code
stringlengths 1
13.8M
|
---|
RunDS <- function (DI, thre)
{
X0 <- rep(0,length(DI))
X0[DI < thre] <- 1
X1 <- c(0,X0,0)
st <- c()
ed <- c()
for (i in 2:(length(X1)-1)){
if (X1[i-1] == 0 & X1[i] == 1){
st <- c(st,i-1)
}
if (X1[i] == 1 & X1[i+1] == 0){
ed <- c(ed,i-1)
}
}
Duration <- ed-st+1
Frequency <- length(Duration)
Severity <- matrix(nrow=Frequency, ncol=1)
for (i in 1:Frequency)
{
Severity[i,1] <- abs(sum(DI[st[i]:ed[i],1]-thre))
}
Result <- data.frame(Duration,Severity)
return(Result)
} |
'
Authors
Torsten Pook, [email protected]
Copyright (C) 2017 -- 2020 Torsten Pook
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 3
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
'
mutation.intro <- function(population, gen, sex, individual.nr, qtl.posi, haplo.set=1) {
if(sum(population$breeding[[gen]][[sex]][[individual.nr]][[2+ haplo.set]]==qtl.posi)==0){
population$breeding[[gen]][[sex]][[individual.nr]][[2+ haplo.set]] <- sort(c(qtl.posi,population$breeding[[gen]][[sex]][[individual.nr]][[2+ haplo.set]]))
} else{
population$breeding[[gen]][[sex]][[individual.nr]][[2+ haplo.set]] <- unique(c(qtl.posi,population$breeding[[gen]][[sex]][[individual.nr]][[2+ haplo.set]]))[-1]
}
return(population)
} |
tam_irf_3pl <- function(theta, AXsi, B, guess=NULL, subtract_max=TRUE)
{
if ( is.vector(theta) ){
theta <- matrix( theta, ncol=1 )
}
nnodes <- nrow(theta)
nitems <- nrow(AXsi)
maxK <- ncol(AXsi)
if ( is.null(guess) ){
guess <- rep(0,nitems)
}
probs <- tam_mml_3pl_calc_prob(iIndex=1:nitems, A=NULL, AXsi=AXsi, B=B, xsi=NULL,
theta=theta, nnodes=nnodes, maxK=maxK, recalc=FALSE, guess=guess,
subtract_max=subtract_max)$rprobs
probs <- aperm( probs, c(3,1,2) )
return(probs)
} |
expect_traces <- function(p, n.traces, name){
stopifnot(is.numeric(n.traces))
L <- expect_doppelganger_built(p, paste0("plotly-subplot-", name))
expect_equivalent(length(L$data), n.traces)
L
}
test_that("simple subplot works", {
p1 <- plot_ly(x = c(1, 2))
p2 <- plot_ly(x = c(1, 2))
s <- expect_traces(subplot(p1, p2), 2, "simple")
expect_identical(s$data[[2]]$xaxis, s$layout[["yaxis2"]][["anchor"]])
expect_identical(s$data[[2]]$yaxis, s$layout[["xaxis2"]][["anchor"]])
doms <- lapply(s$layout[grepl("^xaxis", names(s$layout))], "[[", "domain")
expect_true(doms$xaxis[2] <= doms$xaxis2[1])
})
test_that("nrows argument works", {
p1 <- plot_ly(x = c(1, 2))
p2 <- plot_ly(x = c(1, 2))
s <- expect_traces(subplot(p1, p2, nrows = 2), 2, "simple2")
expect_identical(s$data[[2]]$xaxis, s$layout[["yaxis2"]][["anchor"]])
expect_identical(s$data[[2]]$yaxis, s$layout[["xaxis2"]][["anchor"]])
doms <- lapply(s$layout[grepl("^[x-y]axis", names(s$layout))], "[[", "domain")
expect_true(doms$yaxis[2] > doms$yaxis[1])
expect_true(doms$yaxis[1] > doms$yaxis2[2])
expect_true(doms$yaxis2[2] > doms$yaxis2[1])
})
test_that("group + [x/y]axis works", {
penguins <- palmerpenguins::penguins %>% tidyr::drop_na() %>% arrange(species)
p <- plot_ly(penguins, x = ~bill_length_mm, y = ~bill_depth_mm, color = ~species,
xaxis = ~paste0("x", as.integer(species)), mode = "markers")
s <- expect_traces(subplot(p, margin = 0.05), 3, "group")
ax <- s$layout[grepl("^[x-y]axis", names(s$layout))]
doms <- lapply(ax, "[[", "domain")
ydom <- doms[grepl("^y", names(doms))]
expect_equivalent(sort(unique(unlist(ydom))), c(0, 1))
xdom <- doms[grepl("^x", names(doms))]
expect_true(all(1/3 > xdom[[1]] & xdom[[1]] >= 0))
expect_true(all(2/3 > xdom[[2]] & xdom[[2]] > 1/3))
expect_true(all(1 >= xdom[[3]] & xdom[[3]] > 2/3))
})
test_that("shareX produces one x-axis and a legend", {
s <- subplot(plot_ly(x = 1), plot_ly(x = 1), nrows = 2, shareX = TRUE)
l <- expect_traces(s, 2, "shareX")
expect_true(sum(grepl("^xaxis", names(l$layout))) == 1)
expect_true(l$data[[1]]$showlegend %||% TRUE)
expect_true(l$data[[2]]$showlegend %||% TRUE)
expect_true(l$layout$showlegend %||% TRUE)
})
test_that("shareY produces one y-axis", {
s <- subplot(plot_ly(x = 1), plot_ly(x = 1), shareY = TRUE)
l <- expect_traces(s, 2, "shareY")
expect_true(sum(grepl("^yaxis", names(l$layout))) == 1)
})
test_that("share both axes", {
s <- subplot(
plot_ly(x = 1), plot_ly(x = 1), plot_ly(x = 1), plot_ly(x = 1),
nrows = 2, shareX = TRUE, shareY = TRUE
)
l <- expect_traces(s, 4, "shareBoth")
expect_true(sum(grepl("^yaxis", names(l$layout))) == 2)
expect_true(sum(grepl("^xaxis", names(l$layout))) == 2)
})
d <- data.frame(
x = rnorm(100),
y = rnorm(100)
)
hist_top <- ggplot(d) + geom_histogram(aes(x = x))
empty <- ggplot() + geom_blank()
scatter <- ggplot(d) + geom_point(aes(x = x, y = y))
hist_right <- ggplot(d) + geom_histogram(aes(x = y)) + coord_flip()
s <- subplot(
hist_top, empty, scatter, hist_right,
nrows = 2, widths = c(0.8, 0.2), heights = c(0.2, 0.8),
margin = 0.005, shareX = TRUE, shareY = TRUE
)
test_that("Row/column height/width", {
l <- expect_traces(s, 3, "width-height")
expect_equivalent(diff(l$layout$xaxis$domain), 0.8 - 0.005)
expect_equivalent(diff(l$layout$xaxis2$domain), 0.2 - 0.005)
expect_equivalent(diff(l$layout$yaxis$domain), 0.2 - 0.005)
expect_equivalent(diff(l$layout$yaxis2$domain), 0.8 - 0.005)
})
test_that("recursive subplots work", {
p1 <- plot_ly(economics, x = ~date, y = ~unemploy)
p2 <- plot_ly(economics, x = ~date, y = ~uempmed)
s1 <- subplot(p1, p1, shareY = TRUE)
s2 <- subplot(p2, p2, shareY = TRUE)
s <- subplot(s1, s2, nrows = 2, shareX = TRUE)
l <- expect_traces(s, 4, "recursive")
xaxes <- l$layout[grepl("^xaxis", names(l$layout))]
yaxes <- l$layout[grepl("^yaxis", names(l$layout))]
expect_true(length(xaxes) == 2)
expect_true(length(yaxes) == 2)
yanchor <- unique(unlist(lapply(xaxes, "[[", "anchor")))
expect_true(length(yanchor) == 1)
xanchor <- unique(unlist(lapply(yaxes, "[[", "anchor")))
expect_true(length(xanchor) == 1)
expect_true(l$layout[[sub("x", "xaxis", xanchor)]]$domain[1] == 0)
expect_true(l$layout[[sub("y", "yaxis", yanchor)]]$domain[1] == 0)
xTraceAnchors <- sapply(l$data, "[[", "xaxis")
yTraceAnchors <- sapply(l$data, "[[", "yaxis")
expect_true(length(unique(paste(xTraceAnchors, yTraceAnchors))) == 4)
})
test_that("subplot accepts a list of plots", {
vars <- setdiff(names(economics), "date")
plots <- lapply(vars, function(var) {
plot_ly(x = economics$date, y = economics[[var]], name = var)
})
s <- subplot(plots, nrows = length(plots), shareX = TRUE, titleX = FALSE)
l <- expect_traces(s, 5, "plot-list")
xaxes <- l$layout[grepl("^xaxis", names(l$layout))]
yaxes <- l$layout[grepl("^yaxis", names(l$layout))]
expect_true(length(xaxes) == 1)
expect_true(length(yaxes) == 5)
expect_true(l$layout[[sub("y", "yaxis", xaxes[[1]]$anchor)]]$domain[1] == 0)
})
test_that("ggplotly understands GGally", {
skip_if_not_installed("GGally")
expect_doppelganger(
GGally::ggpairs(iris),
"plotly-subplot-ggmatrix"
)
d <- tibble::tibble(
v1 = 1:100 + rnorm(100, sd = 20),
v2 = 1:100 + rnorm(100, sd = 27),
v3 = rep(1, 100) + rnorm(100, sd = 1),
v4 = v1 ** 2,
v5 = v1 ** 2
)
expect_doppelganger(
ggcorr(data, method = c("everything", "pearson")),
"ggally-ggcorr"
)
})
test_that("annotation paper repositioning", {
p1 <- plot_ly(type = "scatter") %>%
add_annotations(text = "foo", x = 0.5, y = 0.5, xref = "paper", yref = "paper")
p2 <- plot_ly(mtcars, type = "scatter") %>%
add_annotations(text = "bar", x = 0.5, y = 0.5, xref = "paper", yref = "paper")
s <- subplot(p1, p2, margin = 0)
ann <- expect_doppelganger_built(s, "subplot-reposition-annotation")$layout$annotations
expect_length(ann, 2)
text <- sapply(ann, "[[", "text")
x <- sapply(ann, "[[", "x")
y <- sapply(ann, "[[", "y")
xref <- sapply(ann, "[[", "xref")
yref <- sapply(ann, "[[", "yref")
expect_equal(x, c(0.25, 0.75))
expect_equal(y, c(0.5, 0.5))
expect_equal(xref, rep("paper", 2))
expect_equal(yref, rep("paper", 2))
})
test_that("shape paper repositioning", {
p1 <- plot_ly(mtcars, type = "scatter") %>%
layout(
shapes = ~list(
type = "rect",
x0 = 0.25,
x1 = 0.75,
y0 = 0.25,
y1 = 0.75,
xref = "paper",
yref = "paper",
fillcolor = "red"
)
)
p2 <- plot_ly(mtcars, type = "scatter") %>%
layout(
shapes = ~list(
type = "line",
type = "rect",
x0 = 0.25,
x1 = 0.75,
y0 = 0.25,
y1 = 0.75,
xref = "paper",
yref = "paper",
line = list(color = "blue")
)
)
s <- subplot(p1, p2)
shapes <- expect_doppelganger_built(s, "subplot-reposition-shape")$layout$shapes
expect_length(shapes, 2)
x0 <- sapply(shapes, "[[", "x0")
x1 <- sapply(shapes, "[[", "x1")
y0 <- sapply(shapes, "[[", "y0")
y1 <- sapply(shapes, "[[", "y1")
xref <- sapply(shapes, "[[", "xref")
yref <- sapply(shapes, "[[", "yref")
expect_equal(x0, c(0.12, 0.64))
expect_equal(x1, c(0.36, 0.88))
expect_equal(y0, rep(0.25, 2))
expect_equal(y1, rep(0.75, 2))
expect_equal(xref, rep("paper", 2))
expect_equal(yref, rep("paper", 2))
p1 <- plot_ly(type = "scatter") %>%
layout(
shapes = list(
type = "rect",
x0 = 0.25,
x1 = 0.75,
xref = "paper",
y0 = 0,
y1 = 30,
yanchor = 0.5,
ysizemode = "pixel",
yref = "paper",
fillcolor = "red"
)
)
p2 <- plot_ly(type = "scatter") %>%
layout(
shapes = list(
type = "rect",
y0 = 0.25,
y1 = 0.75,
yref = "paper",
x0 = 0,
x1 = 30,
xanchor = 0.5,
xsizemode = "pixel",
xref = "paper",
line = list(color = "blue")
)
)
s <- subplot(p1, p2)
shapes <- expect_doppelganger_built(s, "subplot-reposition-shape-fixed")$layout$shapes
expect_length(shapes, 2)
xanchor <- lapply(shapes, "[[", "xanchor")[[2]]
yanchor <- lapply(shapes, "[[", "yanchor")[[1]]
x0 <- sapply(shapes, "[[", "x0")
x1 <- sapply(shapes, "[[", "x1")
y0 <- sapply(shapes, "[[", "y0")
y1 <- sapply(shapes, "[[", "y1")
expect_equal(xanchor, 0.76)
expect_equal(yanchor, 0.5)
expect_equal(x0, c(0.12, 0))
expect_equal(x1, c(0.36, 30))
expect_equal(y0, c(0, 0.25))
expect_equal(y1, c(30, 0.75))
})
test_that("image paper repositioning", {
skip_if_not_installed("png")
r <- as.raster(matrix(hcl(0, 80, seq(50, 80, 10)), nrow = 4, ncol = 5))
p <- plot_ly(x = 1, y = 1) %>%
layout(
images = list(list(
source = raster2uri(r),
sizing = "fill",
xref = "paper",
yref = "paper",
x = 0,
y = 0,
sizex = 0.5,
sizey = 0.5,
xanchor = "left",
yanchor = "bottom"
))
)
s <- subplot(p, p, nrows = 1, margin = 0.02)
imgs <- expect_doppelganger_built(s, "subplot-reposition-image")$layout$images
expect_length(imgs, 2)
x <- sapply(imgs, "[[", "x")
y <- sapply(imgs, "[[", "y")
sizex <- sapply(imgs, "[[", "sizex")
sizey <- sapply(imgs, "[[", "sizey")
expect_equal(x, c(0, 0.52))
expect_equal(y, c(0, 0))
expect_equal(sizex, rep(0.24, 2))
expect_equal(sizey, rep(0.5, 2))
})
test_that("annotation xref/yref bumping", {
p1 <- plot_ly(mtcars) %>%
add_annotations(text = ~cyl, x = ~wt, y = ~mpg)
p2 <- plot_ly(mtcars) %>%
add_annotations(text = ~am, x = ~wt, y = ~mpg)
s <- subplot(p1, p2)
ann <- expect_doppelganger_built(s, "subplot-bump-axis-annotation")$layout$annotations
txt <- sapply(ann, "[[", "text")
xref <- sapply(ann, "[[", "xref")
yref <- sapply(ann, "[[", "yref")
expect_length(ann, 64)
expect_equal(txt, c(mtcars$cyl, mtcars$am))
expect_equal(xref, rep(c("x", "x2"), each = 32))
expect_equal(yref, rep(c("y", "y2"), each = 32))
s2 <- subplot(p1, p2, shareY = TRUE)
ann2 <- expect_doppelganger_built(s2, "subplot-bump-axis-annotation-shared")$layout$annotations
xref2 <- sapply(ann2, "[[", "xref")
yref2 <- sapply(ann2, "[[", "yref")
expect_equal(xref2, rep(c("x", "x2"), each = 32))
expect_equal(yref2, rep(c("y", "y"), each = 32))
p1 <- plot_ly() %>%
add_markers(x = 1, y = 1) %>%
add_markers(x = 2, y = 2) %>%
add_annotations(text = "foo", x = 1.5, y = 1.5)
p2 <- plot_ly() %>%
add_markers(x = 1, y = 1) %>%
add_markers(x = 2, y = 2) %>%
add_annotations(text = "bar", x = 1.5, y = 1.5)
s <- subplot(p1, p2)
ann <- expect_doppelganger_built(s, "subplot-bump-axis-annotation-traces")$layout$annotations
txt <- sapply(ann, "[[", "text")
xref <- sapply(ann, "[[", "xref")
yref <- sapply(ann, "[[", "yref")
expect_length(ann, 2)
expect_equal(txt, c("foo", "bar"))
expect_equal(xref, c("x", "x2"))
expect_equal(yref, c("y", "y2"))
s2 <- subplot(p1, p2, shareY = TRUE)
ann2 <- expect_doppelganger_built(s2, "subplot-bump-axis-annotation-traces-shared")$layout$annotations
xref2 <- sapply(ann2, "[[", "xref")
yref2 <- sapply(ann2, "[[", "yref")
expect_equal(xref2, c("x", "x2"))
expect_equal(yref2, c("y", "y"))
})
test_that("shape xref/yref bumping", {
p1 <- plot_ly(mtcars, type = "scatter") %>%
layout(
shapes = ~list(
type = "rect",
x0 = min(cyl),
x1 = max(cyl),
y0 = min(am),
y1 = max(am),
fillcolor = "red"
)
)
p2 <- plot_ly(mtcars, type = "scatter") %>%
layout(
shapes = ~list(
type = "line",
x0 = min(cyl),
x1 = max(cyl),
y0 = min(am),
y1 = max(am),
line = list(color = "blue")
)
)
s <- subplot(p1, p2)
shapes <- expect_doppelganger_built(s, "subplot-bump-axis-shape")$layout$shapes
expect_length(shapes, 2)
types <- sapply(shapes, "[[", "type")
expect_equal(types, c("rect", "line"))
xref <- sapply(shapes, "[[", "xref")
yref <- sapply(shapes, "[[", "yref")
expect_equal(xref, c("x", "x2"))
expect_equal(yref, c("y", "y2"))
s2 <- subplot(p1, p2, shareY = TRUE)
shapes2 <- expect_doppelganger_built(s2, "subplot-bump-axis-shape-shared")$layout$shapes
xref2 <- sapply(shapes2, "[[", "xref")
yref2 <- sapply(shapes2, "[[", "yref")
expect_equal(xref2, c("x", "x2"))
expect_equal(yref2, c("y", "y"))
})
test_that("image xref/yref bumping", {
skip_if_not_installed("png")
r <- as.raster(matrix(hcl(0, 80, seq(50, 80, 10)), nrow = 4, ncol = 5))
p <- plot_ly(x = 1, y = 1) %>%
layout(
images = list(list(
source = raster2uri(r),
sizing = "fill",
xref = "x",
yref = "y",
x = 0,
y = 0,
sizex = 1,
sizey = 1,
xanchor = "left",
yanchor = "bottom"
))
)
s <- subplot(p, p, nrows = 1, margin = 0.02)
imgs <- expect_doppelganger_built(s, "subplot-bump-axis-image")$layout$images
expect_length(imgs, 2)
x <- sapply(imgs, "[[", "x")
y <- sapply(imgs, "[[", "y")
xref <- sapply(imgs, "[[", "xref")
yref <- sapply(imgs, "[[", "yref")
expect_equal(x, c(0, 0))
expect_equal(y, c(0, 0))
expect_equal(xref, c("x", "x2"))
expect_equal(yref, c("y", "y2"))
})
test_that("geo+cartesian behaves", {
g <- list(
scope = 'usa',
projection = list(type = 'albers usa'),
lakecolor = toRGB('white')
)
density <- state.x77[, "Population"] / state.x77[, "Area"]
map <- plot_geo(
z = ~density, text = state.name,
locations = state.abb, locationmode = 'USA-states'
) %>% layout(geo = g)
vars <- colnames(state.x77)
barcharts <- lapply(vars, function(var) {
plot_ly(x = state.x77[, var], y = state.name, type = "bar",
orientation = "h", name = var) %>%
layout(showlegend = FALSE, hovermode = "y",
yaxis = list(showticklabels = FALSE))
})
s <- subplot(
subplot(barcharts, margin = 0.01), map,
nrows = 2, heights = c(0.3, 0.7)
)
l <- expect_traces(s, 9, "geo-cartesian")
geoDom <- l$layout[[grep("^geo", names(l$layout))]]$domain
expect_equivalent(geoDom$x, c(0, 1))
expect_equivalent(geoDom$y, c(0, 0.68))
})
test_that("May specify legendgroup with through a vector of values", {
df <- dplyr::bind_rows(
data.frame(x = rnorm(100,2), Name = "x1"),
data.frame(x = rnorm(100,6), Name = "x2"),
data.frame(x = rnorm(100,4), Name = "x3")
)
df$y <- rnorm(300)
m <- list(
size = 10,
line = list(
width = 1,
color = "black"
)
)
base <- plot_ly(
df,
marker = m,
color = ~factor(Name),
legendgroup = ~factor(Name)
)
expect_warning(
s <- subplot(
add_histogram(base, x = ~x, showlegend = FALSE),
plotly_empty(),
add_markers(base, x = ~x, y = ~y),
add_histogram(base, y = ~y, showlegend = FALSE),
nrows = 2, heights = c(0.2, 0.8), widths = c(0.8, 0.2),
shareX = TRUE, shareY = TRUE, titleX = FALSE, titleY = FALSE) %>%
layout(barmode = "stack"),
regexp = "No trace type|No scatter mode"
)
l <- expect_traces(s, 10, "subplot-legendgroup")
expect_equivalent(
sum(sapply(l$data, function(tr) tr$showlegend %||% TRUE)), 4
)
expect_length(
unlist(lapply(l$data, "[[", "legendgroup")), 9
)
}) |
NULL
ValidCorrGpois = function (corMat, theta.vec, lambda.vec, verbose = TRUE) {
no.gpois = length(theta.vec)
errorCount = 0
if (ncol(corMat) != (no.gpois)) {
stop("Dimension of correlation matrix does not match the number of variables!\n")
}
if (is.positive.definite(corMat) == FALSE) {
stop("Specified correlation matrix is not positive definite! \n")
}
if (isSymmetric(corMat) == FALSE) {
stop("Specified correlation matrix is not symmetric! \n")
}
if (sum(corMat > 1) > 0) {
stop("Correlation values cannot be greater than 1! \n")
}
if (sum(corMat < (-1)) > 0) {
stop("Correlation values cannot be less than -1! \n")
}
if (sum(diag(corMat) != 1) > 0) {
stop("All diagonal elements of the correlation matrix must be 1! \n")
}
maxcor = ComputeCorrGpois(theta.vec, lambda.vec, verbose)$max
mincor = ComputeCorrGpois(theta.vec, lambda.vec, verbose)$min
for (i in 1:nrow(corMat)) {
for (j in 1:i) {
if (errorCount == 0) {
if (verbose == TRUE) {
cat(".")
}
}
if (i != j) {
if (corMat[i, j] > maxcor[i, j] | corMat[i, j] < mincor[i, j]) {
cat("\n corMat[", i, ",", j, "] must be between ", round(mincor[i,j], 3), " and ", round(maxcor[i,j], 3), "\n")
errorCount = errorCount + 1
}
}
}
}
if (verbose == TRUE) {
cat("\n")
}
if (errorCount > 0) {
stop("Range violation occurred in the target correlation matrix!\n")
}
return(TRUE)
} |
props <- function(..., .props = NULL, inherit = TRUE, env = parent.frame()) {
check_empty_args()
args <- dots(...)
all <- args_to_props(c(args, .props), env)
structure(
all,
inherit = inherit,
class = "ggvis_props"
)
}
dots <- function(...) {
as.list(substitute(...()))
}
uses_colon_equals <- function(x) {
is.call(x) && identical(x[[1]], quote(`:=`))
}
args_to_props <- function(args, env) {
expr_to_prop <- function(name, expr, scale = NULL) {
name <- strsplit(name, ".", fixed = TRUE)[[1]]
property <- name[1]
event <- if (length(name) > 1) name[2] else NULL
val <- eval(expr, env)
prop(property, val, scale = scale, event = event, label = as.character(val))
}
prop_full_name <- function(p) {
paste(c(p$property, p$event), collapse = ".")
}
arg_names <- names2(args)
named_args <- args[arg_names != ""]
unnamed_args <- args[arg_names == ""]
named_args <- Map(named_args, names(named_args),
f = function(x, name) expr_to_prop(name, x, scale = TRUE)
)
unnamed_args <- lapply(unnamed_args, function(x) {
if (uses_colon_equals(x)) {
expr_to_prop(deparse(x[[2]]), x[[3]], scale = FALSE)
} else {
eval(x, env)
}
})
is_prop <- vapply(unnamed_args, is.prop, logical(1))
unnamed_props <- unnamed_args[is_prop]
unnamed_values <- unnamed_args[!is_prop]
names(named_args) <- vapply(named_args, prop_full_name, character(1))
names(unnamed_props) <- vapply(unnamed_props, prop_full_name, character(1))
missing_names <- setdiff(c("x.update", "y.update"),
c(names(named_args), names(unnamed_props)))
if (length(unnamed_values) > length(missing_names)) {
stop("Too many unnamed properties (can only have x and y)", call. = FALSE)
}
names(unnamed_values) <- missing_names[seq_along(unnamed_values)]
unnamed_values <- Map(unnamed_values, names(unnamed_values),
f = function(x, name) expr_to_prop(name, x, scale = TRUE)
)
c(named_args, unnamed_props, unnamed_values)
}
format.ggvis_props <- function(x, ...) {
labels <- lapply(x, format, ...)
if (length(labels) > 0) {
inherit <- if (!attr(x, "inherit", TRUE)) "\ninherit: FALSE" else ""
paste0(
paste0("* ", names(x), ": ", labels, collapse = "\n"),
inherit,
sep = "\n")
} else {
"props()"
}
}
print.ggvis_props <- function(x, ...) cat(format(x, ...))
is.ggvis_props <- function(x) inherits(x, "ggvis_props")
`[.ggvis_props` <- function(x, idx) {
structure(NextMethod(), inherit = attr(x, "inherit", TRUE), class = "ggvis_props")
}
merge_props <- function(parent = NULL, child = NULL,
inherit = attr(child, "inherit", TRUE)) {
if (is.null(parent)) return(child)
if (is.null(child)) return(parent)
stopifnot(is.ggvis_props(parent), is.ggvis_props(child))
if (identical(inherit, FALSE)) return(child)
structure(merge_vectors(parent, child),
inherit = attr(parent, "inherit", TRUE),
class = "ggvis_props")
}
is.formula <- function(x) inherits(x, "formula")
find_prop_var <- function(props, name) {
prop <- props[[name]]
if (is.null(prop)) {
stop("Can't find prop ", name, call. = FALSE)
}
if (!is.prop_variable(prop)) {
stop("Visual property ", name, " is not a variable", call. = FALSE)
}
stats::formula(prop)
} |
fluidPage(
fluidRow(
bs4Box(
title="Settings for group accuracy",
width=4,
uiOutput("locGroups"),
sliderInput("locLevel", label=h5("Confidence interval width"),
min=0.5, max=1, value=0.95, step=0.01),
checkboxGroupInput("locCItype", label=h5("Bootstrap CI type"),
choices=CItypes, selected=NULL)
),
bs4Box(
title="Group accuracy",
width=8,
p("For details, see the documentation for",
a("groupLocation()",
href="https://www.rdocumentation.org/packages/shotGroups/functions/groupLocation"),
"and the",
a("shotGroups vignette",
href="https://cran.rstudio.com/web/packages/shotGroups/vignettes/shotGroups.pdf"),
"section 2.5"),
selectizeInput("locationOut", label=h5("Select the output elements you want to see"),
choices=locationOut, multiple=TRUE,
selected=c("1", "3", "5", "6", "7"), width="100%"),
downloadButton("saveLocation", "Save results as text file"),
verbatimTextOutput("location"),
downloadButton("saveLocationPDF", "Save diagram as pdf"),
plotOutput("locationPlot", height="500px")
)
)
) |
npar.ellip <- function(dim, dispstr) {
switch(dispstr,
"ar1" =,
"ex" = 1 ,
"un" = dim * (dim - 1) / 2,
"toep" = dim - 1,
stop("'dispstr' not supported (yet)"))
}
lowbnd.rho.ellip <- function(dim, dispstr, pdim = npar.ellip(dim, dispstr)) {
switch(dispstr,
"ex" = rep( - 1 / (dim-1), pdim),
"ar1"= rep( -1, pdim),
"un" = ,
"toep" = rep(-1, pdim),
return("'dispstr' not supported (yet)"))
}
ellipCopula <- function(family = c("normal", "t"), param = NA_real_, dim = 2L,
dispstr = "ex", df = 4, ...)
{
switch(match.arg(family),
"normal" = normalCopula(param, dim = dim, dispstr = dispstr),
"t" = tCopula(param, dim = dim, dispstr = dispstr, df = df, ...))
}
setMethod(describeCop, c("ellipCopula", "character"), function(x, kind, prefix="", ...) {
kind <- match.arg(kind)
cl <- sub("Copula$", "", class(x))
if (cl == "normal") cl <- "Normal"
clNam <- paste0(prefix, cl, if(nchar(cl) <= 2) "-" else " ", "copula")
if(kind == "very short")
return(clNam)
d <- dim(x)
ch <- paste(paste0(clNam, ", dim. d ="), d)
switch(kind <- match.arg(kind),
short = ch,
long = paste0(ch, "\n", prefix, "param.: ", dputNamed(getTheta(x, named=TRUE))),
stop("invalid 'kind': ", kind))
})
iTauEllipCopula <- function(copula, tau) sinpi(tau / 2)
dTauEllipCopula <- function(copula) {
2 / (pi * sqrt(1 - copula@getRho(copula)^2))
}
dTauFunEllipCopula <- function(copula) {
function(x) 2 / (pi * sqrt(1 - x^2))
}
dRhoEllipCopula <- function(copula) {
6 / (pi * sqrt(4 - copula@getRho(copula)^2))
}
dRhoFunEllipCopula <- function(copula) {
function(x) 6 / (pi * sqrt(4 - x^2))
}
setMethod("iTau", signature("ellipCopula"), iTauEllipCopula)
setMethod("dTau", signature("ellipCopula"), dTauEllipCopula)
setMethod("dRho", signature("ellipCopula"), dRhoEllipCopula)
setMethod("dTauFun", signature("ellipCopula"), dTauFunEllipCopula)
setMethod("dRhoFun", signature("ellipCopula"), dRhoFunEllipCopula) |
context("testing calculating icer nmb")
test_that("testing calculating icer nmb", {
well <- health_state("well", cost = 0, utility = 1)
disabled <- health_state("disabled", cost = 100, utility = 1)
dead <- health_state("dead", cost = 0, utility = 0)
tmat <- rbind(c(1, 2, 3), c(NA, 4, 5), c(NA, NA, 6))
colnames(tmat) <- rownames(tmat) <- c("well", "disabled", "dead")
tm <- populate_transition_matrix(3, tmat, c(0.6, 0.2, 0.2, 0.6, 0.4, 1),
colnames(tmat))
health_states <- combine_state(well, disabled, dead)
this_strategy <- strategy(tm, health_states, "control")
this_markov <- markov_model(this_strategy, 24, c(1000, 0, 0),
discount = c(0, 0))
well <- health_state("well", cost = 0, utility = 1)
disabled <- health_state("disabled", cost = 10, utility = 0.5)
dead <- health_state("dead", cost = 0, utility = 0)
tmat <- rbind(c(1, 2, 3), c(NA, 4, 5), c(NA, NA, 6))
colnames(tmat) <- rownames(tmat) <- c("well", "disabled", "dead")
tm <- populate_transition_matrix(3, tmat, c(0.4, 0.4, 0.2, 0.6, 0.4, 1),
colnames(tmat))
health_states <- combine_state(well, disabled, dead)
this_strategy <- strategy(tm, health_states, "intervention")
sec_markov <- markov_model(this_strategy, 24, c(1000, 0, 0),
discount = c(0, 0))
list_markov <- combine_markov(this_markov, sec_markov)
icer_nmb <- calculate_icer_nmb(list_markov, 20000, comparator = "control")
expect_equal(as.numeric(icer_nmb$ICER[2]), 86.67, tol = 1e-3)
expect_equal(as.numeric(icer_nmb$ICER[2]), 86.67, tol = 1e-3)
expect_error(calculate_icer_nmb(list_markov, 20000, comparator = "con"))
expect_error(calculate_icer_nmb(list_markov, 0, comparator = "control"))
expect_error(calculate_icer_nmb(NULL, 200, comparator = "control"))
icer_nmb <- calculate_icer_nmb(list_markov, 200, comparator = NULL)
expect_equal(as.numeric(icer_nmb$NMB[1]), 524.9899, tol = 1e-3)
well <- health_state("well", cost = 0, utility = 1)
disabled <- health_state("disabled", cost = 100, utility = 1)
dead <- health_state("dead", cost = 0, utility = 0)
tmat <- rbind(c(1, 2, 3), c(NA, 4, 5), c(NA, NA, 6))
colnames(tmat) <- rownames(tmat) <- c("well", "disabled", "dead")
tm <- populate_transition_matrix(3, tmat, c(0.6, 0.2, 0.2, 0.6, 0.4, 1),
colnames(tmat))
health_states <- combine_state(well, disabled, dead)
this_strategy <- strategy(tm, health_states, "control")
this_markov <- markov_model(this_strategy, 24, c(1000, 0, 0),
discount = c(0, 0))
well <- health_state("well", cost = 0, utility = 1)
disabled <- health_state("disabled", cost = 10, utility = 0.5)
dead <- health_state("dead", cost = 0, utility = 0)
tmat <- rbind(c(1, 2, 3), c(NA, 4, 5), c(NA, NA, 6))
colnames(tmat) <- rownames(tmat) <- c("well", "disabled", "dead")
tm <- populate_transition_matrix(3, tmat, c(0.4, 0.4, 0.2, 0.6, 0.4, 1),
colnames(tmat))
health_states <- combine_state(well, disabled, dead)
this_strategy <- strategy(tm, health_states, "intervention")
sec_markov <- markov_model(this_strategy, 12, c(1000, 0, 0),
discount = c(0, 0))
list_markov <- combine_markov(this_markov, sec_markov)
expect_error(calculate_icer_nmb(list_markov, 20000, comparator = "control"))
sec_markov <- markov_model(this_strategy, 24, c(1000, 0, 0),
discount = c(0, 0))
list_markov <- combine_markov(this_markov, sec_markov)
newcolnames <- colnames(list_markov)
newcolnames[2] <- "changedcost"
colnames(list_markov) <- newcolnames
expect_error(calculate_icer_nmb(list_markov, 20000, comparator = "control"))
})
context("testing checking list of markov models")
test_that("testing checking list of markov models", {
well <- health_state("well", cost = 0, utility = 1)
disabled <- health_state("disabled", cost = 100, utility = 1)
dead <- health_state("dead", cost = 0, utility = 0)
tmat <- rbind(c(1, 2, 3), c(NA, 4, 5), c(NA, NA, 6))
colnames(tmat) <- rownames(tmat) <- c("well", "disabled", "dead")
tm <- populate_transition_matrix(3, tmat, c(0.6, 0.2, 0.2, 0.6, 0.4, 1),
colnames(tmat))
health_states <- combine_state(well, disabled, dead)
this_strategy <- strategy(tm, health_states, "control")
this_markov <- markov_model(this_strategy, 24, c(1000, 0, 0),
discount = c(0, 0))
well <- health_state("well", cost = 0, utility = 1)
disabled <- health_state("disabled", cost = 10, utility = 0.5)
dead <- health_state("dead", cost = 0, utility = 0)
tmat <- rbind(c(1, 2, 3), c(NA, 4, 5), c(NA, NA, 6))
colnames(tmat) <- rownames(tmat) <- c("well", "disabled", "dead")
tm <- populate_transition_matrix(3, tmat, c(0.4, 0.4, 0.2, 0.6, 0.4, 1),
colnames(tmat))
health_states <- combine_state(well, disabled, dead)
this_strategy <- strategy(tm, health_states, "intervention")
sec_markov <- markov_model(this_strategy, 24, c(1000, 0, 0),
discount = c(0, 0))
list_markov <- combine_markov(this_markov, sec_markov)
expect_equal(check_list_markov_models(list_markov), 0)
this_strategy <- strategy(tm, health_states, "control")
sec_markov <- markov_model(this_strategy, 24, c(1000, 0, 0),
discount = c(0, 0))
list_markov <- combine_markov(this_markov, sec_markov)
expect_error(check_list_markov_models(list_markov))
this_strategy <- strategy(tm, health_states, "intervention")
sec_markov <- markov_model(this_strategy, 12, c(1000, 0, 0),
discount = c(0, 0))
list_markov <- combine_markov(this_markov, sec_markov)
expect_error(check_list_markov_models(list_markov))
this_strategy <- strategy(tm, health_states, "intervention")
sec_markov <- markov_model(this_strategy, 24, c(500, 0, 0),
discount = c(0, 0))
list_markov <- combine_markov(this_markov, sec_markov)
expect_error(check_list_markov_models(list_markov))
well <- health_state("well", cost = 0, utility = 1)
disabled <- health_state("disabled", cost = 10, utility = 0.5)
dead <- health_state("dead", cost = 0, utility = 0)
dead2 <- health_state("dead2", cost = 0, utility = 0)
tmat <- rbind(c(1, 2, 3, 4), c(NA, 5, 6, 7), c(NA, NA, 8, 9),
c(NA, NA, NA, 10))
colnames(tmat) <- rownames(tmat) <- c("well", "disabled", "dead", "dead2")
tm <- populate_transition_matrix(4, tmat, c(0.4, 0.3, 0.2, 0.1, 0.5, 0.4,
0.1, 0.5, 0.5, 1), colnames(tmat))
health_states <- combine_state(well, disabled, dead, dead2)
this_strategy <- strategy(tm, health_states, "intervention")
sec_markov <- markov_model(this_strategy, 24, c(1000, 0, 0, 0),
discount = c(0, 0))
list_markov <- combine_markov(this_markov, sec_markov)
expect_error(check_list_markov_models(list_markov))
})
context("testing plotting ceac")
test_that("testing plotting ceac", {
well <- health_state("well", cost = 0, utility = 1)
disabled <- health_state("disabled", cost = 100, utility = 1)
dead <- health_state("dead", cost = 0, utility = 0)
tmat <- rbind(c(1, 2, 3), c(NA, 4, 5), c(NA, NA, 6))
colnames(tmat) <- rownames(tmat) <- c("well", "disabled", "dead")
tm <- populate_transition_matrix(3, tmat, c(0.6, 0.2, 0.2, 0.6, 0.4, 1),
colnames(tmat))
health_states <- combine_state(well, disabled, dead)
this.strategy <- strategy(tm, health_states, "control")
this_markov <- markov_model(this.strategy, 24, c(1000, 0, 0), c(0, 0))
well <- health_state("well", cost = 0, utility = 1)
disabled <- health_state("disabled", cost = 10, utility = 0.5)
dead <- health_state("dead", cost = 0, utility = 0)
tmat <- rbind(c(1, 2, 3), c(NA, 4, 5), c(NA, NA, 6))
colnames(tmat) <- rownames(tmat) <- c("well", "disabled", "dead")
tm <- populate_transition_matrix(3, tmat, c(0.4, 0.4, 0.2, 0.6, 0.4, 1),
colnames(tmat))
health_states <- combine_state(well, disabled, dead)
this.strategy <- strategy(tm, health_states, "intervention")
sec_markov <- markov_model(this.strategy, 24, c(1000, 0, 0), c(0, 0))
list_markov <- combine_markov(this_markov, sec_markov)
plot_ceac(list_markov, c(1000, 2000, 3000), comparator = "control")
expect_error(plot_ceac(NULL, c(1000, 2000, 3000), comparator = "control"))
expect_error(plot_ceac(list_markov, NULL, comparator = "control"))
expect_error(plot_ceac(list_markov, c(1000), comparator = "control"))
})
context("testing plotting efficieny frontier")
test_that("testing plotting efficieny frontier", {
well <- health_state("well", cost = 0, utility = 1)
disabled <- health_state("disabled", cost = 100, utility = 1)
dead <- health_state("dead", cost = 0, utility = 0)
tmat <- rbind(c(1, 2, 3), c(NA, 4, 5), c(NA, NA, 6))
colnames(tmat) <- rownames(tmat) <- c("well", "disabled", "dead")
tm <- populate_transition_matrix(3, tmat, c(0.6, 0.2, 0.2, 0.6, 0.4, 1),
colnames(tmat))
health_states <- combine_state(well, disabled, dead)
this.strategy <- strategy(tm, health_states, "control")
this_markov <- markov_model(this.strategy, 24, c(1000, 0, 0), c(0, 0))
well <- health_state("well", cost = 0, utility = 1)
disabled <- health_state("disabled", cost = 10, utility = 0.5)
dead <- health_state("dead", cost = 0, utility = 0)
tmat <- rbind(c(1, 2, 3), c(NA, 4, 5), c(NA, NA, 6))
colnames(tmat) <- rownames(tmat) <- c("well", "disabled", "dead")
tm <- populate_transition_matrix(3, tmat, c(0.4, 0.4, 0.2, 0.6, 0.4, 1),
colnames(tmat))
health_states <- combine_state(well, disabled, dead)
this.strategy <- strategy(tm, health_states, "intervention")
sec_markov <- markov_model(this.strategy, 24, c(1000, 0, 0), c(0, 0))
list_markov <- combine_markov(this_markov, sec_markov)
results_cea <- calculate_icer_nmb(list_markov, 20000, comparator = "control")
plot_efficiency_frontier(results_cea, c(1000, 2000))
expect_error(plot_efficiency_frontier(NULL, c(1000, 2000)))
expect_error(plot_efficiency_frontier(results_cea, NULL))
newcolnames <- colnames(results_cea)
newcolnames[2] <- "changedcost"
colnames(results_cea) <- newcolnames
expect_error(plot_efficiency_frontier(results_cea, c(1000, 2000)))
}) |
nearValue <- function(X,
Z,
tau,
tol = 0.001,
maxiter = 100,
verbose = TRUE){
pre <- preprocessInputs(data.x = X, data.z = Z)
X <- pre$data.x
Z <- pre$data.z
nCov <- ncol(Z) - 2L
rm(pre)
bHat <- betaEst(Z = Z,
X = X,
tau = tau,
tol = tol,
h = 0,
kType = "epan",
betaGuess = NULL,
maxiter = maxiter,
scoreFunction = "scoreNVCF")
score <- scoreNVCF(beta = bHat,
Z = Z,
X = X,
tau = tau,
h = 0,
kType = "epan")
invdU <- try(solve(score$dUdBeta), silent = TRUE)
if( is(invdU, 'try-error') ) {
cat("unable to invert derivative of estimating equation\n")
stop(attr(invdU,"condition"))
}
sig <- invdU %*% (score$mMatrix) %*% invdU
sdVec <- sqrt(diag(sig))
results <- matrix(data = 0.0,
nrow = nCov,
ncol = 4L,
dimnames = list(paste("beta",1L:{nCov},sep=""),
c("estimate","stdErr","z-value","p-value")))
results[,1L] <- bHat
results[,2L] <- sdVec
results[,3L] <- bHat/sdVec
results[,4L] <- 2.0*pnorm(-abs(results[,3L]))
if (verbose) print(results)
zv <- bHat/sdVec
pv <- 2.0*pnorm(-abs(zv))
return( list( "betaHat" = matrix(bHat,nrow=1L),
"stdErr" = sdVec,
"zValue" = bHat/sdVec,
"pValue" = pv ) )
} |
get.Pcent <- function(theMap) {
.Deprecated("", package="maptools", msg="exrtact centroid from SpatialPolygons object;\nobjects other than Spatial objects defined in the sp package are deprecated")
p.cent <- function(poly, flag) {
cent <- .External("RshpCentrd_2d", poly, as.integer(flag),
PACKAGE="maptools")
cent
}
if (!inherits(theMap,"Map")) stop("not a Map object")
theShapes <- theMap$Shapes
if (attr(theShapes,'shp.type') != 'poly')
stop("Must be a valid polygon shapelist")
cent<-lapply(theShapes, p.cent, 0)
return(matrix(unlist(cent), ncol=2, byrow=TRUE))
} |
BootstrapVaRFigure <- function(Ra, number.resamples, cl){
if (nargs() < 3){
stop("Too few arguments")
}
if (nargs() > 3){
stop("Too many arguments")
}
profit.loss.data <- as.vector(Ra)
unsorted.loss.data <- -profit.loss.data
losses.data <- sort(unsorted.loss.data)
n <- length(losses.data)
if (is.vector(cl) & (length(cl) != 1) ) {
stop("Confidence level must be a scalar")
}
if (length(number.resamples) != 1) {
stop("Number of resamples must be a scalar")
}
if (cl >= 1){
stop("Confidence level must be less that 1")
}
if (cl <= 0){
stop("Confidence level must be at least 0")
}
if (number.resamples <= 0){
stop("Number of resamples must be at least 0")
}
VaR <- bootstrap(losses.data, number.resamples, HSVaR, cl)$thetastar
mean.VaR <- mean(VaR)
std.VaR <- sd(VaR)
min.VaR <- min(VaR)
max.VaR <- max(VaR)
ninety.five.perc.conf.interval <- quantile(VaR, c(.05, .95))
cl.for.label <- 100*cl
hist(VaR, 30, xlab="VaR", ylab="Frequency", main=paste("Bootstrapped Historical Simulation VaR at", cl, "% Confidence Level"))
} |
"assembly" |
art.con = function(
m, formula, response = "art", factor.contrasts="contr.sum", method = "pairwise",
interaction = FALSE, adjust, ...
