code
stringlengths
1
13.8M
plot.gmci <- function (x, mattext, col = c("grey", "red"), main, las = 1, xlab = "To", ylab = "From", xnames, ynames, cex = 1, fig = 2, opacity_factor, ...) { if (missing(main)) { main = paste0(round(100 * (1 - x$alpha), 3), "% ", x$method) } n = nrow(x$par) if (missing(mattext)) { mattext = matrix(paste0("[", signif(x$lower, fig), "; ", signif(x$upper, fig), "]"), n, n) mattext[which(is.na(x$lower) & is.na(x$upper))] = "" } plotM(x$par, mattext, col, main, las, xlab, ylab, xnames, ynames, cex, fig, opacity_factor) }
"benchmarkData" "benchmarkResults" "benchmarkResultsNoTransform" MiniBenchmarkRvsCpp <- function( data = PCMBaseCpp::benchmarkData, includeR = TRUE, includeTransformationTime = TRUE, nRepsCpp = 10L, listOptions = list( PCMBase.Lmr.mode = 11, PCMBase.Threshold.EV = 0, PCMBase.Threshold.SV = 0), doProf = FALSE, RprofR.out = "RprofR.out", RprofCpp.out = "RprofCpp.out") { listCurrentOptions <- options() do.call(options, listOptions) modelTypes <- MGPMDefaultModelTypes() res <- do.call(rbind, lapply(seq_len(nrow(data)), function(i) { tree <- data$tree[[i]] X <- data$X[[i]] model <- data$model[[i]] if(!includeTransformationTime) { model <- PCMApplyTransformation(model) } metaIR <- PCMInfo(X, tree, model) metaICpp <- PCMInfoCpp(X, tree, model, metaI = metaIR) valueR <- valueCpp <- NA_real_ if(includeR) { if(doProf) { do.call( Rprof, c(list(filename = RprofR.out), getOption("PCMBaseCpp.ArgsRprofR", list(append = TRUE, line.profiling = TRUE)))) } timeR <- system.time({ valueR <- PCMLik(X, tree, model, metaI = metaIR) })[3] if(doProf) { Rprof(NULL) } } else { timeR <- NA_real_ } if(doProf) { do.call( Rprof, c(list(filename = RprofCpp.out), getOption("PCMBaseCpp.ArgsRprofCpp", list(append = TRUE, line.profiling = TRUE)))) } timeCpp <- system.time( valueCpp <-replicate( nRepsCpp, PCMLik(X, tree, model, metaI = metaICpp))[1])[3] / nRepsCpp if(doProf) { Rprof(NULL) } data.frame( N = PCMTreeNumTips(tree), R = PCMTreeNumParts(tree), mapping = I(list(names(attr(model, "modelTypes"))[attr(model, "mapping")])), type = I(list(class(model))), PCMBase.Lmr.mode = PCMOptions()$PCMBase.Lmr.mode, logLik = valueR, logLikCpp = valueCpp, timeR = unname(timeR), timeCpp = unname(timeCpp)) })) resetOptionsStatus <- try(do.call(options, listCurrentOptions), silent = TRUE) if(inherits(resetOptionsStatus, "try-error")) { warning( paste0( "Error while resetting options at the end of a call to MiniBenchmarkRvsCpp: ", toString(resetOptionsStatus))) } res } BenchmarkRvsCpp <- function( ks = c(1, 2, 4, 8), includeR = TRUE, includeTransformationTime = TRUE, optionSets = NULL, includeParallelMode = TRUE, doProf = FALSE, RprofR.out = "RprofR.out", RprofCpp.out = "RprofCpp.out", verbose = FALSE) { benchmarkData <- PCMBaseCpp::benchmarkData X <- tree <- model <- modelBM <- modelOU <- modelType <- N <- R <- mapping <- PCMBase.Lmr.mode <- logLik <- logLikCpp <- timeR <- timeCpp <- NULL resultList <- lapply(ks, function(k) { if(is.null(optionSets)) { optionSets <- DefaultBenchmarkOptions(k, includeParallelMode) } resultList <- lapply(names(optionSets), function(oset) { if(verbose) { cat("Performing benchmark for k: ", k, "; optionSet: ", oset, "...\n") } fk <- findBiggestFactor(k, 8) ds <- seq_len(fk) nRB <- k / fk testData <- rbindlist(list( benchmarkData[, list( k = k, modelType = "MGPM (A-F)", options = oset, tree, X = lapply(X, function(x) x[rep(ds, nRB),, drop=FALSE]), model = lapply(model, function(m) PCMExtractDimensions(m, dims = ds, nRepBlocks = nRB)))], benchmarkData[, list( k = k, modelType = "BM (B)", options = oset, tree, X = lapply(X, function(x) x[rep(ds, nRB),, drop=FALSE]), model = lapply(modelBM, function(m) PCMExtractDimensions(m, dims = ds, nRepBlocks = nRB)))], benchmarkData[, list( k = k, modelType = "OU (E)", options = oset, tree, X = lapply(X, function(x) x[rep(ds, nRB),, drop=FALSE]), model = lapply(modelOU, function(m) PCMExtractDimensions(m, dims = ds, nRepBlocks = nRB)))])) resultData <- MiniBenchmarkRvsCpp( data = testData, includeR = includeR, includeTransformationTime = includeTransformationTime, listOptions = optionSets[[oset]], doProf = doProf, RprofR.out = RprofR.out, RprofCpp.out = RprofCpp.out) resultData <- cbind(testData[, list(k, modelType, options)], resultData) if(verbose) { print(resultData[, list( k, modelType, N, R, mode = PCMBase.Lmr.mode, logLik, logLikCpp, timeR, timeCpp)]) } resultData }) rbindlist(resultList, use.names = TRUE) }) rbindlist(resultList, use.names = TRUE) } DefaultBenchmarkOptions <- function(k, includeParallelMode) { if(k == 1) { os <- list( `serial / 1D-multiv.` = list(PCMBase.Lmr.mode = 11, PCMBase.Threshold.EV = 0, PCMBase.Threshold.SV = 0, PCMBase.Use1DClasses = FALSE), `serial / 1D-univar.` = list(PCMBase.Lmr.mode = 11, PCMBase.Threshold.EV = 0, PCMBase.Threshold.SV = 0, PCMBase.Use1DClasses = TRUE)) if(includeParallelMode) { os <- c( os, list( `parallel / 1D-multiv.` = list(PCMBase.Lmr.mode = 21, PCMBase.Threshold.EV = 0, PCMBase.Threshold.SV = 0, PCMBase.Use1DClasses = FALSE), `parallel / 1D-univar.` = list(PCMBase.Lmr.mode = 21, PCMBase.Threshold.EV = 0, PCMBase.Threshold.SV = 0, PCMBase.Use1DClasses = TRUE)) ) } os } else { os <- list( `serial / 1D-multiv.` = list(PCMBase.Lmr.mode = 11, PCMBase.Threshold.EV = 0, PCMBase.Threshold.SV = 0, PCMBase.Use1DClasses = FALSE)) if(includeParallelMode) { os <- c( os, list(`parallel / 1D-multiv.` = list(PCMBase.Lmr.mode = 21, PCMBase.Threshold.EV = 0, PCMBase.Threshold.SV = 0, PCMBase.Use1DClasses = FALSE))) } os } } findBiggestFactor <- function(k, fMax) { f <- fMax while(f >= 1) { if(k %% f == 0) { break } f <- f - 1 } f }
ROC.s <- function(x1=NULL,x2=NULL, by=NULL) { args <- match.call() if(!is.null(args$x1) & !is.null(args$x2) & !is.null(args$by)) stop("Factor interaction terms (by argument) are not allowed in surface interactions") if(is.null(args$x1) & is.null(args$x2)) stop("x1 or x2 must be indicated") if(!is.null(args$x1) & is.null(args$x2) & is.null(args$by)) { cov = c("", deparse(args$x1, backtick = TRUE, width.cutoff = 500)) } else if (!is.null(args$x1) & !is.null(args$x2) & is.null(args$by)) { cov = c(deparse(args$x1, backtick = TRUE, width.cutoff = 500),deparse(args$x2, backtick = TRUE, width.cutoff = 500)) } else if (!is.null(args$x1) & is.null(args$x2) & !is.null(args$by)) { cov = c(deparse(args$by, backtick = TRUE, width.cutoff = 500), deparse(args$x1, backtick = TRUE, width.cutoff = 500)) } else { stop("Invalid expression") } res <- list(cov=cov) res }
expected <- eval(parse(text="FALSE")); test(id=0, code={ argv <- eval(parse(text="list(structure(c(1, 0, 0, 0, NA, 6, 0, 0, 0, 14, 3, 0, 15, 0, 0, 8), .Dim = c(4L, 4L)))")); do.call(`is.logical`, argv); }, o=expected);
"mlb_players_18"
source("ESEUR_config.r") par(mar=MAR_default+c(0.0, 0.7, 0, 0)) pal_col=rainbow(3) points_and_smooth=function(x_vals, y_vals, col_num, pch) { points(x_vals, y_vals, col=pal_col[col_num], bg=2, pch=pch, cex=0.7) } processor=read.csv(paste0(ESEUR_dir, "ecosystems/cpudb/processor.csv.xz"), as.is=TRUE) specint2k6=read.csv(paste0(ESEUR_dir, "ecosystems/cpudb/spec_int2006.csv.xz"), as.is=TRUE) specint2k0=read.csv(paste0(ESEUR_dir, "ecosystems/cpudb/spec_int2000.csv.xz"), as.is=TRUE) specint95=read.csv(paste0(ESEUR_dir, "ecosystems/cpudb/spec_int1995.csv.xz"), as.is=TRUE) specint92=read.csv(paste0(ESEUR_dir, "ecosystems/cpudb/spec_int1992.csv.xz"), as.is=TRUE) all=merge(processor, specint2k6, by="processor_id", suffixes=c(".proc", ".spec_int2k6"), all=TRUE) all=merge(all, specint2k0, by="processor_id", suffixes=c(".spec_int2k6", ".spec_int2k0"), all=TRUE) all=merge(all, specint95, by="processor_id", suffixes=c(".spec_int2k0", ".spec_int95"), all=TRUE) all=merge(all, specint92, by="processor_id", suffixes=c(".spec_int95", ".spec_int92"), all=TRUE) all[all[["date"]]=="","date"]=NA dates=as.POSIXct(all[["date"]]) noturbo=is.na(all[["max_clock"]]) all[noturbo,"max_clock"]=all[noturbo, "clock"] spec92to95=mean(all[["basemean.spec_int95"]]/all[["basemean.spec_int92"]], na.rm=TRUE) spec95to2k0=mean(all[["basemean.spec_int2k0"]]/all[["basemean.spec_int95"]], na.rm=TRUE) spec2k0to2k6=mean(all[["basemean.spec_int2k6"]]/all[["basemean.spec_int2k0"]], na.rm=TRUE) no95=is.na(all[["basemean.spec_int95"]]) no2k0=is.na(all[["basemean.spec_int2k0"]]) no2k6=is.na(all[["basemean.spec_int2k6"]]) all[no95, "basemean.spec_int95"]=spec92to95 * all[no95, "basemean.spec_int92"] all[no2k0,"basemean.spec_int2k0"]=spec95to2k0 * all[no2k0, "basemean.spec_int95"] all[no2k6, "basemean.spec_int2k6"]=spec2k0to2k6 * all[no2k6, "basemean.spec_int2k0"] all[["perfnorm"]]=all[["basemean.spec_int2k6"]]/all[["tdp"]] scaleclk =min(all[["max_clock"]], na.rm=TRUE) scaletrans=min(all[["transistors"]], na.rm=TRUE) scaletdp =min(all[["tdp"]], na.rm=TRUE) scaleperf =min(all[["basemean.spec_int2k6"]], na.rm=TRUE) scaleperfnorm =min(all[["perfnorm"]], na.rm=TRUE) plot(dates, all[["transistors"]]/scaletrans, log="y", col=pal_col[1], bg=1, pch=22, xlab="Date of introduction", ylab="Relative frequency increase\n\n") points_and_smooth(dates, all[["transistors"]]/scaletrans, 1, 22) points_and_smooth(dates, all[["max_clock"]]/scaleclk, 2, 20) points_and_smooth(dates, all[["tdp"]]/scaletdp, 3, 24) legend("topleft", c("Transistors", "Clock", "Power"), bty="n", fill=pal_col, cex=1.2)
count.function <- function(nucleotides, spec.no, seqlength){ count <- mat.or.vec(nr = 4, nc = seqlength) letter_vector <- c("A","C","G","T") for(i in 1:seqlength){ count[1,i] = length(which(nucleotides[,i+2] == letter_vector[1])) count[2,i] = length(which(nucleotides[,i+2] == letter_vector[2])) count[3,i] = length(which(nucleotides[,i+2] == letter_vector[3])) count[4,i] = length(which(nucleotides[,i+2] == letter_vector[4])) } rownames(count) <- c("A", "C", "G", "T") return(count) }
gpat_create_grid = function(x, brick = FALSE){ header = gpat_header_parser(x) x1 = header$start_x y1 = header$start_y x2 = header$start_x + header$res_x * header$n_cols y2 = header$start_y + header$res_y * header$n_rows single_cell_creator = function(x1, y1, x2, y2){ list(rbind(c(x1, y1), c(x1, y2), c(x2, y2), c(x2, y1), c(x1, y1))) } my_bb = single_cell_creator(x1, y1, x2, y2) %>% st_polygon() %>% st_sfc() if (header$proj_4 != ""){ my_bb = my_bb %>% st_set_crs(value = header$proj_4) } my_grid = gpat_st_make_grid(my_bb, n = c(header$n_cols, header$n_rows), brick = brick) my_grid } gpat_header_parser = function(x){ x = readLines(x) res_x = str_sub(x[5], start=6) %>% as.double() res_y = str_sub(x[9], start=6) %>% as.double() start_x = str_sub(x[4], start=6) %>% as.double() start_y = str_sub(x[7], start=6) %>% as.double() n_rows = str_sub(x[10], start=7) %>% as.integer() n_cols = str_sub(x[11], start=7) %>% as.integer() proj_wkt = str_sub(x[12], start=7) desc = str_split(x[13], "\\|", simplify = TRUE) size = as.numeric(desc[str_which(desc, "-z")+1]) if (length(size) == 0){ size = as.numeric(gsub("\\D", "", desc[str_which(desc, "--size=")])) } shift = as.numeric(desc[str_which(desc, "-f")+1]) if (length(shift) == 0){ shift = as.numeric(gsub("\\D", "", desc[str_which(desc, "--shift=")])) } if (size != shift){ stop("We don't support overlapping grids (where size != shift). Open a new issue on our github page if you want this option") } invisible(capture.output({proj_4 = tryCatch({st_crs(wkt = proj_wkt)$proj4string}, error = function(e) "")})) data.frame(res_x = res_x, res_y = res_y, start_x = start_x, start_y = start_y, n_rows = n_rows, n_cols = n_cols, proj_4 = proj_4, stringsAsFactors = FALSE) } gpat_st_make_grid = function(x, n = c(10, 10), brick = FALSE){ offset = st_bbox(x)[c(1, 4)] bb = st_bbox(x) n = rep(n, length.out = 2) nx = n[1] ny = n[2] xc = seq(offset[1], bb[3], length.out = nx + 1) yc = seq(offset[2], bb[2], length.out = ny + 1) ret = vector("list", nx * ny) square = function(x1, y1, x2, y2){ st_polygon(list(matrix(c(x1, x2, x2, x1, x1, y1, y1, y2, y2, y1), 5))) } for (i in 1:nx) { for (j in 1:ny) { ret[[(j - 1) * nx + i]] = square(xc[i], yc[j], xc[i + 1], yc[j + 1]) } } my_grid = st_sf(geometry = st_sfc(ret, crs = st_crs(x))) if (brick){ ids_y = rep(c(1, 1, 2, 2), length.out = ny) ids = numeric(length = nrow(my_grid)) spatial_ids = seq_len(nx %/% 2 + 1) for (i in seq_len(ny)){ ids_y_i = ids_y[i] if (ids_y_i == 1){ ids[seq_len(nx) + (i - 1) * nx] = rep(spatial_ids, each = 2, length.out = nx) } else if (ids_y_i == 2){ if (ids_y[i-1] != ids_y[i]){ spatial_ids = spatial_ids + (nx %/% 2 + 1) ids[seq_len(nx) + (i - 1) * nx] = c(spatial_ids[1], rep(spatial_ids[-1], each = 2, length.out = nx-1)) } else { ids[seq_len(nx) + (i - 1) * nx] = c(spatial_ids[1], rep(spatial_ids[-1], each = 2, length.out = nx-1)) spatial_ids = spatial_ids + (nx %/% 2 + 1) } } } n = c(length(spatial_ids), max(ids) / length(spatial_ids)) my_grid = aggregate(my_grid, by = list(ids), mean) %>% st_cast(to = "POLYGON", warn = FALSE) my_grid$Group.1 = NULL } df_ids = create_ids(n[1], n[2]) my_grid = st_sf(data.frame(my_grid, df_ids)) return(my_grid) } create_ids = function(num_c, num_r){ m = 1 m_row = 1 m_col = 1 result = data.frame(col = integer(length = num_r * num_c), row = integer(length = num_r * num_c)) for (i in seq_len(num_r)){ for (j in seq_len(num_c)){ result[m, "col"] = m_col result[m, "row"] = m_row m = m + 1 m_col = m_col + 1 } m_col = 1 m_row = m_row + 1 } return(result) }
polygon.svg <- function(points = NULL, fill, fill.opacity, stroke, stroke.width, stroke.opacity, fill.rule, style.sheet = NULL) { if (is.null(points)) { stop("[ERROR] Basic line elements are required (points)!") } else { if (!is.matrix(points)) { points <- as.matrix(points) } } if (!is.null(style.sheet)) { style.sheet.ele <- paste(style.sheet, collapse = ";") } else { style.sheet.ele <- "" } if (!missing(fill)) { style.sheet.ele <- paste0(style.sheet.ele, "fill:", fill, ";") } if (!missing(fill.opacity)) { style.sheet.ele <- paste0(style.sheet.ele, "fill-opacity:", fill.opacity, ";") } if (!missing(stroke)) { style.sheet.ele <- paste0(style.sheet.ele, "stroke:", stroke, ";") } if (!missing(stroke.width)) { style.sheet.ele <- paste0(style.sheet.ele, "stroke-width:", stroke.width, ";") } if (!missing(stroke.opacity)) { style.sheet.ele <- paste0(style.sheet.ele, "stroke-opacity:", stroke.opacity, ";") } if (!missing(fill.rule)) { style.sheet.ele <- paste0(style.sheet.ele, "fill-rule", fill.rule, ";") } if (style.sheet.ele != "") { style.sheet.ele <- paste0('style="', style.sheet.ele, '"') } points.ele <- lapply(1:nrow(points), function(x) { paste(points[x, 1], points[x, 2], sep = ",") }) points.ele <- paste(points.ele, collapse = " ") polygon.svg.ele <- sprintf('<polygon points="%s" %s />', points.ele, style.sheet.ele) return(polygon.svg.ele) }
erf <- function(x) { return(2 * pnorm(x * sqrt(2)) - 1) } isonormdist <- function(z, area, mu, sigma) { u <- z[1] v <- z[2] return(exp(-mu * (1 / 4) * ((erf((sqrt(area) - (2 * u)) / (2 * sqrt(2) * sigma))) + (erf((sqrt(area) + (2 * u)) / (2 * sqrt(2) * sigma)))) * ((erf((sqrt(area) - (2 * v)) / (2 * sqrt(2) * sigma))) + (erf((sqrt(area) + (2 * v)) / (2 * sqrt(2) * sigma)))))) } espA <- function(par, area, extent, tolerance = 1e-6) { ext <- extent return(ext - cubature::adaptIntegrate(isonormdist, area = area, mu = par$mu, sigma = par$sigma, tol = tolerance, lowerLimit = rep(-sqrt(ext) / 2, 2), upperLimit = rep(sqrt(ext) / 2, 2))[[1]]) }
beta_AD=function(K=K,nk=nk,alpha=alpha,X=X,y=y){ n=nrow(X);p=ncol(X) M=W=c(rep(1,K)); mr=matrix(rep(0,K*nk),ncol=nk) R=matrix(rep(0,n*nk), ncol=n);Io=matrix(rep(0,nk*K), ncol=nk); for (i in 1:K){ mr[i,]=sample(1:n,nk,replace=T); r=matrix(c(1:nk,mr[i,]),ncol=nk,byrow=T); R[t(r)]=1 Io[i,]=r[2,] X1=R%*%X;y1=R%*%y; ux=solve(crossprod(X1)) W[i]= sum(diag(t(ux)%*% ux)) M[i]= det(X1%*%t(X1)) } XD= X[Io[which.max(M),],];yD= y[Io[which.max(M),]] betaD=solve(crossprod(XD))%*%t(XD)%*% yD XA= X[Io[which.min(W),],];yA= y[Io[which.min(W),]] betaA=solve(crossprod(XA))%*%t(XA)%*% yA return(list(betaA=betaA,betaD=betaD)) }
if (is.null(argv) | length(argv) < 1) { cat("Usage: silenceTwitterAccount.r user1 [user2 user3 ...]\n\n") cat("Calls rtweet::post_silence() for the given users.\n") cat("NB: Needs a modified version of rtweet and a twitter token.\n\n") q() } if (!requireNamespace("rtweet", quietly=TRUE)) stop("Please install `rtweet`.", call. = FALSE) if (Sys.getenv("TWITTER_PAT") == "") stop("Please setup a 'TWITTER_PAT' using `rtweet`.", call. = FALSE) library(rtweet) if (is.na(match("post_silence", ls("package:rtweet")))) stop("This needs a version of 'rtweet' with the post_silence() function", call. = FALSE) for (arg in argv) rtweet::post_silence(arg)
ginhomAverage <- function(xyt,spatial.intensity,temporal.intensity,time.window=xyt$tlim,rvals=NULL,correction="iso",suppresswarnings=FALSE,...){ time.window <- sort(as.integer(time.window)) verifyclass(spatial.intensity,"spatialAtRisk") verifyclass(temporal.intensity,"temporalAtRisk") density <- as.im(spatial.intensity) approxscale <- mean(sapply(xyt$t[xyt$t>=time.window[1] & xyt$t<=time.window[2]],temporal.intensity)) den <- density den$v <- den$v * approxscale xyt$t <- as.integer(xyt$t) numsamp <- min(c(200,xyt$n)) if(!suppresswarnings){ if (is.null(rvals)){ gin <- pcfinhom(xyt[sample(1:xyt$n,numsamp,replace=FALSE)],lambda=den,...) } else{ gin <- pcfinhom(xyt[sample(1:xyt$n,numsamp,replace=FALSE)],lambda=den,r=rvals,...) } } else{ if (is.null(rvals)){ suppressWarnings(gin <- pcfinhom(xyt[sample(1:xyt$n,numsamp,replace=FALSE)],lambda=den,...)) } else{ suppressWarnings(gin <- pcfinhom(xyt[sample(1:xyt$n,numsamp,replace=FALSE)],lambda=den,r=rvals,...)) } } r <- gin$r nam <- names(gin) nam <- nam[nam!="r"] tls <- sapply(time.window[1]:time.window[2],function(x){sum(xyt$t==x)}) tls <- (time.window[1]:time.window[2])[tls!=0] ntls <- length(tls) pb <- txtProgressBar(min=tls[1],max=rev(tls)[1],style=3) if(!suppresswarnings){ pcf <- lapply(tls,function(t){setTxtProgressBar(pb,t);den<-density;den$v<-den$v*temporal.intensity(t);try(pcfinhom(xyt[xyt$t==t],lambda=den,r=r,...))}) } else{ suppressWarnings(pcf <- lapply(tls,function(t){setTxtProgressBar(pb,t);den<-density;den$v<-den$v*temporal.intensity(t);try(pcfinhom(xyt[xyt$t==t],lambda=den,r=r,...))})) } close(pb) li <- as.list(pcf[[1]]) ct <- 1 if(ntls>1){ for(i in 2:ntls){ if ((class(pcf[[i]])[1]!="try-error")&&(npoints(xyt[xyt$t==tls[i]])>1)){ li <- add.list(li,as.list(pcf[[i]])) ct <- ct + 1 } } } li <- smultiply.list(li,1/ct) ginhom <- gin for (n in nam){ idx <- which(names(ginhom)==n) ginhom[[idx]] <- li[[idx]] } attr(ginhom,"correction") <- correction cat("Returning an average of",ct,"curves\n") return(ginhom) } KinhomAverage <- function(xyt,spatial.intensity,temporal.intensity,time.window=xyt$tlim,rvals=NULL,correction="iso",suppresswarnings=FALSE){ time.window <- sort(as.integer(time.window)) verifyclass(spatial.intensity,"spatialAtRisk") verifyclass(temporal.intensity,"temporalAtRisk") density <- as.im(spatial.intensity) approxscale <- mean(sapply(xyt$t[xyt$t>=time.window[1] & xyt$t<=time.window[2]],temporal.intensity)) den <- density den$v <- den$v * approxscale xyt$t <- as.integer(xyt$t) numsamp <- min(c(200,xyt$n)) if(!suppresswarnings){ if (is.null(rvals)){ Kin <- Kinhom(xyt[sample(1:xyt$n,numsamp,replace=FALSE)],lambda=den) } else{ Kin <- Kinhom(xyt[sample(1:xyt$n,numsamp,replace=FALSE)],lambda=den,r=rvals) } } else{ if (is.null(rvals)){ suppressWarnings(Kin <- Kinhom(xyt[sample(1:xyt$n,numsamp,replace=FALSE)],lambda=den)) } else{ suppressWarnings(Kin <- Kinhom(xyt[sample(1:xyt$n,numsamp,replace=FALSE)],lambda=den,r=rvals)) } } r <- Kin$r nam <- names(Kin) nam <- nam[nam!="r"] tls <- sapply(time.window[1]:time.window[2],function(x){sum(xyt$t==x)}) tls <- (time.window[1]:time.window[2])[tls!=0] ntls <- length(tls) pb <- txtProgressBar(min=tls[1],max=rev(tls)[1],style=3) if(!suppresswarnings){ pcf <- lapply(tls,function(t){setTxtProgressBar(pb,t);den<-density;den$v<-den$v*temporal.intensity(t);try(Kinhom(xyt[xyt$t==t],lambda=den,r=r))}) } else{ suppressWarnings(pcf <- lapply(tls,function(t){setTxtProgressBar(pb,t);den<-density;den$v<-den$v*temporal.intensity(t);try(Kinhom(xyt[xyt$t==t],lambda=den,r=r))})) } close(pb) li <- as.list(pcf[[1]]) ct <- 1 if(ntls>1){ for(i in 2:ntls){ if ((class(pcf[[i]])[1] != "try-error")&&(npoints(xyt[xyt$t==tls[i]])>1)){ li <- add.list(li,as.list(pcf[[i]])) ct <- ct + 1 } } } li <- smultiply.list(li,1/ct) Kinhom <- Kin for (n in nam){ idx <- which(names(Kinhom)==n) Kinhom[[idx]] <- li[[idx]] } attr(Kinhom,"correction") <- correction cat("Returning an average of",ct,"curves\n") return(Kinhom) } spatialparsEst <- function(gk,sigma.range,phi.range,spatial.covmodel,covpars=c(),guess=FALSE){ ok <- function(panel){ return(panel) } corchoice <- c() sigma <- c() phi <- c() sigmamin <- sigma.range[1] sigmamax <- sigma.range[2] phimin <- phi.range[1] phimax <- phi.range[2] idx <- which(names(gk)==attr(gk,"correction")) env <- NULL if (attr(gk,"fname") == "g[inhom]"){ panfun <- function(p){ env <<- environment() r <- gk$r egr <- suppressWarnings(exp(sapply(r,gu,sigma=p$sigma,phi=p$phi,model=spatial.covmodel,additionalparameters=covpars))-1) gvals <- gk[[idx]] if (p$transform!="none"){ if (p$transform=="log"){ gvals <- log(gk[[idx]]) egr <- log(egr) } } plot(NULL,main="g[inhom]",xlim=c(0,max(r,na.rm=TRUE)),ylim=c(0,max(c(gvals[!is.infinite(gvals)&!is.nan(gk[[idx]])],egr[!is.infinite(egr)&!is.nan(egr)]))),xlab="r",ylab="g_inhom(r)",sub=paste(spatial.covmodel,"covariance function")) lines(r,gvals) lines(r,egr,col="orange") legend("topright",lty=c("solid","solid"),col=c("black","orange"),legend=c("Empirical","Theoretical")) return(p) } } else if (attr(gk,"fname") == "K[inhom]"){ panfun <- function(p){ env <<- environment() r <- gk$r egr <- suppressWarnings(exp(sapply(r,gu,sigma=p$sigma,phi=p$phi,model=spatial.covmodel,additionalparameters=covpars))-1) rdiff <- diff(r[1:2]) kest <- rdiff * egr[1] * 2 * pi * r[1] for(i in 2:length(r)){ kest[i] <- kest[i-1] + rdiff * egr[i] * 2 * pi * r[i] } gvals <- gk[[idx]] if (p$transform!="none"){ if (p$transform=="^1/4"){ gvals <- (gk[[idx]])^(1/4) kest <- kest^(1/4) } } plot(NULL,main="K[inhom]",xlim=c(0,max(r,na.rm=TRUE)),ylim=c(0,max(c(gvals[!is.infinite(gvals)],kest[!is.infinite(kest)]))),xlab="r",ylab="K_inhom(r)",sub=paste(spatial.covmodel,"covariance function")) lines(r,gvals) lines(r,kest,col="orange") legend("topleft",lty=c("solid","solid"),col=c("black","orange"),legend=c("Empirical","Theoretical")) return(p) } } else{ stop("Argument gk is not of correct class, see ?ginhomAverage, ?KinhomAverage") } pancontrol <- rp.control("Parameter Estimation",aschar=FALSE) if (attr(gk,"fname") == "g[inhom]"){ rp.radiogroup(pancontrol,variable=transform,vals=c("none","log"),action=panfun,initval="none") } else if (attr(gk,"fname") == "K[inhom]"){ rp.radiogroup(pancontrol,variable=transform,vals=c("none","^1/4"),action=panfun,initval="^1/4") } r <- gk$r if(guess){ if (attr(gk,"fname") == "g[inhom]"){ spfun <- function(sigmaphi){ egr <- suppressWarnings(exp(sapply(r,gu,sigma=sigmaphi[1],phi=sigmaphi[2],model=spatial.covmodel,additionalparameters=covpars))-1) S <- suppressWarnings((egr-gk[[idx]])^2) S[is.infinite(S)] <- NA W <- 1/r^2 W[is.infinite(W)] <- NA sidx <- !(is.na(W) | is.na(S)) ans <- sum((W*S)[sidx],na.rm=TRUE)/sum(W[sidx]) return(ans) } ops <- optim(c(sigmamin + (sigmamax-sigmamin)/2,phimin + (phimax-phimin)/2),spfun) sigmainit <- ops$par[1] phiinit <- ops$par[2] } else if (attr(gk,"fname") == "K[inhom]"){ sigphifun <- function(sigphi){ egr <- suppressWarnings(exp(sapply(r,gu,sigma=sigphi[1],phi=sigphi[2],model=spatial.covmodel,additionalparameters=covpars))-1) rdiff <- diff(r[1:2]) kest <- rdiff * egr[1] * 2 * pi * r[1] for(i in 2:length(r)){ kest[i] <- kest[i-1] + rdiff * egr[i] * 2 * pi * r[i] } gvals <- gk[[idx]] gvals <- (gk[[idx]])^(1/4) kest <- kest^(1/4) gvals[is.infinite(gvals)] <- NA kest[is.infinite(kest)] <- NA S <- suppressWarnings((kest-gvals)^2) S[is.infinite(S)] <- NA W <- 1/r^2 W[is.infinite(W)] <- NA sidx <- !(is.na(W) | is.na(S)) ans <- sum((W*S)[sidx],na.rm=TRUE)/sum(W[sidx]) return(ans) } ops <- optim(c(sigmamin + (sigmamax-sigmamin)/2,phimin + (phimax-phimin)/2),sigphifun) sigmainit <- ops$par[1] phiinit <- ops$par[2] } } else{ sigmainit <- sigmamin + (sigmamax-sigmamin)/2 phiinit <- phimin + (phimax-phimin)/2 } rp.slider(pancontrol,variable=sigma,from=sigmamin,to=sigmamax,initval=sigmainit,action=panfun,showvalue=TRUE) rp.slider(pancontrol,variable=phi,from=phimin,to=phimax,initval=phiinit,action=panfun,showvalue=TRUE) rp.button(pancontrol,action=ok,title="OK",quitbutton=TRUE) hhh = as.numeric(tkwinfo("height",pancontrol$.handle))+50 www = 300 ggg = sprintf("%dx%d",www,hhh) tkwm.geometry(pancontrol$.handle,ggg) rp.block(pancontrol) dev.off() sigma <- get("p",envir=env)$sigma phi <- get("p",envir=env)$phi return(list(sigma=sigma,phi=phi)) } Cvb <- function(xyt,spatial.intensity,N=100,spatial.covmodel,covpars){ verifyclass(spatial.intensity,"im") sar <- spatialAtRisk(list(X=spatial.intensity$xcol,Y=spatial.intensity$yrow,Zm=t(spatial.intensity$v))) gsx <- length(xvals(sar)) gsy <- length(yvals(sar)) xy <- cbind(rep(xvals(sar),gsy),rep(yvals(sar),each=gsx)) wt <- as.vector(zvals(sar)) wt[is.na(wt)] <- 0 sidx <- sample(1:(gsx*gsy),N,prob=wt) xy <- xy[sidx,] pd <- as.vector(pairdist(xy)) cvb <- function(nu,sigma,phi,theta){ return(mean(exp(exp(-nu*theta)*gu(pd,sigma=sigma,phi=phi,model=spatial.covmodel,additionalparameters=covpars))-1)) } return(cvb) } thetaEst <- function(xyt,spatial.intensity=NULL,temporal.intensity=NULL,sigma,phi,theta.range=c(0,10),N=100,spatial.covmodel="exponential",covpars=c()){ ok <- function(panel){ return(panel) } if (inherits(spatial.intensity,"spatialAtRisk")){ spatial.intensity <- as.im(spatial.intensity) } if (is.null(spatial.intensity)){ spatial.intensity <- density(xyt) } if (is.null(temporal.intensity)){ temporal.intensity <- muEst(xyt) } else{ if (!inherits(temporal.intensity,"temporalAtRisk")){ temporal.intensity <- temporalAtRisk(temporal.intensity,tlim=xyt$tlim,xyt=xyt) } if(!all(xyt$tlim==attr(temporal.intensity,"tlim"))){ stop("Incompatible temporal.intensity, integer time limits (tlim and temporal.intensity$tlim) do not match") } } thetamin <- theta.range[1] thetamax <- theta.range[2] tlim <- as.integer(xyt$tlim) cvb <- Cvb(xyt=xyt,spatial.intensity=spatial.intensity,N=N,spatial.covmodel=spatial.covmodel,covpars=covpars) xytlim <- sort(as.integer(xyt$tlim)) tvec <- xytlim[1]:xytlim[2] if(length(tvec)==1){ stop("Insufficiently many time intervals: type as.integer(xyt$tlim) into console") } theta <- c() panfun <- function(p){ sigma <- as.numeric(p$sigma) phi <- as.numeric(p$phi) theta <- p$theta uqt <- as.numeric(names(table(as.integer(xyt$t)))) tfit <- sapply(uqt,temporal.intensity) autocov <- acf(table(as.integer(xyt$t)) - tfit,type="covariance",plot=FALSE) r <- 0:(length(autocov$acf)-1) plot(r,autocov$acf,type="l",main="Autocovariance",xlab="lag",ylab="acov(lag)") legend("topright",lty=c("solid","solid"),col=c("black","orange"),legend=c("Empirical","Theoretical")) abline(h=0) rseq <- seq(r[1],r[length(r)],length.out=100) theo <- sapply(rseq,cvb,sigma=sigma,phi=phi,theta=theta) lines(rseq,theo*(autocov$acf[1]/theo[1]),type="l",col="orange") return(p) } pancontrol <- rp.control("Parameter Estimation",aschar=FALSE) rp.textentry(pancontrol,variable=sigma,initval=sigma,action=panfun) rp.textentry(pancontrol,variable=phi,initval=phi,action=panfun) rp.slider(pancontrol,variable=theta,from=thetamin,to=thetamax,initval=(thetamax-thetamin)/2,action=panfun,showvalue=TRUE) rp.button(pancontrol,action=ok,title="OK",quitbutton=TRUE) rp.block(pancontrol) dev.off() theta <- as.numeric(tclvalue(pancontrol$theta.tcl)) return(theta) } lambdaEst <- function(xyt,...){ UseMethod("lambdaEst") } lambdaEst.stppp <- function(xyt,weights=c(),edge=TRUE,bw=NULL,...){ ok <- function(panel){ return(panel) } adjust <- c() plotdata <- c() pow <- c() if(is.null(bw)){ bw <- resolve.2D.kernel(NULL,x = xyt,adjust = 1)$sigma } varlist <- list(bw=bw,adjust=1,plotdata=TRUE,pow=1) env <- NULL panfun <- function(p){ env <<- environment() bw <- as.numeric(p$bw) adjust <- as.numeric(p$adjust) d <- density(xyt,bandwidth=bw,weights=weights,edge=edge) plotden <- d plotden$v <- (d$v / diff(xyt$tlim))^p$pow plot(plotden,main="Density",...) if(p$plotdata){ points(xyt,pch="+",cex=0.5) } return(p) } panfun(varlist) pancontrol <- rp.control("Density Estimation") rp.textentry(pancontrol,variable=bw,initval=bw,action=panfun,title="bandwidth") rp.checkbox(pancontrol,variable=plotdata,action=panfun,labels = "Plot Data",initval = TRUE) rp.slider(pancontrol,variable=pow,from=0,to=1,initval=1,action=panfun,showvalue=TRUE,title="colour adjustment") rp.button(pancontrol,action=ok,title="OK",quitbutton=TRUE) rp.block(pancontrol) dev.off() return(get("d",envir=env)) } lambdaEst.ppp <- function(xyt,weights=c(),edge=TRUE,bw=NULL,...){ ok <- function(panel){ return(panel) } adjust <- c() plotdata <- c() pow <- c() if(is.null(bw)){ bw <- resolve.2D.kernel(NULL,x = xyt,adjust = 1)$sigma } varlist <- list(bw=bw,adjust=1,plotdata=TRUE,pow=1) env <- NULL panfun <- function(p){ env <<- environment() bw <- as.numeric(p$bw) adjust <- as.numeric(p$adjust) d <- density(xyt,sigma=bw,weights=weights,edge=edge) plotden <- d plotden$v <- d$v^p$pow plot(plotden,main="Density",...) if(p$plotdata){ points(xyt,pch="+",cex=0.5) } return(p) } panfun(varlist) pancontrol <- rp.control("Density Estimation") rp.textentry(pancontrol,variable=bw,initval=bw,action=panfun,title="bandwidth") rp.checkbox(pancontrol,variable=plotdata,action=panfun,labels = "Plot Data",initval = TRUE) rp.slider(pancontrol,variable=pow,from=0,to=1,initval=1,action=panfun,showvalue=TRUE,title="colour adjustment") rp.button(pancontrol,action=ok,title="OK",quitbutton=TRUE) rp.block(pancontrol) dev.off() return(get("d",envir=env)) } muEst <- function(xyt,...){ verifyclass(xyt,"stppp") t <- as.integer(xyt$t) tlim <- as.integer(xyt$tlim) tseq <- tlim[1]:tlim[2] counts <- sapply(tseq,function(x){sum(t==x)}) sm <- lowess(tseq,sqrt(counts),...) return(temporalAtRisk(sm$y^2,tlim=tlim,xyt=xyt)) } density.stppp <- function(x,bandwidth=NULL,...){ density.ppp(x,...,sigma=bandwidth) }
