code
stringlengths
1
13.8M
modifyList <- function(x, val, keep.null = FALSE) { stopifnot(is.list(x), is.list(val)) xnames <- names(x) vnames <- names(val) vnames <- vnames[nzchar(vnames)] if (keep.null) { for (v in vnames) { x[v] <- if (v %in% xnames && is.list(x[[v]]) && is.list(val[[v]])) list(modifyList(x[[v]], val[[v]], keep.null = keep.null)) else val[v] } } else { for (v in vnames) { x[[v]] <- if (v %in% xnames && is.list(x[[v]]) && is.list(val[[v]])) modifyList(x[[v]], val[[v]], keep.null = keep.null) else val[[v]] } } x } warnErrList <- function(x, warn = TRUE, errValue = NULL) { errs <- vapply(x, inherits, NA, what = "error") if(any(errs)) { v.err <- x[errs] e.call <- deparse1(conditionCall(v.err[[1]]), collapse = "\n") tt <- table(vapply(v.err, conditionMessage, "")) msg <- if(length(tt) == 1L) sprintf(ngettext(tt[[1L]], "%d error caught in %s: %s", "%d times caught the same error in %s: %s"), tt[[1L]], e.call, names(tt)[[1L]]) else paste(gettextf( "%d errors caught in %s. The error messages and their frequencies are", sum(tt), e.call), paste(capture.output(sort(tt)), collapse="\n"), sep="\n") if(warn) warning(msg, call. = FALSE, domain = NA) x[errs] <- list(errValue) attr(x, "warningMsg") <- msg } x }
get_sysdata <- function() { data <- .data return(data) }
CNclusterNcenter <- function(segrat,blsize,minjoin,ntrial,bestbic, modelNames,cweight,bstimes,chromrange,seedme){ .lec.CreateStream(segrat$stream) .lec.SetSeed(segrat$stream,seedme) for( j in 1:segrat$sub).lec.ResetNextSubstream(segrat$stream) .lec.CurrentStream(segrat$stream) startcol<-"StartProbe" endcol<-"EndProbe" chromcol<-"chrom" medcol<-"segmedian" madcol<-"segmad" segrat$seg<-cbind(segrat$seg,t(apply(segrat$seg[,c(startcol,endcol,chromcol), drop=F],1,smedmad,v=segrat$rat))) dimnames(segrat$seg)[[2]]<-c(startcol,endcol,chromcol,medcol,madcol) seguse<-segrat$seg[segrat$seg[,chromcol]%in%chromrange,,drop=F] aux<-rep(0,length(segrat$rat)) aux[seguse[,startcol]]<-1 aux[seguse[,endcol]]<-(-1) aux<-cumsum(aux) aux[seguse[,endcol]]<-1 ratuse<-segrat$rat[aux==1] for(j in 1:ntrial){ aaa<-segsample(seguse,ratuse,blocksize=blsize) if(all(unique(aaa[,3])==0)){ aaa[,3]<-1e-10 } emfit<-Mclust(aaa[,3],maxG=15,modelNames=modelNames) if(emfit$bic>=bestbic){ bestaaa<-aaa bestem<-emfit bestbic<-emfit$bic } } newem<-consolidate(bestem,minjoin) newem<-get.center(newem,cweight) if(length(bestem$parameters$mean)==1){ profcenter<-median(bestaaa[,3]) }else{ profcenter<-weighted.median(bestaaa[,3],newem$z[,newem$center]) } mediandev<-segrat$seg[,medcol]-profcenter segs<-segsample(segrat$seg,segrat$rat,times=bstimes) if(all(unique(aaa[,3])==1e-10)){ segs[segs[,3]==0,3]<-1e-10 } segzall<-getz(segs[,3],bestem,newem$groups,times=bstimes) centerz<-segzall[,newem$center] maxz<-segzall[nrow(segzall)*(max.col(segzall)-1)+(1:nrow(segzall))] maxzcol<-max.col(segzall) maxzmean<-newem$mu[maxzcol]-newem$mu[newem$center] maxzsigma<-sqrt(newem$sigmasq[maxzcol]) cpb<-centerprob(segs[,3],bestem,newem$groups,times=bstimes,newem$center) w<-t(matrix(nrow=bstimes,data=segs[,3])) segerr<-sqrt(apply(w,1,var,na.rm=T)) .lec.CurrentStreamEnd() .lec.DeleteStream(segrat$stream) return(cbind(segrat$seg[,medcol],segrat$seg[,madcol],mediandev,segerr,centerz, cpb,maxz,maxzmean,maxzsigma)) }
catalog_apply <- function(ctg, FUN, ..., .options = NULL) { assert_is_all_of(ctg, "LAScatalog") assert_is_function(FUN) opt <- engine_parse_options(.options) if (opt[["autoread"]] == FALSE) assert_fun_is_null_with_empty_cluster(ctg, FUN, ...) assert_processing_constraints_are_repected(ctg, opt[["need_buffer"]], opt[["need_output_file"]]) realigment <- if (opt[["check_alignment"]]) realigment = opt[["raster_alignment"]] else FALSE clusters <- catalog_makechunks(ctg, realigment) oldstate <- getOption("lidR.progress") options(lidR.progress = FALSE) on.exit(options(lidR.progress = oldstate), add = TRUE) output <- cluster_apply(clusters, FUN, ctg@processing_options, ctg@output_options, opt[["globals"]], opt[["autoread"]], ...) if (isTRUE(opt[["drop_null"]])) output <- Filter(Negate(is.null), output) if (!isFALSE(opt[["automerge"]]) && opt_merge(ctg)) output <- catalog_merge_results(ctg, output, opt[["automerge"]], as.character(substitute(FUN))) return(output) } catalog_sapply <- function(ctg, FUN, ..., .options = NULL) { if (is.null(.options)) .options <- list(automerge = TRUE) else .options$automerge <- TRUE return(catalog_apply(ctg, FUN, ..., .options = .options)) } assert_fun_is_null_with_empty_cluster = function(ctg, FUN, ...) { if (opt_wall_to_wall(ctg) == TRUE) { cl <- LAScluster(list(x = 0, y = 0), 0, 0, 0, LIDRRECTANGLE, system.file("extdata", "example.laz", package = "rlas"), "noname") cl@select <- "*" u <- tryCatch(FUN(cl, ...), error = function(e) { stop(paste0("The function is tested before starting processing the collection and failed with following error:\n", e), call. = FALSE) }) if (!is.null(u)) stop("User's function does not return NULL for empty chunks. Please see the documentation of catalog_apply.", call. = FALSE) } } assert_processing_constraints_are_repected <- function(ctg, need_buffer, need_output_file) { if (need_buffer & opt_chunk_buffer(ctg) <= 0 && opt_wall_to_wall(ctg)) stop("A buffer greater than 0 is required to process the catalog.", call. = FALSE) if (need_output_file & opt_output_files(ctg) == "") stop("This function requires that the LAScatalog provides an output file template.", call. = FALSE) } engine_parse_options = function(.option) { output <- list() raster_alignment <- .option$raster_alignment if (is.null(raster_alignment)) { raster_alignment <- NULL check_alignment <- FALSE } else if (is.numeric(raster_alignment)) { assert_is_a_number(raster_alignment) assert_all_are_non_negative(raster_alignment) raster_alignment <- list(res = raster_alignment, start = c(0,0)) check_alignment <- TRUE } else if (is.list(raster_alignment)) { assert_is_a_number(raster_alignment$res) assert_all_are_non_negative(raster_alignment$res) check_alignment <- TRUE if (!is.null(raster_alignment$start)) assert_is_numeric(raster_alignment$start) } else stop("Invalid parameter 'raster_alignment") output$raster_alignment <- raster_alignment output$check_alignment <- check_alignment if (is.null(.option$need_output_file)) { need_output_file <- FALSE } else { need_output_file <- .option$need_output_file assert_is_a_bool(need_output_file) } output$need_output_file <- need_output_file if (is.null(.option$drop_null)) { drop_null <- TRUE } else { drop_null <- .option$drop_null assert_is_a_bool(drop_null) } output$drop_null <- drop_null if (is.null(.option$automerge)) { automerge <- FALSE } else { automerge <- .option$automerge if (isTRUE(automerge)) automerge <- "auto" } output$automerge <- automerge if (is.null(.option$autoread)) { autoread <- FALSE } else { autoread <- .option$autoread if (isTRUE(autoread)) autoread <- TRUE } output$autoread <- autoread if (is.null(.option$need_buffer)) { need_buffer <- FALSE } else { need_buffer <- .option$need_buffer assert_is_a_bool(need_buffer) } output$need_buffer <- need_buffer if (is.null(.option$globals)) output$globals <- NULL else output$globals <- .option$globals return(output) }
rba_uniprot_coordinates_search <- function(accession = NULL, chromosome = NULL, ensembl_id = NULL, gene = NULL, protein = NULL, taxid = NULL, location = NULL, ...) { .rba_ext_args(...) .rba_args(cons = list(list(arg = "accession", class = "character", max_len = 100), list(arg = "chromosome", class = c("character", "numeric"), max_len = 20), list(arg = "ensembl_id", class = "character", max_len = 20), list(arg = "gene", class = "character", max_len = 20), list(arg = "protein", class = "character"), list(arg = "taxid", class = "numeric", max_len = 20), list(arg = "location", class = "character"))) .msg("Searching UniProt and retrieving Coordinates of proteins that match your supplied inputs.") call_query <- .rba_query(init = list("size" = "-1"), list("accession", !is.null(accession), paste0(accession, collapse = ",")), list("chromosome", !is.null(chromosome), paste0(chromosome, collapse = ",")), list("ensembl_id", !is.null(ensembl_id), paste0(ensembl_id, collapse = ",")), list("gene", !is.null(gene), paste0(gene, collapse = ",")), list("protein", !is.null(protein), protein), list("taxid", !is.null(taxid), paste0(taxid, collapse = ",")), list("location", !is.null(location), location)) parser_input <- list("json->list", .rba_uniprot_search_namer) input_call <- .rba_httr(httr = "get", url = .rba_stg("uniprot", "url"), path = paste0(.rba_stg("uniprot", "pth"), "coordinates"), query = call_query, accept = "application/json", parser = parser_input, save_to = .rba_file("uniprot_coordinates_search.json")) final_output <- .rba_skeleton(input_call) return(final_output) } rba_uniprot_coordinates_sequence <- function(accession, p_position = NULL, p_start = NULL, p_end = NULL, ...) { .rba_ext_args(...) .rba_args(cons = list(list(arg = "accession", class = "character"), list(arg = "p_position", class = "numeric"), list(arg = "p_start", class = "numeric"), list(arg = "p_end", class = "numeric")), cond = list(list(quote(any(sum(!is.null(p_position), !is.null(p_start), !is.null(p_end)) == 3, sum(!is.null(p_position), !is.null(p_start), !is.null(p_end)) == 0, sum(!is.null(p_start), !is.null(p_end)) == 1)), "You should supply either 'p_position' alone or 'p_start' and 'p_end' together.") )) .msg("Retrieving genome coordinates of protein %s in sequence position %s.", accession, ifelse(is.null(p_position), yes = paste(p_start, p_end, sep = " to "), no = p_position)) path_input <- sprintf("%scoordinates/location/%s:%s", .rba_stg("uniprot", "pth"), accession, ifelse(!is.null(p_position), yes = p_position, no = paste0(p_start, "-", p_end))) input_call <- .rba_httr(httr = "get", url = .rba_stg("uniprot", "url"), path = path_input, accept = "application/json", parser = "json->list_simp", save_to = .rba_file("uniprot_coordinates_location.json")) final_output <- .rba_skeleton(input_call) return(final_output) } rba_uniprot_coordinates <- function(accession = NULL, db_type = NULL, db_id = NULL, ...) { .rba_ext_args(...) .rba_args(cons = list(list(arg = "accession", class = "character"), list(arg = "db_type", class = "character", val = c("Ensembl", "CCDC", "HGNC", "RefSeq")), list(arg = "db_id", class = "character")), cond = list(list(quote(any(sum(!is.null(accession), !is.null(db_type), !is.null(db_id)) == 3, sum(!is.null(accession), !is.null(db_type), !is.null(db_id)) == 0, sum(!is.null(db_type), !is.null(db_id)) == 1)), "You should supply either 'accession' alone or 'db_type' and 'db_id' together.") )) .msg("Retrieving genome coordinates of protein with ID: %s", ifelse(is.null(accession), yes = sprintf("%s in %s database", db_id, db_type), no = accession)) call_query <- list("size" = "-1") path_input <- sprintf("%scoordinates/%s", .rba_stg("uniprot", "pth"), ifelse(!is.null(accession), yes = accession, no = paste0(db_type, ":", db_id))) input_call <- .rba_httr(httr = "get", url = .rba_stg("uniprot", "url"), path = path_input, query = call_query, accept = "application/json", parser = "json->list", save_to = .rba_file("uniprot_coordinates.json")) final_output <- .rba_skeleton(input_call) return(final_output) } rba_uniprot_coordinates_location <- function(taxid, locations, in_range = TRUE, feature = FALSE, ...) { .rba_ext_args(...) .rba_args(cons = list(list(arg = "taxid", class = "numeric"), list(arg = "locations", class = "character"), list(arg = "in_range", class = "logical"), list(arg = "feature", class = "logical")) ) .msg("Retrieving UniProt entries in location %s of taxon %s.", locations, taxid) call_query <- list("size" = "-1", "in_range" = ifelse(in_range, "true", "false")) path_input <- sprintf("%scoordinates/%s/%s", .rba_stg("uniprot", "pth"), taxid, locations) if (isTRUE(feature)) { path_input <- paste0(path_input, "/feature") } input_call <- .rba_httr(httr = "get", url = .rba_stg("uniprot", "url"), path = path_input, query = call_query, accept = "application/json", parser = "json->list", save_to = .rba_file("rba_uniprot_coordinates_location.json")) final_output <- .rba_skeleton(input_call) return(final_output) }
theme_ggparliament <- function(legend = TRUE, background_colour = FALSE, border = FALSE) { basic_theme <- ggplot2::theme_void() if (legend == TRUE) { basic_theme <- basic_theme } else { basic_theme <- basic_theme + ggplot2::theme(legend.position = "none") } if (!background_colour) { basic_theme <- basic_theme } else { basic_theme <- basic_theme + ggplot2::theme(panel.background = ggplot2::element_rect(fill = " } if (!border) { basic_theme <- basic_theme } else { basic_theme <- basic_theme + ggplot2::theme(panel.border = ggplot2::element_rect(colour = " } basic_theme }
cmaSetDimension <- function(cma,i) { rJava::.jcall(cma,,"setDimension",as.integer(i)); } cmaGetDimension <- function(cma) { rJava::.jcall(cma,"I","getDimension"); } cmaSetPopulationSize <- function(cma,i) { rJava::.jcall(cma,,"setPopulationSize",as.integer(i)); } cmaGetPopulationSize <- function(cma) { rJava::.jcall(cma,"I","getPopulationSize"); } cmaSetInitialX <- function(cma,initialX) { rJava::.jcall(cma,,"setInitialX",initialX); } cmaGetInitialX <- function(cma) { rJava::.jcall(cma,"[D","getInitialX"); } cmaSetCountEval <- function(cma,p) { rJava::.jcall(cma,"J","setCountEval",rJava::.jlong(p)); } cmaGetCountEval <- function(cma) { rJava::.jcall(cma,"J","getCountEval"); } cmaSetStopFitness <- function(cma,d) { rJava::.jcall(cma,,"setOptionsStopFitness",as.double(d)); } cmaSetStopMaxFunEvals <- function(cma,p) { rJava::.jcall(cma,,"setOptionsStopMaxFunEvals",rJava::.jlong(p)); } cmaSetStopTolFun <- function(cma,d) { rJava::.jcall(cma,,"setOptionsStopTolFun",as.double(d)); }
qbetabinom <- function(p, M, mu, phi) { pdfvec <- VGAM::dbetabinom(x = 0:M, size = M, prob = mu, rho = phi) CDF <- cumsum(pdfvec) above <- which(CDF > p)[1] quant <- above - 1 if (quant > 0) { return(quant + (p - CDF[quant])/pdfvec[above]) } else { return(p/pdfvec[1]) } }
PrimEff <- function(data,plot=TRUE) { prim=data prim[,"gene"]=as.factor(as.character(prim[,"gene"])) genes=levels(prim[,"gene"]) if (length(genes)>1) { graphcols=ceiling(sqrt(length(genes))) graphrows=ceiling(length(genes)/graphcols) if (plot==TRUE) par(mfrow=c(graphrows,graphcols)) } gg=c();ii=c();ee=c();eu=c();el=c() for (g in genes) { s=prim[prim[,"gene"]==g,] genlm=lm(cq~log(dna,2),s,na.action="na.omit") inter=coef(genlm)[1] slop=coef(summary(genlm))[2,1] sloperr=coef(summary(genlm))[2,2] eff=2^(-1/(slop)) efflo=round(2^(-1/(slop-sloperr)),2) effup=round(2^(-1/(slop+sloperr)),2) slop=round(slop,2) gg=append(gg,g) eff=round(eff,2) ee=append(ee,eff) eu=append(eu,effup) el=append(el,efflo) ii=append(ii,round(inter,1)) if (plot==TRUE){ plot(cq~log(dna,2),s,main=g,xlab=paste("slope =",slop," intercept =",round(inter,1)), sub=paste("E = ",eff," ( ",round(efflo,2)," - ",round(effup,2)," )",sep=""),mgp=c(2.3,1,0)) abline(genlm) } } rr=cbind("gene"=gg,"E"=ee,"E.minus.se"=el,"E.plus.se"=eu,"intercept"=ii) row.names(rr)=c() rr=data.frame(rr) rr$E=as.numeric(as.character(rr$E)) rr$E.minus.se=as.numeric(as.character(rr$E.minus.se)) rr$E.plus.se=as.numeric(as.character(rr$E.plus.se)) rr$intercept=as.numeric(as.character(rr$intercept)) return(rr) }
NULL getWidget.tkwin <- function(obj) obj getBlock <- function(obj) { if(is(obj, "GComponent")) obj$get_block() else obj } widthOfChar <- ceiling(as.numeric(tclvalue(tcl("font","measure","TkTextFont","0")))) heightOfChar <- as.numeric(as.character(tcl("font","metrics","TkTextFont"))[6]) xyToAnchor <- function(anchor) { m = rbind( c("nw","n","ne"), c("w","center","e"), c("sw","s","se") ) anchor = m[2 - anchor[2],2 + anchor[1]] return(anchor) } is_aqua <- function() { as.character(tcl("tk","windowingsystem")) == "aqua" } merge_list <- function(x, y, overwrite=TRUE) { x <- as.list(x) if(missing(y) || is.null(y)) return(x) for(i in names(y)) if((is.logical(overwrite) && overwrite) || !(i %in% names(x))) x[[i]] <- y[[i]] x }
do_base <- "https://api.digitalocean.com/v2" url <- function(...) structure(paste(do_base, ..., sep = "/"), class = "do_url") print.do_url <- function(x, ...) { cat("<url> ", x, "\n", sep = "") } as.url <- function(x, ...) UseMethod("as.url") as.url.character <- function(x, ...) paste0(do_base, "/", x) as.url.do_url <- function(x, ...) x NULL do_GET <- function(url, ...) { do_VERB("GET", url, ...) } do_POST <- function(url, ..., body = NULL, encode = "json") { body <- ascompact(body) do_VERB("POST", url, ..., body = body, encode = encode) } do_PUT <- function(url, ...) { do_VERB("PUT", url, ...) } do_PATCH <- function(url, ...) { do_VERB("PATCH", url, ...) } do_DELETE <- function(url, ...) { do_VERB("DELETE", url, ...) } do_DELETE_body <- function(url, body = NULL, ...) { url <- as.url(url) res <- VERB("DELETE", url, body = body, ..., do_oauth()) if (length(res$content) == 0) { httr::stop_for_status(res) return(invisible(TRUE)) } text <- httr::content(res, as = "text", encoding = "UTF-8") json <- jsonlite::fromJSON(text, simplifyVector = FALSE) if (httr::status_code(res) >= 400) { stop(json$message, call. = FALSE) } json } do_VERB <- function(verb, url, ...) { url <- as.url(url) VERB <- getExportedValue("httr", verb) res <- VERB(url, ..., do_oauth()) if (length(res$content) == 0) { httr::stop_for_status(res) return(invisible(TRUE)) } text <- httr::content(res, as = "text", encoding = "UTF-8") json <- jsonlite::fromJSON(text, simplifyVector = FALSE) if (httr::status_code(res) >= 400) { stop(json$message, call. = FALSE) } json }
rankODIBatsmen <- function(dir='.',odir=".",minMatches=50) { currDir= getwd() battingDetails=batsman=runs=strikeRate=matches=meanRuns=meanSR=battingDF=val=NULL teams <-c("Australia","India","Pakistan","West Indies", 'Sri Lanka', "England", "Bangladesh","Netherlands","Scotland", "Afghanistan", "Zimbabwe","Ireland","New Zealand","South Africa","Canada", "Bermuda","Kenya","Hong Kong","Nepal","Oman","Papua New Guinea", "United Arab Emirates","Namibia","Cayman Islands","Singapore", "United States of America","Bhutan","Maldives","Botswana","Nigeria", "Denmark","Germany","Jersey","Norway","Qatar","Malaysia","Vanuatu", "Thailand") setwd(odir) battingDF<-NULL for(team in teams){ battingDetails <- NULL val <- paste(team,"-BattingDetails.RData",sep="") print(val) tryCatch(load(val), error = function(e) { print("No data1") setNext=TRUE } ) details <- battingDetails battingDF <- rbind(battingDF,details) } df <- select(battingDF,batsman,runs,strikeRate) b=summarise(group_by(df,batsman),matches=n(), meanRuns=mean(runs),meanSR=mean(strikeRate)) b[is.na(b)] <- 0 setwd(currDir) c <- filter(b,matches >= minMatches) ODIBatsmenRank <- arrange(c,desc(meanRuns),desc(meanSR)) ODIBatsmenRank }
clustCombi <- function(object = NULL, data = NULL, ...) { if(is.null(object) & is.null(data)) stop("An object or class 'Mclust' or data as matrix/data.frame must be provided!") if(is.null(object)) { object <- Mclust(data, ...) } else { if(!inherits(object, "Mclust")) stop("object not of class 'Mclust'") data <- object$data } combiRes <- combi(data, object) return(combiRes) } combMat <- function(K,l1,l2) { l=c(min(l1,l2), max(l1,l2)) if(any(length(l1) == 0, length(l2) == 0)){ l1 = numeric(0) l2 = l[2]} else { l1 = l[1] l2 = l[2]} M <- rbind(cbind(diag(l2-1), matrix(rep(0,(K-l2+1)*(l2-1)), nrow=l2-1, ncol=K-l2+1)), cbind(matrix(rep(0,l2*(K-l2)), nrow=K-l2, ncol=l2), diag(K-l2))) M[l1,l2] <- 1 return(M) } xlog <- function(x) { xlog1d <- function (xi) if (xi == 0) 0 else (xi*log(xi)) if (is.null(dim(x))) { return(sapply(x,xlog1d)) } else { return(matrix(sapply(x,xlog1d),dim(x))) } } combi <- function(data, MclustOutput, n = nrow(data), d = ncol(data)) { combiM <- list() combiM[[MclustOutput$G]] <- diag(MclustOutput$G) tau <- list() tau[[MclustOutput$G]] = MclustOutput$z classif <- list() classif[[MclustOutput$G]] = map(tau[[MclustOutput$G]]) for (K in MclustOutput$G:2) { dEnt <- matrix(0,nrow=K-1, ncol=K) preCombiTau <- tau[[K]] for (l1 in 1:(K-1)) { for (l2 in (l1+1):K) { postCombiTau <- t(combMat(K,l1,l2) %*% t(preCombiTau)) dEnt[l1,l2] <- sum(xlog(postCombiTau[,l1])) - sum(xlog(preCombiTau[,l1])+xlog(preCombiTau[,l2])) } } l1=which(dEnt==max(dEnt),arr.ind=TRUE)[1] l2=which(dEnt==max(dEnt),arr.ind=TRUE)[2] combiM[[K-1]] <- combMat(K,l1,l2) tau[[K-1]] = t(combiM[[K-1]] %*% t(tau[[K]])) classif[[K-1]] = map(tau[[K-1]]) } output <- list(classification = classif, combiM = combiM, combiz = tau, MclustOutput = MclustOutput) class(output) <- "clustCombi" return(output) } plot.clustCombi <- function(x, what = c("classification", "entropy", "tree"), ...) { object <- x if(!inherits(object, "clustCombi")) stop("object not of class 'clustCombi'") data <- object$MclustOutput$data what <- match.arg(what, several.ok = TRUE) oldpar <- par(no.readonly = TRUE) on.exit(par(oldpar)) plot.clustCombi.classification <- function(...) { curr <- 1:object$MclustOutput$G i <- numeric() j <- numeric() for(K in (object$MclustOutput$G):2) { l1 <- which(!object$combiM[[K-1]] %*% rep(1,K) == 1) l2 <- (object$combiM[[K-1]] %*% curr)[l1] - curr[l1] i <- c(curr[l1],i) j <- c(l2,j) curr <- object$combiM[[K-1]] %*% curr - l2*c(rep(0,(l1-1)),1,rep(0,(K-1-l1))) } permutMat <- function(j,K) { M <- diag(K) M[j,j] <- 0 M[K,K] <- 0 M[j,K] <- 1 M[K,j] <- 1 return(M) } combiM <- diag(object$MclustOutput$G) j <- c(1,j) i <- c(0,i) permutz <- object$MclustOutput$z[,j] par(ask=TRUE) for(K in object$MclustOutput$G:1) { curr_title <- if(K == object$MclustOutput$G) paste0("BIC solution (", as.character(K), " clusters)") else paste0("Combined solution with ", as.character(K), " clusters") if(ncol(as.matrix(data)) > 2) { par(oma = c(0,0,2,0), mar = { mar <- oldpar$mar; mar[3] <- 0.1; mar }) } else { par(mar = { mar <- oldpar$mar; mar[3] <- 2.1; mar }) } combiPlot(data = data, z = permutz, combiM = combiM, ...) if(ncol(as.matrix(data)) > 2) { title(curr_title, outer = TRUE, cex.main = 1) } else { title(curr_title, cex.main = 1) } combiM <- combMat(K,which(j==i[K]),K) %*% combiM } par(ask=FALSE) } if(interactive() & length(what) > 1) { title <- "Combined clusterings plots:" choice <- menu(what, graphics = FALSE, title = title) while(choice != 0) { if(what[choice] == "classification") plot.clustCombi.classification(...) if(what[choice] == "entropy") entPlot(z = object$MclustOutput$z, combiM = object$combiM, ...) if(what[choice] == "tree") combiTree(object, ...) choice <- menu(what, graphics = FALSE, title = title) } } else { if(any(what == "classification")) plot.clustCombi.classification(...) if(any(what == "entropy")) entPlot(z = object$MclustOutput$z, combiM = object$combiM, ...) if(any(what == "tree")) combiTree(object, ...) } invisible() } combiPlot <- function(data, z, combiM, ...) { p <- ncol(as.matrix(data)) if (p > 2) { clPairs(data[,1:min(5,p)], classification = map(t(combiM %*% t(z))), ...) } else if (p == 2) { mclust2Dplot(data = data, parameters = NULL, classification = map(t(combiM %*% t(z))), what = "classification", ...) } else { mclust1Dplot(data = as.matrix(data), parameters = NULL, classification = map(t(combiM %*% t(z))), what = "classification", ...) } } entPlot <- function(z, combiM, abc = c("standard", "normalized"), reg = 2, ...) { oldpar <- par(no.readonly = TRUE) on.exit(par(oldpar)) if(length(abc) > 1) par(ask=TRUE) ent <- numeric() Kmax <- ncol(z) z0 <- z for(K in Kmax:1) { z0 <- t(combiM[[K]] %*% t(z0)) ent[K] <- -sum(xlog(z0)) } if(any(abc == "normalized")) { mergedn <- numeric() z0 <- z for(K in (Kmax-1):1) { z0 <- t(combiM[[K+1]] %*% t(z0)) mergedn[K] = sum(sapply(map(z0), function(x) any(which(as.logical(combiM[[K]][rowSums(combiM[[K]])==2,]))==x))) } } if(Kmax == 2) reg <- NULL if(any(abc == "standard")) { par(mfrow=c(1,2), oma=c(0,0,3,0), mar = { mar <- oldpar$mar; mar[3] <- 0.1; mar }) plot(1:Kmax, ent, xlab = "Number of clusters", ylab = "Entropy", xaxt = "n", ...) axis(side = 1, at = 1:Kmax) if(any(reg == 2)) { pcwsreg <- pcws2_reg(1:Kmax,ent) lines(1:pcwsreg$c, pcwsreg$a1*(1:pcwsreg$c) + pcwsreg$b1, lty = 2, col = "red") lines(pcwsreg$c:Kmax, pcwsreg$a2*(pcwsreg$c:Kmax) + pcwsreg$b2, lty = 2, col = "red") } if(any(reg == 3)) { pcwsreg <- pcws3_reg(1:Kmax,ent) lines(1:pcwsreg$c1, pcwsreg$a1*(1:pcwsreg$c1) + pcwsreg$b1, lty = 2, col = "blue") lines(pcwsreg$c1:pcwsreg$c2, pcwsreg$a2*(pcwsreg$c1:pcwsreg$c2) + pcwsreg$b2, lty = 2, col = "blue") lines(pcwsreg$c2:Kmax, pcwsreg$a3*(pcwsreg$c2:Kmax) + pcwsreg$b3, lty = 2, col = "blue") } plot(1:(Kmax-1), ent[2:Kmax]-ent[1:(Kmax-1)], xlab = "Number of clusters", ylab = "Difference in entropy", xaxt = "n", ...) axis(side = 1, at = 1:(Kmax-1)) title("Entropy plot", outer=TRUE, cex.main = 1) } if(any(abc == "normalized")) { par(mfrow=c(1,2), oma=c(0,0,3,0), mar = { mar <- oldpar$mar; mar[3] <- 0.1; mar }) plot(cumsum(c(0,mergedn)), ent, xlab = "Cumul. count of merged obs.", ylab = "Entropy", ...) if(any(reg == 2)) { X <- cumsum(c(0,mergedn)) pcwsreg <- pcws2_reg(X,ent) lines(X[1:pcwsreg$c], pcwsreg$a1*(X[1:pcwsreg$c]) + pcwsreg$b1, lty = 2, col = "red") lines(X[pcwsreg$c:Kmax], pcwsreg$a2*(X[pcwsreg$c:Kmax]) + pcwsreg$b2, lty = 2, col = "red") } if(any(reg == 3)) { X <- cumsum(c(0,mergedn)) pcwsreg <- pcws3_reg(X,ent) lines(X[1:pcwsreg$c1], pcwsreg$a1*(X[1:pcwsreg$c1]) + pcwsreg$b1, lty = 2, col = "blue") lines(X[pcwsreg$c1:pcwsreg$c2], pcwsreg$a2*(X[pcwsreg$c1:pcwsreg$c2]) + pcwsreg$b2, lty = 2, col = "blue") lines(X[pcwsreg$c2:Kmax], pcwsreg$a3*(X[pcwsreg$c2:Kmax]) + pcwsreg$b3, lty = 2, col = "blue") } plot(1:(Kmax-1), (ent[2:Kmax]-ent[1:(Kmax-1)])/mergedn, xlab = "Number of clusters", ylab = "Normalized difference in entropy", xaxt = "n", ...) axis(side = 1, at = 1:(Kmax-1)) title("Normalized entropy plot", outer=TRUE, cex.main = 1) } invisible() } combiTree <- function(object, type = c("triangle", "rectangle"), yaxis = c("entropy", "step"), edgePar = list(col = "darkgray", lwd = 2), ...) { if(!inherits(object, "clustCombi")) stop("object not of class 'clustCombi'") yaxis <- match.arg(yaxis, eval(formals(combiTree)$yaxis), several.ok = FALSE) type <- match.arg(type, eval(formals(combiTree)$type), several.ok = FALSE) G <- object$MclustOutput$G combiM <- object$combiM curr <- 1:G merged <- -(1:G) merge <- matrix(NA, G-1, 2) for(k in 1:(G-1)) { Kp <- G - k + 1 l1 <- which(!combiM[[Kp-1]] %*% rep(1,Kp) == 1) l2 <- (combiM[[Kp-1]] %*% curr)[l1] - curr[l1] curr <- setdiff(curr, max(l1, l2)) merge[k,] <- merged[c(l1,l2)] merged[merged == merged[l1] | merged == merged[l2]] <- k } sel <- function(x) { if(x < 0) return(abs(x)) else return(c(sel(merge[x,1]), sel(merge[x,2]))) } ord <- abs(c(sel(merge[nrow(merge),1]), sel(merge[nrow(merge),2]))) if(yaxis == "step") { h <- 1:(G-1) ylab <- "Steps" } else { entropy <- sapply(rev(object$combiz), function(z) -sum(xlog(z))) h <- entropy; h <- 1 - (h - min(h))/(max(h)-min(h)); h <- h[-1] ylab <- "1 - normalised entropy" } hc <- list(merge = merge, height = h, order = ord, labels = 1:G) class(hc) <- "hclust" dendro <- as.dendrogram(hc) plot(dendro, type = type, edgePar = edgePar, ylab = ylab, ...) invisible(dendro) } pcws2_reg <- function(x, y) { C <- length(x) ssBest = Inf for (c in 2:(C-1)) { x1 <- x[1:c] y1 <- y[1:c] x2 <- x[c:C] y2 <- y[c:C] a1 <- sum((x1-mean(x1))*(y1-mean(y1)))/sum((x1-mean(x1))^2) b1 <- -a1 * mean(x1) + mean(y1) a2 <- sum((x2-mean(x2))*(y2-mean(y2)))/sum((x2-mean(x2))^2) b2 <- -a2 * mean(x2) + mean(y2) ss <- sum((a1*x1+b1-y1)^2) + sum((a2*x2+b2-y2)^2) if (ss < ssBest) { ssBest <- ss cBest <- c a1Best <- a1 a2Best <- a2 b1Best <- b1 b2Best <- b2 } } return(list(c=cBest, a1=a1Best, b1=b1Best, a2=a2Best, b2=b2Best, residuals = c(a1*x1+b1-y1,a2*x2+b2-y2))) } pcws3_reg <- function(x, y) { C <- length(x) ssBest = Inf for (c1 in 2:(C-2)) { for (c2 in (c1+1):(C-1)) { x1 <- x[1:c1] y1 <- y[1:c1] x2 <- x[c1:c2] y2 <- y[c1:c2] x3 <- x[c2:C] y3 <- y[c2:C] a1 <- sum((x1-mean(x1))*(y1-mean(y1)))/sum((x1-mean(x1))^2) b1 <- -a1 * mean(x1) + mean(y1) a2 <- sum((x2-mean(x2))*(y2-mean(y2)))/sum((x2-mean(x2))^2) b2 <- -a2 * mean(x2) + mean(y2) a3 <- sum((x3-mean(x3))*(y3-mean(y3)))/sum((x3-mean(x3))^2) b3 <- -a3 * mean(x3) + mean(y3) ss <- sum((a1*x1+b1-y1)^2) + sum((a2*x2+b2-y2)^2) + sum((a3*x3+b3-y3)^2) if (ss < ssBest) { ssBest <- ss c1Best <- c1 c2Best <- c2 a1Best <- a1 b1Best <- b1 a2Best <- a2 b2Best <- b2 a3Best <- a3 b3Best <- b3 } } } return(list(c1=c1Best, c2=c2Best, a1=a1Best, b1=b1Best, a2=a2Best, b2=b2Best, a3=a3Best, b3=b3Best, residuals = c(a1*x1+b1-y1,a2*x2+b2-y2,a3*x3+b3-y3))) } print.clustCombi <- function(x, digits = getOption("digits"), ...) { cat("\'", class(x)[1], "\' object:\n", sep = "") cat(paste0(" Mclust model: (", x$MclustOutput$modelName, ",", x$MclustOutput$G, ")\n")) cat(" Available object components: ") cat(names(x), "\n") cat(" Combining matrix (K+1 classes -> K classes): <object_name>$combiM[[K]]\n") cat(" Classification for K classes: <object_name>$classification[[K]]\n") invisible() } summary.clustCombi <- function(object, ...) { title <- paste("Combining Gaussian mixture components for clustering") out <- with(object, list(title = title, MclustModelName = object$MclustOutput$modelName, MclustG = object$MclustOutput$G, combiM = object$combiM)) class(out) <- "summary.clustCombi" return(out) } print.summary.clustCombi <- function(x, digits = getOption("digits"), ...) { cat(rep("-", nchar(x$title)),"\n",sep="") cat(x$title, "\n") cat(rep("-", nchar(x$title)),"\n",sep="") cat("\nMclust model name:", x$MclustModelName, "\n") cat("Number of components:", x$MclustG, "\n") cat("\nCombining steps:\n\n") cat(" Step | Classes combined at this step | Class labels after this step", "\n", sep="") cat("-------|-------------------------------|-----------------------------", "\n", sep="") curr <- 1:x$MclustG cat(" 0 | --- | ", sprintf(fmt = "%d ", curr), "\n", sep="") for(K in 1:(x$MclustG-1)) { Kp = x$MclustG - K + 1 l1 = which(!x$combiM[[Kp-1]] %*% rep(1,Kp) == 1) l2 = (x$combiM[[Kp-1]] %*% curr)[l1] - curr[l1] nc1 = floor((7-nchar(as.character(K)))/2) nc2 = (7-nchar(as.character(K))) - nc1 nc3 = floor((33-nchar(paste(as.character(c(l1)), " & ", as.character(l2))))/2) nc4 = 33-nchar(paste(as.character(c(l1)), " & ", as.character(l2))) - nc3 curr <- x$combiM[[Kp-1]] %*% curr - l2*c(rep(0,(l1-1)),1,rep(0,(Kp-1-l1))) cat(rep(" ", nc1), as.character(K), rep(" ", nc2), "|", rep(" ", nc3), as.character(l1), " & ", as.character(l2), rep(" ", nc4), "| ", sprintf(fmt = "%d ", curr), "\n", sep="") } invisible() } clustCombiOptim <- function(object, reg = 2, plot = FALSE, ...) { z <- object$MclustOutput$z combiM <- object$combiM ent <- rep(as.double(NA, nrow(z))) Kmax <- ncol(z) z0 <- z for(K in Kmax:1) { z0 <- t(combiM[[K]] %*% t(z0)) ent[K] <- -sum(xlog(z0)) } if(Kmax == 2) { reg <- 1 pcwsreg <- list(K = Kmax) } if(reg == 2) { pcwsreg <- pcws2_reg(1:Kmax, ent) } if(reg == 3) { pcwsreg <- pcws3_reg(1:Kmax, ent) } if(plot) { plot(1:Kmax, ent, xlab = "Number of clusters", ylab = "Entropy", panel.first = grid(), xaxt = "n", ...) axis(side = 1, at = 1:Kmax) if(reg == 2) { lines(1:pcwsreg$c, pcwsreg$a1 * (1:pcwsreg$c) + pcwsreg$b1, lty = 2, col = "red") lines(pcwsreg$c:Kmax, pcwsreg$a2 * (pcwsreg$c:Kmax) + pcwsreg$b2, lty = 2, col = "red") } if(reg == 3) { lines(1:pcwsreg$c1, pcwsreg$a1 * (1:pcwsreg$c1) + pcwsreg$b1, lty = 2, col = "blue") lines(pcwsreg$c1:pcwsreg$c2, pcwsreg$a2 * (pcwsreg$c1:pcwsreg$c2) + pcwsreg$b2, lty = 2, col = "blue") lines(pcwsreg$c2:Kmax, pcwsreg$a3 * (pcwsreg$c2:Kmax) + pcwsreg$b3, lty = 2, col = "blue") } } K <- pcwsreg[[1]] z0 <- z for(K in Kmax:K) { z0 <- t(combiM[[K]] %*% t(z0)) } out <- list(numClusters.combi = K, z.combi = z0, cluster.combi = map(z0)) return(out) }
