code
stringlengths
1
13.8M
library(hdi) data(riboflavin) x <- riboflavin[,-1] y <- riboflavin[,1] dim(x) length(y) x.use <- x[,1:200] fit.ridge <- ridge.proj(x = x.use, y = y, betainit = "scaled lasso") fit.ridge1 <- ridge.proj(x = x.use + 10^-16, y = y, betainit = "scaled lasso") stopifnot(all.equal(fit.ridge$pval, fit.ridge1$pval)) fit.ridge2 <- ridge.proj(x = 2 + 4 * x.use, y = y, betainit = "scaled lasso") stopifnot(all.equal(fit.ridge$pval, fit.ridge2$pval)) stopifnot(all.equal(max(abs(range(fit.ridge$bhat / fit.ridge2$bhat - 4))), 0)) ci.ridge <- confint(fit.ridge, level = 0.95) ci.ridge2 <- confint(fit.ridge2, level = 0.95) stopifnot(all.equal(ci.ridge, ci.ridge2 * 4))
dZn <- function(x, summands = NULL) { if (!is.numeric(summands)) { if (x > 6) { return(1) } else if (x <= 0) { return(0) } else { best_summands <- c(5, 9, 14, 18, 23, 27, 32) summands <- best_summands[ceiling(x)] } } if (x <= 0) return(0) 2 * pi * sqrt(pZn(x, summands = summands)) * sum((-1)^(0:summands) * (2 * (0:summands) + 1)/x^3 * exp(-pi^2*(2*(0:summands)+1)^2/ (8*x^2))) } dZn <- Vectorize(dZn, "x") pkolmogorov <- function(q, summands = ceiling(q * sqrt(72) + 3/2)) { sqrt(2 * pi) * sapply(q, function(x) { if (x > 0) { sum(exp(-(2 * (1:summands) - 1)^2 * pi^2/(8 * x^2)))/x } else { 0 }}) } pkolmogorov <- Vectorize(pkolmogorov, "q") pdarling_erdos <- function(q) { exp(-2 * exp(-q)) } pdarling_erdos <- Vectorize(pdarling_erdos, "q") pZn <- function(q, summands = NULL) { if (!is.numeric(summands)) { if (q > 6) { return(1) } else if (q <= 0) { return(0) } else { best_summands <- c(5, 9, 14, 18, 23, 27, 32) summands <- best_summands[ceiling(q)] } } if (q > 100) return(1) sapply(q, function(x) {(4/pi * sum((-1)^(0:summands)/(2*(0:summands) + 1) * exp(-pi^2 * (2 * (0:summands) + 1)^2/ (8 * x^2))))^2}) } pZn <- Vectorize(pZn, "q") phidalgo_seo <- function(q) { pdarling_erdos(q/2) } qdarling_erdos <- function(p) { -log(log(1/sqrt(p))) } qdarling_erdos <- Vectorize(qdarling_erdos, "p") qhidalgo_seo <- function(p) { 2 * qdarling_erdos(p) } qZn <- function(p, summands = 500, interval = c(0, 100), tol = .Machine$double.eps, ...) { if (p == 1) return(Inf) if (p == 0) return(0) if (p < 0 | p > 1) return(NaN) objective <- function(q) {pZn(q, summands = summands) - p} args <- list(...); args$tol <- tol; args$interval <- interval args$f <- objective res <- do.call(uniroot, args) res$root } qZn <- Vectorize(qZn, "p") qkolmogorov <- function(p, summands = 500, interval = c(0, 100), tol = .Machine$double.eps, ...) { if (p == 1) return(Inf) if (p == 0) return(0) if (p < 0 | p > 1) return(NaN) objective <- function(q) {pkolmogorov(q, summands = summands) - p} args <- list(...); args$tol <- tol; args$interval <- interval args$f <- objective res <- do.call(uniroot, args) res$root } qkolmogorov <- Vectorize(qkolmogorov, "p") sim_Zn <- function(size, kn, n = 500, gen_func = rnorm, args = NULL, sd = 1) { Zn_realization <- function() { if (!is.list(args)) { dataset <- do.call(gen_func, list(n = n)) } else { dataset <- do.call(gen_func, c(list(n = n), args)) } max(sapply(floor(kn(n)):(n - floor(kn(n))), function(k) abs(1/k*sum(dataset[1:k]) - 1/(n-k)*sum(dataset[(k+1):n])) )) } sqrt(kn(n))/sd * sapply(1:size, function(throwaway) Zn_realization()) } sim_Vn <- function(size, n = 500, gen_func = rnorm, sd = 1, args = NULL) { Vn_realization <- function() { if (!is.list(args)) { dataset <- do.call(gen_func, list(n = n)) } else { dataset <- do.call(gen_func, c(list(n = n), args)) } dataset_mean <- mean(dataset) max(sapply(1:n, function(k) abs(sum(dataset[1:k]) - k * dataset_mean))) } (1/(sd*sqrt(n))) * sapply(1:size, function(throwaway) Vn_realization()) } sim_Vn_stat <- function(size, kn = function(n) {1}, tau = 0, use_kernel_var = FALSE, kernel = "ba", bandwidth = "and", n = 500, gen_func = rnorm, args = NULL, parallel = FALSE) { Vn_realization <- function() { if (!is.list(args)) { dataset <- do.call(gen_func, list(n = n)) } else { dataset <- do.call(gen_func, c(list(n = n), args)) } stat_Vn(dataset, kn = kn, tau = tau, use_kernel_var = use_kernel_var, kernel = kernel, bandwidth = bandwidth) } has_parallel <- requireNamespace("foreach", quietly = TRUE) && requireNamespace("doParallel", quietly = TRUE) if (parallel & !has_parallel) { warning("Either foreach or doParallel is not available; defaulting" %s% "to non-parallel implementation") parallel <- FALSE } else { times <- foreach::times `%dopar%` <- foreach::`%dopar%` } if (parallel) { foreach::foreach(i = 1:size, .combine = 'c') %dopar% Vn_realization() } else { sapply(1:size, function(throwaway) Vn_realization()) } } sim_Zn_stat <- function(size, kn = function(n) {floor(sqrt(n))}, use_kernel_var = FALSE, kernel = "ba", bandwidth = "and", n = 500, gen_func = rnorm, args = NULL, parallel = FALSE) { Zn_realization <- function() { if (!is.list(args)) { dataset <- do.call(gen_func, list(n = n)) } else { dataset <- do.call(gen_func, c(list(n = n), args)) } stat_Zn(dataset, kn, use_kernel_var = use_kernel_var, kernel = kernel, bandwidth = bandwidth) } has_parallel <- requireNamespace("foreach", quietly = TRUE) && requireNamespace("doParallel", quietly = TRUE) if (parallel & !has_parallel) { warning("Either foreach or doParallel is not available; defaulting" %s% "to non-parallel implementation") parallel <- FALSE } else { times <- foreach::times `%dopar%` <- foreach::`%dopar%` } if (parallel) { foreach::foreach(i = 1:size, .combine = 'c') %dopar% Zn_realization() } else { sapply(1:size, function(throwaway) Zn_realization()) } } sim_de_stat <- function(size, a = log, b = log, use_kernel_var = FALSE, kernel = "ba", bandwidth = "and", n = 500, gen_func = rnorm, args = NULL, parallel = FALSE) { de_realization <- function() { if (!is.list(args)) { dataset <- do.call(gen_func, list(n = n)) } else { dataset <- do.call(gen_func, c(list(n = n), args)) } stat_de(dataset, a = a, b = b, use_kernel_var = use_kernel_var, kernel = kernel, bandwidth = bandwidth) } has_parallel <- requireNamespace("foreach", quietly = TRUE) && requireNamespace("doParallel", quietly = TRUE) if (parallel & !has_parallel) { warning("Either foreach or doParallel is not available; defaulting" %s% "to non-parallel implementation") parallel <- FALSE } else { times <- foreach::times `%dopar%` <- foreach::`%dopar%` } if (parallel) { foreach::foreach(i = 1:size, .combine = 'c') %dopar% de_realization() } else { sapply(1:size, function(throwaway) de_realization()) } } sim_hs_stat <- function(size, corr = TRUE, gen_func = rnorm, args = NULL, n = 500, parallel = FALSE, use_kernel_var = FALSE, kernel = "ba", bandwidth = "and") { hs_realization <- function() { if (!is.list(args)) { dataset <- do.call(gen_func, list(n = n)) } else { dataset <- do.call(gen_func, c(list(n = n), args)) } stat_hs(dataset, corr = corr) } has_parallel <- requireNamespace("foreach", quietly = TRUE) && requireNamespace("doParallel", quietly = TRUE) if (parallel & !has_parallel) { warning("Either foreach or doParallel is not available; defaulting" %s% "to non-parallel implementation") parallel <- FALSE } else { times <- foreach::times `%dopar%` <- foreach::`%dopar%` } if (parallel) { foreach::foreach(i = 1:size, .combine = 'c') %dopar% hs_realization() } else { sapply(1:size, function(throwaway) hs_realization()) } } rchangepoint <- function(n, changepoint = NULL, mean1 = 0, mean2 = 0, dist = rnorm, meanparam = "mean", ...) { if (is.null(changepoint)) { changepoint <- ceiling(n/2) } else if (!is.integer(changepoint)) { changepoint <- round(changepoint) } distargs_pre <- list(...) distargs_pre$n <- changepoint distargs_pre[[meanparam]] <- mean1 distargs_post <- list(...) distargs_post$n <- n - changepoint distargs_post[[meanparam]] <- mean2 datavec1 <- do.call(dist, distargs_pre) datavec2 <- do.call(dist, distargs_post) c(datavec1, datavec2) }
compare_data_frame <- function(x, y, paths = c("x", "y"), opts = compare_opts()) { if (!all_atomic(x) || !all_atomic(y)) { return() } if (!same_cols(x, y)) { return() } if (nrow(x) == 0 || nrow(y) == 0) { return() } rows <- df_rows(x, y, paths = paths, tolerance = opts$tolerance) if (is.null(rows)) { return() } diff_rows(rows, paths = paths, max_diffs = opts$max_diffs) } diff_rows <- function(rows, paths = c("x", "y"), max_diffs = 10) { diffs <- ses_shortest(rows$x, rows$y) if (length(diffs) == 0) { return(new_compare()) } header <- paste0(" ", names(rows$header), cli::style_bold(rows$header)) format <- lapply(diffs, function(diff) { path_label <- paste0(paths[[1]], " vs ", paths[[2]]) lines <- line_by_line(rows$x, rows$y, diff, max_diffs = max_diffs) paste0(c(path_label, header, lines), collapse = "\n") }) new_compare(unlist(format, recursive = FALSE)) } df_rows <- function(x, y, paths = c("x", "y"), tolerance = NULL) { x <- factor_to_char(x) y <- factor_to_char(y) if (nrow(x) == nrow(y)) { is_equal <- function(x, y) { if (is_numeric(x)) { num_equal(x, y, tolerance = tolerance) } else { identical(x, y) } } same <- vapply(seq_along(x), function(j) is_equal(x[[j]], y[[j]]), logical(1)) x <- x[!same] y <- y[!same] } if (ncol(x) == 0) { return() } printed_rows(as.data.frame(x), as.data.frame(y), row.names = FALSE, paths = paths) } printed_rows <- function(x, y, ..., paths = c("x", "y")) { joint <- rbind(x, y) if (!is.data.frame(joint)) { rownames(joint) <- rep("", nrow(joint)) } n <- nrow(joint) * ncol(joint) lines <- utils::capture.output(print(joint, ..., width = 500, max = n)) row_idx <- c(seq_len(nrow(x)), seq_len(nrow(y))) row_idx <- paste0(rep(paths, c(nrow(x), nrow(y))), "[", row_idx, ", ]") names(lines) <- format(c("", row_idx), align = "right") list( header = lines[1], x = lines[2:(nrow(x) + 1)], y = lines[(nrow(x) + 2):length(lines)] ) } same_cols <- function(x, y) { if (!identical(names(x), names(y))) { return(FALSE) } for (j in seq_along(x)) { if (!is.numeric(x[[j]]) || !is.numeric(y[[j]])) { if (!identical(typeof(x[[j]]), typeof(y[[j]]))) { return(FALSE) } } if (!identical(attributes(x[[j]]), attributes(y[[j]]))) { return(FALSE) } } TRUE } factor_to_char <- function(x) { is_factor <- vapply(x, is.factor, logical(1)) x[is_factor] <- lapply(x[is_factor], as.character) x } unrowname <- function(x) { row.names(x) <- NULL x } all_atomic <- function(x) { all(vapply(x, is_atomic, logical(1))) }
make.packages.html <- function(lib.loc = .libPaths(), temp = FALSE, verbose = TRUE, docdir = R.home("doc")) { add_lib_index <- function(libs) { cat('<div align="left">\n<ul>\n', file = out) for (i in seq_along(libs)) { nm <- libs[i] if (nm == .Library) { cat('<li>Contents of the <a href=" 'standard</a> library</li>\n', sep = "", file = out) } else { cat('<li>Contents of <a href=" '</a></li>\n', sep = "", file = out) } } cat("</ul>\n</div>\n", file = out) } WINDOWS <- .Platform$OS.type == "windows" f.tg <- if (temp) { dir.create(file.path(tempdir(), ".R/doc/html"), recursive = TRUE, showWarnings = FALSE) file.path(tempdir(), ".R/doc/html/packages.html") } else file.path(docdir, "html", "packages.html") op <- file.path(tempdir(), ".R/doc/html/libPaths.rds") if (temp && file.exists(f.tg) && file.exists(op)) { if(identical(lib.loc, readRDS(op))) { dates <- file.mtime(c(f.tg, lib.loc)) if(which.max(dates) == 1L) return(TRUE) } } if (!file.create(f.tg)) { warning("cannot update HTML package index") return(FALSE) } if (verbose) { message("Making 'packages.html' ...", appendLF = FALSE, domain = NA) flush.console() } file.append(f.tg, file.path(R.home("doc"), "html", "packages-head-utf8.html")) out <- file(f.tg, open = "a") on.exit(close(out)) if(WINDOWS) { rh <- chartr("\\", "/", R.home()) drive <- substring(rh, 1L, 2L) } pkgs <- vector("list", length(lib.loc)) names(pkgs) <- lib.loc for (lib in lib.loc) { pg <- .packages(all.available = TRUE, lib.loc = lib) pkgs[[lib]] <- pg[order(toupper(pg), pg)] } if (WINDOWS) { tot <- sum(lengths(pkgs)) if(verbose) { pb <- winProgressBar("R: creating packages.html", max = tot) on.exit(close(pb), add = TRUE) } npkgs <- 0L } if (length(lib.loc) > 1L) add_lib_index(lib.loc) for (ii in seq_along(lib.loc)) { lib <- lib.loc[ii] libname <- if (identical(lib, .Library)) "the standard library" else if (WINDOWS) chartr("/", "\\", lib) else lib cat("<p><h3 id=\"lib-",ii,"\">Packages in ", libname, "</h3>\n", sep = "", file = out) lib0 <- "../../library" if (!temp) { if (WINDOWS) { if (is.na(pmatch(rh, lib))) { lib0 <- if(substring(lib, 2L, 2L) != ":") paste0(drive, lib) else lib lib0 <- paste0("file:///", URLencode(lib0)) } } else { if (lib != .Library) lib0 <- paste0("file:///", URLencode(lib)) } } pg <- pkgs[[lib]] use_alpha <- (length(pg) > 100) first <- toupper(substr(pg, 1, 1)) nm <- sort(names(table(first))) if(use_alpha) { writeLines("<p align=\"center\">", out) writeLines(paste0("<a href=\" writeLines("</p>\n", out) } cat('<p><table width="100%" summary="R Package list">\n', file = out) for (a in nm) { if(use_alpha) cat("<tr id=\"pkgs-", a, "\"> <td></td>\n", sep = "", file = out) for (i in pg[first == a]) { title <- packageDescription(i, lib.loc = lib, fields = "Title", encoding = "UTF-8") if (is.na(title)) title <- "-- Title is missing --" cat('<tr align="left" valign="top" id="lib-', i, '">\n', '<td width="25%"><a href="', lib0, '/', i, '/html/00Index.html">', i, "</a></td><td>", title, "</td></tr>\n", file = out, sep = "") if (WINDOWS) { npkgs <- npkgs + 1L if(verbose) setWinProgressBar(pb, npkgs) } } } cat("</table>\n\n", file=out) } if (length(lib.loc) > 1L) add_lib_index(lib.loc) cat("</body></html>\n", file=out) if (verbose) { message(" ", "done"); flush.console() } if (temp) saveRDS(lib.loc, op) invisible(TRUE) }
mod3 <- lm(y_data~x1_data+x2_data+x3_data+x4_data, data=name_of_the_dataframe) summary(mod3) predicted <- predict(mod3, x1_test_data, x2_test_data, x3_test_data, x4_test_data)
lslSEM <- methods::setRefClass(Class = "lslSEM", fields = list( data = "list", model = "list", structure = "list"), methods = list( input = function(raw) { "Method input() is used to input a data set for further statistical analysis. \n Argument raw is a raw data matrix that will be used for analysis." data$raw <<- as.data.frame(raw) }, specify = function(pattern, value, scale) { "Method specify() is used to specify a SEM model for fitting.\n Argument pattern is a list of pattern matrices for the six model parameter matrices in SEM. For each pattern matrix, the element can be set as 1, 0, or NA. 1 means that the corresponding parameter should be freely estimated, 0 indicates that the parameter sould be fixed, and NA makes the parameter to be estimated with penalization. These pattern matrices for the six model parameter matrices include \n (1) lambda: a P by M pattern matrix for loading matrix; \n (2) psi: a P by P pattern matrix covariance matrix of measurement errors. Its default value is diag(1, P). Note that the diagonal element of psi must be set as 1; \n (3) beta: a M by M pattern matrix for path coefficient matrix. Its default value is matrix(0, M, M); \n (4) phi: a M by M pattern matrix for covariance matrix of residuals. Its default value is diag(1, M). Note that the diagonal element of phi must be set as 1; \n (5) nu: a P by 1 pattern matrix for intercepts of observed variables. Its default value is matrix(1, P, 1);\n (6) alpha: a M by 1 pattern matrix for intercepts of latent factors. Its default value is matrix(0, M, 1).\n Argument value is a list of starting value matrices for the six model parameter matrices in SEM. These starting value matrices for the six model parameter matrices include \n (1) lambda: a P by M starting value matrix for the loading matrix. The default value for its element is (a) 1 for the freely estimated parameters and (2) 0 for the fixed or penealized parameter. \n (2) psi: a P by P starting value matrix for the covariance matrix of measurement errors. Its default value is diag(0.1, P). \n (3) beta: a M by M starting value matrix for the path coefficient matrix. Its default value is matrix(0, M, M); \n (4) phi: a M by M starting value matrix for the covariance matrix of residuals. Its default value is diag(1, M). \n (5) nu: a P by 1 starting value matrix for the intercepts of observed variables. Its default value is sample means of observed variables;\n (6) alpha: a M by 1 starting value matrix for the intercepts of latent factors. Its default value is matrix(0, M, 1).\n Argument scale is a logical indicator for specifying whether the scale of latent variable should be determined automatically. If scale = TRUE, the first freely estimated loading of each latent factor will be set as one for scale setting. The default value of scale is 1. " if (missing(pattern) | is.null(pattern$lambda)) { stop("lambda matrix in pattern is not specified") } if (is.null(pattern$psi)) { pattern$psi <- diag(1, dim(pattern$lambda)[1]) } if (!identical(pattern$psi, t(pattern$psi))) { stop("psi matrix in pattern is not symmetric") } if (is.null(pattern$beta)) { pattern$beta <- matrix(0, dim(pattern$lambda)[2], dim(pattern$lambda)[2]) } if (is.null(pattern$phi)) { pattern$phi <- matrix(1, dim(pattern$lambda)[2], dim(pattern$lambda)[2]) } if (!identical(pattern$phi, t(pattern$phi))) { stop("phi matrix in pattern is not symmetric") } if (is.null(pattern$nu)) { pattern$nu <- matrix(1, dim(pattern$lambda)[1], 1) } if (is.null(pattern$alpha)) { pattern$alpha <- matrix(0, dim(pattern$lambda)[2], 1) } if (missing(value)) { value <- list() value$lambda <- 1*(.is_one(pattern$lambda)) } if (is.null(value$lambda)) { value$lambda <- 1*(.is_one(pattern$lambda)) } if (is.null(value$psi)) { value$psi <- diag(.1, dim(pattern$lambda)[1]) } if (!identical(value$psi, t(value$psi))) { stop("psi matrix in value is not symmetric") } if (is.null(value$beta)) { value$beta <- matrix(0, dim(pattern$lambda)[2], dim(pattern$lambda)[2]) } if (is.null(value$phi)) { value$phi <- diag(1, dim(pattern$lambda)[2]) } if (!identical(value$phi, t(value$phi))) { stop("phi matrix in value is not symmetric") } if (is.null(value$nu)) { value$nu <- matrix(0, dim(pattern$lambda)[1], 1) } if (is.null(value$alpha)) { value$alpha <- matrix(0, dim(pattern$lambda)[2], 1) } if (missing(scale)) { scale <- TRUE } if (scale) { scale_idx <- apply(pattern$lambda == 1, 2, function(x) min(which(x))) pattern$lambda[cbind(scale_idx, 1:ncol(pattern$lambda))] <- 0 } model$pattern <<- pattern model$value <<- value }, learn = function(penalty, control, variable) { "Method learn() is used to calculate penalized likelihood estimates based on the inputed data and specified model.\n Argument penalty is a list for the information of penalty function and regularization parameters. Argument penalty includes three elements \n (1) type = c('l1', 'scad', 'mcp'): the penalty function to be implemented. The default value is 'l1'; \n (2) gamma = seq(0.025, .10, .025): the values of regularization parameter gamma to be considered; \n (3) delta = 2.5: the values of shape parameter delta to be considered.\n Argument control is a list for controlling the optimization process. Argument control includes two elements: \n (1) maxit = 500, the maximum number of ECM iterations; \n (2) epsilon = 10^-5, the convergence criterion of ECM algorithm. \n Argument variable is a vector of index of variable names to specify which variables in data should be used for analysis. The default value is 1:nrow(data$raw), which select all of the variables." if (missing(penalty)) { penalty <- list(type = "l1", gamma = seq(0.025, .10, .025), delta = 2.5) } else { if (is.null(penalty$type)) { penalty$type <- "l1" } if (is.null(penalty$gamma)) { penalty$gamma <- seq(0.025, .10, .025) } if (is.null(penalty$delta)) { penalty$delta <- 2.5 } } if (missing(control)) { control <- list(maxit = 500, epsilon = 10^-5) } else { if (is.null(control$maxit)) { control$maxit <- 500 } if (is.null(control$epsilon)) { control$epsilon <- 10^-5 } } if (missing(variable)) { variable <- seq(1, ncol(data$raw), 1) } structure$obs_moment$Sg <<- cov(data$raw[,variable], use = "pairwise.complete.obs") structure$obs_moment$mu <<- as.matrix(colMeans(data$raw[,variable])) structure$info$N <<- nrow(data$raw) structure$info$P <<- nrow(model$pattern$lambda) structure$info$M <<- ncol(model$pattern$lambda) theta <- .sem_theta_cal(Ldp = model$pattern$lambda, Psp = model$pattern$psi, Btp = model$pattern$beta, Php = model$pattern$phi, nup = model$pattern$nu, app = model$pattern$alpha, Ld = model$value$lambda, Ps = model$value$psi, Bt = model$value$beta, Ph = model$value$phi, nu = model$value$nu, ap = model$value$alpha) structure$info$Qall <<- length(theta) A <- length(penalty$gamma) B <- length(penalty$delta) penalty_fit <- list(type = penalty$type) theta_names <- .sem_theta_names(model$pattern$lambda, model$pattern$psi, model$pattern$beta, model$pattern$phi, model$pattern$nu, model$pattern$alpha) gm_name_all <- paste("gm=", as.character(penalty$gamma), sep="") dt_name_all <- paste("dt=", as.character(penalty$delta), sep="") structure$overall <<- array(NA, c(18, A, B), dimnames = list(c("gm", "dt", "dpl", "dml", "Q", "df", "it", "lrt", "srmr", "rmsea", "mc", "ghat", "cfi", "nnfi", "bl89", "rni", "aic", "bic"), gm_name_all, dt_name_all)) structure$individual <<- array(NA, c(structure$info$Qall, A, B), dimnames = list(theta_names, gm_name_all, dt_name_all)) for (a in A:1) { penalty_fit$gm <- penalty$gamma[a] for (b in B:1) { penalty_fit$dt <- penalty$delta[b] fit_summary <- rep(NA, 18) names(fit_summary) <- c("gm", "dt", "dpl", "dml", "Q", "df", "it", "lrt", "srmr", "rmsea", "mc", "ghat", "cfi", "nnfi", "bl89", "rni", "aic", "bic") rst_ecm <- .sem_ecm(model$pattern, model$value, penalty_fit, control, structure$info, structure$obs_moment) Sg <- rst_ecm$implied_moment$Sg mu <- rst_ecm$implied_moment$mu N <- structure$info$N P <- structure$info$P dml <- rst_ecm$dml Q <- rst_ecm$Q lrt <- N * dml df <- rst_ecm$df dml_b <- .sem_dml_cal(structure$obs_moment$Sg, structure$obs_moment$mu, diag(diag(structure$obs_moment$Sg)), structure$obs_moment$mu) df_b <- P *(P + 3)/2 - 2 * P lrt_b <- N * dml_b fit_summary["gm"] <- penalty_fit$gm fit_summary["dt"] <- penalty_fit$dt fit_summary["dpl"] <- rst_ecm$dpl fit_summary["dml"] <- rst_ecm$dml fit_summary["Q"] <- rst_ecm$Q fit_summary["df"] <- rst_ecm$df fit_summary["it"] <- rst_ecm$it fit_summary["lrt"] <- lrt fit_summary["srmr"] <- sqrt(sum(.ltri(((Sg - structure$obs_moment$Sg)^2) / tcrossprod(diag(Sg))))/(P * (P + 1) / 2)) fit_summary["rmsea"] <- sqrt(max((lrt - df) / (df * N), 0)) fit_summary["mc"] <- exp(-0.5 * (lrt - df) / N) fit_summary["ghat"] <- P / (P + 2 * (lrt - df) / N) fit_summary["cfi"] <- 1 - max(lrt - df, 0) / max(lrt- df, lrt_b - df_b, 0) fit_summary["nnfi"] <- (lrt_b / df_b - lrt / df)/(lrt_b/ df_b - 1) fit_summary["bl89"] <- (lrt_b - lrt) / (lrt_b- df) fit_summary["rni"] <- ((lrt_b - df_b) - (lrt - df))/(lrt_b - df_b) fit_summary["aic"] <- dml + (2 / N) * Q fit_summary["bic"] <- dml + (log(N) / N) * Q structure$overall[, a, b] <<- fit_summary structure$individual[, a, b] <<- rst_ecm$theta } } }, summarize = function(type, selector, object) { "Method summarize() is used to obtained a summary for the learned structure. Argument type specify which type of summary should be made. \n If type = 'overall', summarize() will give the overall model information (including goodness-of-fit indices) under best AIC and BIC models. \n If type = 'individual', summarize() will give the parameter estimates under best AIC and BIC model." if (type == "overall") { select_idx <- which(as.matrix(structure$overall["aic", , ] == min(structure$overall["aic", , ])), arr.ind = T) select_idx <- select_idx[dim(select_idx)[1], , drop = F] aic <- structure$overall[, select_idx[1], select_idx[2]] select_idx <- which(as.matrix(structure$overall["bic", , ] == min(structure$overall["bic", , ])), arr.ind = T) select_idx <- select_idx[dim(select_idx)[1], , drop = F] bic <- structure$overall[, select_idx[1], select_idx[2]] rst <- data.frame(aic, bic) colnames(rst) <- c("aic optimal", "bic optimal") return(rst) } if (type == "individual") { select_idx <- which(as.matrix(structure$overall["aic", , ] == min(structure$overall["aic", , ])), arr.ind = T) select_idx <- select_idx[dim(select_idx)[1], , drop = F] aic <- structure$individual[, select_idx[1], select_idx[2]] select_idx <- which(as.matrix(structure$overall["bic", , ] == min(structure$overall["bic", , ])), arr.ind = T) select_idx <- select_idx[dim(select_idx)[1], , drop = F] bic <- structure$individual[, select_idx[1], select_idx[2]] rst <- data.frame(aic, bic) colnames(rst) <- c("aic optimal", "bic optimal") return(rst) } }, draw = function(type, object) { "Method draw() is used to draw a plot for the learned structure. Argument type specify which type of plot should be drawn. \n If type = 'overall', draw() will give a plot for the goodness-of-fit indices across different values of gamma and delta. The argument object can be used to specify which goodness-of-fit indices should be plot. Its value can be any combination of 'dml', 'srmr', 'rmsea', 'mc', 'ghat', 'cfi', 'nnfi', 'bl89', 'rni', 'aic', and 'bic'. The default value is c('dml', 'aic', 'bic'). \n If type = 'individual', draw() will give a plot for the solution paths of parameter estimates under across different values of gamma and delta. The argument object can be used to specify parameters in which matrix should be plot. Its value can be 'lambda', 'psi', 'beta', 'phi', 'nu', and 'alpha'. The default value is 'lambda'." if (type == "overall") { if (missing(object)) { object = c("dml","aic","bic") } validation <- reshape2::melt(structure$overall[object, , , drop = F]) validation[, 2] <- as.numeric(substring(validation[, 2], 4)) validation[, 3] <- as.numeric(substring(validation[, 3], 4)) colnames(validation) <- c("criterion", "gm", "dt", "value") validation_plot <- ggplot2::ggplot(validation, ggplot2::aes(gm, value, colour = criterion)) + ggplot2::geom_line(size = 1) + ggplot2::geom_point(size = 3) + ggplot2::facet_grid(.~ dt, labeller = label_both) + ggplot2::labs(title = "Plot of Goodness-of-Fit", x = "gamma", y = "value") print(validation_plot) } if (type == "individual") { if (missing(object)) { object = "lambda" } theta_names_mat <- matrix(unlist(strsplit(row.names(structure$individual), split="[][,]")), dim(structure$individual)[1], 3, byrow=T) matrix_name_idc <- theta_names_mat[, 1] == object thetap <- .sem_theta_cal(Ldp = model$pattern$lambda, Psp = model$pattern$psi, Btp = model$pattern$beta, Php = model$pattern$phi, nup = model$pattern$nu, app = model$pattern$alpha, Ld = model$pattern$lambda, Ps = model$pattern$psi, Bt = model$pattern$beta, Ph = model$pattern$phi, nu = model$pattern$nu, ap = model$pattern$alpha) theta_names_penalized <- row.names(structure$individual)[is.na(thetap)] path <- reshape2::melt(structure$individual[matrix_name_idc, , , drop = F]) path[, 1] <- as.character(path[,1]) path[, 2] <- as.numeric(substring(path[,2],4)) path[, 3] <- as.numeric(substring(path[,3],4)) penalized <- is.element(path[, 1], theta_names_penalized) path[, 5] <- penalized colnames(path) <- c("parameter", "gm", "dt", "value", "penalized") path_plot <- ggplot2::ggplot(path, ggplot2::aes(gm, value, colour = parameter, linetype = penalized)) + ggplot2::geom_line(size = 1) + ggplot2::scale_linetype_manual(values = c("FALSE" = "solid", "TRUE" = "dashed")) + ggplot2::facet_grid(.~ dt, labeller = label_both) + ggplot2::labs(title = paste("Solution Paths of Parameters in ", object, sep = ""), x = "gamma", y = "value") print(path_plot) } } ) )
library(lingtypology) context("Tests for iso.gltc function") df <- data.frame(my_langs = c("adyg1241", "udii1243"), stringsAsFactors = FALSE) test_that("iso.gltc", { expect_equal(iso.gltc("adyg1241"), c(adyg1241 = "ady")) expect_equal(iso.gltc(c("adyg1241", "udii1243")), c(adyg1241 = "ady", udii1243 = "udi")) expect_equal(iso.gltc(df), c(my_langs1 = "ady", my_langs2 = "udi")) })
context('Epochs') suppressPackageStartupMessages(library(lubridate)) test_that('Easter Monday calculations work:', { expect_identical(easter_monday(c(1963, 2013)), yday(ymd(19630415, 20130401))) }) test_that("delta_t correct to within five second:", { expect_equal(delta_t(ymd(19730201, 20100401, 20130901, 20151201, tz = "UTC")), c(43.4724, 66.1683, 67.1458, 68.0514), tolerance = 1, scale = 1) }) test_that("Julian day number converter works:", { expect_equal(julian_day_to_gregorian(2451545), ISOdate(2000, 1, 1, hour = 0, tz = "UTC") + .5 * 24 * 60 * 60) expect_equal(julian_day_to_gregorian(2447187.5), ISOdate(1988, 1, 27, hour = 0, tz = "UTC")) }) test_that('Equinox dates are correct:', { expect_equal(equinox(c(1991:1995, 1999), season = 'mar', want_dt = TRUE), floor_date(ymd_hms(19910321030254, 19920320084902, 19930320144138, 19940320202901, 19950321021527, 19990321014653), "minute"), tolerance = 2 * 60) expect_equal(equinox(c(1993, 1997), season='sep', want_dt = TRUE), floor_date(ymd_hms(19930923002329, 19970922235649), "minute"), tolerance = 2 * 60) expect_equal(equinox(2021, season = "sep", want_dt = TRUE), ymd_hms(20210922192100), tolerance = 2 * 60) }) test_that("Moon phase dates are correct:", { expect_equal(next_moon_phase(ymd(19770215), "new", want_dt = TRUE), ymd_hms(19770218033741), tolerance = 1) expect_equal(next_moon_phase(ymd(20440101), "last", want_dt = TRUE), ymd_hms(20440121234815), tolerance = 1) expect_equal(next_moon_phase(ymd(20160801), "first", want_dt = FALSE), with_tz(ymd_hm(201608110420, tz = "Australia/Sydney"), tz = "UTC"), tolerance = 60) expect_equal(next_moon_phase(ymd(20161101), "full", want_dt = FALSE), with_tz(ymd_hm(201611150052, tz = "Australia/Sydney"), tz = "UTC"), tolerance = 60) }) test_that("Chinese NY dates are correct:", { expect_equal(lubridate::as_date(chinese_new_year(2015:2018)), as.Date(c("2015-02-19", "2016-02-08", "2017-01-28", "2018-02-16"))) })
library(h2o) h2o.init() iris.hex <- as.h2o(iris) dim(iris.hex
create_drake_spec <- function( plan, envir = parent.frame(), logger, jobs = 1, trigger = drake::trigger(), cache = NULL ) { force(envir) import_names <- names(envir) args <- list( plan = plan, envir = envir, logger = logger, jobs = jobs, cache = cache, trigger = cds_parse_trigger(trigger = trigger, envir = envir), ht_targets = ht_new(plan$target), ht_imports = ht_new(import_names), ht_globals = ht_new(c(import_names, plan$target)) ) imports <- cds_prepare_imports(args) imports_kernel <- cds_imports_kernel(args, imports) import_spec <- memo_expr( cds_analyze_imports(args, imports), args$cache, imports_kernel ) knitr_hash <- cds_get_knitr_hash(args) command_spec <- memo_expr( cds_analyze_commands(args), args$cache, args$plan, args$trigger, import_spec, imports_kernel, knitr_hash ) cds_set_knitr_files(args = args, spec = command_spec) out <- c(import_spec, command_spec) list2env(out, parent = emptyenv(), hash = TRUE) } cds_set_knitr_files <- function(args, spec) { args$logger$disk("set knitr files") knitr_files <- lightly_parallelize( X = spec, FUN = function(x) { x$deps_build$knitr_in }, jobs = args$jobs ) knitr_files <- sort(unique(as.character(unlist(knitr_files)))) args$cache$set( key = "knitr", value = knitr_files, namespace = "memoize" ) } cds_get_knitr_hash <- function(args, spec) { args$logger$disk("get knitr hash") if (!args$cache$exists(key = "knitr", namespace = "memoize")) { out <- args$cache$digest("", serialize = FALSE) return(out) } knitr_files <- args$cache$safe_get(key = "knitr", namespace = "memoize") knitr_hashes <- lightly_parallelize( X = knitr_files, FUN = static_storage_hash, jobs = args$jobs, config = args ) knitr_hashes <- as.character(unlist(knitr_hashes)) knitr_hashes <- paste0(knitr_hashes, collapse = "") args$cache$digest(knitr_hashes, serialize = FALSE) } cds_imports_kernel <- function(args, imports) { out <- lightly_parallelize( X = imports, FUN = safe_deparse_function, jobs = args$jobs ) names(out) <- names(imports) out[sort(as.character(names(out)))] } cds_prepare_imports <- function(args) { args$logger$disk("analyze environment") imports <- as.list(args$envir) cds_unload_conflicts( imports = names(imports), targets = args$plan$target, envir = args$envir, logger = args$logger ) import_names <- setdiff(names(imports), args$plan$target) imports[import_names] } cds_unload_conflicts <- function(imports, targets, envir, logger) { common <- intersect(imports, targets) if (length(common)) { logger$term("unloading", length(common), "targets from environment") } remove(list = common, envir = envir) } cds_analyze_imports <- function(args, imports) { args$logger$disk("analyze imports") names <- names(imports) out <- lightly_parallelize( X = seq_along(imports), FUN = cdl_analyze_import, jobs = args$jobs, imports = imports, names = names, args = args ) names(out) <- names out } cdl_analyze_import <- function(index, imports, names, args) { name <- names[index] spec <- list( target = name, imported = TRUE, deps_build = cds_import_dependencies( expr = imports[[index]], exclude = name, restrict = args$ht_imports ) ) as_drake_spec(spec) } cds_analyze_commands <- function(args) { args$logger$disk("analyze commands") args$plan$imported <- FALSE if ("trigger" %in% colnames(args$plan)) { args$plan$trigger <- lapply( args$plan$trigger, cds_parse_trigger, envir = args$envir_targets ) } spec <- drake_pmap(.l = args$plan, .f = list, jobs = args$jobs) names(spec) <- args$plan$target args$default_condition_deps <- cds_import_dependencies( args$trigger$condition, restrict = args$ht_globals ) args$default_change_deps <- cds_import_dependencies( args$trigger$change, restrict = args$ht_globals ) out <- lightly_parallelize( X = spec, FUN = cds_prepare_spec, jobs = args$jobs, args = args ) names(out) <- args$plan$target out } cds_prepare_spec <- function(args, spec) { target <- spec$target spec$dynamic <- as_dynamic(spec$dynamic) spec$deps_build <- cds_command_dependencies( command = spec$command, exclude = spec$target, restrict = args$ht_globals ) spec$deps_dynamic <- cds_dynamic_deps( spec$dynamic, spec$target, args ) spec$deps_dynamic_trace <- cds_dynamic_trace(spec$dynamic, args) cds_assert_trace(spec$dynamic, spec) spec$command_standardized <- cds_standardize_command(spec$command) if (inherits(spec$dynamic, "dynamic")) { dynamic_command <- cds_std_dyn_cmd(spec$dynamic) spec$command_standardized <- paste( spec$command_standardized, dynamic_command ) cds_exclude_dynamic_file_dsl(spec, field = "file_out") cds_exclude_dynamic_file_dsl(spec, field = "knitr_in") } spec$command_build <- cds_preprocess_command( spec$command, args = args ) if (is.null(spec$trigger) || all(is.na(spec$trigger))) { spec$trigger <- args$trigger spec$deps_condition <- args$default_condition_deps spec$deps_change <- args$default_change_deps } else { spec$deps_condition <- cds_import_dependencies( spec$trigger$condition, exclude = spec$target, restrict = args$ht_globals ) spec$deps_change <- cds_import_dependencies( spec$trigger$change, exclude = spec$target, restrict = args$ht_globals ) } cds_no_dynamic_triggers(spec) for (field in c("deps_build", "deps_condition", "deps_change")) { spec[[field]]$memory <- ht_filter( ht = args$ht_targets, x = spec[[field]]$globals ) } spec$deps_build$memory <- base::union( spec$deps_build$memory, spec$deps_dynamic_trace ) as_drake_spec(spec) } cds_exclude_dynamic_file_dsl <- function(spec, field) { if (length(spec$deps_build[[field]])) { stop0( field, "() in dynamic targets is illegal. Target: ", spec$target ) } } as_drake_spec <- function(spec) { class(spec) <- c("drake_spec", "drake") spec } print.drake_spec <- function(x, ...) { type <- ifelse(x$imported, "import", "target") cat("drake workflow specification of", type, x$target, "\n") utils::str(x, no.list = TRUE) } cds_no_dynamic_triggers <- function(spec) { cds_no_dynamic_triggers_impl( spec$target, spec$deps_dynamic, unlist(spec$deps_condition) ) cds_no_dynamic_triggers_impl( spec$target, spec$deps_dynamic, unlist(spec$deps_change) ) } cds_no_dynamic_triggers_impl <- function(target, deps_dynamic, deps_trigger) { common <- intersect(deps_dynamic, deps_trigger) if (!length(common)) { return() } stop0( "Dynamic grouping variables are forbidden in the condition ", "and change triggers. Found dynamic grouping variables for target ", target, ":\n", multiline_message(common) ) } cds_import_dependencies <- function( expr, exclude = character(0), restrict = NULL ) { deps <- drake_deps(expr = expr, exclude = exclude, restrict = restrict) deps$file_out <- deps$strings <- character(0) deps } cds_command_dependencies <- function( command, exclude = character(0), restrict = NULL ) { deps <- drake_deps(command, exclude = exclude, restrict = restrict) deps$strings <- character(0) deps } cds_dynamic_deps <- function(dynamic, target, args) { UseMethod("cds_dynamic_deps") } cds_dynamic_deps.dynamic <- function(dynamic, target, args) { dynamic$.trace <- NULL out <- ht_filter(args$ht_globals, all.vars(dynamic)) if (!length(out)) { stop0( "no admissible grouping variables for dynamic target ", target ) } out } cds_dynamic_deps.default <- function(dynamic, target, args) { character(0) } cds_dynamic_trace <- function(dynamic, args) { UseMethod("cds_dynamic_trace") } cds_dynamic_trace.dynamic <- function(dynamic, args) { all.vars(dynamic$.trace) } cds_dynamic_trace.default <- function(dynamic, args) { character(0) } cds_assert_trace <- function(dynamic, spec) { UseMethod("cds_assert_trace") } cds_assert_trace.group <- function(dynamic, spec) { bad <- setdiff(spec$deps_dynamic_trace, spec$deps_dynamic) if (!length(bad)) { return() } stop0( "in dynamic group(), ", "the only legal dynamic trace variable ", "is the one you select with `.by`. ", "illegal dynamic trace variables for target ", spec$target, ":\n", multiline_message(bad) ) } cds_assert_trace.dynamic <- function(dynamic, spec) { bad <- setdiff(spec$deps_dynamic_trace, spec$deps_dynamic) if (!length(bad)) { return() } stop0( "in map() and cross(), ", "all dynamic trace variables must be ", "existing grouping variables, e.g. map(x, .trace = x) ", "and not map(x, .trace = y). ", "illegal dynamic trace variables for target ", spec$target, ":\n", multiline_message(bad) ) } cds_assert_trace.default <- function(dynamic, spec) { character(0) } cds_preprocess_command <- function(command, args) { command <- as.call(c(quote(local), command)) as.call(c(quote(rlang::expr), command)) } cds_standardize_command <- function(x) { if (is.expression(x) && length(x) == 1L) { x <- x[[1]] } look_for_ignore <- "ignore" %in% all.vars(x, functions = TRUE) if (look_for_ignore) { x <- ignore_ignore(x) } attributes(x) <- NULL safe_deparse(x, backtick = TRUE) } cds_std_dyn_cmd <- function(x) { transform <- class(x) vars <- sort(all.vars(x)) by <- as.character(x$.by) paste(c(transform, vars, by, trace), collapse = " ") } cds_parse_trigger <- function(trigger, envir) { if (is.symbol(trigger)) { trigger <- safe_deparse(trigger, backtick = FALSE) } if (is.character(trigger)) { trigger <- convert_old_trigger(trigger) trigger <- parse(text = trigger) } eval(trigger, envir = envir) }
func.mean.formula<-function(formula, data = NULL,...,drop=FALSE) { tf <- terms.formula(formula) fac <- attr(tf, "term.labels") if (attr(tf, "response") > 0) response <- as.character(attr(tf, "variables")[2]) if (missing(formula) || (length(formula) != 3L)) stop("'formula' missing or incorrect") ldata<-data data<-ldata$df if (is.null(ldata$df)) stop("'df' element is missing or incorrect") if (is.vector(data)) data<-as.data.frame(data) if (is.matrix(data)) data<-as.data.frame(data) f<-ldata$df[[fac]] dat<-ldata[[response]] if (!is.factor(f)) f<-factor(f) nlev<-nlevels(f) lev<-levels(f) if (is.matrix(dat$data)) dat$data<-data.frame(dat$data) out<-split(dat$data,f,drop=drop,...) out2<-func.mean(fdata(out[[lev[1]]],dat$argvals,dat$rangeval,dat$names)) for (i in 2:nlev) out2<-c(out2,func.mean(fdata(out[[lev[i]]],dat$argvals,dat$rangeval,dat$names))) rownames(out2$data)<-lev out2 }
"vfctrSunyiu10d2"
g <- ggplot(dat, aes(x = x, y = y)) + geom_line(size = 1.5) g <- g + geom_ribbon(aes(x = ifelse(x > -1 & x < 1, x, 0), ymin = 0, ymax = dat$y), fill = "red", alpha = 1) g <- g + geom_ribbon(aes(x = ifelse(x > -2 & x < 2, x, 0), ymin = 0, ymax = dat$y), fill = "red", alpha = 0.5) g <- g + geom_ribbon(aes(x = ifelse(x > -3 & x < 3, x, 0), ymin = 0, ymax = dat$y), fill = "red", alpha = 0.35) print(g)
NULL vec_proxy.wk_wkb <- function(x, ...) { unclass(x) } vec_restore.wk_wkb <- function(x, to, ...) { crs_out <- attr(to, "crs", exact = TRUE) %||% attr(x, "crs", exact = TRUE) geodesic_out <- attr(to, "geodesic", exact = TRUE) %||% attr(x, "geodesic", exact = TRUE) attr(x, "crs") <- NULL attr(x, "geodesic") <- NULL new_wk_wkb(x, crs = crs_out, geodesic = geodesic_out) } vec_cast.wk_wkb <- function(x, to, ...) { UseMethod("vec_cast.wk_wkb") } vec_cast.wk_wkb.default <- function(x, to, ...) { vctrs::vec_default_cast(x, to) } vec_cast.wk_wkb.wk_wkb <- function(x, to, ...) { wk_crs_output(x, to) wk_is_geodesic_output(x, to) x } vec_cast.wk_wkb.wk_wkt <- function(x, to, ...) { wk_crs_output(x, to) wk_is_geodesic_output(x, to) as_wkb(x) } vec_cast.wk_wkb.wk_xy <- function(x, to, ...) { wk_translate(x, to) } vec_cast.wk_wkb.wk_xyz <- function(x, to, ...) { wk_translate(x, to) } vec_cast.wk_wkb.wk_xym <- function(x, to, ...) { wk_translate(x, to) } vec_cast.wk_wkb.wk_xyzm <- function(x, to, ...) { wk_translate(x, to) } vec_cast.wk_wkb.wk_rct <- function(x, to, ...) { wk_translate(x, to) } vec_cast.wk_wkb.wk_crc <- function(x, to, ...) { wk_crs_output(x, to) as_wkb(x) } vec_ptype2.wk_wkb <- function(x, y, ...) { UseMethod("vec_ptype2.wk_wkb", y) } vec_ptype2.wk_wkb.default <- function(x, y, ..., x_arg = "x", y_arg = "y") { vctrs::vec_default_ptype2(x, y, x_arg = x_arg, y_arg = y_arg) } vec_ptype2.wk_wkb.wk_wkb <- function(x, y, ..., x_arg = "x", y_arg = "y") { new_wk_wkb(crs = wk_crs_output(x, y), geodesic = geodesic_attr(wk_is_geodesic_output(x, y))) } vec_ptype2.wk_wkb.wk_wkt <- function(x, y, ..., x_arg = "x", y_arg = "y") { new_wk_wkt(crs = wk_crs_output(x, y), geodesic = geodesic_attr(wk_is_geodesic_output(x, y))) } vec_ptype2.wk_wkb.wk_xy <- function(x, y, ..., x_arg = "x", y_arg = "y") { new_wk_wkb(crs = wk_crs_output(x, y), geodesic = attr(x, "geodesic", exact = TRUE)) } vec_ptype2.wk_wkb.wk_xyz <- function(x, y, ..., x_arg = "x", y_arg = "y") { new_wk_wkb(crs = wk_crs_output(x, y), geodesic = attr(x, "geodesic", exact = TRUE)) } vec_ptype2.wk_wkb.wk_xym <- function(x, y, ..., x_arg = "x", y_arg = "y") { new_wk_wkb(crs = wk_crs_output(x, y), geodesic = attr(x, "geodesic", exact = TRUE)) } vec_ptype2.wk_wkb.wk_xyzm <- function(x, y, ..., x_arg = "x", y_arg = "y") { new_wk_wkb(crs = wk_crs_output(x, y), geodesic = attr(x, "geodesic", exact = TRUE)) } vec_ptype2.wk_wkb.wk_rct <- function(x, y, ..., x_arg = "x", y_arg = "y") { new_wk_wkb(crs = wk_crs_output(x, y), geodesic = geodesic_attr(wk_is_geodesic_output(x, y))) } vec_ptype2.wk_wkb.wk_crc <- function(x, y, ..., x_arg = "x", y_arg = "y") { new_wk_wkb(crs = wk_crs_output(x, y), geodesic = attr(x, "geodesic", exact = TRUE)) } vec_proxy.wk_wkt <- function(x, ...) { unclass(x) } vec_restore.wk_wkt <- function(x, to, ...) { crs_out <- attr(to, "crs", exact = TRUE) %||% attr(x, "crs", exact = TRUE) geodesic_out <- attr(to, "geodesic", exact = TRUE) %||% attr(x, "geodesic", exact = TRUE) attr(x, "crs") <- NULL attr(x, "geodesic") <- NULL new_wk_wkt(x, crs = crs_out, geodesic = geodesic_out) } vec_cast.wk_wkt <- function(x, to, ...) { UseMethod("vec_cast.wk_wkt") } vec_cast.wk_wkt.default <- function(x, to, ...) { vctrs::vec_default_cast(x, to) } vec_cast.wk_wkt.wk_wkt <- function(x, to, ...) { wk_crs_output(x, to) wk_is_geodesic_output(x, to) x } vec_cast.wk_wkt.wk_wkb <- function(x, to, ...) { wk_crs_output(x, to) wk_is_geodesic_output(x, to) as_wkt(x) } vec_cast.wk_wkt.wk_xy <- function(x, to, ...) { wk_translate(x, to) } vec_cast.wk_wkt.wk_xyz <- function(x, to, ...) { wk_translate(x, to) } vec_cast.wk_wkt.wk_xym <- function(x, to, ...) { wk_translate(x, to) } vec_cast.wk_wkt.wk_xyzm <- function(x, to, ...) { wk_translate(x, to) } vec_cast.wk_wkt.wk_rct <- function(x, to, ...) { wk_translate(x, to) } vec_cast.wk_wkt.wk_crc <- function(x, to, ...) { wk_translate(x, to) } vec_ptype2.wk_wkt <- function(x, y, ...) { UseMethod("vec_ptype2.wk_wkt", y) } vec_ptype2.wk_wkt.default <- function(x, y, ..., x_arg = "x", y_arg = "y") { vctrs::vec_default_ptype2(x, y, x_arg = x_arg, y_arg = y_arg) } vec_ptype2.wk_wkt.wk_wkt <- function(x, y, ..., x_arg = "x", y_arg = "y") { new_wk_wkt(crs = wk_crs_output(x, y), geodesic = geodesic_attr(wk_is_geodesic_output(x, y))) } vec_ptype2.wk_wkt.wk_wkb <- function(x, y, ..., x_arg = "x", y_arg = "y") { new_wk_wkt(crs = wk_crs_output(x, y), geodesic = geodesic_attr(wk_is_geodesic_output(x, y))) } vec_ptype2.wk_wkt.wk_xy <- function(x, y, ..., x_arg = "x", y_arg = "y") { new_wk_wkt(crs = wk_crs_output(x, y), geodesic = attr(x, "geodesic", exact = TRUE)) } vec_ptype2.wk_wkt.wk_xyz <- function(x, y, ..., x_arg = "x", y_arg = "y") { new_wk_wkt(crs = wk_crs_output(x, y), geodesic = attr(x, "geodesic", exact = TRUE)) } vec_ptype2.wk_wkt.wk_xym <- function(x, y, ..., x_arg = "x", y_arg = "y") { new_wk_wkt(crs = wk_crs_output(x, y), geodesic = attr(x, "geodesic", exact = TRUE)) } vec_ptype2.wk_wkt.wk_xyzm <- function(x, y, ..., x_arg = "x", y_arg = "y") { new_wk_wkt(crs = wk_crs_output(x, y), geodesic = attr(x, "geodesic", exact = TRUE)) } vec_ptype2.wk_wkt.wk_rct <- function(x, y, ..., x_arg = "x", y_arg = "y") { wk_is_geodesic_output(x, y) new_wk_wkt(crs = wk_crs_output(x, y)) } vec_ptype2.wk_wkt.wk_crc <- function(x, y, ..., x_arg = "x", y_arg = "y") { new_wk_wkt(crs = wk_crs_output(x, y), geodesic = attr(x, "geodesic", exact = TRUE)) } vec_proxy.wk_xy <- function(x, ...) { new_data_frame(unclass(x)) } vec_restore.wk_xy <- function(x, to, ...) { crs_out <- attr(to, "crs", exact = TRUE) %||% attr(x, "crs", exact = TRUE) attr(x, "crs") <- NULL attr(x, "row.names") <- NULL new_wk_xy(x, crs = crs_out) } vec_cast.wk_xy <- function(x, to, ...) { UseMethod("vec_cast.wk_xy") } vec_cast.wk_xy.default <- function(x, to, ...) { vctrs::vec_default_cast(x, to) } vec_cast.wk_xy.wk_xy <- function(x, to, ...) { wk_crs_output(x, to) x } vec_cast.wk_xy.wk_wkb <- function(x, to, ...) { wk_crs_output(x, to) as_xy(x) } vec_cast.wk_xy.wk_wkt <- function(x, to, ...) { wk_crs_output(x, to) as_xy(x) } vec_cast.wk_xy.wk_xyz <- function(x, to, ...) { wk_crs_output(x, to) vctrs::maybe_lossy_cast( as_xy(x, dims = c("x", "y")), x, to, !is.na(unclass(x)$z) ) } vec_cast.wk_xy.wk_xym <- function(x, to, ...) { wk_crs_output(x, to) vctrs::maybe_lossy_cast( as_xy(x, dims = c("x", "y")), x, to, !is.na(unclass(x)$m) ) } vec_cast.wk_xy.wk_xyzm <- function(x, to, ...) { wk_crs_output(x, to) vctrs::maybe_lossy_cast( as_xy(x, dims = c("x", "y")), x, to, !is.na(unclass(x)$z) & !is.na(unclass(x)$m) ) } vec_ptype2.wk_xy <- function(x, y, ...) { UseMethod("vec_ptype2.wk_xy", y) } vec_ptype2.wk_xy.wk_xy <- function(x, y, ..., x_arg = "x", y_arg = "y") { new_wk_xy(crs = wk_crs_output(x, y)) } vec_ptype2.wk_xy.wk_wkb <- function(x, y, ..., x_arg = "x", y_arg = "y") { new_wk_wkb(crs = wk_crs_output(x, y), geodesic = attr(y, "geodesic", exact = TRUE)) } vec_ptype2.wk_xy.wk_wkt <- function(x, y, ..., x_arg = "x", y_arg = "y") { new_wk_wkt(crs = wk_crs_output(x, y), geodesic = attr(y, "geodesic", exact = TRUE)) } vec_ptype2.wk_xy.wk_xyz <- function(x, y, ..., x_arg = "x", y_arg = "y") { new_wk_xyz(crs = wk_crs_output(x, y)) } vec_ptype2.wk_xy.wk_xym <- function(x, y, ..., x_arg = "x", y_arg = "y") { new_wk_xym(crs = wk_crs_output(x, y)) } vec_ptype2.wk_xy.wk_xyzm <- function(x, y, ..., x_arg = "x", y_arg = "y") { new_wk_xyzm(crs = wk_crs_output(x, y)) } vec_ptype2.wk_xy.wk_rct <- function(x, y, ..., x_arg = "x", y_arg = "y") { new_wk_wkb(crs = wk_crs_output(x, y)) } vec_ptype2.wk_xy.wk_crc <- function(x, y, ..., x_arg = "x", y_arg = "y") { new_wk_wkb(crs = wk_crs_output(x, y)) } vec_proxy.wk_xyz <- function(x, ...) { new_data_frame(unclass(x)) } vec_restore.wk_xyz <- function(x, to, ...) { crs_out <- attr(to, "crs", exact = TRUE) %||% attr(x, "crs", exact = TRUE) attr(x, "crs") <- NULL attr(x, "row.names") <- NULL new_wk_xyz(x, crs = crs_out) } vec_cast.wk_xyz <- function(x, to, ...) { UseMethod("vec_cast.wk_xyz") } vec_cast.wk_xyz.default <- function(x, to, ...) { vctrs::vec_default_cast(x, to) } vec_cast.wk_xyz.wk_xyz <- function(x, to, ...) { wk_crs_output(x, to) x } vec_cast.wk_xyz.wk_wkb <- function(x, to, ...) { wk_crs_output(x, to) as_xy(x, dims = c("x", "y", "z")) } vec_cast.wk_xyz.wk_wkt <- function(x, to, ...) { wk_crs_output(x, to) as_xy(x, dims = c("x", "y", "z")) } vec_cast.wk_xyz.wk_xy <- function(x, to, ...) { wk_crs_output(x, to) as_xy(x, dims = c("x", "y", "z")) } vec_cast.wk_xyz.wk_xym <- function(x, to, ...) { wk_crs_output(x, to) vctrs::maybe_lossy_cast( as_xy(x, dims = c("x", "y", "z")), x, to, !is.na(unclass(x)$m) ) } vec_cast.wk_xyz.wk_xyzm <- function(x, to, ...) { wk_crs_output(x, to) vctrs::maybe_lossy_cast( as_xy(x, dims = c("x", "y", "z")), x, to, !is.na(unclass(x)$m) ) } vec_ptype2.wk_xyz <- function(x, y, ...) { UseMethod("vec_ptype2.wk_xyz", y) } vec_ptype2.wk_xyz.wk_xyz <- function(x, y, ..., x_arg = "x", y_arg = "y") { new_wk_xyz(crs = wk_crs_output(x, y)) } vec_ptype2.wk_xyz.wk_wkb <- function(x, y, ..., x_arg = "x", y_arg = "y") { new_wk_wkb(crs = wk_crs_output(x, y), geodesic = attr(y, "geodesic", exact = TRUE)) } vec_ptype2.wk_xyz.wk_wkt <- function(x, y, ..., x_arg = "x", y_arg = "y") { new_wk_wkt(crs = wk_crs_output(x, y), geodesic = attr(y, "geodesic", exact = TRUE)) } vec_ptype2.wk_xyz.wk_xy <- function(x, y, ..., x_arg = "x", y_arg = "y") { new_wk_xyz(crs = wk_crs_output(x, y)) } vec_ptype2.wk_xyz.wk_xym <- function(x, y, ..., x_arg = "x", y_arg = "y") { new_wk_xyzm(crs = wk_crs_output(x, y)) } vec_ptype2.wk_xyz.wk_xyzm <- function(x, y, ..., x_arg = "x", y_arg = "y") { new_wk_xyzm(crs = wk_crs_output(x, y)) } vec_ptype2.wk_xyz.wk_rct <- function(x, y, ..., x_arg = "x", y_arg = "y") { new_wk_wkb(crs = wk_crs_output(x, y)) } vec_ptype2.wk_xyz.wk_crc <- function(x, y, ..., x_arg = "x", y_arg = "y") { new_wk_wkb(crs = wk_crs_output(x, y)) } vec_proxy.wk_xym <- function(x, ...) { new_data_frame(unclass(x)) } vec_restore.wk_xym <- function(x, to, ...) { crs_out <- attr(to, "crs", exact = TRUE) %||% attr(x, "crs", exact = TRUE) attr(x, "crs") <- NULL attr(x, "row.names") <- NULL new_wk_xym(x, crs = crs_out) } vec_cast.wk_xym <- function(x, to, ...) { UseMethod("vec_cast.wk_xym") } vec_cast.wk_xym.default <- function(x, to, ...) { vctrs::vec_default_cast(x, to) } vec_cast.wk_xym.wk_xym <- function(x, to, ...) { wk_crs_output(x, to) x } vec_cast.wk_xym.wk_wkb <- function(x, to, ...) { wk_crs_output(x, to) as_xy(x, dims = c("x", "y", "m")) } vec_cast.wk_xym.wk_wkt <- function(x, to, ...) { wk_crs_output(x, to) as_xy(x, dims = c("x", "y", "m")) } vec_cast.wk_xym.wk_xy <- function(x, to, ...) { wk_crs_output(x, to) as_xy(x, dims = c("x", "y", "m")) } vec_cast.wk_xym.wk_xyz <- function(x, to, ...) { wk_crs_output(x, to) vctrs::maybe_lossy_cast( as_xy(x, dims = c("x", "y", "m")), x, to, !is.na(unclass(x)$z) ) } vec_cast.wk_xym.wk_xyzm <- function(x, to, ...) { wk_crs_output(x, to) vctrs::maybe_lossy_cast( as_xy(x, dims = c("x", "y", "m")), x, to, !is.na(unclass(x)$z) ) } vec_ptype2.wk_xym <- function(x, y, ...) { UseMethod("vec_ptype2.wk_xym", y) } vec_ptype2.wk_xym.wk_xym <- function(x, y, ..., x_arg = "x", y_arg = "y") { new_wk_xym(crs = wk_crs_output(x, y)) } vec_ptype2.wk_xym.wk_wkb <- function(x, y, ..., x_arg = "x", y_arg = "y") { new_wk_wkb(crs = wk_crs_output(x, y), geodesic = attr(y, "geodesic", exact = TRUE)) } vec_ptype2.wk_xym.wk_wkt <- function(x, y, ..., x_arg = "x", y_arg = "y") { new_wk_wkt(crs = wk_crs_output(x, y), geodesic = attr(y, "geodesic", exact = TRUE)) } vec_ptype2.wk_xym.wk_xy <- function(x, y, ..., x_arg = "x", y_arg = "y") { new_wk_xym(crs = wk_crs_output(x, y)) } vec_ptype2.wk_xym.wk_xyz <- function(x, y, ..., x_arg = "x", y_arg = "y") { new_wk_xyzm(crs = wk_crs_output(x, y)) } vec_ptype2.wk_xym.wk_xyzm <- function(x, y, ..., x_arg = "x", y_arg = "y") { new_wk_xyzm(crs = wk_crs_output(x, y)) } vec_ptype2.wk_xym.wk_rct <- function(x, y, ..., x_arg = "x", y_arg = "y") { new_wk_wkb(crs = wk_crs_output(x, y)) } vec_ptype2.wk_xym.wk_crc <- function(x, y, ..., x_arg = "x", y_arg = "y") { new_wk_wkb(crs = wk_crs_output(x, y)) } vec_proxy.wk_xyzm <- function(x, ...) { new_data_frame(unclass(x)) } vec_restore.wk_xyzm <- function(x, to, ...) { crs_out <- attr(to, "crs", exact = TRUE) %||% attr(x, "crs", exact = TRUE) attr(x, "crs") <- NULL attr(x, "row.names") <- NULL new_wk_xyzm(x, crs = crs_out) } vec_cast.wk_xyzm <- function(x, to, ...) { UseMethod("vec_cast.wk_xyzm") } vec_cast.wk_xyzm.default <- function(x, to, ...) { vctrs::vec_default_cast(x, to) } vec_cast.wk_xyzm.wk_xyzm <- function(x, to, ...) { wk_crs_output(x, to) x } vec_cast.wk_xyzm.wk_wkb <- function(x, to, ...) { wk_crs_output(x, to) as_xy(x, dims = c("x", "y", "z", "m")) } vec_cast.wk_xyzm.wk_wkt <- function(x, to, ...) { wk_crs_output(x, to) as_xy(x, dims = c("x", "y", "z", "m")) } vec_cast.wk_xyzm.wk_xy <- function(x, to, ...) { wk_crs_output(x, to) as_xy(x, dims = c("x", "y", "z", "m")) } vec_cast.wk_xyzm.wk_xyz <- function(x, to, ...) { wk_crs_output(x, to) as_xy(x, dims = c("x", "y", "z", "m")) } vec_cast.wk_xyzm.wk_xym <- function(x, to, ...) { wk_crs_output(x, to) as_xy(x, dims = c("x", "y", "z", "m")) } vec_ptype2.wk_xyzm <- function(x, y, ...) { UseMethod("vec_ptype2.wk_xyzm", y) } vec_ptype2.wk_xyzm.wk_xyzm <- function(x, y, ..., x_arg = "x", y_arg = "y") { new_wk_xyzm(crs = wk_crs_output(x, y)) } vec_ptype2.wk_xyzm.wk_wkb <- function(x, y, ..., x_arg = "x", y_arg = "y") { new_wk_wkb(crs = wk_crs_output(x, y), geodesic = attr(y, "geodesic", exact = TRUE)) } vec_ptype2.wk_xyzm.wk_wkt <- function(x, y, ..., x_arg = "x", y_arg = "y") { new_wk_wkt(crs = wk_crs_output(x, y), geodesic = attr(y, "geodesic", exact = TRUE)) } vec_ptype2.wk_xyzm.wk_xy <- function(x, y, ..., x_arg = "x", y_arg = "y") { new_wk_xyzm(crs = wk_crs_output(x, y)) } vec_ptype2.wk_xyzm.wk_xyz <- function(x, y, ..., x_arg = "x", y_arg = "y") { new_wk_xyzm(crs = wk_crs_output(x, y)) } vec_ptype2.wk_xyzm.wk_xym <- function(x, y, ..., x_arg = "x", y_arg = "y") { new_wk_xyzm(crs = wk_crs_output(x, y)) } vec_ptype2.wk_xyzm.wk_rct <- function(x, y, ..., x_arg = "x", y_arg = "y") { new_wk_wkb(crs = wk_crs_output(x, y)) } vec_ptype2.wk_xyzm.wk_crc <- function(x, y, ..., x_arg = "x", y_arg = "y") { new_wk_wkb(crs = wk_crs_output(x, y)) } vec_proxy.wk_rct <- function(x, ...) { new_data_frame(unclass(x)) } vec_restore.wk_rct <- function(x, to, ...) { crs_out <- attr(to, "crs", exact = TRUE) %||% attr(x, "crs", exact = TRUE) attr(x, "crs") <- NULL attr(x, "row.names") <- NULL new_wk_rct(x, crs = crs_out) } vec_cast.wk_rct <- function(x, to, ...) { UseMethod("vec_cast.wk_rct") } vec_cast.wk_rct.default <- function(x, to, ...) { vctrs::vec_default_cast(x, to) } vec_ptype2.wk_rct <- function(x, y, ...) { UseMethod("vec_ptype2.wk_rct", y) } vec_ptype2.wk_rct.wk_rct <- function(x, y, ..., x_arg = "x", y_arg = "y") { new_wk_rct(crs = wk_crs_output(x, y)) } vec_ptype2.wk_rct.wk_wkb <- function(x, y, ..., x_arg = "x", y_arg = "y") { new_wk_wkb(crs = wk_crs_output(x, y)) } vec_ptype2.wk_rct.wk_wkt <- function(x, y, ..., x_arg = "x", y_arg = "y") { new_wk_wkt(crs = wk_crs_output(x, y)) } vec_ptype2.wk_rct.wk_xy <- function(x, y, ..., x_arg = "x", y_arg = "y") { new_wk_wkb(crs = wk_crs_output(x, y)) } vec_ptype2.wk_rct.wk_xyz <- function(x, y, ..., x_arg = "x", y_arg = "y") { new_wk_wkb(crs = wk_crs_output(x, y)) } vec_ptype2.wk_rct.wk_xym <- function(x, y, ..., x_arg = "x", y_arg = "y") { new_wk_wkb(crs = wk_crs_output(x, y)) } vec_ptype2.wk_rct.wk_xyzm <- function(x, y, ..., x_arg = "x", y_arg = "y") { new_wk_wkb(crs = wk_crs_output(x, y)) } vec_ptype2.wk_rct.wk_crc <- function(x, y, ..., x_arg = "x", y_arg = "y") { new_wk_wkb(crs = wk_crs_output(x, y)) } vec_proxy.wk_crc <- function(x, ...) { new_data_frame(unclass(x)) } vec_restore.wk_crc <- function(x, to, ...) { crs_out <- attr(to, "crs", exact = TRUE) %||% attr(x, "crs", exact = TRUE) attr(x, "crs") <- NULL attr(x, "row.names") <- NULL new_wk_crc(x, crs = crs_out) } vec_cast.wk_crc <- function(x, to, ...) { UseMethod("vec_cast.wk_crc") } vec_cast.wk_crc.default <- function(x, to, ...) { vctrs::vec_default_cast(x, to) } vec_ptype2.wk_crc <- function(x, y, ...) { UseMethod("vec_ptype2.wk_crc", y) } vec_ptype2.wk_crc.wk_crc <- function(x, y, ..., x_arg = "x", y_arg = "y") { new_wk_crc(crs = wk_crs_output(x, y)) } vec_ptype2.wk_crc.wk_wkb <- function(x, y, ..., x_arg = "x", y_arg = "y") { new_wk_wkb(crs = wk_crs_output(x, y), geodesic = attr(y, "geodesic", exact = TRUE)) } vec_ptype2.wk_crc.wk_wkt <- function(x, y, ..., x_arg = "x", y_arg = "y") { new_wk_wkt(crs = wk_crs_output(x, y), geodesic = attr(y, "geodesic", exact = TRUE)) } vec_ptype2.wk_crc.wk_xy <- function(x, y, ..., x_arg = "x", y_arg = "y") { new_wk_wkb(crs = wk_crs_output(x, y)) } vec_ptype2.wk_crc.wk_xyz <- function(x, y, ..., x_arg = "x", y_arg = "y") { new_wk_wkb(crs = wk_crs_output(x, y)) } vec_ptype2.wk_crc.wk_xym <- function(x, y, ..., x_arg = "x", y_arg = "y") { new_wk_wkb(crs = wk_crs_output(x, y)) } vec_ptype2.wk_crc.wk_xyzm <- function(x, y, ..., x_arg = "x", y_arg = "y") { new_wk_wkb(crs = wk_crs_output(x, y)) }
"ada.default" <- function(x,y,test.x,test.y=NULL,loss=c("exponential","logistic"), type=c("discrete","real","gentle"),iter=50, nu=0.1, bag.frac=0.5, model.coef=TRUE,bag.shift=FALSE,max.iter=20,delta=10^(-10),verbose=FALSE, ...,na.action=na.rpart){ cl<-match.call(expand.dots=TRUE) cl[[1]]<-as.name("ada") type = match.arg(type) if(missing(type)){ type="discrete" } if(missing(loss)) loss="exponential" loss=tolower(loss) if(loss=="e"|loss=="ada"){ loss="exponential" } if(loss=="l"|loss=="l2"){ loss="logistic" } if(missing(y) | missing(x)){ stop("This procedure requires a response and a set of variables") } lev=levels(as.factor(y)) if(length(lev)!=2) stop("Currently this procedure can not directly handle > 2 class response\n") x=as.data.frame(x) test.dat=FALSE if(!is.null(test.y)){ tlev=NULL if(!missing(test.x)){ tlev=levels(as.factor(test.y)) test.x=as.data.frame(test.x) test.dat=TRUE } if(length(tlev)<1) warning("test.x must be the testing data and the response must have 2 levels") }else{ test.x=NULL } if(length(lev)>2){ stop(paste("Error: At this time ",cl[[3]]," must have 2 levels",sep="")) } extraArgs=list(...) if (length(extraArgs)) { arg <- names(formals(rpart)) indx <- match(names(extraArgs), arg, nomatch = 0) if (any(indx == 0)) stop(paste("Error: Argument", names(extraArgs)[indx == 0], "not matched")) } ny<-c(-1,1)[as.numeric(as.factor(y))] if(test.dat) test.y<-c(-1,1)[as.numeric(as.factor(test.y))] method="class" if(type=="discrete"){ predict.type<-function(f,dat){ p <- predict(f,newdata=dat,type="class") a=as.numeric(levels(p))[p] a } } if(type=="real"){ predict.type<-function(f,dat){ a=predict(f,newdata=dat,type="prob")[,2] ind<-a==1|(1-a)==1 if(length(ind)>1){ a[ind]=(1-a[ind])*0.0001+a[ind]*.9999 } f=0.5*log(a/(1-a)) if(sum(is.nan(f))>0) f[is.nan(f)]=0.51 f } } if(type=="gentle"){ predict.type<-function(f,dat){ predict(f,newdata=dat) } method="anova" } wfun<-function(yf,f){ exp(-yf*f) } if(loss=="logistic"){ wfun<-function(yf,f){ a=exp(-yf*f) a/(1+a) } } coefs=function(wts,eta,yf,alp){ 1 } if(model.coef){ if(loss=="exponential"){ if(type=="discrete"){ coefs=function(wts,eta,yf,alp){ alp } }else{ coefs=function(wts,eta,yf,alp){ alpst=alp for(i in 1:max.iter){ alp0=alp pval=wts*exp(-yf*eta*alp) m11<-sum(eta*pval*eta) m12<-sum(yf*pval*eta) if(m11==0){ alp=alpst break } alp=alp+m12/m11 a1=(alp-alp0)^2 if(a1<delta){ break } } if(verbose) cat("FINAL: iter=",i," rate=",a1,"\n") alp } } }else{ coefs=function(wts,eta,yf,alp){ alpst=alp for(i in 1:max.iter){ alp0=alp pval=wts*exp(-yf*eta*alp) pval=1-1/(1+pval) m11<-sum(eta*pval*eta) m12<-sum(yf*pval*eta) if(m11==0){ alp=alpst break } alp=alp+m12/m11 a1=(alp-alp0)^2 if(a1<delta){ break } alp=alp+m12/m11 } if(verbose) cat("FINAL: iter=",i," rate=",a1,"\n") 2*alp } } } lossObj=list(coefs=coefs,wfun=wfun,predict.type=predict.type,method=method,type=type,loss=loss,shift=bag.shift) result =ada.machine(x,ny,test.x,test.y,iter,nu,bag.frac,lossObj,oldObj=NULL,na.action=na.action,...) g=as.factor(lev[as.numeric(as.factor(sign(result$F[[1]])))]) tab=table(as.factor(y),g,dnn=c("True value","Final Prediction")) nm<-1:(dim(x)[2]) if(is.data.frame(x)){ nm=names(x) } obj=structure(list(model=result,fit=g,call=cl,confusion=tab,iter=iter, actual=as.vector(y),nu=nu,dim=dim(x),names=nm,bag.frac=bag.frac,na.action=na.action),class="ada") obj }
library(hamcrest) expected <- c(0x1.8f499fd742293p+4 + -0x1.5d7edc8da68ddp-1i, -0x1.55118c572f6bbp+5 + 0x1.4eab78b8b8a4fp-1i, 0x1.5fb798bd45ed3p+5 + -0x1.3f8387bebbd59p-1i, -0x1.1fd142e6b78f5p+5 + 0x1.300adddb3cac4p-1i, 0x1.1778de73a622dp+5 + -0x1.204563ae96192p-1i, -0x1.ad45adfaf52f8p+5 + 0x1.10371541249f6p-1i, 0x1.bb9048b80c7c8p+5 + -0x1.ffc8020325b0bp-2i, -0x1.598767541db83p+5 + 0x1.dea08d7cfee79p-2i, 0x1.edfa916820387p+4 + -0x1.bd002d377fa74p-2i, -0x1.b28bc5054adcfp+4 + 0x1.9aef600704577p-2i, 0x1.1d40a08dd16e6p+5 + -0x1.7876c127275bcp-2i, -0x1.c544a62abd8e6p+5 + 0x1.559f060e20d65p-2i, 0x1.4790466501fa6p+5 + -0x1.3270fc39854e7p-2i, -0x1.79c74d2df2cf8p+5 + 0x1.0ef586f4f301ep-2i, 0x1.6e5cf8cf66022p+5 + -0x1.d66b3a367901cp-3i, -0x1.96d6a05152035p+5 + 0x1.8e748da54454fp-3i, 0x1.590b6407fbbcp+4 + -0x1.461936895b979p-3i, -0x1.c3cba3e0e5722p+4 + 0x1.fad6f949097e8p-4i, 0x1.4c510bd1ab7f9p+4 + -0x1.68fb7911d7606p-4i, -0x1.74d5097a3f629p+5 + 0x1.ad898bd650cc2p-5i, 0x1.1046fd5cbf06bp+5 + -0x1.115f4175a0c98p-6i, -0x1.15ffce72e9309p+5 + -0x1.3899a566cbf2p-6i, 0x1.4f5b9c91cd4a9p+5 + 0x1.c121c93f79c7p-5i, -0x1.25882e4f07496p+5 + -0x1.72c2a3d73ea48p-4i, 0x1.706ea7039dfdfp+5 + 0x1.024b5bdc1086p-3i, -0x1.1daf7667b7d02p+4 + -0x1.4af424523becp-3i, 0x1.0c2d1bd3a73bap+5 + 0x1.93494ffba868ap-3i, -0x1.80c41a19b3bf9p+5 + -0x1.db3898a598a0ep-3i, 0x1.5f98a73e22d05p+5 + 0x1.1157e8ed792b3p-2i, -0x1.6fe70f12c1016p+5 + -0x1.34ce76bdd26adp-2i, 0x1.427beb7cff1e2p+5 + 0x1.57f7002633bfbp-2i, -0x1.1c123698e3eccp+5 + -0x1.7ac8a33ed20c1p-2i, 0x1.730f4faa5aab7p+4 + 0x1.9d3a94143789bp-2i, -0x1.9980825a7028ap+4 + -0x1.bf441ee033184p-2i, 0x1.1b5cd31e92366p+5 + 0x1.e0dcaa3cabcaep-2i, -0x1.119f16d92558ep+5 + -0x1.00fddca7e592cp-1i, 0x1.4aa2017a7dabp+5 + 0x1.114c76f878341p-1i, -0x1.99771927ff842p+5 + -0x1.21560562f18f2p-1i, 0x1.87ee8eb038d7ap+4 + 0x1.31167aabde145p-1i, -0x1.62aa6e7d01e84p+4 + -0x1.4089dc0f7ecedp-1i, 0x1.14bafd8e5b062p+6 + 0x1.4fac42432b564p-1i, -0x1.7cb60696fae02p+5 + -0x1.5e79da71c7e2cp-1i, 0x1.d99d798154782p+5 + 0x1.6ceee7331095dp-1i, -0x1.01e6035e8025dp+5 + -0x1.7b07c17d7acddp-1i, 0x1.d5b80c731e8d1p+4 + 0x1.88c0d9926fae9p-1i, -0x1.0e154e85317fep+5 + -0x1.9616b7e4a44bbp-1i, 0x1.db41ebc6da956p+4 + 0x1.a305fdf85507ap-1i, -0x1.eaa3198085f6dp+4 + -0x1.af8b673d2ba4cp-1i, 0x1.46785c1b5fc7ep+4 + 0x1.bba3c9e199122p-1i, -0x1.0dde62d534a36p+5 + -0x1.c74c179f6d31bp-1i, 0x1.184afa7cf2e41p+5 + 0x1.d2815e817971fp-1i, -0x1.3d040eca83c5dp+5 + -0x1.dd40c9a20bbe4p-1i, 0x1.3c91244be3571p+5 + 0x1.e787a1e21225p-1i, -0x1.04abbfae1f63ap+5 + -0x1.f1534e98b886ap-1i, 0x1.61d0a73a9086ap+4 + 0x1.faa1563b542cfp-1i, -0x1.5ff3107c2b3c4p+5 + -0x1.01b7af7eb978ep+0i, 0x1.0beeefccef25ep+6 + 0x1.05dd97b47280ep+0i, -0x1.2958075e4926ap+5 + -0x1.09c15776cdd0fp+0i, 0x1.ea5d501c6d84dp+3 + 0x1.0d61f3349bf25p+0i, -0x1.012131f110a69p+5 + -0x1.10be805313b9bp+0i, 0x1.5ae18f19e62bep+5 + 0x1.13d62569179e6p+0i, -0x1.7e0296f3d6722p+5 + -0x1.16a81a7622f2ap+0i, 0x1.df027930f5d27p+4 + 0x1.1933a914d147ep+0i, -0x1.d97e454aeb7ebp+4 + -0x1.1b782ca8f31e4p+0i, 0x1.c66d9bca85524p+5 + 0x1.1d7512892432dp+0i, -0x1.cac7da8350f68p+4 + -0x1.1f29da23d90f3p+0i, 0x1.a16cb46c3d7eep+4 + 0x1.2096151fda3f8p+0i, -0x1.b0b6761b2db88p+5 + -0x1.21b96778255b3p+0i, 0x1.78192e572eaap+5 + 0x1.229387932c69ep+0i, -0x1.1127e28b22e27p+5 + -0x1.23243e556e124p+0i, 0x1.a13b51b184cccp+4 + 0x1.236b672f61baap+0i, -0x1.c0e6c6a70d06ap+5 + -0x1.2368f026b419fp+0i, 0x1.bdab5fdc6da5cp+5 + 0x1.231cd9dad204ap+0i, -0x1.1f0dcf7c3b115p+5 + -0x1.22873784c021bp+0i, 0x1.1f316ea5ed274p+5 + 0x1.21a82ef23f9a7p+0i, -0x1.353a99bd6de2dp+5 + -0x1.207ff87c41354p+0i, 0x1.32067c81e8aaep+5 + 0x1.1f0edef8a8e2dp+0i, -0x1.630259d373063p+5 + -0x1.1d553fa765c75p+0i, 0x1.ed4c8b8db8631p+4 + 0x1.1b538a1ae3228p+0i, -0x1.5887233957914p+5 + -0x1.190a401bd847ap+0i, 0x1.66080a26be408p+5 + 0x1.1679f5887eb32p+0i, -0x1.668c25582e01ep+4 + -0x1.13a3502f36815p+0i, 0x1.08ebf6be62dcap+5 + 0x1.108707a4a2b4ap+0i, -0x1.e0556d4fe7afp+2 + -0x1.0d25e51547fbap+0i, 0x1.48630a2d5f4d4p+5 + 0x1.0980c312b97b1p+0i, -0x1.db26322fc8be9p+4 + -0x1.05988d5c60b9p+0i, 0x1.eab90efb37687p+3 + 0x1.016e40a3ee38ap+0i, -0x1.3afcfae6b1a47p+5 + -0x1.fa05d49b04b2bp-1i, 0x1.3da7a7730c12ap+5 + 0x1.f0af50573c2a1p-1i, -0x1.d0523a93f05b6p+4 + -0x1.e6db506dda54p-1i, 0x1.40ae831c0911p+5 + 0x1.dc8c5083f78fp-1i, -0x1.7de70501e30ep+5 + -0x1.d1c4eb51d5dfcp-1i, 0x1.be7c0a272fb3bp+4 + 0x1.c687d9fa70518p-1i, -0x1.022a43b6ec09ep+5 + -0x1.bad7f35b5ac1p-1i, 0x1.cbcd811f9af7fp+5 + 0x1.aeb82b551f1c6p-1i, -0x1.9f1809af5d4aap+4 + -0x1.a22b920c46199p-1i, 0x1.6f791f39ae182p+5 + 0x1.953553233bd32p-1i, -0x1.15496f9b1f283p+5 + -0x1.87d8b4ed42a59p-1i, 0x1.414dee4a8722ap+5 + 0x1.7a19179aa75f5p-1i, -0x1.06ba7bc48f174p+5 + -0x1.6bf9f45e6cee1p-1i, 0x1.ae2f9e39f18f9p+4 + 0x1.5d7edc8da688fp-1i, -0x1.0e495d10b8c01p+5 + -0x1.4eab78b8b8a3dp-1i, 0x1.47c18a65534cdp+5 + 0x1.3f8387bebbd6cp-1i, -0x1.a04d8321ecccep+4 + -0x1.300adddb3cb2ep-1i, 0x1.8ecbdee25849cp+4 + 0x1.204563ae961afp-1i, -0x1.d53902b8eb3e6p+5 + -0x1.1037154124a4dp-1i, 0x1.b7044550833ap+5 + 0x1.ffc8020325b92p-2i, -0x1.a1da219dd6d5ap+5 + -0x1.dea08d7cfeee9p-2i, 0x1.48b23c7f1e87bp+5 + 0x1.bd002d377f9f3p-2i, -0x1.f36f5507e6f81p+4 + -0x1.9aef6007043b2p-2i, 0x1.0b5d8cc21d805p+4 + 0x1.7876c12727496p-2i, -0x1.51b71df0cf0c9p+3 + -0x1.559f060e20b5cp-2i, 0x1.46bf1bbbb379p+4 + 0x1.3270fc398527cp-2i, -0x1.3f37f0cffcf6p+5 + -0x1.0ef586f4f2d97p-2i, 0x1.1a0ba7fe23087p+5 + 0x1.d66b3a3678984p-3i, -0x1.f84aa4978629p+4 + -0x1.8e748da5442d8p-3i, 0x1.e2be3a4d835dp+4 + 0x1.461936895b7fp-3i, -0x1.297700495f909p+5 + -0x1.fad6f94909248p-4i, 0x1.dc8ddeb05b378p+5 + 0x1.68fb7911d729cp-4i, -0x1.cb64e413abb6p+5 + -0x1.ad898bd6500dp-5i, 0x1.1e93b9f28e4fep+5 + 0x1.115f4175a1dp-6i, -0x1.ae1467092df77p+5 + 0x1.3899a566cb4p-6i, 0x1.8fe3861b117cep+5 + -0x1.c121c93f7999p-5i, -0x1.51ba9f19ee10ep+5 + 0x1.72c2a3d73ec74p-4i, 0x1.bd5c7da6cafb8p+5 + -0x1.024b5bdc10ca8p-3i, -0x1.1cdcd4e7c4421p+5 + 0x1.4af424523c0acp-3i, 0x1.3f51afaaec09ap+5 + -0x1.93494ffba8912p-3i, -0x1.f2412bbde414ap+4 + 0x1.db3898a598decp-3i, 0x1.5aece1ad29d7ap+5 + -0x1.1157e8ed79482p-2i, -0x1.f3a1e9d207dd4p+4 + 0x1.34ce76bdd2a3bp-2i, 0x1.1505dab5fb488p+5 + -0x1.57f7002633dbdp-2i, -0x1.9c816f4fe7568p+5 + 0x1.7ac8a33ed2214p-2i, 0x1.c8620a699cd73p+4 + -0x1.9d3a9414379bfp-2i, -0x1.a21b521474bc4p+5 + 0x1.bf441ee033307p-2i, 0x1.ce6b00822127p+1 + -0x1.e0dcaa3cabdfp-2i, -0x1.4975df870fbfcp+4 + 0x1.00fddca7e592dp-1i, 0x1.6ab00fa40a65ep+5 + -0x1.114c76f8782a2p-1i, -0x1.f8237f116a49ap+4 + 0x1.21560562f187bp-1i, 0x1.f3c56584fafccp+4 + -0x1.31167aabde10dp-1i, -0x1.301df2cd1c5eap+5 + 0x1.4089dc0f7ed63p-1i, 0x1.3f0fc8ce1f368p+5 + -0x1.4fac42432b537p-1i, -0x1.9faa14e2ece31p+4 + 0x1.5e79da71c7e57p-1i, 0x1.2a0c366484627p+5 + -0x1.6ceee733109c4p-1i, -0x1.b4539489e7059p+5 + 0x1.7b07c17d7adaep-1i, 0x1.5a4efc982fa28p+5 + -0x1.88c0d9926fc2fp-1i, -0x1.a1c5aedcb77d4p+4 + 0x1.9616b7e4a45c3p-1i, 0x1.2931f78007158p+5 + -0x1.a305fdf855163p-1i, -0x1.1678d12fd6e2p+5 + 0x1.af8b673d2bb98p-1i, 0x1.f2e0b132cb4eap+4 + -0x1.bba3c9e199222p-1i, -0x1.b413962a9d5b3p+4 + 0x1.c74c179f6d44fp-1i, 0x1.2e0961f851802p+5 + -0x1.d2815e8179769p-1i, -0x1.5eeeb82cbec6p+4 + 0x1.dd40c9a20bbf4p-1i, 0x1.237d398e648a4p+4 + -0x1.e787a1e2121d2p-1i, -0x1.90238a8ba1eeep+5 + 0x1.f1534e98b880ep-1i, 0x1.e1227bc206111p+5 + -0x1.faa1563b54319p-1i, -0x1.3dad929c5ef5ap+5 + 0x1.01b7af7eb9753p+0i, 0x1.edee9a6248444p+4 + -0x1.05dd97b4727f2p+0i, -0x1.2e782454f71afp+5 + 0x1.09c15776cdcfap+0i, 0x1.43143b628a8fep+5 + -0x1.0d61f3349bf54p+0i, -0x1.29b7589ed9decp+5 + 0x1.10be805313c2cp+0i, 0x1.20e9335ae55c8p+5 + -0x1.13d6256917a47p+0i, -0x1.493d5ed59f1f6p+5 + 0x1.16a81a7622f82p+0i, 0x1.8f97f95faeb6ap+5 + -0x1.1933a914d14fdp+0i, -0x1.6b7f54a10df1dp+5 + 0x1.1b782ca8f3296p+0i, 0x1.2fb464cb94ab6p+5 + -0x1.1d75128924426p+0i, -0x1.fda3b02b80054p+4 + 0x1.1f29da23d913cp+0i, 0x1.696b3f3c7f8e7p+5 + -0x1.2096151fda441p+0i, -0x1.0171c0d5009dp+5 + 0x1.21b96778255dap+0i, 0x1.4c446f629153ep+5 + -0x1.229387932c6cfp+0i, -0x1.bf7c265647f74p+4 + 0x1.23243e556e158p+0i, 0x1.edb8e76df366bp+4 + -0x1.236b672f61b88p+0i, -0x1.b870358bd5a12p+4 + 0x1.2368f026b417cp+0i, 0x1.81487df3a66d6p+4 + -0x1.231cd9dad206ep+0i, -0x1.634491e420798p+4 + 0x1.22873784c0215p+0i, 0x1.78bafd472b75ap+4 + -0x1.21a82ef23f9e1p+0i, -0x1.a117655c55befp+4 + 0x1.207ff87c4136ap+0i, 0x1.3039a9d8dd05cp+5 + -0x1.1f0edef8a8e86p+0i, -0x1.748c71339b49p+5 + 0x1.1d553fa765ce5p+0i, 0x1.0431ad3c28461p+5 + -0x1.1b538a1ae32bdp+0i, -0x1.7e40b610a8be9p+5 + 0x1.190a401bd8535p+0i, 0x1.f1bc00c3df3a1p+4 + -0x1.1679f5887ebb8p+0i, -0x1.75330b791482cp+4 + 0x1.13a3502f3687p+0i, 0x1.019f4f15c2cf1p+4 + -0x1.108707a4a2ba8p+0i, -0x1.c613441ef0b62p+3 + 0x1.0d25e51547fdep+0i, 0x1.c679c1955eef4p+4 + -0x1.0980c312b982fp+0i, -0x1.4833ce2ed3c6cp+5 + 0x1.05988d5c60b6fp+0i, 0x1.573b3ae43a791p+5 + -0x1.016e40a3ee346p+0i, -0x1.68f8b93402d86p+5 + 0x1.fa05d49b04ab9p-1i, 0x1.1572c1b691d54p+5 + -0x1.f0af50573c298p-1i, -0x1.a2b7a46261403p+4 + 0x1.e6db506dda5d8p-1i, 0x1.1d234f0020e6fp+5 + -0x1.dc8c5083f78dfp-1i, -0x1.fa2ccfa7f554ap+5 + 0x1.d1c4eb51d5db9p-1i, 0x1.8ccc434c53e7p+5 + -0x1.c687d9fa70568p-1i, -0x1.6cc5787e9aacfp+4 + 0x1.bad7f35b5ad1bp-1i, 0x1.a234dbf3326c2p+5 + -0x1.aeb82b551f39ap-1i, -0x1.6cef4b7082f73p+5 + 0x1.a22b920c46297p-1i, 0x1.ef3d8cf9a1e28p+4 + -0x1.953553233be26p-1i, -0x1.01935fa82b453p+5 + 0x1.87d8b4ed42b3cp-1i, 0x1.2cafdc3e1f58p+5 + -0x1.7a19179aa76b9p-1i, -0x1.8f0fd056789eep+5 + 0x1.6bf9f45e6d039p-1i ) assertThat(stats:::fft(inverse=TRUE,z=c(0+0i, -0.396561834320232-0.024372748716788i, -0.28432164502396+0.339319792587066i, -0.620594718922276-0.10649969455841i, 0.108705040960789+0.458149855844331i, 0.40638105127794+0.012897726771608i, 0.135564164394107+0.370351089335846i, 0.251373028797265-0.211101842796047i, 0.045156958424782+0.57337159456751i, -0.526656788780843+0.182831395481868i, 0.38661610155107-0.650816674856556i, -0.31398053586883-0.619198005177907i, -0.673022632317758+0.134918848739305i, -0.296436568514828-0.363903182890176i, -0.14596849686517+1.30159362634795i, -0.201989300142253-0.286464878056107i, 0.02878744633059-0.0194974416715989i, -0.186104626747335+0.278215987589357i, -0.795575712150335-0.154491865741878i, 0.879334692220646-0.166111132469017i, -0.646755749674721-0.437998250950442i, -0.892631521629333-0.315083904416331i, 0.240501548686706-0.374813279343272i, -0.47436267466043+0.212951213125411i, 0.383719402999875+0.39616100299909i, 0.786991706080069-0.2690076172408i, -0.300603988130697-0.412506420747302i, -0.192549991675432+0.249628486498254i, -0.198642836540144-0.506659373825325i, 0.478335618484215+0.29968168427157i, -0.41103148524016-1.03263543246051i, 0.639363332355193+0.07411893759564i, 0.240065693912277-0.199120174781489i, -0.615100323552481+0.15986935775391i, 0.710961269166329+0.10554140765429i, -0.059751991180992+0.360756275049991i, 0.166147379823367-0.696574895115799i, -0.66765074476524+0.397481919164031i, -0.577993418266634+0.651858573525498i, -0.411436421619755-0.078475189688077i, 0.238499540639731+0.543068154200646i, 0.301915344669532-0.028769607006748i, -1.54714406297586+0.26060959944474i, -0.023832187436743-0.405969047495457i, -0.182619528958946+0.164805837091805i, -0.951314145779893+0.509190538654523i, -0.980920021111176-0.107734813096732i, 1.30846884951779-0.96821553381075i, -1.0618488903508-0.78724546659495i, -0.400603867794963+0.379556963059384i, 0.28117458347093-0.622739223198561i, -0.49796900732028-1.50589889103862i, -0.697664083594947+0.215087388589197i, 0.395075318164222-0.382802882532146i, -0.905616409631566+0.580670630225823i, -0.627272339383443+0.148462932321139i, 0.784560002336236+0.086690829191364i, 0.810629187591171+0.147199772565962i, 0.379140859534258-0.359789344124069i, -0.346506144636815+0.860727537282235i, 0.079936869956405+0.679281358826091i, 1.27626558733918-0.25330199654913i, -0.176436521512317+0.13770284742425i, -0.811034187103375+0.474582228678482i, 0.08895041760163+0.706474600674585i, 0.51300435483445-0.531648817395907i, 0.021784857581428+0.966710280703996i, -0.453208823121029-0.837082852692895i, 0.401401778808807-0.888143393084041i, -0.546136171243711-0.096607724166328i, 0.548445762636905-0.041018242908347i, 0.623073104284608+0.016921227165896i, 1.12789007401103-0.9150144873193i, 0.08449073290851-1.02166609097454i, 0.547339284992691-0.336889819051726i, -0.122833454690072+0.854659649355527i, -1.08317093273628-0.23036104725795i, -0.494782073526916+0.633965520491397i, -0.842318244665128-0.364163119422319i, -0.211720451852483+0.699364394495562i, -0.178348938556155-0.20819645511782i, 0.31338397456145-0.070005564582076i, 0.099274131040962-0.720117872696125i, 0.86566540189477+0.770837403863086i, -0.65601911618425+1.42426818279974i, 1.00637929936948+0.02247486200823i, -0.443756894757003+0.203591444202617i, -0.232480240910631-0.852823935033055i, -1.55043980543671+0.58712726232882i, 0.094019483325701-0.509699071248611i, 0.528345251825436+0.1934551151723i, -0.92671244183002+0.4654172825118i, 0.079701505394056-0.671928588981395i, -0.928504558018547+0.595035492436651i, 0.687600152134093-0.686832833249492i, 1.02817865022983-0.34504589703951i, 0.256026925938355+0.78597632767588i, 0.780553609215519+0.074805609810367i, 0.226302462406668+0.622953020607153i, -0.350523520293236+0i, 36.95629+0i, 0.560619738092407-0.682608501712159i, 0.226302462406668-0.622953020607153i, 0.78055360921552-0.074805609810367i, 0.256026925938355-0.785976327675879i, 1.02817865022983+0.34504589703951i, 0.687600152134093+0.686832833249492i, -0.928504558018547-0.595035492436651i, 0.079701505394057+0.671928588981395i, -0.92671244183002-0.4654172825118i, 0.528345251825436-0.1934551151723i, 0.094019483325701+0.509699071248611i, -1.5504398054367-0.58712726232882i, -0.232480240910631+0.852823935033055i, -0.443756894757003-0.203591444202617i, 1.00637929936948-0.02247486200823i, -0.65601911618425-1.42426818279974i, 0.86566540189477-0.770837403863086i, 0.099274131040962+0.720117872696125i, 0.31338397456145+0.070005564582076i, -0.178348938556155+0.20819645511782i, -0.211720451852483-0.699364394495563i, -0.842318244665128+0.364163119422319i, -0.494782073526916-0.633965520491396i, -1.08317093273628+0.23036104725795i, -0.122833454690072-0.854659649355527i, 0.54733928499269+0.336889819051726i, 0.08449073290851+1.02166609097454i, 1.12789007401103+0.9150144873193i, 0.623073104284608-0.016921227165896i, 0.548445762636905+0.041018242908347i, -0.546136171243711+0.096607724166328i, 0.401401778808807+0.888143393084041i, -0.453208823121029+0.837082852692895i, 0.021784857581428-0.966710280703997i, 0.51300435483445+0.531648817395907i, 0.08895041760163-0.706474600674586i, -0.811034187103375-0.474582228678482i, -0.176436521512317-0.13770284742425i, 1.27626558733918+0.25330199654913i, 0.079936869956406-0.679281358826093i, -0.346506144636815-0.860727537282235i, 0.379140859534258+0.359789344124069i, 0.810629187591171-0.147199772565962i, 0.784560002336236-0.086690829191364i, -0.627272339383443-0.148462932321139i, -0.905616409631566-0.580670630225823i, 0.395075318164222+0.382802882532146i, -0.697664083594948-0.215087388589197i, -0.49796900732028+1.50589889103862i, 0.28117458347093+0.622739223198561i, -0.400603867794963-0.379556963059384i, -1.0618488903508+0.78724546659495i, 1.30846884951779+0.96821553381075i, -0.980920021111176+0.107734813096732i, -0.951314145779893-0.509190538654523i, -0.182619528958946-0.164805837091805i, -0.023832187436743+0.405969047495457i, -1.54714406297586-0.26060959944474i, 0.301915344669532+0.028769607006748i, 0.238499540639731-0.543068154200646i, -0.411436421619755+0.078475189688077i, -0.577993418266634-0.651858573525498i, -0.667650744765241-0.397481919164031i, 0.166147379823367+0.696574895115799i, -0.059751991180992-0.360756275049991i, 0.71096126916633-0.10554140765429i, -0.615100323552481-0.15986935775391i, 0.240065693912277+0.199120174781489i, 0.639363332355193-0.07411893759564i, -0.41103148524016+1.03263543246051i, 0.478335618484214-0.29968168427157i, -0.198642836540144+0.506659373825325i, -0.192549991675432-0.249628486498254i, -0.300603988130697+0.412506420747302i, 0.786991706080069+0.2690076172408i, 0.383719402999875-0.39616100299909i, -0.47436267466043-0.212951213125411i, 0.240501548686706+0.374813279343272i, -0.892631521629332+0.315083904416331i, -0.646755749674719+0.43799825095044i, 0.879334692220646+0.166111132469017i, -0.795575712150335+0.154491865741878i, -0.186104626747335-0.278215987589357i, 0.0287874463305901+0.0194974416715989i, -0.201989300142253+0.286464878056107i, -0.14596849686517-1.30159362634795i, -0.296436568514828+0.363903182890176i, -0.673022632317758-0.134918848739305i, -0.31398053586883+0.619198005177907i, 0.38661610155107+0.650816674856556i, -0.526656788780843-0.182831395481868i, 0.045156958424782-0.57337159456751i, 0.251373028797265+0.211101842796047i, 0.135564164394107-0.370351089335846i, 0.40638105127794-0.012897726771608i, 0.108705040960789-0.458149855844331i, -0.620594718922276+0.10649969455841i, -0.284321645023961-0.339319792587066i, -0.396561834320232+0.024372748716788i )) , identicalTo( expected, tol = 1e-6 ) )
last_n_months <- function(x = Sys.Date(), n = 1, part = getOption("timeperiodsR.parts"), include_current = F) { if ( ! "Date" %in% class(x) ) { x <- as.Date(x) } start <- floor_date( x, unit = "month" ) - months(n) stop <- start + months(n + ifelse( include_current, 1, 0)) - days(1) out <- custom_period(start, stop) part <- match.arg(part, getOption("timeperiodsR.parts")) if ( part == "all" ) { return(out) } else { return(out[[part]]) } }
data("WeatherPlay", package = "partykit") sp_o <- partykit::partysplit(1L, index = 1:3) sp_h <- partykit::partysplit(3L, breaks = 75) sp_w <- partykit::partysplit(4L, index = 1:2) partykit::character_split(sp_o) pn <- partykit::partynode(1L, split = sp_o, kids = list( partykit::partynode(2L, split = sp_h, kids = list( partykit::partynode(3L, info = "yes"), partykit::partynode(4L, info = "no"))), partykit::partynode(5L, info = "yes"), partykit::partynode(6L, split = sp_w, kids = list( partykit::partynode(7L, info = "yes"), partykit::partynode(8L, info = "no"))))) py <- partykit::party(pn, WeatherPlay)
smacofSphere <- function(delta, ndim = 2, type = c("ratio", "interval", "ordinal","mspline"), algorithm = c("dual", "primal"), weightmat = NULL, init = "torgerson", ties = "primary", verbose = FALSE, penalty = 100, relax = FALSE, modulus = 1, itmax = 1000, eps = 1e-6, spline.degree = 2, spline.intKnots = 2) { alg <- match.arg(algorithm, c("dual", "primal")) type <- match.arg(type, c("ratio", "interval", "ordinal","mspline"), several.ok = FALSE) if (alg == "dual") { diss <- delta if ((is.matrix(diss)) || (is.data.frame(diss))) diss <- strucprep(diss) checkdiss(diss) p <- ndim n <- attr(diss,"Size") if (p > (n - 1)) stop("Maximum number of dimensions is n-1!") nn <- n*(n-1)/2 m <- length(diss) if (is.null(attr(diss, "Labels"))) attr(diss, "Labels") <- paste(1:n) if (is.null(weightmat)) { wgths <- initWeights(diss) } else wgths <- as.dist(weightmat) dhat <- normDissN(diss,wgths,1) dhat[is.na(dhat)] <- 1 x <- initConf(init, diss, n, p) xstart <- x if (relax) relax <- 2 else relax <- 1 mn <- c(1,rep(0,n)) diss <- as.dist(rbind(0,cbind(0,as.matrix(diss)))) wgths1 <- as.dist(rbind(0,cbind(0,as.matrix(wgths)))) wgths2 <- as.dist(outer(mn,mn,function(x,y) abs(x-y))) dhat1 <- as.dist(rbind(0,cbind(0,as.matrix(dhat)))) dhat2 <- mean(sqrt(rowSums(x^2)))*wgths2 n1 <- attr(dhat1,"Size") nn1 <- n1*(n1-1)/2 x <- rbind(0,x) w <- vmat(wgths1+penalty*wgths2); v<-myGenInv(w); itel<-1; d <- dist(x) lb <- sum(wgths1*d*dhat1)/sum(wgths1*d^2) x <- lb*x d <- lb*d sold1 <- sum(wgths1*(dhat1-d)^2) sold2 <- sum(wgths2*(dhat2-d)^2) sold <- sold1+penalty*sold2 trans <- type if (trans=="ratio"){ trans <- "none" } else if (trans=="ordinal" & ties=="primary"){ trans <- "ordinalp" } else if(trans=="ordinal" & ties=="secondary"){ trans <- "ordinals" } else if(trans=="ordinal" & ties=="tertiary"){ trans <- "ordinalt" } else if(trans=="spline"){ trans <- "mspline" } disobj <- transPrep(diss,trans = trans, spline.intKnots = spline.intKnots, spline.degree = spline.degree) repeat { b <- bmat(dhat1,wgths1,d)+penalty*bmat(dhat2,wgths2,d) y <- v %*% (b %*% x) y <- x+relax*(y-x) e <- dist(y) ssma1 <- sum(wgths1*(dhat1-e)^2) ssma2 <- sum(wgths2*(dhat2-e)^2) ssma <- ssma1+penalty*ssma2 dhat3 <- transform(e, disobj, w = wgths1, normq = nn1) dhat1 <- vecAsDist(dhat3$res) dhat2 <- mean(e[1:n])*wgths2 snon1 <- sum(wgths1*(dhat1-e)^2) snon2 <- sum(wgths2*(dhat2-e)^2) snon <- snon1+penalty*snon2 if (verbose) cat("Iteration: ",formatC(itel,width=3, format="d")," Stress (not normalized): ", formatC(c(snon),digits=8,width=12,format="f"),"\n") if (((sold-snon)<eps) || (itel == itmax)) break() x <- y d <- e sold <- snon itel <- itel+1 if (itel == itmax) warning("Iteration limit reached! Increase itmax argument!") } colnames(y) <- paste("D",1:(dim(y)[2]),sep="") rownames(y) <- labels(diss) ss <- y[1,] y <- t(apply(y, 1, function(xx) xx - ss)[,-1] ) confdiss <- dist(y) attr(dhat1, "Labels") <- labels(diss) attr(e, "Labels") <- labels(diss) stress <- sqrt(snon/nn) e.temp <- as.dist(as.matrix(e)[,-1][-1,]) dummyvec <- as.matrix(e)[,1][-1] dhat <- as.dist(as.matrix(dhat1)[-1,-1]) spoint <- spp(dhat, confdiss, wgths) rss <- sum(spoint$resmat[lower.tri(spoint$resmat)]) dhat3$iord.prim <- order(as.vector(as.dist(delta)), as.vector(as.dist(dhat)), na.last = TRUE) } else { diss <- delta if ((is.matrix(diss)) || (is.data.frame(diss))) diss <- strucprep(diss) checkdiss(diss) p <- ndim n <- attr(diss,"Size") if (p > (n - 1)) stop("Maximum number of dimensions is n-1!") nn <- n*(n-1)/2 m <- length(diss) if (is.null(attr(diss, "Labels"))) attr(diss, "Labels") <- paste(1:n) if (is.null(weightmat)) { wgths <- initWeights(diss) } else wgths <- as.dist(weightmat) dhat <- normDissN(diss,wgths,1) dhat[is.na(dhat)] <- 1 x <- initConf(init, diss, n, p) xstart <- x w <- vmat(wgths) v <- myGenInv(w) itel<-1; x <- x/sqrt(rowSums(x^2)) d <- dist(x) lb <- sum(wgths*d*dhat)/sum(wgths*d^2) x <- lb*x d <- lb*d sold <- sum(wgths*(dhat-d)^2) trans <- type if (trans=="ratio"){ trans <- "none" } else if (trans=="ordinal" & ties=="primary"){ trans <- "ordinalp" } else if(trans=="ordinal" & ties=="secondary"){ trans <- "ordinals" } else if(trans=="ordinal" & ties=="tertiary"){ trans <- "ordinalt" } else if(trans=="spline"){ trans <- "mspline" } disobj <- transPrep(diss,trans = trans, spline.intKnots = spline.intKnots, spline.degree = spline.degree) repeat { b <- bmat(dhat,wgths,d) y <- v%*%b%*%x y <- sphereProj(y,w) e <- dist(y) ssma <- sum(wgths*(dhat-e)^2) dhat3 <- transform(e, disobj, w = wgths, normq = nn) dhat <- dhat3$res snon <- sum(wgths*(dhat-e)^2) if (verbose) cat("Iteration: ",formatC(itel,width=3, format="d")," Stress (not normalized): ", formatC(c(snon),digits=8,width=12,format="f"),"\n") if (((sold-snon)<eps) || (itel == itmax)) break() x <- y d <- e sold <- snon itel <- itel+1 } colnames(y) <- paste("D",1:(dim(y)[2]),sep="") rownames(y) <- labels(diss) attr(dhat, "Labels") <- labels(diss) attr(e, "Labels") <- labels(diss) dhat[is.na(diss)] <- NA stress <- sqrt(snon/nn) confdiss <- normDissN(e, wgths, 1) spoint <- spp(dhat, dist(y), wgths) rss <- sum(spoint$resmat[lower.tri(spoint$resmat)]) dummyvec <- NA if (itel == itmax) warning("Iteration limit reached! Increase itmax argument!") } result <- list(delta = delta, dhat = dhat, confdist = dist(y), iord = dhat3$iord.prim, conf = y, stress = stress, spp = spoint$spp, ndim = p, weightmat = wgths, resmat = spoint$resmat, rss = rss, dummyvec = dummyvec, init = xstart, model = "Spherical SMACOF", niter = itel, nobj = n, type = type, algorithm = alg, call = match.call()) class(result) <- c("smacofSP", "smacof") result }
observationGradient <- function(g, nParam) { if(is.null(dim(g))) { if(nParam == 1 & length(g) > 1) return(TRUE) return(FALSE) } if(nrow(g) == 1) return(FALSE) return(TRUE) }
div(id = "d1_ui", tagList( textInput( "id", label = "Import from dataONE", placeholder = "Enter doi or id here" ), actionBttn(inputId = "D1Button", label = "Download", size = "sm", color = "success"), hr(), conditionalPanel(condition="$('html').hasClass('shiny-busy')", tags$div(id="loadmessage", HTML(paste0("<div> <h3>Download in Progress.</h3> <p>This download may take a couple of minutes.</p> <img src=\'http://www.lettersmarket.com/uploads/lettersmarket/blog/loaders/common_green/ajax_loader_green_64.gif' height=\"64\" width=\"64\"> </div>")) )), DT::DTOutput("identifier"), div(id = "nextFromD1_div", fluidRow( column(8), column(4, actionBttn(inputId = "nextFromD1", label = "Next Step", size = "sm", color = "success") ) ) ), shinyjs::hidden( div(id = "d1_new_dir_output", hr(), p("Location of Downloaded files:"), verbatimTextOutput("D1dbfilesPath") ) ) ) )
knitr::opts_chunk$set(echo = TRUE) library(flagr) head(test_data) summary(test_data) library(tidyr) flags <- spread(test_data[, c(1:3)], key = time, value = flags) propagate_flag(flags[, c(2:ncol(flags))],"hierarchy","puebscd") propagate_flag(flags[, c(2:ncol(flags))],"hierarchy",c("b","c","d","e","p","s","u")) library(tidyr) flags <- spread(test_data[, c(1:3)], key = time, value = flags) propagate_flag(flags[, c(2:ncol(flags))],"frequency") library(tidyr) flags <- spread(test_data[, c(1:3)], key = time, value = flags) weights <- spread(test_data[, c(1, 3:4)], key = time, value = values) flags<-flags[, c(2:ncol(flags))] weights<-weights[, c(2:ncol(weights))] propagate_flag(flags,"weighted",flag_weights=weights) propagate_flag(flags,"weighted",flag_weights=weights,threshold=0.1)
getFunctionEnvelopeCat <- function(data,R=1000,initial,x){ fn <- function(data,index,x,initial){ data <- data[index,] c1 <- initial[1];c2 <- initial[2]; lambda <- initial[3] pred <- rep(NA,length(x)) tryCatch({obs.cat <- nls(y ~ c1 * cosh( (x-c2)/c1) + lambda, data=data, start=list(c1=c1,c2=c2,lambda=lambda)) pred <- predict(obs.cat,newdata=data.frame(x=x)) }, error = function(e){ cat("cannot fit catenary\n") }) return(pred) } b <- boot::boot(data=data,statistic=fn,R=R,x=x,initial=initial) tmp <- apply(b$t,2,quantile,probs=c(0.025,0.975),na.rm=TRUE) bounds <- data.frame(x=x,lwr=tmp[1,],upr=tmp[2,]) return(bounds) }
working.cltsk <- function(q0,obs,th,bins,vth,vlen,llim,verbose,Large,future) { ii <- dnb(q0,obs,th,future=future) if( length(ii)<=5 ){ if(verbose) cat(q0,'k= ',length(ii),'\n') r <- (list(fout=NULL,nbr=NULL,ret=3)) } else{ ssout <- dsubsample(obs[ii,],Large=Large) nbr <- ssout$nbr if(verbose) { with(ssout,cat(q0,'k= ',nrow(nbr),'ns=',ns,'nt=',nt,'\n')) } if( (ssout$ns > llim[1]) && (ssout$nt > llim[2]) ) { vout <- dvariogram(nbr,vth,vlen) vout <- dsmooth.variogram(vout) fout <- dfitvariogram(vout,nbr) if(fout$ret){ r <- list(fout=fout,nbr=nbr,ret=0) } else{ r <- (list(fout=NULL,nbr=nbr,ret=4)) } }else if(ssout$nt <= llim[2]){ if (verbose) cat('insufficient time points.\n') r <- (list(fout=NULL,nbr=nbr,ret=1)) }else if(ssout$ns <= llim[1]){ if (verbose) cat('insufficient space points.\n') r <- (list(fout=NULL,nbr=nbr,ret=2)) }else{ if (verbose) cat('insufficient space & time points.\n') r <- (list(fout=NULL,nbr=nbr,ret=3)) } } output <- rep(NA,nrow(bins)) working.cltsk.calkriging <- function(q0, nbr, binsth,fout,verbose,future) { jj <- dnb(q0,nbr,binsth,future=future) if(verbose) { cat(binsth,'k=',length(jj),'\n') } output <- NA if( length(jj) >=3) { gout <- cal.gamma(q0,nbr[jj,],fout) output <- with(gout,work.kriging(Gamma,gamma,dat[,4])[1]) } output } if( !is.null(r$fout)) { output <- apply(bins,1, working.cltsk.calkriging,q0=q0,nbr=r$nbr,fout=r$fout,verbose=verbose,future=future) } output }
if(F) { library(disk.frame) library(dplyr) setup_disk.frame() a = disk.frame("c:/data/fannie_mae_disk_frame/fm.df/") pt=proc.time() a %>% map(~{ .x NULL } , lazy = F ) data.table::timetaken(pt) pt=proc.time() srckeep(a,c("monthly.rpt.prd", "loan.age"))[,mean(loan.age), monthly.rpt.prd] data.table::timetaken(pt) pt=proc.time() srckeep(b,c("monthly.rpt.prd", "loan.age"))[,mean(loan.age), monthly.rpt.prd] data.table::timetaken(pt) b = disk.frame("d:/fm.df") pt=proc.time() b %>% map(~{ .x NULL } , lazy = F ) data.table::timetaken(pt) }
context("Integer division operations") test_that("integer division concatenates and recycles correctly", { int1 <- ymd("2010-01-01") %--% ymd("2011-01-01") int2 <- ymd("2009-01-01") %--% ymd("2011-01-01") int3 <- ymd("2009-01-01") %--% ymd("2010-01-01") expect_equal(int1 %/% ddays(1:2), c(365, 182)) expect_equal(int1 %/% days(1:2), c(365, 182)) expect_equal(c(int1, int2) %/% ddays(2), c(182, 365)) expect_equal(c(int1, int2) %/% days(2), c(182, 365)) expect_equal(dyears(1) %/% ddays(1:2), c(365, 182)) expect_equal(dyears(1:2) %/% ddays(2), c(182, 365)) expect_equal(months(c(13, 26)) %/% years(2), c(0, 1)) expect_equal(months(13) %/% years(c(1, 2)), c(1, 0)) }) test_that("integer division works for interval numerator", { verify_output(test_path("test-ops-integer-division.txt"), { int <- ymd("2010-01-01") %--% ymd("2010-06-01") dur <- ddays(1) per <- months(1) " int %/% int int %/% dur int %/% per " dur %/% int dur %/% dur dur %/% per " per %/% int per %/% dur per %/% per }) })
casesDialogFin <- function () { defaults <- list (initial.year1 = 1, initial.month1 = 5, initial.day1 = 0, initial.year2 = 0, initial.month2 = NULL, initial.day2 = NULL, initial.x = 0, initial.measure = "new_cases", initial.permillion = "FALSE", initial.mean = TRUE, initial.bar=FALSE,initial.atop=FALSE) dialog.values <- getDialog ("casesDialogFin", defaults) initializeDialog(title = gettextRcmdr("Covid cases in Finland")) measureVariable <- tclVar(dialog.values$initial.measure) permillionVariable <- tclVar(dialog.values$initial.permillion) meanVariable <- tclVar(dialog.values$initial.mean) barVariable <- tclVar(dialog.values$initial.bar) atopVariable <- tclVar(dialog.values$initial.atop) years <- c("None",2020:2022) months <- c("Jan","Feb","Mar","Apr","May","Jun","Jul","Aug","Sep","Oct","Nov","Dec") days <- 1:31 utils::data(popRegionsFin) utils::data(dataCovidFin) regions <- popRegionsFin$Alue mainFrame <- tkframe(top) regionFrame <- tkframe(mainFrame) xBox <- variableListBox(regionFrame, regions, title = gettextRcmdr("Region (pick one or more)"),initialSelection = dialog.values$initial.x, selectmode="multiple") middleFrame <- tkframe(mainFrame) rightFrame <- tkframe(mainFrame) dataFrame <- tkframe(top) year1Box <- variableListBox(dataFrame, years, title = gettextRcmdr("Year"),initialSelection = dialog.values$initial.year1) month1Box <- variableListBox(dataFrame, months, title = gettextRcmdr("Month"), initialSelection = dialog.values$initial.month1) day1Box <- variableListBox(dataFrame, days, title = gettextRcmdr("Day"), initialSelection = dialog.values$initial.day1) year2Box <- variableListBox(dataFrame, years, title = gettextRcmdr("Year"),initialSelection = dialog.values$initial.year2) month2Box <- variableListBox(dataFrame, months, title = gettextRcmdr("Month"), initialSelection = dialog.values$initial.month2) day2Box <- variableListBox(dataFrame, days, title = gettextRcmdr("Day"), initialSelection = dialog.values$initial.day2) onOK <- function() { x <- getSelection(xBox) xc <- paste0("c('",paste0(x,collapse="','"),"')") nRegions <- length(x) if (nRegions == 0) { errorCondition(recall = incidenceDialog, message = gettextRcmdr("You must select at least one region.")) return() } xi <- numeric(nRegions) for(i in 1:nRegions) xi[i] <- which(x[i]==regions) year1 <- getSelection(year1Box) year1.i <- (0:12)[year1==years] month1 <- (1:12)[getSelection(month1Box)==months] month1.i <- month1-1 day1 <- getSelection(day1Box) day1.i <- day1-1 year2 <- getSelection(year2Box) year2.i <- (0:12)[year2==years] month2 <- (1:12)[getSelection(month2Box)==months] month2.i <- month2-1 day2 <- getSelection(day2Box) day2.i <- day2-1 date1 <- paste(year1,month1,day1,sep="-") date2 <- paste(year2,month2,day2,sep="-") measure <- tclvalue(measureVariable) permillion <- tclvalue(permillionVariable) mean <- as.logical(as.numeric(tclvalue(meanVariable))) bar <- as.logical(as.numeric(tclvalue(barVariable))) atop <- as.logical(as.numeric(tclvalue(atopVariable))) putDialog ("casesDialogFin",list (initial.year1 = year1.i, initial.month1 = month1.i, initial.day1 = day1.i, initial.year2 = year2.i, initial.month2 = month2.i, initial.day2 = day2.i, initial.x = xi-1,initial.measure = measure, initial.permillion = permillion,initial.mean = mean, initial.bar = bar, initial.atop=atop)) closeDialog() if(year1!="None" && year2!="None"){ doItAndPrint(paste0("drawBarsFin(data=dataCovidFin, pop=popRegionsFin, regions=",xc,",start='",date1,"',end='",date2,"',measure='",measure, "',perMillion=",permillion,",drawMean=",mean,",bars=",bar,",atop=",atop,")"))}else if (year1!="None"){ doItAndPrint(paste0("drawBarsFin(data=dataCovidFin, pop=popRegionsFin, regions=",xc,",start='",date1,"',measure='",measure,"',perMillion=",permillion,",drawMean=",mean,",bars=",bar,",atop=",atop,")"))}else if (year2!="None"){ doItAndPrint(paste0("drawBarsFin(data=dataCovidFin, pop=popRegionsFin, regions=",xc,",start=NULL, end='",date2,"',measure='",measure,"',perMillion=",permillion,",drawMean=",mean,",bars=",bar,",atop=",atop,")"))} else{ doItAndPrint(paste0("drawBarsFin(data=dataCovidFin, pop=popRegionsFin, regions=",xc,",start=NULL, measure='",measure,"',perMillion=",permillion,",drawMean=",mean,",bars=",bar,",atop=",atop,")")) } tkdestroy(top) tkfocus(CommanderWindow()) } OKCancelHelp(helpSubject = "drawBarsFin", reset = "casesDialogFin", apply = "casesDialogFin") measureFrame <- tkframe(middleFrame) permillionFrame <- tkframe(rightFrame) optionsFrame <- tkframe(rightFrame) radioButtons(middleFrame, name = "measure", buttons = c("newcases", "totalcases"), values = c("new_cases","total_cases"), labels = gettextRcmdr(c("New cases", "Total cases")), title = gettextRcmdr("Measure "), initialValue = dialog.values$initial.measure) radioButtons(rightFrame, name = "permillion", buttons = c("yes", "no"), values = c("TRUE", "FALSE"), labels = gettextRcmdr(c("Yes", "No")), title = gettextRcmdr("Per million?"), initialValue = dialog.values$initial.permillion) checkBoxes(window=rightFrame,frame="optionsFrame", boxes=c("mean","bar","atop"), initialValues=c(dialog.values$initial.mean,dialog.values$initial.bar, dialog.values$initial.atop), labels=gettextRcmdr(c("Mean curve","Bars","Atop")),title="Options") tkgrid(getFrame(xBox), sticky = "nw") tkgrid(measureFrame, padx=c(20,0),pady=c(0,10),sticky="w") tkgrid(permillionFrame, padx=c(20,0),sticky="w") tkgrid(optionsFrame, padx=c(20,0), pady=c(10,0),sticky="w") tkgrid(regionFrame, middleFrame, rightFrame) tkgrid(mainFrame, sticky = "w") tkgrid(labelRcmdr(dataFrame, text="First date",fg="red"),sticky="w") tkgrid(getFrame(year1Box), getFrame(month1Box), getFrame(day1Box), sticky = "nw",pady=c(0,10)) tkgrid(labelRcmdr(dataFrame, text="Second date (optional)",fg="red"),sticky="w") tkgrid(getFrame(year2Box), getFrame(month2Box), getFrame(day2Box), sticky = "nw") tkgrid(dataFrame, sticky="w") tkgrid(buttonsFrame, columnspan = 2, sticky = "w") dialogSuffix() }
plot.bvarfevd <- function(x, ...) { par_orig <- graphics::par("mar") graphics::par(mar = c(5.1, 4.1, 4.1, 7.1)) graphics::barplot(t(x), ylab = "Percentage", xlab = "Period", names.arg = stats::time(x), ...) graphics::par(mar = par_orig) legend_names <- dimnames(x)[[2]] graphics::legend("left", legend = legend_names, xpd = FALSE, fill = grDevices::gray.colors(NCOL(x)), inset = 1) }
inner_Add_Symbol <- function(character,symbol="+"){ if (length(character)>=2){ for (character.i in 1:length(character)) { if (character.i==1){ adj=character[1] }else{ adj=paste0(adj,symbol,character[character.i]) } } }else{ adj=character } adj }
fpath = system.file("testdata", package = "smerc") data(nydf) data(nyw) coords = with(nydf, cbind(longitude, latitude)) set.seed(1) cepp_test_ref = cepp.test(coords = coords, cases = floor(nydf$cases), pop = nydf$pop, nstar = 1000, alpha = 0.1) fname = paste(fpath, "/cepp_test_ref.rda", sep = "") save(cepp_test_ref, compress = "bzip2", file = fname, version = 2)
trandn <- function(l, u){ if(any(l>u)){ stop('Truncation limits have to be vectors of the same length with l<u') } x=rep(0,length(l)); a=.4; I <- l>a; if (any(I)){ x[I] <- ntail(l[I], u[I]); } J <- u < (-a); if (any(J)){ x[J] <- -ntail(-u[J],-l[J]); } L <- !(I|J); if (any(L)){ x[L] <- tn(l[L],u[L]); } return(x) }