maxsel.asymp.test<-function(x1,x2=NULL,y,type) { maxselcrit<-maxsel(x1=x1,x2=x2,y=y,type=type) if (is.null(x2)&is.element(type,c("inter.ord","inter.cat","inter.ord.main")) ) { stop("if x2 is null, type can not be inter.ord, inter.cat or main") } if (!is.null(x2)&!is.element(type,c("inter.ord","inter.cat","inter.ord.main")) ) { stop("if x2 is not null, type must be inter.ord, inter.cat or main") } if (!is.null(x2)) { x<-transf.inter(x1,x2) } else { x<-x1 } dat<-cbind(x,y) dat<- subset(dat, complete.cases(dat)) y<-dat[,2] x<-dat[,1] n<-length(x) if (is.element(type,c("inter.ord","inter.cat","inter.ord.main"))) { K<-9 } else { K<-max(x) } a.vec<-numeric(K) for (i in 1:K) { a.vec[i]<-sum(x==i)/n } pval<-Fasymp(maxselcrit,a.vec=a.vec,type=type) return(list(maxselstat=maxselcrit,value=pval)) }
`curvePredictLinear` <- function(x,params) { return (params[2]*x+params[1]) }
r_sample_binary <- function (n, x = 1:2, prob = NULL, name = "Binary") { if (missing(n)) stop("`n` is missing") out <- x[sample.int(n = 2, size = n, replace = TRUE, prob = prob)] varname(out, name) } r_sample_binary_factor <- function (n, x = 1:2, prob = NULL, name = "Binary") { if (missing(n)) stop("`n` is missing") out <- x[sample.int(n = 2, size = n, replace = TRUE, prob = prob)] out <- factor(out, levels = x) varname(out, name) }
"hcdn_conus_sites"
frdAllPairsExactTest <- function(y, ...) UseMethod("frdAllPairsExactTest") frdAllPairsExactTest.default <- function(y, groups, blocks, p.adjust.method = p.adjust.methods, ...) { p.adjust.method <- match.arg(p.adjust.method) ans <- frdRanks(y, groups, blocks) r <- ans$r n <- nrow(r) k <- ncol(r) GRPNAMES <- colnames(r) METHOD <- c("Eisinga, Heskes, Pelzer & Te Grotenhuis all-pairs test", " with exact p-values for a two-way", " balanced complete block design") Ri <- colSums(r) compareRi <- function(i, j){ d <- Ri[i] - Ri[j] d } PSTAT <- pairwise.table(compareRi, GRPNAMES, p.adjust.method="none") pstat <- as.numeric(PSTAT) pstat <- pstat[!is.na(pstat)] pval <- sapply(pstat, function(pstat) { pexactfrsd(d = abs(pstat),k = k,n = n, option="pvalue") }) padj <- p.adjust(pval, method = p.adjust.method, n = (k * (k - 1) / 2)) PVAL <- matrix(NA, ncol = (k - 1), nrow = (k -1 )) PVAL[!is.na(PSTAT)] <- padj DIST <- "D" colnames(PSTAT) <- GRPNAMES[1:(k-1)] rownames(PSTAT) <- GRPNAMES[2:k] colnames(PVAL) <- GRPNAMES[1:(k-1)] rownames(PVAL) <- GRPNAMES[2:k] ans <- list(method = METHOD, data.name = ans$DNAME, p.value = PVAL, statistic = PSTAT, p.adjust.method = p.adjust.method, dist = DIST, model = ans$inDF) class(ans) <- "PMCMR" ans }
"sample_sel" <- function (data, sample = c(), sample_time = c(), sample_lambda = c(), sel_time = c(), sel_lambda = c(), sel_time_ab = c(), sel_lambda_ab = c(), sel_special = list() ) { increasing_x2 <- if(data@x2[1] < data@x2[2]) TRUE else FALSE if (length(sel_time) == 2) { if (sel_time[2] > data@nt) sel_time[2] <- data@nt [email protected] <- as.matrix([email protected][sel_time[1]:sel_time[2], ]) data@x <- data@x[sel_time[1]:sel_time[2]] if (data@simdata) data@C2 <- data@C2[sel_time[1]:sel_time[2], ] } if (length(sel_time_ab) == 2) { tmin <- which(data@x >= sel_time_ab[1])[1] tmax <- which(data@x <= sel_time_ab[2])[length( which(data@x <= sel_time_ab[2]))] [email protected] <- as.matrix([email protected][tmin:tmax, ]) data@x <- data@x[tmin:tmax] if (data@simdata) data@C2 <- data@C2[tmin:tmax, ] } if (length(sel_lambda) == 2) { lmin <- sel_lambda[1] lmax <- sel_lambda[2] [email protected] <- as.matrix([email protected][, lmin:lmax]) data@nl <- ncol([email protected]) data@x2 <- data@x2[lmin:lmax] if (data@simdata) data@E2 <- data@E2[lmin:lmax, ] } if (length(sel_lambda_ab) == 2) { if(increasing_x2) { lmin <- which(data@x2 >= sel_lambda_ab[1])[1] lmax <- which(data@x2 <= sel_lambda_ab[2])[length( which(data@x2 <= sel_lambda_ab[2]))] } else { lmin <- which(data@x2 <= sel_lambda_ab[1])[1] lmax <- which(data@x2 >= sel_lambda_ab[2])[length( which(data@x2 >= sel_lambda_ab[2]))] } [email protected] <- as.matrix([email protected][,lmin:lmax]) data@nt <- nrow([email protected]) data@x2 <- data@x2[lmin:lmax] if (data@simdata) data@E2 <- data@E2[,lmin:lmax ] } if (length(sel_special) > 0) { for(i in 1:length(sel_special)) { reg <- sel_special[[i]] if(increasing_x2) { lmin <- which(data@x2 >= reg[1])[1] lmax <- which(data@x2 <= reg[2])[length(which(data@x2 <= reg[2]))] } else { lmin <- which(data@x2 <= reg[1])[1] lmax <- which(data@x2 >= reg[2])[length(which(data@x2 >= reg[2]))] } if(i == 1) datanew <- as.matrix([email protected][- (reg[3]:reg[4]),lmin:lmax]) else datanew <- cbind(datanew, as.matrix([email protected][- (reg[3]:reg[4]), lmin:lmax])) } [email protected] <- datanew data@x <- data@x[-(sel_special[[1]][3]:sel_special[[1]][4])] } data@nl <- length(data@x2) data@nt <- length(data@x) if (sample != 1) { [email protected] <- as.matrix([email protected][seq(1, data@nt, by = sample), seq(1, data@nl, by = sample)]) data@x <- data@x[seq(1, data@nt, by = sample)] data@x2 <- data@x2[seq(1, data@nl, by = sample)] data@nl <- length(data@x2) data@nt <- length(data@x) } else { if (is.matrix([email protected])) [email protected] <- as.matrix([email protected][seq(1, data@nt, by = sample_time), seq(1, data@nl, by = sample_lambda)]) data@x <- data@x[seq(1, data@nt, by = sample_time)] data@x2 <- data@x2[seq(1, data@nl, by = sample_lambda)] data@nl <- length(data@x2) data@nt <- length(data@x) } data }
test_that("ConvertFishbaseFood function works", { test.food <- try(rfishbase::fooditems("Plectropomus maculatus"),silent = TRUE) if ("try-error"%in%class(test.food)) { skip("could not connect to remote database") }else{ test.convert <- ConvertFishbaseFood(test.food,ExcludeStage = "recruits/juv.") expect_length(test.convert,2) expect_setequal(dim(test.convert$FoodItems), c(1,5)) expect_setequal(dim(test.convert$Taxonomy), c(1,1)) } })
context("Evolutionary Multi-Objective Algorithms") test_that("preimplemented EMOAs work well", { printList = function(l) { ns = names(l) pairs = sapply(ns, function(n) { paste0(n, l[[n]], sep = "=") }) collapse(pairs, ", ") } expect_is_pareto_approximation = function(pf, n.obj, algo, prob, algo.pars) { info.suffix = sprintf("Algo '%s' failed on problem '%s' with params '%s'", algo, prob, printList(algo.pars)) expect_equal(nrow(pf), length(which.nondominated(t(pf))), info = paste0(info.suffix, "Not all returned points are nondominated.")) expect_data_frame(pf, any.missing = FALSE, all.missing = FALSE, ncols = n.obj, types = "numeric", info = paste0(info.suffix, "Not all returned points are numeric.")) expect_equal(ncol(pf), n.obj, info = paste0(info.suffix, "Number of columns is not equal to the number of objectives.")) } fns = list( zdt1 = smoof::makeZDT1Function(dimensions = 2L), zdt2 = smoof::makeZDT2Function(dimensions = 3L) ) max.evals = 200L for (mu in c(5, 10, 15)) { for (fn in names(fns)) { res = nsga2( fitness.fun = fns[[fn]], n.population = mu, n.offspring = 5L, lower = getLowerBoxConstraints(fns[[fn]]), upper = getUpperBoxConstraints(fns[[fn]]), terminators = list(stopOnEvals(max.evals)) ) expect_is_pareto_approximation(res$pareto.front, getNumberOfObjectives(fns[[fn]]), "nsga2", fn, list(mu = mu, lambda = 5L, max.evals = max.evals) ) } } for (mu in c(5, 10, 15)) { for (fn in names(fns)) { res = smsemoa( fitness.fun = fns[[fn]], n.population = mu, n.offspring = 5L, ref.point = rep(11, getNumberOfObjectives(fns[[fn]])), lower = getLowerBoxConstraints(fns[[fn]]), upper = getUpperBoxConstraints(fns[[fn]]), terminators = list(stopOnEvals(max.evals)) ) expect_is_pareto_approximation(res$pareto.front, getNumberOfObjectives(fns[[fn]]), "smsemoa", fn, list(mu = mu, lambda = 5L, max.evals = max.evals) ) } } fitness.fun = makeZDT3Function(dimensions = 2L) for (mu in c(10, 20)) { aspiration.set = matrix( c(0.2, 0.25, 0.21, 0.2, 0.18, 0.4), ncol = 3L, byrow = FALSE ) res = asemoa(fitness.fun, mu = mu, aspiration.set = aspiration.set, lower = getLowerBoxConstraints(fitness.fun), upper = getUpperBoxConstraints(fitness.fun)) expect_is_pareto_approximation(res$pareto.front, 2L, "asemoa", "ZDT3", list(mu = mu, n.archive = ncol(aspiration.set))) } })
nlmixrTest( { context("M2 -- all observations") .nlmixr <- function(...) { try(suppressWarnings(nlmixr(...))) } dat <- Wang2007 dat$DV <- dat$Y f <- function() { ini({ tvK <- 0.5 bsvK ~ 0.04 prop.sd <- sqrt(0.1) }) model({ ke <- tvK * exp(bsvK) v <- 1 ipre <- 10 * exp(-ke * t) ipre ~ prop(prop.sd) }) } dat2 <- dat dat2$limit <- 0 dat3 <- dat dat3$limit <- 3 dat4 <- dat dat4$limit <- 12 f.focei <- .nlmixr(f, dat, "posthoc") f.focei2 <- .nlmixr(f, dat2, "posthoc") expect_false(isTRUE(all.equal(f.focei$objf, f.focei2$objf))) f.focei3 <- .nlmixr(f, dat3, "posthoc") expect_false(isTRUE(all.equal(f.focei2$objf, f.focei3$objf))) f.focei4 <- .nlmixr(f, dat4, "posthoc") f.foce <- .nlmixr(f, dat, "posthoc", control = list(interaction = FALSE)) f.foce2 <- .nlmixr(f, dat2, "posthoc", control = list(interaction = FALSE)) expect_false(isTRUE(all.equal(f.foce$objf, f.foce2$objf))) f.foce3 <- .nlmixr(f, dat3, "posthoc", control = list(interaction = FALSE)) expect_false(isTRUE(all.equal(f.foce2$objf, f.foce3$objf))) test_that("M3/M4 -- Missing, assume LLOQ=3 at t=1.5", { context("M3/M4 -- Missing, assume LLOQ=3 at t=1.5") skip_if(Sys.getenv("R_ARCH") == "/i386", "windows32") datL <- rbind(dat[, names(dat) != "Y"], data.frame(ID = 1:10, Time = 1.5, DV = 3)) datL$cens <- ifelse(datL$Time == 1.5, 1, 0) datL <- datL[order(datL$ID, datL$Time), ] datL4 <- datL datL4$limit <- 0 f.foceiL <- .nlmixr(f, datL, "posthoc") expect_false(isTRUE(all.equal(f.focei$objf, f.foceiL$objf))) f.foceiL4 <- .nlmixr(f, datL4, "posthoc") expect_false(isTRUE(all.equal(f.focei$objf, f.foceiL4$objf))) expect_false(isTRUE(all.equal(f.foceiL$objf, f.foceiL4$objf))) datL <- rbind(dat[, names(dat) != "Y"], data.frame(ID = 1:10, Time = 1.5, DV = 3)) datL$cens <- ifelse(datL$Time == 1.5, 1, 0) datL <- datL[order(datL$ID, datL$Time), ] datL4 <- datL datL4$limit <- 0 f.foceiL <- .nlmixr(f, datL, "posthoc") expect_false(isTRUE(all.equal(f.focei$objf, f.foceiL$objf))) f.foceiL4 <- .nlmixr(f, datL4, "posthoc") expect_false(isTRUE(all.equal(f.focei$objf, f.foceiL4$objf))) expect_false(isTRUE(all.equal(f.foceiL$objf, f.foceiL4$objf))) datL <- rbind(dat[, names(dat) != "Y"], data.frame(ID = 1:10, Time = 1.5, DV = 3)) datL$cens <- ifelse(datL$Time == 1.5, 1, 0) datL <- datL[order(datL$ID, datL$Time), ] datL4 <- datL datL4$limit <- 0 f.foceL <- .nlmixr(f, datL, "posthoc", control = list(interaction = FALSE)) expect_false(isTRUE(all.equal(f.foce$objf, f.foceL$objf))) f.foceL4 <- .nlmixr(f, datL4, "posthoc", control = list(interaction = FALSE)) expect_false(isTRUE(all.equal(f.foce$objf, f.foceL4$objf))) expect_false(isTRUE(all.equal(f.foceL$objf, f.foceL4$objf))) }) }, test = "focei" )
local_methods <- function(..., .frame = caller_env()) { local_bindings(..., .env = global_env(), .frame = .frame) } local_foo_df <- function(frame = caller_env()) { local_methods(.frame = frame, group_by.foo_df = function(.data, ...) { out <- NextMethod() if (missing(...)) { class(out) <- c("foo_df", class(out)) } else { class(out) <- c("grouped_foo_df", class(out)) } out }, ungroup.grouped_foo_df = function(x, ...) { out <- NextMethod() class(out) <- c("foo_df", class(out)) out } ) } new_ctor <- function(base_class) { function(x = list(), ..., class = NULL) { if (inherits(x, "tbl_df")) { tibble::new_tibble(x, class = c(class, base_class), nrow = nrow(x)) } else if (is.data.frame(x)) { structure(x, class = c(class, base_class, "data.frame"), ...) } else { structure(x, class = c(class, base_class), ...) } } } foobar <- new_ctor("dplyr_foobar") foobaz <- new_ctor("dplyr_foobaz") quux <- new_ctor("dplyr_quux") new_dispatched_quux <- function(x) { out <- quux(x) out$dispatched <- rep(TRUE, nrow(out)) out }
iplotScantwo <- function(scantwoOutput, cross=NULL, lodcolumn=1, pheno.col=1, chr=NULL, chartOpts=NULL, digits=5) { if(!inherits(scantwoOutput, "scantwo")) stop('"scantwoOutput" should have class "scantwo".') if(!is.null(chr)) { scantwoOutput <- subset(scantwoOutput, chr=chr) if(!is.null(cross)) cross <- subset(cross, chr=chr) } if(length(lodcolumn) > 1) { lodcolumn <- lodcolumn[1] warning("lodcolumn should have length 1; using first value") } if(length(dim(scantwoOutput)) < 3) { if(lodcolumn != 1) { warning("scantwoOutput contains just one set of lod scores; using lodcolumn=1") lodcolumn <- 1 } } else { d <- dim(scantwoOutput)[3] if(lodcolumn < 1 || lodcolumn > 3) stop("lodcolumn should be between 1 and ", d) scantwoOutput$lod <- scantwoOutput$lod[,,lodcolumn] } if(length(pheno.col) > 1) { pheno.col <- pheno.col[1] warning("pheno.col should have length 1; using first value") } if(!is.null(cross)) pheno <- qtl::pull.pheno(cross, pheno.col) else cross <- pheno <- NULL scantwo_list <- data4iplotScantwo(scantwoOutput) phenogeno_list <- cross4iplotScantwo(scantwoOutput, cross, pheno) defaultAspect <- 1 browsersize <- getPlotSize(defaultAspect) x <- list(scantwo_data=scantwo_list, phenogeno_data=phenogeno_list, chartOpts=chartOpts) if(!is.null(digits)) attr(x, "TOJSON_ARGS") <- list(digits=digits) htmlwidgets::createWidget("iplotScantwo", x, width=chartOpts$width, height=chartOpts$height, sizingPolicy=htmlwidgets::sizingPolicy( browser.defaultWidth=browsersize$width, browser.defaultHeight=browsersize$height, knitr.defaultWidth=1000, knitr.defaultHeight=1000/defaultAspect ), package="qtlcharts") } iplotScantwo_output <- function(outputId, width="100%", height="1000") { htmlwidgets::shinyWidgetOutput(outputId, "iplotScantwo", width, height, package="qtlcharts") } iplotScantwo_render <- function(expr, env=parent.frame(), quoted=FALSE) { if(!quoted) { expr <- substitute(expr) } htmlwidgets::shinyRenderWidget(expr, iplotScantwo_output, env, quoted=TRUE) } data4iplotScantwo <- function(scantwoOutput) { lod <- scantwoOutput$lod map <- scantwoOutput$map lod <- lod[map$eq.spacing==1, map$eq.spacing==1,drop=FALSE] map <- map[map$eq.spacing==1,,drop=FALSE] lodv1 <- get_lodv1(lod, map, scantwoOutput$scanoneX) chr <- as.character(map$chr) chrnam <- unique(chr) n.mar <- tapply(chr, chr, length)[chrnam] names(n.mar) <- NULL labels <- revisePmarNames(rownames(map)) dimnames(lod) <- NULL dimnames(lodv1) <- NULL list(lod=lod, lodv1=lodv1, nmar=n.mar, chrname=chrnam, marker=labels, chr=chr, pos=map$pos) } revisePmarNames <- function(labels) { wh.pmar <- grep("^c.+\\.loc-*[0-9]+", labels) pmar <- labels[wh.pmar] pmar.spl <- strsplit(pmar, "\\.loc") pmar_chr <- vapply(pmar.spl, "[", "", 1) pmar_chr <- substr(pmar_chr, 2, nchar(pmar_chr)) pmar_pos <- vapply(pmar.spl, "[", "", 2) labels[wh.pmar] <- paste0(pmar_chr, "@", pmar_pos) labels } get_lodv1 <- function(lod, map, scanoneX=NULL) { thechr <- map$chr uchr <- unique(thechr) thechr <- factor(as.character(thechr), levels=as.character(uchr)) uchr <- factor(as.character(uchr), levels=levels(thechr)) xchr <- tapply(map$xchr, thechr, function(a) a[1]) maxo <- tapply(diag(lod), thechr, max, na.rm=TRUE) if(any(xchr) && !is.null(scanoneX)) { maxox <- tapply(scanoneX, thechr, max, na.rm=TRUE) maxo[xchr] <- maxox[xchr] } n.chr <- length(uchr) for(i in 1:n.chr) { pi <- which(thechr==uchr[i]) for(j in 1:n.chr) { pj <- which(thechr==uchr[j]) lod[pj,pi] <- lod[pj,pi] - max(maxo[c(i,j)]) } } lod[is.na(lod) | lod < 0] <- 0 lod } cross4iplotScantwo <- function(scantwoOutput, cross=NULL, pheno=NULL) { if(is.null(cross) || is.null(pheno)) return(NULL) map <- scantwoOutput$map map <- map[map$eq.spacing==1,,drop=FALSE] getPmarNames <- function(cross) { nam <- lapply(cross$geno, function(a) colnames(a$draws)) chrnam <- names(cross$geno) for(i in seq(along=nam)) { g <- grep("^loc", nam[[i]]) if(length(g) > 0) nam[[i]][g] <- paste0("c", chrnam[i], ".", nam[[i]][g]) } nam } needImp <- TRUE if("draws" %in% names(cross$geno[[1]])) { nam <- getPmarNames(cross) if(all(rownames(scantwoOutput) %in% unlist(nam))) { needImp <- FALSE } } if(needImp) { if("prob" %in% names(cross$geno[[1]])) { cross <- qtl::sim.geno(cross, error.prob=attr(cross$geno[[1]]$prob, "error.prob"), step=attr(cross$geno[[1]]$prob, "step"), off.end=attr(cross$geno[[1]]$prob, "off.end"), map.function=attr(cross$geno[[1]]$prob, "map.function"), stepwidth=attr(cross$geno[[1]]$prob, "stepwidth"), n.draws=1) nam <- getPmarNames(cross) if(all(rownames(scantwoOutput) %in% unlist(nam))) { needImp <- FALSE } } if(needImp) stop('cross object needs imputed genotypes at pseudomarkers\n', 'Run sim.geno with step/stepwidth as used for scantwo') } cross_type <- crosstype(cross) chr_type <- sapply(cross$geno, chrtype) sexpgm <- qtl::getsex(cross) cross.attr <- attributes(cross) if(cross_type %in% c("f2", "bc", "bcsft") && any(chr_type=="X")) { for(i in which(chr_type=="X")) { cross$geno[[i]]$draws <- qtl::reviseXdata(cross_type, "standard", sexpgm, draws=cross$geno[[i]]$draws, cross.attr=cross.attr) } } geno <- vector("list", nrow(map)) names(geno) <- rownames(map) for(i in seq(along=cross$geno)) { m <- which(nam[[i]] %in% rownames(map)) for(j in m) geno[[nam[[i]][j]]] <- cross$geno[[i]]$draws[,j,1] } names(geno) <- revisePmarNames(rownames(map)) genonames <- vector("list", length(cross$geno)) names(genonames) <- names(cross$geno) for(i in seq(along=genonames)) genonames[[i]] <- qtl::getgenonames(cross_type, class(cross$geno[[i]]), "standard", sexpgm, cross.attr) X_geno_by_sex <- NULL chr_type <- vapply(cross$geno, chrtype, "") if(any(chr_type=="X")) { f_sexpgm <- m_sexpgm <- sexpgm f_sexpgm$sex[f_sexpgm$sex==1] <- 0 m_sexpgm$sex[m_sexpgm$sex==0] <- 1 X_geno_by_sex <- list( qtl::getgenonames(cross_type, class(cross$geno[[i]]), "standard", f_sexpgm, cross.attr), qtl::getgenonames(cross_type, class(cross$geno[[i]]), "standard", m_sexpgm, cross.attr) ) } chr <- as.character(map$chr) names(chr) <- names(geno) indID <- qtl::getid(cross) if(is.null(indID)) indID <- 1:qtl::nind(cross) indID <- as.character(indID) list(geno=geno, chr=as.list(chr), genonames=genonames, X_geno_by_sex=X_geno_by_sex, pheno=pheno, indID=indID, chrtype=as.list(chr_type)) }
expected <- eval(parse(text="structure(logical(0), .Dim = c(0L, 20L))")); test(id=0, code={ argv <- eval(parse(text="list(structure(logical(0), .Dim = c(0L, 20L)), \"dimnames\", value = NULL)")); do.call(`attr<-`, argv); }, o=expected);
intraMode=function(d,n,B=0,DB=c(0,0),JC=FALSE,CI_Boot,type="bca", plot=FALSE){ if(is.numeric(d)){d=d}else{stop("d is not numeric")} if(is.numeric(n)){n=n}else{stop("n is not numeric")} if(B==0&& plot==TRUE){stop("please select a number of bootstrap repititions for the plot")} if(B%%1==0){B=B}else{stop("B is not an integer")} if(DB[1]%%1==0 && DB[2]%%1==0 ){DB=DB}else{stop("At least one entry in DB is not an integer")} if(length(d)==length(n)){}else{stop("Input vectors do not have the same length")} d1=d/n estimate=function(X){ mode_empirical <- function(x) { uniqv <- unique(x) uniqv[which.max(tabulate(match(x, uniqv)))] } mode=mode_empirical(X) if(mode==0){warning("Mode is equal to 0. The estimate may be unstalbe")} PD=mean(X) foo=function(rho){ mode_theoretical=pnorm(sqrt(1-rho)/(1-2*rho)*qnorm(PD)) return(abs(mode_theoretical-mode)) } Est<-list(Original =optimise(foo, interval = c(0, 1), maximum = FALSE)$minimum) } Estimate_Standard<-estimate(d1) if(B>0){ N<-length(n) D<- matrix(ncol=1, nrow=N,d1) BCA=function(data, indices){ d <- data[indices,] tryCatch(estimate(d)$Original,error=function(e)NA) } boot1<- boot(data = D, statistic = BCA, R=B) Estimate_Bootstrap<-list(Original = boot1$t0, Bootstrap=2*boot1$t0 - mean(boot1$t,na.rm = TRUE),bValues=boot1$t ) if(missing(CI_Boot)){Estimate_Bootstrap=Estimate_Bootstrap}else{ if(type=="norm"){Conf=(boot.ci(boot1,conf=CI_Boot,type = type)$normal[2:3])} if(type=="basic"){Conf=(boot.ci(boot1,conf=CI_Boot,type = type)$basic[4:5])} if(type=="perc"){Conf=(boot.ci(boot1,conf=CI_Boot,type = type))$percent[4:5]} if(type=="bca"){Conf=(boot.ci(boot1,conf=CI_Boot,type = type))$bca[4:5]} if(type=="all"){Conf=(boot.ci(boot1,conf=CI_Boot,type = type))} Estimate_Bootstrap<-list(Original = boot1$t0, Bootstrap=2*boot1$t0 - mean(boot1$t,na.rm = TRUE),CI_Boot=Conf,bValues=boot1$t ) } if(plot==TRUE){ Dens<-density(boot1$t, na.rm = TRUE) XY<-cbind(Dens$x,Dens$y) label<-data.frame(rep("Bootstrap density",times=length(Dens$x))) Plot<-cbind(XY,label) colnames(Plot)<-c("Estimate","Density","Label") SD<-cbind(rep(boot1$t0,times=length(Dens$x)), Dens$y,rep("Standard estimate",times=length(Dens$x))) colnames(SD)<-c("Estimate","Density","Label") BC<-cbind(rep(Estimate_Bootstrap$Bootstrap,times=length(Dens$x)), Dens$y,rep("Bootstrap corrected estimate",times=length(Dens$x))) colnames(BC)<-c("Estimate","Density","Label") Plot<-rbind(Plot,SD, BC) Plot$Estimate<-as.numeric(Plot$Estimate) Plot$Density<- as.numeric(Plot$Density) Estimate<-Plot$Estimate Density<-Plot$Density Label<-Plot$Label P<-ggplot() P<-P+with(Plot, aes(x=Estimate, y=Density, colour=Label)) + geom_line()+ scale_colour_manual(values = c("black", "red", "orange"))+ theme_minimal(base_size = 15) + ggtitle("Bootstrap Density" )+ theme(plot.title = element_text(hjust = 0.5),legend.position="bottom",legend.text = element_text(size = 12),legend.title = element_text( size = 12), legend.justification = "center",axis.text.x= element_text(face = "bold", size = 12)) print(P) } } if(DB[1]!=0){ IN=DB[1] OUT=DB[2] theta1=NULL theta2=matrix(ncol = OUT, nrow=IN) for(i in 1:OUT){ N<-length(d1) Ib<-sample(N,N,replace=TRUE) Db<-d1[Ib] try(theta1[i]<-estimate(Db)$Original, silent = TRUE) for(c in 1:IN){ Ic<-sample(N,N,replace=TRUE) Dc<-Db[Ic] try( theta2[c,i]<-estimate(Dc)$Original, silent = TRUE) } } Boot1<- mean(theta1, na.rm = TRUE) Boot2<- mean(theta2, na.rm = TRUE) BC<- 2*Estimate_Standard$Original -Boot1 DBC<- (3*Estimate_Standard$Original-3*Boot1+Boot2) Estimate_DoubleBootstrap<-list(Original = Estimate_Standard$Original, Bootstrap=BC, Double_Bootstrap=DBC, oValues=theta1, iValues=theta2) } if(JC==TRUE){ N<-length(n) Test=NULL for(v in 1:N){ d2<-d1[-v] try(Test[v]<-estimate(d2)$Original) } Estimate_Jackknife<-list(Original = Estimate_Standard$Original, Jackknife=(N*Estimate_Standard$Original-(N-1)*mean(Test))) } if(B>0){return(Estimate_Bootstrap)} if(JC==TRUE){return(Estimate_Jackknife)} if(DB[1]!=0){return(Estimate_DoubleBootstrap)} if(B==0 && JC==FALSE && DB[1]==0){return(Estimate_Standard)} }
kpPoints <- function(karyoplot, data=NULL, chr=NULL, x=NULL, y=NULL, ymin=NULL, ymax=NULL, data.panel=1, r0=NULL, r1=NULL, clipping=TRUE, pch=16, cex=0.5, ...) { if(!methods::is(karyoplot, "KaryoPlot")) stop("'karyoplot' must be a valid 'KaryoPlot' object") karyoplot$beginKpPlot() on.exit(karyoplot$endKpPlot()) pp <- prepareParameters2("kpPoints", karyoplot=karyoplot, data=data, chr=chr, x=x, y=y, ymin=ymin, ymax=ymax, r0=r0, r1=r1, data.panel=data.panel, ...) ccf <- karyoplot$coord.change.function xplot <- ccf(chr=pp$chr, x=pp$x, data.panel=data.panel)$x yplot <- ccf(chr=pp$chr, y=pp$y, data.panel=data.panel)$y processClipping(karyoplot=karyoplot, clipping=clipping, data.panel=data.panel) dots <- filterParams(list(...), pp$filter, pp$original.length) pch <- filterParams(pch, pp$filter, pp$original.length) cex <- filterParams(cex, pp$filter, pp$original.length) params <- c(list(x=xplot, y=yplot, pch=pch, cex=cex), dots) do.call(graphics::points, params) invisible(karyoplot) }
mdlp <- function(data){ p <- length(data[1,])-1 y <- data[,(p+1)] xd <- data cutp <- list() for (i in 1:p){ x <- data[,i] cuts1 <- cutPoints(x,y) cuts <- c(min(x),cuts1,max(x)) cutp[[i]] <- cuts1 if(length(cutp[[i]])==0)cutp[[i]] <- "All" xd[,i] <- as.integer(cut(x,cuts,include.lowest = TRUE)) } return (list(cutp=cutp,Disc.data=xd)) }
