code
stringlengths
1
13.8M
rename_sequences = function(fasta_files, df = NULL, filename = NULL, marker_names = NULL, out = NULL, format = "fasta", excel.sheet = 1, unalign = FALSE, exclude){ if (missing(fasta_files)) { fasta_files <- find_fasta(dir = getwd(), exclude = exclude) } dir_name <- unique(sapply(fasta_files, dirname)) if (length(dir_name) > 1) { stop("All fasta files should be located in the same directory.") } fasta_cols <- sapply(fasta_files, basename) if (anyDuplicated(fasta_cols)) { stop("Some files share the same name (", fasta_cols[anyDuplicated(fasta_cols)], ").") } if (is.null(df) & is.null(filename)) { stop("Either `filename` or `df` must be provided.") } if (!is.null(df) & !is.null(filename)) { stop("Only one of `filename` or `df` must be provided, not both.") } if (!is.null(filename)) { if(grepl(".txt$",filename)==TRUE){ df=read.table(filename,header=T,sep="\t",check.names=F) } else if(grepl(".xlsx$",filename)==TRUE){ df=readxl::read_xlsx(path=filename, sheet=excel.sheet, col_names=TRUE) colnames(df)=unlist(lapply(colnames(df),.colname.clean)) df=as.data.frame(apply(df,2,.clean.NA)) } else { stop("Input file format not recognized. `filename` must end with \".txt\" or \".xlsx\".") } } else { stopifnot(!is.null(df)) df <- as.data.frame(df) } df = df[,which(colnames(df)=="name"):ncol(df)] l=list() maxlen=0 for (i in 1:length(fasta_files)){ dataset=ape::read.FASTA(fasta_files[i]) a=sd(unlist(lapply(dataset,length))) if(a!=0){cat("ATTENTION! In file ",fasta_files[i]," not all sequences of same length \n")} l[[i]]=assign(fasta_files[i],dataset) if(length(names(dataset))>maxlen){maxlen=length(names(dataset))} } names(l)=fasta_cols alignments = l lR=alignments[names(alignments) %in% colnames(df)[-1]] new_names = get_genbank_table(df) for (i in 2:ncol(new_names)){ new_names[,i] = paste0(unlist(new_names[,i]),"_",unlist(new_names[,1]),"_",rep(marker_names[i-1],length(unlist(new_names[,1])))) new_names[,i] = unlist(lapply(new_names[,i],.clean.names)) } for (j in 1:length(lR)){ align=names(lR[j]) lR[[j]]=.rename.seqs(lR[[j]],table=data.frame(name = new_names[,colnames(new_names)==align],df[,2:ncol(df)]),align=align) lR[[j]]=lR[[j]][!is.na(names(lR[[j]]))] if (unalign){lR[[j]] = ape::del.gaps(lR[[j]])} } for (i in 2:ncol(new_names)){ sequences_in_alignments = new_names[,i] %in% names(lR[[match(colnames(new_names)[i],names(lR))]]) new_names[!sequences_in_alignments,i] = "" } if(!is.null(out)){dir_name = out} if(is.null(out)){dir_name = "renamed"} base_dir_name = dir_name N = 0 while (dir.exists(dir_name)) { N = N+1 dir_name = paste0(base_dir_name,"_",N) } dir.create(dir_name) for (i in 1:length(lR)){ original_alignment_name = names(lR)[i] write.alignment(lR[[i]],name=paste0(dir_name,"/renamed_",stringr::str_remove(names(lR)[[i]],".fas.*.*")),format=format) colnames(new_names)[match(original_alignment_name,colnames(new_names))]=paste0("renamed_",stringr::str_remove(names(lR)[[i]],".fas.*.*"),".fasta") } writexl::write_xlsx(new_names,paste0(dir_name,"/renamed_correspondence_table.xlsx")) }
curve_srvf_align <- function(beta, mode="O", rotated=T, scale = F, maxit=20, ms = "mean"){ if (mode=="C"){ isclosed = TRUE } tmp = dim(beta) n = tmp[1] T1 = tmp[2] N = tmp[3] out = curve_karcher_mean(beta, mode, rotated, scale, maxit, ms) beta<-out$beta mu = out$mu betamean = out$betamean v = out$v q = out$q qn = array(0, c(n,T1,N)) betan = array(0, c(n,T1,N)) for (ii in 1:N){ q1 = q[,,ii] beta1 = beta[,,ii] out = find_rotation_seed_unqiue(mu,q1,mode) beta1 = out$Rbest%*%beta1 beta1n = group_action_by_gamma_coord(beta1, out$gambest) q1n = curve_to_q(beta1n)$q out = find_best_rotation(mu, q1n) qn[,,ii] = out$q2new betan[,,ii] = out$R%*%beta1n } return(list(betan=betan, qn=qn, betamean=betamean, q_mu=mu)) }
msummary(lm(Salary ~ Gender + PhD + Age, data = SalaryGender))
geom_balance <- function(node, fill="steelblue", color='white', alpha=.5, extend=0, extendto=NULL) { data = NULL stat = "balance" position = "identity" show.legend = NA na.rm = TRUE inherit.aes = FALSE default_aes <- aes_(x=~x, y=~y, node=~node, parent=~parent, branch.length=~branch.length) mapping <- default_aes layer( stat=StatBalance, data = data, mapping = mapping, geom = GeomRect, position = position, show.legend=show.legend, inherit.aes = inherit.aes, params = list(node=node, fill=fill, color=color, alpha=alpha, extend=extend, extendto=extendto, na.rm = na.rm), check.aes = FALSE ) } StatBalance <- ggproto("StatBalance", Stat, compute_group = function(self, data, scales, params, node, extend, extendto) { df <- get_balance_position(data, node) df$xmax <- df$xmax + extend if (!is.null(extendto) && !is.na(extendto)) { if (extendto < df$xmax) { warning("extendto is too small, keep the original xmax value...") } else { df$xmax <- extendto } } return(df) }, required_aes = c("x", "y", "branch.length") ) get_balance_position <- function(data, node) { purrr::map_df(c(1, 2), get_balance_position_, data=data, node=node) } get_balance_position_ <- function(data, node, direction) { ch <- tryCatch(tidytree:::child.tbl_tree(data, node)$node, error=function(e) NULL) if (length(ch) < 2 || is.null(ch)){ stop('balance cannot be a tip') } else if (length(ch) > 2){ stop('balance has >2 direct child nodes, can use ape::multi2di to convert to binary tree') } i <- match(node, data$node) sp <- tryCatch(offspring.tbl_tree(data, ch[direction])$node,error=function(e) ch[direction]) if (length(sp) == 0) { sp <- ch[direction] } sp.all <- offspring.tbl_tree(data, i)$node sp.df <- data[match(sp, data$node),] sp.all.df <- data[match(sp.all, data$node),] n.df <- data[i,] x <- sp.all.df$x y <- sp.df$y if ("branch.length" %in% colnames(data)) { xmin <- min(x)-data[i, "branch.length"]/2 } else { xmin <- min(sp.df$branch) } data.frame(xmin=xmin, xmax = max(x), ymin=min(y)-0.5, ymax=max(y)+0.5) }
library(monocle) library(HSMMSingleCell) context("markerDiffTable is functioning properly") pd <- new("AnnotatedDataFrame", data = HSMM_sample_sheet) fd <- new("AnnotatedDataFrame", data = HSMM_gene_annotation) HSMM <- newCellDataSet(as.matrix(HSMM_expr_matrix), phenoData = pd, featureData = fd) HSMM <- newCellDataSet(as(umi_matrix, "sparseMatrix"), phenoData = pd, featureData = fd, lowerDetectionLimit = 0.5, expressionFamily = negbinomial.size()) cellranger_pipestance_path <- "/path/to/your/pipeline/output/directory" gbm <- load_cellranger_matrix(cellranger_pipestance_path) gbm_cds <- newCellDataSet(exprs(gbm), phenoData = new("AnnotatedDataFrame", data = pData(gbm)), phenoData = new("AnnotatedDataFrame", data = fData(gbm)), lowerDetectionLimit = 0.5, expressionFamily = negbinomial.size()) HSMM <- detectGenes(HSMM, min_expr = 0.1) expressed_genes <- row.names(subset(fData(HSMM), num_cells_expressed >= 10)) valid_cells <- row.names(subset(pData(HSMM), Cells.in.Well == 1 & Control == FALSE & Clump == FALSE & Debris == FALSE & Mapped.Fragments > 1000000)) HSMM <- HSMM[,valid_cells] pData(HSMM)$Total_mRNAs <- Matrix::colSums(exprs(HSMM)) HSMM <- HSMM[,pData(HSMM)$Total_mRNAs < 1e6] upper_bound <- 10^(mean(log10(pData(HSMM)$Total_mRNAs)) + 2*sd(log10(pData(HSMM)$Total_mRNAs))) lower_bound <- 10^(mean(log10(pData(HSMM)$Total_mRNAs)) - 2*sd(log10(pData(HSMM)$Total_mRNAs))) HSMM <- HSMM[,pData(HSMM)$Total_mRNAs > lower_bound & pData(HSMM)$Total_mRNAs < upper_bound] HSMM <- detectGenes(HSMM, min_expr = 0.1) L <- log(exprs(HSMM[expressed_genes,])) melted_dens_df <- melt(Matrix::t(scale(Matrix::t(L)))) qplot(value, geom = "density", data = melted_dens_df) + stat_function(fun = dnorm, size = 0.5, color = 'red') + xlab("Standardized log(FPKM)") + ylab("Density") MYF5_id <- row.names(subset(fData(HSMM), gene_short_name == "MYF5")) ANPEP_id <- row.names(subset(fData(HSMM), gene_short_name == "ANPEP")) cth <- newCellTypeHierarchy() cth <- addCellType(cth, "Myoblast", classify_func = function(x) { x[MYF5_id,] >= 1 }) cth <- addCellType(cth, "Fibroblast", classify_func = function(x) { x[MYF5_id,] < 1 & x[ANPEP_id,] > 1 }) HSMM <- classifyCells(HSMM, cth, 0.1) test_that("markerDiffTable works properly in vignette", expect_error(markerDiffTable(HSMM[expressed_genes,], cth, residualModelFormulaStr = "~Media + num_genes_expressed", cores = 1), NA)) test_that("markerDiffTable works when 'balanced set to true'", expect_error(markerDiffTable(HSMM[expressed_genes,], cth, balanced = TRUE, residualModelFormulaStr = "~Media + num_genes_expressed", cores = 1), NA)) test_that("markerDiffTable works when 'verbose set to true'", expect_error(markerDiffTable(HSMM[expressed_genes,], cth, verbose = TRUE, residualModelFormulaStr = "~Media + num_genes_expressed", cores = 1), NA)) test_that("markerDiffTable throws error if cds is not of type 'CellDataSet'", expect_error(markerDiffTable(cth, cth, balanced = TRUE, residualModelFormulaStr = "~Media + num_genes_expressed", cores = 1), "Error cds is not of type 'CellDataSet'")) test_that("markerDiffTable throws error if cds is not of type 'CellDataSet'", expect_error(markerDiffTable(HSMM[expressed_genes,], HSMM[expressed_genes], balanced = TRUE, residualModelFormulaStr = "~Media + num_genes_expressed", cores = 1), "Error cth is not of type 'CellTypeHierarchy'"))
source("build_lesson.R") get_stage("before_install") %>% add_code_step(install.packages("git2r")) %>% add_code_step(update.packages(ask = FALSE)) get_stage("install") %>% add_code_step(system("python -m pip install update-copyright")) %>% add_code_step(remotes::install_deps(dependencies = TRUE)) %>% add_step(step_install_github("fmichonneau/checker")) get_stage("deploy") %>% add_step(build_lesson()) %>% add_step(check_links()) if (Sys.getenv("id_rsa") != "") { get_stage("before_deploy") %>% add_step(step_setup_ssh()) if (ci()$get_branch() == "main" || ci()$is_tag()) { get_stage("deploy") %>% add_step(step_push_deploy(path = "_site", branch = "gh-pages")) } if (ci()$get_branch() == "tidyverse-first") { get_stage("deploy") %>% add_step(step_push_deploy(path = "_site", branch = "development")) } }
longdat2 <- function(R){ N <- ncol(R) D <- max(apply(R, 1, function(x) max(tabulate(x)))) X <- list() for (d in seq_len(D)){ comb <- combn(seq_len(N), d) A <- matrix(0, nrow = ncol(comb), ncol = N) A[cbind(rep(seq_len(ncol(comb)), each = nrow(comb)), c(comb))] <- 1/d B <- matrix(0, nrow = ncol(comb), ncol = D - 1) if (ncol(B)) B[, d - 1] <- 1 X[[d]] <- cbind(A, B) } resX <- resY <- resZ <- list() k <- 1 for (i in seq_len(nrow(R))){ J <- max(R[i,]) J <- J - (sum(R[i,] == J) == 1) resX[[i]] <- resY[[i]] <- resZ[[i]] <- list() for (j in seq_len(J)){ id <- which(R[i,] < j) Xij <- list() for (d in seq_len(min(D, N - length(id)))){ keep <- rowSums(X[[d]][, id, drop = FALSE]) == 0 Xij[[d]] <- X[[d]][keep,] } resX[[i]][[j]] <- do.call("rbind", Xij) resZ[[i]][[j]] <- rep(k, nrow(resX[[i]][[j]])) resY[[i]][[j]] <- numeric(nrow(resX[[i]][[j]])) id <- colSums(t(resX[[i]][[j]][, seq_len(N)]) == (R[i,] == j)/ sum(R[i,] == j)) == N resY[[i]][[j]][id] <- 1 k <- k + 1 } } res <- data.frame(y = unlist(resY)) res$X <- do.call("rbind", unlist(resX, recursive = FALSE)) res$z <- factor(unlist(resZ)) res }
histbackback <- function(x, y, brks = NULL, xlab = NULL, axes = TRUE, probability = FALSE, xlim = NULL, ylab='', ...) { if(length(xlab)) xlab <- rep(xlab, length = 2) if(is.list(x)) { namx <- names(x) y <- x[[2]] if(!length(xlab)) { if(length(namx)) xlab <- namx[1:2] else { xlab <- deparse(substitute(x)) xlab <- paste(xlab, c("x", "y"), sep = "$") } } x <- x[[1]] } else if(!length(xlab)) xlab <- c(deparse(substitute(x)), deparse(substitute(y))) if(!length(brks)) brks <- hist(c(x, y), plot = FALSE)$breaks ll <- hist(x, breaks = brks, plot = FALSE) rr <- hist(y, breaks = brks, plot = FALSE) if(probability) { ll$counts <- ll$density rr$counts <- rr$density } if(length(xlim) == 2) xl <- xlim else { xl <- pretty(range(c( - ll$counts, rr$counts))) xl <- c(xl[1], xl[length(xl)]) } if(length(ll$counts) > 0) { barplot(-ll$counts, xlim=xl, space=0, horiz=TRUE, axes=FALSE, col=0, ...) par(new = TRUE) } if(length(rr$counts) > 0) barplot(rr$counts, xlim=xl, space=0, horiz=TRUE, axes=FALSE, col=0, ...) if(axes) { mgp.axis(1, at=pretty(xl), labels=format(abs(pretty(xl)))) del <- (brks[2]-brks[1] - (brks[3]-brks[2]))/2 brks[1] <- brks[1] + del brks[-1] <- brks[-1] - del at <- 0 : (length(brks) - 1) pb <- pretty(brks) atpb <- approxExtrap(brks, at, xout=pb)$y mgp.axis(2, at=atpb, labels=format(pb)) title(xlab = xlab[1], adj = (-0.5 * xl[1])/( - xl[1] + xl[2])) title(xlab = xlab[2], adj = (-xl[1] + 0.5 * xl[2])/(-xl[1] + xl[2])) if(ylab!='') title(ylab=ylab) } abline(v = 0) box() invisible(list(left = ll$counts, right = rr$counts, breaks = brks)) }
microaggregation <- function(obj, variables=NULL, aggr=3, strata_variables=NULL, method="mdav", weights=NULL, nc=8, clustermethod="clara", measure="mean", trim=0, varsort=1, transf="log") { if (!is.data.frame(obj) & !is.null(strata_variables)) { message("Argument 'strata_variables' is ignored. Only variables specified in slot 'strataVar' (if any) of the input object are used!\n") } microaggregationX(obj=obj, variables=variables, aggr=aggr, strata_variables=strata_variables, method=method, weights=weights, nc=nc, clustermethod=clustermethod, measure=measure, trim=trim, varsort=varsort, transf=transf) } setGeneric("microaggregationX", function(obj, variables=NULL, aggr=3, strata_variables=NULL, method="mdav", weights=NULL, nc=8, clustermethod="clara", measure="mean", trim=0, varsort=1, transf="log") { standardGeneric("microaggregationX") }) setMethod(f="microaggregationX", signature=c("sdcMicroObj"), definition=function(obj, variables=NULL, aggr=3, method="mdav", nc=8, clustermethod="clara", measure="mean", trim=0, varsort=1, transf="log") { x <- get.sdcMicroObj(obj, type="manipNumVars") if (is.null(variables)) { variables <- colnames(x) } strataVars <- get.sdcMicroObj(obj, type="strataVar") if (length(strataVars) > 0) { sx <- get.sdcMicroObj(obj, type="origData")[, strataVars, drop=FALSE] x <- cbind(x, sx) strataVars <- utils::tail(colnames(x), 1) } weights <- get.sdcMicroObj(obj, type="weightVar") if (!is.null(weights)) { weights <- get.sdcMicroObj(obj, type="origData")[, weights] } if (any(weights < 0)) { warnMsg <- "negative weights have been detected!\n" obj <- addWarning(obj, warnMsg=warnMsg, method="microaggregation", variable=NA) } res <- microaggregationWORK(x, variables=variables, aggr=aggr, strata_variables=strataVars, method=method, weights=weights, nc=nc, clustermethod=clustermethod, measure=measure, trim=trim, varsort=varsort, transf=transf) obj <- nextSdcObj(obj) x[, variables] <- res$mx[, variables] obj <- set.sdcMicroObj(obj, type="manipNumVars", input=list(as.data.frame(x[, colnames(obj@origData)[obj@numVars], drop=FALSE]))) obj <- dRisk(obj) obj <- dUtility(obj) obj }) setMethod(f="microaggregationX", signature=c("data.frame"), definition=function(obj, variables=NULL, aggr=3, strata_variables=NULL, method="mdav", weights=NULL, nc=8, clustermethod="clara", measure="mean", trim=0, varsort=1, transf="log") { if (is.null(variables)) { variables <- colnames(obj) } microaggregationWORK(x=obj, variables=variables, aggr=aggr, strata_variables=strata_variables, method=method, weights=weights, nc=nc, clustermethod=clustermethod, measure=measure, trim=trim, varsort=varsort, transf=transf) }) microaggregationWORK <- function(x, variables=colnames(x), method="mdav", aggr=3, weights=NULL, nc=8, clustermethod="clara", measure="mean", trim=0, varsort=1, transf="log", strata_variables=NULL) { factorOfTotals <- function(x, aggr) { n <- dim(x)[1] abgerundet <- floor(n/aggr) fot <- n/abgerundet return(fot) } weightedQuantile <- function(x, weights=NULL, probs=seq(0, 1, 0.25), sorted=FALSE, na.rm=FALSE) { if (!is.numeric(x)) { stop("'x' must be a numeric vector") } n <- length(x) if (n == 0 || (!isTRUE(na.rm) && any(is.na(x)))) { return(rep.int(NA, length(probs))) } if (!is.null(weights)) { if (!is.numeric(weights)) { stop("'weights' must be a numeric vector") } else if (length(weights) != n) { stop("'weights' must have the same length as 'x'") } else if (!all(is.finite(weights))) { stop("missing or infinite weights") } if (any(weights < 0)) { warnMsg <- "negative weights have been detected!\n" warning(warnMsg) } if (!is.numeric(probs) || all(is.na(probs)) || isTRUE(any(probs < 0 | probs > 1))) { stop("'probs' must be a numeric vector with values in [0,1]") } if (all(weights == 0)) { warnMsg <- "all weights equal 0!\n" obj <- addWarning(obj, warnMsg=warnMsg, method="microaggregation", variable=NA) warning(warnMsg) return(rep.int(0, length(probs))) } } if (isTRUE(na.rm)) { indices <- !is.na(x) x <- x[indices] if (!is.null(weights)) weights <- weights[indices] } if (!isTRUE(sorted)) { order <- order(x) x <- x[order] weights <- weights[order] } if (is.null(weights)) rw <- (1:n)/n else rw <- cumsum(weights)/sum(weights) q <- sapply(probs, function(p) { if (p == 0) return(x[1]) else if (p == 1) return(x[n]) select <- min(which(rw >= p)) if (rw[select] == p) mean(x[select:(select + 1)]) else x[select] }) return(unname(q)) } weightedMedian <- function(x, weights=NULL, sorted=FALSE, na.rm=FALSE) { weightedQuantile(x, weights, probs=0.5, sorted=sorted, na.rm=na.rm) } indexMicro <- function(x, aggr) { n <- dim(x)[1] if (n < 2 * aggr) { stop(paste0("Too less observations (", n, ") for aggregate =", aggr,"\n")) } aa <- seq(1, n, aggr) j <- 1 teiler <- n/aggr d1 <- 1:n index <- list() if (teiler %in% 1:n) { for (i in 1:length(aa)) { index[[i]] <- d1[j:(j + aggr - 1)] j <- j + aggr } } else { for (i in 1:(length(aa) - 2)) { index[[i]] <- d1[j:(j + aggr - 1)] j <- j + aggr } index[[i + 1]] <- d1[(j):n] } index } means <- function(x, index, measure, trim=0) { m <- matrix(ncol=ncol(x), nrow=length(index)) if (measure == "mean" & is.null(weights)) { for (i in 1:length(index)) { m[i, ] <- colMeans(x[index[[i]], ]) } } if (measure == "median" & is.null(weights)) { for (i in 1:length(index)) { m[i, ] <- apply(x[index[[i]], ], 2, median) } } if (measure == "mean" & !is.null(weights)) { for (i in 1:length(index)) { m[i, ] <- apply(x[index[[i]], ], 2, function(x) stats::weighted.mean(x, w=weights[index[[i]]])) } } if (measure == "median" & !is.null(weights)) { for (i in 1:length(index)) { m[i, ] <- apply(x[index[[i]], ], 2, function(x) weightedMedian(x, weights=weights[index[[i]]])) } } if (measure == "trim") { for (i in 1:length(index)) { for (j in 1:length(index[[i]])) { m[i, ] <- apply(x[index[[i]], ], 2, mean, trim=trim) } } } if (measure == "onestep") { y <- x constant <- 3/1.486 for (i in 1:length(index)) { m1 <- apply(x[index[[i]], ], 2, median) m2 <- apply(x[index[[i]], ], 2, mad) limit1 <- m1 + constant * m2 limit2 <- m1 - constant * m2 for (ii in 1:length(index[[i]])) { if (any(x[index[[i]][ii], ] > limit1)) { w <- which(x[index[[i]][ii], ] > limit1) le <- length(w) y[index[[i]][ii], w] <- limit1[w] } if (any(x[index[[i]][ii], ] < limit2)) { w <- which(x[index[[i]][ii], ] < limit2) le <- length(w) y[index[[i]][ii], w] <- limit2[w] } m[i, ] <- colMeans(y[index[[i]], ]) } } } colnames(m) <- colnames(x) return(m) } blowup <- function(x, mr, aggr) { n <- dim(x)[1] aa <- seq(1, n, aggr) j <- 1 teiler <- n/aggr d1 <- 1:n xx <- matrix(0, ncol=ncol(x), nrow=nrow(x)) if (teiler %in% 1:n) { for (i in 1:length(aa)) { for (s in j:(j + aggr - 1)) { xx[s, ] <- as.matrix(mr[i, , drop=FALSE]) } j <- j + aggr } } else { for (i in 1:(length(aa) - 2)) { for (s in j:(j + aggr - 1)) { xx[s, ] <- as.matrix(mr[i, , drop=FALSE]) } j <- j + aggr } for (s in j:n) { xx[s, ] <- mr[i + 1, ] } } rownames(xx) <- rownames(x) xx } clust <- function(x, nc, clustermethod="clara", transf="log") { if (transf == "none") { y <- x } if (transf == "log") { y <- scale(log(x)) } if (transf == "boxcox") { lambda <- car::powerTransform(x)$lambda y <- scale(car::bcPower(x, lambda)) } if (clustermethod == "clara") { a <- clara(x, nc) clustresult <- a$clust centers <- a$med size <- a$clusinfo[, 1] } if (clustermethod == "pam") { a <- pam(x, nc) clustresult <- a$clust centers <- a$med size <- a$clusinfo[, 1] } if (clustermethod == "kmeans") { a <- stats::kmeans(x, nc) centers <- a$centers clustresult <- a$cluster size <- a$size } if (clustermethod == "cmeans") { a <- e1071::cmeans(x, nc) centers <- a$centers clustresult <- a$cluster size <- a$size res@mem <- a$mem } if (clustermethod == "bclust") { a <- e1071::bclust(x, nc) centers <- a$centers groesse <- rep(0, nc) for (i in seq(nc)) { groesse[i] <- length(which(a$cluster == i)) } size <- groesse clustresult <- a$cluster } list(centers=centers, clustresult=clustresult, nc=nc) } prcompRob <- function(X, k=0, sca="mad", scores=TRUE) { n <- nrow(X) p <- ncol(X) if (k == 0) { p1 <- min(n, p) } else { p1 <- k } S <- rep(1, p1) V <- matrix(1:(p * p1), ncol=p1, nrow=p) P <- diag(p) m <- apply(X, 2, median) Xcentr <- scale(X, center=m, scale=FALSE) for (k in 1:p1) { B <- Xcentr %*% P Bnorm <- sqrt(apply(B^2, 1, sum)) A <- diag(1/Bnorm) %*% B Y <- A %*% P %*% t(X) if (sca == "mad") s <- apply(Y, 1, mad) j <- order(s)[n] S[k] <- s[j] V[, k] <- A[j, ] if (V[1, k] < 0) V[, k] <- (-1) * V[, k] P <- P - (V[, k] %*% t(V[, k])) } if (scores) { list(scale=S, loadings=V, scores=Xcentr %*% V) } else list(scale=S, loadings=V) } micro_simple <- function(x, aggr, measure, trim) { index <- indexMicro(x, aggr) m <- means(x=x, index=index, measure=measure, trim=trim) mr <- round(m) blowxm <- blowup(x, m, aggr) return(list(x=x, method="simple", clustering=FALSE, aggr=aggr, nc=NULL, xm=m, roundxm=mr, clustermethod=NULL, measure=measure, trim=trim, varsort=NULL, transf=NULL, blowup=TRUE, blowxm=blowxm, fot=0)) } micro_single <- function(x, aggr, measure, trim, varsort) { sortvec <- sort(x[, varsort], index.return=TRUE)$ix xx <- x[sortvec, ] index <- indexMicro(xx, aggr) m <- means(x=xx, index=index, measure=measure, trim=trim) mr <- round(m) blowxm <- blowup(x, m, aggr) rownames(blowxm) <- rownames(xx) return(list(x=x, method="single", clustering=FALSE, aggr=aggr, nc=NULL, xm=m, roundxm=mr, clustermethod=NULL, measure=measure, trim=trim, varsort=varsort, transf=NULL, blowup=TRUE, blowxm=blowxm, fot=0)) } micro_onedims <- function(x, aggr, measure, trim) { i <- dim(x)[2] xx <- sapply(1:i, function(i) { x[order(x[, i]), i] }) xxx <- sapply(1:i, function(i) { rank(x[, i], ties.method="first") }) index <- indexMicro(xx, aggr) m <- means(x=xx, index=index, measure=measure, trim=trim) mr <- round(m) b <- blowup(x, m, aggr) y <- x for (i in 1:dim(x)[2]) { y[, i] <- b[xxx[, i], i] } return(list(x=x, method="onedims", clustering=FALSE, aggr=aggr, nc=NULL, xm=m, roundxm=mr, clustermethod=NULL, measure=measure, trim=trim, varsort=NULL, transf=NULL, blowup=TRUE, blowxm=y, fot=0)) } micro_pca <- function(x, aggr, measure, trim) { p <- stats::princomp(scale(x)) s1 <- sort(p$scores[, 1], index.return=TRUE)$ix xx <- x[s1, ] index <- indexMicro(xx, aggr) m <- means(x=xx, index=index, measure=measure, trim=trim) mr <- round(m) blowxm <- blowup(x, m, aggr) rownames(blowxm) <- rownames(xx) return(list(x=x, method="pca", clustering=FALSE, aggr=aggr, nc=NULL, xm=m, roundxm=mr, clustermethod=NULL, measure=measure, trim=trim, varsort=NULL, transf=NULL, blowup=TRUE, blowxm=blowxm, fot=0)) } micro_mcdpca <- function(x, aggr, measure, trim) { x.mcd <- cov.mcd(x, cor=TRUE) x.scale <- scale(x, x.mcd$center, sqrt(diag(x.mcd$cor))) p <- stats::princomp(x.scale, covmat=x.mcd) s1 <- sort(p$scores[, 1], index.return=TRUE)$ix xx <- x[s1, ] index <- indexMicro(xx, aggr) m <- means(x=xx, index=index, measure=measure, trim=trim) mr <- round(m) blowxm <- blowup(x, m, aggr) rownames(blowxm) <- rownames(xx) return(list(x=x, method="mcdpca", clustering=FALSE, aggr=aggr, nc=NULL, xm=m, roundxm=mr, clustermethod=NULL, measure=measure, trim=trim, varsort=NULL, transf=NULL, blowup=TRUE, blowxm=blowxm, fot=0)) } micro_pppca <- function(x, aggr, measure, trim) { p <- prcompRob(x) s1 <- sort(p$scores[, 1], index.return=TRUE)$ix xx <- x[s1, ] index <- indexMicro(xx, aggr) m <- means(x=xx, index=index, measure=measure, trim=trim) mr <- round(m) blowxm <- blowup(x, m, aggr) rownames(blowxm) <- rownames(xx) return(list(x=x, method="pppca", clustering=FALSE, aggr=aggr, nc=NULL, xm=m, roundxm=mr, clustermethod=NULL, measure=measure, trim=trim, varsort=NULL, transf=NULL, blowup=TRUE, blowxm=blowxm, fot=0)) } micro_influence <- function(x, aggr, measure, trim, clustermethod, transf, nc) { ac.scale <- clust(x=x, nc=nc, clustermethod=clustermethod, transf=transf) cent <- matrix(ac.scale$centers, ncol=nc, byrow=TRUE) j <- matrix(ncol=1, nrow=nc) vmax <- matrix(ncol=1, nrow=nc) for (i in 1:nc) { j[i, ] <- max(cent[, i]) vmax[i, ] <- which(cent[, i] == j[i, ]) } ncols <- c(1:ncol(x)) xx <- list() for (i in 1:nc) { w <- which(ac.scale$clustresult == i) s <- x[w, , drop=FALSE] xx[[i]] <- s[order(s[, vmax[i]]), ] } yy <- NULL for (i in 1:nc) { yy <- rbind(yy, matrix(unlist(xx[[i]]), ncol=ncol(x), dimnames=list(rownames(xx[[i]]), colnames(xx[[i]])))) } xx <- yy index <- indexMicro(xx, aggr) m <- means(x=xx, index=index, measure=measure, trim=trim) mr <- round(m) blowxm <- blowup(x, m, aggr) rownames(blowxm) <- rownames(yy) return(list(x=x, method="influence", clustering=TRUE, aggr=aggr, nc=ac.scale$nc, xm=m, roundxm=mr, clustermethod=clustermethod, measure=measure, trim=trim, varsort=NULL, transf=transf, blowup=TRUE, blowxm=blowxm, fot=0)) } micro_clustpca <- function(x, aggr, measure, trim, clustermethod, transf, nc) { ac.scale <- clust(x=x, nc=nc, clustermethod=clustermethod, transf=transf) cent <- matrix(ac.scale$centers, ncol=nc, byrow=TRUE) xx <- list() for (i in 1:nc) { w <- which(ac.scale$clustresult == i) if (length(w) < dim(x)[2]) { y <- x[w, , drop=FALSE] xx[[i]] <- y[order(y[, varsort]), ] } else { p <- stats::princomp(scale(x[w, , drop=FALSE]))$scores[, 1] psortind <- sort(p, index.return=TRUE)$ix y <- x[w, , drop=FALSE] xx[[i]] <- y[psortind, ] } } yy <- NULL for (i in 1:nc) { yy <- rbind(yy, matrix(unlist(xx[[i]]), ncol=ncol(x), dimnames=list(rownames(xx[[i]]), colnames(xx[[i]])))) } xx <- yy index <- indexMicro(xx, aggr) m <- means(x=xx, index=index, measure=measure, trim=trim) mr <- round(m) blowxm <- blowup(x, m, aggr) rownames(blowxm) <- rownames(xx) return(list(x=x, method="clustpca", clustering=TRUE, aggr=aggr, nc=ac.scale$nc, xm=m, roundxm=mr, clustermethod=clustermethod, measure=measure, trim=trim, varsort=NULL, transf=transf, blowup=TRUE, blowxm=blowxm, fot=0)) } micro_clustmcdpca <- function(x, aggr, measure, trim, clustermethod, transf, nc) { ac.scale <- clust(x=x, nc=nc, clustermethod=clustermethod, transf=transf) cent <- matrix(ac.scale$centers, ncol=nc, byrow=TRUE) xx <- list() for (i in 1:nc) { w <- which(ac.scale$clustresult == i) if (length(w) < dim(x)[2]) { y <- x[w, , drop=FALSE] xx[[i]] <- y[order(y[, varsort]), ] } else { message("length(w):", length(w), "\n") x.mcd <- cov.mcd(x[w, ], cor=TRUE) x.scale <- scale(x[w, ], x.mcd$center, sqrt(diag(x.mcd$cor))) p <- stats::princomp(x.scale, covmat=x.mcd)$scores[, 1] psortind <- sort(p, index.return=TRUE)$ix y <- x[w, , drop=FALSE] xx[[i]] <- y[psortind, ] } } yy <- NULL for (i in 1:nc) { yy <- rbind(yy, matrix(unlist(xx[[i]]), ncol=ncol(x), dimnames=list(rownames(xx[[i]]), colnames(xx[[i]])))) } xx <- yy index <- indexMicro(xx, aggr) m <- means(x=xx, index=index, measure=measure, trim=trim) mr <- round(m) blowxm <- blowup(x, m, aggr) rownames(blowxm) <- rownames(xx) return(list(x=x, method="clustmcdpca", clustering=TRUE, aggr=aggr, nc=ac.scale$nc, xm=m, roundxm=mr, clustermethod=clustermethod, measure=measure, trim=trim, varsort=NULL, transf=transf, blowup=TRUE, blowxm=blowxm, fot=0)) } micro_clustpppca <- function(x, aggr, measure, trim, clustermethod, transf, nc) { ac.scale <- clust(x=x, nc=nc, clustermethod=clustermethod, transf=transf) cent <- matrix(ac.scale$centers, ncol=nc, byrow=TRUE) xx <- list() for (i in 1:nc) { w <- which(ac.scale$clustresult == i) if (length(w) < dim(x)[2]) { y <- x[w, , drop=FALSE] xx[[i]] <- y[order(y[, varsort]), ] } else { p <- prcompRob(x[w, , drop=FALSE], 1)$scores psortind <- sort(p, index.return=TRUE)$ix y <- x[w, , drop=FALSE] xx[[i]] <- y[psortind, ] } } yy <- NULL for (i in 1:nc) { yy <- rbind(yy, matrix(unlist(xx[[i]]), ncol=ncol(x), dimnames=list(rownames(xx[[i]]), colnames(xx[[i]])))) } xx <- yy index <- indexMicro(xx, aggr) m <- means(x=xx, index=index, measure=measure, trim=trim) mr <- round(m) blowxm <- blowup(x, m, aggr) rownames(blowxm) <- rownames(xx) return(list(x=x, method="clustpppca", clustering=TRUE, aggr=aggr, nc=ac.scale$nc, xm=m, roundxm=mr, clustermethod=clustermethod, measure=measure, trim=trim, varsort=NULL, transf=transf, blowup=TRUE, blowxm=blowxm, fot=0)) } micro_rmd <- function(x, aggr) { kn <- function(ds, aggr) { w <- rep(0, aggr) for (i in 1:aggr) { w[i] <- which.min(ds) ds[w[i]] <- NA } return(w) } y <- x cm <- colMeans(x, na.rm=TRUE) csd <- apply(x, 2, sd, na.rm=TRUE) len <- nrow(y) y <- apply(y, 2, function(x) (x - mean(x, na.rm=TRUE))/sd(x, na.rm=TRUE)) d <- as.matrix(stats::dist(y)) set.seed(123) rr <- covMcd(y) md <- stats::mahalanobis(y, center=rr$center, cov=rr$cov) diag(d) <- 0 for (i in 1:(floor(dim(x)[1]/aggr) - 1)) { s <- which.max(md) w <- kn(d[, s], aggr) d[w, ] <- NA md[w] <- NA y[w, ] <- rep(colMeans(y[w, ]), each=aggr) } w <- which(!is.na(d[, 1])) y[w, ] <- rep(colMeans(y[w, ]), each=length(w)) for (i in 1:dim(x)[2]) { y[, i] <- as.numeric((y[, i] * csd[i]) + cm[i]) } return(list(x=x, method="rmd", clustering=FALSE, aggr=aggr, nc=NULL, xm=y, roundxm=round(y), clustermethod=NULL, measure=NULL, trim=NULL, varsort=NULL, transf=NULL, blowup=TRUE, blowxm=y, fot=0)) } micro_mdav <- function(x, aggr) { resX <- mdav(x, variables=NULL, weights=NULL, K=aggr, missing=-999) return(list(x=x, method="mdav", clustering=FALSE, aggr=aggr, nc=NULL, xm=NULL, roundxm=NULL, clustermethod=NULL, measure="mean", trim=NULL, varsort=NULL, transf=NULL, blowup=FALSE, blowxm=resX, fot=0)) } stopifnot(method %in% c("simple", "single", "onedims", "pca", "mcdpca", "pppca", "clustmcdpca", "clustpppca", "clustpca", "rmd", "mdav", "influence")) rownames(x) <- 1:nrow(x) if (length(variables) == 1) { res <- list() res$mx <- mafast(x, variables=variables, by=strata_variables, aggr=aggr, measure=eval(parse(text=measure))) res$x <- x res$method <- "mafast" res$aggr <- aggr res$measure <- measure res$fot <- factorOfTotals(x, aggr) class(res) <- "micro" return(res) } xall <- x if (!is.null(strata_variables)) { if (!all(strata_variables %in% colnames(x))) { stop("strata_variables are not found in the data set!") } byvar <- rep("", nrow(x)) for (i in 1:length(strata_variables)) { byvar <- paste(byvar, x[, strata_variables[i]], sep="-") } xsp <- split(x, as.factor(byvar)) } else { xsp <- list(dataset=x) } reslist <- list() for (spind in 1:length(xsp)) { x <- xsp[[spind]][, variables, drop=FALSE] if (method == "simple") { res <- micro_simple(x=x, aggr=aggr, measure=measure, trim=trim) } if (method == "single") { res <- micro_single(x=x, aggr=aggr, measure=measure, trim=trim, varsort=varsort) } if (method == "onedims") { res <- micro_onedims(x=x, aggr=aggr, measure=measure, trim=trim) } if (method == "pca") { res <- micro_pca(x=x, aggr=aggr, measure=measure, trim=trim) } if (method == "mcdpca") { res <- micro_mcdpca(x=x, aggr=aggr, measure=measure, trim=trim) } if (method == "pppca") { res <- micro_pppca(x=x, aggr=aggr, measure=measure, trim=trim) } if (method == "influence") { res <- micro_influence(x=x, aggr=aggr, measure=measure, trim=trim, clustermethod=clustermethod, transf=transf, nc=nc) } if (method == "clustpca") { res <- micro_clustpca(x=x, aggr=aggr, measure=measure, trim=trim, clustermethod=clustermethod, transf=transf, nc=nc) } if (method == "clustmcdpca") { res <- micro_clustmcdpca(x=x, aggr=aggr, measure=measure, trim=trim, clustermethod=clustermethod, transf=transf, nc=nc) } if (method == "clustpppca") { res <- micro_clustpppca(x=x, aggr=aggr, measure=measure, trim=trim, clustermethod=clustermethod, transf=transf, nc=nc) } if (method == "rmd") { res <- micro_rmd(x=x, aggr=aggr) } if (method == "mdav") { res <- micro_mdav(x, aggr) } res$fot <- factorOfTotals(x, aggr) reslist[[spind]] <- res } res <- reslist[[1]] if (length(reslist) > 1) { blowxm <- vector() fot <- vector() for (i in 1:length(reslist)) { blowxm <- rbind(blowxm, reslist[[i]]$blowxm) fot <- c(fot, reslist[[i]]$fot) } res$x <- xall res$blowxm <- blowxm names(fot) <- substring(names(xsp), 2) res$fot <- fot } res$x <- res$x[order(as.numeric(rownames(res$x))), ] res$blowxm <- res$blowxm[order(as.numeric(rownames(res$blowxm))), ] res$blowxm <- res$blowxm[1:nrow(xall), ] class(res) <- "micro" res$mx <- as.data.frame(res$blowxm) colnames(res$mx) <- variables resv <- c("x", "mx", "method", "aggr", "measure") res1 <- list() for (v in resv) { res1[[v]] <- res[[v]] } class(res1) <- "micro" return(res1) } print.micro <- function(x, ...) { message(paste("\n Object created with method", x$method, "and aggregation level", x$aggr)) message("\n -------------------------\n") message("x ... original values \n") print(summary(x$x)) message("\n -------------------------\n") message("mx ... microaggregated values\n") print(summary(x$mx)) message("\n -------------------------\n") message("Try names(your object from class micro) for more details") message("\n") } summary.micro <- function(object, ...) { prcompRob <- function(X, k=0, sca="mad", scores=TRUE) { n <- nrow(X) p <- ncol(X) if (k == 0) { p1 <- min(n, p) } else { p1 <- k } S <- rep(1, p1) V <- matrix(1:(p * p1), ncol=p1, nrow=p) P <- diag(p) m <- apply(X, 2, median) Xcentr <- scale(X, center=m, scale=FALSE) for (k in 1:p1) { B <- Xcentr %*% P Bnorm <- sqrt(apply(B^2, 1, sum)) A <- diag(1/Bnorm) %*% B Y <- A %*% P %*% t(X) if (sca == "mad") s <- apply(Y, 1, mad) j <- order(s)[n] S[k] <- s[j] V[, k] <- A[j, ] if (V[1, k] < 0) V[, k] <- (-1) * V[, k] P <- P - (V[, k] %*% t(V[, k])) } if (scores) { list(scale=S, loadings=V, scores=Xcentr %*% V) } else list(scale=S, loadings=V) } x1 <- as.data.frame(object$x) x2 <- as.data.frame(object$mx) colnames(x2) <- colnames(x1) amx <- mapply(mean, x1) amxn <- mapply(mean, x2) amean <- sum(abs(amx - amxn)/(abs(amx))) meds1 <- mapply(median, x1) meds2 <- mapply(median, x2) amedian <- sum(abs(meds1 - meds2) / abs(meds1), na.rm = TRUE) onestep <- function(x) { y <- x constant <- 3/1.486 m1 <- mapply(median, x) m2 <- mapply(mad, x) limit1 <- m1 + constant * m2 limit2 <- m1 - constant * m2 for (i in 1:dim(x)[2]) { if (any(x[, i] > limit1[i])) { w <- which(x[, i] > limit1[i]) le <- length(w) y[w, i] <- limit1[i] } if (any(x[, i] < limit2[i])) { w <- which(x[, i] < limit2[i]) le <- length(w) y[w, i] <- limit2[i] } } y } aox <- onestep(x1) aox <- mapply(mean, aox) aoxm <- onestep(x2) aoxm <- mapply(mean, aoxm) aonestep <- sum(abs(aox - aoxm) / abs(aox), na.rm = TRUE) devvar <- sum(abs(var(x1) - var(x2))/abs(var(x1)))/length(x1) amx <- mapply(mad, x1) amxn <- mapply(mad, x2) amad <- sum(abs(amx - amxn) / (abs(amx)), na.rm = TRUE) acov <- sum(abs(cov(x1) - cov(x2))/abs(cov(x1)))/(2 * length(x1)) arcov <- NA acor <- sum(abs(cor(x1) - cor(x2))/abs(cor(x1)))/(2 * length(x2)) arcor <- NA acors <- sum(abs(cor(x1, method = "spearman") - cor(x2, method = "spearman")) / abs(cor(x1, method = "spearman"))) / (2 * length(x1)) l1 <- lm(as.matrix(x1[, 1]) ~ as.matrix(x1[, -1]))$coeff l2 <- lm(as.matrix(x2[, 1]) ~ as.matrix(x2[, -1]))$coeff adlm <- sum(abs(l1[2:length(l1)] - l2[2:length(l2)]), na.rm = TRUE) adlts <- NA if (dim(x1)[1] > dim(x1)[2] && dim(x2)[1] > dim(x2)[2]) { p1 <- stats::princomp(x1) p2 <- stats::princomp(x2) cp1 <- colMeans(p1$load) cp2 <- colMeans(p2$load) apcaload <- sum(abs(cp1 - cp2)/abs(cp1)) } else { apcaload <- "too less observations" } if (dim(x1)[1] > dim(x1)[2] && dim(x2)[1] > dim(x2)[2]) { p1 <- prcompRob(x1) p2 <- prcompRob(x2) cp1 <- colMeans(p1$load) cp2 <- colMeans(p2$load) apppcaload <- sum(abs(cp1 - cp2)/abs(cp1)) } else { apppcaload <- "too less observations" } cmx1 <- apply(x1, 2, sum) cmx2 <- apply(x2, 2, sum) * object$fot atotals <- sum(abs((cmx1 - cmx2)/cmx1)) pmtotals <- sum((cmx2 - cmx1)/cmx1) util1 <- dUtility(x1, x2) deigenvalues <- dUtility(x1, x2, method = "eigen") risk0 <- dRisk(x1, x2) r <- dRiskRMD(x1, x2, k = 0.7) risk1 <- r$risk1 risk2 <- r$risk2 wrisk1 <- r$wrisk1 wrisk2 <- r$wrisk2 list( meansx = summary(x1), meansxm = summary(x2), amean = amean, amedian = amedian, aonestep = aonestep, devvar = devvar, amad = amad, acov = acov, arcov = arcov, acor = acor, arcor = arcor, acors = acors, adlm = adlm, adlts = adlts, apcaload = apcaload, apppcaload = apppcaload, totalsOrig = cmx1, totalsMicro = cmx2, atotals = atotals, pmtotals = pmtotals, util1 = util1, deigenvalues = deigenvalues, risk0 = risk0, risk1 = risk1, risk2 = risk2, wrisk1 = wrisk1, wrisk2 = wrisk2) }
library(LearnBayes) data(iowagpa) rlabels = c("91-99", "81-90", "71-80", "61-70", "51-60", "41-50", "31-40", "21-30") clabels = c("16-18", "19-21", "22-24", "25-27", "28-30") gpa = matrix(iowagpa[, 1], nrow = 8, ncol = 5, byrow = T) dimnames(gpa) = list(HSR = rlabels, ACTC = clabels) gpa samplesizes = matrix(iowagpa[, 2], nrow = 8, ncol = 5, byrow = T) dimnames(samplesizes) = list(HSR = rlabels, ACTC = clabels) samplesizes act = seq(17, 29, by = 3) matplot(act, t(gpa), type = "l", lwd = 3, xlim = c(17, 34), col=1:8, lty=1:8) legend(30, 3, lty = 1:8, lwd = 3, legend = c("HSR=9", "HSR=8", "HSR=7", "HSR=6", "HSR=5", "HSR=4", "HSR=3", "HSR=2"), col=1:8) S=readline(prompt="Type <Return> to continue : ") MU = ordergibbs(iowagpa, 5000) postmeans = apply(MU, 2, mean) postmeans = matrix(postmeans, nrow = 8, ncol = 5) postmeans=postmeans[seq(8,1,-1),] dimnames(postmeans)=list(HSR=rlabels,ACTC=clabels) round(postmeans,2) windows() matplot(act, t(postmeans), type = "l", lty=1:8, lwd = 3, col = 1, xlim = c(17, 34)) legend(30, 3, lty = 1:8, lwd = 2, legend = c("HSR=9", "HSR=8", "HSR=7", "HSR=6", "HSR=5", "HSR=4", "HSR=3", "HSR=2")) postsds = apply(MU, 2, sd) postsds = matrix(postsds, nrow = 8, ncol = 5) postsds=postsds[seq(8,1,-1),] dimnames(postsds)=list(HSR=rlabels,ACTC=clabels) round(postsds,3) s=.65 se=s/sqrt(samplesizes) round(postsds/se,2) S=readline(prompt="Type <Return> to continue : ") FIT=hiergibbs(iowagpa,5000) windows() par(mfrow=c(2,1)) plot(density(FIT$beta[,2]),xlab=expression(beta[2]), main="HIGH SCHOOL RANK") plot(density(FIT$beta[,3]),xlab=expression(beta[3]), main="ACT SCORE") quantile(FIT$beta[,2],c(.025,.25,.5,.75,.975)) quantile(FIT$beta[,3],c(.025,.25,.5,.75,.975)) quantile(FIT$var,c(.025,.25,.5,.75,.975)) posterior.means = apply(FIT$mu, 2, mean) posterior.means = matrix(posterior.means, nrow = 8, ncol = 5, byrow = T) S=readline(prompt="Type <Return> to continue : ") windows() par(mfrow=c(1,1)) matplot(act, t(posterior.means), type = "l", lwd = 3, lty=1:8, col=1, xlim = c(17, 34)) legend(30, 3, lty = 1:8, lwd = 2, legend = c("HSR=9", "HSR=8", "HSR=7", "HSR=6", "HSR=5", "HSR=4", "HSR=3", "HSR=2")) p=1-pnorm((2.5-FIT$mu)/.65) prob.success=apply(p,2,mean) prob.success=matrix(prob.success,nrow=8,ncol=5,byrow=T) dimnames(prob.success)=list(HSR=rlabels,ACTC=clabels) round(prob.success,3)
setClass("Distribution.of.probability" )
cngr <- function (S, PO = NULL, uniq) { flgnum <- FALSE if (isTRUE(attr(S, "class")[1] == "Semigroup") == FALSE) { s <- semigroup(S, type = "numerical") } else if (isTRUE(attr(S, "class")[2] == "symbolic") == TRUE) { s <- as.semigroup(S, numerical = TRUE) flgnum <- TRUE } else { s <- S } ns <- s$ord if (isTRUE(ns > 1L) == TRUE) { mat <- matrix(0L, nrow = ns, ncol = ns, dimnames = list(seq_len(ns), seq_len(ns))) for (i in seq_len(ns)) { mat[which(s$S == i)[1]] <- i } rm(i) inc <- levels(factor(trnf(dichot(mat, c = 1), tolist = TRUE, sep = ", "))) clus <- data.frame(matrix(ncol = ns, nrow = 0)) if (isTRUE(nlevels(factor(as.matrix(s$S))) != 1) == TRUE) { for (k in as.vector(mat)[which(as.vector(mat) > 0)]) { for (i in seq_along(inc)) { clus[i, ] <- as.vector(sprt(s$S, as.numeric(dhc(inc[i])[1]), as.numeric(dhc(inc[i])[2]))) } rm(i) } rm(k) ifelse(missing(uniq) == FALSE && isTRUE(uniq == TRUE) == TRUE, clus <- unique(clus), NA) colnames(clus) <- rownames(clus) <- NULL cls <- data.matrix(clus) cg <- list() for (i in seq_len(nrow(cls))) { cg[[i]] <- as.vector(cls[i, ]) ifelse(isTRUE(flgnum == TRUE) == TRUE, attr(cg[[i]], "names") <- S$st, attr(cg[[i]], "names") <- dimnames(S)[[1]]) } rm(i) } else { cg <- rep(1, s$dim) } ifelse(isTRUE(flgnum == TRUE) == TRUE, sS <- S$S, sS <- s$S) ifelse(isTRUE(is.null(PO)) == FALSE, lst <- list(S = sS, PO = PO, clu = cg), lst <- list(S = sS, clu = cg)) ifelse(isTRUE(flgnum == TRUE) == TRUE, Sclss <- "symbolic", Sclss <- attr(s, "class")[2]) ifelse(isTRUE(is.null(PO)) == FALSE, class(lst) <- c("Congruence", "PO.Semigroup", Sclss), class(lst) <- c("Congruence", "A.Semigroup", Sclss)) return(lst) } else { s } }
resource("hello", engine = "utility1")
output.best <- function(result, save.pdf = FALSE){ if(!save.pdf[1] %in% c(0, 1) | length(save.pdf) > 1){save.pdf <- FALSE} datatest <- names(result) != c("method", "weight", "direction", "mu", "sd", "GEBV.value", "parental.lines", "suggested.subset") if(TRUE %in% (datatest) | length(datatest)!=8){ stop("Input data error, please input the original output data of simu.GEBVO, simu.GDO, or simu.GEBVGD.", call. = FALSE) } GEBV <- result$GEBV.value t.n <- colnames(GEBV[[1]][[1]]) method <- result$method weight <- result$weight direction <- result$direction mu <- result$mu sd <- result$sd nrep <- length(GEBV) ngen <- length(GEBV[[1]])-1 nt <- ncol(GEBV[[1]][[1]]) datatry <- try(weight*direction*mu*sd, silent = TRUE) if(class(datatry)[1] == "try-error" | NA %in% datatry){ stop("Input data error, please input the original output data of simu.GEBVO, simu.GDO, or simu.GEBVGD.", call. = FALSE) } GEBV.max <- list() for(i in 1:nrep){ max.gvalue0 <- matrix(0, ngen+1, nt) for(j in 1:(ngen+1)){ max.gvalue <- GEBV[[i]][[j]] datatry <- try(max.gvalue*max.gvalue, silent = TRUE) if(class(datatry)[1] == "try-error" | NA %in% max.gvalue){ stop("Input data error, please input the original output data of simu.GEBVO, simu.GDO, or simu.GEBVGD.", call. = FALSE) } sele <- c() for(k in 1:nt){ if(direction[k] == Inf){ sele0 <- max.gvalue[,k]/sd[k]*weight[k] } else if (direction[k] == -Inf){ sele0 <- max.gvalue[,k]/sd[k]*weight[k] sele0 <- -sele0 } else { sele0 <- ((max.gvalue[,k]-direction[k])/sd[k])*weight[k] sele0 <- -abs(sele0) } sele <- cbind(sele, sele0) } sele <- apply(sele, 1, sum) max.gvalue0[j,] <- max.gvalue[which.max(sele),] } GEBV.max[[i]] <- max.gvalue0 } GEBV.max.ave <- list() for(i in 1:nt){ ave0 <- matrix(0, (ngen+1), nrep) for(j in 1:nrep){ ave0[, j] <- GEBV.max[[j]][, i] } GEBV.max.ave[[i]] <- ave0 } GEBV.all <- list() if(save.pdf){grDevices::pdf("IPLGP.GEBVplot.pdf", width = 8, height = 5)} for(i in 1:nt){ GEBV.all0 <- data.frame( generation <- 0:ngen, best.GEBV.average <- apply(GEBV.max.ave[[i]], 1, mean), GEBV.sd <- apply(GEBV.max.ave[[i]], 1, sd) ) colnames(GEBV.all0) = c("generation", "mean", "standard deviation") plot0 <- ggplot2::ggplot(GEBV.all0, ggplot2::aes(x = generation, y = best.GEBV.average), main = "GEBV.all") + ggplot2::geom_errorbar(ggplot2::aes(ymin = best.GEBV.average-GEBV.sd, ymax = best.GEBV.average+GEBV.sd), width = .1) + ggplot2::geom_line() + ggplot2::geom_point(size = 1.5)+ ggplot2::labs(title = paste(t.n[i], " (", method, ")", sep = ""))+ ggplot2::scale_x_continuous(breaks = seq(0, ngen, 1), labels = c("P", paste("F", 1:ngen, sep = "")))+ ggplot2::theme_bw() print(plot0) GEBV.all0[, 1] <- c("P", paste("F", 1:ngen, sep = "")) GEBV.all[[i]] <- GEBV.all0 } if(save.pdf){grDevices::dev.off()} names(GEBV.all) <- t.n return(GEBV.all) }
contour_image=function(img,plot=TRUE){ Contorno2=function(img2,imagem=TRUE){ t=img2 c=ncol(t) t2=(t[,-1]+t[,-c])/2 t3=(t2!=0) & (t2!=1) t[,-1]=t3 return((t)) } img=as.matrix(img) m2=Contorno2(img2 = img) m3=Contorno2(img2 = t(img)) m4=m2+t(m3) m5=1*(m4!=0) m5=EBImage::as.Image(m5) if(plot==TRUE) {plot_image(m5)} m5 } print.contour_image=function(x,...){ if(EBImage::is.Image(x)){cat("Is an image object","\n")} if(is.matrix(x)){cat("Is an matrix object","\n")} cat("Dimensions of Object:",dim([email protected]),"\n") }
npfGr <- function(PVector,A,H){ P <- matrix(PVector, nrow=nrow(A),byrow=FALSE) n <- nrow(P) r <- ncol(P) Gradient <- c() for(i in 1:n){ Ind <- rep(0,r) for(j in 1:n){ if(i == j){ Ind <- Ind + 0 }else{ Ind <- Ind + 2*(H[i,j]^2)*(2*(A[i,j] - sum((P[i,]-P[j,])^2))*(-2*(P[i,]-P[j,]))) } } Gradient <- rbind(Gradient, Ind) } return(as.vector(Gradient)) } npfGrWrap <- function(P){ A <- get("A") H <- get("H") Gradient <- npfGr(P,A,H) return(Gradient) }
brainGraph_permute <- function(densities, resids, N=5e3, perms=NULL, auc=FALSE, level=c('graph', 'vertex', 'other'), measure=c('btwn.cent', 'coreness', 'degree', 'eccentricity', 'clo.cent', 'communicability', 'ev.cent', 'lev.cent', 'pagerank', 'subg.cent', 'E.local', 'E.nodal', 'knn', 'Lp', 'transitivity', 'vulnerability'), .function=NULL) { stopifnot(inherits(resids, 'brainGraph_resids')) gID <- getOption('bg.group') measure <- match.arg(measure) level <- match.arg(level) if (level == 'other') { if (!is.function(.function)) stop('".function" must be a function!') measure <- 'other' } else if (level == 'graph') { measure <- NULL } if (is.null(perms)) perms <- shuffleSet(n=nobs(resids), nset=N) dims <- dim(perms) N <- dims[1L] perms <- rbind(perms, seq_len(dims[2L])) grps <- as.numeric(resids$resids.all[, get(gID)]) if (!getDoParRegistered()) { cl <- makeCluster(getOption('bg.ncpus')) registerDoParallel(cl) } res.perm <- switch(level, vertex=permute_vertex_foreach(perms, densities, resids, grps, auc, measure), other=permute_other_foreach(perms, densities, resids, grps, .function), graph=permute_graph_foreach(perms, densities, resids, grps, auc)) if (length(densities) == 1L) res.perm <- cbind(densities=densities, res.perm) if (level == 'vertex') { res.perm <- as.data.table(res.perm) start <- if (isTRUE(auc)) 1L else 2L setnames(res.perm, seq.int(start, dim(res.perm)[2L]), region.names(resids)) } obs.ind <- if (isTRUE(auc)) N + 1L else (N + 1L) * seq_along(densities) obs.diff <- res.perm[obs.ind] res.perm <- res.perm[-obs.ind] out <- list(atlas=resids$atlas, auc=auc, N=N, level=level, measure=measure, densities=densities, resids=resids, DT=res.perm, obs.diff=obs.diff, Group=resids$Group) class(out) <- c('brainGraph_permute', class(out)) return(out) } make_graphs_perm <- function(densities, resids, inds, grps) { corrs <- lapply(unique(grps), function(x) corr.matrix(resids[which(grps[inds] == x)], densities=densities, rand=TRUE)) sapply(corrs, lapply, function(x) apply(x$r.thresh, 3L, graph_from_adjacency_matrix, mode='undirected', diag=FALSE)) } graph_attr_perm <- function(g, densities) { mod <- sapply(g, sapply, function(x) modularity(cluster_louvain(x))) Cp <- sapply(g, sapply, function(x) transitivity(x, type='localaverage')) Lp <- sapply(g, sapply, mean_distance) assort <- sapply(g, sapply, assortativity_degree) E.global <- sapply(g, sapply, efficiency, 'global') list(mod=mod, Cp=Cp, Lp=Lp, assort=assort, E.global=E.global) } permute_graph_foreach <- function(perms, densities, resids, grps, auc) { i <- NULL N <- dim(perms)[1L] if (isTRUE(auc)) { res.perm <- foreach(i=seq_len(N), .combine='rbind') %dopar% { g <- make_graphs_perm(densities, resids, perms[i, ], grps) meas.list <- graph_attr_perm(g, densities) t(vapply(meas.list, function(y) auc_diff_perm(densities, y), numeric(1L))) } res.perm <- as.data.table(res.perm) } else { res.perm <- foreach(i=seq_len(N), .combine=function(a, b) Map(rbind, a, b)) %dopar% { g <- make_graphs_perm(densities, resids, perms[i, ], grps) meas.list <- graph_attr_perm(g, densities) } res.perm <- data.table(densities=rep.int(densities, N), sapply(res.perm, function(x) as.numeric(-diff(t(x))))) setkey(res.perm, densities) } return(res.perm) } vertex_attr_funs <- function(measure) { switch(measure, coreness=coreness, degree=degree, eccentricity=eccentricity, clo.cent=function(x) centr_clo(x)$res, communicability=centr_betw_comm, ev.cent=function(x) centr_eigen(x)$vector, lev.cent=function(x) centr_lev(x)$res, pagerank=function(x) page_rank(x, weights=NA)$vector, subg.cent=subgraph_centrality, E.local=function(x) efficiency(x, type='local', weights=NA, use.parallel=FALSE), E.nodal=function(x) efficiency(x, type='nodal', weights=NA), knn=function(x) knn(x)$knn, Lp=function(x) mean_distance_wt(x, level='vertex', weights=NA), transitivity=function(x) transitivity(x, type='local', isolates='zero'), vulnerability=function(x) vulnerability(x, use.parallel=FALSE), function(x) centr_betw(x)$res) } permute_vertex_foreach <- function(perms, densities, resids, grps, auc, measure) { i <- NULL if (isTRUE(auc)) { diffFun <- function(densities, meas.list) { sapply(seq_len(dim(meas.list[[1L]])[2L]), function(x) auc_diff(densities, cbind(meas.list[[1L]][, x], meas.list[[2L]][, x]))) } } else { diffFun <- function(densities, meas.list) cbind(densities, meas.list[[1L]] - meas.list[[2L]]) } fun <- vertex_attr_funs(measure) res.perm <- foreach(i=seq_len(dim(perms)[1L]), .combine='rbind') %dopar% { g <- make_graphs_perm(densities, resids, perms[i, ], grps) meas.list <- lapply(g, function(x) t(sapply(x, fun))) diffFun(densities, meas.list) } } permute_other_foreach <- function(perms, densities, resids, grps, .function) { i <- NULL res.perm <- foreach(i=seq_len(dim(perms)[1L]), .combine='rbind') %dopar% { g <- make_graphs_perm(densities, resids, perms[i, ], grps) .function(g, densities) } } summary.brainGraph_permute <- function(object, measure=object$measure, alternative=c('two.sided', 'less', 'greater'), alpha=0.05, p.sig=c('p', 'p.fdr'), ...) { perm.diff <- p <- p.fdr <- region <- obs.diff <- ..measure <- NULL gID <- getOption('bg.group') if (object$level == 'other') { object$level <- if (dim(object$DT)[2L] > 6L) 'vertex' else 'graph' } if (object$level == 'graph' && is.null(measure)) measure <- 'mod' group_str <- paste0(measure, '.', object$Group) permDT <- copy(object$DT) g <- with(object, make_graphs_perm(densities, resids, seq_len(nobs(resids)), resids$resids.all[, as.numeric(get(gID))])) densities <- object$densities if (object$level == 'vertex') { obsDT <- copy(object$obs.diff) fun <- vertex_attr_funs(measure) obs <- lapply(g, function(x) t(sapply(x, fun))) if (isTRUE(object$auc)) { obs <- lapply(obs, apply, 2L, function(y) -auc_diff(densities, y)) permDT[, densities := 1] obsDT[, densities := 1] densities <- 1 } sum.dt <- data.table(densities=densities, region=rep(V(g[[1L]][[1L]])$name, each=length(densities)), g1=c(obs[[1L]]), g2=c(obs[[2L]]), key=c('densities', 'region')) setnames(sum.dt, c('g1', 'g2'), group_str) obs.m <- melt(obsDT, id.vars='densities', variable.name='region', value.name='obs.diff') sum.dt <- merge(sum.dt, obs.m) permDT <- melt(permDT, id.vars='densities', variable.name='region', value.name=measure) setkeyv(permDT, key(sum.dt)) permdiff <- permDT[, list(perm.diff=mean(get(measure))), by=key(sum.dt)] sum.dt <- merge(sum.dt, permdiff, by=key(sum.dt)) } else if (object$level == 'graph') { stopifnot(hasName(permDT, measure)) permDT[, region := 'graph'] obs <- graph_attr_perm(g, densities)[[measure]] if (isTRUE(object$auc)) { obs <- t(apply(obs, 2L, function(y) -auc_diff(densities, y))) permDT[, densities := 1] densities <- 1 } sum.dt <- data.table(densities=densities, region='graph', obs) setnames(sum.dt, c('V1', 'V2'), group_str) sum.dt[, obs.diff := object$obs.diff[[measure]]] sum.dt[, perm.diff := permDT[, mean(get(measure)), by=densities]$V1] } result.dt <- merge(permDT[, c('densities', 'region', ..measure)], sum.dt[, c('densities', 'region', 'obs.diff')], by=c('densities', 'region')) alt <- match.arg(alternative) compfun <- switch(alt, two.sided=function(perm, obs) sum(abs(perm) >= abs(unique(obs))), less=function(perm, obs) sum(perm <= unique(obs)), greater=function(perm, obs) sum(perm >= unique(obs))) result.dt[, p := (compfun(get(measure), obs.diff) + 1L) / (.N + 1L), by=key(result.dt)] CI <- switch(alt, two.sided=c(alpha / 2, 1 - (alpha / 2)), less=c(alpha, 1), greater=c(1 / object$N, 1 - alpha)) result.dt[, c('ci.low', 'ci.high') := as.list(sort(get(measure))[ceiling(.N * CI)]), by=key(result.dt)] result.dt <- result.dt[, .SD[1L], by=key(result.dt)] sum.dt <- merge(sum.dt, result.dt[, !c(measure, 'obs.diff'), with=FALSE], by=key(result.dt)) setcolorder(sum.dt, c('densities', 'region', group_str, 'obs.diff', 'perm.diff', 'ci.low', 'ci.high', 'p')) if (isFALSE(object$auc)) { groupby <- if (object$level == 'graph') NULL else 'densities' sum.dt[, p.fdr := p.adjust(p, 'fdr'), by=groupby] } meas.full <- print_full_metric(measure) p.sig <- match.arg(p.sig) perm.sum <- c(object, list(DT.sum=sum.dt, meas.full=meas.full, alt=alt, alpha=alpha, p.sig=p.sig)) perm.sum$measure <- measure class(perm.sum) <- c('summary.brainGraph_permute', class(perm.sum)) perm.sum } print.summary.brainGraph_permute <- function(x, ...) { print_title_summary('Permutation analysis') cat(' cat('Level: ', x$level, '\n') cat('Graph metric: ', x$meas.full, '\n') if (isTRUE(x$auc)) cat('Area-under-the-curve (AUC) calculated across', length(x$densities), 'densities:\n', x$densities, '\n') symb <- switch(x$alt, two.sided='!=', greater='>', less='<') alt <- sprintf('%s - %s %s 0', x$Group[1L], x$Group[2L], symb) cat('Alternative hypothesis: ', '\t', alt, '\n') cat('Alpha: ', x$alpha, '\n\n') if (with(x, dim(DT.sum[get(p.sig) < alpha])[1L]) == 0L) { cat('No significant results!\n') } else { clp <- 100 * (1 - x$alpha) setnames(x$DT.sum, c('ci.low', 'ci.high'), paste0(clp, '% CI ', c('low', 'high'))) with(x, print(DT.sum[get(p.sig) < alpha])) } invisible(x) } plot.brainGraph_permute <- function(x, measure=x$measure, alternative=c('two.sided', 'less', 'greater'), alpha=0.05, p.sig=c('p', 'p.fdr'), ptitle=NULL, ...) { densities <- Group <- sig <- trend <- yloc <- obs <- mylty <- ci.low <- ci.high <- variable <- value <- reg.num <- region <- perm.diff <- obs.diff <- plot2 <- reg.num2 <- NULL p.sig <- match.arg(p.sig) perm.sum <- summary(x, measure=measure, alternative=alternative, alpha=alpha) measure <- perm.sum$measure sum.dt <- perm.sum$DT.sum if (is.null(ptitle)) ptitle <- perm.sum$meas.full ylabel2 <- sprintf('Observed and permutation difference (%s - %s)', x$Group[1L], x$Group[2L]) if (x$level == 'graph') { plot.dt <- melt(sum.dt, id.vars=setdiff(names(sum.dt), paste0(measure, '.', x$Group)), variable.name='Group', value.name='obs') plot.dt[, Group := factor(Group, labels=x$Group)] idvars <- c('densities', 'region', 'p', 'Group', 'obs') if (isFALSE(x$auc)) idvars <- c(idvars, 'p.fdr') plot.dt <- melt(plot.dt, id.vars=idvars) plot.dt[, c('sig', 'trend') := ''] plot.dt[get(p.sig) < alpha, sig := '*'] plot.dt[get(p.sig) >= alpha & get(p.sig) < 2 * alpha, trend := '*'] plot.dt[, yloc := extendrange(obs, f=0.07)[1L]] plot.dt[, mylty := 0] plot.dt[variable == 'obs.diff', mylty := 1] plot.dt[variable %in% c('ci.low', 'ci.high'), mylty := 2] plot.dt[variable == 'perm.diff', mylty := 3] if (!requireNamespace('ggplot2', quietly=TRUE)) { gID <- getOption('bg.group') grps <- paste(perm.sum$measure, x$Group, sep='.') ymin <- plot.dt[1L, yloc] ymax <- plot.dt[, max(obs)] par(mar=c(8.6, 4.1, 4.1, 2.1), xpd=TRUE) plot.dt[variable == 'obs.diff' & get(gID) == grps[1L], plot(densities, obs, type='l', col=plot.cols[1L], main=perm.sum$meas.full, xlab='Density', ylab='Observed values')] plot.dt[variable == 'obs.diff' & get(gID) == grps[2L], lines(densities, obs, col=plot.cols[2L])] plot.dt[variable == 'obs.diff' & sig == '*', text(densities, yloc, sig, cex=1.75, col='red')] plot.dt[variable == 'obs.diff' & trend == '*', text(densities, yloc, trend, cex=1.75, col='blue')] legend('bottom', title=gID, sub(paste0(perm.sum$measure, '.'), '', grps), fill=plot.cols[1L:2L], inset=c(0, -0.35), horiz=TRUE) ymin <- plot.dt[variable == 'ci.low', min(value)] ymax <- plot.dt[variable == 'ci.high', max(value)] par(mar=c(9.1, 4.1, 4.1, 2.1), xpd=TRUE) plot.dt[variable == 'obs.diff' & get(gID) == grps[1L], plot(densities, value, type='l', col='red', ylim=c(ymin, ymax), main=perm.sum$meas.full, xlab='Density', ylab=ylabel2)] plot.dt[variable == 'obs.diff' & get(gID) == grps[1L], points(densities, value, col='red', pch=19)] plot.dt[variable == 'ci.high' & get(gID) == grps[1L], lines(densities, value, lty=2)] plot.dt[variable == 'ci.low' & get(gID) == grps[1L], lines(densities, value, lty=2)] plot.dt[variable == 'perm.diff' & get(gID) == grps[1L], lines(densities, value, lty=3)] legend('bottom', c('Observed diff.', '95% CI', 'Mean permutation diff.'), lty=1L:3L, inset=c(0, -0.4)) return(invisible(x)) } else { p <- ggplot2::ggplot(plot.dt, ggplot2::aes(x=densities)) plot1 <- p + ggplot2::geom_line(ggplot2::aes(y=obs, col=Group)) + ggplot2::geom_text(ggplot2::aes(y=yloc, label=sig), col='red', size=8) + ggplot2::geom_text(ggplot2::aes(y=yloc, label=trend), col='blue', size=8) + ggplot2::theme(legend.position='bottom') plot2 <- p + ggplot2::geom_line(data=plot.dt[variable =='obs.diff'], ggplot2::aes(y=value, lty=factor(mylty)), col='red') + ggplot2::geom_point(data=plot.dt[variable == 'obs.diff'], ggplot2::aes(y=value), col='red', size=3) + ggplot2::geom_line(data=plot.dt[variable == 'perm.diff'], ggplot2::aes(y=value, lty=factor(mylty))) + ggplot2::geom_line(data=plot.dt[variable == 'ci.low'], ggplot2::aes(y=value, lty=factor(mylty))) + ggplot2::geom_line(data=plot.dt[variable == 'ci.high'], ggplot2::aes(y=value, lty=factor(mylty))) + ggplot2::scale_linetype_manual(name='', labels=c('Observed diff.', '95% CI', 'Mean permutation diff.'), values=1:3) + ggplot2::theme(legend.position='bottom', legend.spacing.x=ggplot2::unit(9, 'pt'), legend.key=ggplot2::element_rect(fill='white'), legend.background=ggplot2::element_rect(fill='gray79')) ylabel1 <- 'Observed values' plot1 <- plot1 + ggplot2::labs(title=ptitle, y=ylabel1, x='Density') + ggplot2::theme(plot.title=ggplot2::element_text(hjust=0.5, face='bold')) plot2 <- plot2 + ggplot2::labs(title=ptitle, y=ylabel2, x='Density') + ggplot2::theme(plot.title=ggplot2::element_text(hjust=0.5, face='bold')) return(list(plot1, plot2)) } } else { plot.dt <- droplevels(sum.dt[get(p.sig) < alpha]) if (dim(plot.dt)[1L] == 0L) stop('No significant results!') if (!requireNamespace('ggplot2', quietly=TRUE)) { ymin <- plot.dt[, min(c(obs.diff, ci.low))] ymax <- plot.dt[, max(c(obs.diff, ci.high))] plot.dt[, reg.num2 := as.numeric(as.factor(region))] dotplot(perm.diff ~ region | as.factor(densities), xlab='Region', ylab=ylabel2, main=perm.sum$meas.full, data=plot.dt, ylim=extendrange(c(ymin, ymax)), x0=plot.dt$reg.num2, y0=plot.dt$ci.low, y1=plot.dt$ci.high, yobs=plot.dt$obs.diff, scales=list(x=list(relation='free')), panel=function(x, y, x0, y0, y1, yobs, subscripts) { lpoints(x, y, pch=19) panel.abline(h=0, lty=3) larrows(x0=x0[subscripts], y0=y0[subscripts], x1=x0[subscripts], y1=y1[subscripts], code=3, angle=90, length=0.1) lsegments(x0[subscripts] - 0.1, yobs[subscripts], x0[subscripts] + 0.1, yobs[subscripts], col='red', lwd=3) }) } else { plot.dt[, reg.num := seq_len(.N), by=densities] plot1 <- ggplot2::ggplot(plot.dt, ggplot2::aes(x=region)) + ggplot2::geom_point(ggplot2::aes(y=perm.diff)) + ggplot2::geom_errorbar(ggplot2::aes(ymin=ci.low, ymax=ci.high)) + ggplot2::geom_segment(ggplot2::aes(x=reg.num - .25, xend=reg.num + .25, y=obs.diff, yend=obs.diff), col='red', size=1.25) + ggplot2::facet_wrap(~ densities, scales='free') + ggplot2::labs(title=ptitle, y=ylabel2, x='Region') + ggplot2::theme(plot.title=ggplot2::element_text(hjust=0.5, face='bold')) return(list(plot1, plot2)) } } }
