code
stringlengths
1
13.8M
"sim10GDINA"
library(RNetLogo) path.to.NetLogo <- "C:/Program Files/NetLogo 6.0/app" nl.test1 <- "nl.test1" nl.jarname <- "netlogo-6.0.0.jar" NLStart(path.to.NetLogo, gui=TRUE, nl.obj=nl.test1, nl.jarname=nl.jarname)
sim.pois <- function(lambda,n.obs,n.val) { n.integer <- function(x, tol = .Machine$double.eps) { abs(x - round(x)) < tol } if( mean(n.integer(n.obs)) !=1 || n.obs<= 0) stop("Num of Obs must be positive integer") if( mean(n.integer(n.val)) !=1 || n.val<= 0) stop("Length of Each Obs must be positive integer") if(any(lambda < 0)) stop("Poisson mean is negative") dat.sim <- vector("list",length(lambda)) for (i in 1:length(lambda)) { set.seed(132);set.seed(sample(.Random.seed,1)) X <- matrix(NA,nrow = n.obs, ncol = n.val) for (j in 1:n.obs) { X[j,] <- rpois(n.val,lambda[i]) } dat.sim[[i]] <- X } dat.sim <- do.call(rbind,dat.sim) rownames(dat.sim) <- 1:dim(dat.sim)[1] colnames(dat.sim) <- 1:dim(dat.sim)[2] dat.sim <- dat.sim[sample(rownames(dat.sim),replace=FALSE),] return(dat.sim) }
check_dots_used <- function(env = caller_env(), call = caller_env(), error = NULL, action = deprecated()) { handler <- function() check_dots(env, error, action, call) inject(base::on.exit(!!call2(handler), add = TRUE), env) invisible() } check_dots <- function(env = caller_env(), error, action, call) { if (.Call(ffi_ellipsis_dots_used, env)) { return(invisible()) } proms <- ellipsis_dots(env) unused <- !map_lgl(proms, promise_forced) action_dots( error = error, action = action, message = "Arguments in `...` must be used.", dots_i = unused, class = "rlib_error_dots_unused", call = call, env = env ) } check_dots_unnamed <- function(env = caller_env(), error = NULL, call = caller_env(), action = abort) { proms <- ellipsis_dots(env) if (length(proms) == 0) { return() } unnamed <- names2(proms) == "" if (all(unnamed)) { return(invisible()) } named <- !unnamed action_dots( error = error, action = action, message = "Arguments in `...` must be passed by position, not name.", dots_i = named, class = "rlib_error_dots_named", call = call, env = env ) } check_dots_empty <- function(env = caller_env(), error = NULL, call = caller_env(), action = abort) { dots <- ellipsis_dots(env) if (length(dots) == 0) { return() } if (!is_named(dots)) { note <- c("i" = "Did you forget to name an argument?") } else { note <- NULL } action_dots( error = error, action = action, message = "`...` must be empty.", note = note, dots_i = TRUE, class = "rlib_error_dots_nonempty", call = call, env = env ) } check_dots_empty0 <- function(..., call = caller_env()) { if (nargs()) { check_dots_empty(call = call) } } action_dots <- function(error, action, message, dots_i, env, class = NULL, note = NULL, ...) { if (is_missing(action)) { action <- abort } else { paste_line( "The `action` argument of ellipsis functions is deprecated as of rlang 1.0.0.", "Please use the `error` argument instead." ) } dots <- substitute(...(), env = env)[dots_i] names(dots) <- ifelse( have_name(dots), names2(dots), paste0("..", seq_along(dots)) ) bullet_header <- ngettext( length(dots), "Problematic argument:", "Problematic arguments:", ) bullets <- map2_chr(names(dots), dots, function(name, expr) { sprintf("%s = %s", name, as_label(expr)) }) if (is_null(error)) { try_dots <- identity } else { try_dots <- function(expr) try_fetch(expr, error = error) } try_dots(action( c(message, "x" = bullet_header, set_names(bullets, "*"), note), class = c(class, "rlib_error_dots"), ... )) } promise_forced <- function(x) { .Call(ffi_ellipsis_promise_forced, x) } ellipsis_dots <- function(env = caller_env()) { .Call(ffi_ellipsis_dots, env) } NULL NULL
di_iterate <- function(data, success_vars, group_vars, cohort_vars=NULL, scenario_repeat_by_vars=NULL, exclude_scenario_df=NULL, weight_var=NULL, include_non_disagg_results=TRUE, ppg_reference_groups='overall', min_moe=0.03, use_prop_in_moe=FALSE, prop_sub_0=0.5, prop_sub_1=0.5, di_prop_index_cutoff=0.80, di_80_index_cutoff=0.80, di_80_index_reference_groups='hpg', check_valid_reference=TRUE) { stopifnot(length(group_vars) == length(ppg_reference_groups) | length(ppg_reference_groups) == 1) stopifnot(length(group_vars) == length(di_80_index_reference_groups) | length(di_80_index_reference_groups) == 1) for (i in seq_along(success_vars)) { if (!(success_vars[i] %in% names(data))) { stop(paste0("'", success_vars[i], "' specified in `success_vars` is not found in `data`.")) } } for (i in seq_along(group_vars)) { if (!(group_vars[i] %in% names(data))) { stop(paste0("'", group_vars[i], "' specified in `group_vars` is not found in `data`.")) } } if (check_valid_reference) { for (i in 1:length(ppg_reference_groups)) { if (!(ppg_reference_groups[i] %in% c(as.character(formals(di_ppg)$reference)[-1], unique(data[[group_vars[i]]])))) { stop(paste0("'", ppg_reference_groups[i], "'", " is not valid for the argument `ppg_reference_groups` as it does not exist in the group variable `", group_vars[i], "`.")) } } for (i in 1:length(di_80_index_reference_groups)) { if (!(di_80_index_reference_groups[i] %in% c(unique(data[[group_vars[i]]]), c('hpg', 'overall', 'all but current'))) & !is.na(di_80_index_reference_groups[i])) { stop(paste0("'", di_80_index_reference_groups[i], "'", " is not valid for the argument `di_80_index_reference_groups` as it does not exist in the group variable `", group_vars[i], "`.")) } } } if (include_non_disagg_results) { data$`- None` <- '- All' group_vars <- c(group_vars, '- None') if (length(ppg_reference_groups) > 1) { ppg_reference_groups <- c(ppg_reference_groups, 'overall') } else if (length(ppg_reference_groups) == 1 & !(ppg_reference_groups %in% c('overall', 'hpg', 'all but current'))) { ppg_reference_groups <- c(ppg_reference_groups, 'overall') } if (length(di_80_index_reference_groups) > 1) { di_80_index_reference_groups <- c(di_80_index_reference_groups, NA) } else if (length(di_80_index_reference_groups) == 1 & !(is.na(di_80_index_reference_groups) | di_80_index_reference_groups %in% c('hpg', 'overall', 'all but current'))) { di_80_index_reference_groups <- c(di_80_index_reference_groups, NA) } } if (length(unique(sapply(data[, group_vars], class))) > 1) { stop("All variables specified in `group_vars` should be of the same class. Suggestion: set them all as character data using `as.character`.") } if (!is.null(scenario_repeat_by_vars)) { for (i in seq_along(scenario_repeat_by_vars)) { if (!(scenario_repeat_by_vars[i] %in% names(data))) { stop(paste0("'", scenario_repeat_by_vars[i], "' specified in `scenario_repeat_by_vars` is not found in `data`.")) } } if (length(unique(sapply(data[, scenario_repeat_by_vars], class))) > 1) { stop("All variables specified in `scenario_repeat_by_vars` should be of the same class. Suggestion: set them all as character data.") } } if (is.null(cohort_vars)) { cohort_vars <- '_cohort_' data[[cohort_vars]] <- '- All' } else { for (i in seq_along(cohort_vars)) { if (!(cohort_vars[i] %in% names(data))) { stop(paste0("'", cohort_vars[i], "' specified in `cohort_vars` is not found in `data`.")) } } } if (length(cohort_vars) != 1 & length(cohort_vars) != length(success_vars)) { stop('`cohort_vars` must be of length 1 or the same length as `success_vars` (each success variable corresponds to a cohort variable).') } lu_success_cohort <- data.frame(success_var=success_vars, cohort_var=cohort_vars, stringsAsFactors=FALSE) if (is.null(weight_var)) { weight_var <- '- Weight' data <- data %>% mutate_at(vars(one_of(success_vars)), .funs=list('NA_FLAG'= ~ is.na(.))) %>% group_by_at(vars(one_of(group_vars, cohort_vars, scenario_repeat_by_vars, if (length(success_vars)==1) {'NA_FLAG'} else {paste0(success_vars, '_NA_FLAG')}))) %>% mutate(`- Weight`=1) %>% summarize_at(vars(success_vars, '- Weight'), .funs=sum) %>% ungroup } else { if (!(weight_var %in% names(data))) { stop(paste0("The weight variable '", weight_var, "'", ' is not in `data`.')) } if (any(is.na(data[[weight_var]]))) { stop(paste0("The specified column corresponding to weight_var='", weight_var, "' contain NA values.")) } if (any(data[[weight_var]] <= 0)) { stop(paste0("The specified column corresponding to weight_var='", weight_var, "' contain non-positive values.")) } } success_var <- group_var <- cohort_var <- ppg_reference_group <- NULL if (!is.null(scenario_repeat_by_vars)) { dRepeatScenarios0 <- data %>% select(one_of(scenario_repeat_by_vars)) %>% lapply(function(x) c(unique(x), '- All')) %>% expand.grid(stringsAsFactors=FALSE) if (!is.null(exclude_scenario_df)) { if (!all(names(exclude_scenario_df) %in% scenario_repeat_by_vars)) { stop('`exclude_scenario_df` contain variables that are not specified in `scenario_repeat_by_vars`.') } exclude__ <- NULL dRepeatScenarios0 <- dRepeatScenarios0 %>% left_join(exclude_scenario_df %>% mutate(exclude__=1)) %>% filter(is.na(exclude__)) %>% select(one_of(names(dRepeatScenarios0))) } row_index <- want_indices <- n_rows <- NULL dRepeatScenarios <- lapply(1:nrow(dRepeatScenarios0) , FUN=function(i) { row_index <- want_indices <- n_rows <- NULL vars_specific <- colnames(dRepeatScenarios0)[!(dRepeatScenarios0[i, ] %in% '- All')] vars_all <- colnames(dRepeatScenarios0)[dRepeatScenarios0[i, ] %in% '- All'] if (length(vars_specific) != 0) { d_interm <- dRepeatScenarios0 %>% slice(i) %>% select(one_of(vars_specific)) %>% left_join(data %>% mutate(row_index=row_number())) %>% filter(!is.na(row_index)) %>% group_by_at(vars(one_of(vars_specific))) %>% summarize(want_indices=list(row_index), n_rows=n()) %>% ungroup d_interm[, vars_all] <- '- All' d_interm } else { d_interm <- data %>% mutate(row_index=row_number()) %>% summarize(want_indices=list(row_index), n_rows=n()) %>% ungroup d_interm[, vars_all] <- '- All' d_interm } } ) %>% bind_rows %>% filter(n_rows > 0) %>% select(-n_rows) } dRef <- data.frame(group_var=group_vars, ppg_reference_group=ppg_reference_groups, di_80_index_reference_group=di_80_index_reference_groups, stringsAsFactors=FALSE) ppg_check_valid_reference <- di_80_check_valid_reference <- di_80_index_reference_group <- NULL dScenarios <- expand.grid(success_var=success_vars, group_var=group_vars, min_moe=min_moe, use_prop_in_moe=use_prop_in_moe, prop_sub_0=prop_sub_0, prop_sub_1=prop_sub_1, ppg_check_valid_reference=FALSE, di_prop_index_cutoff=di_prop_index_cutoff, di_80_index_cutoff=di_80_index_cutoff, di_80_check_valid_reference=FALSE, stringsAsFactors=FALSE) %>% left_join(lu_success_cohort, by=c('success_var')) %>% left_join(dRef, by=c('group_var')) %>% select(success_var, group_var, cohort_var, ppg_reference_group, min_moe, use_prop_in_moe, prop_sub_0, prop_sub_1, ppg_check_valid_reference, di_prop_index_cutoff, di_80_index_cutoff, di_80_index_reference_group, di_80_check_valid_reference) iterate <- function(success_var, group_var, cohort_var, ppg_reference_group, min_moe, use_prop_in_moe, prop_sub_0, prop_sub_1, ppg_check_valid_reference, di_prop_index_cutoff, di_80_index_cutoff, di_80_index_reference_group, di_80_check_valid_reference, subset_idx) { data <- data[subset_idx, ] data <- data[!is.na(data[[success_var]]), ] if (nrow(data)==0) { return(NULL) } reference_val <- ppg_reference_group success_variable <- disaggregation <- cohort_variable <- reference_group <- reference <- di_indicator <- cohort <- group <- success <- success_needed_not_di <- success_needed_full_parity <- NULL di_ppg(success=data[[success_var]], group=data[[group_var]], cohort=data[[cohort_var]], weight=data[[weight_var]], reference=reference_val, min_moe=min_moe, use_prop_in_moe=use_prop_in_moe, prop_sub_0=prop_sub_0, prop_sub_1=prop_sub_1, check_valid_reference=ppg_check_valid_reference) %>% rename(ppg_reference_group=reference_group, ppg_reference=reference, di_indicator_ppg=di_indicator, success_needed_not_di_ppg=success_needed_not_di, success_needed_full_parity_ppg=success_needed_full_parity) %>% left_join( di_prop_index(success=data[[success_var]], group=data[[group_var]], cohort=data[[cohort_var]], weight=data[[weight_var]], di_prop_index_cutoff=di_prop_index_cutoff) %>% select(cohort, group, n, success, di_prop_index, di_indicator, success_needed_not_di, success_needed_full_parity) %>% rename(di_indicator_prop_index=di_indicator, success_needed_not_di_prop_index=success_needed_not_di, success_needed_full_parity_prop_index=success_needed_full_parity) , by=c('cohort', 'group', 'n', 'success') ) %>% left_join( di_80_index(success=data[[success_var]], group=data[[group_var]], cohort=data[[cohort_var]], weight=data[[weight_var]], di_80_index_cutoff=di_80_index_cutoff, reference_group=di_80_index_reference_group, check_valid_reference=di_80_check_valid_reference) %>% select(cohort, group, n, success, reference_group, di_80_index, di_indicator, success_needed_not_di, success_needed_full_parity) %>% rename(di_indicator_80_index=di_indicator, di_80_index_reference_group=reference_group, success_needed_not_di_80_index=success_needed_not_di, success_needed_full_parity_80_index=success_needed_full_parity) , by=c('cohort', 'group', 'n', 'success') ) %>% mutate( success_variable=success_var , disaggregation=group_var , cohort_variable=cohort_var ) %>% select(success_variable, cohort_variable, cohort, disaggregation, everything()) } if (is.null(scenario_repeat_by_vars)) { subset_idx <- 1:nrow(data) pmap(dScenarios %>% mutate(subset_idx=list(subset_idx)), iterate) %>% bind_rows } else { dRepeatScenarios$df_results <- lapply(1:nrow(dRepeatScenarios) , FUN=function(i) { subset_idx <- dRepeatScenarios %>% slice(i) %>% select(want_indices) %>% unlist pmap(dScenarios %>% mutate(subset_idx=list(subset_idx)), iterate) %>% bind_rows } ) df_results <- NULL dRepeatScenarios %>% select(-want_indices) %>% unnest(df_results) } }
construct_bspline_penalty <- function(variables_length, dimensions, term.number, blockzero, cyclic){ if(variables_length == 1){ P <- get_penalty(dimensions, cyclic = cyclic) P_wee_list <- list(P = P) P_list <- list(P = get_block_penalty(P, blockzero = blockzero, i = term.number)) } else if(variables_length > 1){ if(length(dimensions) == 1){ dim.each <- rep(dimensions, variables_length) } else if(length(dimensions) == variables_length){ dim.each <- dimensions } else stop("the vector `k' is the wrong length for one of the m() terms") if(length(cyclic) == 1){ cyclic.each <- rep(cyclic, variables_length) } else if(length(cyclic) == variables_length){ cyclic.each <- cyclic } else stop("provided logical vector `cyclic' is the wrong length for one of the m() terms") marginal_penalty_list <- vector("list", length = variables_length) for(i in 1:variables_length){ marginal_penalty_list[[i]] <- get_penalty(dim.each[i], cyclic = cyclic.each[i]) } kronecker_list <- vector("list", length = variables_length) marginal_id_list <- vector("list", length = variables_length) for(i in 1:variables_length) marginal_id_list[[i]] <- diag.spam(1, dim.each[i]) for(i in 1:variables_length){ int_list <- marginal_id_list int_list[[i]] <- marginal_penalty_list[[i]] kronecker_list[[i]] <- Reduce("kronecker.spam", int_list) } P_list <- lapply(kronecker_list, get_block_penalty, blockzero = blockzero, i = term.number) P_wee_list <- kronecker_list } list(P_list = P_list, P_wee_list = P_wee_list) }
expected <- eval(parse(text="FALSE")); test(id=0, code={ argv <- eval(parse(text="list(structure(list(breaks = c(26, 30, 54, 25, 70, 52, 51, 26, 67, 27, 14, 29, 19, 29, 31, 41, 20, 44), wool = structure(c(1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L), .Label = c(\"A\", \"B\"), class = \"factor\"), tension = structure(c(1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L), .Label = c(\"L\", \"M\", \"H\"), class = \"factor\")), .Names = c(\"breaks\", \"wool\", \"tension\"), row.names = c(1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 28L, 29L, 30L, 31L, 32L, 33L, 34L, 35L, 36L), class = \"data.frame\"))")); do.call(`is.array`, argv); }, o=expected);
fevd.var2 <- fevd(varsimest, n.ahead = 10) args(vars:::plot.varfevd) plot(fevd.var2, addbars = 2)
geom_shadowpath <- function(mapping = NULL, data = NULL, stat = "identity", position = "identity", ..., lineend = "butt", linejoin = "round", linemitre = 10, arrow = NULL, na.rm = FALSE, show.legend = NA, inherit.aes = TRUE) { layer( data = data, mapping = mapping, stat = stat, geom = GeomShadowPath, position = position, show.legend = show.legend, inherit.aes = inherit.aes, params = list( lineend = lineend, linejoin = linejoin, linemitre = linemitre, arrow = arrow, na.rm = na.rm, ... ) ) } GeomShadowPath <- ggproto("GeomShadowPath", Geom, required_aes = c("x", "y"), default_aes = aes(colour = "black", size = 0.5, linetype = 1, alpha = NA, shadowcolour=NA, shadowsize=NA, shadowalpha = NA), handle_na = function(data, params) { complete <- stats::complete.cases(data[c("x", "y", "size", "colour", "linetype")]) kept <- stats::ave(complete, data$group, FUN = keep_mid_true) data <- data[kept, ] if (!all(kept) && !params$na.rm) { warn(glue("Removed {sum(!kept)} row(s) containing missing values (geom_shadowpath).")) } data$shadowcolour[is.na(data$shadowcolour)] <- 'white' data$shadowsize[is.na(data$shadowsize)] <- data$size * 2.5 data$shadowalpha[is.na(data$shadowalpha)] <- data$alpha * 0.25 data$shadowalpha[is.na(data$shadowalpha)] <- 0.9 data }, draw_panel = function(data, panel_params, coord, arrow = NULL, lineend = "butt", linejoin = "round", linemitre = 10, na.rm = FALSE) { if (!anyDuplicated(data$group)) { message("geom_shadowpath: Each group consists of only one observation. Do you need to adjust the group aesthetic?") } data <- data[order(data$group), , drop = FALSE] munched <- coord_munch(coord, data, panel_params) rows <- stats::ave(seq_len(nrow(munched)), munched$group, FUN = length) munched <- munched[rows >= 2, ] if (nrow(munched) < 2) return(zeroGrob()) attr <- dapply(munched, "group", function(df) { linetype <- unique(df$linetype) new_data_frame(list( solid = identical(linetype, 1) || identical(linetype, "solid"), constant = nrow(unique(df[, c("alpha", "colour","size", "linetype", 'shadowcolour', 'shadowsize', 'shadowalpha')])) == 1 ), n = 1) }) solid_lines <- all(attr$solid) constant <- all(attr$constant) if (!solid_lines && !constant) { abort("geom_shadowpath: If you are using dotted or dashed lines, colour, size and linetype must be constant over the line") } n <- nrow(munched) group_diff <- munched$group[-1] != munched$group[-n] start <- c(TRUE, group_diff) end <- c(group_diff, TRUE) if (!constant) { munched$start <- start munched$end <- end munched.s <- munched munched.s$shadow <- T munched.s$colour <- munched.s$shadowcolour munched.s$size <- munched.s$shadowsize munched.s$alpha <- munched.s$shadowalpha munched$shadow <- F munched <- rbind( munched.s, munched) munched$id <- 2*match(munched$group, unique(munched$group)) - munched$shadow munched <- munched[order(munched$group), c('colour', 'size', 'y', 'x', 'linetype','alpha', 'id', 'start', 'end')] aph <- alpha( munched$colour[munched$start], munched$alpha[munched$start] ) grid::segmentsGrob( munched$x[!munched$end], munched$y[!munched$end], munched$x[!munched$start], munched$y[!munched$start], default.units = "native", arrow = arrow, gp = gpar( col = alpha(munched$colour, munched$alpha)[!munched$end], fill = alpha(munched$colour, munched$alpha)[!munched$end], lwd = munched$size[!munched$end] * .pt, lty = munched$linetype[!munched$end], lineend = lineend, linejoin = linejoin, linemitre = linemitre ) ) } else { munched$start <- start munched.s <- munched munched.s$shadow <- T munched.s$colour <- munched.s$shadowcolour munched.s$size <- munched.s$shadowsize munched.s$alpha <- munched.s$shadowalpha munched$shadow <- F munched <- rbind( munched.s, munched) munched$id <- 2*match(munched$group, unique(munched$group)) - munched$shadow munched <- munched[order(munched$group), c('colour', 'size', 'y', 'x', 'linetype','alpha', 'id', 'start')] aph <- alpha( munched$colour[munched$start], munched$alpha[munched$start] ) grid::polylineGrob( munched$x, munched$y, id = munched$id, default.units = "native", arrow = arrow, gp = gpar( col = aph, fill = aph, lwd = munched$size[munched$start] * .pt, lty = munched$linetype[munched$start], lineend = lineend, linejoin = linejoin, linemitre = linemitre ) ) } }, draw_key = ggplot2::draw_key_path ) geom_shadowline <- function(mapping = NULL, data = NULL, stat = "identity", position = "identity", na.rm = FALSE, orientation = NA, show.legend = NA, inherit.aes = TRUE, ...) { layer( data = data, mapping = mapping, stat = stat, geom = GeomShadowLine, position = position, show.legend = show.legend, inherit.aes = inherit.aes, params = list( na.rm = na.rm, orientation = orientation, ... ) ) } GeomShadowLine <- ggproto("GeomShadowLine", GeomShadowPath, setup_params = function(data, params) { params$flipped_aes <- has_flipped_aes(data, params, ambiguous = TRUE) params }, extra_params = c("na.rm", "orientation"), setup_data = function(data, params) { data$flipped_aes <- params$flipped_aes data <- flip_data(data, params$flipped_aes) data <- data[order(data$PANEL, data$group, data$x), ] flip_data(data, params$flipped_aes) } ) geom_shadowstep <- function(mapping = NULL, data = NULL, stat = "identity", position = "identity", direction = "hv", na.rm = FALSE, show.legend = NA, inherit.aes = TRUE, ...) { layer( data = data, mapping = mapping, stat = stat, geom = GeomShadowStep, position = position, show.legend = show.legend, inherit.aes = inherit.aes, params = list( direction = direction, na.rm = na.rm, ... ) ) } GeomShadowStep <- ggproto("GeomShadowStep", GeomShadowPath, draw_panel = function(data, panel_params, coord, direction = "hv") { data <- dapply(data, "group", stairstep, direction = direction) GeomShadowPath$draw_panel(data, panel_params, coord) } ) keep_mid_true <- getFromNamespace("keep_mid_true", "ggplot2") dapply <- getFromNamespace("dapply", "ggplot2") stairstep <- getFromNamespace("stairstep", "ggplot2") new_data_frame <- getFromNamespace("new_data_frame", "ggplot2")
library(portfolio) load("portfolioBasic.test.RData") data <- data.frame(id = 1:20, in.var = 1:20) data$in.var <- as.numeric(data$in.var) x <- new("portfolioBasic", in.var = "in.var", type = "sigmoid", size = 8, data = data) x <- create(x) stopifnot( all.equal(sum(x@weights$weight), 0), all.equal(sum(x@weights$weight[x@weights$weight > 0]), 1) ) x@weights$weight <- x@weights$weight / 2 x <- scaleWeights(x) stopifnot( all.equal(sum(x@weights$weight), 0), all.equal(sum(x@weights$weight[x@weights$weight > 0]), 1) )
LV_pm_alpha_global_lambdacov_none_alphacov_none <- function(par, fitness, neigh_intra_matrix = NULL, neigh_inter_matrix, covariates, fixed_parameters){ pos <- 1 if(is.null(fixed_parameters[["lambda"]])){ lambda <- par[pos] pos <- pos + 1 }else{ lambda <- fixed_parameters[["lambda"]] } if(is.null(fixed_parameters[["alpha_inter"]])){ alpha_inter <- par[pos] pos <- pos + 1 }else{ alpha_inter <- fixed_parameters[["alpha_inter"]] } sigma <- par[length(par)] background <- rowSums(neigh_inter_matrix) pred <- lambda - background*alpha_inter llik <- dnorm(fitness, mean = (log(pred)), sd = (sigma), log=TRUE) return(sum(-1*llik)) }
smbetattest <- function(X, na, nb, alpha=0.05){ cn<-length(X[1,]) rn<-length(X[,1]) XC<-X[, seq(cn-na-nb)] Xa<-X[,(cn-na-nb+1):cn] XX<-na.omit(Xa) size<-max(apply(XX, 2, sum)) pvalue<-rep(1,rn) betattest<-betattest(XX,na=na,nb=nb, level="RNA") prat<-pratio(xx=XX,na=na,nb=nb) odrat<-oddratio(XX=XX, na=na,nb=nb) t_value<-betattest[,1] rho<-(prat*odrat)^0.5 beta_t<-t_value df<-betattest[,2] pvalue <-2*(1-pt(abs(beta_t ),df=df)) XD<-cbind(beta_t, pvalue,rho) XD<-as.data.frame(XD) XD1<-subset(XD, pvalue<alpha) if(length(XD1$rho)==0){ XD2<-subset(XD, pvalue<0.1) Rho<-XD2$rho }else{ Rho<- XD1$rho } return(Rho) }
library(simpleCache) cacheDir = tempdir() setSharedCacheDir(cacheDir) simpleCacheShared("normSample", { rnorm(1e7, 0,1) }, recreate=TRUE) simpleCacheShared("normSample", { rnorm(1e7, 0,1) }) deleteCaches("normSample", force=TRUE)
get.bound.box <- function(coords){ xmin <- coords[[1]][[1]]$x[1] ymin <- coords[[1]][[1]]$y[1] xmax <- coords[[1]][[1]]$x[1] ymax <- coords[[1]][[1]]$y[1] for(strata in seq(along = coords)){ for(poly in seq(along = coords[[strata]])){ x.coords <- coords[[strata]][[poly]]$x y.coords <- coords[[strata]][[poly]]$y xmin <- min(xmin, x.coords) ymin <- min(ymin, y.coords) xmax <- max(xmax, x.coords) ymax <- max(ymax, y.coords) } } total.bound.box <- c(xmin = xmin, ymin = ymin, xmax = xmax, ymax = ymax) return(total.bound.box) }
eng_extendr <- function(options) { eng_impl(options, rust_eval) } eng_extendrsrc <- function(options) { eng_impl(options, rust_source) } eng_impl <- function(options, rextendr_fun) { if (!requireNamespace("knitr", quietly = TRUE)) { ui_throw("The knitr package is required to run the extendr chunk engine.") } if (!is.null(options$preamble)) { preamble <- knitr::knit_code$get(options$preamble) code <- c( lapply(options$preamble, function(x) knitr::knit_code$get(x)), recursive = TRUE ) code <- c(code, options$code) } else { code <- options$code } code <- glue_collapse(code, sep = "\n") code_out <- glue_collapse(options$code, sep = "\n") opts <- options$engine.opts if (!is.environment(opts$env)) opts$env <- knitr::knit_global() if (isTRUE(options$eval)) { ui_v("Evaluating Rust extendr code chunk...") out <- utils::capture.output({ result <- withVisible( do.call(rextendr_fun, c(list(code = code), opts)) ) if (isTRUE(result$visible)) { print(result$value) } }) } else { out <- "" } options$engine <- "rust" knitr::engine_output(options, code_out, out) }
E.QQ = function(K, mu, do.C=TRUE) { if (!is.matrix(K)) K=as.matrix(K) if (nrow(K)!=ncol(K)) stop("K is not a square matrix.") n=nrow(K) if (length(mu)!=n) stop("mu is not of length n.") mom=0 if (do.C) { if (!is.double(K)) K <- as.double(K) aux=.C("score_var", "_K" = K, "_n"=as.integer(n), "_mu"=as.double(mu), "_mom"=as.double(mom)) mom=aux$"_mom" } else { mom = mom + sum((mu*(1-mu)^4 + (1-mu)*mu^4) * diag(K)^2) for (i in 1:n) { for (k in 1:n) { if (k==i) next mom = mom + mu[i]*(1-mu[i]) * mu[k]*(1-mu[k]) * K[i,i] * K[k,k] }} for (i in 1:n) { for (j in 1:n) { if (j==i) next mom = mom + mu[i]*(1-mu[i]) * mu[j]*(1-mu[j]) * K[i,j] * K[i,j] * 2 }} } mom }
test_that("ts_pick works", { to.be.picked.and.renamed <- c(`My Dax` = "DAX", `My Smi` = "SMI") a <- ts_pick(EuStockMarkets, to.be.picked.and.renamed) b <- ts_pick(EuStockMarkets, `My Dax` = "DAX", `My Smi` = "SMI") expect_equal(a, b) b <- ts_pick(EuStockMarkets, `My Dax` = 1, `My Smi` = 2) expect_equal(a, b) expect_equal(EuStockMarkets[, c(1, 2)], ts_pick(EuStockMarkets, c(1, 2))) }) test_that("unknown series drops an error", { expect_error(ts_pick(ts_df(ts_c(mdeaths, fdeaths)), "hallo")) })
expected <- eval(parse(text="0L")); test(id=0, code={ argv <- eval(parse(text="list(c(12784, 13149, 13514, 13879, 14245, 14610), FALSE, FALSE)")); .Internal(`anyDuplicated`(argv[[1]], argv[[2]], argv[[3]])); }, o=expected);
setMethodS3("getMaxLengthRepeats", "AromaCellSequenceFile", function(this, cells, positions=1:getProbeLength(this), bases=c("A","C","G","T"), ..., force=FALSE, verbose=FALSE) { if (!is.null(cells)) { cells <- Arguments$getIndices(cells, max=nbrOfCells(this)) nbrOfCells <- length(cells) } else { nbrOfCells <- nbrOfCells(this) } bases <- Arguments$getCharacters(bases) bases <- unique(bases) verbose <- Arguments$getVerbose(verbose) if (verbose) { pushState(verbose) on.exit(popState(verbose)) } verbose && enter(verbose, "Identifying cells with repeats") verbose && cat(verbose, "Nucleotide positions:") verbose && str(verbose, positions) chipType <- getChipType(this) key <- list(method="getMaxRepeatLength", class=class(this)[1], chipType=chipType, tags=getTags(this), cells=cells, ...) if (getOption(aromaSettings, "devel/useCacheKeyInterface", FALSE)) { key <- getCacheKey(this, method="getMaxRepeatLength", chipType=chipType, tags=getTags(this), cells=cells, ...) } dirs <- c("aroma.affymetrix", chipType) if (!force) { verbose && enter(verbose, "Checking for cached results") res <- loadCache(key=key, dirs=dirs) if (!is.null(res)) { verbose && cat(verbose, "Found cached results") verbose && exit(verbose) verbose && exit(verbose) return(res) } verbose && exit(verbose) } verbose && enter(verbose, "Searching for repeats") verbose && cat(verbose, "Cells:") verbose && str(verbose, cells) startPosition <- rep(positions[1], times=nbrOfCells) maxRepeatLength <- rep(as.integer(1), times=nbrOfCells) verbose && str(verbose, startPosition) verbose && str(verbose, maxRepeatLength) verbose && enter(verbose, "Missing probes sequences") nok <- isMissing(this, cells=cells) naValue <- NA_integer_ startPosition[nok] <- naValue maxRepeatLength[nok] <- naValue if (is.null(cells)) { cells <- which(!nok) } else { cells <- cells[!nok] } verbose && str(verbose, startPosition) verbose && str(verbose, maxRepeatLength) verbose && exit(verbose) verbose && enter(verbose, "Remaining probe sequences") verbose && cat(verbose, "Cells:") verbose && str(verbose, cells) if (length(cells) > 0) { counts <- rep(as.integer(0), times=length(cells)) startPositionT <- rep(as.integer(0), times=length(cells)) maxRepeatLengthT <- rep(as.integer(1), times=length(cells)) for (pp in seq_along(positions)) { verbose && enter(verbose, sprintf("Position %d of %d", pp, length(positions))) pos <- positions[pp] b1 <- readSequenceMatrix(this, cells=cells, position=pos, what="raw", drop=TRUE) if (pp == 1) { map <- attr(b1, "map") basesToKeep <- map[bases] isRepeat <- rep(TRUE, times=length(cells)) } else { isRepeat <- (b1 == b0) } skip <- !is.element(b1, basesToKeep) isRepeat[skip] <- FALSE counts[isRepeat] <- counts[isRepeat] + as.integer(1) counts[!isRepeat] <- as.integer(1) isGreater <- rep(FALSE, times=length(cells)) keep <- is.finite(counts) isGreater[keep] <- (counts[keep] > maxRepeatLengthT[keep]) maxRepeatLengthT[isGreater] <- counts[isGreater] startPositionT[isGreater] <- pos - maxRepeatLengthT[isGreater] + as.integer(1) b0 <- b1 verbose && exit(verbose) } startPositionT[startPositionT == 0] <- as.integer(-1) maxRepeatLength[!nok] <- maxRepeatLengthT startPosition[!nok] <- startPositionT nok <- startPositionT <- maxRepeatLengthT <- NULL } res <- cbind(startPosition, maxRepeatLength) startPosition <- maxRepeatLength <- NULL verbose && cat(verbose, "Results:") verbose && str(verbose, res) verbose && exit(verbose) verbose && enter(verbose, "Caching result") saveCache(res, key=key, dirs=dirs) verbose && exit(verbose) verbose && exit(verbose) res })
