized single-letter variables and en-dashes for ranges and negatives. See example in documentation for how to do this.'); warning('Avoid red-green colour schemes, create TIFF files, do not outline the figure or legend.'); } else if ('BoutrosLab' == style) { } else { warning("The style parameter only accepts 'Nature' or 'BoutrosLab'."); } return( BoutrosLab.plotting.general::write.plot( trellis.object = trellis.object, filename = filename, height = height, width = width, size.units = size.units, resolution = resolution, enable.warnings = enable.warnings, description = description ) ); }
Hadamard <- function(a){ H=1/sqrt(2) * matrix(c(1,1,1,-1),nrow=2,ncol=2) result <-H%*%a result }
context("PipeOpColApply") test_that("apply general tests", { op = PipeOpColApply$new() expect_pipeop(op) task = mlr_tasks$get("iris") expect_datapreproc_pipeop_class(PipeOpColApply, task = task, constargs = list(param_vals = list(applicator = as.character))) expect_datapreproc_pipeop_class(PipeOpColApply, task = mlr_tasks$get("pima"), constargs = list(param_vals = list(applicator = as.numeric))) }) test_that("apply results look as they should", { po = PipeOpColApply$new() task = mlr_tasks$get("iris") po$param_set$values = list(applicator = as.character) expect_equal( po$train(list(task))[[1]]$data(cols = colnames(iris[1:4])), as.data.table(do.call(cbind, lapply(iris[1:4], as.character))) ) expect_equal( po$predict(list(task))[[1]]$data(cols = colnames(iris[1:4])), as.data.table(do.call(cbind, lapply(iris[1:4], as.character))) ) po$param_set$values = list(applicator = Vectorize(as.character)) expect_equal( po$train(list(task))[[1]]$data(cols = colnames(iris[1:4])), as.data.table(do.call(cbind, lapply(iris[1:4], as.character))) ) expect_equal( po$predict(list(task))[[1]]$data(cols = colnames(iris[1:4])), as.data.table(do.call(cbind, lapply(iris[1:4], as.character))) ) po$param_set$values = list(applicator = function(x) x^2) expect_equal( po$train(list(task))[[1]]$data(cols = colnames(iris[1:4])), as.data.table(do.call(cbind, lapply(iris[1:4], function(x) x^2))) ) expect_equal( po$predict(list(task))[[1]]$data(cols = colnames(iris[1:4])), as.data.table(do.call(cbind, lapply(iris[1:4], function(x) x^2))) ) po$param_set$values = list(applicator = Vectorize(function(x) x^2)) expect_equal( po$train(list(task))[[1]]$data(cols = colnames(iris[1:4])), as.data.table(do.call(cbind, lapply(iris[1:4], function(x) x^2))) ) expect_equal( po$predict(list(task))[[1]]$data(cols = colnames(iris[1:4])), as.data.table(do.call(cbind, lapply(iris[1:4], function(x) x^2))) ) tomean = function(x) rep(mean(x), length(x)) po$param_set$values = list(applicator = tomean) expect_equal( po$train(list(task))[[1]]$data(cols = colnames(iris[1:4])), as.data.table(do.call(cbind, lapply(iris[1:4], tomean))) ) expect_equal( po$predict(list(task))[[1]]$data(cols = colnames(iris[1:4])), as.data.table(do.call(cbind, lapply(iris[1:4], tomean))) ) po$param_set$values = list(applicator = Vectorize(tomean)) expect_equal( po$train(list(task))[[1]]$data(cols = colnames(iris[1:4])), as.data.table(iris[1:4]) ) expect_equal( po$predict(list(task))[[1]]$data(cols = colnames(iris[1:4])), as.data.table(iris[1:4]) ) po$param_set$values = list(applicator = as.character, affect_columns = selector_grep("^Sepal")) expect_equal( po$train(list(task))[[1]]$data(cols = colnames(iris[1:4])), cbind(as.data.table(do.call(cbind, lapply(iris[1:2], as.character))), iris[3:4]) ) expect_equal( po$predict(list(task))[[1]]$data(cols = colnames(iris[1:4])), cbind(as.data.table(do.call(cbind, lapply(iris[1:2], as.character))), iris[3:4]) ) po$param_set$values = list(applicator = Vectorize(as.character), affect_columns = selector_grep("^Sepal")) expect_equal( po$train(list(task))[[1]]$data(cols = colnames(iris[1:4])), cbind(as.data.table(do.call(cbind, lapply(iris[1:2], as.character))), iris[3:4]) ) expect_equal( po$predict(list(task))[[1]]$data(cols = colnames(iris[1:4])), cbind(as.data.table(do.call(cbind, lapply(iris[1:2], as.character))), iris[3:4]) ) }) test_that("empty task", { task = tsk("iris")$filter(0L) po = PipeOpColApply$new() po$param_set$values$applicator = function(x) as.integer(x) train_out = po$train(list(task))[[1L]] expect_data_table(train_out$data(), nrows = 0L) expect_true(all(train_out$feature_types$type == "integer")) predict_out = po$predict(list(task))[[1L]] expect_data_table(predict_out$data(), nrows = 0L) expect_true(all(predict_out$feature_types$type == "integer")) }) test_that("multiple column output", { task = tsk("iris") po = PipeOpColApply$new() po$param_set$values$applicator = function(x) cbind(floor(x), ceiling(x)) train_out = po$train(list(task))[[1L]] expect_setequal(train_out$feature_names, as.vector(t(outer(task$feature_names, c(".V1", ".V2"), FUN = "paste0")))) expect_equal( train_out$data(cols = train_out$feature_names), as.data.table(map(task$data(cols = task$feature_names), .f = function(x) cbind(floor(x), ceiling(x)))) ) expect_equal(train_out, po$predict(list(task))[[1L]]) po$param_set$values$applicator = function(x) cbind(floor = floor(x), ceiling = ceiling(x)) train_out = po$train(list(task))[[1L]] expect_setequal(train_out$feature_names, as.vector(t(outer(task$feature_names, c(".floor", ".ceiling"), FUN = "paste0")))) expect_equal( train_out$data(cols = train_out$feature_names), as.data.table(map(task$data(cols = task$feature_names), .f = function(x) cbind(floor = floor(x), ceiling = ceiling(x)))) ) expect_equal(train_out, po$predict(list(task))[[1L]]) po$param_set$values$applicator = function(x) data.frame(floor(x), ceiling(x)) train_out = po$train(list(task))[[1L]] expect_setequal(train_out$feature_names, as.vector(t(outer(task$feature_names, c(".floor.x.", ".ceiling.x."), FUN = "paste0")))) expect_equal( train_out$data(cols = train_out$feature_names), as.data.table(map(task$data(cols = task$feature_names), .f = function(x) data.frame(floor(x), ceiling(x)))) ) expect_equal(train_out, po$predict(list(task))[[1L]]) po$param_set$values$applicator = function(x) data.frame(floor = floor(x), ceiling = ceiling(x)) train_out = po$train(list(task))[[1L]] expect_setequal(train_out$feature_names, as.vector(t(outer(task$feature_names, c(".floor", ".ceiling"), FUN = "paste0")))) expect_equal( train_out$data(cols = train_out$feature_names), as.data.table(map(task$data(cols = task$feature_names), .f = function(x) data.frame(floor = floor(x), ceiling = ceiling(x)))) ) expect_equal(train_out, po$predict(list(task))[[1L]]) po$param_set$values$applicator = function(x) data.table(floor(x), ceiling(x)) train_out = po$train(list(task))[[1L]] expect_setequal(train_out$feature_names, as.vector(t(outer(task$feature_names, c(".V1", ".V2"), FUN = "paste0")))) expect_equal( train_out$data(cols = train_out$feature_names), as.data.table(map(task$data(cols = task$feature_names), .f = function(x) data.table(floor(x), ceiling(x)))) ) expect_equal(train_out, po$predict(list(task))[[1L]]) po$param_set$values$applicator = function(x) data.table(floor = floor(x), ceiling = ceiling(x)) train_out = po$train(list(task))[[1L]] expect_setequal(train_out$feature_names, as.vector(t(outer(task$feature_names, c(".floor", ".ceiling"), FUN = "paste0")))) expect_equal( train_out$data(cols = train_out$feature_names), as.data.table(map(task$data(cols = task$feature_names), .f = function(x) data.table(floor = floor(x), ceiling = ceiling(x)))) ) expect_equal(train_out, po$predict(list(task))[[1L]]) })
netmigration <- function(mort, fert, startyearpop=mort, mfratio = 1.05) { if (class(mort) != "demogdata" | class(fert) != "demogdata") stop("Inputs not demogdata objects") if (mort$type != "mortality") stop("mort not mortality data") if (fert$type != "fertility") stop("fert not fertility data") yrs <- mort$year[sort(match(fert$year, mort$year))] yrs <- yrs[sort(match(startyearpop$year,yrs))] if(max(startyearpop$year) > max(yrs)) startyearpop <- extract.years(startyearpop, c(yrs,max(yrs)+1)) else { startyearpop <- extract.years(startyearpop, yrs) yrs <- sort(unique(pmin(yrs, max(yrs)-1))) } mort <- extract.years(mort, yrs) fert <- extract.years(fert, yrs) n <- length(yrs) p <- length(mort$age) B <- colSums(fert$pop$female * fert$rate$female/1000) Bf <- B * 1/(1 + mfratio) Bm <- B * mfratio/(1 + mfratio) nsr.f <- 1 - lifetable(mort, "female", max.age = max(mort$age))$rx nsr.m <- 1 - lifetable(mort, "male", max.age = max(mort$age))$rx oldest.f <- colSums(as.matrix(startyearpop$pop$female[(p - 1):p, ])) oldest.m <- colSums(as.matrix(startyearpop$pop$male[(p - 1):p, ])) if (n > 1) { Df <- nsr.f * rbind(Bf, startyearpop$pop$female[1:(p - 2), -n - 1], oldest.f[-n - 1]) Dm <- nsr.m * rbind(Bm, startyearpop$pop$male[1:(p - 2), -n - 1], oldest.m[-n - 1]) } else { Df <- nsr.f * c(Bf, startyearpop$pop$female[1:(p - 2), -n - 1], oldest.f[-n - 1]) Dm <- nsr.m * c(Bm, startyearpop$pop$male[1:(p - 2), -n - 1], oldest.m[-n - 1]) } Dm[is.na(Dm) | Dm < 0] <- 0 Df[is.na(Df) | Df < 0] <- 0 Mf <- Mm <- matrix(NA, nrow = p, ncol = n) for (j in 1:n) { current <- extract.years(startyearpop, years = yrs[j] + 1) prev <- extract.years(startyearpop, years = yrs[j]) Mf[, j] <- current$pop$female - c(Bf[j], prev$pop$female[1:(p - 2), ], oldest.f[j]) + Df[, j] Mm[, j] <- current$pop$male - c(Bm[j], prev$pop$male[1:(p - 2), ], oldest.m[j]) + Dm[, j] } mig <- extract.years(startyearpop, years = yrs) mig$rate$female <- Mf mig$rate$male <- Mm mig$rate$total <- Mm + Mf mig$pop$total <- mig$pop$male + mig$pop$female mig$lambda <- 1 dimnames(mig$rate$male) <- dimnames(mig$rate$female) <- dimnames(mig$rate$total) <- dimnames(mig$pop$male) mig$type <- "migration" return(mig) } pop.sim <- function(mort, fert = NULL, mig = NULL, firstyearpop, N = 100, mfratio = 1.05, bootstrap = FALSE) { no.mortality <- FALSE no.fertility <- is.null(fert) no.migration <- is.null(mig) if (!no.mortality) { if (class(mort) != "fmforecast2") stop("Inputs not fmforecast2 objects") if (mort$female$type != "mortality" | mort$male$type != "mortality") stop("mort not based on mortality data") } if (!no.fertility) { if (class(fert)[1] != "fmforecast") stop("Inputs not fmforecast objects") if (fert$type != "fertility") stop("fert not based on fertility data") } if (!no.migration) { if (class(mig) != "fmforecast2") stop("Inputs not fmforecast2 objects") if (mig$male$type != "migration" | mig$female$type != "migration") stop("mig not based on migration data") } firstyr <- mort$male$year if (!no.fertility) firstyr <- intersect(firstyr, fert$year) if (!no.migration) firstyr <- intersect(firstyr, mig$male$year) firstyr <- min(firstyr) pop <- extract.years(firstyearpop, firstyr)$pop firstyearpop$age <- as.integer(firstyearpop$age) mort$male$age <- as.integer(mort$male$age) mig$male$age <- as.integer(mig$male$age) if (!no.migration) { if (!identical(firstyearpop$age, mig$male$age)) stop("Please ensure that migration and population data have the same age dimension") } if (!no.mortality) { if (!identical(firstyearpop$age, mort$male$age)) stop("Please ensure that mortality and population data have the same age dimension") } p <- length(firstyearpop$age) hm <- hf <- h <- Inf if (!no.mortality) { mort.sim <- simulate(mort, nsim = N, bootstrap = bootstrap) hm <- length(mort$male$year) } if (!no.fertility) { fert.sim <- simulate(fert, nsim = N, bootstrap = bootstrap) hf <- length(fert$year) } if (!no.migration) { mig.sim <- simulate(mig, nsim = N, bootstrap = bootstrap) h <- length(mig$male$year) nm <- length(mig$male$model$year) } h <- min(hm, hf, h) if (!no.fertility) fage <- is.element(rownames(pop$female), fert$age) pop.f <- pop.m <- array(0, c(p, h, N)) dimnames(pop.f) <- dimnames(pop.m) <- list(mort$female$age, 1:h, 1:N) advance <- function(x0, x) { n <- length(x) newx <- c(x0, x[1:(n - 2)], x[n - 1] + x[n]) } for (i in 1:N) { popf <- round(c(pop$female)) popm <- round(c(pop$male)) for (j in 1:h) { if (no.migration) { netf <- netm <- 0 Rf <- popf Rm <- popm } else { netf <- round(mig.sim$female[, j, i] + mig$female$model$res$y[, sample(1:nm, 1)]) netm <- round(mig.sim$male[, j, i] + mig$male$model$res$y[, sample(1:nm, 1)]) Rf <- pmax(popf + 0.5 * c(netf[2:(p - 1)], 0.5 * netf[p], 0.5 * netf[p]), 0) Rm <- pmax(popm + 0.5 * c(netm[2:(p - 1)], 0.5 * netm[p], 0.5 * netm[p]), 0) } Rt <- firstyearpop Rt$type <- "mortality" Rt$lambda <- 0 Rt$year <- 1 Rt$rate$female <- matrix(mort.sim$female[, j, i], ncol = 1) Rt$rate$male <- matrix(mort.sim$male[, j, i], ncol = 1) Rt$pop$female <- matrix(Rf, ncol = 1) Rt$pop$male <- matrix(Rm, ncol = 1) Rt$rate$total <- Rt$pop$total <- NULL colnames(Rt$pop$male) <- colnames(Rt$pop$female) <- colnames(Rt$rate$male) <- colnames(Rt$rate$female) <- "1" rownames(Rt$pop$male) <- rownames(Rt$pop$female) <- rownames(Rt$rate$male) <- rownames(Rt$rate$female) <- Rt$age nsr.f <- 1 - lifetable(Rt, "female", max.age = max(Rt$age))$rx nsr.m <- 1 - lifetable(Rt, "male", max.age = max(Rt$age))$rx cohDf <- pmax(nsr.f[c(2:p, p)] * Rf, 0) cohDm <- pmax(nsr.m[c(2:p, p)] * Rm, 0) Rf2 <- advance(0, Rf - cohDf) Rm2 <- advance(0, Rm - cohDm) Ef <- 0.5 * (Rf + Rf2) Em <- 0.5 * (Rm + Rm2) Df <- rpois(rep(1, p), Ef * mort.sim$female[, j, i]) Dm <- rpois(rep(1, p), Em * mort.sim$male[, j, i]) cohDf[2:(p - 2)] <- 0.5 * (Df[2:(p - 2)] + Df[3:(p - 1)]) cohDm[2:(p - 2)] <- 0.5 * (Dm[2:(p - 2)] + Dm[3:(p - 1)]) cohDf[p - 1] <- 0.5 * Df[p - 1] + Df[p] cohDm[p - 1] <- 0.5 * Dm[p - 1] + Dm[p] cohDf[p] <- cohDm[p] <- 0 Rf2 <- advance(0, Rf - cohDf) Rm2 <- advance(0, Rm - cohDm) if (no.fertility) B <- 0 else { lambda <- 0.5 * (Rf[fage] + Rf2[fage]) * fert.sim[, j, i]/1000 B <- sum(rpois(rep(1, length(fert$age)), lambda)) } Bm <- rbinom(1, B, mfratio/(1 + mfratio)) Bf <- B - Bm RfB <- pmax(Bf + 0.5 * netf[1], 0) RmB <- pmax(Bm + 0.5 * netm[1], 0) cohDfB <- pmax(nsr.f[1] * RfB, 0) cohDmB <- pmax(nsr.m[1] * RmB, 0) Rf20 <- RfB - cohDfB Rm20 <- RmB - cohDmB Ef0 <- 0.5 * (Rf[1] + Rf20) Em0 <- 0.5 * (Rm[1] + Rm20) Df0 <- rpois(1, Ef0 * mort.sim$female[1, j, i]) Dm0 <- rpois(1, Em0 * mort.sim$male[1, j, i]) f0f <- cohDfB/(Ef0 * mort.sim$female[1, j, i]) f0m <- cohDmB/(Em0 * mort.sim$male[1, j, i]) cohDfB <- f0f * Df0 cohDmB <- f0m * Dm0 cohDf[1] <- (1 - f0f) * Df0 + 0.5 * Df[1] cohDm[1] <- (1 - f0m) * Dm0 + 0.5 * Dm[1] Rf2 <- advance(RfB - cohDfB, Rf - cohDf) Rm2 <- advance(RmB - cohDmB, Rm - cohDm) popf <- round(pmax(Rf2 + 0.5 * netf, 0)) popm <- round(pmax(Rm2 + 0.5 * netm, 0)) pop.f[, j, i] <- popf pop.m[, j, i] <- popm } } dimnames(pop.m)[[2]] <- dimnames(pop.m)[[2]] <- firstyr + (1:h)-1 return(list(male = pop.m, female = pop.f)) } deaths <- function(x) { if (class(x) != "demogdata" | x$type != "mortality") stop("Not a mortality object") npop <- length(x$rate) out <- list() for (i in 1:npop) { out[[i]] <- round(x$rate[[i]] * x$pop[[i]]) out[[i]][is.na(out[[i]])] <- 0 } names(out) <- names(x$rate) return(out) } births <- function(x) { if (class(x) != "demogdata" | x$type != "fertility") stop("Not a fertility object") out <- round(x$rate[[1]] * x$pop[[1]]/1000) out[is.na(out)] <- 0 return(out) }
abc.a.coefs <- function(indices, splitting=FALSE) { a.coefs.nominal <- function (p = NULL, ...) { if (p > 1) { a.coefs.mat <- matrix(nrow=p,ncol=2^p) for (i in 1:p) { a.coefs.mat[i,] <- rep(c(1,0), times = c(2^(p-i),2^(p-i))) } a.coefs.mat <- a.coefs.mat[,-c(2^p)] } else { a.coefs.mat <- matrix(1,ncol=1,nrow=1) } return (a.coefs.mat) } a.coefs.ordinal <- function (p = NULL, ...) { if (p > 1) { if (p > 2) { a.coefs.mat <- diag(p) for (i in 1:(p-2)) { m <- matrix(0,ncol=p, nrow=p-i) for (j in 1:(i+1)) { m <- m + cbind (matrix(0,ncol=j-1,nrow=p-i), diag (p-i), matrix(0,ncol=i-j+1,nrow=p-i)) } a.coefs.mat <- cbind(a.coefs.mat, t(m)) } a.coefs.mat <- cbind(a.coefs.mat,1) } else { a.coefs.mat <- cbind (diag (2), c(1,1)) } } else { a.coefs.mat <- matrix(1,ncol=1,nrow=1) } return (a.coefs.mat) } index1 <- indices[[1]] index2 <- indices[[2]] A <- matrix(0,ncol=0,nrow=0) if (splitting==TRUE){ for (i in 1:length(index1)) { if ( index2[i]<0 ) { B <- a.coefs.nominal(p=index1[i])[,-1] B <- B[,which(B[1,]==1)] A <- bdiag(A,B)} if ( index2[i]==0) { A <- bdiag(A,matrix(0,ncol=0,nrow=index1[i])) } if ( index2[i]>0 ) { B <- a.coefs.ordinal(p=index1[i])[,-(sum(1:index1[i]))] B <- B[,which(B[1,]==1)] A <- bdiag(A,B)} } } else { for (i in 1:length(index1)) { if ( index2[i]<0 ) { A <- bdiag(A,a.coefs.nominal(p=index1[i])) } if ( index2[i]==0) { A <- bdiag(A,matrix(0,ncol=0,nrow=index1[i])) } if ( index2[i]>0 ) { A <- bdiag(A,a.coefs.ordinal(p=index1[i])) } } } a.coefs.mat<-as.matrix(A) return(a.coefs.mat) }
garchsk_construct<-function(params,data){ T<-length(data) mu <- rep(base::mean(data),T) h <- rep(stats::var(data),T) sk <- rep(skewness(data),T) ku <- rep(kurtosis(data),T) para_m<-params[1] para_h<-params[2:4] para_sk<-params[5:7] para_ku<-params[8:10] for(t in 2:T){ mu[t]<-para_m * data[t-1] h[t]<-para_h %*% c(1,(data[t-1]-mu[t-1])^2,h[t-1]) sk[t]<-para_sk %*% c(1,((data[t-1]-mu[t-1])/sqrt(h[t-1]))^3,sk[t-1]) ku[t]<-para_ku %*% c(1,((data[t-1]-mu[t-1])/sqrt(h[t-1]))^4,ku[t-1]) } return(list(mu=mu,h=h,sk=sk,ku=ku)) } garchsk_lik<-function(params,data){ T<-length(data) t <- 2:T likelihoods <- numeric(0) GARCHSK <- garchsk_construct(params,data) mu = GARCHSK$mu[t] h = GARCHSK$h[t] sk = GARCHSK$sk[t] ku = GARCHSK$ku[t] std<-(data[t]-mu)/sqrt(h) f <- log((1 + (sk/6)*(std^3 - 3*std) + ((ku-3)/24)*(std^4 - 6*(std^2)+3))^2) g <- log(1 + (sk^2)/6 + ((ku-3)^2)/24) likelihoods <- -0.5*(log(h) + std^2 ) + f - g likelihoods <- - likelihoods LLF <-sum(likelihoods) if( is.nan(LLF) ){ LLF <- 1e+06 } return(LLF) } garchsk_ineqfun<-function(params,data){ para_m<-params[1] para_h<-params[2:4] para_sk<-params[5:7] para_ku<-params[8:10] return(c(para_m,para_h,para_sk[-1],para_ku,sum(para_h[-1]),sum(para_sk[-1]),sum(para_ku[-1]))) } garchsk_est<-function(data){ X <- data[-length(data)] Y <- data[-1] a1 <- stats::cov(Y,X)/stats::var(X) b1 <- 0.01 b2 <- 0.90 b0 <- (1-(b1+b2))*stats::var(data) c1 <- 0.01 c2 <- 0.7 c0 <- (1-(c1+c2))*skewness(data) d1 <- 0.01 d2 <- 0.80 d0 <- (1-(d1+d2))*(kurtosis(data)) init <-c(a1,b0,b1,b2,c0,c1,c2,d0,d1,d2) aLB<-c(-1) bLB<-c(0,rep(0,length(b1)),rep(0,length(b2))) cLB<-c(rep(-1,length(c1)),rep(-1,length(c2))) dLB<-c(0,rep(0,length(d1)),rep(0,length(d2))) sumbLB<-c(0) sumcLB<-c(-1) sumdLB<-c(0) ineqLB<-c(aLB,bLB,cLB,dLB,sumbLB,sumcLB,sumdLB) aUB<-c(1) bUB<-c(Inf,rep(1,length(b1)),rep(1,length(b2))) cUB<-c(rep(1,length(c1)),rep(1,length(c2))) dUB<-c(Inf,rep(1,length(d1)),rep(1,length(d2))) sumbUB<-c(1) sumcUB<-c(1) sumdUB<-c(1) ineqUB<-c(aUB,bUB,cUB,dUB,sumbUB,sumcUB,sumdUB) sol<-Rsolnp::solnp(pars=init , fun=garchsk_lik, ineqfun = garchsk_ineqfun, ineqLB = ineqLB, ineqUB = ineqUB, data=data) params<-sol$par loglik<-sol$values loglik<-loglik[length(loglik)] hessian<-sol$hessian[1:length(params),1:length(params)] stderrors <- sqrt(1/length(data)*diag(hessian)) tstats <- params/stderrors AIC <- -2*loglik + 2*length(params) BIC <- -2*loglik + length(params)*log(length(data)) return(list(params=params,stderrors=stderrors,tstats=tstats,loglik=loglik,AIC=AIC,BIC=BIC)) } garchsk_fcst<-function(params,data,max_forecast=20){ T<-length(data) t <- 2:T GARCHSK <- garchsk_construct(params,data) mu = GARCHSK$mu[t] h = GARCHSK$h[t] sk = GARCHSK$sk[t] ku = GARCHSK$ku[t] para_m<-params[1] para_h<-params[2:4] para_sk<-params[5:7] para_ku<-params[8:10] T<-length(h) mu_fcst<-para_m * data[T] h_fcst<-para_h %*% c(1,(data[T]-mu[T])^2,h[T]) sk_fcst<-para_sk %*% c(1,((data[T]-mu[T])/sqrt(h[T]))^3,sk[T]) ku_fcst<-para_ku %*% c(1,((data[T]-mu[T])/sqrt(h[T]))^4,ku[T]) for(i in 2:max_forecast){ mu_fcst<-c(h_fcst, para_m * h_fcst[i-1]) h_fcst<-c(h_fcst, para_h[1] + sum(para_h[-1] * h_fcst[i-1])) sk_fcst<-c(sk_fcst, para_sk[1] + sum(para_sk[-1] * sk_fcst[i-1])) ku_fcst<-c(ku_fcst, para_ku[1] + sum(para_ku[-1] * ku_fcst[i-1])) } return(list(mu_fcst=mu_fcst,h_fcst=h_fcst,sk_fcst=sk_fcst,ku_fcst=ku_fcst)) }
NULL wordcloud2Output <- function(outputId, width = "100%", height = "400px") { htmlwidgets::shinyWidgetOutput(outputId, "wordcloud2", width, height, package = "wordcloud2") } renderWordcloud2 <- function(expr, env = parent.frame(), quoted = FALSE) { if (!quoted) { expr <- substitute(expr) } htmlwidgets::shinyRenderWidget(expr, wordcloud2Output, env, quoted = TRUE) }