find.neib = function(i, p1, n1, zeta, A, k){ step = 1 x = find.x(i,p1) y = find.y(i,p1) while(TRUE){ p.range = (i - min(step, x - 1)) : (i + min(step, p1 - x)) n.range = (-min(step, y - 1)) : (min(step, n1 - y)) to.check = c(rep(p.range, length(n.range)) + rep(n.range, each = length(p.range)) * p1) if(all(!zeta[to.check,])){ step = step + 1 }else{ return(rep(mean(A[to.check,][zeta[to.check,]]), k)) } } }
nbeats <- function( mode = "regression", id, freq, prediction_length, lookback_length = NULL, loss_function = NULL, bagging_size = NULL, num_stacks = NULL, num_blocks = NULL, epochs = NULL, batch_size = NULL, num_batches_per_epoch = NULL, learn_rate = NULL, learn_rate_decay_factor = NULL, learn_rate_min = NULL, patience = NULL, clip_gradient = NULL, penalty = NULL ) { args <- list( id = rlang::enquo(id), freq = rlang::enquo(freq), prediction_length = rlang::enquo(prediction_length), lookback_length = rlang::enquo(lookback_length), loss_function = rlang::enquo(loss_function), bagging_size = rlang::enquo(bagging_size), num_stacks = rlang::enquo(num_stacks), num_blocks = rlang::enquo(num_blocks), epochs = rlang::enquo(epochs), batch_size = rlang::enquo(batch_size), num_batches_per_epoch = rlang::enquo(num_batches_per_epoch), learn_rate = rlang::enquo(learn_rate), learn_rate_decay_factor = rlang::enquo(learn_rate_decay_factor), learn_rate_min = rlang::enquo(learn_rate_min), patience = rlang::enquo(patience), clip_gradient = rlang::enquo(clip_gradient), penalty = rlang::enquo(penalty) ) parsnip::new_model_spec( "nbeats", args = args, eng_args = NULL, mode = mode, method = NULL, engine = NULL ) } print.nbeats <- function(x, ...) { cat("N-BEATS Model Specification (", x$mode, ")\n\n", sep = "") parsnip::model_printer(x, ...) if(!is.null(x$method$fit$args)) { cat("Model fit template:\n") print(parsnip::show_call(x)) } invisible(x) } update.nbeats <- function(object, parameters = NULL, id = NULL, freq = NULL, prediction_length = NULL, lookback_length = NULL, loss_function = NULL, bagging_size = NULL, num_stacks = NULL, num_blocks = NULL, epochs = NULL, batch_size = NULL, num_batches_per_epoch = NULL, learn_rate = NULL, learn_rate_decay_factor = NULL, learn_rate_min = NULL, patience = NULL, clip_gradient = NULL, penalty = NULL, fresh = FALSE, ...) { parsnip::update_dot_check(...) if (!is.null(parameters)) { parameters <- parsnip::check_final_param(parameters) } args <- list( id = rlang::enquo(id), freq = rlang::enquo(freq), prediction_length = rlang::enquo(prediction_length), lookback_length = rlang::enquo(lookback_length), loss_function = rlang::enquo(loss_function), bagging_size = rlang::enquo(bagging_size), num_stacks = rlang::enquo(num_stacks), num_blocks = rlang::enquo(num_blocks), epochs = rlang::enquo(epochs), batch_size = rlang::enquo(batch_size), num_batches_per_epoch = rlang::enquo(num_batches_per_epoch), learn_rate = rlang::enquo(learn_rate), learn_rate_decay_factor = rlang::enquo(learn_rate_decay_factor), learn_rate_min = rlang::enquo(learn_rate_min), patience = rlang::enquo(patience), clip_gradient = rlang::enquo(clip_gradient), penalty = rlang::enquo(penalty) ) args <- parsnip::update_main_parameters(args, parameters) if (fresh) { object$args <- args } else { null_args <- purrr::map_lgl(args, parsnip::null_value) if (any(null_args)) args <- args[!null_args] if (length(args) > 0) object$args[names(args)] <- args } parsnip::new_model_spec( "nbeats", args = object$args, eng_args = object$eng_args, mode = object$mode, method = NULL, engine = object$engine ) } translate.nbeats <- function(x, engine = x$engine, ...) { if (is.null(engine)) { message("Used `engine = 'gluonts_nbeats'` for translation.") engine <- "gluonts_nbeats" } x <- parsnip::translate.default(x, engine, ...) x } nbeats_fit_impl <- function(x, y, freq, prediction_length, id, epochs = 5, batch_size = 32, num_batches_per_epoch = 50, learning_rate = 0.001, learning_rate_decay_factor = 0.5, patience = 10, minimum_learning_rate = 5e-5, clip_gradient = 10, weight_decay = 1e-8, init = "xavier", ctx = NULL, hybridize = TRUE, context_length = NULL, loss_function = "sMAPE", num_stacks = 30, num_blocks = list(1), widths = list(512), sharing = list(FALSE), expansion_coefficient_lengths = list(32), stack_types = list("G") ) { validate_gluonts_required_args(x, prediction_length, freq, id) if (length(context_length) > 1) { rlang::abort("Only one 'lookback_length' allowed. Did you mean to use 'gluonts_nbeats_ensemble'.") } if (is.null(context_length)) context_length <- reticulate::py_none() if (is.null(ctx)) ctx <- reticulate::py_none() num_blocks <- as.list(num_blocks) widths <- as.list(widths) sharing <- as.list(sharing) expansion_coefficient_lengths <- as.list(expansion_coefficient_lengths) stack_types <- as.list(stack_types) outcome <- y predictor <- x index_tbl <- modeltime::parse_index_from_data(predictor) idx_col <- names(index_tbl) idx <- timetk::tk_index(index_tbl) id_tbl <- x %>% dplyr::select(dplyr::all_of(id)) value_tbl <- tibble::tibble(value = y) constructed_tbl <- dplyr::bind_cols(id_tbl, index_tbl, value_tbl) gluon_listdataset <- constructed_tbl %>% to_gluon_list_dataset( date_var = !! rlang::sym(idx_col), value_var = value, id_var = !! rlang::sym(id), freq = freq ) trainer <- pkg.env$gluonts$trainer$Trainer( ctx = ctx, epochs = epochs, batch_size = batch_size, num_batches_per_epoch = num_batches_per_epoch, learning_rate = learning_rate, learning_rate_decay_factor = learning_rate_decay_factor, patience = patience, minimum_learning_rate = minimum_learning_rate, clip_gradient = clip_gradient, weight_decay = weight_decay, init = init, hybridize = hybridize ) model_spec <- pkg.env$gluonts$model$n_beats$NBEATSEstimator( freq = freq, prediction_length = prediction_length, trainer = trainer, context_length = context_length, loss_function = loss_function, num_stacks = num_stacks, num_blocks = num_blocks, widths = widths, sharing = sharing, expansion_coefficient_lengths = expansion_coefficient_lengths, stack_types = stack_types ) model_fit <- model_spec$train(training_data = gluon_listdataset) class <- "nbeats_fit_impl" models <- list( model_1 = model_fit ) data <- index_tbl %>% dplyr::mutate( .actual = y, .fitted = NA, .residuals = .actual - .fitted ) extras <- list( id = id, idx_column = idx_col, value_column = "value", freq = freq, grps = constructed_tbl %>% dplyr::pull(!! rlang::sym(id)) %>% unique(), constructed_tbl = list(constructed_tbl) ) desc <- "NBEATS" modeltime::new_modeltime_bridge( class = class, models = models, data = data, extras = extras, desc = desc ) } print.nbeats_fit_impl <- function(x, ...) { cat(x$desc) cat("\n") cat("--------") cat("\nModel: ") print(x$models$model_1) cat("\n") print(x$models$model_1$prediction_net) invisible(x) } nbeats_predict_impl <- function(object, new_data) { model <- object$models$model_1 id <- object$extras$id idx_col <- object$extras$idx_col freq <- object$extras$freq constructed_tbl <- object$extras$constructed_tbl[[1]] gluon_listdataset <- constructed_tbl %>% to_gluon_list_dataset( date_var = !! rlang::sym(idx_col), value_var = value, id_var = !! rlang::sym(id), freq = freq ) preds <- make_gluon_predictions( model = model, gluon_listdataset = gluon_listdataset, new_data = new_data, id_col = id, idx_col = idx_col ) return(preds) } predict.nbeats_fit_impl <- function(object, new_data, ...) { nbeats_predict_impl(object, new_data, ...) } nbeats_ensemble_fit_impl <- function(x, y, freq, prediction_length, id, epochs = 5, batch_size = 32, num_batches_per_epoch = 50, learning_rate = 0.001, learning_rate_decay_factor = 0.5, patience = 10, minimum_learning_rate = 5e-5, clip_gradient = 10, weight_decay = 1e-8, init = "xavier", ctx = NULL, hybridize = TRUE, meta_context_length = prediction_length * c(2, 4), meta_loss_function = list('sMAPE'), meta_bagging_size = 3, num_stacks = 30, num_blocks = list(1), widths = list(512), sharing = list(FALSE), expansion_coefficient_lengths = list(32), stack_types = list("G") ) { validate_gluonts_required_args(x, prediction_length, freq, id) if (is.null(meta_context_length)) { meta_context_length <- reticulate::py_none() } else { meta_context_length <- as.list(meta_context_length) } if (is.null(meta_loss_function)) { meta_loss_function <- reticulate::py_none() } else { meta_loss_function <- as.list(meta_loss_function) } if (is.null(ctx)) ctx <- reticulate::py_none() stack_types <- as.list(stack_types) expansion_coefficient_lengths <- as.list(expansion_coefficient_lengths) widths <- as.list(widths) num_blocks <- as.list(num_blocks) outcome <- y predictor <- x index_tbl <- modeltime::parse_index_from_data(predictor) idx_col <- names(index_tbl) idx <- timetk::tk_index(index_tbl) id_tbl <- x %>% dplyr::select(dplyr::all_of(id)) value_tbl <- tibble::tibble(value = y) constructed_tbl <- dplyr::bind_cols(id_tbl, index_tbl, value_tbl) gluon_listdataset <- constructed_tbl %>% to_gluon_list_dataset( date_var = !! rlang::sym(idx_col), value_var = value, id_var = !! rlang::sym(id), freq = freq ) trainer <- pkg.env$gluonts$trainer$Trainer( ctx = ctx, epochs = epochs, batch_size = batch_size, num_batches_per_epoch = num_batches_per_epoch, learning_rate = learning_rate, learning_rate_decay_factor = learning_rate_decay_factor, patience = patience, minimum_learning_rate = minimum_learning_rate, clip_gradient = clip_gradient, weight_decay = weight_decay, init = init, hybridize = hybridize ) model_spec <- pkg.env$gluonts$model$n_beats$NBEATSEnsembleEstimator( freq = freq, prediction_length = prediction_length, trainer = trainer, meta_context_length = meta_context_length, meta_loss_function = meta_loss_function, meta_bagging_size = meta_bagging_size, num_stacks = num_stacks, num_blocks = num_blocks, widths = widths, sharing = sharing, expansion_coefficient_lengths = expansion_coefficient_lengths, stack_types = stack_types ) model_fit <- model_spec$train(training_data = gluon_listdataset) class <- "nbeats_ensemble_fit_impl" models <- list( model_1 = model_fit ) data <- index_tbl %>% dplyr::mutate( .actual = y, .fitted = NA, .residuals = .actual - .fitted ) extras <- list( id = id, idx_column = idx_col, value_column = "value", freq = freq, grps = constructed_tbl %>% dplyr::pull(!! rlang::sym(id)) %>% unique(), constructed_tbl = list(constructed_tbl) ) desc <- "NBEATS ENSEMBLE" modeltime::new_modeltime_bridge( class = class, models = models, data = data, extras = extras, desc = desc ) } print.nbeats_ensemble_fit_impl <- function(x, ...) { cat(x$desc) cat("\n") cat("--------") cat("\nModel: ") print(x$models$model_1) invisible(x) } nbeats_ensemble_predict_impl <- function(object, new_data) { model <- object$models$model_1 id <- object$extras$id idx_col <- object$extras$idx_col freq <- object$extras$freq constructed_tbl <- object$extras$constructed_tbl[[1]] gluon_listdataset <- constructed_tbl %>% to_gluon_list_dataset( date_var = !! rlang::sym(idx_col), value_var = value, id_var = !! rlang::sym(id), freq = freq ) preds <- make_gluon_predictions( model = model, gluon_listdataset = gluon_listdataset, new_data = new_data, id_col = id, idx_col = idx_col ) return(preds) } predict.nbeats_ensemble_fit_impl <- function(object, new_data, ...) { nbeats_ensemble_predict_impl(object, new_data, ...) }
test_that("aggregation functions warn once if na.rm = FALSE", { local_con(simulate_dbi()) sql_mean <- win_aggregate("MEAN") expect_warning(sql_mean("x"), "Missing values") expect_warning(sql_mean("x"), NA) expect_warning(sql_mean("x", na.rm = TRUE), NA) }) test_that("window functions without group have empty over", { expect_equal(translate_sql(n()), sql("COUNT(*) OVER ()")) expect_equal(translate_sql(sum(x, na.rm = TRUE)), sql("SUM(`x`) OVER ()")) }) test_that("aggregating window functions ignore order_by", { expect_equal( translate_sql(n(), vars_order = "x"), sql("COUNT(*) OVER ()") ) expect_equal( translate_sql(sum(x, na.rm = TRUE), vars_order = "x"), sql("SUM(`x`) OVER ()") ) }) test_that("order_by overrides default ordering", { expect_equal( translate_sql(order_by(y, cumsum(x)), vars_order = "x"), sql("SUM(`x`) OVER (ORDER BY `y` ROWS UNBOUNDED PRECEDING)") ) expect_equal( translate_sql(order_by(y, cummean(x)), vars_order = "x"), sql("AVG(`x`) OVER (ORDER BY `y` ROWS UNBOUNDED PRECEDING)") ) expect_equal( translate_sql(order_by(y, cummin(x)), vars_order = "x"), sql("MIN(`x`) OVER (ORDER BY `y` ROWS UNBOUNDED PRECEDING)") ) expect_equal( translate_sql(order_by(y, cummax(x)), vars_order = "x"), sql("MAX(`x`) OVER (ORDER BY `y` ROWS UNBOUNDED PRECEDING)") ) }) test_that("cumulative windows warn if no order", { expect_warning(translate_sql(cumsum(x)), "does not have explicit order") expect_warning(translate_sql(cumsum(x), vars_order = "x"), NA) }) test_that("ntile always casts to integer", { expect_equal( translate_sql(ntile(x, 10.5)), sql("NTILE(10) OVER (ORDER BY `x`)") ) }) test_that("first, last, and nth translated to _value", { expect_equal( translate_sql(first(x)), sql("FIRST_VALUE(`x`) OVER ()") ) expect_equal( translate_sql(last(x), vars_order = "a", vars_frame = c(0, Inf)), sql("LAST_VALUE(`x`) OVER (ORDER BY `a` ROWS BETWEEN CURRENT ROW AND UNBOUNDED FOLLOWING)") ) expect_equal( translate_sql(nth(x, 3), vars_order = "a", vars_frame = c(-Inf, 0)), sql("NTH_VALUE(`x`, 3) OVER (ORDER BY `a` ROWS UNBOUNDED PRECEDING)") ) }) test_that("can override frame of recycled functions", { expect_equal( translate_sql(sum(x, na.rm = TRUE), vars_frame = c(-1, 0), vars_order = "y"), sql("SUM(`x`) OVER (ORDER BY `y` ROWS 1 PRECEDING)") ) }) test_that("frame is checked", { expect_snapshot( error = TRUE, translate_sql(sum(x, na.rm = TRUE), vars_frame = c(1, 0)) ) }) test_that("win_rank works", { local_con(simulate_dbi()) sql_row_number <- win_rank("ROW_NUMBER") expect_equal( sql_row_number("x"), sql("ROW_NUMBER() OVER (ORDER BY `x`)") ) }) test_that("win_rank works", { local_con(simulate_dbi()) sql_cumsum <- win_cumulative("SUM") expect_equal( sql_cumsum(ident("x"), "y"), sql("SUM(`x`) OVER (ORDER BY `y` ROWS UNBOUNDED PRECEDING)") ) }) test_that("over() only requires first argument", { local_con(simulate_dbi()) expect_equal(win_over("X"), sql("'X' OVER ()")) }) test_that("multiple group by or order values don't have parens", { local_con(simulate_dbi()) expect_equal( win_over(ident("x"), order = c("x", "y")), sql("`x` OVER (ORDER BY `x`, `y`)") ) expect_equal( win_over(ident("x"), partition = c("x", "y")), sql("`x` OVER (PARTITION BY `x`, `y`)") ) }) test_that("window_frame()", { lf <- lazy_frame(x = runif(10), y = 1:10) expect_snapshot( lf %>% window_frame(-3, 0) %>% window_order(x) %>% mutate(z = sum(y)) %>% show_query() ) }) test_that("window_frame() checks arguments", { skip_if(getRversion() <= '3.5.0', "R too old") lf <- lazy_frame(x = runif(10), y = 1:10) expect_snapshot(error = TRUE, window_frame(lf, "a")) expect_snapshot(error = TRUE, window_frame(lf, 1:2)) expect_snapshot(error = TRUE, window_frame(lf, 1, "a")) expect_snapshot(error = TRUE, window_frame(lf, 1, 1:2)) })
lexicon_bing <- function(dir = NULL, delete = FALSE, return_path = FALSE, clean = FALSE, manual_download = FALSE) { load_dataset(data_name = "bing", name = "bing.rds", dir = dir, delete = delete, return_path = return_path, clean = clean, manual_download = manual_download) } download_bing <- function(folder_path) { file_path_neg <- path(folder_path, "negative-words.txt") file_path_pos <- path(folder_path, "positive-words.txt") if (file_exists(file_path_pos) & file_exists(file_path_neg)) { return(invisible()) } download.file(url = "http://ptrckprry.com/course/ssd/data/negative-words.txt", destfile = file_path_neg) download.file(url = "http://ptrckprry.com/course/ssd/data/positive-words.txt", destfile = file_path_pos) } process_bing <- function(folder_path, name_path) { file_path_neg <- path(folder_path, "negative-words.txt") file_path_pos <- path(folder_path, "positive-words.txt") neg_words <- read_lines(file_path_neg, skip = 35) pos_words <- read_lines(file_path_pos, skip = 35) data <- tibble(word = c(neg_words, pos_words), sentiment = rep(c("negative", "positive"), c(length(neg_words), length(pos_words)))) write_rds(data, name_path) }
library(testthat) library(hablar) context("could this be that") test_that("could_chr_be_num", { expect_equal(could_chr_be_num("a"), F) expect_equal(could_chr_be_num("."), F) expect_equal(could_chr_be_num(" 3"), T) expect_equal(could_chr_be_num("3 0"), F) expect_equal(could_chr_be_num("2018-03-01"), F) expect_equal(could_chr_be_num("2018-10-09 19:19:26 CEST"), F) expect_equal(could_chr_be_num("1"), T) expect_equal(could_chr_be_num(".56"), T) expect_equal(could_chr_be_num("7.0"), T) expect_equal(could_chr_be_num("0003"), T) expect_equal(could_chr_be_num("1.98"), T) expect_equal(could_chr_be_num(as.character(c(NA, NA))), F) expect_equal(could_chr_be_num(".98"), T) expect_equal(could_chr_be_num(as.character(NA)), F) expect_error(could_chr_be_num(as.numeric(1))) expect_error(could_chr_be_num()) expect_error(could_chr_be_num(c())) expect_error(could_chr_be_num(data.frame(a = c(1,3,4)))) expect_error(could_chr_be_num(list(a = c(1,3,4)))) }) test_that("could_chr_be_int", { expect_equal(could_chr_be_int("a"), F) expect_equal(could_chr_be_int("."), F) expect_equal(could_chr_be_int(" 3"), T) expect_equal(could_chr_be_int("3 0"), F) expect_equal(could_chr_be_int("2018-03-01"), F) expect_equal(could_chr_be_int("2018-10-09 19:19:26 CEST"), F) expect_equal(could_chr_be_int("1"), T) expect_equal(could_chr_be_int(".56"), F) expect_equal(could_chr_be_int("7.0"), T) expect_equal(could_chr_be_int("0003"), T) expect_equal(could_chr_be_int("1,98"), F) expect_equal(could_chr_be_int(as.character(c())), F) expect_equal(could_chr_be_int(as.character(c(NA, NA))), F) expect_equal(could_chr_be_int(",98"), F) expect_equal(could_chr_be_int(as.character(NA)), F) expect_error(could_chr_be_int(as.numeric(1))) expect_error(could_chr_be_int()) expect_error(could_chr_be_int(data.frame(a = c(1,3,4)))) expect_error(could_chr_be_num(list(a = c(1,3,4)))) }) test_that("could_num_be_int", { expect_equal(could_num_be_int(as.numeric(1)), T) expect_equal(could_num_be_int(c(1, 2)), T) expect_equal(could_num_be_int(c(1, 2.6)), F) expect_equal(could_num_be_int(as.numeric(NA)), F) expect_equal(could_num_be_int(as.numeric(c())), F) expect_error(could_num_be_int(as.character(c()))) expect_error(could_num_be_int()) expect_error(could_num_be_int("a")) expect_error(could_num_be_int(",98")) expect_error(could_num_be_int(as.character(NA))) expect_error(could_num_be_int(data.frame(a = c(1,3,4)))) expect_error(could_chr_be_num(list(a = c(1,3,4)))) }) test_that("could_chr_be_dtm", { expect_equal(could_chr_be_dtm("a"), F) expect_equal(could_chr_be_dtm("."), F) expect_equal(could_chr_be_dtm(" 3"), F) expect_equal(could_chr_be_dtm("3 0"), F) expect_equal(could_chr_be_dtm("2018-03-01"), T) expect_equal(could_chr_be_dtm("2018-10-09 19:19:26 CEST"), T) expect_equal(could_chr_be_dtm(as.character(c("2018-10-09 19:19:26 CEST", "2018-10-09 19:19:27 CEST", NA))), T) expect_equal(could_chr_be_dtm("1"), F) expect_equal(could_chr_be_dtm("7.0"), F) expect_equal(could_chr_be_dtm("0003"), F) expect_equal(could_chr_be_dtm(as.character(NA)), F) expect_error(could_chr_be_dtm(as.POSIXct(c("2018-10-09 19:19:26 CEST", "2018-10-09 19:19:27 CEST")))) expect_error(could_chr_be_dtm(as.Date(c(NA, NA)))) expect_error(could_chr_be_dtm(as.numeric(1))) expect_error(could_chr_be_dtm(as.factor("2018-03-01"))) expect_error(could_chr_be_dtm(data.frame(a = c(1,3,4)))) expect_error(could_chr_be_num(list(a = c(1,3,4)))) }) test_that("could_dtm_be_dte", { expect_equal(could_dtm_be_dte(as.POSIXct("2018-03-01")), T) expect_equal(could_dtm_be_dte(as.POSIXct(c("2018-03-01", "2018-03-03"))), T) expect_equal(could_dtm_be_dte(as.POSIXct(c("2018-10-09 19:19:26 CEST", "2018-10-09 19:19:27 CEST"))), F) expect_equal(could_dtm_be_dte(as.POSIXct(c("2018-10-09 19:19:26 CEST", "2018-10-09 19:19:27 CEST", NA))), F) expect_equal(could_dtm_be_dte(as.POSIXct(NA)), F) expect_error(could_dtm_be_dte("a")) expect_error(could_dtm_be_dte(as.Date(c(NA, NA)))) expect_error(could_dtm_be_dte(as.numeric(1))) expect_error(could_dtm_be_dte(as.factor("2018-03-01"))) expect_error(could_dtm_be_dte(data.frame(a = c(1,3,4)))) expect_error(could_chr_be_num(list(a = c(1,3,4)))) })
setConstructorS3("OpticalBackgroundCorrection", function(..., minimum=1) { extend(BackgroundCorrection(..., typesToUpdate="pmmm"), "OpticalBackgroundCorrection", .minimum = minimum ) }) setMethodS3("getParameters", "OpticalBackgroundCorrection", function(this, ...) { params <- NextMethod("getParameters") params2 <- list( minimum = this$.minimum ) params <- c(params, params2) params }, protected=TRUE) setMethodS3("process", "OpticalBackgroundCorrection", function(this, ..., force=FALSE, verbose=FALSE) { verbose <- Arguments$getVerbose(verbose) if (verbose) { pushState(verbose) on.exit(popState(verbose)) } verbose && enter(verbose, "Background correcting data set") if (!force && isDone(this)) { verbose && cat(verbose, "Already background corrected for \"optical\" effects") verbose && exit(verbose) outputDataSet <- getOutputDataSet(this) return(outputDataSet) } ds <- getInputDataSet(this) outputPath <- getPath(this) cdf <- getCdf(ds) params <- getParameters(this) subsetToUpdate <- params$subsetToUpdate typesToUpdate <- params$typesToUpdate minimum <- params$minimum params <- NULL hasSubsetToUpdate <- getFraction <- FALSE nbrOfCells <- nbrOfCells(cdf) nbrOfArrays <- length(ds) verbose && cat(verbose, "Number of arrays: ", nbrOfArrays) res <- listenv() for (ii in seq_along(ds)) { df <- ds[[ii]] verbose && enter(verbose, sprintf("Array filename <- basename(getPathname(df)) filename <- gsub("[.]cel$", ".CEL", filename); pathname <- Arguments$getWritablePathname(filename, path=outputPath, mustNotExist=FALSE) pathname <- AffymetrixFile$renameToUpperCaseExt(pathname) if (!force && isFile(pathname)) { verbose && cat(verbose, "Already processed. Skipping.") dfOut <- newInstance(df, pathname) setCdf(dfOut, cdf) res[[ii]] <- pathname verbose && exit(verbose) next } if (!hasSubsetToUpdate) { verbose && enter(verbose, "Identifying cells to be updated") subsetToUpdate <- identifyCells(cdf, indices=subsetToUpdate, types=typesToUpdate) verbose && cat(verbose, "Number of cells: ", length(subsetToUpdate)) verbose && str(verbose, subsetToUpdate) hasSubsetToUpdate <- TRUE verbose && exit(verbose) } res[[ii]] %<-% { verbose && enter(verbose, "Reading probe intensities") x <- readRawData(df, fields="intensities", verbose=less(verbose,2)) x <- x$intensities verbose && exit(verbose) verbose && enter(verbose, "Adjusting background for optical effect") arrayMinimum <- min(x[subsetToUpdate], na.rm=TRUE) verbose && printf(verbose, "Array minimum: %.2f\n", arrayMinimum) xdiff <- (arrayMinimum - minimum) verbose && printf(verbose, "Correction: -(%.2f-%.2f) = %+.2f\n", arrayMinimum, minimum, -xdiff) x[subsetToUpdate] <- x[subsetToUpdate] - xdiff verbose && exit(verbose) verbose && enter(verbose, "Writing adjusted probe signals") isFile <- (force && isFile(pathname)) pathnameT <- pushTemporaryFile(pathname, isFile=isFile, verbose=verbose) verbose && enter(verbose, "Creating CEL file for results, if missing") createFrom(df, filename=pathnameT, path=NULL, verbose=less(verbose)) verbose && exit(verbose) verbose && enter(verbose, "Writing adjusted intensities") .updateCel(pathnameT, intensities=x) verbose && exit(verbose) popTemporaryFile(pathnameT, verbose=verbose) dfOut <- newInstance(df, pathname) setCdf(dfOut, cdf) dfZ <- getChecksumFile(dfOut) verbose && exit(verbose) pathname } verbose && exit(verbose) } subsetToUpdate <- NULL res <- as.list(res) res <- NULL gc <- gc() verbose && print(verbose, gc) outputDataSet <- getOutputDataSet(this) verbose && exit(verbose) outputDataSet })
stat_bin <- function(mapping = NULL, data = NULL, geom = "bar", position = "stack", ..., binwidth = NULL, bins = NULL, center = NULL, boundary = NULL, breaks = NULL, closed = c("right", "left"), pad = FALSE, na.rm = FALSE, orientation = NA, show.legend = NA, inherit.aes = TRUE) { layer( data = data, mapping = mapping, stat = StatBin, geom = geom, position = position, show.legend = show.legend, inherit.aes = inherit.aes, params = list( binwidth = binwidth, bins = bins, center = center, boundary = boundary, breaks = breaks, closed = closed, pad = pad, na.rm = na.rm, orientation = orientation, ... ) ) } StatBin <- ggproto("StatBin", Stat, setup_params = function(data, params) { params$flipped_aes <- has_flipped_aes(data, params, main_is_orthogonal = FALSE) has_x <- !(is.null(data$x) && is.null(params$x)) has_y <- !(is.null(data$y) && is.null(params$y)) if (!has_x && !has_y) { abort("stat_bin() requires an x or y aesthetic.") } if (has_x && has_y) { abort("stat_bin() can only have an x or y aesthetic.") } x <- flipped_names(params$flipped_aes)$x if (is.integer(data[[x]])) { abort(glue("StatBin requires a continuous {x} variable: the {x} variable is discrete.", "Perhaps you want stat=\"count\"?")) } if (!is.null(params$drop)) { warn("`drop` is deprecated. Please use `pad` instead.") params$drop <- NULL } if (!is.null(params$origin)) { warn("`origin` is deprecated. Please use `boundary` instead.") params$boundary <- params$origin params$origin <- NULL } if (!is.null(params$right)) { warn("`right` is deprecated. Please use `closed` instead.") params$closed <- if (params$right) "right" else "left" params$right <- NULL } if (!is.null(params$width)) { abort("`width` is deprecated. Do you want `geom_bar()`?") } if (!is.null(params$boundary) && !is.null(params$center)) { abort("Only one of `boundary` and `center` may be specified.") } if (is.null(params$breaks) && is.null(params$binwidth) && is.null(params$bins)) { message_wrap("`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.") params$bins <- 30 } params }, extra_params = c("na.rm", "orientation"), compute_group = function(data, scales, binwidth = NULL, bins = NULL, center = NULL, boundary = NULL, closed = c("right", "left"), pad = FALSE, breaks = NULL, flipped_aes = FALSE, origin = NULL, right = NULL, drop = NULL, width = NULL) { x <- flipped_names(flipped_aes)$x if (!is.null(breaks)) { if (!scales[[x]]$is_discrete()) { breaks <- scales[[x]]$transform(breaks) } bins <- bin_breaks(breaks, closed) } else if (!is.null(binwidth)) { if (is.function(binwidth)) { binwidth <- binwidth(data[[x]]) } bins <- bin_breaks_width(scales[[x]]$dimension(), binwidth, center = center, boundary = boundary, closed = closed) } else { bins <- bin_breaks_bins(scales[[x]]$dimension(), bins, center = center, boundary = boundary, closed = closed) } bins <- bin_vector(data[[x]], bins, weight = data$weight, pad = pad) bins$flipped_aes <- flipped_aes flip_data(bins, flipped_aes) }, default_aes = aes(x = after_stat(count), y = after_stat(count), weight = 1), required_aes = "x|y" )
make.dmu.deta <- function(linkstr) switch(linkstr, "logit" = { logit_link <- make.link("logit") function(eta) logit_link$mu.eta(eta) * (1 - 2 * logit_link$linkinv(eta)) }, "probit" = function(eta) -eta * pmax(dnorm(eta), .Machine$double.eps), "cauchit" = function(eta) -2 * pi * eta * pmax(dcauchy(eta)^2, .Machine$double.eps), "cloglog" = function(eta) pmax((1 - exp(eta)) * exp(eta - exp(eta)), .Machine$double.eps), "loglog" = function(eta) pmax(exp(-exp(-eta) - eta) * expm1(-eta), .Machine$double.eps), "identity" = function(eta) rep.int(0, length(eta)), "log" = function(eta) pmax(exp(eta), .Machine$double.eps), "sqrt" = function(eta) rep.int(2, length(eta)), "1/mu^2" = function(eta) 3/(4 * eta^2.5), "inverse" = function(eta) 2/(eta^3) )
Lognormal <- R6Class("Lognormal", inherit = SDistribution, lock_objects = F, public = list( name = "Lognormal", short_name = "Lnorm", description = "Lognormal Probability Distribution.", packages = "stats", initialize = function(meanlog = NULL, varlog = NULL, sdlog = NULL, preclog = NULL, mean = NULL, var = NULL, sd = NULL, prec = NULL, decorators = NULL) { super$initialize( decorators = decorators, support = PosReals$new(), type = PosReals$new() ) }, mean = function(...) { unlist(self$getParameterValue("mean")) }, mode = function(which = "all") { exp(unlist(self$getParameterValue("meanlog")) - unlist(self$getParameterValue("varlog"))) }, median = function() { exp(unlist(self$getParameterValue("meanlog"))) }, variance = function(...) { unlist(self$getParameterValue("var")) }, skewness = function(...) { varlog <- unlist(self$getParameterValue("varlog")) return(sqrt(exp(varlog) - 1) * (exp(varlog) + 2)) }, kurtosis = function(excess = TRUE, ...) { varlog <- unlist(self$getParameterValue("varlog")) if (excess) { return((exp(4 * varlog) + 2 * exp(3 * varlog) + 3 * exp(2 * varlog) - 6)) } else { return((exp(4 * varlog) + 2 * exp(3 * varlog) + 3 * exp(2 * varlog) - 3)) } }, entropy = function(base = 2, ...) { log(sqrt(2 * pi) * unlist(self$getParameterValue("sdlog")) * exp(unlist(self$getParameterValue("meanlog")) + 0.5), base) }, mgf = function(t, ...) { return(NaN) }, pgf = function(z, ...) { return(NaN) } ), private = list( .pdf = function(x, log = FALSE) { meanlog <- self$getParameterValue("meanlog") sdlog <- self$getParameterValue("sdlog") call_C_base_pdqr( fun = "dlnorm", x = x, args = list( meanlog = unlist(meanlog), sdlog = unlist(sdlog) ), log = log, vec = test_list(meanlog) ) }, .cdf = function(x, lower.tail = TRUE, log.p = FALSE) { meanlog <- self$getParameterValue("meanlog") sdlog <- self$getParameterValue("sdlog") call_C_base_pdqr( fun = "plnorm", x = x, args = list( meanlog = unlist(meanlog), sdlog = unlist(sdlog) ), lower.tail = lower.tail, log = log.p, vec = test_list(meanlog) ) }, .quantile = function(p, lower.tail = TRUE, log.p = FALSE) { meanlog <- self$getParameterValue("meanlog") sdlog <- self$getParameterValue("sdlog") call_C_base_pdqr( fun = "qlnorm", x = p, args = list( meanlog = unlist(meanlog), sdlog = unlist(sdlog) ), lower.tail = lower.tail, log = log.p, vec = test_list(meanlog) ) }, .rand = function(n) { meanlog <- self$getParameterValue("meanlog") sdlog <- self$getParameterValue("sdlog") call_C_base_pdqr( fun = "rlnorm", x = n, args = list( meanlog = unlist(meanlog), sdlog = unlist(sdlog) ), vec = test_list(meanlog) ) }, .traits = list(valueSupport = "continuous", variateForm = "univariate") ) ) .distr6$distributions <- rbind( .distr6$distributions, data.table::data.table( ShortName = "Lnorm", ClassName = "Lognormal", Type = "\u211D+", ValueSupport = "continuous", VariateForm = "univariate", Package = "stats", Tags = "" ) )
