code
stringlengths 1
13.8M
|
---|
NULL
backsolve_float32 = function(r, x, k=ncol(r), upper.tri=TRUE, transpose=FALSE)
{
if (is.integer(r))
{
if (is.float(x))
r = fl(r)
}
if (is.integer(x))
{
if (is.float(r))
x = fl(x)
}
if (is.double(r) || is.double(x))
{
if (is.float(r))
r = dbl(r)
if (is.float(x))
x = dbl(x)
backsolve(r, x, k, upper.tri, transpose)
}
else
{
if (!is.numeric(k) || k < 1 || k > nrow(r) || is.na(k))
stop("invalid 'k' argument")
ret = .Call(R_backsolve_spm, DATA(r), DATA(x), as.integer(upper.tri), as.integer(transpose), as.integer(k))
float32(ret)
}
}
forwardsolve_float32 = function(l, x, k=ncol(l), upper.tri=FALSE, transpose=FALSE)
{
backsolve_float32(l, x, k, upper.tri, transpose)
}
setMethod("backsolve", signature(r="float32", x="float32"), backsolve_float32)
setMethod("backsolve", signature(r="float32", x="BaseLinAlg"), backsolve_float32)
setMethod("backsolve", signature(r="BaseLinAlg", x="float32"), backsolve_float32)
setMethod("forwardsolve", signature(l="float32", x="float32"), forwardsolve_float32)
setMethod("forwardsolve", signature(l="float32", x="BaseLinAlg"), forwardsolve_float32)
setMethod("forwardsolve", signature(l="BaseLinAlg", x="float32"), forwardsolve_float32) |
Visualizer3Point <- function(A, pointsToDraw, colour, label, name){
if(is.na(colour)){
colour="black"
}
X=rbind(c(0,0),c(1,0),c(0.5, sqrt(0.75)))
vertices = bary2cart(X,pointsToDraw)
graphics::points(vertices[1],vertices[2],pch=4,col=colour)
if(label == TRUE)
{
setLabels(A, pointsToDraw, name)
}
} |
vmap <- function(EXPR, ..., SIMPLIFY = TRUE) {
if (is.factor(EXPR)) EXPR <- as.character.factor(EXPR)
res <- lapply(EXPR, switch, ...)
if (SIMPLIFY) simplify2array(res) else res
}
qrank <- function(x, ...) {
rank(x = x, ...) / length(x)
}
normalize <- function(x, min = 0, max = 1, na.rm = FALSE) {
if (all(is.na(x))) return(rep(0, length(x)))
if (!is.numeric(x)) stop("x must be numeric")
x <- unclass(x)
if (min > max) stop("min <= max must be satisfied")
if (all(x == 0, na.rm = na.rm)) return(x)
xmax <- max(x, na.rm = na.rm)
xmin <- min(x, na.rm = na.rm)
if (xmax == xmin) return(rep(1, length(x)))
min + (max - min) * (x - xmin) / (xmax - xmin)
}
proportion <- function(x, na.rm = FALSE) {
x / max(abs(x), na.rm = na.rm)
} |
with_id <- function(source_file, id) {
if (is.null(source_file$parsed_content)) {
return(data.frame())
}
source_file$parsed_content[id, ]
} |
emptyBands <- function(...) {
input <- list(...)
if (length(input) < 2) {
stop("emptyBands requires two or more TDSC objects")
}
x <- c()
y <- c()
for (i in 1:length(input)) {
if (typeof(input[[i]]) != "S4" | class(input[[i]]) != "tdsc") {
stop("Inputs to emptyBands must be TDSC objects.")
}
s_matrix <- input[[i]]@s_matrix
x <- c(x, rep(i, length(s_matrix)))
y <- c(y, as.numeric(rownames(s_matrix)))
}
uy <- unique(y)
ay <- 1:max(uy)
m <- ay[!(ay %in% uy)]
return(list(missing=m, plot=cbind(x,y)))
} |
check_nrow <- function(x, nrow = TRUE,
x_name = substitute(x),
error = TRUE) {
x_name <- chk_deparse(x_name)
check_length_internal(nrow)
check_flag_internal(error)
check_n(x, n = nrow(x), range = nrow, x_name = x_name, n_name = "row", error = error)
invisible(x)
} |
library(testthat)
library(operator.tools)
test_that( 'opetators', {
context( 'Function: is.operator' )
for( op in operators() )
expect_that(
is.operator( as.name(op)),
is_true(),
paste( op, "is not an operator." )
)
context( 'Function: can.operator' )
for( op in operators() )
expect_that(
can.operator(op),
is_true(),
paste( op, "cannot be coercised into an operator." )
)
context('Function: as.operator')
for( op in operators() )
expect_that(
is.operator( as.operator(op) ),
is_true() ,
paste( op, 'was not successfully coerced to an operator.' )
)
}) |
summary.BchronRSLRun <-
function(object, type = c("parameters", "RSL", "rate", "accel"), age_grid = NULL, ...) {
cat("Posterior Medians with 95% credible intervals...\n")
type <- match.arg(type, several.ok = TRUE)
if ("parameters" %in% type) {
cat("Power Lower Median Upper \n")
pow.names <- c("mean", "linear", "quadratic", "cubic", "quartic", "quintic")
for (j in 1:(object$degree + 1)) {
cat(pow.names[j], round(stats::quantile(object$samples[, j], probs = c(0.025, 0.5, 0.975)), 4), "\n")
}
}
if (is.null(age_grid)) {
age_low <- apply(object$BchronologyRun$thetaPredict, 2, stats::quantile, probs = 0.025)
age_med <- apply(object$BchronologyRun$thetaPredict, 2, stats::quantile, probs = 0.5)
age_high <- apply(object$BchronologyRun$thetaPredict, 2, stats::quantile, probs = 0.975)
age_grid <- seq(max(age_low), min(age_high), length = 100)
}
age_grid_use <- age_grid / 1000
pred.lines <- matrix(NA, ncol = length(age_grid_use), nrow = nrow(object$samples))
if ("RSL" %in% type) {
degmat <- matrix(rep(0:(object$degree), each = length(age_grid_use)),
nrow = length(age_grid_use), ncol = object$degree + 1
)
X.pred <- matrix(rep(age_grid_use - object$const, object$degree + 1), ncol = object$degree + 1)
X.pred <- (X.pred^degmat)
for (i in 1:nrow(pred.lines)) {
pred.lines[i, ] <- X.pred %*% matrix(object$samples[i, ], ncol = 1, nrow = object$degree + 1)
}
pred.med <- apply(pred.lines, 2, stats::quantile, probs = 0.5)
pred.low <- apply(pred.lines, 2, stats::quantile, probs = 0.025)
pred.high <- apply(pred.lines, 2, stats::quantile, probs = 0.975)
df <- data.frame(
"Age" = age_grid,
"RSL_2.5" = pred.low,
"RSL_50" = pred.med,
"RSL_97.5" = pred.high
)
print(df)
}
if ("rate" %in% type) {
degmat <- matrix(rep(0:(object$degree), each = length(age_grid_use)),
nrow = length(age_grid_use), ncol = object$degree + 1
)
degmat_rate <- matrix(rep(0:(object$degree), each = length(age_grid_use)),
nrow = length(age_grid_use), ncol = object$degree + 1
) - 1
X.pred <- matrix(rep(age_grid_use - object$const, object$degree + 1), ncol = object$degree + 1)
X.pred <- -degmat * (X.pred^degmat_rate)
for (i in 1:nrow(pred.lines)) {
pred.lines[i, ] <- X.pred %*% matrix(object$samples[i, ], ncol = 1, nrow = object$degree + 1)
}
pred.med <- apply(pred.lines, 2, stats::quantile, probs = 0.5)
pred.low <- apply(pred.lines, 2, stats::quantile, probs = 0.025)
pred.high <- apply(pred.lines, 2, stats::quantile, probs = 0.975)
df <- data.frame(
"Age" = age_grid,
"RSL_rate_2.5" = pred.low,
"RSL_rate_50" = pred.med,
"RSL_rate_97.5" = pred.high
)
print(df)
}
if ("accel" %in% type) {
degmat <- matrix(rep(0:(object$degree), each = length(age_grid_use)),
nrow = length(age_grid_use), ncol = object$degree + 1
)
degmat_rate <- matrix(rep(0:(object$degree), each = length(age_grid_use)),
nrow = length(age_grid_use), ncol = object$degree + 1
) - 1
degmat_accel <- matrix(rep(0:(object$degree), each = length(age_grid_use)),
nrow = length(age_grid_use), ncol = object$degree + 1
) - 2
X.pred <- matrix(rep(age_grid_use - object$const, object$degree + 1), ncol = object$degree + 1)
X.pred <- degmat * (degmat - 1) * (X.pred^degmat_accel)
for (i in 1:nrow(pred.lines)) {
pred.lines[i, ] <- X.pred %*% matrix(object$samples[i, ], ncol = 1, nrow = object$degree + 1)
}
pred.med <- apply(pred.lines, 2, stats::quantile, probs = 0.5)
pred.low <- apply(pred.lines, 2, stats::quantile, probs = 0.025)
pred.high <- apply(pred.lines, 2, stats::quantile, probs = 0.975)
df <- data.frame(
"Age" = age_grid,
"RSL_accel_2.5" = pred.low,
"RSL_accel_50" = pred.med,
"RSL_accel_97.5" = pred.high
)
print(df)
}
} |
if (getRversion() < 3.3) {
absolute.units <- getFromNamespace("absolute.units", "grid")
absolute.units.unit <- getFromNamespace("absolute.units.unit", "grid")
absolute.units.unit.list <- getFromNamespace("absolute.units.unit.list", "grid")
absolute.units.unit.arithmetic <- getFromNamespace("absolute.units.unit.arithmetic", "grid")
backport_unit_methods <- function() {
registerS3method("absolute.units", "unit", absolute.units.unit)
registerS3method("absolute.units", "unit.list", absolute.units.unit.list)
registerS3method("absolute.units", "unit.arithmetic", absolute.units.unit.arithmetic)
}
} else {
backport_unit_methods <- function() {}
}
if (getRversion() < 3.5) {
isFALSE <- function(x) is.logical(x) && length(x) == 1L && !is.na(x) && !x
} |
context("Test MSE_functions")
library(openMSE)
MPs <- avail("MP", 'DLMtool')
MSE <- runMSE(testOM, MPs=MPs, checkMPs = FALSE)
testthat::test_that("Converge", {
testthat::expect_error(Converge(MSE), NA)
})
testthat::test_that("checkMSE", {
testthat::expect_error(checkMSE(MSE), NA)
})
testthat::test_that("Sub by MP", {
MPs1 <- MSE@MPs[1:3]
MPs2 <- MSE@MPs[4:MSE@nMPs]
testthat::expect_error(t1 <- Sub(MSE, MPs=MPs1), NA)
testthat::expect_error(t2 <- Sub(MSE, MPs=MPs2), NA)
})
testthat::test_that("Sub by sim", {
nsim <- MSE@nsim
sims1 <- 1:ceiling((nsim/2))
sims2 <- (max(sims1)+1):nsim
testthat::expect_error(t1 <<- Sub(MSE, sim=sims1), NA)
testthat::expect_error(t2 <<- Sub(MSE, sim=sims2), NA)
})
testthat::test_that("joinMSE", {
testthat::expect_error(newMSE <<- joinMSE(list(t1, t2)), NA)
})
testthat::test_that("joinMSE returns same object", {
testthat::expect_true(all(summary(newMSE, silent=TRUE) == summary(MSE, silent=TRUE)))
}) |
expected <- eval(parse(text="FALSE"));
test(id=0, code={
argv <- eval(parse(text="list(c(TRUE, TRUE, TRUE, FALSE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, FALSE, TRUE))"));
do.call(`all`, argv);
}, o=expected); |
make_marker_names <- function(x){
x$marker_names <- paste(x$chr, x$start, x$end, sep="_")
toMatch <- c("chr", "start", "end")
toMatch <- paste("^", toMatch, "$", sep="")
matches <- grep(paste(toMatch,collapse="|"), colnames(x))
x <- x[,-matches]
return(x[,c("marker_names", "marker")])
} |
test_that("udunits error messages", {
expect_error(set_units(1:3, "qqq"), "qqq")
})
test_that("udunits low-level functions work", {
expect_silent(units:::R_ut_get_dimensionless_unit_one())
a <- units:::R_ut_parse("m")
b <- units:::R_ut_parse("g")
expect_error(units:::R_convert_doubles(a, b, 1:10), "not convertible")
units:::R_ut_offset("foo", "kg", -10)
expect_equal(set_units(set_units(1, kg), foo), set_units(11, foo))
remove_unit(name="foo")
units:::R_ut_scale("foo", "kg", 2)
expect_equal(set_units(set_units(2, kg), foo), set_units(1, foo))
remove_unit(name="foo")
expect_silent(units:::R_ut_divide(a, b))
expect_silent(units:::R_ut_multiply(a, b))
expect_silent(units:::R_ut_invert(a))
expect_silent(sq <- units:::R_ut_raise(a, 2L))
expect_error(units:::R_ut_raise(a, 2L:3L), "length 1")
expect_silent(units:::R_ut_root(sq, 2L))
expect_error(units:::R_ut_root(a, 2L:3L), "length 1")
expect_silent(units:::R_ut_log(a, 10.0))
expect_error(units:::R_ut_log(a, c(2, 10.0)), "length 1")
expect_error(units:::R_ut_log(a, -10.0), "positive")
expect_silent(units:::R_ut_format(a))
expect_silent(units:::R_ut_format(a, ascii = TRUE))
expect_silent(units:::R_ut_format(sq, names = TRUE))
expect_silent(units:::R_ut_format(sq, definition = TRUE))
expect_silent(units:::R_ut_set_encoding("ascii"))
expect_silent(units:::R_ut_set_encoding("iso-8859-1"))
expect_silent(units:::R_ut_set_encoding("latin1"))
expect_silent(units:::R_ut_set_encoding("utf8"))
expect_silent(ud_set_encoding("utf8"))
expect_error(units:::R_ut_set_encoding("foo"))
expect_error(units:::R_ut_get_symbol("foo"))
expect_error(units:::R_ut_get_name("foo"))
})
test_that("udunits database can be read", {
skip_if_not_installed("xml2")
expect_message(valid_udunits(), "udunits")
expect_message(valid_udunits_prefixes(), "udunits")
}) |
SplitStealData <- rbind(
do(187) * data.frame(agegroup = "Under40", decision = "Split"),
do(195) * data.frame(agegroup = "Under40", decision = "Steal"),
do(116) * data.frame(agegroup = "Over40", decision = "Split"),
do(76) * data.frame(agegroup = "Over40", decision = "Steal")
) |
lambda0_k = function(t, fit1, fit2, tilde_theta = 1, M_vec2) {
out = 1:length(t) * 0
for (i in 1:length(t)) {
if (sum(fit1$time[fit1$n.event!=0] <= t[i]) == 0 | sum(fit2$time[fit2$n.event != 0] <= t[i]) == 0) {
out[i] = NA
} else {
D1 = max((fit1$n.event - fit1$n.risk)[fit1$time <= t[i] & fit1$n.event != 0]) / M_vec2[1]
D2 = max((fit2$n.event - fit2$n.risk)[fit2$time <= t[i] & fit2$n.event != 0]) / M_vec2[2]
if (D1 != (-D2)) {
out[i] = uniroot(a_1_k, interval = c(D1 + 0.0001, -D2 - 0.0001), tol = 0.0001, fit1 = fit1, fit2 = fit2, t = t[i], tilde_theta = tilde_theta, M_vec2 = M_vec2)$root
} else {
out[i] = D1
}
}
}
return(out)
} |
NULL
setMethod(
f="print",
signature="SummaryForecastData",
definition=function(x, digits=3, ...){
print(x@summaryData, na.print="", digits=digits)
}
)
setMethod(
f="show",
signature="SummaryForecastData",
definition=function(object){
print(object@summaryData, na.print="", digits=3)
}
)
setMethod(
f="print",
signature="ForecastData",
definition=function(x, digits=3, ...){
cat("* Prediction Calibration = \n");
if(length(x@predCalibration)>0)
{print(x@predCalibration, na.print="", digits=digits);}
else{print("Nothing Here")}
cat("* Prediction Test = \n");
if(length(x@predTest)>0)
{print(x@predTest, na.print="", digits=digits);}
else{print("Nothing Here")}
cat("* Outcome Calibration = \n");
if(length(x@outcomeCalibration)>0)
{print(x@outcomeCalibration, na.print="", digits=digits);}
else{print("Nothing Here")}
cat("* Outcome Test = \n");
if(length(x@outcomeTest)>0)
{print(x@outcomeTest, na.print="", digits=digits);}
else{print("Nothing Here")}
cat("* Model Names = \n ");print(x@modelNames, na.print="");
}
)
setMethod(
f="show",
signature="ForecastData",
definition=function(object){
if (length(object@predCalibration)==0) {
cat("* Prediction Calibration = \n");
if(length(object@predCalibration)>0)
{print(object@predCalibration, na.print="", digits=1);}
else{print("Nothing Here")}
cat("* Prediction Test = \n");
if(length(object@predTest)>0)
{print(object@predTest, na.print="", digits=1);}
else{print("Nothing Here")}
cat("* Outcome Calibration = \n");
if(length(object@outcomeCalibration)>0)
{print(object@outcomeCalibration, na.print="", digits=1);}
else{print("Nothing Here")}
cat("* Outcome Test = \n");
if(length(object@outcomeTest)>0)
{print(object@outcomeTest, na.print="", digits=1);}
else{print("Nothing Here")}
cat("* Model Names = \n ");print(object@modelNames, na.print="");
}
else{
nrowCal=min(10,nrow(object@predCalibration))
nrowTest=min(10,nrow(object@predTest))
cat("* Prediction Calibration = \n");
if(length(object@predCalibration)>0)
{print(object@predCalibration[1:nrowCal,1:ncol(object@predCalibration),1], na.print="", digits=2);}
else{print("Nothing Here")}
cat("* Prediction Test = \n");
if(length(object@predTest)>0)
{print(object@predTest[1:nrowTest,1:ncol(object@predTest),1], na.print="", digits=2);}
else{print("Nothing Here")}
cat("* Outcome Calibration = \n");
if(length(object@outcomeCalibration)>0)
{print(print(object@outcomeCalibration[1:nrowCal]),na.print="", digits=2);}
else{print("Nothing Here")}
cat("* Outcome Test = \n");
if(length(object@outcomeTest)>0)
{print(object@outcomeTest[1:nrowTest], na.print="", digits=2);}
else{print("Nothing Here")}
cat("* Model Names = \n ");print(object@modelNames,na.print="");
}
}
) |
lsoda <- function(y, times, func, parms, rtol=1e-6, atol=1e-6,
jacfunc=NULL, jactype = "fullint", rootfunc = NULL,
verbose = FALSE, nroot = 0, tcrit = NULL, hmin=0, hmax=NULL, hini=0,
ynames=TRUE, maxordn = 12, maxords = 5,
bandup = NULL, banddown = NULL, maxsteps = 5000,
dllname=NULL, initfunc=dllname, initpar=parms, rpar=NULL,
ipar=NULL, nout=0, outnames=NULL, forcings=NULL,
initforc = NULL, fcontrol = NULL, events = NULL, lags=NULL, ...) {
if (! is.null(rootfunc))
return(lsodar (y, times, func, parms, rtol, atol, jacfunc,
jactype, rootfunc, verbose, nroot, tcrit,
hmin, hmax, hini, ynames, maxordn, maxords,
bandup, banddown, maxsteps, dllname, initfunc,
initpar, rpar, ipar, nout, outnames, forcings,
initforc, fcontrol, events, lags, ...))
if (is.list(func)) {
if (!is.null(jacfunc) & "jacfunc" %in% names(func))
stop("If 'func' is a list that contains jacfunc, argument 'jacfunc' should be NULL")
if (!is.null(initfunc) & "initfunc" %in% names(func))
stop("If 'func' is a list that contains initfunc, argument 'initfunc' should be NULL")
if (!is.null(dllname) & "dllname" %in% names(func))
stop("If 'func' is a list that contains dllname, argument 'dllname' should be NULL")
if (!is.null(initforc) & "initforc" %in% names(func))
stop("If 'func' is a list that contains initforc, argument 'initforc' should be NULL")
if (!is.null(events$func) & "eventfunc" %in% names(func))
stop("If 'func' is a list that contains eventfunc, argument 'events$func' should be NULL")
if ("eventfunc" %in% names(func)) {
if (! is.null(events))
events$func <- func$eventfunc
else
events <- list(func = func$eventfunc)
}
if (!is.null(func$jacfunc)) jacfunc <- func$jacfunc
if (!is.null(func$initfunc)) initfunc <- func$initfunc
if (!is.null(func$dllname)) dllname <- func$dllname
if (!is.null(func$initforc)) initforc <- func$initforc
func <- func$func
}
hmax <- checkInput (y, times, func, rtol, atol,
jacfunc, tcrit, hmin, hmax, hini, dllname)
n <- length(y)
if (!is.numeric(maxordn))
stop("`maxordn' must be numeric")
if(maxordn < 1 || maxordn > 12)
stop("`maxord' must be >1 and <=12")
if (!is.numeric(maxords))
stop("`maxords' must be numeric")
if(maxords < 1 || maxords > 5)
stop("`maxords' must be >1 and <=5")
if (jactype == "fullint" ) jt <- 2
else if (jactype == "fullusr" ) jt <- 1
else if (jactype == "bandusr" ) jt <- 4
else if (jactype == "bandint" ) jt <- 5
else stop("'jactype' must be one of 'fullint', 'fullusr', 'bandusr' or 'bandint'")
if (jt %in% c(4,5) && is.null(bandup))
stop("'bandup' must be specified if banded Jacobian")
if (jt %in% c(4,5) && is.null(banddown))
stop("'banddown' must be specified if banded Jacobian")
if (is.null(banddown)) banddown <-1
if (is.null(bandup )) bandup <-1
if (jt %in% c(1,4) && is.null(jacfunc))
stop ("'jacfunc' NOT specified; either specify 'jacfunc' or change 'jactype'")
Ynames <- attr(y,"names")
JacFunc <- NULL
flist<-list(fmat=0,tmat=0,imat=0,ModelForc=NULL)
ModelInit <- NULL
Eventfunc <- NULL
events <- checkevents(events, times, Ynames, dllname)
if (! is.null(events$newTimes)) times <- events$newTimes
if (jt == 4 && banddown>0)
erow<-matrix(data=0, ncol=n, nrow=banddown) else erow<-NULL
if (is.character(func) | inherits(func, "CFunc")) {
DLL <- checkDLL(func, jacfunc, dllname,
initfunc, verbose, nout, outnames)
ModelInit <- DLL$ModelInit
Func <- DLL$Func
JacFunc <- DLL$JacFunc
Nglobal <- DLL$Nglobal
Nmtot <- DLL$Nmtot
if (! is.null(forcings))
flist <- checkforcings(forcings,times,dllname,initforc,verbose,fcontrol)
if (is.null(ipar)) ipar<-0
if (is.null(rpar)) rpar<-0
Eventfunc <- events$func
if (is.function(Eventfunc))
rho <- environment(Eventfunc)
else
rho <- NULL
} else {
if(is.null(initfunc))
initpar <- NULL
rho <- environment(func)
if (ynames) {
Func <- function(time,state) {
attr(state,"names") <- Ynames
unlist(func (time,state,parms,...))
}
Func2 <- function(time,state) {
attr(state,"names") <- Ynames
func (time,state,parms,...)
}
JacFunc <- function(time,state) {
attr(state,"names") <- Ynames
rbind(jacfunc(time,state,parms,...),erow)
}
if (! is.null(events$Type))
if (events$Type == 2)
Eventfunc <- function(time,state) {
attr(state,"names") <- Ynames
events$func(time,state,parms,...)
}
} else {
Func <- function(time,state)
unlist(func (time,state,parms,...))
Func2 <- function(time,state)
func (time,state,parms,...)
JacFunc <- function(time,state)
rbind(jacfunc(time,state,parms,...),erow)
if (! is.null(events$Type))
if (events$Type == 2)
Eventfunc <- function(time,state)
events$func(time,state,parms,...)
}
FF <- checkFunc(Func2,times,y,rho)
Nglobal<-FF$Nglobal
Nmtot <- FF$Nmtot
if (! is.null(events$Type))
if (events$Type == 2)
checkEventFunc(Eventfunc,times,y,rho)
if (jt %in% c(1,4)) {
tmp <- eval(JacFunc(times[1], y), rho)
if (!is.matrix(tmp))
stop("Jacobian function, 'jacfunc' must return a matrix\n")
dd <- dim(tmp)
if((jt ==4 && any(dd != c(bandup+banddown+banddown+1,n))) ||
(jt ==1 && any(dd != c(n,n))))
stop("Jacobian dimension not ok")
}
}
if(jt %in% c(1,2)) lmat <- n^2+2 else
if(jt %in% c(4,5)) lmat <- (2*banddown+bandup+1)*n+2
lrn = 20+n*(maxordn+1)+ 3*n
lrs = 20+n*(maxords+1)+ 3*n +lmat
lrw = max(lrn,lrs)
liw = 20 + n
iwork <- vector("integer",20)
rwork <- vector("double",20)
rwork[] <- 0.
iwork[] <- 0
iwork[1] <- banddown
iwork[2] <- bandup
iwork[6] <- maxsteps
if (maxordn != 12) iwork[8] <- maxordn
if (maxords != 5) iwork[9] <- maxords
if (verbose) iwork[5] = 1
if(! is.null(tcrit)) rwork[1] <- tcrit
rwork[5] <- hini
rwork[6] <- hmax
rwork[7] <- hmin
if (! is.null(times))
itask <- ifelse (is.null (tcrit), 1,4) else
itask <- ifelse (is.null (tcrit), 2,5)
if(is.null(times)) times<-c(0,1e8)
if (verbose) printtask(itask,func,jacfunc)
storage.mode(y) <- storage.mode(times) <- "double"
IN <-1
lags <- checklags(lags,dllname)
on.exit(.C("unlock_solver"))
out <- .Call("call_lsoda",y,times,Func,initpar,
rtol, atol, rho, tcrit, JacFunc, ModelInit, Eventfunc,
as.integer(verbose), as.integer(itask), as.double(rwork),
as.integer(iwork), as.integer(jt), as.integer(Nglobal),
as.integer(lrw),as.integer(liw), as.integer(IN),
NULL, 0L, as.double(rpar), as.integer(ipar),
0L, flist, events, lags, PACKAGE="deSolve")
out <- saveOut(out, y, n, Nglobal, Nmtot, func, Func2,
iin=c(1,12:21), iout=c(1:3,14,5:9,15:16), nr = 5)
attr(out, "type") <- "lsoda"
if (verbose) diagnostics(out)
out
} |
library(caret)
x <- cbind(x_train,y_train)
fitControl <- trainControl( method = "repeatedcv", number = 4, repeats = 4)
fit <- train(y ~ ., data = x, method = "gbm", trControl = fitControl,verbose = FALSE)
predicted= predict(fit,x_test,type= "prob")[,2]
require(caret)
x <- cbind(x_train,y_train)
TrainControl <- trainControl( method = "repeatedcv", number = 10, repeats = 4)
model<- train(y ~ ., data = x, method = "xgbLinear", trControl = TrainControl,verbose = FALSE)
model<- train(y ~ ., data = x, method = "xgbTree", trControl = TrainControl,verbose = FALSE)
predicted <- predict(model, x_test)
library(RLightGBM)
data(example.binary)
num_iterations <- 100
config <- list(objective = "binary", metric="binary_logloss,auc", learning_rate = 0.1, num_leaves = 63, tree_learner = "serial", feature_fraction = 0.8, bagging_freq = 5, bagging_fraction = 0.8, min_data_in_leaf = 50, min_sum_hessian_in_leaf = 5.0)
handle.data <- lgbm.data.create(x)
lgbm.data.setField(handle.data, "label", y)
handle.booster <- lgbm.booster.create(handle.data, lapply(config, as.character))
lgbm.booster.train(handle.booster, num_iterations, 5)
pred <- lgbm.booster.predict(handle.booster, x.test)
sum(y.test == (y.pred > 0.5)) / length(y.test)
lgbm.booster.save(handle.booster, filename = "/tmp/model.txt")
set.seed(1)
require(titanic)
require(caret)
require(catboost)
tt <- titanic::titanic_train[complete.cases(titanic::titanic_train),]
data <- as.data.frame(as.matrix(tt), stringsAsFactors = TRUE)
drop_columns = c("PassengerId", "Survived", "Name", "Ticket", "Cabin")
x <- data[,!(names(data) %in% drop_columns)]y <- data[,c("Survived")]
fit_control <- trainControl(method = "cv", number = 4,classProbs = TRUE)
grid <- expand.grid(depth = c(4, 6, 8),learning_rate = 0.1,iterations = 100, l2_leaf_reg = 1e-3, rsm = 0.95, border_count = 64)
report <- train(x, as.factor(make.names(y)),method = catboost.caret,verbose = TRUE, preProc = NULL,tuneGrid = grid, trControl = fit_control)
print(report)
importance <- varImp(report, scale = FALSE)
print(importance) |
setDefaultsLKinfo.LKSphere <- function(object, ...) {
object$floorAwght<- 1.0
if( object$distance.type == "Euclidean"){
dType<- "GreatCircle"
attr(dType, "Radius" ) <- 1.0
object$distance.type <- dType
}
if (object$nlevel == 1 & is.na(object$alpha[1])) {
object$alpha <- list(1.0)
}
if( !is.null( object$fixedFunction)){
object$fixedFunction <- "LKrigDefaultFixedFunction"
object$fixedFunctionArgs$m <- 1
}
if (is.na(object$a.wght)) {
object$a.wght <- 1.1
}
return(object)
}
LKrigSetupLattice.LKSphere<- function(object, x=NULL, verbose,
... ){
if( is.null(x)){
x<- object$x
}
startingLevel<- object$setupArgs$startingLevel
LKinfo<- object
if( class( LKinfo)[1] != "LKinfo") {
stop("object needs to an LKinfo object")
}
rangeLocations<- apply( x,2, "range")
nlevel<- LKinfo$nlevel
if( is.null(x)){
x<- cbind( c(-90,90), c( -180,180))
}
if (is.null(startingLevel)) {
stop("Need to specify startingLevel initial geodesic grid level")
}
if (startingLevel+nlevel-1 > 8){
stop("startingLevel+nlevel-1 cannot exceed 8")
}else{
R<- seq(startingLevel,startingLevel+nlevel-1,1)
Rmax<- max(R)
}
delta<- 1.408/ 2^( 0:(Rmax-1) )
delta.save<- delta[R]
MultiGrid<- IcosahedronGrid(Rmax)
grid.all.levels<- list()
grid3d.all.levels<- list()
mLevel<- rep(NA,nlevel)
for(l in (1:nlevel) ){
grid3d<- MultiGrid[[ l + (startingLevel -1) ]]
gridTemp<- toSphere( grid3d )
ind<- gridTemp[,1] >= rangeLocations[1,1] &
gridTemp[,1] <= rangeLocations[2,1] &
gridTemp[,2] >= rangeLocations[1,2] &
gridTemp[,2] <= rangeLocations[2,2]
ind2<- (1:length( ind)) <= 12
grid.all.levels[[l]]<- gridTemp[ ind, ]
grid3d.all.levels[[l]]<- grid3d[ ind, ]
numberNodes<- sum( ind)
if( numberNodes <= 3){
stop("must have at least 4 nodes at lowest
resolution in the spatial domain.
Try increasing startLevels or increasing the
boundaries of the spatial domain.")