bfFixefLMER_t.fnc<-function (model, item = FALSE, method = c("t", "z", "llrt", "AIC", "BIC", "relLik.AIC", "relLik.BIC"), threshold = NULL, t.threshold = NULL, alphaitem = NULL, prune.ranefs = TRUE, set.REML.FALSE = TRUE, keep.single.factors = FALSE, reset.REML.TRUE = TRUE, log.file = NULL) { if (length(item) == 0) { stop("please supply a value to argument \"item\".\n") } if (length(set.REML.FALSE) == 0) { stop("please supply a value to argumnet \"set.REML.FALSE\".\n") } if (length(reset.REML.TRUE) == 0) { stop("please supply a value to argument \"reset.REML.TRUE\".\n") } if (!method[1] %in% c("t", "z", "llrt", "AIC", "BIC", "relLik.AIC", "relLik.BIC")) { stop("please supply a proper method name (t, z, llrt, AIC, BIC, relLik.AIC, or relLik.BIC).\n") } if ("factor" %in% attributes(attributes(model@frame)$terms)$dataClasses & max(c(0, apply(as.data.frame(model@frame[, names(attributes(attributes(model@frame)$terms)$dataClasses[attributes(attributes(model@frame)$terms)$dataClasses == "factor"])]), MARGIN = 2, FUN = function(x) length(levels(factor(x)))))) > 2) { if(!as.vector(model@call[1]) == "glmer()"){ warning("factor variable with more than two levels in model terms, backfitting on t-values is not appropriate, please use function \"bfFixefLMER_F.fnc\" instead.\n") } } if (is.null(threshold)) { threshold <- c(2, 2, 0.05, 5, 5, 4, 4)[match(method[1], c("t", "z", "llrt", "AIC", "BIC", "relLik.AIC", "relLik.BIC"))] } if (is.null(t.threshold)) { t.threshold <- 2 } if (is.null(alphaitem)) { if (method[1] == "llrt") { alphaitem <- threshold } else { alphaitem <- 0.05 } } if (is.null(log.file)) { log.file <- file.path(tempdir(), paste("bfFixefLMER_t_log_", gsub(":", "-", gsub("", "_", date())), ".txt", sep = "")) } if ((method[1] != "t" & set.REML.FALSE) || (method[1] != "z" & set.REML.FALSE)) { if(!as.vector(model@call[1]) == "glmer()"){ cat("setting REML to FALSE\n") model <- update(model, . ~ ., REML = FALSE) } } data <- model@frame statistic <- "t-value" temp.dir <- tempdir() tempdir() options(warn = 1) unlink(file.path(temp.dir, "temp.txt")) sink(file = NULL, type = "message") if (log.file != FALSE) sink(file = log.file, split = TRUE) if (item != FALSE) { cat("checking", paste("by-", item, sep = ""), "random intercepts\n") model.updated <- NULL eval(parse(text = paste("model.updated=update(model,.~.+(1|", item, "))", sep = ""))) if (as.vector(anova(model, model.updated)[2, "Pr(>Chisq)"]) <= alphaitem) { cat(" log-likelihood ratio test p-value =", as.vector(anova(model, model.updated)[2, "Pr(>Chisq)"]), "\n") cat(" adding", paste("by-", item, sep = ""), "random intercepts to model\n") model <- model.updated } else { cat(" log-likelihood ratio test p-value =", as.vector(anova(model, model.updated)[2, "Pr(>Chisq)"]), "\n") cat(" not adding", paste("by-", item, sep = ""), "random intercepts to model\n") } } if (as.vector(model@call[1]) == "glmer()") { statistic <- "z-value" odv <- data[, as.character(unlist(as.list(model@call))$formula[2])] data[, as.character(unlist(as.list(model@call))$formula[2])] = rnorm(nrow(data), 0, 1) ow<-options()$warn options(warn = -1) temp.lmer <- update(model, . ~ ., family = "gaussian", data = data) options(warn=ow) coefs <- row.names(anova(temp.lmer)) data[, as.character(unlist(as.list(model@call))$formula[2])] <- odv } else { coefs <- row.names(anova(model)) } if (is(model, "merMod")) { model <- asS4(model) smry <- as.data.frame(summary(model)$coefficients) } else { stop("the input model is not a mer object\n") } smry.temp <- smry[-c(1:nrow(smry)), ] smry <- as.data.frame(summary(model)$coefficients) for (coef in coefs) { intr.order <- length(unlist(strsplit(coef, ":"))) orig.coef <- coef coef <- gsub(":", "\\.\\*:", coef) coef <- gsub("(^.*$)", "\\1\\.\\*", coef) coef <- gsub("\\(", "\\\\(", coef) coef <- gsub("\\)", "\\\\)", coef) smry.temp2 <- smry[grep(paste("^", coef, sep = ""), row.names(smry)), ] smry.temp3 <- smry.temp2 smry.temp3 <- smry.temp3[-c(1:nrow(smry.temp3)), ] for (j in 1:nrow(smry.temp2)) { if (length(unlist(strsplit(row.names(smry.temp2)[j], ":"))) == intr.order) { smry.temp3 <- rbind(smry.temp3, smry.temp2[j, ]) } } smry.temp2 <- smry.temp3 smry.temp2[, 3] = abs(smry.temp2[, 3]) smry.temp2 <- smry.temp2[smry.temp2[, 3] == max(smry.temp2[, 3]), ] row.names(smry.temp2) <- orig.coef smry.temp <- rbind(smry.temp, smry.temp2) } temp <- strsplit(coefs, ":") names(temp) <- coefs intr.order <- list() for (i in coefs) { intr.order[[i]] <- length(temp[[i]]) } intr.order <- as.data.frame(unlist(intr.order)) colnames(intr.order) <- "Order" intr.order$Coef <- row.names(intr.order) row.names(intr.order) <- 1:nrow(intr.order) orders <- sort(as.numeric(unique(intr.order$Order)), decreasing = TRUE) if (keep.single.factors) { orders <- orders[orders != 1] } smry.temp$Order <- intr.order$Order count <- 1 for (order in orders) { cat("processing model terms of interaction level", order, "\n") keepers <- as.character(row.names(smry.temp[smry.temp$Order == order, ])) smry.temp2 <- smry.temp[keepers, ] if (smry.temp2[smry.temp2[, 3] == min(smry.temp2[, 3]), 3][1] >= t.threshold) { cat(" all terms of interaction level", order, "significant\n") } while (smry.temp2[smry.temp2[, 3] == min(smry.temp2[, 3]), 3][1] < t.threshold) { cat(" iteration", count, "\n") cat(" ", statistic, "for term", paste("\"", row.names(smry.temp2[smry.temp2[, 3] == min(smry.temp2[, 3]), ])[1], "\"", sep = ""), "=", smry.temp2[smry.temp2[, 3] == min(smry.temp2[, 3]), 3][1], "<", t.threshold, "\n") fac <- unlist(strsplit(gsub("\\)", "", gsub("\\(", "", as.character(row.names(smry.temp2[smry.temp2[, 3] == min(smry.temp2[, 3]), ]))[1])), ":")) hoi <- gsub("\\)", "", gsub("\\(", "", intr.order[intr.order$Order > order, "Coef"])) tt <- c() for (i in 1:length(hoi)) { tt[i] <- length(grep("FALSE", unique(fac %in% unlist(strsplit(hoi[i], ":"))))) < 1 } if (length(grep("TRUE", tt)) != 0) { cat(" part of higher-order interaction\n") cat(" skipping term\n") keepers <- row.names(smry.temp2) keepers <- keepers[-grep(as.character(row.names(smry.temp2[smry.temp2[, 3] == min(smry.temp2[, 3]), ]))[1], keepers)] smry.temp2 <- smry.temp2[keepers, ] } else { cat(" not part of higher-order interaction\n") m.temp <- NULL eval(parse(text = paste("m.temp=update(model,.~.-", row.names(smry.temp2[smry.temp2[, 3] == min(smry.temp2[, 3]), ])[1], ")", sep = ""))) if (method[1] == "llrt") { if (as.vector(anova(model, m.temp)[2, "Pr(>Chisq)"]) <= threshold) { cat(" log-likelihood ratio test p-value =", as.vector(anova(model, m.temp)[2, "Pr(>Chisq)"]), "<=", threshold, "\n") cat(" skipping term\n") keepers <- row.names(smry.temp2) cat("length =", length(keepers), "\n") keepers <- keepers[-which(keepers == as.character(row.names(smry.temp2[smry.temp2[, 3] == min(smry.temp2[, 3]), ]))[1])] smry.temp2 <- smry.temp2[keepers, ] reduction <- FALSE } else { reduction <- TRUE cat(" log-likelihood ratio test p.value =", as.vector(anova(model, m.temp)[2, "Pr(>Chisq)"]), ">", threshold, "\n") } } if (method[1] %in% c("AIC", "BIC")) { m.temp.ic <- summary(m.temp)$AICtab[method[1]] model.ic <- summary(model)$AICtab[method[1]] ic.diff <- m.temp.ic - model.ic if (ic.diff >= threshold) { reduction <- FALSE } else { reduction <- TRUE } if (!reduction) { cat(paste(" ", method[1], " simple = ", round(m.temp.ic), "; ", method[1], " complex = ", round(model.ic), "; decrease = ", round(ic.diff), " >= ", threshold, "\n", sep = "")) cat(" skipping term\n") keepers <- row.names(smry.temp2) cat("length =", length(keepers), "\n") keepers <- keepers[-which(keepers == as.character(row.names(smry.temp2[smry.temp2[, 3] == min(smry.temp2[, 3]), ]))[1])] smry.temp2 <- smry.temp2[keepers, ] } else { cat(paste(" ", method[1], " simple = ", round(m.temp.ic), "; ", method[1], " complex = ", round(model.ic), "; decrease = ", round(ic.diff), " < ", threshold, "\n", sep = "")) } } if (method[1] %in% c("relLik.AIC", "relLik.BIC")) { ic <- gsub("relLik.(.*)", "\\1", method[1]) m.temp.ic <- eval(parse(text = paste(ic, "(m.temp)", sep = ""))) model.ic <- eval(parse(text = paste(ic, "(model)", sep = ""))) my.relLik <- relLik(m.temp, model, ic)["relLik"] reduction <- FALSE cat(paste(" ", ic, " simple = ", round(m.temp.ic), "; ", ic, " complex = ", round(model.ic), "; relLik = ", round(my.relLik), "\n", sep = "")) if (m.temp.ic <= model.ic) { reduction <- TRUE } if (!reduction) { if (my.relLik >= threshold) { cat(paste(" ", "relLik of ", round(my.relLik), " >= ", threshold, "\n", sep = "")) cat(" skipping term\n") keepers <- row.names(smry.temp2) cat("length =", length(keepers), "\n") keepers <- keepers[-which(keepers == as.character(row.names(smry.temp2[smry.temp2[, 3] == min(smry.temp2[, 3]), ]))[1])] smry.temp2 <- smry.temp2[keepers, ] } else { cat(paste(" ", "relLik of ", round(my.relLik), " < ", threshold, "\n", sep = "")) reduction <- TRUE } } else { cat(paste(" simple model more likely than complex model\n")) } } if (method[1] == "t") { reduction <- TRUE } if (reduction) { cat(" removing term\n") model <- m.temp if (as.vector(model@call[1]) == "glmer()") { odv <- data[, as.character(unlist(as.list(model@call))$formula[2])] data[, as.character(unlist(as.list(model@call))$formula[2])] <- rnorm(nrow(data), 0, 1) ow<-options()$warn options(warn = -1) temp.lmer <- update(model, . ~ ., family = "gaussian", data = data) options(warn=ow) coefs <- row.names(anova(temp.lmer)) data[, as.character(unlist(as.list(model@call))$formula[2])] <- odv } else { coefs <- row.names(anova(model)) if (length(coefs) == 0) { break } } smry2 <- as.data.frame(summary(model)$coefficients) smry.temp2 <- smry2[-c(1:nrow(smry2)), ] for (coef in coefs) { intr.order <- length(unlist(strsplit(coef, ":"))) orig.coef <- coef coef <- gsub(":", "\\.\\*:", coef) coef <- gsub("(^.*$)", "\\1\\.\\*", coef) coef <- gsub("\\(", "\\\\(", coef) coef <- gsub("\\)", "\\\\)", coef) smry.temp3 <- smry2[grep(paste("^", coef, sep = ""), row.names(smry2)), ] smry.temp4 <- smry.temp3 smry.temp4 <- smry.temp4[-c(1:nrow(smry.temp4)), ] for (j in 1:nrow(smry.temp3)) { if (length(unlist(strsplit(row.names(smry.temp3)[j], ":"))) == intr.order) { smry.temp4 <- rbind(smry.temp4, smry.temp3[j, ]) } } smry.temp3 <- smry.temp4 smry.temp3[, 3] <- abs(smry.temp3[, 3]) smry.temp3 <- smry.temp3[smry.temp3[, 3] == max(smry.temp3[, 3]), ] row.names(smry.temp3) <- orig.coef smry.temp2 <- rbind(smry.temp2, smry.temp3) } temp <- strsplit(coefs, ":") names(temp) <- coefs intr.order <- list() for (i in coefs) { intr.order[[i]] <- length(temp[[i]]) } intr.order <- as.data.frame(unlist(intr.order)) colnames(intr.order) <- "Order" intr.order$Coef <- row.names(intr.order) row.names(intr.order) <- 1:nrow(intr.order) smry.temp2$Order <- intr.order$Order keepers <- as.character(row.names(smry.temp2[smry.temp2$Order == order, ])) smry.temp = smry.temp2 smry.temp2 <- smry.temp2[keepers, ] } } count <- count + 1 if (nrow(smry.temp2) == 0) { break } } } if (reset.REML.TRUE) { if(!as.vector(model@call[1]) == "glmer()"){ cat("resetting REML to TRUE\n") model <- update(model, . ~ ., REML = TRUE) } } if (prune.ranefs) { cat("pruning random effects structure ...\n") split1 <- gsub(" ", "", model@call)[2] split2 <- unlist(strsplit(split1, "\\~"))[2] split2 <- gsub("\\)\\+\\(", "\\)_____\\(", split2) split2 <- gsub("\\(0\\+", "\\(0\\&\\&\\&", split2) split2 <- gsub("\\(1\\+", "\\(0\\&\\&\\&", split2) split3 <- unlist(strsplit(split2, "\\+")) split4 <- grep("\\|", split3, value = TRUE) split4 <- gsub("\\&\\&\\&", "\\+", split4) split5 <- unlist(strsplit(split4, "_____")) m.ranefs <- split5 if (as.vector(model@call[1]) == "glmer()") { statistic <- "z-value" odv <- data[, as.character(unlist(as.list(model@call))$formula[2])] data[, as.character(unlist(as.list(model@call))$formula[2])] = rnorm(nrow(data), 0, 1) ow<-options()$warn options(warn = -1) temp.lmer <- update(model, . ~ ., family = "gaussian", data = data) options(warn=ow) coefs <- row.names(anova(temp.lmer)) data[, as.character(unlist(as.list(model@call))$formula[2])] <- odv } else { coefs <- row.names(anova(model)) } m.ranef.variables <- gsub("\\((.*)\\|.*", "\\1", m.ranefs) m.ranef.variables <- gsub(".\\+(.*)", "\\1", m.ranef.variables) m.ranef.variables <- m.ranef.variables[m.ranef.variables != "1"] m.ranef.variables <- m.ranef.variables[m.ranef.variables != "0"] ranef.to.remove <- vector("character") for (m.ranef.variable in m.ranef.variables) { if (!m.ranef.variable %in% coefs) { ranef.to.remove <- c(ranef.to.remove, m.ranef.variable) } } if (length(ranef.to.remove) > 0) { rtr <- vector("character") rtr2 <- vector("character") for (iii in ranef.to.remove) { rtr <- c(rtr, grep(iii, m.ranefs, value = TRUE)) cat(paste(" ", iii, " in random effects structure but not in fixed effects structure\n", sep = "")) cat(" removing", iii, "from model ...\n") rtr2 <- c(rtr2, sub(iii, 1, grep(iii, m.ranefs, value = TRUE))) } eval(parse(text = paste("model<-update(model,.~.-", paste(rtr, collapse = "-"), "+", paste(rtr2, collapse = "+"), ",data=data)", sep = ""))) } else { cat(" nothing to prune\n") } } options(warn = 0) sink(file = NULL, type = "message") if (log.file != FALSE) { cat("log file is", log.file, "\n") sink(file = NULL) } return(model = model) }
context("FunExternal") test_that("test external functions (smoof/BBOB) are evaluated without errors", { fn = makeBBOBFunction(dimension = 2L, fid = 1L, iid = 1L) y1 <- fn(c(0,0)) x <- matrix(c(0,0), 1, 2) y2 <- as.double(funBBOBCall(x, opt = list(dimensions = 2L, fid = 1L, iid = 1L)) ) expect_equal( y1 , y2) })
td <- tempfile() dir.create(td) Sys.setenv("PROJ_USER_WRITABLE_DIRECTORY"=td) library(rgdal) data("GridsDatums") GridsDatums[grep("Netherlands", GridsDatums$country),] mvrun <- FALSE knitr::include_graphics(system.file("misc/meuse.png", package="rgdal")) odd_run <- FALSE if (new_proj_and_gdal()) odd_run <- TRUE ellps <- projInfo("ellps") (clrk66 <- ellps[ellps$name=="clrk66",]) a <- 6378206.4 b <- 6356583.8 print(sqrt((a^2-b^2)/a^2), digits=10) (shpr <- get_proj_search_paths()) if (is.null(shpr)) odd_run <- FALSE run <- FALSE if (require("RSQLite", quietly=TRUE)) run <- TRUE library(RSQLite) db <- dbConnect(SQLite(), dbname=file.path(shpr[length(shpr)], "proj.db")) dbListTables(db) (metadata <- dbReadTable(db, "metadata")) cat(wkt(CRS(SRS_string="OGC:CRS84")), "\n") b_pump <- readOGR(system.file("vectors/b_pump.gpkg", package="rgdal")) proj4string(b_pump) if (packageVersion("sp") > "1.4.1") { WKT <- wkt(b_pump) } else { WKT <- comment(slot(b_pump, "proj4string")) } cat(WKT, "\n") cov <- dbReadTable(db, "coordinate_operation_view") cov[grep("OSGB", cov$name), c("table_name", "code", "name", "method_name", "accuracy")] list_coordOps(paste0(proj4string(b_pump), " +type=crs"), "EPSG:4326") set_enforce_xy(FALSE) list_coordOps(paste0(proj4string(b_pump), " +type=crs"), "EPSG:4326") set_enforce_xy(TRUE) set_transform_wkt_comment(FALSE) isballpark <- spTransform(b_pump, CRS(SRS_string="OGC:CRS84")) get_last_coordOp() print(coordinates(isballpark), digits=10) helm <- dbReadTable(db, "helmert_transformation_table") helm[helm$code == "1314", c("auth_name", "code", "name", "tx", "ty", "tz", "rx", "ry", "rz", "scale_difference")] dbDisconnect(db) set_transform_wkt_comment(TRUE) is2m <- spTransform(b_pump, CRS(SRS_string="OGC:CRS84")) get_last_coordOp() print(coordinates(is2m), digits=10) c(spDists(isballpark, is2m)*1000) mrun <- FALSE if (suppressPackageStartupMessages(require(maptools, quietly=TRUE))) mrun <- TRUE c(maptools::gzAzimuth(coordinates(isballpark), coordinates(is2m))) (a <- project(coordinates(b_pump), proj4string(b_pump), inv=TRUE, verbose=TRUE)) (b <- project(coordinates(b_pump), WKT, inv=TRUE)) all.equal(a, b) c(spDists(coordinates(isballpark), a)*1000) list_coordOps(WKT, "OGC:CRS84") if (is.projected(b_pump)) { o <- project(t(unclass(bbox(b_pump))), wkt(b_pump), inv=TRUE) } else { o <- t(unclass(bbox(b_pump))) } (aoi <- c(t(o + c(-0.1, +0.1)))) nrow(list_coordOps(WKT, "OGC:CRS84", area_of_interest=aoi)) nrow(list_coordOps(WKT, "OGC:CRS84", strict_containment=TRUE, area_of_interest=aoi)) run <- run && (attr(getPROJ4VersionInfo(), "short") >= 710) is_proj_CDN_enabled() enable_proj_CDN() is_proj_CDN_enabled() shpr[1] try(file.size(file.path(shpr[1], "cache.db"))) list_coordOps(WKT, "OGC:CRS84", area_of_interest=aoi) system.time(is1m <- spTransform(b_pump, CRS(SRS_string="OGC:CRS84"))) get_last_coordOp() print(coordinates(is1m), digits=10) c(spDists(is2m, is1m)*1000) c(maptools::gzAzimuth(coordinates(is1m), coordinates(is2m))) try(file.size(file.path(shpr[1], "cache.db"))) library(RSQLite) db <- dbConnect(SQLite(), dbname=file.path(shpr[1], "cache.db")) dbListTables(db) dbReadTable(db, "chunks") dbDisconnect(db) disable_proj_CDN() is_proj_CDN_enabled() knitr::include_graphics(system.file("misc/snow.png", package="rgdal")) library(sp) (load(system.file("misc/GGHB.IG_CRS.rda", package="rgdal"))) orig sp_version_ok <- length(grep("get_source_if_boundcrs", deparse(args(sp::CRS)))) > 0L orig1 <- CRS(slot(orig, "projargs"), get_source_if_boundcrs=FALSE) cat(wkt(orig1), "\n") orig1a <- CRS(slot(orig, "projargs")) cat(wkt(orig1a), "\n") orig1b <- rebuild_CRS(orig) cat(wkt(orig1b), "\n")
caLogit<-function(sym,y,x) { options(contrasts=c("contr.sum","contr.poly")) outdec<-options(OutDec="."); on.exit(options(outdec)) options(OutDec=",") y<-m2v(y) m<-length(x) n<-nrow(x) S<-nrow(y)/n xnms<-names(x) Lj<-vector("numeric",m) for (j in 1:m) {Lj[j]<-nlevels(factor(x[[xnms[j]]]))} p<-sum(Lj)-m+1 xtmp<-paste("factor(x$",xnms,sep="",paste(")")) xfrm<-paste(xtmp,collapse="+") usl<-partutils(xfrm,y,x,n,p,S) psc<-profsimcode(sym) Zsym<-as.matrix(psc) Usym<-Zsym%*%t(usl) r<-nrow(Zsym) log<-Logit(Usym,S,r) return(log) }
cau.Euclid <- function(parsil, distance.matrix) { parsil/(1 + 4.4*distance.matrix^2) }
coverage <- function(x, level = 0.95, na.rm = TRUE) { x <- as.numeric(x) level <- check.level(level) bottom = (1 - level) / 2 top = 1 - bottom res <- quantile(x, probs = c(bottom, top), na.rm = na.rm, type = 7, names = TRUE) names(res) <- paste("coverage", c("lower", "upper"), sep = "_") names(res) <- c("lower", "upper") res } ci.mean <- function(x, level = 0.95, na.rm = TRUE) { x <- as.numeric(x) level <- check.level(level) n <- length(x) lowerq <- stats::qt((1 - level) / 2, df = n - 1) res <- base::mean(x, na.rm = na.rm) + c(lowerq, -lowerq) * stats::sd(x, na.rm = na.rm)/sqrt(length(x)) names(res) <- c("lower", "upper") res } ci.median <- function(x, level = 0.9, na.rm = TRUE) { x <- as.numeric(x) level <- check.level(level) x <- sort(x) n <- length(x) bottom <- (1 - level) / 2 top <- 1 - bottom ci_index <- (n + qnorm(c(bottom, top)) * sqrt(n))/2 + c(0,1) res <- as.numeric(x[round(ci_index)]) names(res) <- c("lower", "upper") res } ci.sd <- function(x, level = 0.95, na.rm = TRUE) { x <- as.numeric(x) level <- check.level(level) n <- length(x) bottom <- (1 - level) / 2 top <- 1 - bottom res = (n - 1) * stats::sd(x, na.rm = TRUE)^2 / qchisq(c(top, bottom), df = n - 1) res <- sqrt(res) names(res) <- c("lower", "upper") res } ci.prop <- function(x, success = NULL, level = 0.95, method = c("Clopper-Pearson", "binom.test", "Score", "Wilson", "prop.test", "Wald", "Agresti-Coull", "Plus4")) { level <- check.level(level) if (requireNamespace("mosaic")) { tmp <- mosaic::binom.test(~ x, conf.level = level, ci.method = method, success = success) res <- numeric(3) res[c(1,3)] <- tmp$conf.int res[2] <- tmp$estimate names(res) <- c("lower", "center", "upper") } else { nm = success if (is.null(nm)) { nm <- if (is.logical(x)) TRUE else unique(x)[1] } prob <- mean(x == nm[1]) n <- length(x) bottom <- (1 - level) / 2 top <- 1 - bottom res <- qbinom(c(bottom, top), size = length(x), prob = prob) / n res[3] <- res[2] res[2] <- prob names(res) <- c("lower", "center", "upper") } res } check.level <- function(level) { res <- ifelse(level > 1, 1, ifelse(level < 0, 0, level)) if (level < 0 | level > 1) warning("level ", level, " is not between 0 and 1. Setting to ", res) res }
Visualizer4Set <- function(A, pointsToDraw, colour, label, name){ if (requireNamespace("rgl", quietly = TRUE)) { X <- rbind(c(0, 0, 0), c(1, 0, 0), c(0.5, 0.5 * sqrt(3), 0), c(0.5, 1/6 * sqrt(3), 1/3 *sqrt(6))) grandCoalition=A[length(A)] beta = pointsToDraw/grandCoalition vertices <- bary2cart(X, beta) ConvHull <- convhulln(vertices) ts.surf <- t(ConvHull) rgl::rgl.triangles(vertices[ts.surf, 1], vertices[ts.surf, 2], vertices[ts.surf, 3], col = colour, alpha=0.8, smooth=FALSE, lit=FALSE) if(label == TRUE) { setLabels(A, pointsToDraw, name) } }else { print("Please install the package 'rgl' in order to generate plots visualizing 4-player TU games")} }
test_that("functions in mixutil.R are ok", { expect_identical(lastn(letters, 5), letters[22:26]) n <- 10 x <- 1:n expect_identical(lastn(x, n), x) expect_identical(lastn(x, 3), x[8:10]) expect_identical(lastn(x, -3), integer(0)) expect_identical(lastn(1:3, 0), integer(0)) expect_identical(lastn(c(1, 2, 3), 0), numeric(0)) expect_error(lastn(x, n + 1), "argument must be coercible to non-negative integer") })
residuals.survreg.penal <- function(object, ...) { pterms <- object$pterms if (any(pterms==2)) stop("Residualss not available for sparse models") NextMethod('residuals') }
test_that("ggnetmap produces the expected fortified data frame with lookup table", { net=network::network(matrix(c(0, 1, 1, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0), nrow=4, byrow=TRUE)) network::set.vertex.attribute(net, "name", value=c("a", "b", "c", "d")) wkb = structure(list("01010000204071000000000000801A064100000000AC5C1641", "01010000204071000000000000801A084100000000AC5C1441", "01010000204071000000000000801A044100000000AC5C1241", "01010000204071000000000000801A024100000000AC5C1841"), class = "WKB") map=sf::st_sf(id=c("a1", "b2", "c3", "d4"), sf::st_as_sfc(wkb, EWKB=TRUE)) lkptbl=data.frame(id=c("a1", "b2", "c3", "d4"), name=c("a", "b", "c", "d")) res=ggnetmap(net, map, lkptbl, "id", "name") expect_equal( res, data.frame(name=c("a", "a", "a", "a", "b", "b", "b", "c", "c", "d", "d"), x=c(181072, 181072, 181072, 181072, 197456, 197456, 197456, 164688, 164688, 148304, 148304), y=c(366379, 366379, 366379, 366379, 333611, 333611, 333611, 300843, 300843, 399147, 399147), vertex.names=c(1, 1, 1, 1, 2, 2, 2, 3, 3, 4, 4), xend=c(164688, 148304, 197456, 181072, 197456, 181072, 164688, 197456, 164688, 197456, 148304), yend=c(300843, 399147, 333611, 366379, 333611, 366379, 300843, 333611, 300843, 333611, 399147), id=c("a1", "a1", "a1", "a1", "b2", "b2", "b2", "c3", "c3", "d4", "d4")), tolerance=0.03 ) }) test_that("ggnetmap produces the expected fortified data frame without lookup table", { net=network::network(matrix(c(0, 1, 1, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0), nrow=4, byrow=TRUE)) network::set.vertex.attribute(net, "name", value=c("a", "b", "c", "d")) wkb = structure(list("01010000204071000000000000801A084100000000AC5C1441", "01010000204071000000000000801A044100000000AC5C1241", "01010000204071000000000000801A024100000000AC5C1841", "01010000204071000000000000801A064100000000AC5C1641"), class = "WKB") map=sf::st_sf(id=c("b", "c", "d", "a"), sf::st_as_sfc(wkb, EWKB=TRUE)) res=ggnetmap(net, map, NULL, "id", "name") expect_equal( res, data.frame(name=c("a", "a", "a", "a", "b", "b", "b", "c", "c", "d", "d"), x=c(181072, 181072, 181072, 181072, 197456, 197456, 197456, 164688, 164688, 148304, 148304), y=c(366379, 366379, 366379, 366379, 333611, 333611, 333611, 300843, 300843, 399147, 399147), vertex.names=c(1, 1, 1, 1, 2, 2, 2, 3, 3, 4, 4), xend=c(164688, 148304, 197456, 181072, 197456, 181072, 164688, 197456, 164688, 197456, 148304), yend=c(300843, 399147, 333611, 366379, 333611, 366379, 300843, 333611, 300843, 333611, 399147), id=c("a", "a", "a", "a", "b", "b", "b", "c", "c", "d", "d")), tolerance=0.03 ) })
fit.poisson <- function(...) { stop("estimation of Poisson fields not programmed yet") RFoptOld <- internal.rfoptions(...) on.exit(RFoptions(LIST=RFoptOld[[1]])) RFopt <- RFoptOld[[2]] }
herit_loci <- function( p_anc, causal_coeffs, causal_indexes = NULL, sigma_sq = 1 ){ if ( missing( p_anc ) ) stop( '`p_anc` (vector of ancestral allele frequencies) is required!' ) if ( missing( causal_coeffs ) ) stop( '`causal_coeffs` vector is required!' ) if ( length( sigma_sq ) != 1 ) stop( '`sigma_sq` must have length 1 (instead has length ', length( sigma_sq ), ')!' ) if ( is.na( sigma_sq ) ) stop( '`sigma_sq` cannot be `NA`!' ) if ( sigma_sq <= 0 ) stop( '`sigma_sq` must be positive (passed ', sigma_sq ,')!' ) if ( !is.null( causal_indexes ) ) { m_loci <- length( causal_indexes ) if ( length( p_anc ) > m_loci ) p_anc <- p_anc[ causal_indexes ] if ( length( causal_coeffs ) > m_loci ) causal_coeffs <- causal_coeffs[ causal_indexes ] } if ( length( p_anc ) != length( causal_coeffs ) ) stop( 'lengths of `p_anc` (', length( p_anc ), ') and `causal_coeffs` (', length( causal_coeffs ), ') disagree!' ) herit_vec <- 2 * p_anc * ( 1 - p_anc ) * causal_coeffs^2 / sigma_sq return( herit_vec ) }
grnn.kfold <- function(x,y,k,fun,scale=TRUE) { x<-as.data.frame(x) y<-as.data.frame(y) n_p<-ncol(y) n_s<-nrow(y) pred_it<-numeric(n_p) spread.end<-NULL cvr1<-cvTools::cvFolds(n_s, K = k) predict_end<-NULL for (i in 1:k) { subcvr1<-cvr1$subsets tv.x <- x[subcvr1[cvr1$which != i],,drop=FALSE] test.x <- x[subcvr1[cvr1$which == i],,drop=FALSE] tv.y <- y[subcvr1[cvr1$which != i],,drop=FALSE] test.y <- y[subcvr1[cvr1$which == i],,drop=FALSE] best.spread<-findSpread (tv.x,tv.y,k,fun) spread.end<-rbind(spread.end,best.spread) pred_it<-matrix(NA,nrow(test.y),ncol(test.y)) if (scale==TRUE){ tv.x<-scales::rescale(as.matrix(tv.x), to=c(-1,1)) test.x<-scales::rescale(as.matrix(test.x), to=c(-1,1)) } w.input<-grnn.distance(tv.x,test.x,fun) for (k in 1:n_p) { b.input<-w.input*sqrt(-log(0.5))/best.spread[k] a1<-exp(-b.input^2) weight_all<-colSums(a1) for (h in 1:ncol(a1)) {if (weight_all[h]==0) {weight_all[h]<-1}} pred_it[,k]<-(t(a1) %*% as.matrix(tv.y[,k]))/weight_all } row.names(pred_it) <- row.names(test.y) predict_end<-rbind(predict_end,pred_it) } predict_all<-predict_end[order(rownames(predict_end)),] y_all<-y[order(rownames(y)),] res<-predict_all-y_all res<-as.data.frame(res) stdev<-numeric(ncol(res)) stdae<-numeric(ncol(res)) mae<-numeric(ncol(res)) rmse<-sqrt(colSums(res^2)/nrow(res)) stdev<-sqrt(colSums(res^2)/(nrow(res)-2)) r<-numeric(ncol(res)) pvalue<-numeric(ncol(res)) for (n in 1:ncol(res)) { mae[n]<-mean(abs(res[,n])) stdae[n]<-stats::sd(abs(res[,n])) r[n]<-stats::cor(y_all[,n],predict_all[,n]) corv<-stats::cor.test(y_all[,n],predict_all[,n]) pvalue[n] <- 2*stats::pt(corv$statistic, df = corv$parameter, lower.tail=FALSE) } spread.mean<-colMeans(spread.end) results<-rbind(rmse,stdae,stdev,mae,r,pvalue,spread.mean) print(results) }
noharm_sirt_optim_function_R <- function(gamma_val, delta, I, wgtm, pm, b0.jk, b1.jk, b2.jk, b3.jk) { val <- 0 for (ii in 1:(I-1)){ for (jj in (ii+1):I){ if (wgtm[ii,jj] >0 ){ x_ij <- gamma_val[ii,jj] / sqrt( delta[ii] * delta[jj] ) pm_exp <- b0.jk[ii,jj] + b1.jk[ii,jj]*x_ij + b2.jk[ii,jj]*x_ij^2 + b3.jk[ii,jj]*x_ij^3 val <- val + wgtm[ii,jj]*(pm[ii,jj] - pm_exp)^2 } } } return(val) }
match.dat.fun <- function(dat1, dat2){ ids=as.matrix(unique(dat1[, 1])) n.len=length(ids) res=NULL for(i in 1:n.len){ idx=(dat2[,1]==ids[i]) dat.i=dat2[idx, ] res=rbind(res, dat.i) } return(res) }
library(checkargs) context("isStrictlyNegativeNumberOrNanVector") test_that("isStrictlyNegativeNumberOrNanVector works for all arguments", { expect_identical(isStrictlyNegativeNumberOrNanVector(NULL, stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE) expect_identical(isStrictlyNegativeNumberOrNanVector(TRUE, stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE) expect_identical(isStrictlyNegativeNumberOrNanVector(FALSE, stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE) expect_identical(isStrictlyNegativeNumberOrNanVector(NA, stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE) expect_identical(isStrictlyNegativeNumberOrNanVector(0, stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE) expect_identical(isStrictlyNegativeNumberOrNanVector(-1, stopIfNot = FALSE, message = NULL, argumentName = NULL), TRUE) expect_identical(isStrictlyNegativeNumberOrNanVector(-0.1, stopIfNot = FALSE, message = NULL, argumentName = NULL), TRUE) expect_identical(isStrictlyNegativeNumberOrNanVector(0.1, stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE) expect_identical(isStrictlyNegativeNumberOrNanVector(1, stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE) expect_identical(isStrictlyNegativeNumberOrNanVector(NaN, stopIfNot = FALSE, message = NULL, argumentName = NULL), TRUE) expect_identical(isStrictlyNegativeNumberOrNanVector(-Inf, stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE) expect_identical(isStrictlyNegativeNumberOrNanVector(Inf, stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE) expect_identical(isStrictlyNegativeNumberOrNanVector("", stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE) expect_identical(isStrictlyNegativeNumberOrNanVector("X", stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE) expect_identical(isStrictlyNegativeNumberOrNanVector(c(TRUE, FALSE), stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE) expect_identical(isStrictlyNegativeNumberOrNanVector(c(FALSE, TRUE), stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE) expect_identical(isStrictlyNegativeNumberOrNanVector(c(NA, NA), stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE) expect_identical(isStrictlyNegativeNumberOrNanVector(c(0, 0), stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE) expect_identical(isStrictlyNegativeNumberOrNanVector(c(-1, -2), stopIfNot = FALSE, message = NULL, argumentName = NULL), TRUE) expect_identical(isStrictlyNegativeNumberOrNanVector(c(-0.1, -0.2), stopIfNot = FALSE, message = NULL, argumentName = NULL), TRUE) expect_identical(isStrictlyNegativeNumberOrNanVector(c(0.1, 0.2), stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE) expect_identical(isStrictlyNegativeNumberOrNanVector(c(1, 2), stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE) expect_identical(isStrictlyNegativeNumberOrNanVector(c(NaN, NaN), stopIfNot = FALSE, message = NULL, argumentName = NULL), TRUE) expect_identical(isStrictlyNegativeNumberOrNanVector(c(-Inf, -Inf), stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE) expect_identical(isStrictlyNegativeNumberOrNanVector(c(Inf, Inf), stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE) expect_identical(isStrictlyNegativeNumberOrNanVector(c("", "X"), stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE) expect_identical(isStrictlyNegativeNumberOrNanVector(c("X", "Y"), stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE) expect_error(isStrictlyNegativeNumberOrNanVector(NULL, stopIfNot = TRUE, message = NULL, argumentName = NULL)) expect_error(isStrictlyNegativeNumberOrNanVector(TRUE, stopIfNot = TRUE, message = NULL, argumentName = NULL)) expect_error(isStrictlyNegativeNumberOrNanVector(FALSE, stopIfNot = TRUE, message = NULL, argumentName = NULL)) expect_error(isStrictlyNegativeNumberOrNanVector(NA, stopIfNot = TRUE, message = NULL, argumentName = NULL)) expect_error(isStrictlyNegativeNumberOrNanVector(0, stopIfNot = TRUE, message = NULL, argumentName = NULL)) expect_identical(isStrictlyNegativeNumberOrNanVector(-1, stopIfNot = TRUE, message = NULL, argumentName = NULL), TRUE) expect_identical(isStrictlyNegativeNumberOrNanVector(-0.1, stopIfNot = TRUE, message = NULL, argumentName = NULL), TRUE) expect_error(isStrictlyNegativeNumberOrNanVector(0.1, stopIfNot = TRUE, message = NULL, argumentName = NULL)) expect_error(isStrictlyNegativeNumberOrNanVector(1, stopIfNot = TRUE, message = NULL, argumentName = NULL)) expect_identical(isStrictlyNegativeNumberOrNanVector(NaN, stopIfNot = TRUE, message = NULL, argumentName = NULL), TRUE) expect_error(isStrictlyNegativeNumberOrNanVector(-Inf, stopIfNot = TRUE, message = NULL, argumentName = NULL)) expect_error(isStrictlyNegativeNumberOrNanVector(Inf, stopIfNot = TRUE, message = NULL, argumentName = NULL)) expect_error(isStrictlyNegativeNumberOrNanVector("", stopIfNot = TRUE, message = NULL, argumentName = NULL)) expect_error(isStrictlyNegativeNumberOrNanVector("X", stopIfNot = TRUE, message = NULL, argumentName = NULL)) expect_error(isStrictlyNegativeNumberOrNanVector(c(TRUE, FALSE), stopIfNot = TRUE, message = NULL, argumentName = NULL)) expect_error(isStrictlyNegativeNumberOrNanVector(c(FALSE, TRUE), stopIfNot = TRUE, message = NULL, argumentName = NULL)) expect_error(isStrictlyNegativeNumberOrNanVector(c(NA, NA), stopIfNot = TRUE, message = NULL, argumentName = NULL)) expect_error(isStrictlyNegativeNumberOrNanVector(c(0, 0), stopIfNot = TRUE, message = NULL, argumentName = NULL)) expect_identical(isStrictlyNegativeNumberOrNanVector(c(-1, -2), stopIfNot = TRUE, message = NULL, argumentName = NULL), TRUE) expect_identical(isStrictlyNegativeNumberOrNanVector(c(-0.1, -0.2), stopIfNot = TRUE, message = NULL, argumentName = NULL), TRUE) expect_error(isStrictlyNegativeNumberOrNanVector(c(0.1, 0.2), stopIfNot = TRUE, message = NULL, argumentName = NULL)) expect_error(isStrictlyNegativeNumberOrNanVector(c(1, 2), stopIfNot = TRUE, message = NULL, argumentName = NULL)) expect_identical(isStrictlyNegativeNumberOrNanVector(c(NaN, NaN), stopIfNot = TRUE, message = NULL, argumentName = NULL), TRUE) expect_error(isStrictlyNegativeNumberOrNanVector(c(-Inf, -Inf), stopIfNot = TRUE, message = NULL, argumentName = NULL)) expect_error(isStrictlyNegativeNumberOrNanVector(c(Inf, Inf), stopIfNot = TRUE, message = NULL, argumentName = NULL)) expect_error(isStrictlyNegativeNumberOrNanVector(c("", "X"), stopIfNot = TRUE, message = NULL, argumentName = NULL)) expect_error(isStrictlyNegativeNumberOrNanVector(c("X", "Y"), stopIfNot = TRUE, message = NULL, argumentName = NULL)) })