drop.tip.fixed <- function(phy, tip, trim.internal = TRUE, subtree = FALSE, root.edge = 0, rooted = is.rooted(phy)) { if (!inherits(phy, "phylo")) stop("object \"phy\" is not of class \"phylo\"") Ntip <- length(phy$tip.label) if (is.character(tip)) tip <- which(phy$tip.label %in% tip) if (!rooted && subtree) { phy <- root(phy, (1:Ntip)[-tip][1]) root.edge <- 0 } phy <- reorder(phy) NEWROOT <- ROOT <- Ntip + 1 Nnode <- phy$Nnode Nedge <- dim(phy$edge)[1] if (subtree) { trim.internal <- TRUE tr <- reorder(phy, "pruningwise") N <- node.depth(phy) } wbl <- !is.null(phy$edge.length) edge1 <- phy$edge[, 1] edge2 <- phy$edge[, 2] keep <- !logical(Nedge) if (is.character(tip)) tip <- which(phy$tip.label %in% tip) if (!rooted && subtree) { phy <- root(phy, (1:Ntip)[-tip][1]) root.edge <- 0 } keep[match(tip, edge2)] <- FALSE if (trim.internal) { ints <- edge2 > Ntip repeat { sel <- !(edge2 %in% edge1[keep]) & ints & keep if (!sum(sel)) break keep[sel] <- FALSE } if (subtree) { subt <- edge1 %in% edge1[keep] & edge1 %in% edge1[!keep] keep[subt] <- TRUE } if (root.edge && wbl) { degree <- tabulate(edge1[keep]) if (degree[ROOT] == 1) { j <- integer(0) repeat { i <- which(edge1 == NEWROOT & keep) j <- c(i, j) NEWROOT <- edge2[i] degree <- tabulate(edge1[keep]) if (degree[NEWROOT] > 1) break } keep[j] <- FALSE if (length(j) > root.edge) j <- 1:root.edge NewRootEdge <- sum(phy$edge.length[j]) if (length(j) < root.edge && !is.null(phy$root.edge)) NewRootEdge <- NewRootEdge + phy$root.edge phy$root.edge <- NewRootEdge } } } if (!root.edge) phy$root.edge <- NULL phy$edge <- phy$edge[keep, ] if (wbl) phy$edge.length <- phy$edge.length[keep] TERMS <- !(phy$edge[, 2] %in% phy$edge[, 1]) oldNo.ofNewTips <- phy$edge[TERMS, 2] n <- length(oldNo.ofNewTips) phy$edge[TERMS, 2] <- rank(phy$edge[TERMS, 2]) if (subtree || !trim.internal) { tips.kept <- oldNo.ofNewTips <= Ntip & !(oldNo.ofNewTips %in% tip) new.tip.label <- character(n) new.tip.label[tips.kept] <- phy$tip.label[-tip] node2tip <- oldNo.ofNewTips[!tips.kept] new.tip.label[!tips.kept] <- if (subtree) { paste("[", N[node2tip], "_tips]", sep = "") } else { if (is.null(phy$node.label)) rep("NA", length(node2tip)) else phy$node.label[node2tip - Ntip] } if (!is.null(phy$node.label)) phy$node.label <- phy$node.label[-(node2tip - Ntip)] phy$tip.label <- new.tip.label } else phy$tip.label <- phy$tip.label[-tip] if (!is.null(phy$node.label)) phy$node.label <- phy$node.label[sort(unique(phy$edge[, 1])) - Ntip] phy$Nnode <- dim(phy$edge)[1] - n + 1L i <- phy$edge > n phy$edge[i] <- match(phy$edge[i], sort(unique(phy$edge[i]))) + n storage.mode(phy$edge) <- "integer" collapse.singles(phy) } function(phy, tip, trim.internal = TRUE, subtree = FALSE, root.edge = 0, rooted = is.rooted(phy)) { Ntip <- length(phy$tip.label) if (is.character(tip)) tip <- which(phy$tip.label %in% tip) phy <- reorder(phy) NEWROOT <- ROOT <- Ntip + 1 Nnode <- phy$Nnode Nedge <- nrow(phy$edge) wbl <- !is.null(phy$edge.length) edge1 <- phy$edge[, 1] edge2 <- phy$edge[, 2] keep <- !(edge2 %in% tip) ints <- edge2 > Ntip repeat { sel <- !(edge2 %in% edge1[keep]) & ints & keep if (!sum(sel)) break keep[sel] <- FALSE } phy2 <- phy phy2$edge <- phy2$edge[keep, ] if (wbl) phy2$edge.length <- phy2$edge.length[keep] TERMS <- !(phy2$edge[, 2] %in% phy2$edge[, 1]) oldNo.ofNewTips <- phy2$edge[TERMS, 2] n <- length(oldNo.ofNewTips) idx.old <- phy2$edge[TERMS, 2] phy2$edge[TERMS, 2] <- rank(phy2$edge[TERMS, 2]) phy2$tip.label <- phy2$tip.label[-tip] if (!is.null(phy2$node.label)) phy2$node.label <- phy2$node.label[sort(unique(phy2$edge[, 1])) - Ntip] phy2$Nnode <- nrow(phy2$edge) - n + 1L i <- phy2$edge > n phy2$edge[i] <- match(phy2$edge[i], sort(unique(phy2$edge[i]))) + n storage.mode(phy2$edge) <- "integer" collapse.singles(phy2) }
context("fetchSCAN() -- requires internet connection") test_that("fetchSCAN() works", { skip_if_offline() skip_on_cran() x <<- fetchSCAN(site.code=2001, year=c(2014)) skip_if(is.null(x)) expect_true(inherits(x, 'list')) }) test_that("fetchSCAN() returns the right kind of data", { skip_if_offline() skip_on_cran() skip_if(is.null(x)) expect_true(inherits(x, 'list')) expect_true(inherits(x$metadata, 'data.frame')) expect_true(inherits(x$STO, 'data.frame')) expect_true(ncol(x$STO) == 7) })
summary.ptglm = function(object, silent = F, ...) { ncov = length(object$mle) - 2 beta = object$mle[1:ncov] D = object$mle[ncov+1] a = object$mle[ncov+2] coef.table = cbind(beta) colnames(coef.table) = 'Estimate' requireNamespace('matrixcalc') check.pdef1 = matrixcalc::is.positive.definite(object$fisher.info, tol = 1e-10) last.eig = tail(eigen(object$fisher.info)$values, 1) if (check.pdef1 & last.eig > 0.01) { inv.hess = solve(object$fisher.info) se.beta = sqrt(diag(inv.hess)[1:ncov]) } else { red.hess = object$fisher.info[1:ncov, 1:ncov] check.pdef2 = matrixcalc::is.positive.definite(red.hess, tol = 1e-10) last.eig.red = tail(eigen(red.hess)$values, 1) if (check.pdef2 & last.eig.red > 0.01) { warning('Full Fisher information matrix not positive definite. Standard errors are estimated using the hessian of the profile likelihood of beta | (D, a, sigma2)') inv.hess = solve(red.hess) se.beta = sqrt(diag(inv.hess)) } else stop('Fisher information matrix is not positive definite. Standard errors cannot be computed.') } z.score = beta/se.beta p = 2*pnorm(abs(z.score), lower.tail = F) coef.table = cbind(beta, se.beta, z.score, p) colnames(coef.table) = c('Estimate', 'Std. error', 'z', 'p.value') if (!silent) { cat(paste('Loglikelihood:', round(object$logl, 3), '\n')) cat('Parameter estimates:\n') print(round(coef.table, 4)) cat('\n') cat(paste('Dispersion =', round(D,2), '\n')) cat(paste('Power =', round(a,2), '\n')) } out = list('logl' = round(object$logl,2), 'coefficients' = coef.table, 'D'= D, 'a' = a) }
check_mask <- function(mask, allow.NA = FALSE, allow.array = TRUE){ mask = check_nifti(mask, allow.array = allow.array) allowable = c(0, 1) if (allow.NA) { allowable = c(allowable, NA) } mask = as(mask, "array") class(mask) = "numeric" umask = unique(c(mask)) res = all(umask %in% allowable) return(res) } check_mask_fail <- function(...){ res = check_mask(...) if (!res) { stop("Mask must be binary 0/1. If it has NAs, allow.NA must be TRUE") } else { return(invisible(NULL)) } }
AdditionTCW5 <- function() { self <- environment() class(self) <- append('AdditionTCW5', class(self)) addNumeric <- function(x_n, y_n) x_n + y_n addDouble <- function(x_d, y_d) x_d + y_d addInteger <- function(x_i, y_i) x_i + y_i divideByZero <- function(x_n) x_n / 0 generateWarning <- function(x_) suppressWarnings(1:3 + 1:7) generateError <- function(x_) { stop('generated error'); x_ } test_case_definitions <- data.table( function_name = c(rep('addDouble', 9), rep('addInteger', 9), rep('divideByZero', 3), 'generateWarning', 'generateError'), standard_evaluation = c(rep('correct', 5), 'z', rep('correct', 7), 'wrong', rep('correct', 8), 'failure'), type_checking_enforcement = c(rep('correct', 5), 'erroneous', rep('failure', 3), rep('correct', 4), rep('failure', 5), rep('correct', 3), 'correct', 'erroneous'), test_case = list( TestCaseDefinition(list(as.double(34L), 44.5), 78.5, 'sum 2 doubles'), TestCaseDefinition(list(34.0, NA_real_), NA_real_, 'sum 1 double and 1 NA_real_'), TestCaseDefinition(list(NA_real_, NA_real_), NA_real_, 'sum 2 NA_real_'), TestCaseDefinition(list(NaN, NaN), NaN, 'sum 2 NAN'), TestCaseDefinition(list(Inf, Inf), Inf, 'sum 2 Inf'), TestCaseDefinition(list(as.integer(34.7), as.integer(44.9)), 80, 'sum 2 as.integers confused with sum of rounded value as expectation'), TestCaseDefinition(list(34L, 44.5), 78.5, 'sum of 1 integer and 1 double'), TestCaseDefinition(list(34.0, NA_integer_), NA_real_, 'sum of 1 integer and 1 double'), list(NA, NA), TestCaseDefinition(list(34L, as.integer(44.5)), 78L, 'sum 2 integers'), TestCaseDefinition(list(34L, NA_integer_), NA_integer_, 'sum 1 integer and 1 NA_integer'), TestCaseDefinition(list(NA_integer_, NA_integer_), NA_integer_, 'sum 2 NA_integer'), TestCaseDefinition(list(as.integer("45.654"), 44L), 89L, 'sum a converted string with one integer'), TestCaseDefinition(list(34L, 44.5), 78L, 'sum 1 integer and 1 double'), TestCaseDefinition(list(34L, Inf), Inf, 'sum 1 integer and 1 Inf'), TestCaseDefinition(list(34L, NaN), NaN, 'sum 1 integer and 1 NAN'), TestCaseDefinition(list(34L, NA), NA, 'sum 1 integer and 1 NA'), TestCaseDefinition(list(c(34L, 35L), 44L), c(78L, 79L), 'sum a vector of 2 integers with 1 integer'), TestCaseDefinition(list(1), Inf, '1 / 0'), TestCaseDefinition(list(-1), -Inf, '-1 / 0'), TestCaseDefinition(list(0), NaN, '0 / 0'), TestCaseDefinition(list(0), 2:8, 'generate warning'), TestCaseDefinition(list(0), 0, 'generate error') ) ) label <- 'erroneous test case definition: unknown evaluation keyword' self }
sNCA = function(x, y, dose=0, adm="Extravascular", dur=0, doseUnit="mg", timeUnit="h", concUnit="ug/L", iAUC="", down="Linear", MW=0, returnNA=TRUE) { if (!(is.numeric(x) & is.numeric(y) & is.numeric(dose) & is.numeric(dur) & is.character(adm) & is.character(down))) stop("Check input types!") n = length(x) if (n != length(y)) stop("Length of y is different from the length of x!") adm = toupper(adm) if (UT(adm) == "INFUSION" & !(dur > 0)) stop("Infusion mode should have dur larger than 0!") NApoints = is.na(x) | is.na(y) x = x[!NApoints] y = y[!NApoints] RetNames1 = c("b0", "CMAX", "CMAXD", "TMAX", "TLAG", "CLST", "CLSTP", "TLST", "LAMZHL", "LAMZ", "LAMZLL", "LAMZUL", "LAMZNPT", "CORRXY", "R2", "R2ADJ", "C0", "AUCLST", "AUCALL", "AUCIFO", "AUCIFOD", "AUCIFP", "AUCIFPD", "AUCPEO", "AUCPEP", "AUCPBEO", "AUCPBEP", "AUMCLST", "AUMCIFO", "AUMCIFP", "AUMCPEO", "AUMCPEP", "MRTIVLST", "MRTIVIFO", "MRTIVIFP", "MRTEVLST", "MRTEVIFO", "MRTEVIFP", "VZO", "VZP", "VZFO", "VZFP", "CLO", "CLP", "CLFO", "CLFP", "VSSO", "VSSP") Res = rep(NA_real_, length(RetNames1)) names(Res) = RetNames1 if (n != length(y) | length(y[y < 0]) > 0) { Res["LAMZNPT"] = 0 return(Res) } uY = unique(y) if (length(uY) == 1) { Res["CMAX"] = uY if (dose > 0) Res["CMAXD"] = uY / dose Res["TMAX"] = x[y==uY][1] if (which(y==uY)[1] > 1) { Res["TLAG"] = x[which(y==uY) - 1] } else { Res["TLAG"] = 0 } Res["CLST"] = uY Res["TLST"] = x[y==uY][1] Res["LAMZNPT"] = 0 Res["b0"] = uY return(Res) } iLastNonZero = max(which(y > 0)) x0 = x[1:iLastNonZero] y0 = y[1:iLastNonZero] x1 = x0[y0 != 0] y1 = y0[y0 != 0] if (UT(adm) == "BOLUS") { if (y[1] > y[2] & y[2] > 0) { C0 = exp(-x[1]*(log(y[2]) - log(y[1]))/(x[2] - x[1]) + log(y[1])) } else { C0 = y[x==min(x[y > 0])] } x2 = c(0, x) y2 = c(C0, y) x3 = c(0, x0) y3 = c(C0, y0) } else { if (is.na(x[x==0][1])) { x2 = c(0, x) y2 = c(0, y) x3 = c(0, x0) y3 = c(0, y0) } else { x2 = x y2 = y x3 = x0 y3 = y0 } } tRes = BestSlope(x1, y1, adm) if (length(tRes) != 9) tRes = c(NA, NA, 0, NA, NA, NA, NA, NA, NA) Res[c("R2", "R2ADJ", "LAMZNPT", "LAMZ", "b0", "CORRXY", "LAMZLL", "LAMZUL", "CLSTP")] = tRes tabAUC = AUC(x3, y3, down) Res[c("AUCLST","AUMCLST")] = tabAUC[length(x3),] Res["AUCALL"] = AUC(x2, y2, down)[length(x2),1] Res["LAMZHL"] = log(2)/Res["LAMZ"] Res["TMAX"] = x[which.max(y)][1] Res["CMAX"] = max(y) Res["TLST"] = x[iLastNonZero] Res["CLST"] = y[iLastNonZero] Res["AUCIFO"] = Res["AUCLST"] + Res["CLST"]/Res["LAMZ"] Res["AUCIFP"] = Res["AUCLST"] + Res["CLSTP"]/Res["LAMZ"] Res["AUCPEO"] = (1 - Res["AUCLST"]/Res["AUCIFO"])*100 Res["AUCPEP"] = (1 - Res["AUCLST"]/Res["AUCIFP"])*100 Res["AUMCIFO"] = Res["AUMCLST"] + Res["CLST"]*Res["TLST"]/Res["LAMZ"] + Res["CLST"]/Res["LAMZ"]/Res["LAMZ"] Res["AUMCIFP"] = Res["AUMCLST"] + Res["CLSTP"]*Res["TLST"]/Res["LAMZ"] + Res["CLSTP"]/Res["LAMZ"]/Res["LAMZ"] Res["AUMCPEO"] = (1 - Res["AUMCLST"]/Res["AUMCIFO"])*100 Res["AUMCPEP"] = (1 - Res["AUMCLST"]/Res["AUMCIFP"])*100 if (!is.na(dose) & dose > 0) { Res["CMAXD"] = Res["CMAX"]/dose Res["AUCIFOD"] = Res["AUCIFO"]/dose Res["AUCIFPD"] = Res["AUCIFP"]/dose } if (UT(adm) == "BOLUS") { Res["C0"] = C0 Res["AUCPBEO"] = tabAUC[2,1]/Res["AUCIFO"]*100 Res["AUCPBEP"] = tabAUC[2,1]/Res["AUCIFP"]*100 } else { if (sum(y0==0) > 0) Res["TLAG"] = x0[max(which(y0==0))] else Res["TLAG"] = 0 if (!is.na(x0[x0==0][1])) { if (y0[x0==0] > 0) Res["TLAG"] = 0 } } if (UT(adm) == "EXTRAVASCULAR") { Res["VZFO"] = dose/Res["AUCIFO"]/Res["LAMZ"] Res["VZFP"] = dose/Res["AUCIFP"]/Res["LAMZ"] Res["CLFO"] = dose/Res["AUCIFO"] Res["CLFP"] = dose/Res["AUCIFP"] Res["MRTEVLST"] = Res["AUMCLST"]/Res["AUCLST"] Res["MRTEVIFO"] = Res["AUMCIFO"]/Res["AUCIFO"] Res["MRTEVIFP"] = Res["AUMCIFP"]/Res["AUCIFP"] } else { Res["VZO"] = dose/Res["AUCIFO"]/Res["LAMZ"] Res["VZP"] = dose/Res["AUCIFP"]/Res["LAMZ"] Res["CLO"] = dose/Res["AUCIFO"] Res["CLP"] = dose/Res["AUCIFP"] Res["MRTIVLST"] = Res["AUMCLST"]/Res["AUCLST"] - dur/2 Res["MRTIVIFO"] = Res["AUMCIFO"]/Res["AUCIFO"] - dur/2 Res["MRTIVIFP"] = Res["AUMCIFP"]/Res["AUCIFP"] - dur/2 Res["VSSO"] = Res["MRTIVIFO"]*Res["CLO"] Res["VSSP"] = Res["MRTIVIFP"]*Res["CLP"] } Units = Unit(doseUnit=doseUnit, timeUnit=timeUnit, concUnit=concUnit, MW=MW) for (i in 1:length(Res)) Res[i] = Res[i] * Units[names(Res[i]),2] if (is.data.frame(iAUC)) { niAUC = nrow(iAUC) if (niAUC > 0) { RetNames = union(RetNames1, as.character(iAUC[,"Name"])) for (i in 1:niAUC) { if (adm == "BOLUS") Res[as.character(iAUC[i,"Name"])] = IntAUC(x2, y2, iAUC[i,"Start"], iAUC[i,"End"], Res, down=down) else Res[as.character(iAUC[i,"Name"])] = IntAUC(x, y, iAUC[i,"Start"], iAUC[i,"End"], Res, down=down) } } } else { niAUC = 0 } attr(Res, "units") = c(Units[RetNames1,1], rep(Units["AUCLST",1], niAUC)) if (returnNA == FALSE) { strAttr = attr(Res, "units") iNotNAs = !is.na(Res) Res = Res[iNotNAs] attr(Res, "units") = strAttr[iNotNAs] } return(Res) }
"ar_stl_wardsClipped"
context("InputContext") options('rdhoc_hack' = TRUE) ic <- InputContext(dummy, dataFilename_s_1 = 'dummy.R') ic$setUseMarkers(TRUE) test_that("InputContext - data", { expect_true(nchar(ic$produceFormat()) > 3L) expect_true(!is.null(ic$produceSource())) expect_true(is.character(ic$getName())) }) ic$setUseMarkers(FALSE) test_that("InputContext - data", { expect_true(nchar(ic$produceFormat()) > 3L) expect_true(is.null(ic$produceSource())) }) ic1 <- InputContext(ProcessingContext(), methodName_s_1 = 'verifyPostProcessing') ic1$setUseMarkers(TRUE) ic2 <- InputContext(ProcessingContext()) test_that("InputContext", { expect_true(nchar(ic1$produceDescription()) > 3L) expect_true(nchar(ic2$produceDescription()) > 3L) expect_true(is.null(ic2$produceSource())) expect_true(is.null(ic2$produceFormat())) expect_true(is.character(ic1$getName())) expect_true(is.character(ic2$getName())) }) options('rdhoc_hack' = FALSE) source_file <- 'Addition_TCFI_Partial_R6.R' source_package <- 'wyz.code.offensiveProgramming' f <- findFilesInPackage(source_file, source_package) stopifnot(length(f) == 1) source(f) o <- Addition_TCFI_Partial_R6$new() ic3 <- InputContext(o, methodName_s_1 = 'addInteger') ic3$setUseMarkers(TRUE) ic4 <- InputContext(o) ic4$setUseMarkers(TRUE) test_that("InputContext", { expect_true(nchar(ic3$produceDescription()) > 3L) expect_true(nchar(ic4$produceDescription()) > 3L) }) source_file <- 'sample-classes.R' f <- findFilesInPackage(source_file, source_package) stopifnot(length(f) == 1) source(f) o <- EmptyEnv() ic5 <- InputContext(o, methodName_s_1 = 'addInteger') ic5$setUseMarkers(TRUE) ic6 <- InputContext(Accumulator_R6$new(), methodName_s_1 = 'addInteger') ic6$setUseMarkers(FALSE) ic7 <- InputContext(NULL, 'sum', packageName_s_1 = 'slot') ic7$setUseMarkers(TRUE) test_that("InputContext", { expect_true(nchar(ic5$produceDescription()) > 3L) expect_true(is.null(ic6$produceDescription())) expect_true(is.character(InputContext(NULL, packageName_s_1 = 'slot')$getName())) expect_true(is.character(ic7$getName())) expect_true(is.character(ic7$produceDescription())) })
sim.mutants <- function(n.sites, essential, n.sites2=NULL, n.mutants) { n.genes <- length(n.sites) if(length(essential) != n.genes) stop("n.sites and essential must be the same length") if(is.null(n.sites2)) n.sites2 <- rep(0,n.genes) if(length(n.sites2) != n.genes) stop("n.sites and n.sites2 must be the same length") if(any(essential != 0 & essential != 1)) stop("essential must contain only 0's and 1's.") if(n.mutants <= 0) stop("n.mutants must be positive") temp <- c(essential[-1],essential[1]) p <- c(n.sites*(1-essential), n.sites2*(1-essential)*(1-temp)) o <- table(factor(sample(1:(2*n.genes), n.mutants, replace=TRUE, prob=p), levels=1:(2*n.genes))) names(o) <- NULL if(sum(n.sites2)==0) return(o[1:n.genes]) else return(cbind(o[1:n.genes],o[-(1:n.genes)])) }
reformat.snps <- function(snps){ snps <- as.character(snps) tmp1 <- suppressWarnings(which(!is.na(as.integer(gsub(':', '', snps))))) tmp2 <- which(substr(snps, 1, 1) != ':') tmp3 <- which(sapply(base::strsplit(snps, ''), tail, 1) != ':') tmp4 <- grep(':', snps) non.rs.id <- intersect(intersect(intersect(tmp1, tmp2), tmp3), tmp4) if(length(non.rs.id) > 0){ snps[non.rs.id] <- paste0('C', snps[non.rs.id]) snps[non.rs.id] <- gsub(':', 'P', snps[non.rs.id]) } snps }
test_that("SA solver works on specific test", { solver <- annealing_solver(initial_temperature = 10) g <- igraph::make_ring(5) V(g)$weight <- 1:-3 E(g)$weight <- 1 solution <- solve_mwcsp(solver, g) expect_equal(solution$weight, 2) }) test_that("The SA solver does not crush on GAM instances", { solver <- annealing_solver() solution <- solve_mwcsp(solver, gam_example) expect_gte(length(V(solution$graph)), 0) }) test_that("The SA solver gives a good solution for a GAM instance", { solver <- annealing_solver(schedule = "boltzmann", initial_temperature = 2.0, final_temperature = 0.125) solution <- solve_mwcsp(solver, gam_example) expect_gt(solution$weight, 200) })
obj_L12 <- function(Y, mu, p, L, covmat_inverse, S_bar, graph, lambda1, lambda2, pie) { log.liklyhood <- 0.0 liklyhood = 0.0 penalty <- 0.0 n=nrow(Y) nn = round(pie*n, 0) for (j in 1:n){ liklyhood = 0.0 for (l in 1:L){ tmp_covmat <- covmat_inverse[,((l-1)*p+1):(l*p)] liklyhood = liklyhood + pie[l] * exp(fmvnorm(p, tmp_covmat, Y[j,], mu[l,])) } log.liklyhood = log.liklyhood + log(liklyhood) } for (l in 1:L) { tmp_covmat <- covmat_inverse[,((l-1)*p+1):(l*p)] tmp_S <- S_bar[,((l-1)*p+1):(l*p)] penalty <- penalty + lambda1 * (sum(apply(abs(tmp_covmat),2,sum)) - sum(abs(diag(tmp_covmat)))) } graph <- graph + 1 Num.of.edges <- dim(graph)[2] for (e in 1:Num.of.edges) { l1 <- graph[1,e] l2 <- graph[2,e] tmp_covmat <- covmat_inverse[,((l1-1)*p+1):(l1*p)] - covmat_inverse[,((l2-1)*p+1):(l2*p)] penalty <- penalty + lambda2 * (sum(apply(abs(tmp_covmat),1,sum)) - sum(abs(diag(tmp_covmat)))) } return (log.liklyhood - penalty) }
test_that("tune creates a call", { expect_true(is.call(tune())) expect_true(is.call(tune("foo"))) }) test_that("tune `id` value", { expect_identical(tune(), call("tune")) expect_identical(tune(""), call("tune")) expect_identical(tune("foo"), call("tune", "foo")) }) test_that("`id` is validated", { expect_error(tune(1), "The `id` should be a single character string.") expect_error(tune(c("x", "y")), "The `id` should be a single character string.") expect_error(tune(NA_character_), "The `id` can't be missing.") })
residenceTime <- function(lt, radius, maxt, addinfo=FALSE, units = c("seconds", "hours", "days")) { if (!inherits(lt, "ltraj")) stop("lt should be of class ltraj") if (length(radius)>1) stop("Only one radius allowed in this function") units <- match.arg(units) if (units == "hours") maxt <- maxt*3600 if (units == "days") maxt <- maxt*(3600 * 24) res <- lapply(1:length(lt), function(i) { x <- lt[[i]] uu <- x$date vv <- .Call("residtime", x, radius, maxt, PACKAGE="adehabitatLT") if (all(is.na(vv))) warning(paste("Too large radius for burst", burst(lt)[i],"\n", "The residence time is missing for all the relocations of this burst\n")) z <- data.frame(uu,vv) names(z) <- c("Date", paste("RT", format(radius, scientific=FALSE), sep=".")) return(z) }) if (addinfo) { res <- lapply(res, function(x) { x <- data.frame(x[,2]) names(x) <- paste("RT", format(radius, scientific=FALSE), sep=".") return(x) }) if (!is.null(infolocs(lt))) { il <- infolocs(lt) res <- lapply(1:length(il), function(j) { cbind(il[[j]], res[[j]]) }) } infolocs(lt) <- res res <- lt } else { names(res) <- burst(lt) class(res) <- "resiti" attr(res, "radius") <- radius attr(res, "maxt") <- maxt } return(res) } print.resiti <- function(x, ...) { cat("*****************************\n") cat("* Object of class resiti\n") cat("* (residence time method)\n\n") cat("Radius =", attr(x, "radius"), "\n") cat("Maximum time allowed before coming back in the circle =", attr(x, "maxt"), "seconds\n") cat("This object is a list of data.frames.\nThe following bursts are available:\n") cat(paste("$", names(x), "\n", sep="")) } plot.resiti <- function(x, addpoints=FALSE, addlines=TRUE, ...) { par(mfrow=n2mfrow(length(x))) tmp <- lapply(1:length(x), function(i) { y <- x[[i]] plot(y[,1], y[,2], ty="n", xlab="Date", ylab=paste("Residence Time in a circle of", attr(x, "radius")), main=names(x)[i]) if (addpoints) { points(y[,1], y[,2], pch=16, ...) } if (addlines) lines(y[,1], y[,2]) }) }
expected <- eval(parse(text="structure(c(0.666666666666667, 0.666666666666667, 0.666666666666667, 0.666666666666667, 0.666666666666667, 0.666666666666667, 0.666666666666667, 0.666666666666667, 0.666666666666667), .Dim = c(9L, 1L))")); test(id=0, code={ argv <- eval(parse(text="list(structure(c(0.666666666666667, 0.666666666666667, 0.666666666666667, 0.666666666666667, 0.666666666666667, 0.666666666666667, 0.666666666666667, 0.666666666666667, 0.666666666666667), .Dim = c(1L, 9L)), c(2L, 1L), TRUE)")); .Internal(aperm(argv[[1]], argv[[2]], argv[[3]])); }, o=expected);
aggts <- function(y, levels, forecasts = TRUE) { if (!is.gts(y)) { stop("Argument y must be either a hts or gts object.", call. = FALSE) } if (!forecasts) { y$bts <- y$histy } if (is.hts(y)) { gmat <- GmatrixH(y$nodes) labels <- y$labels } else { gmat <- y$groups labels <- c("Total", y$labels, list(colnames(y$bts))) } if (missing(levels)) { levels <- 1L:nrow(gmat) } else { if (is.character(levels)) { levels <- which(names(y$labels) %in% levels) } levels <- as.integer(levels) + 1L } rSum <- function(x) rowsum(t(y$bts), gmat[x, ], reorder = FALSE) ally <- lapply(levels, rSum) ally <- matrix(unlist(sapply(ally, t)), nrow = nrow(y$bts)) colnames(ally) <- unlist(labels[levels]) tsp.y <- stats::tsp(y$bts) ally <- ts(ally, start = tsp.y[1L], frequency = tsp.y[3L]) class(ally) <- class(y$bts) attr(ally, "msts") <- attr(y$bts, "msts") return(ally) } allts <- function(y, forecasts = TRUE) { if (!is.gts(y)) { stop("Argument y must be either a hts or gts object.", call. = FALSE) } aggts(y = y, forecasts = forecasts) }
context("count lines") f1 <- system.file(package = "fpeek", "datafiles", "cigfou-ISO-8859-1.txt") f2 <- system.file(package = "fpeek", "datafiles", "ISO-8859-1.txt") test_that("ckeck number of lines without eof", { expect_equal(peek_count_lines(f1), 24) expect_equal(peek_count_lines(f2), 0) }) test_that("ckeck number of lines with eof", { expect_equal(peek_count_lines(f1, with_eof = TRUE), 25) expect_equal(peek_count_lines(f2, with_eof = TRUE), 1) })
library(tm) library(tm.plugin.webmining) data(yahoonews) options(width = 60) class(yahoonews) yahoonews meta(yahoonews[[1]], "description") <- paste(substring(meta(yahoonews[[1]], "description"), 1, 70), "...", sep = "") meta(yahoonews[[1]], "id") <- paste(substring(meta(yahoonews[[1]], "id"), 1, 70), "...", sep = "") meta(yahoonews[[1]], "origin") <- paste(substring(meta(yahoonews[[1]], "origin"), 1, 70), "...", sep = "") meta(yahoonews[[1]]) content(yahoonews[[1]]) <- paste(substring(yahoonews[[1]], 1, 100), "...", sep = "") yahoonews[[1]]
library("robustbase") data("coleman") tuning <- list(tuning.psi = c(3.443689, 4.685061)) cvTuning(lmrob, formula = Y ~ ., data = coleman, tuning = tuning, cost = rtmspe, K = 5, R = 10, costArgs = list(trim = 0.1), seed = 1234) call <- call("lmrob", formula = Y ~ .) cvTuning(call, data = coleman, y = coleman$Y, tuning = tuning, cost = rtmspe, K = 5, R = 10, costArgs = list(trim = 0.1), seed = 1234)
bw.gwr<-function(formula, data, approach="CV",kernel="bisquare",adaptive=FALSE, p=2, theta=0, longlat=F,dMat,parallel.method=F,parallel.arg=NULL) { if (is(data, "Spatial")) { dp.locat<-coordinates(data) data <- as(data, "data.frame") } else { stop("Given regression data must be Spatial*DataFrame") } mf <- match.call(expand.dots = FALSE) m <- match(c("formula", "data"), names(mf), 0L) mf <- mf[c(1L, m)] mf$drop.unused.levels <- TRUE mf[[1L]] <- as.name("model.frame") mf <- eval(mf, parent.frame()) mt <- attr(mf, "terms") y <- model.extract(mf, "response") x <- model.matrix(mt, mf) dp.n<-nrow(data) if(dp.n>1500) { cat("Take a cup of tea and have a break, it will take a few minutes.\n") cat(" -----A kind suggestion from GWmodel development group\n") } if (missing(dMat)) { dMat <- NULL DM.given<-F if(dp.n + dp.n <= 10000) { dMat <- gw.dist(dp.locat=dp.locat, rp.locat=dp.locat, p=p, theta=theta, longlat=longlat) DM.given<-T } } else { DM.given<-T dim.dMat<-dim(dMat) if (dim.dMat[1]!=dp.n||dim.dMat[2]!=dp.n) stop ("Dimensions of dMat are not correct") } if(adaptive) { upper<-dp.n lower<-20 } else { if(DM.given) { upper<-range(dMat)[2] lower<-upper/5000 } else { dMat<-NULL if (p==2) { b.box<-bbox(dp.locat) upper<-sqrt((b.box[1,2]-b.box[1,1])^2+(b.box[2,2]-b.box[2,1])^2) lower<-upper/5000 } else { upper<-0 for (i in 1:dp.n) { dist.vi<-gw.dist(dp.locat=dp.locat, focus=i, p=p, theta=theta, longlat=longlat) upper<-max(upper, range(dist.vi)[2]) } lower<-upper/5000 } } } bw<-NA if (parallel.method == "cluster") { if (missing(parallel.arg)) { cl.n <- max(detectCores() - 4, 2) parallel.arg <- makeCluster(cl.n) } else cl.n <- length(parallel.arg) clusterCall(parallel.arg, function() { library(GWmodel) }) } if(approach == "bic" || approach == "BIC") bw <- gold(gwr.bic, lower, upper, adapt.bw = adaptive, x, y, kernel, adaptive, dp.locat, p, theta, longlat, dMat, T, parallel.method, parallel.arg) else if(approach == "aic" || approach == "AIC" || approach == "AICc") bw <- gold(gwr.aic, lower, upper, adapt.bw = adaptive, x, y, kernel, adaptive, dp.locat, p, theta, longlat, dMat, T, parallel.method, parallel.arg) else bw <- gold(gwr.cv, lower, upper, adapt.bw = adaptive, x, y, kernel, adaptive, dp.locat, p, theta, longlat, dMat, T, parallel.method, parallel.arg) if (parallel.method == "cluster") { if (missing(parallel.arg)) stopCluster(parallel.arg) } bw } gwr.cv<-function(bw, X, Y, kernel="bisquare",adaptive=FALSE, dp.locat, p=2, theta=0, longlat=F,dMat, verbose=T,parallel.method=F,parallel.arg=NULL) { dp.n<-length(dp.locat[,1]) if (missing(dMat)) dMat <- matrix(0, 0, 0) else if (is.null(dMat) || !is.matrix(dMat)) { DM.given<-F dMat <- matrix(0, 0, 0) } else { DM.given<-T dim.dMat<-dim(dMat) if (dim.dMat[1]!=dp.n||dim.dMat[2]!=dp.n) stop ("Dimensions of dMat are not correct") } gw.resi <- NULL if (parallel.method == FALSE) { gw.resi <- try(gw_cv_all(X, Y, dp.locat, DM.given, dMat, p, theta, longlat, bw, kernel, adaptive)) if(!inherits(gw.resi, "try-error")) CV.score <- gw.resi else CV.score <- Inf } else if (parallel.method == "omp") { if (missing(parallel.arg)) { threads <- 0 } else { threads <- ifelse(is(parallel.arg, "numeric"), parallel.arg, 0) } gw.resi <- try(gw_cv_all_omp(X, Y, dp.locat, DM.given, dMat, p, theta, longlat, bw, kernel, adaptive, threads)) if(!inherits(gw.resi, "try-error")) CV.score <- gw.resi else CV.score <- Inf } else if (parallel.method == "cuda") { if (missing(parallel.arg)) { groupl <- 0 } else { groupl <- ifelse(is(parallel.arg, "numeric"), parallel.arg, 0) } gw.resi <- try(gw_cv_all_cuda(X, Y, dp.locat, DM.given, dMat, p, theta, longlat, bw, kernel, adaptive, groupl)) if(!inherits(gw.resi, "try-error")) CV.score <- gw.resi else CV.score <- Inf } else if (parallel.method == "cluster") { print("Parallel using cluster.") cl.n <- length(parallel.arg) cl.results <- clusterApplyLB(parallel.arg, 1:cl.n, function(group.i, cl.n, x, y, dp.locat, DM.given, dMat, p, theta, longlat, bw, kernel, adaptive) { cv.result <- try(gw_cv_all(x, y, dp.locat, DM.given, dMat, p, theta, longlat, bw, kernel, adaptive, cl.n, group.i)) if(!inherits(gw.resi, "try-error")) return(cv.result) else return(Inf) }, cl.n, X, Y, dp.locat, DM.given, dMat, p, theta, longlat, bw, kernel, adaptive) gw.resi <- unlist(cl.results) if (!all(is.infinite(gw.resi))) CV.score <- sum(gw.resi) else CV.score <- Inf } else { CV<-numeric(dp.n) for (i in 1:dp.n) { if (DM.given) dist.vi<-dMat[,i] else dist.vi<-gw.dist(dp.locat=dp.locat, focus=i, p=p, theta=theta, longlat=longlat) W.i<-gw.weight(dist.vi,bw,kernel,adaptive) W.i[i]<-0 gw.resi<- try(gw_reg(X, Y, W.i, FALSE, i)) if(!inherits(gw.resi, "try-error")) { yhat.noi<-X[i,]%*%gw.resi[[1]] CV[i]<-Y[i]-yhat.noi } else { CV[i]<-Inf break } } if (!any(is.infinite(CV))) CV.score<-t(CV) %*% CV else CV.score<-Inf } if(verbose) { if(adaptive) cat("Adaptive bandwidth:", bw, "CV score:", CV.score, "\n") else cat("Fixed bandwidth:", bw, "CV score:", CV.score, "\n") } ifelse(is.nan(CV.score), Inf, CV.score) } gwr.cv.contrib<-function(bw, X, Y, kernel="bisquare",adaptive=FALSE, dp.locat, p=2, theta=0, longlat=F,dMat,parallel.method=F,parallel.arg=NULL) { dp.n<-length(dp.locat[,1]) if (is.null(dMat)) DM.given<-F else { if(dim(dMat)[1]==1) { DM.given <- F } else { DM.given<-T dim.dMat<-dim(dMat) if (dim.dMat[1]!=dp.n||dim.dMat[2]!=dp.n) stop("Dimensions of dMat are not correct") } } CV<-numeric(dp.n) for (i in 1:dp.n) { if (DM.given) dist.vi<-dMat[,i] else { dist.vi<-gw.dist(dp.locat=dp.locat, focus=i, p=p, theta=theta, longlat=longlat) } W.i<-gw.weight(dist.vi,bw,kernel,adaptive) W.i[i]<-0 gw.resi<- try(gw_reg(X, Y, W.i, FALSE, i)) if(!inherits(gw.resi, "try-error")) { yhat.noi <- X[i,] %*% gw.resi[[1]] CV[i] <- Y[i] - yhat.noi } else { CV[i]<-Inf break } } CV } gwr.aic<-function(bw, X, Y, kernel="bisquare",adaptive=FALSE, dp.locat, p=2, theta=0, longlat=F,dMat, verbose=T,parallel.method=F,parallel.arg=NULL) { dp.n<-length(dp.locat[,1]) var.n <- ncol(X) if (missing(dMat)) { DM.given <- F dMat <- matrix(0, 0, 0) } else if (is.null(dMat) || !is.matrix(dMat)) { DM.given<-F dMat <- matrix(0, 0, 0) } else { DM.given<-T dim.dMat<-dim(dMat) if (dim.dMat[1]!=dp.n||dim.dMat[2]!=dp.n) stop ("Dimensions of dMat are not correct") } AICc.value <- Inf if (parallel.method == FALSE) { res <- try(gw_reg_all(X, Y, dp.locat, FALSE, dp.locat, DM.given, dMat, TRUE, p, theta, longlat, bw, kernel, adaptive)) if(!inherits(res, "try-error")) { betas <- res$betas s_hat <- res$s_hat AICc.value <- AICc1(Y, X, betas, s_hat) } else AICc.value <- Inf } else if (parallel.method == "omp") { if (missing(parallel.arg)) { threads <- 0 } else { threads <- ifelse(is(parallel.arg, "numeric"), parallel.arg, 0) } res <- try(gw_reg_all_omp(X, Y, dp.locat, FALSE, dp.locat, DM.given, dMat, TRUE, p, theta, longlat, bw, kernel, adaptive, threads)) if(!inherits(res, "try-error")) { betas <- res$betas s_hat <- res$s_hat AICc.value <- AICc1(Y, X, betas, s_hat) } else AICc.value <- Inf } else if (parallel.method == "cuda") { if (missing(parallel.arg)) { groupl <- 0 } else { groupl <- ifelse(is(parallel.arg, "numeric"), parallel.arg, 0) } res <- try(gw_reg_all_cuda(X, Y, dp.locat, FALSE, dp.locat, DM.given, dMat, TRUE, p, theta, longlat, bw, kernel, adaptive, groupl)) if(!inherits(res, "try-error")) { betas <- res$betas s_hat <- res$s_hat AICc.value <- AICc1(Y, X, betas, s_hat) } else AICc.value <- Inf } else if (parallel.method == "cluster") { cl.n <- length(parallel.arg) cl.results <- clusterApplyLB(parallel.arg, 1:cl.n, function(group.i, cl.n, x, y, dp.locat, DM.given, dMat, p, theta, longlat, bw, kernel, adaptive) { res <- try(gw_reg_all(x, y, dp.locat, FALSE, dp.locat, DM.given, dMat, TRUE, p, theta, longlat, bw, kernel, adaptive, cl.n, group.i)) if(!inherits(res, "try-error")) return(res) else return(NULL) }, cl.n, X, Y, dp.locat, DM.given, dMat, p, theta, longlat, bw, kernel, adaptive) if (!any(is.null(cl.results))) { betas <- matrix(0, nrow = dp.n, ncol=var.n) s_hat <- numeric(2) for (i in 1:cl.n) { res <- cl.results[[i]] betas = betas + res$betas s_hat = s_hat + res$s_hat } AICc.value <- AICc1(Y, X, betas, s_hat) } else AICc.value <- Inf } else { s_hat <- numeric(2) betas <- matrix(nrow = dp.n, ncol = var.n) for (i in 1:dp.n) { if (DM.given) dist.vi <- dMat[,i] else dist.vi <- gw.dist(dp.locat=dp.locat, focus=i, p=p, theta=theta, longlat=longlat) W.i <- gw.weight(dist.vi,bw,kernel,adaptive) res<- try(gw_reg(X,Y,W.i,TRUE,i)) if(!inherits(res, "try-error")) { si <- res[[2]] s_hat[1] = s_hat[1] + si[i] s_hat[2] = s_hat[2] + sum(tcrossprod(si)) betas[i,] <- res[[1]] } else { s_hat[1] <- Inf s_hat[2] <- Inf break } } if (!any(is.infinite(s_hat))) { AICc.value <- AICc1(Y, X, betas, s_hat) } else AICc.value<-Inf } if(is.nan(AICc.value)) AICc.value <- Inf if(verbose) { if(adaptive) cat("Adaptive bandwidth (number of nearest neighbours):", bw, "AICc value:", AICc.value, "\n") else cat("Fixed bandwidth:", bw, "AICc value:", AICc.value, "\n") } AICc.value } gwr.bic<-function(bw, X, Y, kernel="bisquare",adaptive=FALSE, dp.locat, p=2, theta=0, longlat=F,dMat, verbose=T,parallel.method=F,parallel.arg=NULL) { dp.n<-length(dp.locat[,1]) var.n <- ncol(X) if (missing(dMat)) { DM.given <- F dMat <- matrix(0, 0, 0) } else if (is.null(dMat) || !is.matrix(dMat)) { DM.given<-F dMat <- matrix(0, 0, 0) } else { DM.given<-T dim.dMat<-dim(dMat) if (dim.dMat[1]!=dp.n||dim.dMat[2]!=dp.n) stop ("Dimensions of dMat are not correct") } BIC.value <- Inf if (parallel.method == FALSE) { res <- try(gw_reg_all(X, Y, dp.locat, FALSE, dp.locat, DM.given, dMat, TRUE, p, theta, longlat, bw, kernel, adaptive)) if(!inherits(res, "try-error")) { betas <- res$betas s_hat <- res$s_hat BIC.value <- gw_BIC(Y, X, betas, s_hat) } else BIC.value <- Inf } else if (parallel.method == "omp") { if (missing(parallel.arg)) { threads <- 0 } else { threads <- ifelse(is(parallel.arg, "numeric"), parallel.arg, 0) } res <- try(gw_reg_all_omp(X, Y, dp.locat, FALSE, dp.locat, DM.given, dMat, TRUE, p, theta, longlat, bw, kernel, adaptive, threads)) if(!inherits(res, "try-error")) { betas <- res$betas s_hat <- res$s_hat BIC.value <- gw_BIC(Y, X, betas, s_hat) } else BIC.value <- Inf } else if (parallel.method == "cuda") { if (missing(parallel.arg)) { groupl <- 0 } else { groupl <- ifelse(is(parallel.arg, "numeric"), parallel.arg, 0) } res <- try(gw_reg_all_cuda(X, Y, dp.locat, FALSE, dp.locat, DM.given, dMat, TRUE, p, theta, longlat, bw, kernel, adaptive, groupl)) if(!inherits(res, "try-error")) { betas <- res$betas s_hat <- res$s_hat BIC.value <- gw_BIC(Y, X, betas, s_hat) } else BIC.value <- Inf } else if (parallel.method == "cluster") { cl.n <- length(parallel.arg) cl.results <- clusterApplyLB(parallel.arg, 1:cl.n, function(group.i, cl.n, x, y, dp.locat, DM.given, dMat, p, theta, longlat, bw, kernel, adaptive) { res <- try(gw_reg_all(x, y, dp.locat, FALSE, dp.locat, DM.given, dMat, TRUE, p, theta, longlat, bw, kernel, adaptive, cl.n, group.i)) if(!inherits(res, "try-error")) return(res) else return(NULL) }, cl.n, X, Y, dp.locat, DM.given, dMat, p, theta, longlat, bw, kernel, adaptive) if (!any(is.null(cl.results))) { betas <- matrix(0, nrow = dp.n, ncol=var.n) s_hat <- numeric(2) for (i in 1:cl.n) { res <- cl.results[[i]] betas = betas + res$betas s_hat = s_hat + res$s_hat } BIC.value <- gw_BIC(Y, X, betas, s_hat) } else BIC.value <- Inf } else { s_hat <- numeric(2) betas <- matrix(nrow = dp.n, ncol = var.n) for (i in 1:dp.n) { if (DM.given) dist.vi <- dMat[,i] else dist.vi <- gw.dist(dp.locat=dp.locat, focus=i, p=p, theta=theta, longlat=longlat) W.i <- gw.weight(dist.vi,bw,kernel,adaptive) res<- try(gw_reg(X,Y,W.i,TRUE,i)) if(!inherits(res, "try-error")) { si <- res[[2]] s_hat[1] = s_hat[1] + si[i] s_hat[2] = s_hat[2] + sum(tcrossprod(si)) betas[i,] <- res[[1]] } else { s_hat[1] <- Inf s_hat[2] <- Inf break } } if (!any(is.infinite(s_hat))) { BIC.value <- gw_BIC(Y, X, betas, s_hat) } else BIC.value <-Inf } if(is.nan(BIC.value)) BIC.value <- Inf if(verbose) { if(adaptive) cat("Adaptive bandwidth (number of nearest neighbours):", bw, "BIC value:", BIC.value, "\n") else cat("Fixed bandwidth:", bw, "BIC value:", BIC.value, "\n") } BIC.value } gold<-function(fun,xL,xU,adapt.bw=F,...){ eps=1e-4 R <- (sqrt(5)-1)/2 iter <- 1 d <- R*(xU-xL) if (adapt.bw) { x1 <- floor(xL+d) x2 <- round(xU-d) } else { x1 <- xL+d x2 <- xU-d } f1 <- eval(fun(x1,...)) f2 <- eval(fun(x2,...)) d1<-f2-f1 if (f1 < f2) xopt <- x1 else xopt <- x2 ea <- 100 while ((abs(d) > eps) && (abs(d1) > eps)) { d <- R*d if (f1 < f2) { xL <- x2 x2 <- x1 if (adapt.bw) x1 <- round(xL+d) else x1 <- xL+d f2 <- f1 f1 <- eval(fun(x1,...)) } else { xU <- x1 x1 <- x2 if (adapt.bw) x2 <- floor(xU - d) else x2 <- xU - d f1 <- f2 f2 <- eval(fun(x2,...)) } iter <- iter + 1 if (f1 < f2) xopt <- x1 else xopt <- x2 d1<-f2-f1 } xopt }