}
mLevel[l]<- nrow( grid.all.levels[[l]] )
}
m<- sum(mLevel)
offset <- as.integer(c(0, cumsum(mLevel)))
out<- list( m=m,
offset=offset,
mLevel=mLevel,
delta=delta.save,
rangeLocations=rangeLocations,
startingLevel=startingLevel,
grid=grid.all.levels,
grid3d= grid3d.all.levels)
return(out)
}
LKrigSAR.LKSphere = function(object, Level, ...) {
if( Level>7){
stop("can not handle more than 7 levels")}
grid <- object$latticeInfo$grid[[Level]]
grid3d <- object$latticeInfo$grid3d[[Level]]
delta <- object$latticeInfo$delta[[Level]]
a.wght <- object$a.wght[[Level]]
dType<- object$distance.type
n <- nrow(grid)
B = LKDist( grid[,1:2], grid[,1:2], delta = delta,
distance.type= dType)
ind1<- B$ind[,1]
ind2<- B$ind[,2]
raTemp<- rep( NA, length( ind1))
Diagonal<- ind1==ind2
if( sum( Diagonal)!= nrow(grid)) {
stop( "Number of diagonal elements in B different from grid")}
raTemp[ Diagonal ] <- a.wght
for (I in 1:n ){
indNeighbors <- (ind1 == I) & !Diagonal
J<- ind2[ indNeighbors ]
nJ<- length(J)
x1<- grid3d[J,]
x0<- grid3d[I,]
u<- projectionSphere( x0,x1)
X<- cbind( rep( 1,nJ), u )
if( nJ>=3){
c2<- c( (X)%*%(solve( t(X)%*%X, c( 1,0,0) ) ))
}
else{
c2<- 1/nJ
}
raTemp[ indNeighbors ]<- -1*c2
}
B$ra<- raTemp
return(B)
}
LKrigLatticeCenters.LKSphere<- function(object, Level, ... ){
return( object$latticeInfo$grid[[Level]] )
} |
table.Variability <-
function (R, scale = NA, geometric = TRUE, digits = 4)
{
y = checkData(R)
columns = ncol(y)
columnnames = colnames(y)
if(is.na(scale)) {
freq = periodicity(R)
switch(freq$scale,
minute = {stop("Data periodicity too high")},
hourly = {stop("Data periodicity too high")},
daily = {scale = 252},
weekly = {scale = 52},
monthly = {scale = 12},
quarterly = {scale = 4},
yearly = {scale = 1}
)
}
for(column in 1:columns) {
z = c(MeanAbsoluteDeviation(y[,column,drop=FALSE]), StdDev.annualized(y[,column,drop=FALSE], scale = scale)/sqrt(scale), StdDev.annualized(y[,column,drop=FALSE], scale = scale))
znames = c("Mean Absolute deviation", paste0(freq$scale," Std Dev"), "Annualized Std Dev")
if(column == 1) {
resultingtable = data.frame(Value = z, row.names = znames)
}
else {
nextcolumn = data.frame(Value = z, row.names = znames)
resultingtable = cbind(resultingtable, nextcolumn)
}
}
colnames(resultingtable) = columnnames
ans = base::round(resultingtable, digits)
ans
} |
aspell <-
function(files, filter, control = list(), encoding = "unknown",
program = NULL, dictionaries = character())
{
program <- aspell_find_program(program)
if(is.na(program))
stop("No suitable spell-checker program found")
if(inherits(files, "Rd"))
files <- list(files)
files_are_names <- is.character(files)
filter_args <- list()
if(missing(filter) || is.null(filter)) {
filter <- if(!files_are_names) {
function(ifile, encoding) {
if(inherits(ifile, "srcfile"))
readLines(ifile$filename, encoding = encoding,
warn = FALSE)
else if(inherits(ifile, "connection"))
readLines(ifile, encoding = encoding, warn = FALSE)
else {
as.character(ifile)
}
}
}
else NULL
}
else if(is.character(filter)) {
filter_name <- filter[1L]
filter <- aspell_filter_db[[filter_name]]
if(is.null(filter))
warning(gettextf("Filter '%s' is not available.",
filter_name),
domain = NA)
}
else if(is.list(filter)) {
filter_name <- filter[[1L]][1L]
filter_args <- filter[-1L]
filter <- aspell_filter_db[[filter_name]]
if(is.null(filter))
warning(gettextf("Filter '%s' is not available.",
filter_name),
domain = NA)
}
else if(!is.function(filter))
stop("Invalid 'filter' argument.")
encoding <- rep_len(encoding, length(files))
verbose <- getOption("verbose")
db <- data.frame(Original = character(), File = character(),
Line = integer(), Column = integer(),
stringsAsFactors = FALSE)
db$Suggestions <- list()
tfile <- tempfile("aspell")
on.exit(unlink(tfile))
if(length(dictionaries)) {
paths <- aspell_find_dictionaries(dictionaries)
ind <- paths == ""
if(any(ind)) {
warning(gettextf("The following dictionaries were not found:\n%s",
paste(sprintf(" %s", dictionaries[ind]),
collapse = "\n")),
domain = NA)
paths <- paths[!ind]
}
if(length(paths)) {
words <- unlist(lapply(paths, readRDS), use.names = FALSE)
personal <- tempfile("aspell_personal")
on.exit(unlink(personal), add = TRUE)
aspell_write_personal_dictionary_file(words, personal,
program = program)
control <- c(control, "-p", shQuote(personal))
}
}
control <- as.character(control)
fnames <- names(files)
files <- as.list(files)
for (i in seq_along(files)) {
file <- files[[i]]
if(files_are_names)
fname <- file
else {
fname <- if(inherits(file, "srcfile"))
file$filename
else
attr(attr(file, "srcref"), "srcfile")$filename
if(is.null(fname))
fname <- fnames[i]
if(is.null(fname))
fname <- "<unknown>"
}
enc <- encoding[i]
if(verbose)
message(gettextf("Processing file %s", fname),
domain = NA)
lines <- if(is.null(filter))
readLines(file, encoding = enc, warn = FALSE)
else {
do.call(filter, c(list(file, encoding = enc), filter_args))
}
control <- c(control, attr(lines, "control"))
writeLines(paste0("^", lines), tfile)
out <- tools:::.system_with_capture(program, c("-a", control),
stdin = tfile)
if(out$status != 0L)
stop(gettextf("Running aspell failed with diagnostics:\n%s",
paste(out$stderr, collapse = "\n")),
domain = NA)
lines <- out$stdout[-1L]
pos <- cumsum(lines == "") + 1L
if(any(ind <- startsWith(lines, "&"))) {
info <- strsplit(lines[ind], ": ", fixed = TRUE)
one <- strsplit(sapply(info, `[`, 1L), " ", fixed = TRUE)
two <- strsplit(sapply(info, `[`, 2L), ", ", fixed = TRUE)
db1 <- data.frame(Original =
as.character(sapply(one, `[`, 2L)),
File = fname,
Line = pos[ind],
Column =
as.integer(sapply(one, `[`, 4L)),
stringsAsFactors = FALSE)
db1$Suggestions <- two
db <- rbind(db, db1)
}
if(any(ind <- startsWith(lines, "
one <- strsplit(lines[ind], " ", fixed = TRUE)
db1 <- data.frame(Original =
as.character(sapply(one, `[`, 2L)),
File = fname,
Line = pos[ind],
Column =
as.integer(sapply(one, `[`, 3L)),
stringsAsFactors = FALSE)
db1$Suggestions <- vector("list", length(one))
db <- rbind(db, db1)
}
}
class(db) <- c("aspell", "data.frame")
db
}
format.aspell <-
function(x, sort = TRUE, verbose = FALSE, indent = 2L, ...)
{
if(!nrow(x)) return(character())
if(sort)
x <- x[order(x$Original, x$File, x$Line, x$Column), ]
from <- split(sprintf("%s:%d:%d", x$File, x$Line, x$Column),
x$Original)
if(verbose) {
unlist(Map(function(w, f, s) {
sprintf("Word: %s\nFrom: %s\n%s",
w,
paste0(c("", rep.int(" ", length(f) - 1L)),
f, collapse = "\n"),
paste(strwrap(paste("Suggestions:",
paste(s[[1L]], collapse = " ")),
exdent = 6L, indent = 0L),
collapse = "\n"))
},
names(from),
from,
split(x$Suggestions, x$Original)))
} else {
sep <- sprintf("\n%s", strrep(" ", indent))
paste(names(from),
sapply(from, paste, collapse = sep),
sep = sep)
}
}
print.aspell <-
function(x, ...)
{
if(nrow(x))
writeLines(paste(format(x, ...), collapse = "\n\n"))
invisible(x)
}
summary.aspell <-
function(object, ...)
{
words <- sort(unique(object$Original))
if(length(words)) {
writeLines("Possibly mis-spelled words:")
print(words)
}
invisible(words)
}
aspell_filter_db <- new.env(hash = FALSE)
aspell_find_program <-
function(program = NULL)
{
check <- !is.null(program) || !is.null(names(program))
if(is.null(program))
program <- getOption("aspell_program")
if(is.null(program))
program <- c("aspell", "hunspell", "ispell")
program <- Filter(nzchar, Sys.which(program))[1L]
if(!is.na(program) && check) {
out <- c(system(sprintf("%s -v", program),
intern = TRUE), "")[1L]
if(grepl("really Aspell", out))
names(program) <- "aspell"
else if(grepl("really Hunspell", out))
names(program) <- "hunspell"
else if(grepl("International Ispell", out))
names(program) <- "ispell"
else
names(program) <- NA_character_
}
program
}
aspell_dictionaries_R <- "en_stats"
aspell_find_dictionaries <-
function(dictionaries, dirnames = character())
{
dictionaries <- as.character(dictionaries)
if(!(n <- length(dictionaries))) return(character())
dirnames <- c(file.path(R.home("share"), "dictionaries"), dirnames)
if(any(ind <- !endsWith(dictionaries, ".rds")))
dictionaries[ind] <- sprintf("%s.rds", dictionaries[ind])
out <- character(n)
ind <- grepl(.Platform$file.sep, dictionaries, fixed = TRUE)
if(length(pos <- which(ind))) {
pos <- pos[file_test("-f", dictionaries[pos])]
out[pos] <- normalizePath(dictionaries[pos], "/")
}
if(length(pos <- which(!ind))) {
out[pos] <- find_files_in_directories(dictionaries[pos],
dirnames)
}
out
}
aspell_inspect_context <-
function(x)
{
x <- split(x, x$File)
y <- Map(function(f, x) {
lines <- readLines(f, warn = FALSE)[x$Line]
cbind(f,
x$Line,
substring(lines, 1L, x$Column - 1L),
x$Original,
substring(lines, x$Column + nchar(x$Original)))
},
names(x), x)
y <- data.frame(do.call(rbind, y), stringsAsFactors = FALSE)
names(y) <- c("File", "Line", "Left", "Original", "Right")
class(y) <- c("aspell_inspect_context", "data.frame")
y
}
print.aspell_inspect_context <-
function(x, ...)
{
s <- split(x, x$File)
nms <- names(s)
for(i in seq_along(s)) {
e <- s[[i]]
writeLines(c(sprintf("File '%s':", nms[i]),
sprintf(" Line %s: \"%s\", \"%s\", \"%s\"",
format(e$Line),
gsub("\"", "\\\"", e$Left),
e$Original,
gsub("\"", "\\\"", e$Right)),
""))
}
invisible(x)
}
aspell_control_R_manuals <-
list(aspell =
c("--master=en_US",
"--add-extra-dicts=en_GB",
"--mode=texinfo",
"--add-texinfo-ignore=acronym",
"--add-texinfo-ignore=deftypefun",
"--add-texinfo-ignore=deftypefunx",
"--add-texinfo-ignore=findex",
"--add-texinfo-ignore=enindex",
"--add-texinfo-ignore=include",
"--add-texinfo-ignore=ifclear",
"--add-texinfo-ignore=ifset",
"--add-texinfo-ignore=math",
"--add-texinfo-ignore=macro",
"--add-texinfo-ignore=multitable",
"--add-texinfo-ignore=node",
"--add-texinfo-ignore=pkg",
"--add-texinfo-ignore=printindex",
"--add-texinfo-ignore=set",
"--add-texinfo-ignore=vindex",
"--add-texinfo-ignore-env=menu",
"--add-texinfo-ignore=CRANpkg"
),
hunspell =
c("-d en_US,en_GB"))
aspell_R_manuals <-
function(which = NULL, dir = NULL, program = NULL,
dictionaries = aspell_dictionaries_R)
{
if(is.null(dir)) dir <- tools:::.R_top_srcdir_from_Rd()
files <- if(is.null(which)) {
Sys.glob(file.path(dir, "doc", "manual", "*.texi"))
} else {
ind <- which(which ==
basename(tools::file_path_sans_ext(which)))
which[ind] <-
file.path(dir, "doc", "manual",
sprintf("%s.texi", which[ind]))
which
}
program <- aspell_find_program(program)
aspell(files,
control = aspell_control_R_manuals[[names(program)]],
program = program,
dictionaries = dictionaries)
}
aspell_control_R_Rd_files <-
list(aspell =
c("--master=en_US",
"--add-extra-dicts=en_GB"),
hunspell =
c("-d en_US,en_GB"))
aspell_R_Rd_files <-
function(which = NULL, dir = NULL, drop = "\\references",
program = NULL, dictionaries = aspell_dictionaries_R)
{
files <- character()
if(is.null(dir)) dir <- tools:::.R_top_srcdir_from_Rd()
if(is.null(which)) {
which <- tools:::.get_standard_package_names()$base
files <- c(file.path(dir, "doc", "NEWS.Rd"),
file.path(dir, "src", "gnuwin32", "CHANGES.Rd"))
files <- files[file_test("-f", files)]
}
files <-
c(files,
unlist(lapply(file.path(dir, "src", "library", which, "man"),
tools::list_files_with_type,
"docs", OS_subdirs = c("unix", "windows")),
use.names = FALSE))
program <- aspell_find_program(program)
aspell(files,
filter = list("Rd", drop = drop),
control = aspell_control_R_Rd_files[[names(program)]],
program = program,
dictionaries = dictionaries)
}
aspell_package_Rd_files <-
function(dir, drop = c("\\author", "\\references"),
control = list(), program = NULL, dictionaries = character())
{
dir <- normalizePath(dir, "/")
subdir <- file.path(dir, "man")
files <- if(dir.exists(subdir))
tools::list_files_with_type(subdir,
"docs",
OS_subdirs = c("unix", "windows"))
else character()
meta <- tools:::.get_package_metadata(dir, installed = FALSE)
if(is.na(encoding <- meta["Encoding"]))
encoding <- "unknown"
defaults <- .aspell_package_defaults(dir, encoding)$Rd_files
if(!is.null(defaults)) {
if(!is.null(d <- defaults$drop))
drop <- d
if(!is.null(d <- defaults$control))
control <- d
if(!is.null(d <- defaults$program))
program <- d
if(!is.null(d <- defaults$dictionaries)) {
dictionaries <-
aspell_find_dictionaries(d, file.path(dir, ".aspell"))
}
if(!is.null(d <- defaults$personal))
control <- c(control,
sprintf("-p %s",
shQuote(file.path(dir, ".aspell", d))))
}
macros <- tools::loadPkgRdMacros(dir,
macros = file.path(R.home("share"),
"Rd", "macros",
"system.Rd"))
aspell(files,
filter = list("Rd", drop = drop, macros = macros),
control = control,
encoding = encoding,
program = program,
dictionaries = dictionaries)
}
aspell_control_R_vignettes <-
list(aspell =
c("--mode=tex",
"--master=en_US",
"--add-extra-dicts=en_GB",
"--add-tex-command='code p'",
"--add-tex-command='pkg p'",
"--add-tex-command='CRANpkg p'"
),
hunspell =
c("-t", "-d en_US,en_GB"))
aspell_R_vignettes <-
function(program = NULL, dictionaries = aspell_dictionaries_R)
{
files <- Sys.glob(file.path(tools:::.R_top_srcdir_from_Rd(),
"src", "library", "*", "vignettes",
"*.Rnw"))
program <- aspell_find_program(program)
aspell(files,
filter = "Sweave",
control = aspell_control_R_vignettes[[names(program)]],
program = program,
dictionaries = dictionaries)
}
aspell_control_package_vignettes <-
list(aspell =
c("--add-tex-command='citep oop'",
"--add-tex-command='Sexpr p'",
"--add-tex-command='code p'",
"--add-tex-command='pkg p'",
"--add-tex-command='proglang p'",
"--add-tex-command='samp p'"
))
aspell_package_vignettes <-
function(dir,
control = list(), program = NULL, dictionaries = character())
{
dir <- tools::file_path_as_absolute(dir)
vinfo <- tools::pkgVignettes(dir = dir)
files <- vinfo$docs
if(!length(files)) return(aspell(character()))
meta <- tools:::.get_package_metadata(dir, installed = FALSE)
if(is.na(encoding <- meta["Encoding"]))
encoding <- "unknown"
defaults <- .aspell_package_defaults(dir, encoding)$vignettes
if(!is.null(defaults)) {
if(!is.null(d <- defaults$control))
control <- d
if(!is.null(d <- defaults$program))
program <- d
if(!is.null(d <- defaults$dictionaries)) {
dictionaries <-
aspell_find_dictionaries(d, file.path(dir, ".aspell"))
}
if(!is.null(d <- defaults$personal))
control <- c(control,
sprintf("-p %s",
shQuote(file.path(dir, ".aspell", d))))
}
program <- aspell_find_program(program)
fgroups <- split(files, vinfo$engines)
egroups <- split(vinfo$encodings, vinfo$engines)
do.call(rbind,
Map(function(fgroup, egroup, engine) {
engine <- tools::vignetteEngine(engine)
aspell(fgroup,
filter = engine$aspell$filter,
control =
c(engine$aspell$control,
aspell_control_package_vignettes[[names(program)]],
control),
encoding = egroup,
program = program,
dictionaries = dictionaries)
},
fgroups,
egroups,
names(fgroups)
)
)
}
aspell_filter_db$R <-
function(ifile, encoding = "unknown", ignore = character())
{
pd <- get_parse_data_for_message_strings(ifile, encoding)
if(is.null(pd) || !NROW(pd)) return(character())
pd$text <- substring(pd$text, 2L, nchar(pd$text) - 1L)
pd$text <- gsub("(^|[^\\])\\\\[fnrt]", "\\1 ", pd$text)
pd$text <- gsub( "([^\\])\\\\[fnrt]", "\\1 ", pd$text)
ind <- pd$caller == "gettextf"
if(any(ind)) {
pd$text[ind] <-
gsub("(^|[^%])%[dioxXfeEgGaAs]", "\\1 ", pd$text[ind])
pd$text[ind] <-
gsub(" ([^%])%[dioxXfeEgGaAs]", "\\1 ", pd$text[ind])
}
lines <- readLines(ifile, encoding = encoding, warn = FALSE)
lines_in_pd <- sort(unique(c(pd$line1, pd$line2)))
tab <- Map(function(tp, nc) {
if(tp[1L] == -1L) return(NULL)
widths <- rep.int(1, nc)
for(i in tp) {
cols <- cumsum(widths)
widths[i] <- 8 - (cols[i] - 1) %% 8
}
cumsum(widths)
},
gregexpr("\t", lines[lines_in_pd], fixed = TRUE),
nchar(lines[lines_in_pd]))
names(tab) <- lines_in_pd
lines[lines_in_pd] <- gsub("[^\t]", " ", lines[lines_in_pd])
lines[-lines_in_pd] <- ""
for(entry in split(pd, seq_len(NROW(pd)))) {
line1 <- entry$line1
line2 <- entry$line2
col1 <- entry$col1
col2 <- entry$col2
if(line1 == line2) {
if(length(ptab <- tab[[as.character(line1)]])) {
col1 <- which(ptab == col1) + 1L
col2 <- which(ptab == col2) - 1L
}
substring(lines[line1], col1, col2) <- entry$text
} else {
texts <- unlist(strsplit(entry$text, "\n", fixed = TRUE))
n <- length(texts)
if(length(ptab <- tab[[as.character(line1)]])) {
col1 <- which(ptab == col1) + 1L
}
substring(lines[line1], col1) <- texts[1L]
pos <- seq(from = 2L, length.out = n - 2L)
if(length(pos))
lines[line1 + pos - 1] <- texts[pos]
if(length(ptab <- tab[[as.character(line2)]])) {
col2 <- which(ptab == col2) - 1L
}
substring(lines[line2], 1L, col2) <- texts[n]
}
}
blank_out_ignores_in_lines(lines, ignore)
}
get_parse_data_for_message_strings <-
function(file, encoding = "unknown")
{
exprs <-
suppressWarnings(tools:::.parse_code_file(file = file,
encoding = encoding,
keep.source = TRUE))
if(!length(exprs)) return(NULL)
pd <- getParseData(exprs)
parents <- pd$parent
names(parents) <- pd$id
gpids <- function(ids)
parents[as.character(parents[as.character(ids)])]
ind <- (pd$token == "SYMBOL_FUNCTION_CALL") &
!is.na(match(pd$text,
c("warning", "stop",
"message", "packageStartupMessage",
"gettext", "gettextf", "ngettext")))
funs <- pd$text[ind]
ids <- gpids(pd$id[ind])
calls <- getParseText(pd, ids)
table <- pd[pd$token == "STR_CONST", ]
table$text <- getParseText(table, table$id)
pos <- match(gpids(table$id), ids)
ind <- !is.na(pos)
table <- split(table[ind, ], factor(pos[ind], seq_along(ids)))
extract_message_strings <- function(fun, call, table) {
call <- parse(text = call)[[1L]]
call <- call[ as.character(call) != "..." ]
mc <- as.list(match.call(get(fun, envir = .BaseNamespaceEnv),
call))
args <- if(fun == "gettextf")
mc["fmt"]
else if(fun == "ngettext")
mc[c("msg1", "msg2")]
else {
if(!is.null(names(mc)))
mc <- mc[!nzchar(names(mc))]
mc[-1L]
}
strings <- as.character(args[vapply(args, is.character, TRUE)])
texts <- vapply(parse(text = table$text), as.character, "")
pos <- which(!is.na(match(texts, strings)))
cbind(table[pos, ], caller = rep.int(fun, length(pos)))
}
do.call(rbind,
Map(extract_message_strings,
as.list(funs), as.list(calls), table))
}
aspell_R_R_files <-
function(which = NULL, dir = NULL,
ignore = c("[ \t]'[^']*'[ \t[:punct:]]",
"[ \t][[:alnum:]_.]*\\(\\)[ \t[:punct:]]"),
program = NULL, dictionaries = aspell_dictionaries_R)
{
if(is.null(dir)) dir <- tools:::.R_top_srcdir_from_Rd()
if(is.null(which))
which <- tools:::.get_standard_package_names()$base
files <-
unlist(lapply(file.path(dir, "src", "library", which, "R"),
tools::list_files_with_type,
"code",
OS_subdirs = c("unix", "windows")),
use.names = FALSE)
program <- aspell_find_program(program)
aspell(files,
filter = list("R", ignore = ignore),
control = aspell_control_R_Rd_files[[names(program)]],
program = program,
dictionaries = dictionaries)
}
aspell_package_R_files <-
function(dir, ignore = character(),
control = list(), program = NULL, dictionaries = character())
{
dir <- tools::file_path_as_absolute(dir)
subdir <- file.path(dir, "R")
files <- if(dir.exists(subdir))
tools::list_files_with_type(subdir,
"code",
OS_subdirs = c("unix", "windows"))
else character()
meta <- tools:::.get_package_metadata(dir, installed = FALSE)
if(is.na(encoding <- meta["Encoding"]))
encoding <- "unknown"
defaults <- .aspell_package_defaults(dir, encoding)$R_files
if(!is.null(defaults)) {
if(!is.null(d <- defaults$ignore))
ignore <- d
if(!is.null(d <- defaults$control))
control <- d
if(!is.null(d <- defaults$program))
program <- d
if(!is.null(d <- defaults$dictionaries)) {
dictionaries <-
aspell_find_dictionaries(d, file.path(dir, ".aspell"))
}
}
program <- aspell_find_program(program)
aspell(files,
filter = list("R", ignore = ignore),
control = control,
encoding = encoding,
program = program,
dictionaries = dictionaries)
}
aspell_filter_db$pot <-
function (ifile, encoding = "unknown", ignore = character())
{
lines <- readLines(ifile, encoding = encoding, warn = FALSE)
ind <- grepl("^msgid[ \t]", lines)
do_entry <- function(s) {
out <- character(length(s))
i <- 1L
out[i] <- blank_out_regexp_matches(s[i], "^msgid[ \t]+\"")
while(startsWith(s[i <- i + 1L], '"'))
out[i] <- sub("^\"", " ", s[i])
if(grepl("^msgid_plural[ \t]", s[i])) {
out[i] <- blank_out_regexp_matches(s[i], "^msgid_plural[ \t]+\"")
while(startsWith(s[i <- i + 1L], '"'))
out[i] <- sub("^\"", " ", s[i])
}
out
}
entries <- split(lines, cumsum(ind))
lines <- c(character(length(entries[[1L]])),
as.character(do.call(c, lapply(entries[-1L], do_entry))))
lines <- sub("\"[ \t]*$", " ", lines)
blank_out_ignores_in_lines(lines, ignore)
}
aspell_package_pot_files <-
function(dir, ignore = character(),
control = list(), program = NULL, dictionaries = character())
{
dir <- tools::file_path_as_absolute(dir)
subdir <- file.path(dir, "po")
files <- if(dir.exists(subdir))
Sys.glob(file.path(subdir, "*.pot"))
else character()
meta <- tools:::.get_package_metadata(dir, installed = FALSE)
if(is.na(encoding <- meta["Encoding"]))
encoding <- "unknown"
program <- aspell_find_program(program)
aspell(files,
filter = list("pot", ignore = ignore),
control = control,
encoding = encoding,
program = program,
dictionaries = dictionaries)
}
aspell_R_C_files <-
function(which = NULL, dir = NULL,
ignore = c("[ \t]'[[:alnum:]_.]*'[ \t[:punct:]]",
"[ \t][[:alnum:]_.]*\\(\\)[ \t[:punct:]]"),
program = NULL, dictionaries = aspell_dictionaries_R)
{
if(is.null(dir)) dir <- tools:::.R_top_srcdir_from_Rd()
if(is.null(which))
which <- tools:::.get_standard_package_names()$base
if(!is.na(pos <- match("base", which)))
which[pos] <- "R"
files <- sprintf("%s.pot",
file.path(dir, "src", "library",
which, "po", which))
files <- files[file_test("-f", files)]
program <- aspell_find_program(program)
aspell(files,
filter = list("pot", ignore = ignore),
control = aspell_control_R_Rd_files[[names(program)]],
program = program,
dictionaries = dictionaries)
}
aspell_package_C_files <-
function(dir, ignore = character(),
control = list(), program = NULL, dictionaries = character())
{
dir <- tools::file_path_as_absolute(dir)
files <- file.path(dir, "po",
paste(basename(dir), "pot", collapse = "."))
files <- files[file_test("-f", files)]
meta <- tools:::.get_package_metadata(dir, installed = FALSE)
if(is.na(encoding <- meta["Encoding"]))
encoding <- "unknown"
defaults <- .aspell_package_defaults(dir, encoding)$C_files
if(!is.null(defaults)) {
if(!is.null(d <- defaults$ignore))
ignore <- d
if(!is.null(d <- defaults$control))
control <- d
if(!is.null(d <- defaults$program))
program <- d
if(!is.null(d <- defaults$dictionaries)) {
dictionaries <-
aspell_find_dictionaries(d, file.path(dir, ".aspell"))
}
}
program <- aspell_find_program(program)
aspell(files,
filter = list("pot", ignore = ignore),
control = control,
encoding = encoding,
program = program,
dictionaries = dictionaries)
}
aspell_filter_db$dcf <-
function(ifile, encoding, keep = c("Title", "Description"),
ignore = character())
{
lines <- readLines(ifile, encoding = encoding, warn = FALSE)
line_has_tags <- grepl("^[^[:blank:]][^:]*:", lines)
tags <- sub(":.*", "", lines[line_has_tags])
lines[line_has_tags] <-
blank_out_regexp_matches(lines[line_has_tags], "^[^:]*:")
lines <- split(lines, cumsum(line_has_tags))
ind <- is.na(match(tags, keep))
lines[ind] <- lapply(lines[ind], function(s) rep.int("", length(s)))
ind <- !ind
lines[ind] <- lapply(lines[ind], paste0, " ")
lines <- unlist(lines, use.names = FALSE)
blank_out_ignores_in_lines(lines, ignore)
}
aspell_package_description <-
function(dir, ignore = character(),
control = list(), program = NULL, dictionaries = character())
{
dir <- tools::file_path_as_absolute(dir)
files <- file.path(dir, "DESCRIPTION")
meta <- tools:::.get_package_metadata(dir, installed = FALSE)
if(is.na(encoding <- meta["Encoding"]))
encoding <- "unknown"
defaults <-
Sys.getenv("_R_ASPELL_USE_DEFAULTS_FOR_PACKAGE_DESCRIPTION_",
"TRUE")
defaults <- if(tools:::config_val_to_logical(defaults)) {
.aspell_package_defaults(dir, encoding)$description
} else NULL
if(!is.null(defaults)) {
if(!is.null(d <- defaults$ignore))
ignore <- d
if(!is.null(d <- defaults$control))
control <- d
if(!is.null(d <- defaults$program))
program <- d
if(!is.null(d <- defaults$dictionaries)) {
dictionaries <-
aspell_find_dictionaries(d, file.path(dir, ".aspell"))
}
}
program <- aspell_find_program(program)
aspell(files,
filter = list("dcf", ignore = ignore),
control = control,
encoding = encoding,
program = program,
dictionaries = dictionaries)
}
aspell_filter_db$md <-
function(ifile, encoding = "UTF-8")
{
x <- readLines(ifile, encoding = encoding, warn = FALSE)
n <- nchar(x)
y <- strrep(rep.int(" ", length(x)), n)
md <- commonmark::markdown_xml(x, extensions = TRUE,
sourcepos = TRUE)
doc <- xml2::xml_ns_strip(xml2::read_xml(md))
pos <- strsplit(xml2::xml_attr(xml2::xml_find_all(doc,
"//text[@sourcepos]"),
"sourcepos"),
"[:-]")
for(p in pos) {
p <- as.integer(p)
l1 <- p[1L]; c1 <- p[2L]; l2 <- p[3L]; c2 <- p[4L]
if(l1 < l2) {
w <- seq(l1 + 1L, l2 - 1L)
if(length(w))
y[w] <- x[w]
substring(y[l1], c1, n[l1]) <- substring(x[l1], c1, n[l1])
substring(y[l2], 1L, c2) <- substring(x[l2], 1L, c2)
} else {
substring(y[l1], c1, c2) <- substring(x[l1], c1, c2)
}
}
y
}
aspell_package <-
function(dir,
control = list(), program = NULL, dictionaries = character())
{
args <- list(dir = dir,
program = program,
control = control,
dictionaries = dictionaries)
a <- rbind(do.call(aspell_package_description, args),
do.call(aspell_package_Rd_files, args),
do.call(aspell_package_vignettes, args),
do.call(aspell_package_R_files, args),
do.call(aspell_package_C_files, args))
if(nrow(a)) {
a$File <- tools:::.file_path_relative_to_dir(a$File,
dirname(dir))
}
a
}
aspell_write_personal_dictionary_file <-
function(x, out, language = "en", program = NULL)
{
if(inherits(x, "aspell"))
x <- sort(unique(x$Original))
program <- aspell_find_program(program)
if(is.na(program))
stop("No suitable spell check program found.")
if(names(program) == "aspell") {
header <- sprintf("personal_ws-1.1 %s %d UTF-8",
language, length(x))
x <- enc2utf8(x)
}
else {
header <- NULL
}
writeLines(c(header, x), out, useBytes = TRUE)
}
.aspell_package_defaults <-
function(dir, encoding = "unknown")
{
dfile <- file.path(dir, ".aspell", "defaults.R")
if(!file_test("-f", dfile))
return(NULL)
exprs <- parse(dfile, encoding = encoding)
envir <- new.env()
for(e in exprs) eval(e, envir)
as.list(envir)
}
blank_out_regexp_matches <-
function(s, re, ...)