observe({ validate( need(!is.null(rawData_data$data), "Please select a data set") ) rawData <- rawData() chem_site <- rawData$chem_site chemical_summary <- chemical_summary() siteToFind <- unique(chemical_summary$site) if(length(siteToFind) == 1){ chem_site <- chem_site[chem_site$SiteID == siteToFind,] } catType = as.numeric(input$radioMaxGroup) meanEARlogic <- as.logical(input$meanEAR) sum_logic <- as.logical(input$sumEAR) maxEARWords <- ifelse(meanEARlogic,"Mean","Max") category <- c("Biological","Chemical","Chemical Class")[catType] mapDataList <- mapDataINFO() mapData <- mapDataList$mapData pal <- mapDataList$pal if(length(siteToFind) == 1){ mapData <- mapData %>% dplyr::filter(SiteID == siteToFind) } map <- leaflet::leafletProxy("mymap", data = mapData) %>% leaflet::clearMarkers() %>% leaflet::addCircleMarkers(lat=~dec_lat, lng=~dec_lon, popup=paste0('<b>',mapData$`Short Name`,"</b><br/><table>", "<tr><td>",maxEARWords,": </td><td>",sprintf("%.1f",mapData$meanMax),'</td></tr>', "<tr><td>Number of Samples: </td><td>",mapData$count,'</td></tr>', '</table>') , fillColor = ~pal(meanMax), fillOpacity = 0.8, radius = ~sizes, stroke=FALSE, opacity = 0.8) %>% leaflet::fitBounds(~min(dec_lon), ~min(dec_lat), ~max(dec_lon), ~max(dec_lat)) sum_words <- ifelse(sum_logic, "Sum of","Max") if(length(siteToFind) > 1){ map <- map %>% leaflet::clearControls() map <- leaflet::addLegend(map,pal = pal, position = 'bottomleft', values=~meanMax, opacity = 0.8, labFormat = leaflet::labelFormat(digits = 2), title = paste(sum_words,category,"EAR<br>", maxEARWords,"at site")) } map }) output$mapFooter <- renderUI({ validate( need(!is.null(rawData_data$data), "Please select a data set") ) chemical_summary <- chemical_summary() nSamples <- dplyr::select(chemical_summary,site,date) %>% dplyr::distinct() %>% dplyr::group_by(site) %>% dplyr::summarize(count = dplyr::n()) HTML(paste0("<h5>Size range represents number of samples. Ranges from ", min(nSamples$count,na.rm = TRUE), " - ", max(nSamples$count,na.rm = TRUE),"</h5>")) }) mapDataINFO <- reactive({ rawData <- rawData() chem_site <- rawData$chem_site chemical_summary <- chemical_summary() catType = as.numeric(input$radioMaxGroup) category <- c("Biological","Chemical","Chemical Class")[catType] meanEARlogic <- as.logical(input$meanEAR) sum_logic <- as.logical(input$sumEAR) siteToFind <- unique(chemical_summary$site) mapDataList <- map_tox_data(chemical_summary, chem_site = chem_site, category = category, mean_logic = meanEARlogic, sum_logic = sum_logic) if(length(siteToFind) == 1){ if(!is.null(latest_map)){ mapDataList <- latest_map } } latest_map <<- mapDataList shinyAce::updateAceEditor(session, editorId = "mapCode_out", value = mapCode() ) return(mapDataList) }) mapCode <- reactive({ catType = as.numeric(input$radioMaxGroup) plot_ND = input$plot_ND category <- c("Biological","Chemical","Chemical Class")[catType] mapCode <- paste0(rCodeSetup()," make_tox_map(chemical_summary, chem_site = tox_list$chem_site, category = '",category,"', mean_logic = ",as.logical(input$meanEAR),")") return(mapCode) })
diff <- function(x, ...) UseMethod("diff") diff.default <- function(x, lag = 1L, differences = 1L, ...) { ismat <- is.matrix(x) xlen <- if(ismat) dim(x)[1L] else length(x) if (length(lag) != 1L || length(differences) > 1L || lag < 1L || differences < 1L) stop("'lag' and 'differences' must be integers >= 1") if (lag * differences >= xlen) return(x[0L]) r <- unclass(x) i1 <- -seq_len(lag) if (ismat) for (i in seq_len(differences)) r <- r[i1, , drop = FALSE] - r[-nrow(r):-(nrow(r)-lag+1L), , drop = FALSE] else for (i in seq_len(differences)) r <- r[i1] - r[-length(r):-(length(r)-lag+1L)] class(r) <- oldClass(x) r }
qweibull3 <- function(p,shape,scale=1,thres=0,lower.tail=TRUE,log.p=FALSE) { if(log.p) p <- exp(p) if(!lower.tail) p <- 1 - p xF <- thres+qweibull(p,shape,scale) return(xF) }
simgraph_data <- function(nsims = 1000, posigma = 50, dims = 250, kinship = "2C") { if (!kinship %in% c("PO", "FS", "HS", "AV", "GG", "HAV", "GGG", "1C", "1C1", "2C", "GAV")) { stop("Invalid Kinship Category") } nsims <- nsims posigma <- posigma dims <- dims f0x <- runif(nsims, 0, dims) f0y <- runif(nsims, 0, dims) f1ax <- rnorm(nsims, 0, posigma) + f0x f1ay <- rnorm(nsims, 0, posigma) + f0y f1bx <- rnorm(nsims, 0, posigma) + f0x f1by <- rnorm(nsims, 0, posigma) + f0y f1cx <- rnorm(nsims, 0, posigma) + f0x f1cy <- rnorm(nsims, 0, posigma) + f0y f2ax <- rnorm(nsims, 0, posigma) + f1ax f2ay <- rnorm(nsims, 0, posigma) + f1ay f2bx <- rnorm(nsims, 0, posigma) + f1bx f2by <- rnorm(nsims, 0, posigma) + f1by f3ax <- rnorm(nsims, 0, posigma) + f2ax f3ay <- rnorm(nsims, 0, posigma) + f2ay f3bx <- rnorm(nsims, 0, posigma) + f2bx f3by <- rnorm(nsims, 0, posigma) + f2by if (kinship == "PO") { k1x <- f0x k1y <- f0y k2x <- f1ax k2y <- f1ay } if (kinship == "FS" | kinship == "HS") { k1x <- f1ax k1y <- f1ay k2x <- f1bx k2y <- f1by } if (kinship == "AV" | kinship == "HAV") { k1x <- f2ax k1y <- f2ay k2x <- f1bx k2y <- f1by } if (kinship == "GG") { k1x <- f0x k1y <- f0y k2x <- f2ax k2y <- f2ay } if (kinship == "1C") { k1x <- f2ax k1y <- f2ay k2x <- f2bx k2y <- f2by } if (kinship == "GGG") { k1x <- f0x k1y <- f0y k2x <- f3ax k2y <- f3ay } if (kinship == "GAV") { k1x <- f3ax k1y <- f3ay k2x <- f1bx k2y <- f1by } if (kinship == "1C1") { k1x <- f3ax k1y <- f3ay k2x <- f2bx k2y <- f2by } if (kinship == "2C") { k1x <- f3ax k1y <- f3ay k2x <- f3bx k2y <- f3by } kindist <- round(sqrt((k1x - k2x)^2 + (k1y - k2y)^2), digits = 1) kinmidx <- (k1x + k2x) / 2 kinmidy <- (k1y + k2y) / 2 result <- tibble( f0x = f0x, f0y = f0y, f1ax = f1ax, f1ay = f1ay, f1bx = f1bx, f1by = f1by, f1cx = f1cx, f1cy = f1cy, f2ax = f2ax, f2ay = f2ay, f2bx = f2bx, f2by = f2by, f3ax = f3ax, f3ay = f3ay, f3bx = f3bx, f3by = f3by, kindist = kindist, kinmidx = kinmidx, kinmidy = kinmidy, k1x = k1x, k1y = k1y, k2x = k2x, k2y = k2y, posigma = posigma, dims = dims, kinship = kinship ) return(result) }
get_city_data <- function(x, region, date) { if (is(x, "nCov2019")) { stats <- x[region, ] } else { stats <- extract_history(x, region, date) } names(stats)[1] <- 'NAME' return(stats) } extract_history <- function(x, province, date) { if (missing(province)) { df <- summary(x)[, c('province','time','cum_confirm')] } else { df <- x[province, c('city','time','cum_confirm')] } df <- df[df$time == as.Date(date, "%Y-%m-%d"), c(1,3)] names(df) <- c("name", "confirm") return(df) } extract_province <- function(object, i, by) { if (i == 'global') { res = object$global return(res) } d <- object$areaTree[1,"children"][[1]] name = d[[1]] if (is.character(i)) { i <- which(name == i) } stats <- d[i, "children"][[1]] cbind(name=stats$name, stats[[by]]) } .get_qq_data <- function() { url <- 'https://view.inews.qq.com/g2/getOnsInfo?name=disease_h5' x <- suppressWarnings(readLines(url, encoding="UTF-8")) y <- jsonlite::fromJSON(x) data = jsonlite::fromJSON(y$data) url2 <- 'https://view.inews.qq.com/g2/getOnsInfo?name=disease_other' x2 <- suppressWarnings(readLines(url2, encoding="UTF-8")) y2 = jsonlite::fromJSON(x2, flatten = TRUE) y2 = jsonlite::fromJSON(y2$data,flatten = T) data$dailyHistory <- y2$dailyHistory data$chinaDayList <- y2$chinaDayList data$chinaDayAddList <- y2$chinaDayAddList url3 <- 'https://api.inews.qq.com/newsqa/v1/automation/foreign/country/ranklist' x3 <- suppressWarnings(readLines(url3, encoding="UTF-8")) y3 = jsonlite::fromJSON(x3, flatten = TRUE)$data df <- y3[c('name','confirm','suspect','dead','heal')] df$deadRate <- round(df$dead*100/df$confirm,2) df$healRate <- round(df$heal*100/df$confirm,2) df$showRate <- 'FALSE' df$showHeal <- 'FALSE' name <- data$areaTree[1]$name idx = c("name","confirm","suspect","dead","heal","deadRate","healRate","showRate","showHeal") CN <- cbind(name = name, data$areaTree$total)[1, ][,idx] data$global = rbind(CN, df) return(data) } fill_scale_continuous <- function(palette = "Reds") { cols = RColorBrewer::brewer.pal(6, palette) breaks = c(1, 10, 100, 1000, 10000, 100000, 1000000, 10000000) scale_fill_gradient(low=cols[1], high=cols[6], na.value='white', trans='log', breaks=breaks, labels=breaks) } discrete_breaks <- c(1,10,100,500,10^3,10^4, 10^5, 10^6,10^7) fill_scale_discrete <- function(palette = "Reds") { scale_fill_brewer(palette=palette, name='confirm', na.translate = FALSE, breaks = c('[1,10)', '[10,100)', '[100,500)', '[500,1e+03)', '[1e+03,1e+04)', '[1e+04,1e+05)', '[1e+05,1e+06]','[1e+06,1e+07]'), labels = c("<10", "10-100", "100-500", "500-1000", "1000-10000", "10000-100000","100000-1000000", ">1000000")) } which_lang <- function(lang) { lang <- match.arg(lang, c("auto","zh", "en")) if (lang == "auto") { locale <- Sys.getlocale('LC_CTYPE') locale <- sub("^(\\w+)\\W.*", "\\1", locale) if (tolower(locale) %in% c("chinese", "zh")) { lang <- 'zh' } else { lang <- 'en' } } return(lang) } check_network <- function(url) { status = tryCatch({ httr::HEAD(url)$status }, error= function(e) { message(e) FALSE }) status }
pex_acf <- function(tseq, lambda, rho) { exp(-abs(tseq/lambda)^rho) }
pgpa <- function(x , para = c(1, 1, 1)) { u <- cdfgpa(x , para) return(u) }
to_basic.GeomXspline <- to_basic.GeomXspline2 <- getFromNamespace("to_basic.GeomLine", asNamespace("plotly")) to_basic.GeomBkde2d <- getFromNamespace("to_basic.GeomDensity2d", asNamespace("plotly")) to_basic.GeomStateface <- function(data, prestats_data, layout, params, p, ...) { prefix_class(data, "GeomText") } prefix_class <- function(x, y) { structure(x, class = unique(c(y, class(x)))) }
Election.getStageCandidates <- function (stageId, electionId) { Election.getStageCandidates.basic <- function (.stageId, .electionId) { request <- "Election.getStageCandidates?" inputs <- paste("&stageId=",.stageId,"&electionId=",.electionId,sep="") output <- pvsRequest6(request,inputs) output$stageId <- .stageId output$electionId <- .electionId output } output.list <- lapply(stageId, FUN= function (y) { lapply(electionId, FUN= function (s) { Election.getStageCandidates.basic(.stageId=y, .electionId=s) } ) } ) output.list <- redlist(output.list) output <- dfList(output.list) output }
create_synthetic_data <- function(n_proteins, frac_change, n_replicates, n_conditions, method = "effect_random", concentrations = NULL, median_offset_sd = 0.05, mean_protein_intensity = 16.88, sd_protein_intensity = 1.4, mean_n_peptides = 12.75, size_n_peptides = 0.9, mean_sd_peptides = 1.7, sd_sd_peptides = 0.75, mean_log_replicates = -2.2, sd_log_replicates = 1.05, effect_sd = 2, dropout_curve_inflection = 14, dropout_curve_sd = -1.2, additional_metadata = TRUE) { n_change <- round(n_proteins * frac_change) sampled_protein_intensities <- stats::rnorm( n = n_proteins, mean = mean_protein_intensity, sd = sd_protein_intensity ) sampled_n_peptides <- stats::rnbinom(n = n_proteins * 3, size = size_n_peptides, mu = mean_n_peptides) sampled_n_peptides <- sampled_n_peptides[sampled_n_peptides > 0][1:n_proteins] sampled_peptide_sd <- stats::rnorm(n = n_proteins * 2, mean = mean_sd_peptides, sd = sd_sd_peptides) sampled_peptide_sd <- sampled_peptide_sd[sampled_peptide_sd > 0][1:n_proteins] proteins <- tibble::tibble( protein = paste0("protein_", 1:n_proteins), n = sampled_n_peptides, mean = sampled_protein_intensities, sd = sampled_peptide_sd ) %>% dplyr::group_by(.data$protein) %>% dplyr::mutate(peptide_intensity_mean = list(round( stats::rnorm( n = .data$n, mean = .data$mean, sd = .data$sd ), digits = 4 ))) %>% tidyr::unnest(.data$peptide_intensity_mean) %>% dplyr::mutate(peptide = paste0( "peptide_", stringr::str_extract( .data$protein, pattern = "\\d+" ), "_", 1:dplyr::n() )) %>% dplyr::mutate(replicate_sd = round(stats::rlnorm( n = 1, meanlog = mean_log_replicates, sdlog = sd_log_replicates ), digits = 4 )) %>% dplyr::select(-c(.data$mean, .data$sd)) proteins_replicates <- proteins %>% dplyr::group_by(.data$peptide) %>% dplyr::mutate(condition = list(sort(rep(paste0("condition_", 1:n_conditions), n_replicates)))) %>% tidyr::unnest(c(.data$condition)) %>% dplyr::mutate(sample = paste0("sample_", 1:(n_conditions * n_replicates))) %>% dplyr::ungroup() %>% dplyr::mutate(peptide_intensity = stats::rnorm( n = dplyr::n(), mean = .data$peptide_intensity_mean, sd = .data$replicate_sd )) n_peptides <- length(unique(proteins_replicates$peptide)) offset <- rep( stats::rnorm(n_conditions * n_replicates, mean = 0, sd = median_offset_sd ), n_peptides ) if (method == "effect_random") { proteins_replicates_change <- proteins_replicates %>% dplyr::mutate(change = stringr::str_extract(.data$protein, pattern = "\\d+") %in% 1:n_change) %>% dplyr::group_by(.data$protein) %>% dplyr::mutate(n_change_peptide = ifelse(.data$change == TRUE, ceiling(stats::rgamma(1, shape = 0.7, rate = 0.4)), 0)) %>% dplyr::mutate(n_change_peptide = ifelse(.data$n_change_peptide >= .data$n, .data$n, .data$n_change_peptide )) %>% dplyr::mutate(change_peptide = .data$change & stringr::str_extract( .data$peptide, pattern = "\\d+$" ) %in% 1:unique(.data$n_change_peptide)) %>% dplyr::mutate(effect = stats::rnorm(dplyr::n(), mean = 0, sd = effect_sd)) %>% dplyr::mutate(effect = ifelse(.data$change_peptide == TRUE, .data$effect, 0)) %>% dplyr::group_by(.data$condition, .data$peptide) %>% dplyr::mutate(effect = rep(.data$effect[1], n_replicates)) %>% dplyr::mutate(peptide_intensity = .data$peptide_intensity + .data$effect) %>% dplyr::bind_cols(offset = offset) %>% dplyr::ungroup() %>% dplyr::mutate(peptide_intensity = .data$peptide_intensity + .data$offset) %>% dplyr::select(-c( .data$peptide_intensity_mean, .data$replicate_sd, .data$effect, .data$n, .data$n_change_peptide, .data$offset )) } if (method == "dose_response") { condition_concentration <- tibble::tibble( condition = paste0("condition_", 1:n_conditions), concentration = concentrations ) proteins_replicates_change <- proteins_replicates %>% dplyr::mutate(change = stringr::str_extract(.data$protein, pattern = "\\d+") %in% 1:n_change) %>% dplyr::group_by(.data$protein) %>% dplyr::mutate(n_change_peptide = ifelse(.data$change == TRUE, ceiling(stats::rgamma(1, shape = 0.7, rate = 0.4 )), 0)) %>% dplyr::mutate(n_change_peptide = ifelse(.data$n_change_peptide >= .data$n, .data$n, .data$n_change_peptide )) %>% dplyr::mutate(change_peptide = .data$change & stringr::str_extract( .data$peptide, pattern = "\\d+$" ) %in% 1:unique(.data$n_change_peptide)) %>% dplyr::left_join(condition_concentration, by = "condition") %>% dplyr::mutate(effect_total = stats::rnorm(dplyr::n(), mean = 0, sd = effect_sd)) %>% dplyr::mutate(effect_total = ifelse(.data$change_peptide == TRUE, .data$effect_total, 0)) %>% dplyr::group_by(.data$peptide) %>% dplyr::mutate(effect_total = rep(.data$effect_total[1], (n_replicates * n_conditions))) %>% dplyr::ungroup() %>% dplyr::mutate(b = sample(c( stats::rlnorm(dplyr::n(), meanlog = 0.6, sdlog = 0.4 ), -rlnorm(dplyr::n(), meanlog = 0.6, sdlog = 0.4 ) ), size = dplyr::n() )) %>% dplyr::mutate(c = stats::rlnorm(dplyr::n(), meanlog = log(mean(concentrations) / 2), sdlog = abs(log(mean(concentrations) / 2) / 3) )) %>% dplyr::mutate(b = ifelse(.data$change_peptide == TRUE, .data$b, 0)) %>% dplyr::mutate(c = ifelse(.data$change_peptide == TRUE, .data$c, 0)) %>% dplyr::group_by(.data$peptide) %>% dplyr::mutate(b = rep(.data$b[1], (n_replicates * n_conditions))) %>% dplyr::mutate(c = rep(.data$c[1], (n_replicates * n_conditions))) %>% dplyr::mutate(effect = ifelse(.data$change_peptide == TRUE, .data$effect_total * (1 + (-1 / (1 + (.data$concentration / .data$c)^.data$b))), 0 )) %>% dplyr::mutate(peptide_intensity = .data$peptide_intensity + .data$effect) %>% dplyr::bind_cols(offset = offset) %>% dplyr::ungroup() %>% dplyr::mutate(peptide_intensity = .data$peptide_intensity + .data$offset) %>% dplyr::select(-c( .data$peptide_intensity_mean, .data$replicate_sd, .data$n, .data$n_change_peptide, .data$effect, .data$effect_total, .data$b, .data$c, .data$offset )) } proteins_replicates_change_missing <- proteins_replicates_change %>% dplyr::mutate(dropout_probability = stats::pnorm(.data$peptide_intensity, mean = dropout_curve_inflection, sd = -dropout_curve_sd, lower.tail = FALSE )) %>% dplyr::ungroup() %>% dplyr::mutate(peptide_intensity_missing = ifelse(stats::runif(dplyr::n()) > .data$dropout_probability, .data$peptide_intensity, NA )) %>% dplyr::select(-.data$dropout_probability) %>% dplyr::group_by(.data$peptide) %>% dplyr::mutate(isna = sum(!is.na(.data$peptide_intensity_missing))) %>% dplyr::filter(.data$isna > 0) %>% dplyr::select(-.data$isna) %>% dplyr::ungroup() if (additional_metadata == FALSE) { return(proteins_replicates_change_missing) } if (additional_metadata == TRUE) { coverage_sampled <- stats::rgamma(nrow(proteins_replicates_change_missing) * 2, shape = 1.2, rate = 0.05) coverage_sampled <- coverage_sampled[coverage_sampled <= 100] coverage_data <- proteins_replicates_change_missing %>% dplyr::mutate(coverage = coverage_sampled[1:dplyr::n()]) %>% dplyr::group_by(.data$protein) %>% dplyr::mutate(coverage = rep(.data$coverage[1], dplyr::n())) %>% dplyr::mutate(coverage_peptide = .data$coverage / dplyr::n_distinct(.data$peptide)) %>% dplyr::group_by(.data$sample, .data$protein) %>% dplyr::mutate(coverage = sum(!is.na(.data$peptide_intensity_missing)) * .data$coverage_peptide) %>% dplyr::select(-.data$coverage_peptide) %>% dplyr::ungroup() missed_cleavage_sampled <- stats::rpois(nrow(proteins_replicates_change_missing) * 2, 0.28) missed_cleavage_sampled <- missed_cleavage_sampled[missed_cleavage_sampled < 3] missed_cleavages_data <- coverage_data %>% dplyr::mutate(n_missed_cleavage = missed_cleavage_sampled[1:dplyr::n()]) %>% dplyr::group_by(.data$peptide) %>% dplyr::mutate(n_missed_cleavage = rep(.data$n_missed_cleavage[1], dplyr::n())) %>% dplyr::ungroup() charge_sampled <- round(stats::rgamma(nrow(proteins_replicates_change_missing) * 2, shape = 13.06, rate = 5.63 )) charge_sampled <- charge_sampled[charge_sampled > 0 & charge_sampled < 7] charge_data <- missed_cleavages_data %>% dplyr::mutate(charge = charge_sampled[1:dplyr::n()]) %>% dplyr::group_by(.data$peptide) %>% dplyr::mutate(charge = rep(.data$charge[1], dplyr::n())) %>% dplyr::ungroup() peptide_types <- c(rep("fully-tryptic", 11), rep("semi-tryptic", 8), rep("non-tryptic", 1)) peptide_type_data <- charge_data %>% dplyr::mutate(pep_type = sample(peptide_types, size = dplyr::n(), replace = TRUE)) %>% dplyr::group_by(.data$peptide) %>% dplyr::mutate(pep_type = rep(.data$pep_type[1], dplyr::n())) %>% dplyr::ungroup() peak_width_sampled <- stats::rgamma(nrow(proteins_replicates_change_missing), shape = 10.4, rate = 36.21 ) peak_width_data <- peptide_type_data %>% dplyr::mutate(peak_width = peak_width_sampled) %>% dplyr::mutate(retention_time = stats::runif(n = dplyr::n(), min = 0, max = 120)) %>% dplyr::group_by(.data$peptide) %>% dplyr::mutate(peak_width = rep(.data$peak_width[1], dplyr::n())) %>% dplyr::mutate(retention_time = rep(.data$retention_time[1], dplyr::n())) %>% dplyr::ungroup() peak_width_data } }