library("RUnit") library("chngpt") test.hinge.test <- function() { suppressWarnings(RNGversion("3.5.0")) RNGkind("Mersenne-Twister", "Inversion") tolerance=1e-6 if((file.exists("D:/gDrive/3software/_checkReproducibility") | file.exists("~/_checkReproducibility")) & R.Version()$system %in% c("x86_64, mingw32","x86_64, linux-gnu")) tolerance=1e-6 verbose=0 dat=sim.hinge(threshold.type = 'NA',family = 'binomial',thres='NA',X.ditr = 'norm',mu.X = c(0,0,0),coef.X = c(0,.5,.5,.4),cov.X = diag(3),eps.sd = 1,seed = 1,n=100) test=hinge.test(Y~X1+X2, "x", family="binomial", data=dat, thres = NA,lb.quantile=.1,ub.quantile=.9,chngpts.cnt=10,'method'='FDB',boot.B=1e2); test$p.value checkEqualsNumeric(test$p.value, 0.70, tolerance=tolerance) test=hinge.test(Y~X1+X2, "x", family="binomial", data=dat, thres = NA,lb.quantile=.1,ub.quantile=.9,chngpts.cnt=10,'method'='B',boot.B=1e2); test$p.value checkEqualsNumeric(test$p.value, 0.76, tolerance=tolerance) dat=sim.hinge(threshold.type = 'NA',family = 'gaussian',thres='NA',X.ditr = 'norm',mu.X = c(0,0,0),coef.X = c(0,.5,.5,.5),cov.X = diag(3),eps.sd = 1,seed = 1,n=100) test=hinge.test(Y~X1+X2, "x", family="gaussian", data=dat, thres = NA,lb.quantile=.1,ub.quantile=.9,chngpts.cnt=10,'method'='B',boot.B=1e2); test$p.value checkEqualsNumeric(test$p.value, .9,tolerance=tolerance) test=hinge.test(Y~X1+X2, "x", family="gaussian", data=dat, thres = NA,lb.quantile=.1,ub.quantile=.9,chngpts.cnt=10,'method'='FDB',boot.B=1e2); test$p.value checkEqualsNumeric(test$p.value, .97,tolerance=tolerance) }
UseProbability <- R6::R6Class( classname = "UseProbability", inherit = SummaryFunction, portable = TRUE, public = list( initialize = function() { super$initialize(c("ROC", "Sens", "Spec", "Kappa", "Accuracy", "TCR_9", "MCC", "PPV")) }, execute = function(data, lev = NULL, model = NULL) { lvls <- levels(data$obs) if (length(lvls) > 2) stop("[", class(self)[1], "][FATAL] Your outcome has ", length(lvls), " levels. The 'UseProbability' function is not appropriate. Aborting...") if (!all(levels(data[, "pred"]) == lvls)) stop("[", class(self)[1], "][FATAL] Levels of observed and predicted data ", "do not match. Aborting...") data$y = as.numeric(data$obs == lvls[2]) data$z = as.numeric(data$pred == lvls[2]) rocAUC <- ModelMetrics::auc(ifelse(data$obs == lev[2], 0, 1), data[, lvls[1]]) confMat <- caret::confusionMatrix(table(data$z, data$y), positive = "1") mcc <- mltools::mcc(TP = confMat$table[1, 1], FP = confMat$table[1, 2], TN = confMat$table[2, 2], FN = confMat$table[2, 1]) ppv <- (confMat$table[1, 1] / (confMat$table[1, 1] + confMat$table[1, 2])) fn_tcr_9 <- (9 * confMat$table[1, 2] + confMat$table[2, 1]) / (9 * (confMat$table[1, 2] + confMat$table[2, 2]) + confMat$table[2, 1] + confMat$table[1, 1]) out <- c(rocAUC, caret::sensitivity(data[, "pred"], data[, "obs"], lev[1]), caret::specificity(data[, "pred"], data[, "obs"], lev[2]), confMat$overall['Kappa'], confMat$overall['Accuracy'], fn_tcr_9, mcc, ppv) names(out) <- c("ROC", "Sens", "Spec", "Kappa", "Accuracy", "TCR_9", "MCC", "PPV") out } ) )
"predict.quantregForest"<-function(object,newdata=NULL, what=c(0.1,0.5,0.9),... ) { class(object) <- "randomForest" if(is.null(newdata)){ if(is.null(object[["valuesOOB"]])) stop("need to fit with option keep.inbag=TRUE \n if trying to get out-of-bag observations") valuesPredict <- object[["valuesOOB"]] }else{ predictNodes <- attr(predict(object,newdata=newdata,nodes=TRUE),"nodes") rownames(predictNodes) <- NULL valuesPredict <- 0*predictNodes ntree <- ncol(object[["valuesNodes"]]) for (tree in 1:ntree){ valuesPredict[,tree] <- object[["valuesNodes"]][ predictNodes[,tree],tree] } } if(is.function(what)){ if(is.function(what(1:4))){ result <- apply(valuesPredict,1,what) }else{ if(length(what(1:4))==1){ result <- apply(valuesPredict,1,what) }else{ result <- t(apply(valuesPredict,1,what)) } } }else{ if( !is.numeric(what)) stop(" `what' needs to be either a function or a vector with quantiles") if( min(what)<0) stop(" if `what' specifies quantiles, the minimal values needs to be non-negative") if( max(what)>1) stop(" if `what' specifies quantiles, the maximal values cannot exceed 1") if(length(what)==1){ result <- apply( valuesPredict,1,quantile, what,na.rm=TRUE) }else{ result <- t(apply( valuesPredict,1,quantile, what,na.rm=TRUE)) colnames(result) <- paste("quantile=",what) } } return(result) }
library(datasets) X = cbind(attenu$mag, attenu$dist) colnames(X) = c("mag", "dist") X_s = cbind(attenu$mag, 1 / attenu$dist) colnames(X_s) = c("mag", "dist_inv") fit = lmvar(attenu$accel, X, X_s) vcov(fit) vcov(fit, sigma = FALSE) vcov(fit, mu = FALSE)
wishart <- "ignored" blmer <- function(formula, data = NULL, REML = TRUE, control = lmerControl(), start = NULL, verbose = 0L, subset, weights, na.action, offset, contrasts = NULL, devFunOnly = FALSE, cov.prior = wishart, fixef.prior = NULL, resid.prior = NULL, ...) { mc <- mcout <- match.call() callingEnv <- parent.frame(1L) missCtrl <- missing(control) missCovPrior <- missing(cov.prior) if (!missCtrl && !inherits(control, "lmerControl")) { if(!is.list(control)) stop("'control' is not a list; use lmerControl()") warning("passing control as list is deprecated: please use lmerControl() instead", immediate.=TRUE) control <- do.call(lmerControl, control) } if (!is.null(list(...)[["family"]])) { warning("calling lmer with 'family' is deprecated; please use glmer() instead") mc[[1]] <- quote(lme4::glmer) if(missCtrl) mc$control <- glmerControl() return(eval(mc, parent.frame(1L))) } fixef.prior <- mc$fixef.prior cov.prior <- if (!missCovPrior) mc$cov.prior else formals(blmer)$cov.prior resid.prior <- mc$resid.prior if (!is.null(mc$var.prior)) resid.prior <- parse(text = mc$var.prior)[[1]] mc$fixef.prior <- NULL mc$cov.prior <- NULL mc$resid.prior <- NULL mc$var.prior <- NULL sigmaIsFixed <- !is.null(resid.prior) && ((is.character(resid.prior) && grepl("^\\W*point", resid.prior)) || (is.call(resid.prior) && resid.prior[[1]] == "point")) if (sigmaIsFixed) { control$checkControl$check.nobs.vs.nlev <- "ignore" control$checkControl$check.nobs.vs.rankZ <- "ignore" control$checkControl$check.nobs.vs.nRE <- "ignore" } hasPseudoData <- !is.null(fixef.prior) && ((is.character(fixef.prior) && grepl("^\\W*normal", fixef.prior)) || (is.call(fixef.prior) && fixef.prior[[1]] == "normal")) if (hasPseudoData) { control$checkControl$check.rankX <- "ignore" } mc$control <- control mc[[1]] <- quote(lme4::lFormula) lmod <- eval(mc, parent.frame(1L)) mcout$formula <- lmod$formula lmod$formula <- NULL lmerStart <- NULL if (!is.null(start) && is.list(start) && length(start) > 1) lmerStart <- start$theta devfun <- do.call(mkBlmerDevfun, c(lmod, lmod$X, lmod$reTrms, list(priors = list(covPriors = cov.prior, fixefPrior = fixef.prior, residPrior = resid.prior), start = lmerStart, verbose = verbose, control = control, env = callingEnv))) if (devFunOnly) return(devfun) devFunEnv <- environment(devfun) opt <- if (control$optimizer=="none") list(par=NA,fval=NA,conv=1000,message="no optimization") else { optimizeLmer(devfun, optimizer = control$optimizer, restart_edge = control$restart_edge, boundary.tol = control$boundary.tol, control = control$optCtrl, verbose=verbose, start=start, calc.derivs=control$calc.derivs, use.last.params=control$use.last.params) } cc <- NULL lme4Namespace <- getNamespace("lme4") if (exists("checkConv", lme4Namespace)) { checkConv <- get("checkConv", lme4Namespace) cc <- checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, lbound = environment(devfun)$lower) } args <- list(rho = devFunEnv, opt = opt, reTrms = lmod$reTrms, fr = lmod$fr, mc = mcout) if ("lme4conv" %in% names(formals(mkMerMod))) args$lme4conv <- cc result <- do.call(mkMerMod, args, TRUE) result <- repackageMerMod(result, opt, devFunEnv) return(result) } bglmer <- function(formula, data = NULL, family = gaussian, control = glmerControl(), start = NULL, verbose = 0L, nAGQ = 1L, subset, weights, na.action, offset, contrasts = NULL, mustart, etastart, devFunOnly = FALSE, cov.prior = wishart, fixef.prior = NULL, ...) { covPriorMissing <- missing(cov.prior) callingEnv <- parent.frame(1L) if (!inherits(control, "glmerControl")) { if(!is.list(control)) stop("'control' is not a list; use glmerControl()") msg <- "Use control=glmerControl(..) instead of passing a list" if(length(cl <- class(control))) msg <- paste(msg, "of class", dQuote(cl[1])) warning(msg, immediate.=TRUE) control <- do.call(glmerControl, control) } mc <- mcout <- match.call() fixef.prior <- mc$fixef.prior cov.prior <- if (!covPriorMissing) mc$cov.prior else formals(bglmer)$cov.prior mc$fixef.prior <- NULL mc$cov.prior <- NULL if (is.character(family)) family <- get(family, mode = "function", envir = parent.frame(2)) if( is.function(family)) family <- family() if (isTRUE(all.equal(family, gaussian()))) { warning("calling bglmer() with family=gaussian (identity link) as a shortcut to blmer() is deprecated;", " please call blmer() directly") mc[[1]] <- quote(blme::blmer) mc["family"] <- NULL return(eval(mc, parent.frame())) } mc[[1]] <- quote(lme4::glFormula) glmod <- eval(mc, parent.frame(1L)) mcout$formula <- glmod$formula glmod$formula <- NULL nAGQinit <- if(control$nAGQ0initStep) 0L else 1L devfun <- do.call(mkBglmerDevfun, c(glmod, list(priors = list(covPriors = cov.prior, fixefPrior = fixef.prior), verbose = verbose, control = control, nAGQ = nAGQinit, env = callingEnv))) if (nAGQ==0 && devFunOnly) return(devfun) if (is.list(start)) { start.bad <- setdiff(names(start),c("theta","fixef")) if (length(start.bad)>0) { stop(sprintf("bad name(s) for start vector (%s); should be %s and/or %s", paste(start.bad,collapse=", "), shQuote("theta"), shQuote("fixef")),call.=FALSE) } if (!is.null(start$fixef) && nAGQ==0) stop("should not specify both start$fixef and nAGQ==0") } if (packageVersion("lme4") <= "1.1-7" || identical(control$nAGQ0initStep, TRUE)) { args <- list(devfun = devfun, optimizer = control$optimizer[[1]], restart_edge = if (nAGQ == 0) control$restart_edge else FALSE, control = control$optCtrl, start = start, nAGQ = 0, verbose = verbose) if (!is.null(formals(optimizeGlmer)$boundary.tol)) args$boundary.tol <- if (nAGQ == 0) control$boundary.tol else 0 if (!is.null(formals(optimizeGlmer)[["..."]])) args$calc.derivs <- FALSE opt <- do.call(optimizeGlmer, args, TRUE) } if(nAGQ > 0L) { start <- get("updateStart", getNamespace("lme4"))(start,theta=opt$par) devfun <- updateBglmerDevfun(devfun, glmod$reTrms, nAGQ = nAGQ) if (devFunOnly) return(devfun) args <- list(devfun = devfun, optimizer = control$optimizer[[2]], restart_edge = control$restart_edge, control = control$optCtrl, start = start, nAGQ = nAGQ, verbose = verbose, stage = 2) if (!is.null(formals(optimizeGlmer)$boundary.tol)) args$boundary.tol <- control$boundary.tol if (!is.null(formals(optimizeGlmer)[["..."]])) { args$calc.derivs <- control$calc.derivs args$use.last.params <- control$use.last.params } opt <- do.call(optimizeGlmer, args, TRUE) } lme4Namespace <- getNamespace("lme4") cc <- if (!is.null(control$calc.derivs) && !control$calc.derivs) NULL else { if (exists("checkConv", lme4Namespace)) { if (verbose > 10) cat("checking convergence\n") checkConv <- get("checkConv", lme4Namespace) checkConv(attr(opt,"derivs"), opt$par, ctrl = control$checkConv, lbound = environment(devfun)$lower) } else NULL } args <- list(rho = environment(devfun), opt = opt, reTrms = glmod$reTrms, fr = glmod$fr, mc = mcout) if ("lme4conv" %in% names(formals(mkMerMod))) args$lme4conv <- cc result <- do.call(mkMerMod, args, TRUE) result <- repackageMerMod(result, opt, environment(devfun)) return(result) } lmmObjective <- function(pp, resp, sigma, exponentialTerms, polynomialTerm, blmerControl) { sigma.sq <- sigma^2 result <- resp$objective(pp$ldL2(), pp$ldRX2(), pp$sqrL(1.0), sigma.sq) exponentialTerm <- 0 for (i in seq_along(exponentialTerms)) { power <- as.numeric(names(exponentialTerms)[[i]]) value <- exponentialTerms[[i]] if (!is.finite(value)) return(value) exponentialTerm <- exponentialTerm + value * sigma^power } priorPenalty <- exponentialTerm + polynomialTerm + blmerControl$constant + blmerControl$df * log(sigma.sq) result <- result + priorPenalty return(result) } repackageMerMod <- function(merMod, opt, devFunEnv) { isLMM <- is(merMod, "lmerMod") blmerControl <- devFunEnv$blmerControl priors <- devFunEnv$priors sigma <- NULL if (isLMM) { expandParsInCurrentFrame(opt$par, devFunEnv$parInfo) if (blmerControl$fixefOptimizationType != FIXEF_OPTIM_NUMERIC) beta <- merMod@pp$beta(1.0) else merMod@beta <- beta if (blmerControl$sigmaOptimizationType == SIGMA_OPTIM_POINT) sigma <- priors$residPrior@value } else { beta <- opt$par[-devFunEnv$dpars] } if (!is.null(merMod@optinfo)) { parLength <- devFunEnv$parInfo$theta$length + if (!isLMM) devFunEnv$parInfo$beta$length else 0 if (parLength != length(merMod@optinfo$val)) { merMod@optinfo$val_full <- merMod@optinfo$val merMod@optinfo$derivs_full <- merMod@optinfo$derivs merMod@optinfo$val <- merMod@optinfo$val[parLength] merMod@optinfo$derivs$gradient <- merMod@optinfo$derivs$gradient[parLength] merMod@optinfo$derivs$Hessian <- merMod@optinfo$derivs$Hessian[parLength, parLength, drop = FALSE] } } Lambda.ts <- getCovBlocks(merMod@pp$Lambdat, devFunEnv$ranefStructure) exponentialTerms <- calculatePriorExponentialTerms(priors, beta, Lambda.ts, sigma) if (isLMM) { if (blmerControl$fixefOptimizationType == FIXEF_OPTIM_NUMERIC) { fixefExponentialTerm <- calculateFixefExponentialTerm(beta, merMod@pp$beta(1.0), merMod@pp$RX()) if (is.null(exponentialTerms[["-2"]])) { exponentialTerms[["-2"]] <- fixefExponentialTerm } else { exponentialTerms[["-2"]] <- exponentialTerms[["-2"]] + fixefExponentialTerm } } if (!is.null(exponentialTerms[["-2"]])) merMod@devcomp$cmp[["pwrss"]] <- merMod@devcomp$cmp[["pwrss"]] + as.numeric(exponentialTerms[["-2"]]) sigmaOptimizationType <- blmerControl$sigmaOptimizationType if (sigmaOptimizationType %not_in% c(SIGMA_OPTIM_NA, SIGMA_OPTIM_POINT, SIGMA_OPTIM_NUMERIC)) { profileSigma <- getSigmaProfiler(priors, blmerControl) sigma <- profileSigma(merMod@pp, merMod@resp, exponentialTerms, blmerControl) } numObs <- merMod@devcomp$dims[["n"]] numFixef <- merMod@devcomp$dims[["p"]] if (merMod@devcomp$dims[["REML"]] > 0L) { merMod@devcomp$cmp[["sigmaREML"]] <- sigma merMod@devcomp$cmp[["sigmaML"]] <- sigma * sqrt((numObs - numFixef) / numObs) } else { merMod@devcomp$cmp[["sigmaML"]] <- sigma merMod@devcomp$cmp[["sigmaREML"]] <- sigma * sqrt(numObs / (numObs - numFixef)) } objectiveValue <- merMod@resp$objective(merMod@pp$ldL2(), merMod@pp$ldRX2(), merMod@pp$sqrL(1.0), sigma^2) if (blmerControl$fixefOptimizationType == FIXEF_OPTIM_NUMERIC) objectiveValue <- objectiveValue + fixefExponentialTerm / sigma^2 if (merMod@devcomp$dims[["REML"]] > 0L) { priorPenalty <- merMod@devcomp$cmp[["REML"]] - objectiveValue merMod@devcomp$cmp[["REML"]] <- objectiveValue } else { priorPenalty <- merMod@devcomp$cmp[["dev"]] - objectiveValue merMod@devcomp$cmp[["dev"]] <- objectiveValue } merMod@devcomp$cmp[["penalty"]] <- priorPenalty return(new("blmerMod", resp = merMod@resp, Gp = merMod@Gp, call = merMod@call, frame = merMod@frame, flist = merMod@flist, cnms = merMod@cnms, lower = merMod@lower, theta = merMod@theta, beta = beta, u = merMod@u, devcomp = merMod@devcomp, pp = merMod@pp, optinfo = merMod@optinfo, priors = priors)) } else { if (length(exponentialTerms) > 0) priorPenalty <- exponentialTerms[[1]] + calculatePriorPolynomialTerm(priors$covPriors, Lambda.ts) + blmerControl$constant else priorPenalty <- 0 merMod@devcomp$cmp[["dev"]] <- merMod@devcomp$cmp[["dev"]] - priorPenalty merMod@devcomp$cmp[["penalty"]] <- priorPenalty return(new("bglmerMod", resp = merMod@resp, Gp = merMod@Gp, call = merMod@call, frame = merMod@frame, flist = merMod@flist, cnms = merMod@cnms, lower = merMod@lower, theta = merMod@theta, beta = merMod@beta, u = merMod@u, devcomp = merMod@devcomp, pp = merMod@pp, optinfo = merMod@optinfo, priors = priors)) } } validateRegressionArgument <- function(regression, regressionName) { if (missing(regression)) stop("'regression' missing.") if (is.null(regression)) stop("object '", regressionName, "' is null.") if (!is(regression, "bmerMod")) stop("object '", regressionName, "' does not inherit from S4 class 'bmerMod'.") } setPrior <- function(regression, cov.prior = NULL, fixef.prior = NULL, resid.prior = NULL, envir = parent.frame(1L), ...) { matchedCall <- match.call() covMissing <- missing(cov.prior) fixefMissing <- missing(fixef.prior) residMissing <- missing(resid.prior) validateRegressionArgument(regression, matchedCall$regression) if (residMissing && !is.null(matchedCall$var.prior)) { matchedCall$resid.prior <- matchedCall$var.prior residMissing <- FALSE } priors <- evaluatePriorArguments(matchedCall$cov.prior, matchedCall$fixef.prior, matchedCall$resid.prior, regression@devcomp$dim, colnames(regression@pp$X), regression@cnms, as.integer(diff(regression@Gp) / sapply(regression@cnms, length)), envir) if (!covMissing) regression@covPriors <- priors$covPriors if (!fixefMissing) regression@fixefPrior <- priors$fixefPrior if (!residMissing) regression@residPrior <- priors$residPrior return (regression) } parsePrior <- function(regression, cov.prior = NULL, fixef.prior = NULL, resid.prior = NULL, envir = parent.frame(), ...) { matchedCall <- match.call() covMissing <- missing(cov.prior) fixefMissing <- missing(fixef.prior) residMissing <- missing(resid.prior) validateRegressionArgument(regression, matchedCall$regression) if (residMissing && !is.null(matchedCall$var.prior)) { matchedCall$resid.prior <- matchedCall$var.prior residMissing <- FALSE } priors <- evaluatePriorArguments(matchedCall$cov.prior, matchedCall$fixef.prior, matchedCall$resid.prior, regression@devcomp$dim, colnames(regression@pp$X), regression@cnms, as.integer(diff(regression@Gp) / sapply(regression@cnms, length)), envir) result <- list() if (!covMissing) result$covPriors <- priors$covPriors if (!fixefMissing) result$fixefPrior <- priors$fixefPrior if (!residMissing) result$residPrior <- priors$residPrior if (length(result) == 1) return(result[[1]]) return(result) } if (FALSE) { runOptimizer <- function(regression, verbose = FALSE) { validateRegressionArgument(regression, match.call()$regression) if (verbose) { regression@dims[["verb"]] <- as.integer(1) } else { regression@dims[["verb"]] <- as.integer(0) } return (mer_finalize(regression)) } runOptimizerWithPrior <- function(regression, cov.prior = NULL, fixef.prior = NULL, var.prior = NULL, verbose = FALSE, envir = parent.frame()) { validateRegressionArgument(regression, match.call()$regression) regression <- setPrior(regression, cov.prior, fixef.prior, var.prior, envir) return(runOptimizer(regression, verbose)) } } refit.bmerMod <- function(object, newresp = NULL, rename.response = FALSE, maxit = 100L, ...) { lme4Namespace <- getNamespace("lme4") lme4Version <- packageVersion("lme4") dotsList <- list(...) newControl <- NULL if ("control" %in% names(dotsList)) newControl <- dotsList$control if (!all(names(dotsList) %in% c("control", "verbose"))) warning("additional arguments to refit.bmerMod ignored") newrespSub <- substitute(newresp) if (is.list(newresp)) { if (length(newresp) == 1) { na.action <- attr(newresp,"na.action") newresp <- newresp[[1]] attr(newresp, "na.action") <- na.action } else { stop("refit not implemented for lists with length > 1: ", "consider ", sQuote("lapply(object, refit)")) } } ignore.pars <- c("xst", "xt") control.internal <- object@optinfo$control if (length(ign <- which(names(control.internal) %in% ignore.pars)) > 0L) control.internal <- control.internal[-ign] if (!is.null(newControl)) { control <- newControl if (length(control$optCtrl) == 0L) control$optCtrl <- control.internal } else { control <- if (isGLMM(object)) glmerControl() else lmerControl() } pp <- object@pp$copy() dc <- object@devcomp nAGQ <- unname(dc$dims["nAGQ"]) nth <- dc$dims[["nth"]] verbose <- dotsList$verbose; if (is.null(verbose)) verbose <- 0L if (!is.null(newresp)) { rcol <- attr(attr(model.frame(object), "terms"), "response") if (rename.response) { attr(object@frame,"formula")[[2L]] <- object@call$formula[[2L]] <- newrespSub names(object@frame)[rcol] <- deparse(newrespSub) } if (!is.null(na.act <- attr(object@frame,"na.action")) && is.null(attr(newresp, "na.action"))) { newresp <- if (is.matrix(newresp)) newresp[-na.act, ] else newresp[-na.act] } object@frame[,rcol] <- newresp } rr <- if (isLMM(object)) mkRespMod(model.frame(object), REML = isREML(object)) else if (isGLMM(object)) { modelFrame <- model.frame(object) if (lme4Version <= "1.1-6") modelFrame$mustart <- object@resp$mu mkRespMod(modelFrame, family = family(object)) } else stop("refit.bmerMod not working for nonlinear mixed models") if (!is.null(newresp)) { if (family(object)$family == "binomial") { if (is.matrix(newresp) && ncol(newresp) == 2) { ntot <- rowSums(newresp) newresp <- newresp[,1] / ntot rr$setWeights(ntot) } if (is.factor(newresp)) { newresp <- as.numeric(newresp) - 1 } } stopifnot(length(newresp <- as.numeric(as.vector(newresp))) == length(rr$y)) } glmerPwrssUpdate <- get("glmerPwrssUpdate", lme4Namespace) if (isGLMM(object)) { GQmat <- GHrule(nAGQ) if (nAGQ <= 1) { if (lme4Version <= "1.1-7") glmerPwrssUpdate(pp, rr, control$tolPwrss, GQmat) else glmerPwrssUpdate(pp, rr, control$tolPwrss, GQmat, maxit = maxit) } else { if (lme4Version <= "1.1-7") glmerPwrssUpdate(pp, rr, control$tolPwrss, GQmat, grpFac = object@flist[[1]]) else glmerPwrssUpdate(pp, rr, control$tolPwrss, GQmat, maxit = maxit, grpFac = object@flist[[1]]) } baseOffset <- object@resp$offset } devlist <- if (isGLMM(object)) list(tolPwrss = dc$cmp [["tolPwrss"]], compDev = dc$dims[["compDev"]], nAGQ = unname(nAGQ), lp0 = pp$linPred(1), baseOffset = baseOffset, pwrssUpdate = glmerPwrssUpdate, GQmat = GHrule(nAGQ), fac = object@flist[[1]], pp = pp, resp = rr, u0 = pp$u0, verbose = verbose, dpars = seq_len(nth)) else list(pp = pp, resp = rr, u0 = pp$u0, verbose = verbose, dpars = seq_len(nth)) ff <- makeRefitDevFun(list2env(devlist), nAGQ = nAGQ, verbose = verbose, maxit = maxit, object = object) reTrms <- list(flist = object@flist, cnms = object@cnms, Gp = object@Gp, lower = object@lower) if (isGLMM(object)) ff <- updateBglmerDevfun(ff, reTrms, nAGQ) lower <- environment(ff)$lower calc.derivs <- !is.null(object@optinfo$derivs) opt <- if (isLMM(object)) { optimizeLmer(ff, optimizer = object@optinfo$optimizer, control = control$optCtrl, verbose = verbose, start = extractParameterListFromFit(object, environment(ff)$blmerControl), calc.derivs = calc.derivs, use.last.params = if (!is.null(control$use.last.params)) control$use.last.params else FALSE) } else { args <- list(devfun = ff, optimizer = object@optinfo$optimizer, restart_edge = control$restart_edge, control = control$optCtrl, start = extractParameterListFromFit(object, environment(ff)$blmerControl), nAGQ = nAGQ, verbose = verbose, stage = 2) if (!is.null(formals(optimizeGlmer)$boundary.tol)) args$boundary.tol <- control$boundary.tol if (!is.null(formals(optimizeGlmer)[["..."]])) { args$calc.derivs <- control$calc.derivs args$use.last.params <- if (!is.null(control$use.last.params)) control$use.last.params else FALSE } do.call(optimizeGlmer, args, TRUE) } cc <- NULL if (exists("checkConv", lme4Namespace)) { cc <- get("checkConv", lme4Namespace)(attr(opt,"derivs"), opt$par, ctrl = control$checkConv, lbound = lower) } if (isGLMM(object)) rr$setOffset(baseOffset) args <- list(rho = environment(ff), opt = opt, reTrms = reTrms, fr = object@frame, mc = getCall(object)) if ("lme4conv" %in% names(formals(mkMerMod))) args$lme4conv <- cc result <- do.call(mkMerMod, args, TRUE, sys.frame(0)) repackageMerMod(result, opt, environment(ff)) }
setOldClass("file") setOldClass("pipe") setOldClass("fifo") setOldClass("url") setOldClass("gzfile") setOldClass("bzfile") setOldClass("xzfile") setOldClass("unz") setOldClass("socketConnection") setClassUnion("kRp.connection", members=c("file","pipe","fifo","url","gzfile","bzfile","xzfile","unz","socketConnection"))
output$TableOfEachPrefectures <- renderDataTable({ dt <- totalConfirmedByRegionData() columnName <- c("today", "doubleTimeDay") dt[, (columnName) := replace(.SD, .SD == 0, NA), .SDcols = columnName] displayColumn <- list( "region" = i18n$t("自治体"), "today" = i18n$t("新規"), "totalToday" = i18n$t("感染者数"), "diff" = i18n$t("感染推移"), "active" = i18n$t("現在患者数"), "doubleTimeDay" = i18n$t("倍加日数"), "perHundredThousand" = i18n$t("10万対発生数※"), "group" = i18n$t("カテゴリ"), "Rt" = i18n$t("実効再生産数"), "検査人数" = i18n$t("検査人数"), "前日比" = i18n$t("前日比"), "検査数推移" = i18n$t("検査推移"), "detailBullet" = i18n$t("内訳"), "death" = i18n$t("死亡") ) datatable( data = dt[, names(displayColumn), with = FALSE], colnames = as.vector(unlist(displayColumn)), escape = FALSE, extensions = c("RowGroup", "Buttons"), callback = htmlwidgets::JS(paste0( "table.rowGroup().", ifelse(input$tableOfEachPrefecturesBoxSidebar, "enable()", "disable()"), ".draw();" )), options = list( paging = F, rowGroup = list(dataSrc = 8), dom = "t", scrollY = "540px", scrollX = T, columnDefs = list( list( className = "dt-left", targets = 1 ), list( className = "dt-center", targets = c(3:7, 9) ), list( width = "30px", className = "dt-right", targets = 2 ), list( visible = F, targets = c(6, 8) ), list( render = JS( " function(data, type, row, meta) { const split = data.split('|'); return split[1]; }" ), targets = 1 ), list( render = JS( " function(data, type, row, meta) { const split = data.split('|'); return Number(split[1]).toLocaleString(); }" ), targets = 3 ), list( render = JS( "function(data, type, row, meta) { const split = data.split('|'); return split[1]; }" ), targets = c(7, 9) ) ), fnDrawCallback = htmlwidgets::JS(" function() { HTMLWidgets.staticRender(); } ") ) ) %>% spk_add_deps() %>% formatStyle( columns = "totalToday", background = htmlwidgets::JS( paste0( "'linear-gradient(-90deg, transparent ' + (", max(dt$count), "- value.split('|')[1])/", max(dt$count), " * 100 + '%, max(dt$count), "- value.split('|')[1])/", max(dt$count), " * 100 + '% ' + (", max(dt$count), "- value.split('|')[1] + Number(value.split('|')[2]))/", max(dt$count), " * 100 + '%, max(dt$count), "- value.split('|')[1] + Number(value.split('|')[2]))/", max(dt$count), " * 100 + '%)'" ) ), backgroundSize = "100% 80%", backgroundRepeat = "no-repeat", backgroundPosition = "center" ) %>% formatCurrency( columns = "today", currency = paste(as.character(icon("caret-up")), " "), digits = 0 ) %>% formatStyle( columns = "today", color = do.call( styleInterval, generateColorStyle(data = dt$today, colors = c(lightRed, darkRed), by = 5) ), fontWeight = "bold" ) %>% formatStyle( columns = "active", color = do.call( styleInterval, generateColorStyle(data = dt$active, colors = c(lightYellow, darkRed), by = 100) ), fontWeight = "bold" ) %>% formatCurrency( columns = "active", currency = "", digits = 0 ) %>% formatStyle( columns = "doubleTimeDay", color = do.call( styleInterval, generateColorStyle(data = dt$doubleTimeDay, colors = c(darkRed, lightYellow), by = 5) ), fontWeight = "bold" ) %>% formatStyle( columns = "perHundredThousand", backgroundColor = htmlwidgets::JS( "isNaN(parseFloat(value.match(/\\|(.+?) /)[1])) ? '' : value.match(/\\|(.+?) /)[1] <= 0 ? \"rgba(0,0,0,0)\" : value.match(/\\|(.+?) /)[1] <= 5 ? \" ), fontWeight = "bold" ) %>% formatStyle( columns = "Rt", backgroundColor = htmlwidgets::JS( "isNaN(parseFloat(value.match(/\\|(.+?) /)[1])) ? '' : value.match(/\\|(.+?) /)[1] <= 0.3 ? \"rgba(0,0,0,0)\" : value.match(/\\|(.+?) /)[1] <= 0.6 ? \" ), fontWeight = "bold" ) %>% formatCurrency( columns = "検査人数", currency = "", digits = 0 ) %>% formatStyle( columns = "検査人数", background = styleColorBar(c(0, max(dt$検査人数, na.rm = T)), middleYellow, angle = -90), backgroundSize = "98% 80%", backgroundRepeat = "no-repeat", backgroundPosition = "center" ) %>% formatCurrency( columns = "前日比", currency = paste(as.character(icon("caret-up")), " "), digits = 0 ) %>% formatStyle( columns = "前日比", color = do.call( styleInterval, generateColorStyle(data = dt$前日比, colors = c(lightYellow, darkYellow), by = 50) ), fontWeight = "bold" ) %>% formatStyle( columns = "death", color = do.call( styleInterval, generateColorStyle(data = dt$death, colors = c(lightNavy, darkNavy), by = 10) ), fontWeight = "bold" ) })