tryCatch <- function(expr, ..., finally) { tryCatchList <- function(expr, names, parentenv, handlers) { nh <- length(names) if (nh > 1L) tryCatchOne(tryCatchList(expr, names[-nh], parentenv, handlers[-nh]), names[nh], parentenv, handlers[[nh]]) else if (nh == 1L) tryCatchOne(expr, names, parentenv, handlers[[1L]]) else expr } tryCatchOne <- function(expr, name, parentenv, handler) { doTryCatch <- function(expr, name, parentenv, handler) { .Internal(.addCondHands(name, list(handler), parentenv, environment(), FALSE)) expr } value <- doTryCatch(return(expr), name, parentenv, handler) if (is.null(value[[1L]])) { msg <- .Internal(geterrmessage()) call <- value[[2L]] cond <- simpleError(msg, call) } else cond <- value[[1L]] value[[3L]](cond) } if (! missing(finally)) on.exit(finally) handlers <- list(...) classes <- names(handlers) parentenv <- parent.frame() if (length(classes) != length(handlers)) stop("bad handler specification") tryCatchList(expr, classes, parentenv, handlers) } withCallingHandlers <- function(expr, ...) { handlers <- list(...) classes <- names(handlers) parentenv <- parent.frame() if (length(classes) != length(handlers)) stop("bad handler specification") .Internal(.addCondHands(classes, handlers, parentenv, NULL, TRUE)) expr } suppressWarnings <- function(expr) { ops <- options(warn = -1) on.exit(options(ops)) withCallingHandlers(expr, warning=function(w) invokeRestart("muffleWarning")) } simpleCondition <- function(message, call = NULL) { class <- c("simpleCondition", "condition") structure(list(message=as.character(message), call = call), class=class) } simpleError <- function(message, call = NULL) { class <- c("simpleError", "error", "condition") structure(list(message=as.character(message), call = call), class=class) } simpleWarning <- function(message, call = NULL) { class <- c("simpleWarning", "warning", "condition") structure(list(message=as.character(message), call = call), class=class) } conditionMessage <- function(c) UseMethod("conditionMessage") conditionCall <- function(c) UseMethod("conditionCall") conditionMessage.condition <- function(c) c$message conditionCall.condition <- function(c) c$call print.condition <- function(x, ...) { msg <- conditionMessage(x) call <- conditionCall(x) cl <- class(x)[1L] if (! is.null(call)) cat("<", cl, " in ", deparse(call), ": ", msg, ">\n", sep="") else cat("<", cl, ": ", msg, ">\n", sep="") invisible(x) } as.character.condition <- function(x, ...) { msg <- conditionMessage(x) call <- conditionCall(x) cl <- class(x)[1L] if (! is.null(call)) paste(cl, " in ", deparse(call)[1L], ": ", msg, "\n", sep="") else paste(cl, ": ", msg, "\n", sep="") } as.character.error <- function(x, ...) { msg <- conditionMessage(x) call <- conditionCall(x) if (! is.null(call)) paste("Error in ", deparse(call)[1L], ": ", msg, "\n", sep="") else paste("Error: ", msg, "\n", sep="") } signalCondition <- function(cond) { if (! inherits(cond, "condition")) cond <- simpleCondition(cond) msg <- conditionMessage(cond) call <- conditionCall(cond) .Internal(.signalCondition(cond, msg, call)) } restartDescription <- function(r) r$description restartFormals <- function(r) formals(r$handler) print.restart <- function(x, ...) { cat(paste("<restart:", x[[1L]], ">\n")) invisible(x) } isRestart <- function(x) inherits(x, "restart") findRestart <- function(name, cond = NULL) { i <- 1L repeat { r <- .Internal(.getRestart(i)) if (is.null(r)) return(NULL) else if (name == r[[1L]] && (is.null(cond) || is.null(r$test) || r$test(cond))) return(r) else i <- i + 1L } } computeRestarts <- function(cond = NULL) { val <- NULL i <- 1L repeat { r <- .Internal(.getRestart(i)) if (is.null(r)) return(val) else if (is.null(cond) || is.null(r$test) || r$test(cond)) val <- c(val, list(r)) i <- i + 1L } } invokeRestart <- function(r, ...) { if (! isRestart(r)) { res <- findRestart(r) if (is.null(res)) stop(gettextf("no 'restart' '%s' found", as.character(r)), domain = NA) r <- res } .Internal(.invokeRestart(r, list(...))) } invokeRestartInteractively <- function(r) { if (! interactive()) stop("not an interactive session") if (! isRestart(r)) { res <- findRestart(r) if (is.null(res)) stop(gettextf("no 'restart' '%s' found", as.character(r)), domain = NA) r <- res } if (is.null(r$interactive)) { pars <- names(restartFormals(r)) args <- NULL if (length(pars)) { cat("Enter values for restart arguments:\n\n") for (p in pars) { if (p == "...") { prompt <- "... (a list): " args <- c(args, eval(parse(prompt = prompt))) } else { prompt <- paste(p, ": ", sep="") args <- c(args, list(eval(parse(prompt = prompt)))) } } } } else args <- r$interactive() .Internal(.invokeRestart(r, args)) } withRestarts <- function(expr, ...) { docall <- function(fun, args) { if ((is.character(fun) && length(fun) == 1L) || is.name(fun)) fun <- get(as.character(fun), envir = parent.frame(), mode = "function") do.call("fun", lapply(args, enquote)) } makeRestart <- function(name = "", handler = function(...) NULL, description = "", test = function(c) TRUE, interactive = NULL) { structure(list(name = name, exit = NULL, handler = handler, description = description, test = test, interactive = interactive), class = "restart") } makeRestartList <- function(...) { specs <- list(...) names <- names(specs) restarts <- vector("list", length(specs)) for (i in seq_along(specs)) { spec <- specs[[i]] name <- names[i] if (is.function(spec)) restarts[[i]] <- makeRestart(handler = spec) else if (is.character(spec)) restarts[[i]] <- makeRestart(description = spec) else if (is.list(spec)) restarts[[i]] <- docall("makeRestart", spec) else stop("not a valid restart specification") restarts[[i]]$name <- name } restarts } withOneRestart <- function(expr, restart) { doWithOneRestart <- function(expr, restart) { restart$exit <- environment() .Internal(.addRestart(restart)) expr } restartArgs <- doWithOneRestart(return(expr), restart) docall(restart$handler, restartArgs) } withRestartList <- function(expr, restarts) { nr <- length(restarts) if (nr > 1L) withOneRestart(withRestartList(expr, restarts[-nr]), restarts[[nr]]) else if (nr == 1L) withOneRestart(expr, restarts[[1L]]) else expr } restarts <- makeRestartList(...) if (length(restarts) == 0L) expr else if (length(restarts) == 1L) withOneRestart(expr, restarts[[1L]]) else withRestartList(expr, restarts) } .signalSimpleWarning <- function(msg, call, immediate = FALSE) withRestarts({ .Internal(.signalCondition(simpleWarning(msg, call), msg, call)) .Internal(.dfltWarn(msg, call, immediate)) }, muffleWarning = function() NULL) .handleSimpleError <- function(h, msg, call) h(simpleError(msg, call))
popsamp <- function (n, pop,...) { if (n > nrow(pop)) stop("Sample size cannot exceed population size") poprows <- 1:nrow(pop) popcols <- 1:ncol(pop) rsamp <- sample(poprows, size = n,...) "["(pop,rsamp,popcols,drop=FALSE) }
expected <- eval(parse(text="list(character(0), \"c0\")")); test(id=0, code={ argv <- eval(parse(text="list(structure(list(c0 = structure(integer(0), .Label = character(0), class = \"factor\")), .Names = \"c0\", row.names = character(0), class = \"data.frame\"))")); do.call(`dimnames`, argv); }, o=expected);
nPV <- function(se, sp, prev, NPV0, PPV0, NPVpower=0.8, PPVpower=0.8, rangeP=c(0.05,0.95), nsteps=20, alpha=0.05, setnames=NULL) { arglist<-list(se=se, sp=sp, prev=prev, NPV0=NPV0, PPV0=PPV0, NPVpower=NPVpower, PPVpower=PPVpower) arglength<-unlist(lapply(arglist, length)) maxlength<-max(arglength) if(is.null(setnames)){setnames<-paste("Setting ", 1:maxlength, sep="")} ARGLIST <- lapply(X=arglist, FUN=function(x){rep(x, length.out=maxlength)}) inDAT <- as.data.frame(ARGLIST) rownames(inDAT) <- make.unique(rep(setnames, length.out=maxlength)) inPPV<-apply(X=inDAT, MARGIN=1, FUN=function(x){ppv(p=x["prev"], se=x["se"], sp=x["sp"])}) inNPV<-apply(X=inDAT, MARGIN=1, FUN=function(x){npv(p=x["prev"], se=x["se"], sp=x["sp"])}) CONF.LEVEL=1-alpha Pseq <- seq(from=min(rangeP), to=max(rangeP), length.out=nsteps) nlist<-list() for (i in 1:maxlength) { PPV <- nPPV(propP=Pseq, se=ARGLIST$se[i], sp=ARGLIST$sp[i], prev=ARGLIST$prev[i], PPV0=ARGLIST$PPV0[i], power=ARGLIST$PPVpower[i], conf.level=CONF.LEVEL ) NPV <- nNPV(propP=Pseq, se=ARGLIST$se[i], sp=ARGLIST$sp[i], prev=ARGLIST$prev[i], NPV0=ARGLIST$NPV0[i], power=ARGLIST$NPVpower[i], conf.level=CONF.LEVEL ) nlist[[i]]<-list(NPV=NPV, PPV=PPV) } outDAT<-cbind(inDAT, trueNPV=inNPV, truePPV=inPPV) RES<-list(outDAT=outDAT, nlist=nlist, NSETS=maxlength, nsteps=nsteps, rangeP=rangeP, propP=Pseq) class(RES) <- "nPV" return(RES) }
set_pushover_app <- function(token = NULL, ask = is_interactive()) { if (is.null(token)) { if (ask && is_interactive()) { cli::cli_alert_info("{.envvar PUSHOVER_APP} is not set, and application token not provided (see {.code ?pushoverr} for details)") in_token <- readline("Please enter your application token: ") Sys.setenv("PUSHOVER_APP" = in_token) } else { cli::cli_abort("Set Pushover application token by providing value for argument {.arg app} or setting {.envvar PUSHOVER_APP}. See {.code pushoverr} for details.") } } else { if (identical(Sys.getenv("PUSHOVER_APP"), token)) { cli::cli_alert_info("Pushover app was already set to {.code {token}}") } Sys.setenv("PUSHOVER_APP" = token) } } get_pushover_app <- function(ask = is_interactive()) { if (!pushover_app.isset()) { set_pushover_app(ask = ask) } Sys.getenv("PUSHOVER_APP") } unset_pushover_app <- function() { if (!pushover_app.isset()) { cli::cli_alert_info("{.envvar PUSHOVER_APP} is not set") } Sys.unsetenv("PUSHOVER_APP") } pushover_app.isset <- function() { !is.na(Sys.getenv("PUSHOVER_APP", NA_character_)) }
{ library("spinifex") library("testthat") r_idx <- c(1:3, (nrow(wine) - 2):nrow(wine)) sub <- wine[r_idx, ] dat_std <- scale_sd(sub[, 2:6]) clas <- sub$Type bas <- basis_pca(dat_std) mv <- manip_var_of(bas) } rb <- tourr::basis_random(ncol(dat_std), 2) ib <- tourr::basis_init(n = 4, 2) b_pca <- basis_pca(dat_std) b_guide <- basis_guided(data = dat_std, index_f = tourr::holes()) diag4 <- diag(4) not_orth <- matrix(sample(1:16, 16), ncol=4) test_that("is_orthonormal: bases functions & diag() are orthonormal, rand matrix isn't", { expect_true(is_orthonormal(rb)) expect_true(is_orthonormal(ib)) expect_true(is_orthonormal(b_pca)) expect_true(is_orthonormal(b_guide)) expect_true(is_orthonormal(diag4)) expect_false(is_orthonormal(not_orth)) }) ret_t <- is_orthonormal(rb) ret_f <- is_orthonormal(not_orth) test_that("is_orthonormal: returns are logical.", { expect_equal(class(ret_t), "logical") expect_equal(class(ret_f), "logical") }) array_single <- array(bas, dim = c(dim(bas), 1)) attr(array_single, "manip_var") <- mv ret_single <- array2df(basis_array = array_single) mt_array <- manual_tour(basis = bas, manip_var = mv) ret_mt <- array2df(basis_array = mt_array, data = dat_std, basis_label = paste0("MyLabs", 1:nrow(bas)), data_label = paste0("obs gt_array <- save_history(data = dat_std, max_bases = 10) class(gt_array) <- "array" ret_gt <- array2df(basis_array = gt_array, data = dat_std, basis_label = paste0("MyLabs", 1:nrow(bas)), data_label = paste0("obs test_that("array2df: class", { expect_equal(class(ret_single), "list") expect_equal(class(ret_mt ), "list") expect_equal(class(ret_gt ), "list") }) test_that("array2df: length", { expect_equal(length(ret_single), 1) expect_equal(length(ret_mt) , 2) expect_equal(length(ret_gt) , 2) }) ret <- map_relative(x = bas, position = "bottomleft") ret_to <- map_relative(x = bas, position = "topright", to = wine[, 2:3]) test_that("map_relative: class and dim", { expect_equal(class(ret ), c("matrix" ,"array")) expect_equal(class(ret_to), c("matrix" ,"array")) expect_equal(dim(ret), c(5, 2)) expect_equal(dim(ret_to), c(5, 2)) }) ret_mat <- map_absolute(x = bas, offset = c(-1, 0), scale = c(2/3, 2/3)) ret_df <- map_absolute(x = mtcars[,1:2], offset = c(0, 100), scale = c(.1, .1)) test_that("map_absolute: class and dim", { expect_equal(class(ret_mat), c("matrix" ,"array")) expect_equal(class(ret_df ), "data.frame") expect_equal(dim(ret_mat), c(5, 2)) expect_equal(dim(ret_df), c(32, 2)) }) t <- theme_spinifex() g <- ggplot2::ggplot() + t test_that("theme_spinifex: class", { expect_equal(class(t), "list") expect_equal(class(g), c("gg", "ggplot")) }) b1 <- basis_pca(dat_std) b2 <- basis_half_circle(dat_std) b3 <- basis_odp(dat_std, clas) b4 <- basis_olda(wine[, 2:6], wine$Type) test_that("basis_*", { expect_equal(class(b1), c("matrix", "array")) expect_equal(class(b2), c("matrix", "array")) expect_equal(class(b3), c("matrix", "array")) expect_equal(class(b4), c("matrix", "array")) expect_equal(dim(b1), c(5, 2)) expect_equal(dim(b2), c(5, 2)) expect_equal(dim(b3), c(5, 2)) expect_equal(dim(b4), c(5, 2)) expect_equal(is_orthonormal(b1), TRUE) expect_equal(is_orthonormal(b2), TRUE) expect_equal(is_orthonormal(b3), TRUE) expect_equal(is_orthonormal(b4), TRUE) }) ret_holes <- basis_guided(data = dat_std, index_f = tourr::holes()) ret_cmass <- basis_guided(data = dat_std, index_f = tourr::cmass(), alpha = .4, cooling = .9, max.tries = 30) test_that("basis_guided: class and dim", { expect_equal(class(ret_holes), c("matrix", "array")) expect_equal(class(ret_cmass), c("matrix", "array")) expect_equal(dim(ret_holes), c(5, 2)) expect_equal(dim(ret_cmass), c(5, 2)) expect_equal(is_orthonormal(ret_holes), TRUE) expect_equal(is_orthonormal(ret_cmass), TRUE) }) ret <- manip_var_of(bas) test_that("manip_var_of: class and dim", { expect_equal(class(ret), "integer") expect_equal(length(ret), 1) expect_warning(manip_var_of(not_orth)) }) s1 <- scale_sd(mtcars) s2 <- scale_01(dat_std) s3 <- scale_01(as.matrix(mtcars)) test_that("scale, class, bounds, dim", { expect_equal(class(s1), c("matrix", "array")) expect_equal(class(s2), c("matrix", "array")) expect_equal(class(s3), c("matrix", "array")) expect_equal(min(s2), 0) expect_equal(max(s2), 1) expect_equal(min(s3), 0) expect_equal(max(s3), 1) expect_equal(dim(s1), dim(mtcars)) expect_equal(dim(s2), dim(dat_std)) expect_equal(dim(s3), dim(mtcars)) }) test_that("other basis_* class, orth, ", { expect_warning(sa <- scale_axes(mtcars)) expect_equal(sa, map_relative(mtcars)) expect_warning(pz <- pan_zoom(mtcars)) expect_equal(pz, map_absolute(mtcars)) })
library(civis) library(future) start <- proc.time() cat("setting up models...", fill = TRUE) plan("multisession", workers = 20) data("iris") tmp <- tempfile() write.csv(iris, file = tmp) iris_id <- write_civis_file(tmp, name = "iris.csv") do_class <- function(algo, id) { cv <- if (grepl("perceptron", algo)) "hyperband" else NULL future(civis_ml(civis_file(id), dependent_variable = "Species", model_type = algo, cross_validation_parameters = cv)) } binary_iris <- iris[with(iris, Species %in% c('virginica', 'setosa')), ] binary_fut <- future(civis_ml(binary_iris, dependent_variable = "Species", model_type = "sparse_logistic")) data("ChickWeight") tmp <- tempfile() write.csv(ChickWeight, file = tmp) chick_id <- write_civis_file(tmp, name = "chicweight.csv") do_regr <- function(algo, id) { cv <- if (grepl("perceptron", algo)) "hyperband" else NULL future(civis_ml(civis_file(id), "weight", algo, cross_validation_parameters = cv)) } unlink(tmp) cat("submitting models...", fill = T) mclass_fut <- lapply(CIVIS_ML_CLASSIFIERS, do_class, id = iris_id) mreg_fut <- lapply(CIVIS_ML_REGRESSORS, do_regr, id = chick_id) multi_output_fut <- future(civis_ml(civis_file(chick_id), dependent_variable = c("weight", "Time"), model_type = "random_forest_regressor")) multi_class_output_fut <- future(civis_ml(civis_file(chick_id), dependent_variable = c("Time", "Diet"), model_type = "random_forest_classifier")) no_val_reg_fut <- future(civis_ml(civis_file(chick_id), dependent_variable = c("weight", "Time"), model_type = "random_forest_regressor", validation_data = "skip")) no_val_class_fut <- future(civis_ml(civis_file(iris_id), dependent_variable = c("Species"), model_type = "sparse_logistic", validation_data = "skip")) cat("waiting for models to complete...", fill = TRUE) mclass_list <- lapply(c(mclass_fut, binary_fut), value) cat(" ...classification models completed", fill = TRUE) mreg_list <- lapply(mreg_fut, value) cat(" ...regression models completed", fill = TRUE) multi_output <- list(value(multi_output_fut), value(multi_class_output_fut)) cat(" ...multi output completed", fill = TRUE) no_val <- list(value(no_val_reg_fut), value(no_val_class_fut)) ms <- c(mclass_list, mreg_list, multi_output, no_val) cat(" ...no validation completed", fill = TRUE) cat("writing tests/testthat/data/civis_ml_models.rds", fill = TRUE) saveRDS(ms, "../tests/testthat/data/civis_ml_models.rds") end <- proc.time() tot <- end - start cat("total time: ", tot[3], "s", fill = TRUE)
setClass("DSObject", "VIRTUAL") setGeneric("dsGetInfo", def = function(dsObj, ...) standardGeneric("dsGetInfo"), valueClass = "list")
msc.matrix <- function(files, samples, groups) { if (sum(file.exists(files))!=length(files)) stop("ERROR: One or more files doesn't exist") if (!identical(samples, sort(samples))) stop("ERROR: Make sure to order you sample vector. Adapt your groups factor if necessary.") if (length(samples) != length(groups)) stop("ERROR: The sample and groups vector are not of equal length") if (!is.factor(groups)) stop("ERROR: The groups vector should be a factor") id <- as.numeric(regmatches( gsub(".*/", "", files), gregexpr("[[:digit:]]+", gsub(".*/", "", files)))) clust_mat_ids <- list() for (n in 1:length(id)) { cat(paste0("Calculating cluster matrix with id", id[n], "...\n")) uc_H <- read.uc(files[n])$hits uc_C <- read.uc(files[n])$clusters uc_C2 <- read.uc(files[n])$clustnumbers clusters <- vector(mode = 'list', length = length(uc_C)) for (i in 1:length(uc_C2)) { if (uc_C[uc_C$V2==uc_C2[i], 3] == 1) { clusters[[i]] <- as.character(uc_C[uc_C$V2==uc_C2[i], 9]) } else { clusters[[i]] <- unique(c(as.character(uc_H[uc_H$V2==uc_C2[i], 9]), as.character(uc_H[uc_H$V2==uc_C2[i],10]))) } } clust_mat <- matrix(nrow=length(clusters), ncol = length(samples)) colnames(clust_mat) <- samples rownames(clust_mat) <- paste('C', uc_C[,2], sep = '') for (t in 1:length(samples)) { temp <- lapply(lapply(clusters, function(x) table(gsub('_contig.*','',x))), function(x) x[which(names(x) == samples[t])]) for (ct in 1:length(temp)) { if (length(temp[[ct]]) > 0) { clust_mat[ct,t] <- temp[[ct]] } else if (length(temp[[ct]]) == 0) { clust_mat[ct,t] <- 0 } } } clust_mat_ids[[n]] <- clust_mat[,order(colnames(clust_mat))] } names(clust_mat_ids) <- paste0("id", id) return(clust_mat_ids) }
NULL "worldEnergyUse" globalVariables(c("mod", "multiple", "name", "type"))
condition <- function(subclass, message, call = sys.call(-1), ...) { structure( class = c(subclass, "condition"), list(message = message, call = call, ...) ) } rate_limit_exception <- function(wait_time) { condition("rate_limit_exception", message = "", call = NULL, wait_time = wait_time) }
test_that("interactive_charcoal", { skip_on_cran() iniv <- c(0,0) names(iniv) <- c("radius", "sigma") expected <- image_charcoal(img, iniv[1], iniv[2]) expect_equal(expected, interactive_charcoal(img)) expect_equal(iniv, interactive_charcoal(img, return_param = TRUE)) expect_equal(expected, interactive_charcoal(img, scale = scale1)) })
context("gls objects") set.seed(20190513) library(nlme, quietly=TRUE, warn.conflicts=FALSE) data(Ovary, package = "nlme") Ovary$time_int <- 1:nrow(Ovary) lm_hom <- gls(follicles ~ sin(2*pi*Time) + cos(2*pi*Time), data = Ovary) lm_power <- gls(follicles ~ sin(2*pi*Time) + cos(2*pi*Time), data = Ovary, weights = varPower()) lm_AR1 <- gls(follicles ~ sin(2*pi*Time) + cos(2*pi*Time), data = Ovary, correlation = corAR1(form = ~ time_int | Mare)) lm_AR1_power <- update(lm_AR1, weights = varPower()) test_that("bread works", { expect_true(check_bread(lm_hom, cluster = Ovary$Mare, y = Ovary$follicles)) expect_true(check_bread(lm_power, cluster = Ovary$Mare, y = Ovary$follicles)) expect_true(check_bread(lm_AR1, cluster = Ovary$Mare, y = Ovary$follicles)) expect_true(check_bread(lm_AR1_power, cluster = Ovary$Mare, y = Ovary$follicles)) expect_equal(vcov(lm_hom), lm_hom$sigma^2 * bread(lm_hom) / v_scale(lm_hom)) expect_equal(vcov(lm_power), lm_power$sigma^2 * bread(lm_power) / v_scale(lm_power)) expect_equal(vcov(lm_AR1), lm_AR1$sigma^2 * bread(lm_AR1) / v_scale(lm_AR1)) expect_equal(vcov(lm_AR1_power), lm_AR1_power$sigma^2 * bread(lm_AR1_power) / v_scale(lm_AR1_power)) }) test_that("vcovCR options work for CR2", { CR2_AR1 <- vcovCR(lm_AR1, type = "CR2") expect_equal(vcovCR(lm_AR1, cluster = Ovary$Mare, type = "CR2"), CR2_AR1) expect_equal(vcovCR(lm_AR1, type = "CR2", inverse_var = TRUE), CR2_AR1) expect_false(identical(vcovCR(lm_AR1, type = "CR2", inverse_var = FALSE), CR2_AR1)) target <- targetVariance(lm_AR1) expect_equal(vcovCR(lm_AR1, type = "CR2", target = target, inverse_var = TRUE), CR2_AR1) attr(CR2_AR1, "inverse_var") <- FALSE expect_equal(vcovCR(lm_AR1, type = "CR2", target = target, inverse_var = FALSE), CR2_AR1) CR2_power <- vcovCR(lm_AR1_power, type = "CR2") expect_equal(vcovCR(lm_AR1_power, cluster = Ovary$Mare, type = "CR2"), CR2_power) expect_equal(vcovCR(lm_AR1_power, type = "CR2", inverse_var = TRUE), CR2_power) expect_false(identical(vcovCR(lm_AR1_power, type = "CR2", inverse_var = FALSE), CR2_power)) target <- targetVariance(lm_AR1_power, cluster = Ovary$Mare) expect_equal(vcovCR(lm_AR1_power, type = "CR2", target = target, inverse_var = TRUE), CR2_power) attr(CR2_power, "inverse_var") <- FALSE expect_equal(vcovCR(lm_AR1_power, type = "CR2", target = target, inverse_var = FALSE), CR2_power) }) test_that("vcovCR options work for CR4", { CR4_AR1 <- vcovCR(lm_AR1, type = "CR4") expect_equal(vcovCR(lm_AR1, cluster = Ovary$Mare, type = "CR4"), CR4_AR1) expect_equal(vcovCR(lm_AR1, type = "CR4", inverse_var = TRUE), CR4_AR1) expect_false(identical(vcovCR(lm_AR1, type = "CR4", inverse_var = FALSE), CR4_AR1)) target <- targetVariance(lm_AR1) expect_equal(vcovCR(lm_AR1, type = "CR4", target = target, inverse_var = TRUE), CR4_AR1) attr(CR4_AR1, "inverse_var") <- FALSE expect_equal(vcovCR(lm_AR1, type = "CR4", target = target, inverse_var = FALSE), CR4_AR1) CR4_power <- vcovCR(lm_AR1_power, type = "CR4") expect_equal(vcovCR(lm_AR1_power, cluster = Ovary$Mare, type = "CR4"), CR4_power) expect_equal(vcovCR(lm_AR1_power, type = "CR4", inverse_var = TRUE), CR4_power) expect_false(identical(vcovCR(lm_AR1_power, type = "CR4", inverse_var = FALSE), CR4_power)) target <- targetVariance(lm_AR1_power) expect_equal(vcovCR(lm_AR1_power, type = "CR4", target = target, inverse_var = TRUE), CR4_power) attr(CR4_power, "inverse_var") <- FALSE expect_equal(vcovCR(lm_AR1_power, type = "CR4", target = target, inverse_var = FALSE), CR4_power) }) test_that("CR2 and CR4 are target-unbiased", { expect_true(check_CR(lm_AR1, vcov = "CR2")) expect_true(check_CR(lm_AR1_power, vcov = "CR2")) expect_true(check_CR(lm_AR1, vcov = "CR4")) expect_true(check_CR(lm_AR1_power, vcov = "CR4")) }) test_that("getData works.", { re_order <- sample(nrow(Ovary)) egg_scramble <- Ovary[re_order,] gls_scramble <- gls(follicles ~ sin(2*pi*Time) + cos(2*pi*Time), data = egg_scramble) scramble_dat <- getData(gls_scramble) expect_equal(egg_scramble, scramble_dat) }) CR_types <- paste0("CR",0:4) test_that("Order doesn't matter.", { check_sort_order(lm_AR1_power, dat = Ovary, tol = 10^-4, tol2 = 10^-3, tol3 = 10^-3) }) test_that("clubSandwich works with dropped observations", { dat_miss <- Ovary dat_miss$follicles[sample.int(nrow(Ovary), size = round(nrow(Ovary) / 10))] <- NA lm_dropped <- gls(follicles ~ sin(2*pi*Time) + cos(2*pi*Time), data = dat_miss, correlation = corAR1(form = ~ 1 | Mare), na.action = na.omit) lm_complete <- gls(follicles ~ sin(2*pi*Time) + cos(2*pi*Time), data = dat_miss, subset = !is.na(follicles), correlation = corAR1(form = ~ 1 | Mare)) CR_drop <- lapply(CR_types, function(x) vcovCR(lm_dropped, type = x)) CR_complete <- lapply(CR_types, function(x) vcovCR(lm_complete, type = x)) expect_equal(CR_drop, CR_complete) test_drop <- lapply(CR_types, function(x) coef_test(lm_dropped, vcov = x, test = "All", p_values = FALSE)) test_complete <- lapply(CR_types, function(x) coef_test(lm_complete, vcov = x, test = "All", p_values = FALSE)) expect_equal(test_drop, test_complete) }) test_that("Possible to cluster at higher level than random effects", { pair_id <- rep(1:nlevels(Ovary$Mare), each = 3, length.out = nlevels(Ovary$Mare))[Ovary$Mare] re_order <- sample(nrow(Ovary)) dat_scramble <- Ovary[re_order,] pair_scramble <- pair_id[re_order] expect_is(vcovCR(lm_hom, type = "CR2", cluster = pair_id), "vcovCR") expect_is(vcovCR(lm_power, type = "CR2", cluster = pair_id), "vcovCR") expect_is(vcovCR(lm_AR1, type = "CR2", cluster = pair_id), "vcovCR") V <- vcovCR(lm_AR1_power, type = "CR2", cluster = pair_id) expect_is(V, "vcovCR") expect_error(vcovCR(lm_AR1, type = "CR2", cluster = pair_scramble)) expect_error(vcovCR(lm_AR1_power, type = "CR2", cluster = pair_scramble)) V_scramble <- vcovCR(update(lm_AR1_power, data = dat_scramble), type = "CR2", cluster = pair_scramble) expect_equal(diag(V), diag(V_scramble), tol = 10^-6) })
context("sjmisc, to_value") library(sjmisc) test_that("to_value", { expect_equal(to_value(factor(c(0,1,2)), keep.labels = FALSE), c(0,1,2)) expect_equal(to_value(factor(c(2,3,4)), keep.labels = FALSE), c(2,3,4)) expect_equal(to_value(factor(c("a", "b", "c")), keep.labels = FALSE), c(1,2,3)) expect_equal(to_value(factor(c("d", "e", "f")), keep.labels = FALSE), c(1,2,3)) }) test_that("to_value", { expect_equal(to_value(factor(c(0,1,2)), start.at = 4, keep.labels = FALSE), c(4,5,6)) expect_equal(to_value(factor(c(2,3,4)), start.at = 4, keep.labels = FALSE), c(4,5,6)) expect_equal(to_value(factor(c("a", "b", "c")), start.at = 4, keep.labels = FALSE), c(4,5,6)) expect_equal(to_value(factor(c("d", "e", "f")), start.at = 4, keep.labels = FALSE), c(4,5,6)) })
infcrit.dof <- function (modplsR, naive = FALSE) { if (!(is.null(modplsR$weights) | identical(modplsR$weights, rep(1L, modplsR$nr)) | identical(modplsR$weights, rep(1, modplsR$nr)))) { naive = TRUE } if (modplsR$na.miss.X | modplsR$na.miss.Y) { naive = TRUE } if (!naive) { tempmodplsR_dof <- plsR.dof(modplsR, naive = FALSE) tempAIC.dof <- aic.dof(modplsR$RSS, modplsR$nr, tempmodplsR_dof$DoF, tempmodplsR_dof$sigmahat) tempBIC.dof <- bic.dof(modplsR$RSS, modplsR$nr, tempmodplsR_dof$DoF, tempmodplsR_dof$sigmahat) tempGMDL.dof <- gmdl.dof(tempmodplsR_dof$sigmahat, modplsR$nr, tempmodplsR_dof$DoF, tempmodplsR_dof$yhat) tempmodplsR_naive <- plsR.dof(modplsR, naive = TRUE) tempAIC.naive <- aic.dof(modplsR$RSS, modplsR$nr, tempmodplsR_naive$DoF, tempmodplsR_naive$sigmahat) tempBIC.naive <- bic.dof(modplsR$RSS, modplsR$nr, tempmodplsR_naive$DoF, tempmodplsR_naive$sigmahat) tempGMDL.naive <- gmdl.dof(tempmodplsR_naive$sigmahat, modplsR$nr, tempmodplsR_naive$DoF, tempmodplsR_naive$yhat) InfCrit.dof <- t(rbind(tempmodplsR_dof$DoF, tempmodplsR_dof$sigmahat, tempAIC.dof, tempBIC.dof, tempGMDL.dof, tempmodplsR_naive$DoF, tempmodplsR_naive$sigmahat, tempAIC.naive, tempBIC.naive, tempGMDL.naive)) dimnames(InfCrit.dof) <- list(paste("Nb_Comp_", 0:modplsR$computed_nt, sep = ""), c("DoF.dof", "sigmahat.dof", "AIC.dof", "BIC.dof", "GMDL.dof", "DoF.naive", "sigmahat.naive", "AIC.naive", "BIC.naive", "GMDL.naive")) } else { tempmodplsR_naive <- plsR.dof(modplsR, naive = TRUE) tempAIC.naive <- aic.dof(modplsR$RSS, modplsR$nr, tempmodplsR_naive$DoF, tempmodplsR_naive$sigmahat) tempBIC.naive <- bic.dof(modplsR$RSS, modplsR$nr, tempmodplsR_naive$DoF, tempmodplsR_naive$sigmahat) tempGMDL.naive <- gmdl.dof(tempmodplsR_naive$sigmahat, modplsR$nr, tempmodplsR_naive$DoF, tempmodplsR_naive$yhat) InfCrit.dof <- t(rbind(NA, NA, NA, NA, NA, tempmodplsR_naive$DoF, tempmodplsR_naive$sigmahat, tempAIC.naive, tempBIC.naive, tempGMDL.naive)) dimnames(InfCrit.dof) <- list(paste("Nb_Comp_", 0:modplsR$computed_nt, sep = ""), c("DoF.dof", "sigmahat.dof", "AIC.dof", "BIC.dof", "GMDL.dof", "DoF.naive", "sigmahat.naive", "AIC.naive", "BIC.naive", "GMDL.naive")) } return(InfCrit.dof) }
