code
stringlengths 1
13.8M
|
---|
dCTS <- function(x, alpha, c=1, ell=1, mu=0){
if(c<= 0){
stop("c must be greater than 0")
}
if(ell<= 0){
stop("ell must be greater than 0")
}
if(alpha < 0 | alpha >= 2){
stop("alpha must be greater than or equal to 0 and less than or equal to 2")
}
if(alpha == 0){
result = .C(C_dCTS0, as.double(x), as.integer(length(x)), as.double(mu), as.double(alpha), as.double(c), as.double(ell), as.double(vector("double", length(x))))[[7]]
if(c <= 0.5){
result[abs(x-mu)<.00001] = Inf
}
}
else
.C(C_dCTS, as.double(x), as.integer(length(x)), as.double(mu), as.double(alpha), as.double(c), as.double(ell), as.double(vector("double", length(x))))[[7]]
}
pCTS <- function(x, alpha, c=1, ell=1, mu=0){
if(c<= 0){
stop("c must be greater than 0")
}
if(ell<= 0){
stop("ell must be greater than 0")
}
if(alpha < 0 | alpha >= 2){
stop("alpha must be greater than or equal to 0 and less than or equal to 2")
}
.C(C_pCTS, as.double(x), as.integer(length(x)), as.double(mu), as.double(alpha), as.double(c), as.double(ell), as.double(vector("double", length(x))))[[7]]
}
qCTS <- function(x, alpha, c=1, ell=1, mu=0){
if(sum(x<=0)>0 | sum(x>=1)>0){
stop("x must be between 0 and 1")
}
if(c<= 0){
stop("c must be greater than 0")
}
if(ell<= 0){
stop("ell must be greater than 0")
}
if(alpha < 0 | alpha >= 2){
stop("alpha must be greater than or equal to 0 and less than or equal to 2")
}
.C(C_qCTS, as.double(x), as.integer(length(x)), as.double(mu), as.double(alpha), as.double(c), as.double(ell), as.double(vector("double", length(x))))[[7]]
}
dPowTS <- function(x, alpha, c=1, ell=1, mu=0){
if(c<= 0){
stop("c must be greater than 0")
}
if(ell<= 0){
stop("ell must be greater than 0")
}
if(alpha < 0 | alpha >= 2){
stop("alpha must be greater than or equal to 0 and less than or equal to 2")
}
if(alpha <= .01 & c <= 0.5*(1+ell)){
stop("when alpha is close to 0, c/(1+ell) must be greater than 0.5")
}
.C(C_dPowTS, as.double(x), as.integer(length(x)), as.double(mu), as.double(alpha), as.double(c), as.double(ell), as.double(vector("double", length(x))))[[7]]
}
pPowTS <- function(x, alpha, c=1, ell=1, mu=0){
if(c<= 0){
stop("c must be greater than 0")
}
if(ell<= 0){
stop("ell must be greater than 0")
}
if(alpha < 0 | alpha >= 2){
stop("alpha must be greater than or equal to 0 and less than or equal to 2")
}
.C(C_pPowTS, as.double(x), as.integer(length(x)), as.double(mu), as.double(alpha), as.double(c), as.double(ell), as.double(vector("double", length(x))))[[7]]
}
qPowTS <- function(x, alpha, c=1, ell=1, mu=0){
if(sum(x<=0)>0 | sum(x>=1)>0){
stop("x must be between 0 and 1")
}
if(c<= 0){
stop("c must be greater than 0")
}
if(ell<= 0){
stop("ell must be greater than 0")
}
if(alpha < 0 | alpha >= 2){
stop("alpha must be greater than or equal to 0 and less than or equal to 2")
}
.C(C_qPowTS, as.double(x), as.integer(length(x)), as.double(mu), as.double(alpha), as.double(c), as.double(ell), as.double(vector("double", length(x))))[[7]]
}
dSaS <- function(x, alpha, c=1, mu=0){
if(c<= 0){
stop("c must be greater than 0")
}
if(alpha <= 0 | alpha >= 2){
stop("alpha must be greater than 0 and less than 2")
}
if(alpha == 1)
dcauchy(x, location = mu, scale = c)
else
.C(C_dSaS, as.double(x), as.integer(length(x)), as.double(mu), as.double(alpha), as.double(c), as.double(vector("double", length(x))))[[6]]
}
pSaS <- function(x, alpha, c=1, mu=0){
if(c<= 0){
stop("c must be greater than 0")
}
if(alpha <= 0 | alpha >= 2){
stop("alpha must be greater than 0 and less than 2")
}
if(alpha == 1)
pcauchy(x, location = mu, scale = c)
else
.C(C_pSaS, as.double(x), as.integer(length(x)), as.double(mu), as.double(alpha), as.double(c), as.double(vector("double", length(x))))[[6]]
}
qSaS <- function(x, alpha, c=1, mu=0){
if(sum(x<=0)>0 | sum(x>=1)>0){
stop("x must be between 0 and 1")
}
if(c<= 0){
stop("c must be greater than 0")
}
if(alpha <= 0 | alpha >= 2){
stop("alpha must be greater than 0 and less than 2")
}
if(alpha == 1)
qcauchy(x, location = mu, scale = c)
else
.C(C_qSaS, as.double(x), as.integer(length(x)), as.double(mu), as.double(alpha), as.double(c), as.double(vector("double", length(x))))[[6]]
}
rPowTS <- function(r, alpha, c=1, ell=1, mu=0){
qPowTS(runif(r), alpha, c, ell, mu)
}
rCTS <- function(r, alpha, c=1, ell=1, mu=0){
qCTS(runif(r), alpha, c, ell, mu)
}
rSaS <- function(r, alpha, c=1, mu=0){
g <- runif(r)*pi-pi/2
W <- rexp(r)
c^(1/alpha) * sin(alpha*g) * (cos(g))^(-1/alpha) *(cos((1-alpha)*g)/W)^(-1+1/alpha) + mu
} |
test_that("Generate Basic MSPE Plot", {
skip_on_cran()
suppressPackageStartupMessages(library(Synth))
data(synth.data)
set.seed(42)
dataprep.out<-
dataprep(
foo = synth.data,
predictors = c("X1", "X2", "X3"),
predictors.op = "mean",
dependent = "Y",
unit.variable = "unit.num",
time.variable = "year",
special.predictors = list(
list("Y", 1991, "mean"),
list("Y", 1985, "mean"),
list("Y", 1980, "mean")
),
treatment.identifier = 7,
controls.identifier = c(29, 2, 13, 17, 32, 38),
time.predictors.prior = c(1984:1989),
time.optimize.ssr = c(1984:1990),
unit.names.variable = "name",
time.plot = 1984:1996
)
synth.out <- synth(dataprep.out)
tdf<-generate.placebos(dataprep.out, synth.out, Sigf.ipop = 2)
output <- plot_placebos(tdf)
expect_true("ggplot" %in% class(output))
}) |
findwtdinteraction <- function(x, across, by=NULL, at=NULL, acrosslevs=NULL, bylevs=NULL,
atlevs=NULL, weight=NULL, dvname=NULL, acclevnames=NULL, bylevnames=NULL,
atlevnames=NULL, stdzacross=FALSE, stdzby=FALSE, stdzat=FALSE, limitlevs=20,
type="response", approach="prototypical", data=NULL, nsim=100){
UseMethod("findwtdinteraction")
} |
NULL
.onLoad <- function(libname, pkgname) {
}
.onAttach <- function(libname, pkgname) {
} |
`print.smacofSP` <-
function(x,...)
{
cat("\nCall: ")
print(x$call)
cat("\n")
cat("Model:",x$model,"\n")
cat("Number of objects:",x$nobj,"\n")
cat("\nStress-1 value:",round(x$stress,3),"\n")
cat("Number of iterations:",x$niter,"\n")
cat("\n")
} |
test_that("counts are as expected", {
fruit <- c("apple", "banana", "pear", "pineapple")
expect_equal(str_count(fruit, "a"), c(1, 3, 1, 1))
expect_equal(str_count(fruit, "p"), c(2, 0, 1, 3))
expect_equal(str_count(fruit, "e"), c(1, 0, 1, 2))
expect_equal(str_count(fruit, c("a", "b", "p", "n")), c(1, 1, 1, 1))
})
test_that("uses tidyverse recycling rules", {
expect_error(str_count(1:2, 1:3), class = "vctrs_error_incompatible_size")
}) |
summary.slca <- function( object, file=NULL, ... )
{
osink( file=file, suffix=paste0( "__SUMMARY.Rout") )
display <- cdm_summary_display()
cat(display)
cdm_print_summary_package(pack="CDM")
cat("\n")
cdm_print_summary_call(object=object)
cdm_print_summary_computation_time(object=object)
cat("Structured Latent Class Analysis - Function 'slca' \n")
modeltype <- object$irtmodel
cat( " ", object$N, "Cases, ", object$I, "Items, ", object$G, "Group(s)", ",",
object$TP, "Skill classes\n")
cat("\n **** Check carefully the number of parameters and identifiability
of the model. ***\n")
if (object$G > 1 ){
cat("\nGroup statistics\n")
print( object$group.stat )
}
cat(display)
cat( "Number of iterations=", object$iter, "\n" )
if ( ! object$converged ){ cat("Maximum number of iterations was reached.\n") }
cat( "Iteration with minimal deviance","=", object$iter.min, "\n" )
cat( "\nDeviance","=", round( object$deviance, 2 ), " | " )
cat( "Log Likelihood","=", round( -object$deviance/2, 2 ), "\n" )
cat( "Penalty","=", round( object$regular_penalty, 2 ), "\n" )
cat( "Number of persons","=", object$ic$n, "\n" )
cat( "Number of estimated parameters","=", object$ic$np, "\n" )
cat( " Number of estimated lambda parameters","=", object$ic$itempars, "\n" )
cat( " Number of non-active lambda parameters","=", object$ic$nonactive, "\n" )
cat( " Number of estimated distribution parameters","=", object$ic$traitpars, "\n\n" )
cat( "Regularization","=", object$regularization, "\n" )
cat( " Regularization method","=", object$regular_type, "\n" )
cat( " Regularization parameter lambda","=", object$regular_lam, "\n\n" )
cdm_print_summary_information_criteria(object=object)
cat(display)
cat("Xlambda Parameters \n")
obji <- object$Xlambda
cdm_print_summary_data_frame(obji, digits=3)
cat(display)
cat("Conditional Item Probabilities \n")
obji <- object$item
cdm_print_summary_data_frame(obji, from=3, digits=3)
cat(display)
cat("Skill Class Parameters \n")
obji <- object$delta
cdm_print_summary_data_frame(obji, digits=3)
cat(display)
cat("Skill Class Probabilities \n")
obji <- object$pi.k
cdm_print_summary_data_frame(obji, digits=4)
csink( file=file )
} |
nAuditAttr <- function(TolRate = 0.05, AccDev, CL, N = 5000){
if(N <= 0) stop("N must be positive.\n")
if(TolRate <= 0 | TolRate >= 1) stop("Tolerable rate of deviation must be between 0 and 1.\n")
if(AccDev < 0) stop("The acceptable number of deviations must be positive.\n")
if(CL <= 0 | CL >= 1) stop("Confidence level must be between 0 and 1.\n")
n.sam <- 1:N
K <- ceiling(N * TolRate)
cdf <- phyper(q=AccDev, m=K, n=N-K, k=n.sam)
if (any(cdf <= 1 - CL))
{min.nhyper <- min(n.sam[cdf <= 1 - CL])}
else {min.nhyper <- NA}
cdf <- pbinom(q=AccDev, size=n.sam, prob=TolRate)
if (any(cdf <= 1 - CL))
{min.nbinom <- min(n.sam[cdf <= 1 - CL])}
else {min.nbinom <- NA}
list("Pop.Size" = N,
"Tol.Dev.Rate" = TolRate,
"Acceptable.Errors" = AccDev,
"Sample.Size.Hypergeometric" = min.nhyper,
"Sample.Size.Binomial" = min.nbinom
)
} |
plot.elect <- function(x,which=NULL,kernel="gaussian",col="red",
lwd=2,cex.lab=1,...){
LEs <- x
is.wholenumber <- function(x, tol = .Machine$double.eps^0.5){
abs(x - round(x)) < tol
}
gdim <- function(A){
sqA <- sqrt(A)
fl.sqA <- floor(sqA)
if(is.wholenumber(sqA)){
dims <- c(sqA,sqA)
}else{
ind <- 1
dims <- c(fl.sqA, fl.sqA + ind)
while( (fl.sqA * (fl.sqA+ind)) < A){
ind <- ind + 1
dims <- c(fl.sqA, fl.sqA + ind)
}
}
return(dims)
}
if(LEs$S==0){
cat("\nNo simulated LEs so no plot. \n\n")
}
if(LEs$S > 0){
model <- LEs$model
nstates <- nrow(model$Qmatrices$baseline)
if(length(LEs$pnt)==((nstates-1)^2+nstates)){
if(is.null(which)){
if(nstates <= 4){
mfrow.dim <- c(nstates-1,nstates+1)
}else{
mfrow.dim <- c(nstates-2,nstates+2)
}
opar <- par(mfrow=mfrow.dim, mex=0.8,mar=c(5,5,2,1)+.1)
for(i in 1:((nstates-1)^2+nstates)){
plot(density(LEs$sim[,i],kernel=kernel),main=names(LEs$pnt[i]),
ylab="density",xlab="years",col=col,lwd=lwd)
}
opar <- par(mfrow=c(1,1), mex= 1, mar=c(5, 4, 4, 2) + 0.1)
}
if(!is.null(which)){
mfrow.dim <- gdim(length(which))
opar <- par(mfrow=mfrow.dim, mex=0.8,mar=c(5,5,2,1)+.1)
for(i in which){
plot(density(LEs$sim[,i],kernel=kernel),main=names(LEs$pnt[i]),
ylab="density",xlab="years",col=col,lwd=lwd)
}
opar <- par(mfrow=c(1,1), mex= 1, mar=c(5, 4, 4, 2) + 0.1)
}
}
}
invisible(x)
} |
tabPanel('Independent Sample t', value = 'tab_indttest',
fluidPage(
fluidRow(
column(6, align = 'left',
h4('Independent Sample t Test'),
p('Compare the means of two independent groups in order to determine
whether there is statistical evidence that the associated population
means are significantly different.')
),
column(6, align = 'right',
actionButton(inputId='indttest1', label="Help", icon = icon("question-circle"),
onclick ="window.open('https://inferr.rsquaredacademy.com/reference/infer_ts_ind_ttest.html', '_blank')"),
actionButton(inputId='indttest3', label="Demo", icon = icon("video-camera"),
onclick ="window.open('https://www.youtube.com/watch?v=iKFFzv9WiUo', '_blank')")
)
),
hr(),
fluidRow(
column(2, align = 'right', br(), h5('Variable 1:')),
column(4, align = 'left',
selectInput("var_itest1", label = '', width = '200px',
choices = "", selected = ""),
bsTooltip("var_itest1", "Select a variable.",
"left", options = list(container = "body"))),
column(2, align = 'right', br(), h5('Variable 2:')),
column(4, align = 'left',
selectInput("var_itest2", label = '', width = '200px',
choices = "", selected = ""),
bsTooltip("var_itest2", "Select a variable.",
"left", options = list(container = "body")))
),
fluidRow(
column(2, align = 'right', br(), h5('alpha:')),
column(4, align = 'left',
numericInput('itest_conf', label = '', width = '200px',
min = 0, value = 0.95, step = 0.01),
bsTooltip("itest_conf", "Confidence Level",
"bottom", options = list(container = "body"))),
column(2, align = 'right', br(), h5('Alternative:')),
column(4, align = 'left',
selectInput('itest_type', '', width = '200px',
choices = c("both", "less", "greater", "all"),
selected = "both"),
bsTooltip("itest_type", "Alternative hypothesis",
"bottom", options = list(container = "body"))
)
),
fluidRow(
column(12, align = 'center',
br(),
br(),
actionButton(inputId = 'submit_itest', label = 'Submit', width = '120px', icon = icon('check')),
bsTooltip("submitittest", "Click here to view t test result.",
"bottom", options = list(container = "body"))
)
),
fluidRow(
br(),
column(12, align = 'center',
verbatimTextOutput('itest_out')
)
)
)
) |
kpPlotNames <- function(karyoplot, data=NULL, chr=NULL, x0=NULL, x1=x0, y0=NULL, y1=NULL,
labels=NULL, position="left",
ymax=NULL, ymin=NULL, r0=NULL, r1=NULL,
data.panel=1, clipping=TRUE, ...) {
if(missing(karyoplot)) stop("The parameter 'karyoplot' is required")
if(!methods::is(karyoplot, "KaryoPlot")) stop("'karyoplot' must be a valid 'KaryoPlot' object")
position <- match.arg(position, c("left", "right", "top", "bottom", "center"))
if(length(data)==0 && length(chr)==0) return(invisible(karyoplot))
pp <- prepareParameters4("kpPlotNames", karyoplot=karyoplot, data=data, chr=chr, x0=x0, x1=x1,
y0=y0, y1=y1, ymin=0, ymax=1, r0=0, r1=1,
data.panel=data.panel, ...)
if(length(pp$chr)==0) {
invisible(karyoplot)
}
switch(position,
left=kpText(karyoplot, chr=pp$chr, x=pp$x0, y=pp$y0+(pp$y1-pp$y0)/2, labels=labels, pos=2, ymin=ymin, ymax=ymax, r0=r0, r1=r1, clipping=clipping, data.panel=data.panel, ...),
right=kpText(karyoplot, chr=pp$chr, x=pp$x1, y=pp$y0+(pp$y1-pp$y0)/2, labels=labels, pos=4, ymin=ymin, ymax=ymax, r0=r0, r1=r1, clipping=clipping, data.panel=data.panel, ...),
top=kpText(karyoplot, chr=pp$chr, x=pp$x0+(pp$x1-pp$x0)/2, y=pp$y1, labels=labels, pos=3, ymin=ymin, ymax=ymax, r0=r0, r1=r1, clipping=clipping, data.panel=data.panel, ...),
bottom=kpText(karyoplot, chr=pp$chr, x=pp$x0+(pp$x1-pp$x0)/2, y=pp$y0, labels=labels, pos=1, ymin=ymin, ymax=ymax, r0=r0, r1=r1, clipping=clipping, data.panel=data.panel, ...),
center=kpText(karyoplot, chr=pp$chr, x=pp$x0+(pp$x1-pp$x0)/2, y=pp$y0+(pp$y1-pp$y0)/2, labels=labels, ymin=ymin, ymax=ymax, r0=r0, r1=r1, clipping=clipping, data.panel=data.panel, ...)