lcra = function(formula, data, family, nclasses, manifest, sampler = "JAGS", inits = NULL, dir, n.chains = 3, n.iter = 2000, n.burnin = n.iter/2, n.thin = 1, n.adapt = 1000, useWINE = FALSE, WINE, debug = FALSE, ...) { if(missing(data)) { stop("A data set is required to fit the model.") } if(!is.data.frame(data)) { stop("A data.frame is required to fit the model.") } if(missing(family)) { stop("Family must be specified. Currently the options are 'gaussian' (identity link) and 'binomial' which uses a logit link.") } if(missing(dir)) { dir = tempdir() } if(missing(formula)) { stop("Specify an R formula for the regression model to be fitted. If you only want the latent class analysis, set formula = NULL.") } get_os <- function(){ sysinf <- Sys.info() if (!is.null(sysinf)){ os <- sysinf['sysname'] if (os == 'Darwin') os <- "osx" } else { os <- .Platform$OS.type if (grepl("^darwin", R.version$os)) os <- "osx" if (grepl("linux-gnu", R.version$os)) os <- "linux" } tolower(os) } OS = get_os() if(OS == 'windows') useWINE = FALSE else if(OS == 'osx') useWINE = TRUE else if(OS == 'linux') useWINE = TRUE N = nrow(data) n_manifest = length(manifest) if(is.null(formula)) {do_regression = FALSE} else {do_regression = TRUE} mf = match.call(expand.dots = FALSE) m = match(c("formula", "data"), names(mf)) mf = mf[c(1L, m)] mf[[1L]] = quote(stats::model.frame) mf = eval(mf, parent.frame()) mt = attr(mf, "terms") x = model.matrix(mt, mf) y = mf[[setdiff(names(mf), colnames(x))]] if(any(!(manifest %in% colnames(data)))) { stop("At least one manifest variable name is not in the names of variables in the data set.") } Z = data[,manifest, drop = FALSE] lapply(Z, function(x) { if(!is.numeric(x)) { stop('All manifest variables must be numeric. At least one of the manifest variables you specified is not numeric.') } if(any(x < 0)) { stop('At least one of the manifest variables you specified contains negative values. Code levels of manifest variables to take on values 1 through number of levels.') } }) manifest.levels = apply(Z, 2, function(x) {length(unique(x))}) unique.manifest.levels = unique(manifest.levels) p.length = length(unique.manifest.levels) pclass_prior = round(rep(1/nclasses, nclasses), digits = 3) if(sum(pclass_prior) != 1){ pclass_prior[length(pclass_prior)] = pclass_prior[length(pclass_prior)] + (1 - sum(pclass_prior)) } dat_list = vector(mode = "list", length = 6) prior_mat = matrix(NA, nrow = ncol(Z), ncol = max(unique.manifest.levels)) for(j in 1:length(manifest.levels)) { prior = round(rep(1/manifest.levels[j], manifest.levels[j]), digits = 3) if(sum(prior) != 1){ prior[length(prior)] = prior[length(prior)] + (1 - sum(prior)) } if(length(prior) < length(prior_mat[j,])) { fill = rep(NA, length = (length(prior_mat[j,]) - length(prior))) prior = c(prior, fill) prior_mat[j,] = prior } else { prior_mat[j,] = prior } } names(dat_list) = c("prior_mat", "prior", "Z", "y", "x", "nlevels") dat_list[["prior_mat"]] = structure( .Data=as.vector(prior_mat), .Dim=c(length(manifest.levels), max(unique.manifest.levels)) ) dat_list[["prior"]] = pclass_prior dat_list[["Z"]] = structure( .Data=as.vector(as.matrix(Z)), .Dim=c(N,n_manifest) ) dat_list[["y"]] = y dat_list[["x"]] = structure( .Data=x, .Dim=c(N,ncol(x)) ) nlevels = apply(Z, 2, function(x) {length(unique(x))}) names(nlevels) = NULL dat_list[["nlevels"]] = nlevels n_beta = ncol(x) regression = c() response = c() tau = c() i <- NULL inprod <- NULL alpha <- NULL `logit<-` <- NULL if(family == "gaussian") { response = expr(y[i] ~ dnorm(yhat[i], tau)) regression = expr(yhat[i] <- inprod(x[i,], beta[]) + inprod(C[i,], alpha[])) tau = expr(tau~dgamma(0.1,0.1)) parameters.to.save = c("beta", "true", "alpha", "pi", "theta", "tau") } else if(family == "binomial") { response = expr(y[i] ~ dbern(p[i])) regression = expr(logit(p[i]) <- inprod(x[i,], beta[]) + inprod(C[i,], alpha[])) tau = NULL parameters.to.save = c("beta", "true", "alpha", "pi", "theta") } model = constr_bugs_model(N = N, n_manifest = n_manifest, n_beta = n_beta, nclasses = nclasses, npriors = unique.manifest.levels, regression = regression, response = response, tau = tau) filename <- file.path(dir, "model.text") write_model(model, filename) if(sampler == "JAGS") { model_jags = jags.model( file = filename, data = dat_list, inits = inits, n.chains = n.chains, n.adapt = n.adapt, quiet = FALSE) samp_lcra = window( coda.samples( model = model_jags, variable.names = parameters.to.save, n.iter = n.iter, thin = 1 ), start = n.burnin) } else if(sampler == "WinBUGS") { samp_lcra = as.mcmc.list( R2WinBUGS::bugs(data = dat_list, inits = inits, model.file = filename, n.chains = n.chains, n.iter = n.iter, parameters.to.save = parameters.to.save, debug = debug, n.burnin = n.burnin, n.thin = n.thin, useWINE = useWINE, WINE = WINE, ...)) } else { stop('Sampler name is not one of the options, which are JAGS and WinBUGS.') } return(samp_lcra) } constr_bugs_model = function(N, n_manifest, n_beta, nclasses, npriors, regression, response, tau) { true <- NULL constructor = function() { bugs_model_enque = quo({ bugs_model_func = function() { for (i in 1:!!N){ true[i]~dcat(theta[]) for(j in 1:!!n_manifest){ Z[i,j]~dcat(pi[true[i],j,1:nlevels[j]]) } for(k in 1:(!!(nclasses-1))){ C[i,k] <- step(-true[i]+k) - step(-true[i]+k-1) } !!response !!regression } theta[1:!!nclasses]~ddirch(prior[]) for(c in 1:!!nclasses){ for(j in 1:!!n_manifest){ pi[c,j,1:nlevels[j]]~ddirch(prior_mat[j,1:nlevels[j]]) } } for(k in 1:!!n_beta){ beta[k]~dnorm(0,0.1) } for(k in 1:!!(nclasses-1)){ alpha[k]~dnorm(0,0.1) } !!tau } }) return(bugs_model_enque) } text_fun = as.character(quo_get_expr(constructor()))[2] return(eval(parse(text = text_fun))) }
print.ActivityIndex = function(x, ...) { x = as.data.frame(x) cat("Showing head and tail rows\n") print(head(x), ...) print(tail(x), ...) }
rsi <- function(x) c(1,which(diff(x)!=0)+1)
hour <- function(n, x = seq(0, 23.5, by = .5), prob = NULL, random = FALSE, name = "Hour"){ out <- sample(x = x, size = n, replace = TRUE, prob = prob) if (!random) out <- sort(out) varname(sec2hms(out), name) }
nosof88protoalcove <- function(params = NULL) { if(is.null(params)) params <- nosof88protoalcove_opt() bigout <- NULL h = cbind(c(-2.543,2.641), c(.943,4.341), c(-1.092,1.848), c(1.558,2.902), c(-2.258,.430), c(.194,.572), c(2.806,.202), c(-1.177,-1.038), c(1.543,-1.040), c(-2.775,-3.149), c(.528,-3.766), c(1.709,-3.773)) cat1 <- cbind(h[,1],h[,5],h[,8],h[,10],h[,11],h[,12]) cat1p <- rowMeans(cat1) cat2 <- cbind(h[,2],h[,3],h[,4],h[,6],h[,7],h[,9]) cat2p <- rowMeans(cat2) hb <- cbind(cat1p,cat2p) cat2 <- cbind(h[,2],h[,2],h[,2],h[,2],h[,2],h[,3],h[,4],h[,6], h[,7],h[,9]) cat2p <- rowMeans(cat2) he2 <- cbind(cat1p,cat2p) cat2 <- cbind(h[,2],h[,3],h[,4],h[,6],h[,7],h[,7],h[,7],h[,7], h[,7],h[,9]) cat2p <- rowMeans(cat2) he7 <- cbind(cat1p,cat2p) rm(h,cat1,cat1p,cat2,cat2p) init.state <- list(colskip = 4, r = 2, q = 1, alpha = c(.5,.5), w = array(0,dim=c(2,2)), h = hb, c = params[1], phi = params[2], la = params[3], lw = params[4]) bigtr <- nosof88train('B',blocks = 3, absval = -1, subjs = 100, seed = 4182) init.state$h <- hb out <- slpALCOVE(init.state,bigtr) out <- out$p colnames(out) <- c('p1','p2') out <- data.frame(cbind(bigtr,out)) out.ag <- aggregate(out$p2,list(out$stim,out$cond),mean) bigout <- rbind(bigout,out.ag) bigtr <- nosof88train('E2',blocks = 3, absval = -1, subjs = 100, seed = 4182) init.state$h <- he2 out <- slpALCOVE(init.state,bigtr) out <- out$p colnames(out) <- c('p1','p2') out <- data.frame(cbind(bigtr,out)) out.ag <- aggregate(out$p2,list(out$stim,out$cond),mean) bigout <- rbind(bigout,out.ag) bigtr <- nosof88train('E7',blocks = 3, absval = -1, subjs = 100, seed = 4182) init.state$h <- he7 out <- slpALCOVE(init.state,bigtr) out <- out$p colnames(out) <- c('p1','p2') out <- data.frame(cbind(bigtr,out)) out.ag <- aggregate(out$p2,list(out$stim,out$cond),mean) bigout <- rbind(bigout,out.ag) colnames(bigout) <- c('stim','cond','c2acc') return(bigout) }
FWSaturated <- function(data, sample = "sample", water.potential = "water.potential", fresh.weight = "fresh.weight", dry.weight = "dry.weight") { data_in <- ValidityCheck( data, sample = sample, water.potential = water.potential, fresh.weight = fresh.weight, dry.weight = dry.weight ) OrderCheck( data_in, sample = sample, water.potential = water.potential, fresh.weight = fresh.weight ) data_in <- data.frame(data_in[[sample]], data_in[[fresh.weight]], data_in[[water.potential]], data_in[[dry.weight]]) names(data_in) <- c( paste0(sample), paste0(fresh.weight), paste0(water.potential), paste0(dry.weight) ) data_in$leaf.water <- data_in[[fresh.weight]] - data_in[[dry.weight]] sat.fw <- c() for (i in 1:length(unique(data_in$sample))) { sub.sample <- unique(data_in$sample)[i] data_in_subset <- data_in[data_in[[sample]] == sub.sample,] data_in_subset$water.loss1 <- 100 - (data_in_subset$leaf.water * 100 / max(data_in_subset$leaf.water)) data_in_subset$water.loss <- data_in_subset$water.loss1 - min(data_in_subset$water.loss1) tlp <- suppressWarnings(TurgorLossPoint(data_in_subset, RWD = "water.loss", graph = FALSE)) if (length(tlp) == 0) { warning( paste0("sample ", sub.sample), ": the saturated water content could not be calculated due to unsuccessful determination of the tugor loss point" ) sat.fw_i <- NA } else{ tlp_param <- ExtractParam(tlp) data_in_subset_sub <- data_in_subset[data_in_subset$water.loss < (as.numeric(tlp_param[2]) + min(data_in_subset$water.loss1)), ] data_in_subset_sub <- data.frame(fresh.weight = data_in_subset_sub[[fresh.weight]], water.potential = data_in_subset_sub[[water.potential]]) if (length(data_in_subset_sub[, 1]) < 3) { warning( paste0("sample ", sub.sample), ": the saturated water content could not be calculated due to too few (< 3) data points before the tugor loss point" ) sat.fw_i <- NA } else{ m <- lm(fresh.weight ~ water.potential, data = data_in_subset_sub) sat.fw_i <- as.numeric(coef(m)[1]) } } sat.fw <- c(sat.fw, rep(sat.fw_i, times = length(data_in_subset[, 1]))) } return(data.frame(data, fresh.weight.saturated = sat.fw)) }
keybox <- function(p, grob="roundrect", gp=NULL) { g <- ggplot2::ggplotGrob(p) i <- grep("guide-box", g$layout$name) g2 <- g$grob[[i]] for (j in seq_along(g2)) { x <- g2[[1]][[j]] if (inherits(x, 'zeroGrob')) next if (grob == "rect") { gr <- grid::rectGrob } else if (grob == "roundrect") { gr <- grid::roundrectGrob } else { stop("grob not supported...") } x[[1]][[1]] <- gr(gp = gp) g2[[1]][[j]] <- x } g[[1]][[i]] <- g2 grid::grid.draw(g) invisible(g) }
test_that("cf ssh", { skip_on_os("windows") skip_on_ci() skip_on_cran() reg = makeTestRegistry() if (reg$cluster.functions$name == "Interactive") { workers = list(Worker$new("localhost", ncpus = 2, max.load = 9999)) reg$cluster.functions = makeClusterFunctionsSSH(workers) saveRegistry(reg) fun = function(x) { Sys.sleep(x); is(x, "numeric") } ids = batchMap(fun, x = c(5, 5), reg = reg) silent({ submitJobs(1:2, reg = reg) Sys.sleep(0.2) expect_equal(findOnSystem(reg = reg), findJobs(reg = reg)) expect_true(killJobs(2, reg = reg)$killed) expect_true( waitForJobs(1, sleep = 0.5, reg = reg) ) }) expect_equal(findDone(reg = reg), findJobs(ids = 1, reg = reg)) expect_equal(findNotDone(reg = reg), findJobs(ids = 2, reg = reg)) expect_true(loadResult(1, reg = reg)) } }) if (FALSE) { reg = makeTestRegistry() workers = list(Worker$new("129.217.207.53"), Worker$new("localhost", ncpus = 1)) reg$cluster.functions = makeClusterFunctionsSSH(workers) expect_string(workers[[1L]]$script) expect_string(workers[[2L]]$script) expect_equal(workers[[1L]]$ncpus, 4L) expect_equal(workers[[2L]]$ncpus, 1L) fun = function(x) { Sys.sleep(x); is(x, "numeric") } ids = batchMap(fun, x = 20 * c(1, 1), reg = reg) submitJobs(1:2, reg = reg) expect_equal(findOnSystem(reg = reg), findJobs(reg = reg)) expect_true(killJobs(2, reg = reg)$killed) expect_true(waitForJobs(1, reg = reg, sleep = 1)) expect_equal(findDone(reg = reg), findJobs(ids = 1, reg = reg)) expect_equal(findNotDone(reg = reg), findJobs(ids = 2, reg = reg)) expect_true(loadResult(1, reg = reg)) }
source("ESEUR_config.r") library("visreg") cpu2006=read.csv(paste0(ESEUR_dir, "benchmark/cpu2006-results-20140206.csv.xz"), as.is=TRUE) mem2006=read.csv(paste0(ESEUR_dir, "benchmark/cpu2006-memory.csv.xz"), as.is=TRUE) mem2006$ecc=substr(mem2006$mem_rate, nchar(mem2006$mem_rate), 100) mem2006$mem_rate=as.numeric(sub("(E|F|P|R|U)$", "", x=mem2006$mem_rate)) mem2006$mem_rate[mem2006$mem_rate == 8600]=8500 mem2006$mem_rate[mem2006$mem_rate == 16000]=17000 cpu2006=cbind(cpu2006, mem2006) cpu2006$Test.Date=as.Date(paste0("01-", cpu2006$Test.Date), format="%d-%B-%Y") start_date=as.Date("01-Jan-2006", format="%d-%B-%Y") cpu2006=subset(cpu2006, Test.Date >= start_date) cint=subset(cpu2006, Benchmark == "CINT2006") cint$Benchmark=NULL cint=subset(cint, Result > 0) cint=subset(cint, mem_rate >= 3200) cint=subset(cint, mem_freq < 2500) PC2=subset(cint, mem_kind == "PC2") PC3=subset(cint, mem_kind != "PC2") cint$Processor=sub("[0-9][0-9][0-9][0-9](K|L|M|S|T| EE| HE| SE| v2|V2| v3)*$", "", x=cint$Processor) cint$main_proc=sub("([^ ]+ [^ ]+) .*$", "\\1", x=cint$Processor) spec_mod=glm(Result ~ Processor.MHz + I(Processor.MHz^2)+mem_rate + I(mem_rate^2) + mem_freq , data=cint) par(ESEUR_orig_par_values) par(oma=c(2, 2, 1, 1)) par(mar=c(4, 5, 1, 2)+0.1) t=visreg2d(spec_mod, "Processor.MHz", "mem_rate", plot.type="persp", plot=FALSE) plot(t, color=c("red", "green", "blue"), ylab="mem_rate\n", zlab="")
test_that("202012142242", { f <- 'x^2' x <- laplacian(f, var = c('x','y','z')) y <- "2" expect_equal(x,y) }) test_that("202012142244", { f <- 'y^2*x^2' x <- laplacian(f, var = c('x','y')) y <- "y^2 * 2 + 2 * x^2" expect_equal(x,y) }) test_that("202012142245", { f <- function(x,y) c(x^2*y^2, x^2) x <- laplacian(f, var = c(x=3,y=5)) y <- array(c(68,2)) expect_equal(x,y) }) test_that("202012142246", { f <- function(x,y) array(rep(c(x^2*y^2, x^2), 3), dim = c(2,3)) x <- laplacian(f, var = c(x=3,y=5)) y <- array(rep(c(68,2), 3), dim = c(2,3)) expect_equal(x,y) }) test_that("202012142310", { f <- function(x) x^2 x <- laplacian(f, var = 100, coordinates = "spherical") y <- 2 expect_equal(x,y) }) test_that("202012142311", { f.num <- function(x,y,z) array(rep(c(x^2*y*sin(z),z*y,x*z+y^2), 2), dim = c(2,3)) f.sym <- array(rep(c('x^2*y*sin(z)','z*y','x*z+y^2'), 2), dim = c(2,3)) x.num <- laplacian(f.num, var = c(x=2,y=3,z=4), coordinates = "spherical", accuracy = 4) x.sym <- laplacian(f.sym, var = c(x=2,y=3,z=4), coordinates = "spherical") expect_equal(x.num,x.sym) }) test_that("202012142312", { f.num <- function(x,y,z) array(rep(c(x^2*y*sin(z),z*y,x*z+y^2), 2), dim = c(2,3)) f.sym <- array(rep(c('x^2*y*sin(z)','z*y','x*z+y^2'), 2), dim = c(2,3)) x.num <- laplacian(f.num, var = c(x=2,y=3,z=4), accuracy = 4) x.sym <- laplacian(f.sym, var = c(x=2,y=3,z=4)) expect_equal(x.num,x.sym) }) test_that("202012142312", { f.num <- function(x,y,z,extra) if(extra) array(rep(c(x^2*y*sin(z),z*y,x*z+y^2), 2), dim = c(2,3)) f.sym <- array(rep(c('x^2*y*sin(z)','z*y','a*x*z+y^2'), 2), dim = c(2,3)) x.num <- laplacian(f.num, var = c(x=2,y=3,z=4), accuracy = 4, params = list(extra = TRUE)) x.sym <- laplacian(f.sym, var = c(x=2,y=3,z=4), params = list(a = 1)) expect_equal(x.num,x.sym) })
merge_directed_graph <- function (graph, col_names = c ("flow")) { if (length (col_names) == 1) { if (col_names == "flow" & !"flow" %in% names (graph) & "centrality" %in% names (graph)) col_names <- "centrality" } if (!all (col_names %in% names (graph))) stop (paste0 ("col_names [", paste (col_names, collapse = ", "), "] do not match columns in graph")) gr_cols <- dodgr_graph_cols (graph) graph2 <- convert_graph (graph, gr_cols) res <- lapply (col_names, function (i) { graph2$merge <- graph [[i]] rcpp_merge_cols (graph2) }) res <- do.call (cbind, res) index <- which (rowSums (res) > 0) graph <- graph [index, , drop = FALSE] for (i in seq (col_names)) graph [[col_names [i] ]] <- res [index, i] class (graph) <- c (class (graph), "dodgr_merged") attr (graph, "hash") <- digest::digest (graph [[gr_cols$edge_id]]) return (graph) }
test_that('nucleotide frequencies are correct', { s = seq('GATTACA') expected = as.table(c(A = 3L, C = 1L, G = 1L, T = 2L)) expect_equal(table(s)[[1L]], expected) })
context("Hue pal") test_that("hue_pal arguments are forcely evaluated on each call col1 <- hue_pal(h.start = 0) col2 <- hue_pal(h.start = 90) colours <- list() hues <- c(0, 90) for (i in 1:2) { colours[[i]] <- hue_pal(h.start = hues[i]) } expect_equal(col1(1), colours[[1]](1)) expect_equal(col2(1), colours[[2]](1)) }) test_that("hue_pal respects direction argument col1 <- hue_pal() col2 <- hue_pal(direction = -1) expect_equal(col1(3), rev(col2(3))) expect_equal(col1(9), rev(col2(9))) })
setClass( Class="ChangePointModelCVM", representation=representation( ), prototype( ), contains='ChangePointModel' ) makeChangePointModelCVM <- function(hs=numeric(),startup=20) { windowStatistic <- list() windowStatistic$X <- numeric() windowStatistic$N <- numeric() return(new(Class='ChangePointModelCVM', windowStatistic=windowStatistic, hs=hs, changeDetected=FALSE, startup=startup )) } setMethod(f='updateWindowStatistic',signature='ChangePointModelCVM',definition= function(cpm,x) { cpm@windowStatistic$X <- c(cpm@windowStatistic$X,x) cpm@windowStatistic$N <- c(cpm@windowStatistic$N,cpm@n) return(cpm@windowStatistic) }) setMethod(f='getTestStatistics',signature='ChangePointModelCVM',definition= function(cpm) { X <- cpm@windowStatistic$X if (length(X) < cpm@startup) { results <- list(); results$val <- -Inf results$MLE <- 0 results$Ds <- numeric() return(results) } ord <- order(X) len <- length(X) res<-.C('cpmMLECVM',as.double(X),as.integer(length(X)),as.integer(ord),Ds=double(length(X))) Ds <- res[['Ds']] Ds[c(1,len-1,len)]<-0 results <- list() results$val <- max(Ds) results$MLE <- which.max(Ds) results$Ds <- Ds return(results) })
coxplsDR <- function (Xplan, ...) UseMethod("coxplsDR")
PlaceBetIf <- function(...) { PlaceBet(...) }
ctStanProfileCI <- function(fit, parnames){ ll=fit$stanfit$optimfit$value cores=1 np=length(fit$stanfit$rawest) smf=stan_reinitsf(fit$stanmodel,fit$standata) parsouter <- fit$stanfit$rawest highpars = fit$stanfit$transformedpars_old[1:np,'97.5%'] lowpars = fit$stanfit$transformedpars_old[1:np,'2.5%'] parrows <- match(parnames,fit$setup$matsetup$parname) cipars <- paste0('rawpopmeans',fit$setup$matsetup$param[parrows]) optimfit=list() for(pi in 1:length(cipars)){ for(upperci in c(TRUE,FALSE)){ if(upperci) init=highpars else init=lowpars neglpgf<-function(parm) { pars<-parsouter pars[-which( rownames(fit$stanfit$transformedpars_old[1:np,]) %in% cipars[pi])] <- parm out<-try(log_prob(smf,upars=pars,adjust_transform=TRUE,gradient=TRUE),silent = TRUE) attributes(out)$gradient <- attributes(out)$gradient[-which( rownames(fit$stanfit$transformedpars_old[1:np,]) %in% cipars[pi])] if('try-error' %in% class(out)|| all(is.nan(out))) { out[1]=-Inf } return(-out) } mizelpginner=list( fg=function(innerpars){ r=neglpgf(innerpars) r=list(fn=r[1], gr= -attributes(r)$gradient) return(r) }, fn=neglpgf, gr=function(innerpars) -attributes(neglpgf(innerpars))$gradient ) mizelpgouter_fn <- function(parx){ message('parx = ',parx) parsouter <<-fit$stanfit$rawest parsouter[which( rownames(fit$stanfit$transformedpars_old[1:np,]) %in% cipars[pi])] <<- parx pll=abs( (fit$stanfit$optimfit$value - 1.96) - (-mize(parsouter[-which( rownames(fit$stanfit$transformedpars_old[1:np,]) %in% cipars[pi])], fg=mizelpginner, max_iter=99999, method="L-BFGS",memory=100, line_search='Schmidt',c1=1e-10,c2=.9,step0='schmidt', abs_tol=1e-3,grad_tol=0,rel_tol=0,step_tol=0,ginf_tol=0)$f)) + ifelse(upperci && parx < fit$stanfit$rawest[which( rownames(fit$stanfit$transformedpars_old[1:np,]) %in% cipars[pi])], 100, 0) + ifelse(!upperci && parx > fit$stanfit$rawest[which( rownames(fit$stanfit$transformedpars_old[1:np,]) %in% cipars[pi])], 100, 0) print(pll) return(pll) } mizelpgouter=list( fn=mizelpgouter_fn, gr = function(parx){ parsouter<<-fit$stanfit$rawest parsouter[which( rownames(fit$stanfit$transformedpars_old[1:np,]) %in% cipars[pi])] <<- parx + 1e-6 up=mizelpgouter_fn(parsouter[which( rownames(fit$stanfit$transformedpars_old[1:np,]) %in% cipars[pi]) ]) parsouter[which( rownames(fit$stanfit$transformedpars_old[1:np,]) %in% cipars[pi])] <<- parx - 1e-6 down=mizelpgouter_fn(parsouter[which( rownames(fit$stanfit$transformedpars_old[1:np,]) %in% cipars[pi]) ]) return( (up-down)/(2*1e-6)) } ) optimfit <- mize(init[which( rownames(fit$stanfit$transformedpars_old[1:np,]) %in% cipars[pi]) ], fg=mizelpgouter, max_iter=99999, method="L-BFGS",memory=100, line_search='Schmidt',c1=1e-10,c2=.9,step0='schmidt', abs_tol=1e-3,grad_tol=0,rel_tol=0,step_tol=0,ginf_tol=0)$par if(upperci) highpars[which( rownames(fit$stanfit$transformedpars_old[1:np,]) %in% cipars[pi]) ] <- optimfit if(!upperci) lowpars[which( rownames(fit$stanfit$transformedpars_old[1:np,]) %in% cipars[pi]) ] <- optimfit } } lowcipars=lowpars[which( rownames(fit$stanfit$transformedpars_old[1:np,]) %in% cipars[pi]) ] highcipars=highpars[which( rownames(fit$stanfit$transformedpars_old[1:np,]) %in% cipars[pi]) ] low <- sapply(1:length(lowcipars),function(x) tform(parin = lowcipars[x], transform = fit$setup$matsetup$transform[parrows[x]], multiplier = fit$setup$matvalues$multiplier[parrows[x]], meanscale = fit$setup$matvalues$meanscale[parrows[x]], offset = fit$setup$matvalues$offset[parrows[x]], inneroffset = fit$setup$matvalues$inneroffset[parrows[x]])) high <- sapply(1:length(highcipars),function(x) tform(parin = highcipars[x], transform = fit$setup$matsetup$transform[parrows[x]], multiplier = fit$setup$matvalues$multiplier[parrows[x]], meanscale = fit$setup$matvalues$meanscale[parrows[x]], offset = fit$setup$matvalues$offset[parrows[x]], inneroffset = fit$setup$matvalues$inneroffset[parrows[x]])) out <- data.frame(param=parnames,low=low,high=high) rownames(out) <- NULL return(out) }
NULL arid<- function(clim_norm, coeff_rad=NULL, coeff_Hargr = rep(0.75,12), monthly=FALSE, indices= 1:6) { if(monthly == FALSE) { Ia_y<- sum(clim_norm$P) / mean(clim_norm$Tm + 10) if(mean(clim_norm$Tm) > 0) R<- sum(clim_norm$P)/mean(clim_norm$Tm) else R<-NA Q<- 2000*sum(clim_norm$P)/(max(clim_norm$Tx + 273.15)^2 - min(clim_norm$Tn + 273.15)^2) Io <- 10 * sum(clim_norm$P[clim_norm$Tm >0]) / sum(clim_norm$Tm[clim_norm$Tm >0] * 10) lmv<-c(31,28.25,31,30,31,30,31,31,30,31,30,31) ET_hargr<- (0.0023*(clim_norm$Tx - clim_norm$Tn)^(0.5)*(clim_norm$Tm+17.8)*coeff_rad)* lmv * coeff_Hargr Im_y<-100*(sum(clim_norm$P) / sum(ET_hargr) -1) Ai <- sum(clim_norm$P) / sum(ET_hargr) aridity<-round(data.frame(Ia = Ia_y, Im = Im_y, Q=Q, R=R, Io=Io, Ai=Ai), 2)[indices] } else { month_names<-c("Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sep", "Oct", "Nov", "Dec") aridity<-NULL Ia_m<- round(12* clim_norm$P / (clim_norm$Tm + 10), 2); names(Ia_m)<-1:12 Im_m<-round(1.65*(clim_norm$P / (clim_norm$Tm + 12.2))^(10/9), 2); names(Im_m)<-1:12 aridity$Ia<- Ia_m; names(aridity$Ia)<- month_names aridity$Im<- Im_m; names(aridity$Im)<- month_names if(length(indices) == 1 & (indices == 1 | indices == 2)[1]) aridity<-aridity[indices] } return(aridity) }
autplot1 <- function(x, chain=1, lag.max=NULL, partial=FALSE, col=mcmcplotsPalette(1), style=c("gray", "plain"), ylim=NULL, ...){ style <- match.arg(style) if (partial){ ylab <- "Partial Autocorrelation" xacf <- pacf(as.ts(x[[chain]]), lag.max = lag.max, plot = FALSE) } else { ylab <- "Autocorrelation" xacf <- acf(as.ts(x[[chain]]), lag.max = lag.max, plot = FALSE) } clim <- c(-1, 1)*qnorm(0.975)/sqrt(xacf$n.used) for (j in 1:nvar(x)) { if (is.null(ylim)){ ylim <- range(c(clim, xacf$acf[, j, j])) } if (style=="gray"){ plot(xacf$lag[, j, j], xacf$acf[, j, j], type = "n", ylab = ylab, xlab = "Lag", ylim = ylim, bty="n", xaxt="n", yaxt="n", ...) .graypr() rect(par("usr")[1], clim[1], par("usr")[2], clim[2], col=rgb(0.5, 0.5, 0.5, 0.35), border=NA) lines(xacf$lag[, j, j], xacf$acf[, j, j], type="h", lwd=2, col=col) } if (style=="plain"){ plot(xacf$lag[, j, j], xacf$acf[, j, j], type = "h", ylab = ylab, xlab = "Lag", ylim = ylim, lwd=2, ...) abline(h=c(0, clim), col="gray") } } }
expected <- eval(parse(text="0L")); test(id=0, code={ argv <- eval(parse(text="list(character(0), FALSE, FALSE)")); .Internal(`unlink`(argv[[1]], argv[[2]], argv[[3]])); }, o=expected);
context('doc01') doc <- 'Usage: prog' test_that('parsing "" works',{ res <- docopt(doc, '', strict=TRUE) expect_equivalent(length(res), 0) expect_equivalent(res[NULL], list()) }) test_that('parsing "--xxx" works',{ expect_error(docopt(doc, '--xxx', strict=TRUE)) }) context('doc02') doc <- 'Usage: prog [options] Options: -a All.' test_that('parsing "" works',{ res <- docopt(doc, '', strict=TRUE) expect_equivalent(length(res), 1) expect_equivalent(res["-a"], list("-a" = FALSE)) }) test_that('parsing "-a" works',{ res <- docopt(doc, '-a', strict=TRUE) expect_equivalent(length(res), 1) expect_equivalent(res["-a"], list("-a" = TRUE)) }) test_that('parsing "-x" works',{ expect_error(docopt(doc, '-x', strict=TRUE)) }) context('doc03') doc <- 'Usage: prog [options] Options: --all All.' test_that('parsing "" works',{ res <- docopt(doc, '', strict=TRUE) expect_equivalent(length(res), 1) expect_equivalent(res["--all"], list("--all" = FALSE)) }) test_that('parsing "--all" works',{ res <- docopt(doc, '--all', strict=TRUE) expect_equivalent(length(res), 1) expect_equivalent(res["--all"], list("--all" = TRUE)) }) test_that('parsing "--xxx" works',{ expect_error(docopt(doc, '--xxx', strict=TRUE)) }) context('doc04') doc <- 'Usage: prog [options] Options: -v, --verbose Verbose.' test_that('parsing "--verbose" works',{ res <- docopt(doc, '--verbose', strict=TRUE) expect_equivalent(length(res), 1) expect_equivalent(res["--verbose"], list("--verbose" = TRUE)) }) test_that('parsing "--ver" works',{ res <- docopt(doc, '--ver', strict=TRUE) expect_equivalent(length(res), 1) expect_equivalent(res["--verbose"], list("--verbose" = TRUE)) }) test_that('parsing "-v" works',{ res <- docopt(doc, '-v', strict=TRUE) expect_equivalent(length(res), 1) expect_equivalent(res["--verbose"], list("--verbose" = TRUE)) }) context('doc05') doc <- 'Usage: prog [options] Options: -p PATH' test_that('parsing "-p home/" works',{ res <- docopt(doc, '-p home/', strict=TRUE) expect_equivalent(length(res), 1) expect_equivalent(res["-p"], list("-p" = "home/")) }) test_that('parsing "-phome/" works',{ res <- docopt(doc, '-phome/', strict=TRUE) expect_equivalent(length(res), 1) expect_equivalent(res["-p"], list("-p" = "home/")) }) test_that('parsing "-p" works',{ expect_error(docopt(doc, '-p', strict=TRUE)) }) context('doc06') doc <- 'Usage: prog [options] Options: --path <path>' test_that('parsing "--path home/" works',{ res <- docopt(doc, '--path home/', strict=TRUE) expect_equivalent(length(res), 1) expect_equivalent(res["--path"], list("--path" = "home/")) }) test_that('parsing "--path=home/" works',{ res <- docopt(doc, '--path=home/', strict=TRUE) expect_equivalent(length(res), 1) expect_equivalent(res["--path"], list("--path" = "home/")) }) test_that('parsing "--pa home/" works',{ res <- docopt(doc, '--pa home/', strict=TRUE) expect_equivalent(length(res), 1) expect_equivalent(res["--path"], list("--path" = "home/")) }) test_that('parsing "--pa=home/" works',{ res <- docopt(doc, '--pa=home/', strict=TRUE) expect_equivalent(length(res), 1) expect_equivalent(res["--path"], list("--path" = "home/")) }) test_that('parsing "--path" works',{ expect_error(docopt(doc, '--path', strict=TRUE)) }) context('doc07') doc <- 'Usage: prog [options] Options: -p PATH, --path=<path> Path to files.' test_that('parsing "-proot" works',{ res <- docopt(doc, '-proot', strict=TRUE) expect_equivalent(length(res), 1) expect_equivalent(res["--path"], list("--path" = "root")) }) context('doc08') doc <- 'Usage: prog [options] Options: -p --path PATH Path to files.' test_that('parsing "-p root" works',{ res <- docopt(doc, '-p root', strict=TRUE) expect_equivalent(length(res), 1) expect_equivalent(res["--path"], list("--path" = "root")) }) test_that('parsing "--path root" works',{ res <- docopt(doc, '--path root', strict=TRUE) expect_equivalent(length(res), 1) expect_equivalent(res["--path"], list("--path" = "root")) }) context('doc09') doc <- 'Usage: prog [options] Options: -p PATH Path to files [default: ./]' test_that('parsing "" works',{ res <- docopt(doc, '', strict=TRUE) expect_equivalent(length(res), 1) expect_equivalent(res["-p"], list("-p" = "./")) }) test_that('parsing "-phome" works',{ res <- docopt(doc, '-phome', strict=TRUE) expect_equivalent(length(res), 1) expect_equivalent(res["-p"], list("-p" = "home")) }) context('doc10') doc <- 'UsAgE: prog [options] OpTiOnS: --path=<files> Path to files [dEfAuLt: /root]' test_that('parsing "" works',{ res <- docopt(doc, '', strict=TRUE) expect_equivalent(length(res), 1) expect_equivalent(res["--path"], list("--path" = "/root")) }) test_that('parsing "--path=home" works',{ res <- docopt(doc, '--path=home', strict=TRUE) expect_equivalent(length(res), 1) expect_equivalent(res["--path"], list("--path" = "home")) }) context('doc11') doc <- 'usage: prog [options] options: -a Add -r Remote -m <msg> Message' test_that('parsing "-a -r -m Hello" works',{ res <- docopt(doc, '-a -r -m Hello', strict=TRUE) expect_equivalent(length(res), 3) expect_equivalent(res[c("-a", "-r", "-m")], list("-a" = TRUE, "-r" = TRUE, "-m" = "Hello")) }) test_that('parsing "-armyourass" works',{ res <- docopt(doc, '-armyourass', strict=TRUE) expect_equivalent(length(res), 3) expect_equivalent(res[c("-a", "-r", "-m")], list("-a" = TRUE, "-r" = TRUE, "-m" = "yourass")) }) test_that('parsing "-a -r" works',{ res <- docopt(doc, '-a -r', strict=TRUE) expect_equivalent(length(res), 3) expect_equivalent(res[c("-a", "-r", "-m")], list("-a" = TRUE, "-r" = TRUE, "-m" = NULL)) }) context('doc12') doc <- 'Usage: prog [options] Options: --version --verbose' test_that('parsing "--version" works',{ res <- docopt(doc, '--version', strict=TRUE) expect_equivalent(length(res), 2) expect_equivalent(res[c("--version", "--verbose")], list("--version" = TRUE, "--verbose" = FALSE)) }) test_that('parsing "--verbose" works',{ res <- docopt(doc, '--verbose', strict=TRUE) expect_equivalent(length(res), 2) expect_equivalent(res[c("--version", "--verbose")], list("--version" = FALSE, "--verbose" = TRUE)) }) test_that('parsing "--ver" works',{ expect_error(docopt(doc, '--ver', strict=TRUE)) }) test_that('parsing "--verb" works',{ res <- docopt(doc, '--verb', strict=TRUE) expect_equivalent(length(res), 2) expect_equivalent(res[c("--version", "--verbose")], list("--version" = FALSE, "--verbose" = TRUE)) }) context('doc13') doc <- 'usage: prog [-a -r -m <msg>] options: -a Add -r Remote -m <msg> Message' test_that('parsing "-armyourass" works',{ res <- docopt(doc, '-armyourass', strict=TRUE) expect_equivalent(length(res), 3) expect_equivalent(res[c("-a", "-r", "-m")], list("-a" = TRUE, "-r" = TRUE, "-m" = "yourass")) }) context('doc14') doc <- 'usage: prog [-armmsg] options: -a Add -r Remote -m <msg> Message' test_that('parsing "-a -r -m Hello" works',{ res <- docopt(doc, '-a -r -m Hello', strict=TRUE) expect_equivalent(length(res), 3) expect_equivalent(res[c("-a", "-r", "-m")], list("-a" = TRUE, "-r" = TRUE, "-m" = "Hello")) }) context('doc15') doc <- 'usage: prog -a -b options: -a -b' test_that('parsing "-a -b" works',{ res <- docopt(doc, '-a -b', strict=TRUE) expect_equivalent(length(res), 2) expect_equivalent(res[c("-a", "-b")], list("-a" = TRUE, "-b" = TRUE)) }) test_that('parsing "-b -a" works',{ res <- docopt(doc, '-b -a', strict=TRUE) expect_equivalent(length(res), 2) expect_equivalent(res[c("-a", "-b")], list("-a" = TRUE, "-b" = TRUE)) }) test_that('parsing "-a" works',{ expect_error(docopt(doc, '-a', strict=TRUE)) }) test_that('parsing "" works',{ expect_error(docopt(doc, '', strict=TRUE)) }) context('doc16') doc <- 'usage: prog (-a -b) options: -a -b' test_that('parsing "-a -b" works',{ res <- docopt(doc, '-a -b', strict=TRUE) expect_equivalent(length(res), 2) expect_equivalent(res[c("-a", "-b")], list("-a" = TRUE, "-b" = TRUE)) }) test_that('parsing "-b -a" works',{ res <- docopt(doc, '-b -a', strict=TRUE) expect_equivalent(length(res), 2) expect_equivalent(res[c("-a", "-b")], list("-a" = TRUE, "-b" = TRUE)) }) test_that('parsing "-a" works',{ expect_error(docopt(doc, '-a', strict=TRUE)) }) test_that('parsing "" works',{ expect_error(docopt(doc, '', strict=TRUE)) }) context('doc17') doc <- 'usage: prog [-a] -b options: -a -b' test_that('parsing "-a -b" works',{ res <- docopt(doc, '-a -b', strict=TRUE) expect_equivalent(length(res), 2) expect_equivalent(res[c("-a", "-b")], list("-a" = TRUE, "-b" = TRUE)) }) test_that('parsing "-b -a" works',{ res <- docopt(doc, '-b -a', strict=TRUE) expect_equivalent(length(res), 2) expect_equivalent(res[c("-a", "-b")], list("-a" = TRUE, "-b" = TRUE)) }) test_that('parsing "-a" works',{ expect_error(docopt(doc, '-a', strict=TRUE)) }) test_that('parsing "-b" works',{ res <- docopt(doc, '-b', strict=TRUE) expect_equivalent(length(res), 2) expect_equivalent(res[c("-a", "-b")], list("-a" = FALSE, "-b" = TRUE)) }) test_that('parsing "" works',{ expect_error(docopt(doc, '', strict=TRUE)) }) context('doc18') doc <- 'usage: prog [(-a -b)] options: -a -b' test_that('parsing "-a -b" works',{ res <- docopt(doc, '-a -b', strict=TRUE) expect_equivalent(length(res), 2) expect_equivalent(res[c("-a", "-b")], list("-a" = TRUE, "-b" = TRUE)) }) test_that('parsing "-b -a" works',{ res <- docopt(doc, '-b -a', strict=TRUE) expect_equivalent(length(res), 2) expect_equivalent(res[c("-a", "-b")], list("-a" = TRUE, "-b" = TRUE)) }) test_that('parsing "-a" works',{ expect_error(docopt(doc, '-a', strict=TRUE)) }) test_that('parsing "-b" works',{ expect_error(docopt(doc, '-b', strict=TRUE)) }) test_that('parsing "" works',{ res <- docopt(doc, '', strict=TRUE) expect_equivalent(length(res), 2) expect_equivalent(res[c("-a", "-b")], list("-a" = FALSE, "-b" = FALSE)) }) context('doc19') doc <- 'usage: prog (-a|-b) options: -a -b' test_that('parsing "-a -b" works',{ expect_error(docopt(doc, '-a -b', strict=TRUE)) }) test_that('parsing "" works',{ expect_error(docopt(doc, '', strict=TRUE)) }) test_that('parsing "-a" works',{ res <- docopt(doc, '-a', strict=TRUE) expect_equivalent(length(res), 2) expect_equivalent(res[c("-a", "-b")], list("-a" = TRUE, "-b" = FALSE)) }) test_that('parsing "-b" works',{ res <- docopt(doc, '-b', strict=TRUE) expect_equivalent(length(res), 2) expect_equivalent(res[c("-a", "-b")], list("-a" = FALSE, "-b" = TRUE)) }) context('doc20') doc <- 'usage: prog [ -a | -b ] options: -a -b' test_that('parsing "-a -b" works',{ expect_error(docopt(doc, '-a -b', strict=TRUE)) }) test_that('parsing "" works',{ res <- docopt(doc, '', strict=TRUE) expect_equivalent(length(res), 2) expect_equivalent(res[c("-a", "-b")], list("-a" = FALSE, "-b" = FALSE)) }) test_that('parsing "-a" works',{ res <- docopt(doc, '-a', strict=TRUE) expect_equivalent(length(res), 2) expect_equivalent(res[c("-a", "-b")], list("-a" = TRUE, "-b" = FALSE)) }) test_that('parsing "-b" works',{ res <- docopt(doc, '-b', strict=TRUE) expect_equivalent(length(res), 2) expect_equivalent(res[c("-a", "-b")], list("-a" = FALSE, "-b" = TRUE)) }) context('doc21') doc <- 'usage: prog <arg>' test_that('parsing "10" works',{ res <- docopt(doc, '10', strict=TRUE) expect_equivalent(length(res), 1) expect_equivalent(res["<arg>"], list("<arg>" = "10")) }) test_that('parsing "10 20" works',{ expect_error(docopt(doc, '10 20', strict=TRUE)) }) test_that('parsing "" works',{ expect_error(docopt(doc, '', strict=TRUE)) }) context('doc22') doc <- 'usage: prog [<arg>]' test_that('parsing "10" works',{ res <- docopt(doc, '10', strict=TRUE) expect_equivalent(length(res), 1) expect_equivalent(res["<arg>"], list("<arg>" = "10")) }) test_that('parsing "10 20" works',{ expect_error(docopt(doc, '10 20', strict=TRUE)) }) test_that('parsing "" works',{ res <- docopt(doc, '', strict=TRUE) expect_equivalent(length(res), 1) expect_equivalent(res["<arg>"], list("<arg>" = NULL)) }) context('doc23') doc <- 'usage: prog <kind> <name> <type>' test_that('parsing "10 20 40" works',{ res <- docopt(doc, '10 20 40', strict=TRUE) expect_equivalent(length(res), 3) expect_equivalent(res[c("<kind>", "<name>", "<type>")], list("<kind>" = "10", "<name>" = "20", "<type>" = "40")) }) test_that('parsing "10 20" works',{ expect_error(docopt(doc, '10 20', strict=TRUE)) }) test_that('parsing "" works',{ expect_error(docopt(doc, '', strict=TRUE)) }) context('doc24') doc <- 'usage: prog <kind> [<name> <type>]' test_that('parsing "10 20 40" works',{ res <- docopt(doc, '10 20 40', strict=TRUE) expect_equivalent(length(res), 3) expect_equivalent(res[c("<kind>", "<name>", "<type>")], list("<kind>" = "10", "<name>" = "20", "<type>" = "40")) }) test_that('parsing "10 20" works',{ res <- docopt(doc, '10 20', strict=TRUE) expect_equivalent(length(res), 3) expect_equivalent(res[c("<kind>", "<name>", "<type>")], list("<kind>" = "10", "<name>" = "20", "<type>" = NULL)) }) test_that('parsing "" works',{ expect_error(docopt(doc, '', strict=TRUE)) }) context('doc25') doc <- 'usage: prog [<kind> | <name> <type>]' test_that('parsing "10 20 40" works',{ expect_error(docopt(doc, '10 20 40', strict=TRUE)) }) test_that('parsing "20 40" works',{ res <- docopt(doc, '20 40', strict=TRUE) expect_equivalent(length(res), 3) expect_equivalent(res[c("<kind>", "<name>", "<type>")], list("<kind>" = NULL, "<name>" = "20", "<type>" = "40")) }) test_that('parsing "" works',{ res <- docopt(doc, '', strict=TRUE) expect_equivalent(length(res), 3) expect_equivalent(res[c("<kind>", "<name>", "<type>")], list("<kind>" = NULL, "<name>" = NULL, "<type>" = NULL)) }) context('doc26') doc <- 'usage: prog (<kind> --all | <name>) options: --all' test_that('parsing "10 --all" works',{ res <- docopt(doc, '10 --all', strict=TRUE) expect_equivalent(length(res), 3) expect_equivalent(res[c("<kind>", "--all", "<name>")], list("<kind>" = "10", "--all" = TRUE, "<name>" = NULL)) }) test_that('parsing "10" works',{ res <- docopt(doc, '10', strict=TRUE) expect_equivalent(length(res), 3) expect_equivalent(res[c("<kind>", "--all", "<name>")], list("<kind>" = NULL, "--all" = FALSE, "<name>" = "10")) }) test_that('parsing "" works',{ expect_error(docopt(doc, '', strict=TRUE)) }) context('doc27') doc <- 'usage: prog [<name> <name>]' test_that('parsing "10 20" works',{ res <- docopt(doc, '10 20', strict=TRUE) expect_equivalent(length(res), 1) expect_equivalent(res["<name>"], list("<name>" = c("10", "20"))) }) test_that('parsing "10" works',{ res <- docopt(doc, '10', strict=TRUE) expect_equivalent(length(res), 1) expect_equivalent(res["<name>"], list("<name>" = "10")) }) test_that('parsing "" works',{ res <- docopt(doc, '', strict=TRUE) expect_equivalent(length(res), 1) expect_equivalent(res["<name>"], list("<name>" = list())) }) context('doc28') doc <- 'usage: prog [(<name> <name>)]' test_that('parsing "10 20" works',{ res <- docopt(doc, '10 20', strict=TRUE) expect_equivalent(length(res), 1) expect_equivalent(res["<name>"], list("<name>" = c("10", "20"))) }) test_that('parsing "10" works',{ expect_error(docopt(doc, '10', strict=TRUE)) }) test_that('parsing "" works',{ res <- docopt(doc, '', strict=TRUE) expect_equivalent(length(res), 1) expect_equivalent(res["<name>"], list("<name>" = list())) }) context('doc29') doc <- 'usage: prog NAME...' test_that('parsing "10 20" works',{ res <- docopt(doc, '10 20', strict=TRUE) expect_equivalent(length(res), 1) expect_equivalent(res["NAME"], list(NAME = c("10", "20"))) }) test_that('parsing "10" works',{ res <- docopt(doc, '10', strict=TRUE) expect_equivalent(length(res), 1) expect_equivalent(res["NAME"], list(NAME = "10")) }) test_that('parsing "" works',{ expect_error(docopt(doc, '', strict=TRUE)) }) context('doc30') doc <- 'usage: prog [NAME]...' test_that('parsing "10 20" works',{ res <- docopt(doc, '10 20', strict=TRUE) expect_equivalent(length(res), 1) expect_equivalent(res["NAME"], list(NAME = c("10", "20"))) }) test_that('parsing "10" works',{ res <- docopt(doc, '10', strict=TRUE) expect_equivalent(length(res), 1) expect_equivalent(res["NAME"], list(NAME = "10")) }) test_that('parsing "" works',{ res <- docopt(doc, '', strict=TRUE) expect_equivalent(length(res), 1) expect_equivalent(res["NAME"], list(NAME = list())) }) context('doc31') doc <- 'usage: prog [NAME...]' test_that('parsing "10 20" works',{ res <- docopt(doc, '10 20', strict=TRUE) expect_equivalent(length(res), 1) expect_equivalent(res["NAME"], list(NAME = c("10", "20"))) }) test_that('parsing "10" works',{ res <- docopt(doc, '10', strict=TRUE) expect_equivalent(length(res), 1) expect_equivalent(res["NAME"], list(NAME = "10")) }) test_that('parsing "" works',{ res <- docopt(doc, '', strict=TRUE) expect_equivalent(length(res), 1) expect_equivalent(res["NAME"], list(NAME = list())) }) context('doc32') doc <- 'usage: prog [NAME [NAME ...]]' test_that('parsing "10 20" works',{ res <- docopt(doc, '10 20', strict=TRUE) expect_equivalent(length(res), 1) expect_equivalent(res["NAME"], list(NAME = c("10", "20"))) }) test_that('parsing "10" works',{ res <- docopt(doc, '10', strict=TRUE) expect_equivalent(length(res), 1) expect_equivalent(res["NAME"], list(NAME = "10")) }) test_that('parsing "" works',{ res <- docopt(doc, '', strict=TRUE) expect_equivalent(length(res), 1) expect_equivalent(res["NAME"], list(NAME = list())) }) context('doc33') doc <- 'usage: prog (NAME | --foo NAME) options: --foo' test_that('parsing "10" works',{ res <- docopt(doc, '10', strict=TRUE) expect_equivalent(length(res), 2) expect_equivalent(res[c("NAME", "--foo")], list(NAME = "10", "--foo" = FALSE)) }) test_that('parsing "--foo 10" works',{ res <- docopt(doc, '--foo 10', strict=TRUE) expect_equivalent(length(res), 2) expect_equivalent(res[c("NAME", "--foo")], list(NAME = "10", "--foo" = TRUE)) }) test_that('parsing "--foo=10" works',{ expect_error(docopt(doc, '--foo=10', strict=TRUE)) }) context('doc34') doc <- 'usage: prog (NAME | --foo) [--bar | NAME] options: --foo options: --bar' test_that('parsing "10" works',{ res <- docopt(doc, '10', strict=TRUE) expect_equivalent(length(res), 3) expect_equivalent(res[c("NAME", "--foo", "--bar")], list(NAME = "10", "--foo" = FALSE, "--bar" = FALSE)) }) test_that('parsing "10 20" works',{ res <- docopt(doc, '10 20', strict=TRUE) expect_equivalent(length(res), 3) expect_equivalent(res[c("NAME", "--foo", "--bar")], list(NAME = c("10", "20"), "--foo" = FALSE, "--bar" = FALSE)) }) test_that('parsing "--foo --bar" works',{ res <- docopt(doc, '--foo --bar', strict=TRUE) expect_equivalent(length(res), 3) expect_equivalent(res[c("NAME", "--foo", "--bar")], list(NAME = list(), "--foo" = TRUE, "--bar" = TRUE)) }) context('doc35') doc <- 'Naval Fate. Usage: prog ship new <name>... prog ship [<name>] move <x> <y> [--speed=<kn>] prog ship shoot <x> <y> prog mine (set|remove) <x> <y> [--moored|--drifting] prog -h | --help prog --version Options: -h --help Show this screen. --version Show version. --speed=<kn> Speed in knots [default: 10]. --moored Mored (anchored) mine. --drifting Drifting mine.' test_that('parsing "ship Guardian move 150 300 --speed=20" works',{ res <- docopt(doc, 'ship Guardian move 150 300 --speed=20', strict=TRUE) expect_equivalent(length(res), 15) expect_equivalent(res[c("--drifting", "--help", "--moored", "--speed", "--version","<name>", "<x>", "<y>", "mine", "move", "new", "remove", "set", "ship", "shoot")], list("--drifting" = FALSE, "--help" = FALSE, "--moored" = FALSE, "--speed" = "20", "--version" = FALSE, "<name>" = "Guardian", "<x>" = "150", "<y>" = "300", mine = FALSE, move = TRUE, new = FALSE, remove = FALSE, set = FALSE, ship = TRUE, shoot = FALSE)) }) context('doc36') doc <- 'usage: prog --hello' test_that('parsing "--hello" works',{ res <- docopt(doc, '--hello', strict=TRUE) expect_equivalent(length(res), 1) expect_equivalent(res["--hello"], list("--hello" = TRUE)) }) context('doc37') doc <- 'usage: prog [--hello=<world>]' test_that('parsing "" works',{ res <- docopt(doc, '', strict=TRUE) expect_equivalent(length(res), 1) expect_equivalent(res["--hello"], list("--hello" = NULL)) }) test_that('parsing "--hello wrld" works',{ res <- docopt(doc, '--hello wrld', strict=TRUE) expect_equivalent(length(res), 1) expect_equivalent(res["--hello"], list("--hello" = "wrld")) }) context('doc38') doc <- 'usage: prog [-o]' test_that('parsing "" works',{ res <- docopt(doc, '', strict=TRUE) expect_equivalent(length(res), 1) expect_equivalent(res["-o"], list("-o" = FALSE)) }) test_that('parsing "-o" works',{ res <- docopt(doc, '-o', strict=TRUE) expect_equivalent(length(res), 1) expect_equivalent(res["-o"], list("-o" = TRUE)) }) context('doc39') doc <- 'usage: prog [-opr]' test_that('parsing "-op" works',{ res <- docopt(doc, '-op', strict=TRUE) expect_equivalent(length(res), 3) expect_equivalent(res[c("-o", "-p", "-r")], list("-o" = TRUE, "-p" = TRUE, "-r" = FALSE)) }) context('doc40') doc <- 'usage: prog --aabb | --aa' test_that('parsing "--aa" works',{ res <- docopt(doc, '--aa', strict=TRUE) expect_equivalent(length(res), 2) expect_equivalent(res[c("--aabb", "--aa")], list("--aabb" = FALSE, "--aa" = TRUE)) }) context('doc41') doc <- 'Usage: prog -v' test_that('parsing "-v" works',{ res <- docopt(doc, '-v', strict=TRUE) expect_equivalent(length(res), 1) expect_equivalent(res["-v"], list("-v" = TRUE)) }) context('doc42') doc <- 'Usage: prog [-v -v]' test_that('parsing "" works',{ res <- docopt(doc, '', strict=TRUE) expect_equivalent(length(res), 1) expect_equivalent(res["-v"], list("-v" = 0)) }) test_that('parsing "-v" works',{ res <- docopt(doc, '-v', strict=TRUE) expect_equivalent(length(res), 1) expect_equivalent(res["-v"], list("-v" = 1)) }) test_that('parsing "-vv" works',{ res <- docopt(doc, '-vv', strict=TRUE) expect_equivalent(length(res), 1) expect_equivalent(res["-v"], list("-v" = 2)) }) context('doc43') doc <- 'Usage: prog -v ...' test_that('parsing "" works',{ expect_error(docopt(doc, '', strict=TRUE)) }) test_that('parsing "-v" works',{ res <- docopt(doc, '-v', strict=TRUE) expect_equivalent(length(res), 1) expect_equivalent(res["-v"], list("-v" = 1)) }) test_that('parsing "-vv" works',{ res <- docopt(doc, '-vv', strict=TRUE) expect_equivalent(length(res), 1) expect_equivalent(res["-v"], list("-v" = 2)) }) test_that('parsing "-vvvvvv" works',{ res <- docopt(doc, '-vvvvvv', strict=TRUE) expect_equivalent(length(res), 1) expect_equivalent(res["-v"], list("-v" = 6)) }) context('doc44') doc <- 'Usage: prog [-v | -vv | -vvv] This one is probably most readable user-friednly variant.' test_that('parsing "" works',{ res <- docopt(doc, '', strict=TRUE) expect_equivalent(length(res), 1) expect_equivalent(res["-v"], list("-v" = 0)) }) test_that('parsing "-v" works',{ res <- docopt(doc, '-v', strict=TRUE) expect_equivalent(length(res), 1) expect_equivalent(res["-v"], list("-v" = 1)) }) test_that('parsing "-vv" works',{ res <- docopt(doc, '-vv', strict=TRUE) expect_equivalent(length(res), 1) expect_equivalent(res["-v"], list("-v" = 2)) }) test_that('parsing "-vvvv" works',{ expect_error(docopt(doc, '-vvvv', strict=TRUE)) }) context('doc45') doc <- 'usage: prog [--ver --ver]' test_that('parsing "--ver --ver" works',{ skip("not implemented") res <- docopt(doc, '--ver --ver', strict=TRUE) expect_equivalent(length(res), 1) skip_on_cran() expect_equivalent(res["--ver"], list("--ver" = 2)) }) context('doc46') doc <- 'usage: prog [go]' test_that('parsing "go" works',{ res <- docopt(doc, 'go', strict=TRUE) expect_equivalent(length(res), 1) expect_equivalent(res["go"], list(go = TRUE)) }) context('doc47') doc <- 'usage: prog [go go]' test_that('parsing "" works',{ res <- docopt(doc, '', strict=TRUE) expect_equivalent(length(res), 1) expect_equivalent(res["go"], list(go = 0)) }) test_that('parsing "go" works',{ skip("not implemented") res <- docopt(doc, 'go', strict=TRUE) expect_equivalent(length(res), 1) expect_equivalent(res["go"], list(go = 1)) }) test_that('parsing "go go" works',{ skip("not implemented") res <- docopt(doc, 'go go', strict=TRUE) expect_equivalent(length(res), 1) expect_equivalent(res["go"], list(go = 2)) }) test_that('parsing "go go go" works',{ expect_error(docopt(doc, 'go go go', strict=TRUE)) }) context('doc48') doc <- 'usage: prog go...' test_that('parsing "go go go go go" works',{ skip("not implemented") res <- docopt(doc, 'go go go go go', strict=TRUE) expect_equivalent(length(res), 1) expect_equivalent(res["go"], list(go = 5)) }) test_that('parsing "-a" works',{ skip("not implemented") res <- docopt(doc, '-a', strict=TRUE) expect_equivalent(length(res), 2) expect_equivalent(res[c("-a", "-b")], list("-a" = TRUE, "-b" = FALSE)) }) test_that('parsing "-aa" works',{ expect_error(docopt(doc, '-aa', strict=TRUE)) }) context('doc49') doc <- 'Usage: prog [options] A Options: -q Be quiet -v Be verbose.' test_that('parsing "arg" works',{ res <- docopt(doc, 'arg', strict=TRUE) expect_equivalent(length(res), 3) expect_equivalent(res[c("A", "-v", "-q")], list(A = "arg", "-v" = FALSE, "-q" = FALSE)) }) test_that('parsing "-v arg" works',{ res <- docopt(doc, '-v arg', strict=TRUE) expect_equivalent(length(res), 3) expect_equivalent(res[c("A", "-v", "-q")], list(A = "arg", "-v" = TRUE, "-q" = FALSE)) }) test_that('parsing "-q arg" works',{ res <- docopt(doc, '-q arg', strict=TRUE) expect_equivalent(length(res), 3) expect_equivalent(res[c("A", "-v", "-q")], list(A = "arg", "-v" = FALSE, "-q" = TRUE)) }) context('doc50') doc <- 'usage: prog [-]' test_that('parsing "-" works',{ res <- docopt(doc, '-', strict=TRUE) expect_equivalent(length(res), 1) expect_equivalent(res["-"], list("-" = TRUE)) }) test_that('parsing "" works',{ res <- docopt(doc, '', strict=TRUE) expect_equivalent(length(res), 1) expect_equivalent(res["-"], list("-" = FALSE)) }) context('doc51') doc <- 'usage: prog [NAME [NAME ...]]' test_that('parsing "a b" works',{ res <- docopt(doc, 'a b', strict=TRUE) expect_equivalent(length(res), 1) expect_equivalent(res["NAME"], list(NAME = c("a", "b"))) }) test_that('parsing "" works',{ res <- docopt(doc, '', strict=TRUE) expect_equivalent(length(res), 1) expect_equivalent(res["NAME"], list(NAME = list())) }) context('doc52') doc <- 'usage: prog [options] options: -a Add -m <msg> Message' test_that('parsing "-a" works',{ res <- docopt(doc, '-a', strict=TRUE) expect_equivalent(length(res), 2) expect_equivalent(res[c("-m", "-a")], list("-m" = NULL, "-a" = TRUE)) }) context('doc53') doc <- 'usage: prog --hello' test_that('parsing "--hello" works',{ res <- docopt(doc, '--hello', strict=TRUE) expect_equivalent(length(res), 1) expect_equivalent(res["--hello"], list("--hello" = TRUE)) }) context('doc54') doc <- 'usage: prog [--hello=<world>]' test_that('parsing "" works',{ res <- docopt(doc, '', strict=TRUE) expect_equivalent(length(res), 1) expect_equivalent(res["--hello"], list("--hello" = NULL)) }) test_that('parsing "--hello wrld" works',{ res <- docopt(doc, '--hello wrld', strict=TRUE) expect_equivalent(length(res), 1) expect_equivalent(res["--hello"], list("--hello" = "wrld")) }) context('doc55') doc <- 'usage: prog [-o]' test_that('parsing "" works',{ res <- docopt(doc, '', strict=TRUE) expect_equivalent(length(res), 1) expect_equivalent(res["-o"], list("-o" = FALSE)) }) test_that('parsing "-o" works',{ res <- docopt(doc, '-o', strict=TRUE) expect_equivalent(length(res), 1) expect_equivalent(res["-o"], list("-o" = TRUE)) }) context('doc56') doc <- 'usage: prog [-opr]' test_that('parsing "-op" works',{ res <- docopt(doc, '-op', strict=TRUE) expect_equivalent(length(res), 3) expect_equivalent(res[c("-o", "-p", "-r")], list("-o" = TRUE, "-p" = TRUE, "-r" = FALSE)) }) context('doc57') doc <- 'usage: git [-v | --verbose]' test_that('parsing "-v" works',{ res <- docopt(doc, '-v', strict=TRUE) expect_equivalent(length(res), 2) expect_equivalent(res[c("-v", "--verbose")], list("-v" = TRUE, "--verbose" = FALSE)) }) context('doc58') doc <- 'usage: git remote [-v | --verbose]' test_that('parsing "remote -v" works',{ res <- docopt(doc, 'remote -v', strict=TRUE) expect_equivalent(length(res), 3) expect_equivalent(res[c("remote", "-v", "--verbose")], list(remote = TRUE, "-v" = TRUE, "--verbose" = FALSE)) }) context('doc59') doc <- 'usage: prog' test_that('parsing "" works',{ res <- docopt(doc, '', strict=TRUE) expect_equivalent(length(res), 0) expect_equivalent(res[NULL], list()) }) context('doc60') doc <- 'usage: prog prog <a> <b>' test_that('parsing "1 2" works',{ res <- docopt(doc, '1 2', strict=TRUE) expect_equivalent(length(res), 2) expect_equivalent(res[c("<a>", "<b>")], list("<a>" = "1", "<b>" = "2")) }) test_that('parsing "" works',{ res <- docopt(doc, '', strict=TRUE) expect_equivalent(length(res), 2) expect_equivalent(res[c("<a>", "<b>")], list("<a>" = NULL, "<b>" = NULL)) }) context('doc61') doc <- 'usage: prog <a> <b> prog' test_that('parsing "" works',{ res <- docopt(doc, '', strict=TRUE) expect_equivalent(length(res), 2) expect_equivalent(res[c("<a>", "<b>")], list("<a>" = NULL, "<b>" = NULL)) }) context('doc62') doc <- 'usage: prog [--file=<f>]' test_that('parsing "" works',{ res <- docopt(doc, '', strict=TRUE) expect_equivalent(length(res), 1) expect_equivalent(res["--file"], list("--file" = NULL)) }) context('doc63') doc <- 'usage: prog [--file=<f>] options: --file <a>' test_that('parsing "" works',{ res <- docopt(doc, '', strict=TRUE) expect_equivalent(length(res), 1) expect_equivalent(res["--file"], list("--file" = NULL)) }) context('doc64') doc <- 'Usage: prog [-a <host:port>] Options: -a, --address <host:port> TCP address [default: localhost:6283].' test_that('parsing "" works',{ res <- docopt(doc, '', strict=TRUE) expect_equivalent(length(res), 1) expect_equivalent(res["--address"], list("--address" = "localhost:6283")) }) context('doc65') doc <- 'usage: prog --long=<arg> ...' test_that('parsing "--long one" works',{ res <- docopt(doc, '--long one', strict=TRUE) expect_equivalent(length(res), 1) expect_equivalent(res["--long"], list("--long" = "one")) }) test_that('parsing "--long one --long two" works',{ res <- docopt(doc, '--long one --long two', strict=TRUE) expect_equivalent(length(res), 1) expect_equivalent(res["--long"], list("--long" = c("one", "two"))) }) context('doc66') doc <- 'usage: prog (go <direction> --speed=<km/h>)...' test_that('parsing "go left --speed=5 go right --speed=9" works',{ skip("not implemented") res <- docopt(doc, 'go left --speed=5 go right --speed=9', strict=TRUE) expect_equivalent(length(res), 3) expect_equivalent(res[c("go", "<direction>", "--speed")], list(go = 2, "<direction>" = c("left", "right"), "--speed" = c("5", "9"))) }) context('doc67') doc <- 'usage: prog [options] -a options: -a' skip("not implemented") test_that('parsing "-a" works',{ res <- docopt(doc, '-a', strict=TRUE) expect_equivalent(length(res), 1) expect_equivalent(res["-a"], list("-a" = TRUE)) }) context('doc68') doc <- 'usage: prog [-o <o>]... options: -o <o> [default: x]' test_that('parsing "-o this -o that" works',{ res <- docopt(doc, '-o this -o that', strict=TRUE) expect_equivalent(length(res), 1) expect_equivalent(res["-o"], list("-o" = c("this", "that"))) }) test_that('parsing "" works',{ res <- docopt(doc, '', strict=TRUE) expect_equivalent(length(res), 1) expect_equivalent(res["-o"], list("-o" = "x")) }) context('doc69') doc <- 'usage: prog [-o <o>]... options: -o <o> [default: x y]' test_that('parsing "-o this" works',{ res <- docopt(doc, '-o this', strict=TRUE) expect_equivalent(length(res), 1) expect_equivalent(res["-o"], list("-o" = "this")) }) test_that('parsing "" works',{ res <- docopt(doc, '', strict=TRUE) expect_equivalent(length(res), 1) skip("not implemented") expect_equivalent(res["-o"], list("-o" = c("x", "y"))) }) context('doc70') doc <- 'usage: prog -pPATH options: -p PATH' test_that('parsing "-pHOME" works',{ res <- docopt(doc, '-pHOME', strict=TRUE) expect_equivalent(length(res), 1) expect_equivalent(res["-p"], list("-p" = "HOME")) }) context('doc71') doc <- 'Usage: foo (--xx=x|--yy=y)...' test_that('parsing "--xx=1 --yy=2" works',{ res <- docopt(doc, '--xx=1 --yy=2', strict=TRUE) expect_equivalent(length(res), 2) expect_equivalent(res[c("--xx", "--yy")], list("--xx" = "1", "--yy" = "2")) }) context('doc72') doc <- 'usage: prog [<input file>]' test_that('parsing "f.txt" works',{ res <- docopt(doc, 'f.txt', strict=TRUE) expect_equivalent(length(res), 1) expect_equivalent(res["<input file>"], list("<input file>" = "f.txt")) }) context('doc73') doc <- 'usage: prog [--input=<file name>]...' test_that('parsing "--input a.txt --input=b.txt" works',{ res <- docopt(doc, '--input a.txt --input=b.txt', strict=TRUE) expect_equivalent(length(res), 1) expect_equivalent(res["--input"], list("--input" = c("a.txt", "b.txt"))) }) context('doc74') doc <- 'usage: prog good [options] prog fail [options] options: --loglevel=N' test_that('parsing "fail --loglevel 5" works',{ res <- docopt(doc, 'fail --loglevel 5', strict=TRUE) expect_equivalent(length(res), 3) expect_equivalent(res[c("--loglevel", "fail", "good")], list("--loglevel" = "5", fail = TRUE, good = FALSE)) }) context('doc75') doc <- 'usage:prog --foo' test_that('parsing "--foo" works',{ res <- docopt(doc, '--foo', strict=TRUE) expect_equivalent(length(res), 1) expect_equivalent(res["--foo"], list("--foo" = TRUE)) }) context('doc76') doc <- 'PROGRAM USAGE: prog --foo' test_that('parsing "--foo" works',{ res <- docopt(doc, '--foo', strict=TRUE) expect_equivalent(length(res), 1) expect_equivalent(res["--foo"], list("--foo" = TRUE)) }) context('doc77') doc <- 'Usage: prog --foo prog --bar NOT PART OF SECTION' test_that('parsing "--foo" works',{ res <- docopt(doc, '--foo', strict=TRUE) expect_equivalent(length(res), 2) expect_equivalent(res[c("--foo", "--bar")], list("--foo" = TRUE, "--bar" = FALSE)) }) context('doc78') doc <- 'Usage: prog --foo prog --bar NOT PART OF SECTION' test_that('parsing "--foo" works',{ res <- docopt(doc, '--foo', strict=TRUE) expect_equivalent(length(res), 2) expect_equivalent(res[c("--foo", "--bar")], list("--foo" = TRUE, "--bar" = FALSE)) }) context('doc79') doc <- 'Usage: prog --foo prog --bar NOT PART OF SECTION' test_that('parsing "--foo" works',{ res <- docopt(doc, '--foo', strict=TRUE) expect_equivalent(length(res), 2) expect_equivalent(res[c("--foo", "--bar")], list("--foo" = TRUE, "--bar" = FALSE)) }) context('doc80') doc <- 'Usage: prog [options] global options: --foo local options: --baz --bar other options: --egg --spam -not-an-option-' test_that('parsing "--baz --egg" works',{ res <- docopt(doc, '--baz --egg', strict=TRUE) skip("not implemented") expect_equivalent(length(res), 5) expect_equivalent(res[c("--foo", "--baz", "--bar", "--egg", "--spam")], list("--foo" = FALSE, "--baz" = TRUE, "--bar" = FALSE, "--egg" = TRUE, "--spam" = FALSE)) })
do <- function(.data, ...) { lifecycle::signal_stage("superseded", "do()") UseMethod("do") } do.NULL <- function(.data, ...) { NULL } do.grouped_df <- function(.data, ...) { index <- group_rows(.data) labels <- select(group_data(.data), -last_col()) attr(labels, ".drop") <- NULL group_data <- ungroup(.data) args <- enquos(...) named <- named_args(args) mask <- new_data_mask(new_environment()) n <- length(index) m <- length(args) if (n == 0) { if (named) { out <- rep_len(list(list()), length(args)) out <- set_names(out, names(args)) out <- label_output_list(labels, out, groups(.data)) } else { env_bind_do_pronouns(mask, group_data) out <- eval_tidy(args[[1]], mask) out <- out[0, , drop = FALSE] out <- label_output_dataframe(labels, list(list(out)), group_vars(.data), group_by_drop_default(.data)) } return(out) } group_slice <- function(value) { if (missing(value)) { group_data[index[[`_i`]], , drop = FALSE] } else { group_data[index[[`_i`]], ] <<- value } } env_bind_do_pronouns(mask, group_slice) out <- replicate(m, vector("list", n), simplify = FALSE) names(out) <- names(args) p <- rlang::with_options( lifecycle_verbosity = "quiet", progress_estimated(n * m, min_time = 2) ) for (`_i` in seq_len(n)) { for (j in seq_len(m)) { out[[j]][`_i`] <- list(eval_tidy(args[[j]], mask)) p$tick()$print() } } if (!named) { label_output_dataframe(labels, out, group_vars(.data), group_by_drop_default(.data)) } else { label_output_list(labels, out, group_vars(.data)) } } do.data.frame <- function(.data, ...) { args <- enquos(...) named <- named_args(args) mask <- new_data_mask(new_environment()) env_bind_do_pronouns(mask, .data) if (!named) { out <- eval_tidy(args[[1]], mask) if (!inherits(out, "data.frame")) { msg <- glue("Result must be a data frame, not {fmt_classes(out)}.") abort(msg) } } else { out <- map(args, function(arg) list(eval_tidy(arg, mask))) names(out) <- names(args) out <- tibble::as_tibble(out, .name_repair = "minimal") } out } env_bind_do_pronouns <- function(env, data) { if (is_function(data)) { bind <- env_bind_active } else { bind <- env_bind } bind(env, "." := data, .data = data) } label_output_dataframe <- function(labels, out, groups, .drop, error_call = caller_env()) { data_frame <- vapply(out[[1]], is.data.frame, logical(1)) if (any(!data_frame)) { msg <- glue( "Results {bad} must be data frames, not {first_bad_class}.", bad = fmt_comma(which(!data_frame)), first_bad_class = fmt_classes(out[[1]][[which.min(data_frame)]]) ) abort(msg, call = error_call) } rows <- vapply(out[[1]], nrow, numeric(1)) out <- bind_rows(out[[1]]) if (!is.null(labels)) { labels <- labels[setdiff(names(labels), names(out))] labels <- labels[rep(seq_len(nrow(labels)), rows), , drop = FALSE] rownames(labels) <- NULL grouped_df(bind_cols(labels, out), groups, .drop) } else { rowwise(out) } } label_output_list <- function(labels, out, groups) { if (!is.null(labels)) { labels[names(out)] <- out rowwise(labels) } else { class(out) <- "data.frame" attr(out, "row.names") <- .set_row_names(length(out[[1]])) rowwise(out) } } named_args <- function(args, error_call = caller_env()) { named <- sum(names2(args) != "") if (!(named == 0 || named == length(args))) { msg <- "Arguments must either be all named or all unnamed." abort(msg, call = error_call) } if (named == 0 && length(args) > 1) { msg <- glue("Can only supply one unnamed argument, not {length(args)}.") abort(msg, call = error_call) } named != 0 } do.rowwise_df <- function(.data, ...) { group_data <- ungroup(.data) args <- enquos(...) named <- named_args(args) mask <- new_data_mask(new_environment()) current_row <- function() lapply(group_data[`_i`, , drop = FALSE], "[[", 1) env_bind_do_pronouns(mask, current_row) n <- nrow(.data) m <- length(args) out <- replicate(m, vector("list", n), simplify = FALSE) names(out) <- names(args) p <- rlang::with_options( lifecycle_verbosity = "quiet", progress_estimated(n * m, min_time = 2) ) for (`_i` in seq_len(n)) { for (j in seq_len(m)) { out[[j]][`_i`] <- list(eval_tidy(args[[j]], mask)) p$tick()$print() } } if (!named) { label_output_dataframe(NULL, out, groups(.data), group_by_drop_default(.data)) } else { label_output_list(NULL, out, groups(.data)) } }
priorPosterior <- function(MCMCPrior, MCMCPosterior = NULL, inputTree, return.density=FALSE, rootCalibration = NULL) { if(methods::is(MCMCPrior)[1] == "character") MCMCPrior <- utils::read.csv(MCMCPrior, sep="\t") if(methods::is(MCMCPosterior)[1] == "character") MCMCPosterior <- utils::read.csv(MCMCPosterior, sep="\t") s <- utils::read.table(inputTree, row.names=1)[,2] s <- strsplit(as.character(s), "'")[[1]] nodePr <- c(grep("SN[(]", s), grep("ST[(]", s), grep("B[(]", s), grep("U[(]", s), grep("L[(]", s), grep("U[(]", s)) s[nodePr] <- gsub("[(]", "~",s[nodePr]) s[nodePr] <- gsub("[)]", "",s[nodePr]) s[nodePr] <- gsub(",", "~",s[nodePr]) pl <- paste0(s, collapse="") phylo <- ladderize(read.tree(text=pl)) nodeInfo <- which(phylo$node.label != "") priors <- posteriors <- givenPriors <- list() if (!is.null(rootCalibration)) { nodeInfo <- c(1, nodeInfo) phylo$node.label[1] <- rootCalibration } for(tt in 1:length(nodeInfo)) { colNum <- as.numeric(sort(nodeInfo + Ntip(phylo))[tt]) noders <- strsplit(phylo$node.label[nodeInfo[tt]], "~")[[1]] nodeType <- as.character(noders[1]) if(nodeType == "B") { nums <- as.numeric(noders[2:5]) pr <- MCMCPrior[, paste0("t_n", colNum)] if (!is.null(MCMCPosterior)) { post <- MCMCPosterior[, paste0("t_n", colNum)] } names(nums) <- c("tL", "tU", "pL", "pU")[1:length(nums)] } if(nodeType == "SN") { nums <- as.numeric(noders[-1]) pr <- MCMCPrior[, paste0("t_n", colNum)] if (!is.null(MCMCPosterior)) { post <- MCMCPosterior[,paste0("t_n", colNum)] } names(nums) <- c("location", "scale", "shape") } if(nodeType == "ST") { nums <- as.numeric(noders[-1]) pr <- MCMCPrior[, paste0("t_n", colNum)] if (!is.null(MCMCPosterior)) { post <- MCMCPosterior[,paste0("t_n", colNum)] } names(nums) <- c("location", "scale", "shape", "df") } if(nodeType == "G") { nums <- as.numeric(noders[2:3]) pr <- MCMCPrior[, paste0("t_n", colNum)] if (!is.null(MCMCPosterior)) { post <- MCMCPosterior[,paste0("t_n", colNum)] } names(nums) <- c("alpha", "beta") } if(nodeType == "L") { nums <- as.numeric(noders[-1]) pr <- MCMCPrior[, paste0("t_n", colNum)] if (!is.null(MCMCPosterior)) { post <- MCMCPosterior[,paste0("t_n", colNum)] } names(nums) <- c("tL", "p", "c", "pL") } if(return.density) { pr <- stats::density(pr) post <- stats::density(post) } priors[[tt]] <- pr names(priors)[tt] <- paste0(colNum, "_", nodeType) posteriors[[tt]] <- post names(posteriors)[tt] <- paste0(colNum, "_", nodeType) givenPriors[[tt]] <- nums names(givenPriors)[tt] <- paste0(colNum, "_", nodeType) } nodeValues <- list() nodeValues$prior <- priors nodeValues$posterior <- posteriors nodeValues$specifiedPriors <- givenPriors return(nodeValues) }