transform_gibbs_samples = function(gibbs_samples, R, B, Q, normalization) { if(!inherits(normalization, "RprobitB_normalization")) stop("'normalization' must be of class 'RprobitB_normalization'.") scaling = function(samples, factor){ if(is.null(samples)) NULL else samples * factor } scale = normalization$scale s_n = scaling(gibbs_samples$s, 1) if(scale$parameter == "a"){ factor = scale$value / gibbs_samples$alpha[,scale$index] alpha_n = scaling(gibbs_samples$alpha, factor) b_n = scaling(gibbs_samples$b, factor) Omega_n = scaling(gibbs_samples$Omega, factor^2) Sigma_n = scaling(gibbs_samples$Sigma, factor^2) } if(scale$parameter == "s"){ factor = scale$value / gibbs_samples$Sigma[,paste0(scale$index,",",scale$index)] alpha_n = scaling(gibbs_samples$alpha, sqrt(factor)) b_n = scaling(gibbs_samples$b, sqrt(factor)) Omega_n = scaling(gibbs_samples$Omega, factor) Sigma_n = scaling(gibbs_samples$Sigma, factor) } gibbs_samples_n = list("s" = s_n, "alpha" = alpha_n, "b" = b_n, "Omega" = Omega_n, "Sigma" = Sigma_n) gibbs_samples_n = gibbs_samples_n[lengths(gibbs_samples_n) != 0] burn = function(samples){ if(is.null(samples)) NULL else samples[(B+1):R,,drop=FALSE] } s_nb = burn(s_n) alpha_nb = burn(alpha_n) b_nb = burn(b_n) Omega_nb = burn(Omega_n) Sigma_nb = burn(Sigma_n) gibbs_samples_nb = list("s" = s_nb, "alpha" = alpha_nb, "b" = b_nb, "Omega" = Omega_nb, "Sigma" = Sigma_nb) gibbs_samples_nb = gibbs_samples_nb[lengths(gibbs_samples_nb) != 0] thin = function(samples, end){ if(any(is.null(samples))) NULL else samples[seq(1,end,Q),,drop=FALSE] } s_nt = thin(s_n,R) alpha_nt = thin(alpha_n,R) b_nt = thin(b_n,R) Omega_nt = thin(Omega_n,R) Sigma_nt = thin(Sigma_n,R) gibbs_samples_nt = list("s" = s_nt, "alpha" = alpha_nt, "b" = b_nt, "Omega" = Omega_nt, "Sigma" = Sigma_nt) gibbs_samples_nt = gibbs_samples_nt[lengths(gibbs_samples_nt) != 0] s_nbt = thin(s_nb,R-B) alpha_nbt = thin(alpha_nb,R-B) b_nbt = thin(b_nb,R-B) Omega_nbt = thin(Omega_nb,R-B) Sigma_nbt = thin(Sigma_nb,R-B) gibbs_samples_nbt = list("s" = s_nbt, "alpha" = alpha_nbt, "b" = b_nbt, "Omega" = Omega_nbt, "Sigma" = Sigma_nbt) gibbs_samples_nbt = gibbs_samples_nbt[lengths(gibbs_samples_nbt) != 0] gibbs_samples = list("gibbs_samples" = gibbs_samples, "gibbs_samples_n" = gibbs_samples_n, "gibbs_samples_nb" = gibbs_samples_nb, "gibbs_samples_nt" = gibbs_samples_nt, "gibbs_samples_nbt" = gibbs_samples_nbt) class(gibbs_samples) = "RprobitB_gibbs_samples" return(gibbs_samples) }
context("Testing function estimate_partition_function") test_that( "estimate_partition_function fails for wrong asymptotic metrics", { for(metric in c("cayley", "hamming", "kendall", "ulam")){ expect_error( estimate_partition_function(method = "asymptotic", alpha_vector = seq(from = 1, to = 2, by = .1), n_items = 10, metric = metric, n_iterations = 50, K = 20, degree = 5) ) } } ) test_that( "estimate_partition_function asymptotic gives correct values", { expect_equal( estimate_partition_function(method = "asymptotic", alpha_vector = seq(from = 1, to = 2, by = .1), n_items = 10, metric = "footrule", n_iterations = 50, K = 20, degree = 5), c(`(Intercept)` = 15.1041186472153, `I(alpha^1)` = -3.32366499344578, `I(alpha^2)` = 0.221067735142993, `I(alpha^3)` = 0.00983874213603723, `I(alpha^4)` = -0.00400646965806447, `I(alpha^5)` = 0.000290662453972935 ) ) expect_equal( estimate_partition_function(method = "asymptotic", alpha_vector = seq(from = 1, to = 2, by = .2), n_items = 20, metric = "spearman", n_iterations = 55, K = 21, degree = 4), c(`(Intercept)` = 34.3498359623487, `I(alpha^1)` = -22.0673491727874, `I(alpha^2)` = 10.8140117937552, `I(alpha^3)` = -3.18806119268205, `I(alpha^4)` = 0.394939624914785) ) } )
ComparacaoMedias=function(y, trt, DFerror, MSerror, alpha = 0.05, group = TRUE,main = NULL) { lastC=function (x) { y <- sub(" +$", "", x) p1 <- nchar(y) cc <- substr(y, p1, p1) return(cc) } tapply.stat=function (y, x, stat = "mean") { cx <- deparse(substitute(x)) cy <- deparse(substitute(y)) x <- data.frame(c1 = 1, x) y <- data.frame(v1 = 1, y) nx <- ncol(x) ny <- ncol(y) namex <- names(x) namey <- names(y) if (nx == 2) namex <- c("c1", cx) if (ny == 2) namey <- c("v1", cy) namexy <- c(namex, namey) for (i in 1:nx) { x[, i] <- as.character(x[, i]) } z <- NULL for (i in 1:nx) { z <- paste(z, x[, i], sep = "&") } w <- NULL for (i in 1:ny) { m <- tapply(y[, i], z, stat) m <- as.matrix(m) w <- cbind(w, m) } nw <- nrow(w) c <- rownames(w) v <- rep("", nw * nx) dim(v) <- c(nw, nx) for (i in 1:nw) { for (j in 1:nx) { v[i, j] <- strsplit(c[i], "&")[[1]][j + 1] } } rownames(w) <- NULL junto <- data.frame(v[, -1], w) junto <- junto[, -nx] names(junto) <- namexy[c(-1, -(nx + 1))] return(junto) } order.group= function (trt, means, N, MSerror, Tprob, std.err, parameter = 1) { N <- rep(1/mean(1/N), length(N)) n <- length(means) letras <- letters if (n > 26) { l <- floor(n/26) for (i in 1:l) letras <- c(letras, paste(letters, i, sep = "")) } z <- data.frame(trt, means, N, std.err) w <- z[order(z[, 2], decreasing = TRUE), ] M <- rep("", n) k <- 1 j <- 1 k <- 1 cambio <- n cambio1 <- 0 chequeo = 0 M[1] <- letras[k] while (j < n) { chequeo <- chequeo + 1 if (chequeo > n) break for (i in j:n) { minimo <- Tprob * sqrt(parameter * MSerror * (1/N[i] + 1/N[j])) s <- abs(w[i, 2] - w[j, 2]) <= minimo if (s) { if (lastC(M[i]) != letras[k]) M[i] <- paste(M[i], letras[k], sep = "") } else { k <- k + 1 cambio <- i cambio1 <- 0 ja <- j for (jj in cambio:n) M[jj] <- paste(M[jj], " ", sep = "") M[cambio] <- paste(M[cambio], letras[k], sep = "") for (v in ja:cambio) { if (abs(w[v, 2] - w[cambio, 2]) > minimo) { j <- j + 1 cambio1 <- 1 } else break } break } } if (cambio1 == 0) j <- j + 1 } w <- data.frame(w, stat = M) trt <- as.character(w$trt) means <- as.numeric(w$means) N <- as.numeric(w$N) std.err <- as.numeric(w$std.err) output <- data.frame(Tratamentos=trt, Medias=means, M, N, std.err) return(output) } order.stat.SNK=function (treatment, means, minimum) { n <- length(means) z <- data.frame(treatment, means) w <- z[order(z[, 2], decreasing = TRUE), ] M <- rep("", n) k <- 1 k1 <- 0 j <- 1 i <- 1 r <- 1 cambio <- n cambio1 <- 0 chequeo = 0 M[1] <- letters[k] while (j < n) { chequeo <- chequeo + 1 if (chequeo > n) break for (i in j:n) { if (abs(j - i) == 0) { r <- 1 } else { r <- abs(j - i) } s <- abs(w[i, 2] - w[j, 2]) <= minimum[r] if (s) { if (lastC(M[i]) != letters[k]) M[i] <- paste(M[i], letters[k], sep = "") } else { k <- k + 1 cambio <- i cambio1 <- 0 ja <- j for (jj in cambio:n) M[jj] <- paste(M[jj], " ", sep = "") M[cambio] <- paste(M[cambio], letters[k], sep = "") for (v in ja:cambio) { if (abs(v - cambio) == 0) { r <- 1 } else { r <- abs(v - cambio) } if (abs(w[v, 2] - w[cambio, 2]) > minimum[r]) { j <- j + 1 cambio1 <- 1 } else break } break } } if (cambio1 == 0) j <- j + 1 } w <- data.frame(w, stat = M) trt <- as.character(w$treatment) means <- as.numeric(w$means) output <- data.frame(trt, means, M) return(output) } TesteT=function (y, trt, DFerror, MSerror, alpha = 0.05, group = TRUE,main = NULL){ SSerror <- MSerror*DFerror name.y <- paste(deparse(substitute(y))) name.t <- paste(deparse(substitute(trt))) junto <- subset(data.frame(y, trt), is.na(y) == FALSE) means <- tapply.stat(junto[, 1], junto[, 2], stat = "mean") sds <- tapply.stat(junto[, 1], junto[, 2], stat = "sd") nn <- tapply.stat(junto[, 1], junto[, 2], stat = "length") means <- data.frame(means, std.err = sds[, 2]/sqrt(nn[, 2]), replication = nn[, 2]) names(means)[1:2] <- c(name.t, name.y) ntr <- nrow(means) Tprob <- qt(1 - (alpha/2), DFerror) * sqrt(2) nr <- unique(nn[, 2]) nfila <- c("Alpha", "Error Degrees of Freedom", "Error Mean Square", "Critical Value of Studentized Range") nvalor <- c(alpha, DFerror, MSerror, Tprob) xtabla <- data.frame(...... = nvalor) row.names(xtabla) <- nfila if (group) { if (length(nr) == 1) { HSD <- Tprob * sqrt(MSerror/nr) } else { nr1 <- 1/mean(1/nn[, 2]) HSD <- Tprob * sqrt(MSerror/nr1) } output= order.group(means[, 1], means[, 2], means[, 4], MSerror, Tprob, means[, 3], parameter = 0.5) } if (!group) { comb <- combn(ntr, 2) nn <- ncol(comb) dif <- rep(0, nn) pvalue <- rep(0, nn) for (k in 1:nn) { i <- comb[1, k] j <- comb[2, k] dif[k] <- abs(means[i, 2] - means[j, 2]) sdtdif <- sqrt(MSerror * (1/means[i, 4] + 1/means[j, 4])) pvalue[k] <- round(1 - ptukey(dif[k] * sqrt(2)/sdtdif, ntr, DFerror), 4) } tr.i <- comb[1, ] tr.j <- comb[2, ] output <- data.frame(trt = means[, 1], means = means[, 2], M = "", N = means[, 4], std.err = means[, 3]) } return(output[,1:3]) } TesteTProtegido=function (y, trt, DFerror, MSerror, alpha = 0.05, group = TRUE,main = NULL){ SSerror <- MSerror*DFerror name.y <- paste(deparse(substitute(y))) name.t <- paste(deparse(substitute(trt))) junto <- subset(data.frame(y, trt), is.na(y) == FALSE) means <- tapply.stat(junto[, 1], junto[, 2], stat = "mean") sds <- tapply.stat(junto[, 1], junto[, 2], stat = "sd") nn <- tapply.stat(junto[, 1], junto[, 2], stat = "length") means <- data.frame(means, std.err = sds[, 2]/sqrt(nn[, 2]), replication = nn[, 2]) names(means)[1:2] <- c(name.t, name.y) ntr <- nrow(means) alphap = (2 * alpha)/(ntr * (ntr - 1)) Tprob <- qt(1 - (alphap/2), DFerror) * sqrt(2) nr <- unique(nn[, 2]) nfila <- c("Alpha", "Error Degrees of Freedom", "Error Mean Square", "Critical Value of Studentized Range") nvalor <- c(alpha, DFerror, MSerror, Tprob) xtabla <- data.frame(...... = nvalor) row.names(xtabla) <- nfila if (group) { if (length(nr) == 1) { HSD <- Tprob * sqrt(MSerror/nr) } else { nr1 <- 1/mean(1/nn[, 2]) HSD <- Tprob * sqrt(MSerror/nr1) } output <- order.group(means[, 1], means[, 2], means[, 4], MSerror, Tprob, means[, 3], parameter = 0.5) } if (!group) { comb <- combn(ntr, 2) nn <- ncol(comb) dif <- rep(0, nn) pvalue <- rep(0, nn) for (k in 1:nn) { i <- comb[1, k] j <- comb[2, k] dif[k] <- abs(means[i, 2] - means[j, 2]) sdtdif <- sqrt(MSerror * (1/means[i, 4] + 1/means[j, 4])) pvalue[k] <- round(1 - ptukey(dif[k] * sqrt(2)/sdtdif, ntr, DFerror), 4) } tr.i <- comb[1, ] tr.j <- comb[2, ] output <- data.frame(trt = means[, 1], means = means[, 2], M = "", N = means[, 4], std.err = means[, 3]) } return(output[,1:3]) } Duncan=function (y, trt, DFerror, MSerror, alpha = 0.05, group = TRUE,main = NULL){ SSerror <- MSerror*DFerror name.y <- paste(deparse(substitute(y))) name.t <- paste(deparse(substitute(trt))) junto <- subset(data.frame(y, trt), is.na(y) == FALSE) means <- tapply.stat(junto[, 1], junto[, 2], stat = "mean") sds <- tapply.stat(junto[, 1], junto[, 2], stat = "sd") nn <- tapply.stat(junto[, 1], junto[, 2], stat = "length") means <- data.frame(means, std.err = sds[, 2]/sqrt(nn[, 2]), replication = nn[, 2]) names(means)[1:2] <- c(name.t, name.y) ntr <- nrow(means) k.snk <- ntr - 1 Tprob <- vector(mode = "integer", k.snk) kk <- 1 for (kk in 1:k.snk) { alphap = 1 - (1 - alpha)^((kk + 1) - 1) xxxx=suppressWarnings(qtukey(1 - alphap, kk + 1, DFerror)) if(is.na(xxxx)){xxxx=4} Tprob[kk] <- xxxx } p.nan <- as.vector(na.action(na.omit(Tprob)))[1] ult <- p.nan - 1 if(!is.null(p.nan)){ if (ntr == 50) Tprob[p.nan:length(Tprob)] <- seq(Tprob[ult], 3.61, length = length(Tprob) - ult) if (ntr == 100) Tprob[p.nan:length(Tprob)] <- seq(Tprob[ult], 3.67, length = length(Tprob) - ult) } nr <- unique(nn[, 2]) nfila <- c("Alpha", "Error Degrees of Freedom", "Error Mean Square") nfila1 <- c("Distances between averages", "Critical Value of Studentized Range") nvalor <- c(alpha, DFerror, MSerror) nvalor1 <- rbind(t(seq(2, ntr)), t(Tprob)) xtabla <- data.frame(...... = nvalor) xtabla1 <- data.frame(...... = nvalor1) row.names(xtabla) <- nfila row.names(xtabla1) <- nfila1 HSD <- vector(mode = "integer", k.snk) if (group) { if (length(nr) == 1) { kk <- 1 for (kk in 1:k.snk) { HSD[kk] <- Tprob[kk] * sqrt(MSerror/nr) } } else { nr1 <- 1/mean(1/nn[, 2]) kk <- 1 for (kk in 1:k.snk) { HSD[kk] <- Tprob[kk] * sqrt(MSerror/nr1) } } output <- order.stat.SNK(means[, 1], means[, 2], HSD) } return(output) } SNK=function (y, trt, DFerror, MSerror, alpha = 0.05, group = TRUE,main = NULL){ SSerror <- MSerror*DFerror name.y <- paste(deparse(substitute(y))) name.t <- paste(deparse(substitute(trt))) junto <- subset(data.frame(y, trt), is.na(y) == FALSE) means <- tapply.stat(junto[, 1], junto[, 2], stat = "mean") sds <- tapply.stat(junto[, 1], junto[, 2], stat = "sd") nn <- tapply.stat(junto[, 1], junto[, 2], stat = "length") means <- data.frame(means, std.err = sds[, 2]/sqrt(nn[, 2]), replication = nn[, 2]) names(means)[1:2] <- c(name.t, name.y) ntr <- nrow(means) k.snk <- ntr - 1 Tprob <- vector(mode = "integer", k.snk) kk <- 1 for (kk in 1:k.snk) { Tprob[kk] <- qtukey(1 - alpha, kk + 1, DFerror) } nr <- unique(nn[, 2]) nfila <- c("Alpha", "Error Degrees of Freedom", "Error Mean Square") nfila1 <- c("Distances between averages", "Critical Value of Studentized Range") nvalor <- c(alpha, DFerror, MSerror) nvalor1 <- rbind(t(seq(2, ntr)), t(Tprob)) xtabla <- data.frame(...... = nvalor) xtabla1 <- data.frame(...... = nvalor1) row.names(xtabla) <- nfila row.names(xtabla1) <- nfila1 HSD <- vector(mode = "integer", k.snk) if (group) { if (length(nr) == 1) { kk <- 1 for (kk in 1:k.snk) { HSD[kk] <- Tprob[kk] * sqrt(MSerror/nr) } } else { nr1 <- 1/mean(1/nn[, 2]) kk <- 1 for (kk in 1:k.snk) { HSD[kk] <- Tprob[kk] * sqrt(MSerror/nr1) } } output <- order.stat.SNK(means[, 1], means[, 2], HSD) } return(output[,1:3]) } tukey=function (y, trt, DFerror, MSerror, alpha = 0.05, group = TRUE,main = NULL){ SSerror <- MSerror*DFerror name.y <- paste(deparse(substitute(y))) name.t <- paste(deparse(substitute(trt))) junto <- subset(data.frame(y, trt), is.na(y) == FALSE) means <- tapply.stat(junto[, 1], junto[, 2], stat = "mean") sds <- tapply.stat(junto[, 1], junto[, 2], stat = "sd") nn <- tapply.stat(junto[, 1], junto[, 2], stat = "length") means <- data.frame(means, std.err = sds[, 2]/sqrt(nn[, 2]), replication = nn[, 2]) names(means)[1:2] <- c(name.t, name.y) ntr <- nrow(means) Tprob <- qtukey(1 - alpha, ntr, DFerror) nr <- unique(nn[, 2]) nfila <- c("Alpha", "Error Degrees of Freedom", "Error Mean Square", "Critical Value of Studentized Range") nvalor <- c(alpha, DFerror, MSerror, Tprob) xtabla <- data.frame(...... = nvalor) row.names(xtabla) <- nfila if (group) { if (length(nr) == 1) { HSD <- Tprob * sqrt(MSerror/nr) } else { nr1 <- 1/mean(1/nn[, 2]) HSD <- Tprob * sqrt(MSerror/nr1) } output <- order.group(means[, 1], means[, 2], means[, 4], MSerror, Tprob, means[, 3], parameter = 0.5) } if (!group) { comb <- combn(ntr, 2) nn <- ncol(comb) dif <- rep(0, nn) pvalue <- rep(0, nn) for (k in 1:nn) { i <- comb[1, k] j <- comb[2, k] dif[k] <- abs(means[i, 2] - means[j, 2]) sdtdif <- sqrt(MSerror * (1/means[i, 4] + 1/means[j, 4])) pvalue[k] <- round(1 - ptukey(dif[k] * sqrt(2)/sdtdif, ntr, DFerror), 4) } tr.i <- comb[1, ] tr.j <- comb[2, ] output <- data.frame(trt = means[, 1], means = means[, 2], M = "", N = means[, 4], std.err = means[, 3]) } return(output[,1:3]) } ScottKnott= function (y, trt, DFerror, MSerror, alpha = 0.05, group = TRUE, main = NULL) { SSerror=MSerror*DFerror sk <- function(medias, s2, dfr, prob) { bo <- 0 si2 <- s2 defr <- dfr parou <- 1 np <- length(medias) - 1 for (i in 1:np) { g1 <- medias[1:i] g2 <- medias[(i + 1):length(medias)] B0 <- sum(g1)^2/length(g1) + sum(g2)^2/length(g2) - (sum(g1) + sum(g2))^2/length(c(g1, g2)) if (B0 > bo) { bo <- B0 parou <- i } } g1 <- medias[1:parou] g2 <- medias[(parou + 1):length(medias)] teste <- c(g1, g2) sigm2 <- (sum(teste^2) - sum(teste)^2/length(teste) + defr * si2)/(length(teste) + defr) lamb <- pi * bo/(2 * sigm2 * (pi - 2)) v0 <- length(teste)/(pi - 2) p <- pchisq(lamb, v0, lower.tail = FALSE) if (p < prob) { for (i in 1:length(g1)) { cat(names(g1[i]), "\n", file = "skresult", append = TRUE) } cat("*", "\n", file = "skresult", append = TRUE) } if (length(g1) > 1) { sk(g1, s2, dfr, prob) } if (length(g2) > 1) { sk(g2, s2, dfr, prob) } } medias <- sort(tapply(y, trt, mean), decreasing = TRUE) dfr <- DFerror rep <- tapply(y, trt, length) s0 <- MSerror <- SSerror/DFerror s2 <- s0/rep[1] prob <- alpha sk(medias, s2, dfr, prob) f <- names(medias) names(medias) <- 1:length(medias) resultado <- data.frame(r = 0, f = f, m = medias) if (file.exists("skresult") == FALSE) { stop } else { xx <- read.table("skresult") file.remove("skresult") x <- xx[[1]] x <- as.vector(x) z <- 1 for (j in 1:length(x)) { if (x[j] == "*") { z <- z + 1 } for (i in 1:length(resultado$f)) { if (resultado$f[i] == x[j]) { resultado$r[i] <- z } } } } letras <- letters if (length(resultado$r) > 26) { l <- floor(length(resultado$r)/26) for (i in 1:l) letras <- c(letras, paste(letters, i, sep = "")) } res <- 1 for (i in 1:(length(resultado$r) - 1)) { if (resultado$r[i] != resultado$r[i + 1]) { resultado$r[i] <- letras[res] res <- res + 1 if (i == (length(resultado$r) - 1)) { resultado$r[i + 1] <- letras[res] } } else { resultado$r[i] <- letras[res] if (i == (length(resultado$r) - 1)) { resultado$r[i + 1] <- letras[res] } } } names(resultado) <- c("Grupos", "Tratamentos", "Medias") return(resultado[,c(2,3,1)]) } Resultado=cbind( TesteT(y, trt, DFerror, MSerror, alpha = 0.05, group = TRUE,main = NULL)[,1:2], TesteT=TesteT(y, trt, DFerror, MSerror, alpha = 0.05, group = TRUE,main = NULL)[,3], TesteT_Bonferroni=TesteTProtegido(y, trt, DFerror, MSerror, alpha = 0.05, group = TRUE,main = NULL)[,3], Duncan=Duncan(y, trt, DFerror, MSerror, alpha = 0.05, group = TRUE,main = NULL)[,3], SNK=SNK(y, trt, DFerror, MSerror,alpha = 0.05, group = TRUE,main = NULL)[,3], Tukey=tukey(y, trt, DFerror, MSerror,alpha = 0.05, group = TRUE,main = NULL)[,3], ScottKnott=ScottKnott(y, trt, DFerror, MSerror, alpha = 0.05)[,3] ) return(Resultado)}
khb <- function(X,y,z){ X <- as.data.frame(X) glmR <- glm(y ~ -1 + ., family=binomial(link="probit"),data=X[,-which(names(X)==z)]) glmF <- glm(y ~ -1 + ., family=binomial(link="probit"),data=X) lmA <- lm(X$eta ~ -1 + ., data=X) glmFs <- glm(y ~ -1 + . + lmA$resid, family=binomial(link="probit"),data=X[,-which(names(X)==z)]) b.yx.zt <- glmFs$coef[!names(glmFs$coef)%in%c("(Intercept)","lmA$resid")] b.yx.z <- glmF$coef[!names(glmF$coef)%in%c("(Intercept)",z)] b.yz.x <- glmF$coef[names(glmF$coef)==z] sigma.b.yz.x <- diag(vcov(glmF))[names(diag(vcov(glmF)))==z] if(sum(X[,1])!=dim(X)[1]){ t.zx <- lmA$coef sigma.t.zx <- diag(vcov(lmA)) } else{ t.zx <- lmA$coef[-1] sigma.t.zx <- diag(vcov(lmA))[-1] } round(b.yx.zt - b.yx.z,5) == round(b.yz.x * t.zx,5) Z <- (b.yx.zt - b.yx.z)/sqrt((b.yz.x^2 * sigma.t.zx^2 + t.zx^2 * sigma.b.yz.x^2)) p.val <- round((1-pnorm(Z)),4) cat("\nKarlson-Holm-Breen method\nNull hypothesis: Change in coefficient is not attributable to confounding by z.\n\n") data.frame(p.value=ifelse(p.val<1e-04,"<1e-04",p.val)) }
dcircpurka <- function(x, m, a, rads = FALSE, logden = FALSE) { if ( !rads ) x <- x * pi/180 x <- cbind( cos(x), sin(x) ) m <- c( cos(m), sin(m) ) den <- log(a) - log(2) - log(1 - exp(-a * pi)) - a * acos( x %*% m) if ( !logden ) den <- exp(den) den }
context("dropdown") test_that("test dropdown_input", { expect_is(dropdown_input("a", c(1,2,3)), "shiny.tag") expect_error(dropdown_input("a"), "argument \"choices\" is missing, with no default") si_str <- as.character(dropdown_input("a", c(1,2,3))) expect_true(any(grepl("<div class=\"item\" data-value=\"1\">1</div>", si_str, fixed = TRUE))) expect_true(any(grepl("<div class=\"item\" data-value=\"2\">2</div>", si_str, fixed = TRUE))) expect_true(any(grepl("<div class=\"item\" data-value=\"3\">3</div>", si_str, fixed = TRUE))) expect_false(any(grepl("<div class=\"item\" data-value=\"0\">0</div>", si_str, fixed = TRUE))) })
test_that("parsing works properly", { expr <- parse_safe(c("gamma", "", "alpha")) expect_identical(class(expr), "expression") expect_equal(expr, expression(gamma, NA, alpha)) expect_type(expr, "expression") })
irls.nb.1 = function(y, s, x, phi, beta0=rep(NA,p), mustart=NULL, maxit=50, tol.mu=1e-3/length(y), print.level=0) { nobs = as.integer(dim(x)[1]); p = as.integer(dim(x)[2]); id1 = (1:p)[is.na(beta0)]; id0 = (1:p)[!is.na(beta0)]; q = length(id0); nvars = p - q; beta = beta0; offset = matrix(x[, id0], nobs, q) %*% beta[id0]; if (is.null(mustart)) { mu = y + (y==0)/6; } else { mu = mustart; } eta = log(mu/s); conv = FALSE; for (iter in 1L:maxit) { varmu = mu + phi * mu^2; if (any(is.na(varmu))) stop("NAs in V(mu)") if (any(varmu == 0)) stop("0s in V(mu)") z = eta - offset + (y - mu)/mu; w = drop(mu/sqrt(varmu)); epsilon = 1e-7; fit = .Call(Cdqrls, x[, id1, drop=FALSE] * w, w * z, epsilon); if (any(!is.finite(fit$coefficients))) { warning(gettextf("non-finite coefficients at iteration %d", iter), domain = NA); break } if (nobs < fit$rank) stop(gettextf("X matrix has rank %d, but only %d observations", fit$rank, nobs), domain = NA) muold = mu; beta[id1[fit$pivot]] = fit$coefficients; eta = drop(x %*% beta); mu = s*exp(eta); if (max(abs(mu - muold)) < tol.mu) { conv = TRUE; break } } zero = any(mu < tol.mu * 2); list(mu=mu, beta=beta, iter=iter, conv=conv, zero=zero); } irls.nb = function(y, s, x, phi, beta0, mustart=NULL, ..., print.level=0) { m = dim(y)[1]; n = dim(y)[2]; p = dim(x)[2]; phi = matrix(phi, m, n); if (print.level > 0) print("Estimating NB regression coefficients using IRLS."); res=list(mu=matrix(NA, m, n), beta=matrix(NA, m, p), conv=logical(m), iter=numeric(m)); if (print.level > 1) { pb=txtProgressBar(style=3); } for (i in 1:m) { if (print.level > 1) { setTxtProgressBar(pb, i/m); } if (is.null(mustart)) { res0 = irls.nb.1(y[i,], s, x, phi[i,], beta0, ..., print.level=print.level-1); } else { res0 = irls.nb.1(y[i,], s, x, phi[i,], beta0, mustart=mustart[i,], ..., print.level=print.level-1); } res$mu[i,] = res0$mu; res$beta[i,] = res0$beta; res$conv[i] = res0$conv; res$iter[i] = res0$iter; } if (print.level>1) close(pb); res; } fit.nb.regression = function(nb.data, dispersion, x, beta0=rep(NA, dim(x)[2]), ...) { res = irls.nb(nb.data$counts, nb.data$eff.lib.sizes, dispersion$estimates, x, beta0, ...); res }
NULL MaxPooling1D <- function(pool_size = 2, strides = NULL, padding = 'valid', input_shape = NULL) { if (!is.null(strides)) strides <- int32(strides) if (is.null(input_shape)) { res <- modules$keras.layers.pooling$MaxPooling1D( pool_size = int32(pool_size), strides = strides, padding = padding) } else { input_shape <- as.list(input_shape) input_shape <- modules$builtin$tuple(int32(input_shape)) res <- modules$keras.layers.pooling$MaxPooling1D( pool_size = int32(pool_size), strides = strides, padding = padding, input_shape = input_shape) } return(res) } MaxPooling2D <- function(pool_size = c(2, 2), strides = NULL, padding = 'valid', data_format = NULL, input_shape = NULL) { if (!is.null(strides)) strides <- int32(strides) if (is.null(input_shape)) { res <- modules$keras.layers.pooling$MaxPooling2D( pool_size = int32(pool_size), strides = strides, padding = padding, data_format = data_format) } else { input_shape <- as.list(input_shape) input_shape <- modules$builtin$tuple(int32(input_shape)) res <- modules$keras.layers.pooling$MaxPooling2D( pool_size = int32(pool_size), strides = strides, padding = padding, data_format = data_format, input_shape = input_shape) } return(res) } MaxPooling3D <- function(pool_size = c(2, 2, 2), strides = NULL, padding = 'valid', data_format = NULL, input_shape = NULL) { if (!is.null(strides)) strides <- int32(strides) if (is.null(input_shape)) { res <- modules$keras.layers.pooling$MaxPooling3D( pool_size = int32(pool_size), strides = strides, padding = padding, data_format = data_format) } else { input_shape <- as.list(input_shape) input_shape <- modules$builtin$tuple(int32(input_shape)) res <- modules$keras.layers.pooling$MaxPooling3D( pool_size = int32(pool_size), strides = strides, padding = padding, data_format = data_format, input_shape = input_shape) } return(res) } NULL AveragePooling1D <- function(pool_size = 2, strides = NULL, padding = 'valid', input_shape = NULL) { if (!is.null(strides)) strides <- int32(strides) if (is.null(input_shape)) { res <- modules$keras.layers.pooling$AveragePooling1D( pool_size = int32(pool_size), strides = strides, padding = padding) } else { input_shape <- as.list(input_shape) input_shape <- modules$builtin$tuple(int32(input_shape)) res <- modules$keras.layers.pooling$AveragePooling1D( pool_size = int32(pool_size), strides = strides, padding = padding, input_shape = input_shape) } return(res) } AveragePooling2D <- function(pool_size = c(2, 2), strides = NULL, padding = 'valid', data_format = NULL, input_shape = NULL) { if (!is.null(strides)) strides <- int32(strides) if (is.null(input_shape)) { res <- modules$keras.layers.pooling$AveragePooling2D( pool_size = int32(pool_size), strides = strides, padding = padding, data_format = data_format) } else { input_shape <- as.list(input_shape) input_shape <- modules$builtin$tuple(int32(input_shape)) res <- modules$keras.layers.pooling$AveragePooling2D( pool_size = int32(pool_size), strides = strides, padding = padding, data_format = data_format, input_shape = input_shape) } return(res) } AveragePooling3D <- function(pool_size = c(2, 2, 2), strides = NULL, padding = 'valid', data_format = NULL, input_shape = NULL) { if (!is.null(strides)) strides <- int32(strides) if (is.null(input_shape)) { res <- modules$keras.layers.pooling$AveragePooling3D( pool_size = int32(pool_size), strides = strides, padding = padding, data_format = data_format) } else { input_shape <- as.list(input_shape) input_shape <- modules$builtin$tuple(int32(input_shape)) res <- modules$keras.layers.pooling$AveragePooling3D( pool_size = int32(pool_size), strides = strides, padding = padding, data_format = data_format, input_shape = input_shape) } return(res) } NULL GlobalMaxPooling1D <- function(input_shape = NULL) { if (is.null(input_shape)) { res <- modules$keras.layers.pooling$GlobalMaxPooling1D() } else { input_shape <- as.list(input_shape) input_shape <- modules$builtin$tuple(int32(input_shape)) res <- modules$keras.layers.pooling$GlobalMaxPooling1D( input_shape = input_shape) } return(res) } GlobalAveragePooling1D <- function(input_shape = NULL) { if (is.null(input_shape)) { res <- modules$keras.layers.pooling$GlobalAveragePooling1D() } else { input_shape <- as.list(input_shape) input_shape <- modules$builtin$tuple(int32(input_shape)) res <- modules$keras.layers.pooling$GlobalAveragePooling1D( input_shape = input_shape) } return(res) } GlobalMaxPooling2D <- function(data_format = NULL, input_shape = NULL) { if (is.null(input_shape)) { res <- modules$keras.layers.pooling$GlobalMaxPooling2D( data_format = data_format) } else { input_shape <- as.list(input_shape) input_shape <- modules$builtin$tuple(int32(input_shape)) res <- modules$keras.layers.pooling$GlobalMaxPooling2D( data_format = data_format, input_shape = input_shape) } return(res) } GlobalAveragePooling2D <- function(data_format = NULL, input_shape = NULL) { if (is.null(input_shape)) { res <- modules$keras.layers.pooling$GlobalAveragePooling2D( data_format = data_format) } else { input_shape <- as.list(input_shape) input_shape <- modules$builtin$tuple(int32(input_shape)) res <- modules$keras.layers.pooling$GlobalAveragePooling2D( data_format = data_format, input_shape = input_shape) } return(res) }
idx2cref <- function(x, absRow = TRUE, absCol = TRUE) { if(!is.numeric(x)) stop("x must be a numeric matrix or vector of indices!") if(!is.matrix(x)) x <- matrix(x, ncol = 2, byrow = TRUE) apply(x, 1, function(xx) { cf <- new(J("org.apache.poi.ss.util.CellReference"), as.integer(xx[1] - 1), as.integer(xx[2] - 1), absRow, absCol) cf$formatAsString() }) }
expected <- eval(parse(text="structure(c(0.996759595651485, 0.982714508399566, 0.932630193386819, 0.993236290056531, 0.96419666630608, 0.864295998535007, 0.985909253030328, 0.926595788340938, 0.73715919564636, 0.970762623112779, 0.852643843272687, 0.528531215128914, 0.93983881933649, 0.716531310573769, 0.263597138115719, 0.878323725051003, 0.498077283739148, 0.0615441729240406, 0.762398079151112, 0.232834562975273, 0.00293893375721675, 0.567077114659808, 0.0474784101238388, 5.08141506069197e-06, 0.305397625390859, 0.00170825768891125, 8.51556634078889e-12), .Dim = c(3L, 9L), .Dimnames = list(c(\"x\", \"x\", \"\"), NULL))")); test(id=0, code={ argv <- eval(parse(text="list(structure(c(-0.00324566582797463, -0.0174366299092001, -0.0697465196367962, -0.00678668749718479, -0.0364599944879883, -0.145839977951944, -0.014190964081224, -0.0762378512927396, -0.304951405170939, -0.0296733069908004, -0.159413352946301, -0.637653411785165, -0.0620468872115091, -0.333333333333361, -1.33333333333336, -0.129740045955487, -0.697000025766712, -2.78800010306667, -0.271286446121824, -1.45742710775627, -5.8297084310247, -0.567259979811165, -3.04748019497741, -12.1899207799089, -1.18614066163432, -6.37228132326786, -25.4891252930698), .Dim = c(3L, 9L), .Dimnames = list(c(\"x\", \"x\", \"\"), NULL)))")); do.call(`exp`, argv); }, o=expected);