create_nb_code_for_component <- function(comp) { df <- create_analysis_sample() if (comp == "setup") return({ nb_code <- c( " "```{r setup}", "suppressWarnings(suppressMessages({", " library(knitr)", " library(kableExtra)", " library(htmltools)", " library(tidyverse)", " library(scales)", " library(ExPanDaR)", "}))", "knitr::opts_chunk$set(fig.align = 'center')", "```", " ", " " ) }) if (comp == "create_sample") return({ nb_code <- c( " "This step reads the raw data provided by `ExPanD()` and generates the sample for the analysis.", " ", "```{r create_sample}", "create_sample <- function(df, df_def) {", " " df[, df_def$var_name[df_def$type == \"numeric\"]] <-", " lapply(df[, df_def$var_name[df_def$type == \"numeric\"]],", " function(x) ifelse(is.finite(x), x, NA))", " ", " " all_na_vars <- sapply(df, function (x) all(is.na(x)))", " df_def <- df_def[!all_na_vars,]", " df <- df[, df_def$var_name]", " ", " " df <- df[complete.cases(df[, df_def$var_name[which(df_def$can_be_na == FALSE)]]), ]" ) if ((uc$subset_factor != "Full Sample") & (uc$subset_value != "All")) nb_code <- c(nb_code, " ", " sprintf(' df <- df[which(df$%s == "%s"), ]', uc$subset_factor, uc$subset_value)) if (uc$balanced_panel) nb_code <- c(nb_code, " ", " ' df <- group_by_at(df, vars(one_of(df_def$var_name[df_def$type == "cs_id"]))) %>%', ' mutate(nobs = n())', ' max_nobs <- length(levels(as.data.frame(df[, df_def$var_name[df_def$type == "ts_id"]])[,1]))', ' bal_df <- as.data.frame(select(filter(df, nobs == max_nobs), -nobs))', ' df <- as.data.frame(bal_df)') if (uc$outlier_treatment > 1) { if (uc$outlier_factor == "None") group <- "NULL" else group <- sprintf('"%s"', df[,uc$outlier_factor]) nb_code <- c(nb_code, " ", " ' nums <- df_def$var_name[df_def$type == "numeric"]') } if (uc$outlier_treatment == 2) nb_code <- c(nb_code, sprintf(' df[, nums] <- treat_outliers(df[, nums], 0.01, FALSE, %s)', group)) if (uc$outlier_treatment == 3) nb_code <- c(nb_code, sprintf(' df[, nums] <- treat_outliers(df[, nums], 0.05, FALSE, %s)', group)) if (uc$outlier_treatment == 4) nb_code <- c(nb_code, sprintf(' df[, nums] <- treat_outliers(df[, nums], 0.01, TRUE, %s)', group)) if (uc$outlier_treatment == 5) nb_code <- c(nb_code, sprintf(' df[, nums] <- treat_outliers(df[, nums], 0.05, TRUE, %s)', group)) nb_code <- c(nb_code, " ", " df <- droplevels(df)", " return(list(df = df, df_def = df_def))", "}", " ", "load(\"ExPanD_nb_data.Rdata\")", " ", "smp_list <- create_sample(nb_df, nb_df_def)", "smp <- smp_list$df", "smp_def <- smp_list$df_def", "```", " ", " ") nb_code }) if (comp == "bar_chart") return({ nb_code <- c( " "```{r bar_chart}", "df <- smp" ) if (uc$bar_chart_group_by != "All") nb_code <- c(nb_code, sprintf('df <- df[df$%s == "%s", ]', uc$group_factor, uc$bar_chart_group_by)) nb_code <- c(nb_code, sprintf('df$%s <- as.factor(df$%s)', uc$bar_chart_var1, uc$bar_chart_var1)) if (uc$bar_chart_var2 != "None") nb_code <- c(nb_code, sprintf('df$%s <- as.factor(df$%s)', uc$bar_chart_var2, uc$bar_chart_var2)) if (uc$bar_chart_var2 != "None" & (!uc$bar_chart_relative)) { nb_code <- c(nb_code, sprintf('p <- ggplot(df, aes(x = %s)) +', uc$bar_chart_var1), sprintf(' geom_bar(aes(fill= %s), position = "stack") +', uc$bar_chart_var2), sprintf(' labs(x = "%s", fill = "%s")', uc$bar_chart_var1, uc$bar_chart_var2)) } else if (uc$bar_chart_var2 != "None") { nb_code <- c(nb_code, sprintf('p <- ggplot(df, aes(x = %s)) +', uc$bar_chart_var1), sprintf(' geom_bar(aes(fill = %s), position = "fill") +', uc$bar_chart_var2), sprintf(' labs(x = "%s", fill = "%s", y = "Percent") +', uc$bar_chart_var1, uc$bar_chart_var2), 'scale_y_continuous(labels = percent_format())') } else { nb_code <- c(nb_code, sprintf('p <- ggplot(df, aes(x = %s)) +', uc$bar_chart_var1), sprintf('geom_bar() + labs(x = "%s")', uc$bar_chart_var1)) } if (length(unique(df[,uc$bar_chart_var1])) > 5) { if (!anyNA(suppressWarnings(as.numeric(df[, uc$bar_chart_var1])))) { nb_code <- c( nb_code, sprintf('p <- p + scale_x_discrete(breaks = pretty(as.numeric(as.character(df$%s)), n = 10))', uc$bar_chart_var1) ) } else { nb_code <- c( nb_code, "p <- p + ggplot2::theme(axis.text.x = ggplot2::element_text(angle = 90))" ) } } nb_code <- c(nb_code, "p", "```", " ", " ") nb_code }) if(comp == "missing_values") return({ nb_code <- c( " "```{r missing_values}", "df <- smp" ) if (uc$missing_values_group_by != "All") nb_code <- c(nb_code, sprintf('df <- df[df$%s == "%s",]', uc$group_factor, uc$missing_values_group_by)) nb_code <- c(nb_code, sprintf('prepare_missing_values_graph(df, "%s")', lts_id$name), "```", " ", " ") nb_code }) if(comp == "descriptive_table") return({ nb_code <- c( " "```{r descriptive_statistics}", "df <- smp", "t <- prepare_descriptive_table(smp)", "t$kable_ret %>%", ' kable_styling("condensed", full_width = F, position = "center")', "```", " ", " ") nb_code }) if(comp == "histogram") return({ nb_code <- c( " "```{r histogram}" ) if (uc$hist_group_by == "All") nb_code <- c(nb_code, sprintf('var <- as.numeric(smp$%s)', uc$hist_var)) else nb_code <- c(nb_code, sprintf('var <- as.numeric(smp$%s[smp$%s == "%s"])', uc$hist_var, uc$group_factor, uc$hist_group_by)) nb_code <- c(nb_code, sprintf('hist(var, main="", xlab = "%s", col="red", right = FALSE, breaks= %d)', uc$hist_var, uc$hist_nr_of_breaks), "```", " ", " ") nb_code }) if(comp == "ext_obs") return({ nb_code <- c( " "```{r extreme_obs}", "df <- smp") if (uc$group_factor != "None") nb_code <- c(nb_code, sprintf('vars <- c("%s", "%s", "%s", "%s")', lcs_id$name, lts_id$name, uc$ext_obs_var, uc$group_factor)) else if (!cross_sec_data()) nb_code <- c(nb_code, sprintf('vars <- c("%s", "%s", "%s")', lcs_id$name, lts_id$name, uc$ext_obs_var)) else nb_code <- c(nb_code, sprintf('vars <- c("%s", "%s")', lcs_id$name, uc$ext_obs_var)) if (uc$ext_obs_period_by != "All") nb_code <- c(nb_code, sprintf('df <- df[df$%s == "%s", ]', lts_id$name, uc$ext_obs_period_by)) if (uc$ext_obs_group_by != "All") nb_code <- c(nb_code, sprintf('df <- df[df$%s == "%s", ]', uc$group_factor, uc$ext_obs_group_by)) nb_code <- c(nb_code, "df <- df[, vars]", "df <- droplevels(df[complete.cases(df), ])", "if (nrow(df) <= 10) {", ' cat("Not enough data to generate table")', "} else {", sprintf(' tab <- prepare_ext_obs_table(df, var = "%s")', uc$ext_obs_var), " tab$kable_ret %>%", " kable_styling()", "}", "```", " ", " ") nb_code }) if(comp == "by_group_bar_graph") return({ nb_code <- c( " "```{r by_group_bar_graph}", "df <- smp") if (uc$bgbg_stat == "q25") nb_code <- c(nb_code, 'q25 <- function(x, na.rm) {quantile(x, 0.25, na.rm)}') if (uc$bgbg_stat == "q75") nb_code <- c(nb_code, 'q75 <- function(x, na.rm) {quantile(x, 0.75, na.rm)}') if (uc$bgbg_group_by != "All") { nb_code <- c(nb_code, sprintf('df <- df[df$%s == "%s", ]', uc$group_factor, uc$bgbg_group_by)) } nb_code <- c(nb_code, sprintf('prepare_by_group_bar_graph(df, "%s", "%s", %s, %s)$plot +', uc$bgbg_byvar, uc$bgbg_var, uc$bgbg_stat, uc$bgbg_sort_by_stat), sprintf(' ylab("%s %s")', uc$bgbg_stat, uc$bgbg_var), "```", " ", " ") nb_code }) if(comp == "by_group_violin_graph") return({ nb_code <- c( " "```{r by_group_violin_graph}", "df <- smp") if (uc$bgvg_group_by != "All") { nb_code <- c(nb_code, sprintf('df <- df[df$%s == "%s", ]', uc$group_factor, uc$bgvg_group_by)) } nb_code <- c(nb_code, sprintf('prepare_by_group_violin_graph(df, "%s", "%s", %s)', uc$bgvg_byvar, uc$bgvg_var, uc$bgvg_sort_by_stat), "```", " ", " ") nb_code }) if(comp == "trend_graph") return({ nb_code <- c( " "```{r trend_graph}", "df <- smp") vars <- c(uc$trend_graph_var1, uc$trend_graph_var2, uc$trend_graph_var3) vars <- vars[which(!vars %in% "None")] if (uc$trend_graph_group_by != "All") { nb_code <- c(nb_code, sprintf('df <- df[df$%s == "%s", ]', uc$group_factor, uc$trend_graph_group_by)) } nb_code <- c(nb_code, sprintf('prepare_trend_graph(df, "%s", c("%s"))$plot', lts_id$name, paste(vars, collapse = '", "')), "```", " ", " ") nb_code }) if(comp == "quantile_trend_graph") return({ nb_code <- c( " "```{r quantile_trend_graph}", "df <- smp") quantiles <- as.numeric(uc$quantile_trend_graph_quantiles) if (uc$quantile_trend_graph_group_by != "All") { nb_code <- c(nb_code, sprintf('df <- df[df$%s == "%s", ]', uc$group_factor, uc$quantile_trend_graph_group_by)) } nb_code <- c(nb_code, sprintf('prepare_quantile_trend_graph(df, "%s", c(%s), "%s")$plot', lts_id$name, paste(quantiles, collapse = ", "), uc$quantile_trend_graph_var), "```", " ", " ") nb_code }) if(comp == "by_group_trend_graph") return({ nb_code <- c( " "```{r by_group_trend_graph}", "df <- smp") if (uc$bgtg_group_by != "All") { nb_code <- c(nb_code, sprintf('df <- df[df$%s == "%s", ]', uc$group_factor, uc$bgtg_group_by)) } nb_code <- c(nb_code, sprintf('prepare_by_group_trend_graph(df, "%s", "%s", "%s")$plot', lts_id$name, uc$bgtg_byvar, uc$bgtg_var), "```", " ", " ") nb_code }) if(comp == "corrplot") return({ nb_code <- c( " "```{r corrplot}", "df <- smp") if (uc$corrplot_group_by != "All") { nb_code <- c(nb_code, sprintf('df <- df[df$%s == "%s", ]', uc$group_factor, uc$corrplot_group_by)) } vars <- which(sapply(df, function(x) all(is.numeric(x) | is.logical(x)))) vars <- vars[vars %in% which(!sapply(df, function(x) all(is.na(x))))] vars <- vars[vars %in% which(!sapply(df, function(x) (all(duplicated(x)[-1]))))] nb_code <- c(nb_code, sprintf('ret <- prepare_correlation_graph(df[, c(%s)])', paste(vars, collapse = ", ")), "```", " ", " ") nb_code }) if(comp == "scatter_plot") return({ nb_code <- c( " "```{r scatter_plot}", "df <- smp") if (uc$scatter_group_by != "All") { nb_code <- c(nb_code, sprintf('df <- df[df$%s == "%s", ]', uc$group_factor, uc$scatter_group_by)) } vars <- c(lcs_id$name, lts_id$name, uc$scatter_x, uc$scatter_y, uc$scatter_color, uc$scatter_size) vars <- vars[which(!vars %in% "None")] nb_code <- c(nb_code, sprintf('df <- df[, c("%s")]', paste(vars, collapse = '", "')), "df <- df[complete.cases(df), ]") scatter_df <- df[, vars] scatter_df <- scatter_df[complete.cases(scatter_df), ] if (uc$scatter_color %in% lfactor$name) nb_code <- c(nb_code, sprintf('df$%s <- as.factor(df$%s)', uc$scatter_color, uc$scatter_color)) if (uc$scatter_sample & (nrow(scatter_df) > 1000)) { nb_code <- c(nb_code, "set.seed(42)", "df <- sample_n(df, 1000)") } parm_str <- sprintf('"%s", "%s"', uc$scatter_x, uc$scatter_y) if (uc$scatter_color != "None") parm_str <- paste0(parm_str, sprintf(', color = "%s"', uc$scatter_color)) if (uc$scatter_size != "None") parm_str <- paste0(parm_str, sprintf(', size = "%s"', uc$scatter_size)) if (uc$scatter_loess) parm_str <- paste0(parm_str, ", loess = 1") nb_code <- c(nb_code, sprintf('prepare_scatter_plot(df, %s)', parm_str), "```", " ", " ") nb_code }) if(comp == "regression") return({ nb_code <- c( " "```{r regression}", "df <- smp") vars <- c(uc$reg_y, uc$reg_x, uc$reg_fe1, uc$reg_fe2, uc$reg_by) vars <- vars[!vars %in% "None"] nb_code <- c(nb_code, sprintf('df <- df[, c("%s")]', paste(vars, collapse = '", "')), "df <- df[complete.cases(df), ]") if (uc$reg_by != "None") nb_code <- c(nb_code, sprintf('df$%s <- as.factor(df$%s)', uc$reg_by, uc$reg_by)) if (!uc$reg_y %in% c(lnumeric$name, llogical$name)) nb_code <- c(nb_code, sprintf('df$%s <- as.factor(df$%s)', uc$reg_y, uc$reg_y)) nb_code <- c(nb_code, "df <- droplevels(df)") feffect <- "" if (uc$reg_fe1 != "None") { feffect <- uc$reg_fe1 if (uc$reg_fe2 != "None") feffect <- c(feffect, uc$reg_fe2) } else if (uc$reg_fe2 != "None") feffect <- uc$reg_fe2 cluster <- "" if (uc$cluster == 2) cluster <- uc$reg_fe1 if (uc$cluster == 3) cluster <- uc$reg_fe2 if (uc$cluster == 4) cluster <- c(uc$reg_fe1, uc$reg_fe2) cluster <- cluster[!cluster %in% "None"] reg_by <- ifelse(uc$reg_by != "None", uc$reg_by, "") parm_str <- sprintf('df, dvs = "%s", idvs = c("%s")', uc$reg_y, paste(uc$reg_x, collapse = '", "')) if (feffect[1] != "") parm_str <- paste0(parm_str, sprintf(', feffects = c("%s")', paste(feffect, collapse = '", "'))) if (cluster[1] != "") parm_str <- paste0(parm_str, sprintf(', clusters = c("%s")', paste(cluster, collapse = '", "'))) if (reg_by != "") parm_str <- paste0(parm_str, sprintf(', byvar = "%s"', uc$reg_by)) parm_str <- paste0(parm_str, sprintf(', models = "%s"', uc$model)) nb_code <- c(nb_code, sprintf('t <- prepare_regression_table(%s)', parm_str), "HTML(t$table)", "```", " ", " ") nb_code }) if(comp == "end_note") return({ nb_code <- c( " "This Notebook has been automatically generated using the [ExPanDaR](https://joachim-gassen.github.io/ExPanDaR) package.", " " ) }) return("") } output$nb_download <- downloadHandler( filename = "ExPanD_nb.zip", content = function(file) { nb <- c( "---", sprintf("title: %s", shiny_title), "output: html_notebook", "---", " ", " " ) if (!is.null(shiny_abstract)) { nb <- c(nb, " shiny_abstract, " ", " " ) } comp <- components() nb_blocks <- c("setup", "create_sample", names(comp[!names(comp) %in% c("sample_selection", "subset_factor", "grouping", "udvars")]), "end_note") pos_html_blocks <- 0 for (blk in nb_blocks) { if (blk == "html_block") { pos_html_blocks <- pos_html_blocks + 1 nb <- c(nb, shiny_html_blocks[pos_html_blocks], rep(" ", 2)) } else { comp_code <- create_nb_code_for_component(blk) if(length(comp_code) <= 1) { stop(sprintf('Encountered unknown notebook block: "%s"', blk)) } else nb <- c(nb, comp_code) } } write(nb, file = "ExPanD_nb_code.Rmd", sep = "\n") nb_df <- create_ca_sample() nb_df_def <- cas_definition if (length(uc$udvars) != 0) { nb_df <- cbind(nb_df, udv_sample) nb_df_def <- rbind(nb_df_def, udv_definition) } nb_df_def <- nb_df_def[!nb_df_def$var_name %in% uc$delvars,] nb_df <- nb_df[, as.character(nb_df_def$var_name)] save(nb_df, nb_df_def, file = "ExPanD_nb_data.Rdata") zip::zipr(file, files = c("ExPanD_nb_code.Rmd", "ExPanD_nb_data.Rdata")) } )
.logit4Pred <- function(lm.out, nm, d, my_formula, brief, res_rows, n.vars, n.pred, n.obs, n.keep, digits_d, pre, line, new.data, pred, pred_all, prob_cut, numeric.all, in.data.frame, X1_new, X2_new, X3_new, X4_new, X5_new, X6_new, pdf_file, width, height, ...) { pred_sort <- TRUE if (length(prob_cut) == 1) p.cut <- prob_cut else p.cut <- 0.5 for (i in 1:length(prob_cut)) { if (!new.data) { p.int <- data.frame(predict(lm.out, type="response", se.fit=TRUE)) label <- integer(length=nrow(p.int)) for (irow in 1:nrow(p.int)) label[irow] <- ifelse (p.int$fit[irow] < p.cut, 0, 1) if (all(label == 0) || all(label == 1)) { cat("\n"); stop(call.=FALSE, "\n","------\n", "For threshold ", p.cut, ", all predicted values are ", label[1], "\n\n") } out <- cbind(lm.out$model[c(nm[seq(2,n.vars)], nm[1])], label, p.int$fit, p.int$se.fit) } else { Xnew.val <- list(X1_new) if (n.vars > 2) for (i in 2:(n.pred)) { pp <- eval(parse(text=paste("X", toString(i),"_new",sep=""))) Xnew.val <- c(Xnew.val, list(pp)) } Xnew <- expand.grid(Xnew.val) for (i in 1:(n.pred)) names(Xnew)[i] <- nm[i+1] p.int <- data.frame(predict(lm.out, type="response", se.fit=TRUE, newdata=Xnew)) label <- integer(length=nrow(p.int)) for (i in 1:nrow(p.int)) label[i] <- ifelse (p.int$fit[i] < p.cut, 0, 1) Ynew <- character(length=nrow(Xnew)) Ynew <- "" out <- cbind(Xnew, Ynew, label, p.int$fit,p.int$se.fit) } if (i == 1) { cat( "\n\n", " FORECASTS", "\n\n") cat("Probability threshold for predicting ", levels(lm.out$model[,nm[1]])[2], ":", " ", p.cut, "\n\n", sep="") if (is.factor(lm.out$model[,nm[1]])) cat(" 0: ", levels(lm.out$model[,nm[1]])[1], "\n", " 1: ", levels(lm.out$model[,nm[1]])[2], "\n", sep="") cat("\n") cat("Data, Fitted Values, Standard Errors\n") cat(" [sorted by fitted value]\n") if (n.keep > 50 && pred_all == FALSE && !new.data) cat(" [to save space only some intervals printed, ", " pred_all=TRUE to see all]\n") names(out)[n.vars+1] <- "predict" names(out)[n.vars+2] <- "fitted" names(out)[n.vars+3] <- "std.err" out <- data.frame(out, stringsAsFactors=TRUE) if (pred_sort) { o <- order(out[,n.vars+2]) out <- out[o,] } .dash(68) if (n.keep < 25 || pred_all == TRUE || new.data) print(out, digits=digits_d) else { print(out[1:4,], digits=digits_d) cat("\n... for the rows of data where fitted is close to 0.5 ...\n\n") i.mid <- which.min(abs(0.5-sort(p.int$fit))) print(out[(i.mid-2):(i.mid+2),], digits=digits_d) cat("\n... for the last 4 rows of sorted data ...\n\n") print(out[(n.keep-3):n.keep,], digits=digits_d) } .dash(68) cat("\n\n") cat("----------------------------\n") cat("Specified confusion matrices\n") cat("----------------------------\n") cat("\n") } if (i > 1) cat("\n\n") .logit5Confuse(lm.out, out, n.vars, nm, new.data, prob_cut[i]) } if (pred && n.pred==1 && !is.factor(lm.out$model[,nm[2]]) && is.null(X1_new)){ .opendev(pdf_file, width, height) x.values <- lm.out$model[,nm[2]] if (!is.factor(lm.out$model[,nm[1]])) { y.values <- lm.out$model[,nm[1]] y.label <- paste("Probability of", nm[1]) } else { y.values <- as.numeric(lm.out$model[,nm[1]]) min.y <- min(y.values, na.rm=TRUE) y.label <- paste("Probability ", nm[1], " = ", levels(lm.out$model[,nm[1]])[2], sep="") for (i in 1:length(y.values)) y.values[i] <- ifelse (y.values[i]==min.y, 0, 1) } max.width <- strwidth(as.character(max(pretty(y.values))), units="inches") margs <- .marg(max.width, y.lab=nm[1], x.lab=nm[2], main=NULL, sub=NULL) lm <- margs$lm + 0.2 tm <- margs$tm rm <- margs$rm bm <- margs$bm par(bg=getOption("window_fill")) orig.params <- par(no.readonly=TRUE) on.exit(par(orig.params)) par(mai=c(bm, lm, tm, rm)) plot(x.values,y.values, type="n", axes=FALSE, ann=FALSE, ylim=c(-.10,1.10), ...) usr <- par("usr") fill_bg <- getOption("panel_fill") rect(usr[1], usr[3], usr[2], usr[4], col=fill_bg, border="transparent") min.x <- min(x.values, na.rm=TRUE) max.x <- max(x.values, na.rm=TRUE) axT1 <- pretty(c(min.x, max.x)) axT2 <- seq(0,1,.2) .grid("v", axT1) .grid("h", axT2) rect(usr[1], usr[3], usr[2], usr[4], col="transparent", border=getOption("panel_color"), lwd=getOption("panel_lwd"), lty=getOption("panel_lty")) .axes(NULL, NULL, axTicks(1), axTicks(2)) main.lab <- NULL sub.lab <- NULL .axlabs(nm[2], y.label, main.lab, sub.lab, cex.lab=getOption("lab_cex"), cex.main=1.0, ...) fill <- getOption("pt_fill") trans <- .7 fill <- .maketrans(fill, (1-trans)*256) color <- getOption("pt_color") points(x.values,y.values, pch=21, col=color, bg=fill, cex=0.8) lines(x.values, p.int$fit, col=color, lwd=2) if (!is.null(pdf_file)) { dev.off() .showfile(pdf_file, "fitted values and scatter plot") } } else { if (numeric.all && in.data.frame) { .opendev(pdf_file, width, height) panel2.smooth <- function (x, y, pch=par("pch"), cex=.9, col.pt=getOption("pt_color"), col.smooth=getOption("col.bar_color"), span=2/3, iter=3, ...) { usr <- par("usr") rect(usr[1], usr[3], usr[2], usr[4], col=getOption("border_fill"), border=getOption("border_color")) points(x, y, pch=pch, col=col.pt, bg=getOption("pt_fill"), cex=cex) ok <- is.finite(x) & is.finite(y) if (any(ok)) lines(lowess(x[ok], y[ok], f=span, iter=iter), col=col.smooth, ...) } pairs(lm.out$model[c(nm)], panel=panel2.smooth) if (!is.null(pdf_file)) { dev.off() .showfile(pdf_file, "scatter plot matrix") } } else { cat("\n\n>>> No scatterplot matrix reported because not all variables are ") if (!in.data.frame) cat("in the data frame.\n") if (!numeric.all) cat("numeric.\n") } } }
getUniqueNode = function(graph, .label, ...) UseMethod("getUniqueNode") getUniqueNode.graph = function(graph, .label, ...) { stopifnot(is.character(.label)) param = c(...) if(length(param) > 1) stop("Can only search by one property.") if(length(param) == 0) stop("Must supply a key = value pair.") keys = invisible(getConstraint(graph, .label))$property_keys if(!(names(param) %in% keys)) { stop("The key = value pair given must have a uniqueness constraint applied.") } url = paste0(attr(graph, "root"), "/label/", .label, "/nodes?", names(param), "=") if(is.character(param[[1]])) { param[[1]] = URLencode(param[[1]], reserved = TRUE) url = paste0(url, "%22", param[[1]], "%22") } else if(is.numeric(param[[1]])) { url = paste0(url, param[[1]]) } else if(is.logical(param[[1]])) { if(param[[1]]) { url = paste0(url, "true") } else { url = paste0(url, "false") } } else { stop("Property value must be character, numeric, or logical.") } result = http_request(url, "GET") if(length(result) == 0) { return(invisible()) } result = result[[1]] node = configure_result(result) return(node) }
context("subcrt") basis(delete=TRUE) test_that("unbalanced reactions give a warning or are balanced given sufficient basis species", { expect_warning(subcrt(c("glucose", "ethanol"), c(-1, 3)), "reaction among glucose,ethanol was unbalanced, missing H-6O3") basis("CHNOS") s <- subcrt(c("malic acid", "citric acid"), c(-1, 1)) expect_equal(s$reaction$coeff, c(-1, 1, -2, -1, 1.5)) expect_equal(s$reaction$name, c("malic acid", "citric acid", "CO2", "water", "oxygen")) }) test_that("standard Gibbs energies of reactions involving aqueous species are consistent with the literature", { T <- c(2, 18, 25, 37, 45, 55, 70, 85, 100, 115, 150, 200) E.units("J") AS01.H2O <- c(78.25, 79.34, 79.89, 80.90, 81.63, 82.59, 84.13, 85.78, 87.55, 89.42, 94.22, 102.21) sout.H2O <- subcrt(c("H2O", "H+", "OH-"), c(-1, 1, 1), T=T)$out expect_maxdiff(sout.H2O$G/1000, AS01.H2O, 0.01) AS01.A1 <- c(-263.94, -263.45, -263.17, -262.62, -262.20, -261.63, -260.67, -259.60, -258.44, -257.18, -253.90, -248.44) sout.A1 <- subcrt(c("H2", "O2", "H2O"), "aq", c(-1, -0.5, 1), T=T)$out expect_maxdiff(sout.A1$G/1000, AS01.A1, 0.01) AS01.C7 <- c(-1695.30, -1686.90, -1682.80, -1675.30, -1670.00, -1663.10, -1652.00, -1640.30, -1628.00, -1615.20, -1583.50, -1533.00) s.C7 <- subcrt(c("S2O3-2", "H2O", "O2", "SO4-2", "H+", "S"), c("aq", "liq", "aq", "aq", "aq", "cr"), c(-5, -1, -4, 6, 2, 4), T=T) sout.C7 <- s.C7$out expect_maxdiff(sout.C7$G/1000, AS01.C7, 0.05) expect_equal(s.C7$polymorphs$sulfur, c(1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 3)) E.units("cal") }) test_that("subzero degree C calculations are possible", { s.H2O <- subcrt("H2O", T=c(-20.1, seq(-20, 0)), P=1)$out$water expect_equal(s.H2O$G[1], NA_real_) expect_equal(floor(s.H2O$G[2]), -56001) expect_equal(s.H2O$T[22], 0.01) }) test_that("calculations using IAPWS-95 are possible", { oldwat <- water("IAPWS95") sb <- subcrt(c("H2O", "Na+"), T=c(-30, -20, 0, 10), P=1)$out expect_true(all(sb$`Na+`$G < sb$water$G)) water(oldwat) }) test_that("phase transitions of minerals give expected messages and results", { iacanthite <- info("acanthite", "cr2") expect_message(subcrt(iacanthite), "subcrt: temperature\\(s\\) of 623.15 K and above exceed limit for acanthite cr2 \\(using NA for G\\)") expect_equal(subcrt("acanthite")$out$acanthite$polymorph, c(1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3)) expect_equal(subcrt(c("bunsenite", "nickel", "oxygen"), c(-1, 1, 0.5))$reaction$coeff, c(-1, 1, 0.5)) expect_equal(is.na(subcrt("rhodochrosite", T = c(699:701), P = 1, convert = FALSE)$out[[1]]$G), c(FALSE, FALSE, TRUE)) }) test_that("calculations for K-feldspar are consistent with SUPCRT92", { add.OBIGT("SUPCRT92", "K-feldspar") T <- c(100, 100, 1000, 1000) P <- c(5000, 50000, 5000, 50000) SUPCRT_G <- c(-886628, -769531, -988590, -871493) SUPCRT_H <- c(-932344, -815247, -865868, -748771) SUPCRT_S <- c(62.6, 62.6, 150.6, 150.6) SUPCRT_V <- c(108.9, 108.9, 108.9, 108.9) SUPCRT_Cp <- c(56.7, 56.7, 80.3, 80.3) CHNOSZ <- subcrt("K-feldspar", T=T, P=P)$out[[1]] expect_equal(round(CHNOSZ$G), SUPCRT_G) expect_equal(round(CHNOSZ$H), SUPCRT_H) expect_equal(round(CHNOSZ$S, 1), SUPCRT_S) expect_equal(round(CHNOSZ$V, 1), SUPCRT_V) expect_equal(round(CHNOSZ$Cp, 1), SUPCRT_Cp) OBIGT() }) test_that("calculations for quartz are nearly consistent with SUPCRT92", { add.OBIGT("SUPCRT92") T <- c(100, 100, 1000, 1000) P <- c(5000, 50000, 5000, 50000) SUPCRT_G <- c(-202778, -179719, -223906, -199129) SUPCRT_H <- c(-214133, -191708, -199359, -177118) SUPCRT_S <- c(12.3, 10.6, 31.8, 29.8) SUPCRT_V <- c(22.5, 20.3, 23.7, 21.9) SUPCRT_Cp <- c(12.3, 12.3, 16.9, 16.9) CHNOSZ <- subcrt("quartz", T=T, P=P)$out[[1]] expect_equal(round(CHNOSZ$G)[-4], SUPCRT_G[-4]) expect_equal(round(CHNOSZ$H)[-4], SUPCRT_H[-4]) expect_equal(round(CHNOSZ$S, 1)[-4], SUPCRT_S[-4]) expect_equal(round(CHNOSZ$Cp, 1)[-4], SUPCRT_Cp[-4]) expect_equal(round(CHNOSZ$V, 1), SUPCRT_V) OBIGT() }) test_that("more calculations for quartz are nearly consistent with SUPCRT92", { add.OBIGT("SUPCRT92") S92_1bar <- read.table(header = TRUE, text = " T G H S V 573 -214507 -209517 24.7 23.3 574 -214532 -209499 24.8 23.3 575 -214557 -209192 25.1 23.7 576 -214582 -209176 25.1 23.7 ") CHNOSZ_1bar <- subcrt("quartz", T=seq(573, 576), P=1)$out[[1]] expect_equal(round(CHNOSZ_1bar$G), S92_1bar$G) expect_equal(round(CHNOSZ_1bar$H), S92_1bar$H) expect_equal(round(CHNOSZ_1bar$S, 1), S92_1bar$S) expect_equal(round(CHNOSZ_1bar$V, 1), S92_1bar$V) S92_5000bar <- read.table(header = TRUE, text = " T G H S V 703 -215044 -204913 26.7 23.3 704 -215071 -204895 26.7 23.3 705 -215142 -204254 27.4 23.7 706 -215170 -204238 27.5 23.7 ") CHNOSZ_5000bar <- subcrt("quartz", T=seq(703, 706), P=5000)$out[[1]] expect_maxdiff(CHNOSZ_5000bar$G, S92_5000bar$G, 20) expect_maxdiff(CHNOSZ_5000bar$H, S92_5000bar$H, 300) expect_maxdiff(CHNOSZ_5000bar$S, S92_5000bar$S, 0.5) expect_maxdiff(CHNOSZ_5000bar$V, S92_5000bar$V, 0.05) OBIGT() }) test_that("duplicated species yield correct phase transitions", { s1 <- subcrt("chalcocite", T=c(100, 1000), P=1000) s2 <- subcrt(rep("chalcocite", 2), T=c(100, 1000), P=1000) expect_equal(s1$out[[1]]$logK, s2$out[[1]]$logK) expect_equal(s1$out[[1]]$logK, s2$out[[2]]$logK) basis(c("copper", "chalcocite")) species("chalcocite") a <- affinity(T=c(0, 1000, 2), P=1) expect_equal(as.numeric(a$values[[1]]), c(0, 0)) }) test_that("reaction coefficients for repeated species are handled correctly", { s1 <- subcrt(c("quartz", "SiO2"), c(-1, 1)) expect_equal(s1$reaction$coeff, c(-1, 1)) s2 <- subcrt(c("pyrrhotite", "pyrrhotite"), c(-1, 1)) expect_equal(s2$reaction$coeff, c(-1, 1)) s3 <- subcrt(c("SiO2", "SiO2"), c(-1, 1)) expect_equal(s3$reaction$coeff, c(-1, 1)) s4 <- subcrt(c("H2O", "H2O", "H2O", "H2O", "H2O"), c(-2, 1, -3, 1, 3)) expect_equal(s4$reaction$coeff, c(-2, 1, -3, 1, 3)) expect_equal(unique(s4$out$logK), 0) }) test_that("properties of HKF species below 0.35 g/cm3 are NA and give a warning", { wtext <- "below minimum density for applicability of revised HKF equations \\(2 T,P pairs\\)" expect_warning(s1 <- subcrt(c("Na+", "quartz"), T=450, P=c(400, 450, 500)), wtext) expect_equal(sum(is.na(s1$out$`Na+`$logK)), 2) expect_equal(sum(is.na(s1$out$quartz$logK)), 0) s2 <- subcrt(c("Na+", "quartz"), T=450, P=c(400, 450, 500), exceed.rhomin=TRUE) expect_equal(sum(is.na(s2$out$`Na+`$logK)), 0) }) test_that("combining minerals with phase transitions and aqueous species with IS > 0 does not mangle output", { add.OBIGT("SUPCRT92") s1 <- subcrt(c("quartz", "K+"), T=25, IS=1) s2 <- subcrt(c("K+", "quartz"), T=25, IS=1) expect_true(identical(colnames(s1$out[[1]]), c("T", "P", "rho", "logK", "G", "H", "S", "V", "Cp", "polymorph"))) expect_true(identical(colnames(s2$out[[2]]), c("T", "P", "rho", "logK", "G", "H", "S", "V", "Cp", "polymorph"))) expect_true(identical(colnames(s1$out[[2]]), c("T", "P", "rho", "logK", "G", "H", "S", "V", "Cp", "loggam", "IS"))) expect_true(identical(colnames(s2$out[[1]]), c("T", "P", "rho", "logK", "G", "H", "S", "V", "Cp", "loggam", "IS"))) expect_true(identical(colnames(subcrt(c("iron", "Na+", "Cl-", "OH-", "pyrrhotite"), T=25, IS=1)$out$pyrrhotite), c("T", "P", "rho", "logK", "G", "H", "S", "V", "Cp", "polymorph"))) }) test_that("argument checking handles some types of invalid input", { expect_error(subcrt("H2O", -1, "liq", "xxx"), "invalid property name: xxx") expect_error(subcrt("H2O", -1, "liq", c(1, 2)), "invalid property names: 1 2") })
fitCatEndPts <- function(endpoints,L){ if(L < minmaxLength(endpoints)['min']){ stop("Not possible: length is too short") } fn <- function(para,endpoints,L){ x0 <- endpoints[1,1];x1 <- endpoints[2,1] y0 <- endpoints[1,2];y1 <- endpoints[2,2] c1 <- para[1];c2 <- para[2]; lambda <- para[3] d1 <- (y0 - f(x=x0,c1=c1,c2=c2,lambda=lambda))^2 d2 <- (y1 - f(x=x1,c1=c1,c2=c2,lambda=lambda))^2 d3 <- (L - getCatLength(x0=x0,x1=x1,c1=c1,c2=c2))^2 return( sum(c(d1,d2,d3))) } c2 <- mean(endpoints[,1]) c1 <- min(endpoints[,2])/2 lambda <- c1 tryCatch(tmp <- optim(par=c(c1,c2,lambda),fn=fn,endpoints=endpoints,L=L), error = function(e) e, finally=print("optim worked")) if(tmp$convergence !=0){ print("Maybe problems with convergence of optim - be careful") } par <- c(c1=tmp$par[1],c2=tmp$par[2],lambda=tmp$par[3]) return(par) }
moreFitIndices <- function(object, fit.measures = "all", nPrior = 1) { fit.choices <- c("gammaHat","adjGammaHat","baseline.rmsea", "gammaHat.scaled","adjGammaHat.scaled","baseline.rmsea.scaled", "aic.smallN","bic.priorN","hqc","sic") flags <- setdiff(fit.measures, c("all", fit.choices)) if (length(flags)) stop(paste("Argument 'fit.measures' includes invalid options:", paste(flags, collapse = ", "), "Please choose 'all' or among the following:", paste(fit.choices, collapse = ", "), sep = "\n")) if ("all" %in% fit.measures) fit.measures <- fit.choices fit <- lavInspect(object, "fit") p <- length(lavaan::lavNames(object, type = "ov", group = 1)) nParam <- fit["npar"] ngroup <- lavInspect(object, "ngroups") N <- n <- lavInspect(object, "ntotal") if (lavInspect(object, "options")$mimic == "EQS") n <- n - ngroup f <- -2 * fit["logl"] result <- list() if (length(grep("gamma", fit.measures, ignore.case = TRUE))) { gammaHat <- p / (p + 2 * ((fit["chisq"] - fit["df"]) / n)) adjGammaHat <- 1 - (((ngroup * p * (p + 1)) / 2) / fit["df"]) * (1 - gammaHat) result["gammaHat"] <- gammaHat result["adjGammaHat"] <- adjGammaHat if (any(grepl(pattern = "scaled", x = names(fit)))) { gammaHatScaled <- p / (p + 2 * ((fit["chisq.scaled"] - fit["df.scaled"]) / n)) adjGammaHatScaled <- 1 - (((ngroup * p * (p + 1)) / 2) / fit["df.scaled"]) * (1 - gammaHatScaled) result["gammaHat.scaled"] <- gammaHatScaled result["adjGammaHat.scaled"] <- adjGammaHatScaled } } if (length(grep("rmsea", fit.measures))) { result["baseline.rmsea"] <- nullRMSEA(object, silent = TRUE) if (any(grepl(pattern = "scaled", x = names(fit)))) { result["baseline.rmsea.scaled"] <- nullRMSEA(object, scaled = TRUE, silent = TRUE) } } if (!is.na(f)) { if ("aic.smallN" %in% fit.measures) { warning('AICc (aic.smallN) was developed for univariate linear models.', ' It is probably not appropriate to use AICc to compare SEMs.') result["aic.smallN"] <- fit[["aic"]] + (2 * nParam * (nParam + 1)) / (N - nParam - 1) } if ("bic.priorN" %in% fit.measures) { result["bic.priorN"] <- f + log(1 + N/nPrior) * nParam } if ("hqc" %in% fit.measures) result["hqc"] <- f + 2 * log(log(N)) * nParam if ("sic" %in% fit.measures) result["sic"] <- sic(f, object) } class(result) <- c("lavaan.vector","numeric") unlist(result[fit.measures]) } nullRMSEA <- function(object, scaled = FALSE, silent = FALSE) { fit <- lavaan::update(object, model = lavaan::lav_partable_independence(object)) fits <- lavaan::fitMeasures(fit, fit.measures = c("rmsea","rmsea.scaled", "rmsea.robust")) if (scaled) { RMSEA <- fits["rmsea.robust"] if (is.na(RMSEA)) RMSEA <- fits["rmsea.scaled"] if (is.na(RMSEA)) RMSEA <- fits["rmsea"] } else RMSEA <- fits["rmsea"] if (!silent) { cat("The baseline model's RMSEA =", RMSEA, "\n\n") if (RMSEA < 0.158 ) { cat("CFI, TLI, and other incremental fit indices may not be very", "informative because the baseline model's RMSEA < 0.158", "(Kenny, Kaniskan, & McCoach, 2015). \n") } } invisible(RMSEA) } sic <- function(f, lresults = NULL) { E.inv <- lavaan::lavTech(lresults, "inverted.information.observed") if (inherits(E.inv, "try-error")) { return(as.numeric(NA)) } E <- MASS::ginv(E.inv) * lavaan::nobs(lresults) eigvals <- eigen(E, symmetric = TRUE, only.values = TRUE)$values eigvals <- eigvals[ eigvals > sqrt(.Machine$double.eps)] DET <- prod(eigvals) if (DET <= 0) return(NA) f + log(DET) } chisqSmallN <- function(fit0, fit1 = NULL, smallN.method = if (is.null(fit1)) c("swain","yuan.2015") else "yuan.2005", ..., omit.imps = c("no.conv","no.se")) { if ("all" %in% smallN.method) smallN.method <- c("swain","yuan.2015", "yuan.2005","bartlett") smallN.method <- intersect(tolower(smallN.method), c("swain","yuan.2015","yuan.2005","bartlett")) if (!any(smallN.method %in% c("swain","yuan.2015","yuan.2005","bartlett"))) stop('No recognized options for "smallN.method" argument') if (!inherits(fit0, what = c("lavaan","lavaanList"))) stop("this function is only applicable to fitted lavaan models") if (!is.null(fit1)) { if (!inherits(fit1, what = c("lavaan","lavaanList"))) stop("this function is only applicable to fitted lavaan models") modClass <- unique(sapply(list(fit0, fit1), class)) if (length(modClass) > 1L) stop('All models must be of the same class (e.g.,', ' cannot compare lavaan objects to lavaan.mi)') suppressMessages(DF0 <- getMethod("fitMeasures", class(fit0))(fit0, fit.measures = "df", omit.imps = omit.imps)[1]) suppressMessages(DF1 <- getMethod("fitMeasures", class(fit1))(fit1, fit.measures = "df", omit.imps = omit.imps)[1]) if (DF0 == DF1) stop("Models have the same degrees of freedom.") parent <- which.min(c(DF0, DF1)) if (parent == 1L) { parent <- fit0 fit0 <- fit1 fit1 <- parent parent <- DF0 DF0 <- DF1 DF1 <- parent } if (min(c(DF0, DF1)) == 0L) { message('Less restricted model has df=0, so chi-squared difference ', 'not needed to compare models. Using only the restricted ', "model's chi-squared statistic.") fit1 <- NULL } } if (!is.null(fit1)) { if (any(smallN.method %in% c("yuan.2015","swain"))) { message('Swain(1975) and Yuan (2015) corrections depend on the number ', 'of free parameters, so it is unavailable for model comparison.') smallN.method <- smallN.method[-which(smallN.method %in% c("yuan.2015","swain"))] } if (!length(smallN.method)) { stop('No valid options for "smallN.method" argument') } else warning('Small-N corrections developed for single models, not for ', 'model comparison. Experimentally applying correction to ', 'chi-squared difference statistic, which might be invalid.') } N <- lavInspect(fit0, "ntotal") Ng <- lavInspect(fit0, "ngroups") if (!lavInspect(fit0, "options")$sample.cov.rescale) N <- N - Ng P <- length(lavNames(fit0)) K <- length(lavNames(fit0, type = "lv")) if (is.null(fit1)) { FIT <- getMethod("fitMeasures", class(fit0))(fit0, omit.imps = omit.imps, asymptotic = TRUE, fit.measures = c("npar","chisq", "df","pvalue")) scaled <- any(grepl(pattern = "scaled", x = names(FIT))) if (scaled) warning('Small-N corrections developed assuming normality, but', ' a scaled test was requested. Applying correction(s) ', 'to the scaled test statistic, but this has not ', 'performed well in past simulations.') NPAR <- FIT[["npar"]] chi <- FIT[[if (scaled) "chisq.scaled" else "chisq"]] DF <- FIT[[if (scaled) "df.scaled" else "df"]] PV <- FIT[[if (scaled) "pvalue.scaled" else "pvalue"]] } else { N1 <- lavInspect(fit1, "ntotal") Ng1 <- lavInspect(fit1, "ngroups") if (!lavInspect(fit1, "options")$sample.cov.rescale) N1 <- N1 - Ng1 if (N != N1) stop("Unequal sample sizes") if (P != length(lavNames(fit1))) stop("Unequal number of observed variables") K1 <- length(lavNames(fit1, type = "lv")) if (K != K1 && any(smallN.method %in% c("yuan.2005","bartlett"))) { warning("Unequal number of latent variables (k). Unclear how to apply ", "Yuan (2005) or Bartlett (2015) corrections when comparing ", "models with different k. Experimentally using the larger ", "model's k, but there is no evidence this is valid.") K <- max(K, K1) } AOV <- try(compareFit(fit0, fit1, argsLRT = list(...), indices = FALSE), silent = TRUE) if (inherits(AOV, "try-error")) stop('Model comparison failed. Try using ', 'lavTestLRT() to investigate why.') if (inherits(fit0, "lavaan")) { if (grepl("scaled", attr(AOV@nested, "heading"), ignore.case = TRUE)) warning('Small-N corrections developed assuming normality, but scaled ', 'tests were requested. Applying correction(s) to the scaled test', ' statistic, but this has not performed well in past simulations.') chi <- AOV@nested[["Chisq diff"]][2] DF <- AOV@nested[["Df diff"]][2] PV <- AOV@nested[["Pr(>Chisq)"]][2] } else if (inherits(fit0, "lavaan.mi")) { if (any(grepl("scaled", colnames(AOV@nested), ignore.case = TRUE))) warning('Small-N corrections developed assuming normality, but scaled ', 'tests were requested. Applying correction(s) to the scaled test', ' statistic, but this has not performed well in past simulations.') chi <- AOV@nested[1, 1] DF <- AOV@nested[1, 2] PV <- AOV@nested[1, 3] } } out <- list() out[[ lavInspect(fit0, "options")$test ]] <- c(chisq = chi, df = DF, pvalue = PV) class(out[[1]]) <- c("lavaan.vector","numeric") if ("swain" %in% smallN.method) { Q <- (sqrt(1 + 8*NPAR) - 1) / 2 num <- P*(2*P^2 + 3*P - 1) - Q*(2*Q^2 + 3*Q - 1) SC <- 1 - num / (12*DF*N) out[["swain"]] <- c(chisq = chi*SC, df = DF, pvalue = pchisq(chi*SC, DF, lower.tail = FALSE), smallN.factor = SC) class(out[["swain"]]) <- c("lavaan.vector","numeric") } if ("yuan.2015" %in% smallN.method) { SC <- (lavInspect(fit0, "ntotal") - (2.381 + .361*P + .006*NPAR)) / N out[["yuan.2015"]] <- c(chisq = chi*SC, df = DF, pvalue = pchisq(chi*SC, DF, lower.tail = FALSE), smallN.factor = SC) class(out[["yuan.2015"]]) <- c("lavaan.vector","numeric") } if ("yuan.2005" %in% smallN.method) { SC <- 1 - ((2*P + 2*K + 7) / (6*N)) out[["yuan.2005"]] <- c(chisq = chi*SC, df = DF, pvalue = pchisq(chi*SC, DF, lower.tail = FALSE), smallN.factor = SC) class(out[["yuan.2005"]]) <- c("lavaan.vector","numeric") } if ("bartlett" %in% smallN.method) { message('Bartlett\'s k-factor correction was developed for EFA models, ', 'not for general SEMs.') SC <- 1 - ((2*P + 4*K + 5) / (6*N)) out[["bartlett"]] <- c(chisq = chi*SC, df = DF, pvalue = pchisq(chi*SC, DF, lower.tail = FALSE), smallN.factor = SC) class(out[["bartlett"]]) <- c("lavaan.vector","numeric") } out[c(lavInspect(fit0, "options")$test, smallN.method)] }
library(fitdistrplus) nbboot <- 201 nbboot <- 10 if (requireNamespace ("ggplot2", quietly = TRUE)) {ggplotEx <- TRUE} set.seed(123) s1 <- rgamma(20, 3, 2) f1 <- fitdist(s1, "gamma") b1 <- bootdist(f1, niter=nbboot, silent=TRUE) plot(b1) quantile(b1) par(mfrow=c(1,2)) CIcdfplot(b1, CI.level=95/100, CI.output = "probability", CI.fill="grey80", CI.col="black") CIcdfplot(b1, CI.level=95/100, CI.output = "quantile", datacol="blue") if(ggplotEx) CIcdfplot(b1, CI.level=95/100, CI.output = "probability", CI.fill="grey80", CI.col="black", plotstyle = "ggplot") if(ggplotEx) CIcdfplot(b1, CI.level=95/100, CI.output = "quantile", datacol="blue", plotstyle = "ggplot") par(mfrow=c(1,2)) CIcdfplot(b1, CI.level=85/100, CI.output = "probability") CIcdfplot(b1, CI.level=85/100, CI.output = "quantile") if(ggplotEx) CIcdfplot(b1, CI.level=85/100, CI.output = "probability", plotstyle = "ggplot") if(ggplotEx) CIcdfplot(b1, CI.level=85/100, CI.output = "quantile", plotstyle = "ggplot") par(mfrow=c(1,2)) CIcdfplot(b1, CI.level=90/100, CI.output = "probability") CIcdfplot(b1, CI.level=90/100, CI.output = "quantile", CI.col="black", CI.type = "less", CI.fill="grey85", verticals=TRUE, datacol="blue", do.points=FALSE) if(ggplotEx) CIcdfplot(b1, CI.level=90/100, CI.output = "probability", plotstyle = "ggplot") if(ggplotEx) CIcdfplot(b1, CI.level=90/100, CI.output = "quantile", CI.col="black", CI.type = "less", CI.fill="grey85", verticals=TRUE, datacol="blue", do.points=FALSE, plotstyle = "ggplot") par(mfrow=c(1,2)) CIcdfplot(b1, CI.level=90/100, CI.output = "probability", CI.type = "greater") CIcdfplot(b1, CI.level=90/100, CI.output = "quantile", CI.col="black", CI.type = "greater", CI.fill="grey90", datacol="blue", datapch=21) if(ggplotEx) CIcdfplot(b1, CI.level=90/100, CI.output = "probability", CI.type = "greater", plotstyle = "ggplot") if(ggplotEx) CIcdfplot(b1, CI.level=90/100, CI.output = "quantile", CI.col="black", CI.type = "greater", CI.fill="grey90", datacol="blue", datapch=21, plotstyle = "ggplot") par(mfrow=c(1,1)) CIcdfplot(b1, CI.level=90/100, CI.output = "probability", CI.col="black", CI.type = "less", CI.fill="grey90") CIcdfplot(b1, CI.level=90/100, CI.output = "quantile", CI.col="black", CI.type = "less", CI.fill="grey90", verticals=TRUE, datacol="blue", do.points=FALSE) CIcdfplot(b1, CI.level=90/100, CI.output = "quantile", CI.col="grey90", CI.type = "less", CI.fill="grey90", verticals=TRUE, datacol="blue", do.points=FALSE, CI.only=TRUE) CIcdfplot(b1, CI.level=90/100, CI.output = "probability", CI.col="grey85", CI.type = "less", CI.fill="grey90", CI.only = TRUE) CIcdfplot(b1, CI.output = "probability", fitlty=3, fitlwd=4) if(ggplotEx) CIcdfplot(b1, CI.level=90/100, CI.output = "probability", CI.col="black", CI.type = "less", CI.fill="grey90", plotstyle = "ggplot") if(ggplotEx) CIcdfplot(b1, CI.level=90/100, CI.output = "quantile", CI.col="black", CI.type = "less", CI.fill="grey90", verticals=TRUE, datacol="blue", do.points=FALSE, plotstyle = "ggplot") if(ggplotEx) CIcdfplot(b1, CI.level=90/100, CI.output = "quantile", CI.col="grey90", CI.type = "less", CI.fill="grey90", verticals=TRUE, datacol="blue", do.points=FALSE, CI.only=TRUE, plotstyle = "ggplot") if(ggplotEx) CIcdfplot(b1, CI.level=90/100, CI.output = "probability", CI.col="grey85", CI.type = "less", CI.fill="grey90", CI.only = TRUE, plotstyle = "ggplot") if(ggplotEx) CIcdfplot(b1, CI.output = "probability", fitlty=3, fitlwd=4, plotstyle = "ggplot") data(salinity) log10LC50 <-log10(salinity) fln <- fitdistcens(log10LC50,"norm") bln <- bootdistcens(fln, niter=nbboot) (HC5ln <- quantile(bln,probs = 0.05)) CIcdfplot(bln, CI.output = "quantile", CI.fill = "lightblue", CI.col = "blue", xlab = "log10(LC50)",xlim=c(0.5,2),lines01 = TRUE) if(ggplotEx) CIcdfplot(bln, CI.output = "quantile", CI.fill = "lightblue", CI.col = "blue", xlab = "log10(LC50)",xlim=c(0.5,2),lines01 = TRUE, plotstyle = "ggplot") CIcdfplot(bln, CI.output = "quantile", CI.fill = "lightblue", CI.col = "blue", xlab = "log10(LC50)", lines01 = TRUE, xlim = c(0.8, 1.5), ylim = c(0, 0.1)) abline(h = 0.05, lty = 1) if(ggplotEx) CIcdfplot(bln, CI.output = "quantile", CI.fill = "lightblue", CI.col = "blue", xlab = "log10(LC50)", lines01 = TRUE, xlim = c(0.8, 1.5), ylim = c(0, 0.1), plotstyle = "ggplot") + ggplot2::geom_hline(yintercept = 0.05) CIcdfplot(bln, CI.output = "probability", CI.fill = "lightblue", CI.col = "blue", xlab = "log10(LC50)", lines01 = TRUE, xlim = c(0.8, 1.5), ylim = c(0, 0.1)) abline(h = 0.05, lty = 1) if(ggplotEx) CIcdfplot(bln, CI.output = "probability", CI.fill = "lightblue", CI.col = "blue", xlab = "log10(LC50)", lines01 = TRUE, xlim = c(0.8, 1.5), ylim = c(0, 0.1), plotstyle = "ggplot") + ggplot2::geom_hline(yintercept = 0.05) set.seed(123) s3 <- rgamma(5, 3, 10) f3 <- fitdist(s3, "norm") b3 <- bootdist(f3, niter=nbboot, silent=TRUE) par(mfrow=c(1,2)) CIcdfplot(b3, CI.level=90/100, CI.output = "probability") CIcdfplot(b3, CI.level=90/100, CI.output = "quantile") if(ggplotEx) CIcdfplot(b3, CI.level=90/100, CI.output = "probability", plotstyle = "ggplot") if(ggplotEx) CIcdfplot(b3, CI.level=90/100, CI.output = "quantile", plotstyle = "ggplot")
max_effective_bets <- function(x0, sigma, t, tol = 1e-20, maxeval = 5000L, maxiter = 5000L) { assertthat::assert_that(assertthat::is.number(tol)) assertthat::assert_that(assertthat::is.number(maxeval)) assertthat::assert_that(assertthat::is.number(maxiter)) assertthat::assert_that(NCOL(sigma) == NCOL(t)) size <- NCOL(sigma) if (is.null(x0)) { x0 <- rep(1 / size, size) } objective <- function(x0, sigma, t) { -effective_bets(b = x0, sigma = sigma, t = t)$enb } fun <- match.fun(objective) fn <- function(x) fun(x, sigma, t) opt <- NlcOptim::solnl( X = x0, objfun = fn, Aeq = matrix(1, ncol = size), Beq = 1, lb = rep(0, size), ub = rep(1, size), maxIter = maxiter, maxnFun = maxeval ) out <- list( weights = as.vector(opt$par), enb = -opt$fn, counts = opt$counts, lambda_lb = opt$lambda$lower, lambda_ub = opt$lambda$upper, lambda_eq = opt$lambda$eqlin, gradient = opt$grad, hessian = opt$hessian ) if (is_col_named(sigma)) { nms <- colnames(sigma) rownames(out$lambda_lb) <- nms rownames(out$lambda_ub) <- nms rownames(out$gradient) <- nms rownames(out$hessian) <- nms colnames(out$hessian) <- nms } out }
rtopKrige.STSDF = function(object, predictionLocations = NULL, varMatObs, varMatPredObs, varMat, params = list(), formulaString, sel, olags = NULL, plags = NULL, lagExact = TRUE, ...) { if (!requireNamespace("spacetime")) stop("spacetime not available") params = getRtopParams(params, ...) cv = params$cv debug.level = params$debug.level if (!cv & !all.equal(is.null(olags), is.null(plags))) stop("Lag times have to be given for both observations and predictionLocations, or for none of them") if (!missing(varMat) && missing(varMatObs)) { if (is.atomic(varMat)) { varMatObs = varMat if (!cv) stop(paste("Not cross-validation, you must provide either varMatObs", " and varMatPredObs or varMat with the matrices as elements")) } else { varMatObs = varMat$varMatObs varMatPredObs = varMat$varMatPredObs } } if (cv) { predictionLocations = object plags = olags varMatPredObs = varMatObs } ntime = dim(object)[2] nspace = dim(object)[1] indx = predictionLocations@index sinds = sort(unique(indx[,1])) tinds = sort(unique(indx[,2])) pspace = dim(predictionLocations)[1] ptime = dim(predictionLocations)[2] pfull = if (prod(dim(predictionLocations)) == dim(predictionLocations@data)[1]) TRUE else FALSE if (is(predictionLocations, "STSDF")) { predictionLocations@data = cbind(predictionLocations@data, data.frame(var1.pred = NA, var1.var = NA, var1.yam = NA)) } else if (is(predictionLocations, "STS")) { predictionLocations = spacetime::STSDF(predictionLocations, data = data.frame(var1.pred = NA, var1.var = NA, var1.yam = NA)) } if (is.null(olags) & prod(dim(object)) == dim(object@data)[1]) { obj1 = object[,1] if (is(predictionLocations, "STSDF")) { predLoc = predictionLocations@sp } else { predLoc = predictionLocations } ret = rtopKrige.default(obj1, predLoc, varMatObs, varMatPredObs, varMat, params, formulaString, wret = TRUE) weight = ret$weight wvar = ret$predictions$var1.var obs = as.data.frame(object) obs = obs[,c("sp.ID", "timeIndex", as.character(formulaString[[2]]))] obs = reshape(obs, v.names = as.character(formulaString[[2]]), idvar = "sp.ID", timevar = "timeIndex", direction = "wide") if (interactive() & debug.level == 1 & length(sinds) > 1) pb = txtProgressBar(1, length(sinds), style = 3) for (istat in 1:length(sinds)) { isind = sinds[istat] ttinds = which(indx[,1] == isind) lweight = weight[istat,] preds = lweight %*% as.matrix(obs[,2:dim(obs)[2]]) diffs = sweep(obs[,2:dim(obs)[2]], 2, preds ) var1.yam = t(lweight) %*% (diffs^2) if (!pfull) { ptinds = indx[ttinds,1] preds = preds[ptinds] var1.yam = var1.yam[ptinds] } predictionLocations@data$var1.pred[ttinds] = preds predictionLocations@data$var1.var[ttinds] = wvar[istat] predictionLocations@data$var1.yam[ttinds] = var1.yam if (interactive() & debug.level == 1 & length(sinds) > 1) setTxtProgressBar(pb, istat) } if (interactive() & debug.level == 1 & length(sinds) > 1) close(pb) } else { object@sp$sindex = sindex = 1:nspace object@time$tindex = tindex = 1:ntime predictionLocations@sp$sindex = 1:pspace predictionLocations@time$tindex = 1:ptime obs = as.data.frame(object) depVar = as.character(formulaString[[2]]) obs = obs[,c("sp.ID", "timeIndex", depVar)] if (!requireNamespace("reshape2")) stop("reshape2 not available") obs = reshape2::dcast(obs, sp.ID ~ timeIndex) obs = obs[order(as.numeric(as.character(obs$sp.ID))), ] obs = as.matrix(obs[,2:(ntime+1)]) if (!cv | !is.null(olags)) { ploc = as.data.frame(predictionLocations) ploc = cbind(ploc, var = 1) ploc = ploc[,c("sp.ID", "timeIndex", "var")] ploc$sp.ID = as.numeric(as.character(ploc$sp.ID)) ploc = reshape2::dcast(ploc, sp.ID ~ timeIndex) ploc = as.matrix(ploc) } if (interactive() & debug.level == 1 & ntime > 1) pb = txtProgressBar(1, ntime, style = 3) spPredLoc = if (!cv) predictionLocations@sp else NULL if (is.null(olags)) { oldind = NULL newkrige = 0 for (itime in 1:ptime) { newind = which(!is.na(obs[,itime])) if (length(newind) == 0) next if (is.null(oldind) || !isTRUE(all.equal(newind, oldind))) { oldind = newind newkrige = newkrige + 1 ppq = object[,itime] vmat = varMatObs[newind, newind] if (cv) { vpredobs = NULL } else { vpredobs = varMatPredObs[newind,] } ret = rtopKrige.default(object = ppq, predictionLocations = spPredLoc, varMatObs = vmat, varMatPredObs = vpredobs, params = params, formulaString = formulaString, wret = TRUE, debug.level = 0) weight = ret$weight wvar = ret$predictions$var1.var } ob = obs[,itime] ob = ob[!is.na(ob)] preds = weight %*% ob var1.yam = rep(NA, dim(weight)[1]) for (istat in 1:dim(weight)[1]) { diffs = ob - preds[istat] var1.yam[istat] = sum(weight[istat,] * t(diffs^2)) } itind = tinds[itime] ttinds = which(indx[,2] == itind) if (!pfull & FALSE) { ptinds = indx[ttinds,1] preds = preds[ptinds] var1.yam = var1.yam[ptinds] } predictionLocations@data$var1.pred[ttinds] = preds predictionLocations@data$var1.var[ttinds] = wvar predictionLocations@data$var1.yam[ttinds] = var1.yam if (interactive() & debug.level == 1 & ntime > 1) setTxtProgressBar(pb, itime) } } else { ntot = dim(predictionLocations@data)[1] if (interactive() & debug.level == 1 & ntime > 1) pb = txtProgressBar(1, ntot, style = 3) itot = 0 objsp = object@sp objsp = SpatialPointsDataFrame(SpatialPoints(objsp), data = objsp@data) newkrige = 0 obs2 = obs for (istat in 1:pspace) { ispace = predictionLocations@sp@data$sindex[istat] pxts = as.data.frame(predictionLocations[istat,]) stpred = predictionLocations@sp[istat,] distm = spDistsN1(coordinates(object@sp),coordinates(stpred)) ppred = SpatialPoints(stpred) rolags = olags - plags[istat] nbefore = -floor(min(rolags)) nafter = ceiling(max(c(rolags, 1))) naadd1 = matrix(NA, nrow = nspace, ncol = nbefore) naadd2 = matrix(NA, nrow = nspace, ncol = nafter) obsb = cbind(naadd1, cbind(obs2, naadd2)) obs[,] = NA if (!lagExact) { rolags = round(rolags, 0) for (jstat in 1:nspace) { obs[jstat, ] = obsb[jstat, (nbefore + 1 + rolags[jstat]) : (nbefore + ntime + rolags[jstat])] } } else { rdiff = rolags - floor(rolags) for (jstat in 1:nspace) { nf = (nbefore + 1 + floor(rolags[jstat])) : (nbefore + ntime + floor(rolags[jstat])) nl = (nbefore + 1 + ceiling(rolags[jstat])) : (nbefore + ntime + ceiling(rolags[jstat])) obs[jstat, ] = obsb[jstat, nf] * (1-rdiff[jstat]) + obsb[jstat, nl] * rdiff[jstat] } } oldind = NULL ntl = length(pxts$tindex) preds = rep(NA, ntl) var1.yam = rep(NA, ntl) var1.var = rep(NA, ntl) tms = as.numeric(as.character(pxts$tindex)) if (cv) vorder = order(varMatObs[istat,]) else vorder = order(varMatPredObs[istat]) for (itime in seq_along(tms)) { jtime = tms[itime] tp = ploc[istat, jtime] if (is.na(tp)) next newind = vorder[vorder %in% which(!is.na(obs[,jtime]))] if (cv) newind = newind[-which(newind == istat)] if (is.numeric(params$nmax) && length(newind) > params$nmax) newind = newind[1:params$nmax] if (length(newind) == 0) next newind = newind[newind %in% vorder] if (is.null(oldind) || !isTRUE(all.equal(newind, oldind))) { oldind = newind newkrige = newkrige + 1 ppq = objsp[newind, ] ppq$intvar = obs[newind, jtime] vmat = varMatObs[newind, newind] vpredobs = varMatPredObs[newind, istat, drop = FALSE] ret = rtopKrige.default(object = ppq, ppred, varMatObs = vmat, varMatPredObs = vpredobs, params = params, formulaString = intvar~1, wret = TRUE, debug.level = 0, cv = FALSE) weight = ret$weight wvar = ret$predictions$var1.var } preds[itime] = sum(weight * obs[newind,jtime]) diffs = obs[newind,jtime] - preds[itime] var1.yam[itime] = sum(weight * (diffs^2)) var1.var[itime] = wvar itot = itot + 1 if (interactive() & debug.level == 1 & ntime > 1) setTxtProgressBar(pb, itot) } itind = tinds[itime] ttinds = which(indx[,1] == ispace) predictionLocations@data$var1.pred[ttinds] = preds predictionLocations@data$var1.var[ttinds] = var1.var predictionLocations@data$var1.yam[ttinds] = var1.yam } } if (interactive() & debug.level == 1 & ntime > 1) close(pb) } list(predictions = predictionLocations) }