nlm_edgegradient <- function(ncol, nrow, resolution = 1, direction = NA, rescale = TRUE) { checkmate::assert_count(ncol, positive = TRUE) checkmate::assert_count(nrow, positive = TRUE) checkmate::assert_numeric(resolution) checkmate::assert_numeric(direction) checkmate::assert_logical(rescale) if (is.na(direction)) { direction <- stats::runif(1, 0, 360) } gradient_raster <- nlm_planargradient(ncol, nrow, resolution = resolution, direction = direction) edgegradient_raster <- (abs(0.5 - gradient_raster) * -2) + 1 raster::extent(edgegradient_raster) <- c( 0, ncol(edgegradient_raster) * resolution, 0, nrow(edgegradient_raster) * resolution ) if (rescale == TRUE) { edgegradient_raster <- util_rescale(edgegradient_raster) } return(edgegradient_raster) }
which.at.boundary <- function(object, criterion = 1e-6){ if(class(object)[1]!="lexpit"&class(object)[1]!="blm") stop("Object must be an instance of a blm or lexpit model.") if(any(predict(object)<=criterion|predict(object)>=1-criterion)){ which <- which(predict(object)<=criterion|predict(object)>=1-criterion) if(class(object)[1]=="lexpit") cbind(model.matrix([email protected],object@data)[,-1], model.matrix([email protected],object@data)[,-1])[which,] else cbind(model.matrix(object@formula,object@data)[,-1])[which,] } else{ cat("No boundary constraints using the given criterion.\n\n") invisible(NA) } }
library("matrixStats") options(matrixStats.center.onUse = "ignore") if (!exists("isFALSE", mode="function")) { isFALSE <- function(x) is.logical(x) && length(x) == 1L && !is.na(x) && !x } rowVars_R <- function(x, na.rm = FALSE, center = NULL, ..., useNames = NA) { suppressWarnings({ res <- apply(x, MARGIN = 1L, FUN = var, na.rm = na.rm) }) stopifnot(!any(is.infinite(res))) if (is.null(center) || ncol(x) <= 1L) { if (is.na(useNames) || isFALSE(useNames)) names(res) <- NULL } else if (isFALSE(useNames)) names(res) <- NULL res } colVars_R <- function(x, na.rm = FALSE, center = NULL, ..., useNames = NA) { suppressWarnings({ res <- apply(x, MARGIN = 2L, FUN = var, na.rm = na.rm) }) stopifnot(!any(is.infinite(res))) if (is.null(center) || nrow(x) <= 1L) { if (is.na(useNames) || isFALSE(useNames)) names(res) <- NULL } else if (isFALSE(useNames)) names(res) <- NULL res } rowVars_center <- function(x, rows = NULL, cols = NULL, na.rm = FALSE, ..., useNames = NA) { center <- rowWeightedMeans(x, cols = cols, na.rm = na.rm, useNames = FALSE) res <- rowVars(x, rows = rows, cols = cols, center = center, na.rm = na.rm, useNames = useNames) stopifnot(!any(is.infinite(res))) res } colVars_center <- function(x, rows = NULL, cols = NULL, na.rm = FALSE, ..., useNames = NA) { center <- colWeightedMeans(x, rows = rows, na.rm = na.rm, useNames = FALSE) res <- colVars(x, rows = rows, cols = cols, center = center, na.rm = na.rm, useNames = useNames) stopifnot(!any(is.infinite(res))) res } source("utils/validateIndicesFramework.R") x <- matrix(runif(6 * 6, min = -6, max = 6), nrow = 6, ncol = 6) storage.mode(x) <- "integer" dimnames <- list(letters[1:6], LETTERS[1:6]) for (setDimnames in c(TRUE, FALSE)) { if (setDimnames) dimnames(x) <- dimnames else dimnames(x) <- NULL for (rows in index_cases) { for (cols in index_cases) { for (na.rm in c(TRUE, FALSE)) { for (useNames in c(NA, TRUE, FALSE)) { validateIndicesTestMatrix(x, rows, cols, ftest = rowVars, fsure = rowVars_R, na.rm = na.rm, useNames = useNames) validateIndicesTestMatrix(x, rows, cols, ftest = rowVars_center, fsure = rowVars_R, na.rm = na.rm, center = TRUE, useNames = useNames) validateIndicesTestMatrix(x, rows, cols, fcoltest = colVars, fsure = rowVars_R, na.rm = na.rm, useNames = useNames) validateIndicesTestMatrix(x, rows, cols, fcoltest = colVars_center, fsure = rowVars_R, na.rm = na.rm, center = TRUE, useNames = useNames) } } } } }
NULL backup <- function(config = list()) { svc <- .backup$operations svc <- set_config(svc, config) return(svc) } .backup <- list() .backup$operations <- list() .backup$metadata <- list( service_name = "backup", endpoints = list("*" = list(endpoint = "backup.{region}.amazonaws.com", global = FALSE), "cn-*" = list(endpoint = "backup.{region}.amazonaws.com.cn", global = FALSE), "us-iso-*" = list(endpoint = "backup.{region}.c2s.ic.gov", global = FALSE), "us-isob-*" = list(endpoint = "backup.{region}.sc2s.sgov.gov", global = FALSE)), service_id = "Backup", api_version = "2018-11-15", signing_name = "backup", json_version = "1.1", target_prefix = "" ) .backup$service <- function(config = list()) { handlers <- new_handlers("restjson", "v4") new_service(.backup$metadata, handlers, config) }
NULL p.QFASA <- function(predator.mat, prey.mat, cal.mat, dist.meas, gamma = 1, FC = rep(1, nrow(prey.mat)), start.val = rep(0.99999, nrow(prey.mat)), ext.fa) { seal.mat <- predator.mat seal.mat = as.matrix(seal.mat) prey.mat = as.matrix(prey.mat) cal.mat = as.matrix(cal.mat) if ((is.vector(cal.mat)) || (nrow(cal.mat) == 1.) || (ncol(cal.mat ) == 1.)) { seal.mat <- t(t(seal.mat)/as.vector(unlist(cal.mat))) seal.mat <- as.data.frame(seal.mat)[ext.fa] seal.mat <- seal.mat/apply(seal.mat, 1., sum) seal.mat <- as.matrix(seal.mat) } else { seal.mat <- seal.mat/t(cal.mat) seal.mat <- as.data.frame(seal.mat)[ext.fa] seal.mat <- seal.mat/apply(seal.mat, 1., sum) seal.mat <- as.matrix(seal.mat) } I <- nrow(prey.mat) ns <- nrow(seal.mat) p.mat <- matrix(rep(0, nrow(prey.mat) * nrow(seal.mat)), byrow = T, nrow(seal.mat), nrow(prey.mat)) more.list <- vector("list",ns) if (!(is.matrix(start.val))) { start.val <- matrix(rep(start.val, ns), byrow = T, ns, I) } if (dist.meas == 1) { for (i in 1.:nrow(seal.mat)) { p.all <- Rsolnp::solnp(pars = start.val[i, ], fun = KL.obj, predator = seal.mat[i, ], prey.quantiles = prey.mat, eqfun = QFASA.const.eqn, eqB = 1, LB = rep(0, nrow(prey.mat)), UB = rep(0.999999, nrow(prey.mat)), control=list(trace=0)) if (p.all$convergence!=0) { cat("WARNING: DID NOT CONVERGE") } p.mat[i, ] <- p.all$par more.list[[i]] <- KL.more(p.mat[i,],seal.mat[i,],prey.mat) } } else if (dist.meas==2) { for (i in 1.:nrow(seal.mat)) { p.all <- Rsolnp::solnp(pars = start.val[i, ], fun = AIT.obj, predator = seal.mat[i, ], prey.quantiles = prey.mat, eqfun = QFASA.const.eqn, eqB=1, LB = rep(0, nrow(prey.mat)), UB = rep(0.999999, nrow(prey.mat)), control=list(trace=0)) if (p.all$convergence!=0) { cat("WARNING: DID NOT CONVERGE") } p.mat[i, ] <- p.all$par more.list[[i]] <- AIT.more(p.mat[i,],seal.mat[i,],prey.mat) } } else { for (i in 1.:nrow(seal.mat)) { p.all <- Rsolnp::solnp(pars = start.val[i, ], fun = CS.obj, predator = seal.mat[i, ], prey.quantiles = prey.mat, gamma = gamma, eqfun= QFASA.const.eqn, eqB = 1, LB = rep(0, nrow(prey.mat)), UB = rep(0.999999, nrow(prey.mat)), control=list(trace=0)) if (p.all$convergence!=0) { cat("WARNING: DID NOT CONVERGE") } p.mat[i, ] <- p.all$par more.list[[i]] <- CS.more(p.mat[i,],seal.mat[i,],prey.mat,gamma) } } if (is.matrix(FC)) { FC.mat <- FC } else { FC.mat <- matrix(rep(FC, nrow(seal.mat)), byrow = T, nrow(seal.mat), I) } p.mat <- p.mat/FC.mat p.mat <- p.mat/apply(p.mat, 1, sum) colnames(p.mat) <- as.vector(rownames(prey.mat)) out.list <- list(p.mat,more.list) names(out.list) <- c("Diet Estimates","Additional Measures") return(out.list) } AIT.dist <- function(x.1, x.2) { return(sqrt(sum((log(x.1/mean.geometric(x.1)) - log(x.2/mean.geometric(x.2)))^2.))) } AIT.more <- function(alpha, predator, prey.quantiles) { seal <- predator no.zero <- sum(seal == 0.) seal[seal == 0.] <- 1e-05 seal[seal > 0.] <- (1. - no.zero * 1e-05) * seal[seal > 0.] sealhat <- t(as.matrix(alpha)) %*% prey.quantiles no.zero <- sum(sealhat == 0.) sealhat[sealhat == 0.] <- 1e-05 sealhat[sealhat > 0.] <- (1. - no.zero * 1e-05) * sealhat[sealhat > 0.] AIT.sq.vec <- ( log(seal/mean.geometric(seal)) - log(sealhat/mean.geometric(sealhat)) )^2 dist <- (sum(AIT.sq.vec))^(1/2) out.list <- list(sealhat,AIT.sq.vec,AIT.sq.vec/sum(AIT.sq.vec),dist) names(out.list) <- c("ModFAS","DistCont", "PropDistCont","MinDist") return(out.list) } AIT.obj <- function(alpha, predator, prey.quantiles) { seal <- predator no.zero <- sum(seal == 0.) seal[seal == 0.] <- 1e-05 seal[seal > 0.] <- (1. - no.zero * 1e-05) * seal[seal > 0.] sealhat <- t(as.matrix(alpha)) %*% prey.quantiles no.zero <- sum(sealhat == 0.) sealhat[sealhat == 0.] <- 1e-05 sealhat[sealhat > 0.] <- (1. - no.zero * 1e-05) * sealhat[sealhat > 0.] return(AIT.dist(seal, sealhat)) } chisq.dist <- function(x.1, x.2, gamma) { nfa <- length(x.1) y.1 <- x.1^(gamma) y.1 <- y.1/sum(y.1) y.2 <- x.2^(gamma) y.2 <- y.2/sum(y.2) d.sq <- (y.1-y.2)^2 c.vec <- y.1+y.2 if ( any(d.sq!=0) ) { d.sq[d.sq!=0] <- d.sq[d.sq!=0]/c.vec[d.sq!=0] } CS.dist <- 1/gamma*sqrt(2*nfa)*sqrt(sum(d.sq)) return(CS.dist) } CS.more <- function(alpha, predator, prey.quantiles, gamma) { seal <- predator sealhat <- t(as.matrix(alpha)) %*% prey.quantiles nfa <- length(seal) y.1 <- seal^(gamma) y.1 <- y.1/sum(y.1) y.2 <- sealhat^(gamma) y.2 <- y.2/sum(y.2) d.sq <- (y.1-y.2)^2 c.vec <- y.1+y.2 if ( any(d.sq!=0) ) { d.sq[d.sq!=0] <- d.sq[d.sq!=0]/c.vec[d.sq!=0] } CS.vec.sq <- d.sq dist <- 1/gamma*sqrt(2*nfa)*sqrt(sum(d.sq)) out.list <- list(sealhat,CS.vec.sq,CS.vec.sq/sum(CS.vec.sq),dist) names(out.list) <- c("ModFAS","DistCont", "PropDistCont","MinDist") return(out.list) } CS.obj <- function(alpha, predator, prey.quantiles, gamma){ seal <- predator sealhat <- t(as.matrix(alpha)) %*% prey.quantiles return(chisq.dist(seal, sealhat, gamma)) } KL.dist <- function(x.1, x.2) { return(sum((x.1 - x.2) * log(x.1/x.2))) } KL.more <- function(alpha, predator, prey.quantiles) { no.zero <- sum(predator == 0.) predator[predator == 0.] <- 1e-05 predator[predator > 0.] <- (1. - no.zero * 1e-05) * predator[predator > 0.] predatorhat <- t(as.matrix(alpha)) %*% prey.quantiles no.zero <- sum(predatorhat == 0.) predatorhat[predatorhat == 0.] <- 1e-05 predatorhat[predatorhat > 0.] <- (1. - no.zero * 1e-05) * predatorhat[predatorhat >0.] KL.vec <- (predator - predatorhat) * log(predator/predatorhat) dist <- sum(KL.vec) out.list <- list(predatorhat,KL.vec,KL.vec/sum(KL.vec),dist) names(out.list) <- c("ModFAS","DistCont", "PropDistCont","MinDist") return(out.list) } KL.obj <- function(alpha, predator, prey.quantiles) { predator <- predator no.zero <- sum(predator == 0.) predator[predator == 0.] <- 1e-05 predator[predator > 0.] <- (1. - no.zero * 1e-05) * predator[predator > 0.] predatorhat <- t(as.matrix(alpha)) %*% prey.quantiles no.zero <- sum(predatorhat == 0.) predatorhat[predatorhat == 0.] <- 1e-05 predatorhat[predatorhat > 0.] <- (1. - no.zero * 1e-05) * predatorhat[predatorhat >0.] return(KL.dist(predator, predatorhat)) } mean.geometric <- function(x) { D <- length(x) return(prod(x)^(1./D)) } MEANmeth <- function(prey.mat) { prey.means <- apply(prey.mat[, -1], 2, tapply, prey.mat[, 1], mean) return(prey.means) } QFASA.const.eqn <- function(alpha, predator, prey.quantiles, gamma) { return(sum(alpha)) } testfordiff.ind.pval <- function(compdata.1, compdata.2, ns1, R=500) { compdata.1 <- as.matrix(compdata.1) compdata.2 <- as.matrix(compdata.2) boot.out <- testfordiff.ind.boot(rbind(compdata.1, compdata.2), ns1, R) T.orig <- boot.out$t0 T.vec <- boot.out$t pval.vec <- T.vec >= T.orig pval <- mean(pval.vec) return(list(T.orig, T.vec, pval)) } testfordiff.ind.boot <- function(data, ns1, R) { data.boot <- boot::boot(data = data, statistic = testfordiff.ind.boot.fun, ns1 = ns1, sim = "permutation", R = R) return(data.boot) } testfordiff.ind.boot.fun <- function(data, i, ns1, change.zero = 1e-05) { d <- data[i, ] ns2 <- nrow(data) - ns1 Y.1 <- d[1.:ns1, ] Y.2 <- d[(ns1 + 1.):nrow(data), ] alpha <- 1 Y.1.t <- Y.1^(1/alpha) Y.1.t <- Y.1.t/apply(Y.1.t,1,sum) Y.2.t <- Y.2^(1/alpha) Y.2.t <- Y.2.t/apply(Y.2.t,1,sum) d.mat <- alpha * create.d.mat(Y.1.t,Y.2.t)*sqrt(ncol(Y.1)) T.chisq <- sum(d.mat) return(T.chisq) } create.d.mat <- function(Y.1,Y.2) { ns1 <- nrow(Y.1) ns2 <- nrow(Y.2) nFA <- ncol(Y.1) ind.vec <- as.vector(unlist(tapply(seq(1,ns1,1),seq(1,ns1,1),rep,ns2))) Y.1.rep <- Y.1[ind.vec, ] Y.2.rep <- rep(t(Y.2),ns1) Y.2.rep <- matrix(Y.2.rep,ncol=ncol(Y.2),byrow=T) Y.1.split <- split(Y.1.rep,seq(1,nrow(Y.1.rep),1)) Y.2.split <- split(Y.2.rep,seq(1,nrow(Y.2.rep),1)) d.mat <- matrix(mapply(chisq.CA,Y.1.split,Y.2.split),byrow=T,ns1,ns2) return(d.mat) } chisq.CA <- function(x1,x2) { d.sq <- (x1-x2)^2 c.vec <- x1+x2 if ( any(d.sq!=0)) { d.sq[d.sq!=0] <- d.sq[d.sq!=0]/c.vec[d.sq!=0] } d.sq <- 4*sum(d.sq) d <- sqrt(d.sq/2) return(d) }
runkMeans <- function(X, initial_centroids, max_iters, plot_progress = FALSE) { m <- dim(X)[1] n <- dim(X)[2] K <- dim(initial_centroids)[1] centroids <- initial_centroids previous_centroids <- array(0,dim = c(dim(centroids),max_iters + 1)) previous_centroids[,,1] <- centroids idx <- rep(0,m) for (i in 1:max_iters) { cat(sprintf('K-Means iteration %d/%d...\n', i, max_iters)) idx <- findClosestCentroids(X, centroids) if (plot_progress) { plotProgresskMeans(X, centroids, previous_centroids, idx, K, i) cat(sprintf('Press enter to continue.\n')) line <- readLines(con = stdin(),1) } centroids <- computeCentroids(X, idx, K) previous_centroids[,,i + 1] <- centroids } list(centroids = centroids, idx = idx) }
library(knitr) library(poweRlaw) options(replace.assign = FALSE) opts_chunk$set(fig.path = "knitr_figure_poweRlaw/graphicsa-", cache.path = "knitr_cache_poweRlaw_a/", fig.align = "center", dev = "pdf", fig.width = 5, fig.height = 5, fig.show = "hold", cache = FALSE, par = TRUE, out.width = "0.4\\textwidth") knit_hooks$set(crop = hook_pdfcrop) knit_hooks$set(par = function(before, options, envir) { if (before && options$fig.show != "none") { par(mar = c(3, 4, 2, 1), cex.lab = .95, cex.axis = .9, mgp = c(3, .7, 0), tcl = -.01, las = 1) }}, crop = hook_pdfcrop) set.seed(1) palette(c(rgb(170, 93, 152, maxColorValue = 255), rgb(103, 143, 57, maxColorValue = 255), rgb(196, 95, 46, maxColorValue = 255), rgb(79, 134, 165, maxColorValue = 255), rgb(205, 71, 103, maxColorValue = 255), rgb(203, 77, 202, maxColorValue = 255), rgb(115, 113, 206, maxColorValue = 255))) library("poweRlaw") data(bootstrap_moby) bs = bootstrap_moby data(bootstrap_p_moby) bs_p = bootstrap_p_moby data("moby") m_m = displ$new(moby) m_m$getXmin() m_m$getPars() m_m$setXmin(5) m_m$setPars(2) (est = estimate_pars(m_m)) (est = estimate_xmin(m_m)) m_m$setXmin(est) par(mfrow = c(2, 2)) plot(m_m, xlab = "x", ylab = "CDF", pch = 21, bg = 1, cex = 0.6, panel.first = grid()) lines(m_m, col = 2, lwd = 2) hist(bs$bootstraps[, 2], xlab = expression(x[min]), ylim = c(0, 1600), xlim = c(0, 30), main = NULL, breaks = "fd") grid() hist(bs$bootstraps[, 3], xlab = expression(alpha), ylim = c(0, 500), xlim = c(1.8, 2.1), main = NULL, breaks = "fd") grid() plot(jitter(bs$bootstraps[, 2], factor = 1.2), bs$bootstraps[, 3], xlab = expression(x[min]), ylab = expression(alpha), xlim = c(0, 30), ylim = c(1.8, 2.1), cex = 0.35, pch = 21, bg = 1, panel.first = grid()) plot(m_m) lines(m_m, col = 2) dd = plot(m_m) head(dd, 3) parallel::detectCores() hist(bs$bootstraps[, 2], breaks = "fd") hist(bs$bootstraps[, 3], breaks = "fd") plot(jitter(bs$bootstraps[, 2], factor = 1.2), bs$bootstraps[, 3]) par(mfrow = c(1, 3)) hist(bs_p$bootstraps[, 2], xlab = expression(x[min]), ylim = c(0, 1600), xlim = c(0, 45), main = NULL, breaks = "fd") grid() hist(bs_p$bootstraps[, 3], xlab = expression(alpha), ylim = c(0, 500), xlim = c(1.80, 2.05), main = NULL, breaks = "fd") grid() plot(jitter(bs_p$bootstraps[, 2], factor = 1.2), bs_p$bootstraps[, 3], xlab = expression(x[xmin]), ylab = expression(alpha), xlim = c(0, 40), ylim = c(1.8, 2.05), cex = 0.35, pch = 21, bg = 1, panel.first = grid()) m_m = displ$new(moby) m_m$setXmin(est) blackouts = c(570, 210.882, 190, 46, 17, 360, 74, 19, 460, 65, 18.351, 25, 25, 63.5, 1, 9, 50, 114.5, 350, 25, 50, 25, 242.91, 55, 164.5, 877, 43, 1140, 464, 90, 2100, 385, 95.63, 166, 71, 100, 234, 300, 258, 130, 246, 114, 120, 24.506, 36.073, 10, 160, 600, 12, 203, 50.462, 40, 59, 15, 1.646, 500, 60, 133, 62, 173, 81, 20, 112, 600, 24, 37, 238, 50, 50, 147, 32, 40.911, 30.5, 14.273, 160, 230, 92, 75, 130, 124, 120, 11, 235, 50, 94.285, 240, 870, 70, 50, 50, 18, 51, 51, 145, 557.354, 219, 191, 2.9, 163, 257.718, 1660, 1600, 1300, 80, 500, 10, 290, 375, 95, 725, 128, 148, 100, 2, 48, 18, 5.3, 32, 250, 45, 38.5, 126, 284, 70, 400, 207.2, 39.5, 363.476, 113.2, 1500, 15, 7500, 8, 56, 88, 60, 29, 75, 80, 7.5, 82.5, 272, 272, 122, 145, 660, 50, 92, 60, 173, 106.85, 25, 146, 158, 1500, 40, 100, 300, 1.8, 300, 70, 70, 29, 18.819, 875, 100, 50, 1500, 650, 58, 142, 350, 71, 312, 25, 35, 315, 500, 404, 246, 43.696, 71, 65, 29.9, 30, 20, 899, 10.3, 490, 115, 2085, 206, 400, 26.334, 598, 160, 91, 33, 53, 300, 60, 55, 60, 66.005, 11.529, 56, 4.15, 40, 320.831, 30.001, 200) * 1000 m_bl = conpl$new(blackouts) est = estimate_xmin(m_bl) m_bl$setXmin(est) plot(m_bl, panel.first = grid()) lines(m_bl, col = 2) rm(list = ls(all = TRUE))
simul.saemix<-function(saemixObject,nsim=saemixObject["options"]$nb.sim, predictions=TRUE,res.var=TRUE,uncertainty=FALSE) { saemix.model<-saemixObject["model"] saemix.data<-saemixObject["data"] saemix.res<-saemixObject["results"] xind<-saemix.data["data"][,c(saemix.data["name.predictors"],saemix.data["name.cens"],saemix.data["name.mdv"],saemix.data["name.ytype"]),drop=FALSE] N<-saemix.data["N"] ind.eta<-saemix.model["indx.omega"] nb.etas<-length(ind.eta) NM <- N*nsim domega<-cutoff(mydiag(saemix.res["omega"][ind.eta, ind.eta]),.Machine$double.eps) omega.eta<-saemix.res["omega"][ind.eta,ind.eta] omega.eta<-omega.eta-mydiag(mydiag(saemix.res["omega"][ind.eta,ind.eta]))+mydiag(domega) chol.omega<-chol(omega.eta) phiM<-mean.phiM<-do.call(rbind,rep(list(saemix.res["mean.phi"]),nsim)) etaM<-matrix(rnorm(NM*nb.etas),ncol=nb.etas)%*%chol.omega phiM[,ind.eta]<-mean.phiM[,ind.eta]+etaM psiM<-transphi(phiM,saemix.model["transform.par"]) if(predictions) { index<-rep(1:N,times=saemix.data["nind.obs"]) IdM<-kronecker(c(0:(nsim-1)),rep(N,saemix.data["ntot.obs"]))+rep(index,nsim) XM<-do.call(rbind,rep(list(xind), nsim)) pres<-saemix.res["respar"] sim.pred<-sim.data<-NULL fpred<-saemix.model["model"](psiM, IdM, XM) sim.pred<-fpred if(res.var) { ind.exp<-which(saemix.model["error.model"]=="exponential") for(ityp in ind.exp) fpred[XM$ytype==ityp]<-log(cutoff(fpred[XM$ytype==ityp])) gpred<-error(fpred,pres,XM$ytype) eps<-rnorm(length(fpred)) sim.data<-fpred+gpred*eps } } else { sim.pred<-sim.data<-IdM<-c() } sim.psi<-data.frame(id=rep(unique(saemix.data["data"][, saemix.data["name.group"]]),nsim),psiM) colnames(sim.psi)<-c(saemix.data["name.group"],saemix.model["name.modpar"]) datasim<-data.frame(idsim=rep(index,nsim),irep=rep(1:nsim, each=saemix.data["ntot.obs"]),ypred=sim.pred,ysim=sim.data) ysim<-new(Class="SaemixSimData",saemix.data,datasim) ysim["sim.psi"]<-sim.psi saemixObject["sim.data"]<-ysim return(saemixObject) }
yupana_import <- function(data){ type <- x <- y <- group <- NULL glab <- legend <- sig <- error <- NULL model <- test_comp <- sig_level <- NULL dimension <- gtext <- opt <- NULL xrotation <- xtext <- ylimits <- NULL if(!is.data.frame(data)) { smr <- data$meancomp stats <- data$stats stats_args <- data$stats %>% rownames_to_column() %>% mutate(across(everything(), as.character)) %>% pivot_longer(!.data$rowname, ) %>% select(!.data$rowname) %>% add_row(name = "model", value = data$model) %>% deframe() %>% as.list() aov <- NULL plot <- NULL plot_opts <- list( type = "bar" , y = data$response , x = data$comparison[1] , group = data$comparison[2] , xlab = NA , ylab = NA , glab = NA , sig = "sig" , error = "ste" , legend = "top" , ylimits = NA , xrotation = c(0, 0.5, 0.5) , gtext = NA , xtext = NA , opt = NA , dimension = c(20, 10, 100) , color = TRUE ) factors <- data$factors info <- data$tabvar } else if (is.data.frame(data)) { smr <- data %>% select(1:.data$`[plot]`) %>% select(!.data$`[plot]`) %>% filter(!across(everything(), is.na)) aov <- data %>% select(.data$`[aov]`:length(.)) %>% select(!c(.data$`[aov]`)) %>% filter(!across(everything(), is.na)) stats <- data %>% select(.data$`[stats]`:.data$`[aov]`) %>% select(!c(.data$`[stats]`, .data$`[aov]`)) %>% filter(!across(everything(), is.na)) stats_args <- stats %>% deframe() %>% as.list() plot <- data %>% select(.data$`[plot]`:.data$`[stats]`) %>% select(!c(.data$`[plot]`, .data$`[stats]`)) %>% select(!colors) %>% filter(!across(everything(), is.na)) plot_args <- plot %>% deframe() %>% as.list() list2env(plot_args, environment()) plot_color <- data %>% select(colors) %>% drop_na() %>% deframe() plot_opts <- list( type = if(is.na(plot_args$type)) "bar" else plot_args$type , x = plot_args$x , y = plot_args$y , group = plot_args$group , xlab = plot_args$xlab , ylab = plot_args$ylab , glab = plot_args$glab , sig = plot_args$sig , error = plot_args$error , legend = plot_args$legend , ylimits = ylimits , xrotation = xrotation , gtext = gtext , xtext = xtext , opt = opt , dimension = dimension , color = plot_color ) info <- smr %>% select({{y}}:ncol(.)) %>% names() factors <- smr %>% select(!{{info}}) %>% names() } graph_opt <- list(smr = smr , stats = stats , stats_args = stats_args , aov = aov , plot = plot , plot_args = plot_opts , factors = factors , tabvar = info ) }
cat("tests_HW.R:\n") locinfile <- genepopExample('sample.txt') outfile <- test_HW(locinfile,"deficit","sample.txt.D") testthat::expect_equal(readLines(outfile)[133], "ADH-5 1.0000 0.0000 -0.3333 -0.3750 19903 switches") outfile <- test_HW(locinfile,"global deficit") testthat::expect_equal(readLines(outfile)[48], " 0.3329 0.0048 24797.00") outfile <- test_HW(locinfile) testthat::expect_equal(readLines(outfile)[190], " Prob : 0.960718") outfile <- test_HW(locinfile, enumeration=TRUE) testthat::expect_equal(readLines(outfile)[193], " Prob : 0.958961") outfile <- nulls(locinfile, "sample.txt.NUL") locinfile <- genepopExample('Rhesus.txt') outfile <- HWtable_analysis(locinfile,which="Proba",batches = 1000,iterations = 1000) testthat::expect_equal(readLines(outfile)[21],"P-value=0.684292; S.E=0.00830887 (241565 switches)")
NULL tidy.tidycrr <- function(x, exponentiate = FALSE, conf.int = FALSE, conf.level = 0.95, ...) { df_tidy <- broom::tidy( x$cmprsk, exponentiate = exponentiate, conf.int = conf.int, conf.level = conf.level, ... ) if (isTRUE(conf.int)) { df_tidy <- df_tidy %>% dplyr::relocate(.data$conf.low, .data$conf.high, .before = .data$p.value) } df_tidy } glance.tidycrr <- function(x, ...) { broom::glance(x$cmprsk, ...) } augment.tidycrr <- function(x, times = NULL, probs = NULL, newdata = NULL, ...) { pred <- predict.tidycrr(x, times = times, probs = probs, newdata = newdata) %>% dplyr::bind_cols() dplyr::bind_cols( newdata %||% x$data, pred ) %>% tibble::as_tibble() } NULL tidy.tidycuminc <- function(x, conf.int = FALSE, conf.level = 0.95, times = NULL, ...) { if (!is.numeric(conf.level) || !dplyr::between(conf.level, 0, 1)) { stop("`conf.level=` must be between 0 and 1") } df_outcomes <- rlang::f_lhs(x$formula) %>% rlang::eval_tidy(data = x$data) %>% attr("states") %>% stats::setNames(seq_len(length(.))) %>% tibble::enframe("outcome_id", "outcome") times <- times %||% union(0, stats::model.frame(x$formula, data = x$data)[[1]][, 1]) %>% unique() %>% sort() df_est <- x$cmprsk %>% cmprsk::timepoints(times = times) %>% purrr::pluck("est") %>% cuminc_matrix_to_df(name = "estimate") df_se <- x$cmprsk %>% cmprsk::timepoints(times = times) %>% purrr::pluck("var") %>% sqrt() %>% cuminc_matrix_to_df(name = "std.error") df_tidy <- dplyr::full_join( df_est, df_se, by = c("strata", "outcome_id", "time") ) %>% dplyr::full_join( df_outcomes, by = "outcome_id" ) %>% dplyr::select(.data$outcome, dplyr::everything(), -.data$outcome_id) if (length(unique(df_tidy$strata)) == 1L) { df_tidy$strata <- NULL } if (isTRUE(conf.int)) { df_tidy <- df_tidy %>% dplyr::mutate( conf.low = .data$estimate^exp(stats::qnorm((1 - .env$conf.level) / 2) * .data$std.error / (.data$estimate * log(.data$estimate))), conf.high = .data$estimate^exp(-stats::qnorm((1 - .env$conf.level) / 2) * .data$std.error / (.data$estimate * log(.data$estimate))), dplyr::across(c(.data$conf.low, .data$conf.high), ~ ifelse(is.nan(.), NA, .)) ) } df_tidy } cuminc_matrix_to_df <- function(x, name) { as.data.frame(x) %>% tibble::rownames_to_column() %>% tibble::as_tibble() %>% dplyr::mutate( strata = stringr::word(.data$rowname, 1, -2), outcome_id = stringr::word(.data$rowname, -1L), .before = .data$rowname ) %>% dplyr::select(-.data$rowname) %>% tidyr::pivot_longer( cols = -c(.data$strata, .data$outcome_id), names_to = "time", values_to = name ) %>% dplyr::mutate(time = as.numeric(.data$time)) } glance.tidycuminc <- function(x, ...) { if (is.null(x$cmprsk$Tests)) { return(tibble::tibble()) } select_expr <- stringr::str_glue("ends_with('_{x$failcode}')") %>% purrr::map(rlang::parse_expr) x$cmprsk$Tests %>% as.data.frame() %>% tibble::rownames_to_column("failcode_id") %>% tibble::as_tibble() %>% dplyr::left_join( x$failcode %>% tibble::enframe("outcome", "failcode_id") %>% dplyr::mutate(failcode_id = as.character(.data$failcode_id)), by = "failcode_id" ) %>% select(.data$outcome, .data$failcode_id, statistic = .data$stat, .data$df, p.value = .data$pv) %>% tidyr::pivot_wider( values_from = c(.data$outcome, .data$statistic, .data$df, .data$p.value), names_from = .data$failcode_id, names_glue = "{.value}_{failcode_id}" ) %>% select(!!!select_expr) }
`aDist` <- function(x, y = NULL){ if(!is.null(y)){ if(is.vector(x)) x <- matrix(x, ncol=length(x)) if(is.vector(y)) y <- matrix(y, ncol=length(y)) n <- dim(x)[1] p <- D <- dim(x)[2] rn <- rownames(x) matOrig <- as.numeric(t(x)) matImp <- as.numeric(t(y)) dims <- as.integer(c(n, p)) rowDists <- as.numeric(rep(0.0, n)) distance <- as.numeric(0.0) out <- .C("da", matOrig, matImp, dims, rowDists, distance, PACKAGE="robCompositions", NUOK=TRUE )[[5]] } else { if(is.vector(x)) x <- matrix(x, ncol=length(x)) n <- dim(x)[1] p <- D <- dim(x)[2] rn <- rownames(x) out <- dist(cenLR(x)$x.clr) } return(out) } iprod <- function(x, y){ warning("wrong formula, has to be fixed.") D <- length(x) if(D != length(y)) stop("x and y should have the same length") ip <- 1 / D * sum(log(as.numeric(x[1:(D-1)]) / as.numeric(x[2:D])) * log(as.numeric(y[1:(D-1)]) / as.numeric(y[2:D]))) return(ip) }
`fit.Models.tsm` <- function(fmla, data.Vector, ...){ arima(data.Vector, order = c(fmla$model$AR, fmla$model$I, fmla$model$MA), seasonal = list(order=c(fmla$seasonal$model$AR, fmla$seasonal$model$I, fmla$seasonal$model$MA), period = fmla$seasonal$period)) }
test_that("primitive functions are never supersets", { pkgload::load_all(test_path("primitive"), quiet = TRUE) on.exit(pkgload::unload("primitive")) expect_false(is_superset("sum", "primitive", "base")) expect_equal( superset_principle("sum", c("primitive", "base")), c("primitive", "base") ) }) test_that("superset", { expect_equal(superset_principle("cbind", c("base", "methods")), character()) expect_equal(superset_principle("print", c("base", "Matrix")), character()) expect_equal(superset_principle("rcond", c("base", "Matrix")), character()) }) test_that("functions aren't conflicts with non-functions", { pkgload::load_all(test_path("funmatch"), quiet = TRUE) on.exit(pkgload::unload("funmatch")) expect_equal(function_lookup("pi", c("base", "funmatch")), character()) expect_equal(function_lookup("mean", c("base", "funmatch")), character()) }) test_that("can find conflicts with data", { pkgload::load_all(test_path("data"), quiet = TRUE) on.exit(pkgload::unload("data")) expect_named(conflict_scout(c("datasets", "data")), "mtcars") }) test_that(".Deprecated call contains function name", { f <- function() { .Deprecated("pkg::x") } expect_false(has_moved("pkg", "foo", f)) expect_true(has_moved("pkg", "x", f)) }) test_that("returns FALSE for weird inputs", { expect_false(has_moved(obj = 20)) expect_false(has_moved(obj = mean)) f <- function() {} expect_false(has_moved(obj = mean)) f <- function() { .Deprecated() } expect_false(has_moved(obj = mean)) f <- function() { .Deprecated(1) } expect_false(has_moved(obj = mean)) })
knitr::opts_chunk$set( collapse = TRUE, comment = " ) backup_options <- options() options(width = 1000) set.seed(1991) xgbAvail <- requireNamespace('xgboost', quietly = TRUE) library("xgboost") library("ParBayesianOptimization") data(agaricus.train, package = "xgboost") Folds <- list( Fold1 = as.integer(seq(1,nrow(agaricus.train$data),by = 3)) , Fold2 = as.integer(seq(2,nrow(agaricus.train$data),by = 3)) , Fold3 = as.integer(seq(3,nrow(agaricus.train$data),by = 3)) ) scoringFunction <- function(max_depth, min_child_weight, subsample) { dtrain <- xgb.DMatrix(agaricus.train$data,label = agaricus.train$label) Pars <- list( booster = "gbtree" , eta = 0.01 , max_depth = max_depth , min_child_weight = min_child_weight , subsample = subsample , objective = "binary:logistic" , eval_metric = "auc" ) xgbcv <- xgb.cv( params = Pars , data = dtrain , nround = 100 , folds = Folds , prediction = TRUE , showsd = TRUE , early_stopping_rounds = 5 , maximize = TRUE , verbose = 0) return( list( Score = max(xgbcv$evaluation_log$test_auc_mean) , nrounds = xgbcv$best_iteration ) ) } bounds <- list( max_depth = c(2L, 10L) , min_child_weight = c(1, 25) , subsample = c(0.25, 1) ) set.seed(1234) optObj <- bayesOpt( FUN = scoringFunction , bounds = bounds , initPoints = 4 , iters.n = 3 ) optObj$scoreSummary getBestPars(optObj) options(backup_options)
sumalt <- function(f_alt, n) { b <- 2^(2*n-1) c <- b s <- 0.0 for (k in (n-1):0) { t <- f_alt(k) s <- s + c*t b <- b * (2*k+1) * (k+1) / (2 * (n-k) * (n+k)) c <- c + b } s <- s / c return(s) }
library(bmrm) x <- cbind(intercept=100,data.matrix(iris[c("Sepal.Length","Sepal.Width","Petal.Length","Petal.Width")])) w <- nrbm(softMarginVectorLoss(x,iris$Species)) table(target=iris$Species,prediction=predict(w,x))