with_progress <- function(expr, handlers = progressr::handlers(), cleanup = TRUE, delay_terminal = NULL, delay_stdout = NULL, delay_conditions = NULL, interrupts = getOption("progressr.interrupts", TRUE), interval = NULL, enable = NULL) { stop_if_not(is.logical(cleanup), length(cleanup) == 1L, !is.na(cleanup)) stop_if_not(is.logical(interrupts), length(interrupts) == 1L, !is.na(interrupts)) debug <- getOption("progressr.debug", FALSE) if (debug) { message("with_progress() ...") on.exit(message("with_progress() ... done"), add = TRUE) } if (length(handlers) == 0L) { if (debug) message("No progress handlers - skipping") return(expr) } options <- list() if (!is.null(enable)) { stop_if_not(is.logical(enable), length(enable) == 1L, !is.na(enable)) if (!enable) { if (debug) message("Progress disabled - skipping") return(expr) } options[["progressr.enable"]] <- enable } if (!is.null(interval)) { stop_if_not(is.numeric(interval), length(interval) == 1L, !is.na(interval)) options[["progressr.interval"]] <- interval } if (length(options) > 0L) { oopts <- options(options) on.exit(options(oopts), add = TRUE) } progressr_in_globalenv("allow") on.exit(progressr_in_globalenv("disallow"), add = TRUE) handlers <- as_progression_handler(handlers) if (length(handlers) == 0L) { if (debug) message("No remaining progress handlers - skipping") return(expr) } delays <- use_delays(handlers, terminal = delay_terminal, stdout = delay_stdout, conditions = delay_conditions ) if (debug) { what <- c( if (delays$terminal) "terminal", if (delays$stdout) "stdout", delays$conditions ) message("- Buffering: ", paste(sQuote(what), collapse = ", ")) } calling_handler <- make_calling_handler(handlers) status <- "incomplete" if (cleanup) { on.exit({ if (debug) message("- signaling 'shutdown' to all handlers") withCallingHandlers({ withRestarts({ signalCondition(control_progression("shutdown", status = status)) }, muffleProgression = function(p) NULL) }, progression = calling_handler) }, add = TRUE) } stdout_file <- delay_stdout(delays, stdout_file = NULL) on.exit(flush_stdout(stdout_file), add = TRUE) conditions <- list() if (length(delays$conditions) > 0) { on.exit(flush_conditions(conditions), add = TRUE) } if (debug) message("- signaling 'reset' to all handlers") withCallingHandlers({ withRestarts({ signalCondition(control_progression("reset")) }, muffleProgression = function(p) NULL) }, progression = calling_handler) progression_counter <- 0 capture_conditions <- TRUE withCallingHandlers({ res <- withVisible(expr) }, progression = function(p) { progression_counter <<- progression_counter + 1 if (debug) message(sprintf("- received a %s (n=%g)", sQuote(class(p)[1]), progression_counter)) capture_conditions <<- FALSE on.exit(capture_conditions <<- TRUE) if (isTRUE(attr(delays$terminal, "flush"))) { if (length(conditions) > 0L || has_buffered_stdout(stdout_file)) { calling_handler(control_progression("hide")) stdout_file <<- flush_stdout(stdout_file, close = FALSE) conditions <<- flush_conditions(conditions) calling_handler(control_progression("unhide")) } } calling_handler(p) }, interrupt = function(c) { if (!interrupts) return() suspendInterrupts({ capture_conditions <<- FALSE on.exit(capture_conditions <<- TRUE) if (isTRUE(attr(delays$terminal, "flush"))) { if (length(conditions) > 0L || has_buffered_stdout(stdout_file)) { calling_handler(control_progression("hide")) stdout_file <<- flush_stdout(stdout_file, close = FALSE) conditions <<- flush_conditions(conditions) } } calling_handler(control_progression("interrupt")) }) }, condition = function(c) { if (!capture_conditions || inherits(c, c("progression", "error"))) return() if (debug) message("- received a ", sQuote(class(c)[1])) if (inherits(c, delays$conditions)) { conditions[[length(conditions) + 1L]] <<- c if (inherits(c, "message")) { invokeRestart("muffleMessage") } else if (inherits(c, "warning")) { invokeRestart("muffleWarning") } else if (inherits(c, "condition")) { restarts <- computeRestarts(c) for (restart in restarts) { name <- restart$name if (is.null(name)) next if (!grepl("^muffle", name)) next invokeRestart(restart) break } } } }) status <- "ok" if (isTRUE(res$visible)) { res$value } else { invisible(res$value) } }
invisible()
validate_milestone_level <- function(x){ stopifnot("title" %in% names(x)) nonissue_keys <- setdiff(names(x), "issue") invalid_keys <- setdiff(nonissue_keys, c("title", help_post_milestone()) ) if(length(invalid_keys)>0){ stop(paste("The following YAML keys are invalid for milestones:", paste(invalid_keys, collapse = ", "))) } } validate_issue_level <- function(x){ stopifnot("title" %in% names(x)) keys <- names(x) invalid_keys <- setdiff(keys, c("title", help_post_issue())) if(length(invalid_keys)>0){ stop(paste("The following YAML keys are invalid for issues:", paste(invalid_keys, collapse = ", "))) } } validate_plan <- function(plan){ sapply(plan, validate_milestone_level) sapply(plan, function(x) sapply(x[["issue"]], validate_issue_level)) } validate_todo <- function(todo){ sapply(todo, validate_issue_level) }
as.data.frame.compareClusterResult <- getFromNamespace("as.data.frame.compareClusterResult", "enrichplot") as.data.frame.groupGOResult <- function(x, ...) { as.data.frame(x@result, ...) } `[.compareClusterResult` <- function(x, i, j, asis = FALSE, ...) { result <- as.data.frame(x) y <- result[i,j, ...] if (!asis) return(y) x@compareClusterResult <- y return(x) } `[[.compareClusterResult` <- function(x, i) { idx <- which(i == x[, "ID"]) if (length(idx) == 0) stop("input term not found...") y <- x[idx, asis = TRUE] geneInCategory(y) } head.compareClusterResult <- function(x, n=6L, ...) { head(as.data.frame(x), n, ...) } tail.compareClusterResult <- function(x, n=6L, ...) { tail(as.data.frame(x), n, ...) } dim.compareClusterResult <- function(x) { dim(as.data.frame(x)) } geneID.groupGOResult <- function(x) as.character(x@result$geneID) geneInCategory.groupGOResult <- function(x) setNames(strsplit(geneID(x), "/", fixed=TRUE), rownames(x@result))
fit_nor <- function(sl1, sl2, st3, st4) { parameters <- pelnor(c(sl1, sl2, st3, st4)) return(parameters) }
Id <- "$Id: c212.interim.1a.hier2.lev0.convergence.R,v 1.7 2019/05/05 13:18:12 clb13102 Exp clb13102 $" c212.interim.1a.hier2.lev0.convergence.diag <- function(raw, debug_diagnostic = FALSE) { if (is.null(raw)) { print("NULL raw data") return(NULL) } if (M_global$INTERIM_check_conv_name_1a_2(raw)) { print("Missing names"); return(NULL) } model = attr(raw, "model") if (is.null(model)) { print("Simulation model attribute missing") return(NULL) } monitor = raw$monitor theta_mon = monitor[monitor$variable == "theta",]$monitor gamma_mon = monitor[monitor$variable == "gamma",]$monitor mu.theta_mon = monitor[monitor$variable == "mu.theta",]$monitor mu.gamma_mon = monitor[monitor$variable == "mu.gamma",]$monitor sigma2.theta_mon = monitor[monitor$variable == "sigma2.theta",]$monitor sigma2.gamma_mon = monitor[monitor$variable == "sigma2.gamma",]$monitor nchains = raw$chains gamma_conv = data.frame(Interval = character(0), B = character(0), AE = character(0), stat = numeric(0), upper_ci = numeric(0), stringsAsFactors=FALSE) theta_conv = data.frame(Interval = character(0), B = character(0), AE = character(0), stat = numeric(0), upper_ci = numeric(0), stringsAsFactors=FALSE) mu.gamma_conv = data.frame(Interval = character(0), B = character(0), stat = numeric(0), upper_ci = numeric(0), stringsAsFactors=FALSE) mu.theta_conv = data.frame(Interval = character(0), B = character(0), stat = numeric(0), upper_ci = numeric(0), stringsAsFactors=FALSE) sigma2.gamma_conv = data.frame(Interval = character(0), B = character(0), stat = numeric(0), upper_ci = numeric(0), stringsAsFactors=FALSE) sigma2.theta_conv = data.frame(Interval = character(0), B = character(0), stat = numeric(0), upper_ci = numeric(0), stringsAsFactors=FALSE) type <- NA if (nchains > 1) { type = "Gelman-Rubin" for (i in 1:raw$nIntervals) { for (b in 1:raw$nBodySys[i]) { for (j in 1:raw$nAE[i, b]) { if (theta_mon == 1) { g = M_global$GelmanRubin(raw$theta[, i, b, j, ], nchains) row <- data.frame(Interval = raw$Intervals[i], B = raw$B[i, b], AE = raw$AE[i, b,j], stat = g$psrf[1], upper_ci = g$psrf[2], stringsAsFactors=FALSE) theta_conv = rbind(theta_conv, row) } if (gamma_mon == 1) { g = M_global$GelmanRubin(raw$gamma[, i, b, j, ], nchains) row <- data.frame(Interval = raw$Intervals[i], B = raw$B[i, b], AE = raw$AE[i, b,j], stat = g$psrf[1], upper_ci = g$psrf[2], stringsAsFactors=FALSE) gamma_conv = rbind(gamma_conv, row) } } if (mu.gamma_mon == 1) { g = M_global$GelmanRubin(raw$mu.gamma[, i, b, ], nchains) row <- data.frame(Interval = raw$Intervals[i], B = raw$B[i, b], stat = g$psrf[1], upper_ci = g$psrf[2], stringsAsFactors=FALSE) mu.gamma_conv = rbind(mu.gamma_conv, row) } if (mu.theta_mon == 1) { g = M_global$GelmanRubin(raw$mu.theta[, i, b, ], nchains) row <- data.frame(Interval = raw$Intervals[i], B = raw$B[i, b], stat = g$psrf[1], upper_ci = g$psrf[2], stringsAsFactors=FALSE) mu.theta_conv = rbind(mu.theta_conv, row) } if (sigma2.theta_mon == 1) { g = M_global$GelmanRubin(raw$sigma2.theta[, i, b, ], nchains) row <- data.frame(Interval = raw$Intervals[i], B = raw$B[i, b], stat = g$psrf[1], upper_ci = g$psrf[2], stringsAsFactors=FALSE) sigma2.theta_conv = rbind(sigma2.theta_conv, row) } if (sigma2.gamma_mon == 1) { g = M_global$GelmanRubin(raw$sigma2.gamma[, i, b, ], nchains) row <- data.frame(Interval = raw$Intervals[i], B = raw$B[i, b], stat = g$psrf[1], upper_ci = g$psrf[2], stringsAsFactors=FALSE) sigma2.gamma_conv = rbind(sigma2.gamma_conv, row) } } } } else { type = "Geweke" for (i in 1:raw$nIntervals) { for (b in 1:raw$nBodySys[i]) { for (j in 1:raw$nAE[i, b]) { if (theta_mon == 1) { g = M_global$Geweke(raw$theta[1, i, b, j, ]) row <- data.frame(Interval = raw$Intervals[i], B = raw$B[i, b], AE = raw$AE[i, b, j], stat = g$z, upper_ci = NA, stringsAsFactors=FALSE) theta_conv = rbind(theta_conv, row) } if (gamma_mon == 1) { g = M_global$Geweke(raw$gamma[1, i, b, j, ]) row <- data.frame(Interval = raw$Intervals[i], B = raw$B[i, b], AE = raw$AE[i, b, j], stat = g$z, upper_ci = NA, stringsAsFactors=FALSE) gamma_conv = rbind(gamma_conv, row) } } if (mu.gamma_mon == 1) { g = M_global$Geweke(raw$mu.gamma[1, i, b, ]) row <- data.frame(Interval = raw$Intervals[i], B = raw$B[i, b], stat = g$z, upper_ci = NA, stringsAsFactors=FALSE) mu.gamma_conv = rbind(mu.gamma_conv, row) } if (mu.theta_mon == 1) { g = M_global$Geweke(raw$mu.theta[1, i, b, ]) row <- data.frame(Interval = raw$Intervals[i], B = raw$B[i, b], stat = g$z, upper_ci = NA, stringsAsFactors=FALSE) mu.theta_conv = rbind(mu.theta_conv, row) } if (sigma2.theta_mon == 1) { g = M_global$Geweke(raw$sigma2.theta[1, i, b, ]) row <- data.frame(Interval = raw$Intervals[i], B = raw$B[i, b], stat = g$z, upper_ci = NA, stringsAsFactors=FALSE) sigma2.theta_conv = rbind(sigma2.theta_conv, row) } if (sigma2.gamma_mon == 1) { g = M_global$Geweke(raw$sigma2.gamma[1, i, b, ]) row <- data.frame(Interval = raw$Intervals[i], B = raw$B[i, b], stat = g$z, upper_ci = NA, stringsAsFactors=FALSE) sigma2.gamma_conv = rbind(sigma2.gamma_conv, row) } } } } theta_acc = data.frame(chain = numeric(0), Interval = character(0), B = character(0), AE = character(0), rate = numeric(0), stringsAsFactors=FALSE) gamma_acc = data.frame(chain = numeric(0), Interval = character(0), B = character(0), AE = character(0), rate = numeric(0), stringsAsFactors=FALSE) if (raw$sim_type == "MH") { for (i in 1:raw$nIntervals) { if (theta_mon == 1) { for (b in 1:raw$nBodySys[i]) { for (j in 1:raw$nAE[i, b]) { for (c in 1:nchains) { rate <- raw$theta_acc[c, i, b, j]/raw$iter row <- data.frame(chain = c, Interval = raw$Intervals[i], B = raw$B[i, b], AE = raw$AE[i, b,j], rate = rate, stringsAsFactors=FALSE) theta_acc = rbind(theta_acc, row) } } } } if (gamma_mon == 1) { for (b in 1:raw$nBodySys[i]) { for (j in 1:raw$nAE[i, b]) { for (c in 1:nchains) { rate <- raw$gamma_acc[c, i, b, j]/raw$iter row <- data.frame(chain = c, Interval = raw$Intervals[i], B = raw$B[i, b], AE = raw$AE[i, b,j], rate = rate, stringsAsFactors=FALSE) gamma_acc = rbind(gamma_acc, row) } } } } } } rownames(gamma_conv) <- NULL rownames(theta_conv) <- NULL rownames(mu.gamma_conv) <- NULL rownames(mu.theta_conv) <- NULL rownames(sigma2.gamma_conv) <- NULL rownames(sigma2.theta_conv) <- NULL rownames(gamma_acc) <- NULL rownames(theta_acc) <- NULL conv.diag = list(sim_type = raw$sim_type, type = type, monitor = monitor, gamma.conv.diag = gamma_conv, theta.conv.diag = theta_conv, mu.gamma.conv.diag = mu.gamma_conv, mu.theta.conv.diag = mu.theta_conv, sigma2.gamma.conv.diag = sigma2.gamma_conv, sigma2.theta.conv.diag = sigma2.theta_conv, gamma_acc = gamma_acc, theta_acc = theta_acc) attr(conv.diag, "model") = attr(raw, "model") return(conv.diag) } c212.interim.1a.hier2.lev0.print.convergence.summary <- function(conv) { if (is.null(conv)) { print("NULL conv data") return(NULL) } monitor = conv$monitor theta_mon = monitor[monitor$variable == "theta",]$monitor gamma_mon = monitor[monitor$variable == "gamma",]$monitor mu.theta_mon = monitor[monitor$variable == "mu.theta",]$monitor mu.gamma_mon = monitor[monitor$variable == "mu.gamma",]$monitor sigma2.theta_mon = monitor[monitor$variable == "sigma2.theta",]$monitor sigma2.gamma_mon = monitor[monitor$variable == "sigma2.gamma",]$monitor model = attr(conv, "model") if (is.null(model)) { print("Convergence model attribute missing") return(NULL) } if (gamma_mon == 1 && !("gamma.conv.diag" %in% names(conv))) { print("Missing gamma.conv.diag data") return(NULL) } if (theta_mon == 1 && !("theta.conv.diag" %in% names(conv))) { print("Missing theta.conv.diag data") return(NULL) } if (mu.gamma_mon == 1 && !("mu.gamma.conv.diag" %in% names(conv))) { print("Missing mu.gamma.conv.diag data") return(NULL) } if (mu.theta_mon == 1 && !("mu.theta.conv.diag" %in% names(conv))) { print("Missing mu.theta.conv.diag data") return(NULL) } if (sigma2.gamma_mon == 1 && !("sigma2.gamma.conv.diag" %in% names(conv))) { print("Missing sigma2.gamma.conv.diag data") return(NULL) } if (sigma2.theta_mon == 1 && !("sigma2.theta.conv.diag" %in% names(conv))) { print("Missing sigma2.theta.conv.diag data") return(NULL) } if (gamma_mon == 1 && !("gamma_acc" %in% names(conv))) { print("Missing gamma_acc data") return(NULL) } if (theta_mon == 1 && !("theta_acc" %in% names(conv))) { print("Missing theta_acc data") return(NULL) } cat(sprintf("Summary Convergence Diagnostics:\n")) cat(sprintf("================================\n")) if (conv$type == "Gelman-Rubin") { if (theta_mon == 1) { cat(sprintf("theta:\n")) cat(sprintf("------\n")) max_t = head(conv$theta.conv.diag[conv$theta.conv.diag$stat == max(conv$theta.conv.diag$stat),, drop = FALSE], 1) cat(sprintf("Max Gelman-Rubin diagnostic (%s %s %s): %0.6f\n", max_t$Interval, max_t$B, max_t$AE, max_t$stat)) min_t = head(conv$theta.conv.diag[conv$theta.conv.diag$stat == min(conv$theta.conv.diag$stat),, drop = FALSE], 1) cat(sprintf("Min Gelman-Rubin diagnostic (%s, %s %s): %0.6f\n", min_t$Interval, min_t$B, min_t$AE, min_t$stat)) } if (gamma_mon == 1) { cat(sprintf("gamma:\n")) cat(sprintf("------\n")) max_t = head(conv$gamma.conv.diag[conv$gamma.conv.diag$stat == max(conv$gamma.conv.diag$stat),, drop = FALSE], 1) cat(sprintf("Max Gelman-Rubin diagnostic (%s %s %s): %0.6f\n", max_t$Interval, max_t$B, max_t$AE, max_t$stat)) min_t = head(conv$gamma.conv.diag[conv$gamma.conv.diag$stat == min(conv$gamma.conv.diag$stat),, drop = FALSE], 1) cat(sprintf("Min Gelman-Rubin diagnostic (%s %s %s): %0.6f\n", min_t$Interval, min_t$B, min_t$AE, min_t$stat)) } if (mu.gamma_mon == 1) { cat(sprintf("mu.gamma:\n")) cat(sprintf("---------\n")) max_t = head(conv$mu.gamma.conv.diag[conv$mu.gamma.conv.diag$stat == max(conv$mu.gamma.conv.diag$stat),, drop = FALSE], 1) cat(sprintf("Max Gelman-Rubin diagnostic (%s %s): %0.6f\n", max_t$Interval, max_t$B, max_t$stat)) min_t = head(conv$mu.gamma.conv.diag[conv$mu.gamma.conv.diag$stat == min(conv$mu.gamma.conv.diag$stat),, drop = FALSE], 1) cat(sprintf("Min Gelman-Rubin diagnostic (%s %s): %0.6f\n", min_t$Interval, min_t$B, min_t$stat)) } if (mu.theta_mon == 1) { cat(sprintf("mu.theta:\n")) cat(sprintf("---------\n")) max_t = head(conv$mu.theta.conv.diag[conv$mu.theta.conv.diag$stat == max(conv$mu.theta.conv.diag$stat),, drop = FALSE], 1) cat(sprintf("Max Gelman-Rubin diagnostic (%s %s): %0.6f\n", max_t$Interval, max_t$B, max_t$stat)) min_t = head(conv$mu.theta.conv.diag[conv$mu.theta.conv.diag$stat == min(conv$mu.theta.conv.diag$stat),, drop = FALSE], 1) cat(sprintf("Min Gelman-Rubin diagnostic (%s %s): %0.6f\n", min_t$Interval, min_t$B, min_t$stat)) } if (sigma2.gamma_mon == 1) { cat(sprintf("sigma2.gamma:\n")) cat(sprintf("-------------\n")) max_t = head(conv$sigma2.gamma.conv.diag[conv$sigma2.gamma.conv.diag$stat == max(conv$sigma2.gamma.conv.diag$stat),, drop = FALSE], 1) cat(sprintf("Max Gelman-Rubin diagnostic (%s %s): %0.6f\n", max_t$Interval, max_t$B, max_t$stat)) min_t = head(conv$sigma2.gamma.conv.diag[conv$sigma2.gamma.conv.diag$stat == min(conv$sigma2.gamma.conv.diag$stat),, drop = FALSE], 1) cat(sprintf("Min Gelman-Rubin diagnostic (%s %s): %0.6f\n", min_t$Interval, min_t$B, min_t$stat)) } if (sigma2.theta_mon == 1) { cat(sprintf("sigma2.theta:\n")) cat(sprintf("-------------\n")) max_t = head(conv$sigma2.theta.conv.diag[conv$sigma2.theta.conv.diag$stat == max(conv$sigma2.theta.conv.diag$stat),, drop = FALSE], 1) cat(sprintf("Max Gelman-Rubin diagnostic (%s %s): %0.6f\n", max_t$Interval, max_t$B, max_t$stat)) min_t = head(conv$sigma2.theta.conv.diag[conv$sigma2.theta.conv.diag$stat == min(conv$sigma2.theta.conv.diag$stat),, drop = FALSE], 1) cat(sprintf("Min Gelman-Rubin diagnostic (%s %s): %0.6f\n", min_t$Interval, min_t$B, min_t$stat)) } } else { if (theta_mon == 1) { cat(sprintf("theta:\n")) cat(sprintf("------\n")) max_t = head(conv$theta.conv.diag[conv$theta.conv.diag$stat == max(conv$theta.conv.diag$stat),, drop = FALSE], 1) cat(sprintf("Max Geweke statistic (%s %s %s): %0.6f (%s)\n", max_t$Interval, max_t$B, max_t$AE, max_t$stat, chk_val(max_t$stat))) min_t = head(conv$theta.conv.diag[conv$theta.conv.diag$stat == min(conv$theta.conv.diag$stat),, drop = FALSE], 1) cat(sprintf("Min Geweke statistic (%s %s %s): %0.6f (%s)\n", min_t$Interval, min_t$B, min_t$AE, min_t$stat, chk_val(min_t$stat))) } if (gamma_mon == 1) { cat(sprintf("gamma:\n")) cat(sprintf("------\n")) max_t = head(conv$gamma.conv.diag[conv$gamma.conv.diag$stat == max(conv$gamma.conv.diag$stat),, drop = FALSE], 1) cat(sprintf("Max Geweke statistic (%s %s %s): %0.6f (%s)\n", max_t$Interval, max_t$B, max_t$AE, max_t$stat, chk_val(max_t$stat))) min_t = head(conv$gamma.conv.diag[conv$gamma.conv.diag$stat == min(conv$gamma.conv.diag$stat),, drop = FALSE], 1) cat(sprintf("Min Geweke statistic (%s %s %s): %0.6f (%s)\n", min_t$Interval, min_t$B, min_t$AE, min_t$stat, chk_val(min_t$stat))) } if (mu.gamma_mon == 1) { cat(sprintf("mu.gamma:\n")) cat(sprintf("---------\n")) max_t = head(conv$mu.gamma.conv.diag[conv$mu.gamma.conv.diag$stat == max(conv$mu.gamma.conv.diag$stat),, drop = FALSE], 1) cat(sprintf("Max Geweke statistic (%s %s): %0.6f (%s)\n", max_t$Interval, max_t$B, max_t$stat, chk_val(max_t$stat))) min_t = head(conv$mu.gamma.conv.diag[conv$mu.gamma.conv.diag$stat == min(conv$mu.gamma.conv.diag$stat),, drop = FALSE], 1) cat(sprintf("Min Geweke statistic (%s %s): %0.6f (%s)\n", min_t$Interval, min_t$B, min_t$stat, chk_val(min_t$stat))) } if (mu.theta_mon == 1) { cat(sprintf("mu.theta:\n")) cat(sprintf("---------\n")) max_t = head(conv$mu.theta.conv.diag[conv$mu.theta.conv.diag$stat == max(conv$mu.theta.conv.diag$stat),, drop = FALSE], 1) cat(sprintf("Max Geweke statistic (%s %s): %0.6f (%s)\n", max_t$Interval, max_t$B, max_t$stat, chk_val(max_t$stat))) min_t = head(conv$mu.theta.conv.diag[conv$mu.theta.conv.diag$stat == min(conv$mu.theta.conv.diag$stat),, drop = FALSE], 1) cat(sprintf("Min Geweke statistic (%s %s): %0.6f (%s)\n", min_t$Interval, min_t$B, min_t$stat, chk_val(min_t$stat))) } if (sigma2.gamma_mon == 1) { cat(sprintf("sigma2.gamma:\n")) cat(sprintf("-------------\n")) max_t = head(conv$sigma2.gamma.conv.diag[conv$sigma2.gamma.conv.diag$stat == max(conv$sigma2.gamma.conv.diag$stat),, drop = FALSE], 1) cat(sprintf("Max Geweke statistic (%s %s): %0.6f (%s)\n", max_t$Interval, max_t$B, max_t$stat, chk_val(max_t$stat))) min_t = head(conv$sigma2.gamma.conv.diag[conv$sigma2.gamma.conv.diag$stat == min(conv$sigma2.gamma.conv.diag$stat),, drop = FALSE], 1) cat(sprintf("Min Geweke statistic (%s %s): %0.6f (%s)\n", min_t$Interval, min_t$B, min_t$stat, chk_val(min_t$stat))) } if (sigma2.theta_mon == 1) { cat(sprintf("sigma2.theta:\n")) cat(sprintf("-------------\n")) max_t = head(conv$sigma2.theta.conv.diag[conv$sigma2.theta.conv.diag$stat == max(conv$sigma2.theta.conv.diag$stat),, drop = FALSE], 1) cat(sprintf("Max Geweke statistic (%s %s): %0.6f (%s)\n", max_t$Interval, max_t$B, max_t$stat, chk_val(max_t$stat))) min_t = head(conv$sigma2.theta.conv.diag[conv$sigma2.theta.conv.diag$stat == min(conv$sigma2.theta.conv.diag$stat),, drop = FALSE], 1) cat(sprintf("Min Geweke statistic (%s %s): %0.6f (%s)\n", min_t$Interval, min_t$B, min_t$stat, chk_val(min_t$stat))) } } if (conv$sim_type == "MH") { cat("\nSampling Acceptance Rates:\n") cat("==========================\n") if (theta_mon == 1) { cat("theta:\n") cat("------\n") print(sprintf("Min: %0.6f, Max: %0.6f", min(conv$theta_acc$rate), max(conv$theta_acc$rate))) } if (gamma_mon == 1) { cat("gamma:\n") cat("------\n") print(sprintf("Min: %0.6f, Max: %0.6f", min(conv$gamma_acc$rate), max(conv$gamma_acc$rate))) } } }
cmpndNoiseParamInit <- function(noise, y) { if (nargs() > 1) { if (length(noise$comp) != dim(y)[2]) stop("Number of noise components must match dimensions of y.") } noise$nParams = 0 for (i in 1:length(noise$comp)) { if (nargs() > 1) noise$comp[[i]] = noiseParamInit(noise$comp[[i]], y[,i]) else { noise$comp[[i]]$numProcess = 1 noise$comp[[i]] = noiseParamInit(noise$comp[[i]]) } noise$nParams = noise$nParams + noise$comp[[i]]$nParams } noise$paramGroups = diag(1, nrow=noise$nParams, ncol=noise$nParams) noise$missing=0 return (noise) }
newDataset <- function(x, name = NULL, ...) { Call <- match.call() if (is.character(x)) { Call[[1]] <- as.name("newDatasetFromFile") return(eval.parent(Call)) } is.2D <- !is.null(dim(x)) && length(dim(x)) %in% 2 if (!is.2D) { halt( "Can only make a Crunch dataset from a two-dimensional data ", "structure" ) } if (is.null(name)) { name <- deparseAndFlatten(substitute(x), max_length = 40) } d <- prepareDataForCrunch(x, name = name, ...) ds <- createWithPreparedData(d) invisible(ds) } createDataset <- function(name, body, ...) { if (missing(body)) { body <- wrapEntity(name = name, ...) } dataset_url <- crPOST(sessionURL("datasets"), body = toJSON(body)) dropDatasetsCache() return(invisible(loadDatasetFromURL(dataset_url))) } prepareDataForCrunch <- function(data, ...) { progressMessage("Processing the data") vars <- lapply( names(data), function(i) toVariable(data[[i]], name = i, alias = i) ) names(vars) <- names(data) cols <- data.frame(lapply(vars, vget("values")), check.names = FALSE) vars <- lapply(vars, function(v) { v[["values"]] <- NULL return(v) }) meta <- shojifyDatasetMetadata(vars, ...) return(structure(cols, metadata = meta)) } createWithPreparedData <- function(data, metadata = attr(data, "metadata")) { createWithMetadataAndFile(metadata, data) } writePreparedData <- function(data, metadata = attr(data, "metadata"), file) { filenames <- paste(file, c("csv.gz", "json"), sep = ".") write.csv.gz(data, filenames[1]) cat(toJSON(metadata), file = filenames[2]) return(filenames) } write.csv.gz <- function(x, file, na = "", row.names = FALSE, ...) { gf <- gzfile(file, "w") on.exit(close(gf)) invisible(write.csv(x, file = gf, na = na, row.names = row.names, ...)) } createWithMetadataAndFile <- function(metadata, file, strict = TRUE) { ds <- uploadMetadata(metadata) ds <- uploadData(ds, file, strict, first_batch = TRUE) progressMessage("Done!") return(ds) } uploadMetadata <- function(metadata) { progressMessage("Uploading metadata") if (is.character(metadata)) { metadata <- fromJSON(metadata, simplifyVector = FALSE) } return(createDataset(body = metadata)) } uploadData <- function(dataset, data, strict = TRUE, first_batch = TRUE) { progressMessage("Uploading data") if (!is.character(data)) { f <- tempfile() write.csv.gz(data, f) data <- f } return(addBatchFile(dataset, data, strict = strict, first_batch = TRUE)) } shojifyDatasetMetadata <- function(metadata, order = I(names(metadata)), ...) { tbl <- list(element = "crunch:table", metadata = metadata, order = order) return(wrapEntity(..., table = tbl)) } newDatasetByColumn <- function(x, name = deparseAndFlatten( substitute(x), max_length = 40 ), ...) { vardefs <- lapply( names(x), function(v) toVariable(x[[v]], name = v, alias = v) ) ds <- createDataset(name = name, ...) ds <- addVariables(ds, vardefs) ds <- saveVersion(ds, "initial import") invisible(ds) } newDatasetFromFile <- function(x, name = basename(x), schema, ...) { if (!missing(schema)) { schema_source <- createSource(schema) body_payload <- list(name = name, table = list(source = schema_source)) ds <- createDataset(body = body_payload, ...) ds <- addBatchFile(ds, x, first_batch = TRUE, schema = schema_source) } else { ds <- createDataset(name = name, ...) ds <- addBatchFile(ds, x, first_batch = TRUE) } return(invisible(ds)) } newExampleDataset <- function(name = "pets") { name <- match.arg(name) m <- fromJSON( system.file("example-datasets", paste0(name, ".json"), package = "crunch"), simplifyVector = FALSE ) return(createWithMetadataAndFile( m, system.file("example-datasets", paste0(name, ".csv"), package = "crunch") )) }