run_fmriqa <- function(data_file = NULL, roi_width = 21, slice_num = NULL, skip = 2, tr = NULL, pix_dim = NULL, poly_det_ord = 3, spike_detect = FALSE, x_pos = NULL, y_pos = NULL, plot_title = NULL, last_vol = NULL, gen_png = TRUE, gen_res_csv = TRUE, gen_pdf = FALSE, gen_spec_csv = FALSE, png_fname = NULL, res_fname = NULL, pdf_fname = NULL, spec_fname = NULL, verbose = TRUE, bg_smooth = 12, bg_shrink = 25) { if (is.null(data_file)) { filters <- matrix(c("NIfTI", ".nii.gz", "NIfTI", ".nii", "All files", "*"), 3, 2, byrow = TRUE) data_file <- tk_choose.files(caption = "Select nifti data file for analysis", multi = FALSE, filters = filters) if (length(data_file) == 0) { stop("Error : input file not given.") } } basename <- sub(".nii.gz$", "", data_file) basename <- sub(".nii$", "", basename) if (is.null(res_fname)) { csv_file <- paste(basename, "_qa_results.csv", sep = "") } else { csv_file <- res_fname } if (is.null(png_fname)) { png_file <- paste(basename, "_qa_plot.png", sep = "") } else { png_file <- png_fname } if (is.null(pdf_fname)) { pdf_file <- paste(basename, "_qa_plot.pdf", sep = "") } else { pdf_file <- pdf_fname } if (is.null(spec_fname)) { spec_file <- paste(basename, "_qa_spec.csv", sep = "") } else { spec_file <- spec_fname } image_cols <- viridis(64) if (verbose) cat(paste("Reading data : ", data_file, "\n\n", sep = "")) data <- readNifti(data_file) x_dim <- dim(data)[1] y_dim <- dim(data)[2] z_dim <- dim(data)[3] if (is.null(tr)) tr <- pixdim(data)[4] if (is.null(pix_dim)) { x_pix_dim <- pixdim(data)[1] y_pix_dim <- pixdim(data)[2] z_pix_dim <- pixdim(data)[3] } else { x_pix_dim <- pix_dim[1] y_pix_dim <- pix_dim[2] z_pix_dim <- pix_dim[3] } if (is.null(slice_num)) slice_num <- ceiling(dim(data)[3] / 2) if (is.null(last_vol)) { N <- dim(data)[4] } else { N <- last_vol } dyns <- N - skip t <- seq(from = 0, by = tr, length.out = dyns) if (verbose) { cat("Basic analysis parameters\n") cat("-------------------------\n") cat(paste("X,Y matrix : ", x_dim, "x", y_dim, "\n", sep = "")) cat(paste("Slices : ", z_dim, "\n", sep = "")) cat(paste("X,Y,Z pix dims : ", x_pix_dim, "x", y_pix_dim, "x", z_pix_dim, "mm\n", sep = "")) cat(paste("TR : ", round(tr, 2), "s\n", sep = "")) cat(paste("Slice cat(paste("ROI width : ", roi_width, "\n", sep = "")) cat(paste("Total vols : ", dim(data)[4], "\n", sep = "")) cat(paste("Analysis vols : ", dyns, "\n", sep = "")) } data_raw <- data[,,slice_num, (skip + 1):N] X <- poly(1:dyns, poly_det_ord)[,] X <- cbind(1,X) data_detrend <- apply(data_raw, c(1,2), detrend_fast, X) data_detrend <- aperm(data_detrend, c(2,3,1)) TFN <- apply(data_detrend, c(1,2), sd) av_image <- apply(data_raw, c(1,2), mean) SFNR_full <- av_image / TFN odd_dynamics <- data_raw[,,c(TRUE, FALSE)] even_dynamics <- data_raw[,,c(FALSE, TRUE)] if (length(odd_dynamics) > length(even_dynamics)) { odd_dynamics <- odd_dynamics[,,-(dim(odd_dynamics)[3])] warning("Odd number of dynamic scans, removing last one for the odd even diff calculation.") } DIFF <- apply(odd_dynamics, c(1, 2), sum) - apply(even_dynamics, c(1, 2), sum) SFNR_full[is.na(SFNR_full)] <- 0 av_image_cimg <- imager::as.cimg(av_image) obj_thr <- imager::threshold(av_image_cimg) cog_image <- obj_thr[,] mean_obj_inten <- mean(av_image_cimg[obj_thr]) pix_dim <- min(c(x_pix_dim, y_pix_dim)) obj_thr_bg <- imager::grow(obj_thr, round(bg_shrink/pix_dim)) bg <- av_image_cimg bg[obj_thr_bg] <- 0 bg_blur <- imager::boxblur(bg, round(bg_smooth/pix_dim)) max_bg <- max(bg_blur) max_bg_perc <- 100 * max_bg / mean_obj_inten mask <- obj_thr_bg[,,1,1] bg_dynamics <- data_raw bg_dynamics[mask] <- NA mean_bg_image <- apply(bg_dynamics, c(1,2), mean) bg_sig_intensity_t <- apply(bg_dynamics, 3, mean, na.rm = TRUE) bg_fit <- bg_sig_intensity_t - detrend_fast(bg_sig_intensity_t, X) if (is.null(x_pos)) { x_pos <- sum(array(1:x_dim, c(x_dim, y_dim)) * cog_image) / sum(cog_image) x_pos <- round(x_pos) } if (is.null(y_pos)) { y_pos <- sum(t(array(1:y_dim, c(y_dim, x_dim))) * cog_image) / sum(cog_image) y_pos <- round(y_pos) } ROI_x <- get_pixel_range(x_pos, roi_width) ROI_y <- get_pixel_range(y_pos, roi_width) SFNR <- SFNR_full[ROI_x, ROI_y] av_SFNR <- mean(SFNR) DIFF_ROI <- DIFF[ROI_x, ROI_y] signal_summary_value <- mean(av_image[ROI_x, ROI_y]) SNR <- signal_summary_value / sqrt((sd(DIFF_ROI) ^ 2) / dyns) slice_data_ROI <- data_raw[ROI_x, ROI_y,] mean_sig_intensity_t <- apply(slice_data_ROI, 3, mean) mean_sig_intensity <- mean(mean_sig_intensity_t) mean_sig_intensity_t_detrend <- detrend_fast(mean_sig_intensity_t, X) y_fit <- mean_sig_intensity_t - mean_sig_intensity_t_detrend residuals <- mean_sig_intensity_t - y_fit sd_roi <- sd(residuals) percent_fluc <- 100.0 * sd_roi / mean_sig_intensity percent_drift_fit <- 100.0 * (max(y_fit) - min(y_fit)) / mean_sig_intensity percent_drift <- 100.0 * (max(mean_sig_intensity_t) - min(mean_sig_intensity_t)) / mean_sig_intensity detrend_res <- mean_sig_intensity_t - y_fit zp <- 4 spec <- Mod(fft(c(detrend_res, rep(0,(zp - 1) * dyns))))[1:(dyns * zp / 2)] max_spec_outlier <- max(spec) / mad(spec) t <- seq(from = 0, by = tr, length.out = dyns) vols <- seq(from = skip + 1, by = 1, length.out = dyns) freq <- seq(from = 0, to = (1 - 1/(zp * dyns / 2))/(tr * 2), length.out = zp * dyns / 2) slice_tc <- apply(data[,,,(skip + 1):N, drop = FALSE], c(3, 4), mean) X <- poly(1:dyns, poly_det_ord)[,] X <- cbind(1, X) slice_tc_dt <- apply(slice_tc, 1, detrend_fast, X) max_tc_outlier <- max(abs(slice_tc_dt)) / mad(slice_tc_dt) CV <- vector(length = roi_width) CV_ideal <- vector(length = roi_width) for (n in (1:roi_width)) { x_range <- get_pixel_range(x_pos, n) y_range <- get_pixel_range(y_pos, n) slice_data_ROI <- data_raw[x_range, y_range,, drop = F] mean_sig_intensity_t <- apply(slice_data_ROI, 3, mean) mean_sig_intensity <- mean(mean_sig_intensity_t) X <- poly(1:dyns, poly_det_ord)[,] X <- cbind(1,X) mean_sig_intensity_t_dt <- detrend_fast(y = mean_sig_intensity_t, X = X) sd_sig_intensity <- sd(mean_sig_intensity_t_dt) CV[n] <- 100 * sd_sig_intensity / mean_sig_intensity CV_ideal[n] <- CV[1] / n } RDC <- CV[1] / CV[length(CV)] line1 <- paste("Mean signal : ", round(mean_sig_intensity, 1), "\n", sep = "") line2 <- paste("STD : ", round(sd_roi, 2), "\n", sep = "") line3 <- paste("Percent fluc : ", round(percent_fluc, 2), "\n", sep = "") line4 <- paste("Drift : ", round(percent_drift, 2), "\n", sep = "") line5 <- paste("Drift fit : ", round(percent_drift_fit, 2), "\n", sep = "") line6 <- paste("SNR : ", round(SNR, 1), "\n", sep = "") line7 <- paste("SFNR : ", round(av_SFNR, 1), "\n", sep = "") line8 <- paste("RDC : ", round(RDC, 2), "\n", sep = "") line9 <- paste("TC outlier : ", round(max_tc_outlier, 2), "\n", sep = "") line10 <- paste("Spec outlier : ", round(max_spec_outlier, 2), "\n", sep = "") line11 <- paste("MBG percent : ", round(max_bg_perc, 2), "\n", sep = "") if (verbose) { cat("\nQA metrics\n") cat("----------\n") cat(line1) cat(line2) cat(line3) cat(line4) cat(line5) cat(line6) cat(line7) cat(line8) cat(line9) cat(line10) cat(line11) } if (is.null(plot_title)) plot_title <- NA results_tab <- data.frame(data_file, title = plot_title, mean_signal = mean_sig_intensity, std = sd_roi, percent_fluc = percent_fluc, drift = percent_drift, drift_fit = percent_drift_fit, snr = SNR, sfnr = av_SFNR, rdc = RDC, tc_outlier = max_tc_outlier, spec_outlier = max_spec_outlier, max_bg_perc = max_bg_perc) if (gen_res_csv) { write.csv(results_tab, csv_file, row.names = FALSE) } if (gen_spec_csv) { spec_out <- data.frame(t(spec)) colnames(spec_out) <- freq spec_out <- cbind(data.frame(data_file, title = plot_title), spec_out) write.csv(spec_out, spec_file, row.names = FALSE) } if (gen_pdf | gen_png) { if (spike_detect) { cat("\nCalculating k-space spike detection map...\n") diff_vols <- apply(data[,,,(skip + 1):N, drop = FALSE], c(1,2,3), diff) diff_vols <- aperm(diff_vols, c(2,3,4,1)) diff_vols_fft <- apply(diff_vols, c(3,4), fft) dim(diff_vols_fft) <- dim(diff_vols) max_slice_proj <- apply(abs(diff_vols_fft), c(1,2), max) max_slice_proj <- apply(apply(max_slice_proj, 1, fftshift), 1, fftshift) max_z <- mad(max_slice_proj) * 8 + median(max_slice_proj) max_slice_proj <- ifelse(max_slice_proj > max_z, max_z, max_slice_proj) max_slice_proj_plot <- ggplot(melt(max_slice_proj), aes(Var1, Var2, fill = value)) + geom_raster(interpolate = TRUE) + scale_fill_gradientn(colours = image_cols) + coord_fixed(ratio = 1) + labs(x = "",y = "", fill = "Intensity", title = "Max. proj. of k-space slice differences") + scale_x_continuous(expand = c(0, 0)) + scale_y_continuous(expand = c(0, 0)) } theme_set(theme_bw()) marg <- theme(plot.margin = unit(c(0.5,0.5,0.5,0.5), "cm")) raw_text <- paste(line1, line2, line3, line4, line5, line6, line7, line8, line9, line10, line11, sep = "") text <- textGrob(raw_text, x = 0.2, just = 0, gp = gpar(fontfamily = "mono", fontsize = 12)) Measured <- NULL Theoretical <- NULL group <- NULL roi_width_vec <- NULL fit <- NULL tc <- NULL Var1 <- NULL Var2 <- NULL value <- NULL rdc_df <- data.frame(roi_width_vec = 1:roi_width, Theoretical = CV_ideal, Measured = CV) rdc_df <- gather(rdc_df, group, CV, c(Measured, Theoretical)) rdc_plot <- ggplot(rdc_df, aes(x = roi_width_vec, y = CV, colour = group)) + geom_line() + geom_point() + scale_x_log10(limits = c(1,100)) + scale_y_log10(limits = c(0.01,10), breaks = c(0.01,0.1,1,10)) + labs(y = "100*CV", x = "ROI width (pixels)", title = "RDC plot") + marg + theme(legend.position = c(0.8, 0.8)) + scale_color_manual(values = c("black","red")) tc_fit <- data.frame(t = vols, tc = mean_sig_intensity_t, fit = y_fit) tc_plot <- ggplot(tc_fit, aes(t)) + geom_line(aes(y = tc)) + geom_line(aes(y = fit), color = "red") + theme(legend.position = "none") + labs(y = "Intensity (a.u.)", x = "Time (volumes)", title = "ROI intensity drift plot") + marg tc_fit_bg <- data.frame(t = vols, tc = bg_sig_intensity_t, fit = bg_fit) tc_plot_bg <- ggplot(tc_fit_bg, aes(t)) + geom_line(aes(y = tc)) + geom_line(aes(y = fit), color = "red") + theme(legend.position = "none") + labs(y = "Intensity (a.u.)", x = "Time (volumes)", title = "BG intensity drift plot") + marg spec_plot <- qplot(freq, spec, xlab = "Frequency (Hz)", ylab = "Intensity (a.u.)", geom = "line", main = "Fluctuation spectrum") + marg x_st = ROI_x[1] x_end = ROI_x[length(ROI_x)] y_st = ROI_y[1] y_end = ROI_y[length(ROI_y)] lcol <- "white" roi_a <- geom_segment(aes(x = x_st, xend = x_st, y = y_st, yend = y_end), colour = lcol) roi_b <- geom_segment(aes(x = x_end, xend = x_end, y = y_st, yend = y_end), colour = lcol) roi_c <- geom_segment(aes(x = x_st, xend = x_end, y = y_st, yend = y_st), colour = lcol) roi_d <- geom_segment(aes(x = x_st, xend = x_end, y = y_end, yend = y_end), colour = lcol) top_val <- quantile(SFNR_full,0.999) SFNR_full <- ifelse(SFNR_full > top_val, top_val, SFNR_full) sfnr_plot <- ggplot(melt(SFNR_full), aes(Var1, Var2, fill = value)) + geom_raster(interpolate = TRUE) + scale_fill_gradientn(colours = image_cols) + coord_fixed(ratio = 1) + labs(x = "", y = "", fill = "Intensity", title = "SFNR image") + marg + roi_a + roi_b + roi_c + roi_d + scale_x_continuous(expand = c(0, 0)) + scale_y_continuous(expand = c(0, 0)) bg_plot <- ggplot(melt(mean_bg_image), aes(Var1, Var2, fill = value)) + geom_raster(interpolate = TRUE) + scale_fill_gradientn(colours = image_cols, na.value = "white") + coord_fixed(ratio = 1) + labs(x = "", y = "", fill = "Intensity", title = "Mean BG image") + marg + scale_x_continuous(expand = c(0, 0)) + scale_y_continuous(expand = c(0, 0)) av_plot <- ggplot(melt(av_image), aes(Var1, Var2, fill = value)) + geom_raster(interpolate = TRUE) + scale_fill_gradientn(colours = image_cols) + coord_fixed(ratio = 1) + labs(x = "",y = "", fill = "Intensity", title = "Mean image") + marg + roi_a + roi_b + roi_c + roi_d + scale_x_continuous(expand = c(0, 0)) + scale_y_continuous(expand = c(0, 0)) diff_plot <- ggplot(melt(DIFF), aes(Var1, Var2, fill = value)) + geom_raster(interpolate = TRUE) + scale_fill_gradientn(colours = image_cols) + coord_fixed(ratio = 1) + labs(x = "",y = "", fill = "Intensity", title = "Odd-even difference") + marg + roi_a + roi_b + roi_c + roi_d + scale_x_continuous(expand = c(0, 0)) + scale_y_continuous(expand = c(0, 0)) tfn_plot <- ggplot(melt(TFN), aes(Var1, Var2, fill = value)) + geom_raster(interpolate = TRUE) + scale_fill_gradientn(colours = image_cols) + coord_fixed(ratio = 1) + labs(x = "", y = "", fill = "Intensity", title = "Temporal fluctuation noise") + marg + roi_a + roi_b + roi_c + roi_d + scale_x_continuous(expand = c(0, 0)) + scale_y_continuous(expand = c(0, 0)) slice_tc_plot <- ggplot(melt(slice_tc_dt), aes(x = Var1 + skip, y = value, group = Var2)) + geom_line(alpha = 0.5) + labs(x = "Time (volumes)", y = "Intensity (a.u.)", title = "Mean slice TCs (detrended)") if (is.na(plot_title)) { title <- NULL } else { title <- textGrob(plot_title, gp = gpar(fontsize = 25)) } if (gen_pdf) { pdf(pdf_file, height = 10, width = 20) if (spike_detect) { lay <- rbind(c(1,5,9,11,11), c(4,10,3,2,2), c(7,6,12,8,8)) grid.arrange(text, tc_plot, spec_plot, av_plot, diff_plot, sfnr_plot, tfn_plot, slice_tc_plot, rdc_plot, bg_plot, tc_plot_bg, max_slice_proj_plot, layout_matrix = lay, top = title) } else { lay <- rbind(c(1,5,9,11,11), c(4,10,3,2,2), c(7,6,8,8,8)) grid.arrange(text, tc_plot, spec_plot, av_plot, diff_plot, sfnr_plot, tfn_plot, slice_tc_plot, rdc_plot, bg_plot, tc_plot_bg, layout_matrix = lay, top = title) } graphics.off() } if (gen_png) { png(png_file, height = 800, width = 1500, type = "cairo") if (spike_detect) { lay <- rbind(c(1,5,9,11,11), c(4,10,3,2,2), c(7,6,12,8,8)) grid.arrange(text, tc_plot, spec_plot, av_plot, diff_plot, sfnr_plot, tfn_plot, slice_tc_plot, rdc_plot, bg_plot, tc_plot_bg, max_slice_proj_plot, layout_matrix = lay, top = title) } else { lay <- rbind(c(1,5,9,11,11), c(4,10,3,2,2), c(7,6,8,8,8)) grid.arrange(text, tc_plot, spec_plot, av_plot, diff_plot, sfnr_plot, tfn_plot, slice_tc_plot, rdc_plot, bg_plot, tc_plot_bg, layout_matrix = lay, top = title) } graphics.off() } } if (verbose) { if (gen_pdf) cat(paste("\nPDF report : ", pdf_file, sep = "")) if (gen_spec_csv) cat(paste("\nCSV spec file : ", spec_file, sep = "")) if (gen_png) cat(paste("\nPNG report : ", png_file, sep = "")) if (gen_res_csv) cat(paste("\nCSV results : ", csv_file, "\n\n", sep = "")) } results_tab } detrend_fast <- function(y, X) { fastLmPure(y = y, X = X)$residual } get_pixel_range <- function(center, width) { ROI_half_start <- floor(width / 2) ROI_half_end <- ceiling(width / 2) start <- floor(center - ROI_half_start) end <- floor(center + ROI_half_end) - 1 start:end }
image_detect_corners <- function(x, threshold = 50L, suppress_non_max = FALSE) { stopifnot(is.matrix(x)) corners <- detect_corners(as.integer(x), width=nrow(x), height=ncol(x), bytes_per_row = nrow(x), suppress_non_max = as.logical(suppress_non_max), threshold = as.integer(threshold)) names(corners) <- c("x", "y") class(corners) <- "image.corners" corners } print.image.corners <- function(x, ...){ cat("Corner Detector", sep = "\n") cat(sprintf(" found %s corners", length(x$x)), sep = "\n") }
dccspec = function(uspec, VAR = FALSE, robust = FALSE, lag = 1, lag.max = NULL, lag.criterion = c("AIC", "HQ", "SC", "FPE"), external.regressors = NULL, robust.control = list("gamma" = 0.25, "delta" = 0.01, "nc" = 10, "ns" = 500), dccOrder = c(1,1), model = c("DCC", "aDCC", "FDCC"), groups = rep(1, length(uspec@spec)), distribution = c("mvnorm", "mvt", "mvlaplace"), start.pars = list(), fixed.pars = list()) { UseMethod("dccspec") } .xdccspec = function(uspec, VAR = FALSE, robust = FALSE, lag = 1, lag.max = NULL, lag.criterion = c("AIC", "HQ", "SC", "FPE"), external.regressors = NULL, robust.control = list("gamma" = 0.25, "delta" = 0.01, "nc" = 10, "ns" = 500), dccOrder = c(1,1), model = c("DCC", "aDCC", "FDCC"), groups = rep(1, length(uspec@spec)), distribution = c("mvnorm", "mvt", "mvlaplace"), start.pars = list(), fixed.pars = list()) { if(tolower(model[1]) == "fdcc"){ spec = .fdccspec(uspec = uspec, VAR = VAR, robust = robust, lag = lag, lag.max = lag.max, lag.criterion = lag.criterion[1], external.regressors = external.regressors, robust.control = robust.control, fdccOrder = dccOrder, fdccindex = groups, distribution = distribution[1], start.pars = start.pars, fixed.pars = fixed.pars) } else{ if(tolower(model[1]) == "adcc") asymmetric = TRUE else asymmetric = FALSE spec = .dccspec(uspec = uspec, VAR = VAR, robust = robust, lag = lag, lag.max = lag.max, lag.criterion = lag.criterion[1], external.regressors = external.regressors, robust.control = robust.control, dccOrder = dccOrder, asymmetric = asymmetric, distribution = distribution[1], start.pars = start.pars, fixed.pars = fixed.pars) } return(spec) } setMethod(f = "dccspec", signature(uspec = "uGARCHmultispec"), definition = .xdccspec) .setfixeddcc = function(object, value){ model = object@model umodel = object@umodel ipars = model$pars pars = unlist(value) names(pars) = parnames = tolower(names(pars)) modelnames = rownames(ipars[which(ipars[,4]==1 | ipars[,2]==1), ,drop=FALSE]) inc = NULL for(i in seq_along(parnames)){ if(is.na(match(parnames[i], modelnames))){ warning( (paste("Unrecognized Parameter in Fixed Values: ", parnames[i], "...Ignored", sep = ""))) } else{ inc = c(inc, i) } } fixed.pars = pars[inc] names(fixed.pars) = tolower(names(pars[inc])) mspec = .makemultispec(umodel$modelinc, umodel$modeldesc$vmodel, umodel$modeldesc$vsubmodel, umodel$modeldata$mexdata, umodel$modeldata$vexdata, umodel$start.pars, umodel$fixed.pars, umodel$vt) if(object@model$DCC == "FDCC"){ tmp = dccspec(uspec = mspec, VAR = ifelse(model$modelinc[1]>0, TRUE, FALSE), robust = ifelse(!is.null(model$varmodel$robust), model$varmodel$robust, FALSE), lag = model$modelinc[1], lag.max = model$varmodel$lag.max, lag.criterion = model$varmodel$lag.criterion, external.regressors = if(model$modelinc[2]>0) model$modeldata$mexdata else NULL, robust.control = if(!is.null(model$varmodel$robust.control)) model$varmodel$robust.control else list(), dccOrder = model$modelinc[4:5], model="FDCC", groups = model$fdccindex, distribution = model$modeldesc$distribution, start.pars = if(is.null(model$start.pars)) model$start.pars else NULL, fixed.pars = as.list(fixed.pars)) } else{ tmp = dccspec(uspec = mspec, VAR = ifelse(model$modelinc[1]>0, TRUE, FALSE), robust = ifelse(!is.null(model$varmodel$robust), model$varmodel$robust, FALSE), lag = model$modelinc[1], lag.max = model$varmodel$lag.max, lag.criterion = model$varmodel$lag.criterion, external.regressors = if(model$modelinc[2]>0) model$modeldata$mexdata else NULL, robust.control = if(!is.null(model$varmodel$robust.control)) model$varmodel$robust.control else list(), dccOrder = model$modelinc[3:4], model = ifelse(model$modelinc[5]>0, "aDCC", "DCC"), distribution = model$modeldesc$distribution, start.pars = if(is.null(model$start.pars)) model$start.pars else NULL, fixed.pars = as.list(fixed.pars)) } return(tmp) } setReplaceMethod(f="setfixed", signature= c(object = "DCCspec", value = "vector"), definition = .setfixeddcc) .setstartdcc = function(object, value){ model = object@model umodel = object@umodel ipars = model$pars pars = unlist(value) names(pars) = parnames = tolower(names(pars)) modelnames = rownames(ipars[which(ipars[,4]==1 | ipars[,2]==1), ,drop=FALSE]) inc = NULL for(i in seq_along(parnames)){ if(is.na(match(parnames[i], modelnames))){ warning( (paste("Unrecognized Parameter in Start Values: ", parnames[i], "...Ignored", sep = ""))) } else{ inc = c(inc, i) } } start.pars = pars[inc] names(start.pars) = tolower(names(pars[inc])) uspec = .makemultispec(umodel$modelinc, umodel$modeldesc$vmodel, umodel$modeldesc$vsubmodel, umodel$modeldata$mexdata, umodel$modeldata$vexdata, umodel$start.pars, umodel$fixed.pars, umodel$vt) if(object@model$DCC == "FDCC"){ tmp = dccspec(uspec, VAR = ifelse(model$modelinc[1]>0, TRUE, FALSE), robust = ifelse(!is.null(model$varmodel$robust), model$varmodel$robust, FALSE), lag = model$modelinc[1], lag.max = model$varmodel$lag.max, lag.criterion = model$varmodel$lag.criterion, external.regressors = if(model$modelinc[2]>0) model$modeldata$mexdata else NULL, robust.control = if(!is.null(model$varmodel$robust.control)) model$varmodel$robust.control else list(), dccOrder = model$modelinc[4:5], model="FDCC", groups = model$fdccindex, distribution = model$modeldesc$distribution, start.pars = as.list(start.pars), fixed.pars = model$fixed.pars) } else{ tmp = dccspec(uspec, VAR = ifelse(model$modelinc[1]>0, TRUE, FALSE), robust = ifelse(!is.null(model$varmodel$robust), model$varmodel$robust, FALSE), lag = model$modelinc[1], lag.max = model$varmodel$lag.max, lag.criterion = model$varmodel$lag.criterion, external.regressors = if(model$modelinc[2]>0) model$modeldata$mexdata else NULL, robust.control = if(!is.null(model$varmodel$robust.control)) model$varmodel$robust.control else list(), dccOrder = model$modelinc[3:4], model = ifelse(model$modelinc[5]>0, "aDCC", "DCC"), distribution = model$modeldesc$distribution, start.pars = as.list(start.pars), fixed.pars = model$fixed.pars) } return(tmp) } setReplaceMethod(f="setstart", signature= c(object = "DCCspec", value = "vector"), definition = .setstartdcc) dccfit = function(spec, data, out.sample = 0, solver = "solnp", solver.control = list(), fit.control = list(eval.se = TRUE, stationarity = TRUE, scale = FALSE), cluster = NULL, fit = NULL, VAR.fit = NULL, realizedVol = NULL, ...) { UseMethod("dccfit") } .xdccfit = function(spec, data, out.sample = 0, solver = "solnp", solver.control = list(), fit.control = list(eval.se = TRUE, stationarity = TRUE, scale = FALSE), cluster = NULL, fit = NULL, VAR.fit = NULL, realizedVol = NULL, ...) { if(spec@model$DCC == "FDCC"){ ans = .fdccfit(spec = spec, data = data, out.sample = out.sample, solver = solver, solver.control = solver.control, fit.control = fit.control, cluster = cluster, fit = fit, VAR.fit = VAR.fit, realizedVol = realizedVol, ...) } else{ ans = .dccfit(spec = spec, data = data, out.sample = out.sample, solver = solver, solver.control = solver.control, fit.control = fit.control, cluster = cluster, fit = fit, VAR.fit = VAR.fit, realizedVol = realizedVol, ...) } return(ans) } setMethod("dccfit", signature(spec = "DCCspec"), .xdccfit) dccfilter = function(spec, data, out.sample = 0, filter.control = list(n.old = NULL), cluster = NULL, varcoef = NULL, realizedVol = NULL, ...) { UseMethod("dccfilter") } .xdccfilter = function(spec, data, out.sample = 0, filter.control = list(n.old = NULL), cluster = NULL, varcoef = NULL, realizedVol = NULL, ...) { if(spec@model$DCC == "FDCC"){ ans = .fdccfilter(spec = spec, data = data, out.sample = out.sample, filter.control = filter.control, cluster = cluster, varcoef = varcoef, realizedVol = realizedVol,...) } else{ ans = .dccfilter(spec = spec, data = data, out.sample = out.sample, filter.control = filter.control, cluster = cluster, varcoef = varcoef, realizedVol = realizedVol,...) } return(ans) } setMethod("dccfilter", signature(spec = "DCCspec"), .xdccfilter) dccforecast = function(fit, n.ahead = 1, n.roll = 0, external.forecasts = list(mregfor = NULL, vregfor = NULL), cluster = NULL, ...) { UseMethod("dccforecast") } .xdccforecast = function(fit, n.ahead = 1, n.roll = 0, external.forecasts = list(mregfor = NULL, vregfor = NULL), cluster = NULL, ...) { if(fit@model$DCC == "FDCC"){ ans = .fdccforecast(fit, n.ahead = n.ahead, n.roll = n.roll, external.forecasts = external.forecasts, cluster = cluster, ...) } else{ ans = .dccforecast(fit, n.ahead = n.ahead, n.roll = n.roll, external.forecasts = external.forecasts, cluster = cluster, ...) } return(ans) } setMethod("dccforecast", signature(fit = "DCCfit"), .xdccforecast) dccroll = function(spec, data, n.ahead = 1, forecast.length = 50, refit.every = 25, n.start = NULL, refit.window = c("recursive", "moving"), window.size = NULL, solver = "solnp", solver.control = list(), fit.control = list(eval.se = TRUE, stationarity = TRUE, scale = FALSE), cluster = NULL, save.fit = FALSE, save.wdir = NULL, realizedVol = NULL, clusterOnAssets=FALSE, ...) { UseMethod("dccroll") } .xdccroll = function(spec, data, n.ahead = 1, forecast.length = 50, refit.every = 25, n.start = NULL, refit.window = c("recursive", "moving"), window.size = NULL, solver = "solnp", solver.control = list(), fit.control = list(eval.se = TRUE, stationarity = TRUE, scale = FALSE), cluster = NULL, save.fit = FALSE, save.wdir = NULL, realizedVol = NULL, clusterOnAssets=FALSE, ...) { if(!is.null(cluster)){ if(clusterOnAssets){ out=.rolldcc.assets(spec=spec, data=data, n.ahead = n.ahead, forecast.length = forecast.length, refit.every = refit.every, n.start = n.start, refit.window = refit.window[1], window.size = window.size, solver = solver, solver.control = solver.control, fit.control = fit.control, cluster = cluster, save.fit = save.fit, save.wdir = save.wdir, realizedVol = realizedVol,...) } else{ out=.rolldcc.windows(spec=spec, data=data, n.ahead = n.ahead, forecast.length = forecast.length, refit.every = refit.every, n.start = n.start, refit.window = refit.window[1], window.size = window.size, solver = solver, solver.control = solver.control, fit.control = fit.control, cluster = cluster, save.fit = save.fit, save.wdir = save.wdir, realizedVol = realizedVol,...) } } else{ out=.rolldcc.assets(spec=spec, data=data, n.ahead = n.ahead, forecast.length = forecast.length, refit.every = refit.every, n.start = n.start, refit.window = refit.window[1], window.size = window.size, solver = solver, solver.control = solver.control, fit.control = fit.control, cluster = cluster, save.fit = save.fit, save.wdir = save.wdir, realizedVol = realizedVol,...) } return(out) } setMethod("dccroll", signature(spec = "DCCspec"), .xdccroll) dccsim = function(fitORspec, n.sim = 1000, n.start = 0, m.sim = 1, startMethod = c("unconditional", "sample"), presigma = NULL, preresiduals = NULL, prereturns = NULL, preQ = NULL, preZ = NULL, Qbar = NULL, Nbar = NULL, rseed = NULL, mexsimdata = NULL, vexsimdata = NULL, cluster = NULL, VAR.fit = NULL, prerealized = NULL, ...) { UseMethod("dccsim") } .xdccsim.fit = function(fitORspec, n.sim = 1000, n.start = 0, m.sim = 1, startMethod = c("unconditional", "sample"), presigma = NULL, preresiduals = NULL, prereturns = NULL, preQ = NULL, preZ = NULL, Qbar = NULL, Nbar = NULL, rseed = NULL, mexsimdata = NULL, vexsimdata = NULL, cluster = NULL, VAR.fit = NULL, prerealized = NULL, ...) { if(fitORspec@model$DCC == "FDCC"){ ans = .fdccsim.fit(fitORspec = fitORspec, n.sim = n.sim, n.start = n.start, m.sim = m.sim, startMethod = startMethod, presigma = presigma, preresiduals = preresiduals, prereturns = prereturns, preQ = preQ, preZ = preZ, Qbar = Qbar, rseed = rseed, mexsimdata = mexsimdata, vexsimdata = vexsimdata, cluster = cluster, prerealized = prerealized, ...) } else{ ans = .dccsim.fit(fitORspec = fitORspec, n.sim = n.sim, n.start = n.start, m.sim = m.sim, startMethod = startMethod, presigma = presigma, preresiduals = preresiduals, prereturns = prereturns, preQ = preQ, preZ = preZ, Qbar = Qbar, Nbar = Nbar, rseed = rseed, mexsimdata = mexsimdata, vexsimdata = vexsimdata, cluster = cluster, prerealized = prerealized, ...) } return(ans) } .xdccsim.spec = function(fitORspec, n.sim = 1000, n.start = 0, m.sim = 1, startMethod = c("unconditional", "sample"), presigma = NULL, preresiduals = NULL, prereturns = NULL, preQ = NULL, preZ = NULL, Qbar = NULL, Nbar = NULL, rseed = NULL, mexsimdata = NULL, vexsimdata = NULL, cluster = NULL, VAR.fit = NULL, prerealized = NULL, ...) { if(fitORspec@model$DCC == "FDCC"){ ans = .fdccsim.spec(fitORspec = fitORspec, n.sim = n.sim, n.start = n.start, m.sim = m.sim, startMethod = startMethod, presigma = presigma, preresiduals = preresiduals, prereturns = prereturns, preQ = preQ, preZ = preZ, Qbar = Qbar, rseed = rseed, mexsimdata = mexsimdata, vexsimdata = vexsimdata, cluster = cluster, VAR.fit = VAR.fit, prerealized = prerealized, ...) } else{ ans = .dccsim.spec(fitORspec = fitORspec, n.sim = n.sim, n.start = n.start, m.sim = m.sim, startMethod = startMethod, presigma = presigma, preresiduals = preresiduals, prereturns = prereturns, preQ = preQ, preZ = preZ, Qbar = Qbar, Nbar = Nbar, rseed = rseed, mexsimdata = mexsimdata, vexsimdata = vexsimdata, cluster = cluster, VAR.fit = VAR.fit, prerealized = prerealized, ...) } return(ans) } setMethod("dccsim", signature(fitORspec = "DCCfit"), .xdccsim.fit) setMethod("dccsim", signature(fitORspec = "DCCspec"), .xdccsim.spec) .fitted.dccfit = function(object) { T = object@model$modeldata$T D = object@model$modeldata$index ans = xts(object@model$mu[1:T,], D[1:T]) colnames(ans) = object@model$modeldata$asset.names return( ans ) } setMethod("fitted", signature(object = "DCCfit"), .fitted.dccfit) setMethod("fitted", signature(object = "DCCfilter"), .fitted.dccfit) .fitted.dccforecast = function(object) { T = object@model$modeldata$T m = NCOL(object@model$modeldata$data) n.roll = object@model$n.roll n.ahead = object@model$n.ahead T0 = object@model$modeldata$index[T:(T+n.roll)] ans = array(object@mforecast$mu, dim = c(n.ahead, m, n.roll+1), dimnames = list(paste("T+", 1:n.ahead,sep=""), object@model$modeldata$asset.names, as.character(T0))) return( ans ) } setMethod("fitted", signature(object = "DCCforecast"), .fitted.dccforecast) .fitted.dccsim = function(object, sim = 1) { n = length(object@msim$simR) m.sim = as.integer(sim) if( m.sim > n | m.sim < 1 ) stop("\rmgarch-->error: fitted (simulation) sim index out of bounds!") ans = object@msim$simX[[m.sim]] rownames(sim) = NULL colnames(ans) = object@model$modeldata$asset.names return( ans ) } setMethod("fitted", signature(object = "DCCsim"), .fitted.dccsim) .fitted.dccroll = function(object) { n = length(object@mforecast) index = object@model$index m = NCOL(object@model$data) D = index[(object@model$n.start+1):(object@model$n.start+object@model$forecast.length)] M = matrix(unlist(sapply(object@mforecast, function(x) fitted(x))), ncol = m, byrow = TRUE) M = xts(M, D) colnames(M) = object@model$modeldata$asset.names return( M ) } setMethod("fitted", signature(object = "DCCroll"), .fitted.dccroll) .residuals.dccfit = function(object) { T = object@model$modeldata$T D = object@model$modeldata$index ans = xts(object@model$residuals[1:T,], D[1:T]) colnames(ans) = object@model$modeldata$asset.names return( ans ) } setMethod("residuals", signature(object = "DCCfit"), .residuals.dccfit) setMethod("residuals", signature(object = "DCCfilter"), .residuals.dccfit) .rcor.dccfit = function(object, type = "R", output=c("array","matrix")) { T = object@model$modeldata$T D = object@model$modeldata$index nam = object@model$modeldata$asset.names if( type == "R"){ if(class(object)[1]=="DCCfit") tmp = object@mfit$R else tmp = object@mfilter$R m = dim(tmp[[1]])[2] R = array(NA, dim = c(m, m, T)) R[1:m,1:m, ] = sapply(tmp[1:T], FUN = function(x) x) dimnames(R)<-list(nam, nam, as.character(D[1:T])) if(output[1]=="matrix"){ R = array2matrix(R, date=as.Date(D[1:T]), var.names=nam, diag=FALSE) } return( R ) } else{ if(class(object)[1]=="DCCfit") tmp = object@mfit$Q else tmp = object@mfilter$Q m = dim(tmp[[1]])[2] Q = array(NA, dim = c(m, m, T)) Q[1:m,1:m, ] = sapply(tmp[1:T], FUN = function(x) x) dimnames(Q)<-list(nam, nam, as.character(D[1:T])) if(output[1]=="matrix"){ Q = array2matrix(Q, date=as.Date(D[1:T]), var.names=nam, diag=FALSE) } return( Q ) } } setMethod("rcor", signature(object = "DCCfit"), .rcor.dccfit) setMethod("rcor", signature(object = "DCCfilter"), .rcor.dccfit) .rcor.dccforecast = function(object, type = "R", output=c("array","matrix")) { n.roll = object@model$n.roll n.ahead = object@model$n.ahead T = object@model$modeldata$T D = as.character(object@model$modeldata$index[T:(T+n.roll)]) nam = object@model$modeldata$asset.names if( type == "R"){ tmp = object@mforecast$R } else{ tmp = object@mforecast$Q } for(i in 1:(n.roll+1)){ dimnames(tmp[[i]]) = list(nam, nam, paste("T+",1:n.ahead,sep="")) } names(tmp) = D if(output[1]=="matrix"){ for(i in 1:(n.roll+1)) tmp[[i]] = array2matrix(tmp[[i]], date=paste("T+",1:n.ahead,sep=""), var.names=nam, diag=FALSE) } return( tmp ) } setMethod("rcor", signature(object = "DCCforecast"), .rcor.dccforecast) .rcor.dccsim = function(object, type = "R", sim = 1, output=c("array","matrix")) { n = object@model$m.sim m.sim = as.integer(sim) nam = object@model$modeldata$asset.names n.sim = object@model$n.sim if( m.sim > n | m.sim < 1 ) stop("\rmgarch-->error: rcor sim index out of bounds!") if( type == "R"){ tmp = object@msim$simR[[m.sim]] } else{ tmp = object@msim$simQ[[m.sim]] } dimnames(tmp) = list(nam, nam, 1:n.sim) if(output[1]=="matrix"){ tmp = array2matrix(tmp, date=as.character(1:n.sim), var.names=nam, diag=FALSE) } return( tmp ) } setMethod("rcor", signature(object = "DCCsim"), .rcor.dccsim) .rcor.dccroll = function(object, type = "R", output=c("array","matrix")) { n = length(object@mforecast) index = object@model$index m = NCOL(object@model$data) fl = object@model$forecast.length nam = object@model$modeldata$asset.names D = index[(object@model$n.start+1):(object@model$n.start+fl)] Cf = array(unlist(sapply(object@mforecast, function(x) unlist(rcor(x, type=type)))), dim=c(m,m,fl), dimnames = list(nam, nam, as.character(D))) if(output[1]=="matrix"){ Cf = array2matrix(Cf, date=as.Date(D), var.names=nam, diag=FALSE) } return( Cf ) } setMethod("rcor", signature(object = "DCCroll"), .rcor.dccroll) .rcov.dccfit = function(object, output=c("array","matrix")) { T = object@model$modeldata$T D = object@model$modeldata$index nam = object@model$modeldata$asset.names if(class(object)[1]=="DCCfit") H = object@mfit$H[,,1:T] else H = object@mfilter$H[,,1:T] dimnames(H)<-list(nam, nam, as.character(D[1:T])) if(output[1]=="matrix"){ H = array2matrix(H, date=as.Date(D[1:T]), var.names=nam, diag=TRUE) } return( H ) } setMethod("rcov", signature(object = "DCCfit"), .rcov.dccfit) setMethod("rcov", signature(object = "DCCfilter"), .rcov.dccfit) .rcov.dccforecast = function(object, output=c("array","matrix")) { n.roll = object@model$n.roll n.ahead = object@model$n.ahead T = object@model$modeldata$T D = as.character(object@model$modeldata$index[T:(T+n.roll)]) nam = object@model$modeldata$asset.names H = object@mforecast$H for(i in 1:(n.roll+1)){ dimnames(H[[i]]) = list(nam, nam, paste("T+",1:n.ahead,sep="")) } names(H) = D if(output[1]=="matrix"){ for(i in 1:(n.roll+1)) H[[i]] = array2matrix(H[[i]], date=paste("T+",1:n.ahead,sep=""), var.names=nam, diag=TRUE) } return( H ) } setMethod("rcov", signature(object = "DCCforecast"), .rcov.dccforecast) .rcov.dccsim = function(object, sim = 1, output=c("array","matrix")) { n = object@model$m.sim nam = object@model$modeldata$asset.names n.sim = object@model$n.sim m.sim = as.integer(sim) if( m.sim > n | m.sim < 1 ) stop("\rmgarch-->error: rcov sim index out of bounds!") tmp = object@msim$simH[[m.sim]] dimnames(tmp) = list(nam, nam, 1:n.sim) if(output[1]=="matrix"){ tmp = array2matrix(tmp, date=as.character(1:n.sim), var.names=nam, diag=TRUE) } return( tmp ) } setMethod("rcov", signature(object = "DCCsim"), .rcov.dccsim) .rcov.dccroll = function(object, output=c("array","matrix")) { n = length(object@mforecast) index = object@model$index m = NCOL(object@model$data) fl = object@model$forecast.length nam = object@model$modeldata$asset.names D = index[(object@model$n.start+1):(object@model$n.start+fl)] Cf = array(unlist(sapply(object@mforecast, function(x) unlist(rcov(x)))), dim=c(m,m,fl), dimnames = list(nam, nam, as.character(D))) if(output[1]=="matrix"){ Cf = array2matrix(Cf, date=as.character(D), var.names=nam, diag=TRUE) } return( Cf ) } setMethod("rcov", signature(object = "DCCroll"), .rcov.dccroll) .sigma.dccfit = function(object) { T = object@model$modeldata$T D = object@model$modeldata$index nam = object@model$modeldata$asset.names if(class(object)[1] == "DCCfit"){ H = object@mfit$H[,,1:T,drop=FALSE] m = dim(H)[2] sig = sqrt(.Call("ArrayDiag", H, c(m,m,T), PACKAGE="rmgarch")) } else{ H = object@mfilter$H[,,1:T,drop=FALSE] m = dim(H)[2] sig = sqrt(.Call("ArrayDiag", H, c(m,m,T), PACKAGE="rmgarch")) } colnames(sig) = nam sig = xts(sig, D[1:T]) return( sig ) } setMethod("sigma", signature(object = "DCCfit"), .sigma.dccfit) setMethod("sigma", signature(object = "DCCfilter"), .sigma.dccfit) .sigma.dccforecast = function(object) { T = object@model$modeldata$T D = object@model$modeldata$index n.ahead = object@model$n.ahead nam = object@model$modeldata$asset.names n.roll = object@model$n.roll m = dim(object@model$mpars)[2]-1 sig = array(NA, dim = c(n.ahead, m, n.roll+1)) for(i in 1:(n.roll+1)){ sig[,,i] = sqrt(.Call("ArrayDiag", object@mforecast$H[[i]], c(m,m,n.ahead), PACKAGE="rmgarch")) } dimnames(sig) = list(paste("T+",1:n.ahead,sep=""), nam, as.character(D[T:(T+n.roll)])) return( sig ) } setMethod("sigma", signature(object = "DCCforecast"), .sigma.dccforecast) .sigma.dccsim = function(object, sim = 1) { H = rcov(object, sim = sim) m = dim(H)[1] n = dim(H)[3] nam = object@model$modeldata$asset.names sig = sapply(1:m, FUN = function(i) sqrt(H[i,i, ])) colnames(sig) = nam rownames(sig) = NULL return( sig ) } setMethod("sigma", signature(object = "DCCsim"), .sigma.dccsim) .sigma.dccroll = function(object) { n = length(object@mforecast) index = object@model$index m = NCOL(object@model$data) D = index[(object@model$n.start+1):(object@model$n.start+object@model$forecast.length)] S = matrix(unlist(sapply(object@mforecast, function(x) sigma(x))), ncol = m, byrow = TRUE) S = xts(S, D) colnames(S) = object@model$modeldata$asset.names return( S ) } setMethod("sigma", signature(object = "DCCroll"), .sigma.dccroll) rskew = function(object, ...) { UseMethod("rskew") } .skew.dccfit = function(object) { sk = NA if( object@model$modelinc[7]>0 ){ cf = object@model$mpars[,dim(object@model$mpars)[2]] nx = which( substr(names(cf), 1, 5) == "mskew" ) sk = cf[nx] } return( sk ) } setMethod("rskew", signature(object = "DCCfit"), .skew.dccfit) setMethod("rskew", signature(object = "DCCfilter"), .skew.dccfit) setMethod("rskew", signature(object = "DCCforecast"), .skew.dccfit) .skew.dccroll = function(object) { m = dim(object@model$modeldata$data)[1] n = length(object@mforecast) sk = rep(NA, n) if( object@model$modelinc[7]>0 ){ sk = sapply(object@model$rollcoef, FUN = function(x) x["mskew",m+1]) colnames(sk) = paste("roll-", 1:n, sep = "") } return( sk ) } setMethod("rskew", signature(object = "DCCroll"), .skew.dccroll) rshape = function(object, ...) { UseMethod("rshape") } .shape.dccfit = function(object) { sh = NA if( object@model$modelinc[6]>0 ){ cf = object@model$mpars[,dim(object@model$mpars)[2]] nx = which( substr(names(cf), 1, 6) == "mshape" ) sh = cf[nx] } return( sh ) } setMethod("rshape", signature(object = "DCCfit"), .shape.dccfit) setMethod("rshape", signature(object = "DCCfilter"), .shape.dccfit) setMethod("rshape", signature(object = "DCCforecast"), .shape.dccfit) .shape.dccroll = function(object) { m = dim(object@model$modeldata$data)[1] n = length(object@mforecast) sh = rep(NA, n) if( object@model$modelinc[6]>0 ){ sh = sapply(object@model$rollcoef, FUN = function(x) x["mshape",m+1]) colnames(sh) = paste("roll-", 1:n, sep = "") } return( sh ) } setMethod("rshape", signature(object = "DCCroll"), .shape.dccroll) .coef.dccfit = function(object, type = "all") { mpars = object@model$mpars m = dim(mpars)[2]-1 if( type == "all" ){ if(class(object)[1]=="DCCfit") cf = object@mfit$coef else cf = object@mfilter$coef } else if( type == "dcc"){ cf = object@model$mpars[which(object@model$eidx[,m+1]==1), m+1] if(class(object)[1]=="DCCfit"){ names(cf) = object@mfit$dccnames } else{ names(cf) = object@mfilter$dccnames } } else{ cf = object@model$mpars[which(object@model$eidx[,1:m]==1)] if(class(object)[1]=="DCCfit"){ names(cf) = object@mfit$garchnames } else{ names(cf) = object@mfilter$garchnames } } return( cf ) } setMethod("coef", signature(object = "DCCfit"), .coef.dccfit) setMethod("coef", signature(object = "DCCfilter"), .coef.dccfit) .coef.dccroll = function(object) { model = object@model cnames = object@model$modeldata$asset.names m = dim(model$umodel$modelinc)[2] allnames = NULL midx = .fullinc(model$modelinc, model$umodel) for(i in 1:m){ allnames = c(allnames, paste("[",cnames[i],"].", rownames(midx[midx[,i]==1,i, drop = FALSE]), sep = "")) } garchnames = allnames dccnames = rownames(midx[midx[,m+1]==1,m+1, drop = FALSE]) allnames = c(garchnames, paste("[Joint]", rownames(midx[midx[,m+1]==1,m+1, drop = FALSE]), sep = "")) n = length(object@mforecast) rollmat = matrix(NA, ncol = n, nrow = length(allnames)) for(i in 1:n){ rollmat[,i] = model$rollcoef[[i]][midx==1] } colnames(rollmat) = paste("roll-", 1:n, sep = "") rownames(rollmat) = allnames return( rollmat ) } setMethod("coef", signature(object = "DCCroll"), .coef.dccroll) .likelihood.dccfit = function(object) { switch(class(object)[1], DCCfit = object@mfit$llh, DCCfilter = object@mfilter$llh, DCCroll = { n = length(object@mforecast) cf = sapply( object@model$rolllik, FUN = function(x) x ) names(cf) = paste("roll-", 1:n, sep = "") return(cf) }) } setMethod("likelihood", signature(object = "DCCfit"), .likelihood.dccfit) setMethod("likelihood", signature(object = "DCCfilter"), .likelihood.dccfit) setMethod("likelihood", signature(object = "DCCroll"), .likelihood.dccfit) .dccinfocriteria.fit = function(object) { n = object@model$modeldata$T m = NCOL(object@model$modeldata$data) if(object@model$modelinc[1]>0){ npvar = dim(object@model$varcoef)[1] * dim(object@model$varcoef)[2] } else{ npvar = 0 } estpars = NROW(object@mfit$matcoef) np = npvar + estpars + ( (m^2 - m)/2 ) itest = rugarch:::.information.test(likelihood(object), nObs = n, nPars = np) itestm = matrix(0, ncol = 1, nrow = 4) itestm[1,1] = itest$AIC itestm[2,1] = itest$BIC itestm[3,1] = itest$SIC itestm[4,1] = itest$HQIC colnames(itestm) = "" rownames(itestm) = c("Akaike", "Bayes", "Shibata", "Hannan-Quinn") return(itestm) } setMethod("infocriteria", signature(object = "DCCfit"), .dccinfocriteria.fit) dcc.symcheck = function(x, m, d = rep(1, m), tol = 1e-12) { n1 = dim(x)[1] n2 = dim(x)[2] if( n1 != n2 ) stop("\nmatrix not square!") if( n1 != m ) stop("\nmatrix not of expected dimension!") if( max(abs(x - t(x))) > tol ) stop("\nmatrix is not symmetric!") if( !is.null( d ) ){ if( any( diag(x) != d ) ) stop("\nwrong values on diagonal of matrix!") } return( 0 ) } setMethod("show", signature(object = "DCCspec"), function(object){ m = dim(object@umodel$modelinc)[2] dccpars = sum(object@model$modelinc[3:7]) garchpars = sum( object@umodel$modelinc[1:18,] ) varpars = object@model$modelinc[1]*(m*m + m + object@model$modelinc[2]) cat(paste("\n*------------------------------*", sep = "")) cat(paste("\n* DCC GARCH Spec *", sep = "")) cat(paste("\n*------------------------------*", sep = "")) if(object@model$DCC=="FDCC"){ cat("\nModel : ", paste(object@model$DCC, "(", object@model$modelinc[4], ",", object@model$modelinc[5],")", sep="")) cat("\nNo.Groups : ", object@model$modelinc[3]) } else{ cat("\nModel : ", paste(object@model$DCC, "(", object@model$modelinc[3], ",", object@model$modelinc[4],")", sep="")) } cat("\nEstimation : ", object@model$modeldesc$type) cat("\nDistribution : ", object@model$modeldesc$distribution) cat("\nNo. Parameters : ", dccpars + garchpars + varpars + ( (m^2 - m)/2 )) cat("\nNo. Series : ", m) cat("\n\n") invisible(object) }) setMethod("show", signature(object = "DCCfit"), function(object){ m = dim(object@model$modeldata$data)[2] T = object@model$modeldata$T cat(paste("\n*---------------------------------*", sep = "")) cat(paste("\n* DCC GARCH Fit *", sep = "")) cat(paste("\n*---------------------------------*", sep = "")) cat("\n\nDistribution : ", object@model$modeldesc$distribution) if(object@model$DCC=="FDCC"){ cat("\nModel : ", paste(object@model$DCC, "(", object@model$modelinc[4], ",", object@model$modelinc[5],")", sep="")) cat("\nNo.Groups : ", object@model$modelinc[3]) } else{ cat("\nModel : ", paste(object@model$DCC, "(", object@model$modelinc[3], ",", object@model$modelinc[4],")", sep="")) } if(object@model$modelinc[1]>0){ npvar = dim(object@model$varcoef)[1] * dim(object@model$varcoef)[2] } else{ npvar = 0 } NP = paste("[",npvar, "+", length(object@mfit$garchnames),"+",length(object@mfit$dccnames), "+",(m^2 - m)/2,"]", sep="") cat("\nNo. Parameters : ", npvar+NROW(object@mfit$matcoef) + ( (m^2 - m)/2 )) cat("\n[VAR GARCH DCC UncQ] :", NP) cat("\nNo. Series : ", m) cat("\nNo. Obs. : ", T) cat("\nLog-Likelihood : ", object@mfit$llh) cat("\nAv.Log-Likelihood : ", round(object@mfit$llh/T, 2), "\n") cat("\nOptimal Parameters") cat(paste("\n-----------------------------------\n", sep = "")) print(round(object@mfit$matcoef,6), digits = 5) itest = rugarch:::.information.test(object@mfit$llh, nObs = T, nPars = npvar + (m^2 - m)/2 + length(object@mfit$matcoef[,1])) itestm = matrix(0, ncol = 1, nrow = 4) itestm[1,1] = itest$AIC itestm[2,1] = itest$BIC itestm[3,1] = itest$SIC itestm[4,1] = itest$HQIC colnames(itestm) = "" rownames(itestm) = c("Akaike", "Bayes", "Shibata", "Hannan-Quinn") cat("\nInformation Criteria") cat(paste("\n---------------------\n", sep = "")) print(itestm,digits=5) cat("\n") cat("\nElapsed time :", object@mfit$timer,"\n\n") invisible(object) }) setMethod("show", signature(object = "DCCfilter"), function(object){ m = dim(object@model$modeldata$data)[2] T = object@model$modeldata$T cat(paste("\n*------------------------------------*", sep = "")) cat(paste("\n* DCC GARCH Filter *", sep = "")) cat(paste("\n*------------------------------------*", sep = "")) cat("\n\nDistribution : ", object@model$modeldesc$distribution) if(object@model$DCC=="FDCC"){ cat("\nModel : ", paste(object@model$DCC, "(", object@model$modelinc[4], ",", object@model$modelinc[5],")", sep="")) cat("\nNo.Groups : ", object@model$modelinc[3]) } else{ cat("\nModel : ", paste(object@model$DCC, "(", object@model$modelinc[3], ",", object@model$modelinc[4],")", sep="")) } if(object@model$modelinc[1]>0){ npvar = dim(object@model$varcoef)[1] * dim(object@model$varcoef)[2] } else{ npvar = 0 } NP = paste("[",npvar, "+", length(object@mfilter$garchnames),"+",length(object@mfilter$dccnames), "+",(m^2 - m)/2,"]", sep="") cat("\nNo. of Parameters : ", length(object@mfilter$matcoef[,1]) + ( (m^2 - m)/2 )) cat("\n[VAR GARCH DCC UncQ] :", NP) cat("\nNo. of Series : ", m) cat("\nNo. of Obs. : ", T) cat("\nLog-Likelihood : ", object@mfilter$llh) cat("\nAv.Log-Likelihood : ", round(object@mfilter$llh/T, 2), "\n") cat("\nParameters") cat(paste("\n--------------------------------------\n", sep = "")) print(round(object@mfilter$matcoef[,1,drop=FALSE],6), digits = 5) cat("\n") cat("\nElapsed time :", object@mfilter$timer,"\n\n") invisible(object) }) setMethod("show", signature(object = "DCCforecast"), function(object){ cat(paste("\n*---------------------------------*", sep = "")) cat(paste("\n* DCC GARCH Forecast *", sep = "")) cat(paste("\n*---------------------------------*", sep = "")) cat("\n\nDistribution : ", object@model$modeldesc$distribution) if(object@model$DCC=="FDCC"){ cat("\nModel : ", paste(object@model$DCC, "(", object@model$modelinc[4], ",", object@model$modelinc[5],")", sep="")) cat("\nNo.Groups : ", object@model$modelinc[3]) } else{ cat("\nModel : ", paste(object@model$DCC, "(", object@model$modelinc[3], ",", object@model$modelinc[4],")", sep="")) } n.ahead = object@model$n.ahead cat("\nHorizon : ", n.ahead) cat("\nRoll Steps : ", object@model$n.roll) cat("\n-----------------------------------") cat("\n\n0-roll forecast: \n") forc = object@mforecast$R[[1]] if( dim(forc)[3] > 5 ){ cat("\nFirst 2 Correlation Forecasts\n") print(forc[, , 1:2], digits = 4) cat(paste(rep(".", dim(forc[,,1])[1], collapse = TRUE))) cat("\n") cat(paste(rep(".", dim(forc[,,1])[1], collapse = TRUE))) cat("\n") cat("\nLast 2 Correlation Forecasts\n") print(last(forc, 2), digits = 4) } else{ print(forc, digits = 4) } cat("\n\n") invisible(object) }) setMethod("show", signature(object = "DCCsim"), function(object){ cat(paste("\n*---------------------------------*", sep = "")) cat(paste("\n* DCC GARCH Simulation *", sep = "")) cat(paste("\n*---------------------------------*", sep = "")) cat("\n\nDistribution\t\t:", object@msim$model$distribution) if(object@model$DCC=="FDCC"){ cat("\nModel\t\t: ", paste(object@model$DCC, "(", object@model$modelinc[4], ",", object@model$modelinc[5],")", sep="")) cat("\nNo.Groups\t: ", object@model$modelinc[3]) } else{ cat("\nModel\t\t: ", paste(object@model$DCC, "(", object@model$modelinc[3], ",", object@model$modelinc[4],")", sep="")) } cat(paste("\nSimulation Horizon\t: ", object@msim$model$n.sim, sep = "")) cat(paste("\nBurn In\t\t\t\t: ", object@msim$model$n.start, sep = "")) cat(paste("\nNo. of Simulations\t: ",object@msim$model$m.sim, sep = "")) cat("\n\n") invisible(object) }) setMethod("show", signature(object = "DCCroll"), function(object){ cat(paste("\n*---------------------------------------------------*", sep = "")) cat(paste("\n* DCC GARCH Roll *", sep = "")) cat(paste("\n*---------------------------------------------------*", sep = "")) cat("\n\nDistribution\t\t:", object@model$modeldesc$distribution) cat(paste("\nSimulation Horizon\t: ", object@model$forecast.length, sep = "")) cat(paste("\nRefits\t\t\t\t: ", object@model$n.refits, sep = "")) cat(paste("\nWindow\t\t\t\t: ", object@model$refit.window, sep = "")) cat(paste("\nNo.Assets\t\t\t: ", length(object@model$modeldata$asset.names), sep = "")) cat("\n\nOptimal Parameters Across Rolls (First 2, Last 2)") cat(paste("\n---------------------------------------------------\n", sep = "")) tmp = coef(object) if(dim(tmp)[2]>4){ n = dim(tmp)[2] print(round(cbind(tmp[,1:2], tmp[,(n-1):n]), 4)) } else{ print(round(tmp, 4)) } cat("\n") invisible(object) }) setMethod(f = "plot", signature(x = "DCCfit", y = "missing"), .plotdccfit) setMethod(f = "plot", signature(x = "DCCfilter", y = "missing"), .plotdccfit) setMethod(f = "plot", signature(x = "DCCforecast", y = "missing"), .plotdccforecast) setMethod(f = "plot", signature(x = "DCCroll", y = "missing"), .plotdccroll) first = function(x, index = 1, ...) { UseMethod("first") } .first.array = function(x, index = 1) { T = dim(x)[3] if( index > T | index < 1 ) stop("\nindex out of bounds") x[, , 1:index, drop = FALSE] } setMethod("first", signature(x = "array"), .first.array) last = function(x, index = 1, ...) { UseMethod("last") } .last.array = function(x, index = 1) { T = dim(x)[3] if( index > T | index < 1 ) stop("\nindex out of bounds") x[, , (T - index + 1):T, drop = FALSE] } setMethod("last", signature(x = "array"), .last.array) .newsimpact.dcc = function(object, type = "cov", pair = c(1,2), plot = TRUE, plot.type = c("surface", "contour")) { if(object@model$DCC=="FDCC"){ ans = switch(type, cov = .newsimpact.fdcc.cov(object = object, pair = pair, plot = plot, type = plot.type), cor = .newsimpact.fdcc.cor(object = object, pair = pair, plot = plot, type = plot.type) ) } else{ ans = switch(type, cov = .newsimpact.dcc.cov(object = object, pair = pair, plot = plot, type = plot.type), cor = .newsimpact.dcc.cor(object = object, pair = pair, plot = plot, type = plot.type) ) } return(ans) } setMethod("nisurface", signature(object = "DCCfit"), .newsimpact.dcc) setMethod("nisurface", signature(object = "DCCfilter"), .newsimpact.dcc) .newsimpact.dcc.cor = function(object, pair = c(1,2), plot = TRUE, type = c("surface", "contour")){ if(is(object, "DCCfilter")){ Z = object@mfilter$stdresid cnames = object@model$modeldata$asset.names m = dim(object@model$umodel$modelinc)[2] maxz = round(max(apply(object@mfilter$stdresid, 1, "max")) + 1, 0) minz = round(min(apply(object@mfilter$stdresid, 1, "min")) - 1, 0) zseq = seq(minz, maxz, length.out = 100) idx = object@model$pidx dcca = object@model$pars[idx["dcca",1], 1] dccg = object@model$pars[idx["dccg",1], 1] dccb = object@model$pars[idx["dccb",1], 1] U = object@mfilter$Qbar*(1 - dcca - dccb) - dccg*object@mfilter$Nbar Qbar = object@mfilter$Qbar } else{ Z = object@mfit$stdresid cnames = object@model$modeldata$asset.names m = dim(object@model$umodel$modelinc)[2] maxz = round(max(apply(object@mfit$stdresid, 1, "max")) + 1, 0) minz = round(min(apply(object@mfit$stdresid, 1, "min")) - 1, 0) zseq = seq(minz, maxz, length.out = 100) idx = object@model$pidx dcca = object@model$pars[idx["dcca",1], 1] dccg = object@model$pars[idx["dccg",1], 1] dccb = object@model$pars[idx["dccb",1], 1] U = object@mfit$Qbar*(1 - dcca - dccb) - dccg*object@mfit$Nbar Qbar = object@mfit$Qbar } ni = matrix(0, 100, 100) for(i in 1:100){ for(j in 1:100){ z = za = matrix(0, ncol = m, nrow = 1) z[1,pair[1]] = zseq[i] z[1,pair[2]] = zseq[j] za = z * .asymI(z) tmp = U + dcca*t(z)%*%z + dccg*t(za)%*%za + dccb * Qbar tmp = tmp/(sqrt(diag(tmp)) %*% t(sqrt(diag(tmp))) ) ni[i,j] = tmp[pair[1],pair[2]] } } type == type[1] if(plot){ if(tolower(type[1]) == "surface"){ x1 = shape::drapecol(ni, col = shape::femmecol(100), NAcol = "white") persp( x = zseq, y = zseq, z = ni, col = x1, theta = 45, phi = 25, expand = 0.5, ltheta = 120, shade = 0.75, ticktype = "detailed", xlab = "shock[z_1]", ylab = "shock[z_2]", zlab = "cor", cex.axis = 0.7, cex.main = 0.8, main = paste("DCC News Impact Correlation Surface\n", cnames[pair[1]], "-", cnames[pair[2]], sep = "")) } else{ tcol <- terrain.colors(12) contour(x = zseq, y = zseq, z = ni, col = tcol[2], lty = "solid", cex.axis = 0.7, cex.main = 0.8, main = paste("DCC News Impact Correlation Contour\n", cnames[pair[1]], "-", cnames[pair[2]], sep = "")) } } return(list(nisurface = ni, axis = zseq)) } .newsimpact.dcc.cov = function(object, pair = c(1,2), plot = TRUE, type = c("surface", "contour")){ umodel = object@model$umodel m = dim(umodel$modelinc)[2] fpars = lapply(1:m, FUN = function(i) object@model$mpars[object@model$midx[,i]==1,i]) mspec = .makemultispec(umodel$modelinc, umodel$modeldesc$vmodel, umodel$modeldesc$vsubmodel, umodel$modeldata$mexdata, umodel$modeldata$vexdata, umodel$start.pars, fpars, NULL) D = rep(0, m) for(i in 1:m) D[i] = sqrt( as.numeric( uncvariance(mspec@spec[[i]]))) if(is(object, "DCCfilter")){ Z = object@mfilter$stdresid cnames = object@model$modeldata$asset.names maxz = round(max(apply(object@mfilter$stdresid, 1, "max")) + 1, 0) minz = round(min(apply(object@mfilter$stdresid, 1, "min")) - 1, 0) zseq = seq(minz, maxz, length.out = 100) idx = object@model$pidx dcca = object@model$pars[idx["dcca",1], 1] dccg = object@model$pars[idx["dccg",1], 1] dccb = object@model$pars[idx["dccb",1], 1] U = object@mfilter$Qbar*(1 - dcca - dccb) - dccg*object@mfilter$Nbar Qbar = object@mfilter$Qbar } else{ Z = object@mfit$stdresid cnames = object@model$modeldata$asset.names maxz = round(max(apply(object@mfit$stdresid, 1, "max")) + 1, 0) minz = round(min(apply(object@mfit$stdresid, 1, "min")) - 1, 0) zseq = seq(minz, maxz, length.out = 100) idx = object@model$pidx dcca = object@model$pars[idx["dcca",1], 1] dccg = object@model$pars[idx["dccg",1], 1] dccb = object@model$pars[idx["dccb",1], 1] U = object@mfit$Qbar*(1 - dcca - dccb) - dccg*object@mfit$Nbar Qbar = object@mfit$Qbar } ni = matrix(0, 100, 100) for(i in 1:100){ for(j in 1:100){ z = za = matrix(0, ncol = m, nrow = 1) z[1,pair[1]] = zseq[i] z[1,pair[2]] = zseq[j] za = z * .asymI(z) tmp = U + dcca*t(z)%*%z + dccg*t(za)%*%za + dccb * Qbar tmp = tmp/(sqrt(diag(tmp)) %*% t(sqrt(diag(tmp))) ) H = diag(D)%*%tmp%*%diag(D) ni[i,j] = H[pair[1],pair[2]] } } type == type[1] if(plot){ if(tolower(type[1]) == "surface"){ x1 = shape::drapecol(ni, col = shape::femmecol(100), NAcol = "white") persp( x = zseq, y = zseq, z = ni, col = x1, theta = 45, phi = 25, expand = 0.5, ltheta = 120, shade = 0.75, ticktype = "detailed", xlab = "shock[z_1]", ylab = "shock[z_2]", zlab = "cov", cex.axis = 0.7, cex.main = 0.8, main = paste("DCC News Impact Covariance Surface\n", cnames[pair[1]], "-", cnames[pair[2]], sep = "")) } else{ tcol <- terrain.colors(12) contour(x = zseq, y = zseq, z = ni, col = tcol[2], lty = "solid", cex.axis = 0.7, cex.main = 0.8, main = paste("DCC News Impact Covariance Contour\n", cnames[pair[1]], "-", cnames[pair[2]], sep = "")) } } return(list(nisurface = ni, axis = zseq)) } .newsimpact.fdcc.cor = function(object, pair = c(1,2), plot = TRUE, type = c("surface", "contour")) { tmp = getfdccpars(object@model$pars, object@model) fC = tmp$C fA = tmp$A fB = tmp$B if(is(object, "DCCfilter")){ Z = object@mfilter$stdresid modelinc = object@model$modelinc cnames = object@model$modeldata$asset.names m = dim(object@model$umodel$modelinc)[2] maxz = round(max(apply(object@mfilter$stdresid, 1, "max")) + 1, 0) minz = round(min(apply(object@mfilter$stdresid, 1, "min")) - 1, 0) zseq = seq(minz, maxz, length.out = 100) Qbar = object@mfilter$Qbar } else{ Z = object@mfit$stdresid cnames = object@model$modeldata$asset.names m = dim(object@model$umodel$modelinc)[2] maxz = round(max(apply(object@mfit$stdresid, 1, "max")) + 1, 0) minz = round(min(apply(object@mfit$stdresid, 1, "min")) - 1, 0) zseq = seq(minz, maxz, length.out = 100) Qbar = object@mfit$Qbar } U = (fC %*% t(fC)) * Qbar ni = matrix(0, 100, 100) for(i in 1:100){ for(j in 1:100){ z = za = matrix(0, ncol = m, nrow = 1) z[1,pair[1]] = zseq[i] z[1,pair[2]] = zseq[j] tmp = U + (fA[,1] %*% t(fA[,1]))* (t(z)%*%z) + (fB[,1]%*%t(fB[,1])) * Qbar tmp = tmp/(sqrt(diag(tmp)) %*% t(sqrt(diag(tmp))) ) ni[i,j] = tmp[pair[1],pair[2]] } } type == type[1] if(plot){ if(tolower(type[1]) == "surface"){ x1 = shape::drapecol(ni, col = shape::femmecol(100), NAcol = "white") persp( x = zseq, y = zseq, z = ni, col = x1, theta = 45, phi = 25, expand = 0.5, ltheta = 120, shade = 0.75, ticktype = "detailed", xlab = "shock[z_1]", ylab = "shock[z_2]", zlab = "cor", cex.axis = 0.7, cex.main = 0.8, main = paste("DCC News Impact Correlation Surface\n", cnames[pair[1]], "-", cnames[pair[2]], sep = "")) } else{ tcol <- terrain.colors(12) contour(x = zseq, y = zseq, z = ni, col = tcol[2], lty = "solid", cex.axis = 0.7, cex.main = 0.8, main = paste("DCC News Impact Correlation Contour\n", cnames[pair[1]], "-", cnames[pair[2]], sep = "")) } } return(list(nisurface = ni, axis = zseq)) } .newsimpact.fdcc.cov = function(object, pair = c(1,2), plot = TRUE, type = c("surface", "contour")){ umodel = object@model$umodel m = dim(umodel$modelinc)[2] fpars = lapply(1:m, FUN = function(i) object@model$mpars[object@model$midx[,i]==1,i]) mspec = .makemultispec(umodel$modelinc, umodel$modeldesc$vmodel, umodel$modeldesc$vsubmodel, umodel$modeldata$mexdata, umodel$modeldata$vexdata, umodel$start.pars, fpars, NULL) D = rep(0, m) for(i in 1:m) D[i] = sqrt( as.numeric( uncvariance(mspec@spec[[i]]))) tmp = getfdccpars(object@model$pars, object@model) fC = tmp$C fA = tmp$A fB = tmp$B if(is(object, "DCCfilter")){ Z = object@mfilter$stdresid cnames = object@model$modeldata$asset.names maxz = round(max(apply(object@mfilter$stdresid, 1, "max")) + 1, 0) minz = round(min(apply(object@mfilter$stdresid, 1, "min")) - 1, 0) zseq = seq(minz, maxz, length.out = 100) Qbar = object@mfilter$Qbar } else{ Z = object@mfit$stdresid cnames = object@model$modeldata$asset.names maxz = round(max(apply(object@mfit$stdresid, 1, "max")) + 1, 0) minz = round(min(apply(object@mfit$stdresid, 1, "min")) - 1, 0) zseq = seq(minz, maxz, length.out = 100) Qbar = object@mfit$Qbar } U = (fC %*% t(fC)) * Qbar ni = matrix(0, 100, 100) for(i in 1:100){ for(j in 1:100){ z = za = matrix(0, ncol = m, nrow = 1) z[1,pair[1]] = zseq[i] z[1,pair[2]] = zseq[j] tmp = U + (fA[,1] %*% t(fA[,1]))* (t(z)%*%z) + (fB[,1]%*%t(fB[,1])) * Qbar tmp = tmp/(sqrt(diag(tmp)) %*% t(sqrt(diag(tmp))) ) H = diag(D)%*%tmp%*%diag(D) ni[i,j] = H[pair[1],pair[2]] } } type == type[1] if(plot){ if(tolower(type[1]) == "surface"){ x1 = shape::drapecol(ni, col = shape::femmecol(100), NAcol = "white") persp( x = zseq, y = zseq, z = ni, col = x1, theta = 45, phi = 25, expand = 0.5, ltheta = 120, shade = 0.75, ticktype = "detailed", xlab = "shock[z_1]", ylab = "shock[z_2]", zlab = "cov", cex.axis = 0.7, cex.main = 0.8, main = paste("DCC News Impact Covariance Surface\n", cnames[pair[1]], "-", cnames[pair[2]], sep = "")) } else{ tcol <- terrain.colors(12) contour(x = zseq, y = zseq, z = ni, col = tcol[2], lty = "solid", cex.axis = 0.7, cex.main = 0.8, main = paste("DCC News Impact Covariance Contour\n", cnames[pair[1]], "-", cnames[pair[2]], sep = "")) } } return(list(nisurface = ni, axis = zseq)) }
pcAxisParser <- function(streamParser) { errorFun <- function(strmPosition,h=NULL,type="") { if ( is.null(h) || type != "concatenation" ) print(paste("Error from line:",strmPosition$line," position:",strmPosition$linePos)) else errorFun(h$pos,h$h,h$type) return(list(type=type,pos=strmPosition,h=h)) } tlistParse <- concatenation(keyword("TLIST"), whitespace(), charParser("("), whitespace(), symbolic(), whitespace(), alternation( concatenation(charParser(")"), repetition1N( concatenation( whitespace(), charParser(","), whitespace(), string(action = function(s) s), action = function(s) s[[4]]), action = function(s) list(type="list",value=unlist(s))), action = function(s) s[[2]] ), concatenation(charParser(","), whitespace(), string(action = function(s) s), whitespace(), charParser("-"), whitespace(), string(action = function(s) s), whitespace(), charParser(")"), action = function(s) list(type="limit",value=s[c(3,7)]) ), action = function(s) s), whitespace(), charParser(";"), action = function(s) list(type="tlist",value=s[c(5,7)]) ) rule <- concatenation( symbolic(action = function(s) s), option(concatenation( whitespace(), charParser("["), whitespace(), symbolic(action = function(s) s), whitespace(), charParser("]"), action = function(s) s[4]), action = function(s) if (!is.null(s$type) && s$type=="empty") NULL else s), option(concatenation( whitespace(), charParser("("), whitespace(), string(action = function(s) s), repetition0N( concatenation( whitespace(), charParser(","), whitespace(), string(action = function(s) s), action = function(s) s[4]), action = function(s) if (!is.null(s$type) && s$type=="empty") NULL else s$value), whitespace(), charParser(")"), action = function(s) if( is.null(s[[5]]) ) s[c(4)] else c(s[c(4)],unlist(s[c(5)]))), action = function(s) if (!is.null(s$type) && s$type=="empty") NULL else s), whitespace(), charParser("="), whitespace(), alternation( concatenation( string(action = function(s)s), repetition1N(concatenation( whitespace(), string(action = function(s) s), action = function(s) s[[2]]), action = function(s) s ), whitespace(), charParser(";"), action = function(s) list(type="stringstring",value=c(s[c(1)],unlist(s[c(2)]))) ), concatenation( string(action = function(s) s) , repetition0N( concatenation( whitespace(), charParser(","), whitespace(), string(action = function(s) s), action = function(s) s[[4]]), action = function(s) if (!is.null(s$type) && s$type=="empty") NULL else s$value), whitespace(), charParser(";"), action = function(s) list(type="liststring",value=if( is.null( s[[2]] ) ) s[c(1)] else c(s[c(1)],unlist(s[c(2)],use.names = FALSE))) ), concatenation( alternation( numberScientific(action = function(s) s), string(action = function(s) s), dots (action = function(s) s), action = function(s) s) , repetition0N( concatenation( separator(), alternation( numberScientific( action = function(s) s), string(action = function(s) s), dots (action = function(s) s), action = function(s) s) , action = function(s) s[[2]]), action = function(s) if (!is.null(s$type) && s$type=="empty") NULL else s$value), whitespace(), alternation( concatenation(charParser(";"), whitespace(), option(concatenation( charParser(";"), whitespace())), option(concatenation( charParser("\032"), whitespace())) ), concatenation(charParser("\032"), whitespace() ), eofMark()), action = function(s) list(type="list",value=if( is.null( s[[2]] ) ) s[c(1)] else c(s[c(1)],unlist(s[c(2)], use.names = FALSE))) ), tlistParse, concatenation(symbolic(action = function(s) s), whitespace(), charParser(";"), action = function(s) list(type="symbol",value=s[[1]])), action = function(s) s), whitespace(), action = function(s) { rule <- s[c(1,2,3,7)] ; names(rule) <- c("keyword","language","parameters","ruleRight") ; rule } ) cstream <- concatenation(repetition1N(rule,action = function(s) s) ,eofMark(error=errorFun),action = function(s) s[[1]]) (streamParser) return(cstream) }
calc_LD<-function(mat,MAF,method,LD_summary,saveAt,linkage_map,interval) { if(missing(mat)) { stop('\n','--- Argument "mat" is missing') } mat<-as.matrix(mat) if(dim(mat)[2]%%2!=0) { stop('\n','--- Error in number of colomns in argument "mat"') } if(length(which(mat!=1 & mat!=2))>0){ stop('\n','--- Error in argument "mat". Wrong values in mat') } if(missing(MAF)) { cat('MAF is missing, it has been set to default value of 0.05.',fill=TRUE) MAF<-0.05 } if(!missing(MAF)) { if(MAF>0.49999 | MAF<0){ stop('\n','--- Error in argument "MAF". Possible range: 0<=x<=0.49999') } } if(missing(method)) { cat('Method to calculate LD is missing, LD will be calculated for all adjacent loci.',fill=TRUE) method<-'adjacent' } test <- c('adjacent','pairwise') if(method%in%test==FALSE){ stop('\n','--- Possible options in argument "method" are "adjacent" and "pairwise"') } if(missing(LD_summary)) { LD_summary<-TRUE } if(!missing(LD_summary)) { if(is.logical(LD_summary)==FALSE){ stop('\n','--- Argument "LD_summary" should be type "logical"') } } if(!missing(saveAt)){ if(is.character(saveAt)==FALSE){ stop('Define a name for the saveAt argument as type "character"') } outFile<-paste(saveAt,'.txt',sep='') } if(missing(linkage_map) & missing(interval)) { Ld_decay<-FALSE } if(!missing(linkage_map) & missing(interval)){ stop('\n','--- For calculation of LD decay, arguments "linkage_map" and "interval" should be provided in the function.') } if(missing(linkage_map) & !missing(interval)){ stop('\n','--- For calculation of LD decay, arguments "linkage_map" and "interval" should be provided in the function.') } if(!missing(linkage_map)) { if(length(linkage_map)!=(dim(mat)[2]/2)){ stop('\n','--- Error in linkage map. Linkage map does not match number of loci') } if(length(linkage_map)!=length(unique(linkage_map))){ stop('\n','--- Error in linkage map. Some loci have the same position in linkage map') } if(length(which(linkage_map<0)>0)){ stop('\n','--- Error in linkage map. Negative value in linkage map') } } if(!missing(linkage_map) & !missing(interval) & method=='pairwise'){ Ld_decay<-TRUE chrom_length<-max(linkage_map) intervals<-seq(0,chrom_length,interval) if(length(intervals)==1){ stop('\n','--- Wrong input for argument "interval"') } } if(!missing(linkage_map) & !missing(interval) & method!='pairwise'){ stop('\n','--- For the calculation of LD decay argument "method" should be set to "pairwise"') } Calc_freq<-function(Loci_Mat){ freq1<-as.numeric() freq2<-as.numeric() s1<-seq(1,length(Loci_Mat[1,]),2) s2<-seq(2,length(Loci_Mat[1,]),2) a1<-Loci_Mat[,s1]+Loci_Mat[,s2] a1[a1==3]=1 a1[a1==4]=0 Loci_Mat2<-a1 dunkan<-function(vec){ sum(vec)/(length(vec)*2) } freq1<-apply(Loci_Mat2,2,dunkan) freq2<-1-freq1 return(freq1) } if(Ld_decay==TRUE){ chrom_length<-max(linkage_map) intervals<-seq(0,chrom_length,interval) intervals } mat<-as.matrix(mat) loci_mat<-mat r_size<-dim(loci_mat)[1] c_size<-dim(loci_mat)[2] nloci_freq<-dim(loci_mat)[2]/2 loci_mat<-as.integer(unlist(loci_mat)) outfreq<-.Fortran("cf",r_size= as.integer(r_size),c_size = as.integer(c_size),loci_mat=loci_mat,nloci=as.integer(nloci_freq),freq1_main=double(nloci_freq)) freq1<-as.numeric(outfreq[[5]]) freq2<-1-freq1 freqmatrix<-matrix(0,ncol=2,nrow=length(freq1)) freqmatrix[,1]<-freq1 freqmatrix[,2]<-freq2 MAFv<-apply(freqmatrix,1,min) MAFv1<-MAFv[MAFv>=MAF] index<-which(MAFv%in%MAFv1) if(Ld_decay==TRUE){ linkage_map1<-linkage_map[index] } new_index<-index*2 index<-c(new_index-1,new_index) index<-sort(index) mat_after_maf<-mat[,index] r_size<-nrow(mat_after_maf) c_size<-ncol(mat_after_maf) outi2<-unlist(mat_after_maf) outi2<-as.integer(mat_after_maf) if (method=='pairwise'){ npair1<-combn(1:(ncol(mat_after_maf)/2),2) npair<-length(npair1[1,]) arg5<-npair*12 argmet<-1 } if (method=='adjacent'){ npair<-(ncol(mat_after_maf)/2)-1 arg5<-npair*12 argmet<-2 } LD_Out<-.Fortran("ld",r_size= as.integer(r_size), c_size = as.integer(c_size),loci_mat=outi2,npair=as.integer(npair),method=as.integer(argmet),ld_data=double(arg5)) ld_data<-matrix(as.numeric(LD_Out[[6]]),nrow = npair,ncol = 12) dim(ld_data) Mean_r2<-mean(ld_data[,12]) if(Ld_decay==TRUE){ npair1<-t(npair1) mydif<-linkage_map1[npair1[,2]]-linkage_map1[npair1[,1]] length(mydif) if(length(which(mydif<0))){ stop('--- Internal error in linkage map') } ld_data2<-matrix(ncol=2,nrow=length(mydif)) ld_data2[,1]<-ld_data[,12] ld_data2[,2]<-mydif r2_A<-matrix(nrow=length(intervals)-1,ncol=2) r_breedA<-ld_data2 r_breedA<-r_breedA[order(r_breedA[,2]),] for (i in 1:(length(intervals)-1)){ insideA<-subset(r_breedA,r_breedA[,2]>intervals[i] & r_breedA[,2]<=intervals[i+1]) insideA<-insideA[,1] r2_A[i,1]<-mean(insideA) r2_A[i,2]<-(intervals[i]+intervals[i+1])/2 } if(length(which(is.nan(r2_A[,1])==TRUE))>0){ warning('\n','Mean LD is not available for one or more intervals due to lack of loci on those intervals.') } } if(LD_summary==TRUE){ Mean_D<-mean(ld_data[,10]) Mean_r<-mean(ld_data[,11]) Mean_r2<-mean(ld_data[,12]) cat('\n','**** Linkage disequilibrium output **** ',fill=TRUE,'\n') cat('Method:',method,fill = TRUE) cat('No. marker:',(ncol(mat_after_maf)/2),fill = TRUE) cat('No. marker pairs:',npair,fill = TRUE) cat('\n','"D" summary:',fill=TRUE) print(summary(ld_data[,10])) cat('\n','"r" summary:',fill=TRUE) print(summary(ld_data[,11])) cat('\n','"r2" summary:',fill=TRUE) print(summary(ld_data[,12])) } if(!missing(saveAt)){ colnames(ld_data) <- c("Pair No.","--p1--","--q1--","--p2--","--q2--","--Hap11--","--Hap12--","--Hap21--","--Hap22--","--D--","--r--","--r2--") write.table(formatC(ld_data,digits=4, format="f") ,file=outFile,row.names = FALSE,quote=FALSE) cat('\n','LD data has been written to the output file:',outFile,fill = TRUE) } if(Ld_decay==TRUE){ Final<-list(Mean_r2=Mean_r2,ld_data=ld_data,ld_decay=r2_A) } else Final<-list(Mean_r2=Mean_r2,ld_data=ld_data) return(Final) }
identify_nkw <- function(data, collab_threshold = 5, return = "data_summary"){ summary_byPersonId <- data %>% group_by(PersonId, Organization) %>% summarize(mean_collab = mean(Collaboration_hours), .groups = "drop")%>% mutate(flag_nkw = case_when(mean_collab >= collab_threshold ~ "kw", TRUE ~ "nkw")) data_with_flag <- left_join(data, summary_byPersonId %>% dplyr::select(PersonId,flag_nkw), by = 'PersonId') summary_byOrganization <- summary_byPersonId %>% group_by(Organization, flag_nkw)%>% summarise(total = n(), .groups = "drop")%>% group_by(Organization)%>% mutate(perc = total/sum(total))%>% filter(flag_nkw == "nkw")%>% rename(n_nkw = total, perc_nkw = perc)%>% select(-flag_nkw) %>% ungroup() n_nkw <- sum(summary_byPersonId$flag_nkw == "nkw") if(n_nkw == 0){ flagMessage <- paste0("[Pass] There are no non-knowledge workers identified", " (average collaboration hours below ", collab_threshold, " hours).") } else { flagMessage <- paste0("[Warning] Out of a population of ", n_distinct(data$PersonId), ", there are ", n_nkw, " employees who may be non-knowledge workers (average collaboration hours below ", collab_threshold, " hours).") } if(return == "data_with_flag"){ return(data_with_flag) } else if(return %in% c("data_clean", "data_cleaned")){ data_with_flag %>% filter(flag_nkw == "kw") } else if(return == "text"){ flagMessage } else if(return =="data_summary"){ summary_byOrganization %>% mutate(perc_nkw = scales::percent(perc_nkw, accuracy = 1)) %>% rename(`Non-knowledge workers (count)` = "n_nkw", `Non-knowledge workers (%)` = "perc_nkw") } else { stop("Error: please check inputs for `return`") } }
cchart.Xbar1 <- function(x, sizes) { a <- rowMeans(x) x2bar <- mean(a) sigma <- sd.xbar(x) qcc(x, type = "xbar", sizes) stat <- list(c(x2bar, sigma)) return(stat) }
replaceColors <- function(grob, type){ if(type=="none") return(grob) if(type=="safe" && is(grob, "text")){ if (!is.null(grob$gp$col)) { grob$gp$col <- " } } if (!is.null(grob$gp)) { if (!is.null(grob$gp$col)) { grob$gp$col <- cvdSimulator(grob$gp$col, type) } if (!is.null(grob$gp$fill)) { grob$gp$fill <- cvdSimulator(grob$gp$fill, type) } } if (length(grob$grobs)>0) { grob$grobs <- lapply(grob$grobs, replaceColors, type=type) } if (length(grob$children)>0) { grob$children <- lapply(grob$children, replaceColors, type=type) } if (is(grob, "rastergrob")) { r <- cvdSimulator(grob$raster, type=type) dim(r) <- dim(grob$raster) class(r) <- class(grob$raster) grob <- editGrob(grob, raster = r) } return(grob) } relativePhotometricQuantities <- function(col){ return((col2rgb(col, alpha = TRUE)/255)^2.2) } reduceColor <- function(col, method=c("protanope", "deuteranope")){ method <- match.arg(method) return(switch(method, "protanope"=.992052*col+.003974, "deuteranope"=.957237*col+.0213814)) } RGB2LMS <- function(col){ return(matrix(c( 17.8824, 43.5161, 4.11935, 3.45565, 27.1554, 3.86714, .0299566, .184309, 1.46709 ), nrow = 3, ncol = 3, byrow = TRUE) %*% col) } dichromatColor <- function(col, method=c("protanope", "deuteranope")){ prot <- matrix(c( 0, 2.02344, -2.52581, 0, 1, 0, 0, 0, 1 ), nrow = 3, ncol = 3, byrow = TRUE) deut <- matrix(c( 1, 0, 0, .494207, 0, 1.24827, 0, 0, 1 ), nrow = 3, ncol = 3, byrow = TRUE) return(switch(method, "protanope"= prot %*% col, "deuteranope"= deut %*% col)) } LMS2RGB <- function(col){ return(matrix(c( .080944, -.130504, .116721, -.0102485, .0540194, -.113615, -.000365294, -.00412163, .693513 ), nrow = 3, ncol = 3, byrow = TRUE) %*% col) } RGB2rgb <- function(col){ if("alpha" %in% rownames(col)){ alpha <- col["alpha", ] }else{ alpha <- 255 } col <- 255* (col[seq.int(3), , drop=FALSE]^(1/2.2)) return(rgb(col[1, ], col[2, ], col[3, ], alpha = alpha, maxColorValue = 255)) } XYZ2LMS <- function(XYZ){ stopifnot(nrow(XYZ)==3) return(matrix(c( 0.7328, 0.4296, -0.1624, -0.7036, 1.6975, 0.0061, 0.0030, 0.0136, 0.9834 ), nrow = 3, ncol = 3, byrow = TRUE) %*% XYZ) } LMS2XYZ <- function(LMS){ stopifnot(nrow(LMS)==3) return(matrix(c( 1.096123821, -0.278869000, 0.1827452, 0.454369042, 0.473533154, 0.0720978, -0.009627609, -0.005698031, 1.0153256 ), nrow = 3, ncol = 3, byrow = TRUE) %*% LMS) } col2lab <- function(x){ col <- col2rgb(x, alpha = TRUE) cbind(convertColor(t(col[seq.int(3), , drop=FALSE]), from = "sRGB", to="Lab", scale.in = 255), alpha = col["alpha", ]) } lab2hex <- function(x){ col <- x[, seq.int(3)] alpha <- 255 if(ncol(x)>3){ alpha <- x[, "alpha"] } rgb(convertColor(col, from = "Lab", to="sRGB", scale.out = 255), alpha = alpha, maxColorValue = 255) } colDistRGB <- function(.ele, sc, c){ .ele <- sc[, .ele, drop=FALSE] rbar = (c["red", ] + .ele["red", ])/2 dR = (c["red", ] - .ele["red", ])^2 dG = (c["green", ] - .ele["green", ])^2 dB = (c["blue", ] - .ele["blue", ])^2 sqrt((2+rbar/256)*dR + 4*dG + (2+(255 - rbar)/256)*dB) } colDistCIE2000 <- function(.ele, sc, c){ .ele <- sc[.ele, , drop=FALSE] L1 <- .ele[, "L"] L2 <- c[, "L"] a1 <- .ele[, "a.x"] a2 <- c[, "a.x"] b1 <- .ele[, "b"] b2 <- c[, "b"] Lbar_ <- (L1 + L2)/2 C1 <- sqrt(a1^2 + b1^2) C2 <- sqrt(a2^2 + b2^2) Cbar <- (C1 + C2)/2 G <- (1-sqrt(Cbar^7/(Cbar^7+25^7)))/2 a1_ <- a1*(1+G) a2_ <- a2*(1+G) C1_ <- sqrt(a1_^2 + b1^2) C2_ <- sqrt(a2_^2 + b2^2) Cbar_ <- (C1_ + C2_)/2 at1 <- atan2(b1, a1_)*180/pi h1_ <- ifelse(at1<0, at1+360, at1) at2 <- atan2(b2, a2_)*180/pi h2_ <- ifelse(at2<0, at2+360, at2) Hbar_ <- ifelse(abs(h1_-h2_)>180, (h1_+h2_+360)/2, (h1_+h2_)/2) T <- 1 - 0.17 * cos(Hbar_ - 30) + 0.24 * cos(2*Hbar_) + 0.32 * cos(3*Hbar_ + 6) - 0.20 * cos(4*Hbar_ - 63) dh_ <- ifelse(abs(h2_ - h1_)<= 180, h2_ - h1_, ifelse(abs(h2_ - h1_) > 180 & h2_ <= h1_, h2_ - h1_ + 360, h2_ - h1_ - 360)) dL_ <- L2 - L1 dC_ <- C2_ - C1_ dH_ <- 2*sqrt(C1_*C2_)*sin(dh_/2) SL <- 1 + 0.015 * (Lbar_ - 50)^2/sqrt(20+(Lbar_ - 50)^2) SC <- 1 + 0.045 * Cbar_ SH <- 1 + 0.015 * Cbar_*T dtheta <- 30 * exp(-((Hbar_-275)/25)^2) RC <- 2*sqrt(Cbar_^7/(Cbar_^7 + 25^7)) RT <- -RC*sin(2*dtheta) KL <- KC <- KH <- 1 sqrt((dL_/KL/SL)^2 + (dC_/KC/SC)^2 + (dH_/KH/SH)^2 + RT*(dC_/KC/SC)*(dH_/KH/SH)) } safeCol <- c(safeColors, "white"=" closestColorRGB <- function(col){ if(all(is.na(col))) return(col) sc <- col2rgb(safeCol, alpha = TRUE) c <- col2rgb(col, alpha = TRUE) d <- lapply(colnames(sc), colDistRGB, sc=sc, c=c) d <- do.call(cbind, d) colnames(d) <- colnames(sc) maxV <- max(d) d1 <- d + 10^(nchar(maxV))*seq.int(nrow(d)) d1 <- order(t(d1)) d <- t(d)[d1] d <- matrix(d, ncol = length(safeCol), byrow = TRUE) d1 <- matrix(d1, ncol = length(safeCol), byrow = TRUE) d1 <- d1 - length(safeCol)*(seq.int(nrow(d1))-1) da <- col2lab(safeCol[d1[, 1]]) db <- col2lab(safeCol[d1[, 2]]) f <- d[, 1]/(d[, 1]+d[, 2]) newcol <- round(f*(db - da)) + da newcol <- lab2hex(newcol) dim(newcol) <- dim(col) newcol[is.na(col)] <- NA return(newcol) } closestColorCIE2000 <- function(col){ if(all(is.na(col))) return(col) sc <- col2lab(safeCol) c <- col2lab(col) d <- lapply(names(safeCol), colDistCIE2000, sc=sc, c=c) d <- do.call(cbind, d) colnames(d) <- names(safeCol) maxV <- max(d) d1 <- d + 10^(nchar(maxV))*seq.int(nrow(d)) d1 <- order(t(d1)) d <- t(d)[d1] d <- matrix(d, ncol = length(safeCol), byrow = TRUE) d1 <- matrix(d1, ncol = length(safeCol), byrow = TRUE) d1 <- d1 - length(safeCol)*(seq.int(nrow(d1))-1) da <- col2lab(safeCol[d1[, 1]]) db <- col2lab(safeCol[d1[, 2]]) f <- d[, 1]/(d[, 1]+d[, 2]) newcol <- round(f*(db - da)) + da newcol <- lab2hex(newcol) dim(newcol) <- dim(col) newcol[is.na(col)] <- NA return(newcol) } closestColorLab <- function(col){ lab <- col2lab(col) lab.a <- lab[, 2] lab.b <- lab[, "b"] lab[, "b"] <- lab[, "b"] + sign(lab.b) * lab.a lab[lab[, "b"]>127, "b"] <- 127 lab[lab[, "b"]< -128, "b"] <- -128 lab[, "L"] <- lab[, "L"] - sign(lab.b) * lab.a/2 + lab.b/4 lab[lab[, "L"]<0, "L"] <- 0 lab[lab[, "L"]>100, "L"] <- 100 newcol <- lab2hex(lab) dim(newcol) <- dim(col) newcol[is.na(col)] <- NA return(newcol) } closestColorLab2 <- function(col){ lab <- col2lab(col) lab.a <- lab[, 2] lab.b <- lab[, "b"] lab[, "L"] <- lab[, "L"] + ifelse(lab.a<0 & lab.b>0, abs(lab.a/2), 0) lab[, "b"] <- ifelse(lab.a<0 & lab.b>0, -lab.b, lab.b) lab[, "L"] <- lab[, "L"] + ifelse(lab.a>0 & lab.b>0, abs(lab.a/6), 0) lab[, "b"] <- ifelse(lab.a>0 & lab.b>0, lab[, "b"]+lab.a, lab[, "b"]) lab[lab[, 2]>127, 2] <- 127 lab[lab[, 2]< -128, 2] <- -128 lab[lab[, "b"]>127, "b"] <- 127 lab[lab[, "b"]< -128, "b"] <- -128 lab[lab[, "L"]<0, "L"] <- 0 lab[lab[, "L"]>100, "L"] <- 100 newcol <- lab2hex(lab) dim(newcol) <- dim(col) newcol[is.na(col)] <- NA return(newcol) } closestColorRGB2 <- function(col){ rgb <- col2rgb(col, alpha = TRUE) rgb["blue", ] <- rgb["blue", ] + rgb["red", ]/2 + rgb["green", ]/3 rgb["red", ] <- rgb["red", ] + round(rgb["green", ]/2) rgb <- round(rgb) rgb[rgb>255] <- 255 newcol <- rgb(t(rgb), maxColorValue=255) dim(newcol) <- dim(col) newcol[is.na(col)] <- NA return(newcol) }