{
m <- gregexpr(re, s, ...)
regmatches(s, m) <-
Map(function(n) strrep(" ", n),
lapply(regmatches(s, m), nchar))
s
}
blank_out_ignores_in_lines <-
function(lines, ignore)
{
args <- list()
if(is.list(ignore)) {
args <- ignore[-1L]
ignore <- ignore[[1L]]
}
for(re in ignore[nzchar(ignore)])
lines <- do.call(blank_out_regexp_matches,
c(list(lines, re), args))
lines
}
find_files_in_directories <-
function(basenames, dirnames)
{
dirnames <- dirnames[dir.exists(dirnames)]
dirnames <- normalizePath(dirnames, "/")
out <- character(length(basenames))
pos <- seq_along(out)
for(dir in dirnames) {
paths <- file.path(dir, basenames[pos])
ind <- file_test("-f", paths)
out[pos[ind]] <- paths[ind]
pos <- pos[!ind]
if(!length(pos)) break
}
out
} |
"pdfgam" <-
function(x,para) {
if(length(para$para) == 2) {
ALPHA <- para$para[1]
BETA <- para$para[2]
f <- dgamma(x, ALPHA, scale=BETA)
names(f) <- NULL
f[! is.finite(f)] <- NA
f[is.na(f)] <- 0
return(f)
} else if(length(para$para) == 3) {
MU <- para$para[1]; SIGMA <- para$para[2]; NU <- para$para[3]
Z <- (x/MU)^NU
theta <- 1/(SIGMA^2*abs(NU)^2)
lGT <- suppressWarnings(lgamma(theta))
if(! is.finite(lGT) | abs(NU) < 1e-06) {
lf <- -log(x) - 0.5*log(2*pi) - log(SIGMA) -
(1/(2*SIGMA^2)) * (log(x)-log(MU))^2
} else {
lf <- theta*log(theta) + theta*log(Z) + log(abs(NU)) -
theta*Z - lGT - log(x)
}
f <- exp(lf)
names(f) <- NULL
f[! is.finite(f)] <- NA
f[is.na(f)] <- 0
return(f)
} else {
stop("should not be here in logic flow")
}
} |
Sigma0.lo <- function(para, map, ref, model, nsample, outcome){
nmodel <- length(map$bet)
nlam <- max(map$lam)
n <- nrow(ref)
the <- para[map$the]
fx <- as.matrix(ref[, names(the), drop = FALSE])
exp.x.the <- exp(as.vector(fx %*% the))
y <- exp.x.the / (1 + exp.x.the)
hess <- matrix(0, nrow = nlam, ncol = nlam)
info <- matrix(0, nrow = nlam, ncol = nlam)
offset <- max(map$the)
for(i in 1:nmodel){
id1 <- c(alp.index.lo(map, i), map$bet[[i]])
gam1 <- para[id1]
rx1 <- as.matrix(ref[, names(gam1), drop = FALSE])
exp.x.gam1 <- exp(as.vector(rx1 %*% gam1))
y1 <- exp.x.gam1 / (1 + exp.x.gam1)
hess[id1 - offset, id1 - offset] <- -nsample[i, i] * (t(rx1) %*% (rx1 * y1 * (1 - y1))) / n
for(j in i:nmodel){
id2 <- c(alp.index.lo(map, j), map$bet[[j]])
gam2 <- para[id2]
rx2 <- as.matrix(ref[, names(gam2), drop = FALSE])
exp.x.gam2 <- exp(as.vector(rx2 %*% gam2))
y2 <- exp.x.gam2 / (1 + exp.x.gam2)
tmp <- t(rx1) %*% (rx2 * (y * (1 - y1 - y2) + y1 * y2)) / n
info[id1 - offset, id2 - offset] <- nsample[i, j] * tmp
info[id2 - offset, id1 - offset] <- t(info[id1 - offset, id2 - offset])
rm(rx2)
}
rm(rx1)
}
V <- solve(hess) %*% info %*% solve(hess)
id <- map$all.bet
V <- V[id - offset, id - offset, drop = FALSE]
colnames(V) <- names(para)[id]
rownames(V) <- names(para)[id]
V
} |
except=function(index,K,nstu){
list_l<-list()
for(i in 1:K){
list_k<-list()
for(j in 1:nstu){
if(index[j,i]==2) list_k<-c(list_k,j)
}
list_l[[i]]<-list_k
}
return(list_l)
} |
"lawyers.covariates" |
library(approximator)
library(emulator)
set.seed(0)
D1.1d <- matrix(1:6)
source("subsets_1d.R")
"basis.1d" <-
function (x)
{
out <- cbind(1,x)
colnames(out) <- c("const","x")
return(out)
}
source("hpafun_1d.R")
hpa.1d <- hpa.fun.1d(1:9)
source("datamaker_1d.R")
z.1d <- generate.1d.observations(D1=D1.1d, subsets=subsets.1d, basis.fun=basis.1d, hpa=hpa.1d, betas = NULL, export.truth=FALSE)
jj.H <- H.fun.app(D1=D1.1d, subsets=subsets.1d , basis=basis.1d , hpa=hpa.1d)
a1 <- opt.1(D=D1.1d , z=z.1d , basis=basis.1d , subsets=subsets.1d , hpa=hpa.1d)
a2 <- opt.gt.1(level=2 , D=D1.1d , z=z.1d , basis=basis.1d , subsets=subsets.1d , hpa=hpa.1d)
jj.ans <- mdash.fun(3,D1=D1.1d,subsets=subsets.1d,hpa=a2,z=z.1d,basis=basis.1d)
jj.var <- c_fun(x=as.matrix(4),xdash=as.matrix(5),subsets=subsets.1d,hpa=hpa.1d) |
read_builtin <- function(x, package = NULL) {
warn_to_error <- function(e) {
stop(conditionMessage(e), call. = FALSE)
}
check_string(x)
check_string(package, optional = TRUE)
tryCatch(
warning = function(e) warn_to_error(e),
expr = {
res <- utils::data(list = x, package = package, envir = environment(), verbose = FALSE)
get(res[[1]], envir = environment())
}
)
} |
library(knitLatex)
knitr::opts_chunk$set(collapse = TRUE)
cars <- mtcars[1:10,1:5]
lTab(cars)
lTab(cars, label = 'tab:mytable')
lTab(cars, caption.head = 'my caption in head')
lTab(cars,
firsthead = 'f1 & f2 & f3 & f4 & f5 \\\\',
caption.firsthead = 'my caption in firsthead')
lTab(cars, caption.foot = 'my caption in foot')
lTab(cars,
lastfoot = '\\hline',
caption.lastfoot = 'my caption in last foot')
lTab(cars, booktabs = TRUE)
lTab(cars, booktabs = TRUE, midrule = '\\hline')
lTab(cars,
head = 'col1 & col 2 & col3 & \\eta & col5 \\\\')
lTab(cars, head = NULL)
lTab(cars, head = '', midrule = NULL)
lTab(cars,
firsthead = 'f1 & f2 & f3 & f4 & f5 \\\\')
lTab(cars, toprule = NULL, midrule = NULL,
firsthead = '\\toprule\nf1 & f2 & f3 & f4 & f5 \\\\\nmidrule',
head = '\\hline\n col1 & col2 & col3 & cll4 & col5 \\\\\n\\hline')
lTab(cars, toprule = NULL, midrule = NULL,
firsthead = '\\toprule\nf1 & f2 & f3 & f4 & f5 \\\\\nmidrule',
head = '\\toprule')
lTab(cars, rows = TRUE)
lTab(cars,
rows = TRUE,
head = 'rows & col1 & col2 & col3 & \\eta & col5 \\\\')
lTab(cars, rowsep = '\\hline')
lTab(cars, rowsep = '\\midrule')
lTab(cars, coldef ='rlc|l|p{5cm}')
lTab(cars, colsep = '|') |
as_ggsideCoord <- function(coord) UseMethod("as_ggsideCoord")
as_ggsideCoord.default <- function(coord){
abort(glue("No known method to make {class(coord)[1]} ggside friendly"))
}
as_ggsideCoord.CoordCartesian <- function(coord){
if (class(coord)[1L]!="CoordCartesian") abort(glue("No known method to make {class(coord)[1]} ggside friendly"))
ggplot2::ggproto("CoordSide",
CoordSideCartesian,
limits = coord$limits,
expand = coord$expand,
default = coord$default,
clip = coord$clip)
}
as_ggsideCoord.CoordSide <- function(coord) {
coord
}
CoordSideCartesian <- ggplot2::ggproto(
"CoordSideCartesian",
CoordCartesian,
render_bg = function(panel_params, theme) {
panel_type <- eval(quote(self$layout[self$layout$PANEL==i,]$PANEL_TYPE), sys.parent(2))
if (is.element(panel_type, c("x", "y"))) {
ggside_guide_grid(
theme,
panel_params$x$break_positions_minor(),
panel_params$x$break_positions(),
panel_params$y$break_positions_minor(),
panel_params$y$break_positions(),
side = panel_type
)
} else {
guide_grid(
theme,
panel_params$x$break_positions_minor(),
panel_params$x$break_positions(),
panel_params$y$break_positions_minor(),
panel_params$y$break_positions()
)
}
},
render_fg = ggside_render_fg,
render_axis_h = function (panel_params, theme) {
panel_type <- panel_params$ggside_panel_type
if (panel_type=="y") {
list(top = ggside_panel_guides_grob(panel_params$guides, position = "top", theme = theme),
bottom = ggside_panel_guides_grob(panel_params$guides, position = "bottom", theme = theme))
} else {
list(top = panel_guides_grob(panel_params$guides, position = "top", theme = theme),
bottom = panel_guides_grob(panel_params$guides, position = "bottom", theme = theme))
}
},
render_axis_v = function (panel_params, theme) {
panel_type <- panel_params$ggside_panel_type
if (panel_type=="x") {
list(left = ggside_panel_guides_grob(panel_params$guides, position = "left", theme = theme),
right = ggside_panel_guides_grob(panel_params$guides, position = "right", theme = theme))
} else {
list(left = panel_guides_grob(panel_params$guides, position = "left", theme = theme),
right = panel_guides_grob(panel_params$guides, position = "right", theme = theme))
}
}
)
as_ggsideCoord.CoordTrans <- function(coord) {
ggplot2::ggproto("CoordSide",
CoordSideTrans,
trans = coord$trans,
limits = coord$limits,
expand = coord$expand,
clip = coord$clip)
}
CoordSideTrans <- ggplot2::ggproto(
"CoordSideTrans",
CoordTrans,
render_bg = function(panel_params, theme) {
panel_type <- eval(quote(self$layout[self$layout$PANEL==i,]$PANEL_TYPE), sys.parent(2))
if (is.element(panel_type, c("x", "y"))) {
ggside_guide_grid(
theme,
panel_params$x.minor,
panel_params$x.major,
panel_params$y.minor,
panel_params$y.major,
side = panel_type
)
} else {
guide_grid(
theme,
panel_params$x.minor,
panel_params$x.major,
panel_params$y.minor,
panel_params$y.major
)
}
},
render_fg = ggside_render_fg,
render_axis_h = function (panel_params, theme) {
arrange <- panel_params$x.arrange %||% c("secondary","primary")
panel_type <- panel_params$ggside_panel_type
if (is.element(panel_type, c("x", "main"))) {
list(top = render_axis(panel_params, arrange[1], "x", "top", theme),
bottom = render_axis(panel_params, arrange[2], "x", "bottom", theme))
} else {
list(top = ggside_render_axis(panel_params, arrange[1], "x", "top", theme),
bottom = ggside_render_axis(panel_params, arrange[2], "x", "bottom", theme))
}
},
render_axis_v = function (panel_params, theme) {
arrange <- panel_params$x.arrange %||% c("primary","secondary")
panel_type <- panel_params$ggside_panel_type
if (is.element(panel_type, c("y", "main"))) {
list(left = render_axis(panel_params, arrange[1], "y", "left",theme),
right = render_axis(panel_params, arrange[2], "y", "right", theme))
} else {
list(left = ggside_render_axis(panel_params, arrange[1], "y", "left",theme),
right = ggside_render_axis(panel_params, arrange[2], "y", "right", theme))
}
}
)
as_ggsideCoord.CoordFixed<- function(coord){
ggplot2::ggproto("CoordSide",
CoordSideFixed,
limits = coord$limits,
ratio = coord$ratio,
expand = coord$expand,
clip = coord$clip)
}
CoordSideFixed <- ggplot2::ggproto(
"CoordSideFixed",
CoordFixed,
render_bg = function(panel_params, theme) {
panel_type <- eval(quote(self$layout[self$layout$PANEL==i,]$PANEL_TYPE), sys.parent(2))
if (is.element(panel_type, c("x", "y"))) {
ggside_guide_grid(
theme,
panel_params$x.minor,
panel_params$x.major,
panel_params$y.minor,
panel_params$y.major,
side = panel_type
)
} else {
guide_grid(
theme,
panel_params$x.minor,
panel_params$x.major,
panel_params$y.minor,
panel_params$y.major
)
}
},
render_fg = ggside_render_fg,
render_axis_h = function (panel_params, theme) {
panel_type <- panel_params$ggside_panel_type
if (is.element(panel_type, c("x", "main"))) {
list(top = panel_guides_grob(panel_params$guides, position = "top", theme = theme),
bottom = panel_guides_grob(panel_params$guides, position = "bottom", theme = theme))
} else {
list(top = ggside_panel_guides_grob(panel_params$guides, position = "top", theme = theme),
bottom = ggside_panel_guides_grob(panel_params$guides, position = "bottom", theme = theme))
}
},
render_axis_v = function (panel_params, theme) {
panel_type <- panel_params$ggside_panel_type
if (is.element(panel_type, c("y", "main"))) {
list(left = panel_guides_grob(panel_params$guides, position = "left", theme = theme),
right = panel_guides_grob(panel_params$guides, position = "right", theme = theme))
} else {
list(left = ggside_panel_guides_grob(panel_params$guides, position = "left", theme = theme),
right = ggside_panel_guides_grob(panel_params$guides, position = "right", theme = theme))
}
}
) |
D_jacknife <- function(Dvalues, D.base, block.size=FALSE){
D_sites <- Dvalues[1,]
ABBA_sites <- Dvalues[2,]
BABA_sites <- Dvalues[3,]
D_sites <- D_sites[!is.na(D_sites)]
ABBA_sites <- ABBA_sites[!is.na(D_sites)]
BABA_sites <- BABA_sites[!is.na(D_sites)]
if(!block.size){
D_sd <- sd(D_sites,na.rm=TRUE)
D_err <- D_sd/sqrt(length(D_sites))
D_Z <- D.base / D_err
D_p <- 2*pnorm(-abs(D_Z))
return(list(z=D_Z, pval=D_p))
}
n.sites <- length(D_sites)
width <- block.size
jump <- 1
if(n.sites<block.size){
return(list(z=NaN, pval=NaN))
}
repeatlength <- ceiling( (n.sites-width+1)/jump )
D_sim <- rep(NaN,repeatlength)
for(zz in 1:repeatlength){
start <- ((zz-1) * jump + 1)
end <- ((zz-1) * jump + width)
window <- start:end
ABBA <- ABBA_sites[-window]
BABA <- BABA_sites[-window]
D_sim[zz] <- ( sum(ABBA, na.rm=TRUE) - sum(BABA, na.rm=TRUE) ) / ( sum(ABBA, na.rm=TRUE) + sum(BABA, na.rm=TRUE) )
}
D_sd <- sd(D_sim,na.rm=TRUE)
D_err <- D_sd/sqrt(repeatlength)
D_Z <- D.base / D_err
D_p <- 2*pnorm(-abs(D_Z))
return(list(z=D_Z, pval=D_p))
} |
setOldClass("gam")
setMethod(f = "predictCells",
signature = c(models = "SingleCellExperiment"),
definition = function(models, gene){
if (is(gene, "character")) {
if (!all(gene %in% rownames(models))) {
stop("Not all gene IDs are present in the models object.")
}
id <- match(gene, rownames(models))
} else id <- gene
dm <- colData(models)$tradeSeq$dm
X <- colData(models)$tradeSeq$X
betaMat <- rowData(models)$tradeSeq$beta[[1]]
beta <- betaMat[id,]
yhat <- exp(t(X %*% t(beta)) +
matrix(dm$offset, nrow = length(gene),
ncol = nrow(X), byrow = TRUE))
colnames(yhat) <- colnames(models)
rownames(yhat) <- gene
return(yhat)
}
)
setMethod(f = "predictCells",
signature = c(models = "list"),
definition = function(models, gene){
if (is(gene, "character")) {
if (!all(gene %in% rownames(models))) {
stop("The gene ID is not present in the models object.")
}
id <- which(rownames(models) %in% gene)
} else {
id <- gene
}
yhat <- t(sapply(models[id], "[[", "fitted.values"))
rownames(yhat) <- gene
return(yhat)
}
) |
NULL
validator <- function(..., .file, .data) new('validator',...
, .file = .file, .data=.data)
setRefClass("validator"
, fields = list(._language = "character")
, contains = "expressionset"
, methods = list(
initialize = function(..., .file, .data){
ini_validator(.self,...,.file=.file, .data=.data)
}
, is_linear = function() linear(.self)
, linear_coefficients = function(...) get_linear_coefficients(.self, ...)
)
)
ini_validator <- function(obj, ..., .file, .data){
check_primitives()
if (missing(.file) && missing(.data) ){
.ini_expressionset_cli(obj, ..., .prefix="V")
obj$._options <- .PKGOPT
i <- validating(obj) | is_tran_assign(obj)
if ( !all(i) ){
invalid <- sapply(which(!i),function(k) deparse(expr(obj[[k]])))
wrn <- sprintf("\n[%03d] %s",which(!i), invalid)
warning(paste0(
"Invalid syntax detected, the following expressions have been ignored:"
, paste0(wrn,collapse="")
), call.=FALSE)
obj$rules <- obj$rules[i]
}
} else if (!missing(.file)) {
.ini_expressionset_yml(obj, file=.file, .prefix="V")
} else if (!missing(.data)){
.ini_expressionset_df(obj, dat=.data, .prefix="V")
i <- validating(obj) | is_tran_assign(obj)
if (!all(i)){
r <- paste(which(!i),collapse=", ")
warning("Invalid syntax detected, ignoring rows ",r)
obj$rules <- obj$rules[i]
}
obj$._options <- .PKGOPT
}
for ( r in seq_along(obj)){
if ( is.null( meta(obj[[r]])$language ) ) {
meta(obj[[r]],"language") <- paste("validate",utils::packageVersion("validate"))
}
if (is.null( meta(obj[[r]])$severity)) {
meta(obj[[r]],"severity") <- "error"
}
}
}
check_primitives <- function(){
prim <- c("<","<=","==","!=",">=",">","%in%")
for ( p in prim )
if (!identical(body(p),body(getFromNamespace(p,"base"))))
warning(sprintf("Using implementation of %s that differs from base::`%s`",p,p))
}
get_linear_coefficients <- function(x, normalize=TRUE,...){
x <- x[x$is_linear()]
calls <- .get_exprs(x,lin_eq_eps=0, lin_ineq_eps=0)
cols <- unique(unlist(lapply(calls, var_from_call)))
rows <- names(x)
bA <- matrix(0
, nrow = length(rows)
, ncol = length(cols) + 1
, dimnames = list(validator=rows, variable=c('CONSTANT',cols) )
)
lcoef <- lapply(calls, function(x) coefficients(left(x)))
rcoef <- lapply(calls, function(x) coefficients(right(x)))
for ( i in seq_along(lcoef) ){
cls <- names(lcoef[[i]])
bA[i,cls] <- lcoef[[i]]
cls <- names(rcoef[[i]])
bA[i,cls] <- bA[i,cls] - rcoef[[i]]
}
operators <- sapply(sapply(calls,`[[`,1),deparse)
if (normalize){
bA <- bA * operatorsign[operators]
operators <- normed_operators[operators]
}
list(A=bA[,-1,drop=FALSE],b = -1*bA[,1,drop=FALSE],operators=operators)
}
setMethod("+", c("validator","validator"), function(e1, e2){
v <- validator()
v$rules <- c(e1$rules, e2$rules)
names(v) <- make.names(names(v),unique=TRUE)
v
})
setMethod("plot","validator"
, function( x
, y
, use_blocks = TRUE
, col = c("
, cex = 1
, show_legend = TRUE
, ...
){
if (show_legend){
oldpar <- par(xpd=TRUE, mar=c(7,4,3,3))
on.exit(par(oldpar))
}
use_blocks <- isTRUE(use_blocks)
show_legend <- isTRUE(show_legend)
if (length(x) < 1){
message("No rules to be plotted")
return(invisible())
}
blocks <- if (use_blocks){
x$blocks()
}
A <- variables(x, as = "matrix")
Z <- A
Z[A] <- 2
Z[A & x$is_linear()] <- 1
is.na(Z) <- Z == 0
if (use_blocks){
rule_order <- unlist(blocks)
var_order <- unlist(lapply(blocks, function(b){variables(x[b])}))
Z <- Z[rule_order, var_order, drop = FALSE]
}
Z <- t(Z)
ylim <- c(1, ncol(Z)) + c(-0.5, 0.5)
graphics::image( x = seq_len(nrow(Z))
, y = seq_len(ncol(Z))
, z = Z
, col = col
, las = 1
, xlab = "variables"
, ylab= "rules"
, xaxt = "n"
, yaxt = "n"
)
axis(2, at=seq_len(ncol(Z)), labels = colnames(Z), las=1)
var_text <- which(Z > 0, arr.ind = TRUE)
var_text <- data.frame(var_text)
var_text$labels <- colnames(A)[var_text$variable]
text( x = var_text$variable
, y = var_text$rule
, labels = var_text$labels
, cex = cex
)
if (use_blocks){
h <- sapply(x$blocks(), length)
h <- c(0,cumsum(h)) + 0.5
v <- lapply(blocks, function(b){variables(x[b])})
v <- sapply(v, length)
v <- c(0,cumsum(v)) + 0.5
graphics::rect( xleft = utils::head(v, -1)
, xright = utils::tail(v, -1)
, ybottom = utils::head(h, -1)
, ytop = utils::tail(h, -1)
, lty = 2
, border ="gray30")
}
if (show_legend){
legend( x = 0.5
, y = 0.2
, legend = c("linear rule", "other")
, fill=col
, bty="n"
)
}
F <- factor(Z, levels=c(1,2), labels = c("linear", "other"))
dim(F) <- dim(Z)
dimnames(F) <- dimnames(Z)
invisible(F)
}) |
testthat::test_that(
"methods for fhir_body() create identical results", {
b1 <- fhir_body(content = "gender=female&_summary=count", type="application/x-www-form-urlencoded")
b2 <- fhir_body(content = list("gender"="female", "_summary"= "count"))
testthat::expect_identical(b1, b2)
}
)
testthat::test_that(
"errors are thrown for incorrect input", {
testthat::expect_error(fhir_body(content = "a"))
testthat::expect_error(fhir_body(content = c("a", "b"), type="a"))
}
) |
download_monthly_synop <-
function(path = ".",
date,
...)
{
file <- paste0("synop.", date, ".csv.gz")
dir.create(file.path(path, "data-raw"), showWarnings = FALSE)
utils::download.file(url = paste(metsyn_url(), file, sep = "/"),
destfile = file.path(path, "data-raw", paste0("monthly_", file)),
...)
invisible(NULL)
} |
expcub00 <-
function(m,pai,csi){(m-1)*pai*(0.5-csi)+(m+1)/2} |
test_that("`plot.see_rope()` works", {
if (require("bayestestR") && require("rstanarm")) {
set.seed(123)
m <- stan_glm(Sepal.Length ~ Petal.Width * Species,
data = iris,
refresh = 0
)
result <- rope(m)
expect_s3_class(plot(result), "gg")
}
}) |
condensity <-
function(bws, xeval, yeval,
condens, conderr = NA,
congrad = NA, congerr = NA,
ll = NA, ntrain, trainiseval = FALSE, gradients = FALSE,
rows.omit = NA){
if (missing(bws) | missing(xeval) | missing(yeval) | missing(condens) | missing(ntrain))
stop("improper invocation of condensity constructor")
if (length(rows.omit) == 0)
rows.omit <- NA
d <- list(
xbw = bws$xbw,
ybw = bws$ybw,
bws = bws,
xnames = bws$xnames,
ynames = bws$ynames,
nobs = nrow(xeval),
xndim = bws$xndim,
yndim = bws$yndim,
xnord = bws$xnord,
xnuno = bws$xnuno,
xncon = bws$xncon,
ynord = bws$ynord,
ynuno = bws$ynuno,
yncon = bws$yncon,
pscaling = bws$pscaling,
ptype = bws$ptype,
pcxkertype = bws$pcxkertype,
puxkertype = bws$puxkertype,
poxkertype = bws$poxkertype,
pcykertype = bws$pcykertype,
puykertype = bws$puykertype,
poykertype = bws$poykertype,
xeval = xeval,
yeval = yeval,
condens = condens,
conderr = conderr,
congrad = congrad,
congerr = congerr,
log_likelihood = ll,
ntrain = ntrain,
trainiseval = trainiseval,
gradients = gradients,
rows.omit = rows.omit,
nobs.omit = ifelse(identical(rows.omit,NA), 0, length(rows.omit)))
class(d) <- "condensity"
return(d)
}
print.condensity <- function(x, digits=NULL, ...){
cat("\nConditional Density Data: ", x$ntrain, " training points,",
ifelse(x$trainiseval, "", paste(" and ", x$nobs, " evaluation points,\n", sep="")),
" in ", x$xndim + x$yndim, " variable(s)",
"\n(", x$yndim, " dependent variable(s), and ", x$xndim, " explanatory variable(s))\n\n",
sep="")
print(matrix(x$ybw,ncol=x$yndim,dimnames=list(paste("Dep. Var. ",x$pscaling,":",sep=""),x$ynames)))
print(matrix(x$xbw,ncol=x$xndim,dimnames=list(paste("Exp. Var. ",x$pscaling,":",sep=""),x$xnames)))
cat(genDenEstStr(x))
cat(genBwKerStrs(x$bws))
cat("\n\n")
if(!missing(...))
print(...,digits=digits)
invisible(x)
}
fitted.condensity <- function(object, ...){
object$condens
}
se.condensity <- function(x){ x$conderr }
gradients.condensity <- function(x, errors = FALSE, ...) {
if(!errors)
return(x$congrad)
else
return(x$congerr)
}
predict.condensity <- function(object, se.fit = FALSE, ...) {
tr <- eval(npcdens(bws = object$bws, ...), envir = parent.frame())
if(se.fit)
return(list(fit = fitted(tr), se.fit = se(tr),
df = tr$nobs, log.likelihood = tr$ll))
else
return(fitted(tr))
}
plot.condensity <- function(x, ...) { npplot(bws = x$bws, ...) }
summary.condensity <- function(object, ...){
cat("\nConditional Density Data: ", object$ntrain, " training points,",
ifelse(object$trainiseval, "", paste(" and ", object$nobs, " evaluation points,\n", sep="")),
" in ", object$xndim + object$yndim, " variable(s)",
"\n(", object$yndim, " dependent variable(s), and ", object$xndim, " explanatory variable(s))\n\n",
sep="")
cat(genOmitStr(object))
print(matrix(object$ybw,ncol=object$yndim,dimnames=list(paste("Dep. Var. ",object$pscaling,":",sep=""),object$ynames)))
print(matrix(object$xbw,ncol=object$xndim,dimnames=list(paste("Exp. Var. ",object$pscaling,":",sep=""),object$xnames)))
cat(genDenEstStr(object))
cat(genBwKerStrs(object$bws))
cat('\n\n')
} |
MeanSampler <-
function(form,data,
max.sample.size=30,
show.sample=FALSE) {
if (!("manipulate" %in% installed.packages())) {
return(cat(paste0("You must be on R Studio with package manipulate installed\n",
"in order to run this function.")))
}
data <- data[complete.cases(data),]
dcurven <- 512
prsd <- with(data,ParseFormula(form))
varname <- as.character(prsd$rhs)
numvar <- data[,varname]
pop.mean <- mean(numvar)
if (max.sample.size>length(numvar)) {
stop("Sample size must be less than pop size")
}
sampmeans <- NULL
nprev <- NULL
beginning <- TRUE
dpop <- NULL
manipulate(
n=slider(1,max.sample.size,step=1,initial=1,
label="Sample Size n"),
{OurSample <- sample(numvar,n,replace=FALSE)
samp.mean <- mean(OurSample)
if (!identical(n,nprev)) {
sampmeans <<- NULL
}
if (!beginning) sampmeans <<- c(sampmeans,samp.mean)
if (show.sample && !beginning) {
cat("The sample was\n")
print(OurSample)
}
if (!beginning) {
cat("x-bar was",round(samp.mean,3),"\n")
cat("mu is",round(pop.mean,3),"\n")
}
nprev <<- n
if (beginning) {
dpop <<- density(numvar,n=1024,from=min(numvar),to=max(numvar))
plot(dpop$x,dpop$y,type="l",col="red",lwd=2,
xlab=varname,ylab="Density",
main="Population Distribution")
}
else {
if(length(sampmeans) >=2) {
dsamp <- density(sampmeans,n=dcurven,from=min(numvar),to=max(numvar))
plot(dsamp$x,dsamp$y,type="l",col="blue",
xlab="x-bar",ylab="Estimated Density",
main="Distribution of Sample Means")
points(dpop$x,dpop$y,type="l",col="red",lwd=2)
rug(sampmeans)
points(samp.mean,0,col="blue",pch=19)
abline(v=pop.mean,lwd=1.5,col="red")
legend(x="topright",legend=c("Population","Sample Means"),col=c("red","blue"),lwd=c(2,1))
}
}
beginning <<- FALSE
}
)
} |
odds.indo2malay <- function (x) {
malay <- x
malay[] <- NA_real_
malay[which(x <= -1 | x >= 1)] <- -1 / x[which(x <= -1 | x >= 1)]
malay
} |
HierarchicalClust <- function(W,K = 5, method = "ward.D2", flagDiagZero=FALSE, verbose = FALSE, ...){
W <- checking.gram.similarityMatrix(W, flagDiagZero=flagDiagZero, verbose = verbose)
if(verbose){message("CALCULATION OF THE GRAPH")}
graph <- hclust(as.dist(1-W), method = method,...)
if(verbose){plot(graph)}
out <- list(cluster = cutree(graph,K))
} |
knitr::opts_chunk$set(
collapse = TRUE,
comment = "
)
library(edcpR)
data(vegdata1, vegdata2, package = "edcpR") |
find_name <- function(dataset,pattern){
vec<-grep(pattern,names(dataset))
list(rang=vec,valeur=names(dataset)[vec])
} |
hamming.neighbors <-
function(source, targets){
results<-list()
distances<-hamming.distance(source, targets)
for (distance in sort(unique(distances))){
results[distance]=list(names(which(distances==distance)))
}
return(results)
} |
ggiNEXT <- function(x, type=1, se=TRUE, facet.var="none", color.var="site", grey=FALSE){
UseMethod("ggiNEXT", x)
}
ggiNEXT.iNEXT <- function(x, type=1, se=TRUE, facet.var="none", color.var="site", grey=FALSE){
TYPE <- c(1, 2, 3)
SPLIT <- c("none", "order", "site", "both")
if(is.na(pmatch(type, TYPE)) | pmatch(type, TYPE) == -1)
stop("invalid plot type")
if(is.na(pmatch(facet.var, SPLIT)) | pmatch(facet.var, SPLIT) == -1)
stop("invalid facet variable")
if(is.na(pmatch(color.var, SPLIT)) | pmatch(color.var, SPLIT) == -1)
stop("invalid color variable")
type <- pmatch(type, 1:3)
facet.var <- match.arg(facet.var, SPLIT)
color.var <- match.arg(color.var, SPLIT)
if(facet.var=="order") color.var <- "site"
if(facet.var=="site") color.var <- "order"
options(warn = -1)
z <- fortify(x, type=type)
options(warn = 0)
if(ncol(z) ==7) {se <- FALSE}
datatype <- unique(z$datatype)
if(color.var=="none"){
if(levels(factor(z$order))>1 & "site"%in%names(z)){
warning("invalid color.var setting, the iNEXT object consists multiple sites and orders, change setting as both")
color.var <- "both"
z$col <- z$shape <- paste(z$site, z$order, sep="-")
}else if("site"%in%names(z)){
warning("invalid color.var setting, the iNEXT object consists multiple orders, change setting as order")
color.var <- "site"
z$col <- z$shape <- z$site
}else if(levels(factor(z$order))>1){
warning("invalid color.var setting, the iNEXT object consists multiple sites, change setting as site")
color.var <- "order"
z$col <- z$shape <- factor(z$order)
}else{
z$col <- z$shape <- rep(1, nrow(z))
}
}else if(color.var=="order"){
z$col <- z$shape <- factor(z$order)
}else if(color.var=="site"){
if(!"site"%in%names(z)){
warning("invalid color.var setting, the iNEXT object do not consist multiple sites, change setting as order")
z$col <- z$shape <- factor(z$order)
}
z$col <- z$shape <- z$site
}else if(color.var=="both"){
if(!"site"%in%names(z)){
warning("invalid color.var setting, the iNEXT object do not consist multiple sites, change setting as order")
z$col <- z$shape <- factor(z$order)
}
z$col <- z$shape <- paste(z$site, z$order, sep="-")
}
zz=z
z$method[z$method=="observed"]="interpolated"
z$lty <- z$lty <- factor(z$method, levels=unique(c("interpolated", "extrapolated"),
c("interpolation", "interpolation", "extrapolation")))
z$col <- factor(z$col)
data.sub <- zz[which(zz$method=="observed"),]
g <- ggplot(z, aes_string(x="x", y="y", colour="col")) +
geom_point(aes_string(shape="shape"), size=5, data=data.sub)
g <- g + geom_line(aes_string(linetype="lty"), lwd=1.5) +
guides(linetype=guide_legend(title="Method"),
colour=guide_legend(title="Guides"),
fill=guide_legend(title="Guides"),
shape=guide_legend(title="Guides")) +
theme(legend.position = "bottom",
legend.title=element_blank(),
text=element_text(size=18),
legend.key.width = unit(1.2,"cm"))
if(type==2L) {
g <- g + labs(x="Number of sampling units", y="Sample coverage")
if(datatype=="abundance") g <- g + labs(x="Number of individuals", y="Sample coverage")
}
else if(type==3L) {
g <- g + labs(x="Sample coverage", y="Species diversity")
}
else {
g <- g + labs(x="Number of sampling units", y="Species diversity")
if(datatype=="abundance") g <- g + labs(x="Number of individuals", y="Species diversity")
}
if(se)
g <- g + geom_ribbon(aes_string(ymin="y.lwr", ymax="y.upr", fill="factor(col)", colour="NULL"), alpha=0.2)
if(facet.var=="order"){
if(length(levels(factor(z$order))) == 1 & type!=2){
warning("invalid facet.var setting, the iNEXT object do not consist multiple orders.")
}else{
g <- g + facet_wrap(~order, nrow=1)
if(color.var=="both"){
g <- g + guides(colour=guide_legend(title="Guides", ncol=length(levels(factor(z$order))), byrow=TRUE),
fill=guide_legend(title="Guides"))
}
}
}
if(facet.var=="site"){
if(!"site"%in%names(z)) {
warning("invalid facet.var setting, the iNEXT object do not consist multiple sites.")
