code
stringlengths 1
13.8M
|
---|
tab <- function(score, file, key = "c", time = "4/4", tempo = "2 = 60",
header = NULL, paper = NULL, string_names = NULL, endbar = "|.",
midi = TRUE, colors = NULL, crop_png = TRUE,
transparent = FALSE, res = 150, keep_ly = FALSE,
simplify = TRUE, details = FALSE){
.check_lilypond()
fp <- .adjust_file_path(file)
ext <- if(fp$ext == "pdf") "--pdf" else paste0("-dresolution=", res, " --png")
if(is.null(paper$textheight) & fp$ext == "png"){
png_args <- "\" -dbackend=eps "
} else {
png_args <- "\" "
}
if(transparent & fp$ext == "png")
png_args <- paste0(png_args, "\ -dpixmap-format=pngalpha ")
if(fp$ext == "pdf") crop_png <- FALSE
if(details) cat("
lilypond(score, fp$lp, key, time, tempo, header, paper,
string_names, endbar, midi, colors, crop_png, simplify)
lp_path <- tabr_options()$lilypond
is_windows <- Sys.info()[["sysname"]] == "Windows"
if(lp_path == ""){
lp_path <- if(is_windows) "lilypond.exe" else "lilypond"
}
call_string <- paste0("\"", lp_path, png_args, ext,
" -dstrip-output-dir=
if(is_windows){
system(call_string, show.output.on.console = details)
} else {
system(call_string)
}
if(!keep_ly) unlink(fp$lp)
.eps_cleanup(fp$tp)
}
render_tab <- tab
render_score <- function(score, file, key = "c", time = "4/4", tempo = "2 = 60",
header = NULL, paper = NULL, endbar = "|.",
colors = NULL, crop_png = TRUE, transparent = FALSE,
res = 150, keep_ly = FALSE, simplify = TRUE,
details = FALSE){
tab(score, file, key, time, tempo, header, paper, FALSE, endbar, FALSE,
colors, crop_png, transparent, res, keep_ly, simplify, details)
}
render_midi <- function(score, file, key = "c", time = "4/4", tempo = "2 = 60"){
file0 <- gsub("\\.mid$", ".png", file)
tab(score, file0, key, tempo = tempo, midi = TRUE)
unlink(file0, recursive = TRUE, force = TRUE)
invisible()
}
render_chordchart <- function(chords, file, size = 1.2, header = NULL,
paper = NULL, colors = NULL, crop_png = TRUE,
transparent = FALSE, res = 150, keep_ly = FALSE,
details = FALSE){
.check_lilypond()
header <- .header_plus_colors(header, colors)
colors <- .lp_color_overrides(colors)
if(colors$score != ""){
global <- paste0(.lp_override_all_colors, "global = {\n ",
colors$overrides, "}\n\n")
} else {
global <- ""
}
i <- seq_along(chords)
id <- names(chords)
fp <- .adjust_file_path(file)
ext <- if(fp$ext == "pdf") "--pdf" else paste0("-dresolution=", res, " --png")
if(is.null(paper$textheight) & fp$ext == "png"){
png_args <- "\" -dbackend=eps "
} else {
png_args <- "\" "
}
if(transparent & fp$ext == "png")
png_args <- paste0(png_args, "\ -dpixmap-format=pngalpha ")
crop_png_w <- if(crop_png & !length(header)) TRUE else FALSE
paper_args <- .lp_paper_args2(paper, crop_png, crop_png_w)
paper <- do.call(.lp_paper, paper_args)
x <- paste0(
"
")\n", do.call(.lp_header, if(is.null(header)) list() else header), "\n",
global, "\\include \"predefined-guitar-fretboards.ly\"\n"
)
def <- purrr::map_chr(i, ~.define_chord(.x, id[.x], chords[.x])) %>%
paste(collapse = "")
x <- paste0(x, "\n", def, "\nmychorddiagrams = \\chordmode {\n")
set <- purrr::map_chr(i, ~.set_chord(.x, id[.x])) %>% paste(collapse = "")
x <- paste0(x, set, "}\n\nchordNames = \\chordmode {\n",
" \\override ChordName.font-size =
paste(names(chords), collapse = " "), "\n}\n\n")
markup <- paste0(
"\\markup\\vspace
" <<\n", " \\context ChordNames { \\mychorddiagrams }\n",
" \\context FretBoards {\n",
" \\override FretBoards.FretBoard.size =
" \\mychorddiagrams\n", " }\n", " >>\n", " \\layout {}\n",
" }\n}\n\\markup\\vspace
x <- paste0(paper, x, markup)
write(file = fp$lp, x)
lp_path <- tabr_options()$lilypond
is_windows <- Sys.info()[["sysname"]] == "Windows"
if(lp_path == ""){
lp_path <- if(is_windows) "lilypond.exe" else "lilypond"
}
call_string <- paste0("\"", lp_path, png_args, ext,
" -dstrip-output-dir=
if(is_windows){
system(call_string, show.output.on.console = details)
} else {
system(call_string)
}
if(!keep_ly) unlink(fp$lp)
.eps_cleanup(file)
}
.paper_defaults2 <- list(textheight = 220, linewidth = 150, indent = 0,
fontsize = 14, page_numbers = FALSE,
print_first_page_number = TRUE, first_page_number = 1)
.lp_paper_args2 <- function(x, crop, cropw){
y <- list(crop = crop, cropw = cropw)
if(is.null(x)) return(c(.paper_defaults2, y))
for(i in names(.paper_defaults2))
if(!i %in% names(x)) x[[i]] <- .paper_defaults2[[i]]
c(x, list(crop = crop, cropw = cropw))
}
.define_chord <- function(i, id, value){
paste0("
"\\storePredefinedDiagram
" \\chordmode{", id, "}
}
.set_chord <- function(i, id){
paste0(" \\set predefinedDiagramTable =
} |
rrumpars2logpars <- function(v1){
l1 <- rep(0,length(v1))
l1[-1] <- log( 1 / v1[-1] )
l1[1] <- log( prod(v1) )
return(l1)
} |
ordi.focal.drop <-
function(dat,dist.method="jaccard"){
res<-list()
type.c="centroid"
res<-vector("list",dim(dat)[1])
spnames<-rownames(dat)
ODB<-ordi.breadth(dat,dist.method=dist.method)
for(i in 1:length(spnames)){
res[[i]]$species<-spnames[i]
res[[i]]$ODB<-ODB$tot.breadth[i]
res[[i]]$ODB.scaled<-ODB$scaled.breadth[i]
}
for(focal.bug in 1:length(spnames)){
cat("\n",focal.bug,"of",length(spnames))
dat.m.f<-dat[-focal.bug,]
temp<-which(apply(dat.m.f,2,sum)==0)
if(length(temp)!=0){
dat.m.f<-dat.m.f[,-temp]
focal.bug.m.f<-dat[focal.bug,-temp]
}else{focal.bug.m.f<-dat[focal.bug,]}
specialization.m.f<-ordi.breadth(dat.m.f,dist.method=dist.method)
temp<-hyp.group.dist.m.f(dat.m.f,grouping=as.numeric(focal.bug.m.f),distances=TRUE)
focal.breadth<-temp$distances.all
total.breadth<-temp$tot.breath
specdist<-focal.breadth
specdisto<-specdist[order(specdist)]
scale.factor<-hyp.group.dist.m.f(dat.m.f,grouping=rep("YES",dim(dat.m.f)[2]))
res[[focal.bug]]$focal.distances<-specdisto
res[[focal.bug]]$focal.breadth<-total.breadth
res[[focal.bug]]$focal.scale.factor<-scale.factor
res[[focal.bug]]$focal.scaled.breadth<-total.breadth/scale.factor
}
return(res)
} |
install_taxstats <- function(pkg = c("taxstats"), ...) {
if (!identical(Sys.getenv("R_GRATTAN_BUILD_MAIN_VIGNETTE"), "true") ||
!identical(Sys.getenv("R_GRATTAN_ALLOW_TAXSTATS"), "true")) {
message("Unable to install taxstats. Set both of the following environment variables\n\t",
"Sys.setenv('R_GRATTAN_BUILD_MAIN_VIGNETTE' = 'true')\n",
"
"Sys.setenv('R_GRATTAN_ALLOW_TAXSTATS' = 'true')\n")
return(NULL)
}
if (!missing(..1)) {
dots <- list(...)
if ("lib" %in% names(dots)) {
if (!requireNamespace("data.table", lib.loc = dots$lib, quietly = TRUE)) {
utils::install.packages("data.table", lib = dots$lib, ...)
}
}
}
utils::install.packages(pkgs = c(pkg),
repos = "https://hughparsonage.github.io/tax-drat",
type = "source",
...)
} |
rray_split <- function(x, axes = NULL) {
axes <- vec_cast(axes, integer())
validate_axes(axes, x)
if (is_null(axes)) {
axes <- seq_len(rray_dim_n(x))
}
res <- rray__split(x, as_cpp_idx(axes))
for (i in seq_along(res)) {
res[[i]] <- vec_cast_container(res[[i]], x)
}
res
} |
lst <- function(...) {
xs <- quos(..., .named = TRUE)
lst_quos(xs)
}
lst_quos <- function(xs) {
col_names <- names2(xs)
lengths <- rep_along(xs, 0L)
output <- rep_named(rep_along(xs, ""), list(NULL))
for (i in seq_along(xs)) {
unique_output <- output[!duplicated(names(output)[seq_len(i)], fromLast = TRUE)]
res <- eval_tidy(xs[[i]], unique_output)
if (!is.null(res)) {
lengths[[i]] <- NROW(res)
output[[i]] <- res
}
names(output)[[i]] <- col_names[[i]]
}
output
} |
fitPlain <-
function(cell,family){
dat=cell$Loss
mu=mean(dat)
sigma=sd(dat)
if(family=="weibull"){
nll=function(x){
-sum(dweibull(dat,exp(x[1]),exp(x[2]),log=TRUE))
}
start=c((sigma/mu)^(-1.086),mu/(gamma(1+1/((sigma/mu)^(-1.086)))))
pars=exp(optim(log(start),nll)$par)
}
if(family=="gamma"){
nll=function(x){
-sum(dgamma(dat,exp(x[1]),exp(x[2]),log=TRUE))
}
start=c(mu^2/sigma^2,mu/sigma^2)
pars=exp(optim(log(start),nll)$par)
}
if(family=="lnorm"){
pars=c(mean(log(dat)),sd(log(dat)))
}
if (family == "gh") {
q0.1 <- as.numeric(stats::quantile(dat, 0.1))
q0.9 <- as.numeric(stats::quantile(dat, 0.9))
A <- stats::median(dat)
gamma2 <- q0.9 - q0.1
gamma3 <- (A - q0.1)/(q0.9 - A)
gamma4 <- (as.numeric(stats::quantile(dat, 0.75)) - as.numeric(stats::quantile(dat, 0.25)))/gamma2
g <- -log(gamma3)/stats::qnorm(0.9)
if (g == 0) {
h <- 2 * log(stats::qnorm(0.75)/(gamma4 * stats::qnorm(0.9)))/(stats::qnorm(0.9)^2 - stats::qnorm(0.75)^2)
}
else {
h <- (2 * log((gamma3^(1 - (stats::qnorm(0.75)/stats::qnorm(0.9))) * (gamma3^(2 * stats::qnorm(0.75)/stats::qnorm(0.9)) -
1))/((gamma3^2 - 1) * gamma4)))/(stats::qnorm(0.9)^2 - stats::qnorm(0.75)^2)
}
B <- gamma2/(exp(0.5 * h * stats::qnorm(0.9)^2) * (exp(g * stats::qnorm(0.9)) - exp(-g * stats::qnorm(0.9)))/g)
if(h<0) base::warning("estimated kurtosis parameter is negative")
pars = c(A, B, g, h)
}
return(buildPlainSevdist(family,pars))
} |
print.BANOVA.Bernoulli <-
function(x, ...){
cat('Call:\n')
print(x$call)
cat('\n Coefficients: \n')
print(data.frame(x$coef.tables$full_table))
} |
eigs <- function(A, k, which = "LM", sigma = NULL, opts = list(), ...)
RSpectra::eigs(A, k, which, sigma, opts, ...)
eigs_sym <- function(A, k, which = "LM", sigma = NULL, opts = list(),
lower = TRUE, ...)
RSpectra::eigs_sym(A, k, which, sigma, opts, lower, ...) |
lexical_sort <- function(x) {
as.numeric(sort(as.character(x)))
} |
as.sfc.cartogramR <- function(x, ...) {
if (!inherits(x, "cartogramR")) stop(paste(deparse(substitute(x)), "must be a cartogramR object"))
return(x$cartogram)
} |
expected <- FALSE
test(id=17, code={
argv <- list(complex(real=3, imaginary=-Inf))
do.call('is.null', argv);
}, o = expected);
|
Slope_Legend <- function(colors=colors, maskNegatives=T)
{
colorsfunc <- colorRamp(colors)
par(ann=F, mar=c(0,0,0,0))
layout(matrix(1:2,ncol=2), widths=c(0.75, 0.25))
plot(1,1, type='n', axes=F)
lineSize <- 2
textSize <- 1.75
rectSize <- 1
colorslist <- colorsfunc(rev(seq(0, 1, 0.001)))
colorslist <- apply(colorslist, 1, function(x) rgb(x[1], x[2], x[3], maxColorValue=255))
legend_gradient <- as.raster(matrix(colorslist, ncol=1))
XPos1 <- 1.15
XPos2 <- XPos1-(0.55*rectSize)
XPos3 <- XPos1-(0.05*rectSize)
XPos4 <- XPos1-(0.45*rectSize)
XPos5 <- XPos1-(0.15*rectSize)
YPos0 <- 0.5
YPos1 <- YPos0+(0.3*rectSize)
YPos2 <- YPos0-(0.25*rectSize)
YPos3 <- YPos0+(0.375*rectSize)
YPos4 <- YPos0-(0.27*rectSize)
YPos5 <- YPos0-(0.32*rectSize)
YPos6 <- YPos0-(0.295*rectSize)
YPos7 <- YPos0-(0.34*rectSize)
YPos8 <- YPos0-(0.39*rectSize)
YPos9 <- YPos0-(0.365*rectSize)
plot(c(0,2), c(0,1), type='n', axes=F, xlab='', ylab='')
Slope_Labels <- seq(0,90, l=10)
Slope_Labels <- format(Slope_Labels, scientific=F)
text(x=XPos1, y=seq(YPos2, YPos1, l=10), labels=Slope_Labels, adj=c(0, NA), cex=textSize)
rasterImage(legend_gradient, XPos2, YPos2, XPos3,YPos1)
rect(XPos2, YPos2, XPos3, YPos1, lwd=lineSize)
segments(x0=rep(XPos2, 10), y0=seq(YPos2,YPos1,l=10), x1=rep(XPos4, 10), y1=seq(YPos2,YPos1,l=10), lwd=lineSize)
segments(x0=rep(XPos5, 10), y0=seq(YPos2,YPos1,l=10), x1=rep(XPos3, 10), y1=seq(YPos2,YPos1,l=10), lwd=lineSize)
if(maskNegatives==T){
edgeblack <- '
rect(XPos2, YPos5, XPos3, YPos4, lwd=lineSize, col=edgeblack, border="black")
text(x=XPos1, y=YPos6, labels="Negative\nSlope", cex=textSize, adj=c(0,NA))
}
} |
samEL = function(X, y, p=3, lambda = NULL, nlambda = NULL, lambda.min.ratio = 0.25, thol=1e-5, max.ite = 1e5, regfunc="L1"){
gcinfo(FALSE)
fit = list()
fit$p = p
fit = list()
X = as.matrix(X)
y = as.vector(y)
n = nrow(X)
d = ncol(X)
m = d*p
if(sum(y<0)>0){
cat("Please check the responses. (Must be non-negative)")
fit = "Please check the responses."
return(fit)
}
fit$p = p
X.min = apply(X,2,min)
X.max = apply(X,2,max)
X.ran = X.max - X.min
X.min.rep = matrix(rep(X.min,n),nrow=n,byrow=T)
X.ran.rep = matrix(rep(X.ran,n),nrow=n,byrow=T)
X = (X-X.min.rep)/X.ran.rep
fit$X.min = X.min
fit$X.ran = X.ran
Z = matrix(0,n,m)
fit$nkots = matrix(0,p-1,d)
fit$Boundary.knots = matrix(0,2,d)
for(j in 1:d){
tmp = (j-1)*p + c(1:p)
tmp0 = ns(X[,j],df=p)
Z[,tmp] = tmp0
fit$nkots[,j] = attr(tmp0,'knots')
fit$Boundary.knots[,j] = attr(tmp0,'Boundary.knots')
}
L0 = norm(Z,"f")^2
Z = cbind(Z,rep(1,n))
a0 = log(mean(y))
z = colSums(matrix(rep(y,m+1),n,m+1)*Z)
if(is.null(lambda)){
g = -z + colSums(matrix(rep(exp(a0),m+1),n,m+1)*Z)
if(is.null(nlambda)) nlambda = 20;
lambda_max=max(sqrt(colSums(matrix(g[1:(p*d)],p,d)^2)))
lambda = exp(seq(log(1),log(lambda.min.ratio),length=nlambda))*lambda_max
} else nlambda = length(lambda)
out = .C("grpPR", A = as.double(Z), y = as.double(y), lambda = as.double(lambda), nlambda = as.integer(nlambda),
LL0 = as.double(L0), nn = as.integer(n), dd = as.integer(d), pp = as.integer(p),
xx = as.double(matrix(0,m+1,nlambda)), aa0 = as.double(a0), mmax_ite = as.integer(max.ite),
tthol = as.double(thol), regfunc = as.character(regfunc), aalpha = as.double(0.5),
z = as.double(z),df = as.integer(rep(0,nlambda)),func_norm = as.double(matrix(0,d,nlambda)), package="SAM")
fit$lambda = out$lambda
fit$w = matrix(out$xx,ncol=nlambda)
fit$df = out$df
fit$func_norm = matrix(out$func_norm,ncol=nlambda)
rm(out,X,y,Z,X.min.rep,X.ran.rep)
class(fit) = "samEL"
return(fit)
}
print.samEL = function(x,...){
cat("Path length:",length(x$df),"\n")
cat("d.f.:",x$df[1],"--->",x$df[length(x$df)],"\n")
}
plot.samEL = function(x,...){
par = par(omi = c(0.0, 0.0, 0, 0), mai = c(1, 1, 0.1, 0.1))
matplot(x$lambda,t(x$func_norm),type="l",xlab="Regularization Parameters",ylab = "Functional Norms",cex.lab=2,log="x",lwd=2)
}
predict.samEL = function(object, newdata,...){
gcinfo(FALSE)
out = list()
nt = nrow(newdata)
d = ncol(newdata)
X.min.rep = matrix(rep(object$X.min,nt),nrow=nt,byrow=T)
X.ran.rep = matrix(rep(object$X.ran,nt),nrow=nt,byrow=T)
newdata = (newdata-X.min.rep)/X.ran.rep
newdata = pmax(newdata,0)
newdata = pmin(newdata,1)
m = object$p*d
Zt = matrix(0,nt,m)
for(j in 1:d){
tmp = (j-1)*object$p + c(1:object$p)
Zt[,tmp] = ns(newdata[,j],df=object$p,knots=object$knots[,j],Boundary.knots=object$Boundary.knots[,j])
}
out$expectation = exp(cbind(Zt,rep(1,nt))%*%object$w)
rm(Zt,newdata)
return(out)
} |
demo.FCAk <- function(data)
{cat(" If you've got a nice little dataset say with 4 or 5 entries","\n",
" send it to me and I'll put the demo in the next release ","\n")
cat(" [email protected] ","\n")
}
demo.FCAk()
cat("\n","\n","args(demo.FCAk)","\n")
print(args(demo.FCAk)) |
library(maat)
library(knitr)
library(kableExtra)
include_graphics("assessment.svg")
include_graphics("routing_T1T2.svg")
include_graphics("routing_T2T3.svg")
include_graphics("routing_T3.svg")
assessment_structure <- createAssessmentStructure(
n_test = 3,
n_phase = 2,
route_limit_below = 1,
route_limit_above = 2
)
cor_v <- matrix(.8, 3, 3)
diag(cor_v) <- 1
set.seed(1)
examinee_list <- simExaminees(
N = 10,
mean_v = c(0, 0.5, 1.0),
sd_v = c(1, 1, 1),
cor_v = cor_v,
assessment_structure = assessment_structure,
initial_grade = "G4",
initial_phase = "P1",
initial_test = "T1"
)
fn <- system.file("extdata", "module_definition_MATH_normal_N500.csv", package = "maat")
d <- read.csv(fn)
kable_styling(kable(d))
fn <- system.file("extdata", "module_definition_MATH_normal_N500.csv", package = "maat")
module_list <- loadModules(
fn = fn,
base_path = system.file(package = "maat"),
assessment_structure = assessment_structure,
examinee_list = examinee_list
)
cut_scores <- list(
G3 = c(-1.47, -0.55, 0.48),
G4 = c(-1.07, -0.15, 0.88),
G5 = c(-0.67, 0.25, 1.28),
G6 = c(-0.27, 0.65, 1.68),
G7 = c( 0.13, 1.05, 2.08),
G8 = c( 0.53, 1.45, 2.48)
)
library(TestDesign)
config <- createShadowTestConfig(
interim_theta = list(method = "MLE"),
final_theta = list(method = "MLE")
)
set.seed(1)
maat_output_CI <- maat(
examinee_list = examinee_list,
assessment_structure = assessment_structure,
module_list = module_list,
config = config,
cut_scores = cut_scores,
overlap_control_policy = "within_test",
transition_policy = "CI",
combine_policy = "conditional",
transition_CI_alpha = 0.05
)
set.seed(1)
maat_output_difficulty <- maat(
examinee_list = examinee_list,
assessment_structure = assessment_structure,
module_list = module_list,
config = config,
cut_scores = cut_scores,
overlap_control_policy = "within_test",
transition_policy = "pool_difficulty_percentile",
combine_policy = "conditional",
transition_CI_alpha = 0.05,
transition_percentile_lower = 0.05,
transition_percentile_upper = 0.95
)
plot(maat_output_CI, type = "route")
plot(maat_output_difficulty, type = "route")
plot(
x = maat_output_CI,
type = "correlation",
theta_range = c(-4, 4),
main = c("Fall", "Winter", "Spring"))
plot(
x = maat_output_difficulty,
type = "correlation",
theta_range = c(-4, 4),
main = c("Fall", "Winter", "Spring"))
plot(
x = maat_output_CI,
type = "audit",
examinee_id = 1
) |
timselsum <- function(var, nts = 6, infile, outfile, nc34 = 4, overwrite = FALSE,
verbose = FALSE, nc = NULL) {
timselx_wrapper(1, var, infile, outfile, nc34, overwrite, nts = nts, verbose = verbose, nc = nc)
} |
plot1of15<-function(eList, yearStart, yearEnd, qf, istat,
isBottom=FALSE) {
localINFO <- getInfo(eList)
if("edgeAdjust" %in% names(localINFO)){
edgeAdjust <- localINFO$edgeAdjust
} else {
edgeAdjust <- TRUE
}
localAnnualSeries <- makeAnnualSeries(eList, edgeAdjust = edgeAdjust)
xSpan<-c(yearStart,yearEnd)
xTicks<-pretty(xSpan,n=6)
numXTicks<-length(xTicks)
xLeft<-xTicks[1]
xRight<-xTicks[numXTicks]
x<-localAnnualSeries[1,istat,]
y<-qf*localAnnualSeries[2,istat,]
yTop<-1.05*max(y,na.rm=TRUE)
yTicks<-yPretty(yTop)
numYTicks<-length(yTicks)
yTop<-yTicks[numYTicks]
plot(x,y,axes=FALSE,xlim=c(xLeft,xRight),xaxs="i",ylim=c(0,yTop),yaxs="i",ylab="",xlab="",main="",type="p")
if(isBottom) axis(1,tcl=0.5,at=xTicks,labels=xTicks) else axis(1,tcl=0.5,at=xTicks,labels=FALSE)
axis(2,tcl=0.5,at=yTicks,labels=TRUE)
axis(3,tcl=0.5,at=xTicks,labels=FALSE)
axis(4,tcl=0.5,at=yTicks,labels=FALSE)
y<-qf*localAnnualSeries[3,istat,]
par(new=TRUE)
plot(x,y,axes=FALSE,xlim=c(xLeft,xRight),xaxs="i",ylim=c(0,yTop),yaxs="i",ylab="",xlab="",main="",type="l")
axis(1,tcl=0.5,at=xTicks,labels=FALSE)
axis(2,tcl=0.5,at=yTicks,labels=FALSE)
axis(3,tcl=0.5,at=xTicks,labels=FALSE)
axis(4,tcl=0.5,at=yTicks,labels=FALSE)
box()
} |
layer_brain <- function(geom = NULL, stat = NULL,
data = NULL, mapping = NULL,
position = NULL, params = list(),
inherit.aes = TRUE,
check.aes = TRUE,
check.param = TRUE,
show.legend = NA) {
ggplot2::layer(
geom = geom, stat = stat, data = data, mapping = mapping,
position = position, params = params, inherit.aes = inherit.aes,
check.aes = check.aes, check.param = check.param,
show.legend = show.legend, layer_class = LayerBrain
)
}
LayerBrain <- ggproto("LayerBrain", ggplot2:::Layer,
setup_layer = function(self, data, plot) {
dt <- ggproto_parent(ggplot2:::Layer, self)$setup_layer(data, plot)
atlas <- as.data.frame(self$geom_params$atlas)
if(is.null(atlas) | nrow(atlas) == 0)
stop("No atlas supplied, please provide a brain atlas to the geom.",
call. = FALSE)
if(!is.null(self$geom_params$hemi)){
hemi <- match.arg(self$geom_params$hemi, unique(atlas$hemi))
atlas <- atlas[atlas$hemi %in% hemi,]
}
if(!is.null(self$geom_params$side)){
side <- match.arg(self$geom_params$side, unique(atlas$side))
atlas <- atlas[atlas$side %in% side,]
}
if(class(dt)[1] != "waiver"){
data <- brain_join(dt, atlas)
merge_errs <- sapply(data$geometry,
function(x) ifelse(length(!is.na(x)) > 0,
TRUE, FALSE))
if(any(!merge_errs)){
k <- data[!merge_errs,]
k <- k[,apply(k, 2, function(x) all(!is.na(x)))]
k$geometry <- NULL
k <- paste(utils::capture.output(k), collapse="\n")
warning(paste("Some data not merged. Check for spelling mistakes in:\n",
k, collapse="\n "),
call. = FALSE)
data <- data[merge_errs,]
}
}else{
data <- atlas
}
data <- sf::st_as_sf(data)
if ((isTRUE(self$inherit.aes) && is.null(self$computed_mapping$geometry) && is.null(plot$computed_mapping$geometry)) ||
(!isTRUE(self$inherit.aes) && is.null(self$computed_mapping$geometry))) {
if (ggplot2:::is_sf(data)) {
geometry_col <- attr(data, "sf_column")
self$computed_mapping$geometry <- as.name(geometry_col)
}
}
if ((isTRUE(self$inherit.aes) && is.null(self$computed_mapping$hemi) && is.null(plot$computed_mapping$hemi)) ||
(!isTRUE(self$inherit.aes) && is.null(self$computed_mapping$hemi))) {
self$computed_mapping$hemi <- as.name("hemi")
}
if ((isTRUE(self$inherit.aes) && is.null(self$computed_mapping$side) && is.null(plot$computed_mapping$side)) ||
(!isTRUE(self$inherit.aes) && is.null(self$computed_mapping$side))) {
self$computed_mapping$side <- as.name("side")
}
if ((isTRUE(self$inherit.aes) && is.null(self$computed_mapping$type) && is.null(plot$computed_mapping$type)) ||
(!isTRUE(self$inherit.aes) && is.null(self$computed_mapping$type))) {
self$computed_mapping$type <- as.name("type")
}
if ((isTRUE(self$inherit.aes) && is.null(self$computed_mapping$fill) && is.null(plot$computed_mapping$fill)) ||
(!isTRUE(self$inherit.aes) && is.null(self$computed_mapping$fill))) {
self$computed_mapping$fill <- as.name("region")
}
self$computed_mapping$label <- as.name("label")
self$geom_params$legend <- "polygon"
data
}
)
if(getRversion() >= "2.15.1"){
utils::globalVariables(c("layer"))
} |
getUtopiaPayoff<-function(v){
paramCheckResult=getEmptyParamCheckResult()
initialParamCheck_utopiaPayoff(paramCheckResult = paramCheckResult, v)
A = v
n=getNumberOfPlayers(A)
N=length(A)
M=A[N]-A[(N-1):(N-n)]
return(M)
}
initialParamCheck_utopiaPayoff=function(paramCheckResult,v=v){
stopOnInvalidGameVector(paramCheckResult, v)
} |
eulersys <- function(f, x0, y0, h, n) {
x <- x0
y <- y0
values <- data.frame(x = x, t(y0))
for(i in 1:n) {
y0 <- y0 + h * f(x0, y0)
x0 <- x0 + h
values <- rbind(values, data.frame(x = x0, t(y0)))
}
return(values)
} |
context("Just testing codonFraction functionality")
test_that("Check codonFraction works properly",{
CodonFr<-CodonFraction(seqs=c("ATACGAATCATA","ATGGTCCTCATGGTGGTG"))
codonList<-list("A"=c("GCT","GCC","GCA","GCG"),"R"=c("AGA","AGG","CGT","CGC","CGA","CGG"),
"N"=c("AAT","AAC"),"D"=c("GAT","GAC"),"C"=c("TGT","TGC"),"Q"=c("CAA","CAG"),
"E"=c("GAA","GAG"),"G"=c("GGT","GGC","GGA","GGG"),"H"=c("CAT","CAC"),
"I"=c("ATT","ATC","ATA"),"L"=c("TTA","TTG","CTT","CTC","CTA","CTG"),"K"=c("AAA","AAG"),
"M"=c("ATG"),"F"=c("TTT","TTC"),"P"=c("CCT","CCC","CCA","CCG"),
"S"=c("AGT","AGC","TCT","TCC","TCA","TCG"),"T"=c("ACT","ACC","ACA","ACG"),"W"=c("TGG"),
"Y"=c("TAT","TAC"),"V"=c("GTT","GTC","GTA","GTG"),"STOPcod"=c("TAA","TAG","TGA"))
codonVector<-unlist(codonList)
numCodon<-length(codonVector)
expected_matrix<-matrix(0,ncol = numCodon,nrow = 2)
colnames(expected_matrix)<-codonVector
expected_matrix[1,c("ATA","CGA","ATC")]<-c(2/3,1,1/3)
expected_matrix[2,c("ATG","GTC","CTC","GTG")]<-c(2/2,1/3,1,2/3)
lexSort<-nameKmer(k=3,type = "dna")
expected_matrix<-expected_matrix[,lexSort]
dimnames(expected_matrix)<-NULL
dimnames(CodonFr)<-NULL
expect_equal(CodonFr,expected_matrix)
}) |
.cor_test_bayes <- function(data,
x,
y,
ci = 0.95,
method = "pearson",
bayesian_prior = "medium",
bayesian_ci_method = "hdi",
bayesian_test = c("pd", "rope", "bf"),
...) {
insight::check_if_installed("BayesFactor")
var_x <- .complete_variable_x(data, x, y)
var_y <- .complete_variable_y(data, x, y)
if (tolower(method) %in% c("spearman", "spear", "s")) {
var_x <- datawizard::ranktransform(var_x, sign = TRUE, method = "average")
var_y <- datawizard::ranktransform(var_y, sign = TRUE, method = "average")
method <- "Bayesian Spearman"
} else if (tolower(method) %in% c("gaussian")) {
var_x <- stats::qnorm(rank(var_x) / (length(var_x) + 1))
var_y <- stats::qnorm(rank(var_y) / (length(var_y) + 1))
method <- "Bayesian Gaussian rank"
} else {
method <- "Bayesian Pearson"
}
out <- .cor_test_bayes_base(
x,
y,
var_x,
var_y,
ci = ci,
bayesian_prior = bayesian_prior,
bayesian_ci_method = bayesian_ci_method,
bayesian_test = bayesian_test,
...
)
out$Method <- method
out
}
.cor_test_bayes_base <- function(x,
y,
var_x,
var_y,
ci = 0.95,
bayesian_prior = "medium",
bayesian_ci_method = "hdi",
bayesian_test = c("pd", "rope", "bf"),
method = "pearson",
...) {
insight::check_if_installed("BayesFactor")
if (x == y) {
rez <- BayesFactor::correlationBF(stats::rnorm(1000), stats::rnorm(1000), rscale = bayesian_prior)
params <- parameters::model_parameters(
rez,
dispersion = FALSE,
ci_method = bayesian_ci_method,
test = bayesian_test,
rope_range = c(-0.1, 0.1),
rope_ci = 1,
...
)
if ("Median" %in% names(params)) params$Median <- 1
if ("Mean" %in% names(params)) params$Mean <- 1
if ("MAP" %in% names(params)) params$MAP <- 1
if ("SD" %in% names(params)) params$SD <- 0
if ("MAD" %in% names(params)) params$MAD <- 0
if ("CI_low" %in% names(params)) params$CI_low <- 1
if ("CI_high" %in% names(params)) params$CI_high <- 1
if ("pd" %in% names(params)) params$pd <- 1
if ("ROPE_Percentage" %in% names(params)) params$ROPE_Percentage <- 0
if ("BF" %in% names(params)) params$BF <- Inf
} else {
rez <- BayesFactor::correlationBF(var_x, var_y, rscale = bayesian_prior)
params <- parameters::model_parameters(
rez,
dispersion = FALSE,
ci_method = bayesian_ci_method,
test = bayesian_test,
rope_range = c(-0.1, 0.1),
rope_ci = 1,
...
)
}
if (sum(names(params) %in% c("Median", "Mean", "MAP")) == 1) {
names(params)[names(params) %in% c("Median", "Mean", "MAP")] <- "rho"
}
params[names(params) %in% c("Effects", "Component")] <- NULL
params <- params[names(params) != "Parameter"]
params$Parameter1 <- x
params$Parameter2 <- y
params[unique(c("Parameter1", "Parameter2", names(params)))]
} |
print.R0.R <- function
(x,
...
)
{
if (class(x)!="R0.R") {
stop("'x' must be of class 'R0.R'")
}
cat("Reproduction number estimate using ",x$method," method.\n")
if (x$method.code %in% c("EG","ML","AR")) {
cat("R : ",x$R)
if (!any(is.na(x$conf.int))) {
cat("[", x$conf.int[1],",",x$conf.int[2],"]\n")
}
}
else {
if (x$method.code %in% c("TD","SB")) {
cat(x$R[1:min(length(x$R),10)],"...\n")
}
}
cat("\n")
} |
add1.mixmeta <-
function(object, ...) {
if(!object$method %in% c("fixed","ml"))
stop("Fit only comparable in models with method='fixed' or method='ml'")
NextMethod(generic="add1", ...)