) {
f.parsed = parse.art.con.formula(formula)
if (interaction) {
art.interaction.contrast = do.art.interaction.contrast(m, f.parsed, response, factor.contrasts, method, adjust, ...)
art.interaction.contrast
}
else {
artlm.con = artlm.con.internal(m, f.parsed, response, factor.contrasts, ...)
art.contrast = do.art.contrast(f.parsed, artlm.con, method, adjust)
art.contrast
}
} |
[
{
"title": "Ordinal Data",
"href": "http://wiekvoet.blogspot.com/2013/03/ordinal-data.html"
},
{
"title": "stringdist 0.9.4 and 0.9.3: distances between integer sequences",
"href": "http://www.markvanderloo.eu/yaRb/2015/10/27/stringdist-0-9-4-and-0-9-3-distances-between-integer-sequences/"
},
{
"title": "Sequence generation with no duplicate pairs",
"href": "http://shape-of-code.coding-guidelines.com/2012/10/04/sequence-generation-with-no-duplicate-pairs/"
},
{
"title": "In case you missed it: February 2015 roundup",
"href": "http://blog.revolutionanalytics.com/2015/03/in-case-you-missed-it-february-2015-roundup.html"
},
{
"title": "Matlab-style multiple assignment in R",
"href": "https://strugglingthroughproblems.wordpress.com/2010/08/27/matlab-style-multiple-assignment-in%C2%A0r/"
},
{
"title": "Introduction to exception handling",
"href": "http://gallery.rcpp.org/articles/intro-to-exceptions/"
},
{
"title": "glmnetUtils: quality of life enhancements for elastic net regression with glmnet",
"href": "http://blog.revolutionanalytics.com/2016/11/glmnetutils.html"
},
{
"title": "Building a DGA Classifer: Part 2, Feature Engineering",
"href": "http://datadrivensecurity.info/blog/posts/2014/Oct/dga-part2/"
},
{
"title": "R and Science of Predictive Analytics",
"href": "http://datascience.vegas/r-science-predictive-analytics/"
},
{
"title": "How Much Can We Learn from Top Rankings using Nonnegative Matrix Factorization?",
"href": "http://joelcadwell.blogspot.com/2014/07/how-much-can-we-learn-from-top-rankings.html"
},
{
"title": "Typo in Example 5.18",
"href": "https://xianblog.wordpress.com/2010/10/03/typo-in-example-5-18/"
},
{
"title": "Simple analysis of a few aspects of the Wikipedia World cup 2014 squads data",
"href": "http://rscriptsandtips.blogspot.com/2014/05/simple-analysis-of-few-aspects-of.html"
},
{
"title": "Momentum in R: Part 4 with Quantstrat",
"href": "https://rbresearch.wordpress.com/2013/02/19/momentum-in-r-part-4-with-quantstrat/"
},
{
"title": "Maximum Likelihood versus Goodness of Fit",
"href": "http://freakonometrics.hypotheses.org/10069"
},
{
"title": "A quick analysis of the trends in the number of weddings in France (1975–2010)",
"href": "https://web.archive.org/web/http://timotheepoisot.fr/2010/08/a-quick-analysis-of-the-trends-in-the-number-of-weddings-in-france-1975%E2%80%932010/"
},
{
"title": "Searching for duplicate resource names in PMC article titles",
"href": "https://nsaunders.wordpress.com/2015/09/16/searching-for-duplicate-resource-names-in-pmc-article-titles/"
},
{
"title": "rnpn: An R interface for the National Phenology Network",
"href": "https://r-ecology.blogspot.com/2011/08/rnpn-r-interface-for-national-phenology.html"
},
{
"title": "Text bashing in R for SQL",
"href": "http://www.beardedanalytics.com/text-bashing-in-r-for-sql/"
},
{
"title": "Visualising a Circular Density",
"href": "http://freakonometrics.hypotheses.org/20403"
},
{
"title": "Exporting plain, lattice, or ggplot graphics",
"href": "http://gforge.se/2013/03/exporting-plain-lattice-or-ggplot/"
},
{
"title": "satRday in Cape Town",
"href": "http://www.exegetic.biz/blog/2016/05/satrday-cape-town/"
},
{
"title": "Illustrated Guide to ROC and AUC",
"href": "http://www.joyofdata.de/blog/illustrated-guide-to-roc-and-auc/"
},
{
"title": "Bar Charts and Segmented Bar Charts in R",
"href": "https://qualityandinnovation.com/2012/09/02/bar-charts-and-segmented-bar-charts-in-r/"
},
{
"title": "Plot the new SVG R logo with ggplot2",
"href": "http://rud.is/b/2016/02/11/plot-the-new-svg-r-logo-with-ggplot2/"
},
{
"title": "The R Journal Volume 4/1, June 2012",
"href": "https://www.r-bloggers.com/the-r-journal-volume-41-june-2012/"
},
{
"title": "Analysing the US election using Youtube data",
"href": "http://flovv.github.io/US_Election/"
},
{
"title": "How to reveal anyone’s interests on Twitter using social network analysis",
"href": "https://cartesianfaith.com/2014/09/22/how-to-reveal-anyones-interests-on-twitter-using-social-network-analysis/"
},
{
"title": "Scaling legislative roll call votes with wnominate",
"href": "http://is-r.tumblr.com/post/37110530260/scaling-legislative-roll-call-votes-with-wnominate"
},
{
"title": "Wilcoxon signed rank test",
"href": "http://statistic-on-air.blogspot.com/2009/07/wilcoxon-signed-rank-test.html"
},
{
"title": "Jeff Leek’s non-comprehensive list of awesome things other people did in 2013",
"href": "http://www.gettinggeneticsdone.com/2013/12/non-comprehensive-list-of-awesome-things-other-people-did-in-2013.html"
},
{
"title": "Portfolio Optimization in R, Part 3",
"href": "http://statsadventure.blogspot.com/2011/12/portfolio-optimization-in-r-part-3.html"
},
{
"title": "NIT: Fatty acids study in R – Part 006",
"href": "http://nir-quimiometria.blogspot.com/2012/03/nit-fatty-acids-study-in-r-part-006.html"
},
{
"title": "New package on CRAN: lamW",
"href": "http://www.avrahamadler.com/2015/05/26/lamw-package-cran/"
},
{
"title": "Using R to Analyze Baseball Games in “Real Time”",
"href": "https://blogisticreflections.wordpress.com/2009/10/04/using-r-to-analyze-baseball-games-in-real-time/"
},
{
"title": "project euler-Problem 41",
"href": "https://web.archive.org/web/http://ygc.name/2011/11/07/project-euler-problem-41/"
},
{
"title": "Mumbai, March 24-26, 2011 – R for Finance and Advanced Portfolio Optimization",
"href": "https://www.rmetrics.org/node/86"
},
{
"title": "Course in San Antonio, Texas",
"href": "https://xianblog.wordpress.com/2010/03/18/course-in-san-antonio-texas/"
},
{
"title": "Sourcing an R Script from Dropbox",
"href": "http://jaredknowles.com/journal/2012/7/14/sourcing-an-r-script-from-dropbox.html"
},
{
"title": "Revolution Newsletter: March 2013",
"href": "http://blog.revolutionanalytics.com/2013/03/revolution-newsletter-march-2013.html"
},
{
"title": "Show me the data! Or how to digitize plots",
"href": "http://www.magesblog.com/2012/02/show-me-data-or-how-to-digitize-plots.html"
},
{
"title": "Aggregating spatial points by clusters",
"href": "http://robinlovelace.net//r/2014/03/21/clustering-points-R.html"
},
{
"title": "When Discussing Confidence Level With Others…",
"href": "http://statistical-research.com/some-issues-relating-to-margin-of-error/?utm_source=rss&utm_medium=rss&utm_campaign=some-issues-relating-to-margin-of-error"
},
{
"title": "An Annotated Online Bioinformatics / Computational Biology Curriculum",
"href": "http://www.gettinggeneticsdone.com/2014/06/annotated-online-bioinformatics-computational-biology-curriculum.html"
},
{
"title": "Comparing the contribution of NBA draft picks",
"href": "https://statofmind.wordpress.com/2015/01/26/comparing-the-contribution-of-nba-draft-picks/"
},
{
"title": "A Path Towards Easier Map Projection Machinations with ggplot2",
"href": "http://rud.is/b/2015/07/24/a-path-towards-easier-map-projection-machinations-with-ggplot2/"
},
{
"title": "RProtoBuf & HistogramTools: Statistical Analysis Tools for Large Data Sets",
"href": "https://opensource.googleblog.com/2013/10/rprotobuf-histogramtools-statistical_10.html"
},
{
"title": "httr 0.3",
"href": "https://blog.rstudio.org/2014/03/21/httr-0-3/"
},
{
"title": "Read A Block of Spreadsheet with R",
"href": "https://statcompute.wordpress.com/2015/05/10/read-a-block-of-spreadsheet-with-r/"
},
{
"title": "the random variable that was always less than its mean…",
"href": "https://xianblog.wordpress.com/2016/05/30/the-random-variable-that-was-always-less-than-its-mean/"
},
{
"title": "Practicing static typing in R: Prime directive on trusting our functions with object oriented programming",
"href": "http://memosisland.blogspot.com/2013/06/practicing-static-typing-in-r-prime.html"
}
] |
simtum = function(num.tum = 3, width = 70, height = 70, radius.l = 4, radius.u = 12, seed.center = NULL){
radius = runif(num.tum,radius.l, radius.u)
tum = data.frame(row = rep(1:height, each = width), col = rep(1:height, width))
tum$pixel = rnorm(width * height, 0, 0.5)
tum$is = FALSE
if(!missing(seed.center)) set.seed(seed.center)
centers = list(row = c(sample(1:height, num.tum, replace = TRUE)),
col = c(sample(1:width, num.tum, replace = TRUE)))
for(i in 1:num.tum){
in.circle = which(sqrt((tum$row-centers$row[i])^2 + (tum$col-centers$col[i])^2) <= radius[i])
tum$pixel[in.circle] = tum$pixel[in.circle] + rnorm(length(in.circle),4,1)
tum$is[in.circle] = TRUE
}
tum.range = range(tum$pixel)
tum$pixel = tum$pixel - tum.range[1]
tum$pixel = tum$pixel / (tum.range[2] - tum.range[1])
return(invisible(tum$pixel))
}
|
matCorSig <- function(corrs, nsamp, secondMat = FALSE){
if(!secondMat){
pvals = matrix(NA, nrow = nrow(corrs), ncol = ncol(corrs))
corrs = corrs[upper.tri(corrs)]
nsamp = nsamp[upper.tri(nsamp)]
df = nsamp - 2
pvals_upper = 2 * (1 - pt(abs(corrs) * sqrt(df) / sqrt(1 - corrs^2), df))
pvals[upper.tri(pvals)] = pvals_upper
pvals[abs(corrs) == 1] = 0
} else {
df = nsamp - 2
pvals = matrix(2 * (1 - pt(abs(corrs) * sqrt(df) /
sqrt(1 - corrs^2), df)), nrow = nrow(corrs))
pvals[abs(corrs) == 1] = 0
}
return(pvals)
} |
vif.ridge <- function(mod, ...) {
Vif <- function(v) {
R <- cov2cor(v)
detR <- det(R)
p <- nrow(v)
res <- rep(0,p)
for (i in 1:p) {
res[i] <- R[i,i] * det(as.matrix(R[-i,-i])) / detR
}
res
}
V <- vcov(mod)
res <- t(sapply(V, Vif))
colnames(res) <- colnames(coef(mod))
rownames(res) <- rownames(coef(mod))
res
} |
tidy_micro <- function(otu_tabs, clinical, tab_names,
prev_cutoff = 0.0, ra_cutoff = 0.0, exclude_taxa = NULL,
library_name = "Lib", complete_clinical = TRUE, filter_summary = TRUE,
count_summary = TRUE){
if(library_name %nin% names(clinical)) stop("Must provide 'library_name' matching column name of sequencing IDs from clinical data")
names(clinical)[names(clinical) == library_name] <- "Lib"
if(library_name != "Lib") warning(paste0("Renaming '", library_name, "' to 'Lib'") )
if(is.data.frame(otu_tabs) | is.matrix(otu_tabs)){
if(length(tab_names) != 1) {
stop("tab_names must have length of 1 if only one OTU table supplied.")}
l_otu <- suppressWarnings( otu_tabs %>%
mul_otu_long(.meta = clinical) %>%
dplyr::mutate(Table = tab_names)
)
} else if(is.list(otu_tabs)){
if(missing(tab_names) & is.null(names(otu_tabs))){
stop("otu_tabs must have names, or names must be supplied through tab_names.")
}
if(is.null(names(otu_tabs))) names(otu_tabs) <- tab_names
l_otu <- suppressWarnings(otu_tabs %>%
plyr::ldply(mul_otu_long, .meta = clinical, .id = "Table"))
} else stop("otu_tabs must be a single data.frame/matrix or list of data.frames/matrices.")
l_otu %<>%
dplyr::distinct() %>%
otu_filter(prev_cutoff = prev_cutoff, ra_cutoff = ra_cutoff,
exclude_taxa = exclude_taxa, filter_summary = filter_summary) %>%
dplyr::select(.data$Table, dplyr::everything())
if(complete_clinical){
if(!all(l_otu$Lib %in% clinical$Lib) | !all(clinical$Lib %in% l_otu$Lib)){
warning("Warning: Some libraries in OTU table and clinical data don't match. Only libraries contained in each will be kept.\n")
l_otu %<>% dplyr::filter(.data$Lib %in% clinical$Lib)
}
}
if(count_summary){
message("Contains ",length(unique(l_otu$Lib))," libraries from OTU files.\n")
ss <- l_otu %>%
dplyr::distinct(.data$Lib, .keep_all = T) %>%
dplyr::pull(.data$Total) %>%
summary
message("Summary of sequencing depth:"); print(ss)
}
l_otu %<>%
dplyr::mutate(Table = factor(.data$Table), Taxa = factor(.data$Taxa))
l_otu[names(l_otu) != ".data$Table"]
} |
topologicalInfoContent <- function(g, dist=NULL, deg=NULL){
if(class(g)[1]!="graphNEL"){
stop("'g' must be a 'graphNEL' object")
}
stopifnot(.validateGraph(g))
if(is.null(dist)){
dist <- distanceMatrix(g)
}
if(is.null(deg)){
deg <- graph::degree(g)
}
On <- .cardNi(g,dist,deg)
pis <- On/sum(On)
In=pis*log2(pis)
Iorb <- (-1)*sum(In)
ret <- list()
ret[["entropy"]] <- Iorb
ret[["orbits"]] <- On
return(ret)
}
.getTopology <- function(g,dist,deg){
nodes <- nodes(g)
topology<-lapply(nodes,function(vi){
dist.vi<-dist[vi,]
max.dist <- max(dist.vi)
dist.vi <- dist.vi[dist.vi!=0]
deg.vi <- deg[(names(dist.vi))]
names(deg.vi) <- dist.vi
deg.vi <- deg.vi[order(names(deg.vi))]
tmp.names <-names(deg.vi)
unames <- unique(names(deg.vi))
deg.vi <- unlist(lapply(unames,function(un){
csel <- grep(paste("^",un,"$",sep=""),names(deg.vi))
return(sort(deg.vi[csel]))
}))
return(deg.vi)
})
names(topology) <- nodes
return(topology)
}
.getOrbits <- function(top){
rest <- names(top)
i <- 1
erg <- list()
while(length(rest)>0){
rem <- c()
vi <- rest[1]
erg.tmp <- vi
rest <- rest[-1]
if(length(rest)>0){
for(j in length(rest):1){
if(identical(top[[vi]],top[[rest[j]]])){
erg.tmp <- cbind(erg.tmp,rest[j])
rest <- rest[-j]
}
}
}
erg[[i]]<-sort(erg.tmp)
i<-i+1
}
return(erg)
}
.cardNi <- function(g, dist, deg){
top <- .getTopology(g,dist,deg)
orbits <- .getOrbits(top)
return(sapply(orbits,length))
} |
context("wm_record")
test_that("wm_record - default usage works", {
vcr::use_cassette("wm_record", {
aa <- wm_record(id = 105706)
})
expect_type(aa, "list")
expect_equal(aa$valid_name, "Rhincodontidae")
expect_equal(aa$valid_AphiaID, 105706)
})
test_that("wm_record fails well", {
skip_on_cran()
expect_error(wm_record(), "argument \"id\" is missing")
expect_error(wm_record("asdfafasdfs"), "id must be of class")
vcr::use_cassette("wm_record_error", {
expect_error(wm_record(44444), "\\(204\\) No Content")
})
})
context("wm_record - plural")
test_that("wm_record - default usage works", {
vcr::use_cassette("wm_record_plural_plural", {
bb <- wm_record(id = c(105706, 126436))
})
expect_is(bb, "data.frame")
expect_equal(bb$AphiaID, c(105706, 126436))
})
test_that("wm_record_ - deprecated", {
skip_on_cran()
expect_warning(wm_record_(id = 105706), "deprecated")
}) |
calculate_digit <- function(number, d5, d5_p, inv_v){
number <- prepare_number(number)
c <- 0
for (i in 1:length(number)){
c <- d5_calc(d5, c,
d5_p_calc(d5_p, i, number[i]))
}
final <- inv_v[c + 1]
return(final)
}
d5_p_calc <- function(d5_p, i, number) {
d5_p[(i %% 8) + 1, number + 1] + 1
}
d5_calc <- function(d5, c, d5_p_calc) {
d5[c + 1, d5_p_calc]
} |
rdb_datasets <- function(
provider_code = NULL,
use_readLines = getOption("rdbnomics.use_readLines"),
curl_config = getOption("rdbnomics.curl_config"),
simplify = FALSE,
...
) {
progress_bar <- ellipsis_default("progress_bar", list(...), TRUE)
check_argument(progress_bar, "logical")
if (is.null(provider_code)) {
provider_code <- rdb_providers(
code = TRUE,
use_readLines = use_readLines, curl_config = curl_config
)
}
check_argument(provider_code, "character", len = FALSE)
check_argument(use_readLines, "logical")
check_argument(simplify, "logical")
api_base_url <- getOption("rdbnomics.api_base_url")
check_argument(api_base_url, "character")
api_version <- getOption("rdbnomics.api_version")
check_argument(api_version, c("numeric", "integer"))
authorized_version(api_version)
if (getOption("rdbnomics.progress_bar_datasets") & progress_bar) {
pb <- utils::txtProgressBar(min = 0, max = length(provider_code), style = 3)
}
datasets <- sapply(seq_along(provider_code), function(i) {
tryCatch({
pc <- provider_code[i]
tmp <- paste0(api_base_url, "/v", api_version, "/providers/", pc)
tmp <- get_data(tmp, use_readLines, curl_config)
tmp <- tmp$category_tree
tmp <- unpack(tmp)
tmp <- rbindlist_recursive(tmp)
tmp <- tmp[, .(code, name)]
tmp <- unique(tmp)
if (getOption("rdbnomics.progress_bar_datasets") & progress_bar) {
utils::setTxtProgressBar(pb, i)
}
tmp[order(code)]
}, error = function(e) {
NULL
})
}, simplify = FALSE)
if (getOption("rdbnomics.progress_bar_datasets") & progress_bar) {
close(pb)
}
datasets <- stats::setNames(datasets, provider_code)
datasets <- Filter(Negate(is.null), datasets)
datasets <- check_datasets(datasets)
if (length(datasets) <= 0) {
warning(
"Error when fetching the datasets codes.",
call. = FALSE
)
return(NULL)
}
if (simplify) {
if (length(datasets) == 1) {
return(datasets[[1]])
}
}
datasets
} |
evalClustLoss <- function(c, gs, lossFn="F-measure", a=1, b=1){
n <- length(c)
loss <- NA
if(length(gs)!=n){
stop("'c' and 'gs' arguments have not the same length")
}
if(lossFn == "F-measure"){
loss <- 1 - FmeasureC(pred=c, ref=gs)
}else if(lossFn == "Binder"){
c_coclust <- sapply(c, FUN=function(x){x==c})
gs_coclust <- sapply(gs, FUN=function(x){x==gs})
dif <- c_coclust-gs_coclust
dif[which(dif==1)] <- b
dif[which(dif==-1)] <- a
loss <- sum(dif)
}else{
stop("Specified loss function not available.\n
Specify either 'F-measure' or 'Binder' for the lossFn argument.")
}
return(loss)
} |
check.power <- function(nGenes = 10000, pi0 = 0.8, m, mu, disp, fc,
up = 0.5, replace = TRUE, fdr = 0.05, sims = 100) {
powerfdr.fun <- function(fdr, p){
V <- sum( (p < fdr) & (sim$de == FALSE))
R <- sum( p < fdr )
S <- R - V
power <- S / (nGenes * (1 - pi0))
fdr_true <- V / R
return(c(power, fdr_true))
}
res <- list()
pow_bh <- fdr_bh <- pow_qvalue <- fdr_qvalue <- rep(0, sims)
for (j in 1:sims){
sim <- sim.counts(nGenes, pi0, m, mu, disp, fc, up, replace)
cts <- sim$counts
lib.size <- colSums(cts)
group = rep(c(1, 2), each = m)
d <- DGEList(cts, lib.size, group = group)
d <- calcNormFactors(d)
design <- model.matrix(~ factor(group))
y <- voom(d, design, plot=FALSE)
fit <- lmFit(y, design)
fit <- eBayes(fit)
pvalue <- fit$p.value[, 2]
p_bh <- p.adjust(pvalue, method = "BH")
pow_bh[j] <- powerfdr.fun(fdr, p_bh)[1]
fdr_bh[j] <- powerfdr.fun(fdr, p_bh)[2]
p_qvalue <- qvalue(pvalue)$qvalues
pow_qvalue[j] <- powerfdr.fun(fdr, p_qvalue)[1]
fdr_qvalue[j] <- powerfdr.fun(fdr, p_qvalue)[2]
}
res$pow_bh_ave <- mean(pow_bh)
res$fdr_bh_ave <- mean(fdr_bh)
res$pow_qvalue_ave <- mean(pow_qvalue)
res$fdr_qvalue_ave <- mean(fdr_qvalue)
return(res)
} |
beta.div.comp <-
function(mat,
coef = "J",
quant = FALSE,
save.abc = FALSE) {
if(sum( scale(mat, scale=FALSE)^2 )==0) stop("The data matrix has no variation")
if(any(mat<0)) stop("The data matrix contains negative values")
coef <- pmatch(coef, c("S", "J", "BS", "BJ", "N"))
if (coef == 5 &
quant)
stop("coef='N' and quant=TRUE: combination not programmed")
mat <- as.matrix(mat)
n <- nrow(mat)
if (is.null(rownames(mat)))
noms <- paste("Site", 1:n, sep = "")
else
noms <- rownames(mat)
if (!quant) {
if (coef == 1)
form = "Podani family, Sorensen"
if (coef == 2)
form = "Podani family, Jaccard"
if (coef == 3)
form = "Baselga family, Sorensen"
if (coef == 4)
form = "Baselga family, Jaccard"
if (coef == 5)
form = "Podani & Schmera (2011) relativized nestedness"
mat.b <- ifelse(mat > 0, 1, 0)
a <- mat.b %*% t(mat.b)
b <- mat.b %*% (1 - t(mat.b))
c <- (1 - mat.b) %*% t(mat.b)
min.bc <- pmin(b, c)
if (coef == 1 || coef == 2) {
repl <- 2 * min.bc
rich <-
abs(b - c)
if (coef == 1) {
repl <- repl / (2 * a + b + c)
rich <- rich / (2 * a + b + c)
D <- (b + c) / (2 * a + b + c)
} else if (coef == 2) {
repl <- repl / (a + b + c)
rich <- rich / (a + b + c)
D <- (b + c) / (a + b + c)
}
} else if (coef == 3) {
D <-
(b + c) / (2 * a + b + c)
repl <-
min.bc / (a + min.bc)
rich <-
D - repl
} else if (coef == 4) {
D <-
(b + c) / (a + b + c)
repl <-
2 * min.bc / (a + 2 * min.bc)
rich <-
D - repl
} else if (coef == 5) {
repl <- 2 * min.bc / (a + b + c)
D <- (b + c) / (a + b + c)
rich <- matrix(0, n, n)
for (i in 2:n) {
for (j in 1:(i - 1)) {
aa = a[i, j]
bb = b[i, j]
cc = c[i, j]
if (a[i, j] == 0)
rich[i, j] <- 0
else
rich[i, j] <-
(aa + abs(bb - cc)) / (aa + bb + cc)
}
}
}
rownames(repl) <- rownames(rich) <- rownames(D) <- noms
D <- as.dist(D)
repl <- as.dist(repl)
rich <- as.dist(rich)
total.div <- sum(D) / (n * (n - 1))
repl.div <- sum(repl) / (n * (n - 1))
rich.div <- sum(rich) / (n * (n - 1))
part <-
c(total.div,
repl.div,
rich.div,
repl.div / total.div,
rich.div / total.div)
if(coef<=2)
names(part) <- c("BDtotal","Repl","RichDif","Repl/BDtotal","RichDif/BDtotal")
if(coef>=3)
names(part) <- c("BDtotal", "Repl", "Nes", "Repl/BDtotal", "Nes/BDtotal")
if (save.abc) {
res <- list(
repl = repl,
rich = rich,
D = D,
part = part,
Note = form,
a = as.dist(a),
b = as.dist(t(b)),
c = as.dist(t(c))
)
} else {
res <- list(
repl = repl,
rich = rich,
D = D,
part = part,
Note = form)
}
} else {
if (coef == 1)
form <- "Podani family, percentage difference"
if (coef == 2)
form <- "Podani family, Ruzicka"
if (coef == 3)
form <- "Baselga family, percentage difference"
if (coef == 4)
form <- "Baselga family, Ruzicka"
repl <- matrix(0, n, n)
rich <- matrix(0, n, n)
D <- matrix(0, n, n)
rownames(repl) <- rownames(rich) <- rownames(D) <- noms
for(i in 2:n) {
for(j in 1:(i-1)) {
tmp = mat[i,] - mat[j,]
A = sum(pmin(mat[i,], mat[j,]))
B = sum(tmp[tmp>0])
C = -sum(tmp[tmp<0])
if(coef==1|| coef==3) {
den <- (2*A+B+C)
} else if(coef==2|| coef==4) {
den <- (A+B+C)
}
if(coef==1 || coef==2) {
repl[i,j] <- 2*(min(B,C))/den
rich[i,j] <- abs(B-C)/den
D[i,j] <- (B+C)/den
}
if(coef==3) {
repl[i,j] <- (min(B,C))/(A+min(B,C))
rich[i,j] <- abs(B-C)*A/(den*(A+min(B,C)))
D[i,j] <- (B+C)/den
}
if(coef==4) {
repl[i,j] <- 2*(min(B,C))/(A+2*min(B,C))
rich[i,j] <- abs(B-C)*A/(den*(A+2*min(B,C)))
D[i,j] <- (B+C)/den
}
}
}
repl <- as.dist(repl)
rich <- as.dist(rich)
D <- as.dist(D)
repl.div <- sum(repl) / (n * (n - 1))
rich.div <- sum(rich) / (n * (n - 1))
total.div <- sum(D) / (n * (n - 1))
part <-
c(total.div,
repl.div,
rich.div,
repl.div / total.div,
rich.div / total.div)
if(coef<=2)
names(part) <- c("BDtotal","Repl","RichDif","Repl/BDtotal","RichDif/BDtotal")
if(coef>=3)
names(part) <- c("BDtotal", "Repl", "Nes", "Repl/BDtotal", "Nes/BDtotal")
res <- list(
repl = repl,
rich = rich,
D = D,
part = part,
Note = form)
}
res
} |
library(testthat)
library(rgovcan)
pid <- "b7ca71fa-6265-46e7-a73c-344ded9212b0"
pkg <- govcan_get_record(pid)
pkg_list_format <- govcan_get_record(pid, format_resources = TRUE)
pkg_list_res <- govcan_get_record(pid, only_resources = TRUE)
pkg_list_res_format <- govcan_get_record(pid, format_resources = TRUE,
only_resources = TRUE)
search_default <- govcan_search("dfo", 10)
search_small <- govcan_search("dfo", 2)
search_format <- govcan_search("dfo", 10, format_results = TRUE)
search_list <- govcan_search("dfo", 10, only_results = FALSE)
search_list_format <- govcan_search("dfo", 10, format_results = TRUE,
only_results = FALSE)
id_resources <- govcan_get_resources(search_default)
id_resources_character <- govcan_get_resources("b7ca71fa-6265-46e7-a73c-344ded9212b0") |
context("test_aggregate.R")
requireNamespace("data.table")
verbose <- TRUE
test_that("aggregate_by_key: with unique key, should preserve the number of line", {
data("adult")
adult <- adult[1 : 5000, ]
adult$key <- seq_len(nrow(adult))
stored_nrow <- nrow(adult)
aggregated_adult <- aggregate_by_key(adult, key = "key", verbose = verbose)
expect_equal(stored_nrow, nrow(aggregated_adult))
})
test_that("aggregate_by_key: with at least 1 aggregated col should generate nbr_lines col", {
data("adult")
adult <- adult[1 : 5000, ]
cols <- c("country", "age")
aggregated_adult <- aggregate_by_key(adult[, cols], key = "country", verbose = verbose)
expect_true(all(c("country", "nbr_lines") %in% names(aggregated_adult)))
})
test_that("aggregate_by_key: date are not handled, error should be thrown", {
data("messy_adult")
messy_adult <- messy_adult[1 : 5000, ]
messy_adult[["date3"]] <- as.Date(messy_adult[["date3"]], format = "%d-%m-%Y")
cols <- c("country", "date3")
sapply(messy_adult, class)
expect_error(aggregate_by_key(messy_adult[, cols, with = FALSE], key = "country", verbose = verbose),
"I can only handle: numeric, integer, factor, logical, character columns.")
})
test_that("private function: aggregate_a_column: aggregate a character with more
than thresh unique values should generate one column count of unique.", {
data("adult")
setDT(adult)
unique_keys <- unique(adult[, "country", with = FALSE])
n_country <- nrow(unique_keys)
adult[["character_col"]] <- sample(LETTERS, nrow(adult), replace = TRUE)
cols <- c("country", "character_col")
aggregated_col <- aggregate_a_column(adult[, cols, with = FALSE], col = "character_col", key = "country",
unique_keys = unique_keys, thresh = 2)
expect_equal(n_country, nrow(aggregated_col))
expect_equal(2, ncol(aggregated_col))
expect_equal(c("country", "n_unique.character_col"), names(aggregated_col))
})
test_that("private function: aggregate_a_column: aggregate a character with les than
thresh unique values should generate one column per unique values.", {
data("adult")
setDT(adult)
unique_keys <- unique(adult[, "country", with = FALSE])
n_country <- nrow(unique_keys)
adult[["character_col"]] <- sample(c("A", "B"), nrow(adult), replace = TRUE)
cols <- c("country", "character_col")
aggregated_col <- aggregate_a_column(adult[, cols, with = FALSE], col = "character_col", key = "country",
unique_keys = unique_keys, thresh = 2)
expect_equal(n_country, nrow(aggregated_col))
expect_equal(3, ncol(aggregated_col))
expect_equal(c("country", "character_col.A", "character_col.B"), names(aggregated_col))
})
test_that("private function: aggregate_a_column: aggregate a logical column. Should create
1 column with count of true value", {
data("adult")
setDT(adult)
unique_keys <- unique(adult[, "country", with = FALSE])
n_country <- nrow(unique_keys)
adult[["logical_col"]] <- sample(c(TRUE, FALSE), nrow(adult), replace = TRUE)
cols <- c("country", "logical_col")
aggregated_col <- aggregate_a_column(adult[, cols, with = FALSE], col = "logical_col", key = "country",
unique_keys = unique_keys)
expect_equal(n_country, nrow(aggregated_col))
expect_equal(2, ncol(aggregated_col))
expect_equal(c("country", "nbr_true.logical_col"), names(aggregated_col))
})
test_that("private function: aggregate_a_column: aggregate a numeric column with 2 functions.
Should create 1 column for each function result", {
data("adult")
setDT(adult)
unique_keys <- unique(adult[, "country", with = FALSE])
n_country <- nrow(unique_keys)
cols <- c("country", "age")
functions <- c("mean", "sd")
aggregated_col <- aggregate_a_column(adult[, cols, with = FALSE], col = "age", key = "country",
unique_keys = unique_keys, functions = functions)
expect_equal(n_country, nrow(aggregated_col))
expect_equal(3, ncol(aggregated_col))
expect_equal(c("country", "mean.age", "sd.age"), names(aggregated_col))
})
test_that("private function: aggregate_a_column: with duplicated col should return same result on both.", {
data("adult")
setDT(adult)
unique_keys <- unique(adult[, "country", with = FALSE])
n_country <- nrow(unique_keys)
adult[["country2"]] <- adult[["country"]]
cols <- c("country", "country2")
aggregated_col <- aggregate_a_column(adult[, cols, with = FALSE], col = "country2", key = "country",
unique_keys = unique_keys, functions = functions)
expect_equal(n_country, nrow(aggregated_col))
expect_equal(aggregated_col[["country"]], aggregated_col[["country2"]])
})
test_that("private function: aggregate_a_column: should thow error on more than 2 cols set", {
data("adult")
cols <- c("country", "age", "education")
expect_error(aggregate_a_column(adult[, cols], col = "country", key = "country", unique_keys = unique_keys),
": data_set should have 2 columns.")
}) |
context("Properties")
test_that("properties can be read successfully", {
data <- '
path <- renv_scope_tempfile("renv-properties-")
writeLines(data, con = path)
props <- renv_properties_read(path = path)
expect_identical(props, list(Key = "Value"))
props <- renv_properties_read(path = path, trim = FALSE)
expect_identical(props, list(Key = " Value"))
})
test_that("quoted properties are unquoted", {
props <- renv_properties_read(
path = "resources/properties.txt",
delimiter = "=",
dequote = TRUE
)
expected <- list(
Key1 = "Value 1",
Key2 = 'Value "2"',
Key3 = "Value '3'"
)
expect_identical(props, expected)
}) |
infer.analysis=function(mat.list, critical, Omega.true.list, offdiag=TRUE) {
if ( !is.list(mat.list)){
stop('argument mat.list should be a list')
} else if (!is.list(Omega.true.list)) {
stop('argument Omega.true.list should be a list')
} else if (any(!sapply(mat.list,is.matrix))) {
stop('argument mat.list should be a list of matrices')
} else if (any(!sapply(Omega.true.list,is.matrix))) {
stop('argument Omega.true.list should be a list of matrices')
} else if ( length(mat.list)!=length(Omega.true.list) ) {
stop('arguments mat.list and Omega.true.list should share the same length')
} else if ( any(!(sapply(mat.list,dim)[1,]==sapply(Omega.true.list,dim)[1,]))) {
stop('dimension of elements in argument mat.list should match argument Omega.true.list')
} else if ( !is.logical(offdiag)) {
stop('argument offdiag should be a logical TRUE or FALSE ')
}
K=length(mat.list)
fp=c();fn=c();d=c();nd=c();t=c()
for (i in 1:K) {
mat.list[[i]]=sign(abs(mat.list[[i]])>critical)
if (offdiag==TRUE) {
diag(mat.list[[i]])=NA
diag(Omega.true.list[[i]])=NA
}
fp[i]=length(intersect(which(mat.list[[i]] !=0 ), which(Omega.true.list[[i]] ==0)))
fn[i] =length(intersect(which(mat.list[[i]] ==0 ), which(Omega.true.list[[i]] !=0)))
d[i] =length(which(mat.list[[i]] !=0 ))
nd[i] =length(which(mat.list[[i]] ==0 ))
t[i] = length(which(Omega.true.list[[i]] !=0 ))
}
Out = list()
Out$fp=fp
Out$fn=fn
Out$d=d
Out$nd=nd
Out$t=t
return(Out)
} |
useSweetAlert()
observeEvent(input$success, {
sendSweetAlert(
session = session,
title = "Success !!",
text = "All in order",
type = "success"
)
})
observeEvent(input$error, {
sendSweetAlert(
session = session,
title = "Error...",
text = "Oups !",
type = "error"
)
})
observeEvent(input$info, {
sendSweetAlert(
session = session,
title = "Information",
text = "Something helpful",
type = "info"
)
})
observeEvent(input$tags, {
sendSweetAlert(
session = session,
title = "HTLM tags",
text = "normal <b>bold</b> <span style='color: steelblue;'>color</span> <h1>h1</h1>",
html = TRUE,
type = NULL
)
})
observeEvent(input$warning, {
sendSweetAlert(
session = session,
title = "Warning !!!",
text = NULL,
type = "warning"
)
}) |
round_polytope <- function(P, settings = list()){
seed = NULL
if (!is.null(settings$seed)) {
seed = settings$seed
}
ret_list = rounding(P, settings, seed)
Mat = ret_list$Mat
b = Mat[, 1]
A = Mat[, -c(1), drop = FALSE]
type = P@type
if (type == 'Vpolytope') {
PP = list("P" = Vpolytope(V = A), "T" = ret_list$T, "shift" = ret_list$shift, "round_value" = ret_list$round_value)
}else if (type == 'Zonotope') {
PP = list("P" = Zonotope(G = A), "T" = ret_list$T, "shift" = ret_list$shift, "round_value" = ret_list$round_value)
} else {
PP = list("P" = Hpolytope(A = A, b = b), "T" = ret_list$T, "shift" = ret_list$shift, "round_value" = ret_list$round_value)
}
return(PP)
} |
lakeVolume <- function(inLakeMorpho, zmax = NULL, slope_quant = 0.5, correctFactor = 1,
addBathy = FALSE) {
if (class(inLakeMorpho) != "lakeMorpho") {
stop("Input data is not of class 'lakeMorpho'. Run lakeSurround Topo or lakeMorphoClass first.")