yyule0<-function () { defaults <- list(initial.group = NULL, initial.variable = NULL, initial.mean = "0") dialog.values <- getDialog("yyule0", defaults) initializeDialog(title = gettextRcmdr(paste("Profils de modalit", "\U00E9", "s (Q)", sep = ""))) groupBox <- variableListBox(top, Factors(), title = gettextRcmdr("Variable explicative categorielle"), initialSelection = varPosn(dialog.values$initial.group, "factor")) variableBox <- variableListBox(top, Variables(), title = gettextRcmdr("Variables (select one or more)"), selectmode = "multiple", initialSelection = varPosn(dialog.values$initial.variable, "all")) checkBoxes(frame = "checkBoxFrame", boxes = c("mean"), initialValues = c(dialog.values$initial.mean), labels = gettextRcmdr(c("Rangement en fonction de la valeur de Q"))) onOK <- function() { group <- getSelection(groupBox) variables <- getSelection(variableBox) meanVar <- tclvalue(meanVariable) putDialog("yyule0", list(initial.group = group, initial.variable = variables, initial.mean = meanVar)) closeDialog() if (length(variables) <2) { errorCondition(recall = yyule0, message = gettextRcmdr("You must select at least two variables")) return() } if (length(group) == 0) { errorCondition(recall = yyule0, message = gettextRcmdr("You must select a variable")) return() } .activeDataSet <- ActiveDataSet() listvar <- paste(variables, collapse = "\",\"") names.levels <- eval(parse(text = paste("levels(", .activeDataSet, "$", group, ")", sep = "")), envir = .GlobalEnv) nvalues <- length(names.levels) for (i in 1:nvalues) { namelevel <- names.levels[i] command <- paste("Yule04(", .activeDataSet, "$", group, ",", .activeDataSet, "[,c(\"", listvar, "\")],\"", namelevel, "\",nameYY=c(\"", listvar, "\")\n", ",tri=", meanVar, ")", sep = "") doItAndPrint(command) command <- paste("Yule03(", .activeDataSet, "$", group, ",", .activeDataSet, "[,c(\"", listvar, "\")],\"", namelevel, "\",nameYY=c(\"", listvar, "\")\n", ",tri=", meanVar, ")", sep = "") doItAndPrint(command) if (i < nvalues) { justDoIt("dev.new()") } } activateMenus() tkfocus(CommanderWindow()) } OKCancelHelp(helpSubject = "Yule03", reset = "yyule0") tkgrid(getFrame(groupBox), getFrame(variableBox), sticky = "nw") tkgrid(checkBoxFrame, sticky = "w") tkgrid(buttonsFrame, sticky = "w") dialogSuffix(rows = 2, columns = 1) }
context("sampleSizeSignificance") test_that("numeric test for sampleSizeSignificance(): 1", { za <- qnorm(p = 0.025, lower.tail = FALSE) expect_equal(object = sampleSizeSignificance(zo = za, designPrior = "conditional", power = 0.8, alternative = "one.sided"), expected = 2.04, tol = 0.01) }) test_that("numeric test for sampleSizeSignificance(): 2", { zo <- seq(-4, 4, 2) apply_grid <- expand.grid(priors = c("conditional", "predictive", "EB"), h = c(0, 0.1), shrinkage = c(0, 0.75), alt = c("one.sided", "two.sided"), stringsAsFactors = FALSE) out <- lapply(X=seq_len(nrow(apply_grid)), FUN=function(i){ sampleSizeSignificance(zo = zo, power = 0.8, level = 0.05, designPrior = apply_grid$priors[i], alternative = apply_grid$alt[i], h = apply_grid$h[i], shrinkage = apply_grid$shrinkage[i]) }) expect_equal(out, list( c(0.386409827001236,1.54563930800494,Inf,1.54563930800494,0.386409827001236), c(0.440562894751761,2.64240442300288,NA,2.64240442300288,0.440562894751761), c(0.505683996618901,5.68097835352188,NA,5.68097835352188,0.505683996618901), c(0.386409827001236,1.54563930800494,Inf,1.54563930800494,0.386409827001236), c(0.452332524054221,2.95871584108967,NA,2.95871584108967,0.452332524054221), c(0.52827525176549,7.60908343838383,NA,7.60908343838383,0.52827525176549), c(6.18255723201977,24.7302289280791,Inf,24.7302289280791,6.18255723201977), c(113.100184785495,NA,NA,NA,113.100184785495), c(0.505683996618901,5.68097835352188,NA,5.68097835352188,0.505683996618901), c(6.18255723201977,24.7302289280791,Inf,24.7302289280791,6.18255723201977), c(453.912799705814,NA,NA,NA,453.912799705814), c(0.52827525176549,7.60908343838383,NA,7.60908343838383,0.52827525176549), c(0.490554983396818,1.96221993358727,Inf,1.96221993358727,0.490554983396818), c(0.567658970548963,3.51088218947353,NA,3.51088218947353,0.567658970548963), c(0.652140069510171,7.6215454064467,NA,7.6215454064467,0.652140069510171), c(0.490554983396818,1.96221993358727,Inf,1.96221993358727,0.490554983396818), c(0.584343691289888,3.95487118399945,NA,3.95487118399945,0.584343691289888), c(0.683282959536562,10.3012684887906,NA,10.3012684887906,0.683282959536562), c(7.84887973434909,31.3955189373964,Inf,31.3955189373964,7.84887973434909), c(158.405996395716,NA,NA,NA,158.405996395716), c(0.652140069510171,7.6215454064467,NA,7.6215454064467,0.652140069510171), c(7.84887973434909,31.3955189373964,Inf,31.3955189373964,7.84887973434909), c(640.395220372103,NA,NA,NA,640.395220372103), c(0.683282959536562,10.3012684887906,NA,10.3012684887906,0.683282959536562) )) }) test_that("sampleSizeSignificance() vs sampleSizeSignificanceNum", { vec01 <- c(0.001, 0.2532, 0.99) vec01bound <- c(0, 0.0386, 0.5031, 0.99) vec55 <- c(-5, -2.6288, 0, 4) alternative <- c("two.sided", "one.sided") designPrior <- c("conditional", "predictive", "EB") powvec <- c(0.499, 0.8, 0.975) levelvec <- c(0.001, 0.025, 0.49) pars_grid_power <- expand.grid(zo=vec55, power=powvec, d=NA, level=levelvec, alternative=alternative, designPrior=designPrior, h=abs(vec55), shrinkage=vec01bound, stringsAsFactors = FALSE) pars_grid_d <- expand.grid(zo=vec55, power=NA, d=vec01, level=.025, alternative="one.sided", designPrior="conditional", h=0, shrinkage=0, stringsAsFactors = FALSE) pars_grid <- cbind(rbind(pars_grid_power, pars_grid_d), new=NA, legacy=NA) sampleSizeSignificanceNum <- ReplicationSuccess:::sampleSizeSignificanceNum for(i in seq_len(nrow(pars_grid))){ pars_grid[i,9] <- do.call("sampleSizeSignificance", args = pars_grid[i,1:8]) pars_grid[i,10] <- do.call("sampleSizeSignificanceNum", args = pars_grid[i,1:8]) } pars_grid <- pars_grid[pars_grid$new < 1000,] expect_equal(object=is.na(pars_grid[,9]), expected=is.na(pars_grid[,10])) pars_grid_nonNA <- pars_grid[!is.na(pars_grid[,9]) & !is.na(pars_grid[,10]),] expect_equal(object = pars_grid_nonNA[,9], expected = pars_grid_nonNA[,10], tol = 0.1) })
getTrans <- function(object, sens = "F", NAstring = "X", ambiguous = FALSE, ...) UseMethod("getTrans") getTrans.default <- function(object, sens = "F", NAstring = "X", ambiguous = FALSE, ...) stop(paste("no getTrans method for objects of class:", class(object))) getTrans.list <- function(object, sens = "F", NAstring = "X", ambiguous = FALSE, ...) lapply(seq_len(length(object)), function(i) getTrans(object[[i]], sens = sens, NAstring = NAstring, ambiguous = ambiguous, ...)) getTrans.character <- function(object, sens = "F", NAstring = "X", ambiguous = FALSE, ..., frame = 0, numcode = 1) translate(seq = object, frame = frame, sens = sens, numcode = numcode, NAstring = NAstring, ambiguous = ambiguous) getTrans.SeqFastadna <- function(object, sens = "F", NAstring = "X", ambiguous = FALSE, ..., frame = 0, numcode = 1){ dnaseq <- getSequence(object, as.string = FALSE) translate(seq = dnaseq, frame = frame, sens = sens, numcode = numcode, NAstring = NAstring, ambiguous = ambiguous) } getTrans.SeqFrag <- getTrans.SeqFastadna getTrans.SeqAcnucWeb <- function(object, sens = "F", NAstring = "X", ambiguous = FALSE, ..., frame = "auto", numcode = "auto"){ dnaseq <- getSequence(object, as.string = FALSE) if(numcode == "auto") numcode <- attr(object, "ncbigc") if(frame == "auto") frame <- attr(object, "frame") translate(seq = dnaseq, frame = frame, sens = sens, numcode = numcode, NAstring = NAstring, ambiguous = ambiguous) } getTrans.qaw <- function(object, sens = "F", NAstring = "X", ambiguous = FALSE, ...) getTrans(object$req, ...) getTrans.logical <- function (object, sens = "F", NAstring = "X", ambiguous = FALSE, ...) object
rqb <- function(A, k=NULL, p=10, q=2, sdist="normal", rand = TRUE) UseMethod("rqb") rqb.default <- function(A, k=NULL, p=10, q=2, sdist="normal", rand = TRUE) { A <- as.matrix(A) rqbObj <- list() m <- nrow(A) n <- ncol(A) if(is.null(k)) k = n if(k > n) k <- n if(is.character(k)) stop("Target rank is not valid!") if(k < 1) stop("Target rank is not valid!") l <- round(k) + round(p) if(l > n) l <- n if(l < 1) stop("Target rank is not valid!") if(is.complex(A)) { isreal <- FALSE } else { isreal <- TRUE } if(rand == TRUE) { O <- switch(sdist, normal = matrix(stats::rnorm(l*n), n, l), unif = matrix(stats::runif(l*n), n, l), rademacher = matrix(sample(c(-1,1), (l*n), replace = TRUE, prob = c(0.5,0.5)), n, l), stop("Selected sampling distribution is not supported!")) if(isreal==FALSE) { O <- O + switch(sdist, normal = 1i * matrix(stats::rnorm(l*n), n, l), unif = 1i * matrix(stats::runif(l*n), n, l), rademacher = 1i * matrix(sample(c(-1,1), (l*n), replace = TRUE, prob = c(0.5,0.5)), n, l), stop("Selected sampling distribution is not supported!")) } Y <- A %*% O remove(O) if( q > 0 ) { for( i in 1:q) { Y <- qr.Q( qr(Y, complete = FALSE) , complete = FALSE ) Z <- crossprod_help(A , Y ) Z <- qr.Q( qr(Z, complete = FALSE) , complete = FALSE ) Y <- A %*% Z } remove(Z) } rqbObj$Q <- qr.Q( qr(Y, complete = FALSE) , complete = FALSE ) }else{ rqbObj$Q <- qr.Q( qr(A, complete = FALSE) , complete = FALSE ) } rqbObj$B <- crossprod_help(rqbObj$Q , A ) class(rqbObj) <- "rqb" return(rqbObj) }
use_ghactions <- function(workflow = website()) { checkmate::assert_list( x = workflow, any.missing = FALSE, names = "named", null.ok = FALSE ) tryCatch( expr = gh::gh_tree_remote(), error = function(cnd) { usethis::ui_stop( c("This project does not have a GitHub remote configured as {usethis::ui_value('origin')}.", "Do you need to run {usethis::ui_code('usethis::use_github()')}?" ) ) } ) usethis::use_directory(path = ".github/workflows", ignore = TRUE) new <- usethis::write_over( path = ".github/workflows/main.yml", lines = r2yaml(workflow), quiet = TRUE ) if (new) { usethis::ui_done(x = "GitHub actions is set up and ready to go.") usethis::ui_todo(x = "Commit and push the changes.") usethis::ui_todo( x = "Visit the actions tab of your repository on github.com to check the results." ) } invisible(new) } use_ghactions_badge <- function(workflow_name = NULL, badge_name = "Actions Status") { workflows <- read_workflows() checkmate::assert_choice( x = workflow_name, choices = purrr::map_chr(.x = workflows, "name"), null.ok = TRUE ) if (is.null(workflow_name)) { workflow_name <- workflows[[1]]$name } workflow_name <- utils::URLencode(workflow_name) reposlug <- glue::glue( '{gh::gh_tree_remote()$username}/{gh::gh_tree_remote()$repo}' ) usethis::use_badge( href = glue::glue('https://github.com/{reposlug}/actions'), src = glue::glue('https://github.com/{reposlug}/workflows/{workflow_name}/badge.svg'), badge_name = badge_name ) } edit_workflow <- function() { path <- usethis::proj_path(".github", "workflows", "main") usethis::ui_todo("Commit and push for the changes to take effect.") invisible(usethis::edit_file(path)) }
context("errorhandling") test_that("errors and crashes are handled and fixed",{ df <- data.frame(x = 1:5) expect_error( sfheaders::sf_linestring(obj = df, x = "x", y = "y"), "geometries - number of columns requested is greater than those available" ) expect_error( sfheaders::sf_linestring(obj = df, x = "x", y = 2 ), "geometries - number of columns requested is greater than those available" ) expect_error( sfheaders::sf_linestring(obj = df, x = 1, y = 2 ), 'geometries - number of columns requested is greater than those available' ) df <- data.frame(x = 1:5, y = 1:5) expect_error( sfheaders::sf_linestring(obj = df, x = 3, y = 2 ), 'geometries - invalid geometry column index' ) m <- matrix(1:2, ncol = 2) expect_error( sfheaders::sf_linestring(obj = m, x = 3, y = 2 ), 'geometries - invalid geometry column index' ) m <- matrix(1) expect_error( sfheaders::sf_linestring(obj = m, x = "x", y = "y"), 'geometries - number of columns requested is greater than those available' ) expect_error( sfheaders::sf_linestring(obj = m, x = "x", y = 2 ), 'geometries - number of columns requested is greater than those available' ) expect_error( sfheaders::sf_linestring(obj = m, x = 1, y = 2 ), 'geometries - number of columns requested is greater than those available' ) df <- data.frame(x = 1, y = 2 ) expect_error( sfheaders:::rcpp_sfc_multipoint(df, c(0L,1L), 2L, ""), "geometries - column index doesn't exist") expect_error( sfheaders:::rcpp_sfc_linestring(df, c(0L,1L), 2L, ""), "geometries - column index doesn't exist") expect_error( sfheaders:::rcpp_sfc_multilinestring(df, c(0L,1L), 2L, NULL, "" ), "geometries - column index doesn't exist") expect_error( sfheaders:::rcpp_sfc_multilinestring(df, c(0L,1L), NULL, 2L, "" ), "geometries - column index doesn't exist") expect_error( sfheaders:::rcpp_sfc_multilinestring(df, c(0L,1L), 2L, 2L, ""), "geometries - column index doesn't exist") expect_error( sfheaders:::rcpp_sfc_polygon(df, c(0L,1L), 2L, NULL, "", FALSE ), "geometries - column index doesn't exist") expect_error( sfheaders:::rcpp_sfc_polygon(df, c(0L,1L), NULL, 2L, "", FALSE ), "geometries - column index doesn't exist") expect_error( sfheaders:::rcpp_sfc_polygon(df, c(0L,1L), 2L, 2L, "", FALSE ), "geometries - column index doesn't exist") expect_error( sfheaders:::rcpp_sfc_multipolygon(df, c(0L,1L), 2L, NULL, NULL, "", FALSE ), "geometries - column index doesn't exist") expect_error( sfheaders:::rcpp_sfc_multipolygon(df, c(0L,1L), NULL, NULL, 2L, "", FALSE ), "geometries - column index doesn't exist") expect_error( sfheaders:::rcpp_sfc_multipolygon(df, c(0L,1L), NULL, 2L, NULL, "", FALSE ), "geometries - column index doesn't exist") expect_error( sfheaders:::rcpp_sfc_multipolygon(df, c(0L,1L), 2L, 2L, NULL, "", FALSE ), "geometries - column index doesn't exist") expect_error( sfheaders:::rcpp_sfc_multipolygon(df, c(0L,1L), NULL, 2L, 2L, "", FALSE ), "geometries - column index doesn't exist") expect_error( sfheaders:::rcpp_sfc_multipolygon(df, c(0L,1L), 2L, NULL, 2L, "", FALSE ), "geometries - column index doesn't exist") expect_error( sfheaders:::rcpp_sfc_multipolygon(df, c(0L,1L), 2L, 2L, 2L, "", FALSE ), "geometries - column index doesn't exist") m <- matrix( 1:2, ncol = 2) expect_error( sfheaders:::rcpp_sfc_multipoint(m, c(0L,1L), 2L, ""), "geometries - column index doesn't exist") expect_error( sfheaders:::rcpp_sfc_linestring(m, c(0L,1L), 2L, ""), "geometries - column index doesn't exist") expect_error( sfheaders:::rcpp_sfc_multilinestring(m, c(0L,1L), 2L, NULL, "" ), "geometries - column index doesn't exist") expect_error( sfheaders:::rcpp_sfc_multilinestring(m, c(0L,1L), NULL, 2L, "" ), "geometries - column index doesn't exist") expect_error( sfheaders:::rcpp_sfc_multilinestring(m, c(0L,1L), 2L, 2L, "" ), "geometries - column index doesn't exist") expect_error( sfheaders:::rcpp_sfc_polygon(m, c(0L,1L), 2L, NULL, "", FALSE ), "geometries - column index doesn't exist") expect_error( sfheaders:::rcpp_sfc_polygon(m, c(0L,1L), NULL, 2L, "", FALSE ), "geometries - column index doesn't exist") expect_error( sfheaders:::rcpp_sfc_polygon(m, c(0L,1L), 2L, 2L, "", FALSE ), "geometries - column index doesn't exist") expect_error( sfheaders:::rcpp_sfc_multipolygon(m, c(0L,1L), 2L, NULL, NULL, "", FALSE ), "geometries - column index doesn't exist") expect_error( sfheaders:::rcpp_sfc_multipolygon(m, c(0L,1L), NULL, 2L, NULL, "", FALSE ), "geometries - column index doesn't exist") expect_error( sfheaders:::rcpp_sfc_multipolygon(m, c(0L,1L), NULL, NULL, 2L, "", FALSE ), "geometries - column index doesn't exist") expect_error( sfheaders:::rcpp_sfc_multipolygon(m, c(0L,1L), 2L, 2L, NULL, "", FALSE ), "geometries - column index doesn't exist") expect_error( sfheaders:::rcpp_sfc_multipolygon(m, c(0L,1L), NULL, 2L, 2L, "", FALSE ), "geometries - column index doesn't exist") expect_error( sfheaders:::rcpp_sfc_multipolygon(m, c(0L,1L), 2L, NULL, 2L, "", FALSE ), "geometries - column index doesn't exist") expect_error( sfheaders:::rcpp_sfc_multipolygon(m, c(0L,1L), 2L, 2L, 2L, "", FALSE ), "geometries - column index doesn't exist") df <- data.frame(x = 1, y = 2 ) expect_error( sfheaders:::rcpp_sfg_multilinestring(m, c(0L,1L), 2L, "" ), "geometries - column index doesn't exist") expect_error( sfheaders:::rcpp_sfg_polygon(m, c(0L,1L), 2L, "", FALSE ), "geometries - column index doesn't exist") expect_error( sfheaders:::rcpp_sfg_multipolygon(m, c(0L,1L), 2L, NULL, "", FALSE ), "geometries - column index doesn't exist") expect_error( sfheaders:::rcpp_sfg_multipolygon(m, c(0L,1L), NULL, 2L, "", FALSE ), "geometries - column index doesn't exist") expect_error( sfheaders:::rcpp_sfg_multipolygon(m, c(0L,1L), 2L, 2L, "", FALSE ), "geometries - column index doesn't exist") m <- matrix( 1:2, ncol = 2) expect_error( sfheaders:::rcpp_sfg_multilinestring(m, c(0L,1L), 2L, "" ), "geometries - column index doesn't exist") expect_error( sfheaders:::rcpp_sfg_polygon(m, c(0L,1L), 2L, "", FALSE ), "geometries - column index doesn't exist") expect_error( sfheaders:::rcpp_sfg_multipolygon(m, c(0L,1L), 2L, NULL, "", FALSE ), "geometries - column index doesn't exist") expect_error( sfheaders:::rcpp_sfg_multipolygon(m, c(0L,1L), NULL, 2L, "", FALSE ), "geometries - column index doesn't exist") expect_error( sfheaders:::rcpp_sfg_multipolygon(m, c(0L,1L), 2L, 2L, "", FALSE ), "geometries - column index doesn't exist") }) test_that("single-row objects",{ is_sf <- function(x) "sf" %in% attr(x, "class") df <- data.frame(x =1:3, y =2:4) expect_true( is_sf( sfheaders::sf_point( df ) ) ) expect_true( is_sf( sfheaders::sf_multipoint( df ) ) ) expect_true( is_sf( sfheaders::sf_linestring( df ) ) ) expect_true( is_sf( sfheaders::sf_multilinestring( df ) ) ) expect_true( is_sf( sfheaders::sf_polygon( df ) ) ) expect_true( is_sf( sfheaders::sf_multipolygon( df ) ) ) m <- matrix(1:6, ncol = 2) expect_true( is_sf( sfheaders::sf_point( m[1, ] ) ) ) expect_true( is_sf( sfheaders::sf_multipoint( m ) ) ) expect_true( is_sf( sfheaders::sf_linestring( m ) ) ) expect_true( is_sf( sfheaders::sf_multilinestring( m ) ) ) expect_true( is_sf( sfheaders::sf_polygon( m ) ) ) expect_true( is_sf( sfheaders::sf_multipolygon( m ) ) ) is_sfc <- function(x) "sfc" %in% attr( x, "class" ) df <- data.frame(x =1:3, y =2:4) expect_true( is_sfc( sfheaders::sfc_point( df ) ) ) expect_true( is_sfc( sfheaders::sfc_multipoint( df ) ) ) expect_true( is_sfc( sfheaders::sfc_linestring( df ) ) ) expect_true( is_sfc( sfheaders::sfc_multilinestring( df ) ) ) expect_true( is_sfc( sfheaders::sfc_polygon( df ) ) ) expect_true( is_sfc( sfheaders::sfc_multipolygon( df ) ) ) m <- matrix(1:6, ncol = 2) expect_true( is_sfc( sfheaders::sfc_point( m ) ) ) expect_true( is_sfc( sfheaders::sfc_multipoint( m ) ) ) expect_true( is_sfc( sfheaders::sfc_linestring( m ) ) ) expect_true( is_sfc( sfheaders::sfc_multilinestring( m ) ) ) expect_true( is_sfc( sfheaders::sfc_polygon( m ) ) ) expect_true( is_sfc( sfheaders::sfc_multipolygon( m ) ) ) is_sfg <- function(x) "sfg" %in% attr( x, "class" ) df <- data.frame(x =1:3, y =2:4) expect_true( is_sfg( sfheaders::sfg_point( df[1,] ) ) ) expect_true( is_sfg( sfheaders::sfg_multipoint( df ) ) ) expect_true( is_sfg( sfheaders::sfg_linestring( df ) ) ) expect_true( is_sfg( sfheaders::sfg_multilinestring( df ) ) ) expect_true( is_sfg( sfheaders::sfg_polygon( df ) ) ) expect_true( is_sfg( sfheaders::sfg_multipolygon( df ) ) ) m <- matrix(1:6, ncol = 2) expect_true( is_sfg( sfheaders::sfg_point( m[1,] ) ) ) expect_true( is_sfg( sfheaders::sfg_multipoint( m ) ) ) expect_true( is_sfg( sfheaders::sfg_linestring( m ) ) ) expect_true( is_sfg( sfheaders::sfg_multilinestring( m ) ) ) expect_true( is_sfg( sfheaders::sfg_polygon( m ) ) ) expect_true( is_sfg( sfheaders::sfg_multipolygon( m ) ) ) }) test_that("0-row & empty objects",{ is_sf <- function(x) "sf" %in% attr(x, "class") df <- data.frame() expect_error( sfheaders::sf_point( df ) ) expect_error( sfheaders::sf_multipoint( df ) ) expect_error( sfheaders::sf_linestring( df ) ) expect_error( sfheaders::sf_multilinestring( df ) ) expect_error( sfheaders::sf_polygon( df ) ) expect_error( sfheaders::sf_multipolygon( df ) ) m <- matrix() expect_error( sfheaders::sf_point( m ) ) expect_error( sfheaders::sf_multipoint( m ) ) expect_error( sfheaders::sf_linestring( m ) ) expect_error( sfheaders::sf_multilinestring( m ) ) expect_error( sfheaders::sf_polygon( m ) ) expect_error( sfheaders::sf_multipolygon( m ) ) df <- data.frame() expect_error( sfheaders::sfc_point( df ) ) expect_error( sfheaders::sfc_multipoint( df ) ) expect_error( sfheaders::sfc_linestring( df ) ) expect_error( sfheaders::sfc_multilinestring( df ) ) expect_error( sfheaders::sfc_polygon( df ) ) expect_error( sfheaders::sfc_multipolygon( df ) ) m <- matrix() expect_error( sfheaders::sfc_point( m ) ) expect_error( sfheaders::sfc_multipoint( m ) ) expect_error( sfheaders::sfc_linestring( m ) ) expect_error( sfheaders::sfc_multilinestring( m ) ) expect_error( sfheaders::sfc_polygon( m ) ) expect_error( sfheaders::sfc_multipolygon( m ) ) df <- data.frame() expect_error( sfheaders::sfg_point( df ) ) expect_error( sfheaders::sfg_multipoint( df ) ) expect_error( sfheaders::sfg_linestring( df ) ) expect_error( sfheaders::sfg_multilinestring( df ) ) expect_error( sfheaders::sfg_polygon( df ) ) expect_error( sfheaders::sfg_multipolygon( df ) ) m <- matrix() expect_error( sfheaders::sfg_point( m ) ) expect_error( sfheaders::sfg_multipoint( m ) ) expect_error( sfheaders::sfg_linestring( m ) ) expect_error( sfheaders::sfg_multilinestring( m ) ) expect_error( sfheaders::sfg_polygon( m ) ) expect_error( sfheaders::sfg_multipolygon( m ) ) }) test_that("other misc errors are caught",{ x <- data.frame( x = c(0,0), y = c(0,0) ) expect_error( sfheaders:::rcpp_sfg_linestring( x, c(1L, 2L), "" ), "geometries - invalid column index") })
NULL setClass("udSeq", slots= c(ini = "numeric", add = "numeric"), contains = "randSeq") setClass("rUdSeq", contains = c("rRandSeq", "udSeq")) setMethod("getProb", signature = c(obj = "udSeq"), function(obj) { if(obj@K == 2) { apply(obj@M, 1, function(randSeq, ini, add) { conditionalProb <- numeric(length(randSeq)) conditionalProb[1] <- 1/2 sumR <- randSeq[1] for(j in 1:(length(randSeq) - 1)) { biasedCoin <- (ini + add*(j-sumR))/(2*ini + add*j) if(randSeq[j+1] == 1) { conditionalProb[j+1] <- biasedCoin } else { conditionalProb[j+1] <- 1 - biasedCoin } sumR <- sumR + randSeq[j+1] } return(prod(conditionalProb)) }, ini = obj@ini, add = obj@add) } else "Only supported for K=2." } ) setMethod("getDesign", signature(obj = "udSeq"), function(obj) { paste("UD(", obj@ini, ",", obj@add, ")", sep = "") } )
unitHydrograph <- function( n, k, t, force=FALSE ) { if(length(n)>1 | length(k)>1) stop("n and k can only have one single value! For vectorization, use sapply (see documentation examples).") UH <- t^(n-1) / k^n / gamma(n) * exp(-t/k) if(force) UH <- UH/sum(UH) UH }
check.bn = function(bn) { if (missing(bn)) stop("an object of class 'bn' is required.") if (!is(bn, "bn")) { stop(sprintf("%s must be an object of class 'bn'.", deparse(substitute(bn)))) } } match.bn = function(bn1, bn2) { nodes1 = names(bn1$nodes) nodes2 = names(bn2$nodes) equal = setequal(nodes1, nodes2) && (length(nodes1) == length(nodes2)) if (!equal) stop("the two networks have different node sets.") } check.bn.or.fit = function(bn) { if (missing(bn)) stop("an object of class 'bn' or 'bn.fit' is required.") if (!is(bn, "bn") && !is(bn, "bn.fit")) { stop(sprintf("%s must be an object of class 'bn' or 'bn.fit'.", deparse(substitute(bn)))) } } check.fit = function(bn) { if (missing(bn)) stop("an object of class 'bn.fit' is required.") if (!is(bn, "bn.fit")) { stop(sprintf("%s must be an object of class 'bn.fit'.", deparse(substitute(bn)))) } } check.bn.naive = function(bn) { check.bn.or.fit(bn) root = root.leaf.nodes(bn, leaf = FALSE) if (length(root) != 1) stop("a naive Bayes classifier can have only one root node, the training variable.") if (is(bn, "bn")) nodes = names(bn$nodes) else nodes = names(bn) explanatory = nodes[nodes != root] leafs = root.leaf.nodes(bn, leaf = TRUE) if (!identical(sort(explanatory), sort(leafs))) stop("all the explanatory variables must be leaf nodes.") nparents = sapply(explanatory, function(node) { length(parents(bn, node)) }) if (any(nparents != 1)) stop("all the explanatory variables must be children of the training variable.") } check.bn.tan = function(bn) { check.bn.or.fit(bn) root = root.leaf.nodes(bn, leaf = FALSE) if (length(root) != 1) stop("a naive Bayes classifier can have only one root node, the training variable.") if (is(bn, "bn")) { check.nodes(bn$learning$args$training) nodes = names(bn$nodes) training = bn$learning$args$training } else { check.nodes(attr(bn, "training")) nodes = names(bn) training = attr(bn, "training") } if (!identical(training, root)) stop("the training node is not the only root node in the graph.") explanatory = nodes[nodes != root] nparents = sapply(explanatory, function(node) { length(parents(bn, node)) }) if (!( (length(which(nparents == 2)) == length(explanatory) - 1) && (length(which(nparents == 1)) == 1) )) stop("the explanatory variables must form a tree.") }
percentile.exact <- function(x,p=0.95,gam=0.95,logx=TRUE,wpnt=FALSE){ kf <- function(n,p,gam){ -qt(1-gam,n-1,qnorm(1-p)*sqrt(n))/sqrt(n) } kf2 <- function(n,p,gam){ qt(gam,n-1,qnorm(p)*sqrt(n))/sqrt(n) } if(!wpnt)options(warn=-1) n <- length(x) if( logx ) {if( any(x <= 0)) stop("all data values must be positive") y <- log(x) } else { y<- x } yb <- mean(y) sy <- sd(y) n <- length(y) if(p > 0.5) {ku <- kf(n,p,gam); kl <- kf(n,p,1-gam) } else { ku <- kf2(n,p,gam) ; kl <- kf2(n,p,1-gam) } yp <- yb + qnorm(p)*sy lcl <- yb + kl*sy ucl <- yb + ku*sy if(logx){ yp<- exp(yp) lcl<- exp( lcl ) ucl<- exp(ucl) } out<-list("Xp"=yp,"Xpe.LCL"=lcl,"Xpe.UCL"=ucl,"p"=p, "gam"=gam,"Logx"= logx, "n"=n, "Ku"=ku,"Kl"=kl) if(!wpnt)options(warn=0) out }
sparcoord <- function(data, xvar=character(0), ...) { main <- paste(deparse(substitute(data), 500), collapse = "\n") if (is.data.frame(data)) data <- as.matrix(data[,sapply(data, is.numeric)]) stopifnot("matrix" %in% class(data)) if (is.null(colnames(data))) colnames(data) <- sprintf("%s[,%.0f]", main, 1:ncol(data)) dvar <- dimnames(data)[[2]] if (length(xvar)) { xvar <- xvar[xvar %in% dvar] dvar <- setdiff(dvar, xvar) } else { xvar <- dvar dvar <- NULL } shinyApp( ui = dashboardPage( dashboardHeader(title="Parallel coordinate plot"), dashboardSidebar( tags$style( HTML(".black-text .rank-list-item { color: bucket_list( header = NULL, group_name = "bucket_var_group", orientation = "vertical", class = c("default-sortable", "black-text"), add_rank_list( text = "Variable(s)", labels = dvar, input_id = "dvar" ), add_rank_list( text = "Selected variable(s)", labels = xvar, input_id = "xvar" ) ) ), dashboardBody( fluidRow( box(plotOutput("plot")), box(verbatimTextOutput("command"), title="Basic R code") )) ), server = function(input, output, session) { output$plot <- renderPlot({ if ((length(input$xvar)>1)) { args <- list(...) args$x <- data[,input$xvar] if (is.null(args$main)) args$main <- main do.call("parcoord", args) } }) output$command <- renderText({ txt <- "At least two variables are required for a plot!" if (length(input$xvar)>1) { txt <- c(paste0(" x <- c(", paste0('"', input$xvar, '"', collapse=", "), ")\n"), sprintf("parcoord(%s[,x])\n", main)) } txt }) } ) }
"print.envfit" <- function(x, ...) { if (!is.null(x$vectors)) { cat("\n***VECTORS\n\n") print(x$vectors) } if (!is.null(x$factors)) { cat("\n***FACTORS:\n\n") print(x$factors) } if (!is.null(x$na.action)) cat("\n", naprint(x$na.action), "\n", sep="") invisible(x) }
predict.customizedGlmnet <- function(object, lambda, type = c('response', 'class'), ...) { type = match.arg(type) groups = as.character(sort(unique(object$groupid))) prediction = matrix(NA, nrow(object$x$test), length(lambda)) if (object$family == 'multinomial' & type == 'response') { K = length(unique(object$y)) prediction = array(NA, c(nrow(object$x$test), length(lambda), K), dimnames = list(NULL, NULL, sort(unique(object$y)))) } for (group in groups) { x = object$x$test[object$groupid == group, ] if (sum(object$groupid == group) == 1) { x = t(x) } if (object$family == 'multinomial' & type == 'response') { prediction[object$groupid == group, , ] = 0 prediction[object$groupid == group, , object$fit[[group]]$classnames] = predict(object$fit[[group]], x, s = lambda/object$fit[[group]]$nobs, type = type, ...)[, , 1] } else { prediction[object$groupid == group, ] = predict(object$fit[[group]], x, s = lambda/object$fit[[group]]$nobs, type = type, ...) } } prediction }
listen_for_authcode <- function(remote_url, local_url) { local_url <- httr::parse_url(local_url) localhost <- if(local_url$hostname == "localhost") "127.0.0.1" else local_url$hostname localport <- local_url$port info <- NULL listen <- function(env) { query <- env$QUERY_STRING info <<- if(is.character(query) && nchar(query) > 0) httr::parse_url(query)$query else list() if(is_empty(info$code)) list(status=404L, headers=list(`Content-Type`="text/plain"), body="Not found") else list(status=200L, headers=list(`Content-Type`="text/plain"), body="Authenticated with Azure Active Directory. Please close this page and return to R.") } server <- httpuv::startServer(as.character(localhost), as.integer(localport), list(call=listen)) on.exit(httpuv::stopServer(server)) message("Waiting for authentication in browser...\nPress Esc/Ctrl + C to abort") httr::BROWSE(remote_url) while(is.null(info)) { httpuv::service() Sys.sleep(0.001) } httpuv::service() if(is_empty(info$code)) { msg <- gsub("\\+", " ", utils::URLdecode(info$error_description)) stop("Authentication failed. Message:\n", msg, call.=FALSE) } message("Authentication complete.") info$code } poll_for_token <- function(url, body, interval, period) { interval <- as.numeric(interval) ntries <- as.numeric(period) %/% interval body$grant_type <- "urn:ietf:params:oauth:grant-type:device_code" message("Waiting for device code in browser...\nPress Esc/Ctrl + C to abort") for(i in seq_len(ntries)) { Sys.sleep(interval) res <- httr::POST(url, body=body, encode="form") status <- httr::status_code(res) cont <- httr::content(res) if(status == 400 && cont$error == "authorization_pending") { } else if(status >= 300) process_aad_response(res) else break } if(status >= 300) stop("Authentication failed.", call.=FALSE) message("Authentication complete.") res }
test_that("coverage of functionality in mult.R", { S <- spray(matrix(c(1,1,2,2,1,3,3,1,3,5),ncol=2,byrow=TRUE),1:5) expect_silent(include_perms(kill_trivial_rows(S))) expect_silent(cross(S,S*0)) expect_silent(cross(S*0,S)) expect_silent(cross(S*0,S*0)) expect_silent(wedge(as.kform(S))) expect_silent(as.kform(matrix(1,0,3),lose=TRUE)) expect_silent(as.kform(matrix(1,0,3),lose=FALSE)) expect_error(as.symbolic(function(x){x^5})) expect_silent(as.symbolic(as.ktensor(+S))) expect_silent(as.symbolic(as.ktensor(-S))) expect_silent(as.symbolic(as.ktensor(+S*0))) expect_silent(as.symbolic(as.ktensor(-S*0))) expect_silent(as.ktensor(as.ktensor(S))) expect_silent(hodge(as.kform(S))) expect_error(hodge(0*volume(5))) expect_silent(hodge(volume(5))) expect_silent(hodge(0*volume(5),n=7)) expect_error(hodge(0*volume(5),n=3)) expect_error(hodge(scalar(6))) expect_silent(hodge(scalar(6),n=3)) expect_silent(hodge(scalar(6),n=7)) expect_silent(hodge(spray(rbind(c(1,2,4,5))))) expect_false(issmall(volume(5))) K <- as.kform(spray(matrix(c(1,1,2,2,1,3,3,1,3,5),ncol=2,byrow=TRUE),1:5)) expect_error(stretch(K)) expect_silent(stretch(K,1:5)) expect_silent(keep(kform_general(7,3),1:4)) expect_silent(discard(kform_general(7,3),1)) expect_silent(zerotensor(5)) expect_error(zerotensor(-5)) expect_silent(as.kform(K)) expect_silent(as.ktensor(K)) })
library(weyl) d1 <- weyl(spray(rbind(c(1,1),c(0,3)),c(1,2))) d2 <- weyl(spray(rbind(c(0,0),c(1,0),c(2,2)),c(3,7,-5))) d1 d2 d1*d2 options(polyform=TRUE) (d1^2 + d2) * (d2 - 3*d1) x <- weyl(cbind(0,1)) D <- weyl(cbind(1,0)) x^2*D*x*D^2 options(polyform=FALSE) set.seed(0) x <- rweyl() x x <- rweyl(n=1,d=2) y <- rweyl(n=2,d=2) z <- rweyl(n=3,d=2) options(polyform=TRUE) x*(y*z) (x*y)*z x*(y*z) - (x*y)*z f <- rweyl() D <- as.der(f) d1 <- rweyl() d2 <- rweyl() D(d1*d2) == d1*D(d2) + D(d1)*d2 weyl_prod_helper3 `weyl_e_prod` <- function(a,b,c,d){ if(c==0){return(spray(cbind(a,b+d)))} if(b==0){return(spray(cbind(a+c,d)))} return( Recall(a,b-1,c,d+1) + c*Recall(a,b-1,c,d) ) } options(prodfunc = weyl_e_prod) options(weylvars = "e") d <- weyl(spray(cbind(0,1))) e <- weyl(spray(cbind(1,0))) d*d*e d^2*e d^5*e == e*(1+d)^5 options(polyform = TRUE) d*e*d^2*e o1 <- weyl(spray(cbind(2,1))) o2 <- weyl(spray(cbind(3,3))) options(polyform = FALSE) (1+o1)*(1-5*o2) options(polyform = TRUE) (1+o1)*(1-5*o2) options(polyform = NULL)
NULL plate_types[['pnpp_experiment']] <- "pnpp_experiment" define_params.pnpp_experiment <- function(plate) { params <- NextMethod("define_params") new_params <- list( 'GENERAL' = list( 'POSITIVE_NAME' = 'positive', 'NEGATIVE_NAME' = 'negative', 'POSITIVE_DIMENSION' = NA ), 'CLASSIFY' = list( 'CLUSTERS_BORDERS_NUM_SD' = 3, 'ADJUST_BW_MIN' = 4, 'ADJUST_BW_MAX' = 20, 'SIGNIFICANT_NEGATIVE_FREQ' = 0.01, 'SIGNIFICANT_P_VALUE' = 0.01 ), 'RECLASSIFY' = list( 'MIN_WELLS_NEGATIVE_CLUSTER' = 4, 'BORDER_RATIO_QUANTILE' = 0.75 ) ) params %<>% utils::modifyList(new_params) params } define_clusters.pnpp_experiment <- function(plate) { clusters <- NextMethod("define_clusters") c(clusters, 'RAIN', 'POSITIVE', 'NEGATIVE' ) } define_steps.pnpp_experiment <- function(plate) { steps <- NextMethod("define_steps") c(steps, list( 'CLASSIFY' = 'classify_droplets', 'RECLASSIFY' = 'reclassify_droplets' )) } NULL positive_dim <- function(plate) { stopifnot(plate %>% inherits("pnpp_experiment")) params(plate, 'GENERAL', 'POSITIVE_DIMENSION') %>% toupper } `positive_dim<-` <- function(plate, value = c("X", "Y")) { stopifnot(plate %>% inherits("pnpp_experiment")) value <- match.arg(value) params(plate, 'GENERAL', 'POSITIVE_DIMENSION') <- value plate } NULL variable_dim <- function(plate) { stopifnot(plate %>% inherits("pnpp_experiment")) params(plate, 'GENERAL', 'POSITIVE_DIMENSION') %>% toupper %>% other_dim } `variable_dim<-` <- function(plate, value = c("X", "Y")) { stopifnot(plate %>% inherits("pnpp_experiment")) value <- match.arg(value) params(plate, 'GENERAL', 'POSITIVE_DIMENSION') <- value %>% other_dim plate } other_dim <- function(dim = c("X", "Y")) { dim <- match.arg(dim) if(toupper(dim) == "X") "Y" else "X" } positive_dim_var <- function(plate) { stopifnot(plate %>% inherits("pnpp_experiment")) plate %>% positive_dim %>% {params(plate, 'GENERAL', sprintf('%s_VAR', .))} } variable_dim_var <- function(plate) { stopifnot(plate %>% inherits("pnpp_experiment")) plate %>% variable_dim %>% {params(plate, 'GENERAL', sprintf('%s_VAR', .))} } wells_positive <- function(plate) { stopifnot(plate %>% inherits("pnpp_experiment")) var_name <- meta_var_name(plate, "significant_negative_cluster") if (status(plate) < step(plate, 'CLASSIFY') || (!var_name %in% (plate %>% plate_meta %>% names))) { return(c()) } plate %>% plate_meta %>% dplyr::filter_(lazyeval::interp(~ !var, var = as.name(var_name))) %>% .[['well']] } wells_negative <- function(plate) { stopifnot(plate %>% inherits("pnpp_experiment")) var_name <- meta_var_name(plate, "significant_negative_cluster") if (status(plate) < step(plate, 'CLASSIFY') || (!var_name %in% (plate %>% plate_meta %>% names))) { return(c()) } plate %>% plate_meta %>% dplyr::filter_(as.name(var_name)) %>% .[['well']] } meta_var_name <- function(plate, var) { if(!inherits(plate, "pnpp_experiment")) { return(var) } var %>% gsub("negative", negative_name(plate), .) %>% gsub("positive", positive_name(plate), .) } NULL positive_name <- function(plate) { stopifnot(plate %>% inherits("pnpp_experiment")) params(plate, 'GENERAL', 'POSITIVE_NAME') } `positive_name<-` <- function(plate, value) { stopifnot(plate %>% inherits("pnpp_experiment")) value %<>% make.names params(plate, 'GENERAL', 'POSITIVE_NAME') <- value plate } negative_name <- function(plate) { stopifnot(plate %>% inherits("pnpp_experiment")) params(plate, 'GENERAL', 'NEGATIVE_NAME') } `negative_name<-` <- function(plate, value) { stopifnot(plate %>% inherits("pnpp_experiment")) value %<>% make.names params(plate, 'GENERAL', 'NEGATIVE_NAME') <- value plate }