options(width=80) options(continue=' ') library(integIRTy) data(OV) ls() controlList <- list(Expr_N, Methy_N, CN_N) tumorList <- list(Expr_T, Methy_T, CN_T) testObject <- function(object) { exists(as.character(substitute(object))) } if(!testObject(runFromRaw)) { runFromRaw <- intIRTeasyRunFromRaw(platforms=tumorList, platformsCtr=controlList, assayType=c("Expr", "Methy", "CN"), permutationMethod="gene sampling") } class(runFromRaw) attributes(runFromRaw) panel.hist <- function(x, ...) { usr <- par("usr"); on.exit(par(usr)) par(usr = c(usr[1:2], 0, 1.5) ) h <- hist(x, breaks=50, plot = FALSE) breaks <- h$breaks; nB <- length(breaks) y <- h$counts; y <- y/max(y) rect(breaks[-nB], 0, breaks[-1], y, col="cyan", ...) } panel.cor <- function(x, y, digits=2, prefix="", cex.cor) { usr <- par("usr"); on.exit(par(usr)) par(usr = c(0, 1, 0, 1)) r <- abs(cor(x, y, use='complete.obs')) txt <- format(c(r, 0.123456789), digits=digits)[1] txt <- paste(prefix, txt, sep="") if(missing(cex.cor)) cex <- 0.6/strwidth(txt) text(0.5, 0.5, txt, cex = cex) } panel.smooth <- function(...){ par(new=TRUE); smoothScatter(...) abline(0, 1, col=2, lty=2) } runFromRaw_ScoreMat <- runFromRaw$estimatedScoreMat pairs(runFromRaw_ScoreMat, lower.panel=panel.cor, upper.panel=panel.smooth, labels=c('Expression', 'Methylation', 'Copy \n Number', 'Integrated'), cex.labels=1.2, gap=1.7) if(!testObject(binDat_CN)){ binDat_expr <- dichotomize(Expr_T, Expr_N, assayType='Expr') binDat_methy <- dichotomize(Methy_T, Methy_N, assayType='Methy') binDat_CN <- dichotomize(CN_T, CN_N, assayType='CN') } if(!testObject(fit2PL_CN)){ fit2PL_Expr <- fitOnSinglePlat(binDat_expr, model=3) fit2PL_Methy <- fitOnSinglePlat(binDat_methy, model=3) fit2PL_CN <- fitOnSinglePlat(binDat_CN, model=3) } dffclt_expr <- coef(fit2PL_Expr$fit)[, 'Dffclt'] dscrmn_expr <- coef(fit2PL_Expr$fit)[, 'Dscrmn'] dffclt_methy <- coef(fit2PL_Methy$fit)[, 'Dffclt'] dscrmn_methy <- coef(fit2PL_Methy$fit)[, 'Dscrmn'] dffclt_CN <- coef(fit2PL_CN$fit)[, 'Dffclt'] dscrmn_CN <- coef(fit2PL_CN$fit)[, 'Dscrmn'] if(!testObject(score_expr)){ score_expr <- computeAbility(binDat_expr, dscrmn=dscrmn_expr, dffclt=dffclt_expr) score_methy <- computeAbility(binDat_methy, dscrmn=dscrmn_methy, dffclt=dffclt_methy) score_CN <- computeAbility(binDat_CN, dscrmn=dscrmn_CN, dffclt=dffclt_CN) } if(!testObject(score_integrated)){ score_integrated <- computeAbility(respMat=cbind(binDat_expr, binDat_methy, binDat_CN), dscrmn=c(dscrmn_expr, dscrmn_methy, dscrmn_CN), dffclt=c(dffclt_expr, dffclt_methy, dffclt_CN)) } all(score_integrated==runFromRaw_ScoreMat[, 4]) getwd() sessionInfo()
matrix_conversion <- function(data) { if(is(data,"matrix")){ return(data) }else if(is(data,"data.frame")){ data <- as.matrix(data) return(data) }else if(is(data,"ts")){ return(data) }else if(is(data,"xts")){ return(data) }else if(is(data,"zoo")){ return(data) }else{ stop("Cannot convert input data to class 'matrix'") } }
r2Transformer.default<-function(eta,mat) { aa=(mat^(1/eta)/(1/eta)) res=getmm2sum(aa) return(res) } r2Transformer=function(mat, low=0.0001, upp=1000) { res.eta=optimize(r2Transformer.default, mat=mat,lower=low, upper=upp) mat2=mat^(1/res.eta$minimum)/(1/res.eta$minimum) rownames(mat2)=rownames(mat) colnames(mat2) = colnames(mat) res=list(res.eta=res.eta, eta=res.eta$minimum, mat2=mat2) invisible(res) }
test_that("auto_fselector function works", { afs = auto_fselector(method = "random_search", learner = lrn("classif.rpart"), resampling = rsmp ("holdout"), measure = msr("classif.ce"), term_evals = 50, batch_size = 10) expect_class(afs, "AutoFSelector") expect_class(afs$instance_args$terminator, "TerminatorEvals") afs = auto_fselector(method = "random_search", learner = lrn("classif.rpart"), resampling = rsmp ("holdout"), measure = msr("classif.ce"), term_time = 50, batch_size = 10) expect_class(afs, "AutoFSelector") expect_class(afs$instance_args$terminator, "TerminatorRunTime") afs = auto_fselector(method = "random_search", learner = lrn("classif.rpart"), resampling = rsmp ("holdout"), measure = msr("classif.ce"), term_evals = 10, term_time = 50, batch_size = 10) expect_class(afs, "AutoFSelector") expect_class(afs$instance_args$terminator, "TerminatorCombo") })
convert_legacy <- function(x) { UseMethod("convert_legacy", x) } convert_legacy.vp <- function(x) { assert_that(inherits(x, "vp")) names(x$data) <- sub("HGHT", "height", names(x$data)) x } convert_legacy.vpts <- function(x) { assert_that(inherits(x, "vpts")) names(x) <- sub("heights", "height", names(x)) names(x) <- sub("dates", "datetime", names(x)) x }
library("testthat") library("gratia") library("mgcv") library("ggplot2") test_that("draw() works with continuous by", { plt <- draw(su_m_cont_by) expect_doppelganger("continuous by-variable smmoth", plt) }) test_that("draw() works with continuous by and fixed scales", { plt <- draw(su_m_cont_by, scales = "fixed") expect_s3_class(plt, "ggplot") }) test_that("evaluate_smooth() works with continuous by", { withr::local_options(lifecycle_verbosity = "quiet") sm <- evaluate_smooth(su_m_cont_by, "s(x2)") expect_s3_class(sm, "evaluated_1d_smooth") }) test_that("is_by_smooth() is TRUE with continuous by", { expect_true(is_by_smooth(su_m_cont_by[["smooth"]][[1]])) }) test_that("is_factor_by_smooth() is FALSE with continuous by", { expect_false(is_factor_by_smooth(su_m_cont_by[["smooth"]][[1]])) }) test_that("is_continuous_by_smooth() is TRUE with continuous by", { expect_true(is_continuous_by_smooth(su_m_cont_by[["smooth"]][[1]])) }) test_that("get_by_smooth works", { sm <- get_by_smooth(su_m_factor_by, "s(x2)", level = "1") expect_s3_class(sm, "mgcv.smooth") expect_equal(sm, su_m_factor_by[["smooth"]][[1L]]) sm <- get_by_smooth(su_m_factor_by_gamm, "s(x2)", level = "1") expect_s3_class(sm, "mgcv.smooth") expect_equal(sm, su_m_factor_by_gamm[["gam"]][["smooth"]][[1L]]) expect_error(get_by_smooth(su_m_factor_by, "s(x4)", level = "1"), "The requested smooth 's(x4)' is not a by smooth.", fixed = TRUE) expect_error(get_by_smooth(su_m_factor_by, "s(x2)"), "No value provided for argument 'level':", fixed = TRUE) expect_error(get_by_smooth(su_m_factor_by, "s(x2)", level = "4"), "Invalid 'level' for smooth 's(x2)'.", fixed = TRUE) }) test_that("draw.gam works with select and parametric = TRUE", { plt <- draw(su_m_factor_by, select = 's(x2):fac1', parametric = TRUE) expect_doppelganger("draw.gam-user-select-and-parametric-true", plt) })
est_pwmcov <- function(x, order = 0:3, distr = NULL, distr.trim = c(0, 0)) { if (inherits(x, c("PWMs", "TLMoments", "parameters", "quantiles"))) stop("est_pwmcov is only for data vectors or matrices. ") if (is.double(order)) order <- as.integer(order) if (!is.integer(order)) stop("order has to be integer type!") if (!is.null(distr) && distr != "gev") stop("distr has to be NULL (nonparametric) or \"gev\"") if (!is.null(distr) && (!are.integer.like(distr.trim[1], distr.trim[2]) | length(distr.trim) != 2)) stop("If distr is not NULL, distr.trim has to be a integer-like vector of length 2. ") UseMethod("est_pwmcov") } est_pwmcov.numeric <- function(x, order = 0:3, distr = NULL, distr.trim = c(0, 0)) { if (is.null(distr)) { r <- stats::cov(pseudo(x, order)) } else { p <- parameters(TLMoments(x, leftrim = distr.trim[1], rightrim = distr.trim[2], na.rm = TRUE), distr) if (p["shape"] >= .5) { warning("estimated shape parameter is too high. ") r <- matrix(Inf, nrow = length(order), ncol = length(order)) } else { r <- parametricPWMCov(distr, order, scale = p["scale"], shape = p["shape"]) } } rownames(r) <- colnames(r) <- buildNames("beta", order) out <- r / sum(!is.na(x)) attr(out, "distribution") <- distr out } est_pwmcov.matrix <- function(x, order = 0:3, distr = NULL, distr.trim = c(0, 0)) { J <- ncol(x) pseudos <- lapply(1L:J, function(i) pseudo(x[, i], order)) sigma <- stats::cov(do.call("cbind", pseudos), use = "pairwise.complete.obs") rownames(sigma) <- colnames(sigma) <- buildNames("beta", order, 1:J) if (!is.null(distr)) { xl <- lapply(1:ncol(x), function(i) x[, i]) p <- parameters(TLMoments(xl, leftrim = distr.trim[1], rightrim = distr.trim[2], na.rm = TRUE), distr) r <- lapply(p, function(p) { parametricPWMCov(distr, order, scale = p["scale"], shape = p["shape"]) }) sigma <- blockdiag_list(r, sigma) } rs <- apply(x, 2, function(y) sum(!is.na(y))/length(y)) vorf <- do.call(rbind, lapply(1:J, function(i) { do.call(cbind, lapply(1:J, function(j) { matrix(min(c(rs[i], rs[j]))/(rs[i] * rs[j]), nrow = length(order), ncol = length(order)) })) })) out <- vorf*sigma / max(apply(x, 2, function(y) sum(!is.na(y)))) attr(out, "distribution") <- distr out }
massageExamples <- function(pkg, files, outFile = stdout(), use_gct = FALSE, addTiming = FALSE, ..., commentDonttest = TRUE) { if(dir.exists(files[1L])) { old <- Sys.getlocale("LC_COLLATE") Sys.setlocale("LC_COLLATE", "C") files <- sort(Sys.glob(file.path(files, "*.R"))) Sys.setlocale("LC_COLLATE", old) } if(is.character(outFile)) { out <- file(outFile, "wt") on.exit(close(out)) cntFile <- paste0(outFile, "-cnt") } else { out <- outFile cntFile <- NULL } count <- 0L lines <- c(paste0('pkgname <- "', pkg, '"'), 'source(file.path(R.home("share"), "R", "examples-header.R"))', if (use_gct) { gct_n <- as.integer(Sys.getenv("_R_CHECK_GCT_N_", "0")) if(!is.na(gct_n) && gct_n > 0L) sprintf("gctorture2(%s)", gct_n) else "gctorture(TRUE)" }, "options(warn = 1)") cat(lines, sep = "\n", file = out) if(.Platform$OS.type == "windows") cat("options(pager = \"console\")\n", file = out) if(addTiming) { cat("base::assign(\".ExTimings\", \"", pkg, "-Ex.timings\", pos = 'CheckExEnv')\n", sep="", file = out) cat("base::cat(\"name\\tuser\\tsystem\\telapsed\\n\", file=base::get(\".ExTimings\", pos = 'CheckExEnv'))\n", file = out) cat("base::assign(\".format_ptime\",", "function(x) {", " if(!is.na(x[4L])) x[1L] <- x[1L] + x[4L]", " if(!is.na(x[5L])) x[2L] <- x[2L] + x[5L]", " options(OutDec = '.')", " format(x[1L:3L], digits = 7L)", "},", "pos = 'CheckExEnv')\n", sep = "\n", file = out) cat(" } if(pkg == "tcltk") { if(capabilities("tcltk")) cat("require('tcltk')\n\n", file = out) else cat("q()\n\n", file = out) } else if(pkg != "base") cat("library('", pkg, "')\n\n", sep = "", file = out) cat("base::assign(\".oldSearch\", base::search(), pos = 'CheckExEnv')\n", file = out) cat("base::assign(\".old_wd\", base::getwd(), pos = 'CheckExEnv')\n", file = out) for(file in files) { nm <- sub("\\.R$", "", basename(file)) nm <- gsub("[^- .a-zA-Z0-9_]", ".", nm, perl = TRUE, useBytes = TRUE) if (pkg == "grDevices" && nm == "postscript") next if (pkg == "graphics" && nm == "text") next if(!file.exists(file)) stop("file ", file, " cannot be opened", domain = NA) lines <- readLines(file) have_examples <- any(grepl("_ Examples _| lines, perl = TRUE, useBytes = TRUE)) com <- grep("^ lines1 <- if(length(com)) lines[-com] else lines have_par <- any(grepl("[^a-zA-Z0-9.]par\\(|^par\\(", lines1, perl = TRUE, useBytes = TRUE)) have_contrasts <- any(grepl("options\\(contrasts", lines1, perl = TRUE, useBytes = TRUE)) if(have_examples) cat("cleanEx()\nnameEx(\"", nm, "\")\n", sep = "", file = out) cat(" cat("flush(stderr()); flush(stdout())\n\n", file = out) if(addTiming) cat("base::assign(\".ptime\", proc.time(), pos = \"CheckExEnv\")\n", file = out) if (commentDonttest) { dont_test <- FALSE for (line in lines) { if(any(grepl("^[[:space:]]* perl = TRUE, useBytes = TRUE))) { dont_test <- TRUE count <- count + 1L } if(!dont_test) cat(line, "\n", sep = "", file = out) if(any(grepl("^[[:space:]]* perl = TRUE, useBytes = TRUE))) dont_test <- FALSE } } else for (line in lines) cat(line, "\n", sep = "", file = out) if(addTiming) { cat("base::assign(\".dptime\", (proc.time() - get(\".ptime\", pos = \"CheckExEnv\")), pos = \"CheckExEnv\")\n", file = out) cat("base::cat(\"", nm, "\", base::get(\".format_ptime\", pos = 'CheckExEnv')(get(\".dptime\", pos = \"CheckExEnv\")), \"\\n\", file=base::get(\".ExTimings\", pos = 'CheckExEnv'), append=TRUE, sep=\"\\t\")\n", sep = "", file = out) } if(have_par) cat("graphics::par(get(\"par.postscript\", pos = 'CheckExEnv'))\n", file = out) if(have_contrasts) cat("base::options(contrasts = c(unordered = \"contr.treatment\",", "ordered = \"contr.poly\"))\n", sep="", file = out) } cat(readLines(file.path(R.home("share"), "R", "examples-footer.R")), sep = "\n", file = out) if(count && !is.null(cntFile)) writeLines(as.character(count), cntFile) } Rdiff <- function(from, to, useDiff = FALSE, forEx = FALSE, nullPointers = TRUE, Log = FALSE) { clean <- function(txt) { if(!length(txt)) return(txt) if(length(top <- grep("^(R version|R : Copyright|R Under development)", txt, perl = TRUE, useBytes = TRUE)) && length(bot <- grep("quit R.$", txt, perl = TRUE, useBytes = TRUE))) txt <- txt[-(top[1L]:bot[1L])] ll <- grep("</HEADER>", txt, fixed = TRUE, useBytes = TRUE) if(length(ll)) txt <- txt[-seq_len(max(ll))] ll <- grep("<FOOTER>", txt, fixed = TRUE, useBytes = TRUE) if(length(ll)) txt <- txt[seq_len(max(ll) - 1L)] if(forEx) { ll <- grep('".old_wd"', txt, fixed = TRUE, useBytes = TRUE) if(length(ll)) txt <- txt[-ll] } nl <- length(txt) if(nl > 3L && startsWith(txt[nl-2L], "> proc.time()")) txt <- txt[1:(nl-3L)] txt <- txt[(cumsum(txt == "> cumsum(txt == "> if (nullPointers) { txt <- gsub("<(environment|bytecode|pointer|promise): [x[:xdigit:]]+>", "<\\1: 0>", txt) txt <- sub("<hashtable.*>", "<hashtable output>", txt) } txt <- .canonicalize_quotes(txt) if(.Platform$OS.type == "windows") { txt <- gsub(paste0("(",rawToChar(as.raw(0x91)),"|",rawToChar(as.raw(0x92)),")"), "'", txt, perl = TRUE, useBytes = TRUE) txt <- gsub(paste0("(",rawToChar(as.raw(0x93)),"|",rawToChar(as.raw(0x94)),")"), '"', txt, perl = TRUE, useBytes = TRUE) } txt <- txt[!grepl('options(pager = "console")', txt, fixed = TRUE, useBytes = TRUE)] pat <- '(^Time |^Loading required package|^Package [A-Za-z][A-Za-z0-9]+ loaded|^<(environment|promise|pointer|bytecode):|^/CreationDate |^/ModDate |^/Producer |^End.Don\'t show)' txt[!grepl(pat, txt, perl = TRUE, useBytes = TRUE)] } clean2 <- function(txt) { eoh <- grep("^> options\\(warn = 1\\)$", txt) if(length(eoh)) txt[-(1L:eoh[1L])] else txt } left <- clean(readLines(from)) right <- clean(readLines(to)) if (forEx) { left <- clean2(left) left <- filtergrep("[.](format_|)ptime", left, useBytes = TRUE) right <- clean2(right) } if (!useDiff && (length(left) == length(right))) { bleft <- gsub("[[:space:]]*$", "", left) bright <- gsub("[[:space:]]*$", "", right) bleft <- gsub("[[:space:]]+", " ", bleft) bright <- gsub("[[:space:]]+", " ", bright) if(all(bleft == bright)) return(if(Log) list(status = 0L, out = character()) else 0L) cat("\n") diff <- bleft != bright for(i in which(diff)) cat(i,"c", i, "\n< ", left[i], "\n", "---\n> ", right[i], "\n", sep = "") if (Log) { i <- which(diff) out <- paste0(i,"c", i, "\n< ", left[i], "\n", "---\n> ", right[i]) list(status = 1L, out = out) } else 1L } else { out <- character() if(!useDiff) { cat("\nfiles differ in number of lines:\n") out <- "files differ in number of lines" } a <- tempfile("Rdiffa") writeLines(left, a) b <- tempfile("Rdiffb") writeLines(right, b) if (Log) { tf <- tempfile() status <- system2("diff", c("-bw", shQuote(a), shQuote(b)), stdout = tf, stderr = tf) list(status = status, out = c(out, readLines(tf))) } else system(paste("diff -bw", shQuote(a), shQuote(b))) } } testInstalledPackages <- function(outDir = ".", errorsAreFatal = TRUE, scope = c("both", "base", "recommended"), types = c("examples", "tests", "vignettes"), srcdir = NULL, Ropts = "", ...) { ow <- options(warn = 1) on.exit(ow) scope <- match.arg(scope) status <- 0L pkgs <- character() known_packages <- .get_standard_package_names() if (scope %in% c("both", "base")) pkgs <- known_packages$base if (scope %in% c("both", "recommended")) pkgs <- c(pkgs, known_packages$recommended) mc.cores <- as.integer(Sys.getenv("TEST_MC_CORES", "1")) if (.Platform$OS.type != "windows" && !is.na(mc.cores) && mc.cores > 1L) { do_one <- function(pkg) { if(is.null(srcdir) && pkg %in% known_packages$base) srcdir <- R.home("tests/Examples") testInstalledPackage(pkg, .Library, outDir, types, srcdir, Ropts, ...) } res <- parallel::mclapply(pkgs, do_one, mc.cores = mc.cores, mc.preschedule = FALSE) res <- unlist(res) != 0L if (any(res)) { for(i in which(res)) warning(gettextf("testing '%s' failed", pkgs[i]), domain = NA, call. = FALSE, immediate. = TRUE) if (errorsAreFatal) stop(sprintf(ngettext(sum(res), "%d of the package tests failed", "%d of the package tests failed", domain = "R-tools"), sum(res)), domain = NA, call. = FALSE) } } else { for (pkg in pkgs) { if(is.null(srcdir) && pkg %in% known_packages$base) srcdir <- R.home("tests/Examples") res <- testInstalledPackage(pkg, .Library, outDir, types, srcdir, Ropts, ...) if (res) { status <- 1L msg <- gettextf("testing '%s' failed", pkg) if (errorsAreFatal) stop(msg, domain = NA, call. = FALSE) else warning(msg, domain = NA, call. = FALSE, immediate. = TRUE) } } } invisible(status) } testInstalledPackage <- function(pkg, lib.loc = NULL, outDir = ".", types = c("examples", "tests", "vignettes"), srcdir = NULL, Ropts = "", ...) { types <- match.arg(types, c("examples", "tests", "vignettes"), several.ok=TRUE) pkgdir <- find.package(pkg, lib.loc) owd <- setwd(outDir) on.exit(setwd(owd)) strict <- as.logical(Sys.getenv("R_STRICT_PACKAGE_CHECK", "FALSE")) if ("examples" %in% types) { message(gettextf("Testing examples for package %s", sQuote(pkg)), domain = NA) Rfile <- .createExdotR(pkg, pkgdir, silent = TRUE, ...) if (length(Rfile)) { outfile <- paste0(pkg, "-Ex.Rout") failfile <- paste0(outfile, ".fail") savefile <- paste0(outfile, ".prev") if (file.exists(outfile)) file.rename(outfile, savefile) unlink(failfile) cmd <- paste(shQuote(file.path(R.home("bin"), "R")), "CMD BATCH --vanilla --no-timing", Ropts, shQuote(Rfile), shQuote(failfile)) if (.Platform$OS.type == "windows") Sys.setenv(R_LIBS="") else cmd <- paste("R_LIBS=", cmd) res <- system(cmd) if (res) return(invisible(1L)) else file.rename(failfile, outfile) savefile <- paste0(outfile, ".save") if (!is.null(srcdir)) savefile <- file.path(srcdir, savefile) else { tfile <- file.path(pkgdir, "tests", "Examples" , savefile) if(!file.exists(savefile) && file.exists(tfile)) savefile <- tfile } if (file.exists(savefile)) { if (file.exists(savefile)) { message(gettextf(" comparing %s to %s ...", sQuote(outfile), sQuote(basename(savefile))), appendLF = FALSE, domain = NA) cmd <- sprintf("invisible(tools::Rdiff('%s','%s',TRUE,TRUE))", outfile, savefile) out <- R_runR(cmd, "--vanilla --no-echo") if(length(out)) { if(strict) message(" ERROR") else message(" NOTE") writeLines(paste0(" ", out)) if(strict) stop(" ", "results differ from reference results") } else { message(" OK") } } } else { prevfile <- paste0(outfile, ".prev") if (file.exists(prevfile)) { message(gettextf(" comparing %s to %s ...", sQuote(outfile), sQuote(basename(prevfile))), appendLF = FALSE, domain = NA) cmd <- sprintf("invisible(tools::Rdiff('%s','%s',TRUE,TRUE))", outfile, prevfile) out <- R_runR(cmd, "--vanilla --no-echo") if(length(out)) { message(" NOTE") writeLines(paste0(" ", out)) } else { message(" OK") } } } } else warning(gettextf("no examples found for package %s", sQuote(pkg)), call. = FALSE, domain = NA) } if ("tests" %in% types && dir.exists(d <- file.path(pkgdir, "tests"))) { this <- paste0(pkg, "-tests") unlink(this, recursive = TRUE) dir.create(this) file.copy(Sys.glob(file.path(d, "*")), this, recursive = TRUE) setwd(this) message(gettextf("Running specific tests for package %s", sQuote(pkg)), domain = NA) Rfiles <- dir(".", pattern="\\.