}
if(is.null(inLakeMorpho$elev) & is.null(zmax)){
warning("No maximum depth provided and no elevation data included to estimate
maximum depth. Provide a maximum depth or run lakeSurroundTopo
first with elevation included. Without these, returns NA.")
return(NA)
}
dmax <- max(raster::getValues(inLakeMorpho$lakeDistance), na.rm = TRUE)
if(is.null(zmax)) {
zmax <- lakeMaxDepth(inLakeMorpho, slope_quant, correctFactor)
}
lakevol <- sum((raster::getValues(inLakeMorpho$lakeDistance) * zmax/dmax) *
res(inLakeMorpho$lakeDistance)[1] *
res(inLakeMorpho$lakeDistance)[2], na.rm = TRUE)
if (addBathy) {
myBathy <- inLakeMorpho$lakeDistance * zmax/dmax
myName <- deparse(substitute(inLakeMorpho))
inLakeMorpho$pseudoBathy <- NULL
inLakeMorpho <- c(inLakeMorpho, pseudoBathy = myBathy)
class(inLakeMorpho) <- "lakeMorpho"
assign(myName, inLakeMorpho, envir = parent.frame())
}
return(round(lakevol, 4))
} |
"phi2poly" <-
function(ph,cp,cc,n=NULL,correct=TRUE) {
r.marg<-rep(0,2)
c.marg<- rep(0,2)
p<-array(rep(0,4),dim=c(2,2))
r.marg[1]<- cp
r.marg[2]<- 1 -cp
c.marg[1]<- cc
c.marg[2]<- 1-cc
p[1,1]<- r.marg[1]*c.marg[1]+ ph*sqrt(prod(r.marg,c.marg))
p[2,2]<- r.marg[2]*c.marg[2]+ ph*sqrt(prod(r.marg,c.marg))
p[1,2]<- r.marg[1]*c.marg[2]- ph*sqrt(prod(r.marg,c.marg))
p[2,1]<- r.marg[2]*c.marg[1]- ph*sqrt(prod(r.marg,c.marg))
if(!is.null(n)) p <- p*n
result<-tetrachoric(p,correct=correct )$rho
return(result)}
"phi2tet" <-
function(ph,cp,cc,n=NULL,correct=TRUE) {
if(is.null(n)) n <- 1
r.marg<-rep(0,2)
c.marg<- rep(0,2)
p<-array(rep(0,4),dim=c(2,2))
r.marg[1]<- cp/n
r.marg[2]<- 1 -cp/n
c.marg[1]<- cc/n
c.marg[2]<- 1-cc/n
p[1,1]<- r.marg[1]*c.marg[1]+ ph*sqrt(prod(r.marg,c.marg))
p[2,2]<- r.marg[2]*c.marg[2]+ ph*sqrt(prod(r.marg,c.marg))
p[1,2]<- r.marg[1]*c.marg[2]- ph*sqrt(prod(r.marg,c.marg))
p[2,1]<- r.marg[2]*c.marg[1]- ph*sqrt(prod(r.marg,c.marg))
if(!is.null(n)) p <- p*n
result<-tetrachoric(p,correct=correct )$rho
return(result)}
"phi2tetra" <-
function(ph,m,n=NULL,correct=TRUE) {
if(!is.matrix(ph) && !is.data.frame(ph)) {result <- phi2tet(ph,m[1],m[2],n=n,correct=correct) } else {
nvar <- nrow(ph)
if(nvar !=ncol(ph)) {stop('Matrix must be square')}
if (length(m) !=nvar) {stop("length of m must match the number of variables")}
result <- as.matrix(ph)
for(i in 2:nvar) {
for (j in 1:(i-1)) {
result[i,j] <- result[j,i] <- phi2tet(ph[i,j],m[i],m[j],n=n,correct=correct)
}
}
}
return(result) }
|
context("change analysis")
load(system.file("extdata", "NLA_IN.rda", package = "spsurvey"))
popsize <- data.frame(
LAKE_ORGN = c("MAN_MADE", "NATURAL"),
Total = c(6000, 14000)
)
fpc1 <- 20000
fpc2a <- list(
Urban = 5000,
"Non-Urban" = 15000
)
fpc2b <- list(
MAN_MADE = 6000,
NATURAL = 14000
)
fpc3 <- c(
Ncluster = 200,
clusterID_1 = 100,
clusterID_2 = 100,
clusterID_3 = 100,
clusterID_4 = 100
)
fpc4a <- list(
Urban = c(
Ncluster = 75,
clusterID_1 = 50,
clusterID_2 = 50,
clusterID_3 = 50,
clusterID_4 = 50
),
"Non-Urban" = c(
Ncluster = 125,
clusterID_1 = 50,
clusterID_2 = 50,
clusterID_3 = 50,
clusterID_4 = 50
)
)
fpc4b <- list(
NATURAL = c(
Ncluster = 130,
clusterID_1 = 50,
clusterID_2 = 50,
clusterID_3 = 50,
clusterID_4 = 50
),
MAN_MADE = c(
Ncluster = 70,
clusterID_1 = 50,
clusterID_2 = 50,
clusterID_3 = 50,
clusterID_4 = 50
)
)
dframe <- droplevels(subset(NLA_IN, YEAR != 2017))
vars_cat <- c("BENT_MMI_COND_2017")
vars_cont <- c("ContVar")
subpops <- c("All_Sites")
popsize <- data.frame(
All_Sites = c("Indiana Lakes"),
Total = c(20000)
)
Change_Estimates <- change_analysis(
dframe = dframe, vars_cat = vars_cat,
vars_cont = vars_cont, test = c("mean", "median"), subpops = subpops,
surveyID = "YEAR", siteID = "UNIQUE_ID", weight = "WGT_TP", xcoord = "XCOORD",
ycoord = "YCOORD"
)
test_that("Change: Unstratified single-stage analysis", {
expect_true(exists("Change_Estimates"))
expect_equal(attributes(Change_Estimates$catsum)$class, "data.frame")
expect_equal(attributes(Change_Estimates$contsum_mean)$class, "data.frame")
expect_equal(attributes(Change_Estimates$contsum_median)$class, "data.frame")
expect_equal(nrow(Change_Estimates$catsum), 2)
expect_equal(nrow(Change_Estimates$contsum_mean), 1)
expect_equal(nrow(Change_Estimates$contsum_median), 2)
})
Change_Estimates <- change_analysis(
dframe = dframe, vars_cat = vars_cat,
vars_cont = vars_cont, test = c("mean", "median"), subpops = subpops,
surveyID = "YEAR", siteID = "UNIQUE_ID", weight = "WGT_TP", xcoord = "XCOORD",
ycoord = "YCOORD", popsize = popsize
)
test_that("Change: with known population sizes", {
expect_true(exists("Change_Estimates"))
expect_equal(attributes(Change_Estimates$catsum)$class, "data.frame")
expect_equal(attributes(Change_Estimates$contsum_mean)$class, "data.frame")
expect_equal(attributes(Change_Estimates$contsum_median)$class, "data.frame")
expect_equal(nrow(Change_Estimates$catsum), 2)
expect_equal(nrow(Change_Estimates$contsum_mean), 1)
expect_equal(nrow(Change_Estimates$contsum_median), 2)
})
Change_Estimates <- change_analysis(
dframe = dframe, vars_cat = vars_cat,
vars_cont = vars_cont, test = c("mean", "median"), subpops = subpops,
surveyID = "YEAR", siteID = "UNIQUE_ID", weight = "WGT_TP", xcoord = "XCOORD",
ycoord = "YCOORD", fpc = fpc1
)
test_that("Change: with finite population correction factor", {
expect_true(exists("Change_Estimates"))
expect_equal(attributes(Change_Estimates$catsum)$class, "data.frame")
expect_equal(attributes(Change_Estimates$contsum_mean)$class, "data.frame")
expect_equal(attributes(Change_Estimates$contsum_median)$class, "data.frame")
expect_equal(nrow(Change_Estimates$catsum), 2)
expect_equal(nrow(Change_Estimates$contsum_mean), 1)
expect_equal(nrow(Change_Estimates$contsum_median), 2)
})
Change_Estimates <- change_analysis(
dframe = dframe, vars_cat = vars_cat,
vars_cont = vars_cont, test = c("mean", "median"), subpops = subpops,
surveyID = "YEAR", siteID = "UNIQUE_ID", weight = "WGT_TP", xcoord = "XCOORD",
ycoord = "YCOORD", stratumID = "LAKE_ORGN"
)
test_that("Change: Stratified single-stage analysis", {
expect_true(exists("Change_Estimates"))
expect_equal(attributes(Change_Estimates$catsum)$class, "data.frame")
expect_equal(attributes(Change_Estimates$contsum_mean)$class, "data.frame")
expect_equal(attributes(Change_Estimates$contsum_median)$class, "data.frame")
expect_equal(nrow(Change_Estimates$catsum), 2)
expect_equal(nrow(Change_Estimates$contsum_mean), 1)
expect_equal(nrow(Change_Estimates$contsum_median), 2)
})
Change_Estimates <- change_analysis(
dframe = dframe, vars_cat = vars_cat,
vars_cont = vars_cont, test = c("mean", "median"), subpops = subpops,
surveyID = "YEAR", siteID = "UNIQUE_ID", weight = "WGT_TP", xcoord = "XCOORD",
ycoord = "YCOORD", stratumID = "LAKE_ORGN", fpc = fpc2b
)
test_that("Change: with finite population correction factor", {
expect_true(exists("Change_Estimates"))
expect_equal(attributes(Change_Estimates$catsum)$class, "data.frame")
expect_equal(attributes(Change_Estimates$contsum_mean)$class, "data.frame")
expect_equal(attributes(Change_Estimates$contsum_median)$class, "data.frame")
expect_equal(nrow(Change_Estimates$catsum), 2)
expect_equal(nrow(Change_Estimates$contsum_mean), 1)
expect_equal(nrow(Change_Estimates$contsum_median), 2)
})
Change_Estimates <- change_analysis(
dframe = dframe, vars_cat = vars_cat,
vars_cont = vars_cont, test = c("mean", "median"), subpops = subpops,
surveyID = "YEAR", siteID = "UNIQUE_ID", weight = "WGT_TP", xcoord = "XCOORD",
ycoord = "YCOORD", clusterID = "clusterID", weight1 = "weight1",
xcoord1 = "xcoord1", ycoord1 = "ycoord1", vartype = "SRS"
)
test_that("Change: Unstratified two-stage analysis", {
expect_true(exists("Change_Estimates"))
expect_equal(attributes(Change_Estimates$catsum)$class, "data.frame")
expect_equal(attributes(Change_Estimates$contsum_mean)$class, "data.frame")
expect_equal(attributes(Change_Estimates$contsum_median)$class, "data.frame")
expect_equal(nrow(Change_Estimates$catsum), 2)
expect_equal(nrow(Change_Estimates$contsum_mean), 1)
expect_equal(nrow(Change_Estimates$contsum_median), 2)
})
Change_Estimates <- change_analysis(
dframe = dframe, vars_cat = vars_cat,
vars_cont = vars_cont, test = c("mean", "median"), subpops = subpops,
surveyID = "YEAR", siteID = "UNIQUE_ID", weight = "WGT_TP", xcoord = "XCOORD",
ycoord = "YCOORD", clusterID = "clusterID", weight1 = "weight1",
xcoord1 = "xcoord1", ycoord1 = "ycoord1", popsize = popsize,
vartype = "SRS"
)
test_that("Change: with known population sizes", {
expect_true(exists("Change_Estimates"))
expect_equal(attributes(Change_Estimates$catsum)$class, "data.frame")
expect_equal(attributes(Change_Estimates$contsum_mean)$class, "data.frame")
expect_equal(attributes(Change_Estimates$contsum_median)$class, "data.frame")
expect_equal(nrow(Change_Estimates$catsum), 2)
expect_equal(nrow(Change_Estimates$contsum_mean), 1)
expect_equal(nrow(Change_Estimates$contsum_median), 2)
})
Change_Estimates <- change_analysis(
dframe = dframe, vars_cat = vars_cat,
vars_cont = vars_cont, test = c("mean", "median"), subpops = subpops,
surveyID = "YEAR", siteID = "UNIQUE_ID", weight = "WGT_TP", xcoord = "XCOORD",
ycoord = "YCOORD", clusterID = "clusterID", weight1 = "weight1",
xcoord1 = "xcoord1", ycoord1 = "ycoord1", fpc = fpc3, vartype = "SRS"
)
test_that("Change: with finite population correction factor", {
expect_true(exists("Change_Estimates"))
expect_equal(attributes(Change_Estimates$catsum)$class, "data.frame")
expect_equal(attributes(Change_Estimates$contsum_mean)$class, "data.frame")
expect_equal(attributes(Change_Estimates$contsum_median)$class, "data.frame")
expect_equal(nrow(Change_Estimates$catsum), 2)
expect_equal(nrow(Change_Estimates$contsum_mean), 1)
expect_equal(nrow(Change_Estimates$contsum_median), 2)
})
Change_Estimates <- change_analysis(
dframe = dframe, vars_cat = vars_cat,
vars_cont = vars_cont, test = c("mean", "median"), subpops = subpops,
surveyID = "YEAR", siteID = "UNIQUE_ID", weight = "WGT_TP", xcoord = "XCOORD",
ycoord = "YCOORD", stratumID = "LAKE_ORGN", clusterID = "clusterID",
weight1 = "weight1", xcoord1 = "xcoord1", ycoord1 = "ycoord1",
vartype = "SRS"
)
test_that("Change: Stratified two-stage analysis", {
expect_true(exists("Change_Estimates"))
expect_equal(attributes(Change_Estimates$catsum)$class, "data.frame")
expect_equal(attributes(Change_Estimates$contsum_mean)$class, "data.frame")
expect_equal(attributes(Change_Estimates$contsum_median)$class, "data.frame")
expect_equal(nrow(Change_Estimates$catsum), 2)
expect_equal(nrow(Change_Estimates$contsum_mean), 1)
expect_equal(nrow(Change_Estimates$contsum_median), 2)
})
Change_Estimates <- change_analysis(
dframe = dframe, vars_cat = vars_cat,
vars_cont = vars_cont, test = c("mean", "median"), subpops = subpops,
surveyID = "YEAR", siteID = "UNIQUE_ID", weight = "WGT_TP", xcoord = "XCOORD",
ycoord = "YCOORD", stratumID = "LAKE_ORGN", clusterID = "clusterID",
weight1 = "weight1", xcoord1 = "xcoord1", ycoord1 = "ycoord1",
popsize = popsize, vartype = "SRS"
)
test_that("Change: with known population sizes", {
expect_true(exists("Change_Estimates"))
expect_equal(attributes(Change_Estimates$catsum)$class, "data.frame")
expect_equal(attributes(Change_Estimates$contsum_mean)$class, "data.frame")
expect_equal(attributes(Change_Estimates$contsum_median)$class, "data.frame")
expect_equal(nrow(Change_Estimates$catsum), 2)
expect_equal(nrow(Change_Estimates$contsum_mean), 1)
expect_equal(nrow(Change_Estimates$contsum_median), 2)
})
Change_Estimates <- change_analysis(
dframe = dframe, vars_cat = vars_cat,
vars_cont = vars_cont, test = c("mean", "median"), subpops = subpops,
surveyID = "YEAR", siteID = "UNIQUE_ID", weight = "WGT_TP", xcoord = "XCOORD",
ycoord = "YCOORD", stratumID = "LAKE_ORGN", clusterID = "clusterID",
weight1 = "weight1", xcoord1 = "xcoord1", ycoord1 = "ycoord1",
fpc = fpc4b, vartype = "SRS"
)
test_that("Change: with finite population correction factor", {
expect_true(exists("Change_Estimates"))
expect_equal(attributes(Change_Estimates$catsum)$class, "data.frame")
expect_equal(attributes(Change_Estimates$contsum_mean)$class, "data.frame")
expect_equal(attributes(Change_Estimates$contsum_median)$class, "data.frame")
expect_equal(nrow(Change_Estimates$catsum), 2)
expect_equal(nrow(Change_Estimates$contsum_mean), 1)
expect_equal(nrow(Change_Estimates$contsum_median), 2)
}) |
.diff.timeSeries <-
function(x, lag = 1, diff = 1, trim = FALSE, pad = NA, ...)
{
stopifnot(is.timeSeries(x))
Title <- x@title
Documentation <- x@documentation
y <- getDataPart(x)
z <- diff(y, lag = lag, difference = diff)
diffNums = dim(y)[1] - dim(z)[1]
if (!trim) {
zpad <- matrix(0*y[1:diffNums, ] + pad, nrow = diffNums)
z <- rbind(zpad, z) }
pos <-
if (!trim)
x@positions
else
x@positions[-(1:diffNums)]
df <- x@recordIDs
if (trim && sum(dim(df)) > 0) {
df <- df[-seq.int(diffNums), , drop = FALSE]
rownames(df) <- seq.int(NROW(df))
}
ans <- timeSeries(data = z, charvec = pos, units = colnames(z),
format = x@format, zone = x@FinCenter,
FinCenter = x@FinCenter, recordIDs = df)
ans@title <- Title
ans@documentation <- Documentation
ans
}
setMethod("diff", "timeSeries",
function(x, lag = 1, diff = 1, trim = FALSE, pad = NA, ...)
.diff.timeSeries(x, lag, diff, trim, pad, ...)
)
diff.timeSeries <- function(x, ...) .diff.timeSeries(x, ...) |
mapdeck <- function(
data = NULL,
token = get_access_token( api = 'mapbox' ),
width = NULL,
height = NULL,
padding = 0,
style = 'mapbox://styles/mapbox/streets-v9',
pitch = 0,
zoom = 0,
bearing = 0,
libraries = NULL,
max_zoom = 20,
min_zoom = 0,
max_pitch = 60,
min_pitch = 0,
location = c(0, 0),
show_view_state = FALSE,
repeat_view = FALSE
) {
x = list(
access_token = force( token )
, style = force( style )
, pitch = force( pitch )
, zoom = force( zoom )
, location = force( as.numeric( location ) )
, bearing = force( bearing )
, max_zoom = force( max_zoom )
, min_zoom = force( min_zoom )
, max_pitch = force( max_pitch )
, min_pitch = force( min_pitch )
, show_view_state = force( show_view_state )
, repeat_view = force( repeat_view )
)
mapdeckmap <- htmlwidgets::createWidget(
name = 'mapdeck',
x = structure(
x,
mapdeck_data = data
),
width = width,
height = height,
package = 'mapdeck',
sizingPolicy = htmlwidgets::sizingPolicy(
defaultWidth = '100%',
defaultHeight = 800,
padding = padding,
browser.fill = FALSE
)
)
mapdeckmap <- add_dependencies( mapdeckmap )
mapdeckmap$dependencies <- c(
if ('h3' %in% libraries) mapdeckH3JSDependency() else NULL,
mapdeckmap$dependencies
, mapboxgl()
, mapdeck_css()
, mapdeck_js()
, htmlwidgets_js()
)
return(mapdeckmap)
}
update_style <- function( map, style ) {
invoke_method(
map, "md_update_style", style
)
}
mapdeckOutput <- function(outputId, width = '100%', height = '400px'){
htmlwidgets::shinyWidgetOutput(outputId, 'mapdeck', width, height, package = 'mapdeck')
}
renderMapdeck <- function(expr, env = parent.frame(), quoted = FALSE) {
if (!quoted) { expr <- substitute(expr) }
htmlwidgets::shinyRenderWidget(expr, mapdeckOutput, env, quoted = TRUE)
}
mapdeck_update <- function(
data = NULL,
map_id,
session = shiny::getDefaultReactiveDomain(),
deferUntilFlush = TRUE,
map_type = c("mapdeck_update", "google_map_update")
) {
map_type <- match.arg( map_type )
if (is.null(session)) {
stop("mapdeck - mapdeck_update must be called from the server function of a Shiny app")
}
structure(
list(
session = session,
id = map_id,
x = structure(
list(),
mapdeck_data = data
),
deferUntilFlush = deferUntilFlush,
dependencies = NULL
),
class = c(map_type)
)
}
mapdeck_view <- function(
map,
location = NULL,
zoom = NULL,
pitch = NULL,
bearing = NULL,
duration = NULL,
transition = c("linear", "fly")
) {
transition <- match.arg(transition)
invoke_method(
map, 'md_change_location', map_type( map ) , as.numeric( location ), zoom, pitch,
bearing, duration, transition
)
}
get_map_data <- function( map ) {
attr( map$x, "mapdeck_data", exact = TRUE )
}
map_type <- function( map ) {
map_type <- attr( map, "class")
if( any( c("mapdeck", "mapdeck_update") %in% map_type ) ) return( "mapdeck" )
if( any( c("google_map", "google_map_update") %in% map_type ) ) return( "google_map" )
return(NULL)
} |
source(system.file(file.path('tests', 'testthat', 'test_utils.R'), package = 'nimble'))
RwarnLevel <- options('warn')$warn
options(warn = 1)
nimbleVerboseSetting <- nimbleOptions('verbose')
nimbleOptions(verbose = FALSE)
context('Testing of numeric, integer, logical, matrix and array allocation')
numericTests <- list(
list(name = 'numeric: length',
expr = quote(out <- numeric(5)),
outputType = quote(double(1) ),
args = list(),
setArgVals = quote({})
),
list(name = 'numeric: length 0',
expr = quote({
out <- nimNumeric(length = 0)
}),
outputType = quote(double(1))
),
list(name = 'numeric: length, scalar value',
expr = quote(out <- nimNumeric(5, value = 1.5)),
outputType = quote(double(1))
),
list(name = 'numeric: length, value scalar, recycle = FALSE, fillZeros = TRUE',
expr = quote(out <- nimNumeric(5, value = 2, recycle = FALSE, fillZeros = TRUE)),
outputType = quote(double(1) ),
args = list(),
setArgVals = quote({})
),
list(name = 'numeric: length, scalar value, init=FALSE',
expr = quote({out <- nimNumeric(5, value = 1.5, init = FALSE);
out[1:5] <- .123}),
outputType = quote(double(1))
),
list(name = 'numeric: length, init = FALSE',
expr = quote({out <- nimNumeric(5, init = FALSE);
out[1:5] <- .123}),
outputType = quote(double(1))
),
list(name = 'numeric: length expression, scalar value expression, init expression',
expr = quote({
a <- 2:4
b <- rnorm(5)
c <- 1:10
out <- nimNumeric(sum(a) + 1, value = mean(b) + 0.5, init = (c > 2)[4]);
}),
outputType = quote(double(1))
),
list(name = 'numeric: length, vector value',
expr = quote({
v <- rnorm(5)
out <- nimNumeric(5, value = v);
}),
outputType = quote(double(1))
),
list(name = 'numeric: length, vector value expression',
expr = quote({
v <- rnorm(5)
out <- nimNumeric(5, value = exp(v) + 1);
}),
outputType = quote(double(1))
),
list(name = 'numeric: length, vector value with too few elements',
expr = quote({
v <- rnorm(4)
out <- nimNumeric(5, value = v);
}),
outputType = quote(double(1))
),
list(name = 'numeric: length vector value with different types',
expr = quote({
v <- nimInteger(5, value = 1:5)
out <- nimNumeric(5, value = v);
}),
outputType = quote(double(1))
),
list(name = 'numeric: length vector value with too many elements',
expr = quote({
v <- rnorm(6)
out <- nimNumeric(5, value = v);
}),
outputType = quote(double(1))
),
list(name = 'numeric: length, matrix value',
expr = quote({
v <- matrix(rnorm(6), nrow = 2)
out <- nimNumeric(6, value = v);
}),
outputType = quote(double(1))
)
)
integerTests <- list(
list(name = 'integer: length',
expr = quote(out <- integer(5)),
outputType = quote(integer(1) ),
args = list(),
setArgVals = quote({})
),
list(name = 'integer: length, scalar value',
expr = quote(out <- nimInteger(5, value = 1.5)),
outputType = quote(integer(1))
),
list(name = 'integer: length, value scalar, recycle = FALSE, fillZeros = TRUE',
expr = quote(out <- nimInteger(5, value = 2, recycle = FALSE, fillZeros = TRUE)),
outputType = quote(integer(1) ),
args = list(),
setArgVals = quote({})
),
list(name = 'integer: length, scalar value, init=FALSE',
expr = quote({out <- nimInteger(5, value = 1.5, init = FALSE);
out[1:5] <- 123}),
outputType = quote(integer(1)),
checkEqual = TRUE
),
list(name = 'integer: length, init = FALSE',
expr = quote({out <- nimInteger(5, init = FALSE);
out[1:5] <- 123}),
outputType = quote(integer(1)),
checkEqual = TRUE
),
list(name = 'integer: length expression, scalar value expression, init expression',
expr = quote({
a <- 2:4
b <- rnorm(5)
c <- 1:10
out <- nimInteger(sum(a) + 1, value = round(mean(b)), init = (c > 2)[4]);
}),
outputType = quote(integer(1))
),
list(name = 'integer: length, vector value',
expr = quote({
v <- rpois(5, lambda = 12.3)
out <- nimInteger(5, value = v);
}),
outputType = quote(integer(1))
),
list(name = 'integer: length, vector value expression',
expr = quote({
v <- rpois(5, lambda = 12.3)
out <- nimInteger(5, value = exp(v) + 1);
}),
outputType = quote(integer(1))
),
list(name = 'integer: length, vector value with too few elements',
expr = quote({
v <- rpois(4, lambda = 12.3)
out <- nimInteger(5, value = v);
}),
outputType = quote(integer(1))
),
list(name = 'integer: length vector value with different types',
expr = quote({
v <- nimInteger(5, value = 1:5)
out <- nimInteger(5, value = v);
}),
outputType = quote(integer(1))
),
list(name = 'integer: length vector value with too many elements',
expr = quote({
v <- rpois(6, lambda = 12.3)
out <- nimInteger(5, value = v);
}),
outputType = quote(integer(1))
),
list(name = 'integer: length, matrix value',
expr = quote({
v <- matrix(rpois(6, lambda = 12.3), nrow = 2)
out <- nimInteger(6, value = v);
}),
outputType = quote(integer(1))
)
)
logicalTests <- list(
list(name = 'logical: length',
expr = quote(out <- logical(5)),
outputType = quote(logical(1) ),
args = list(),
setArgVals = quote({})
),
list(name = 'logical: length, scalar value',
expr = quote(out <- nimLogical(5, value = 1.5)),
outputType = quote(logical(1))
),
list(name = 'logical: length, value scalar, recycle = FALSE, fillZeros = TRUE',
expr = quote(out <- nimLogical(5, value = TRUE, recycle = FALSE, fillZeros = TRUE)),
outputType = quote(logical(1) ),
args = list(),
setArgVals = quote({})
),
list(name = 'logical: length, scalar value, init=FALSE',
expr = quote({out <- nimLogical(5, value = FALSE, init = FALSE);
out[1:5] <- TRUE}),
outputType = quote(logical(1))
),
list(name = 'logical: length, init = FALSE',
expr = quote({out <- nimLogical(5, init = FALSE);
out[1:5] <- TRUE}),
outputType = quote(logical(1))
),
list(name = 'logical: length expression, scalar value expression, init expression',
expr = quote({
a <- 2:4
b <- rnorm(5)
c <- 1:10
out <- nimLogical(sum(a) + 1, value = mean(b) > 0, init = (c > 2)[4]);
}),
outputType = quote(logical(1))
),
list(name = 'logical: length, vector value',
expr = quote({
v <- rpois(5, lambda = 12.3) > 12.3
out <- nimLogical(5, value = v);
}),
outputType = quote(logical(1))
),
list(name = 'logical: length, vector value expression',
expr = quote({
v <- rpois(5, lambda = 12.3) > 12.3
out <- nimLogical(5, value = !v);
}),
outputType = quote(logical(1))
),
list(name = 'logical: length, vector value with too few elements',
expr = quote({
v <- rpois(4, lambda = 12.3) > 12.3
out <- nimLogical(5, value = v);
}),
outputType = quote(logical(1))
),
list(name = 'logical: length vector value with different types',
expr = quote({
v <- nimLogical(5, value = c(TRUE, TRUE, rep(FALSE, 2), TRUE))
out <- nimLogical(5, value = v);
}),
outputType = quote(logical(1))
),
list(name = 'logical: length vector value with too many elements',
expr = quote({
v <- rpois(6, lambda = 12.3) > 12.3
out <- nimLogical(5, value = v);
}),
outputType = quote(logical(1))
),
list(name = 'logical: length, matrix value',
expr = quote({
v <- matrix(rpois(6, lambda = 12.3) > 12.3, nrow = 2)
out <- nimLogical(6, value = v);
}),
outputType = quote(logical(1))
)
)
matrixTests <- list(
list(name = 'matrix',
expr = quote({
out <- nimMatrix(6, nrow = 2);
}),
outputType = quote(double(2))
),
list(name = 'matrix',
expr = quote({
out <- nimMatrix(6, ncol = 2);
}),
outputType = quote(double(2))
),
list(name = 'matrix size 0',
expr = quote({
out <- nimMatrix(type = 'double', nrow = 0, ncol = 0)
}),
outputType = quote(double(2))
),
list(name = 'matrix, recycle = FALSE',
expr = quote({
out <- nimMatrix(6, ncol = 2, recycle = FALSE);
}),
outputType = quote(double(2))
),
list(name = 'matrix, recycle = FALSE',
expr = quote({
out <- nimMatrix(6, nrow = 2, recycle = FALSE);
}),
outputType = quote(double(2))
),
list(name = 'matrix, recycle = FALSE',
expr = quote({
out <- nimMatrix(6, ncol = 3, nrow = 2, recycle = FALSE);
}),
outputType = quote(double(2))
),
list(name = 'matrix',
expr = quote({
out <- nimMatrix(6, ncol = 2, nrow = 3);
}),
outputType = quote(double(2))
),
list(name = 'matrix no init',
expr = quote({
test <- nimMatrix(6, ncol = 3, init = FALSE);
out <- dim(test)
}),
outputType = quote(integer(1))
),
list(name = 'matrix, scalar value, in exression',
expr = quote({
out <- nimMatrix(6, ncol = 3, nrow = 2)^2;
}),
outputType = quote(double(2))
),
list(name = 'matrix vector init',
expr = quote({
out <- nimMatrix(1:6, ncol = 3);
}),
outputType = quote(double(2))
),
list(name = 'matrix, vector value, in exression',
expr = quote({
out <- nimMatrix(1:6, ncol = 3, nrow = 2)^2;
}),
outputType = quote(double(2))
),
list(name = 'matrix matrix init',
expr = quote({
initMat <- nimMatrix(1:6, nrow = 3);
out <- nimMatrix(initMat, nrow = 2);
}),
outputType = quote(double(2))
),
list(name = 'matrix vector no sizes given',
expr = quote({
out <- nimMatrix(1:6)
}),
outputType = quote(double(2))
),
list(name = 'matrix vector init too big',
expr = quote({
out <- nimMatrix(1:6, nrow = 2)
}),
outputType = quote(double(2))
),
list(name = 'matrix vector init',
expr = quote({
out <- nimMatrix(1:6, nrow = 3);
}),
outputType = quote(double(2))
),
list(name = 'matrix vector init, extraneous arg',
expr = quote({
out <- nimMatrix(1:6, nrow = 2, recycle = FALSE);
}),
outputType = quote(double(2))
),
list(name = 'matrix vector init',
expr = quote({
out <- nimMatrix(1:6, ncol = 2, nrow = 3);
}),
outputType = quote(double(2))
),
list(name = 'matrix vector init too small',
expr = quote({
out <- nimMatrix(1:6, nrow = 3, ncol = 3);
}),
outputType = quote(double(2))
),
list(name = 'matrix vector init too big',
expr = quote({
out <- nimMatrix(1:6, nrow = 2, ncol = 2)
}),
outputType = quote(double(2))
),
list(name = 'matrix vector init incongruous size',
expr = quote({
out <- nimMatrix(1:7, nrow = 3);
}),
outputType = quote(double(2))
),
list(name = 'matrix vector init too small, recycle=FALSE',
expr = quote({
out <- nimMatrix(1:6, nrow = 3, ncol = 3, recycle = FALSE);
}),
outputType = quote(double(2))
),
list(name = 'matrix vector init too small, recycle=FALSE, fillZeros = FALSE (ignored)',
expr = quote({
out <- nimMatrix(1:6, nrow = 3, ncol = 3, recycle = FALSE, fillZeros = FALSE);
}),
outputType = quote(double(2))
)
)
arrayTests1D <- list(
list(name = 'array 1D',
expr = quote({
out <- nimArray(6, dim = 2);
}),
outputType = quote(double(1))
),
list(name = 'array 1D, recycle = FALSE',
expr = quote({
out <- nimArray(6, dim = 2, recycle = FALSE);
}),
outputType = quote(double(1))
),
list(name = 'array 1D, value scalar, fillZeros = TRUE (but recycle=TRUE takes precedence)',
expr = quote({
out <- nimArray(1.23, dim = 2, fillZeros = TRUE);
}),
outputType = quote(double(1))
),
list(name = 'array 1D, value scalar, fillZeros = TRUE, recycle = FALSE',
expr = quote({
out <- nimArray(1.23, dim = 2, fillZeros = TRUE, recycle = FALSE);
}),
outputType = quote(double(1))
),
list(name = 'array 1D (c() notation)',
expr = quote({
out <- nimArray(6, dim = c(2));
}),
outputType = quote(double(1))
),
list(name = 'array 1D (dim vector)',
expr = quote({
dim <- c(2)
out <- nimArray(6, dim = dim, nDim = 1);
}),
outputType = quote(double(1))
),
list(name = 'array 1D in expression',
expr = quote({
out <- nimArray(6, dim = 2)^2;
}),
outputType = quote(double(1))
),
list(name = 'array 1D, value vector',
expr = quote({
out <- nimArray(rnorm(2), dim = 2);
}),
outputType = quote(double(1))
),
list(name = 'array 1D, value vector, in expression',
expr = quote({
out <- nimArray(rnorm(2), dim = 2)^2;
}),
outputType = quote(double(1))
),
list(name = 'array 1D, value vector, recycle = TRUE',
expr = quote({
out <- nimArray(rnorm(2), dim = 4, recycle = TRUE);
}),
outputType = quote(double(1))
),
list(name = 'array 1D, value vector, fillZeros = TRUE (but recycle=TRUE has precedence)',
expr = quote({
out <- nimArray(rnorm(2), dim = 4, fillZeros = TRUE);
}),
outputType = quote(double(1))
),
list(name = 'array 1D, value vector, fillZeros = TRUE, recycle=FALSE',
expr = quote({
out <- nimArray(rnorm(2), dim = 4, fillZeros = TRUE, recycle = FALSE);
}),
outputType = quote(double(1))
)
)
arrayTests3D <- list(
list(name = 'array 3D',
expr = quote({
out <- nimArray(6, dim = c(2, 3, 4));
}),
outputType = quote(double(3))
),
list(name = 'array 3D size 0',
expr = quote({
out <- nimArray(type = 'double', dim = c(0,0,0))
}),
outputType = quote(double(3))
),
list(name = 'array 3D, recycle = FALSE',
expr = quote({
out <- nimArray(6, dim = c(2, 3, 4), recycle = FALSE);
}),
outputType = quote(double(3))
),
list(name = 'array 3D, value scalar, fillZeros = TRUE (but recycle=TRUE takes precedence)',
expr = quote({
out <- nimArray(1.23, dim = c(2, 3, 4), fillZeros = TRUE);
}),
outputType = quote(double(3))
),
list(name = 'array 3D, value scalar, fillZeros = TRUE, recycle = FALSE',
expr = quote({
out <- nimArray(1.23, dim = c(2, 3, 4), fillZeros = TRUE, recycle = FALSE);
}),
outputType = quote(double(3))
),
list(name = 'array 3D (dim vector)',
expr = quote({
dim <- c(2, 3, 4)
out <- nimArray(6, dim = dim, nDim = 3);
}),
outputType = quote(double(3))
),
list(name = 'array 3D in expression',
expr = quote({
out <- nimArray(6, dim = c(2, 3, 4))[,2,]^2;
}),
outputType = quote(double(2))
),
list(name = 'array 3D, value vector in bracket expression',
expr = quote({
out <- nimArray(1:7, dim = c(3, 4, 2))[,2,]
}),
outputType = quote(double(2))
),
list(name = 'array 3D, value vector',
expr = quote({
out <- nimArray(rnorm(2*3*4), c(2, 3, 4));
}),
outputType = quote(double(3))
),
list(name = 'array 3D, value vector, recycle = TRUE',
expr = quote({
out <- nimArray(rnorm(2), dim = c(2, 3, 4), recycle = TRUE);
}),
outputType = quote(double(3))
),
list(name = 'array 3D, value vector, fillZeros = TRUE (but recycle=TRUE has precedence)',
expr = quote({
out <- nimArray(rnorm(2), dim = c(2, 3, 4), fillZeros = TRUE);
}),
outputType = quote(double(3))
),
list(name = 'array 3D, value vector, fillZeros = TRUE, recycle=FALSE',
expr = quote({
out <- nimArray(rnorm(2), dim = c(2, 3, 4), fillZeros = TRUE, recycle = FALSE);
}),
outputType = quote(double(3))
),
list(name = 'array matrix init',
expr = quote({
initMat <- nimMatrix(1:18, nrow = 3);
out <- nimArray(initMat, dim = c(3,3,2));
}),
outputType = quote(double(3))
),
list(name = 'array 3D too few values',
expr = quote({
out <- nimArray(1:9, dim = c(3,3,2));
}),
outputType = quote(double(3))
),
list(name = 'array 3D, value vector incongruous to dims',
expr = quote({
out <- nimArray(1:7, dim = c(3, 4, 2))
}),
outputType = quote(double(3))
)
)
arrayTests2D <- list(
list(name = 'array 2D',
expr = quote({
out <- nimArray(6, dim = c(2, 3));
}),
outputType = quote(double(2))
),
list(name = 'array 2D, recycle = FALSE',
expr = quote({
out <- nimArray(6, dim = c(2, 3), recycle = FALSE);
}),
outputType = quote(double(2))
),
list(name = 'array 2D, value scalar, fillZeros = TRUE (but recycle=TRUE takes precedence)',
expr = quote({
out <- nimArray(1.23, dim = c(2, 3), fillZeros = TRUE);
}),
outputType = quote(double(2))
),
list(name = 'array 2D, value scalar, fillZeros = TRUE, recycle = FALSE',
expr = quote({
out <- nimArray(1.23, dim = c(2, 3), fillZeros = TRUE, recycle = FALSE);
}),
outputType = quote(double(2))
),
list(name = 'array 2D (dim vector)',
expr = quote({
dim <- c(2, 3)
out <- nimArray(6, dim = dim, nDim = 2);
}),
outputType = quote(double(2))
),
list(name = 'array 2D in expression',
expr = quote({
out <- nimArray(6, dim = c(2, 3))^2;
}),
outputType = quote(double(2))
),
list(name = 'array 2D, value vector',
expr = quote({
out <- nimArray(rnorm(2), dim = c(2, 3));
}),
outputType = quote(double(2))
),
list(name = 'array 2D, value vector, recycle = TRUE',
expr = quote({
out <- nimArray(rnorm(2), dim = c(2, 3), recycle = TRUE);
}),
outputType = quote(double(2))
),
list(name = 'array 2D, value vector, fillZeros = TRUE (but recycle=TRUE has precedence)',
expr = quote({
out <- nimArray(rnorm(2), dim = c(2, 3), fillZeros = TRUE);
}),
outputType = quote(double(2))
),
list(name = 'array 2D, value vector, fillZeros = TRUE, recycle=FALSE',
expr = quote({
out <- nimArray(rnorm(2), dim = c(2, 3), fillZeros = TRUE, recycle = FALSE);
}),
outputType = quote(double(2))
),
list(name = 'array 2D, value vector with indexed block expression',
expr = quote({
out <- nimArray(1:7, dim = c(3, 4))[,2]^2
}),
outputType = quote(double(1))
),
list(name = 'array matrix init',
expr = quote({
initMat <- nimMatrix(1:6, nrow = 3);
out <- nimArray(initMat, dim = c(3,3));
}),
outputType = quote(double(2))
),
list(name = 'array 2D too few values',
expr = quote({
out <- nimArray(1:6, dim = c(3,3));
}),
outputType = quote(double(2))
)
)
setSize1D <- list(
list(name = 'setSize 1D',
expr = quote({
out <- nimNumeric(4, value = 1:2)
setSize(out, 7)
}),
outputType = quote(double(1))
),
list(name = 'setSize 1D dim expresion',
expr = quote({
out <- nimNumeric(4, value = 1:2)
z <- rpois(2, lambda = 1)
setSize(out, 1 + sum(z))
}),
outputType = quote(double(1))
),
list(name = 'setSize 1D to 0',
expr = quote({
out <- nimNumeric(4, value = 1:2)
setSize(out, 0)
}),
outputType = quote(double(1))
),
list(name = 'setSize 1D, copy=FALSE (default fillValues = TRUE)',
expr = quote({
out <- nimNumeric(4, value = 1:2)
setSize(out, 7, copy=FALSE)
}),
outputType = quote(double(1))
),
list(name = 'setSize 1D, (default copy = TRUE), fillZeros = FALSE',
expr = quote({
v <- nimNumeric(4, value = 1:2)
setSize(v, 7, fillZeros = FALSE)
out <- v[1:4]
}),
outputType = quote(double(1))
),
list(name = 'setSize 1D, copy=FALSE, fillZeros = FALSE',
expr = quote({
v <- nimNumeric(4, value = 1:2)
setSize(v, 7, copy = FALSE, fillZeros = FALSE)
out <- length(v)
}),
outputType = quote(integer(0))
)
)
setSize1Dinteger <- list(
list(name = 'setSize integer 1D',
expr = quote({
out <- nimInteger(4, value = 1:2)
setSize(out, 7)
}),
outputType = quote(integer(1))
),
list(name = 'setSize integer 1D dim expresion',
expr = quote({
out <- nimInteger(4, value = 1:2)
z <- rpois(2, lambda = 1)
setSize(out, 1 + sum(z))
}),
outputType = quote(integer(1))
),
list(name = 'setSize integer 1D to 0',
expr = quote({
out <- nimInteger(4, value = 1:2)
setSize(out, 0)
}),
outputType = quote(integer(1))
),
list(name = 'setSize integer 1D, copy=FALSE (default fillValues = TRUE)',
expr = quote({
out <- nimInteger(4, value = 1:2)
setSize(out, 7, copy=FALSE)
}),
outputType = quote(integer(1))
),
list(name = 'setSize integer 1D, (default copy = TRUE), fillZeros = FALSE',
expr = quote({
v <- nimInteger(4, value = 1:2)
setSize(v, 7, fillZeros = FALSE)
out <- v[1:4]
}),
outputType = quote(integer(1))
),
list(name = 'setSize integer 1D, copy=FALSE, fillZeros = FALSE',
expr = quote({
v <- nimInteger(4, value = 1:2)
setSize(v, 7, copy = FALSE, fillZeros = FALSE)
out <- length(v)
}),
outputType = quote(integer(0))
)
)
setSize2D <- list(
list(name = 'setSize 2D',
expr = quote({
out <- nimMatrix(1:5, nrow = 2, ncol = 3)
setSize(out, c(3, 7))
}),
outputType = quote(double(2))