visnetwork <- function(graph) { nodes <- graph %>% get_node_df() edges <- graph %>% get_edge_df() if (graph %>% is_graph_empty()) { nodes <- create_node_df(n = 1) nodes <- nodes[-1, ] edges <- create_edge_df(from = 1, to = 1) edges <- edges[-1, ] } if ("pos" %in% colnames(nodes)) { nodes <- nodes[, -(which(colnames(nodes) %in% "pos"))] } colnames(nodes)[which(colnames(nodes) == "nodes")] <- "id" colnames(nodes)[which(colnames(nodes) == "type")] <- "group" colnames(nodes)[which(colnames(nodes) == "tooltip")] <- "title" colnames(nodes)[which(colnames(nodes) == "fillcolor")] <- "color" colnames(edges)[which(colnames(edges) == "rel")] <- "label" colnames(edges)[which(colnames(edges) == "tooltip")] <- "title" colnames(edges)[which(colnames(edges) == "penwidth")] <- "width" if ("fontcolor" %in% colnames(edges)) { fontcolor <- edges[, -(which(colnames(edges) %in% "fontcolor"))] } if (all(c("x", "y") %in% colnames(nodes)) == FALSE) { if (nrow(graph$edges_df) == 0) { vn_obj <- visNetwork(nodes = nodes) } if (nrow(graph$edges_df) > 0) { vn_obj <- visNetwork(nodes = nodes, edges = edges) if (is_graph_directed(graph)) { vn_obj <- visEdges( graph = vn_obj, arrows = list( to = list( enabled = TRUE, scaleFactor = 1))) } if (is_graph_undirected(graph)) { vn_obj <- visEdges( graph = vn_obj, arrows = list( to = list( enabled = FALSE, scaleFactor = 1))) } } vn_obj <- visPhysics( graph = vn_obj, solver = "barnesHut", stabilization = list( enabled = TRUE, onlyDynamicEdges = FALSE, fit = TRUE)) vn_obj <- visLayout( graph = vn_obj, improvedLayout = TRUE) } if (all(c("x", "y") %in% colnames(nodes))) { nodes$y <- -as.numeric(nodes$y) if (is.null(graph$edges_df)) { vn_obj <- visNetwork(nodes = nodes) vn_obj <- visNodes( graph = vn_obj, physics = FALSE, fixed = FALSE) vn_obj <- visPhysics( graph = vn_obj, stabilization = list( enabled = FALSE, onlyDynamicEdges = FALSE, fit = TRUE)) vn_obj <- visInteraction( graph = vn_obj, dragNodes = FALSE) } if (nrow(graph$edges_df) > 0) { if ("arrow" %in% colnames(edges)) { if (all(edges[which(colnames(edges) %in% "arrow")] == FALSE)) { arrows_for_edges <- FALSE } else { arrows_for_edges <- FALSE } } else { arrows_for_edges <- FALSE } vn_obj <- visNetwork( nodes = nodes, edges = edges) vn_obj <- visNodes( graph = vn_obj, physics = FALSE, fixed = FALSE) vn_obj <- visEdges( graph = vn_obj, arrows = list( to = list( enabled = ifelse(arrows_for_edges, TRUE, FALSE), scaleFactor = 1)), smooth = FALSE, font = list( color = " size = 14, face = "arial", background = NULL, strokeWidth = 2, strokeColor = " align = "middle")) vn_obj <- visPhysics( graph = vn_obj, stabilization = list( enabled = TRUE, onlyDynamicEdges = FALSE, fit = TRUE)) vn_obj <- visInteraction( graph = vn_obj, dragNodes = FALSE) } } vn_obj }
.cov.shrink.tawny <- function(returns, sample = NULL, prior.fun = .cov.prior.cc, ...) { if (is.null(sample)) { S <- .cov.sample.tawny(returns) } else { S <- sample } T <- nrow(returns) F <- prior.fun(S, ...) k <- .shrinkage.intensity(returns, F, S) d <- max(0, min(k/T, 1)) if (.loglevel.tawny() > 0) cat("Got intensity k =", k, "and coefficient d =",d,"\n") S.hat <- d * F + (1 - d) * S S.hat } .getCorFilter.Shrinkage <- function(prior.fun = .cov.prior.cc, ...) { function(h) return(cov2cor(.cov.shrink.tawny(h, prior.fun=prior.fun, ...))) } .cov.sample.tawny <- function(returns) { T <- nrow(returns) X <- t(returns) ones <- rep(1,T) S <- (1/T) * X %*% (diag(T) - 1/T * (ones %o% ones) ) %*% t(X) S } .cov.prior.cc <- function(S) { r.bar <- .cor.mean.tawny(S) vars <- diag(S) %o% diag(S) F <- r.bar * (vars)^0.5 diag(F) <- diag(S) return(F) } .cov.prior.identity <- function(S) { return(diag(nrow(S))) } .cor.mean.tawny <- function(S) { N <- ncol(S) cors <- cov2cor(S) 2 * sum(cors[lower.tri(cors)], na.rm=TRUE) / (N^2 - N) } .shrinkage.intensity <- function(returns, prior, sample) { p <- .shrinkage.p(returns, sample) r <- .shrinkage.r(returns, sample, p) c <- .shrinkage.c(prior, sample) (p$sum - r) / c } .shrinkage.p <- function(returns, sample) { T <- nrow(returns) N <- ncol(returns) ones <- rep(1,T) means <- t(returns) %*% ones / T z <- returns - matrix(rep(t(means), T), ncol=N, byrow=TRUE) term.1 <- t(z^2) %*% z^2 term.2 <- 2 * sample * (t(z) %*% z) term.3 <- sample^2 phi.mat <- (term.1 - term.2 + term.3) / T phi <- list() phi$sum <- sum(phi.mat) phi$diags <- diag(phi.mat) phi } .shrinkage.r <- function(returns, sample, pi.est) { N <- ncol(returns) T <- nrow(returns) ones <- rep(1,T) means <- t(returns) %*% ones / T z <- returns - matrix(rep(t(means), T), ncol=N, byrow=TRUE) r.bar <- .cor.mean.tawny(sample) term.1 <- t(z^3) %*% z term.2 <- diag(sample) * (t(z) %*% z) term.3 <- sample * (t(z^2) %*% matrix(rep(1,N*T), ncol=N)) term.4 <- (diag(sample) %o% rep(1,N)) * sample script.is <- (term.1 - term.2 - term.3 + term.4) / T ratios <- (diag(sample) %o% diag(sample)^-1)^0.5 rhos <- 0.5 * r.bar * (ratios * script.is + t(ratios) * t(script.is)) sum(pi.est$diags, na.rm = TRUE) + sum(rhos[lower.tri(rhos)], na.rm = TRUE) + sum(rhos[upper.tri(rhos)], na.rm = TRUE) } .shrinkage.c <- function(prior, sample) { squares <- (prior - sample)^2 sum(squares, na.rm = TRUE) } .loglevel.tawny <- function (new.level = NULL) { if (!is.null(new.level)) { options(log.level = new.level) } if (is.null(getOption("log.level"))) { return(0) } return(getOption("log.level")) }
model.matrix.binaryChoice <- function (object, ...) { if (n_match <- match("x", names(object), 0)) object[[n_match]] else { data <- model.frame(object, xlev = object$xlevels, ...) NextMethod("model.matrix", data = data, contrasts = object$contrasts) } }
rollFun = function(x, n, trim = TRUE, na.rm = FALSE, FUN, ...) { x.orig = x if (is.timeSeries(x)) { stopifnot(isUnivariate(x)) TS = TRUE } else { TS = FALSE } if (TS) { positions = x.orig@positions x = series(x.orig)[, 1] } else { x = as.vector(x.orig) names(x) = NULL } if (na.rm) { if (TS) positions = positions[!is.na(x)] x = as.vector(na.omit(x)) } start = 1 end = length(x)-n+1 m = x[start:end] if (n > 1) { for (i in 2:n) { start = start + 1 end = end + 1 m = cbind(m, x[start:end]) } } else { m = matrix(m) } ans = apply(m, MARGIN = 1, FUN = FUN, ...) if (!trim) ans = c(rep(NA, (n-1)), ans) if (trim & TS) positions = positions[-(1:(n-1))] if (TS) { ans = timeSeries(as.matrix(ans), positions, recordIDs = data.frame(), units = x.orig@units, FinCenter = x.orig@FinCenter) } ans } rollVar = function(x, n = 9, trim = TRUE, unbiased = TRUE, na.rm = FALSE) { if (is.timeSeries(x)) TS = TRUE else TS = FALSE rvar = rollFun(x = x, n = n, trim = trim, na.rm = na.rm, FUN = var) if (!unbiased) { if (TS) { series(rvar) = (series(rvar) * (n-1))/n } else { rvar = (rvar * (n-1))/n } } rvar }
tuneGenSA = function(learner, task, resampling, measures, par.set, control, opt.path, show.info, resample.fun) { requirePackages("GenSA", why = "tuneGenSA", default.method = "load") low = getLower(par.set) upp = getUpper(par.set) start = control$start %??% sampleValue(par.set, trafo = FALSE) start = convertStartToNumeric(start, par.set) ctrl.gensa = control$extra.args res = GenSA::GenSA(par = start, fn = tunerFitnFun, lower = low, upper = upp, control = ctrl.gensa, learner = learner, task = task, resampling = resampling, measures = measures, par.set = par.set, ctrl = control, opt.path = opt.path, show.info = show.info, convertx = convertXNumeric, remove.nas = FALSE, resample.fun = resample.fun) if (!is.null(control$budget) && res$counts > control$budget) { warningf("GenSA used %i function calls, exceededing the given budget of %i evaluations.", res$counts, control$budget) } makeTuneResultFromOptPath(learner, par.set, measures, resampling, control, opt.path) }
rho.file <- function( x, col1, col2, OcSBaserate = NULL, testSetBaserateInflation = 0, OcSLength = 10000, replicates = 800, ScSKappaThreshold = 0.9, ScSKappaMin = .40, ScSPrecisionMin = 0.6, ScSPrecisionMax = 1 ) { setFile = utils::read.csv(x) set = as.matrix(setFile[,c(col1, col2)]) if (!any(is.na(set))) { rhoSet( set, OcSBaserate, testSetBaserateInflation, OcSLength, replicates, ScSKappaThreshold, ScSKappaMin, ScSPrecisionMin, ScSPrecisionMax ) } else { stop("The columns provided for col1 and col2 must not contain NA") } }
knitr::opts_chunk$set(collapse = T, comment = " library(pander) library(tables) panderOptions('knitr.auto.asis', FALSE) panderOptions('plain.ascii', TRUE) pander(head(iris)) pander(head(mtcars[1:5])) pander(tabular( (Species + 1) ~ (n=1) + Format(digits=2)* (Sepal.Length + Sepal.Width)*(mean + sd), data=iris )) methods(pander) evals('1:10') str(Pandoc.brew(text ='Pi equals to `<%= pi %>`. And here are some random data: `<%= runif(10)%>`')) pots <- panderOptions("table.style") panderOptions("table.style", "simple") pander(mtcars[1:3, 1:4]) pander(head(iris)) panderOptions("table.style", "grid") pander(head(iris)) panderOptions("table.style", pots)
write_file <- function(text, path) { text <- as.character(text) if (length(text) > 1) { stop("`text` cannot have more than one element", call. = FALSE) } if (length(path) != 1) { stop("`path` must be a single element", call. = FALSE) } text <- enc2utf8(text) path <- normalizePath(path, mustWork = FALSE) invisible(.Call(brio_write_file, text, path)) }
omegaMultiB <- function(data, ns, n.iter, n.burnin, n.chains, thin, model, pairwise, callback) { n <- nrow(data) k <- ncol(data) mod_opts <- indexMatrix(model, k, ns, colnames(data)) idex <- mod_opts$idex imat <- mod_opts$imat inds <- which(is.na(data), arr.ind = TRUE) imputed <- array(0, c(n.chains, n.iter, nrow(inds))) pars <- list(H0k = rep(1, ns), a0k = 2, b0k = 1, l0k = matrix(0, k, ns), H0kw = 2.5, a0kw = 2, b0kw = 1, beta0k = numeric(ns), R0w = diag(rep(1 / k, ns + 1)), p0w = ns^2) omsh <- matrix(0, n.chains, n.iter) omst <- matrix(0, n.chains, n.iter) impl_covs <- array(0, c(n.chains, n.iter, k, k)) for (ai in 1:n.chains) { starts <- drawStartMulti(n, k, ns, pars, imat) wi <- starts$wi phiw <- starts$phiw if (pairwise) { dat_filled <- data dat_filled[inds] <- colMeans(data, na.rm = TRUE)[inds[, 2]] ms <- rep(0, k) for (i in 1:n.iter) { params <- sampleSecoParams(dat_filled, pars, wi, phiw, ns, idex) wi <- params$wi phiw <- params$phiw Lm <- cbind(0, params$lambda) Bm <- matrix(0, ns + 1, ns + 1) Bm[2:(ns + 1), 1] <- params$beta oms <- omegasSeco(Lm, Bm, diag(params$psi), diag(c(1, params$psiw))) omsh[ai, i] <- oms[1] omst[ai, i] <- oms[2] cc <- implCovMulti(Lm, Bm, theta = diag(params$psi), psi = diag(c(1, params$psiw))) impl_covs[ai, i, , ] <- cc cols <- unique(inds[, 2]) for (ccc in cols) { rows <- inds[which(inds[, 2] == ccc), 1] mu1 <- ms[ccc] mu2 <- ms[-ccc] cc11 <- cc[ccc, ccc] cc21 <- cc[-ccc, ccc] cc12 <- cc[ccc, -ccc] cc22 <- cc[-ccc, -ccc] ccq <- cc11 - cc12 %*% try(solve(cc22)) %*% cc21 for (r in rows) { muq <- mu1 + cc12 %*% try(solve(cc22)) %*% (as.numeric(dat_filled[r, -ccc]) - mu2) dat_filled[r, ccc] <- rnorm(1, muq, sqrt(ccq)) } } imputed[ai, i, ] <- dat_filled[inds] } } else { for (i in 1:n.iter) { params <- sampleSecoParams(data, pars, wi, phiw, ns, idex) wi <- params$wi phiw <- params$phiw Lm <- cbind(0, params$lambda) Bm <- matrix(0, ns + 1, ns + 1) Bm[2:(ns + 1), 1] <- params$beta oms <- omegasSeco(Lm, Bm, diag(params$psi), diag(c(1, params$psiw))) omsh[ai, i] <- oms[1] omst[ai, i] <- oms[2] impl_covs[ai, i, , ] <- implCovMulti(Lm, Bm, theta = diag(params$psi), psi = diag(c(1, params$psiw))) } } } omh_burn <- omsh[, (n.burnin + 1):n.iter, drop = F] omt_burn <- omst[, (n.burnin + 1):n.iter, drop = F] impl_covs_burn <- impl_covs[, (n.burnin + 1):n.iter, , , drop = F] omh_out <- omh_burn[, seq(1, dim(omh_burn)[2], thin), drop = F] omt_out <- omt_burn[, seq(1, dim(omt_burn)[2], thin), drop = F] impl_covs_out <- impl_covs_burn[, seq(1, dim(omt_burn)[2], thin), , , drop = F] return(list(omh = omh_out, omt = omt_out, impl_covs = impl_covs_out, imputed_values = imputed, modfile = mod_opts)) } sampleSecoParams <- function(data, pars, wi, phiw, ns, idex) { n <- nrow(data) k <- ncol(data) H0k <- pars$H0k l0k <- pars$l0k a0k <- pars$a0k b0k <- pars$b0k H0kw <- pars$H0kw beta0k <- pars$beta0k a0kw <- pars$a0kw b0kw <- pars$b0kw R0w <- pars$R0w p0w <- pars$p0w ll <- matrix(0, k, ns) pp <- numeric(k) for (ii in 1:ns) { ids <- idex[[ii]] Ak <- solve(1 / H0k[ii] + t(wi[, ii + 1]) %*% wi[, ii + 1]) ak <- Ak %*% (c(1 / H0k[ii]) %*% t(l0k[ids, ii]) + wi[, ii + 1] %*% data[, ids]) bekk <- b0k + 0.5 * (t(data[, ids]) %*% data[, ids] - t(ak) %*% solve(Ak) %*% ak + (l0k[ids, ii] * 1 / H0k[ii]) %*% t(l0k[ids, ii])) bek <- diag(bekk) invpsi <- rgamma(length(ids), n / 2 + a0k, bek) psi <- 1 / invpsi lambda <- rnorm(length(ids), ak, sqrt(psi * as.vector(Ak))) if (mean(lambda) < 0) { lambda <- -lambda } ll[ids, ii] <- lambda pp[ids] <- psi } Akw <- 1 / (1 / H0kw + c(t(wi[, 1]) %*% wi[, 1])) akw <- Akw * (1 / H0kw * beta0k + t(wi[, 1]) %*% wi[, 2:(ns + 1)]) bekkw <- b0kw + 0.5 * (t(wi[, 2:(ns + 1)]) %*% wi[, 2:(ns + 1)] - ((t(akw) * (1 / Akw)) %*% akw) + (beta0k * (1 / H0kw)) %*% t(beta0k)) bekw <- diag(bekkw) invpsiw <- rgamma(ns, n / 2 + a0kw, bekw) psiw <- 1 / invpsiw beta <- rnorm(ns, akw * sqrt(diag(phiw)[1]), sqrt(psiw * Akw)) if (mean(beta) < 0) { beta <- -beta } betaMat <- matrix(0, ns + 1, ns + 1) betaMat[2:(ns + 1), 1] <- beta ident <- diag(ns + 1) identInv <- solve(ident - betaMat) psid <- diag(c(1, psiw)) sigW <- identInv %*% psid %*% t(identInv) invsigW <- solve(sigW) lll <- cbind(0, ll) impM <- t(lll) %*% solve(diag(pp)) %*% lll mw <- solve(invsigW + impM) %*% t(lll) %*% solve(diag(pp)) %*% t(data) Vw <- solve(invsigW + impM) wi <- genNormDataTweak(n, t(mw), Vw) wi <- apply(wi, 2, function(x) x / sd(x)) phiw <- LaplacesDemon::rinvwishart(nu = n + p0w, S = t(wi) %*% (wi) + solve(R0w)) return(list(psi = pp, lambda = ll, psiw = psiw, beta = beta, wi = wi, phiw = phiw)) } drawStartMulti <- function(n, k, ns, pars, imat) { invpsi <- rgamma(k, pars$a0k, pars$b0k) psi <- 1 / invpsi invpsiw <- rgamma(ns, pars$a0kw, pars$b0kw) psiw <- 1 / invpsiw phiw <- LaplacesDemon::rinvwishart(nu = pars$p0w, S = (pars$R0w)) wi <- MASS::mvrnorm(n, numeric(ns + 1), phiw) wi <- apply(wi, 2, function(x) x / sd(x)) return(list(wi = wi, phiw = phiw)) }
library(act) \dontrun{ mysearch <- act::search_new(examplecorpus, pattern="yo") test <- act::search_cuts(x=examplecorpus, s=mysearch) cat([email protected]) cat([email protected]) cat(test@results[, [email protected]]) }
source("ESEUR_config.r") fails=read.csv(paste0(ESEUR_dir, "reliability/2014-04-13.csv.xz"), as.is=TRUE) fails$SW_f_per_t=c(0, diff(fails$cum.SW.fail)) fails$use_f_per_t=c(0, diff(fails$cum.usage.fail)) plot(~ Date+SW_f_per_t+use_f_per_t+cum.SW.fail+cum.usage.fail+ Site, data=fails) SW_f_mod=glm(SW_f_per_t ~ Date+Site, data=fails, family=poisson) summary(SW_f_mod)
krscvNOMAD <- function(xz, y, degree.max=10, segments.max=10, degree.min=0, segments.min=1, cv.df.min=1, complexity=c("degree-knots","degree","knots"), knots=c("quantiles","uniform", "auto"), basis=c("additive","tensor","glp","auto"), cv.func=c("cv.ls","cv.gcv","cv.aic"), degree=degree, segments=segments, lambda=lambda, lambda.discrete=FALSE, lambda.discrete.num=100, random.seed=42, max.bb.eval=10000, initial.mesh.size.real="r0.1", initial.mesh.size.integer="1", min.mesh.size.real=paste("r",sqrt(.Machine$double.eps),sep=""), min.mesh.size.integer="1", min.poll.size.real="1", min.poll.size.integer="1", opts=list(), nmulti=0, tau=NULL, weights=NULL, singular.ok=FALSE) { complexity <- match.arg(complexity) knots <- match.arg(knots) basis <- match.arg(basis) cv.func <- match.arg(cv.func) if( missing(lambda) || is.null(lambda)){ lambda <- NULL } if(degree.min < 0 ) degree.min <- 0 if(segments.min < 1 ) segments.min <- 1 if(degree.max < degree.min) degree.max <- (degree.min + 1) if(segments.max < segments.min) segments.max <- (segments.min + 1) if(missing(degree)) degree <- NULL if(missing(segments)) segments <- NULL if(lambda.discrete && !is.null(lambda.discrete.num)){ lambda.discrete.num <- as.integer(lambda.discrete.num) if(lambda.discrete.num < 1) lambda.discrete.num <- 10 } if(!options('crs.messages')$crs.messages && is.null(opts[["DISPLAY_DEGREE"]])) opts$"DISPLAY_DEGREE"=0 t1 <- Sys.time() cv.nomad <- function(x, y, z, degree.max=degree.max, segments.max=segments.max, degree.min=degree.min, segments.min=segments.min, z.unique, ind, ind.vals, nrow.z.unique, is.ordered.z, complexity=complexity, knots=knots, basis=basis, segments=segments, degree=degree, lambda=lambda, lambda.discrete=lambda.discrete, lambda.discrete.num=lambda.discrete.num, cv.func=cv.func, opts=opts, print.output=print.output, nmulti=nmulti, cv.df.min=cv.df.min, tau=tau, weights=weights, singular.ok=singular.ok) { if( missing(x) || missing(y) ) stop(" you must provide input, x, y") n <- length(y) num.x <- NCOL(x) if(NROW(y) != NROW(x)) stop(" x and y have differing numbers of observations") eval.cv <- function(input, params){ complexity <- params$complexity segments <- params$segments degree <- params$degree x <- params$x y <- params$y z <- params$z knots <- params$knots cv.func <- params$cv.func basis <- params$basis z.unique <- params$z.unique ind <- params$ind ind.vals <- params$ind.vals nrow.z.unique <- params$nrow.z.unique is.ordered.z <- params$is.ordered.z lambda.discrete.num <- params$lambda.discrete.num lambda.discrete <- params$lambda.discrete cv.df.min <- params$cv.df.min tau <- params$tau weights <- params$weights singular.ok <- params$singular.ok num.x <- NCOL(x) num.z <- NCOL(z) if(complexity=="degree-knots") { K <- round(cbind(input[1:num.x],input[(num.x+1):(2*num.x)])) lambda <- input[(2*num.x+1):(2*num.x+num.z)] } else if(complexity=="degree") { K<-round(cbind(input[1:num.x],segments)) lambda <- input[(num.x+1):(num.x+num.z)] } else if(complexity=="knots") { K<-round(cbind(degree, input[1:num.x])) lambda <- input[(num.x+1):(num.x+num.z)] } if(lambda.discrete) lambda <- lambda/lambda.discrete.num lambda <- ifelse(lambda <= 0, .Machine$double.eps, lambda) basis.opt <- basis; if(basis=="auto"){ basis.opt <- "additive" cv <- cv.kernel.spline.wrapper(x=x, y=y, z=z, K=K, lambda=lambda, z.unique=z.unique, ind=ind, ind.vals=ind.vals, nrow.z.unique=nrow.z.unique, is.ordered.z=is.ordered.z, knots=knots, basis=basis.opt, cv.df.min=cv.df.min, cv.func=cv.func, tau=tau, weights=weights, singular.ok=singular.ok) cv.tensor <- cv.kernel.spline.wrapper(x=x, y=y, z=z, K=K, lambda=lambda, z.unique=z.unique, ind=ind, ind.vals=ind.vals, nrow.z.unique=nrow.z.unique, is.ordered.z=is.ordered.z, knots=knots, basis="tensor", cv.func=cv.func, cv.df.min=cv.df.min, tau=tau, weights=weights, singular.ok=singular.ok) if(cv > cv.tensor){ cv <- cv.tensor basis.opt <-"tensor" } cv.glp <- cv.kernel.spline.wrapper(x=x, y=y, z=z, K=K, lambda=lambda, z.unique=z.unique, ind=ind, ind.vals=ind.vals, nrow.z.unique=nrow.z.unique, is.ordered.z=is.ordered.z, knots=knots, basis="glp", cv.func=cv.func, cv.df.min=cv.df.min, tau=tau, weights=weights, singular.ok=singular.ok) if(cv > cv.glp){ cv <- cv.glp basis.opt <-"glp" } } else { cv <- cv.kernel.spline.wrapper(x=x, y=y, z=z, K=K, lambda=lambda, z.unique=z.unique, ind=ind, ind.vals=ind.vals, nrow.z.unique=nrow.z.unique, is.ordered.z=is.ordered.z, knots=knots, basis=basis.opt, cv.func=cv.func, cv.df.min=cv.df.min, tau=tau, weights=weights, singular.ok=singular.ok) } attr(cv, "basis.opt")<-basis.opt console <- newLineConsole() console <- printClear(console) console <- printPop(console) console <- printPush("\r ",console = console) console <- printPush(paste("\rfv = ",format(cv)," ", sep=""),console = console) return(cv) } params <- list() params$complexity <- complexity params$segments <- segments params$degree <- degree params$x <- x params$y <- y params$z <- z params$knots <- knots params$cv.func <- cv.func params$basis <- basis params$z.unique <- z.unique params$ind <- ind params$ind.vals <- ind.vals params$nrow.z.unique <- nrow.z.unique params$is.ordered.z <- is.ordered.z params$lambda.discrete.num <- lambda.discrete.num params$lambda.discrete <- lambda.discrete params$tau <- tau params$weights <- weights params$singular.ok <- singular.ok params$cv.df.min <- cv.df.min num.z <- NCOL(z) xsegments <- segments xdegree <- degree xlambda <- lambda lambda.flag <- 0L lambda.ub <- 1.0 if(lambda.discrete){ if(!is.null(xlambda)) xlambda <- round(lambda*lambda.discrete.num) lambda.flag <- 1L lambda.ub <- lambda.discrete.num lambda.ub <- as.integer(lambda.ub) } if(exists(".Random.seed", .GlobalEnv)) { save.seed <- get(".Random.seed", .GlobalEnv) exists.seed = TRUE } else { exists.seed = FALSE } set.seed(random.seed) if(is.null(xdegree)) xdegree <- rep(max(1,degree.min),num.x) if(is.null(xsegments)) xsegments <- rep(max(1,segments.min),num.x) if(is.null(xlambda)) { xlambda <- runif(num.z) if(lambda.discrete) xlambda <- rep(round(0.5*lambda.discrete.num), num.z) } if(lambda.discrete) xlambda <- as.integer(xlambda) if(complexity =="degree-knots") { x0 <- c(xdegree, xsegments, xlambda) bbin <-c(rep(1, num.x*2),rep(lambda.flag, num.z)) lb <- c(rep(degree.min,num.x), rep(segments.min,num.x), rep(0, num.z)) ub <- c(rep(degree.max,num.x), rep(segments.max,num.x), rep(lambda.ub, num.z)) } else if(complexity=="degree") { x0 <- c(xdegree, xlambda) bbin <-c(rep(1, num.x),rep(lambda.flag, num.z)) lb <- c(rep(degree.min,num.x), rep(0, num.z) ) ub <- c(rep(degree.max,num.x), rep(lambda.ub, num.z)) } else if(complexity=="knots") { x0 <- c(xsegments, xlambda) bbin <-c(rep(1, num.x),rep(lambda.flag, num.z)) lb <- c(rep(segments.min,num.x), rep(0, num.z)) ub <- c(rep(segments.max,num.x), rep(lambda.ub, num.z)) } ill.conditioned <- check.max.spline.degree(x,rep(degree.max,num.x),issue.warning=FALSE) degree.max.vec <- attr(ill.conditioned, "degree.max.vec") if(complexity != "knots") { ub[1:num.x] <- ifelse(ub[1:num.x] > degree.max.vec, degree.max.vec, ub[1:num.x]) x0[1:num.x] <- ifelse(x0[1:num.x] > degree.max.vec, degree.max.vec, x0[1:num.x]) } if(length(x0) != length(lb)) stop(" x0 and bounds have differing numbers of variables") bbout <-c(0) solution<-snomadr(eval.f=eval.cv, n=length(x0), x0=as.numeric(x0), bbin=bbin, bbout=bbout, lb=lb, ub=ub, nmulti=as.integer(nmulti), random.seed=random.seed, opts=opts, print.output=print.output, params=params); if(basis == "auto"){ cv.basis <- eval.cv(solution$solution, params) attr(solution, "basis.opt") <- attributes(cv.basis)$basis.opt if(knots == "auto") attr(solution, "knots.opt") <- attributes(cv.basis)$knots.opt } else if (knots == "auto") attr(solution, "knots.opt") <- attributes(eval.cv(solution$solution, params))$knots.opt solution$degree.max.vec <- degree.max.vec if(exists.seed) assign(".Random.seed", save.seed, .GlobalEnv) return(solution) } xztmp <- splitFrame(xz,factor.to.numeric=TRUE) x <- xztmp$x z <- xztmp$z if(is.null(z)) stop(" categorical kernel smoothing requires ordinal/nominal predictors") z <- as.matrix(xztmp$z) num.z <- NCOL(z) is.ordered.z <- xztmp$is.ordered.z z.unique <- uniquecombs(z) ind <- attr(z.unique,"index") ind.vals <- unique(ind) nrow.z.unique <- NROW(z.unique) num.x <- NCOL(x) n <- NROW(x) if(!is.null(lambda) ) { if(length(lambda)!=num.z){ warning(paste(" the length of lambda (", length(lambda),") is not the same as the length of z (", num.z, ")",sep="")) lambda <- NULL } else if (any(lambda < 0) || any(lambda > 1) ) { lambda <- NULL } } if(complexity=="degree") { if(missing(segments) || is.null(segments)) stop(" segments missing for cross-validation of spline degree") if(length(segments)!=num.x) stop(" segments vector must be the same length as x") if(!is.null(degree) && length(degree) == num.x) { if(any(degree < degree.min)||any(degree>degree.max)) { warning(paste(" The provided initial values for the degree are not in the bounds.", sep="")) degree <- NULL } } else degree <- NULL } else if(complexity=="knots") { if(missing(degree) || is.null(degree)) stop(" degree missing for cross-validation of number of spline knots") if(length(degree)!=num.x) stop(" degree vector must be the same length as x") if(!is.null(segments) && length(segments) == num.x) { if(any(segments < segments.min)||any(segments > segments.max)) { warning(paste(" The provided initial values for the segments are not in the bounds.", sep="")) segments <- NULL } } else segments <- NULL } else { if(!is.null(degree) && length(degree) == num.x) { if(any(degree < degree.min)||any(degree>degree.max)) { warning(paste(" The provided initial values for the degree are not in the bounds.", sep="")) degree <- NULL } } else { degree <- NULL } if(!is.null(segments) && length(segments) == num.x) { if(any(segments < segments.min)||any(segments > segments.max)) { warning(paste(" The provided initial values for the segments are not in the bounds.", sep="")) segments <- NULL } } else segments <- NULL } INITIAL.MESH.SIZE <- list() MIN.MESH.SIZE <- list() MIN.POLL.SIZE <- list() if(complexity=="degree-knots") { for(i in 1:(2*num.x)) { INITIAL.MESH.SIZE[[i]] <- initial.mesh.size.integer MIN.MESH.SIZE[[i]] <- min.mesh.size.integer MIN.POLL.SIZE[[i]] <- min.poll.size.integer } for(i in (2*num.x+1):(2*num.x+num.z)) { INITIAL.MESH.SIZE[[i]] <- initial.mesh.size.real MIN.MESH.SIZE[[i]] <- min.mesh.size.real MIN.POLL.SIZE[[i]] <- min.poll.size.real } } else if(complexity=="degree"|complexity=="knots") { for(i in 1:num.x) { INITIAL.MESH.SIZE[[i]] <- initial.mesh.size.integer MIN.MESH.SIZE[[i]] <- min.mesh.size.integer MIN.POLL.SIZE[[i]] <- min.poll.size.integer } for(i in (num.x+1):(num.x+num.z)) { INITIAL.MESH.SIZE[[i]] <- initial.mesh.size.real MIN.MESH.SIZE[[i]] <- min.mesh.size.real MIN.POLL.SIZE[[i]] <- min.poll.size.real } } opts$"EPSILON" <- .Machine$double.eps opts$"MAX_BB_EVAL" <- max.bb.eval opts$"INITIAL_MESH_SIZE" <- INITIAL.MESH.SIZE opts$"MIN_MESH_SIZE" <- MIN.MESH.SIZE opts$"MIN_POLL_SIZE" <- MIN.POLL.SIZE if((num.x==1) && (basis == "auto")) basis <- "additive" if(degree.max < 1 || segments.max < 1 ) stop(" degree.max or segments.max must be greater than or equal to 1") print.output <- FALSE console <- newLineConsole() if(!is.null(opts$DISPLAY_DEGREE)){ if(opts$DISPLAY_DEGREE>0){ print.output <-TRUE console <- printPush("Calling NOMAD (Nonsmooth Optimization by Mesh Adaptive Direct Search)\n",console = console) } } else { print.output <-TRUE console <- printPush("Calling NOMAD (Nonsmooth Optimization by Mesh Adaptive Direct Search)\n",console = console) } nomad.solution<-cv.nomad(x, y, z, degree.max=degree.max, segments.max=segments.max, degree.min=degree.min, segments.min=segments.min, z.unique=z.unique, ind=ind, ind.vals=ind.vals, nrow.z.unique=nrow.z.unique, is.ordered.z=is.ordered.z, complexity=complexity, knots=knots, basis=basis, segments=segments, degree=degree, lambda=lambda, lambda.discrete=lambda.discrete, lambda.discrete.num=lambda.discrete.num, cv.func=cv.func, opts=opts, print.output=print.output, nmulti=nmulti, cv.df.min=cv.df.min, tau=tau, weights=weights, singular.ok=singular.ok) t2 <- Sys.time() cv.min <- nomad.solution$objective if(isTRUE(all.equal(cv.min,sqrt(.Machine$double.xmax)))) stop(" Search failed: restart with larger nmulti or smaller degree.max") if(complexity=="degree-knots") { K.opt <- as.integer(nomad.solution$solution[1:(2*num.x)]) lambda.opt <- as.numeric(nomad.solution$solution[(2*num.x+1):(2*num.x+num.z)]) degree <- K.opt[1:num.x] segments <- K.opt[(num.x+1):(2*num.x)] } else if(complexity=="degree") { degree <- as.integer(nomad.solution$solution[1:num.x]) lambda.opt <- as.numeric(nomad.solution$solution[(num.x+1):(num.x+num.z)]) K.opt <-cbind(degree, segments) } else if(complexity=="knots") { segments <- as.integer(nomad.solution$solution[1:num.x]) lambda.opt <- as.numeric(nomad.solution$solution[(num.x+1):(num.x+num.z)]) K.opt <-cbind(degree, segments) } if(lambda.discrete) lambda.opt <- lambda.opt/lambda.discrete.num basis.opt <- basis if(basis == "auto") basis.opt <- attributes(nomad.solution)$basis.opt knots.opt <- knots if(knots == "auto") knots.opt <- attributes(nomad.solution)$knots.opt lambda.opt <- ifelse(lambda.opt <= 0, .Machine$double.eps, lambda.opt) console <- printClear(console) console <- printPop(console) segments[degree==0] <- 1 if(any(degree==nomad.solution$degree.max.vec)) warning(paste(" optimal degree equals search maximum (", nomad.solution$degree.max.vec,"): rerun with larger degree.max",sep="")) if(any(segments==segments.max)) warning(paste(" optimal segment equals search maximum (", segments.max,"): rerun with larger segments.max",sep="")) if(!is.null(opts$MAX_BB_EVAL)){ if(nmulti>0) {if(nmulti*opts$MAX_BB_EVAL <= nomad.solution$bbe) warning(paste(" MAX_BB_EVAL reached in NOMAD: perhaps use a larger value...", sep=""))} if(nmulti==0) {if(opts$MAX_BB_EVAL <= nomad.solution$bbe) warning(paste(" MAX_BB_EVAL reached in NOMAD: perhaps use a larger value...", sep="")) } } cv.vec <- NULL lambda.mat <- NULL basis.vec <- NULL K.mat <- NULL crscv(K=K.opt, I=NULL, basis=basis.opt, basis.vec=basis.vec, degree.max=degree.max, segments.max=segments.max, degree.min=degree.min, segments.min=segments.min, complexity=complexity, knots=knots.opt, degree=degree, segments=segments, restarts=nmulti, K.mat=K.mat, lambda=lambda.opt, lambda.mat=lambda.mat, cv.objc=cv.min, cv.objc.vec=cv.vec, num.x=num.x, cv.func=cv.func, tau=tau) }
library(MiRNAQCD) rawTrainingSet = read.table(file="real_dataset_2_training.dat", fileEncoding="UTF-8", header=FALSE) rawTestingSet = read.table(file="real_dataset_2_testing.dat", fileEncoding="UTF-8", header=FALSE) names(rawTrainingSet) <- c("miRNA", "Subject", "Value", "Class") names(rawTestingSet) <- c("miRNA", "Subject", "Value", "Class") dir.create(file.path(getwd(), "Results_real_dataset_2"), showWarnings = FALSE) preprocTrainingSet <- miRNA_expressionPreprocessing(rawTrainingSet, multipletSize=3) preprocTestingSet <- miRNA_expressionPreprocessing(rawTestingSet, multipletSize=3) qualityThresholdTrainingSet <- miRNA_assessQualityThreshold(preprocTrainingSet, significanceLevel=0.05) qualityThresholdTestingSet <- miRNA_assessQualityThreshold(preprocTestingSet, significanceLevel=0.05) cleanedTrainingSet <- miRNA_removeOutliers(preprocTrainingSet, qualityThresholdTrainingSet) cleanedTestingSet <- miRNA_removeOutliers(preprocTestingSet, qualityThresholdTestingSet) Target <- c("AT","TC") Versus <- c("AD","SQC") outputAnalysis <- miRNA_classifierSetup(cleanedTrainingSet, inputTargetList=Target, inputVersusList=Versus, inputMiRNAList="U6", saveOutputFile=TRUE, outputFileBasename="Results_real_dataset_2/miRNAanalysis_training_dataset_norm_U6") outputTraining <- miRNA_classifierSetup(cleanedTrainingSet, inputTargetList=Target, inputVersusList=Versus, inputMiRNAList=c("miR375","U6"), coeffList=c(-1.0, 1.0), histogramParameters="-6.0_14.0_1.0", saveOutputFile=TRUE, outputFileBasename="Results_real_dataset_2/classifier_training_dataset_-miR375_U6", scorePlotAscending=FALSE, scorePlotParameters="-5.0_15.0_5", colorComplementFlag=TRUE) classifiedDataset <- miRNA_diagnosis(cleanedTestingSet, inputMiRNAList=c("miR375","U6"), coeffList=c(-1.0, 1.0), inputThreshold=outputTraining, inputTargetList=Target, inputVersusList=Versus, saveOutputFile=TRUE, outputFileBasename="Results_real_dataset_2/diagnosis_testing_dataset_-miR375_U6", scorePlotAscending=FALSE, scorePlotParameters="-10.0_10.0_5", colorComplementFlag=TRUE) classifiedDataset <- miRNA_diagnosis(preprocTestingSet, inputMiRNAList=c("miR375","U6"), coeffList=c(-1.0, 1.0), inputThreshold=outputTraining, inputTargetList=Target, inputVersusList=Versus, saveOutputFile=TRUE, outputFileBasename="Results_real_dataset_2/diagnosis_testing_dataset_with_outliers_-miR375_U6", scorePlotAscending=FALSE, scorePlotParameters="-10.0_10.0_5", colorComplementFlag=TRUE)