[rR]$") for(f in Rfiles) { message(gettextf(" Running %s", sQuote(f)), domain = NA) outfile <- sub("rout$", "Rout", paste0(f, "out")) cmd <- paste(shQuote(file.path(R.home("bin"), "R")), "CMD BATCH --vanilla --no-timing", Ropts, shQuote(f), shQuote(outfile)) cmd <- if (.Platform$OS.type == "windows") paste(cmd, "LANGUAGE=C") else paste("LANGUAGE=C", cmd) res <- system(cmd) if (res) { file.rename(outfile, paste0(outfile, ".fail")) return(invisible(1L)) } savefile <- paste0(outfile, ".save") if (file.exists(savefile)) { message(gettextf(" comparing %s to %s ...", sQuote(outfile), sQuote(savefile)), appendLF = FALSE, domain = NA) res <- Rdiff(outfile, savefile) if (!res) message(" OK") } } setwd(owd) } if ("vignettes" %in% types && dir.exists(file.path(pkgdir, "doc"))) { message(gettextf("Running vignettes for package %s", sQuote(pkg)), domain = NA) writeLines(format(checkVignettes(pkg, lib.loc = lib.loc, latex = FALSE, weave = TRUE))) } invisible(0L) } .runPackageTestsR <- function(...) { cat("\n"); status <- .runPackageTests(...) q("no", status = status) } .runPackageTests <- function(use_gct = FALSE, use_valgrind = FALSE, Log = NULL, stop_on_error = TRUE, ...) { tlim <- Sys.getenv("_R_CHECK_ONE_TEST_ELAPSED_TIMEOUT_", Sys.getenv("_R_CHECK_TESTS_ELAPSED_TIMEOUT_", Sys.getenv("_R_CHECK_ELAPSED_TIMEOUT_"))) tlim <- get_timeout(tlim) if (!is.null(Log)) Log <- file(Log, "wt") WINDOWS <- .Platform$OS.type == "windows" td0 <- as.numeric(Sys.getenv("_R_CHECK_TIMINGS_")) theta <- as.numeric(Sys.getenv("_R_CHECK_TEST_TIMING_CPU_TO_ELAPSED_THRESHOLD_", NA_character_)) if (is.na(td0)) td0 <- Inf print_time <- function(t1, t2, Log) { td <- t2 - t1 if(td[3L] < td0) td2 <- "" else { td2 <- if (td[3L] > 600) { td <- td/60 if(WINDOWS) sprintf(" [%dm]", round(td[3L])) else sprintf(" [%dm/%dm]", round(sum(td[-3L])), round(td[3L])) } else { if(WINDOWS) sprintf(" [%ds]", round(td[3L])) else sprintf(" [%ds/%ds]", round(sum(td[-3L])), round(td[3L])) } } message(td2, domain = NA) if (!is.null(Log)) cat(td2, "\n", sep = "", file = Log) } runone <- function(f) { message(gettextf(" Running %s", sQuote(f)), appendLF = FALSE, domain = NA) if(!is.null(Log)) cat(" Running ", sQuote(f), sep = "", file = Log) outfile <- sub("rout$", "Rout", paste0(f, "out")) cmd <- paste(shQuote(file.path(R.home("bin"), "R")), "CMD BATCH --vanilla", if(use_valgrind) "--debugger=valgrind", shQuote(f), shQuote(outfile)) if (WINDOWS) { Sys.setenv(LANGUAGE="C") Sys.setenv(R_TESTS="startup.Rs") } else cmd <- paste("LANGUAGE=C", "R_TESTS=startup.Rs", cmd) t1 <- proc.time() res <- system(cmd, timeout = tlim) t2 <- proc.time() print_time(t1, t2, Log) if (!WINDOWS && !is.na(theta)) { td <- t2 - t1 cpu <- sum(td[-3L]) if(cpu >= pmax(theta * td[3L], 1)) { ratio <- round(cpu/td[3L], 1L) msg <- sprintf("Running R code in %s had CPU time %g times elapsed time\n", sQuote(f), ratio) cat(msg) if (!is.null(Log)) cat(msg, file = Log) } } if (res) { if(identical(res, 124L)) report_timeout(tlim) file.rename(outfile, paste0(outfile, ".fail")) return(1L) } savefile <- paste0(outfile, ".save") if (file.exists(savefile)) { message(gettextf(" Comparing %s to %s ...", sQuote(outfile), sQuote(savefile)), appendLF = FALSE, domain = NA) if(!is.null(Log)) cat(" Comparing ", sQuote(outfile), " to ", sQuote(savefile), " ...", sep = "", file = Log) if(!is.null(Log)) { ans <- Rdiff(outfile, savefile, TRUE, Log = TRUE) writeLines(ans$out) writeLines(ans$out, Log) res <- ans$status } else res <- Rdiff(outfile, savefile, TRUE) if (!res) { message(" OK") if(!is.null(Log)) cat(" OK\n", file = Log) } } 0L } file.copy(file.path(R.home("share"), "R", "tests-startup.R"), "startup.Rs") if (use_gct) cat("gctorture(TRUE)" , file = "startup.Rs", append = TRUE) nfail <- 0L Rinfiles <- dir(".", pattern="\\.Rin$") for(f in Rinfiles) { Rfile <- sub("\\.Rin$", ".R", f) message(" Creating ", sQuote(Rfile), domain = NA) if (!is.null(Log)) cat(" Creating ", sQuote(Rfile), "\n", sep = "", file = Log) cmd <- paste(shQuote(file.path(R.home("bin"), "R")), "CMD BATCH --no-timing --vanilla --no-echo", f) if (system(cmd)) { warning("creation of ", sQuote(Rfile), " failed", domain = NA) if (!is.null(Log)) cat("Warning: creation of ", sQuote(Rfile), " failed\n", sep = "", file = Log) } else if (file.exists(Rfile)) nfail <- nfail + runone(Rfile) if (nfail > 0) return(nfail) } Rfiles <- dir(".", pattern="\\.[rR]$") for(f in Rfiles) { nfail <- nfail + runone(f) if (nfail > 0 && stop_on_error) return(nfail) } if (!is.null(Log)) close(Log) return(nfail) } .createExdotR <- function(pkg, pkgdir, silent = FALSE, use_gct = FALSE, addTiming = FALSE, ..., commentDontrun = TRUE, commentDonttest = TRUE) { Rfile <- paste0(pkg, "-Ex.R") db <- Rd_db(basename(pkgdir), lib.loc = dirname(pkgdir)) if (!length(db)) { message("no parsed files found") return(invisible(NULL)) } if (!silent) message(" Extracting from parsed Rd's ", appendLF = FALSE, domain = NA) files <- names(db) if (pkg == "grDevices") files <- files[!grepl("^(unix|windows)/", files)] filedir <- tempfile() dir.create(filedir) on.exit(unlink(filedir, recursive = TRUE)) cnt <- 0L for(f in files) { nm <- sub("\\.[Rr]d$", "", basename(f)) Rd2ex(db[[f]], file.path(filedir, paste0(nm, ".R")), defines = NULL, commentDontrun = commentDontrun, commentDonttest = commentDonttest) cnt <- cnt + 1L if(!silent && cnt %% 10L == 0L) message(".", appendLF = FALSE, domain = NA) } if (!silent) message() nof <- length(Sys.glob(file.path(filedir, "*.R"))) if(!nof) return(invisible(NULL)) massageExamples(pkg, filedir, Rfile, use_gct, addTiming, commentDonttest = commentDonttest, ...) invisible(Rfile) } testInstalledBasic <- function(scope = c("basic", "devel", "both", "internet")) { scope <- match.arg(scope) oLCcoll <- Sys.getlocale("LC_COLLATE") ; on.exit(Sys.setlocale("LC_COLLATE", oLCcoll)) Sys.setlocale("LC_COLLATE", "C") tests1 <- c("eval-etc", "simple-true", "arith-true", "lm-tests", "ok-errors", "method-dispatch", "array-subset", "p-r-random-tests", "d-p-q-r-tst-2", "any-all", "structure", "d-p-q-r-tests") tests2 <- c("complex", "print-tests", "lapack", "datasets", "datetime", "iec60559") tests3 <- c("reg-tests-1a", "reg-tests-1b", "reg-tests-1c", "reg-tests-2", "reg-tests-1d", "reg-examples1", "reg-examples2", "reg-packages", "p-qbeta-strict-tst", "reg-IO", "reg-IO2", "reg-plot", "reg-S4", "reg-BLAS") runone <- function(f, diffOK = FALSE, inC = TRUE) { f <- paste0(f, ".R") if (!file.exists(f)) { if (!file.exists(fin <- paste0(f, "in"))) stop("file ", sQuote(f), " not found", domain = NA) message("creating ", sQuote(f), domain = NA) cmd <- paste(shQuote(file.path(R.home("bin"), "R")), "--vanilla --no-echo -f", fin) if (system(cmd)) stop("creation of ", sQuote(f), " failed", domain = NA) cat("\n", file = f, append = TRUE) on.exit(unlink(f)) } message(" running code in ", sQuote(f), domain = NA) outfile <- sub("rout$", "Rout", paste0(f, "out")) cmd <- paste(shQuote(file.path(R.home("bin"), "R")), "CMD BATCH --vanilla --no-timing", shQuote(f), shQuote(outfile)) extra <- paste("LANGUAGE=en", "LC_COLLATE=C", "R_DEFAULT_PACKAGES=", "SRCDIR=.") if (inC) extra <- paste(extra, "LC_ALL=C") if (.Platform$OS.type == "windows") { Sys.setenv(LANGUAGE="C") Sys.setenv(R_DEFAULT_PACKAGES="") Sys.setenv(LC_COLLATE="C") Sys.setenv(SRCDIR=".") } else cmd <- paste(extra, cmd) res <- system(cmd) if (res) { file.rename(outfile, paste0(outfile, ".fail")) message("FAILED") return(1L) } savefile <- paste0(outfile, ".save") if (file.exists(savefile)) { message(gettextf(" comparing %s to %s ...", sQuote(outfile), sQuote(savefile)), appendLF = FALSE, domain = NA) res <- Rdiff(outfile, savefile, TRUE) if (!res) message(" OK") else if (!diffOK) return(1L) } 0L } owd <- setwd(file.path(R.home(), "tests")) on.exit(setwd(owd), add=TRUE) if (scope %in% c("basic", "both")) { message("running strict specific tests", domain = NA) for (f in tests1) if (runone(f)) return(1L) message("running sloppy specific tests", domain = NA) for (f in tests2) runone(f, TRUE) message("running regression tests", domain = NA) for (f in tests3) { if (runone(f)) return(invisible(1L)) if (f == "reg-plot") { message(" comparing 'reg-plot.pdf' to 'reg-plot.pdf.save' ...", appendLF = FALSE, domain = NA) res <- Rdiff("reg-plot.pdf", "reg-plot.pdf.save") if(res != 0L) message("DIFFERED") else message("OK") } } runone("reg-translation", inC=FALSE) runone("reg-tests-3", TRUE) runone("reg-examples3", TRUE) message("running tests of plotting Latin-1", domain = NA) message(" expect failure or some differences if not in a Latin or UTF-8 locale", domain = NA) runone("reg-plot-latin1", TRUE, inC=FALSE) message(" comparing 'reg-plot-latin1.pdf' to 'reg-plot-latin1.pdf.save' ...", appendLF = FALSE, domain = NA) res <- Rdiff("reg-plot-latin1.pdf", "reg-plot-latin1.pdf.save") if(res != 0L) message("DIFFERED") else message("OK") } if (scope %in% c("devel", "both")) { message("running tests of date-time printing\n expect platform-specific differences", domain = NA) runone("datetime2") message("running tests of consistency of as/is.*", domain = NA) runone("isas-tests") message("running tests of random deviate generation -- fails occasionally") runone("p-r-random-tests", TRUE) message("running tests demos from base and stats", domain = NA) if (runone("demos")) return(invisible(1L)) if (runone("demos2")) return(invisible(1L)) message("running tests of primitives", domain = NA) if (runone("primitives")) return(invisible(1L)) message("running regexp regression tests", domain = NA) if (runone("utf8-regex", inC = FALSE)) return(invisible(1L)) if (runone("PCRE")) return(invisible(1L)) message("running tests of CRAN tools", domain = NA) if (runone("CRANtools")) return(invisible(1L)) message("running tests to possibly trigger segfaults", domain = NA) if (runone("no-segfault")) return(invisible(1L)) } if (scope %in% "internet") { message("running tests of Internet functions", domain = NA) runone("internet") message("running more Internet and socket tests", domain = NA) runone("internet2") runone("libcurl") } invisible(0L) } detachPackages <- function(pkgs, verbose = TRUE) { pkgs <- pkgs[pkgs %in% search()] if(!length(pkgs)) return() if(verbose){ msg <- paste("detaching", paste(sQuote(pkgs), collapse = ", ")) cat("", strwrap(msg, exdent = 2L), "", sep = "\n") } isPkg <- startsWith(pkgs,"package:") for(item in pkgs[!isPkg]) { pos <- match(item, search()) if(!is.na(pos)) .detach(pos) } pkgs <- pkgs[isPkg] if(!length(pkgs)) return() deps <- lapply(pkgs, function(x) if(exists(".Depends", x, inherits = FALSE)) get(".Depends", x) else character()) names(deps) <- pkgs unload <- nzchar(Sys.getenv("_R_CHECK_UNLOAD_NAMESPACES_")) exclusions <- c("grid", "tcltk") exclusions <- paste0("package:", exclusions) while(length(deps)) { unl <- unlist(deps) for(i in seq_along(deps)) { this <- names(deps)[i] if(.rmpkg(this) %in% unl) next else break } try(detach(this, character.only = TRUE, unload = unload && (this %notin% exclusions), force = TRUE)) deps <- deps[-i] } } .Rdiff <- function(no.q = FALSE) { options(showErrorCalls=FALSE) Usage <- function() { cat("Usage: R CMD Rdiff FROM-FILE TO-FILE EXITSTATUS", "", "Diff R output files FROM-FILE and TO-FILE discarding the R startup message,", "where FROM-FILE equal to '-' means stdin.", "", "Options:", " -h, --help print this help message and exit", " -v, --version print version info and exit", "", "Report bugs at <https://bugs.R-project.org>.", sep = "\n") } do_exit <- if(no.q) function(status = 0L) (if(status) stop else message)( ".Rdiff() exit status ", status) else function(status = 0L) q("no", status = status, runLast = FALSE) args <- commandArgs(TRUE) if (!length(args)) { Usage() do_exit(1L) } args <- paste(args, collapse=" ") args <- strsplit(args,'nextArg', fixed = TRUE)[[1L]][-1L] if (length(args) == 1L) { if(args[1L] %in% c("-h", "--help")) { Usage(); do_exit(0) } if(args[1L] %in% c("-v", "--version")) { cat("R output diff: ", R.version[["major"]], ".", R.version[["minor"]], " (r", R.version[["svn rev"]], ")\n", sep = "") cat("", .R_copyright_msg(2000), "This is free software; see the GNU General Public License version 2", "or later for copying conditions. There is NO warranty.", sep = "\n") do_exit(0) } Usage() do_exit(1L) } if (length(args) == 0L) { Usage() do_exit(1L) } exitstatus <- as.integer(args[3L]) if(is.na(exitstatus)) exitstatus <- 0L left <- args[1L] if(left == "-") left <- "stdin" status <- Rdiff(left, args[2L], useDiff = TRUE) if(status) status <- exitstatus do_exit(status) }
test_that("check_files works", { expect_identical(check_files(character(0)), character(0)) expect_invisible(check_files(character(0))) expect_identical( check_files(character(0), exists = TRUE), check_files(character(0), exists = TRUE) ) expect_invisible(check_files(character(0), exists = TRUE)) tmp <- withr::local_tempfile() expect_identical(check_files(tmp, exists = FALSE), check_files(tmp, exists = FALSE)) expect_invisible(check_files(tmp, exists = FALSE)) writeLines(tmp, text = "some test data") expect_identical(check_files(tmp, exists = TRUE), check_files(tmp, exists = TRUE)) expect_invisible(check_files(tmp, exists = TRUE)) }) test_that("check_files errors", { expect_chk_error(check_files(NA_character_)) tmp <- withr::local_tempfile() expect_chk_error( check_files(tmp), "^`tmp` must specify existing files [(]'.*' can't be found[)][.]$" ) expect_chk_error( check_files(tempdir()), "^`tempdir[(][)]` must specify files [(]'.*' is a directory[)][.]$" ) expect_chk_error( check_files(tempdir(), exists = FALSE), "^`tempdir[(][)]` must specify files [(]'.*' is a directory[)][.]$" ) writeLines(tmp, text = "some test data") expect_chk_error( check_files(tmp, exists = FALSE), "^`tmp` must not specify existing files [(]'.*' exists[)][.]$" ) })
library(dplyr, warn.conflicts = FALSE) library(tidyr, warn.conflicts = FALSE)
format_depend <- function(package, version, remote_provider, verbose = FALSE) { dep <- list( "@type" = "SoftwareApplication", identifier = package, name = package ) if (version != "*") { dep$version <- version } dep$provider <- guess_provider(package, verbose) sameAs <- get_sameAs(dep$provider, remote_provider, dep$identifier) if (! is.null(sameAs)) { dep$sameAs <- sameAs } return(dep) } get_sameAs <- function(provider, remote_provider, identifier) { url_generators <- list( "Comprehensive R Archive Network (CRAN)" = get_url_cran_package, "BioConductor" = get_url_bioconductor_package ) if (remote_provider != "") { get_url_github(gsub("github::", "", remote_provider)) } else if (! is.null(provider) && provider$name %in% names(url_generators)) { url_generators[[provider$name]](identifier) } } parse_depends <- function(deps, verbose = FALSE) { purrr::pmap( list(deps$package, deps$version, deps$remote_provider), format_depend, verbose = verbose ) } guess_dep_id <- function(dep) { if (dep$name == "R") { return("https://www.r-project.org") } url_generators <- list( "cran.r-project.org" = get_url_cran_package_2, "www.bioconductor.org" = get_url_bioconductor_package_2 ) if (! is.null(dep$provider)) { provider_url <- dep$provider$url is_matching <- sapply(names(url_generators), grepl, x = provider_url) if (any(is_matching)) { url_generators[[which(is_matching)[1]]](provider_url, dep$identifier) } } } add_remote_to_dep <- function(package, remotes) { remote_providers <- grep(paste0("/", package, "$"), remotes, value = TRUE) if (length(remote_providers)) remote_providers else "" } get_sys_links <- function(pkg, description = "", verbose = FALSE) { if (verbose) { cli::cat_bullet("Getting sysreqs URL from sysreqs API", bullet = "continue") } data <- get_url_rhub("get", unique(c( get_rhub_json_names("pkg", pkg), get_rhub_json_names("map", utils::URLencode(description, reserved = TRUE)) ))) if (verbose) { cli::cat_bullet("Got sysreqs URL from sysreqs API!", bullet = "tick") } data } get_rhub_json_names <- function(a, b) { sapply( X = jsonlite::fromJSON(get_url_rhub(a, b), simplifyVector = FALSE), FUN = names ) } format_sys_req <- function(url) { list("@type" = "SoftwareApplication", identifier = url) } parse_sys_reqs <- function(pkg, sys_reqs, verbose = FALSE) { if(!pingr::is_online()) return(NULL) urls <- get_sys_links(pkg, description = sys_reqs, verbose) purrr::map(urls, format_sys_req) }
searchIPA <- function(x = NULL , search = c("feature", "xsampa")) { if (is.null(x)) return(ipa_xsampa) stopifnot(search[1] %in% c("feature", "xsampa")) if (search[1] == "feature") { idx <- str_detect(ipa_xsampa$Name, x) } else { idx <- str_detect(ipa_xsampa$XSAMPA, x) } return(ipa_xsampa[idx, ]) }
`lines.procrustes` <- function(x, type=c("segments", "arrows"), choices=c(1,2), truemean = FALSE, ...) { type <- match.arg(type) X <- x$X[,choices, drop=FALSE] Y <- x$Yrot[, choices, drop=FALSE] if (truemean) { X <- sweep(X, 2, x$xmean[choices], "+") Y <- sweep(Y, 2, x$xmean[choices], "+") } if (type == "segments") ordiArgAbsorber(X[,1], X[,2], Y[,1], Y[,2], FUN = segments, ...) else ordiArgAbsorber(X[,1], X[,2], Y[,1], Y[,2], FUN = arrows, ...) invisible() }
setMethod("show", signature("abmodel"), function(object) { cat("Ensemble of bagged trees\n") cat("No of trees:", length(object@base_models), ".\n") cat("Target variable: ", get_target(object@form), ".\n") if (object@dynamic_selection == "none") { cat("Without dynamic selection.\n") } else { cat("With dynamic selection method:", object@dynamic_selection, ".\n") } }) setMethod("predict", signature("abmodel"), function(object, newdata) { switch(object@dynamic_selection, "ola" = { cat("Using OLA method to dynamically", "predict new instances...\n") OLA(object@form, object@base_models, object@data, newdata, 5) }, "knora-e" = { cat("Using KNORA-E method to dynamically", "predict new instances...\n") KNORA.E(object@form, object@base_models, object@data, newdata, 5) }, "none" = { cat("Using majority voting method", "to predict new instances...\n") Y_hat <- sapply(object@base_models, predict, newdata) apply(Y_hat, 1, majority_voting) }) })
setGeneric("clearSheet", function(object, sheet) standardGeneric("clearSheet")) setMethod("clearSheet", signature(object = "workbook", sheet = "numeric"), function(object, sheet) { xlcCall(object, "clearSheet", as.integer(sheet - 1)) invisible() } ) setMethod("clearSheet", signature(object = "workbook", sheet = "character"), function(object, sheet) { xlcCall(object, "clearSheet", sheet) invisible() } )
library(MSEtool) test.results <- paste0(Sys.Date(), 'MSEtool_V', packageVersion("MSEtool"), '.xml') options(testthat.output_file = test.results) testthat::test_dir('tests/manual/test-code', reporter = "junit") rmarkdown::render(input='tests/manual/Test_Report.Rmd', params=list(results.file=file.path('test-code',test.results))) options(testthat.output_file = NULL) testthat::test_file("tests/manual/test-code/test-checkPopDynamics.R") testthat::test_file("tests/manual/test-code/test-Data2csv.R") testthat::test_file("tests/manual/test-code/test-Data_Functions.R") testthat::test_file("tests/manual/test-code/test-Data_Plotting.R") testthat::test_file("tests/manual/test-code/test-Fease_Functions.R") testthat::test_file("tests/manual/test-code/test-Import_Data.R") testthat::test_file("tests/manual/test-code/test-MPs.R") testthat::test_file("tests/manual/test-code/test-MSE_functions.R") testthat::test_file("tests/manual/test-code/test-MSE_Plotting.R") testthat::test_file("tests/manual/test-code/test-OM_functions.R") testthat::test_file("tests/manual/test-code/test-OM_init_doc.R") testthat::test_file("tests/manual/test-code/test-OM_Plotting.R") testthat::test_file("tests/manual/test-code/test-PMobjects.R") testthat::test_file("tests/manual/test-code/test-RealIndices.R") testthat::test_file("tests/manual/test-code/test-runMSE.R") testthat::test_file("tests/manual/test-code/test-slotDescription.R")
probbit <- function(m,csi){dbinom(0:(m-1),m-1,1-csi)}