),
list(name = 'setSize 2D dim expresion',
expr = quote({
out <- nimMatrix(1:5, nrow = 2, ncol = 3)
z <- rpois(2, lambda = 1)
setSize(out, c(3, 1 + sum(z)))
}),
outputType = quote(double(2))
),
list(name = 'setSize 2D to 0',
expr = quote({
out <- nimMatrix(1:5, nrow = 2, ncol = 3)
setSize(out, c(0, 0))
}),
outputType = quote(double(2))
),
list(name = 'setSize 2D, copy=FALSE (default fillValues = TRUE)',
expr = quote({
out <- nimMatrix(1:5, nrow = 2, ncol = 3)
setSize(out, c(3,7), copy=FALSE)
}),
outputType = quote(double(2))
),
list(name = 'setSize 2D, (default copy = TRUE), fillZeros = FALSE',
expr = quote({
v <- nimMatrix(1:5, nrow = 2, ncol = 3)
setSize(v, c(3,7), fillZeros = FALSE)
out <- v[1:3, 1:2]
}),
outputType = quote(double(2))
),
list(name = 'setSize 2D, copy=FALSE, fillZeros = FALSE',
expr = quote({
v <- nimMatrix(1:5, nrow = 2, ncol = 3)
setSize(v, c(3,7), copy = FALSE, fillZeros = FALSE)
out <- nimDim(v)
}),
outputType = quote(integer(1))
)
)
setSize3D <- list(
list(name = 'setSize 3D',
expr = quote({
out <- nimArray(1:5, dim = c(2,3,1))
setSize(out, c(7, 2, 2))
}),
outputType = quote(double(3))
),
list(name = 'setSize 3D dim expresion',
expr = quote({
out <- nimArray(1:5, dim = c(2,3,1))
z <- rpois(2, lambda = 1)
setSize(out, c(3, 1 + sum(z), 2))
}),
outputType = quote(double(3))
),
list(name = 'setSize 3D to 0',
expr = quote({
out <- nimArray(1:5, dim = c(2,3,1))
setSize(out, c(0, 0, 0))
}),
outputType = quote(double(3))
),
list(name = 'setSize 3D, copy=FALSE (default fillValues = TRUE)',
expr = quote({
out <- nimArray(1:5, dim = c(2,3,1))
setSize(out, c(7, 2, 2), copy=FALSE)
}),
outputType = quote(double(3))
),
list(name = 'setSize 3D, (default copy = TRUE), fillZeros = FALSE',
expr = quote({
v <- nimArray(1:5, dim = c(2,3,1))
setSize(v, c(3, 2, 2), fillZeros = FALSE)
out <- v[1:3, 1:2, 1]
}),
outputType = quote(double(2))
),
list(name = 'setSize 3D, copy=FALSE, fillZeros = FALSE',
expr = quote({
v <- nimArray(1:5, dim = c(2,3,1))
setSize(v, c(3, 7, 2), copy = FALSE, fillZeros = FALSE)
out <- nimDim(v)
}),
outputType = quote(integer(1))
)
)
expectedCompilerErrors <- list(
list(name = 'numeric: fail for length given as vector',
expr = quote({
a <- 2:4
out <- nimNumeric(a, value = 1.5);
}),
outputType = quote(double(1)),
expectedCompilerError = TRUE
),
list(name = 'numeric: fail for init given as vector',
expr = quote({
b <- c(TRUE, FALSE, TRUE)
out <- nimNumeric(3, value = 1.5, init = b);
}),
outputType = quote(double(1)),
expectedCompilerError = TRUE
),
list(name = 'integer: fail for length given as vector',
expr = quote({
a <- 2:4
out <- nimInteger(a, value = 15);
}),
outputType = quote(integer(1)),
expectedCompilerError = TRUE
),
list(name = 'integer: fail for init given as vector',
expr = quote({
b <- c(TRUE, FALSE, TRUE)
out <- nimInteger(3, value = 15, init = b);
}),
outputType = quote(integer(1)),
expectedCompilerError = TRUE
),
list(name = 'logical: fail for length given as vector',
expr = quote({
a <- 2:4
out <- nimLogical(a, value = TRUE);
}),
outputType = quote(logical(1)),
expectedCompilerError = TRUE
),
list(name = 'logical: fail for init given as vector',
expr = quote({
b <- c(TRUE, FALSE, TRUE)
out <- nimLogical(3, value = TRUE, init = b);
}),
outputType = quote(logical(1)),
expectedCompilerError = TRUE
),
list(name = 'array 1D (dim vector without nDim: safe compiler fail)',
expr = quote({
dim <- c(2)
out <- nimArray(6, dim = dim);
}),
outputType = quote(double(1)),
expectedCompilerError = TRUE
),
list(name = 'array 3D (dim vector without nDim: safe compiler fail)',
expr = quote({
dim <- c(2, 3, 4)
out <- nimArray(6, dim = dim);
}),
outputType = quote(double(3)),
expectedCompilerError = TRUE
),
list(name = 'array 2D (dim vector without nDim: safe compiler fail)',
expr = quote({
dim <- c(2, 3)
out <- nimArray(6, dim = dim);
}),
outputType = quote(double(2)),
expectedCompilerError = TRUE
)
)
numericTestResults <- test_coreRfeature_batch(numericTests, 'numericTests')
numericTestResults <- test_coreRfeature_batch(integerTests, 'integerTests')
logicalTestResults <- test_coreRfeature_batch(logicalTests, 'logicalTests')
matrixTestResults <- test_coreRfeature_batch(matrixTests, 'matrixTests')
array1DTestResults <- test_coreRfeature_batch(arrayTests1D, 'arrayTests1D')
array2DTestResults <- test_coreRfeature_batch(arrayTests2D, 'arrayTests2D')
array3DTestResults <- test_coreRfeature_batch(arrayTests3D, 'arrayTests3D')
setSize1DResults <- test_coreRfeature_batch(setSize1D, 'setSize1D')
setSize1DintegerResults <- test_coreRfeature_batch(setSize1Dinteger, 'setSize1Dinteger')
setSize2DResults <- test_coreRfeature_batch(setSize2D, 'setSize2D')
setSize3DResults <- test_coreRfeature_batch(setSize3D, 'setSize3D')
allocationExpectedCompilerFailures <- lapply(expectedCompilerErrors, test_coreRfeature)
options(warn = RwarnLevel)
nimbleOptions(verbose = nimbleVerboseSetting) |
.problemparameters = function(t_ind, dist_mat, subset_weight, n_controls, total_groups,
mom_covs, mom_tols, mom_targets,
ks_covs, ks_n_grid, ks_tols,
exact_covs,
near_exact_covs, near_exact_devs,
fine_covs,
near_fine_covs, near_fine_devs,
near_covs, near_pairs, near_groups,
far_covs, far_pairs, far_groups,
use_controls,
approximate) {
n_t = sum(t_ind)
n_c = length(t_ind)-n_t
n_dec_vars = n_t*n_c
n_mom_covs = 0
if(!is.null(mom_covs)) {
n_mom_covs = ncol(mom_covs)
}
n_ks_covs = 0
if(!is.null(ks_covs)) {
n_ks_covs = ncol(ks_covs)
if ((length(ks_n_grid)==1) && (n_ks_covs > 1)) {
ks_n_grid = rep(ks_n_grid, n_ks_covs)
}
}
ks_covs_aux = NULL
if (is.null(ks_covs)) {
max_ks_n_grid = 0
}
if (!is.null(ks_covs)) {
max_ks_n_grid = max(ks_n_grid)
ks_grid = matrix(0, nrow = max_ks_n_grid, ncol = n_ks_covs)
for (i in 1:n_ks_covs) {
ks_covs_t_aux = ks_covs[, i][t_ind==1]
ks_grid_aux = quantile(ks_covs_t_aux, probs = seq(1/ks_n_grid[i], 1, 1/ks_n_grid[i]))
ks_grid_aux = c(ks_grid_aux, rep(0, max_ks_n_grid-ks_n_grid[i]))
ks_grid[, i] = ks_grid_aux
}
ks_covs_aux = matrix(0, nrow = length(t_ind), ncol = max_ks_n_grid*n_ks_covs)
for (i in 1:n_ks_covs) {
k = (i-1)*max_ks_n_grid
for (j in 1:max_ks_n_grid) {
ks_covs_aux[, j+k][ks_covs[, i]<ks_grid[j, i]] = 1
}
}
}
if (is.null(dist_mat)) {
if (approximate == 1 | n_controls == 1) {
cvec = -(1*rep(1, n_t*n_c))
}
else {
cvec = c(-(1*rep(1, n_t*n_c)), rep(0, n_t))
}
}
if (!is.null(dist_mat)) {
if (approximate == 1 | n_controls == 1) {
cvec = as.vector(matrix(t(dist_mat), nrow = 1, byrow = TRUE))-(subset_weight*rep(1, n_t*n_c))
}
else {
cvec = c(as.vector(matrix(t(dist_mat), nrow = 1, byrow = TRUE))-(subset_weight*rep(1, n_t*n_c)), rep(0, n_t))
}
}
constraintmat_out = .constraintmatrix(t_ind, n_controls, total_groups,
mom_covs, mom_tols, mom_targets,
ks_covs, ks_covs_aux, ks_n_grid, ks_tols,
exact_covs,
near_exact_covs, near_exact_devs,
fine_covs,
near_fine_covs, near_fine_devs,
near_covs, near_pairs, near_groups,
far_covs, far_pairs, far_groups,
use_controls,
approximate)
cnstrn_mat = constraintmat_out$cnstrn_mat
bvec_7 = constraintmat_out$bvec_7
bvec_8 = constraintmat_out$bvec_8
rows_ind_far_pairs = constraintmat_out$rows_ind_far_pairs
rows_ind_near_pairs = constraintmat_out$rows_ind_near_pairs
if (approximate == 1 | n_controls == 1) {
bvec = c(rep(n_controls, n_t), rep(1, n_c))
}
else {
bvec = c(rep(0, n_t), rep(1, n_c))
}
if (!is.null(mom_covs) & is.null(mom_targets)) {
bvec = c(bvec, rep(0, 2*n_mom_covs))
}
if (!is.null(ks_covs)) {
bvec = c(bvec, rep(0, 2*n_ks_covs*max_ks_n_grid))
}
if (!is.null(mom_covs) & !is.null(mom_targets)) {
bvec = c(bvec, rep(0, 4*n_mom_covs))
}
if (!is.null(exact_covs)) {
bvec = c(bvec, rep(0, ncol(exact_covs)))
}
if (!is.null(near_exact_covs)) {
bvec = c(bvec, near_exact_devs)
}
if (!is.null(fine_covs)) {
bvec = c(bvec, bvec_7)
}
if (!is.null(near_fine_covs)) {
n_near_fine_covs = ncol(near_fine_covs)
near_fine_devs_aux = NULL
for (j in 1:n_near_fine_covs) {
near_fine_cov = near_fine_covs[, j]
near_fine_devs_aux = c(near_fine_devs_aux, rep(near_fine_devs[j], length(names(table(near_fine_cov))) ))
}
bvec_8_aux = rep(NA, length(bvec_8)*2)
bvec_8_aux[1:length(bvec_8)] = -near_fine_devs_aux
bvec_8_aux[(length(bvec_8)+1):(2*length(bvec_8))] = near_fine_devs_aux
bvec = c(bvec, bvec_8_aux)
}
if (!is.null(far_covs)) {
n_far_covs = ncol(far_covs)
for (j in 1:n_far_covs) {
if (!is.null(far_groups)) {
bvec = c(bvec, rep(0, 1))
}
if (!is.null(far_pairs) && rows_ind_far_pairs[[j]] != -1) {
bvec = c(bvec, rep(0, length(table(rows_ind_far_pairs[[j]]))))
}
}
}
if (!is.null(near_covs)) {
n_near_covs = ncol(near_covs)
for (j in 1:n_near_covs) {
if (!is.null(near_groups)) {
bvec = c(bvec, rep(0, 1))
}
if (!is.null(near_pairs) && rows_ind_near_pairs[[j]] != -1) {
bvec = c(bvec, rep(0, length(table(rows_ind_near_pairs[[j]]))))
}
}
}
if (!is.null(use_controls)) {
bvec = c(bvec, sum(use_controls))
}
if (!is.null(total_groups)) {
if (!is.null(n_controls)) {
bvec = c(bvec, total_groups*n_controls)
}
else {
bvec = c(bvec, total_groups)
}
}
if (approximate == 1 | n_controls == 1) {
ub = rep(1, n_t*n_c)
}
else {
ub = c(rep(1, n_t*n_c), rep(1, n_t))
}
if (approximate == 1 | n_controls == 1) {
sense = c(rep("L", n_t), rep("L", n_c), rep("L", 2*n_mom_covs*(is.null(mom_targets))), rep("L", 2*n_ks_covs*max_ks_n_grid))
}
else {
sense = c(rep("E", n_t), rep("L", n_c), rep("L", 2*n_mom_covs*(is.null(mom_targets))), rep("L", 2*n_ks_covs*max_ks_n_grid))
}
if (!is.null(mom_covs) & !is.null(mom_targets)) {
sense = c(sense, rep("L", 4*n_mom_covs))
}
if (!is.null(exact_covs)) {
sense = c(sense, rep("E", ncol(exact_covs)))
}
if (!is.null(near_exact_covs)) {
sense = c(sense, rep("L", ncol(near_exact_covs)))
}
if (!is.null(fine_covs)) {
sense = c(sense, rep("E", length(bvec_7)))
}
if (!is.null(near_fine_covs)) {
sense = c(sense, rep("G", length(bvec_8)), rep("L", length(bvec_8)))
}
if (!is.null(far_covs)) {
n_far_covs = ncol(far_covs)
for (j in 1:n_far_covs) {
if (!is.null(far_groups)) {
sense = c(sense, rep("G", 1))
}
if (!is.null(far_pairs) && rows_ind_far_pairs[[j]] != -1) {
sense = c(sense, rep("E", length(table(rows_ind_far_pairs[[j]]))))
}
}
}
if (!is.null(near_covs)) {
n_near_covs = ncol(near_covs)
for (j in 1:n_near_covs) {
if (!is.null(near_groups)) {
sense = c(sense, rep("L", 1))
}
if (!is.null(near_pairs) && rows_ind_near_pairs[[j]] != -1) {
sense = c(sense, rep("E", length(table(rows_ind_near_pairs[[j]]))))
}
}
}
if (!is.null(use_controls)) {
sense = c(sense, "E")
}
if (!is.null(total_groups)) {
sense = c(sense, "E")
}
if (approximate == 1) {
vtype = rep("C", n_t*n_c)
}
else if (n_controls == 1) {
vtype = rep("B", n_t*n_c)
}
else {
vtype = c(rep("B", n_t*n_c), rep("B", n_t))
}
c_index = rep(1:n_c, n_t)
return(list(n_t = n_t, n_c = n_c,
cvec = cvec,
Amat = cnstrn_mat,
bvec = bvec,
ub = ub,
sense = sense,
vtype = vtype,
c_index = c_index))
} |
"cc.genes"
"cc.genes.updated.2019" |
lsodar <- function(y, times, func, parms, rtol=1e-6, atol=1e-6,
jacfunc=NULL, jactype = "fullint", rootfunc=NULL, verbose=FALSE,
nroot = 0, tcrit = NULL, hmin=0, hmax=NULL, hini=0, ynames=TRUE,
maxordn = 12, maxords = 5, bandup = NULL, banddown = NULL,
maxsteps = 5000, dllname=NULL,initfunc=dllname, initpar=parms,
rpar=NULL, ipar=NULL, nout=0, outnames=NULL, forcings=NULL,
initforc = NULL, fcontrol=NULL, events=NULL, lags = NULL, ...) {
if (is.list(func)) {
if (!is.null(jacfunc) & "jacfunc" %in% names(func))
stop("If 'func' is a list that contains jacfunc, argument 'jacfunc' should be NULL")
if (!is.null(rootfunc) & "rootfunc" %in% names(func))
stop("If 'func' is a list that contains rootfunc, argument 'rootfunc' should be NULL")
if (!is.null(initfunc) & "initfunc" %in% names(func))
stop("If 'func' is a list that contains initfunc, argument 'initfunc' should be NULL")
if (!is.null(dllname) & "dllname" %in% names(func))
stop("If 'func' is a list that contains dllname, argument 'dllname' should be NULL")
if (!is.null(initforc) & "initforc" %in% names(func))
stop("If 'func' is a list that contains initforc, argument 'initforc' should be NULL")
if (!is.null(events$func) & "eventfunc" %in% names(func))
stop("If 'func' is a list that contains eventfunc, argument 'events$func' should be NULL")
if ("eventfunc" %in% names(func)) {
if (! is.null(events))
events$func <- func$eventfunc
else
events <- list(func = func$eventfunc)
}
if (!is.null(func$jacfunc)) jacfunc <- func$jacfunc
if (!is.null(func$rootfunc)) rootfunc <- func$rootfunc
if (!is.null(func$initfunc)) initfunc <- func$initfunc
if (!is.null(func$dllname)) dllname <- func$dllname
if (!is.null(func$initforc)) initforc <- func$initforc
func <- func$func
}
hmax <- checkInput (y, times, func, rtol, atol,
jacfunc, tcrit, hmin, hmax, hini, dllname)
n <- length(y)
if (!is.numeric(maxordn))
stop("`maxordn' must be numeric")
if(maxordn < 1 || maxordn > 12)
stop("`maxord' must be >1 and <=12")
if (!is.numeric(maxords))
stop("`maxords' must be numeric")
if(maxords < 1 || maxords > 5)
stop("`maxords' must be >1 and <=5")
if (jactype == "fullint" ) jt <- 2
else if (jactype == "fullusr" ) jt <- 1
else if (jactype == "bandusr" ) jt <- 4
else if (jactype == "bandint" ) jt <- 5
else stop("'jactype' must be one of 'fullint', 'fullusr', 'bandusr' or 'bandint'")
if (jt %in% c(4,5) && is.null(bandup))
stop("'bandup' must be specified if banded Jacobian")
if (jt %in% c(4,5) && is.null(banddown))
stop("'banddown' must be specified if banded Jacobian")
if (is.null(banddown)) banddown <-1
if (is.null(bandup )) bandup <-1
if (jt %in% c(1,4) && is.null(jacfunc))
stop ("'jacfunc' NOT specified; either specify 'jacfunc' or change 'jactype'")
Ynames <- attr(y,"names")
JacFunc <- NULL
RootFunc <- NULL
flist<-list(fmat=0,tmat=0,imat=0,ModelForc=NULL)
ModelInit <- NULL
Eventfunc <- NULL
events <- checkevents(events, times, Ynames, dllname, TRUE)
if (! is.null(events$newTimes)) times <- events$newTimes
if (jt == 4 && banddown>0)
erow<-matrix(data=0, ncol=n, nrow=banddown) else erow<-NULL
if (is.character(func) | inherits(func, "CFunc")) {
DLL <- checkDLL(func,jacfunc,dllname,
initfunc,verbose,nout, outnames)
if (!is.null(rootfunc)) {
if (!is.character(rootfunc) & !inherits(rootfunc, "CFunc"))
stop("If 'func' is dynloaded, so must 'rootfunc' be")
rootfuncname <- rootfunc
if (inherits(rootfunc, "CFunc"))
RootFunc <- body(rootfunc)[[2]]
else if (is.loaded(rootfuncname, PACKAGE = dllname)) {
RootFunc <- getNativeSymbolInfo(rootfuncname, PACKAGE = dllname)$address
} else
stop(paste("root function not loaded in DLL",rootfunc))
if (nroot == 0)
stop("if 'rootfunc' is specified in a DLL, then 'nroot' should be > 0")
}
ModelInit <- DLL$ModelInit
Func <- DLL$Func
JacFunc <- DLL$JacFunc
Nglobal <- DLL$Nglobal
Nmtot <- DLL$Nmtot
if (! is.null(forcings))
flist <- checkforcings(forcings,times,dllname,initforc,verbose,fcontrol)
if (is.null(ipar)) ipar<-0
if (is.null(rpar)) rpar<-0
Eventfunc <- events$func
if (is.function(Eventfunc))
rho <- environment(Eventfunc)
else
rho <- NULL
} else {
if(is.null(initfunc))
initpar <- NULL
rho <- environment(func)
if (ynames) {
Func <- function(time,state) {
attr(state,"names") <- Ynames
unlist(func (time,state,parms,...))
}
Func2 <- function(time,state) {
attr(state,"names") <- Ynames
func (time,state,parms,...)
}
JacFunc <- function(time,state){
attr(state,"names") <- Ynames
rbind(jacfunc(time,state,parms,...),erow)
}
RootFunc <- function(time,state) {
attr(state,"names") <- Ynames
rootfunc(time,state,parms,...)
}
if (! is.null(events$Type))
if (events$Type == 2)
Eventfunc <- function(time,state) {
attr(state,"names") <- Ynames
events$func(time,state,parms,...)
}
} else {
Func <- function(time,state)
unlist(func (time,state,parms,...))
Func2 <- function(time,state)
func (time,state,parms,...)
JacFunc <- function(time,state)
rbind(jacfunc(time,state,parms,...),erow)
RootFunc <- function(time,state)
rootfunc(time,state,parms,...)
if (! is.null(events$Type))
if (events$Type == 2)
Eventfunc <- function(time,state)
events$func(time,state,parms,...)
}
FF <- checkFunc(Func2,times,y,rho)
Nglobal<-FF$Nglobal
Nmtot <- FF$Nmtot
if (! is.null(events$Type))
if (events$Type == 2)
checkEventFunc(Eventfunc,times,y,rho)
if (! is.null(rootfunc)) {
tmp2 <- eval(rootfunc(times[1],y,parms,...), rho)
if (!is.vector(tmp2))
stop("root function 'rootfunc' must return a vector\n")
nroot <- length(tmp2)
} else nroot = 0
if (jt %in% c(1,4)) {
tmp <- eval(JacFunc(times[1], y), rho)
if (!is.matrix(tmp))
stop("Jacobian function, 'jacfunc' must return a matrix\n")
dd <- dim(tmp)
if((jt ==4 && any(dd != c(bandup+banddown+1,n))) ||
(jt ==1 && any(dd != c(n,n))))
stop("Jacobian dimension not ok")
}
}
if(jt %in% c(1,2)) lmat <- n^2+2 else
if(jt %in% c(4,5)) lmat <- (2*banddown+bandup+1)*n+2
lrn = 20+n*(maxordn+1)+ 3*n +3*nroot
lrs = 20+n*(maxords+1)+ 3*n +lmat+3*nroot
lrw = max(lrn,lrs)
liw = 20 + n
iwork <- vector("integer",20)
rwork <- vector("double",20)
rwork[] <- 0.
iwork[] <- 0
iwork[1] <- banddown
iwork[2] <- bandup
iwork[6] <- maxsteps
if (maxordn != 12) iwork[8] <- maxordn
if (maxords != 5) iwork[9] <- maxords
if (verbose) iwork[5] = 1
if(! is.null(tcrit)) rwork[1] <- tcrit
rwork[5] <- hini
rwork[6] <- hmax
rwork[7] <- hmin
if (! is.null(times))
itask <- ifelse (is.null (tcrit), 1,4) else
itask <- ifelse (is.null (tcrit), 2,5)
if(is.null(times)) times<-c(0,1e8)
if (verbose) printtask(itask,func,jacfunc)
storage.mode(y) <- storage.mode(times) <- "double"
IN <-4
lags <- checklags(lags, dllname)
on.exit(.C("unlock_solver"))
out <- .Call("call_lsoda",y,times,Func,initpar,
rtol, atol, rho, tcrit, JacFunc, ModelInit, Eventfunc,
as.integer(verbose), as.integer(itask), as.double(rwork),
as.integer(iwork), as.integer(jt),as.integer(Nglobal),
as.integer(lrw),as.integer(liw),as.integer(IN),RootFunc,
as.integer(nroot), as.double (rpar), as.integer(ipar),
0L, flist, events, lags, PACKAGE="deSolve")
iroot <- attr(out, "iroot")
out <- saveOut(out, y, n, Nglobal, Nmtot, func, Func2,
iin=c(1,12:21), iout=c(1:3,14,5:9,15:16),nr = 5)
attr(out, "iroot") <- iroot
attr(out, "type") <- "lsodar"
if (verbose) diagnostics(out)
return(out)
} |
open_in_pubmed <- function(pubmed_id) {
if (!(rlang::is_double(pubmed_id) ||
rlang::is_integer(pubmed_id) ||
rlang::is_character(pubmed_id) ))
stop("pubmed_id must be a vector of numbers.")
if (rlang::is_double(pubmed_id) || rlang::is_integer(pubmed_id))
pubmed_id2 <- as.character(pubmed_id)
else
pubmed_id2 <- pubmed_id
if (any(!is_pubmed_id(pubmed_id2)))
stop("These are not valid PubMed IDs: ",
concatenate::cc_and(pubmed_id[!is_pubmed_id(pubmed_id2)],
oxford = TRUE),
".")
if (interactive()) {
urls <-
glue::glue("https://pubmed.ncbi.nlm.nih.gov/{pubmed_id2}")
purrr::walk(urls, utils::browseURL)
return(invisible(TRUE))
} else {
return(invisible(TRUE))
}
} |
download_fsl = function(
os = c("macosx", "redhat5", "redhat6", "centos5", "centos6", "debian", "ubuntu"),
outdir = tempdir(),
overwrite = TRUE,
...
) {
os = match.arg(os)
if (os %in% c("debian", "ubuntu")) {
message("Please install using neurodebian");
browseURL("http://neuro.debian.net/pkgs/fsl.html")
}
os = sub("redhat", "centos", os)
stub = "http://fsl.fmrib.ox.ac.uk/fsldownloads/fsl-"
version = readLines("http://fsl.fmrib.ox.ac.uk/fsldownloads/latest-version.txt")
app = ".tar.gz"
if (grepl("centos", os)) {
app = "_64.tar.gz"
}
html = paste0(stub, version, "-", os, app)
destfile = file.path(outdir, basename(html))
if (file.exists(destfile) & !overwrite) {
return(destfile)
}
res = download.file(url = html, destfile = destfile, ...)
return(destfile)
} |
NewInput.MMInf <- function(lambda=0, mu=0, n=0)
{
res <- list(lambda = lambda, mu = mu, n = n)
class(res) <- "i_MMInf"
res
}
CheckInput.i_MMInf <- function(x, ...)
{
MMInf_class <- "The class of the object x has to be M/M/Inf (i_MMInf)"
MMInf_anomalous <- "Some value of lambda, mu, or n is anomalous. Check the values."
if (!inherits(x, "i_MMInf"))
stop(MMInf_class)
if (is.anomalous(x$lambda) || is.anomalous(x$mu) || is.anomalous(x$n))
stop(MMInf_anomalous)
if (x$mu <= 0)
stop(ALL_mu_positive)
if (x$lambda < 0)
stop(ALL_lambda_zpositive)
if (!is.wholenumber(x$n))
stop(ALL_n_integer)
}
QueueingModel.i_MMInf <- function(x, ...)
{
CheckInput.i_MMInf(x, ...)
W <- 1 / x$mu
L <- x$lambda * W
Throughput <- x$lambda
if (x$n < 0)
Pn <- numeric()
else
Pn <- sapply(0:x$n, dpois, L)
FW <- function(t){ exp(x$mu) }
FWq <- function(t){ 0 }
Lq <- 0
Wq <- 0
Lqq <- NA
Wqq <- NA
VN <- L
VNq <- 0
VT <- 1/(x$mu^2)
VTq <- 0
res <- list(
Inputs=x, RO = L, Lq = Lq, VNq = VNq, Wq = Wq, VTq = VTq, Throughput = Throughput,
L = L, VN = VN, W = W, VT = VT, Lqq = Lqq, Wqq = Wqq, Pn = Pn, Qn = Qn, FW = FW, FWq = FWq
)
class(res) <- "o_MMInf"
res
}
Inputs.o_MMInf <- function(x, ...) { x$Inputs }
L.o_MMInf <- function(x, ...) { x$L }
VN.o_MMInf <- function(x, ...) { x$VN }
W.o_MMInf <- function(x, ...) { x$W }
VT.o_MMInf <- function(x, ...) { x$VT }
RO.o_MMInf <- function(x, ...) { x$RO }
Lq.o_MMInf <- function(x, ...) { x$Lq }
VNq.o_MMInf <- function(x, ...) { x$VNq }
Wq.o_MMInf <- function(x, ...) { x$Wq }
VTq.o_MMInf <- function(x, ...) { x$VTq }
Wqq.o_MMInf <- function(x, ...) { x$Wqq }
Lqq.o_MMInf <- function(x, ...) { x$Lqq }
Pn.o_MMInf <- function(x, ...) { x$Pn }
Qn.o_MMInf <- function(x, ...) { x$Qn }
Throughput.o_MMInf <- function(x, ...) { x$Throughput }
Report.o_MMInf <- function(x, ...)
{
reportAux(x)
}
summary.o_MMInf <- function(object, ...)
{
aux <- list(el=CompareQueueingModels(object))
class(aux) <- "summary.o_MM1"
aux
}
print.summary.o_MMInf <- function(x, ...)
{
print_summary(x, ...)
} |
test.kulczynski <- function() {
dataPath <- file.path(path.package(package="clusterCrit"),"unitTests","data","testsExternal100.Rdata")
load(file=dataPath, envir=.GlobalEnv)
idx <- extCriteria(clus_p2, clus_p3, c("Kulczynski"))
val <- 0.428073406219482
cat(paste("\nShould be =",val,"\n"))
cat(paste("\nFound idx =",idx,"\n"))
checkEqualsNumeric(idx[[1]],val)
} |
NULL
dbinom_sparseLocalSCR <- nimbleFunction(
run = function( x = double(1),
detNums = double(0),
detIndices = double(1),
size = double(1),
p0 = double(0),
sigma = double(0),
s = double(1),
trapCoords = double(2),
localTrapsIndices = double(2),
localTrapsNum = double(1),
resizeFactor = double(0, default = 1),
habitatGrid = double(2),
indicator = double(0, default = 1.0),
log = integer(0, default = 0)
) {
returnType(double(0))
if(indicator == 0){
if(detNums == 0){
if(log == 0) return(1.0)
else return(0.0)
} else {
if(log == 0) return(0.0)
else return(-Inf)
}
}
sID <- habitatGrid[trunc(s[2]/resizeFactor)+1, trunc(s[1]/resizeFactor)+1]
theseLocalTraps <- localTrapsIndices[sID,1:localTrapsNum[sID]]
if(detNums > 0){
for(r in 1:detNums){
if(sum(detIndices[r] == theseLocalTraps) == 0){
if(log == 0) return(0.0)
else return(-Inf)
}
}
}
alpha <- -1.0 / (2.0 * sigma * sigma)
logProb <- 0.0
detIndices1 <- c(detIndices,0)
count <- 1
for(r in 1:localTrapsNum[sID]){
if(theseLocalTraps[r] == detIndices1[count]){
d2 <- pow(trapCoords[theseLocalTraps[r],1] - s[1], 2) + pow(trapCoords[theseLocalTraps[r],2] - s[2], 2)
p <- p0 * exp(alpha * d2)
logProb <- logProb + dbinom(x[count], prob = p, size = size[theseLocalTraps[r]], log = TRUE)
count <- count + 1
}else{
d2 <- pow(trapCoords[theseLocalTraps[r],1] - s[1], 2) + pow(trapCoords[theseLocalTraps[r],2] - s[2], 2)
p <- p0 * exp(alpha * d2)
logProb <- logProb + dbinom(0, prob = p, size = size[theseLocalTraps[r]], log = TRUE)
}
}
if(log)return(logProb)
return(exp(logProb))
})
rbinom_sparseLocalSCR <- nimbleFunction(
run = function( n = double(0, default = 1),
detNums = double(0),
detIndices = double(1),
size = double(1),
p0 = double(0),
sigma = double(0),
s = double(1),
trapCoords = double(2),
localTrapsIndices = double(2),
localTrapsNum = double(1),
resizeFactor = double(0, default = 1),
habitatGrid = double(2),
indicator = double(0, default = 1.0)
) {
returnType(double(1))
if(n >= 0) stop("Random generation for the dbinom_sparseLocalSCR distribution is not currently supported")
dummyOut <- detIndices
return(dummyOut)
}) |
hmmviterbi2.cont <- function(y, M, workparm, zero_init,
emit_x=NULL,zeroinfl_x=NULL,timeindex,
plot=FALSE, xlim=NULL, ylim=NULL, ...){
if(floor(M)!=M | M<2) stop("The number of latent states must be an integer greater than or equal to 2!")
if(length(zero_init)!=M) stop("The dimension of zero_init is not M!")
ntimes <- length(y)
state <- rep(NA, sum(ntimes))
tempmat <- matrix(0,nrow=length(y),ncol=1)
ncovprior <- 0
covprior <- tempmat
ncovtpm <- 0
covtpm <- tempmat
if(is.null(emit_x)){
ncovemit <- 0
covemit <- ncol(emit_x)
}else{
ncovemit <- ncol(emit_x)
covemit <- emit_x
}
if(is.null(zeroinfl_x)){
ncovzeroinfl <- 0
covzeroinfl <- tempmat
}else{
ncovzeroinfl <- ncol(zeroinfl_x)
covzeroinfl <- zeroinfl_x
}
vdiff <- diff(timeindex)
udiff <- sort(unique(vdiff))
tpm_init <- retrieve_cov_cont(workparm,M,ncovemit+1)$gamma
expms <- getallexpm(tpm_init, udiff)
state <- hmm_cov_viterbi_cont(workparm, M,y,ncovprior,covprior,
ncovtpm,covtpm,ncovzeroinfl,covzeroinfl,
ncovemit,covemit, zero_init, timeindex, udiff, expms)
if(plot==TRUE){
xlimit <- rep(NA,2)
ylimit <- rep(NA,2)
if(is.null(xlim)){
xlimit[1] <- 0
xlimit[2] <- sum(ntimes)
}else{xlimit <- xlim}
if(is.null(ylim)){
ylimit[1] <- 0
ylimit[2] <- max(y) * 1.3
}else{ylimit <- ylim}
temp <- y[1:min(length(y),floor(xlimit[2]))]
plot(temp, xlim=xlimit, ylim=ylimit, type="l",...)
points(1:length(temp),rep(ylimit[1],length(temp)),
pch=16,cex=0.8,col=state+1)
legend <- NULL
for(i in 1:M) legend <- c(legend,paste("state ",i,sep=""))
legend("top",legend,pch=16,col=2:(M+1),bty="n",cex=0.9,
ncol=M,xpd=TRUE)
}
return(state)
} |
assignClusterNames <-
function(out, lab_no, beta_weights, vocab){
members <- c()
for(i in seq(length(out$children))){
if (!('size' %in% names(out$children[[i]])))
out$children[[i]] <- assignClusterNames(out$children[[i]], lab_no,
beta_weights, vocab)
}
for(i in seq(length(out$children))){
members <- c(members, out$children[[i]]$topic_no)
}
out$topic_no <- members
margins <- marginalize(members, beta_weights$beta, beta_weights$weights)
labels <- vocab[margins$indices[1:lab_no]]
out$name <- paste(sample(labels, lab_no), collapse=", ")
return(out)
} |
recode_delete <- function(input,
codes,
filter = TRUE,
output = NULL,
childrenReplaceParents = TRUE,
recursiveDeletion = FALSE,
decisionLabel = NULL,
justification = NULL,
justificationFile = NULL,
preventOverwriting = rock::opts$get('preventOverwriting'),
encoding = rock::opts$get('encoding'),
silent = rock::opts$get('silent')) {
return(
generic_recoding(
input = input,
codes = codes,
filter = filter,
func = changeSource_uncode,
output = output,
decisionLabel = decisionLabel,
justification = justification,
justificationFile = justificationFile,
preventOverwriting = preventOverwriting,
encoding = encoding,
silent = silent,
childrenReplaceParents = childrenReplaceParents,
recursiveDeletion = recursiveDeletion
)
);
}
changeSource_uncode <- function(input,
codes,
filter,
childrenReplaceParents = TRUE,
recursiveDeletion = FALSE,
silent = rock::opts$get('silent')) {
codeDelimiters <- rock::opts$get("codeDelimiters");
validCodeCharacters <- rock::opts$get("validCodeCharacters");
inductiveCodingHierarchyMarker <- rock::opts$get("inductiveCodingHierarchyMarker");
if (length(codes) > 1) {
msg("Multiple codes to remove have been specified: starting ",
"sequential removal of ", length(codes), " codes.\n\n",
silent=silent);
for (i in seq_along(codes)) {
input <-
changeSource_uncode(
input = input,
codes = codes[i],
filter = filter,
childrenReplaceParents = childrenReplaceParents,
recursiveDeletion = recursiveDeletion,
silent = silent
);
}
} else {
cleanCode <- cleanCode(codes);
if (!silent) {
cat0("Removing all occurrences of code '",
cleanCode,
"'.\n");
cat0("If this code has code descendency (i.e. a child code, grandchild ",
"code, etc), the direct child code will ");
if (childrenReplaceParents) {
cat0("replace the removed code.\n")
} else {
cat0("also be removed, as will all further descendents.\n");
}
cat0("If this code has code ancestry (i.e. a (partial) path to the ",
"code root is specified with a parent code, potential grandparent ",
"code, etc), the ancestry specified in that coding instance will ",
"be ");
if (recursiveDeletion) {
cat0("removed as well, as if the code had never been applied.\n")
} else {
cat0("retained, so the utterance will remain coded with the ",
"parent code (and any ancestry of that parent code will ",
"also be retained in that coding instance).\n");
}
}
filteredUtterances <- input[filter];
utterancesWithMatches <-
grep(
cleanCode,
filteredUtterances
);
if (!silent) {
cat0("Out of the ", length(input), " utterances in the provided source, ",
sum(filter), " are selected by the filter, ",
length(utterancesWithMatches), " of which contain the code text.\n");
}
regexToDeleteSingularOccurrence <-
paste0(
"\\s?",
escapeRegexCharacterClass(codeDelimiters[1]),
cleanCode,
escapeRegexCharacterClass(codeDelimiters[2])
);
regexToDeleteLeafOccurrence <-
paste0(
"(\\s?",
escapeRegexCharacterClass(codeDelimiters[1]),
validCodeCharacters,
"*)",
inductiveCodingHierarchyMarker,
cleanCode,
escapeRegexCharacterClass(codeDelimiters[2])
);
regexToDeleteRecursively <-
paste0(
"\\s?",
escapeRegexCharacterClass(codeDelimiters[1]),
validCodeCharacters,
"*",
cleanCode,
validCodeCharacters,
"*",
escapeRegexCharacterClass(codeDelimiters[2])
);
regexToDeleteIfDescendentsExist <-
paste0(
"(\\s?",
escapeRegexCharacterClass(codeDelimiters[1]),
validCodeCharacters,
"*)",
cleanCode,
inductiveCodingHierarchyMarker,
"(",
validCodeCharacters,
"*",
escapeRegexCharacterClass(codeDelimiters[2]),
")"
);
for (i in seq_along(utterancesWithMatches)) {
currentUtterance <-
filteredUtterances[utterancesWithMatches[i]];
currentUtterance <-
gsub(
regexToDeleteSingularOccurrence,
"",
currentUtterance
);
if (recursiveDeletion) {
currentUtterance <-
gsub(
regexToDeleteRecursively,
"",
currentUtterance
);
} else {
currentUtterance <-
gsub(
regexToDeleteLeafOccurrence,
paste0("\\1", escapeRegexCharacterClass(codeDelimiters[2])),
currentUtterance
);
if (grepl(paste0(cleanCode, inductiveCodingHierarchyMarker),
currentUtterance)) {
if (childrenReplaceParents) {
currentUtterance <-
gsub(
regexToDeleteIfDescendentsExist,
"\\1\\2",
currentUtterance
);
} else {
currentUtterance <-
gsub(
regexToDeleteIfDescendentsExist,
paste0("\\1", escapeRegexCharacterClass(codeDelimiters[2])),
currentUtterance
);
}
}
}
if (!silent) {
if (identical(currentUtterance, filteredUtterances[utterancesWithMatches[i]])) {
cat0("--UNCHANGED: ", currentUtterance, "\n");
} else {
cat0("--------PRE: ", currentUtterance, "\n",
" POST: ", filteredUtterances[utterancesWithMatches[i]], "\n");
}
}
filteredUtterances[utterancesWithMatches[i]] <-
currentUtterance;
}
oldInput <- input;
input[filter] <- filteredUtterances;
diffCount <- sum(input != oldInput);
if (!silent) {
cat0("Deleted ", diffCount, " occurrences of code '", codes, "'.\n\n");
}
}
return(input);
} |
nightly <- function(trigElement, bodyColor = "
htmltools::tags$script(htmltools::HTML(glue::glue(
"
var nightModeConfig = {{
body: '{bodyColor}',
texts: '{txtColor}',
inputs: {{
color: '{inpTxtColor}',
backgroundColor: '{inpBgColor}',
}}
}};
var Nightly = new Nightly(nightModeConfig, true);
document.getElementById('{trigElement}').addEventListener('click', function(){{
Nightly.toggle();
}});
"
)))
} |
context("Fst Hudson all SNPs")
test_that("calculate Fst Hudson for all SNPs",{
data(example_SNP)
idx1 <- which(sample_labels == 'pop1')
idx2 <- which(sample_labels == 'pop2')
fst.pairwise <- fst.each.snp.hudson(simsnp$snp, idx1, idx2)
expect_equal(fst.pairwise[1], 0.007396462)
expect_equal(fst.pairwise[2], 0.09957484)
expect_length(fst.pairwise, 2000)
}) |
gskmeans <- function(data, k=2, ...){
mydata = prec_input_sphere(as.matrix(data))
myk = max(1, round(k))
params = list(...)
pnames = names(params)
if ("maxiter"%in%pnames){ myiter = max(5, round(params$maxiter)) } else { myiter = 10 }
if ("abstol"%in%pnames){ myeps = max(params$abstol, .Machine$double.eps) } else { myeps = sqrt(.Machine$double.eps) }
if ("init"%in% pnames){
myinit = match.arg(tolower(params$init), c("kmeans","gmm"))
} else {
myinit = "kmeans"
}
if ("verbose"%in%pnames){
myprint = as.logical(params$verbose)
} else {
myprint = FALSE
}
cpprun = sp_gskmeans(mydata, myk, myinit, myiter, myeps, myprint)
output = list()
output$cluster = round(as.vector(cpprun$cluster+1))
output$cost = as.double(cpprun$cost)
output$means = cpprun$means
output$algorithm = "gskmeans"
return(structure(output, class="T4cluster"))
} |
library('mfx')
set.seed(12345)
n = 1000
x = rnorm(n)
y = rbeta(n, shape1 = plogis(1 + 0.5 * x), shape2 = (abs(0.2*x)))
y = (y*(n-1)+0.5)/n
data = data.frame(y,x)
betamfx(y~x|x, data=data) |
dbQuoteString_PqConnection_character <- function(conn, x, ...) {
if (length(x) == 0) return(SQL(character()))
if (is(conn, "RedshiftConnection")) {
out <- paste0("'", gsub("(['\\\\])", "\\1\\1", enc2utf8(x)), "'")
out[is.na(x)] <- "NULL::varchar(max)"
} else {
out <- connection_quote_string(conn@ptr, enc2utf8(x))
}
SQL(out)
}
setMethod("dbQuoteString", c("PqConnection", "character"), dbQuoteString_PqConnection_character) |
poisregmixEM = function (y, x, lambda = NULL, beta = NULL, k = 2, addintercept = TRUE,
epsilon = 1e-08, maxit = 10000, verb=FALSE)
{
if (addintercept) {
x = cbind(1, x)
} else x = as.matrix(x)
n <- length(y)
p <- ncol(x)
tmp <- poisregmix.init(y=y, x=x, lambda=lambda, beta=beta, k=k)
lambda <- tmp$lambda
beta <- tmp$beta
k <- tmp$k
xbeta <- x %*% beta
z <- matrix(0, n, k)
diff <- 1
iter <- 0
comp <- t(t(dpois(y, exp(xbeta))) * lambda)
compsum <- apply(comp, 1, sum)
obsloglik <- sum(log(compsum))
ll <- obsloglik
restarts <- 0
while (diff > epsilon && iter < maxit) {
j.star = apply(xbeta, 1, which.max)
for (i in 1:n) {
for (j in 1:k) {
z[i, j] = lambda[j]/lambda[j.star[i]] * exp(y[i] *
(xbeta[i, j] - xbeta[i, j.star[i]]) + exp(xbeta[i,
j.star[i]]) - exp(xbeta[i, j]))
}
}
z = z/apply(z, 1, sum)
z[,k]=1-apply(as.matrix(z[,(1:(k-1))]),1,sum)
if(sum(is.na(z))>0){
cat("Need new starting values due to underflow...","\n")
restarts <- restarts + 1
if(restarts>15) stop("Too many tries!")
tmp <- poisregmix.init(y=y, x=x, k=k)
lambda <- tmp$lambda
beta <- tmp$beta
k <- tmp$k
diff <- 1
iter <- 0
xbeta <- x %*% beta
comp <- t(t(dpois(y, exp(xbeta))) * lambda)
compsum <- apply(comp, 1, sum)
obsloglik <- sum(log(compsum))
ll <- obsloglik
} else{
lambda <- apply(z, 2, mean)
lm.out <- lapply(1:k, function(j) try(glm.fit(x, y, weights = z[, j], family = poisson())
,silent=TRUE))
beta = sapply(lm.out,coef)
xbeta <- x %*% beta
comp <- t(t(dpois(y, exp(xbeta))) * lambda)
compsum <- apply(comp, 1, sum)
newobsloglik <- sum(log(compsum))
if(abs(newobsloglik)==Inf || is.na(newobsloglik) || newobsloglik < obsloglik){
cat("Need new starting values due to singularity...","\n")
restarts <- restarts + 1
if(restarts>15) stop("Too many tries!")