}else{
g <- g + facet_wrap(~site, nrow=1)
if(color.var=="both"){
g <- g + guides(colour=guide_legend(title="Guides", nrow=length(levels(factor(z$order)))),
fill=guide_legend(title="Guides"))
}
}
}
if(facet.var=="both"){
if(length(levels(factor(z$order))) == 1 | !"site"%in%names(z)){
warning("invalid facet.var setting, the iNEXT object do not consist multiple sites or orders.")
}else{
g <- g + facet_wrap(site~order)
if(color.var=="both"){
g <- g + guides(colour=guide_legend(title="Guides", nrow=length(levels(factor(z$site))), byrow=TRUE),
fill=guide_legend(title="Guides"))
}
}
}
if(grey){
g <- g + theme_bw(base_size = 18) +
scale_fill_grey(start = 0, end = .4) +
scale_colour_grey(start = .2, end = .2) +
guides(linetype=guide_legend(title="Method"),
colour=guide_legend(title="Guides"),
fill=guide_legend(title="Guides"),
shape=guide_legend(title="Guides")) +
theme(legend.position="bottom",
legend.title=element_blank())
}
g <- g + theme(legend.box = "vertical")
return(g)
}
ggiNEXT.default <- function(x, ...){
stop(
"iNEXT doesn't know how to deal with data of class ",
paste(class(x), collapse = "/"),
call. = FALSE
)
}
fortify.iNEXT <- function(model, data = model$iNextEst, type = 1, ...) {
datatype <- ifelse(names(model$DataInfo)[2]=="n","abundance","incidence")
z <- data
if(class(z) == "list"){
z <- data.frame(do.call("rbind", z), site=rep(names(z), sapply(z, nrow)))
rownames(z) <- NULL
}else{
z$site <- ""
}
if(ncol(z)==6) {
warning("invalid se setting, the iNEXT object do not consist confidence interval")
se <- FALSE
}else if(ncol(z)>6) {
se <- TRUE
}
if(type==1L) {
z$x <- z[,1]
z$y <- z$qD
if(se){
z$y.lwr <- z[,5]
z$y.upr <- z[,6]
}
}else if(type==2L){
if(length(unique(z$order))>1){
z <- subset(z, order==unique(z$order)[1])
}
z$x <- z[,1]
z$y <- z$SC
if(se){
z$y.lwr <- z[,8]
z$y.upr <- z[,9]
}
}else if(type==3L){
z$x <- z$SC
z$y <- z$qD
if(se){
z$y.lwr <- z[,5]
z$y.upr <- z[,6]
}
}
z$datatype <- datatype
z$plottype <- type
if(se){
data <- z[,c("datatype","plottype","site","method","order","x","y","y.lwr","y.upr")]
}else{
data <- z[,c("datatype","plottype","site","method","order","x","y")]
}
data
} |
"EMPIRgridder2" <-
function(empgrid=NULL, ...) {
if(is.null(empgrid)) {
warning("The gridded empirical copula (say from EMPIRgrid) is NULL")
return(NULL)
}
if(! is.list(empgrid)) {
warning("The gridded empirical copula is expected as a list from EMPIRgrid")
return(NULL)
}
deluv <- empgrid$deluv
empcop <- empgrid$empcop
rc <- dim(empcop)
n <- rc[1]
if(n != rc[2]) {
warning("grid is not square!")
return(NA)
}
if(deluv != 1/(n-1)) {
warning("concerns over value of deluv, not congruent with matrix size")
}
the.deriv <- matrix(nrow=n, ncol=n)
for(i in 1:n) {
section <- empcop[i,]
diff.section <- diff(section)
derivative <- c(0, diff.section/deluv)
the.deriv[i,] <- derivative
}
for(i in 2:n) {
the.deriv[,i] <- the.deriv[,i]/the.deriv[n,i]
}
the.deriv[,1] <- rep(NA, n)
for(i in 2:n) {
if(length(the.deriv[! is.finite(the.deriv[,i])]) > 0) {
warning("found nonfinite values on column=",i," in grid derivative")
next
}
}
attributes(the.deriv) <- list(dim=dim(empcop),
rownames=empgrid$u,
colnames=empgrid$v,
message="use the columns!, wrt V")
return(the.deriv)
} |
replace_consecutive <- function(x, by = "", fun_for_identical = base::identical )
{
if (length(x) < 2) {
return(x)
}
is_consecutive <- mapply(fun_for_identical, x = x[1:length(x) - 1], y = x[2:length(x)],
USE.NAMES = FALSE)
is_consecutive <- c(FALSE, is_consecutive)
x[is_consecutive] <- by
return(x)
} |
readVpc<-function (vpc.results = NULL, npc.results = NULL, verbose = FALSE,...)
{
if (is.null(vpc.results) & is.null(npc.results)) {
cat(paste("Both the arguments vpc.results and npc.results are NULL\n"))
cat(paste("One of these must be defined\n"))
return(NULL)
}
if (!is.null(vpc.results) & !is.null(npc.results)) {
cat(paste("Both the arguments vpc.results and npc.results are defined\n"))
cat(paste("ONLY one of these may be defined\n"))
return(NULL)
}
vpc <- FALSE
npc <- FALSE
if (!is.null(vpc.results))
vpc <- TRUE
if (!is.null(npc.results))
npc <- TRUE
if (vpc)
filename <- vpc.results
if (npc)
filename <- npc.results
if (file.exists(filename)[1]) {
if (verbose)
cat(paste(" Reading", filename, "\n"))
scannedFile <- scan(filename, sep = "\n", what = character(),
quiet = TRUE, blank.lines.skip = FALSE)
}
blank.line.pat <- "^$"
if (vpc) {
table.start.pat <- "VPC results"
table.head.pat <- "<="
}
if (npc) {
table.start.pat <- "NPC results"
table.head.pat <- "points below PI"
}
table.start <- grep(table.start.pat, scannedFile)
num.tables <- length(table.start)
table.head <- grep(table.head.pat, scannedFile)
blank.line <- grep(blank.line.pat, scannedFile)
table.stop <- c()
for (i in 1:num.tables) {
for (j in 1:length(blank.line)) {
if (table.start[i] > blank.line[j])
next
if (table.start[i] < blank.line[j]) {
table.stop <- c(table.stop, blank.line[j] - 1)
break
}
}
}
table.rows.to.read <- table.stop - table.head
dv.pat <- "Dependent variable"
idv.pat <- "Independent variable"
mod.pat <- "Modelfile"
dv.idv.table.start <- grep(dv.pat, scannedFile)
dv.idv.table.stop <- NULL
for (j in 1:length(blank.line)) {
if (dv.idv.table.start > blank.line[j])
next
if (dv.idv.table.start < blank.line[j]) {
dv.idv.table.stop <- blank.line[j] - 1
break
}
}
dv.idv.table <- read.table(filename, skip = dv.idv.table.start -
1, nrows = dv.idv.table.stop - dv.idv.table.start, sep = ",",
comment.char = "", header = T, strip.white = TRUE)
dv.var <- paste(dv.idv.table[[grep("Dependent.variable",
names(dv.idv.table))]])
model.file <- paste(dv.idv.table[[grep("Modelfile", names(dv.idv.table))]])
if (vpc)
idv.var <- paste(dv.idv.table[[grep("Independent.variable",
names(dv.idv.table))]])
cat.tables <- F
cen.tables <- F
cat.boundaries <- NULL
lloq <- NA
uloq <- NA
pred.corr <- FALSE
var.corr <- FALSE
add.feats.row <- grep("Additional.feature", scannedFile)
if (length(add.feats.row) != 0) {
for (i in 1:length(add.feats.row)) {
if (length(grep("Categorization", scannedFile[add.feats.row[i] +
1])) != 0) {
cat.tables <- T
boundary.table <- read.table(filename, skip = add.feats.row[i] +
1, nrows = 1, sep = ",", fill = T, comment.char = "",
strip.white = TRUE, header = T)
boundary.rows <- grep("Boundary", names(boundary.table))
cat.boundaries <- boundary.table[, boundary.rows]
}
if (length(grep("Censored.data", scannedFile[add.feats.row[i] +
1])) != 0) {
cen.tables <- T
censored.table <- read.table(filename, skip = add.feats.row[i] +
1, nrows = 1, sep = ",", fill = T, comment.char = "",
strip.white = TRUE, header = T)
lloq <- censored.table$LLOQ
uloq <- censored.table$ULOQ
}
if (length(grep("Prediction.correction", scannedFile[add.feats.row[i] +
1])) != 0) {
pred.corr <- T
}
if (length(grep("Variability.correction", scannedFile[add.feats.row[i] +
1])) != 0) {
var.corr <- T
}
}
}
by.interval <- NULL
strata.names <- NULL
if (num.tables > 1) {
bin.table <- vector("list", num.tables + 1)
strata.names <- c()
tmp.interval <- c()
for (i in 1:num.tables) {
strata.pat <- "strata"
strata.line <- scannedFile[table.start[i]]
strata.start <- regexpr(strata.pat, strata.line) + 7
if (strata.start == 6) {
tmp.strata <- NULL
tmp.interval <- NULL
}
else {
strata.stop <- regexpr(",", strata.line) - 1
if (strata.stop == -2)
strata.stop <- regexpr("$", strata.line)
tmp.strata <- substring(strata.line, strata.start,
strata.stop)
strata.var.stop <- regexpr(" ", tmp.strata) -
1
strata.int.start <- regexpr(" ", tmp.strata) +
1
strata.var <- substring(tmp.strata, 1, strata.var.stop)
strata.int <- substring(tmp.strata, strata.int.start)
tmp.strata = gsub("\\[", ">= ", tmp.strata)
tmp.strata = gsub("\\]", paste(" >=", strata.var,
sep = " "), tmp.strata)
tmp.strata = gsub("\\(", "> ", tmp.strata)
tmp.strata = gsub("\\)", paste(" >", strata.var,
sep = " "), tmp.strata)
tmp.strata = gsub("\\;", " \\& ", tmp.strata)
tmp.strata = gsub(" = ", " == ", tmp.strata)
}
strata.names <- c(strata.names, tmp.strata)
if (!is.null(tmp.strata)) {
if (regexpr(">", tmp.strata) != -1) {
semi.loc <- regexpr("\\;", strata.int)
lt.GE.loc <- regexpr("\\[", strata.int)
lt.GT.loc <- regexpr("\\(", strata.int)
rt.LE.loc <- regexpr("\\]", strata.int)
rt.LT.loc <- regexpr("\\)", strata.int)
strata.int.low <- substring(strata.int, 1,
semi.loc - 1)
strata.int.low <- gsub("\\[", "", strata.int.low)
strata.int.low <- gsub("\\(", "", strata.int.low)
strata.int.low <- gsub(" ", "", strata.int.low)
strata.int.low <- as.numeric(strata.int.low)
strata.int.high <- substring(strata.int, semi.loc +
1)
strata.int.high <- gsub("\\]", "", strata.int.high)
strata.int.high <- gsub("\\)", "", strata.int.high)
strata.int.high <- gsub(" ", "", strata.int.high)
strata.int.high <- as.numeric(strata.int.high)
interval.length <- strata.int.high - strata.int.low
add.to.ends <- interval.length * 1e-07
if (lt.GT.loc != -1)
strata.int.low <- strata.int.low + add.to.ends
if (rt.LT.loc != -1)
strata.int.high <- strata.int.high - add.to.ends
tmp.interval <- c(tmp.interval, strata.int.low,
strata.int.high)
}
}
bin.table[[i]] <- read.table(filename, skip = table.head[i] -
1, nrows = table.rows.to.read[i], sep = ",",
comment.char = "", header = T, strip.white = TRUE,
blank.lines.skip = FALSE)
}
if (length(tmp.interval) != 0) {
by.interval <- matrix(tmp.interval, nrow = num.tables,
ncol = 2, byrow = T)
}
bin.table[[num.tables + 1]] <- strata.names
}
else {
bin.table <- read.table(filename, skip = table.head -
1, nrows = table.rows.to.read, sep = ",", comment.char = "",
header = T, strip.white = TRUE, blank.lines.skip = FALSE)
}
for (i in 1:num.tables) {
if (num.tables == 1) {
tmp.table <- bin.table
}
else {
tmp.table <- bin.table[[i]]
}
if (vpc) {
tmp.table$X <- NULL
tmp.table$X.1 <- NULL
names(tmp.table)[1] <- "lower"
names(tmp.table)[2] <- "upper"
names(tmp.table)[3] <- "nobs"
}
if (npc) {
names(tmp.table)[1] <- "PI"
tmp.table$PI <- as.numeric(sub("% PI", "", tmp.table$PI))
}
tmp.names <- names(tmp.table)
tmp.names <- sub("X\\.*", "", tmp.names)
tmp.names <- gsub("_", ".", tmp.names)
tmp.names <- gsub("\\.+", "\\.", tmp.names)
tmp.names <- gsub("\\.$", "", tmp.names)
names(tmp.table) <- tmp.names
if (num.tables == 1) {
bin.table <- tmp.table
}
else {
bin.table[[i]] <- tmp.table
}
}
table.multiples = 1
if (cat.tables)
table.multiples = table.multiples + 1
if (cen.tables)
table.multiples = table.multiples + 1
if (table.multiples > 1) {
bin.table.cont <- vector("list", num.tables/table.multiples)
if (cat.tables)
bin.table.cat <- vector("list", num.tables/table.multiples)
if (cen.tables)
bin.table.cen <- vector("list", num.tables/table.multiples)
sub.i <- 0
for (ii in seq(1, num.tables, by = table.multiples)) {
sub.i <- sub.i + 1
bin.table.cont[[sub.i]] <- bin.table[[ii]]
}
if (sub.i == 1)
bin.table.cont <- bin.table.cont[[sub.i]]
cen.start = 2
if (table.multiples == 3) {
cat.start = 3
}
else {
cat.start = 2
}
if (cen.tables) {
sub.i <- 0
for (ii in seq(cen.start, num.tables, by = table.multiples)) {
sub.i <- sub.i + 1
bin.table.cen[[sub.i]] <- bin.table[[ii]]
}
if (sub.i == 1)
bin.table.cen <- bin.table.cen[[sub.i]]
}
else {
bin.table.cen <- NULL
}
if (cat.tables) {
sub.i <- 0
for (ii in seq(cat.start, num.tables, by = table.multiples)) {
sub.i <- sub.i + 1
bin.table.cat[[sub.i]] <- bin.table[[ii]]
}
if (sub.i == 1)
bin.table.cat <- bin.table.cat[[sub.i]]
}
else {
bin.table.cat <- NULL
}
if (cat.tables) {
num.tables.cat <- num.tables/table.multiples
}
else {
num.tables.cat <- NULL
}
if (cen.tables) {
num.tables.cen <- num.tables/table.multiples
}
else {
num.tables.cen <- NULL
}
num.tables.cont <- num.tables/table.multiples
strata.names <- strata.names[seq(1, num.tables, by = table.multiples)]
}
else {
bin.table.cont <- bin.table
bin.table.cat <- NULL
bin.table.cen <- NULL
num.tables.cont <- num.tables
num.tables.cat <- NULL
num.tables.cen <- NULL
}
if (npc)
return(list(model.file = model.file, dv.var = dv.var,
idv.var = NULL, num.tables = num.tables, result.tables = bin.table))
if (vpc)
return(list(model.file = model.file, dv.var = dv.var,
idv.var = idv.var, num.tables = num.tables.cont,
by.interval = by.interval, result.tables = bin.table.cont,
strata.names = strata.names, num.tables.cat = num.tables.cat,
result.tables.cat = bin.table.cat, cat.boundaries = cat.boundaries,
num.tables.cen = num.tables.cen, result.tables.cen = bin.table.cen,
lloq = lloq, uloq = uloq, pred.corr = pred.corr,
var.corr = var.corr))
} |
CovFMean= function(M=NULL, optns = list()){
if(is.list(M)){
n=length(M)
} else {
if(!is.array(M)){
stop('M must be an array or a list')
}
n=dim(M)[3]
}
if(n==1){
stop("Sample size n should be at least 2")
}
x=matrix(1:n,nrow=n,ncol=1)
xout=matrix((n+1)/2)
if (is.null(optns$metric)){
metric="frobenius"
} else {
metric=optns$metric
}
if(!metric%in%c("frobenius","power","cholesky","log_cholesky")){
stop("metric choice not supported.")
}
if(metric=="frobenius"){
res <- list(Mout=GFRCov(x=x, y=NULL,M=M,xout=xout,optns = optns)$Mout,optns=optns)
} else if(metric=="power"){
res <- list(Mout=GFRCovPower(x=x, y=NULL,M=M,xout=xout,optns = optns)$Mout,optns=optns)
} else {
if (is.null(M))
stop("M must be input for Cholesky and log-Cholesky metrics; y does not apply.")
res <- list(Mout=GFRCovCholesky(x=x, M=M, xout=xout, optns = optns)$Mout,optns=optns)
}
class(res) <- "covReg"
return(res)
} |
expand.mat <- function(mat, vec) {
out = matrix(0, nrow = as.numeric(nrow(mat)) * as.numeric(length(vec)),
ncol = as.numeric(ncol(mat) + 1))
for (i in 1:ncol(mat)) out[, i] = mat[, i]
out[, ncol(mat) + 1] = rep(vec, each = nrow(mat))
return(out)
} |
cloneGitHubRepo <- function(repoURL, repoDir = NULL, default = FALSE, ...){
stopifnot((is.character(repoDir) & length(repoDir) == 1) | is.null(repoDir))
stopifnot( is.logical( default ), length( default ) == 1 )
repoURLsplitted <- strsplit(repoURL, "/")[[1]]
if (is.null(repoDir)) {
repoDir <-tail(repoURLsplitted,1)
}
if (!file.exists(repoDir)) {
dir.create(repoDir)
}
git2r::clone(repoURL, repoDir, ...) -> repo2return
if (default) {
archivist::aoptions('repoDir', repoDir)
archivist::aoptions('user', tail(repoURLsplitted,2)[1])
archivist::aoptions('repo', tail(repoURLsplitted,1))
}
return(repo2return)
} |
setGeneric("exp_date", function(object) standardGeneric("exp_date"))
setMethod("exp_date", "anlz", function(object) object@"exp_date")
setGeneric("exp_date<-", function(object, value) standardGeneric("exp_date<-"))
setMethod("exp_date<-",
signature(object="anlz"),
function(object, value) {
if ( "exp_date" %in% slotNames(object) ){
object@"exp_date" <- value
} else {
warning("exp_date is not in slotNames of object")
}
return(object)
}) |
rm(list = ls())
if(TRUE){
library(testthat)
library(lavaSearch2)
}
lava.options(symbols = c("~","~~"))
context("matrixPower")
matrixPower <- lavaSearch2:::matrixPower
M <- matrix(rnorm(2e2),20,10)
Sigma <- var(M)
test_that("square root", {
Sigma.half <- matrixPower(Sigma, power = 1/2, symmetric = FALSE)
expect_true(all(abs(crossprod(Sigma.half)-Sigma) < 1e-12))
})
test_that("inverse", {
Sigma.m1 <- matrixPower(Sigma, power = -1, symmetric = FALSE)
expect_equal(Sigma.m1 %*% Sigma,diag(1,NROW(Sigma),NCOL(Sigma)))
}) |
optistart <- function(eloobject,
burnin = 0,
spread = 200,
runs = 2000,
doplot = FALSE,
initialcohort = TRUE) {
allids <- eloobject$allids
n <- length(allids)
normprob <- eloobject$misc["normprob"] == "1"
w <- eloobject$logtable$winner
l <- eloobject$logtable$loser
kval <- eloobject$kvals
startval <- eloobject$startvalues
resmat <- matrix(ncol = length(allids), nrow = runs)
colnames(resmat) <- allids
logliks <- numeric(runs)
for(i in 1:nrow(resmat)) {
svals <- rnorm(n, mean = startval, sd = spread)
svals <- round(svals - mean(svals) + startval)
logliks[i] <- likelo(fastelo(WINNER = w,
LOSER = l,
ALLIDS = allids,
KVALS = kval,
STARTVALUES = svals,
NORMPROB = normprob),
burnin = burnin)
resmat[i, ] <- svals
}
original <- likelo(fastelo(WINNER = w,
LOSER = l,
ALLIDS = allids,
KVALS = kval,
STARTVALUES = rep(startval, n),
NORMPROB = normprob))
if (doplot) {
x <- hist(logliks, breaks = 50, plot = FALSE)
plot(x, ylim = c(0, max(x$counts)*1.05), yaxs = "i", las = 1, main = "")
box()
abline(v = original, col = "red", lwd = 2)
}
list(best = resmat[which.max(logliks), ],
val = max(logliks),
original = original,
resmat = resmat,
logliks = logliks)
} |
context("Ops")
test_ops <- function(fun, x, y, ...) {
if (missing(y)) {
result_l <- fun(as_lvec(x), ...)
result_r <- fun(x, ...)
expect_that(as_rvec(result_l), equals(result_r))
} else {
result_l <- fun(as_lvec(x), as_lvec(y), ...)
result_r <- fun(x, y, ...)
expect_that(as_rvec(result_l), equals(result_r))
}
}
test_that("numeric operators work", {
set.seed(1)
x <- rnorm(10)
x[c(3, 8)] <- NA
y <- c(1,1,2,2,3,3,4,4,5,6)
operators <- list(`+`, `-`, `*`, `/`, `%%`, `%/%`)
for (op in operators) {
test_ops(op, x, 4)
test_ops(op, x, y)
test_ops(op, 4, x)
expect_error(test_ops(op, 1:3, x))
test_ops(op, as_lvec(numeric(0)), 4)
}
})
test_that("logical operators work on numeric vectors", {
set.seed(1)
x <- 1:10
x[c(3, 8)] <- NA
y <- 11:2
operators <- list(`==`, `!=`, `<`, `<=`, `>=`, `>`)
for (op in operators) {
test_ops(op, x, 4)
test_ops(op, x, y)
test_ops(op, 4, x)
expect_error(test_ops(op, 1:3, x))
test_ops(op, as_lvec(numeric(0)), 4)
}
})
test_that("logical operators work", {
set.seed(1)
x <- sample(c(TRUE, FALSE), 10, replace=TRUE)
x[c(3, 8)] <- NA
y <- sample(c(TRUE, FALSE), 10, replace=TRUE)
x[c(2, 8)] <- NA
operators <- list(`&`, `|`, `==`, `!=`, `<`, `<=`, `>=`, `>`)
for (op in operators) {
test_ops(op, x, 4)
test_ops(op, x, y)
test_ops(op, 4, x)
expect_error(test_ops(op, 1:3, x))
test_ops(op, as_lvec(logical(0)), 4)
}
})
test_that("unary operators work", {
set.seed(1)
x <- sample(c(TRUE, FALSE), 10, replace=TRUE)
x[c(3, 8)] <- NA
y <- rnorm(10)
y[c(3, 8)] <- NA
operators <- list(`+`, `-`, `!`)
for (op in operators) {
test_ops(op, x)
test_ops(op, y)
test_ops(op, as_lvec(logical(0)))
test_ops(op, as_lvec(numeric(0)))
}
}) |
lmeForm <- structure(function
(
rd,
prim.cov = FALSE,
resp = NULL,
covar = NULL,
lev.rm = NULL
) {
if(is.null(resp))
resp <- cClass(rd, 'numeric')[1L]
if(is.null(covar))
covar <- cClass(rd, 'integer')[1L]
covar. <- paste('~',covar,sep = ' ')
covar <- paste(resp,'~',covar,sep = ' ')
f <- cClass(rd, 'factor')
if(is.numeric(lev.rm))
lev.rm <- f[lev.rm]
nf <- rev(f[!f%in%lev.rm])
sep. <- ' | '
if(length(nf) == 0)
sep. <- ''
fc <- paste(nf,collapse = '/')
fr <- paste(covar,fc,sep = sep.)
fr <- formula(fr,showEnv = FALSE)
if(prim.cov)fr <- covar.
return(fr)
} , ex=function(){
data(Prings05,envir = environment())
form1 <- lmeForm(Prings05,prim.cov = FALSE)
print(form1)
form2 <- lmeForm(Prings05,lev.rm = 'sample')
form2 <- lmeForm(Prings05,lev.rm = 1)
gdata <- groupedData(lmeForm(Prings05,lev.rm = 1),
data = Prings05)
plot(gdata,groups = ~ sample)
}) |
convertInitDesignToGrid = function(init, lower, upper, blocks) {
if (class(init) == "matrix")
init = as.data.frame(init)
stopifnot(is.data.frame(init))
dims = ncol(init) - 1L
if (missing(lower)) {
lower = apply(init[,seq_len(dims)], 2L, min)
} else if (length(lower) == 1L) {
lower = rep(lower, dims)
}
if (missing(upper)) {
upper = apply(init[, seq_len(dims)], 2L, max)
} else if (length(upper) == 1L) {
upper = rep(upper, dims)
}
if (missing(blocks)) {
blocks = rep(10L, dims)
} else if (length(blocks) == 1L) {
blocks = as.integer(rep(blocks, dims))
}
block.widths = (upper - lower) / blocks
cp = cumprod(c(1L, blocks))
init$cell.ID = vapply(BBmisc::seq_row(init), function(init.row) {
z = as.numeric(init[init.row, seq_len(dims)])
cell.ID = vapply(seq_len(dims), function(dim) {
as.integer(cp[dim] * floor((z[dim] - lower[dim]) / block.widths[dim]))
}, integer(1L))
as.integer(sum(cell.ID - cp[seq_along(blocks)] * (z == upper)))
}, integer(1L))
init$cell.ID = init$cell.ID + 1L
return(init)
} |
printCond <- function(v, warn=FALSE) {
if (warn) warning(" Note that you are attempting to plot a 'main effect' in a model that contains an
interaction. This is potentially misleading; you may wish to consider using the 'by'
argument.", call.=FALSE)
p <- ncol(v$fit)-4
X <- v$fit[, 1:p, drop=FALSE]
X <- X[,-which(names(X) == v$meta$x), drop=FALSE]
constant.columns <- which(sapply(X, function(x) all(x==x[1])))
varying.columns <- setdiff(1:ncol(X), constant.columns)
for (j in 1:ncol(X)) if (is.factor(X[,j])) X[,j] <- as.character(X[,j])
cat("Conditions used in construction of plot\n")
for (j in varying.columns) {
x <- paste(unique(X[,j]), collapse= " / ")
cat(names(X)[j], ": ", x, "\n", sep="")
}
for (j in constant.columns) {
cat(names(X)[j], ": ", X[1,j], "\n", sep="")
}
} |
print.jmodelTM <- function (x, digits = max(4, getOption("digits") - 4), ...)