capture <- function(x, etc, err) { capt.width <- [email protected] if(capt.width) { opt.set <- try(width.old <- options(width=capt.width), silent=TRUE) if(inherits(opt.set, "try-error")) { warning( "Unable to set desired width ", capt.width, ", (", conditionMessage(attr(opt.set, "condition")), ");", "proceeding with existing setting." ) } else on.exit(options(width.old)) } capt.file <- tempfile() on.exit(unlink(capt.file), add=TRUE) res <- try({ capture.output(eval(x, etc@frame), file=capt.file) obj.out <- readLines(capt.file) }) if(inherits(res, "try-error")) err( "Failed attempting to get text representation of object: ", conditionMessage(attr(res, "condition")) ) html_ent_sub(res, etc@style) } capt_print <- function(target, current, etc, err, extra){ dots <- extra if(getRversion() >= "3.2.0") { print.match <- try( match.call( get("print", envir=etc@frame, mode='function'), as.call(c(list(quote(print), x=NULL), dots)), envir=etc@frame ) ) } else { print.match <- try( match.call( get("print", envir=etc@frame), as.call(c(list(quote(print), x=NULL), dots)) ) ) } if(inherits(print.match, "try-error")) err("Unable to compose `print` call") names(print.match)[[2L]] <- "" tar.call <- cur.call <- print.match if(length(dots)) { if(!is.null([email protected])) tar.call[[2L]] <- [email protected] if(!is.null([email protected])) cur.call[[2L]] <- [email protected] [email protected] <- deparse(tar.call)[[1L]] [email protected] <- deparse(cur.call)[[1L]] } tar.call.q <- if(is.call(target) || is.symbol(target)) call("quote", target) else target cur.call.q <- if(is.call(current) || is.symbol(current)) call("quote", current) else current if(!is.null(target)) tar.call[[2L]] <- tar.call.q if(!is.null(current)) cur.call[[2L]] <- cur.call.q if((!is.null(dim(target)) || !is.null(dim(current)))) { cur.capt <- capture(cur.call, etc, err) tar.capt <- capture(tar.call, etc, err) etc <- set_mode(etc, tar.capt, cur.capt) } else { etc <- if(etc@mode == "auto") sideBySide(etc) else etc cur.capt <- capture(cur.call, etc, err) tar.capt <- capture(tar.call, etc, err) } if(isTRUE(etc@guides)) etc@guides <- guidesPrint if(isTRUE(etc@trim)) etc@trim <- trimPrint diff.out <- line_diff(target, current, tar.capt, cur.capt, etc=etc, warn=TRUE) [email protected] <- "print" diff.out } capt_str <- function(target, current, etc, err, extra){ dots <- extra frame <- etc@frame line.limit <- [email protected] if("object" %in% names(dots)) err("You may not specify `object` as part of `extra`") if(getRversion() < "3.2.0") { str.match <- match.call( str_tpl, call=as.call(c(list(quote(str), object=NULL), dots)) ) } else { str.match <- match.call( str_tpl, call=as.call(c(list(quote(str), object=NULL), dots)), envir=etc@frame ) } names(str.match)[[2L]] <- "" if(etc@mode == "auto") etc <- sideBySide(etc) eval_try <- function(match.list, index, envir) tryCatch( eval(match.list[[index]], envir=envir), error=function(e) err("Error evaluating `", index, "` arg: ", conditionMessage(e)) ) auto.mode <- FALSE max.level.supplied <- FALSE if( max.level.pos <- match("max.level", names(str.match), nomatch=0L) ) { max.level.eval <- eval_try(str.match, "max.level", etc@frame) if(identical(max.level.eval, "auto")) { auto.mode <- TRUE str.match[["max.level"]] <- NA } else { max.level.supplied <- TRUE } } else { str.match[["max.level"]] <- NA auto.mode <- TRUE max.level.pos <- length(str.match) max.level.supplied <- FALSE } wrap <- FALSE if("strict.width" %in% names(str.match)) { res <- eval_try(str.match, "strict.width", etc@frame) wrap <- is.character(res) && length(res) == 1L && !is.na(res) && nzchar(res) && identical(res, substr("wrap", 1L, nchar(res))) } if(auto.mode) { msg <- "Specifying `%s` may cause `str` output level folding to be incorrect" if("comp.str" %in% names(str.match)) warning(sprintf(msg, "comp.str")) if("indent.str" %in% names(str.match)) warning(sprintf(msg, "indent.str")) } tar.call <- cur.call <- str.match tar.call.q <- if(is.call(target) || is.symbol(target)) call("quote", target) else target cur.call.q <- if(is.call(current) || is.symbol(current)) call("quote", current) else current if(!is.null(target)) tar.call[[2L]] <- tar.call.q if(!is.null(current)) cur.call[[2L]] <- cur.call.q capt.width <- [email protected] has.diff <- has.diff.prev <- FALSE tar.capt <- capture(tar.call, etc, err) tar.lvls <- str_levels(tar.capt, wrap=wrap) cur.capt <- capture(cur.call, etc, err) cur.lvls <- str_levels(cur.capt, wrap=wrap) prev.lvl.hi <- lvl <- max.depth <- max(tar.lvls, cur.lvls) prev.lvl.lo <- 0L first.loop <- TRUE safety <- 0L warn <- TRUE if(isTRUE(etc@guides)) etc@guides <- guidesStr if(isTRUE(etc@trim)) etc@trim <- trimStr tar.str <- tar.capt cur.str <- cur.capt diff.obj <- diff.obj.full <- line_diff( target, current, tar.str, cur.str, etc=etc, warn=warn ) if(!max.level.supplied) { repeat{ if((safety <- safety + 1L) > max.depth && !first.loop) stop( "Logic Error: exceeded list depth when comparing structures; contact ", "maintainer." ) if(!first.loop) { tar.str <- tar.capt[tar.lvls <= lvl] cur.str <- cur.capt[cur.lvls <= lvl] diff.obj <- line_diff( target, current, tar.str, cur.str, etc=etc, warn=warn ) } if([email protected]) warn <- FALSE has.diff <- suppressWarnings(any(diff.obj)) if(first.loop && !has.diff) break first.loop <- FALSE if(line.limit[[1L]] < 1L) break line.len <- diff_line_len( diff.obj@diffs, etc=etc, tar.capt=tar.str, cur.capt=cur.str ) if(!has.diff && prev.lvl.hi - lvl > 1L) { prev.lvl.lo <- lvl lvl <- lvl + as.integer((prev.lvl.hi - lvl) / 2) tar.call[[max.level.pos]] <- lvl cur.call[[max.level.pos]] <- lvl next } else if(!has.diff) { diff.obj <- diff.obj.full lvl <- NULL break } if(line.len <= line.limit[[1L]]) { break } if(lvl - prev.lvl.lo > 1L) { prev.lvl.hi <- lvl lvl <- lvl - as.integer((lvl - prev.lvl.lo) / 2) tar.call[[max.level.pos]] <- lvl cur.call[[max.level.pos]] <- lvl next } diff.obj <- diff.obj.full lvl <- NULL break } } else { tar.str <- tar.capt[tar.lvls <= max.level.eval] cur.str <- cur.capt[cur.lvls <= max.level.eval] lvl <- max.level.eval diff.obj <- line_diff(target, current, tar.str, cur.str, etc=etc, warn=warn) } if(auto.mode && !is.null(lvl) && lvl < max.depth) { str.match[[max.level.pos]] <- lvl } else if (!max.level.supplied || is.null(lvl)) { str.match[[max.level.pos]] <- NULL } tar.call <- cur.call <- str.match if(!is.null([email protected])) tar.call[[2L]] <- [email protected] if(!is.null([email protected])) cur.call[[2L]] <- [email protected] if(is.null([email protected])) diff.obj@[email protected] <- deparse(tar.call)[[1L]] if(is.null([email protected])) diff.obj@[email protected] <- deparse(cur.call)[[1L]] [email protected] <- count_diffs(diff.obj.full@diffs) [email protected] <- "str" diff.obj } capt_chr <- function(target, current, etc, err, extra){ tar.capt <- if(!is.character(target)) do.call(as.character, c(list(target), extra), quote=TRUE) else target cur.capt <- if(!is.character(current)) do.call(as.character, c(list(current), extra), quote=TRUE) else current if((tt <- typeof(tar.capt)) != 'character') stop("Coercion of `target` did not produce character object (", tt, ").") if((tc <- typeof(cur.capt)) != 'character') stop("Coercion of `current` did not produce character object (", tc, ").") tar.capt <- c(tar.capt) cur.capt <- c(cur.capt) if(anyNA(tar.capt)) tar.capt[is.na(tar.capt)] <- "NA" if(anyNA(cur.capt)) cur.capt[is.na(cur.capt)] <- "NA" etc <- set_mode(etc, tar.capt, cur.capt) if(isTRUE(etc@guides)) etc@guides <- guidesChr if(isTRUE(etc@trim)) etc@trim <- trimChr diff.out <- line_diff( target, current, html_ent_sub(tar.capt, etc@style), html_ent_sub(cur.capt, etc@style), etc=etc ) [email protected] <- "chr" diff.out } capt_deparse <- function(target, current, etc, err, extra){ dep.try <- try({ tar.capt <- do.call(deparse, c(list(target), extra), quote=TRUE) cur.capt <- do.call(deparse, c(list(current), extra), quote=TRUE) }) if(inherits(dep.try, "try-error")) err("Error attempting to deparse object(s)") etc <- set_mode(etc, tar.capt, cur.capt) if(isTRUE(etc@guides)) etc@guides <- guidesDeparse if(isTRUE(etc@trim)) etc@trim <- trimDeparse diff.out <- line_diff( target, current, html_ent_sub(tar.capt, etc@style), html_ent_sub(cur.capt, etc@style), etc=etc ) [email protected] <- "deparse" diff.out } capt_file <- function(target, current, etc, err, extra) { tar.capt <- try(do.call(readLines, c(list(target), extra), quote=TRUE)) if(inherits(tar.capt, "try-error")) err("Unable to read `target` file.") cur.capt <- try(do.call(readLines, c(list(current), extra), quote=TRUE)) if(inherits(cur.capt, "try-error")) err("Unable to read `current` file.") etc <- set_mode(etc, tar.capt, cur.capt) if(isTRUE(etc@guides)) etc@guides <- guidesFile if(isTRUE(etc@trim)) etc@trim <- trimFile diff.out <- line_diff( tar.capt, cur.capt, html_ent_sub(tar.capt, etc@style), html_ent_sub(cur.capt, etc@style), etc=etc ) [email protected] <- "file" diff.out } capt_csv <- function(target, current, etc, err, extra){ tar.df <- try(do.call(read.csv, c(list(target), extra), quote=TRUE)) if(inherits(tar.df, "try-error")) err("Unable to read `target` file.") if(!is.data.frame(tar.df)) err("`target` file did not produce a data frame when read") cur.df <- try(do.call(read.csv, c(list(current), extra), quote=TRUE)) if(inherits(cur.df, "try-error")) err("Unable to read `current` file.") if(!is.data.frame(cur.df)) err("`current` file did not produce a data frame when read") capt_print(tar.df, cur.df, etc, err, extra) } set_mode <- function(etc, tar.capt, cur.capt) { stopifnot(is(etc, "Settings"), is.character(tar.capt), is.character(cur.capt)) if(etc@mode == "auto") { if( any( nchar2(cur.capt, [email protected]) > [email protected] ) || any( nchar2(tar.capt, [email protected]) > [email protected] ) ) { etc@mode <- "unified" } } if(etc@mode == "auto") etc <- sideBySide(etc) etc }
skip_on_cran() test_that("list_oml_data_sets", { tab = list_oml_data_sets(limit = 10) expect_data_table(tab, nrows = 10, min.cols = 10) expect_names(names(tab), type = "strict", must.include = c("data_id", "name", "version", "status", "NumberOfFeatures")) expect_data_table(list_oml_data_sets(data_id = c(9, 11)), nrows = 2) expect_data_table(list_oml_data_sets(data_id = 1), nrows = 0L, ncols = 0L) expect_data_table(list_oml_data_sets(data_id = 999999999), nrows = 0L) })
if (!isGeneric('read_gpx ')) { setGeneric('read_gpx ', function(x, ...) standardGeneric('read_gpx ')) } read_gpx <- function(file, layers=c("waypoints", "tracks", "routes", "track_points", "route_points")) { if (!all(layers %in% c("waypoints", "tracks", "routes", "track_points", "route_points"))) stop("Incorrect layer(s)", call. = FALSE) } comp_ll_proj4 <- function(x) { proj <- datum <- nodefs <- "FALSE" allWGS84 <- as.vector(c("+init=epsg:4326", "+proj=longlat", "+datum=WGS84", "+no_defs", "+ellps=WGS84", "+towgs84=0,0,0")) s <- as.vector(strsplit(x," ")) for (i in seq(1:length(s[[1]]))) { if (s[[1]][i] == "+init=epsg:4326") { proj <- datum <- nodefs <- "TRUE" } if (s[[1]][i] == "+proj=longlat") { proj <- "TRUE" } if (s[[1]][i] == "+no_defs") { nodefs <- "TRUE" } if (s[[1]][i] == "+datum=WGS84") { datum <- "TRUE" } } if (proj == "TRUE" & nodefs == "TRUE" & datum == "TRUE") { ret <- TRUE } else { ret = FALSE } return(ret) } sp_line <- function(Y_coords, X_coords, ID = "ID", proj4="+proj=longlat +datum=WGS84 +no_defs", export=FALSE, runDir) { line <- sp::SpatialLines(list(sp::Lines(sp::Line(cbind(Y_coords,X_coords)), ID = ID))) sp::proj4string(line) <- sp::CRS(proj4) if (export) { maptools::writeLinesShape(line,file.path(runDir,paste0(ID,"home.shp"))) } return(line) } sp_point <- function(lon, lat, ID="point", proj4="+proj=longlat +datum=WGS84 +no_defs", export=FALSE, runDir=runDir) { point = cbind(lon,lat) point = sp::SpatialPoints(point) point = sp::SpatialPointsDataFrame(point, as.data.frame(ID)) sp::proj4string(point) <- sp::CRS(proj4) if (export) { maptools::writeLinesShape(ID,file.path(runDir,paste0(ID,".shp"))) } return(point) } maxpos_on_line <- function(dem,line){ mask <- dem raster::values(mask) <- NA mask <- raster::rasterize(line,mask) mask2 <- mask*dem idx = raster::which.max(mask2) maxPos = raster::xyFromCell(mask2,idx) return(maxPos) } fun_multiply <- function(x) { band1 <- x[,,1] band2 <- x[,,2] result <- band1*band2 result <- array(result,dim=c(dim(x)[1],dim(x)[2],1)) return(result) } fun_whichmax <- function(mask,value) { raster::xyFromCell(value,which.max(mask * value)) } getPopupStyle <- function() { fl <- system.file("templates/popup.brew", package = "mapview") pop <- readLines(fl) end <- grep("<%=pop%>", pop) return(paste(pop[1:(end-2)], collapse = "")) } if ( !isGeneric("initProj") ) { setGeneric("initProj", function(x, ...) standardGeneric("initProj")) } initProj <- function(projRootDir=getwd(), projFolders=c("log/","control/","run/","data/")) { projRootDir <- gsub("\\\\", "/", path.expand(projRootDir)) if (substr(projRootDir,nchar(projRootDir) - 1,nchar(projRootDir)) != "/") { projRootDir <- paste0(projRootDir,"/") } if (file.exists(paste0(projRootDir,"fp-data/log/pathes.R"))) {file.remove(paste0(projRootDir,"fp-data/log/pathes.R"))} for (folder in projFolders) { if (!file.exists(file.path(projRootDir,folder))) { dir.create(file.path(projRootDir,folder), recursive = TRUE)} value <- paste0(projRootDir,folder) name <- substr(folder,1,nchar(folder) ) S<-strsplit(x =name ,split = "/") varName<-paste0("pto_",S[[1]][lengths(S)]) writePathes(varName, value,paste0(projRootDir,"fp-data/log/pathes.R")) } writePSCmd(projRootDir = projRootDir) } makeGlobalVar <- function(name,value) { newname <- gsub("/", "_", name) assign(newname, value, inherits = TRUE) } writePathes <- function(name,value,fn) { utils::write.table(paste0(name,' <- "', value,'"'),fn,quote = FALSE,row.names = FALSE, col.names = FALSE ,append = TRUE) } writePSCmd <- function(goal = "ortho", projRootDir, imgPath = "img-data/FLIGHT1/level1/rgb", projName = "tmp.psx", alignQuality = "2", orthoRes = "0.02", refPre= "PhotoScan.GenericPreselection", EPSG = "4326", preset_RU = "50", preset_RE = "1", preset_PA = "10", loop_RU = "5", loop_RE = "10", loop_PA = "2", dc_quality ="MediumQuality", filter_mode = "AggressiveFiltering", passes = 15) { fn<-paste0(projRootDir,"fp-data/log/basicPSWorkflow.py") if (goal == "ortho") goal <- "singleOrtho" if (goal == "dense") goal <- "singleDense" flightname<-strsplit(projRootDir,split = "/")[[1]][lengths(strsplit(projRootDir,split = "/"))] script <- paste(system.file(package="uavRmp"), "python/basicPSWorkflow.py", sep = "/") goal <- paste0('goal = ','"',goal,'"') imgPath <- paste0('imgPath = ','"',projRootDir,imgPath,'"') projName = paste0('projName = ','"',flightname,'.psx"') alignQuality = paste0("alignQuality = ",alignQuality) orthoRes = paste0("orthoRes = ",orthoRes) refPre = paste0("refPre = ",refPre) crs = paste0('crs = ',' PhotoScan.CoordinateSystem(','"EPSG::', EPSG,'")') preset_RU = paste0("preset_RU = ",preset_RU) preset_RE = paste0("preset_RE = ",preset_RE) preset_PA = paste0("preset_PA = ",preset_PA) loop_RU = paste0("loop_RU = ",loop_RU) loop_RE = paste0("loop_RE = ",loop_RE) loop_PA = paste0("loop_PA = ",loop_PA) filter_mode = paste0("filter_mode = ",paste0("PhotoScan.",filter_mode)) dc_quality = paste0("dc_quality = ",paste0("PhotoScan.",dc_quality)) passes = paste0("passes = ",passes) brew::brew(script,fn) } file_move <- function(from, to,pattern="*") { todir <- gsub("\\\\", "/", path.expand(to)) todir <- path.expand(to) fromdir <- path.expand(from) if (!isTRUE(file.info(todir)$isdir)) dir.create(todir, recursive=TRUE) list<-list.files(path.expand(fromdir),pattern = pattern) result<-file.rename(from = paste0(from,"/",list), to = todir) } copyDir <- function(fromDir, toProjDir, pattern="*") { toDir <- gsub("\\\\", "/", path.expand(toProjDir)) toDir <- path.expand(toDir) fromDir <- path.expand(fromDir) if (!isTRUE(file.info(toDir)$isdir)) dir.create(toDir, recursive=TRUE) list<-list.files(path.expand(fromDir),pattern = pattern) result<-file.copy(from = paste0(fromDir,"/",list), to = toDir, overwrite = TRUE,recursive = TRUE,copy.date =TRUE) } createTempDataTransfer <- function (){ tmpPath <- tempfile(pattern="007") dir.create(tmpPath) return(tmpPath) } vecDrawInternal <- function(tmpPath, x = NULL) { deps<-digiDependencies(tmpPath) sizing = htmlwidgets::sizingPolicy( browser.fill = TRUE, viewer.fill = TRUE, viewer.padding = 5 ) htmlwidgets::createWidget( name = 'vecDraw', x, dependencies = deps, sizingPolicy = sizing, package = 'uavRmp' ) } vecDrawOutput <- function(outputId, width = '100%', height = '800px') { htmlwidgets::shinyWidgetOutput(outputId, 'vecDraw', width, height, package = 'uavRmp') } rendervecDraw<- function(expr, env = parent.frame(), quoted = FALSE) { projViewOutput<-NULL if (!quoted) { expr <- substitute(expr) } htmlwidgets::shinyRenderWidget(expr, projViewOutput, env, quoted = TRUE) } digiDependencies <- function(tmpPath) { data_dir <- paste0(tmpPath,sep=.Platform$file.sep) list( htmltools::htmlDependency(name = "crs", version = "1", src = c(file = tmpPath), script = list("crs.js")), htmltools::htmlDependency(name = "jsondata", version = "1", src = c(file = tmpPath), script = list("jsondata")), htmltools::htmlDependency( name = "leaflet-draw", version= "0.7.3", src = c(file = tmpPath), script = list("leaflet.draw.js"), stylesheet=list("leaflet.draw.css") ) ) } digiDependencies <- function(tmpPath) { data_dir <- paste0(tmpPath,sep=.Platform$file.sep) list( htmltools::htmlDependency(name = "crs", version = "1", src = c(file = tmpPath), script = list("crs.js")), htmltools::htmlDependency(name = "jsondata", version = "1", src = c(file = tmpPath), script = list("jsondata")), htmltools::htmlDependency( name = "leaflet-draw", version= "0.7.3", src = c(file = tmpPath), script = list("leaflet.draw.js"), stylesheet=list("leaflet.draw.css") ) ) } createTempDataTransfer <- function (){ tmpPath <- tempfile(pattern="007") dir.create(tmpPath) return(tmpPath) } vecDrawInternal <- function(tmpPath, x = NULL) { deps<-digiDependencies(tmpPath) sizing = htmlwidgets::sizingPolicy( browser.fill = TRUE, viewer.fill = TRUE, viewer.padding = 5 ) htmlwidgets::createWidget( name = 'vecDraw', x, dependencies = deps, sizingPolicy = sizing, package = 'uavRmp' ) }
plot.diagram <- function(x, diagLim = NULL, dimension = NULL, col = NULL, rotated = FALSE, barcode = FALSE, band = NULL, lab.line = 2.2, colorBand = "pink", colorBorder = NA, add = FALSE, ...) { if (!is.null(diagLim) && (!is.numeric(diagLim) || length(diagLim) != 2)) { stop("diagLim should be a vector of length 2") } if (!is.null(dimension) && (!is.numeric(dimension) || length(dimension) != 1 || any(dimension < 0))) { stop("dimension should be a nonnegative integer") } if (!is.logical(rotated)) { stop("rotated should be logical") } if (!is.logical(barcode)) { stop("barcode should be logical") } if (!is.null(band) && (!is.numeric(band) || length(band) != 1)) { stop("band should be a number") } if (!is.logical(add)) { stop("add should be logical") } if (any(class(x) != "diagram") && is.numeric(x)) { x <- matrix(x, ncol = 3, dimnames = list(NULL, colnames(x))) } if (is.null(diagLim) || any(diagLim == -Inf) || any(diagLim == Inf)) { if (any(class(x) == "diagram")) { diagLim <- attributes(x)[["scale"]] } else { nonInf <- which( x[, 2] != Inf & x[, 2] != -Inf & x[, 3] != Inf & x[, 3] != -Inf) if (length(nonInf) > 0) { diagLim <- c(min(x[nonInf, 2:3]), max(x[nonInf, 2:3])) } else { diagLim <- c(0,0) } } } x[x[, 2] < diagLim[1], 2] <- diagLim[1] x[x[, 3] < diagLim[1], 3] <- diagLim[1] x[x[, 2] > diagLim[2], 2] <- diagLim[2] x[x[, 3] > diagLim[2], 3] <- diagLim[2] sublevel <- TRUE if (any(colnames(x)[3] == "Birth")) { sublevel <- FALSE } if (!is.null(dimension)) { x <- x[which(x[, 1] == dimension), , drop = FALSE] } if (is.null(match.call()[["pch"]])) { symb <- x[, 1] for (i in seq(along = symb)) { if (symb[i] == 0) { symb[i] <- 16 } else if (symb[i] == 1) { symb[i] <- 2 } else if (symb[i] == 2) { symb[i] <- 5 } else if (symb[i] == 5) { symb[i] <- 1 } } } else { symb <- match.call()[["pch"]] } if (is.null(col)){ col <- x[, 1] + 1 for (i in seq(along = x[, 1])) { if (x[i, 1] == 2) { col[i] <- 4 } if (x[i, 1] == 3) { col[i] <- 3 } } } if (barcode) { if (length(col) == 1) { col <- rep(col, nrow(x)) } maxD <- max(x[, 1]) minD <- min(x[, 1]) if (maxD > 0) { sortedDiag <- x sortedCol <- col posD <- which(x[, 1] == minD) lD <- 0 for (dd in (minD):maxD) { oldlD <- lD posD <- which(x[,1] == dd) if (length(posD) != 0) { lD <- oldlD + length(posD) sortedDiag[(oldlD + 1):(lD), ] <- x[posD, ] sortedCol[(oldlD + 1):(lD)] <- col[posD] } } x <- sortedDiag col <- sortedCol } left <- x[, 2] right <- x[, 3] n <- length(left) Bmax <- max(right) Bmin <- min(left) graphics::plot(c(Bmin, Bmax), c(1, n + 1), type = "n", xlab = "", ylab = "", xlim = c(Bmin, Bmax), ylim = c(0, n + 1), xaxt = "n", yaxt = "n", ...) graphics::axis(1) graphics::title(xlab = "time", line = lab.line) lwid <- rep(2,n) ltype <- rep(1,n) if (!is.null(band)){ for(i in seq_len(n)) { if ((x[i, 3] - x[i, 2]) <= band) { ltype[i] <- 3 lwid[i] <- 1.5 } } } graphics::segments(left, 1:n, right, 1:n, lwd = lwid, lty = ltype, col = col) } else{ if (rotated == TRUE) { if (add == FALSE) { graphics::plot(0, 0,type = "n", axes = FALSE, xlim = diagLim, ylim = diagLim, xlab = " ", ylab = " ", ...) } if (!is.null(band)) { graphics::polygon(c(0, diagLim[2] + 1, diagLim[2] + 1, 0), c(0, 0, band, band), col = colorBand, lwd = 1.5, border = colorBorder) } graphics::points((x[, 2] + x[, 3]) / 2, (x[, 3]-x[, 2]) / 2, col = col, pch = symb, lwd = 2, cex = 1) } else{ if (add == FALSE) { graphics::plot(0, 0, type = "n", axes = FALSE, xlim = diagLim, ylim = diagLim, xlab = " ", ylab = " ", ...) } if (!is.null(band)) { graphics::polygon( c(diagLim[1] - 1, diagLim[2] + 1, diagLim[2] + 1, diagLim[1] - 1), c(diagLim[1] - 1,diagLim[2] + 1, diagLim[2] + 1 + band, diagLim[1] - 1 + band), col = colorBand, lwd = 1.5, border = colorBorder) } graphics::points(x[, 2], x[, 3], pch = symb, lwd = 2, cex = 1, col = col) graphics::abline(0, 1) } if (add==FALSE){ graphics::axis(1) graphics::axis(2) if (sublevel) { if (!rotated) { graphics::title(main = "", xlab = "Birth", ylab = "Death", line = lab.line) } else { graphics::title(main = "", ylab = "(Death-Birth)/2", xlab = "(Death+Birth)/2", line = lab.line) } } if (!sublevel) { if (!rotated) { graphics::title(main = "", xlab = "Death", ylab = "Birth", line = lab.line) } else { graphics::title(main = "", ylab = "(Birth-Death)/2", xlab = "(Death+Birth)/2", line = lab.line) } } } } }