view_plate <- function(data, well_ids_column, columns_to_display, plate_size = 96) { data <- as.data.frame(data) check_well_ids_column_name(well_ids_column) validate_column_is_in_data(data, c(well_ids_column, columns_to_display)) n_rows <- number_of_rows(plate_size) n_columns <- number_of_columns(plate_size) data[ , well_ids_column] <- as.character(data[[well_ids_column]]) data <- ensure_correct_well_ids(data, well_ids_column, plate_size) result <- lapply(columns_to_display, function(x) { display_one_layout(data, well_ids_column, x, n_rows, n_columns) }) names(result) <- columns_to_display result } display_one_layout <- function(data, well_ids_column, column_to_display, n_rows, n_columns) { data <- sort_by_well_ids(data, well_ids_column, n_rows * n_columns) to_display <- as.character(data[[column_to_display]]) to_display <- ifelse(is.na(to_display), ".", to_display) result <- data.frame(matrix(to_display, nrow = n_rows, byrow = TRUE)) rownames(result) <- MEGALETTERS(1:n_rows) colnames(result) <- 1:n_columns result } ensure_correct_well_ids <- function(data, well_ids_column, plate_size) { wells <- data[[well_ids_column]] true_wells <- get_well_ids(plate_size) if (length(wells) > plate_size) { stop(paste0("There are more rows in your data ", "frame than wells in the plate size you specified. In other words, ", "data$", well_ids_column, " has ", length(wells), " elements, which is ", "longer than plate_size = ", plate_size), call. = FALSE) } if (are_well_ids_correct(wells, plate_size)) { return(data) } else { if(!are_leading_zeroes_valid(data, well_ids_column, plate_size)) { data <- correct_leading_zeroes(data, well_ids_column, plate_size) } if (length(wells) < plate_size) { data <- fill_in_missing_well_ids(data, well_ids_column, plate_size) } if(are_well_ids_correct(data[[well_ids_column]], plate_size)) { return(data) } else { stop("Well IDs are invalid.", call. = FALSE) } } } are_well_ids_correct <- function(wells, plate_size) { if (length(wells) != plate_size) { return(FALSE) } true_wells <- get_well_ids(plate_size) return(all(wells %in% true_wells) & all(true_wells %in% wells)) } fill_in_missing_well_ids <- function(data, well_ids_column, plate_size) { if (nrow(data) >= plate_size) { stop(paste0("data has ", nrow(data), " rows, which is >= the plate size ", "(", plate_size, "). It should have fewer rows."), call. = FALSE) } if(!are_leading_zeroes_valid(data, well_ids_column, plate_size)) { stop("Some well IDs are missing leading zeroes.", call. = FALSE) } wells <- as.character(data[[well_ids_column]]) complete <- get_well_ids(plate_size) missing <- !(complete %in% wells) wells_to_add <- complete[missing] temp <- data[0 , -which(colnames(data) == well_ids_column), drop = FALSE] temp[1:length(wells_to_add), ] <- NA original_names <- colnames(temp) temp <- cbind(temp, wells_to_add) colnames(temp) <- c(original_names, well_ids_column) if (is.factor(data[[well_ids_column]])) { data[[well_ids_column]] <- factor(data[[well_ids_column]], levels = complete) temp[[well_ids_column]] <- factor(temp[[well_ids_column]], levels = complete) } return(rbind(data, temp)) } are_leading_zeroes_valid <- function(data, well_ids_column, plate_size) { wells <- data[[well_ids_column]] missing <- get_well_ids_without_leading_zeroes(plate_size) missing <- missing[nchar(missing) == 2] if (any(wells %in% missing)) { return(FALSE) } return(TRUE) } correct_leading_zeroes <- function(data, well_ids_column, plate_size) { was_factor <- FALSE if(is.factor(data[[well_ids_column]])) { was_factor <- TRUE data[[well_ids_column]] <- as.character(data[[well_ids_column]]) } missing <- get_well_ids_without_leading_zeroes(plate_size) correct <- get_well_ids(plate_size) lookup <- data.frame(correct = correct, missing = missing, stringsAsFactors = FALSE) matches <- match(data[ , well_ids_column], lookup$missing) data$temp <- lookup$correct[matches] data[ , well_ids_column] <- ifelse(is.na(data$temp), as.character(data[ , well_ids_column]), as.character(data$temp)) data <- data[ , !(names(data) =="temp")] if(was_factor) { data[ , well_ids_column] <- factor(data[ , well_ids_column]) } return(data) }
context("addUIds") library(testthat) pedOne <- data.frame(id = c("s1", "d1", "s2", "d2", "o1", "o2", "o3", "o4"), sire = c(NA, "s0", "s4", NA, "s1", "s1", "s2", "s2"), dam = c(NA, "d0", "d4", NA, "d1", "d2", "d2", "d2"), sex = c("M", "F", "M", "F", "F", "F", "F", "M"), stringsAsFactors = FALSE) pedTwo <- data.frame(id = c("s1", "d1", "s2", "d2", "o1", "o2", "o3", "o4"), sire = c(NA, "s0", "s4", NA, "s1", "s1", "s2", "s2"), dam = c("d0", "d0", "d4", NA, "d1", "d2", "d2", "d2"), sex = c("M", "F", "M", "F", "F", "F", "F", "M"), stringsAsFactors = FALSE) pedThree <- data.frame(id = c("s1", "d1", "s2", "d2", "o1", "o2", "o3", "o4"), sire = c("s0", "s0", "s4", NA, "s1", "s1", "s2", "s2"), dam = c(NA, "d0", "d4", NA, "d1", "d2", "d2", "d2"), sex = c("M", "F", "M", "F", "F", "F", "F", "M"), stringsAsFactors = FALSE) test_that("addUIds modifies the correct IDs in the right way", { newPed <- addUIds(pedOne) expect_equal(newPed, pedOne) newPed <- addUIds(pedTwo) expect_equal(newPed$sire[newPed$id == "s1"], "U0001") newPed <- addUIds(pedThree) expect_equal(newPed$dam[newPed$id == "s1"], "U0001") })
context("tests based on ex1") test_that("identfiability", { data("ex1") expect_true(isIdentified(ex1$amat.cpdag, 6, 10)) expect_true(isIdentified(ex1$amat.cpdag, c(6,7), 10)) expect_true(isIdentified(ex1$amat.cpdag, 7, 9)) expect_false(isIdentified(ex1$amat.cpdag, 5, 10)) expect_false(isIdentified(ex1$amat.cpdag, c(1,3), 9)) }) test_that("estimation", { data("ex1") pairs <- list( list(x=6, y=10), list(x=c(6,7), y=10), list(x=7, y=9), list(x=c(3,4,5), y=8), list(x=c(3,4,5), y=7), list(x=c(3,4,5,6), y=8) ) for (i in 1:length(pairs)) { .x <- pairs[[i]]$x .y <- pairs[[i]]$y truth <- getEffectsFromSEM(ex1$B, .x, .y) est <- estimateEffect(ex1$data, .x, .y, ex1$amat.cpdag, bootstrap=FALSE) err <- sqrt(mean((est - truth)^2)) expect_lt(err, 0.03) } })
dwt.vt <- function(data, wf, J, method, pad, boundary, cov.opt = c("auto", "pos", "neg"), flag = "biased", detrend = FALSE) { x <- data$x dp <- as.matrix(data$dp) mu.dp <- apply(dp, 2, mean) ndim <- ncol(dp) n <- nrow(dp) S <- matrix(nrow = J + 1, ncol = ndim) dp.n <- matrix(nrow = n, ncol = ndim) idwt.dp <- vector("list", ndim) for (i in 1:ndim) { if (!detrend) { dp.c <- scale(dp[, i], scale = F) } else { dp.c <- dp[, i] - smooth.spline(1:n, dp[, i], spar = 1)$y } dp.p <- padding(dp.c, pad = pad) idwt.dp[[i]] <- waveslim::mra(dp.p, wf = wf, J = J, method = method, boundary = boundary) B <- matrix(unlist(lapply(idwt.dp[[i]], function(z) z[1:n])), ncol = J + 1, byrow = FALSE) Bn <- scale(B) V <- as.numeric(apply(B, 2, sd)) dif <- sum(abs(Bn %*% V - dp.c)) if (dif > 10^-10) warning(paste0("Difference between Reconstructed and original:", dif)) cov <- cov(x, Bn[seq_len(length(x)), ]) if (flag == "unbiased") { idwt.dp.n <- non.bdy(idwt.dp[[i]], wf = wf, method = "mra") B.n <- matrix(unlist(lapply(idwt.dp.n, function(z) z[1:n])), ncol = J + 1, byrow = FALSE) cov <- cov(x, scale(B.n)[seq_len(length(x)), ], use = "pairwise.complete.obs") cov[is.na(cov)] <- cov(x, Bn[seq_len(length(x)), ])[is.na(cov)] } if (cov.opt == "pos") cov <- cov else if (cov.opt == "neg") cov <- -cov S[, i] <- as.vector(cov) Vr <- as.numeric(cov / norm(cov, type = "2") * sd(dp.c)) if (!detrend) { dp.n[, i] <- Bn %*% Vr + mu.dp[i] } else { dp.n[, i] <- Bn %*% Vr + smooth.spline(1:n, dp[, i], spar = 1)$y } if (cov.opt == "auto") { if (cor.test(dp.n[, i], dp[, i])$estimate < 0 & cor.test(dp.n[, i], dp[, i])$p.value < 0.05) cov <- -cov S[, i] <- as.vector(cov) Vr <- as.numeric(cov / norm(cov, type = "2") * sd(dp.c)) if (!detrend) { dp.n[, i] <- Bn %*% Vr + mu.dp[i] } else { dp.n[, i] <- Bn %*% Vr + smooth.spline(1:n, dp[, i], spar = 1)$y } } dif.var <- abs(var(dp[, i]) - var(dp.n[, i])) / var(dp[, i]) if (dif.var > 0.15) warning(paste0("Variance difference between Transformed and original(percentage):", dif.var * 100)) } dwt <- list( wavelet = wf, method = method, boundary = boundary, pad = pad, x = x, dp = dp, dp.n = dp.n, S = S ) class(dwt) <- "dwt" return(dwt) } dwt.vt.val <- function(data, J, dwt, detrend = FALSE) { x <- data$x dp <- as.matrix(data$dp) wf <- dwt$wavelet method <- dwt$method boundary <- dwt$boundary pad <- dwt$pad mu.dp <- apply(dp, 2, mean) ndim <- ncol(dp) n <- nrow(dp) dp.n <- matrix(nrow = n, ncol = ndim) idwt.dp <- vector("list", ndim) for (i in 1:ndim) { if (!detrend) { dp.c <- scale(dp[, i], scale = FALSE) } else { dp.c <- dp[, i] - smooth.spline(1:n, dp[, i], spar = 1)$y } dp.p <- padding(dp.c, pad = pad) idwt.dp[[i]] <- waveslim::mra(dp.p, wf = wf, J = J, method = method, boundary = boundary) B <- matrix(unlist(lapply(idwt.dp[[i]], function(z) z[1:n])), ncol = J + 1, byrow = FALSE) Bn <- scale(B) V <- as.numeric(apply(B, 2, sd)) dif <- sum(abs(Bn %*% V - dp.c)) if (dif > 10^-10) warning(paste0("Difference between Reconstructed and original:", dif)) cov <- rep(0, J + 1) if (length(dwt$S[, i]) > (J + 1)) { cov <- dwt$S[, i][1:(J + 1)] } else { cov[seq_len(length(dwt$S[, i]))] <- dwt$S[, i] } Vr <- as.numeric(cov / norm(cov, type = "2") * sd(dp.c)) if (!detrend) { dp.n[, i] <- Bn %*% Vr + mu.dp[i] } else { dp.n[, i] <- Bn %*% Vr + smooth.spline(1:n, dp[, i], spar = 1)$y } } dwt <- list( wavelet = wf, method = method, boundary = boundary, pad = pad, x = x, dp = dp, dp.n = dp.n, S = dwt$S ) class(dwt) <- "dwt" return(dwt) } padding <- function(x, pad = c("per", "zero", "sym")) { n <- length(x) N <- 2^(ceiling(log(n, 2))) if (pad == "per") { xx <- c(x, x)[1:N] } else if (pad == "zero") { xx <- c(x, rep(0, N - n)) } else { xx <- c(x, rev(x))[1:N] } }
setMethod('crosstab', signature(x='Raster', y='Raster'), function(x, y, digits=0, long=FALSE, useNA=FALSE, progress='', ...) { x <- stack(x, y) crosstab(x, digits=digits, long=long, useNA=useNA, progress=progress, ...) } ) setMethod('crosstab', signature(x='RasterStackBrick', y='missing'), function(x, digits=0, long=FALSE, useNA=FALSE, progress='', ...) { nl <- nlayers(x) if (nl < 2) { stop('crosstab needs at least 2 layers') } nms <- names(x) if (canProcessInMemory(x)) { res <- getValues(x) res <- lapply(1:nl, function(i) round(res[, i], digits=digits)) res <- do.call(table, c(res, useNA='ifany')) res <- as.data.frame(res) } else { tr <- blockSize(x) pb <- pbCreate(tr$n, label='crosstab', progress=progress) res <- NULL for (i in 1:tr$n) { d <- getValuesBlock(x, row=tr$row[i], nrows=tr$nrows[i]) d <- lapply(1:nl, function(i) round(d[, i], digits=digits)) d <- do.call(table, c(d, useNA='ifany')) d <- as.data.frame(d) res <- rbind(res, d) pbStep(pb, i) } pbClose(pb) res <- res[res$Freq > 0, ,drop=FALSE] if (useNA) { for (i in 1:(ncol(res)-1)) { if (any(is.na(res[,i]))) { res[,i] <- factor(res[,i], levels=c(levels(res[,i]), NA), exclude=NULL) } } } res <- aggregate(res[, ncol(res), drop=FALSE], res[, 1:(ncol(res)-1), drop=FALSE], sum) } for (i in 1:(ncol(res)-1)) { res[,i] <- as.numeric(as.character(res[,i])) } if (nrow(res) == 0) { res <- data.frame(matrix(nrow=0, ncol=length(nms)+1)) } colnames(res) <- c(nms, 'Freq') if (! useNA ) { i <- apply(res, 1, function(x) any(is.na(x))) res <- res[!i, ,drop=FALSE] } if (!long) { f <- eval(parse(text=paste('Freq ~ ', paste(nms , collapse='+')))) res <- stats::xtabs(f, data=res, addNA=useNA) } else { res <- res[res$Freq > 0, ,drop=FALSE] res <- res[order(res[,1], res[,2]), ] rownames(res) <- NULL } return(res) } ) .oldcrosstab <- function(x, y, digits=0, long=FALSE, progress, ...) { compareRaster(c(x, y)) if (missing(progress)) { progress <- .progress() } if (canProcessInMemory(x, 3) | ( inMemory(x) & inMemory(y) )) { res <- table(first=round(getValues(x), digits=digits), second=round(getValues(y), digits=digits), ...) } else { res <- NULL tr <- blockSize(x, n=2) pb <- pbCreate(tr$n, label='crosstab', progress=progress) for (i in 1:tr$n) { d <- table( round(getValuesBlock(x, row=tr$row[i], nrows=tr$nrows[i]), digits=digits), round(getValuesBlock(y, row=tr$row[i], nrows=tr$nrows[i]), digits=digits), ...) if (length(dim(d))==1) { first = as.numeric(names(d)) second = first d <- matrix(d) } else { first = as.numeric(rep(rownames(d), each=ncol(d))) second = as.numeric(rep(colnames(d), times=nrow(d))) } count = as.vector(t(d)) res = rbind(res, cbind(first, second, count)) pbStep(pb, i) } pbClose(pb) res <- stats::xtabs(count~first+second, data=res) } if (long) { return( as.data.frame(res) ) } else { return(res) } }
"PbHeron"
context("test model2netcdf.dvmdostem") test_that("PLACEHOLDER", { })
trans_composition <- function( x=NULL, nb=30, brk=NA, dab=NA, dgrd=NA, dgrd2=NA ){ if(is.null(x)|missing(x)){stop('x should be a numerical vector')} xori=as.numeric(x) if(sum(is.na(xori))>0){stop('x is should not included NAs')} if(typeof(x)!='double'|length(xori)<2){stop('x should be a numerical vector')} if(is.null(nb)|missing(nb)){nb=NA} nb=as.numeric(nb) if(is.na(nb)|length(nb)!=1){nb=30} xb=unique(xori) xb=xb[order(xb)] xnb=length(nb) if(xnb>nb){stop('x has more distinct values than nb')} if(is.null(brk)|missing(brk)){brk=max(xori)+1} brk=as.numeric(brk) if(is.na(brk)|length(brk)!=1){brk=max(xori)+1} if(is.null(dab)|missing(dab)){dab=NA} dab=as.numeric(dab) if(is.na(dab)|length(dab)!=1|dab<=0){dab=as.numeric(quantile(diff(xb),0.2))} if(is.null(dgrd)|missing(dgrd)){dgrd=NA} if(is.na(dgrd)|length(dgrd)!=1){ if(brk>min(xori)){dgrd=((min(max(xori),brk)-min(xori))/24)}else{dgrd=((max(xori)-min(xori))/24)} } if(is.null(dgrd2)|missing(dgrd2)){dgrd2=NA} if(is.na(dgrd2)|length(dgrd2)!=1){if(brk>min(xori)){dgrd2=((min(max(xori),brk)-min(xori))/48)}else{dgrd2=((max(xori)-min(xori))/48)}} trans=identity_trans() trans$name='composition' xl1=c();xb1=c();xl2=c();xb2=c() if(brk>=max(xb)){ xl1=xb xb1=xb trans$breaks=function(x,n=xnb){ x=x[is.finite(x)] if(length(x)==0){return(numeric())} if(sum(!missing(x))==0){return(numeric())} fxl1=eval(xl1) fxb1=eval(xb1) if(sum(!is.na(fxl1))<2 | sum(!is.na(fxb1))<2){return(x)} mingr=eval(dgrd) for(itr0 in 1:5){ if(min(diff(fxl1))>=mingr){ break }else{ for(itr in 2:length(fxl1)){ if(fxl1[itr]-fxl1[itr-1]<mingr){ if(round(fxl1[itr])==fxl1[itr]&round(fxl1[itr-1])!=fxl1[itr-1]){ fxl1[itr-1]=fxl1[itr] }else{ fxl1[itr]=fxl1[itr-1] } } } } } fxl1=unique(fxl1) fxl1 } }else if(brk<=min(xb)){ xl2=xb xb2=seq(min(xl2),min(xl2)+(length(xb)-1)*dab, by=dab) trans$transform=function(x){ if(length(x)==0){return(x)} if(sum(!missing(x))==0){return(x)} if(sum(!is.na(x))==0){return(x)} fxl2=eval(xl2) fxb2=eval(xb2) if(sum(!is.na(fxl2))<2 | sum(!is.na(fxb2))<2){return(x)} ff=approx(fxl2, fxb2, x, method='linear', rule=2)$y ff } trans$inverse=function(x){ if(length(x)==0){return(x)} if(sum(!missing(x))==0){return(x)} if(sum(!is.na(x))==0){return(x)} fxl2=eval(xl2) fxb2=eval(xb2) if(sum(!is.na(fxl2))<2 | sum(!is.na(fxb2))<2){return(x)} ff=approx(fxb2, fxl2, x, method='linear', rule=2)$y ff } trans$breaks=function(x,n=xnb){ x=x[is.finite(x)] if(length(x)==0){return(numeric())} if(sum(!missing(x))==0){return(numeric())} fxl2=eval(xl2) fxb2=eval(xb2) if(sum(!is.na(fxl2))<2 | sum(!is.na(fxb2))<2){return(x)} fxl2=eval(xl2) out=c(fxl2) out } }else{ xl1=xb[xb<=brk] xb1=xl1 xl2=xb[xb>brk] xb2=max(xb1)+dab*1+seq(dab,length(xl2)*dab,by=dab) brk=max(xb1)+dab trans$transform=function(x){ if(length(x)==0){return(x)} if(sum(!missing(x))==0){return(x)} if(sum(!is.na(x))==0){return(x)} fxl2=eval(xl2) fxb2=eval(xb2) fbrk=eval(brk) if(sum(!is.na(fxl2))<2 | sum(!is.na(fxb2))<2){return(x)} ff=approx(fxl2, fxb2, x, method='linear', rule=2)$y x*(x<=fbrk)+(x>fbrk)*ff } trans$inverse=function(x){ if(length(x)==0){return(x)} if(sum(!missing(x))==0){return(x)} if(sum(!is.na(x))==0){return(x)} fxl2=eval(xl2) fxb2=eval(xb2) fbrk=eval(brk) if(sum(!is.na(fxl2))<2 | sum(!is.na(fxb2))<2){return(x)} ff=approx(fxb2, fxl2, x, method='linear', rule=2)$y x*(x<=fbrk)+(x>fbrk)*ff } trans$breaks=function(x,n=xnb){ x=x[is.finite(x)] if(length(x)==0){return(numeric())} if(sum(!missing(x))==0){return(numeric())} x=unique(x) fxl1=eval(xl1) fxb1=eval(xb1) if(sum(!is.na(fxl1))<2 | sum(!is.na(fxb1))<2){return(x)} mingr=eval(dgrd) for(itr0 in 1:5){ if(min(diff(fxl1))>=mingr){ break }else{ for(itr in 2:length(fxl1)){ if(fxl1[itr]-fxl1[itr-1]<mingr){ if(round(fxl1[itr])==fxl1[itr]&round(fxl1[itr-1])!=fxl1[itr-1]){ fxl1[itr-1]=fxl1[itr] }else{ fxl1[itr]=fxl1[itr-1] } } } } } fxl1=unique(fxl1) fxl2=eval(xl2) out=c(fxl1, fxl2) out } } trans$minor_breaks=function(b,limits=range(xb),n=xnb){ b=b[is.finite(b)] if(length(b)<2){return(numeric())} if(sum(!missing(b))==0){ return(numeric())} fxl=eval(xb) fbrk=eval(brk) if(length(fxl)<=2){ return(numeric())} fd=eval(dgrd2) fxlmin=floor(min(fxl)) fxlmax=ceiling(max(fxl)) if(max(limits)>fxlmax) fxlmax=ceiling(max(limits)) if(min(limits)<fxlmax) fxlmin=floor(min(limits)) if(fbrk > fxlmin){ fxc=min(fxlmax, fbrk) }else{ fxc=fxlmax } if(is.na(fd)|fd==0|!is.finite(fd)){fd=1} fm=max(2,floor(1+(fxc-fxlmin)/fd)) if(is.na(fm)|fm==0|!is.finite(fm)){fm=2} out1=labeling::extended(fxlmin, fxc, m=fm) out1 } trans }
library(mclust) gmm_fit <- Mclust(iris[, 1:4]) summary(gmm_fit) plot(gmm_fit, 'BIC')
conv.check <- function(x){ est.probs <- c(x$fit$p1, x$fit$p2, x$fit$p3, x$fit$c.copula.be2, x$fit$c.copula.be1) est.dens <- c(x$fit$pdf1, x$fit$pdf2, x$fit$pdf3, x$fit$c.copula2.be1be2) e.v <- eigen(x$fit$hessian, symmetric = TRUE, only.values = TRUE)$values cat("\nLargest absolute gradient value:",max(abs(x$fit$gradient))) if(x$hess==TRUE) mv <- "Observed" else mv <- "Expected" if (min(e.v) > 0) cat("\n",mv," information matrix is positive definite\n",sep="") else cat("\n",mv," information matrix is not positive definite\n",sep="") cat("Eigenvalue range: [",min(e.v),",",max(e.v),"]\n", sep = "") if( (x$l.sp1!=0 || x$l.sp2!=0 || x$l.sp3!=0 || x$l.sp4!=0 || x$l.sp5!=0 || x$l.sp6!=0 || x$l.sp7!=0 || x$l.sp8!=0 || x$l.sp9!=0) && x$fp==FALSE ){ cat("\nTrust region iterations before smoothing parameter estimation:",x$iter.if) cat("\nLoops for smoothing parameter estimation:",x$iter.sp) cat("\nTrust region iterations within smoothing loops:",x$iter.inner) }else{cat("\nTrust region iterations:",x$iter.if)} if( any( is.na(est.probs) == FALSE ) ) cat("\nEstimated overall probability range:",range(est.probs, na.rm = TRUE)) if( any( is.na(est.dens) == FALSE ) ) cat("\nEstimated overall density range:",range(est.dens, na.rm = TRUE)) cat("\n\n") }
NULL axe_call.sclass <- function(x, verbose = FALSE, ...) { old <- x x$btree <- axe_call(x$btree, ...) add_butcher_attributes( x, old, verbose = verbose ) } axe_env.sclass <- function(x, verbose = FALSE, ...) { old <- x x$btree <- axe_env(x$btree, ...) add_butcher_attributes( x, old, verbose = verbose ) }
manualrotate <- function(datat1, datat2){ if(class(datat1) != c('RasterLayer')) stop('datat1 must be a raster file.') if(class(datat2) != c('RasterLayer')) stop('datat2 must be a raster file.') res1 <- raster::res(datat1) res2 <- raster::res(datat2) if(res1[1] > res2[1]){datat2 <- raster::resample(datat2, datat1, method = "ngb")} if(res1[1] < res2[1]){datat1 <- raster::resample(datat1, datat2, method = "ngb")} stopifnot(raster::res(datat1)[1] == raster::res(datat2)[1]) conversionfactor <- ifelse(raster::res(datat1) == 56, 0.774922, 0.222394) datat1 <- raster::rasterToPoints(datat1) datat2 <- raster::rasterToPoints(datat2) datat1 <- data.table::as.data.table(datat1) datat2 <- data.table::as.data.table(datat2) pixelcounts <- merge(datat1, datat2, by = c('x', 'y')) %>% as.data.frame() %>% 'colnames<-'(c('x', 'y', 'value.x', 'value.y')) %>% dplyr::filter(value.x > 0, value.y > 0) %>% dplyr::group_by(value.x, value.y) %>% dplyr::summarise(Count = dplyr::n()) %>% dplyr::left_join(., linkdata, by = c('value.x' = 'MasterCat')) %>% dplyr::left_join(., linkdata, by = c('value.y' = 'MasterCat')) %>% dplyr::ungroup() %>% dplyr::select(-value.x, -value.y) %>% dplyr::rename(From = Crop.x, To = Crop.y) %>% dplyr::mutate(Acreage = Count*conversionfactor[1]) return(pixelcounts) }
libxmlFeatures = function() { .Call("R_getXMLFeatures", PACKAGE = "XML") }
decision_curve <- function(formula, data, family = binomial(link = 'logit'), policy = c('opt-in', 'opt-out'), fitted.risk = FALSE, thresholds = seq(0, 1, by = .01), confidence.intervals = 0.95, bootstraps = 500, study.design = c('cohort', 'case-control'), population.prevalence){ call <- match.call() stopifnot(class(formula) == 'formula') stopifnot(is.data.frame(data)) stopifnot(is.logical(fitted.risk)) stopifnot(is.numeric(thresholds)) stopifnot(all(thresholds >= 0)); stopifnot(all(thresholds <= 1)); if(is.numeric(confidence.intervals)) stopifnot(confidence.intervals > 0 & confidence.intervals < 1) stopifnot(is.numeric(bootstraps)) policy <- match.arg(policy) opt.in = policy == 'opt-in' study.design <- match.arg(study.design) if(!missing(population.prevalence)) { stopifnot(is.numeric(population.prevalence)) stopifnot(population.prevalence > 0 & population.prevalence < 1) } if(any( names.check <- !is.element(all.vars(formula), names(data)))) stop(paste('variable(s)', paste( all.vars(formula)[names.check], collapse = ', ') , 'not found in "data"')) data <- data[,all.vars(formula)] cc.ind <- complete.cases(data) if(sum(cc.ind) < nrow(data)) warning(paste(sum(1-cc.ind), 'observation(s) with missing data removed')) data <- data[cc.ind,] if(missing(population.prevalence)) population.prevalence <- NULL if(study.design == 'cohort'){ if(!is.null(population.prevalence)){ warning('population.prevalence was provided, but study.design = "cohort". The value input for population.prevalence will be ignored. If you are using case-control data, please set study.design = "case-control".') } }else{ if(missing(population.prevalence)){ stop('Need to set population.prevalence to calculate decision curves using case-control data.') if(family$family != 'binomial') stop('Calculations for case-control data are done assuming logistic regression (family = binomial(link = "logit"))') }else{ stopifnot(0< population.prevalence & population.prevalence <1) message('Calculating net benefit curves for case-control data. All calculations are done conditional on the outcome prevalence provided.') } } outcome <- data[[all.vars(formula[[2]])]]; predictors <- c(Reduce(paste, deparse(formula[[3]])), 'All', 'None') predictor.names <- c(Reduce(paste, deparse(formula)), 'All', 'None') if(length(unique(outcome)) != 2) stop('outcome variable is not binary (it does not take two unique values).') stopifnot(is.numeric(outcome)) if(min(outcome) != 0 | max(outcome) != 1) stop('outcome variable must be binary taking on values 0 for control and 1 for case.') if(fitted.risk){ if(length(all.vars(formula[[3]])) > 1) stop('When fitted.risk = TRUE, there can only be one term (denoting the fitted risks) on the right hand side of the formula provided.') provided.risks <- data[[Reduce(paste, deparse(formula[[3]]))]] if(min(provided.risks) < 0 | max(provided.risks) > 1) stop('When fitted.risks = TRUE, all risks provided must be between 0 and 1.') }else if(length(strsplit(predictors[[1]], "+", fixed = TRUE)[[1]]) > 1) { message("Note: The data provided is used to both fit a prediction model and to estimate the respective decision curve. This may cause bias in decision curve estimates leading to over-confidence in model performance. ") } formula.ind <- c(ifelse(fitted.risk, FALSE, TRUE), FALSE, FALSE) data[['All']] <- 1 data[['None']] <- 0 n.preds <- length(predictors) n.out <- length(predictors)*length(thresholds) dc.data <- data.frame('thresholds' = numeric(n.out), 'FPR' = numeric(n.out), 'FNR' = numeric(n.out), 'TPR' = numeric(n.out),'TNR' = numeric(n.out), 'NB' = numeric(n.out), 'sNB' = numeric(n.out), 'rho' = numeric(n.out), 'prob.high.risk' = numeric(n.out), 'prob.low.risk' = numeric(n.out), 'DP' = numeric(n.out), 'nonDP' = numeric(n.out), 'model'= numeric(n.out)) if(is.numeric(confidence.intervals)) { if(bootstraps < 1 ) stop('bootstraps must be greater than 0. If no confidence intervals are needed, set `confidence.intervals = "none"`') B.ind <- matrix(nrow = nrow(data), ncol = bootstraps) if(study.design == 'cohort'){ for(b in 1:bootstraps) B.ind[,b] <- sample.int(nrow(data), replace = TRUE) }else{ all.ind <- 1:nrow(data) uu <- unique(outcome) for(b in 1:bootstraps){ ind.1 <- sample(all.ind[outcome == uu[1] ], replace = TRUE) ind.2 <- sample(all.ind[outcome == uu[2] ], replace = TRUE) B.ind[,b] <- c(ind.1, ind.2) } } dc.data <- add.ci.columns(dc.data) } index = 1 n.pred = 1 for(i in 1:n.preds){ tmpNBdata <- calculate.nb(d = outcome, y = data[[predictors[[i]]]], rH = thresholds, formula = formula, family = family, data = data, formula.ind = formula.ind[i], casecontrol.rho = population.prevalence, opt.in = opt.in) tmpNBdata$model <- predictor.names[[i]] if(is.numeric(confidence.intervals)){ boot.data <- apply(B.ind, 2, function(x){ calculate.nb(d = outcome[x], y = data[[predictors[[i]] ]][x], rH = thresholds, formula = formula, family = family, data = data[x,], formula.ind = formula.ind[i], casecontrol.rho = population.prevalence, opt.in = opt.in)}) alpha = 1- confidence.intervals xx <- NULL for(rtn in names(boot.data[[1]][-1])){ tmpdat <- sapply(boot.data, function(xx) xx[,rtn]) tmpNBdata[[paste(rtn, '_lower', sep = '')]] <- apply(tmpdat, 1, quantile, probs = alpha/2, type = 1, na.rm = TRUE) tmpNBdata[[paste(rtn, '_upper', sep = '')]] <- apply(tmpdat, 1, quantile, probs = 1-alpha/2, type = 1, na.rm = TRUE) } } dc.data[index:(length(thresholds)*n.pred),] <- tmpNBdata index = index + length(thresholds) n.pred = n.pred + 1 } if(!is.numeric(confidence.intervals)){dc.data <- add.ci.columns(dc.data)} dc.data$cost.benefit.ratio <- as.character(fractions(threshold_to_costbenefit(dc.data$thresholds, policy))) add.dash1 <- which(!is.element(1:nrow(dc.data), grep('/', dc.data$cost.benefit.ratio))) dc.data$cost.benefit.ratio[add.dash1] <- paste(dc.data$cost.benefit.ratio[add.dash1], '/1', sep = '') dc.data$cost.benefit.ratio <- gsub('/', ':', dc.data$cost.benefit.ratio) out <- list('derived.data' = dc.data, 'confidence.intervals' = confidence.intervals, 'policy' = policy, 'call' = call) class(out) = 'decision_curve' invisible(out) }
shinydashboard::tabItem( tabName = "candlesticks", fluidRow( column( width = 12, br(), tabBox(width=12, tabPanel( title = "Graphic", fluidRow( h2("Simple example", align="center"), column( width = 12, rAmCharts::amChartsOutput("candl0")) )), tabPanel( title = "Code", fluidRow( h2("Simple example", align="center"), column( width = 12, verbatimTextOutput("code_candl0")) ) ) ) ) ) )
VAR.mseh <- function(x,p,h,type) { n <- nrow(x); k <- ncol(x) var1 <- VAR.est(x,p,type) b <- var1$coef[,1:(k*p+1)] zz <- var1$zzmat[1:(k*p+1),1:(k*p+1)] sigu <- var1$sigu mf <- VAR.mainf(b,p,h) if (h == 1) sigyh <- ( ((n-p)+k*p+1)/(n-p) ) * sigu if (h > 1) { if (p == 1) bb <- rbind(b,cbind(matrix(0,ncol=k*p),1)) if (p > 1) bb <- rbind(b, cbind(diag(k*(p-1)),matrix(0,nrow=k*(p-1),ncol=k),matrix(0,nrow=k*(p-1),ncol=1)),cbind(matrix(0,ncol=k*p),1)) b0 <- diag(k*p+1); bbq <- b0 for( i in 1:(h-1)){ b0 <- b0 %*% bb bbq <- cbind(bbq,b0)} index1 <- seq((h-1)*(k*p+1)+1,length.out=p*k+1); index3 <- 1:k sum1 <- matrix(0,nrow=k,ncol=k); sigy <- sum1 for (i in 0:(h-1)) { sigy <- sigy + mf[,index3]%*%sigu%*% t(mf[,index3]) index2 <- seq((h-1)*(k*p+1)+1,length.out=p*k+1); index4 <- 1:k for (j in 0:(h-1)){ tem <- sum( diag( t(bbq[,index1]) %*% solve(zz) %*% bbq[,index2] %*% zz) ) * mf[,index3] %*% sigu %*% t(mf[,index4]) sum1 <- sum1 + tem index2 <- index2 - (p*k+1); index4 <- index4 + k;} index1 <- index1-(p*k+1); index3 <- index3+k } sigyh <- sigy + sum1/(n-p); } return(sigyh) }