tmp <- poisregmix.init(y=y, x=x, k=k)
lambda <- tmp$lambda
beta <- tmp$beta
k <- tmp$k
diff <- 1
iter <- 0
xbeta <- x %*% beta
comp <- t(t(dpois(y, exp(xbeta))) * lambda)
compsum <- apply(comp, 1, sum)
obsloglik <- sum(log(compsum))
ll <- obsloglik
} else{
diff <- newobsloglik - obsloglik
obsloglik <- newobsloglik
ll <- c(ll, obsloglik)
iter <- iter + 1
if (verb) {
cat("iteration=", iter, "diff=", diff, "log-likelihood",
obsloglik, "\n") }
}
}
}
if (iter == maxit) {
cat("WARNING! NOT CONVERGENT!", "\n")
}
cat("number of iterations=", iter, "\n")
beta <- matrix(beta,ncol=k)
rownames(beta) <- c(paste("beta", ".", 0:(p-1), sep = ""))
colnames(beta) <- c(paste("comp", ".", 1:k, sep = ""))
colnames(z) <- c(paste("comp", ".", 1:k, sep = ""))
a=list(x=x, y=y, lambda = lambda, beta = beta, loglik = obsloglik, posterior = z, all.loglik=ll, restarts=restarts, ft="poisregmixEM")
class(a) = "mixEM"
a
} |
age_pyramid <- function(data, age_group = "age_group", split_by = "sex",
stack_by = NULL, count = NULL,
proportional = FALSE, na.rm = TRUE,
show_midpoint = TRUE, vertical_lines = FALSE,
horizontal_lines = TRUE, pyramid = TRUE,
pal = NULL) {
stop_if_not_df_or_svy(data, deparse(substitute(data)))
age_group <- get_var(data, !!rlang::enquo(age_group))
split_by <- get_var(data, !!rlang::enquo(split_by))
stack_by <- get_var(data, !!rlang::enquo(stack_by))
count <- get_var(data, !!rlang::enquo(count))
if (!is.factor(as.data.frame(data)[[age_group]])) {
stop("age group must be a factor")
}
if (length(stack_by) == 0) {
stack_by <- split_by
}
ag <- rlang::sym(age_group)
sb <- rlang::sym(split_by)
st <- rlang::sym(stack_by)
if (length(count) == 0) {
plot_data <- aggregate_by_age(
data,
age_group = age_group,
stack_by = stack_by,
split_by = split_by,
proportional = proportional,
na.rm = na.rm
)
} else {
plot_data <- dplyr::rename(data, n = !!rlang::sym(count))
}
age_levels <- levels(plot_data[[age_group]])
max_age_group <- age_levels[length(age_levels)]
split_levels <- plot_data[[split_by]]
split_levels <- if (is.factor(split_levels)) levels(split_levels) else unique(split_levels)
split_levels <- split_levels[!is.na(split_levels)]
stk_levels <- plot_data[[stack_by]]
stk_levels <- if (is.factor(stk_levels)) levels(stk_levels) else unique(stk_levels)
stopifnot(length(split_levels) >= 1L)
split_measured_binary <- pyramid && length(split_levels) == 2L
if (split_measured_binary) {
maxdata <- dplyr::group_by(plot_data, !!ag, !!sb, .drop = FALSE)
} else {
maxdata <- dplyr::group_by(plot_data, !!ag, .drop = FALSE)
}
maxdata <- dplyr::tally(maxdata, wt = !!quote(n), name = "n")
max_n <- max(abs(maxdata[["n"]]), na.rm = TRUE)
if (proportional) {
lab_fun <- function(i) scales::percent(abs(i))
y_lab <- "proportion"
} else {
lab_fun <- function(i) format(abs(i), big.mark = ",", trim = TRUE)
y_lab <- "counts"
}
stopifnot(is.finite(max_n), max_n > 0)
the_breaks <- pretty(c(0, max_n), min.n = 5)
the_breaks <- if (split_measured_binary) c(-rev(the_breaks[-1]), the_breaks) else the_breaks
if (split_measured_binary) {
plot_data[["n"]] <- ifelse(plot_data[[split_by]] == split_levels[[1L]], -1L, 1L) * plot_data[["n"]]
maxdata[["d"]] <- ifelse(maxdata[[split_by]] == split_levels[[1L]], -1L, 0L) * maxdata[["n"]]
maxdata <- dplyr::summarise(maxdata, center = sum(!!quote(d)) + sum(!!quote(n)) / 2)
} else {
maxdata[["center"]] <- maxdata[["n"]] / 2
}
pyramid <- ggplot(plot_data, aes(x = !!ag, y = !!quote(n))) +
theme(axis.line.y = element_blank()) +
labs(y = y_lab)
pal <- if (is.function(pal)) pal(length(stk_levels)) else pal
if (!split_measured_binary) {
maxdata[["zzzzz_alpha"]] <- "Total"
pyramid <- pyramid +
geom_col(aes(alpha = !!quote(zzzzz_alpha)), fill = "grey80", color = "grey20", data = maxdata)
}
pyramid <- pyramid +
geom_col(aes(group = !!sb, fill = !!st), color = "grey20") +
coord_flip()
if (is.null(pal)) {
pyramid <- pyramid + scale_fill_brewer(type = "qual", guide = guide_legend(order = 1))
} else {
pyramid <- pyramid + scale_fill_manual(values = pal, guide = guide_legend(order = 1))
}
EXPANSION <- if (utils::packageVersion("ggplot2") < "3.3.0") ggplot2::expand_scale else ggplot2::expansion
pyramid <- pyramid +
scale_y_continuous(
limits = if (split_measured_binary) range(the_breaks) else c(0, max_n),
breaks = the_breaks,
labels = lab_fun,
expand = EXPANSION(mult = 0.02, add = 0)
) +
scale_x_discrete(drop = FALSE)
if (!split_measured_binary) {
pyramid <- pyramid +
facet_wrap(split_by) +
scale_alpha_manual(values = 0.5, guide = guide_legend(title = NULL, order = 3))
}
if (vertical_lines == TRUE) {
pyramid <- pyramid +
geom_hline(yintercept = the_breaks, linetype = "dotted", colour = "grey50")
}
if (show_midpoint) {
maxdata <- dplyr::arrange(maxdata, !!ag)
maxdata[["x"]] <- seq_along(maxdata[[age_group]]) - 0.25
maxdata[["xend"]] <- maxdata[["x"]] + 0.5
maxdata[["halfway"]] <- "midpoint"
pyramid <- pyramid +
geom_segment(aes(
x = !!quote(x),
xend = !!quote(xend),
y = !!quote(center),
yend = !!quote(center),
linetype = !!quote(halfway)
),
color = "grey20",
key_glyph = "vpath",
data = maxdata
) +
scale_linetype_manual(values = "dashed", guide = guide_legend(title = NULL, order = 2))
}
if (split_measured_binary && stack_by != split_by) {
pyramid <- pyramid +
annotate(
geom = "label",
x = max_age_group,
y = -diff(the_breaks)[1],
vjust = 0.5,
hjust = 1,
label = split_levels[[1]]
) +
annotate(
geom = "label",
x = max_age_group,
y = diff(the_breaks)[1],
vjust = 0.5,
hjust = 0,
label = split_levels[[2]]
)
}
if (horizontal_lines == TRUE) {
pyramid <- pyramid + theme(panel.grid.major.y = element_line(linetype = 2))
}
pyramid <- pyramid +
geom_hline(yintercept = 0)
pyramid
} |
densityplot.lambdaReg <- function(x, by = "column", col,
xlim, ylim,
main = "", sub = NULL, xlab,
ylab, lty = par("lty"), lwd = par("lwd"), ...) {
readpars <- par(no.readonly = TRUE)
idx <- dimnames(x$lambda)
lidx <- sapply(idx, length)
names(lidx) <- names(idx) <- c("rows", "columns")
dens <- array(NA, dim = lidx, dimnames = idx)
for (i in idx[[2]]) {
for (j in idx[[1]])
dens[j,i] <- dnorm(x$lambda[j,i], mean = x$lambda[j,i],
sd = x$se[j,i])
}
if (missing(xlim)) {
tmpL <- x$lambda - 3*x$se
tmpH <- x$lambda + 3*x$se
xlim <- c(min(tmpL), max(tmpH))
}
if (by == "row") {
par(mfrow = c(lidx[1], 1), ...)
if (missing(ylim)) {
ylim <- apply(dens, 1, max)
}
if (missing(xlab)) {
xlab <- paste("Percentage", unlist(idx[[1]]))
}
else if (length(xlab) != length(idx[[1]])) {
warning(paste("xlab needs to be", lidx[1], "long"))
xlab <- rep(xlab, lidx[1])[1:lidx[1]]
}
if (missing(col)) {
col <- rainbow(lidx[2])
}
else {
if (length(col) < lidx[2])
col <- rep(col, idx[[2]])[1:lidx[2]]
if (length(col) > lidx[2])
col <- col[1:lidx[2]]
}
names(col) <- idx[[2]]
names(xlab) <- idx[[1]]
for (ii in idx[[1]]) {
x1 <- seq(tmpL[ii,1], tmpH[ii,1], by = 0.001)
d1 <- dnorm(x1, mean = x$lambda[ii,1], sd = x$se[ii,1])
plot(x1, d1, type = "l", xlim = xlim, col = col[1],
ylim = c(0, max(ylim[ii])), main = main, sub = sub,
xlab = xlab[ii], ylab = "Density", lty = lty,
lwd = lwd)
for (jj in idx[[2]][2:lidx[2]]) {
x1 <- seq(tmpL[ii,jj], tmpH[ii,jj], by = 0.001)
d1 <- dnorm(x1, mean = x$lambda[ii,jj], sd = x$se[ii,jj])
lines(x1, d1, lty = lty, lwd = lwd, col = col[jj])
}
abline(v = 0, col = "grey50")
abline(v = 1, col = "grey50")
}
}
if (by == "column") {
par(mfrow = c(lidx[2], 1), ...)
if (missing(ylim)) {
ylim <- apply(dens, 2, max)
}
if (missing(xlab)) {
xlab <- paste("Percentage", unlist(idx[[2]]))
}
else {
if (length(xlab) != lidx[1]) {
warning(paste("xlab needs to be", lidx[1], "long"))
xlab <- rep(xlab, lidx[2])[1:lidx[2]]
}
}
if (missing(col)) {
col <- rainbow(lidx[1])
}
else {
if (length(col) < lidx[1])
col <- rep(col, idx[[1]])[1:lidx[1]]
if (length(col) > lidx[1])
col <- col[1:lidx[1]]
}
names(col) <- idx[[1]]
names(xlab) <- idx[[2]]
for (ii in idx[[2]]) {
x1 <- seq(tmpL[1,ii], tmpH[1,ii], by = 0.001)
d1 <- dnorm(x1, mean = x$lambda[1,ii], sd = x$se[1,ii])
plot(x1, d1, type = "l", xlim = xlim, col = col[1],
ylim = c(0, max(ylim[ii])), main = main, sub = sub,
xlab = xlab[ii], ylab = "Density", lty = lty,
lwd = lwd)
for (jj in idx[[1]][2:lidx[1]]) {
x1 <- seq(tmpL[jj,ii], tmpH[jj,ii], by = 0.001)
d1 <- dnorm(x1, mean = x$lambda[jj,ii], sd = x$se[jj,ii])
lines(x1, d1, lty = lty, lwd = lwd, col = col[jj])
}
abline(v = 0, col = "grey50")
abline(v = 1, col = "grey50")
}
}
return(invisible(x))
par(readpars)
} |
LearnerRegrLM = R6Class("LearnerRegrLM",
inherit = LearnerRegr,
public = list(
initialize = function() {
ps = ps(
df = p_dbl(default = Inf, tags = "predict"),
interval = p_fct(c("none", "confidence", "prediction"), tags = "predict"),
level = p_dbl(default = 0.95, tags = "predict"),
model = p_lgl(default = TRUE, tags = "train"),
offset = p_lgl(tags = "train"),
pred.var = p_uty(tags = "predict"),
qr = p_lgl(default = TRUE, tags = "train"),
scale = p_dbl(default = NULL, special_vals = list(NULL), tags = "predict"),
singular.ok = p_lgl(default = TRUE, tags = "train"),
x = p_lgl(default = FALSE, tags = "train"),
y = p_lgl(default = FALSE, tags = "train")
)
super$initialize(
id = "regr.lm",
param_set = ps,
predict_types = c("response", "se"),
feature_types = c("logical", "integer", "numeric", "factor", "character"),
properties = c("weights", "loglik"),
packages = c("mlr3learners", "stats"),
man = "mlr3learners::mlr_learners_regr.lm"
)
},
loglik = function() {
extract_loglik(self)
}
),
private = list(
.train = function(task) {
pv = self$param_set$get_values(tags = "train")
if ("weights" %in% task$properties) {
pv = insert_named(pv, list(weights = task$weights$weight))
}
invoke(stats::lm,
formula = task$formula(), data = task$data(),
.args = pv, .opts = opts_default_contrasts)
},
.predict = function(task) {
pv = self$param_set$get_values(tags = "predict")
newdata = ordered_features(task, self)
se_fit = self$predict_type == "se"
prediction = invoke(predict, object = self$model, newdata = newdata, se.fit = se_fit, .args = pv)
if (se_fit) {
list(response = unname(prediction$fit), se = unname(prediction$se.fit))
} else {
list(response = unname(prediction))
}
}
)
) |
library("aroma.affymetrix")
verbose <- Verbose(threshold=-10, timestamp=TRUE)
options(width=60)
chipType <- "GenomeWideSNP_6"
cdfTags <- "Full"
fullname <- "Henrik Bengtsson"
user <- "HB"
email <- getOption(aromaSettings, "user/email")
if (is.null(email)) {
email <- "[email protected]"
}
naVersion <- "32"
genomeVersion <- "hg19"
datestamp <- format(Sys.Date(), format="%Y%m%d")
cdf <- AffymetrixCdfFile$byChipType(chipType, tags=cdfTags)
rm(csvList)
print(cdf)
csvList <- list()
tagsList <- c(
main=sprintf(".na%s", naVersion),
cn=sprintf(".cn.na%s", naVersion)
)
for (key in names(tagsList)) {
tags <- tagsList[[key]]
pathname <- AffymetrixNetAffxCsvFile$findByChipType(chipType, tags=tags)
if (isFile(pathname)) {
csvList[[key]] <- AffymetrixNetAffxCsvFile(pathname)
}
rm(tags)
}
print(csvList)
tags <- sprintf("na%s,%s,%s%s", naVersion, genomeVersion, user, datestamp)
tags <- c("TEST-ONLY", tags)
ugp <- AromaUgpFile$allocateFromCdf(cdf, tags=tags, overwrite=TRUE)
print(ugp)
for (kk in seq_along(csvList)) {
csv <- csvList[[kk]]
print(csv)
units <- importFrom(ugp, csv, verbose=verbose)
str(units)
}
srcFileTags <- list()
srcFiles <- c(list(cdf), csvList)
for (kk in seq_along(srcFiles)) {
srcFile <- srcFiles[[kk]]
tags <- list(
filename=getFilename(srcFile),
filesize=getFileSize(srcFile),
checksum=getChecksum(srcFile)
)
srcFileTags[[kk]] <- tags
}
print(srcFileTags)
footer <- readFooter(ugp)
footer$createdBy <- list(
fullname = fullname,
email = email
)
names(srcFileTags) <- sprintf("srcFile%d", seq_along(srcFileTags))
footer$srcFiles <- srcFileTags
writeFooter(ugp, footer)
ugp <- AromaUgpFile$byChipType("GenomeWideSNP_6,Full", tags="TEST-ONLY")
print(ugp)
print(table(ugp[,1], exclude=NULL)) |
subsetFunc = function(array.in, gname, path) {
if (length(dim(array.in)) == 3) {
v = array.in[gname, , path]
resnames = colnames(array.in[gname, , path, drop = FALSE])
names(v) = resnames
}
if (length(dim(array.in)) == 2) {
v = as.vector(array.in[path, ])
resnames = colnames(array.in)
names(v) = resnames
}
return(v)
} |
data("academic_awards")
academic_awards$zmath <- scale(academic_awards$math)
model <- glm(num_awards ~ prog + zmath + prog * zmath, family = "poisson",
data = academic_awards)
strest <- model$coefficients[c(4,5,6)]
strcovmtrx <- vcov(model)[c(4,5,6), c(4,5,6)]
constr <- matrix(c(1, 0, 0,
1, 1, 0,
1, 0, 1), nrow = 3, ncol = 3, byrow = TRUE)
rhs <- rep(0, 3)
nec <- 3
H1 <- gorica:::ormle(est = strest, covmtrx = strcovmtrx, constr = constr, nec = nec, rhs = rhs)
H1_char <- "zmath = 0 & zmath + progGeneral:zmath = 0 & zmath + progVocational:zmath =0"
parsed_hyp1 <- bain:::parse_hypothesis(names(strest), H1_char)
test_that("Parsed H1 correct", {
expect_equivalent(constr, parsed_hyp1$hyp_mat[[1]][1:3, 1:3])
expect_equivalent(rhs, parsed_hyp1$hyp_mat[[1]][1:3, 4])
expect_equivalent(nec, parsed_hyp1$n_ec)
})
constr <- matrix(c(0, 1, -1,
0, 0, 1), nrow = 2, ncol = 3, byrow = TRUE)
rhs <- rep(0, 2)
nec <- 0
H2 <- gorica:::ormle(est = strest, covmtrx = strcovmtrx, constr = constr, nec = nec, rhs = rhs)
H2_char <- "progGeneral:zmath > progVocational:zmath & progVocational:zmath > 0"
parsed_hyp2 <- bain:::parse_hypothesis(names(strest), H2_char)
test_that("Parsed H2 correct", {
expect_equivalent(constr, parsed_hyp2$hyp_mat[[1]][1:2, 1:3])
expect_equivalent(rhs, parsed_hyp2$hyp_mat[[1]][1:2, 4])
expect_equivalent(nec, parsed_hyp2$n_ec)
})
constr <- matrix(c(0, 0, -1), nrow = 1, ncol = 3, byrow = TRUE)
rhs <- rep(0, 1)
nec <- 0
H3 <- gorica:::ormle(est = strest, covmtrx = strcovmtrx, constr = constr, nec = nec, rhs = rhs)
H3_char <- "progVocational:zmath < 0"
parsed_hyp3 <- bain:::parse_hypothesis(names(strest), H3_char)
test_that("Parsed H3 correct", {
expect_equivalent(constr, parsed_hyp3$hyp_mat[[1]][1, 1:3])
expect_equivalent(rhs, parsed_hyp3$hyp_mat[[1]][1, 4])
expect_equivalent(nec, parsed_hyp3$n_ec)
})
constr <- matrix(c(rep(0, 3)), nrow = 1, ncol = 3, byrow = TRUE)
rhs <- rep(0, 1)
nec <- 0
Hu <- gorica:::ormle(est = strest, covmtrx = strcovmtrx, constr = constr, nec = nec, rhs = rhs)
set.seed(111)
man_gorica <- gorica:::compare_hypotheses.ormle(H1, H2, H3, Hu, iter = 100000)
res_gorica <- gorica(model, "zmath = 0 & zmath + progGeneral:zmath = 0 & zmath + progVocational:zmath =0; progGeneral:zmath > progVocational:zmath & progVocational:zmath > 0; progVocational:zmath < 0", iter = 100000)
test_that("Manual and package version yield same loglik", {
expect_equivalent(man_gorica$comparisons$loglik, res_gorica$fit$loglik, tolerance = .01)
})
test_that("Manual and package version yield same penalty", {
expect_equivalent(man_gorica$comparisons$penalty, res_gorica$fit$penalty, tolerance = .01)
})
test_that("Manual and package version yield same gorica", {
expect_equivalent(man_gorica$comparisons$gorica, res_gorica$fit$gorica, tolerance = .01)
})
test_that("Manual and package version yield same weights", {
expect_equivalent(gorica:::compute_weights(man_gorica$comparisons$gorica),
gorica:::compute_weights(res_gorica$fit$gorica), tolerance = .01)
}) |
ping_gh_repo <- function(repo, newline = FALSE) {
query <- glue::glue("GET /repos/{repo}")
for (iter in seq(1:5)) {
result <- try(gh::gh(query), silent = TRUE)
if (!is(result, "try-error")) {
return(TRUE)
}
Sys.sleep(1)
}
if (newline) {
cat("\n\n")
}
usethis::ui_oops(glue::glue(
"GitHub repository {usethis::ui_value(repo)} does not exist"
))
return(FALSE)
}
get_gh_license <- function(repo) {
query <- glue::glue("GET /repos/{repo}/license")
result <- try(gh::gh(query), silent = TRUE)
if (is(result, "try-error")) {
license <- NA
} else {
license <- result$license$spdx_id
}
return(license)
} |
source("inst/fannie_mae/0_setup.r")
fm_with_harp = disk.frame(file.path(outpath, "fm_with_harp"))
head(fm_with_harp)
nrow(fm_with_harp)
system.time(a_wh1 <- fm_with_harp %>%
srckeep(c("default_12m","monthly.rpt.prd")) %>%
group_by(monthly.rpt.prd) %>%
summarise(
N = n(),
n_defaults = sum(default_12m, na.rm = T)) %>%
collect(parallel = T) %>%
group_by(monthly.rpt.prd) %>%
summarise(
odr = sum(n_defaults)/sum(N)
) %>%
rename(
Date = monthly.rpt.prd,
`Observed Default Rate%` = odr
))
a_wh2 = a_wh1 %>% gather(key = type, value=rate, -Date)
ggplot(a_wh2) +
geom_line(aes(x=Date, y = rate, colour = type)) +
ggtitle("Fannie Mae Observed Default Rate over time & HARP Conversion Rate") |
draw.polygons = function(summary.zeta.scores) {
for(current.subset in c("primary","secondary")) {
current.cloud = (summary.zeta.scores[grep(current.subset,summary.zeta.scores[,3]),1:2])
current.cloud = as.numeric(as.matrix(current.cloud))
current.cloud = matrix(current.cloud,ncol=2)
current.cloud = as.data.frame(current.cloud)
colnames(current.cloud) = c("x","y")
a1 = current.cloud[current.cloud[,1] == max(current.cloud[,1]),]
a1 = a1[a1$y == max(a1$y),]
a1 = a1[1,]
a2 = current.cloud[current.cloud[,1] == min(current.cloud[,1]),]
a2 = a2[a2$y == min(a2$y),]
a2 = a2[1,]
a.i = a1
a.j = a2
vertexes.of.polygon = a1
for(o in 1: length(current.cloud[,1]) ) {
for(m in 1: length(current.cloud[,1]) ) {
does.the.point.fit = a.j
if(a.i$x == a.j$x) {a.i$x = a.i$x + a.i$x *0.01}
steepness = (a.i$y-a.j$y)/((a.i$x-a.j$x) + 0.000001)
offset = a.j$y - (steepness * a.j$x)
current.line = steepness + offset
for(n in 1: length(current.cloud[,1]) ) {
current.point = current.cloud[n,]
if(current.point$x * steepness + offset >
current.point$y + current.point$y * .01) {
a.j = current.point
break
}
}
if(a.j$y == does.the.point.fit$y && a.j$x == does.the.point.fit$x) {
break
}
}
vertexes.of.polygon = rbind(vertexes.of.polygon, a.j)
if(a.j$y == a2$y && a.j$x == a2$x) {
break
}
a.i = a.j
a.j = a2
}
a.i = a2
a.j = a1
for(o in 1: length(current.cloud[,1]) ) {
for(m in 1: length(current.cloud[,1]) ) {
does.the.point.fit = a.j
if(a.i$x == a.j$x) {a.i$x = a.i$x - a.i$x *0.01}
steepness = (a.i$y-a.j$y)/((a.i$x-a.j$x) + 0.000001)
offset = a.j$y - (steepness * a.j$x)
current.line = steepness + offset
for(n in 1: length(current.cloud[,1]) ) {
current.point = current.cloud[n,]
if(current.point$x * steepness + offset <
current.point$y - current.point$y * .01) {
a.j = current.point
break
}
}
if(a.j$y == does.the.point.fit$y && a.j$x == does.the.point.fit$x) {
break
}
}
vertexes.of.polygon = rbind(vertexes.of.polygon, a.j)
if(a.j$y == a1$y && a.j$x == a1$x) {
break
}
a.i = a.j
a.j = a1
}
if(current.subset == "primary") {
polygon.primary = vertexes.of.polygon
} else {
polygon.secondary = vertexes.of.polygon
}
}
polygon(polygon.primary,col=rgb(0,0,0,0.1),border=2)
polygon(polygon.secondary,col=rgb(0,0,0,0.1),border=3)
} |
summary.flic <- function(object, ...)
{
cat("Firth's logistic regression with intercept correction\n\n")
summary.logistf(object)
} |
plot.OKriglistplus <- function(x, digits = 4, which = 1, ...) {
zut <- x[c("y", "fitted.values")]
class(zut) <- c("OKrig")
plot(zut, ...)
} |
dualpathTall <- function(y, D, Q1, Q2, R, q0, approx=FALSE, maxsteps=2000,
minlam=0, rtol=1e-7, btol=1e-7, verbose=FALSE,
object=NULL) {
if (is.null(object)) {
m = nrow(D)
n = ncol(D)
q = 0
z = Backsolve(R,y,q)
uhat = Q1%*%z
ihit = which.max(abs(uhat))
hit = abs(uhat[ihit])
s = sign(uhat[ihit])
if (verbose) {
cat(sprintf("1. lambda=%.3f, adding coordinate %i, |B|=%i...",
hit,ihit,1))
}
buf = min(maxsteps,1000)
u = matrix(0,m,buf)
lams = numeric(buf)
h = logical(buf)
df = numeric(buf)
lams[1] = hit
h[1] = TRUE
df[1] = q0
u[,1] = uhat
r = 1
B = ihit
I = Seq(1,m)[-ihit]
D1 = D[-ihit,,drop=FALSE]
D2 = D[ihit,,drop=FALSE]
k = 2
}
else {
lambda = NULL
for (j in 1:length(object)) {
if (names(object)[j] != "pathobjs") {
assign(names(object)[j], object[[j]])
}
}
for (j in 1:length(object$pathobjs)) {
assign(names(object$pathobjs)[j], object$pathobjs[[j]])
}
lams = lambda
}
tryCatch({
while (k<=maxsteps && lams[k-1]>=minlam) {
if (k > length(lams)) {
buf = length(lams)
lams = c(lams,numeric(buf))
h = c(h,logical(buf))
df = c(df,numeric(buf))
u = cbind(u,matrix(0,m,buf))
}
if (h[k-1]) {
x = downdateT(Q1,Q2,R,ihit)
Q1 = x$Q1
Q2 = x$Q2
R = x$R
if (nrow(R)==0) {
q = q+1
}
else if (nrow(R)==n-q-1) {
x = maketri3(y,D1,D2,R,q)
y = x$y
D1 = x$D1
D2 = x$D2
R = x$R
q = q+1
}
else if (nrow(R)>=n-q) {
d = diag(R[Seq(1,n-q),Seq(q+1,n),drop=FALSE])
if (min(abs(d))<rtol) {
i = max(which(abs(d)<rtol))
x = maketri4(y,D1,D2,Q1,Q2,R,q,i)
y = x$y
D1 = x$D1
D2 = x$D2
Q1 = x$Q1
Q2 = x$Q2
R = x$R
q = q+1
}
}
}
else {
x = updateT(y,D1,D2,Q1,Q2,R,q,D1[m-r,])
y = x$y
D1 = x$D1
D2 = x$D2
Q1 = x$Q1
Q2 = x$Q2
R = x$R
if (q==0 || abs(R[1,q])<rtol) {
x = maketri4(y,D1,D2,Q1,Q2,R,q,1)
y = x$y
D1 = x$D1
D2 = x$D2
Q1 = x$Q1
Q2 = x$Q2
R = x$R
}
else {
q = q-1
}
}
if (r<m && min(abs(diag(R[Seq(1,n-q),Seq(q+1,n),drop=FALSE])))<rtol) {
if (verbose) {
cat("\n(Recomputing QR factorization, for numerical stability...)")
}
x = qr(D1[,Seq(q+1,n)])
Q = qr.Q(x,complete=TRUE)
Q1 = Q[,Seq(1,min(n,m-r)),drop=FALSE]
Q2 = Q[,Seq(min(n,m-r)+1,m-r),drop=FALSE]
R = qr.R(x,complete=TRUE)
R = cbind(matrix(0,min(n,m-r),q),R[Seq(1,min(n,m-r)),])
}
Ds = t(D2)%*%s
if (r==m) {
a = b = numeric(0)
hit = 0
}
else {
z = Backsolve(R,y,q)
a = Q1%*%z
z = Backsolve(R,Ds,q)
b = Q1%*%z
shits = Sign(a)
hits = a/(b+shits)
hits[hits>lams[k-1]+btol] = 0
hits[hits>lams[k-1]] = lams[k-1]
ihit = which.max(hits)
hit = hits[ihit]
shit = shits[ihit]
}
if (r==0 || approx) {
leave = 0
}
else {
if (nrow(R)>=n-q) {
c = d = leaves = rep(0,r)
}
else {
c = s*(D2%*%(y-t(D1)%*%a))
d = s*(D2%*%(Ds-t(D1)%*%b))
leaves = c/d
leaves[c>=0] = 0
}
leaves[leaves>lams[k-1]+btol] = 0
leaves[leaves>lams[k-1]] = lams[k-1]
ileave = which.max(leaves)
leave = leaves[ileave]
}
if (hit<=0 && leave<=0) break
if (hit > leave) {
lams[k] = hit
h[k] = TRUE
df[k] = q0+q
uhat = numeric(m)
uhat[B] = hit*s
uhat[I] = a-hit*b
u[,k] = uhat
r = r+1
B = c(B,I[ihit])
I = I[-ihit]
s = c(s,shit)
D2 = rbind(D2,D1[ihit,])
D1 = D1[-ihit,,drop=FALSE]
if (verbose) {
cat(sprintf("\n%i. lambda=%.3f, adding coordinate %i, |B|=%i...",
k,hit,B[r],r))
}
}
else {
lams[k] = leave
h[k] = FALSE
df[k] = q0+q
uhat = numeric(m)
uhat[B] = leave*s
uhat[I] = a-leave*b
u[,k] = uhat
r = r-1
I = c(I,B[ileave])
B = B[-ileave]
s = s[-ileave]
D1 = rbind(D1,D2[ileave,])
D2 = D2[-ileave,,drop=FALSE]
if (verbose) {
cat(sprintf("\n%i. lambda=%.3f, deleting coordinate %i, |B|=%i...",
k,leave,I[m-r],r))
}
}
k = k+1
}
}, error = function(err) {
err$message = paste(err$message,"\n(Path computation has been terminated;",
" partial path is being returned.)",sep="")
warning(err)})
lams = lams[Seq(1,k-1)]
h = h[Seq(1,k-1)]
df = df[Seq(1,k-1),drop=FALSE]
u = u[,Seq(1,k-1),drop=FALSE]
pathobjs = list(type="tall", r=r, B=B, I=I, Q1=Q1, approx=approx,
Q2=Q2, k=k, df=df, D1=D1, D2=D2, ihit=ihit, m=m, n=n, q=q, h=h,
R=R, q0=q0, rtol=rtol, btol=btol, s=s, y=y)
if (k>maxsteps) {
if (verbose) {
cat(sprintf("\nReached the maximum number of steps (%i),",maxsteps))
cat(" skipping the rest of the path.")
}
completepath = FALSE
}
else if (lams[k-1]<minlam) {
if (verbose) {
cat(sprintf("\nReached the minimum lambda (%.3f),",minlam))
cat(" skipping the rest of the path.")
}
completepath = FALSE
}
else completepath = TRUE
if (verbose) cat("\n")
colnames(u) = as.character(round(lams,3))
return(list(lambda=lams,beta=NA,fit=NA,u=u,hit=h,df=df,y=NA,
completepath=completepath,bls=NA,pathobjs=pathobjs))
} |
povcalnet_wb <- function(povline = 1.9,
year = "all",
url = "http://iresearch.worldbank.org",
format = "csv") {
query <- paste0("GroupedBy=WB&YearSelected=", year, "&PovertyLine=", povline, "&Countries=all&format=", format)
url <- httr::modify_url(url, path = api_handle(), query = query)
res <- httr::GET(url = url)
res <- httr::content(res, as = "text", encoding = "UTF-8" )
if (res == "") {
out <- handle_empty_response(res, aggregate = TRUE)
} else {
if (format == "json") {
out <- tibble::as_tibble(jsonlite::fromJSON(res, simplifyDataFrame = TRUE))
out <- out$PovResult
} else {
out <- readr::read_csv(res)
}
}
out <- format_data(out,
coverage = "all",
aggregate = TRUE)
return(out)
} |
ediff <- function(x, lag=1, differences=1, pad=c("head","tail","symmetric"),
pad.value = NA,
frontPad, ...) {
pad <- match.arg(pad)
res <- diff(x, lag=lag, difference=differences, ...)
p1 <- max(ceiling(lag*differences / 2), ceiling(nrow(x) / 2))
p2 <- max(floor(lag*differences / 2), floor(nrow(x) / 2))
if (p1 != p2 && pad == "symmetric") {
warning("padding not quite symmetric since lag * differences is odd")
}
if (is.matrix(res)) {
pad1 <- matrix(pad.value,
nrow=p1,
ncol=ncol(res))
pad1 <- matrix(pad.value,
nrow=p2,
ncol=ncol(res))
FUN <- rbind
} else {
pad1 <- rep(pad.value, p1)
pad2 <- rep(pad.value, p2)
FUN <- c
}
res <- switch(pad,
head = FUN(pad1, pad2, res),
tail = FUN(res, pad1, pad2),
symmetric = FUN(pad1, res, pad2)
)
res
} |
SparamG.S <-
function(X,y,delta,N,q,sigma0,MAXIT,TOL,ialg=3,seed=153) {
X <- as.matrix(X); n <- length(y); p <- ncol(X); b <- 0.5
zbet <- BtamatG(X,y,delta,N,q,MAXIT,TOL,seed=seed)
beta <- zbet$beta
gamok <- 0
s0 <- 1
kappa <- 9.E9
smink <- 9.E9
mes2 <- integer(4)
cat(".")
flush.console()
now <- Sys.time()
now <- now+6
for (j in 1:N) {
betj <- matrix(beta[j,],nrow=N,ncol=p,byrow=TRUE)
if (gamok==0) {
gamj <- sweep(beta,2,beta[j,])
nu <- apply(gamj,1,Nrm2)}
betgamj <- betj
B <- (1:N)[nu <= kappa]
ni <- length(B)
if (ni==0) next
betgamb <- betgamj[B,]
tmp <- s.eq.Gauss(X,y,ni,delta,sigma0,b,betgamb,MAXIT,TOL,s0=s0,
ipsi=4,xk=1.5477,lint=1,ialg=ialg,meth=4)
sj <- tmp$S
mes2 <- mes2+tmp$mes2
Sj <- rep(100000,N)
gamjb <- gamj[B,]
betjb <- betj[B,]
tmp <- S.eq.Gauss(X,y,ni,delta,sj,sigma0,b,betjb,gamjb,MAXIT,TOL,
ipsi=4,xk=1.5477,lint=1,ialg=ialg)
Sj[B] <- tmp$S
mes2 <- mes2+tmp$mes2
omega <- min(Sj)
kStar <- (1:N)[Sj==omega]
numin <- nu[kStar]
nustar <- min(numin)
kstar <- (kStar)[numin==nustar]
if (abs(nustar-kappa)<1e-6 & omega>smink) next
Bbar <- setdiff(1:N,B)
truemin <- 1
if (length(Bbar)>0) for (k in Bbar) {
tmp <- s.eq.Gauss(X,y,1,delta,sigma0,b,betgamj[k,],MAXIT,TOL,s0=s0,
ipsi=4,xk=1.5477,lint=1,ialg=ialg,meth=4)
sk <- tmp$S; mes2 <- mes2+tmp$mes2
tmp <- S.eq.Gauss(X,y,1,delta,sk,sigma0,b,betj[k,],gamj[k,],MAXIT,TOL,
ipsi=4,xk=1.5477,lint=1,ialg=ialg)
tst <- tmp$S; mes2 <- mes2+tmp$mes2
if (tst < omega) {truemin <- 0; break}
}
if (truemin==1) {
smink <- omega
Jstar <- j
Kstar <- kstar
ind <- match(kstar,B,nomatch=0)
Smin <- sj[ind]
smin <- Sj[kstar]
gamin <- gamj
kappa <- nustar
}
if (Sys.time() >= now) {cat("."); flush.console(); now <- now+6}
}
cat("\n"); flush.console()
cmes2 <- c(as.character(mes2)," ")
Smin <- Smin[1]
Eqexit <- paste(c("Normal (","Nit=Maxit (","f(a)*f(b)>0 (","|f(a)-f(b)|<tl ("," "),
cmes2,sep="",collapse=") ")
Bmin0 <- beta[Jstar,]
Smin0 <- Smin
zres <- list(Bmin=Bmin0,Smin=Smin0,smin=smin,beta=beta,gama=gamin,kappa=kappa,
Jstar=Jstar,Kstar=Kstar,Eqexit=Eqexit)
zres} |
library(lgpr)
context("Inverse-gamma distribution")
test_that("inverse gamma density works and errors correctly", {
a <- 2
b <- 3
diff <- abs(dinvgamma_stanlike(1, a, b) - 0.4480836)
expect_lt(diff, 1e-6)
expect_error(dinvgamma_stanlike(1, -1, 2))
expect_error(dinvgamma_stanlike(1, 2, -1))
})
test_that("inverse gamma quantile works and errors correctly", {
a <- 2
b <- 3
diff <- abs(qinvgamma_stanlike(0.9, a, b) - 5.641095)
expect_lt(diff, 1e-6)
expect_error(qinvgamma_stanlike(0.9, -1, 2))
expect_error(qinvgamma_stanlike(0.9, 2, -1))
expect_error(qinvgamma_stanlike(-0.1, 2, 2))
expect_error(qinvgamma_stanlike(1.5, 2, 2))
})
test_that("plotting the inverse gamma distribution works", {
a <- 2
b <- 3
p1 <- plot_invgamma(a, b)
p2 <- plot_invgamma(a, b, return_quantiles = TRUE)
c1 <- as.character(class(p1))
c2 <- as.character(class(p2$plot))
expect_equal(c1, c("gg", "ggplot"))
expect_equal(c2, c("gg", "ggplot"))
expect_error(plot_invgamma(a, b, IQR = 1.5))
}) |
curvesegslope <-
function(curve.fpr,curve.tpr){
curve.segslope=c()
for (i in 1:(dim(curve.fpr)-1))
{
if (curve.fpr[i]!=curve.fpr[i+1])
curve.segslope[i]=(curve.tpr[i]-curve.tpr[i+1])/(curve.fpr[i]-curve.fpr[i+1])
else
curve.segslope[i]=-Inf
}
return(curve.segslope)
} |
timestamp <- Sys.time()
library(caret)
library(plyr)
library(recipes)
library(dplyr)
model <- "sdwd"
set.seed(1)
training <- twoClassSim(50, linearVars = 2)
testing <- twoClassSim(500, linearVars = 2)
trainX <- training[, -ncol(training)]
trainY <- training$Class
rec_cls <- recipe(Class ~ ., data = training) %>%
step_center(all_predictors()) %>%
step_scale(all_predictors())
cctrl1 <- trainControl(method = "cv", number = 3, returnResamp = "all",
classProbs = TRUE,
summaryFunction = twoClassSummary)
cctrl2 <- trainControl(method = "LOOCV",
classProbs = TRUE, summaryFunction = twoClassSummary)
cctrl3 <- trainControl(method = "none",
classProbs = TRUE, summaryFunction = twoClassSummary)
cctrlR <- trainControl(method = "cv", number = 3, returnResamp = "all", search = "random")
set.seed(849)
test_class_cv_model <- train(trainX, trainY,
method = "sdwd",
trControl = cctrl1,
metric = "ROC",
preProc = c("center", "scale"))
set.seed(849)
test_class_cv_form <- train(Class ~ ., data = training,
method = "sdwd",
trControl = cctrl1,
metric = "ROC",
preProc = c("center", "scale"))
test_class_pred <- predict(test_class_cv_model, testing[, -ncol(testing)])
test_class_prob <- predict(test_class_cv_model, testing[, -ncol(testing)], type = "prob")
test_class_pred_form <- predict(test_class_cv_form, testing[, -ncol(testing)])
test_class_prob_form <- predict(test_class_cv_form, testing[, -ncol(testing)], type = "prob")
set.seed(849)
test_class_rand <- train(trainX, trainY,
method = "sdwd",
trControl = cctrlR,
tuneLength = 4,
preProc = c("center", "scale"))
set.seed(849)
test_class_loo_model <- train(trainX, trainY,
method = "sdwd",
trControl = cctrl2,
metric = "ROC",
preProc = c("center", "scale"))
set.seed(849)
test_class_none_model <- train(trainX, trainY,
method = "sdwd",
trControl = cctrl3,
tuneGrid = test_class_cv_model$bestTune,
metric = "ROC",
preProc = c("center", "scale"))
test_class_none_pred <- predict(test_class_none_model, testing[, -ncol(testing)])
test_class_none_prob <- predict(test_class_none_model, testing[, -ncol(testing)], type = "prob")
set.seed(849)
test_class_rec <- train(x = rec_cls,
data = training,
method = "sdwd",
trControl = cctrl1,
metric = "ROC")
if(
!isTRUE(
all.equal(test_class_cv_model$results,
test_class_rec$results))
)
stop("CV weights not giving the same results")
test_class_imp_rec <- varImp(test_class_rec)
test_class_pred_rec <- predict(test_class_rec, testing[, -ncol(testing)])
test_class_prob_rec <- predict(test_class_rec, testing[, -ncol(testing)],
type = "prob")
test_levels <- levels(test_class_cv_model)
if(!all(levels(trainY) %in% test_levels))
cat("wrong levels")
test_class_predictors1 <- predictors(test_class_cv_model)
tests <- grep("test_", ls(), fixed = TRUE, value = TRUE)
sInfo <- sessionInfo()
timestamp_end <- Sys.time()
save(list = c(tests, "sInfo", "timestamp", "timestamp_end"),
file = file.path(getwd(), paste(model, ".RData", sep = "")))
if(!interactive())
q("no") |
xewma.ad <- function(l, c, mu1, mu0=0, zr=0, z0=0, sided="one", limits="fix", steady.state.mode="conditional", r=40) {
if ( l<=0 || l>1 ) stop("l has to be between 0 and 1")
if ( c<=0 ) warning("usually, c has to be positive")
if ( zr>c & sided=="one" ) stop("wrong reflexion border")
if ( r<4 ) stop("r is too small")
ctyp <- pmatch(sided, c("one", "two")) - 1
if (is.na(ctyp)) stop("invalid ewma type")
ltyp <- pmatch(limits, c("fix","vacl","fir","both","Steiner","stat")) - 1
if ( is.na(ltyp) ) stop("invalid limits type")
if ( (sided=="one") & !(limits %in% c("fix", "vacl", "stat")) )
stop("not supported for one-sided EWMA (not reasonable or not implemented yet")
styp <- pmatch(steady.state.mode, c("conditional", "cyclical")) - 1
if (is.na(styp)) stop("invalid steady.state.mode")
if ( abs(z0) > abs(c) ) stop("wrong restarting value")
ad <- .C("xewma_ad", as.integer(ctyp), as.double(l),
as.double(c), as.double(zr), as.double(mu0), as.double(mu1), as.double(z0),
as.integer(ltyp), as.integer(styp), as.integer(r),
ans=double(length=1), PACKAGE="spc")$ans
names(ad) <- "ad"
return (ad)
} |
context("updateParVals")
test_that("updateParVals works", {
pa = list(a = 1, b = 2, d = 4, e = 5)
pb = list(a = 0, c = 3)
ps = makeParamSet(
makeIntegerParam("a"),
makeIntegerParam("b", requires = quote(a == 1)),
makeIntegerParam("c"),
makeIntegerParam("d"),
makeIntegerParam("e", requires = quote(f == TRUE)),
makeLogicalParam("f", default = TRUE))
pc = updateParVals(ps, pa, pb)
expect_equal(pc, list(a = 0, c = 3, d = 4, e = 5))
expect_warning(updateParVals(ps, pa, pb, warn = TRUE), "ParamSetting b=2")
pb2 = list(a = 0, f = FALSE)
pc2 = updateParVals(ps, pa, pb2)
expect_equal(pc2, list(a = 0, f = FALSE, d = 4))
expect_equal(updateParVals(ps, pa, list()), pa)
expect_equal(updateParVals(ps, list(), pb), pb)
pa = list(a = 1, b = 2, c = 0.5, d = 4)
pb = list(a = -3)
ps = makeParamSet(
makeIntegerParam("a", requires = quote(e == TRUE)),
makeIntegerParam("b", requires = quote(a == 1)),
makeNumericParam("c"),
makeIntegerParam("d", requires = quote(b == 2)),
makeLogicalParam("e", default = TRUE))
pc = updateParVals(ps, pa, pb)
expect_equal(pc, list(a = -3, c = 0.5))
ps = makeParamSet(
makeIntegerParam("a", default = 1L, requires = quote(b == 2)),
makeIntegerParam("b", default = 2L, requires = quote(c == TRUE)),
makeLogicalParam("c", default = TRUE))
pa = list(a = 1, b = 2, c = TRUE)
pb = list(b = 3)
pc = updateParVals(ps, pa, pb)
expect_equal(pc, list(b = 3, c = TRUE))
}) |
pkm <- function(formula_p, formula_k = NULL, data, obsCol = NULL, kFixed = NULL,
allCombos = FALSE, sizeCol = NULL, CL = 0.90, kInit = 0.7, quiet = FALSE,
...){
if (!is.null(kFixed) && !is.numeric(kFixed))
stop("kFixed must be NULL or numeric")
if (any(na.omit(kFixed) < 0 | na.omit(kFixed) > 1)){
badk <- names(which(na.omit(kFixed) < 0 | na.omit(kFixed) > 1))
stop("invalid k for ", paste0(badk, collapse = ", "))
}
if (is.null(allCombos) || is.na(allCombos) || !is.logical(allCombos)){
stop("allCombos must be TRUE or FALSE")
}
if (is.null(sizeCol) || is.na(sizeCol)){
if (!allCombos){
out <- pkm0(formula_p = formula_p, formula_k = formula_k, data = data,
obsCol = obsCol, kFixed = kFixed, CL = CL, kInit = kInit, quiet = quiet)
} else {
out <- pkmSet(formula_p = formula_p, formula_k = formula_k, data = data,
obsCol = obsCol, kFixed = kFixed, kInit = kInit, CL = CL, quiet = quiet)
}
} else {
out <- pkmSize(formula_p = formula_p, formula_k = formula_k, data = data,
obsCol = obsCol, kFixed = kFixed, sizeCol = sizeCol, allCombos = allCombos,
CL = CL, kInit = kInit, quiet = quiet)
}
return(out)
}
pkm0 <- function(formula_p, formula_k = NULL, data, obsCol = NULL,
kFixed = NULL, kInit = 0.7, CL = 0.90, quiet = FALSE){
i <- sapply(data, is.factor)
data[i] <- lapply(data[i], as.character)
if (!is.null(kFixed) && is.na(kFixed)) kFixed <- NULL
if (!is.null(kFixed) && !is.numeric(kFixed))
stop("kFixed must be NULL or numeric")
if (!is.null(kFixed) && (kFixed < 0 | kFixed > 1)){
stop("invalid fixed value for k")
}
if(any(! obsCol %in% colnames(data))){
stop("Observation column provided not in data.")