{
result = x
cat("Joint modeling fitting of longitudinal and survival data by ML\n")
cat("\nCoefficients:\n")
cat("\tLongitudinal Process\n")
print(round(result$coefficients$beta, digits))
cat("\tSurvival Process\n")
phis <- c(result$coefficients$phi, result$coefficients$alpha)
print(round(phis, digits))
cat("\nVariance Components:\n")
Bsigma <- result$coefficients$Bsigma
ncz <- if(length(Bsigma) == 1) 1 else nrow(Bsigma)
SD <- if (ncz == 1) sqrt(Bsigma) else sqrt(diag(Bsigma))
SD <- c(SD, result$coefficients$Ysigma)
if (ncz > 1) {
corr <- cov2cor(Bsigma)
corr[upper.tri(corr, TRUE)] <- 0
corr <- rbind(corr, rep(0, ncz))
tempMat <- round(cbind(SD, corr[ , - ncz]), digits)
tempMat <- apply(tempMat, 2, sprintf, fmt = "% .4f")
tempMat[tempMat == tempMat[1, 2]] <- ""
tempMat[1, -1] <- abbreviate(colnames(tempMat)[- 1], 6)
colnames(tempMat) <- c(colnames(tempMat)[1], rep("", ncz - 1))
Mat <- data.frame(tempMat, check.rows = FALSE, check.names = FALSE)
colnames(Mat) <- c("StdDev", "Corr", if (ncz > 2) rep(" ", ncz - 2) else NULL)
rownames(Mat) <- c(dimnames(Bsigma)[[1]], "Residual")
} else {
Mat <- data.frame("StdDev" = SD, row.names = c(names(Bsigma), "Residual"),
check.rows = FALSE, check.names = FALSE)
}
print(if(!is.numeric(Mat)) Mat else round(Mat, digits))
cat("\nLog-likelihood:", result$logLik, "\n")
cat("Number of Observations:", result$N, "\n")
cat("Number of Subjects:", result$n, "\n")
invisible(result)
} |
source("ESEUR_config.r")
library("prefmod")
dorn=read.csv(paste0(ESEUR_dir, "odds-and-ends/dorn-scores.csv.xz"), as.is=TRUE)
num_answers=apply(dorn, 1, function(X) length(which(!is.na(X)))-1)
ratings=subset(dorn[, -1], num_answers == 20)
sal = pattL.fit(ratings, nitems = ncol(ratings), resptype="rating") |
library(tidyverse)
devtools::load_all()
library(googledrive)
gs4_auth_testing()
ss <- test_sheet_create()
gs4_browse(ss) |
library(PTXQC)
require(methods)
context("createReport.R")
test_that("createReport", {
local_zip = tempfile(fileext=".zip")
target_url = "https://raw.githubusercontent.com/cbielow/PTXQC_data/master/txt_Ecoli.zip"
dl = NULL
tryCatch({
dl = download.file(target_url, destfile = local_zip, quiet = TRUE)
}, silent = TRUE, warning = function(w) { }, error = function(err) {
tryCatch({
dl = download.file(target_url, destfile = local_zip, method='curl', quiet = TRUE)
}, silent = TRUE, warning = function(w) { }, error = function(err2) {
print("Internet down. Aborting test gracefully")
return();
})
})
if (is.null(dl)) return()
unzip(local_zip, exdir = tempdir())
txt_folder = file.path(tempdir(), "txt")
expect_equal(getMQPARValue(paste0(txt_folder, "/mqpar.xml"), "//firstSearchTol"), "20")
expect_equal(getMQPARValue(paste0(txt_folder, "/mqpar.xml"), "//matchingTimeWindow"), "0.7")
expect_equal(getMQPARValue(paste0(txt_folder, "/mqpar.xml"), "//string[parent::filePaths|parent::Filenames]", allow_multiple = TRUE),
c("M:\\projects\\QC\\ecoli_small\\Toni_20120502_GM_Ecoli_01.raw", "M:\\projects\\QC\\ecoli_small\\Toni_20120502_GM_Ecoli_02.raw"))
yaml_obj = list()
r = createReport(txt_folder, NULL, yaml_obj)
expect_equal(c("yaml_file", "heatmap_values_file", "R_plots_file", "filename_sorting", "mzQC_file",
"log_file", "report_file_prefix", "report_file_PDF", "report_file_HTML"), names(r))
rep_files = c(r[["report_file_PDF"]], r[["report_file_HTML"]])
print(list.files(path = txt_folder))
for (f in rep_files)
{
cat("Checking file ", f, "\n")
if (file.exists(f)) expect_equal(file.info(f)$size > 50*1024, TRUE)
}
expect_equal(file.exists(r[["heatmap_values_file"]]), TRUE)
d_heatmap = read.delim(r[["heatmap_values_file"]])
expect_equal(dim(d_heatmap)[1], 2)
expect_equal(dim(d_heatmap)[2] >= 22, TRUE)
expect_equal(as.character(d_heatmap$fc.raw.file), c("..Ecoli_01", "..Ecoli_02"))
expect_equal(file.exists(r[["filename_sorting"]]), TRUE)
d_filenamesort = read.delim(r[["filename_sorting"]], comment.char="
expect_equal(dim(d_filenamesort), c(2, 3))
expect_equal(as.character(d_filenamesort$new.Name), c("..Ecoli_01", "..Ecoli_02"))
no_volatile = function(file)
{
lines = readLines(file, warn = FALSE)
grep("\"creationDate\"|\"contactName\"|\"location\"|\"version\"", lines, invert = TRUE, value = TRUE)
}
expect_equal(no_volatile(r[["mzQC_file"]]), no_volatile(system.file("./examples/report_ecoli_small.mzQC", package="PTXQC")))
unlink(local_zip)
unlink(txt_folder, recursive = TRUE)
}) |
context("test-tornado_survreg")
test_that("survreg tornado works", {
gtest <- survival::survreg(survival::Surv(futime, fustat) ~ ecog.ps + rx, survival::ovarian, dist = 'weibull', scale = 1)
torn <- tornado(gtest, modeldata = survival::ovarian, type = "PercentChange", alpha = 0.10)
expect_equal(class(torn), "tornado_plot")
g <- plot(torn, plot = FALSE, xlabel = "Survival Time")
g <- g + ggtitle("Test: survival regression")
plot(g)
mydat <- survival::ovarian
mydat$resid.ds <- factor(mydat$resid.ds)
gtest <- survival::survreg(survival::Surv(futime, fustat) ~ ecog.ps + rx + resid.ds, mydat, dist = 'weibull', scale = 1)
torn <- tornado(gtest, modeldata = mydat, type = "PercentChange", alpha = 0.10)
expect_equal(class(torn), "tornado_plot")
g <- plot(torn, plot = FALSE, xlabel = "Survival Time")
g <- g + ggtitle("Test: survival regression with factor")
plot(g)
}) |
icdglm.fit <- function(x,
y,
weights = rep.int(1, NROW(x)),
indicator = rep.int(0, NROW(x)),
family = binomial(link = "logit"),
control = list()) {
if (any(is.na(x))) {
stop("icdglm.fit: NAs in x. Please apply expand_data first!", call. = FALSE)
}
control <- do.call("glm.control", control)
x <- as.matrix(x)
y <- as.numeric(y)
weights <- as.numeric(weights)
indicator <- as.numeric(indicator)
dat <- apply(x, 1, paste, collapse = ";")
incomplete.obs <- weights != 1
incomplete.indexes <- which(incomplete.obs)
sum.weights <- sum(weights)
conv <- FALSE
dev.old <- 0
group.indicator <- rep.int(NA, length(indicator))
unique.indicator <- unique(indicator)
for (i in incomplete.indexes) {
group.indicator[i] <- which(unique.indicator == indicator[i])
}
weights.x.obs <- as.numeric(rep.int(NA, NROW(x)))
matchdat <- match(dat, unique(dat))
for (iter in 1L:control$maxit) {
iterations <- iter
fit1 <- suppressWarnings(glm.fit(x = x, y = y,
family = family, weights = weights))
if (fit1$converged == FALSE) {
warning("glm.fit: algorithm did not converge", call. = FALSE)
break
}
if (family$family == "binomial") {
weights.y <- predict.glm(fit1, type = "response")
weights.y[y == 0] <- 1 - weights.y[y == 0]
} else if (family$family == "Gamma") {
weights.y <- predict.glm(fit1, type = "response")
print(weights.y)
weights.y <- dgamma(family$linkinv(y - weights.y), 1)
print(weights.y)
stop()
} else {
}
sum1 <- unlist(lapply(unique(dat)[matchdat],
function(x)
sum(weights[match(dat, x, 0) > 0])))
weights.x.obs <- sum1 / sum.weights
product.weights <- weights.x.obs * weights.y
sum.group.weights <- rowsum(product.weights, group = indicator,
reorder = FALSE)
for (i in incomplete.indexes) {
sum2 <- sum.group.weights[group.indicator[i],]
weights[i] <- product.weights[i] / sum2
}
dev.new <- fit1$deviance
dev <- abs(dev.new - dev.old) / (0.1 + abs(dev.new))
if (control$trace) {
cat("Deviance deviation = ", dev, " Iterations = ", iter,
"\n", sep = "")
}
if (abs(dev.new - dev.old) / (0.1 + abs(dev.new)) < control$epsilon) {
conv <- TRUE
break
} else {
dev.old <- dev.new
}
}
if (!conv) {
warning("icdglm.fit: algorithm did not converge", call. = FALSE)
}
Phi <- summary.glm(fit1)$dispersion
X.tilde <- as.matrix(x)
W <- Diagonal(length(y), weights)
W.inv <- Diagonal(length(y), 1 / weights)
M.tilde <- Diagonal(length(y), fit1$weights)
M.tilde.2 <- Diagonal(length(y), fit1$weights^2)
V.tilde.inv.2 <- Diagonal(length(y), (1 / family$variance(fit1$fitted.values))^2)
H.tilde.2 <- Diagonal(length(y), (y - fit1$fitted.values)^2)
info.mat <- t(X.tilde) %*% M.tilde %*% (
Diagonal(length(y), 1 - ((fit1$weights / Phi * (1 - weights) / weights *
((y - fit1$fitted.values) / family$variance(fit1$fitted.values))^2)))) %*% X.tilde
info.mat <- as.matrix(info.mat)
print(iter)
print(family)
print(y)
print(weights)
print(fit1$weights)
print(fit1$fitted.values)
print(info.mat)
qr1 <- list(qr = chol(info.mat),
pivot = 1:(fit1$rank),
rank = fit1$rank,
class = "qr")
icdglm.fit <- list(x = x,
y = fit1$y,
new.weights = weights,
indicator = indicator,
glm.fit.data = fit1,
coefficients = fit1$coefficients,
qr = qr1,
residuals = fit1$residuals,
fitted.values = fit1$fitted.values,
effects = fit1$effects,
R = fit1$R,
rank = fit1$rank,
family = fit1$family,
linear.predictors = fit1$linear.predictors,
deviance = fit1$deviance,
aic = fit1$aic,
null.deviance = fit1$null.deviance,
iter = iterations,
weights = fit1$weights,
prior.weights = fit1$prior.weights,
df.residual = sum.weights - NCOL(x),
df.null = sum.weights - 1,
converged = conv,
boundary = fit1$boundary
)
return(icdglm.fit)
} |
dmi <- function(Data){
dimD <- dim(Data)
nmis <- sapply(Data,function(x) sum(is.na(x)))
obs_mono <- dimD[1] - nmis
stillNA <- integer(dimD[2])
for(i in 1:dimD[2]){
stillNA[i] <- sum(is.na(Data[1:obs_mono[i],i]))
}
return(1 - sum(stillNA)/sum(nmis))
} |
summary.gamlss <- function(object, n.sim = 100, prob.lev = 0.05, ...){
bs <- SE <- Vb <- epds <- sigma2.st <- sigma2 <- nu.st <- nu <- est.RHOb <- XX <- Xt <- V <- 1
cont1par <- c(object$VC$m1d, object$VC$bl)
cont2par <- c(object$VC$m2,object$VC$m2d)
cont3par <- c(object$VC$m3,object$VC$m3d)
n <- object$n
lf <- length(object$coefficients)
if(object$VC$surv.flex == FALSE) Vb <- object$Vb else Vb <- object$Vb.t
SE <- sqrt(diag(Vb))
bs <- rMVN(n.sim, mean = object$coefficients, sigma = Vb)
susutsnR <- susutsn(object, bs, lf, cont1par, cont2par, cont3par, prob.lev, type = "gamls")
CIsig2 <- susutsnR$CIsig21
CInu <- susutsnR$CInu1
CImu <- susutsnR$CImu
mu <- susutsnR$mu
if(object$VC$gc.l == TRUE) gc()
susuR <- susu(object, SE, Vb, informative = object$VC$informative)
tableN <- susuR$tableN
table <- susuR$table
rm(bs, SE, Vb, XX, Xt, V)
res <- list(tableP1=table[[1]], tableP2=table[[2]], tableP3=table[[3]],
tableP4=table[[4]], tableP5=table[[5]], tableP6=table[[6]], tableP7=table[[7]], tableP8=table[[8]],
tableNP1=tableN[[1]], tableNP2=tableN[[2]], tableNP3=tableN[[3]],
tableNP4=tableN[[4]], tableNP5=tableN[[5]], tableNP6=tableN[[6]], tableNP7=tableN[[7]], tableNP8=tableN[[8]],
n=n,
sigma2=object$sigma2, sigma=object$sigma2, Model = object$Model,
nu=object$nu,
sigma2.a=object$sigma2.a, sigma.a=object$sigma2.a,
nu.a=object$nu.a,
formula = object$formula,
formula1=object$gam1$formula, formula2=object$gam2$formula, formula3=object$gam3$formula,
formula4=object$gam4$formula, formula5=object$gam5$formula, formula6=object$gam6$formula,
formula7=object$gam7$formula, formula8=object$gam8$formula,
t.edf=object$t.edf, CImu = CImu, mu = mu,
CIsig=CIsig2, CInu=CInu,
margins = object$margins,
l.sp1 = object$l.sp1, l.sp2 = object$l.sp2, l.sp3 = object$l.sp3,
l.sp4 = object$l.sp4, l.sp5 = object$l.sp5, l.sp6 = object$l.sp6,
l.sp7 = object$l.sp7, l.sp8 = object$l.sp8,
X2.null = is.null(object$X2), univar.gamlss = TRUE, surv.flex = object$surv.flex, K1 = NULL,
robust = object$robust, indx = object$fit$indx)
class(res) <- "summary.gamlss"
res
} |
RsTest <- function(formula, data, alpha = 0.05, na.rm = TRUE, verbose = TRUE) {
dp=as.character(formula)
DNAME <- paste(dp[[2L]], "and", dp[[3L]])
METHOD <- "RS test"
TEST <- "RS"
if (na.rm){
completeObs <- complete.cases(data)
data <- data[completeObs,]
}
if (any(colnames(data)==dp[[3L]])==FALSE) stop("The name of group variable does not match the variable names in the data. The group variable must be one factor.")
if (any(colnames(data)==dp[[2L]])==FALSE) stop("The name of response variable does not match the variable names in the data.")
y = data[, dp[[2L]]]
group = data[, dp[[3L]]]
if (!is.factor(group)) stop("The group variable must be a factor.")
if (!is.numeric(y)) stop("The response must be a numeric variable.")
n <- length(y)
x.levels <- levels(factor(group))
k<-NROW(x.levels)
aRS=0;LRS=0;
Cvar=0;Cort=0
a=1
b<- y.n <- NULL
for (i in x.levels) {
y.n[i] <- length(y[group==i])
}
for (i in 1:k) {
b[i] = i-1
Cort=Cort+y.n[i]*(i-1)/n
}
for (i in 1:k) {
Cvar=Cvar+y.n[i]*(b[i]-Cort)^2
}
r <- rank(y)
' Calculating aRS '
for (i in 1:n){
if (r[i]>((n+1)/2))
aRS[i]=0
else
aRS[i]=r[i]-(n+1)/2
}
for (i in 1:k) {
for (j in 1:y.n[i]){
LRS=LRS+b[i]*aRS[a]
a=a+1
}}
ERS=n*Cort*mean(aRS)
VRS=Cvar*var(aRS)
Z=(LRS-ERS)/sqrt(VRS)
p.value=1-pnorm(Z, mean = 0, sd = 1, lower.tail = TRUE, log.p = FALSE)
if (verbose) {
cat("---------------------------------------------------------","\n", sep = " ")
cat(" Test :", METHOD, "\n", sep = " ")
cat(" data :", DNAME, "\n\n", sep = " ")
cat(" Statistic =", LRS, "\n", sep = " ")
cat(" Mean =", ERS, "\n", sep = " ")
cat(" Variance =", VRS, "\n", sep = " ")
cat(" Z =", Z, "\n", sep = " ")
cat(" Asymp. p-value =", p.value, "\n\n", sep = " ")
cat(if (p.value > alpha) {" Result : Null hypothesis is not rejected."}
else {" Result : Null hypothesis is rejected."}, "\n")
cat("---------------------------------------------------------","\n\n", sep = " ")
}
result <- list()
result$statistic <- LRS
result$mean <- ERS
result$variance <- VRS
result$Z <- Z
result$p.value <- p.value
result$alpha <- alpha
result$method <- METHOD
result$data <- data
result$formula <- formula
attr(result, "class") <- "owt"
invisible(result)
} |
tune.ltrcrrf <- function(formula, data, id,
mtryStart = NULL, stepFactor = 2,
time.eval = NULL, time.tau = NULL,
ntreeTry = 100L,
bootstrap = c("by.sub","by.root","by.node","by.user","none"),
samptype = c("swor","swr"),
sampfrac = 0.632,
samp = NULL,
na.action = "na.omit",
trace = TRUE,
doBest = FALSE,
plot = FALSE,
ntime,
nsplit = 10L,
nodesizeTry = max(ceiling(sqrt(nrow(data))), 15),
nodedepth = NULL) {
Call <- match.call()
indx <- match(c('formula', 'id'), names(Call), nomatch = 0)
if (indx[1] == 0) stop("a formula argument is required")
yvar.names <- all.vars(formula(paste(as.character(formula)[2], "~ .")), max.names = 1e7)
yvar.names <- yvar.names[-length(yvar.names)]
if (length(yvar.names) == 4){
yvar.names = yvar.names[2:4]
}
n <- nrow(data)
bootstrap <- match.arg(bootstrap)
samptype <- match.arg(samptype)
Rtimes <- data[, yvar.names[2]]
xvar.names <- attr(terms(formula), 'term.labels')
nvar <- length(xvar.names)
if (is.null(mtryStart)){
mtryStart <- ceiling(sqrt(nvar))
}
if (missing(ntime)){
ntime = sort(unique(Rtimes[data[, yvar.names[3]] == 1]))
}
if (indx[2] == 0){
data$id <- 1:n
} else {
names(data)[names(data) == deparse(substitute(id))] <- "id"
}
data <- data[, c("id", yvar.names, xvar.names)]
if (na.action == "na.omit") {
takeid = which(complete.cases(data) == 1)
} else if (na.action == "na.impute") {
takeid = 1:n
} else {
stop("na.action can only be either 'na.omit' or 'na.pass'.")
}
id.sub <- unique(data$id[takeid])
n.seu <- length(takeid)
n.sub <- length(id.sub)
Rtimes <- Rtimes[takeid]
if (n.seu == n.sub){
if (is.null(time.eval)){
time.eval <- c(0, sort(unique(Rtimes)))
}
if (bootstrap == "by.sub") bootstrap = "by.root"
} else {
if (is.null(time.eval)){
time.eval <- c(0, sort(unique(Rtimes)), seq(max(Rtimes), 1.5 * max(Rtimes), length.out = 50)[-1])
}
if (is.null(time.tau)){
time.tau <- sapply(1:n.sub, function(ii){
1.5 * max(Rtimes[data$id[takeid] == id.sub[ii]])
})
}
}
errorOOB_mtry <- function(eformula, edata, id, emtryTest,
etpnt, etau,
entreeTry, enodesizeTry, enodedepth,
ensplit,
ebootstrap,
esamptype,
esampfrac,
esamp,
ena.action,
entime){
rrfOOB <- ltrcrrf(formula = eformula, data = edata, id = id,
mtry = emtryTest,
ntree = entreeTry,
nodesize = enodesizeTry,
nodedepth = enodedepth,
nsplit = ensplit,
bootstrap = ebootstrap,
samptype = esamptype,
sampfrac = esampfrac,
samp = esamp,
na.action = ena.action,
ntime = entime)
predOOB <- predictProb(object = rrfOOB, time.eval = etpnt, time.tau = etau, OOB = TRUE)
errorOOB <- sbrier_ltrc(obj = predOOB$survival.obj, id = predOOB$survival.id,
pred = predOOB, type = "IBS")
rm(rrfOOB)
rm(predOOB)
return(errorOOB)
}
errorOld <- errorOOB_mtry(eformula = formula, edata = data, id = id,
emtryTest = mtryStart,
etpnt = time.eval, etau = time.tau,
entreeTry = ntreeTry,
enodesizeTry = nodesizeTry,
enodedepth = nodedepth,
ensplit = nsplit,
ebootstrap = bootstrap,
esamptype = samptype,
esampfrac = sampfrac,
esamp = samp,
ena.action = na.action,
entime = ntime)
if (errorOld < 0) stop("Initial setting gave 0 error and no room for improvement.")
if (trace) {
cat("mtry = ", mtryStart, " OOB Brier score = ",
errorOld, "\n")
}
oobError <- list()
oobError[[1]] <- errorOld
names(oobError)[1] <- mtryStart
for (direction in c("left", "right")) {
if (trace) cat("Searching", direction, "...\n")
mtryCur <- mtryStart
while (mtryCur != nvar) {
mtryOld <- mtryCur
mtryCur <- if (direction == "left") {
max(1, ceiling(mtryCur / stepFactor))
} else {
min(nvar, floor(mtryCur * stepFactor))
}
if (mtryCur == mtryOld) break
errorCur <- errorOOB_mtry(eformula = formula, edata = data, id = id,
emtryTest = mtryCur,
etpnt = time.eval, etau = time.tau,
entreeTry = ntreeTry,
enodesizeTry = nodesizeTry,
enodedepth = nodedepth,
ensplit = nsplit,
ebootstrap = bootstrap,
esamptype = samptype,
esampfrac = sampfrac,
esamp = samp,
ena.action = na.action,
entime = ntime)
if (trace) {
cat("mtry = ", mtryCur, "\tOOB error = ", errorCur, "\n")
}
oobError[[as.character(mtryCur)]] <- errorCur
errorOld <- errorCur
}
}
mtry <- sort(as.numeric(names(oobError)))
res_all <- unlist(oobError[as.character(mtry)])
res_all <- cbind(mtry = mtry, OOBError = res_all)
res <- res_all[which.min(res_all[, 2]), 1]
if (plot) {
res = res_all
plot(res_all, xlab = expression(m[try]), ylab = "OOB Error", type = "o", log = "x", xaxt = "n")
axis(1, at = res_all[, "mtry"])
}
if (doBest) {
res <- ltrcrrf(formula = formula, data = data, id = id,
mtry = res,
ntree = ntreeTry,
nodesize = nodesizeTry,
nodedepth = nodedepth,
nsplit = nsplit,
ntime = ntime,
bootstrap = bootstrap,
samptype = samptype,
sampfrac = sampfrac,
samp = samp,
na.action = na.action)
}
return(res)
} |
coxvar <-
function(x, y, ic, offset = rep(0., length(y)), coxstuff.obj = NULL) {
nx <- nrow(x)
n <- length(y)
yy <- y + (ic == 0.) * (1e-06)
otag <- order(yy)
y <- y[otag]
ic <- ic[otag]
x <- x[, otag, drop = F]
offset <- offset[otag]
if(is.null(coxstuff.obj)) {
coxstuff.obj <- coxstuff(x, y, ic, offset = offset)
}
nf <- coxstuff.obj$nf
fail.times <- coxstuff.obj$fail.times
s <- coxstuff.obj$s
d <- coxstuff.obj$d
dd <- coxstuff.obj$dd
nn <- coxstuff.obj$nn
nno <- coxstuff.obj$nno
x2<- x^2
oo <- (1.:n)[y >= fail.times[1] ]
sx<-(1/nno[1])*rowSums(x[, oo] * exp(offset[oo]))
s<-(1/nno[1])*rowSums(x2[, oo] * exp(offset[oo]))
w <- d[1] * (s - sx * sx)
for(i in 2.:nf) {
oo <- (1.:n)[y >= fail.times[i-1] & y < fail.times[i] ]
sx<-(1/nno[i])*(nno[i-1]*sx-rowSums(x[, oo,drop=F] * exp(offset[oo])))
s<-(1/nno[i])*(nno[i-1]*s-rowSums(x2[, oo,drop=F] * exp(offset[oo])))
w <- w + d[i] * (s - sx * sx)
}
return(w)
} |
r_obj = function() {
system.file("extdata", "r_obj.txt", package="rayvertex")
} |
get_complete_authors = function(id, pubid, delay = .4, initials = TRUE)
{
get_author = function(id, pubid) {
auths = ""
site <- getOption("scholar_site")
url_template = paste0(site, "/citations?view_op=view_citation&citation_for_view=%s:%s")
url = sprintf(url_template, id, pubid)
url1 <- get_scholar_resp(url[1]) %>%
read_html()
auths = as.character(rvest::html_node(url1, ".gsc_oci_value") %>% rvest::html_text())
return(auths)
}
if (length(pubid) == 1) {
auths <- get_author(id, pubid)
} else{
if(length(pubid) > 50){
stop("Requesting author lists for more than 50 publications risks google identifying you as a bot and blocking your ip range (429 errors).")
}
min_delay = delay - .5
max_delay = delay + .5
if(min_delay < 0) min_delay <- 0
if(delay == 0) max_delay <- 0
pb = utils::txtProgressBar(min = 1, max = length(pubid), style = 3)
i = 1
auths <- sapply(pubid, function(x) {
delay <- sample(seq(min_delay, max_delay, by = .001), 1)
Sys.sleep(delay)
auth <- get_author(id, x)
i <<- i + 1
utils::setTxtProgressBar(pb, i)
return(auth)
})
close(pb)
}
if (initials) {
auths = sapply(auths, format_authors)
}
auths
}
format_authors = function(string)
{
authors = trimws(unlist(strsplit(string, ",")))
format_author = function(author){
words = trimws(unlist(strsplit(author, " ")))
lastname = words[length(words)]
first = words[!words %in% lastname]
first = gsub("\\B[a-z]","",first, perl = TRUE)
first = paste(first, collapse = "")
trimws(paste(first, lastname))
}
authors = sapply(authors, format_author)
paste(authors, collapse = ", ")
} |
blavTech <- function(blavobject, what, ...) {
blavInspect(blavobject, what, ...)
}
blavInspect <- function(blavobject, what, ...) {
stopifnot(inherits(blavobject, "blavaan"))
what <- tolower(what)
dotdotdot <- list(...)
dotNames <- names(dotdotdot)
add.labels <- TRUE
if(any(dotNames == "add.labels")) add.labels <- dotdotdot$add.labels
jagtarget <- lavInspect(blavobject, "options")$target == "jags"
blavwhats <- c("start", "starting.values", "inits", "psrf",
"ac.10", "neff", "mcmc", "draws", "samples",
"n.chains", "cp", "dp", "postmode", "postmean",
"postmedian", "hpd", "jagnames", "stannames",
"fscores", "lvs", "fsmeans", "lvmeans", "mcobj",
"rhat", "n_eff", "nchain", "nchains")
blavnofit <- c("start", "starting.values", "inits", "n.chains", "cp", "dp",
"jagnames", "stannames", "nchain", "nchains")
nowhats <- c("mi", "modindices", "modification.indices",
"wls.est", "wls.obs", "wls.v")
if(what %in% blavwhats){
if(!(what %in% blavnofit) & !blavobject@Options$do.fit){
stop(paste0("blavaan ERROR: ", what, " does not exist when do.fit = FALSE"))
}
if(jagtarget){
idx <- blavobject@ParTable$jagpnum
idx <- idx[!is.na(idx)]
} else {
idx <- blavobject@ParTable$stansumnum
if("pxnames" %in% names(blavobject@ParTable)){
drows <- grepl("^def", blavobject@ParTable$pxnames)
} else {
drows <- grepl("def", blavobject@ParTable$mat)
}
idx <- idx[blavobject@ParTable$free > 0 | drows]
}
labs <- lav_partable_labels(blavobject@ParTable, type = "free")
if(what %in% c("start", "starting.values", "inits")){
blavobject@external$inits
} else if(what %in% c("psrf", "ac.10", "neff", "rhat", "n_eff")){
if(jagtarget){
mcmcsumm <- blavobject@external$mcmcout$summaries
} else {
mcmcsumm <- rstan::summary(blavobject@external$mcmcout)$summary
}
if(what %in% c("psrf", "rhat")){
if(jagtarget){
OUT <- mcmcsumm[idx,'psrf']
} else {
OUT <- mcmcsumm[idx,'Rhat']
}
}else if(what == "ac.10"){
if(jagtarget){
OUT <- mcmcsumm[idx,'AC.10']
} else {
stop("blavaan ERROR: autocorrelation stat currently unavailable for Stan.")
}
} else {
if(jagtarget){
OUT <- mcmcsumm[idx,'SSeff']
} else {
OUT <- mcmcsumm[idx,'n_eff']
}
}
if(add.labels) names(OUT) <- labs
OUT
} else if(what %in% c("mcmc", "draws", "samples", "hpd")){
pt <- blavobject@ParTable
pt$free[pt$op == ":="] <- max(pt$free, na.rm = TRUE) + 1:sum(pt$op == ":=")
labs <- lav_partable_labels(pt, type = "free")
draws <- make_mcmc(blavobject@external$mcmcout)
draws <- lapply(draws, function(x) mcmc(x[,idx]))
draws <- mcmc.list(draws)
if(what == "hpd"){
pct <- .95
if("level" %in% dotNames) pct <- dotdotdot$level
draws <- mcmc(do.call("rbind", draws))
draws <- HPDinterval(draws, pct)
if(add.labels) rownames(draws) <- labs
}
draws
} else if(what == "mcobj"){
blavobject@external$mcmcout
} else if(what %in% c("fscores","lvs","fsmeans","lvmeans")){
if(jagtarget){
etas <- any(blavobject@external$mcmcout$monitor == "eta")
} else {
etas <- any(grepl("^eta", rownames(blavobject@external$stansumm)))
}
lvmn <- lavInspect(blavobject, "mean.lv")
if(inherits(lvmn, "list")){
lvmn <- lvmn[[1]]
}
nlv <- length(lvmn)
if(nlv == 0) stop("blavaan ERROR: no latent variables are in the model")
if(!etas) stop("blavaan ERROR: factor scores not saved; set save.lvs=TRUE")
nsamp <- sum(lavInspect(blavobject, "nobs"))
draws <- make_mcmc(blavobject@external$mcmcout, blavobject@external$stanlvs)
drawcols <- grep("^eta", colnames(draws[[1]]))
if(jagtarget){
drawcols <- drawcols[1:(nlv * nsamp)]
} else {
nfound <- length(drawcols)/nsamp
drawcols <- drawcols[as.numeric(matrix(1:length(drawcols),
nsamp, nfound,
byrow=TRUE)[,1:nlv])]
}
draws <- lapply(draws, function(x) mcmc(x[,drawcols]))
mis <- any(is.na(unlist(blavobject@Data@X)))
if(blavobject@Options$target == "stan" & mis){
rorig <- sapply(blavobject@Data@Mp, function(x) unlist(x$case.idx))
cids <- sapply(blavobject@Data@Mp, function(x) x$case.idx)
if(nlv > 1){
norig <- length(rorig)
rord <- rep(NA, nlv*norig)
for(i in 1:nlv){
rord[((i-1)*norig + 1):(i*norig)] <- i*rorig
}
} else {
rord <- rorig
}
rsamps <- rep(NA, nlv*norig)
for(j in 1:nlv){
tmpsamp <- rep(NA, norig)
cumn <- 0
for(i in 1:length(cids)){
tmpids <- cids[[i]]
ncase <- length(tmpids)
tmpsamp[(cumn + 1):(cumn + ncase)] <- (j-1)*norig + tmpids
cumn <- cumn + ncase
}
rsamps[((j-1)*norig + 1):(j*norig)] <- tmpsamp
}
for(j in 1:length(draws)){
draws[[j]][,rsamps] <- draws[[j]]
}
}
draws <- mcmc.list(draws)
if((what %in% c("lvmeans", "fsmeans")) | ("means" %in% dotdotdot)){
br <- TRUE
if(jagtarget){
summ <- blavobject@external$mcmcout$summaries
summname <- "Mean"
br <- FALSE
} else {
summ <- blavobject@external$stansumm
summname <- "mean"
}
mnrows <- grep("^eta", rownames(summ))
draws <- matrix(summ[mnrows,summname], nsamp,
length(mnrows)/nsamp, byrow=br)[,1:nlv,drop=FALSE]
colnames(draws) <- names(lvmn)
if(blavobject@Options$target == "stan" & mis){
draws[rorig,] <- draws
}
}
draws
} else if(what %in% c("n.chains", "nchain", "nchains")){
draws <- make_mcmc(blavobject@external$mcmcout)
length(draws)
} else if(what == "cp"){
blavobject@Options$cp
} else if(what == "dp"){
blavobject@Options$dp
} else if(what %in% c("postmode", "postmean", "postmedian")){
if(jagtarget){
mcmcsumm <- blavobject@external$mcmcout$summaries
} else {
mcmcsumm <- rstan::summary(blavobject@external$mcmcout)$summary
}
if(what == "postmean"){
if(jagtarget){
OUT <- mcmcsumm[idx,'Mean']
} else {
OUT <- mcmcsumm[idx,'mean']
}
}else if(what == "postmedian"){
if(jagtarget){
OUT <- mcmcsumm[idx,'Median']
} else {
OUT <- mcmcsumm[idx,'50%']
}
} else {
if(jagtarget){
OUT <- mcmcsumm[idx,'Mode']
} else {
stop("blavaan ERROR: Modes unavailable for Stan.")
}
}
if(add.labels) names(OUT) <- labs
OUT
} else if(what == "jagnames"){
if(!jagtarget) stop("blavaan ERROR: JAGS was not used for model estimation.")
OUT <- blavobject@ParTable$pxnames[blavobject@ParTable$free > 0]
OUT <- OUT[order(blavobject@ParTable$free[blavobject@ParTable$free > 0])]
if(add.labels) names(OUT) <- labs
OUT
} else if(what == "stannames"){
if(jagtarget) stop("blavaan ERROR: Stan was not used for model estimation.")
mcmcsumm <- rstan::summary(blavobject@external$mcmcout)$summary
OUT <- rownames(mcmcsumm)[idx]
if(add.labels) names(OUT) <- labs
OUT
}
} else if(what %in% nowhats){
stop(paste("blavaan ERROR: argument", what,
"not available for Bayesian models."))