AssignQualification <- assignqual <- AssignQualifications <- AssociateQualificationWithWorker <- function (qual = NULL, workers, value = 1, notify = FALSE, name = NULL, description = NULL, keywords = NULL, status = NULL, retry.delay = NULL, test = NULL, answerkey = NULL, test.duration = NULL, auto = NULL, auto.value = NULL, verbose = getOption('pyMTurkR.verbose', TRUE)) { GetClient() if (!is.null(qual) & is.factor(qual)) { qual <- as.character(qual) } if (is.factor(workers)) { workers <- as.character(workers) } if (is.factor(value)) { value <- as.character(value) } if (!is.logical(notify) == TRUE) { stop("SendNotification must be TRUE or FALSE.") } if (length(value) == 1) { value <- rep(value[1], length(workers)) } else if (!length(value) == length(workers)) { stop("Number of values is not 1 nor length(workers)") } for (i in 1:length(value)) { if (is.null(value[i]) || is.na(value[i]) || value[i]=='') { warning("Value ", i," not assigned; value assumed to be 1") value[i] <- as.integer(1) } else if(is.na(as.integer(value[i]))) { stop("value ", i," is not or cannot be coerced to integer") } } worker <- NULL batch <- function(worker, value) { response <- try(pyMTurkR$Client$associate_qualification_with_worker( QualificationTypeId = qual, WorkerId = worker, IntegerValue = as.integer(value), SendNotification = as.logical(notify) ), silent = !verbose) if(class(response) == "try-error") { return(data.frame(valid = FALSE)) } else response$valid = TRUE if(verbose & response$valid) message("Qualification (", qual, ") Assigned to worker ", worker) return(invisible(response)) } if (!is.null(name)) { if (!is.null(qual)) stop("Cannot specify QualificationTypeId and properties of new QualificationType") if (is.null(description)) stop("No Description provided for QualificationType") if (is.null(status) || !status == "Active") { warning("QualificationTypeStatus set to 'Active'") status <- "Active" } type <- CreateQualificationType(name = name, description = description, keywords = keywords, status = status, retry.delay = retry.delay, test = test, answerkey = answerkey, test.duration = test.duration, auto = auto, auto.value = auto.value) qual <- as.character(type$QualificationTypeId) } qual.value <- value Qualifications <- emptydf(length(workers), 5, c("WorkerId", "QualificationTypeId", "Value", "Notified", "Valid")) for (i in 1:length(workers)) { x <- batch(workers[i], value[i]) if (is.null(x$valid)) { x$valid <- FALSE } Qualifications[i, ] = c(workers[i], qual, value[i], notify, x$valid) } Qualifications$Valid <- factor(Qualifications$Valid, levels=c('TRUE','FALSE')) return(Qualifications) }
order.optimal <- function(dist, merge) { if (!inherits(dist,"dist")) stop(paste(sQuote("dist"),"not of class dist")) if (!is.matrix(merge)) stop(paste(sQuote("merge"),"not a matrix")) if (length(dim(merge)) != 2) stop(paste(sQuote("merge"),"invalid")) if (dim(merge)[1] != attr(dist,"Size")-1) stop(paste(sQuote("dist"),"and",sQuote("merge"),"do not conform")) if (!is.double(dist)) storage.mode(dist) <- "double" storage.mode(merge) <- "integer" obj <- .Call(R_order_optimal, dist, merge) names(obj) <- c("merge","order","length") names(obj$order) <- attr(dist,"Labels") obj } order.length <- function(dist, order) { if (!inherits(dist,"dist")) stop(paste(sQuote("dist"),"not of class dist")) if (missing(order)) order <- 1:attr(dist, "Size") else { if (length(order) != attr(dist,"Size")) stop(paste(sQuote("order"),"invalid lenght")) } if (!is.double(dist)) storage.mode(dist) <- "double" if (!is.integer(order)) storage.mode(order) <- "integer" x <- .Call(R_order_length, dist, order) x } order.greedy <- function(dist) { if (!inherits(dist, "dist")) stop(paste(sQuote("dist"),"not of class dist")) if (!is.double(dist)) storage.mode(dist) <- "double" obj <- .Call(R_order_greedy, dist) names(obj) <- c("merge", "order", "height"); obj }
cape2mpp <- function(data_obj, geno_obj = NULL){ geno_locale <- which(names(data_obj) == "geno") if(length(geno_locale) > 0){ geno <- data_obj$geno }else{ geno <- geno_obj$geno } geno_array <- array(NA, dim = c(nrow(geno),2,ncol(geno))) geno_array[,1,] <- 1-geno geno_array[,2,] <- geno dimnames(geno_array) <- list(rownames(geno), c("A", "B"), colnames(geno)) names(dimnames(geno_array)) <- c("mouse", "allele" ,"locus") geno_obj$geno <- geno_array data_obj$geno <- NULL data_obj$marker_names <- NULL geno_names <- list(rownames(data_obj$pheno), c("A", "B"), colnames(geno)) names(geno_names) <- c("mouse", "allele", "locus") data_obj$geno_names <- geno_names results <- list("data_obj" = data_obj, "geno_obj" = geno_obj) return(results) }
ec.gfld <- function( obj, whichseries=1, nsigma=3,jointboo=TRUE, epsboo=TRUE, filename="whatever",xvec,yvec,cal,lar=0.025,...) { if(jointboo==TRUE){mywidth<-2*5.83}else{mywidth<-5.83} if(epsboo==TRUE){myfilename<-paste0(filename,".eps"); setEPS(); postscript(file=myfilename,width=mywidth, height=4.13) }else{ myfilename<-paste0(filename,".pdf") pdf(file=myfilename,width=mywidth, height=4.13)} if(jointboo==TRUE){par(mfcol=c(1,2))} ec.gfl(obj,whichseries,nsigma,xvec,yvec,cal,lar,...) if(jointboo==FALSE){dev.off();myfilename2<-paste0("D",myfilename); if(epsboo==TRUE){setEPS(); postscript(file=myfilename2,width=mywidth, height=4.13) }else{ pdf(file=myfilename2,width=mywidth, height=4.13)}} ec.gfd(obj,whichseries,nsigma,xvec,yvec,cal,lar,...) dev.off() }
test_that("expected behavior", { vcr::use_cassette(name = "get_citation", { ref <- get_citation(get_network_by_id(18)) netws <- get_collection(search_networks("lagoon")) ref2 <- get_citation(netws) }) expect_equal(length(ref), 1) expect_equal(length(ref2), 2) expect_true(grepl("^@article", ref)) expect_true(grepl("^@article", ref2[1])) expect_true(grepl("^@book", ref2[2])) })
readinteger <- function() { n <- readline(prompt="Enter an integer: ") return(as.integer(n)) } print(readinteger())
rse = function(truth, response, na_value = NaN, ...) { assert_regr(truth, response = response, na_value = na_value) v = var(truth) if (v < TOL) { return(na_value) } sum(se(truth, response)) / (v * (length(truth) - 1L)) } add_measure(rse, "Relative Squared Error", "regr", 0, Inf, TRUE)
caThreshold_at_specificity <- function(controlData, userFormula, control_specificity, new_covariates) { if(!is.numeric(control_specificity)) { control_specificity <- as.numeric(control_specificity) } if(sum(control_specificity>1)>0 | sum(control_specificity<0)>0) { stop("control_specificity should be between 0 and 1!") } rqfit <- NULL if (length(control_specificity) == 1) { expr1 <- paste0("rqfit <- rq(", userFormula, ", tau = ", control_specificity, ", data = controlData)") eval(parse(text = expr1)) new_thres <- predict.rq(rqfit, newdata = new_covariates) } else { new_thres <- c() for(j in 1:length(control_specificity)) { expr1 <- paste0("rqfit <- rq(", userFormula, ", tau = ", control_specificity[j], ", data = controlData)") eval(parse(text = expr1)) tmp <- predict.rq(rqfit, newdata = new_covariates) new_thres <- cbind(new_thres, tmp) } colnames(new_thres) = paste0("control_spec=", control_specificity) } return(new_thres) }
get.pkg_search_paths <- function(pkg, vrs) { if (pkg %in% base_pkg()) { libp <- .libPaths() default_lib <- libp[length(libp)] full_path <- paste0(default_lib , "/", pkg) return(full_path) } rv <- as.character(getRversion()) rv <- gsub("\\.\\d+(-w)?$", "", rv) pkg_search_paths <- paste0(get.groundhog.folder(), "/R-", rv, "/", pkg, "_", vrs) return(pkg_search_paths) }
coef.ml_g_fit <- function(object, ...) { object$beta.hat[-length(object$beta.hat)] }
traplot1 <- function(x, col=NULL, lty=1, style=c("gray", "plain"), ...){ style <- match.arg(style) nchains <- nchain(x) if (is.null(col)){ col <- mcmcplotsPalette(nchains) } xx <- as.vector(time(x)) yy <- do.call("cbind", as.list(x)) if (style=="plain"){ matplot(xx, yy, type="l", col=col, lty=lty, ...) } if (style=="gray"){ matplot(xx, yy, type="n", xaxt="n", yaxt="n", bty="n", ...) .graypr() matlines(xx, yy, col=col, lty=lty) } }
.axion_elec_name_to_xy <- function(name, plateinfo) { max_well_row <- plateinfo$n_well_r max_elec_row <- plateinfo$n_elec_r max_elec_col <- plateinfo$n_elec_c well_r <- max_well_row - match(substring(name, 1, 1), LETTERS) well_c <- as.integer(substring(name, 2, 2)) - 1 elec_r <- as.integer(substring(name, 5, 5)) - 1 elec_c <- as.integer(substring(name, 4, 4)) - 1 gap <- 1 spacing <- 200 well_wid <- (max_elec_col + gap) * spacing well_ht <- (max_elec_row + gap) * spacing x <- (well_c * well_wid) + (elec_c * spacing) y <- (well_r * well_ht) + (elec_r * spacing) cbind(x, y) } .axion_spike_sum <- function(spikes) { len <- length(spikes) all_range <- sapply(spikes, range) nspikes <- sum(sapply(spikes, length)) min <- min(all_range[1, ]) max <- max(all_range[2, ]) str <- sprintf("summary: %d electrodes %d spikes, min %.4f max %.4f", len, nspikes, min, max) c(nelectrodes = len, nspikes = nspikes, time.min = min, time.max = max) } .axion_spikes_to_df <- function(spikes) { names <- names(spikes) names(spikes) <- NULL nspikes <- sapply(spikes, length) data.frame(elec = rep(names, times = nspikes), time = unlist(spikes)) } .axion_guess_well_number <- function(channels) { well_r <- match(substring(channels, 1, 1), LETTERS) well_c <- as.integer(substring(channels, 2, 2)) elec_r <- as.integer(substring(channels, 5, 5)) elec_c <- as.integer(substring(channels, 4, 4)) max_well_r <- max(well_r) max_well_c <- max(well_c) max_elec_r <- max(elec_r) max_elec_c <- max(elec_c) nplates <- length(.axion_plateinfo) well <- 0 for (i in 1:nplates) { plateinfo <- .axion_plateinfo[[i]] if (max_well_r <= plateinfo$n_well_r && max_well_c <= plateinfo$n_well_c && max_elec_r <= plateinfo$n_elec_r && max_elec_c <= plateinfo$n_elec_c) { well <- plateinfo$n_well break; } } if (well == 0) { stop("Cannot guess number of wells on plate.") } well } .axion_electrodes_on_well <- function(well, electrodes) { matches <- grep(well, electrodes) electrodes[matches] } .axion_elec_to_well <- function(elec) { substring(elec, 1, 2) } .get_array_info <- function(data) { pos <- data$epos; rownames(pos) <- data$names array <- data$array if (any(grep("^Axion 48", array))) { xlim <- c(-100, 7900) ylim <- c(0, 6000) spacing <- 200 corr_breaks <- 0 } else if (any(grep("^Axion 12", array))) { xlim <- c(-100, 7200) ylim <- c(0, 5400) spacing <- 200 corr_breaks <- 0 } array <- as.character(array) layout <- list(xlim = xlim, ylim = ylim, spacing = spacing, pos = pos, array = array) class(layout) <- "mealayout" list(layout = layout, corr_breaks = corr_breaks) } .filter_channel_names <- function(spikes, ids) { if (any(is.character(ids))) ids <- .names_to_indexes(names(spikes), ids) spikes[ids] } .names_to_indexes <- function(names, elems, allow_na=FALSE, allow_regex=TRUE) { if (is.null(elems)) { return(1:length(names)) } if (isTRUE(all.equal("-", elems[1]))) { invert <- TRUE elems <- elems[- 1] } else { invert <- FALSE } indexes <- match(elems, names) if (allow_regex) { which_na <- which(is.na(indexes)) if (any(which_na)) { regex_elems <- elems[which_na] new_indexes <- lapply(regex_elems, function(r){ grep(r, names) }) new_indexes <- unique(unlist(new_indexes)) indexes <- indexes[- which_na] indexes <- c(indexes, new_indexes) } allow_na <- TRUE } if (!allow_na) { if (any(is.na(indexes))) stop("some indexes not found.") } if (invert) indexes <- setdiff(1:(length(names)), indexes) indexes }
plotTranscripts <- function(chrom, chromstart = NULL, chromend = NULL, assembly = "hg38", fill = c(" colorbyStrand = TRUE, strandSplit = FALSE, boxHeight = unit(2, "mm"), spaceWidth = 0.02, spaceHeight = 0.3, limitLabel = TRUE, fontsize = 8, labels = "transcript", stroke = 0.1, bg = NA, x = NULL, y = NULL, width = NULL, height = NULL, just = c("left", "top"), default.units = "inches", draw = TRUE, params = NULL) { errorcheck_plotTranscripts <- function(transcriptPlot, labels, fill) { regionErrors(chromstart = transcriptPlot$chromstart, chromend = transcriptPlot$chromend) if (!labels %in% c(NULL, "transcript", "gene", "both")) { stop("Invalid \'labels\' input. Options are \'NULL\', ", "\'transcript\', \'gene\', or \'both\'.", call. = FALSE) } checkColorby(fill = fill, colorby = FALSE) } strand_scale <- function(strandSplit, height) { if (strandSplit == TRUE) { yscale <- c(-height / 2, height / 2) } else { yscale <- c(0, height) } return(yscale) } transcriptsInternal <- parseParams( params = params, defaultArgs = formals(eval(match.call()[[1]])), declaredArgs = lapply(match.call()[-1], eval.parent, n = 2), class = "transcriptsInternal" ) transcriptsInternal$just <- justConversion(just = transcriptsInternal$just) transcripts <- structure(list( chrom = transcriptsInternal$chrom, chromstart = transcriptsInternal$chromstart, chromend = transcriptsInternal$chromend, assembly = transcriptsInternal$assembly, x = transcriptsInternal$x, y = transcriptsInternal$y, width = transcriptsInternal$width, height = transcriptsInternal$height, just = transcriptsInternal$just, grobs = NULL ), class = "transcripts") attr(x = transcripts, which = "plotted") <- transcriptsInternal$draw if (is.null(transcripts$chrom)) { stop("argument \"chrom\" is missing, with no default.", call. = FALSE ) } check_placement(object = transcripts) errorcheck_plotTranscripts( transcriptPlot = transcripts, labels = transcriptsInternal$labels, fill = transcriptsInternal$fill ) transcripts$assembly <- parseAssembly(assembly = transcripts$assembly) transcripts <- defaultUnits( object = transcripts, default.units = transcriptsInternal$default.units ) transcriptsInternal$boxHeight <- misc_defaultUnits( value = transcriptsInternal$boxHeight, name = "boxHeight", default.units = transcriptsInternal$default.units ) buildData <- geneData(object = transcripts, objectInternal = transcriptsInternal) transcripts <- buildData[[1]] transcriptsInternal <- buildData[[2]] data <- transcriptsInternal$data data$length <- data$TXEND - data$TXSTART if (transcriptsInternal$colorbyStrand == TRUE) { if (length(transcriptsInternal$fill) == 1) { posCol <- transcriptsInternal$fill negCol <- transcriptsInternal$fill } else { posCol <- transcriptsInternal$fill[1] negCol <- transcriptsInternal$fill[2] } pos <- data[which(data$TXSTRAND == "+"), ] pos$color <- rep(posCol, nrow(pos)) neg <- data[which(data$TXSTRAND == "-"), ] neg$color <- rep(negCol, nrow(neg)) data <- rbind(pos, neg) } else { data$color <- rep(transcriptsInternal$fill[1], nrow(data)) } if (transcriptsInternal$strandSplit == TRUE) { posStrand <- data[which(data$TXSTRAND == "+"), ] minStrand <- data[which(data$TXSTRAND == "-"), ] } currentViewports <- current_viewports() vp_name <- paste0( "transcripts", length(grep( pattern = "transcripts", x = currentViewports )) + 1 ) if (is.null(transcripts$x) | is.null(transcripts$y)) { height <- 0.5 yscale <- strand_scale( strandSplit = transcriptsInternal$strandSplit, height = height ) vp <- viewport( height = unit(0.5, "snpc"), width = unit(1, "snpc"), x = unit(0.5, "npc"), y = unit(0.5, "npc"), clip = "on", xscale = transcriptsInternal$xscale, yscale = yscale, just = "center", name = vp_name ) if (transcriptsInternal$draw == TRUE) { vp$name <- "transcripts1" grid.newpage() } } else { addViewport(vp_name) page_coords <- convert_page(object = transcripts) height <- convertHeight(page_coords$height, unitTo = get("page_units", envir = pgEnv ), valueOnly = TRUE ) yscale <- strand_scale( strandSplit = transcriptsInternal$strandSplit, height = height ) vp <- viewport( height = page_coords$height, width = page_coords$width, x = page_coords$x, y = page_coords$y, clip = "on", xscale = transcriptsInternal$xscale, yscale = yscale, just = transcriptsInternal$just, name = vp_name ) } backgroundGrob <- rectGrob(gp = gpar( fill = transcriptsInternal$bg, col = NA ), name = "background") assign("transcript_grobs", gTree(vp = vp, children = gList(backgroundGrob)), envir = pgEnv ) if (is.null(transcriptsInternal$labels)) { textHeight <- unit(0, "npc") } else { textHeight <- heightDetails(textGrob( label = "A", gp = gpar(fontsize = transcriptsInternal$fontsize) )) } if (is.null(transcripts$x) & is.null(transcripts$y)) { pushViewport(vp) boxHeight <- convertHeight(transcriptsInternal$boxHeight, unitTo = "npc", valueOnly = TRUE ) spaceHeight <- boxHeight * (transcriptsInternal$spaceHeight) textHeight <- convertHeight(textHeight, unitTo = "npc", valueOnly = TRUE ) upViewport() unit <- "npc" } else { boxHeight <- convertHeight(transcriptsInternal$boxHeight, unitTo = get("page_units", envir = pgEnv), valueOnly = TRUE ) spaceHeight <- boxHeight * (transcriptsInternal$spaceHeight) textHeight <- convertHeight(textHeight, unitTo = get("page_units", envir = pgEnv), valueOnly = TRUE ) unit <- get("page_units", envir = pgEnv) } maxRows <- floor(height / (boxHeight + spaceHeight + textHeight + 0.25 * textHeight)) wiggle <- abs(transcripts$chromend - transcripts$chromstart) * transcriptsInternal$spaceWidth if (transcriptsInternal$strandSplit == FALSE) { repData <- data[duplicated(data$TXNAME) == FALSE, ] repData <- defaultGenePriorities( data = repData, assembly = transcripts$assembly, transcript = TRUE ) rowData <- assignRows(data = repData[,c("TXSTART", "TXEND", "TXID")], maxRows = maxRows, wiggle = wiggle, rowCol = 3, limitLabel = transcriptsInternal$limitLabel, gTree = "transcript_grobs") rowData <- suppressMessages(dplyr::left_join( x = data, y = rowData[,c("row", "TXID")], by = "TXID" )) rowData$y <- rowData$row * (boxHeight + spaceHeight + textHeight + 0.25 * textHeight) } else { repPos <- posStrand[duplicated(posStrand$TXNAME) == FALSE, ] repMin <- minStrand[duplicated(minStrand$TXNAME) == FALSE, ] repPos <- defaultGenePriorities( data = repPos, assembly = transcripts$assembly, transcript = TRUE ) repMin <- defaultGenePriorities( data = repMin, assembly = transcripts$assembly, transcript = TRUE ) posData <- assignRows(data = repPos[,c("TXSTART", "TXEND", "TXID")], maxRows = floor(maxRows / 2), wiggle = wiggle, rowCol = 3, limitLabel = transcriptsInternal$limitLabel, gTree = "transcript_grobs") minData <- assignRows(data = repMin[,c("TXSTART", "TXEND", "TXID")], maxRows = floor(maxRows / 2), wiggle = wiggle, rowCol = 3, limitLabel = transcriptsInternal$limitLabel, gTree = "transcript_grobs", side = "bottom") posData <- suppressMessages(dplyr::left_join( x = posStrand, y = posData[,c("row", "TXID")], by = "TXID" )) minData <- suppressMessages(dplyr::left_join( x = minStrand, y = minData[,c("row", "TXID")], by = "TXID" )) posData$y <- (0.5 * spaceHeight) + posData$row * (boxHeight + spaceHeight + textHeight + 0.25 * textHeight) minData$y <- ((0.5 * spaceHeight + boxHeight + textHeight + 0.25 * textHeight) + minData$row * (boxHeight + spaceHeight + textHeight + 0.25 * textHeight)) * -1 rowData <- rbind(posData, minData) } if (nrow(rowData) > 0) { if ((transcripts$chromend - transcripts$chromstart) >= 25000000) { transcriptLine <- rectGrob( x = rowData$TXSTART, y = rowData$y, width = rowData$TXEND - rowData$TXSTART, height = boxHeight, just = c("left", "bottom"), gp = gpar( fill = rowData$color, col = rowData$color, lwd = transcriptsInternal$stroke ), default.units = "native" ) } else { transcriptLine <- rectGrob( x = rowData$TXSTART, y = rowData$y + 0.5 * boxHeight, width = rowData$TXEND - rowData$TXSTART, height = boxHeight * 0.2, just = "left", gp = gpar( fill = rowData$color, col = rowData$color, lwd = transcriptsInternal$stroke ), default.units = "native" ) transcriptExons <- rectGrob( x = rowData$EXONSTART, y = rowData$y + 0.5 * boxHeight, width = rowData$EXONEND - rowData$EXONSTART, height = boxHeight * 0.65, just = "left", gp = gpar(fill = rowData$color, col = NA), default.units = "native" ) assign("transcript_grobs", addGrob(get("transcript_grobs", envir = pgEnv), child = transcriptExons ), envir = pgEnv ) cdsData <- rowData[which(!is.na(rowData$CDSSTART)), ] if (nrow(cdsData) > 0) { transcriptCds <- rectGrob( x = cdsData$CDSSTART, y = cdsData$y + 0.5 * boxHeight, width = cdsData$CDSEND - cdsData$CDSSTART, height = boxHeight, just = "left", gp = gpar( fill = cdsData$color, col = cdsData$color, lwd = 1.25 ), default.units = "native" ) assign("transcript_grobs", addGrob(get("transcript_grobs", envir = pgEnv), child = transcriptCds ), envir = pgEnv ) } } assign("transcript_grobs", addGrob(get("transcript_grobs", envir = pgEnv), child = transcriptLine ), envir = pgEnv ) if (!is.null(transcriptsInternal$labels)) { transcriptNames <- rowData[duplicated(rowData$TXNAME) == FALSE, ] transcriptNames$labelLoc <- rowMeans( transcriptNames[c("TXSTART", "TXEND")] ) if (transcriptsInternal$labels == "transcript") { label <- transcriptNames$TXNAME } else if (transcriptsInternal$labels == "gene") { label <- transcriptNames[[ transcripts$assembly$display.column]] } else { label <- paste0( transcriptNames[[ transcripts$assembly$display.column]], ":", transcriptNames$TXNAME ) } checkedLabels <- apply(data.frame( "label" = label, "labelLoc" = transcriptNames$labelLoc ), 1, cutoffLabel, fontsize = transcriptsInternal$fontsize, xscale = transcriptsInternal$xscale, vp = vp, unit = unit ) transcriptNames$label <- checkedLabels transcriptNames <- transcriptNames[!is.na(transcriptNames$label), ] if (nrow(transcriptNames) > 0) { transcript_names <- textGrob( label = transcriptNames$label, x = transcriptNames$labelLoc, y = transcriptNames$y + boxHeight + textHeight * 0.25, just = "bottom", gp = gpar( col = transcriptNames$color, fontsize = transcriptsInternal$fontsize ), default.units = "native", check.overlap = TRUE ) assign("transcript_grobs", addGrob(get("transcript_grobs", envir = pgEnv), child = transcript_names ), envir = pgEnv ) } } } if (transcriptsInternal$draw == TRUE) { grid.draw(get("transcript_grobs", envir = pgEnv)) } transcripts$grobs <- get("transcript_grobs", envir = pgEnv) message("transcripts[", vp$name, "]") invisible(transcripts) }