library(GFD) data(pizza) head(pizza) set.seed(1234) model1 <- GFD(Delivery ~ Crust * Coke * Bread, data = pizza, nperm = 1000, alpha = 0.05) summary(model1) data("curdies") set.seed(987) nested <- GFD(dugesia ~ season + season:site, data = curdies, nested.levels.unique = TRUE) summary(nested) plot(model1, factor = "Crust:Coke:Bread", legendpos = "center", main = "Delivery time of pizza", xlab = "Bread") plot(model1, factor = "Crust:Coke", legendpos = "topleft", main = "Two-way interaction", xlab = "Coke", col = 3:5, pch = 17) plot(nested, factor = "season:site", xlab = "site")
srho = function(truth, response, ...) { assert_regr(truth, response = response) cor(truth, response, method = "spearman") } add_measure(srho, "Spearman's rho", "regr", -1, 1, FALSE)
generateCoPaM <- function(U, relabel_technique = "minmin", w = numeric(), X = numeric(), distCriterion = "direct_euc", K = 0, GDM = numeric()) { calwmeans <- function(ww) { wm = rep(0, length(ww)) for (ii in 1:length(ww)) { if (is.list(ww[[ii]])) { wm[ii] = mean(calwmeans(ww[[ii]])) } else { wm[ii] = mean(ww[[ii]]) } } return(wm) } if (!is.list(U)) { if (K == 0) { if (length(dim(U)) == 2) { K = sum(rowSums(U) > 0) U = list(U); } else if (length(dim(U)) == 3) { K = sum(rowSums(U[,, 1]) > 0) R = dim(U)[3] tmp = U U = list() r = 1 for (i in 1:R) { if (sum(rowSums(tmp[, , i]) > 0) == K) { U[[r]] = tmp[,, i] r = r + 1 } } R = r - 1 } } } else { R = length(U) } if (isempty(GDM)) { Utmp = U[[1]] while (is.list(Utmp)) { Utmp = Utmp[[1]] } GDM = matrix(TRUE, ncol(Utmp), R) } if (isempty(w) || (is.character(w) && (tolower(w) == "all" || tolower(w) == "equal"))) { w = rep(1, R) } if (length(w) == 1) { w = rep(w, R) } if (!is.list(w)) { w = as.list(w) } wmeans = calwmeans(w) permR = sample(R) U = U[permR] GDM = GDM[, permR] if (!is.matrix(GDM)) { GDM = matrix(GDM) } wmeans = wmeans[permR] if (is.list(U[[1]] || length(dim(U[[1]])) > 1)) { U[[1]] = generateCoPaM(U[[1]], relabel_technique = relabel_technique, w = w[[1]], X = X, distCriterion = distCriterion, K = K) } CoPaM = matrix(, nrow(U[[1]]), nrow(GDM)) CoPaM[, GDM[, 1]] = U[[1]] K = nrow(CoPaM) if (R == 1) return(CoPaM) for (r in 2:R) { if (is.list(U[[r]] || length(dim(U[[r]])) > 1)) { U[[r]] = generateCoPaM(U[[r]], relabel_technique = relabel_technique, w = w[[r]], X = X, distCriterion = distCriterion, K = K) } if (nrow(U[[r]]) != K) { stop("Inequal number of clusters in partitions.") } U[[r]] = relabelClusts(CoPaM[, GDM[, r]], U[[r]], technique = relabel_technique, X = X, distCriterion = distCriterion)$B CoPaM[, GDM[, r]] = t(apply(CoPaM[, GDM[, r]], 1, "*", GDM[GDM[, r], 1:(r - 1)] %*% as.matrix(wmeans[1:(r - 1)]))) CoPaM[, GDM[, r]] = CoPaM[, GDM[, r]] + wmeans[r] * U[[r]] CoPaM[, GDM[, r]] = t(apply(CoPaM[, GDM[, r]], 1, "/", GDM[GDM[, r], 1:r] %*% as.matrix(wmeans[1:r]))) } return(CoPaM) }
covHandling <- function(covData, covStructure=NULL, N, thetaNames, predType=NULL, defaultExclude=NULL, T1group=NULL){ if(! (is.null(covData) | is.list(covStructure) & length(covStructure) == 0 | is.null(covStructure) & "ALL_COVARIATES" %in% defaultExclude)){ if(!("ALL_COVARIATES" %in% defaultExclude)){ covData <- covData[,predType == "c" & !colnames(covData)%in% defaultExclude, drop=FALSE] } if(ncol(covData) != 0){ covNames <- colnames(covData) if(is.character(covStructure)){ covStructure <- as.list(read.csv(covStructure, header=F,stringsAsFactors=F, sep="}")$V1) } if(is.null(covStructure)){ covStructure <- lapply(unique(thetaNames$Parameter), function(tt) paste(tt, ";", paste(covNames, collapse=" "))) } covTmp <- covRecodeFactor(covData, predType) covData <- covTmp$covData predFactorLevels <- covTmp$predFactorLevels names(predFactorLevels) <- colnames(covData) covTable <- data.frame() for(i in 1:length(covStructure)){ covStructure[[i]] <- gsub("\\,", " ", gsub("~", ";", covStructure[[i]])) sss <- strsplit(covStructure[[i]], ";")[[1]] if(length(sss) != 2) stop("Check predStructure: in each character argument of the list,\n", "exactly one semicolon is required to separate parameters (left hand)\n", "and predictors (right hand):\n", covStructure[[i]]) pars <- strsplit(sss[1], " +")[[1]] covs <- strsplit(sss[2], " +")[[1]] pars <- pars[pars != ""] covs <- covs[covs != ""] for(pp in 1:length(pars)){ if (!all(covs %in% colnames(covData))) stop("Check names of predictors in predStructure. Valid names:\n ", paste(colnames(covData), collapse = ", "), "\n", "Currently defined:\n ", paste(covs, collapse = ", "), "\n") for(cc in 1:length(covs)){ covTable <- rbind(covTable, data.frame(Parameter = pars[pp], Covariate = covs[cc])) } } } parSel <- match(covTable$Parameter, thetaNames$Parameter) if(any(is.na(parSel))) stop("Check parameter names in predStructure. Problematic right now:\n ", covTable$Parameter[is.na(parSel)]) covTable$theta <- thetaNames$theta[parSel] covTable$Parameter <- thetaNames$Parameter[parSel] covTable$covIdx <- (1:ncol(covData))[match(covTable$Covariate, covNames)] covTable <- covTable[!duplicated(paste(covTable$theta, covTable$covIdx)),] covTable$predType <- predType[covTable$covIdx] covTable$prefix <- ifelse(covTable$predType=="c", "slope", "factor") covTable$covPar <- apply(covTable[,c("prefix", "Parameter", "Covariate")], 1, paste, collapse="_") }else{ covTable <- NULL predFactorLevels <- NULL } }else{ covTable <- NULL predFactorLevels <- NULL } return(list(covTable = covTable, covData=covData, predFactorLevels = predFactorLevels)) }
shape_rep <- function(rep, xmin = NULL, xmax = NULL) { if (class(rep) %in% "numeric") { mx <- rep x <- seq_along(mx) - 1 } if (class(rep) %in% c("list", "data.frame")) { if (!all(c("x", "mx") %in% names(rep))) { stop("`rep` doesn't contain both `x` and `mx`.\n") } x <- rep$x mx <- rep$mx if (length(x) != length(mx)) { stop("`x` and `mx` must be the same length") } } if (is.null(xmin)) xmin <- x[min(which(mx > 0))] if (is.null(xmax)) xmax <- max(x) if (any(diff(x) <= 0)) stop("much as we'd like to reverse ageing, `x` must all be ascending.\n") if (any(mx < 0)) stop("You appear to have minus-babies (check `mx` for negative values).\n") x_sub <- x[x >= xmin & x <= xmax] if (length(x_sub) <= 2) { stop("must have > 2 nonzero values of `mx` to calculate shape.\n") } ltdim <- length(x) Bx <- c(0, cumsum(mx[1:(ltdim - 1)])) Bx_sub <- Bx[x >= xmin & x <= xmax] xStd <- (x_sub - xmin) / (xmax - xmin) Bxmin <- Bx_sub[which.min(xStd)] Bxmax <- Bx_sub[which.max(xStd)] BxStd <- (Bx_sub - Bxmin) / (Bxmax - Bxmin) aucStd <- area_under_curve(xStd, BxStd) aucFlat <- 0.5 shape <- aucStd - aucFlat shape }
glmmPQL <- function(fixed, random = NULL, family = "binomial", data = NULL, subset = NULL, weights = NULL, offset = NULL, na.action = NULL, start = NULL, etastart = NULL, mustart = NULL, control = glmmPQL.control(...), sigma = 0.1, sigma.fixed = FALSE, model = TRUE, x = FALSE, contrasts = NULL, ...) { call <- match.call() nm <- names(call)[-1] if (is.null(random)) { keep <- is.element(nm, c("family", "data", "subset", "weights", "offset", "na.action")) for (i in nm[!keep]) call[[i]] <- NULL call$formula <- fixed environment(call$formula) <- environment(fixed) call[[1]] <- as.name("glm") return(eval.parent(call)) } modelTerms <- terms(fixed, data = data) modelCall <- as.list(match.call(expand.dots = FALSE)) argPos <- match(c("data", "subset", "na.action", "weights", "offset"), names(modelCall), 0) modelData <- as.call(c(model.frame, list(formula = modelTerms, drop.unused.levels = TRUE), modelCall[argPos])) modelData <- eval(modelData, parent.frame()) if (!is.matrix(random) || nrow(random) != nrow(modelData)) { stop("`random` should be a matrix object, with ", nrow(modelData), " rows.") } if (!is.null(modelCall$subset)) Z <- random[eval(modelCall$subset, data, parent.frame()),] else Z <- random if (!is.null(attr(modelData, "na.action"))) Z <- Z[-attr(modelData, "na.action"),] nObs <- nrow(modelData) y <- model.response(modelData, "numeric") if (is.null(y)) y <- rep(0, nObs) weights <- as.vector(model.weights(modelData)) if (!is.null(weights) && any(weights < 0)) stop("negative weights are not allowed") if (is.null(weights)) weights <- rep.int(1, nObs) offset <- as.vector(model.offset(modelData)) if (is.null(offset)) offset <- rep.int(0, nObs) if (is.character(family)) family <- get(family, mode = "function", envir = parent.frame()) if (is.function(family)) family <- family() if (is.null(family$family)) { print(family) stop("`family' not recognized") } if (family$family == "binomial") { if (is.factor(y) && NCOL(y) == 1) y <- y != levels(y)[1] else if (NCOL(y) == 2) { n <- y[, 1] + y[, 2] y <- ifelse(n == 0, 0, y[, 1]/n) weights <- weights * n } } empty <- is.empty.model(modelTerms) if (!empty) X <- model.matrix(formula(modelTerms), data = modelData, contrasts) else X <- matrix(, nObs, 0) fit <- glmmPQL.fit(X = X, y = y, Z = Z, weights = weights, start = start, etastart = etastart, mustart = mustart, offset = offset, family = family, control = control, sigma = sigma, sigma.fixed = sigma.fixed, ...) if (sum(offset) && attr(modelTerms, "intercept") > 0) { fit$null.deviance <- glm.fit(x = X[, "(Intercept)", drop = FALSE], y = y, weights = weights, offset = offset, family = family, control = glm.control(), intercept = TRUE)$deviance } if (model) fit$model <- modelData fit$na.action <- attr(modelData, "na.action") if (x) fit$x <- X fit <- c(fit, list(call = call, formula = fixed, random = random, terms = modelTerms, data = data, offset = offset, control = control, method = "glmmPQL.fit", contrasts = attr(X, "contrasts"), xlevels = .getXlevels(modelTerms, modelData))) class(fit) <- c("BTglmmPQL", "glm", "lm") fit }
domino <- new.env() domino.call <- function(cmd, stdInput=FALSE) { if(domino.notFalse(stdInput)){ return(system(cmd, input=stdInput)) } else { return(system(cmd)) } } domino.handleCommandNotFound = function(failureMessage){ stop(paste("Couldn't find domino client in the PATH or in default locations. Add domino client directory path to PATH environment variable. If you don't have domino client installed follow instructions on 'http://help.dominodatalab.com/client'. If you use R-Studio Domino on GNU/Linux through a desktop launcher, add domino path to the .desktop file. If you need more help, email [email protected] or visit http://help.dominodatalab.com/troubleshooting - ", failureMessage), call.=FALSE) } domino.osSpecificPrefixOfDominoCommand <- function() { os = Sys.info()["sysname"] if(os == "Darwin") {return("/Applications/domino/")} else if (os =="Linux") {return("~/domino/")} else if (os == "Windows") {return("c:\\program files (x86)\\domino\\")} else { print("Your operating system is not supported by domino R package.")} } domino.notFalse <- function(arg) { if (arg == FALSE){FALSE} else { TRUE} } domino.OK <- function(){return(0)} domino.projectNameWithoutUser <- function(projectName) { rev(unlist(strsplit(projectName, "/")))[1] } domino.jumpToProjectsWorkingDirectory <- function(projectName) { setwd(paste("./",domino.projectNameWithoutUser(projectName), sep="")) print("Changed working directory to new project's directory.") } .is.domino.in.path <- function() { nzchar(Sys.which("domino")) } .open.rStudio.login.prompt <- function(message){ if(Sys.getenv("RSTUDIO") != "1"){ stop("The system is not running in RStudio") } if(!("tools:rstudio" %in% search())){ stop("Cannot locate RStudio tools") } toolsEnv <- as.environment("tools:rstudio") rStudioLoginPrompt <- get(".rs.askForPassword", envir=toolsEnv) rStudioLoginPrompt(message) } .domino.login.prompt <- function(){ passwordPromptMessage <- "Enter your Domino password: " password <- try(.open.rStudio.login.prompt(passwordPromptMessage), silent=T) if(inherits(password, "try-error")){ password <- readline("Enter your Domino password: ") } if(password == ""){ password <- NULL } password } .onAttach <- function(libname, pkgname) { domino$command_is_in_the_path <- .is.domino.in.path() }
layer_type.GeomEdgePath <- function(x) 'point'
absval.iwres.vs.idv <- function(object, ylb = "|iWRES|", smooth = TRUE, idsdir = "up", type = "p", ...) { if(is.null(check.vars(c("idv","iwres"), object,silent=FALSE))) { return() } xplot <- xpose.plot.default(xvardef("idv",object), xvardef("iwres",object), object, ylb=ylb, funy="abs", idsdir=idsdir, smooth=smooth, type = type, ...) return(xplot) }
if (!isGeneric("unstack")) { setGeneric("unstack", function(x, ...) standardGeneric("unstack")) } setMethod("unstack", signature(x='RasterStack'), function(x) { return(x@layers) } ) setMethod("unstack", signature(x='RasterBrick'), function(x) { if (nlayers(x) == 0) { list() } else { lapply(1:nlayers(x), function(i) raster(x, i)) } } )
html2tagList<-function(x){ x<-strsplit(gsub('>','>_AAA_',x),'_AAA_')[[1]] x<-gsub('\\n','',x) x<-x[!grepl('<!',x)] x<-gsub('"',"'",x) x<-gsub('</(.*?)>',"),",x) attrIdx=grep('=',x) attrVal=grep('=',x,value = T) attrVal=gsub('>',",",attrVal) attrVal=gsub('<','tags$',attrVal) attrVal=sub('^ ','',attrVal) attrVal=sub(' ',"(",attrVal) x[attrIdx]=attrVal x=gsub('<','tags$',x) x=gsub('>',"(",x) x=sub('^ ','',x) x=sub(' )',')',x) endIdx=grep('),',x) endVal=grep('),',x,value = T) endVal=paste0("'",gsub('),',"'),",endVal)) x[endIdx]=endVal xout=paste0(x,collapse = '') xout=gsub(',$','',xout) xout<-eval(parse(text=sprintf('htmltools::tagList(list(%s))',xout),keep.source = TRUE)) return(xout) }
fun_summary <- function(msec) { distant_homology <- NULL total_read <- NULL indel_status <- NULL pre_minimum_length <- NULL indel_length <- NULL penalty_pre <- NULL post_minimum_length <- NULL penalty_post <- NULL pre_support_length <- NULL read_length <- NULL post_support_length <- NULL pre_minimum_length_adj <- NULL pre_rep_status <- NULL post_minimum_length_adj <- NULL post_rep_status <- NULL pre_support_length_adj <- NULL post_support_length_adj <- NULL minimum_length_1 <- NULL minimum_length_2 <- NULL minimum_length <- NULL shortest_support_length_adj <- NULL short_support_length <- NULL mut_type <- NULL alt_length <- NULL altered_length <- NULL short_support_length_adj <- NULL half_length <- NULL if (dim(msec)[1] > 0) { msec <- msec %>% mutate( distant_homology_rate = fun_zero(distant_homology, total_read) ) msec <- msec %>% mutate( pre_minimum_length_adj = ifelse(indel_status == 1, (((pre_minimum_length - (indel_length + penalty_pre + 1)) + abs(pre_minimum_length - (indel_length + penalty_pre + 1))) / 2) + (indel_length + penalty_pre + 1), (((pre_minimum_length - penalty_pre) + abs(pre_minimum_length - penalty_pre)) / 2) + penalty_pre), post_minimum_length_adj = ifelse(indel_status == 1, (((post_minimum_length - (indel_length + penalty_post + 1)) + abs(post_minimum_length - (indel_length + penalty_post + 1))) / 2) + (indel_length + penalty_post + 1), (((post_minimum_length - penalty_post) + abs(post_minimum_length - penalty_post)) / 2) + penalty_post), pre_support_length_adj = ifelse(indel_status == 1, (((pre_support_length - (read_length - indel_length - penalty_post - 1)) - abs(pre_support_length - (read_length - indel_length - penalty_post - 1))) / 2) + (read_length - indel_length - penalty_post - 1), (((pre_support_length - (read_length - alt_length - penalty_post)) - abs(pre_support_length - (read_length - alt_length - penalty_post))) / 2) + (read_length - alt_length - penalty_post)), post_support_length_adj = ifelse(indel_status == 1, (((post_support_length - (read_length - indel_length - penalty_pre - 1)) - abs(post_support_length - (read_length - indel_length - penalty_pre - 1))) / 2) + (read_length - indel_length - penalty_pre - 1), (((post_support_length - (read_length - alt_length - penalty_pre)) - abs(post_support_length - (read_length - alt_length - penalty_pre))) / 2) + (read_length - alt_length - penalty_pre)) ) msec <- msec %>% mutate( pre_minimum_length_adj = ifelse(indel_status == 1, (((pre_minimum_length_adj - pre_rep_status - 1) + abs(pre_minimum_length_adj - pre_rep_status - 1)) / 2) + pre_rep_status + 1, pre_minimum_length_adj), post_minimum_length_adj = ifelse(indel_status == 1, (((post_minimum_length_adj - post_rep_status - 1) + abs(post_minimum_length_adj - post_rep_status - 1)) / 2) + post_rep_status + 1, post_minimum_length_adj), pre_support_length_adj = ifelse(indel_status == 1, (((pre_support_length_adj - (read_length - post_rep_status - 1)) - abs(pre_support_length_adj - (read_length - post_rep_status - 1))) / 2) + (read_length - post_rep_status - 1), pre_support_length_adj), post_support_length_adj = ifelse(indel_status == 1, (((post_support_length_adj - (read_length - pre_rep_status - 1)) - abs(post_support_length_adj - (read_length - pre_rep_status - 1))) / 2) + (read_length - pre_rep_status - 1), post_support_length_adj) ) msec <- msec %>% mutate( shortest_support_length_adj = (((pre_minimum_length_adj - post_minimum_length_adj) - abs(pre_minimum_length_adj - post_minimum_length_adj)) / 2) + post_minimum_length_adj, minimum_length_1 = (((pre_rep_status - (indel_length + penalty_pre + 1)) + abs(pre_rep_status - (indel_length + penalty_pre + 1))) / 2) + (indel_length + penalty_pre + 1), minimum_length_2 = (((post_rep_status - (indel_length + penalty_post + 1)) + abs(post_rep_status - (indel_length + penalty_post + 1))) / 2) + (indel_length + penalty_post + 1) ) msec <- msec %>% mutate( minimum_length_1 = ifelse(indel_status == 1, minimum_length_1, penalty_pre), minimum_length_2 = ifelse(indel_status == 1, minimum_length_2, penalty_post) ) msec <- msec %>% mutate( minimum_length = (((minimum_length_1 - minimum_length_2) - abs(minimum_length_1 - minimum_length_2)) / 2) + minimum_length_2 ) msec <- msec %>% mutate( shortest_support_length_adj = ((minimum_length - shortest_support_length_adj) + abs(minimum_length - shortest_support_length_adj)) / 2 + shortest_support_length_adj, pre_minimum_length_adj = ((minimum_length_1 - pre_minimum_length_adj) + abs(minimum_length_1 - pre_minimum_length_adj)) / 2 + pre_minimum_length_adj, post_minimum_length_adj = ((minimum_length_2 - post_minimum_length_adj) + abs(minimum_length_2 - post_minimum_length_adj)) / 2 + post_minimum_length_adj ) msec <- msec %>% mutate( short_support_length_adj = (((short_support_length - minimum_length) + abs(short_support_length - minimum_length)) / 2) + minimum_length, altered_length = ifelse(mut_type == "snv", alt_length, ifelse(mut_type == "ins", indel_length, 0)), half_length = as.integer((read_length - altered_length) / 2) ) msec <- msec %>% mutate( short_support_length_total = short_support_length_adj - shortest_support_length_adj + 1, pre_support_length_total = pre_support_length_adj - pre_minimum_length_adj + 1, post_support_length_total = post_support_length_adj - post_minimum_length_adj + 1, half_length_total = half_length - minimum_length + 1, total_length_total = read_length - altered_length - minimum_length_1 - minimum_length_2 + 1 ) } return(msec) } NULL
zsolve <- function(mat, rel, rhs, sign, lat, lb, ub, dir = tempdir(), quiet = TRUE, shell = FALSE, ... ){ if (!has_4ti2()) missing_4ti2_stop() opts <- as.list(match.call(expand.dots = FALSE))[["..."]] if(is.null(opts)){ opts <- "" } else { opts <- paste0("-", names(opts), "", unlist(opts)) opts <- paste(opts, collapse = " ") } dir.create(dir2 <- file.path(dir, timeStamp())) oldWd <- getwd() setwd(dir2); on.exit(setwd(oldWd), add = TRUE) if(missing(mat) && missing(lat)) stop("Either mat or lat must be specified.", call. = FALSE) if(!missing(mat) && !all(is.wholenumber(mat))) stop("The entries of mat must all be integers.") if(!missing(lat) && !all(is.wholenumber(lat))) stop("The entries of lat must all be integers.") if(!missing(rhs) && !all(is.wholenumber(rhs))) stop("The entries of rhs must all be integers.") if(!all(rel %in% c("<", ">"))) stop("rel must be a vector of \"<\"'s or \">\"'s.") if(!missing(mat)) write.latte(mat, "system.mat") write.latte(t(rel), "system.rel") write.latte(t(rhs), "system.rhs") if(!missing(sign)) write.latte(t(sign), "system.sign") if(missing(mat) && !missing(lat)) write.latte(mat, "system.lat") if(!missing(lb)) write.latte(mat, "system.lb") if(!missing(ub)) write.latte(mat, "system.ub") if (is_mac() || is_unix()) { system2( file.path(get_4ti2_path(), "zsolve"), paste(opts, file.path(dir2, "system")), stdout = "zsolve_out", stderr = "zsolve_err" ) shell_code <- glue( "{file.path(get_4ti2_path(), 'zsolve')} {paste(opts, file.path(dir2, 'system'))} > zsolve_out 2> zsolve_err" ) if(shell) message(shell_code) } else if (is_win()) { matFile <- file.path(dir2, "system") matFile <- chartr("\\", "/", matFile) matFile <- str_c("/cygdrive/c", str_sub(matFile, 3)) system2( "cmd.exe", glue("/c env.exe {file.path(get_4ti2_path(), 'zsolve')} {opts} {matFile}"), stdout = "zsolve_out", stderr = "zsolve_err" ) shell_code <- glue( "cmd.exe /c env.exe {file.path(get_4ti2_path(), 'zsolve')} {opts} {matFile} > zsolve_out 2> zsolve_err" ) if(shell) message(shell_code) } if(!quiet) message(paste(readLines("zsolve_out"), "\n")) std_err <- readLines("zsolve_err") if(any(std_err != "")) warning(str_c(std_err, collapse = "\n"), call. = FALSE) list( zinhom = read.latte("system.zinhom"), zhom = read.latte("system.zhom") ) }
codonise64 <- function(s){ m<-dim(s)[2] n<-dim(s)[1] if((m%%3)>0){ stop("length of coding sequence cannot divide by 3!") } t <- matrix(,n,m/3) p <- seq(1,m,3) q <- 1:(m/3) s[s>=5] <- 100 t[ ,q] <- (s[ ,p]-1)*16 + (s[ ,p+1]-1)*4 + (s[ ,p+2]-1)+1 t[t>64]<-65 return(t) }
regrMultBy1or2point <- function(inDat,refLst,regrTo=c(1,0.5),silent=FALSE,callFrom=NULL){ fxNa <- .composeCallName(callFrom,newNa="regrMultBy1or2point") checkEntr <- .checkRegrArguments(inDat,refLst,regrTo) refLst <- checkEntr$refLst; regrTo <- checkEntr$regrTo contrAve <- sapply(lapply(refLst,function(x) as.matrix(inDat[x,])),colMeans,na.rm=TRUE) if(is.null(dim(contrAve))) contrAve <- matrix(contrAve,ncol=length(contrAve)) normFact <- if(length(refLst) ==1) (regrTo[1]/contrAve[,1]) else (regrTo[2]-regrTo[1])/(contrAve[,2]-contrAve[,1]) normFact <- cbind(k=normFact, d= if(length(refLst) ==1) rep(0,ncol(inDat)) else regrTo[1]-normFact*contrAve[,1]) matrix(rep(normFact[,1],each=nrow(inDat)),nrow=nrow(inDat))*inDat + matrix(rep(normFact[,2],each=nrow(inDat)),nrow=nrow(inDat)) }
summary.parameters <- function(object, ci.level = .9, ...) { if (length(ci.level) != 1 | !is.numeric(ci.level)) stop("ci must be a numeric vector of length 1. ") if (!inherits(object, "parameters")) stop("First argument has to be an object of class parameters. ") UseMethod("summary.parameters") } summary.parameters.numeric <- function(object, ci.level = .9, ...) { u <- qnorm(1-(1-ci.level)/2) cov <- est_cov(object, ...) sel <- names(object) %in% colnames(cov) param_ci <- object[sel] %-+% (u * sqrt(diag(as.matrix(cov)))) out <- list( param = object, ci.level = ci.level, ci = cbind(LCL = param_ci[, 1], param = object[sel], UCL = param_ci[, 2]), cov = cov ) class(out) <- c("summary.parameters") out } summary.parameters.matrix <- function(object, ci.level = .9, ...) { u <- qnorm(1-(1-ci.level)/2) cov <- est_cov(object, ...) sel <- paste(rownames(object), col(object), sep = "_") %in% colnames(cov) param_ci <- as.vector(object[sel]) %-+% (u * sqrt(diag(as.matrix(cov)))) out <- list( param = object, ci.level = ci.level, ci = cbind(LCL = param_ci[, 1], param = as.vector(object[sel]), UCL = param_ci[, 2]), cov = cov ) class(out) <- c("summary.parameters") out } print.summary.parameters <- function(x, ...) { if (any(attr(x$param, "source")$func %in% c("as.PWMs", "as.TLMoments", "as.parameters"))) { cat("Distribution: ", toupper(attr(x$cov, "distribution")), "(", paste(names(x$param), round(x$param, 4), sep = "=", collapse = ", "), ")\n", sep = "") cat("Confidence intervals based on assumptions: \n") cat("\tTL(", paste0(attr(x$cov, "trimmings"), collapse = ","), ")\n", sep = "") cat("\tn = ", attr(x$cov, "n"), "\n", sep = "") } else { ns <- attr(x$param, "source")$n cat(length(ns), " data row(s) with n = ", paste0(ns, collapse = ", "), ".\n", sep = "") cat("TL(", paste0(attr(x$param, "source")$trim, collapse = ","), ") used to generate ", toupper(attr(x$param, "distribution")), " parameters. \n", sep = "") } cat("\n") cat("Approximate ", x$ci.level*100, "% confidence interval of parameters: \n", sep = "") print(x$ci) }
generateNetwork <- function(lambda_2=0.45, q=10, min_phase_length=1, k_bar=5, l=10, lambda_3=2, spacing=1, gauss_weights=TRUE, same=FALSE, change_method='sequential', fixed=FALSE, cps=NULL) { lambda_1 = 6 k = k_bar + 1; epsilon = c(); if(!is.null(cps)) { epsilon = cps; k = length(epsilon); } else if(!fixed) { while(k > k_bar || any(c(epsilon, l) - c(0, epsilon) < min_phase_length)) { k = rpois(1, lambda_1); if(spacing == 1) { epsilon = round(seq(round(l/k), l+1, length.out=(k+1))) epsilon = epsilon[-length(epsilon)] } else { epsilon = sort(sample(1:l, k, replace=FALSE)) } } } else { k = k - 1 if(spacing == 1) { epsilon = round(seq(round(l/(k+1)), l+1, length.out=(k+1))) epsilon = epsilon[-length(epsilon)] } else { epsilon = sort(sample(1:l, k, replace=FALSE)) while(any(c(epsilon, l) - c(0, epsilon) < min_phase_length)) { epsilon = sort(sample(1:l, k, replace=FALSE)) } } } parents = matrix(FALSE, q, q); for(i in 1:q) { num_parents = q+1; while(num_parents > q) { num_parents = rpois(1, lambda_2); } parents_i = 1:q %in% sample(1:q, num_parents, replace=FALSE) parents[i, parents_i] = TRUE; parents[i, i] = TRUE; } parents = t(parents); weights_orig = matrix(rnorm(q*q, 0, 1), q, q); network = fix_eigenvalues(parents*weights_orig, q, gauss_weights) parents = abs(network) > 0; parents_orig = parents; parents_prev = parents; network = list(); changes = list() for(i in 1:(k+1)) { if(change_method == 'hierarchical') { parents = parents_orig parents_prev = parents_orig } for(j in 1:q) { change_num = rpois(1, lambda_3); if(change_num > 0.5*q) change_num = round(0.5*q) add_edges = sum(runif(change_num) > 0.6); remove_edges = change_num - add_edges; parents_j = parents[,j]; edge_num = sum(parents_j); non_edge_num = q - edge_num; if(remove_edges > edge_num) remove_edges = edge_num if(edge_num > 0.5*q) add_edges = 0; new_parents_j = parents_j; if(add_edges > 0) { add_changes = 1:non_edge_num %in% sample(1:non_edge_num, add_edges, replace=FALSE) edges = parents_j[parents_j == 0]; edges[add_changes] = 1; new_parents_j[parents_j == 0] = edges; } if(remove_edges > 0) { remove_changes = 1:edge_num %in% sample(1:edge_num, remove_edges, replace=FALSE) non_edges = parents_j[parents_j > 0]; non_edges[remove_changes] = 0; new_parents_j[parents_j>0] = non_edges; } if(!same) { parents[,j] = new_parents_j; } } parent_num = colSums(parents) parent_num[parent_num == 0] = 1; weights_phase = matrix(rnorm(q*q, 0, 1), q, q); if(gauss_weights) { network[[i]] = parents * weights_phase; } else { network[[i]] = parents } parents = abs(network[[i]]) > 0; changes[[i]] = sum(abs(parents_prev - parents)) parents_prev = parents } epsilon = c(epsilon, l); return(list(network=network, epsilon=epsilon, k=k, changes=changes, l=l)) }
rm(list=ls()) library(SPOT) library(babsim.hospital) n <- 29 reps <- 10 funEvals <- 3*n size <- 2*n subsetN <- 100 nCores <- 8 progSpot <- matrix(NA, nrow = reps, ncol = 2*funEvals) x0 <- matrix(as.numeric(babsim.hospital::getParaSet(5374)[1,-1]),1,) bounds <- getBounds() a <- bounds$lower b <- bounds$upper g <- function(x) { return(rbind(a[1] - x[1], x[1] - b[1], a[2] - x[2], x[2] - b[2], a[3] - x[3], x[3] - b[3], a[4] - x[4], x[4] - b[4], a[5] - x[5], x[5] - b[5], a[6] - x[6], x[6] - b[6], a[7] - x[7], x[7] - b[7], a[8] - x[8], x[8] - b[8], a[9] - x[9], x[9] - b[9], a[10] - x[10], x[10] - b[10], a[11] - x[11], x[11] - b[11], a[12] - x[12], x[12] - b[12], a[13] - x[13], x[13] - b[13], a[14] - x[14], x[14] - b[14], a[15] - x[15], x[15] - b[15], a[16] - x[16], x[16] - b[16], a[17] - x[17], x[17] - b[17], a[18] - x[18], x[18] - b[18], a[19] - x[19], x[19] - b[19], a[20] - x[20], x[20] - b[20], a[21] - x[21], x[21] - b[21], a[22] - x[22], x[22] - b[22], a[23] - x[23], x[23] - b[23], a[24] - x[24], x[24] - b[24], a[25] - x[25], x[25] - b[25], a[26] - x[26], x[26] - b[26], a[27] - x[27], x[27] - b[27], x[15] + x[16] - 1, x[17] + x[18] + x[19] - 1, x[20] + x[21] - 1, x[23] + x[29] - 1) ) } for(r in 1:reps){ set.seed(r) print(r) sol <- spot(x = x0, fun = funBaBSimHospital, lower = a, upper = b, verbosity = 0, nCores = nCores, control = list(funEvals = 2*funEvals, noise = TRUE, designControl = list( size = size, retries = 1000), optimizer = optimNLOPTR, optimizerControl = list( opts = list(algorithm = "NLOPT_GN_ISRES"), eval_g_ineq = g), model = buildKriging, plots = FALSE, progress = TRUE, directOpt = optimNLOPTR, directOptControl = list( funEvals = 0), eval_g_ineq = g, subsetSelect = selectN, subsetControl = list(N = subsetN)) ) progSpot[r, ] <- bov(sol$y, 2*funEvals) } progSpotHyb <- matrix(NA, nrow = reps, ncol = 2*funEvals) for(r in 1:reps){ set.seed(r) print(r) solHyb <- spot(x = x0, fun = funBaBSimHospital, lower = a, upper = b, verbosity = 0, nCores = nCores, control = list(funEvals = funEvals, noise = TRUE, designControl = list( size = size, retries = 1000), optimizer = optimNLOPTR, optimizerControl = list( opts = list(algorithm = "NLOPT_GN_ISRES"), eval_g_ineq = g), model = buildKriging, plots = FALSE, progress = TRUE, directOpt = optimNLOPTR, directOptControl = list( funEvals = funEvals), eval_g_ineq = g, subsetSelect = selectN, subsetControl = list(N = subsetN)) ) progSpotHyb[r, ] <- bov(solHyb$y, 2*funEvals) } matplot(t(progSpotHyb), type="l", col="red", lty=1, xlab="n: blackbox evaluations", ylab="best objective value", log="y") abline(v=size, lty=2) matlines(t(progSpot), type="l", col="gray", lty=1) legend("topright", c("Spot", "SpotHyb"), col=c("gray", "red"), lty=1, bty="n") resCompBartz07b <- list(progSpot= progSpot, progSpotHyb = progSpotHyb) save(resCompBartz07b, file="resCompBartz07b.RData")
logdensity_admkr = function(tau2, cpost) { dm = ncol(cpost) - 1 len = nrow(cpost) band = vector(, dm + 1) for(j in 1:(dm+1)) { temp = tem2 = 0 for(i in 1:len) { temp = temp + cpost[i,j] tem2 = tem2 + cpost[i,j]^2 } sigma = sqrt(tem2/len - (temp/len)^2) temp = exp(1.0/(dm + 5) * log(4/(dm + 3))) band[j] = temp * sigma * exp(-1/(dm + 5) * log(len)) } hprod = prod(band) cont = exp(-0.5 * (dm+1) * log(2.0 * pi)) xsum = 0 for(i in 1:len) { temp = 0 for(j in 1:(dm + 1)) { tem2 = (tau2[j] - cpost[i,j])/band[j] temp = temp + tem2^2 } xsum = xsum + cont * exp(-0.5 * temp)/hprod } hatf = log(xsum/len) return(hatf) } logdensity_admkr = function(tau2, cpost) { dm = ncol(cpost) len = nrow(cpost) band = vector(,dm) for(j in 1:dm) { temp = tem2 = 0 for(i in 1:len) { temp = temp + cpost[i,j] tem2 = tem2 + cpost[i,j]^2 } sigma = sqrt(tem2/len - (temp/len)^2) temp = exp(1.0/(dm+5) * log(4/(dm+3))) band[j] = temp * sigma * exp(-1/(dm+5) * log(len)) } hprod = prod(band) cont = exp(-0.5 * (dm+1)) }
timeline <- function(df, events, label.col = names(df)[1], group.col = names(df)[2], start.col = names(df)[3], end.col = names(df)[4], text.size = 4, text.color = 'black', num.label.steps = 5, event.label.col, event.col, event.group.col, event.spots = 1, event.label = '', event.label.method = 1, event.line = FALSE, event.text.size = 4, event.above = TRUE, limits, ... ) { p <- ggplot() if(!missing(events)) { if(missing(event.label.col)) { event.label.col <- names(events)[1] } if(missing(event.col)) { event.col <- names(events)[2] } if(missing(event.group.col)) { event.group.col <- NULL } } else { event.spots <- 0 } if(missing(limits)) { if(missing(events)) { limits <- range(c(df[,start.col], df[,end.col]), na.rm=TRUE) } else if(missing(df)) { limits <- range(events[,event.col], na.rm=TRUE) } else { limits <- range(c(df[,start.col], df[,end.col], events[,event.col]), na.rm=TRUE) } } groups <- unique(df[,group.col]) xmin <- limits[1] xmax <- limits[2] ymin <- 0 ymax <- length(groups) group.labels <- data.frame(group=groups, x=rep(xmin, length(groups)), y=rep(NA, length(groups)), stringsAsFactors=FALSE) df$ymin <- df$ymax <- NA for(i in seq_along(groups)) { df[which(df[,group.col] == groups[i]),]$ymin <- ifelse(event.above, 0, event.spots - 1) + i - event.above df[which(df[,group.col] == groups[i]),]$ymax <- ifelse(event.above, 0, event.spots - 1) + i + !event.above group.labels[which(group.labels$group == groups[i]),]$y <- ifelse(event.above, 0, event.spots - 1) + i + !event.above } df$labelpos <- (df$ymin + df$ymax) / 2 if(!missing(events)) { if(num.label.steps > 1) { steps <- rev(seq(0, event.spots, by=event.spots/ (num.label.steps + 1))[2:(num.label.steps+1)]) events$y <- ifelse(event.above, ymax, 0) + rep(steps, ceiling(nrow(events)/length(steps)))[1:nrow(events)] } else { events$y <- ifelse(event.above, ymax, 0) } } group.labels <- rbind(group.labels, data.frame(group=event.label, x=xmin, y=ifelse(event.above, ymax + 1, 1))) df[df[,start.col] < xmin & df[,end.col] > xmin, start.col] <- xmin df[df[,end.col] > xmax & df[,start.col] < xmax, end.col] <- xmax if(!missing(events)) { events <- events[events[,event.col] >= xmin & events[,event.col] <= xmax,] if(event.line) { p <- p + geom_segment(data=events, aes_string(x=event.col, xend=event.col, yend='y'), y=ifelse(event.above, ymin, event.spots), alpha=1) } } p <- p + geom_rect(data=df, aes_string(xmin=start.col, xmax=end.col, ymin='ymin', ymax='ymax', fill=label.col), alpha=.9) + geom_text(data=df, aes_string(y='labelpos', x=start.col, label=label.col), hjust=-0.05, size=text.size, color=text.color) + theme(legend.position='none', axis.ticks.y=element_blank()) + xlab('') + ylab('') + xlim(c(xmin, xmax)) + scale_y_continuous(breaks=group.labels$y-0.5, labels=group.labels$group, limits=c(ymin, ymax + event.spots), minor_breaks=c()) if(!missing(events)) { if(missing(event.group.col)) { events$Group <- 'Group' event.group.col <- 'Group' } if(event.label.method == 1) { p <- p + geom_point(data=events, aes_string(x=event.col, y='y', color=event.group.col)) + geom_text(data=events, aes_string(x=event.col, y='y', label=event.label.col, color=event.group.col), hjust=-0.05, size=event.text.size) } else if(event.label.method == 2) { p <- p + geom_point(data=events, aes_string(x=event.col, y='y', color=event.group.col)) + geom_text(data=events, aes_string(x=event.col, y='y', label=event.label.col, color=event.group.col), angle=45, vjust=ifelse(event.above, -0.15, 0), hjust=ifelse(event.above, -0.15, 0), size=event.text.size) } else if(event.label.method == 3) { p <- p + geom_point(data=events, aes_string(x=event.col, y='y', color=event.group.col)) + geom_text(data=events, aes_string(x=event.col, label=event.label.col, color=event.group.col, y='y'), angle=90, hjust=ifelse(event.above, -0.15, 0.15), vjust=ifelse(event.above, 0, 0), size=event.text.size) } if(length(unique(events[,event.group.col])) == 1) { p <- p + scale_color_grey() } } p <- p + geom_hline(yintercept=ifelse(event.above, 0, event.spots), size=1) return(p) }
ilogit <- function(x) { stats::plogis(x) } invlogit <- function(x) { stats::plogis(x) }
buildElems <- function(elems, type) { func <- paste0("build", type, "(") res <- list() params <- colnames(elems) for (i in 1:nrow(elems)) { command <- c() for (j in 1:length(params)) { command[j] <- paste0(params[j], " = ", "'", elems[i, j], "'") } command <- paste(command, collapse = ", ") command <- paste0(func, command, ")") res[[length(res) + 1]] <- eval(parse(text = command)) } return(res) }
context("nonportable") test_that("initialization", { AC <- R6Class("AC", portable = FALSE, public = list( x = 1, initialize = function(x, y) { self$x <- getx() + x private$y <- y }, getx = function() x, gety = function() private$y ), private = list( y = 2 ) ) A <- AC$new(2, 3) expect_identical(A$x, 3) expect_identical(A$gety(), 3) AC <- R6Class("AC", portable = FALSE, public = list(x = 1)) expect_error(AC$new(3)) }) test_that("empty members and methods are allowed", { AC <- R6Class("AC", portable = FALSE) expect_no_error(AC$new()) }) test_that("Private members are private, and self/private environments", { AC <- R6Class("AC", portable = FALSE, public = list( x = 1, gety = function() private$y, gety2 = function() y, getx = function() self$x, getx2 = function() x, getx3 = function() getx_priv3(), getx4 = function() getx_priv4() ), private = list( y = 2, getx_priv3 = function() self$x, getx_priv4 = function() x ) ) A <- AC$new() expect_identical(A$self, A) expect_identical(A$private, parent.env(A)) expect_identical(A, environment(A$getx)) expect_identical(A, environment(A$private$getx_priv3)) expect_identical(A$x, 1) expect_null(A$y) expect_error(A$getx_priv3()) expect_identical(A$gety(), 2) expect_identical(A$gety2(), 2) expect_identical(A$getx(), 1) expect_identical(A$getx2(), 1) expect_identical(A$getx3(), 1) expect_identical(A$getx4(), 1) }) test_that("Active bindings work", { AC <- R6Class("AC", portable = FALSE, public = list( x = 5 ), active = list( x2 = function(value) { if (missing(value)) return(x * 2) else x <<- value/2 } ) ) A <- AC$new() expect_identical(A$x2, 10) A$x <- 20 expect_identical(A$x2, 40) A$x2 <- 60 expect_identical(A$x2, 60) expect_identical(A$x, 30) }) test_that("Locking objects", { AC <- R6Class("AC", portable = FALSE, public = list(x = 1, getx = function() x), private = list(y = 2, gety = function() y), lock_objects = TRUE ) A <- AC$new() expect_no_error(A$x <- 5) expect_identical(A$x, 5) expect_no_error(A$private$y <- 5) expect_identical(A$private$y, 5) expect_error(A$getx <- function() 1) expect_error(A$gety <- function() 2) expect_error(A$z <- 1) expect_error(A$private$z <- 1) AC <- R6Class("AC", portable = FALSE, public = list(x = 1, getx = function() x), private = list(y = 2, gety = function() y), lock_objects = FALSE ) A <- AC$new() expect_no_error(A$x <- 5) expect_identical(A$x, 5) expect_no_error(A$private$y <- 5) expect_identical(A$private$y, 5) expect_error(A$getx <- function() 1) expect_error(A$private$gety <- function() 2) expect_no_error(A$z <- 1) expect_identical(A$z, 1) expect_no_error(A$private$z <- 1) expect_identical(A$private$z, 1) }) test_that("Validity checks on creation", { fun <- function() 1 expect_error(R6Class("AC", public = list(1))) expect_error(R6Class("AC", private = list(1))) expect_error(R6Class("AC", active = list(fun))) expect_error(R6Class("AC", public = list(a=1, a=2))) expect_error(R6Class("AC", public = list(a=1), private = list(a=1))) expect_error(R6Class("AC", private = list(a=1), active = list(a=fun))) expect_error(R6Class("AC", public = list(self = 1))) expect_error(R6Class("AC", private = list(private = 1))) expect_error(R6Class("AC", active = list(super = 1))) expect_error(R6Class("AC", private = list(initialize = fun))) expect_error(R6Class("AC", active = list(initialize = fun))) }) test_that("default print method has a trailing newline", { expect_output_n <- function(object) { tmp <- tempfile() on.exit(unlink(tmp)) sink(tmp) print(object) sink(NULL) output <- readChar(tmp, nchars = 10000) last_char <- substr(output, nchar(output), nchar(output)) expect_identical(last_char, "\n") } AC <- R6Class("AC") expect_output_n(print(AC)) A <- AC$new() expect_output_n(print(A)) AC <- R6Class("AC", private = list( x = 2 )) expect_output_n(print(AC)) A <- AC$new() expect_output_n(print(A)) })
globalVariables(c("..dimension_values")) unspread_draws = function(data, ..., draw_indices = c(".chain", ".iteration", ".draw"), drop_indices = FALSE) { result = lapply(enquos(...), function(variable_spec) { unspread_draws_(data, variable_spec, draw_indices = draw_indices) }) %>% reduce_(inner_join, by = draw_indices) %>% as_tibble() if (drop_indices) { result %>% select(-one_of(draw_indices)) } else { result } } unspread_draws_ = function(data, variable_spec, draw_indices = c(".chain", ".iteration", ".draw")) { spec = parse_variable_spec(variable_spec) variable_names = spec[[1]] dimension_names = spec[[2]] wide_dimension_name = spec[[3]] if (!is.null(wide_dimension_name)) { stop0("unspread_draws does not support the wide dimension syntax (`|`).") } data_subset = data %>% ungroup() %>% select(!!c(draw_indices, variable_names, dimension_names)) if (is.null(dimension_names)) { return(distinct(data_subset)) } data_distinct = data_subset %>% unite(..dimension_values, !!!dimension_names, sep = ",") %>% distinct() lapply(variable_names, function(variable_name) { data_distinct %>% select(!!c(draw_indices, variable_name, "..dimension_values")) %>% mutate(..variable = paste0(variable_name, "[", ..dimension_values, "]")) %>% select(-..dimension_values) %>% spread("..variable", !!variable_name) }) %>% reduce_(inner_join, by = draw_indices) }
if( identical( .Platform$OS.type, "windows" ) && identical( .Platform$r_arch, "x64" ) ){ print( "unit tests not run on windows 64 (workaround alert)" ) } else { if(require("RUnit", quietly = TRUE)) { require("RCurl", quietly = TRUE) pkg <- "haploR" if(Sys.getenv("RCMDCHECK") == "FALSE") { path <- file.path(getwd(), "..", "inst", "unitTests") } else { path <- system.file(package=pkg, "unitTests") } cat("\nRunning unit tests:\n") print(list(pkg=pkg, getwd=getwd(), pathToUnitTests=path)) library(package=pkg, character.only=TRUE) testSuite <- defineTestSuite(name=paste(pkg, "unit testing"), dirs=path, testFuncRegexp = "^test_+", testFileRegexp = "^test_+") tests <- runTestSuite(testSuite) pathReport <- file.path(path, "report") printTextProtocol(tests, showDetails=FALSE) tmp <- getErrors(tests) if(tmp$nFail > 0 | tmp$nErr > 0) { stop(paste("\n\nUnit testing failed ( } } else { print( "package RUnit not available, cannot run unit tests" ) } }
integral.linear <- function(t, size, parms) { return(data.frame(time=t, metric= size + parms["alpha"] * t)) }
{} setSeed <- function(seed=NULL) { if(! exists(".Random.seed", envir = .GlobalEnv, inherits = FALSE)) { runif(1) } if(is.null(seed)) { RNGstate <- get(".Random.seed", envir = .GlobalEnv) } else { R.seed <- get(".Random.seed", envir = .GlobalEnv) assign("R.seed", R.seed, envir=parent.frame()) set.seed(seed) RNGstate <- structure(seed, kind = as.list(RNGkind())) do.call("on.exit", list(quote(assign(".Random.seed", R.seed, envir = .GlobalEnv))), envir = parent.frame()) } return(RNGstate) } getResultList <- function(fun, nsim, vars, parallel=NULL) { ret <- if(is.null(parallel)) { lapply(X=seq_len(nsim), FUN=fun) } else { stopifnot(is.scalar(parallel), parallel > 0) cores <- min(safeInteger(parallel), min(parallel::detectCores(), 5)) cl <- parallel::makeCluster(cores) parallel::clusterEvalQ(cl, { library(crmPack) NULL }) parallel::clusterExport(cl=cl, varlist=vars, envir=parent.frame()) parallel::clusterExport(cl=cl, varlist=ls(.GlobalEnv)) res <- parallel::parLapply(cl=cl, X=seq_len(nsim), fun=fun) parallel::stopCluster(cl) res } return(ret) } setMethod("simulate", signature= signature(object="Design", nsim="ANY", seed="ANY"), def= function(object, nsim=1L, seed=NULL, truth, args=NULL, firstSeparate=FALSE, mcmcOptions=McmcOptions(), parallel=FALSE, nCores= min(parallel::detectCores(), 5), ...){ nsim <- safeInteger(nsim) stopifnot(is.function(truth), is.bool(firstSeparate), is.scalar(nsim), nsim > 0, is.bool(parallel), is.scalar(nCores), nCores > 0) args <- as.data.frame(args) nArgs <- max(nrow(args), 1L) RNGstate <- setSeed(seed) simSeeds <- sample(x=seq_len(1e5), size=nsim) runSim <- function(iterSim) { set.seed(simSeeds[iterSim]) thisArgs <- args[(iterSim - 1) %% nArgs + 1, , drop=FALSE] thisTruth <- function(dose) { do.call(truth, c(dose, thisArgs)) } thisData <- object@data if(thisData@placebo) thisProb.PL <- thisTruth(object@data@doseGrid[1]) stopit <- FALSE thisDose <- object@startingDose while(! stopit) { thisProb <- thisTruth(thisDose) thisSize <- size(cohortSize=object@cohortSize, dose=thisDose, data=thisData) if(thisData@placebo) thisSize.PL <- size(cohortSize=object@PLcohortSize, dose=thisDose, data=thisData) if(firstSeparate && (thisSize > 1L)) { thisDLTs <- rbinom(n=1L, size=1L, prob=thisProb) if( thisData@placebo && (thisSize.PL > 0L) ) thisDLTs.PL <- rbinom(n=1L, size=1L, prob=thisProb.PL) if(thisDLTs == 0) { thisDLTs <- c(thisDLTs, rbinom(n=thisSize - 1L, size=1L, prob=thisProb)) if( thisData@placebo && (thisSize.PL > 0L) ) thisDLTs.PL <- c(thisDLTs.PL, rbinom(n=thisSize.PL, size=1L, prob=thisProb.PL)) } } else { thisDLTs <- rbinom(n=thisSize, size=1L, prob=thisProb) if( thisData@placebo && (thisSize.PL > 0L) ) thisDLTs.PL <- rbinom(n=thisSize.PL, size=1L, prob=thisProb.PL) } if( thisData@placebo && (thisSize.PL > 0L) ){ thisData <- update(object=thisData, x=object@data@doseGrid[1], y=thisDLTs.PL) thisData <- update(object=thisData, x=thisDose, y=thisDLTs, newCohort=FALSE) }else{ thisData <- update(object=thisData, x=thisDose, y=thisDLTs) } doselimit <- maxDose(object@increments, data=thisData) thisSamples <- mcmc(data=thisData, model=object@model, options=mcmcOptions) thisDose <- nextBest(object@nextBest, doselimit=doselimit, samples=thisSamples, model=object@model, data=thisData)$value stopit <- stopTrial(object@stopping, dose=thisDose, samples=thisSamples, model=object@model, data=thisData) } thisFit <- fit(object=thisSamples, model=object@model, data=thisData) thisResult <- list(data=thisData, dose=thisDose, fit= subset(thisFit, select=c(middle, lower, upper)), stop= attr(stopit, "message")) return(thisResult) } resultList <- getResultList(fun=runSim, nsim=nsim, vars= c("simSeeds", "args", "nArgs", "firstSeparate", "truth", "object", "mcmcOptions"), parallel=if(parallel) nCores else NULL) dataList <- lapply(resultList, "[[", "data") recommendedDoses <- as.numeric(sapply(resultList, "[[", "dose")) fitList <- lapply(resultList, "[[", "fit") stopReasons <- lapply(resultList, "[[", "stop") ret <- Simulations(data=dataList, doses=recommendedDoses, fit=fitList, stopReasons=stopReasons, seed=RNGstate) return(ret) }) setMethod("simulate", signature= signature(object="RuleDesign", nsim="ANY", seed="ANY"), def= function(object, nsim=1L, seed=NULL, truth, args=NULL, parallel=FALSE, nCores= min(parallel::detectCores(), 5), ...){ nsim <- safeInteger(nsim) stopifnot(is.function(truth), is.scalar(nsim), nsim > 0, is.bool(parallel)) args <- as.data.frame(args) nArgs <- max(nrow(args), 1L) RNGstate <- setSeed(seed) simSeeds <- sample(x=seq_len(1e5), size=nsim) runSim <- function(iterSim) { set.seed(simSeeds[iterSim]) thisArgs <- args[(iterSim - 1) %% nArgs + 1, , drop=FALSE] thisTruth <- function(dose) { do.call(truth, c(dose, thisArgs)) } thisData <- object@data stopit <- FALSE thisDose <- object@startingDose while(! stopit) { thisProb <- thisTruth(thisDose) thisSize <- size(cohortSize=object@cohortSize, dose=thisDose, data=thisData) thisDLTs <- rbinom(n=thisSize, size=1L, prob=thisProb) thisData <- update(object=thisData, x=thisDose, y=thisDLTs) thisOutcome <- nextBest(object@nextBest, data=thisData) thisDose <- thisOutcome$value stopit <- thisOutcome$stopHere } thisResult <- list(data=thisData, dose=thisDose) return(thisResult) } resultList <- getResultList(fun=runSim, nsim=nsim, vars= c("simSeeds", "args", "nArgs", "truth", "object"), parallel=if(parallel) nCores else NULL) dataList <- lapply(resultList, "[[", "data") recommendedDoses <- as.numeric(sapply(resultList, "[[", "dose")) ret <- GeneralSimulations(data=dataList, doses=recommendedDoses, seed=RNGstate) return(ret) }) setMethod("simulate", signature= signature(object="DualDesign"), def= function(object, nsim=1L, seed=NULL, trueTox, trueBiomarker, args=NULL, sigma2W, rho=0, firstSeparate=FALSE, mcmcOptions=McmcOptions(), parallel=FALSE, nCores= min(parallel::detectCores(), 5), ...){ nsim <- safeInteger(nsim) stopifnot(is.function(trueTox), is.function(trueBiomarker), is.scalar(sigma2W), sigma2W > 0, is.scalar(rho), rho < 1, rho > -1, is.bool(firstSeparate), is.scalar(nsim), nsim > 0, is.bool(parallel)) args <- as.data.frame(args) nArgs <- max(nrow(args), 1L) trueToxArgnames <- names(formals(trueTox))[-1] trueBiomarkerArgnames <- names(formals(trueBiomarker))[-1] trueCov <- matrix(c(sigma2W, sqrt(sigma2W) * rho, sqrt(sigma2W) * rho, 1), nrow=2, byrow=TRUE) RNGstate <- setSeed(seed) simSeeds <- sample(x=seq_len(1e5), size=nsim) runSim <- function(iterSim) { set.seed(simSeeds[iterSim]) thisArgs <- args[(iterSim - 1) %% nArgs + 1, , drop=FALSE] thisTrueTox <- function(dose) { do.call(trueTox, c(dose, as.list(thisArgs)[trueToxArgnames])) } thisTrueBiomarker <- function(dose) { do.call(trueBiomarker, c(dose, as.list(thisArgs)[trueBiomarkerArgnames])) } thisData <- object@data stopit <- FALSE thisDose <- object@startingDose if(thisData@placebo){ thisProb.PL <- thisTrueTox(object@data@doseGrid[1]) thisMeanZ.PL <- qlogis(thisProb.PL) thisMeanBiomarker.PL <- thisTrueBiomarker(object@data@doseGrid[1]) } while(! stopit) { thisProb <- thisTrueTox(thisDose) thisMeanZ <- qlogis(thisProb) thisMeanBiomarker <- thisTrueBiomarker(thisDose) thisSize <- size(cohortSize=object@cohortSize, dose=thisDose, data=thisData) if(thisData@placebo) thisSize.PL <- size(cohortSize=object@PLcohortSize, dose=thisDose, data=thisData) tmp <- if(firstSeparate && (thisSize > 1L)) { tmpStart <- mvtnorm::rmvnorm(n=1, mean= c(thisMeanBiomarker, thisMeanZ), sigma=trueCov) if( thisData@placebo && (thisSize.PL > 0L) ) tmpStart.PL <- mvtnorm::rmvnorm(n=1, mean= c(thisMeanBiomarker.PL, thisMeanZ.PL), sigma=trueCov) if(tmpStart[, 2] < 0) { tmpStart <- rbind(tmpStart, mvtnorm::rmvnorm(n=thisSize - 1, mean= c(thisMeanBiomarker, thisMeanZ), sigma=trueCov)) if( thisData@placebo && (thisSize.PL > 0L) ) tmpStart.PL <- rbind(tmpStart.PL, mvtnorm::rmvnorm(n=thisSize.PL, mean= c(thisMeanBiomarker.PL, thisMeanZ.PL), sigma=trueCov)) } if(thisData@placebo && (thisSize.PL > 0L) ){ list(tmpStart=tmpStart, tmpStart.PL=tmpStart.PL) }else{ list(tmpStart=tmpStart) } }else{ tmpStart <- mvtnorm::rmvnorm(n=thisSize, mean= c(thisMeanBiomarker, thisMeanZ), sigma=trueCov) if(thisData@placebo && (thisSize.PL > 0L) ) tmpStart.PL <- mvtnorm::rmvnorm(n=thisSize.PL, mean= c(thisMeanBiomarker.PL, thisMeanZ.PL), sigma=trueCov) if(thisData@placebo && (thisSize.PL > 0L) ){ list(tmpStart=tmpStart, tmpStart.PL=tmpStart.PL) }else{ list(tmpStart=tmpStart) } } thisBiomarkers <- tmp$tmpStart[, 1] thisDLTs <- as.integer(tmp$tmpStart[, 2] > 0) if(thisData@placebo && (thisSize.PL > 0L) ){ thisBiomarkers.PL <- tmp$tmpStart.PL[, 1] thisDLTs.PL <- as.integer(tmp$tmpStart.PL[, 2] > 0) thisData <- update(object=thisData, x=object@data@doseGrid[1], y=thisDLTs.PL, w=thisBiomarkers.PL) thisData <- update(object=thisData, x=thisDose, y=thisDLTs, w=thisBiomarkers, newCohort=FALSE) }else{ thisData <- update(object=thisData, x=thisDose, y=thisDLTs, w=thisBiomarkers) } doselimit <- maxDose(object@increments, data=thisData) thisSamples <- mcmc(data=thisData, model=object@model, options=mcmcOptions) thisDose <- nextBest(object@nextBest, doselimit=doselimit, samples=thisSamples, model=object@model, data=thisData)$value stopit <- stopTrial(object@stopping, dose=thisDose, samples=thisSamples, model=object@model, data=thisData) } thisFit <- fit(object=thisSamples, model=object@model, data=thisData) thisResult <- list(data=thisData, dose=thisDose, fitTox= subset(thisFit, select= c(middle, lower, upper)), fitBiomarker= subset(thisFit, select= c(middleBiomarker, lowerBiomarker, upperBiomarker)), rhoEst=median(thisSamples@data$rho), sigma2West=median(1/thisSamples@data$precW), stop= attr(stopit, "message")) return(thisResult) } resultList <- getResultList(fun=runSim, nsim=nsim, vars= c("simSeeds", "args", "nArgs", "firstSeparate", "trueTox", "trueBiomarker", "trueCov", "object", "mcmcOptions"), parallel=if(parallel) nCores else NULL) dataList <- lapply(resultList, "[[", "data") recommendedDoses <- as.numeric(sapply(resultList, "[[", "dose")) rhoEstimates <- as.numeric(sapply(resultList, "[[", "rhoEst")) sigma2Westimates <- as.numeric(sapply(resultList, "[[", "sigma2West")) fitToxList <- lapply(resultList, "[[", "fitTox") fitBiomarkerList <- lapply(resultList, "[[", "fitBiomarker") stopReasons <- lapply(resultList, "[[", "stop") ret <- DualSimulations( data=dataList, doses=recommendedDoses, rhoEst=rhoEstimates, sigma2West=sigma2Westimates, fit=fitToxList, fitBiomarker=fitBiomarkerList, stopReasons=stopReasons, seed=RNGstate) return(ret) }) setGeneric("examine", def= function(object, ..., maxNoIncrement=100L){ stopifnot(is.scalar(maxNoIncrement) && maxNoIncrement > 0) standardGeneric("examine") }, valueClass="data.frame") setMethod("examine", signature= signature(object="Design"), def= function(object, mcmcOptions=McmcOptions(), ..., maxNoIncrement){ ret <- data.frame(dose=numeric(), DLTs=integer(), nextDose=numeric(), stop=logical(), increment=integer()) baseData <- object@data stopit <- FALSE noIncrementCounter <- 0L thisDose <- object@startingDose while(! stopit) { thisSize <- size(cohortSize=object@cohortSize, dose=thisDose, data=baseData) if(baseData@placebo) thisSize.PL <- size(cohortSize=object@PLcohortSize, dose=thisDose, data=baseData) for(numDLTs in 0:thisSize) { if(baseData@placebo && (thisSize.PL > 0L) ){ thisData <- update(object=baseData, x=baseData@doseGrid[1], y=rep(0,thisSize.PL)) thisData <- update(object=thisData, x=thisDose, y= rep(x=c(0, 1), times= c(thisSize - numDLTs, numDLTs)), newCohort=FALSE) }else{ thisData <- update(object=baseData, x=thisDose, y= rep(x=c(0, 1), times= c(thisSize - numDLTs, numDLTs))) } doselimit <- maxDose(object@increments, data=thisData) thisSamples <- mcmc(data=thisData, model=object@model, options=mcmcOptions) nextDose <- nextBest(object@nextBest, doselimit=doselimit, samples=thisSamples, model=object@model, data=thisData)$value thisIncrement <- round((nextDose - thisDose) / thisDose * 100) stopThisTrial <- stopTrial(object@stopping, dose=nextDose, samples=thisSamples, model=object@model, data=thisData) ret <- rbind(ret, list(dose=thisDose, DLTs=numDLTs, nextDose=nextDose, stop=stopThisTrial, increment=as.integer(thisIncrement))) } if(baseData@placebo && (thisSize.PL > 0L) ){ baseData <- update(object=baseData, x=baseData@doseGrid[1], y=rep(0, thisSize.PL)) baseData <- update(object=baseData, x=thisDose, y=rep(0, thisSize), newCohort=FALSE) }else{ baseData <- update(object=baseData, x=thisDose, y=rep(0, thisSize)) } resultsNoDLTs <- subset(tail(ret, thisSize + 1), dose==thisDose & DLTs==0) newDose <- as.numeric(resultsNoDLTs$nextDose) doseDiff <- newDose - thisDose if(doseDiff == 0) { noIncrementCounter <- noIncrementCounter + 1L } else { noIncrementCounter <- 0L } stopAlready <- resultsNoDLTs$stop thisDose <- newDose stopNoIncrement <- (noIncrementCounter >= maxNoIncrement) if(stopNoIncrement) warning(paste("Stopping because", noIncrementCounter, "times no increment vs. previous dose")) stopit <- (thisDose >= max(object@data@doseGrid)) || stopAlready || stopNoIncrement } return(ret) }) setMethod("examine", signature= signature(object="RuleDesign"), def= function(object, ..., maxNoIncrement){ ret <- data.frame(dose=numeric(), DLTs=integer(), nextDose=numeric(), stop=logical(), increment=integer()) baseData <- object@data stopit <- FALSE noIncrementCounter <- 0L thisDose <- object@startingDose while(! stopit) { thisSize <- size(cohortSize=object@cohortSize, dose=thisDose, data=baseData) for(numDLTs in 0:thisSize) { thisData <- update(object=baseData, x=thisDose, y= rep(x=c(0, 1), times= c(thisSize - numDLTs, numDLTs))) thisOutcome <- nextBest(object@nextBest, data=thisData) nextDose <- thisOutcome$value stopThisTrial <- thisOutcome$stopHere thisIncrement <- round((nextDose - thisDose) / thisDose * 100) ret <- rbind(ret, list(dose=thisDose, DLTs=numDLTs, nextDose=nextDose, stop=stopThisTrial, increment=as.integer(thisIncrement))) } baseData <- update(object=baseData, x=thisDose, y=rep(0, thisSize)) resultsNoDLTs <- subset(tail(ret, thisSize + 1), dose==thisDose & DLTs==0) newDose <- as.numeric(resultsNoDLTs$nextDose) doseDiff <- newDose - thisDose if(doseDiff == 0) { noIncrementCounter <- noIncrementCounter + 1L } else { noIncrementCounter <- 0L } stopAlready <- resultsNoDLTs$stop thisDose <- newDose stopNoIncrement <- (noIncrementCounter >= maxNoIncrement) if(stopNoIncrement) warning(paste("Stopping because", noIncrementCounter, "times no increment vs. previous dose")) stopit <- (thisDose >= max(object@data@doseGrid)) || stopAlready || stopNoIncrement } return(ret) }) setMethod("simulate", signature= signature(object="TDsamplesDesign", nsim="ANY", seed="ANY"), def= function(object, nsim=1L, seed=NULL, truth, args=NULL, firstSeparate=FALSE, mcmcOptions=McmcOptions(), parallel=FALSE, nCores= min(parallel::detectCores(), 5), ...){ nsim <- safeInteger(nsim) stopifnot(is.function(truth), is.bool(firstSeparate), is.scalar(nsim), nsim > 0, is.bool(parallel)) args <- as.data.frame(args) nArgs <- max(nrow(args), 1L) RNGstate <- setSeed(seed) simSeeds <- sample(x=seq_len(1e5), size=nsim) runSim <- function(iterSim) { set.seed(simSeeds[iterSim]) thisArgs <- args[(iterSim - 1) %% nArgs + 1, , drop=FALSE] thisTruth <- function(dose) { do.call(truth, c(dose, thisArgs)) } thisData <- object@data if(thisData@placebo) thisProb.PL <- thisTruth(object@data@doseGrid[1]) stopit <- FALSE thisDose <- object@startingDose while(! stopit) { thisProb <- thisTruth(thisDose) thisSize <- size(cohortSize=object@cohortSize, dose=thisDose, data=thisData) if(thisData@placebo) thisSize.PL <- size(cohortSize=object@PLcohortSize, dose=thisDose, data=thisData) if(firstSeparate && (thisSize > 1L)) { thisDLTs <- rbinom(n=1L, size=1L, prob=thisProb) if(thisData@placebo && (thisSize.PL > 0L) ) thisDLTs.PL <- rbinom(n=1L, size=1L, prob=thisProb.PL) if(thisDLTs == 0) { thisDLTs <- c(thisDLTs, rbinom(n=thisSize - 1L, size=1L, prob=thisProb)) if( thisData@placebo && (thisSize.PL > 0L) ) thisDLTs.PL <- c(thisDLTs.PL, rbinom(n=thisSize.PL, size=1L, prob=thisProb.PL)) } } else { thisDLTs <- rbinom(n=thisSize, size=1L, prob=thisProb) if(thisData@placebo && (thisSize.PL > 0L) ) thisDLTs.PL <- rbinom(n=thisSize.PL, size=1L, prob=thisProb.PL) } if(thisData@placebo && (thisSize.PL > 0L) ){ thisData <- update(object=thisData, x=object@data@doseGrid[1], y=thisDLTs.PL) thisData <- update(object=thisData, x=thisDose, y=thisDLTs, newCohort=FALSE) } else { thisData <- update(object=thisData, x=thisDose, y=thisDLTs) } thisModel <- update(object@model, data=thisData) doselimit <- maxDose(object@increments, data=thisData) thisSamples <- mcmc(data=thisData, model=thisModel, options=mcmcOptions) NEXT<-nextBest(object@nextBest, doselimit=doselimit, samples=thisSamples, model=thisModel, data=thisData, SIM=TRUE) thisDose <- NEXT$nextdose thisTDtargetDuringTrial<- NEXT$TDtargetDuringTrialEstimate thisTDtargetEndOfTrial<- NEXT$TDtargetEndOfTrialEstimate thisratioTDEOT <- NEXT$ratioTDEOT thisCITDEOT <- list(lower=NEXT$CITDEOT[1], upper=NEXT$CITDEOT[2]) thisTDtargetEndOfTrialatdoseGrid <- NEXT$TDtargetEndOfTrialAtDoseGrid stopit <- stopTrial(object@stopping, dose=thisDose, samples=thisSamples, model=thisModel, data=thisData) } thisFit <- fit(object=thisSamples, model=thisModel, data=thisData) thisResult <- list(data=thisData, dose=thisDose, TDtargetDuringTrial=thisTDtargetDuringTrial, TDtargetEndOfTrial=thisTDtargetEndOfTrial, TDtargetEndOfTrialatdoseGrid=thisTDtargetEndOfTrialatdoseGrid, TDtargetDuringTrialatdoseGrid=thisDose, CITDEOT=thisCITDEOT, ratioTDEOT= thisratioTDEOT, fit= subset(thisFit, select=c(middle, lower, upper)), stop= attr(stopit, "message")) return(thisResult) } resultList <- getResultList(fun=runSim, nsim=nsim, vars= c("simSeeds", "args", "nArgs", "firstSeparate", "truth", "object", "mcmcOptions"), parallel=if(parallel) nCores else NULL) dataList <- lapply(resultList, "[[", "data") TDtargetDuringTrialList<- as.numeric(sapply(resultList, "[[", "TDtargetDuringTrial")) TDtargetEndOfTrialList<- as.numeric(sapply(resultList, "[[", "TDtargetEndOfTrial")) TDtargetDuringTrialDoseGridList<- as.numeric(sapply(resultList, "[[", "TDtargetDuringTrialatdoseGrid")) TDtargetEndOfTrialDoseGridList<- as.numeric(sapply(resultList, "[[", "TDtargetEndOfTrialatdoseGrid")) recommendedDoses <- as.numeric(sapply(resultList, "[[", "TDtargetEndOfTrialatdoseGrid")) CIList <- lapply(resultList,"[[","CITDEOT") ratioList<- as.numeric(sapply(resultList, "[[", "ratioTDEOT")) CITDEOTList <- lapply(resultList,"[[","CITDEOT") ratioTDEOTList<- as.numeric(sapply(resultList, "[[", "ratioTDEOT")) fitList <- lapply(resultList, "[[", "fit") stopReasons <- lapply(resultList, "[[", "stop") ret <- PseudoSimulations(data=dataList, doses=recommendedDoses, fit=fitList, FinalTDtargetDuringTrialEstimates=TDtargetDuringTrialList, FinalTDtargetEndOfTrialEstimates=TDtargetEndOfTrialList, FinalTDtargetDuringTrialAtDoseGrid=TDtargetDuringTrialDoseGridList, FinalTDtargetEndOfTrialAtDoseGrid=TDtargetEndOfTrialDoseGridList, FinalCIs=CIList, FinalRatios=ratioList, FinalTDEOTCIs=CITDEOTList, FinalTDEOTRatios=ratioTDEOTList, stopReasons=stopReasons, seed=RNGstate) return(ret) }) setMethod("simulate", signature= signature(object="TDDesign", nsim="ANY", seed="ANY"), def= function(object, nsim=1L, seed=NULL, truth, args=NULL, firstSeparate=FALSE, parallel=FALSE, nCores= min(parallel::detectCores(), 5), ...){ nsim <- safeInteger(nsim) stopifnot(is.function(truth), is.bool(firstSeparate), is.scalar(nsim), nsim > 0, is.bool(parallel)) args <- as.data.frame(args) nArgs <- max(nrow(args), 1L) RNGstate <- setSeed(seed) simSeeds <- sample(x=seq_len(1e5), size=nsim) runSim <- function(iterSim) { set.seed(simSeeds[iterSim]) thisArgs <- args[(iterSim - 1) %% nArgs + 1, , drop=FALSE] thisTruth <- function(dose) { do.call(truth, c(dose, thisArgs)) } thisData <- object@data if(thisData@placebo) thisProb.PL <- thisTruth(object@data@doseGrid[1]) stopit <- FALSE thisDose <- object@startingDose while(! stopit) { thisProb <- thisTruth(thisDose) thisSize <- size(cohortSize=object@cohortSize, dose=thisDose, data=thisData) if(thisData@placebo) thisSize.PL <- size(cohortSize=object@PLcohortSize, dose=thisDose, data=thisData) if(firstSeparate && (thisSize > 1L)) { thisDLTs <- rbinom(n=1L, size=1L, prob=thisProb) if(thisData@placebo && (thisSize.PL > 0L) ) thisDLTs.PL <- rbinom(n=1L, size=1L, prob=thisProb.PL) if(thisDLTs == 0) { thisDLTs <- c(thisDLTs, rbinom(n=thisSize - 1L, size=1L, prob=thisProb)) if( thisData@placebo && (thisSize.PL > 0L) ) thisDLTs.PL <- c(thisDLTs.PL, rbinom(n=thisSize.PL, size=1L, prob=thisProb.PL)) } } else { thisDLTs <- rbinom(n=thisSize, size=1L, prob=thisProb) if(thisData@placebo && (thisSize.PL > 0L) ) thisDLTs.PL <- rbinom(n=thisSize.PL, size=1L, prob=thisProb.PL) } if(thisData@placebo && (thisSize.PL > 0L) ){ thisData <- update(object=thisData, x=object@data@doseGrid[1], y=thisDLTs.PL) thisData <- update(object=thisData, x=thisDose, y=thisDLTs, newCohort=FALSE) } else { thisData <- update(object=thisData, x=thisDose, y=thisDLTs) } thisModel <- update(object@model, data=thisData) doselimit <- maxDose(object@increments,data=thisData) NEXT<-nextBest(object@nextBest, doselimit=doselimit, model=thisModel, data=thisData, SIM=TRUE) thisDose <- NEXT$nextdose thisTDtargetDuringTrial<- NEXT$TDtargetDuringTrialEstimate thisTDtargetEndOfTrial<- NEXT$TDtargetEndOfTrialEstimate thisTDtargetEndOfTrialatdoseGrid <- NEXT$TDtargetEndOfTrialatdoseGrid thisCITDEOT <- list(lower=NEXT$CITFEOT[1], upper=NEXT$CITFEOT[2]) thisratioTDEOT <- NEXT$ratioTDEOT stopit <- stopTrial(object@stopping, dose=thisDose, model=thisModel, data=thisData) } thisFit <- list(phi1=thisModel@phi1, phi2=thisModel@phi2, probDLE=thisModel@prob(object@data@doseGrid, thisModel@phi1,thisModel@phi2)) thisResult <- list(data=thisData, dose=thisDose, TDtargetDuringTrial=thisTDtargetDuringTrial, TDtargetEndOfTrial=thisTDtargetEndOfTrial, TDtargetEndOfTrialatdoseGrid=thisTDtargetEndOfTrialatdoseGrid, TDtargetDuringTrialatdoseGrid=thisDose, CITDEOT=thisCITDEOT, ratioTDEOT= thisratioTDEOT, fit=thisFit, stop= attr(stopit, "message")) return(thisResult) } resultList <- getResultList(fun=runSim, nsim=nsim, vars= c("simSeeds", "args", "nArgs", "firstSeparate", "truth", "object"), parallel=if(parallel) nCores else NULL) dataList <- lapply(resultList, "[[", "data") TDtargetDuringTrialList<- as.numeric(sapply(resultList, "[[", "TDtargetDuringTrial")) TDtargetEndOfTrialList<- as.numeric(sapply(resultList, "[[", "TDtargetEndOfTrial")) TDtargetDuringTrialDoseGridList<- as.numeric(sapply(resultList, "[[", "TDtargetDuringTrialatdoseGrid")) TDtargetEndOfTrialDoseGridList<- as.numeric(sapply(resultList, "[[", "TDtargetEndOfTrialatdoseGrid")) recommendedDoses <- as.numeric(sapply(resultList, "[[", "TDtargetEndOfTrialatdoseGrid")) CIList <- lapply(resultList,"[[","CITDEOT") ratioList<- as.numeric(sapply(resultList, "[[", "ratioTDEOT")) CITDEOTList <- lapply(resultList,"[[","CITDEOT") ratioTDEOTList<- as.numeric(sapply(resultList, "[[", "ratioTDEOT")) fitList <- lapply(resultList,"[[", "fit") stopReasons <- lapply(resultList, "[[", "stop") ret <- PseudoSimulations(data=dataList, doses=recommendedDoses, fit=fitList, FinalTDtargetDuringTrialEstimates=TDtargetDuringTrialList, FinalTDtargetEndOfTrialEstimates=TDtargetEndOfTrialList, FinalTDtargetDuringTrialAtDoseGrid=TDtargetDuringTrialDoseGridList, FinalTDtargetEndOfTrialAtDoseGrid=TDtargetEndOfTrialDoseGridList, FinalCIs=CIList, FinalRatios=ratioList, FinalTDEOTCIs=CITDEOTList, FinalTDEOTRatios=ratioTDEOTList, stopReasons=stopReasons, seed=RNGstate) return(ret) }) setMethod("simulate", signature= signature(object="DualResponsesDesign", nsim="ANY", seed="ANY"), def= function(object, nsim=1L, seed=NULL, trueDLE, trueEff, trueNu, args=NULL, firstSeparate=FALSE, parallel=FALSE, nCores= min(parallel::detectCores(), 5), ...){ nsim <- safeInteger(nsim) stopifnot(is.function(trueDLE), is.function(trueEff), trueNu > 0, is.bool(firstSeparate), is.scalar(nsim), nsim > 0, is.bool(parallel)) args <- as.data.frame(args) nArgs <- max(nrow(args), 1L) trueDLEArgnames <- names(formals(trueDLE))[-1] trueEffArgnames <- names(formals(trueEff))[-1] RNGstate <- setSeed(seed) simSeeds <- sample(x=seq_len(1e5), size=nsim) runSim <- function(iterSim) { set.seed(simSeeds[iterSim]) thisArgs <- args[(iterSim - 1) %% nArgs + 1, , drop=FALSE] thisTruthDLE <- function(dose) { do.call(trueDLE, c(dose, as.list(thisArgs)[trueDLEArgnames])) } thisTruthEff <- function (dose) { do.call(trueEff, c(dose, as.list(thisArgs)[trueEffArgnames])) } thisData <- object@data trueSigma2<-1/trueNu thisData <- object@data if(thisData@placebo){ thisProb.PL <- thisTruthDLE(object@data@doseGrid[1]) thisMeanEff.PL <- thisTruthEff(object@data@doseGrid[1]) } stopit <- FALSE thisDose <- object@startingDose while(! stopit) { thisDLEProb <- thisTruthDLE(thisDose) thisMeanEff<-thisTruthEff(thisDose) thisSize <- size(cohortSize=object@cohortSize, dose=thisDose, data=thisData) if(thisData@placebo) thisSize.PL <- size(cohortSize=object@PLcohortSize, dose=thisDose, data=thisData) if(firstSeparate && (thisSize > 1L)) { thisDLTs <- rbinom(n=1L, size=1L, prob=thisDLEProb) if(thisData@placebo && (thisSize.PL > 0L) ) { thisDLTs.PL <- rbinom(n=1L, size=1L, prob=thisProb.PL)} thisEff <- rnorm(n=1L, mean=thisMeanEff, sd=sqrt(trueSigma2)) if (thisData@placebo && (thisSize.PL > 0L) ){ thisEff.PL <- rnorm(n=1L, mean=thisMeanEff.PL, sd=sqrt(trueSigma2))} if(thisDLTs == 0) { thisDLTs <- c(thisDLTs, rbinom(n=thisSize - 1L, size=1L, prob=thisDLEProb)) thisEff<-c(thisEff, rnorm(n=thisSize - 1L, mean=thisMeanEff, sd=sqrt(trueSigma2))) if( thisData@placebo && (thisSize.PL > 0L) ) { thisDLTs.PL <- c(thisDLTs.PL, rbinom(n=thisSize.PL, size=1L, prob=thisProb.PL)) thisEff.PL <- c(thisMeanEff.PL, rnorm(n=thisSize.PL, mean=thisMeanEff.PL, sd=sqrt(trueSigma2))) } } } else { thisDLTs <- rbinom(n=thisSize, size=1L, prob=thisDLEProb) thisEff <- rnorm(n=thisSize, mean=thisMeanEff, sd=sqrt(trueSigma2)) if (thisData@placebo && (thisSize.PL > 0L) ){ thisDLTs.PL <- rbinom(n=thisSize.PL, size=1L, prob=thisProb.PL) thisEff.PL <- rnorm(n=thisSize.PL, mean=thisMeanEff.PL, sd=sqrt(trueSigma2)) } } if(thisData@placebo && (thisSize.PL > 0L) ){ thisData <- update(object=thisData, x=object@data@doseGrid[1], y=thisDLTs.PL, w=thisEff.PL) thisData <- update(object=thisData, x=thisDose, y=thisDLTs, w=thisEff, newCohort=FALSE) } else { thisData <- update(object=thisData, x=thisDose, y=thisDLTs, w=thisEff) } thisDLEModel <- update(object=object@model, data=thisData) thisEffModel <- update(object=object@Effmodel, data=thisData) thisNu<-thisEffModel@nu if (thisEffModel@useFixed==FALSE){ thisSigma2 <- 1/(as.numeric(thisNu["a"]/thisNu["b"]))} else { thisSigma2 <- 1/thisNu} doselimit <- maxDose(object@increments,data=thisData) NEXT<-nextBest(object@nextBest, doselimit=doselimit, model=thisDLEModel, data=thisData, Effmodel=thisEffModel, SIM=TRUE) thisDose <- NEXT$nextdose thisTDtargetDuringTrial <- NEXT$TDtargetDuringTrialEstimate thisTDtargetDuringTrialAtDoseGrid<- NEXT$TDtargetDuringTrialAtDoseGrid thisTDtargetEndOfTrial <- NEXT$TDtargetEndOfTrialEstimate thisTDtargetEndOfTrialAtDoseGrid <- NEXT$TDtargetEndOfTrialAtDoseGrid thisGstar <- NEXT$GstarEstimate thisGstarAtDoseGrid <- NEXT$GstarAtDoseGrid Recommend<- min(thisTDtargetEndOfTrialAtDoseGrid,thisGstarAtDoseGrid) thisCITDEOT <- list(lower=NEXT$CITDEOT[1], upper=NEXT$CITDEOT[2]) thisratioTDEOT <- NEXT$ratioTDEOT thisCIGstar <- list(lower=NEXT$CIGstar[1], upper=NEXT$CIGstar[2]) thisratioGstar <- NEXT$ratioGstar OptimalDose <- min(thisGstar,thisTDtargetEndOfTrial) if (OptimalDose==thisGstar){ thisratio <- thisratioGstar thisCI<- thisCIGstar } else { thisratio <- thisratioTDEOT thisCI <- thisCITDEOT} stopit <- stopTrial(object@stopping, dose=thisDose, model=thisDLEModel, data=thisData, Effmodel=thisEffModel) } thisDLEFit <- list(phi1=thisDLEModel@phi1, phi2=thisDLEModel@phi2, probDLE=thisDLEModel@prob(object@data@doseGrid, thisDLEModel@phi1,thisDLEModel@phi2)) thisEffFit <- list(theta1=thisEffModel@theta1, theta2=thisEffModel@theta2, ExpEff=thisEffModel@ExpEff(object@data@doseGrid, thisEffModel@theta1, thisEffModel@theta2)) thisResult <- list(data=thisData, dose=thisDose, TDtargetDuringTrial=thisTDtargetDuringTrial , TDtargetDuringTrialAtDoseGrid=thisTDtargetDuringTrialAtDoseGrid, TDtargetEndOfTrial=thisTDtargetEndOfTrial, TDtargetEndOfTrialAtDoseGrid=thisTDtargetEndOfTrialAtDoseGrid, Gstar=thisGstar, GstarAtDoseGrid=thisGstarAtDoseGrid, Recommend=Recommend, OptimalDose=OptimalDose, OptimalDoseAtDoseGrid=Recommend, ratio=thisratio, CI=thisCI, ratioGstar=thisratioGstar, CIGstar=thisCIGstar, ratioTDEOT=thisratioTDEOT, CITDEOT=thisCITDEOT, fitDLE=thisDLEFit, fitEff=thisEffFit, sigma2est=thisSigma2, stop=attr(stopit, "message")) return(thisResult) } resultList <- getResultList(fun=runSim, nsim=nsim, vars= c("simSeeds", "args", "nArgs", "firstSeparate", "trueDLE", "trueEff", "trueNu", "object"), parallel=if(parallel) nCores else NULL) dataList <- lapply(resultList, "[[", "data") recommendedDoses <- as.numeric(sapply(resultList, "[[", "Recommend")) TDtargetDuringTrialList<- as.numeric(sapply(resultList, "[[", "TDtargetDuringTrial")) TDtargetEndOfTrialList<- as.numeric(sapply(resultList, "[[", "TDtargetEndOfTrial")) TDtargetDuringTrialDoseGridList<- as.numeric(sapply(resultList, "[[", "TDtargetDuringTrialAtDoseGrid")) TDtargetEndOfTrialDoseGridList<- as.numeric(sapply(resultList, "[[", "TDtargetEndOfTrialAtDoseGrid")) GstarList <- as.numeric(sapply(resultList,"[[","Gstar")) GstarAtDoseGridList <- as.numeric(sapply(resultList,"[[","GstarAtDoseGrid")) OptimalDoseList <- as.numeric(sapply(resultList,"[[","OptimalDose")) OptimalDoseAtDoseGridList <- as.numeric(sapply(resultList,"[[","Recommend")) CIList <- lapply(resultList,"[[","CI") ratioList<- as.numeric(sapply(resultList, "[[", "ratio")) CITDEOTList <- lapply(resultList,"[[","CITDEOT") ratioTDEOTList<- as.numeric(sapply(resultList, "[[", "ratioTDEOT")) CIGstarList <- lapply(resultList,"[[","CIGstar") ratioGstarList<- as.numeric(sapply(resultList, "[[", "ratioGstar")) fitDLEList <- lapply(resultList,"[[","fitDLE") fitEffList <- lapply(resultList,"[[","fitEff") sigma2Estimates <- as.numeric(sapply(resultList, "[[", "sigma2est")) stopReasons <- lapply(resultList, "[[", "stop") ret <- PseudoDualSimulations(data=dataList, doses=recommendedDoses, FinalTDtargetDuringTrialEstimates=TDtargetDuringTrialList, FinalTDtargetEndOfTrialEstimates=TDtargetEndOfTrialList, FinalTDtargetDuringTrialAtDoseGrid=TDtargetDuringTrialDoseGridList, FinalTDtargetEndOfTrialAtDoseGrid=TDtargetEndOfTrialDoseGridList, FinalCIs=CIList, FinalRatios=ratioList, FinalGstarEstimates=GstarList, FinalGstarAtDoseGrid=GstarAtDoseGridList, FinalGstarCIs=CIGstarList, FinalGstarRatios=ratioGstarList, FinalTDEOTCIs=CITDEOTList, FinalTDEOTRatios=ratioTDEOTList, FinalOptimalDose=OptimalDoseList, FinalOptimalDoseAtDoseGrid= OptimalDoseAtDoseGridList, fit=fitDLEList, fitEff=fitEffList, sigma2est=sigma2Estimates, stopReasons=stopReasons, seed=RNGstate) return(ret) }) setMethod("simulate", signature= signature(object="DualResponsesSamplesDesign", nsim="ANY", seed="ANY"), def= function(object, nsim=1L, seed=NULL, trueDLE, trueEff, trueNu=NULL, trueSigma2=NULL,trueSigma2betaW=NULL, args=NULL, firstSeparate=FALSE, mcmcOptions=McmcOptions(), parallel=FALSE, nCores= min(parallel::detectCores(), 5), ...){ nsim <- safeInteger(nsim) stopifnot(is.function(trueDLE), is.bool(firstSeparate), is.scalar(nsim), nsim > 0, is.bool(parallel)) isFlexi <- is(object@Effmodel, "EffFlexi") if(isFlexi) { stopifnot(trueSigma2 > 0, trueSigma2betaW > 0, is.numeric(trueEff), length(trueEff)==length(object@data@doseGrid)) args <- as.data.frame(args) nArgs <- max(nrow(args), 1L) trueDLEArgnames <- names(formals(trueDLE))[-1] RNGstate <- setSeed(seed) simSeeds <- sample(x=seq_len(1e5), size=nsim) runSim <- function(iterSim) { set.seed(simSeeds[iterSim]) thisArgs <- args[(iterSim - 1) %% nArgs + 1, , drop=FALSE] thisTruthDLE <- function(dose) { do.call(trueDLE, c(dose, thisArgs)) } thisTruthEff <- trueEff thisData <- object@data stopit <- FALSE thisDose <- object@startingDose thisSigma2 <- trueSigma2 thisSigma2betaW <- trueSigma2betaW while(! stopit) { thisDLEProb <- thisTruthDLE(thisDose) thisDoseIndex <- which(thisDose==thisData@doseGrid) thisMeanEff <- thisTruthEff[thisDoseIndex] thisSize <- size(cohortSize=object@cohortSize, dose=thisDose, data=thisData) if(thisData@placebo) thisSize.PL <- size(cohortSize=object@PLcohortSize, dose=thisDose, data=thisData) if(firstSeparate && (thisSize > 1L)) { thisDLTs <- rbinom(n=1L, size=1L, prob=thisDLEProb) if(thisData@placebo && (thisSize.PL > 0L) ) thisDLTs.PL <- rbinom(n=1L, size=1L, prob=thisProb.PL) thisEff <- rnorm(n=1L, mean=thisMeanEff, sd=sqrt(trueSigma2)) if (thisData@placebo && (thisSize.PL > 0L) ) thisEff.PL <- rnorm(n=1L, mean=thisMeanEff.PL, sd=sqrt(trueSigma2)) if(thisDLTs == 0) { thisDLTs <- c(thisDLTs, rbinom(n=thisSize - 1L, size=1L, prob=thisDLEProb)) thisEff<-c(thisEff, rnorm(n=thisSize - 1L, mean=thisMeanEff, sd=sqrt(trueSigma2))) if( thisData@placebo && (thisSize.PL > 0L) ) { thisDLTs.PL <- c(thisDLTs.PL, rbinom(n=thisSize.PL, size=1L, prob=thisProb.PL)) thisEff.PL <- c(thisMeanEff.PL, rnorm(n=thisSize.PL, mean=thisMeanEff.PL, sd=sqrt(trueSigma2))) } } } else { thisDLTs <- rbinom(n=thisSize, size=1L, prob=thisDLEProb) thisEff <- rnorm(n=thisSize, mean=thisMeanEff, sd=sqrt(trueSigma2)) if (thisData@placebo && (thisSize.PL > 0L) ){ thisDLTs.PL <- rbinom(n=thisSize.PL, size=1L, prob=thisProb.PL) thisEff.PL <- rnorm(n=thisSize.PL, mean=thisMeanEff.PL, sd=sqrt(trueSigma2)) } } if(thisData@placebo && (thisSize.PL > 0L) ){ thisData <- update(object=thisData, x=object@data@doseGrid[1], y=thisDLTs.PL, w=thisEff.PL) thisData <- update(object=thisData, x=thisDose, y=thisDLTs, w=thisEff, newCohort=FALSE) } else { thisData <- update(object=thisData, x=thisDose, y=thisDLTs, w=thisEff) } thisDLEModel <- update(object=object@model, data=thisData) thisEffModel <- update(object=object@Effmodel, data=thisData) doselimit <- maxDose(object@increments, data=thisData) thisDLEsamples <- mcmc(data=thisData, model=thisDLEModel, options=mcmcOptions) thisEffsamples <- mcmc(data=thisData, model=thisEffModel, options=mcmcOptions) thisSigma2 <- mean(thisEffsamples@data$sigma2) thisSigma2betaW <- mean(thisEffsamples@data$sigma2betaW) NEXT<-nextBest(object@nextBest, doselimit=doselimit, samples=thisDLEsamples, model=thisDLEModel, Effmodel=thisEffModel, Effsamples=thisEffsamples, data=thisData, SIM=TRUE) thisDose <- NEXT$nextdose thisTDtargetDuringTrial <- NEXT$TDtargetDuringTrialEstimate thisTDtargetDuringTrialAtDoseGrid<- NEXT$TDtargetDuringTrialAtDoseGrid thisTDtargetEndOfTrial <- NEXT$TDtargetEndOfTrialEstimate thisTDtargetEndOfTrialAtDoseGrid <- NEXT$TDtargetEndOfTrialAtDoseGrid thisGstar <- NEXT$GstarEstimate thisGstarAtDoseGrid <- NEXT$GstarAtDoseGrid Recommend<- min(thisTDtargetEndOfTrialAtDoseGrid,thisGstarAtDoseGrid) thisCITDEOT <- list(lower=NEXT$CITDEOT[1], upper=NEXT$CITDEOT[2]) thisratioTDEOT <- NEXT$ratioTDEOT thisCIGstar <- list(lower=NEXT$CIGstar[1], upper=NEXT$CIGstar[2]) thisratioGstar <- NEXT$ratioGstar OptimalDose <- min(thisGstar,thisTDtargetEndOfTrial) if (OptimalDose==thisGstar){ thisratio <- thisratioGstar thisCI<- thisCIGstar } else { thisratio <- thisratioTDEOT thisCI <- thisCITDEOT} stopit <- stopTrial(object@stopping, dose=thisDose, samples=thisDLEsamples, model=thisDLEModel, data=thisData, TDderive=object@nextBest@TDderive, Effmodel=thisEffModel, Effsamples=thisEffsamples, Gstarderive=object@nextBest@Gstarderive) } thisDLEFit <- fit(object=thisDLEsamples, model=thisDLEModel, data=thisData) thisEffFit <- fit(object=thisEffsamples, model=thisEffModel, data=thisData) thisResult <- list(data=thisData, dose=thisDose, TDtargetDuringTrial=thisTDtargetDuringTrial , TDtargetDuringTrialAtDoseGrid=thisTDtargetDuringTrialAtDoseGrid, TDtargetEndOfTrial=thisTDtargetEndOfTrial, TDtargetEndOfTrialAtDoseGrid=thisTDtargetEndOfTrialAtDoseGrid, Gstar=thisGstar, GstarAtDoseGrid=thisGstarAtDoseGrid, Recommend=Recommend, OptimalDose=OptimalDose, OptimalDoseAtDoseGrid=Recommend, ratio=thisratio, CI=thisCI, ratioGstar=thisratioGstar, CIGstar=thisCIGstar, ratioTDEOT=thisratioTDEOT, CITDEOT=thisCITDEOT, fitDLE=subset(thisDLEFit, select= c(middle,lower,upper)), fitEff=subset(thisEffFit, select= c(middle,lower,upper)), sigma2est=thisSigma2, sigma2betaWest=thisSigma2betaW, stop= attr(stopit, "message")) return(thisResult) } resultList <- getResultList(fun=runSim, nsim=nsim, vars= c("simSeeds", "args", "nArgs", "firstSeparate", "trueDLE", "trueEff", "trueSigma2", "trueSigma2betaW", "object", "mcmcOptions"), parallel=if(parallel) nCores else NULL) dataList <- lapply(resultList, "[[", "data") recommendedDoses <- as.numeric(sapply(resultList, "[[", "Recommend")) fitDLEList <- lapply(resultList,"[[","fitDLE") fitEffList <- lapply(resultList,"[[","fitEff") sigma2Estimates <- as.numeric(sapply(resultList, "[[", "sigma2est")) sigma2betaWEstimates <- as.numeric(sapply(resultList, "[[", "sigma2betaWest")) TDtargetDuringTrialList<- as.numeric(sapply(resultList, "[[", "TDtargetDuringTrial")) TDtargetEndOfTrialList<- as.numeric(sapply(resultList, "[[", "TDtargetEndOfTrial")) TDtargetDuringTrialDoseGridList<- as.numeric(sapply(resultList, "[[", "TDtargetDuringTrialAtDoseGrid")) TDtargetEndOfTrialDoseGridList<- as.numeric(sapply(resultList, "[[", "TDtargetEndOfTrialAtDoseGrid")) GstarList <- as.numeric(sapply(resultList,"[[","Gstar")) GstarAtDoseGridList <- as.numeric(sapply(resultList,"[[","GstarAtDoseGrid")) OptimalDoseList <- as.numeric(sapply(resultList,"[[","OptimalDose")) OptimalDoseAtDoseGridList <- as.numeric(sapply(resultList,"[[","Recommend")) CIList <- lapply(resultList,"[[","CI") ratioList<- as.numeric(sapply(resultList, "[[", "ratio")) CITDEOTList <- lapply(resultList,"[[","CITDEOT") ratioTDEOTList<- as.numeric(sapply(resultList, "[[", "ratioTDEOT")) CIGstarList <- lapply(resultList,"[[","CIGstar") ratioGstarList<- as.numeric(sapply(resultList, "[[", "ratioGstar")) stopReasons <- lapply(resultList, "[[", "stop") ret <- PseudoDualFlexiSimulations(data=dataList, doses=recommendedDoses, FinalTDtargetDuringTrialEstimates=TDtargetDuringTrialList, FinalTDtargetEndOfTrialEstimates=TDtargetEndOfTrialList, FinalTDtargetDuringTrialAtDoseGrid=TDtargetDuringTrialDoseGridList, FinalTDtargetEndOfTrialAtDoseGrid=TDtargetEndOfTrialDoseGridList, FinalCIs=CIList, FinalRatios=ratioList, FinalGstarEstimates=GstarList, FinalGstarAtDoseGrid=GstarAtDoseGridList, FinalGstarCIs=CIGstarList, FinalGstarRatios=ratioGstarList, FinalTDEOTCIs=CITDEOTList, FinalTDEOTRatios=ratioTDEOTList, FinalOptimalDose=OptimalDoseList, FinalOptimalDoseAtDoseGrid= OptimalDoseAtDoseGridList, fit=fitDLEList, fitEff=fitEffList, sigma2est=sigma2Estimates, sigma2betaWest=sigma2betaWEstimates, stopReasons=stopReasons, seed=RNGstate) return(ret) } else { stopifnot(trueNu > 0, is.function(trueEff)) args <- as.data.frame(args) nArgs <- max(nrow(args), 1L) trueDLEArgnames <- names(formals(trueDLE))[-1] trueEffArgnames <- names(formals(trueEff))[-1] RNGstate <- setSeed(seed) simSeeds <- sample(x=seq_len(1e5), size=nsim) runSim <- function(iterSim) { set.seed(simSeeds[iterSim]) thisArgs <- args[(iterSim - 1) %% nArgs + 1, , drop=FALSE] thisTruthDLE <- function(dose) { do.call(trueDLE, c(dose, as.list(thisArgs)[trueDLEArgnames])) } thisTruthEff <- function (dose) { do.call(trueEff, c(dose, as.list(thisArgs)[trueEffArgnames])) } trueSigma2<-1/trueNu thisData <- object@data stopit <- FALSE thisDose <- object@startingDose while(! stopit) { thisDLEProb <- thisTruthDLE(thisDose) thisMeanEff<-thisTruthEff(thisDose) thisSize <- size(cohortSize=object@cohortSize, dose=thisDose, data=thisData) if(firstSeparate && (thisSize > 1L)) { thisDLTs <- rbinom(n=1L, size=1L, prob=thisDLEProb) if(thisData@placebo && (thisSize.PL > 0L) ) thisDLTs.PL <- rbinom(n=1L, size=1L, prob=thisProb.PL) thisEff <- rnorm(n=1L, mean=thisMeanEff, sd=sqrt(trueSigma2)) if (thisData@placebo && (thisSize.PL > 0L) ) thisEff.PL <- rnorm(n=1L, mean=thisMeanEff.PL, sd=sqrt(trueSigma2)) if(thisDLTs == 0) { thisDLTs <- c(thisDLTs, rbinom(n=thisSize - 1L, size=1L, prob=thisDLEProb)) thisEff<-c(thisEff, rnorm(n=thisSize - 1L, mean=thisMeanEff, sd=sqrt(trueSigma2))) if( thisData@placebo && (thisSize.PL > 0L) ) { thisDLTs.PL <- c(thisDLTs.PL, rbinom(n=thisSize.PL, size=1L, prob=thisProb.PL)) thisEff.PL <- c(thisMeanEff.PL, rnorm(n=thisSize.PL, mean=thisMeanEff.PL, sd=sqrt(trueSigma2))) } } } else { thisDLTs <- rbinom(n=thisSize, size=1L, prob=thisDLEProb) thisEff <- rnorm(n=thisSize, mean=thisMeanEff, sd=sqrt(trueSigma2)) if (thisData@placebo && (thisSize.PL > 0L) ){ thisDLTs.PL <- rbinom(n=thisSize.PL, size=1L, prob=thisProb.PL) thisEff.PL <- rnorm(n=thisSize.PL, mean=thisMeanEff.PL, sd=sqrt(trueSigma2)) } } if(thisData@placebo && (thisSize.PL > 0L) ){ thisData <- update(object=thisData, x=object@data@doseGrid[1], y=thisDLTs.PL, w=thisEff.PL) thisData <- update(object=thisData, x=thisDose, y=thisDLTs, w=thisEff, newCohort=FALSE) } else { thisData <- update(object=thisData, x=thisDose, y=thisDLTs, w=thisEff) } thisDLEModel <- update(object=object@model, data=thisData) thisEffModel <- update(object=object@Effmodel, data=thisData) thisNu<-thisEffModel@nu thisDLEsamples <- mcmc(data=thisData, model=thisDLEModel, options=mcmcOptions) thisEffsamples <- mcmc(data=thisData, model=thisEffModel, options=mcmcOptions) if (thisEffModel@useFixed==FALSE){ thisSigma2 <- 1/(as.numeric(thisNu["a"]/thisNu["b"]))} else { thisSigma2 <- 1/thisNu} doselimit <- maxDose(object@increments,data=thisData) NEXT<-nextBest(object@nextBest, doselimit=doselimit, samples=thisDLEsamples, model=thisDLEModel, data=thisData, Effmodel=thisEffModel, Effsamples=thisEffsamples, SIM=TRUE) thisDose <- NEXT$nextdose thisTDtargetDuringTrial <- NEXT$TDtargetDuringTrialEstimate thisTDtargetDuringTrialAtDoseGrid<- NEXT$TDtargetDuringTrialAtDoseGrid thisTDtargetEndOfTrial <- NEXT$TDtargetEndOfTrialEstimate thisTDtargetEndOfTrialAtDoseGrid <- NEXT$TDtargetEndOfTrialAtDoseGrid thisGstar <- NEXT$GstarEstimate thisGstarAtDoseGrid <- NEXT$GstarAtDoseGrid Recommend<- min(thisTDtargetEndOfTrialAtDoseGrid,thisGstarAtDoseGrid) thisCITDEOT <- list(lower=NEXT$CITDEOT[1], upper=NEXT$CITDEOT[2]) thisratioTDEOT <- NEXT$ratioTDEOT thisCIGstar <- list(lower=NEXT$CIGstar[1], upper=NEXT$CIGstar[2]) thisratioGstar <- NEXT$ratioGstar OptimalDose <- min(thisGstar,thisTDtargetEndOfTrial) if (OptimalDose==thisGstar){ thisratio <- thisratioGstar thisCI<- thisCIGstar } else { thisratio <- thisratioTDEOT thisCI <- thisCITDEOT} stopit <- stopTrial(object@stopping, dose=thisDose, samples=thisDLEsamples, model=thisDLEModel, data=thisData, TDderive=object@nextBest@TDderive, Effmodel=thisEffModel, Effsamples=thisEffsamples, Gstarderive=object@nextBest@Gstarderive) } thisDLEFit <- fit(object=thisDLEsamples, model=thisDLEModel, data=thisData) thisEffFit <- fit(object=thisEffsamples, model=thisEffModel, data=thisData) thisResult <- list(data=thisData, dose=thisDose, TDtargetDuringTrial=thisTDtargetDuringTrial , TDtargetDuringTrialAtDoseGrid=thisTDtargetDuringTrialAtDoseGrid, TDtargetEndOfTrial=thisTDtargetEndOfTrial, TDtargetEndOfTrialAtDoseGrid=thisTDtargetEndOfTrialAtDoseGrid, Gstar=thisGstar, GstarAtDoseGrid=thisGstarAtDoseGrid, Recommend=Recommend, OptimalDose=OptimalDose, OptimalDoseAtDoseGrid=Recommend, ratio=thisratio, CI=thisCI, ratioGstar=thisratioGstar, CIGstar=thisCIGstar, ratioTDEOT=thisratioTDEOT, CITDEOT=thisCITDEOT, fitDLE=subset(thisDLEFit, select= c(middle,lower,upper)), fitEff=subset(thisEffFit, select= c(middle,lower,upper)), sigma2est=thisSigma2, stop=attr(stopit, "message")) return(thisResult) } resultList <- getResultList(fun=runSim, nsim=nsim, vars= c("simSeeds", "args", "nArgs", "firstSeparate", "trueDLE", "trueEff", "trueNu", "object"), parallel=if(parallel) nCores else NULL) dataList <- lapply(resultList, "[[", "data") recommendedDoses <- as.numeric(sapply(resultList, "[[", "Recommend")) TDtargetDuringTrialList<- as.numeric(sapply(resultList, "[[", "TDtargetDuringTrial")) TDtargetEndOfTrialList<- as.numeric(sapply(resultList, "[[", "TDtargetEndOfTrial")) TDtargetDuringTrialDoseGridList<- as.numeric(sapply(resultList, "[[", "TDtargetDuringTrialAtDoseGrid")) TDtargetEndOfTrialDoseGridList<- as.numeric(sapply(resultList, "[[", "TDtargetEndOfTrialAtDoseGrid")) GstarList <- as.numeric(sapply(resultList,"[[","Gstar")) GstarAtDoseGridList <- as.numeric(sapply(resultList,"[[","GstarAtDoseGrid")) OptimalDoseList <- as.numeric(sapply(resultList,"[[","OptimalDose")) OptimalDoseAtDoseGridList <- as.numeric(sapply(resultList,"[[","Recommend")) CIList <- lapply(resultList,"[[","CI") ratioList<- as.numeric(sapply(resultList, "[[", "ratio")) CITDEOTList <- lapply(resultList,"[[","CITDEOT") ratioTDEOTList<- as.numeric(sapply(resultList, "[[", "ratioTDEOT")) CIGstarList <- lapply(resultList,"[[","CIGstar") ratioGstarList<- as.numeric(sapply(resultList, "[[", "ratioGstar")) fitDLEList <- lapply(resultList,"[[","fitDLE") fitEffList <- lapply(resultList,"[[","fitEff") sigma2Estimates <- as.numeric(sapply(resultList, "[[", "sigma2est")) stopReasons <- lapply(resultList, "[[", "stop") ret <- PseudoDualSimulations(data=dataList, doses=recommendedDoses, FinalTDtargetDuringTrialEstimates=TDtargetDuringTrialList, FinalTDtargetEndOfTrialEstimates=TDtargetEndOfTrialList, FinalTDtargetDuringTrialAtDoseGrid=TDtargetDuringTrialDoseGridList, FinalTDtargetEndOfTrialAtDoseGrid=TDtargetEndOfTrialDoseGridList, FinalCIs=CIList, FinalRatios=ratioList, FinalGstarEstimates=GstarList, FinalGstarAtDoseGrid=GstarAtDoseGridList, FinalGstarCIs=CIGstarList, FinalGstarRatios=ratioGstarList, FinalTDEOTCIs=CITDEOTList, FinalTDEOTRatios=ratioTDEOTList, FinalOptimalDose=OptimalDoseList, FinalOptimalDoseAtDoseGrid=OptimalDoseAtDoseGridList, fit=fitDLEList, fitEff=fitEffList, sigma2est=sigma2Estimates, stopReasons=stopReasons, seed=RNGstate) return(ret) } })
test_that("testJob", { reg = makeTestRegistry() f = function(x) if (x %% 2 == 0) stop("foo") else x^2 batchMap(reg = reg, f, 1:3) expect_equal(testJob(reg = reg, id = 1), 1) expect_equal(testJob(reg = reg, id = 3), 9) expect_error(testJob(reg = reg, id = 2), "foo") expect_equal(suppressAll(testJob(reg = reg, id = 1, external = TRUE)), 1) expect_error(suppressAll(testJob(reg = reg, id = 2, external = TRUE)), "re-run") expect_equal(findSubmitted(reg = reg), data.table(job.id = integer(0L), key = "job.id")) expect_equal(findDone(reg = reg), data.table(job.id = integer(0L), key = "job.id")) expect_equal(findErrors(reg = reg), data.table(job.id = integer(0L), key = "job.id")) }) test_that("testJob.ExperimentRegistry", { reg = makeTestExperimentRegistry() prob = addProblem(reg = reg, "p1", data = iris, fun = function(job, data, ...) nrow(data), seed = 42) algo = addAlgorithm(reg = reg, "a1", fun = function(job, data, instance, sq, ...) instance^sq) ids = addExperiments(prob.designs = list(p1 = data.table()), algo.designs = list(a1 = data.table(sq = 1:3)), reg = reg) suppressAll(x <- testJob(id = 1, reg = reg)) expect_equal(x, 150) suppressAll(x <- testJob(id = 2, reg = reg, external = TRUE)) expect_equal(x, 150^2) }) test_that("traceback works in external session", { reg = makeTestRegistry() f = function(x) { g = function(x) findme(x) findme = function(x) h(x) h = function(x) stop("Error in h") g(x) } batchMap(f, 1, reg = reg) expect_output(expect_error(testJob(1, external = TRUE, reg = reg), "external=FALSE"), "findme") })
size.comparing.variances <- function(ratio,alpha,power) { g <- function(n){ qf(1-alpha/2,n-1,n-1)*qf(power,n-1,n-1)-ratio } u <- uniroot(g,c(ratio,1000*ratio))$root ceiling(u) }
myDirichlet <- function(alpha){ k <- length(alpha) theta <- rgamma(k, shape = alpha, rate = 1) return(theta/sum(theta)) } toSolve <- function(a,n,p0){ myVals <- exp(lgamma(2*a) - lgamma(a) + lgamma(a+n) - lgamma(2*a + n) + log(2)) l <- abs(myVals - p0) return(a[which(l == min(l))][1]) } complete.loglikelihood<-function(x,z,pars){ g <- dim(pars)[1] n <- dim(x)[1] J <- dim(pars)[2] d <- dim(x)[2] logl <- rep(0, n) logpi <- log(pars[,J]) z <- as.numeric(z) for (j in 1:d){ logl <- logl + dbinom(x[,j], size = 1, prob = pars[,j][z], log = TRUE) } logl <- logl + logpi[z] return(sum(logl)) } gibbsBinMix <- function(alpha,beta,gamma,K,m,burn,data,thinning,z.true,outputDir){ if (missing(K)) {stop(cat(paste(" [ERROR]: number of clusters (K) not provided."), "\n"))} if (missing(m)) {stop(cat(paste(" [ERROR]: number of MCMC iterations (m) not provided."), "\n"))} if (missing(thinning)) {thinning <- 5} if (K < 2) { stop(cat(paste(" [ERROR]: number of clusters (K) should be at least equal to 2."), "\n")) } d <- dim(data)[2] if (burn > m - 1) { stop(cat(paste(" [ERROR]: burn-in period (burn) not valid"), "\n")) } if (burn < 0) { stop(cat(paste(" [ERROR]: burn-in period (burn) not valid"), "\n")) } if (thinning > m) { stop(cat(paste(" [ERROR]: thinning not valid."), "\n")) } if (m < 1) { stop(cat(paste(" [ERROR]: mcmc iterations (m) not valid."), "\n")) } if (missing(alpha)) {alpha <- 1} if (missing(beta)) {beta <- 1} if (missing(gamma)) {gamma <- rep(1,K)} if (missing(data)) {stop(cat(paste(" [ERROR]: data is missing."), "\n"))} n <- dim(data)[1] x <- data dir.create(outputDir) setwd(outputDir) p <- myDirichlet(rep(1,K)) theta <- array(data = runif(K*d), dim = c(K,d)) z <- sample(K,n,replace=TRUE,prob = p) s <- l <- newL <- numeric(K) sx <- array(data = 0, dim = c(K,d)) theta.file <- "theta.txt" z.file <- "z.txt" p.file <- "p.txt" conTheta = file(theta.file,open = "w") conZ = file(z.file,open = "w") conP = file(p.file,open = "w") for (iter in 1:m){ s <- rep(0,K) sx <- array(data = 0, dim = c(K,d)) for(i in 1:n){ for(k in 1:K){ l[k] <- log(p[k]) + sum(x[i,]*log(theta[k,]) + (1-x[i,])*log(1-theta[k,])) } for(k in 1:K){ newL[k] <- 1/sum(exp(l - l[k])) } z[i] <- sample(K,1,prob = newL) s[z[i]] <- s[z[i]] + 1 sx[z[i],] <- sx[z[i],] + x[i,] } p <- myDirichlet(gamma + s) for(k in 1:K){ theta[k,] <- rbeta(d, shape1 = alpha + sx[k,], shape2 = beta + s[k] - sx[k,]) } if((iter %% thinning == 0)&(iter > burn)){ cat(theta,"\n",file=conTheta) cat(z,"\n",file=conZ) cat(p,"\n",file=conP) } if(iter %% (m/100) == 0){ cat(paste("Running Gibbs: ",100*round(iter/m,3),"% completed.",sep=""),"\n"); } } close(conTheta) close(conP) close(conZ) cat(paste("Gibbs finished."),"\n") cat("\n") cat(paste("Dealing with Label Switching..."),"\n") tt <- read.table("theta.txt") m <- dim(tt)[1] d <- dim(x)[2] J <- d + 1 mcmc <- array(data = NA, dim = c(m,K,J)) for (j in 1:d){ for(k in 1:K){ mcmc[,k,j] <- tt[,(j-1)*K + k] } } tt <- read.table("p.txt") for(k in 1:K){ mcmc[,k,J] <- tt[,k] } allocations <- as.matrix(read.table("z.txt",as.is = TRUE)) m <- dim(mcmc)[1] iter <- 1 ll <- complete.loglikelihood(x,allocations[iter,],mcmc[iter,,]) maxLL <- ll maxIter <- iter for (iter in 1:m){ ll <- complete.loglikelihood(x,allocations[iter,],mcmc[iter,,]) if(ll > maxLL){maxLL <- ll;maxIter <- iter;cat(paste("Found new Complete MLE: ", ll,sep=""),"\n")} } pMatrix <- array(data = NA, dim = c(m,n,K)) for (iter in 1:m){ p <- mcmc[iter,,J] theta <- array( mcmc[iter,,1:(J-1)],dim = c(K,J-1) ) for(i in 1:n){ for(k in 1:K){ l[k] <- log(p[k]) + sum(x[i,]*log(theta[k,]) + (1-x[i,])*log(1-theta[k,])) } for(k in 1:K){ pMatrix[iter,i,k] <- 1/sum(exp(l - l[k])) if(is.na(pMatrix[iter,i,k]) == TRUE){pMatrix[iter,i,k] = 0} } } if(iter %% 1000 == 0){cat(paste(" classification probs: ",100*round(iter/m,3),"% completed",sep=""),"\n");} } if(missing(z.true)==TRUE){ ls <- label.switching( K = K, method = c("STEPHENS","ECR","ECR-ITERATIVE-1"), zpivot = allocations[maxIter,], z = allocations, complete = complete.loglikelihood, data = x, mcmc = mcmc,prapivot = mcmc[maxIter,,], p = pMatrix) }else{ ls <- label.switching( K = K, method = c("STEPHENS","ECR","ECR-ITERATIVE-1"), zpivot = allocations[maxIter,], z = allocations, complete = complete.loglikelihood, data = x, mcmc = mcmc,p = pMatrix,groundTruth = z.true) } allocationsECR <- allocationsKL <- allocationsECR.ITERATIVE1 <- allocations for (i in 1:m){ myPerm <- order(ls$permutations$"ECR"[i,]) allocationsECR[i,] <- myPerm[allocations[i,]] myPerm <- order(ls$permutations$"STEPHENS"[i,]) allocationsKL[i,] <- myPerm[allocations[i,]] myPerm <- order(ls$permutations$"ECR-ITERATIVE-1"[i,]) allocationsECR.ITERATIVE1[i,] <- myPerm[allocations[i,]] } write.table(allocationsECR, file = "z.ECR.txt") write.table(allocationsKL, file = "z.KL.txt") write.table(allocationsECR.ITERATIVE1, file = "z.ECR-ITERATIVE1.txt") reordered.mcmc<-permute.mcmc(mcmc,ls$permutations$"ECR")$output tt <- read.table("theta.txt") write.table(reordered.mcmc, file = "reorderedMCMC-ECR.txt",col.names = c(paste(rep(paste(expression(theta),1:K,sep="."),d),rep(1:d,each=K),sep="-"),paste('p',1:K,sep="."))) reordered.mcmc<-permute.mcmc(mcmc,ls$permutations$"ECR-ITERATIVE-1")$output write.table(reordered.mcmc, file = "reorderedMCMC-ECR-ITERATIVE1.txt",col.names = c(paste(rep(paste(expression(theta),1:K,sep="."),d),rep(1:d,each=K),sep="-"),paste('p',1:K,sep="."))) reordered.mcmc<-permute.mcmc(mcmc,ls$permutations$"STEPHENS")$output write.table(reordered.mcmc, file = "reorderedMCMC-STEPHENS.txt",col.names = c(paste(rep(paste(expression(theta),1:K,sep="."),d),rep(1:d,each=K),sep="-"),paste('p',1:K,sep="."))) write.table(mcmc, file = "rawMCMC.txt",col.names = c(paste(rep(paste(expression(theta),1:K,sep="."),d),rep(1:d,each=K),sep="-"),paste('p',1:K,sep="."))) write.table(file = "reorderedSingleBestClusterings.txt",t(ls$clusters[c(1,2,3),]),row.names = paste("z",1:n,sep=".")) file.remove("p.txt") file.remove("theta.txt") cat(paste("raw MCMC parameters written to: \'rawMCMC.txt\' "),"\n") cat(paste("raw MCMC latent allocations written to: \'z.txt\' "),"\n") cat(paste("reordered MCMC output written to: "),"\n") cat(paste(" (Method 1): \'reorderedMCMC-ECR.txt\'"),"\n") cat(paste(" (Method 2): \'reorderedMCMC-ECR-ITERATIVE1.txt\'"),"\n") cat(paste(" (Method 3): \'reorderedMCMC-STEPHENS.txt\'"),"\n") cat(paste("reordered single best clusterings written to: \'reorderedSingleBestClusterings.txt\' "),"\n") cat(paste("reordered MCMC latent allocations written to: "),"\n") cat(paste(" (Method 1): \'z.ECR.txt\'"),"\n") cat(paste(" (Method 2): \'z.KL.txt\'"),"\n") cat(paste(" (Method 3): \'z.ECR-ITERATIVE1.txt\'"),"\n") setwd("../") } collapsedGibbsBinMix <- function(alpha,beta,gamma,K,m,burn,data,thinning,z.true,outputDir){ if (missing(K)) {stop(cat(paste(" [ERROR]: number of clusters (K) not provided."), "\n"))} if (missing(m)) {stop(cat(paste(" [ERROR]: number of MCMC iterations (m) not provided."), "\n"))} if (missing(thinning)) {thinning <- 5} d <- dim(data)[2] if (burn > m - 1) { stop(cat(paste(" [ERROR]: burn-in period (burn) not valid"), "\n")) } if (burn < 0) { stop(cat(paste(" [ERROR]: burn-in period (burn) not valid"), "\n")) } if (thinning > m) { stop(cat(paste(" [ERROR]: thinning not valid."), "\n")) } if (m < 1) { stop(cat(paste(" [ERROR]: mcmc iterations (m) not valid."), "\n")) } if (missing(alpha)) {alpha <- 1} if (missing(beta)) {beta <- 1} if (missing(gamma)) {gamma <- rep(1,K)} if (missing(data)) {stop(cat(paste(" [ERROR]: data is missing."), "\n"))} d <- dim(data)[2] n <- dim(data)[1] x <- data dir.create(outputDir) setwd(outputDir) p <- myDirichlet(rep(1,K)) theta <- array(data = runif(K*d), dim = c(K,d)) z <- sample(K,n,replace=TRUE,prob = p) s <- l <- newL <- numeric(K) sx <- array(data = 0, dim = c(K,d)) theta.file <- "theta.collapsed.txt" z.file <- "z.collapsed.txt" p.file <- "p.collapsed.txt" conTheta = file(theta.file,open = "w") conZ = file(z.file,open = "w") conP = file(p.file,open = "w") for (iter in 1:100){ s <- rep(0,K) sx <- array(data = 0, dim = c(K,d)) for(i in 1:n){ for(k in 1:K){ l[k] <- log(p[k]) + sum(x[i,]*log(theta[k,]) + (1-x[i,])*log(1-theta[k,])) } for(k in 1:K){ newL[k] <- 1/sum(exp(l - l[k])) } z[i] <- sample(K,1,prob = newL) s[z[i]] <- s[z[i]] + 1 sx[z[i],] <- sx[z[i],] + x[i,] } p <- myDirichlet(gamma + s) for(k in 1:K){ theta[k,] <- rbeta(d, shape1 = alpha + sx[k,], shape2 = beta + s[k] - sx[k,]) } } nMatrix <- array(data = 0, dim = c(n,K)) sMatrix <- array(data = 0, dim = c(n,K,d)) for (i in 1:n){ nMatrix[i,] <- s sMatrix[i,,] <- sx } for (i in 1:n){ nMatrix[i,z[i]] <- nMatrix[i,z[i]] - 1 for (j in 1:d){ sMatrix[i,z[i],j] <- sMatrix[i,z[i],j] - x[i,j] } } reallocationAcceptanceRatio <- 0 reallocationAcceptanceRatio2 <- 0 a1 <- a2 <- 1 lar <- c() for(iter in 1:m){ zOld <- z for(i in 1:n){ nMatrix[i,1:K] <- s[1:K] sMatrix[i,1:K,] <- sx[1:K,] nMatrix[i,z[i]] <- s[z[i]] - 1 sMatrix[i,z[i],] <- sx[z[i],] - x[i,] A1 <- which(x[i,] == 1) A0 <- which(x[i,] == 0) for(k in 1:K){ newL[k] <- log(nMatrix[i,k] + gamma[k]) - d*log(alpha + beta + nMatrix[i,k]) if(length(A1 > 0)){ newL[k] <- newL[k] + sum(log(alpha + sMatrix[i,k,A1])) } if(length(A0 > 0)){ newL[k] <- newL[k] + sum(log(beta + nMatrix[i,k] - sMatrix[i,k,A0])) } } newL[1:K] <- exp(newL[1:K]) z[i] <- sample(K,1,prob = newL[1:K]) sx[zOld[i],] <- sx[zOld[i],] - x[i,] sx[z[i],] <- sx[z[i],] + x[i,] s[zOld[i]] <- s[zOld[i]] - 1 s[z[i]] <- s[z[i]] + 1 } if (K > 1){ myPair <- sample(K,2,replace = FALSE) propZ <- z set1 <- which(z == myPair[1]) set2 <- which(z == myPair[2]) myP <- rbeta(1,shape1 = gamma[myPair[1]],shape2 = gamma[myPair[2]]) propZ[c(set1,set2)] <- myPair[sample(2,length(set1) + length(set2), replace = TRUE,prob = c(myP,1-myP) )] newSet1 <- which(propZ == myPair[1]) newSet2 <- which(propZ == myPair[2]) nNew <- c(length(newSet1),length(newSet2)) nOld <- c(length(set1),length(set2)) if(nOld[1] == 0){sOld1 <- rep(0,d)}else{sOld1 <- colSums(array(x[set1,],dim = c(nOld[1],d)))} if(nOld[2] == 0){sOld2 <- rep(0,d)}else{sOld2 <- colSums(array(x[set2,],dim = c(nOld[2],d)))} sOld <- rbind(sOld1,sOld2) if(nNew[1] == 0){sNew1 <- rep(0,d)}else{sNew1 <- colSums(array(x[newSet1,],dim = c(nNew[1],d)))} if(nNew[2] == 0){sNew2 <- rep(0,d)}else{sNew2 <- colSums(array(x[newSet2,],dim = c(nNew[2],d)))} sNew <- rbind(sNew1,sNew2) logAR <- 0 for (i in 1:2){ logAR <- logAR + d*(lgamma(alpha + beta + nOld[i]) - lgamma(alpha + beta + nNew[i]) ) + sum(lgamma(alpha + sNew[i,]) + lgamma(beta + nNew[i] - sNew[i,]) - lgamma(alpha + sOld[i,]) - lgamma(beta + nOld[i] - sOld[i,])) } if( log(runif(1)) < logAR ){ reallocationAcceptanceRatio <- reallocationAcceptanceRatio + 1 z <- propZ s <- rep(0,K) sx <- array(data = 0, dim = c(K,d)) for(i in 1:n){ s[z[i]] <- s[z[i]] + 1 sx[z[i],] <- sx[z[i],] + x[i,] } for(i in 1:n){ nMatrix[i,] <- s sMatrix[i,,] <- sx } for (i in 1:n){ nMatrix[i,z[i]] <- nMatrix[i,z[i]] - 1 for (j in 1:d){ sMatrix[i,z[i],j] <- sMatrix[i,z[i],j] - x[i,j] } } } } if(K > 1){ myPair <- sample(K,2,replace = FALSE) set1 <- which(z == myPair[1]) set2 <- which(z == myPair[2]) nOld <- c(length(set1),length(set2)) propZ <- z if(nOld[1] > 0){ randomSize <- 1 + floor(nOld[1]*runif(1)) randomIndex <- set1[sample(nOld[1],randomSize,replace = FALSE)] propZ[randomIndex] <- rep(myPair[2],randomSize) newSet1 <- which(propZ == myPair[1]) newSet2 <- which(propZ == myPair[2]) nNew <- c(length(newSet1),length(newSet2)) if(nOld[1] == 0){sOld1 <- rep(0,d)}else{sOld1 <- colSums(array(x[set1,],dim = c(nOld[1],d)))} if(nOld[2] == 0){sOld2 <- rep(0,d)}else{sOld2 <- colSums(array(x[set2,],dim = c(nOld[2],d)))} sOld <- rbind(sOld1,sOld2) if(nNew[1] == 0){sNew1 <- rep(0,d)}else{sNew1 <- colSums(array(x[newSet1,],dim = c(nNew[1],d)))} if(nNew[2] == 0){sNew2 <- rep(0,d)}else{sNew2 <- colSums(array(x[newSet2,],dim = c(nNew[2],d)))} sNew <- rbind(sNew1,sNew2) logAR <- log(nOld[1]) - log(nOld[2] + randomSize) -( lgamma(nOld[1] - randomSize + 1) + lgamma(nOld[2]+ randomSize + 1) - lgamma(nOld[2] + 1) - lgamma(nOld[1] + 1)) for(i in 1:2){ logAR <- logAR + d*(lgamma(alpha + beta + nOld[i]) - lgamma(alpha + beta + nNew[i]) ) + sum(lgamma(alpha + sNew[i,]) + lgamma(beta + nNew[i] - sNew[i,]) - lgamma(alpha + sOld[i,]) - lgamma(beta + nOld[i] - sOld[i,])) } logAR <- logAR + sum(lgamma(gamma[myPair] + nNew)) - sum(lgamma(gamma[myPair] + nOld)) if( log(runif(1)) < logAR ){ reallocationAcceptanceRatio2 <- reallocationAcceptanceRatio2 + 1 z <- propZ s <- rep(0,K) sx <- array(data = 0, dim = c(K,d)) for(i in 1:n){ s[z[i]] <- s[z[i]] + 1 sx[z[i],] <- sx[z[i],] + x[i,] } for(i in 1:n){ nMatrix[i,] <- s sMatrix[i,,] <- sx } for (i in 1:n){ nMatrix[i,z[i]] <- nMatrix[i,z[i]] - 1 for (j in 1:d){ sMatrix[i,z[i],j] <- sMatrix[i,z[i],j] - x[i,j] } } } } } if((iter %% thinning == 0)&(iter > burn)){ for(k in 1:K){ myIndex <- which(z == k) s[k] <- length(myIndex) if(s[k] > 1){ sx[k,] <- colSums(x[myIndex,]) }else{ if(s[k] == 1){ sx[k,] <- x[myIndex,] }else{ sx[k,] <- rep(0,d) } } theta[k,] <- rbeta(d, shape1 = alpha + sx[k,], shape2 = beta + s[k] - sx[k,]) } p <- myDirichlet(gamma + s) cat(theta,"\n",file=conTheta) cat(z,"\n",file=conZ) cat(p,"\n",file=conP) } if(iter %% (m/100) == 0){cat(paste("Running collapsed Gibbs: ",100*round(iter/m,3),"% completed. Reallocation proposal acceptance rates: ", 100*round(reallocationAcceptanceRatio/iter,3),"%, ",100*round(reallocationAcceptanceRatio2/iter,3),"%.",sep=""),"\n"); } } close(conTheta) close(conP) close(conZ) cat(paste("Collapsed Gibbs finished."),"\n") cat("\n") if(K > 1){ cat(paste("Dealing with Label Switching..."),"\n") tt <- read.table("theta.collapsed.txt") m <- dim(tt)[1] d <- dim(x)[2] J <- d + 1 mcmc <- array(data = NA, dim = c(m,K,J)) for (j in 1:d){ for(k in 1:K){ mcmc[,k,j] <- tt[,(j-1)*K + k] } } tt <- read.table("p.collapsed.txt") for(k in 1:K){ mcmc[,k,J] <- tt[,k] } allocations <- as.matrix(read.table("z.collapsed.txt",as.is = TRUE)) m <- dim(mcmc)[1] iter <- 1 ll <- complete.loglikelihood(x,allocations[iter,],mcmc[iter,,]) maxLL <- ll maxIter <- iter for (iter in 1:m){ ll <- complete.loglikelihood(x,allocations[iter,],mcmc[iter,,]) if(ll > maxLL){maxLL <- ll;maxIter <- iter;cat(paste("Found new Complete MLE: ", ll,sep=""),"\n")} } pMatrix <- array(data = NA, dim = c(m,n,K)) for (iter in 1:m){ p <- mcmc[iter,,J] theta <- array( mcmc[iter,,1:(J-1)],dim = c(K,J-1) ) for(i in 1:n){ for(k in 1:K){ l[k] <- log(p[k]) + sum(x[i,]*log(theta[k,]) + (1-x[i,])*log(1-theta[k,])) } for(k in 1:K){ pMatrix[iter,i,k] <- 1/sum(exp(l - l[k])) if(is.na(pMatrix[iter,i,k]) == TRUE){pMatrix[iter,i,k] = 0} } } if(iter %% 1000 == 0){cat(paste(" classification probs: ",100*round(iter/m,3),"% completed",sep=""),"\n");} } if(missing(z.true)==TRUE){ ls <- label.switching( method = c("STEPHENS","ECR","ECR-ITERATIVE-1"), zpivot = allocations[maxIter,], z = allocations,K = K, complete = complete.loglikelihood, data = x, prapivot = mcmc[maxIter,,], mcmc = mcmc, p = pMatrix) }else{ ls <- label.switching( method = c("STEPHENS","ECR","ECR-ITERATIVE-1"), zpivot = allocations[maxIter,], z = allocations,K = K, complete = complete.loglikelihood, data = x, prapivot = mcmc[maxIter,,], mcmc = mcmc, p = pMatrix,groundTruth = z.true) } reordered.mcmc<-permute.mcmc(mcmc,ls$permutations$"ECR")$output tt <- read.table("theta.collapsed.txt") write.table(reordered.mcmc, file = "reorderedMCMC-ECR.collapsed.txt",col.names = c(paste(rep(paste(expression(theta),1:K,sep="."),d),rep(1:d,each=K),sep="-"),paste('p',1:K,sep="."))) reordered.mcmc<-permute.mcmc(mcmc,ls$permutations$"ECR-ITERATIVE-1")$output write.table(reordered.mcmc, file = "reorderedMCMC-ECR-ITERATIVE1.collapsed.txt",col.names = c(paste(rep(paste(expression(theta),1:K,sep="."),d),rep(1:d,each=K),sep="-"),paste('p',1:K,sep="."))) reordered.mcmc<-permute.mcmc(mcmc,ls$permutations$"STEPHENS")$output write.table(reordered.mcmc, file = "reorderedMCMC-STEPHENS.collapsed.txt",col.names = c(paste(rep(paste(expression(theta),1:K,sep="."),d),rep(1:d,each=K),sep="-"),paste('p',1:K,sep="."))) write.table(mcmc, file = "rawMCMC.collapsed.txt",col.names = c(paste(rep(paste(expression(theta),1:K,sep="."),d),rep(1:d,each=K),sep="-"),paste('p',1:K,sep="."))) write.table(file = "reorderedSingleBestClusterings.collapsed.txt",t(ls$clusters[c(1,2,3),]),row.names = paste("z",1:n,sep=".")) file.remove("p.collapsed.txt") file.remove("theta.collapsed.txt") cat(paste("raw MCMC parameters written to: \'rawMCMC.collapsed.txt\' "),"\n") cat(paste("raw MCMC latent allocations written to: \'z.collapsed.txt\' "),"\n") cat(paste("reordered MCMC output written to: "),"\n") cat(paste(" (Method 1): \'reorderedMCMC-ECR.collapsed.txt\'"),"\n") cat(paste(" (Method 2): \'reorderedMCMC-ECR-ITERATIVE1.collapsed.txt\'"),"\n") cat(paste(" (Method 3): \'reorderedMCMC-STEPHENS.collapsed.txt\'"),"\n") cat(paste("reordered single best clusterings written to: \'reorderedSingleBestClusterings.collapsed.txt\' "),"\n") } setwd("../") } allocationSamplerBinMix <- function(Kmax, alpha,beta,gamma,m,burn,data,thinning,z.true,ClusterPrior,ejectionAlpha,Kstart,outputDir,metropolisMoves,reorderModels,heat,zStart,LS, rsX, originalX, printProgress){ setwd(outputDir) cat(paste0("changing working directory to ",outputDir),"\n") if (missing(m)) {stop(cat(paste(" [ERROR]: number of MCMC iterations (m) not provided."), "\n"))} if (missing(thinning)) {thinning <- 5} if (missing(LS)) {LS <- TRUE} if (missing(printProgress)) { printProgress <- FALSE } if (missing(ejectionAlpha)) {ejectionAlpha <- 1} if (burn > m - 1) { stop(cat(paste(" [ERROR]: burn-in period (burn) not valid"), "\n")) } if (burn < 0) { stop(cat(paste(" [ERROR]: burn-in period (burn) not valid"), "\n")) } if (thinning > m) { stop(cat(paste(" [ERROR]: thinning not valid."), "\n")) } if (m < 1) { stop(cat(paste(" [ERROR]: mcmc iterations (m) not valid."), "\n")) } if (missing(alpha)) {alpha <- 1} if (missing(beta)) {beta <- 1} if (missing(data)) {stop(cat(paste(" [ERROR]: data is missing."), "\n"))} x <- data d <- dim(data)[2] n <- dim(data)[1] if (missing(Kmax)) {Kmax <- floor((d + 1)/2)} if (missing(gamma)) {gamma <- rep(1,Kmax)} if (length(table(gamma)) > 1){ stop(cat(paste(" [ERROR]: Dirichlet prior parameters should be the same."), "\n")) } birthProbs <- rep(1,Kmax) birthProbs[2:(Kmax - 1)] <- rep(0.5,Kmax - 2) birthProbs[Kmax] <- 0 deathProbs <- 1 - birthProbs priorK <- numeric(Kmax) if (missing(ClusterPrior)) {stop(cat(paste(" [ERROR]: ClusterPrior not defined (uniform of poisson)."), "\n"))} if (missing(ejectionAlpha)) {stop(cat(paste(" [ERROR]: ejectionAlpha not defined (0 < a < 1)."), "\n"))} if (ejectionAlpha < 0) {stop(cat(paste(" [ERROR]: ejectionAlpha error (0 < a < 1)."), "\n"))} if (ejectionAlpha > 1) {stop(cat(paste(" [ERROR]: ejectionAlpha error (0 < a < 1)."), "\n"))} if(ClusterPrior == "uniform"){ priorK <- rep(log(1/Kmax),Kmax) } if(ClusterPrior == "poisson"){ denom <- log(ppois(Kmax, lambda = 1, lower.tail = TRUE) - dpois(0,lambda = 1)) for (k in 1:Kmax){ priorK[k] <- dpois(k,lambda = 1, log = TRUE) - denom } } if(missing(Kstart)){ Kstart <- 1 } K <- Kstart p <- myDirichlet(rep(1,K)) theta <- array(data = runif(Kmax*d), dim = c(Kmax,d)) s <- l <- newL <- numeric(Kmax) sx <- array(data = 0, dim = c(Kmax,d)) if(missing(zStart) == TRUE){ cat(paste("Initializing..."),"\n") cat("\n") z <- sample(K,n,replace=TRUE,prob = p) cat(paste("Allocation sampler running..."),"\n") cat("\n") }else{ z <- zStart s[1:K] <- rep(0,K) sx[1:K,] <- array(data = 0, dim = c(K,d)) for(i in 1:n){ s[z[i]] <- s[z[i]] + 1 sx[z[i],] <- sx[z[i],] + x[i,] } } k.file <- "K.txt" theta.file <- "theta.varK.txt" z.file <- "z.varK.txt" p.file <- "p.varK.txt" conK = file(k.file,open = "w") conTheta = file(theta.file,open = "w") conZ = file(z.file,open = "w") conP = file(p.file,open = "w") if(missing(zStart) == TRUE){ for (iter in 1:5){ s[1:K] <- rep(0,K) sx[1:K,] <- array(data = 0, dim = c(K,d)) for(i in 1:n){ for(k in 1:K){ l[k] <- log(p[k]) + sum(x[i,]*log(theta[k,]) + (1-x[i,])*log(1-theta[k,])) } for(k in 1:K){ newL[k] <- 1/sum(exp(l[1:K] - l[k])) } if(is.nan(sum(newL[1:K]))==TRUE){newL[1:K]<-rep(1,K)} z[i] <- sample(K,1,prob = newL[1:K]) s[z[i]] <- s[z[i]] + 1 sx[z[i],] <- sx[z[i],] + x[i,] } p <- myDirichlet(heat*gamma[1:K] + heat*s[1:K] + 1 - heat) for(k in 1:K){ theta[k,] <- rbeta(d, shape1 = heat*alpha + heat*sx[k,] + 1 - heat, shape2 = heat*beta + heat*s[k] - heat*sx[k,] + 1 - heat) } } } nMatrix <- array(data = 0, dim = c(n,Kmax)) sMatrix <- array(data = 0, dim = c(n,Kmax,d)) for (i in 1:n){ nMatrix[i,1:K] <- s[1:K] sMatrix[i,1:K,] <- sx[1:K,] } for (i in 1:n){ nMatrix[i,z[i]] <- nMatrix[i,z[i]] - 1 for (j in 1:d){ sMatrix[i,z[i],j] <- sMatrix[i,z[i],j] - x[i,j] } } reallocationAcceptanceRatio <- 0 reallocationAcceptanceRatio2 <- 0 reallocationAcceptanceRatio3 <- 0 reallocationAcceptanceRatio4 <- 0 a1 <- a2 <- 1 pZERO <- ejectionAlpha constLGAMMA <- 2*lgamma(ejectionAlpha) - lgamma(2*ejectionAlpha) kValues <- c() if(missing(metropolisMoves) == TRUE){metropolisMoves <- c('M1','M2','M3','M4')} lmm <- 1/length(metropolisMoves) if( printProgress == TRUE){ cat(paste(" Reallocation proposal acceptance rates: Move 1, Move 2, Move 3, Move 4"),"\n") } for(iter in 1:m){ zOld <- z sOld <- s sxOld <- sx if(K > 1){ myPair <- sample(K,2,replace = FALSE) j1 <- myPair[1] j2 <- myPair[2] set1 <- which(z == j1) set2 <- which(z == j2) zOld[set1] = rep(j2,length(set1)) zOld[set2] = rep(j1,length(set2)) z <- zOld sOld[j1] <- s[j2] sOld[j2] <- s[j1] sxOld[j1,] <- sx[j2,] sxOld[j2,] <- sx[j1,] s <- sOld sx <- sxOld } for(i in 1:n){ nMatrix[i,1:K] <- s[1:K] sMatrix[i,1:K,] <- sx[1:K,] nMatrix[i,z[i]] <- s[z[i]] - 1 sMatrix[i,z[i],] <- sx[z[i],] - x[i,] A1 <- which(x[i,] == 1) A0 <- which(x[i,] == 0) for(k in 1:K){ newL[k] <- heat*log(nMatrix[i,k] + gamma[k]) - heat*d*log(alpha + beta + nMatrix[i,k]) if(length(A1 > 0)){ newL[k] <- newL[k] + heat*sum(log(alpha + sMatrix[i,k,A1])) } if(length(A0 > 0)){ newL[k] <- newL[k] + heat*sum(log(beta + nMatrix[i,k] - sMatrix[i,k,A0])) } } newL[1:K] <- exp(newL[1:K]) if( max(newL[1:K]) == 0){newL[1:K] <- rep(1,K);cat("oops","\n")} z[i] <- sample(K,1,prob = newL[1:K]) sx[zOld[i],] <- sx[zOld[i],] - x[i,] sx[z[i],] <- sx[z[i],] + x[i,] s[zOld[i]] <- s[zOld[i]] - 1 s[z[i]] <- s[z[i]] + 1 } mNumber <- sample(metropolisMoves,1) if(mNumber == 'M1'){ if (K > 1){ myPair <- sample(K,2,replace = FALSE) propZ <- z set1 <- which(z == myPair[1]) set2 <- which(z == myPair[2]) myP <- rbeta(1,shape1 = gamma[myPair[1]],shape2 = gamma[myPair[2]]) propZ[c(set1,set2)] <- myPair[sample(2,length(set1) + length(set2), replace = TRUE,prob = c(myP,1-myP) )] newSet1 <- which(propZ == myPair[1]) newSet2 <- which(propZ == myPair[2]) nNew <- c(length(newSet1),length(newSet2)) nOld <- c(length(set1),length(set2)) if(nOld[1] == 0){sOld1 <- rep(0,d)}else{sOld1 <- colSums(array(x[set1,],dim = c(nOld[1],d)))} if(nOld[2] == 0){sOld2 <- rep(0,d)}else{sOld2 <- colSums(array(x[set2,],dim = c(nOld[2],d)))} sOld <- rbind(sOld1,sOld2) if(nNew[1] == 0){sNew1 <- rep(0,d)}else{sNew1 <- colSums(array(x[newSet1,],dim = c(nNew[1],d)))} if(nNew[2] == 0){sNew2 <- rep(0,d)}else{sNew2 <- colSums(array(x[newSet2,],dim = c(nNew[2],d)))} sNew <- rbind(sNew1,sNew2) logAR <- 0 for (i in 1:2){ logAR <- logAR + d*(lgamma(alpha + beta + nOld[i]) - lgamma(alpha + beta + nNew[i]) ) + sum(lgamma(alpha + sNew[i,]) + lgamma(beta + nNew[i] - sNew[i,]) - lgamma(alpha + sOld[i,]) - lgamma(beta + nOld[i] - sOld[i,])) } if(is.finite(logAR)){ if( log(runif(1)) < logAR ){ reallocationAcceptanceRatio <- reallocationAcceptanceRatio + 1 z <- propZ s <- rep(0,K) sx <- array(data = 0, dim = c(K,d)) for(k in 1:K){ ind <- which(z == k) tmpV <- numeric(n) tmpM <- array(data = 0,dim = c(n,d)) s[k] <- length(ind) if(s[k] > 0){ tmpV[ind] <- rep(1,s[k]) tmpM[ind,] <- x[ind,] sx[k,] <- colSums(array(x[ind,],dim = c(s[k],d))) } nMatrix[,k] <- rep(s[k],n) - tmpV sMatrix[,k,] <- matrix(sx[k,],nrow = n,ncol = d,byrow = TRUE) - tmpM } } } } } if(mNumber == 'M2'){ if(K > 1){ myPair <- sample(K,2,replace = FALSE) set1 <- which(z == myPair[1]) set2 <- which(z == myPair[2]) nOld <- c(length(set1),length(set2)) propZ <- z if(nOld[1] > 0){ randomSize <- 1 + floor(nOld[1]*runif(1)) randomIndex <- set1[sample(nOld[1],randomSize,replace = FALSE)] propZ[randomIndex] <- rep(myPair[2],randomSize) newSet1 <- which(propZ == myPair[1]) newSet2 <- which(propZ == myPair[2]) nNew <- c(length(newSet1),length(newSet2)) if(nOld[1] == 0){sOld1 <- rep(0,d)}else{sOld1 <- colSums(array(x[set1,],dim = c(nOld[1],d)))} if(nOld[2] == 0){sOld2 <- rep(0,d)}else{sOld2 <- colSums(array(x[set2,],dim = c(nOld[2],d)))} sOld <- rbind(sOld1,sOld2) if(nNew[1] == 0){sNew1 <- rep(0,d)}else{sNew1 <- colSums(array(x[newSet1,],dim = c(nNew[1],d)))} if(nNew[2] == 0){sNew2 <- rep(0,d)}else{sNew2 <- colSums(array(x[newSet2,],dim = c(nNew[2],d)))} sNew <- rbind(sNew1,sNew2) logAR <- log(nOld[1]) - log(nOld[2] + randomSize) -( lgamma(nOld[1] - randomSize + 1) + lgamma(nOld[2]+ randomSize + 1) - lgamma(nOld[2] + 1) - lgamma(nOld[1] + 1)) for(i in 1:2){ logAR <- logAR + heat*d*(lgamma(alpha + beta + nOld[i]) - lgamma(alpha + beta + nNew[i]) ) + heat*sum(lgamma(alpha + sNew[i,]) + lgamma(beta + nNew[i] - sNew[i,]) - lgamma(alpha + sOld[i,]) - lgamma(beta + nOld[i] - sOld[i,])) } logAR <- logAR + heat*sum(lgamma(gamma[myPair] + nNew)) - heat*sum(lgamma(gamma[myPair] + nOld)) if(is.finite(logAR)){ if( log(runif(1)) < logAR ){ reallocationAcceptanceRatio2 <- reallocationAcceptanceRatio2 + 1 z <- propZ s <- rep(0,K) sx <- array(data = 0, dim = c(K,d)) for(k in 1:K){ ind <- which(z == k) tmpV <- numeric(n) tmpM <- array(data = 0,dim = c(n,d)) s[k] <- length(ind) if(s[k] > 0){ tmpV[ind] <- rep(1,s[k]) tmpM[ind,] <- x[ind,] sx[k,] <- colSums(array(x[ind,],dim = c(s[k],d))) } nMatrix[,k] <- rep(s[k],n) - tmpV sMatrix[,k,] <- matrix(sx[k,],nrow = n,ncol = d,byrow = TRUE) - tmpM } } } } } } if(mNumber == 'M3'){ if ( runif(1) < birthProbs[K] ){ birth = TRUE myPair <- c(sample(K,1),K + 1) set1 <- which(z == myPair[1]) nOld <- c(length(set1),0) ejectionAlpha <- toSolve(seq(0.0001,2,length = 500),nOld[1],pZERO);constLGAMMA <- 2*lgamma(ejectionAlpha) - lgamma(2*ejectionAlpha) propZ <- z myP <- rbeta(1,shape1 = ejectionAlpha,shape2 = ejectionAlpha) propZ[set1] <- myPair[sample(2,nOld[1], replace = TRUE,prob = c(1-myP,myP) )] newSet1 <- which(propZ == myPair[1]) newSet2 <- which(propZ == myPair[2]) nNew <- c(length(newSet1),length(newSet2)) if(nOld[1] == 0){sOld1 <- rep(0,d)}else{sOld1 <- colSums(array(x[set1,],dim = c(nOld[1],d)))} if(nOld[2] == 0){sOld2 <- rep(0,d)}else{sOld2 <- colSums(array(x[set2,],dim = c(nOld[2],d)))} sOld <- rbind(sOld1,sOld2) if(nNew[1] == 0){sNew1 <- rep(0,d)}else{sNew1 <- colSums(array(x[newSet1,],dim = c(nNew[1],d)))} if(nNew[2] == 0){sNew2 <- rep(0,d)}else{sNew2 <- colSums(array(x[newSet2,],dim = c(nNew[2],d)))} sNew <- rbind(sNew1,sNew2) logAR <- log( (1 - birthProbs[K+1])/birthProbs[K] ) + constLGAMMA + lgamma(2*ejectionAlpha + nOld[1]) - lgamma(ejectionAlpha + nNew[1]) - lgamma(ejectionAlpha + nNew[2]) + heat*priorK[K+1] - heat*priorK[K] logAR <- logAR + heat*d*( lgamma(alpha + beta + nOld[1]) - lgamma(alpha + beta + nNew[1]) - lgamma(alpha + beta + nNew[2]) ) logAR <- logAR + heat*sum( lgamma(alpha + sNew[1,]) + lgamma(beta + nNew[1] - sNew[1,]) + lgamma(alpha + sNew[2,]) + lgamma(beta + nNew[2] - sNew[2,]) - lgamma(alpha + sOld[1,]) - lgamma(beta + nOld[1] - sOld[1,]) ) logAR <- logAR + heat*sum(lgamma(gamma[myPair] + nNew)) - heat*sum(lgamma(gamma[myPair[1]] + nOld[1])) + heat*lgamma(sum(gamma[1:(K+1)])) - heat*lgamma(sum(gamma[1:K])) - heat*lgamma(sum(gamma[1:(K+1)]) + n) + heat*lgamma(sum(gamma[1:K]) + n) - heat*lgamma(gamma[K+1]) - heat*d*lbeta(alpha, beta) }else{ birth = FALSE myPair <- c(sample(K - 1,1),K) set1 <- which(z == myPair[1]) set2 <- which(z == myPair[2]) nOld <- c(length(set1),length(set2)) propZ <- z propZ[c(set1,set2)] <- rep(myPair[1],sum(nOld)) newSet1 <- which(propZ == myPair[1]) nNew <- c(length(newSet1),0) ejectionAlpha <- toSolve(seq(0.0001,2,length = 500),nNew[1],pZERO);constLGAMMA <- 2*lgamma(ejectionAlpha) - lgamma(2*ejectionAlpha) if(nOld[1] == 0){sOld1 <- rep(0,d)}else{sOld1 <- colSums(array(x[set1,],dim = c(nOld[1],d)))} if(nOld[2] == 0){sOld2 <- rep(0,d)}else{sOld2 <- colSums(array(x[set2,],dim = c(nOld[2],d)))} sOld <- rbind(sOld1,sOld2) if(nNew[1] == 0){sNew1 <- rep(0,d)}else{sNew1 <- colSums(array(x[newSet1,],dim = c(nNew[1],d)))} sNew2 <- rep(0,d) sNew <- rbind(sNew1,sNew2) logAR <- - (log( (1 - birthProbs[K])/birthProbs[K - 1] ) + constLGAMMA + lgamma(2*ejectionAlpha + nNew[1]) - lgamma(ejectionAlpha + nOld[1]) - lgamma(ejectionAlpha + nOld[2]))+ heat*priorK[K - 1] - heat*priorK[K] logAR <- logAR + heat*d*( lgamma(alpha + beta + nOld[1]) + lgamma(alpha + beta + nOld[2]) - lgamma(alpha + beta + nNew[1]) ) logAR <- logAR + heat*sum( lgamma(alpha + sNew[1,]) + lgamma(beta + nNew[1] - sNew[1,]) - lgamma(alpha + sOld[1,]) - lgamma(beta + nOld[1] - sOld[1,]) - lgamma(alpha + sOld[2,]) - lgamma(beta + nOld[2] - sOld[2,]) ) logAR <- logAR + heat*lgamma(gamma[myPair[1]] + nNew[1]) - heat*sum(lgamma(gamma[myPair] + nOld)) + heat*lgamma(sum(gamma[1:(K-1)])) - heat*lgamma(sum(gamma[1:K])) - heat*lgamma(sum(gamma[1:(K-1)]) + n) + heat*lgamma(sum(gamma[1:K]) + n) + heat*lgamma(gamma[K]) + heat*d*lbeta(alpha, beta) } if(is.finite(logAR)){ if( log(runif(1)) < logAR ){ reallocationAcceptanceRatio3 <- reallocationAcceptanceRatio3 + 1 z <- propZ if(birth == TRUE){K <- K + 1}else{K <- K - 1} s <- rep(0,K) sx <- array(data = 0, dim = c(K,d)) for(k in 1:K){ ind <- which(z == k) tmpV <- numeric(n) tmpM <- array(data = 0,dim = c(n,d)) s[k] <- length(ind) if(s[k] > 0){ tmpV[ind] <- rep(1,s[k]) tmpM[ind,] <- x[ind,] sx[k,] <- colSums(array(x[ind,],dim = c(s[k],d))) } nMatrix[,k] <- rep(s[k],n) - tmpV sMatrix[,k,] <- matrix(sx[k,],nrow = n,ncol = d,byrow = TRUE) - tmpM } } } } if(mNumber == 'M4'){ if(K > 1){ myPair <- sample(K,2,replace = FALSE) propZ <- z set1 <- which(z == myPair[1]) set2 <- which(z == myPair[2]) union12 <- c(set1,set2) processed <- c() notProcessed <- setdiff(union12,processed) n1New <- n2New <- 0 s1New <- s2New <- numeric(d) n1 <- n2 <- 0 s1 <- s2 <- numeric(d) j1 <- myPair[1] j2 <- myPair[2] alreadyInJ1 <- alreadyInJ2 <- c() proposalRatio <- 0 checkCondition <- TRUE while ( length(notProcessed) > 0 ){ i <- notProcessed[1] processed <- c(processed,i) u <- log(gamma[j1] + n1New) - log(gamma[j2] + n2New) + sum( lgamma(alpha + x[i,] + s1New) + lgamma(beta + 1 + n1New - s1New - x[i,]) ) - d*sum(lgamma(alpha+beta+n1New+1)) + sum( lgamma(alpha + s2New) + lgamma(beta + n2New - s2New) ) - d*sum(lgamma(alpha+beta+n2New)) - sum( lgamma(alpha + s1New) + lgamma(beta + n1New - s1New) ) + d*sum(lgamma(alpha+beta+n1New)) - sum( lgamma(alpha + x[i,] + s2New) + lgamma(beta + 1 + n2New - s2New - x[i,]) ) + d*sum(lgamma(alpha+beta+n2New+1)) u <- exp(u) proposalProbabities <- u/(1 + u) if( is.finite(proposalProbabities) == FALSE ){checkCondition <- FALSE; proposalProbabities <- 0.5} if( runif(1) < proposalProbabities ){ propZ[i] <- j1 proposalRatio <- proposalRatio - log(proposalProbabities) n1New <- n1New + 1 s1New <- s1New + x[i,] }else{ propZ[i] <- j2 proposalRatio <- proposalRatio - log(1 - proposalProbabities) n2New <- n2New + 1 s2New <- s2New + x[i,] } u <- log(gamma[j1] + n1) - log(gamma[j2] + n2) + sum( lgamma(alpha + x[i,] + s1) + lgamma(beta + 1 + n1 - s1 - x[i,]) ) - d*sum(lgamma(alpha+beta+n1+1)) + sum( lgamma(alpha + s2) + lgamma(beta + n2 - s2) ) - d*sum(lgamma(alpha+beta+n2)) - sum( lgamma(alpha + s1) + lgamma(beta + n1 - s1) ) + d*sum(lgamma(alpha+beta+n1)) - sum( lgamma(alpha + x[i,] + s2) + lgamma(beta + 1 + n2 - s2 - x[i,]) ) + d*sum(lgamma(alpha+beta+n2+1)) u <- exp(u) u <- u/(1 + u) if(z[i] == j1){ proposalRatio <- proposalRatio + log(u) n1 <- n1 + 1 s1 <- s1 + x[i,] }else{ proposalRatio <- proposalRatio + log(1 - u) n2 <- n2 + 1 s2 <- s2 + x[i,] } notProcessed <- setdiff(union12,processed) } newSet1 <- which(propZ == myPair[1]) newSet2 <- which(propZ == myPair[2]) nNew <- c(length(newSet1),length(newSet2)) nOld <- c(length(set1),length(set2)) if(nOld[1] == 0){sOld1 <- rep(0,d)}else{sOld1 <- colSums(array(x[set1,],dim = c(nOld[1],d)))} if(nOld[2] == 0){sOld2 <- rep(0,d)}else{sOld2 <- colSums(array(x[set2,],dim = c(nOld[2],d)))} sOld <- rbind(sOld1,sOld2) if(nNew[1] == 0){sNew1 <- rep(0,d)}else{sNew1 <- colSums(array(x[newSet1,],dim = c(nNew[1],d)))} if(nNew[2] == 0){sNew2 <- rep(0,d)}else{sNew2 <- colSums(array(x[newSet2,],dim = c(nNew[2],d)))} sNew <- rbind(sNew1,sNew2) logAR <- proposalRatio for (i in 1:2){ logAR <- logAR + d*(lgamma(alpha + beta + nOld[i]) - lgamma(alpha + beta + nNew[i]) ) + sum(lgamma(alpha + sNew[i,]) + lgamma(beta + nNew[i] - sNew[i,]) - lgamma(alpha + sOld[i,]) - lgamma(beta + nOld[i] - sOld[i,])) } logAR <- logAR + sum(lgamma(gamma[myPair] + nNew)) - sum(lgamma(gamma[myPair] + nOld)) if(is.finite(logAR)){ if( (log(runif(1)) < logAR) && (checkCondition == TRUE) ){ reallocationAcceptanceRatio4 <- reallocationAcceptanceRatio4 + 1 z <- propZ s <- rep(0,K) sx <- array(data = 0, dim = c(K,d)) for(k in 1:K){ ind <- which(z == k) tmpV <- numeric(n) tmpM <- array(data = 0,dim = c(n,d)) s[k] <- length(ind) if(s[k] > 0){ tmpV[ind] <- rep(1,s[k]) tmpM[ind,] <- x[ind,] sx[k,] <- colSums(array(x[ind,],dim = c(s[k],d))) } nMatrix[,k] <- rep(s[k],n) - tmpV sMatrix[,k,] <- matrix(sx[k,],nrow = n,ncol = d,byrow = TRUE) - tmpM } } } } } if(iter %% thinning == 0){ kValues <- c(kValues,K) if(iter > burn){ cat(K,"\n",file=conK) cat(z,"\n",file=conZ) if (heat == 1){ for(k in 1:K){ myIndex <- which(z == k) s[k] <- length(myIndex) if(s[k] > 1){ sx[k,] <- colSums(x[myIndex,]) }else{ if(s[k] == 1){ sx[k,] <- x[myIndex,] }else{ sx[k,] <- rep(0,d) } } theta[k,] <- rbeta(d, shape1 = alpha + sx[k,], shape2 = beta + s[k] - sx[k,]) } if( length(rsX) > 0){ for(i in rsX){ na.index <- which(is.na(originalX[i,]) == TRUE) x[i, na.index] <- rbinom(n = length(na.index), size = 1, prob = theta[z[i],na.index]) } write.table(x,file = "currentX.txt", quote = FALSE, row.names = FALSE, col.names = FALSE) } p <- myDirichlet(gamma[1:K] + s[1:K]) cat(theta,"\n",file=conTheta) cat(p,"\n",file=conP) } } } if( printProgress == TRUE){ if(iter %% (m/100) == 0){ cat(paste(" ",100*round(iter/m,3),"% completed. ", 100*round(lmm*reallocationAcceptanceRatio/iter,3),"%, ", 100*round(lmm*reallocationAcceptanceRatio2/iter,3),"%, ", 100*round(lmm*reallocationAcceptanceRatio4/iter,3),"%, ", 100*round(lmm*reallocationAcceptanceRatio3/iter,3),"%", sep=""),"\n");} } } close(conK) close(conTheta) close(conP) close(conZ) cat(paste("Allocation Sampler finished."),"\n") cat("\n") if(LS == TRUE){ kFile <- read.table("K.txt")[,1] cat("\n") print(table(kFile)/length(kFile)) K <- as.numeric(names(table(kFile))[order(table(kFile),decreasing=TRUE)[1]]) cat("\n") cat(paste("Most probable model: K = ",K," with P(K = ",K,") = ",max(table(kFile)/length(kFile)),sep=""),"\n") cat("\n") if(missing(reorderModels)==TRUE){reorderModels <- 'onlyMAP'} if(reorderModels == 'onlyMAP'){kRange <- K}else{ kRange <- as.numeric(names(table(kFile)/length(kFile))) } for ( K in kRange ){ if (K > 1){ cat(paste("Dealing with Label Switching for K =",K),"\n") tt <- read.table("theta.varK.txt") index <- which(kFile == K) d <- dim(x)[2] J <- d + 1 m <- length(index) mcmc <- array(data = NA, dim = c(m,K,J)) Kmax <- (dim(tt)/d)[2] for (j in 1:d){ for(k in 1:K){ mcmc[,k,j] <- tt[index,(j-1)*Kmax + k] } } conP = file(p.file,open = "r") i <- 0 j <- 0 while (length(oneLine <- readLines(conP, n = 1, warn = FALSE)) > 0) { i <- i + 1 if(kFile[i] == K){ j <- j + 1 mcmc[j,,J] <- as.numeric(strsplit(oneLine,split = " ")[[1]]) } } close(conP) allocations <- as.matrix(read.table("z.varK.txt",as.is = TRUE)[index,]) iter <- 1 ll <- complete.loglikelihood(x,allocations[iter,],mcmc[iter,,]) maxLL <- ll maxIter <- iter for (iter in 1:m){ ll <- complete.loglikelihood(x,allocations[iter,],mcmc[iter,,]) if(ll > maxLL){maxLL <- ll;maxIter <- iter;cat(paste("Found new Complete MLE: ", ll,sep=""),"\n")} } pMatrix <- array(data = NA, dim = c(m,n,K)) l <- numeric(K) for (iter in 1:m){ p <- mcmc[iter,,J] theta <- array( mcmc[iter,,1:(J-1)],dim = c(K,J-1) ) for(i in 1:n){ for(k in 1:K){ l[k] <- log(p[k]) + sum(x[i,]*log(theta[k,]) + (1-x[i,])*log(1-theta[k,])) } for(k in 1:K){ pMatrix[iter,i,k] <- 1/sum(exp(l - l[k])) if(is.na(pMatrix[iter,i,k]) == TRUE){pMatrix[iter,i,k] = 0} } } if(iter %% 1000 == 0){cat(paste(" classification probs: ",100*round(iter/m,3),"% completed",sep=""),"\n");} } if(missing(z.true)==TRUE){ ls <- label.switching( method = c("STEPHENS","ECR","ECR-ITERATIVE-1"), zpivot = allocations[maxIter,], z = allocations,K = K, complete = complete.loglikelihood, data = x, prapivot = mcmc[maxIter,,], mcmc = mcmc, p = pMatrix) }else{ ls <- label.switching( method = c("STEPHENS","ECR","ECR-ITERATIVE-1"), zpivot = allocations[maxIter,], z = allocations,K = K, complete = complete.loglikelihood, data = x, prapivot = mcmc[maxIter,,], mcmc = mcmc, p = pMatrix,groundTruth = z.true) } reordered.mcmc<-permute.mcmc(mcmc,ls$permutations$"ECR")$output write.table(reordered.mcmc, file = paste("reorderedMCMC-ECR.mapK.",K,".txt",sep=""),col.names = c(paste(rep(paste(expression(theta),1:K,sep="."),d),rep(1:d,each=K),sep="-"),paste('p',1:K,sep="."))) reordered.mcmc<-permute.mcmc(mcmc,ls$permutations$"ECR-ITERATIVE-1")$output write.table(reordered.mcmc, file = paste("reorderedMCMC-ECR-ITERATIVE1.mapK.",K,".txt",sep=""),col.names = c(paste(rep(paste(expression(theta),1:K,sep="."),d),rep(1:d,each=K),sep="-"),paste('p',1:K,sep="."))) reordered.mcmc<-permute.mcmc(mcmc,ls$permutations$"STEPHENS")$output write.table(reordered.mcmc, file = paste("reorderedMCMC-STEPHENS.mapK.",K,".txt",sep=""),col.names = c(paste(rep(paste(expression(theta),1:K,sep="."),d),rep(1:d,each=K),sep="-"),paste('p',1:K,sep="."))) write.table(mcmc, file = paste("rawMCMC.mapK.",K,".txt",sep=""),col.names = c(paste(rep(paste(expression(theta),1:K,sep="."),d),rep(1:d,each=K),sep="-"),paste('p',1:K,sep="."))) write.table(file = paste("reorderedSingleBestClusterings.mapK.",K,".txt",sep=""),t(ls$clusters[c(1,2,3),]),row.names = paste("z",1:n,sep=".")) allocationsECR <- allocationsKL <- allocationsECR.ITERATIVE1 <- allocations for (i in 1:m){ myPerm <- order(ls$permutations$"ECR"[i,]) allocationsECR[i,] <- myPerm[allocations[i,]] myPerm <- order(ls$permutations$"STEPHENS"[i,]) allocationsKL[i,] <- myPerm[allocations[i,]] myPerm <- order(ls$permutations$"ECR-ITERATIVE-1"[i,]) allocationsECR.ITERATIVE1[i,] <- myPerm[allocations[i,]] } write.table(allocationsECR, file = paste("z.ECR.mapK.",K,".txt",sep="")) write.table(allocationsKL, file = paste("z.KL.mapK.",K,".txt",sep="")) write.table(allocationsECR.ITERATIVE1, file = paste("z.ECR-ITERATIVE1.mapK.",K,".txt",sep="")) cat(paste0("raw MCMC parameters for most probable K written to: \'rawMCMC.mapK.",K,".txt\' "),"\n") cat(paste0("raw MCMC latent allocations for most probable K written to: \'z.mapK.",K,".txt\' "),"\n") cat(paste0("reordered MCMC output written to: "),"\n") cat(paste0(" (Method 1): \'reorderedMCMC-ECR.mapK.",K,".txt\'"),"\n") cat(paste0(" (Method 2): \'reorderedMCMC-ECR-ITERATIVE1.mapK.",K,".txt\'"),"\n") cat(paste0(" (Method 3): \'reorderedMCMC-STEPHENS.mapK.",K,".txt\'"),"\n") cat(paste0("reordered single best clusterings written to: \'reorderedSingleBestClusterings.mapK.",K,".txt\' "),"\n") cat(paste0("reordered MCMC latent allocations for most probable K written to: "),"\n") cat(paste0(" (Method 1): \'z.ECR.mapK.",K,".txt\'"),"\n") cat(paste0(" (Method 2): \'z.KL.mapK.",K,".txt\'"),"\n") cat(paste0(" (Method 3): \'z.ECR-ITERATIVE1.mapK.",K,".txt\'"),"\n") } } } setwd("../") cat(paste0("back to working directory now."),"\n") return(kValues) } coupledMetropolis <- function(Kmax, nChains,heats,binaryData,outPrefix,ClusterPrior,m, alpha, beta, gamma, z.true, ejectionAlpha, burn){ if(missing(nChains) == TRUE){stop(cat(paste(" [ERROR]: number of chains not provided."), "\n"))} if(missing(heats) == TRUE){ heats <- seq(1,0.1,length = nChains) }else{ if(heats[1] != 1){stop(cat(paste(" [ERROR]: `heats[1]` should be equal to one."), "\n"))} } if(length(heats) != nChains){ stop(cat(paste(" [ERROR]: `length(heats)` should be equal to `nChains`."), "\n")) } if(missing(ClusterPrior) == TRUE){ClusterPrior <- 'poisson'} if (missing(alpha)) {alpha <- 1} if (missing(beta)) {beta <- 1} if (missing(binaryData)) {stop(cat(paste(" [ERROR]: data is missing."), "\n"))} if (missing(gamma)) {gamma <- rep(1,Kmax)} if (length(table(gamma)) > 1){ stop(cat(paste(" [ERROR]: Dirichlet prior parameters should be the same."), "\n")) } d <- dim(binaryData)[2]; n <- dim(binaryData)[1]; priorK <- numeric(Kmax) if(ClusterPrior == "uniform"){ priorK <- rep(log(1/Kmax),Kmax) } if(ClusterPrior == "poisson"){ denom <- log(ppois(Kmax, lambda = 1, lower.tail = TRUE) - dpois(0,lambda = 1)) for (k in 1:Kmax){ priorK[k] <- dpois(k,lambda = 1, log = TRUE) - denom } } if(missing(ejectionAlpha) == TRUE){ejectionAlpha <- 0.2} x <- binaryData rsX <- which(is.na(rowSums(x)) == TRUE) originalX <- x if(length(rsX) > 0){ cat(paste(" [NOTE]: Found ",length(rsX) ," rows with missing values."), "\n") for(i in rsX){ na.index <- which(is.na(x[i,]) == TRUE) x[i,na.index] <- rbinom(n = length(na.index), size = 1, prob = alpha/(alpha + beta)) } } currentZ <- array(data = NA, dim = c(nChains,n)) currentK <- numeric(nChains) myCheck <- match(outPrefix,list.files()) if(is.na(myCheck) == FALSE){ stop(cat(paste(" [ERROR]: directory exists, please provide different name to outPrefix."), "\n")) } if( missing(z.true) ){ z.true <- NULL } if(missing(burn)){burn = 0} if(burn > m - 1){ stop(cat(paste(" [ERROR]: Burn-in period not valid: \'burn\' should be less than \'m\'."), "\n")) } if(nChains < 2){ if(length(rsX) > 0){ stop(cat(paste(" [ERROR]: At least two chains should be used."), "\n"))} cat(paste(" Only 1 chain? Well."),"\n") dir.create(outPrefix) myHeat <- 1 asr <- allocationSamplerBinMix( alpha = alpha, beta = beta, gamma = gamma, m = 10*m, burn= 10*burn, data = x, thinning = 10,Kmax = Kmax, ClusterPrior = ClusterPrior,ejectionAlpha = ejectionAlpha, outputDir = outPrefix,Kstart = 1,heat=myHeat,metropolisMoves = c('M1','M2','M3','M4'),LS = FALSE, rsX = rsX, originalX = originalX)} else{ registerDoParallel(cores = nChains) outputDirs <- paste0(outPrefix,1:nChains) temperatures <- heats myChain <- 1 for(i in 1:nChains){ cat(paste0(" Create temporary directory: \'",outPrefix,i,"\'."), "\n") } cat(paste0(" [NOTE]: screen output from multiple threads is redirected to \'",outPrefix,"-sampler.log\'."), "\n") sink(paste0(outPrefix,'-sampler.log')) foreach(myChain=1:nChains, .export=ls(envir=globalenv()) ) %dopar% { outDir <- outputDirs[myChain] dir.create(outDir) myHeat <- temperatures[myChain] asr <- allocationSamplerBinMix( alpha = alpha, beta = beta, gamma = gamma, m = 10, burn= 9, data = x, thinning = 1,Kmax = Kmax, ClusterPrior = ClusterPrior,ejectionAlpha = ejectionAlpha, outputDir = outDir,Kstart=1,heat=myHeat,metropolisMoves='M3',LS = FALSE, rsX = rsX, originalX = originalX) } ITERATIONS <- m sampledK <- array(data = 0, dim = c(ITERATIONS,nChains)) dir.create(outPrefix) k.file <- paste0(outPrefix,"/K.txt") theta.file <- paste0(outPrefix,"/theta.varK.txt") z.file <- paste0(outPrefix,"/z.varK.txt") p.file <- paste0(outPrefix,"/p.varK.txt") x.file <- paste0(outPrefix,"/x.txt") conK = file(k.file,open = "w") conTheta = file(theta.file,open = "w") conZ = file(z.file,open = "w") conP = file(p.file,open = "w") if(length(rsX) > 0){ conX <- file(x.file, open = "w") } ar <- 0 metMoves <- vector('list',length = nChains) metMoves[[1]] <- c('M1','M2','M3','M4') for(j in 2:nChains){metMoves[[j]] <- c('M2','M3')} localAR <- 0 for(iter in 1:ITERATIONS){ if(length(rsX) > 0){ x <- as.matrix(read.table(paste0(outPrefix,1,'/currentX.txt'))) } for(myChain in 1:nChains){ currentZ[myChain,] <- as.numeric(read.table(paste0(outPrefix,myChain,'/z.varK.txt'))[1,]) currentK[myChain] <- read.table(paste0(outPrefix,myChain,'/K.txt'))[1,] } sampledK[iter,] <- currentK myPair <- sample(nChains,2,replace = FALSE) j1 <- myPair[1] j2 <- myPair[2] z1 <- currentZ[j1,] z2 <- currentZ[j2,] K1 <- currentK[j1] K2 <- currentK[j2] s1 <- rep(0,K1) sx1 <- array(data = 0, dim = c(K1,d)) for(k in 1:K1){ ind <- which(z1 == k) s1[k] <- length(ind) if(s1[k] > 0){ sx1[k,] <- colSums(array(x[ind,],dim = c(s1[k],d))) } } s2 <- rep(0,K2) sx2 <- array(data = 0, dim = c(K2,d)) for(k in 1:K2){ ind <- which(z2 == k) s2[k] <- length(ind) if(s2[k] > 0){ sx2[k,] <- colSums(array(x[ind,],dim = c(s2[k],d))) } } log.posterior <- priorK[K1] + sum(lgamma( gamma[1:K1] + s1 )) - d*sum(lgamma(alpha+beta+s1)) - lgamma(n + sum(gamma[1:K1])) for(k in 1:K1){ log.posterior <- log.posterior + sum(lgamma(alpha + sx1[k,]) + lgamma(beta + s1[k] - sx1[k,])) } log.posterior <- log.posterior + lgamma(sum(gamma[1:K1])) - sum(lgamma(gamma[1:K1])) - K1*d*lbeta(alpha, beta) logAR <- (temperatures[j2] - temperatures[j1])*log.posterior log.posterior <- priorK[K2] + sum(lgamma( gamma[1:K2] + s2 )) - d*sum(lgamma(alpha+beta+s2)) - lgamma(n + sum(gamma[1:K2])) for(k in 1:K2){ log.posterior <- log.posterior + sum(lgamma(alpha + sx2[k,]) + lgamma(beta + s2[k] - sx2[k,])) } log.posterior <- log.posterior + lgamma(sum(gamma[1:K2])) - sum(lgamma(gamma[1:K2])) - K2*d*lbeta(alpha, beta) logAR <- logAR + (temperatures[j1] - temperatures[j2])*log.posterior if( log(runif(1)) < logAR ){ ar <- ar + 1 localAR <- localAR + 1 currentZ[j1,] <- z2 currentZ[j2,] <- z1 currentK[j1] <- K2 currentK[j2] <- K1 } myChain <- 1 foreach(myChain=1:nChains, .export=ls(envir=globalenv()) ) %dopar% { outDir <- outputDirs[myChain] myHeat <- temperatures[myChain] Kstart <- currentK[myChain] zStart <- currentZ[myChain,] allocationSamplerBinMix( alpha = alpha, beta = beta, gamma = gamma, m = 10, burn= 9, data = x, thinning = 1,Kmax = Kmax, ClusterPrior = ClusterPrior,ejectionAlpha = ejectionAlpha, outputDir = outDir,Kstart=Kstart,zStart = zStart, heat=myHeat, metropolisMoves = metMoves[[myChain]],LS = FALSE, rsX = rsX, originalX = originalX) } if(iter %% (m/100) == 0){ matplot(sampledK[1:iter,],type = "l",lty = 1,lwd = 2, col = topo.colors(nChains)) points(sampledK[1:iter,1], type = "b",col = topo.colors(nChains)[1]) legend('topleft',paste0('f(z,K|data)^{',round(heats,3),'}'),lty = 1, lwd = 2, col = topo.colors(nChains)) write(paste0(100*iter/m,'% completed. Chain switching acceptance rate: ',100*round(ar/iter,3),'%.'),stderr()) } if(iter > burn){ kk <- as.numeric(read.table(paste0(outPrefix,"1/K.txt"))[1,]) cat(kk,"\n",file=conK) theta <- as.numeric(read.table(paste0(outPrefix,"1/theta.varK.txt"))[1,]) cat(theta,"\n",file=conTheta) z <- as.numeric(read.table(paste0(outPrefix,"1/z.varK.txt"))[1,]) cat(z,"\n",file=conZ) p <- as.numeric(read.table(paste0(outPrefix,"1/p.varK.txt"))[1,]) cat(p,"\n",file=conP) if(length(rsX) > 0){cat(x,"\n",file=conX)} } } close(conK) close(conTheta) close(conP) close(conZ) if(nChains > 1){ swapAcceptanceRate <- 100*round(ar/iter,3) }else{ swapAcceptanceRate <- 'NA' } if(length(rsX) > 0){ close(conX) } write.table(sampledK, file = paste0(outPrefix,"/K.allChains.txt"), col.names = paste0('chain.',1:nChains),quote=FALSE,row.names = FALSE) for(k in 1:nChains){ unlink(paste0(outPrefix,k), recursive=TRUE) } sink() stopImplicitCluster() } if(length(rsX) == 0){ if(is.null(z.true) == TRUE){ dealWithLabelSwitching(outDir = outPrefix, binaryData = binaryData) }else{ dealWithLabelSwitching(outDir = outPrefix, binaryData = binaryData, z.true = z.true) } }else{ if(is.null(z.true) == TRUE){ dealWithLabelSwitchingMissing(outDir = outPrefix, binaryData = binaryData) }else{ dealWithLabelSwitchingMissing(outDir = outPrefix, binaryData = binaryData, z.true = z.true) } } if(nChains > 1){ kFile <- sampledK[(burn+1):ITERATIONS,1] }else{ kFile <- read.table(paste0(outPrefix,"/K.txt")) ITERATIONS <- m swapAcceptanceRate <- 0 } K <- as.numeric(names(table(kFile))[order(table(kFile),decreasing=TRUE)[1]]) K.mcmc <- mcmc(kFile, start = 10*burn + 10, end = 10*ITERATIONS, thin = 10) if( K > 1 ){ parameters.ecr.mcmc <- read.table(paste0(outPrefix,"/reorderedMCMC-ECR.mapK.",K,".txt"), header = TRUE) allocations.ecr.mcmc <- read.table(paste0(outPrefix,"/z.ECR.mapK.",K,".txt"), header = TRUE) clusterMembershipPerMethod <- read.table(paste0(outPrefix,"/reorderedSingleBestClusterings.mapK.",K,".txt"), header = TRUE) classificationProbabilities.ecr <- read.csv(paste0(outPrefix,"/classificationProbabilities.mapK.",K,".csv")) }else{ parameters.ecr.mcmc <- read.table(paste0(outPrefix,"/MCMC.mapK.",K,".txt"), header = TRUE) allocations.ecr.mcmc <- rep(1, dim(parameters.ecr.mcmc)[1] ) classificationProbabilities.ecr <- array(data = 1, dim = c(n,1)) clusterMembershipPerMethod <- array(data = 1, dim = c(n,3)) colnames(clusterMembershipPerMethod) <- c('ECR','STEPHENS','ECR-ITERATIVE-1') } parameters.ecr.mcmc <- mcmc( parameters.ecr.mcmc ) allocations.ecr.mcmc <- mcmc( allocations.ecr.mcmc ) colnames(classificationProbabilities.ecr) <- paste('cluster',1:K) bbm.output <- vector('list', length = 7) bbm.output[[1]] <- K.mcmc bbm.output[[2]] <- parameters.ecr.mcmc bbm.output[[3]] <- allocations.ecr.mcmc bbm.output[[4]] <- classificationProbabilities.ecr bbm.output[[5]] <- clusterMembershipPerMethod if(nChains > 1){ sampledK <- array(sampledK, dim = c(ITERATIONS, nChains)) colnames(sampledK) <- paste0("chain.", 1:nChains) colnames(sampledK)[1] <- paste0(colnames(sampledK)[1],"_(target)") }else{ sampledK <- asr write.table(sampledK, file = paste0(outPrefix,"/K.allChains.txt"), col.names = 'chain.1',quote=FALSE,row.names = FALSE) } bbm.output[[6]] <- sampledK bbm.output[[7]] <- c(nChains, swapAcceptanceRate, m, burn) names(bbm.output) <- c('K.mcmc', 'parameters.ecr.mcmc', 'allocations.ecr.mcmc', 'classificationProbabilities.ecr', 'clusterMembershipPerMethod', 'K.allChains', 'chainInfo') class(bbm.output) <- c('list', 'bbm.object') return(bbm.output) } dealWithLabelSwitching <- function(outDir,reorderModels, binaryData,z.true){ setwd(outDir) x <- binaryData kFile <- read.table("K.txt")[,1] theta.file <- "theta.varK.txt" z.file <- "z.varK.txt" p.file <- "p.varK.txt" cat("\n") print(table(kFile)/length(kFile)) K <- as.numeric(names(table(kFile))[order(table(kFile),decreasing=TRUE)[1]]) cat("\n") cat(paste("Most probable model: K = ",K," with P(K = ",K,") = ",max(table(kFile)/length(kFile)),sep=""),"\n") cat("\n") if(missing(reorderModels)==TRUE){reorderModels <- 'onlyMAP'} if(reorderModels == 'onlyMAP'){kRange <- K}else{ kRange <- as.numeric(names(table(kFile)/length(kFile))) } for ( K in kRange ){ tt <- read.table("theta.varK.txt") index <- which(kFile == K) d <- dim(x)[2] n <- dim(x)[1] J <- d + 1 m <- length(index) mcmc <- array(data = NA, dim = c(m,K,J)) Kmax <- (dim(tt)/d)[2] for (j in 1:d){ for(k in 1:K){ mcmc[,k,j] <- tt[index,(j-1)*Kmax + k] } } conP = file(p.file,open = "r") i <- 0 j <- 0 while (length(oneLine <- readLines(conP, n = 1, warn = FALSE)) > 0) { i <- i + 1 if(kFile[i] == K){ j <- j + 1 mcmc[j,,J] <- as.numeric(strsplit(oneLine,split = " ")[[1]]) } } close(conP) if (K > 1){ cat(paste("Dealing with Label Switching for K =",K),"\n") allocations <- as.matrix(read.table("z.varK.txt",as.is = TRUE)[index,]) iter <- 1 ll <- complete.loglikelihood(x,allocations[iter,],mcmc[iter,,]) maxLL <- ll maxIter <- iter for (iter in 1:m){ ll <- complete.loglikelihood(x,allocations[iter,],mcmc[iter,,]) if(ll > maxLL){maxLL <- ll;maxIter <- iter;cat(paste("Found new Complete MLE: ", ll,sep=""),"\n")} } ptm <- proc.time() pMatrix <- array(data = NA, dim = c(m,n,K)) l <- array(data = 0, dim = c(n,K)) for (iter in 1:m){ LOG.P <- log(mcmc[iter,,J]) LOG.THETA <- array(log(mcmc[iter,,1:(J-1)]),dim = c(K,J-1) ) LOG.1_MINUS_THETA <- array(log(1 - mcmc[iter,,1:(J-1)]),dim = c(K,J-1) ) for(k in 1:K){ l[,k] <- LOG.P[k] + rowSums( x * matrix(LOG.THETA[k,], nrow = n, ncol = J - 1, byrow = TRUE) + (1-x)*matrix(LOG.1_MINUS_THETA[k,], nrow = n, ncol = J - 1, byrow = TRUE)) } for(k in 1:K){ pMatrix[iter,,k] <- apply(l,1,function(y){return(1/sum(exp(y - y[k])))} ) ind <- which(is.na(pMatrix[iter,,k]) == TRUE) nInd <- length(ind) if(nInd > 0){pMatrix[iter,ind,k] <- rep(0,nInd)} } if(iter %% 1000 == 0){cat(paste(" classification probs: ",100*round(iter/m,3),"% completed",sep=""),"\n");} } cat(paste0("proc.time for classification probabilities: ", round(as.numeric((proc.time() - ptm)[3]),2)),"\n") if(missing(z.true)==TRUE){ ls <- label.switching( method = c("STEPHENS","ECR","ECR-ITERATIVE-1"), zpivot = allocations[maxIter,], z = allocations,K = K, complete = complete.loglikelihood, data = x, prapivot = mcmc[maxIter,,], mcmc = mcmc, p = pMatrix) }else{ ls <- label.switching( method = c("STEPHENS","ECR","ECR-ITERATIVE-1"), zpivot = allocations[maxIter,], z = allocations,K = K, complete = complete.loglikelihood, data = x, prapivot = mcmc[maxIter,,], mcmc = mcmc, p = pMatrix,groundTruth = z.true) } reordered.mcmc<-permute.mcmc(mcmc,ls$permutations$"ECR")$output write.table(reordered.mcmc, file = paste("reorderedMCMC-ECR.mapK.",K,".txt",sep=""),col.names = c(paste(rep(paste(expression(theta),1:K,sep="."),d),rep(1:d,each=K),sep="-"),paste('p',1:K,sep="."))) reordered.mcmc<-permute.mcmc(mcmc,ls$permutations$"ECR-ITERATIVE-1")$output write.table(reordered.mcmc, file = paste("reorderedMCMC-ECR-ITERATIVE1.mapK.",K,".txt",sep=""),col.names = c(paste(rep(paste(expression(theta),1:K,sep="."),d),rep(1:d,each=K),sep="-"),paste('p',1:K,sep="."))) reordered.mcmc<-permute.mcmc(mcmc,ls$permutations$"STEPHENS")$output write.table(reordered.mcmc, file = paste("reorderedMCMC-STEPHENS.mapK.",K,".txt",sep=""),col.names = c(paste(rep(paste(expression(theta),1:K,sep="."),d),rep(1:d,each=K),sep="-"),paste('p',1:K,sep="."))) write.table(mcmc, file = paste("rawMCMC.mapK.",K,".txt",sep=""),col.names = c(paste(rep(paste(expression(theta),1:K,sep="."),d),rep(1:d,each=K),sep="-"),paste('p',1:K,sep="."))) write.table(file = paste("reorderedSingleBestClusterings.mapK.",K,".txt",sep=""),t(ls$clusters[c(1,2,3),]),row.names = paste("z",1:n,sep=".")) allocationsECR <- allocationsKL <- allocationsECR.ITERATIVE1 <- allocations for (i in 1:m){ myPerm <- order(ls$permutations$"ECR"[i,]) allocationsECR[i,] <- myPerm[allocations[i,]] myPerm <- order(ls$permutations$"STEPHENS"[i,]) allocationsKL[i,] <- myPerm[allocations[i,]] myPerm <- order(ls$permutations$"ECR-ITERATIVE-1"[i,]) allocationsECR.ITERATIVE1[i,] <- myPerm[allocations[i,]] } MeanReorderedpMatrix <- array(data = 0, dim = c(n,K)) for (i in 1:m){ myPerm <- ls$permutations$"ECR"[i,] MeanReorderedpMatrix <- MeanReorderedpMatrix + pMatrix[i, ,myPerm] } MeanReorderedpMatrix <- MeanReorderedpMatrix/m write.csv(MeanReorderedpMatrix, file = paste0("classificationProbabilities.mapK.",K,".csv"), row.names = FALSE) write.table(allocationsECR, file = paste("z.ECR.mapK.",K,".txt",sep="")) write.table(allocationsKL, file = paste("z.KL.mapK.",K,".txt",sep="")) write.table(allocationsECR.ITERATIVE1, file = paste("z.ECR-ITERATIVE1.mapK.",K,".txt",sep="")) cat(paste0("raw MCMC parameters for most probable K written to: \'rawMCMC.mapK.",K,".txt\' "),"\n") cat(paste0("raw MCMC latent allocations for most probable K written to: \'z.mapK.",K,".txt\' "),"\n") cat(paste0("reordered MCMC output written to: "),"\n") cat(paste0(" (Method 1): \'reorderedMCMC-ECR.mapK.",K,".txt\'"),"\n") cat(paste0(" (Method 2): \'reorderedMCMC-ECR-ITERATIVE1.mapK.",K,".txt\'"),"\n") cat(paste0(" (Method 3): \'reorderedMCMC-STEPHENS.mapK.",K,".txt\'"),"\n") cat(paste0("reordered single best clusterings written to: \'reorderedSingleBestClusterings.mapK.",K,".txt\' "),"\n") cat(paste0("reordered MCMC latent allocations for most probable K written to: "),"\n") cat(paste0(" (Method 1): \'z.ECR.mapK.",K,".txt\'"),"\n") cat(paste0(" (Method 2): \'z.KL.mapK.",K,".txt\'"),"\n") cat(paste0(" (Method 3): \'z.ECR-ITERATIVE1.mapK.",K,".txt\'"),"\n") }else{ cat(paste0('[NOTE]: Most probable model corresponds to 1 cluster so the label-switching algorithms are not applied.',"\n")) write.table(mcmc, file = paste("MCMC.mapK.",K,".txt",sep=""),col.names = c(paste(rep(paste(expression(theta),1:K,sep="."),d),rep(1:d,each=K),sep="-"),paste('p',1:K,sep="."))) cat(paste0("MCMC output corresponding to most probable model (K = 1) written to: \'", paste("MCMC.mapK.",K,".txt",sep=""),"\'"),"\n") } } setwd("../") } dealWithLabelSwitchingMissing <- function(outDir,reorderModels, binaryData, z.true){ setwd(outDir) x <- binaryData d <- dim(x)[2] n <- dim(x)[1] x.file <- "x.txt" kFile <- read.table("K.txt")[,1] theta.file <- "theta.varK.txt" z.file <- "z.varK.txt" p.file <- "p.varK.txt" cat("\n") print(table(kFile)/length(kFile)) K <- as.numeric(names(table(kFile))[order(table(kFile),decreasing=TRUE)[1]]) cat("\n") cat(paste("Most probable model: K = ",K," with P(K = ",K,") = ",max(table(kFile)/length(kFile)),sep=""),"\n") cat("\n") if(missing(reorderModels)==TRUE){reorderModels <- 'onlyMAP'} if(reorderModels == 'onlyMAP'){kRange <- K}else{ kRange <- as.numeric(names(table(kFile)/length(kFile))) } for ( K in kRange ){ tt <- read.table("theta.varK.txt") index <- which(kFile == K) J <- d + 1 m <- length(index) mcmc <- array(data = NA, dim = c(m,K,J)) Kmax <- (dim(tt)/d)[2] for (j in 1:d){ for(k in 1:K){ mcmc[,k,j] <- tt[index,(j-1)*Kmax + k] } } conP = file(p.file,open = "r") i <- 0 j <- 0 while (length(oneLine <- readLines(conP, n = 1, warn = FALSE)) > 0) { i <- i + 1 if(kFile[i] == K){ j <- j + 1 mcmc[j,,J] <- as.numeric(strsplit(oneLine,split = " ")[[1]]) } } close(conP) if (K > 1){ cat(paste("Dealing with Label Switching for K =",K),"\n") conX <- file(x.file, open = "r") allocations <- as.matrix(read.table("z.varK.txt",as.is = TRUE)[index,]) pMatrix <- array(data = NA, dim = c(m,n,K)) l <- array(data = 0, dim = c(n,K)) ptm <- proc.time() iter <- 0 xEstimated <- array(data = 0, dim = c(n,d)) for(xLine in 1:length(kFile)){ xC <- readLines(conX, n = 1, warn = FALSE) if( is.na(match(xLine,index)) == FALSE){ x <- as.numeric(strsplit(xC,split = " ")[[1]]) x <- matrix(x,nrow = n, ncol = d) xEstimated <- xEstimated + x iter <- iter + 1 ll <- complete.loglikelihood(x,allocations[iter,],mcmc[iter,,]) if(iter == 1){ maxLL <- ll; maxIter <- iter } if(ll > maxLL){maxLL <- ll;maxIter <- iter;cat(paste("Found new Complete MLE: ", ll,sep=""),"\n")} LOG.P <- log(mcmc[iter,,J]) LOG.THETA <- array(log(mcmc[iter,,1:(J-1)]),dim = c(K,J-1) ) LOG.1_MINUS_THETA <- array(log(1 - mcmc[iter,,1:(J-1)]),dim = c(K,J-1) ) for(k in 1:K){ l[,k] <- LOG.P[k] + rowSums( x * matrix(LOG.THETA[k,], nrow = n, ncol = J - 1, byrow = TRUE) + (1-x)*matrix(LOG.1_MINUS_THETA[k,], nrow = n, ncol = J - 1, byrow = TRUE)) } for(k in 1:K){ pMatrix[iter,,k] <- apply(l,1,function(y){return(1/sum(exp(y - y[k])))} ) ind <- which(is.na(pMatrix[iter,,k]) == TRUE) nInd <- length(ind) if(nInd > 0){pMatrix[iter,ind,k] <- rep(0,nInd)} } if(iter %% 100 == 0){cat(paste(" classification probs: ",100*round(iter/m,3),"% completed",sep=""),"\n");} } } xEstimated <- xEstimated/iter write.table(file = "xEstimated.txt", xEstimated, quote = FALSE) close(conX) cat(paste0("proc.time for classification probabilities: ", round(as.numeric((proc.time() - ptm)[3]),2)),"\n") cat(paste0("estimated missing data file written to: \'xEstimated.txt\'"),"\n") if(missing(z.true)==TRUE){ ls <- label.switching( method = c("STEPHENS","ECR","ECR-ITERATIVE-1"), zpivot = allocations[maxIter,], z = allocations,K = K, complete = complete.loglikelihood, data = x, prapivot = mcmc[maxIter,,], mcmc = mcmc, p = pMatrix) }else{ ls <- label.switching( method = c("STEPHENS","ECR","ECR-ITERATIVE-1"), zpivot = allocations[maxIter,], z = allocations,K = K, complete = complete.loglikelihood, data = x, prapivot = mcmc[maxIter,,], mcmc = mcmc, p = pMatrix,groundTruth = z.true) } reordered.mcmc<-permute.mcmc(mcmc,ls$permutations$"ECR")$output write.table(reordered.mcmc, file = paste("reorderedMCMC-ECR.mapK.",K,".txt",sep=""),col.names = c(paste(rep(paste(expression(theta),1:K,sep="."),d),rep(1:d,each=K),sep="-"),paste('p',1:K,sep="."))) reordered.mcmc<-permute.mcmc(mcmc,ls$permutations$"ECR-ITERATIVE-1")$output write.table(reordered.mcmc, file = paste("reorderedMCMC-ECR-ITERATIVE1.mapK.",K,".txt",sep=""),col.names = c(paste(rep(paste(expression(theta),1:K,sep="."),d),rep(1:d,each=K),sep="-"),paste('p',1:K,sep="."))) reordered.mcmc<-permute.mcmc(mcmc,ls$permutations$"STEPHENS")$output write.table(reordered.mcmc, file = paste("reorderedMCMC-STEPHENS.mapK.",K,".txt",sep=""),col.names = c(paste(rep(paste(expression(theta),1:K,sep="."),d),rep(1:d,each=K),sep="-"),paste('p',1:K,sep="."))) write.table(mcmc, file = paste("rawMCMC.mapK.",K,".txt",sep=""),col.names = c(paste(rep(paste(expression(theta),1:K,sep="."),d),rep(1:d,each=K),sep="-"),paste('p',1:K,sep="."))) write.table(file = paste("reorderedSingleBestClusterings.mapK.",K,".txt",sep=""),t(ls$clusters[c(1,2,3),]),row.names = paste("z",1:n,sep=".")) allocationsECR <- allocationsKL <- allocationsECR.ITERATIVE1 <- allocations for (i in 1:m){ myPerm <- order(ls$permutations$"ECR"[i,]) allocationsECR[i,] <- myPerm[allocations[i,]] myPerm <- order(ls$permutations$"STEPHENS"[i,]) allocationsKL[i,] <- myPerm[allocations[i,]] myPerm <- order(ls$permutations$"ECR-ITERATIVE-1"[i,]) allocationsECR.ITERATIVE1[i,] <- myPerm[allocations[i,]] } MeanReorderedpMatrix <- array(data = 0, dim = c(n,K)) for (i in 1:m){ myPerm <- ls$permutations$"ECR"[i,] MeanReorderedpMatrix <- MeanReorderedpMatrix + pMatrix[i, ,myPerm] } MeanReorderedpMatrix <- MeanReorderedpMatrix/m write.csv(MeanReorderedpMatrix, file = paste0("classificationProbabilities.mapK.",K,".csv"), row.names = FALSE) write.table(allocationsECR, file = paste("z.ECR.mapK.",K,".txt",sep="")) write.table(allocationsKL, file = paste("z.KL.mapK.",K,".txt",sep="")) write.table(allocationsECR.ITERATIVE1, file = paste("z.ECR-ITERATIVE1.mapK.",K,".txt",sep="")) cat(paste0("raw MCMC parameters for most probable K written to: \'rawMCMC.mapK.",K,".txt\' "),"\n") cat(paste0("raw MCMC latent allocations for most probable K written to: \'z.mapK.",K,".txt\' "),"\n") cat(paste0("reordered MCMC output written to: "),"\n") cat(paste0(" (Method 1): \'reorderedMCMC-ECR.mapK.",K,".txt\'"),"\n") cat(paste0(" (Method 2): \'reorderedMCMC-ECR-ITERATIVE1.mapK.",K,".txt\'"),"\n") cat(paste0(" (Method 3): \'reorderedMCMC-STEPHENS.mapK.",K,".txt\'"),"\n") cat(paste0("reordered single best clusterings written to: \'reorderedSingleBestClusterings.mapK.",K,".txt\' "),"\n") cat(paste0("reordered MCMC latent allocations for most probable K written to: "),"\n") cat(paste0(" (Method 1): \'z.ECR.mapK.",K,".txt\'"),"\n") cat(paste0(" (Method 2): \'z.KL.mapK.",K,".txt\'"),"\n") cat(paste0(" (Method 3): \'z.ECR-ITERATIVE1.mapK.",K,".txt\'"),"\n") }else{ cat(paste0('[NOTE]: Most probable model corresponds to 1 cluster so the label-switching algorithms are not applied.',"\n")) write.table(mcmc, file = paste("MCMC.mapK.",K,".txt",sep=""),col.names = c(paste(rep(paste(expression(theta),1:K,sep="."),d),rep(1:d,each=K),sep="-"),paste('p',1:K,sep="."))) cat(paste0("MCMC output corresponding to most probable model (K = 1) written to: \'", paste("MCMC.mapK.",K,".txt",sep=""),"\'"),"\n") } } setwd("../") } print.bbm.object <- function(x, printSubset, ...){ if( missing(printSubset) ){ printSubset = TRUE } if( 'bbm.object' %in% class(x) ){ cat("\n") cat(paste0("* Run information:"),"\n") cat(paste0(" Number of parallel heated chains: ", x$chainInfo[1]),"\n") cat(paste0(" Swap acceptance rate: ", x$chainInfo[2],"%"),"\n") cat(paste0(" Total number of iterations: ", x$chainInfo[3]*10),"\n") cat(paste0(" Burn-in period: ", x$chainInfo[4]*10),"\n") cat(paste0(" Thinning: 10."),"\n") kFile <- x$K.mcmc cat("\n") cat(paste("* Estimated posterior distribution of the number of clusters:"),"\n") print(round(table(x$K.mcmc)/length(x$K.mcmc),3)) K <- as.numeric(names(table(kFile))[order(table(kFile),decreasing=TRUE)[1]]) cat("\n") cat(paste("* Most probable model: K = ",K," with P(K = ",K,"|data) = ",round(max(table(kFile)/length(kFile)),3),sep=""),"\n") cat("\n") cat(paste0("* Estimated number of observations per cluster conditionally on K = ", K," (3 label switching algorithms):"),'\n') print(apply(x$clusterMembershipPerMethod,2,table)) d <- (dim(x$parameters.ecr.mcmc)[2] - K)/K myMeans <- apply(x$parameters.ecr.mcmc,2,mean) cat('\n') if(printSubset == TRUE){ if(d > 5){ cat(paste0('* Posterior mean of probability of success per feature and cluster (ECR algorithm):'),'\n') pr <- c() for(k in 1:K){ subS <- paste0("theta.",k,".",1:d)[1:5] pr <- cbind( pr, myMeans[subS]) } colnames(pr) <- paste0("cluster_",1:K) rownames(pr) <- paste0("theta_",1:5) print(pr) cat(paste0(' <+ ',d-5,' more rows>'),'\n') } }else{ cat(paste0('* Posterior mean of probability of success per feature and cluster (ECR algorithm):'),'\n') pr <- c() for(k in 1:K){ subS <- paste0("theta.",k,".",1:d) pr <- cbind( pr, myMeans[subS]) } colnames(pr) <- paste0("cluster_",1:K) rownames(pr) <- paste0("theta_",1:d) print(pr) } }else{ cat(paste(" The input is not in class `bbm.object`"),'\n') } }