} else {
lavargs <- c(dotdotdot, list(object = blavobject, what = what))
do.call("lavInspect", lavargs)
}
} |
context("match.closest")
test_that("match.closest", {
expect_error(match.closest(1, c(0, -1, 3)), "sorted non-decreasingly")
expect_equal(match.closest(1.001, 1:10), 1)
expect_equal(match.closest(1.4, 1:10), 1)
expect_equal(match.closest(9.8, 1:10), 10)
expect_equal(match.closest(11.1, 1:10), 10)
expect_equal(match.closest(4:5, 4.8, tolerance=1), c(1, 1))
expect_equal(match.closest(c(0.5, 1.5, exp(1), pi), 1:10),
c(1, 2, 3, 3))
})
test_that("match.closest, length(table) == 1", {
expect_equal(match.closest(1:3, 0, nomatch=0, tolerance=0), c(0, 0, 0))
expect_equal(match.closest(1:3, 1, nomatch=0, tolerance=0), c(1, 0, 0))
expect_equal(match.closest(1:3, 2, nomatch=0, tolerance=0), c(0, 1, 0))
expect_equal(match.closest(1:3, 3, nomatch=0, tolerance=0), c(0, 0, 1))
expect_equal(match.closest(1:3, 4, nomatch=0, tolerance=0), c(0, 0, 0))
})
test_that("match.closest, tolerance", {
expect_error(match.closest(1, 1, tolerance=1, nomatch=1:2), "Length of .*nomatch.* has to be one")
expect_warning(match.closest(1, 1, tolerance=-1), ".*tolerance.* < 0 is meaningless")
expect_equal(match.closest(1.001, 1:10, tolerance=0), NA_integer_)
expect_equal(suppressWarnings(match.closest(c(1,2,3.1), 1:3, tolerance=-1)), c(1, 2, NA_integer_))
expect_equal(match.closest(1.001, 1:10, tolerance=0, nomatch=-1), -1)
expect_equal(match.closest(1.4, 1:10, tolerance=0.4), 1)
}) |
epval_Chen2010_samecov <- function(sam1, sam2, perm.iter = 1000, seeds){
n1 <- dim(sam1)[1]
n2 <- dim(sam2)[1]
tau <- (n1 + n2)/(n1*n2)
n <- n1 + n2 - 2
p <- dim(sam1)[2]
sam <- rbind(sam1, sam2)
diff <- colMeans(sam1) - colMeans(sam2)
col.sum1 <- colSums(sam1)
col.sum2 <- colSums(sam2)
rm1 <- sum(col.sum1^2) - sum(diag(sam1 %*% t(sam1)))
rm2 <- sum(col.sum2^2) - sum(diag(sam2 %*% t(sam2)))
chen2010.stat <- rm1/(n1*(n1 - 1)) + rm2/(n2*(n2 - 1)) - 2*sum(col.sum1*col.sum2)/(n1*n2)
chen2010.stat <- as.numeric(chen2010.stat)
chen2010.stat.perm <- numeric(perm.iter)
for(i in 1:perm.iter){
if(!is.null(seeds)) set.seed(seeds[i])
perm <- sample(1:(n1 + n2))
sam.perm <- sam[perm,]
sam1.perm <- sam.perm[1:n1,]
sam2.perm <- sam.perm[(n1 + 1):(n1 + n2),]
diff.perm <- colMeans(sam1.perm) - colMeans(sam2.perm)
col.sum1.perm <- colSums(sam1.perm)
col.sum2.perm <- colSums(sam2.perm)
rm1.perm <- sum(col.sum1.perm^2) - sum(diag(sam1.perm%*%t(sam1.perm)))
rm2.perm <- sum(col.sum2.perm^2) - sum(diag(sam2.perm%*%t(sam2.perm)))
chen2010.stat.perm[i] <- rm1.perm/(n1*(n1 - 1)) + rm2.perm/(n2*(n2 - 1)) - 2*sum(col.sum1.perm*col.sum2.perm)/(n1*n2)
chen2010.stat.perm[i] <- as.numeric(chen2010.stat.perm[i])
}
chen2010.pval <- (sum(chen2010.stat.perm >= chen2010.stat) + 1)/(perm.iter + 1)
names(chen2010.pval) <- "Chen2010"
out <- NULL
out$sam.info <- c("n1" = n1, "n2" = n2, "p" = p)
out$cov.assumption <- "the two groups have same covariance"
out$method <- "permutation"
out$pval <- chen2010.pval
return(out)
} |
c(
Mod1Step4updateB <- function(input){
suppressWarnings(B <- sqrt(1-input$Mod1Step4_Vi-input$Mod1Step4_Ve))
return(ifelse(is.finite(B), B, 0))
},
output$Mod1Step4_hidden <- renderUI({
list(
numericInput("Mod1Step4_Tmax", "", Modules_VAR$Tmax$max),
shinyMatrix::matrixInput("Mod1Step4_Vind",
value = matrix(c(input$Mod1Step4_Vi,
rep(0,(nb.IS*nb.IS)-1)),
nb.IS),
class = "numeric"),
numericInput("Mod1Step4_Vbx","", 1-input$Mod1Step4_Vi-input$Mod1Step4_Ve),
shinyMatrix::matrixInput("Mod1Step4_B", value = matrix(c(0,Mod1Step4updateB(input),0,0),1), class = "numeric"),
checkboxInput("Mod1Step4_X1_state", "", value = TRUE),
checkboxInput("Mod1Step4_X1_sto_state", "", value = TRUE),
numericInput("Mod1Step4_X1_sto_V","", 1, min = 0, max = 1, step = 0.001)
)
}),
outputOptions(output, "Mod1Step4_hidden", suspendWhenHidden = FALSE),
output$Mod1Step4_Vbx_txt <- renderUI({
if(!testInput(input$Mod1Step4_Vbx, Modules_VAR$Vbx, FALSE, FALSE)){
output <- span(strong(round(input$Mod1Step4_Vbx,2),class="alert alert-danger"))
}else{
output <- span(round(input$Mod1Step4_Vbx,2))
}
p(HTML(paste(strong(Modules_VAR$Vbx$label),output,"")))
}),
Mod1Step4_output <- reactive({
if(input$Mod1Step4_Run == 0)
return(NULL)
isolate({
updateCheckboxInput(session, "isRunning", value = TRUE)
data <- squid::squidR(input, module="Mod1Step4")
LMR <- lme4::lmer(Phenotype ~ 1 + X1 + (1|Individual), data = data$sampled_data)
FIXEF <- lme4::fixef(LMR)
SE.FIXEF <- arm::se.fixef(LMR)
RANDEF <- as.data.frame(lme4::VarCorr(LMR))$vcov
data$Vp <- round(var(data$sampled_data$Phenotype),2)
data$Vi <- round(RANDEF[1],2)
data$Ve <- round(RANDEF[2],2)
data$B0 <- round(FIXEF["(Intercept)"],2)
data$se.B0 <- round(SE.FIXEF["(Intercept)"],2)
data$B1 <- round(FIXEF["X1"],2)
data$se.B1 <- round(SE.FIXEF["X1"],2)
data$phenotypeMean <- round(mean(data$sampled_data$Phenotype),2)
updateCheckboxInput(session, "isRunning", value = FALSE)
return(data)
})
}),
output$Mod1Step4_plot1 <- renderPlot({
data <- Mod1Step4_output()
if(!is.null(data)){
isolate({
ggplot2::ggplot(data$sampled_data, ggplot2::aes(x = X1,
y = Phenotype)) +
ggplot2::geom_point() +
ggplot2::geom_smooth(method = "lm", se = FALSE) +
ggplot2::xlab("Environment") +
ggplot2::ylab("Phenotype") +
ggplot2::ggtitle(bquote(italic(beta[(estimated)]) == .(data$B1) %+-% .(data$se.B1) ~~ (italic(beta[(true)]) == .(round(input$Mod1Step4_B[1,2],2)))))
})
}else{defaultPlot()}
}),
output$Mod1Step4_plot2 <- renderPlot({
data <- Mod1Step4_output()
if(!is.null(data)){
isolate({
ggplot2::ggplot(data$sampled_data, ggplot2::aes(x = X1,
y = Phenotype,
color = as.factor(Individual),
group = as.factor(Individual))) +
ggplot2::geom_point() +
ggplot2::geom_smooth(method = "lm", se = FALSE) +
ggplot2::xlab("Environment") +
ggplot2::ylab("Phenotype per individual")
})
}else{defaultPlot()}
}),
output$Mod1Step4_summary_table <- renderUI({
data <- Mod1Step4_output()
myTable <- data.frame("True" = c(paste("Population intercept ($",EQ3$mean0,"$) = 0"),
paste("Individual variance ($V_",NOT$devI,"$) =",input$Mod1Step4_Vi),
paste("Measurement variance ($V_",NOT$mError,"$) =",input$Mod1Step4_Ve),
"Mean of the trait ($\\mu$) = 0",
paste("Slope of environmental effect ($",NOT$mean,"$) =",round(input$Mod1Step4_B[1,2],2))),
"Estimated" = c(paste("Population estimated mean ($",NOT$mean,"'_0$) = ", ifelse(!is.null(data),paste(data$B0,"\U00b1", data$se.B0, sep=" "),"...")),
paste("Individual variance in sample ($V'_",NOT$devI,"$) = ", ifelse(!is.null(data),data$Vi,"...")),
paste("Residual variance of sample ($V'_",NOT$residualUpper,"$) = ", ifelse(!is.null(data),data$Ve,"...")),
paste("Sampled mean of the trait ($\\mu'$) = ", ifelse(!is.null(data),data$phenotypeMean,"...")),
paste("Estimated slope of environmental effect ($",NOT$mean,"'$) = ", ifelse(!is.null(data),paste(data$B1,"\U00b1", data$se.B1, sep=" "),"...")))
)
getTable(myTable)
}),
observe({
if(!testInput(input$Mod1Step4_Vbx, Modules_VAR$Vbx, FALSE, FALSE)){
disableActionButton("Mod1Step4_Run", session, "true")
}else{
disableActionButton("Mod1Step4_Run", session, "false")
}
}),
output$Mod1Step4_error_Vbx <- renderUI({testInput(input$Mod1Step4_Vbx, Modules_VAR$Vbx, FALSE, TRUE)})
) |
discrete_gamma <- function(using_terms, max_size=10, shape=10, rate=4) {
n_terms <- length(using_terms)
dist <- dgamma(seq(max_size), shape=shape, rate=rate)
dens <- log(dist/sum(dist))
function(phi) {
x <- length(phi)
if (x > max_size) -Inf
else dens[x] - lchoose(n_terms, x)
}
} |
require(optimx)
f1<-function(xx){
((3*xx+2)*xx-5)*xx+4
}
g1 <- function(xx){
gg <- 9*xx*xx+4*xx -5
}
x0 <- .1234
lb <- -1
ub <- 10
cat("R has optimize function for [1D] functions\n")
aoptimize <- optimize(f1, c(-1, 10))
print(aoptimize)
cat("or we can use optim() with method='Brent' \n")
abrent <- optim(x0, f1, lower=lb, upper=ub, method="Brent", control=list(trace=0))
print(abrent)
ansone<-opm(x0, f1, g1, method = c("Rvmmin", "Rcgmin"), control=list(trace=0))
ansone.sum<-summary(ansone, order=value)
print(ansone.sum)
x0 = 1
cat("Start with x0=1. Use optim() with method='Brent' \n")
abrent1 <- optim(x0, f1, lower=lb, upper=ub, method="Brent", control=list(trace=0))
print(abrent1)
ansone1<-opm(x0, f1, g1, lower=lb, upper=ub, method = c("Rvmmin", "Rcgmin"), control=list(trace=0))
ansone1.sum<-summary(ansone1, order=value)
print(ansone1.sum) |
add_busy_gif <- function(src, timeout = 100,
position = c("top-right", "top-left", "bottom-right", "bottom-left", "full-page", "free"),
margins = c(10, 10),
overlay_color = "rgba(0, 0, 0, 0.5)",
overlay_css = NULL,
height = "50px",
width = "50px") {
busy_gif(
src = src,
timeout = timeout,
position = position,
margins = margins,
overlay_color = overlay_color,
overlay_css = overlay_css,
height = height,
width = width,
type = "auto"
)
}
use_busy_gif <- function(src, timeout = 100,
position = c("top-right", "top-left", "bottom-right", "bottom-left", "full-page", "free"),
margins = c(10, 10),
overlay_color = "rgba(0, 0, 0, 0.5)",
overlay_css = NULL,
height = "50px",
width = "50px") {
busy_gif(
src = src,
timeout = timeout,
position = position,
margins = margins,
overlay_color = overlay_color,
overlay_css = overlay_css,
height = height,
width = width,
type = "manual"
)
}
play_gif <- function(session = shiny::getDefaultReactiveDomain()) {
session$sendCustomMessage(
type = "shinybusy-play-gif",
message = dropNulls(list())
)
}
stop_gif <- function(session = shiny::getDefaultReactiveDomain()) {
session$sendCustomMessage(
type = "shinybusy-stop-gif",
message = dropNulls(list())
)
}
busy_gif <- function(src,
timeout = 100,
position = c("top-right", "top-left", "bottom-right", "bottom-left", "full-page", "free"),
margins = c(10, 10),
overlay_color = "rgba(0, 0, 0, 0.5)",
overlay_css = NULL,
height = "50px",
width = "50px",
type = "auto") {
stopifnot(length(margins) == 2)
marg1 <- validateCssUnit(margins[1])
marg2 <- validateCssUnit(margins[2])
position <- match.arg(position)
style <- switch(
EXPR = position,
"top-right" = sprintf("top:%s; right:%s;", marg1, marg2),
"top-left" = sprintf("top:%s; left:%s;", marg1, marg2),
"bottom-right" = sprintf("bottom:%s; right:%s;", marg1, marg2),
"bottom-left" = sprintf("bottom:%s; left:%s;", marg1, marg2),
"full-page" = "top:0; bottom:0; right:0; left:0; margin:auto;",
"free" = ""
)
gif_tag <- tags$div(
class = "shinybusy",
style = style,
style = if (position != "full-page") paste0("height:", validateCssUnit(height), ";"),
style = if (position != "full-page") paste0("width:", validateCssUnit(width), ";"),
tags$img(
src = src, class = "freezeframe freezeframe-responsive shinybusy-freezeframe",
class = if (position == "full-page") "shinybusy-full-page"
)
)
if (position == "full-page") {
gif_tag <- tagList(
tags$div(
class = "shinybusy shinybusy-overlay",
style = sprintf("background-color: %s;", overlay_color),
style = if (!is.null(overlay_css)) overlay_css,
gif_tag
)
)
}
gif_tag <- tagList(
gif_tag,
tags$script(
type = "application/json",
`data-for` = "shinybusy",
toJSON(list(
timeout = timeout,
mode = "gif",
position = position,
type = type
), auto_unbox = TRUE, json_verbatim = TRUE)
)
)
attachDependencies(
x = gif_tag,
value = list(
html_dependency_freezeframe(),
html_dependency_shinybusy()
)
)
}
logo_silex <- function() {
"shinybusy/silex/logo_rouge.gif"
} |
library(sp)
data(meuse)
coordinates(meuse) = ~x+y
data(meuse.grid)
gridded(meuse.grid) = ~x+y
meuse.g <- gstat(id="zn", formula=log(zinc)~1, data=meuse, nmax = 10)
meuse.g <- gstat(meuse.g, "cu", log(copper)~1, meuse, nmax = 10)
meuse.g <- gstat(meuse.g, "cd", log(cadmium)~1, meuse, nmax = 10)
meuse.g <- gstat(meuse.g, "pb", log(lead)~1, meuse, nmax = 10)
meuse.g <- gstat(meuse.g, model=vgm(1, "Sph", 900, 1), fill.all=T)
x <- variogram(meuse.g, cutoff=1000)
meuse.fit = fit.lmc(x, meuse.g)
plot(x, model = meuse.fit)
z <- predict(meuse.fit, newdata = meuse.grid)
library(lattice)
pl1 <- spplot(z["zn.pred"], main="log-zinc predictions")
pl2 <- spplot(z["cu.pred"], main="log-copper predictions")
pl3 <- spplot(z["cd.pred"], main="log-cadmium predictions")
pl4 <- spplot(z["pb.pred"], main="log-lead predictions")
print(pl1, split = c(1,1,2,2), more=TRUE)
print(pl2, split = c(1,2,2,2), more=TRUE)
print(pl3, split = c(2,1,2,2), more=TRUE)
print(pl4, split = c(2,2,2,2))
z$zn.se = sqrt(z$zn.var)
z$cu.se = sqrt(z$cu.var)
z$pb.se = sqrt(z$pb.var)
z$cd.se = sqrt(z$cd.var)
pl1 <- spplot(z["zn.se"], main="log-zinc std.err.")
pl2 <- spplot(z["cu.se"], main="log-copper std.err.")
pl3 <- spplot(z["cd.se"], main="log-cadmium std.err.")
pl4 <- spplot(z["pb.se"], main="log-lead st.err.")
print(pl1, split = c(1,1,2,2), more=TRUE)
print(pl2, split = c(1,2,2,2), more=TRUE)
print(pl3, split = c(2,1,2,2), more=TRUE)
print(pl4, split = c(2,2,2,2))
rm(meuse.g, x, meuse.fit, z)
q <- quantile(meuse$zinc, seq(.1,.9,.1))
meuse.i <- gstat(id = "zn1", formula = I(zinc < q[1])~1,
data = meuse, nmax = 7, beta = .1, set = list(order = 4, zero = 1e-5))
meuse.i <- gstat(meuse.i, "zn2", I(zinc < q[2])~1, meuse, nmax = 7, beta=.2)
meuse.i <- gstat(meuse.i, "zn3", I(zinc < q[3])~1, meuse, nmax = 7, beta=.3)
meuse.i <- gstat(meuse.i, "zn4", I(zinc < q[4])~1, meuse, nmax = 7, beta=.4)
meuse.i <- gstat(meuse.i, "zn5", I(zinc < q[5])~1, meuse, nmax = 7, beta=.5)
meuse.i <- gstat(meuse.i, "zn6", I(zinc < q[6])~1, meuse, nmax = 7, beta=.6)
meuse.i <- gstat(meuse.i, "zn7", I(zinc < q[7])~1, meuse, nmax = 7, beta=.7)
meuse.i <- gstat(meuse.i, "zn8", I(zinc < q[8])~1, meuse, nmax = 7, beta=.8)
meuse.i <- gstat(meuse.i, "zn9", I(zinc < q[9])~1, meuse, nmax = 7, beta=.9)
meuse.i <- gstat(meuse.i, model=vgm(1, "Sph", 900, 1), fill.all=T)
x <- variogram(meuse.i, cutoff=1000)
meuse.fit = fit.lmc(x, meuse.i)
plot(x, model = meuse.fit)
z <- predict(meuse.fit, newdata = meuse.grid)
spplot(z, c(3,5,7,9,11,13,15,17,19),
names.attr = paste("est.Pr(Zn < ", q, ")", sep = "")) |
context("extract_lsm")
sample_points <- matrix(c(10, 5, 25, 15, 5, 25), ncol = 2, byrow = TRUE)
x1 <- c(1, 5, 15, 10)
y1 <- c(1, 5, 15, 25)
x2 <- c(10, 25)
y2 <- c(5, 5)
sample_lines <- sp::SpatialLines(list(sp::Lines(list(sp::Line(cbind(x1, y1)),
sp::Line(cbind(x2, y2))), ID = "a")))
test_that("extract_lsm returns correct metrics", {
patch_area <- extract_lsm(landscape,
y = sample_points,
what = "lsm_p_area",
type = "aggregation metric",
verbose = FALSE)
expect_true(all(patch_area$metric == "area"))
patch_core <- extract_lsm(landscape,
y = sample_points,
type = "core area metric",
full_name = TRUE,
verbose = FALSE)
expect_true(all(patch_core$type == "core area metric"))
patch_all <- extract_lsm(landscape,
y = sample_points,
verbose = FALSE)
expect_true(all(unique(patch_all$metric) == list_lsm(level = "patch")[,1]))
})
test_that("extract_lsm works for lines", {
result <- extract_lsm(landscape,
y = sample_lines,
what = "lsm_p_area",
verbose = FALSE)
expect_is(result, "tbl_df")
expect_true(all(result$metric %in% "area"))
})
test_that("extract_lsm forwards arguments to calculate_lsm", {
result <- extract_lsm(landscape,
y = sample_points,
what = "lsm_p_core",
edge_depth = 100,
verbose = FALSE)
expect_true(all(result$value == 0))
})
test_that("extract_lsm uses extract_ids", {
result <- extract_lsm(landscape,
y = sample_points,
extract_id = c(5, 25, 15),
what = "lsm_p_area",
verbose = FALSE)
expect_equal(result$extract_id, expected = c(5, 15, 25))
result_wrong_id <- extract_lsm(landscape,
y = sample_points,
extract_id = c(1, 5, 25, 15),
what = "lsm_p_area",
verbose = FALSE)
expect_equal(result_wrong_id$extract_id, expected = 1:3)
})
test_that("extract_lsm works for all data types", {
result_stack <- extract_lsm(landscape = landscape_stack,
y = sample_points,
what = "lsm_p_area",
verbose = FALSE)
result_brick <- extract_lsm(landscape = landscape_brick,
y = sample_points,
what = "lsm_p_area",
verbose = FALSE)
result_list <- extract_lsm(landscape = landscape_list,
y = sample_points,
what = "lsm_p_area",
verbose = FALSE)
expect_is(result_stack, "tbl_df")
expect_is(result_brick, "tbl_df")
expect_is(result_list, "tbl_df")
expect_equal(object = result_stack$layer,
expected = c(1, 1, 1, 2, 2, 2))
expect_equal(object = result_brick$layer,
expected = c(1, 1, 1, 2, 2, 2))
expect_equal(object = result_list$layer,
expected = c(1, 1, 1, 2, 2, 2))
expect_true("area" %in% result_stack$metric)
expect_true("area" %in% result_brick$metric)
expect_true("area" %in% result_list$metric)
})
test_that("extract_lsm returns warnings", {
expect_warning(extract_lsm(landscape,
y = sample_points,
extract_id = c(15, 25, 5, 1),
what = "lsm_p_area"),
regexp = "Length of extract_id is not identical to length of y. Using 1...n as extract_id.",
fixed = TRUE)
})
test_that("extract_lsm throws errors", {
expect_error(extract_lsm(landscape,
y = sample_points,
what = "lsm_l_ta",
verbose = FALSE),
regexp = "'extract_lsm()' only takes patch level metrics.",
fixed = TRUE)
expect_error(extract_lsm(landscape, y = 1:3),
regexp = "'y' must be a matrix, SpatialPoints, SpatialLines or sf point geometries.",
fixed = TRUE)
}) |
Counter <- function(data, num_sets, start_col, name_of_sets, nintersections, mbar_color, order_mat,
aggregate, cut, empty_intersects, decrease){
temp_data <- list()
Freqs <- data.frame()
end_col <- as.numeric(((start_col + num_sets) -1))
for( i in 1:num_sets){
temp_data[i] <- match(name_of_sets[i], colnames(data))
}
Freqs <- data.frame(count(data[ ,as.integer(temp_data)]))
colnames(Freqs)[1:num_sets] <- name_of_sets
if(is.null(empty_intersects) == F){
empty <- rep(list(c(0,1)), times = num_sets)
empty <- data.frame(expand.grid(empty))
colnames(empty) <- name_of_sets
empty$freq <- 0
all <- rbind(Freqs, empty)
Freqs <- data.frame(all[!duplicated(all[1:num_sets]), ], check.names = F)
}
Freqs <- Freqs[!(rowSums(Freqs[ ,1:num_sets]) == 0), ]
if(tolower(aggregate) == "degree"){
for(i in 1:nrow(Freqs)){
Freqs$degree[i] <- rowSums(Freqs[ i ,1:num_sets])
}
order_cols <- c()
for(i in 1:length(order_mat)){
order_cols[i] <- match(order_mat[i], colnames(Freqs))
}
for(i in 1:length(order_cols)){
logic <- decrease[i]
Freqs <- Freqs[order(Freqs[ , order_cols[i]], decreasing = logic), ]
}
}
else if(tolower(aggregate) == "sets")
{
Freqs <- Get_aggregates(Freqs, num_sets, order_mat, cut)
}
delete_row <- (num_sets + 2)
Freqs <- Freqs[ , -delete_row]
for( i in 1:nrow(Freqs)){
Freqs$x[i] <- i
Freqs$color <- mbar_color
}
if(is.na(nintersections)){
nintersections = nrow(Freqs)
}
Freqs <- Freqs[1:nintersections, ]
Freqs <- na.omit(Freqs)
return(Freqs)
}
Make_main_bar <- function(Main_bar_data, Q, show_num, ratios, customQ, number_angles, number.colors,
ebar, ylabel, ymax, scale_intersections, text_scale, attribute_plots, plot.title){
bottom_margin <- (-1)*0.65
if(is.null(attribute_plots) == FALSE){
bottom_margin <- (-1)*0.45
}
if(length(text_scale) > 1 && length(text_scale) <= 6){
y_axis_title_scale <- text_scale[1]
y_axis_tick_label_scale <- text_scale[2]
intersection_size_number_scale <- text_scale[6]
}
else{
y_axis_title_scale <- text_scale
y_axis_tick_label_scale <- text_scale
intersection_size_number_scale <- text_scale
}
if(is.null(Q) == F){
inter_data <- Q
if(nrow(inter_data) != 0){
inter_data <- inter_data[order(inter_data$x), ]
}
else{inter_data <- NULL}
}
else{inter_data <- NULL}
if(is.null(ebar) == F){
elem_data <- ebar
if(nrow(elem_data) != 0){
elem_data <- elem_data[order(elem_data$x), ]
}
else{elem_data <- NULL}
}
else{elem_data <- NULL}
if(is.null(ymax) == T){
ten_perc <- ((max(Main_bar_data$freq)) * 0.1)
ymax <- max(Main_bar_data$freq) + ten_perc
}
if(ylabel == "Intersection Size" && scale_intersections != "identity"){
ylabel <- paste("Intersection Size", paste0("( ", scale_intersections, " )"))
}
if(scale_intersections == "log2"){
Main_bar_data$freq <- round(log2(Main_bar_data$freq), 2)
ymax <- log2(ymax)
}
if(scale_intersections == "log10"){
Main_bar_data$freq <- round(log10(Main_bar_data$freq), 2)
ymax <- log10(ymax)
}
Main_bar_plot <- (ggplot(data = Main_bar_data, aes_string(x = "x", y = "freq"))
+ scale_y_continuous(trans = scale_intersections)
+ ylim(0, ymax)
+ geom_bar(stat = "identity", width = 0.6,
fill = Main_bar_data$color)
+ scale_x_continuous(limits = c(0,(nrow(Main_bar_data)+1 )), expand = c(0,0),
breaks = NULL)
+ xlab(NULL) + ylab(ylabel) +labs(title = NULL)
+ theme(panel.background = element_rect(fill = "white"),
plot.margin = unit(c(0.5,0.5,bottom_margin,0.5), "lines"), panel.border = element_blank(),
axis.title.y = element_text(vjust = -0.8, size = 8.3*y_axis_title_scale), axis.text.y = element_text(vjust=0.3,
size=7*y_axis_tick_label_scale)))
if((show_num == "yes") || (show_num == "Yes")){
if(is.null(number.colors)) {
Main_bar_plot <- (Main_bar_plot + geom_text(aes_string(label = "freq"), size = 2.2*intersection_size_number_scale, vjust = -1,
angle = number_angles, colour = Main_bar_data$color))
} else {
Main_bar_plot <- (Main_bar_plot + geom_text(aes_string(label = "freq"), size = 2.2*intersection_size_number_scale, vjust = -1,
angle = number_angles, colour = number.colors))
}
}
bInterDat <- NULL
pInterDat <- NULL
bCustomDat <- NULL
pCustomDat <- NULL
bElemDat <- NULL
pElemDat <- NULL
if(is.null(elem_data) == F){
bElemDat <- elem_data[which(elem_data$act == T), ]
bElemDat <- bElemDat[order(bElemDat$x), ]
pElemDat <- elem_data[which(elem_data$act == F), ]
}
if(is.null(inter_data) == F){
bInterDat <- inter_data[which(inter_data$act == T), ]
bInterDat <- bInterDat[order(bInterDat$x), ]
pInterDat <- inter_data[which(inter_data$act == F), ]
}
if(length(customQ) != 0){
pCustomDat <- customQ[which(customQ$act == F), ]
bCustomDat <- customQ[which(customQ$act == T), ]
bCustomDat <- bCustomDat[order(bCustomDat$x), ]
}
if(length(bInterDat) != 0){
Main_bar_plot <- Main_bar_plot + geom_bar(data = bInterDat,
aes_string(x="x", y = "freq"),
fill = bInterDat$color,
stat = "identity", position = "identity", width = 0.6)
}
if(length(bElemDat) != 0){
Main_bar_plot <- Main_bar_plot + geom_bar(data = bElemDat,
aes_string(x="x", y = "freq"),
fill = bElemDat$color,
stat = "identity", position = "identity", width = 0.6)
}
if(length(bCustomDat) != 0){
Main_bar_plot <- (Main_bar_plot + geom_bar(data = bCustomDat, aes_string(x="x", y = "freq2"),
fill = bCustomDat$color2,
stat = "identity", position ="identity", width = 0.6))
}
if(length(pCustomDat) != 0){
Main_bar_plot <- (Main_bar_plot + geom_point(data = pCustomDat, aes_string(x="x", y = "freq2"), colour = pCustomDat$color2,
size = 2, shape = 17, position = position_jitter(width = 0.2, height = 0.2)))
}
if(length(pInterDat) != 0){
Main_bar_plot <- (Main_bar_plot + geom_point(data = pInterDat, aes_string(x="x", y = "freq"),
position = position_jitter(width = 0.2, height = 0.2),
colour = pInterDat$color, size = 2, shape = 17))
}
if(length(pElemDat) != 0){
Main_bar_plot <- (Main_bar_plot + geom_point(data = pElemDat, aes_string(x="x", y = "freq"),
position = position_jitter(width = 0.2, height = 0.2),
colour = pElemDat$color, size = 2, shape = 17))
}
Main_bar_plot <- (Main_bar_plot
+ geom_vline(xintercept = 0, color = "gray0")
+ geom_hline(yintercept = 0, color = "gray0"))
if(!is.na(plot.title)) {
Main_bar_plot <- c(Main_bar_plot + ggtitle(plot.title))
}
Main_bar_plot <- ggplotGrob(Main_bar_plot)
return(Main_bar_plot)
} |
acceptance.rate<-function(mcmc.chain) sum(mcmc.chain[2:length(mcmc.chain)]!=mcmc.chain[1:(length(mcmc.chain)-1)])/length(mcmc.chain) |
read_ext0 <- function(ext.file) {
if (!file.exists(ext.file)) {
return(data.frame())
}
s <- scan(ext.file, what = "character", sep = "\n", quiet = TRUE)
tab.rows <- grep("TABLE", s)
if (length(tab.rows) == 0) {
return(data.frame())
}
cut.points <- c(tab.rows, length(s) + 1)
headings <- s[tab.rows]
headings <- gsub("^TABLE NO.\\s+[0-9]+:\\s", "", headings)
headings <- gsub(": Goal.*", "", headings)
dlist <- lapply(seq_along(tab.rows), function(i) {
if ((cut.points[i] + 1) > (cut.points[i + 1] - 1)) {
return(data.frame())
}
d <- s[(cut.points[i] + 1):(cut.points[i + 1] - 1)]
tmp <- file()
writeLines(d, tmp)
d <- utils::read.table(tmp, header = TRUE)
d$EST.NO <- i
d$EST.NAME <- headings[i]
match_obj <- grepl("OBJ$", names(d))
if (length(which(match_obj)) > 1) stop("more than one OBJ column. debug")
names(d)[match_obj] <- "OBJ"
d$OBJ <- as.numeric(as.character(d$OBJ))
d$TYPE <- NA
d$TYPE[d$ITERATION >= 0] <- "ITER"
d$TYPE[d$ITERATION > -1000000000 & d$ITERATION < 0] <- "BURN"
d$TYPE[d$ITERATION == -1000000000] <- "FINAL"
d$TYPE[d$ITERATION == -1000000001] <- "SE"
d$TYPE[d$ITERATION == -1000000002] <- "EIGEN"
d$TYPE[d$ITERATION == -1000000003] <- "CONDNUM"
d$EVALUATION <- grepl("Evaluation", d$EST.NAME)
close(tmp)
d
})
do.call(rbind, dlist)
}
read_ext <- function(r, trans = FALSE) {
UseMethod("read_ext")
}
read_ext.default <- function(r, trans = FALSE) {
base_nm_run_path <- file.path(run_dir_path(r), "NM_run1")
d <- read_ext0(file.path(base_nm_run_path, "psn.ext"))
if (!trans) {
return(d)
}
p_info <- param_info(file.path(base_nm_run_path, "psn.mod"))
for (i in seq_len(nrow(p_info))) {
pi <- p_info[i, ]
names(d)[names(d) %in% pi$parameter & !is.na(pi$name)] <- pi$name
if (pi$trans %in% "LOG") {
d[, pi$name][d$ITERATION > -1000000000] <- exp(d[, pi$name][d$ITERATION > -1000000000])
} else if (pi$trans %in% "LOGIT") {
d[, pi$name][d$ITERATION > -1000000000] <- stats::plogis(d[, pi$name][d$ITERATION > -1000000000])
}
}
d
}
read_ext.nm_list <- function(r, trans = FALSE) {
exts <- lapply(r, read_ext)
names(exts) <- NULL
exts
} |
context("test biotech cett poly others parsers")
library(dbparser)
library(testthat)
library(XML)
library(tibble)
library(purrr)
biotech <- "drugbank_record_biotech.xml"
database_connection <- dbConnect(RSQLite::SQLite(), ":memory:")
test_that(
desc = "Read database",
code = {
expect_true(read_drugbank_xml_db(
system.file("extdata", biotech, package = "dbparser")
))
}
)
test_that(
desc = "Read drug carriers polypeptides external identifiers that",
code = {
expect_equal(
nrow(
carriers_polypep_ex_ident()
),
0
)
expect_true(is_tibble(carriers_polypep_ex_ident()))
expect_error(
carriers_polypep_ex_ident(TRUE)
)
}
)
test_that(
desc = "Read drug carriers polypeptides syn that",
code = {
expect_equal(
nrow(carriers_polypeptides_syn()),
0
)
expect_true(is_tibble(carriers_polypeptides_syn()))
expect_error(carriers_polypeptides_syn(TRUE))
}
)
test_that(
desc = "Read drug carriers polypeptides go classifiers that",
code = {
expect_equal(
nrow(carriers_polypeptides_go()),
0
)