)
invisible(karyoplot)
} |
library(logger)
library(testthat)
appender <- log_appender()
log_appender(appender_stdout)
context('helpers')
test_that('separator', {
original_layout <- log_layout()
log_layout(layout_blank)
expect_output(log_separator(), '={80,80}')
log_layout(original_layout)
expect_output(log_separator(separator = '-'), '---')
expect_output(log_separator(), 'INFO')
expect_output(log_separator(WARN), 'WARN')
})
test_that('tictoc', {
expect_output(log_tictoc(), 'timer')
})
test_that('log with separator', {
expect_output(log_with_separator(42), '===')
logger <- layout_glue_generator(format = '{node}/{pid}/{namespace}/{fn} {time} {level}: {msg}')
layout_original <- log_layout()
log_layout(logger)
expect_output(log_with_separator('Boo!', level = FATAL, width = 120), width = 120)
log_layout(layout_original)
})
test_that('log failure', {
expect_output(log_failure("foobar"), NA)
expect_output(try(log_failure(foobar), silent = TRUE), 'ERROR.*foobar')
expect_error(log_failure('foobar'), NA)
expect_match(capture.output(expect_error(log_failure(foobar))), 'not found')
})
log_appender(appender) |
fn_wr <- function(yor, dor, zor, ak) {
n <- length(yor)
o <- order(yor)
oy <- yor[o]
od <- dor[o]
oz <- zor[o]
zd1 <- which(oz == 0)
zd2 <- which(oz == 1)
n1 <- length(zd1)
n2 <- length(zd2)
z1 <- rep(1, n1)
z2 <- rep(0, n2)
y1 <- oy[zd1]
y2 <- oy[zd2]
d1 <- od[zd1]
d2 <- od[zd2]
yk1 <- n1:1
yk2 <- n2:1
ky <- n:1
x <- exp(-cumsum(od/ky))
xat1 <- x[zd1]
xat2 <- x[zd2]
yk2at1 <- rep(1, n1)
for (ik in 1:n1) {
yk2at1[ik] <- sum(y2 >= y1[ik])
}
yk1at2 <- rep(1, n2)
for (ik in 1:n2) {
yk1at2[ik] <- sum(y1 >= y2[ik])
}
f1 <- yk2at1/n
f2 <- yk1at2/n
los <- as.numeric(t(d2)%*%f2/n)
win <- as.numeric(t(d1)%*%f1/n)
wr <- los/win
ph11 <- n/(yk2at1 + yk1)
ph12 <- n/(yk2 + yk1at2)
ph21 <- xat1 * ph11
ph22 <- xat2 * ph12
losp1 <- as.numeric(t(d2) %*% (ph12 * f2)/n)
winp1 <- as.numeric(t(d1) %*% (ph11 * f1)/n)
wrp1 <- losp1/winp1
losp2 <- as.numeric(t(d2) %*% (ph22 * f2)/n)
winp2 <- as.numeric(t(d1) %*% (ph21 * f1)/n)
wrp2 <- losp2/winp2
wrall <- c(wr, wrp1, wrp2)
ff1 <- -wr * f1
ff2 <- f2
mhat <- fn_gmhat(d1, d2, zd1, zd2, ff1, ff2, yk1, yk2, n)
stnd <- sqrt(mean(mhat^2))/win/sqrt(n)
mhat0 <- mhat/win
zva <- (wr - 1)/stnd
qt <- (exp(wr)-1)/(exp(wr)+1)
qt0 <- (exp(1)-1)/(exp(1)+1)
tqt <- log(-log(qt))
tdif <- 2*exp(wr)/log(qt)/qt/(1+exp(wr))^2
zvat4 <- (tqt-log(-log(qt0)))/tdif/stnd
pvalt <- mean(abs(ak) > abs(zvat4))
zvapvalt <- c(zvat4, pvalt)
ff1 <- -wrp1 * f1 * ph11
ff2 <- f2 * ph12
mhat <- fn_gmhat(d1, d2, zd1, zd2, ff1, ff2, yk1, yk2, n)
stndp1 <- sqrt(mean(mhat^2))/winp1/sqrt(n)
mhatp10 <- mhat/winp1
zvap1 <- (wrp1-1)/stndp1
ff1 <- -wrp2 * f1 * ph21
ff2 <- f2* ph22
mhat <- fn_gmhat(d1, d2, zd1, zd2, ff1, ff2, yk1, yk2, n)
stndp2 <- sqrt(mean(mhat^2))/winp2/sqrt(n)
mhatp20 <- mhat/winp2
zvap2 <- (wrp2-1)/stndp2
stall <- c(stnd, stndp1, stndp2)
zvaall <- c(zva, zvap1, zvap2)
mhatph <- mhatp20 - mhatp10
stndph <- sqrt(mean(mhatph^2))/sqrt(n)
zvaph <- (wrp2-wrp1)/stndph
rk <- rep(0, n);
for (i in 1:n) {
rk[i] <- sum(yor[i] >= yor)
}
pval <- mean(abs(ak) > abs(zva))
pvalp1 <- mean(abs(ak) > abs(zvap1))
pvalp2 <- mean(abs(ak) > abs(zvap2))
pvalph <- mean(abs(ak) > abs(zvaph))
pvall <- c(pval, pvalp1, pvalp2)
res <- list()
res$wrall <- wrall
res$zvaall <- zvaall
res$stall <- stall
res$zvaph <- zvaph
res$zvat4 <- zvat4
res$stnd <- stnd
res$tqt <- tqt
res$tdif <- tdif
res$mhat0 <- mhat0[rk]
res$mhatp10 <- mhatp10[rk]
res$mhatp20 <- mhatp20[rk]
res$mhatph <- mhatph[rk]
res$pval <- pval
res$pvalp1 <- pvalp1
res$pvalp2 <- pvalp2
res$pvalph <- pvalph
res$pvall <- pvall
res
} |
subplot_K <- function(subnic, main=NULL, xlab=NULL, ylab=NULL, col.axis="azure3", lty.axis=2, lwd.axis=2,
border.E="black",
col.E="
lty.E=1,
lwd.E=1,
border.K ="black",
col.K ="
lty.K=1,
lwd.K=1,
col.Gk.pos= "red",
col.Gk.pt= "black",
cex.Gk.pos=1,
pch.Gk.pos=21,
col.Gk.lab="black",
cex.Gk.lab= 0.8,
fac.Gk.lab=1.5,
col.su="
pt.su="black",
cex.su=0.7,
pch.su=1,
leg=T,
posi.leg="topleft",
bty.leg="n", ...){
fac <- subnic$factor
lev <- levels(fac)
eig <- round(subnic$eig/sum(subnic$eig)*100,2)[1:2]
if(is.null(xlab)){
xlab=paste(paste("OMI1",eig[1], sep=" "),"%",sep="")}
if(is.null(ylab)){
ylab=paste(paste("OMI2",eig[2], sep=" "),"%",sep="")}
N <- length(lev)
plot(subnic$ls, main=main, xlab=xlab, ylab=ylab, type="n",...)
E <- convexhull(subnic$ls[,1], subnic$ls[,2])
polygon(E$xcoords,E$ycoords, border=border.E, col=col.E, lty=lty.E, lwd=lwd.E)
for (i in 1:N){
subnici <- subnic$ls[which(fac==lev[i]),]
G_k <- subnic$G_k[grep(lev[i],rownames(subnic$G_k)),]
K <- convexhull(subnici[,1], subnici[,2])
polygon(K$xcoords,K$ycoords, border=border.K, col=col.K, lty=lty.K, lwd=lwd.K)
points(subnici,cex=cex.su, col=pt.su, bg=col.su, pch=pch.su)
points(G_k[,1], G_k[,2], col=col.Gk.pt, bg=col.Gk.pos, pch=pch.Gk.pos, cex= cex.Gk.pos)
if(!is.na(cex.Gk.lab)){
text(G_k[,1]*fac.Gk.lab, G_k[,2]*fac.Gk.lab, lev[i], col=col.Gk.lab, cex=cex.Gk.lab)
}
}
M <- nrow(subnic$c1)
abline(h=0, lty=lty.axis, lwd=lwd.axis, col=col.axis)
abline(v=0, lty=lty.axis, lwd=lwd.axis, col=col.axis)
if(isTRUE(leg)){
filli <- c(col.E, col.K, NA, NA)
borderi <- c(border.E, border.K, NA, NA)
col.leg <- c(NA,NA, col.Gk.pt, pt.su)
col.bg <- c(NA,NA, col.Gk.pos,col.su)
pch.leg <- c(NA,NA,pch.Gk.pos,pch.su)
tex.leg <- c("E","K","GK","SU")
lty.leg <- c(0,0,0,0)
lwd.leg <- c(0,0,0,0)
posi.cex <-c(NA,NA,1,1)
if(is.na(col.E)){
filli[1] <- NA
borderi[1] <- NA
tex.leg[1] <- NA
}
if(is.na(col.K)){
filli[2] <- NA
borderi[2] <- NA
tex.leg[2] <- NA
}
if(anyNA(cex.Gk.pos)){
posi.cex[3] <- NA
tex.leg[3] <- NA
}
if(anyNA(cex.su)){
posi.cex[3] <- NA
tex.leg[3] <- NA
}
if(lty.E>1){
pch.leg[1] <- NA
lty.leg[1] <- lty.E
lwd.leg[1] <- lwd.E
}
if(lty.K>1){
pch.leg[2] <- NA
lty.leg[2] <- lty.E
lwd.leg[2] <- lwd.E
}
legend(posi.leg, legend=tex.leg,fill =filli, border=borderi, pch=pch.leg, col=col.leg, pt.cex = posi.cex,
pt.bg=col.bg,lty=lty.leg,pt.lwd=c(NA,NA,1,1), lwd=lwd.leg, bty=bty.leg,...)
}
} |
MLE.Frank.Pareto = function(t.event,event1,event2,Theta,Alpha1.0 = 1,Alpha2.0 = 1,
Gamma1.0 = 1,Gamma2.0 = 1,epsilon = 1e-5,d = exp(10),
r.1 = 6,r.2 = 6,r.3 = 6,r.4 = 6) {
n = length(t.event)
if (length(t.event[t.event < 0]) != 0) {stop("t.event must be non-negative")}
if (length(event1) != n) {stop("the length of event1 is different from t.event")}
if (length(event2) != n) {stop("the length of event2 is different from t.event")}
if (length(event1[event1 == 0 | event1 == 1]) != n) {stop("elements in event1 must be either 0 or 1")}
if (length(event2[event2 == 0 | event2 == 1]) != n) {stop("elements in event2 must be either 0 or 1")}
temp.event = event1+event2
if (length(temp.event[temp.event == 2]) != 0) {stop("event1 and event2 cannot be 1 simultaneously")}
if (Theta == 0) {stop("Theta cannot be zero")}
if (Alpha1.0 <= 0) {stop("Alpha1.0 must be positive")}
if (Alpha2.0 <= 0) {stop("Alpha2.0 must be positive")}
if (Gamma1.0 <= 0) {stop("Alpha1.0 must be positive")}
if (Gamma2.0 <= 0) {stop("Alpha2.0 must be positive")}
if (epsilon <= 0) {stop("epsilon must be positive")}
if (d <= 0) {stop("d must be positive")}
if (r.1 <= 0) {stop("r.1 must be positive")}
if (r.2 <= 0) {stop("r.2 must be positive")}
if (r.3 <= 0) {stop("r.3 must be positive")}
if (r.4 <= 0) {stop("r.3 must be positive")}
log_L = function(par){
Alpha1 = exp(par[1])
Alpha2 = exp(par[2])
Gamma1 = exp(par[3])
Gamma2 = exp(par[4])
h1 = Alpha1*Gamma1/(1+Alpha1*t.event)
h2 = Alpha2*Gamma2/(1+Alpha2*t.event)
S1 = (1+Alpha1*t.event)^(-Gamma1)
S2 = (1+Alpha2*t.event)^(-Gamma2)
ST = -(1/Theta)*log(1+(exp(-Theta*S1)-1)*(exp(-Theta*S2)-1)/(exp(-Theta)-1))
f1 = h1*S1*exp(-Theta*S1)*(exp(-Theta*S2)-1)/((exp(-Theta)-1)*exp(-Theta*ST))
f2 = h2*S2*exp(-Theta*S2)*(exp(-Theta*S1)-1)/((exp(-Theta)-1)*exp(-Theta*ST))
sum((1-event1-event2)*log(ST))+sum(event1*log(f1))+sum(event2*log(f2))
}
SL_function = function(par){
Alpha1 = exp(par[1])
Alpha2 = exp(par[2])
Gamma1 = exp(par[3])
Gamma2 = exp(par[4])
h1 = Alpha1*Gamma1/(1+Alpha1*t.event)
h2 = Alpha2*Gamma2/(1+Alpha2*t.event)
S1 = (1+Alpha1*t.event)^(-Gamma1)
S2 = (1+Alpha2*t.event)^(-Gamma2)
p0 = exp(-Theta)
p1 = exp(-Theta*S1)
p2 = exp(-Theta*S2)
ST = -(1/Theta)*log(1+(exp(-Theta*S1)-1)*(exp(-Theta*S2)-1)/(exp(-Theta)-1))
der_h1_Alpha1 = Gamma1/(1+Alpha1*t.event)^2
der_h2_Alpha2 = Gamma2/(1+Alpha2*t.event)^2
der_S1_Alpha1 = -Gamma1*t.event*(1+Alpha1*t.event)^(-Gamma1-1)
der_S2_Alpha2 = -Gamma2*t.event*(1+Alpha2*t.event)^(-Gamma2-1)
der_h1_Gamma1 = Alpha1/(1+Alpha1*t.event)
der_h2_Gamma2 = Alpha2/(1+Alpha2*t.event)
der_S1_Gamma1 = -(1+Alpha1*t.event)^(-Gamma1)*log(1+Alpha1*t.event)
der_S2_Gamma2 = -(1+Alpha2*t.event)^(-Gamma2)*log(1+Alpha2*t.event)
der_ST_Alpha1 = der_S1_Alpha1*p1*(p2-1)/(p0-1+(p1-1)*(p2-1))
der_ST_Alpha2 = der_S2_Alpha2*p2*(p1-1)/(p0-1+(p1-1)*(p2-1))
der_ST_Gamma1 = der_S1_Gamma1*p1*(p2-1)/(p0-1+(p1-1)*(p2-1))
der_ST_Gamma2 = der_S2_Gamma2*p2*(p1-1)/(p0-1+(p1-1)*(p2-1))
d11 = sum(event1*(der_h1_Alpha1/h1+der_S1_Alpha1/S1-Theta*der_S1_Alpha1+Theta*der_ST_Alpha1))
d12 = sum(event2*(-Theta*der_S1_Alpha1*p1/(p1-1)+Theta*der_ST_Alpha1))
d13 = sum((1-event1-event2)*(der_ST_Alpha1/ST))
d1 = d11+d12+d13
d21 = sum(event1*(-Theta*der_S2_Alpha2*p2/(p2-1)+Theta*der_ST_Alpha2))
d22 = sum(event2*(der_h2_Alpha2/h2+der_S2_Alpha2/S2-Theta*der_S2_Alpha2+Theta*der_ST_Alpha2))
d23 = sum((1-event1-event2)*(der_ST_Alpha2/ST))
d2 = d21+d22+d23
d31 = sum(event1*(der_h1_Gamma1/h1+der_S1_Gamma1/S1-Theta*der_S1_Gamma1+Theta*der_ST_Gamma1))
d32 = sum(event2*(-Theta*der_S1_Gamma1*p1/(p1-1)+Theta*der_ST_Gamma1))
d33 = sum((1-event1-event2)*(der_ST_Gamma1/ST))
d3 = d31+d32+d33
d41 = sum(event1*(-Theta*der_S2_Gamma2*p2/(p2-1)+Theta*der_ST_Gamma2))
d42 = sum(event2*(der_h2_Gamma2/h2+der_S2_Gamma2/S2-Theta*der_S2_Gamma2+Theta*der_ST_Gamma2))
d43 = sum((1-event1-event2)*(der_ST_Gamma2/ST))
d4 = d41+d42+d43
c(exp(par[1])*d1,exp(par[2])*d2,exp(par[3])*d3,exp(par[4])*d4)
}
HL_function = function(par){
Alpha1 = exp(par[1])
Alpha2 = exp(par[2])
Gamma1 = exp(par[3])
Gamma2 = exp(par[4])
h1 = Alpha1*Gamma1/(1+Alpha1*t.event)
h2 = Alpha2*Gamma2/(1+Alpha2*t.event)
S1 = (1+Alpha1*t.event)^(-Gamma1)
S2 = (1+Alpha2*t.event)^(-Gamma2)
p0 = exp(-Theta)
p1 = exp(-Theta*S1)
p2 = exp(-Theta*S2)
ST = -(1/Theta)*log(1+(exp(-Theta*S1)-1)*(exp(-Theta*S2)-1)/(exp(-Theta)-1))
der_h1_Alpha1 = Gamma1/(1+Alpha1*t.event)^2
der_h2_Alpha2 = Gamma2/(1+Alpha2*t.event)^2
der_S1_Alpha1 = -Gamma1*t.event*(1+Alpha1*t.event)^(-Gamma1-1)
der_S2_Alpha2 = -Gamma2*t.event*(1+Alpha2*t.event)^(-Gamma2-1)
der_h1_Gamma1 = Alpha1/(1+Alpha1*t.event)
der_h2_Gamma2 = Alpha2/(1+Alpha2*t.event)
der_S1_Gamma1 = -(1+Alpha1*t.event)^(-Gamma1)*log(1+Alpha1*t.event)
der_S2_Gamma2 = -(1+Alpha2*t.event)^(-Gamma2)*log(1+Alpha2*t.event)
der_ST_Alpha1 = der_S1_Alpha1*p1*(p2-1)/(p0-1+(p1-1)*(p2-1))
der_ST_Alpha2 = der_S2_Alpha2*p2*(p1-1)/(p0-1+(p1-1)*(p2-1))
der_ST_Gamma1 = der_S1_Gamma1*p1*(p2-1)/(p0-1+(p1-1)*(p2-1))
der_ST_Gamma2 = der_S2_Gamma2*p2*(p1-1)/(p0-1+(p1-1)*(p2-1))
der_h1_Alpha1_Alpha1 = -2*Gamma1*t.event/(1+Alpha1*t.event)^3
der_h2_Alpha2_Alpha2 = -2*Gamma2*t.event/(1+Alpha2*t.event)^3
der_S1_Alpha1_Alpha1 = Gamma1*(Gamma1+1)*t.event^2*(1+Alpha1*t.event)^(-Gamma1-2)
der_S2_Alpha2_Alpha2 = Gamma2*(Gamma2+1)*t.event^2*(1+Alpha2*t.event)^(-Gamma2-2)
der_h1_Gamma1_Gamma1 = 0
der_h2_Gamma2_Gamma2 = 0
der_S1_Gamma1_Gamma1 = (1+Alpha1*t.event)^(-Gamma1)*(log(1+Alpha1*t.event))^2
der_S2_Gamma2_Gamma2 = (1+Alpha2*t.event)^(-Gamma2)*(log(1+Alpha2*t.event))^2
der_h1_Alpha1_Gamma1 = (1+Alpha1*t.event)^(-2)
der_h2_Alpha2_Gamma2 = (1+Alpha2*t.event)^(-2)
der_S1_Alpha1_Gamma1 = t.event*(Gamma1*log(1+Alpha1*t.event)-1)/(1+Alpha1*t.event)^(Gamma1+1)
der_S2_Alpha2_Gamma2 = t.event*(Gamma2*log(1+Alpha2*t.event)-1)/(1+Alpha2*t.event)^(Gamma2+1)
der_ST_Alpha1_Alpha1 = ((p0-1+(p1-1)*(p2-1))*(p2-1)*(der_S1_Alpha1_Alpha1*p1-Theta*der_S1_Alpha1^2*p1)-der_S1_Alpha1*p1*(p2-1)*(-Theta*der_S1_Alpha1*p1*(p2-1)))/(p0-1+(p1-1)*(p2-1))^2
der_ST_Alpha2_Alpha2 = ((p0-1+(p1-1)*(p2-1))*(p1-1)*(der_S2_Alpha2_Alpha2*p2-Theta*der_S2_Alpha2^2*p2)-der_S2_Alpha2*p2*(p1-1)*(-Theta*der_S2_Alpha2*p2*(p1-1)))/(p0-1+(p1-1)*(p2-1))^2
der_ST_Alpha1_Alpha2 = ((p0-1+(p1-1)*(p2-1))*p1*p2*-Theta*der_S1_Alpha1*der_S2_Alpha2+Theta*p1*p2*(p1-1)*(p2-1)*der_S1_Alpha1*der_S2_Alpha2)/(p0-1+(p1-1)*(p2-1))^2
der_ST_Gamma1_Gamma1 = ((p0-1+(p1-1)*(p2-1))*(p2-1)*(der_S1_Gamma1_Gamma1*p1-Theta*der_S1_Gamma1^2*p1)-der_S1_Gamma1*p1*(p2-1)*(-Theta*der_S1_Gamma1*p1*(p2-1)))/(p0-1+(p1-1)*(p2-1))^2
der_ST_Gamma2_Gamma2 = ((p0-1+(p1-1)*(p2-1))*(p1-1)*(der_S2_Gamma2_Gamma2*p2-Theta*der_S2_Gamma2^2*p2)-der_S2_Gamma2*p2*(p1-1)*(-Theta*der_S2_Gamma2*p2*(p1-1)))/(p0-1+(p1-1)*(p2-1))^2
der_ST_Gamma1_Gamma2 = ((p0-1+(p1-1)*(p2-1))*p1*p2*-Theta*der_S1_Gamma1*der_S2_Gamma2+Theta*p1*p2*(p1-1)*(p2-1)*der_S1_Gamma1*der_S2_Gamma2)/(p0-1+(p1-1)*(p2-1))^2
der_ST_Alpha1_Gamma1 = ((p0-1+(p1-1)*(p2-1))*(p2-1)*(der_S1_Alpha1_Gamma1*p1-Theta*der_S1_Alpha1*der_S1_Gamma1*p1)+Theta*der_S1_Alpha1*der_S1_Gamma1*p1^2*(p2-1)^2)/(p0-1+(p1-1)*(p2-1))^2
der_ST_Alpha1_Gamma2 = ((p0-1+(p1-1)*(p2-1))*p1*der_S1_Alpha1*-Theta*der_S2_Gamma2*p2+Theta*der_S1_Alpha1*der_S2_Gamma2*p1*p2*(p1-1)*(p2-1))/(p0-1+(p1-1)*(p2-1))^2
der_ST_Alpha2_Gamma1 = ((p0-1+(p1-1)*(p2-1))*p1*p2*-Theta*der_S1_Gamma1*der_S2_Alpha2+Theta*p1*p2*(p1-1)*(p2-1)*der_S1_Gamma1*der_S2_Alpha2)/(p0-1+(p1-1)*(p2-1))^2
der_ST_Alpha2_Gamma2 = ((p0-1+(p1-1)*(p2-1))*(p1-1)*(der_S2_Alpha2_Gamma2*p2-Theta*der_S2_Alpha2*der_S2_Gamma2*p2)+Theta*der_S2_Alpha2*der_S2_Gamma2*p2^2*(p1-1)^2)/(p0-1+(p1-1)*(p2-1))^2
d11 = sum(event1*(der_h1_Alpha1/h1+der_S1_Alpha1/S1-Theta*der_S1_Alpha1+Theta*der_ST_Alpha1))
d12 = sum(event2*(-Theta*der_S1_Alpha1*p1/(p1-1)+Theta*der_ST_Alpha1))
d13 = sum((1-event1-event2)*(der_ST_Alpha1/ST))
d1 = d11+d12+d13
d21 = sum(event1*(-Theta*der_S2_Alpha2*p2/(p2-1)+Theta*der_ST_Alpha2))
d22 = sum(event2*(der_h2_Alpha2/h2+der_S2_Alpha2/S2-Theta*der_S2_Alpha2+Theta*der_ST_Alpha2))
d23 = sum((1-event1-event2)*(der_ST_Alpha2/ST))
d2 = d21+d22+d23
d31 = sum(event1*(der_h1_Gamma1/h1+der_S1_Gamma1/S1-Theta*der_S1_Gamma1+Theta*der_ST_Gamma1))
d32 = sum(event2*(-Theta*der_S1_Gamma1*p1/(p1-1)+Theta*der_ST_Gamma1))
d33 = sum((1-event1-event2)*(der_ST_Gamma1/ST))
d3 = d31+d32+d33
d41 = sum(event1*(-Theta*der_S2_Gamma2*p2/(p2-1)+Theta*der_ST_Gamma2))
d42 = sum(event2*(der_h2_Gamma2/h2+der_S2_Gamma2/S2-Theta*der_S2_Gamma2+Theta*der_ST_Gamma2))
d43 = sum((1-event1-event2)*(der_ST_Gamma2/ST))
d4 = d41+d42+d43
D111 = sum(event1*((der_h1_Alpha1_Alpha1*h1-der_h1_Alpha1^2)/h1^2+(der_S1_Alpha1_Alpha1*S1-der_S1_Alpha1^2)/S1^2-Theta*der_S1_Alpha1_Alpha1+Theta*der_ST_Alpha1_Alpha1))