SetTextContrastColor = function(color) { ifelse( mean(grDevices::col2rgb(color)) > 127, "black", "white") }
sd_neighbor = function (data_year = "2019", school_district = NULL, table_vars = c('Name', 'Enrollment', 'Poverty Rate', 'Percent Nonwhite', 'Local Revenue PP', 'State Revenue PP', 'Type')) { dist_list <- neigh_diff(data_year='2019', diff_var="Percentage Point Difference in Poverty Rate", type = "all") %>% dplyr::mutate(NCESID_1 = stringr::str_pad(NCESID_1, 7, pad="0"), NCESID_2 = stringr::str_pad(NCESID_2, 7, pad="0")) dist_list_1 <- dist_list %>% dplyr::select(NCESID = NCESID_1) %>% dplyr::distinct() dist_list_2 <- dist_list %>% dplyr::select(NCESID = NCESID_2) %>% dplyr::distinct() listid <- dplyr::bind_rows(dist_list_1, dist_list_2) %>% dplyr::distinct() ncesid <- listid$NCESID to_pull <- c("District Name", "District Enrollment, CCD", "District Poverty Rate", "District Percent Nonwhite", "District Local Revenue PP", "District State Revenue PP", "District Level", "Neighbor Name", "Neighbor Enrollment, CCD", "Neighbor Poverty Rate", "Neighbor Percent Nonwhite", "Neighbor Local Revenue PP", "Neighbor State Revenue PP", "Neighbor Level") to_default <- c('Name', 'Enrollment', 'Poverty Rate', 'Percent Nonwhite', 'Local Revenue PP', 'State Revenue PP', "Type") print_names <- c("Name", "County", "Enrollment", "Percent FRL", "Poverty Rate", "Percent Nonwhite", "Local Revenue PP", "State Revenue PP", "Total Revenue PP", "Median Household Income", "Median Property Value", "Type") good <- c('Name', 'County', 'Enrollment', 'Poverty Rate', 'Percent Nonwhite', 'Percent FRL', 'Local Revenue PP', 'State Revenue PP', 'Total Revenue PP', 'Median Household Income', 'Median Property Value', 'Type') if (as.numeric(data_year)<2013) { message("Error: Master datasets are only available for years 2013 through 2019") } else if (as.numeric(data_year)>2019) { message("Error: Master datasets are only available for years 2013 through 2019") } else if (is.null(school_district)) { message( "To generate a table, specify a school district by its NCESID. If you do not know the NCESID of a school district, use masterpull() to search for your district.") } else if(school_district %in% ncesid == FALSE) { message( "The district you specified is not available. To generate a table, specify a school district by its NCESID. If you do not know the NCESID of a school district, use masterpull() to search for your district.") } else if(setequal(intersect(table_vars, good), table_vars) == FALSE){ message("Use one or more of the following variables to generate a table: table_vars = c('Name', 'County', 'Enrollment', 'Poverty Rate', 'Percent Nonwhite', 'Percent FRL', 'Local Revenue PP', 'State Revenue PP', 'Total Revenue PP', 'Median Property Value', 'Median Household Income', 'Type')") } else { school_district select_cols <- if (!setequal(table_vars, to_default)) { for (i in 1:length(table_vars)) { table_iterate <- table_vars[i] if ("Name" %in% table_iterate) { temp_vars <- c("District Name", "Neighbor Name") } else if ("Enrollment" %in% table_iterate) { temp_vars <- c("District Enrollment, CCD", "Neighbor Enrollment, CCD") } else if ("County" %in% table_iterate) { temp_vars <- c("District County", "Neighbor County") } else if ("Percent FRL" %in% table_iterate) { temp_vars <- c("District Percent FRL", "Neighbor Percent FRL") } else if ("Poverty Rate" %in% table_iterate) { temp_vars <- c("District Poverty Rate", "Neighbor Poverty Rate") } else if ("Percent Nonwhite" %in% table_iterate) { temp_vars <- c("District Percent Nonwhite", "Neighbor Percent Nonwhite") } else if ("Local Revenue PP" %in% table_iterate) { temp_vars <- c("District Local Revenue PP", "Neighbor Local Revenue PP") } else if ("State Revenue PP" %in% table_iterate) { temp_vars <- c("District State Revenue PP", "Neighbor State Revenue PP") } else if ("Total Revenue PP" %in% table_iterate) { temp_vars <- c("District Total Revenue PP", "Neighbor Total Revenue PP") } else if ("Median Household Income" %in% table_iterate){ temp_vars <- c("District MHI", "Neighbor MHI") } else if("Median Property Value" %in% table_iterate) { temp_vars <- c("District MPV", "Neighbor MPV") } else if("Type" %in% table_iterate) { temp_vars <- c("District Level", "Neighbor Level") } else { print(print_names) message("Please see above for variables you can use to generate a table") } if(i == 1) { additional_vars <- temp_vars } else{ additional_vars <- rbind(additional_vars, temp_vars) } } additional_vars <- as.vector(t(additional_vars)) } else { to_pull } table_data <- neigh_diff(data_year, diff_var="Percentage Point Difference in Poverty Rate", type = "all") %>% dplyr::mutate(NCESID_1 = stringr::str_pad(NCESID_1, 7, pad="0"), NCESID_2 = stringr::str_pad(NCESID_2, 7, pad="0")) %>% dplyr::filter(NCESID_1 == school_district | NCESID_2 == school_district) %>% dplyr::mutate(code = ifelse(NCESID_1 == school_district, 1, ifelse(NCESID_2 == school_district, 2, 0))) %>% dplyr::select(all_of(select_cols), code) dist1 <- table_data %>% dplyr::filter(code==1) %>% dplyr::select(matches("District") | matches("code")) %>% dplyr::distinct() dist2 <- table_data %>% dplyr::filter(code==2) %>% dplyr::select(matches("Neighbor") | matches("code")) %>% dplyr::distinct() colnames(dist1) <- sub("District ", "", colnames(dist1)) colnames(dist2) <- sub("Neighbor ", "", colnames(dist2)) dist <- bind_rows(dist1, dist2) table_data_dist <- table_data %>% dplyr::select(-matches("District")) %>% dplyr::select(-code, everything()) colnames(table_data_dist) <- sub("Neighbor ", "", colnames(table_data_dist)) table_data_neighb <- table_data %>% dplyr::select(-matches("Neighbor")) %>% dplyr::select(-code, everything()) colnames(table_data_neighb) <- sub("District ", "", colnames(table_data_neighb)) table_reform <- bind_rows(dist, table_data_dist, table_data_neighb) %>% dplyr::distinct() %>% dplyr::select(-code) %>% dplyr::distinct() if (nrow(table_reform)==1) { message("NOTE:: Your table has one row because the school district does not have any neighbors of the same type. For more information on neighbor types, see neigh_diff documentation.") } else( message("") ) table_reform <- if (!is.null(table_reform$`Percent Nonwhite`)) { table_reform <- table_reform %>% dplyr::mutate(`Percent Nonwhite` = scales::percent(round2(`Percent Nonwhite`, 2), accuracy = 1L)) } else { table_reform } table_reform <- if (!is.null(table_reform$`Poverty Rate`)) { table_reform <- table_reform %>% dplyr::mutate(`Poverty Rate` = scales::percent(round2(`Poverty Rate`, 2), accuracy = 1L )) } else { table_reform } table_reform <- if (!is.null(table_reform$`Percent FRL`)) { table_reform <- table_reform %>% dplyr::mutate(`Percent FRL` = scales::percent(round2(`Percent FRL`, 2), accuracy = 1L )) } else { table_reform } table_reform <- if (!is.null(table_reform$`Local Revenue PP`)) { table_reform <- table_reform %>% dplyr::mutate(`Local Revenue PP` = scales::dollar(round2(`Local Revenue PP`, 0))) } else { table_reform } table_reform <- if (!is.null(table_reform$`State Revenue PP`)) { table_reform <- table_reform %>% dplyr::mutate(`State Revenue PP` = scales::dollar(round2(`State Revenue PP`, 0))) } else { table_reform } table_reform <- if (!is.null(table_reform$`Total Revenue PP`)) { table_reform <- table_reform %>% dplyr::mutate(`Total Revenue PP` = scales::dollar(round2(`Total Revenue PP`, 0))) } else { table_reform } table_reform <- if (!is.null(table_reform$`MHI`)) { table_reform <- table_reform %>% dplyr::mutate(MHI = scales::dollar(round2(MHI, 0))) } else { table_reform } table_reform <- if (!is.null(table_reform$`MPV`)) { table_reform <- table_reform %>% dplyr::mutate(MPV = scales::dollar(round2(MPV, 0))) } else { table_reform } table_reform <- if (!is.null(table_reform$`Enrollment, CCD`)) { table_reform <- table_reform %>% dplyr::mutate(`Enrollment, CCD` = scales::comma(`Enrollment, CCD`)) } else { table_reform } search_for_these <- c("Name", "County", "Local Revenue PP", "State Revenue PP", "Total Revenue PP", "Enrollment, CCD", "Percent FRL", "Percent Nonwhite", "Poverty Rate", "MPV", "MHI", "Level") replace_with_these <- c("Name", "County", "Local Revenue, Per Pupil", "State Revenue, Per Pupil", "Total Revenue, Per Pupil", "Enrollment", "Percent FRL", "Percent Nonwhite", "Poverty Rate", "Median Property Value", "Median Household Income", "Type") found <- match(colnames(table_reform), search_for_these, nomatch = 0) colnames(table_reform)[colnames(table_reform) %in% search_for_these] <- replace_with_these[found] NameId = table_reform$Name[1] NameId = substr(NameId, 0, 30) return(table_reform) } }
"cnvrt.coords" <- function(x,y=NULL,input=c('usr','plt','fig','dev','tdev')) { warning('this function is now depricated, use grconvertX instead') input <- match.arg(input) xy <- xy.coords(x,y, recycle=TRUE) cusr <- par('usr') cplt <- par('plt') cfig <- par('fig') cdin <- par('din') comi <- par('omi') cdev <- c(comi[2]/cdin[1],(cdin[1]-comi[4])/cdin[1], comi[1]/cdin[2],(cdin[2]-comi[3])/cdin[2]) if(input=='usr'){ usr <- xy plt <- list() plt$x <- (xy$x-cusr[1])/(cusr[2]-cusr[1]) plt$y <- (xy$y-cusr[3])/(cusr[4]-cusr[3]) fig <- list() fig$x <- plt$x*(cplt[2]-cplt[1])+cplt[1] fig$y <- plt$y*(cplt[4]-cplt[3])+cplt[3] dev <- list() dev$x <- fig$x*(cfig[2]-cfig[1])+cfig[1] dev$y <- fig$y*(cfig[4]-cfig[3])+cfig[3] tdev <- list() tdev$x <- dev$x*(cdev[2]-cdev[1])+cdev[1] tdev$y <- dev$y*(cdev[4]-cdev[3])+cdev[3] return( list( usr=usr, plt=plt, fig=fig, dev=dev, tdev=tdev ) ) } if(input=='plt') { plt <- xy usr <- list() usr$x <- plt$x*(cusr[2]-cusr[1])+cusr[1] usr$y <- plt$y*(cusr[4]-cusr[3])+cusr[3] fig <- list() fig$x <- plt$x*(cplt[2]-cplt[1])+cplt[1] fig$y <- plt$y*(cplt[4]-cplt[3])+cplt[3] dev <- list() dev$x <- fig$x*(cfig[2]-cfig[1])+cfig[1] dev$y <- fig$y*(cfig[4]-cfig[3])+cfig[3] tdev <- list() tdev$x <- dev$x*(cdev[2]-cdev[1])+cdev[1] tdev$y <- dev$y*(cdev[4]-cdev[3])+cdev[3] return( list( usr=usr, plt=plt, fig=fig, dev=dev, tdev=tdev ) ) } if(input=='fig') { fig <- xy plt <- list() plt$x <- (fig$x-cplt[1])/(cplt[2]-cplt[1]) plt$y <- (fig$y-cplt[3])/(cplt[4]-cplt[3]) usr <- list() usr$x <- plt$x*(cusr[2]-cusr[1])+cusr[1] usr$y <- plt$y*(cusr[4]-cusr[3])+cusr[3] dev <- list() dev$x <- fig$x*(cfig[2]-cfig[1])+cfig[1] dev$y <- fig$y*(cfig[4]-cfig[3])+cfig[3] tdev <- list() tdev$x <- dev$x*(cdev[2]-cdev[1])+cdev[1] tdev$y <- dev$y*(cdev[4]-cdev[3])+cdev[3] return( list( usr=usr, plt=plt, fig=fig, dev=dev, tdev=tdev ) ) } if(input=='dev'){ dev <- xy fig <- list() fig$x <- (dev$x-cfig[1])/(cfig[2]-cfig[1]) fig$y <- (dev$y-cfig[3])/(cfig[4]-cfig[3]) plt <- list() plt$x <- (fig$x-cplt[1])/(cplt[2]-cplt[1]) plt$y <- (fig$y-cplt[3])/(cplt[4]-cplt[3]) usr <- list() usr$x <- plt$x*(cusr[2]-cusr[1])+cusr[1] usr$y <- plt$y*(cusr[4]-cusr[3])+cusr[3] tdev <- list() tdev$x <- dev$x*(cdev[2]-cdev[1])+cdev[1] tdev$y <- dev$y*(cdev[4]-cdev[3])+cdev[3] return( list( usr=usr, plt=plt, fig=fig, dev=dev, tdev=tdev ) ) } if(input=='tdev'){ tdev <- xy dev <- list() dev$x <- (tdev$x-cdev[1])/(cdev[2]-cdev[1]) dev$y <- (tdev$y-cdev[3])/(cdev[4]-cdev[3]) fig <- list() fig$x <- (dev$x-cfig[1])/(cfig[2]-cfig[1]) fig$y <- (dev$y-cfig[3])/(cfig[4]-cfig[3]) plt <- list() plt$x <- (fig$x-cplt[1])/(cplt[2]-cplt[1]) plt$y <- (fig$y-cplt[3])/(cplt[4]-cplt[3]) usr <- list() usr$x <- plt$x*(cusr[2]-cusr[1])+cusr[1] usr$y <- plt$y*(cusr[4]-cusr[3])+cusr[3] tdev <- list() tdev$x <- dev$x*(cdev[2]-cdev[1])+cdev[1] tdev$y <- dev$y*(cdev[4]-cdev[3])+cdev[3] return( list( usr=usr, plt=plt, fig=fig, dev=dev, tdev=tdev ) ) } }
"pargpaRC" <- function(lmom, zeta=1, xi=NULL, lower=-1, upper=20, checklmom=TRUE,...) { para <- rep(NA,3) names(para) <- c("xi","alpha","kappa") if(length(lmom$source) == 1 && lmom$source == "TLmoms") { if(lmom$trim != 0) { warning("Attribute of TL-moments is not trim=0--can not complete parameter estimation") return() } } if(length(lmom$L1) == 0) { lmom <- lmorph(lmom) } if(checklmom & ! are.lmom.valid(lmom)) { warning("B-type L-moments are invalid") return() } L1 <- lmom$L1 L2 <- lmom$L2 T3 <- lmom$TAU3 "mr" <- function(r,z,k) { (1 - (1-z)^(r+k))/(r+k) } "ft3" <- function(x) { mr1 <- mr(1,zeta,x) mr2 <- mr(2,zeta,x) mr3 <- mr(3,zeta,x) tau3 <- (mr1 - 3*mr2 + 2*mr3)/(mr1 - mr2) return( abs(T3 - tau3) ) } "fl2" <- function(x,lhs) { mr1 <- mr(1,zeta,x) mr2 <- mr(2,zeta,x) rhs <- mr1/(mr1 - mr2) return( abs(lhs - rhs) ) } if(is.null(xi)) { optim <- optimize(ft3, lower=lower, upper=upper) K <- optim$minimum mr1 <- mr(1, zeta, K) mr2 <- mr(2, zeta, K) para[3] <- K para[2] <- L2/(mr1 - mr2) para[1] <- L1 - para[2]*mr1 } else { LHS <- (L1 - xi)/L2 optim <- optimize(fl2, lower=lower, upper=upper, lhs=LHS) K <- optim$minimum mr1 <- mr(1, zeta, K) mr2 <- mr(2, zeta, K) para[3] <- K para[2] <- L2/(mr1 - mr2) para[1] <- xi } names(optim$objective) <- NULL z <- list(type="gpa", para=para, zeta=zeta, source="pargpaRC", optim=optim) return(z) }
method = "GenSA" control = list(maxit = 100) MaxMC:::get_control(method = method, control = control)
library(testit) assert( 'find_globals() identifies global variables', identical(find_globals('x=1'), character(0)), identical(find_globals('a=1; b=a; d=qwer'), 'qwer'), identical(find_globals('a=function(){f=2;g}'), 'g'), identical(find_globals('z=function(){y=1};y'), 'y'), identical(find_globals(c('a=1%*%1%o%2 %in% d', 'b=d%%10+3%/%2-z[1:3]')), c('d', 'z')) ) assert( 'find_symbols() identifies all symbols', find_symbols('x = x + 1; rnorm(1, std = z)') %==% c('x', 'rnorm', 'z') ) knit_lazy = function(lazy = TRUE) { in_dir(tempdir(), { txt = c(sprintf('```{r test, cache=TRUE, cache.lazy=%s}', lazy), 'x1 = Sys.time()', '```') knit(text = txt, quiet = TRUE) x2 = x1 Sys.sleep(0.1) knit(text = txt, quiet = TRUE) x1 == x2 }) } assert( 'cache.lazy = TRUE/FALSE works', knit_lazy(TRUE), knit_lazy(FALSE) ) knit_code$set(a = 1, b = 2, c = 3) assert('dep_prev() sets dependencies on previous chunks', { (dep_list$get() %==% list()) dep_prev() (dep_list$get() %==% list(a = c('b', 'c'), b = 'c')) }) dep_list$restore() knit_code$restore()
"boa.menu.stats" <- function() { mtitle <- "\nDESCRIPTIVE STATISTICS MENU\n---------------------------" choices <- c("Back", "---------------------------------------+", "Autocorrelations |", "Correlation Matrix |", "Highest Probability Density Intervals |", "Summary Statistics |", "Options... |", "---------------------------------------+") idx <- 1 while(idx > 0) { idx <- menu(choices, title = mtitle) switch(idx, "1" = idx <- -1, "2" = NULL, "3" = boa.print.acf(), "4" = boa.print.cor(), "5" = boa.print.hpd(), "6" = boa.print.stats(), "7" = boa.menu.setpar("Descriptive"), "8" = NULL ) } return(abs(idx)) }
tailindex_plain <- function(sevdist){ return(switch(sevdist$par[[6]], "gpd" = sevdist$par[[5]][3], "lgamma" = 1 / sevdist$par[[5]][2], "gh" = 1 / sevdist$par[[5]][2], "lnorm" = 0, "weibull" = 0)) } tailindex_spliced <- function(sevdist){ return(switch(sevdist$par[[1]][[6]], "gpd" = sevdist$par[[1]][[5]][3], "lgamma" = 1 / sevdist$par[[1]][[5]][2], "gh" = 1 / sevdist$par[[1]][[5]][2], "lnorm" = 0, "weibull" = 0)) } tailindex_mixing <- function(sevdist){ return(switch(sevdist$par[[1]][[6]], "gpd" = sevdist$par[[1]][[5]][3], "lgamma" = 1 / sevdist$par[[1]][[5]][2], "gh" = 1 / sevdist$par[[1]][[5]][2], "lnorm" = 0, "weibull" = 0)) } sevdist_xi_plain <- function(xi, sevdist){ sevdist_tmp <- sevdist if(sevdist$par[[6]] == "gpd"){ sevdist_tmp$par[[5]][3] <- xi } else if(sevdist$par[[6]] %in% c("lgamma", "gh")){ sevdist_tmp$par[[5]][2] <- 1/xi } sevdist_tmp$par[[2]] <- function(q) {evaluate("p", sevdist_tmp$par[[6]], sevdist_tmp$par[[5]], q)} sevdist_tmp$par[[3]] <- function(p) {evaluate("q", sevdist_tmp$par[[6]], sevdist_tmp$par[[5]], p)} return(sevdist_tmp) } sevdist_xi_spliced <- function(xi, sevdist){ sevdist_tmp <- sevdist if(sevdist$par[[1]][[6]] == "gpd"){ sevdist_tmp$par[[1]][[5]][3] <- xi } else if(sevdist$par[[1]][[6]] %in% c("lgamma", "gh")){ sevdist_tmp$par[[1]][[5]][2] <- 1/xi } pdisttail <- function(q) {do.call(paste0("p", sevdist_tmp$par[[1]][[6]]), c(list(q), sevdist_tmp$par[[1]][[5]]))} qdisttail <- function(p) {do.call(paste0("q", sevdist_tmp$par[[1]][[6]]), c(list(p), sevdist_tmp$par[[1]][[5]]))} sevdist_tmp$par[[1]][[2]] <- function(q) {ifelse(q>sevdist_tmp$thresh, (pdisttail(q) - pdisttail(sevdist_tmp$thresh))/(1-pdisttail(sevdist_tmp$thresh)), 0)} sevdist_tmp$par[[1]][[3]] <- function(p) {qdisttail(pdisttail(sevdist_tmp$thresh) + p * (1 - pdisttail(sevdist_tmp$thresh)))} return(sevdist_tmp) } sevdist_xi_mixing <- function(xi, sevdist){ sevdist_tmp <- sevdist if(sevdist$par[[1]][[6]] == "gpd"){ sevdist_tmp$par[[1]][[5]][3] <- xi } else if(sevdist$par[[1]][[6]] %in% c("lgamma", "gh")){ sevdist_tmp$par[[1]][[5]][2] <- 1/xi } pdisttail <- function(q) {do.call(paste0("p", sevdist_tmp$par[[1]][[6]]), c(list(q), sevdist_tmp$par[[1]][[5]]))} qdisttail <- function(p) {do.call(paste0("q", sevdist_tmp$par[[1]][[6]]), c(list(p), sevdist_tmp$par[[1]][[5]]))} sevdist_tmp$par[[1]][[2]] <- function(q) {evaluate("p", sevdist$par[[1]][[6]], sevdist_tmp$par[[1]][[4]], q)} sevdist_tmp$par[[1]][[3]] <- function(p) {evaluate("q", sevdist$par[[1]][[6]], sevdist_tmp$par[[1]][[4]], p)} return(sevdist_tmp) } correction_high <- function(xi, sevdist, type, mean_freq, disp_freq, alpha){ sevdist_xi <- do.call(paste("sevdist_xi", as.character(type), sep = "_"), list(xi, sevdist)) basic_SLA <- qsevdist(1 - (1-alpha)/mean_freq, sevdist_xi) c_xi <- (1-xi) /2 /gamma(1-2/xi) * (gamma(1-1/xi)^2) return((mean_freq + disp_freq -1) * (1-alpha) / mean_freq * basic_SLA * c_xi / (1-1/xi)) } correction_low <- function(xi, sevdist, type, mean_freq, disp_freq){ sevdist_xi <- do.call(paste("sevdist_xi", as.character(type), sep = "_"), list(xi, sevdist)) mean_sev <- try(pracma::quadinf(function(x){1-psevdist(x, sevdist_xi)}, xa = 0, xb = Inf)$Q, silent=TRUE) return((mean_freq + disp_freq -1) * mean_sev) } correction_1 <- function(xi, sevdist, type, mean_freq, disp_freq, alpha){ sevdist_xi <- do.call(paste("sevdist_xi", as.character(type), sep = "_"), list(xi, sevdist)) basic_SLA <- qsevdist(1 - (1-alpha)/mean_freq, sevdist_xi) return((mean_freq + disp_freq -1) * pracma::integral(function(x){1-psevdist(x, sevdist_xi)}, xmin = 0, xmax = basic_SLA, method = "Kronrod")) } spline_SLA <- function(sevdist, xi_low, xi_high, type, mean_freq, disp_freq, alpha){ grid_xi_high <- seq(xi_high, xi_high + 0.2, 0.05) grid_xi_low <- seq(xi_low - 0.2, xi_low, 0.05) grid_xi <- c(grid_xi_low, 1, grid_xi_high) spline_high <- sapply(grid_xi_high, correction_high, sevdist, type, mean_freq, disp_freq, alpha) spline_low <- sapply(grid_xi_low, correction_low, sevdist, type, mean_freq, disp_freq) spline_1 <- correction_1(1, sevdist, type, mean_freq, disp_freq, alpha) spline_values <- c(spline_low, spline_1, spline_high) correct_spline <- try(splinefun(grid_xi, spline_values, method = "hyman"), silent=TRUE) return(correct_spline) } sla <- function(opriskmodel, alpha, xi_low = 0.8, xi_high = 1.2, plot = FALSE){ approx <- list() for(cell in 1:length(opriskmodel)){ approx[[cell]] <- list() approx[[cell]]$interpolation <- FALSE cell_type <- (opriskmodel[[cell]]$sevdist)$type mean_freq <- switch(opriskmodel[[cell]]$freqdist[[1]], "pois" = opriskmodel[[cell]]$freqdist[[2]], "nbinom" = opriskmodel[[cell]]$freqdist[[2]][1]*(1-opriskmodel[[cell]]$freqdist[[2]][2])/opriskmodel[[cell]]$freqdist[[2]][2]) disp_freq <- switch(opriskmodel[[cell]]$freqdist[[1]], "pois" = 1, "nbinom" = 1/opriskmodel[[cell]]$freqdist[[2]][2]) simple_VaR <- qsevdist(1 - (1-alpha)/mean_freq, opriskmodel[[cell]]$sevdist) mean_sev <- try(pracma::quadinf(function(x){x*dsevdist(x, opriskmodel[[cell]]$sevdist)}, xa = 0, xb = Inf)$Q, silent=FALSE) tailindex <- do.call(paste("tailindex", as.character(cell_type), sep = "_"), list(opriskmodel[[cell]]$sevdist)) if(!is.null(tailindex)){ if(tailindex <= xi_low){ correction <- (mean_freq + disp_freq -1) * mean_sev } else if(tailindex >= xi_high){ c_xi <- (1-tailindex) /2 /gamma(1-2/tailindex) * (gamma(1-1/tailindex)^2) correction <- (mean_freq + disp_freq -1) * (1-alpha) / mean_freq * simple_VaR * c_xi / (1-1/tailindex) } else if(tailindex == 1){ correction <- (mean_freq + disp_freq -1) * (pracma::integral(function(x){1-psevdist(x, opriskmodel[[cell]]$sevdist)}, xmin = 0, xmax = simple_VaR, method = "Kronrod")) } else { correction_spline <- spline_SLA(opriskmodel[[cell]]$sevdist, xi_low, xi_high, cell_type, mean_freq, disp_freq, alpha) xi_high_tmp <- xi_high xi_low_tmp <- xi_low while(class(correction_spline) == "try-error"){ xi_high_tmp <- xi_high_tmp + 0.05 xi_low_tmp <- xi_low_tmp - 0.05 correction_spline <- spline_SLA(opriskmodel[[cell]]$sevdist, xi_low_tmp, xi_high_tmp, cell_type, mean_freq, disp_freq, alpha) } correction <- correction_spline(tailindex) approx[[cell]]$interpolation <- TRUE } if(approx[[cell]]$interpolation == TRUE && plot == TRUE) { grid_high <- seq(1.005, 1.5, 0.01) grid_low <- seq(0.5, 0.995, 0.01) grid <- c(grid_low, 1, grid_high) correction_high_values <- sapply(grid_high, correction_high, opriskmodel[[cell]]$sevdist, cell_type, mean_freq, disp_freq, alpha) correction_low_values <- sapply(grid_low, correction_low, opriskmodel[[cell]]$sevdist, cell_type, mean_freq, disp_freq) plot(grid_low, correction_low_values, xlim=c(0.5, 1.5), ylim=c(min(correction_low_values, correction_high_values), max(correction_low_values, correction_high_values)), type="l", col="royalblue", lwd = 2, xlab = expression(xi), ylab = "SLA correction term") lines(grid_high, correction_high_values, col="royalblue", lwd = 2) abline(v = 1, lty = "dashed") if(!exists("xi_low_tmp")){ xi_low_tmp <- xi_low xi_high_tmp <- xi_high } curve(correction_spline, from = xi_low_tmp, to = xi_high_tmp, lty = "dashed", col="darkorange4", lwd = 2, add = TRUE) points(1, correction_spline(1), col = "darkorange", pch = 19) } } else{ correction <- (mean_freq + disp_freq -1) * mean_sev if(!is.numeric(correction)) correction <- 0 approx[[cell]]$interpolation <- FALSE } approx[[cell]]$value <- simple_VaR + correction } output = NULL for(i in 1:length(approx)){ output = rbind(output, c(approx[[i]]$value, as.character(approx[[i]]$interpolation))) } cat("OpRiskmodel - SLA: ", alpha*100, "% \n") cat("----------------------------------------------\n") colnames(output) = c("VaR", "Interpolation") rownames(output) = paste("Cell", c(seq(1, length(approx), by=1)), ": ") prmatrix(output, quote = FALSE) }
ES.SE <- function(data, p = 0.95, se.method = c("IFiid","IFcor","IFcorAdapt","IFcorPW","BOOTiid","BOOTcor")[1:2], cleanOutliers = FALSE, fitting.method = c("Exponential", "Gamma")[1], d.GLM.EN = 5, freq.include = c("All","Decimate","Truncate")[1], freq.par = 0.5, corOut = c("none","retCor","retIFCor", "retIFCorPW")[1], return.coef = FALSE, ...){ if(is.null(dim(data)) || ncol(data) == 1) point.est <- ES(data, alpha.ES = 1-p) else point.est <- apply(data, 2, function(x) ES(x, alpha.ES = 1-p)) if(is.null(se.method)){ return(point.est) } else{ SE.out <- list(ES = point.est) for(mymethod in se.method){ SE.out[[mymethod]] <- EstimatorSE(data, estimator.fun = "ES", alpha.ES = 1-p, se.method = mymethod, cleanOutliers = cleanOutliers, fitting.method = fitting.method, d.GLM.EN = d.GLM.EN, freq.include = freq.include, freq.par = freq.par, return.coef = return.coef, ...) } SE.out <- Add_Correlations(SE.out = SE.out, data = data, cleanOutliers = cleanOutliers, corOut = corOut, IF.func = IF.ES, ...) return(SE.out) } }
library(MixSIAR) mix.filename <- system.file("extdata", "lake_consumer.csv", package = "MixSIAR") mix <- load_mix_data(filename=mix.filename, iso_names=c("d13C","d15N"), factors=NULL, fac_random=NULL, fac_nested=NULL, cont_effects="Secchi.Mixed") source.filename <- system.file("extdata", "lake_sources.csv", package = "MixSIAR") source <- load_source_data(filename=source.filename, source_factors=NULL, conc_dep=FALSE, data_type="raw", mix) discr.filename <- system.file("extdata", "lake_discrimination.csv", package = "MixSIAR") discr <- load_discr_data(filename=discr.filename, mix) calc_area(source=source,mix=mix,discr=discr)
"dk_sim"
knitr::opts_chunk$set( collapse = TRUE, comment = " ) set.seed(42) require(MultIS) dat <- read.table(file = "example_readouts.csv", sep = ",", header = TRUE, row.names = 1, check.names = FALSE) dat <- as.matrix(dat) class(dat) <- c(class(dat), "timeseries") knitr::kable(dat[1:10,], row.names = TRUE, digits = 2) plot(dat) filteredDat <- MultIS::filter_at_tp_biggest_n(dat, at = "720", n = 10L) plot(filteredDat) similarityMatrix <- MultIS::get_similarity_matrix(dat, parallel = FALSE) is1 = which.max(unlist( lapply(1:(ncol(similarityMatrix) - 2), function(i) { similarityMatrix[i, i + 1] + (1 - similarityMatrix[i + 1, i + 2]) }) )) is2 = is1 + 1 is3 = is1 + 2 r2 = round(summary(stats::lm(y ~ 0 + x, data = data.frame( x = dat[is1, ], y = dat[is2, ])))$r.squared, 3) p1 <- MultIS::plot_rsquare(dat, is1, is2) + ggplot2::ggtitle(label = bquote(R^2 == .(r2))) + ggplot2::theme(plot.title = ggplot2::element_text(hjust = 0.5)) r2 = round(summary(stats::lm(y ~ 0 + x, data = data.frame( x = dat[is2, ], y = dat[is3, ])))$r.squared, 3) p2 <- MultIS::plot_rsquare(dat, is2, is3) + ggplot2::ggtitle(label = bquote(R^2 == .(r2))) + ggplot2::theme(plot.title = ggplot2::element_text(hjust = 0.5)) gridExtra::grid.arrange(p1, p2, ncol = 2) similarityMatrix <- MultIS::get_similarity_matrix(dat, parallel = FALSE) plot(similarityMatrix) clusterObjC2 <- MultIS::reconstruct(readouts = dat, target_communities = 2, method = "kmedoids", cluster_obj = TRUE, sim = similarityMatrix) clusterObjC4 <- MultIS::reconstruct(readouts = dat, target_communities = 4, method = "kmedoids", cluster_obj = TRUE, sim = similarityMatrix) p1 <- plot(clusterObjC2) p2 <- plot(clusterObjC4) gridExtra::grid.arrange(p1, p2, ncol = 2) bestNrCluster <- MultIS::find_best_nr_cluster( data = dat, sim = similarityMatrix, method_reconstruction = "kmedoids", method_evaluation = "silhouette", return_all = TRUE) plotDf <- data.frame( k = as.numeric(names(bestNrCluster)), score = as.numeric(bestNrCluster) ) ggplot2::ggplot(plotDf, ggplot2::aes(x = k, y = score, group = 1)) + ggplot2::geom_line() + ggplot2::geom_point(ggplot2::aes(col = (score == max(score)))) + ggplot2::scale_color_manual(values = c("TRUE" = " ggplot2::theme_bw() + ggplot2::theme(legend.position = "none") bestNrCluster <- MultIS::find_best_nr_cluster( data = dat, sim = similarityMatrix, method_reconstruction = "kmedoids", method_evaluation = "silhouette", return_all = FALSE) clusterObjBest <- MultIS::reconstruct( readouts = dat, target_communities = bestNrCluster, method = "kmedoids", cluster_obj = TRUE, sim = similarityMatrix) plot(clusterObjBest) load("example.RData") str(simData, max.level = 1) knitr::kable(simData$barcodeReadouts[1:10,], digits = 2, row.names = TRUE) p1 <- plot(simData$clone_counts) + ggplot2::ggtitle("Basic clonal simulation") p2 <- plot(simData$clone_readouts) + ggplot2:: ggtitle("Added clonal differences") p3 <- plot(simData$is_counts) + ggplot2::ggtitle("Superimposition of integration sites") p4 <- plot(simData$is_readouts) + ggplot2::ggtitle("Added measurement noise") gridExtra::grid.arrange(p1, p2, p3, p4, ncol = 2, nrow = 2) mapping <- data.frame(Clone = unique(simData$mapping[,"Clone"])) mapping$IS <- sapply(mapping$Clone, function(e) { paste(summary(simData$mapping[simData$mapping[, "Clone"] == e, "IS"])[c("Min.", "Max.")], collapse = " - ") }) knitr::kable(mapping) similarityMatrix <- MultIS::get_similarity_matrix(simData$is_readouts, parallel = FALSE) aris <- sapply(3:12, function(k) { clusterObj <- MultIS::reconstruct(simData$is_readouts, target_communities = k, cluster_obj = TRUE, sim = similarityMatrix) mclust::adjustedRandIndex(clusterObj$mapping[,"Clone"], simData$mapping[,"Clone"]) }) arisDF <- data.frame( k = 3:12, ARI = aris, stringsAsFactors = F ) ggplot2::ggplot(arisDF, ggplot2::aes(x = k, y = ARI, colour = col)) + ggplot2::geom_line(colour = "black") + ggplot2::geom_point(size = 4, ggplot2::aes(color = (ARI == max(ARI)))) + ggplot2::scale_color_manual(values = c("TRUE" = " ggplot2::scale_x_continuous(breaks = 3:12) + ggplot2::theme_bw() + ggplot2::theme(legend.position = "none", text = ggplot2::element_text(size = 16))
"PBI"
has_other_issues_details <- function(parsed, ...) { pkg <- all_packages(parsed) res <- lapply(parsed, function(x) { other_issues_pth <- xml2::xml_find_all(x, ".//h3/a/following::p[1]//a") issue_type <- xml2::xml_text(other_issues_pth) issue_url <- xml2::xml_text(xml2::xml_find_all(other_issues_pth, "@href")) tibble::tibble( result = "other_issue", check = issue_type, flavors = NA_character_, message = paste0("See: <", issue_url, ">") ) }) pkgs <- rep(unlist(pkg), vapply(res, function(x) nrow(x) %||% 0L, integer(1))) res <- do.call("rbind", res) res <- cbind(package = pkgs, res, stringsAsFactors = FALSE) tibble::as_tibble(res) } cran_details_from_web <- function(pkg, ...) { parsed <- read_cran_web_from_pkg(pkg) issue_test <- has_other_issues_details(parsed) all_p <- mapply(function(x, pkg_nm) { p <- xml2::xml_find_all(x, ".//p") p <- strsplit(xml2::xml_text(x), "\n") p <- unlist(p) p <- p[nzchar(p)] p <- gsub(intToUtf8(160), " ", p) chk_idx <- grep("^Check:", p) vrs_idx <- grep("^Version:", p) res_idx <- grep("^Result:", p) flv_idx <- grep("^Flavors?:", p) if (!identical(length(chk_idx), length(res_idx)) && !identical(length(chk_idx), length(flv_idx))) { stop("File an issue on Github indicating the name of your package.") } msg <- mapply(function(c, v, r, f) { tibble::tibble( version = gsub("^Version: ", "", p[v]), result = gsub("^Result: ", "", p[r]), check = gsub("^Check: ", "", p[c]), flavors = gsub("^Flavors?: ", "", p[f]), n_flavors = length(unlist(gregexpr(",", p[f]))) + 1, message = paste(gsub("^\\s+", " ", p[(r + 1):(f - 1)]), collapse = "\n") ) }, chk_idx, vrs_idx, res_idx, flv_idx, SIMPLIFY = FALSE, USE.NAMES = FALSE) r <- do.call("rbind", msg) if (!is.null(r)) { r <- cbind(package = rep(pkg_nm, nrow(r)), r, stringsAsFactors = FALSE) } else { r <- tibble::add_row(default_cran_details, package = pkg_nm, version = paste(unique(get_cran_table(parsed[pkg_nm])$version), collapse = ", "), result = "OK", check = "", flavors = "", n_flavors = n_cran_flavors(), message = "" ) } }, parsed, names(parsed), SIMPLIFY = FALSE) res <- do.call("rbind", all_p) .iss <- tibble::tibble( package = issue_test$package, version = rep("", nrow(issue_test)), result = issue_test$result, check = issue_test$check, flavors = issue_test$flavors, n_flavors = NA_integer_, message = issue_test$message ) res <- rbind(res, .iss) tibble::as_tibble(res[order(res$package), ]) } cran_details_from_crandb <- function(pkg, ...) { dt <- get_cran_rds_file("details", ...) issues <- get_cran_rds_file("issues", ...) col_is_factor <- vapply(dt, is.factor, logical(1)) for (i in seq_along(col_is_factor)) { if (col_is_factor[i]) { dt[[i]] <- as.character(dt[[i]]) } } dt <- dt[dt[["package"]] %in% pkg, ] dt$status <- gsub("WARNING", "WARN", dt$status) .res <- default_cran_details for (.p in unique(dt$package)) { dt_p <- dt[dt$package == .p, ] for (.v in unique(dt_p$version)) { dt_v <- dt_p[dt_p$version == .v, ] for (.c in unique(dt_v$check)) { dt_c <- dt_v[dt_v$check == .c, ] for (.s in unique(dt_c$status)) { dt_s <- dt_c[dt_c$status == .s, ] .res <- tibble::add_row(.res, package = .p, version = .v, result = .s %~~% "", check = .c, flavors = paste(dt_s$flavor, collapse = ", ") %~~% "", n_flavors = length(dt_s$flavor), message = gsub("\\n", "\n ", paste(" ", dt_s$output[1])) ) } } } } .res$check <- replace(.res$check, .res$check == "*", "") issues <- issues[issues[["package"]] %in% pkg, ] issues <- tibble::as_tibble(issues) .iss <- tibble::tibble( package = as.character(issues$package), version = as.character(issues$version), result = rep("other_issue", nrow(issues)), check = as.character(issues$kind), flavors = character(nrow(issues)), n_flavors = integer(nrow(issues)), message = as.character(issues$href) ) res <- rbind(.res, .iss) convert_nas(res[order(res$package), ], replace_with = "") } cran_details <- function(pkg, src = c("website", "crandb"), ...) { if (!is.character(pkg)) { stop(sQuote("pkg"), " is not a string.", call. = FALSE) } src <- match.arg(src, c("website", "crandb")) if (identical(src, "website")) { res <- cran_details_from_web(pkg) } else if (identical(src, "crandb")) { res <- cran_details_from_crandb(pkg, ...) } class(res) <- c("cran_details", class(res)) attr(res, "pkgs") <- pkg res } render_flavors <- function(x) { if (!is.na(x)) { res <- unlist(strsplit(x, ", ")) paste(" ", clisymbols::symbol$pointer, res, "\n") } else { "" } } filter_pkg_not_ok <- function(res) { res[res[["result"]] != "OK", ] } filter_pkg_ok <- function(res) { not_ok <- filter_pkg_not_ok(res) res[!res$package %in% not_ok$package, ] } summary.cran_details <- function(object, show_log = TRUE, print_ok = TRUE, ...) { res_ok <- filter_pkg_ok(object) if (nrow(res_ok) > 0 && print_ok) { print_all_clear(res_ok[["package"]]) } res_not_ok <- filter_pkg_not_ok(object) if (nrow(res_not_ok) < 1) { return(invisible(object)) } mapply( function(package, result, check, flavors, message) { cmpt <- foghorn_components[[result]] if (show_log) { msg <- message } else { msg <- character(0) } cat( cmpt$color(paste0( cmpt$symbol, " ", crayon::bold(paste0(package, " - ", result)), ": ", check )), "\n", render_flavors(flavors), "\n", msg, "\n\n", sep = "" ) }, res_not_ok$package, tolower(res_not_ok$result), res_not_ok$check, res_not_ok$flavors, res_not_ok$message ) invisible(object) } summary_cran_details <- function(pkg, src = c("website", "crandb"), show_log = TRUE, print_ok = TRUE, ...) { res <- cran_details(pkg = pkg, src = src, ...) summary(res, show_log = show_log, print_ok = print_ok) }
testthat::test_that("Test checkRange for invaild value for variable interval", code = { M <- c(3, 6, 2) testthat::expect_error(checkRange(M, 1:10), info = "Test checkRange for invaild value for variable interval" ) }) testthat::test_that("Test checkRange valid value", code = { testthat::expect_invisible(checkRange(1:5, interval = c(1, 5), inclusion = c(TRUE, TRUE))) })
checkTS <- function(TS, distbounds = c(-Inf, Inf)) { if (!is.list(TS)) { TS <- list(TS) } att <- attributes(TS[[1]]) margdist <- att$margdist margarg <- att$margarg p0 <- att$p0 acsvalue <- att$acsvalue ac <- sapply(TS, function(x) acf(x, plot = F)$acf) out <- data.frame(mean = c(popmean(margdist, margarg, distbounds = distbounds, p0 = p0), sapply(TS, mean)), sd = c(popsd(margdist, margarg, distbounds = distbounds, p0 = p0), sapply(TS, sd)), skew = c(popskew(margdist, margarg, distbounds = distbounds, p0 = p0), sapply(TS, function(x) sample.moments(x, raw = F, central = F, coef = T)$coefficients[2])), p0 = c(p0, sapply(TS, function(x) length(which(x == 0))/length(x))), acf_t1 = c(acsvalue[2], ac[2,]), acf_t2 = c(acsvalue[3], ac[3,]), acf_t3 = c(acsvalue[4], ac[4,])) row.names(out) <- c('expected', paste0('simulation', seq_along(TS))) out <- round(out, 2) structure(.Data = as.matrix(out), class = c('checkTS', 'matrix'), margdist = margdist, margarg = margarg, p0 = p0) } plot.checkTS <- function(x, ...) { att <- attributes(x) margdist <- att$margdist margarg <- att$margarg p0 <- att$p0 dta <- melt(as.data.table(x = x, keep.rownames = TRUE), id.vars = 'rn') dta.e <- dta[which(dta$rn == 'expected'),] dta.s <- dta[which(dta$rn != 'expected'),] p <- ggplot() + geom_boxplot(data = dta.s, aes_string(x = 'variable', y = 'value', group = 'variable')) + geom_point(data = dta.e, aes_string(x = 'variable', y = 'value', group = 'variable'), size = 2, colour = 'red1') + facet_wrap('variable', scales = 'free', nrow = 1) + labs(x = '', y = '', title = paste('Marginal =', margdist), subtitle = paste(paste(names(margarg), '=', margarg, collapse = '; '), paste('\np0 =', p0), collapse = ' ')) + theme_gray() + theme(legend.position = 'bottom', strip.background = element_rect(fill = 'grey5'), strip.text = element_text(colour = 'grey95'), axis.title.x = element_blank(), axis.text.x = element_blank(), axis.ticks.x = element_blank()) return(p) }
library(mistr) unifdist <- function(min = 0, max = 1){ if (!is.numeric(min) || !is.numeric(max)){ stop("parameters must be a numeric") } if (min >= max){ stop("min must be smaller than max") } x <- list(parameters = list(min = min, max = max), type = "Uniform", support = list(from = min, to = max)) class(x) <- c("unifdist", "contdist", "standist", "univdist", "dist") x } dunifdist <- function(min = 1, max = 6){ if (!is.numeric(min) || !is.numeric(max)){ stop("parameters must be a numeric") } if (min >= max){ stop("min must be smaller than max") } if (min%%1 != 0 || max%%1 != 0){ stop("min and max must be integers") } new_dist(name = "Discrete uniform", from = min, to = max, by = 1) } pdunif <- function(q, min = 0, max = 1, lower.tail = TRUE, log.p = FALSE){ q <- round(q, 7) z <- ifelse(q < min, 0, ifelse(q >= max, 1, (floor(q) - min + 1)/(max - min + 1))) if(!lower.tail) z <- 1 - z if(log.p) log(z) else z } D <- dunifdist(1, 6) p(D, 4) plim(D, 4) atan.univdist <- function(x){ trafo(x, type = "init", trans = quote(atan(X)), invtrans = quote(tan(X)), print = quote(atan(X)), deriv = quote(1+tan(X)^2), operation = "atan") } ataNorm <- atan(normdist()) library(ggplot2) autoplot(ataNorm) ataNorm log(2+ataNorm) atan.trans_univdist <- function(x){ if (last_history(x, "operation") == "tan") { return(trafo(x, type = "go_back")) } else { return(trafo(x, type = "new", trans = quote(atan(X)), invtrans = quote(tan(X)), print = quote(atan(X)), deriv = quote(1+tan(X)^2), operation = "atan")) } } `+.dunifdist` <- function(e1, e2){ if (is.dist(e1)) { O <- e1 x <- e2 } else { O <- e2 x <- e1 } dunifdist(min = parameters(O)["min"] + x, max = parameters(O)["max"] + x) } D2 <- atan(D+5) D2 p(D2, c(1.41, 1.43, 1.45, 1.47))