immer_cmml <- function( suff_stat, cpml_design, control=NULL ) { time <- list( start=Sys.time() ) CALL <- match.call() do_log_LAM <- do_log_GAM <- do_log_PHI <- do_log_PSI <- 0 eps <- 1E-6 freq <- as.vector(suff_stat[,"freq"]) item_table <- as.matrix(suff_stat[, c("item1","item2","cat1","cat2")]) item_pairs <- as.matrix(suff_stat[ (suff_stat$cat1==0) & (suff_stat$cat2==0), c("item1", "item2") ]) LAM_init <- cpml_design$LAM_init GAM_init <- cpml_design$GAM_init PHI_init <- cpml_design$PHI_init PSI_init <- cpml_design$PSI_init LAM_basispar <- cpml_design$LAM_basispar GAM_basispar <- cpml_design$GAM_basispar PHI_basispar <- cpml_design$PHI_basispar PSI_basispar <- cpml_design$PSI_basispar W_LAM <- cpml_design$W_LAM W_GAM <- cpml_design$W_GAM W_PHI <- cpml_design$W_PHI W_PSI <- cpml_design$W_PSI LAM_index <- cpml_design$LAM_index GAM_index <- cpml_design$GAM_index PHI_index <- cpml_design$PHI_index PSI_index <- cpml_design$PSI_index rho_index <- cpml_design$rho_index tau_index <- cpml_design$tau_index N_rho <- max(rho_index) N_tau <- max(tau_index) W_LAM <- immer_cmml_proc_parameter_index( W_par=W_LAM, par_index=LAM_index ) W_GAM <- immer_cmml_proc_parameter_index( W_par=W_GAM, par_index=GAM_index ) W_PHI <- immer_cmml_proc_parameter_index( W_par=W_PHI, par_index=PHI_index ) W_PSI <- immer_cmml_proc_parameter_index( W_par=W_PSI, par_index=PSI_index ) res <- immer_cmml_proc_basispar( LAM_basispar=LAM_basispar, GAM_basispar=GAM_basispar, PHI_basispar=PHI_basispar, PSI_basispar=PSI_basispar, LAM_index=LAM_index, GAM_index=GAM_index, PHI_index=PHI_index, PSI_index=PSI_index ) basispar <- res$basispar basispar_design <- res$basispar_design basispar_length <- res$basispar_length N_LAM <- res$N_LAM N_GAM <- res$N_GAM N_PHI <- res$N_PHI N_PSI <- res$N_PSI basispar_design1 <- basispar_design - 1 LAM_index1 <- LAM_index - 1 GAM_index1 <- GAM_index - 1 PHI_index1 <- PHI_index - 1 PSI_index1 <- PSI_index - 1 rho_index1 <- rho_index - 1 tau_index1 <- tau_index - 1 opt_fct <- function(par){ res <- immer_cmml_basispar_to_probs( basispar=par, basispar_design=basispar_design1, basispar_length=basispar_length, W_LAM=W_LAM, LAM_init=LAM_init, LAM_index=LAM_index1, W_GAM=W_GAM, GAM_init=GAM_init, GAM_index=GAM_index1, W_PHI=W_PHI, PHI_init=PHI_init, PHI_index=PHI_index1, W_PSI=W_PSI, PSI_init=PSI_init, PSI_index=PSI_index1, N_LAM=N_LAM, N_GAM=N_GAM, N_PHI=N_PHI, N_PSI=N_PSI, item_pairs=item_pairs, item_table=item_table, tau_index=tau_index1, rho_index=rho_index1, N_rho=N_rho, N_tau=N_tau, do_log_LAM=do_log_LAM, do_log_GAM=do_log_GAM, do_log_PHI=do_log_PHI, do_log_PSI=do_log_PSI ) probs <- res$probs + eps val <- - sum( freq * log( probs ) ) return(val) } res <- immer_cmml_basispar_to_derivatives( basispar=basispar, basispar_design=basispar_design1, basispar_length=basispar_length, W_LAM=W_LAM, LAM_init=LAM_init, LAM_index=LAM_index1, W_GAM=W_GAM, GAM_init=GAM_init, GAM_index=GAM_index1, W_PHI=W_PHI, PHI_init=PHI_init, PHI_index=PHI_index1, W_PSI=W_PSI, PSI_init=PSI_init, PSI_index=PSI_index1, N_LAM=N_LAM, N_GAM=N_GAM, N_PHI=N_PHI, N_PSI=N_PSI, item_pairs=item_pairs, item_table=item_table, tau_index=tau_index1, rho_index=rho_index1, N_rho=N_rho, N_tau=N_tau, do_log_LAM=do_log_LAM, do_log_GAM=do_log_GAM, do_log_PHI=do_log_PHI, do_log_PSI=do_log_PSI ) cpml_design$W_LAM <- W_LAM cpml_design$W_GAM <- W_GAM cpml_design$W_PHI <- W_PHI cpml_design$W_PSI <- W_PSI time$end <- Sys.time() time$diff <- time$end - time$start description <- "Composite Marginal Maximum Likelihood Estimation" res <- list( suff_stat=suff_stat, cpml_design=cpml_design, time=time, CALL=CALL, description=description) class(res) <- "immer_cmml" return(res) }
kmr <- function(xyt,s.region,s.lambda,ds,ks="epanech",hs,correction="none",approach="simplified"){ verifyclass(xyt,"stpp") correc <- c("none","isotropic","border","modified.border","translate","setcovf") id <- match(correction,correc,nomatch=NA) if (any(nbg <- is.na(id))){ messnbg <- paste("unrecognised correction method:",paste(dQuote(correction[nbg]),collapse=",")) stop(messnbg,call.=FALSE) } id <- unique(id) correc2 <- rep(0,6) correc2[id] <- 1 appro <- c("simplified","standardised") im <- match(approach,appro,nomatch=NA) if (any(nbm <- is.na(im))){ messnbm <- paste("unrecognised type of estimator:",paste(dQuote(approach[nbm]),collapse=",")) stop(messnbm,call.=FALSE) } im <- unique(im) appro2 <- rep(0,2) appro2[im] <- 1 ker <- c("box","epanech","biweight") ik <- match(ks,ker,nomatch=NA) if (any(nbk <- is.na(ik))){ messnbk <- paste("unrecognised kernel function:",paste(dQuote(ks[nbk]),collapse=",")) stop(messnbk,call.=FALSE) } ik <- unique(ik) ker2 <- rep(0,3) ker2[ik] <- 1 dup <- duplicated(data.frame(xyt[,1],xyt[,2],xyt[,3]),fromLast = TRUE)[1] if (dup == TRUE){ messnbd <- paste("spatio-temporal data contain duplicated points") warning(messnbd,call.=FALSE) } options(warn = -1) if (missing(s.region)) s.region <- sbox(xyt[,1:2], xfrac=0.01, yfrac=0.01) xp <- s.region[,1] yp <- s.region[,2] nedges <- length(xp) yp <- yp - min(yp) nxt <- c(2:nedges, 1) dx <- xp[nxt] - xp ym <- (yp + yp[nxt])/2 Areaxy <- -sum(dx * ym) if (Areaxy > 0){ bsw <- owin(poly = list(x = s.region[,1], y = s.region[,2])) }else{ bsw <- owin(poly = list(x = s.region[,1][length(s.region[,1]):1], y = s.region[,2][length(s.region[,1]):1])) } area <- area(bsw) pert <- perimeter(bsw) ok <- inside.owin(xyt[,1],xyt[,2],w=bsw) xyt.inside <- data.frame(x=xyt[,1][ok],y=xyt[,2][ok],t=xyt[,3][ok]) ptsx <- xyt.inside[,1] ptsy <- xyt.inside[,2] ptst <- xyt.inside[,3] pxy <- ppp(x=ptsx,y=ptsy,window=bsw) if (missing(hs)){ hs <- bw.stoyan(pxy) } if (missing(ds)){ rect <- as.rectangle(bsw) maxd <- min(diff(rect$xrange),diff(rect$yrange))/4 ds <- seq(hs, maxd,len=100)[-1] ds <- sort(ds) } if(ds[1]==0){ds <- ds[-1] } kernel <- c(ks=ks,hs=hs) kmrtheo <- 1 npt <- pxy$n[1] nds <- length(ds) mumr <- mean(ptst) ekmr <- rep(0,nds) storage.mode(ekmr) <- "double" if (appro2[1]==1){ kmrout <- .Fortran("kmrcore",as.double(ptsx),as.double(ptsy),as.double(ptst), as.integer(npt),as.double(ds),as.integer(nds),as.integer(ker2) ,as.double(hs),(ekmr)) ekmr <- kmrout[[9]]/mumr invisible(return(list(ekmr=ekmr,ds=ds,kernel=kernel,kmrtheo=kmrtheo))) } else { if(missing(s.lambda)){ misl <- 1 s.lambda <- rep(npt/area,npt) } else { misl <- 0 if (length(s.lambda)==1){ s.lambda <- rep(s.lambda,npt) } } wrs <- array(0,dim=c(npt,npt)) wts <- array(0,dim=c(npt,npt)) wbi <- array(0,dim=c(npt,nds)) wbimod <- array(0,dim=c(npt,nds)) wss <- rep(0,nds) if(correction=="isotropic"){ wisot <- edge.Ripley(pxy,pairdist(pxy)) wrs <- 1/wisot } if(correction=="translate"){ wtras <- edge.Trans(pxy) wts <- 1/wtras } if(any(correction=="border")|any(correction=="modified.border")){ bi <- bdist.points(pxy) for(i in 1:nds) { wbi[,i] <- (bi>ds[i])/sum((bi>ds[i])/s.lambda) wbimod[,i] <- (bi>ds[i])/eroded.areas(bsw,ds[i]) } wbi[is.na(wbi)] <- 0 wbimod[is.na(wbimod)] <- 0 } if(correction=="setcovf"){ for (i in 1:nds){ wss[i] <- area-((pert*ds[i])/pi) } wss <- 1/wss } options(warn = 0) kmrout <- .Fortran("kmrcoreinh",as.double(ptsx),as.double(ptsy),as.double(ptst), as.integer(npt),as.double(ds),as.integer(nds),as.double(s.lambda), as.integer(ker2),as.double(hs),as.double(wrs),as.double(wts), as.double(wbi),as.double(wbimod),as.double(wss),as.integer(correc2), (ekmr)) ekmr <- kmrout[[16]]/mumr invisible(return(list(ekmr=ekmr,ds=ds,kernel=kernel,kmrtheo=kmrtheo,s.lambda=s.lambda))) } }
ensemble_create <- function(x, x.idx, w = NULL, x.var.idx = NULL, ...) UseMethod("ensemble_create") ensemble_create.sf <- function(x, x.idx, w = NULL, x.var.idx = NULL, ...) { st_sf( ensemble_create(st_set_geometry(x, NULL), x.idx, w, x.var.idx, ...), geometry = st_geometry(x), agr = c(as.character(st_agr(x)), "constant", "constant") ) } ensemble_create.data.frame <- function(x, x.idx, w = NULL, x.var.idx = NULL, ...) { stopifnot(inherits(x, "data.frame"), length(x.idx) <= ncol(x)) lst <- list(...) z.lgl <- if ("na.rm" %in% names(lst)) lst$na.rm else TRUE x.df <- x if (inherits(x.idx, "character")) { if (!all(x.idx %in% names(x.df))) stop("If x.idx is a character vector, then all elements of x.idx must ", "be the name of a column of x") } else if (inherits(x.idx, c("integer", "numeric"))) { if (!(max(x.idx) <= ncol(x.df))) stop("If x.idx is a numeric vector, then all values of x must be ", "less than or equal to ncol(x)") x.idx <- names(x)[x.idx] } else { stop("x.idx must be a vector of class character, integer, or numeric") } if (!is.null(x.var.idx)) { if (length(x.idx) != length(x.var.idx)) stop("If specified, x.var.idx must be the same length as x.idx") if (inherits(x.var.idx, "character")) { if (!all(x.var.idx %in% c(names(x.df)))) stop("If x.var.idx is a character vector, then all elements of x.var.idx must ", "be the name of a column of x (not including the geometry list-column)") } else if (inherits(x.var.idx, c("integer", "numeric"))) { if (!(max(x.var.idx, na.rm = TRUE) <= ncol(x))) stop("If x.var.idx is a numeric vector, then all values of x must be ", "less than or equal to ncol(x)") x.var.idx <- names(x)[x.var.idx] } else { stop("If it is not NULL, x.var.idx must be a vector of class ", "character, integer, or numeric") } } if (any(x.idx %in% x.var.idx)) stop("x.idx and x.var.idx cannot point to any of the same columns of x") if (is.null(w)) { w <- rep(1 / length(x.idx), length(x.idx)) } else if (inherits(w, "numeric")) { if (length(x.idx) != length(w)) stop("x.idx and w must have the same length") if (!all.equal(sum(w), 1)) stop("If w is a numeric vector, it must sum to 1") } else if (inherits(w, "data.frame")) { stopifnot(ncol(w) == length(x.idx), nrow(x) == nrow(w)) w <- data.frame(t(apply(w, 1, function(i, z) i / sum(i, na.rm = z), z = z.lgl))) } else { stop("w must be one of NULL, a data frame (or tibble), or a numeric vector") } x.df.idx <- x.df %>% select(!!x.idx) if (!is.null(x.var.idx)) x.var.df.idx <- x.df %>% select(!!x.var.idx) if (inherits(w, "numeric")) { data.ens <- unname(apply(x.df.idx, 1, esdm_weighted_mean, w = w, ... = z.lgl)) if (is.null(x.var.idx)) { data.ens.var <- unname(apply( cbind(x.df.idx, data.ens), 1, function(i, j, z) { esdm_weighted_var_amv(head(i, -1), tail(i, 1), j, na.rm = z) }, j = w, z = z.lgl )) } else { data.ens.var <- unname(apply( x.var.df.idx, 1, function(i, j, z) { esdm_weighted_var_wmv(i, j, na.rm = z) }, j = w, z = z.lgl )) } } else if (inherits(w, "data.frame")) { data.ens <- unname(apply(cbind(x.df.idx, w), 1, function(i, k, z) { esdm_weighted_mean(head(i, k), tail(i, k), na.rm = z) }, k = ncol(w), z = z.lgl)) if (is.null(x.var.idx)) { data.ens.var <- unname(apply(cbind(x.df.idx, w, data.ens), 1, function(i, k, z) { i.mean <- tail(i, 1) i <- head(i, -1) esdm_weighted_var_amv(head(i, k), i.mean, tail(i, k), na.rm = z) }, k = ncol(w), z = z.lgl)) } else { data.ens.var <- unname(apply( cbind(x.var.df.idx, w), 1, function(i, k, z) { esdm_weighted_var_wmv(head(i, k), tail(i, k), na.rm = z) }, k = ncol(w), z = z.lgl )) } } else { stop("Error in ensemble_create()") } stopifnot(is.numeric(data.ens), is.numeric(data.ens.var)) data.ens[is.nan(data.ens)] <- NA data.ens.var[is.nan(data.ens.var)] <- NA data.frame(x, Pred_ens = data.ens, Var_ens = data.ens.var) }
poisson.exact<-function (x, T = 1, r = 1, alternative = c("two.sided", "less", "greater"), tsmethod=c("central","minlike","blaker"), conf.level = 0.95, control=binomControl(), plot=FALSE, midp=FALSE) { relErr<-control$relErr tol<-control$tol pRange<-control$pRange tsmethod<-match.arg(tsmethod) if (tsmethod!="central" & tsmethod!="minlike" & tsmethod!="blaker") stop("tsmethod must be one of 'central', 'minlike', or 'blaker' ") DNAME <- deparse(substitute(x)) DNAME <- paste(DNAME, "time base:", deparse(substitute(T))) if ((l <- length(x)) != length(T)) if (length(T) == 1) T <- rep(T, l) else stop("'x' and 'T' have incompatible length") xr <- round(x) if (any(!is.finite(x) | (x < 0)) || max(abs(x - xr)) > 1e-07) stop("'x' must be finite, nonnegative, and integer") x <- xr if (any(is.na(T) | (T < 0))) stop("'T' must be nonnegative") if ((k <- length(x)) < 1) stop("not enough data") if (k > 2) stop("The case k > 2 is unimplemented") if (!missing(r) && (length(r) > 1 || is.na(r) || r < 0)) stop("'r' must be a single positive number") alternative <- match.arg(alternative) if (k == 2) { RVAL <- binom.exact(x, sum(x), r * T[1]/(r * T[1] + T[2]), alternative = alternative, tsmethod=tsmethod, conf.level=conf.level, control=control, midp=midp) RVAL$data.name <- DNAME RVAL$statistic <- x[1] RVAL$parameter <- sum(x) * r * T[1]/sum(T * c(1, r)) names(RVAL$statistic) <- c("count1") names(RVAL$parameter) <- c("expected count1") RVAL$estimate <- (x[1]/T[1])/(x[2]/T[2]) names(RVAL$estimate) <- "rate ratio" pp <- RVAL$conf.int RVAL$conf.int <- pp/(1 - pp) * T[2]/T[1] if (tsmethod=="blaker" | tsmethod=="minlike"){ pplowerprec<- attr(RVAL$conf.int,"conf.limit.prec")$lower rval.lower.prec<-pplowerprec/(1-pplowerprec)*T[2]/T[1] ppupperprec<- attr(RVAL$conf.int,"conf.limit.prec")$upper rval.upper.prec<-ppupperprec/(1-ppupperprec)*T[2]/T[1] attr(RVAL$conf.int,"conf.limit.prec")<-list(lower=rval.lower.prec, upper=rval.upper.prec) } names(r) <- "rate ratio" RVAL$null.value <- r methodphrase<-"Exact one-sided Comparison of Poisson rates" if (alternative=="two.sided") methodphrase<-switch(tsmethod, minlike="Exact two-sided Poisson test (sum of minimum likelihood method)", central="Exact two-sided Poisson test (central method)", blaker="Exact two-sided Poisson test (Blaker's method)") if (midp) methodphrase<-paste0(methodphrase,", mid-p version") RVAL$method <- methodphrase } else { m <- r * T if (midp){ if (alternative=="two.sided" & tsmethod!="central") stop("midp=TRUE only available for tsmethod='central'") midp.less<-ppois(x, m)-0.5*dpois(x,m) midp.greater<-ppois(x - 1, m, lower.tail = FALSE)-0.5*dpois(x,m) PVAL <- switch(alternative, less = midp.less, greater = midp.greater, two.sided =pmin(rep(1,length(midp.less)), 2*midp.less, 2*midp.greater)) p.L<-function(x,alpha){ if (x==0){ out<-0 } else { rootfunc<-function(mu){ 1-ppois(x,mu)+0.5*dpois(x,mu) - alpha } out<-uniroot(rootfunc,c(0,qgamma(alpha,x)+1))$root } out } p.U<-function(x,alpha){ if (x==0 & alpha>=0.5){ out<-0 } else { rootfunc<-function(mu){ ppois(x,mu)-0.5*dpois(x,mu) - alpha } out<-uniroot(rootfunc, c(0,qgamma(1 - alpha, x + 1)+1))$root } } } else { PVAL <- switch(alternative, less = ppois(x, m), greater = ppois(x - 1, m, lower.tail = FALSE), two.sided = exactpoissonPval(x,T,r,relErr, tsmethod=tsmethod)) p.L <- function(x, alpha) { if (x == 0) 0 else qgamma(alpha, x) } p.U <- function(x, alpha) qgamma(1 - alpha, x + 1) } if (alternative=="less"){ CINT<-c(0, p.U(x, 1 - conf.level)) } else if (alternative=="greater"){ CINT<-c(p.L(x, 1 - conf.level), Inf) } else { if (tsmethod=="central"){ alpha <- (1 - conf.level)/2 CINT<-c(p.L(x, alpha), p.U(x, alpha)) } else { if (midp) stop("midp=TRUE only available for tsmethod='central'") CINT<-exactpoissonCI(x,tsmethod=tsmethod,conf.level=conf.level) } } CINT<-CINT/T attr(CINT,"conf.level")<-conf.level ESTIMATE <- x/T names(x) <- "number of events" names(T) <- "time base" names(ESTIMATE) <- names(r) <- "event rate" methodphrase<-"Exact one-sided Poisson rate test" if (alternative=="two.sided") methodphrase<-switch(tsmethod, minlike="Exact two-sided Poisson test (sum of minimum likelihood method)", central="Exact two-sided Poisson test (central method)", blaker="Exact two-sided Poisson test (Blaker's method)") if (midp) methodphrase<-paste0(methodphrase,", mid-p version") RVAL<-structure(list(statistic = x, parameter = T, p.value = PVAL, conf.int = CINT, estimate = ESTIMATE, null.value = r, alternative = alternative, method = methodphrase, data.name = DNAME), class = "htest") } if (plot){ lowerRange<-ifelse(RVAL$conf.int[1]==0, .8*min(r,RVAL$conf.int[2]), .8*min(RVAL$conf.int[1],r) ) upperRange<-ifelse(RVAL$conf.int[2]==Inf, 1.2*max(r,RVAL$conf.int[1]), 1.2*max(RVAL$conf.int[2],r) ) exactpoissonPlot(x,T,tsmethod=tsmethod,rRange=c(lowerRange,upperRange),alternative=alternative,conf.level=conf.level,col="gray") points(r,RVAL$p.value,col="black") } return(RVAL) }
"dicom.dic"
is.phyloseq <- function (x) { length(x) == 1 && is(x) == "phyloseq" }
hsb2 <- read.table('https://stats.idre.ucla.edu/stat/r/faq/hsb2.csv', header=T, sep=",") head(hsb2) l <- reshape(hsb2, varying = c("read", "write", "math", "science", "socst"), v.names = "score", timevar = "subj", times = c("read", "write", "math", "science", "socst"), new.row.names = 1:1000, direction = "long") l.sort <- l[order(l$id),] head(l.sort) w <- reshape(l.sort, timevar = "subj", idvar = c("id", "female", "race", "ses", "schtyp", "prog"), direction = "wide") head(w) dim(w) dim(hsb2)
reports <- function(apiVersion = "201809"){ switch (apiVersion, "201809" = reportTypes <- list.files(system.file(package="RAdwords",'extdata/api201809/')), "201806" = reportTypes <- list.files(system.file(package="RAdwords",'extdata/api201806/')), "201802" = reportTypes <- list.files(system.file(package="RAdwords",'extdata/api201802/')) ) reportTypes <- sub('.csv', '', reportTypes) reportTypes <- gsub('-', '_', reportTypes) reportTypes <- toupper(reportTypes) reportTypes }
test_that("capimun online", { skip_on_cran() skip_if_siane_offline() skip_if_gisco_offline() expect_silent(esp_get_capimun()) expect_silent(esp_get_capimun(rawcols = TRUE)) expect_message(esp_get_capimun(verbose = TRUE)) expect_message(esp_get_capimun(verbose = TRUE, update_cache = TRUE)) expect_message(esp_get_capimun(region = "Canarias", verbose = TRUE)) expect_error(esp_get_capimun(year = "2019-15-23")) expect_error(esp_get_capimun(year = "2019-15")) expect_warning(expect_error(expect_warning(esp_get_capimun(region = "XX")))) expect_error(esp_get_capimun(epsg = "5689")) expect_error(esp_get_capimun(year = "2040")) expect_error(expect_warning(esp_get_capimun(munic = "XX"))) expect_silent(esp_get_capimun(moveCAN = FALSE)) expect_silent(esp_get_capimun(moveCAN = c(0, 10))) expect_silent(esp_get_capimun(year = "2019-10-23")) expect_silent(esp_get_capimun(munic = "Nieva")) expect_silent(esp_get_capimun(region = "Alava")) a <- mapSpain::esp_codelist n <- a$nuts1.name s <- esp_get_capimun(region = n) expect_equal(length(unique(s$cpro)), 52) })
tr.cont.scale <- function(sp_tr, std_method = "scale_center") { check.sp.tr(sp_tr) if (any(!apply(sp_tr, 2, is.numeric))) { stop("Species x traits data frame must contain only numerical variables.") } std_method <- match.arg(std_method, c("range", "center", "scale", "scale_center")) if (std_method == "range") { sp_tr <- apply(sp_tr, 2, function(x) (x - min(x)) / (max(x) - min(x))) } if (std_method == "center") { sp_tr <- apply(sp_tr, 2, function(x) x - mean(x)) } if (std_method == "scale") { sp_tr <- apply(sp_tr, 2, function(x) x / stats::sd(x)) } if (std_method == "scale_center") { sp_tr <- apply(sp_tr, 2, function(x) (x - mean(x) / stats::sd(x))) } return(sp_tr) } tr.cont.fspace <- function(sp_tr, pca = TRUE, nb_dim = 7, scaling = "scale_center", compute_corr = "pearson") { check.sp.tr(sp_tr) if (any(!apply(sp_tr, 2, is.numeric))) { stop("Species x traits data frame must contain only numerical variables.") } scaling <- match.arg(scaling, c("range", "center", "scale", "scale_center", "no_scale")) compute_corr <- match.arg(compute_corr, c("pearson", "none")) if (pca) { if (ncol(sp_tr) < 3) { stop("There must be at least 3 traits in 'sp_tr'.") } if (nrow(sp_tr) < 3) { stop("There must be at least 3 species in 'sp_tr'.") } } if (nb_dim < 2) { stop("Number of dimensions must be higher than 1.") } if (nb_dim > ncol(sp_tr)) { stop("Number of dimensions must be lower than the number of traits.") } compute.corr.coef <- function(sp_tr) { if (nrow(sp_tr) <= 4) { stop("If you want to compute correlation matrix you must have more ", "than 4 observations.") } Hmisc::rcorr(as.matrix(sp_tr), type = "pearson") } deviation.dist <- function(sp_dist_init, sp_dist_multidim) { deviation_dist <- sp_dist_multidim - sp_dist_init c(mAD = mean(abs(deviation_dist), 6), mSD = mean(((deviation_dist) ^ 2), 6)) } if (scaling != "no_scale") { sp_tr <- tr.cont.scale(sp_tr, std_method = scaling) } if (pca) { sp_dist_init <- cluster::daisy(sp_tr, metric = "euclidean") pca_analysis <- FactoMineR::PCA(sp_tr, ncp = nb_dim, graph = FALSE, scale.unit = FALSE) sp_faxes_coord <- as.data.frame(pca_analysis$ind$coord) if (ncol(sp_faxes_coord) > nb_dim) { sp_faxes_coord <- sp_faxes_coord[, 1:nb_dim] } nb <- 1 for(i in (1:ncol(sp_faxes_coord))) { colnames(sp_faxes_coord)[i] <- paste0("PC", nb) nb <- nb + 1 } quality_nbdim <- matrix(NA, nb_dim - 1, 2, dimnames = list(paste0(2:nb_dim, "D"), c("mAD", "mSD"))) sp_dist_multidim <- list() for (i in 2:nb_dim) { sp_dist_multidim2 <- stats::dist(sp_faxes_coord[, 1:i], method = "euclidean") quality_nbdim[paste0(i, "D"), c("mAD", "mSD")] <- deviation.dist( sp_dist_init, sp_dist_multidim2) sp_dist_multidim[[i - 1]] <- sp_dist_multidim2 names(sp_dist_multidim)[i - 1] <- paste0(i, "D") } eigenv_varpercent <- pca_analysis$eig[c(1:nb_dim), ] nb <- 1 for (e in (1:nrow(eigenv_varpercent))){ rownames(eigenv_varpercent)[e] <- paste0("PC", nb) nb <- nb + 1 } if (compute_corr == "pearson") { corr_tr_coeff <- compute.corr.coef(sp_tr) return_list1 <- list(quality_nbdim, eigenv_varpercent, as.matrix(sp_faxes_coord), sp_dist_multidim, sp_dist_init, corr_tr_coeff) names(return_list1) <- c("quality_metrics", "eigenvalues_percentage_var", "sp_faxes_coord", "sp_dist_multidim", "sp_dist_init", "tr_correl") return(return_list1) } else { return_list1 <- list(quality_nbdim, eigenv_varpercent, as.matrix(sp_faxes_coord), sp_dist_multidim, sp_dist_init) names(return_list1) <- c("quality_metrics", "eigenvalues_percentage_var", "sp_faxes_coord", "sp_dist_multidim", "sp_dist_init") return(return_list1) } } else { sp_dist_init <- cluster::daisy(sp_tr, metric = "euclidean") sp_faxes_coord <- sp_tr if (compute_corr == "pearson") { corr_tr_coeff <- compute.corr.coef(sp_tr) return_list2 <- list(sp_faxes_coord, sp_dist_init, corr_tr_coeff) names(return_list2) <- c("sp_faxes_coord", "sp_dist", paste("tr_correl")) return(return_list2) } else { return_list2 <- list(as.matrix(sp_faxes_coord), sp_dist_init) names(return_list2) <- c("sp_faxes_coord", "sp_dist") return(return_list2) } } }
coef.srafit <- function (object, ...) { object$coefficients }
knitr::opts_chunk$set( collapse = TRUE, comment = " ) library(ggplot2) library(dplyr) library(purrr) library(tidyr) library(forcats) library(sitar) knitr::kable(optimal_design(z = -4:4*2/3, N = 10000), digits = c(2, 2, 0, 3, 0, 2, 2)) minage <- 0 maxage <- 20 N <- 1e4 map_dfr(c(1, 0.9, 0.38), ~{ tibble(age = (runif(N, minage^.x, maxage^.x))^(1/.x), p = .x) }) %>% mutate(lambda = fct_reorder(factor(p), -p)) %>% ggplot(aes(age, group = lambda)) + geom_histogram(fill = 'gray', binwidth = 1) + facet_wrap(. ~ lambda, labeller = label_both) + xlab('age (years)') + ylab('frequency') n_table <- map_dfc(-4:4*2/3, ~{ n_agegp(z = .x, N = 10000) %>% select(!!z2cent(.x) := n_varying) }) %>% bind_cols(tibble(age = paste(0:19, 1:20, sep = '-')), .) knitr::kable(n_table) knitr::kable(n_agegp(z = 2, N = 3506, minage = 0, maxage = 5, n_groups = 5) %>% select(age, n_varying)) tibble(age = c(1/6, 1/2, 5/6, 5/4, 7/4, 19/8, 25/8, 4:10, c(22:29/2 - 1/4), 15:18, 77/4), n = c(rep(12, 3), rep(10, 4), 13, rep(11, 6), rep(6, 3), rep(11, 5), 15, rep(8, 3), 13) * 100, span = c(rep(1/3, 3), rep(1/2, 2), rep(3/4, 2), rep(1, 7), rep(1/2, 8), rep(1, 4), 3/2)) %>% ggplot(aes(x = age, y = n/span, width = span-0.02)) + xlab('age (years)') + ylab('frequency') + geom_bar(fill = 'gray', stat = 'identity') + geom_bar(aes(y = n_varying, width = NULL), data = n_agegp(z = qnorm(0.03), SEz = 0.3 / 5.75) %>% mutate(n_varying = n_varying * 1.1), width = 0.98, fill = 'gray50', stat = 'identity')
if(requireNamespace("dagitty")) { library(pcalg) (doExtras <- pcalg:::doExtras()) x <- 1; y <- 2 cpdag <- matrix(c(0,1,1,0),2,2) dag <- matrix(c(0,1,0,0),2,2) adjC <- adjustment(amat = cpdag, amat.type = "cpdag", x = 1, y = 2, set.type = "canonical") adjD <- adjustment(amat = dag, amat.type = "dag", x = 1, y = 2, set.type = "canonical") adjP <- adjustment(amat = dag, amat.type = "pdag", x = 1, y = 2, set.type = "canonical") stopifnot(!identical(adjC, adjD), identical(adjD, adjP) ) gacVSadj <- function(amat, x, y ,z, V, type) { typeDG <- switch(type, dag = "dag", cpdag = "cpdag", mag = "mag", pag = "pag") gacRes <- gac(amat,x,y, z, type)$gac adjRes <- adjustment(amat = amat, amat.type = typeDG, x = x, y = y, set.type = "all") if (gacRes) { res <- any(sapply(adjRes, function(xx) setequal(z, xx))) } else { res <- all(!sapply(adjRes, function(xx) setequal(z, xx))) } res } xx <- TRUE mFig1 <- matrix(c(0,1,1,0,0,0, 1,0,1,1,1,0, 0,0,0,0,0,1, 0,1,1,0,1,1, 0,1,0,1,0,1, 0,0,0,0,0,0), 6,6) type <- "cpdag" x <- 3; y <- 6 V <- as.character(1:ncol(mFig1)) rownames(mFig1) <- colnames(mFig1) <- V xx <- xx & gacVSadj(mFig1,x,y, z=c(2,4), V=V, type) xx <- xx & gacVSadj(mFig1,x,y, z=c(4,5), V=V, type) type <- "pag" mFig3a <- matrix(c(0,1,0,0, 1,0,1,1, 0,1,0,1, 0,1,1,0), 4,4) V <- as.character(1:ncol(mFig3a)) rownames(mFig3a) <- colnames(mFig3a) <- V xx <- xx & gacVSadj(mFig3a, x=2, y=4, z=NULL, V=V, type) mMMd1 <- matrix(c(0,1,0,1,0,0, 0,0,1,0,1,0, 0,0,0,0,0,1, 0,0,0,0,0,0, 0,0,0,0,0,0, 0,0,0,0,0,0),6,6) V <- as.character(1:ncol(mMMd1)) rownames(mMMd1) <- colnames(mMMd1) <- V type <- "dag" x <- 1; y <- 3 xx <- xx & gacVSadj(mMMd1, x,y, z=NULL, V=V, type) xx <- xx & gacVSadj(mMMd1, x,y, z= 2, V=V, type) if (!xx) { stop("Problem when testing function gacVSadj.") } else { message("OK, no issues were found.") } if (doExtras) { cat("doExtras is ON\n") x <- 1; y <- 2 cpdag <- matrix(c(0,1,1,0),2,2) dag <- matrix(c(0,1,0,0),2,2) adjC <- adjustment(amat = cpdag, amat.type = "cpdag", x = 1, y = 2, set.type = "canonical") adjD <- adjustment(amat = dag, amat.type = "dag", x = 1, y = 2, set.type = "canonical") adjP <- adjustment(amat = dag, amat.type = "pdag", x = 1, y = 2, set.type = "canonical") stopifnot(!identical(adjC, adjD), identical(adjD, adjP) ) adjCAll <- adjustment(amat = cpdag, amat.type = "cpdag", x = 1, y = 2, set.type = "all") adjDAll <- adjustment(amat = dag, amat.type = "dag", x = 1, y = 2, set.type = "all") adjPAll <- adjustment(amat = dag, amat.type = "pdag", x = 1, y = 2, set.type = "all") stopifnot( !identical(adjCAll, adjDAll), identical(adjDAll, adjPAll) ) adjCMin <- adjustment(amat = cpdag, amat.type = "cpdag", x = 1, y = 2, set.type = "minimal") adjDMin <- adjustment(amat = dag, amat.type = "dag", x = 1, y = 2, set.type = "minimal") adjPMin <- adjustment(amat = dag, amat.type = "pdag", x = 1, y = 2, set.type = "minimal") stopifnot( !identical(adjCMin, adjDMin), identical(adjDMin, adjPMin) ) nreps <- 100 simRes <- data.frame(setType = rep(NA, nreps), id = rep(NA,nreps), rtCPDAG = rep(NA,nreps), rtPDAG = rep(NA, nreps), nSet = rep(NA, nreps), gacCheck = rep(NA, nreps)) proc.time() for (i in 1:nreps) { cat("i = ",i,"\n") seed <- i set.seed(seed) p <- sample(x=5:10, size = 1) prob <- sample(x=3:7/10, size = 1) g <- pcalg:::randomDAG(p, prob) cpdag <- dag2cpdag(g) cpdag.mat <- t(as(cpdag,"matrix")) amat <- cpdag.mat x <- sample(x = 1:p, size = 1) y <- sample(x = setdiff(1:p,x), size = 1) set.type <- sample(x = c("all", "minimal"), size = 1) simRes$setType[i] <- set.type simRes$rtCPDAG[i] <- system.time(res1 <- adjustment(amat = amat, amat.type = "cpdag", x = x, y = y, set.type = set.type))[3] simRes$rtPDAG[i] <- system.time(res2 <- adjustment(amat = amat, amat.type = "pdag", x = x, y = y, set.type = set.type))[3] simRes$nSet[i] <- length(res1) if (length(res1) == 0) { res1 <- vector("list", 0) } if (length(res2) == 0) { res2 <- vector("list", 0) } simRes$id[i] <- identical(res1,res2) if (length(res2) > 0) { gc <- TRUE for (j in 1:length(res2)) { gc <- gc & gac(amat = amat, x = x, y = y, z = res2[[j]], type = "cpdag")$gac } simRes$gacCheck[i] <- gc } } proc.time() summary(simRes) table(is.na(simRes$gacCheck), simRes$nSet == 0) gacVSadj <- function(amat, x, y ,z, V, type) { typeDG <- switch(type, dag = "dag", cpdag = "cpdag", mag = "mag", pag = "pag") gacRes <- gac(amat,x,y, z, type)$gac adjRes <- adjustment(amat = amat, amat.type = typeDG, x = x, y = y, set.type = "all") if (gacRes) { res <- any(sapply(adjRes, function(xx) setequal(z, xx))) } else { res <- all(!sapply(adjRes, function(xx) setequal(z, xx))) } res } xx <- TRUE mFig1 <- matrix(c(0,1,1,0,0,0, 1,0,1,1,1,0, 0,0,0,0,0,1, 0,1,1,0,1,1, 0,1,0,1,0,1, 0,0,0,0,0,0), 6,6) type <- "cpdag" x <- 3; y <- 6 V <- as.character(1:ncol(mFig1)) rownames(mFig1) <- colnames(mFig1) <- V xx <- xx & gacVSadj(mFig1,x,y, z=c(2,4), V=V, type) xx <- xx & gacVSadj(mFig1,x,y, z=c(4,5), V=V, type) xx <- xx & gacVSadj(mFig1,x,y, z=c(4,2,1), V=V, type) xx <- xx & gacVSadj(mFig1,x,y, z=c(4,5,1), V=V, type) xx <- xx & gacVSadj(mFig1,x,y, z=c(4,2,5), V=V, type) xx <- xx & gacVSadj(mFig1,x,y, z=c(4,2,5,1), V=V, type) xx <- xx & gacVSadj(mFig1,x,y, z= 2, V=V, type) xx <- xx & gacVSadj(mFig1,x,y, z= NULL, V=V, type) mFig5a <- matrix(c(0,1,0,0,0, 1,0,1,0,0, 0,0,0,0,1, 0,0,1,0,0, 0,0,0,0,0), 5,5) V <- as.character(1:ncol(mFig5a)) rownames(mFig5a) <- colnames(mFig5a) <- V type <- "cpdag" x <- c(1,5); y <- 4 xx <- xx & gacVSadj(mFig5a, x,y, z=c(2,3), V=V, type) xx <- xx & gacVSadj(mFig5a, x,y, z= 2, V=V, type) mMMd1 <- matrix(c(0,1,0,1,0,0, 0,0,1,0,1,0, 0,0,0,0,0,1, 0,0,0,0,0,0, 0,0,0,0,0,0, 0,0,0,0,0,0),6,6) V <- as.character(1:ncol(mMMd1)) rownames(mMMd1) <- colnames(mMMd1) <- V type <- "dag" x <- 1; y <- 3 xx <- xx & gacVSadj(mMMd1, x,y, z=NULL, V=V, type) xx <- xx & gacVSadj(mMMd1, x,y, z= 2, V=V, type) xx <- xx & gacVSadj(mMMd1, x,y, z= 4, V=V, type) xx <- xx & gacVSadj(mMMd1, x,y, z= 5, V=V, type) xx <- xx & gacVSadj(mMMd1, x,y, z= 6, V=V, type) xx <- xx & gacVSadj(mMMd1, x,y, z=c(4,5), V=V, type) mMMd2 <- matrix(c(0,1,0,1,0,0, 0,0,0,0,0,0, 0,1,0,0,1,0, 0,0,0,0,1,0, 0,0,0,0,0,1, 0,0,0,0,0,0), 6,6) V <- as.character(1:ncol(mMMd2)) rownames(mMMd2) <- colnames(mMMd2) <- V type <- "dag" x <- 4; y <- 6 xx <- xx & gacVSadj(mMMd2, x,y, z= 1, V=V, type) xx <- xx & gacVSadj(mMMd2, x,y, z= 3, V=V, type) xx <- xx & gacVSadj(mMMd2, x,y, z= 5, V=V, type) xx <- xx & gacVSadj(mMMd2, x,y, z=c(1,5), V=V, type) xx <- xx & gacVSadj(mMMd2, x,y, z=c(1,2), V=V, type) xx <- xx & gacVSadj(mMMd2, x,y, z=c(1,3), V=V, type) xx <- xx & gacVSadj(mMMd2, x,y, z= 2, V=V, type) type <- "pag" mFig3a <- matrix(c(0,1,0,0, 1,0,1,1, 0,1,0,1, 0,1,1,0), 4,4) V <- as.character(1:ncol(mFig3a)) rownames(mFig3a) <- colnames(mFig3a) <- V xx <- xx & gacVSadj(mFig3a, x=2, y=4, z=NULL, V=V, type) mFig3b <- matrix(c(0,2,0,0, 3,0,3,3, 0,2,0,3, 0,2,2,0), 4,4) V <- as.character(1:ncol(mFig3b)) rownames(mFig3b) <- colnames(mFig3b) <- V xx <- xx & gacVSadj(mFig3b, x=2, y=4, z=NULL, V=V, type) mFig3c <- matrix(c(0,3,0,0, 2,0,3,3, 0,2,0,3, 0,2,2,0), 4,4) V <- as.character(1:ncol(mFig3c)) rownames(mFig3c) <- colnames(mFig3c) <- V xx <- xx & gacVSadj(mFig3c, x=2, y=4, z=NULL, V=V, type) mFig4a <- matrix(c(0,0,1,0,0,0, 0,0,1,0,0,0, 2,2,0,3,3,2, 0,0,2,0,2,2, 0,0,2,1,0,2, 0,0,1,3,3,0), 6,6) V <- as.character(1:ncol(mFig4a)) rownames(mFig4a) <- colnames(mFig4a) <- V xx <- xx & gacVSadj(mFig4a, x=3, y=4, z=NULL, V=V, type) xx <- xx & gacVSadj(mFig4a, x=3, y=4, z= 6, V=V, type) xx <- xx & gacVSadj(mFig4a, x=3, y=4, z=c(1,6), V=V, type) xx <- xx & gacVSadj(mFig4a, x=3, y=4, z=c(2,6), V=V, type) xx <- xx & gacVSadj(mFig4a, x=3, y=4, z=c(1,2,6), V=V, type) mFig4b <- matrix(c(0,0,1,0,0,0, 0,0,1,0,0,0, 2,2,0,0,3,2, 0,0,0,0,2,2, 0,0,2,3,0,2, 0,0,2,3,2,0), 6,6) V <- as.character(1:ncol(mFig4b)) rownames(mFig4b) <- colnames(mFig4b) <- V xx <- xx & gacVSadj(mFig4b, x=3, y=4, z=NULL, V=V, type) xx <- xx & gacVSadj(mFig4b, x=3, y=4, z= 6, V=V, type) xx <- xx & gacVSadj(mFig4b, x=3, y=4, z=c(5,6), V=V, type) mFig5b <- matrix(c(0,1,0,0,0,0,0, 2,0,2,3,0,3,0, 0,1,0,0,0,0,0, 0,2,0,0,3,0,0, 0,0,0,2,0,2,3, 0,2,0,0,2,0,0, 0,0,0,0,2,0,0), 7,7) V <- as.character(1:ncol(mFig5b)) rownames(mFig5b) <- colnames(mFig5b) <- V xx <- xx & gacVSadj(mFig5b, x=c(2,7), y=6, z=NULL, V=V, type) xx <- xx & gacVSadj(mFig5b, x=c(2,7), y=6, z=c(4,5), V=V, type) xx <- xx & gacVSadj(mFig5b, x=c(2,7), y=6, z=c(4,5,1), V=V, type) xx <- xx & gacVSadj(mFig5b, x=c(2,7), y=6, z=c(4,5,3), V=V, type) xx <- xx & gacVSadj(mFig5b, x=c(2,7), y=6, z=c(1,3,4,5), V=V, type) mMMp <- matrix(c(0,0,0,3,2,0,0, 0,0,0,0,1,0,0, 0,0,0,0,1,0,0, 2,0,0,0,0,3,2, 3,2,2,0,0,0,3, 0,0,0,2,0,0,0, 0,0,0,2,2,0,0), 7,7) V <- as.character(1:ncol(mMMp)) rownames(mMMp) <- colnames(mMMp) <- V x <- c(5,6); y <- 7 xx <- xx & gacVSadj(mMMp, x,y, z=NULL, V=V, type) xx <- xx & gacVSadj(mMMp, x,y, z= 1, V=V, type) xx <- xx & gacVSadj(mMMp, x,y, z= 4, V=V, type) xx <- xx & gacVSadj(mMMp, x,y, z= 2, V=V, type) xx <- xx & gacVSadj(mMMp, x,y, z= 3, V=V, type) xx <- xx & gacVSadj(mMMp, x,y, z=c(2,3), V=V, type) xx <- xx & gacVSadj(mMMp, x,y, z=c(1,4), V=V, type) xx <- xx & gacVSadj(mMMp, x,y, z=c(1,4,2), V=V, type) xx <- xx & gacVSadj(mMMp, x,y, z=c(1,4,3), V=V, type) xx <- xx & gacVSadj(mMMp, x,y, z=c(1,4,2,3), V=V, type) type <- "pag" pag.m <- readRDS(system.file(package="pcalg", "external", "gac-pags.rds")) m1 <- pag.m[["m1"]] V <- colnames(m1) x <- 6; y <- 9 xx <- xx & gacVSadj(m1,x,y, z=NULL, V=V, type) xx <- xx & gacVSadj(m1,x,y, z=1, V=V, type) xx <- xx & gacVSadj(m1,x,y, z=2, V=V, type) xx <- xx & gacVSadj(m1,x,y, z=3, V=V, type) xx <- xx & gacVSadj(m1,x,y, z=4, V=V, type) xx <- xx & gacVSadj(m1,x,y, z=c(2,3), V=V, type) xx <- xx & gacVSadj(m1,x,y, z=c(2,3,8), V=V, type) xx <- xx & gacVSadj(m1,x,y, z=c(2,3,7,8), V=V, type) xx <- xx & gacVSadj(m1,x,y, z=c(2,3,5,8), V=V, type) xx <- xx & gacVSadj(m1,x,y, z=c(2,3,5,7,8), V=V, type) x <- c(6,8); y <- 9 xx <- xx & gacVSadj(m1,x,y, z=NULL, V=V, type) xx <- xx & gacVSadj(m1,x,y, z=1, V=V, type) xx <- xx & gacVSadj(m1,x,y, z=2, V=V, type) xx <- xx & gacVSadj(m1,x,y, z=3, V=V, type) xx <- xx & gacVSadj(m1,x,y, z=4, V=V, type) xx <- xx & gacVSadj(m1,x,y, z=c(2,3), V=V, type) xx <- xx & gacVSadj(m1,x,y, z=c(2,3,4), V=V, type) xx <- xx & gacVSadj(m1,x,y, z=c(2,3,7), V=V, type) xx <- xx & gacVSadj(m1,x,y, z=c(2,3,5), V=V, type) xx <- xx & gacVSadj(m1,x,y, z=c(2,3,5,7), V=V, type) x <- 3; y <- 1 xx <- xx & gacVSadj(m1,x,y, z=NULL, V=V, type) xx <- xx & gacVSadj(m1,x,y, z=2, V=V, type) xx <- xx & gacVSadj(m1,x,y, z=4, V=V, type) xx <- xx & gacVSadj(m1,x,y, z=5, V=V, type) xx <- xx & gacVSadj(m1,x,y, z=6, V=V, type) xx <- xx & gacVSadj(m1,x,y, z=c(2,6), V=V, type) xx <- xx & gacVSadj(m1,x,y, z=c(2,8), V=V, type) xx <- xx & gacVSadj(m1,x,y, z=c(2,7,8), V=V, type) xx <- xx & gacVSadj(m1,x,y, z=c(2,5,8), V=V, type) xx <- xx & gacVSadj(m1,x,y, z=c(2,5,7,8), V=V, type) m2 <- pag.m[["m2"]] V <- colnames(m2) x <- 3; y <-1 xx <- xx & gacVSadj(m2,x,y, z=NULL, V=V, type) xx <- xx & gacVSadj(m2,x,y, z=2, V=V, type) xx <- xx & gacVSadj(m2,x,y, z=4, V=V, type) xx <- xx & gacVSadj(m2,x,y, z=c(2,8), V=V, type) xx <- xx & gacVSadj(m2,x,y, z=8, V=V, type) xx <- xx & gacVSadj(m2,x,y, z=9, V=V, type) xx <- xx & gacVSadj(m2,x,y, z=c(2,8,9), V=V, type) xx <- xx & gacVSadj(m2,x,y, z=c(2,5), V=V, type) x <- c(3,9); y <- 1 xx <- xx & gacVSadj(m2,x,y, z=NULL, V=V, type) xx <- xx & gacVSadj(m2,x,y, z=2, V=V, type) xx <- xx & gacVSadj(m2,x,y, z=4, V=V, type) xx <- xx & gacVSadj(m2,x,y, z=c(2,8), V=V, type) xx <- xx & gacVSadj(m2,x,y, z=8, V=V, type) xx <- xx & gacVSadj(m2,x,y, z=9, V=V, type) xx <- xx & gacVSadj(m2,x,y, z=c(2,8,9), V=V, type) xx <- xx & gacVSadj(m2,x,y, z=c(2,5), V=V, type) m3 <- pag.m[["m3"]] V <- colnames(m3) x <- 1; y <- 9 xx <- xx & gacVSadj(m3,x,y, z=NULL, V=V, type) xx <- xx & gacVSadj(m3,x,y, z=2, V=V, type) xx <- xx & gacVSadj(m3,x,y, z=3, V=V, type) xx <- xx & gacVSadj(m3,x,y, z=5, V=V, type) xx <- xx & gacVSadj(m3,x,y, z=7, V=V, type) xx <- xx & gacVSadj(m3,x,y, z=8, V=V, type) xx <- xx & gacVSadj(m3,x,y, z=c(2,3), V=V, type) xx <- xx & gacVSadj(m3,x,y, z=c(5,7), V=V, type) x <- 1; y <- 8 xx <- xx & gacVSadj(m3,x,y, z=NULL, V=V, type) xx <- xx & gacVSadj(m3,x,y, z=2, V=V, type) xx <- xx & gacVSadj(m3,x,y, z=3, V=V, type) xx <- xx & gacVSadj(m3,x,y, z=5, V=V, type) xx <- xx & gacVSadj(m3,x,y, z=7, V=V, type) xx <- xx & gacVSadj(m3,x,y, z=9, V=V, type) xx <- xx & gacVSadj(m3,x,y, z=c(2,3), V=V, type) xx <- xx & gacVSadj(m3,x,y, z=c(5,9), V=V, type) if (!xx) { stop("Problem when testing function gacVSadj.") } else { message("OK, no issues were found.") } m <- rbind(c(0,1,0,0,0,0), c(1,0,1,0,0,0), c(0,1,0,0,0,0), c(0,0,0,0,0,0), c(0,1,1,1,0,0), c(1,0,1,1,1,0)) colnames(m) <- rownames(m) <- as.character(1:6) res1 <- adjustment(m,amat.type="cpdag",2,4,set.type="canonical") res2 <- adjustment(m,amat.type="pdag",2,4,set.type="canonical") if (!all.equal(res1, res2)) { stop("Canonical set is not the same for type=cpdag and type=pdag\n") } } else { cat("doExtras is OFF\n") } }