D112 = sum(event2*(((p1-1)*(-Theta*der_S1_Alpha1_Alpha1*p1+Theta^2*der_S1_Alpha1^2*p1)-Theta^2*der_S1_Alpha1^2*p1^2)/(p1-1)^2+Theta*der_ST_Alpha1_Alpha1))
D113 = sum((1-event1-event2)*((ST*der_ST_Alpha1_Alpha1-der_ST_Alpha1^2)/ST^2))
D11 = D111+D112+D113
D221 = sum(event1*(((p2-1)*(-Theta*der_S2_Alpha2_Alpha2*p2+Theta^2*der_S2_Alpha2^2*p2)-Theta^2*der_S2_Alpha2^2*p2^2)/(p2-1)^2+Theta*der_ST_Alpha2_Alpha2))
D222 = sum(event2*((der_h2_Alpha2_Alpha2*h2-der_h2_Alpha2^2)/h2^2+(der_S2_Alpha2_Alpha2*S2-der_S2_Alpha2^2)/S2^2-Theta*der_S2_Alpha2_Alpha2+Theta*der_ST_Alpha2_Alpha2))
D223 = sum((1-event1-event2)*((ST*der_ST_Alpha2_Alpha2-der_ST_Alpha2^2)/ST^2))
D22 = D221+D222+D223
D121 = sum(event1*(Theta*der_ST_Alpha1_Alpha2))
D122 = sum(event2*(Theta*der_ST_Alpha1_Alpha2))
D123 = sum((1-event1-event2)*((ST*der_ST_Alpha1_Alpha2-der_ST_Alpha1*der_ST_Alpha2)/ST^2))
D12 = D121+D122+D123
D331 = sum(event1*((der_h1_Gamma1_Gamma1*h1-der_h1_Gamma1^2)/h1^2+(der_S1_Gamma1_Gamma1*S1-der_S1_Gamma1^2)/S1^2-Theta*der_S1_Gamma1_Gamma1+Theta*der_ST_Gamma1_Gamma1))
D332 = sum(event2*(((p1-1)*(-Theta*der_S1_Gamma1_Gamma1*p1+Theta^2*der_S1_Gamma1^2*p1)-Theta^2*der_S1_Gamma1^2*p1^2)/(p1-1)^2+Theta*der_ST_Gamma1_Gamma1))
D333 = sum((1-event1-event2)*((ST*der_ST_Gamma1_Gamma1-der_ST_Gamma1^2)/ST^2))
D33 = D331+D332+D333
D441 = sum(event1*(((p2-1)*(-Theta*der_S2_Gamma2_Gamma2*p2+Theta^2*der_S2_Gamma2^2*p2)-Theta^2*der_S2_Gamma2^2*p2^2)/(p2-1)^2+Theta*der_ST_Gamma2_Gamma2))
D442 = sum(event2*((der_h2_Gamma2_Gamma2*h2-der_h2_Gamma2^2)/h2^2+(der_S2_Gamma2_Gamma2*S2-der_S2_Gamma2^2)/S2^2-Theta*der_S2_Gamma2_Gamma2+Theta*der_ST_Gamma2_Gamma2))
D443 = sum((1-event1-event2)*((ST*der_ST_Gamma2_Gamma2-der_ST_Gamma2^2)/ST^2))
D44 = D441+D442+D443
D341 = sum(event1*(Theta*der_ST_Gamma1_Gamma2))
D342 = sum(event2*(Theta*der_ST_Gamma1_Gamma2))
D343 = sum((1-event1-event2)*((ST*der_ST_Gamma1_Gamma2-der_ST_Gamma1*der_ST_Gamma2)/ST^2))
D34 = D341+D342+D343
D131 = sum(event1*((der_h1_Alpha1_Gamma1*h1-der_h1_Alpha1*der_h1_Gamma1)/h1^2 +(der_S1_Alpha1_Gamma1*S1-der_S1_Alpha1*der_S1_Gamma1)/S1^2-Theta*der_S1_Alpha1_Gamma1+Theta*der_ST_Alpha1_Gamma1))
D132 = sum(event2*(((p1-1)*(-Theta*der_S1_Alpha1_Gamma1*p1)-Theta^2*der_S1_Alpha1*der_S1_Gamma1*p1)/(p1-1)^2+Theta*der_ST_Alpha1_Gamma1))
D133 = sum((1-event1-event2)*((ST*der_ST_Alpha1_Gamma1-der_ST_Alpha1*der_ST_Gamma1)/ST^2))
D13 = D131+D132+D133
D141 = sum(event1*(Theta*der_ST_Alpha1_Gamma2))
D142 = sum(event2*(Theta*der_ST_Alpha1_Gamma2))
D143 = sum((1-event1-event2)*((ST*der_ST_Alpha1_Gamma2-der_ST_Alpha1*der_ST_Gamma2)/ST^2))
D14 = D141+D142+D143
D231 = sum(event1*(Theta*der_ST_Alpha2_Gamma1))
D232 = sum(event2*(Theta*der_ST_Alpha2_Gamma1))
D233 = sum((1-event1-event2)*((ST*der_ST_Alpha2_Gamma1-der_ST_Alpha2*der_ST_Gamma1)/ST^2))
D23 = D231+D232+D233
D241 = sum(event1*(((p2-1)*(-Theta*der_S2_Alpha2_Gamma2*p2+Theta^2*der_S2_Alpha2*der_S2_Gamma2*p2)-Theta^2*der_S2_Alpha2*der_S2_Gamma2*p2^2)/(p2-1)^2+Theta*der_ST_Alpha2_Gamma2))
D242 = sum(event2*((der_h2_Alpha2_Gamma2*h2-der_h2_Alpha2*der_h2_Gamma2)/h2^2+(der_S2_Alpha2_Gamma2*S2-der_S2_Alpha2*der_S2_Gamma2)/S2^2-Theta*der_S2_Alpha2_Gamma2+Theta*der_ST_Alpha2_Gamma2))
D243 = sum((1-event1-event2)*((ST*der_ST_Alpha2_Gamma2-der_ST_Alpha2*der_ST_Gamma2)/ST^2))
D24 = D241+D242+D243
DD11 = exp(2*par[1])*D11+exp(par[1])*d1
DD12 = exp(par[1])*exp(par[2])*D12
DD13 = exp(par[1])*exp(par[3])*D13
DD14 = exp(par[1])*exp(par[4])*D14
DD22 = exp(2*par[2])*D22+exp(par[2])*d2
DD23 = exp(par[2])*exp(par[3])*D23
DD24 = exp(par[2])*exp(par[4])*D24
DD33 = exp(2*par[3])*D33+exp(par[3])*d3
DD34 = exp(par[3])*exp(par[4])*D34
DD44 = exp(2*par[4])*D44+exp(par[4])*d4
matrix(c(DD11,DD12,DD13,DD14,DD12,DD22,DD23,DD24,DD13,DD23,DD33,DD34,DD14,DD24,DD34,DD44),4,4)
}
H_function = function(par){
Alpha1 = par[1]
Alpha2 = par[2]
Gamma1 = par[3]
Gamma2 = par[4]
h1 = Alpha1*Gamma1/(1+Alpha1*t.event)
h2 = Alpha2*Gamma2/(1+Alpha2*t.event)
S1 = (1+Alpha1*t.event)^(-Gamma1)
S2 = (1+Alpha2*t.event)^(-Gamma2)
p0 = exp(-Theta)
p1 = exp(-Theta*S1)
p2 = exp(-Theta*S2)
ST = -(1/Theta)*log(1+(exp(-Theta*S1)-1)*(exp(-Theta*S2)-1)/(exp(-Theta)-1))
der_h1_Alpha1 = Gamma1/(1+Alpha1*t.event)^2
der_h2_Alpha2 = Gamma2/(1+Alpha2*t.event)^2
der_S1_Alpha1 = -Gamma1*t.event*(1+Alpha1*t.event)^(-Gamma1-1)
der_S2_Alpha2 = -Gamma2*t.event*(1+Alpha2*t.event)^(-Gamma2-1)
der_h1_Gamma1 = Alpha1/(1+Alpha1*t.event)
der_h2_Gamma2 = Alpha2/(1+Alpha2*t.event)
der_S1_Gamma1 = -(1+Alpha1*t.event)^(-Gamma1)*log(1+Alpha1*t.event)
der_S2_Gamma2 = -(1+Alpha2*t.event)^(-Gamma2)*log(1+Alpha2*t.event)
der_ST_Alpha1 = der_S1_Alpha1*p1*(p2-1)/(p0-1+(p1-1)*(p2-1))
der_ST_Alpha2 = der_S2_Alpha2*p2*(p1-1)/(p0-1+(p1-1)*(p2-1))
der_ST_Gamma1 = der_S1_Gamma1*p1*(p2-1)/(p0-1+(p1-1)*(p2-1))
der_ST_Gamma2 = der_S2_Gamma2*p2*(p1-1)/(p0-1+(p1-1)*(p2-1))
der_h1_Alpha1_Alpha1 = -2*Gamma1*t.event/(1+Alpha1*t.event)^3
der_h2_Alpha2_Alpha2 = -2*Gamma2*t.event/(1+Alpha2*t.event)^3
der_S1_Alpha1_Alpha1 = Gamma1*(Gamma1+1)*t.event^2*(1+Alpha1*t.event)^(-Gamma1-2)
der_S2_Alpha2_Alpha2 = Gamma2*(Gamma2+1)*t.event^2*(1+Alpha2*t.event)^(-Gamma2-2)
der_h1_Gamma1_Gamma1 = 0
der_h2_Gamma2_Gamma2 = 0
der_S1_Gamma1_Gamma1 = (1+Alpha1*t.event)^(-Gamma1)*(log(1+Alpha1*t.event))^2
der_S2_Gamma2_Gamma2 = (1+Alpha2*t.event)^(-Gamma2)*(log(1+Alpha2*t.event))^2
der_h1_Alpha1_Gamma1 = (1+Alpha1*t.event)^(-2)
der_h2_Alpha2_Gamma2 = (1+Alpha2*t.event)^(-2)
der_S1_Alpha1_Gamma1 = t.event*(Gamma1*log(1+Alpha1*t.event)-1)/(1+Alpha1*t.event)^(Gamma1+1)
der_S2_Alpha2_Gamma2 = t.event*(Gamma2*log(1+Alpha2*t.event)-1)/(1+Alpha2*t.event)^(Gamma2+1)
der_ST_Alpha1_Alpha1 = ((p0-1+(p1-1)*(p2-1))*(p2-1)*(der_S1_Alpha1_Alpha1*p1-Theta*der_S1_Alpha1^2*p1)-der_S1_Alpha1*p1*(p2-1)*(-Theta*der_S1_Alpha1*p1*(p2-1)))/(p0-1+(p1-1)*(p2-1))^2
der_ST_Alpha2_Alpha2 = ((p0-1+(p1-1)*(p2-1))*(p1-1)*(der_S2_Alpha2_Alpha2*p2-Theta*der_S2_Alpha2^2*p2)-der_S2_Alpha2*p2*(p1-1)*(-Theta*der_S2_Alpha2*p2*(p1-1)))/(p0-1+(p1-1)*(p2-1))^2
der_ST_Alpha1_Alpha2 = ((p0-1+(p1-1)*(p2-1))*p1*p2*-Theta*der_S1_Alpha1*der_S2_Alpha2+Theta*p1*p2*(p1-1)*(p2-1)*der_S1_Alpha1*der_S2_Alpha2)/(p0-1+(p1-1)*(p2-1))^2
der_ST_Gamma1_Gamma1 = ((p0-1+(p1-1)*(p2-1))*(p2-1)*(der_S1_Gamma1_Gamma1*p1-Theta*der_S1_Gamma1^2*p1)-der_S1_Gamma1*p1*(p2-1)*(-Theta*der_S1_Gamma1*p1*(p2-1)))/(p0-1+(p1-1)*(p2-1))^2
der_ST_Gamma2_Gamma2 = ((p0-1+(p1-1)*(p2-1))*(p1-1)*(der_S2_Gamma2_Gamma2*p2-Theta*der_S2_Gamma2^2*p2)-der_S2_Gamma2*p2*(p1-1)*(-Theta*der_S2_Gamma2*p2*(p1-1)))/(p0-1+(p1-1)*(p2-1))^2
der_ST_Gamma1_Gamma2 = ((p0-1+(p1-1)*(p2-1))*p1*p2*-Theta*der_S1_Gamma1*der_S2_Gamma2+Theta*p1*p2*(p1-1)*(p2-1)*der_S1_Gamma1*der_S2_Gamma2)/(p0-1+(p1-1)*(p2-1))^2
der_ST_Alpha1_Gamma1 = ((p0-1+(p1-1)*(p2-1))*(p2-1)*(der_S1_Alpha1_Gamma1*p1-Theta*der_S1_Alpha1*der_S1_Gamma1*p1)+Theta*der_S1_Alpha1*der_S1_Gamma1*p1^2*(p2-1)^2)/(p0-1+(p1-1)*(p2-1))^2
der_ST_Alpha1_Gamma2 = ((p0-1+(p1-1)*(p2-1))*p1*der_S1_Alpha1*-Theta*der_S2_Gamma2*p2+Theta*der_S1_Alpha1*der_S2_Gamma2*p1*p2*(p1-1)*(p2-1))/(p0-1+(p1-1)*(p2-1))^2
der_ST_Alpha2_Gamma1 = ((p0-1+(p1-1)*(p2-1))*p1*p2*-Theta*der_S1_Gamma1*der_S2_Alpha2+Theta*p1*p2*(p1-1)*(p2-1)*der_S1_Gamma1*der_S2_Alpha2)/(p0-1+(p1-1)*(p2-1))^2
der_ST_Alpha2_Gamma2 = ((p0-1+(p1-1)*(p2-1))*(p1-1)*(der_S2_Alpha2_Gamma2*p2-Theta*der_S2_Alpha2*der_S2_Gamma2*p2)+Theta*der_S2_Alpha2*der_S2_Gamma2*p2^2*(p1-1)^2)/(p0-1+(p1-1)*(p2-1))^2
d11 = sum(event1*(der_h1_Alpha1/h1+der_S1_Alpha1/S1-Theta*der_S1_Alpha1+Theta*der_ST_Alpha1))
d12 = sum(event2*(-Theta*der_S1_Alpha1*p1/(p1-1)+Theta*der_ST_Alpha1))
d13 = sum((1-event1-event2)*(der_ST_Alpha1/ST))
d1 = d11+d12+d13
d21 = sum(event1*(-Theta*der_S2_Alpha2*p2/(p2-1)+Theta*der_ST_Alpha2))
d22 = sum(event2*(der_h2_Alpha2/h2+der_S2_Alpha2/S2-Theta*der_S2_Alpha2+Theta*der_ST_Alpha2))
d23 = sum((1-event1-event2)*(der_ST_Alpha2/ST))
d2 = d21+d22+d23
d31 = sum(event1*(der_h1_Gamma1/h1+der_S1_Gamma1/S1-Theta*der_S1_Gamma1+Theta*der_ST_Gamma1))
d32 = sum(event2*(-Theta*der_S1_Gamma1*p1/(p1-1)+Theta*der_ST_Gamma1))
d33 = sum((1-event1-event2)*(der_ST_Gamma1/ST))
d3 = d31+d32+d33
d41 = sum(event1*(-Theta*der_S2_Gamma2*p2/(p2-1)+Theta*der_ST_Gamma2))
d42 = sum(event2*(der_h2_Gamma2/h2+der_S2_Gamma2/S2-Theta*der_S2_Gamma2+Theta*der_ST_Gamma2))
d43 = sum((1-event1-event2)*(der_ST_Gamma2/ST))
d4 = d41+d42+d43
D111 = sum(event1*((der_h1_Alpha1_Alpha1*h1-der_h1_Alpha1^2)/h1^2+(der_S1_Alpha1_Alpha1*S1-der_S1_Alpha1^2)/S1^2-Theta*der_S1_Alpha1_Alpha1+Theta*der_ST_Alpha1_Alpha1))
D112 = sum(event2*(((p1-1)*(-Theta*der_S1_Alpha1_Alpha1*p1+Theta^2*der_S1_Alpha1^2*p1)-Theta^2*der_S1_Alpha1^2*p1^2)/(p1-1)^2+Theta*der_ST_Alpha1_Alpha1))
D113 = sum((1-event1-event2)*((ST*der_ST_Alpha1_Alpha1-der_ST_Alpha1^2)/ST^2))
D11 = D111+D112+D113
D221 = sum(event1*(((p2-1)*(-Theta*der_S2_Alpha2_Alpha2*p2+Theta^2*der_S2_Alpha2^2*p2)-Theta^2*der_S2_Alpha2^2*p2^2)/(p2-1)^2+Theta*der_ST_Alpha2_Alpha2))
D222 = sum(event2*((der_h2_Alpha2_Alpha2*h2-der_h2_Alpha2^2)/h2^2+(der_S2_Alpha2_Alpha2*S2-der_S2_Alpha2^2)/S2^2-Theta*der_S2_Alpha2_Alpha2+Theta*der_ST_Alpha2_Alpha2))
D223 = sum((1-event1-event2)*((ST*der_ST_Alpha2_Alpha2-der_ST_Alpha2^2)/ST^2))
D22 = D221+D222+D223
D121 = sum(event1*(Theta*der_ST_Alpha1_Alpha2))
D122 = sum(event2*(Theta*der_ST_Alpha1_Alpha2))
D123 = sum((1-event1-event2)*((ST*der_ST_Alpha1_Alpha2-der_ST_Alpha1*der_ST_Alpha2)/ST^2))
D12 = D121+D122+D123
D331 = sum(event1*((der_h1_Gamma1_Gamma1*h1-der_h1_Gamma1^2)/h1^2+(der_S1_Gamma1_Gamma1*S1-der_S1_Gamma1^2)/S1^2-Theta*der_S1_Gamma1_Gamma1+Theta*der_ST_Gamma1_Gamma1))
D332 = sum(event2*(((p1-1)*(-Theta*der_S1_Gamma1_Gamma1*p1+Theta^2*der_S1_Gamma1^2*p1)-Theta^2*der_S1_Gamma1^2*p1^2)/(p1-1)^2+Theta*der_ST_Gamma1_Gamma1))
D333 = sum((1-event1-event2)*((ST*der_ST_Gamma1_Gamma1-der_ST_Gamma1^2)/ST^2))
D33 = D331+D332+D333
D441 = sum(event1*(((p2-1)*(-Theta*der_S2_Gamma2_Gamma2*p2+Theta^2*der_S2_Gamma2^2*p2)-Theta^2*der_S2_Gamma2^2*p2^2)/(p2-1)^2+Theta*der_ST_Gamma2_Gamma2))
D442 = sum(event2*((der_h2_Gamma2_Gamma2*h2-der_h2_Gamma2^2)/h2^2+(der_S2_Gamma2_Gamma2*S2-der_S2_Gamma2^2)/S2^2-Theta*der_S2_Gamma2_Gamma2+Theta*der_ST_Gamma2_Gamma2))
D443 = sum((1-event1-event2)*((ST*der_ST_Gamma2_Gamma2-der_ST_Gamma2^2)/ST^2))
D44 = D441+D442+D443
D341 = sum(event1*(Theta*der_ST_Gamma1_Gamma2))
D342 = sum(event2*(Theta*der_ST_Gamma1_Gamma2))
D343 = sum((1-event1-event2)*((ST*der_ST_Gamma1_Gamma2-der_ST_Gamma1*der_ST_Gamma2)/ST^2))
D34 = D341+D342+D343
D131 = sum(event1*((der_h1_Alpha1_Gamma1*h1-der_h1_Alpha1*der_h1_Gamma1)/h1^2 +(der_S1_Alpha1_Gamma1*S1-der_S1_Alpha1*der_S1_Gamma1)/S1^2-Theta*der_S1_Alpha1_Gamma1+Theta*der_ST_Alpha1_Gamma1))
D132 = sum(event2*(((p1-1)*(-Theta*der_S1_Alpha1_Gamma1*p1)-Theta^2*der_S1_Alpha1*der_S1_Gamma1*p1)/(p1-1)^2+Theta*der_ST_Alpha1_Gamma1))
D133 = sum((1-event1-event2)*((ST*der_ST_Alpha1_Gamma1-der_ST_Alpha1*der_ST_Gamma1)/ST^2))
D13 = D131+D132+D133
D141 = sum(event1*(Theta*der_ST_Alpha1_Gamma2))
D142 = sum(event2*(Theta*der_ST_Alpha1_Gamma2))
D143 = sum((1-event1-event2)*((ST*der_ST_Alpha1_Gamma2-der_ST_Alpha1*der_ST_Gamma2)/ST^2))
D14 = D141+D142+D143
D231 = sum(event1*(Theta*der_ST_Alpha2_Gamma1))
D232 = sum(event2*(Theta*der_ST_Alpha2_Gamma1))
D233 = sum((1-event1-event2)*((ST*der_ST_Alpha2_Gamma1-der_ST_Alpha2*der_ST_Gamma1)/ST^2))
D23 = D231+D232+D233
D241 = sum(event1*(((p2-1)*(-Theta*der_S2_Alpha2_Gamma2*p2+Theta^2*der_S2_Alpha2*der_S2_Gamma2*p2)-Theta^2*der_S2_Alpha2*der_S2_Gamma2*p2^2)/(p2-1)^2+Theta*der_ST_Alpha2_Gamma2))
D242 = sum(event2*((der_h2_Alpha2_Gamma2*h2-der_h2_Alpha2*der_h2_Gamma2)/h2^2+(der_S2_Alpha2_Gamma2*S2-der_S2_Alpha2*der_S2_Gamma2)/S2^2-Theta*der_S2_Alpha2_Gamma2+Theta*der_ST_Alpha2_Gamma2))
D243 = sum((1-event1-event2)*((ST*der_ST_Alpha2_Gamma2-der_ST_Alpha2*der_ST_Gamma2)/ST^2))
D24 = D241+D242+D243
matrix(c(D11,D12,D13,D14,D12,D22,D23,D24,D13,D23,D33,D34,D14,D24,D34,D44),4,4)
}
par_old = c(log(Alpha1.0),log(Alpha2.0),log(Gamma1.0),log(Gamma2.0))
count = 0
random = 0
repeat{
temp = try(solve(HL_function(par_old),silent = TRUE))
if (is(temp,"try-error")){
random = random+1
count = 0
par_old = c(log(Alpha1.0*exp(runif(1,-r.1,r.1))),
log(Alpha2.0*exp(runif(1,-r.2,r.2))),
log(Gamma1.0*exp(runif(1,-r.3,r.3))),
log(Gamma2.0*exp(runif(1,-r.4,r.4))))
next
}
par_new = par_old-solve(HL_function(par_old))%*%SL_function(par_old)
count = count+1
if (is.na(sum(par_new)) |
max(abs(par_new)) > log(d)) {
random = random+1
count = 0
par_old = c(log(Alpha1.0*exp(runif(1,-r.1,r.1))),
log(Alpha2.0*exp(runif(1,-r.2,r.2))),
log(Gamma1.0*exp(runif(1,-r.3,r.3))),
log(Gamma2.0*exp(runif(1,-r.4,r.4))))
next
}
if (max(abs(exp(par_old)-exp(par_new))) < epsilon) {break}
par_old = par_new
}
Alpha1_hat = exp(par_new[1])
Alpha2_hat = exp(par_new[2])
Gamma1_hat = exp(par_new[3])
Gamma2_hat = exp(par_new[4])
Info = solve(-H_function(exp(par_new)))
Alpha1_se = sqrt(Info[1,1])
Alpha2_se = sqrt(Info[2,2])
Gamma1_se = sqrt(Info[3,3])
Gamma2_se = sqrt(Info[4,4])
InfoL = solve(-HL_function(par_new))
CI_Alpha1 = c(Alpha1_hat*exp(-qnorm(0.975)*sqrt(InfoL[1,1])),
Alpha1_hat*exp(+qnorm(0.975)*sqrt(InfoL[1,1])))
CI_Alpha2 = c(Alpha2_hat*exp(-qnorm(0.975)*sqrt(InfoL[2,2])),
Alpha2_hat*exp(+qnorm(0.975)*sqrt(InfoL[2,2])))
CI_Gamma1 = c(Gamma1_hat*exp(-qnorm(0.975)*sqrt(InfoL[3,3])),
Gamma1_hat*exp(+qnorm(0.975)*sqrt(InfoL[3,3])))
CI_Gamma2 = c(Gamma2_hat*exp(-qnorm(0.975)*sqrt(InfoL[4,4])),
Gamma2_hat*exp(+qnorm(0.975)*sqrt(InfoL[4,4])))
MedX_hat = (2^(1/Gamma1_hat)-1)/Alpha1_hat
MedY_hat = (2^(1/Gamma2_hat)-1)/Alpha2_hat
transX = c((1-2^(1/Gamma1_hat))/Alpha1_hat^2,0,-2^(1/Gamma1_hat)*log(2)/(Alpha1_hat*Gamma1_hat^2),0)
transY = c(0,(1-2^(1/Gamma2_hat))/Alpha2_hat^2,0,-2^(1/Gamma2_hat)*log(2)/(Alpha2_hat*Gamma2_hat^2))
MedX_se = sqrt(t(transX)%*%Info%*%transX)
MedY_se = sqrt(t(transY)%*%Info%*%transY)
temp_transX = c(-1,0,-2^(1/Gamma1_hat)*log(2)/((2^(1/Gamma1_hat)-1)*Gamma1_hat),0)
temp_transY = c(0,-1,0,-2^(1/Gamma2_hat)*log(2)/((2^(1/Gamma2_hat)-1)*Gamma2_hat))
temp_MedX_se = sqrt(t(temp_transX)%*%InfoL%*%temp_transX)
temp_MedY_se = sqrt(t(temp_transY)%*%InfoL%*%temp_transY)
CI_MedX = c(MedX_hat*exp(-qnorm(0.975)*temp_MedX_se),
MedX_hat*exp(+qnorm(0.975)*temp_MedX_se))
CI_MedY = c(MedY_hat*exp(-qnorm(0.975)*temp_MedY_se),
MedY_hat*exp(+qnorm(0.975)*temp_MedY_se))
Alpha1.res = c(Estimate = Alpha1_hat,SE = Alpha1_se,CI.lower = CI_Alpha1[1],CI.upper = CI_Alpha1[2])
Alpha2.res = c(Estimate = Alpha2_hat,SE = Alpha2_se,CI.lower = CI_Alpha2[1],CI.upper = CI_Alpha2[2])
Gamma1.res = c(Estimate = Gamma1_hat,SE = Gamma1_se,CI.lower = CI_Gamma1[1],CI.upper = CI_Gamma1[2])
Gamma2.res = c(Estimate = Gamma2_hat,SE = Gamma2_se,CI.lower = CI_Gamma2[1],CI.upper = CI_Gamma2[2])