} |
library(stringr)
library(tableschema.r)
library(testthat)
library(foreach)
library(config)
context("types.castInteger")
TESTS <- list(
list('default', 1, 1, {} ),
list('default', '1', 1, {} ),
list('default', '1$', 1, list(bareNumber = FALSE) ),
list('default', 'ab1$', 1, list(bareNumber = FALSE) ),
list('default', '3.14', config::get("ERROR", file = system.file("config/config.yml", package = "tableschema.r")), {}),
list('default', '', config::get("ERROR", file = system.file("config/config.yml", package = "tableschema.r")), {}),
list('default', 1.2, config::get("ERROR", file = system.file("config/config.yml", package = "tableschema.r")), {}),
list('default', types.castInteger('default', list(1:5)), config::get("ERROR", file = system.file("config/config.yml", package = "tableschema.r")), {})
)
foreach(j = seq_along(TESTS) ) %do% {
TESTS[[j]] <- setNames(TESTS[[j]], c("format", "value", "result","options"))
test_that(str_interp('format "${TESTS[[j]]$format}" should check "${TESTS[[j]]$value}" as "${TESTS[[j]]$result}"'), {
expect_equal(types.castInteger(TESTS[[j]]$format, TESTS[[j]]$value, TESTS[[j]]$options), TESTS[[j]]$result)
})
}
test_that('error at NULL values',{
expect_error(types.castInteger('default', NULL))
}) |
context("charlatan_settings")
test_that("charlatan_settings - default", {
aa <- charlatan_settings()
expect_is(aa, "list")
expect_named(aa, "global_messy")
expect_null(aa$global_messy)
})
test_that("charlatan_settings - set messy to TRUE", {
aa <- charlatan_settings(messy = TRUE)
expect_is(aa, "list")
expect_named(aa, "global_messy")
expect_true(aa$global_messy)
})
test_that("charlatan_settings - global settings override local settings", {
charlatan_settings()
aa <- PersonProvider$new()
expect_false(aa$messy)
charlatan_settings(messy = TRUE)
bb <- PersonProvider$new()
expect_true(bb$messy)
}) |
office_get_offices_by_level <- function(office_level_ids) {
office_level_ids %<>%
as_char_vec()
r <- "Office.getOfficesByLevel?"
out <- tibble()
for (l in office_level_ids) {
q <- elmers("&levelId={l}")
this <-
get(
req = r,
query = q,
level_one = "offices",
level_two = "office"
)
out %<>%
bind_rows(this)
}
out %>%
select(
office_id,
name,
title,
office_level_id,
everything()
) %>%
distinct()
} |
plotMCMCdiag <- function(x, nbloc=3, HIWg=NULL, header="", ...){
if (!inherits(x, "BayesSUR"))
stop("Use only with a \"BayesSUR\" object")
x$output[-1] <- paste(x$output$outFilePath,x$output[-1],sep="")
logP <- t( as.matrix( read.table(x$output$logP) ) )
model_size <- as.matrix( read.table(x$output$model_size) )
ncol_Y <- ncol(read.table(x$output$gamma))
nIter <- x$input$nIter
covariancePrior <- x$input$covariancePrior
if(covariancePrior=="HIW" & is.null(x$output$Gvisit))
Gvisit <- as.matrix( read.table(x$output$Gvisit) )
if(nIter <= 1)
stop("The diagosis only shows results from more than one MCMC iteration!")
if(nIter < 4000)
message("NOTE: The diagosis only shows results of two iteration points due to less than 4000 MCMC iterations!")
if(nIter >= 4000){
logP <- logP[,ncol(logP)-floor(nIter/1000)-1+1:floor(nIter/1000)]
}else{
logP <- logP[,c(1,ncol(logP))]
}
if(is.null(HIWg)){
Ptau.indx <- ifelse(covariancePrior!="IG", 7, 3)
Plik.indx <- ifelse(covariancePrior!="IG", 10, 5)
model_size <- model_size
if(nIter >= 4000){
model_size <- rowSums( model_size[nrow(model_size)-floor(nIter/1000)-1+1:floor(nIter/1000),] )
}else{
model_size <- rowSums( model_size[c(1,nrow(model_size)),] )
}
dens.all <- density(logP[Ptau.indx,])
if(nIter >= 4000){
dens.first <- density(logP[Ptau.indx, 1:floor(ncol(logP)/2)])
dens.last <- density(logP[Ptau.indx, (1+floor(ncol(logP)/2)):ncol(logP)])
ymin <- min(dens.all$y,dens.first$y,dens.last$y)
ymax <- max(dens.all$y,dens.first$y,dens.last$y)
xmin <- min(dens.all$x,dens.first$x,dens.last$x)
xmax <- max(dens.all$x,dens.first$x,dens.last$x)
}else{
ymin <- min(dens.all$y)
ymax <- max(dens.all$y)
xmin <- min(dens.all$x)
xmax <- max(dens.all$x)
nbloc <- 1
}
mid <- floor(floor(ncol(logP)/2)/nbloc)
ymax2 <- xmin2 <- xmax2 <- list.dens <- NULL
for (i in 1:nbloc){
dens <- density(logP[Ptau.indx, (ifelse(nbloc==1,0,floor(ncol(logP)/2))+1+mid*(i-1)):ncol(logP)])
ymax2 <- max(ymax2,dens$y)
xmin2 <- min(xmin2,dens$x)
xmax2 <- max(xmax2,dens$x)
list.dens <- c(list.dens,list(dens))
}
opar <- par(no.readonly=TRUE)
on.exit(par(opar))
par(mfrow=c(2,2))
if(nbloc>1){
plot.default(logP[Plik.indx,], xlab="Iterations (*1000)", ylab="Log likelihood (posterior)", type="l", lty=1, ...)
}else{
plot.default(logP[Plik.indx,]~c(1,nIter), xlab="Iterations", ylab="Log likelihood (posterior)", type="l", lty=1, ...)
}
if(nbloc>1){
plot.default(model_size, xlab="Iterations (*1000)", ylab="Model size", type="l", lty=1, ...)
}else{
plot.default(model_size~c(1,nIter), xlab="Iterations", ylab="Model size", type="l", lty=1, ...)
}
title.0 <- expression(paste("Log Posterior Distribution: log ",P(gamma~group("|",list(Y,.),""))))
plot.default(dens.all,main="",col="black",xlim=c(xmin,xmax),ylim=c(ymin,ymax),xlab=title.0,ylab="", type="l", lty=1)
if(nIter >= 4000){
par(new=TRUE)
plot.default(dens.first,main="",col="red",xlim=c(xmin,xmax),ylim=c(ymin,ymax),xlab="",ylab="", type="l", lty=1)
par(new=TRUE)
plot.default(dens.last,main="",col="green",xlim=c(xmin,xmax),ylim=c(ymin,ymax),xlab="",,ylab="Density", type="l", lty=1)
if(nbloc>1)
legend("topleft",title="iteration",legend=paste(c("ALL","First half","Last half")," = [",c(1,1,floor(ncol(logP)/2)*1000+1),":",c(ncol(logP),floor((ncol(logP))/2),ncol(logP))*1000,"]",sep=""),col=1:3,lty=1,text.col=1:3, cex=0.8)
}
for (i in 1:nbloc){
plot.default(list.dens[[i]],col=i,xlim=c(xmin2,xmax2),ylim=c(ymin,ymax2),xlab=title.0,ylab="", type="l", lty=1,main="")
if(nbloc>1) par(new=TRUE)
}
title(ylab="Density")
if(nbloc>1)
legend("topleft",title="moving window",legend=paste("set ",1:nbloc," = [",(floor((ncol(logP))/2)+mid*(nbloc:1-1))*1000+1,":",(ncol(logP))*1000,"]",sep=""),col=1:nbloc,lty=1,text.col=1:nbloc, cex=0.8)
}else{
if(covariancePrior != "HIW")
stop("The argument HIWg only works for the model with hyper-inverse Wishart prior on the covariance!")
if(HIWg == "degree"){
m <- ncol_Y
node1 <- node2 <- NULL
for(i in 1:(m-1)){
node1 <- c(node1, rep(i, m-i))
node2 <- c(node2, (i+1):m)
}
nodes <- cbind(node1, node2)
node.degree <- matrix(0, nrow=nrow(Gvisit), ncol=m)
for(i in 1:m)
node.degree[,i] <- rowSums(Gvisit[,which(nodes==i, arr.ind=TRUE)[,1]])
matplot(node.degree, type="l", lty=1, col=hcl.colors(m), xlab="Iterations (*1000)", ylab="degree", main="Response degrees", xlim=c(1,nrow(Gvisit)*1.1))
legend("topright",legend=1:m,col=hcl.colors(m),lty=1,text.col=hcl.colors(m), cex=1/m*4)
}
if(substr(HIWg, 1, 4) == "edge"){
m <- ncol_Y
node1 <- node2 <- NULL
for(i in 1:(m-1)){
node1 <- c(node1, rep(i, m-i))
node2 <- c(node2, (i+1):m)
}
if(HIWg == "edge"){
matplot(Gvisit, type="l", lty=1, col=hcl.colors(ncol(Gvisit)), xlab="Iterations (*1000)", ylab="", main="Edges selection", xlim=c(1,nrow(Gvisit)*1.1))
legend("topright",legend=paste(node1,"-",node2,sep=""),col=hcl.colors(ncol(Gvisit)),lty=1,text.col=hcl.colors(ncol(Gvisit)), cex=1/m*2)
}else{
plot.default(Gvisit[,which(paste(node1,node2,sep="")==substr(HIWg,5,nchar(HIWg)))], type="l", lty=1, xlab="Iterations (*1000)", ylab="", main=paste("Edge-",substr(HIWg,5,nchar(HIWg))," selection",sep=""))
}
}
if(HIWg == "lik"){
Gvisit <- t(logP[1:4,])
matplot(Gvisit, type="l", lty=1, col=1:ncol(Gvisit), xlab="Iterations (*1000)", ylab="Log likelihood (posterior)", main="Likelihoods of graph learning")
legend("topright",legend=c("tau", "eta", "JT", "SigmaRho"),col=1:ncol(Gvisit),lty=1,text.col=1:ncol(Gvisit), cex=0.8)
}
}
title(paste("\n",header,sep=""), outer=T)
} |
timeOptSimPwrLaw <- function (dat,numsim=2000,beta=NULL,sedrate=NULL,sedmin=0.5,sedmax=5,numsed=100,linLog=1,limit=T,fit=1,fitModPwr=T,flow=NULL,fhigh=NULL,roll=NULL,targetE=NULL,targetP=NULL,detrend=T,ncores=2,output=0,genplot=T,check=T,verbose=T)
{
if(verbose) cat("\n----- TimeOpt Monte Carlo Simulation -----\n")
cormethod=1
if(!is.null(sedrate) && verbose)
{
cat("\n**** WARNING: you are only investigating one sedimentation rate.\n")
cat(" sedrate option takes precedence over sedmin/sedmax/numsed\n\n")
sedmin=sedrate
sedmax=sedrate
numsed=1
}
dat = data.frame(dat)
npts <- length(dat[,1])
dx <- dat[2,1]-dat[1,1]
if(check)
{
if(dx<0)
{
if (verbose) cat("\n * Sorting data into increasing height/depth/time, removing empty entries\n")
dat <- dat[order(dat[,1], na.last = NA, decreasing = F), ]
dx <- dat[2,1]-dat[1,1]
npts <- length(dat[,1])
}
dtest <- dat[2:npts,1]-dat[1:(npts-1),1]
epsm=1e-9
if( (max(dtest)-min(dtest)) > epsm )
{
cat("\n**** ERROR: sampling interval is not uniform.\n")
stop("**** TERMINATING NOW!")
}
}
if (verbose)
{
cat(" * Number of data points in stratigraphic series:",npts,"\n")
cat(" * Stratigraphic series length (meters):",(npts-1)*dx,"\n")
cat(" * Sampling interval (meters):",dx,"\n\n")
}
if (detrend)
{
lm.1 <- lm(dat[,2] ~ dat[,1])
dat[2] <- dat[2] - (lm.1$coeff[2]*dat[1] + lm.1$coeff[1])
if(verbose) cat(" * Linear trend subtracted. m=",lm.1$coeff[2],"b=",lm.1$coeff[1],"\n")
}
dat[2]=dat[2]-colMeans(dat[2])
dat[2]=dat[2]/sapply(dat[2],sd)
if(is.null(beta))
{
spec1=periodogram(dat,padfac=1,output=1,verbose=F,genplot=F)
spec2=data.frame(cbind(spec1[,1],spec1[,3]))
spec2=spec2[-length(spec2[,1]),]
beta=pwrLawFit(spec2,output=2,verbose=F,genplot=F)[,1]
if(verbose) cat(" * Estimated beta =",beta,"\n")
}
res=timeOpt(dat,sedmin=sedmin,sedmax=sedmax,numsed=numsed,linLog=linLog,limit=limit,fit=fit,fitModPwr=fitModPwr,flow=flow,fhigh=fhigh,roll=roll,targetE=targetE,targetP=targetP,detrend=detrend,output=1,title=NULL,genplot=F,verbose=F,check=F)
datCorPwr = max(res[,4])
if(verbose)
{
cat(" * (Envelope r^2) x (Spectral Power r^2) =", datCorPwr,"\n")
}
if(verbose) cat("\n * PLEASE WAIT: Performing", numsim,"simulations using", ncores,"cores\n")
if(ncores<2) stop("WARNING: number of ncores must be greater than one!")
cl<-makeCluster(as.integer(ncores))
registerDoParallel(cl)
resParallel<-foreach(icount(numsim),.combine=rbind) %dopar% {
sim = pwrLaw(npts, dx, mean=0, sdev=1, beta=beta, genplot=F, verbose=F)
sim[2]=sim[2]-colMeans(sim[2])
sim[2]=sim[2]/sapply(sim[2],sd)
simres=max(timeOpt(sim,sedmin=sedmin,sedmax=sedmax,numsed=numsed,linLog=linLog,limit=limit,fit=fit,fitModPwr=fitModPwr,flow=flow,fhigh=fhigh,roll=roll,targetE=targetE,targetP=targetP,detrend=detrend,output=1,title=NULL,genplot=F,verbose=F,check=F)[4])
simres
}
stopCluster(cl)
simres=resParallel
numgt = sum(simres>datCorPwr)
pvalCorPwr=numgt/numsim
if(pvalCorPwr < (10/numsim) && (10/numsim) <=1 ) pvalCorPwr= 10/numsim
if(pvalCorPwr >= (10/numsim) && (10/numsim) <=1 ) pvalCorPwr=pvalCorPwr
if((10/numsim) > 1 ) pvalCorPwr=1
if(verbose) cat("\n * (Envelope r^2) * (Spectral Power r^2) p-value =",pvalCorPwr, "\n")
if(genplot)
{
dev.new(title = paste("TimeOpt Monte Carlo Results"), height = 5, width = 6)
par(mfrow=c(1,1))
plot(density(simres), col="black",xlim=c(0,1),type="l",xlab=expression(paste({"r"^2}["opt"])),main=expression(bold(paste({"r"^2}["opt"]," Monte Carlo Results"))),cex.lab=1.1,lwd=2)
polygon(density(simres),col="red",border=NA)
abline(v=datCorPwr,col="blue",lwd=2,lty=3)
mtext(round(datCorPwr,digits=5),side=3,line=0,at=datCorPwr,cex=1,font=4,col="blue")
}
if(output == 1) return(data.frame(pvalCorPwr))
if(output == 2) return(data.frame(simres))
} |
iso_simulation_by_heriability = function(n.row, n.col, lon.lat=FALSE, mile=FALSE, density.choice, density.layout=c('diagSet', 'random', 'equal_space', 'p_rep'), h2, sigma_env, sigma_variety=(sigma_env*h2)/(1-h2), mu_variety, mu_check=mu_variety+1.68*sqrt(sigma_variety), cov_fun='exp', ranges=sqrt(2), simulation=3, nugget=0, mu_floor=0, p_rep_check=0.05) {
density.choice = sort(round(density.choice,2))
tmp.1 = check_layout_generation(n.row, n.col, density.choice, density.layout, p_rep_check=p_rep_check)
D.tmp.fix = spatial_dist(tmp.1[[1]][[1]][,1:2], lon.lat=lon.lat, mile=mile)
check=NULL
dta.out.tmp = do.call(rbind,
lapply(1:simulation, function(x){
true.pool=rnorm(n.row*n.col, mu_variety, sqrt(sigma_variety))
env.error=iso_spatial_floor(D.tmp.fix, cov.var=cov_fun, nugget=nugget, sill=sigma_env, ranges=ranges, mu=mu_floor)
do.call(rbind,
lapply(1:length(density.choice), function(y){
den.=density.choice[y]
general.design=sample(true.pool, round(n.row*n.col*(1-den.)))
p_rep.design=sample(true.pool, round(n.row*n.col*(1-(den.-p_rep_check)/2-p_rep_check)))
do.call(rbind,
lapply(density.layout, function(z){
print(paste(x,y,z))
den.ind=as.character(den.)
tmp.2=tmp.1[[z]][[den.ind]]
if(z=='p_rep'){
tmp.2$env.error=env.error; tmp.2$true.value=NA; tmp.2$entry='check'; tmp.2$p_rep=NA
p_rep.dta=taRifx::sort.data.frame(droplevels(subset(tmp.2, !check %in% c(0, 1))), f=~check)
p.true=sample(1:length(p_rep.design), round(n.row*n.col*(den.-p_rep_check)/2))
p_rep.dta$true.value=rep(p_rep.design[p.true], each=2)
if(length(p.true)!=0){
p_rep.dta$entry=paste0('entry.d', p_rep.dta$check-1)
p_rep.dta$p_rep=T
}
sig.dta=droplevels(subset(tmp.2, check %in% 0))
if(length(p.true)==0){sig.dta$true.value=p_rep.design}else{sig.dta$true.value=p_rep.design[-p.true]}
sig.dta$entry=paste0('entry.', 1:nrow(sig.dta))
sig.dta$p_rep=F
check.dta=droplevels(subset(tmp.2, check %in% 1))
check.dta$true.value=mu_check; check.dta$p_rep=F
out=data.frame(simulation=x, layout.=z, tot.den=den., den.check=p_rep_check, den.p_rep=den.-p_rep_check, taRifx::sort.data.frame(rbind(p_rep.dta, sig.dta, check.dta), f=~row.var+col.var))
out$response=with(out, true.value+env.error); return(out)
} else {
tmp.2$env.error=env.error
check.dta=droplevels(subset(tmp.2, check %in% 1))
check.dta$true.value=mu_check; check.dta$entry='check'; check.dta$p_rep=F
sig.dta=droplevels(subset(tmp.2, check %in% 0))
sig.dta$true.value=general.design
sig.dta$entry=paste0('entry.', 1:nrow(sig.dta)); sig.dta$p_rep=F
out=data.frame(simulation=x, layout.=z, tot.den=den., den.check=den., den.p_rep=0, taRifx::sort.data.frame(rbind(check.dta, sig.dta), f=~row.var+col.var))
out$response=with(out, true.value+env.error); return(out)
}
})
)
})
)
})
)
out=data.frame(grid.=paste0(n.row,'*',n.col), h2=h2, ranges=ranges, dta.out.tmp)
}
|
context("Element apply")
test_that("elementapply_byname works as expected", {
half <- function(x){
x/2
}
m <- matrix(c(1:4), nrow = 2, ncol = 2, dimnames = list(c("r1", "r2"), c("c1", "c2"))) %>%
setrowtype("row") %>% setcoltype("col")
expect_equal(elementapply_byname(FUN = half, a = m, row = "r1", col = "c1"),
matrix(c(0.5, 2, 3, 4), nrow = 2, ncol = 2, dimnames = list(c("r1", "r2"), c("c1", "c2"))) %>%
setrowtype("row") %>% setcoltype("col"))
expect_equal(elementapply_byname(FUN = half, a = m, row = "r2", col = "c1"),
matrix(c(1, 1, 3, 4), nrow = 2, ncol = 2, dimnames = list(c("r1", "r2"), c("c1", "c2"))) %>%
setrowtype("row") %>% setcoltype("col"))
expect_equal(elementapply_byname(FUN = half, a = m, row = "r1", col = "c2"),
matrix(c(1, 2, 1.5, 4), nrow = 2, ncol = 2, dimnames = list(c("r1", "r2"), c("c1", "c2"))) %>%
setrowtype("row") %>% setcoltype("col"))
expect_equal(elementapply_byname(FUN = half, a = m, row = "r2", col = "c2"),
matrix(c(1, 2, 3, 2), nrow = 2, ncol = 2, dimnames = list(c("r1", "r2"), c("c1", "c2"))) %>%
setrowtype("row") %>% setcoltype("col"))
expect_null(elementapply_byname(half, a = NULL, row = "r", col = "c"))
expect_error(elementapply_byname(half, a = m, row = "bogus", col = "c1"),
"subscript out of bounds")
expect_equal(elementapply_byname(half, a = m, row = 1, col = 1),
matrix(c(0.5, 2, 3, 4), nrow = 2, ncol = 2, dimnames = list(c("r1", "r2"), c("c1", "c2"))) %>%
setrowtype("row") %>% setcoltype("col"))
expect_equal(elementapply_byname(half, a = m, row = 1, col = "c2"),
matrix(c(1, 2, 1.5, 4), nrow = 2, ncol = 2, dimnames = list(c("r1", "r2"), c("c1", "c2"))) %>%
setrowtype("row") %>% setcoltype("col"))
divide <- function(x, divisor){
x/divisor
}
expect_equal(elementapply_byname(divide, a = m, row = 1, col = 1, .FUNdots = list(divisor = 2)),
matrix(c(0.5, 2, 3, 4), nrow = 2, ncol = 2, dimnames = list(c("r1", "r2"), c("c1", "c2"))) %>%
setrowtype("row") %>% setcoltype("col"))
expect_equal(elementapply_byname(divide, a = m, row = 1, col = 1, .FUNdots = list(divisor = 10)),
matrix(c(0.1, 2, 3, 4), nrow = 2, ncol = 2, dimnames = list(c("r1", "r2"), c("c1", "c2"))) %>%
setrowtype("row") %>% setcoltype("col"))
l <- list(m, m)
expected <- matrix(c(10, 2, 3, 4), nrow = 2, ncol = 2, dimnames = list(c("r1", "r2"), c("c1", "c2"))) %>%
setrowtype("row") %>% setcoltype("col")
expect_equal(elementapply_byname(divide, a = l, row = 1, col = 1, .FUNdots = list(divisor = 0.1)),
list(expected, expected))
})
context("Unary apply")
test_that("unaryapply_byname works as expected", {
productnames <- c("p1", "p2")
industrynames <- c("i1", "i2")
U <- matrix(1:4, ncol = 2, dimnames = list(productnames, industrynames)) %>%
setrowtype("Products") %>% setcoltype("Industries")
expect_equal(unaryapply_byname(FUN = `-`, a = U, rowcoltypes = "row"),
difference_byname(0, U) %>% setcoltype("Products"))
expect_equal(unaryapply_byname(FUN = `-`, a = U, rowcoltypes = "col"),
difference_byname(0, U) %>% setrowtype("Industries"))
expect_equal(unaryapply_byname(FUN = `-`, a = U, rowcoltypes = "all"), difference_byname(0, U))
})
context("Binary apply")
test_that("binaryapply_byname works as expected", {
expect_equal(binaryapply_byname(FUN = sum, a = list(1, 2, 3), b = list(4,5,6)),
list(5, 7, 9))
expect_error(binaryapply_byname(FUN = sum,
a = NULL, b = NULL,
match_type = "all", set_rowcoltypes = TRUE, .organize = FALSE),
"set_rowcoltypes == TRUE, but a and b and NULL. How can we set row and column types from NULL?")
})
context("Cumulative apply")
test_that("cumapply_byname works as expected", {
expect_equal(cumapply_byname(FUN = `sum`, a = list(1, 2, 3)), list(1, 3, 6))
expect_equal(cumapply_byname(FUN = `prod`, a = list(1, 2, 3)), list(1, 2, 6))
})
context("n-ary apply")
test_that("naryapply_byname works as expected", {
expect_equal(naryapply_byname(FUN = `-`, 42), -42)
expect_equal(naryapply_byname(FUN = `sum`, ... = list(1,2,3)), list(1,2,3))
expect_equal(naryapply_byname(FUN = sum_byname, 2, 3), 5)
expect_equal(naryapply_byname(FUN = sum_byname, 2, 3, 4, -4, -3, -2), 0)
expect_equal(naryapply_byname(FUN = `^`, list(1,2,3), .FUNdots = list(2)), list(1, 4, 9))
expect_false(matsbyname:::naryapplylogical_byname(FUN = iszero_byname, 42))
}) |
data.gen.bm <- function(x0=0, w0=0, time=seq(0, by=0.01, length.out = 101), do.plot=TRUE)
{
delta <- diff(time)[1]
n <- length(time)
W <- numeric(n)
t0 <- time[1]
W[1] <- w0
for(i in 2:n) W[i] <- W[i-1] + rnorm(1) * sqrt(delta)
x <- ts(W, start=t0, deltat = delta)
if (do.plot) {
title = paste("Brownian motion\n", "x0 = ", x0, "\u0394t = ", delta)
plot(x, xlab = "t", ylab = "x", main = title, type = "l")
}
return(x)
}
data.gen.gbm <- function(x0=10, w0=0, mu=1, sigma=0.5, time=seq(0, by=0.01, length.out = 101), do.plot=TRUE)
{
delta <- diff(time)[1]
n <- length(time)
W <- numeric(n)
t0 <- time[1]
W[1] <- w0
for(i in 2:n) W[i] <- W[i-1] + rnorm(1) * sqrt(delta)
S <- x0 * exp((mu-sigma^2/2)*(time-t0) + sigma*(W-W[1]))
x <- ts(S, start=t0, deltat = delta)
if (do.plot) {
title = paste("Geometric Brownian motion\n", "x0 = ", x0, "\u0394t = ", delta,
"\u03BC = ", mu, "\u03C3 = ", sigma)
plot(x, xlab = "t", ylab = "x", main = title, type = "l")
}
return(x)
}
data.gen.fbm <- function(hurst=0.95, time=seq(0, by=0.01, length.out=1000), do.plot=TRUE)
{
if(hurst<0|hurst>1) stop('Error: Hurst parameter must be between 0 and 1')
delta <- diff(time)[1]
n <- length(time)
r <- numeric(n+1)
r[1] <- 1
for(k in 1:n) r[k+1] <- 0.5 * ((k+1)^(2*hurst) - 2*k^(2*hurst) + (k-1)^(2*hurst))
r <- c(r, r[seq(length(r)-1, 2)])
lambda <- Re((fft(r)) / (2*n))
W <- fft(sqrt(lambda) * (rnorm(2*n) + rnorm(2*n)*1i))
W <- n^(-hurst) * cumsum(Re(W[1:n]))
W=(time[n]^hurst)*W
x <- ts(W, start=time[1], deltat = delta)
if (do.plot) {
title = paste("Fractional Brownian motion\n", "hurst = ", hurst, "\u0394t = ", delta)
plot(x, xlab = "t", ylab = "x", main = title, type = "l")
}
return(x)
} |
library(Thresher)
set.seed(98576)
savedSims <- list()
savedReap <- list()
nProtein <- 20
splinter <- sample((nProtein/2) + (-3:3), 1)
positive <- sample(nProtein, nProtein/2)
negative <- (1:nProtein)[!((1:nProtein) %in% positive)]
posi <- positive[positive <= splinter]
nega <- negative[negative <= splinter]
rho <- rnorm(1, 0.5, 0.1)
sigma1 <- matrix(rho, ncol=nProtein, nrow=nProtein)
diag(sigma1) <- 1
sigma2 <- sigma1
sigma2[(1+splinter):nProtein, 1:splinter] <- 0
sigma2[1:splinter, (1+splinter):nProtein] <- 0
sigma3 <- sigma1
sigma3[positive, negative] <- -sigma3[positive, negative]
sigma3[negative, positive] <- -sigma3[negative, positive]
sigma4 <- sigma2
sigma4[positive, negative] <- -sigma4[positive, negative]
sigma4[negative, positive] <- -sigma4[negative, positive]
sigma5 <- sigma2
sigma5[posi, nega] <- -sigma5[posi, nega]
sigma5[nega, posi] <- -sigma5[nega, posi]
nSample <- round(rnorm(1, 300, 60))
print(splinter)
print(rho)
rm(nega, negative, posi, positive, rho, splinter)
counter <- 0
for (nm in paste("sigma", 1:5, sep='')) {
ss <- matrix(0, nProtein+2, nProtein+2)
diag(ss) <- 1
ss[1:nProtein, 1:nProtein] <- get(nm)
counter <- counter+1
value <- SimThresher(ss, nSample,
paste(nm, counter, sep="."),
method='auer.gervini')
savedSims[[counter]] <- value
reaped <- Reaper(value, useLoadings=TRUE)
savedReap[[counter]] <- reaped
}
if (FALSE) {
for (i in 1:5)
makeFigures(savedSims[[i]])
for (i in 1:5)
makeFigures(savedReap[[i]])
}
sigma <- list(sigma1, sigma2, sigma3, sigma4, sigma5)
save(savedSims, savedReap, sigma, file = "../../data/savedSims.Rda") |
print.cladisticMatrix <- function(x, ...) {
if (!inherits(x = x, what = "cladisticMatrix")) stop("cladistic_matrix must be an object of class \"cladisticMatrix\".")
n_blocks <- length(x = x) - 1
n_taxa <- nrow(x = x$matrix_1$matrix)
block_sizes <- unname(obj = unlist(x = lapply(X = x[2:length(x)], FUN = function(x) ncol(x = x$matrix))))
n_characters <- sum(block_sizes)
data_types <- sort(x = tolower(x = unique(x = unname(obj = unlist(x = lapply(X = x[2:length(x = x)], FUN = function(x) x$datatype))))))
character_ordering <- unname(obj = unlist(x = lapply(X = x[2:length(x = x)], FUN = function(x) x$ordering)))
character_weights <- unname(obj = unlist(x = lapply(X = x[2:length(x = x)], FUN = function(x) x$character_weights)))
n_unordered_characters <- sum(character_ordering == "unord")
n_ordered_characters <- sum(character_ordering == "ord")
n_continuous_characters <- sum(character_ordering == "cont")
n_stepmatrix_characters <- length(x = grep(pattern = "step", x = character_ordering))
character_sizes <- nchar(x = c(n_unordered_characters, n_ordered_characters, n_continuous_characters, n_stepmatrix_characters))
character_spacings <- unlist(x = lapply(X = as.list(x = max(x = character_sizes) - character_sizes), function(x) paste(rep(x = " ", times = x), collapse = "")))
unique_non_continuous_weights <- unique(x = character_weights[character_ordering != "cont"])
if(length(x = block_sizes) == 1) block_parentheses <- ""
if(length(x = block_sizes) == 2) block_parentheses <- paste0(" (in 2 matrix blocks of ", paste0(block_sizes, collapse = " and "), " characters, respectively)")
if(length(x = block_sizes) > 2) block_parentheses <- paste0(" (in ", n_blocks, " matrix blocks of ", paste0(paste0(block_sizes[1:(length(x = block_sizes) - 1)], collapse = ", "), ", and ", block_sizes[length(x = block_sizes)]), " characters, respectively)")
if(length(x = data_types) == 1) data_type_lines <- data_types
if(length(x = data_types) == 2) data_type_lines <- paste0(paste0(data_types, collapse = " and "))
if(length(x = data_types) > 2) data_type_lines <- paste0(paste0(data_types[1:(length(x = data_types) - 1)], collapse = ", "), ", and ", data_types[length(x = data_types)])
if(length(x = unique_non_continuous_weights) == 1) weight_line <- paste0("All non-continuous characters are weighted ", unique_non_continuous_weights, ".\n")
if(length(x = unique_non_continuous_weights) > 1) weight_line <- paste0("Non-continuous characters have variable weights.\n")
cat(paste0("Cladistic matrix containing ", n_taxa, " taxa and ", n_characters, " ", data_type_lines, " type characters", block_parentheses, ", of which:\n",
paste0(" ", character_spacings[1], n_unordered_characters, " are unordered,\n"),
paste0(" ", character_spacings[2], n_ordered_characters, " are ordered,\n"),
paste0(" ", character_spacings[3], n_continuous_characters, " are continuous, and\n"),
paste0(" ", character_spacings[4], n_stepmatrix_characters, " are step-matrix characters\n"),
weight_line)
)
} |
create_ti_method_r <- function(
definition,
run_fun,
package_required = character(),
package_loaded = character(),
remotes_package = character(),
return_function = TRUE
) {
definition <- .method_load_definition(definition)
definition$run <- lst(
backend = "function",
run_fun,
package_required,
package_loaded,
remotes_package
)
.method_process_definition(definition = definition, return_function = return_function)
}
.method_execution_preproc_function <- function(method) {
run <- method$run
if (!is.null(run$package_loaded) && !any(is.na(run$package_loaded)) && length(run$package_loaded)) {
for (pack in run$package_loaded) {
suppressMessages(do.call(require, list(pack)))
}
}
if (!is.null(run$package_required) && !any(is.na(run$package_required)) && length(run$package_required)) {
for (pack in run$package_required) {
suppressMessages(do.call(requireNamespace, list(pack)))
}
}
}
.method_execution_execute_function <- function(method, inputs, priors, parameters, verbose, seed, preproc_meta) {
args <- c(
inputs,
lst(
priors,
parameters,
verbose,
seed
)
)
args <- args[intersect(names(args), names(formals(method$run$run_fun)))]
trajectory <- do.call(method$run$run_fun, args)
trajectory
}
.method_execution_postproc_function <- function(preproc_meta) {
}
generate_parameter_documentation <- function(definition) {
parameter_ids <-
names(definition$parameters$parameters)
map_chr(
parameter_ids,
function(parameter_id) {
parameter <- definition$parameters$parameters[[parameter_id]]
paste0("@param ", parameter$id, " ", dynparam::get_description(parameter, sep = ". "), ".")