get_transformation <- function(x) { transform_fun <- find_transformation(x) if (transform_fun == "identity") { out <- list(transformation = function(x) x, inverse = function(x) x) } else if (transform_fun == "log") { out <- list(transformation = log, inverse = exp) } else if (transform_fun %in% c("log1p", "log(x+1)")) { out <- list(transformation = log1p, inverse = expm1) } else if (transform_fun == "exp") { out <- list(transformation = exp, inverse = log) } else if (transform_fun == "sqrt") { out <- list(transformation = sqrt, inverse = function(x) x^2) } else if (transform_fun == "expm1") { out <- list(transformation = expm1, inverse = log1p) } else if (transform_fun == "log-log") { out <- list( transformation = function(x) log(log(x)), inverse = function(x) exp(exp(x)) ) } out }
predict_apc<-function(object, periods=0, population=NULL, quantiles=c(0.05,0.5,0.95), update=FALSE){ ksi_prognose <- function(prepi, vdb, noa, nop, nop2, noc, zmode){ my<-prepi[1] theta<-prepi[2:(noa+1)] phi<-prepi[(noa+2):(noa+nop2+1)] psi<-prepi[(noa+nop2+2):(noa+nop2+noc+1)] delta<-prepi[noa+nop2+noc+2] ksi<-array(0, c(nop2,noa)) for(i in 1:noa){ for(j in 1:nop2){ ksi[j,i] <- my + theta[i] + phi[j] + psi[bamp::coh(i,j,noa,vdb)] if(zmode){ ksi[j,i] <- ksi[j,i] + (rnorm(1, mean = 0, sd = 1)/sqrt(delta)) } } } return(ksi) } predict_rw <- function(prepi, rw, n1, n2){ lambda<-prepi[1] phi<-prepi[-1] if(rw == 1){ for(i in (n1+1):n2){ phi[i] <- (rnorm(1, mean = 0, sd = 1)/sqrt(lambda)) + phi[i-1] } } if(rw == 2){ for(i in (n1+1):n2){ phi[i] <- (rnorm(1, mean = 0, sd = 1)/sqrt(lambda)) + (2*phi[i-1] - phi[i-2]) } } if(rw == 0){ for(i in (n1+1):n2){ phi[i] <- phi[i-1] } } return(phi) } phi<-psi<-NA a1<-dim(object$data$cases)[1] n1<-dim(object$data$cases)[2] n2<-n1+periods rwp<-rwc<-0 if (!object$model$period=="") { rwp<-switch(object$model$period, rw1 = 1, rw2 = 2 ) ch<-length(object$samples$period) prep<-parallel::mclapply(1:ch, function(i,samples)cbind(object$samples$period_parameter[[i]],object$samples$period[[i]]), samples) phi<-parallel::mclapply(prep, function(prepi, rw, n1, n2){t(apply(prepi, 1, predict_rw, rw, n1, n2))}, rwp, n1, n2) } if (!object$model$cohort=="") { rwc<-switch(object$model$cohort, rw1 = 1, rw2 = 2 ) c1<-dim(object$samples$cohort[[1]])[2] c2<-bamp::coh(1,n2,a1,object$data$periods_per_agegroup) ch<-length(object$samples$cohort) prep<-parallel::mclapply(1:ch, function(i,samples)cbind(object$samples$cohort_parameter[[i]],object$samples$cohort[[i]]), samples) psi<-parallel::mclapply(prep, function(prepi, rw, n1, n2){t(apply(prepi, 1, predict_rw, rw, n1, n2))}, rwc, c1, c2) } nr.samples<-length(object$samples$intercept[[1]]) theta<-if(object$model$age!=""){object$samples$age}else{NA} delta<-if(object$model$overdispersion){object$samples$overdispersion}else{NA} prepfx<- function(i, theta, phi, psi, my, delta, a1, n1, c1, nr){ theta=if(any(is.na(theta))){array(0, c(nr, a1))}else{theta[[i]]} phi=if(any(is.na(phi))){array(0, c(nr, a1))}else{phi[[i]]} psi=if(any(is.na(psi))){array(0, c(nr, a1))}else{psi[[i]]} my=my[[i]] delta=if(any(is.na(delta))){rep(0, nr)}else{delta[[i]]} return(cbind(my,theta,phi,psi, delta)) } prep<- parallel::mclapply(1:ch, prepfx, theta, phi, psi, object$samples$intercept, delta, a1, n1, c1, nr.samples) ksi<-parallel::mclapply(prep, function(prepi, vdb, noa, nop, nop2, noc, zmode){ temp<-apply(prepi, 1, ksi_prognose, vdb, noa, nop, nop2, noc, zmode); return(array(temp,c(nop2,noa,dim(temp)[2])))}, object$data$periods_per_agegroup, a1, n1, n2, c2, object$model$overdispersion) ksi0<-ksi[[1]] if (ch>1) for (i in 2:ch) { ksi0<-abind::abind(ksi0,ksi[[i]], along=3) } pr <- exp(ksi0)/(1+exp(ksi0)) if (is.null(population))population<-object$data$population n0<-min(dim(population)[1],n2) predictedcases <- array(apply(pr,3,function(pr1,n,n0){ return(rbinom(n0*dim(n)[2],n[1:n0,],pr1[1:n0,]))},population,n0),c(n0,dim(pr)[2:3])) predictperiod<-apply(predictedcases,c(1,3),sum) qu_predicted_cases<-apply(predictedcases,1:2,quantile,quantiles) qu_predicted_pr<-apply(pr,1:2,quantile,quantiles) qu_predictperiod<-apply(predictperiod,1,quantile,quantiles) period<-phi[[1]] if (ch>1) for (i in 2:ch) period<-abind::abind(period,phi[[i]], along=1) cohort<-psi[[1]] if (ch>1) for (i in 2:ch) cohort<-abind::abind(cohort,psi[[i]], along=1) samples<-list( "pr"=pr, "cases"=predictedcases, "cases_period"=predictperiod, "period"=period, "cohort"=cohort ) predicted<-list( "pr"=qu_predicted_pr, "cases"=qu_predicted_cases, "cases_period"=qu_predictperiod, "period"=apply(period,2,quantile,quantiles), "cohort"=apply(cohort,2,quantile,quantiles), "samples"=samples ) if (!update){ return(predicted)} else{ object$predicted=predicted return(object) } }
getResponse <- function(object, ...) UseMethod("getResponse") getResponse.default <- function(object, ...) { if (is.list(object)) { return(object$x) } else { return(NULL) } } getResponse.lm <- function(object, ...) { if(!is.null(object[["x"]])){ object[["x"]] } else{ responsevar <- deparse(formula(object)[[2]]) model.frame(object$model)[, responsevar] } } getResponse.Arima <- function(object, ...) { if (is.element("x", names(object))) { x <- object$x } else { series.name <- object$series if (is.null(series.name)) { return(NULL) } else { x <- try(eval.parent(parse(text = series.name)), silent = TRUE) if (is.element("try-error", class(x))) { x <- try(eval.parent(parse(text = series.name), 2), silent = TRUE) } if (is.element("try-error", class(x))) { return(NULL) } } } return(as.ts(x)) } getResponse.fracdiff <- function(object, ...) { if (is.element("x", names(object))) { x <- object$x } else { series.name <- as.character(object$call)[2] if (is.null(series.name)) { stop("missing original time series") } else { x <- try(eval.parent(parse(text = series.name)), silent = TRUE) if (is.element("try-error", class(x))) { x <- try(eval.parent(parse(text = series.name), 2), silent = TRUE) } if (is.element("try-error", class(x))) { return(NULL) } } } return(as.ts(x)) } getResponse.ar <- function(object, ...) { getResponse.Arima(object) } getResponse.tbats <- function(object, ...) { if (is.element("y", names(object))) { y <- object$y } else { return(NULL) } return(as.ts(y)) } getResponse.bats <- function(object, ...) { return(getResponse.tbats(object, ...)) } getResponse.mforecast <- function(object, ...) { return(do.call(cbind, lapply(object$forecast, function(x) x$x))) } getResponse.baggedModel <- function(object, ...) { if (is.element("y", names(object))) { y <- object$y } else { return(NULL) } return(as.ts(y)) }
print.med1way <- function(x,...) { cat("Call:\n") print(x$call) cat("\nTest statistic F:", round(x$test, 4),"\n") if (!is.na(x$crit.val)) cat("Critical value:", round(x$crit.val, 4),"\n") cat("p-value:", round(x$p.value, 5), "\n") cat("\n") }
context("stack") test_that("stack pops first element as list", { s <- stack() r <- as.list(stats::rnorm(5)) s <- insert(s, r) expect_equal(pop(s), r[[5]], tolerance = 0.1) }) test_that("stack peeks first elemen as list", { s <- stack() r <- as.list(stats::rnorm(5)) s <- insert(s, r) expect_equal(peek(s), r[[5]], tolerance = 0.1) }) test_that("stack peeks first element vectorial", { q <- stack() r <- stats::rnorm(5) q <- insert(q, r) expect_equal(peek(q), r, tolerance = 0.1) }) test_that("stack pops first element vectorial", { q <- stack() r <- stats::rnorm(5) q <- insert(q, r) expect_equal(pop(q), r, tolerance = 0.1) }) test_that("stack peeks first element multiple elements in list", { q <- stack() r <- stats::rnorm(5) q <- insert(q, list(r, 1)) expect_equal(peek(q), 1, tolerance = 0.1) }) test_that("stack pop first element multiple elements in list", { q <- stack() r <- stats::rnorm(5) q <- insert(q, list(r, 1)) expect_equal(pop(q), 1, tolerance = 0.1) }) test_that("stack pop first element multiple elements in list", { q <- stack() r <- stats::rnorm(5) q <- insert(q, list(r, 1)) expect_equal(pop(q), 1, tolerance = 0.1) }) test_that("stack can handle different values", { q <- stack() q <- insert(q, list(2, 1)) q <- insert(q, data.frame(A = 1)) q <- insert(q, rnorm(10)) expect_equal(length(pop(q)), 10) expect_true(is.data.frame(pop(q))) expect_equal(pop(q), 1) expect_equal(pop(q), 2) })
rcelllpp <- local({ rcelllpp <- function(L, lambda, rnumgen=NULL, ..., saveid=FALSE) { if(inherits(L, "lintess")) { LT <- L L <- as.linnet(LT) } else if(inherits(L, "linnet")) { ns <- nsegments(L) df <- data.frame(seg=1:ns, t0=0, t1=1, tile=1:ns) LT <- lintess(L, df) } else stop("L should be a linnet or lintess") df <- LT$df df$len <- lengths_psp(as.psp(L))[df$seg] st <- by(df, df$tile, addpoints, lambda=lambda, rnumgen=rnumgen, ...) st <- Reduce(rbind, st) X <- lpp(st, L) if(saveid) attr(X, "cellid") <- marks(cut(X, LT)) return(X) } addpoints <- function(df, lambda=1, rnumgen=NULL, ...) { piecelengths <- df$len tilelength <- sum(piecelengths) mu <- tilelength * lambda n <- if(is.null(rnumgen)) rcellnumber(1, mu=mu) else rnumgen(1, mu, ...) if(n == 0) return(data.frame(seg=integer(0), tp=numeric(0))) u <- runif(n, max=tilelength) csp <- c(0, cumsum(piecelengths)) i <- findInterval(u, csp, rightmost.closed=TRUE, all.inside=TRUE) seg <- df$seg[i] tp <- df$t0[i] + (df$t1 - df$t0)[i] * (u - csp[i])/piecelengths[i] return(data.frame(seg=seg, tp=tp)) } rcelllpp }) rSwitzerlpp <- local({ rSwitzerlpp <- function(L, lambdacut, rintens=rexp, ..., cuts=c("points", "lines")) { stopifnot(inherits(L, "linnet")) cuts <- match.arg(cuts) switch(cuts, points = { X <- rpoislpp(lambdacut, L) LT <- divide.linnet(X) }, lines = { X <- rpoisline(lambdacut, L) X <- attr(X, "lines") LT <- chop.linnet(L, X) }) Z <- rcelllpp(LT, 1, rNswitzer, rintens=rintens, ...) attr(Z, "breaks") <- X return(Z) } rNswitzer <- function(n, mu, rintens=rexp, ...) { rpois(n, mu * rintens(n, ...)) } rSwitzerlpp })
fuzzy.signrank.ci <- function(x, alternative = c("two.sided", "less", "greater"), tol = sqrt(.Machine$double.eps), conf.level = 0.95) { alternative <- match.arg(alternative) if (! is.numeric(x)) stop("'x' must be numeric") if (! all(is.finite(x))) stop("'x' must be all finite") if (! is.numeric(tol)) stop("'tol' must be numeric") if (length(tol) != 1) stop("'tol' must be a single number") if (! is.finite(tol)) stop("'tol' must be finite") if (tol < 0.0) stop("'tol' must be nonnegative") if (! is.numeric(conf.level)) stop("'conf.level' must be numeric") if (length(conf.level) != 1) stop("'conf.level' must be a single number") if (! (is.finite(conf.level) & 0 <= conf.level & conf.level <= 1)) stop("'conf.level' must satisfy 0 <= conf.level <= 1") alpha <- 1 - conf.level dname <- deparse(substitute(x)) nx <- length(x) N <- nx * (nx + 1) / 2 w <- outer(x, x, "+") / 2 w <- sort(w[lower.tri(w, diag = TRUE)]) if (conf.level == 0 || conf.level == 1) { whyknots <- c(-Inf, Inf) kvalues <- rep(NA, 2) ivalues <- conf.level } else { if (alternative == "two.sided") { m <- qsignrank(alpha / 2, nx) while (alpha <= 2 * psignrank(m - 1, nx)) m <- m - 1 while (alpha > 2 * psignrank(m, nx)) m <- m + 1 if (m > N / 2) m <- floor(N / 2) if (m > 0) whyknots <- c(w[m], w[m + 1], w[N - m], w[N - m + 1]) else whyknots <- c(-Inf, w[m + 1], w[N - m], Inf) gdenom <- dsignrank(m, nx) if (m < N - m) gdenom <- 2 * gdenom if (m + 1 < N - m) { gnumer <- 2 * psignrank(m, nx) - alpha } else { gnumer <- conf.level } g <- gnumer / gdenom ivalues <- c(g, 1, g) i <- 1 while (i <= length(ivalues)) { if (whyknots[i] + tol >= whyknots[i + 1]) { whyknots <- whyknots[- (i + 1)] ivalues <- ivalues[- i] } else { i <- i + 1 } } kvalues <- rep(NA, length(whyknots)) for (i in 1:length(whyknots)) { if (! is.finite(whyknots[i])) { kvalues[i] <- NA } else { kvalues[i] <- 1 - fuzzy.signrank.test(x, alternative = alternative, mu = whyknots[i], tol = 0, alpha = alpha)$reject } } } else { m <- qsignrank(alpha, nx) while (alpha <= psignrank(m - 1, nx)) m <- m - 1 while (alpha > psignrank(m, nx)) m <- m + 1 if (m > N) m <- N gdenom <- dsignrank(m, nx) gnumer <- psignrank(m, nx) - alpha g <- gnumer / gdenom if (alternative == "less") { if (m > 0) whyknots <- c(-Inf, w[N - m], w[N - m + 1]) else whyknots <- c(-Inf, w[N - m], Inf) ivalues <- c(1, g) } else { if (m > 0) whyknots <- c(w[m], w[m + 1], Inf) else whyknots <- c(-Inf, w[m + 1], Inf) ivalues <- c(g, 1) } i <- 1 while (i <= length(ivalues)) { if (whyknots[i] + tol >= whyknots[i + 1]) { whyknots <- whyknots[- (i + 1)] ivalues <- ivalues[- i] } else { i <- i + 1 } } kvalues <- rep(NA, length(whyknots)) for (i in 1:length(whyknots)) { if (! is.finite(whyknots[i])) { kvalues[i] <- NA } else { kvalues[i] <- 1 - fuzzy.signrank.test(x, alternative = alternative, mu = whyknots[i], tol = 0, alpha = alpha)$reject } } } } method <- "Wilcoxon signed rank test" foo <- list(knots = whyknots, knot.values = kvalues, interval.values = ivalues, alternative = alternative, method = method, data.name = dname, conf.level = conf.level, tol = tol) return(structure(foo, class = "fuzzyrankci")) }
library(gt) library(tidyverse) library(png) library(webshot) library(here) get_package_docs <- function(pkg) { help_dir <- system.file("help", package = pkg) db_path <- file.path(help_dir, pkg) tools:::fetchRdDB(db_path) } fn_names <- get_package_docs(pkg = "gt") %>% names() name_exclusions <- c( "as.data.frame.gt_tbl", "as_latex", "as_raw_html", "as_rtf", "cells_data", "cells_group", "countrypops", "escape_latex", "gt-options", "gt-package", "gt_latex_dependencies", "gt_output", "gtcars", "gtsave", "pipe", "pizzaplace", "print.gt_tbl", "random_id", "reexports", "render_gt", "sp500", "sza", "test_image" ) fn_names <- fn_names %>% base::setdiff(name_exclusions) image_width <- 1100 temp_dir <- paste0(tempdir(), random_id()) dir.create(temp_dir, showWarnings = FALSE) rm(list = ls(pattern = "^tab_[0-9]*?$")) for (fn_name in fn_names) { utils::example(topic = fn_name, package = "gt", character.only = TRUE, give.lines = FALSE, echo = FALSE) tab_obj <- ls(pattern = "^tab_[0-9]*?$") for (i in seq_along(tab_obj)) { if (!inherits(get(tab_obj[i]), "gt_tbl")) stop("All `tab_ filename <- file.path(temp_dir, paste0("man_", fn_name, "_", i, ".png")) gt:::gt_save_webshot(data = get(tab_obj[i]), filename = filename, zoom = 3) %>% webshot::resize("50%") image_dim <- readPNG(filename) %>% dim() if (image_dim[2] > image_width) eff_image_x <- image_dim[2] else eff_image_x <- image_width if (image_dim[1] >= 1500) eff_image_y <- 1500 else eff_image_y <- image_dim[1] system(glue::glue("convert {shQuote(filename)} -gravity center -extent {eff_image_x}x{eff_image_y} {shQuote(filename)}")) } rm(list = tab_obj) } png_list <- list.files(temp_dir, ".*\\.png$") webshot::shrink(filename = file.path(temp_dir, png_list)) system(glue::glue("cd {shQuote(temp_dir)}; pngquant --force --ext=.png --skip-if-larger --nofs --speed 1 *.png")) file.copy(file.path(temp_dir, png_list), here::here("man", "figures", png_list), overwrite = TRUE)
build_spm12_first_level = function( ..., outdir = NULL, est_args = list( write_residuals = FALSE, method = "Classical", bayesian = NULL), verbose = TRUE ) { spec_out = build_spm12_first_level_spec( verbose = TRUE, outdir = outdir, ... ) spm_mat = spec_out$spm_mat spm = spec_out$spm est_args$spm = spm_mat est_out = do.call( "build_spm12_fmri_est", args = est_args) out_spm = list(spm, est_out$spm) names(out_spm) = c("{1}", "{2}") class(out_spm) = "matlabbatch" script = matlabbatch_to_script( out_spm, batch_prefix = "matlabbatch") L = list( spm = out_spm, script = script ) L$spmmat = spm_mat L$outdir = spec_out$outdir return(L) } spm12_first_level = function( ..., outdir = NULL, est_args = list( write_residuals = FALSE, method = "Classical", bayesian = NULL), add_spm_dir = TRUE, spmdir = spm_dir(verbose = verbose, install_dir = install_dir), clean = TRUE, verbose = TRUE, install_dir = NULL ) { if (is.null(outdir)) { outdir = tempfile() dir.create(outdir, showWarnings = FALSE) } L = build_spm12_first_level( ..., outdir = outdir, est_args = est_args, verbose = verbose) spm = L$spm if (verbose) { message(" } res = run_matlabbatch( spm, add_spm_dir = add_spm_dir, clean = clean, verbose = verbose, spmdir = spmdir, batch_prefix = "matlabbatch") L$result = res if (res != 0) { warning("Result was not zero!") } outfiles = list.files( pattern = "beta_.*[.]nii$", path = outdir, full.names = TRUE ) L$outfiles = outfiles return(L) }
context("plot_pxg") test_that("plot_pxg works", { skip_if(isnt_karl(), "plot tests only run locally") iron <- read_cross2(system.file("extdata", "iron.zip", package="qtl2")) map <- insert_pseudomarkers(iron$gmap, step=1) probs <- calc_genoprob(iron, map, error_prob=0.002) set.seed(62610474) geno <- maxmarg(probs, map, chr=16, pos=28.6, return_char=TRUE) test_plot_pxg <- function() plot_pxg(geno, log10(iron$pheno[,1]), ylab="log liver") expect_doppelganger("plot_pxg", test_plot_pxg) test_plot_pxg_se <- function() plot_pxg(geno, log10(iron$pheno[,1]), ylab="log liver", SEmult=2) expect_doppelganger("plot_pxg_se", test_plot_pxg_se) })
context("Copulas' test") library(volesti) test_that("10-dimensional 2-hyp_fam copula", { h1 = h1 = runif(n = 10, min = 1, max = 1000) h1 = h1 / 1000 h2 = h2 = runif(n = 10, min = 1, max = 1000) h2 = h1 / 1000 cop = copula(r1 = h1 , r2 = h2 , m = 10, n = 100000) res = sum(cop) expect_equal(res, 1) }) test_that("20-dimensional 1_hyp_1_ell fam copula", { h = h = runif(n = 20, min = 1, max = 1000) h = h / 1000 E = replicate(20, rnorm(30)) E = cov(E) cop = copula(r1 = h , sigma = E , m = 100, n = 100000) res = sum(cop) expect_equal(res, 1) })
library(testthat) library(rly) context("Tests for absence of tokens variable") Lexer <- R6::R6Class("Lexer", public = list( t_PLUS = '\\+', t_MINUS = '-', t_NUMBER = '\\d+', t_ignore = " \t", t_error = function(t) { } ) ) test_that("comment", { expect_output(expect_error(rly::lex(Lexer), "Can't build lexer"), "ERROR .* No token list is defined") })
library("surveillance") message("Doing computations: ", COMPUTE <- !file.exists("twinstim-cache.RData")) if (!COMPUTE) load("twinstim-cache.RData", verbose = TRUE) data("imdepi") events <- SpatialPointsDataFrame( coords = coordinates(imdepi$events), data = marks(imdepi, coords=FALSE), proj4string = imdepi$events@proj4string ) stgrid <- imdepi$stgrid[,-1] load(system.file("shapes", "districtsD.RData", package = "surveillance")) summary(events) .stgrid.excerpt <- format(rbind(head(stgrid, 3), tail(stgrid, 3)), digits=3) rbind(.stgrid.excerpt[1:3,], "..."="...", .stgrid.excerpt[4:6,]) imdepi (simdepi <- summary(imdepi)) par(mar = c(5, 5, 1, 1), las = 1) plot(as.stepfun(imdepi), xlim = summary(imdepi)$timeRange, xaxs = "i", xlab = "Time [days]", ylab = "Current number of infectives", main = "") par(las = 1) plot(imdepi, "time", col = c("indianred", "darkblue"), ylim = c(0, 20)) par(mar = c(0, 0, 0, 0)) plot(imdepi, "space", lwd = 2, points.args = list(pch = c(1, 19), col = c("indianred", "darkblue"))) layout.scalebar(imdepi$W, scale = 100, labels = c("0", "100 km"), plot = TRUE) eventDists <- dist(coordinates(imdepi$events)) minsep <- min(eventDists[eventDists > 0]) set.seed(321) imdepi_untied <- untie(imdepi, amount = list(s = minsep / 2)) imdepi_untied_infeps <- update(imdepi_untied, eps.s = Inf) imdsts <- epidataCS2sts(imdepi, freq = 12, start = c(2002, 1), tiles = districtsD) par(las = 1, lab = c(7,7,7), mar = c(5,5,1,1)) plot(imdsts, type = observed ~ time) plot(imdsts, type = observed ~ unit, population = districtsD$POPULATION / 100000) (endemic <- addSeason2formula(~offset(log(popdensity)) + I(start / 365 - 3.5), period = 365, timevar = "start")) imdfit_endemic <- twinstim(endemic = endemic, epidemic = ~0, data = imdepi_untied, subset = !is.na(agegrp)) summary(imdfit_endemic) print(xtable(imdfit_Gaussian, caption="Estimated rate ratios (RR) and associated Wald confidence intervals (CI) for endemic (\\code{h.}) and epidemic (\\code{e.}) terms. This table was generated by \\code{xtable(imdfit\\_Gaussian)}.", label="tab:imdfit_Gaussian"), sanitize.text.function=NULL, sanitize.colnames.function=NULL, sanitize.rownames.function=function(x) paste0("\\code{", x, "}")) R0_events <- R0(imdfit_Gaussian) tapply(R0_events, marks(imdepi_untied)[names(R0_events), "type"], mean) par(mar = c(5,5,1,1)) set.seed(2) plot(imdfit_Gaussian, "siaf", xlim=c(0,42), ylim=c(0,5e-5), lty=c(1,3), xlab = expression("Distance " * x * " from host [km]")) plot(imdfit_exponential, "siaf", add=TRUE, col.estimate=5, lty = c(5,3)) plot(imdfit_powerlaw, "siaf", add=TRUE, col.estimate=4, lty=c(2,3)) plot(imdfit_step4, "siaf", add=TRUE, col.estimate=3, lty=c(4,3)) legend("topright", legend=c("Power law", "Exponential", "Gaussian", "Step (df=4)"), col=c(4,5,2,3), lty=c(2,5,1,4), lwd=3, bty="n") exp(cbind("Estimate" = coef(imdfit_Gaussian)["e.siaf.1"], confint(imdfit_Gaussian, parm = "e.siaf.1"))) exp(cbind("Estimate" = coef(imdfit_powerlaw)[c("e.siaf.1", "e.siaf.2")], confint(imdfit_powerlaw, parm = c("e.siaf.1", "e.siaf.2")))) quantile(getSourceDists(imdepi_untied_infeps, "space"), c(1,2,4,8)/100) AIC(imdfit_endemic, imdfit_Gaussian, imdfit_exponential, imdfit_powerlaw, imdfit_step4) imdfit_endemic_sel <- stepComponent(imdfit_endemic, component = "endemic") imdfit_powerlaw <- update(imdfit_powerlaw, model = TRUE) par(mar = c(5,5,1,1), las = 1) intensity_endprop <- intensityplot(imdfit_powerlaw, aggregate="time", which="endemic proportion", plot=FALSE) intensity_total <- intensityplot(imdfit_powerlaw, aggregate="time", which="total", tgrid=501, lwd=2, xlab="Time [days]", ylab="Intensity") curve(intensity_endprop(x) * intensity_total(x), add=TRUE, col=2, lwd=2, n=501) text(2500, 0.36, labels="total", col=1, pos=2, font=2) text(2500, 0.08, labels="endemic", col=2, pos=2, font=2) for (.type in 1:2) { print(intensityplot(imdfit_powerlaw, aggregate="space", which="epidemic proportion", types=.type, tiles=districtsD, sgrid=1000, col.regions = grey(seq(1,0,length.out=10)), at = seq(0,1,by=0.1))) grid::grid.text("Epidemic proportion", x=1, rot=90, vjust=-1) } par(mar = c(5, 5, 1, 1)) checkResidualProcess(imdfit_powerlaw) imdsim <- simulate(imdfit_powerlaw, nsim = 1, seed = 1, t0 = 2191, T = 2555, data = imdepi_untied_infeps, tiles = districtsD) .t0 <- imdsim$timeRange[1] .cumoffset <- c(table(subset(imdepi, time < .t0)$events$type)) par(mar = c(5,5,1,1), las = 1) plot(imdepi, ylim = c(0, 20), col = c("indianred", "darkblue"), subset = time < .t0, cumulative = list(maxat = 336), xlab = "Time [days]") plot(imdsim, add = TRUE, legend.types = FALSE, col = adjustcolor(c("indianred", "darkblue"), alpha.f = 0.5), subset = !is.na(source), cumulative = list(offset = .cumoffset, maxat = 336, axis = FALSE), border = NA, density = 0) plot(imdepi, add = TRUE, legend.types = FALSE, col = 1, subset = time >= .t0, cumulative = list(offset = .cumoffset, maxat = 336, axis = FALSE), border = NA, density = 0) abline(v = .t0, lty = 2, lwd = 2) table(imdsim$events$source > 0, exclude = NULL)
library(MASS) library(ISLR) data(Boston) names(Boston) ?Boston plot(medv~lstat, Boston) fit1<-lm(medv~lstat, Boston) fit1 summary(fit1) abline(fit1,col="red") names(fit1) fit1$coefficients confint(fit1) predict(fit1,data.frame(lstat=c(5,10,15)),interval="confidence") fit2<-lm(medv~lstat+age,data=Boston) summary(fit2) plot(fit2$residuals) plot(fitted(fit2),fit2$residuals) hist(fit2$residuals) fit3<-lm(medv~.,data=Boston) summary(fit3) par(mfrow=c(2,2)) plot(fit3) hist(fit3$residuals) par(mfrow=c(1,1)) plot(fitted(fit3),fit3$residuals) fit4<- update(fit3,~.-age-indus) summary(fit4) fit5<-lm(medv~lstat*age, Boston) summary(fit5) fit6<-lm(medv~lstat+ I(lstat^2), Boston) summary(fit6) plot(fit6) attach(Boston) par(mfrow=c(1,1)) plot(medv~lstat) points(lstat,fitted(fit6),col="red",pch=20) fit7<-lm(medv~poly(lstat,4)) points(lstat,fitted(fit7),col="blue",pch=20) plot(1:20,1:20,pch=1:20,cex=2) fix(Carseats) names(Carseats) summary(Carseats) fit8<-lm(Sales~.+Income*Advertising+Age:Price,data=Carseats) summary(fit8) contrasts(Carseats$ShelveLoc)
testthat::context("apply_theme - T1. The `define_theme()` function returns a `visR_theme` object can contain valid input parameters for `apply_theme()`.") testthat::test_that("T1.1 No error when no parameters are specified.", { testthat::expect_error(visR::define_theme(), NA) }) testthat::test_that("T1.2 Not specifying any parameters returns a list.", { theme <- visR::define_theme() testthat::expect_true(is.list(theme)) }) testthat::test_that("T1.3 No error when `strata` is `NULL`.", { testthat::expect_error(visR::define_theme(strata = NULL), NA) }) testthat::test_that("T1.4 A warning when `strata` is an empty `list`.", { testthat::expect_warning(visR::define_theme(strata = list())) }) testthat::test_that("T1.5 A warning when `strata` is an unnamed `list`.", { testthat::expect_warning(visR::define_theme(strata = list("v", "i", "s", "R"))) }) testthat::test_that("T1.6 No warning when `strata` is a named `list`.", { testthat::expect_warning(visR::define_theme(strata = list("visR" = "visR")), NA) }) testthat::test_that("T1.7 No error when `fontsizes` is `NULL`.", { testthat::expect_error(visR::define_theme(fontsizes = NULL), NA) }) testthat::test_that("T1.8 A warning when `fontsizes` is an empty `list`.", { testthat::expect_warning(visR::define_theme(fontsizes = list())) }) testthat::test_that("T1.9 A warning when `fontsizes` is an unnamed `list`.", { testthat::expect_warning(visR::define_theme(fontsizes = list("v", "i", "s", "R"))) }) testthat::test_that("T1.10 No warning when `fontsizes` is a named `list`.", { testthat::expect_warning(visR::define_theme(fontsizes = list("visR" = "visR")), NA) }) testthat::test_that("T1.11 A message when `fontsizes` is a numerical value.", { testthat::expect_message(visR::define_theme(fontsizes = 12)) }) testthat::test_that("T1.12 A warning when `fontsizes` is neither `NULL`, a `list` or a `numeric`.", { testthat::expect_warning(visR::define_theme(fontsizes = "visR")) }) testthat::test_that("T1.13 No error when `fontfamily` is a string.", { testthat::expect_error(visR::define_theme(fontfamily = "Times"), NA) }) testthat::test_that("T1.14 A warning when `fontfamily` is an empty string.", { testthat::expect_warning(visR::define_theme(fontfamily = "")) testthat::expect_warning(visR::define_theme(fontfamily = c(""))) }) testthat::test_that("T1.15 A warning when `fontfamily` is a vector of strings.", { testthat::expect_warning(visR::define_theme(fontfamily = c("Times", "Helvetica"))) }) testthat::test_that("T1.16 A warning when `fontfamily` is anything but a string.", { testthat::expect_warning(visR::define_theme(fontfamily = NULL)) testthat::expect_warning(visR::define_theme(fontfamily = 12)) testthat::expect_warning(visR::define_theme(fontfamily = TRUE)) testthat::expect_warning(visR::define_theme(fontfamily = list())) }) testthat::test_that("T1.17 No error when `grid` is a boolean", { testthat::expect_error(visR::define_theme(grid = TRUE), NA) testthat::expect_error(visR::define_theme(grid = FALSE), NA) }) testthat::test_that("T1.18 A warning when `grid` is anything but a boolean", { testthat::expect_warning(visR::define_theme(grid = NULL)) testthat::expect_warning(visR::define_theme(grid = 12)) testthat::expect_warning(visR::define_theme(grid = "visR")) testthat::expect_warning(visR::define_theme(grid = c())) }) testthat::test_that("T1.19 No error when `bg` is a character.", { testthat::expect_error(visR::define_theme(bg = "blue"), NA) }) testthat::test_that("T1.20 A warning when `bg` is anything but a character.", { testthat::expect_warning(visR::define_theme(bg = NULL)) testthat::expect_warning(visR::define_theme(bg = 12)) testthat::expect_warning(visR::define_theme(bg = list())) }) testthat::test_that("T1.21 The returned theme object is of class `visR_theme`.", { testthat::expect_true("visR_theme" %in% class(visR::define_theme())) }) testthat::context("apply_theme - T2. The `apply_theme` function applies the specified changes to a `ggplot` object.") testthat::test_that("T2.1 No error when a `ggplot` plot is provided, but no theme.", { gg <- adtte %>% visR::estimate_KM("SEX") %>% visR::visr() testthat::expect_error(visR::apply_theme(gg), NA) }) testthat::test_that("T2.2 No error when a `ggplot` plot and a minimal `visR::define_theme` object are provided.", { gg <- adtte %>% visR::estimate_KM("SEX") %>% visR::visr() theme <- visR::define_theme() testthat::expect_error(visR::apply_theme(gg, theme), NA) testthat::expect_error(gg %>% visR::apply_theme(theme), NA) }) testthat::test_that("T2.3 No error when a `ggplot` plot and a complex `visR::define_theme` object are provided.", { gg <- adtte %>% visR::estimate_KM("SEX") %>% visR::visr() theme <- visR::define_theme(strata = list("SEX" = list("F" = "red", "M" = "blue"), "TRTA" = list("Placebo" = "cyan", "Xanomeline High Dose" = "purple", "Xanomeline Low Dose" = "brown")), fontsizes = list("axis" = 12, "ticks" = 10), fontfamily = "Helvetica", grid = FALSE, bg = "transparent") testthat::expect_error(visR::apply_theme(gg, theme), NA) testthat::expect_error(gg %>% visR::apply_theme(theme), NA) }) testthat::test_that("T2.4 A message when a theme not generated through `visR::define_theme` is provided.", { gg <- adtte %>% visR::estimate_KM("SEX") %>% visR::visr() theme <- list("fontfamily" = "Palatino") testthat::expect_error(visR::apply_theme(gg, theme), NA) testthat::expect_error(gg %>% visR::apply_theme(theme), NA) testthat::expect_message(visR::apply_theme(gg, theme)) testthat::expect_message(gg %>% visR::apply_theme(theme)) }) testthat::test_that("T2.5 Colours applied through `visR::apply_theme()` are used in the resulting `ggplot` object.", { gg <- adtte %>% visR::estimate_KM("SEX") %>% visR::visr() theme <- visR::define_theme(strata = list("SEX" = list("F" = "red", "M" = "blue"), "TRTA" = list("Placebo" = "cyan", "Xanomeline High Dose" = "purple", "Xanomeline Low Dose" = "brown"))) gg <- gg %>% visR::apply_theme(theme) ggb <- ggplot2::ggplot_build(gg) testthat::expect_equal(unique(unlist(theme$strata$SEX)), unique(ggb$data[[1]]$colour)) }) testthat::test_that("T2.6 Fontsizes applied through `visR::apply_theme()` are used in the resulting `ggplot` object.", { gg <- adtte %>% visR::estimate_KM("SEX") %>% visR::visr() theme <- visR::define_theme(fontsizes = list("axis" = 12, "ticks" = 10, "legend_title" = 10, "legend_text" = 8)) gg <- gg %>% visR::apply_theme(theme) ggb <- ggplot2::ggplot_build(gg) testthat::expect_equal(theme$fontsizes$axis, ggb$plot$theme$axis.title.x$size) testthat::expect_equal(theme$fontsizes$axis, ggb$plot$theme$axis.title.y$size) testthat::expect_equal(theme$fontsizes$ticks, ggb$plot$theme$axis.text$size) testthat::expect_equal(theme$fontsizes$legend_title, ggb$plot$theme$legend.title$size) testthat::expect_equal(theme$fontsizes$legend_text, ggb$plot$theme$legend.text$size) }) testthat::test_that("T2.7 The fontfamily applied through `visR::apply_theme()` is used in the resulting `ggplot` object.", { gg <- adtte %>% visR::estimate_KM("SEX") %>% visR::visr() theme <- visR::define_theme(fontfamily = "Helvetica") gg <- gg %>% visR::apply_theme(theme) ggb <- ggplot2::ggplot_build(gg) testthat::expect_equal(theme$fontfamily, ggb$plot$theme$text$family) }) testthat::test_that("T2.8 The grid applied through `visR::apply_theme()` is used in the resulting `ggplot` object.", { gg <- adtte %>% visR::estimate_KM("SEX") %>% visR::visr() theme_grid_true <- visR::define_theme(grid = TRUE) theme_grid_false <- visR::define_theme(grid = FALSE) theme_grid_only_minor <- visR::define_theme(grid = list("major" = FALSE, "minor" = TRUE)) theme_grid_minor_and_major <- visR::define_theme(grid = list("major" = TRUE, "minor" = TRUE)) gg_grid_true <- gg %>% visR::apply_theme(theme_grid_true) gg_grid_false <- gg %>% visR::apply_theme(theme_grid_false) gg_grid_only_minor <- gg %>% visR::apply_theme(theme_grid_only_minor) gg_grid_minor_and_major <- gg %>% visR::apply_theme(theme_grid_minor_and_major) ggb_grid_true <- ggplot2::ggplot_build(gg_grid_true) ggb_grid_false <- ggplot2::ggplot_build(gg_grid_false) ggb_grid_only_minor <- ggplot2::ggplot_build(gg_grid_only_minor) ggb_grid_minor_and_major <- ggplot2::ggplot_build(gg_grid_minor_and_major) testthat::expect_true(("element_line" %in% class(ggb_grid_true$plot$theme$panel.grid.major)) & ("element_blank" %in% class(ggb_grid_true$plot$theme$panel.grid.minor))) testthat::expect_true(("element_blank" %in% class(ggb_grid_false$plot$theme$panel.grid.major)) & ("element_blank" %in% class(ggb_grid_false$plot$theme$panel.grid.minor))) testthat::expect_true(("element_blank" %in% class(ggb_grid_only_minor$plot$theme$panel.grid.major)) & ("element_line" %in% class(ggb_grid_only_minor$plot$theme$panel.grid.minor))) testthat::expect_true(("element_line" %in% class(ggb_grid_minor_and_major$plot$theme$panel.grid.major)) & ("element_line" %in% class(ggb_grid_minor_and_major$plot$theme$panel.grid.minor))) }) testthat::test_that("T2.9 The background applied through `visR::apply_theme()` is used in the resulting `ggplot` object.", { gg <- adtte %>% visR::estimate_KM("SEX") %>% visR::visr() theme <- visR::define_theme(bg = "transparent") gg <- gg %>% visR::apply_theme(theme) ggb <- ggplot2::ggplot_build(gg) testthat::expect_equal(theme$bg, ggb$plot$theme$panel.background$fill) }) testthat::test_that("T2.10 The legend_position applied through `visR::apply_theme()` is used in the resulting `ggplot` object.", { gg <- adtte %>% visR::estimate_KM("SEX") %>% visR::visr() theme_top <- visR::define_theme(legend_position = "top") theme_right <- visR::define_theme(legend_position = "right") theme_bottom <- visR::define_theme(legend_position = "bottom") theme_left <- visR::define_theme(legend_position = "left") gg_top <- gg %>% visR::apply_theme(theme_top) gg_right <- gg %>% visR::apply_theme(theme_right) gg_bottom <- gg %>% visR::apply_theme(theme_bottom) gg_left <- gg %>% visR::apply_theme(theme_left) ggb_top <- ggplot2::ggplot_build(gg_top) ggb_right <- ggplot2::ggplot_build(gg_right) ggb_bottom <- ggplot2::ggplot_build(gg_bottom) ggb_left <- ggplot2::ggplot_build(gg_left) testthat::expect_equal(theme_top$legend_position, ggb_top$plot$theme$legend.position) testthat::expect_equal(theme_right$legend_position, ggb_right$plot$theme$legend.position) testthat::expect_equal(theme_bottom$legend_position, ggb_bottom$plot$theme$legend.position) testthat::expect_equal(theme_left$legend_position, ggb_left$plot$theme$legend.position) }) testthat::test_that("T2.11 The legend_position defined in `visR::visr()` is correctly passed through to the resulting `ggplot` object.", { gg_top <- adtte %>% visR::estimate_KM("SEX") %>% visR::visr(legend_position = "top") gg_right <- adtte %>% visR::estimate_KM("SEX") %>% visR::visr(legend_position = "right") gg_bottom <- adtte %>% visR::estimate_KM("SEX") %>% visR::visr(legend_position = "bottom") gg_left <- adtte %>% visR::estimate_KM("SEX") %>% visR::visr(legend_position = "left") gg_top <- gg_top %>% visR::apply_theme() gg_right <- gg_right %>% visR::apply_theme() gg_bottom <- gg_bottom %>% visR::apply_theme() gg_left <- gg_left %>% visR::apply_theme() ggb_top <- ggplot2::ggplot_build(gg_top) ggb_right <- ggplot2::ggplot_build(gg_right) ggb_bottom <- ggplot2::ggplot_build(gg_bottom) ggb_left <- ggplot2::ggplot_build(gg_left) testthat::expect_true("top" %in% ggb_top$plot$theme$legend.position) testthat::expect_true("right" %in% ggb_right$plot$theme$legend.position) testthat::expect_true("bottom" %in% ggb_bottom$plot$theme$legend.position) testthat::expect_true("left" %in% ggb_left$plot$theme$legend.position) })