GPSeq_clus<-function(dat, search_radius_m, window_days, clus_min_locs=2, centroid_calc="mean", show_plots=c(TRUE, "mean"), scale_plot_clus=TRUE, season_breaks_jul=NA, daylight_hrs=NA){ if(is.data.frame(dat)==FALSE){stop("GPSeq_clus requires input as dataframe.")} if(("AID" %in% colnames(dat))==FALSE){stop("No 'AID' column found.")} if(("TelemDate" %in% colnames(dat))==FALSE){stop("No 'TelemDate' column found.")} if(("Long" %in% colnames(dat))==FALSE){stop("No 'Long' column found.")} if(("Lat" %in% colnames(dat))==FALSE){stop("No 'Lat' column found.")} if(inherits(dat$TelemDate, 'POSIXct')==FALSE){stop("'TelemDate' must be POSIXct.")} if(is.na(centroid_calc) | is.null(centroid_calc)){stop("'centroid_calc' argument must = 'median' or 'mean'")} if((!is.na(centroid_calc) && !is.null(centroid_calc) && (centroid_calc == "mean" | centroid_calc == "median"))==FALSE){stop("'centroid_calc' argument must = 'median' or 'mean'")} if(is.na(search_radius_m) | is.null(search_radius_m)){stop("invalid 'search_radius_m'")} if((!is.na(search_radius_m) && !is.null(search_radius_m) && (search_radius_m>=0))==FALSE){warning("No clusters identified when 'search_radius_m' <= 0.")} if(clus_min_locs<2){warning("Clusters must have at least 2 locations. 'clus_min_locs' argument < 2 returns default of 2.")} if(!is.na(daylight_hrs[1])){ if((length(daylight_hrs)!=2)==TRUE){stop("Invalid 'daylight_hrs' argument. Must be a vector of 2 numbers representing daylight start and stop times in hours.")} if(is.numeric(daylight_hrs)==FALSE){stop("Invalid 'daylight_hrs' argument. Must be a vector of 2 numbers representing daylight start and stop times in hours.")} if(any(daylight_hrs<0 | daylight_hrs>23)==TRUE){stop("Invalid 'daylight_hrs' argument. Arguments must be 0-23.")} } if(all(is.na(show_plots))){stop("Invalid 'show_plots' argument. Must be a vector of 2 arguments consisting of c('TRUE/FALSE', 'mean/median').")} if(length(show_plots)!=2){stop("Invalid 'show_plots' argument. Must be a vector of 2 arguments consisting of c('TRUE/FALSE', 'mean/median').")} if((show_plots[2]=='mean' | show_plots[2]=='median')==FALSE){stop("Invalid 'show_plots' argument. Must be a vector of 2 arguments consisting of c('TRUE/FALSE', 'mean/median').")} if(!is.na(season_breaks_jul[1])){ if(any(is.numeric(season_breaks_jul))==FALSE){stop("Invalid 'season_breaks_jul' argument. Must be acending vector of at least 2 numeric values.")} if(length(season_breaks_jul)<2){stop("Invalid 'season_breaks_jul' argument. Must be acending vector of at least 2 numeric values.")} if(any(season_breaks_jul<0 | season_breaks_jul>365)==TRUE){stop("Invalid 'season_breaks_jul' argument. Arguments must be 0-365.")} if((all(diff(season_breaks_jul)>0))==FALSE){stop("Invalid 'season_breaks_jul' argument. Arguments must be in acending order.")} } dat<-dat[order(dat$AID,dat$TelemDate),] dat2<-dat[1,] dat2$clus_ID<-NA dat2<-dat2[-1,] uni_AID<-as.character(unique(dat$AID)) message("TOTAL PROGRESS") pb <- utils::txtProgressBar(min=0, max=length(uni_AID), style=3) for(zz in 1:length(uni_AID)) { out_all<-subset(dat, AID == uni_AID[zz]) if(length(which(is.na(out_all$Lat)))==0){warning(paste(uni_AID[zz], "shows no missed locations. Ensure 'failed' fix attempts are included for accurate cluster attributes."))} out<-out_all[which(!is.na(out_all$Lat)),] if(nrow(out)>0){ out$index<-seq(1:nrow(out)) out$ClusID<-0 out<-moveMe(out, "ClusID", "first") out<-moveMe(out, "index", "first") c<-1 pb2 <- tcltk::tkProgressBar(min = 0, max = nrow(out), width = 500) for(j in 1:nrow(out)){ if(out$ClusID[j] == 0){ cent<-c(out[j,"Long"], out[j,"Lat"]) t<- out[which(out$TelemDate > out[j,"TelemDate"] & out$TelemDate <= out[j,"TelemDate"] + as.difftime(window_days, units= "days")),] AR_Clus<- unique(t[which(t$ClusID >0),"ClusID"]) for(m in 1:length(AR_Clus)){ b<-out[which(out$ClusID == AR_Clus[m]),] if(nrow(t)>0){ if(centroid_calc == "median"){ t[which(t$ClusID == AR_Clus[m]),"Long"]<-stats::median(b$Long) t[which(t$ClusID == AR_Clus[m]),"Lat"]<-stats::median(b$Lat) } else { t[which(t$ClusID == AR_Clus[m]),"Long"]<-mean(b$Long) t[which(t$ClusID == AR_Clus[m]),"Lat"]<-mean(b$Lat) } } } if(nrow(t)>0){ t$centLong<-cent[1] t$centLat<-cent[2] t$dist<-geosphere::distm(cbind(t$centLong,t$centLat), cbind(t$Long,t$Lat), fun = geosphere::distHaversine)[1,] } if(length(t[which(t$dis<=search_radius_m),"index"])>0){ if(out$ClusID[min(t[which(t$dist<search_radius_m),"index"])]==0){ out$ClusID[j]<-c out$ClusID[min(t[which(t$dist<search_radius_m),"index"])]<-c c<-c+1 } else { out$ClusID[j]<-out$ClusID[min(t[which(t$dist<search_radius_m),"index"])] } } } else { if(centroid_calc == "median"){ cent<- c(stats::median(out[which(out$ClusID == out$ClusID[j]),"Long"]),stats::median(out[which(out$ClusID == out$ClusID[j]),"Lat"])) } else { cent<- c(mean(out[which(out$ClusID == out$ClusID[j]),"Long"]),mean(out[which(out$ClusID == out$ClusID[j]),"Lat"])) } t<- out[which(out$TelemDate > out[j,"TelemDate"] & out$TelemDate <= out[j,"TelemDate"] + as.difftime(window_days, units= "days")),] AR_Clus<- unique(t[which(t$ClusID >0),"ClusID"]) for(m in 1:length(AR_Clus)){ b<-out[which(out$ClusID == AR_Clus[m]),] if(nrow(t)>0){ if(centroid_calc == "median"){ t[which(t$ClusID == AR_Clus[m]),"Long"]<-stats::median(b$Long) t[which(t$ClusID == AR_Clus[m]),"Lat"]<-stats::median(b$Lat) } else { t[which(t$ClusID == AR_Clus[m]),"Long"]<-mean(b$Long) t[which(t$ClusID == AR_Clus[m]),"Lat"]<-mean(b$Lat) } } } if(nrow(t)>0){ t$centLong<-cent[1] t$centLat<-cent[2] t$dist<-geosphere::distm(cbind(t$centLong,t$centLat), cbind(t$Long,t$Lat), fun = geosphere::distHaversine)[1,] } if(length(t[which(t$dist<=search_radius_m),"index"])>0){ if(out$ClusID[min(t[which(t$dist<search_radius_m),"index"])]==0){ out$ClusID[min(t[which(t$dist<search_radius_m),"index"])]<- out$ClusID[j] } else{ merge_num<-out[which(out$TelemDate == min(c(out[which(out$ClusID == out$ClusID[j]),"TelemDate"],out[which(out$ClusID == out$ClusID[min(t[which(t$dist<search_radius_m),"index"])]),"TelemDate"]))), "ClusID"] out[which(out$ClusID == out$ClusID[j]),"ClusID"]<-merge_num out[which(out$ClusID == out$ClusID[min(t[which(t$dist<search_radius_m),"index"])]),"ClusID"]<-merge_num rm(merge_num) } } } tcltk::setTkProgressBar(pb2, j, title=paste("Animal", uni_AID[zz], "...building clusters...", round(j/nrow(out)*100, 0), "% completed")) } close(pb2) rm(pb2,b,c,m,j,t,AR_Clus,cent) see<-rle(out$ClusID) bout_end<- cumsum(rle(out$ClusID)$lengths) bout_start<- as.integer(c(1, bout_end +1)) bout_start<- bout_start[-length(bout_start)] bout_start<-out$TelemDate[bout_start] bout_end<-out$TelemDate[bout_end] bout_duration<-round(difftime(bout_end, bout_start, units= "hours"),1) bouts<-data.frame(bout_start,bout_end, bout_duration, see[["lengths"]], see[["values"]]) names(bouts)[names(bouts) == "see...values..."]<- "ClusID" names(bouts)[names(bouts) == "see...lengths..."]<- "consec_locs" rm(bout_start, bout_end, see) bouts2<-subset(bouts, ClusID != 0) bouts2<-bouts2[order(bouts2$ClusID, bouts2$bout_start),] clus_summary<-plyr::ddply(bouts2, "ClusID", summarize, clus_start= min(bout_start), clus_end= max(bout_end), clus_dur_hr=round(difftime(max(bout_end), min(bout_start), units="hours"),1), n_clus_locs= sum(consec_locs)) clus_summary<-clus_summary[which(clus_summary$n_clus_locs >= clus_min_locs),] if(nrow(clus_summary)==0){ warning(paste("Zero clusters identified for", uni_AID[zz], "given user-entered parameters.")) out_all$clus_ID<-NA } else { clus_summary<-clus_summary[order(clus_summary$clus_start),] clus_summary$clus_ID3<-seq(1:nrow(clus_summary)) clus_summary<-moveMe(clus_summary, "clus_ID3" , "first") bouts2$clus_ID3<-NA bouts2$clus_ID3<-clus_summary[match(bouts2$ClusID, clus_summary$ClusID), "clus_ID3"] bouts2<-moveMe(bouts2, "clus_ID3" , "first") bouts2<-bouts2[order(bouts2$clus_ID3, bouts2$bout_start),] clus_summary$ClusID<-NULL bouts2$ClusID<-NULL bouts2<-bouts2[which(!is.na(bouts2$clus_ID3)),] see<-rle(bouts2$clus_ID3) clus_summary$visits<-see$lengths out_all$clus_ID3<-NA for(k in 1:nrow(bouts2)){ out_all[which(out_all$TelemDate >= bouts2$bout_start[k] & out_all$TelemDate <= bouts2$bout_end[k]), "clus_ID3"]<- bouts2$clus_ID3[k] } rm(k, bouts, bouts2, bout_duration, see, out) names(clus_summary)[names(clus_summary) == "clus_ID3"]<- "clus_ID" names(out_all)[names(out_all) == "clus_ID3"]<- "clus_ID" clus_summary$AID<-out_all$AID[1] clus_summary<-moveMe(clus_summary, "AID", "first") clus_summary$clus_status<-"Closed" clus_summary<-moveMe(clus_summary, "clus_status", "after", "clus_end") clus_summary[which(clus_summary$clus_end >= Sys.time() - as.difftime(window_days, units= "days")), "clus_status"]<- "Open" xxx<-plyr::ddply(out_all, "clus_ID", summarize, g_c_Long= mean(Long, na.rm=TRUE), g_c_Lat= mean(Lat, na.rm=TRUE), g_med_Long= stats::median(Long, na.rm=TRUE), g_med_Lat= stats::median(Lat, na.rm=TRUE)) xxx<-xxx[1:nrow(xxx)-1,] clus_summary<-cbind(clus_summary, xxx[,2:5]) clus_summary<-moveMe(clus_summary,c("g_c_Long", "g_c_Lat", "g_med_Long", "g_med_Lat"), "after", "clus_status") rm(xxx) clus_summary$fix_succ_clus_dur<-NA clus_summary$adj_clus_locs<-NA clus_summary$fid<-NA clus_summary$max_foray<-NA clus_summary$clus_radius<-NA clus_summary$avg_clus_dist<-NA clus_summary$n_24_per<-NA clus_summary$bin_24hr<-NA clus_summary$season<-NA clus_summary$night_pts<-NA clus_summary$night_prop<-NA if(!is.na(season_breaks_jul[1])){clus_summary$season<-0} pb3 <- tcltk::tkProgressBar(min = 0, max = nrow(clus_summary), width = 500) for(i in 1:nrow(clus_summary)){ ggg<-out_all[which(out_all$TelemDate >= clus_summary$clus_start[i] & out_all$TelemDate <= clus_summary$clus_end[i]),] clus_summary$fix_succ_clus_dur[i]<-round(nrow(ggg[which(!is.na(ggg$Lat)),])/nrow(ggg),2) clus_summary$adj_clus_locs[i]<- round(clus_summary$n_clus_locs[i] / clus_summary$fix_succ_clus_dur[i],1) fff<-ggg[which(!is.na(ggg$Lat)),] fff<-fff[which(fff$clus_ID != clus_summary$clus_ID[i] | is.na(fff$clus_ID)),] clus_summary$fid[i]<- clus_summary$n_clus_locs[i] - nrow(fff) ggg$centLong<-clus_summary[i, "g_c_Long"] ggg$centLat<-clus_summary[i, "g_c_Lat"] ggg$dist<-geosphere::distm(cbind(ggg$centLong,ggg$centLat), cbind(ggg$Long,ggg$Lat), fun = geosphere::distHaversine)[1,] ggg$days<-difftime(ggg$TelemDate, ggg$TelemDate[1], units="days") clus_summary$max_foray[i]<-round(max(ggg$dist, na.rm=T)) clus_summary$clus_radius[i]<-round(max(ggg$dist[which(ggg$clus_ID == clus_summary$clus_ID[i])],na.rm=T)) clus_summary$avg_clus_dist[i]<- round(mean(ggg$dist[which(ggg$clus_ID == clus_summary$clus_ID[i])],na.rm=T)) aa<-ggg[which(ggg$clus_ID == clus_summary$clus_ID[i]),] clus_summary$n_24_per[i]<-length(unique(floor(aa$days))) if(clus_summary$n_24_per[i]>1){clus_summary$bin_24hr[i]<-1} else {clus_summary$bin_24hr[i]<-0} if(!is.na(season_breaks_jul[1])){ for(p in 2:length(season_breaks_jul)){ if(julian_conv(ggg$TelemDate[1])>= season_breaks_jul[p-1] & julian_conv(ggg$TelemDate[1])< season_breaks_jul[p]){ clus_summary$season[i]<-p-1 } } rm(p) } aa<-aa[which(!is.na(aa$Lat)),] if(!is.na(daylight_hrs[1])){ aa$hour<-NA aa$hour<-as.numeric(format(aa$TelemDate, format='%H')) clus_summary$night_pts[i]<-nrow(aa[which(aa$hour<=daylight_hrs[1] | aa$hour>=daylight_hrs[2]),]) clus_summary$night_prop[i]<-round(clus_summary$night_pts[i] / clus_summary$n_clus_locs[i],2) } else{ ttt<-aa[,c("TelemDate", "Long", "Lat")] ttt$date<-as.Date(aa$TelemDate, tz=attr(dat$TelemDate,"tzone")) names(ttt)[names(ttt) == "Lat"]<- "lat" names(ttt)[names(ttt) == "Long"]<- "lon" dd<-suncalc::getSunlightTimes(data=ttt ,tz=attr(dat$TelemDate,"tzone")) dd$TelemDate<-aa$TelemDate aa$night<-ifelse(((dd$TelemDate>=dd$sunrise) & (dd$TelemDate<=dd$sunset)),1,0) clus_summary$night_pts[i]<-length(which(aa$night == 0)) clus_summary$night_prop[i]<-round(clus_summary$night_pts[i] / clus_summary$n_clus_locs[i],2) rm(dd, ttt) } tcltk::setTkProgressBar(pb3, i, title=paste("Animal",uni_AID[zz], "...building cluster covariates...", round(i/nrow(clus_summary)*100, 0), "% completed")) } close(pb3) rm(pb3, ggg, fff, aa, i) } if(show_plots[1]==T){ if(nrow(clus_summary)>0){ if(show_plots[2] == "median"){ clus_plot<-clus_summary clus_plot$Lat<-clus_plot$g_med_Lat clus_plot$Long<-clus_plot$g_med_Long } else { clus_plot<-clus_summary clus_plot$Lat<-clus_plot$g_c_Lat clus_plot$Long<-clus_plot$g_c_Long } clus_plot$Popup<-NA clus_plot$Popup<-paste(clus_plot$AID[1], paste("Clus } out2<-out_all out2<-out2[which(!is.na(out2$Lat)),] out2$Label<-NA out2$Label<-paste(out2$AID, as.character(out2$TelemDate),"cn", out2$clus_ID, sep=" ") out2$type<-"location" if(nrow(clus_summary)>0){ out2[which(out2$clus_ID %in% clus_summary[,"clus_ID"]),"type"]<-"cluster location" pal2<- leaflet::colorFactor( palette= c('darkred', 'black'), domain = out2$type) } else{ pal2<- leaflet::colorFactor( palette= c('black'), domain = out2$type) } a<-out2 %>% leaflet::leaflet() %>% leaflet::addTiles() %>% leaflet::addCircleMarkers(lng=~Long, lat=~Lat, radius=.5, opacity=100, label=~Label,color=~pal2(type), group="Locations") %>% leaflet::addPolylines(data=out2,lng=~Long, lat=~Lat, weight=2, color="black", group="Locations") %>% leaflet::addProviderTiles(providers$Esri.NatGeoWorldMap) if(nrow(clus_summary)>0){ if(scale_plot_clus==TRUE){ a<- leaflet::addCircleMarkers(map=a,data=clus_plot, lng=~Long, lat=~Lat, radius=~n_clus_locs, color="yellow",opacity=100,popup=~Popup,group="Clusters") } else { a<- leaflet::addCircleMarkers(map=a,data=clus_plot, lng=~Long, lat=~Lat, radius=1, color="yellow",opacity=100,popup=~Popup,group="Clusters") } a<-leaflet::addMarkers(map=a, data=clus_plot, lng=~Long, lat=~Lat, group="searchClusters", popup =~Popup, icon = leaflet::makeIcon(iconUrl = "http://leafletjs.com/examples/custom-icons/leaf-green.png",iconWidth = 1, iconHeight = 1)) } esri <- providers %>% purrr::keep(~ grepl('^Esri',.)) esri[[11]]<-NULL esri[[9]]<-NULL esri[[8]]<-NULL esri[[7]]<-NULL esri[[6]]<-NULL esri[[2]]<-NULL esri <- esri[c("Esri.DeLorme", "Esri.WorldImagery", "Esri.WorldTopoMap","Esri.NatGeoWorldMap", "Esri")] esri %>% purrr::walk(function(x) a <<- a %>% leaflet::addProviderTiles(x,group=x)) a<-a %>% leaflet::addLayersControl( baseGroups = names(esri), options = leaflet::layersControlOptions(collapsed = TRUE), overlayGroups = c("Clusters","Locations"))%>% leaflet::addLegend(pal = pal2, values = out2$type, group = "Locations", opacity=100, position = "bottomleft") a<-leaflet.extras::addSearchFeatures(map=a, targetGroups = "searchClusters", options = leaflet.extras::searchFeaturesOptions(propertyName = 'popup', openPopup=T, zoom=15, hideMarkerOnCollapse=T)) a <- a %>% addTitle(text=out2$AID[1], color= "black", fontSize= "18px", leftPosition = 50, topPosition=2) print(a) if(nrow(clus_summary)>0){rm(clus_plot)} rm(a, esri, out2, pal2) } if(!exists("t_summ") & (ncol(clus_summary)==23)){ t_summ<-clus_summary[1,] t_summ<-t_summ[-1,] } if(ncol(clus_summary)==23){ t_summ<-rbind(t_summ, clus_summary) } } else { warning(paste(uni_AID[zz], "has no 'successful' fixes.")) out_all$clus_ID<-NA if(!exists("dat2")){ dat2<-out_all[1,] dat2<-out_all[-1,] } } dat2<-rbind(dat2,out_all) utils::setTxtProgressBar(pb, zz) } close(pb) dat<-dat2 rm(dat2) clus_summary<-t_summ rm(pb, zz, uni_AID, out_all, t_summ) return(list(dat, clus_summary)) }
mohrleg <- function(ES) { u = par('usr') for(i in 1:length(ES$values)) { tex1 = substitute(sigma[y]==x , list(x=ES$values[i], y=i) ) mtext(tex1, side = 3, line = -i, at=u[2], adj=1 ) } }
context("Consistent tradeSeq output with different inputs.") data("sds", package = "tradeSeq") set.seed(3) n <- nrow(reducedDim(sds)) G <- 100 pseudotime <- slingPseudotime(sds, na = FALSE) cellWeights <- slingCurveWeights(sds) means <- matrix(rep(rlnorm(n = G, meanlog = 4, sdlog = 1), n), nrow = G, ncol = n, byrow = FALSE ) dispersions <- matrix(rep(runif(n = G, min = 0.8, max = 3), n), nrow = G, ncol = n, byrow = FALSE ) id <- sample(1:100, 20) means[id, ] <- sweep(means[id, ], 2, FUN = "*", STATS = (pseudotime[, 1] / 50)) counts <- matrix(rnbinom(n = G * n, mu = means, size = 1 / dispersions), nrow = G, ncol = n) rownames(counts) <- 1:100 sce <- SingleCellExperiment(assays = list(counts = counts)) sce@int_metadata$slingshot <- sds set.seed(3) sdsFit <- tradeSeq::fitGAM(counts, sds, nknots = 3, verbose = FALSE) set.seed(3) sceFit <- tradeSeq::fitGAM(counts, pseudotime = pseudotime, cellWeights = cellWeights, nknots = 3, verbose = FALSE) set.seed(3) sceInput <- tradeSeq::fitGAM(sce, nknots = 3, verbose = FALSE) set.seed(3) listFit <- tradeSeq::fitGAM(counts, pseudotime = pseudotime, cellWeights = cellWeights, nknots = 3, verbose = FALSE, sce = FALSE) set.seed(3) sparseCount <- Matrix::Matrix(counts, sparse = TRUE) sparseFit <- tradeSeq::fitGAM(sparseCount, pseudotime = pseudotime, cellWeights = cellWeights, nknots = 3, verbose = FALSE) rm(dispersions, means, G, id, n) test_that("EvaluateK return all same answers", { set.seed(3) sdsFit <- tradeSeq::evaluateK(counts, sds = sds, k = 3:5, verbose = FALSE, plot = TRUE, nGenes = 20) set.seed(3) sceFit <- tradeSeq::evaluateK(counts, pseudotime = pseudotime, cellWeights = cellWeights, k = 3:5, verbose = FALSE, plot = FALSE, nGenes = 20) set.seed(3) sceInput <- tradeSeq::evaluateK(sce, k = 3:5, verbose = FALSE, plot = FALSE, nGenes = 20) set.seed(3) listFit <- tradeSeq::evaluateK(counts, pseudotime = pseudotime, cellWeights = cellWeights, k = 3:5, verbose = FALSE, plot = FALSE, nGenes = 20) set.seed(3) sparseFit <- tradeSeq::evaluateK(sparseCount, pseudotime = pseudotime, cellWeights = cellWeights, k = 3:5, verbose = FALSE, plot = FALSE, nGenes = 20) expect_equal(sdsFit, sceFit) expect_equal(sdsFit, sceInput) expect_equal(sdsFit, listFit) expect_equal(sdsFit, sparseFit) set.seed(3) sceInput <- tradeSeq::evaluateK(sce, k = 3:5, verbose = FALSE, plot = FALSE, nGenes = 20, gcv = TRUE) set.seed(3) listFit <- tradeSeq::evaluateK(counts, pseudotime = pseudotime, cellWeights = cellWeights, k = 3:5, gcv = TRUE, verbose = FALSE, plot = FALSE, nGenes = 20) expect_equal(listFit$gcv, sceInput$gcv) expect_equal(listFit$aic, sceInput$aic) expect_is(tradeSeq::evaluateK(sce, k = 3:4, verbose = FALSE, plot = TRUE, nGenes = 20), "matrix") }) test_that("NB-GAM estimates are equal all input.",{ betaSds <- as.matrix(rowData(sdsFit)$tradeSeq$beta) betaSce <- as.matrix(rowData(sceFit)$tradeSeq$beta) betaSceInput <- as.matrix(rowData(sceInput)$tradeSeq$beta) betaList <- do.call(rbind, lapply(listFit, function(m) coef(m))) betaSparseInput <- as.matrix(rowData(sparseFit)$tradeSeq$beta) dimnames(betaSparseInput) <- dimnames(betaSceInput) <- dimnames(betaSce) <- dimnames(betaSds) <- dimnames(betaList) expect_equal(betaSds, betaList) expect_equal(betaSds, betaSce) expect_equal(betaSds, betaSceInput) expect_equal(betaSds, betaSparseInput) SigmaSds <- rowData(sdsFit)$tradeSeq$Sigma SigmaSce <- rowData(sceFit)$tradeSeq$Sigma SigmaSceInput <- rowData(sceInput)$tradeSeq$Sigma SigmaSparseInput <- rowData(sparseFit)$tradeSeq$Sigma SigmaList <- lapply(listFit, function(m) m$Vp) names(SigmaSceInput) <- names(SigmaSce) <- names(SigmaSds) <- names(SigmaList) names(SigmaSceInput) <- names(SigmaSce) <- names(SigmaSds) <- names(SigmaList) <- names(SigmaSparseInput) expect_equal(SigmaSds, SigmaList) expect_equal(SigmaSds, SigmaSce) expect_equal(SigmaSds, SigmaSceInput) expect_equal(SigmaSds, SigmaSparseInput) }) test_that("NB-GAM estimates are equal all input.",{ expect_equal(nknots(sceFit), nknots(sdsFit)) expect_equal(nknots(sceFit), nknots(listFit)) expect_equal(nknots(sceFit), nknots(sceInput)) expect_equal(nknots(sceFit), nknots(sparseFit)) }) test_that("assocationTest results are equal for sds and manual input.",{ assocSds <- tradeSeq::associationTest(sdsFit, global = TRUE, lineages = TRUE) assocSce <- tradeSeq::associationTest(sceFit, global = TRUE, lineages = TRUE) assocInput <- tradeSeq::associationTest(sceInput, global = TRUE, lineages = TRUE) assocList <- tradeSeq::associationTest(listFit, global = TRUE, lineages = TRUE) assocSparse <- tradeSeq::associationTest(sparseFit, global = TRUE, lineages = TRUE) dimnames(assocInput) <- dimnames(assocSce) <- dimnames(assocSds) <- dimnames(assocList) <- dimnames(assocSparse) expect_equal(assocSds, assocSce) expect_equal(assocSds, assocInput) expect_equal(assocSds, assocSparse) }) test_that("associationTest different l2fc contrasts types run.", { startRes <- tradeSeq::associationTest(sdsFit, global = TRUE, lineages = TRUE, l2fc = 1, contrastType = "start") expect_is(startRes, "data.frame") endRes <- tradeSeq::associationTest(sdsFit, global = TRUE, lineages = TRUE, l2fc = 1, contrastType = "end") expect_is(endRes, "data.frame") consecRes <- tradeSeq::associationTest(sdsFit, global = TRUE, lineages = TRUE, l2fc = 1, contrastType = "consecutive") expect_is(consecRes, "data.frame") }) test_that("startVsEndTest results are equal for sds and manual input.",{ setSce <- tradeSeq::startVsEndTest(sceFit, global = TRUE, lineages = TRUE) setSds <- tradeSeq::startVsEndTest(sdsFit, global = TRUE, lineages = TRUE) setInput <- tradeSeq::startVsEndTest(sceInput, global = TRUE, lineages = TRUE) setList <- tradeSeq::startVsEndTest(listFit, global = TRUE, lineages = TRUE) setSparse <- tradeSeq::startVsEndTest(sparseFit, global = TRUE, lineages = TRUE) dimnames(setInput) <- dimnames(setSce) <- dimnames(setSds) <- dimnames(setList) <- dimnames(setSparse) expect_equal(setSce, setList) expect_equal(setSds, setSce) expect_equal(setSds, setInput) expect_equal(setSds, setSparse) }) test_that("startVsEndTest results are equal for sds and manual input with custom values",{ setSce <- tradeSeq::startVsEndTest(sceFit, global = TRUE, lineages = TRUE, pseudotimeValues = c(1, 10)) setSds <- tradeSeq::startVsEndTest(sdsFit, global = TRUE, lineages = TRUE, pseudotimeValues = c(1, 10)) setInput <- tradeSeq::startVsEndTest(sceInput, global = TRUE, lineages = TRUE, pseudotimeValues = c(1, 10)) setList <- tradeSeq::startVsEndTest(listFit, global = TRUE, lineages = TRUE, pseudotimeValues = c(1, 10)) setSparse <- tradeSeq::startVsEndTest(sparseFit, global = TRUE, lineages = TRUE, pseudotimeValues = c(1, 10)) dimnames(setInput) <- dimnames(setSce) <- dimnames(setSds) <- dimnames(setList) <- dimnames(setSparse) expect_equal(setSce, setList) expect_equal(setSds, setSce) expect_equal(setSds, setInput) expect_equal(setSds, setSparse) }) test_that("diffEndTest results are equal for sds and manual input.",{ detSce <- tradeSeq::diffEndTest(sceFit, global = TRUE, pairwise = TRUE) detSds <- tradeSeq::diffEndTest(sdsFit, global = TRUE, pairwise = TRUE) detInput <- tradeSeq::diffEndTest(sceInput, global = TRUE, pairwise = TRUE) detList <- tradeSeq::diffEndTest(listFit, global = TRUE, pairwise = TRUE) detSparse <- tradeSeq::diffEndTest(sparseFit, global = TRUE, pairwise = TRUE) dimnames(detInput) <- dimnames(detSce) <- dimnames(detSds) <- dimnames(detList) <- dimnames(detSparse) expect_equal(detSce, detList) expect_equal(detSds, detSce) expect_equal(detSds, detInput) expect_equal(detSds, detSparse) }) test_that("patternTest results are equal for sds and manual input.",{ patSce <- tradeSeq::patternTest(sceFit, global = TRUE, pairwise = TRUE) patSds <- tradeSeq::patternTest(sdsFit, global = TRUE, pairwise = TRUE) patInput <- tradeSeq::patternTest(sceInput, global = TRUE, pairwise = TRUE) patList <- tradeSeq::patternTest(listFit, global = TRUE, pairwise = TRUE) patSparse <- tradeSeq::patternTest(sparseFit, global = TRUE, pairwise = TRUE) dimnames(patInput) <- dimnames(patSce) <- dimnames(patSds) <- dimnames(patList) <- dimnames(patSparse) expect_equal(patSce, patList, tolerance = 1e-5) expect_equal(patSds, patSce) expect_equal(patSds, patInput) expect_equal(patSds, patSparse) }) test_that("earlyDETest results are equal for sds and manual input.", { edtSce <- tradeSeq::earlyDETest(sceFit, global = TRUE, pairwise = TRUE, knots = 1:2) edtInput <- tradeSeq::earlyDETest(sceInput, global = TRUE, pairwise = TRUE, knots = 1:2) edtSds <- tradeSeq::earlyDETest(sdsFit, global = TRUE, pairwise = TRUE, knots = 1:2) edtList <- tradeSeq::earlyDETest(listFit, global = TRUE, pairwise = TRUE, knots = 1:2) edtSparse <- tradeSeq::earlyDETest(sparseFit, global = TRUE, pairwise = TRUE, knots = 1:2) dimnames(edtInput) <- dimnames(edtSce) <- dimnames(edtSds) <- dimnames(edtList) <- dimnames(edtSparse) expect_equal(edtSds, edtList, tolerance = 1e-5) expect_equal(edtSds, edtSparse, tolerance = 1e-5) expect_equal(edtSds, edtSce, tolerance = 1e-5) expect_equal(edtSds, edtInput, tolerance = 1e-5) }) test_that("clusterExpressionpattern returns the right objects.", { suppressWarnings({ suppressMessages({ set.seed(179) PatSce <- tradeSeq::clusterExpressionPatterns(sceFit, nPoints = 20, genes = 1:50, k0s = 4:5, alphas = 0.1) set.seed(179) PatInput <- tradeSeq::clusterExpressionPatterns(sceInput, nPoints = 20, genes = 1:50, k0s = 4:5, alphas = 0.1) set.seed(179) PatSds <- tradeSeq::clusterExpressionPatterns(sdsFit, nPoints = 20, genes = 1:50, k0s = 4:5, alphas = 0.1) set.seed(179) PatList <- tradeSeq::clusterExpressionPatterns(listFit, nPoints = 20, genes = 1:50, k0s = 4:5, alphas = 0.1) set.seed(179) PatSparse <- tradeSeq::clusterExpressionPatterns(sparseFit, nPoints = 20, genes = 1:50, k0s = 4:5, alphas = 0.1) }) }) dimnames(PatSds$yhatScaled) <- dimnames(PatList$yhatScaled) <- dimnames(PatSparse$yhatScaled) <- dimnames(PatSce$yhatScaled) <- dimnames(PatInput$yhatScaled) expect_equal(PatSds$yhatScaled, PatList$yhatScaled, tolerance = 1e-5) expect_equal(PatSds$yhatScaled, PatSparse$yhatScaled, tolerance = 1e-5) expect_equal(PatSds$yhatScaled, PatSce$yhatScaled, tolerance = 1e-5) expect_equal(PatSds$yhatScaled, PatInput$yhatScaled, tolerance = 1e-5) }) test_that("fitGAM works with initial row data", { rowData(sce)$more_info <- sample(1:10, size = nrow(sce), replace = TRUE) set.seed(3) sceInput <- tradeSeq::fitGAM(sce, nknots = 3, verbose = FALSE) expect_is(sce, "SingleCellExperiment") sceInput <- tradeSeq::fitGAM(sce, nknots = 3, genes = 1:20, verbose = FALSE) expect_is(sce, "SingleCellExperiment") })
whichIt <- function (burnIn, iterations, thinTo) { if (burnIn == 0) { return (ceiling(seq(from = 1, to = iterations, length.out = thinTo))) } else { return (ceiling(seq(from = burnIn * iterations, to = iterations, length.out = thinTo))) } }
knitr::opts_chunk$set( collapse = TRUE, comment = " ) library(magrittr) library(dplyr) library(tidyr) library(stringr)
`re.data.frame` <- function(x,...) { data.frame(x,...) } `as.xts.data.frame` <- function(x,order.by,dateFormat="POSIXct",frequency=NULL,...,.RECLASS=FALSE) { if(missing(order.by)) order.by <- do.call(paste('as',dateFormat,sep='.'),list(rownames(x))) if(.RECLASS) { xx <- xts(x, order.by=order.by, frequency=frequency, .CLASS='data.frame', ...) } else { xx <- xts(x, order.by=order.by, frequency=frequency, ...) } xx } `as.data.frame.xts` <- function(x,row.names=NULL,optional=FALSE,...) { if(missing(row.names)) row.names <- as.character(index(x)) as.data.frame(coredata(x),row.names,optional,...) }
print.processing_time <- function(x, ...) { data <- x if(attr(data, "level") == "log" & is.null(attr(data, "groups"))) { attr(data, "raw") <- NULL attr(data, "level") <- NULL attr(data, "mapping") <- NULL class(data) <- "numeric" print.default(data) } else { print(tibble::trunc_mat(data)) } }
library(docopt) doc <- "Usage: install2.r [-l LIBLOC] [-h] [-x] [-s] [-d DEPS] [-n NCPUS] [-r REPOS...] [-m METHOD] [--error] [--] [PACKAGES ...] -l --libloc LIBLOC location in which to install [default: /usr/local/lib/R/site-library] -d --deps DEPS install suggested dependencies as well [default: NA] -n --ncpus NCPUS number of processes to use for parallel install [default: getOption] -r --repos REPOS repositor(y|ies) to use, or NULL for file [default: getOption] -e --error throw error and halt instead of a warning [default: FALSE] -s --skipinstalled skip installing already installed packages [default: FALSE] -m --method METHOD method to be used for downloading files [default: auto] -h --help show this help text -x --usage show help and short example usage" opt <- docopt(doc) if (opt$usage) { cat(doc, "\n\n") cat("where PACKAGES... can be one or more CRAN package names, or local (binary or source) package files (where extensions .tar.gz, .tgz and .zip are recognised). Optional arguments understood by R CMD INSTALL can be passed interspersed in the PACKAGES, though this requires use of '--'. Examples: install2.r -l /tmp/lib Rcpp BH install2.r -- --with-keep.source drat install2.r -- --data-compress=bzip2 stringdist install2.r \".\" install2.r -n 6 ggplot2 install2.r is part of littler which brings 'r' to the command-line. See http://dirk.eddelbuettel.com/code/littler.html for more information.\n") q("no") } if (opt$deps == "TRUE" || opt$deps == "FALSE") { opt$deps <- as.logical(opt$deps) } else if (opt$deps == "NA") { opt$deps <- NA } if (length(opt$repos) == 1 && "NULL" %in% opt$repos) { opt$repos <- NULL } if ("getOption" %in% opt$repos) { opt$repos <- c(opt$repos[which(opt$repos != "getOption")], getOption("repos")) } if (opt$ncpus == "getOption") { opt$ncpus <- getOption("Ncpus", 1L) } else if (opt$ncpus == "-1") { opt$ncpus <- max(1L, parallel::detectCores()) } Sys.setenv("_R_SHLIB_STRIP_"="true") install_packages2 <- function(pkgs, ..., error = FALSE, skipinstalled = FALSE) { e <- NULL capture <- function(e) { if (error) { catch <- grepl("download of package .* failed", e$message) || grepl("(dependenc|package).*(is|are) not available", e$message) || grepl("installation of package.*had non-zero exit status", e$message) || grepl("installation of one or more packages failed", e$message) if (catch) { e <<- e } } } if (skipinstalled) { pkgs <- setdiff(pkgs, installed.packages()[,1]) } if (length(pkgs) > 0) { withCallingHandlers(install.packages(pkgs, ...), warning = capture) if (!is.null(e)) { stop(e$message, call. = FALSE) } } } isMatchingFile <- function(f) (file.exists(f) && grepl("(\\.tar\\.gz|\\.tgz|\\.zip)$", f)) || (f == ".") installArg <- function(f, lib, rep, dep, iopts, error, skipinstalled, ncpus, method) { install_packages2(pkgs=f, lib=lib, repos=if (isMatchingFile(f)) NULL else rep, dependencies=dep, INSTALL_opts=iopts, Ncpus = ncpus, method = method, error = error, skipinstalled = skipinstalled) } isArg <- grepl('^--',opt$PACKAGES) installOpts <- opt$PACKAGES[isArg] opt$PACKAGES <- opt$PACKAGES[!isArg] if (length(opt$PACKAGES)==0 && file.exists("DESCRIPTION") && file.exists("NAMESPACE")) { message("* installing *source* package found in current working directory ...") opt$PACKAGES <- "." } isMatchingFile <- function(f) (file.exists(f) && grepl("(\\.tar\\.gz|\\.tgz|\\.zip)$", f)) || (f == ".") isLocal <- sapply(opt$PACKAGES, isMatchingFile) if (any(isLocal)) { sapply(opt$PACKAGES, installArg, opt$libloc, opt$repos, opt$deps, installOpts, opt$error, opt$skipinstalled, opt$ncpus, opt$method) } else { install_packages2(pkgs = opt$PACKAGES, lib = opt$libloc, repos = opt$repos, dependencies = opt$deps, INSTALL_opts = installOpts, Ncpus = opt$ncpus, method = opt$method, error = opt$error, skipinstalled = opt$skipinstalled) } sapply(list.files(path=tempdir(), pattern="^(repos|libloc).*\\.rds$", full.names=TRUE), unlink)
insp.dd <- function(data, what=c('rate','pop', 'deaths'), ages=data$age, years=data$year, series = names(data$rate)[1]){ if (class(data) != "demogdata" || data$type != "mortality") stop("Not mortality data") what <- match.arg(what) if (what == 'deaths'){ data <- extract.deaths(data, ages, years, combine.upper=F, series=series) what <- 'rate' } else { data <- extract.years(data, years) data <- extract.ages(data, ages=ages, combine.upper=F) } data[[what]][[series]] }