}
if (length(obsCol) == 0){
obsCol <- grep("^[sS].*[0-9]$", names(data), value = TRUE)
nobsCol <- length(obsCol)
if (nobsCol == 0){
stop("No obsCol provided and no appropriate column names found.")
}
}
predCheck <- c(all.vars(formula_p[[3]]), all.vars(formula_k[[3]]))
if (any(!(predCheck %in% colnames(data)))){
stop("User-supplied formula includes predictor(s) not found in data.")
}
if (length(kFixed) >= 1){
if (!is.numeric(kFixed[1])){
stop("User-supplied kFixed must be numeric (or NULL)")
}
if (length(kFixed) > 1){
kFixed <- kFixed[1]
if (!quiet){
message("Vector-valued kFixed. Only the first element will be used.")
}
}
if (kFixed < 0 || kFixed > 1){
stop("User-supplied kFixed is outside the supported range [0, 1].")
}
if (length(formula_k) > 0 & quiet == FALSE){
message("Formula and fixed value provided for k, fixed value used.")
formula_k <- NULL
}
}
pOnly <- FALSE
if (is.null(kFixed)){
if (length(obsCol) == 1){
if (!is.null(formula_k) && is.language(formula_k) && quiet == FALSE){
message("Only one search occasion per carcass. k not estimated.")
}
pOnly <- TRUE
formula_k <- NULL
kFixed <- 1
} else {
if(is.null(formula_k) || !is.language(formula_k)){
pOnly <- TRUE
obsCol <- obsCol[1]
message("p is estimated from data in first search occasion only.")
formula_k <- NULL
kFixed <- 1
}
}
}
nsearch <- length(obsCol)
if (ncol(data) == nsearch) data$id <- 1:nrow(data)
obsData <- as.matrix(data[ , obsCol], ncol = nsearch)
if (!is.numeric(obsData)){
obsData[!is.na(obsData) & !(obsData %in% as.character(0:1))] <- NA
obsData <- matrix(as.numeric(obsData), ncol = nsearch)
} else {
obsData[!(obsData %in% 0:1)] <- NA
}
onlyNA <- (rowSums(is.na(obsData)) == nsearch)
obsData <- as.matrix(obsData[!onlyNA, ], ncol = nsearch)
data00 <- data[!onlyNA, ]
data0 <- data00
ncarc <- nrow(obsData)
preds_p <- all.vars(formula_p[[3]])
formulaRHS_p <- formula(delete.response(terms(formula_p)))
levels_p <- .getXlevels(terms(formulaRHS_p), data0)
preds_k <- character(0)
if (is.language(formula_k)){
preds_k <- all.vars(formula_k[[3]])
formulaRHS_k <- formula(delete.response(terms(formula_k)))
levels_k <- .getXlevels(terms(formulaRHS_k), data0)
}
if (length(kFixed) == 1){
preds_k <- character(0)
formulaRHS_k <- formula(~1)
formula_k <- c(fixedk = kFixed)
levels_k <- .getXlevels(terms(formulaRHS_k), data0)
}
preds <- unique(c(preds_p, preds_k))
for (pri in preds)
if (is.numeric(data0[ , pri])) data0[ , pri] <- paste0("_", data0[ , pri])
cells <- combinePreds(preds, data0)
ncell <- nrow(cells)
cellNames <- cells$CellNames
cellMM_p <- model.matrix(formulaRHS_p, cells)
cellMM_k <- model.matrix(formulaRHS_k, cells)
cellMM <- cbind(cellMM_p, cellMM_k)
if (length(preds) == 0){
carcCells0 <- rep("all", ncarc)
} else if (length(preds) == 1){
carcCells0 <- data0[ , preds]
} else if (length(preds) > 1){
carcCells0 <- do.call(paste, c(data0[ , preds], sep = '.'))
}
pInitCellMean <- tapply(data0[ , obsCol[1]], INDEX = carcCells0, FUN = mean, na.rm = TRUE)
fixBadCells <- NULL
if (NCOL(cellMM_p) == prod(unlist(lapply(levels_p, length))) &
any(pInitCellMean %in% 0:1)){
if (length(preds_p) == 0){
if (all(data0[ , obsCol[1]] == 1) || all(data0[ , obsCol[1]] == 0)){
data0 <- rbind(data0, data0)
data0[1, obsCol[1]] <- 1 - data0[1, obsCol[1]]
if (length(obsCol) > 1 && data0[1, obsCol[1]] == 1){
data0[1, obsCol[-1]] <- NA
}
fixBadCells <- "all"
}
} else {
fixBadCells <- names(pInitCellMean)[pInitCellMean %in% 0:1]
badCells <- cells[cells$CellNames %in% fixBadCells, ]
badCells$CellNames <- NULL
for (ci in 1:NROW(badCells)){
cellind <- which(matrixStats::colProds(
t(data0[ , colnames(badCells)]) ==
as.character(badCells[ci, ])) == 1)
data0 <- rbind(data0[cellind, ], data0)
data0[1, obsCol[1]] <- 1 - data0[1, obsCol[1]]
if (data0[1, obsCol[1]] == 1 & length(obsCol) > 1){
data0[1, obsCol[-1]] <- NA
}
}
}
} else if (length(preds_p) == 2 &
NCOL(cellMM_p) < prod(unlist(lapply(levels_p, length)))){
for (predi in names(levels_p)){
for (li in levels_p[[predi]]){
cellind <- which(data0[ , predi] == li)
if (all(data0[cellind, obsCol[1]] == 0) |
all(data0[cellind, obsCol[1]] == 1))
stop("Initial search has all 0s or 1s for ", preds_p[1], " = ", li,
" in additive model.")
}
}
}
obsData <- as.matrix(data0[ , obsCol])
colnames(obsData) <- obsCol
misses <- matrixStats::rowCounts(obsData, value = 0, na.rm =T)
foundOn <- matrixStats::rowMaxs(
obsData * matrixStats::rowCumsums(1 * !is.na(obsData)), na.rm = T)
dataMM_p <- model.matrix(formulaRHS_p, data0)
dataMM_k <- model.matrix(formulaRHS_k, data0)
dataMM <- t(cbind(dataMM_p, dataMM_k))
nbeta_k <- ncol(dataMM_k)
nbeta_p <- ncol(dataMM_p)
nbeta <- nbeta_p + nbeta_k
if (length(preds) == 0){
carcCells <- rep("all", dim(data0)[1])
} else if (length(preds) == 1){
carcCells <- data0[ , preds]
} else if (length(preds) > 1){
carcCells <- do.call(paste, c(data0[ , preds], sep = '.'))
}
cellByCarc <- match(carcCells, cellNames)
pInitCellMean <- tapply(data0[ , obsCol[1]], INDEX = carcCells, FUN = mean, na.rm = TRUE)
pInit <- as.vector(pInitCellMean[match(carcCells, names(pInitCellMean))])
pInit[which(pInit < 0.1)] <- 0.1
pInit[which(pInit > 0.9)] <- 0.9
cellMatrix_p <- solve(t(dataMM_p) %*% dataMM_p)
cellImpact_p <- t(dataMM_p) %*% logit(pInit)
betaInit_p <- cellMatrix_p %*% cellImpact_p
betaInit_k <- logit(rep(kInit, nbeta_k))
betaInit <- c(betaInit_p, betaInit_k)
if (length(kFixed) == 1){
betaInit <- betaInit[-length(betaInit)]
}
for (ki in 1:3){
MLE <- tryCatch(
optim(par = betaInit, fn = pkLogLik,
hessian = TRUE, cellByCarc = cellByCarc, misses = misses,
maxmisses = max(misses), foundOn = foundOn, cellMM = cellMM,
nbeta_p = nbeta_p, kFixed = kFixed, method = "BFGS"),
error = function(x) {NA}
)
if (length(MLE) == 1 && is.na(MLE)) stop("Failed optimization.")
varbeta <- tryCatch(solve(MLE$hessian), error = function(x) {NA})
if (is.na(varbeta)[1]) stop("Unable to estimate variance.")
if (sum(diag(varbeta) < 0) > 0) {
if (ki == 1) {
betaInit_k <- logit(rep(0.05, nbeta_k))
betaInit <- c(betaInit_p, betaInit_k)
} else if (ki == 2) {
betaInit_k <- logit(rep(0.95, nbeta_k))
betaInit <- c(betaInit_p, betaInit_k)
} else {
stop("Unable to estimate k")
}
} else {
break
}
}
convergence <- MLE$convergence
betahat <- MLE$par
if (is.null(fixBadCells)){
llik <- -MLE$value
} else {
obsData <- as.matrix(data00[ , obsCol])
colnames(obsData) <- obsCol
misses <- matrixStats::rowCounts(obsData, value = 0, na.rm =T)
foundOn <- matrixStats::rowMaxs(
obsData * matrixStats::rowCumsums(1 * !is.na(obsData)), na.rm = T)
if (length(preds) == 0){
carcCells <- rep("all", dim(data00)[1])
} else if (length(preds) == 1){
carcCells <- data00[ , preds]
} else if (length(preds) > 1){
carcCells <- do.call(paste, c(data00[ , preds], sep = '.'))
}
cellByCarc <- match(carcCells, cellNames)
llik <- -pkLogLik(misses = misses, foundOn = foundOn, beta = betahat,
nbeta_p = nbeta_p, cellByCarc = cellByCarc, maxmisses = max(misses),
cellMM = cellMM, kFixed = kFixed)
ncarc <- nrow(obsData)
}
nparam <- length(betahat)
AIC <- 2*nparam - 2*llik
AICcOffset <- (2 * nparam * (nparam + 1)) / (nrow(obsData) - nparam - 1)
AICc <- round(AIC + AICcOffset, 2)
AIC <- round(AIC, 2)
betahat_p <- betahat[1:nbeta_p]
names(betahat_p) <- colnames(dataMM_p)
betahat_k <- NULL
if (length(kFixed) == 0){
betahat_k <- betahat[(nbeta_p + 1):(nbeta)]
names(betahat_k) <- colnames(dataMM_k)
}
varbeta_p <- varbeta[1:nbeta_p, 1:nbeta_p]
cellMean_p <- cellMM_p %*% betahat_p
cellVar_p <- cellMM_p %*% varbeta_p %*% t(cellMM_p)
cellSD_p <- suppressWarnings(sqrt(diag(cellVar_p)))
if (is.null(kFixed) || is.na(kFixed)){
which_k <- (nbeta_p + 1):(nbeta)
varbeta_k <- varbeta[which_k, which_k]
cellMean_k <- cellMM_k %*% betahat_k
cellVar_k <- cellMM_k %*% varbeta_k %*% t(cellMM_k)
cellSD_k <- suppressWarnings(sqrt(diag(cellVar_k)))
} else {
cellMean_k <- rep(logit(kFixed), ncell)
cellSD_k <- rep(0, ncell)
}
probs <- list(0.5, (1 - CL) / 2, 1 - (1 - CL) / 2)
cellTable_p <- lapply(probs, qnorm, mean = cellMean_p, sd = cellSD_p)
cellTable_p <- matrix(unlist(cellTable_p), ncol = 3)
cellTable_p <- round(alogit(cellTable_p), 6)
colnames(cellTable_p) <- c("p_median", "p_lwr", "p_upr")
cell_n <- as.numeric(table(carcCells0)[cellNames])
names(cell_n) <- NULL
if (!pOnly){
cellTable_k <- lapply(probs, qnorm, mean = cellMean_k, sd = cellSD_k)
cellTable_k <- matrix(unlist(cellTable_k), nrow = ncell, ncol = 3)
cellTable_k <- round(alogit(cellTable_k), 6)
colnames(cellTable_k) <- c("k_median", "k_lwr", "k_upr")
cellTable <- data.frame(
cell = cellNames,
n = cell_n,
cellTable_p,
cellTable_k)
} else {
cellTable <- data.frame(cell = cellNames, n = cell_n, cellTable_p)
}
output <- list()
output$call <- match.call()
output$data <- data
output$data0 <- data00
output$formula_p <- formula_p
if (!pOnly) output$formula_k <- formula_k
output$predictors <- preds
output$predictors_p <- preds_p
if (!pOnly) output$predictors_k <- preds_k
output$AIC <- AIC
output$AICc <- AICc
output$convergence <- convergence
output$varbeta <- varbeta
output$cellMM_p <- cellMM_p
if (!pOnly) output$cellMM_k <- cellMM_k
output$nbeta_p <- nbeta_p
if (!pOnly) output$nbeta_k <- nbeta_k
output$betahat_p <- betahat_p
if (!pOnly) output$betahat_k <- betahat_k
output$levels_p <- levels_p
if (!pOnly) output$levels_k <- levels_k
output$cells <- cells
output$ncell <- ncell
output$cell_pk <- cellTable
output$CL <- CL
output$observations <- obsData
if (!pOnly) output$kFixed <- kFixed
output$carcCells <- carcCells
output$loglik <- llik
output$pOnly <- pOnly
if (is.null(fixBadCells)) data_adj <- NULL
output$data_adj <- data0
output$fixBadCells <- fixBadCells
class(output) <- c("pkm", "list")
attr(output, "hidden") <- c("data", "data0", "predictors_p", "predictors_k",
"kFixed", "betahat_p", "betahat_k", "cellMM_p", "cellMM_k", "nbeta_p",
"nbeta_k", "varbeta", "levels_p", "levels_k", "carcCells", "AIC", "cells",
"ncell", "observations", "loglik", "pOnly", "data_adj", "fixBadCells")
return(output)
}
print.pkm <- function(x, ...){
hid <- attr(x, "hidden")
notHid <- !names(x) %in% hid
print(x[notHid])
}
pkLogLik <- function(misses, foundOn, beta, nbeta_p, cellByCarc, maxmisses,
cellMM, kFixed = NULL){
if (!is.null(kFixed) && is.na(kFixed)) kFixed <- NULL
if (length(kFixed) == 1){
beta <- c(beta, logit(kFixed))
}
ncell <- nrow(cellMM)
nbeta <- length(beta)
which_p <- 1:nbeta_p
which_k <- (nbeta_p + 1):nbeta
beta_p <- beta[which_p]
beta_k <- beta[which_k]
Beta <- matrix(0, nrow = nbeta, ncol = 2)
Beta[which_p, 1] <- beta[which_p]
Beta[which_k, 2] <- beta[which_k]
pk <- alogit(cellMM %*% Beta)
p <- pk[ , 1]
k <- pk[ , 2]
powk <- matrix(k, nrow = ncell, ncol = maxmisses + 1)
powk[ , 1] <- 1
powk <- matrixStats::rowCumprods(powk)
pmiss <- matrix(1 - (p * powk[ , 1:(maxmisses + 1)]), nrow = ncell)
pmiss <- matrixStats::rowCumprods(pmiss)
pfind <- matrixStats::rowDiffs(1 - pmiss)
pfind_si <- cbind(pk[ , 1], pfind)
notFoundCell <- cellByCarc[foundOn == 0]
notFoundMisses <- misses[foundOn == 0]
notFoundCellMisses <- cbind(notFoundCell, notFoundMisses)
foundCell <- cellByCarc[foundOn > 0]
foundFoundOn <- foundOn[foundOn > 0]
foundCellFoundOn <- cbind(foundCell, foundFoundOn)
ll_miss <- sum(log(pmiss[notFoundCellMisses]))
ll_found <- sum(log(pfind_si[foundCellFoundOn]))
nll_total <- -(ll_miss + ll_found)
return(nll_total)
}
pkmSet <- function(formula_p, formula_k = NULL, data, obsCol = NULL,
kFixed = NULL, kInit = 0.7, CL = 0.90, quiet = FALSE){
if (!is.null(kFixed) && is.na(kFixed)) kFixed <- NULL
if (length(kFixed) > 0){
if (length(kFixed) > 1){
warning(
"More than one fixed kFixed value provided by user. ",
"Only the first element will be used."
)
kFixed <- kFixed[1]
}
if (is.numeric(kFixed) && !is.na(kFixed) && length(formula_k) > 0){
if(quiet == FALSE){
message("Formula and fixed value provided for k, fixed value used.")
}
formula_k <- NULL
}
}
if (sum(obsCol %in% colnames(data)) == 1 & length(formula_k) > 0){
if (quiet == FALSE){
message("Only one search occasion for each carcass; k not estimated.")
}
formula_k <- NULL
}
unfixk <- FALSE
if (length(formula_k) == 0){
if (length(kFixed) == 0){
kFixed <- 0.5
unfixk <- TRUE
}
}
terms_p <- attr(terms(formula_p), "term.labels")
if (length(formula_k) == 0){
terms_k <- NULL
} else {
terms_k <- attr(terms(formula_k), "term.labels")
}
nterms_p <- length(terms_p)
nterms_k <- length(terms_k)
nformula_p <- 2^(nterms_p)
nformula_k <- 2^(nterms_k)
dropComplex_p <- rep(1:nterms_p, choose(nterms_p, 1:nterms_p))
dropWhich_p <- numeric(0)
if (nterms_p > 0){
for (termi in 1:nterms_p){
specificDrop <- seq(1, choose(nterms_p, (1:nterms_p)[termi]))
dropWhich_p <- c(dropWhich_p, specificDrop)
}
}
optionFormula_p <- vector("list", nformula_p)
optionFormula_p[[1]] <- formula_p
keepFormula_p <- rep(TRUE, nformula_p)
if (nformula_p > 1){
for (formi in 2:nformula_p){
termDropComplex <- combn(terms_p, dropComplex_p[formi - 1])
termDropSpec <- termDropComplex[ , dropWhich_p[formi - 1]]
termDrop <- paste(termDropSpec, collapse = " - ")
formulaUpdate <- paste(format(~.), "-", termDrop)
updatedFormula <- update.formula(formula_p, formulaUpdate)
optionFormula_p[[formi]] <- updatedFormula
keepFormula_p[formi] <- checkComponents(updatedFormula)
}
nkeepFormula_p <- sum(keepFormula_p)
whichKeepFormula_p <- which(keepFormula_p == TRUE)
keptFormula_p <- vector("list", nkeepFormula_p)
for (kepti in 1:nkeepFormula_p){
keptFormula_p[[kepti]] <- optionFormula_p[[whichKeepFormula_p[kepti]]]
}
} else {
keptFormula_p <- optionFormula_p
}
dropComplex_k <- rep(1:nterms_k, choose(nterms_k, 1:nterms_k))
dropWhich_k <- numeric(0)
if (nterms_k > 0){
for (termi in 1:nterms_k){
specificDrop <- seq(1, choose(nterms_k, (1:nterms_k)[termi]))
dropWhich_k <- c(dropWhich_k, specificDrop)
}
}
optionFormula_k <- vector("list", nformula_k)
optionFormula_k[[1]] <- formula_k
keepFormula_k <- rep(TRUE, nformula_k)
if (nformula_k > 1){
for (formi in 2:nformula_k){
termDropComplex <- combn(terms_k, dropComplex_k[formi - 1])
termDropSpec <- termDropComplex[ , dropWhich_k[formi - 1]]
termDrop <- paste(termDropSpec, collapse = " - ")
formulaUpdate <- paste(format(~.), "-", termDrop)
updatedFormula <- update.formula(formula_k, formulaUpdate)
optionFormula_k[[formi]] <- updatedFormula
keepFormula_k[formi] <- checkComponents(updatedFormula)
}
nkeepFormula_k <- sum(keepFormula_k)
whichKeepFormula_k <- which(keepFormula_k == TRUE)
keptFormula_k <- vector("list", nkeepFormula_k)
for (kepti in 1:nkeepFormula_k){
keptFormula_k[[kepti]] <- optionFormula_k[[whichKeepFormula_k[kepti]]]
}
} else {
keptFormula_k <- optionFormula_k
}
if (length(kFixed) == 1){
keptFormula_k <- NA
}
expandedKeptFormulae <- expand.grid(keptFormula_p, keptFormula_k)
keptFormula_p <- expandedKeptFormulae[ , 1]
keptFormula_k <- expandedKeptFormulae[ , 2]
if (length(kFixed) == 1){
keptFormula_k <- NULL
}
if (unfixk == TRUE){
kFixed <- NULL
}
nmod <- nrow(expandedKeptFormulae)
output <- vector("list", nmod)
for (modi in 1:nmod){
formi_p <- keptFormula_p[modi][[1]]
formi_k <- keptFormula_k[modi][[1]]
pkm_i <- tryCatch(
pkm(formula_p = formi_p, formula_k = formi_k, data = data,
obsCol = obsCol, kFixed = kFixed, CL = CL, kInit = kInit,
quiet = quiet),
error = function(x) {
paste("Failed model fit: ", geterrmessage(), sep = "")
}
)
name_p <- paste(format(formi_p), collapse = "")
name_p <- gsub(" ", "", name_p)
name_k <- paste(format(formi_k), collapse = "")
name_k <- gsub(" ", "", name_k)
if (length(kFixed) == 1){
name_k <- paste("k fixed at ", kFixed, sep = "")
}
modName <- paste(name_p, "; ", name_k, sep = "")
modName <- gsub("NULL", "k not estimated", modName)
output[[modi]] <- pkm_i
names(output)[modi] <- modName
}
class(output) <- c("pkmSet", "list")
return(output)
}
pkmSize <- function(formula_p, formula_k = NULL, data, kFixed = NULL,
obsCol = NULL, sizeCol = NULL, allCombos = FALSE, kInit = 0.7,
CL = 0.90, quiet = FALSE){
if (length(sizeCol) == 0 || is.na(sizeCol)){
pkfunc <- ifelse(allCombos, "pkmSet", "pkm0")
out <- list()
out[["all"]] <- get(pkfunc)(formula_p = formula_p, formula_k = formula_k,
data = data, obsCol = obsCol, kFixed = kFixed, kInit = kInit,
CL = CL, quiet = quiet
)
class(out) <- c(ifelse(allCombos, "pkmSetSize", "pkmSize"), "list")
return(out)
}
if (!(sizeCol %in% colnames(data))){
stop("sizeCol not in data set.")
}
sizeclasses <- sort(unique(as.character(data[ , sizeCol])))
if (all(is.na(kFixed))){
kFixed <- NULL
}
if (length(kFixed) >= 1){
kFixed <- kFixed[!is.na(kFixed)]
if (length(kFixed) == 1 && is.null(names(kFixed))){
kFixed <- rep(kFixed, length(sizeclasses))
names(kFixed) <- sizeclasses
if (quiet == FALSE){
message("One unnamed kFixed value provided by user. ",
"All classes are assumed to have kFixed = ", kFixed[1], ". ",
"To specify specific classes to apply kFixed values to, ",
"class names must be provided in kFixed vector."
)
}
} else {
if (is.null(names(kFixed)) || !all(names(kFixed) %in% sizeclasses)){
stop("kFixed names must be names of carcass classes.")
}
}
}
if (!allCombos){
if ("list" %in% intersect(class(formula_p), class(formula_k))){
if (!setequal(names(formula_p), names(formula_k)) ||
!setequal(names(formula_p), unique(data[ , sizeCol]))){
stop("p and k formula names must match carcass classes")
}
formlist <- TRUE
} else {
formlist <- FALSE
}
}
out <- list()
for (sci in sizeclasses){
if (allCombos){
out[[sci]] <- pkmSet(formula_p = formula_p, formula_k = formula_k,
data = data[data[, sizeCol] == sci, ], obsCol = obsCol,
kFixed = kFixed[sci], CL = CL, kInit = kInit, quiet = quiet)
} else {
if (formlist){
out[[sci]] <- pkm0(
formula_p = formula_p[[sci]], formula_k = formula_k[[sci]],
data = data[data[, sizeCol] == sci, ], obsCol = obsCol,
kFixed = kFixed[sci], CL = CL, kInit = kInit, quiet = quiet
)
} else {
out[[sci]] <- pkm0(
formula_p = formula_p, formula_k = formula_k,
data = data[data[, sizeCol] == sci, ], obsCol = obsCol,
kFixed = kFixed[sci], CL = CL, kInit = kInit, quiet = quiet
)
}
}
}
class(out) <- c(ifelse(allCombos, "pkmSetSize", "pkmSize"), "list")
return(out)
}
aicc.pkmSet <- function(x, ... , quiet = FALSE, app = FALSE){
pkmset <- x
nmod <- length(pkmset)
formulas <- names(pkmset)
formulas_p <- rep(NA, nmod)
formulas_k <- rep(NA, nmod)
AICc <- rep(NA, nmod)
deltaAICc <- rep(NA, nmod)
if (nmod == 1){
splitFormulas <- strsplit(formulas, "; ")[[1]]
formulas_p <- splitFormulas[1]
formulas_k <- splitFormulas[2]
AICc <- tryCatch(pkmset[[1]]$AICc, error = function(x) {1e7})
deltaAICc <- 0
AICcOrder <- 1
} else {
for (modi in 1:nmod){
splitFormulas_i <- strsplit(formulas[modi], "; ")[[1]]
formulas_p[modi] <- splitFormulas_i[1]
formulas_k[modi] <- splitFormulas_i[2]
AICc[modi] <- tryCatch(pkmset[[modi]]$AICc, error = function(x) {1e7})
}
AICcOrder <- order(AICc)
deltaAICc <- round(AICc - min(AICc), 2)
which_fails <- which(AICc == 1e7)
AICc[which_fails] <- NA
deltaAICc[which_fails] <- NA
}
if (app){
formulas_p <- gsub("~ 1", "~ constant", formulas_p)
formulas_k <- gsub("~ 1", "~ constant", formulas_k)
}
output <- data.frame(formulas_p, formulas_k, AICc, deltaAICc)
output <- output[AICcOrder, ]
colnames(output) <- c("p Formula", "k Formula", "AICc", "\u0394AICc")
whichAICcNA <- which(is.na(output$AICc))
whichAICcMax <- which(output$AICc == 1e7)
if (length(whichAICcNA) > 0 & quiet == FALSE){
message("Models with incorrect specification were removed from output.")
output <- output[-whichAICcNA, ]
}
if (length(whichAICcMax) > 0 & quiet == FALSE){
message("Models that failed during fit were removed from output.")
output <- output[-whichAICcMax, ]
}
class(output) <- c("corpus_frame", "data.frame")
return(output)
}
aicc.pkm <- function(x,...){
return(
data.frame(cbind(
"formula_p" = deparse(x$formula_p),
"formula_k" = deparse(x$formula_k),
"AICc" = x$AICc
))
)
}
aicc.pkmSetSize <- function(x, ... ){
return(lapply(x, FUN = function(y){
class(y) <- c("pkmSet", "list")
aicc(y)
}))
}
aicc.pkmSize <- function(x, ... ){
return(lapply(x, FUN = function(y){
class(y) <- c("pkm", "list")
aicc(y)
}))
}
rpk <- function(n, model){
if (!"pkm" %in% class(model)) stop("model not of class pkm")
if (anyNA(model$varbeta) || sum(diag(model$varbeta) < 0) > 0){
stop("Variance in pkm not well-defined. Cannot simulate.")
}
if (model$pOnly){
stop("k not included in 'model'. Cannot simulate pk.")
} else {
which_beta_k <- (model$nbeta_p + 1):(model$nbeta_p + model$nbeta_k)
}
sim_beta <- mvtnorm::rmvnorm(n,
mean = c(model$betahat_p, model$betahat_k),
sigma = model$varbeta,
method = "svd")
sim_p <- as.matrix(alogit(sim_beta[ , 1:model$nbeta_p] %*% t(model$cellMM_p)))
colnames(sim_p) <- model$cells$CellNames
if (is.null(model$kFixed) || is.na(model$kFixed)){
sim_k <- as.matrix(alogit(sim_beta[ , which_beta_k] %*% t(model$cellMM_k)))
} else {
sim_k <- matrix(model$kFixed, ncol = model$ncell, nrow = n)
}
colnames(sim_k) <- model$cells$CellNames
output <- lapply(model$cells$CellNames, function(x) cbind(p = sim_p[, x], k = sim_k[, x]))
names(output) <- model$cells$CellNames
return(output)
}
qpk <- function(p, model){
if (!"pkm" %in% class(model)) stop("model not of class pkm")
if (!is.numeric(p) || !is.vector(p)) stop("p must be a numeric vector")
if (any(is.na(p))) stop("p must be numeric with no NA")
if (max(p) >= 1 | min(p) <= 0) stop("p must be in (0, 1)")
qp <- with(model, {
varbeta_p <- varbeta[1:nbeta_p, 1:nbeta_p]
cellMean_p <- cellMM_p %*% betahat_p
cellVar_p <- cellMM_p %*% varbeta_p %*% t(cellMM_p)
cellSD_p <- suppressWarnings(sqrt(diag(cellVar_p)))
probs <- list(0.5, (1 - CL) / 2, 1 - (1 - CL) / 2)
lapply(lapply(p, qnorm, mean = cellMean_p, sd = cellSD_p), alogit)
})
if (!model$pOnly){
qk <- with(model, {
if (!exists("kFixed") || is.null(kFixed) || is.na(kFixed)){
which_k <- (nbeta_p + 1):(nbeta_p + nbeta_k)
varbeta_k <- varbeta[which_k, which_k]
cellMean_k <- cellMM_k %*% betahat_k
cellVar_k <- cellMM_k %*% varbeta_k %*% t(cellMM_k)
cellSD_k <- suppressWarnings(sqrt(diag(cellVar_k)))
} else {
cellMean_k <- rep(logit(kFixed), ncell)
cellSD_k <- rep(0, ncell)
}
lapply(lapply(p, qnorm, mean = cellMean_k, sd = cellSD_k), alogit)
})
out <- list(
p = matrix(unlist(qp), nrow = model$ncell),
k = matrix(unlist(qk), nrow = model$ncell))
rownames(out[["p"]]) <- rownames(out[["k"]]) <- model$cells$CellNames
colnames(out[["p"]]) <- colnames(out[["k"]]) <- paste0("q", p)
return(out)
} else {
qp <- matrix(unlist(qp), nrow = model$ncell)
rownames(qp) <- model$cells$CellNames
colnames(qp) <- paste0("q", p)
return(qp)
}
}
pkmFail <- function(pkmod){
!("pkm" %in% class(pkmod)) || anyNA(pkmod) || sum(diag(pkmod$varbeta) < 0) > 0
}
pkmSetFail <- function(pkmSetToCheck){
unlist(lapply(pkmSetToCheck, pkmFail))
}
pkmSetSizeFail <- function(pkmSetSizeToCheck){
lapply(pkmSetSizeToCheck, pkmSetFail)
}
pkmSetAllFail <- function(pkmSetToCheck){
modchecks <- unlist(lapply(pkmSetToCheck, pkmFail))
if (length(modchecks) == sum(modchecks)){
return(TRUE)
}
FALSE
}
pkmSetFailRemove <- function(pkmSetToTidy){
out <- pkmSetToTidy[!pkmSetFail(pkmSetToTidy)]
class(out) <- c("pkmSet", "list")
return(out)
}
pkmSetSizeFailRemove <- function(pkmSetSizeToTidy){
out <- list()
for (sci in names(pkmSetSizeToTidy)){
out[[sci]] <- pkmSetFailRemove(pkmSetSizeToTidy[[sci]])
}
class(out) <- c("pkmSetSize", "list")
return(out)
}
SEsi <- function(days, pk){
if (is.null(dim(pk)) || nrow(pk) == 1) return (SEsi0(days, pk))
npk <- nrow(pk)
nsearch <- length(days) - 1
ind1 <- rep(1:nsearch, times = nsearch:1)
ind2 <- ind1 + 1
ind3 <- unlist(lapply(1:nsearch, function(x) x:nsearch)) + 1
schedule <- cbind(days[ind1], days[ind2], days[ind3])
schedule.index <- cbind(ind1, ind2, ind3)
nmiss <- schedule.index[, 3] - schedule.index[, 2]
maxmiss <- max(nmiss)
if (maxmiss == 0) {
pfind.si <- pk[, 1]
} else if (maxmiss == 1) {
pfind.si <- cbind(pk[, 1], (1 - pk[, 1]) * pk[, 2] * pk[, 1])
} else {
powk <- array(rep(pk[, 2], maxmiss + 1), dim = c(npk, maxmiss + 1))
powk[ , 1] <- 1
powk <- matrixStats::rowCumprods(powk)
pfind.si <- pk[, 1] * powk * cbind(
rep(1, npk), matrixStats::rowCumprods(1 - (pk[, 1] * powk[, 1:maxmiss]))
)
}
return(t(pfind.si))
}
SEsi0 <- function(days, pk){
nsearch <- length(days) - 1
ind1 <- rep(1:nsearch, times = nsearch:1)
ind2 <- ind1 + 1
ind3 <- unlist(lapply(1:nsearch, function(x) x:nsearch)) + 1
schedule <- cbind(days[ind1], days[ind2], days[ind3])
schedule.index <- cbind(ind1, ind2, ind3)
nmiss <- schedule.index[, 3] - schedule.index[, 2]
maxmiss <- max(nmiss)
if (maxmiss == 0) {
pfind.si <- pk[1]
} else if (maxmiss == 1) {
pfind.si <- c(pk[1], (1 - pk[1]) * pk[2] * pk[1])
} else {
powk <- rep(pk[2], maxmiss + 1)
powk[1] <- 1
powk <- cumprod(powk)
pfind.si <- pk[1] * powk * c(1, cumprod(1 - (pk[1] * powk[1:maxmiss])))
}
return(pfind.si)
} |
test_that("`m_vector3()` create a 3 dimensional vector", {
vector3 <- m_vector3(1, 2, 3)
expect_s3_class(vector3, "Vector3")
expect_equal(vector3$x, 1)
expect_equal(vector3$y, 2)
expect_equal(vector3$z, 3)
expect_error(m_vector3(1))
expect_error(m_vector3(1, 2))
expect_error(m_vector3("a", "b", "c"))
}) |
best_binomial_bandit_sim <- function(x,
n,
alpha = 1,
beta = 1,
ndraws = 5000
) {
return(prob_winner(sim_post(x,n,alpha,beta,ndraws)))
} |
computeCardio <- function(data = NULL, Vegetables, Fruit, OliveOil, OOmeasure = "gr",
Legumes, Fish, Meat, RefinedRice, RefinedBread, WholeBread, Wine,
frequency = "percent", output = "percent", rm.na = FALSE) {
arguments <- as.list( match.call() )
Fruit <- eval(arguments$Fruit, data)
Vegetables <- eval(arguments$Vegetables, data)
OliveOil <- eval(arguments$OliveOil, data)
Legumes <- eval(arguments$Legumes, data)
Fish <- eval(arguments$Fish, data)
Wine <- eval(arguments$Wine, data)
Meat <- eval(arguments$Meat, data)
RefinedRice <- eval(arguments$RefinedRice, data)
RefinedBread <- eval(arguments$RefinedBread, data)
WholeBread <- eval(arguments$WholeBread, data)
if(is.null(frequency)){stop("please, provide the frequency of consumption in which the data is tabulated with the 'frequency' argument. Accepted values are 'daily', 'weekly' and 'monthly'")}
if(frequency == "weekly" || frequency == "monthly"){
Vars <- list(Vegetables = Vegetables, Fuit = Fruit, OliveOil = OliveOil,
Legumes = Legumes, Fish = Fish, Meat = Meat,
RefinedRice = RefinedRice, RefinedBread = RefinedBread, WholeBread = WholeBread,
Wine = Wine)
Vars <- periodicity(Vars, OriginalFreq = frequency, TargetFreq = "daily")
Vegetables <- Vars$Vegetables
Fruit <- Vars$Fruit
OliveOil <- Vars$OliveOil
Legumes <- Vars$Legumes
Fish <- Vars$Fish
Meat <- Vars$Meat
RefinedRice <- Vars$RefinedRice
RefinedBread <- Vars$RefinedBread
WholeBread <- Vars$WholeBread
Wine <- Vars$Wine
} else {
if(frequency != "daily"){stop("accepted values for 'frequency' argument are 'daily', 'weekly' and 'monthly'")}
}
if(OOmeasure == "gr") {OliveOil <- OliveOil/0.918/15}
else {
if(OOmeasure == "ml") {OliveOil <- OliveOil/15}
else {
if(OOmeasure == "serving") {"no conversion needed"}
else {stop("check units of Olive Oil")
}
}
}
OOscore <- numeric()
OOscore[OliveOil < 1] <- 0
OOscore[OliveOil >= 1] <- 1
Frscore <- numeric()
Frscore[Fruit < 1] <- 0
Frscore[Fruit >= 1] <- 1
Vscore <- numeric()
Vscore[Vegetables < 1] <- 0
Vscore[Vegetables >= 1] <- 1
FVscore <- numeric()
FVscore[Frscore == 1 & Vscore == 1] <- 1
FVscore[Frscore == 0 | Vscore == 0] <- 0
LegumesWeek <- 7 * Legumes
Lscore <- numeric()
Lscore[LegumesWeek < 2] <- 0
Lscore[LegumesWeek >= 2] <- 1
FishWeek <- 7 * Fish
Fiscore <- numeric()
Fiscore[FishWeek < 3] <- 0
Fiscore[FishWeek >= 3] <- 1
Wscore <- numeric()
Wscore[Wine < 1] <- 0
Wscore[Wine >= 1] <- 1
RefinedRiceW <- 7 * RefinedRice
WholeBreadW <- 7 * WholeBread
Rscore <- numeric()
Rscore <- ifelse((RefinedBread < 1 & RefinedRiceW < 7) | (WholeBreadW > 5), 1, 0)
score <- data.frame(OOscore, Frscore, Vscore, FVscore, Lscore, Fiscore, Wscore, Rscore)
score$absolute <- apply(score, 1, function(x) sum(x, na.rm = rm.na))
score$percent <- round(100 * score$absolute / 9, 1)
if(missing(output) || output == "percent") {return(score$percent)
} else {
if(output == "absolute") {return(score$absolute)
} else {
if(output == "data.frame") {return(score)
} else {
stop("please, select a valid output argument, admited values are 'percent' -default-, 'absolute' and 'data.frame' " )
}
}
}
} |
convert_intent = function(intent) {
namer = switch(
intent,
'NIFTI_INTENT_POINTSET' = "pointset",
'NIFTI_INTENT_TRIANGLE' = "triangle",
'NIFTI_INTENT_NODE_INDEX' = "node_index",
'NIFTI_INTENT_VECTOR' = "vector",
'NIFTI_INTENT_NORMAL' = "normal",
'NIFTI_INTENT_NONE' = "unknown",
'NIFTI_INTENT_SHAPE' = "shape",
"NIFTI_INTENT_LABEL" = "labels",
"NIFTI_INTENT_TIME_SERIES" = "timeseries",
"NIFTI_INTENT_RGB_VECTOR" = "rgb",
"NIFTI_INTENT_RGBA_VECTOR" = "rgba",
"NIFTI_INTENT_GENMATRIX" = "genmatrix",
"NIFTI_INTENT_CORREL" = "correl",
"NIFTI_INTENT_TTEST" = "ttest",
"NIFTI_INTENT_FTEST" = "ftest",
"NIFTI_INTENT_ZSCORE" = "zscore",
"NIFTI_INTENT_CHISQ" = "chisq",
"NIFTI_INTENT_BETA" = "beta",
"NIFTI_INTENT_BINOM" = "binom",
"NIFTI_INTENT_GAMMA" = "gamma",
"NIFTI_INTENT_POISSON" = "poisson",
"NIFTI_INTENT_FTEST_NONC" = "ftest_nonc",
"NIFTI_INTENT_CHISQ_NONC" = "chisq_nonc",
"NIFTI_INTENT_LOGISTIC" = "logistic",
"NIFTI_INTENT_LAPLACE" = "laplace",
"NIFTI_INTENT_UNIFORM" = "uniform",
"NIFTI_INTENT_TTEST_NONC" = "ttest_nonc",
"NIFTI_INTENT_WEIBULL" = "weibull",
"NIFTI_INTENT_CHI" = "chi",
"NIFTI_INTENT_INVGAUSS" = "invgauss",
"NIFTI_INTENT_EXTVAL" = "extval",
"NIFTI_INTENT_PVAL" = "pval",
"NIFTI_INTENT_LOGPVAL" = "logpval",
"NIFTI_INTENT_LOG10PVAL" = "log10pval",
"NIFTI_INTENT_ESTIMATE" = "estimate",
"NIFTI_INTENT_NEURONAME" = "neuroname",
"NIFTI_INTENT_SYMMATRIX" = "symmatrix",
"NIFTI_INTENT_DISPVECT" = "dispvect",
"NIFTI_INTENT_QUATERNION" = "quads",
"NIFTI_INTENT_DIMLESS" = "dimless"
)
if (is.null(namer)) {
namer = "unknown"
}
return(namer)
} |
extract.name.from.special <- function(x,pattern="[()]"){
if (length(x)==1)
rev(unlist(strsplit(x,pattern)))[1]
else
as.character(sapply(x,extract.name.from.special))
} |
bea <- function(a, istart = 0, jstart = 0)
{
if (!is.matrix(a))
stop("First input argument must be a matrix.\n")
n <- nrow(a)
m <- ncol(a)
b <- matrix(0.0, n, m)
mode(a) <- "single"
mode(b) <- "single"
ib <- integer(n)
jb <- integer(m)
ifin <- integer(n)
jfin <- integer(m)
ener <- 0.0
if (istart == 0)
istart <- floor(runif(1, 1, n))
if (jstart == 0)
jstart <- floor(runif(1, 1, m))
bea1 <- .Fortran(
"rbea",
n = as.integer(n),
m = as.integer(m),
a = as.matrix(a),
istart = as.integer(istart),
b = as.matrix(b),
ib = as.integer(ib),
ifin = as.integer(ifin),
PACKAGE = "seriation"
)
a <- bea1$b
bea2 <- .Fortran(
"cbea",
n = as.integer(n),
m = as.integer(m),
a = as.matrix(a),
jstart = as.integer(jstart),
b = as.matrix(b),
jb = as.integer(jb),
jfin = as.integer(jfin),
PACKAGE = "seriation"
)
energy <- .Fortran(
"energy",
n = as.integer(n),
m = as.integer(m),
b = as.matrix(bea2$b),
ener = as.single(ener),
PACKAGE = "seriation"
)
list(
b = bea2$b,
ib = bea1$ib,
jb = bea2$jb,
e = energy$ener
)
} |
SEMUPDATE <-
function(agentID){
semUpdateAge=world$semUpdateAge; deathAge=world$deathAge; nNouns=world$nNouns; nVerbs=world$nVerbs; local=world$local
agent=population[[agentID]]
if(agent$semupdate==0){
if(agent$age>semUpdateAge*deathAge){
agent=VERBDESEMANTICIZATION(agent)
agent=NOUNDESEMANTICIZATION(agent)
agent=FUSE(agent)
agent=PERSONUPDATE(agent)
agent$semupdate=1
} }
agent$nouns=agent$nouns[agent$nouns$semanticWeight>0,]
if(nrow(agent$nouns)<nNouns){
newNouns=NOUNS(nNouns-nrow(agent$nouns), local=FALSE)
newNouns$ID=max(agent$nouns$ID)+(1:nrow(newNouns))
agent$nouns=rbind(agent$nouns, newNouns)
}
if(local==TRUE){
if(!1%in%agent$nouns$person){
agent$nouns[MAX(VMATCH(rep(1, length(grep('D\\d', names(agent$nouns)))), agent$nouns[, grep('D\\d', names(agent$nouns))]), 1, forceChoice=TRUE),]$person=1
}
if(!2%in%agent$nouns$person){
agent$nouns[MAX(VMATCH(rep(1, length(grep('D\\d', names(agent$nouns)))), agent$nouns[, grep('D\\d', names(agent$nouns))]), 2, forceChoice=TRUE),]$person=2
} }
agent$verbs=agent$verbs[agent$verbs$semanticWeight>0,]
if(nrow(agent$verbs)<nVerbs){
newNouns=VERBS(nNouns-nrow(agent$verbs))
newNouns$ID=max(agent$verbs$ID)+(1:nrow(newNouns))
agent$verbs=rbind(agent$verbs, newNouns)
}
population[[agentID]]=agent
population<<-population
} |
CreateQualificationType <-
createqual <-
function (name,
description,
status,
keywords = NULL,
retry.delay = NULL,
test = NULL,
answerkey = NULL,
test.duration = NULL,
auto = NULL,
auto.value = NULL,
verbose = getOption('pyMTurkR.verbose', TRUE)) {
GetClient()
if(!status %in% c("Active", "Inactive"))
stop("QualificationTypeStatus must be Active or Inactive")
args <- list()
fun <- pyMTurkR$Client$create_qualification_type
args <- c(args, list(Name = name,
Description = description,
QualificationTypeStatus = status))
if(!is.null(keywords)){
args <- c(args, list(Keywords = keywords))
}
if(!is.null(test) & is.null(test.duration)){
stop("If test is specified then test.duration must be too")
} else if(is.null(test) & !is.null(test.duration)){
stop("If test.duration is specified then test must be too")
} else if(!is.null(test) & !is.null(test.duration)){
args <- c(args, list(TestDurationInSeconds = as.integer(test.duration),
Test = test))
}
if(is.null(test) & !is.null(answerkey)){
stop("If answerkey is specified then test must be too")
} else if(!is.null(test) & !is.null(answerkey)){
args <- c(args, list(AnswerKey = answerkey))
}
if(!is.null(auto)){
if(is.na(as.logical(auto))){
stop("auto must be TRUE or FALSE")
}
args <- c(args, list(AutoGranted = as.logical(auto)))
}
if(!is.null(auto.value)){
if(is.na(as.integer(auto.value))){
stop("auto.value must be an integer")
}
args <- c(args, list(AutoGrantedValue = as.integer(auto.value)))
}
if(!is.null(retry.delay)){
if(is.na(as.integer(retry.delay)) | as.integer(retry.delay) < 0){
stop("retry.delay must be a positive integer")
}
args <- c(args, list(RetryDelayInSeconds = as.integer(retry.delay)))
}
response <- try(
do.call('fun', args), silent = !verbose
)
if(class(response) == "try-error") {
stop("Unable to create qualification")
} else {
qualid <- response$QualificationType$QualificationTypeId
info <- emptydf(0, 13, c("QualificationTypeId", "CreationTime", "Name", "Description", "Keywords",
"QualificationTypeStatus", "AutoGranted", "AutoGrantedValue", "IsRequestable",
"RetryDelayInSeconds", "TestDurationInSeconds", "Test", "AnswerKey"))
info[1,]$QualificationTypeId <- response$QualificationType$QualificationTypeId
info[1,]$CreationTime <- reticulate::py_to_r(response$QualificationType$CreationTime)
info[1,]$Name <- response$QualificationType$Name
info[1,]$Description <- response$QualificationType$Description
if(!is.null(keywords)){
info[1,]$Keywords <- keywords
}
info[1,]$QualificationTypeStatus <- response$QualificationType$QualificationTypeStatus
info[1,]$AutoGranted <- response$QualificationType$AutoGranted
if(!is.null(auto.value)){
info[1,]$AutoGrantedValue <- auto.value
}
info[1,]$IsRequestable <- response$QualificationType$IsRequestable
if(!is.null(retry.delay)){
info[1,]$RetryDelayInSeconds <- retry.delay
}
if(!is.null(test)){
info[1,]$Test <- test
}
if(!is.null(answerkey)){
info[1,]$AnswerKey <- answerkey
}
if(!is.null(test.duration)){
info[1,]$TestDurationInSeconds <- test.duration
}
message("QualificationType Created: ", response$QualificationType$QualificationTypeId)
return(info)
}
} |
expected <- eval(parse(text="c(\"NA\", \"a\", \"b\", \"c\", \"d\", \"<NA>\")"));
test(id=0, code={
argv <- eval(parse(text="list(c(\"NA\", \"a\", \"b\", \"c\", \"d\", NA), 0L, \"\", 0L, TRUE)"));
.Internal(`encodeString`(argv[[1]], argv[[2]], argv[[3]], argv[[4]], argv[[5]]));
}, o=expected); |
calc_3d <- function(BAF, LRR, chr, x, GT, seg_raw){
tt = exp(-(0:6-1)^2);prior_f = tt%*%t(tt);lp_2d = -log(prior_f)*1e-3
rtt = exp(-(6:0-1)^2);rprior_f = rtt%*%t(rtt);rlp_2d = -log(rprior_f)*1e-3
gt = (GT=='BB')*2+(GT=='AB')*1.5+(GT=='AA')-1;gt[gt==(-1)]=NA
data= data.frame(x,chr,2*2^(LRR),GT,BAF)
var = get_var_tcn_baf(LRR,BAF,gt)
var_tcn=var[1]; var_baf=var[2]
scale_max = mean(2*2^LRR,na.rm=TRUE); scale_min = scale_max/6
delta = 0.008
ITB = combine_close_seg(seg_raw,var_baf,data,delta=delta)
IT_new = ITB[,1:7]; B_new = ITB[,1:7+7]
id_excl = which(IT_new[,5]<.05)
if(length(id_excl)>0){IT_new = IT_new[-id_excl,];B_new = B_new[-id_excl,]}
temp <- data.frame(scale_max, scale_min, var_baf, var_tcn)
res3d=sel_scale_2d(cnMax=6,pscnMax=6,ngrid = 100,nslaves = 50,B_new = B_new, IT_new = IT_new, temp = temp)
B_new[,7] = B_new[,7]*5
n_seg = nrow(IT_new)
L_tot_3d_scale1 = array(0,dim=c(n_seg,100,34,51))
L_tot_3d_scale2 = array(0,dim=c(n_seg,100,34,51))
for(i in 1:n_seg){
L_tot_3d_scale1[i,,,]= calcll_p3(as.numeric(IT_new[i,]),as.numeric(B_new[i,]),var_baf,var_tcn,res3d$scale2d[1],6,6)
L_tot_3d_scale2[i,,,]= calcll_p3(as.numeric(IT_new[i,]),as.numeric(B_new[i,]),var_baf,var_tcn,res3d$scale2d[2],6,6)
}
L_sum_3d_scale1 = apply(L_tot_3d_scale1,c(2,3,4),sum)
L_sum_3d_scale2 = apply(L_tot_3d_scale2,c(2,3,4),sum)
sol1_pct = which(L_sum_3d_scale1<min(L_sum_3d_scale1)+.000000001,arr.ind=TRUE) - 1
sol1_scale = res3d$scale2d[1]
sol2_pct = which(L_sum_3d_scale2<min(L_sum_3d_scale2)+.000000001,arr.ind=TRUE) - 1
sol2_scale = res3d$scale2d[2]
return (list(sol1_pct = sol1_pct, sol1_scale = sol1_scale, sol2_pct = sol2_pct, sol2_scale = sol2_scale, segmentation = seg_raw))
} |
RegEstimate <-
function(x=1:10) {
if (!("manipulate" %in% installed.packages())) {
return(cat(paste0("You must be on R Studio with package manipulate installed\n",
"in order to run this function.")))