.writeHdrVRT <- function(x) { fn <- fname <- x@file@name if (tolower(extension(fn)) == '.vrt') { stop('cannot (over)write a vrt header for a vrt file') } if (tolower(extension(fn)) == '.grd') { extension(fn) <- '.gri' } extension(fname) <- 'vrt' pixsize <- dataSize(x@file@datanotation) nbands <- nlayers(x) bandorder <- x@file@bandorder if (bandorder == 'BIL') { pixoff <- pixsize lineoff <- pixsize * x@ncols * nbands imgoff <- ((1:nbands)-1) * x@ncols * pixsize } else if (bandorder == 'BSQ') { pixoff <- pixsize lineoff <- pixsize * x@ncols imgoff <- ((1:nbands)-1) * ncell(x) * pixsize } else if (bandorder == 'BIP') { pixoff <- pixsize * nbands lineoff <- pixsize * x@ncols * nbands imgoff <- (1:nbands)-1 } datatype <- .getGdalDType(x@file@datanotation) if (x@file@byteorder == "little") { byteorder <- "LSB" } else { byteorder <- "MSB" } if (! x@file@toptobottom) { rotation <- 180 } else { rotation <- 0 } e <- x@extent r <- res(x) prj <- proj4string(x) f <- file(fname, "w") cat('<VRTDataset rasterXSize="', x@ncols, '" rasterYSize="', x@nrows, '">\n' , sep = "", file = f) if (rotated(r)) { cat('<GeoTransform>', paste(x@rotation@geotrans, collapse=', '), '</GeoTransform>\n', sep = "", file = f) } else { cat('<GeoTransform>', e@xmin, ', ', r[1], ', ', rotation, ', ', e@ymax, ', ', 0.0, ', ', -1*r[2], '</GeoTransform>\n', sep = "", file = f) } if (! is.na(prj) ) { cat('<SRS>', prj ,'</SRS>\n', sep = "", file = f) } for (i in 1:nlayers(x)) { cat('\t<VRTRasterBand dataType="', datatype, '" band="', i, '" subClass="VRTRawRasterBand">\n', sep = "" , file = f) cat('\t\t<Description>', names(x), '</Description>\n', sep = "", file = f) cat('\t\t<SourceFilename relativetoVRT="1">', basename(fn), '</SourceFilename>\n', sep = "", file = f) cat('\t\t<ImageOffset>', imgoff[i], '</ImageOffset>\n', sep = "", file = f) cat('\t\t<PixelOffset>', pixoff, '</PixelOffset>\n', sep = "", file = f) cat('\t\t<LineOffset>', lineoff, '</LineOffset>\n', sep = "", file = f) cat('\t\t<ByteOrder>', byteorder, '</ByteOrder>\n', sep = "", file = f) cat('\t\t<NoDataValue>', x@file@nodatavalue, '</NoDataValue>\n', sep = "", file = f) cat('\t\t<Offset>', x@data@offset, '</Offset>\n', sep = "", file = f) cat('\t\t<Scale>', x@data@gain, '</Scale>\n', sep = "", file = f) cat('\t</VRTRasterBand>\n', sep = "", file = f) } cat('</VRTDataset>\n', sep = "", file = f) close(f) return( invisible(TRUE) ) }
MUE <- function(prob, u, t.obs) { f.prob <- prob[u == t.obs] f.u <- t.obs if (length(u) == 1) { return(NA) } else { return(FINDROOT(f.prob, f.u, prob, u, rhs = 0.5)) } }
gdfpd.read.fca.zip.file <- function(my.zip.file, folder.to.unzip = tempdir()) { if (tools::file_ext(my.zip.file) != 'zip') { stop(paste('File', my.zip.file, ' is not a zip file.') ) } if (!file.exists(my.zip.file)) { stop(paste('File', my.zip.file, ' does not exists.') ) } if (file.size(my.zip.file) == 0){ stop(paste('File', my.zip.file, ' has size 0!') ) } if (length(my.zip.file) != 1){ stop('This function only works for a single zip file... check your inputs') } if (!dir.exists(folder.to.unzip)) { cat(paste('Folder', folder.to.unzip, 'does not exist. Creating it.')) dir.create(folder.to.unzip) } my.basename <- tools::file_path_sans_ext(basename(my.zip.file)) rnd.folder.name <- file.path(folder.to.unzip, paste0('DIR-',my.basename)) if (!dir.exists(rnd.folder.name)) dir.create(rnd.folder.name) utils::unzip(my.zip.file, exdir = rnd.folder.name, junkpaths = TRUE) my.files <- list.files(rnd.folder.name) if (length(my.files) == 0) { file.remove(my.zip.file) stop(paste0('Zipped file contains 0 files. ', 'This is likelly a problem with the downloaded file. ', 'Try running the code again as the corrupted zip file was deleted and will be downloaded again.', '\n\nIf the problem persists, my suggestions is to remove the time period with problem.') ) } my.l <- gdfpd.read.zip.file.type.fca(rnd.folder.name, folder.to.unzip) return(my.l) } gdfpd.read.zip.file.type.fca <- function(rnd.folder.name, folder.to.unzip = tempdir()) { zipped.file <- file.path(rnd.folder.name, list.files(rnd.folder.name, pattern = '*.fca')[1]) utils::unzip(zipped.file, exdir = rnd.folder.name) company.reg.file <- file.path(rnd.folder.name,'ValorMobiliarioMercadoNegociacao.xml') if (!file.exists(company.reg.file)) { df.governance.listings <- data.frame(listed.segment = NA, type.market = NA, name.market = NA) } else { xml_data <- XML::xmlToList(XML::xmlParse(company.reg.file)) xml_data$ValorMobiliario$Documento$CompanhiaAberta$DataConstituicaoEmpresa xml_data2 <- xml_data$ValorMobiliario$MercadosNegociacao$MercadoNegociacao$Segmento listed.segment <- xml_data2$DescricaoOpcaoDominio type.market <- xml_data$ValorMobiliario$MercadoNegociacao$DescricaoOpcaoDominio name.market <- xml_data$ValorMobiliario$MercadosNegociacao$MercadoNegociacao$EntidadeAdministradora$SiglaOpcaoDominio df.governance.listings <- data.frame(listed.segment = fix.fct(listed.segment), type.market = fix.fct(type.market), name.market = fix.fct(name.market), stringsAsFactors = FALSE) } company.reg.file <- file.path(rnd.folder.name,'Documento.xml') if (!file.exists(company.reg.file)) { df.company.info <- data.frame(cnpj = NA, date.company.constitution = NA, date.cvm.registration = NA) } else { xml_data <- XML::xmlToList(XML::xmlParse(company.reg.file)) cnpj <- xml_data$CompanhiaAberta$NumeroCnpjCompanhiaAberta date.company.constitution <- as.Date(xml_data$CompanhiaAberta$DataConstituicaoEmpresa) date.cvm.registration <- as.Date(xml_data$CompanhiaAberta$DataRegistroCvm) df.company.info <- data.frame(cnpj = fix.fct(cnpj), date.company.constitution = fix.fct(date.company.constitution), date.cvm.registration = fix.fct(date.cvm.registration), stringsAsFactors = FALSE) } my.l <- list(df.governance.listings = df.governance.listings, df.company.info = df.company.info) return(my.l) }
kfamset <- function(x) { if (!inherits(x, "relation") & !inherits(x, "set")) { stop(sprintf("%s must be a relation or a set of subsets.",dQuote("x"))) } if (inherits(x, "relation")) { relmat <- relation_incidence(x) mode(relmat) <- "logical" x <- as.set(apply(relmat,2,function(z)as.set(names(which(z))))) } else { x <- as.set(lapply(lapply(x, as.character),as.set)) } names(x) <- NULL class(x) <- unique(c("kfamset", class(x))) x }
inspect_num <- function(df1, df2 = NULL, breaks = 20, include_int = TRUE){ breakseq <- attr(df1, "breakseq") input_type <- check_df_cols(df1, df2) df_names <- get_df_names() if(input_type == "single"){ df_num <- df1 %>% select_if(is.numeric) if(!include_int) df_num <- df_num %>% select_if(is.double) n_cols <- ncol(df_num) if(n_cols > 0){ names_vec <- colnames(df_num) breaks_tbl <- tibble(col_name = names_vec) if(!is.null(breakseq)){ breaks_tbl <- left_join(breaks_tbl, breakseq, by = "col_name") } else { breaks_tbl$breaks <- lapply(as.list(1:nrow(breaks_tbl)), function(xc) NULL) } pb <- start_progress(prefix = " Column", total = n_cols) breaks_tbl$hist <- stats_list <- vector("list", length = nrow(breaks_tbl)) for(i in 1:nrow(breaks_tbl)){ col_nm <- breaks_tbl$col_name[i] col_i <- df_num[[col_nm]] update_progress(bar = pb, iter = i, total = nrow(breaks_tbl), what = names_vec[i]) if(any(!is.na(col_i))){ get_stats <- function(vec, col_nm){ tibble(col_name = col_nm, min = min(vec, na.rm = T), q1 = quantile(vec, 0.25, na.rm = T), median = median(vec, na.rm = T), mean = mean(vec, na.rm = T), q3 = quantile(vec, 0.75, na.rm = T), max = max(vec, na.rm = T), sd = sd(vec, na.rm = T), pcnt_na = 100 * mean(is.na(vec))) } stats_list[[i]] <- get_stats(col_i, col_nm) brks_null <- is.null(breaks_tbl$breaks[[i]]) hist_i <- suppressWarnings( hist(col_i, plot = FALSE, right = FALSE, breaks = if(brks_null) breaks else {breaks_tbl$breaks[[i]]}) ) breaks_tbl$hist[[i]] <- prop_value(hist_i) } else { breaks_tbl$hist[[i]] <- tibble(value = NA, prop = 1) stats_list[[i]] <- tibble(col_name = col_nm, min = NA, q1 = NA, median = NA, mean = NA, q3 = NA, max = NA, sd = NA, pcnt_na = 100) } } stats_df <- bind_rows(stats_list) out <- left_join(stats_df, breaks_tbl, by = "col_name") %>% select(-breaks) names(out$hist) <- as.character(out$col_name) } else { out <- tibble(col_name = character(), min = numeric(), q1 = numeric(), median = numeric(), mean = numeric(), q3 = numeric(), max = numeric(), sd = numeric(), pcnt_na = numeric(), hist = list()) } } if(input_type == "pair"){ s1 <- inspect_num(df1, breaks = breaks, include_int = include_int) %>% select(col_name, hist) attr(df2, "breakseq") <- tibble(col_name = s1$col_name, breaks = lapply(s1$hist, get_break)) s2 <- inspect_num(df2, include_int = include_int) %>% select(col_name, hist) out <- full_join(s1, s2, by = "col_name") out <- out %>% mutate(jsd = js_divergence_vec(hist.x, hist.y)) %>% mutate(pval = chisq(hist.x, hist.y, n_1 = nrow(df1), n_2 = nrow(df2))) %>% select(col_name, hist_1 = hist.x, hist_2 = hist.y, jsd, pval) } if(input_type == "grouped"){ s_ug <- inspect_num(df1 %>% ungroup) brk_tab <- tibble(col_name = s_ug$col_name, breaks = lapply(s_ug$hist, get_break)) out_nest <- df1 %>% nest() grp_nms <- attr(df1, "groups") %>% select(-ncol(.)) out_list <- vector("list", length = length(out_nest)) for(i in 1:length(out_nest$data)){ dfi <- out_nest$data[[i]] attr(dfi, 'breakseq') <- brk_tab out_list[[i]] <- inspect_num(dfi, include_int = include_int) } grp_nms$out_list <- out_list out <- unnest(grp_nms, cols = c('out_list')) } attr(out, "type") <- list(method = "num", input_type = input_type) attr(out, "df_names") <- df_names return(out) }
size_b.two_way_nested.b_random_a_fixed_a <- function(alpha, beta, delta, a, cases) { b <- 5 b.new <- 1000 while (abs(b -b.new)>1e-6) { b <- b.new dfn <- a-1 dfd <- a*(b-1) lambda <- ncp(dfn,dfd,alpha,beta) if (cases == "maximin") { b.new <- 2*lambda/(delta*delta) } else if (cases == "minimin") { b.new <- 4*lambda/(a*delta*delta) } } return(ceiling(b.new)) }
confidenceEllipse <- function(X.mean = c(0,0), eig, n, p, xl = NULL, yl = NULL, axes = TRUE, center = FALSE, lim.adj = 0.02, alpha = 0.05, ...){ X.mean <- matrix(X.mean, ncol=1) angle <- atan(eig$vectors[2,1] / eig$vectors[1,1]) axis1 <- sqrt(eig$values[1]) * sqrt((p * (n - 1)) / (n * (n - p)) * qf(1 - alpha, p, n - p)) axis2 <- sqrt(eig$values[2]) * sqrt((p * (n - 1)) / (n * (n - p)) * qf(1 - alpha, p, n - p)) lengths <- c(axis1,axis2) eigenEllipseHelper(mu = X.mean, lengths = lengths, angle = angle, xl = xl, yl = yl, axes = axes, center = center, lim.adj = lim.adj, ...) } bvNormalContour <- function(mu = c(0,0), Sigma=NULL, eig=NULL, xl = NULL, yl = NULL, axes = TRUE, center = FALSE, lim.adj = 0.02, alpha = 0.05, ...){ mu <- matrix(mu, ncol=1) clevel <- qchisq(1 - alpha, df = 2) if (!is.null(Sigma)){ eig <- eigen(Sigma) } lengths <- c(clevel * sqrt(eig$values[1]), clevel * sqrt(eig$values[2])) angle <- atan(eig$vectors[2,1]/eig$vectors[1,1]) eigenEllipseHelper(mu = mu, lengths = lengths, angle = angle, xl = xl, yl = yl, axes = axes, center = center, lim.adj = lim.adj, ...) } eigenEllipseHelper <- function(mu, lengths, angle, xl, yl, lim.adj, axes, center, ...){ axis1 <- lengths[1] axis2 <- lengths[2] axis1.x <- cos(angle) * axis1 axis1.y <- sin(angle) * axis1 axis2.x <- cos(angle + pi / 2) * axis2 axis2.y <- sin(angle + pi / 2) * axis2 if (is.null(xl)){ xl1 <- mu[1,1] - abs(axis1.x) - abs(axis2.x) xl2 <- mu[1,1] + abs(axis1.x) + abs(axis2.x) xl <- c(xl1*(1-lim.adj),xl2*(1+lim.adj)) } if (is.null(yl)){ yl1 <- mu[2,1] - abs(axis1.y) - abs(axis2.y) yl2 <- mu[2,1] + abs(axis1.y) + abs(axis2.y) yl <- c(yl1*(1-lim.adj),yl2*(1+lim.adj)) } plot(0,pch='',ylab='',xlab='',xlim=xl,ylim=yl) plotrix::draw.ellipse(x = mu[1,1], y = mu[2,1], a = lengths[1], b = lengths[2], angle = angle, deg = FALSE) if (axes){ segments(x1 = mu[1,1], y1 = mu[2,1], x0 = mu[1,1] + axis1.x, y0 = mu[2,1] + axis1.y) segments(x1 = mu[1,1], y1 = mu[2,1], x0 = mu[1,1] - axis1.x, y0 = mu[2,1] - axis1.y) segments(x1 = mu[1,1], y1 = mu[2,1], x0 = mu[1,1] + axis2.x, y0 = mu[2,1] + axis2.y) segments(x1 = mu[1,1], y1 = mu[2,1], x0 = mu[1,1] - axis2.x, y0 = mu[2,1] - axis2.y) } if (center){ segments(x1 = mu[1,1], y1 = mu[2,1], y0 = mu[2,1], x0 = 0, lty=2) segments(x1 = mu[1,1], y1 = mu[2,1], x0 = mu[1,1], y0 = 0, lty=2) points(x = mu[1,1], y = mu[2,1], pch = 19) } }
delold <- function (a){ attr (a, "old") <- NULL a } .test (delold) <- function (){ tmp <- makeNd (a, 0) old <- attributes (tmp) old <- old [grepl ("^old", names (old))] checkIdentical (old, list (old = list (list ( names = NULL, dimnames = list(rows = c("a", "b", "c", "d"), columns = c("A", "B", "C"), d3 = c("1", "2")), dim = c(4L, 3L, 2L)))) ) tmp <- delold (tmp) checkTrue (is.null (attr (old, "old"))) }
cluster_gen_separate <- function( n_levels, n, N, sum_pop, calc_weights, sampling_method, cluster_labels, resp_labels, collapse, n_X, n_W, cat_prop, c_mean, sigma, cor_matrix, rho, theta, whitelist, verbose, ... ) { out <- list() sample <- list() c_mean_list <- c_mean sigma_list <- sigma n_quest <- sapply(n, sum) id_combos <- label_respondents(n, cluster_labels) missing_sigma2 <- is.null(sigma) if (class(cor_matrix)[1] != "list") { cor_matrix <- replicate(n_levels - 1, list(cor_matrix)) } cor_matrix_list <- cor_matrix cat_prop_orig <- cat_prop for (l in seq(n_levels - 1)) { if (class(c_mean_list) == "list") c_mean <- c_mean_list[[l]] if (class(sigma_list) == "list") sigma <- sigma_list[[l]] if (any(sapply(cat_prop_orig, class) == "list")) { cat_prop <- cat_prop_orig[[l]] } level_label <- cluster_labels[l] next_level_label <- ifelse( test = l < n_levels - 1, yes = cluster_labels[l + 1], no = resp_labels[l] ) previous_clusterID <- NULL previous_sublvl <- 0 if (l > 1) { if (class(n) != "list") n[l] <- n[l] * n[l - 1] previous_clusterID <- as.vector(unlist(sapply(sample[[l - 1]], function(x) x$clusterID))) previous_sublvl <- gsub("[A-Za-z]", "", previous_clusterID) previous_sublvl <- as.numeric(gsub("\\_.", "", previous_sublvl)) } n_groups <- sapply(n, sum)[l] if (!is.null(rho)) { if (class(rho) != "list") rho <- replicate(n_levels, list(rho)) if (length(rho[[l]]) == 1) rho[[l]] <- rep(rho[[l]], n_X[[l]] + theta) n_j <- n[[l + 1]] M <- sum(n_j) if (missing_sigma2) { if (is.null(c_mean) | is.null(rho) | length(c_mean) == 1) { sigma2 <- rchisq(n_X[[l]] + theta, 2) } else { n_tilde <- calc_n_tilde(M, N[[l]], n_j) mean_j <- unlist(c_mean) overall_mean <- sum(mean_j * n_j) / M s2btw <- calc_var_between(n_j, mean_j, overall_mean, n_tilde, N[[l]]) tau2 <- s2btw * n_tilde sigma2 <- tau2 * (1 - rho[[l]]) / rho[[l]] } } else { if (class(sigma) == "list") { sigma2 <- sigma[[l]] ^ 2 } else { sigma2 <- sigma ^ 2 } } tau2 <- rho[[l]] * sigma2 / (1 - rho[[l]]) Nn <- length(n_j) s2 <- sigma2 * (M - Nn) / sum(n_j - 1) } for (lvl in seq(n_groups)) { n_resp <- n[[l + 1]][lvl] if (any(sapply(cat_prop, class) == "list")) { cat_prop_lvl <- cat_prop[[lvl]] } else { cat_prop_lvl <- cat_prop } if (!is.null(c_mean) & class(c_mean) == "list") { mu_mu <- c_mean[[lvl]] } else { mu_mu <- c_mean } if (!is.null(cor_matrix) & class(cor_matrix)[1] == "list") { cor_mx <- cor_matrix[[l]] if (class(cor_mx)[1] == "list") cor_mx <- cor_matrix[[l]][[lvl]] } if (!is.null(rho[[l]])) { sd_X <- sqrt(s2) } else if (!is.null(sigma) & class(sigma) == "list") { sd_X <- sigma[[lvl]] } else { sd_X <- sigma } if (all(!is.null(rho[[l]]))) { sd_mu <- sqrt(tau2 + sigma2 / n_j[lvl]) mu_mu <- ifelse(is.null(mu_mu), 0, mu_mu) mu <- sapply(sd_mu, function(s) rnorm(1, mu_mu, s)) } else { mu <- mu_mu } if (any(sapply(n_W[[l]], class) == "list")) { n_W_used <- n_W[[l]][[lvl]] } else { n_W_used <- n_W[[l]] } if (is(n_W_used, "list") & any(sapply(n_W_used, length) > 1)) { n_W_used <- n_W_used[[l]][lvl] } cluster_bg <- questionnaire_gen( n_resp, n_X = n_X[[l]], n_W = n_W_used, cat_prop = cat_prop_lvl, c_mean = mu, verbose = FALSE, c_sd = sd_X, cor_matrix = cor_mx, theta = theta, ... ) if (calc_weights) { cluster_bg <- weight_responses( cluster_bg, n, N, l + 1, lvl, previous_sublvl[lvl], sampling_method, cluster_labels, resp_labels, sum_pop, verbose ) } respID <- paste0(next_level_label, seq(cluster_bg$subject)) if (l > 1) { previous_lvl <- as.vector(unlist(sapply(n[[l]], seq)))[lvl] cluster_bg$clusterID <- paste0(level_label, previous_lvl, "_", previous_clusterID[lvl]) } else { cluster_bg$clusterID <- paste0(level_label, lvl) } cluster_bg$uniqueID <- paste(respID, cluster_bg$clusterID, sep = "_") if (!is.null(whitelist)) { if (l == 1) { clusterID_extracted <- gsub( pattern = "\\D", replacement = "", cluster_bg[, "clusterID"][1] ) clusterID_extracted <- as.numeric(clusterID_extracted) whitelist_extracted <- whitelist[, l] is_whitelisted <- (lvl %in% whitelist[, 1:l]) } else { clusterID_extracted <- gsub( pattern = "\\D", replacement = "", cluster_bg[, "clusterID"][1] ) clusterID_extracted <- as.numeric(clusterID_extracted) whitelist_extracted <- apply( whitelist[, rev(seq_len(l))], 1, function(x) paste(x, collapse = "") ) is_whitelisted <- match(clusterID_extracted, whitelist_extracted) is_whitelisted <- !is.na(is_whitelisted) } if (!is_whitelisted) { cluster_bg[, 2:(ncol(cluster_bg) - 2)] <- NA } if (all(!is.na(cluster_bg))) { if (l < n_levels - 1) { keep_rows <- whitelist[whitelist[, l] == lvl, l + 1] blacklisted_rows <- which( is.na(match(rownames(cluster_bg), keep_rows)) ) cluster_bg[blacklisted_rows, 2:(ncol(cluster_bg) - 2)] <- NA } else if (l == n_levels - 1) { rowmatched <- match(clusterID_extracted, whitelist_extracted) limit <- whitelist[rowmatched, n_levels] if (limit < nrow(cluster_bg)) cluster_bg <- cluster_bg[seq_len(limit), ] } } } sample[[level_label]][[lvl]] <- cluster_bg } if (collapse == "none") { out[[l]] <- sample[[l]] for (ll in seq_along(out[[l]])) { out[[l]][[ll]]["clusterID"] <- NULL } names(out)[[l]] <- cluster_labels[l] } else { out[[level_label]] <- do.call(rbind, sample[[level_label]]) if (collapse == "full") { if (l == 1) { names(out[[l]]) <- paste0(names(out[[l]]), ".", resp_labels[l]) } if (l > 1) { non_weight_cols <- grep("weight", names(out[[l]]), invert = TRUE) names(out[[l]])[non_weight_cols] <- paste0(names(out[[l]])[non_weight_cols], ".", resp_labels[l]) out[[l]] <- merge(x = out[[l]], y = out[[l - 1]][-1], by.x = paste0("clusterID", ".", resp_labels[l]), by.y = paste0("uniqueID", ".", resp_labels[l - 1])) out[[l]][paste0("clusterID.", level_label)] <- NULL } if (l == n_levels - 1) { out <- out[[l]] names(out[[l]]) <- paste0(names(out[[l]]), ".", resp_labels[l]) out[paste0("clusterID.", resp_labels[1])] <- NULL out[paste0("clusterID.", resp_labels[l])] <- NULL names(out)[1] <- "subject" out$subject <- seq(nrow(out)) } } else { out[[level_label]]["clusterID"] <- NULL out[[level_label]]$subject <- seq(nrow(out[[level_label]])) } } } return(out) }
drop_vars <- function(p, keep.vars = character(), guess.vars = TRUE) { stopifnot(ggplot2::is.ggplot(p)) if (inherits(p$data, "sf")) { message("'drop_vars()' does not yet support shape file 'sf' data.") return(p) } if (guess.vars) { mapped.vars <- mapped_vars(p) } else { mapped.vars <- character() } data.vars <- names(p$data) unused.vars <- setdiff(data.vars, union(mapped.vars, keep.vars)) keep.idxs <- which(!data.vars %in% unused.vars) p$data <- p$data[ , keep.idxs] p } mapped_vars <- function(p, invert = FALSE) { stopifnot(ggplot2::is.ggplot(p)) mappings <- as.character(p$mapping) for (l in p$layers) { mappings <- c(mappings, as.character(l$mapping)) } mappings <- c(mappings, names(p$facet$params$facets), names(p$facet$params$rows), names(p$facet$params$cols)) mapped.vars <- gsub("[~*\\%^]", " ", mappings) %>% stringr::str_split(pattern = stringr::boundary("word")) %>% unlist() if (invert) { setdiff(names(p$data), mapped.vars) } else { intersect(names(p$data), mapped.vars) } } data_vars <- function(p) { stopifnot(ggplot2::is.ggplot(p)) colnames(p$data) } data_attributes <- function(p) { stopifnot(ggplot2::is.ggplot(p)) attributes(p$data) }
linkdisequ_FAST <- function(matrix_pol,populations){ npops <- length(populations) sitelength <- dim(matrix_pol)[2] if(sitelength<2){return(list(res=as.matrix(NaN),Zns=NaN,ZA=NaN,ZZ=NaN))} if(length(colnames(matrix_pol))==0){ colnames(matrix_pol) <- 1:sitelength } init <- vector(,npops) names <- paste("pop",1:npops) znsvek <- init names(znsvek) <- names ZA <- init names(ZA) <- names ZZ <- init names(ZZ) <- names segsites <- get_segsites_FAST(matrix_pol,populations) for(xx in 1:npops){ popmatrix <- matrix_pol[populations[[xx]],segsites[[xx]],drop=FALSE] n.segsites.pop <- length(segsites[[xx]]) if(n.segsites.pop<=1){next} EINSEN <- colSums(popmatrix, na.rm = TRUE) NULLEN <- colSums(popmatrix==0, na.rm = TRUE) res <- .Call("R2_C", popmatrix, EINSEN, NULLEN) Zns <- mean(res, na.rm = TRUE) znsvek[xx] <- Zns if(n.segsites.pop==2){ adjacent <- 1 }else{ adjacent <- rep(1,n.segsites.pop-1) fill <- n.segsites.pop - 1 for (yy in 2:length(adjacent)) { adjacent[yy] <- adjacent[yy-1] + fill fill <- fill - 1 } } ZA[xx] <- sum(res[adjacent], na.rm = TRUE)/(n.segsites.pop-1) ZZ[xx] <- ZA[xx] - znsvek[xx] } return(list(Zns=znsvek,ZA=ZA,ZZ=ZZ)) }
make_fake_deps <- function(...) { assert_that(all_named(list(...))) d <- desc::desc("!new") if (length(list(...))) d$set(...) resolve_ref_deps( d$get_deps(), d$get("Remotes")[[1]], NULL ) } make_fake_resolution1 <- function(ref, args = list()) { pref <- parse_pkg_refs(ref)[[1]] if (!is.null(args$extra)) pref[names(args$extra)] <- args$extra mirror <- args$mirror %||% current_config()$get("cran-mirror") repodir <- args$repodir %||% "src/contrib" version <- args$version %||% "1.0.0" filename <- paste0(pref$package, "_", version, ".tar.gz") def <- list( ref = ref, type = pref$type, package = pref$package, version = version, sources = c( sprintf("%s/%s/%s", mirror, repodir, filename), sprintf("%s/%s/Archive/%s/%s", mirror, repodir, pref$package, filename) ), dep_types = tolower(pkg_dep_types_hard()) ) modifyList(def, args) } make_fake_metadata <- function() { list( resolution_start = Sys.time(), resolution_end = Sys.time() ) } make_fake_resolution <- function(...) { pkgs <- list(...) assert_that(all_named(pkgs)) ress <- lapply_with_names( names(pkgs), function(n) make_fake_resolution1(n, pkgs[[n]])) res <- res_make_empty_df() for (r in ress) res <- res_add_df_entries(res, r) res } describe_fake_error <- function(pkgs, policy = "lazy", config = current_config()) { lp <- pkgplan_i_create_lp_problem(pkgs, config, policy) sol <- pkgplan_i_solve_lp_problem(lp) expect_true(sol$objval >= solve_dummy_obj - 1) solution <- list(status = "FAILED", data = pkgs, problem = lp, solution = sol) describe_solution_error(pkgs, solution) }
bootmex <- function (x, R = 100, nPass = 3, trace = 10,referenceMargin=NULL) { theCall <- match.call() if (!inherits(x, "mex")){ stop("object must be of type 'mex'") } ans <- list() ans$call <- theCall getTran <- function(i, x, data, mod, th, qu, margins) { param <- mod[[i]]$coefficients revTransform(margins$q2p(c(x[, i])), data = c(data[, i]), th = th[i], qu = qu[i], sigma = exp(param[1]), xi = param[2]) } mar <- x$margins dep <- x$dependence which <- dep$which constrain <- dep$constrain v <- dep$v dqu <- dep$dqu dth <- dep$dth margins <- dep$margins penalty <- mar$penalty priorParameters <- mar$priorParameters start <- 0.75* coef(x)$dependence[1:2,] n <- dim(mar$transformed)[[1]] d <- dim(mar$transformed)[[2]] dqu <- rep(dqu, d) dependent <- (1:d)[-which] ans$simpleDep <- dep$coefficients ans$dqu <- dqu ans$which <- which ans$R <- R ans$simpleMar <- mar ans$margins <- margins ans$constrain <- constrain innerFun <- function(i, x, which, dth, dqu, margins, penalty, priorParameters, constrain, v=v, start=start, pass = 1, trace = trace, n=n, d=d, getTran=getTran, dependent=dependent,referenceMargin=referenceMargin) { g <- sample(1:(dim(mar$transformed)[[1]]), size = n, replace = TRUE) g <- mar$transformed[g, ] ok <- FALSE while (!ok) { for (j in 1:(dim(g)[[2]])){ u <- runif(nrow(g)) g[order(g[, j]), j] <- sort(margins$p2q(u)) } if (sum(g[, which] > dth) > 1 & all(g[g[,which] > dth , which] > 0)){ ok <- TRUE } } g <- sapply(1:d, getTran, x = g, data = mar$data, margins=margins, mod = mar$models, th = mar$mth, qu = mar$mqu) dimnames(g)[[2]] <- names(mar$models) ggpd <- migpd(g, mth = mar$mth, penalty = penalty, priorParameters = priorParameters) gd <- mexDependence(ggpd, dqu = dqu, which = which, margins=margins[[1]], constrain=constrain, v=v, start=start,referenceMargin=referenceMargin) res <- list(GPD = coef(ggpd)[3:4, ], dependence = gd$dependence$coefficients, Z = gd$dependence$Z, Y = g) if (pass == 1) { if (i%%trace == 0) { message(paste(i, "replicates done\n")) } } res } res <- lapply(1:R, innerFun, x = x, which = which, dth = dth, margins=margins, dqu = dqu, penalty = penalty, priorParameters = priorParameters, constrain=constrain, v=v, start=start, pass = 1, trace = trace, getTran=getTran, n=n, d=d, dependent=dependent,referenceMargin=referenceMargin) if (nPass > 1) { for (pass in 2:nPass) { rerun <- sapply(res, function(x) any(sapply(x, function(x) any(is.na(x))))) wh <- !unlist(lapply(res, function(x) dim(x$Z)[[1]] > 0)) rerun <- apply(cbind(rerun, wh), 1, any) if (sum(rerun) > 0) { message("Pass ", pass, " : ", sum(rerun), " samples to rerun.\n") rerun <- (1:R)[rerun] res[rerun] <- lapply((1:R)[rerun], innerFun, x = x, which = which, dth = dth, dqu = dqu, margins=margins, penalty = penalty, priorParameters = priorParameters, constrain=constrain, v=v, start=start, pass = pass, trace = trace, getTran=getTran, n=n, d=d, dependent=dependent,referenceMargin=referenceMargin) } } } ans$boot <- res oldClass(ans) <- c("bootmex", "mex") ans }
ConfInt=function(){ appDir <- system.file("ConfIntLMApp.r", package = "lmviz") .GlobalEnv$".wd"=getwd() shiny::runApp(appDir) }
response.analysis <- function(...) { name <- as.character(substitute(list(...))) name <- name[-which(name=="list")] datalist <- list(...) for(i in 1:length(datalist)){ if(all(apply(datalist[[i]], 2, is.character))){ datalist[[i]] <- resp2bin(datalist[[i]])$binary } } res <- list() totals <- lapply(datalist, rowSums) totals.res <- t.test(totals[[1]], totals[[2]], var.equal = TRUE) res.totals <- numeric(10) names(res.totals) <- c( paste("M", name[1]), paste("SD", name[1]), paste("M", name[2]), paste("SD", name[2]), "t-statistic", "df", "p-value", paste("95%", c("Lower", "Upper")), "Cohen's d" ) d <- function(one, two){ num <- mean(one, na.rm = TRUE) - mean(two, na.rm = TRUE) denom <- sqrt( (sd(one, na.rm = TRUE)^2 + sd(two, na.rm = TRUE)^2) / 2 ) return(abs(num / denom)) } res.totals[1] <- mean(totals[[1]], na.rm = TRUE) res.totals[2] <- sd(totals[[1]], na.rm = TRUE) res.totals[3] <- mean(totals[[2]], na.rm = TRUE) res.totals[4] <- sd(totals[[2]], na.rm = TRUE) res.totals[5] <- totals.res$statistic res.totals[6] <- totals.res$parameter res.totals[7] <- totals.res$p.value res.totals[8:9] <- totals.res$conf.int res.totals[10] <- d(totals[[1]], totals[[2]]) res$total <- round(res.totals, 3) resplist <- lapply(datalist, function(x){colnames(x)}) named.uniq <- sort(unique(unlist(resplist))) uniq.resp <- length(named.uniq) uniq.mat <- matrix(0, nrow = uniq.resp, ncol = 2) row.names(uniq.mat) <- named.uniq colnames(uniq.mat) <- name for(i in 1:length(resplist)){ uniq.mat[match(resplist[[i]], named.uniq),i] <- 1 } res.uniq <- numeric(9) names(res.uniq) <- c("Total Across Groups", paste("Total", name), paste("Unique", name), "McNemar's X^2", "df", "p-value", "Phi (effect size)") uniq.totals <- colSums(uniq.mat) uniq.one <- length(which(uniq.mat[,1] == 1 & uniq.mat[,2] == 0)) uniq.two <- length(which(uniq.mat[,1] == 0 & uniq.mat[,2] == 1)) cont.tab <- matrix(0, nrow = 2, ncol = 2) diag(cont.tab) <- uniq.totals cont.tab[1,2] <- uniq.one cont.tab[2,1] <- uniq.two uniq.res <- mcnemar.test(cont.tab) res.uniq[1] <- uniq.resp res.uniq[2:3] <- uniq.totals res.uniq[4] <- uniq.one res.uniq[5] <- uniq.two res.uniq[6] <- uniq.res$statistic res.uniq[7] <- uniq.res$parameter res.uniq[8] <- uniq.res$p.value res.uniq[9] <- abs(cor(uniq.mat)[1,2]) res$unique <- round(res.uniq, 3) return(res) }
findFormula <- function (generators, tools) { if (generators[1] == 1) { formula <- paste ("freq", " ~ ", 1, sep = "") return(formula) } formula <- paste ("freq", " ~ ", sep = "") for(i in tools$nVarSets:1) { if(generators[i] == 1) { first <- 1 for(j in 1:tools$n) { if(tools$varSets[i,j] == 1) { if (first == 1) { first <- 0 formula <- paste (formula, tools$varNames[j], sep = "") } else formula <- paste (formula, "*", tools$varNames[j], sep = "") } } formula <- paste (formula, " + ", sep = "") } } formula <- substr (formula, 1,nchar(formula)-3) return(formula) }
Chao1 <- function(f) { x <- f.stats(f) s.obs <- unname(x["s.obs"]) if(length(f) == 1) f <- c(f, 0) f0 <- if(f[2] > 0) { f[1] ^ 2 / (2 * f[2]) } else { term.1 <- f[1] * (f[1] - 1) term.2 <- 2 * (f[2] + 1) term.1 / term.2 } f0 <- f0 * (x["n"] - 1) / x["n"] x <- c(s.est = unname(f0 + s.obs), f0 = unname(f0), x) x[is.nan(x)] <- NA x }
powerTransform.lmerMod <- function(object, family="bcPower", ...) { if(family=="bcnPower") estimateTransform.bcnPowerlmer(object, ...) else estimateTransform.lmerMod(object, family=family, ...) } estimateTransform.lmerMod <- function(object, family="bcPower", lambda=c(-3, 3), start=NULL, method="L-BFGS-B", ...) { data <- model.frame(object) if(any(unlist(lapply(as.list(data), class)) == "AsIs")) stop( "powerTransform for lmer models don't work with the 'I' function; rewrite your formula" ) y <- (object@resp)$y fam <- matchFun(family) llik <- function(lambda){ data$y.lambda <- fam(y, lambda, jacobian.adjusted=TRUE) m.lambda <- update(object, y.lambda ~ ., data=data) logLik(m.lambda) } if (is.null(start)) start <- 1 res<- optimize(f = function(lambda1) llik(lambda1), lower=lambda[1], upper=lambda[2], maximum=TRUE) res$hessian <- optimHess(res$maximum, llik, ...) res$invHess <- solve(-res$hessian) res$lambda <- res$maximum res$value <- c(res$objective) roundlam <- res$lambda stderr <- sqrt(diag(res$invHess)) lamL <- roundlam - 1.96 * stderr lamU <- roundlam + 1.96 * stderr for (val in rev(c(1, 0, -1, .5, .33, -.5, -.33, 2, -2))) { sel <- lamL <= val & val <= lamU roundlam[sel] <- val } res$model <- object res$roundlam <- roundlam res$family<-family class(res) <- c("lmerModpowerTransform", "powerTransform") res } testTransform.lmerModpowerTransform <- function(object, lambda=1){ fam <- matchFun(object$family) model <- object$model y <- (model@resp)$y local.data <- model.frame(model) local.data$y.lambda <- fam(y, lambda, jacobian.adjusted=TRUE) m.lambda <- update(model, y.lambda ~ ., data=local.data) llik <- logLik(m.lambda) LR <- c(2 * (object$value - llik)) df <- 1 pval <- 1-pchisq(LR, df) out <- data.frame(LRT=LR, df=df, pval=format.pval(pval)) rownames(out) <- c(paste("LR test, lambda = (", paste(round(lambda, 2), collapse=" "), ")", sep="")) out}
multRepl <- function(X,label=NULL,dl=NULL,frac=0.65,imp.missing=FALSE,closure=NULL,z.warning=0.8,delta=NULL){ if (any(X<0, na.rm=T)) stop("X contains negative values") if (imp.missing==FALSE){ if (is.character(dl) || is.null(dl)) stop("dl must be a numeric vector or matrix") if (is.vector(dl)) dl <- matrix(dl,nrow=1) dl <- as.matrix(dl) } if (is.character(X)) stop("X is not a valid data matrix or vector.") if (is.null(label)) stop("A value for label must be given") if (!is.na(label)){ if (!any(X==label,na.rm=T)) stop(paste("Label",label,"was not found in the data set")) if (label!=0 & any(X==0,na.rm=T)) stop("Zero values not labelled as censored or missing values were found in the data set") if (any(is.na(X))) stop(paste("NA values not labelled as censored or missing values were found in the data set")) } if (is.na(label)){ if (any(X==0,na.rm=T)) stop("Zero values not labelled as censored or missing values were found in the data set") if (!any(is.na(X),na.rm=T)) stop(paste("Label",label,"was not found in the data set")) } if (is.vector(X)){ if (imp.missing==TRUE) stop("Data matrix required: missing values cannot be imputed in single vectors") if (ncol(dl)!=ncol(as.data.frame(matrix(X,ncol=length(X)),stringsAsFactors=TRUE))) stop("The number of columns in X and dl do not agree") } if (!is.vector(X)){ if (imp.missing==FALSE){ if (ncol(dl)!=ncol(X)) stop("The number of columns in X and dl do not agree") if ((nrow(dl)>1) & (nrow(dl)!=nrow(X))) stop("The number of rows in X and dl do not agree") } } if (!missing("delta")){ warning("The delta argument is deprecated, use frac instead: frac has been set equal to delta.") frac <- delta } gm <- function(x, na.rm=TRUE){ exp(sum(log(x), na.rm=na.rm) / length(x[!is.na(x)])) } nam <- NULL if (!is.null(names(X))) nam <- names(X) if (is.vector(X)) X <- as.data.frame(matrix(X,ncol=length(X)),stringsAsFactors=TRUE) X[X==label] <- NA X <- apply(X,2,as.numeric) if (is.vector(X)) X <- as.data.frame(matrix(X,ncol=length(X)),stringsAsFactors=TRUE) if (nrow(X) > 1){ checkNumZerosCol <- apply(X,2,function(x) sum(is.na(x))) if (any(checkNumZerosCol/nrow(X) == 1)) { stop(paste("Column(s) containing all zeros/unobserved values were found (check it out using zPatterns).",sep="")) } else{ if (any(checkNumZerosCol/nrow(X) > z.warning)) { warning(paste("Column(s) containing more than ",z.warning*100,"% zeros/unobserved values were found (check it out using zPatterns). (You can use the z.warning argument to modify the warning threshold).",sep="")) } } checkNumZerosRow <- apply(X,1,function(x) sum(is.na(x))) if (any(checkNumZerosRow/ncol(X) == 1)) { stop(paste("Row(s) containing all zeros/unobserved values were found (check it out using zPatterns).",sep="")) } else{ if (any(checkNumZerosRow/ncol(X) > z.warning)) { warning(paste("Row(s) containing more than ",z.warning*100,"% zeros/unobserved values were found (check it out using zPatterns). (You can use the z.warning argument to modify the warning threshold).",sep="")) } } } nn <- nrow(X); D <- ncol(X) c <- apply(X,1,sum,na.rm=TRUE) closed <- 0 if (all(abs(c - mean(c)) < .Machine$double.eps^0.3)) closed <- 1 if (imp.missing==FALSE){ if (nrow(dl)==1) dl <- matrix(rep(1,nn),ncol=1)%*%dl } Y <- X if (!is.null(closure)){ if (closed == 1) {stop("closure: The data are already closed to ",c[1])} resid <- apply(X,1, function(x) closure-sum(x, na.rm = TRUE)) Xresid <- cbind(X,resid,stringsAsFactors=TRUE) c <- rep(closure,nn) Y <- Xresid } if (imp.missing==FALSE){ for (i in 1:nn){ if (any(is.na(X[i,]))){ z <- which(is.na(X[i,])) Y[i,z] <- frac*dl[i,z] if (!is.null(closure)){ Y[i,-z] <- (1-(sum(Y[i,z]))/c[i])*Xresid[i,-z] tmp <- Y[i,-(D+1)] X[i,z] <- as.numeric((X[i,-z][1]/tmp[-z][1]))*Y[i,z] } else{ Y[i,-z] <- (1-(sum(Y[i,z]))/c[i])*X[i,-z] X[i,z] <- as.numeric((X[i,-z][1]/Y[i,-z][1]))*Y[i,z] } } } } if (imp.missing==TRUE){ gms <- apply(X,2,gm) for (i in 1:nn){ if (any(is.na(X[i,]))){ z <- which(is.na(X[i,])) Y[i,z] <- gms[z] if (!is.null(closure)){ Y[i,-z] <- ((c[i]-(sum(Y[i,z])))/sum(Xresid[i,-z]))*Xresid[i,-z] tmp <- Y[i,-(D+1)] X[i,z] <- as.numeric((X[i,-z][1]/tmp[-z][1]))*Y[i,z] } else{ Y[i,-z] <- ((c[i]-(sum(Y[i,z])))/sum(X[i,-z]))*X[i,-z] X[i,z] <- as.numeric((X[i,-z][1]/Y[i,-z][1]))*Y[i,z] } } } } if (!is.null(nam)) names(X) <- nam if (closed==1){ X <- t(apply(X,1,function(x) x/sum(x)*c[1])) } if (any(X < 0)) warning("multRepl: negative imputed values were generated (please check out help for advice)") return(as.data.frame(X,stringsAsFactors=TRUE)) }