glm_model <- function(data, response_variable, predictor_variable, two_way_interaction_factor = NULL, three_way_interaction_factor = NULL, family, quite = FALSE) { glm_model_check <- function(object, method) { if (method == "response_variableiable_check") { if (length(object) != 1) { stop("Response variable must be length of 1") } } if (method == "three_way_interaction_factor_check") { if (length(three_way_interaction_factor) != 3) { stop("three_way_interaction_factor must have three factors") } } } response_variable <- data %>% dplyr::select(!!enquo(response_variable)) %>% names() predictor_variable <- data %>% dplyr::select(!!enquo(predictor_variable)) %>% names() two_way_interaction_factor <- data %>% dplyr::select(!!enquo(two_way_interaction_factor)) %>% names() three_way_interaction_factor <- data %>% dplyr::select(!!enquo(three_way_interaction_factor)) %>% names() predictor_variable <- predictor_variable[!predictor_variable %in% c(response_variable)] data <- data_check(data) predictor_variable <- predictor_variable[!predictor_variable %in% c(response_variable)] two_way_interaction_factor <- two_way_interaction_factor[!two_way_interaction_factor %in% c(response_variable)] three_way_interaction_factor <- three_way_interaction_factor[!three_way_interaction_factor %in% c(response_variable)] if (length(two_way_interaction_factor) == 0) { two_way_interaction_factor <- NULL } if (length(three_way_interaction_factor) == 0) { three_way_interaction_factor <- NULL } else { glm_model_check(three_way_interaction_factor, method = "three_way_interaction_factor_check") } glm_model_check(response_variable, method = "response_variableiable_check") two_way_interaction_terms <- NULL three_way_interaction_terms <- NULL if (!is.null(two_way_interaction_factor)) { two_way_interaction_terms <- two_way_interaction_terms(two_way_interaction_factor) } if (!is.null(three_way_interaction_factor)) { two_way_interaction_terms <- NULL three_way_interaction_terms <- paste(three_way_interaction_factor, collapse = "*") } predictor_variable <- c(predictor_variable, two_way_interaction_terms, three_way_interaction_terms) model <- paste(response_variable, "~", paste(predictor_variable, collapse = " + ")) if (quite == FALSE) { cat(paste("Fitting Model with glm:\n Formula = ", model, "\n", sep = "")) } model <- stats::as.formula(model) glm_model <- stats::glm(formula = model, data = data, family = family) return(glm_model) }
exact.reject.region <- function(n1, n2, alternative=c("two.sided", "less", "greater"), alpha=0.05, npNumbers=100, np.interval=FALSE, beta=0.001, method=c("z-pooled", "z-unpooled", "boschloo", "santner and snell", "csm", "fisher", "pearson chisq", "yates chisq"), tsmethod=c("square", "central"), delta=0, convexity=TRUE, useStoredCSM=TRUE){ alternative <- match.arg(tolower(alternative), c("two.sided", "less", "greater")) if (length(method)==1 && tolower(method)=="score") { method <- "z-pooled" } method <- match.arg(tolower(method), c("z-pooled", "z-unpooled", "boschloo", "santner and snell", "csm", "fisher", "pearson chisq", "yates chisq")) tsmethod <- match.arg(tolower(tsmethod), c("square", "central")) checkParam(n1=n1, n2=n2, alternative=alternative, alpha=alpha, npNumbers=npNumbers, np.interval=np.interval, beta=beta, method=method, tsmethod=tsmethod, delta=delta, convexity=convexity, useStoredCSM=useStoredCSM) if (alternative == "two.sided" && tsmethod == "central") { rejectRegionUpper <- exact.reject.region(n1=n1, n2=n2, alternative="less", alpha=alpha/2, npNumbers=npNumbers, np.interval=np.interval, beta=beta, method=method, tsmethod=tsmethod, delta=delta, convexity=convexity, useStoredCSM=useStoredCSM) rejectRegionLower <- exact.reject.region(n1=n1, n2=n2, alternative="greater", alpha=alpha/2, npNumbers=npNumbers, np.interval=np.interval, beta=beta, method=method, tsmethod=tsmethod, delta=delta, convexity=convexity, useStoredCSM=useStoredCSM) rejectRegion <- rejectRegionUpper + rejectRegionLower if (!all(rejectRegion %in% c(0,1))) { stop("Check rejection region logic") } return(rejectRegion) } alternativeTemp <- alternative swapFlg <- (alternative == "greater" || (alternative=="two.sided" && delta < 0)) if (swapFlg) { n2temp <- n2 n2 <- n1; n1 <- n2temp; delta <- -delta if (alternative == "greater") { alternative <- "less" } } if (!np.interval && !(method %in% c("csm", "fisher"))) { if (delta == 0) { int <- seq(0.00001,.99999,length=npNumbers) } else if (delta > 0) { int <- seq(0.00001, 1 - delta - 0.00001, length=npNumbers) } else if (delta < 0) { int <- seq(abs(delta) + 0.00001, .99999, length=npNumbers)} lookupArray <- dbinomCalc(Ns = c(n1, n2), int, delta) TX <- switch(method, "z-pooled" = zpooled_TX(NULL, c(n1, n2), delta=delta), "z-unpooled" = zunpooled_TX(NULL, c(n1, n2), delta=delta), "boschloo" = fisher.2x2(NULL, c(n1, n2), alternative=alternative), "santner and snell" = santner_TX(NULL, c(n1, n2), delta=delta), "pearson chisq" = chisq_TX(NULL, c(n1, n2), yates=FALSE), "yates chisq" = chisq_TX(NULL, c(n1, n2), yates=TRUE)) TX[is.na(TX[,3]), 3] <- 0 if ((alternative == "two.sided" && method != "boschloo") || (method %in% c("pearson chisq", "yates chisq"))) {TX[, 3] <- -abs(TX[,3])} if (method %in% c("pearson chisq", "yates chisq") && alternative == "less") {TX[TX[,1]/n1 >= TX[,2]/n2, 3] <- -TX[TX[,1]/n1 >= TX[,2]/n2, 3]} TX <- signif(TX[order(TX[,3]), ], 12) TX <- cbind(TX, NA) if (method %in% c("z-pooled", "z-unpooled", "santner and snell", "pearson chisq", "yates chisq") && delta==0) { TX[TX[,3] >= 0, 4] <- FALSE } if (method == "boschloo" && delta==0) { TX[TX[,3] <= alpha, 4] <- TRUE } moreExtremeTbls <- searchExtreme(TX = TX, n1 = n1, n2 = n2, alternative = alternative, method = method, int = int, delta = delta, alpha = alpha, lookupArray = lookupArray) rejectRegion <- matrix(0, n1+1, n2+1) if (nrow(moreExtremeTbls) > 0) { for (i in 1:nrow(moreExtremeTbls)) { rejectRegion[moreExtremeTbls[i, 1] + 1, moreExtremeTbls[i, 2] + 1] <- 1 } } rownames(rejectRegion) <- 0:n1 colnames(rejectRegion) <- 0:n2 if (swapFlg){ rejectRegion <- t(rejectRegion) } return(rejectRegion) } else if (method == "csm") { if (max(c(n1, n2)) <= 100 && delta == 0 && useStoredCSM) { if (!requireNamespace("ExactData", quietly = TRUE)) { stop(paste("ExactData R package must be installed when useStoredCSM=TRUE. To install ExactData R package, run:", "`install.packages('ExactData', repos='https://pcalhoun1.github.io/drat/', type='source')`")) } int <- seq(0.00001, .99999, length=npNumbers) lookupArray <- dbinomCalc(Ns = c(n1, n2), int, delta) if (alternative == "two.sided") { if (n1 < n2) { orderMat <- t(ExactData::orderCSMMatTwoSided[[paste0("(",n2,",",n1,")")]]) orderMat <- orderMat[(n1+1):1, (n2+1):1] rownames(orderMat) <- 0:n1 colnames(orderMat) <- 0:n2 } else { orderMat <- ExactData::orderCSMMatTwoSided[[paste0("(",n1,",",n2,")")]] } } else { if (n1 < n2) { orderMat <- t(ExactData::orderCSMMatOneSided[[paste0("(",n2,",",n1,")")]]) orderMat <- orderMat[(n1+1):1, (n2+1):1] rownames(orderMat) <- 0:n1 colnames(orderMat) <- 0:n2 } else { orderMat <- ExactData::orderCSMMatOneSided[[paste0("(",n1,",",n2,")")]] } } TX <- matrix(cbind(as.matrix(expand.grid(0:n1, 0:n2)), as.vector(orderMat)), ncol=3, dimnames = NULL) TX <- signif(TX[order(TX[,3]), ], 12) TX <- cbind(TX, NA) moreExtremeTbls <- searchExtreme(TX = TX, n1 = n1, n2 = n2, alternative = alternative, method = method, int = int, delta = delta, alpha = alpha, lookupArray = lookupArray) rejectRegion <- matrix(0, n1+1, n2+1) if (nrow(moreExtremeTbls) > 0) { for (i in 1:nrow(moreExtremeTbls)) { rejectRegion[moreExtremeTbls[i, 1] + 1, moreExtremeTbls[i, 2] + 1] <- 1 } } rownames(rejectRegion) <- 0:n1 colnames(rejectRegion) <- 0:n2 } else { if (delta == 0) { int <- seq(0.00001,.99999,length=npNumbers) } else if (delta > 0) { int <- seq(0.00001, 1 - delta - 0.00001, length=npNumbers) } else if (delta < 0) { int <- seq(abs(delta) + 0.00001, .99999, length=npNumbers)} rejectRegion <- moreExtremeCSM(data = NULL, Ns = c(n1, n2), alternative = alternative, int = int, doublePvalue = FALSE, delta = delta, reject.alpha = alpha)$moreExtremeMat } if (swapFlg) { rejectRegion <- t(rejectRegion) } return(rejectRegion) } else if (method == "fisher" || np.interval) { rejectRegion <- matrix(NA, n1+1, n2+1) rejectRegion[round((row(rejectRegion)-1)/(nrow(rejectRegion)-1), digits=10) >= round((col(rejectRegion)-1)/(ncol(rejectRegion)-1), digits=10)] <- 0 for (i in 0:n1) { startJ <- which(is.na(rejectRegion[i+1, ]))[1] - 1 if (!is.na(startJ)) { for (j in startJ:n2) { tables <- matrix(c(i, n1-i, j, n2-j), ncol=2, nrow=2) if (method=="fisher") { rejectRegionTemp <- (fisher.2x2(tables, alternative=alternative)[3] <= alpha) } else { rejectRegionTemp <- (binomialCode(tables, alternative=alternative, npNumbers=npNumbers, np.interval=np.interval, beta=beta, method=method, tsmethod=tsmethod, to.plot=FALSE, ref.pvalue=FALSE, delta=delta, reject.alpha=alpha, useStoredCSM=useStoredCSM)) } if (rejectRegionTemp) { if (method=="fisher" || convexity) { rejectRegion[i+1, (j+1):(n2+1)] <- 1 if (alternative=="two.sided") { rejectRegion[n1-i+1, 1:(n2-j+1)] <- 1 } break } else { rejectRegion[i+1, j+1] <- 1 if (alternative=="two.sided") { rejectRegion[n1-i+1, n2-j+1] <- 1 } } } else { if (method=="fisher" || convexity) { rejectRegion[is.na(rejectRegion[ , j+1]), j+1] <- 0 } else { rejectRegion[i+1, j+1] <- 0 } } } } } rownames(rejectRegion) <- 0:n1 colnames(rejectRegion) <- 0:n2 if (swapFlg){ rejectRegion <- t(rejectRegion) } return(rejectRegion) } }
boxplot <- function(x, ...) UseMethod("boxplot") boxplot.default <- function(x, ..., range = 1.5, width = NULL, varwidth = FALSE, notch = FALSE, outline = TRUE, names, plot = TRUE, border = par("fg"), col = "lightgray", log = "", pars = list(boxwex = 0.8, staplewex = 0.5, outwex = 0.5), ann = !add, horizontal = FALSE, add = FALSE, at = NULL) { args <- list(x, ...) namedargs <- if(!is.null(attributes(args)$names)) attributes(args)$names != "" else rep_len(FALSE, length(args)) groups <- if(is.list(x)) x else args[!namedargs] if(0L == (n <- length(groups))) stop("invalid first argument") if(length(class(groups))) groups <- unclass(groups) if(!missing(names)) attr(groups, "names") <- names else { if(is.null(attr(groups, "names"))) attr(groups, "names") <- 1L:n names <- attr(groups, "names") } cls <- lapply(groups, class) cl <- NULL if(all(vapply(groups, function(e) { is.numeric(unclass(e)) && identical(names(attributes(e)), "class") }, NA)) && (length(unique(cls)) == 1L)) cl <- cls[[1L]] for(i in 1L:n) groups[i] <- list(boxplot.stats(unclass(groups[[i]]), range)) stats <- matrix(0, nrow = 5L, ncol = n) conf <- matrix(0, nrow = 2L, ncol = n) ng <- out <- group <- numeric(0L) ct <- 1 for(i in groups) { stats[,ct] <- i$stats conf [,ct] <- i$conf ng <- c(ng, i$n) if((lo <- length(i$out))) { out <- c(out,i$out) group <- c(group, rep.int(ct, lo)) } ct <- ct+1 } if(length(cl) == 1L && cl != "numeric") oldClass(stats) <- oldClass(conf) <- oldClass(out) <- cl z <- list(stats = stats, n = ng, conf = conf, out = out, group = group, names = names) if(plot) { if(is.null(pars$boxfill) && is.null(args$boxfill)) pars$boxfill <- col do.call(bxp, c(list(z, notch = notch, width = width, varwidth = varwidth, log = log, border = border, pars = pars, outline = outline, horizontal = horizontal, add = add, ann = ann, at = at), args[namedargs]), quote = TRUE) invisible(z) } else z } boxplot.matrix <- function(x, use.cols = TRUE, ...) { groups <- if(use.cols) { split(c(x), rep.int(1L:ncol(x), rep.int(nrow(x), ncol(x)))) } else split(c(x), seq(nrow(x))) if (length(nam <- dimnames(x)[[1+use.cols]])) names(groups) <- nam invisible(boxplot(groups, ...)) } boxplot.formula <- function(formula, data = NULL, ..., subset, na.action = NULL, xlab = mklab(y_var = horizontal), ylab = mklab(y_var =!horizontal), add = FALSE, ann = !add, horizontal = FALSE, drop = FALSE, sep = ".", lex.order = FALSE) { if(missing(formula) || (length(formula) != 3L)) stop("'formula' missing or incorrect") if(missing(xlab) || missing(ylab)) mklab <- function(y_var) if(y_var) names(mf)[ response] else paste(names(mf)[-response], collapse = " : ") m <- match.call(expand.dots = FALSE) if(is.matrix(eval(m$data, parent.frame()))) m$data <- as.data.frame(data) m$... <- m$drop <- m$sep <- m$lex.order <- NULL m$xlab <- m$ylab <- m$add <- m$ann <- m$horizontal <- NULL m$na.action <- na.action m[[1L]] <- quote(stats::model.frame.default) mf <- eval(m, parent.frame()) response <- attr(attr(mf, "terms"), "response") boxplot(split(mf[[response]], mf[-response], drop = drop, sep = sep, lex.order = lex.order), xlab = xlab, ylab = ylab, add = add, ann = ann, horizontal = horizontal, ...) } bxp <- function(z, notch = FALSE, width = NULL, varwidth = FALSE, outline = TRUE, notch.frac = 0.5, log = "", border = par("fg"), pars = NULL, frame.plot = axes, horizontal = FALSE, ann = TRUE, add = FALSE, at = NULL, show.names = NULL, ...) { pars <- as.list(pars) if(...length()) { nmsA <- names(args <- list(...)) if(anyDuplicated(nmsA)) { iD <- duplicated(nmsA) warning(sprintf(ngettext(sum(iD), "Duplicated argument %s is disregarded", "Duplicated arguments %s are disregarded"), sub("^list\\((.*)\\)", "\\1", deparse(args[iD]))), domain = NA) nmsA <- names(args <- args[!iD]) } pars[nmsA] <- args } bplt <- function(x, wid, stats, out, conf, notch, xlog, i) { ok <- TRUE if(!anyNA(stats)) { xP <- if(xlog) function(x,w) x * exp(w) else function(x,w) x + w wid <- wid/2 if (notch) { ok <- stats[2L] <= conf[1L] && conf[2L] <= stats[4L] xx <- xP(x, wid * c(-1, 1, 1, notch.frac, 1, 1, -1,-1,-notch.frac,-1)) yy <- c(stats[c(2, 2)], conf[1L], stats[3L], conf[2L], stats[c(4, 4)], conf[2L], stats[3L], conf[1L]) } else { xx <- xP(x, wid * c(-1, 1, 1, -1)) yy <- stats[c(2, 2, 4, 4)] } if(!notch) notch.frac <- 1 wntch <- notch.frac*wid xypolygon(xx, yy, lty = "blank", col = boxfill[i]) xysegments(xP(x, -wntch), stats[3L], xP(x, +wntch), stats[3L], lty = medlty[i], lwd = medlwd[i], col = medcol[i], lend = 1) xypoints(x, stats[3L], pch = medpch[i], cex = medcex[i], col = medcol[i], bg = medbg[i]) xysegments(rep.int(x, 2), stats[c(1,5)], rep.int(x, 2), stats[c(2,4)], lty = whisklty[i], lwd = whisklwd[i], col = whiskcol[i]) xysegments(rep.int(xP(x, -wid * staplewex[i]), 2), stats[c(1,5)], rep.int(xP(x, +wid * staplewex[i]), 2), stats[c(1,5)], lty = staplelty[i], lwd = staplelwd[i], col = staplecol[i]) xypolygon(xx, yy, lty = boxlty[i], lwd = boxlwd[i], border = boxcol[i]) if ((nout <- length(out))) { xysegments(rep(x - wid * outwex, nout), out, rep(x + wid * outwex, nout), out, lty = outlty[i], lwd = outlwd[i], col = outcol[i]) xypoints(rep.int(x, nout), out, pch = outpch[i], lwd = outlwd[i], cex = outcex[i], col = outcol[i], bg = outbg[i]) } if(any(inf <- !is.finite(out))) { warning(sprintf(ngettext(length(unique(out[inf])), "Outlier (%s) in boxplot %d is not drawn", "Outliers (%s) in boxplot %d are not drawn"), paste(unique(out[inf]), collapse=", "), i), domain = NA) } } return(ok) } if(!is.list(z) || 0L == (n <- length(z$n))) stop("invalid first argument") if(is.null(at)) at <- 1L:n else if(length(at) != n) stop(gettextf("'at' must have same length as 'z$n', i.e. %d", n), domain = NA) if(is.null(z$out)) z$out <- numeric() if(is.null(z$group) || !outline) z$group <- integer() if(is.null(pars$ylim)) ylim <- range(z$stats[is.finite(z$stats)], if(outline) z$out[is.finite(z$out)], if(notch) z$conf[is.finite(z$conf)]) else { ylim <- pars$ylim pars$ylim <- NULL } if(length(border) == 0L) border <- par("fg") dev.hold(); on.exit(dev.flush()) if (!add) { if(is.null(pars$xlim)) xlim <- range(at, finite=TRUE) + c(-0.5, 0.5) else { xlim <- pars$xlim pars$xlim <- NULL } plot.new() if (horizontal) plot.window(ylim = xlim, xlim = ylim, log = log, xaxs = pars$yaxs) else plot.window(xlim = xlim, ylim = ylim, log = log, yaxs = pars$yaxs) } xlog <- (par("ylog") && horizontal) || (par("xlog") && !horizontal) pcycle <- function(p, def1, def2 = NULL) rep(if(length(p)) p else if(length(def1)) def1 else def2, length.out = n) p <- function(sym) pars[[sym, exact = TRUE]] boxlty <- pcycle(pars$boxlty, p("lty"), par("lty")) boxlwd <- pcycle(pars$boxlwd, p("lwd"), par("lwd")) boxcol <- pcycle(pars$boxcol, border) boxfill <- pcycle(pars$boxfill, par("bg")) boxwex <- pcycle(pars$boxwex, 0.8 * { if(n <= 1) 1 else stats::quantile(diff(sort(if(xlog) log(at) else at)), 0.10) }) medlty <- pcycle(pars$medlty, p("lty"), par("lty")) medlwd <- pcycle(pars$medlwd, 3*p("lwd"), 3*par("lwd")) medpch <- pcycle(pars$medpch, NA_integer_) medcex <- pcycle(pars$medcex, p("cex"), par("cex")) medcol <- pcycle(pars$medcol, border) medbg <- pcycle(pars$medbg, p("bg"), par("bg")) whisklty <- pcycle(pars$whisklty, p("lty"), "dashed") whisklwd <- pcycle(pars$whisklwd, p("lwd"), par("lwd")) whiskcol <- pcycle(pars$whiskcol, border) staplelty <- pcycle(pars$staplelty, p("lty"), par("lty")) staplelwd <- pcycle(pars$staplelwd, p("lwd"), par("lwd")) staplecol <- pcycle(pars$staplecol, border) staplewex <- pcycle(pars$staplewex, 0.5) outlty <- pcycle(pars$outlty, "blank") outlwd <- pcycle(pars$outlwd, p("lwd"), par("lwd")) outpch <- pcycle(pars$outpch, p("pch"), par("pch")) outcex <- pcycle(pars$outcex, p("cex"), par("cex")) outcol <- pcycle(pars$outcol, border) outbg <- pcycle(pars$outbg, p("bg"), par("bg")) outwex <- pcycle(pars$outwex, 0.5) width <- if(!is.null(width)) { if(length(width) != n || anyNA(width) || any(width <= 0)) stop("invalid boxplot widths") boxwex * width/max(width) } else if(varwidth) boxwex * sqrt(z$n/max(z$n)) else if(n == 1) 0.5 * boxwex else rep.int(boxwex, n) if(horizontal) { xypoints <- function(x, y, ...) points(y, x, ...) xypolygon <- function(x, y, ...) polygon(y, x, ...) xysegments <- function(x0, y0, x1, y1, ...) segments(y0, x0, y1, x1, ...) } else { xypoints <- points xypolygon <- polygon xysegments <- segments } ok <- TRUE for(i in 1L:n) ok <- ok & bplt(at[i], wid = width[i], stats = z$stats[,i], out = z$out[z$group == i], conf = z$conf[,i], notch = notch, xlog = xlog, i = i) if(!ok) warning("some notches went outside hinges ('box'): maybe set notch=FALSE") axes <- is.null(pars$axes) if(!axes) { axes <- pars$axes; pars$axes <- NULL } if(axes) { ax.pars <- pars[names(pars) %in% c("xaxt", "yaxt", "xaxp", "yaxp", "gap.axis", "las", "cex.axis", "col.axis", "format")] if (is.null(show.names)) show.names <- n > 1 if (show.names) do.call("axis", c(list(side = 1 + horizontal, at = at, labels = z$names), ax.pars), quote = TRUE) do.call("Axis", c(list(x = z$stats, side = 2 - horizontal), ax.pars), quote = TRUE) } if(ann) do.call(title, pars[names(pars) %in% c("main", "cex.main", "col.main", "sub", "cex.sub", "col.sub", "xlab", "ylab", "cex.lab", "col.lab")], quote = TRUE) if(frame.plot) box() invisible(at) }
FitMCMC <- function(spec, data, ctr = list()) { UseMethod(generic = "FitMCMC", spec) } FitMCMC.MSGARCH_SPEC <- function(spec, data, ctr = list()) { time.start <- Sys.time() spec <- f_check_spec(spec) data_ <- f_check_y(data) ctr <- f_process_ctr(ctr) ctr$do.plm <- TRUE if (isTRUE(spec$fixed.pars.bool)) { f_check_fixedpars(spec$fixed.pars, spec) } if (is.null(ctr$par0)) { par0 <- f_StargingValues(data_, spec, ctr) } else { par0 = ctr$par0 if (isTRUE(spec$regime.const.pars.bool)) { par0 <- f_remove_regimeconstpar(par0, spec$regime.const.pars, spec$K) } if (isTRUE(spec$fixed.pars.bool)) { par0 <- f_substitute_fixedpar(par0, spec$fixed.pars) } par0 <- f_unmapPar(par0, spec, do.plm = TRUE) } par <- ctr$SamplerFUN(f_posterior = f_posterior, data = data_, spec = spec, par0 = par0, ctr = ctr) np <- length(par0) accept <- 1 - mean(duplicated(par)) by <- seq(from = (ctr$nburn + 1L), to = (ctr$nburn + ctr$nmcmc), by = ctr$nthin) par <- par[by, , drop = FALSE] vLower <- spec$lower vUpper <- spec$upper names(vLower) <- spec$label names(vUpper) <- spec$label vLower <- vLower[names(par0)] vUpper <- vUpper[names(par0)] par <- f_map(par, vLower, vUpper) par0 <- f_map(par0, vLower, vUpper) vpar_full <- par[1L, ] if (isTRUE(spec$fixed.pars.bool)) { vpar_full <- f_add_fixedpar(vpar_full, spec$fixed.pars) vpar_full <- vpar_full[spec$label] names(vpar_full) <- spec$label } if (isTRUE(spec$regime.const.pars.bool)) { vpar_full <- f_add_regimeconstpar(vpar_full, spec$K, spec$label) } if (length(vpar_full) != ncol(par)) { vAddedPar <- vpar_full[!names(vpar_full) %in% colnames(par)] if (isTRUE(spec$fixed.pars.bool)) { par <- cbind(par, matrix(rep(vAddedPar, nrow(par)), nrow = nrow(par), byrow = TRUE, dimnames = list(NULL, names(vAddedPar)))) par <- par[, spec$label] } if (isTRUE(spec$regime.const.pars.bool)) { par <- f_add_regimeconstpar_matrix(par, spec$K, spec$label) } } if(isTRUE(ctr$do.sort)){ par <- f_sort_par(spec, par) } par <- coda::mcmc(par) ctr$par0 <- par0 elapsed.time <- Sys.time() - time.start out <- list(par = par, accept = accept, data = data, spec = spec, ctr = ctr) class(out) <- "MSGARCH_MCMC_FIT" return(out) }
setGeneric("format") .list2S4 <- function(from, to) { if (!length(from)) return (new(to)) p <- pmatch(names(from), slotNames(to)) if (any(is.na(p))) stop(paste("invalid slot name(s) for class", to, ":", paste(names(from)[is.na(p)], collapse = ""))) names(from) <- slotNames(to)[p] do.call("new", c(from, Class = to)) } .S42list <- function(object) { object <- attributes(object) object$class <- NULL object } setClass("SPparameter", representation( support = "numeric", maxsize = "integer", maxlen = "integer", mingap = "integer", maxgap = "integer", maxwin = "integer" ), prototype(support = 0.1, maxsize = 10L, maxlen = 10L), validity = function(object) { if (object@support < 0 || object@support > 1) return("slot support : invalid range") if (length(object@maxsize) && object@maxsize < 1) return("slot maxsize : invalid range") if (length(object@maxlen) && object@maxlen < 1) return("slot maxlen : invalid range") if (length(object@mingap) && object@mingap < 1) return("slot mingap : invalid range") if (length(object@maxgap) && object@maxgap < 0) return("slot maxgap : invalid range") if (length(object@maxwin) && object@maxwin < 0) return("slot maxwin : invalid range") TRUE } ) setMethod("initialize", "SPparameter", function(.Object, support, ...) { if (!missing(support)) .Object@support <- support args <- list(...) for (name in names(args)) slot(.Object, name) <- as(args[[name]], Class = class(slot(.Object, name))) validObject(.Object) .Object } ) setAs("NULL", "SPparameter", function(from, to) new(to)) setAs("list", "SPparameter", function(from, to) .list2S4(from , to)) setAs("SPparameter", "list", function(from) .S42list(from)) setAs("SPparameter", "vector", function(from) unlist(as(from, "list"))) setAs("SPparameter", "character", function(from, to) unlist(lapply(as(from, "list"), as, class(to)))) setAs("SPparameter", "data.frame", function(from) { from <- as(from, "character") data.frame(name = names(from), value = from, row.names = seq(from)) } ) .formatSP <- function(x, ...) { x <- as(x, "character") paste(format(names(x)), format(x, justify = "right"), sep = " : ") } setMethod("format", "SPparameter", .formatSP ) setMethod("show", signature(object = "SPparameter"), function(object) { out <- .formatSP(object) cat("set of", length(out), "spade parameters\n\n") if (length(out)) cat(out, sep = "\n") invisible(NULL) } ) setClass("SPcontrol", representation( memsize = "integer", numpart = "integer", bfstype = "logical", verbose = "logical", summary = "logical", tidLists = "logical" ), prototype(bfstype = FALSE, verbose = FALSE, summary = FALSE, tidLists = FALSE), validity = function(object) { if (length(object@memsize) && object@memsize < 16) return("slot memsize : invalid range") if (length(object@numpart) && object@numpart < 1) return("slot numpart : invalid range") TRUE } ) setMethod("initialize", "SPcontrol", function(.Object, ...) { args <- list(...) for (name in names(args)) slot(.Object, name) <- as(args[[name]], Class = class(slot(.Object, name))) validObject(.Object) .Object } ) setAs("NULL", "SPcontrol", function(from, to) new(to)) setAs("list", "SPcontrol", function(from, to) .list2S4(from , to)) setAs("SPcontrol", "list", function(from) .S42list(from)) setAs("SPcontrol", "vector", function(from) unlist(as(from, "list"))) setAs("SPcontrol", "character", function(from, to) unlist(lapply(as(from, "list"), as, class(to)))) setAs("SPcontrol", "data.frame", function(from) { from <- as(from, "character") data.frame(name = names(from), value = from, row.names = seq(from)) } ) setMethod("format", "SPcontrol", .formatSP ) setMethod("show", signature(object = "SPcontrol"), function(object) { out <- .formatSP(object) cat("set of", length(out), "spade control parameters\n\n") if (length(out)) cat(out, sep = "\n") invisible(NULL) } )
NOT_CRAN <- identical(tolower(Sys.getenv("NOT_CRAN")),"true") knitr::opts_chunk$set(purl = NOT_CRAN) library(insee) library(tidyverse) embed_png <- function(path, dpi = NULL) { meta <- attr(png::readPNG(path, native = TRUE, info = TRUE), "info") if (!is.null(dpi)) meta$dpi <- rep(dpi, 2) knitr::asis_output(paste0( "<img src='", path, "'", " width=", round(meta$dim[1] / (meta$dpi[1] / 96)), " height=", round(meta$dim[2] / (meta$dpi[2] / 96)), " />" ))} library(kableExtra) library(magrittr) library(htmltools) library(prettydoc) embed_png("pop_map.png")
"turbineSpatial"
pentaSolve <- function(a1,a2,a3,a4,a5,b) { u <- b N <- length(b) i <- 1 while(i<=N-2) { auxi <- a2[i]/a3[i] a3[i+1] <- a3[i+1]-a4[i]*auxi a4[i+1] <- a4[i+1]-a5[i]*auxi b[i+1] <- b[i+1]-b[i]*auxi auxi <- a1[i]/a3[i] a2[i+1] <- a2[i+1]-a4[i]*auxi a3[i+2] <- a3[i+2]-a5[i]*auxi b[i+2] <- b[i+2]-b[i]*auxi i <- i+1 } auxi <- a2[N-1]/a3[N-1] a3[N] <- a3[N]-a4[N-1]*auxi b[N] <- b[N]-b[N-1]*auxi u[N] <- b[N]/a3[N] u[N-1] <- (b[N-1]-a4[N-1]*u[N])/a3[N-1] i <- N-2 while(i>=1) { u[i] <- (b[i]-a4[i]*u[i+1]-a5[i]*u[i+2])/a3[i] i <- i-1 } return(u) }
summary.mfp <- function(object, ...) { summary(object$fit, ...) }
slopeOP <- function(data, states, penalty = 0, constraint = "null", minAngle = 0, type = "channel", testMode = FALSE) { if(!is.numeric(data)){stop('data values are not all numeric')} if(!is.numeric(states)){stop('states are not all numeric')} if(is.unsorted(states)){stop('states must be in increasing order')} if(length(unique(states)) < length(states)){stop('states is not a strictly increasing sequence')} if(!is.double(penalty)){stop('penalty is not a double.')} if(penalty < 0){stop('penalty must be non-negative')} if(!is.double(minAngle)){stop('minAngle is not a double.')} if(minAngle < 0 || minAngle > 180){stop('minAngle must lie between 0 and 180')} allowed.constraints <- c("null", "isotonic", "unimodal", "smoothing") if(!constraint %in% allowed.constraints){stop('constraint must be one of: ', paste(allowed.constraints, collapse=", "))} allowed.types <- c("null", "channel", "pruning") if(!type %in% allowed.types){stop('type must be one of: ', paste(allowed.types, collapse=", "))} if(!is.logical(testMode)){stop('testMode must be a boolean')} res <- slopeOPtransfer(data, states, penalty, constraint, minAngle, type) if(testMode == FALSE){response <- list(changepoints = res$changepoints, parameters = res$parameters, globalCost = res$globalCost - (length(res$changepoints) - 1) * penalty)} if(testMode == TRUE){response <- list(changepoints = res$changepoints, parameters = res$parameters, globalCost = res$globalCost - (length(res$changepoints) - 1) * penalty, pruning = res$pruningPower)} attr(response, "class") <- "slopeOP" return(response) } slopeSN <- function(data, states, nbSegments = 1, constraint = "null", testMode = FALSE) { if(!is.numeric(data)){stop('data values are not all numeric')} if(!is.numeric(states)){stop('states are not all numeric')} if(is.unsorted(states)){stop('states must be in increasing order')} if(length(unique(states)) < length(states)){stop('states is not a strictly increasing sequence')} if(nbSegments < 1){stop('nbSegments < 1')} if(nbSegments%%1 > 0){stop('nbSegments is not an integer')} allowed.constraints <- c("null", "isotonic") if(!constraint %in% allowed.constraints){stop('constraint must be one of: ', paste(allowed.constraints, collapse=", "))} if(!is.logical(testMode)){stop('testMode must be a boolean')} if(nbSegments + 1 > length(data)){stop('you can not have more segments that data points')} res <- slopeSNtransfer(data, states, nbSegments, constraint) if(testMode == FALSE){response <- list(changepoints = res$changepoints, parameters = res$parameters, globalCost = res$globalCost )} if(testMode == TRUE){response <- list(changepoints = res$changepoints, parameters = res$parameters, globalCost = res$globalCost, pruning = res$pruningPower)} attr(response, "class") <- "slopeOP" return(response) } slopeData <- function(index, states, noise = 0, outlierDensity = 0, outlierNoise = 50) { if(!is.numeric(index)){stop('data values are not all numeric')} if(is.unsorted(index)){stop('index should be an increasing vector')} if(length(unique(index)) < length(index)){stop('index is not a strictly increasing sequence')} if(!is.numeric(states)){stop('states are not all numeric')} if(length(index) != length(states)){stop('index and states vectors are of different size')} if(!is.double(noise)){stop('noise is not a double.')} if(noise < 0){stop('noise must be nonnegative')} steps <- diff(states)/diff(index) response <- rep(steps, diff(index)) response <- c(states[1], cumsum(response) + states[1]) if(outlierDensity == 0) { response <- response + rnorm(length(response), 0, noise) } else { S <- sample(c(0,1), size = length(response), replace = TRUE, prob = c(1 - outlierDensity, outlierDensity)) response <- response + (1-S)*rnorm(length(response), 0, noise) response <- response + S*rnorm(length(response), 0, outlierNoise) } return(response) } plot.slopeOP <- function(x, ..., data, chpt = NULL, states = NULL) { n <- 1:length(data) p <- length(x$changepoints) xbis <- x$changepoints y <- x$parameters plot(1:length(data), data, pch = '+') for(i in 1:(p-1)) { segments(xbis[i], y[i], xbis[i+1], y[i+1], col= 2, lty = 1, lwd = 3) } if(length(chpt) > 0 && length(chpt) == length(states)) { q <- length(chpt) for(i in 1:(q-1)) { segments(chpt[i], states[i], chpt[i+1], states[i+1], col= 4, lty = 1, lwd = 3) } } }