}
)
} |
setConstructorS3("RspDirective", function(value=character(), ...) {
extend(RspConstruct(value, ...), "RspDirective")
})
setMethodS3("requireAttributes", "RspDirective", function(this, names, condition=c("all", "any"), ...) {
condition <- match.arg(condition)
attrs <- getAttributes(this)
ok <- is.element(names, names(attrs))
if (condition == "all") {
if (!all(ok)) {
throw(RspPreprocessingException(sprintf("One or more required attributes (%s) are missing", paste(sQuote(names[!ok]), collapse=", ")), item=this))
}
} else if (condition == "any") {
if (!any(ok)) {
throw(RspPreprocessingException(sprintf("At least one of the required attributes (%s) must be given", paste(sQuote(names[!ok]), collapse=", ")), item=this))
}
}
invisible(this)
}, protected=TRUE)
setMethodS3("getNameContentDefaultAttributes", "RspDirective", function(item, known=NULL, doc=NULL, ...) {
name <- getAttribute(item, "name")
content <- getAttribute(item, "content")
default <- getAttribute(item, "default")
file <- getAttribute(item, "file")
if (is.null(name) && is.null(content) && !is.null(file)) {
name <- "file"
content <- file
file <- NULL
}
if (is.null(name) && is.null(content)) {
attrs <- getAttributes(item)
names <- setdiff(names(attrs), c("file", "default", known))
if (length(names) == 0L) {
throw(RspPreprocessingException("At least one of attributes 'name' and 'content' must be given", item=item))
}
name <- names[1L]
content <- attrs[[name]]
if (length(content) > 1L) content <- paste(content, collapse="")
}
if (!is.null(file) && !is.null(doc)) {
path <- getPath(doc)
if (!is.null(path)) {
pathname <- file.path(getPath(doc), file)
} else {
pathname <- file
}
stop_if_not(!is.null(pathname))
content <- .readText(pathname)
}
stop_if_not(is.null(content) || length(content) == 1L)
if (!is.null(content) && (is.na(content) || content == "NA")) {
value <- default
} else {
value <- content
}
list(name=name, value=value, content=content, file=file, default=default)
}, protected=TRUE)
setMethodS3("asRspString", "RspDirective", function(object, ...) {
body <- unclass(object)
attrs <- getAttributes(object)
if (length(attrs) == 0L) {
attrs <- ""
} else {
attrs <- sprintf('%s="%s"', names(attrs), attrs)
attrs <- paste(c("", attrs), collapse=" ")
}
comment <- getComment(object)
if (length(comment) == 0L) {
comment <- ""
} else {
comment <- sprintf("
}
suffixSpecs <- attr(object, "suffixSpecs")
if (length(suffixSpecs) == 0L) {
suffixSpecs <- ""
}
fmtstr <- "@%s%s%s%s"
fmtstr <- paste(escFmtStr(.rspBracketOpen), fmtstr, escFmtStr(.rspBracketClose), sep="")
s <- sprintf(fmtstr, body, attrs, comment, suffixSpecs)
RspString(s)
})
setConstructorS3("RspUnparsedDirective", function(value="unparsed", ...) {
extend(RspDirective(value, ...), "RspUnparsedDirective")
})
setMethodS3("parseDirective", "RspUnparsedDirective", function(expr, ...) {
parseAttributes <- function(rspCode, known=mandatory, mandatory=NULL, ...) {
bfr <- rspCode
known <- unique(union(known, mandatory))
pos <- regexpr("^[ \t\n\r]+", bfr)
len <- attr(pos, "match.length")
bfr <- substring(bfr, first=len+1L)
attrs <- list()
if (nchar(bfr) > 0L) {
bfr <- paste(" ", bfr, sep="")
while (nchar(bfr) > 0L) {
pos <- regexpr("^[ \t\n\r]+", bfr)
if (pos == -1L) {
throw(Exception("Error when parsing attributes of RSP preprocessing directive. Expected white space: ", code=sQuote(rspCode)))
}
len <- attr(pos, "match.length")
bfr <- substring(bfr, first=len+1L)
if (nchar(bfr) == 0L) {
break
}
if (regexpr("^
comment <- gsub("^
attr(attrs, "comment") <- comment
break
}
pos <- regexpr("^[abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ_][abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0-9_]*", bfr)
if (pos == -1L) {
throw(Exception("Error when parsing attributes of RSP preprocessing directive. Expected an attribute name: ", code=sQuote(rspCode)))
}
len <- attr(pos, "match.length")
name <- substring(bfr, first=1L, last=len)
bfr <- substring(bfr, first=len+1L)
pos <- regexpr("^[ \t\n\r]*=[ \t\n\r]*", bfr)
if (pos == -1L) {
throw(Exception("Error when parsing attributes of RSP preprocessing directive. Expected an equal sign: ", code=sQuote(rspCode)))
}
len <- attr(pos, "match.length")
bfr <- substring(bfr, first=len+1L)
bfrR <- charToRaw(bfr)
lbracketR <- bfrR[1L]
lbracket <- rawToChar(lbracketR)
rbracket <- c("{"="}", "("=")", "["="]", "<"=">")[lbracket]
if (is.na(rbracket)) {
bfrR <- bfrR[-1L]
wbracket <- 1L
pos <- which(bfrR == lbracketR)
if (length(pos) == 0L) {
throw(Exception("Error when parsing attributes of RSP preprocessing directive. Expected an attribute value within quotation marks: ", code=sQuote(rspCode)))
}
if (pos[1L] == 1L) {
value <- ""
} else {
keep <- (bfrR[pos-1L] != charToRaw("\\"))
pos <- pos[keep]
if (length(pos) == 0L) {
throw(Exception("Error when parsing attributes of RSP preprocessing directive. Expected an attribute value within quotation marks: ", code=sQuote(rspCode)))
}
pos <- pos[1L]
bfrR <- bfrR[1:(pos-1)]
value <- rawToChar(bfrR)
}
brackets <- c(lbracket, lbracket)
bfr <- substring(bfr, first=pos+2L)
} else {
for (wbracket in seq_len(nchar(bfr))) {
ch <- substring(bfr, first=wbracket, last=wbracket)
if (ch != lbracket) {
wbracket <- wbracket - 1L
break
}
}
bfr <- substring(bfr, first=wbracket+1L)
rbracket <- c("{"="\\}", "("="\\)", "["="\\]", "<"=">",
"+"="\\+", "."="\\.", "?"="\\?", "|"="\\|")[lbracket]
if (is.na(rbracket)) rbracket <- lbracket
rbrackets <- paste(rep(rbracket, times=wbracket), collapse="")
pattern <- sprintf("^(.*?)([^\\]?)%s", rbrackets)
pos <- regexpr(pattern, bfr)
if (pos == -1L) {
throw(Exception("Error when parsing attributes of RSP preprocessing directive. Expected a attribute value within brackets: ", code=sQuote(rspCode)))
}
len <- attr(pos, "match.length")
value <- substring(bfr, first=1L, last=len-wbracket)
lbrackets <- paste(rep(lbracket, times=wbracket), collapse="")
rbrackets <- gsub("\\\\", "\\", rbrackets)
brackets <- c(lbrackets, rbrackets)
bfr <- substring(bfr, first=len+wbracket)
}
names(value) <- name
attrs <- c(attrs, value)
}
}
if (length(names(attrs)) != length(unique(names(attrs))))
throw(Exception("Duplicated attributes in RSP preprocessing directive.", code=sQuote(rspCode)))
if (!is.null(known)) {
nok <- which(is.na(match(names(attrs), known)))
if (length(nok) > 0L) {
nok <- paste("'", names(attrs)[nok], "'", collapse=", ", sep="")
throw(Exception("Unknown attribute(s) in RSP preprocessing directive: ", nok, code=sQuote(rspCode)))
}
}
if (!is.null(mandatory)) {
nok <- which(is.na(match(mandatory, names(attrs))))
if (length(nok) > 0L) {
nok <- paste("'", mandatory[nok], "'", collapse=", ", sep="")
throw(Exception("Missing attribute(s) in RSP preprocessing directive: ", nok, code=sQuote(rspCode)))
}
}
attrs
}
body <- expr
pattern <- "^[ ]*([abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ][abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0-9]*)([ \t\n\r]+(.*))*"
if (regexpr(pattern, body) == -1L) {
throw("Not an RSP preprocessing directive: ", body)
}
directive <- gsub(pattern, "\\1", body)
directive <- tolower(directive)
attrs <- gsub(pattern, "\\2", body)
attrs <- parseAttributes(attrs, known=NULL)
comment <- attr(attrs, "comment")
className <- sprintf("Rsp%sDirective", capitalize(directive))
clazz <- tryCatch({
ns <- getNamespace("R.rsp")
Class$forName(className, envir=ns)
}, error = function(ex) {
NULL
})
if (!is.null(clazz)) {
res <- newInstance(clazz, attrs=attrs, comment=comment)
} else {
res <- RspUnknownDirective(directive, attrs=attrs)
}
attr(res, "suffixSpecs") <- attr(expr, "suffixSpecs")
res
})
setMethodS3("asRspString", "RspUnparsedDirective", function(object, ...) {
body <- unclass(object)
suffixSpecs <- attr(object, "suffixSpecs")
fmtstr <- "@%s%s"
fmtstr <- paste(escFmtStr(.rspBracketOpen), fmtstr, escFmtStr(.rspBracketClose), sep="")
s <- sprintf(fmtstr, body, suffixSpecs)
RspString(s)
})
setConstructorS3("RspIncludeDirective", function(value="include", ...) {
this <- extend(RspDirective(value, ...), "RspIncludeDirective")
if (!missing(value)) {
requireAttributes(this, names=c("file", "text"), condition="any")
}
this
})
setMethodS3("getFile", "RspIncludeDirective", function(directive, ...) {
getAttribute(directive, "file")
})
setMethodS3("getContent", "RspIncludeDirective", function(directive, ...) {
getAttribute(directive, "content")
})
setMethodS3("getVerbatim", "RspIncludeDirective", function(directive, ...) {
res <- getAttribute(directive, "verbatim", default=FALSE)
res <- as.logical(res)
res <- isTRUE(res)
res
})
setMethodS3("getWrap", "RspIncludeDirective", function(directive, ...) {
res <- getAttribute(directive, "wrap")
if (!is.null(res)) {
res <- as.integer(res)
}
res
})
setConstructorS3("RspEvalDirective", function(value="eval", ...) {
this <- extend(RspDirective(value, ...), "RspEvalDirective")
if (!missing(value)) {
requireAttributes(this, names=c("file", "text"), condition="any")
lang <- getAttribute(this, default="R")
this <- setAttribute(this, "language", lang)
}
this
})
setMethodS3("getFile", "RspEvalDirective", function(directive, ...) {
getAttribute(directive, "file")
})
setMethodS3("getContent", "RspEvalDirective", function(directive, ...) {
getAttribute(directive, "content")
})
setConstructorS3("RspPageDirective", function(value="page", ...) {
extend(RspDirective(value, ...), "RspPageDirective")
})
setMethodS3("getType", "RspPageDirective", function(directive, default=NA, as=c("text", "IMT"), ...) {
as <- match.arg(as)
res <- getAttribute(directive, "type", default=as.character(default))
res <- tolower(res)
if (as == "IMT" && !is.na(res)) {
res <- parseInternetMediaType(res)
}
res
})
setConstructorS3("RspUnknownDirective", function(value="unknown", ...) {
extend(RspDirective(value, ...), "RspUnknownDirective")
})
setConstructorS3("RspErrorDirective", function(value="error", ...) {
extend(RspDirective(value, ...), "RspErrorDirective")
}) |
`print.strata` <-
function(x,...)
{
takenone <- if (is.null(x$args$takenone)) 0 else x$args$takenone
L <- x$args$Ls + takenone
rh <- x$args$rh
ph <- c(x$args$model.control$ptakenone,x$args$model.control$ph,x$args$model.control$pcertain)
cat("Given arguments:\n")
cat("x = "); print(x$call$x)
if (!is.null(x$args$nclass)) cat("nclass = ",x$args$nclass,", ",sep="")
if (!is.null(x$args$CV)) cat("CV = ",x$args$CV,", ",sep="")
if (!is.null(x$args$n)) cat("n = ",x$args$n,", ",sep="")
cat("Ls = ",x$args$Ls,sep="")
if (!is.null(x$args$takenone)) cat(", takenone = ",x$args$takenone,sep="")
if (!is.null(x$args$bias.penalty)) { if (x$args$takenone==1) cat(", bias.penalty = ",x$args$bias.penalty,sep="")}
if (!is.null(x$args$takeall)) cat(", takeall = ",x$args$takeall,sep="")
cat("\nallocation: q1 = ",x$args$alloc$q1,", q2 = ",x$args$alloc$q2,", q3 = ",x$args$alloc$q3,sep="")
if (!is.null(x$args$model)) {
cat("\nmodel = ",x$args$model,sep="")
nparam <- length(x$args$model.control)
if (nparam>0) {
cat(": ")
for (i in 1:nparam) {
cat(names(x$args$model.control)[i],"=",x$args$model.control[[i]],sep=" ")
if (i<nparam) cat(", ")
}
}
}
if (!is.null(x$args$algo)) {
cat("\n")
cat("algo = ", x$args$algo, ": ", sep = "")
for (i in 1:length(x$args$algo.control)) {
if (i %in% c(5,9)) cat("\n ")
cat(names(x$args$algo.control)[i]," = ",x$args$algo.control[[i]],sep="")
if (i<length(x$args$algo.control)) cat(", ")
}
}
tableau <- data.frame(x$meanh,x$varh,x$Nh,x$nh,ifelse(x$Nh==0,NA,x$nh/x$Nh))
colnames(tableau) <- c("E(Y)","Var(Y)","Nh","nh","fh")
if(!is.null(x$args$certain))
tableau <- rbind(tableau,c(x$certain.info["meanc"],NA,x$certain.info["Nc"],x$certain.info["Nc"],1))
tableau <- rbind(tableau,c(NA,NA,round(sum(tableau$Nh)),round(x$n),x$n/sum(tableau$Nh)))
rownames(tableau)<-if(!is.null(x$args$certain)) c(paste("stratum",1:L),"","Total") else c(paste("stratum",1:L),"Total")
if (grepl("strata.bh", deparse(x$call[[1]]))) {
tableau<-cbind("bh"=c(x$args$bh,max(x$args$x)+1,rep(NA,nrow(tableau)-L)),
"|"=c(rep("|",nrow(tableau)-1),NA),
tableau)
} else if (identical(as.character(x$call[[1]]),"strata.cumrootf")||identical(as.character(x$call[[1]]),"strata.geo")) {
tableau<-cbind("|"=c(rep("|",nrow(tableau)-1),NA),
"bh"=c(x$bh,max(x$args$x)+1,rep(NA,nrow(tableau)-L)),
tableau)
} else {
tableau<-cbind("|"=c(rep("|",nrow(tableau)-1),NA),
"bh"=c(x$bh,max(x$args$x)+1,rep(NA,nrow(tableau)-L)),
tableau)
if(is.numeric(x$args$initbh))
tableau <- cbind("initbh" = c(x$args$initbh, max(x$args$x)+1, rep(NA,nrow(tableau)-L)), tableau)
}
rh.tab <- if(is.null(x$args$certain)) c(rh,NA) else c(rh,1,NA)
if(takenone>0) rh.tab <- c(rep(NA, length(takenone)), rh.tab)
tableau <- cbind("rh" = rh.tab,tableau)
if (identical(x$args$model,"loglinear")) tableau<-cbind("ph"=c(ph,NA),tableau)
type <- c(rep("take-none", takenone), rep("take-some", x$args$Ls - x$takeall), rep("take-all", x$takeall))
tableau <- cbind("|" = c(rep("|", nrow(tableau) - 1), NA),
"type" = if(is.null(x$args$certain)) c(type, NA) else c(type, "certain", NA),
tableau)
tableau[,unlist(lapply(tableau,is.numeric))]<-round(tableau[,unlist(lapply(tableau,is.numeric))],2)
tableauc <- format(tableau)
substr2last <- function(x) substr(x, nchar(x) -1 , nchar(x))
for (i in 1:(nrow(tableauc)-1))
tableauc[i,] <- ifelse(substr2last(tableauc[i,]) %in% c("NA", "aN"), "-", tableauc[i,])
tableauc[dim(tableauc)[1],] <- ifelse(substr2last(tableauc[dim(tableauc)[1],]) == "NA", "",
ifelse(substr2last(tableauc[dim(tableauc)[1],]) == "aN", "-", tableauc[dim(tableauc)[1],]))
cat("\n\nStrata information:\n")
print(tableauc,na.print="")
cat("\nTotal sample size:",x$n,"\n")
cat("Anticipated population mean:",x$mean,"\n")
sortie <- if (is.null(x$args$takenone)) 1 else { if(0==x$args$takenone) 2 else 3 }
if (sortie%in%c(1,2)) {
cat("Anticipated CV:",ifelse(1==sortie,x$CV,x$RRMSE),"\n")
if (2==sortie) cat("Note: CV=RRMSE (Relative Root Mean Squared Error) because takenone=0.\n")
} else {
est<-cbind(x$relativebias,x$propbiasMSE,x$RRMSE,x$args$CV)
dimnames(est) <- if(length(est)==4) list(" ",c("relative bias","prop bias MSE","RRMSE","target RRMSE"))
else list(" ",c("relative bias","prop bias MSE","RRMSE"))
cat("\nAnticipated moments of the estimator:\n")
print.default(est, print.gap = 2, quote = FALSE, right=TRUE)
}
if (!is.null(x$converge) && !is.na(x$converge)) { if (!x$converge) cat("\nWarning : the algorithm did not converge.\n") }
}
`plot.strata` <-
function(x,logscale=FALSE,drop=0,main=paste("Graphical Representation of the Stratified Design",xname),xlab,...)
{
L <- x$args$L
ncert <- if (is.null(x$args$certain)) 0 else 1
if (!((length(drop)==1)&&isTRUE((drop%%1)==0)&&(isTRUE(drop>=0)||isTRUE(drop<x$Nh[L]))))
stop("'drop' must be an integer between 0 and 'Nh[L]'-1 inclusively")
data <- if(is.null(x$args$certain)) sort(x$args$x) else sort(x$args$x[-x$args$certain])
data <- data[1:(length(data)-drop)]
if(logscale) data <- log(data)
bh <- if (identical(as.character(x$call[[1]]),"strata.bh")) x$args$bh else x$bh
bhfull <- if(logscale) c(min(data),log(bh),max(data)+1) else c(min(data),bh,max(data)+1)
if (missing(xlab)) xlab <- if(logscale) "Stratification variable X on the log scale" else "Stratification variable X"
xname <- paste(deparse(substitute(x), 500), collapse = "\n")
if (L<10)
{
layout(matrix(c(2,1),2,1),heights=c(1,4))
par(mar=c(5.1, 4.1, 0.1, 4.1))
hist(data,breaks="FD",col=rgb(0.5,0.7,1),border=rgb(0.3,0.5,1),freq=FALSE,main="",xlab=xlab,xlim=c(bhfull[1],bhfull[L+1]))
for (i in 2:L) abline(v=bhfull[i],lty=1)
par(mar=c(1, 4.1, 3.6, 4.1))
plot(x=c(bhfull[1],bhfull[L+1]),y=rep(2,2),xlim=c(bhfull[1],bhfull[L+1]),ylim=c(1,3),
type="l",xaxt="n",yaxt="n",xlab="",ylab="")
abline(h=2)
space <- bhfull[-1]-bhfull[-(L+1)]
lcert <- (bhfull[L+1]-bhfull[1])/10
off <- (bhfull[L+1]-bhfull[1])*0.04
if (!is.null(x$args$certain)) space <- c(space[-L],space[L]-lcert,lcert)
if (any(space<(bhfull[L+1]-bhfull[1])/15)) {
space <- rep(bhfull[L+1]-bhfull[1]+off*2,L+ncert)/(L+ncert)
space[1] <- space[1] - off
space[length(space)] <- space[length(space)] - off
}
abline(v=bhfull[1]+cumsum(space)[-length(space)],lty=1)
pos <- bhfull[1]+c(0,cumsum(space)[-length(space)])+space/2
pos[1] <- pos[1] - off/2
pos[length(pos)] <- pos[length(pos)] + off/2
text(x=pos,y=rep(2.5,length(space)),labels=as.character(c(x$Nh,x$certain.info["Nc"]))[1:(L+ncert)])
text(x=pos,y=rep(1.5,length(space)),labels=as.character(c(x$nh,x$certain.info["Nc"]))[1:(L+ncert)])
mtext(c("Nh","nh"),at=c(2.5,1.5),line=1,side=2,las=1,font=2)
mtext(c(sum(x$Nh),sum(x$nh))+x$certain.info["Nc"],at=c(2.5,1.5),line=1,side=4,las=1,font=2)
mtext(c(1:L,"certain")[1:(L+ncert)],at=pos,line=0,side=3,las=1,font=2)
mtext(main,side=3,las=1,font=2,line=2,cex=1.2)
par(mar=c(5.1, 4.1, 4.1, 2.1))
layout(matrix(1,1,1))
} else {
par(mar=c(5.1, 4.1, 4.1, 2.1))
hist(data,breaks="FD",col=rgb(0.5,0.7,1),border=rgb(0.3,0.5,1),freq=FALSE,main=main,xlab=xlab,xlim=c(bhfull[1],bhfull[L+1]))
for (i in 2:L) abline(v=bhfull[i],lty=1)
}
} |
test_that("msplot works", {
multiv_data <- c(-1.00699287, -0.53823436, -0.55879513, -0.18606117, -0.52050693,
0.46096140, -0.32240037, -0.46775918, -0.38068162, 0.02840495,
-0.16316400, 0.18996883, -0.25430960, -0.06389951, -0.46119745,
-0.30353525, -1.21554894, -1.22182643, -0.63857941, -0.84320227,
-0.77277610, -0.88696090, -0.80527829, -0.33013994, -0.25724301,
0.86073945, -0.75379286, -0.81968759, -0.57461555, -1.02516021)
multiv_data <- array(multiv_data, dim = c(5, 3, 2))
univ_data <- multiv_data[,,1]
ms_multiv <- msplot(dts = multiv_data, n_projections = 7, seed = 20,
plot = T, return_mvdir = TRUE)
ms_univ <- msplot(dts = univ_data, n_projections = 7, seed = 20,
plot = T,return_mvdir = TRUE, show_legend = F,
plot_title = "msplot", title_cex = 2.5)
expect_equal(ms_univ$mean_outlyingness, c(-3.914187996322071, 0.799832282094095,
-0.656101785795584, 3.985668697844344,
0.061413333960102))
expect_equal(ms_multiv$var_outlyingness, c(283.159734194725274, 6.614769686570630, 0.222222222222222,
17.322766085413605, 13.382474792869186))
}) |
gmm_1 <- list(alpha = c(0.4, 0.6),
mu = matrix(c(0, 2, 4, 1, 3, 5), 3,
dimnames = list(c("A", "B", "C"), NULL)),
sigma = list(matrix(c(1, 1, 1, 1, 2, 2, 1, 2, 3), 3,
dimnames = list(c("A", "B", "C"),
c("A", "B", "C"))),
matrix(c(2, 3, 1, 3, 5, 2, 1, 2, 4), 3,
dimnames = list(c("A", "B", "C"),
c("A", "B", "C")))))
class(gmm_1) <- "gmm"
gmm_2 <- list(alpha = 1,
mu = matrix(0, 2, dimnames = list(c("A", "B"), NULL)),
sigma = list(matrix(1, 2, 2,
dimnames = list(c("A", "B"), c("A", "B")))))
class(gmm_2) <- "gmm"
test_that("conditionalize a gmm object", {
expect_equal(conditional(gmm_1, "C"),
list(alpha = c(0.4, 0.6),
mu_x = matrix(c(0, 2, 1, 3), 2,
dimnames = list(c("A", "B"), NULL)),
sigma_x = list(matrix(c(1, 1, 1, 2), 2,
dimnames = list(c("A", "B"),
c("A", "B"))),
matrix(c(2, 3, 3, 5), 2,
dimnames = list(c("A", "B"),
c("A", "B")))),
coeff = list(matrix(c(2, 0, 1),
dimnames = list(c("(Intercept)", "A",
"B"),
"C")),
matrix(c(3, - 1, 1),
dimnames = list(c("(Intercept)", "A",
"B"),
"C"))),
sigma_c = list(matrix(1, dimnames = list("C", "C")),
matrix(3, dimnames = list("C", "C")))))
})
test_that("conditionalize a gmm object with unordered dependent variables", {
expect_equal(conditional(gmm_1, c("C", "B")),
list(alpha = c(0.4, 0.6),
mu_x = matrix(c(0, 1), 1, dimnames = list("A", NULL)),
sigma_x = list(matrix(1, dimnames = list("A", "A")),
matrix(2, dimnames = list("A", "A"))),
coeff = list(matrix(c(2, 1, 4, 1), 2,
dimnames = list(c("(Intercept)", "A"),
c("B", "C"))),
matrix(c(1.5, 1.5, 4.5, 0.5), 2,
dimnames = list(c("(Intercept)", "A"),
c("B", "C")))),
sigma_c = list(matrix(c(1, 1, 1, 2), 2,
dimnames = list(c("B", "C"),
c("B", "C"))),
matrix(c(0.5, 0.5, 0.5, 3.5), 2,
dimnames = list(c("B", "C"),
c("B", "C"))))))
})
test_that("conditionalize a gmm object with duplicated dependent variables", {
expect_equal(conditional(gmm_1, c("C", "C")),
list(alpha = c(0.4, 0.6),
mu_x = matrix(c(0, 2, 1, 3), 2,
dimnames = list(c("A", "B"), NULL)),
sigma_x = list(matrix(c(1, 1, 1, 2), 2,
dimnames = list(c("A", "B"),
c("A", "B"))),
matrix(c(2, 3, 3, 5), 2,
dimnames = list(c("A", "B"),
c("A", "B")))),
coeff = list(matrix(c(2, 0, 1),
dimnames = list(c("(Intercept)", "A",
"B"),
"C")),
matrix(c(3, - 1, 1),
dimnames = list(c("(Intercept)", "A",
"B"),
"C"))),
sigma_c = list(matrix(1, dimnames = list("C", "C")),
matrix(3, dimnames = list("C", "C")))))
})
test_that("conditionalize a gmm object with no explanatory variable", {
expect_equal(conditional(gmm_1, c("A", "B", "C")),
list(alpha = c(0.4, 0.6),
mu_x = matrix(numeric(), ncol = 2,
dimnames = list(character(), NULL)),
sigma_x = list(matrix(numeric(), 0, 0,
dimnames = list(character(),
character())),
matrix(numeric(), 0, 0,
dimnames = list(character(),
character()))),
coeff = list(matrix(c(0, 2, 4), 1,
dimnames = list("(Intercept)",
c("A", "B", "C"))),
matrix(c(1, 3, 5), 1,
dimnames = list("(Intercept)",
c("A", "B", "C")))),
sigma_c = list(matrix(c(1, 1, 1, 1, 2, 2, 1, 2, 3), 3,
dimnames = list(c("A", "B", "C"),
c("A", "B", "C"))),
matrix(c(2, 3, 1, 3, 5, 2, 1, 2, 4), 3,
dimnames = list(c("A", "B", "C"),
c("A", "B", "C"))))))
})
test_that("conditionalize a gmm object with non-positive definite covariance matrices", {
expect_equal(conditional(gmm_2, "B"),
list(alpha = 1, mu_x = matrix(0, dimnames = list("A", NULL)),
sigma_x = list(matrix(1, dimnames = list("A", "A"))),
coeff = list(matrix(c(0, 1),
dimnames = list(c("(Intercept)", "A"),
"B"))),
sigma_c = list(matrix(2.225074e-308,
dimnames = list("B", "B")))),
tolerance = 0.01)
}) |
PivotCalculationGroups <- R6::R6Class("PivotCalculationGroups",
public = list(
initialize = function(parentPivot) {
if(parentPivot$argumentCheckMode > 0) {
checkArgument(parentPivot$argumentCheckMode, FALSE, "PivotCalculationGroups", "initialize", parentPivot, missing(parentPivot), allowMissing=FALSE, allowNull=FALSE, allowedClasses="PivotTable")
}
private$p_parentPivot <- parentPivot
if(private$p_parentPivot$traceEnabled==TRUE) private$p_parentPivot$trace("PivotCalculationGroups$new", "Creating new Pivot Calculation Groups...")
private$p_groups <- list()
if(private$p_parentPivot$traceEnabled==TRUE) private$p_parentPivot$trace("PivotCalculationGroups$new", "Created new Pivot Calculation Groups.")
},
isExistingCalculationGroup = function(calculationGroupName=NULL) {
if(private$p_parentPivot$argumentCheckMode > 0) {
checkArgument(private$p_parentPivot$argumentCheckMode, FALSE, "PivotCalculationGroups", "isExistingCalculationGroup", calculationGroupName, missing(calculationGroupName), allowMissing=FALSE, allowNull=FALSE, allowedClasses="character")
}
if(private$p_parentPivot$traceEnabled==TRUE) private$p_parentPivot$trace("PivotCalculationGroups$isExistingCalculationGroup", "Checking calculation group exists...",
list(calculationGroupName=calculationGroupName))
calcGroupExists <- calculationGroupName %in% names(private$p_groups)
if(private$p_parentPivot$traceEnabled==TRUE) private$p_parentPivot$trace("PivotCalculationGroups$isExistingCalculationGroup", "Checked calculation group exists.")
return(invisible(calcGroupExists))
},
item = function(index) {
if(private$p_parentPivot$argumentCheckMode > 0) {
checkArgument(private$p_parentPivot$argumentCheckMode, FALSE, "PivotCalculationGroups", "item", index, missing(index), allowMissing=FALSE, allowNull=FALSE, allowedClasses=c("integer", "numeric"))
}
if(private$p_parentPivot$traceEnabled==TRUE) private$p_parentPivot$trace("PivotCalculationGroups$item", "Getting calculation group...")
if(index<1) {
stop(paste0("PivotCalculationGroups$index(): index must be greater than 0."), call. = FALSE)
}
if(index>length(private$p_groups)) {
stop(paste0("PivotCalculationGroups$index(): index must be less than or equal to ", length(private$p_groups), "."), call. = FALSE)
}
if(private$p_parentPivot$traceEnabled==TRUE) private$p_parentPivot$trace("PivotCalculationGroups$item", "Got calculation group....")
return(invisible(private$p_groups[[index]]))
},
getCalculationGroup = function(calculationGroupName=NULL) {
if(private$p_parentPivot$argumentCheckMode > 0) {
checkArgument(private$p_parentPivot$argumentCheckMode, FALSE, "PivotCalculationGroups", "getCalculationGroup", calculationGroupName, missing(calculationGroupName), allowMissing=FALSE, allowNull=FALSE, allowedClasses="character")
}
if(private$p_parentPivot$traceEnabled==TRUE) private$p_parentPivot$trace("PivotCalculationGroups$getCalculationGroup", "Getting calculation group...",
list(calculationGroupName=calculationGroupName))
calculationGroup <- private$p_groups[[calculationGroupName]]
if(is.null(calculationGroup)) {
stop(paste0("PivotCalculationGroups$getCalculationGroup(): No calculation group exists with the name '",
calculationGroupName, "'"), call. = FALSE)
}
if(private$p_parentPivot$traceEnabled==TRUE) private$p_parentPivot$trace("PivotCalculationGroups$getCalculationGroup", "Got calculation group.")
return(invisible(calculationGroup))
},
addCalculationGroup = function(calculationGroupName=NULL) {
if(private$p_parentPivot$argumentCheckMode > 0) {
checkArgument(private$p_parentPivot$argumentCheckMode, FALSE, "PivotCalculationGroups", "addCalculationGroup", calculationGroupName, missing(calculationGroupName), allowMissing=FALSE, allowNull=FALSE, allowedClasses="character")
}
if(private$p_parentPivot$traceEnabled==TRUE) private$p_parentPivot$trace("PivotCalculationGroups$addCalculationGroup", "Adding calculation group...",
list(calculationGroupName=calculationGroupName))
if(calculationGroupName %in% names(private$p_groups)) {
stop(paste0("PivotCalculationGroups$addCalculationGroup(): A calculation group already exists",
" in the Pivot Table with the name '", calculationGroupName, "'. calculationGroupName must unique."), call. = FALSE)
}
calculationGroup <- PivotCalculationGroup$new(private$p_parentPivot, calculationGroupName)
private$p_groups[[calculationGroupName]] <- calculationGroup
if(is.null(private$p_defaultGroup)) private$p_defaultGroup <- calculationGroup
if(private$p_parentPivot$traceEnabled==TRUE) private$p_parentPivot$trace("PivotCalculationGroups$addCalculationGroup", "Added calculation group.")
return(invisible(calculationGroup))
},
asList = function() {
lst <- list()
if(length(private$p_groups) > 0) {
groupNames <- names(private$p_groups)
for (i in 1:length(private$p_groups)) {
groupName <- groupNames[i]
lst[[groupName]] = private$p_groups[[groupName]]$asList()
}
}
return(invisible(lst))
},
asJSON = function() {
if (!requireNamespace("jsonlite", quietly = TRUE)) {
stop("The jsonlite package is needed to convert to JSON. Please install the jsonlite package.", call. = FALSE)
}
jsonliteversion <- utils::packageDescription("jsonlite")$Version
if(numeric_version(jsonliteversion) < numeric_version("1.1")) {
stop("Version 1.1 or above of the jsonlite package is needed to convert to JSON. Please install an updated version of the jsonlite package.", call. = FALSE)
}
return(jsonlite::toJSON(self$asList()))
},
asString = function(seperator=", ") {
if(private$p_parentPivot$argumentCheckMode > 0) {
checkArgument(private$p_parentPivot$argumentCheckMode, FALSE, "PivotCalculationGroups", "asString", seperator, missing(seperator), allowMissing=TRUE, allowNull=FALSE, allowedClasses="character")
}
cstr <- ""
if(length(private$p_groups)>0) {
for(i in 1:length(private$p_groups)) {
cg <- private$p_groups[[i]]
sep <- ""
if(i > 1) { sep <- seperator }
cstr <- paste0(cstr, sep, cg$asString())
}
}
return(cstr)
}
),
active = list(
count = function(value) { return(invisible(length(private$p_groups))) },
groups = function(value) { return(invisible(private$p_groups)) },
defaultGroup = function(value) { return(invisible(private$p_defaultGroup)) }
),
private = list(
p_parentPivot = NULL,
p_groups = NULL,
p_defaultGroup = NULL
)
) |
Tkp <-
function(TranMat,k,p){
k <- as.numeric(k)
if (class(p)=="initProbObject"){
p <- as.vector(p$init_prob)
} else {
p <- as.vector(p)
}
if(spam::is.spam(T)){
TkpOut <- p
for (i in 1:k){
TkpOut <- TranMat%*%TkpOut
}
} else {
TranMat <- as.matrix(TranMat)
TkpOut <- p
for (i in 1:k){
TkpOut <- TranMat%*%TkpOut
}
}
return(TkpOut)
} |
search_quotes <- function(search, fuzzy=FALSE,
fields = c("topic", "subtopic", "text", "source"),
...) {
data <- .get.sq()
if(missing(search))
stop("No search parameters entered.", call.=FALSE)
merged <- data.frame(data[,fields], check.names = FALSE)
cols <- colnames(merged)
if (length(cols) > 1) merged <- do.call(paste, merged[,cols])
if(fuzzy) OK <- agrep(tolower(search), tolower(merged), ...)
else OK <- which(str_detect(merged, search))
if (length(OK)) data <- data[OK,]
else stop("The search parameters \'", search, "\' did not match any items.")
class(data) <- c("statquote", 'data.frame')
return(data)
} |
parallelML <- function(MLCall, MLPackage,
samplingSize = 0.2,
numberCores = detectCores(),
underSample = FALSE, underSampleTarget = NULL,
sampleMethod = "bagging") UseMethod("parallelML")
parallelML.default <- function(MLCall, MLPackage,
samplingSize = 0.2,
numberCores = detectCores(),
underSample = FALSE, underSampleTarget = NULL,
sampleMethod = "bagging"){
arguments <- getArgs(MLCall)
toPredict <- as.character(arguments$formula[2])
if ("" %in% names(arguments)){
stop("One of the items in your function call was not named:
every item must be like formula = yourFormula")
} else if (!("data" %in% names(arguments))){
stop("You did not provide an argument data in MLCall")
} else if (!("formula" %in% names(arguments))){
stop("You did not provide an argument formula in MLCall")
} else {
registerCores(numberCores)
fcall <- getCall(MLCall)
data <- fcall$data
fcall$formula <- eval(fcall$formula)
call <- gsub(' ','',deparse(fcall))
call <- gsub('M.formula','M',call)
trainSamples <- trainSample(eval(data),numberCores,samplingSize,
underSample, toPredict, underSampleTarget,sampleMethod)
function_call <- list()
for (i in 1:numberCores){
function_call[[i]] <- fcall
function_call[[i]]$data <- trainSamples[[i]]
}
parallelModel <- foreach(i = 1:numberCores) %dopar% {
library(MLPackage,character.only=TRUE)
eval(function_call[[i]], parent.frame())
}
class(parallelModel) <- "parallelML"
attr(parallelModel,"call") <- call
attr(parallelModel,"samp") <- samplingSize
return(parallelModel)
}
} |
context("Nod")
library(polite) |
context("clust.SimpleKMeans")
skip_if_not_installed("RWeka")
skip_on_cran()
test_that("autotest", {
learner = mlr3::lrn("clust.SimpleKMeans")
expect_learner(learner)
result = run_autotest(learner)
expect_true(result, info = result$error)
})
test_that("Learner properties are respected", {
task = tsk("usarrests")
learner = mlr_learners$get("clust.SimpleKMeans")
expect_learner(learner, task)
parset_list = list(
list(N = 3, init = 2L, periodic_pruning = 1L),
list(V = TRUE, M = TRUE, O = TRUE),
list(num_slots = 2L, init = 2L, min_density = 1L)
)
for (i in seq_along(parset_list)) {
parset = parset_list[[i]]
learner$param_set$values = parset
p = learner$train(task)$predict(task)
expect_prediction_clust(p)
if ("complete" %in% learner$properties) {
expect_prediction_complete(p, learner$predict_type)
}
if ("exclusive" %in% learner$properties) {
expect_prediction_exclusive(p, learner$predict_type)
}
}
}) |
elasticity <- function(beta, binwidth, zstar, t0, t1, notch = FALSE, e_parametric = FALSE,
e_parametric_lb = 1e-04, e_parametric_ub = 3) {
Dz <- beta*binwidth
Dz_over_zstar <- Dz/zstar
dt <- t1 - t0
if(notch == FALSE) {
if(e_parametric) {
e <- -log(1+Dz_over_zstar)/log(1-(dt/(1-t0)))
} else {
e <- Dz_over_zstar/(dt/(1-t0))
}
} else {
e <- (1/(2+Dz_over_zstar))*(Dz_over_zstar**2)/(dt/(1-t0))
if(e_parametric) {
f = file()
sink(file = f)
estimate <- tryCatch({
suppressWarnings(BB::BBoptim(0.01, notch_equation,
t0 = t0, t1 = t1, zstar = zstar, dzstar = Dz,
lower = e_parametric_lb, upper = e_parametric_ub))
},
error=function(error_message) {
return(error_message)
})
sink()
close(f)
warning_message <- "The elasticity estimate based on the parametric version for notches has no solution, returning the reduced-form estimate."
if(!"convergence" %in% names(estimate)) {
warning(warning_message)
} else {
if(estimate$convergence != 0) {
warning(warning_message)
} else {
e <- estimate$par
if(abs(e-e_parametric_ub) < 1e-05) {
warning("The elasticity estimate based on the parametric version for notches hit the upper bound of possible solution values. \n Interpet with caution! \n Consider setting e_parametric = FALSE, or increase e_parametric_ub.")
}
if(abs(e-e_parametric_lb) < 1e-05) {
warning("The elasticity estimate based on the parametric version for notches hit the lower bound of possible solution values. \n Interpet with caution! \n Consider setting e_parametric = FALSE, or decrease e_parametric_lb.")