set.seed(1234) suppressPackageStartupMessages(library("argparse")) library(tidyverse) parser = ArgumentParser() parser$add_argument("--matrix1", required=T, nargs=1) parser$add_argument("--infercnv_obj", required=T, nargs=1) parser$add_argument("--log", required=F, default=FALSE, action="store_true") parser$add_argument("--output", required=T, nargs=1, help="output filename pdf") args = parser$parse_args() data1 = as.matrix(read.table(args$matrix1, header=T, row.names=1)) infercnv_obj_file = args$infercnv_obj infercnv_obj = readRDS(infercnv_obj_file) data2 = as.matrix([email protected][, unlist(infercnv_obj@reference_grouped_cell_indices)]) png(args$output) if (args$log) { data1 = log(data1+1) data2 = log(data2+1) } m1_ecdf = ecdf(data1) m2_ecdf = ecdf(data2) val_range = range(data1, data2) step = (val_range[2] - val_range[1])/100 vals = seq(val_range[1], val_range[2], step) m1_cdf = m1_ecdf(vals) m2_cdf = m2_ecdf(vals) cdfs = data.frame(vals, m1_cdf, m2_cdf) ks_point = which.max(abs(cdfs$m1_cdf - cdfs$m2_cdf)) ks_point_info = cdfs[ks_point,] cdfs = cdfs %>% gather('m1_cdf', 'm2_cdf', key='type', value='cdf') ggplot(cdfs, aes(x=vals, y=cdf)) + geom_line(aes(color=type, linetype=type)) + geom_segment(aes(x=ks_point_info$vals, y=ks_point_info$m1_cdf, xend=ks_point_info$vals, yend=ks_point_info$m2_cdf), color='magenta', size=2) + ggtitle(sprintf("%s vs. %s KS", args$matrix1, args$matrix2)) + xlab("number") + ylab("cdf")
library(plantecophys) context("FARAO") f1 <- FARAO() f2 <- FARAO(energybalance=TRUE) f3 <- FARAO2() f4 <- FARAO2(energybalance=TRUE) f5 <- FARAO(C4=TRUE) test_that("FARAO output", { expect_named(f1) expect_named(f2) expect_named(f3) expect_named(f4) })
as_messydate <- function(x) UseMethod("as_messydate") as_messydate.Date <- function(x) { x <- as.character(x) new_messydate(x) } as_messydate.POSIXct <- function(x) { x <- as.character(x) new_messydate(x) } as_messydate.POSIXlt <- function(x) { x <- as.character(x) new_messydate(x) } as_messydate.character <- function(x) { d <- standardise_date_separators(x) d <- standardise_date_order(d) d <- standardise_date_input(d) d <- standardise_unspecifieds(d) d <- standardise_widths(d) d <- standardise_ranges(d) d <- remove_imprecision(d) new_messydate(d) } standardise_date_separators <- function(dates) { dates <- stringr::str_replace_all(dates, "([:digit:]{4})([:digit:]{2}) ([:digit:]{2})", "\\1-\\2-\\3") dates <- stringr::str_replace_all(dates, "(?<=[:digit:])\\.(?=[:digit:])", "-") dates <- stringr::str_replace_all(dates, "\\/", "-") dates <- stringr::str_trim(dates, side = "both") dates } standardise_date_order <- function(dates) { dates <- stringr::str_replace_all(dates, "([:digit:]{2})-([:digit:]{2})- ([:digit:]{4})", "\\3-\\2-\\1") dates } standardise_date_input <- function(dates) { as_bc_dates <- function(dates) { dates <- stringr::str_remove_all(dates, "(bc|BC|Bc|bC)") dates <- stringr::str_trim(dates, side = "both") dates <- paste0("-", dates) dates } as_ac_dates <- function(dates) { dates <- stringr::str_remove_all(dates, "(ad|AD|Ad|aD)") dates <- stringr::str_trim(dates, side = "both") } dates <- ifelse(stringr::str_detect(dates, "(bc|BC|Bc|bC)"), as_bc_dates(dates), dates) dates <- ifelse(stringr::str_detect(dates, "(ad|AD|Ad|aD)"), as_ac_dates(dates), dates) dates } standardise_unspecifieds <- function(dates) { dates <- stringr::str_replace_all(dates, "^NA", "XXXX") dates <- stringr::str_replace_all(dates, "-NA", "-XX") dates <- stringr::str_replace_all(dates, "0000", "XXXX") dates <- stringr::str_replace_all(dates, "-00-|-0-|-0$|-00$", "-XX-") dates <- stringr::str_replace_all(dates, "\\?\\?\\?\\?", "XXXX") dates <- stringr::str_replace_all(dates, "-\\?\\?", "-XX") dates } standardise_widths <- function(dates) { dates <- stringr::str_replace_all(dates, "^-([:digit:]{1})$", "-000\\1") dates <- stringr::str_replace_all(dates, "^-([:digit:]{2})$", "-00\\1") dates <- stringr::str_replace_all(dates, "^-([:digit:]{3})$", "-0\\1") dates <- stringr::str_replace_all(dates, "^~([:digit:]{1})$", "000\\1~") dates <- stringr::str_replace_all(dates, "^~([:digit:]{2})$", "00\\1~") dates <- stringr::str_replace_all(dates, "^~([:digit:]{3})$", "0\\1~") dates <- stringr::str_replace_all(dates, "^\\?([:digit:]{1})$", "000\\1?") dates <- stringr::str_replace_all(dates, "^\\?([:digit:]{2})$", "00\\1?") dates <- stringr::str_replace_all(dates, "^\\?([:digit:]{3})$", "0\\1?") dates <- ifelse(stringr::str_detect(dates, "^([:digit:]{1})~$|^([:digit:]{1})\\?$"), paste0("000", dates), dates) dates <- ifelse(stringr::str_detect(dates, "^([:digit:]{2})~$|^([:digit:]{2})\\?$"), paste0("00", dates), dates) dates <- ifelse(stringr::str_detect(dates, "^([:digit:]{3})~$|^([:digit:]{3})\\?$"), paste0("0", dates), dates) dates <- stringr::str_replace_all(dates, "^([:digit:]{1})$", "000\\1") dates <- stringr::str_replace_all(dates, "^([:digit:]{2})$", "00\\1") dates <- stringr::str_replace_all(dates, "^([:digit:]{3})$", "0\\1") dates <- stringr::str_replace_all(dates, "-([:digit:])$", "-0\\1") dates <- stringr::str_replace_all(dates, "-([:digit:])-", "-0\\1-") dates <- stringr::str_replace_all(dates, "^([:digit:])-", "0\\1-") dates } standardise_ranges <- function(dates) { dates <- stringr::str_replace_all(dates, "_", "..") dates <- stringr::str_replace_all(dates, ":", "..") dates } remove_imprecision <- function(dates) { dates <- stringr::str_replace_all(dates, "-XX$", "") dates }
bitseq_rnaSeqData <- function(t,trFileName) { tu=unique(t) nu=as.matrix(as.vector(table(t))) time_mapping=data.frame(files=names(t),time=unname(t),repMask=match(t,tu)) tr_data=read.table(trFileName, header=TRUE) gene_mapping=data.frame(gene_ID=as.matrix(tr_data$gene_ID),transcript_ID=as.matrix(tr_data$transcript_ID),transcript_length=as.matrix(tr_data$transcript_length)) M=length(gene_mapping$transcript_ID) nT=length(t) unique_genes_ID=unique(as.matrix(gene_mapping$gene_ID)) N=length(unique_genes_ID) gene=list(logTrans=1,mean=matrix(0,N,nT),std=matrix(0,N,nT),time_mapping=time_mapping,gene_mapping=gene_mapping) dimnames(gene$mean) = list(unique_genes_ID,time_mapping$files) dimnames(gene$std) = list(unique_genes_ID,time_mapping$files) abstr=list(logTrans=1,mean=matrix(0,M,nT),std=matrix(0,M,nT),time_mapping=time_mapping,gene_mapping=gene_mapping) dimnames(abstr$mean) = list(gene_mapping$transcript_ID,time_mapping$files) dimnames(abstr$std) = list(gene_mapping$transcript_ID,time_mapping$files) reltr=list(logTrans=0,mean=matrix(0,M,nT),std=matrix(0,M,nT),time_mapping=time_mapping,gene_mapping=gene_mapping) dimnames(reltr$mean) = list(gene_mapping$transcript_ID,time_mapping$files) dimnames(reltr$std) = list(gene_mapping$transcript_ID,time_mapping$files) gpData=list(gene=gene,abstr=abstr,reltr=reltr) for (i in 1:nT) { mcmcFileName=names(t)[i] mcmc_data=as.matrix(read.table(mcmcFileName)) J=ncol(mcmc_data) for (k in 1:N) { my_gene=unique_genes_ID[k] tr_inds=which(gene_mapping$gene_ID %in% my_gene) no_tr=length(tr_inds) tr_expr=matrix(mcmc_data[tr_inds,],no_tr,J) gene_expr=matrix(colSums(tr_expr),1,J) gpData$gene$mean[k,i]=rowMeans(log(gene_expr)) gpData$gene$std[k,i]=sqrt(rowVars(log(gene_expr))) gpData$abstr$mean[tr_inds,i]=rowMeans(log(tr_expr)) gpData$abstr$std[tr_inds,i]=sqrt(rowVars(log(tr_expr))) gpData$reltr$mean[tr_inds,i]=rowMeans(tr_expr/(repmat(gene_expr,no_tr,1))) gpData$reltr$std[tr_inds,i]=sqrt(rowVars(tr_expr/(repmat(gene_expr,no_tr,1)))) } } return(gpData) } repmat <- function(x,m,n){ n_rows = dim(x)[1] n_columns = dim(x)[2] y=matrix(t(matrix(x,n_rows,n_columns*n)),n_rows*m,n_columns*n,byrow=TRUE) return(y) }
stratRejectionSampler_normal <- nimbleFunction( run = function( numPoints = integer(0), lowerCoords = double(2), upperCoords = double(2), s = double(1), windowIntensities = double(1), sd = double(0) ) { numWindows <- dim(lowerCoords)[1] numDims <- 2 if(numPoints <= 0) return(matrix(nrow = 0, ncol = numDims)) sumIntensity <- sum(windowIntensities) outCoordinates <- matrix(nrow = numPoints, ncol = numDims) if(sumIntensity <= 0.0) { windowIntensities <- calcWindowSizes(lowerCoords, upperCoords) sumIntensity <- sum(windowIntensities) if(sumIntensity <= 0.0) return(matrix(nrow = 0, ncol = numDims)) } maxWidth <- abs(qnorm(0.0001, mean = 0.0, sd = sd)) withinMaxWidth <- numeric(length = numWindows) for(i in 1:numWindows) { withinMaxWidth[i] <- prod(s[1:numDims] - maxWidth < upperCoords[i, 1:numDims]) * prod(s[1:numDims] + maxWidth > lowerCoords[i, 1:numDims]) } correctedIntensities <- windowIntensities[1:numWindows] * withinMaxWidth[1:numWindows] for(i in 1:numPoints) { curInd <- rcat(1, correctedIntensities[1:numWindows]) nearestPoint <- pmin(pmax(s[1:numDims], lowerCoords[curInd, 1:numDims]), upperCoords[curInd, 1:numDims]) maxIntensity <- exp(-sum(pow(nearestPoint[1:numDims] - s[1:numDims], 2.0)) / (2.0 * sd * sd)) testCoords <- runif(numDims, min = pmax(lowerCoords[curInd, 1:numDims], s[1:numDims] - maxWidth), max = pmin(upperCoords[curInd, 1:numDims], s[1:numDims] + maxWidth)) testIntensity <- exp(-sum(pow(testCoords[1:numDims] - s[1:numDims], 2.0)) / (2.0 * sd * sd)) randVal <- runif(1, min = 0.0, max = 1.0) while(randVal > (testIntensity / maxIntensity)) { testCoords <- runif(numDims, min = pmax(lowerCoords[curInd, 1:numDims], s[1:numDims] - maxWidth), max = pmin(upperCoords[curInd, 1:numDims], s[1:numDims] + maxWidth)) testIntensity <- exp(-sum(pow(testCoords[1:numDims] - s[1:numDims], 2.0)) / (2.0 * sd * sd)) randVal <- runif(1, min = 0.0, max = 1.0) } outCoordinates[i, 1:numDims] <- testCoords[1:numDims] } return(outCoordinates) returnType(double(2)) } )
`factor.it<-` <- function(x,value){ if (!is.data.frame(x)) stop('x must be a dataframe') if (any(! value %in% colnames(x))) stop('value must be column names in x') for (i in value) { x[,i]=factor(x[,i]) } x } factor.it <- function(x,value){ if (!is.data.frame(x)) stop('x must be a dataframe') if (any(! value %in% colnames(x))) stop('value must be column names in x') for (i in value) { x[,i]=factor(x[,i]) } x } numeric.it <- function(x,value){ if (!is.data.frame(x)) stop('x must be a dataframe') if (any(! value %in% colnames(x))) stop('value must be column names in x') for (i in value) { x[,i]=as.numeric(as.character(x[,i])) } x } `numeric.it<-` <- function(x,value){ if (!is.data.frame(x)) stop('x must be a dataframe') if (any(! value %in% colnames(x))) stop('value must be column names in x') for (i in value) { x[,i]=as.numeric(as.character(x[,i])) } x }
setGeneric("getWindEstimates", function(data, timestamps, ...) { standardGeneric("getWindEstimates") }) setMethod("getWindEstimates", signature = signature(data = "MoveStack", timestamps = "missing") , function(data, timestamps, ...) { l <- list(...) if ('isFocalPoint' %in% names(l)) if (is.logical(l[['isFocalPoint']])) { stopifnot(length(l[['isFocalPoint']]) == sum(n.locs(data))) l[['isFocalPoint']] <- which(l[['isFocalPoint']]) } slist <- move::split(data) x <- mapply( function(...) { tryCatch( getWindEstimates(...), error = function(e) { if (e$message == 'No sample locations selected, either through the focal function or large windowSize') { NULL } else{ stop(e) } } ) }, slist , focalSampleBefore = head(c(0, cumsum(n.locs( data ))),-1), MoreArgs = l, SIMPLIFY = F ) if (all(s <- unlist(lapply(x, is.null)))) { stop('No sample locations selected, either through the focal function or large windowSize') } if (unique(unlist(lapply(x[!s], class))) != "Move") { return(unlist(recursive = F, x)) } res <- moveStack(ifelse(s, slist, x)) return(res) }) setMethod("getWindEstimates", signature = signature(data = "Move", timestamps = "missing") , function(data, timestamps, groundSpeedXY = NULL, ...) { if (!is.null(groundSpeedXY)) { stopifnot(is.character(groundSpeedXY)) stopifnot(length(groundSpeedXY) == 2) stopifnot(all(groundSpeedXY %in% names(data))) dataDf <- data.frame(data[, groundSpeedXY])[, groundSpeedXY] } else{ spd <- speed(data) ang <- angle(data) dataDf <- data.frame(vx = spd * sin(ang / 180 * pi), vy = spd * cos(ang / 180 * pi)) dataDf <- rbind(dataDf, NA) } res <- callGeneric(data = dataDf, timestamps = move::timestamps(data), ...) if(!is.data.frame(res)) { return(res) } slot(data, "data") <- cbind(slot(data, 'data'), res) return(data) }) setMethod("getWindEstimates", signature = signature(data = "data.frame", timestamps = 'POSIXct') , function(data, timestamps, windowSize = 29, isFocalPoint = function(i, ts) { TRUE }, isSamplingRegular = 1, focalSampleBefore = 0, returnSegmentList=F, referenceGroundSpeed=NULL, ...) { l <- nrow(data) segList <- getTrackSegments( data, windowSize = windowSize, isFocalPoint = isFocalPoint, isSamplingRegular = isSamplingRegular, focalSampleBefore=focalSampleBefore, timestamps=timestamps ) data <- segList if(returnSegmentList){ return(data) } w <- getWindowSizeLR(windowSize) if (is.null(referenceGroundSpeed)) { referenceGroundSpeed <- which(((-w[1]):w[2]) == 0) } res <- callGeneric(data = data, referenceGroundSpeed = referenceGroundSpeed, ...) resFull<-res[F,][1:l,] resFull[as.numeric(names(segList)),]<-res return(resFull) }) setMethod("getWindEstimates", signature = signature(data = "list", timestamps = 'ANY') , function(data, timestamps, phi = 0, isThermallingFunction = getDefaultIsThermallingFunction(360, 4), columnNamesWind = c( "estimationSuccessful", "residualVarAirspeed", "windX", "windY", "windVarX", "windVarY", "windCovarXY", "windVarMax", 'airX', 'airY' ), referenceGroundSpeed=NULL, ...) { n<-length(data) windEst <- mclapply(data, getWindEstimate, phi = phi) res <- data.frame(matrix(NA, ncol = length(columnNamesWind), nrow = n)) names(res) <- columnNamesWind estimationSuccessful <- !unlist(lapply(windEst, is.null)) airVectors <- mapply('-', lapply(data[estimationSuccessful], t), lapply(windEst[estimationSuccessful], '[[', 'windEst'), SIMPLIFY = F) airHeadings <- lapply(airVectors , function(x) { atan2(x[1, ], x[2, ]) / pi * 180 }) airSpeeds <- lapply(airVectors , function(x) { sqrt(colSums(x ^ 2)) }) isThermalling = rep(F, n) isThermalling[estimationSuccessful] <- unlist(mcmapply( headings = airHeadings, speeds = airSpeeds , isThermallingFunction )) estimationSuccessful = estimationSuccessful & isThermalling res[, columnNamesWind[1]] <- estimationSuccessful if(all(!estimationSuccessful)) { return(res)} res[estimationSuccessful, columnNamesWind[2:4]] <- matrix(unlist(lapply( windEst[estimationSuccessful], '[', c("residualVarAirSpeed", "windEst") )), ncol = 3, byrow = T) covarList <- lapply(windEst[estimationSuccessful], '[[', 'covar') nonNullCovar = rep(F, n) nonNullCovar[estimationSuccessful] <- !unlist(lapply(covarList, is.null)) res[estimationSuccessful & nonNullCovar, columnNamesWind[5:7]] <- matrix(unlist(covarList[nonNullCovar[estimationSuccessful]]), ncol = 4, byrow = T)[, c(1, 4, 2)] nonNaNCovar = rep(F, n) nonNaNCovar[estimationSuccessful & nonNullCovar] <- !unlist(lapply(lapply(covarList[nonNullCovar], is.nan), any)) res[estimationSuccessful & nonNullCovar & nonNaNCovar, columnNamesWind[8]] <- unlist(lapply(covarList[nonNullCovar[estimationSuccessful] & nonNaNCovar[estimationSuccessful]], eigen, only.values = T))[c(T, F)] if(!is.null(referenceGroundSpeed)) { grndS<-do.call("rbind",lapply(data,'[', referenceGroundSpeed, T)) res[, columnNamesWind[9:10]]<- grndS-res[,c("windX","windY")] } rownames(res)<-names(data) return(res) })
context("test-latest.R") test_that("latest works", { skip_on_cran() skip_on_travis() skip_on_appveyor() cur <- fixer_latest(symbols = c("USD", "GBP", "JPY")) expect_equal(length(cur), 2) expect_true("USD" %in% cur$name) expect_true(tibble::is.tibble(cur)) expect_equal(nrow(cur), 3) })
context("search_pv") eps <- get_endpoints() test_that("API returns expected df names for all endpoints", { skip_on_cran() skip_on_ci() z <- vapply(eps, function(x) { Sys.sleep(3) j <- search_pv("{\"patent_number\":\"5116621\"}", endpoint = x) names(j[[1]]) }, FUN.VALUE = character(1), USE.NAMES = FALSE) expect_equal(eps, z) }) test_that("DSL-based query returns expected results", { skip_on_cran() skip_on_ci() query <- with_qfuns( and( or( gte(patent_date = "2014-01-01"), lte(patent_date = "1978-01-01") ), text_phrase(patent_abstract = c("computer program", "dog leash")) ) ) out <- search_pv(query) expect_gt(out$query_results$total_patent_count, 1000) }) test_that("search_pv can pull all fields for all endpoints except locations", { skip_on_cran() skip_on_ci() eps_no_loc <- eps[eps != "locations"] z <- lapply(eps_no_loc, function(x) { Sys.sleep(3) search_pv( "{\"patent_number\":\"5116621\"}", endpoint = x, fields = get_fields(x) ) }) expect_true(TRUE) }) test_that("search_pv can return subent_cnts", { skip_on_cran() skip_on_ci() out_spv <- search_pv( "{\"patent_number\":\"5116621\"}", fields = get_fields("patents", c("patents", "inventors")), subent_cnts = TRUE ) expect_true(length(out_spv$query_results) == 2) }) test_that("Sort option works as expected", { skip_on_cran() skip_on_ci() out_spv <- search_pv( qry_funs$gt(patent_date = "2015-01-01"), fields = get_fields("inventors", c("inventors")), endpoint = "inventors", sort = c("inventor_lastknown_latitude" = "desc"), per_page = 100 ) lat <- as.numeric(out_spv$data$inventors$inventor_lastknown_latitude) expect_true(lat[1] >= lat[100]) }) test_that("search_pv can pull all fields by group for the locations endpoint", { skip_on_cran() skip_on_ci() groups <- unique(fieldsdf[fieldsdf$endpoint == "locations", "group"]) z <- lapply(groups, function(x) { Sys.sleep(3) search_pv( '{"patent_number":"5116621"}', endpoint = "inventors", fields = get_fields("inventors", x) ) }) expect_true(TRUE) }) test_that("search_pv properly encodes queries", { skip_on_cran() skip_on_ci() result <- search_pv( query = with_qfuns( begins(assignee_organization = "Johnson & Johnson") ) ) expect_true(TRUE) })
expected <- eval(parse(text="c(FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, TRUE)")); test(id=0, code={ argv <- eval(parse(text="list(c(-Inf, 2.17292368994844e-311, 4.34584737989688e-311, 8.69169475979376e-311, 1.73833895195875e-310, 3.4766779039175e-310, 6.953355807835e-310, 1.390671161567e-309, 2.781342323134e-309, 5.562684646268e-309, 1.1125369292536e-308, 2.2250738585072e-308, 4.4501477170144e-308, 8.90029543402881e-308, 1.78005908680576e-307, 2.2250738585072e-303, 2.2250738585072e-298, 1.79769313486232e+298, 1.79769313486232e+303, 2.24711641857789e+307, 4.49423283715579e+307, 8.98846567431158e+307, 1.79769313486232e+308, Inf, Inf, NaN, NA))")); do.call(`is.na`, argv); }, o=expected);
hqa <- function(base, conteos=FALSE, units=NULL, durat=FALSE, periodos=NULL, pesos = NULL, ilustra=NULL, ilustc = NULL,ilust.type = NULL, nfact=5, nfcl=5, k.clust=NULL, combinat=TRUE, vector, tableclass=FALSE, clasifica=TRUE) { if(!is.matrix(base) & !is.data.frame(base)) { stop("base is not a matrix nor a dataframe\n") } if(is.data.frame(base) & prod(dim(base))==0) { stop("base is an empty data frame\n") } if(durat==TRUE) { datos <- duration(base, units) base <- datos } if(conteos==TRUE) { conteos <- durationtotableA(base, periodos) base <- data.frame(conteos$Conteo) } if(combinat==TRUE) { AAC <- combination(base, vector, ilustra, ilustc, ilust.type, pesos) tabla <- AAC$global.pca$ind$coord nval.propios <- nrow(AAC$eig) val.propios <- AAC$eig[,1] dif.valores <- c(rep(0, nval.propios-1)) for (i in 1:nval.propios-1) { dif.valores[i] <- abs(val.propios[i+1]-val.propios[i])} nfcl <- which(dif.valores==max(dif.valores)) } else { AAC <- fuzzy(base, vector, nfact, pesos) nfcl <- dim(AAC$li)[2] tabla <- AAC$li } if(clasifica==TRUE) { if(is.null(k.clust)) { coo <- tabla[, 1:nfcl] W <- dist(coo)^2/nrow(coo)/2 HW <- hclust(W,method="ward.D") coord <- as.vector(HW$height) dif.saltos <- c(rep(0, length(coord)-1)) for (i in 1:length(coord)-1) dif.saltos[i] <- abs(coord[i+1]-coord[i]) k.clust <- which(dif.saltos==max(dif.saltos)) k.clust <- length(coord) - k.clust + 1 } if(tableclass==TRUE) { tablaclases <- tableclass(tabla, nfcl, k.clust) nfcl <- tablaclases[which(tablaclases[,2]== min(tablaclases[,2])), 1] } clasificar <- classification(tabla, k.clust, nfcl,pesos) if (!is.null(ilustra)) Ilust <- cluster.carac(ilustra, clasificar$cluster, tipo.v="n") else Ilust <- NULL Active <- cluster.carac(base, clasificar$cluster, tipo.v="co") } else { clasificar <- NULL Active <- NULL Ilust <- NULL } return(list(HQA=AAC, Clases=clasificar, Active = Active, Ilust = Ilust)) }
opal.sql <- function(opal, query, project = NULL, id.name = '_id') { if (is.na(opal$version) || opal.version_compare(opal,"4.1")<0) { stop("SQL queries are not available for opal ", opal$version, " (4.1.0 or higher is required)") } if (is.null(project)) { location <- paste0(c('datasources', '_rsql'), collapse = '/') } else { location <- paste0(c('datasource', project, '_rsql'), collapse = '/') } out <- tempfile() r <- httr::POST( .url(opal, location), body = list( query = query, id = id.name ), encode = "form", write_disk(out, overwrite = TRUE), accept("application/x-rdata"), config=opal$config, handle=opal$handle, .verbose() ) if (r$status>=300) { .handleError(opal, r) } res <- readRDS(out) unlink(out) res } opal.sql_history <- function(opal, project = NULL, offset = 0, limit = 100, user = NULL, df = TRUE) { if (is.na(opal$version) || opal.version_compare(opal,"4.1")<0) { stop("SQL queries are not available for opal ", opal$version, " (4.1.0 or higher is required)") } q <- list(offset = offset, limit = limit) if (!is.null(project)) if (is.na(project)) q$datasource <- '*' else q$datasource <- project subject <- "_current" if (!is.null(user)) if (is.na(user)) subject <- '*' else if (user != opal$username) subject <- user res <- opal.get(opal, "system", "subject-profile", subject, "sql-history", query = q) if (df) { if (length(res)>0) { user <- replicate(length(res), opal$username) query <- replicate(length(res), NA) project <- replicate(length(res), NA) error <- replicate(length(res), NA) start <- replicate(length(res), NA) end <- replicate(length(res), NA) elapsed <- replicate(length(res), NA) for (i in 1:length(res)) { item <- res[[i]] user[[i]] <- item$user query[[i]] <- item$query if (!is.null(item$datasource)) project[[i]] <- item$datasource if (!is.null(item$error)) error[[i]] <- item$error start[[i]] <- item$start/1000 end[[i]] <- item$end/1000 elapsed[[i]] <- item$end - item$start } data.frame(user, query, project, error, start = as.POSIXct(start, origin='1970-01-01'), end = as.POSIXct(end, origin='1970-01-01'), elapsed) } else { data.frame() } } else { res } }
getTeamBattingDetails <- function(team,dir=".",save=FALSE,odir="."){ overs=batsman=NULL a <- paste(dir,"/","*",team,"*",sep="") fl <- Sys.glob(a) battingDetails <- NULL for(i in 1:length(fl)){ tryCatch({ load(fl[i]) match <- overs details <- teamBattingPerfDetails(match,team,includeInfo=TRUE) if(!is.null(dim(details))){ battingDetails <- rbind(battingDetails,details) }else { next } }, error=function(e){cat("ERROR :",conditionMessage(e), "\n")}) } if(save==TRUE){ fl <-paste(odir,"/",team,"-BattingDetails.RData",sep="") save(battingDetails,file=fl) } battingDetails <- arrange(battingDetails,batsman,date) battingDetails }
link.im <- function(data,r,char=NULL,oneside=NULL,twoside=NULL,trace=NULL,...){ if(is.null(twoside))twoside=TRUE if(is.null(oneside))oneside=TRUE if(is.null(trace))trace = FALSE RES <- linkim(data,r,char,oneside,twoside,trace) return(RES) } linkim <- function(data,r,char=NULL,oneside=NULL,twoside=NULL,trace=NULL,...){ if(is.null(twoside))twoside=TRUE if(is.null(oneside))oneside=TRUE if(is.null(trace))trace = FALSE if(is.null(char)){ cn <- ncol(data) rn <- nrow(data) char <- NULL for(i in 1:cn) char <- union(data[,i],char) id.na = which(is.na(char)) if(length(id.na)==1)char <- sort(char[-id.na]) } if(length(char)==2){ cn <- ncol(data) rn <- nrow(data) homo <- TRUE if(!(setequal(c(0,1),char))) data <- matrix(as.numeric(greplace(data,char,c(0,1))),rn,cn) } if(length(char)==3){ cn <- ncol(data) rn <- nrow(data) homo <- FALSE if(!(setequal(c(0,1,2),char))) data <- matrix(as.numeric(greplace(data,char,c(0,1,2))),rn,cn) } if(length(char)!=2 & length(char)!=3)stop("The marker data should be Homozygous(2 levels) or Heterozygous(3 levels)") if(max(r)>0.5)distance <- TRUE else distance <- FALSE dataNew = data if(twoside){ for(i in 1:nrow(data)){ if(trace)cat("individual",i,"\n") id1 = which(is.na(data[i,])) id2 = which(!is.na(data[i,])) if(length(id1)>0) { a = length(id1) NoStop = T while(a>0 & NoStop){ if(id1[1] < id2[1]){ id1 = id1[-1] a = length(id1) } if(a>0) if(id1[1] > id2[1]) NoStop = F } } if(length(id1)>0) { a = length(id1) b = length(id2) NoStop = T while(a>0 & NoStop){ if(id1[a] > id2[b]){ id1 = id1[-a] a = length(id1) } if(a>0) if(id1[a] < id2[b]) NoStop = F } } while(length(id1)>0){ Aid = id1[1]-1 id2del = which(id2 < id1[1]) id2 = id2[-id2del] Bid = id2[1] id1del = which(id1 < id2[1]) id1 = id1[-id1del] for(j in (Aid+1):(Bid-1)){ vec = c(Aid,j,Bid) if(distance){ r0 = r[vec] r1 = r0[-1]-r0[-3] r2 = 0.5*(1-exp(-2*0.01*r1)) } if(!distance)r2=r[vec[-1]] if(homo){ ComLoci = gcomb(data,index=vec,marker=c(0,1)) comb = numeric() for(ii in 1:4)comb[ii] = ComLoci[ii,4]+ComLoci[9-ii,4] id = which(comb==max(comb)) LociOrder1 = t(as.matrix(ComLoci[id,1:3])) LociOrder2 = t(as.matrix(ComLoci[9-id,1:3])) Freq = freqmat(r2[1],r2[2],twoside=TRUE,cross=TRUE) ConFreq = Uu(Freq[2]) if(data[i,vec[1]]==LociOrder1[1]){ if(data[i,vec[3]]==LociOrder1[3])p=ConFreq[1,1] if(data[i,vec[3]]!=LociOrder1[3])p=ConFreq[2,1] } if(data[i,vec[1]]!=LociOrder1[1]){ if(data[i,vec[3]]==LociOrder1[3])p=ConFreq[3,1] if(data[i,vec[3]]!=LociOrder1[3])p=ConFreq[4,1] } u = runif(1) if(u<=p)dataNew[i,vec[2]]=LociOrder1[2] if(u>p)dataNew[i,vec[2]]=LociOrder2[2] } if(!homo){ ComLoci = gcomb(data,index=vec,marker=c(0,1,2)) comb = numeric() g3 <- c(1,3,7,9) for(ii in 1:4)comb[ii] = ComLoci[g3[ii],4]+ComLoci[28-g3[ii],4] id = which(comb==max(comb)) LociOrder1 = t(as.matrix(ComLoci[g3[id],1:3])) LociOrder3 = t(as.matrix(ComLoci[28-g3[id],1:3])) LociOrder2 <- t(as.matrix(ComLoci[14,1:3])) Freq = freqmat(r2[1],r2[2],twoside=TRUE,cross=TRUE,homo=homo) ConFreq = Uu(Freq[2]) if(data[i,vec[1]]==LociOrder1[1]){ if(data[i,vec[3]]==LociOrder1[3]){ p1=ConFreq[1,1] p2=ConFreq[1,2] } if(data[i,vec[3]]==LociOrder2[3]){ p1=ConFreq[2,1] p2=ConFreq[2,2] } if(data[i,vec[3]]==LociOrder3[3]){ p1=ConFreq[3,1] p2=ConFreq[3,2] } } if(data[i,vec[1]]==LociOrder2[1]){ if(data[i,vec[3]]==LociOrder1[3]){ p1=ConFreq[4,1] p2=ConFreq[4,2] } if(data[i,vec[3]]==LociOrder2[3]){ p1=ConFreq[5,1] p2=ConFreq[5,2] } if(data[i,vec[3]]==LociOrder3[3]){ p1=ConFreq[6,1] p2=ConFreq[6,2] } } if(data[i,vec[1]]==LociOrder3[1]){ if(data[i,vec[3]]==LociOrder1[3]){ p1=ConFreq[7,1] p2=ConFreq[7,2] } if(data[i,vec[3]]==LociOrder2[3]){ p1=ConFreq[8,1] p2=ConFreq[8,2] } if(data[i,vec[3]]==LociOrder3[3]){ p1=ConFreq[9,1] p2=ConFreq[9,2] } } u = runif(1) if(u<=p1)dataNew[i,vec[2]]=LociOrder1[2] if(u>p1 & u<=(p1+p2))dataNew[i,vec[2]]=LociOrder2[2] if(u>(p1+p2))dataNew[i,vec[2]]=LociOrder3[2] } } } } data = NULL } if(oneside){ data = dataNew for(i in 1:nrow(data)){ if(trace)cat("individual",i,"\n") id1 = which(is.na(data[i,])) id2 = which(!is.na(data[i,])) if(length(id1)>0){ if(id2[1]>id1[1]){ for(j in 1:(id2[1]-1)){ vec=c(j,id2[1]) if(distance){ r0 = r[vec] r2 = r0[2]-r0[1] r2 = 0.5*(1-exp(-2*0.01*r2)) } if(!distance)r2=r[vec[2]] if(homo){ ComLoci = gcomb(data,index=vec,marker=c(0,1)) comb = numeric() for(ii in 1:2)comb[ii] = ComLoci[ii,3]+ComLoci[5-ii,3] id = which(comb==max(comb)) LociOrder1 = t(as.matrix(ComLoci[id,1:2])) LociOrder2 = t(as.matrix(ComLoci[5-id,1:2])) if(data[i,vec[2]]==LociOrder1[2]) p = 1-r2 if(data[i,vec[2]]!=LociOrder1[2]) p = r2 u = runif(1) if(u<=p)dataNew[i,vec[1]]=LociOrder1[1] if(u>p)dataNew[i,vec[1]]=LociOrder2[1] } if(!homo){ ComLoci = gcomb(data,index=vec,marker=c(0,1,2)) comb = numeric() g3 <- c(1,3) for(ii in 1:2)comb[ii] = ComLoci[g3[ii],3]+ComLoci[10-g3[ii],3] id = which(comb==max(comb)) LociOrder1 = t(as.matrix(ComLoci[g3[id],1:2])) LociOrder3 = t(as.matrix(ComLoci[10-g3[id],1:2])) LociOrder2 = t(as.matrix(ComLoci[5,1:2])) Freq = freqmat(r2,r2,oneside=TRUE,homo=homo) ConFreq = Uu(Freq[2]) if(data[i,vec[2]]==LociOrder1[2]){ p1 = ConFreq[4,1] p2 = ConFreq[4,2] } if(data[i,vec[2]]==LociOrder2[2]){ p1 = ConFreq[5,1] p2 = ConFreq[5,2] } if(data[i,vec[2]]==LociOrder3[2]){ p1 = ConFreq[6,1] p2 = ConFreq[6,2] } u = runif(1) if(u<=p1)dataNew[i,vec[1]]=LociOrder1[1] if(u>p1 & u<=(p1+p2))dataNew[i,vec[1]]=LociOrder2[1] if(u>(p1+p2))dataNew[i,vec[1]]=LociOrder3[1] } } id1del = which(id1 < id2[1]) id1 = id1[-id1del] } if(length(id1)>0){ a = length(id1) for(j in id1[1]:id1[a]){ vec = c((id1[1]-1),j) if(distance){ r0 = r[vec] r1 = r0[2]-r0[1] r1 = 0.5*(1-exp(-2*0.01*r1)) } if(!distance)r1=r[vec[2]] if(homo){ ComLoci = gcomb(data,index=vec,marker=c(0,1)) comb = numeric() for(ii in 1:2)comb[ii] = ComLoci[ii,3]+ComLoci[5-ii,3] id = which(comb==max(comb)) LociOrder1 = t(as.matrix(ComLoci[id,1:2])) LociOrder2 = t(as.matrix(ComLoci[5-id,1:2])) if(data[i,vec[1]]==LociOrder1[1]) p = 1-r1 if(data[i,vec[1]]!=LociOrder1[1]) p = r1 u = runif(1) if(u<=p)dataNew[i,vec[2]]=LociOrder1[2] if(u>p)dataNew[i,vec[2]]=LociOrder2[2] } if(!homo){ ComLoci = gcomb(data,index=vec,marker=c(0,1,2)) comb = numeric() g3 <- c(1,3) for(ii in 1:2)comb[ii] = ComLoci[g3[ii],3]+ComLoci[10-g3[ii],3] id = which(comb==max(comb)) LociOrder1 = t(as.matrix(ComLoci[g3[id],1:2])) LociOrder3 = t(as.matrix(ComLoci[10-g3[id],1:2])) LociOrder2 = t(as.matrix(ComLoci[5,1:2])) Freq = freqmat(r1,r1,oneside=TRUE,homo=homo) ConFreq = Uu(Freq[2]) if(data[i,vec[1]]==LociOrder1[1]){ p1 = ConFreq[1,1] p2 = ConFreq[1,2] } if(data[i,vec[1]]==LociOrder2[1]){ p1 = ConFreq[2,1] p2 = ConFreq[2,2] } if(data[i,vec[1]]==LociOrder3[1]){ p1 = ConFreq[3,1] p2 = ConFreq[3,2] } u = runif(1) if(u<=p1)dataNew[i,vec[2]]=LociOrder1[2] if(u>p1 & u<=(p1+p2))dataNew[i,vec[2]]=LociOrder2[2] if(u>(p1+p2))dataNew[i,vec[2]]=LociOrder3[2] } } } } } data = NULL } if(length(char)==2){ if(!(setequal(c(0,1),char))){ cn <- ncol(dataNew) rn <- nrow(dataNew) dataNew <- matrix(as.numeric(greplace(dataNew,c(0,1)),char),rn,cn) } } if(length(char)==3){ if(!(setequal(c(0,1,2),char))){ cn <- ncol(dataNew) rn <- nrow(dataNew) dataNew <- matrix(as.numeric(greplace(dataNew,c(0,1,2),char)),rn,cn) } } return(dataNew) }