packageLog <- function(packages = "cholera", date = NULL, all.filters = FALSE, ip.filter = FALSE, triplet.filter = FALSE, small.filter = FALSE, sequence.filter = FALSE, size.filter = FALSE, memoization = TRUE, check.package = TRUE, clean.output = FALSE, multi.core = TRUE) { if (check.package) packages <- checkPackage(packages) pkg.order <- packages ymd <- logDate(date) cran_log <- fetchCranLog(date = ymd, memoization = memoization) cran_log <- cleanLog(cran_log) cores <- multiCore(multi.core) if (all.filters) { ip.filter <- TRUE triplet.filter <- TRUE small.filter <- TRUE sequence.filter <- TRUE size.filter <- TRUE } pkg_specific_filters <- c(triplet.filter, sequence.filter, size.filter) if (ip.filter) { row.delete <- ipFilter(cran_log, multi.core = cores) cran_log <- cran_log[!row.names(cran_log) %in% row.delete, ] } if (any(pkg_specific_filters)) { out <- parallel::mclapply(packages, function(p) { cran_log[cran_log$package == p, ] }, mc.cores = cores) if (triplet.filter) { out <- parallel::mclapply(out, tripletFilter, mc.cores = cores) } if (small.filter) { out <- parallel::mclapply(out, smallFilter, mc.cores = cores) } if (sequence.filter) { arch.pkg.history <- parallel::mclapply(packages, function(x) { tmp <- packageHistory(x) tmp[tmp$Date <= ymd & tmp$Repository == "Archive", ] }, mc.cores = cores) out <- parallel::mclapply(seq_along(out), function(i) { sequenceFilter(out[[i]], arch.pkg.history[[i]]) }, mc.cores = cores) } if (size.filter) out <- sizeFilter(out, packages, cores) names(out) <- packages } else { if (small.filter) cran_log <- smallFilter(cran_log) out <- lapply(packages, function(p) cran_log[cran_log$package == p, ]) names(out) <- packages } out <- parallel::mclapply(out, function(x) { if (!"t2" %in% names(x)) x$date.time <- dateTime(x$date, x$time) tmp <- x[order(x$date.time), ] tmp$date.time <- NULL tmp }, mc.cores = cores) if (length(packages) == 1) { out[[1]] } else { out[pkg.order] } }
sor <- function(y.formula, w1.formula, w2.formula = ~1, id, waves=NULL, family = "binomial", y0 = 0, hfunc = identity, support = c(0,1), pi1.pi0.ratio = 1, data = parent.frame(), init.beta=NULL, init.sig.2 = 1, weights=NULL, est.var = TRUE, CORSTR="independence"){ call <- match.call() fam <- as.character(charmatch(family, c("gaussian", "normal", "poisson", "binomial"))) if(fam=="2") fam <- "1" if(typeof(data) == "environment"){ id = id waves <- waves weights <- weights DAT.ods <- data.frame(model.frame(y.formula), model.frame(w1.formula), model.frame(w2.formula)) }else{ DAT.ods <- data nn <- dim(DAT.ods)[1] if(length(call$id) == 1){ subj.col <- which(colnames(data) == call$id) if(length(subj.col) > 0){ id <- data[,subj.col] }else{ id <- eval(call$id, envir=parent.frame()) } }else if(is.null(call$id)){ id <- 1:nn } if(length(call$weights) == 1){ weights.col <- which(colnames(data) == call$weights) if(length(weights.col) > 0){ weights <- data[,weights.col] }else{ weights <- eval(call$weights, envir=parent.frame()) } }else if(is.null(call$weights)){ weights <- rep.int(1,nn) } if(length(call$waves) == 1){ waves.col <- which(colnames(data) == call$waves) if(length(waves.col) > 0){ waves <- data[,waves.col] }else{ waves <- eval(call$waves, envir=parent.frame()) } }else if(is.null(call$waves)){ waves <- NULL } } ny <- length(support) DAT.ods$id <- id DAT.ods$waves <- waves DAT.ods$weights <- weights DAT.ods$offset.z <- log(pi1.pi0.ratio) DAT.ods$pi.ratio <- pi1.pi0.ratio if(!is.numeric(DAT.ods$waves) & !is.null(DAT.ods$waves)) stop("waves must be either an integer vector or NULL") na.inds <- NULL if(any(is.na(DAT.ods))){ na.inds <- which(is.na(DAT.ods), arr.ind=T) } if(!is.null(waves)){ DAT.ods <- DAT.ods[order(id, waves),] }else{ DAT.ods <- DAT.ods[order(id),] } cor.vec <- c("independence", "ar1", "exchangeable", "m-dependent", "unstructured", "fixed", "userdefined") cor.match <- charmatch(CORSTR, cor.vec) if(is.na(cor.match)){stop("Unsupported correlation structure")} if(!is.null(DAT.ods$waves)){ wavespl <- split(DAT.ods$waves, DAT.ods$id) idspl <- split(DAT.ods$id, DAT.ods$id) maxwave <- rep(0, length(wavespl)) incomp <- rep(0, length(wavespl)) for(i in 1:length(wavespl)){ maxwave[i] <- max(wavespl[[i]]) - min(wavespl[[i]]) + 1 if(maxwave[i] != length(wavespl[[i]])){ incomp[i] <- 1 } } if(!is.element(cor.match, c(1,3)) & (sum(incomp) > 0) ){ DAT.ods <- dummyrows(y.formula, DAT.ods, incomp, maxwave, wavespl, idspl) id <- DAT.ods$id waves <- DAT.ods$waves weights <- DAT.ods$weights } } if(!is.null(na.inds)){ weights[unique(na.inds[,1])] <- 0 for(i in unique(na.inds)[,2]){ if(is.factor(DAT.ods[,i])){ DAT.ods[na.inds[,1], i] <- levels(DAT.ods[,i])[1] }else{ DAT.ods[na.inds[,1], i] <- median(DAT.ods[,i], na.rm=T) } } } includedvec <- weights>0 inclsplit <- split(includedvec, id) dropid <- NULL allobs <- T if(any(!includedvec)){ allobs <- F for(i in 1:length(unique(id))){ if(all(!inclsplit[[i]])){ dropid <- c(dropid, i) } } } if(length(dropid)>0){ dropind <- which(is.element(id, dropid)) DAT.ods <- DAT.ods[-dropind,] includedvec <- includedvec[-dropind] weights <- weights[-dropind] id <- id[-dropind] } nn <- dim(DAT.ods)[1] K <- length(unique(id)) yframe <- model.frame(y.formula, DAT.ods) resp <- model.response(yframe) w1frame <- model.frame(w1.formula, DAT.ods) ref <- model.response(w1frame) w2frame <- model.frame(w2.formula, DAT.ods) if(!all( is.element(ref, c(0,1)))){stop("Response in w1.formula must be binary")} if(!all(ref==model.response(w2frame)) && !is.null(model.response(w2frame))){stop("There should be no response for w2.formula")} if(max(resp) > max(support) | min(resp) < min(support)) warning("Some values of response are outside support") switch(fam, "1"= { results <- norm.SOR(y.formula, w1.formula, w2.formula, y0, hfunc, id, support, pi1.pi0.ratio, DAT.ods, init.beta, init.sig.2, est.var, CORSTR, weights=DAT.ods$weights) }, "3" = { if(!all( is.wholenumber(resp))){stop("Response in y.formula must be positive integers if family is Poisson")} if(init.sig.2 != 1){warning("Initial variance specification ignored")} results <- pois.SOR(y.formula, w1.formula, w2.formula, y0, hfunc, id, support, pi1.pi0.ratio, DAT.ods, init.beta, est.var=est.var, CORSTR=CORSTR, weights=DAT.ods$weights) }, "4" = { if(!all( is.element(resp, c(0,1)))){stop("Response in y.formula must be binary if family is binomial")} if(y0 != 0){warning("Setting y0 to 0")} results <- binom.SOR(y.formula, w1.formula, w2.formula, DAT.ods, init.beta, CORSTR) } ) class(results) <- "sor" results$coefnames <- colnames(model.matrix(y.formula, DAT.ods)) results$call <- call results$family <- c("normal","normal", "Poisson", "binomial")[as.numeric(fam)] return(results) } print.sor <- function(x, ...){ coefdf <- data.frame(x$coefs) rownames(coefdf) <- x$coefnames colnames(coefdf) <- "" print(x$call) cat("\n", "Coefficients:", "\n") print(t(coefdf)) cat("\n Reference Distribution: ", x$family, "\n") } summary.sor <- function(object, ...) { Coefs <- matrix(0,nrow=length(object$coefs),ncol=4) Coefs[,1] <- c(object$coefs) Coefs[,2] <- object$se.coefs Coefs[,3] <- Coefs[,1]/Coefs[,2] Coefs[,4] <- round(2*pnorm(abs(Coefs[,3]), lower.tail=F), digits=8) colnames(Coefs) <- c("Estimates","Std. Err.", "wald", "p") summ <- list(coefs = Coefs[,1], se.coefs = Coefs[,2], wald.test = Coefs[,3], p = Coefs[,4], coefnames = object$coefnames, family=object$family, call=object$call) class(summ) <- 'summary.sor' return(summ) } print.summary.sor <- function(x, ...){ Coefs <- matrix(0,nrow=length(x$coefnames),ncol=4) rownames(Coefs) <- c(x$coefnames) colnames(Coefs) <- c("Estimates","Std. Err.", "wald", "p") Coefs[,1] <- x$coefs Coefs[,2] <- x$se.coefs Coefs[,3] <- x$wald.test Coefs[,4] <- x$p print( x$call) cat("\n") print(Coefs) cat("\n Reference Distribution: ", x$family, "\n") }
expected <- TRUE test(id=1, code={ argv <- structure(list(x = "`", value = TRUE), .Names = c("x", "value" )) do.call('assign', argv); }, o = expected);
context("MFAEstimate") if (requireNamespace("mfa", quietly = TRUE)) { library(mfa) synth <- create_synthetic(C = 20, G = 5, zero_negative = TRUE, model_dropout = TRUE) } test_that("MFAEstimate works", { skip_if_not_installed("mfa") params <- mfaEstimate(synth$X) expect_true(validObject(params)) })
context("taxonomic map") test_that("levelmap works correctly", { data(dietswap) tt <- tax_table(dietswap) expect_equal(map_levels('Akkermansia', from = 'Genus', to = 'Phylum', tt), "Verrucomicrobia") expect_equal(map_levels('Verrucomicrobia', from = 'Phylum', to = 'Genus', tt)$Verrucomicrobia, "Akkermansia") })
context("xyzt_units attribute") nim <- readNIfTI(system.file("nifti/mniRL.nii.gz", package = "oro.nifti")) test_that("xyzt_units()", { expect_equal(xyzt_units(nim), 10) }) test_that("xyzt.units()", { expect_equal(xyzt.units(nim), 10) }) test_that("xyzt_units<-()", { xyzt_units(nim) <- 11 expect_equal(xyzt_units(nim), 11) }) test_that("xyzt.units<-()", { xyzt.units(nim) <- 12 expect_equal(xyzt.units(nim), 12) })
library(itertools) library(foreach) n <- 10 x <- matrix(rnorm(n * n), n) y <- foreach(a=iarray(x, c(1,2), chunks=2), .combine='cbind') %:% foreach(b=a, .combine='rbind') %do% { b } print(identical(x, y))
FDRpenalties <- function(n, k = n - 1, m = min(n - 2, k), fdr = .1, reps = 50000, rnd = 3){ if(!isTRUE(all.equal(n%%4,0))) stop("n must be a multiple of 4") if(!isTRUE(all.equal(k%%1,0))) stop("k must be an integer") if(!isTRUE(all.equal(m%%1,0))) stop("m must be an integer") if(k > n - 1) stop("k cannot be greater than n-1") if(k < 1) stop("k cannot be less than 1") if(m > k) stop("m cannot be greater than k") if(m < 1) stop("m cannot be less than 1") if(m > (n-2)) stop("m cannot be greater than n-2") if(m > k) stop("m cannot be greater than k") if(fdr <= 0) stop("fdr must be greater than 0") if(fdr >= 1) stop("fdr must be less than 1") if (fdr > 1/m) warning("fdr > 1/m which results in some penalties being equal") cs <- NULL startj <- m - 1 if((fdr * m) >= 1){ num <- floor(fdr * m) cs <- rep(0, num) startj <- m - 1 - num } for(j in startj:0){ sqres <- matrix(rnorm(reps * (n - 1 - j)) ^ 2, reps, n - 1 - j) if((n - k) != (n - 1 - j)) sqres[, (n - k):(n - 1 - j)] <- t(apply(sqres[ ,(n - k):(n - 1 - j)], 1, sort)) lRSS <- log(apply(sqres, 1, cumsum)[(n - m - 1):(n - 1 - j), ]) d1<-dim(lRSS)[1] if(d1 == 2){ out <- lRSS[2, ]- lRSS[1, ] cs <- as.numeric(quantile(out, 1 - (fdr * m))) } if(d1 > 2){ out <- lRSS[d1, ] - apply((lRSS[-d1, ] + c(cs, 0)), 2, min) wts <- d1 - apply((lRSS[-d1, ] + c(cs, 0)), 2, order)[1, ] wts <- wts / (wts + j) ord <- order(out, decreasing = TRUE) oout <- out[ord] owts <- cumsum(wts[ord]) toterrs <- reps * fdr newc <- min(oout[owts <= toterrs]) cs <- c(cs + newc, newc) } } cs <- round(c(0, cs[length(cs):1]), rnd) attributes(cs) <- NULL return(cs) }
setGeneric("fix_phylo", function(tree) standardGeneric("fix_phylo") ) setMethod("fix_phylo", "phylo", function(tree){ tree$edge.length[which(is.na(tree$edge.length))] <- 0 return(tree) })
context("plotPoints.pcoadata") morphoDataFrame = data.frame("ID" = c("id1","id2","id3","id4","id5","id6","id7","id8"), "Population" = c("Pop1", "Pop1", "Pop2", "Pop2", "Pop3", "Pop3", "Pop4", "Pop4"), "Taxon" = c("TaxA", "TaxA", "TaxA", "TaxA", "TaxB", "TaxB", "TaxB", "TaxB"), "Ch1" = c(1,3,4,6,1,7,12,8), "Ch2" = c(11, 12,42,12,32,11,22,18)) morphoMockup = .morphodataFromDataFrame(morphoDataFrame) data(centaurea) centaurea = suppressWarnings(naMeanSubst(centaurea)) centaurea = deletePopulation(centaurea, populationName = c("LIP", "PREL")) test_that("ploting with error parameters", { pcoaRes = pcoa.calc(morphoMockup) expect_is(pcoaRes, "pcoadata") expect_error(plotPoints(pcoaRes, axes = c(3,33))) expect_error(plotPoints(pcoaRes, axes = c(1,1,2))) })
context("Sodium Compatibility") test_that("Signatures are compatible with sodium", { skip_if_not(openssl_config()$x25519) sk <- sodium::sig_keygen() pk <- sodium::sig_pubkey(sk) msg <- serialize(iris, NULL) key <- read_ed25519_key(sk) pubkey <- read_ed25519_pubkey(pk) sig1 <- sodium::sig_sign(msg, key = sk) expect_true(sodium::sig_verify(msg, sig1, pk)) expect_true(ed25519_verify(msg, sig1, pubkey = pubkey)) sig2 <- ed25519_sign(msg, key) expect_true(sodium::sig_verify(msg, sig2, pk)) expect_true(ed25519_verify(msg, sig2, pubkey = pubkey)) }) test_that("Diffie Hellman is compatible with sodium", { skip_if_not(openssl_config()$x25519) sk1 <- sodium::keygen() sk2 <- sodium::keygen() dh1 <- sodium::diffie_hellman(sk1, sodium::pubkey(sk2)) key <- read_x25519_key(sk2) pubkey <- read_x25519_pubkey(sodium::pubkey(sk1)) dh2 <- x25519_diffie_hellman(key, pubkey) expect_equal(dh1, dh2) })
pifit.internal <- function(object){ X <- object[["X"]] mt_vek <- apply(X, 2L, max, na.rm = TRUE) mt_ind <- rep(seq_along(mt_vek), mt_vek) mt_seq <- sequence(mt_vek) gmemb <- object$gmemb pmat <- pmat(object) Emat.cat <- t(apply(pmat, 1L, function(x) x*mt_seq)) if(object$model %in% c("RM", "LLTM")){ Emat <- Emat.cat } else { E.list <- tapply(seq_along(mt_ind), mt_ind, function(ind){ rowSums(cbind(Emat.cat[, ind]), na.rm = TRUE) }) Emat <- matrix(unlist(E.list),ncol=dim(X)[2],dimnames=list(rownames(pmat),colnames(X))) } pmat.l0 <- tapply(seq_along(mt_ind), mt_ind, function(ind){ vec0 <- 1-rowSums(as.matrix(pmat[,ind])) cbind(vec0,pmat[,ind]) }) pmat0 <- matrix(unlist(pmat.l0),nrow=length(gmemb)) mt_vek0 <- integer(0) for (i in mt_vek) mt_vek0 <- c(mt_vek0, 0:i) mt_ind0 <- rep(1:length(mt_vek),mt_vek+1) colnames(Emat) <- NULL Emat0 <- t(apply(Emat[,mt_ind0],1,function(x) {mt_vek0 - x})) Vmat.cat <- (Emat0)^2*pmat0 V.list <- tapply(1:length(mt_ind0),mt_ind0, function(ind) {rowSums(Vmat.cat[,ind],na.rm=TRUE)}) Vmat <- matrix(unlist(V.list),ncol=dim(X)[2],dimnames=list(rownames(pmat),colnames(X))) Cmat.cat <- (Emat0)^4*pmat0 C.list <- tapply(1:length(mt_ind0),mt_ind0, function(ind) {rowSums(Cmat.cat[,ind],na.rm=TRUE)}) Cmat <- matrix(unlist(C.list),ncol=dim(X)[2],dimnames=list(rownames(pmat),colnames(X))) result <- list(Emat=Emat,Vmat=Vmat,Cmat=Cmat) }
sim.din <- function( N=0, q.matrix, guess=rep(.2, nrow(q.matrix) ), slip=guess, mean=rep(0, ncol(q.matrix) ), Sigma=diag( ncol(q.matrix) ), rule="DINA", alpha=NULL) { if (N>0){ normsim <- CDM_rmvnorm( N, mean, Sigma) dichsim <- 1 * ( normsim > 0 ) } if ( ! is.null( alpha) ){ dichsim <- alpha N <- nrow(alpha) } poss.attr <- dichsim %*% t( q.matrix ) ness.attr <- ( rowSums(q.matrix) )*( rule=="DINA") + 1* ( rule=="DINO" ) eta.pp <- poss.attr >=outer( rep(1,N), ness.attr ) R <- matrix( eta.pp * stats::rbinom( N*nrow(q.matrix), size=1, prob=1 - outer( rep(1,N), slip ) ) + ( 1 - eta.pp) * stats::rbinom( N*nrow(q.matrix), size=1, prob=outer( rep(1,N), guess ) ), ncol=nrow(q.matrix) ) colnames(R) <- paste( "I", substring( 1000 + 1:( nrow(q.matrix) ), 2), sep="") res <- list( "dat"=R, "alpha"=dichsim ) return(res) }
intCol <-function () { dialogName<-"intCol" def <- list(dsname="Do_Not_Save", tfVar=100, clVar= 20, lnVar=20, fiVar=0.4, iVar=0.1, peVar=0.05, animaVar= 1) initial <- getDialog(dialogName, defaults= def) initializeDialog(title = gettextRcmdr("Internal Colonization")) dsname <- tclVar(initial$dsname) tfVar <- tclVar(initial$tfVar) clVar <- tclVar(initial$clVar) lnVar <- tclVar(initial$lnVar) fiVar <- tclVar(initial$fiVar) iVar <- tclVar(initial$iVar) peVar <- tclVar(initial$peVar) animaVar <- tclVar(initial$animaVar) entryDsname <- tkentry(top, width="20", textvariable=dsname) tfEntry <- tkentry(top, width = "4", textvariable = tfVar) clEntry <- tkentry(top, width = "4", textvariable = clVar) lnEntry <- tkentry(top, width = "4", textvariable = lnVar) fiVarSlider <- tkscale(top, from=0, to=1, showvalue=TRUE, variable=fiVar, resolution=0.01, orient="horizontal") iEntry <- tkscale(top, from=0, to=1, showvalue=TRUE, variable=iVar, resolution=0.01, orient="horizontal") peEntry <- tkscale(top, from=0, to=1, showvalue=TRUE, variable=peVar, resolution=0.01, orient="horizontal") animaBox <- tkcheckbutton(top, variable = animaVar) onOK <- function() { closeDialog() tf <- round(as.numeric(tclvalue(tfVar))) if (is.na(tf) || tf <= 0) { errorCondition(message = "Number of simulations must be a positive integer") return() } cl <- round(as.numeric(tclvalue(clVar))) if (is.na(cl) || cl <= 0) { errorCondition(message = "Number of columns on the simulated arena must be a positive integer.") return() } ln <- round(as.numeric(tclvalue(lnVar))) if (is.na(ln) || ln <= 0) { errorCondition("Number of lines on the simulated arena must be a positive integer.") return() } i <- as.numeric(tclvalue(iVar)) if (i<0 || i > 10) { errorCondition(message = "Colonization constant must be between 0 and 10") return() } fi <- as.numeric(tclvalue(fiVar)) pe <- as.numeric(tclvalue(peVar)) animaVF <- as.logical(as.numeric(tclvalue(animaVar))) dsnameValue <- trim.blanks(tclvalue(dsname)) if (dsnameValue == "Do_Not_Save" | dsnameValue=="") { command <- paste("metaCi(tmax = ",tf, ", cl = ", cl,", f0 = ", fi,", rw =", ln,", ci = ", i,", pe = ", pe, ", anima = ", animaVF,")", sep = "") } else { command <- paste(dsnameValue,"<- metaCi(tmax = ",tf, ", cl = ", cl,", f0 = ", fi,", rw =", ln,", ci = ", i,", pe = ", pe, ", anima = ", animaVF,")", sep = "") } putDialog(dialogName, values = list(dsname=dsnameValue, tfVar= round(as.numeric(tclvalue(tfVar))), clVar= round(as.numeric(tclvalue(clVar))), lnVar= round(as.numeric(tclvalue(lnVar))), fiVar= as.numeric(tclvalue(fiVar)), iVar=as.numeric(tclvalue(iVar)), peVar=as.numeric(tclvalue(peVar)), animaVar=as.logical(as.numeric(tclvalue(animaVar)))),resettable = FALSE) doItAndPrint(command) tkfocus(CommanderWindow()) } OKCancelHelp(helpSubject = "metapopulation", reset=dialogName, apply= dialogName) tkgrid(tklabel(top, text="Enter name for data set: "), entryDsname, sticky="e") tkgrid(tklabel(top, text="Simulation Arena Conditions : ", fg="blue"), sticky="w") tkgrid(tklabel(top, text = "Maximum time "), tfEntry, sticky = "e") tkgrid(tklabel(top, text = "Columns "), clEntry, sticky = "e") tkgrid(tklabel(top, text = "Rows "), lnEntry, sticky = "e") tkgrid(tklabel(top, text="Species parameters :", fg="blue"), sticky="w") tkgrid(tklabel(top, text="Initial occupancy "), fiVarSlider, sticky="se") tkgrid(tklabel(top, text = "Colonization coefficient "), iEntry, sticky = "e") tkgrid(tklabel(top, text = "Extinction probability "), peEntry, sticky = "se") tkgrid(tklabel(top, text = "Show simulation frames"), animaBox, sticky = "e") tkgrid(buttonsFrame, sticky = "w", columnspan = 2) tkgrid.configure(entryDsname, sticky = "w") tkgrid.configure(tfEntry, sticky = "w") tkgrid.configure(clEntry, sticky = "w") tkgrid.configure(lnEntry, sticky = "w") tkgrid.configure(fiVarSlider, sticky = "w") tkgrid.configure(iEntry, sticky = "w") tkgrid.configure(peEntry, sticky = "w") tkgrid.configure(animaBox, sticky = "w") dialogSuffix(rows = 9, columns = 2, focus = tfEntry) } propRain <-function() { dialogName<-"propRain" def <- list(dsname="Do_Not_Save", tfVar=100, clVar= 20, lnVar=20, fiVar=0.4, piVar=0.1, peVar=0.05, animaVar=1) initial <- getDialog(dialogName, defaults= def) initializeDialog(title = gettextRcmdr("Propagulus Rain")) dsname <- tclVar(initial$dsname) tfVar <- tclVar(initial$tfVar) clVar <- tclVar(initial$clVar) lnVar <- tclVar(initial$lnVar) fiVar <- tclVar(initial$fiVar) piVar <- tclVar(initial$piVar) peVar <- tclVar(initial$peVar) animaVar <- tclVar(initial$animaVar) entryDsname <- tkentry(top, width="20", textvariable=dsname) tfEntry <- tkentry(top, width = "4", textvariable = tfVar) clEntry <- tkentry(top, width = "4", textvariable = clVar) lnEntry <- tkentry(top, width = "4", textvariable = lnVar) fiEntry <- tkscale(top, from=0, to=1, showvalue=TRUE, variable=fiVar, resolution=0.01, orient="horizontal") piEntry <- tkscale(top, from=0, to=1, showvalue=TRUE, variable=piVar, resolution=0.01, orient="horizontal") peEntry <- tkscale(top, from=0, to=1, showvalue=TRUE, variable=peVar, resolution=0.01, orient="horizontal") animaBox <- tkcheckbutton(top, variable = animaVar) onOK <- function() { closeDialog() tf <- round(as.numeric(tclvalue(tfVar))) if (is.na(tf) || tf <= 0) { errorCondition(message = "Number of simulations must be a positive integer") return() } cl <- round(as.numeric(tclvalue(clVar))) if (is.na(cl) || cl <= 0) { errorCondition(message = "Number of columns on the simulated arena must be a positive integer.") return() } ln <- round(as.numeric(tclvalue(lnVar))) if (is.na(ln) || ln <= 0) { errorCondition("Number of lines on the simulated arena must be a positive integer.") return() } fi <- as.numeric(tclvalue(fiVar)) pi <- as.numeric(tclvalue(piVar)) pe <- as.numeric(tclvalue(peVar)) animaVF <- as.logical(as.numeric(tclvalue(animaVar))) dsnameValue <- trim.blanks(tclvalue(dsname)) if (dsnameValue == "Do_Not_Save" || dsnameValue=="") { command <- paste("metaPop(tmax = ",tf, ", cl = ", cl,", f0 = ", fi,", rw =", ln,", pi = ", pi,", pe = ", pe, ", anima = ", animaVF,")", sep = "") } else { command <- paste(dsnameValue,"<- metaPop(tmax = ",tf, ", cl = ", cl,", f0 = ", fi,", rw =", ln,", pi = ", pi,", pe = ", pe, ", anima = ", animaVF,")", sep = "") } putDialog(dialogName, values = list(dsname=dsnameValue, tfVar= round(as.numeric(tclvalue(tfVar))), clVar= round(as.numeric(tclvalue(clVar))), lnVar= round(as.numeric(tclvalue(lnVar))), fiVar= as.numeric(tclvalue(fiVar)), piVar=as.numeric(tclvalue(piVar)), peVar=as.numeric(tclvalue(peVar)), animaVar=as.logical(as.numeric(tclvalue(animaVar)))),resettable = FALSE) doItAndPrint(command) tkfocus(CommanderWindow()) } OKCancelHelp(helpSubject = "metapopulation", reset=dialogName, apply= dialogName) tkgrid(tklabel(top, text="Enter name for data set: "), entryDsname, sticky="e") tkgrid(tklabel(top, text="Simulation Arena Conditions : ", fg="blue"), sticky="w") tkgrid(tklabel(top, text = "Maximum time "), tfEntry, sticky = "e") tkgrid(tklabel(top, text = "Columns "), clEntry, sticky = "e") tkgrid(tklabel(top, text = "Rows "), lnEntry, sticky = "e") tkgrid(tklabel(top, text="Species parameters : ", fg="blue"), sticky="w") tkgrid(tklabel(top, text = "Initial occupancy "), fiEntry, sticky = "se") tkgrid(tklabel(top, text = "Colonization probability "), piEntry, sticky = "se") tkgrid(tklabel(top, text = "Extinction probability "), peEntry, sticky = "se") tkgrid(tklabel(top, text = "Show simulation frames"), animaBox, sticky = "e") tkgrid(buttonsFrame, sticky = "w", columnspan = 2) tkgrid.configure(entryDsname, sticky = "w") tkgrid.configure(tfEntry, sticky = "w") tkgrid.configure(clEntry, sticky = "w") tkgrid.configure(lnEntry, sticky = "w") tkgrid.configure(fiEntry, sticky = "w") tkgrid.configure(piEntry, sticky = "w") tkgrid.configure(peEntry, sticky = "w") tkgrid.configure(animaBox, sticky = "w") dialogSuffix(rows = 8, columns = 2, focus = tfEntry) } resEff <-function () { dialogName<-"resEff" def <- list(dsname="Do_Not_Save", tfVar=100, clVar= 20, lnVar=20, fiVar=0.4, piVar=0.1, eVar = 0.05, animaVar=1) initial <- getDialog(dialogName, defaults= def) initializeDialog(title = gettextRcmdr("Rescue Effect")) dsname <- tclVar(initial$dsname) tfVar <- tclVar(initial$tfVar) clVar <- tclVar(initial$clVar) lnVar <- tclVar(initial$lnVar) fiVar <- tclVar(initial$fiVar) piVar <- tclVar(initial$piVar) eVar <- tclVar(initial$eVar) animaVar <- tclVar(initial$animaVar) entryDsname <- tkentry(top, width="20", textvariable=dsname) tfEntry <- tkentry(top, width = "4", textvariable = tfVar) clEntry <- tkentry(top, width = "4", textvariable = clVar) lnEntry <- tkentry(top, width = "4", textvariable = lnVar) fiEntry <- tkscale(top, from=0, to=1, showvalue=TRUE, variable=fiVar, resolution=0.01, orient="horizontal") piEntry <- tkscale(top, from=0, to=1, showvalue=TRUE, variable=piVar, resolution=0.01, orient="horizontal") eEntry <- tkscale(top, from=0, to=1, showvalue=TRUE, variable = eVar, resolution=0.01, orient="horizontal") animaBox <- tkcheckbutton(top, variable = animaVar) onOK <- function() { closeDialog() tf <- round(as.numeric(tclvalue(tfVar))) if (is.na(tf) || tf <= 0) { errorCondition(message = "Number of simulations must be a positive integer") return() } cl <- round(as.numeric(tclvalue(clVar))) if (is.na(cl) || cl <= 0) { errorCondition(message = "Number of columns on the simulated arena must be a positive integer.") return() } ln <- round(as.numeric(tclvalue(lnVar))) if (is.na(ln) || ln <= 0) { errorCondition("Number of lines on the simulated arena must be a positive integer.") return() } ce <- as.numeric(tclvalue(eVar)) fi <- as.numeric(tclvalue(fiVar)) pi <- as.numeric(tclvalue(piVar)) animaVF <- as.logical(as.numeric(tclvalue(animaVar))) dsnameValue <- trim.blanks(tclvalue(dsname)) if (dsnameValue == "Do_Not_Save" | dsnameValue=="") { command <- paste("metaEr(tmax = ",tf, ", cl = ", cl,", f0 = ", fi,", rw =", ln,", pi = ", pi,", ce = ", ce,", anima =", animaVF, ")", sep = "") } else { command <- paste(dsnameValue,"<-metaEr(tmax = ",tf, ", cl = ", cl,", f0 = ", fi,", rw =", ln,", pi = ", pi,", ce = ", ce, ", anima =", animaVF, ")", sep = "") } putDialog(dialogName, values = list(dsname=dsnameValue, tfVar= round(as.numeric(tclvalue(tfVar))), clVar= round(as.numeric(tclvalue(clVar))), lnVar= round(as.numeric(tclvalue(lnVar))), fiVar= as.numeric(tclvalue(fiVar)), piVar=as.numeric(tclvalue(piVar)), eVar=as.numeric(tclvalue(eVar)), animaVar=as.logical(as.numeric(tclvalue(animaVar)))),resettable = FALSE) doItAndPrint(command) tkfocus(CommanderWindow()) } OKCancelHelp(helpSubject = "metapopulation", reset=dialogName, apply= dialogName) tkgrid(tklabel(top, text="Enter data set name: "), entryDsname, sticky="e") tkgrid(tklabel(top, text="Simulation Arena Conditions : ", fg="blue"), sticky="w") tkgrid(tklabel(top, text = "Maximum time "), tfEntry, sticky = "e") tkgrid(tklabel(top, text = "Columns "), clEntry, sticky = "e") tkgrid(tklabel(top, text = "Rows "), lnEntry, sticky = "e") tkgrid(tklabel(top, text="Species parameters : ", fg="blue"), sticky="w") tkgrid(tklabel(top, text = "Initial occupancy "), fiEntry, sticky = "e") tkgrid(tklabel(top, text = "Colonization probability "), piEntry, sticky = "e") tkgrid(tklabel(top, text = "Extinction coefficient "), eEntry, sticky = "e") tkgrid(tklabel(top, text = "Show simulation frames"), animaBox, sticky = "e") tkgrid(buttonsFrame, sticky = "w", columnspan = 2) tkgrid.configure(entryDsname, sticky = "w") tkgrid.configure(tfEntry, sticky = "w") tkgrid.configure(clEntry, sticky = "w") tkgrid.configure(lnEntry, sticky = "w") tkgrid.configure(fiEntry, sticky = "w") tkgrid.configure(piEntry, sticky = "w") tkgrid.configure(eEntry, sticky = "w") tkgrid.configure(animaBox, sticky = "w") dialogSuffix(rows = 11, columns = 2, focus = tfEntry) } resEffcol <-function () { dialogName<-"resEffcol" def <- list(dsname="Do_Not_Save", tfVar=100, clVar= 20, lnVar=20, fiVar=0.25, iVar=0.1, eVar = 0.05, animaVar=1) initial <- getDialog(dialogName, defaults= def) initializeDialog(title = gettextRcmdr("Rescue and Internal Colonization")) dsname <- tclVar(initial$dsname) tfVar <- tclVar(initial$tfVar) clVar <- tclVar(initial$clVar) lnVar <- tclVar(initial$lnVar) fiVar <- tclVar(initial$fiVar) iVar <- tclVar(initial$iVar) eVar <- tclVar(initial$eVar) animaVar <- tclVar(initial$animaVar) entryDsname <- tkentry(top, width="20", textvariable=dsname) tfEntry <- tkentry(top, width = "4", textvariable = tfVar) clEntry <- tkentry(top, width = "4", textvariable = clVar) lnEntry <- tkentry(top, width = "4", textvariable = lnVar) fiEntry <- tkscale(top, from=0, to=1, showvalue=TRUE, variable=fiVar, resolution=0.01, orient="horizontal") iEntry <- tkscale(top, from=0, to=1, showvalue=TRUE, variable=iVar, resolution=0.01, orient="horizontal") eEntry <- tkscale(top, from=0, to=1, showvalue=TRUE, variable = eVar, resolution=0.01, orient="horizontal") animaBox <- tkcheckbutton(top, variable = animaVar) onOK <- function() { closeDialog() tf <- round(as.numeric(tclvalue(tfVar))) if (is.na(tf) || tf <= 0) { errorCondition(message = "Number of simulations must be a positive integer") return() } cl <- round(as.numeric(tclvalue(clVar))) if (is.na(cl) || cl <= 0) { errorCondition(message = "Number of columns on the simulated arena must be a positive integer.") return() } ln <- round(as.numeric(tclvalue(lnVar))) if (is.na(ln) || ln <= 0) { errorCondition("Number of lines on the simulated arena must be a positive integer.") return() } e <- as.numeric(tclvalue(eVar)) if (e<0 || e > 1) { errorCondition(message = "Extinction coefficient must be positive between 0 to 1") return() } i <- as.numeric(tclvalue(iVar)) if (i<0 || i > 1) { errorCondition(message = "Colonization coefficient must be positive between 0 to 1") return() } fi <- as.numeric(tclvalue(fiVar)) animaVF <- as.logical(as.numeric(tclvalue(animaVar))) dsnameValue <- trim.blanks(tclvalue(dsname)) if (dsnameValue == "Do_Not_Save" | dsnameValue=="") { command <- paste("metaCiEr(tmax = ",tf, ", cl = ", cl,", f0 = ", fi,", rw =", ln,", ci = ", i,", ce = ", e, ", anima =", animaVF, ")", sep = "") } else { command <- paste(dsnameValue,"<-metaCiEr(tmax = ",tf, ", cl = ", cl,", f0 = ", fi,", rw =", ln,", ci = ", i,", ce = ", e, ", anima = ", animaVF,")", sep = "") } putDialog(dialogName, values = list(dsname=dsnameValue, tfVar= round(as.numeric(tclvalue(tfVar))), clVar= round(as.numeric(tclvalue(clVar))), lnVar= round(as.numeric(tclvalue(lnVar))), fiVar= as.numeric(tclvalue(fiVar)), iVar=as.numeric(tclvalue(iVar)), eVar=as.numeric(tclvalue(eVar)), animaVar=as.logical(as.numeric(tclvalue(animaVar)))),resettable = FALSE) doItAndPrint(command) tkfocus(CommanderWindow()) } OKCancelHelp(helpSubject = "metapopulation", apply= dialogName, reset= dialogName) tkgrid(tklabel(top, text="Enter data set name:"), entryDsname, sticky="e") tkgrid(tklabel(top, text="Simulation Arena Conditions :", fg="blue"), sticky="w") tkgrid(tklabel(top, text = "Maximum time "), tfEntry, sticky = "e") tkgrid(tklabel(top, text = "Columns "), clEntry, sticky = "e") tkgrid(tklabel(top, text = "Rows "), lnEntry, sticky = "e") tkgrid(tklabel(top, text="Species parameters :", fg="blue"), sticky="w") tkgrid(tklabel(top, text = "Initial occupancy "), fiEntry, sticky = "e") tkgrid(tklabel(top, text = "Colonization coefficient "), iEntry, sticky = "e") tkgrid(tklabel(top, text = "Extinction coefficient "), eEntry, sticky = "e") tkgrid(tklabel(top, text = "Show simulation frames"), animaBox, sticky = "e") tkgrid(buttonsFrame, sticky = "w", columnspan = 2) tkgrid.configure(entryDsname, sticky = "w") tkgrid.configure(tfEntry, sticky = "w") tkgrid.configure(clEntry, sticky = "w") tkgrid.configure(lnEntry, sticky = "w") tkgrid.configure(fiEntry, sticky = "w") tkgrid.configure(iEntry, sticky = "w") tkgrid.configure(eEntry, sticky = "w") tkgrid.configure(animaBox, sticky = "w") dialogSuffix(rows = 11, columns = 2, focus = tfEntry) } metacompDb <-function () { dialogName<-"metacompDb" def <- list(dsname="Do_Not_Save", tmaxVar=100, clVar= 20, lnVar=20, fi1Var=0.25,fi2Var= 0.25, i1Var=0.1, i2Var=0.1, peVar = 0.05, distrVar=0.00, animaVar=1) initial <- getDialog(dialogName, defaults= def) initializeDialog(title = gettextRcmdr("Meta Competition")) dsname <- tclVar(initial$dsname) tmaxVar <- tclVar(initial$tmaxVar) clVar <- tclVar(initial$clVar) lnVar <- tclVar(initial$lnVar) fi1Var <- tclVar(initial$fi1Var) fi2Var <- tclVar(initial$fi2Var) i1Var <- tclVar(initial$i1Var) i2Var <- tclVar(initial$i2Var) peVar <- tclVar(initial$peVar) distrVar <- tclVar(initial$distrVar) animaVar <- tclVar(initial$animaVar) entryDsname <- tkentry(top, width="20", textvariable=dsname) tmaxEntry <- tkentry(top, width = "4", textvariable = tmaxVar) clEntry <- tkentry(top, width = "4", textvariable = clVar) lnEntry <- tkentry(top, width = "4", textvariable = lnVar) fi1VarSlider <- tkscale(top, from=0, to=1, showvalue=TRUE, variable=fi1Var, resolution=0.01, orient="horizontal") fi2VarSlider <- tkscale(top, from=0, to=1, showvalue=TRUE, variable=fi2Var, resolution=0.01, orient="horizontal") i1Entry <- tkentry(top, width = "6", textvariable = i1Var) i2Entry <- tkentry(top, width = "6", textvariable = i2Var) peEntry <- tkscale(top, from=0, to=1, showvalue=TRUE, variable=peVar, resolution=0.01, orient="horizontal") distrEntry <- tkscale(top, from=0, to=1, showvalue=TRUE, variable=distrVar, resolution=0.01, orient="horizontal") animaBox <- tkcheckbutton(top, variable = animaVar) onOK <- function() { closeDialog() tmax <- round(as.numeric(tclvalue(tmaxVar))) if (is.na(tmax) || tmax <= 0) { errorCondition(message = "Number of simulations must be a positive integer") return() } cl <- round(as.numeric(tclvalue(clVar))) if (is.na(cl) || cl <= 0) { errorCondition(message = "Number of columns on the simulated arena must be a positive integer.") return() } ln <- round(as.numeric(tclvalue(lnVar))) if (is.na(ln) || ln <= 0) { errorCondition("Number of lines on the simulated arena must be a positive integer.") return() } i1 <- as.numeric(tclvalue(i1Var)) i2 <- as.numeric(tclvalue(i2Var)) fi1 <- as.numeric(tclvalue(fi1Var)) fi2 <- as.numeric(tclvalue(fi2Var)) pe <- as.numeric(tclvalue(peVar)) distr <- as.numeric(tclvalue(distrVar)) animaVF <- as.logical(as.numeric(tclvalue(animaVar))) dsnameValue <- trim.blanks(tclvalue(dsname)) if (dsnameValue == "Do_Not_Save" | dsnameValue=="") { command <- paste("metaComp(tmax = ",tmax, ", cl = ", cl,", f01 = ", fi1,", f02 = ", fi2,", rw =", ln,", i1 = ", i1,", i2 = ", i2,", pe = ", pe,", D = ", distr,", anima = ", animaVF, ")", sep = "") } else { command <- paste(dsnameValue,"<- metaComp(tmax = ",tmax, ", cl = ", cl,", f01 = ", fi1,", f02 = ", fi2,", rw =", ln,", i1 = ", i1,", i2 = ", i2,", pe = ", pe,", D = ", distr,", anima = ", animaVF, ")", sep = "") } doItAndPrint(command) tkfocus(CommanderWindow()) putDialog(dialogName, values = list(dsname=dsnameValue, tmaxVar= round(as.numeric(tclvalue(tmaxVar))), clVar= round(as.numeric(tclvalue(clVar))), lnVar= round(as.numeric(tclvalue(lnVar))), fi1Var= as.numeric(tclvalue(fi1Var)), fi2Var= as.numeric(tclvalue(fi2Var)), i1Var=as.numeric(tclvalue(i1Var)), i2Var=as.numeric(tclvalue(i2Var)), peVar=as.numeric(tclvalue(peVar)), distrVar=as.numeric(tclvalue(distrVar)), animaVar=as.logical(as.numeric(tclvalue(animaVar)))),resettable = FALSE) } OKCancelHelp(helpSubject = "metaComp", apply= dialogName, reset = dialogName) tkgrid(tklabel(top, text="Enter name for data set:"), entryDsname, sticky="e") tkgrid(tklabel(top, text="Simulation Arena Conditions :", fg="blue"), sticky="w") tkgrid(tklabel(top, text = "Maximum time"), tmaxEntry, sticky = "e") tkgrid(tklabel(top, text = "Columns"), clEntry, sticky = "e") tkgrid(tklabel(top, text = "Rows"), lnEntry, sticky = "e") tkgrid(tklabel(top, text="Best Competitor Species :", fg="blue"), sticky="w") tkgrid(tklabel(top, text="Initial occupancy "), fi1VarSlider, sticky="se") tkgrid(tklabel(top, text = "Colonization coefficient "), i1Entry, sticky = "e") tkgrid(tklabel(top, text="Inferior Competitor Species :", fg="blue"), sticky="w") tkgrid(tklabel(top, text="Initial occupancy "), fi2VarSlider, sticky="se") tkgrid(tklabel(top, text = "Colonization coefficient "), i2Entry, sticky = "e") tkgrid(tklabel(top, text="Both Species :", fg="blue"), sticky="w") tkgrid(tklabel(top, text = "Prob. Extinction "), peEntry, sticky = "se") tkgrid(tklabel(top, text = "Habitat Destruction "), distrEntry, sticky = "se") tkgrid(tklabel(top, text = "Show simulation frames"), animaBox, sticky = "e") tkgrid(buttonsFrame, sticky = "w", columnspan = 2) tkgrid.configure(entryDsname, sticky = "w") tkgrid.configure(tmaxEntry, sticky = "w") tkgrid.configure(clEntry, sticky = "w") tkgrid.configure(lnEntry, sticky = "w") tkgrid.configure(fi1VarSlider, sticky = "w") tkgrid.configure(i1Entry, sticky = "w") tkgrid.configure(fi2VarSlider, sticky = "w") tkgrid.configure(i2Entry, sticky = "w") tkgrid.configure(peEntry, sticky = "w") tkgrid.configure(distrEntry, sticky = "w") tkgrid.configure(animaBox, sticky = "w") dialogSuffix(rows = 12, columns = 2, focus = entryDsname) }
context("parse_time_formula testing") obj_Date <- make_dummy_dispatch_obj("Date") obj_POSIXct <- make_dummy_dispatch_obj("POSIXct") obj_yearmon <- make_dummy_dispatch_obj("yearmon") obj_yearqtr <- make_dummy_dispatch_obj("yearqtr") obj_hms <- make_dummy_dispatch_obj("hms") test_that("Basic parsing", { expect_equal(parse_time_formula(obj_Date, ~'2013'), list(list(y = 2013, m = 1, d = 1), list(y = 2013, m = 12, d = c(Dec = 31)))) expect_equal(parse_time_formula(obj_POSIXct, ~'2013'), list(list(y = 2013, m = 1, d = 1, h = 0, M = 0, s = 0), list(y = 2013, m = 12, d = c(Dec = 31), h = 23, M = 59, s = 59))) expect_equal(parse_time_formula(obj_yearmon, ~'2013'), list(list(y = 2013, m = 1), list(y = 2013, m = 12))) expect_equal(parse_time_formula(obj_yearqtr, ~'2013'), list(list(y = 2013, q = 1), list(y = 2013, q = 4))) expect_equal(parse_time_formula(obj_hms, ~'1'), list(list(h = 1, M = 0, s = 0), list(h = 1, M = 59, s = 59))) }) test_that("Errors are thrown with incorrect specification", { expect_error(parse_time_formula(obj_Date, ~'2013-01-01 - 1'), "For a Date index, time_formula can only include y, m, d specifications.") expect_error(parse_time_formula(obj_yearmon, ~'2013-01-01'), "For a yearmon index, time_formula can only include y, m specifications.") expect_error(parse_time_formula(obj_yearqtr, ~'2013-01-01'), "For a yearqtr index, time_formula can only include y, q specifications.") expect_error(parse_time_formula(obj_hms, ~'2013-01-01 / 1'), "For a hms index, time_formula can only include h, M, s specifications.") })