}
}
}
}
}
return(e)
} |
summary.Fract.Poly <- function(object, ..., Object){
if (missing(Object)){Object <- object}
x <- Object
if (is.null(Object$Results.M1)==FALSE){
cat("Best fitting model for m=1: \n")
print(Object$Results.M1[order(Object$Results.M1[,2]),][1:1,])
}
if (is.null(Object$Results.M2)==FALSE){
cat("\nBest fitting model for m=2: \n")
print(Object$Results.M2[order(Object$Results.M2[,3]),][1:1,])
}
if (is.null(Object$Results.M3)==FALSE){
cat("\nBest fitting model for m=3: \n")
print(Object$Results.M3[order(Object$Results.M3[,4]),][1:1,])
}
if (is.null(Object$Results.M4)==FALSE){
cat("\nBest fitting model for m=4: \n")
print(Object$Results.M4[order(Object$Results.M4[,5]),][1:1,])
}
if (is.null(Object$Results.M5)==FALSE){
cat("\nBest fitting model for m=5: \n")
print(Object$Results.M5[order(Object$Results.M5[,6]),][1:1,])
}
} |
omegasCFA <- function(
data,
n.factors,
model = "balanced",
model.type = "higher-order",
interval = .95,
missing = "pairwise",
fit.measures = FALSE) {
listwise <- FALSE
pairwise <- FALSE
complete_cases <- nrow(data)
if (any(is.na(data))) {
if (missing == "listwise") {
pos <- which(is.na(data), arr.ind = TRUE)[, 1]
data <- data[-pos, ]
ncomp <- nrow(data)
complete_cases <- ncomp
listwise <- TRUE
} else {
pairwise <- TRUE
}
}
data <- scale(data, scale = FALSE)
sum_res <- omegasCFAMultiOut(data, n.factors, interval, pairwise, model, model.type, fit.measures)
sum_res$complete_cases <- complete_cases
sum_res$call <- match.call()
sum_res$k <- ncol(data)
sum_res$n.factors <- n.factors
sum_res$pairwise <- pairwise
sum_res$listwise <- listwise
sum_res$interval <- interval
class(sum_res) <- "omegasCFA"
return(sum_res)
} |
compare_graphs <- function(graph1,
graph2,
titles = NULL,
position = c("vertical", "horizontal"),
n_nodes = 5,
n_weights = 5,
edge_width_range = c(0.2,2),
edge_alpha_range = c(0.4, 1),
node_size_range = c(1,10),
unique_legend = TRUE) {
if (is.null(graph1$igraph) || is.null(graph1$net) || is.null(graph1$deg) ||
is.null(graph2$igraph) || is.null(graph2$net) || is.null(graph2$deg)) {
stop("Can only compare graphs generated by foodingraph")
}
position <- match.arg(position)
graph1_degrees <- degree(graph1$igraph)
graph2_degrees <- degree(graph2$igraph)
range_degrees1 <- c(min(graph1_degrees), max(graph1_degrees))
range_degrees2 <- c(min(graph2_degrees), max(graph2_degrees))
range_degrees <- c(min(range_degrees1, range_degrees2),
max(range_degrees1, range_degrees2))
breaks_degrees <- extended(range_degrees[1], range_degrees[2], n_nodes)
breaks_degrees <- unique(round(breaks_degrees))
graph1_edges <- E(graph1$igraph)
graph2_edges <- E(graph2$igraph)
range_weights1 <- c(min(graph1_edges$weight), max(graph1_edges$weight))
range_weights2 <- c(min(graph2_edges$weight), max(graph2_edges$weight))
range_weights <- c(min(range_weights1, range_weights2),
max(range_weights1, range_weights2))
breaks_weights <- extended(range_weights[1], range_weights[2], n_weights)
graph1$net <- suppressMessages(
graph1$net +
scale_edge_alpha_continuous(name = "Edge weight",
range = edge_alpha_range,
breaks = breaks_weights,
limits = range_weights) +
scale_edge_width_continuous(name = "Edge weight",
range = edge_width_range,
breaks = breaks_weights,
limits = range_weights) +
scale_size_continuous(name = "Node degrees",
range = node_size_range,
breaks = breaks_degrees,
limits = range_degrees)
)
graph2$net <- suppressMessages(
graph2$net +
scale_edge_alpha_continuous(name = "Edge weight",
range = edge_alpha_range,
breaks = breaks_weights,
limits = range_weights) +
scale_edge_width_continuous(name = "Edge weight",
range = edge_width_range,
breaks = breaks_weights,
limits = range_weights) +
scale_size_continuous(name = "Node degrees",
range = node_size_range,
breaks = breaks_degrees,
limits = range_degrees)
)
if (unique_legend == TRUE && position == "vertical") {
final_graph <- plot_grid(
graph1$net + theme(legend.position = "none"),
graph2$net + theme(legend.position = "none"),
NULL,
ncol = 1,
axis = "lr",
rel_heights = c(1, 1, 0.3),
labels = c(titles[1], "", titles[2])
)
legend_plot <- get_legend(
graph1$net +
theme(
legend.position = "bottom",
legend.direction = "vertical"
) +
guides(fill = guide_legend(
nrow = 5,
order = 1,
override.aes = list(size = 5))
)
)
final_graph <- final_graph + draw_grob(legend_plot, 0, 0, 1, .3/2.3)
} else if (unique_legend == TRUE && position == "horizontal") {
final_graph <- plot_grid(
graph1$net + theme(legend.position = "none"),
NULL,
graph2$net + theme(legend.position = "none"),
ncol = 3,
nrow = 1,
axis = "tb",
rel_widths = c(1, 0.3, 1),
labels = c(titles[1], "", titles[2])
)
legend_plot <- get_legend(graph1$net)
final_graph <- final_graph + draw_grob(legend_plot, 1/2.3, 0, .3/2.3, 1)
} else {
final_graph <- plot_grid(
graph1$net,
graph2$net,
labels = titles,
ncol = ifelse(position == "vertical", 1, 2),
nrow = ifelse(position == "vertical", 2, 1),
align = ifelse(position == "vertical", "v", "h"),
axis = "bl"
)
}
class_pos <- ifelse(position == "vertical", "foodingraph_vertical",
"foodingraph_horizontal")
class(final_graph) <- c(class(final_graph), class_pos)
final_graph
} |
cat("\nReactive submit, reset and missed colorAsFactor")
driver %>% getEl('
submitBtn <- wait_for("
test_that('treatColorAsFactor hides correct',
expect_true(is.null(driver %>% getEl('
caratColorOpt <- driver %>% getSelectOptions('color') %>%
Filter(function(x) text(x) == 'carat', .)
if (length(caratColorOpt) != 1)
stop_externals('Impossible') else caratColorOpt[[1]] %>% click()
test_that('treatColorAsFactor appears correct',
expect_true(!is.null(wait_for('
driver %>% getEl('
driver %>% getEl('
test_that('Unreactive submit works correct',
expect_true(driver %>% has_shiny_correct_state(
pastePlus('^unreactive', 'colorFactors', shorten=F), NULL, NULL,
shortShotName=F)))
driver %>% getEl('
test_that('Submit button grays correct', {
expect_true(!is.null(wait_for('
driver %>% getEl('
expect_true(!is.null(wait_for('
})
driver %>% getEl('
test_that('Reset works correct', {
expect_true(wait_for({
text(driver %>% getEl('
catchStale=T, timeout = 20))
expect_true(wait_for({ is.null(driver %>% getEl('
expect_true(!is.null(wait_for('
expect_true(has_shiny_correct_state(driver, '^reset', NULL, NULL, shortShotName=F))
}) |
context("lama_translate_all")
dict = new_lama_dictionary(
a = c(a = "A", b = "B", c = "X", d = "D", e = "X", f = "F"),
x = c(x = "X", y = NA, "NA_" = NA, z = "Z"),
u = c(u = NA, v = "V", w = NA, "NA_" = "NAnew"),
xx = c(x = "X", y = NA, "NA_" = NA, z = "Z")
)
df <- data.frame(
a = factor(
c("c", "d", "d", "a", "a", "f", NA, "e"),
levels = c("f", "e", "X1", "d", "c", "a", "X2")
),
a_labeled = c("X", "D", "D", "A", "A", "F", NA, "X"),
x = factor(
c("y", "y", NA, "x", "x", "y", "y", "x"),
levels = c("X1", "y", "X2", "x", "X3")
),
x_labeled = c(NA, NA, NA, "X", "X", NA, NA, "X"),
u = c("u", "v", NA, "v", "u", "v", "u", "v"),
u_labeled = c(NA, "V", "NAnew", "V", NA, "V", NA, "V"),
stringsAsFactors = FALSE
)
test_that("'lama_translate_all' works", {
df_new <- lama_translate_all(
df,
dict,
prefix = "new_",
suffix = "_new",
fn_colname = toupper,
keep_order = TRUE
)
expect_s3_class(df_new, "data.frame")
expect_column_names(
df_new,
c(
"a", "a_labeled", "x", "x_labeled", "u", "u_labeled",
"new_A_new", "new_X_new", "new_U_new"
)
)
expect_factor_levels(df_new$new_A_new, c("F", "X", "D", "A", "B"))
expect_factor_levels(df_new$new_X_new, c("X", "Z"))
expect_factor_levels(df_new$new_U_new, c("V", "NAnew"))
expect_identical(as.character(df_new$new_A_new), df_new$a_labeled)
expect_identical(as.character(df_new$new_X_new), df_new$x_labeled)
expect_identical(as.character(df_new$new_U_new), df_new$u_labeled)
})
test_that("'lama_translate_all' throws the right errors", {
expect_error(
lama_translate_all(df, df),
paste(
"The argument 'dictionary' must be a lama_dictionary class object."
)
)
expect_error(
lama_translate_all(df, dict, prefix = NA_character_),
paste(
"The argument 'prefix' must be a character string."
)
)
expect_error(
lama_translate_all(df, dict, prefix = c("x", "y")),
paste(
"The argument 'prefix' must be a character string."
)
)
expect_error(
lama_translate_all(df, dict, prefix = "_"),
paste(
"The argument 'prefix' must be a valid object name prefix."
)
)
expect_error(
lama_translate_all(df, dict, suffix = NA_character_),
paste(
"The argument 'suffix' must be a character string."
)
)
expect_error(
lama_translate_all(df, dict, suffix = c("x", "y")),
paste(
"The argument 'suffix' must be a character string."
)
)
expect_error(
lama_translate_all(df, dict, suffix = " "),
paste(
"The argument 'suffix' must be a valid object name suffix."
)
)
expect_error(
lama_translate_all(df, dict, keep_order = NA),
paste(
"The argument 'keep_order' must be a logical."
)
)
expect_error(
lama_translate_all(df, dict, fn_colname = 3),
paste(
"The argument 'fn_colname' must be a function taking a character string and",
"returning a character string."
)
)
expect_error(
lama_translate_all(df, dict, fn_colname = function(x) 4),
paste(
"The function given in argument 'fn_colname' does not produce valid",
"column names: It must take character strings and return character",
"strings."
)
)
expect_error(
lama_translate_all(df, dict, fn_colname = function(x) ifelse(x == "x", NA, toupper(x))),
paste(
"The function given in argument 'fn_colname' does not produce valid",
"column names: It must take character strings and return character",
"strings."
)
)
expect_error(
lama_translate_all(df, dict, fn_colname = function(x) sprintf("%s ", x)),
paste(
"The function given in argument 'fn_colname' does not produce valid",
"column names: The following produced column names are",
"invalid: 'a ', 'x ', 'u '."
)
)
}) |
ti_error <- dynwrap::create_ti_method_r(
dynwrap::definition(
method = dynwrap::def_method(id = "error"),
wrapper = dynwrap::def_wrapper(input_required = "counts")
),
run_fun = function(
counts,
seed = NA,
verbose = FALSE
) {
stop("This control method always errors.")
}
) |
MC_OMNI_logistic <- function(num_sims, cor_mat, obs_omni, null_model, factor_matrix) {
fitted_values <- null_model$fitted.values
skat_dmat <- model.matrix(null_model)
num_sub <- length(fitted_values)
results <- rep(NA, num_sims)
for (i in 1:num_sims) {
sim_Y <- rbinom(n=num_sub, size=1, prob=fitted_values)
skat_obj <- SKAT_Null_Model(sim_Y ~ skat_dmat - 1, out_type='D', Adjustment=FALSE)
boot_null_mod <- glm(sim_Y ~ skat_dmat - 1, family=binomial())
new_Z <- score_stats_only(null_model=boot_null_mod, factor_matrix=factor_matrix,
link_function='logit')
GBJ_p <- GBJ(test_stats=new_Z, cor_mat=cor_mat)$GBJ_pvalue
GHC_p <- GHC(test_stats=new_Z, cor_mat=cor_mat)$GHC_pvalue
minP_p <- minP(test_stats=new_Z, cor_mat=cor_mat)$minP_pvalue
skat_p <- SKAT(Z=factor_matrix, obj=skat_obj)$p.value
results[i] <- min(GBJ_p, GHC_p, minP_p, skat_p)
if (i%%100 == 0) {cat(i, ' done\n')}
}
return( length(which(results <= obs_omni))/num_sims )
}
MC_OMNI_linear <- function(num_sims, null_model, cor_mat, factor_matrix, obs_omni) {
fitted_values <- null_model$fitted.values
skat_dmat <- model.matrix(null_model)
num_sub <- length(fitted_values)
results <- rep(NA, num_sims)
for (i in 1:num_sims) {
sim_Y <- rnorm(n=num_sub, mean=fitted_values)
skat_obj <- SKAT_Null_Model(sim_Y ~ skat_dmat - 1, out_type='C', Adjustment=FALSE)
boot_null_mod <- glm(sim_Y ~ skat_dmat - 1)
new_Z <- score_stats_only(null_model=boot_null_mod, factor_matrix=factor_matrix,
link_function='linear')
GBJ_p <- GBJ(test_stats=new_Z, cor_mat=cor_mat)$GBJ_pvalue
GHC_p <- GHC(test_stats=new_Z, cor_mat=cor_mat)$GHC_pvalue
minP_p <- minP(test_stats=new_Z, cor_mat=cor_mat)$minP_pvalue
skat_p <- SKAT(Z=factor_matrix, obj=skat_obj)$p.value
results[i] <- min(GBJ_p, GHC_p, minP_p, skat_p)
if (i%%100 == 0) {cat(i, ' done\n')}
}
return( length(which(results <= obs_omni))/num_sims )
}
MC_OMNI_ss <- function(num_sims, cor_mat, obs_omni) {
diag(cor_mat) <- 1
results <- rep(NA, num_sims)
for (i in 1:num_sims) {
new_Z <- mvtnorm::rmvnorm(n=1, sigma=cor_mat)
GBJ_p <- GBJ(test_stats=new_Z, cor_mat=cor_mat)$GBJ_pvalue
GHC_p <- GHC(test_stats=new_Z, cor_mat=cor_mat)$GHC_pvalue
minP_p <- minP(test_stats=new_Z, cor_mat=cor_mat)$minP_pvalue
results[i] <- min(GBJ_p, GHC_p, minP_p)
if (i%%100 == 0) {cat(i, ' done\n')}
}
return( length(which(results <= obs_omni))/num_sims )
}
test_that("OMNI p-value correct for logistic regression case", {
skip_on_cran()
set.seed(1)
G_cor <- matrix(data=0.3, nrow=5, ncol=5)
diag(G_cor) <- 1
num_sub <- 1000
G_mat <- bindata::rmvbin(n=num_sub, margprob=rep(0.3, 5), bincorr=G_cor)
X1 <- rnorm(num_sub)
X2 <- rnorm(num_sub)
mu <- rje::expit(-1 + 0.1 * X1 + 0.2 * X2)
outcome <- rbinom(n=num_sub, size=1, prob=mu)
null_mod <- glm(outcome ~ X1 + X2, family=binomial())
score_stats_output <- calc_score_stats(null_model=null_mod, factor_matrix=G_mat, link_function='logit')
test_stats <- score_stats_output$test_stats
cor_mat <- score_stats_output$cor_mat
omni_output <- OMNI_individual(null_model=null_mod, factor_matrix=G_mat,
link_function='logit', num_boots=40)
obs_omni <- omni_output$OMNI
analytic_p <- omni_output$OMNI_pvalue
sim_p <- MC_OMNI_logistic(num_sims=100, cor_mat=cor_mat, obs_omni=obs_omni, null_model=null_mod,
factor_matrix=G_mat)
expect_equal(analytic_p, sim_p, tolerance = 0.02)
})
test_that("OMNI p-value correct for linear regression case", {
skip_on_cran()
set.seed(10)
G_cor <- matrix(data=0.3, nrow=5, ncol=5)
diag(G_cor) <- 1
num_sub <- 550
cprob <- bincorr2commonprob(margprob=rep(0.3, 5), bincorr=G_cor)
sigma_struct <- commonprob2sigma(commonprob=cprob)
G_mat <- bindata::rmvbin(n=num_sub, margprob=rep(0.3, 5), sigma=sigma_struct)
X1 <- rnorm(num_sub)
X2 <- rnorm(num_sub)
mu <- 0.1 * X1 + 0.2 * X2
outcome <- rnorm(n=num_sub, mean=mu)
null_mod <- glm(outcome ~ X1 + X2)
omni_output <- OMNI_individual(null_model=null_mod, factor_matrix=G_mat,
link_function='linear', num_boots=100)
obs_omni <- omni_output$OMNI
analytic_p <- omni_output$OMNI_pvalue
sim_p <- MC_OMNI_linear(num_sims=500, null_model=null_mod, cor_mat=cor_mat, factor_matrix=G_mat,
obs_omni=obs_omni)
expect_equal(analytic_p, sim_p, tolerance = 0.02)
})
test_that("OMNI p-value correct for summary statistics case", {
skip_on_cran()
set.seed(0)
cor_mat <- matrix(data=0.3, nrow=5, ncol=5)
diag(cor_mat) <- 1
test_stats <- as.numeric(rmvnorm(n=1, sigma=cor_mat))
omni_output <- OMNI_ss(test_stats=test_stats, cor_mat=cor_mat, num_boots=100)
obs_omni <- omni_output$OMNI
analytic_p <- omni_output$OMNI_pvalue
sim_p <- MC_OMNI_ss(num_sims=1000, cor_mat=cor_mat, obs_omni=obs_omni)
expect_equal(analytic_p, sim_p, tolerance = 0.05)
}) |
thr_image <- function (dn, intercept, slope) {
stopifnot(length(intercept) == 1)
stopifnot(class(intercept) == "numeric")
stopifnot(length(slope) == 1)
stopifnot(class(slope) == "numeric")
dn <- dn * 255
if (.get_max(dn) > 255) warning("\"dn\" values should be normalized")
dn[dn > 255] <- 255
thr <- intercept + slope * dn
thr[thr < 0] <- 0
thr / 255
} |
print.ContObservHMM <-
function(x, ...)
{
cat("\nThe number of Baum-Welch iterations: ")
cat((nrow(x$Parameters))-1)
cat("\nThe parameters accumulated so far: \n")
par<-round(x$Parameters, 2)
print(par)
cat("\nThe results accumulated so far: \n")
res1<-(x$Results[-(nrow(x$Parameters)),3])
res2<-(x$Results[-(nrow(x$Parameters)),4])
res3<-(x$Results[-(nrow(x$Parameters)),5])
res<-cbind(res1, res2, res3)
colnames(res)<-c("P", "AIC", "SBIC")
print(res)
yesno<-ifelse(((x$Viterbi[1,1]) == 0), "not yet ", "already ")
cat("\nThe Viterbi algorithm was ")
cat(yesno)
cat("executed\n\n")
} |
descr <- function(X, Ndistinct = TRUE, higher = TRUE, table = TRUE,
Qprobs = c(0.01, 0.05, 0.25, 0.5, 0.75, 0.95, 0.99), cols = NULL,
label.attr = 'label', ...) {
nam <- l1orlst(as.character(substitute(X)))
armat <- function(x, y) c(x[1L], Ndist = y, x[-1L])
natrm <- function(x) if(is.na(names(x)[length(x)])) x[-length(x)] else x
dotsok <- if(!missing(...)) names(substitute(c(...))[-1L]) %!in% c('pid','g') else TRUE
numstats <- if(Ndistinct && dotsok) function(x, ...) armat(qsu.default(x, higher = higher, ...), fndistinctCpp(x)) else function(x, ...) qsu.default(x, higher = higher, ...)
descrnum <- if(is.numeric(Qprobs)) function(x, ...) list(Class = class(x), Label = attr(x, label.attr), Stats = numstats(x, ...),
Quant = quantile(na_rm(x), probs = Qprobs)) else
function(x, ...) list(Class = class(x), Label = attr(x, label.attr), Stats = numstats(x, ...))
descrcat <- function(x, tab = table) if(tab) list(Class = class(x), Label = attr(x, label.attr),
Stats = if(Ndistinct) c(N = fnobsC(x), Ndist = fndistinctCpp(x)) else `names<-`(fnobsC(x), 'Nobs'),
Table = natrm(fnobs.default(x, x))) else
list(Class = class(x), Label = attr(x, label.attr),
Stats = if(Ndistinct) c(N = fnobsC(x), Ndist = fndistinctCpp(x)) else `names<-`(fnobsC(x), 'Nobs'))
descrdate <- function(x) list(Class = class(x), Label = attr(x, label.attr),
Stats = c(if(Ndistinct) c(N = fnobsC(x), Ndist = fndistinctCpp(x)) else `names<-`(fnobsC(x), 'Nobs'),
`names<-`(range(x, na.rm = TRUE), c("Min", "Max"))))
if(is.list(X)) {
is_sf <- inherits(X, "sf")
class(X) <- NULL
if(is_sf) X[[attr(X, "sf_column")]] <- NULL
} else X <- unclass(qDF(X))
if(length(cols)) X <- X[cols2int(cols, X, names(X), FALSE)]
res <- vector('list', length(X))
num <- .Call(C_vtypes, X, 1L)
res[num] <- lapply(X[num], descrnum, ...)
if(!all(num)) {
date <- vapply(unattrib(X), is_date, TRUE)
if(any(date)) {
res[date] <- lapply(X[date], descrdate)
cat <- !(num | date)
} else cat <- !num
res[cat] <- lapply(X[cat], descrcat)
}
attributes(res) <- list(names = names(X), name = nam, N = length(X[[1L]]),
arstat = !dotsok, table = table, class = "descr")
res
}
print.descr <- function(x, n = 7, perc = TRUE, digits = 2, t.table = TRUE, summary = TRUE, ...) {
w <- paste(rep("-", .Options$width), collapse = "")
nam <- names(x)
arstat <- attr(x, "arstat")
cb <- function(...) if(t.table) cbind(...) else formatC(rbind(...), drop0trailing = TRUE)
ct <- function(z) if(t.table) cbind(Freq = z) else z
cat('Dataset: ', attr(x,"name"),', ',length(x), ' Variables, N = ', attr(x, "N"), "\n", sep = "")
cat(w, "\n", sep = "")
for(i in seq_along(x)) {
xi <- x[[i]]
namxi <- names(xi)
cat(nam[i]," (",strclp(xi[[1L]]),"): ",xi[[2L]], "\n", sep = "")
cat(namxi[3L], ": \n", sep = "")
print.qsu(xi[[3L]], digits)
if(length(xi) > 3L) {
if(arstat) cat("\n")
cat(namxi[4L], ": \n", sep = "")
if(namxi[4L] == "Table") {
t <- unclass(xi[[4L]])
if(length(t) <= 2*n) {
if(perc) print.default(cb(Freq = t, Perc = round(t/bsum(t)*100, digits)), right = TRUE, print.gap = 2, quote = FALSE) else
print.table(ct(t))
} else {
lt <- length(t)
t1 <- t[seq_len(n)]
t2 <- t[seq(lt-n, lt)]
if(perc) {
st <- bsum(t)
print.default(cb(Freq = t1, Perc = round(t1/st*100, digits)), right = TRUE, print.gap = 2, quote = FALSE)
cat(" ---\n")
print.default(cb(Freq = t2, Perc = round(t2/st*100, digits)), right = TRUE, print.gap = 2, quote = FALSE)
} else {
print.table(ct(t1))
cat(" ---\n")
print.table(ct(t2))
}
if(summary) {
cat("\nSummary of Table: \n")
print.summaryDefault(summary.default(t), digits)
}
}
} else print.qsu(xi[[4L]], digits)
}
cat(w, "\n", sep = "")
}
invisible(x)
}
as.data.frame.descr <- function(x, ...) {
if(attr(x, "arstat")) stop("Cannot handle arrays of statistics!")
if(attr(x, "table")) {
r <- lapply(x, function(z) c(list(Class = strclp(z[[1L]]), Label = null2NA(z[[2L]])),
unlist(`names<-`(lapply(z[names(z) != "Table"][-(1:2)], as.vector, "list"), NULL), recursive = FALSE)))
} else {
r <- lapply(x, function(z) c(list(Class = strclp(z[[1L]]), Label = null2NA(z[[2L]])),
unlist(`names<-`(lapply(z[-(1:2)], as.vector, "list"), NULL), recursive = FALSE)))
}
r <- .Call(C_rbindlist, r, TRUE, TRUE, "Variable")
if(allNA(r[["Label"]])) r[["Label"]] <- NULL
attr(r, "row.names") <- .set_row_names(length(r[[1L]]))
class(r) <- "data.frame"
r
} |
library(testthat)
library(XML)
library(rgeos)
process_testxml = function(xmlfile, n, total, descSkip) {
funcTranslate=list( "getboundary" = list(func=gBoundary,res=readWKT,arg1=readWKT),
"getCentroid" = list(func=gCentroid,res=readWKT,arg1=readWKT),
"convexhull" = list(func=gConvexHull,res=readWKT,arg1=readWKT),
"getInteriorPoint" = list(func=gPointOnSurface,res=readWKT,arg1=readWKT),
"isSimple" = list(func=gIsSimple,res=as.logical,arg1=readWKT),
"isValid" = list(func=gIsValid,res=as.logical,arg1=readWKT),
"isWithinDistance" = list(func=gWithinDistance,res=as.logical,arg1=readWKT,arg2=readWKT,arg3=as.numeric),
"intersects" = list(func=gIntersects,res=as.logical,arg1=readWKT,arg2=readWKT),
"contains" = list(func=gContains,res=as.logical,arg1=readWKT,arg2=readWKT),
"within" = list(func=gWithin,res=as.logical,arg1=readWKT,arg2=readWKT),
"intersection" = list(func=gIntersection,res=readWKT,arg1=readWKT,arg2=readWKT),
"union" = list(func=gUnion,res=readWKT,arg1=readWKT,arg2=readWKT),
"difference" = list(func=gDifference,res=readWKT,arg1=readWKT,arg2=readWKT),
"symdifference" = list(func=gSymdifference,res=readWKT,arg1=readWKT,arg2=readWKT),
"relate" = list(func=gRelate,res=as.logical,arg1=readWKT,arg2=readWKT,arg3=as.character),
"covers" = list(func=gCovers,res=as.logical,arg1=readWKT,arg2=readWKT),
"coveredBy" = list(func=gCoveredBy,res=as.logical,arg1=readWKT,arg2=readWKT))
context(paste('(',n,'/',total,')',basename(xmlfile)))
x = xmlRoot(xmlTreeParse(readLines(xmlfile),ignoreBlanks=TRUE))
nodes = xmlSApply(x,xmlName)
test_that("valid node types",{
validNodeTypes = c("precisionModel","case","comment")
expect_that( all(nodes %in% validNodeTypes), is_true() )
})
pmAttrs = xmlAttrs( x[[ which(nodes == "precisionModel")[1] ]] )
test_that("precisionModel attribute tests", {
expect_that( length(pmAttrs) == 1 | length(pmAttrs) == 3, is_true() )
if (length(pmAttrs) == 1) {
type = pmAttrs[["type"]]
} else if (length(pmAttrs) == 3) {
setScale(as.numeric( pmAttrs[["scale"]] ))
expect_that( pmAttrs[["offsetx"]], equals("0.0") )
expect_that( pmAttrs[["offsety"]], equals("0.0") )
}
})
for ( i in which(nodes == "case") ) {
caseNodes = xmlSApply(x[[i]],xmlName)
whichDesc = which(caseNodes == "desc")
whichTests = which(caseNodes == "test")
desc = xmlValue( x[[i]][[ whichDesc[1] ]] )
if (desc %in% descSkip)
next
whichArgs = which(caseNodes != "desc" & caseNodes != "test")
args = rep( NA,length(whichArgs) )
for ( j in whichArgs) {
if (is.null( xmlAttrs(x[[i]][[j]]) )) {
args[[ xmlName(x[[i]][[j]]) ]] = xmlValue(x[[i]][[j]])
} else {
file = xmlAttrs(x[[i]][[j]])[["file"]]
args[[ xmlName(x[[i]][[j]]) ]] = paste( readLines(file), collapse="" )
}
}
names(args) = tolower(names(args))
for ( j in whichTests ) {
test_that(paste(desc,'- test nodes in proper format') , {
expect_that( xmlSize( x[[i]][[j]] ), equals(1) )
expect_that( xmlName( x[[i]][[j]][[1]] ), equals("op") )
})
if ( xmlSize( x[[i]][[j]] ) == 1 & xmlName( x[[i]][[j]][[1]] ) == "op" ) {
opAttrs = xmlAttrs( x[[i]][[j]][[1]] )
opReturn = xmlValue( x[[i]][[j]][[1]] )
opNArgs = length(opAttrs)-1
if ( 'pattern' %in% names(opAttrs) )
opNArgs = opNArgs-1
opName = opAttrs[['name']]
test_that(paste(desc,'-',opName), {
funcdetails = funcTranslate[[opName]]
expect_that( is.null(funcdetails), is_false() )
if ( !is.null(funcdetails) ) {
funcNArgs = length( funcdetails )-2
expect_that(funcNArgs==opNArgs, is_true())
funcArgs = list()
for (k in 1:funcNArgs) {
argName = paste("arg",k,sep='')
argVal = tolower(opAttrs[[argName]])
if (argVal %in% names(args))
argVal = args[[ argVal ]]
funcArgs[k] = funcdetails[[argName]](argVal)
}
funcReturn = do.call(funcdetails[["func"]], funcArgs)
expectedReturn = funcdetails[["res"]](opReturn)
if (is.logical(funcReturn)) {
expect_that(funcReturn == expectedReturn, is_true())
} else if (is.null(funcReturn)) {
expect_that(is.null(funcReturn) & is.null(expectedReturn), is_true())
} else if (gIsEmpty(expectedReturn)) {
expect_that(identical(funcReturn,expectedReturn), is_true())
} else {
expect_that(gEquals(funcReturn,expectedReturn),is_true())
}
}
})
}
}
}
} |
GRAY1 <- "
GRAY2 <- "
GRAY3 <- "
GRAY4 <- "
GRAY5 <- "
GRAY6 <- "
GRAY7 <- "
GRAY8 <- "
GRAY9 <- "
BLUE1 <- "
BLUE2 <- "
BLUE3 <- "
BLUE4 <- "
BLUE5 <- "
BLUE6 <- "
RED1 <- "
RED2 <- "
RED3 <- "
GREEN1 <- "
GREEN2 <- "
GREEN3 <- "
GREEN4 <- "
GREEN5 <- "
ORANGE1 <- "
ORANGE2 <- "
theme_swd <- function() {
theme_minimal(base_size = 8, base_family = "Helvetica") +
theme(
panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
axis.line = element_line(size = .1, color = GRAY9),
axis.text = element_text(color = GRAY7),
axis.ticks.x = element_line(size = 0.5, color = GRAY9),
axis.ticks.y = element_line(size = 0.5, color = GRAY9),
axis.title = element_text(color = GRAY3),
axis.title.y = element_text(hjust = 1, margin = margin(0, 6, 0, 15, "pt")),
axis.title.x = element_text(hjust = 0, margin = margin(6, 0, 15, 0, "pt")),
plot.subtitle = element_text(color = GRAY4, size= 8),
plot.title = element_text(color = GRAY4, size= 12),
plot.title.position = "plot",
plot.caption = element_text(hjust = 0, color = GRAY6),
plot.caption.position = "plot",
plot.margin = margin(.5,.5,.5,.5,"cm"),
strip.text = element_text(color = GRAY7))
} |
test_that("estimate_spatial works", {
rmvn <- function(n, mu = 0, V = matrix(1)){
p <- length(mu)
if(any(is.na(match(dim(V),p))))
stop("Dimension not right!")