expect_true(is_tibble(carriers_polypeptides_go()))
expect_error(carriers_polypeptides_go(TRUE))
}
)
test_that(
desc = "Read drug carriers polypeptides pfams that",
code = {
expect_equal(
nrow(carriers_polypeptides_pfams()),
0
)
expect_true(is_tibble(carriers_polypeptides_pfams()))
expect_error(carriers_polypeptides_pfams(TRUE))
}
)
test_that(
desc =
"Read drug enzymes polypeptides external identifiers attributes",
code = {
expect_equal(
nrow(enzymes_polypep_ex_ident()),
0
)
expect_true(is_tibble(enzymes_polypep_ex_ident()))
expect_error(
enzymes_polypep_ex_ident(TRUE)
)
}
)
test_that(
desc = "Read drug enzymes polypeptides syn attributes",
code = {
expect_equal(
nrow(enzymes_polypeptides_syn()),
0
)
expect_true(is_tibble(enzymes_polypeptides_syn()))
expect_error(enzymes_polypeptides_syn(TRUE))
}
)
test_that(
desc = "Read drug enzymes polypeptides pfams attributes",
code = {
expect_equal(
nrow(enzymes_polypeptides_pfams()),
0
)
expect_true(is_tibble(enzymes_polypeptides_pfams()))
expect_error(enzymes_polypeptides_pfams(TRUE))
}
)
test_that(
desc = "Read drug enzymes polypeptides go classifiers attributes",
code = {
expect_equal(
nrow(enzymes_polypeptides_go()),
0
)
expect_true(is_tibble(enzymes_polypeptides_go()))
expect_error(enzymes_polypeptides_go(TRUE))
}
)
test_that(
desc =
"Read drug targ polypeptides external identifiers attributes",
code = {
expect_match(
as.character(
targets_polypep_ex_ident()
[["identifier"]][1]
),
"HGNC:3535"
)
expect_true(is_tibble(targets_polypep_ex_ident()))
expect_error(
targets_polypep_ex_ident(TRUE)
)
}
)
test_that(
desc = "Read drug targ polypeptides syn attributes",
code = {
expect_match(
as.character(targets_polypeptides_syn()
[["synonym"]][1]),
"3.4.21.5"
)
expect_true(is_tibble(targets_polypeptides_syn()))
expect_error(targets_polypeptides_syn(TRUE))
}
)
test_that(
desc = "Read drug targ polypeptides pfams attributes",
code = {
expect_match(
as.character(targets_polypeptides_pfams()
[["name"]][1]),
"Gla"
)
expect_true(is_tibble(targets_polypeptides_pfams()))
expect_error(targets_polypeptides_pfams(TRUE))
}
)
test_that(
desc = "Read drug targ polypeptides go classifiers attributes",
code = {
expect_match(
as.character(targets_polypeptides_go()
[["description"]][1]),
"blood microparticle"
)
expect_true(is_tibble(targets_polypeptides_go()))
expect_error(targets_polypeptides_go(TRUE))
}
)
test_that(
desc = "Read drug transporters polypeptides external identifiers attributes",
code = {
expect_equal(
nrow(transporters_polypep_ex_ident()),
0
)
expect_true(is_tibble(transporters_polypep_ex_ident()))
expect_error(
transporters_polypep_ex_ident(TRUE)
)
}
)
test_that(
desc = "Read drug transporters polypeptides syn attributes",
code = {
expect_equal(
nrow(transporters_polypeptides_syn()),
0
)
expect_true(is_tibble(transporters_polypeptides_syn()))
expect_error(transporters_polypeptides_syn(TRUE))
}
)
test_that(
desc = "Read drug transporters polypeptides pfams attributes",
code = {
expect_equal(
nrow(transporters_polypeptides_pfams()),
0
)
expect_true(is_tibble(transporters_polypeptides_pfams()))
expect_error(transporters_polypeptides_pfams(TRUE))
}
)
test_that(
desc = "Read drug transporters polypeptides go classifiers attributes",
code = {
expect_equal(
nrow(transporters_polypeptides_go()),
0
)
expect_true(is_tibble(transporters_polypeptides_go()))
expect_error(transporters_polypeptides_go(TRUE))
}
)
dbDisconnect(database_connection) |
cquad_pseudo <-
function(id, yv, X=NULL, be=NULL,w = rep(1,n),Ttol=10){
input_data = cbind(id,yv,X)
sorted_data = input_data[order(input_data[,1],decreasing=FALSE),]
id = sorted_data[,1]
yv = sorted_data[,2]
X = sorted_data[,-(1:2)]
pid = id
r = length(pid)
label = unique(pid)
n = length(label)
if(is.null(X)) k=0 else{X = as.matrix(X); k = ncol(X)}
if(k>0) Xv = X
if(k>0) for(j in 1:k){
flag = TRUE
for(i in 1:n){
il = label[i]
if(max(X[pid==il,j])-min(X[pid==il,j])>0) flag = FALSE
}
if(flag) stop("at least one covariate without variability within unit")
}
varnames = NULL
if(k>0){
if(is.null(colnames(X))) for(j in 1:k) varnames = c(varnames,paste("X",j,sep=""))
else varnames = colnames(X)
}
varnames = c(varnames,"y_lag")
Tv = rep(0,n)
ind = id
for(i in 1:n) Tv[i] = sum(ind==label[i])
TT0 = max(Tv)
Tv = Tv-1
TT = max(Tv)
balanced = all(Tv==TT)
if(balanced){
largeT = (TT>Ttol)
Y = t(matrix(yv,TT0,n))
if(k>0) XX = array(Xv,c(TT0,n,k))
if(!largeT){ ZZ = sq(TT); sZZ = rowSums(ZZ)}
}
if(k==0){
be = 0
Q = rep(0.5,length(yv))
}else{
cat("First step estimation\n")
out = cquad_basic(id,yv,X,dyn=FALSE,Ttol=Ttol)
be0 = be = out$coefficients; scv0 = out$scv; J0 = out$J
Q = rep(0,length(yv))
for(i in 1:n){
il = label[i]
y_i = yv[pid==il]
if(all(y_i==0)) q_i = rep(0,length(y_i))
else if(all(y_i==1)) q_i = rep(1,length(y_i))
else{
if(k==0) x_i = NULL else x_i = as.matrix(Xv[pid==il,])
int = x_i%*%be
al = 0
q_i = exp(int); q_i = q_i/(1+q_i)
lk1 = as.vector(y_i%*%log(q_i)+(1-y_i)%*%log(1-q_i)); lk1o = -Inf
while(abs(lk1-lk1o)>10^-10){
lk1o = lk1
dal = sum(y_i-q_i)/sum(q_i*(1-q_i))
mdal = abs(dal)
if(mdal>0.5) dal = dal/mdal*0.5
al = al+dal
q_i = exp(al+int); q_i = q_i/(1+q_i)
lk1 = as.vector(y_i%*%log(q_i)+(1-y_i)%*%log(1-q_i))
}
}
Q[pid==il] = q_i
}
be = c(be,0)
}
Sc = matrix(0,n,1)
it = 0; lk = -Inf; lk0 = -Inf
zero1 = c(rep(0,k),1)
cat("Second step estimation\n")
cat(" |--------------|--------------|--------------|\n")
cat(" | iteration | lk | lk-lko |\n")
cat(" |--------------|--------------|--------------|\n")
while(abs(lk-lk0)>10^-6 | it==0){
it = it+1; lk0 = lk
scv = sco = matrix(0,n,k+1)
lk = 0; J = 0
for(i in 1:n){
if(Tv[i]>1){
largeT=(Tv[i]>Ttol)
il = label[i]
y_i = yv[pid==il]; y_i0 = y_i[1]; y_i = y_i[-1]
q_i = Q[pid==il]; q_i = q_i[-1]
sui = sum(y_i)
if(sui>0 & sui<Tv[i]){
if(!largeT){
if(balanced) Z = ZZ[sZZ==sui,]
else Z = sq(Tv[i],sui)
if(k==0) x_i = NULL else x_i = as.matrix(Xv[pid==il,])
if(k>0) x_i = rbind(cbind(x_i[-1,],0),zero1)
else x_i = as.matrix(c(rep(0,Tv[i]),1))
if(Tv[i]==2) Z = cbind(Z,y_i0*(Z[,1]-q_i[1])+Z[,1]*(Z[,2]-q_i[2]))
else Z = cbind(Z,y_i0*(Z[,1]-q_i[1])+ rowSums(Z[,1:Tv[i]-1]*(Z-rep(1,nrow(Z))%o%q_i)[,2:Tv[i]]))
xb = x_i%*%be
den = exp(Z%*%xb)
sden = sum(den)
y_i = c(y_i,y_i0*(y_i[1]-q_i[1])+sum(y_i[1:Tv[i]-1]*(y_i-q_i)[2:Tv[i]]))
pc_i = as.vector(exp(y_i%*%xb))/sden
lk = lk+w[i]*log(pc_i)
Zt = t(Z)
pp_i = as.vector(den/sden)
e_i = Zt%*%pp_i
scv[i,] = scv[i,] + w[i]*(t(y_i-e_i)%*%x_i)
V_i = Zt%*%diag(pp_i)%*%Z-e_i%*%t(e_i)
J = J - w[i]*(t(x_i)%*%V_i%*%x_i)
}
else{
if(k==0) x_i = NULL else x_i = as.matrix(Xv[pid==il,])
if(k>0) x_i = rbind(cbind(x_i[-1,],0),zero1)
else x_i = as.matrix(c(rep(0,Tv[i]),1))
xb = x_i%*%be
out = quasi_sym_pseudo(xb,-q_i,sui,y0=y_i0)
y_i = c(y_i,y_i0*(y_i[1]-q_i[1])+sum(y_i[1:Tv[i]-1]*(y_i-q_i)[2:Tv[i]]))
pc_i = as.vector(exp(y_i%*%xb))/out$f
lk = lk+w[i]*log(pc_i)
scv[i,] = scv[i,] + w[i]*(t(y_i-out$dl1)%*%x_i)
J = J - w[i]*(t(x_i)%*%out$Dl2%*%x_i)
}
}
}
}
sc = colSums(scv)
iJ = solve(J)
dbe = -iJ%*%sc
mdbe = max(abs(dbe))
if(mdbe>0.5) dbe = dbe/mdbe*0.5
be = be+dbe
cat("",sprintf("%12g", c(it,lk,lk-lk0)), "\n", sep = " | ")
}
cat(" |--------------|--------------|--------------|\n")
be = as.vector(be)
Va = iJ%*%(t(scv)%*%scv)%*%t(iJ)
if(k==0){
Va2 = Va
}else{
scv1 = cbind(scv0,scv)
J10 = matrix(0,k+1,k)
for(j in 1:k){
be1 = be0; be1[j] = be1[j]+10^-6
Q1 = rep(0,length(yv))
for(i in 1:n){
il = label[i]
y_i = yv[pid==il]
if(all(y_i==0)) q_i = rep(0,length(y_i))
else if(all(y_i==1)) q_i = rep(1,length(y_i))
else{
if(k==0) x_i = NULL else x_i = as.matrix(Xv[pid==il,])
int = x_i%*%be1
al = 0
q_i = exp(int); q_i = q_i/(1+q_i)
lk1 = as.vector(y_i%*%log(q_i)+(1-y_i)%*%log(1-q_i)); lk1o = -Inf
while(abs(lk1-lk1o)>10^-6){
lk1o = lk1
dal = sum(y_i-q_i)/sum(q_i*(1-q_i))
mdal = abs(dal)
if(mdal>0.5) dal = dal/mdal*0.5
al = al+dal
q_i = exp(al+int); q_i = q_i/(1+q_i)
lk1 = as.vector(y_i%*%log(q_i)+(1-y_i)%*%log(1-q_i))
}
}
Q1[pid==il] = q_i
}
sc1 = rep(0,k+1)
for(i in 1:n){
if(Tv[i]>1){
largeT = (Tv[i]>Ttol)
il = label[i]
y_i = yv[pid==il]; y_i0 = y_i[1]; y_i = y_i[-1]
q_i = Q1[pid==il]; q_i = q_i[-1]
sui = sum(y_i)
if(sui>0 & sui<Tv[i]){
if(!largeT){
if(balanced) Z = ZZ[sZZ==sui,]
else Z = sq(Tv[i],sui)
if(k==0) x_i = NULL else x_i = as.matrix(Xv[pid==il,])
if(k>0) x_i = rbind(cbind(x_i[-1,],0),zero1)
else x_i = as.matrix(c(rep(0,Tv[i]),1))
if(Tv[i]==2) Z = cbind(Z,y_i0*(Z[,1]-q_i[1])+Z[,1]*(Z[,2]-q_i[2]))
else Z = cbind(Z,y_i0*(Z[,1]-q_i[1])+
rowSums(Z[,1:Tv[i]-1]*(Z-rep(1,nrow(Z))%o%q_i)[,2:Tv[i]]))
xb = x_i%*%be
den = exp(Z%*%xb)
sden = sum(den)
y_i = c(y_i,y_i0*(y_i[1]-q_i[1])+sum(y_i[1:Tv[i]-1]*(y_i-q_i)[2:Tv[i]]))
Zt = t(Z)
pp_i = as.vector(den/sden)
e_i = Zt%*%pp_i
sc1 = sc1+w[i]*(t(y_i-e_i)%*%x_i)
}
else{
if(k==0) x_i = NULL else x_i = as.matrix(Xv[pid==il,])
if(k>0) x_i = rbind(cbind(x_i[-1,],0),zero1)
else x_i = as.matrix(c(rep(0,Tv[i]),1))
xb1 = x_i%*%be
y_i = c(y_i,y_i0*(y_i[1]-q_i[1])+sum(y_i[1:Tv[i]-1]*(y_i-q_i)[2:Tv[i]]))
out = quasi_sym_pseudo(xb1,-q_i,sui,y0=y_i0)
sc1 = sc1+w[i]*(t(y_i-out$dl1)%*%x_i)
}
}
}
}
J10[,j] = (sc1-sc)*10^6
}
J1 = rbind(cbind(J0,matrix(0,k,k+1)),
cbind(J10,J))
iJ1 = solve(J1)
Va2 = iJ1%*%(t(scv1)%*%scv1)%*%(iJ1)
Va2 = Va2[-(1:k),-(1:k)]
}
se = sqrt(diag(Va))
se2 = sqrt(diag(Va2))
lk = as.vector(lk)
names(be) = varnames
colnames(Va) = rownames(Va) = varnames
colnames(scv) = varnames
rownames(J) = colnames(J) = varnames
names(se) = varnames
names(se2) = varnames
out = list(formula=formula,lk=lk,coefficients=be,vcov=Va,scv=scv,J=J,se=se,ser=se2,Tv=Tv,call=match.call())
class(out) = c("cquad","panelmodel")
return(out)
} |
setMethod(f=".exportTab",
signature=signature(x="AbstractMassObject"),
definition=function(x, file="", row.names=FALSE, col.names=FALSE, ...) {
write.table(as.matrix(x), file=file,
row.names=row.names, col.names=col.names, ... )
})
setMethod(f=".exportCsv",
signature=signature(x="AbstractMassObject"),
definition=function(x, file="", sep=",", row.names=FALSE, col.names=TRUE,
...) {
.exportTab(x, file=file, sep=sep,
row.names=row.names, col.names=col.names, ...)
}) |
"PointsUpdate" <-
function(X,coeff,nbrs,index,remove,pointsin,weights,lengths){
r<-which(pointsin==remove)
N<-length(pointsin);
if ((r>=2)&(r<=(N-1))){
lengths[index]<-as.row(lengths[index])
weights<-as.row(weights)
lengths[index]<-lengths[index]+lengths[r]*weights
}
else{
if(r==1){
lengths[2]<-lengths[2]+lengths[1]
}
if(r==N){
lengths[N-1]<-lengths[N-1]+lengths[N]
}
}
alpha<-matrix(0,1,length(nbrs));
if (length(nbrs)>=2){
alpha<-lengths[r]*lengths[index]/(sum(lengths[index]^2))
coeff[pointsin[index]]<-coeff[pointsin[index]]+alpha*coeff[remove]
}
else{
q<-which(pointsin==nbrs)
alpha<-lengths[r]/lengths[q]
coeff[pointsin[q]]<-coeff[pointsin[q]]+alpha*coeff[remove]
}
return(list(coeff=coeff,lengths=lengths,r=r,N=N,weights=weights,alpha=alpha))
} |
library("igraph")
library("viridisLite")
library("highcharter")
library("purrr")
library("purrr")
library("dplyr")
ds <- map(seq(5), function(x){
list(data = cummean(rnorm(100, 2, 5)), name = x)
})
highchart() %>%
hc_plotOptions(series = list(marker = list(enabled = FALSE))) %>%
hc_add_series_list(ds)
n <- 3
set.seed(100)
data <- map(seq(n), function(x){
xc <- round(rnorm(1, sd = 2), 2)
yc <- round(rnorm(1, sd = 2), 2)
dt <- cbind(rnorm(200, xc), rnorm(200, yc))
dt <- tbl_df(dt)
setNames(dt, c("x", "y"))
dt
})
ds1 <- map(seq(n), function(x){
dt <- data[[x]]
dt <- convex_hull(as.matrix(dt))
dt <- list_parse2(as.data.frame(dt$rescoords))
list(data = dt, name = sprintf("polygon %s", x), type = "polygon", id = paste0("s", x))
})
ds2 <- map(seq(n), function(x){
dt <- data[[x]]
dt <- list_parse2(as.data.frame(dt))
list(data = dt, name = sprintf("points %s", x), type = "scatter", linkedTo = paste0("s", x))
})
cols <- hex_to_rgba(substr(viridis(n), 0, 7), alpha = 0.5)
highchart() %>%
hc_colors(colors = cols) %>%
hc_add_series_list(ds1) %>%
hc_add_series_list(ds2)
data("economics_long", package = "ggplot2")
head(economics_long)
ds <- economics_long %>%
group_by(variable) %>%
do(ds = list(
data = list_parse2(data.frame(datetime_to_timestamp(.$date), .$value01))
)) %>%
{map2(.$variable, .$ds, function(x, y){
append(list(name = x), y)
})}
highchart() %>%
hc_xAxis(type = "datetime") %>%
hc_add_series_list(ds) |
get_gamma_bounds <- function(y, tau) {
check_tau(tau)
zz <- normalize_by_tau(y, tau)
if (min(zz) >= 0) {
bounds <- c("lower" = 0, "upper" = Inf)
} else {
bounds <- c("lower" = -1/exp(1)/max(zz), "upper" = -1/exp(1)/min(zz))
}
return(bounds)
} |
"TML.logWeibull" <-
function(X,y,cu=1.855356,initial=c("S","input"),otp=c("adaptive","fixed"),
cov=c("no","parametric","nonparametric"),input=NULL,iv=1,nrep=0,
seed=1313,maxit=100,tol=0.0001,gam=0.2,nitmon=FALSE,fastS=TRUE,...){
X <- as.matrix(X)
n <- length(y); np <- ncol(X); cl <- Izero(cu)
ips <- 2; xk <- 1.717817; beta <- 0.5
namat <- matrix(NA,nrow=np,ncol=np)
nares <- list(th0=NA,v0=NA,th1=rep(NA,np),v1=NA,tl=NA,tu=NA,CV0=namat,V0=NA,CV1=namat,V1=NA,
alpha=NA,tn=NA,beta=NA,wi=rep(NA,n))
if (all(X[1,]!=1)) {cat("First column of the X matrix must be ones!\n"); return(nares)}
if (initial=="S") if (fastS) {
set.seed(seed)
zctrl <- lmrob.control(...)
z <- lmrob.S(X,y,zctrl); th0 <- z$coef; v0 <- z$scale}
else {
if (np <= 2 & n <= 500) iopt <- 3 else iopt <- 1; if (nrep!=0) iopt <- 2
z <- hysestz(X,y,nq=np+1,iopt=iopt,intch=1,nrep=nrep,tols=tol,tolr=tol,
iseed=seed,ipsi=4,xk=xk,beta=beta)
th0 <- z$theta[1:np]; v0 <- z$smin
b0 <- -0.1352; th0[1] <- th0[1]-b0*v0}
if (initial=="input") {z <- input; v0 <- z$v; th0 <- z$tau}
nares <- list(th0=th0,v0=v0,th1=rep(NA,np),v1=NA,tl=NA,tu=NA,CV0=namat,V0=NA,CV1=namat,V1=NA,
alpha=NA,tn=NA,beta=NA,wi=rep(NA,n))
re <- y-as.vector(X%*%as.matrix(th0)); rs <- re/v0
tp <- adaptw(sort(rs),cl,cu,otp); if (is.na(tp$tu)) return(nares)
wi <- tPsiw(rs,tp$tl,tp$tu)
yr <- y[wi!=0 | rs==0]
Xr <- X[wi!=0 | rs==0,,drop=FALSE]
tp$tn <- length(yr)
z <- MLwp(Xr,yr,th0,v0,iv,n,tp,gamm=gam,maxit,tol,nitmon)
res <- list(th0=th0,v0=v0,th1=z$th1,v1=z$v1,nit=z$nit,tl=tp$tl,tu=tp$tu,
alpha=tp$alpha,tn=tp$tn,beta=tp$beta,wi=(wi!=0)*1)
if (cov!="no") {l <- cl; u <- cu; if (otp=="adaptive") {l <- tp$tl; u <- tp$tu}
if (cov=="nonparametric") K <- Cov2.w(X,y,l,u,z$th1,z$v1,opt="averages")
if (cov=="parametric" ) K <- CovE.w(X,y,l,u,z$th1,z$v1)
res <- c(res,list(CV0=K$CV0,CV1=K$CV1))}
res} |
Res_soil <- function(x,
r_soil_inleaf = 2941,
r_soil_outleaf = 2941){
db <- x
LAI_Total <- db$BAI + db$LAI
if((max(LAI_Total, na.rm=T) == min(LAI_Total, na.rm=T)) &
(r_soil_inleaf == r_soil_outleaf)){
r_soil0 <- rep(r_soil_inleaf, nrow(db))
r_soil <- cbind.data.frame(Dates = db$Dates, Resist_soil = r_soil0)
}else{
fit_r_soil <- lm(c(r_soil_inleaf,r_soil_outleaf)~c(max(LAI_Total, na.rm=T),min(LAI_Total, na.rm=T)))
r_soil0 <- fit_r_soil$coefficients[1]+fit_r_soil$coefficients[2]*LAI_Total
r_soil <- cbind.data.frame(Dates = db$Dates, Resist_soil = r_soil0)
}
return(r_soil)
} |
test.welch <- function(formula, data, alternative = c("two.sided", "less", "greater"),
conf.level = 0.95, hypo = TRUE, descript = TRUE, effsize = FALSE,
weighted = FALSE, ref = NULL, correct = FALSE, digits = 2,
p.digits = 4, as.na = NULL, check = TRUE, output = TRUE, ...) {
if (isTRUE(missing(formula))) {
stop("Please specify a formula using the argument 'formula'", call. = FALSE)
}
if (isTRUE(missing(data))) {
stop("Please specify a matrix or data frame for the argument 'x'.", call. = FALSE)
}
if (isTRUE(is.null(data))) {
stop("Input specified for the argument 'data' is NULL.", call. = FALSE)
}
var.formula <- all.vars(as.formula(formula))
group.var <- attr(terms(formula[-2L]), "term.labels")
y.var <- var.formula[-grep(group.var, var.formula)]
if (isTRUE(!is.logical(check))) {
stop("Please specify TRUE or FALSE for the argument 'check'.", call. = FALSE)
}
if (isTRUE(check)) {
var.data <- !var.formula %in% colnames(data)
if (isTRUE(any(var.data))) {
stop(paste0("Variables specified in the the formula were not found in 'data': ",
paste(var.formula[which(var.data)], collapse = ", ")), call. = FALSE)
}
if (isTRUE(length(group.var) != 1L)) {
stop("Please specify a formula with only one grouping variable.", call. = FALSE)
}
if (isTRUE(length(y.var) != 1L)) {
stop("Please specify a formula with only one outcome variable.", call. = FALSE)
}
if (isTRUE(!is.logical(descript))) {
stop("Please specify TRUE or FALSE for the argument 'descript'.", call. = FALSE)
}
if (isTRUE(!all(alternative %in% c("two.sided", "less", "greater")))) {
stop("Character string in the argument 'alternative' does not match with \"two.sided\", \"less\", or \"greater\".",
call. = FALSE)
}
if (isTRUE(!is.logical(effsize))) {
stop("Please specify TRUE or FALSE for the argument 'effsize'.", call. = FALSE)
}
if (isTRUE(!is.logical(weighted))) {
stop("Please specify TRUE or FALSE for the argument 'weighted'.", call. = FALSE)
}
if (isTRUE(!is.logical(correct))) {
stop("Please specify TRUE or FALSE for the argument 'correct'.", call. = FALSE)
}
if (isTRUE(conf.level >= 1L || conf.level <= 0L)) {
stop("Please specifiy a numeric value between 0 and 1 for the argument 'conf.level'.",
call. = FALSE)
}
if (isTRUE(!is.logical(hypo))) {
stop("Please specify TRUE or FALSE for the argument 'hypo'.", call. = FALSE)
}
if (isTRUE(!is.logical(descript))) {
stop("Please specify TRUE or FALSE for the argument 'descript'.", call. = FALSE)
}
if (isTRUE(digits %% 1L != 0L || digits < 0L)) {
stop("Please specify a positive integer number for the argument 'digits'.", call. = FALSE)
}
if (isTRUE(p.digits %% 1L != 0L || p.digits < 0L)) {
stop("Please specify a positive integer number for the argument 'p.digits'.", call. = FALSE)
}
if (isTRUE(!is.logical(output))) {
stop("Please specify TRUE or FALSE for the argument 'output'.", call. = FALSE)
}
}
if (isTRUE(!is.null(as.na))) {
data[, y.var] <- misty::as.na(data[, y.var], na = as.na, check = check)
data.miss <- vapply(data[, y.var, drop = FALSE], function(y) all(is.na(y)), FUN.VALUE = logical(1))
if (any(data.miss)) {
stop(paste0("After converting user-missing values into NA, following variables are completely missing: ",
paste(names(which(data.miss)), collapse = ", ")), call. = FALSE)
}
}
y <- unlist(data[, y.var])
group <- unlist(data[, group.var])
if (isTRUE(all(c("two.sided", "less", "greater") %in% alternative))) { alternative <- "two.sided" }
if (isTRUE(length(unique(group)) == 2)) {
ci <- misty::ci.mean.diff(formula = formula, data = data, paired = FALSE,
alternative = alternative, conf.level = conf.level,
check = FALSE, output = FALSE)$result
d <- misty::cohens.d(formula = formula, data = data, paired = FALSE, mu = 0,
weighted = weighted, cor = TRUE, ref = ref, correct = correct,
alternative = alternative, conf.level = conf.level,
group = NULL, split = NULL, sort.var = FALSE,
check = FALSE, output = FALSE)$result
welch <- t.test(formula = formula, data = data,
alternative = switch(alternative,
two.sided = "two.sided",
greater = "less",
less = "greater"),
paired = FALSE, var.equal = FALSE)
result <- data.frame(cbind(ci[, -which(colnames(ci) %in% c("variable", "between", "low", "upp"))],
se = c(NA, welch$stderr),
t = c(NA, welch$statistic)*-1,
df = c(NA, welch$parameter),
pval = c(NA, welch$p.value),
d = d$d,
low = d$low,
upp = d$upp), row.names = NULL)
sample <- "two"
} else {
ci <- misty::ci.mean(y, group = group, output = FALSE)$result[, -c(2, 5)]
aov.table <- summary(aov(y ~ factor(group)))[[1]]
ss.m <- aov.table[["Sum Sq"]][1]
df.m <- aov.table[["Df"]][1]
ms.r <- aov.table[["Mean Sq"]][2]
ss.t <- sum(aov.table[["Sum Sq"]])
eta.sq <- ss.m / ss.t
omega.sq<- (ss.m - df.m*ms.r) / (ss.t + ms.r)
omega.sq <- ifelse(omega.sq < 0, 0, omega.sq)
welch <- oneway.test(formula = formula, data = data, var.equal = FALSE)
result <- list(descript = ci,
test = data.frame(F = welch$statistic,
df1 = welch$parameter["num df"],
df2 = welch$parameter["denom df"],
pval = welch$p.value,
eta.sq = eta.sq, omega.sq = omega.sq, row.names = NULL))
sample <- "multiple"
}
object <- list(call = match.call(),
type = "test.welch",
sample = sample,
data = data.frame(y, group, stringsAsFactors = FALSE),
args = list(formula = formula, alternative = alternative,
conf.level = conf.level, hypo = hypo,
descript = descript, digits = digits,
effsize = effsize, weighted = weighted,
ref = ref, correct = correct,
p.digits = p.digits, as.na = as.na,
check = check, output = output),
result = result)
class(object) <- "misty.object"
if (isTRUE(output)) { print(object, check = FALSE) }
return(invisible(object))
} |
ql <- function(query, ...) {
jsonlite::fromJSON(cont(
gh_POST(gsub("\n", "", query), ...)
))
} |
print.survfit <- function(x, scale=1,
digits = max(options()$digits - 4, 3),
print.rmean = getOption('survfit.print.rmean'),
rmean = getOption('survfit.rmean'), ...) {
if (!is.null(cl<- x$call)) {
cat("Call: ")
dput(cl)
cat("\n")
}
omit <- x$na.action
if (length(omit)) cat(" ", naprint(omit), "\n")
savedig <- options(digits=digits)
on.exit(options(savedig))
if (!missing(print.rmean) && is.logical(print.rmean) && missing(rmean)) {
if (print.rmean) rmean <- 'common'
else rmean <- 'none'
}
else {
if (is.null(rmean)) {
if (is.logical(print.rmean)) {
if (print.rmean) rmean <- 'common'
else rmean <- 'none'
}
else rmean <- 'none'
}
if (is.numeric(rmean)) {
if (is.null(x$start.time)) {
if (rmean < min(x$time))
stop("Truncation point for the mean is < smallest survival")
}
else if (rmean < x$start.time)
stop("Truncation point for the mean is < smallest survival")
}
else {
rmean <- match.arg(rmean, c('none', 'common', 'individual'))
if (length(rmean)==0) stop("Invalid value for rmean option")
}
}
temp <- survmean(x, scale=scale, rmean)
mtemp <- if (is.matrix(temp$matrix)) temp$matrix
else matrix(temp$matrix, nrow=1,
dimnames=list(NULL, names(temp$matrix)))
if (all(mtemp[,2] == mtemp[,3])){
cname <- dimnames(mtemp)[[2]]
mtemp <- mtemp[,-2, drop=FALSE]
cname <-cname[-2]
cname[2] <- "n"
dimnames(mtemp)[[2]] <- cname
}
if (all(mtemp[,1] == mtemp[,2]))
mtemp <- mtemp[,-1, drop=FALSE]
if (rmean != 'none') {
dd <- dimnames(mtemp)
dd[[2]] <- ifelse(dd[[2]]=="rmean", "rmean*", dd[[2]])
dimnames(mtemp) <- dd
print(mtemp)
if (rmean == 'individual')
cat(" * restricted mean with variable upper limit\n")
else cat(" * restricted mean with upper limit = ",
format(temp$end.time[1]), "\n")
}
else print(mtemp)
invisible(x)
}
survmean <- function(x, scale=1, rmean) {
if (!is.null(x$start.time)) start.time <- x$start.time
else start.time <- min(0, x$time)
pfun <- function(nused, time, surv, n.risk, n.event, lower, upper,
start.time, end.time) {
minmin <- function(y, x) {
tolerance <- .Machine$double.eps^.5
keep <- (!is.na(y) & y <(.5 + tolerance))
if (!any(keep)) NA
else {
x <- x[keep]
y <- y[keep]
if (abs(y[1]-.5) <tolerance && any(y< y[1]))
(x[1] + x[min(which(y<y[1]))])/2
else x[1]
}
}
if (!is.na(end.time)) {
hh <- ifelse((n.risk-n.event)==0, 0,
n.event /(n.risk *(n.risk -n.event)))
keep <- which(time <= end.time)
if (length(keep) ==0) {
temptime <- end.time
tempsurv <- 1
hh <- 0
}
else {
temptime <- c(time[keep], end.time)
tempsurv <- c(surv[keep], surv[max(keep)])
hh <- c(hh[keep], 0)
}
n <- length(temptime)
delta <- diff(c(start.time, temptime))
rectangles <- delta * c(1, tempsurv[-n])
varmean <- sum( cumsum(rev(rectangles[-1]))^2 * rev(hh)[-1])
mean <- sum(rectangles) + start.time
}
else {
mean <- 0
varmean <- 0
}
med <- minmin(surv, time)
if (!is.null(upper)) {
upper <- minmin(upper, time)
lower <- minmin(lower, time)
c(nused, max(n.risk), n.risk[1],
sum(n.event), sum(mean), sqrt(varmean), med, lower, upper)
}
else
c(nused, max(n.risk), n.risk[1], sum(n.event),
sum(mean), sqrt(varmean), med, 0, 0)
}
stime <- x$time/scale
if (is.numeric(rmean)) rmean <- rmean/scale
surv <- x$surv
plab <- c("records", "n.max", "n.start", "events",
"rmean", "se(rmean)", "median",
paste(x$conf.int, c("LCL", "UCL"), sep=''))
ncols <- 9
if (is.matrix(surv) && !is.matrix(x$n.event))
x$n.event <- matrix(rep(x$n.event, ncol(surv)), ncol=ncol(surv))
if (is.null(x$strata)) {
if (rmean=='none') end.time <- NA
else if (is.numeric(rmean)) end.time <- rmean
else end.time <- max(stime)
if (is.matrix(surv)) {
out <- matrix(0, ncol(surv), ncols)
for (i in 1:ncol(surv)) {
if (is.null(x$conf.int))
out[i,] <- pfun(x$n, stime, surv[,i], x$n.risk,
x$n.event[,i],
NULL, NULL, start.time, end.time)
else out[i,] <- pfun(x$n, stime, surv[,i], x$n.risk,
x$n.event[,i],
x$lower[,i], x$upper[,i], start.time,
end.time)
}
dimnames(out) <- list(dimnames(surv)[[2]], plab)
}
else {
out <- matrix(pfun(x$n, stime, surv, x$n.risk, x$n.event, x$lower,
x$upper, start.time, end.time), nrow=1)
dimnames(out) <- list(NULL, plab)
}
}
else {
nstrat <- length(x$strata)
stemp <- rep(1:nstrat,x$strata)
last.time <- (rev(stime))[match(1:nstrat, rev(stemp))]
if (rmean=='none') end.time <- rep(NA, nstrat)
else if (is.numeric(rmean)) end.time <- rep(rmean, nstrat)
else if (rmean== 'common') end.time <- rep(max(last.time), nstrat)
else end.time <- last.time
if (is.matrix(surv)) {
ns <- ncol(surv)
out <- matrix(0, nstrat*ns, ncols)
if (is.null(dimnames(surv)[[2]]))
dimnames(out) <- list(rep(names(x$strata), ns),
plab)
else {
cname <- outer(names(x$strata), dimnames(surv)[[2]], paste,
sep=", ")
dimnames(out) <- list(c(cname), plab)
}
k <- 0
for (j in 1:ns) {
for (i in 1:nstrat) {
who <- (stemp==i)
k <- k+1
if (is.null(x$lower))
out[k,] <- pfun(x$n[i], stime[who], surv[who,j],
x$n.risk[who], x$n.event[who,j],
NULL, NULL, start.time, end.time[i])
else out[k,] <- pfun(x$n[i], stime[who], surv[who,j],
x$n.risk[who], x$n.event[who,j],
x$lower[who,j], x$upper[who,j],
start.time, end.time[i])
}
}
}
else {
out <- matrix(0, nstrat, ncols)
dimnames(out) <- list(names(x$strata), plab)
for (i in 1:nstrat) {
who <- (stemp==i)
if (is.null(x$lower))
out[i,] <- pfun(x$n[i], stime[who], surv[who],
x$n.risk[who], x$n.event[who],
NULL, NULL, start.time, end.time[i])
else out[i,] <- pfun(x$n[i], stime[who], surv[who],
x$n.risk[who], x$n.event[who],
x$lower[who], x$upper[who], start.time,
end.time[i])
}
}
}
if (is.null(x$lower)) out <- out[,1:7, drop=F]
if (rmean=='none') out <- out[,-(5:6), drop=F]
list(matrix=out[,,drop=T], end.time=end.time)
} |
PREPS$rcmdcheck <- function(state, path = state$path, quiet) {
path <- normalizePath(path)
state$rcmdcheck <- try(rcmdcheck(path, quiet = quiet), silent = quiet)
if(inherits(state$rcmdcheck, "try-error")) {
warning("Prep step for rcmdcheck failed.")