MedX.res = c(Estimate = MedX_hat,SE = MedX_se,CI.lower = CI_MedX[1],CI.upper = CI_MedX[2])
MedY.res = c(Estimate = MedY_hat,SE = MedY_se,CI.lower = CI_MedY[1],CI.upper = CI_MedY[2])
if (Gamma1_hat < 1 & Gamma2_hat < 1) {
return(list(n = n,Iteration = count,Randomization = random,
Alpha1 = Alpha1.res,Alpha2 = Alpha2.res,Gamma1 = Gamma1.res,Gamma2 = Gamma2.res,
MedX = MedX.res,MedY = MedY.res,MeanX = "Unavaliable",MeanY = "Unavaliable",
logL = log_L(par_new),AIC = 2*length(par_new)-2*log_L(par_new),
BIC = length(par_new)*log(length(t.event))-2*log_L(par_new)))
} else if (Gamma1_hat >= 1 & Gamma2_hat >= 1) {
MeanX_hat = 1/(Alpha1_hat*(Gamma1_hat-1))
MeanY_hat = 1/(Alpha2_hat*(Gamma2_hat-1))
trans2X = c(-1/(Alpha1_hat^2*(Gamma1_hat-1)),0,-1/(Alpha1_hat*(Gamma1_hat-1)^2),0)
trans2Y = c(0,-1/(Alpha2_hat^2*(Gamma2_hat-1)),0,-1/(Alpha2_hat*(Gamma2_hat-1)^2))
MeanX_se = sqrt(t(trans2X)%*%Info%*%trans2X)
MeanY_se = sqrt(t(trans2Y)%*%Info%*%trans2Y)
temp_trans2X = c(-1,0,-Gamma1_hat/(Gamma1_hat-1),0)
temp_trans2Y = c(0,-1,0,-Gamma2_hat/(Gamma2_hat-1))
temp_MeanX_se = sqrt(t(temp_trans2X)%*%InfoL%*%temp_trans2X)
temp_MeanY_se = sqrt(t(temp_trans2Y)%*%InfoL%*%temp_trans2Y)
CI_MeanX = c(MeanX_hat*exp(-qnorm(0.975)*temp_MeanX_se),
MeanX_hat*exp(+qnorm(0.975)*temp_MeanX_se))
CI_MeanY = c(MeanY_hat*exp(-qnorm(0.975)*temp_MeanY_se),
MeanY_hat*exp(+qnorm(0.975)*temp_MeanY_se))
MeanX.res = c(Estimate = MeanX_hat,SE = MeanX_se,CI.lower = CI_MeanX[1],CI.upper = CI_MeanX[2])
MeanY.res = c(Estimate = MeanY_hat,SE = MeanY_se,CI.lower = CI_MeanY[1],CI.upper = CI_MeanY[2])
return(list(n = n,Iteration = count,Randomization = random,
Alpha1 = Alpha1.res,Alpha2 = Alpha2.res,Gamma1 = Gamma1.res,Gamma2 = Gamma2.res,
MedX = MedX.res,MedY = MedY.res,MeanX = MeanX.res,MeanY = MeanY.res,
logL = log_L(par_new),AIC = 2*length(par_new)-2*log_L(par_new),
BIC = length(par_new)*log(length(t.event))-2*log_L(par_new)))
} else if (Gamma1_hat >= 1 & Gamma2_hat < 1) {
MeanX_hat = 1/(Alpha1_hat*(Gamma1_hat-1))
trans2X = c(-1/(Alpha1_hat^2*(Gamma1_hat-1)),0,-1/(Alpha1_hat*(Gamma1_hat-1)^2),0)
MeanX_se = sqrt(t(trans2X)%*%Info%*%trans2X)
temp_trans2X = c(-1,0,-Gamma1_hat/(Gamma1_hat-1),0)
temp_MeanX_se = sqrt(t(temp_trans2X)%*%InfoL%*%temp_trans2X)
CI_MeanX = c(MeanX_hat*exp(-qnorm(0.975)*temp_MeanX_se),
MeanX_hat*exp(+qnorm(0.975)*temp_MeanX_se))
MeanX.res = c(Estimate = MeanX_hat,SE = MeanX_se,CI.lower = CI_MeanX[1],CI.upper = CI_MeanX[2])
return(list(n = n,Iteration = count,Randomization = random,
Alpha1 = Alpha1.res,Alpha2 = Alpha2.res,Gamma1 = Gamma1.res,Gamma2 = Gamma2.res,
MedX = MedX.res,MedY = MedY.res,MeanX = MeanX.res,MeanY = "Unavaliable",
logL = log_L(par_new),AIC = 2*length(par_new)-2*log_L(par_new),
BIC = length(par_new)*log(length(t.event))-2*log_L(par_new)))
} else {
MeanY_hat = 1/(Alpha2_hat*(Gamma2_hat-1))
trans2Y = c(0,-1/(Alpha2_hat^2*(Gamma2_hat-1)),0,-1/(Alpha2_hat*(Gamma2_hat-1)^2))
MeanY_se = sqrt(t(trans2Y)%*%Info%*%trans2Y)
temp_trans2Y = c(0,-1,0,-Gamma2_hat/(Gamma2_hat-1))
temp_MeanY_se = sqrt(t(temp_trans2Y)%*%InfoL%*%temp_trans2Y)
CI_MeanY = c(MeanY_hat*exp(-qnorm(0.975)*temp_MeanY_se),
MeanY_hat*exp(+qnorm(0.975)*temp_MeanY_se))
MeanY.res = c(Estimate = MeanY_hat,SE = MeanY_se,CI.lower = CI_MeanY[1],CI.upper = CI_MeanY[2])
return(list(n = n,Iteration = count,Randomization = random,
Alpha1 = Alpha1.res,Alpha2 = Alpha2.res,Gamma1 = Gamma1.res,Gamma2 = Gamma2.res,
MedX = MedX.res,MedY = MedY.res,MeanX = "Unavaliable",MeanY = MeanY.res,
logL = log_L(par_new),AIC = 2*length(par_new)-2*log_L(par_new),
BIC = length(par_new)*log(length(t.event))-2*log_L(par_new)))
}
} |
set_new_model("linear_reg")
set_model_mode("linear_reg", "regression")
set_model_engine("linear_reg", "regression", "lm")
set_dependency("linear_reg", "lm", "stats")
set_fit(
model = "linear_reg",
eng = "lm",
mode = "regression",
value = list(
interface = "formula",
protect = c("formula", "data", "weights"),
func = c(pkg = "stats", fun = "lm"),
defaults = list()
)
)
set_encoding(
model = "linear_reg",
eng = "lm",
mode = "regression",
options = list(
predictor_indicators = "traditional",
compute_intercept = TRUE,
remove_intercept = TRUE,
allow_sparse_x = FALSE
)
)
set_pred(
model = "linear_reg",
eng = "lm",
mode = "regression",
type = "numeric",
value = list(
pre = NULL,
post = NULL,
func = c(fun = "predict"),
args =
list(
object = expr(object$fit),
newdata = expr(new_data),
type = "response"
)
)
)
set_pred(
model = "linear_reg",
eng = "lm",
mode = "regression",
type = "conf_int",
value = list(
pre = NULL,
post = function(results, object) {
tibble::as_tibble(results) %>%
dplyr::select(-fit) %>%
setNames(c(".pred_lower", ".pred_upper"))
},
func = c(fun = "predict"),
args =
list(
object = expr(object$fit),
newdata = expr(new_data),
interval = "confidence",
level = expr(level),
type = "response"
)
)
)
set_pred(
model = "linear_reg",
eng = "lm",
mode = "regression",
type = "pred_int",
value = list(
pre = NULL,
post = function(results, object) {
tibble::as_tibble(results) %>%
dplyr::select(-fit) %>%
setNames(c(".pred_lower", ".pred_upper"))
},
func = c(fun = "predict"),
args =
list(
object = expr(object$fit),
newdata = expr(new_data),
interval = "prediction",
level = expr(level),
type = "response"
)
)
)
set_pred(
model = "linear_reg",
eng = "lm",
mode = "regression",
type = "raw",
value = list(
pre = NULL,
post = NULL,
func = c(fun = "predict"),
args = list(object = expr(object$fit), newdata = expr(new_data))
)
)
set_model_engine("linear_reg", "regression", "glm")
set_dependency("linear_reg", "glm", "stats")
set_fit(
model = "linear_reg",
eng = "glm",
mode = "regression",
value = list(
interface = "formula",
protect = c("formula", "data", "weights"),
func = c(pkg = "stats", fun = "glm"),
defaults = list(family = expr(stats::gaussian))
)
)
set_encoding(
model = "linear_reg",
eng = "glm",
mode = "regression",
options = list(
predictor_indicators = "traditional",
compute_intercept = TRUE,
remove_intercept = TRUE,
allow_sparse_x = FALSE
)
)
set_pred(
model = "linear_reg",
eng = "glm",
mode = "regression",
type = "numeric",
value = list(
pre = NULL,
post = NULL,
func = c(fun = "predict"),
args =
list(
object = expr(object$fit),
newdata = expr(new_data),
type = "response"
)
)
)
set_pred(
model = "linear_reg",
eng = "glm",
mode = "regression",
type = "conf_int",
value = list(
pre = NULL,
post = linear_lp_to_conf_int,
func = c(fun = "predict"),
args =
list(
object = quote(object$fit),
newdata = quote(new_data),
se.fit = TRUE,
type = "link"
)
)
)
set_pred(
model = "linear_reg",
eng = "glm",
mode = "regression",
type = "raw",
value = list(
pre = NULL,
post = NULL,
func = c(fun = "predict"),
args = list(object = expr(object$fit), newdata = expr(new_data))
)
)
set_model_engine("linear_reg", "regression", "glmnet")
set_dependency("linear_reg", "glmnet", "glmnet")
set_fit(
model = "linear_reg",
eng = "glmnet",
mode = "regression",
value = list(
interface = "matrix",
protect = c("x", "y", "weights"),
func = c(pkg = "glmnet", fun = "glmnet"),
defaults = list(family = "gaussian")
)
)
set_encoding(
model = "linear_reg",
eng = "glmnet",
mode = "regression",
options = list(
predictor_indicators = "traditional",
compute_intercept = TRUE,
remove_intercept = TRUE,
allow_sparse_x = TRUE
)
)
set_model_arg(
model = "linear_reg",
eng = "glmnet",
parsnip = "penalty",
original = "lambda",
func = list(pkg = "dials", fun = "penalty"),
has_submodel = TRUE
)
set_model_arg(
model = "linear_reg",
eng = "glmnet",
parsnip = "mixture",
original = "alpha",
func = list(pkg = "dials", fun = "mixture"),
has_submodel = FALSE
)
set_pred(
model = "linear_reg",
eng = "glmnet",
mode = "regression",
type = "numeric",
value = list(
pre = NULL,
post = .organize_glmnet_pred,
func = c(fun = "predict"),
args =
list(
object = expr(object$fit),
newx = expr(as.matrix(new_data[, rownames(object$fit$beta), drop = FALSE])),
type = "response",
s = expr(object$spec$args$penalty)
)
)
)
set_pred(
model = "linear_reg",
eng = "glmnet",
mode = "regression",
type = "raw",
value = list(
pre = NULL,
post = NULL,
func = c(fun = "predict"),
args =
list(object = expr(object$fit),
newx = expr(as.matrix(new_data)))
)
)
set_model_engine("linear_reg", "regression", "stan")
set_dependency("linear_reg", "stan", "rstanarm")
set_fit(
model = "linear_reg",
eng = "stan",
mode = "regression",
value = list(
interface = "formula",
protect = c("formula", "data", "weights"),
func = c(pkg = "rstanarm", fun = "stan_glm"),
defaults = list(family = expr(stats::gaussian), refresh = 0)
)
)
set_encoding(
model = "linear_reg",
eng = "stan",
mode = "regression",
options = list(
predictor_indicators = "traditional",
compute_intercept = TRUE,
remove_intercept = TRUE,
allow_sparse_x = FALSE
)
)
set_pred(
model = "linear_reg",
eng = "stan",
mode = "regression",
type = "numeric",
value = list(
pre = NULL,
post = NULL,
func = c(fun = "predict"),
args = list(object = expr(object$fit), newdata = expr(new_data))
)
)
set_pred(
model = "linear_reg",
eng = "stan",
mode = "regression",
type = "conf_int",
value = list(
pre = NULL,
post = function(results, object) {
res <-
tibble(
.pred_lower =
convert_stan_interval(
results,
level = object$spec$method$pred$conf_int$extras$level
),
.pred_upper =
convert_stan_interval(
results,
level = object$spec$method$pred$conf_int$extras$level,
lower = FALSE
),
)
if (object$spec$method$pred$conf_int$extras$std_error)
res$.std_error <- apply(results, 2, sd, na.rm = TRUE)
res
},
func = c(pkg = "parsnip", fun = "stan_conf_int"),
args =
list(
object = expr(object$fit),
newdata = expr(new_data)
)
)
)
set_pred(
model = "linear_reg",
eng = "stan",
mode = "regression",
type = "pred_int",
value = list(
pre = NULL,
post = function(results, object) {
res <-
tibble(
.pred_lower =
convert_stan_interval(
results,
level = object$spec$method$pred$pred_int$extras$level
),
.pred_upper =
convert_stan_interval(
results,
level = object$spec$method$pred$pred_int$extras$level,
lower = FALSE
),
)
if (object$spec$method$pred$pred_int$extras$std_error)
res$.std_error <- apply(results, 2, sd, na.rm = TRUE)
res
},
func = c(pkg = "rstanarm", fun = "posterior_predict"),
args =
list(
object = expr(object$fit),
newdata = expr(new_data),
seed = expr(sample.int(10^5, 1))
)
)
)
set_pred(
model = "linear_reg",
eng = "stan",
mode = "regression",
type = "raw",
value = list(
pre = NULL,
post = NULL,
func = c(fun = "predict"),
args = list(object = expr(object$fit), newdata = expr(new_data))
)
)
set_model_engine("linear_reg", "regression", "spark")
set_dependency("linear_reg", "spark", "sparklyr")
set_fit(
model = "linear_reg",
eng = "spark",
mode = "regression",
value = list(
interface = "formula",
data = c(formula = "formula", data = "x"),
protect = c("x", "formula", "weight_col"),
func = c(pkg = "sparklyr", fun = "ml_linear_regression"),
defaults = list()
)
)
set_encoding(
model = "linear_reg",
eng = "spark",
mode = "regression",
options = list(
predictor_indicators = "traditional",
compute_intercept = TRUE,
remove_intercept = TRUE,
allow_sparse_x = FALSE
)
)
set_model_arg(
model = "linear_reg",
eng = "spark",
parsnip = "penalty",
original = "reg_param",
func = list(pkg = "dials", fun = "penalty"),
has_submodel = FALSE
)
set_model_arg(
model = "linear_reg",
eng = "spark",
parsnip = "mixture",
original = "elastic_net_param",
func = list(pkg = "dials", fun = "mixture"),
has_submodel = FALSE
)
set_pred(
model = "linear_reg",
eng = "spark",
mode = "regression",
type = "numeric",
value = list(
pre = NULL,
post = function(results, object) {
results <- dplyr::rename(results, pred = prediction)
results <- dplyr::select(results, pred)
results
},
func = c(pkg = "sparklyr", fun = "ml_predict"),
args = list(x = expr(object$fit), dataset = expr(new_data))
)
)
set_model_engine("linear_reg", "regression", "keras")
set_dependency("linear_reg", "keras", "keras")
set_dependency("linear_reg", "keras", "magrittr")
set_fit(
model = "linear_reg",
eng = "keras",
mode = "regression",
value = list(
interface = "matrix",
protect = c("x", "y"),
func = c(pkg = "parsnip", fun = "keras_mlp"),
defaults = list(hidden_units = 1, act = "linear")
)
)
set_encoding(
model = "linear_reg",
eng = "keras",
mode = "regression",
options = list(
predictor_indicators = "traditional",
compute_intercept = TRUE,
remove_intercept = TRUE,
allow_sparse_x = FALSE
)
)
set_model_arg(
model = "linear_reg",
eng = "keras",
parsnip = "penalty",
original = "penalty",
func = list(pkg = "dials", fun = "penalty"),
has_submodel = FALSE
)
set_pred(
model = "linear_reg",
eng = "keras",
mode = "regression",
type = "numeric",
value = list(
pre = NULL,
post = maybe_multivariate,
func = c(fun = "predict"),
args = list(object = quote(object$fit), x = quote(as.matrix(new_data)))
)
)
set_model_engine("linear_reg", "regression", "brulee")
set_dependency("linear_reg", "brulee", "brulee")
set_model_arg(
model = "linear_reg",
eng = "brulee",
parsnip = "penalty",
original = "penalty",
func = list(pkg = "dials", fun = "penalty"),
has_submodel = FALSE
)
set_model_arg(
model = "linear_reg",
eng = "brulee",
parsnip = "mixture",
original = "mixture",
func = list(pkg = "dials", fun = "mixture"),
has_submodel = FALSE
)
set_model_arg(
model = "linear_reg",
eng = "brulee",
parsnip = "epochs",
original = "epochs",
func = list(pkg = "dials", fun = "epochs"),
has_submodel = FALSE
)
set_model_arg(
model = "linear_reg",
eng = "brulee",
parsnip = "learn_rate",
original = "learn_rate",
func = list(pkg = "dials", fun = "learn_rate"),
has_submodel = FALSE
)
set_model_arg(
model = "linear_reg",
eng = "brulee",
parsnip = "momentum",
original = "momentum",
func = list(pkg = "dials", fun = "momentum"),
has_submodel = FALSE
)
set_model_arg(
model = "linear_reg",
eng = "brulee",
parsnip = "stop_iter",
original = "stop_iter",
func = list(pkg = "dials", fun = "stop_iter"),
has_submodel = FALSE
)
set_fit(
model = "linear_reg",
eng = "brulee",
mode = "regression",
value = list(
interface = "data.frame",
protect = c("x", "y"),
func = c(pkg = "brulee", fun = "brulee_linear_reg"),
defaults = list()
)
)
set_encoding(
model = "linear_reg",
eng = "brulee",
mode = "regression",
options = list(
predictor_indicators = "none",
compute_intercept = FALSE,
remove_intercept = FALSE,
allow_sparse_x = FALSE
)
)
set_pred(
model = "linear_reg",
eng = "brulee",
mode = "regression",
type = "numeric",
value = list(
pre = NULL,
post = NULL,
func = c(fun = "predict"),
args =
list(
object = quote(object$fit),
new_data = quote(new_data),
type = "numeric"
)
)
) |
vetiver_pr_predict <- function(pr,
vetiver_model,
path = "/predict",
debug = is_interactive(),
...) {
rlang::list2(...)