D <- chol(V)
t(matrix(rnorm(n*p), ncol=p)%*%D + rep(mu,rep(n,p)))
}
set.seed(5)
n <- 200
coords <- cbind(runif(n,0,1), runif(n,0,1))
set.seed(2)
x <- as.matrix(runif(n),n,1)
sigma.sq = 10
phi = 1
tau.sq = 0.1
D <- as.matrix(dist(coords))
R <- exp(-phi*D)
w <- rmvn(1, rep(0,n), sigma.sq*R)
y <- rnorm(n, 10*sin(pi * x) + w, sqrt(tau.sq))
set.seed(1)
est_known <- RFGLS_estimate_spatial(coords, y, x, ntree = 10, cov.model = "exponential",
nthsize = 20, sigma.sq = sigma.sq, tau.sq = tau.sq,
phi = phi)
expect_true(is.matrix(est_known$predicted_matrix))
expect_equal(dim(est_known$predicted_matrix), c(200,10))
expect_length(est_known$predicted, 200)
set.seed(1)
est_known_parallel <- RFGLS_estimate_spatial(coords, y, x, ntree = 10, cov.model = "exponential",
nthsize = 20, sigma.sq = sigma.sq, tau.sq = tau.sq,
phi = phi, h = 2)
expect_equal(est_known_parallel$P_matrix, est_known$P_matrix)
}) |
.performCV_core_new_new <- function(cv_data ,
r = 10^c(-5 , -4 , -3 , -2 , - 1) ,
s = 10^c(-1 , 0 , 1 , 2 , 3) ,
stop_cond = 10^-6 ,
print_out = FALSE ,
cv_deg_thresh = c(1,10) ,
normal_start_f = TRUE ,
weight_f = 0 ,
...) {
oopts <- options(scipen = 999)
on.exit(options(oopts))
result_1 <- .one_cycle(cv_data, r, s,
estimated_fitness_start = NULL,
estimated_PA_start = NULL,
alpha_start = NULL,
stop_cond,print_out,cv_deg_thresh,normal_start_f,weight_f);
s <- c(0.5, 0.75, 1, 1.5, 2) * result_1$s_optimal;
s <- s[s <= 10^4]
s <- s[s >= 10^-2]
r <- c(0.5, 0.75, 1, 1.5, 2) * result_1$r_optimal;
r <- r[r >= 10^-5]
r <- r[r <= 10^1]
estimated_PA <- result_1$estimated_PA;
estimated_fitness <- result_1$estimated_fitness;
estimated_alpha <- result_1$alpha_optimal;
result_2 <- .one_cycle(cv_data,r,s,estimated_fitness_start = estimated_fitness,
estimated_PA_start = estimated_PA, alpha_start = estimated_alpha,
stop_cond, print_out, cv_deg_thresh,
normal_start_f, weight_f);
s <- c(1/1.75 , 1/1.5 , 1/1.25 ,1, 1.25 , 1.5 , 1.75) * result_2$s_optimal;
s <- s[s <= 10^4]
s <- s[s >= 10^-2]
r <- c(1/1.75 , 1/1.5 , 1/1.25 ,1, 1.25 , 1.5 , 1.75) * result_2$r_optimal;
r <- r[r >= 10^-5]
r <- r[r <= 10^1]
estimated_PA <- result_2$estimated_PA;
estimated_fitness <- result_2$estimated_fitness;
estimated_alpha <- result_2$alpha_optimal;
result_2_5 <- .one_cycle(cv_data,r,s,
estimated_fitness_start = estimated_fitness,
estimated_PA_start = estimated_PA, alpha_start = estimated_alpha,
stop_cond, print_out, cv_deg_thresh,
normal_start_f, weight_f);
s <- c(1/1.75 , 1/1.5 , 1/1.25 ,1, 1.25 , 1.5 , 1.75) * result_2_5$s_optimal;
s <- s[s <= 10^4]
s <- s[s >= 10^-2]
r <- c(1/1.75 , 1/1.5 , 1/1.25 ,1, 1.25 , 1.5 , 1.75) * result_2_5$r_optimal;
r <- r[r >= 10^-5]
r <- r[r <= 10^1]
result_2_75 <- .one_cycle(cv_data,r,s,
estimated_fitness_start = estimated_fitness,
estimated_PA_start = estimated_PA, alpha_start = estimated_alpha,
stop_cond, print_out, cv_deg_thresh,
normal_start_f, weight_f);
s <- c(1/1.75 , 1/1.5 , 1/1.25 ,1, 1.25 , 1.5 , 1.75) * result_2_75$s_optimal;
s <- s[s <= 10^4]
s <- s[s >= 10^-2]
r <- c(1/1.75 , 1/1.5 , 1/1.25 ,1, 1.25 , 1.5 , 1.75) * result_2_75$r_optimal;
r <- r[r >= 10^-5]
r <- r[r <= 10^1]
estimated_PA <- result_2_75$estimated_PA;
estimated_fitness <- result_2_75$estimated_fitness;
estimated_alpha <- result_2_75$alpha_optimal;
result_3 <- .one_cycle(cv_data,r,s,
estimated_fitness_start = estimated_fitness,
estimated_PA_start = estimated_PA, alpha_start = estimated_alpha,
stop_cond, print_out, cv_deg_thresh,
normal_start_f, weight_f);
r_optimal <- result_3$r_optimal
lambda_optimal <- result_3$lambda_optimal
s_optimal <- result_3$s_optimal
alpha_optimal <- result_3$alpha_optimal
estimated_fitness <- result_3$estimated_fitness
estimated_PA <- result_3$estimated_PA
result <- list(r_optimal = r_optimal,
lambda_optimal = lambda_optimal,
s_optimal = s_optimal,
alpha_optimal = alpha_optimal,
estimated_fitness = estimated_fitness,
estimated_PA = estimated_PA,
cv_deg_thresh = cv_deg_thresh)
class(result) <- "CV_Result"
return(result)
} |
d2 = matrix(c(1.1, 1.2, 1.3, 1.4, 0, 0, 0.5, 0.8),
nrow=2, ncol=4, byrow=T)
test_that("smoothing, k2", {
result2 = smooth.knn.dist(d2, 2)
expected2 = list(distances=c(0.16410065, 0.000325),
nearest=c(1.1, 0.5))
expect_equal(result2, expected2, tolerance=1e-6)
})
test_that("smoothing, k3", {
result3 = smooth.knn.dist(d2, 3)
expected3 = list(distances=c(0.2959671, 0.000325),
nearest=c(1.1, 0.5))
expect_equal(result3, expected3, tolerance=1e-6)
})
test_that("smoothing, local 0.5", {
result.local05 = smooth.knn.dist(d2, 2, local.connectivity=0.5)
expected.local05 = list(distances=c(0.67821503, 0.015625),
nearest=c(0.55, 0.25))
expect_equal(result.local05, expected.local05, tolerance=1e-6)
})
test_that("smoothing, local 3", {
result.local3 = smooth.knn.dist(d2, 2, local.connectivity=3)
expected.local3 = list(distances=c(0.00125, 0.000325),
nearest=c(1.3, 0.8))
expect_equal(result.local3, expected.local3, tolerance=1e-6)
})
test_that("param ab using search 1", {
result = find.ab.params(1, 0.1)
expected = c(a=1.57694346041, b=0.895060878123)
expect_equal(expected, result, tolerance=1e-4)
})
test_that("param ab using search 2", {
result = find.ab.params(2, 0.1)
expected = c(a=0.544660540037, b=0.84205542675)
expect_equal(expected, result, tolerance=1e-4)
})
test_that("param ab using search 3", {
result = find.ab.params(0.6, 0.2)
expected = c(a=2.95031796402, b=1.14888917655)
expect_equal(expected, result, tolerance=1e-4)
})
test_that("epochs per sample with uniform weights", {
result = make.epochs.per.sample(rep(1, 5), 4)
expected = c(1, 1, 1, 1, 1)
expect_equal(expected, result)
})
test_that("epochs per sample for a matrix", {
g = matrix(0, ncol=3, nrow=3)
g[1,] = c(0.5, 0.5, 0.4)
g[2,] = c(1.0, 0.8, 0.3)
g[3,] = c(0.8, 1.1, 0)
g = t(g)
result = make.epochs.per.sample(g, 5)
expected = g
expected[1:9] = c(2.2, 2.2, 2.75,
1.1, 1.375, 3.66666667,
1.375, 1, -1)
expect_equal(expected, result)
})
test_that("number clipping with default xmax", {
expect_equal(clip(2), 2)
expect_equal(clip(4.2), 4)
expect_equal(clip(-12), -4)
})
test_that("number clipping with vector", {
result = clip(c(0,1,4.2, 6, -2, -9))
expected = c(0, 1, 4, 4, -2, -4)
expect_equal(expected, result)
})
test_that("number clipping with custom xmax", {
expect_equal(clip(2, 1), 1)
expect_equal(clip(4.2, 6), 4.2)
expect_equal(clip(-12, 3), -3)
})
test_that("number clipping with default xmax", {
mat = matrix(1:8, ncol=2, nrow=4)
rownames(mat) = letters[1:4]
result = center.embedding(mat)
expected = mat
expected[,1] = mat[,1] - mean(mat[,1])
expected[,2] = mat[,2] - mean(mat[,2])
expect_equal(result, expected)
})
test_that("column.seeds produces unique integers", {
mat = matrix(seq(0, 1, length=30), ncol=10)
result = column.seeds(mat)
expect_equal(length(result), 10)
expect_is(result, "numeric")
expect_equal(length(unique(result)), length(result))
})
test_that("column.seeds produces reproducible integers", {
mat0 = matrix(seq(0, 1, length=30), ncol=10)
result0 = column.seeds(mat0)
mat1 = mat0[, 1, drop=FALSE]
mat2 = mat0[, 2:10]
result1 = column.seeds(mat1)
result2 = column.seeds(mat2)
expect_equal(result0, c(result1, result2))
}) |
simulate_pkpdmodel_ode <- function(U = 1e5, I = 0, V = 10,
n=0, dU = 0, dI = 1, dV = 2,
b = 1e-5, g = 1, p = 10,
C0 = 1, dC = 1, C50 = 1, k = 1, Emax = 0,
txstart = 10, txinterval = 1, tstart = 0, tfinal = 20, dt = 0.01)
{
pkpdode <- function(t, y, parms)
{
with(
as.list(c(y,parms)),
{
e=Emax*C^k/(C^k + C50)
dCdt = - dC*C
dUdt = n - dU*U - b*V*U
dIdt = b*V*U - dI*I
dVdt = (1-e)*p*I - dV*V - g*b*V*U
list(c(dCdt, dUdt, dIdt, dVdt))
}
)
}
adddrug <- function(t,y,parms)
{
y['C'] = y['C'] + parms['C0']
return(y)
}
Y0 = c(C = 0, U = U, I = I, V = V);
timevec = seq(tstart, tfinal, by = dt);
pars = c(n=n,dU=dU,dI=dI,dV=dV,b=b, g=g, p=p, C0 = C0, dC=dC,C50 = C50, k = k, Emax = Emax);
drugtimes = seq(txstart, tfinal, by = txinterval)
odeoutput = deSolve::ode(y = Y0, times = timevec, func = pkpdode, events = list(func = adddrug, time = drugtimes), parms=pars, atol=1e-12, rtol=1e-12);
result = list()
result$ts = as.data.frame(odeoutput)
return(result)
} |
plot_warming_stripes <- function(variable,
infile,
climatology_file,
out_dir,
climate_year_start,
climate_year_end,
start_date,
end_date,
country_code,
outfile_name,
language,
pointsTF,
lineTF,
title,
stripe_color,
circ_plot,
verbose,
nc = NULL)
{
cmsafops::wfldmean(variable, infile, outfile = file.path(tempdir(),"tmp_warming_stripes_plot.nc"), overwrite = TRUE, nc = nc)
temp_file <- file.path(tempdir(),"tmp_warming_stripes_plot.nc")
file_data <- cmsafops::read_file(temp_file, variable)
nc_in <- ncdf4::nc_open(temp_file)
dum_dat <- ncdf4::ncvar_get(
nc_in,
file_data$variable$name,
collapse_degen = FALSE
)
dim_names <- names(nc_in$dim)
dimensions <- cmsafops::get_dimensions(nc_in, dim_names)
time_info <- cmsafops::get_time_info(nc_in, dim_names, dimensions$names$t)
dimension.data.t <- nc_in$dim[[dimensions$names$t]]$vals
dum_dat <- as.vector(dum_dat)
date_info_1 <- as.Date(cmsafops::get_time(time_info$units, dimension.data.t))
date_info <- as.numeric(date_info_1)
dataT <- data.frame(date_info, dum_dat)
ncdf4::nc_close(nc_in)
nBins = 10
minT = min(dataT$dum_dat)
maxT = max(dataT$dum_dat)
minY = min(dataT$date_info)
maxY = max(dataT$date_info)
xlabel <- rep(NA, length(date_info_1))
n <- round(seq(1, length(xlabel), length.out = 4))
xlabel[n] <- format(date_info_1[n], "%Y")
title <- gsub("XXXX", xlabel[1], title)
resfactor <- 1
if (circ_plot) {
getYmult <- function() {
if(grDevices::dev.cur() == 1) {
warning("No graphics device open.")
ymult <- 1
}
else {
xyasp <- graphics::par("pin")
xycr <- diff(graphics::par("usr"))[c(1,3)]
ymult <- xyasp[1]/xyasp[2]*xycr[2]/xycr[1]
}
return(ymult)
}
draw.circle <- function(x, y, radius, nv=100, border=NULL, col=NA,
lty=1, density=NULL, angle=45, lwd = 1) {
xylim <- graphics::par("usr")
plotdim <- graphics::par("pin")
ymult <- getYmult()
angle.inc <- 2*pi/nv
angles <- seq(0,2*pi-angle.inc, by = angle.inc)
if(length(col) < length(radius))
col <- rep(col, length.out = length(radius))
for(circle in 1:length(radius)) {
xv <- cos(angles)*radius[circle]+x
yv <- sin(angles)*radius[circle]*ymult+y
graphics::polygon(xv, yv, border = border, col = col[circle], lty = lty,
density = density, angle = angle, lwd = lwd)
}
invisible(list(x = xv, y = yv))
}
grDevices::png(filename=paste0(out_dir, "/", outfile_name),
res = 72*resfactor, height=800*resfactor, width=800*resfactor)
temp <- dataT
temp$date_info <- format(date_info_1,"%Y")
colnames(temp) <- c("date", "level")
Red <- RColorBrewer::brewer.pal(9, "YlOrRd")
Red <- grDevices::colorRampPalette(Red)(170)
Blues <- RColorBrewer::brewer.pal(9, "Blues")
Blues <- grDevices::colorRampPalette(Blues)(170)
colors=c(rev(Blues),Red)
if (stripe_color == 2){palette <-
grDevices::colorRampPalette(c("
"
"
colors <- palette(340)
}
if (stripe_color == 3){palette <-
grDevices::colorRampPalette(c("
"
"
"
colors <- palette(340)
}
AssignColor=function(data,colors)
{
data$colIndex=rep(-9999,length(data$date))
data$color=rep(-9999,length(data$date))
borders=seq(min(data$level),max(data$level),length=length(colors)+1)
for(i in 1:(length(borders)-1))
{
vect=which(data$level>=borders[i] & data$level<=borders[i+1])
data$colIndex[vect]=i
data$color[vect]=colors[i]
}
return(data)
}
temp=AssignColor(temp,colors)
delta=5
xxx=seq(1,length(temp$date))*0
temp$radius=((temp$level+abs(min(temp$level))))*0.08
for(i in 2:length(xxx)) {
xxx[i]=xxx[i-1]+temp$radius[i-1]+temp$radius[i]+delta
}
FactorShape=1;shape="1x1"
graphics::par("mar")
graphics::par(mfrow = c(1,1))
graphics::par(mar = c(0, 0, 0, 0), bg = "black")
YlimVal = 1.1
XlimVal = FactorShape*YlimVal
plot(mean(xxx), col = "white",
xlim = c(-XlimVal,XlimVal),
ylim = c(-YlimVal,YlimVal)
, bty = "n", xaxt = "n", yaxt = "n", xlab = "", ylab = "")
x = rep(-9999,length(xxx))
y = rep(-9999,length(xxx))
RangeAt3oClock = 50
radiusStart = 0.04
radius = rep(-9999,length(xxx))
for(i in length(xxx):1) {
x[i] = 0
y[i] = 0
radius[i] = i/length(xxx)+radiusStart
colorCircle = temp$color[i]
draw.circle(x[i],y[i],radius[i],nv = 100,
border = colorCircle, col = colorCircle,
lty = 1,
angle = 45, lwd = 1)
}
alpha = 0.04
colorCircle = "gray20"
draw.circle(x[i]-alpha, y[i], radiusStart, nv=10000,
border = colorCircle, col = colorCircle,
lty = 1,
angle = 45, lwd = 0.000000001)
delta = radiusStart
xleft = 0-alpha
ybottom = -delta - 0.001
xright = 10
ytop = delta + 0.001
graphics::rect(xleft, ybottom, xright, ytop, density = NULL, angle = 45,
col = "gray20", border = "NA", lty = graphics::par("lty"), lwd = graphics::par("lwd"))
cexYear = 1.5
t = c(1:length(temp$date))
t = c(min(t), stats::median(t), max(t))
for (i in t) {
graphics::text(radius[i], 0, paste(temp$date[i]), cex=cexYear, col = temp$color[i])
}
title(title, col.main = "white", cex.main = 1.8, line = -2.5, font.main = 2)
} else {
grDevices::png(filename = paste0(out_dir, "/", outfile_name),
res = 72*resfactor, height = 640*resfactor, width = 1140*resfactor)
graphics::par(bg = "black")
graphics::plot(x = date_info_1, y = dum_dat,
ylab = '', xlab='', type = "n", axes = FALSE)
rangeT = maxT - minT
binWidth = rangeT/nBins
palette <- rev(RColorBrewer::brewer.pal(nBins,"RdBu"))
if (stripe_color == 2){palette <-
grDevices::colorRampPalette(c("
"
"
palette <- palette(nBins)
}
if (stripe_color == 3){palette <-
grDevices::colorRampPalette(c("
"
"
"
palette <- palette(nBins)
}
binCol <- function (Temp){
index.col <- floor((Temp - minT)/binWidth)+1
if(index.col > 10){index.col <- 10}
palette[index.col]
}
diff_time <- abs(date_info[2] - date_info[1])
rectPlot <- function(df.row){
y <- df.row["date_info"]
lineCol <- binCol(df.row["dum_dat"])
graphics::rect(y-(diff_time/2), minT, y+(diff_time/2), maxT, col=lineCol, border=NA, lwd=0)
}
apply(dataT, 1, rectPlot)
title(title, col.main = "white", cex.main = 2.0, line = 0.2,
font.main = 2)
graphics::mtext(xlabel, side = 1, line = -0.5, at = date_info_1,
cex = 1.5, col = "white")
if (pointsTF) graphics::points(dataT,pch=21,bg="white")
if (lineTF) graphics::abline(stats::line(dataT),col="white")
}
grDevices::dev.off()
tmp_climate_dir <- file.path(tempdir(), "tmp_climate_dir")
if (dir.exists(tmp_climate_dir)) {
unlink(tmp_climate_dir, recursive = TRUE)
}
if (!dir.exists(tmp_climate_dir)) {
dir.create(tmp_climate_dir)
}
tmp_clim_mean_value <- file.path(tmp_climate_dir, paste0("tmp_clim_mean_value.nc"))
cmsafops::fldmean(var = variable, infile = climatology_file, outfile = tmp_clim_mean_value, overwrite = TRUE)
nc_in <- ncdf4::nc_open(tmp_clim_mean_value)
dum_dat_mean <- ncdf4::ncvar_get(nc_in, variable, collapse_degen = FALSE)
ncdf4::nc_close(nc_in)
years_all <- cmsafops::get_date_time(file_data$dimension_data$t, file_data$time_info$units)$years
months_all <- cmsafops::get_date_time(file_data$dimension_data$t, file_data$time_info$units)$months
days_all <- cmsafops::get_date_time(file_data$dimension_data$t, file_data$time_info$units)$days
ranking <- data.frame(years_all, months_all, days_all, as.vector(dum_dat))
names(ranking) <- c("Year", "Month", "Day","Value")
titles <- c("Analyzed years", "Climatology Mean Value", "Maximum", "Minimum")
ordered_index_dataT <- order(dataT['dum_dat'])
ordered_dataT <- dataT[ordered_index_dataT, ]
row.names(ordered_dataT) <- NULL
standout_years <- c(paste0(climate_year_start, " - " ,format(end_date, format = "%Y")),
paste(climate_year_start, climate_year_end, sep = " - "),
toString(ordered_dataT[nrow(ordered_dataT),1]),
toString(ordered_dataT[1,1]))
standout_values <- c(toString(mean(dataT$dum_dat)), mean(dum_dat_mean), toString(ordered_dataT[nrow(ordered_dataT),2]), toString(ordered_dataT[1,2]))
final_values <- data.frame(title = titles, years = standout_years, value = standout_values)
calc.parameters.monitor.climate(final_values, ranking[order(ranking$Value),])
if (dir.exists(tmp_climate_dir)) {
unlink(tmp_climate_dir, recursive = TRUE)
}
} |
logout_server <- function(input,
output,
session,
isLogged = reactive(FALSE),
textlogged = "You are logged in") {
observeEvent(isLogged(), {
if(isLogged()){
shinyjs::show("logout")
} else {
shinyjs::hide("logout")
}
})
output$who <- renderUI({
if(isLogged()){
textlogged
}
})
reactive(input$logout)
} |
extractDocumentation <- function(path, start_type=NULL, comment="*'") {
if(length(path)>1) {
out <- list()
for(p in path) {
out <- append(out,extractDocumentation(p,start_type=start_type, comment=comment))
}
return(mergeDocumentation(out))
}
escapeRegex <- function(x) {
return(gsub("([.|()\\^{}+$*?]|\\[|\\])", "\\\\\\1", x))
}
removeComments <- function(x,comment) {
return(grep(paste0("^(",escapeRegex(comment),"|[^*])"),x, value=TRUE))
}
extract_block <- function(x,comment) {
code <- "@(\\w*) ?(.*)$"
pattern <- paste0("^(",escapeRegex(comment),") *",code)
type <- sub(pattern,"\\2",x[1])
if(type=="equations") {
x[1] <- sub(pattern,"\\1 \\3",x[1])
x <- paste(x,collapse="\n")
equation <- "(^|\n)[^\n]*?[ \n\t]*\\.\\.([^.]|\n)(.|\n)*?;"
eq <- stri_extract_all_regex(x,equation)[[1]]
if(length(eq)==1 && is.na(eq)) {
eq <- NULL
} else {
eq <- gamsequation2tex(eq)
}
x <- stri_replace_all_regex(x,equation,paste(comment,"\n",comment,"
x <- stri_extract_all_regex(x,paste0(escapeRegex(comment),".*(\\n|$)"))[[1]]
x <- gsub(paste0("(\n|",escapeRegex(comment)," *)"),"",x)
for(i in names(eq)) {
delim <- ifelse(grepl("CONVERSION FAILED!",i,fixed = TRUE), "```","")
x[grep("
}
type <- "description"
} else if(type=="code") {
com <- grepl(paste0("^",escapeRegex(comment)," *"),x)
x[!com] <- paste0("```\n",x[!com],"\n```")
x[com] <- sub(paste0("^",escapeRegex(comment)," *"),"",x[com])
x[1] <- sub(code,"\\2",x[1])
x <- paste(x,collapse="\n")
x <- gsub("\n```\n```\n","\n",x,fixed=TRUE)
x <- strsplit(x,"\n")[[1]]
type <- "description"
} else if(type=="stop") {
return(NULL)
} else {
x <- grep(paste0("^",escapeRegex(comment)," *"), x, value=TRUE)
x <- sub(paste0("^",escapeRegex(comment)," *"),"",x)
x[1] <- sub(code,"\\2",x[1])
}
while(length(x)>1 & x[1]=="") x <- x[-1]
while(length(x)>1 & tail(x,1)=="") x <- x[-length(x)]
if(length(x)==1) if(is.na(x) | x=="") return(NULL)
if(type=="description") x <- c(x,"")
out <- list()
out[[type]] <- x
return(out)
}
if(!file.exists(path)) return(list())
x <- readLines(path, warn = FALSE)
x <- removeComments(x,comment)
if(!is.null(start_type)) {
x <- c(paste0(comment," @",start_type," "),x)
}
blocks_start <- suppressWarnings(grep(paste0("^",escapeRegex(comment)," @[a-z]*( |$)"),x))
if(length(blocks_start)==0) return(list())
blocks_end <- c(blocks_start[-1]-1,length(x))
blocks <- list()
for(i in 1:length(blocks_start)) {
blocks <- c(blocks,extract_block(x[blocks_start[i]:blocks_end[i]], comment))
}
return(mergeDocumentation(blocks))
} |
context("mllogis")
set.seed(313)
tiny_data <- stats::rlogis(10, 1, 7)
small_data <- stats::rlogis(100, 10, 3)
medium_data <- stats::rlogis(1000, 1 / 2, 2)
large_data <- stats::rlogis(10000, 20, 13)
m <- stats::median(tiny_data)
mad <- stats::median(abs(tiny_data - m))
start <- c(m, log(mad))
mle1 <- suppressWarnings(nlm(function(p) {
-sum(stats::dlogis(tiny_data, p[1], exp(p[2]), log = TRUE))
}, p = start))
m <- stats::median(small_data)
mad <- stats::median(abs(small_data - m))
start <- c(m, log(mad))
mle2 <- suppressWarnings(nlm(function(p) {
-sum(stats::dlogis(small_data, p[1], exp(p[2]), log = TRUE))
}, p = start))
m <- stats::median(medium_data)
mad <- stats::median(abs(medium_data - m))
start <- c(m, log(mad))
mle3 <- suppressWarnings(nlm(function(p) {
-sum(stats::dlogis(medium_data, p[1], exp(p[2]), log = TRUE))
}, p = start))
m <- stats::median(large_data)
mad <- stats::median(abs(large_data - m))
start <- c(m, log(mad))
mle4 <- suppressWarnings(nlm(function(p) {
-sum(stats::dlogis(large_data, p[1], exp(p[2]), log = TRUE))
}, p = start))
expect_equal(c(mle1$estimate[1], exp(mle1$estimate[2])),
as.numeric(mllogis(tiny_data)),
tolerance = 1e-5
)
expect_equal(c(mle2$estimate[1], exp(mle2$estimate[2])),
as.numeric(mllogis(small_data)),
tolerance = 1e-5
)
expect_equal(c(mle3$estimate[1], exp(mle3$estimate[2])),
as.numeric(mllogis(medium_data)),
tolerance = 1e-5
)
expect_equal(c(mle4$estimate[1], exp(mle4$estimate[2])),
as.numeric(mllogis(large_data)),
tolerance = 1e-5
)
expect_equal(-mle1$minimum, attr(mllogis(tiny_data), "logLik"),
tolerance = 1e-5
)
expect_equal(-mle2$minimum, attr(mllogis(small_data), "logLik"),
tolerance = 1e-5
)
expect_equal(-mle3$minimum, attr(mllogis(medium_data), "logLik"),
tolerance = 1e-5
)
expect_equal(-mle4$minimum, attr(mllogis(large_data), "logLik"),
tolerance = 1e-5
)
expect_error(mllogis(c(tiny_data, NA)))
expect_equal(
coef(mllogis(small_data)),
coef(mllogis(c(small_data, NA), na.rm = TRUE))
)
est <- mllogis(small_data, na.rm = TRUE)
expect_equal(attr(est, "model"), "Logistic")
expect_equal(class(est), "univariateML") |
tar_definition <- function(
default = targets::tar_target_raw("target_name", quote(identity()))
) {
tar_assert_target(default)
if_any(tar_runtime$exists_target(), tar_runtime$get_target(), default)
} |
consensusClusterNoPlots <- function(df, link_method, dist_method,
max_k, reps, p_var, p_net, cc_seed){
ff <- tempfile()
grDevices::png(filename=ff)
res <- suppressMessages(ConsensusClusterPlus(as.matrix(df),
maxK = max_k,
innerLinkage = link_method,
reps = reps,
pItem = p_var,
pFeature = p_net,
clusterAlg = "hc",
distance = dist_method,
seed = cc_seed,
plot = NULL))
grDevices::dev.off()
unlink(ff)
return(res)
} |
expected <- eval(parse(text="FALSE"));
test(id=0, code={
argv <- eval(parse(text="list(structure(list(x = c(TRUE, FALSE, TRUE, FALSE, TRUE, FALSE, TRUE, FALSE, TRUE, FALSE), y = c(-0.0561287395290008, -0.155795506705329, -1.47075238389927, -0.47815005510862, 0.417941560199702, 1.35867955152904, -0.102787727342996, 0.387671611559369, -0.0538050405829051, -1.37705955682861)), .Names = c(\"x\", \"y\"), row.names = c(NA, -10L), class = \"data.frame\"))"));
do.call(`is.array`, argv);
}, o=expected); |
library(tidyverse)
library(tidytext)
fog_recent <- readRDS("fog_recent.rds")
fog_recent %>%
count(message) %>%
count(n)
tr_normal <- function(x) {
unicode_symbols <- map(cli:::symbol_utf8, rex::escape)
normal_symbols <- rlang::with_options(cli.unicode = FALSE, cli::symbol)
reduce2(unicode_symbols, normal_symbols, str_replace_all, .init = x)
}
clean_timings <- function(x) {
str_replace_all(x, "\\[[0-9]+s(?:/[0-9]+s)?\\]", "[timing]")
}
clean_testthat_summary <- function(x) {
str_replace_all(x, "\\[ OK:[^\n]+ \\]", "[testthat summary]")
}
clean_backtrace <- function(x) {
str_replace_all(x, "( +[1-9][0-9]*[.] +(?:[\\\\|+└│├].*| *)\n)+", "[backtrace]\n")
}
clean_pre_backtrace <- function(x) {
str_replace_all(x, "[x
}
clean_ptime <- function(x) {
str_replace_all(x, " [>] base::assign.*\n", "")
}
clean_paths <- function(x) {
str_replace_all(x, "/home/hornik/tmp/[^\n]+/Work/build/Packages/|/data/gannet/ripley/R/packages/[^\n]+[.]Rcheck/|/home/ripley/R/Lib32-dev/|D:/temp/[^\n]+/RLIBS_[^\n/]+/", "[path]/")
}
fog_clean <-
fog_recent %>%
mutate(message = tr_normal(message)) %>%
mutate(message = clean_timings(message)) %>%
mutate(message = clean_testthat_summary(message)) %>%
mutate(message = clean_backtrace(message)) %>%
mutate(message = clean_pre_backtrace(message)) %>%
mutate(message = clean_ptime(message)) %>%
mutate(message = clean_paths(message)) %>%
group_by(package, result, check, message) %>%
summarize(
flavors = paste0(flavors, collapse = ", "),
n_flavors = sum(n_flavors),
version = version[[1]]
) %>%
ungroup()
unlink("msg", recursive = TRUE)
dir.create("msg", showWarnings = FALSE)
fog_clean %>%
filter(check != "vignettes") %>%
rowid_to_column() %>%
transmute(text = message, path = sprintf("msg/%04d-%s.txt", rowid, package)) %>%
pwalk(brio::write_lines) |
mapXY <- function(start,end,y,yMod,x,yfactor,r2,pts_1,pts_2,pts_3,pts_4,chrt=FALSE ){
roundedX<-roundedY<-list()
for (counter in start: end ) {
r2backup<-r2
current_x <- x[[counter]]
current_y <- y[[counter]]
yMod_current<- yMod[[counter]]
diffx<-max(current_x) - min(current_x)
diffy<-max(current_y) - min(current_y)
ratexy <- diffx/diffy
ifelse ( (diffx/r2) * 2 < ratexy*4 , r2 <- diffx/(ratexy*2) ,r2 )
topBotline_x <- c(min(current_x)+r2,
max(current_x)-r2 )
x2_1<-min(current_x)+r2
x2_2<-max(current_x)-r2
bottomline_y<-rep(min(yMod_current),2)
topline_y <-rep(max(yMod_current),2)
y2_1<-max(current_y)-r2*yfactor
y2_2<-min(current_y)+r2*yfactor
xy_1 <- cbind(x2_2 + r2 * sin(pts_2), y2_1 + (r2 * cos(pts_2) *yfactor) )
xy_2 <- cbind(x2_1 + r2 * sin(pts_1), y2_1 + (r2 * cos(pts_1) *yfactor) )
xy_3 <- cbind(x2_1 + r2 * sin(pts_4), y2_2 + (r2 * cos(pts_4) *yfactor) )
xy_4 <- cbind(x2_2 + r2 * sin(pts_3), y2_2 + (r2 * cos(pts_3) *yfactor) )
yMod_current[which(yMod_current==max(yMod_current))]<-yMod_current[which(yMod_current==max(yMod_current))]-r2*yfactor
yMod_current[which(yMod_current==min(yMod_current))]<-yMod_current[which(yMod_current==min(yMod_current))]+r2*yfactor
if(chrt==FALSE){
roundedX[[counter]]<-c(current_x[1:2],xy_4[,1],topBotline_x,xy_3[,1],
current_x[3:4],xy_2[,1],topBotline_x,xy_1[,1])
roundedY[[counter]]<-c(yMod_current[1:2],xy_4[,2],bottomline_y,xy_3[,2],
yMod_current[3:4],xy_2[,2],topline_y ,xy_1[,2])
} else {
roundedX[[counter]]<-c(xy_4[,1],xy_3[,1],
xy_2[,1],xy_1[,1]
,xy_4[,1][1]
)
roundedY[[counter]]<-c(xy_4[,2],xy_3[,2],
xy_2[,2] ,xy_1[,2]
,xy_4[,2][1]
)
}
attr(roundedY[[counter]],"rowIndex")<-attr(current_y,"rowIndex")
attr(roundedX[[counter]],"rowIndex")<-attr(current_x,"rowIndex")
attr(roundedY[[counter]],"chrName1")<-attr(current_y,"chrName1")
attr(roundedX[[counter]],"chrName1")<-attr(current_x,"chrName1")
r2<-r2backup
}
roundXroundY<-list()
roundXroundY$roundedX<-roundedX
roundXroundY$roundedY<-roundedY
return(roundXroundY)
}
mapXYCen <- function(start,end,ycoordCentsS,xcoordCentsS,pts_1,pts_2,pts_3,pts_4,mimic=FALSE ){
roundedX<-roundedY<-xy_1<-xy_2<-xy_3<-xy_4<-list()
for (counter in start: end ) {
chrRegion <- attr(ycoordCentsS[[counter]],"chrRegion")
minX<-min(xcoordCentsS[[counter]])
maxX<-max(xcoordCentsS[[counter]])
minY<-min(ycoordCentsS[[counter]])
maxY<-max(ycoordCentsS[[counter]])
diffx<-maxX - minX
diffy<-maxY - minY
if(is.null(chrRegion)){
halfmaxY <- diffy/2