'mixedAn<-' <- function(he, value) UseMethod('mixedAn<-', he)
Fx_simplex <- function(formula, n.levels.mix=NULL, echo=TRUE) { cl <- match.call() verify(cl, formula = formula, n.levels.mix = n.levels.mix, echo = echo) av <- all.vars(formula); d <- length(av) if (is.null(n.levels.mix)) { message("n.levels.mix is NULL; setting n.levels.mix to 2*d+1.") n.levels.mix <- 2*d + 1 } cmb <- t(combn(n.levels.mix + d - 2, d - 1)) data <- as.data.frame((cbind(cmb, n.levels.mix + d - 1) - cbind(0, cmb) - 1)/(n.levels.mix - 1)) labs <- c() for (i in 1:d) labs <- c(labs, paste("x", as.character(i), sep = "")) names(data) <- labs[1:d] mf <- model.frame(formula, data) Fx <- as.data.frame(model.matrix(attr(mf, "terms"), mf)) return(as.matrix(Fx)) }
textInputWithValidation <- function(inputId, label, container_id = NULL, help_id = NULL) { markup <- div(class = 'form-group selectize-fh validate-wrapper', id = container_id, tags$label(class = 'control-label', `for` = inputId, label), tags$input(id = inputId, type = 'text', class = 'form-control', value = '', placeholder = ''), tags$span(class='help-block', id = help_id) ) with_deps(markup) } textInputWithButtons <- function(inputId, label, ..., container_id = NULL, help_id = NULL, label_title = NULL, btn_titletips = TRUE, placeholder = '', width = NULL) { buttons <- list(...) buttons <- buttons[!sapply(buttons, is.null)] button_tooltips <- NULL if (btn_titletips) { button_tooltips <- tags$div( lapply(buttons, function(btn) shinyBS::bsTooltip(id = btn$attribs$id, title = btn$attribs$title, options = list(container = 'body'))) ) } label_tooltip <- NULL if (!is.null(label_title)) { label_id <- paste0(inputId, '-label-info') label_tooltip <- shinyBS::bsTooltip(label_id, title = label_title, placement = 'top', options = list(container = 'body')) label <- tags$span(label, span(class='hover-info', span(id = label_id, icon('info', 'fa-fw')))) } if (!is.null(width)) width <- paste0('width: ', width, ';') markup <- div(class = 'form-group selectize-fh validate-wrapper', id = container_id, style = width, tags$label(class = 'control-label', `for` = inputId, label), div(class = 'input-group', tags$input(id = inputId, type = 'text', class = 'form-control', value = '', placeholder = placeholder), tags$span(class = 'input-group-btn', lapply(buttons, function(btn) { if (btn_titletips) btn$attribs$title <- NULL return(btn) })) ), tags$span(class = 'help-block', id = help_id), button_tooltips, label_tooltip ) with_deps(markup) } textAreaInputWithButtons <- function(inputId, label, ..., container_id = NULL, help_id = NULL, label_title = NULL, btn_titletips = TRUE, placeholder = '') { buttons <- list(...) buttons <- buttons[!sapply(buttons, is.null)] button_tooltips <- NULL if (btn_titletips) { button_tooltips <- tags$div( lapply(buttons, function(btn) shinyBS::bsTooltip(id = btn$attribs$id, title = btn$attribs$title, options = list(container = 'body'))) ) } label_tooltip <- NULL if (!is.null(label_title)) { label_id <- paste0(inputId, '-label-info') label_tooltip <- shinyBS::bsTooltip(label_id, title = label_title, placement = 'top', options = list(container = 'body')) label <- tags$span(label, span(class='hover-info', span(id = label_id, icon('info', 'fa-fw')))) } markup <- div(class = 'form-group selectize-fh validate-wrapper', id = container_id, tags$label(class = 'control-label', `for` = inputId, label), div(class = 'input-group full-height-btn', tags$textarea(id = inputId, class = 'form-control', value = '', style = 'resize: vertical; min-height: 34px;', placeholder = placeholder), tags$span(class = 'input-group-btn', lapply(buttons, function(btn) { if (btn_titletips) btn$attribs$title <- NULL return(btn) })) ), tags$span(class = 'help-block', id = help_id), button_tooltips, label_tooltip ) with_deps(markup) }
rm(list=ls()) compare <- function(a,b, xs) { plot(xs, a(xs), type='l') lines(xs, b(xs), type='l', col='blue') invisible() } assert('taylor_series_1', { fac(1) %as% 1 fac(n) %when% { n > 0 } %as% { n * fac(n - 1) } seal(fac) d(f, 1, h=10^-9) %as% function(x) { (f(x + h) - f(x - h)) / (2*h) } d(f, 2, h=10^-9) %as% function(x) { (f(x + h) - 2*f(x) + f(x - h)) / h^2 } taylor(f, a, step=2) %as% taylor(f, a, step, 1, function(x) f(a)) taylor(f, a, 0, k, g) %as% g taylor(f, a, step, k, g) %as% { df <- d(f,k) g1 <- function(x) { g(x) + df(a) * (x - a)^k / fac(k) } taylor(f, a, step-1, k+1, g1) } f <- taylor(sin, pi) v <- f(3.1) all.equal(v, sin(3.1), tolerance=0.01) })
rowMedians <- function (mat) { apply(mat, 1, median, na.rm = TRUE) }
library("testthat") library("recommenderlab") data("MovieLense") methods <- unique(sapply(recommenderRegistry$get_entries( dataType="realRatingMatrix"), "[[", "method")) cat("Available methods for realRatingMatrix:", paste(methods, collapse = ", ")) MovieLense100 <- MovieLense[rowCounts(MovieLense) > 100,] MovieLense100 <- MovieLense[, colCounts(MovieLense100) > 100,] train <- MovieLense100[1:20] test1 <- MovieLense100[101] test3 <- MovieLense100[101:103] for(m in methods) { if(m == "HYBRID") next context(paste("Algorithm:", m)) cat("Algorithm:", m, "\n") rec <- Recommender(train, method = m) rec pre <- predict(rec, test1, n = 10) pre l <- as(pre, "list") expect_identical(length(l), 1L) expect_identical(length(l[[1]]), 10L) pre <- predict(rec, test3, n = 10) pre l <- as(pre, "list") expect_identical(length(l), 3L) expect_equal(as.integer(sapply(l, length)), c(10L, 10L, 10L)) pre <- predict(rec, test1, n = 10, type = "ratings") pre expect_gt(sum(is.na(as(pre, "matrix"))), 0L) if(m != "RERECOMMEND") { pre <- predict(rec, test1, n = 10, type = "ratingMatrix") pre } pre <- predict(rec, test3, n = 10, type = "ratings") pre expect_gt(sum(is.na(as(pre, "matrix"))), 0L) if(m != "RERECOMMEND") { pre <- predict(rec, test3, n = 10, type = "ratingMatrix") pre } } recom <- HybridRecommender( Recommender(train, method = "POPULAR"), Recommender(train, method = "RANDOM"), Recommender(train, method = "RERECOMMEND"), weights = c(.6, .1, .3) ) predict(recom, test1) predict(recom, test3) predict(recom, test1, type = "ratings") predict(recom, test3, type = "ratings") methods <- unique(sapply(recommenderRegistry$get_entries( dataType="binaryRatingMatrix"), "[[", "method")) cat("Available methods for binaryRatingMatrix:", paste(methods, collapse = ", ")) MovieLense100_bin <- binarize(MovieLense100, minRating = 3) train <- MovieLense100_bin[1:50] test1 <- MovieLense100_bin[101] test3 <- MovieLense100_bin[101:103] for(m in methods) { if(m == "HYBRID") next context(paste("Algorithm:", m)) cat("Algorithm:", m, "\n") rec <- Recommender(train, method = m) rec pre <- predict(rec, test1, n = 10) pre l <- as(pre, "list") expect_identical(length(l), 1L) expect_identical(length(l[[1]]), 10L) pre <- predict(rec, test3, n = 10) pre l <- as(pre, "list") expect_identical(length(l), 3L) expect_equal(as.integer(sapply(l, length)), c(10L, 10L, 10L)) pre <- predict(rec, test1, n = 10, type = "ratings") cat("Prediction range (should be [0,1]):\n") print(summary(as.vector(as(pre, "matrix")))) if(m != "RERECOMMEND") { pre <- predict(rec, test1, n = 10, type = "ratingMatrix") } } recom <- HybridRecommender( Recommender(train, method = "POPULAR"), Recommender(train, method = "RANDOM"), Recommender(train, method = "AR"), Recommender(train, method = "RERECOMMEND"), weights = c(.25, .25, .25, .25) ) predict(recom, test1) predict(recom, test3) predict(recom, test1, type = "ratings") predict(recom, test3, type = "ratings")
NULL dlfInit <- function(mCall, LHS, data, ...){ xy <- sortedXyData(mCall[["time"]], LHS, data) if(nrow(xy) < 4){ stop("Too few distinct input values to fit a dlf.") } z <- xy[["y"]] x1 <- xy[["x"]] asym <- max(xy[,"y"]) a2 <- min(xy[,"y"]) xmid <- NLSstClosestX(xy, (asym + a2)/2) scal <- -xmid/2 zz <- z - a2 scal2 <- try(coef(nls(zz ~ SSlogis(-x1, asym, xmid, scal)))[3], silent = TRUE) if(class(scal2) != "try-error") scal <- -scal2 value <- c(asym, a2, xmid, scal) names(value) <- mCall[c("asym","a2","xmid","scal")] value } dlf <- function(time, asym, a2, xmid, scal){ .expr1 <- (xmid - time)/scal .expr2 <- 1 + exp(.expr1) .value <- (asym - a2) / .expr2 + a2 .expi1 <- 1/.expr2 .expi2 <- 1 - 1/.expr2 .expr3 <- asym - a2 .expr4 <- exp((xmid - time)/scal) .expr5 <- 1 + .expr4 .expi3 <- -(.expr3 * (.expr4 * (1/scal))/.expr5^2) .eexpr1 <- asym - a2 .eexpr2 <- xmid - time .eexpr4 <- exp(.eexpr2/scal) .eexpr5 <- 1 + .eexpr4 .expi4 <- .eexpr1 * (.eexpr4 * (.eexpr2/scal^2))/.eexpr5^2 .actualArgs <- as.list(match.call()[c("asym", "a2", "xmid", "scal")]) if (all(unlist(lapply(.actualArgs, is.name)))) { .grad <- array(0, c(length(.value), 4L), list(NULL, c("asym", "a2", "xmid","scal"))) .grad[, "asym"] <- .expi1 .grad[, "a2"] <- .expi2 .grad[, "xmid"] <- .expi3 .grad[, "scal"] <- .expi4 dimnames(.grad) <- list(NULL, .actualArgs) attr(.value, "gradient") <- .grad } .value } SSdlf <- selfStart(dlf, initial = dlfInit, c("asym","a2","xmid","scal"))
setGeneric("sensor", function(this,...) standardGeneric("sensor")) setMethod("sensor", ".MoveTrack", function(this,...) { this@sensor }) setMethod("sensor", ".unUsedRecords", function(this,...) { this@sensorUnUsedRecords })
`draw.evaluated_1d_smooth` <- function(object, rug = NULL, ci_level = 0.95, constant = NULL, fun = NULL, xlab, ylab, title = NULL, subtitle = NULL, caption = NULL, partial_residuals = NULL, response_range = NULL, ...) { smooth_var <- names(object)[3L] object <- add_constant(object, constant = constant) crit <- qnorm((1 - ci_level) / 2, lower.tail = FALSE) object[["upper"]] <- object[["est"]] + (crit * object[["se"]]) object[["lower"]] <- object[["est"]] - (crit * object[["se"]]) object <- transform_fun(object, fun = fun) plt <- ggplot(object, aes_(x = as.name(smooth_var), y = ~ est, group = ~ smooth)) if (!is.null(partial_residuals)) { plt <- plt + geom_point(data = partial_residuals, aes_string(x = "..orig_x", y = "..p_resid"), inherit.aes = FALSE, colour = "steelblue3", alpha = 0.5) } plt <- plt + geom_ribbon(mapping = aes_string(ymin = "lower", ymax = "upper"), alpha = 0.3) + geom_line() if (missing(xlab)) { xlab <- smooth_var } if (missing(ylab)) { ylab <- "Effect" } if (is.null(title)) { title <- unique(object[["smooth"]]) } if (all(!is.na(object[["by_variable"]]))) { spl <- strsplit(title, split = ":") title <- spl[[1L]][[1L]] if (is.null(subtitle)) { by_var <- as.character(unique(object[["by_variable"]])) subtitle <- paste0("By: ", by_var, "; ", unique(object[[by_var]])) } } plt <- plt + labs(x = xlab, y = ylab, title = title, subtitle = subtitle, caption = caption) if (!is.null(rug)) { plt <- plt + geom_rug(data = data.frame(x = rug), mapping = aes_string(x = 'x'), inherit.aes = FALSE, sides = 'b', alpha = 0.5) } if (!is.null(response_range)) { plt <- plt + expand_limits(y = response_range) } plt } `draw.evaluated_2d_smooth` <- function(object, show = c("estimate","se"), contour = TRUE, contour_col = "black", n_contour = NULL, constant = NULL, fun = NULL, xlab, ylab, title = NULL, subtitle = NULL, caption = NULL, response_range = NULL, continuous_fill = NULL, ...) { if (is.null(continuous_fill)) { continuous_fill <- scale_fill_distiller(palette = "RdBu", type = "div") } object <- add_constant(object, constant = constant) object <- transform_fun(object, fun = fun) smooth_vars <- names(object)[3:4] show <- match.arg(show) if (isTRUE(identical(show, "estimate"))) { guide_title <- "Effect" plot_var <- "est" guide_limits <- if (is.null(response_range)) { c(-1, 1) * max(abs(object[[plot_var]])) } else { response_range } } else { guide_title <- "Std. err." plot_var <- "se" guide_limits <- range(object[["se"]]) } plt <- ggplot(object, aes_string(x = smooth_vars[1], y = smooth_vars[2])) + geom_raster(mapping = aes_string(fill = plot_var)) if (isTRUE(contour)) { plt <- plt + geom_contour(mapping = aes_string(z = plot_var), colour = contour_col, bins = n_contour) } if (missing(xlab)) { xlab <- smooth_vars[1L] } if (missing(ylab)) { ylab <- smooth_vars[2L] } if (is.null(title)) { title <- unique(object[["smooth"]]) } if (all(!is.na(object[["by_variable"]]))) { spl <- strsplit(title, split = ":") title <- spl[[1L]][[1L]] if (is.null(subtitle)) { by_var <- as.character(unique(object[["by_variable"]])) subtitle <- paste0("By: ", by_var, "; ", unique(object[[by_var]])) } } plt <- plt + labs(x = xlab, y = ylab, title = title, subtitle = subtitle, caption = caption) plt <- plt + continuous_fill plt <- plt + expand_limits(fill = guide_limits) plt <- plt + guides(fill = guide_colourbar(title = guide_title, direction = "vertical", barheight = grid::unit(0.25, "npc"))) plt <- plt + theme(legend.position = "right") plt } `draw.evaluated_re_smooth` <- function(object, qq_line = TRUE, constant = NULL, fun = NULL, xlab, ylab, title = NULL, subtitle = NULL, caption = NULL, response_range = NULL, ...) { smooth_var <- unique(object[["smooth"]]) object <- add_constant(object, constant = constant) object <- transform_fun(object, fun = fun) plt <- ggplot(object, aes_string(sample = "est")) + geom_point(stat = "qq") if (isTRUE(qq_line)) { sampq <- quantile(object[["est"]], c(0.25, 0.75)) gaussq <- qnorm(c(0.25, 0.75)) slope <- diff(sampq) / diff(gaussq) intercept <- sampq[1L] - slope * gaussq[1L] plt <- plt + geom_abline(slope = slope, intercept = intercept) } if (missing(xlab)) { xlab <- "Gaussian quantiles" } if (missing(ylab)) { ylab <- "Effects" } if(is.null(title)) { title <- smooth_var } if (all(!is.na(object[["by_variable"]]))) { spl <- strsplit(title, split = ":") title <- spl[[1L]][[1L]] if (is.null(subtitle)) { by_var <- as.character(unique(object[["by_variable"]])) subtitle <- paste0("By: ", by_var, "; ", unique(object[[by_var]])) } } plt <- plt + labs(x = xlab, y = ylab, title = title, subtitle = subtitle, caption = caption) if (!is.null(response_range)) { plt <- plt + expand_limits(y = response_range) } plt } `draw.evaluated_fs_smooth` <- function(object, rug = NULL, constant = NULL, fun = NULL, xlab, ylab, title = NULL, subtitle = NULL, caption = NULL, response_range = NULL, discrete_colour = NULL, ...) { if (is.null(discrete_colour)) { discrete_colour <- scale_colour_discrete() } smooth_var <- names(object)[3L] smooth_fac <- names(object)[4L] object <- add_constant(object, constant = constant) object <- transform_fun(object, fun = fun) plt <- ggplot(object, aes_(x = as.name(smooth_var), y = ~ est, colour = as.name(smooth_fac))) + geom_line() + discrete_colour + theme(legend.position = "none") if (missing(xlab)) { xlab <- smooth_var } if (missing(ylab)) { ylab <- "Effect" } if (is.null(title)) { title <- unique(object[["smooth"]]) } if (all(!is.na(object[["by_variable"]]))) { spl <- strsplit(title, split = ":") title <- spl[[1L]][[1L]] if (is.null(subtitle)) { by_var <- as.character(unique(object[["by_variable"]])) subtitle <- paste0("By: ", by_var, "; ", unique(object[[by_var]])) } } plt <- plt + labs(x = xlab, y = ylab, title = title, subtitle = subtitle, caption = caption) if (!is.null(rug)) { plt <- plt + geom_rug(data = data.frame(x = rug), mapping = aes_string(x = 'x'), inherit.aes = FALSE, sides = 'b', alpha = 0.5) } if (!is.null(response_range)) { plt <- plt + expand_limits(y = response_range) } plt } `draw.evaluated_parametric_term` <- function(object, ci_level = 0.95, constant = NULL, fun = NULL, xlab, ylab, title = NULL, subtitle = NULL, caption = NULL, rug = TRUE, position = "identity", response_range = NULL, ...) { is_fac <- object[["type"]][1L] == "factor" term_label <- object[["term"]][1L] object <- add_constant(object, constant = constant) crit <- qnorm((1 - ci_level) / 2, lower.tail = FALSE) object <- mutate(object, lower = .data$partial - (crit * .data$se), upper = .data$partial + (crit * .data$se)) object <- transform_fun(object, fun = fun) plt <- ggplot(object, aes_string(x = "value", y = "partial")) if (is_fac) { plt <- plt + geom_pointrange(aes_string(ymin = "lower", ymax = "upper")) } else { if (isTRUE(rug)) { plt <- plt + geom_rug(sides = "b", position = position, alpha = 0.5) } plt <- plt + geom_ribbon(aes_string(ymin = "lower", ymax = "upper"), alpha = 0.3) + geom_line() } if (missing(xlab)) { xlab <- term_label } if (missing(ylab)) { ylab <- sprintf("Partial effect of %s", term_label) } plt <- plt + labs(x = xlab, y = ylab, title = title, subtitle = subtitle, caption = caption) if (!is.null(response_range)) { plt <- plt + expand_limits(y = response_range) } plt }
"EMPIRsimv" <- function(u, n=1, empgrid=NULL, kumaraswamy=FALSE, ...) { empinv <- EMPIRgridderinv(empgrid=empgrid, kumaraswamy=kumaraswamy) rows <- as.numeric(attributes(empinv)$rownames) ix <- 1:length(rows) cols <- attributes(empinv)$colnames V <- vector(mode="numeric", length=n) for(i in 1:n) { t <- runif(1) ix.needed1 <- max(ix[rows <= u]) ix.needed2 <- min(ix[rows >= u]) if(ix.needed1 == 1) ix.needed1 <- 2 if(ix.needed1 == ix.needed2) { v.available <- empinv[ix.needed1,] v <- approx(cols, y=v.available, xout=t, rule=2)$y } else { v.available1 <- empinv[ix.needed1,] v1 <- approx(cols, y=v.available1, xout=t, rule=2)$y v.available2 <- empinv[ix.needed2,] v2 <- approx(cols, y=v.available2, xout=t, rule=2)$y w1 <- u - rows[ix.needed1] w2 <- rows[ix.needed2] - u tw <- 1/w1 + 1/w2 v <- (v1/w1 + v2/w2)/tw } V[i] <- v } return(V) }
make.db.names_DBIObject_character <- function(dbObj, snames, keywords, unique, allow.keywords, ...) { make.db.names.default(snames, keywords, unique, allow.keywords) } setMethod("make.db.names", signature(dbObj = "DBIObject", snames = "character"), make.db.names_DBIObject_character, valueClass = "character")
compare.2.vectors <- function(x, y, paired = FALSE, na.rm = FALSE, tests = c("parametric", "nonparametric"), coin = TRUE, alternative = "two.sided", perm.distribution, wilcox.exact = NULL, wilcox.correct = TRUE) { tests <- match.arg(tests, c("parametric", "nonparametric"), several.ok = TRUE) if (na.rm) { x <- x[!is.na(x)] y <- y[!is.na(y)] } else if (any(is.na(x), is.na(y))) stop("NAs in data, use na.rm = TRUE.", call. = FALSE) out <- list() if (paired) if (!length(x) == length(y)) stop("length(x) needs to be equal to length(y) when paired is TRUE!", call. = FALSE) if ("parametric" %in% tests) { res.t <- t.test(x, y, paired = paired, var.equal = TRUE, alternative = alternative) parametric <- data.frame(test = "t", test.statistic = "t", test.value = res.t[["statistic"]], test.df = res.t[["parameter"]], p = res.t[["p.value"]], stringsAsFactors = FALSE) if (!paired) { res.welch <- t.test(x, y, paired = paired, var.equal = FALSE, alternative = alternative) parametric <- rbind(parametric, data.frame(test = "Welch", test.statistic = "t", test.value = res.welch[["statistic"]], test.df = res.welch[["parameter"]], p = res.welch[["p.value"]], stringsAsFactors = FALSE)) } rownames(parametric) <- NULL out <- c(out, list(parametric = parametric)) } if ("nonparametric" %in% tests) { implemented.tests <- c("permutation", "Wilcoxon", "median") res.wilcox <- wilcox.test(x, y, paired = paired, exact = wilcox.exact, correct = wilcox.correct, alternative = alternative) nonparametric <- data.frame(test = "stats::Wilcoxon", test.statistic = if (paired) "V" else "W", test.value = res.wilcox[["statistic"]], test.df = NA, p = res.wilcox[["p.value"]], stringsAsFactors = FALSE) if (!(coin == FALSE) && !requireNamespace("coin", quietly = TRUE)) { warning("package coin necessary if coin != FALSE.") coin <- FALSE } if (!(coin == FALSE)) { dv <- c(x, y) iv <- factor(rep(c("A", "B"), c(length(x), length(y)))) if (missing(perm.distribution)) { perm.distribution <- coin::approximate(100000) } if (paired) { id <- factor(rep(1:length(x), 2)) formula.coin <- as.formula(dv ~ iv | id) } else formula.coin <- as.formula(dv ~ iv) if (isTRUE(coin)) coin <- implemented.tests else coin <- match.arg(coin, implemented.tests, several.ok = TRUE) tryCatch(if ("permutation" %in% coin) { res.perm <- coin::oneway_test(formula.coin, distribution=perm.distribution, alternative = alternative) nonparametric <- rbind(nonparametric, data.frame(test = "permutation", test.statistic = "Z", test.value = coin::statistic(res.perm), test.df = NA, p = coin::pvalue(res.perm)[1], stringsAsFactors = FALSE)) }, error = function(e) warning(paste("coin::permutation test failed:", e))) tryCatch(if ("Wilcoxon" %in% coin) { res.coin.wilcox <- coin::wilcox_test(formula.coin, distribution=perm.distribution, alternative = alternative) nonparametric <- rbind(nonparametric, data.frame(test = "coin::Wilcoxon", test.statistic = "Z", test.value = coin::statistic(res.coin.wilcox), test.df = NA, p = coin::pvalue(res.coin.wilcox)[1], stringsAsFactors = FALSE)) }, error = function(e) warning(paste("coin::Wilcoxon test failed:", e))) tryCatch(if ("median" %in% coin) { res.median <- coin::median_test(formula.coin, distribution=perm.distribution, alternative = alternative) nonparametric <- rbind(nonparametric, data.frame(test = "median", test.statistic = "Z", test.value = coin::statistic(res.median), test.df = NA, p = coin::pvalue(res.median)[1], stringsAsFactors = FALSE)) }, error = function(e) warning(paste("coin::median test failed:", e))) } rownames(nonparametric) <- NULL out <- c(out, nonparametric = list(nonparametric)) } out }
knitr::opts_chunk$set( collapse = TRUE, comment = " ) library(lazysf) library(lazysf) library(dplyr) f <- system.file("gpkg/nc.gpkg", package = "sf", mustWork = TRUE)
mtitle <- function(main,ll,lc, lr=format(Sys.time(),'%d%b%y'), cex.m=1.75, cex.l=.5, ...) { out <- any(par()$oma!=0) g <- if(out) function(...) mtext(..., outer=TRUE) else function(z, adj, cex, side, ...) if(missing(side)) title(z, adj=adj, cex=cex) else title(sub=z, adj=adj, cex=cex) if(!missing(main)) g(main,cex=cex.m,adj=.5) if(!missing(lc)) g(lc,side=1,adj=.5,cex=cex.l,...) if(!missing(ll)) g(ll,side=1,adj=0,cex=cex.l,...) if(lr!="") g(lr,side=1,adj=1,cex=cex.l,...) invisible() }
mat_shrink <- function (K, tau){ r <- dim(K)[1] c <- dim(K)[2] s <- svd(K, nu=r, nv=c) L <- pmax(s$d-tau,0) if (r < c) { K <- s$u %*% diag(L) %*% t(s$v[,1:r]) } else { K <- s$u[,1:c] %*% diag(L) %*% t(s$v) } return(K) }
add.term <- function (y, xinc, xout, devi_0, type = "logistic", logged = FALSE, tol = 1e-07, maxiters = 100, parallel = FALSE) { .Call(Rfast2_add_term, y, cbind(1, xinc), xout, devi_0, type, tol, logged, parallel, maxiters) }
context("Weighted link positions") test_that("Check binary matrices", { for (i in 1:10) { W <- rbm(20,20) lp <- link_positions(W, six_node = TRUE, weights = FALSE, normalisation = "none") lw <- link_positions(W, six_node = TRUE, weights = TRUE, normalisation = "none") expect(all(lw == lp), failure_message = "failed") } }) test_that("Check matrices with equal weights", { for (i in 1:5) { W <- 3 * rbm(20,20) lp <- link_positions(W, six_node = TRUE, weights = FALSE, normalisation = "none") lw <- link_positions(W, six_node = TRUE, weights = TRUE, normalisation = "none") expect(all(lw == 3 * lp), failure_message = "failed") } for (i in 1:5) { W <- 0.5 * rbm(20,20) lp <- link_positions(W, six_node = TRUE, weights = FALSE, normalisation = "none") lw <- link_positions(W, six_node = TRUE, weights = TRUE, normalisation = "none") expect(all(lw == 0.5 * lp), failure_message = "failed") } }) test_that("Check matrices with one weighted link", { for (i in 1:5) { W <- rbm(20,20) W[1,1] <- 10 lp <- link_positions(W, six_node = TRUE, weights = FALSE, normalisation = "none") lw <- link_positions(W, six_node = TRUE, weights = TRUE, normalisation = "none") expect(all(lw[1,] == 10 * lp[1,]), failure_message = "failed") expect(all(lw[-1,] == lp[-1,]), failure_message = "failed") } for (i in 1:5) { W <- rbm(20,20) W[3,3] <- 0.5 lp <- link_positions(W, six_node = TRUE, weights = FALSE, normalisation = "none") lw <- link_positions(W, six_node = TRUE, weights = TRUE, normalisation = "none") ind <- which(rownames(lp) == "r3 -- c3") expect(all(lw[ind,] == 0.5 * lp[ind,]), failure_message = "failed") expect(all(lw[-ind,] == lp[-ind,]), failure_message = "failed") } }) test_that("Check matrices with several weighted links", { for (i in 1:5) { W <- rbm(20,20) W[7,8] <- 1.5 W[4,6] <- 0.7 lp <- link_positions(W, six_node = TRUE, weights = FALSE, normalisation = "none") lw <- link_positions(W, six_node = TRUE, weights = TRUE, normalisation = "none") ind <- which(rownames(lp) == "r7 -- c8") ind2 <- which(rownames(lp) == "r4 -- c6") expect(all(lw[ind,] == 1.5 * lp[ind,]), failure_message = "failed") expect(all(lw[ind2,] == 0.7 * lp[ind2,]), failure_message = "failed") expect(all(lw[-c(ind, ind2),] == lp[-c(ind, ind2),]), failure_message = "failed") } })
convert_ket2DM <- function(v){ kronecker(v,adjoint(v)) }