pr <- vetiver_pr_post(
pr = pr,
vetiver_model = vetiver_model,
path = path,
debug = debug,
...
)
pr <- vetiver_pr_docs(pr = pr, vetiver_model = vetiver_model, path = path)
pr
}
vetiver_pr_post <- function(pr,
vetiver_model,
path = "/predict",
debug = is_interactive(),
...) {
rlang::list2(...)
handler_startup(vetiver_model)
pr <- plumber::pr_set_debug(pr, debug = debug)
pr <- plumber::pr_get(
pr,
path = "/ping",
function() {list(status = "online", time = Sys.time())}
)
if (!is_null(vetiver_model$metadata$url)) {
pr <- plumber::pr_get(
pr,
path = "/pin-url",
function() vetiver_model$metadata$url
)
}
pr <- plumber::pr_post(
pr,
path = path,
handler = handler_predict(vetiver_model, ...)
)
}
vetiver_pr_docs <- function(pr,
vetiver_model,
path = "/predict",
all_docs = TRUE) {
loadNamespace("rapidoc")
modify_spec <- function(spec) api_spec(spec, vetiver_model, path, all_docs)
pr <- plumber::pr_set_api_spec(pr, api = modify_spec)
pr <- plumber::pr_set_docs(
pr, "rapidoc",
heading_text = paste("vetiver", utils::packageVersion("vetiver"))
)
pr
} |
.onLoad <- function(libname, pkgname) {
.jpackage(pkgname, lib.loc = libname)
}
rkafka.createProducer = function(metadataBrokerList,producerType="sync",compressionCodec="none",
serializerClass="kafka.serializer.StringEncoder",partitionerClass="NULL",compressedTopics="NULL",
queueBufferingMaxTime="NULL",
queueBufferingMaxMessages="NULL",
queueEnqueueTimeoutTime="NULL",
batchNumMessages="NULL")
{
producerType=as.character(producerType);
compressionCodec=as.character(compressionCodec);
serializerClass=as.character(serializerClass);
partitionerClass=as.character(partitionerClass);
queueBufferingMaxTime=as.character(queueBufferingMaxTime);
queueBufferingMaxMessages=as.character(queueBufferingMaxMessages);
queueEnqueueTimeoutTime=as.character(queueEnqueueTimeoutTime);
batchNumMessages=as.character(batchNumMessages);
producerProperties <- .jnew("com/musigma/producer/ProducerProperties")
producerPropertiesObj <- .jcall(producerProperties,"Ljava/util/Properties;","setProducerProperties",metadataBrokerList,producerType,compressionCodec,serializerClass,partitionerClass,compressedTopics,queueBufferingMaxTime,queueBufferingMaxMessages,queueEnqueueTimeoutTime,batchNumMessages)
producer<- .jnew("com/musigma/producer/MuProducer",producerPropertiesObj)
return(producer)
}
rkafka.send <-function(producer, topicName, ip, message)
{
topicName <- as.character(topicName)
ip <- as.character(ip)
message <- as.character(message)
.jcall(producer,"V","sendMessage", topicName, ip, message)
print("INFO:Remember to close the producer after done sending messages");
}
rkafka.closeProducer <-function(producer)
{
.jcall(producer,"V","close")
}
rkafka.createConsumer<- function(zookeeperConnect,topicName,groupId="test-consumer-group",zookeeperConnectionTimeoutMs="100000",consumerTimeoutMs="10000",autoCommitEnable="NULL",autoCommitInterval="NULL",autoOffsetReset="NULL"){
zookeeperConnect=as.character(zookeeperConnect)
topicName=as.character(topicName)
groupId=as.character(groupId)
zookeeperConnectionTimeoutMs=as.character(zookeeperConnectionTimeoutMs)
consumerTimeoutMs=as.character(consumerTimeoutMs)
autoCommitEnable=as.character(autoCommitEnable)
autoCommitInterval=as.character(autoCommitInterval)
autoOffsetReset=as.character(autoOffsetReset)
Consumer<-.jnew("com/musigma/consumer/MuConsumer")
print(Consumer)
.jcall(Consumer,"V","CreateConsumer",zookeeperConnect,groupId,zookeeperConnectionTimeoutMs,consumerTimeoutMs,autoCommitEnable,autoCommitInterval,autoOffsetReset)
success= .jcall(Consumer,"Z","startConsumer",topicName)
if(success=="false"){
stop("Consumer didn't start propertly")
}
return(Consumer)
}
rkafka.read<-function(ConsumerObj)
{
message=.jcall(ConsumerObj,"Ljava/lang/String;","tail")
print("INFO: Remember to close the consumer after done reading messages")
return(message)
}
rkafka.readPoll<-function(ConsumerObj){
messages=.jcall(ConsumerObj,"[Ljava/lang/String;","poll")
print("INFO: Remember to close the consumer after done reading messages")
return(messages)
}
rkafka.closeConsumer<-function(ConsumerObj){
.jcall(ConsumerObj,"V","close")
}
rkafka.createSimpleConsumer<-function(kafkaServerURL, kafkaServerPort,connectionTimeOut, kafkaProducerBufferSize, clientId){
MuSimpleConsumer<-.jnew("com/musigma/consumer/MuSimpleConsumer")
kafkaServerURL<-as.character(kafkaServerURL)
kafkaServerPort<-as.character(kafkaServerPort)
connectionTimeOut<-as.character(connectionTimeOut)
kafkaProducerBufferSize<-as.character(kafkaProducerBufferSize)
clientId<-as.character(clientId)
.jcall(MuSimpleConsumer,"V","CreateSimpleConsumer",kafkaServerURL,kafkaServerPort,connectionTimeOut,kafkaProducerBufferSize,clientId)
return(MuSimpleConsumer)
}
rkafka.receiveFromSimpleConsumer=function(SimpleConsumerObj,topicName,partition,Offset,msgReadSize){
topicName<-as.character(topicName)
partition<-as.character(partition)
Offset<-as.character(Offset)
msgReadSize<-as.character(msgReadSize)
.jcall(SimpleConsumerObj,"V","receive",topicName,partition,Offset,msgReadSize)
}
rkafka.readFromSimpleConsumer=function(SimpleConsumerObj){
msg=.jcall(SimpleConsumerObj,"Ljava/lang/String;","read")
return(msg)
}
rkafka.closeSimpleConsumer=function(SimpleConsumer){
.jcall(SimpleConsumer,"V","close")
} |
context("use_analysis()")
suppressMessages(
rrtools::use_analysis(pkg = package_path)
)
test_that("use_analysis generates the template directories and files", {
expect_equal(list.files(file.path(package_path, 'analysis')),
c("data", "figures", "paper", "supplementary-materials", "templates"))
expect_equal(list.files(file.path(package_path, 'analysis', 'paper')),
c("paper.Rmd", "references.bib"))
})
test_that("use_analysis updates DESCRIPTION correctly", {
pkg <- as.package(package_path)
expect_equal(sum(grepl("suggests", names(pkg))), 1)
expect_equal(sum(grepl("imports", names(pkg))), 1)
expect_equal(pkg$suggests , "devtools,\ngit2r")
})
suppressMessages(
rrtools::use_analysis(pkg = package_path, location = "inst")
)
test_that("use_analysis(location = 'inst') generates the template directories and files", {
expect_equal(list.files(file.path(package_path, 'inst')),
c("data", "figures", "paper", "supplementary-materials", "templates"))
expect_equal(list.files(file.path(package_path, 'inst', 'paper')),
c("paper.Rmd", "references.bib"))
})
suppressMessages(
rrtools::use_analysis(pkg = package_path, location = "vignettes")
)
unlink(file.path(package_path, "runtime.txt"))
test_that("use_analysis(location = 'vignettes') generates the template directories and files", {
expect_equal(list.files(file.path(package_path, 'vignettes')),
c("data", "figures", "paper", "supplementary-materials", "templates"))
expect_equal(list.files(file.path(package_path, 'vignettes', 'paper')),
c("paper.Rmd", "references.bib"))
}) |
princomp <- function(x, ...) UseMethod("princomp")
princomp.formula <- function(formula, data = NULL, subset, na.action, ...)
{
mt <- terms(formula, data = data)
if(attr(mt, "response") > 0) stop("response not allowed in formula")
cl <- match.call()
mf <- match.call(expand.dots = FALSE)
mf$... <- NULL
mf[[1L]] <- quote(stats::model.frame)
mf <- eval.parent(mf)
if (.check_vars_numeric(mf))
stop("PCA applies only to numerical variables")
na.act <- attr(mf, "na.action")
mt <- attr(mf, "terms")
attr(mt, "intercept") <- 0
x <- model.matrix(mt, mf)
res <- princomp.default(x, ...)
cl[[1L]] <- as.name("princomp")
res$call <- cl
if(!is.null(na.act)) {
res$na.action <- na.act
if(!is.null(sc <- res$scores))
res$scores <- napredict(na.act, sc)
}
res
}
princomp.default <-
function(x, cor = FALSE, scores = TRUE, covmat = NULL,
subset = rep_len(TRUE, nrow(as.matrix(x))), fix_sign = TRUE, ...)
{
chkDots(...)
cl <- match.call()
cl[[1L]] <- as.name("princomp")
z <- if(!missing(x)) as.matrix(x)[subset, , drop = FALSE]
if (is.list(covmat)) {
if(any(is.na(match(c("cov", "n.obs"), names(covmat)))))
stop("'covmat' is not a valid covariance list")
cv <- covmat$cov
n.obs <- covmat$n.obs
cen <- covmat$center
} else if(is.matrix(covmat)) {
if(!missing(x))
warning("both 'x' and 'covmat' were supplied: 'x' will be ignored")
cv <- covmat
n.obs <- NA
cen <- NULL
} else if(is.null(covmat)){
dn <- dim(z)
if(dn[1L] < dn[2L])
stop("'princomp' can only be used with more units than variables")
covmat <- cov.wt(z)
n.obs <- covmat$n.obs
cv <- covmat$cov * (1 - 1/n.obs)
cen <- covmat$center
} else stop("'covmat' is of unknown type")
if(!is.numeric(cv)) stop("PCA applies only to numerical variables")
if (cor) {
sds <- sqrt(diag(cv))
if(any(sds == 0))
stop("cannot use 'cor = TRUE' with a constant variable")
cv <- cv/(sds %o% sds)
}
edc <- eigen(cv, symmetric = TRUE)
ev <- edc$values
if (any(neg <- ev < 0)) {
if (any(ev[neg] < - 9 * .Machine$double.eps * ev[1L]))
stop("covariance matrix is not non-negative definite")
else
ev[neg] <- 0
}
cn <- paste0("Comp.", 1L:ncol(cv))
names(ev) <- cn
dimnames(edc$vectors) <- if(missing(x))
list(dimnames(cv)[[2L]], cn) else list(dimnames(x)[[2L]], cn)
sdev <- sqrt(ev)
sc <- setNames(if (cor) sds else rep.int(1, ncol(cv)),
colnames(cv))
fix <- if(fix_sign) function(A) {
mysign <- function(x) ifelse(x < 0, -1, 1)
A[] <- apply(A, 2L, function(x) x*mysign(x[1L]))
A
} else identity
ev <- fix(edc$vectors)
scr <- if (scores && !missing(x) && !is.null(cen))
scale(z, center = cen, scale = sc) %*% ev
if (is.null(cen)) cen <- rep(NA_real_, nrow(cv))
edc <- list(sdev = sdev,
loadings = structure(ev, class = "loadings"),
center = cen, scale = sc, n.obs = n.obs,
scores = scr, call = cl)
class(edc) <- "princomp"
edc
}
print.princomp <- function(x, ...)
{
cat("Call:\n"); dput(x$call, control=NULL)
cat("\nStandard deviations:\n")
print(x$sdev, ...)