} else if(chrRegion %in% c("qcen") ) {
halfmaxY <- diffy
} else if(chrRegion %in% c("pcen")){
halfmaxY <- diffy
minY <- minY-diffy
} else {
halfmaxY <- diffy/2
}
halfmaxX <- diffx/2
xy_1 <- cbind( minX + halfmaxX + halfmaxX * sin(pts_1)
, minY + halfmaxY * cos(pts_1))
xy_2 <- cbind( minX + halfmaxX + halfmaxX * sin(pts_2)
, minY + halfmaxY * cos(pts_2))
xy_3 <- cbind( minX + halfmaxX + halfmaxX * sin(pts_3)
, maxY + halfmaxY * cos(pts_3))
xy_4 <- cbind( minX + halfmaxX + halfmaxX * sin(pts_4)
, maxY + halfmaxY * cos(pts_4))
if(mimic==FALSE) {
roundedX[[counter]] <-c(xy_4[,1],minX , maxX , xy_3[,1],
minX+halfmaxX, xy_2[,1],maxX , minX , xy_1[,1])
roundedY[[counter]] <-c(xy_4[,2],maxY , maxY , xy_3[,2],
minY+halfmaxY, xy_2[,2],minY , minY , xy_1[,2])
} else {
roundedX[[counter]]<-c(minX,xy_1[,1],minX+halfmaxX,(xy_2[,1]),
maxX, (xy_3[,1] ),minX+halfmaxX,xy_4[,1])
roundedY[[counter]]<-c(minY,xy_1[,2],minY+halfmaxY,(xy_2[,2]),
maxY, (xy_3[,2] ),minY+halfmaxY,xy_4[,2])
}
len <- length(roundedX[[counter]])
chrRegion <- attr(ycoordCentsS[[counter]],"chrRegion")
if(!is.null(chrRegion)){
start <- ifelse(chrRegion %in% c("cen","pcen"),1,(floor(len/2)+1) )
end <- ifelse(chrRegion %in% c("cen","qcen"),len,floor(len/2) )
} else {
start <- 1
end <- len
}
roundedX[[counter]]<-roundedX[[counter]][start:end]
roundedY[[counter]]<-roundedY[[counter]][start:end]
attr(roundedY[[counter]],"rowIndex") <- attr(ycoordCentsS[[counter]],"rowIndex")
attr(roundedY[[counter]],"chrRegion")<- chrRegion
attr(roundedX[[counter]],"rowIndex") <- attr(xcoordCentsS[[counter]],"rowIndex")
attr(roundedX[[counter]],"chrRegion")<- chrRegion
}
roundXroundY<-list()
roundXroundY$roundedX<-roundedX
roundXroundY$roundedY<-roundedY
return(roundXroundY)
}
mapXYCenLines <- function(start,end,ycoordCentsS,xcoordCentsS ){
X1<-Y1<-X2<-Y2<-list()
for (counter in start: end ) {
diffx<-max(xcoordCentsS[[counter]]) - min(xcoordCentsS[[counter]])
diffy<-max(ycoordCentsS[[counter]]) - min(ycoordCentsS[[counter]])
halfmaxX <- diffx/2
halfmaxY <- diffy/2
minX<-min(xcoordCentsS[[counter]])
maxX<-max(xcoordCentsS[[counter]])
minY<-min(ycoordCentsS[[counter]])
maxY<-max(ycoordCentsS[[counter]])
xy_1 <- cbind( minX, minY )
xy_2 <- cbind( minX+halfmaxX, minY+halfmaxY )
xy_3 <- cbind( minX, maxY )
xy_4 <- cbind( maxX, minY )
xy_5 <- cbind( maxX-halfmaxX, maxY-halfmaxY )
xy_6 <- cbind( maxX, maxY )
X1[[counter]]<-c(xy_1[,1],xy_2[,1],xy_3[,1]
)
Y1[[counter]]<-c(xy_1[,2],xy_2[,2],xy_3[,2]
)
X2[[counter]]<-c(xy_4[,1],xy_5[,1],xy_6[,1]
)
Y2[[counter]]<-c(xy_4[,2],xy_5[,2],xy_6[,2]
)
}
XY<-list()
XY$X1<-X1
XY$Y1<-Y1
XY$X2<-X2
XY$Y2<-Y2
return(XY)
}
mapxyRoundCenLines <- function(start,end,ycoordCentsS,xcoordCentsS,pts_1,pts_2,pts_3,pts_4,mimic=FALSE ){
roundedX1<-roundedY1<-roundedX2<-roundedY2<-list()
for (counter in start: end ) {
diffx<-max(xcoordCentsS[[counter]]) - min(xcoordCentsS[[counter]])
diffy<-max(ycoordCentsS[[counter]]) - min(ycoordCentsS[[counter]])
halfmaxX <- diffx/2
halfmaxY <- diffy/2
minX<-min(xcoordCentsS[[counter]])
maxX<-max(xcoordCentsS[[counter]])
minY<-min(ycoordCentsS[[counter]])
maxY<-max(ycoordCentsS[[counter]])
xy_1 <- cbind( min(xcoordCentsS[[counter]])+halfmaxX + halfmaxX * sin(pts_1), min(ycoordCentsS[[counter]]) + halfmaxY * cos(pts_1) )
xy_2 <- cbind( min(xcoordCentsS[[counter]])+halfmaxX + halfmaxX * sin(pts_2), min(ycoordCentsS[[counter]]) + halfmaxY * cos(pts_2))
xy_3 <- cbind( min(xcoordCentsS[[counter]])+halfmaxX + halfmaxX * sin(pts_3), max(ycoordCentsS[[counter]]) + halfmaxY * cos(pts_3))
xy_4 <- cbind( min(xcoordCentsS[[counter]])+halfmaxX + halfmaxX * sin(pts_4), max(ycoordCentsS[[counter]]) + halfmaxY * cos(pts_4 ) )
roundedX1[[counter]]<-c(
rev(xy_2[,1] )
,xy_4[,1]
)
roundedY1[[counter]]<-c(
rev(xy_2[,2])
,xy_4[,2]
)
roundedX2[[counter]]<-c(
xy_1[,1]
,rev(xy_3[,1] )
)
roundedY2[[counter]]<-c(
xy_1[,2]
,rev(xy_3[,2] )
)
}
roundXroundY<-list()
roundXroundY$roundedX1<-roundedX1
roundXroundY$roundedY1<-roundedY1
roundXroundY$roundedX2<-roundedX2
roundXroundY$roundedY2<-roundedY2
return(roundXroundY)
}
mapXYchromatidLA <- function(start,end,y,x,xModifier=.1 ){
longArmChrtx<-longArmChrty<-list()
for (counter in start: end ) {
maxX<-minX<-halfX<-halfXModMinus<-halfXModPlus<-NULL
maxX <- max(x[[counter]])
minX <- min(x[[counter]])
maxY <- max(y[[counter]])
minY <- min(y[[counter]])
halfX <- (maxX+minX)/2
halfXModPlus <- halfX + xModifier
halfXModMinus <- halfX - xModifier
longArmChrtx[[counter]]<-c(maxX,maxX,halfXModPlus,halfXModPlus,halfXModMinus,halfXModMinus,minX,minX)
longArmChrty[[counter]]<-c(maxY,minY,minY, maxY, maxY, minY, minY,maxY)
}
chrtXchrtYLA<-list()
chrtXchrtYLA$longArmChrtx<-longArmChrtx
chrtXchrtYLA$longArmChrty<-longArmChrty
return(chrtXchrtYLA)
}
mapXYchromatidSA <- function(start,end,y,x,xModifier=.1 ){
shortArmChrtx<-shortArmChrty<-list()
for (counter in start: end ) {
maxX<-minX<-halfX<-halfXModMinus<-halfXModPlus<-NULL
maxX <- max(x[[counter]])
minX <- min(x[[counter]])
maxY <- max(y[[counter]])
minY <- min(y[[counter]])
halfX <- (maxX+minX)/2
halfXModPlus <- halfX + xModifier
halfXModMinus <- halfX - xModifier
shortArmChrtx[[counter]] <-c(maxX,maxX,minX,minX,halfXModMinus,halfXModMinus,halfXModPlus,halfXModPlus)
shortArmChrty[[counter]] <-c(maxY,minY,minY,maxY, maxY, minY, minY, maxY)
}
chrtXchrtYSA<-list()
chrtXchrtYSA$shortArmChrtx<-shortArmChrtx
chrtXchrtYSA$shortArmChrty<-shortArmChrty
return(chrtXchrtYSA)
}
mapXYchromatidHolo <- function(start,end,y,x,xModifier=.1 ){
xCT1<-yCT1<-xCT2<-yCT2<-list()
for (counter in start: end ) {
maxX<-minX<-halfX<-halfXModMinus<-halfXModPlus<-NULL
maxX <- max(x[[counter]])
minX <- min(x[[counter]])
maxY <- max(y[[counter]])
minY <- min(y[[counter]])
halfX <- (maxX+minX)/2
halfXModPlus <- halfX + xModifier
halfXModMinus <- halfX - xModifier
xCT1[[counter]]<-c(maxX,maxX,halfXModPlus,halfXModPlus)
yCT1[[counter]]<-c(maxY,minY,minY, maxY)
xCT2[[counter]]<-c(halfXModMinus,halfXModMinus,minX,minX)
yCT2[[counter]]<-c(maxY, minY, minY,maxY)
attr(xCT1[[counter]],"arm") <- attr(xCT2[[counter]],"arm") <- attr(yCT1[[counter]],"arm") <- attr(yCT2[[counter]],"arm") <- attr(y[[counter]],"arm")
attr(xCT1[[counter]],"rowIndex") <- attr(xCT2[[counter]],"rowIndex") <- attr(yCT1[[counter]],"rowIndex") <- attr(yCT2[[counter]],"rowIndex") <- attr(y[[counter]],"rowIndex")
attr(xCT1[[counter]],"wholeArm") <- attr(xCT2[[counter]],"wholeArm") <- attr(yCT1[[counter]],"wholeArm") <- attr(yCT2[[counter]],"wholeArm") <- attr(y[[counter]],"wholeArm")
attr(xCT1[[counter]],"whichArm") <- attr(xCT2[[counter]],"whichArm") <- attr(yCT1[[counter]],"whichArm") <- attr(yCT2[[counter]],"whichArm") <- attr(y[[counter]],"whichArm")
attr(xCT1[[counter]],"squareSide") <- attr(xCT2[[counter]],"squareSide") <- attr(yCT1[[counter]],"squareSide") <- attr(yCT2[[counter]],"squareSide") <- attr(y[[counter]],"squareSide")
}
chrtXchrtYHolo<-list()
chrtXchrtYHolo$xCT1<-xCT1
chrtXchrtYHolo$xCT2<-xCT2
chrtXchrtYHolo$yCT1<-yCT1
chrtXchrtYHolo$yCT2<-yCT2
return(chrtXchrtYHolo)
}
mapXYchromatidSARo <- function(start,end,y,x,r2,xModifier,pts){
RoundedSAChrtx<-RoundedSAChrty<-list()
for (counter in start: end ) {
maxX<-minX<-halfX<-halfXModMinus<-halfXModPlus<-NULL
maxX <- max(x[[counter]])
minX <- min(x[[counter]])
maxY <- max(y[[counter]])
minY <- min(y[[counter]])
halfX <- (maxX+minX)/2
halfXModPlus <- halfX + xModifier
halfXModMinus <- halfX - xModifier
r2backup<-r2
diffx<-maxX - minX
diffy<-maxY - minY
ratexy<-diffx/diffy
ifelse( (diffx/r2) * 2 < ratexy*4 , r2 <- diffx/(ratexy*2) ,r2 )
yMod<-y[[counter]]
yMod[which(yMod==max(yMod))] <- yMod[which(yMod==max(yMod))]-r2
yMod[which(yMod==min(yMod))] <- yMod[which(yMod==min(yMod))]+r2
topBotline_x<-c(minX+r2, maxX-r2)
topBotline_x2 <- c(halfXModPlus + r2, maxX-r2, halfXModMinus-r2,minX+r2)
bottomline_y <-rep(minY,2)
ptsl <- split(pts, sort(rep(1:4, each=length(pts)/4, len=length(pts))) )
xy_1 <- cbind( (minX+r2) + r2 * sin(ptsl[[1]]), (maxY-r2) + r2 * cos(ptsl[[1]]))
xy_2 <- cbind( (maxX-r2) + r2 * sin(ptsl[[2]]), (maxY-r2) + r2 * cos(ptsl[[2]]))
xy_3 <- cbind( (maxX-r2) + r2 * sin(ptsl[[3]]), (minY+r2) + r2 * cos(ptsl[[3]]))
xy_4 <- cbind( (minX+r2) + r2 * sin(ptsl[[4]]), (minY+r2) + r2 * cos(ptsl[[4]]))
xy_7 <- cbind( (halfXModMinus-r2) + r2 * sin(ptsl[[2]]), (maxY-r2) + r2 * cos(ptsl[[2]]))
xy_8 <- cbind( (halfXModPlus +r2) + r2 * sin(ptsl[[1]]), (maxY-r2) + r2 * cos(ptsl[[1]]))
xy_11 <- cbind( (halfXModMinus+ xModifier) + xModifier * sin(ptsl[[4]]), (minY+(xModifier*2)) + xModifier * cos(ptsl[[4]]))
xy_12 <- cbind( (halfXModPlus - xModifier) + xModifier * sin(ptsl[[3]]), (minY+(xModifier*2)) + xModifier * cos(ptsl[[3]]))
RoundedSAChrtx[[counter]] <- c(rep(maxX,2)
,xy_3[,1]
,topBotline_x[2:1]
,xy_4[,1]
,rep(minX,2)
,xy_1[,1],topBotline_x2[4:3]
,xy_7[,1], halfXModMinus,halfXModMinus
,rev(xy_11[,1])
,rev(xy_12[,1])
,rep(halfXModPlus,2)
,xy_8[,1]
,topBotline_x2[1:2]
,xy_2[,1]
)
RoundedSAChrty[[counter]] <- c(yMod[1:2]
, xy_3[,2]
, bottomline_y
, xy_4[,2]
,yMod[2:1]
,xy_1[,2]
,rep(maxY,2)
,xy_7[,2], yMod[1], minY+(xModifier*2)
,rev(xy_11[,2]),rev(xy_12[,2])
,c(minY+(xModifier*2),yMod[1])
,xy_8[,2], rep(maxY,2),xy_2[,2]
)
RoundedSAChrty[[counter]][which(RoundedSAChrty[[counter]]>maxY)]<-maxY
r2<-r2backup
}
chrtXchrtYSARo<-list()
chrtXchrtYSARo$RoundedSAChrtx<-RoundedSAChrtx
chrtXchrtYSARo$RoundedSAChrty<-RoundedSAChrty
return(chrtXchrtYSARo)
}
mapXYchromatidLARo <- function(start,end,y,x,r2,xModifier,pts){
RoundedLAChrtx<-RoundedLAChrty<-list()
for (counter in start: end ) {
maxX<-minX<-halfX<-halfXModMinus<-halfXModPlus <- NULL
maxX <- max(x[[counter]])
minX <- min(x[[counter]])
maxY <- max(y[[counter]])
minY <- min(y[[counter]])
halfX <- (maxX+minX)/2
halfXModPlus <- halfX + xModifier
halfXModMinus <- halfX - xModifier
r2backup<-r2
diffx<-maxX - minX
diffy<-maxY - minY
ratexy<-diffx/diffy
ifelse( (diffx/r2) * 2 < ratexy*4 , r2 <- diffx/(ratexy*2) ,r2 )
yMod<-y[[counter]]
yMod[which(yMod==max(yMod))] <- yMod[which(yMod==max(yMod))]-r2
yMod[which(yMod==min(yMod))] <- yMod[which(yMod==min(yMod))]+r2
topBotline_x <- c(minX+r2, maxX-r2)
topBotline_x2 <- c(halfXModPlus + r2, maxX-r2, halfXModMinus-r2,minX+r2)
bottomline_y <-rep(minY,2)
ptsl<-split(pts, sort(rep(1:4, each=length(pts)/4, len=length(pts))) )
xy_1 <- cbind( (minX+r2) + r2 * sin(ptsl[[1]]), (maxY-r2) + r2 * cos(ptsl[[1]]))
xy_2 <- cbind( (maxX-r2) + r2 * sin(ptsl[[2]]), (maxY-r2) + r2 * cos(ptsl[[2]]))
xy_3 <- cbind( (maxX-r2) + r2 * sin(ptsl[[3]]), (minY+r2) + r2 * cos(ptsl[[3]]))
xy_4 <- cbind( (minX+r2) + r2 * sin(ptsl[[4]]), (minY+r2) + r2 * cos(ptsl[[4]]))
xy_5 <- cbind( (halfXModPlus +r2) + r2 * sin(ptsl[[4]]), (minY+r2) + r2 * cos(ptsl[[4]]))
xy_6 <- cbind( (halfXModMinus-r2) + r2 * sin(ptsl[[3]]), (minY+r2) + r2 * cos(ptsl[[3]]))
xy_9 <- cbind( (halfXModPlus - xModifier) + xModifier * sin(ptsl[[2]]), (maxY-(xModifier*2)) + xModifier * cos(ptsl[[2]]))
xy_10 <- cbind( (halfXModMinus+ xModifier) + xModifier * sin(ptsl[[1]]), (maxY-(xModifier*2)) + xModifier * cos(ptsl[[1]]))
RoundedLAChrtx[[counter]] <- c(rep(maxX,2)
,xy_3[,1]
,topBotline_x2[2:1]
,xy_5[,1]
,halfXModPlus
,rev(xy_9[,1]),rev(xy_10[,1])
,halfXModMinus
,halfXModMinus
,xy_6[,1], topBotline_x2[3:4],xy_4[,1],rep(minX,2)
,xy_1[,1],topBotline_x,xy_2[,1]
)
RoundedLAChrty[[counter]] <- c(yMod[1:2]
,xy_3[,2]
,bottomline_y[1:2]
,xy_5[,2]
,maxY-(xModifier*2)
,rev(xy_9[,2]),rev(xy_10[,2])
,maxY-(xModifier*2)
,yMod[2]
,xy_6[,2], rep(minY,2), xy_4[,2], yMod[2:1], xy_1[,2],rep(maxY,2) ,xy_2[,2]
)
RoundedLAChrty[[counter]][which(RoundedLAChrty[[counter]]<minY)]<-minY
r2<-r2backup
}
chrtXchrtYLARo<-list()
chrtXchrtYLARo$RoundedLAChrtx<-RoundedLAChrtx
chrtXchrtYLARo$RoundedLAChrty<-RoundedLAChrty
return(chrtXchrtYLARo)
}
mapXYchromatidHoloRo <- function(start,end,y,x,r2, xModifier,pts ){
holoRightx<-holoLeftx<-holoRighty<-holoLefty<-list()
for (counter in start: end ) {
maxX<-minX<-halfX<-halfXModMinus<-halfXModPlus<-NULL
maxX <- max(x[[counter]])
minX <- min(x[[counter]])
maxY <- max(y[[counter]])
minY <- min(y[[counter]])
diffx<-maxX - minX
diffy<-maxY - minY
ratexy<-diffx/diffy
ifelse( (diffx/r2) * 2 < ratexy*4 , r2 <- diffx/(ratexy*2) ,r2 )
yMod<-y[[counter]]
yMod[which(yMod==max(yMod))] <- yMod[which(yMod==max(yMod))]-r2
yMod[which(yMod==min(yMod))] <- yMod[which(yMod==min(yMod))]+r2
halfX <- (maxX+minX)/2
halfXModPlus <- halfX + xModifier
halfXModMinus <- halfX - xModifier
topBotline_x2 <- c(halfXModPlus + r2, maxX-r2, halfXModMinus-r2,minX+r2)
bottomline_y <-rep(minY,2)
ptsl<-split(pts, sort(rep(1:4, each=length(pts)/4, len=length(pts))) )
xy_1 <- cbind( (minX+r2) + r2 * sin(ptsl[[1]]), (maxY-r2) + r2 * cos(ptsl[[1]]))
xy_2 <- cbind( (maxX-r2) + r2 * sin(ptsl[[2]]), (maxY-r2) + r2 * cos(ptsl[[2]]))
xy_3 <- cbind( (maxX-r2) + r2 * sin(ptsl[[3]]), (minY+r2) + r2 * cos(ptsl[[3]]))
xy_4 <- cbind( (minX+r2) + r2 * sin(ptsl[[4]]), (minY+r2) + r2 * cos(ptsl[[4]]))
xy_5 <- cbind( (halfXModPlus +r2) + r2 * sin(ptsl[[4]]), (minY+r2) + r2 * cos(ptsl[[4]]))
xy_6 <- cbind( (halfXModMinus-r2) + r2 * sin(ptsl[[3]]), (minY+r2) + r2 * cos(ptsl[[3]]))
xy_7 <- cbind( (halfXModMinus-r2) + r2 * sin(ptsl[[2]]), (maxY-r2) + r2 * cos(ptsl[[2]]))
xy_8 <- cbind( (halfXModPlus +r2) + r2 * sin(ptsl[[1]]), (maxY-r2) + r2 * cos(ptsl[[1]]))
holoRightx[[counter]]<-c(rep(maxX,2),xy_3[,1],topBotline_x2[1:2],xy_5[,1]
,halfXModPlus,halfXModPlus
,xy_8[,1], topBotline_x2[2:1],xy_2[,1]
)
holoRighty[[counter]]<-c(yMod[1:2],xy_3[,2],bottomline_y, xy_5[,2]
,yMod[3:4]
,xy_8[,2], rep(maxY,2),xy_2[,2]
)
holoLeftx[[counter]]<-c(rep(halfXModMinus,2),xy_6[,1],topBotline_x2[3:4],
xy_4[,1],rep(minX,2),
xy_1[,1],topBotline_x2[4:3],xy_7[,1]
)
holoLefty[[counter]]<-c(yMod[1:2], xy_6[,2],bottomline_y,
xy_4[,2],yMod[3:4],
xy_1[,2],rep(maxY,2), xy_7[,2]
)
}
chrtXchrtYHoloRo<-list()
chrtXchrtYHoloRo$holoRightx<-holoRightx
chrtXchrtYHoloRo$holoLeftx<-holoLeftx
chrtXchrtYHoloRo$holoRighty<-holoRighty
chrtXchrtYHoloRo$holoLefty<-holoLefty
return(chrtXchrtYHoloRo)
}
mapXYmarksRo <- function(start,end,y,x,r2, xModifier,pts ) {
markRightx<-markLeftx<-markRighty<-markLefty<-list()
for (counter in start: end ) {
if( attr(y[[counter]],"wholeArm")=='false' ) {
maxX<-minX<-halfX<-halfXModMinus<-halfXModPlus<-NULL
maxX <- max(x[[counter]])
minX <- min(x[[counter]])
maxY <- max(y[[counter]])
minY <- min(y[[counter]])
r2backup<-r2
diffx<-maxX - minX
diffy<-maxY - minY
ratexy<-diffx/diffy
ifelse( (diffx/r2) * 2 < ratexy*4 , r2 <- diffx/(ratexy*2) ,r2 )
yMod<-y[[counter]]
yMod[which(yMod==max(yMod))] <- yMod[which(yMod==max(yMod))]-r2
yMod[which(yMod==min(yMod))] <- yMod[which(yMod==min(yMod))]+r2
halfX <- (maxX+minX)/2
halfXModPlus <- halfX + xModifier
halfXModMinus <- halfX - xModifier
topBotline_x2 <- c(halfXModPlus + r2, maxX-r2, halfXModMinus-r2,minX+r2)
bottomline_y <-rep(minY,2)
ptsl<-split(pts, sort(rep(1:4, each=length(pts)/4, len=length(pts))) )
xy_1 <- cbind( (minX+r2) + r2 * sin(ptsl[[1]]), (maxY-r2) + r2 * cos(ptsl[[1]]))
xy_2 <- cbind( (maxX-r2) + r2 * sin(ptsl[[2]]), (maxY-r2) + r2 * cos(ptsl[[2]]))
xy_3 <- cbind( (maxX-r2) + r2 * sin(ptsl[[3]]), (minY+r2) + r2 * cos(ptsl[[3]]))
xy_4 <- cbind( (minX+r2) + r2 * sin(ptsl[[4]]), (minY+r2) + r2 * cos(ptsl[[4]]))
xy_5 <- cbind( (halfXModPlus +r2) + r2 * sin(ptsl[[4]]), (minY+r2) + r2 * cos(ptsl[[4]]))
xy_6 <- cbind( (halfXModMinus-r2) + r2 * sin(ptsl[[3]]), (minY+r2) + r2 * cos(ptsl[[3]]))
xy_7 <- cbind( (halfXModMinus-r2) + r2 * sin(ptsl[[2]]), (maxY-r2) + r2 * cos(ptsl[[2]]))
xy_8 <- cbind( (halfXModPlus +r2) + r2 * sin(ptsl[[1]]), (maxY-r2) + r2 * cos(ptsl[[1]]))
markRightx[[counter]]<-c(rep(maxX,2),xy_3[,1],topBotline_x2[1:2],xy_5[,1]
,halfXModPlus,halfXModPlus
,xy_8[,1], topBotline_x2[2:1],xy_2[,1]
)
markRighty[[counter]]<-c(yMod[1:2],xy_3[,2],bottomline_y, xy_5[,2]
,yMod[3:4]
,xy_8[,2], rep(maxY,2),xy_2[,2]
)
markLeftx[[counter]]<-c(rep(halfXModMinus,2),xy_6[,1],topBotline_x2[3:4],
xy_4[,1],rep(minX,2),
xy_1[,1],topBotline_x2[4:3],xy_7[,1]
)
markLefty[[counter]]<-c(yMod[1:2], xy_6[,2],bottomline_y,
xy_4[,2],yMod[3:4],
xy_1[,2],rep(maxY,2), xy_7[,2]
)
r2<-r2backup
} else {
if( attr(y[[counter]],"whichArm")=='short' ) {
maxX<-minX<-halfX<-halfXModMinus<-halfXModPlus<-NULL
maxX <- max(x[[counter]])
minX <- min(x[[counter]])
maxY <- max(y[[counter]])
minY <- min(y[[counter]])
halfX <- (maxX+minX)/2
halfXModPlus <- halfX + xModifier
halfXModMinus <- halfX - xModifier
r2backup<-r2
diffx<-maxX - minX
diffy<-maxY - minY
ratexy<-diffx/diffy
ifelse( (diffx/r2) * 2 < ratexy*4 , r2 <- diffx/(ratexy*2) ,r2 )
yMod<-y[[counter]]
yMod[which(yMod==max(yMod))] <- yMod[which(yMod==max(yMod))]-r2
yMod[which(yMod==min(yMod))] <- yMod[which(yMod==min(yMod))]+r2
topBotline_x<-c(minX+r2, maxX-r2)
topBotline_x2 <- c(halfXModPlus + r2, maxX-r2, halfXModMinus-r2,minX+r2)
bottomline_y <-rep(minY,2)
ptsl<-split(pts, sort(rep(1:4, each=length(pts)/4, len=length(pts))) )
xy_1 <- cbind( (minX+r2) + r2 * sin(ptsl[[1]]), (maxY-r2) + r2 * cos(ptsl[[1]]))
xy_2 <- cbind( (maxX-r2) + r2 * sin(ptsl[[2]]), (maxY-r2) + r2 * cos(ptsl[[2]]))
xy_3 <- cbind( (maxX-r2) + r2 * sin(ptsl[[3]]), (minY+r2) + r2 * cos(ptsl[[3]]))
xy_4 <- cbind( (minX+r2) + r2 * sin(ptsl[[4]]), (minY+r2) + r2 * cos(ptsl[[4]]))
xy_7 <- cbind( (halfXModMinus-r2) + r2 * sin(ptsl[[2]]), (maxY-r2) + r2 * cos(ptsl[[2]]))
xy_8 <- cbind( (halfXModPlus +r2) + r2 * sin(ptsl[[1]]), (maxY-r2) + r2 * cos(ptsl[[1]]))
xy_11 <- cbind( (halfXModMinus+ xModifier) + xModifier * sin(ptsl[[4]]), (minY+(xModifier*2)) + xModifier * cos(ptsl[[4]]))
xy_12 <- cbind( (halfXModPlus - xModifier) + xModifier * sin(ptsl[[3]]), (minY+(xModifier*2)) + xModifier * cos(ptsl[[3]]))
markRightx[[counter]] <- c(rep(maxX,2),xy_3[,1] , topBotline_x[2:1],xy_4[,1],rep(minX,2),xy_1[,1],topBotline_x2[4:3]
,xy_7[,1], halfXModMinus,halfXModMinus
,rev(xy_11[,1]),rev(xy_12[,1])
, rep(halfXModPlus,2)
,xy_8[,1], topBotline_x2[2:1],xy_2[,1]
)
markRighty[[counter]] <- c(yMod[1:2], xy_3[,2] , bottomline_y, xy_4[,2],yMod[2:1],xy_1[,2],rep(maxY,2)
,xy_7[,2], yMod[1], minY+(xModifier*2)
,rev(xy_11[,2]),rev(xy_12[,2])
,c(minY+(xModifier*2),yMod[1])
,xy_8[,2], rep(maxY,2),xy_2[,2]
)
markLeftx[[counter]]<-NA
markLefty[[counter]]<-NA
r2<-r2backup
} else {
maxX<-minX<-halfX<-halfXModMinus<-halfXModPlus <- NULL
maxX <- max(x[[counter]])
minX <- min(x[[counter]])
maxY <- max(y[[counter]])
minY <- min(y[[counter]])
halfX <- (maxX+minX)/2
halfXModPlus <- halfX + xModifier
halfXModMinus <- halfX - xModifier
r2backup<-r2
diffx<-maxX - minX
diffy<-maxY - minY
ratexy<-diffx/diffy
ifelse( (diffx/r2) * 2 < ratexy*4 , r2 <- diffx/(ratexy*2) ,r2 )
yMod<-y[[counter]]
yMod[which(yMod==max(yMod))] <- yMod[which(yMod==max(yMod))]-r2
yMod[which(yMod==min(yMod))] <- yMod[which(yMod==min(yMod))]+r2
topBotline_x <- c(minX+r2, maxX-r2)
topBotline_x2 <- c(halfXModPlus + r2, maxX-r2, halfXModMinus-r2,minX+r2)
bottomline_y <- rep(minY,2)
ptsl<-split(pts, sort(rep(1:4, each=length(pts)/4, len=length(pts))) )
xy_1 <- cbind( (minX+r2) + r2 * sin(ptsl[[1]]), (maxY-r2) + r2 * cos(ptsl[[1]]))
xy_2 <- cbind( (maxX-r2) + r2 * sin(ptsl[[2]]), (maxY-r2) + r2 * cos(ptsl[[2]]))
xy_3 <- cbind( (maxX-r2) + r2 * sin(ptsl[[3]]), (minY+r2) + r2 * cos(ptsl[[3]]))
xy_4 <- cbind( (minX+r2) + r2 * sin(ptsl[[4]]), (minY+r2) + r2 * cos(ptsl[[4]]))
xy_5 <- cbind( (halfXModPlus +r2) + r2 * sin(ptsl[[4]]), (minY+r2) + r2 * cos(ptsl[[4]]))
xy_6 <- cbind( (halfXModMinus-r2) + r2 * sin(ptsl[[3]]), (minY+r2) + r2 * cos(ptsl[[3]]))
xy_9 <- cbind( (halfXModPlus - xModifier) + xModifier * sin(ptsl[[2]]), (maxY-(xModifier*2)) + xModifier * cos(ptsl[[2]]))
xy_10 <- cbind( (halfXModMinus+ xModifier) + xModifier * sin(ptsl[[1]]), (maxY-(xModifier*2)) + xModifier * cos(ptsl[[1]]))
markRightx[[counter]] <- c(rep(maxX,2),xy_3[,1] , topBotline_x2[1:2],xy_5[,1],halfXModPlus,
rev(xy_9[,1]),rev(xy_10[,1])
,halfXModMinus, halfXModMinus
,xy_6[,1], topBotline_x2[3:4],xy_4[,1],rep(minX,2),xy_1[,1],topBotline_x,xy_2[,1]
)
markRighty[[counter]] <- c(yMod[1:2], xy_3[,2] , bottomline_y[1:2],xy_5[,2],maxY-(xModifier*2),
rev(xy_9[,2]),rev(xy_10[,2])
,maxY-(xModifier*2), yMod[2]
,xy_6[,2], rep(minY,2), xy_4[,2], yMod[2:1], xy_1[,2],rep(maxY,2) ,xy_2[,2]
)
markLeftx[[counter]]<-NA
markLefty[[counter]]<-NA
r2<-r2backup
}
}
attr(markLeftx[[counter]],"arm") <- attr(markLefty[[counter]],"arm") <- attr(markRightx[[counter]],"arm") <- attr(markRighty[[counter]],"arm") <- attr(y[[counter]],"arm")
attr(markLeftx[[counter]],"rowIndex") <- attr(markLefty[[counter]],"rowIndex") <- attr(markRightx[[counter]],"rowIndex") <- attr(markRighty[[counter]],"rowIndex") <- attr(y[[counter]],"rowIndex")
attr(markLeftx[[counter]],"wholeArm") <- attr(markLefty[[counter]],"wholeArm") <- attr(markRightx[[counter]],"wholeArm") <- attr(markRighty[[counter]],"wholeArm") <- attr(y[[counter]],"wholeArm")
attr(markLeftx[[counter]],"whichArm") <- attr(markLefty[[counter]],"whichArm") <- attr(markRightx[[counter]],"whichArm") <- attr(markRighty[[counter]],"whichArm") <- attr(y[[counter]],"whichArm")
attr(markLeftx[[counter]],"squareSide") <- attr(markLefty[[counter]],"squareSide") <- attr(markRightx[[counter]],"squareSide") <- attr(markRighty[[counter]],"squareSide") <- attr(y[[counter]],"squareSide")
}
chrtXchrtYmarkRo<-list()
chrtXchrtYmarkRo$markRightx<-markRightx
chrtXchrtYmarkRo$markRighty<-markRighty
chrtXchrtYmarkRo$markLeftx <-markLeftx
chrtXchrtYmarkRo$markLefty <-markLefty
return(chrtXchrtYmarkRo)
}
makeRoundCoordXY <- function(r2, yfactor, x, y, start, end, n, ptsl) {
xyCoords <- mapXY(1 , (length(y) ) ,
y, y ,
x,
yfactor,r2,
ptsl[[1]],ptsl[[2]],ptsl[[3]],ptsl[[4]]
)
return(xyCoords)
} |
mvnintGHKOcpp_R <- function(mu, R, lower, upper, nrep){
.Call('mvnintGHKOcpp', PACKAGE = 'gcKrig', mu, R, lower, upper, nrep)
}
mvnintGHKcpp_R <- function(mu, R, lower, upper, nrep){
.Call('mvnintGHKcpp', PACKAGE = 'gcKrig', mu, R, lower, upper, nrep)
}
mvnintGHK <- function(mean, sigma, lower, upper, nrep = 5000, log = TRUE, reorder = TRUE){
if(!is.matrix(sigma))
stop("Input 'sigma' must be of form matrix!")
if(!isSymmetric(sigma))
stop("Input covariance matrix 'sigma' must be symmetric!")
if(length(lower)== 1 & lower[1] == -Inf) lower <- rep(-.Machine$double.xmax, nrow(sigma))
if(length(upper)== 1 & upper[1] == Inf) upper <- rep(.Machine$double.xmax, nrow(sigma))
if( inherits(try(chol(sigma),silent=TRUE),"try-error") )
stop("Cholesky Decomposition failed. Input matrix sigma is not a valid covariance matrix!")
if(!all.equal(length(mean), nrow(sigma), length(lower), length(upper)))
stop("Input 'mean', lower' and 'upper' must have same length as dimension of the sigma!")
lower <- ifelse(lower == -Inf, -.Machine$double.xmax, lower)
upper <- ifelse(upper == Inf, .Machine$double.xmax, upper)
if(!all(lower <= upper))
stop("Elements in 'lower' must be <= the corresponding elements in 'upper'!")
if(reorder == TRUE){
ans <- mvnintGHKOcpp_R(mu = mean, R = sigma, lower = lower, upper = upper, nrep = nrep)
}else{
ans <- mvnintGHKcpp_R(mu = mean, R = sigma, lower = lower, upper = upper, nrep = nrep)
}
if(ans$value < -.Machine$double.max.exp)
stop("Computation Failed Due to Numerical Problem or Large Dimensionality!")
if(log == F) ans$value <- exp(ans$value)
return(ans)
} |
monoreg.rowwise <- function(yM, wM)
{
yM <- as.matrix(yM)
wM <- as.matrix(wM)
res <- sirt_rcpp_monoreg_rowwise( YM=yM, WM=wM )
return(res)
} |
cens.p <- function(family = "NO", type = c( "right", "left", "interval"),...)
{
type <- match.arg(type)
if (type=="counting") stop(paste("gamlss has no not support counting"))
fname <- family
if (mode(family) != "character" && mode(family) != "name")
fname <- as.character(substitute(family))
distype <- eval(call(family))$type
dfun <- paste("d",fname,sep="")
pfun <- paste("p",fname,sep="")
pdf <- eval(parse(text=dfun))
cdf <- eval(parse(text=pfun))
fun <- if (type=="left")
function(q, log = FALSE, ...)
{
if (!is.Surv(q)) stop(paste("the q variable is not a Surv object"))
pfun1 <- cdf(q[,1],...)
pfun2 <- runif(length(q[,1]),0,pfun1)
pfun <- ifelse(q[,"status"]==1, pfun1,pfun2)
pfun
}
else if (type=="right")
function(q, log = FALSE, ...)
{
if (!is.Surv(q)) stop(paste("the q variable is not a Surv object"))
pfun1 <- cdf(q[,1],...)
pfun2 <- runif(length(q[,1]),pfun1,1)
pfun <- ifelse(q[,"status"]==1, pfun1,pfun2)
pfun
}
else if (type=="interval")
function(q, log = FALSE, ...)
{
if (!is.Surv(q)) stop(paste("the q variable is not a Surv object"))
pfun1 <- cdf(q[,1],...)
pfun2 <- runif(length(q[,1]),0,pfun1)
pfun0 <- runif(length(q[,1]),pfun1,1)
suppressWarnings(pfun3<-runif( length(q[,1]), cdf(q[,1],...), cdf(q[,2],...) ) )
pfun0 <-ifelse(q[,"status"]==0, pfun0,0)
pfun1 <-ifelse(q[,"status"]==1, pfun1,0)
pfun2 <-ifelse(q[,"status"]==2, pfun2,0)
pfun3 <-ifelse(q[,"status"]==3, pfun3,0)
dfun <- pfun0+pfun1+pfun2+pfun3
dfun
}
fun
} |
makeRLearner.regr.slim = function() {
makeRLearnerRegr(
cl = "regr.slim",
package = "flare",
par.set = makeParamSet(
makeNumericVectorLearnerParam(id = "lambda"),
makeIntegerLearnerParam(id = "nlambda", default = 5L, lower = 1L),
makeNumericLearnerParam(id = "lambda.min.value", lower = 0, upper = 1),
makeNumericLearnerParam(id = "lambda.min.ratio", lower = 0, upper = 1),
makeNumericLearnerParam(id = "rho", default = 1, lower = 0),
makeDiscreteLearnerParam(id = "method", values = c("lq", "dantzig", "lasso"), default = "lq"),
makeNumericLearnerParam(id = "q", lower = 1, upper = 2, requires = quote(method == "lq")),
makeLogicalLearnerParam(id = "res.sd", default = FALSE),
makeNumericLearnerParam(id = "prec", default = 1e-5, lower = .Machine$double.eps),
makeIntegerLearnerParam(id = "max.ite", default = 1e5L),
makeLogicalLearnerParam(id = "verbose", default = FALSE, tunable = FALSE),
makeIntegerLearnerParam(id = "lambda.idx", default = 3L, when = "predict")
),
par.vals = list(lambda.idx = 3L),
properties = "numerics",
name = "Sparse Linear Regression using Nonsmooth Loss Functions and L1 Regularization",
short.name = "slim",
note = "`lambda.idx` has been set to `3` by default.",
callees = c("slim", "predict.slim")
)
}
trainLearner.regr.slim = function(.learner, .task, .subset, .weights = NULL, ...) {
d = getTaskData(.task, .subset, target.extra = TRUE)
flare::slim(X = as.matrix(d$data), Y = d$target, ...)