vardomh <- function(Y, H, PSU, w_final, ID_level1, ID_level2, Dom = NULL, period = NULL, N_h = NULL, PSU_sort = NULL, fh_zero = FALSE, PSU_level = TRUE, Z = NULL, dataset = NULL, X = NULL, periodX = NULL, X_ID_level1 = NULL, ind_gr = NULL, g = NULL, q = NULL, datasetX = NULL, confidence = .95, percentratio = 1, outp_lin = FALSE, outp_res = FALSE) { fh_zero <- check_var(vars = fh_zero, varn = "fh_zero", varntype = "logical") PSU_level <- check_var(vars = PSU_level, varn = "PSU_level", varntype = "logical") outp_lin <- check_var(vars = outp_lin, varn = "outp_lin", varntype = "logical") outp_res <- check_var(vars = outp_res, varn = "outp_res", varntype = "logical") percentratio <- check_var(vars = percentratio, varn = "percentratio", varntype = "pinteger") confidence <- check_var(vars = confidence, varn = "confidence", varntype = "numeric01") if(!is.null(X)) { if (is.null(datasetX)) datasetX <- copy(dataset) if (identical(dataset, datasetX) & !is.null(dataset)) X_ID_level1 <- ID_level1 } Y <- check_var(vars = Y, varn = "Y", dataset = dataset, check.names = TRUE, isnumeric = TRUE, grepls = "__") Ynrow <- nrow(Y) Yncol <- ncol(Y) ID_level1 <- check_var(vars = ID_level1, varn = "ID_level1", dataset = dataset, ncols = 1, Ynrow = Ynrow, ischaracter = TRUE) period <- check_var(vars = period, varn = "period", dataset = dataset, Ynrow = Ynrow, ischaracter = TRUE, duplicatednames = TRUE, mustbedefined = FALSE) ID_level2 <- check_var(vars = ID_level2, varn = "ID_level2", dataset = dataset, ncols = 1, Ynrow = Ynrow, ischaracter = TRUE, namesID1 = names(ID_level1), periods = period) H <- check_var(vars = H, varn = "H", dataset = dataset, ncols = 1, Ynrow = Ynrow, ischaracter = TRUE, namesID1 = names(ID_level1), dif_name = "dataH_stratas") w_final <- check_var(vars = w_final, varn = "w_final", dataset = dataset, ncols = 1, Ynrow = Ynrow, isnumeric = TRUE, isvector = TRUE) Z <- check_var(vars = Z, varn = "Z", dataset = dataset, check.names = TRUE, Yncol = Yncol, Ynrow = Ynrow, isnumeric = TRUE, mustbedefined = FALSE) Dom <- check_var(vars = Dom, varn = "Dom", dataset = dataset, Ynrow = Ynrow, ischaracter = TRUE, mustbedefined = FALSE, duplicatednames = TRUE, grepls = "__") PSU <- check_var(vars = PSU, varn = "PSU", dataset = dataset, ncols = 1, Ynrow = Ynrow, ischaracter = TRUE, namesID1 = names(ID_level1)) PSU_sort <- check_var(vars = PSU_sort, varn = "PSU_sort", dataset = dataset, ncols = 1, Ynrow = Ynrow, ischaracter = TRUE, isvector = TRUE, mustbedefined = FALSE, PSUs = PSU) if(!is.null(X) | !is.null(ind_gr) |!is.null(g) | !is.null(q) | !is.null(periodX) | !is.null(X_ID_level1) | !is.null(datasetX)) { X <- check_var(vars = X, varn = "X", dataset = datasetX, check.names = TRUE, isnumeric = TRUE, dif_name = c(names(Y), names(period), "g", "q", "weight"), dX = "X") Xnrow <- nrow(X) ind_gr <- check_var(vars = ind_gr, varn = "ind_gr", dataset = datasetX, ncols = 1, Xnrow = Xnrow, ischaracter = TRUE, dX = "X", dif_name = c(names(Y), names(period), "g", "q", "weight")) g <- check_var(vars = g, varn = "g", dataset = datasetX, ncols = 1, Xnrow = Xnrow, isnumeric = TRUE, isvector = TRUE, dX = "X") q <- check_var(vars = q, varn = "q", dataset = datasetX, ncols = 1, Xnrow = Xnrow, isnumeric = TRUE, isvector = TRUE, dX = "X") periodX <- check_var(vars = periodX, varn = "periodX", dataset = datasetX, ncols = 1, Xnrow = Xnrow, ischaracter = TRUE, mustbedefined = !is.null(period), duplicatednames = TRUE, varnout = "period", varname = names(period), periods = period, dX = "X") X_ID_level1 <- check_var(vars = X_ID_level1, varn = "X_ID_level1", dataset = datasetX, ncols = 1, Xnrow = Xnrow, ischaracter = TRUE, varnout = "ID_level1", varname = names(ID_level1), periods = period, periodsX = periodX, ID_level1 = ID_level1, dX = "X") } N <- dataset <- datasetX <- NULL np <- sum(ncol(period)) if (!is.null(N_h)) { N_h <- data.table(N_h) if (anyNA(N_h)) stop("'N_h' has missing values") if (ncol(N_h) != np + 2) stop(paste0("'N_h' should be ", np + 2, " columns")) if (!is.numeric(N_h[[ncol(N_h)]])) stop("The last column of 'N_h' should be numeric") nams <- c(names(period), names(H)) if (all(nams %in% names(N_h))) {N_h[, (nams) := lapply(.SD, as.character), .SDcols = nams] } else stop(paste0("All strata titles of 'H'", ifelse(!is.null(period), "and periods titles of 'period'", ""), " have not in 'N_h'")) if (is.null(period)) { if (any(is.na(merge(unique(H), N_h, by = names(H), all.x = TRUE)))) stop("'N_h' is not defined for all strata") if (any(duplicated(N_h[, head(names(N_h), -1), with = FALSE]))) stop("Strata values for 'N_h' must be unique") } else { pH <- data.table(period, H) if (any(is.na(merge(unique(pH), N_h, by = names(pH), all.x = TRUE)))) stop("'N_h' is not defined for all strata and periods") if (any(duplicated(N_h[, head(names(N_h), -1), with = FALSE]))) stop("Strata values for 'N_h' must be unique in all periods") pH <- NULL } setkeyv(N_h, names(N_h)[c(1 : (1 + np))]) } psusn <- as.integer(!is.null(PSU_sort)) namesDom <- names(Dom) aPSU <- names(PSU) if (!is.null(Dom)) Y1 <- domain(Y = Y, D = Dom, dataset = NULL, checking = FALSE) else Y1 <- Y Y <- NULL n_nonzero <- copy(Y1) Z1 <- NULL if (!is.null(Z)) { if (!is.null(Dom)) Z1 <- domain(Y = Z, D = Dom, dataset = NULL, checking = FALSE) else Z1 <- Z Z0 <- copy(Z1) setnames(Z0, names(Z0), names(Y1)) n_nonzero <- n_nonzero + Y1 Z0 <- NULL } if (!is.null(period)){ n_nonzero <- data.table(period, n_nonzero) n_nonzero <- n_nonzero[, lapply(.SD, function(x) sum(as.integer(abs(x) > .Machine$double.eps))), keyby = names(period), .SDcols = names(Y1)] } else n_nonzero <- n_nonzero[, lapply(.SD, function(x) sum(as.integer(abs(x) > .Machine$double.eps))), .SDcols = names(Y1)] respondent_count <- sample_size <- pop_size <- NULL nhs <- data.table(respondent_count = 1, pop_size = w_final) if (!is.null(period)) nhs <- data.table(period, nhs) if (!is.null(Dom)) nhs <- data.table(Dom, nhs) if (!is.null(c(Dom, period))) {nhs <- nhs[, lapply(.SD, sum, na.rm = TRUE), keyby = eval(names(nhs)[0 : 1 - ncol(nhs)]), .SDcols = c("respondent_count", "pop_size")] } else nhs <- nhs[, lapply(.SD, sum, na.rm = TRUE), .SDcols = c("respondent_count", "pop_size")] if (!is.null(X)) { ID_level1h <- data.table(ID_level1) if (!is.null(period)) { ID_level1h <- data.table(period, ID_level1h) X_ID_level1 <- data.table(periodX, X_ID_level1) } idhx <- data.table(X_ID_level1, g = g) setnames(idhx, names(idhx)[c(1 : (ncol(idhx) - 1))], names(ID_level1h)) idg <- merge(ID_level1h, idhx, by = names(ID_level1h), sort = FALSE) w_design <- w_final / idg[["g"]] idg <- data.table(idg, w_design = w_design) idh <- idg[, .N, keyby = c(names(ID_level1h), "w_design")] if (nrow(X) != nrow(idh)) stop("Aggregated 'w_design' length must the same as matrix 'X'") idg <- idhx <- ID_level1h <- NULL } else w_design <- w_final sar_nr <- persort <- linratio_outp <- estim <- NULL var_est2 <- se <- rse <- cv <- absolute_margin_of_error <- NULL relative_margin_of_error <- CI_lower <- S2_y_HT <- NULL S2_y_ca <- S2_res <- CI_upper <- variable <- variableZ <- NULL .SD <- deff_sam <- deff_est <- deff <- n_eff <- NULL aH <- names(H) idper <- ID_level2 period0 <- copy(period) if (!is.null(period)) idper <- data.table(idper, period) if (!is.null(Z)) { if (is.null(period)) { Y2 <- lin.ratio(Y = Y1, Z = Z1, weight = w_final, Dom = NULL, dataset = NULL, percentratio = percentratio, checking = FALSE) } else { periodap <- do.call("paste", c(as.list(period), sep="_")) lin1 <- lapply(split(Y1[, .I], periodap), function(i) data.table(sar_nr = i, lin.ratio(Y = Y1[i], Z = Z1[i], weight = w_final[i], Dom = NULL, dataset = NULL, percentratio = percentratio, checking = FALSE))) Y2 <- rbindlist(lin1) setkeyv(Y2, "sar_nr") Y2[, sar_nr := NULL] } if (any(is.na(Y2))) print("Results are calculated, but there are cases where Z = 0") if (outp_lin) linratio_outp <- data.table(idper, PSU, Y2) } else { Y2 <- Y1 } lin1 <- Y_est <- Z_est <- .SD <- variableDZ <- NULL hY <- data.table(Y1 * w_final) if (is.null(period)) { Y_est <- hY[, lapply(.SD, sum, na.rm = TRUE), .SDcols = names(Y1)] } else { hY <- data.table(period0, hY) Y_est <- hY[, lapply(.SD, sum, na.rm = TRUE), keyby = names(period), .SDcols = names(Y1)] } Y_est <- transpos(Y_est, is.null(period), "Y_est", names(period)) all_result <- Y_est if (!is.null(Z1)) { YZnames <- data.table(variable = names(Y1), variableDZ = names(Z1)) setkeyv(YZnames, "variable") setkeyv(all_result, "variable") all_result <- merge(all_result, YZnames) hZ <- data.table(Z1 * w_final) if (is.null(period)) { Z_est <- hZ[, lapply(.SD, sum, na.rm = TRUE), .SDcols = names(Z1)] } else { hZ <- data.table(period, hZ) Z_est <- hZ[, lapply(.SD, sum, na.rm = TRUE), keyby = names(period), .SDcols = names(Z1)] } Z_est <- transpos(Z_est, is.null(period), "Z_est", names(period), "variableDZ") all_result <- merge(all_result, Z_est, all = TRUE, by = c(names(period), "variableDZ")) } vars <- data.table(variable = names(Y1), nr_names = 1 : ncol(Y1)) all_result <- merge(vars, all_result, by = "variable") n_nonzero <- transpos(n_nonzero, is.null(period), "n_nonzero", names(period)) all_result <- merge(all_result, n_nonzero, all = TRUE, by = c(names(period), "variable")) n_nonzero <- vars <- Y1 <- Z1 <- Y_est <- Z_est <- hY <- hZ <- YZnames <- NULL YY <- data.table(idper, ID_level1, H, PSU, check.names = TRUE) if (!is.null(PSU_sort)) YY <- data.table(YY, PSU_sort, check.names = TRUE) YY <- data.table(YY, w_design, w_final, Y2, check.names = TRUE) YY2 <- YY[, lapply(.SD, sum, na.rm = TRUE), by = c(names(YY)[c(2 : (6 + np + psusn))]), .SDcols = names(YY)[-(1 : (6 + np + psusn))]] Y3 <- YY2[, c(-(1 : (5 + np + psusn))), with = FALSE] idper <- period <- NULL if (np > 0) period <- YY2[, c(1 : np), with = FALSE] ID_level1h <- YY2[, np + 1, with = FALSE] H <- YY2[, np + 2, with = FALSE] setnames(H, names(H), aH) PSU <- YY2[, np + 3, with = FALSE] setnames(PSU, names(PSU), aPSU) if (!is.null(PSU_sort)) PSU_sort <- YY2[[np + 4]] w_design2 <- YY2[[np + 4 + psusn]] w_final2 <- YY2[[np + 5 + psusn]] YY <- YY2 <- NULL betas <- res_outp <- NULL if (!is.null(X)) { if (np > 0) ID_level1h <- data.table(period, ID_level1h) X0 <- data.table(X_ID_level1, ind_gr, q, g, X) D1 <- merge(ID_level1h, X0, by = names(ID_level1h), sort = FALSE) ind_gr <- D1[, np + 2, with = FALSE] if (!is.null(period)) ind_gr <- data.table(D1[, names(periodX), with = FALSE], ind_gr) ind_period <- do.call("paste", c(as.list(ind_gr), sep = "_")) lin1 <- lapply(split(Y3[, .I], ind_period), function(i) { resid <- residual_est(Y = Y3[i], X = D1[i, (np + 5) : ncol(D1), with = FALSE], weight = w_design2[i], q = D1[i][["q"]], checking = FALSE) pers0 <- ind_gr[i, .N, keyby = c(names(ind_gr))] list(data.table(sar_nr = i, resid$residuals), data.table(pers0[, N := NULL], resid$betas)) }) Y4 <- rbindlist(lapply(lin1, function(x) x[[1]])) betas <- rbindlist(lapply(lin1, function(x) x[[2]])) setkeyv(Y4, "sar_nr") Y4[, sar_nr := NULL] if (outp_res) res_outp <- data.table(ID_level1h, PSU, w_final2, Y4) } else Y4 <- Y3 X0 <- D1 <- X_ID_level1 <- ID_level1h <- ind_gr <- lin1 <- X <- g <- q <- NULL var_est <- variance_est(Y = Y4, H = H, PSU = PSU, w_final = w_final2, N_h = N_h, fh_zero = fh_zero, PSU_level = PSU_level, PSU_sort = PSU_sort, period = period, dataset = NULL, msg = "Current variance estimation", checking = FALSE) var_est <- transpos(var_est, is.null(period), "var_est", names(period)) all_result <- merge(all_result, var_est, all = TRUE, by = c(names(period), "variable")) var_cur_HT <- variance_est(Y = Y3, H = H, PSU = PSU, w_final = w_design2, N_h = N_h, fh_zero = fh_zero, PSU_level = PSU_level, PSU_sort = PSU_sort, period = period, dataset = NULL, msg = "Variance of HT estimator under current design", checking = FALSE) var_cur_HT <- transpos(var_cur_HT, is.null(period), "var_cur_HT", names(period)) all_result <- merge(all_result, var_cur_HT, all = TRUE, by = c(names(period), "variable")) n_nonzero <- var_est <- var_cur_HT <- NULL H <- PSU <- PSU_sort <- N_h <- NULL if (is.null(period)) { varsrs <- var_srs(Y = Y3, w = w_design2) S2_y_HT <- varsrs$S2p S2_y_ca <- var_srs(Y = Y3, w = w_final2)$S2p var_srs_HT <- varsrs$varsrs } else { period_agg <- unique(period) lin1 <- lapply(1 : nrow(period_agg), function(i) { per <- period_agg[i,][rep(1, nrow(Y3)),] ind <- (rowSums(per == period) == ncol(period)) varsrs <- var_srs(Y = Y3[ind], w = w_design2[ind]) varsca <- var_srs(Y = Y3[ind], w = w_final2[ind]) list(S2p = data.table(period_agg[i,], varsrs$S2p), varsrs = data.table(period_agg[i,], varsrs$varsrs), S2ca = data.table(period_agg[i,], varsca$S2p)) }) S2_y_HT <- rbindlist(lapply(lin1, function(x) x[[1]])) var_srs_HT <- rbindlist(lapply(lin1, function(x) x[[2]])) S2_y_ca <- rbindlist(lapply(lin1, function(x) x[[3]])) } var_srs_HT <- transpos(var_srs_HT, is.null(period), "var_srs_HT", names(period)) all_result <- merge(all_result, var_srs_HT, all = TRUE, by = c(names(period), "variable")) S2_y_HT <- transpos(S2_y_HT, is.null(period), "S2_y_HT", names(period)) all_result <- merge(all_result, S2_y_HT, all = TRUE, by = c(names(period), "variable")) S2_y_ca <- transpos(S2_y_ca, is.null(period), "S2_y_ca", names(period)) all_result <- merge(all_result, S2_y_ca, all = TRUE, by = c(names(period), "variable")) Y3 <- w_design2 <- var_srs_HT <- S2_y_HT <- S2_y_ca <- NULL if (is.null(period)) { varsres <- var_srs(Y4, w = w_final2) S2_res <- varsres$S2p var_srs_ca <- varsres$varsrs } else { period_agg <- unique(period) lin1 <- lapply(1 : nrow(period_agg), function(i) { per <- period_agg[i,][rep(1, nrow(Y4)),] ind <- (rowSums(per == period) == ncol(period)) varsres <- var_srs(Y = Y4[ind], w = w_final2[ind]) list(S2p = data.table(period_agg[i,], varsres$S2p), varsrs = data.table(period_agg[i,], varsres$varsrs)) }) S2_res <- rbindlist(lapply(lin1, function(x) x[[1]])) var_srs_ca <- rbindlist(lapply(lin1, function(x) x[[2]])) } var_srs_ca <- transpos(var_srs_ca, is.null(period), "var_srs_ca", names(period), "variable") all_result <- merge(all_result, var_srs_ca, all = TRUE, by = c(names(period), "variable")) S2_res <- transpos(S2_res, is.null(period), "S2_res", names(period), "variable") all_result <- merge(all_result, S2_res, all = TRUE, by = c(names(period), "variable")) Y4 <- w_final2 <- var_srs_ca <- S2_res <- NULL all_result[, estim := Y_est] if (!is.null(all_result$Z_est)) all_result[, estim := Y_est / Z_est * percentratio] if (nrow(all_result[var_est < 0]) > 0) stop("Estimation of variance are negative!") all_result[, deff_sam := var_cur_HT / var_srs_HT] all_result[, deff_est := var_est / var_cur_HT] all_result[, deff := deff_sam * deff_est] all_result[, var_est2 := var_est] all_result[xor(is.na(var_est2), var_est2 < 0), var_est2 := NA] all_result[, se := sqrt(var_est2)] all_result[(estim != 0) & !is.nan(estim), rse := se / estim] all_result[estim == 0 | is.nan(estim), rse := NA] all_result[, cv := rse * 100] tsad <- qnorm(0.5 * (1 + confidence)) all_result[, absolute_margin_of_error := tsad * se] all_result[, relative_margin_of_error := tsad * cv] all_result[, CI_lower := estim - absolute_margin_of_error] all_result[, CI_upper := estim + absolute_margin_of_error] variableD <- NULL setnames(all_result, c("variable", "var_est"), c("variableD", "var")) if (!is.null(all_result$Z_est)) { nosrZ <- data.table(all_result[, "variableDZ"], all_result[, tstrsplit(variableDZ, "__")][, 1]) nosrZ <- nosrZ[!duplicated(nosrZ)] setnames(nosrZ, "V1", "variableZ") all_result <- merge(all_result, nosrZ, by = "variableDZ") nosrZ <- NULL } nosr <- data.table(all_result[, "variableD"], all_result[, tstrsplit(variableD, "__")]) nosr <- nosr[!duplicated(nosr)] nosr <- nosr[, lapply(nosr, as.character)] setnames(nosr, names(nosr)[2], "variable") namesDom1 <- namesDom if (!is.null(Dom)) { setnames(nosr, names(nosr)[3 : ncol(nosr)], paste0(namesDom, "_new")) nhs[, (paste0(namesDom, "_new")) := lapply(namesDom, function(x) make.names(paste0(x,".", get(x))))] namesDom1 <- paste0(namesDom, "_new") } all_result <- merge(nosr, all_result, by="variableD") namesDom <- nosr <- confidence_level <- NULL if (!is.null(all_result$Z_est)) { all_result[, variable := paste("R", get("variable"), get("variableZ"), sep="__")] } if (!is.null(c(Dom, period))) { all_result <- merge(all_result, nhs, all = TRUE, by = c(namesDom1, names(period))) } else { all_result[, respondent_count := nhs$respondent_count] all_result[, pop_size := nhs$pop_size]} all_result[, confidence_level := confidence] variab <- c("respondent_count", "n_nonzero", "pop_size") if (!is.null(all_result$Z_est)) variab <- c(variab, "Y_est", "Z_est") variab <- c(variab, "estim", "var", "se", "rse", "cv", "absolute_margin_of_error", "relative_margin_of_error", "CI_lower", "CI_upper", "confidence_level") if (is.null(Dom)) variab <- c(variab, "S2_y_HT", "S2_y_ca", "S2_res") variab <- c(variab, "var_srs_HT", "var_cur_HT", "var_srs_ca", "deff_sam", "deff_est", "deff") setkeyv(all_result, c("nr_names", names(Dom), names(period))) all_result <- all_result[, c("variable", names(Dom), names(period), variab), with = FALSE] list(lin_out = linratio_outp, res_out = res_outp, all_result = all_result) }
"wres.dist.qq" <- function(object, ...) { if(is.null(xvardef("wres",object))) { cat("WRES is not set in the database!\n") return() } xplot <- xpose.plot.qq(xvardef("wres",object), object, ...) return(xplot) }
DispStats <- function(inputrast1, inputrast2, statrast, vfdf, sourceloc = TRUE, statistic = "var") { if (is.logical(sourceloc) == FALSE) { stop("sourceloc must be either TRUE or FALSE") } if (is.element(statistic, c("mean", "var", "sum")) == FALSE) { stop("statistic must be 'mean', 'var', or 'sum'") } inputmat1 <- RastToMatrix(inputrast1) inputmat2 <- RastToMatrix(inputrast2) inputmat3 <- RastToMatrix(statrast) dx <- terra::xres(inputrast1) dy <- terra::yres(inputrast1) Outdf <- vfdf shiftx = round(Outdf$dispx/dx) shifty = round(Outdf$dispy/dy) shiftx[is.na(shiftx) == TRUE] = 0.0 shiftx[is.infinite(shiftx) == TRUE] = 0.0 shiftx[is.nan(shiftx) == TRUE] = 0.0 shifty[is.na(shifty) == TRUE] = 0.0 shifty[is.infinite(shifty) == TRUE] = 0.0 shifty[is.nan(shifty) == TRUE] = 0.0 for (i in 1:dim(Outdf)[1]) { mat1sub <- ExtractMat(inputmat1, Outdf$frowmin[i], Outdf$frowmax[i], Outdf$fcolmin[i], Outdf$fcolmax[i]) mat2sub <- inputmat2 if (sourceloc == TRUE) { mat1bin <- mat1sub mat1bin[mat1bin > 0] <- 1 mat1bin[mat1bin == 0] <- NA if (abs(shifty[i]) < (dim(mat2sub)[1] - 1) & abs(shiftx[i]) < dim(mat2sub)[2] - 1) { mat2back <- ShiftMat(mat2sub, shiftrows = -shifty[i], shiftcols = -shiftx[i]) } else { mat2back <- matrix(rep(0, dim(mat2sub)[1]*dim(mat2sub)[2]), nrow = dim(mat2sub)[1]) } mat2back[mat2back > 0] <- 1 mat2back[mat2back == 0] <- NA if (statistic == "mean") { Outdf$Mean[i] <- mean(inputmat3*mat2back*mat1bin, na.rm = TRUE) } if (statistic == "var") { Outdf$Var[i] <- stats::var(as.numeric(inputmat3*mat2back*mat1bin), na.rm = TRUE) } if (statistic == "sum") { Outdf$Sum[i] <- sum(inputmat3*mat2back*mat1bin, na.rm = TRUE) } } else { mat2bin <- mat2sub mat2bin[mat2bin > 0] <- 1 mat2bin[mat2bin == 0] <- NA if (abs(shifty[i]) < (dim(mat2sub)[1] - 1) & abs(shiftx[i]) < dim(mat2sub)[2] - 1) { mat1forw <- ShiftMat(mat1sub, shiftrows = shifty[i], shiftcols = shiftx[i]) } else { mat1forw <- matrix(rep(0, dim(mat2sub)[1]*dim(mat2sub)[2]), nrow = dim(mat2sub)[1]) } mat1forw[mat1forw > 0] <- 1 mat1forw[mat1forw == 0] <- NA if (statistic == "mean") { Outdf$Mean[i] <- mean(inputmat3*mat1forw*mat2bin, na.rm = TRUE) } if (statistic == "var") { Outdf$Var[i] <- stats::var(as.numeric(inputmat3*mat1forw*mat2bin), na.rm = TRUE) } if (statistic == "sum") { Outdf$Sum[i] <- sum(inputmat3*mat1forw*mat2bin, na.rm = TRUE) } } } return(Outdf) }
context("extractSTA lme4") modelLm <- fitTD(testTD, design = "rcbd", traits = "t1", engine = "lme4") test_that("the output of extractSTA is of the proper type", { expect_is(extractSTA(modelLm, what = "BLUEs"), "data.frame") expect_is(extractSTA(modelLm), "list") expect_length(extractSTA(modelLm)[["E1"]], 21) expect_is(extractSTA(modelLm, what = c("BLUEs", "BLUPs")), "list") expect_length(extractSTA(modelLm, what = c("BLUEs", "BLUPs"))[["E1"]], 2) }) extLm <- extractSTA(modelLm)[["E1"]] test_that("BLUEs are computed correctly", { expect_is(extLm$BLUEs, "data.frame" ) expect_equal(dim(extLm$BLUEs), c(15, 2)) expect_named(extLm$BLUEs, c("genotype", "t1")) expect_equal(extLm$BLUEs$t1, c(86.959432402627, 60.0587826374786, 94.1691705937487, 74.0099150750079, 90.3428175809651, 66.5671108868047, 67.0747150491462, 63.701127332907, 87.0566508937095, 94.594647452768, 86.5691490691607, 83.6003540781321, 64.9321767034443, 58.9511717976486, 112.067789322994)) }) test_that("SE of BLUEs are computed correctly", { expect_is(extLm$seBLUEs, "data.frame" ) expect_equal(dim(extLm$seBLUEs), c(15, 2)) expect_named(extLm$seBLUEs, c("genotype", "t1")) expect_equal(extLm$seBLUEs$t1, rep(x = 19.8671913400323, times = 15)) }) test_that("BLUPs are computed correctly", { expect_is(extLm$BLUPs, "data.frame" ) expect_equal(dim(extLm$BLUPs), c(15, 2)) expect_named(extLm$BLUPs, c("genotype", "t1")) expect_equal(extLm$BLUPs$t1, c(79.3770007251028, 79.3770007251028, 79.3770007251028, 79.3770007251028, 79.3770007251028, 79.3770007251028, 79.3770007251028, 79.3770007251028, 79.3770007251028, 79.3770007251028, 79.3770007251028, 79.3770007251028, 79.3770007251028, 79.3770007251028, 79.3770007251028)) }) test_that("SE of BLUPs are computed correctly", { expect_is(extLm$seBLUPs, "data.frame" ) expect_equal(dim(extLm$seBLUPs), c(15, 2)) expect_named(extLm$seBLUPs, c("genotype", "t1")) expect_equal(extLm$seBLUPs$t1, rep(x = 0, times = 15)) }) test_that("unit errors are computed correctly", { expect_is(extLm$ue, "data.frame" ) expect_equal(dim(extLm$ue), c(15, 2)) expect_named(extLm$ue, c("genotype", "t1")) expect_equal(extLm$ue$t1, rep(x = 394.705291741457, times = 15)) }) test_that("heritability is computed correctly", { expect_is(extLm$heritability, "numeric") expect_length(extLm$heritability, 1) expect_named(extLm$heritability, "t1") expect_equivalent(extLm$heritability, 0) }) test_that("heritability can be coerced to data.frame correctly", { herit <- extractSTA(modelLm, what= "heritability") expect_is(herit, "data.frame") expect_named(herit, c("trial", "t1")) expect_equal(herit[1, 2], 0) }) test_that("varGen is computed correctly", { expect_is(extLm$varGen, "numeric") expect_length(extLm$varGen, 1) expect_named(extLm$varGen, "t1") expect_equivalent(extLm$varGen, 0) }) test_that("varErr is computed correctly", { expect_is(extLm$varErr, "numeric") expect_length(extLm$varErr, 1) expect_named(extLm$varErr, "t1") expect_equivalent(extLm$varErr, 638.590646884335) }) test_that("fitted values are computed correctly", { expect_is(extLm$fitted, "data.frame" ) expect_equal(dim(extLm$fitted), c(30, 3)) expect_named(extLm$fitted, c("genotype", "repId", "t1")) expect_equal(extLm$fitted$t1, c(113.978165854802, 96.0795471255565, 88.4324410491573, 60.8615483294564, 84.6587725373528, 81.6899775463243, 61.9691591692864, 61.7907508010991, 110.157412791186, 96.5050239845758, 85.1462743619017, 57.0407952658408, 88.4795256009685, 75.9202916068157, 58.1484061056708, 88.9670274255173, 68.4774874186125, 72.0995385432001, 65.6115038647147, 92.2531941127729, 63.0218001716365, 85.5107306099399, 85.0490558708192, 65.1643385173384, 88.8698089344348, 92.6842709209602, 64.6567343549969, 66.8425532352521, 68.985091580954, 92.2587940619409)) }) test_that("residuals are computed correctly", { expect_is(extLm$residF, "data.frame" ) expect_equal(dim(extLm$residF), c(30, 3)) expect_named(extLm$residF, c("genotype", "repId", "t1")) expect_equal(extLm$residF$t1, c(-7.63439427908629, -7.68911687633611, 8.80187639497948, -22.8661163893547, 32.7866964886075, 4.87615892024477, -9.95913678359087, -1.87108123521764, 7.63439427908628, -26.8180211716357, -32.99040276989, 22.8661163893547, -32.7866964886075, 16.4496025710133, 9.95913678359089, 32.99040276989, 8.55271193691682, -16.4496025710133, 1.87108123521765, -8.8018763949795, -13.8443301609181, -4.87615892024477, -31.7663736521888, -15.9570149776908, 31.7663736521888, 26.8180211716357, -8.55271193691682, 13.8443301609181, 15.9570149776908, 7.6891168763361)) }) test_that("standardized residuals are computed correctly", { expect_is(extLm$stdResF, "data.frame" ) expect_equal(dim(extLm$stdResF), c(30, 3)) expect_named(extLm$stdResF, c("genotype", "repId", "t1")) expect_equal(extLm$stdResF$t1, c(-0.397758732092815, -0.400609828080684, 0.458585588708124, -1.19134500137515, 1.70821604806888, 0.254052216678513, -0.518879884240682, -0.0974849965244265, 0.397758732092815, -1.39724275541933, -1.71882932650333, 1.19134500137515, -1.70821604806888, 0.857038924489505, 0.518879884240683, 1.71882932650333, 0.445603898832203, -0.857038924489507, 0.0974849965244267, -0.458585588708124, -0.721301914752581, -0.254052216678513, -1.65505632080001, -0.831374672762121, 1.65505632080002, 1.39724275541933, -0.445603898832203, 0.721301914752581, 0.831374672762121, 0.400609828080684)) }) test_that("rMeans are computed correctly", { expect_is(extLm$rMeans, "data.frame" ) expect_equal(dim(extLm$rMeans), c(30, 3)) expect_named(extLm$rMeans, c("genotype", "repId", "t1")) expect_equal(extLm$rMeans$t1, c(81.2873772569106, 81.2873772569106, 77.466624193295, 81.2873772569106, 77.466624193295, 77.466624193295, 81.2873772569106, 77.466624193295, 77.466624193295, 81.2873772569106, 77.466624193295, 77.466624193295, 81.2873772569106, 81.2873772569106, 77.466624193295, 81.2873772569106, 81.2873772569106, 77.466624193295, 81.2873772569106, 81.2873772569106, 77.466624193295, 81.2873772569106, 77.466624193295, 77.466624193295, 81.2873772569106, 77.466624193295, 77.466624193295, 81.2873772569106, 81.2873772569106, 77.466624193295)) }) test_that("random effects are computed correctly", { expect_is(extLm$ranEf, "data.frame" ) expect_equal(dim(extLm$ranEf), c(15, 2)) expect_named(extLm$ranEf, c("genotype", "t1")) expect_equal(extLm$ranEf$t1, c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)) }) test_that("residuals are computed correctly for genotype random", { expect_is(extLm$residR, "data.frame" ) expect_equal(dim(extLm$residR), c(30, 3)) expect_named(extLm$residR, c("genotype", "repId", "t1")) expect_equal(extLm$residR$t1, c(25.0563943188048, 7.10305299230976, 19.7676932508419, -43.2919453168089, 39.9788448326654, 9.09951227327409, -29.2773548712151, -17.5469546274135, 40.3251828769773, -11.6003744439706, -25.3107526012833, 2.44028746190051, -25.5945481445496, 11.0825169209183, -9.35908130403332, 40.6700529384967, -4.25717790138133, -21.8166882211082, -13.8047921569782, 2.1639404608828, -28.2891541825766, -0.652805567215481, -24.1839419746646, -28.2593006536474, 39.348805329713, 42.0356678993009, -21.3626017752149, -0.600493860740485, 3.65472930173426, 22.481286744982)) }) test_that("standardized residuals are computed correctly", { expect_is(extLm$stdResR, "data.frame" ) expect_equal(dim(extLm$stdResR), c(30, 3)) expect_named(extLm$stdResR, c("genotype", "repId", "t1")) expect_equal(extLm$stdResR$t1, c(0.99153328646432, 0.281082480894285, 0.782248459432799, -1.71315171174464, 1.58204548115008, 0.360086499068644, -1.15856541548165, -0.694369244345031, 1.5957507930531, -0.459050781620821, -1.0015987691733, 0.0965672161856089, -1.01282914510523, 0.438558089606995, -0.370358181851825, 1.60939801384436, -0.168465324336469, -0.863331423364774, -0.546284144566353, 0.0856315944581839, -1.11946027273744, -0.0258328649065675, -0.957008544833016, -1.11827890692418, 1.55711351643815, 1.66343821902723, -0.845362284616925, -0.0237627826121337, 0.144625188667564, 0.889630959929036)) }) test_that("Waldtest is computed correctly", { expect_is(extLm$wald$t1, "data.frame") expect_length(extLm$wald$t1, 4) expect_equivalent(unlist(extLm$wald$t1), c(15, 14, 16.54, 2.22715086492192e-06)) }) test_that("CV is computed correctly", { expect_is(extLm$CV, "numeric") expect_length(extLm$CV, 1) expect_named(extLm$CV, "t1") expect_equivalent(extLm$CV, 35.3962119791326) }) test_that("rDf is computed correctly", { expect_is(extLm$rDfF, "integer") expect_length(extLm$rDfF, 1) expect_named(extLm$rDfF, "t1") expect_equivalent(extLm$rDfF, 14) }) test_that("rDfR is computed correctly", { expect_is(extLm$rDfR, "integer") expect_length(extLm$rDfR, 1) expect_named(extLm$rDfR, "t1") expect_equivalent(extLm$rDfR, 26) }) test_that("correct attributes are added", { expect_equal(attr(x = extLm, which = "traits"), "t1") expect_equal(attr(x = extLm, which = "design"), "rcbd") expect_equal(attr(x = extLm, which = "engine"), "lme4") }) test_that("calculated values are logically correct", { expect_equal(testTD[["E1"]]$t1, extLm$fitted$t1 + extLm$residF$t1) expect_equal(testTD[["E1"]]$t1, extLm$rMeans$t1 + extLm$residR$t1) })
.datatable.aware <- TRUE pubRep <- function(.data, .col = "aa+v", .quant = c("count", "prop"), .coding = TRUE, .min.samples = 1, .max.samples = NA, .verbose = TRUE) { .validate_repertoires_data(.data) .preprocess <- function(dt) { if (has_class(dt, "data.table")) { dt <- dt %>% lazy_dt() } if (.coding) { dt <- coding(dt) } dt <- as.data.table(dt %>% select(.col, .quant) %>% collect(n = Inf)) dt[, sum(get(.quant)), by = .col] } .col <- sapply(unlist(strsplit(.col, split = "\\+")), switch_type, USE.NAMES = FALSE) .quant <- .quant_column_choice(.quant[1]) if (.verbose) { pb <- set_pb(length(.data)) } res <- .preprocess(.data[[1]]) setnames(res, colnames(res)[ncol(res)], names(.data)[1]) if (.verbose) { add_pb(pb) } for (i in 2:length(.data)) { res <- merge(res, .preprocess(.data[[i]]), all = TRUE, by = .col, suffixes = c(as.character(i - 1), as.character(i)) ) setnames(res, colnames(res)[ncol(res)], names(.data)[i]) if (.verbose) { add_pb(pb) } } if (.verbose) { add_pb(pb) } res[["Samples"]] <- rowSums(!is.na(as.matrix(res[, (length(.col) + 1):ncol(res), with = FALSE]))) if (is.na(.max.samples)) { .max.samples <- max(res[["Samples"]]) } res <- res[(Samples >= .min.samples) & (Samples <= .max.samples)] if (.verbose) { add_pb(pb) } col_samples <- colnames(res)[(length(.col) + 1):(ncol(res) - 1)] res <- setcolorder(res, c(.col, "Samples", col_samples)) res <- res[order(res$Samples, decreasing = TRUE), ] add_class(res, "immunr_public_repertoire") } publicRepertoire <- pubRep public_matrix <- function(.data) { sample_i <- match("Samples", colnames(.data)) + 1 max_col <- dim(.data)[2] .data %>% dplyr::select(sample_i:max_col) %>% collect(n = Inf) %>% as.matrix() } num2bin <- function(number, n_bits) { vec <- as.numeric(intToBits(number)) if (missing(n_bits)) { vec } else { vec[1:n_bits] } } get_public_repertoire_names <- function(.pr) { sample_i <- match("Samples", names(.pr)) + 1 names(.pr)[sample_i:ncol(.pr)] } pubRepFilter <- function(.pr, .meta, .by, .min.samples = 1) { assertthat::assert_that(has_class(.pr, "immunr_public_repertoire")) assertthat::assert_that(.min.samples > 0) if (!check_group_names(.meta, .by)) { return(NA) } data_groups <- lapply(1:length(.by), function(i) { .meta[["Sample"]][.meta[[names(.by)[i]]] == .by[i]] }) samples_of_interest <- data_groups[[1]] if (length(.by) > 1) { for (i in 2:length(data_groups)) { samples_of_interest <- intersect(data_groups[[i]], samples_of_interest) } } samples_of_interest <- intersect(samples_of_interest, get_public_repertoire_names(.pr)) if (length(samples_of_interest) == 0) { message("Warning: no samples found, check group values in the .by argument!") return(NA) } sample_i <- match("Samples", colnames(.pr)) indices <- c(1:(match("Samples", colnames(.pr))), match(samples_of_interest, colnames(.pr))) new.pr <- .pr %>% lazy_dt() %>% dplyr::select(indices) %>% as.data.table() new.pr[["Samples"]] <- rowSums(!is.na(as.matrix(new.pr[, (sample_i + 1):ncol(new.pr), with = FALSE]))) new.pr <- new.pr %>% lazy_dt() %>% dplyr::filter(Samples >= .min.samples) %>% as.data.table() new.pr } publicRepertoireFilter <- pubRepFilter pubRepApply <- function(.pr1, .pr2, .fun = function(x) log10(x[1]) / log10(x[2])) { col_before_samples <- names(.pr1)[1:(match("Samples", colnames(.pr1)) - 1)] tmp <- rowMeans(public_matrix(.pr1), na.rm = TRUE) .pr1[, (match("Samples", colnames(.pr1)) + 1):ncol(.pr1)] <- NULL .pr1[["Quant"]] <- tmp tmp <- rowMeans(public_matrix(.pr2), na.rm = TRUE) .pr2[, (match("Samples", colnames(.pr2)) + 1):ncol(.pr2)] <- NULL .pr2[["Quant"]] <- tmp pr.res <- dplyr::inner_join(lazy_dt(.pr1), lazy_dt(.pr2), by = col_before_samples) %>% as.data.table() pr.res[["Samples.x"]] <- pr.res[["Samples.x"]] + pr.res[["Samples.y"]] pr.res[, Samples.y := NULL] names(pr.res)[match("Samples.x", colnames(pr.res))] <- "Samples" pr.res[["Result"]] <- apply(pr.res[, c("Quant.x", "Quant.y")], 1, .fun) add_class(pr.res, "immunr_public_repertoire_apply") } publicRepertoireApply <- pubRepApply pubRepStatistics <- function(.data, .by = NA, .meta = NA) { if (!has_class(.data, "immunr_public_repertoire")) { stop("Error: please apply pubRepStatistics() to public repertoires, i.e., output from the pubRep() function.") } melted_pr <- reshape2::melt(.data, id.vars = colnames(.data)[1:(match("Samples", colnames(.data)))]) melted_pr <- na.omit(melted_pr) melted_pr <- melted_pr %>% group_by(CDR3.aa) %>% mutate(Group = paste0(variable, collapse = "&")) %>% filter(Samples > 1) %>% as_tibble() group_tab <- table(melted_pr$Group) melted_pr <- as_tibble(group_tab, .name_repair = function(x) c("Group", "Count")) add_class(melted_pr, "immunr_public_statistics") }