lambda_two_compare <- function(lmd, cnames, group_name = "Latino", cand1or2 = 1) { if (cand1or2 == 2) { cnames <- rev(cnames) p_cand_over_cand <- lmd[, cnames[2]] - lmd[, cnames[1]] } n <- nrow(lmd) labels <- sub(".*\\.", "", cnames) p_cand_over_cand <- lmd[, cnames[1]] - lmd[, cnames[2]] graphics::par(mfrow = c(1, 2)) graphics::hist(lmd[, cnames[1]] - lmd[, cnames[2]], main = paste(labels[1], " - ", labels[2], sep = ""), xlab = "Posterior Distribution" ) dens <- stats::density(p_cand_over_cand) plot(dens, main = paste("Difference in Proportion ", group_name, "\nVote for ", labels[1], " and ", labels[2], sep = "" ), xlab = "Difference in Posterior Distribution Sampled from " ) graphics::points(p_cand_over_cand, rep(0, length(p_cand_over_cand)), pch = 3) graphics::abline(v = 0, col = "grey", lty = 2) c1g10 <- length(which(p_cand_over_cand > .10)) / n c1g5 <- length(which(p_cand_over_cand > .05)) / n c1g0 <- length(which(p_cand_over_cand > 0)) / n med <- stats::median(p_cand_over_cand) mean <- mean(p_cand_over_cand) df <- data.frame(c1g10, c1g5, c1g0, round(med, 3), round(mean, 3)) colnames(df) <- c( "Prob>10%", "Prob>5%", "Prob>0", "Dist. Median", "Dist. Mean" ) return(df) }
hl <- half_life(0.01) test_that("half_life returns a single numeric value", { expect_length(hl, 1L) expect_equal(class(hl), "numeric") }) test_that("half_life throw an error when lambda is not numeric & > 1", { expect_error(half_life("1")) expect_error(half_life(c(0.01, 0.01))) })
instdir <- commandArgs()[6] target_tarball <- file.path(instdir, "libglib.tar.gz") target_dir <- file.path(instdir, "macos") if (getRversion() < "3.3.0") setInternet2() download.file( "https://github.com/PolMine/libglib/archive/master.tar.gz", target_tarball, method = "libcurl", quiet = FALSE ) dir.create(target_dir, showWarnings = FALSE) untar(target_tarball, exdir = target_dir) unlink(target_tarball) pkgconfig_file <- file.path(target_dir, "libglib-master/pkgconfig/glib-2.0.pc") pc <- readLines(pkgconfig_file) pc[1] <- sprintf("prefix=%s/macos/libglib-master", getwd()) pc[3] <- sprintf("libdir=${exec_prefix}/lib/%s", Sys.info()[["machine"]]) gettext_libdir <- "/usr/local/opt/gettext/lib" if (!dir.exists(gettext_libdir)){ libs_line <- grep("^Libs:\\s+", pc) pc[libs_line] <- gsub(sprintf("-L%s", gettext_libdir), "", pc[libs_line]) } writeLines(text = pc, con = pkgconfig_file)
test_that("use_cran_comments() requires a package", { create_local_project() expect_usethis_error(use_cran_comments(), "not an R package") }) test_that("use_cran_comments() creates and ignores the promised file", { create_local_package() use_cran_comments() expect_proj_file("cran-comments.md") expect_true(is_build_ignored("^cran-comments\\.md$")) })
"BRSoccer2014"
RoundViaDummy_Version_0.3.0 <- function(data, freqVar, formula = NULL, roundBase = 3, singleRandom = FALSE, crossTable=TRUE, total = "Total", maxIterRows = 1000, maxIter = 1E7, x = NULL, hierarchies = NULL, Version = "tull", ...) { cat("[") flush.console() if (is.null(x) & is.null(formula) & is.null(hierarchies)) { freqVarName <- names(data[1, freqVar, drop = FALSE]) hierarchies <- FindHierarchies(data[, !(names(data) %in% freqVarName)]) } if (!is.null(hierarchies) & !is.null(formula)) stop("formula combined with hierarchies is not implemented") if (!is.null(hierarchies) & !is.null(x)) warning("hierarchies ignored when x is supplied") if (!is.null(hierarchies) & is.null(x)) { x <- Hierarchies2ModelMatrix(data = data, hierarchies = hierarchies, crossTable = crossTable, total = total, ...) crossTable <- x$crossTable x <- x$modelMatrix } if(!is.null(x) & !is.null(formula)) warning("formula ignored when x is supplied") if(is.null(x)){ if(length(total)>1){ total <- total[1] warning("Only first element of total is used when formula input.") } previous_na_action <- options('na.action') options(na.action='na.pass') cat("{O") flush.console() if(crossTable){ formulaSums <- FormulaSums(formula = as.formula(formula), data = data, crossTable=TRUE,total=total,dropResponse=TRUE) x <- formulaSums$modelMatrix crossTab <- formulaSums$crossTable formulaSums <- NULL } else x <- ModelMatrix_Old_Version(as.formula(formula), data = data, sparse = TRUE) cat("}") flush.console() options(na.action=previous_na_action$na.action) } else { if(!is.logical(crossTable)) crossTab <- crossTable crossTable <- TRUE } if(anyNA(x)) x[is.na(x)] =0 yInner <- data[, freqVar] yPublish <- Matrix::crossprod(x, yInner)[, 1, drop = TRUE] a <- PlsRoundSparse_Version_0.3.0(x = x, roundBase = roundBase, yInner = yInner, yPublish = yPublish, singleRandom = singleRandom,maxIter=maxIter, maxIterRows=maxIterRows) cat("]\n") flush.console() if(crossTable) return(list(yInner = IntegerCbind(original = yInner, rounded = a[[1]]), yPublish = cbind(original = yPublish, rounded = a[[2]][, 1, drop = TRUE]), crossTable = crossTab)) list(yInner = IntegerCbind(original = yInner, rounded = a[[1]]), yPublish = cbind(original = yPublish, rounded = a[[2]][, 1, drop = TRUE])) } PlsRoundSparse_Version_0.3.0 <- function(x, roundBase = 3, yInner, yPublish = Matrix::crossprod(x, yInner)[, 1, drop = TRUE], singleRandom = FALSE, maxIter = 1E6, maxIterRows = 1000) { yInnerExact <- yInner yPublishExact <- yPublish i = 0 while (i<maxIter) { i = i+1 if (i == 1) a <- PlsRoundSparseSingle_Version_0.3.0(x = x, roundBase = roundBase, yInner = yInner, yPublish = yPublish, singleRandom = singleRandom, yInnerExact = yInnerExact, yPublishExact = yPublishExact, maxIterRows=maxIterRows) else a <- PlsRoundSparseSingle_Version_0.3.0(x = x, roundBase = roundBase, yInner = a[[1]], yPublish = a[[2]][, 1, drop = TRUE], singleRandom = singleRandom, yInnerExact = yInnerExact, yPublishExact = yPublishExact, maxIterRows=maxIterRows) suppRoundPublish <- a[[2]] < roundBase & a[[2]] > 0 if (!any(suppRoundPublish)) return(a) } stop("Iteration limit exceeded") } PlsRoundSparseSingle_Version_0.3.0 <- function(x,roundBase=3, yInner, yPublish = Matrix::crossprod(x,yInner)[,1,drop=TRUE], singleRandom = FALSE, suppPublish = yPublish < roundBase & yPublish > 0, yInnerExact = yInner, yPublishExact = yPublish, maxIterRows = 1000) { Pls1RoundHere <- get0("Pls1RoundFromUser", ifnotfound = Pls1Round_Version_0.3.0) roundBase = as.integer(roundBase) suppInput <- yInner < roundBase & yInner > 0 supRows <- Matrix::rowSums(x[, suppPublish, drop = FALSE]) > 0 & suppInput printInc <- TRUE if(!singleRandom) if(sum(supRows)>maxIterRows){ randInd = sample.int(sum(supRows),maxIterRows) supInds = which(supRows) supRows[supRows] = FALSE supRows[supInds[randInd]] = TRUE printInc <- FALSE {cat(" } bSupA <- x[supRows, , drop = FALSE] ySupp <- yInner[supRows] colSumsbSupA <- Matrix::colSums(bSupA) cols2 <- (colSumsbSupA > 0) & ((NROW(bSupA)-colSumsbSupA) > 0) bSup <- bSupA[, cols2, drop = FALSE] yPublishCorrection <- yPublishExact[cols2] - yPublish[cols2] yPls <- t(as.matrix(Matrix::crossprod(bSup, Matrix(ySupp, ncol = 1)))) correction <- TRUE if (correction) { yPls <- yPls + yPublishCorrection nR <- round((sum(ySupp) + sum(yInnerExact) - sum(yInner))/roundBase) } else nR <- round(sum(ySupp)/roundBase) if(length(yPls)==0) singleRandom = TRUE if (nR == 0 | singleRandom) { yR <- ySupp * 0L if (singleRandom) yR[sample.int(length(ySupp), nR)] <- roundBase } else yR <- Pls1RoundHere(bSup, ySupp, roundBase = roundBase, yPls = yPls, nR = nR, printInc=printInc) roundInner <- yInner roundInner[supRows] <- yR roundPublish <- yPublish + Matrix::crossprod(bSupA, yR - ySupp) list(roundInner = roundInner, roundPublish = roundPublish) } Pls1Round_Version_0.3.0 <- function(x, y, roundBase = 3L, removeOneCols = FALSE, printInc = TRUE, yPls = NULL, nR = NULL, random = TRUE,dgT=TRUE, wD=TRUE) { if(printInc) {cat("-"); flush.console()} if (is.matrix(x)) x <- Matrix(x) if (removeOneCols) x <- x[, (colSums(x) > 1), drop = FALSE] if (is.null(yPls)) yPls <- t(as.matrix(Matrix::crossprod(x, Matrix(y, ncol = 1)))) yR <- rep(0L, length(y)) if (random) ind <- as.list(sample.int(length(y))) else ind <- as.list(seq_len(length(y))) indInv = vector("list",0) if (is.null(nR)) nR <- round(sum(y)/roundBase) if(nR==0) return(yR) if(nR==length(y)) return(rep(roundBase , length(y))) if(printInc) {cat("*"); flush.console()} if(dgT){ dgTBase <- as(roundBase * Matrix::tcrossprod(x),"dgTMatrix") dgTi <- dgTBase@i +1L dgTj <- dgTBase@j +1L dgTx <- dgTBase@x rm(dgTBase) if(wD){ dd = diff(dgTj) if(length(dd)>0){ if(max(dd)>1 | min(dd)<0){ warning("Not required sorting in dgTMatrix. Manual sorting will be done.") ord <- order(dgTj) dgTj <- dgTj[ord] dgTi <- dgTi[ord] dgTx <- dgTx[ord] dd = diff(dgTj) } wd <- c(1L,1L+which(dd==1L),length(dgTj)+1L) } else wd <- c(1L,2L) GetInd <- function(i,x){matlabColon(x[i],x[i+1L]-1L)} } } else roundBasecrossprod <- as.matrix(roundBase * Matrix::tcrossprod(x)) if(printInc) {cat("*"); flush.console()} for (i in 1:nR) { if (printInc) if (i%%max(1, round(nR/10)) == 0) { cat(".") flush.console() } if (i > 1){ ii = GetInd(ik,wd) ix = dgTi[ii] coe[ix] <- coe[ix] - dgTx[ii] } else coe <- Matrix::tcrossprod(x, yPls) k <- which.max(coe[as.integer(ind)]) ik <- ind[[k]] yR[ik] <- roundBase indInv <- c(ind[k],indInv) ind[k] <- NULL } absminmaxA = Inf absminmaxB = Inf for (i in 1:(nR+100)) { if (printInc) if (i%%max(1, round(nR/10)) == 0) { cat(":") flush.console() } ii = GetInd(ik,wd) ix = dgTi[ii] coe[ix] <- coe[ix] - dgTx[ii] k <- which.min(coe[as.integer(indInv)]) if(k==1){ if(printInc) {cat("="); flush.console()} return(yR) } ik <- indInv[[k]] yR[ik] <- 0 ind <- c(indInv[k],ind) indInv[k] <- NULL ii = GetInd(ik,wd) ix = dgTi[ii] coe[ix] <- coe[ix] + dgTx[ii] k <- which.max(coe[as.integer(ind)]) ik <- ind[[k]] yR[ik] <- roundBase indInv <- c(ind[k],indInv) ind[k] <- NULL } if(printInc) {cat("="); flush.console()} yR } ModelMatrix_Old_Version <- function(formula, data = NULL, mf = model.frame(formula, data = data), allFactor = TRUE, sparse = FALSE, formulaSums=FALSE, printInc = FALSE) { if(formulaSums) return(formula = FormulaSums(formula, data = data, makeNames=TRUE, crossTable=FALSE, total = "Total", printInc=printInc, dropResponse = TRUE)) for (i in 1:length(mf)) { if (allFactor) mf[[i]] <- as.factor(mf[[i]]) if (is.factor(mf[[i]])) mf[[i]] <- AddEmptyLevel(mf[[i]]) } if (sparse) return(sparse.model.matrix(formula, data = mf)) model.matrix(formula, data = mf) } AddEmptyLevel <- function(x) factor(x, levels = c("tullnull", levels(x)))
elementwise <- function(x, fun, ...) { chunks <- chunk(x) result <- NULL for (c in chunks) { d <- as_rvec(lget(x, range = c)) r <- fun(d, ...) r <- as_lvec(r) if (is.null(result)) { result <- r length(result) <- length(x) } else { if (lvec_type(r) == 'character' && strlen(r) > strlen(result)) { warning("Changing maximum string length") strlen(result) <- strlen(r) } lset(result, range = c, r) } } result }
plot.pocrepath<-function(x, which=1:3, cex=.5, lwd=1, ...) { if( any(which==1) ) plotbetanzbeta(ppojb=x, cex=.5, lwd=1, ...) if( any(which==2) ) plotbetarsq(ppojb=x, cex=.5, lwd=1, ...) if( any(which==3) ) plotrsqnzbeta(ppojb=x, cex=.5, lwd=1, ...) } plotbetanzbeta<-function(ppojb, cex=.5, lwd=1, ...) { eps <- .Machine$double.eps nlambda <- length(ppojb) temp <- NULL for(i in 1:nlambda){ temp <- c(temp,ppojb[[i]]$lambda) } lambda <- temp p <- dim(ppojb[[1]]$beta)[1] ny <- dim(ppojb[[1]]$beta)[2] nzbeta <-NULL plot <- ifelse(ny==1,1,2) pl<-list() ip<-list() betanzbeta<-function(k){ beta<-matrix(0,p,nlambda) for(j in 1:nlambda){ beta[,j] <- ppojb[[j]]$beta[,k] nzbeta[j] <- sum(abs(ppojb[[j]]$beta[,k])>eps) } beta_C <- matrix(t(beta),dim(beta)[1]*dim(beta)[2],1) lambda_C <- rep(lambda,dim(beta)[1]) group_C <- seq(1,dim(beta)[1]) group_C <- rep(group_C,each=dim(beta)[2]) group_C <- as.character(group_C) plotdata <- data.frame(lambda_C,beta_C,group_C) pl<-ggplot(...) + geom_line(aes(x=lambda_C,y=beta_C,group=group_C),linetype = "dashed",color=group_C,size=lwd) + geom_point(aes(x=lambda_C,y=beta_C,group=group_C),color=group_C,shape=4,size=cex) + geom_line(aes(x=lambda,y=nzbeta/(max(nzbeta)/max(beta_C)),color=' geom_point(aes(x=lambda,y=nzbeta/(max(nzbeta)/max(beta_C)),color=' labs(y="beta",x="lambda",title=paste('Y_',k,sep="")) + scale_y_continuous(sec.axis=sec_axis(~.*max(nzbeta)/max(beta_C),name=" scale_color_discrete(name=NULL)+ theme(legend.justification=c(0,0),legend.position=c(0,0),plot.title = element_text(hjust=0.5)) return(pl) } pp<-lapply(1:ny,betanzbeta) for(i in 1:ny) print(pp[[i]]) } plotbetarsq<-function(ppojb, cex=.5, lwd=1, ...) { eps <- .Machine$double.eps nlambda <- length(ppojb) temp <- NULL for(i in 1:nlambda){ temp <- c(temp,ppojb[[i]]$lambda) } lambda <- temp p <- dim(ppojb[[1]]$beta)[1] ny <- dim(ppojb[[1]]$beta)[2] rsq <- NULL for(i in 1:nlambda){ rsq <- cbind(rsq,ppojb[[i]]$rsq) } rsq <- t(matrix(rsq,ny,nlambda)) plot <- ifelse(ny==1,1,2) betarsq<-function(k){ beta <- matrix(0,p,nlambda) for(j in 1:nlambda){ beta[,j] <- ppojb[[j]]$beta[,k] } temprsq <- (rsq[,k]) beta_C <- matrix(t(beta),dim(beta)[1]*dim(beta)[2],1) lambda_C <- rep(lambda,dim(beta)[1]) group_C <- seq(1,dim(beta)[1]) group_C <- rep(group_C,each=dim(beta)[2]) group_C <- as.character(group_C) plotdata <- data.frame(lambda_C,beta_C,group_C) pl<-ggplot(...) + geom_line(aes(x=lambda_C,y=beta_C,group=group_C),linetype = "dashed",color=group_C,size=lwd) + geom_point(aes(x=lambda_C,y=beta_C,group=group_C),color=group_C,shape=4,size=cex) + geom_line(aes(x=lambda,y=temprsq/(max(temprsq)/max(beta_C)),color='R^2'),size=lwd) + geom_point(aes(x=lambda,y=temprsq/(max(temprsq)/max(beta_C)),color='R^2'),size=cex) + labs(y = "beta", x = "lambda",title=paste('Y_', k,sep=""))+ scale_y_continuous(sec.axis = sec_axis(~.*max(temprsq)/max(beta_C),name="R^2"))+ scale_color_discrete(name=NULL)+ theme(legend.justification=c(0,0),legend.position=c(0,0),plot.title = element_text(hjust=0.5)) return(pl) } pp<-lapply(1:ny,betarsq) for(i in 1:ny) print(pp[[i]]) } plotrsqnzbeta<-function(ppojb, cex=.5, lwd=1, ...) { eps <- .Machine$double.eps nlambda <- length(ppojb) temp <- NULL for(i in 1:nlambda){ temp <- c(temp,ppojb[[i]]$lambda) } lambda <- temp p <- dim(ppojb[[1]]$beta)[1] ny <- dim(ppojb[[1]]$beta)[2] nzbeta <- NULL plot <- ifelse(ny==1,1,2) rsq <- NULL for(i in 1:nlambda){ rsq <- cbind(rsq,ppojb[[i]]$rsq) } rsq <- t(matrix(rsq,ny,nlambda)) rsqnzbeta<-function(k){ beta <- matrix(0,p,nlambda) for(j in 1:nlambda){ nzbeta[j] <- sum(abs(ppojb[[j]]$beta[,k])>eps) } temprsq <-rsq[,k] pl<-ggplot(...) + geom_line(aes(x=lambda,y=temprsq,color='R^2'),size=lwd) + geom_point(aes(x=lambda,y=temprsq,color='R^2'),size=cex) + labs(title=paste('Y_',k,sep=""),y="R^2",x="lambda") + geom_line(aes(x=lambda,y=nzbeta*max(temprsq)/max(nzbeta),color=' geom_point(aes(x=lambda,y=nzbeta*max(temprsq)/max(nzbeta),color=' scale_y_continuous(sec.axis = sec_axis(~.*max(nzbeta)/max(temprsq),name=" scale_color_discrete(name=NULL)+ theme(legend.justification=c(0,0),legend.position=c(0,0),plot.title=element_text(hjust=0.5)) return(pl) } pp<-lapply(1:ny,rsqnzbeta) for(i in 1:ny) print(pp[[i]]) }
context("gglegend") expect_print <- function(p, ...) { testthat::expect_silent(print(p)) } test_that("examples", { library(ggplot2) histPlot <- ggplot(diamonds, aes(price, fill = cut)) + geom_histogram(binwidth = 500) (right <- histPlot) (bottom <- histPlot + theme(legend.position = "bottom")) (top <- histPlot + theme(legend.position = "top")) (left <- histPlot + theme(legend.position = "left")) expect_legend <- function(p) { plotLegend <- grab_legend(p) expect_true(inherits(plotLegend, "gtable")) expect_true(inherits(plotLegend, "gTree")) expect_true(inherits(plotLegend, "grob")) expect_print(plotLegend) } expect_legend(right) expect_legend(bottom) expect_legend(top) expect_legend(left) }) test_that("legend", { expect_print( ggally_points(iris, ggplot2::aes(Sepal.Length, Sepal.Width, color = Species)) ) points_legend <- gglegend(ggally_points) expect_print(points_legend( iris, ggplot2::aes(Sepal.Length, Sepal.Width, color = Species) )) same_points_legend <- gglegend("points") expect_identical( attr(attr(points_legend, "fn"), "original_fn"), attr(attr(same_points_legend, "fn"), "original_fn") ) custom_legend <- wrap(gglegend("points"), size = 6) p <- custom_legend( iris, ggplot2::aes(Sepal.Length, Sepal.Width, color = Species) ) expect_print(p) expect_true(inherits(p, "gtable")) expect_true(inherits(p, "gTree")) expect_true(inherits(p, "grob")) expect_silent({ pm <- ggpairs( iris, 1:2, mapping = ggplot2::aes(color = Species), upper = list(continuous = gglegend("points")) ) print(pm) }) expect_silent({ pm <- ggpairs( iris, 1:2, mapping = ggplot2::aes(color = Species) ) pm[1, 2] <- points_legend(iris, ggplot2::aes(Sepal.Width, Sepal.Length, color = Species)) print(pm) }) }) test_that("plotNew", { points_legend <- gglegend(ggally_points) expect_print(points_legend( iris, ggplot2::aes(Sepal.Length, Sepal.Width, color = Species) )) expect_print(points_legend( iris, ggplot2::aes(Sepal.Length, Sepal.Width, color = Species) ), plotNew = TRUE) })
CART_R <- function(train, test, maxDepth=90){ alg <- RKEEL::R6_CART_R$new() alg$setParameters(train, test, maxDepth) return (alg) } R6_CART_R <- R6::R6Class("R6_CART_R", inherit = RegressionAlgorithm, public = list( maxDepth = 90, setParameters = function(train, test, maxDepth=90){ super$setParameters(train, test) self$maxDepth <- maxDepth } ), private = list( jarName = "Regr-CART.jar", algorithmName = "CART-R", algorithmString = "Regr-CART", getParametersText = function(){ text <- "" text <- paste0(text, "maxDepth = ", self$maxDepth, "\n") return(text) } ) )
CvM_test <- function(x, nullname, ...) UseMethod('CvM_test') CvM_test.fmx_QLMDe <- function(x, nullname = deparse1(substitute(x)), ...) { cvm.test(x = x@data, null = function(q) pfmx(q, dist = x), nullname = nullname, ...) } CvM_test.fitdist <- function(x, nullname = deparse1(substitute(x)), ...) { if (!length(x$data)) stop('Re-run ?fitdistrplus::fitdist with option `keepdata = TRUE`') cvm.test(x = x$data, null = function(q) do.call(paste0('p', x$distname), args = c(list(q = q), as.list.default(x$estimate))), nullname = nullname, ...) }
plot.copyright <- function(){ this.year <- strftime(Sys.time(), format = "%Y") copyr.message <- paste("Copyright \u00A9", this.year, "by Wegener Center") mtext(copyr.message, side=1, outer = TRUE, adj = 1, cex = 0.5) invisible() }
dr.pds <- function(TS, Qdr=0.2, WinSize=30) { doy <- as.factor(TS$doy) temp <- TS myVarThresh <- mqt(TS, Qdr, WinSize) for (i in 1:length(temp$Flow)) { temp$Thresh[i] <- myVarThresh[doy[i]] if (temp$Flow[i] < myVarThresh[doy[i]]) { temp$BelowThresh[i] <- TRUE} else {temp$BelowThresh[i]<-FALSE} } return(temp) }
isStrictlyNegativeNumberOrNaOrInfVector <- function(argument, default = NULL, stopIfNot = FALSE, n = NA, message = NULL, argumentName = NULL) { checkarg(argument, "N", default = default, stopIfNot = stopIfNot, nullAllowed = FALSE, n = NA, zeroAllowed = FALSE, negativeAllowed = TRUE, positiveAllowed = FALSE, nonIntegerAllowed = TRUE, naAllowed = TRUE, nanAllowed = FALSE, infAllowed = TRUE, message = message, argumentName = argumentName) }
UCestim = function(sys){ sys$table = NA sys$hidden$constPar = NA rubbish = c(sys$hidden$d_t, sys$hidden$innVariance, sys$hidden$objFunValue, TRUE, sys$outlier, sys$arma, sys$iter, sys$hidden$seas) rubbish2 = cbind(sys$grad, sys$hidden$constPar, sys$hidden$typePar) rubbish3 = cbind(sys$hidden$ns, sys$hidden$nPar) if (is.ts(sys$u)){ u = as.numeric(sys$u) } else { u = sys$u } nu = dim(u)[2] kInitial = dim(u)[1] if (nu == 2){ nu = length(sys$y) + sys$h kInitial = 0 } if (is.ts(sys$y)){ output = UCompC("estimate", as.numeric(sys$y), u, sys$model, sys$periods, sys$rhos, sys$h, sys$tTest, sys$criterion, sys$hidden$truePar, rubbish2, rubbish, sys$verbose, sys$stepwise, sys$hidden$estimOk, sys$p0, sys$v, sys$yFitV, sys$hidden$nonStationaryTerms, rubbish3, sys$hidden$harmonics, as.vector(sys$criteria), sys$hidden$cycleLimits, cbind(sys$hidden$beta, sys$hidden$betaV), sys$hidden$typeOutliers) fY = frequency(sys$y) sY = start(sys$y, frequency = fY) aux = ts(matrix(NA, length(sys$y) + 1, 1), sY, frequency = fY) if (length(output$yFor > 0)){ sys$yFor = ts(output$yFor, end(aux), frequency = fY) sys$yForV = ts(output$yForV, end(aux), frequency = fY) } } else { output = UCompC("estimate", sys$y, u, sys$model, sys$periods, sys$rhos, sys$h, sys$tTest, sys$criterion, sys$hidden$truePar, rubbish2, rubbish, sys$verbose, sys$stepwise, sys$hidden$estimOk, sys$p0, sys$v, sys$yFitV, sys$hidden$nonStationaryTerms, rubbish3, sys$hidden$harmonics, as.vector(sys$criteria), sys$hidden$cycleLimits, cbind(sys$hidden$beta, sys$hidden$betaV), sys$hidden$typeOutliers) if (length(output$yFor > 0)){ sys$yFor = output$yFor sys$yForV = output$yForV } } sys$hidden$truePar = output$p[, 1] sys$p0 = output$p0 if (grepl("?", sys$model, fixed = TRUE)){ sys$model = output$model } n = length(sys$hidden$truePar) rubbish2 = matrix(output$rubbish2, n, 3) sys$grad = rubbish2[, 1] sys$hidden$constPar = rubbish2[, 2] sys$hidden$typePar = rubbish2[, 3] sys$hidden$cycleLimits = matrix(output$cycleLimits, length(output$cycleLimits) / 2, 2) sys$hidden$d_t = output$rubbish[1] sys$hidden$innVariance = output$rubbish[2] sys$hidden$objFunValue = output$rubbish[3] sys$iter = output$rubbish[6] betas = matrix(output$betas, length(output$betas) / 2, 2) sys$hidden$beta = betas[, 1] sys$hidden$betaV = betas[, 2] sys$periods = output$periods sys$rhos = output$rhos sys$hidden$estimOk = output$estimOk sys$hidden$nonStationaryTerms = output$nonStationaryTerms rubbish3 = matrix(output$rubbish3, 6, 2) sys$hidden$ns = rubbish3[, 1] sys$hidden$nPar = rubbish3[, 2] sys$hidden$harmonics = output$harmonics criteria = output$criteria; sys$criteria = matrix(criteria, 1, 4) colnames(sys$criteria) = c("LLIK", "AIC", "BIC", "AICc") sys$u = output$u if (!is.na(sys$outlier)){ k = length(output$u) / nu nOut = k - kInitial if (nOut > 0){ sys$u = matrix(output$u, k, nu) sys$hidden$typeOutliers = output$typeOutliers } } return(sys) }
extract.cluster <- function (x, align) { if (!inherits(x, "kmean")) stop("object of class 'kmean' expected") if (!inherits(align, "align")) stop("object of class 'align' expected") nb.clus <- length(x$clusters) res <- list () for(i in 1:nb.clus) { name <- names(x$clusters[[i]]) res[[i]] <- align[names(align)%in%name] class (res[[i]]) <- c("align") } names(res)<-sapply(c(1:nb.clus), function(j) {paste("cluster",j, sep = "")}) return(res) }
.onLoad <- function (libname, pkgname) { utils::data("cov.expr", "cov.M", "cov.protein", "CpG.gene.map.for.DEG", "mean.expr", "mean.expr.with.mapped.protein", "mean.M", "mean.protein", "methyl.gene.level.mean", "protein.gene.map.for.DEP", "rho.expr.protein", "rho.methyl.expr", package=pkgname, envir=parent.env(environment())) utils::globalVariables(c("par", "rbinom")) }
data{ n <- length(survived) } model{ for (i in 1:n) { survived[i] ~ dbern(p[i]) p[i] <- ilogit(mu[i]) mu[i] <- b0 + b1 * BI[i] } b0 <- 0.15 b1 ~ dnorm(0, 1e-04) }
context("Checking Outputs") test_that("checking value",{ expect_identical(round(pKumBin(1,8,1.05,1.04),4), 0.2149) }) test_that("checking class",{ expect_that(pBetaBin(1,8,1.05,1.04), is_a("numeric")) }) test_that("checking length of output",{ expect_equal(length(pBetaBin(1:2,8,1.05,1.04)),2) })
.emaIndicator <- function(series, lambda) { x <- rep(mean(series[1:10,]), times=nrow(series)) for (i in 2:nrow(series)) x[i] <- (1-lambda)*series[i] + lambda*x[i-1] x <- as.timeSeries(data=x, charvec=time(series), units=colnames(series)) x } .macdIndicator <- function(index, spar=0.5, lambda=c(0.80, 0.85, 0.90), trace = TRUE, doplot=TRUE) { rets <- returns(index) Index <- log(index)[-1, ] tps <- turnsAnalytics(index=index, spar=spar, main = "MACD Analytics", trace=TRUE, doplot=FALSE) ablines <- tps$ablines ema1 <- .emaIndicator(Index, lambda=lambda[1]) ema2 <- .emaIndicator(Index, lambda=lambda[2]) macd <- ema1 - ema2 signal <- .emaIndicator(macd, lambda[3]) histogram <- macd - signal indicator <- sign(histogram) rebalancing <- .rebalancingStats(index, indicator, trace=trace) if(doplot) { turnsAnalytics(index=index, spar=spar, main="MACD Index Indicator", trace=FALSE, doplot=doplot) tradePositions <- as.vector(indicator) tradeForecasts <- c(0, tradePositions[-length(tradePositions)]) outSample <- Index[1] + log(cumulated(rets*tradeForecasts)) Ups <- Index[as.vector(indicator) == 1, ] if(nrow(Ups) > 0) points(Ups, pch=19, cex=0.33, col="green") Downs <- Index[as.vector(indicator) == 0, ] if(nrow(Downs) > 0) points(Downs, pch=19, cex=0.33, col="blue") lines(outSample, col="magenta") box(col="white") box(bty="l") } if(doplot) { plot(macd, col="green", ylab=paste("MACD", colnames(index))) abline(v=ablines, lty=3, lwd=2, col="grey") lines(histogram, type="h", col="black") lines(macd, col="red") mtext(paste("lambda: ", lambda[1], lambda[2], lambda[2], sep=" "), adj=0, side=4, cex=0.7, col="darkgrey") box(col="white") box(bty="l") } invisible(list(index=index, macd=macd, histogram=histogram, rebalancing=rebalancing)) } .drawdownsIndicator <- function(index, spar=0.5, lambda=c(0.80, 0.85, 0.10), trace=TRUE, doplot=TRUE) { rets <- returns(index) Index <- log(index)[-1, ] tps <- turnsAnalytics(index=index, spar=spar, main = "MACD Drawdown Analytics", trace=TRUE, doplot=FALSE) ablines <- tps$ablines dd <- drawdowns(rets) mdd1 <- .emaIndicator(dd, lambda[1]) mdd2 <- .emaIndicator(dd, lambda[2]) macd <- mdd1 - mdd2 signal <- .emaIndicator(macd, lambda[3]) histogram <- macd - signal indicator <- rets series(indicator) <- 1-sign(as.integer(macd < 0 & histogram < 0 )) rebalancing <- .rebalancingStats(index, indicator, trace=trace) if(doplot) { tps <- turnsAnalytics(index=index, spar=spar, main="MACD Drawdown Indicator", trace=FALSE, doplot=doplot) tradePositions <- as.vector(indicator) tradeForecasts <- c(0, tradePositions[-length(tradePositions)]) outSample <- Index[1] + log(cumulated(rets*tradeForecasts)) Ups <- Index[as.vector(indicator) == 1,] if(nrow(Ups) > 0) points(Ups, pch=19, cex=0.33, col="green") Downs <- Index[as.vector(indicator) == 0, ] if(nrow(Downs) > 0) points(Downs, pch=19, cex=0.33, col="blue") lines(outSample, col="magenta") box(col="white") box(bty="l") } if(doplot) { plot(mdd1, ylim=c(min(dd), max(macd)), ylab=colnames(index)) positions <- tps$positions ablines <- tps$ablines abline(v=ablines, lty=1, lwd=2, col="lightgrey") Time <- time(indicator) Time <- Time[!as.logical(indicator)] abline(v=Time, lty=3, lwd=2, col="steelblue") lines(mdd1, col="black") lines(mdd2, col="red") lines(max(abs(macd))*histogram/max(abs(histogram)), type="h", col="orange") lines(max(abs(macd))*histogram/max(abs(histogram)), type="l", col="orange") abline(h=0, col="grey") mtext(paste("lambda: ", lambda[1], lambda[2], lambda[2], sep=" "), adj=0, side=4, cex=0.7, col="darkgrey") box(col="white") box(bty="l") } invisible(list(indicator=indicator, index=index, returns=rets, drawdowns=dd, macd=macd, signal=signal, histogram=histogram, rebalancing=rebalancing)) } .rebalancingStats <- function(index, indicator, trace=TRUE) { rets <- returns(index) tradePositions <- as.vector(indicator) tradeForecasts <- c(0, tradePositions[-length(tradePositions)]) rebalancing <- c( max=sum(abs(rets)), insample=sum(rets*tradePositions), forecasts=sum(rets*tradeForecasts), rets=sum(rets)) if (trace) { cat("Rebalancing:\n") print(rebalancing) } invisible(rebalancing) }
disappointmentRate <- function(d, x, y, verbose = TRUE, ...) { if (class(d) == "mosg.lossdistribution") { expectation <- moment(ld = d, k = 1) return(1 - cdf(ld = d, x = expectation)); } else if (class(d) == "matrix") { n <- nrow(d) m <- ncol(d) if (missing(x) && !missing(y)) { if (verbose) { message("looking for equilibrium for given 2nd player strategy") } x <- rep(0, times = n) x[which.min(d %*% y)] <- 1 } if (missing(y) && !missing(x)) { if (verbose) { message("looking for equilibrium for given 1st player strategy") } y <- rep(0, times = m) y[which.min(t(x) %*% d)] <- 1 } if (missing(x) && missing(y)) { if (verbose) { message("looking for equilibrium for given 1st player strategy") } auxG <- mosg(n, m, goals = 1, losses = as.vector(d), byrow = FALSE) eq <- mgss(auxG, ...) x <- as.vector(eq$optimalDefense) y <- as.vector(eq$optimalAttacks[,1]) } if (verbose) { message("using the following equilibrium: ") message("x* = ") print(x) message("y* = ") print(y) } v <- (x%*%d%*%y)[1] A <- d A[A < v] <- 1 A[A >= v] <- 0 return((t(x) %*% A %*% y)[1]) } stop("disappointment rate only defined for classes 'mosg.lossdistribution' and 'matrix'") }