}
predictLearner.regr.slim = function(.learner, .model, .newdata, ...) {
predict(.model$learner.model, newdata = as.matrix(.newdata), ...)[[1]][, 1L]
} |
grnn.predict <- function(net, x) {
if (class(net) != "General Regression Neural Net") stop("net needs to be a GRNN object.", call. = F)
if (is.matrix(x) == F) stop("x needs to be a matrix.", call. = F)
if (anyNA(x) == T) stop("NA found in x.", call. = F)
if (ncol(x) != ncol(net$x)) stop("x dimension is not consistent with grnn.", call. = F)
return(Reduce(c, lapply(split(x, seq(nrow(x))), function(x_) grnn.predone(net, x_))))
} |
cmdscale <- function (d, k = 2, eig = FALSE, add = FALSE, x.ret = FALSE,
list. = eig || add || x.ret)
{
if (anyNA(d))
stop("NA values not allowed in 'd'")
if(!list.) {
if (eig) warning( "eig=TRUE is disregarded when list.=FALSE")
if(x.ret) warning("x.ret=TRUE is disregarded when list.=FALSE")
}
if (is.null(n <- attr(d, "Size"))) {
if(add) d <- as.matrix(d)
x <- as.matrix(d^2)
storage.mode(x) <- "double"
if ((n <- nrow(x)) != ncol(x))
stop("distances must be result of 'dist' or a square matrix")
rn <- rownames(x)
} else {
rn <- attr(d, "Labels")
x <- matrix(0, n, n)
if (add) d0 <- x
x[row(x) > col(x)] <- d^2
x <- x + t(x)
if (add) {
d0[row(x) > col(x)] <- d
d <- d0 + t(d0)
}
}
n <- as.integer(n)
if(is.na(n) || n > 46340) stop("invalid value of 'n'")
if((k <- as.integer(k)) > n - 1 || k < 1)
stop("'k' must be in {1, 2, .. n - 1}")
x <- .Call(C_DoubleCentre, x)
if(add) {
i2 <- n + (i <- 1L:n)
Z <- matrix(0, 2L*n, 2L*n)
Z[cbind(i2,i)] <- -1
Z[ i, i2] <- -x
Z[i2, i2] <- .Call(C_DoubleCentre, 2*d)
e <- eigen(Z, symmetric = FALSE, only.values = TRUE)$values
add.c <- max(Re(e))
x <- matrix(double(n*n), n, n)
non.diag <- row(d) != col(d)
x[non.diag] <- (d[non.diag] + add.c)^2
x <- .Call(C_DoubleCentre, x)
}
e <- eigen(-x/2, symmetric = TRUE)
ev <- e$values[seq_len(k)]
evec <- e$vectors[, seq_len(k), drop = FALSE]
k1 <- sum(ev > 0)
if(k1 < k) {
warning(gettextf("only %d of the first %d eigenvalues are > 0", k1, k),
domain = NA)
evec <- evec[, ev > 0, drop = FALSE]
ev <- ev[ev > 0]
}
points <- evec * rep(sqrt(ev), each=n)
dimnames(points) <- list(rn, NULL)
if (list.) {
evalus <- e$values
list(points = points, eig = if(eig) evalus, x = if(x.ret) x,
ac = if(add) add.c else 0,
GOF = sum(ev)/c(sum(abs(evalus)), sum(pmax(evalus, 0))) )
} else points
} |
context("Testing robets tidiers")
test_that("sw_*.robets test returns tibble with correct rows and columns.", {
fit_robets <- WWWusage %>%
robets::robets()
test <- sw_tidy(fit_robets)
expect_is(test, "tbl")
expect_equal(nrow(test), 7)
expect_equal(ncol(test), 2)
test <- sw_glance(fit_robets)
expect_is(test, "tbl")
expect_equal(nrow(test), 1)
expect_equal(ncol(test), 2)
test <- sw_augment(fit_robets, rename_index = "date")
expect_is(test, "tbl")
expect_equal(nrow(test), 100)
expect_equal(ncol(test), 4)
expect_equal(colnames(test)[[1]], "date")
test <- sw_tidy_decomp(fit_robets)
expect_is(test, "tbl")
expect_equal(nrow(test), 101)
expect_equal(ncol(test), 4)
expect_warning(
USAccDeaths %>%
robets() %>%
sw_augment(timetk_idx = T)
)
}) |
library(ecospace)
nchar <- 9
ecospace <- create_ecospace(nchar = nchar, char.state = rep(3, nchar),
char.type = rep(c("factor", "ord.fac", "ord.num"), nchar / 3))
Smax <- 50
set.seed(3142)
neutral_sample <- neutral(Sseed = 5, Smax = Smax, ecospace = ecospace)
head(neutral_sample, 10)
set.seed(3142)
Sseed = 5
redund_sample <- redundancy(Sseed = Sseed, Smax = Smax, ecospace = ecospace)
unique(redund_sample)
set.seed(3142)
redund_sample2 <- redundancy(Sseed = Sseed, Smax = Smax,
ecospace = ecospace, strength = 0.95)
library(FD, quietly = TRUE)
pc <- prcomp(FD::gowdis(redund_sample))
plot(pc$x, type = "n",
main = paste("Redundancy model,\n", Smax, "species"))
text(pc$x[,1], pc$x[,2], labels = seq(Smax), col = c(rep("red", Sseed),
rep("black", 5), rep("slategray", (Smax - Sseed - 5))),
pch = c(rep(19, Sseed), rep(21, (Smax - Sseed))), cex = .8)
pc.r <- prcomp(FD::gowdis(redund_sample2))
plot(pc.r$x, type = "n", main =
paste("Redundancy model (95% identical),\n", Smax, "species"))
text(pc.r$x[,1], pc.r$x[,2], labels = seq(Smax), col = c(rep("red",
Sseed), rep("black", 5), rep("slategray", (Smax - Sseed - 5))),
pch = c(rep(19, Sseed), rep(21, (Smax - Sseed))), cex = .8)
set.seed(3142)
Sseed = 5
partS_sample <- partitioning(Sseed = Sseed, Smax = Smax,
ecospace = ecospace)
set.seed(3142)
Sseed = 5
partR_sample <- partitioning(Sseed = Sseed, Smax = Smax,
ecospace = ecospace, rule = "relaxed")
pc.ps <- prcomp(FD::gowdis(partS_sample))
plot(pc.ps$x, type = "n",
main = paste("'Strict' partitioning model,\n", Smax, "species"))
text(pc.ps$x[,1], pc$x[,2], labels = seq(Smax),
col = c(rep("red", Sseed), rep("black", 5),
rep("slategray", (Smax - Sseed - 5))),
pch = c(rep(19, Sseed), rep(21, (Smax - Sseed))), cex = .8)
pc.pr <- prcomp(FD::gowdis(partR_sample))
plot(pc.pr$x, type = "n",
main = paste("'Relaxed' partitioning model,\n", Smax, "species"))
text(pc.pr$x[,1], pc.pr$x[,2], labels = seq(Smax),
col = c(rep("red", Sseed), rep("black", 5),
rep("slategray", (Smax - Sseed - 5))),
pch = c(rep(19, Sseed), rep(21, (Smax - Sseed))), cex = .8)
set.seed(3142)
Sseed = 5
exp_sample <- expansion(Sseed = Sseed, Smax = Smax,
ecospace = ecospace)
pc.e <- prcomp(FD::gowdis(exp_sample))
plot(pc.e$x, type = "n",
main = paste("Expansion model,\n", Smax, "species"))
text(pc.e$x[,1], pc$x[,2], labels = seq(Smax),
col = c(rep("red", Sseed), rep("black", 5),
rep("slategray", (Smax - Sseed - 5))),
pch = c(rep(19, Sseed), rep(21, (Smax - Sseed))), cex = .8)
library(vegan, quietly = TRUE)
start <- neutral_sample[1:Sseed,]
neu <- neutral_sample[(Sseed + 1):Smax,]
red <- redund_sample2[(Sseed + 1):Smax,]
par <- partR_sample[(Sseed + 1):Smax,]
exp <- exp_sample[(Sseed + 1):Smax,]
nmds.data <- rbind(start, neu, red, par, exp)
all <- metaMDS(gowdis(nmds.data), zerodist = "add", k = 2, trymax = 10)
plot(all$points[,1], all$points[,2],
col = c(rep("red", Sseed), rep("orange", nrow(neu)),
rep("red", nrow(red)), rep("blue", nrow(par)),
rep("purple", nrow(exp))),
pch = c(rep(19, Sseed), rep(21, nrow(neu)),
rep(22, nrow(red)), rep(23, nrow(par)),
rep(24, nrow(exp))),
main = paste("Combined models,\n", Smax, "species per model"),
xlab = "Axis 1", ylab = "Axis 2", cex = 2, cex.lab = 1.5, lwd = 1)
leg.txt <- c("seed", "neutral", "redundancy", "partitioning",
"expansion")
leg.col <- c("red", "orange", "red", "blue", "purple")
leg.pch <- c(19, 21, 22, 23, 24)
legend("topright", inset = .02, legend = leg.txt, pch = leg.pch,
col = leg.col, cex = .75)
options(warn = -1)
metrics <- calc_metrics(samples = neutral_sample, Smax = 10,
Model = "Neutral")
metrics
options(warn = -1)
metrics <- calc_metrics(samples = neutral_sample, increm = FALSE)
metrics
options(warn = -1)
metrics <- calc_metrics(samples = neutral_sample, Smax = 10,
Model = "Neutral", increm = TRUE)
metrics
nreps <- 1:25
n.samples <- lapply(X = nreps, FUN = neutral, Sseed = 3, Smax = 20,
ecospace)
n.metrics <- lapply(X = nreps, FUN = calc_metrics, samples = n.samples,
Model = "neutral", Param = "NA")
all <- rbind_listdf(n.metrics)
means <- n.metrics[[1]]
for(n in 1:20) {
means[n,4:11] <- apply(all[which(all$S == means$S[n]),4:11], 2, mean, na.rm = TRUE)
}
par(mfrow = c(2,4), mar = c(4, 4, 1, .3))
attach(all)
plot(S, H, type = "p", cex = .75, col = "gray")
lines(means$S, means$H, type = "l", lwd = 2)
plot(S, D, type = "p", cex = .75, col = "gray")
lines(means$S, means$D, type = "l", lwd = 2)
plot(S, M, type = "p", cex = .75, col = "gray")
lines(means$S, means$M, type = "l", lwd = 2)
plot(S, V, type = "p", cex = .75, col = "gray")
lines(means$S, means$V, type = "l", lwd = 2)
plot(S, FRic, type = "p", cex = .75, col = "gray")
lines(means$S, means$FRic, type = "l", lwd = 2)
plot(S, FEve, type = "p", cex = .75, col = "gray")
lines(means$S, means$FEve, type = "l", lwd = 2)
plot(S, FDiv, type = "p", cex = .75, col = "gray")
lines(means$S, means$FDiv, type = "l", lwd = 2)
plot(S, FDis, type = "p", cex = .75, col = "gray")
lines(means$S, means$FDis, type = "l", lwd = 2) |
QUV1_fair <- function(method_in) {
metd <- NULL
machine_df <- data.frame('tool' = 'Exposure Chamber',
'modi' = 'QUV1',
'pers' = 'Kunal')
total_time_in <- 65000
step_time_in <- "0:30"
total_time_out <- 65023
step_time_out <- "0:28"
method_df <- data.frame('metd' = c('hot-quv', 'cyclic-quv'),
'temp' = c('static', 'cyclic'))
specific_method <- method_df %>%
dplyr::filter(metd == method_in)
QUV1_metadata <- glue::glue(tmp_QUV1, .open = '<<', .close = '>>')
return(QUV1_metadata)
} |
na.warn <- function(object) {
missing <- sum(!stats::complete.cases(object))
if (missing > 0) {
warning("Dropping ", missing, " rows with missing values", call. = FALSE)
}
stats::na.exclude(object)
} |
expected_dist(1,5,metric="kendall")
expected_dist(2,6,metric="cayley")
expected_dist(1.5,7,metric="hamming")
expected_dist(5,30,"ulam")
expected_dist(3.5,45,"footrule")
expected_dist(4,10,"spearman") |
context("test-crime-at-location")
test_that("crime at location", {
skip_on_cran()
x <- ukc_crime_location(lat = 52, lng = 0)
expect_true(length(x) == 13)
y <- ukc_crime_location(location = 802171)
expect_error(ukc_crime_location())
expect_error(ukc_crime_location(lat = 52, lng = c(0, 0.5)))
poly_df_3 <- data.frame(
lat = c(52.268, 52.794, 52.130),
lng = c(0.543, 0.238, 0.478)
)
z <- ukc_crime_poly(poly_df_3, date = "2020-01")
expect_s3_class(z, "data.frame")
expect_true("anti-social-behaviour" %in% z$category)
crime_loc <- ukc_crime_loc(883407, date = "2019-11")
expect_s3_class(crime_loc, "data.frame")
crime_coord <- ukc_crime_coord(52.1, 0.23, date = "2019-12")
expect_s3_class(crime_coord, "data.frame")
expect_error(ukc_stop_search_loc(ukc_crime_loc))
expect_error(
ukc_crime_coord(c(51, 52), c(1, 2))
)
}) |
panMatrix <- function(clustering){
gids <- str_extract(names(clustering), "GID[0-9]+")
ugids <- sort(unique(gids))
uclst <- sort(unique(clustering))
pan.matrix <- matrix(0, nrow = length(ugids), ncol = length(uclst))
rownames(pan.matrix) <- ugids
colnames(pan.matrix) <- str_c("Cluster", uclst)
for(i in 1:length(ugids)){
tb <- table(clustering[gids == ugids[i]])
idd <- as.numeric(names(tb))
idx <- which(uclst %in% idd)
pan.matrix[i,idx] <- tb
}
attr(pan.matrix, "clustering") <- clustering
return(pan.matrix)
} |
NULL
globalaccelerator <- function(config = list()) {
svc <- .globalaccelerator$operations
svc <- set_config(svc, config)
return(svc)
}
.globalaccelerator <- list()
.globalaccelerator$operations <- list()
.globalaccelerator$metadata <- list(
service_name = "globalaccelerator",
endpoints = list("*" = list(endpoint = "globalaccelerator.{region}.amazonaws.com", global = FALSE), "cn-*" = list(endpoint = "globalaccelerator.{region}.amazonaws.com.cn", global = FALSE), "us-iso-*" = list(endpoint = "globalaccelerator.{region}.c2s.ic.gov", global = FALSE), "us-isob-*" = list(endpoint = "globalaccelerator.{region}.sc2s.sgov.gov", global = FALSE)),
service_id = "Global Accelerator",
api_version = "2018-08-08",
signing_name = "globalaccelerator",
json_version = "1.1",
target_prefix = "GlobalAccelerator_V20180706"
)
.globalaccelerator$service <- function(config = list()) {
handlers <- new_handlers("jsonrpc", "v4")
new_service(.globalaccelerator$metadata, handlers, config)
} |
expected <- eval(parse(text="structure(list(`1` = c(41L, 36L, 12L, 18L, NA, 28L, 23L, 19L, 8L, NA, 7L, 16L, 11L, 14L, 18L, 14L, 34L, 6L, 30L, 11L, 1L, 11L, 4L, 32L, NA, NA, NA, 23L, 45L, 115L, 37L), `2` = c(NA, NA, NA, NA, NA, NA, 29L, NA, 71L, 39L, NA, NA, 23L, NA, NA, 21L, 37L, 20L, 12L, 13L, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA), `3` = c(135L, 49L, 32L, NA, 64L, 40L, 77L, 97L, 97L, 85L, NA, 10L, 27L, NA, 7L, 48L, 35L, 61L, 79L, 63L, 16L, NA, NA, 80L, 108L, 20L, 52L, 82L, 50L, 64L, 59L), `4` = c(39L, 9L, 16L, 78L, 35L, 66L, 122L, 89L, 110L, NA, NA, 44L, 28L, 65L, NA, 22L, 59L, 23L, 31L, 44L, 21L, 9L, NA, 45L, 168L, 73L, NA, 76L, 118L, 84L, 85L), `5` = c(96L, 78L, 73L, 91L, 47L, 32L, 20L, 23L, 21L, 24L, 44L, 21L, 28L, 9L, 13L, 46L, 18L, 13L, 24L, 16L, 13L, 23L, 36L, 7L, 14L, 30L, NA, 14L, 18L, 20L)), .Names = c(\"1\", \"2\", \"3\", \"4\", \"5\"))"));
test(id=0, code={
argv <- eval(parse(text="list(c(41L, 36L, 12L, 18L, NA, 28L, 23L, 19L, 8L, NA, 7L, 16L, 11L, 14L, 18L, 14L, 34L, 6L, 30L, 11L, 1L, 11L, 4L, 32L, NA, NA, NA, 23L, 45L, 115L, 37L, NA, NA, NA, NA, NA, NA, 29L, NA, 71L, 39L, NA, NA, 23L, NA, NA, 21L, 37L, 20L, 12L, 13L, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 135L, 49L, 32L, NA, 64L, 40L, 77L, 97L, 97L, 85L, NA, 10L, 27L, NA, 7L, 48L, 35L, 61L, 79L, 63L, 16L, NA, NA, 80L, 108L, 20L, 52L, 82L, 50L, 64L, 59L, 39L, 9L, 16L, 78L, 35L, 66L, 122L, 89L, 110L, NA, NA, 44L, 28L, 65L, NA, 22L, 59L, 23L, 31L, 44L, 21L, 9L, NA, 45L, 168L, 73L, NA, 76L, 118L, 84L, 85L, 96L, 78L, 73L, 91L, 47L, 32L, 20L, 23L, 21L, 24L, 44L, 21L, 28L, 9L, 13L, 46L, 18L, 13L, 24L, 16L, 13L, 23L, 36L, 7L, 14L, 30L, NA, 14L, 18L, 20L), structure(c(1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L), .Label = c(\"1\", \"2\", \"3\", \"4\", \"5\"), class = \"factor\"))"));
.Internal(split(argv[[1]], argv[[2]]));
}, o=expected); |
testMGD <- function(
.object = NULL,
.alpha = 0.05,
.approach_p_adjust = "none",
.approach_mgd = c("all", "Klesel", "Chin", "Sarstedt",
"Keil", "Nitzl","Henseler", "CI_para","CI_overlap"),
.output_type = c("complete", "structured"),
.parameters_to_compare = NULL,
.eval_plan = c("sequential", "multiprocess"),
.handle_inadmissibles = c("replace", "drop", "ignore"),
.R_permutation = 499,
.R_bootstrap = 499,
.saturated = FALSE,
.seed = NULL,
.type_ci = "CI_percentile",
.type_vcv = c("indicator", "construct"),
.verbose = TRUE
){
diff <- setdiff(.approach_mgd, args_default(TRUE)$.approach_mgd)
if(length(diff) != 0) {
stop2(
"The following error occured in the testMGD() function:\n",
"Unknown approach: ", paste0(diff, collapse = ", "), ".",
" Possible choices are: ",
paste0(args_default(TRUE)$.approach_mgd, collapse = ", "))
}
.approach_mgd <- match.arg(.approach_mgd, several.ok = TRUE)
.handle_inadmissibles <- match.arg(.handle_inadmissibles)
.type_vcv <- match.arg(.type_vcv)
.output_type <- match.arg(.output_type)
if(!all(.type_ci %in% args_default(.choices = TRUE)$.type_ci )){
stop2("The specified confidence interval in .type.ci is not valid.\n",
"Please choose one of the following: CI_standard_z, CI_standard_t,\n",
"CI_percentile, CI_basic, CI_bc, CI_bca.")
}
if(!inherits(.object, "cSEMResults_multi")) {
stop2(
"The following error occured in the testMGD() function:\n",
"At least two groups required."
)
}
if(any(.approach_mgd %in% c("all", "Sarstedt")) & .handle_inadmissibles == "drop"){
stop2(
"The following error occured in the testMGD() function:\n",
"Approach `'Sarstedt'` not supported if `.handle_inadmissibles == 'drop'`")
}
if(inherits(.object[[1]], "cSEMResults_2ndorder")){
model_type <- .object[[1]]$Second_stage$Information$Model$model_type
} else {
model_type <- .object[[1]]$Information$Model$model_type
}
if(any(.approach_mgd %in% c("all", "Klesel")) & model_type == "Nonlinear"){
stop2("The following error occured in the testMGD() function:\n",
"The approach suggested by Klesel et al. (2019) cannot be applied",
" to nonlinear models as cSEM currently can not calculate",
" the model-implied VCV matrix for such models.\n",
"Consider setting `.approach_mgd = c('Chin', 'Sarstedt')`")
}
if(sum(unlist(verify(.object))) != 0) {
warning2(
"The following warning occured in the testMGD() function:\n",
"Initial estimation results for at least one group are inadmissible.\n",
"See `verify(.object)` for details.")
}
if(TRUE %in% lapply(utils::combn(.object, 2, simplify = FALSE),
function(x){ identical(x[[1]], x[[2]])})){
warning2(
"The following warning occured in the testMGD() function:\n",
"At least two groups are identical. Results may not be meaningful.")
}
if(any(.approach_mgd %in% c("all", "Henseler","CI_para","CI_overlap")) & !all(.approach_p_adjust %in% "none")){
warning2(
"The following warning occured in the testMGD() function:\n",
"Currently, there is no p-value adjustment possible for the approach suggested by\n",
"Henseler (2007), CI_para, and CI_overlap. Adjustment is ignored for these approaches."
)
}
if(.verbose) {
cat(rule2("Several tests for multi-group comparisons",
type = 3), "\n\n")
}
.alpha <- .alpha[order(.alpha)]
names_all_param <- getParameterNames(.object, .model = .parameters_to_compare)
if(!is.null(names_all_param$names_cor_measurement_error)|!is.null(names_all_param$names_cor_indicator)){
stop2("The following error occured in the testMGD() function:\n",
"Currenlty it is not allowed to compare measurement error covariance",
" and/or indicator covariances across groups.")
}
names_param <- unlist(names_all_param)
teststat <- list()
if(any(.approach_mgd %in% c("all", "Klesel"))) {
fit <- fit(.object = .object,
.saturated = .saturated,
.type_vcv = .type_vcv)
temp <- c(
"dG" = calculateDistance(.matrices = fit, .distance = "geodesic"),
"dL" = calculateDistance(.matrices = fit, .distance = "squared_euclidian")
)
teststat[["Klesel"]] <- temp
}
if(any(.approach_mgd %in% c("all", "Chin"))) {
teststat[["Chin"]] <- calculateParameterDifference(.object = .object,
.model = .parameters_to_compare)
}
if(any(.approach_mgd %in% c("all", "Sarstedt", "Keil", "Nitzl", "Henseler", "CI_para","CI_overlap"))) {
if(!inherits(.object, "cSEMResults_resampled")) {
if(.verbose) {
cat("Bootstrap cSEMResults objects ...\n\n")
}
.object <- resamplecSEMResults(
.object = .object,
.resample_method = "bootstrap",
.handle_inadmissibles = .handle_inadmissibles,
.R = .R_bootstrap,
.seed = .seed,
.eval_plan = .eval_plan
)
}
bootstrap_results <- lapply(.object, function(y) {
if(inherits(.object, "cSEMResults_2ndorder")) {
x <- y$Second_stage$Information$Resamples$Estimates$Estimates1
nobs <- nrow(y$First_stage$Information$Data)
} else {
x <- y$Estimates$Estimates_resample$Estimates1
nobs <- nrow(y$Information$Data)
}
path_resamples <- x$Path_estimates$Resampled
loading_resamples <- x$Loading_estimates$Resampled
weight_resamples <- x$Weight_estimates$Resampled
cor_exo_cons_resamples <- x$Exo_construct_correlation$Resampled
n <- nrow(path_resamples)
ses <- infer(.object=y,.quantity = "sd")
path_se <- ses$Path_estimates$sd
loading_se <- ses$Loading_estimates$sd
weight_se <- ses$Weight_estimates$sd
cor_exo_cons_se <- ses$Exo_construct_correlation$sd
bias <- infer(.object=y,.quantity = "bias")
path_bias <- bias$Path_estimates$bias
loading_bias <- bias$Loading_estimates$bias
weight_bias <- bias$Weight_estimates$bias
cor_exo_cons_bias <- bias$Exo_construct_correlation$bias
out<-list(
"n" = n,
"nObs" = nobs,
"para_all" = cbind(path_resamples,loading_resamples,weight_resamples, cor_exo_cons_resamples),
"ses_all" = c(path_se, loading_se, weight_se, cor_exo_cons_se),
"bias_all" = c(path_bias, loading_bias, weight_bias, cor_exo_cons_bias)
)
if(any(.approach_mgd %in% c("all", "CI_para", "CI_overlap"))){
diff <- setdiff(.type_ci, args_default(TRUE)$.type_ci)
if(length(diff) != 0) {
stop2(
"The following error occured in the testMGD() function:\n",
"Unknown approach: ", paste0(diff, collapse = ", "), ".",
" Possible choices are: ",
paste0(args_default(TRUE)$.type_ci, collapse = ", "))
}
cis <- infer(.object=y, .quantity=.type_ci, .alpha = .alpha)
cis_temp <- purrr::transpose(cis)
cis_ret<-lapply(cis_temp,function(x){
path_ci <- x$Path_estimates
loading_ci <- x$Loading_estimates
weight_ci <- x$Weight_estimates
cor_exo_cons_ci <- x$Exo_construct_correlation
list(path_estimates = path_ci, loading_estimates = loading_ci,
weight_estimates = weight_ci, cor_exo_cons_estimates = cor_exo_cons_ci)
})
names(cis_ret) <- names(cis_temp)
out[["ci_all"]] <- cis_ret
}
return(out)
})
if(any(.approach_mgd %in% c("all", "Nitzl", "Keil","Henseler"))) {
diff_para_Keil <- diff_para_Nitzl <- diff_para_Henseler<- calculateParameterDifference(
.object = .object,
.model = .parameters_to_compare
)
if(any(.approach_mgd %in% c("all","Henseler"))) {
temp <- rep(NA,length(unlist(diff_para_Henseler)))
teststat[["Henseler"]] <-relist(flesh = temp,skeleton = diff_para_Henseler)
}
object_permu <- utils::combn(.object, 2, simplify = FALSE)
names(object_permu) <- sapply(object_permu, function(x) paste0(names(x)[1], '_', names(x)[2]))
if(any(.approach_mgd %in% c("all", "Keil"))) {
teststat_Keil <- lapply(names(object_permu), function(x) {
diff <- diff_para_Keil[[x]]
ses1 <- bootstrap_results[[names(object_permu[[x]][1])]]$ses_all
ses2 <- bootstrap_results[[names(object_permu[[x]][2])]]$ses_all
n1<-bootstrap_results[[names(object_permu[[x]][1])]]$nObs
n2<-bootstrap_results[[names(object_permu[[x]][2])]]$nObs
ses_total <- sqrt((n1-1)^2/(n1+n2-2)*ses1^2 +
(n2-1)^2/(n1+n2-2)*ses2^2)*sqrt(1/n1+1/n2)
test_stat <- diff/ses_total[names(diff)]
list("teststat" = test_stat, "df" = n1 + n2 - 2)
})
names(teststat_Keil) <- names(object_permu)
teststat[["Keil"]] <- teststat_Keil
}
if(any(.approach_mgd %in% c("all", "Nitzl"))) {
teststat_Nitzl <- lapply(names(object_permu), function(x){
diff <- diff_para_Nitzl[[x]]
ses1 <- bootstrap_results[[names(object_permu[[x]][1])]]$ses_all
ses2 <- bootstrap_results[[names(object_permu[[x]][2])]]$ses_all
n1<-bootstrap_results[[names(object_permu[[x]][1])]]$nObs
n2<-bootstrap_results[[names(object_permu[[x]][2])]]$nObs
ses_total <- sqrt((n1-1)/(n1)*ses1^2 +
(n2-1)/(n2)*ses2^2)
test_stat <- diff/ses_total[names(diff)]
numerator <- ((n1-1)/n1*ses1^2+(n2-1)/n2*ses2^2)^2
denominator <- (n1-1)/n1^2*ses1^4+(n2-1)/n2^2*ses2^4
df <- round(numerator/denominator-2)
df <- df[names(diff)]
list("teststat" = test_stat, "df" = df)
})
names(teststat_Nitzl) <- names(object_permu)
teststat[["Nitzl"]] <- teststat_Nitzl
}
}
if(any(.approach_mgd %in% c("all", "Sarstedt"))) {
ll <- purrr::transpose(bootstrap_results)
group_id <- rep(1:length(.object), unlist(ll$n))
all_comb <- cbind(do.call(rbind,ll$para_all),
"group_id" = group_id)
all_comb <- all_comb[, c(names_param, "group_id")]
teststat[["Sarstedt"]] <- calculateFR(.resample_sarstedt = all_comb)
}
}
if(inherits(.object, "cSEMResults_2ndorder")) {
X_all_list <- lapply(.object, function(x) x$First_stage$Information$Data)
arguments <- .object[[1]]$Second_stage$Information$Arguments_original
} else {
X_all_list <- lapply(.object, function(x) x$Information$Data)
arguments <- .object[[1]]$Information$Arguments
}
X_all <- do.call(rbind, X_all_list)
id <- rep(1:length(X_all_list), sapply(X_all_list, nrow))
arguments[[".id"]] <- "id"
if(any(.approach_mgd %in% c("all", "Klesel", "Chin", "Sarstedt"))) {
if(.verbose){
cat("Permutation ...\n\n")
}
old_seed <- .Random.seed
on.exit({.Random.seed <<- old_seed})
if(is.null(.seed)) {
set.seed(seed = NULL)
.seed <- sample(.Random.seed, 1)
}
set.seed(.seed)
ref_dist <- list()
n_inadmissibles <- 0
counter <- 0
progressr::with_progress({
progress_bar_csem <- progressr::progressor(along = 1:.R_permutation)
repeat{
counter <- counter + 1
progress_bar_csem(message = sprintf("Permutation run = %g", counter))
X_temp <- cbind(X_all, id = sample(id))
arguments[[".data"]] <- X_temp
Est_temp <- do.call(csem, arguments)
status_code <- sum(unlist(verify(Est_temp)))
if(status_code == 0 | (status_code != 0 & .handle_inadmissibles == "ignore")) {
teststat_permutation <- list()
if(any(.approach_mgd %in% c("all", "Klesel"))) {
fit_temp <- fit(Est_temp, .saturated = .saturated, .type_vcv = .type_vcv)
temp <- c(
"dG" = calculateDistance(.matrices = fit_temp, .distance = "geodesic"),
"dL" = calculateDistance(.matrices = fit_temp, .distance = "squared_euclidian")
)
teststat_permutation[["Klesel"]] <- temp
}
if(any(.approach_mgd %in% c("all", "Chin"))) {
teststat_permutation[["Chin"]] <- calculateParameterDifference(
.object = Est_temp,
.model = .parameters_to_compare)
}
if(any(.approach_mgd %in% c("all", "Sarstedt"))) {
all_comb_permutation <- all_comb
all_comb_permutation[ , "group_id"] <- sample(group_id)
teststat_permutation[["Sarstedt"]] <- calculateFR(all_comb_permutation)
}
ref_dist[[counter]] <- teststat_permutation
} else if(status_code != 0 & .handle_inadmissibles == "drop") {
ref_dist[[counter]] <- NA
} else {
counter <- counter - 1
n_inadmissibles <- n_inadmissibles + 1
}
if(length(ref_dist) == .R_permutation) {
break
} else if(counter + n_inadmissibles == 10000) {
stop("Not enough admissible result.", call. = FALSE)
}
}
})
ref_dist1 <- Filter(Negate(anyNA), ref_dist)
}
if(any(.approach_mgd %in% c("all", "Klesel"))) {
ref_dist_Klesel <- lapply(ref_dist1, function(x) x$Klesel)
ref_dist_matrix_Klesel <- do.call(cbind, ref_dist_Klesel)
teststat_Klesel <- teststat$Klesel
pvalue_Klesel <- rowMeans(ref_dist_matrix_Klesel >= teststat_Klesel)
decision_Klesel <- lapply(.alpha, function(x) {
pvalue_Klesel > x
})
names(decision_Klesel) <- paste0(.alpha * 100, "%")
}
if(any(.approach_mgd %in% c("all", "Chin"))) {
teststat_Chin <- teststat$Chin
ref_dist_Chin <- lapply(ref_dist1, function(x) x$Chin)
ref_dist_Chin_temp <- purrr::transpose(ref_dist_Chin)
names(ref_dist_Chin_temp) <- names(teststat_Chin)
ref_dist_matrices_Chin <- lapply(ref_dist_Chin_temp, function(x) {
temp <- do.call(cbind, x)
temp_ind <- stats::complete.cases(temp)
temp[temp_ind, ,drop = FALSE]
})
pvalue_Chin <- lapply(1:length(ref_dist_matrices_Chin), function(x) {
rowMeans(ref_dist_matrices_Chin[[x]] >= abs(teststat_Chin[[x]])) +
rowMeans(ref_dist_matrices_Chin[[x]] <= (-abs(teststat_Chin[[x]])))
})
names(pvalue_Chin) <- names(ref_dist_matrices_Chin)
padjusted_Chin <- lapply(as.list(.approach_p_adjust), function(x){
pvector <- stats::p.adjust(unlist(pvalue_Chin),method = x)
relist(flesh = pvector,skeleton = pvalue_Chin)
})
names(padjusted_Chin) <- .approach_p_adjust
decision_Chin <- lapply(padjusted_Chin, function(adjust_approach){
temp <- lapply(.alpha, function(alpha){
lapply(adjust_approach,function(group_comp){
group_comp > alpha
})
})
names(temp) <- paste0(.alpha*100, "%")
temp
})
decision_overall_Chin <- lapply(decision_Chin, function(decision_Chin_list){
lapply(decision_Chin_list,function(x){
all(unlist(x))
})
})
}
if(any(.approach_mgd %in% c("all", "Sarstedt"))) {
teststat_Sarstedt <- teststat$Sarstedt
ref_dist_Sarstedt <- lapply(ref_dist1, function(x) x$Sarstedt)
ref_dist_matrix_Sarstedt <- do.call(cbind, ref_dist_Sarstedt)
pvalue_Sarstedt <- rowMeans(ref_dist_matrix_Sarstedt >= teststat_Sarstedt)
padjusted_Sarstedt<- lapply(as.list(.approach_p_adjust), function(x){
pvector <- stats::p.adjust(pvalue_Sarstedt, method = x)
})
names(padjusted_Sarstedt) <- .approach_p_adjust
decision_Sarstedt <- lapply(padjusted_Sarstedt,function(p_value){
temp <- lapply(.alpha, function(alpha){
p_value > alpha
})
names(temp) <- paste(.alpha*100,"%",sep= '')
temp
})
decision_overall_Sarstedt <- lapply(decision_Sarstedt, function(x){
lapply(x, function(xx){
all(xx)
})
})
}
if(any(.approach_mgd %in% c("all", "Keil"))){
pvalue_Keil <- lapply(teststat$Keil,function(x){
p_value <- 2*(1-pt(abs(x$teststat),df = x$df))
p_value
})
padjusted_Keil<- lapply(as.list(.approach_p_adjust), function(x){
pvector <- stats::p.adjust(unlist(pvalue_Keil),method = x)
relist(flesh = pvector,skeleton = pvalue_Keil)
})
names(padjusted_Keil) <- .approach_p_adjust
decision_Keil <- lapply(padjusted_Keil, function(adjust_approach){
temp <- lapply(.alpha, function(alpha){
lapply(adjust_approach,function(group_comp){
group_comp > alpha
})
})
names(temp) <- paste0(.alpha*100, "%")
temp
})
decision_overall_Keil <- lapply(decision_Keil, function(decision_Keil_list){
lapply(decision_Keil_list,function(x){
all(unlist(x))
})
})
}
if(any(.approach_mgd %in% c("all", "Nitzl"))){
pvalue_Nitzl <- lapply(teststat$Nitzl,function(x){
p_value <- 2*(1-pt(abs(x$teststat),df = x$df))
p_value
})
padjusted_Nitzl<- lapply(as.list(.approach_p_adjust), function(x){
pvector <- stats::p.adjust(unlist(pvalue_Nitzl),method = x)
relist(flesh = pvector,skeleton = pvalue_Nitzl)
})
names(padjusted_Nitzl) <- .approach_p_adjust
decision_Nitzl <- lapply(padjusted_Nitzl, function(adjust_approach){
temp <- lapply(.alpha, function(alpha){
lapply(adjust_approach,function(group_comp){
group_comp > alpha
})
})
names(temp) <- paste0(.alpha*100, "%")
temp
})
decision_overall_Nitzl <- lapply(decision_Nitzl, function(decision_Nitzl_list){
lapply(decision_Nitzl_list,function(x){
all(unlist(x))
})
})
}
if(any(.approach_mgd %in% c("all", "Henseler"))) {
teststat_Henseler <- teststat$Henseler
ll_centered <- lapply(bootstrap_results, function(x){
t(apply(x$para_all,1,function(row){
row-x$bias_all
}))
})
names(ll_centered) <- names(bootstrap_results)
pairs_centered <- utils::combn(ll_centered, 2, simplify = FALSE)
names(pairs_centered) <- sapply(pairs_centered, function(x) paste0(names(x)[1], '_', names(x)[2]))
pvalue_Henseler <- lapply(pairs_centered,function(x){
calculatePr(.resample_centered = x,
.parameters_to_compare = names_param)
})
padjusted_Henseler<- lapply(as.list("none"), function(x){
pvector <- stats::p.adjust(unlist(pvalue_Henseler),method = x)
relist(flesh = pvector,skeleton = pvalue_Henseler)
})
names(padjusted_Henseler) <- "none"
decision_Henseler <- lapply(padjusted_Henseler, function(adjust_approach){
temp <- lapply(.alpha, function(alpha){
lapply(adjust_approach,function(group_comp){
group_comp > alpha/2 & group_comp < 1- alpha/2
})
})
names(temp) <- paste0(.alpha*100, "%")
temp
})
decision_overall_Henseler <- lapply(decision_Henseler, function(decision_Henseler_list){
lapply(decision_Henseler_list,function(x){
all(unlist(x))
})
})
}
if(any(.approach_mgd %in% c("all", "CI_para", "CI_overlap"))) {
cis <- lapply(bootstrap_results,function(x){
x$ci_all
})
cis_comp <- utils::combn(cis, 2, simplify = FALSE)
names(cis_comp) <- sapply(cis_comp, function(x) paste0(names(x)[1], '_', names(x)[2]))
param_per_group <- getRelevantParameters(.object = .object,
.model = .parameters_to_compare)