}
manipulate(
a=slider(-1,1,step=0.1,initial=0,label="True Intercept a"),
b=slider(-3,3,step=0.1,initial=1,label="True Slope b"),
s=slider(0,4,step=0.1,initial=2,label="Likely Error Size"),
coefs=checkbox(FALSE,"Print Coefficient Information"),
{n <- length(x)
y=a+b*x+rnorm(n,mean=0,sd=s)
ymin <- min(a+b*x)-4*s
ymax <- max(a+b*x)+4*s
mod <- lm(y~x)
ahat <- round(coef(mod)[1],2)
bhat <- round(coef(mod)[2],2)
plot(x,y,col="blue",pch=16,
ylim=c(ymin,ymax))
mtext(bquote(hat(a) == .(ahat)), line= 2)
mtext(bquote(hat(b) == .(bhat)), line= 0.5)
abline(a,b,col="red")
abline(coef(mod),col="blue",lty=2)
if (coefs) {
print(summary(mod)$coefficients)
cat("\n \n")
}
}
)
}
if(getRversion() >= "2.15.1") utils::globalVariables(c("a","b","s","coefs")) |
gbm <- function(formula = formula(data),
distribution = "bernoulli",
data = list(),
weights,
subset = NULL,
offset = NULL,
var.monotone = NULL,
n.trees = 100,
interaction.depth = 1,
n.minobsinnode = 10,
shrinkage = 0.001,
bag.fraction = 0.5,
train.fraction = 1.0,
mFeatures = NULL,
cv.folds=0,
keep.data = TRUE,
verbose = FALSE,
class.stratify.cv=NULL,
n.cores=NULL,
par.details=getOption('gbm.parallel'),
fold.id = NULL,
tied.times.method="efron",
prior.node.coeff.var=1000,
strata=NA, obs.id=1:nrow(data)) {
the_call <- match.call()
mf <- match.call(expand.dots = FALSE)
m <- match(c("formula", "data", "weights", "offset"), names(mf), 0)
mf <- mf[c(1, m)]
mf$drop.unused.levels <- TRUE
mf$na.action <- na.pass
mf[[1]] <- as.name("model.frame")
m <- mf
mf <- eval(mf, parent.frame())
Terms <- attr(mf, "terms")
y <- model.response(mf)
w <- model.weights(mf)
offset_mf <- model.offset(mf)
if (!missing(n.cores)) {
if (!missing(par.details)) {
stop("You have provided both n.cores and par.details")
}
message("n.cores is deprecated, please use par.details")
par.details <- gbmParallel(num_threads=n.cores)
}
if(is.null(class.stratify.cv)) class.stratify.cv <- FALSE
var.names <- attributes(Terms)$term.labels
x <- model.frame(terms(reformulate(var.names)),
data,
na.action=na.pass)
if(!is.null(w)) {
weights <- w
} else {
weights <- rep(1, length(obs.id))
}
if(!is.null(offset_mf)){
offset <- offset_mf
} else {
offset <- rep(0, length(obs.id))
}
if(cv.folds == 0) cv.folds <- 1
if(missing(distribution)) {distribution <- guess_distribution(y)}
if (is.character(distribution)){ distribution <- list(name=distribution)}
dist_obj <- create_dist_obj_for_gbmt_fit(distribution, tied.times.method, strata, prior.node.coeff.var)
if(is.null(mFeatures)) mFeatures <- ncol(x)
params <- training_params(num_trees=n.trees, interaction_depth=interaction.depth, min_num_obs_in_node=n.minobsinnode,
shrinkage=shrinkage, bag_fraction=bag.fraction, id=obs.id,
num_train=round(train.fraction*length(unique(obs.id))),
num_features=mFeatures)
check_cv_parameters(cv.folds, class.stratify.cv, fold.id, params)
if (!is.null(fold.id)) {
if (length(fold.id) != nrow(x)){
stop("fold.id inequal to number of rows.")
}
num_inferred_folds <- length(unique(fold.id))
if (cv.folds != num_inferred_folds) {
warning("CV folds changed from ", cv.folds, " to ", num_inferred_folds,
" because of levels in fold.id.")
}
cv.folds <- num_inferred_folds
fold.id <- as.numeric(as.factor(fold.id))
}
dist_obj <- determine_groups(data, y, dist_obj)
weights <- weight_group_consistency(dist_obj, weights)
params <- update_num_train_groups(params, dist_obj)
gbm_fit_obj <- gbmt_fit(x, y, dist_obj, weights, offset,
params, as.character(formula[[2]]),
var.monotone, var.names,
keep.data, cv.folds,
class.stratify.cv, fold.id, par.details, verbose)
gbm_fit_obj$model <- m
gbm_fit_obj$Terms <- Terms
gbm_fit_obj$call <- the_call
gbm_fit_obj$is_verbose <- verbose
return(gbm_fit_obj)
} |
BCfit <-
function(y, X, covlist, R, z, mu, updateR, iters, thin = 1, burn = 0, priW = c(nrow(z) + 2 * ncol(z), 2 * ncol(z)), verbose = 0) {
spnames <- colnames(y)
y <- t(y)
nsp <- dim(y)[1]
n <- dim(y)[2]
iR <- solve(R)
e <- z - mu
nsamp <- (iters - burn) %/% thin
output <- list(
R = array(NA, dim = c(nsamp, ((nsp * nsp - nsp) / 2))),
B = NULL,
z = array(NA, dim = c(nsamp, n, nsp)),
burn = burn,
thin = thin
)
for (i in 1:nsp) {
temp <- matrix(NA, nsamp, length(covlist[[i]]))
colnames(temp) <- colnames(X)[covlist[[i]]]
output$B[[spnames[i]]] <- temp
}
rm(temp)
nam <- rep(NA, n * n)
for (i in 1:nsp) {
for (j in 1:nsp) {
nam[(i - 1) * nsp + j] <- paste(spnames[i], "_", spnames[j], sep="")
}
}
colnames(output$R) <- nam[which(upper.tri(diag(nsp)))]
dimnames(output$z)[[3]] <- spnames
rec <- 0
start <- Sys.time()
for (iter in 1:iters) {
trunc <- find_trunc(mu, y)
e <- sample_e(e, trunc, iR)
z <- mu + e
mulis<- sample_mu(z, X, covlist)
mu <- mulis[[1]]
e <- z - mu
if (updateR) {
R <- sample_R(z - mu, priW)
iR <- chol2inv(chol(R))
}
if(verbose == 2){
message(iter)
}
if(verbose > 0 & iter == burn){
message("burn-in complete")
}
if (iter %% thin == 0 & iter > burn) {
if(verbose == 1){
message(iter)
}
rec <- rec + 1
output$R[rec, ] <- R[upper.tri(R)]
output$z[rec, , ] <- z
for (i in 1:nsp) {
output$B[[i]][rec, ] <- mulis[[2]][[i]]
}
}
}
output
} |
context("File info operations")
test_that("Test that selecting/renaming file info works", {
iso_file1 <- make_di_data_structure("NA")
iso_file1$read_options$file_info <- TRUE
iso_file1$file_info$new_info <- 42
iso_file2 <- iso_file3 <- iso_file1
iso_file1$file_info$file_id <- "A"
iso_file2$file_info$file_id <- "B"
iso_file2$file_info$new_info2 <- 2
iso_file3$file_info$file_id <- "C"
iso_file3$file_info$new_info3 <- 3
iso_files <- c(iso_file1, iso_file2, iso_file3)
expect_error(iso_select_file_info(42), "not defined")
expect_error(iso_select_file_info(iso_file1, new = file_id), "renaming.*not allowed")
expect_error(iso_select_file_info(iso_files, new = file_id), "renaming.*not allowed")
expect_warning(iso_select_file_info(iso_files, y = DNE), "doesn't exist")
expect_warning(iso_select_file_info(iso_files, y = DNE, file_specific = TRUE), "doesn't exist")
expect_error(iso_select_file_info(iso_files, y = new_info, y = new_info2), "renamed columns must be unique")
expect_message(iso_select_file_info(iso_files, y = new_info, y = new_info2, file_specific = TRUE, cols_must_exist = FALSE),
"selecting/renaming")
expect_message(iso_select_file_info(iso_file1), "keeping only 'file_id'")
expect_silent(iso_select_file_info(iso_file1, quiet = TRUE))
expect_silent(select(iso_file1))
expect_message(iso_select_file_info(iso_file1, newer_info = new_info), "1 data file.*'new_info'->'newer_info'")
expect_message(iso_select_file_info(iso_file1, newer_info = new_info, file_specific = TRUE),
"1 data file.*'new_info'->'newer_info'")
expect_message(iso_select_file_info(iso_files, newer_info = new_info2), "3 data file.*'new_info2'->'newer_info'")
expect_message(iso_select_file_info(iso_files, newer_info = new_info2, file_specific = TRUE),
"2 file.*'file_id'.*1 file.*'file_id', 'new_info2'->'newer_info'")
expect_message(iso_select_file_info(iso_files, newer_info = new_info), "3 data file.*'new_info'->'newer_info'")
expect_message(iso_select_file_info(iso_files, newer_info = new_info, file_specific = TRUE),
"3 file.*'new_info'->'newer_info'")
expect_message(iso_select_file_info(iso_files, y = new_info2, y = new_info3, file_specific = TRUE),
"1 file.*'file_id'.*1 file.*'file_id', 'new_info2'->'y'.*1 file.*'file_id', 'new_info3'->'y'")
expect_equal(
iso_select_file_info(iso_files, y = new_info2, y = new_info3, file_specific = TRUE) %>% iso_get_file_info(),
tibble(file_id = c("A", "B", "C"), y = c(NA, 2, 3))
)
expect_equal(
iso_select_file_info(iso_files, -starts_with("file"), -new_info) %>% iso_get_file_info(),
tibble(file_id = c("A", "B", "C"), new_info2 = c(NA, 2, NA), new_info3 = c(NA, NA, 3))
)
expect_equal(
iso_select_file_info(iso_files, -starts_with("file"), -new_info, file_specific = TRUE) %>% iso_get_file_info(),
tibble(file_id = c("A", "B", "C"), new_info2 = c(NA, 2, NA), new_info3 = c(NA, NA, 3))
)
expect_equal(
iso_select_file_info(iso_files, newer_info = new_info) %>% iso_get_file_info(),
tibble(file_id = c("A", "B", "C"), newer_info = 42)
)
expect_equal(
iso_select_file_info(iso_files, newer_info = new_info, file_specific = TRUE) %>% iso_get_file_info(),
tibble(file_id = c("A", "B", "C"), newer_info = 42)
)
expect_equal(
iso_select_file_info(iso_files, newest_info = new_info, new_info2, new_info2 = new_info3, file_specific = TRUE) %>% iso_get_file_info(),
tibble(file_id = c("A", "B", "C"), newest_info = 42, new_info2 = c(NA, 2, 3))
)
expect_error(iso_rename_file_info(42), "not defined")
expect_error(iso_rename_file_info(iso_file1, new = file_id), "renaming.*not allowed")
expect_error(iso_rename_file_info(iso_files, new = file_id), "renaming.*not allowed")
expect_error(iso_rename_file_info(iso_files, new_info = new_info2), class = "vctrs_error_names_must_be_unique", "must be unique")
expect_error(iso_rename_file_info(iso_files, y = new_info, y = new_info2), "must be unique")
expect_message(iso_rename_file_info(iso_file1), "renaming.*1 data file")
expect_silent(iso_rename_file_info(iso_file1, quiet = TRUE))
expect_silent(rename(iso_file1))
expect_message(iso_rename_file_info(iso_file1, newer_info = new_info), "renaming.*1.*file.*'new_info'->'newer_info'")
expect_message(iso_rename_file_info(iso_files, newer_info = new_info2), "renaming.*3.*file.*'new_info2'->'newer_info'")
expect_error(iso_rename_file_info(iso_files, y = new_info2, y = new_info3), "renamed columns must be unique")
expect_message(iso_rename_file_info(iso_files, y = new_info2, y = new_info3, file_specific = TRUE),
"1 file.*'new_info2'->'y'.*1 file.*'new_info3'->'y'")
expect_equal(
iso_rename_file_info(iso_files, y = new_info2, y = new_info3, file_specific = TRUE) %>%
iso_get_file_info() %>% select(file_id, new_info, y),
tibble(file_id = c("A", "B", "C"), new_info = 42, y = c(NA, 2, 3))
)
expect_equal(
iso_rename_file_info(iso_files, newer_info = new_info) %>% iso_get_file_info() %>% select(file_id, newer_info),
tibble(file_id = c("A", "B", "C"), newer_info = 42)
)
expect_equal(
iso_rename_file_info(iso_files, newest_info = new_info, new_info2 = new_info3, file_specific = TRUE) %>% iso_get_file_info() %>% select(file_id, newest_info, new_info2),
tibble(file_id = c("A", "B", "C"), newest_info = 42, new_info2 = c(NA, 2, 3))
)
})
test_that("Test that filtering by file info works", {
iso_file1 <- make_di_data_structure("NA")
iso_file1$read_options$file_info <- TRUE
iso_file1$file_info$new_info <- 42
iso_file2 <- iso_file3 <- iso_file1
iso_file1$file_info$file_id <- "A"
iso_file2$file_info$file_id <- "B"
iso_file3$file_info$file_id <- "C"
expect_error(iso_filter_files(42), "not defined")
iso_files <- c(iso_file1, iso_file2, iso_file3)
expect_silent(filter(iso_files))
expect_message(iso_filter_files(iso_files), "applying.*filter")
expect_silent(iso_filter_files(iso_files, quiet = TRUE))
expect_equal(filter(iso_files), iso_files)
expect_equal(filter(iso_files, new_info == 42), iso_files)
expect_equal(filter(iso_file1, new_info == 42), iso_file1)
expect_null(filter(iso_files, new_info != 42))
expect_null(filter(iso_file1, new_info != 42))
expect_equal(filter(iso_files, file_id == "A"), c(iso_file1))
expect_null(filter(iso_files, file_id == "DNE"))
expect_error(filter(iso_files, dne == 5))
expect_equal(filter(iso_files, file_id != "A"), iso_filter_files(iso_files, file_id != "A"))
})
test_that("Test that mutating file info works", {
iso_file1 <- make_di_data_structure("NA")
iso_file1$read_options$file_info <- TRUE
iso_file1$file_info$new_info <- 42
iso_file2 <- iso_file3 <- iso_file1
iso_file1$file_info$file_id <- "A"
iso_file2$file_info$file_id <- "B"
iso_file2$file_info$new_info2 <- 2
iso_file3$file_info$file_id <- "C"
iso_file3$file_info$new_info3 <- 3
expect_error(iso_mutate_file_info(42), "not defined")
iso_files <- c(iso_file1, iso_file2, iso_file3)
expect_silent(mutate(iso_files))
expect_message(iso_mutate_file_info(iso_files), "mutating")
expect_silent(iso_mutate_file_info(iso_files, quiet = TRUE))
expect_equal(
mutate(iso_files) %>% iso_get_file_info(),
iso_files %>% iso_get_file_info())
expect_equal(
mutate(iso_files, new_info = as.character(new_info)) %>% iso_get_file_info(),
iso_files %>% iso_get_file_info() %>% mutate(new_info = as.character(new_info)))
expect_equal(
mutate(iso_files, new_info = iso_double_with_units(1:3, "s")) %>% iso_get_file_info(),
iso_files %>% iso_get_file_info() %>% mutate(new_info = iso_double_with_units(1:3, "s")))
expect_true(
iso_is_file_list(
mutated_iso_files <-
mutate(iso_files, newest_info = case_when(new_info2 == 2 ~ 20, new_info3 == 3 ~ 30, TRUE ~ 00)))
)
expect_equal(
mutated_iso_files %>% iso_get_file_info(),
iso_files %>% iso_get_file_info() %>%
mutate(newest_info = case_when(new_info2 == 2 ~ 20, new_info3 == 3 ~ 30, TRUE ~ 00))
)
expect_true(is.character(mutated_iso_files[[1]]$file_info$file_id))
expect_true(is.na(mutated_iso_files[[1]]$file_info$file_root))
expect_true(is.list(mutated_iso_files[[1]]$file_info$new_info))
expect_true(is.list(mutated_iso_files[[1]]$file_info$newest_info))
expect_equal(
mutate(iso_files, newest_info = "A") %>% iso_get_file_info(),
iso_mutate_file_info(iso_files, newest_info = "A") %>% iso_get_file_info())
expect_error(iso_set_file_root(iso_files, root = NULL), "must supply.*file root")
expect_error(iso_set_file_root(iso_files, root = "root", remove_embedded_root = 1:2), "only.*single value")
expect_message(rerooted_files <- iso_set_file_root(iso_files, root = "test"),
"setting file root for 3 data file.*to.*test")
expect_equal(iso_get_file_info(rerooted_files, c(file_root, file_path)),
iso_get_file_info(iso_files, c(file_root, file_path)) %>% mutate(file_root = "test"))
iso_files[[1]]$file_info$file_path <- "A/B/C/a.cf"
iso_files[[2]]$file_info$file_path <- "A/B/C/D/b.cf"
iso_files[[3]]$file_info$file_path <- "A/B/c.df"
expect_warning(rerooted_files <- iso_set_file_root(iso_files, remove_embedded_root = "DNE"),
"3/3 file paths do not include the embedded root")
expect_equal(iso_get_file_info(rerooted_files, c(file_root, file_path)),
iso_get_file_info(iso_files, c(file_root, file_path)) %>% mutate(file_root = "."))
expect_warning(rerooted_files <- iso_set_file_root(iso_files, root = "test", remove_embedded_root = "A/B/C"),
"1/3 file paths do not include the embedded root")
expect_equal(iso_get_file_info(rerooted_files, c(file_root, file_path)),
iso_get_file_info(iso_files, c(file_root, file_path)) %>%
mutate(file_path = str_replace(file_path, "A/B/C/", ""), file_root = "test"))
expect_message(rerooted_files <- iso_set_file_root(iso_files, remove_embedded_root = "A/B"),
"setting file root for 3 data file.*removing embedded root.*A/B")
expect_message(rerooted_files <- iso_set_file_root(iso_files, root = "test", remove_embedded_root = "././A/B"),
"setting file root for 3 data file.*to.*test.*removing embedded root.*A/B")
expect_equal(iso_get_file_info(rerooted_files, c(file_root, file_path)),
iso_get_file_info(iso_files, c(file_root, file_path)) %>%
mutate(file_path = str_replace(file_path, "A/B/", ""), file_root = "test"))
})
test_that("Test that file info parsing works", {
iso_file1 <- make_di_data_structure("NA")
iso_file1$read_options$file_info <- TRUE
iso_file1$file_info$new_info <- 42.0
iso_file2 <- iso_file3 <- iso_file1
iso_file1$file_info$file_id <- "A"
iso_file2$file_info$file_id <- "B"
iso_file2$file_info$new_info2 <- "2"
iso_file3$file_info$file_id <- "C"
iso_file3$file_info$new_info3 <- "2019-01-01 01:01"
iso_files <- c(iso_file1, iso_file2, iso_file3)
expect_error(iso_parse_file_info(42), "not defined")
expect_error(iso_parse_file_info(iso_files, number = new_info, integer = new_info),
"cannot convert.*to multiple formats")
expect_warning(iso_parse_file_info(iso_files, integer = new_info),
"missing automatic parsers")
expect_warning(iso_parse_file_info(iso_files, datetime = new_info),
"missing automatic parsers")
expect_warning(iso_parse_file_info(iso_files, integer = new_info3),
"parsing failure")
expect_warning(iso_parse_file_info(iso_files, double = new_info3),
"parsing failure")
expect_warning(iso_parse_file_info(iso_files, datetime = new_info2),
"parsing failure")
expect_message(no_effect_isos <- iso_parse_file_info(iso_files), "parsing 0.*for 3 data file")
expect_silent(iso_parse_file_info(iso_files, quiet = TRUE))
expect_message(text_isos <- iso_parse_file_info(iso_files, text = starts_with("new")),
"parsing 1.*for 3 data file")
expect_message(iso_parse_file_info(iso_files, text = starts_with("new")),
"to text.*new_info")
expect_message(iso_parse_file_info(iso_files, text = starts_with("new")),
"already the target data type.*new_info2.*new_info3")
expect_message(number_isos <- iso_parse_file_info(iso_files, number = c(new_info2, new_info3)),
"to number.*new_info2.*new_info3")
expect_message(integer_isos <- iso_parse_file_info(iso_files, integer = new_info2),
"to integer.*new_info2")
expect_message(double_isos <- iso_parse_file_info(iso_files, double = new_info2),
"to double.*new_info2")
expect_message(datetime_isos <- iso_parse_file_info(iso_files, datetime = new_info3),
"to datetime.*new_info3")
expect_equal(iso_get_file_info(no_effect_isos), iso_get_file_info(iso_files))
expect_equal(iso_get_file_info(text_isos), iso_get_file_info(iso_files) %>%
mutate(new_info = as.character(new_info)))
expect_equal(iso_get_file_info(number_isos), iso_get_file_info(iso_files) %>%
mutate(new_info2 = parse_number(new_info2),
new_info3 = parse_number(new_info3)))
expect_equal(iso_get_file_info(integer_isos), iso_get_file_info(iso_files) %>%
mutate(new_info2 = parse_integer(new_info2)))
expect_equal(iso_get_file_info(double_isos), iso_get_file_info(iso_files) %>%
mutate(new_info2 = parse_double(new_info2)))
expect_equal(iso_get_file_info(datetime_isos)$new_info3, (iso_get_file_info(iso_files) %>%
mutate(new_info3 = parse_datetime(new_info3) %>% lubridate::with_tz(Sys.timezone())))$new_info3)
})
test_that("Test that file info addition works", {
file_info <- tibble(
file_id = letters[1:6],
y = rep(LETTERS[1:2], each = 3),
)
new_info <- tibble(
file_id = c(NA, NA, letters[2:4]),
y = c(LETTERS[1:2], NA, "", "X"),
info = paste("new", 1:length(y))
)
expect_error(iso_add_file_info(), "without parameters")
expect_error(iso_add_file_info(42), "not defined")
expect_error(iso_add_file_info(tibble()), "no new_file_info supplied")
expect_error(iso_add_file_info(tibble(), tibble()), "specify at least one set of join_by")
expect_error(iso_add_file_info(tibble(), tibble(), "x"), "file_id column")
expect_error(iso_add_file_info(file_info, new_info, "NA"), "join_by.*must exist.*missing.*NA")
expect_error(iso_add_file_info(file_info, select(new_info, -y), "y"), "join_by.*must exist.*missing in new file info.*y")
expect_error(iso_add_file_info(select(file_info, -y), new_info, "y"), "join_by.*must exist.*missing in existing file info.*y")
expect_error(
iso_add_file_info(file_info, new_info[c(1,1,2), ], by1 = "y"),
"would create duplicate entries")
expect_warning(
out <- iso_add_file_info(file_info, select(new_info, -info), "y"),
"no new information.*returning data unchanged"
)
expect_equal(out, file_info)
expect_message(
df_out <- iso_add_file_info(file_info, new_info, by1 = "y", by2 = "file_id"),
"adding.*'info'.*to 6 data file.*joining by 'y' then 'file_id'"
)
expect_message(
iso_add_file_info(file_info, new_info, by1 = "y", by2 = "file_id"),
"'y' join.*2/3 new info.*matched 6.*3.*also matched.*subsequent joins"
)
expect_message(
iso_add_file_info(file_info, new_info, by1 = "y", by2 = "file_id"),
"'file_id' join.*3/3 new info.*matched 3"
)
expect_message(
iso_add_file_info(file_info, new_info, by1 = "y", by2 = c("file_id", "y")),
"adding.*to 6 data file.*joining by 'y' then 'file_id'\\+'y'"
)
expect_message(
iso_add_file_info(file_info, new_info, by1 = "y", by2 = c("file_id", "y")),
"'y' join.*2/3 new info.*matched 6"
)
expect_message(
iso_add_file_info(file_info, new_info, by1 = "y", by2 = c("file_id", "y")),
"'file_id'\\+'y' join.*0/1 new info.*matched 0"
)
iso_add_file_info(
mutate(file_info, y = rep(c(TRUE, FALSE), each = 3)),
mutate(new_info, y = c(TRUE, FALSE, NA, NA, NA)),
by1 = "y",
by2 = "file_id"
)
template <- make_cf_data_structure("NA")
template$read_options$file_info <- TRUE
iso_files <- map(split(file_info, seq(nrow(file_info))), ~{ x <- template; x$file_info <- .x; x }) %>%
iso_as_file_list()
expect_message(
iso_files_out <- iso_add_file_info(iso_files, new_info, by1 = "y", by2 = "file_id"),
"adding.*'info'.*to 6 data file.*joining by 'y' then 'file_id'"
)
expect_message(
iso_add_file_info(iso_files, new_info, by1 = "y", by2 = "file_id"),
"'y' join.*2/3 new info.*matched 6.*3.*also matched.*subsequent joins"
)
expect_message(
iso_add_file_info(iso_files, new_info, by1 = "y", by2 = "file_id"),
"'file_id' join.*3/3 new info.*matched 3"
)
expect_equal(iso_files_out %>% iso_get_file_info(), df_out)
}) |
psiFit <- function(data, modelPsi1, modelPsi2, dObj) {
dat0 <- data[ {data[,dObj$A] == 0L} & {data[,dObj$Gam] != 0L},]
grp1 <- {data[,dObj$A] == 0L} & {data[,dObj$Gam] == 1L}
means1 <- colMeans(x = data[grp1,])
grp2 <- {data[,dObj$A] == 0L} & {data[,dObj$Gam] == 2L}
means2 <- colMeans(x = data[grp2,])
modelPsi1 <- update.formula(old = modelPsi1, new = NULL ~ .)
modelPsi2 <- update.formula(old = modelPsi2, new = NULL ~ .)
modelPsi1 <- paste0(dObj$Psi, "~", as.character(x = modelPsi1)[2L])
modelPsi1 <- as.formula(object = modelPsi1)
modelPsi2 <- paste0(dObj$Psi, "~", as.character(x = modelPsi2)[2L])
modelPsi2 <- as.formula(object = modelPsi2)
logist1 <- tryCatch(expr = glm(formula = modelPsi1,
data = data[grp1,],
family = 'binomial'),
error = function(e) {
message("unable to obtain fit for psi1")
stop(e$message, call. = FALSE)
})
if (any(is.na(x = logist1$coef))) {
stop("glm fit returns NA coefficients for modelPsiGam1",
call. = FALSE)
}
logist2 <- tryCatch(expr = glm(formula = modelPsi2,
data = data[grp2,],
family = 'binomial'),
error = function(e) {
message("unable to obtain fit for psi2")
stop(e$message, call. = FALSE)
})
if (any(is.na(x = logist2$coef))) {
stop("glm fit returns NA coefficients for modePsiGam2",
call. = FALSE)
}
pPsi1 <- stats::predict.glm(object = logist1,
newdata = data,
type = "response")
pPsi2 <- stats::predict.glm(object = logist2,
newdata = data,
type = "response")
pPsi1.mean <- stats::predict.glm(object = logist1,
newdata = as.data.frame(t(x = means1)),
type = "response")
pPsi2.mean <- stats::predict.glm(object = logist2,
newdata = as.data.frame(t(x = means2)),
type = "response")
pPsi1.stab <- pPsi1.mean / pPsi1
pPsi2.stab <- pPsi2.mean / pPsi2
return( list("pPsi1.stab" = pPsi1.stab,
"pPsi2.stab" = pPsi2.stab) )
} |
diffmean <- function( x, ..., data=parent.frame(), only.2=TRUE ) {
m <- mean_(x, ..., data=data)
nms <- names(m)
res <- diff(m)
names(res) <-
if (length(nms) < 3) "diffmean" else paste(tail(nms,-1), head(nms, -1), sep="-")
if (length(nms) > 2 && only.2) {
stop("To compare more than two means, set only.2=FALSE")
}
res
}
diffprop <- function( x, ..., data = parent.frame(), only.2 = TRUE ) {
p <- prop(x, ..., data = data)
nms <- names(p)
res <- diff(p)
names(res) <- if (length(nms) < 3) "diffprop" else paste(tail(nms,-1), head(nms, -1), sep="-")
if (length(nms) > 2 && only.2) {
stop("To compare more than two proportions, set only.2=FALSE")
}
res
} |
grep_or <- function (x, patterns) {
lp = lapply(patterns, function(i) grepl(i, x))
res = 0
for (i in lp) res = res + i
x[res > 0]
} |
getCacheFilename <- function(query, dir=getwd(), ext='csv', ...) {
parms = getParameters(query)
parmvals = unlist(list(...))
filename = paste(dir, '/', query, sep='')
if(length(parms) > 0) {
for(i in 1:length(parms)) {
filename = paste(filename, parms[i], parmvals[parms[i]], sep='.')