minEdge <- function(tree, tau=1e-8, enforce_ultrametric=FALSE){ if(tau<0) stop("tau must be >= 0!") if(any(tree$edge.length < tau) || enforce_ultrametric){ rooted <- is.rooted(tree) if(enforce_ultrametric) rooted <- TRUE if(rooted){ nTip <- Ntip(tree) ind <- seq_len(nTip) nh <- nodeHeight(tree)[ind] if(enforce_ultrametric) nh <- rep(0, nTip) } tree$edge.length[tree$edge.length < tau] <- tau if(rooted){ el <- numeric(max(tree$edge)) el[tree$edge[,2]] <- tree$edge.length nh2 <- nodeHeight(tree)[ind] el[ind] <- el[ind] + (nh2 - nh) tree$edge.length <- el[tree$edge[,2]] } } tree } candidate.tree <- function(x, rooted=FALSE, eps = 1e-8, ...){ if(rooted){ dm <- dist.ml(x, ...) tree <- wpgma(dm) } else{ tree <- random.addition(x) tree <- optim.parsimony(tree, x, trace=0) tree <- multi2di(tree) tree <- unroot(tree) tree <- acctran(tree, x) tree$edge.length <- tree$edge.length / sum(attr(x, "weight")) } minEdge(tree, tau=eps) } bootstrap.pml <- function(x, bs = 100, trees = TRUE, multicore = FALSE, mc.cores = NULL, ...) { if(.Platform$OS.type=="windows") multicore <- FALSE if (multicore && is.null(mc.cores)) mc.cores <- detectCores() extras <- match.call(expand.dots = FALSE)$... rearr <- c("optNni", "rearrangement") tmp <- pmatch(names(extras), rearr) tmp <- tmp[!is.na(tmp)] do_rearr <- FALSE if(length(tmp)>0){ if(tmp==1){ do_rearr <- extras$optNni if(is.name(do_rearr)) do_rearr <- as.logical(as.character(do_rearr)) } if(tmp==2) do_rearr <- extras$rearrangement %in% c("NNI", "stochastic", "ratchet") } is_ultrametric <- FALSE tmp <- pmatch("optRooted", names(extras)) if(!is.na(tmp)){ is_ultrametric <- extras$optRooted } data <- x$data weight <- attr(data, "weight") v <- rep(seq_along(weight), weight) ntips <- Ntip(x$tree) BS <- vector("list", bs) for (i in 1:bs) BS[[i]] <- tabulate( sample(v, replace = TRUE), length(weight) ) pmlPar <- function(weights, fit, trees = TRUE, do_rearr, ...) { data <- fit$data tree <- fit$tree ind <- which(weights > 0) data <- getRows(data, ind) attr(data, "weight") <- weights[ind] fit <- update(fit, data = data) if(do_rearr){ tree <- candidate.tree(data, rooted = is_ultrametric, bf=fit$bf, Q=fit$Q) fit <- update(fit, tree = tree) } fit <- optim.pml(fit, ...) if (trees) { tree <- fit$tree return(tree) } attr(fit, "data") <- NULL fit } eval.success <- FALSE if (!eval.success & multicore) { res <- mclapply(BS, pmlPar, x, trees = trees, do_rearr = do_rearr, ..., mc.cores = mc.cores) eval.success <- TRUE } if (!eval.success) res <- lapply(BS, pmlPar, x, trees = trees, do_rearr = do_rearr, ...) if (trees) { class(res) <- "multiPhylo" res <- .compressTipLabel(res) } res } bootstrap.phyDat <- function(x, FUN, bs = 100, multicore = FALSE, mc.cores = NULL, jumble = TRUE, ...) { if(.Platform$OS.type=="windows") multicore <- FALSE if (multicore && is.null(mc.cores)) mc.cores <- detectCores() weight <- attr(x, "weight") v <- rep(seq_along(weight), weight) BS <- vector("list", bs) for (i in 1:bs) BS[[i]] <- tabulate(sample(v, replace = TRUE), length(weight)) if (jumble) { J <- vector("list", bs) l <- length(x) for (i in 1:bs) J[[i]] <- list(BS[[i]], sample(l)) } fitPar <- function(weights, data, ...) { ind <- which(weights > 0) data <- getRows(data, ind) attr(data, "weight") <- weights[ind] FUN(data, ...) } fitParJumble <- function(J, data, ...) { ind <- which(J[[1]] > 0) data <- getRows(data, ind) attr(data, "weight") <- J[[1]][ind] data <- subset(data, J[[2]]) FUN(data, ...) } if (multicore) { if (jumble) { res <- mclapply(J, fitParJumble, x, ..., mc.cores = mc.cores) } else { res <- mclapply(BS, fitPar, x, ..., mc.cores = mc.cores) } } else { if (jumble) { res <- lapply(J, fitParJumble, x, ...) } else { res <- lapply(BS, fitPar, x, ...) } } if (inherits(res[[1]], "phylo")) { class(res) <- "multiPhylo" res <- .compressTipLabel(res) } res } matchEdges <- function(tree1, tree2) { bp1 <- bip(tree1) bp2 <- bip(tree2) l <- length(tree1$tip.label) fn <- function(x, y) { if (x[1] == 1) { return(x) } else { return(y[-x]) } } bp1[] <- lapply(bp1, fn, 1:l) bp2[] <- lapply(bp2, fn, 1:l) match(bp1, bp2) } checkLabels <- function(tree, tip) { ind <- match(tree$tip.label, tip) if (any(is.na(ind)) | length(tree$tip.label) != length(tip)) { stop("tree has different labels") } tree$tip.label <- tip ind2 <- tree$edge[, 2] <= Ntip(tree) tree$edge[ind2, 2] <- ind[tree$edge[ind2, 2]] tree } plotBS <- function(tree, BStrees, type = "unrooted", method="FBP", bs.col = "black", bs.adj = NULL, digits=3, p = 0, frame = "none", ...) { type <- match.arg(type, c("phylogram", "cladogram", "fan", "unrooted", "radial", "none")) method <- match.arg(method, c("FBP", "TBE")) if (hasArg(BStrees)) { if(method=="FBP"){ BStrees <- .uncompressTipLabel(BStrees) if (any(is.rooted(BStrees))) BStrees <- unroot(BStrees) x <- prop.clades(tree, BStrees) x <- (x / length(BStrees)) * 100 tree$node.label <- x } else { tree <- transferBootstrap(tree, BStrees) x <- tree$node.label } } else { if (is.null(tree$node.label)) stop("You need to supply 'trees' or the tree needs support-values as node.label") x <- tree$node.label } if(type=="none") return( tree ) plot(tree, type = type, ...) label <- c(rep(0, length(tree$tip.label)), x) ind <- get("last_plot.phylo", envir = .PlotPhyloEnv)$edge[ ,2 ] if (type == "phylogram" | type == "cladogram") { root <- getRoot(tree) label <- c(rep(0, length(tree$tip.label)), x) label[root] <- 0 ind <- which(label > p) if (is.null(bs.adj)) { bs.adj <- c(1, 1) } if (length(ind) > 0) { if(is.numeric(label)) label <- round(label, digits = digits) nodelabels( text = label[ind], node = ind, frame = frame, col = bs.col, adj = bs.adj, ... ) } } else { if (is.null(bs.adj)) { bs.adj <- c(0.5, 0.5) } ind2 <- which(label[ind] > p) if (length(ind2 > 0)) { if(is.numeric(label)) label <- round(label, digits = digits) edgelabels(label[ind][ind2], ind2, frame = frame, col = bs.col, adj = bs.adj, ... ) } } invisible(tree) } maxCladeCred <- function(x, tree = TRUE, part = NULL, rooted = TRUE) { if (inherits(x, "phylo")) x <- c(x) if (is.null(part)) { if (!rooted) { pp <- unroot(x) |> prop.part() } else { pp <- prop.part(x) } } else { pp <- part } pplabel <- attr(pp, "labels") if (!rooted){ pp <- postprocess.prop.part(pp, method="SHORTwise") } x <- .uncompressTipLabel(x) class(x) <- NULL m <- max(attr(pp, "number")) nb <- log(attr(pp, "number") / m) l <- length(x) res <- numeric(l) for (i in 1:l) { tmp <- checkLabels(x[[i]], pplabel) if (!rooted) tmp <- unroot(tmp) ppi <- prop.part(tmp) if (!rooted) ppi <- SHORTwise(ppi) indi <- fmatch(ppi, pp) if (any(is.na(indi))) { res[i] <- -Inf } else { res[i] <- sum(nb[indi]) } } if (tree) { k <- which.max(res) tr <- x[[k]] tr <- addConfidences(tr, pp) attr(tr, "clade.credibility") <- res[k] return(tr) } res } mcc <- maxCladeCred allCompat <- function(x) { x <- unroot(x) l <- length(x) pp <- prop.part(x) pp <- postprocess.prop.part(pp, method = "SHORTwise") spl <- as.splits(pp) w <- attr(spl, "weights") ind <- (w / l) > 0.5 res <- spl[ind] spl <- spl[!ind] w <- attr(spl, "weights") ord <- order(w, decreasing = TRUE) for(i in ord){ if(all(compatible(res, spl[i]) == 0)) res <- c(res, spl[i]) } tree <- as.phylo(res, FALSE) tree$edge.length <- NULL tree <- addConfidences(tree, pp) tree } cladeMatrix <- function(x, rooted = FALSE) { if (!rooted) x <- unroot(x) pp <- prop.part(x) pplabel <- attr(pp, "labels") if (!rooted) pp <- SHORTwise(pp) x <- .uncompressTipLabel(x) nnodes <- Nnode(x) class(x) <- NULL l <- length(x) from <- cumsum(c(1, nnodes[-l])) to <- cumsum(nnodes) ivec <- integer(to[l]) pvec <- c(0, to) res <- vector("list", l) k <- 1 for (i in 1:l) { ppi <- prop.part(x[[i]]) if (!rooted) ppi <- SHORTwise(ppi) indi <- sort(fmatch(ppi, pp)) ivec[from[i]:to[i]] <- indi } X <- sparseMatrix(i = ivec, p = pvec, dims = c(length(pp), l)) list(X = X, prop.part = pp) } moving_average <- function(obj, window = 50) { fun <- function(x) { cx <- c(0, cumsum(x)) (cx[(window + 1):length(cx)] - cx[1:(length(cx) - window)]) / (window) } res <- apply(obj$X, 1, fun) rownames(res) <- c() }
is_uri <- function(s) { nchar(s) == 22 & !str_detect(s, ' ') & str_detect(s, '[[:digit:]]') & str_detect(s, '[[:lower:]]') & str_detect(s, '[[:upper:]]') } pitch_class_lookup <- c('C', 'C verify_result <- function(res) { if (!is.null(res$error)) { stop(str_glue('{res$error$message} ({res$error$status})')) } } scopes <- function() { xml2::read_html("https://developer.spotify.com/documentation/general/guides/authorization/scopes/") %>% rvest::html_elements('code') %>% rvest::html_text() %>% unique() } dedupe_album_names <- function(df, album_name_col = 'album_name', album_release_year_col = 'album_release_year') { album_dupe_regex <- '(deluxe|international|anniversary|version|edition|remaster|re-master|live|mono|stereo)' base_album_names <- df %>% mutate( album_name_ = album_name_col, album_release_year_ = album_release_year_col ) %>% dplyr::filter(!duplicated(tolower(album_name_))) %>% mutate(base_album_name = gsub(str_glue(' \\(.*{album_dupe_regex}.*\\)'), '', tolower(.data$album_name_)), base_album_name = gsub(str_glue(' \\[.*{album_dupe_regex}.*\\]'), '', .data$base_album_name), base_album_name = gsub(str_glue(':.*{album_dupe_regex}.*'), '', .data$base_album_name), base_album_name = gsub(str_glue(' - .*{album_dupe_regex}.*'), '', .data$base_album_name), base_album = tolower(.data$album_name_) == .data$base_album_name) %>% group_by(.data$base_album_name) %>% dplyr::filter((.data$album_release_year_ == min(.data$album_release_year_)) | base_album) %>% mutate(num_albums = n(), num_base_albums = sum(.data$base_album)) %>% ungroup() %>% dplyr::filter((.data$base_album == 1) |((.data$num_base_albums == 0 | .data$num_base_albums > 1) & row_number() == 1)) %>% pull(.data$album_name_) df %>% mutate(album_name_ = album_name_col) %>% filter(.data$album_name_ %in% base_album_names) %>% select(-all_of("album_name_")) } query_playlist <- function(url, params) { res <- RETRY('GET', url, query = params, encode = 'json') stop_for_status(res) res <- fromJSON(content(res, as = 'text', encoding = 'UTF-8'), flatten = TRUE) res }
test_that("dt_sources captures all tables", { dt1 <- lazy_dt(data.frame(x = 1), "dt1") dt2 <- lazy_dt(data.frame(x = 2), "dt2") dt3 <- lazy_dt(data.frame(x = 3), "dt3") out <- dt1 %>% left_join(dt2, by = "x") %>% left_join(dt3, by = "x") expect_equal( dt_sources(out)[c("dt1", "dt2", "dt3")], list(dt1 = dt1$parent, dt2 = dt2$parent, dt3 = dt3$parent) ) }) test_that("joins captures locals from both parents", { dt1 <- lazy_dt(data.frame(x = 1)) %>% mutate(y = 1) %>% compute("D1") dt2 <- lazy_dt(data.frame(x = 1)) %>% mutate(z = 1) %>% compute("D2") expect_named(left_join(dt1, dt2, by = "x")$locals, c("D1", "D2")) expect_named(inner_join(dt1, dt2, by = "x")$locals, c("D1", "D2")) }) test_that("simple usage generates expected translation", { dt1 <- lazy_dt(tibble(x = 1, y = 2, a = 3), "dt1") dt2 <- lazy_dt(tibble(x = 1, y = 2, b = 4), "dt2") expect_equal( dt1 %>% left_join(dt2, by = "x") %>% show_query(), expr( setnames( setcolorder( dt2[dt1, on = .(x), allow.cartesian = TRUE], !!c(1L, 4L, 5L, 2L, 3L) ), !!c("i.y", "y"), !!c("y.x", "y.y") ) ) ) expect_equal( dt1 %>% right_join(dt2, by = "x") %>% show_query(), expr( setnames( dt1[dt2, on = .(x), allow.cartesian = TRUE], !!c("y", "i.y"), !!c("y.x", "y.y") ) ) ) expect_equal( dt1 %>% inner_join(dt2, by = "x") %>% show_query(), expr( setnames( dt1[dt2, on = .(x), nomatch = NULL, allow.cartesian = TRUE], !!c("y", "i.y"), !!c("y.x", "y.y") ) ) ) expect_equal( dt1 %>% full_join(dt2, by = "x") %>% show_query(), expr(merge(dt1, dt2, all = TRUE, by.x = "x", by.y = "x", allow.cartesian = TRUE)) ) expect_equal( dt1 %>% anti_join(dt2, by = "x") %>% show_query(), expr(dt1[!dt2, on = .(x)]) ) expect_equal( dt1 %>% semi_join(dt2, by = "x") %>% show_query(), expr(dt1[unique(dt1[dt2, which = TRUE, nomatch = NULL, on = .(x)])]) ) }) test_that("full_join produces correct names", { df1 <- tibble(a = "a", b = "b.x", b.x = "b.x.x.x") df2 <- tibble(a = "a", b = "b.y", b.x.x = "b.x.x") dt1 <- lazy_dt(df1, "dt1") dt2 <- lazy_dt(df2, "dt2") joined_dt <- full_join(dt1, dt2, by = "a") expected <- full_join(df1, df2, by = "a") %>% colnames() expect_equal( joined_dt %>% .$vars, expected ) expect_equal( suppressWarnings(joined_dt %>% collect() %>% colnames()), expected ) }) test_that("join can handle `by` where order doesn't match input", { dt1 <- lazy_dt(tibble(a = "a", b = "b", c = "c"), name = "dt1") dt2 <- lazy_dt(tibble(a = "a", b = "b", c = "c", d = "d"), name = "dt2") dt3 <- left_join(dt1, dt2, by = c("c", "b", "a")) expect_equal(dt3$vars, letters[1:4]) expect_equal(collect(dt3), collect(dt2)) dt4 <- full_join(dt1, dt2, by = c("c", "b", "a")) expect_equal(dt4$vars, letters[1:4]) expect_equal(collect(dt4), collect(dt2)) dt5 <- left_join(dt1, dt2, by = c("c", "b")) expect_equal( collect(dt5), tibble(a.x = "a", b = "b", c = "c", a.y = "a", d = "d") ) }) test_that("left_join produces correct names", { df1 <- tibble(a = "a", b = "b.x", i.b = "i.b") df2 <- tibble(a = "a", b = "b.y") dt1 <- lazy_dt(df1, "dt1") dt2 <- lazy_dt(df2, "dt2") joined_dt <- left_join(dt1, dt2, by = "a") expected <- left_join(df1, df2, by = "a") %>% colnames() expect_equal( joined_dt %>% .$vars, expected ) expect_equal( joined_dt %>% collect() %>% colnames(), expected ) }) test_that("named by converted to by.x and by.y", { dt1 <- lazy_dt(data.frame(a1 = 1:3, z = 1), "dt1") dt2 <- lazy_dt(data.frame(a2 = 1:3, z = 2), "dt2") out_inner <- inner_join(dt1, dt2, by = c('a1' = 'a2')) expect_equal( out_inner %>% show_query(), expr( setnames( dt1[dt2, on = .(a1 = a2), nomatch = NULL, allow.cartesian = TRUE], !!c("z", "i.z"), !!c("z.x", "z.y") ) ) ) expect_setequal(tbl_vars(out_inner), c("a1", "z.x", "z.y")) out_left <- left_join(dt1, dt2, by = c('a1' = 'a2')) expect_equal( out_left %>% show_query(), expr( setnames( setcolorder( dt2[dt1, on = .(a2 = a1), allow.cartesian = TRUE], !!c(1L, 3L, 2L) ), !!c("a2", "i.z", "z"), !!c("a1", "z.x", "z.y") ) ) ) expect_setequal(tbl_vars(out_left), c("a1", "z.x", "z.y")) }) test_that("named by can handle edge cases", { test_equal <- function(f_join) { joined_dt <- f_join(dt1, dt2, by = c("x", z = "y")) expected <- f_join(df1, df2, by = c("x", z = "y")) expect_equal( joined_dt %>% collect(), expected ) expect_equal( joined_dt$vars, colnames(expected) ) } df1 <- tibble(x = 1, y = 1, z = 2) df2 <- tibble(x = 1, y = 2) dt1 <- lazy_dt(df1, "dt1") dt2 <- lazy_dt(df2, "dt2") test_equal(left_join) test_equal(right_join) test_equal(full_join) test_equal(semi_join) test_equal(anti_join) }) test_that("setnames only used when necessary", { dt1 <- lazy_dt(data.frame(x = 1:2, a = 3), "dt1") dt2 <- lazy_dt(data.frame(x = 2:3, b = 4), "dt2") expect_equal( dt1 %>% left_join(dt2, by = "x") %>% show_query(), expr(setcolorder(dt2[dt1, on = .(x), allow.cartesian = TRUE], !!c(1L, 3L, 2L))) ) expect_equal( dt1 %>% left_join(dt2, by = "x") %>% pull(x), dt1 %>% pull(x) ) }) test_that("correctly determines vars", { dt1 <- lazy_dt(data.frame(x = 1, y = 2, a = 3), "dt1") dt2 <- lazy_dt(data.frame(x = 1, y = 2, b = 4), "dt2") expect_setequal( dt1 %>% left_join(dt2, by = c("x", "y")) %>% .$vars, c("x", "y", "a", "b") ) expect_setequal( dt1 %>% left_join(dt2, by = "x") %>% .$vars, c("x", "y.x", "y.y", "a", "b") ) expect_setequal( dt1 %>% semi_join(dt2, by = "x") %>% .$vars, c("x", "y", "a") ) }) test_that("can override suffixes", { dt1 <- lazy_dt(data.frame(x = 1, y = 2, a = 3), "dt1") dt2 <- lazy_dt(data.frame(x = 1, y = 22, b = 4), "dt2") expect_equal( dt1 %>% left_join(dt2, by = "x", suffix = c("X", "Y")) %>% show_query(), expr( setnames( setcolorder( dt2[dt1, on = .(x), allow.cartesian = TRUE], !!c(1L, 4L, 5L, 2L, 3L) ), !!c("i.y", "y"), !!c("yX", "yY") ) ) ) }) test_that("automatically data.frame converts to lazy_dt", { dt1 <- lazy_dt(data.frame(x = 1, y = 2, a = 3), "dt1") df2 <- data.frame(x = 1, y = 2, a = 3) out <- left_join(dt1, df2, by = "x") expect_s3_class(out, "dtplyr_step") }) test_that("converts other types if requested", { dt1 <- lazy_dt(data.frame(x = 1, y = 2, a = 3), "dt1") x <- structure(10, class = "foo") expect_error(left_join(dt1, x, by = "x"), "copy") expect_s3_class(left_join(dt1, x, by = "x", copy = TRUE), "dtplyr_step_join") }) test_that("mutates inside joins are copied as needed", { dt <- data.table(x = 1) lhs <- lazy_dt(dt, "dt1") %>% mutate(y = x + 1) rhs <- lazy_dt(dt, "dt2") %>% mutate(z = x + 1) collect(inner_join(lhs, rhs, by = "x")) expect_named(dt, "x") }) test_that("performs cartesian joins as needed", { x <- lazy_dt(data.frame(x = c(2, 2, 2), y = 1:3)) y <- lazy_dt(data.frame(x = c(2, 2, 2), z = 1:3)) out <- collect(left_join(x, y, by = "x")) expect_equal(nrow(out), 9) }) test_that("performs cross join", { df1 <- data.frame(x = 1:2, y = "a", stringsAsFactors = FALSE) df2 <- data.frame(x = 3:4) dt1 <- lazy_dt(df1, "dt1") dt2 <- lazy_dt(df2, "dt2") expected <- left_join(df1, df2, by = character()) %>% as_tibble() expect_snapshot(left_join(dt1, dt2, by = character())) expect_equal(left_join(dt1, dt2, by = character()) %>% collect(), expected) expect_snapshot(right_join(dt1, dt2, by = character())) expect_equal(right_join(dt1, dt2, by = character()) %>% collect(), expected) expect_snapshot(full_join(dt1, dt2, by = character())) expect_equal(full_join(dt1, dt2, by = character()) %>% collect(), expected) expect_snapshot(inner_join(dt1, dt2, by = character())) expect_equal(inner_join(dt1, dt2, by = character()) %>% collect(), expected) })
test_that("call_or_default", { expect_identical(call_or_default(NULL, 0), 0) expect_identical(call_or_default(sin, 1), sin(1)) }) test_that("get_digtis", { expect_equal(get_digits(c("0.1", "0.01", ".501", ".5001", "123.321", "123", "012", "5.")), c(1, 2, 3, 4, 3, 0, 0, 0)) }) test_that("copy_dim", { x <- c(1, 2, 3) y <- format(x) expect_true(!is.array(copy_dim(x, y))) x <- c(1, 2, 3, 4) m <- matrix(x, 2, dimnames = list(c("a", "b"))) y <- format(x) y2 <- copy_dim(m, y) expect_true(is.matrix(y2)) expect_identical(dim(y2), dim(m)) expect_identical(dimnames(y2), dimnames(m)) x <- rnorm(24) arr <- array(x, c(2, 3, 4), dimnames = list(letters[1:2], letters[1:3], letters[1:4])) y <- format(x) y2 <- copy_dim(arr, y) expect_true(is.array(y2)) expect_identical(dim(y2), dim(arr)) expect_identical(dimnames(y2), dimnames(arr)) })
context("Get branches") test_that("We get a error when there is no url", { expect_error(get_branches(api_key = api_key, owner = owner, repo = repo), "Please add a valid URL") }) test_that("We get a error when there is no api_key", { expect_error(get_branches(base_url = base_url, owner = owner, repo = repo), "Please add a valid API token") }) test_that("We get a error when there is no owner", { expect_error(get_branches(base_url = base_url, api_key = api_key, repo = repo), "Please add a valid owner") }) test_that("We get a error when there is no repository", { expect_error(get_branches(base_url = base_url, api_key = api_key, owner = owner), "Please add a valid repository") }) test_that("Error putting invalid url for API", { mockery::stub(where = get_branches, what = "tryCatch", how = "Failure") expect_error(get_branches("google.com", api_key, owner, repo), "Error consulting the url: ") }) test_that("Branches are read correctly", { mockery::stub(where = get_branches, what = "GET", how = r) mockery::stub(where = get_branches, what = "fromJSON", how = content_branches) value_branches <- get_branches(base_url, api_key, owner, repo) expect_true(exists("value_branches")) }) test_that("Getting branches gives the expected result", { mockery::stub(where = get_branches, what = "GET", how = r) mockery::stub(where = get_branches, what = "fromJSON", how = content_branches) value_branches <- get_branches(base_url, api_key, owner, repo) expect_equal(TRUE, !is.null(value_branches)) expect_that(value_branches, is_a("data.frame")) })
context("checkAtomicVector") test_that("checkAtomicVector", { myobj = 1:2 expect_succ_all(AtomicVector, myobj) myobj = NULL expect_fail_all(AtomicVector, myobj) expect_true(testAtomicVector(integer(0))) expect_false(testAtomicVector(NULL)) expect_true(testAtomicVector(1)) expect_true(testAtomicVector(integer(0))) expect_true(testAtomicVector(factor(1))) expect_true(testAtomicVector(NA, any.missing = TRUE)) expect_false(testAtomicVector(NA, any.missing = FALSE)) expect_false(testAtomicVector(NA, all.missing = FALSE)) expect_true(testAtomicVector(1, len=1)) expect_false(testAtomicVector(1, len=0)) expect_true(testAtomicVector(1, min.len=0)) expect_false(testAtomicVector(1, min.len=2)) expect_true(testAtomicVector(1, max.len=1)) expect_false(testAtomicVector(1, max.len=0)) expect_true(testAtomicVector(1, unique=TRUE)) expect_false(testAtomicVector(1, min.len=2)) expect_true(testAtomicVector(1, max.len=1)) expect_false(testAtomicVector(1, max.len=0)) expect_true(testAtomicVector(1, unique=TRUE)) expect_true(testAtomicVector(c(1,1), unique=FALSE)) expect_false(testAtomicVector(c(1,1), unique=TRUE)) expect_true(testAtomicVector(1, names="unnamed")) expect_true(testAtomicVector(setNames(1, "x"), names="named")) expect_false(testAtomicVector(1, names="unique")) expect_error(assertAtomicVector(iris), "atomic") li = list(list = list(1, 2), factor = factor("a"), integer = 1:2, NULL = NULL, data.frame = iris, matrix = matrix(1:9)) expected = setNames(c(FALSE, TRUE, TRUE, FALSE, FALSE, FALSE), names(li)) expect_equal(expected, vlapply(li, testAtomicVector)) }) test_that("type guessing works ( x = structure(list(1:4, letters[1:3]), dim = c(2, 1)) expect_match(checkAtomic(x), "list") })
data_frame <- function(...) { x <- data.frame(..., stringsAsFactors = FALSE) rownames(x) <- NULL x } is.stan <- function(x) inherits(x, c("stanreg", "stanfit", "brmsfit")) stan.has.multiranef <- function(x) { if (obj_has_name(x, "facet")) { ri <- string_starts_with("(Intercept", x = x$facet) if (!sjmisc::is_empty(ri)) { return(dplyr::n_distinct(x$facet[ri]) > 1) } } FALSE } has_value_labels <- function(x) { !(is.null(attr(x, "labels", exact = T)) && is.null(attr(x, "value.labels", exact = T))) } axis_limits_and_ticks <- function(axis.lim, min.val, max.val, grid.breaks, exponentiate, min.est, max.est) { fac.ll <- dplyr::if_else(exponentiate, .3, .95) fac.ul <- dplyr::if_else(exponentiate, 3.3, 1.05) if (is.infinite(min.val) || is.na(min.val)) min.val <- min.est if (is.infinite(max.val) || is.na(max.val)) max.val <- max.est if (min.val < 0) fac.ll <- 1 / fac.ll if (max.val < 0) fac.ul <- 1 / fac.ul if (is.null(axis.lim)) { lower_lim <- min.val * fac.ll upper_lim <- max.val * fac.ul } else { lower_lim <- axis.lim[1] upper_lim <- axis.lim[2] } if (is.null(grid.breaks)) { if (exponentiate) { lower_lim <- round(lower_lim, 2) upper_lim <- round(upper_lim, 2) if (lower_lim == 0) lower_lim <- min.val * fac.ll / 10 ls <- log10(c(lower_lim, upper_lim)) ticks <- grDevices::axisTicks(c(floor(ls[1]), ceiling(ls[2])), log = TRUE) ll <- which(ticks < lower_lim) if (!sjmisc::is_empty(ll) && length(ll) > 1) ticks <- ticks[ll[length(ll)]:length(ticks)] ul <- which(ticks > upper_lim) if (!sjmisc::is_empty(ul) && length(ul) > 1) ticks <- ticks[1:ul[1]] } else { ticks <- pretty(c(floor(lower_lim), ceiling(upper_lim))) } } else { if (length(grid.breaks) == 1) ticks <- seq(floor(lower_lim), ceiling(upper_lim), by = grid.breaks) else ticks <- grid.breaks } list(axis.lim = c(min(ticks), max(ticks)), ticks = ticks) } estimate_axis_title <- function(fit, axis.title, type, transform = NULL, multi.resp = NULL, include.zeroinf = FALSE) { if (type %in% c("eff", "pred", "int")) return(axis.title) if (is.null(axis.title)) { fitfam <- insight::model_info(fit) if (!is.null(multi.resp)) fitfam <- fitfam[[multi.resp]] else if (insight::is_multivariate(fit)) fitfam <- fitfam[[1]] axis.title <- dplyr::case_when( !is.null(transform) && transform == "plogis" ~ "Probabilities", is.null(transform) && fitfam$is_binomial ~ "Log-Odds", is.null(transform) && fitfam$is_ordinal ~ "Log-Odds", is.null(transform) && fitfam$is_multinomial ~ "Log-Odds", is.null(transform) && fitfam$is_categorical ~ "Log-Odds", is.null(transform) && fitfam$is_count ~ "Log-Mean", fitfam$is_count ~ "Incidence Rate Ratios", fitfam$is_ordinal ~ "Odds Ratios", fitfam$is_multinomial ~ "Odds Ratios", fitfam$is_categorical ~ "Odds Ratios", fitfam$is_binomial && !fitfam$is_logit ~ "Risk Ratios", fitfam$is_binomial ~ "Odds Ratios", TRUE ~ "Estimates" ) if (fitfam$is_zero_inflated && isTRUE(include.zeroinf)) { if (is.null(transform)) axis.title <- c(axis.title, "Log-Odds") else axis.title <- c(axis.title, "Odds Ratios") } } axis.title } get_p_stars <- function(pval, thresholds = NULL) { if (is.null(thresholds)) thresholds <- c(.05, .01, .001) dplyr::case_when( is.na(pval) ~ "", pval < thresholds[3] ~ "***", pval < thresholds[2] ~ "**", pval < thresholds[1] ~ "*", TRUE ~ "" ) } is_merMod <- function(fit) { inherits(fit, c("lmerMod", "glmerMod", "nlmerMod", "merModLmerTest")) } is_brms_mixed <- function(fit) { inherits(fit, "brmsfit") && !sjmisc::is_empty(fit$ranef) } is_mixed_model <- function(fit) { mi <- insight::model_info(fit) if (insight::is_multivariate(fit)) mi[[1]]$is_mixed else mi$is_mixed } nulldef <- function(x, y, z = NULL) { if (is.null(x)) { if (is.null(y)) z else y } else x } geom_intercept_line <- function(yintercept, axis.scaling, vline.color) { if (yintercept > axis.scaling$axis.lim[1] && yintercept < axis.scaling$axis.lim[2]) { t <- theme_get() if (is.null(t$panel.grid.major)) t$panel.grid.major <- t$panel.grid color <- nulldef(vline.color, t$panel.grid.major$colour, "grey90") minor_size <- nulldef(t$panel.grid.minor$size, .125) major_size <- nulldef(t$panel.grid.major$size, minor_size * 1.5) size <- major_size * 1.5 geom_hline(yintercept = yintercept, color = color, size = size) } else { NULL } } geom_intercept_line2 <- function(yintercept, vline.color) { t <- theme_get() if (is.null(t$panel.grid.major)) t$panel.grid.major <- t$panel.grid color <- nulldef(vline.color, t$panel.grid.major$colour, "grey90") minor_size <- nulldef(t$panel.grid.minor$size, .125) major_size <- nulldef(t$panel.grid.major$size, minor_size * 1.5) size <- major_size * 1.5 geom_hline(yintercept = yintercept, color = color, size = size) } check_se_argument <- function(se, type = NULL) { if (!is.null(se) && !is.null(type) && type %in% c("std", "std2")) { warning("No robust standard errors for `type = \"std\"` or `type = \"std2\"`.") se <- NULL } if (!is.null(se) && !is.null(type) && type == "re") { warning("No robust standard errors for `type = \"re\"`.") se <- NULL } se } list.depth <- function(this, thisdepth = 0) { if (!is.list(this)) { return(thisdepth) } else { return(max(unlist(lapply(this, list.depth, thisdepth = thisdepth + 1)))) } } parse_terms <- function(x) { if (sjmisc::is_empty(x)) return(x) vars.pos <- which(as.vector(regexpr( pattern = " ([^\\]]*)\\]", text = x, perl = T )) != -1) if (sjmisc::is_empty(vars.pos)) return(x) vars.names <- clear_terms(x)[vars.pos] tmp <- unlist(regmatches( x, gregexpr( pattern = " ([^\\]]*)\\]", text = x, perl = T ) )) tmp <- gsub("(\\[*)(\\]*)", "", tmp) tmp <- sjmisc::trim(strsplit(tmp, ",", fixed = T)) parsed.terms <- seq_len(length(tmp)) %>% purrr::map(~ sprintf("%s%s", vars.names[.x], tmp[[.x]])) %>% purrr::flatten_chr() c(x[-vars.pos], parsed.terms) } clear_terms <- function(x) { cleaned.pos <- regexpr(pattern = "\\s", x) replacers <- which(cleaned.pos == -1) cleaned.pos[replacers] <- nchar(x)[replacers] sjmisc::trim(substr(x, 0, cleaned.pos)) } is_empty_list <- function(x) { all(purrr::map_lgl(x, sjmisc::is_empty)) } model_deviance <- function(x) { tryCatch( { m_deviance(x) }, error = function(x) { NULL } ) } model_aic <- function(x) { performance::performance_aic(x) } model_aicc <- function(x) { tryCatch( { performance::performance_aicc(x) }, error = function(x) { NULL } ) } model_loglik <- function(x) { tryCatch( { stats::logLik(x) }, error = function(x) { NULL } ) } m_deviance <- function(x) { if (is_merMod(x)) { if (!requireNamespace("lme4", quietly = TRUE)) { stop("Package 'lme4' required for this function to work, please install it.") } d <- lme4::getME(x, "devcomp")$cmp["dev"] if (is.na(d)) d <- stats::deviance(x, REML = FALSE) } else { d <- stats::deviance(x) } d } tidy_label <- function(labs, sep = ".") { duped.val <- names(which(table(labs) > 1)) dupes <- duped.val %>% purrr::map(~which(labs == .x)) %>% purrr::as_vector(.type = "double") labs[dupes] <- sprintf("%s%s%s", labs[dupes], sep, dupes) labs } se_ranef <- function(object) { if (!requireNamespace("lme4", quietly = TRUE)) { stop("Package 'lme4' required for this function to work, please install it.") } if (inherits(object, "MixMod")) { se.bygroup <- lme4::ranef(object, post_vars = TRUE) vars.m <- attr(se.bygroup, "post_vars") if (dim(vars.m[[1]])[1] == 1) se.bygroup <- sqrt(unlist(vars.m)) else { se.bygroup <- do.call( rbind, purrr::map_df(vars.m, ~ t(as.data.frame(sqrt(diag(.x))))) ) dimnames(se.bygroup)[[2]] <- dimnames(vars.m[[1]])[[1]] se.bygroup <- list(se.bygroup) names(se.bygroup) <- insight::find_random(object, flatten = TRUE) } } else { se.bygroup <- lme4::ranef(object, condVar = TRUE) n.groupings <- length(se.bygroup) for (m in 1:n.groupings) { vars.m <- attr(se.bygroup[[m]], "postVar") K <- dim(vars.m)[1] J <- dim(vars.m)[3] names.full <- dimnames(se.bygroup[[m]]) se.bygroup[[m]] <- array(NA, c(J, K)) for (j in 1:J) { se.bygroup[[m]][j, ] <- sqrt(diag(as.matrix(vars.m[, , j]))) } dimnames(se.bygroup[[m]]) <- list(names.full[[1]], names.full[[2]]) } } se.bygroup } get_observations <- function(model) { tryCatch( { insight::n_obs(model) }, error = function(x) { NULL } ) } .labelled_model_data <- function(models) { if (!inherits(models, "list")) models <- list(models) mf <- try(lapply(models, function(.x) insight::get_data(.x)[, -1, drop = FALSE]), silent = TRUE) if (inherits(mf, "try-error")) { return(FALSE) } lbs <- unlist(lapply(mf, function(x) { any(sapply(x, function(i) !is.null(attributes(i)$label))) })) any(lbs) }
NULL img_simplicity <- function(imgfile, algorithm = "zip", rotate = FALSE){ 1 - img_complexity(imgfile, algorithm, rotate) }
get_bh_threshold <- function(pvals, alpha, mtests = length(pvals)){ m <- length(pvals) pvals <- sort(pvals) prejected <- which(pvals <= (1:m)/mtests*alpha) ifelse(length(prejected)==0, 0, pvals[prejected[which.max(prejected)]]) }
unpivot = function(m){ m = as.matrix(m) m = data.frame( rep(rownames(m), ncol(m)), rep(colnames(m), each=nrow(m)), c(m) ) return(m) }
modelMembers.default <- function( BMAobject) { dimnames(as.matrix(BMAobject$weights))[[1]] }
surv_stoEM_ipw <- function(data, zetat, zetaz, B = 100, theta = 0.5, offset = TRUE){ t = data$t d = data$d Z = data$Z X = data.matrix(data$X) nx = dim(X)[2] n = length(t) Coeft1 = Coeft1.se = numeric(B) for (j in 1:B){ Usim = SimulateU_surv(t, d, Z, X, zetat = zetat, zetaz = zetaz, theta = theta, offset=TRUE) Z.fit = glm(Z ~ X, offset = zetaz * Usim$U, family=binomial(link="probit")) ps = Z.fit$fitted.values ipw = (sum(Z)/n) * Z/ps + (1-(sum(Z)/n))*(1-Z)/(1-ps) ipw = pmin(ipw, 10) ipw = pmax(ipw, 0.1) t1.ipw = coxph(Surv(t, d) ~ Z, weights = ipw, robust = TRUE) Coeft1[j] = t1.ipw$coefficients Coeft1.se[j] = summary(t1.ipw)$coefficients[,'robust se'] } names(Coeft1) = names(Coeft1.se) = names(t1.ipw$coefficients) tau1 = mean(Coeft1) tau1.se = sqrt(mean((Coeft1.se)^2) + (1+1/B) * var(Coeft1)) return (list(tau1 = tau1, tau1.se = tau1.se)) }
"qrisk" <- function(x, alpha=c(.1,.3), w = c(.7,.3), mu = .07, R = NULL, r = NULL, lambda = 10000){ n <- nrow(x) p <- ncol(x) m <- length(alpha) if(length(w)!=m)stop("length of w doesn't match length of alpha") xbar <- apply(x,2,mean) y <- x[,1] r <- c(r,lambda*(xbar[1]-mu), -lambda*(xbar[1]-mu)) X <- x[,1]-x[,-1] R <- rbind(R,lambda*(xbar[1]-xbar[-1]), -lambda*(xbar[1]-xbar[-1])) R <- cbind(matrix(0,nrow(R),m),R) f <- rq.fit.hogg(X,y,taus=alpha,weights=w,R=R,r=r) fit <- f$coefficients pihat <- c(1-sum(fit[-(1:m)]),fit[-(1:m)]) x <- as.matrix(x) yhat <- x%*%pihat etahat <- quantile(yhat,alpha) muhat <- mean(yhat) qrisk <- 0 for(i in 1:length(alpha)) qrisk <- qrisk + w[i]*sum(yhat[yhat<etahat[i]])/(n*alpha[i]) list(pihat = pihat, muhat = muhat, qrisk = qrisk) } "srisk" <- function(x,mu=.07,lambda=100000000,alpha=.1,eps=.0001){ n <- nrow(x) p <- ncol(x) X <- rbind(x,apply(x,2,mean)) y <- X[,1] y[n+1] <- lambda*(y[n+1]-mu) X <- X[,1]-X[,-1] X <- cbind(c(rep(1,n),0),X) X[n+1,] <- lambda*X[n+1,] fit <- lm(y~X-1) pihat <- c(1-sum(fit$coef[-1]),fit$coef[-1]) if(abs(fit$residual[n+1]) > eps) return("lambda too small?") yhat <- x%*%pihat muhat <- mean(x%*%pihat) sigma <- sqrt(var(x%*%pihat)) list(pihat = pihat, muhat = muhat, sigma = sigma) }
expect_traces <- function(p, n.traces, name){ stopifnot(is.numeric(n.traces)) L <- expect_doppelganger_built(p, paste0("plotly-color-", name)) expect_equivalent(length(L$data), n.traces) L } test_that("plot_ly() handles a simple scatterplot", { p <- plot_ly(palmerpenguins::penguins, x = ~bill_length_mm, y = ~flipper_length_mm, color = ~bill_depth_mm) }) test_that("Mapping a factor variable to color works", { d <- palmerpenguins::penguins %>% filter(!is.na(bill_length_mm)) p <- plot_ly(d, x = ~bill_length_mm, y = ~flipper_length_mm, color = ~species) l <- expect_traces(p, 3, "scatterplot-color-factor") markers <- lapply(l$data, "[[", "marker") cols <- unlist(lapply(markers, "[[", "color")) expect_equivalent(length(cols), 3) }) test_that("Custom RColorBrewer pallette works for factor variable", { d <- palmerpenguins::penguins %>% filter(!is.na(bill_length_mm)) cols <- RColorBrewer::brewer.pal(9, "Set1") colsToCompare <- toRGB(cols) p <- plot_ly(d, x = ~bill_length_mm, y = ~flipper_length_mm, color = ~species, colors = "Set1") l <- expect_traces(p, 3, "scatterplot-color-factor-custom") markers <- lapply(l$data, "[[", "marker") colz <- unlist(lapply(markers, "[[", "color")) idx <- if (packageVersion("scales") > '1.0.0') c(1, 2, 3) else c(1, 5, 9) expect_identical(sort(colsToCompare[idx]), sort(colz)) p <- plot_ly(d, x = ~bill_length_mm, y = ~flipper_length_mm, color = ~species, colors = cols[1:3]) l <- expect_traces(p, 3, "scatterplot-color-factor-custom2") markers <- lapply(l$data, "[[", "marker") colz <- unlist(lapply(markers, "[[", "color")) expect_identical(sort(colsToCompare[1:3]), sort(colz)) }) test_that("Passing hex codes to colors argument works", { colz <- c(' d <- data.frame(Category = LETTERS[1:5], Value = 1:5, stringsAsFactors = FALSE) p <- plot_ly(d, x = ~Category, y = ~Value, type = "bar", color = ~Category, colors = colz) l <- expect_traces(p, 5, "bar-color-factor-custom") colz2 <- sapply(l$data, function(x) x[["marker"]][["color"]]) expect_identical(sort(toRGB(colz)), sort(colz2)) }) test_that("Mapping a numeric variable to color works", { d <- palmerpenguins::penguins %>% filter(!is.na(bill_length_mm)) p <- plot_ly(d, x = ~bill_length_mm, y = ~flipper_length_mm, color = ~bill_depth_mm) l <- expect_traces(p, 2, "scatterplot-color-numeric") idx <- vapply(l$data, is.colorbar, logical(1)) markerScale <- l$data[[which(idx)]]$marker markerDat <- l$data[[which(!idx)]]$marker expect_true(all(markerDat$color == na.omit(palmerpenguins::penguins$bill_depth_mm))) expect_true(markerScale$colorbar$title == "bill_depth_mm") expect_true(min(na.omit(palmerpenguins::penguins$bill_depth_mm)) == markerScale$cmin) expect_true(max(na.omit(palmerpenguins::penguins$bill_depth_mm)) == markerScale$cmax) expect_true(all(0 <= markerScale$colorscale[,1] & markerScale$colorscale[,1] <= 1)) }) test_that("color/stroke mapping with box translates correctly", { d <- data.frame(x = rep(c("A", "B"), each = 5), y = rnorm(10)) l <- plot_ly(d) %>% add_boxplot(x = ~x, y = ~y, color = ~x, colors = c('A' = "blue", 'B' = "red"), stroke = I("black")) %>% expect_traces(2, "box-color-stroke") expect_true(l$data[[1]]$fillcolor == toRGB("blue", 0.5)) expect_true(l$data[[2]]$fillcolor == toRGB("red", 0.5)) expect_true(l$data[[1]]$line$color == toRGB("black")) expect_true(l$data[[2]]$line$color == toRGB("black")) }) test_that("Custom RColorBrewer pallette works for numeric variable", { d <- palmerpenguins::penguins %>% filter(!is.na(bill_length_mm)) p <- plot_ly(d, x = ~bill_length_mm, y = ~flipper_length_mm, color = ~bill_depth_mm, colors = "Greens") l <- expect_traces(p, 2, "scatterplot-color-numeric-custom") }) test_that("axis titles get attached to scene object for 3D plots", { d <- palmerpenguins::penguins %>% filter(!is.na(bill_length_mm)) p <- plot_ly(d, x = ~bill_length_mm, y = ~bill_depth_mm, z = ~flipper_length_mm) l <- expect_traces(p, 1, "scatterplot-scatter3d-axes") expect_identical(l$data[[1]]$type, "scatter3d") scene <- l$layout$scene expect_true(scene$xaxis$title == "bill_length_mm") expect_true(scene$yaxis$title == "bill_depth_mm") expect_true(scene$zaxis$title == "flipper_length_mm") }) test_that("Can specify a scale manually", { pal <- c("1" = "red", "0" = "blue") p <- plot_ly(mtcars, x = ~mpg, y = ~disp, color = ~factor(vs), colors = pal) l <- expect_traces(p, 2, "color-manual") markers <- lapply(l$data, "[[", "marker") expected <- setNames(pal[sapply(l$data, "[[", "name")], NULL) expect_equivalent(toRGB(expected), sapply(markers, "[[", "color")) }) test_that("attributes are boxed-up correctly", { df <- data.frame( a = rnorm(5, 50, 1), b = letters[1:5], stringsAsFactors = FALSE ) p <- plot_ly(df, x = ~a, y = ~b, color = ~b) %>% add_bars(text = ~paste("Value: ", round(a, 1)), hoverinfo = "text") l <- plotly_build(p)$x expect_length(l$data, 5) for (i in seq_along(l$data)) { expect_is(l$data[[i]]$x, "AsIs") expect_is(l$data[[i]]$y, "AsIs") expect_length(l$data[[i]]$text, 1) } })
pairw.anova<-function(y,x,conf.level=0.95,method="tukey",MSE=NULL,df.err=NULL,control=NULL){ indices <- c("lsd","bonf","tukey","scheffe","dunnett") method <- match.arg(method, indices) if(method=="lsd"){ res <- lsdCI(y,x,conf.level=conf.level,MSE=MSE,df.err=df.err)} if(method=="bonf"){ res <- bonfCI(y,x,conf.level=conf.level,MSE=MSE,df.err=df.err)} if(method=="tukey"){ res <- tukeyCI(y,x,conf.level=conf.level,MSE=MSE,df.err=df.err)} if(method=="scheffe"){ res <- scheffeCI(y,x,conf.level=conf.level,MSE=MSE,df.err=df.err)} if(method=="dunnett"){ res <- dunnettCI(y,x,conf.level=conf.level,control=control)} res } lsdCI<-function(y, x, conf.level = 0.95, MSE = NULL, df.err = NULL){ fitted<-tapply(y,factor(x),mean) nis<-tapply(y,factor(x),length) a<-anova(lm(y~factor(x))) df.error<-ifelse(is.null(df.err),a$Df[length(a$Df)],df.err) MSE<-ifelse(is.null(MSE),a$"Mean Sq"[length(a$"Mean Sq")],MSE) dif.mat<-outer(fitted,fitted,"-") diffs<-dif.mat[upper.tri(dif.mat)] SE.diff.mat<-sqrt(MSE*outer(1/nis,1/nis,"+")) SE.diff<-SE.diff.mat[upper.tri(SE.diff.mat)] p.val<- 2*pt(abs(diffs/SE.diff),df.error,lower.tail=FALSE) t<-qt(1-(1-conf.level)/2,df.error) hwidths<-t*SE.diff LSD<-round(qt(1-((1-conf.level)/2),df.error)*SE.diff,5) Decision<- ifelse(abs(diffs)>LSD,"Reject H0","FTR H0") val<-as.data.frame(cbind(LSD,round(diffs, 5),round(diffs-hwidths,5),round(diffs+hwidths,5),Decision,round(p.val,5))) lvl<-outer(levels(x),levels(x),function(x1,x2){paste(paste("mu",x1,sep=""),paste("mu",x2,sep=""),sep="-")}) dimnames(val)<-list(lvl[upper.tri(lvl)], c("LSD","Diff","Lower","Upper","Decision","Adj. p-value")) head<-paste(paste(as.character(conf.level*100),"%",sep=""),c("LSD confidence intervals")) res <- list() res$head <- head res$conf <- conf.level comp <- outer(levels(x),levels(x),function(x1,x2){paste(x1, x2, sep="-")}) res$comp <- comp[upper.tri(comp)] res$summary <- val res$band <- cbind(diffs-hwidths, diffs+hwidths) res$fitted <- fitted res$x <- x res$y <- y res$method <- "Fisher LSD" class(res)<-"pairw" res } bonfCI<-function(y,x, conf.level=0.95,MSE=NULL,df.err=NULL){ fitted<-tapply(y,factor(x),mean) nis<-tapply(y,factor(x),length) a<-anova(lm(y~factor(x))) df.error<-ifelse(is.null(df.err),a$Df[length(a$Df)],df.err) MSE<-ifelse(is.null(MSE),a$"Mean Sq"[length(a$"Mean Sq")],MSE) r<-length(fitted) dif.mat<-outer(fitted,fitted,"-") diffs<-dif.mat[upper.tri(dif.mat)] SE.diff.mat<-sqrt(MSE*outer(1/nis,1/nis,"+")) L.hat.SE<-SE.diff.mat[upper.tri(SE.diff.mat)] p.val<- 2*pt(abs(diffs/L.hat.SE),df=df.error,lower.tail=FALSE) p.adj<-ifelse(p.val*((r^2-r)/2)>=1,1,round(p.val*((r^2-r)/2),6)) t<-qt(1-(1-conf.level)/(r*(r-1)),df.error) hwidths<-t*L.hat.SE val<-round(cbind(diffs,diffs-hwidths,diffs+hwidths),5) Decision<-ifelse((val[,2]>0&val[,3]>0)|val[,2]<0&val[,3]<0,"Reject H0","FTR H0") val<-as.data.frame(cbind(val,Decision,p.adj)) lvl<-outer(levels(x),levels(x),function(x1,x2){paste(paste("mu",x1,sep=""),paste("mu",x2,sep=""),sep="-")}) dimnames(val)<-list(lvl[upper.tri(lvl)], c("Diff","Lower","Upper","Decision","Adj. p-value")) head<-paste(paste(as.character(conf.level*100),"%",sep=""),c("Bonferroni confidence intervals")) res <- list() res$head <- head res$conf <- conf.level comp <- outer(levels(x),levels(x),function(x1,x2){paste(x1, x2, sep="-")}) res$comp <- comp[upper.tri(comp)] res$summary <- val res$band <- cbind(diffs-hwidths, diffs+hwidths) res$fitted <- fitted res$x <- x res$y <- y res$method <- "Bonferroni" class(res)<-"pairw" res } tukeyCI<-function(y,x, conf.level=0.95,MSE=NULL,df.err=NULL){ fitted<-tapply(y,factor(x),mean) nis<-tapply(y,factor(x),length) a<-anova(lm(y~factor(x))) df.error<-ifelse(is.null(df.err),a$Df[length(a$Df)],df.err) MSE<-ifelse(is.null(MSE),a$"Mean Sq"[length(a$"Mean Sq")],MSE) r<-length(fitted) dif.mat<-outer(fitted,fitted,"-") diffs<-dif.mat[upper.tri(dif.mat)] SE.diff.mat<-sqrt(MSE*outer(1/nis,1/nis,"+")) SE.diff<-SE.diff.mat[upper.tri(SE.diff.mat)] Q.star<-abs((sqrt(2)*diffs)/ SE.diff) p.val<-round(ptukey(Q.star,r,df=df.error,lower.tail=FALSE),6) T<-qtukey(conf.level,r,df.error)/sqrt(2) hwidths<-T*SE.diff val<-round(cbind(diffs,diffs-hwidths,diffs+hwidths),5) Decision<-ifelse((val[,2]>0&val[,3]>0)|val[,2]<0&val[,3]<0,"Reject H0","FTR H0") val<-as.data.frame(cbind(val,Decision,p.val)) lvl<-outer(levels(x),levels(x),function(x1,x2){paste(paste("mu",x1,sep=""),paste("mu",x2,sep=""),sep="-")}) dimnames(val)<-list(lvl[upper.tri(lvl)], c("Diff","Lower","Upper","Decision","Adj. p-value")) head<-paste(paste(as.character(conf.level*100),"%",sep=""),c("Tukey-Kramer confidence intervals")) res <- list() res$head <- head res$conf <- conf.level comp <- outer(levels(x),levels(x),function(x1,x2){paste(x1, x2, sep="-")}) res$comp <- comp[upper.tri(comp)] res$summary <- val res$band <- cbind(diffs-hwidths, diffs+hwidths) res$fitted <- fitted res$x <- x res$y <- y res$method <- "Tukey HSD" class(res)<-"pairw" res } scheffeCI<-function(y,x, conf.level=0.95,MSE=NULL,df.err=NULL){ fitted<-tapply(y,factor(x),mean) nis<-tapply(y,factor(x),length) a<-anova(lm(y~factor(x))) df.error<-ifelse(is.null(df.err),a$Df[length(a$Df)],df.err) MSE<-ifelse(is.null(MSE),a$"Mean Sq"[length(a$"Mean Sq")],MSE) r<-length(fitted) dif.mat<-outer(fitted,fitted,"-") diffs<-dif.mat[upper.tri(dif.mat)] SE.diff.mat<-sqrt(MSE*outer(1/nis,1/nis,"+")) SE.diff<-SE.diff.mat[upper.tri(SE.diff.mat)] F.star<-diffs^2/((r-1)*SE.diff^2) p.val<-round(pf(F.star,r-1,df.error,lower.tail=FALSE),6) S<-sqrt((r-1)*qf(conf.level,r-1,df.error)) hwidths<-S*SE.diff val<-round(cbind(diffs,diffs-hwidths,diffs+hwidths),5) Decision<-ifelse((val[,2]>0&val[,3]>0)|val[,2]<0&val[,3]<0,"Reject H0","FTR H0") val<-as.data.frame(cbind(val,Decision,p.val)) lvl<-outer(levels(x),levels(x),function(x1,x2){paste(paste("mu",x1,sep=""),paste("mu",x2,sep=""),sep="-")}) dimnames(val)<-list(lvl[upper.tri(lvl)], c("Diff","Lower","Upper","Decision","Adj. P-value")) head<-paste(paste(as.character(conf.level*100),"%",sep=""),c("Scheffe confidence intervals")) res <- list() res$head <- head res$conf <- conf.level comp <- outer(levels(x),levels(x),function(x1,x2){paste(x1, x2, sep="-")}) res$comp <- comp[upper.tri(comp)] res$summary <- val res$band <- cbind(diffs-hwidths, diffs+hwidths) res$fitted <- fitted res$x <- x res$y <- y res$method <- "Scheffe" class(res)<-"pairw" res } dunnettCI<-function(y, x, conf.level = 0.95, control = NULL){ x <- factor(x) if(is.null(control)) stop(call. = FALSE, "Please specify the control") nis <- tapply(y, x, length) nu <- sum(nis) - nlevels(x) p.sd <- function(y, x){ rs <- seq(1, nlevels(x)) for(i in levels(x)) rs[i] <- sum((y[x == i] - mean(y[x == i]))^2) rs <- rs[-c(1:nlevels(x))] sqrt(sum(rs)/nu) } s <- p.sd(y, x) controlm <- mean(y[x == control]) fittedm <- tapply(y[x != control], factor(x)[x != control], mean) fittedm <-fittedm[complete.cases(fittedm)] controln <- length(y[x == control]) fittedn <- tapply(y[x != control], factor(x)[x != control], length) fittedn <-fittedn[complete.cases(fittedn)] diffs <- fittedm - controlm Dj <- seq(1, (nlevels(x) - 1)) for(i in 1 : (nlevels(x)-1)) Dj[i] <- diffs[i]/(s*sqrt((1/fittedn[i]) + (1/controln))) Rij <- seq(1, (nlevels(x) - 1)) for(i in 1 : (nlevels(x)-1)) Rij[i] <- sqrt(fittedn[i]/(fittedn[i] + controln)) R <- outer(Rij, Rij, "*") diag(R) <- rep(1, (nlevels(x) - 1)) upper <- seq(1, (nlevels(x) - 1)) for(i in 1 : (nlevels(x)-1)) upper[i] <- diffs[i] + s*sqrt((1/fittedn[i])+ (1/controln))*qmvt((1 - (1 - conf.level)/2), df = nu, sigma = R, tail="lower.tail")$quantile lower <- seq(1, (nlevels(x) - 1)) for(i in 1 : (nlevels(x)-1)) lower[i] <- diffs[i] - s*sqrt((1/fittedn[i])+ (1/controln))*qmvt((1 - (1 - conf.level)/2), df = nu, sigma = R, tail="lower.tail")$quantile fl <- levels(x)[levels(x)!=control] con <- levels(x)[levels(x)==control] decision<-ifelse((lower>0&upper>0)|lower<0&upper<0,"Reject H0","FTR H0") lvl <- paste(paste("mu", fl, sep=""),paste("mu", con, sep=""),sep="-") val <- as.data.frame(cbind(round(apply(cbind(lower, upper), 1, mean), 6),round(lower, 6),round(upper, 6),decision)) dimnames(val)<-list(lvl,c("Diff","Lower","Upper","Decision")) head<-paste(paste(as.character(conf.level*100),"%",sep=""),c("Dunnett confidence intervals")) res <- list() res$head <- head res$conf <- conf.level comp <- paste(fl, con, sep="-") res$comp <- comp res$summary <- val res$band <- cbind(lower, upper) res$fitted <- fittedm res$x <- x res$y <- y method <- "Dunnett" class(res)<-"pairw" res } scheffe.cont <- function(y, x, lvl = c("x1", "x2"), conf.level = 0.95, MSE = NULL, df.err = NULL){ alpha <- 1 - conf.level n <- length(y); x <- factor(x) r <- nlevels(x) Y.new <- y[x == lvl[1]|x ==lvl[2]] X.new <- x[x == lvl[1]|x ==lvl[2]] means <- tapply(Y.new, X.new, mean) means <- means[complete.cases(means)] ni <- tapply(Y.new, X.new, length) ni <- ni[complete.cases(ni)] D <- means[1] - means[2] a<-anova(lm(y~factor(x))) df.error<-ifelse(is.null(df.err),a$Df[length(a$Df)],df.err) MSE<-ifelse(is.null(MSE),a$"Mean Sq"[length(a$"Mean Sq")],MSE) S.D <- sqrt(MSE * ((1/ni[1])+(1/ni[2]))) S <- sqrt((r - 1)*qf(1 - alpha, r - 1, n - r)) CI <- list(lower = D - S.D * S, upper = D + S.D * S) F.star <- D^2/((r - 1)*(S.D^2)) P.val <- pf(F.star, r - 1, n - r, lower.tail = FALSE) Dec <- ifelse(P.val <= alpha, "Reject H0", "FTR H0") res <- data.frame(Diff = D, Lower = CI$lower, Upper = CI$upper, Decision = Dec, P = P.val) names(res) <- c("Diff", "Lower", "Upper", "Decision", "Adj. P-value") row.names(res) <- paste("mu",lvl[1],"-","mu",lvl[2], sep = "") res } bonf.cont <- function(y, x, lvl = c("x1", "x2"), conf.level = 0.95, MSE = NULL, df.err = NULL, comps = 1){ alpha <- 1 - conf.level n <- length(y); x <- factor(x) Y.new <- y[x == lvl[1]|x ==lvl[2]] X.new <- x[x == lvl[1]|x ==lvl[2]] means <- tapply(Y.new, X.new, mean) means <- means[complete.cases(means)] ni <- tapply(Y.new, X.new, length) ni <- ni[complete.cases(ni)] D <- means[1] - means[2] a<-anova(lm(y~factor(x))) df.error<-ifelse(is.null(df.err),a$Df[length(a$Df)],df.err) MSE<-ifelse(is.null(MSE),a$"Mean Sq"[length(a$"Mean Sq")],MSE) S.D <- sqrt(MSE * ((1/ni[1])+(1/ni[2]))) t.crit <- qt(1-(alpha/(2*comps)), df.error) CI <- list(lower = D - S.D * t.crit, upper = D + S.D * t.crit) P.val <- 2*pt(abs(D/S.D), df.error, lower.tail = FALSE)*comps Dec <- ifelse(P.val <= alpha, "Reject H0", "FTR H0") res <- data.frame(Diff = D, Lower = CI$lower, Upper = CI$upper, Decision = Dec, P = ifelse(P.val>1,1,P.val)) names(res) <- c("Diff", "Lower", "Upper", "Decision", "Adj. P-value") row.names(res) <- paste("mu",lvl[1],"-","mu",lvl[2], sep = "") res } print.pairw <- function(x, ...){ cat("\n") cat(x$head,"\n") cat("\n") rq<-structure(x$summary) print(rq) invisible(x) } plot.pairw <- function(x, type = 1, lcol = 1, lty = NULL, lwd = NULL, cap.length = 0.1, xlab = "", main = NULL, explanation = TRUE, ...){ if(class(x)!="pairw") stop("Requires object of class pairw") if(type == 1){ levels <- factor(names(x$fitted)) cont <- outer(levels, levels, function(x1,x2)paste(x1,x2,sep="-")) cont1 <- cont[upper.tri(cont)] dec <- x$summary$Decision dec1 <- ifelse(dec=="FTR H0", FALSE, TRUE) xlvl <- x$x y <- x$y names(dec1) <- cont1 lett <- multcompLetters(dec1)$Letters bplot(y, xlvl, simlett = TRUE, lett = lett, xlab = xlab, ...) if(explanation){ if(x$method == "kBonferroni"){ cat(paste("The true effects of factor levels with the same letter are not", "\n", "significantly different at alpha = ", 1- x$conf, " using the ", strsplit(x$method, "k")[[1]][2], " method.", "\n\n", sep = "")) } else if (x$method == "mBonferroni"){ cat(paste("The true effects of factor levels in blocks with the same letter are not", "\n", "significantly different at alpha = ", 1- x$conf, " using the ", strsplit(x$method, "m")[[1]][2], " method.", "\n\n", sep = "")) } else{ cat(paste("The population means of factor levels with the same letter are not", "\n", "significantly different at alpha = ", 1- x$conf, " using the ", x$method, " method.", "\n\n", sep = "")) } } } if(type == 2){ ci <- x$band w <- diff(range(min(ci[,1]),max(ci[,2])))*.05 r <- nrow(x$summary) b <- barplot(rep(0, r), names.arg = x$comp, main = ifelse(is.null(main), x$head, main), xlab = xlab, horiz = TRUE, xlim = c(min(ci[,1]) - w , max(ci[,2])), border=NA, axis.lty = 1, ...) abline(h = b, col = "gray") arrows(ci[,1], b, ci[,2], b, angle = 90, col = lcol, lty = lty, lwd = lwd, length = cap.length, code = 3) abline(v=0, col="gray", lty=2) points(apply(x$band,1,mean), b, pch = 19) } }