param_per_group <- purrr::transpose(param_per_group)
param_comp <- utils::combn(param_per_group, 2, simplify = FALSE)
names(param_comp) <- sapply(param_comp,
function(x)
paste0(names(x)[1], '_', names(x)[2]))
if(any(.approach_mgd %in% c("all", "CI_para"))) {
decision_ci_para <- lapply(.alpha, function(alpha) {
tttt <- lapply(names(cis_comp), function(comp) {
tt = lapply(names(cis_comp[[comp]][[1]]), function(interval_type){
ttt <- lapply(names(cis_comp[[comp]][[1]][[interval_type]]),
function(param) {
lb <- paste0(100 * (1 - alpha), "%L")
ub <- paste0(100 * (1 - alpha), "%U")
temp_para1 <- param_comp[[comp]][[1]][[param]]
temp_cis1 <- cis_comp[[comp]][[1]][[interval_type]][[param]]
temp_cis_selected1 <- temp_cis1[, names(temp_para1), drop = FALSE]
lb_temp1 <-temp_cis_selected1[lb,]
names(lb_temp1) <- colnames(temp_cis_selected1[lb,,drop=FALSE])
ub_temp1 <-temp_cis_selected1[ub,]
names(ub_temp1) <- colnames(temp_cis_selected1[ub,,drop=FALSE])
temp_para2 <- param_comp[[comp]][[2]][[param]]
temp_cis2 <- cis_comp[[comp]][[2]][[interval_type]][[param]]
temp_cis_selected2 <- temp_cis2[, names(temp_para2), drop = FALSE]
lb_temp2 <-temp_cis_selected2[lb,]
names(lb_temp2) <- colnames(temp_cis_selected2[lb,,drop=FALSE])
ub_temp2 <-temp_cis_selected2[ub,]
names(ub_temp2) <- colnames(temp_cis_selected2[ub,,drop=FALSE])
decision<-
(lb_temp2 <= temp_para1 &
ub_temp2 >= temp_para1) |
(lb_temp1 <= temp_para2 &
ub_temp1 >= temp_para2)
out=data.frame("Estimate"=temp_para1,"lb"=lb_temp2,
"ub"=ub_temp2,"Estimate"=temp_para2,"lb"=lb_temp1,
"ub"=ub_temp1,"decision"=decision)
if(nrow(out)!=0){
colnames(out)=c(paste0("Est_",names(cis_comp[[comp]])[1]),
paste0("lb_",names(cis_comp[[comp]])[2]),
paste0("ub_",names(cis_comp[[comp]])[2]),
paste0("Est_",names(cis_comp[[comp]])[2]),
paste0("lb_",names(cis_comp[[comp]])[1]),
paste0("ub_",names(cis_comp[[comp]])[1]),
"Decision")
}
out$Name <- rownames(out)
out <- out[, c(ncol(out), 1:(ncol(out) -1))]
rownames(out) <- NULL
out
})
do.call(rbind,ttt)
})
names(tt) = names(cis_comp[[comp]][[1]])
tt
})
names(tttt) <- names(cis_comp)
tttt
})
names(decision_ci_para) <- paste0((1 - .alpha) * 100, "%")
decision_overall_ci_para<-lapply(names(decision_ci_para), function(alpha) {
t <- lapply(names(decision_ci_para[[alpha]]), function(comp) {
tt <- lapply(names(decision_ci_para[[alpha]][[comp]]),function(interval_type){
all(decision_ci_para[[alpha]][[comp]][[interval_type]][,"Decision"])
})
names(tt) <- names(decision_ci_para[[alpha]][[comp]])
tt
})
names(t) <- names(decision_ci_para[[alpha]])
temp <- purrr::transpose(t)
overall_dec<-lapply(names(temp),function(x){
all(unlist(temp[[x]]))
})
names(overall_dec)<-names(temp)
overall_dec
})
names(decision_overall_ci_para) <- names(decision_ci_para)
}
if(any(.approach_mgd %in% c("all", "CI_overlap"))) {
decision_ci_overlap <- lapply(.alpha, function(alpha) {
ttt <- lapply(names(cis_comp), function(comp) {
t <- lapply(names(cis_comp[[comp]][[1]]), function(interval_type) {
tt <- lapply(names(cis_comp[[comp]][[1]][[interval_type]]), function(param) {
lb <- paste0(100 * (1 - alpha), "%L")
ub <- paste0(100 * (1 - alpha), "%U")
para_rel <- names(param_comp[[comp]][[1]][[param]])
lb1 <- cis_comp[[comp]][[1]][[interval_type]][[param]][lb,para_rel ]
ub1 <- cis_comp[[comp]][[1]][[interval_type]][[param]][ub,para_rel ]
lb2 <- cis_comp[[comp]][[2]][[interval_type]][[param]][lb,para_rel ]
ub2 <- cis_comp[[comp]][[2]][[interval_type]][[param]][ub,para_rel ]
decision <- (lb2 <= lb1 & lb1 <= ub2) |
(lb2 <= ub1 & ub1 <= ub2) |
(lb1<=lb2 & ub1>=ub2) |
(lb2<=lb1 & ub2>=ub1)
out <- data.frame(lb1,ub1,lb2,ub2,decision)
if(nrow(out)!=0){
colnames(out)=c(paste0("lb_",names(cis_comp[[comp]])[1]),
paste0("ub_",names(cis_comp[[comp]])[1]),
paste0("lb_",names(cis_comp[[comp]])[2]),
paste0("ub_",names(cis_comp[[comp]])[2]),
"Decision"
)
out$Name <- para_rel
out <- out[, c(ncol(out), 1:(ncol(out) - 1))]
rownames(out) <- NULL
out
}
out
})
do.call(rbind,tt)
})
names(t) <- names(cis_comp[[comp]][[1]])
t
})
names(ttt) <- names(cis_comp)
ttt
})
names(decision_ci_overlap) <- paste0((1 - .alpha) * 100, "%")
decision_overall_ci_overlap<-lapply(names(decision_ci_overlap), function(alpha) {
t <- lapply(names(decision_ci_overlap[[alpha]]), function(comp) {
tt <- lapply(names(decision_ci_overlap[[alpha]][[comp]]),function(interval_type){
all(decision_ci_overlap[[alpha]][[comp]][[interval_type]][,"Decision"])
})
names(tt) <- names(decision_ci_overlap[[alpha]][[comp]])
tt
})
names(t) <- names(decision_ci_overlap[[alpha]])
temp <- purrr::transpose(t)
overall_dec<-lapply(names(temp),function(x){
all(unlist(temp[[x]]))
})
names(overall_dec)<-names(temp)
overall_dec
})
names(decision_overall_ci_overlap) <- names(decision_ci_overlap)
}
}
out <- list()
out[["Information"]] <- list(
"Group_names" = names(.object),
"Number_of_observations"= sapply(X_all_list, nrow),
"Approach" = .approach_mgd,
"Approach_p_adjust" = .approach_p_adjust,
"Alpha" = .alpha,
"Parameters_to_compare" = .parameters_to_compare)
if(any(.approach_mgd %in% c("all", "Klesel", "Chin", "Sarstedt"))) {
out[["Information"]][["Information_permutation"]] <- list(
"Number_admissibles" = length(ref_dist1),
"Total_runs" = counter + n_inadmissibles,
"Permutation_seed" = .seed,
"Permutation_values" = list(),
"Handle_inadmissibles" = .handle_inadmissibles
)
} else {
out[["Information"]][["Information_permutation"]] <- list(
"Number_admissibles" = NA,
"Total_runs" = NA,
"Permutation_seed" = NA,
"Permutation_values" = NA,
"Handle_inadmissibles" = NA
)
}
if(any(.approach_mgd %in% c("all", "Sarstedt", "Keil", "Nitzl", "Henseler",
"CI_param","CI_overlap"))) {
info_boot <-lapply(.object, function(x){
if(inherits(.object, "cSEMResults_2ndorder")) {
x <- x$Second_stage$Information$Resamples$Information_resample
} else {
x <- x$Information$Information_resample
}
list(
"Number_admissibles" = x$Number_of_admissibles,
"Total_runs" = x$Number_of_runs,
"Bootstrap_seed" = x$Seed,
"Handle_inadmissibles" = x$Handle_inadmissibles
)
})
names(info_boot) <- names(.object)
info_boot <- purrr::transpose(info_boot)
out[["Information"]][["Information_bootstrap"]] <- list(
"Number_admissibles" = info_boot$Number_admissibles,
"Total_runs" = info_boot$Total_runs,
"Bootstrap_seed" = info_boot$Bootstrap_seed,
"Handle_inadmissibles" = info_boot$Handle_inadmissibles
)
} else {
out[["Information"]][["Information_bootstrap"]] <- list(
"Number_admissibles" = NA,
"Total_runs" = NA,
"Bootstrap_seed" = NA,
"Handle_inadmissibles" = NA
)
}
if(any(.approach_mgd %in% c("all", "Klesel"))) {
out[["Klesel"]] <- list(
"Test_statistic" = teststat_Klesel,
"P_value" = pvalue_Klesel,
"Decision" = decision_Klesel,
"VCV_type" = .type_vcv
)
out[["Information"]][["Information_permutation"]][["Permutation_values"]][["Klesel"]] <- ref_dist_matrix_Klesel
}
if(any(.approach_mgd %in% c("all", "Chin"))) {
out[["Chin"]] <- list(
"Test_statistic" = teststat_Chin,
"P_value" = padjusted_Chin,
"Decision" = decision_Chin,
"Decision_overall" = decision_overall_Chin
)
out[["Information"]][["Information_permutation"]][["Permutation_values"]][["Chin"]] <- ref_dist_matrices_Chin
}
if(any(.approach_mgd %in% c("all", "Sarstedt"))) {
out[["Sarstedt"]] <- list(
"Test_statistic" = teststat_Sarstedt,
"P_value" = padjusted_Sarstedt,
"Decision" = decision_Sarstedt,
"Decision_overall" = decision_overall_Sarstedt
)
out[["Information"]][["Information_permutation"]][["Permutation_values"]][["Sarstedt"]] <- ref_dist_matrix_Sarstedt
}
if(any(.approach_mgd %in% c("all", "Keil"))) {
out[["Keil"]] <- list(
"Test_statistic" = purrr::transpose(teststat_Keil)$teststat,
"P_value" = padjusted_Keil,
"Decision" = decision_Keil,
"Decision_overall" = decision_overall_Keil,
"df" = purrr::transpose(teststat_Keil)$df[[1]]
)
}
if(any(.approach_mgd %in% c("all", "Nitzl"))) {
out[["Nitzl"]] <- list(
"Test_statistic" = purrr::transpose(teststat_Nitzl)$teststat,
"P_value" = padjusted_Nitzl,
"Decision" = decision_Nitzl,
"Decision_overall" = decision_overall_Nitzl,
"df" = purrr::transpose(teststat_Nitzl)$df[[1]]
)
}
if(any(.approach_mgd %in% c("all", "Henseler"))) {
out[["Henseler"]] <- list(
"Test_statistic" = teststat_Henseler,
"P_value" = padjusted_Henseler,
"Decision" = decision_Henseler,
"Decision_overall" = decision_overall_Henseler
)
}
if(any(.approach_mgd %in% c("all", "CI_para"))) {
out[["CI_para"]] <- list(
"Decision" = decision_ci_para,
"Decision_overall" = decision_overall_ci_para
)
}
if(any(.approach_mgd %in% c("all", "CI_overlap"))) {
out[["CI_overlap"]] <- list(
"Decision" = decision_ci_overlap,
"Decision_overall" = decision_overall_ci_overlap
)
}
class(out) <- "cSEMTestMGD"
if(.output_type == "complete") {
return(out)
} else {
structureTestMGDDecisions(out)
}
} |
test_that("nth", {
x = 1:10
expect_equal(nth(x,1),1)
expect_equal(nth(x,5),5)
expect_equal(nth(x,-1),10)
expect_equal(nth(x,-2),9)
}) |
is.t <-
function(x,m,a=10,n0=NULL)
{
p=rep(0,m+2);
y=rep(0,m+2);
q=0;
x2=var(x);
if(is.null(n0))
{
n0=2*x2/(x2+1);
df=m;
}
else
{
df=m+1;
}
if(n0>0)
{
di=max(x)-min(x);
for(i in 1:m)
{
p[i]=pt(min(x)+di*i/m,n0)-pt(min(x)+di*(i-1)/m,n0);
if(p[i]==0)
{
break;
}
for(j in 1:length(x))
if(x[j]>(min(x)+di*(i-1)/m) && x[j]<=(min(x)+di*i/m))
y[i]=y[i]+1;
q=q+(y[i]-(length(x)*p[i]))^2/(length(x)*p[i]);
}
p[m+1]=pt(Inf,n0)-pt(max(x),n0);
p[m+2]=pt(min(x),n0);
y[m+2]=length(which(x==min(x)));
if(p[m+1]!=0)
q=q+(y[m+1]-(length(x)*p[m+1]))^2/(length(x)*p[m+1]);
if(p[m+2]!=0)
q=q+(y[m+2]-(length(x)*p[m+2]))^2/(length(x)*p[m+2]);
q0=qchisq(1-a,df);
pvalue=pchisq(q,df);
if(q<=q0)
{
return(data.frame("qchisq"=q,"pvalue"=pvalue));
}
else
{
return(data.frame("state"=-1,"pvalue"=1));
}
}
else
{
return(data.frame("state"=-1,"pvalue"=1));
}
} |
spss.get <- function(file, lowernames=FALSE,
datevars=NULL,
use.value.labels=TRUE,
to.data.frame=TRUE,
max.value.labels=Inf,
force.single=TRUE, allow=NULL, charfactor=FALSE,
reencode=NA) {
w <- read.spss(file, use.value.labels=use.value.labels,
to.data.frame=to.data.frame,
max.value.labels=max.value.labels,
reencode=reencode)
a <- attributes(w)
vl <- a$variable.labels
nam <- a$names
nam <- makeNames(a$names, unique=TRUE, allow=allow)
if(lowernames) nam <- casefold(nam)
names(w) <- nam
lnam <- names(vl)
if(length(vl))
for(i in 1:length(vl)) {
n <- lnam[i]
lab <- vl[i]
if(lab != '' && lab != n) label(w[[i]]) <- lab
}
attr(w, 'variable.labels') <- NULL
if(force.single || length(datevars) || charfactor)
for(v in nam) {
x <- w[[v]]
changed <- FALSE
if(v %in% datevars) {
x <- importConvertDateTime(x, 'date', 'spss')
changed <- TRUE
} else if(all(is.na(x))) {
storage.mode(x) <- 'integer'
changed <- TRUE
} else if(!(is.factor(x) || is.character(x))) {
if(all(is.na(x))) {
storage.mode(x) <- 'integer'
changed <- TRUE
} else if(max(abs(x),na.rm=TRUE) <= (2^31-1) &&
all(floor(x) == x, na.rm=TRUE)) {
storage.mode(x) <- 'integer'
changed <- TRUE
}
} else if(charfactor && is.character(x)) {
if(length(unique(x)) < .5*length(x))
{
x <- sub(' +$', '', x)
x <- factor(x, exclude='')
changed <- TRUE
}
}
if(changed) w[[v]] <- x
}
w
}
csv.get <- function(file, lowernames=FALSE, datevars=NULL, datetimevars=NULL,
dateformat='%F', fixdates=c('none','year'),
comment.char = "", autodates=TRUE, allow=NULL,
charfactor=FALSE,
sep=',', skip=0, vnames=NULL, labels=NULL, ...){
fixdates <- match.arg(fixdates)
if(length(vnames))
vnames <- scan(file, what=character(0), skip=vnames-1, nlines=1,
sep=sep, quiet=TRUE)
if(length(labels))
labels <- scan(file, what=character(0), skip=labels-1, nlines=1,
sep=sep, quiet=TRUE)
w <- if(length(vnames))
read.csv(file, check.names=FALSE, comment.char=comment.char,
header=FALSE, col.names=vnames, skip=skip, sep=sep, ...)
else read.csv(file, check.names=FALSE, comment.char=comment.char,
sep=sep, skip=skip, ...)
n <- nam <- names(w)
m <- makeNames(n, unique=TRUE, allow=allow)
if(length(labels)) n <- labels
if(lowernames)
m <- casefold(m)
changed <- any(m != nam)
if(changed)
names(w) <- m
if(autodates) {
tmp <- w
names(tmp) <- NULL
for(i in 1:length(tmp)) {
if(! is.character(tmp[[1]]))
next
}
}
cleanup.import(w,
labels=if(length(labels))labels else if(changed)n else NULL,
datevars=datevars, datetimevars=datetimevars,
dateformat=dateformat,
fixdates=fixdates, charfactor=charfactor)
}
stata.get <- function(file, lowernames=FALSE,
convert.dates=TRUE, convert.factors=TRUE,
missing.type=FALSE, convert.underscore=TRUE,
warn.missing.labels=TRUE, force.single=TRUE,
allow=NULL, charfactor=FALSE, ...) {
convertObjs <- function(x, charfactor, force.single) {
if((inherits(x, 'Date') || is.factor(x))
&& storage.mode(x) != 'integer') {
storage.mode(x) <- 'integer'
} else if(charfactor && is.character(x)) {
if(length(unique(x)) < length(x) / 2)
{
x <- sub(' +$', '', x)
x <- factor(x, exclude='')
}
} else if(is.numeric(x)) {
if(all(is.na(x))) {
storage.mode(x) <- 'integer'
}
else if(force.single && max(abs(x), na.rm=TRUE) <= (2^31-1) &&
all(floor(x) == x, na.rm=TRUE)) {
storage.mode(x) <- 'integer'
}
}
return(x)
}
create.attribs <- function(var.label, val.label, format, label.table) {
attribs <- list()
if(format != '') {
attribs$format <- format
}
if(var.label != '') {
attribs$label <- var.label
}
if(val.label != '' && val.label %in% names(label.table) &&
!is.null(label.table[[val.label]])) {
attribs$value.label.table <- label.table[[val.label]]
}
return(attribs)
}
w <- read.dta(file, convert.dates=convert.dates,
convert.factors=convert.factors,
missing.type=missing.type,
convert.underscore=convert.underscore,
warn.missing.labels=warn.missing.labels, ...)
a <- attributes(w)
num.vars <- length(w)
nam <- makeNames(a$names, unique=TRUE, allow=allow)
if(lowernames) nam <- casefold(nam, upper=FALSE)
a$names <- nam
if(!length(a$var.labels)) {
a$var.labels <- character(num.vars)
}
if(length(a$val.labels)) {
val.labels <- a$val.labels
} else {
val.labels <- character(num.vars)
}
attribs <- mapply(FUN=create.attribs, var.label=a$var.labels,
val.label=val.labels, format=a$formats,
MoreArgs=list(label.table=a$label.table),
SIMPLIFY=FALSE)
attr(w, 'var.labels') <- NULL
w <- lapply(w, FUN=convertObjs, force.single=force.single,
charfactor=charfactor)
w <- unname(w)
for(i in seq(along.with=w)) {
if('label' %in% names(attribs[[i]])) {
label(w[[i]]) <- attribs[[i]]$label
attribs[[i]]$label <- NULL
}
consolidate(attributes(w[[i]])) <- attribs[[i]]
}
stata.info <- a[c('datalabel','version','time.stamp','val.labels','label.table')]
attributes(w) <- c(a[c('names','row.names','class')],
stata.info=list(stata.info))
return(w)
} |
WHInit <- function(V, ...) {
I <- ncol(V);
K <- nrow(V);
L <- as.integer(K/2);
eps <- 0.0001;
H <- matrix(0, nrow=2L, ncol=I);
W <- matrix(0, nrow=K, ncol=2L);
rrA <- 1:L;
rrB <- (L+1):K;
rrBA <- c(rrB, rrA);
PMA <- V[rrA,,drop=FALSE];
PMB <- V[rrB,,drop=FALSE];
H[1,] <- as.integer(colMeans(PMA > 0.5*PMB) > 0.5);
H[2,] <- as.integer(colMeans(PMB > 0.5*PMA) > 0.5);
summary <- 2*H[1L,] + H[2L,];
dummy <- unique(summary);
status <- 0L;
if (length(dummy) == 1L) {
if (prod(H[,1L]) == 0) {
W[,1L] <- rowMedians(V)/2;
W[,2L] <- W[rrBA,1L];
H <- H*2;
if (H[2L,1L] == 1){
W <- W[,c(2L,1L),drop=FALSE];
H <- H[c(2L,1L),,drop=FALSE];
}
status <- 1L;
} else {
W[,1L] <- rowMedians(V);
W[,2L] <- W[,1L];
W[rrB,1L] <- eps;
W[rrA,2L] <- eps;
status <- 2L;
}
} else {
aux <- colSums(H);
aux <- rep(aux, times=2L);
dim(aux) <- c((length(aux)/2), 2);
aux <- t(aux);
H <- 2 * H/aux;
H[is.na(H)] <- 0;
W <- t(miqr.solve(t(H),t(V)));
W[W < 0] <- eps;
corDiff <- cor(W[,1L],W[rrBA,2L]) - cor(W[,1L],W[,2L]);
if (is.na(corDiff) || corDiff < 0.1) {
W0 <- W;
W[,1L] <- rowMedians(W0);
W[,2L] <- W0[rrBA,1L];
H <- miqr.solve(W, V);
H[H < 0] <- 0;
status <- 1L;
}
}
stopifnot(nrow(W) == K && ncol(W) == 2L);
stopifnot(nrow(H) == 2L && ncol(H) == I);
list(W=W, H=H, status=status);
} |
MLWS<-function(X,m,epsilon=c(0.02,0.05), coint.elements=NULL, B=NULL, prewhite=c("none","uni","multi"), eta=rep(1/sqrt(min(dim(X))),min(dim(X))), rep=FALSE, approx=100, split=1, T_limdist=1000, M_limdist=5000){
epsilon<-epsilon[1]
prewhite<-prewhite[1]
X<-as.matrix(X)
if(which.max(dim(X))==1){X<-t(X)}
n<-ncol(X)
q<-nrow(X)
means<-apply(X,1,mean)
for(a in 1:q){X[a,]<-X[a,]-means[a]}
if(is.null(B)==FALSE){X<-apply(X,2,function(x){B%*%x})}
if(is.null(coint.elements)){
if(prewhite!="uni"){d.est<-as.vector(GSE(X=X,m=m))}
B<-diag(q)
}else{
params<-as.vector(GSE_coint(X=X,m=m, elements=coint.elements))
ncoint<-length(coint.elements)-1
d.est<-as.vector(params[-(1:(ncoint))])
B<-diag(q)
for(i in 1:ncoint){
B[coint.elements[1],coint.elements[(i+1)]]<--params[i]
}
X<-apply(X,2,function(x){B%*%x})
}
eta<-as.vector(eta)
if(length(eta)!=q)stop("eta must be a vector of length q.")
if((prewhite%in%c("none","uni","multi"))==FALSE)stop("prewhite must be either 'none', 'uni' or 'multi'.")
if(prewhite=="multi"){
if(rep==TRUE){print("Estimating VARFIMA")}
theta.hat<-VARFIMA.est(data=t(X), approx=approx, split=split, rep=rep)
if(rep==TRUE){print(theta.hat)}
if(rep==TRUE){print("Pre-Whitening...")}
filtered<-pre.White(theta=theta.hat, data=t(X), q=q, approx=approx)
}
if(prewhite=="uni"){
for(aa in 1:q){
prewhite_est<-list()
suppressWarnings(
for(i in 1:4){
prewhite_est[[1]]<-fracdiff(X[aa,], nar=0, nma=0)
prewhite_est[[2]]<-fracdiff(X[aa,], nar=1, nma=0)
prewhite_est[[3]]<-fracdiff(X[aa,], nar=0, nma=1)
prewhite_est[[4]]<-fracdiff(X[aa,], nar=1, nma=1)
}
)
est<-prewhite_est[[which.min(unlist(lapply(prewhite_est, BIC)))]]
X[aa,]<-(fdiff(residuals(est), -est$d))
}
d.est<-as.vector(GSE(X=X,m=m))
}
W.stat<-W_multi(X=X, d_vec=d.est, m=m, epsilon=epsilon, eta=eta)
crit<-cbind(c(1.118,1.252,1.374,1.517),c(1.022,1.155,1.277,1.426))
colnames(crit)<-c("eps=.02","eps=.05")
rownames(crit)<-c("alpha=.1","alpha=.05","alpha=.025","alpha=.01")
if(epsilon==0.02){crit<-crit[,1]}
if(epsilon==0.05){crit<-crit[,2]}
if(any(eta!=rep(1/sqrt(q),q))){
G_est<-G.hat(X,d=d.est,m=m)
cat("Simulating limit distribution...","\n")
dist<-simMLWS(G=G_est, eta=eta, epsilon=epsilon, T=T_limdist, M=M_limdist)
crit<-quantile(dist, probs=c(0.9,0.95,0.975,0.99))
pval<-1-ecdf(dist)(W.stat)
out<-list("B"=B,"d"=d.est,"W.stat"=W.stat, "CriticalValues"=crit, "pval"=pval)
}else{
out<-list("B"=B,"d"=d.est,"W.stat"=W.stat, "CriticalValues"=crit)
}
out
} |
TAR.lagd<-function(ay,p1,p2,ph.1,ph.2,sig.1,sig.2,thres,lagp1,lagp2,constant=1,d0,thresVar){
loglik<-lik<-pr<-NULL
if (!missing(thresVar)){
for (i in 1:d0){
loglik[i]<- TAR.lik(ay,p1,p2,ph.1,ph.2,sig.1,sig.2,i,thres,lagp1,lagp2,constant=constant,thresVar)}}
else {
for (i in 1:d0){
loglik[i]<- TAR.lik(ay,p1,p2,ph.1,ph.2,sig.1,sig.2,i,thres,lagp1,lagp2,constant=constant)}}
lik<- (exp(loglik-max(loglik)))*(rev(c(1:d0))/sum(1:d0))
lagd<- (sum((cumsum(lik)/sum(lik))<runif(1, min=0, max=1)))+1
return(lagd)
} |
test_that("classif_nodeHarvest", {
requirePackagesOrSkip("nodeHarvest", default.method = "load")
parset.list = list(
list(nodes = 2L),
list(nodes = 2L, maxinter = 1L),
list(nodes = 2L, mode = "outbag")
)
old.predicts.list = list()
old.probs.list = list()
for (i in seq_along(parset.list)) {
parset = parset.list[[i]]
Y = ifelse(binaryclass.df[binaryclass.train.inds,
binaryclass.class.col] == binaryclass.class.levs[1], 1, 0)
parset = c(parset, list(X = binaryclass.df[binaryclass.train.inds,
-binaryclass.class.col], Y = Y, silent = TRUE))
set.seed(getOption("mlr.debug.seed"))
m = do.call(nodeHarvest::nodeHarvest, parset)
p = predict(m, binaryclass.df[-binaryclass.train.inds, ])
old.predicts.list[[i]] = ifelse(p > 0.5, binaryclass.class.levs[1],
binaryclass.class.levs[2])
old.probs.list[[i]] = p
}
testSimpleParsets("classif.nodeHarvest", binaryclass.df, binaryclass.target,
binaryclass.train.inds, old.predicts.list, parset.list)
testProbParsets("classif.nodeHarvest", binaryclass.df, binaryclass.target,
binaryclass.train.inds, old.probs.list, parset.list)
}) |
do_exec_plan <- function(.data) {
plan <- ExecPlan$create()
final_node <- plan$Build(.data)
tab <- plan$Run(final_node)
if (inherits(tab, "RecordBatchReader")) {
tab <- tab$read_table()
}
if (length(final_node$sort$temp_columns) > 0) {
tab <- tab[, setdiff(names(tab), final_node$sort$temp_columns), drop = FALSE]
}
if (ncol(tab)) {
original_schema <- source_data(.data)$schema
r_meta <- original_schema$r_metadata
if (!is.null(r_meta)) {
new_schema <- tab$schema
common_names <- intersect(names(r_meta$columns), names(tab))
keep <- common_names[
map_lgl(common_names, ~ original_schema[[.]] == new_schema[[.]])
]
r_meta$columns <- r_meta$columns[keep]
if (has_aggregation(.data)) {
r_meta$attributes <- NULL
}
tab$r_metadata <- r_meta
}
}
tab
}
ExecPlan <- R6Class("ExecPlan",
inherit = ArrowObject,
public = list(
Scan = function(dataset) {
if (inherits(dataset, "arrow_dplyr_query")) {
if (inherits(dataset$.data, "RecordBatchReader")) {
return(ExecNode_ReadFromRecordBatchReader(self, dataset$.data))
}
filter <- dataset$filtered_rows
if (isTRUE(filter)) {
filter <- Expression$scalar(TRUE)
}
colnames <- unique(unlist(map(
dataset$selected_columns,
field_names_in_expression
)))
dataset <- dataset$.data
assert_is(dataset, "Dataset")
} else {
if (inherits(dataset, "ArrowTabular")) {
dataset <- InMemoryDataset$create(dataset)
}
assert_is(dataset, "Dataset")
filter <- Expression$scalar(TRUE)
colnames <- names(dataset)
}
ExecNode_Scan(self, dataset, filter, colnames %||% character(0))
},
Build = function(.data) {
group_vars <- dplyr::group_vars(.data)
grouped <- length(group_vars) > 0
target_names <- names(.data)
.data <- ensure_group_vars(.data)
.data <- ensure_arrange_vars(.data)
if (inherits(.data$.data, "arrow_dplyr_query")) {
node <- self$Build(.data$.data)
} else {
node <- self$Scan(.data)
}
if (inherits(.data$filtered_rows, "Expression")) {
node <- node$Filter(.data$filtered_rows)
}
if (!is.null(.data$aggregations)) {
node <- node$Project(summarize_projection(.data))
if (grouped) {
.data$aggregations <- lapply(.data$aggregations, function(x) {
x[["fun"]] <- paste0("hash_", x[["fun"]])
x
})
}
node <- node$Aggregate(
options = map(.data$aggregations, ~ .[c("fun", "options")]),
target_names = names(.data$aggregations),
out_field_names = names(.data$aggregations),
key_names = group_vars
)
if (grouped) {
node <- node$Project(
make_field_refs(c(group_vars, names(.data$aggregations)))
)
if (getOption("arrow.summarise.sort", FALSE)) {
node$sort <- list(
names = group_vars,
orders = rep(0L, length(group_vars))
)
}
}
} else {
projection <- c(.data$selected_columns, .data$temp_columns)
node <- node$Project(projection)
if (!is.null(.data$join)) {
node <- node$Join(
type = .data$join$type,
right_node = self$Build(.data$join$right_data),
by = .data$join$by,
left_output = names(.data),
right_output = setdiff(names(.data$join$right_data), .data$join$by)
)
}
}
if (length(.data$arrange_vars)) {
node$sort <- list(
names = names(.data$arrange_vars),
orders = .data$arrange_desc,
temp_columns = names(.data$temp_columns)
)
}
if (!is.null(.data$head)) {
node$head <- .data$head
}
if (!is.null(.data$tail)) {
node$tail <- .data$tail
}
node
},
Run = function(node) {
assert_is(node, "ExecNode")
sorting <- node$sort %||% list()
select_k <- node$head %||% -1L
has_sorting <- length(sorting) > 0
if (has_sorting) {
if (!is.null(node$tail)) {
sorting$orders <- !sorting$orders
select_k <- node$tail
}
sorting$orders <- as.integer(sorting$orders)
}
out <- ExecPlan_run(self, node, sorting, select_k)
if (!has_sorting) {
slice_size <- node$head %||% node$tail
if (!is.null(slice_size)) {
out <- head(out, slice_size)
}
} else if (!is.null(node$tail)) {
out <- out$read_table()
out <- out[rev(seq_len(nrow(out))), , drop = FALSE]
}
out
},
Stop = function() ExecPlan_StopProducing(self)
)
)
ExecPlan$create <- function(use_threads = option_use_threads()) {
ExecPlan_create(use_threads)
}
ExecNode <- R6Class("ExecNode",
inherit = ArrowObject,
public = list(
sort = NULL,
head = NULL,
tail = NULL,
preserve_sort = function(new_node) {
new_node$sort <- self$sort
new_node$head <- self$head
new_node$tail <- self$tail
new_node
},
Project = function(cols) {
if (length(cols)) {
assert_is_list_of(cols, "Expression")
self$preserve_sort(ExecNode_Project(self, cols, names(cols)))
} else {
self$preserve_sort(ExecNode_Project(self, character(0), character(0)))
}
},
Filter = function(expr) {
assert_is(expr, "Expression")
self$preserve_sort(ExecNode_Filter(self, expr))
},
Aggregate = function(options, target_names, out_field_names, key_names) {
self$preserve_sort(
ExecNode_Aggregate(self, options, target_names, out_field_names, key_names)
)
},
Join = function(type, right_node, by, left_output, right_output) {
self$preserve_sort(
ExecNode_Join(
self,
type,
right_node,
left_keys = names(by),
right_keys = by,
left_output = left_output,
right_output = right_output
)
)
}
),
active = list(
schema = function() ExecNode_output_schema(self)
)
) |
render_camera = function(theta = NULL, phi = NULL, zoom = NULL, fov = NULL) {
if(is.null(theta) && is.null(phi) && is.null(zoom) && is.null(fov)) {
allmissing = TRUE
} else {
allmissing = FALSE
}
if(rgl::rgl.cur() == 0) {
stop("No rgl window currently open.")
}
if(is.null(fov)) {
fov = rgl::par3d()$FOV
}
if(is.null(zoom)) {
zoom = rgl::par3d()$zoom
}
if(is.null(phi) || is.null(theta)) {
rotmat = rot_to_euler(rgl::par3d()$userMatrix)
if(is.null(phi)) {
phi = rotmat[1]
}
if(is.null(theta)) {
if(0.001 > abs(abs(rotmat[3]) - 180)) {
theta = -rotmat[2] + 180
} else {
theta = rotmat[2]
}
}
}
rgl::rgl.viewpoint(theta = theta, phi = phi, fov = fov, zoom = zoom)
if(allmissing) {
return(c("theta"=theta,"phi"=phi,"zoom"=zoom,"fov"=fov))
}
} |
Boot.Rent <- do(1000) * mean( ~ Rent, data = resample(ManhattanApartments))
head(Boot.Rent, 3)
favstats( ~ mean, data = Boot.Rent)
cdata( ~ mean, 0.95, data = Boot.Rent) |
reshape_ci <- function(x, ci_type = "CI") {
ci_type <- match.arg(ci_type, choices = c("CI", "SI", "HDI", "ETI"))
ci_low <- paste0(ci_type, "_low")
ci_high <- paste0(ci_type, "_high")
if (ci_low %in% names(x) & ci_high %in% names(x) & "CI" %in% names(x)) {
ci_position <- which(names(x) == "CI")
if (length(unique(x$CI)) > 1) {
if (!"Parameter" %in% names(x)) {
x$Parameter <- NA
remove_parameter <- TRUE
} else {
remove_parameter <- FALSE
}
x <- stats::reshape(
x,
idvar = "Parameter",
timevar = "CI",
direction = "wide",
v.names = c(ci_low, ci_high),
sep = "_"
)
row.names(x) <- NULL
if (remove_parameter) x$Parameter <- NULL
}
ci_colname <- names(x)[c(grepl(paste0(ci_low, "_*"), names(x)) | grepl(paste0(ci_high, "_*"), names(x)))]
colnames_1 <- names(x)[0:(ci_position - 1)][!names(x)[0:(ci_position - 1)] %in% ci_colname]
colnames_2 <- names(x)[!names(x) %in% c(ci_colname, colnames_1)]
x <- x[c(colnames_1, ci_colname, colnames_2)]
} else {
if (!"Parameter" %in% names(x)) {
x$Parameter <- 1:nrow(x)
remove_parameter <- TRUE
} else {
remove_parameter <- FALSE
}
lows <- grepl(paste0(ci_low, "_*"), names(x))
highs <- grepl(paste0(ci_high, "_*"), names(x))
ci <- as.numeric(gsub(paste0(ci_low, "_"), "", names(x)[lows]))
if (paste0(ci, collapse = "-") != paste0(gsub(paste0(ci_high, "_"), "", names(x)[highs]), collapse = "-")) {
stop("Something went wrong in the CIs reshaping.")
return(x)
}
if (sum(lows) > 1 & sum(highs) > 1) {
low <- stats::reshape(
x[!highs],
direction = "long",
varying = list(names(x)[lows]),
sep = "_",
timevar = "CI",
v.names = ci_low,
times = ci
)
high <- stats::reshape(
x[!lows],
direction = "long",
varying = list(names(x)[highs]),
sep = "_",
timevar = "CI",
v.names = ci_high,
times = ci
)
x <- merge(low, high)
x$id <- NULL
x <- x[order(x$Parameter), ]
row.names(x) <- NULL
if (remove_parameter) x$Parameter <- NULL
}
ci_position <- which(lows)[1]
ci_colname <- c("CI", ci_low, ci_high)
colnames_1 <- names(x)[0:(ci_position - 1)][!names(x)[0:(ci_position - 1)] %in% ci_colname]
colnames_2 <- names(x)[!names(x) %in% c(ci_colname, colnames_1)]
x <- x[c(colnames_1, ci_colname, colnames_2)]
}
class(x) <- intersect(c("data.frame", "numeric"), class(x))
x
} |
predictSSNobject <- function(object, newdata){
newX <- vector("list")
if(is.null(newdata)){
dfPred <- getSSNdata.frame(object$ssn.object, "preds")
dfPred <- dfPred[dfPred$netID == object$internals$netID, ]
ridPred <- as.numeric(as.character(dfPred[,"rid"]))
} else {
dfPred <- newdata
dfPred <- dfPred[dfPred$netID == object$internals$netID, ]
ridPred <- as.numeric(as.character(dfPred[,"rid"]))
}
if(object$internals$n.linear > 0){
linVarbs <- dfPred[,colnames(object$internals$variables)[1:object$internals$n.linear]]
newX <- c(newX, list(linear = cbind(1, linVarbs)))
} else {
newX <- c(newX, list(linear = rep(1, length(ridPred))))
}
if(object$internals$n.smooth > 0){
smTerms <- object$internals$sm.terms.names
smDesign <- vector("list")
dataOriginal <- data.frame(object$internals$variables)
for(i in 1:length(smTerms)){
oldVariable <- dataOriginal[smTerms[[i]]]
new_bit <- construct_bspline_basis(as.matrix(dfPred[smTerms[[i]]]),
dimensions = object$internals$sm.basis[[i]],
cyclic = object$internals$sm.cyclic[[i]],
range.variables = oldVariable)
newX <- c(newX, new_bit)
}
}
if(object$internals$net){
ridPredRemap <- re_map_rid(rid_vector = ridPred, all_rid = as.integer(object$internals$adjacency$rid_bid[, 1]))
newX <- c(newX,
spam(
x = list(i = 1:length(ridPredRemap),
j = ridPredRemap,
val = rep(1, length(ridPredRemap))),
nrow = length(ridPred),
ncol = ncol(object$internals$X.list[[length(object$internals$X.list)]])))
}
newX <- lapply(newX, as.matrix)
Xstar <- Reduce("cbind.spam", newX)
predictions <- as.numeric(Xstar %*% object$internals$beta_hat)
left1 <- forwardsolve.spam(object$internals$U, t(object$internals$X.spam))
left2 <- backsolve.spam(object$internals$U, left1)
vec <- Xstar %*% left2
predictions.se <- sqrt((1 + rowSums(vec*vec))*object$internals$sigma.sq)
list(predictions = predictions, predictions.se = predictions.se)
} |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.