}
}
if(nchar(filename) >= 251) {
warning(paste0('The cached filename is longer than 255 characters. ',
'This will cause an error on some operating systems. Consider ',
'specifying your own filename parameter. The filename will be ',
'truncated to 255 characters.'))
filename <- substr(filename, 1, 251)
}
filename = paste(filename, ext, sep='.')
return(filename)
} |
rCommunity <-
function(n, size = sum(NorP), NorP = 1, BootstrapMethod = "Chao2015",
S = 300, Distribution = "lnorm", sd = 1, prob = 0.1, alpha=40,
CheckArguments = TRUE)
{
if (CheckArguments)
CheckentropartArguments()
Ps <- Ns <- NULL
if (length(NorP) == 1) {
if (Distribution == "lseries") {
LSabundance <- function(N, alpha) {
x <- N/(N+alpha)
u <- stats::runif(1)
k <- 1
P <- -x/log(1-x)
F <- P
while (u >= F) {
P <- P*k*x/(k+1)
k <- k+1
F <- F+P
}
return(k)
}
Ns <-replicate(n, replicate(round(-alpha*log(alpha/(size+alpha))), LSabundance(size, alpha)))
} else {
Ps <- switch(Distribution,
geom = prob/(1-(1-prob)^S)*(1-prob)^(0:(S-1)),
lnorm = (stats::rlnorm(S, 0, sd) -> Nslnorm)/sum(Nslnorm),
bstick = c(cuts <- sort(stats::runif(S-1)), 1)- c(0, cuts)
)
}
} else {
if (abs(sum(NorP) - 1) < length(NorP)*.Machine$double.eps) {
Ps <- NorP
} else {
if (BootstrapMethod == "Chao2015") {
Ps <- as.ProbaVector(NorP, Correction = "Chao2015", Unveiling = "geom", CheckArguments = FALSE)
}
if (BootstrapMethod == "Chao2013") {
Ps <- as.ProbaVector(NorP, Correction = "Chao2013", Unveiling = "unif", CheckArguments = FALSE)
}
if (BootstrapMethod == "Marcon") {
Ps <- NorP/sum(NorP)
}
}
}
if (is.null(Ps) & is.null(Ns)) {
warning ("The distribution to simulate has not been recognized")
return(NA)
}
if (is.null(Ns)) {
Ns <- stats::rmultinom(n, size, Ps)
}
if (n > 1) {
return(MetaCommunity(Ns))
} else {
return(as.AbdVector(Ns, Round = TRUE))
}
} |
vitality.4p <- function(time = 0:(length(sdata)-1),
sdata,
init.params = FALSE,
lower = c(0, 0, 0, 0),
upper = c(100,50,100,50),
rc.data = FALSE,
se = FALSE,
datatype = c("CUM", "INC"),
ttol = 1e-6,
pplot = TRUE,
Iplot = FALSE,
Mplot = FALSE,
tlab = "years",
silent = FALSE) {
datatype <- match.arg(datatype)
if (length(time) != length(sdata)) {
stop("time and sdata must have the same length")
}
in.time <- time
dTmp <- dataPrep(time, sdata, datatype, rc.data)
time <- dTmp$time
sfract <- dTmp$sfract
x1 <- dTmp$x1
x2 <- dTmp$x2
Ni <- dTmp$Ni
rc.data <- dTmp$rc.data
if(in.time[1]>0){
time <- time[-1]
sfract <- sfract[-1]
x1 <- c(x1[-c(1,length(x1))], x1[1])
x2 <- c(x2[-c(1,length(x2))], 0)
Ni <- Ni[-1]
rc.data <- rc.data[-1]
}
if(length(init.params) == 1) {
ii <- indexFinder(sfract, 0.5)
if (ii == -1) {
warning("ERROR: no survival fraction data below the .5 level.\n
Cannot use the initial r s k u estimator. You must supply initial r s k u estimates")
return(-1)
}
else rsk <- c(1/time[ii], 0.01, 0.1, 0.1)
} else {
rsk <- init.params
}
if (rsk[1] == -1) {
stop
}
if (silent == FALSE) {
print(cbind(c("Initial r", "initial s", "initial lambda", "initial beta"), rsk))
}
dtfm <- data.frame(x1 = x1, x2 = x2, Ni = Ni)
fit.nlm <- nlminb(start = rsk, objective = logLikelihood.4p, lower = lower,
upper = upper, xx1 = x1, xx2 = x2, NNi = Ni)
r.final <- fit.nlm$par[1]
s.final <- abs(fit.nlm$par[2])
lambda.final <- fit.nlm$par[3]
beta.final <- fit.nlm$par[4]
mlv <- fit.nlm$obj
if (silent == FALSE) {print(cbind(c("estimated r", "estimated s", "estimated lambda",
"estimated beta", "minimum -loglikelihood value"),
c(r.final, s.final, lambda.final, beta.final, mlv)))}
if (se != FALSE) {
s.e. <- stdErr.4p(r.final, s.final, lambda.final, beta.final, x1, x2, Ni, se)
if (silent == FALSE){print(cbind(c("sd for r", "sd for s", "sd for lambda", "sd for beta"), s.e.))}
}
if (pplot != FALSE) {
plotting.4p(r.final, s.final, lambda.final, beta.final, mlv, time, sfract, x1, x2, Ni, pplot, Iplot, Mplot, tlab, rc.data)
}
sd <- 5
if(se != F ) {
params <- c(r.final, s.final, lambda.final, beta.final)
pvalue <- c(1-pnorm(r.final/s.e.[1]), 1-pnorm(s.final/s.e.[2]), 1-pnorm(lambda.final/s.e.[3]), 1-pnorm(beta.final/s.e.[4]))
std <- c(s.e.[1], s.e.[2], s.e.[3], s.e.[4])
out <- signif(cbind(params, std, pvalue), sd)
return(out)
}
else {
return(signif(c(r.final, s.final, lambda.final, beta.final), sd))
}
}
plotting.4p <- function(r.final,
s.final,
lambda.final,
beta.final,
mlv,
time,
sfract,
x1,
x2,
Ni,
pplot,
Iplot,
Mplot,
tlab,
rc.data) {
if (pplot != FALSE) {
ext <- max(pplot, 1)
par(mfrow = c(1, 1))
len <- length(time)
tmax <- ext * time[len]
plot(time, sfract/sfract[1], xlab = tlab, ylab = "survival fraction",
ylim = c(0, 1), xlim = c(min(time), tmax), col = 1)
xxx <- seq(min(time), tmax, length = 200)
xxx1 <- c(0, xxx[-1])
lines(xxx, SurvFn.4p(xxx1, r.final, s.final, lambda.final, beta.final), col = 2, lwd=2)
lines(xxx, SurvFn.in.4p(xx=xxx1, r=r.final, s=s.final), col=3, lwd=2, lty=3)
lines(xxx, SurvFn.ex.4p(xx=xxx1, r=r.final, s=s.final, lambda = lambda.final, beta = beta.final), col=4, lwd=2, lty=2)
title("Cumulative Survival Data and Vitality Model Fitting")
legend(x="bottomleft", legend=c("Total", "Intrinsic", "Extrinsic"), lty=c(1, 3, 2), col=c(2,3,4), bty="n", lwd=c(2,2,2))
}
if ( Mplot != FALSE) {
lx <- round(sfract*100000)
lx <- c(lx,0)
ndx <- -diff(lx)
lxpn <- lx[-1]
n <- c(diff(time), 1000)
nax <- .5*n
nLx <- n * lxpn + ndx * nax
mu.x <- ndx/nLx
mu.x[length(mu.x)] <- NA
ext <- max(pplot, 1)
par(mfrow = c(1, 1))
len <- length(time)
tmax <- ext * time[len]
xxx <- seq(min(time), tmax, length = 200)
xxx1 <- xxx
mu.i <- mu.vd1.4p(xxx1, r.final, s.final)
mu.e <- mu.vd2.4p(xxx1, r.final, lambda.final, beta.final)
mu.t <- mu.vd.4p(xxx1, r.final, s.final, lambda.final, beta.final)
plot(time, mu.x, xlim = c(time[1], tmax), xlab = tlab, ylab = "estimated mortality rate", log = "y",
main = "Log Mortality Data and Vitality Model Fitting", ylim=c(min(mu.x,mu.t,na.rm=T),max(mu.x,mu.t,na.rm=T)))
lines(xxx, mu.t, col = 2, lwd=2)
lines(xxx, mu.i, col=3, lwd=2, lty=3)
lines(xxx, mu.e, col=4, lwd=2, lty=2)
legend(x="bottomright", legend=c("data (approximate)", expression(mu[total]), expression(mu[i]), expression(mu[e])), lty=c(NA, 1, 3, 2), pch=c(1,NA,NA,NA), col=c(1,2,3,4), bty="n", lwd=c(1,2,2,2))
}
if (Iplot != FALSE) {
par(mfrow = c(1, 1))
ln <- length(Ni)-1
x1 <- x1[1:ln]
x2 <- x2[1:ln]
Ni <- Ni[1:ln]
ln <- length(Ni)
scale <- max( (x2-x1)[Ni == max(Ni)] )
ext <- max(pplot, 1)
npt <- 200*ext
xxx <- seq(x1[1], x2[ln]*ext, length = npt)
xx1 <- xxx[1:(npt-1)]
xx2 <- xxx[2:npt]
sProbI <- survProbInc.4p(r.final, s.final, lambda.final, beta.final, xx1, xx2)
ytop <- 1.1 * max(max(sProbI/(xx2-xx1)), Ni/(x2-x1)) * scale
plot((x1+x2)/2, Ni*scale/(x2-x1), ylim = c(0, ytop), xlim = c(x1[1], ext*x2[ln]),
xlab = tlab, ylab = "incremental mortality")
title("Probability Density Function")
lines((xx1+xx2)/2, sProbI*scale/(xx2-xx1), col=2)
}
}
SurvFn.in.4p <- function(xx, r, s) {
yy <- s^2*xx
tmp1 <- sqrt(1/yy) * (1 - xx * r)
tmp2 <- sqrt(1/yy) * (1 + xx * r)
tmp3 <- 2*r/(s*s)
if (tmp3 > 250) {
q <- tmp3/250
if (tmp3 > 1500) {
q <- tmp3/500
}
valueFF <- (1.-(pnorm(-tmp1) + (exp(tmp3/q) *pnorm(-tmp2)^(1/q))^(q)))
}
else {
valueFF <- (1.-(pnorm(-tmp1) + exp(tmp3) *pnorm(-tmp2)))
}
if ( all(is.infinite(valueFF)) ) {
warning(message = "Inelegant exit caused by overflow in evaluation of survival function.
Check for right-censored data. Try other initial values.")
}
return(valueFF)
}
SurvFn.ex.4p <- function(xx, r, s, lambda, beta) {
yy <- s^2*xx
tmp1 <- sqrt(1/yy) * (1 - xx * r)
tmp2 <- sqrt(1/yy) * (1 + xx * r)
tmp3 <- 2*r/(s*s)
if (tmp3 > 250) {
q <- tmp3/250
if (tmp3 > 1500) {
q <- tmp3/500
}
valueFF <- exp(-lambda*exp(-1/beta)/(r/beta)*(exp(r*xx/beta)-1))
} else {
valueFF <-exp(-lambda*exp(-1/beta)/(r/beta)*(exp(r*xx/beta)-1))
}
if ( all(is.infinite(valueFF)) ) {
warning(message = "Inelegant exit caused by overflow in evaluation of survival function.
Check for right-censored data. Try other initial values.")
}
return(valueFF)
}
survProbInc.4p <- function(r, s, lambda, beta, xx1, xx2){
value.iSP <- -(SurvFn.4p(xx2, r, s, lambda, beta) - SurvFn.4p(xx1, r, s, lambda, beta))
value.iSP[value.iSP < 1e-18] <- 1e-18
value.iSP
}
logLikelihood.4p <- function(par, xx1, xx2, NNi) {
iSP <- survProbInc.4p(par[1], par[2], par[3], par[4], xx1, xx2)
loglklhd <- -NNi*log(iSP)
return(sum(loglklhd))
}
stdErr.4p <- function(r, s, k, u, x1, x2, Ni, pop) {
LL <- function(a, b, c, d, r, s, k, u, x1, x2, Ni) {logLikelihood.4p(c(r+a, s+b, k+c, u+d), x1, x2, Ni)}
hess <- matrix(0, nrow = 4, ncol = 4)
h <- .001
hr <- abs(h*r)
hs <- h*s*.1
hk <- h*k*.1
hu <- h*u*.1
f0 <- LL(-2*hr, 0, 0, 0, r, s, k, u, x1, x2, Ni)
f1 <- LL(-hr, 0, 0, 0, r, s, k, u, x1, x2, Ni)
f2 <- LL(0, 0, 0, 0, r, s, k, u, x1, x2, Ni)
f3 <- LL(hr, 0, 0, 0, r, s, k, u, x1, x2, Ni)
f4 <- LL(2*hr, 0, 0, 0, r, s, k, u, x1, x2, Ni)
fp0 <- (-25*f0 +48*f1 -36*f2 +16*f3 -3*f4)/(12*hr)
fp1 <- (-3*f0 -10*f1 +18*f2 -6*f3 +f4)/(12*hr)
fp3 <- (-f0 +6*f1 -18*f2 +10*f3 +3*f4)/(12*hr)
fp4 <- (3*f0 -16*f1 +36*f2 -48*f3 +25*f4)/(12*hr)
LLrr <- (fp0 -8*fp1 +8*fp3 -fp4)/(12*hr)
f0 <- LL(0, -2*hs, 0, 0, r, s, k, u, x1, x2, Ni)
f1 <- LL(0, -hs, 0, 0, r, s, k, u, x1, x2, Ni)
f3 <- LL(0, hs, 0, 0, r, s, k, u, x1, x2, Ni)
f4 <- LL(0, 2*hs, 0, 0, r, s, k, u, x1, x2, Ni)
fp0 <- (-25*f0 +48*f1 -36*f2 +16*f3 -3*f4)/(12*hs)
fp1 <- (-3*f0 -10*f1 +18*f2 -6*f3 +f4)/(12*hs)
fp3 <- (-f0 +6*f1 -18*f2 +10*f3 +3*f4)/(12*hs)
fp4 <- (3*f0 -16*f1 +36*f2 -48*f3 +25*f4)/(12*hs)
LLss <- (fp0 -8*fp1 +8*fp3 -fp4)/(12*hs)
f0 <- LL(0, 0, -2*hk, 0, r, s, k, u, x1, x2, Ni)
f1 <- LL(0, 0, -hk, 0, r, s, k, u, x1, x2, Ni)
f3 <- LL(0, 0, hk, 0, r, s, k, u, x1, x2, Ni)
f4 <- LL(0, 0, 2*hk, 0, r, s, k, u, x1, x2, Ni)
fp0 <- (-25*f0 +48*f1 -36*f2 +16*f3 -3*f4)/(12*hk)
fp1 <- (-3*f0 -10*f1 +18*f2 -6*f3 +f4)/(12*hk)
fp3 <- (-f0 +6*f1 -18*f2 +10*f3 +3*f4)/(12*hk)
fp4 <- (3*f0 -16*f1 +36*f2 -48*f3 +25*f4)/(12*hk)
LLkk <- (fp0 -8*fp1 +8*fp3 -fp4)/(12*hk)
f0 <- LL(0, 0, 0, -2*hu, r, s, k, u, x1, x2, Ni)
f1 <- LL(0, 0, 0, -hu, r, s, k, u, x1, x2, Ni)
f3 <- LL(0, 0, 0, hu, r, s, k, u, x1, x2, Ni)
f4 <- LL(0, 0, 0, 2*hu, r, s, k, u, x1, x2, Ni)
fp0 <- (-25*f0 +48*f1 -36*f2 +16*f3 -3*f4)/(12*hu)
fp1 <- (-3*f0 -10*f1 +18*f2 -6*f3 +f4)/(12*hu)
fp3 <- (-f0 +6*f1 -18*f2 +10*f3 +3*f4)/(12*hu)
fp4 <- (3*f0 -16*f1 +36*f2 -48*f3 +25*f4)/(12*hu)
LLuu <- (fp0 -8*fp1 +8*fp3 -fp4)/(12*hu)
m1 <- LL(hr, hs, 0, 0, r, s, k, u, x1, x2, Ni)
m2 <- LL(-hr, hs, 0, 0, r, s, k, u, x1, x2, Ni)
m3 <- LL(-hr, -hs, 0, 0, r, s, k, u, x1, x2, Ni)
m4 <- LL(hr, -hs, 0, 0, r, s, k, u, x1, x2, Ni)
LLrs <- (m1 -m2 +m3 -m4)/(4*hr*hs)
m1 <- LL(hr, 0, 0, hu, r, s, k, u, x1, x2, Ni)
m2 <- LL(-hr, 0, 0, hu, r, s, k, u, x1, x2, Ni)
m3 <- LL(-hr, 0, 0, -hu, r, s, k, u, x1, x2, Ni)
m4 <- LL(hr, 0, 0, -hu, r, s, k, u, x1, x2, Ni)
LLru <- (m1 -m2 +m3 -m4)/(4*hr*hu)
m1 <- LL(0, hs, 0, hu, r, s, k, u, x1, x2, Ni)
m2 <- LL(0, -hs, 0, hu, r, s, k, u, x1, x2, Ni)
m3 <- LL(0, -hs, 0, -hu, r, s, k, u, x1, x2, Ni)
m4 <- LL(0, hs, 0, -hu, r, s, k, u, x1, x2, Ni)
LLsu <- (m1 -m2 +m3 -m4)/(4*hu*hs)
m1 <- LL(hr, 0, hk, 0, r, s, k, u, x1, x2, Ni)
m2 <- LL(-hr, 0, hk, 0, r, s, k, u, x1, x2, Ni)
m3 <- LL(-hr, 0, -hk, 0, r, s, k, u, x1, x2, Ni)
m4 <- LL(hr, 0, -hk, 0, r, s, k, u, x1, x2, Ni)
LLrk <- (m1 -m2 +m3 -m4)/(4*hr*hk)
m1 <- LL(0, hs, hk, 0, r, s, k, u, x1, x2, Ni)
m2 <- LL(0, -hs, hk, 0, r, s, k, u, x1, x2, Ni)
m3 <- LL(0, -hs, -hk, 0, r, s, k, u, x1, x2, Ni)
m4 <- LL(0, hs, -hk, 0, r, s, k, u, x1, x2, Ni)
LLsk <- (m1 -m2 +m3 -m4)/(4*hs*hk)
m1 <- LL(0, 0, hk, hu, r, s, k, u, x1, x2, Ni)
m2 <- LL(0, 0, hk, -hu, r, s, k, u, x1, x2, Ni)
m3 <- LL(0, 0, -hk, -hu, r, s, k, u, x1, x2, Ni)
m4 <- LL(0, 0, -hk, hu, r, s, k, u, x1, x2, Ni)
LLku <- (m1 -m2 +m3 -m4)/(4*hu*hk)
diag(hess) <- c(LLrr, LLss, LLkk, LLuu)*pop
hess[2, 1] = hess[1, 2] <- LLrs*pop
hess[3, 1] = hess[1, 3] <- LLrk*pop
hess[3, 2] = hess[2, 3] <- LLsk*pop
hess[4, 1] = hess[1, 4] <- LLru*pop
hess[4, 2] = hess[2, 4] <- LLsu*pop
hess[4, 3] = hess[3, 4] <- LLku*pop
hessInv <- solve(hess)
sz <- 4
corr <- matrix(0, nrow = sz, ncol = sz)
for (i in 1:sz) {
for (j in 1:sz) {
corr[i, j] <- hessInv[i, j]/sqrt(abs(hessInv[i, i]*hessInv[j, j]))
}
}
if ( abs(corr[2, 1]) > .98 ) {
warning("WARNING: parameters r and s appear to be closely correlated for this data set.
s.e. may fail for these parameters.")
}
if ( sz == 4 && abs(corr[3, 2]) > .98 ) {
warning("WARNING: parameters s and lambda appear to be closely correlated for this data set.
s.e. may fail for these parameters.")
}
if ( sz == 4 && abs(corr[3, 1]) > .98 ) {
warning("WARNING: parameters r and lambda appear to be closely correlated for this data set.
s.e. may fail for these parameters.")
}
if ( sz == 4 && abs(corr[4, 2]) > .98 ) {
warning("WARNING: parameters s and beta appear to be closely correlated for this data set.
s.e. may fail for these parameters.")
}
if ( sz == 4 && abs(corr[4, 1]) > .98 ) {
warning("WARNING: parameters r and beta appear to be closely correlated for this data set.
s.e. may fail for these parameters.")
}
se <- sqrt(diag(hessInv))
if( sum( is.na(se) ) > 0 ) {
seNA <- is.na(se)
se12 <- sqrt(diag(solve(hess[c(1, 2) , c(1, 2) ])))
se13 <- sqrt(diag(solve(hess[c(1, 3) , c(1, 3) ])))
se23 <- sqrt(diag(solve(hess[c(2, 3) , c(2, 3) ])))
se14 <- sqrt(diag(solve(hess[c(1, 4) , c(1, 4) ])))
se24 <- sqrt(diag(solve(hess[c(2, 4) , c(2, 4) ])))
se34 <- sqrt(diag(solve(hess[c(3, 4) , c(3, 4) ])))
if(seNA[1]) {
if(!is.na(se12[1]) ){
se[1] = se12[1]
warning("* s.e. for parameter r is approximate.")
}
else if(!is.na(se13[1])){
se[1] = se13[1]
warning("* s.e. for parameter r is approximate.")
}
else if(!is.na(se14[1])){
se[1] = se14[1]
warning("* s.e. for parameter r is approximate.")
}
else warning("* unable to calculate or approximate s.e. for parameter r.")
}
if(seNA[2]) {
if(!is.na(se12[2]) ){
se[2] = se12[2]
warning("* s.e. for parameter s is approximate.")
}
else if(!is.na(se23[1])){
se[2] = se23[1]
warning("* s.e. for parameter s is approximate.")
}
else if(!is.na(se24[1])){
se[2] = se24[1]
warning("* s.e. for parameter s is approximate.")
}
else warning("* unable to calculate or approximate s.e. for parameter s.")
}
if(seNA[3]) {
if(!is.na(se13[2]) ){
se[3] = se13[2]
warning("* s.e. for parameter lambda is approximate.")
}
else if(!is.na(se23[2])){
se[3] = se23[2]
warning("* s.e. for parameter lambda is approximate.")
}
else if(!is.na(se34[1])){
se[3] = se34[1]
warning("* s.e. for parameter lambda is approximate.")
}
else warning("* unable to calculate or approximate s.e. for parameter lambda.")
}
if(seNA[4]) {
if(!is.na(se14[2]) ){
se[4] = se14[2]
warning("* s.e. for parameter beta is approximate.")
}
else if(!is.na(se24[2])){
se[4] = se24[2]
warning("* s.e. for parameter beta is approximate.")
}
else if(!is.na(se34[1])){
se[4] = se34[2]
warning("* s.e. for parameter beta is approximate.")
}
else warning("* unable to calculate or approximate s.e. for parameter beta.")
}
}
return(se)
}
SurvFn.4p <- function(xx,r,s,lambda,beta){
yy <- s^2*xx
tmp1 <- sqrt(1/yy) * (1 - xx * r)
tmp2 <- sqrt(1/yy) * (1 + xx * r)
tmp3 <- 2*r/(s*s)
if (tmp3 > 250) {
q <- tmp3/250
if (tmp3 > 1500) {
q <- tmp3/500
}
valueFF <-(1.-(pnorm(-tmp1) + (exp(tmp3/q) *pnorm(-tmp2)^(1/q))^(q)))*exp(-lambda*exp(-1/beta)/(r/beta)*(exp(r*xx/beta)-1))
} else {
valueFF <-(1.-(pnorm(-tmp1) + exp(tmp3) *pnorm(-tmp2)))*exp(-lambda*exp(-1/beta)/(r/beta)*(exp(r*xx/beta)-1))
}
if ( all(is.infinite(valueFF)) ) {
warning(message="Inelegant exit caused by overflow in evaluation of survival function. Check for right-censored data. Try other initial values.")
}
return(valueFF)
}
SurvFn.h.4p <- function(xx, r, s, u){
yy <- u^2+s^2*xx
tmp1 <- sqrt(1/yy) * (1 - xx * r)
tmp2 <- sqrt(1/yy) * (1 + xx * r+2*u^2*r/s^2)
tmp3 <- 2*r/(s*s)+2*u^2*r^2/s^4
if (tmp3 > 250) {
q <- tmp3/250
if (tmp3 > 1500) {
q <- tmp3/500
}
valueFF <- (1.-(pnorm(-tmp1) + (exp(tmp3/q) *pnorm(-tmp2)^(1/q))^(q)))
}
else {
valueFF <- (1.-(pnorm(-tmp1) + exp(tmp3) *pnorm(-tmp2)))
}
if ( all(is.infinite(valueFF)) ) {
warning(message = "Inelegant exit caused by overflow in evaluation of survival function.
Check for right-censored data. Try other initial values.")
}
return(valueFF)
} |
t_prog <-
function(N, m, cdiagn, creg, cdist)
{
d0 = 0.01
dmax = 130
V0 <- pi*(d0^3)/6
Vmax <- pi*(dmax^3)/6
repeat {
vdiagn <- 1000*rlnorm(N, cdiagn[1], cdiagn[2])
vreg <- 1000*rlnorm(N, cdist[1], cdist[2])
vdist <- 1000*rlnorm(N, creg[1], creg[2])
if (V0<vdiagn & vdiagn<Vmax & V0<vdist & vdist<Vmax & V0<vreg & vreg<Vmax & vreg<vdist)
break }
Treg <- t_vol(vreg, m)
Tdist <- t_vol(vdist, m)
Tdiagn <- t_vol(vdiagn, m)
Ddiagn <- ((6/pi)*vdiagn)^(1/3)
if (Tdiagn < Treg) {stage = "localized"} else if (Tdiagn < Tdist) {stage = "regional"} else stage = "distant"
return(list("Treg"=Treg, "Tdist"=Tdist, "Tdiagn"=Tdiagn, "Ddiagn"=Ddiagn, "stage" = stage))
} |
ivmodel <- function(Y,D,Z,X,intercept=TRUE,
beta0=0,alpha=0.05,k=c(0,1),
manyweakSE = FALSE, heteroSE = FALSE, clusterID = NULL,
deltarange = NULL, na.action = na.omit) {
if(missing(Y)) stop("Y is missing!")
if(missing(D)) stop("D is missing!")
if(missing(Z)) stop("Z is missing!")
if( (!is.vector(Y) && !is.matrix(Y) && !is.data.frame(Y)) || (is.matrix(Y) && ncol(Y) != 1) || (is.data.frame(Y) && ncol(Y) != 1) || (!is.numeric(Y))) stop("Y is not a numeric vector.")
if( (!is.vector(D) && !is.matrix(D) && !is.data.frame(Y)) || (is.matrix(D) && ncol(D) != 1) || (is.data.frame(D) && ncol(D) != 1) || (!is.numeric(D))) stop("D is not a numeric vector.")
Y = as.numeric(Y); D = as.numeric(D)
if(length(Y) != length(D)) stop("Dimension of Y and D are not the same!")
Z = data.frame(Z); stringIndex = sapply(Z,is.character); Z[stringIndex] = lapply(Z[stringIndex],as.factor)
if(nrow(Z) != length(Y)) stop("Row dimension of Z and Y are not equal!")
colnames(Z) = paste("Z",colnames(Z),sep="")
if(!missing(X)) {
X = data.frame(X); stringIndex = sapply(X,is.character); X[stringIndex] = lapply(X[stringIndex],as.factor)
if(nrow(X) != length(Y)) stop("Row dimension of X and Y are not equal!")
colnames(X) = paste("X",colnames(X),sep="")
}
if(intercept && !missing(X)) {
constantXTrue = apply(X,2,function(x){length(unique(x)) == 1})
if(any(constantXTrue)) {
warning("Trying to add the intercept term of ones,
but X already contains a constant covariate! Check your X. For now,
we'll not add an intercept term in X to avoid rank deficiency.")
} else {
X = data.frame(X,intercept=rep(1,nrow(X)))
}
}
if(intercept && missing(X)) X = data.frame(intercept=rep(1,length(Y)))
if(!missing(X)) {
allDataOrig = cbind(Y,D,Z,X)
} else {
allDataOrig = cbind(Y,D,Z)
}
if(identical(na.action, na.fail) | identical(na.action, na.omit) | identical(na.action, na.pass)){
allDataOrig = na.action(allDataOrig)
naindex = rep(TRUE, nrow(allDataOrig))
naindex[apply(is.na(allDataOrig), 1, any)] = NA
}else if(identical(na.action, na.exclude)){
naindex = rep(TRUE, nrow(allDataOrig))
naindex[apply(is.na(allDataOrig), 1, any)] = NA
allDataOrig = na.action(allDataOrig)
}else{
stop("Wrong input of NA handling!")
}
ff = terms(Y ~ D + . -1,data=allDataOrig)
mf = model.frame(ff,allDataOrig)
Y = as.matrix(mf$Y); colnames(Y) = "Y"
D = as.matrix(mf$D); colnames(D) = "D"
allData = sparse.model.matrix(ff,allDataOrig); attr(allData,"assign") = NULL; attr(allData,"contrasts") = NULL
Zindex = grep(paste("^",colnames(Z),sep="",collapse="|"),colnames(allData))
Z = allData[,Zindex,drop=FALSE]; colnames(Z) = sub("^Z","",colnames(Z))
if(!missing(X)) {
Xindex = grep(paste("^",colnames(X),sep="",collapse="|"),colnames(allData)); X = allData[,Xindex,drop=FALSE]; colnames(X) = sub("^X","",colnames(X))
}
if(nrow(Y) <= 1) stop("Too much missing data!")
n = length(Y)
if(!missing(X)){
qrX<-qr(X)
p = qrrank(qrX)
if(p==0)
stop("vector in X are all 0")
Yadj = as.matrix(qr.resid(qrX,Y)); Dadj = as.matrix(qr.resid(qrX,D)); Zadj = as.matrix(qr.resid(qrX,Z))
ZadjQR = qr(Zadj)
L = qrrank(ZadjQR)
if(L==0)
stop("No useful instrumental variables")
if(L==1) {
Zadj = qr.Q(ZadjQR)[, 1:L] * as.numeric(qrRM(ZadjQR)[1:L,1:L])
}
if(L<ncol(Z) && L> 1){
Zadj<-qr.Q(ZadjQR)[, 1:L]%*%qrRM(ZadjQR)[1:L, 1:L]
}
ZXQR = qr(cbind(Z,X))
ivmodelObject = list(call = match.call(),n=n,L=L,p=p,Y=Y,D=D,Z=Z,X=X,ZXQR=ZXQR,Yadj=Yadj,Dadj=Dadj,Zadj=Zadj, ZadjQR = ZadjQR)
}else{
p = 0
Yadj = Y; Dadj = D; Zadj = as.matrix(Z)
ZadjQR = qr(Zadj)
L = qrrank(ZadjQR)
if(L==0)
stop("No useful instrumental variables")
if(L == 1) {
Z <- Zadj <-qr.Q(ZadjQR)[, 1:L] * as.numeric(qrRM(ZadjQR)[1:L, 1:L])
}
if(L<ncol(Z) && L > 1)
Z<-Zadj<-qr.Q(ZadjQR)[, 1:L]%*%qrRM(ZadjQR)[1:L, 1:L]
ZXQR = qr(Z)
ivmodelObject = list(call = match.call(),n=n,L=L,p=p,Y=Y,D=D,Z=Z,X=NA,ZXQR=ZXQR,Yadj=Yadj,Dadj=Dadj,Zadj=Zadj, ZadjQR = ZadjQR)
}
class(ivmodelObject) = "ivmodel"
ivmodelObject$naindex = naindex
ivmodelObject$alpha = alpha
ivmodelObject$beta0 = beta0
ivmodelObject$deltarange = deltarange
ivmodelObject$AR = AR.test(ivmodelObject,beta0=beta0,alpha=alpha)
ivmodelObject$ARsens = ARsens.test(ivmodelObject,beta0=beta0,alpha=alpha,deltarange=deltarange)
ivmodelObject$kClass = KClass(ivmodelObject,beta0=beta0,alpha=alpha,k=k,heteroSE=heteroSE,clusterID=clusterID)
ivmodelObject$LIML = LIML(ivmodelObject,beta0=beta0,alpha=alpha,manyweakSE=manyweakSE,heteroSE=heteroSE,clusterID=clusterID)
ivmodelObject$Fuller = Fuller(ivmodelObject,beta0=beta0,alpha=alpha,manyweakSE=manyweakSE,heteroSE=heteroSE,clusterID=clusterID)
ivmodelObject$CLR = CLR(ivmodelObject,beta0=beta0,alpha=alpha)
return(ivmodelObject)
} |
orderscoreBase<-function(n,scorenodes,scorepositions,parenttable,aliases,numparents,rowmaps,
scoretable,scoresmatrices,permy) {
orderscores<-vector("double",n)
therows<-vector("integer",n)
k<-1
for (i in scorenodes){
position<-scorepositions[k]
if (position==n) {
orderscores[i]<-scoretable[[i]][1,1]
therows[i]<-c(2^numparents[i])
}
else {
bannednodes<-permy[1:position]
allowednodes<-permy[(position+1):n]
bannedpool<-which(aliases[[i]]%in%bannednodes)
if (numparents[i]==0||length(bannedpool)==0) {
therows[i]<-c(1)
}
else {
therows[i]<-rowmaps[[i]]$backwards[sum(2^bannedpool)/2+1]
}
orderscores[i]<-scoresmatrices[[i]][therows[i],1]
}
k<-k+1
}
scores<-list()
scores$therow<-therows
scores$totscores<-orderscores
return(scores)
}
orderscorePlus1<-function(n,scorenodes,scorepositions,parenttable,aliases,numparents,
rowmaps,plus1lists,scoretable,scoresmatrices,permy) {
orderscores<-vector("double",n)
allowedscorelists<-vector("list",n)
therows<-vector("integer",n)
k<-1
for (i in scorenodes){
position<-scorepositions[k]
if (position==n) {
orderscores[i]<-scoretable[[i]][[1]][1,1]
allowedscorelists[[i]]<-c(1)
therows[i]<-c(2^numparents[i])
}
else {
bannednodes<-permy[1:position]
allowednodes<-permy[(position+1):n]
bannedpool<-which(aliases[[i]]%in%bannednodes)
if (numparents[i]==0||length(bannedpool)==0) {
therows[i]<-c(1)
}
else {
therows[i]<-rowmaps[[i]]$backwards[sum(2^bannedpool)/2+1]
}
allowedscorelists[[i]]<-c(1,which(plus1lists$parents[[i]]%in%allowednodes)+1)
scoresvec<-scoresmatrices[[i]][therows[i],allowedscorelists[[i]]]
maxallowed<-max(scoresvec)
orderscores[i]<-maxallowed+log(sum(exp(scoresvec-maxallowed)))
}
k<-k+1
}
scores<-list()
scores$therow<-therows
scores$allowedlists<-allowedscorelists
scores$totscores<-orderscores
return(scores)
}
positionscorePlus1<-function(n,nsmall,currentscore,positionx,permy,aliases,rowmaps,plus1lists,numparents,
scoretable,scoresmatrices) {
vectorx<-vector(length=nsmall)
vectorall<-vector(length=nsmall)
base<-currentscore$totscores
totalall<-vector(length=nsmall)
totalall[positionx]<-sum(base)
x<-permy[positionx]
vectorx[positionx]<-base[x]
allowedlistx<-list()
allowedlisty<-list()
therowx<-vector()
therowy<-vector()
if (positionx>1) {
rightpart<-permy[-positionx]
for (i in (positionx-1):1) {
nodey<-permy[i]
if (numparents[x]==0||i==1) {
therowx[i]<-c(1)
} else {
bannedpool<-which(aliases[[x]]%in%permy[1:(i-1)])
if (length(bannedpool)==0) {
therowx[i]<-c(1)
} else {
therowx[i]<-rowmaps[[x]]$backwards[sum(2^bannedpool)/2+1]
}
}
allowedlistx[[i]]<-c(1,which(plus1lists$parents[[x]]%in%c(permy[(i+1):n],nodey))+1)
scoresvec<-scoresmatrices[[x]][therowx[i],allowedlistx[[i]]]
maxallowed<-max(scoresvec)
vectorx[i]<-maxallowed+log(sum(exp(scoresvec-maxallowed)))
newpos<-i+1
if(newpos==n) {
vectorall[nodey]<-scoretable[[nodey]][[1]][1,1]
allowedlisty[[nodey]]<-c(1)
therowy[nodey]<-c(2^numparents[nodey])
} else {
bannedpool<-which(aliases[[nodey]]%in%c(permy[1:(i-1)],x))
if (numparents[nodey]==0||length(bannedpool)==0) {
therowy[nodey]<-c(1)
}
else {
therowy[nodey]<-rowmaps[[nodey]]$backwards[sum(2^bannedpool)/2+1]
}
if (newpos==n) {allowedlisty[[nodey]]<-c(1)} else {
allowedlisty[[nodey]]<-c(1,which(plus1lists$parents[[nodey]]%in%rightpart[(newpos):(n-1)])+1)
}
scoresvec<-scoresmatrices[[nodey]][therowy[nodey],allowedlisty[[nodey]]]
maxallowed<-max(scoresvec)
vectorall[nodey]<-maxallowed+log(sum(exp(scoresvec-maxallowed)))
}
totalall[i]<-totalall[i+1]-vectorx[i+1]+vectorx[i]-base[nodey]+vectorall[nodey]
}
}
if (positionx < nsmall) {
for (i in (positionx+1):nsmall) {
nodey<-permy[i]
if (numparents[x]==0) {
therowx[i]<-c(1)
} else if (i==n) {
vectorall[x]<-scoretable[[x]][[1]][1,1]
therowx[i]<-c(2^numparents[x])
} else {
bannedpool<-which(aliases[[x]]%in%permy[1:i])
if (length(bannedpool)==0) {
therowx[i]<-c(1)
} else {
therowx[i]<-rowmaps[[x]]$backwards[sum(2^bannedpool)/2+1]
}
}
if (i==n) { allowedlistx[[i]]<-c(1)} else {
allowedlistx[[i]]<-c(1,which(plus1lists$parents[[x]]%in%permy[(i+1):n])+1)
}
scoresvec<-scoresmatrices[[x]][therowx[i],allowedlistx[[i]]]
maxallowed<-max(scoresvec)
vectorx[i]<-maxallowed+log(sum(exp(scoresvec-maxallowed)))
newpos<-i-1
if (newpos==1) {
therowy[nodey]<-c(1)
} else {
bannedpool<-which(aliases[[nodey]]%in%((permy[1:newpos])[-positionx]))
if (numparents[nodey]==0||length(bannedpool)==0) {
therowy[nodey]<-c(1)
} else {
therowy[nodey]<-rowmaps[[nodey]]$backwards[sum(2^bannedpool)/2+1]
}
}
allowedlisty[[nodey]]<-c(1,which(plus1lists$parents[[nodey]]%in%c(permy[i:n],x))+1)
scoresvec<-scoresmatrices[[nodey]][therowy[nodey],allowedlisty[[nodey]]]
maxallowed<-max(scoresvec)
vectorall[nodey]<-maxallowed+log(sum(exp(scoresvec-maxallowed)))
totalall[i]<-totalall[i-1]-vectorx[i-1]+vectorx[i]-base[nodey]+vectorall[nodey]
}
}
totalmax<-max(totalall)
allscore<-totalmax+log(sum(exp(totalall-totalmax)))
maxi<-sample.int(nsmall,1,prob=exp(totalall-allscore))
res<-list()
if (maxi==positionx) {
res$score<-currentscore
res$order<-permy
res$tot<-totalall[positionx]
return(res)
} else if (maxi>positionx) {
newscore<-currentscore
newscore$therow[x]<-therowx[maxi]
newscore$allowedlists[[x]]<-allowedlistx[[maxi]]
newscore$totscores[x]<-vectorx[maxi]
updatenodes<-permy[(positionx+1):maxi]
newscore$therow[updatenodes]<-therowy[updatenodes]
newscore$allowedlists[updatenodes]<-allowedlisty[updatenodes]
newscore$totscores[updatenodes]<-vectorall[updatenodes]
res$score<-newscore
res$order<-movenode(permy,positionx,maxi,n)
res$tot<-totalall[maxi]
return(res)
} else {
newscore<-currentscore
newscore$therow[x]<-therowx[maxi]
newscore$allowedlists[[x]]<-allowedlistx[[maxi]]
newscore$totscores[x]<-vectorx[maxi]
updatenodes<-permy[maxi:(positionx-1)]
newscore$therow[updatenodes]<-therowy[updatenodes]
newscore$allowedlists[updatenodes]<-allowedlisty[updatenodes]
newscore$totscores[updatenodes]<-vectorall[updatenodes]
res$score<-newscore
res$order<-movenode(permy,positionx,maxi,n)
res$tot<-totalall[maxi]
return(res)
}
}
positionscorebase<-function(n,nsmall,currentscore,positionx,permy,aliases,rowmaps,numparents,
scoretable,scoresmatrices) {
vectorx<-vector(length=nsmall)
vectorall<-vector(length=nsmall)
base<-currentscore$totscores
totalall<-vector(length=nsmall)
totalall[positionx]<-sum(base)
x<-permy[positionx]
vectorx[positionx]<-base[x]
therowx<-vector()
therowy<-vector()
if (positionx>1) {
rightpart<-permy[-positionx]
for (i in (positionx-1):1) {
nodey<-permy[i]
if (numparents[x]==0||i==1) {
therowx[i]<-c(1)
} else {
bannedpool<-which(aliases[[x]]%in%permy[1:(i-1)])
if (length(bannedpool)==0) {
therowx[i]<-c(1)
} else {
therowx[i]<-rowmaps[[x]]$backwards[sum(2^bannedpool)/2+1]
}
}
scoresvec<-scoresmatrices[[x]][therowx[i],1]
maxallowed<-max(scoresvec)
vectorx[i]<-maxallowed+log(sum(exp(scoresvec-maxallowed)))
newpos<-i+1
if(newpos==n) {
vectorall[nodey]<-scoretable[[nodey]][1,1]
therowy[nodey]<-c(2^numparents[nodey])
} else {
bannedpool<-which(aliases[[nodey]]%in%c(permy[1:(i-1)],x))
if (numparents[nodey]==0||length(bannedpool)==0) {
therowy[nodey]<-c(1)
}
else {
therowy[nodey]<-rowmaps[[nodey]]$backwards[sum(2^bannedpool)/2+1]
}
scoresvec<-scoresmatrices[[nodey]][therowy[nodey],1]
maxallowed<-max(scoresvec)
vectorall[nodey]<-maxallowed+log(sum(exp(scoresvec-maxallowed)))
}
totalall[i]<-totalall[i+1]-vectorx[i+1]+vectorx[i]-base[nodey]+vectorall[nodey]
}
}
if (positionx < nsmall) {
for (i in (positionx+1):nsmall) {
nodey<-permy[i]
if (numparents[x]==0) {
therowx[i]<-c(1)
} else if (i==n) {
vectorall[x]<-scoretable[[x]][1,1]
therowx[i]<-c(2^numparents[x])
} else {
bannedpool<-which(aliases[[x]]%in%permy[1:i])
if (length(bannedpool)==0) {
therowx[i]<-c(1)
} else {
therowx[i]<-rowmaps[[x]]$backwards[sum(2^bannedpool)/2+1]
}
}
scoresvec<-scoresmatrices[[x]][therowx[i],1]
maxallowed<-max(scoresvec)
vectorx[i]<-maxallowed+log(sum(exp(scoresvec-maxallowed)))
newpos<-i-1
if (newpos==1) {
therowy[nodey]<-c(1)
} else {
bannedpool<-which(aliases[[nodey]]%in%((permy[1:newpos])[-positionx]))
if (numparents[nodey]==0||length(bannedpool)==0) {
therowy[nodey]<-c(1)
} else {
therowy[nodey]<-rowmaps[[nodey]]$backwards[sum(2^bannedpool)/2+1]
}
}
scoresvec<-scoresmatrices[[nodey]][therowy[nodey],1]
maxallowed<-max(scoresvec)
vectorall[nodey]<-maxallowed+log(sum(exp(scoresvec-maxallowed)))
totalall[i]<-totalall[i-1]-vectorx[i-1]+vectorx[i]-base[nodey]+vectorall[nodey]
}
}
totalmax<-max(totalall)
allscore<-totalmax+log(sum(exp(totalall-totalmax)))
maxi<-sample.int(nsmall,1,prob=exp(totalall-allscore))
res<-list()
if (maxi==positionx) {
res$score<-currentscore
res$order<-permy
res$tot<-totalall[positionx]
return(res)
} else if (maxi>positionx) {
newscore<-currentscore
newscore$therow[x]<-therowx[maxi]
newscore$totscores[x]<-vectorx[maxi]
updatenodes<-permy[(positionx+1):maxi]
newscore$therow[updatenodes]<-therowy[updatenodes]
newscore$totscores[updatenodes]<-vectorall[updatenodes]
res$score<-newscore
res$order<-movenode(permy,positionx,maxi,n)
res$tot<-totalall[maxi]
return(res)
} else {
newscore<-currentscore
newscore$therow[x]<-therowx[maxi]
newscore$totscores[x]<-vectorx[maxi]
updatenodes<-permy[maxi:(positionx-1)]
newscore$therow[updatenodes]<-therowy[updatenodes]
newscore$totscores[updatenodes]<-vectorall[updatenodes]
res$score<-newscore
res$order<-movenode(permy,positionx,maxi,n)
res$tot<-totalall[maxi]
return(res)
}
} |
bcdcor <- function(x, y) {
dcorU(x, y)
}
dcovU <-
function(x, y) {
if (!inherits(x, "dist")) x <- dist(x)
if (!inherits(y, "dist")) y <- dist(y)
x <- as.matrix(x)
y <- as.matrix(y)
n <- nrow(x)
m <- nrow(y)
if (n != m) stop("sample sizes must agree")
if (! (all(is.finite(c(x, y)))))
stop("data contains missing or infinite values")
estimates <- dcovU_stats(x, y)
return (estimates[1])
}
dcorU <-
function(x, y) {
if (!inherits(x, "dist")) x <- dist(x)
if (!inherits(y, "dist")) y <- dist(y)
x <- as.matrix(x)
y <- as.matrix(y)
n <- nrow(x)
m <- nrow(y)
if (n != m) stop("sample sizes must agree")
if (! (all(is.finite(c(x, y)))))
stop("data contains missing or infinite values")
estimates <- dcovU_stats(x, y)
return (estimates[2])
} |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.