}
state
} |
.CIRCOS.ENV = new.env()
resetGlobalVariable = function() {
assign(".SECTOR.DATA", NULL, envir = .CIRCOS.ENV)
assign(".CELL.DATA", NULL, envir = .CIRCOS.ENV)
assign(".CURRENT.TRACK.INDEX", 0, envir = .CIRCOS.ENV)
assign(".CURRENT.SECTOR.INDEX", NULL, envir = .CIRCOS.ENV)
}
resetGlobalVariable()
circos.par = function(..., RESET = FALSE, READ.ONLY = NULL, LOCAL = FALSE, ADD = FALSE) {}
circos.par = setGlobalOptions(
start.degree = list(
.value = 0,
.length = 1,
.class = "numeric",
.filter = function(x) {
if(is.circos.initialized()){
warning_wrap("'start.degree' can only be modified before `circos.initialize`, or maybe you forgot to call `circos.clear` in your last plot.")
}
return(x)
}),
gap.degree = list(
.value = 1,
.class = "numeric",
.validate = function(x) {
all(x >= 0 & x < 360)
},
.filter = function(x) {
if(is.circos.initialized()){
warning_wrap("'gap.degree' can only be modified before `circos.initialize`, or maybe you forgot to call `circos.clear` in your last plot.")
}
return(x)
}
),
gap.after = list(.synonymous = "gap.degree"),
track.margin = list(
.value = c(0.01, 0.01),
.length = 2,
.class = "numeric"
),
unit.circle.segments = 500,
cell.padding = list(
.value = c(0.02, 1, 0.02, 1),
.length = c(2, 4),
.class = "numeric",
.filter = function(x) {
if(length(x) == 2) x = c(x, x)
o.cell.padding = circos.par("cell.padding")
if(is.circos.initialized()){
return(c(x[1], o.cell.padding[2], x[3], o.cell.padding[4]))
} else {
return(x)
}
}),
default.track.height = list(
.value = 0.2,
.visible = FALSE,
.filter = function(x) {
warning_wrap("`default.track.height` is replaced by `track.height`, ignore this setting.")
return(x)
}),
track.height = 0.2,
points.overflow.warning = TRUE,
circle.margin = list(
.value = c(0, 0, 0, 0),
.filter = function(x) {
if(is.circos.initialized()){
warning_wrap("'circle.margin' can only be modified before `circos.initialize`, or maybe you forgot to call `circos.clear` in your last plot.")
}
if(any(x <= 0)) {
stop_wrap("The value of `circle.margin` should be positive.")
}
if(length(x) == 1) {
x = rep(x, 4)
} else if(length(x) == 2) {
x = rep(x, each = 2)
} else if(length(x) == 4) {
} else {
stop_wrap("Length of `circle.margin` can only be 1, 2, or 4.")
}
return(x)
}
),
canvas.xlim = list(
.value = function() {
c(-(1 + .v$circle.margin[1]), (1 + .v$circle.margin[2]))
},
.filter = function(x) {
if(is.circos.initialized()){
warning_wrap("'canvas.xlim' can only be modified before `circos.initialize`, or maybe you forgot to call `circos.clear` in your last plot.")
}
return(x)
}),
canvas.ylim = list(
.value = function() {
c(-(1 + .v$circle.margin[3]), (1 + .v$circle.margin[4]))
},
.filter = function(x) {
if(is.circos.initialized()){
warning_wrap("'canvas.ylim' can only be modified before `circos.initialize`, or maybe you forgot to call `circos.clear` in your last plot.")
}
return(x)
}),
major.by.degree = 10,
clock.wise = list(
.value = TRUE,
.filter = function(x) {
if(is.circos.initialized()){
warning_wrap("'clock.wise' can only be modified before `circos.initialize`, or maybe you forgot to call `circos.clear` in your last plot.")
}
return(x)
}),
xaxis.clock.wise = list(
.value = TRUE,
.filter = function(x) {
if(is.circos.initialized()){
stop_wrap("'xaxis.clock.wise' can only be modified before `circos.initialize`, or maybe you forgot to call `circos.clear` in your last plot.")
}
return(x)
}),
lend = list(
.value = NULL,
.visible = FALSE,
.private = TRUE),
ljoin = list(
.value = NULL,
.visible = FALSE,
.private = TRUE),
'__tempdir__' = list(
.value = ".",
.private = TRUE,
.filter = function(x) {dir.create(x, showWarnings = FALSE); return(x)},
.visible = FALSE),
'__omar__' = list(
.value = FALSE,
.private = TRUE,
.visible = FALSE),
'__tempenv__' = list(
.value = new.env(parent = emptyenv()),
.private = TRUE,
.visible = FALSE),
message = TRUE,
help = list(.synonymous = "message"),
ring = list(
.value = FALSE,
.private = TRUE,
.visible = FALSE
)
)
is.circos.initialized = function() {
.SECTOR.DATA = get(".SECTOR.DATA", envir = .CIRCOS.ENV)
return(! is.null(.SECTOR.DATA))
}
circos.initialize = function(
sectors = NULL,
x = NULL,
xlim = NULL,
sector.width = NULL,
factors = sectors,
ring = FALSE) {
resetGlobalVariable()
.SECTOR.DATA = get(".SECTOR.DATA", envir = .CIRCOS.ENV)
.CELL.DATA = get(".CELL.DATA", envir = .CIRCOS.ENV)
if(is.null(factors)) {
if(is.matrix(xlim) || is.data.frame(xlim)) {
if(is.null(rownames(xlim))) {
stop_wrap("Since `sectors` is not specified, row names of `xlim` are taken as `sectors`, thus `xlim` should be a two-column matrix with row names.")
} else {
factors = rownames(xlim)
}
} else {
stop_wrap("Since `sectors` is not specified, row names of `xlim` are taken as `sectors`, thus `xlim` should be a two-column matrix with row names.")
}
}
if(is.numeric(factor)) {
warning_wrap("Your `sectors` is numeric, it will be converted to characters internally.")
}
if(any(factors == "")) {
stop_wrap("`sectors` cannot contain empty strings.")
}
if(! is.factor(factors)) {
if(length(factors) == length(unique(factors))) {
factors = factor(factors, levels = factors)
} else {
factors = factor(factors)
}
}
factors = factor(as.character(factors), intersect(levels(factors), as.character(factors)))
le = levels(factors)
if(ring) {
if(length(le) != 1) {
stop_wrap("There should be only one sector under 'ring' mode.")
}
circos.par$ring = TRUE
circos.par$gap.degree = 0
circos.par$cell.padding = c(circos.par$cell.padding[1], 0, circos.par$cell.padding[3], 0)
circos.par$points.overflow.warning = FALSE
} else {
circos.par$ring = FALSE
}
if(!is.null(x)) {
x = as.numeric(x)
}
if(is.vector(xlim)) {
if(length(xlim) != 2) {
stop_wrap("Since `xlim` is vector, it should have length of 2.")
}
xlim = as.numeric(xlim)
min.value = rep(xlim[1], length(le))
max.value = rep(xlim[2], length(le))
} else if(is.matrix(xlim) || is.data.frame(xlim)) {
if(dim(xlim)[1] != length(le) || dim(xlim)[2] != 2) {
stop_wrap("Since `xlim` is a matrix, it should have same number of rows as the length of the level of `sectors` and number of columns of 2.")
}
if(!is.null(rownames(xlim))) {
if(length(setdiff(le, rownames(xlim))) == 0) {
xlim = xlim[le, ,drop = FALSE]
}
}
if(is.data.frame(xlim)) xlim = as.matrix(xlim)
xlim2 = as.numeric(xlim)
dim(xlim2) = dim(xlim)
dimnames(xlim2) = dimnames(xlim)
xlim = xlim2
min.value = apply(xlim, 1, function(x) x[1])
max.value = apply(xlim, 1, function(x) x[2])
} else if(is.vector(x)) {
if(length(x) != length(factors)) {
stop_wrap("Length of `x` and length of `sectors` differ.")
}
min.value = tapply(x, factors, min)
max.value = tapply(x, factors, max)
} else {
stop_wrap("You should specify either `x` or `xlim`.")
}
cell.padding = circos.par("cell.padding")
sector.range = max.value - min.value
n.sector = length(le)
sector = vector("list", 7)
names(sector) = c("factor", "min.value", "max.value", "start.degree", "end.degree", "min.data", "max.data")
sector[["factor"]] = le
sector[["min.data"]] = min.value
sector[["max.data"]] = max.value
gap.degree = circos.par("gap.degree")
if(!is.null(names(gap.degree))) {
if(length(setdiff(le, names(gap.degree))) == 0) {
gap.degree = gap.degree[le]
}
}
if(length(gap.degree) == 1) {
gap.degree = rep(gap.degree, n.sector)
} else if(length(gap.degree) != n.sector) {
stop_wrap("Since `gap.degree` parameter has length larger than 1, it should have same length as the number of sectors.")
}
start.degree = circos.par("start.degree")
clock.wise = circos.par("clock.wise")
if(360 - sum(gap.degree) <= 0) {
stop_wrap("Maybe your `gap.degree` is too large so that there is no space to allocate sectors.")
}
if(is.null(sector.width)) {
unit = (360 - sum(gap.degree)) / sum(sector.range)
for(i in seq_len(n.sector)) {
if(sector.range[i] == 0) {
stop_wrap("Range of the sector ('", le[i] ,"') cannot be 0. You might need to set the second and the fourth values in `circos.par$cell.padding` to 0.")
}
if(clock.wise) {
sector[["start.degree"]][i] = ifelse(i == 1, start.degree, sector[["end.degree"]][i-1] - gap.degree[i-1])
sector[["end.degree"]][i] = sector[["start.degree"]][i] - sector.range[i]*unit
} else {
sector[["end.degree"]][i] = ifelse(i == 1, start.degree, sector[["start.degree"]][i-1] + gap.degree[i-1])
sector[["start.degree"]][i] = sector[["end.degree"]][i] + sector.range[i]*unit
}
}
} else {
if(length(sector.width) == 1) {
sector.width = rep(sector.width, n.sector)
} else if(length(sector.width) != n.sector) {
stop_wrap("Since you manually set the width for each sector, the length of `sector.width` should be either 1 or as same as the number of sectors.")
}
sector.width.percentage = sector.width / sum(sector.width)
degree.per.sector = (360 - sum(gap.degree)) * sector.width.percentage
if(any(degree.per.sector <= 0)) {
stop_wrap("Maybe your `gap.degree` is too large so that there is no space to allocate sectors.")
}
for(i in seq_len(n.sector)) {
if(sector.range[i] == 0) {
stop_wrap("Range of the sector (", le[i] ,") cannot be 0.")
}
if(clock.wise) {
sector[["start.degree"]][i] = ifelse(i == 1, start.degree, sector[["end.degree"]][i-1] - gap.degree[i-1])
sector[["end.degree"]][i] = sector[["start.degree"]][i] - degree.per.sector[i]
} else {
sector[["end.degree"]][i] = ifelse(i == 1, start.degree, sector[["start.degree"]][i-1] + gap.degree[i-1])
sector[["start.degree"]][i] = sector[["end.degree"]][i] + degree.per.sector[i]
}
}
}
if(clock.wise) {
sector[["start.degree"]] = sector[["start.degree"]] + 360
sector[["end.degree"]] = sector[["end.degree"]] + 360
}
if(any(cell.padding[2] + cell.padding[4] >= sector[["start.degree"]] - sector[["end.degree"]])) {
stop_wrap("Summation of cell padding on x-direction are larger than the width for some sectors. You can e.g. set 'circos.par(cell.padding = c(0.02, 0, 0.02, 0))' or remove tiny sectors.")
}
min.value = min.value - cell.padding[2]/(sector[["start.degree"]] - sector[["end.degree"]] - cell.padding[2] - cell.padding[4])*sector.range
max.value = max.value + cell.padding[4]/(sector[["start.degree"]] - sector[["end.degree"]] - cell.padding[2] - cell.padding[4])*sector.range
sector[["min.value"]] = min.value
sector[["max.value"]] = max.value
sector = as.data.frame(sector, stringsAsFactors = FALSE)
.SECTOR.DATA = sector
.CELL.DATA = vector("list", length = length(le))
names(.CELL.DATA) = le
for(i in seq_along(.CELL.DATA)) {
.CELL.DATA[[ le[i] ]] = vector("list", length = 0)
}
assign(".SECTOR.DATA", .SECTOR.DATA, envir = .CIRCOS.ENV)
assign(".CELL.DATA", .CELL.DATA, envir = .CIRCOS.ENV)
assign(".CURRENT.SECTOR.INDEX", .SECTOR.DATA[1, "factor"], envir = .CIRCOS.ENV)
circos.par("__omar__" = FALSE)
if(identical(par("mar"), c(5.1, 4.1, 4.1, 2.1))) {
circos.par("__omar__" = TRUE)
par(mar = c(1, 1, 1, 1))
}
plot(circos.par("canvas.xlim"), circos.par("canvas.ylim"), type = "n", ann = FALSE, axes = FALSE, asp = 1)
return(invisible(NULL))
}
circos.clear = function() {
resetGlobalVariable()
if(circos.par("__omar__")) {
circos.par("__omar__" = FALSE)
par(mar = c(5.1, 4.1, 4.1, 2.1))
}
tmpdir = circos.par("__tempdir__")
circos.par(RESET = TRUE)
circos.par("__tempdir__" = tmpdir)
empty_env(circos.par("__tempenv__"))
return(invisible(NULL))
}
empty_env = function(env) {
obj = ls(envir = env, all.names = TRUE)
if(length(obj)) rm(list = obj, envir = env)
}
get.all.sector.index = function() {
.SECTOR.DATA = get(".SECTOR.DATA", envir = .CIRCOS.ENV)
if(is.null(.SECTOR.DATA)) {
return(character(0))
} else {
return(as.vector(.SECTOR.DATA$factor))
}
}
get.all.track.index = function() {
.CELL.DATA = get(".CELL.DATA", envir = .CIRCOS.ENV)
if(is.null(.CELL.DATA)) {
return(integer(0))
} else if(all(sapply(.CELL.DATA, length) == 0)) {
return(integer(0))
} else {
return(seq_len(max(sapply(.CELL.DATA[ which(sapply(.CELL.DATA, length) > 0) ], function(x) length(x)))))
}
}
get.sector.data = function(sector.index = get.current.sector.index()) {
sector.index = as.character(sector.index)
.SECTOR.DATA = get(".SECTOR.DATA", envir = .CIRCOS.ENV)
sector.data = as.vector(as.matrix(.SECTOR.DATA[.SECTOR.DATA[[1]] == sector.index, -1]))
names(sector.data) = colnames(.SECTOR.DATA)[-1]
return(sector.data)
}
get.current.track.index = function() {
.CURRENT.TRACK.INDEX = get(".CURRENT.TRACK.INDEX", envir = .CIRCOS.ENV)
return(.CURRENT.TRACK.INDEX)
}
set.current.track.index = function(x) {
.CURRENT.TRACK.INDEX = x
assign(".CURRENT.TRACK.INDEX", .CURRENT.TRACK.INDEX, envir = .CIRCOS.ENV)
return(invisible(NULL))
}
get.current.sector.index = function() {
.CURRENT.SECTOR.INDEX = get(".CURRENT.SECTOR.INDEX", envir = .CIRCOS.ENV)
return(.CURRENT.SECTOR.INDEX)
}
set.current.sector.index = function(x) {
.CURRENT.SECTOR.INDEX = get(".CURRENT.SECTOR.INDEX", envir = .CIRCOS.ENV)
if(!x %in% get.all.sector.index()) {
stop_wrap(paste0("Cannot find ", x, " in all available sector names.\n"))
}
.CURRENT.SECTOR.INDEX = x
assign(".CURRENT.SECTOR.INDEX", .CURRENT.SECTOR.INDEX, envir = .CIRCOS.ENV)
return(invisible(NULL))
}
set.current.cell = function(sector.index, track.index) {
sector.index = as.character(sector.index)
set.current.sector.index(sector.index)
set.current.track.index(track.index)
}
get.cell.data = function(sector.index = get.current.sector.index(), track.index = get.current.track.index()) {
sector.index = as.character(sector.index)
.CELL.DATA = get(".CELL.DATA", envir = .CIRCOS.ENV)
.CELL.DATA[[sector.index]][[track.index]]
}
set.cell.data = function(sector.index = get.current.sector.index(), track.index = get.current.track.index(), ...) {
sector.index = as.character(sector.index)
.CELL.DATA = get(".CELL.DATA", envir = .CIRCOS.ENV)
.CELL.DATA[[sector.index]][[track.index]] = list(...)
assign(".CELL.DATA", .CELL.DATA, envir = .CIRCOS.ENV)
return(invisible(NULL))
}
has.cell = function(sector.index, track.index) {
sector.index = as.character(sector.index)
.CELL.DATA = get(".CELL.DATA", envir = .CIRCOS.ENV)
if(sector.index %in% names(.CELL.DATA) &&
track.index <= length(.CELL.DATA[[sector.index]]) &&
!is.null(.CELL.DATA[[sector.index]][[track.index]])) {
return(TRUE)
} else {
return(FALSE)
}
}
circos.info = function(sector.index = NULL, track.index = NULL, plot = FALSE) {
sectors = get.all.sector.index()
tracks = get.all.track.index()
if(plot) {
for(i in seq_along(sectors)) {
for(j in seq_along(tracks)) {
cell.xlim = get.cell.meta.data("cell.xlim", sector.index = sectors[i], track.index = j)
cell.ylim = get.cell.meta.data("cell.ylim", sector.index = sectors[i], track.index = j)
circos.text(mean(cell.xlim), mean(cell.ylim), labels = paste(sectors[i], j, sep = ":"),
sector.index = sectors[i], track.index = j, facing = "downward")
}
}
} else {
if(is.null(sector.index) && is.null(track.index)) {
if(length(sectors)) {
cat("All your sectors:\n")
print(sectors)
} else {
cat("No sector has been created\n")
}
cat("\n")
if(length(tracks)) {
cat("All your tracks:\n")
print(tracks)
} else {
cat("No track has been created\n")
}
cat("\n")
} else {
if(is.null(track.index)) {
track.index = tracks
} else if(is.null(sector.index)) {
sector.index = sectors
}
for(i in seq_along(sector.index)) {
for(j in seq_along(track.index)) {
cat("sector index: '", sector.index[i], "'\n", sep = "")
cat("track index: ", track.index[j], "\n", sep = "")
xlim = get.cell.meta.data('xlim', sector.index[i], track.index[j])
ylim = get.cell.meta.data('ylim', sector.index[i], track.index[j])
cell.xlim = get.cell.meta.data("cell.xlim", sector.index[i], track.index[j])
cell.ylim = get.cell.meta.data("cell.ylim", sector.index[i], track.index[j])
xplot = get.cell.meta.data("xplot", sector.index[i], track.index[j])
yplot = get.cell.meta.data("yplot", sector.index[i], track.index[j])
cell.width = get.cell.meta.data("cell.width", sector.index[i], track.index[j])
cell.height = get.cell.meta.data("cell.height", sector.index[i], track.index[j])
track.margin = get.cell.meta.data("track.margin", sector.index[i], track.index[j])
cell.padding = get.cell.meta.data("cell.padding", sector.index[i], track.index[j])
cat("xlim: [", xlim[1], ", ", xlim[2], "]\n", sep = "")
cat("ylim: [", ylim[1], ", ", ylim[2], "]\n", sep = "")
cat("cell.xlim: [", cell.xlim[1], ", ", cell.xlim[2], "]\n", sep = "")
cat("cell.ylim: [", cell.ylim[1], ", ", cell.ylim[2], "]\n", sep = "")
cat("xplot (degree): [", xplot[1], ", ", xplot[2], "]\n", sep = "")
cat("yplot (radius): [", yplot[1], ", ", yplot[2], "]\n", sep = "")
cat("cell.width (degree): ", cell.width, "\n", sep = "")
cat("cell.height (radius): ", cell.height, "\n", sep = "")
cat("track.margin: c(", track.margin[1], ", ", track.margin[2], ")\n", sep = "")
cat("cell.padding: c(", cell.padding[1], ", ", cell.padding[2], ", ", cell.padding[3], ", ", cell.padding[4], ")\n", sep = "")
cat("\n")
}
}
}
if(length(get.current.sector.index())) cat("Your current sector.index is ", get.current.sector.index(), "\n", sep = "")
if(get.current.track.index() > 0) cat("Your current track.index is ", get.current.track.index(), "\n", sep = "")
}
}
show.index = function() {
circos.info(plot = TRUE)
warning_wrap("`show.index` is deprecated, please use `circos.info` instead.")
}
get.cell.meta.data = function(name, sector.index = get.current.sector.index(),
track.index = get.current.track.index()) {
sector.index = as.character(sector.index)
if(length(sector.index) == 0) {
stop_wrap("It seems the circular plot has not been initialized.")
}
if(length(track.index) == 0) {
stop_wrap("It seems the track has not been created.")
}
if(length(sector.index) != 1) {
stop_wrap("Length of `sector.index` should only be 1.")
}
if(length(track.index) != 1) {
stop_wrap("Length of `track.index` should only be 1.")
}
if(track.index == 0) {
stop_wrap("It seems the track has not been created.")
}
if(!any(sector.index %in% get.all.sector.index())) {
stop_wrap("Cannot find sector: ", sector.index, ".")
}
if(!any(track.index %in% get.all.track.index())) {
stop_wrap("Cannot find track: ", track.index, ".")
}
current.sector.data = get.sector.data(sector.index)
current.cell.data = get.cell.data(sector.index, track.index)
cell.padding = current.cell.data$cell.padding
if(length(name) != 1) {
stop_wrap("``name`` should only have length of 1.")
}
if(name == "xlim") {
return(current.cell.data$xlim)
} else if(name == "ylim") {
return(current.cell.data$ylim)
} else if(name == "xrange") {
xlim = current.cell.data$xlim
return(xlim[2] - xlim[1])
} else if(name == "yrange") {
ylim = current.cell.data$ylim
return(ylim[2] - ylim[1])
} else if(name == "xcenter") {
xlim = current.cell.data$xlim
return((xlim[2] + xlim[1])/2)
} else if(name == "ycenter") {
ylim = current.cell.data$ylim
return((ylim[2] + ylim[1])/2)
} else if(name == "cell.xlim") {
return(current.cell.data$cell.xlim)
} else if(name == "cell.ylim") {
return(current.cell.data$cell.ylim)
} else if(name == "sector.numeric.index") {
return(which(get.all.sector.index() == sector.index))
} else if(name == "sector.index") {
return(sector.index)
} else if(name == "track.index") {
return(track.index)
} else if(name == "xplot") {
x = current.sector.data[c("start.degree", "end.degree")]
names(x) = NULL
x = x %% 360
return(x)
} else if(name == "yplot") {
return(c(current.cell.data$track.start - current.cell.data$track.height, current.cell.data$track.start))
} else if(name == "cell.width") {
x = current.sector.data[c("start.degree", "end.degree")]
return((x[1] - x[2]) %% 360)
} else if(name == "cell.height") {
y = c(current.cell.data$track.start - current.cell.data$track.height, current.cell.data$track.start)
return(y[2] - y[1])
} else if(name == "track.margin") {
return(current.cell.data$track.margin)
} else if(name == "cell.padding") {
return(current.cell.data$cell.padding)
} else if(name == "cell.start.degree") {
x = current.sector.data["start.degree"]
names(x) = NULL
x = x %% 360
return(x)
} else if(name == "cell.end.degree") {
x = current.sector.data["end.degree"]
names(x) = NULL
x = x %% 360
return(x)
} else if(name == "cell.bottom.radius") {
return(current.cell.data$track.start - current.cell.data$track.height)
} else if(name == "cell.top.radius") {
return(current.cell.data$track.start)
} else if(name == "bg.col") {
return(current.cell.data$bg.col)
} else if(name == "bg.border") {
return(current.cell.data$bg.border)
} else if(name == "bg.lty") {
return(current.cell.data$bg.lty)
} else if(name == "bg.lwd") {
return(current.cell.data$bg.lwd)
} else if(name == "track.height") {
return(current.cell.data$track.height)
} else {
env = circos.par("__tempenv__")
if(!is.null(env$track.meta.data)) {
track.index = as.character(track.index)
if(!is.null(env$track.meta.data[[track.index]])) {
if(name %in% names(env$track.meta.data[[track.index]])) {
return(env$track.meta.data[[track.index]][[name]])
}
}
}
if(!is.null(env$sector.meta.data)) {
if(!is.null(env$sector.meta.data[[sector.index]])) {
if(name %in% names(env$sector.meta.data[[sector.index]])) {
return(env$sector.meta.data[[sector.index]][[name]])
}
}
}
}
return(NULL)
}
add.track.meta.data = function(name, value, track.index = get.current.track.index()) {
env = circos.par("__tempenv__")
if(is.null(env$track.meta.data)) env$track.meta.data = list()
track.index = as.character(track.index)
if(is.null(env$track.meta.data[[track.index]])) env$track.meta.data[[track.index]] = list()
env$track.meta.data[[track.index]][[name]] = value
}
add.sector.meta.data = function(name, value, sector.index = get.current.sector.index()) {
sector.index = as.character(sector.index)
env = circos.par("__tempenv__")
if(is.null(env$sector.meta.data)) env$sector.meta.data = list()
if(is.null(env$sector.meta.data[[sector.index]])) env$sector.meta.data[[sector.index]] = list()
env$sector.meta.data[[sector.index]][[name]] = value
}
CELL_META = "don't use me directly"
class(CELL_META) = "CELL_META"
names.CELL_META = function(x) {
sector.index = get.current.sector.index()
track.index = get.current.track.index()
nm = c("xlim", "ylim", "xrange", "yrange", "xcenter", "ycenter", "cell.xlim", "cell.ylim",
"sector.numeric.index", "sector.index", "track.index", "xplot", "yplot", "cell.width", "cell.height", "track.margin", "cell.padding",
"cell.start.degree", "cell.end.degree", "cell.bottom.radius", "cell.top.radius", "bg.col", "bg.border",
"bg.lty", "bg.lwd", "track.height")
env = circos.par("__tempenv__")
if(track.index > 0) {
if(!is.null(env$track.meta.data)) {
track.index = as.character(track.index)
if(!is.null(env$track.meta.data[[track.index]])) {
nm = c(nm, names(env$track.meta.data[[track.index]]))
}
}
}
if(!is.null(sector.index)) {
if(!is.null(env$sector.meta.data)) {
if(!is.null(env$sector.meta.data[[sector.index]])) {
nm = c(nm, names(env$sector.meta.data[[sector.index]]))
}
}
}
return(nm)
}
"$.CELL_META" = function(x, name) {
get.cell.meta.data(name)
}
print.CELL_META = function(x, ...) {
cat(paste(strwrap("Please use in a form of `CELL_META$name` where `name` should be supported in `get.cell.meta.data()`. Type `names(CELL_META)` for supported names.\n"), collapse = "\n"), "\n")
} |
pdb_make_ipm <- function(proto_ipm_list, addl_args = list()) {
.check_make_ipm_args(proto_ipm_list, addl_args)
made_calls <- .make_ipm_calls(proto_ipm_list, addl_args)
out <- lapply(made_calls, eval)
class(out) <- c("pdb_ipm", "list")
return(out)
} |
ml_prefixspan <- function(x, seq_col = "sequence", min_support = 0.1,
max_pattern_length = 10,
max_local_proj_db_size = 32000000,
uid = random_string("prefixspan_"), ...) {
check_dots_used()
UseMethod("ml_prefixspan")
}
ml_prefixspan.spark_connection <- function(x, seq_col = "sequence", min_support = 0.1,
max_pattern_length = 10,
max_local_proj_db_size = 32000000,
uid = random_string("prefixspan_"), ...) {
.args <- list(
seq_col = seq_col,
min_support = min_support,
max_pattern_length = max_pattern_length,
max_local_proj_db_size = max_local_proj_db_size
) %>%
c(rlang::dots_list(...)) %>%
validator_ml_prefixspan()
uid <- cast_string(uid)
jobj <- invoke_new(x, "org.apache.spark.ml.fpm.PrefixSpan", uid) %>%
invoke(
"%>%",
list("setSequenceCol", .args[["seq_col"]]),
list("setMinSupport", .args[["min_support"]]),
list("setMaxPatternLength", .args[["max_pattern_length"]]),
list("setMaxLocalProjDBSize", .args[["max_local_proj_db_size"]])
)
new_ml_prefixspan_model(jobj)
}
validator_ml_prefixspan <- function(.args) {
.args[["seq_col"]] <- cast_string(.args[["seq_col"]])
.args[["min_support"]] <- cast_scalar_double(.args[["min_support"]])
.args[["max_pattern_length"]] <- cast_integer(.args[["max_pattern_length"]])
.args[["max_local_proj_db_size"]] <- cast_integer(.args[["max_local_proj_db_size"]])
.args
}
new_ml_prefixspan_model <- function(jobj) {
new_ml_transformer(
jobj,
frequent_sequential_patterns = function(x) {
invoke(jobj, "findFrequentSequentialPatterns", spark_dataframe(x)) %>%
sdf_register()
},
class = "ml_prefixspan_model"
)
}
ml_freq_seq_patterns <- function(model) {
model$frequent_sequential_patterns
} |
colf_nls <- function(formula, data, start = NULL, trace = FALSE,
control = NULL, na.action = c('na.omit', 'na.fail', 'na.exclude'),
lower = -Inf, upper = Inf, ...) {
na.action <- match.arg(na.action)
data <- get(na.action)(data)
model_ingredients <- construct_formula(formula, data)
if (is.null(start)) {
start <- as.list(rep(1, length(model_ingredients$x_coef_names)))
names(start) <- model_ingredients$x_coef_names
} else {
start <- as.list(start)
names(start) <- model_ingredients$x_coef_names
}
nls_mod <- nls(model_ingredients$model_formula,
data = model_ingredients$model_data,
start = start,
trace = trace,
control = control,
lower = lower,
upper = upper,
algorithm = 'port',
...)
nls_mod$formula <- formula
nls_mod$model_data <- data
class(nls_mod) <- c('colf_nls', 'nls')
nls_mod
} |
SLE <- function(level){
x <- NULL
if(level==1){
x1 <- github.cssegisanddata.covid19(country = "Sierra Leone")
x2 <- ourworldindata.org(id = "SLE")
x <- full_join(x1, x2, by = "date")
}
return(x)
} |
CAScenters<-function(CAS, y=NULL) {
averageCAS<-function(x) {
avccf = x[[1]]
if(length(x)>1) {
for(i in 2:length(x)) {
avccf = avccf + x[[i]]
}
avccf = avccf/length(x)
}
return(avccf)
}
sumCAS<-function(x) {
sccf = x[[1]]
if(length(x)>1) {
for(i in 2:length(x)) {
sccf = sccf + x[[i]]
}
}
return(sccf)
}
if(!is.null(y)) {
if(is.vector(y) || is.factor(y)) {
CC = lapply(split(CAS, as.factor(y)), FUN = averageCAS)
} else if(inherits(y,"vegclust")) {
if(y$method %in% c("KMdd","FCMdd","HNCdd","NCdd","PCMdd")) {
mi = c(y$mobileCenters, y$fixedCenters)
CC = CAS[mi]
} else {
memb = y$memb
CC = vector("list", ncol(memb))
if(nrow(memb)!=length(CAS)) stop("The number of plots in CAS has to be equal to the classified elements in y")
for(cl in 1:ncol(memb)) {
CASmemb = CAS
s = sum(memb[,cl])
for(i in 1:nrow(memb)) CASmemb[[i]] = CASmemb[[i]]*memb[i,cl]
CC[[cl]]<-sumCAS(CASmemb)/s
names(CC)[cl]<-colnames(memb)[cl]
}
}
}
} else {
CC = list(meanCAS=averageCAS(CAS))
}
class(CC)<-c("CAS","list")
return(CC)
} |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.