cat("\n", length(x$scale), " variables and ", x$n.obs,
"observations.\n")
invisible(x)
} |
loop_through_pfc_and_call_trafo <- function(pfc, newdata = NULL)
{
data_list <- list()
k <- 1
for(i in 1:length(pfc))
{
for(j in 1:length(pfc[[i]])){
if(is.null(newdata)){
data_list[[k]] <- to_matrix(pfc[[i]][[j]]$data_trafo())
}else{
data_list[[k]] <- to_matrix(pfc[[i]][[j]]$predict_trafo(newdata))
}
k <- k + 1
}
}
return(data_list)
}
prepare_data <- function(pfc)
{
return(
loop_through_pfc_and_call_trafo(pfc = pfc, newdata = NULL)
)
}
prepare_newdata <- function(pfc, newdata)
{
return(
loop_through_pfc_and_call_trafo(pfc = pfc, newdata = newdata)
)
}
to_matrix <- function(x)
{
if(is.list(x)){
if(length(x)==1 & !is.null(dim(x[[1]]))){
return(x[[1]])
}else{
return(do.call("cbind", x))
}
}
if(is.data.frame(x)) return(as.matrix(x))
return(x)
} |
ptrapezoid <- function(q, min = 0, mode1 = 1/3, mode2 = 2/3, max = 1, n1 = 2,
n3 = 2, alpha = 1, lower.tail = TRUE, log.p = FALSE)
{
out <- .Call("ptrapezoid", q, min, mode1, mode2, max, n1, n3, alpha)
if(!lower.tail) out <- 1 - out
if(log.p) out <- log(out)
if(any(is.nan(out)))
{
warning("NaN in dtrapezoid")
} else if(any(is.na(out)))
{
warning("NA in dtrapezoid")
}
return(out)
} |
context("test-rx_something")
test_that("something rule works", {
expect_true(grepl(rx_something(), "something"))
expect_true(grepl(rx_something(mode="lazy"), "something"))
expect_true(grepl(rx_something(), " "))
expect_true(grepl(rx_something(mode="lazy"), " "))
expect_false(grepl(rx_something(), ""))
expect_false(grepl(rx_something(mode = "lazy"), ""))
expect_error(rx_something(mode = "whatever"))
}) |
lmmpar <- function(
Y, X, Z, subject,
beta, R, D, sigma,
maxiter = 500,
cores = 8,
verbose = TRUE
){
iter <- 0
p <- nrow(beta)
n <- length(unique(subject))
m <- nrow(Y) / n
N <- n * m
q <- dim(D)[1]
Dinv <- ginv(D)
Rinv <- ginv(R)
cores <- floor(cores)
if (cores > 1) {
doParallel::registerDoParallel(cores)
}
Y_mem <- bigmemory::as.big.matrix(Y)
X_mem <- bigmemory::as.big.matrix(X)
Z_mem <- bigmemory::as.big.matrix(Z)
subject_list <- split(seq_along(subject), subject)
verbose <- isTRUE(verbose)
nrm <- 1
repeat {
if (iter > maxiter || nrm < 0.0005) break
if (verbose) cat("iter: ", iter, "\n")
core_fn <- function(core_i) {
positions <- parallel::splitIndices(n, cores)[[core_i]]
ubfi_sum <- array(0, c(p, p))
ubsi_sum <- array(0, c(p, 1))
sigma_sum <- 0
D_sum <- array(0, c(q, q))
for (i in positions) {
subject_rows <- subject_list[[i]]
Y_i <- Y_mem[subject_rows, , drop = FALSE]
X_i <- X_mem[subject_rows, , drop = FALSE]
Z_i <- Z_mem[subject_rows, , drop = FALSE]
U_i <- MASS::ginv(
Dinv + (t(Z_i) %*% Rinv %*% Z_i)
)
W_i <- Rinv - (Rinv %*% Z_i %*% U_i %*% t(Z_i) %*% Rinv)
ubfi_sum <- ubfi_sum + t(X_i) %*% W_i %*% X_i
ubsi_sum <- ubsi_sum + t(X_i) %*% W_i %*% Y_i
b_i <- U_i %*% t(Z_i) %*% Rinv %*% (Y_i - X_i %*% beta)
sigma_sum <- sigma_sum + as.numeric(
t(Y_i - X_i %*% beta) %*% W_i %*% (Y_i - X_i %*% beta)
)
D_sum <- D_sum + (1 / sigma) * (b_i %*% t(b_i) + U_i)
}
list(
ubfi_sum = ubfi_sum,
ubsi_sum = ubsi_sum,
sigma_sum = sigma_sum,
D_sum = D_sum
)
}
if (cores == 1) {
answers <- lapply(1, core_fn)
} else {
answers <- plyr::llply(1:cores, core_fn, .parallel = TRUE)
}
ubfi_total <- array(0, c(p, p)) + Reduce("+", lapply(answers, `[[`, "ubfi_sum"))
ubsi_total <- array(0, c(p, 1)) + Reduce("+", lapply(answers, `[[`, "ubsi_sum"))
sigma_total <- 0 + Reduce("+", lapply(answers, `[[`, "sigma_sum"))
D_total <- array(0, c(q, q)) + Reduce("+", lapply(answers, `[[`, "D_sum"))
final.beta <- ginv(ubfi_total) %*% ubsi_total
final.D <- (1 / n) * as.matrix(D_total)
final.sigma <- as.numeric(
(1 / N) * as.matrix(sigma_total)[1, 1]
)
nrm <- norm(final.beta - beta)
beta <- final.beta
final.D <- round(final.D, 10)
final.D[!matrixcalc::is.positive.definite(final.D)] <- D
D <- final.D
if (any(final.sigma < 0)) {
final.sigma[final.sigma < 0] <- sigma[final.sigma < 0]
}
sigma <- final.sigma
Dinv <- ginv(D)
iter <- iter + 1
}
return(list(
iterations = iter,
beta = beta,
D = D,
sigma = sigma,
norm = nrm
))
} |
makeFits = function(paths,amplitude=NULL,intercept=NULL,method = c("OLS", "initial")){
if (method =="OLS") {makeFits_OLS(paths)}
else {makeFits_initial(paths,amplitude=amplitude,intercept = intercept)}
} |
ez_app = function(data = NULL) {
ui = ez_ui(data)
server = ez_server(data)
shiny::runGadget(app = shiny::shinyApp(ui = ui,
server = server),
viewer = shiny::browserViewer())
} |
load("testdata.rda")
expect_error(LMMsolve(fixed = pheno ~ cross, data = "testDat"),
"data should be a data.frame")
expect_error(LMMsolve(fixed = ~ cross, data = testDat),
"fixed should be a formula of the form")
expect_error(LMMsolve(fixed = pheno ~ cross, random = pheno ~ cross,
data = testDat),
"random should be a formula of the form")
expect_error(LMMsolve(fixed = pheno ~ cross, residual = pheno ~ cross,
data = testDat),
"residual should be a formula of the form")
expect_error(LMMsolve(fixed = pheno ~ tst, data = testDat),
"The following variables in the fixed part of the model are not")
expect_error(LMMsolve(fixed = pheno ~ cross, random = ~tst, data = testDat),
"The following variables in the random part of the model are not")
expect_error(LMMsolve(fixed = pheno ~ cross, residual = ~tst, data = testDat),
"The following variables in the residual part of the model are not")
ginv <- matrix(1:4, nrow = 2)
ginvL <- list(ginv = ginv)
ginvLS <- list(ginv = ginv %*% t(ginv))
ginvLS2 <- list(ind = ginv %*% t(ginv))
indMat <- diag(nrow = nlevels(testDat$ind))
rownames(indMat) <- colnames(indMat) <- levels(testDat$ind)
ginvLS3 <- list(ind = indMat)
expect_error(LMMsolve(fixed = pheno ~ cross, ginverse = ginv, data = testDat),
"ginverse should be a named list of symmetric matrices")
expect_error(LMMsolve(fixed = pheno ~ cross, ginverse = ginvL, data = testDat),
"ginverse should be a named list of symmetric matrices")
expect_error(LMMsolve(fixed = pheno ~ cross, ginverse = ginvLS, data = testDat),
"ginverse element ginv not defined in random part")
expect_error(LMMsolve(fixed = pheno ~ cross, random = ~ind, ginverse = ginvLS2,
data = testDat),
"Dimensions of ind should match number of levels")
expect_error(LMMsolve(fixed = pheno ~ cross, data = testDat, tolerance = -1),
"tolerance should be a positive numerical value")
expect_error(LMMsolve(fixed = pheno ~ cross, data = testDat, maxit= -1),
"maxit should be a positive numerical value")
expect_warning(LMMsolve(fixed = pheno ~ cross, data = testDat, maxit= 1),
"No convergence after 1 iterations")
Lgrp <- list(QTL = 3:5)
expect_error(LMMsolve(fixed = pheno ~ cross, random = ~grp(QTL2),
data = testDat),
"The following variables are specified in grp in the random part")
expect_error(LMMsolve(fixed = pheno ~ cross, random = ~grp(QTL2),
group = Lgrp, data = testDat),
"The following variables are specified in grp in the random part")
mod0 <- LMMsolve(fixed = pheno ~ cross, data = testDat)
mod1 <- LMMsolve(fixed = pheno ~ cross, residual = ~cross, data = testDat)
mod2 <- LMMsolve(fixed = pheno ~ cross, random = ~grp(QTL),
group = Lgrp, data = testDat)
mod3 <- LMMsolve(fixed = pheno ~ cross, random = ~grp(QTL) + ind,
group = Lgrp, data = testDat)
mod4 <- LMMsolve(fixed = pheno ~ cross, random = ~ind, data = testDat)
mod5 <- LMMsolve(fixed = pheno ~ cross, random = ~ind, ginverse = ginvLS3,
data = testDat)
expect_equivalent_to_reference(mod0, "LMMsolve0")
expect_equivalent_to_reference(mod1, "LMMsolve1")
expect_equivalent_to_reference(mod2, "LMMsolve2")
expect_equivalent_to_reference(mod3, "LMMsolve3")
expect_equivalent_to_reference(mod4, "LMMsolve4")
expect_equivalent_to_reference(mod5, "LMMsolve5")
mod3a <- LMMsolve(fixed = pheno ~ cross, random = ~grp(QTL) + ind,
group = c(Lgrp, list(QTL2 = 1:2)), data = testDat)
expect_equivalent(mod3, mod3a)
expect_stdout(LMMsolve(fixed = pheno ~ cross, data = testDat, trace = TRUE),
"iter logLik")
expect_stdout(LMMsolve(fixed = pheno ~ cross, data = testDat, trace = TRUE),
"2 -207.1218") |
estimate.wqs <- function(
y, X, Z = NULL,
proportion.train = 1L, n.quantiles = 4L,
place.bdls.in.Q1 = if (anyNA(X)) TRUE else FALSE,
B = 100L, b1.pos = TRUE,
signal.fn = c("signal.none", "signal.converge.only", "signal.abs", "signal.test.stat"),
family = c("gaussian", "binomial", "poisson"), offset = NULL,
verbose = FALSE
) {
family <- tolower(family)
family <- match.arg(family)
signal.fn <- tolower(signal.fn)
signal.fn <- match.arg(signal.fn)
l <- check_wqs_function(X, y, Z, proportion.train, n.quantiles, place.bdls.in.Q1,
B, b1.pos, signal.fn, family, offset, verbose)
X <- l$X
y <- l$y
Z <- l$Z
n <- dim(X)[1]
C <- dim(X)[2]
p <- dim(Z)[2]
offset <- if (is.null(offset)) rep(1, n) else offset
train <- sample(nrow(X),
round(proportion.train * nrow(X), 0),
replace = FALSE
)
y.train <- y[train]
X.train <- X[train, ]
Z.train <- Z[train, , drop = FALSE]
offset.train <- offset[train]
if (0 < proportion.train & proportion.train < 1) {
y.valid <- y[-train]
X.valid <- X[-train, ]
Z.valid <- Z[-train, , drop = FALSE]
offset.valid <- offset[-train]
} else {
y.valid <- y.train
X.valid <- X.train
Z.valid <- Z.train
offset.valid <- offset.train
}
train.index <- sort(train)
if (verbose) { cat("
q.train <- make.quantile.matrix(X.train, n.quantiles, place.bdls.in.Q1, verbose)
q.valid <- suppressMessages(
make.quantile.matrix(X.valid, n.quantiles, place.bdls.in.Q1, verbose)
)
colnames(q.train) <- colnames(X)
if (0 < proportion.train & proportion.train < 1) {
train.comparison <-
summarize.compare(train.index, y, Z, verbose = verbose)
} else {
train.comparison <- NA
}
bounds <- specify.bounds(b1.pos, C)
init <- specify.init(Z.train, y.train, b1.pos, C, family, offset.train, verbose)
l <- wqs_b.est(
y.train, q.train, Z.train, B,
pars = init, objfn, lincon, ineqcon, ineqLB = bounds$ineqLB,
ineqUB = bounds$ineqUB,
family, offset.train
)
result <- l$out
wts.matrix <- result[, -(1:6)]
boot.index <- l$boot.index
if (sum(result$convergence) < B & signal.fn != "signal.converge.only") {
warning(paste(B - sum(result$convergence), "bootstrap regression estimates in the training sets have not converged. Proceed results with caution. \n"), call. = FALSE)
}
if (b1.pos & min(result$beta_1) < -1e-8 | !b1.pos & max(result$beta_1) > 1e-8) {
stop("Error in solnp. The beta1 constaint is violated.")
}
w.sum <- apply(wts.matrix, 1, sum)
d <- data.frame(
w.min = min(wts.matrix),
w.max = max(wts.matrix),
min(w.sum),
max(w.sum)
)
if (verbose) {
cat("
print(d)
}
se <- function(X) sqrt(var(X))
if (signal.fn == "signal.none") {
w <- apply(wts.matrix, 2, mean)
se.w <- apply(wts.matrix, 2, se)
}
else if (signal.fn == "signal.converge.only") {
A <- wts.matrix[result$convergence, ]
w <- apply(A, 2, mean)
se.w <- apply(A, 2, se)
}
else if (signal.fn == "signal.abs" | signal.fn == "signal.test.stat") {
ts_weight <- abs(result$test_stat) / sum(abs(result$test_stat))
A <- ts_weight * wts.matrix
w <- apply(A, 2, sum)
se.w <- apply(A, 2, se)
}
else if (signal.fn == "signal.significance") {
result$nb <- ifelse(result$pvalue_beta1 < 0.05, TRUE, FALSE)
S <- wts.matrix[result$nb, ]
w <- apply(S, 2, mean)
se.w <- apply(S, 2, se)
}
fit.val <- wqs.fit(q.valid, Z.valid, y.valid, w, family, offset.valid)
WQS <- fit.val$WQS
fit <- fit.val$fit
if (!fit$converged)
stop("The Validation WQS Model did not converge.", call. = FALSE)
D <- formals(estimate.wqs)
A <- as.list(match.call())
U <- rlist::list.merge(D, A)
out <- list(call = U,
C = C, n = n,
train.index = train.index,
q.train = q.train,
q.valid = q.valid,
train.comparison = train.comparison,
initial = init,
train.estimates = result,
processed.weights = cbind(mean.weights = w, se.weights = se.w),
WQS = WQS,
fit = fit,
boot.index = boot.index
)
class(out) <- "wqs"
return(out)
}
summarize.compare <- function(train.index, y, Z, verbose = TRUE) {
data.tmp <- if (is.null(Z)) {data.frame(y)} else {data.frame(y, Z)}
covariate.num <- data.tmp
data.tmp$trained <- as.factor(
ifelse(1:nrow(data.tmp) %in% train.index, "trained", "validate")
)
suppressWarnings(
suppressMessages(
compare <-
make.descriptive.table(
covariate.num = covariate.num,
covariate.fac = NULL,
treatment = data.tmp$trained,
digits = 3
)
)
)
return(compare)
}
objfn <- function(param, q, Z, y, family, offset) {
C <- dim(q)[2]
b0 <- param[1]
b1 <- param[2]
w <- param[3:(2 + C)]
if (is.null(Z)) {
eta <- b0 + b1 * q %*% w
} else {
p <- if (is(Z, "numeric")) { 1 } else { dim(Z)[2] }
theta <- param[(3 + C):(2 + C + p)]
eta <- b0 + b1 * q %*% w + Z %*% theta
}
if (family == "gaussian") {
leastsq <- sum((y - eta)^2)
}
else if (family == "binomial") {
pi <- 1 / (1 + exp(-eta))
loglik <- sum(y * log(pi) + (1 - y) * log(1 - pi))
leastsq <- -loglik
}
else if (family == "poisson") {
lambdai <- offset * exp(eta)
loglik <- sum(y * log(lambdai) - lambdai)
leastsq <- -loglik
}
return(leastsq)
}
lincon <- function(param, q, Z, y, family, offset) {
C <- dim(q)[2]
weights <- param[3:(2 + C)]
return(sum(weights))
}
ineqcon <- function(param, q, Z, y, family, offset) {
C <- dim(q)[2]
b1 <- param[2]
weights <- param[3:(2 + C)]
return(c(b1, weights))
}
specify.bounds <- function(b1.pos, C) {
if (b1.pos) {
b1.LB <- 0
b1.UB <- Inf
}
else {
b1.LB <- -Inf
b1.UB <- 0
}
ineqLB <- c(b1.LB, rep(0, C))
ineqUB <- c(b1.UB, rep(1, C))
out <- list(ineqLB, ineqUB)
names(out) <- c("ineqLB", "ineqUB")
return(out)
}
wqs_b.est <- function(y.train, q.train, Z.train, B, pars, objfn, lincon, ineqcon, ineqLB,
ineqUB, family, offset) {
C <- dim(q.train)[2]
Z.null <- ifelse(is.null(Z.train), 1, 0)
p <- if (Z.null == 0) { dim(Z.train)[2] } else { 0 }
result <- matrix(0, nrow = B, ncol = length(pars)); colnames(result) <- names(pars)
convergence <- vector(mode = "logical", B)
boot.index <- matrix(0, nrow = length(y.train), ncol = B)
beta1_glm <- rep(0, B)
SE_beta1 <- rep(0, B)
test_stat <- rep(0, B)
pvalue <- rep(0, B)
fit <- vector(mode = "list", B)
for (b in 1:B) {
boot.index[, b] <- samp <- sample(1:length(y.train), replace = TRUE)
y.b <- as.vector(y.train[samp])
q.b <- q.train[samp, ]
if (Z.null == 0) {
Z.b <- as.matrix(Z.train[samp, ])
rownames(Z.b) <- NULL
} else {
Z.b <- NULL
}
result.b <-
suppressWarnings(
Rsolnp::solnp(
pars, fun = objfn,
eqfun = lincon, eqB = 1, ineqfun = ineqcon, ineqLB,
ineqUB, LB = NULL, UB = NULL,
q.b, Z.b, y.b, family, offset,
control = list(
rho = 1, outer.iter = 400, inner.iter = 800,
delta = 1e-10, tol = 1e-10, trace = 0
)
)
)
result[b, ] <- result.b$pars
convergence[b] <- ifelse (result.b$convergence == 0, TRUE, FALSE)
w <- result.b$pars[3:(2 + C)]
fit <- wqs.fit(q.b, Z.b, y.b, w, family, offset)$fit
if (!fit$converged)
stop("The training WQS Model in the ", scales::ordinal(b), " bootstrap did not converge.", call. = FALSE)
beta1_glm[b] <- summary(fit)$coefficients["WQS", 1]
SE_beta1[b] <- summary(fit)$coefficients["WQS", 2]
test_stat[b] <- summary(fit)$coefficients["WQS", 3]
pvalue[b] <- summary(fit)$coefficients["WQS", 4]
fit[[b]] <- fit
}
wts.matrix <- as.matrix(result[, grep("w", colnames(result))])
colnames(wts.matrix) <- if (!is.null(colnames(q.train))) { colnames(q.train) }
out <- data.frame(beta_1 = result[, "b1"], beta1_glm = beta1_glm, SE_beta1,
pvalue_beta1 = pvalue, test_stat, convergence,
wts.matrix)
return(list(out = out, boot.index = boot.index, fit = fit))
}
signal_tsglmno0 <- function(result, B) {
cat("The test statistics from", sum(result$beta_1 < 0.0001), "out of the", B, "bootstraps are ignored in averaging the weights,
as these have a b1 estimate of 0 (technically < 0.0001) from solnp in the training dataset")
wts.matrix <- result[, -(1:6)]
Sb <- ifelse(result$beta_1 < 0.0001, 0, result$test_stat)
signal <- Sb / sum(Sb)
A <- signal * wts.matrix
w <- apply(A, 2, sum)
return(w)
}
wqs.fit <- function(q, Z, y, w, family, offset) {
WQS <- as.vector(q %*% w)
Z.null <- ifelse(is.null(Z), 1, 0)
if (Z.null == 0) {
temp <- data.frame(y, Z, WQS)
}
else {
temp <- data.frame(y, WQS)
}
fit <- glm2::glm2(y ~ ., data = temp, family = family, offset = log(offset))
out <- list(WQS, fit)
names(out) <- c("WQS", "fit")
return(out)
} |
context("cmd_interleave")
test_that("cmd_interleave", {
expect_equal(cmd_interleave("a", "b"), c("a", "b"))
expect_equal(cmd_interleave(c("a", "b"), c("c", "d")),
c("a", "c", "b", "d"))
expect_equal(cmd_interleave("a", list("b")), list("a", "b"))
expect_equal(cmd_interleave(c("a", "b"), list("c", "d")),
list("a", "c", "b", "d"))
expect_equal(cmd_interleave(list("a", "b"), list("c", "d")),
list("a", "c", "b", "d"))
obj <- lapply(1:2, object_to_bin)
expect_equal(cmd_interleave(c("a", "b"), obj),
list("a", obj[[1]], "b", obj[[2]]))
expect_equal(cmd_interleave("a", obj[[1]]),
list("a", obj[[1]]))
expect_equal(cmd_interleave(obj[[1]], obj[[2]]),
obj)
expect_equal(cmd_interleave(obj[[1]], "b"),
list(obj[[1]], "b"))
expect_equal(cmd_interleave(c(), c()), character(0))
expect_equal(cmd_interleave(list(), list()), list())
expect_equal(cmd_interleave(NULL, NULL), character(0))
expect_equal(cmd_interleave("a", 1L), c("a", "1"))
expect_equal(cmd_interleave("a", 1.0), c("a", "1"))
expect_equal(cmd_interleave("a", TRUE), c("a", "1"))
expect_error(cmd_interleave("a", c()), "b must be length 1")
expect_error(cmd_interleave(c(), "b"), "b must be length 0")
expect_error(cmd_interleave("a", sin), "cannot coerce type")
expect_error(cmd_interleave(c("a", "b"), "c"),
"b must be length 2")
expect_error(cmd_interleave(runif(length(obj[[1]])), obj[[1]]),
"b must be length")
expect_error(cmd_interleave(obj[[1]], runif(length(obj[[1]]))),
"b must be length")
expect_equal(cmd_interleave("a", "b", "c"), c("a", "b", "c"))
expect_equal(cmd_interleave("a", "b", NULL), c("a", "b"))
expect_equal(cmd_interleave(NULL, NULL, NULL), character(0))
expect_equal(cmd_interleave("a", 1, pi), c("a", 1, pi))
expect_equal(cmd_interleave("a", raw(4), pi),
list("a", raw(4), as.character(pi)))
}) |
track.summary <- function(expr, pos=1, envir=as.environment(pos), list=NULL,
pattern=NULL, glob=NULL, all.names=FALSE,
times=track.options("summaryTimes", envir=envir)[[1]],
access=track.options("summaryAccess", envir=envir)[[1]],
size=TRUE, cache=FALSE, full=FALSE) {
if (full)
times <- access <- size <- cache <- TRUE
if (is.logical(times))
times <- if (times) 3 else 0
if (!is.numeric(times))
stop("'times' must be logical or numeric")
if (is.logical(access))
access <- if (access) 3 else 0
if (!is.numeric(access))
stop("'access' must be logical or numeric")
trackingEnv <- getTrackingEnv(envir)
opt <- track.options(trackingEnv=trackingEnv)
if (!exists(".trackingSummary", envir=trackingEnv, inherits=FALSE))
stop("there is no .trackingSummary in the tracking env on ", envname(envir))
objSummary <- getObjSummary(trackingEnv, opt=opt)
if (!is.data.frame(objSummary))
stop(".trackingSummary in ", envname(trackingEnv), " is not a data.frame")
if (!all.names && nrow(objSummary) > 0)
objSummary <- objSummary[substring(rownames(objSummary), 1, 1)!=".", ]
objs <- rownames(objSummary)
qexpr <- if (!missing(expr)) substitute(expr) else NULL
if (!is.null(qexpr)) {
if (is.name(qexpr) || is.character(qexpr)) {
objName <- as.character(qexpr)
} else {
stop("expr argument must be a quoted or unquoted variable name")
}
list <- c(objName, list)
if (!is.null(glob) || !is.null(pattern))
stop("must specify EITHER expr and/or list, OR pattern or glob")
vars.how <- " specified"
if (length(setdiff(list, objs)))
warning("some specified vars are not in the summary: ", paste("'", setdiff(list, objs), "'", sep="", collapse=", "))
} else {
vars.how <- ""
if (!is.null(glob))
pattern <- glob2rx(glob)
if (!is.null(pattern)) {
objs <- grep(pattern, objs, value=TRUE)
vars.how <- " matching"
}
}
if (!is.null(list))
objs <- intersect(objs, list)
tracked.actual <- unique(track.status(envir=envir, qexpr=qexpr, list=list, pattern=pattern, glob=glob, file.status=FALSE, what="tracked", all.names=all.names))
if (length(setdiff(tracked.actual, objs)))
warning("some", vars.how, " vars appear to be tracked but are not in the summary: ", paste("'", setdiff(tracked.actual, objs), "'", sep="", collapse=", "))
if (length(setdiff(objs, tracked.actual)))
warning("some", vars.how, " vars are in the summary but not tracked (info in summary may be wrong for the visible instances of these vars): ", paste("'", setdiff(objs, tracked.actual), "'", sep="", collapse=", "))
objSummary <- objSummary[objs, ,drop=FALSE]
colsWanted <- c("class", "mode", "extent", "length")
if (size)
colsWanted <- c(colsWanted, "size")
if (cache)
colsWanted <- c(colsWanted, "cache")
if (times > 0)
colsWanted <- c(colsWanted, "modified")
if (times > 1)
colsWanted <- c(colsWanted, "created")
if (times > 2)
colsWanted <- c(colsWanted, "accessed")
if (access == 1)
colsWanted <- c(colsWanted, c("TA", "TW"))
else if (access == 2)
colsWanted <- c(colsWanted, c("ES", "SA", "SW", "PA", "PW"))
else if (access >= 3)
colsWanted <- c(colsWanted, c("ES", "SA", "SW", "PA", "PW", "TA", "TW"))
if (any(is.element(colsWanted, c("TA", "TW"))))
objSummary <- cbind(objSummary, TA=objSummary$SA + objSummary$PA, TW=objSummary$SW + objSummary$PW)
return(objSummary[order(rownames(objSummary)), colsWanted])
} |
preproc <- function(args, ..., na.txt = NULL) {
args$na.txt <- na.txt
args$n <- length(args$u1)
tasks <- list(...)