sim_linked <- function(phy, Q = rep(1, 6), rate = 0.1, node_mut_rate_double = 1e-9, l = 1000, bf = rep(0.25, 4), rootseq = NULL, node_time = 0.01) { levels <- c("a", "c", "g", "t") if (is.null(rootseq)) { rootseq <- sample(levels, l, replace = TRUE, prob = bf) } if (length(rootseq) != l) { stop( "'rootseq' must have the same length as 'l'. \n", "length 'rootseq': ", length(rootseq), " \n", "value of 'l': ", l, " \n" ) } if (is.matrix(Q)) Q <- Q[lower.tri(Q)] eig_q <- phangorn::edQt(Q, bf) m <- length(levels) phy <- stats::reorder(phy) edge <- phy$edge num_nodes <- max(edge) parent <- as.integer(edge[, 1]) child <- as.integer(edge[, 2]) root <- as.integer(parent[!match(parent, child, 0)][1]) res <- matrix(NA, l, num_nodes) res[, root] <- rootseq parents <- sort(unique(as.integer(edge[, 1]))) assertthat::assert_that(parents[1] == root) assertthat::assert_that(node_mut_rate_double >= 0) node_transition_matrix <- make_transition_matrix(node_mut_rate_double) eigen_obj <- eigen(node_transition_matrix, FALSE) eigen_obj$inv <- solve.default(eigen_obj$vec) branch_subs_all <- cbind(0, 0, rep(0, max(parents))) node_subs_all <- cbind(0, 0, rep(0, max(parents))) for (focal_parent in parents) { offspring <- edge[which(parent == focal_parent), 2] p_matrix <- get_p_matrix(node_time, eig = eigen_obj, rate = rate) result <- get_mutated_sequences(res[, focal_parent], p_matrix) node_subs_1 <- sum(res[, focal_parent] != result[[1]]) node_subs_2 <- sum(res[, focal_parent] != result[[2]]) all_node_subs <- c(node_subs_1, node_subs_2) indices <- which(parent == focal_parent) for (i in 1:2) { branch_length <- phy$edge.length[indices[i]] P <- get_p_matrix(branch_length, eig_q, rate) before_mut_seq <- result[[i]] after_mut_seq <- c() for (j in 1:m) { ind <- before_mut_seq == levels[j] after_mut_seq[ind] <- sample(levels, sum(ind), replace = TRUE, prob = P[, j]) } res[, offspring[i]] <- after_mut_seq branch_subs <- sum(after_mut_seq != before_mut_seq) from <- focal_parent to <- offspring[i] a <- which(edge[, 1] == from & edge[, 2] == to) branch_subs_all[a, ] <- c(focal_parent, offspring[i], branch_subs) node_subs_all[a, ] <- c(focal_parent, offspring[i], all_node_subs[i]) } } branch_subs_all <- branch_subs_all[-which(branch_subs_all[, 1] == 0), ] node_subs_all <- node_subs_all[-which(node_subs_all[, 1] == 0), ] updated_subs <- calc_accumulated_substitutions(phy, branch_subs_all[, 3], node_subs_all[, 3]) phy_no_extinct <- geiger::drop.extinct(phy) k <- length(phy$tip.label) label <- c(phy$tip.label, as.character((k + 1):num_nodes)) colnames(res) <- label res <- res[, phy_no_extinct$tip.label, drop = FALSE] alignment_phydat <- phyDat.DNA(as.data.frame(res, stringsAsFactors = FALSE)) output <- list("alignment" = alignment_phydat, "root_seq" = rootseq, "total_branch_substitutions" = updated_subs$total_branch_subs, "total_node_substitutions" = updated_subs$total_node_subs, "total_accumulated_substitutions" = updated_subs$total_accumulated_substitutions) return(output) }
trans_phased <- function(n_alleles, annotate = FALSE) { eg <- cbind(rep(1:n_alleles, each = n_alleles), rep(1:n_alleles, times = n_alleles)) f <- function(x) { return(paste(x, collapse = "|")) } geno.list <- apply(eg, 1, f) ng <- length(geno.list) geno.list ng - n_alleles^2 trans <- matrix(0, ng^2, ng) gm.list <- rep("", ng^2) gf.list <- rep("", ng^2) for (gm in 1:ng) { for (gf in 1:ng) { am.list <- strsplit(geno.list[gm], "|", fixed = TRUE)[[1]] af.list <- strsplit(geno.list[gf], "|", fixed = TRUE)[[1]] geno.off <- function(am, af) { go <- paste(c(am, af), collapse = "|") return(which(geno.list == go)) } for (i in 1:2) { for (j in 1:2) { go <- geno.off(am.list[i], af.list[j]) trans[ng * gm + gf - ng, go] <- trans[ng * gm + gf - ng, go] + 0.25 } } gm.list[ng * gm + gf - ng] <- geno.list[gm] gf.list[ng * gm + gf - ng] <- geno.list[gf] } } if (annotate) { trans <- data.frame(trans) trans <- data.frame(gm = gm.list, gf = gf.list, trans) names(trans)[3:ncol(trans)] <- geno.list } return(trans) }
regmed.edges <- function(fit, type="mediators", eps = 1e-3) { if(type != "mediators" && type != "any"){ stop("unknown type of edges to select") } alpha <- fit$alpha beta <- fit$beta delta <- fit$delta df <- NULL if(type=="mediators"){ df <- cbind(alpha, beta, alpha*beta) keep <- abs(df[,3]) > eps med.keep <- rownames(df[keep,, drop=FALSE]) if(sum(keep) > 0) { df1 <- data.frame(Vertex1=colnames(alpha), Vertex2=med.keep, coef=alpha[keep]) df2 <- data.frame(Vertex1=med.keep, Vertex2 = colnames(beta), coef=beta[keep]) df <- rbind(df1, df2) if(abs(delta) > eps) { df3 <- data.frame(Vertex1 = colnames(alpha), Vertex2=colnames(beta), coef=delta) df <- rbind(df, df3) rownames(df) <- NULL } } } if(type == "any"){ df1 <- data.frame(Vertex1=colnames(alpha), Vertex2=rownames(alpha), coef=alpha[,1]) which <- abs(alpha) > eps if(any(which)){ df <- df1[which,,drop=FALSE] } df2 <- data.frame(Vertex1=rownames(beta), Vertex2=colnames(beta), coef=beta[,1]) which <- abs(beta) > eps if(any(which)){ df <- rbind(df, df2 <- df2[which,,drop=FALSE]) rownames(df) <- NULL } if(abs(delta) > eps){ df3 <- data.frame(Vertex1=colnames(alpha), Vertex2=colnames(beta), coef=delta) df <- rbind(df, df3) rownames(df) <- NULL } } y.name <- colnames(beta) med.name <- rownames(alpha) obj <- list(edges = df, y.name=y.name, med.name=med.name) class(obj) <- c("regmed.edges", "list") return(obj) }
plot.ICA.BinCont <- function(x, Xlab, Main=" ", Type="Percent", Labels=FALSE, ...){ if (missing(Xlab)) {Xlab <- expression(R[H]^2)} Object <- x dev.new() if (Type=="Density"){ plot(density(x$R2_H, na.rm = T), xlab=Xlab, ylab="Density", main=Main, lwd=2) } if (Type=="Freq"){ h <- hist(Object$R2_H, plot = FALSE, ...) h$density <- h$counts/sum(h$counts) cumulMidPoint <- ecdf(x=Object$R2_H)(h$mids) labs <- paste(round((1-cumulMidPoint), digits=4)*100, "%", sep="") if (Labels==FALSE){ plot(h,freq=T, xlab=Xlab, ylab="Frequency", main=Main, col="grey") } if (Labels==TRUE){ plot(h,freq=T, xlab=Xlab, ylab="Frequency", main=Main, labels=labs, col="grey") } } if (Type=="Percent"){ h <- hist(Object$R2_H, plot = FALSE, ...) h$density <- h$counts/sum(h$counts) cumulMidPoint <- ecdf(x=Object$R2_H)(h$mids) labs <- paste(round((1-cumulMidPoint), digits=4)*100, "%", sep="") if (Labels==FALSE){ plot(h, freq=F, xlab=Xlab, ylab="Percentage", main=Main, col="grey") } if (Labels==TRUE){ plot(h, freq=F, xlab=Xlab, ylab="Percentage", main=Main, labels=labs, col="grey") } } if (Type=="CumPerc"){ h <- hist(Object$R2_H, breaks=length(Object$R2_H), plot = FALSE, ...) h$density <- h$counts/sum(h$counts) cumulative <- cumsum(h$density) plot(x=h$mids, y=cumulative, xlab=Xlab, ylab="Cumulative percentage", col=0, main=Main) lines(x=h$mids, y=cumulative) } }
"drone_blades"
require("tfplot") if(identical(as.logical(Sys.getenv("_R_CHECK_HAVE_FAME_")), TRUE)) { require("TSfame") cat("************** connecting testFame.db\n") con <- TSconnect("fame", dbname="testFame.db") cat("************** examples\n") seriesA <- tis(1:24, start = c(2002, 1), freq = 12) seriesNames(seriesA) <- "seriesA" seriesA2 <- tis(rnorm(24), start = c(2002, 1), freq = 12) seriesNames(seriesA2) <- "seriesA2" seriesB <- tis(rnorm(104), start = c(2002, 1), tif = "wmonday") seriesNames(seriesB) <- "seriesB" seriesC <- tis(rnorm(104), start = c(2002, 1), tif = "wfriday") seriesNames(seriesC) <- "seriesC" start(seriesC) TSdoc(seriesB) <- paste("Line", 1:4, "of seriesB documentation", collapse="\n") TSdescription(seriesB) <- "seriesB description" cat("******* cleanup to db\n") if( TSexists("seriesA", con)) TSdelete("seriesA", con) if( TSexists("seriesA2", con)) TSdelete("seriesA2", con) if( TSexists("seriesB", con)) TSdelete("seriesB", con) if( TSexists("seriesC", con)) TSdelete("seriesC", con) if( TSexists("tsseries", con)) TSdelete("tsseries", con) if( TSexists("tsseriesM1", con)) TSdelete("tsseriesM1", con) if( TSexists("tsseriesM2", con)) TSdelete("tsseriesM2", con) if( TSexists(c("tsseriesM1", "tsseriesM2"), con)) TSdelete(c("tsseriesM1", "tsseriesM2"), con) cat("******* write to db\n") if(!TSput(seriesA, con)) stop("TSput seriesA error.") if(!TSput(seriesA2, con)) stop("TSput seriesA2 error.") if(!TSput(seriesB, con)) stop("TSput seriesB error.") if(!TSreplace(seriesB, con)) stop("TSreplace seriesB error.") tsseries <- ts(rnorm(30), start=c(1999,2), frequency=12) seriesNames(tsseries) <- "tsseries" if(!TSput(tsseries, con)) stop("TSput tsseries error.") tsseriesM <- ts(matrix(rnorm(60), 30,2), start=c(1999,2), frequency=12) seriesNames(tsseriesM) <- c("tsseriesM1","tsseriesM2") if(!TSput(tsseriesM, con)) stop("TSput tsseriesM error.") cat("******* read from db\n") z <- TSget("tsseries", con) if(max(abs(c(z) - c(tsseries))) > 1e-15) stop("TSget tsseries error.") if(any(start(z) != c(1999,2))) stop("TSget tsseries start error.") if(any(start(TSdates("tsseries", con))[[1]] != c(1999,2))) stop("TSdates tsseries start error.") z <- TSget(c("tsseriesM1","tsseriesM2"), con) if(max(abs(c(z) - c(tsseriesM))) > 1e-15) stop("TSget tsseriesM error.") if(any(start(z) != c(1999,2))) stop("TSget tsseriesM start error.") if(any(start(TSdates(c("tsseriesM1","tsseriesM2"), con))[[1]] != c(1999,2))) if(any(start(TSdates(seriesNames(tsseriesM), con))[[1]] != c(1999,2))) stop("TSdates tsseriesM start error.") a <- TSget("seriesA", con) if(max(abs(c(a) - c(seriesA))) > 1e-15) stop("TSget seriesA error.") if(any(start(TSdates("seriesA", con))[[1]] != c(2002, 1))) stop("TSget seriesA start error.") if(!TSexists("seriesA", con)) stop("TSget seriesA exists error.") if( TSexists("seriesZ", con)) stop("TSget seriesZ !exists error.") a2 <- TSget("seriesA2", con) if(max(abs(c(a2) - c(seriesA2))) > 1e-15) stop("TSget seriesA2 error.") z <- TSget(c("seriesA","seriesA2"), con) tfplot(z) b <- TSget("seriesB", con, TSrepresentation="zoo") if(max(abs(c(b) - c(seriesB))) > 1e-15) stop("TSget seriesB error.") if(as.Date(start(b))!= "2002-01-07") stop("seriesB start date error.") if(weekdays(start(seriesB)) != weekdays(start(b)))stop("seriesB weekdays error.") if(weekdays(start(b)) != "Monday") stop("seriesB start weekdays error.") if(weekdays(start(b)) != weekdays(end(b))) stop("seriesB weekdays error.") tfplot(b) tframe(seriesB) tfwindow(seriesB, tf=NULL) bi <- TSget("seriesB", con, TSrepresentation="tis") if(max(abs(c(bi) - c(seriesB))) > 1e-15) stop("TSget bi error.") if(base::as.Date(start(bi))!= "2002-01-07") stop("bi start date error.") if(weekdays(start(seriesB)) != weekdays(start(bi)))stop("bi weekdays error.") if(weekdays(start(bi)) != "Monday") stop("bi start weekdays error.") if(weekdays(start(bi)) != weekdays(end(bi))) stop("bi weekdays error.") tfplot(bi) cat("******* documentation from db\n") if(TSdoc("seriesB", con) != TSdoc(seriesB)) stop("TSdoc error.") if(TSdescription("seriesB", con) != TSdescription(seriesB)) stop("TSdescription error.") cat("******* TSdates from db\n") TSdates("seriesB", con) TSdates(c("seriesA","seriesA2","seriesB"), con) cat("******* delete from db\n") TSdelete("seriesB", con) if(!TSput(seriesC, con)) stop("TSput seriesC error.") if( TSput(seriesC, con)) stop("TSput seriesC error overwriting.") ci <- TSget("seriesC", con, TSrepresentation="tis") start(ci) start(bi) cat("******* timeSeries representation\n") ci <- TSget("seriesC", con, TSrepresentation="timeSeries") if("timeSeries" != class(ci)) stop("timeSeries class object not returned.") start(ci) start(bi) cat("******* misc\n") TSdates("seriesA", con) if(base::as.Date(start(seriesC))!= "2002-01-04") stop("seriesC start date error.") if(weekdays(start(seriesC)) != "Friday") stop("seriesC start weekdays error.") if(weekdays(start(seriesC)) != weekdays(end(seriesC))) stop("seriesC weekdays error.") cat("************** disconnecting test\n") dbDisconnect(con) } else cat("FAME not available. Skipping tests.")
verify_SingleGrainData <- function( object, threshold = 10, cleanup = FALSE, cleanup_level = 'aliquot', verbose = TRUE, plot = FALSE ){ if(is(object, "list")){ results <- .warningCatcher(lapply(1:length(object), function(x) { verify_SingleGrainData( object = object[[x]], threshold = threshold, cleanup = cleanup, cleanup_level = cleanup_level, verbose = verbose, plot = plot ) })) if(cleanup){ return(results) }else{ return(merge_RLum(results)) } } if(is(object, "Risoe.BINfileData")){ temp.results_matrix <- lapply(X = object@DATA, FUN = function(x){ c(mean(x), var(x)) }) temp.results_matrix <- do.call(rbind, temp.results_matrix) temp.results_matrix_RATIO <- temp.results_matrix[,2]/temp.results_matrix[,1] temp.results_matrix_VALID <- temp.results_matrix_RATIO > threshold selection <- data.frame( POSITION = object@METADATA$POSITION, GRAIN = object@METADATA$GRAIN, MEAN = temp.results_matrix[, 1], VAR = temp.results_matrix[, 2], RATIO = temp.results_matrix_RATIO, THRESHOLD = rep_len(threshold, length(object@DATA)), VALID = temp.results_matrix_VALID ) unique_pairs <- unique( selection[selection[["VALID"]], c("POSITION", "GRAIN")]) if(cleanup_level == "aliquot"){ selection_id <- sort(unlist(lapply(1:nrow(unique_pairs), function(x) { which( .subset2(selection, 1) == .subset2(unique_pairs, 1)[x] & .subset2(selection, 2) == .subset2(unique_pairs, 2)[x] ) }))) }else{ selection_id <- which(selection[["VALID"]]) } if(cleanup){ object@DATA <- object@DATA[selection_id] object@METADATA <- object@METADATA[selection_id,] object@METADATA$ID <- 1:length(object@DATA) selection_id <- paste(selection_id, collapse = ", ") if(verbose){ cat(paste0("\n[verify_SingleGrainData()] Risoe.BINfileData object reduced to records: \n", selection_id)) cat("\n\n[verify_SingleGrainData()] Risoe.BINfileData object record index reset.") } return_object <- object }else{ return_object <- set_RLum( class = "RLum.Results", data = list( unique_pairs = unique_pairs, selection_id = selection_id, selection_full = selection), info = list(call = sys.call()) ) } }else if(is(object,"RLum.Analysis")){ object_list <- lapply(get_RLum(object), function(x){ x@data[,2] }) temp.results_matrix <- lapply(X = object_list, FUN = function(x){ c(mean(x), var(x)) }) temp.results_matrix <- do.call(rbind, temp.results_matrix) temp.results_matrix_RATIO <- temp.results_matrix[,2]/temp.results_matrix[,1] temp.results_matrix_VALID <- temp.results_matrix_RATIO > threshold temp_structure <- structure_RLum(object, fullExtent = TRUE) if (object@originator == "Risoe.BINfileData2RLum.Analysis") { selection <- data.frame( POSITION = temp_structure$info.POSITION, GRAIN = temp_structure$info.GRAIN, MEAN = temp.results_matrix[, 1], VAR = temp.results_matrix[, 2], RATIO = temp.results_matrix_RATIO, THRESHOLD = rep_len(threshold, length(object_list)), VALID = temp.results_matrix_VALID ) unique_pairs <- unique( selection[selection[["VALID"]], c("POSITION", "GRAIN")]) } else if (object@originator == "read_XSYG2R") { selection <- data.frame( POSITION = if(any(grepl(pattern = "position", names(temp_structure)))){ temp_structure$info.position}else{ NA }, GRAIN = NA, MEAN = temp.results_matrix[, 1], VAR = temp.results_matrix[, 2], RATIO = temp.results_matrix_RATIO, THRESHOLD = rep_len(threshold, length(object_list)), VALID = temp.results_matrix_VALID ) unique_pairs <- unique( selection[["POSITION"]][selection[["VALID"]]]) } else{ stop("[verify_SingleGrainData()] I don't know what to do object 'originator' not supported!", call. = FALSE) } if(cleanup_level == "aliquot") { if (object@originator == "read_XSYG2R") { if(!is.na(unique_pairs)){ selection_id <- sort(unlist(lapply(1:nrow(unique_pairs), function(x) { which(.subset2(selection, 1) == .subset2(unique_pairs, 1)[x]) }))) }else{ selection_id <- NA } } else if (object@originator == "Risoe.BINfileData2RLum.Analysis") { selection_id <- sort(unlist(lapply(1:nrow(unique_pairs), function(x) { which( .subset2(selection, 1) == .subset2(unique_pairs, 1)[x] & .subset2(selection, 2) == .subset2(unique_pairs, 2)[x] ) }))) } if(length(selection_id) == 0) selection_id <- NA } else{ selection_id <- which(selection[["VALID"]]) } if(cleanup && !any(is.na(selection_id))){ if(verbose){ selection_id_text <- paste(selection_id, collapse = ", ") cat(paste0("\n[verify_SingleGrainData()] RLum.Analysis object reduced to records: ", selection_id_text)) } if (length(selection_id) == 0) { object <- set_RLum( class = "RLum.Analysis", originator = object@originator, protocol = object@protocol, records = list(), info = list( unique_pairs = unique_pairs, selection_id = selection_id, selection_full = selection) ) } else{ object <- set_RLum( class = "RLum.Analysis", records = get_RLum(object, record.id = selection_id, drop = FALSE), info = list( unique_pairs = unique_pairs, selection_id = selection_id, selection_full = selection) ) } return_object <- object }else{ if(any(is.na(selection_id))){ warning("[verify_SingleGrainData()] selection_id is NA, nothing removed, everything selected!", call. = FALSE) } return_object <- set_RLum( class = "RLum.Results", data = list( unique_pairs = unique_pairs, selection_id = selection_id, selection_full = selection), info = list(call = sys.call()) ) } }else{ stop(paste0("[verify_SingleGrainData()] Input type '", is(object)[1], "' is not allowed for this function!"), call. = FALSE) } if(plot){ plot( NA, NA, xlim = c(1,nrow(selection)), ylim = range(selection[["RATIO"]]), log = "y", xlab = "Record index", ylab = "Calculated ratio [a.u.]", main = "Record selection" ) points(x = which(selection[["VALID"]]), y = selection[["RATIO"]][selection[["VALID"]]], pch = 20, col = "darkgreen") points(x = which(!selection[["VALID"]]), y = selection[["RATIO"]][!selection[["VALID"]]], pch = 20, col = rgb(0,0,0,0.5)) abline(h = threshold, col = "red", lty = 1, lwd = 2) mtext( side = 3, text = paste0( "(total: ", nrow(selection), " | valid: ", length(which(selection[["VALID"]])), " | invalid: ", length(which(!selection[["VALID"]])), ")"), cex = 0.9 * par()$cex) } return(return_object) }
duncan<-function (y, trt, DFerror, SSerror, alpha = 0.05, group = TRUE, main = NULL) { MSerror <- SSerror/DFerror name.y <- paste(deparse(substitute(y))) name.t <- paste(deparse(substitute(trt))) junto <- subset(data.frame(y, trt), is.na(y) == FALSE) means <- tapply.stat(junto[, 1], junto[, 2], stat = "mean") sds <- tapply.stat(junto[, 1], junto[, 2], stat = "sd") nn <- tapply.stat(junto[, 1], junto[, 2], stat = "length") means <- data.frame(means, std.err = sds[, 2]/sqrt(nn[, 2]), replication = nn[, 2]) names(means)[1:2] <- c(name.t, name.y) ntr <- nrow(means) k.snk<-ntr-1 Tprob <- vector(mode="integer",k.snk) kk <- 1 for (kk in 1:k.snk) { alphap=1-(1-alpha)^((kk+1)-1) Tprob[kk] <- qtukey(1 - alphap, kk+1, DFerror) } p.nan<-as.vector(na.action(na.omit(Tprob)))[1] ult<-p.nan-1 if(ntr==50) Tprob[p.nan:length(Tprob)]<-seq(Tprob[ult],3.61,length=length(Tprob)-ult) if(ntr==100) Tprob[p.nan:length(Tprob)]<-seq(Tprob[ult],3.67,length=length(Tprob)-ult) nr <- unique(nn[, 2]) nfila <- c("Alpha", "Error Degrees of Freedom", "Error Mean Square") nfila1 <- c("Distances between averages", "Critical Value of Studentized Range") nvalor <- c(alpha, DFerror, MSerror) nvalor1 <- rbind(t(seq(2,ntr)),t(Tprob)) xtabla <- data.frame(...... = nvalor) xtabla1 <- data.frame(...... = nvalor1) row.names(xtabla) <- nfila row.names(xtabla1) <- nfila1 HSD <- vector(mode="integer",k.snk) if (group) { if (length(nr) == 1) { kk <- 1 for (kk in 1:k.snk) { HSD[kk] <- Tprob[kk] * sqrt(MSerror/nr) } } else { nr1 <- 1/mean(1/nn[, 2]) kk <- 1 for (kk in 1:k.snk) { HSD[kk] <- Tprob[kk] * sqrt(MSerror/nr1) } } cat("\nTeste de Duncan \n------------------------------------------------------------------------") cat("\nGrupos Tratamentos Medias\n") output <- order.stat.SNK(means[, 1], means[, 2], HSD) cat('------------------------------------------------------------------------\n') } } order.stat.SNK<-function (treatment, means, minimum) { n <- length(means) letras<-letters if(n>26) { l<-floor(n/26) for(i in 1:l) letras<-c(letras,paste(letters,i,sep='')) } z <- data.frame(treatment, means) w <- z[order(z[, 2], decreasing = TRUE), ] M <- rep("", n) k <- 1 k1 <- 0 j <- 1 i <- 1 r <- 1 cambio <- n cambio1 <- 0 chequeo = 0 M[1] <- letras[k] while (j < n) { chequeo <- chequeo + 1 if (chequeo > n) break for (i in j:n) { if (abs(j-i) == 0) {r<-1} else {r<-abs(j-i)} s <- abs(w[i, 2] - w[j, 2]) <= minimum[r] if (s) { if (lastC(M[i]) != letras[k]) M[i] <- paste(M[i], letras[k], sep = "") } else { k <- k + 1 cambio <- i cambio1 <- 0 ja <- j for (jj in cambio:n) M[jj] <- paste(M[jj], " ", sep = "") M[cambio] <- paste(M[cambio], letras[k], sep = "") for (v in ja:cambio) { if (abs(v-cambio) == 0) {r<-1} else {r<-abs(v-cambio)} if (abs(w[v, 2] - w[cambio, 2]) > minimum[r]) { j <- j + 1 cambio1 <- 1 } else break } break } } if (cambio1 == 0) j <- j + 1 } w <- data.frame(w, stat = M) trt <- as.character(w$treatment) means <- as.numeric(w$means) for (i in 1:n) { cat(M[i], "\t", trt[i], "\t ", means[i], "\n") } output <- data.frame(trt, means, M) return(output) }
LogIntegratedGaussianLikelihood <- function(suf, prior) { n <- suf$n if (n > 0) { ybar <- suf$sum / n } else { ybar <- 0 } if (n > 1) { sample.variance <- (suf$sumsq - n * ybar^2) / (n - 1) } else { sample.variance <- 0 } kappa <- prior$mu.guess.weight mu0 <- prior$mu.guess df <- prior$sigma.prior$prior.df ss <- prior$sigma.prior$prior.guess^2 * df posterior.mean <- (n * ybar + kappa * mu0) / (n + kappa) DF <- df + n SS <- ss + (n - 1) * sample.variance + n * (ybar - posterior.mean)^2 + kappa * (mu0 - posterior.mean)^2 return( - .5 * n * log(2 * pi) + .5 * log(kappa / (n + kappa)) + lgamma(DF/2) - lgamma(df / 2) + .5 * df * log(ss / 2) - .5 * DF * log(SS / 2)) }
test_that("input_requirement works with correct dimensions", { set.seed(200100) X <- matrix(rnorm(100), nrow = 10) d <- rnorm(10) out <- input_requirement(X,d) expect_equal(dim(out), c(10,10)) }) test_that("input_requirement fails with incorrect dimensions (non-square X)", { set.seed(200100) X <- matrix(rnorm(110), nrow = 10, ncol = 11) d <- rnorm(10) expect_error(input_requirement(X,d)) }) test_that("input_requirement fails with incorrect dimensions (d different than dimensions of X)", { set.seed(200100) X <- matrix(rnorm(100), nrow = 10) d <- rnorm(11) expect_error(input_requirement(X,d)) }) test_that("augmented_input_requirement works with correct dimensions", { set.seed(200100) X <- matrix(rnorm(100), nrow = 10) w <- rnorm(10) c <- rnorm(10) d <- rnorm(10) out <- augmented_input_requirement(X,w,c,d) expect_equal(dim(out), c(11,11)) }) test_that("augmented_input_requirement fails with incorrect dimensions (non-square X)", { set.seed(200100) X <- matrix(rnorm(110), nrow = 10, ncol = 11) w <- rnorm(10) c <- rnorm(10) d <- rnorm(10) expect_error(augmented_input_requirement(X,w,c,d)) }) test_that("augmented_input_requirement fails with incorrect dimensions (d different than dimensions of X)", { set.seed(200100) X <- matrix(rnorm(100), nrow = 10) w <- rnorm(10) c <- rnorm(10) d <- rnorm(11) expect_error(augmented_input_requirement(X,w,c,d)) }) test_that("output_allocation works with correct dimensions", { set.seed(200100) X <- matrix(rnorm(100), nrow = 10) d <- rnorm(10) out <- output_allocation(X,d) expect_equal(dim(out), c(10,10)) }) test_that("output_allocation fails with incorrect dimensions (non-square X)", { set.seed(200100) X <- matrix(rnorm(110), nrow = 10, ncol = 11) d <- rnorm(10) expect_error(output_allocation(X,d)) }) test_that("output_allocation fails with incorrect dimensions (d different than dimensions of X)", { set.seed(200100) X <- matrix(rnorm(100), nrow = 10) d <- rnorm(11) expect_error(output_allocation(X,d)) }) test_that("leontief_inverse works with correct dimensions", { set.seed(200100) A <- matrix(rnorm(100), nrow = 10) out <- leontief_inverse(A) expect_equal(dim(out), c(10,10)) }) test_that("leontief_inverse fails with incorrect dimensions (non-square X)", { set.seed(200100) A <- matrix(rnorm(110), nrow = 10, ncol = 11) expect_error(leontief_inverse(A)) })
contourPlot2 <- function(data, x = "x", y = "y", z = "z", domain = NULL, background = NULL, underlayer = NULL, overlayer = NULL, legend = NULL, levels = NULL, size = 0., fill = TRUE, tile = FALSE, transparency = 0.75, colors = NULL, bare = FALSE) { if (isTRUE(tile)) { fill <- FALSE bare <- FALSE size <- 0. } data <- data[, c(x, y, z)] vars <- c(x, y, z) for (i in seq_along(vars)) { if (!is.numeric(data[[vars[i]]])) { data[[vars[i]]] <- as.numeric(data[[vars[i]]]) } } colnames(data) <- c("x", "y", "z") if (missing(domain)) { xmin <- min(data$x) xmax <- max(data$x) ymin <- min(data$y) ymax <- max(data$y) nx <- 5 ny <- 5 } else { xmin <- domain[1] xmax <- domain[2] ymin <- domain[3] ymax <- domain[4] nx <- domain[5] ny <- domain[6] } if (requireNamespace("openair", quietly = TRUE)) { lgndname <- openair::quickText(legend, auto.text = TRUE) } else { lgndname <- legend } if (is.null(levels)) { if (is.null(colors)) { nlevels <- 7 } else { nlevels <- length(colors) } levels <- pretty(range(data$z, na.rm = TRUE), n = nlevels, min.n = 4) } nlevels <- length(levels) if (levels[1] >= 0) { levels <- append(levels, Inf) nlevels <- length(levels) } prettyLevels <- prettyNum(levels) lab_levels <- paste(prettyLevels[1:(nlevels - 1)], "\U2013", prettyLevels[2:nlevels]) if (levels[nlevels] == Inf & !isTRUE(tile)) { lab_levels[nlevels - 1] <- paste("\U2265", prettyLevels[nlevels - 1]) } else if (levels[nlevels] == Inf & isTRUE(tile)) { lab_levels[nlevels - 1] <- paste("\U2265", prettyLevels[nlevels - 1]) } if (levels[1] == -Inf) { lab_levels[1] <- paste("<", prettyLevels[2]) } if (is.null(colors)) { myPalette <- grDevices::colorRampPalette( rev(RColorBrewer::brewer.pal(11, name = "Spectral"))) myColors <- myPalette(nlevels) myColors <- myColors[2:length(myColors)] myColorsLines <- cbind(myColors, "black") } else { myPalette <- grDevices::colorRampPalette(colors, alpha = TRUE) myColors <- myPalette(length(levels) - 1) myColorsLines <- cbind(myColors, "black") } img <- matrix(data = NA, nrow = 10, ncol = 10) gimg <- grid::rasterGrob(img, interpolate = FALSE) if (!missing(background)) { if (requireNamespace("magick", quietly = TRUE)) { img <- magick::image_read(background) gimg <- grid::rasterGrob(img) } else { warning("Missing magick package. Please install it to be able to read background basemap.") } } if (missing(underlayer)) { underlayer <- geom_blank() } if (missing(overlayer)) { overlayer <- geom_blank() } if (isFALSE(fill) & size == 0) { size <- 0.5 } if (isTRUE(tile)) { size <- 0. } v <- ggplot(data) + annotation_custom(gimg, -Inf, Inf, -Inf, Inf) + underlayer if (isTRUE(tile)) { v <- v + geom_raster(aes(x = x, y = y, fill = cut(z, breaks = levels, right = FALSE)), alpha = transparency) + scale_fill_manual(lgndname, drop = FALSE, guide = guide_legend(reverse = TRUE), labels = lab_levels, values = myColors) } if (isTRUE(fill)) { v <- v + geom_contour_filled(aes(x = x, y = y, z = z, fill = stat(level)), breaks = levels, size = 0, alpha = transparency) + scale_fill_manual(lgndname, drop = FALSE, guide = guide_legend(reverse = TRUE), labels = lab_levels, values = myColors) } if (size != 0) { lineLevels <- levels if (levels[length(levels)] == "Inf") { lineLevels <- levels[1:length(levels) - 1] } v <- v + geom_contour(aes(x = x, y = y, z = z, colour = factor(stat(level))), breaks = lineLevels, size = size, linejoin = "round", lineend = "round", alpha = 1., show.legend = isFALSE(fill)) + scale_color_manual(lgndname, drop = FALSE, limits = factor(lineLevels), guide = guide_legend(reverse = TRUE), values = myColorsLines) } v <- v + scale_x_continuous(breaks = seq(xmin, xmax, length.out = nx), labels = myCoordsLabels, expand = c(0, 0)) + scale_y_continuous(breaks = seq(ymin, ymax, length.out = ny), labels = myCoordsLabels, expand = c(0, 0)) + labs(x = "x [m]", y = "y [m]") + overlayer + coord_fixed(ratio = 1, xlim = c(xmin, xmax), ylim = c(ymin, ymax)) + theme_bw(base_size = 10, base_family = "sans") + theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank()) if (isTRUE(bare)) { v <- v + theme(axis.line = element_blank(), axis.text.x = element_blank(), axis.text.y = element_blank(), axis.ticks = element_blank(), axis.title.x = element_blank(), axis.title.y = element_blank(), legend.position = "none", panel.background = element_blank(), panel.border = element_blank(), panel.grid.major = element_blank(), panel.grid.minor = element_blank(), plot.background = element_blank()) } return(v) }
wilcoxonPairedRC = function (x, g=NULL, zero.method="Wilcoxon", ci=FALSE, conf=0.95, type="perc", R=1000, histogram=FALSE, digits=3, verbose=FALSE, ... ){ if(is.factor(g)==F){g=factor(g)} x = x[as.numeric(g)<3] g = g[as.numeric(g)<3] g = droplevels(g) X1 = x[as.numeric(g)==1] X2 = x[as.numeric(g)==2] if(length(X1)!=length(X2)){stop("Groups not the same length", call.=FALSE)} Diff = X1 - X2 Diff2 = abs(Diff) if(zero.method=="none") {RR = -1 * rank(Diff2) * sign(Diff)} if(zero.method=="Pratt") {R = -1 * rank(Diff2) * sign(Diff) RR = R[R!=0]} if(zero.method=="Wilcoxon") {Diff = Diff[Diff!=0] Diff2 = Diff2[Diff2!=0] RR = -1 * rank(Diff2) * sign(Diff) } Rplus = sum(RR[RR>0]) Rminus = sum(abs(RR[RR<0])) Tee = min(Rplus, Rminus) n = length(RR) if(Rplus>=Rminus){ RC = -4 * abs((Tee - (Rplus + Rminus)/2) / n / (n+1))} if(Rplus<Rminus){ RC = 4 * abs((Tee - (Rplus + Rminus)/2) / n / (n+1))} RC = signif(RC, digits=digits) if(verbose) { cat("\n") cat("Levels:",levels(g)) cat("\n") cat("zero.method:", zero.method) cat("\n") cat("n kept", "=", length(RR)) cat("\n") cat("Ranks plus", "=", Rplus) cat("\n") cat("Ranks minus", "=", Rminus) cat("\n") cat("T value =", Tee) cat("\n") cat("\n") } if(ci==TRUE){ Data = data.frame(x1=x[as.numeric(g)==1], x2=x[as.numeric(g)==2]) Function = function(input, index){ Input = input[index,] Diff = Input$x1 - Input$x2 Diff2 = abs(Diff) if(zero.method=="none") {RR = -1 * rank(Diff2) * sign(Diff)} if(zero.method=="Pratt") {R = -1 * rank(Diff2) * sign(Diff) RR = R[R!=0]} if(zero.method=="Wilcoxon") {Diff = Diff[Diff!=0] Diff2 = Diff2[Diff2!=0] RR = -1 * rank(Diff2) * sign(Diff) } Rplus = sum(RR[RR>0]) Rminus = sum(abs(RR[RR<0])) Tee = min(Rplus, Rminus) n = length(RR) if(Rplus>=Rminus){ RC = -4 * abs((Tee - (Rplus + Rminus)/2) / n / (n+1))} if(Rplus<Rminus){ RC = 4 * abs((Tee - (Rplus + Rminus)/2) / n / (n+1))} return(RC) } Boot = boot(Data, Function, R=R) BCI = boot.ci(Boot, conf=conf, type=type) if(type=="norm") {CI1=BCI$normal[2]; CI2=BCI$normal[3]} if(type=="basic"){CI1=BCI$basic[4]; CI2=BCI$basic[5]} if(type=="perc") {CI1=BCI$percent[4]; CI2=BCI$percent[5]} if(type=="bca") {CI1=BCI$bca[4]; CI2=BCI$bca[5]} CI1=signif(CI1, digits=digits) CI2=signif(CI2, digits=digits) if(histogram==TRUE){hist(Boot$t[,1], col = "darkgray", xlab="rc", main="")} } if(ci==FALSE){names(RC)="rc"; return(RC)} if(ci==TRUE){DF=data.frame(rc=RC, lower.ci=CI1, upper.ci=CI2) rownames(DF) = 1:nrow(DF) return(DF) } }
predict.bn.fit = function(object, node, data, method = "parents", ..., prob = FALSE, debug = FALSE) { check.data(data, allow.levels = TRUE) check.nodes(nodes = node, graph = object, max.nodes = 1) check.prediction.method(method, data) check.logical(debug) check.logical(prob) if (prob && !is(object, c("bn.fit.dnet", "bn.fit.onet", "bn.fit.donet"))) stop("prediction probabilities are only available for discrete networks.") extra.args = list(...) check.unused.args(extra.args, prediction.extra.args[[method]]) if (method == "parents") { check.fit.vs.data(fitted = object, data = data, subset = object[[node]]$parents) if (is(object, c("bn.fit.dnet", "bn.fit.onet", "bn.fit.donet"))) discrete.prediction(node = node, fitted = object, data = data, prob = prob, debug = debug) else if (is(object, "bn.fit.gnet")) gaussian.prediction(node = node, fitted = object, data = data, debug = debug) else if (is(object, "bn.fit.cgnet")) mixedcg.prediction(node = node, fitted = object, data = data, debug = debug) } else if (method == "bayes-lw") { if (is.null(extra.args$from)) extra.args$from = intersect(setdiff(names(data), node), names(object)) else check.nodes(nodes = extra.args$from, graph = object, min.nodes = 1) if (node %in% extra.args$from) stop("node ", node, " is both a predictor and being predicted.") check.fit.vs.data(fitted = object, data = data, subset = extra.args$from) if (is.null(extra.args$n)) extra.args$n = 500 else if (!is.positive.integer(extra.args$n)) stop("the number of observations to be sampled must be a positive integer number.") map.prediction(node = node, fitted = object, data = data, n = extra.args$n, from = extra.args$from, prob = prob, debug = debug) } } predict.bn.naive = function(object, data, prior, ..., prob = FALSE, debug = FALSE) { check.data(data, allowed.types = discrete.data.types, allow.levels = TRUE) if (is(object, "bn.naive")) check.bn.naive(object) else check.bn.tan(object) check.logical(debug) check.logical(prob) if (is(object, "bn")) fitted = bn.fit(object, data) else fitted = object training = attr(fitted, "training") check.fit.vs.data(fitted = fitted, data = data, subset = setdiff(names(fitted), training)) check.unused.args(list(...), character(0)) prior = check.classifier.prior(prior, fitted[[training]]) naive.classifier(training = training, fitted = fitted, data = data, prior = prior, prob = prob, debug = debug) } predict.bn.tan = predict.bn.naive
mcrals <- function(x, ncomp, cont.constraints = list(), spec.constraints = list(), spec.ini = matrix(runif(ncol(x) * ncomp), ncol(x), ncomp), cont.forced = matrix(NA, nrow(x), ncomp), spec.forced = matrix(NA, ncol(x), ncomp), cont.solver = mcrals.nnls, spec.solver = mcrals.nnls, exclrows = NULL, exclcols = NULL, verbose = FALSE, max.niter = 100, tol = 10^-6, info = "") { stopifnot("Parameter 'max.niter' should be positive." = max.niter > 0) if (any(spec.ini < 0)) { warning("Initial estimation of pure spectra has negative numbers, it can cause problems.") } x <- prepCalData(x, exclrows, exclcols, min.nrows = 2, min.ncols = 2) stopifnot("Number of rows in 'cont.forced' should be the same as number of rows in 'x'." = nrow(cont.forced) == nrow(x)) stopifnot("Number of columns in 'cont.forced' should be the same as 'ncomp'." = ncol(cont.forced) == ncomp) stopifnot("Number of rows in 'spec.forced' should be the same as number of columns in 'x'." = nrow(spec.forced) == ncol(x)) stopifnot("Number of columns in 'spec.forced' should be the same as 'ncomp'." = ncol(cont.forced) == ncomp) model <- mcrals.cal( x, ncomp, cont.constraints = cont.constraints, spec.constraints = spec.constraints, spec.ini = spec.ini, cont.forced = cont.forced, spec.forced = spec.forced, cont.solver = cont.solver, spec.solver = spec.solver, max.niter = max.niter, tol = tol, verbose = verbose ) model$variance <- getVariance.mcr(model, x) class(model) <- c("mcr", "mcrals") model$call <- match.call() model$info <- info return(model) } predict.mcrals <- function(object, x, ...) { attrs <- mda.getattr(x) Ct <- object$cont.solver(x, object$resspec) Ct <- mda.setattr(Ct, attrs, "rows") return(Ct) } print.mcrals <- function(x, ...) { cat("\nMCRALS unmixing case (class mcrals)\n") if (length(x$info) > 1) { cat("\nInfo:\n") cat(x$info) } cat("\n\nCall:\n") print(x$call) cat("\nMajor model fields:\n") cat("$ncomp - number of calculated components\n") cat("$resspec - matrix with resolved spectra\n") cat("$rescons - matrix with resolved concentrations\n") cat("$expvar - vector with explained variance\n") cat("$cumexpvar - vector with cumulative explained variance\n") cat("$info - case info provided by user\n") } summary.mcrals <- function(object, ...) { cat("\nSummary for MCR ALS case (class mcrals)\n") if (length(object$info) > 1) { fprintf("\nInfo:\n%s\n", object$info) } if (length(object$exclrows) > 0) { fprintf("Excluded rows: %d\n", length(object$exclrows)) } if (length(object$exclcols) > 0) { fprintf("Excluded coumns: %d\n", length(object$exclcols)) } cat("\nConstraints for spectra:\n") if (length(object$spec.constraints) > 0) { cat(paste(" - ", sapply(object$spec.constraints, function(x) x$name), collapse = "\n")) cat("\n") } else { cat(" - none\n\n") } cat("\nConstraints for contributions:\n") if (length(object$cont.constraints) > 0) { cat(paste(" - ", sapply(object$cont.constraints, function(x) x$name), collapse = "\n")) cat("\n") } else { cat(" - none\n\n") } cat("\n") out <- round(t(object$variance[1:2, ]), 2) rownames(out) <- colnames(object$variance) colnames(out) <- c("Expvar", "Cumexpvar") show(out) } mcrals.cal <- function(D, ncomp, cont.constraints, spec.constraints, spec.ini, cont.forced, spec.forced, cont.solver, spec.solver, max.niter, tol, verbose) { attrs <- mda.getattr(D) exclrows <- attrs$exclrows exclcols <- attrs$exclcols nobj <- nrow(D) nvar <- ncol(D) colind <- seq_len(nvar) rowind <- seq_len(nobj) if (!is.null(exclrows)) { D <- D[-exclrows, , drop = FALSE] rowind <- rowind[-exclrows] } if (!is.null(exclcols)) { D <- D[, -exclcols, drop = FALSE] spec.ini <- spec.ini[-exclcols, , drop = FALSE] colind <- colind[-exclcols] } totvar <- sum(D^2) var <- 0 if (verbose) { cat(sprintf("\nStarting iterations (max.niter = %d):\n", max.niter)) } cont.forced.ind <- !is.na(cont.forced) spec.forced.ind <- !is.na(spec.forced) St <- spec.ini for (i in seq_len(max.niter)) { Ct <- tryCatch( cont.solver(D, St), error = function(e) { stop("Unable to resolve the components, perhaps 'ncomp' is too large or initial estimates for spectra are not good enough.", call. = FALSE) } ) if (any(cont.forced.ind)) { Ct[cont.forced.ind] <- cont.forced[cont.forced.ind] } for (cc in cont.constraints) { Ct <- employ.constraint(cc, x = Ct, d = D) } St <- tryCatch( spec.solver(D, Ct), error = function(e) { stop("Unable to resolve the components, perhaps 'ncomp' is too large or initial estimates for spectra are not good enough.", call. = FALSE) } ) if (any(spec.forced.ind)) { St[spec.forced.ind] <- spec.forced[spec.forced.ind] } for (sc in spec.constraints) { St <- employ.constraint(sc, x = St, d = D) } if (verbose) { cat(sprintf("Iteration %4d, R2 = %.6f\n", i, var)) } var_old <- var var <- tryCatch( 1 - sum((D - tcrossprod(cont.solver(D, St), St))^2) / totvar, error = function(e) { print(e) stop("Unable to resolve the components, perhaps 'ncomp' is too large.\n or initial estimates for spectra are not good enough.", call. = FALSE) } ) if ( (var - var_old) < tol) { if (verbose) cat("No more improvements.\n") break } } Ct <- tryCatch( cont.solver(D, St), error = function(e) { print(e) stop("Unable to resolve the components, perhaps 'ncomp' is too large.\n or initial estimates for spectra are not good enough.", call. = FALSE) } ) cont <- matrix(0, nobj, ncomp) cont[rowind, ] <- Ct spec <- matrix(0, ncomp, nvar) spec[, colind] <- t(St) rownames(spec) <- colnames(cont) <- paste("Comp", seq_len(ncomp)) cont <- mda.setattr(cont, attrs, "row") spec <- mda.setattr(spec, attrs, "col") if (is.null(attr(cont, "yaxis.name"))) attr(cont, "yaxis.name") <- "Observations" attr(cont, "name") <- "Resolved contributions" attr(spec, "name") <- "Resolved spectra" return( list( ncomp = ncomp, rescont = cont, resspec = mda.t(spec), cont.constraints = cont.constraints, spec.constraints = spec.constraints, cont.solver = cont.solver, spec.colver = spec.solver, max.niter = max.niter ) ) } mcrals.ols <- function(D, A) { if (ncol(D) != nrow(A)) D <- t(D) return(D %*% (A %*% solve(crossprod(A)))) } mcrals.nnls <- function(D, A, tol = 10 * .Machine$double.eps * as.numeric(sqrt(crossprod(A[, 1]))) * nrow(A)) { if (nrow(D) != nrow(A)) D <- t(D) nvar <- ncol(D) ncomp <- ncol(A) itmax <- 30 * ncomp B <- matrix(0, nvar, ncomp) for (v in seq_len(nvar)) { d <- D[, v, drop = FALSE] nz <- rep(0, ncomp) wz <- nz p <- rep(FALSE, ncomp) z <- rep(TRUE, ncomp) b <- nz E <- d - A %*% b w <- t(A) %*% E iter <- 0 while (any(z) && any(w[z] > tol)) { b.hat <- nz wz[p] <- -Inf wz[z] <- w[z] t <- which.max(wz) p[t] <- TRUE z[t] <- FALSE b.hat[p] <- mcrals.ols(d, A[, p, drop = FALSE]) while (any(b.hat[p] <= 0)) { iter <- iter + 1 if (iter > itmax) { return(b.hat) } q <- (b.hat <= 0) & p alpha <- min(b[q]/(b[q] - b.hat[q])) b <- b + alpha * (b.hat - b) z <- ((abs(b) < tol) & p) | z p <- !z b.hat <- nz b.hat[p] <- mcrals.ols(d, A[, p, drop = FALSE]) } b <- b.hat E <- d - A %*% b w <- crossprod(A, E) } B[v, ] <- b } return(B) } mcrals.fcnnls <- function(D, A, tol = 10 * .Machine$double.eps * as.numeric(sqrt(crossprod(A[, 1]))) * nrow(A)) { ind2sub <- function(size, ind) { return(list( r = ((ind - 1) %% size[1]) + 1, c = floor((ind - 1) / size[1]) + 1 )) } sub2ind <- function(size, r, c) { return((c - 1) * size[1] + r) } cssls <- function(AtD, AtA, P.set = NULL) { if (is.null(P.set) || length(P.set) == 0 || all(P.set)) { return(solve(AtA, AtD)) } B <- matrix(0, nrow(AtD), ncol(AtD)) ncomp <- nrow(P.set) nvar <- ncol(P.set) codedPset <- (2^((ncomp - 1):0)) %*% P.set sortedEset <- order(codedPset) sortedPset <- codedPset[sortedEset] breaks <- diff(sortedPset) breakIdx <- c(0, which(breaks > 0), nvar) for (k in seq_len(length(breakIdx) - 1)) { cols2solve <- sortedEset[(breakIdx[k] + 1) : breakIdx[k+1]] vars <- P.set[, sortedEset[breakIdx[k] + 1]] B[vars, cols2solve] <- solve( AtA[vars, vars, drop = FALSE], AtD[vars, cols2solve, drop = FALSE] ) } return(B) } if (nrow(D) != nrow(A)) D <- t(D) nvar <- ncol(D) ncomp <- ncol(A) nobj <- nrow(A) W <- matrix(0, ncomp, nvar) iter <- 0 maxiter <- 3 * ncomp AtA <- crossprod(A) AtD <- crossprod(A, D) B <- cssls(AtD, AtA) P.set <- B > 0 B[!P.set] <- 0 B.hat <- B F.set <- which(!apply(P.set, 2, all)) while (length(F.set) != 0) { B[, F.set] <- cssls(AtD[, F.set, drop = FALSE], AtA, P.set[, F.set, drop = FALSE]) H.set <- F.set[which(apply(B[, F.set, drop = FALSE] < 0, 2, any))] nHset <- length(H.set) if (nHset > 0) { while (length(H.set) != 0 && (iter < maxiter)) { iter <- iter + 1 alpha <- matrix(Inf, ncomp, nHset) nvInd <- which(P.set[, H.set, drop = FALSE] & (B[, H.set, drop = FALSE] < 0), arr.ind = TRUE) nvR <- nvInd[, 1] nvC <- nvInd[, 2] hIdx <- sub2ind(dim(alpha), nvR, nvC) bIdx <- sub2ind(dim(B), nvR, H.set[nvC]) alpha[hIdx] <- B.hat[bIdx] / (B.hat[bIdx] - B[bIdx]) alphaMin <- apply(alpha, 2, min) alphaMinIdx <- apply(alpha, 2, which.min) alpha <- matrix(alphaMin, ncomp, nHset, byrow = TRUE) B.hat[, H.set] <- B.hat[, H.set] - alpha * (B.hat[, H.set] - B[, H.set]) idx2zero <- sub2ind(dim(B.hat), alphaMinIdx, H.set) B.hat[idx2zero] <- 0 P.set[idx2zero] <- FALSE B[, H.set] <- cssls(AtD[, H.set, drop = FALSE], AtA, P.set[, H.set, drop = FALSE]) H.set <- which(apply(B < 0, 2, any)) nHset <- length(H.set) } } W[, F.set] <- AtD[, F.set, drop = FALSE] - AtA %*% B[, F.set, drop = FALSE] J.set <- apply(((!P.set[, F.set, drop = FALSE]) * W[, F.set, drop = FALSE]) <= 0, 2, all) F.set <- F.set[!J.set] if (length(F.set) > 0) { mxidx <- apply((!P.set[, F.set, drop = FALSE]) * W[, F.set, drop = FALSE], 2, which.max) P.set[sub2ind(c(ncomp, nvar), mxidx, F.set)] <- TRUE B.hat[, F.set] <- B[, F.set] } if (iter == maxiter) { warning("Maximum number of iterations is reached, quit with current solution.") return(t(B)) } } return(t(B)) }
library( "urbin" ) ela8a <- urbinElaInt( allCoef = c( 0.33, 0.22, 0.05, 0.6 ), allXVal = c( 1, 0.4, 0.12, 0.13 ), xPos = c( 2, 0, 3, 4 ), xBound = c( 0, 500, 1000, 1500, Inf ), model = "logit" ) ela8a ela8b <- urbinElaInt( allCoef = c( 0.33, 0.22, 0.05, 0.6 ), allXVal = c( 1, 0.4, 0.12, 0.13 ), xPos = c( 2, 0, 3, 4 ), xBound = c( 0, 500, 1000, 1500, Inf ), allCoefVcov = c( 0.003, 0.045, 0.007, 0.009 ), model = "logit" ) ela8b ela9a <- urbinElaInt( allCoef = c( 0.2, 0.3, 0.5, -0.2, 0.03, 0.6 ), allXVal = c( 1, 0.4, 0.12 ), xPos = c( 2, 0, 3 ), xBound = c( 0, 500, 1000, Inf ), yCat = 2, model = "mlogit" ) ela9a ela9b <- urbinElaInt( allCoef = c( 0.2, 0.3, 0.5, -0.2, 0.03, 0.6 ), allXVal = c( 1, 0.4, 0.12 ), xPos = c( 2, 0, 3 ), xBound = c( 0, 500, 1000, Inf ), yCat = 2, allCoefVcov = c( 0.003, 0.045, 0.007, 0.009, 0.0008, 0.9 ), model = "mlogit" ) ela9b