btest <- function(prices, signal, do.signal = TRUE, do.rebalance = TRUE, print.info = NULL, b = 1L, fraction = 1, initial.position = 0, initial.cash = 0, final.position = FALSE, cashflow = NULL, tc = 0, ..., add = FALSE, lag = 1, convert.weights = FALSE, trade.at.open = TRUE, tol = 1e-5, tol.p = NA, Globals = list(), prices0 = NULL, include.data = FALSE, include.timestamp = TRUE, timestamp, instrument, progressBar = FALSE, variations, variations.settings = list(), replications) { if (!missing(variations)) { x <- match.call() all_args <- as.list(x)[-1L] all_args <- lapply(all_args, eval) variations <- all_args$variations all_args$variations <- NULL vsettings <- list(method = "loop", load.balancing = FALSE, cores = getOption("mc.cores", 2L), expand.grid = TRUE) vsettings[names(variations.settings)] <- variations.settings all_args$variations.settings <- NULL lens <- lengths(variations) if (vsettings$expand.grid) cases <- do.call(expand.grid, lapply(lens, seq_len)) else cases <- as.data.frame(lapply(lens, seq_len)) args <- vector("list", length = nrow(cases)) for (i in seq_along(args)) { tmp <- mapply(`[[`, variations, cases[i, ], SIMPLIFY = FALSE) args[[i]] <- c(all_args, tmp) attr(args[[i]], "variation") <- tmp } if (is.null(vsettings$method) || vsettings$method == "loop") { ans <- vector("list", length(args)) for (i in seq_along(args)) { ans[[i]] <- do.call(btest, args[[i]]) attr(ans[[i]], "variation") <- attr(args[[i]], "variation") } if (!is.null(vsettings$label)) names(ans) <- vsettings$label return(ans) } else if (vsettings$method == "parallel" || vsettings$method == "snow") { if (!requireNamespace("parallel")) stop("package ", sQuote("parallel"), " not available") if (is.null(vsettings$cl) && is.numeric(vsettings$cores)) cl <- parallel::makeCluster(c(rep("localhost", vsettings$cores)), type = "SOCK") on.exit(parallel::stopCluster(cl)) ans <- parallel::parLapplyLB(cl, X = args, fun = function(x) do.call("btest", x)) if (!is.null(vsettings$label)) names(ans) <- vsettings$label return(ans) } else if (vsettings$method == "multicore") { if (!requireNamespace("parallel")) stop("package ", sQuote("parallel"), " not available") ans <- parallel::mclapply(X = args, FUN = function(x) do.call("btest", x), mc.cores = vsettings$cores) if (!is.null(vsettings$label)) names(ans) <- vsettings$label return(ans) } } else if (!missing(replications)) { x <- match.call() all_args <- as.list(x)[-1L] all_args <- lapply(all_args, eval) replications <- all_args$replications all_args$replications <- NULL vsettings <- list(method = "loop", load.balancing = FALSE, cores = getOption("mc.cores", 2L)) vsettings[names(variations.settings)] <- variations.settings all_args$variations.settings <- NULL if (is.null(vsettings$method) || vsettings$method == "loop") { ans <- vector("list", replications) for (i in seq_len(replications)) { ans[[i]] <- do.call(btest, all_args) attr(ans[[i]], "replication") <- i } if (!is.null(vsettings$label)) names(ans) <- vsettings$label return(ans) } else if (vsettings$method == "parallel" || vsettings$method == "snow") { if (!requireNamespace("parallel")) stop("package ", sQuote("parallel"), " not available") if (is.null(vsettings$cl) && is.numeric(vsettings$cores)) cl <- parallel::makeCluster( c(rep("localhost", vsettings$cores)), type = "SOCK") on.exit(parallel::stopCluster(cl)) clusterExport(cl, "all_args", environment()) if (vsettings$load.balancing) ans <- parallel::parLapplyLB(cl, X = seq_len(replications), fun = function(i) { ans <- do.call("btest", all_args) attr(ans, "replication") <- i ans}) else ans <- parallel::parLapply(cl, X = seq_len(replications), fun = function(i) { ans <- do.call("btest", all_args) attr(ans, "replication") <- i ans}) if (!is.null(vsettings$label)) names(ans) <- vsettings$label return(ans) } else if (vsettings$method == "multicore") { if (!requireNamespace("parallel")) stop("package ", sQuote("parallel"), " not available") ans <- parallel::mclapply(X = seq_len(replications), FUN = function(i) { ans <- do.call("btest", all_args) attr(ans, "replication") <- i ans }, mc.cores = vsettings$cores) if (!is.null(vsettings$label)) names(ans) <- vsettings$label return(ans) } } L <- lag tc_fun <- if (is.function(tc)) tc if (!missing(timestamp) && (inherits(timestamp, "Date") || inherits(timestamp, "POSIXct")) && inherits(b, class(timestamp))) { b <- if (b < min(timestamp)) 0 else .match_or_previous(b, timestamp) } if ("tradeOnOpen" %in% names(list(...))) warning("Did you mean 'trade.at.open'? See ChangeLog 2017-11-14.") if ("assignInGlobals" %in% names(list(...))) warning("Did you mean 'Globals'? See ChangeLog 2017-11-14.") if (convert.weights && initial.cash == 0) warning(sQuote("convert.weights"), " is TRUE and ", sQuote("initial.cash"), " is zero") if (convert.weights && b == 0 && is.null(prices0) && lag > 0) stop("to convert weights to positions, either specify ", sQuote("prices0"), " or set ", sQuote("b"), " > 0") if (add) .NotYetUsed("add", FALSE) db.signal <- if (is.function(signal) && isdebugged(signal)) TRUE else FALSE if (is.function(do.signal) && isdebugged(do.signal)) db.do.signal <- TRUE else db.do.signal <- FALSE if (is.function(do.rebalance) && isdebugged(do.rebalance)) db.do.rebalance <- TRUE else db.do.rebalance <- FALSE if (is.function(print.info) && isdebugged(print.info)) db.print.info <- TRUE else db.print.info <- FALSE db.cashflow <- if (is.function(cashflow) && isdebugged(cashflow)) TRUE else FALSE db.tc_fun <- if (is.function(tc) && isdebugged(tc)) TRUE else FALSE if (is.null(do.signal) || identical(do.signal, TRUE)) { do.signal <- function(...) TRUE } else if (identical(do.signal, FALSE) && !final.position) { do.signal <- function(...) FALSE warning(sQuote("do.signal"), " is FALSE: strategy will never trade") } else if (!missing(timestamp) && inherits(do.signal, class(timestamp))) { rebalancing_times <- matchOrNext(do.signal, timestamp) do.signal <- function(...) Time(0L) %in% rebalancing_times } else if (is.numeric(do.signal)) { rebalancing_times <- do.signal do.signal <- function(...) { if (Time(0L) %in% rebalancing_times) TRUE else FALSE } } else if (is.logical(do.signal)) { rebalancing_times <- which(do.signal) do.signal <- function(...) if (Time(0L) %in% rebalancing_times) TRUE else FALSE } else if (is.character(do.signal) && tolower(do.signal) == "firstofmonth") { tmp <- as.Date(timestamp) if (any(is.na(tmp))) stop("timestamp with NAs") ii <- if (b > 0) -seq_len(b) else TRUE i_rdays <- match(aggregate(tmp[ii], by = list(format(tmp[ii], "%Y-%m")), FUN = head, 1)[[2L]], tmp) do.signal <- function(...) Time(0) %in% i_rdays } else if (is.character(do.signal) && (tolower(do.signal) == "lastofmonth" || tolower(do.signal) == "endofmonth")) { tmp <- as.Date(timestamp) if (any(is.na(tmp))) stop("timestamp with NAs") ii <- if (b > 0) -seq_len(b) else TRUE i_rdays <- match(aggregate(tmp[ii], by = list(format(tmp[ii], "%Y-%m")), FUN = tail, 1)[[2L]], tmp) do.signal <- function(...) Time(0) %in% i_rdays } else if (is.character(do.signal) && tolower(do.signal) == "firstofquarter") { tmp <- as.Date(timestamp) if (any(is.na(tmp))) stop("timestamp with NAs") ii <- if (b > 0) -seq_len(b) else TRUE i_rdays <- match(aggregate(tmp[ii], by = list(paste0(format(tmp[ii], "%Y"), "-", quarters(tmp[ii]))), FUN = head, 1)[[2L]], tmp) do.signal <- function(...) Time(0) %in% i_rdays } else if (is.character(do.signal) && tolower(do.signal) == "lastofquarter") { tmp <- as.Date(timestamp) if (any(is.na(tmp))) stop("timestamp with NAs") ii <- if (b > 0) -seq_len(b) else TRUE i_rdays <- match(aggregate(tmp[ii], by = list(paste0(format(tmp[ii], "%Y"), "-", quarters(tmp[ii]))), FUN = tail, 1)[[2L]], tmp) do.signal <- function(...) Time(0) %in% i_rdays } if (is.null(do.rebalance) || identical(do.rebalance, TRUE)) { do.rebalance <- function(...) TRUE } else if (identical(do.rebalance, FALSE)) { do.rebalance <- function(...) FALSE warning(sQuote("do.rebalance"), " is FALSE: strategy will never trade") } else if (identical(do.rebalance, "do.signal")) { do.rebalance <- function(...) computeSignal } else if (!missing(timestamp) && inherits(do.rebalance, class(timestamp))) { rebalancing_times <- matchOrNext(do.rebalance, timestamp) do.rebalance <- function(...) Time(0L) %in% rebalancing_times } else if (is.numeric(do.rebalance)) { rebalancing_times <- do.rebalance do.rebalance <- function(...) { Time(0L) %in% rebalancing_times } } else if (is.logical(do.rebalance)) { rebalancing_times <- which(do.rebalance) do.rebalance <- function(...) if (Time(0L) %in% rebalancing_times) TRUE else FALSE } else if (is.character(do.rebalance) && tolower(do.rebalance) == "firstofmonth") { tmp <- as.Date(timestamp) if (any(is.na(tmp))) stop("timestamp with NAs") ii <- if (b > 0) -seq_len(b) else TRUE i_rdays <- match(aggregate(tmp[ii], by = list(format(tmp[ii], "%Y-%m")), FUN = head, 1)[[2L]], tmp) do.rebalance <- function(...) Time(0) %in% i_rdays } else if (is.character(do.rebalance) && (tolower(do.rebalance) == "lastofmonth" || tolower(do.rebalance) == "endofmonth")) { tmp <- as.Date(timestamp) if (any(is.na(tmp))) stop("timestamp with NAs") ii <- if (b > 0) -seq_len(b) else TRUE i_rdays <- match(aggregate(tmp[ii], by = list(format(tmp[ii], "%Y-%m")), FUN = tail, 1)[[2L]], tmp) do.rebalance <- function(...) Time(0) %in% i_rdays } else if (is.character(do.rebalance) && tolower(do.rebalance) == "firstofquarter") { tmp <- as.Date(timestamp) if (any(is.na(tmp))) stop("timestamp with NAs") ii <- if (b > 0) -seq_len(b) else TRUE i_rdays <- match(aggregate(tmp[ii], by = list(paste0(format(tmp[ii], "%Y"), "-", quarters(tmp[ii]))), FUN = head, 1)[[2L]], tmp) do.rebalance <- function(...) Time(0) %in% i_rdays } else if (is.character(do.rebalance) && tolower(do.rebalance) == "lastofquarter") { tmp <- as.Date(timestamp) if (any(is.na(tmp))) stop("timestamp with NAs") ii <- if (b > 0) -seq_len(b) else TRUE i_rdays <- match(aggregate(tmp[ii], by = list(paste0(format(tmp[ii], "%Y"), "-", quarters(tmp[ii]))), FUN = tail, 1)[[2L]], tmp) do.rebalance <- function(...) Time(0) %in% i_rdays } if (is.null(cashflow)) { cashflow <- function(...) 0 } else if (is.numeric(cashflow)) { cashflow <- function(...) cashflow[1L] } doPrintInfo <- TRUE if (is.null(print.info)) { doPrintInfo <- FALSE print.info <- function(...) NULL } Open <- function(lag = L, n = NA) { if (!is.na(n)) mO[t - (n:1), , drop = FALSE] else mO[t - lag, , drop = FALSE] } High <- function(lag = L, n = NA) { if (!is.na(n)) mH[t - (n:1), , drop = FALSE] else mH[t - lag, , drop = FALSE] } Low <- function(lag = L, n = NA) { if (!is.na(n)) mL[t - (n:1), , drop = FALSE] else mL[t - lag, , drop = FALSE] } Close <- function(lag = L, n = NA) { if (!is.na(n)) mC[t - (n:1), , drop = FALSE] else mC[t - lag, , drop = FALSE] } Wealth <- function(lag = L, n = NA) { if (!is.na(n)) v[t - (n:1)] else v[t - lag] } Cash <- function(lag = L, n = NA) { if (!is.na(n)) cash[t - (n:1)] else cash[t - lag] } Time <- function(lag = L, n = NA) { if (!is.na(n)) t - (n:1) else t - lag } Portfolio <- function(lag = L, n = NA) { if (!is.na(n)) X[t - (n:1), , drop = FALSE] else X[t - lag, , drop = FALSE] } SuggestedPortfolio <- function(lag = L, n = NA) { if (!is.na(n)) Xs[t - (n:1), , drop = FALSE] else Xs[t - lag, , drop = FALSE] } if (!missing(timestamp)) { Timestamp <- function(lag = L, n = NA) { if (!is.na(n)) timestamp[t - (n:1)] else timestamp[t - lag] } } else Timestamp <- Time Globals <- list2env(Globals) reservedNames <- c("Open", "High", "Low", "Close", "Wealth", "Cash", "Time", "Timestamp", "Portfolio", "SuggestedPortfolio", "Globals") funs <- c("signal", "do.signal", "do.rebalance", "print.info", "cashflow") if (!is.null(tc_fun)) funs <- c(funs, "tc_fun") for (thisfun in funs) { fNames <- names(formals(get(thisfun))) for (rname in reservedNames) if (rname %in% fNames) stop(sQuote(rname), " cannot be used as an argument name for ", sQuote(thisfun))} add.args <- alist(Open = Open, High = High, Low = Low, Close = Close, Wealth = Wealth, Cash = Cash, Time = Time, Timestamp = Timestamp, Portfolio = Portfolio, SuggestedPortfolio = SuggestedPortfolio, Globals = Globals) formals(signal) <- c(formals(signal), add.args) if (db.signal) debug(signal) formals(do.signal) <- c(formals(do.signal), add.args) if (db.do.signal) debug(do.signal) formals(do.rebalance) <- c(formals(do.rebalance), add.args) if (db.do.rebalance) debug(do.rebalance) formals(print.info) <- c(formals(print.info), add.args) if (db.print.info) debug(print.info) formals(cashflow) <- c(formals(cashflow), add.args) if (db.cashflow) debug(cashflow) if (!is.null(tc_fun)) { formals(tc_fun) <- c(formals(tc_fun), add.args) if (db.tc_fun) debug(tc_fun) } if (is.list(prices)) { if (length(prices) == 1L) { mC <- prices[[1L]] if (is.null(dim(mC))) mC <- as.matrix(mC) trade.at.open <- FALSE } else if (length(prices) == 4L) { mO <- prices[[1L]] mH <- prices[[2L]] mL <- prices[[3L]] mC <- prices[[4L]] if (is.null(dim(mO))) mO <- as.matrix(mO) if (is.null(dim(mH))) mH <- as.matrix(mH) if (is.null(dim(mL))) mL <- as.matrix(mL) if (is.null(dim(mC))) mC <- as.matrix(mC) } else stop("see documentation on ", sQuote("prices")) } else { if (is.null(dim(prices))) prices <- as.matrix(prices) if (ncol(prices) == 1L) { mC <- prices trade.at.open <- FALSE } else if (ncol(prices) == 4L) { mO <- prices[, 1L] mH <- prices[, 2L] mL <- prices[, 3L] mC <- prices[, 4L] } else stop("see documentation on ", sQuote("prices")) } T <- nrow(mC) nA <- ncol(mC) if (!missing(timestamp) && length(timestamp) != T) warning("length(timestamp) does not match nrow(prices)") if (!missing(instrument) && length(instrument) != nA) warning("length(instrument) does not match ncol(prices)") tccum <- numeric(T) X <- array(NA, dim = c(T, nA)) Xs <- array( 0, dim = c(T, nA)) colnames(X) <- colnames(mC) colnames(Xs) <- colnames(mC) v <- cash <- numeric(T) v[] <- NA if (b > 0L) { Xs[b, ] <- X[b, ] <- initial.position cash[b] <- initial.cash v[b] <- initial.cash + if (initial.position != 0) initial.position %*% mC[b, ] else 0 } if (initial.position != 0 && !is.null(prices0)) { initial.wealth <- sum(prices0 * initial.position) + initial.cash } else if (initial.position != 0) { warning(sQuote("initial.position"), " specified, but no ", sQuote("prices0")) initial.wealth <- initial.cash } else initial.wealth <- initial.cash if (b == 0L) { t <- 1L computeSignal <- do.signal(..., Open = Open, High = High, Low = Low, Close = Close, Wealth = Wealth, Cash = Cash, Time = Time, Timestamp = Timestamp, Portfolio = Portfolio, SuggestedPortfolio = SuggestedPortfolio, Globals = Globals) if (computeSignal) { temp <- signal(..., Open = Open, High = High, Low = Low, Close = Close, Wealth = Wealth, Cash = Cash, Time = Time, Timestamp = Timestamp, Portfolio = Portfolio, SuggestedPortfolio = SuggestedPortfolio, Globals = Globals) if (!is.null(temp)) { if (convert.weights) { temp0 <- temp != 0 temp[temp0] <- temp[temp0] * initial.wealth/prices0[temp0] } Xs[t, ] <- temp } else Xs[t, ] <- initial.position computeSignal <- FALSE } else { Xs[t, ] <- rep.int(0, nA) } rebalance <- do.rebalance(..., Open = Open, High = High, Low = Low, Close = Close, Wealth = Wealth, Cash = Cash, Time = Time, Timestamp = Timestamp, Portfolio = Portfolio, SuggestedPortfolio = SuggestedPortfolio, Globals = Globals) dXs <- Xs[t, ] - if (any(initial.position != 0)) initial.position else 0 if (max(abs(dXs)) < tol) rebalance <- FALSE if (rebalance) { if (!is.null(tc_fun)) tc <- tc_fun(..., Open = Open, High = High, Low = Low, Close = Close, Wealth = Wealth, Cash = Cash, Time = Time, Timestamp = Timestamp, Portfolio = Portfolio, SuggestedPortfolio = SuggestedPortfolio, Globals = Globals) dx <- fraction * dXs if (trade.at.open) open <- mO[t, , drop = TRUE] else open <- mC[t, , drop = TRUE] sx <- dx %*% open abs_sx <- (abs(dx) * tc) %*% open tccum[t] <- abs_sx cash[t] <- initial.cash - sx - abs_sx X[t, ] <- if (any(initial.position != 0)) initial.position else 0 + dx rebalance <- FALSE } else { tccum[t] <- 0 cash[t] <- initial.cash X[t, ] <- ifelse(initial.position != 0, initial.position, 0) } cash[t] <- cash[t] + cashflow(..., Open = Open, High = High, Low = Low, Close = Close, Wealth = Wealth, Cash = Cash, Time = Time, Timestamp = Timestamp, Portfolio = Portfolio, SuggestedPortfolio = SuggestedPortfolio, Globals = Globals) v[t] <- X[t, ] %*% mC[t, ] + cash[t] if (doPrintInfo) print.info(..., Open = Open, High = High, Low = Low, Close = Close, Wealth = Wealth, Cash = Cash, Time = Time, Timestamp = Timestamp, Portfolio = Portfolio, SuggestedPortfolio = SuggestedPortfolio, Globals = Globals) } if (progressBar) progr <- txtProgressBar(min = max(2L, b+1L), max = T, initial = max(2L, b+1L), char = if (.Platform$OS.type == "unix") "\u2588" else "|", width = ceiling(getOption("width")*0.8), style = 3, file = "") for (t in max(2L, b+1L):T) { if (progressBar) setTxtProgressBar(progr, t) t1 <- t - 1L computeSignal <- do.signal(..., Open = Open, High = High, Low = Low, Close = Close, Wealth = Wealth, Cash = Cash, Time = Time, Timestamp = Timestamp, Portfolio = Portfolio, SuggestedPortfolio = SuggestedPortfolio, Globals = Globals) if (computeSignal) { temp <- signal(..., Open = Open, High = High, Low = Low, Close = Close, Wealth = Wealth, Cash = Cash, Time = Time, Timestamp = Timestamp, Portfolio = Portfolio, SuggestedPortfolio = SuggestedPortfolio, Globals = Globals) if (!is.null(temp)) { if (convert.weights) { temp0 <- temp != 0 temp[temp0] <- temp[temp0] * v[t1] / mC[t1, temp0] } Xs[t, ] <- temp } else Xs[t, ] <- Xs[t1, ] computeSignal <- FALSE } else { Xs[t, ] <- Xs[t1, ] } rebalance <- do.rebalance(..., Open = Open, High = High, Low = Low, Close = Close, Wealth = Wealth, Cash = Cash, Time = Time, Timestamp = Timestamp, Portfolio = Portfolio, SuggestedPortfolio = SuggestedPortfolio, Globals = Globals) dXs <- Xs[t, ] - X[t1, ] if (max(abs(dXs)) < tol) rebalance <- FALSE else if (!is.na(tol.p) && initial.wealth > 0 && v[t1] > 0 ) { dXs.p <- dXs * mC[t1, ]/v[t1] small <- abs(dXs.p) < tol.p dXs[small] <- 0 if (all(small)) rebalance <- FALSE } if (rebalance) { dx <- fraction * dXs if (!is.null(tc_fun)) tc <- tc_fun(..., Open = Open, High = High, Low = Low, Close = Close, Wealth = Wealth, Cash = Cash, Time = Time, Timestamp = Timestamp, Portfolio = Portfolio, SuggestedPortfolio = SuggestedPortfolio, Globals = Globals) if (trade.at.open) open <- mO[t, ] else open <- mC[t, ] nzero <- dx != 0 sx <- dx[nzero] %*% open[nzero] abs_sx <- (abs(dx[nzero]) * tc) %*% open[nzero] tccum[t] <- tccum[t1] + abs_sx cash[t] <- cash[t1] - sx - abs_sx X[t, ] <- X[t1, ] + dx rebalance <- FALSE } else { tccum[t] <- tccum[t1] cash[t] <- cash[t1] X[t, ] <- X[t1, ] } cash[t] <- cash[t] + cashflow(..., Open = Open, High = High, Low = Low, Close = Close, Wealth = Wealth, Cash = Cash, Time = Time, Timestamp = Timestamp, Portfolio = Portfolio, SuggestedPortfolio = SuggestedPortfolio, Globals = Globals) nzero <- X[t, ] != 0 v[t] <- X[t, nzero] %*% mC[t, nzero] + cash[t] if (doPrintInfo) print.info(..., Open = Open, High = High, Low = Low, Close = Close, Wealth = Wealth, Cash = Cash, Time = Time, Timestamp = Timestamp, Portfolio = Portfolio, SuggestedPortfolio = SuggestedPortfolio, Globals = Globals) } if (progressBar) close(progr) if (final.position) { message("Compute final position ... ", appendLF = FALSE) t <- t + 1L t1 <- t - 1L final.pos <- signal(..., Open = Open, High = High, Low = Low, Close = Close, Wealth = Wealth, Cash = Cash, Time = Time, Timestamp = Timestamp, Portfolio = Portfolio, SuggestedPortfolio = SuggestedPortfolio, Globals = Globals) if (convert.weights) final.pos <- final.pos * v[t1] / mC[t1, ] if (!missing(instrument)) names(final.pos) <- instrument message("done") } if (!missing(instrument)) colnames(Xs) <- colnames(X) <- instrument if (is.null(colnames(X))) colnames(Xs) <- colnames(X) <- paste("asset", seq_len(ncol(X))) if (missing(timestamp)) timestamp <- seq_len(nrow(X)) trades <- diff(rbind(initial.position, X)) keep <- abs(trades) > sqrt(.Machine$double.eps) & !is.na(trades) if (any(keep)) { j.timestamp <- list() j.amount <- list() j.price <- list() j.instrument <- list() for (cc in seq_len(ncol(X))) { ic <- keep[, cc] if (!any(ic)) next ccc <- as.character(cc) j.timestamp[[ccc]] <- timestamp[ic] j.amount[[ccc]] <- trades[ic, cc] j.price[[ccc]] <- mC[ic, cc] j.instrument[[ccc]] <- rep(colnames(X)[cc], sum(ic)) } j.timestamp <- do.call(c, j.timestamp) j.amount <- do.call(c, j.amount) j.price <- do.call(c, j.price) j.instrument <- do.call(c, j.instrument) jnl <- journal(timestamp = unname(j.timestamp), amount = unname(j.amount), price = unname(j.price), instrument = unname(j.instrument)) jnl <- sort(jnl) } else jnl <- journal() ans <- list(position = X, suggested.position = Xs, cash = cash, wealth = v, cum.tc = tccum, journal = jnl, initial.wealth = initial.wealth, b = b, final.position = if (final.position) final.pos else NA, Globals = Globals) if (include.timestamp) ans <- c(ans, timestamp = list(timestamp)) if (include.data) ans <- c(ans, prices = prices, signal = signal, do.signal = do.signal, instrument = if (missing(instrument)) NULL else list(instrument), call = match.call()) class(ans) <- "btest" ans } print.btest <- function(x, ...) { cat("initial wealth", tmp0 <- x$wealth[min(which(!is.na(x$wealth)))], " => ") cat("final wealth ", tmp1 <- round(x$wealth[max(which(!is.na(x$wealth)))], 2), "\n") if (tmp0 > 0) cat("Total return ", round(100*(tmp1/tmp0 - 1), 1), "%\n", sep = "") invisible(x) } plot.btest <- function(x, y = NULL, type = "l", xlab = "", ylab = "", ...) { if (!is.null(x$timestamp)) plot(x$timestamp[-seq_len(x$b)], x$wealth[-seq_len(x$b)], type = type, xlab = xlab, ylab = ylab, ...) else plot(x$wealth[-seq_len(x$b)], y, type = type, xlab = xlab, ylab = ylab, ...) invisible() } lines.btest <- function(x, y = NULL, type = "l", ...) { if (!is.null(x$timestamp)) lines(x$timestamp[-seq_len(x$b)], x$wealth[-seq_len(x$b)], type = type, ...) else lines(x$wealth[-seq_len(x$b)], y, type = type, ...) invisible() } atest <- btest formals(atest)$do.signal <- FALSE formals(atest)$do.rebalance <- FALSE formals(atest)$final.position <- TRUE
nigFit <- function(x, alpha = 1, beta = 0, delta = 1, mu = 0, method = c("mle", "gmm", "mps", "vmps"), scale = TRUE, doplot = TRUE, span = "auto", trace = TRUE, title = NULL, description = NULL, ...) { method = match.arg(method) if (method == "mle") { fit = .nigFit.mle(x = x, alpha = alpha, beta = beta, delta = delta, mu = mu , scale = scale, doplot = doplot, span = span, trace = trace, title = title, description = description, ...) } else if (method == "gmm") { fit = .nigFit.gmm(x = x, alpha = alpha, beta = beta, delta = delta, mu = mu , scale = scale, doplot = doplot, span = span, trace = trace, title = title, description = description, ...) } else if (method == "mps") { fit = .nigFit.mps(x = x, alpha = alpha, beta = beta, delta = delta, mu = mu , scale = scale, doplot = doplot, span = span, trace = trace, title = title, description = description, ...) } else if (method == "vmps") { fit = .nigFit.vmps(x = x, alpha = alpha, beta = beta, delta = delta, mu = mu , scale = scale, doplot = doplot, span = span, trace = trace, title = title, description = description, ...) } fit } .nigFit.mle <- function(x, alpha = 1, beta = 0, delta = 1, mu = 0, scale = TRUE, doplot = TRUE, add = FALSE, span = "auto", trace = TRUE, title = NULL, description = NULL, ...) { x.orig = x x = as.vector(x) if (scale) { SD = sd(x) x = x / SD } obj = function(x, y = x, trace) { if (abs(x[2]) >= x[1]) return(1e9) f = -sum(dnig(y, x[1], x[2], x[3], x[4], log = TRUE)) if (trace) { cat("\n Objective Function Value: ", -f) cat("\n Parameter Estimates: ", x, "\n") } f } eps = 1e-10 BIG = 1000 fit = nlminb( start = c(alpha, beta, delta, mu), objective = obj, lower = c(eps, -BIG, eps, -BIG), upper = BIG, y = x, trace = trace) names(fit$par) <- c("alpha", "beta", "delta", "mu") if (scale) { fit$scaleParams = c(SD, SD, 1/SD, 1/SD) fit$par = fit$par / fit$scaleParams fit$objective = obj(fit$par, y = as.vector(x.orig), trace = trace) } else { fit$scaleParams = rep(1, time = length(fit$par)) } fit$scale = scale fit$estimate = fit$par fit$minimum = -fit$objective fit$code = fit$convergence fit = .distStandardErrors(fit, obj, x) if (is.null(title)) title = "Normal Inverse Gaussian Parameter Estimation" if (is.null(description)) description = description() if (doplot) .distFitPlot( fit, x = x.orig, FUN = "dnig", main = "NIG Parameter Estimation", span = span, add = add, ...) new("fDISTFIT", call = match.call(), model = "Normal Inverse Gaussian Distribution", data = as.data.frame(x.orig), fit = fit, title = as.character(title), description = description() ) } .nigFit.gmm <- function(x, scale = TRUE, doplot = TRUE, add = FALSE, span = "auto", trace = TRUE, title = NULL, description = NULL, ...) { x.orig = x x = as.vector(x) if (scale) { SD = sd(x) x = x / SD } CALL = match.call() obj <- function(Theta, x) { alpha = Theta[1] beta = Theta[2] delta = Theta[3] mu = Theta[4] names(Theta) <- c("alpha", "beta", "delta", "mu") if (TRUE) print(Theta) m1 <- x - .ghMuMoments(1, alpha, beta, delta, mu, lambda = -0.5) m2 <- x^2 - .ghMuMoments(2, alpha, beta, delta, mu, lambda = -0.5) m3 <- x^3 - .ghMuMoments(3, alpha, beta, delta, mu, lambda = -0.5) m4 <- x^4 - .ghMuMoments(4, alpha, beta, delta, mu, lambda = -0.5) f <- cbind(m1, m2, m3, m4) return(f) } r <- .gmm(g = obj, x = x, t0 = c(1, 0, 1, 0)) names(r$par) <- c("alpha", "beta", "delta", "mu") if (is.null(title)) title = "Normal Inverse Gaussian Parameter Estimation" if (is.null(description)) description = description() if (scale) { r$par = r$par / c(SD, SD, 1/SD, 1/SD) r$objective = NA } fit = list(estimate = r$par) if (doplot) { x = as.vector(x.orig) if (span == "auto") span = seq(min(x), max(x), length = 51) z = density(x, n = 100, ...) x = z$x[z$y > 0] y = z$y[z$y > 0] y.points = dnig(span, r$par[1], r$par[2], r$par[3], r$par[4]) ylim = log(c(min(y.points), max(y.points))) if (add) { lines(x = span, y = log(y.points), col = "steelblue") } else { plot(x, log(y), xlim = c(span[1], span[length(span)]), ylim = ylim, type = "p", xlab = "x", ylab = "log f(x)", ...) title("NIG GMM Parameter Estimation") lines(x = span, y = log(y.points), col = "steelblue") } } new("fDISTFIT", call = as.call(CALL), model = "Normal Inverse Gaussian Distribution", data = as.data.frame(x.orig), fit = fit, title = as.character(title), description = description() ) } .nigFit.mps <- function(x, alpha = 1, beta = 0, delta = 1, mu = 0, scale = TRUE, doplot = TRUE, add = FALSE, span = "auto", trace = TRUE, title = NULL, description = NULL, ...) { x.orig = x x = as.vector(x) if (scale) { SD = sd(x) x = x / SD } CALL = match.call() obj <- function(x, y = x, trace) { if (abs(x[2]) >= x[1]) return(1e9) DH = diff(c(0, na.omit(.pnigC(sort(y), x[1], x[2], x[3], x[4])), 1)) f = -mean(log(DH[DH > 0]))*length(y) if (trace) { cat("\n Objective Function Value: ", -f) cat("\n Parameter Estimates: ", x[1], x[2], x[3], x[4], "\n") } f } eps = 1e-10 BIG = 1000 r = nlminb(start = c(alpha, beta, delta, mu), objective = obj, lower = c(eps, -BIG, eps, -BIG), upper = BIG, y = x, trace = trace) names(r$par) <- c("alpha", "beta", "delta", "mu") hessian = tsHessian(x = r$par, fun = obj, y = x, trace = FALSE) colnames(hessian) = rownames(hessian) = names(r$par) varcov = solve(hessian) par.ses = sqrt(diag(varcov)) if (scale) par.ses = par.ses / c(SD, SD, 1/SD, 1/SD) if (is.null(title)) title = "NIG mps Parameter Estimation" if (is.null(description)) description = description() if (scale) { r$par = r$par / c(SD, SD, 1/SD, 1/SD) r$objective = obj(r$par, y = as.vector(x.orig), trace = trace) } fit = list( estimate = r$par, minimum = -r$objective, error = par.ses, code = r$convergence) if (doplot) { x = as.vector(x.orig) if (span == "auto") span = seq(min(x), max(x), length = 501) z = density(x, n = 100, ...) x = z$x[z$y > 0] y = z$y[z$y > 0] y.points = dnig(span, r$par[1], r$par[2], r$par[3], r$par[4]) ylim = log(c(min(y.points), max(y.points))) if (add) { lines(x = span, y = log(y.points), col = "steelblue") } else { plot(x, log(y), xlim = c(span[1], span[length(span)]), ylim = ylim, type = "p", xlab = "x", ylab = "log f(x)", ...) title("NIG MPS Parameter Estimation") lines(x = span, y = log(y.points), col = "steelblue") } } new("fDISTFIT", call = as.call(CALL), model = "Normal Inverse Gaussian Distribution", data = as.data.frame(x.orig), fit = fit, title = as.character(title), description = description() ) } .nigFit.vmps <- function (x, alpha = 1, beta = 0, delta = 1, mu = 0, scale = TRUE, doplot = TRUE, add = FALSE, span = "auto", trace = TRUE, title = NULL,description = NULL, ...) { x.orig = x x = as.vector(x) if (scale) { SD = sd(x) x = x/SD } CALL = match.call() obj <- function(x, y = x, trace) { if (abs(x[2]) >= x[1]) return(1e+9) DH = diff(c(0, na.omit(.pnigC(sort(y), x[1], x[2], x[3], x[4])), 1)) f = log(var(DH[DH > 0])) if (trace) { cat("\n Objective Function Value: ", -f) cat("\n Parameter Estimates: ", x[1], x[2], x[3], x[4], "\n") } f } eps = 1e-10 BIG = 1000 r = nlminb( start = c(alpha, beta, delta, mu), objective = obj, lower = c(eps, -BIG, eps, -BIG), upper = BIG, y = x, trace = trace) names(r$par) <- c("alpha", "beta", "delta", "mu") hessian = tsHessian(x = r$par, fun = obj, y = x, trace = FALSE) colnames(hessian) = rownames(hessian) = names(r$par) varcov = solve(hessian) par.ses = sqrt(diag(varcov)) if (scale) par.ses = par.ses / c(SD, SD, 1/SD, 1/SD) if (is.null(title)) title = "NIG varMPS Parameter Estimation" if (is.null(description)) description = description() if (scale) { r$par = r$par/c(SD, SD, 1/SD, 1/SD) r$objective = obj(r$par, y = as.vector(x.orig), trace = trace) } fit = list( estimate = r$par, minimum = -r$objective, error = par.ses, code = r$convergence) if (doplot) { x = as.vector(x.orig) if (span == "auto") span = seq(min(x), max(x), length = 501) z = density(x, n = 100, ...) x = z$x[z$y > 0] y = z$y[z$y > 0] y.points = dnig(span, r$par[1], r$par[2], r$par[3], r$par[4]) ylim = log(c(min(y.points), max(y.points))) if (add) { lines(x = span, y = log(y.points), col = "steelblue") } else { plot(x, log(y), xlim = c(span[1], span[length(span)]), ylim = ylim, type = "p", xlab = "x", ylab = "log f(x)", ...) title("NIG varMPS Parameter Estimation") lines(x = span, y = log(y.points), col = "steelblue") } } new("fDISTFIT", call = as.call(CALL), model = "Normal Inverse Gaussian Distribution", data = as.data.frame(x.orig), fit = fit, title = as.character(title), description = description() ) }
convert_municipality_codes <- function (ids = NULL, municipalities = NULL) { df <- get_municipality_info_mml() conversion.table <- df[, c("Kunta", "Kunta.FI")] names(conversion.table) <- c("id", "name") conversion.table$id <- as.character(conversion.table$id) conversion.table$name <- as.character(conversion.table$name) res <- conversion.table if (!is.null(ids)) { res <- conversion.table$name[match(as.character(ids), conversion.table$id)] names(res) <- ids } else if (!is.null(municipalities)) { res <- conversion.table$id[match(as.character(municipalities), conversion.table$name)] names(res) <- municipalities } res }
gamObj <- function(object, ...) { UseMethod("gamObj") } gamObj.gampsth <- function(object,...) { evalq(PoissonF, envir=environment(object$lambdaFct)) } gamObj.gamlockedTrain <- function(object, ...) { object$gamFit }