for (i in seq_along(tasks)) {
stopifnot(is.function(tasks[[i]]))
args <- tasks[[i]](args)
}
args
}
check_u <- function(args) {
if (is.symbol(args$u1) | is.symbol(args$u2))
stop("\n In ", args$call[1], ": ",
"u1 and/or u2 are missing.",
call. = FALSE)
if (is.null(args$u1) == TRUE || is.null(args$u2) == TRUE)
stop("\n In ", args$call[1], ": ",
"u1 and/or u2 are not set or have length zero.",
call. = FALSE)
if (length(args$u1) != length(args$u2))
stop("\n In ", args$call[1], ": ",
"Lengths of u1 and u2 do not match.",
call. = FALSE)
if ((!is.numeric(args$u1) & !all(is.na(args$u1))))
stop("\n In ", args$call[1], ": ",
"u1 has to be a numeric vector.",
call. = FALSE)
if ((!is.numeric(args$u2) & !all(is.na(args$u2))))
stop("\n In ", args$call[1], ": ",
"u2 has to be a numeric vector.",
call. = FALSE)
args
}
fix_nas <- function(args) {
if (!is.null(args$data)) {
if (any(is.na(args$data))) {
num.na <- sum(!complete.cases(args$data))
freq.na <- round(num.na / nrow(args$data) * 100, 1)
args$msg <- paste0(" In ",
args$call[1],
": ",
num.na, " of the evaluation points",
" (", freq.na, "%) contain",
ifelse(num.na == 1, "s", ""), " NAs.",
args$na.txt)
args$na.ind <- which(!complete.cases(args$data))
args$data[args$na.ind, ] <- 0.5
}
} else if (any(is.na(args$u1 + args$u2))) {
num.na <- sum(!complete.cases(args$u1 + args$u2))
freq.na <- round(num.na / length(args$u1) * 100, 1)
args$msg <- paste0(" In ",
args$call[1],
": ",
num.na, " of the evaluation points",
" (", freq.na, "%) contain",
ifelse(num.na == 1, "s", ""), " NAs.",
args$na.txt)
args$na.ind <- which(is.na(args$u1 + args$u2))
args$u1[args$na.ind] <- 0.5
args$u2[args$na.ind] <- 0.5
} else {
args$msg <- na.ind <- NULL
}
args
}
reset_nas <- function(out, args) {
if (is.vector(out)) {
if (!is.null(args$na.ind))
out[args$na.ind] <- NA
} else {
if (length(dim(out)) == 2)
out[args$na.ind, ] <- NA
if (length(dim(out)) == 3)
out[, , args$na.ind] <- NA
}
if (!is.null(args$msg))
warning(args$msg, call. = FALSE)
out
}
remove_nas <- function(args) {
if (!is.null(args$data)) {
if (any(is.na(args$data))) {
num.na <- sum(!complete.cases(args$data))
freq.na <- round(num.na / nrow(args$data) * 100, 1)
warning(" In ",
args$call[1],
": ",
num.na, " observation", ifelse(num.na > 1, "s", ""),
" (", freq.na, "%) contain",
ifelse(num.na == 1, "s", ""), " NAs.",
args$na.txt,
call. = FALSE)
args$na.ind <- which(!complete.cases(args$data))
args$data <- args$data[complete.cases(args$data), , drop = FALSE]
args$n <- nrow(args$data)
}
} else {
if (any(is.na(args$u1 + args$u2))) {
num.na <- sum(!complete.cases(args$u1 + args$u2))
freq.na <- round(num.na / length(args$u1) * 100, 1)
warning(" In ",
args$call[1],
": ",
num.na, " observation", ifelse(num.na > 1, "s", ""),
" (", freq.na, "%) contain",
ifelse(num.na == 1, "s", ""), " NAs.",
args$na.txt,
call. = FALSE)
args$na.ind <- which(is.na(args$u1 + args$u2))
args$u1 <- args$u1[-args$na.ind]
args$u2 <- args$u2[-args$na.ind]
} else {
args$msg <- na.ind <- NULL
}
args$n <- length(args$u1)
}
args
}
check_if_01 <- function(args) {
u <- args$data
if (!is.null(u)) {
i <- complete.cases(u)
if (sum(i) > 0) {
if (any(u[i] > 1) || any(u[i] < 0))
stop("\n In ", args$call[1], ": ",
"Data have to be in the interval [0,1]^d.",
call. = FALSE)
}
} else {
if (any(args$u1 > 1) || any(args$u1 < 0))
stop("\n In ", args$call[1], ": ",
"Data have to be in the interval [0,1].",
call. = FALSE)
if (any(args$u2 > 1) || any(args$u2 < 0))
stop("\n In ", args$call[1], ": ",
"Data have to be in the interval [0,1].",
call. = FALSE)
}
args
}
match_spec_lengths <- function(args) {
n <- ifelse(!is.null(args$u1),
length(args$u1),
max(length(args$family), length(args$par), length(args$par2)))
args$family <- c(args$family)
args$par <- c(args$par)
args$par2 <- c(args$par2)
if (any(c(length(args$family), length(args$par), length(args$par2)) == n)) {
if (length(args$family) == 1)
args$family <- rep(args$family, n)
if (length(args$par) == 1)
args$par <- rep(args$par, n)
if (length(args$par2) == 1)
args$par2 <- rep(args$par2, n)
}
if (!(length(args$family) %in% c(1, n)))
stop("\n In ", args$call[1], ": ",
"'family' has to be a single number or a size n vector",
call. = FALSE)
if (!(length(args$par) %in% c(1, n)))
stop("\n In ", args$call[1], ": ",
"'par' has to be a single number or a size n vector",
call. = FALSE)
if (!(length(args$par2) %in% c(1, n)))
stop("\n In ", args$call[1], ": ",
"'par2' has to be a single number or a size n vector",
call. = FALSE)
args
}
expand_lengths <- function(args) {
n <- ifelse(!is.null(args$u1),
length(args$u1),
max(length(args$u1),
length(args$family),
length(args$par),
length(args$par2)))
args$family <- c(args$family)
args$par <- c(args$par)
args$par2 <- c(args$par2)
if (length(args$family) == 1)
args$family <- rep(args$family, n)
if (length(args$par) == 1)
args$par <- rep(args$par, n)
if (length(args$par2) == 1)
args$par2 <- rep(args$par2, n)
if (!(length(args$family) %in% c(1, n)))
stop("\n In ", args$call[1], ": ",
"'family' has to be a single number or a size n vector",
call. = FALSE)
if (!(length(args$par) %in% c(1, n)))
stop("\n In ", args$call[1], ": ",
"'par' has to be a single number or a size n vector",
call. = FALSE)
if (!(length(args$par2) %in% c(1, n)))
stop("\n In ", args$call[1], ": ",
"'par2' has to be a single number or a size n vector",
call. = FALSE)
args
}
extract_from_BiCop <- function(args) {
if (is.symbol(args$family))
args$family <- NA
if (is.symbol(args$par))
args$par <- NA
if (class(args$family) == "BiCop")
args$obj <- args$family
if (!is.null(args$obj)) {
stopifnot(class(args$obj) == "BiCop")
args$family <- args$obj$family
args$par <- args$obj$par
args$par2 <- args$obj$par2
}
if (is.null(args$par) & (all(args$family == 0)))
args$par <- 0
if (any(is.na(args$family)) | any(is.na(args$par)))
stop("\n In ", args$call[1], ": ",
"Provide either 'family' and 'par' or 'obj'",
call. = FALSE)
args
}
check_fam_par <- function(args) {
if (args$check.pars) {
BiCopCheck(args$family, args$par, args$par2, call = args$call)
} else {
args$family[(args$family %in% c(3, 13, 23, 33)) & (args$par == 0)] <- 0
args$family[(args$family == 5) & (args$par == 0)] <- 0
}
args
}
check_nobs <- function(args) {
if (!is.null(args$data)) {
if (nrow(args$data) < 2)
stop("\n In ", args$call[1], ": ",
"Number of observations has to be at least 2.",
call. = FALSE)
} else {
if (length(args$u1) < 2)
stop("\n In ", args$call[1], ": ",
"Number of observations has to be at least 2.",
call. = FALSE)
}
args
}
prep_familyset <- function(args) {
if (is.na(args$familyset[1]))
args$familyset <- allfams
if (!all(abs(args$familyset) %in% allfams)) {
wrong_fam <- args$familyset[-which(abs(args$familyset) %in% allfams)]
if (length(wrong_fam) == 1) {
msg <- paste("Copula family", wrong_fam)
} else {
msg <- paste("Copula families", paste0(wrong_fam, collapse = ", "))
}
stop("\n In ", args$call[1], ": ", msg, " not implemented.",
call. = FALSE)
}
if (args$rotations)
args$familyset <- with_rotations(args$familyset)
if (length(unique(sign(args$familyset[args$familyset != 0]))) > 1) {
stop("\n In ", args$call[1], ": ",
"'familyset' must not contain positive AND negative numbers.",
call. = FALSE)
}
if (any(args$familyset < 0))
args$familyset <- setdiff(allfams, -args$familyset)
args
}
check_fam_tau <- function(args) {
if (is.null(args$weights))
args$weights <- NA
args$emp_tau <- fasttau(args$u1, args$u2, args$weights)
if ((args$emp_tau > 0) & !any(args$familyset %in% c(0, posfams))) {
stop("\n In ", args$call[1], ": ",
"Empirical Kendall's tau is positive, but familyset only ",
"contains families for negative dependence.",
call. = FALSE)
} else if ((args$emp_tau < 0) & !any(args$familyset %in% c(0, negfams))){
stop("\n In ", args$call[1], ": ",
"Empirical Kendall's tau is negative, but familyset only ",
"contains families for positive dependence.",
call. = FALSE)
}
args
}
todo_fams <- function(args) {
if (args$emp_tau < 0) {
todo <- c(0, negfams)
} else if (args$emp_tau > 0) {
todo <- c(0, posfams)
} else {
todo <- allfams
}
args$familyset <- todo[which(todo %in% args$familyset)]
args
}
todo_fams_presel <- function(args) {
if (args$emp_tau > 0) {
x <- qnorm(cbind(args$u1, args$u2))
e <- try({
c11 <- cor(x[(x[, 1] > 0) & (x[, 2] > 0), ])[1, 2]
c00 <- cor(x[(x[, 1] < 0) & (x[, 2] < 0), ])[1, 2]
}, silent = TRUE)
if (inherits(e, "try-error")) {
todo <- c(0, posfams)
} else if (any(is.na(c(c11, c00)))) {
todo <- c(0, posfams)
} else {
if (c11 - c00 > 0.3) {
todo <- c(0, 2, fams11)
} else if (c11 - c00 > 0.05) {
todo <- c(0, 1, 2, 5, 20, fams11)
} else if (c11 - c00 < -0.3) {
todo <- c(0, 2, fams00)
} else if (c11 - c00 < -0.05) {
todo <- c(0, 1, 2, 5, 10, fams00)
} else {
todo <- c(0, posfams)
}
}
} else if (args$emp_tau < 0) {
x <- qnorm(cbind(args$u1, args$u2))
e <- try({
c10 <- cor(x[(x[, 1] > 0) & (x[, 2] < 0), ])[1, 2]
c01 <- cor(x[(x[, 1] < 0) & (x[, 2] > 0), ])[1, 2]
}, silent = TRUE)
if (inherits(e, "try-error")) {
todo <- c(0, negfams)
} else if (any(is.na(c(c10, c01)))) {
todo <- c(0, negfams)
} else {
if (c10 - c01 < -0.3) {
todo <- c(0, 2, fams10)
} else if (c10 - c01 < -0.05) {
todo <- c(0, 1, 2, 5, 30, fams10)
} else if (c10 - c01 > 0.3) {
todo <- c(0, 2, fams01)
} else if (c10 - c01 > 0.05) {
todo <- c(0, 1, 2, 5, 40, fams01)
} else {
todo <- c(0, negfams)
}
}
} else {
todo <- allfams
}
tmpfams <- todo[which(todo %in% args$familyset)]
if (length(tmpfams) > 0)
args$familyset <- tmpfams
args
}
check_est_pars <- function(args) {
if (!is.null(args$max.df)) {
if (args$max.df <= 2)
stop("\n In ", args$call[1], ": ",
"The upper bound for the degrees of freedom parameter has to be",
"larger than 2.",
call. = FALSE)
} else {
args$max.df <- 30
}
if (!is.null(args$max.BB)) {
if (!is.list(args$max.BB))
stop("\n In ", args$call[1], ": ",
"max.BB has to be a list.",
call. = FALSE)
if (!all(names(args$max.BB) == c("BB1", "BB6", "BB7", "BB8")))
stop("\n In ", args$call[1], ": ",
'max.BB has to be a named list with entries "BB1", "BB6", "BB7", "BB8".',
call. = FALSE)
if (any(sapply(args$max.BB, length) != 2))
stop("\n In ", args$call[1], ": ",
'All components of max.BB have to be two-dimensional numeric vectors.',
call. = FALSE)
if (args$max.BB$BB1[1] < 0.001)
stop("\n In ", args$call[1], ": ",
"The upper bound for the first parameter of the BB1 copula should ",
"be greater than 0.001 (lower bound for estimation).",
call. = FALSE)
if (args$max.BB$BB1[2] < 1.001)
stop("\n In ", args$call[1], ": ",
"The upper bound for the second parameter of the BB1 copula should ",
"be greater than 1.001 (lower bound for estimation).",
call. = FALSE)
if (args$max.BB$BB6[1] < 1.001)
stop("\n In ", args$call[1], ": ",
"The upper bound for the first parameter of the BB6 copula should ",
"be greater than 1.001 (lower bound for estimation).",
call. = FALSE)
if (args$max.BB$BB6[2] < 1.001)
stop("\n In ", args$call[1], ": ",
"The upper bound for the second parameter of the BB6 copula should ",
"be greater than 1.001 (lower bound for estimation).",
call. = FALSE)
if (args$max.BB$BB7[1] < 1.001)
stop("\n In ", args$call[1], ": ",
"The upper bound for the first parameter of the BB7 copula should ",
"be greater than 1.001 (lower bound for estimation).",
call. = FALSE)
if (args$max.BB$BB7[2] < 0.001)
stop("\n In ", args$call[1], ": ",
"The upper bound for the second parameter of the BB7 copula should ",
"be greater than 0.001 (lower bound for estimation).",
call. = FALSE)
if (args$max.BB$BB8[1] < 1.001)
stop("\n In ", args$call[1], ": ",
"The upper bound for the first parameter of the BB8 copula should ",
"be greater than 1.001 (lower bound for estimation).",
call. = FALSE)
if (args$max.BB$BB8[2] < 0.001 || args$max.BB$BB8[2] > 1)
stop("\n In ", args$call[1], ": ",
"The upper bound for the second parameter of the BB8 copula should ",
"be in the interval [0.001,1].",
call. = FALSE)
} else {
args$max.BB <- list(BB1 = c(5, 6),
BB6 = c(6, 6),
BB7 = c(5, 6),
BB8 = c(6, 1))
}
if (!is.null(args$family)) {
if (!(all(args$family %in% allfams)))
stop("\n In ", args$call[1], ": ",
"Copula family not implemented.",
call. = FALSE)
}
if (!is.null(args$familyset)) {
if (!(all(abs(args$familyset) %in% allfams)))
stop("\n In ", args$call[1], ": ",
"Copula family not implemented.",
call. = FALSE)
}
if (!is.null(args$method)) {
if (args$method != "mle" && args$method != "itau")
stop("\n In ", args$call[1], ": ",
"Estimation method has to be either 'mle' or 'itau'.",
call. = FALSE)
if (!is.null(args$family)) {
if ((args$method == "itau") && (!(args$family %in% c(0, 2, allfams[onepar])))) {
warning(" In ", args$call[1], ": ",
"For two parameter copulas the estimation method 'itau' cannot ",
"be used. The method is automatically set to 'mle'.",
call. = FALSE)
args$method <- "mle"
}
}
if (!is.null(args$familyset)) {
if ((args$method == "itau") && (!all(args$familyset %in% c(0, 2, allfams[onepar])))) {
warning(" In ", args$call[1], ": ",
"For two parameter copulas the estimation method 'itau' cannot ",
"be used. The method is automatically set to 'mle'.",
call. = FALSE)
args$method <- "mle"
}
}
} else {
args$method <- "mle"
}
if (!is.null(args$se)) {
if (is.logical(args$se) == FALSE)
stop("\n In ", args$call[1], ": ",
"se has to be a logical variable (TRUE or FALSE).",
call. = FALSE)
} else {
args$se <- FALSE
}
if (is.null(args$weights))
args$weights <- NA
args
}
check_twoparams <- function(args) {
if (!is.null(args$familyset)) {
if ((args$method == "itau") &&
(!all(args$familyset %in% c(0, 2, allfams[onepar])))) {
warning(' In ', args$call[1], ': ',
'Two parameter families (other than the t-copula) cannot',
' be handled by method "itau".',
' They are automatically removed from the familyset.',
call. = FALSE)
args$familyset <- args$familyset[args$familyset %in%
c(0, 2, allfams[onepar])]
}
}
args
}
check_data <- function(args) {
if (is.symbol(args$data))
stop("\n In ", args$call[1], ": ",
"Argument data is missing.",
call. = FALSE)
if (is.null(args$data))
stop("\n In ", args$call[1], ": ",
"Argument data is missing.",
call. = FALSE)
if (is.vector(args$data)) {
args$data <- t(as.matrix(args$data))
} else {
args$data <- as.matrix(args$data)
}
if (!is.numeric(args$data) & !all(is.na(args$data)))
stop("\n In ", args$call[1], ": ",
"Data have to be numeric.",
call. = FALSE)
if (ncol(args$data) < 2)
stop("\n In ", args$call[1], ": ",
"Dimension has to be at least 2.",
call. = FALSE)
if (is.null(colnames(args$data)))
colnames(args$data) <- paste("V", seq.int(ncol(args$data)), sep = "")
args$n <- nrow(args$data)
args$d <- ncol(args$data)
args
}
check_RVMs <- function(args) {
if (!is.null(args$RVM))
args$RVM <- check_RVM(args$RVM, "RVM",
args$call, args$d, args$check.pars)
if (!is.null(args$RVM1))
args$RVM1 <- check_RVM(args$RVM1, "RVM1",
args$call, args$d, args$check.pars)
if (!is.null(args$RVM2))
args$RVM2 <- check_RVM(args$RVM2, "RVM2",
args$call, args$d, args$check.pars)
args
}
check_RVM <- function(RVM, name, call, d, check.pars) {
if (!is(RVM, "RVineMatrix"))
stop("\n In ", call[1], ": ",
name, " has to be an RVineMatrix object.",
call. = FALSE)
if (!is.null(d)) {
if (d != dim(RVM))
stop("\n In ", call[1], ": ",
"Dimensions of data and ", name, " do not match.",
call. = FALSE)
}
if (any(!is.na(RVM$par)) & (nrow(RVM$par) != ncol(RVM$par)))
stop("\n In ", call[1], ": ",
"Parameter matrix has to be quadratic.",
call. = FALSE)
if (any(!is.na(RVM$par2)) & (nrow(RVM$par2) != ncol(RVM$par2)))
stop("\n In ", call[1], ": ",
"Second parameter matrix has to be quadratic.",
call. = FALSE)
if (is.null(check.pars))
check.pars <- TRUE
if (!all(RVM$par %in% c(0, NA))) {
for (i in 2:dim(RVM$Matrix)[1]) {
for (j in 1:(i - 1)) {
if (check.pars) {
BiCopCheck(RVM$family[i, j],
RVM$par[i, j],
RVM$par2[i, j],
call = call)
} else {
indep <- (RVM$family[i, j] %in% c(5, 3, 13, 23, 33)) & (RVM$par[i, j] == 0)
if (indep)
RVM$family[i, j] <- 0
}
}
}
}
RVM
}
prep_RVMs <- function(args) {
if (!is.null(args$RVM)) {
args$RVM$par[is.na(args$RVM$par)] <- 0
args$RVM$par[upper.tri(args$RVM$par, diag = TRUE)] <- 0
args$RVM$par2[is.na(args$RVM$par2)] <- 0
args$RVM$par2[upper.tri(args$RVM$par2, diag = TRUE)] <- 0
} else {
args$RVM1$par[is.na(args$RVM1$par)] <- 0
args$RVM1$par[upper.tri(args$RVM1$par, diag = TRUE)] <- 0
args$RVM1$par2[is.na(args$RVM1$par2)] <- 0
args$RVM1$par2[upper.tri(args$RVM1$par2, diag = TRUE)] <- 0
args$RVM2$par[is.na(args$RVM2$par)] <- 0
args$RVM2$par[upper.tri(args$RVM2$par, diag = TRUE)] <- 0
args$RVM2$par2[is.na(args$RVM2$par2)] <- 0
args$RVM2$par2[upper.tri(args$RVM2$par2, diag = TRUE)] <- 0
}
args
}
check_matrix <- function(args) {
if (is.symbol(args$Matrix))
stop("\n In ", args$call[1], ": ",
"Matrix is missing.",
call. = FALSE)
if (nrow(args$Matrix) != ncol(args$Matrix))
stop("\n In ", args$call[1], ": ",
"Structure matrix has to be quadratic.",
call. = FALSE)
if (max(args$Matrix) > nrow(args$Matrix))
stop("\n In ", args$call[1], ": ",
"Structure matrix can only contain numbers 0:",
nrow(args$Matrix), ".",
call. = FALSE)
args$Matrix[is.na(args$Matrix)] <- 0
args$Matrix <- ToLowerTri(args$Matrix)
if (RVineMatrixCheck(args$Matrix) != 1)
stop("\n In ", args$call[1], ": ",
"Matrix is not a valid R-vine matrix.",
call. = FALSE)
args
}
check_parmat <- function(args) {
args$family <- as.matrix(args$family)
if (nrow(args$family) != ncol(args$family))
stop("\n In ", args$call[1], ": ",
"family has to be quadratic.",
call. = FALSE)
args$family[is.na(args$family)] <- 0
args$family <- ToLowerTri(args$family)
args$family[upper.tri(args$family, diag = T)] <- 0
args
}
check_fammat <- function(args) {
args$par <- as.matrix(args$par)
if (nrow(args$par) != ncol(args$par))
stop("\n In ", args$call[1], ": ",
"par has to be quadratic.",
call. = FALSE)
args$par[is.na(args$par)] <- 0
args$par <- ToLowerTri(args$par)
args$par[upper.tri(args$par, diag = T)] <- 0
args
}
check_par2mat <- function(args) {
args$par2 <- as.matrix(args$par2)
if (nrow(args$par2) != ncol(args$par2))
stop("\n In ", args$call[1], ": ",
"par2 has to be quadratic.",
call. = FALSE)
args$par2[is.na(args$par2)] <- 0
args$par2 <- ToLowerTri(args$par2)
args$par2[upper.tri(args$par2, diag = T)] <- 0
args
}
set_dims <- function(family, par = 0, par2 = 0, tau = 0) {
dims <- max(length(family), length(par), length(par2), length(tau))
if (!is.null(dim(family)))
dims <- dim(family)
if (!is.null(dim(par)))
dims <- dim(par)
if (!is.null(dim(par2)))
dims <- dim(par2)
if (!is.null(dim(tau)))
dims <- dim(tau)
dims
} |
loglikcub0q <-
function(m,ordinal,W,beta0,gama){
pai<-1/(1+exp(-beta0))
W<-as.matrix(W)
probn<-probcub0q(m,factor(ordinal,ordered=TRUE),W,pai,gama)
sum(log(probn))
} |
run_synthetic_forecast <- function(
df, col_unit_name, unit_of_interest, col_time, periods_to_forecast,
serie_of_interest
){
stopifnot(
class(df)=="data.frame",
class(col_unit_name)=="character",
class(unit_of_interest)%in%c("integer", "character", "numeric"),
class(col_time)%in%c("character"),
class(periods_to_forecast)%in%c("integer", "numeric"),
class(serie_of_interest)%in%c("character")
)
out <- tryCatch(
{
print(paste("Forecasting Unit: ", unit_of_interest, ". Serie: ", serie_of_interest))
intern_max_time_unit_interedt <- intern_get_max_time_unit_of_interest(
df = df,
col_unit_name = col_unit_name,
unit_of_interest = unit_of_interest,
col_time = col_time
)
intern_elegible_units <- intern_elegile_units(
df = df,
col_unit_name = col_unit_name,
col_time = col_time,
max_time_unit_of_interest = intern_max_time_unit_interedt,
periods_to_forecast = periods_to_forecast
)
intern_dataset_prepared <- prepare_dataset(
df = df,
df_elegible_units = intern_elegible_units,
col_unit_name = col_unit_name,
col_time = col_time,
unit_of_interest = unit_of_interest,
max_time_unit_of_interest = intern_max_time_unit_interedt
)
intern_compute_synthetic_control_out <- compute_synthetic_control(
prepared_dataset = intern_dataset_prepared,
unit_of_interest = unit_of_interest,
serie_of_interest = serie_of_interest,
col_time = col_time,
max_time_unit_of_interest = intern_max_time_unit_interedt
)
compute_result_tables_out <- compute_result_tables(
synthetic_control_output = intern_compute_synthetic_control_out,
unit_of_interest = unit_of_interest,
serie_of_interest = serie_of_interest,
max_time_unit_of_interest = intern_max_time_unit_interedt,
df = df,
col_unit_name = col_unit_name,
periods_to_forecast = periods_to_forecast,
col_time = col_time
)
compute_result_tables_out
},
error=function(cond){
print('Error in Function run_synthetic_forecast():')
cond
}
)
return(out)
} |
submit <- local({
getOutput <- function(sid) {
if(sid == "pollutantmean-1") {
source("pollutantmean.R")
pollutantmean("specdata", "sulfate", 1:10)
}
else if(sid == "pollutantmean-2") {
source("pollutantmean.R")
pollutantmean("specdata", "nitrate", 70:72)
}
else if(sid == "pollutantmean-3") {
source("pollutantmean.R")
pollutantmean("specdata", "sulfate", 34)
}
else if(sid == "pollutantmean-4") {
source("pollutantmean.R")
pollutantmean("specdata", "nitrate")
}
else if(sid == "complete-1") {
source("complete.R")
cc <- complete("specdata", c(6, 10, 20, 34, 100, 200, 310))
paste(cc$nobs, collapse = "\n")
}
else if(sid == "complete-2") {
source("complete.R")
cc <- complete("specdata", 54)
cc$nobs
}
else if(sid == "complete-3") {
source("complete.R")
set.seed(42)
cc <- complete("specdata", 332:1)
use <- sample(332, 10)
paste(cc[use, "nobs"], collapse = "\n")
}
else if(sid == "corr-1") {
source("corr.R")
cr <- corr("specdata")
cr <- sort(cr)
set.seed(868)
out <- round(cr[sample(length(cr), 5)], 4)
paste(out, collapse = "\n")
}
else if(sid == "corr-2") {
source("corr.R")
cr <- corr("specdata", 129)
cr <- sort(cr)
n <- length(cr)
set.seed(197)
out <- c(n, round(cr[sample(n, 5)], 4))
paste(out, collapse = "\n")
}
else if(sid == "corr-3") {
source("corr.R")
cr <- corr("specdata", 2000)
n <- length(cr)
cr <- corr("specdata", 1000)
cr <- sort(cr)
paste(c(n, round(cr, 4)), collapse = "\n")
}
else {
stop("invalid part number")
}
}
partPrompt <- function() {
partlist <- list("pollutantmean-1" = "'pollutantmean' part 1",
"pollutantmean-2" = "'pollutantmean' part 2",
"pollutantmean-3" = "'pollutantmean' part 3",
"pollutantmean-4" = "'pollutantmean' part 4",
"complete-1" = "'complete' part 1",
"complete-2" = "'complete' part 2",
"complete-3" = "'complete' part 3",
"corr-1" = "'corr' part 1",
"corr-2" = "'corr' part 2",
"corr-3" = "'corr' part 3"
)
pretty_out("Which part are you submitting?")
part <- select.list(partlist, graphics=FALSE)
names(part)
}
getChallenge <- function(email, challenge.url) {
params <- list(email_address = email,
response_encoding = "delim")
result <- getForm(challenge.url, .params = params)
s <- strsplit(result, "|", fixed = TRUE)[[1]]
list(ch.key = s[5], state = s[7])
}
challengeResponse <- function(password, ch.key) {
x <- paste(ch.key, password, sep = "")
digest(x, algo = "sha1", serialize = FALSE)
}
submitSolution <- function(email, ch.resp, sid, output, signature, submit.url,
src = "", http.version = NULL) {
output <- as.character(base64(output))
src <- as.character(base64(src))
params <- list(assignment_part_sid = sid,
email_address = email,
submission = output,
submission_aux = src,
challenge_response = ch.resp,
state = signature)
params <- lapply(params, URLencode)
result <- postForm(submit.url, .params = params)
s <- strsplit(result, "\\r\\n")[[1]]
tail(s, 1)
}
get_courseid <- function() {
pretty_out("The first item I need is your Course ID. For example, if the",
"homepage for your Coursera course was",
"'https://class.coursera.org/rprog-001',",
"then your course ID would be 'rprog-001' (without the quotes).", skip_after=TRUE)
repeat {
courseid <- readline("Course ID: ")
courseid <- gsub("\'|\"", "", courseid)
is_url <- str_detect(courseid, "www[.]|http:|https:")
is_numbers <- str_detect(courseid, "^[0-9]+$")
is_example <- str_detect(courseid, fixed("rprog-001"))
if(!any(is_url, is_numbers, is_example)){
break
} else {
if(is_url) {
pretty_out("It looks like you entered a web address, which is not what I'm",
"looking for.")
}
if(is_numbers) {
pretty_out("It looks like you entered a numeric ID, which is not what I'm",
"looking for.")
}
if(is_example) {
pretty_out("It looks like you entered the Course ID that I used as an",
"example, which is not what I'm looking for.")
}
}
pretty_out("Instead, I need your Course ID, which is the last",
"part of the web address for your Coursera course.",
"For example, if the homepage for your Coursera course was",
"'https://class.coursera.org/rprog-001',",
"then your course ID would be 'rprog-001' (without the quotes).",
skip_after=TRUE)
}
courseid
}
pretty_out <- function(..., skip_before=TRUE, skip_after=FALSE) {
wrapped <- strwrap(str_c(..., sep = " "),
width = getOption("width") - 2)
mes <- str_c("| ", wrapped, collapse = "\n")
if(skip_before) mes <- paste0("\n", mes)
if(skip_after) mes <- paste0(mes, "\n")
message(mes)
}
checkPkgs <- function() {
pkg.inst <- installed.packages()
pkgs <- c("RCurl", "digest", "stringr")
have.pkg <- pkgs %in% rownames(pkg.inst)
if(any(!have.pkg)) {
message("\nSome packages need to be installed.\n")
r <- readline("Install necessary packages [y/n]? ")
if(tolower(r) == "y") {
need <- pkgs[!have.pkg]
message("\nInstalling packages ",
paste(need, collapse = ", "))
install.packages(need)
}
}
}
loginPrompt <- function() {
courseid <- get_courseid()
email <- readline("Submission login (email): ")
passwd <- readline("Submission password: ")
r <- list(courseid = courseid, email = email, passwd = passwd)
assign(".CourseraLogin", r, globalenv())
invisible(r)
}
function(manual = FALSE, resetLogin = FALSE) {
checkPkgs()
suppressPackageStartupMessages(library(RCurl))
library(digest)
library(stringr)
readline("\nPress Enter to continue...")
if(!manual) {
confirmed <- FALSE
need2fix <- FALSE
while(!confirmed) {
if(exists(".CourseraLogin") && !resetLogin && !need2fix)
cred <- get(".CourseraLogin")
else
cred <- loginPrompt()
if(!is.list(cred) || !(names(cred) %in% c("email", "passwd", "courseid")))
stop("problem with login/password")
courseid <- cred$courseid
email <- cred$email
password <- cred$passwd
pretty_out("Is the following information correct?",
skip_after=TRUE)
message("Course ID: ", courseid,
"\nSubmission login (email): ", email,
"\nSubmission password: ", password)
yn <- c("Yes, go ahead!",
"No, I need to change something.")
confirmed <- identical(select.list(yn, graphics=FALSE), yn[1])
if(!confirmed) need2fix <- TRUE
}
challenge.url <- paste("http://class.coursera.org", courseid,
"assignment/challenge", sep = "/")
submit.url <- paste("http://class.coursera.org", courseid,
"assignment/submit", sep = "/")
}
sid <- partPrompt()
output <- getOutput(sid)
if(!manual) {
ch <- try(getChallenge(email, challenge.url), silent=TRUE)
ch_ok <- !is(ch, "try-error") && exists("ch.key", ch) && !is.na(ch$ch.key)
if(!ch_ok) {
stop("Either the course ID you entered is not valid or your course site ",
"is unreachable at this time. If you'd like to submit manually, you ",
"can run submit(manual=TRUE).")
}
ch.resp <- challengeResponse(password, ch$ch.key)
results <- submitSolution(email, ch.resp, sid, output, ch$state,
submit.url = submit.url)
if(!length(results))
results <- "Incorrect!"
cat("Result: ", results, "\n")
}
else {
outfile <- paste(sid, "output.txt", sep = "-")
writeLines(as.character(output), outfile)
cat(sprintf("Please upload the file '%s' to Coursera\n",
outfile))
}
invisible()
}
}) |
refdata <- system.file("extdata", "ref-results.rdata", package="quantspec")
load(refdata) |
rare_Rao <-
function(comm, dis = NULL, sim = TRUE, resampling = 999, formula = c("QE", "EDI"))
{
if (!inherits(comm, "matrix") & !inherits(comm, "data.frame")) stop("Non convenient comm")
comm <- t(comm)
if (any(comm<0))
stop("Negative value in comm")
if (any(apply(comm, 2, sum) < 1e-16))
stop("Empty communities")
if(!formula[1]%in%c("QE","EDI")) stop("formula can be either QE or EDI")
formula <- formula[1]
if (!is.null(dis)) {
if (!inherits(dis, "dist"))
stop("Object of class 'dist' expected for distance")
dis <- as.matrix(dis)
if (nrow(comm) != nrow(dis))
stop("Non convenient comm")
dis <- as.dist(dis)
if(formula=="EDI") dis <- dis^2/2
if (!is.euclid(sqrt(dis)))
warning("Squared Euclidean or Euclidean property expected for dis")
}
if (is.null(dis)){
dis <- as.dist((matrix(1, nrow(comm), nrow(comm)) - diag(rep(1, nrow(comm)))))
}
N <- ncol(comm)
rel_abu <- sweep(comm, 2, colSums(comm), "/")
if(sim){
p <- resampling
result <- matrix(0, p, N)
for(j in 1:N){
for(i in 1:p) {
if(j==1) newplot <- as.vector(rel_abu[, sample(1:ncol(rel_abu), j)])
else{
subsample <- rel_abu[, sample(1:ncol(rel_abu), j)]
newplot <- as.vector(apply(subsample, 1, mean))
}
result[i, j] <- (t(newplot) %*% (as.matrix(dis)) %*% newplot)
}
}
aver <- apply(result, 2, mean)
IC_plus <- aver + (1.96*(sd(result)/sqrt(p)))
IC_neg <- aver - (1.96*(sd(result)/sqrt(p)))
rrRao <- data.frame(as.matrix(aver), IC_neg, IC_plus)
names(rrRao) <- c("ExpRao", "LeftIC", "RightIC")
return(rrRao)
}
else{
a <- mean(diag(t(rel_abu)%*%as.matrix(dis)%*%as.matrix(rel_abu)))
f2 <- apply(rel_abu, 1, sum)/sum(rel_abu)
g <- t(f2)%*%as.matrix(dis)%*%f2
b <- g - a
rrARao <- cbind.data.frame(sapply(1:N, function(M) return(a + N * (M-1) * b / M / (N-1))))
names(rrARao) <- c("ExpRao")
return(rrARao)
}
} |
dlogis.exp <- function (x, alpha, lambda, log = FALSE)
{
if((!is.numeric(alpha)) || (!is.numeric(lambda)) || (!is.numeric(x)))
stop("non-numeric argument to mathematical function")
if((min(alpha) <= 0) || (min(lambda) <= 0) || (x <= 0))
stop("Invalid arguments")
u <- exp(lambda * x)
num <- lambda * alpha * u * ((u - 1.0)^(alpha -1.0))
deno <- (1.0 + (u - 1.0) ^ alpha) ^ 2.0
pdf <- num/deno
if(log)
pdf <- log(pdf)
return(pdf)
}
plogis.exp <- function (q, alpha, lambda, lower.tail = TRUE, log.p = FALSE)
{
if((!is.numeric(alpha)) || (!is.numeric(lambda)) || (!is.numeric(q)))
stop("non-numeric argument to mathematical function")
if((min(alpha) <= 0) || (min(lambda) <= 0) || (q <= 0))
stop("Invalid arguments")
u <- exp(lambda * q)
tmp <- 1.0 + ((u - 1.0) ^ alpha)
cdf <- 1.0 - (1.0/tmp)
if(!lower.tail)
cdf <- 1.0 - cdf
if(log.p)
cdf <- log(cdf)
return(cdf)
}
qlogis.exp <- function (p, alpha, lambda, lower.tail = TRUE, log.p = FALSE)
{
if((!is.numeric(alpha)) || (!is.numeric(lambda)) || (!is.numeric(p)))
stop("non-numeric argument to mathematical function")
if((min(alpha) <= 0) || (min(lambda) <= 0) || (p <= 0) || (p > 1))
stop("Invalid arguments")
qtl <- (1.0/lambda) * log(1.0 +((p/(1.0-p)) ^ (1.0/alpha)))
if (!lower.tail)
qtl <- (1.0/lambda) * log(1.0 +(((1.0-p)/p) ^ (1.0/alpha)))
if (log.p)
qtl <- log(qtl)
return(qtl)
}
rlogis.exp<-function(n, alpha, lambda)
{
if((!is.numeric(alpha)) || (!is.numeric(lambda)) || (!is.numeric(n)))
stop("non-numeric argument to mathematical function")
if((min(alpha) <= 0) || (min(lambda) <= 0) || (n <= 0))
stop("Invalid arguments")
u <- runif(n)
return((1.0/lambda) * log(1.0 +((u/(1.0-u)) ^ (1.0/alpha))))
}
slogis.exp <- function (x, alpha, lambda)
{
if((!is.numeric(alpha)) || (!is.numeric(lambda)) || (!is.numeric(x)))
stop("non-numeric argument to mathematical function")
if((min(alpha) <= 0) || (min(lambda) <= 0) || (x <= 0))
stop("Invalid arguments")
u <- exp(lambda * x)
tmp <-1.0 +((u - 1.0)^alpha)
relia <- 1.0/tmp
return(relia)
}
hlogis.exp <- function (x, alpha, lambda)
{
if((!is.numeric(alpha)) || (!is.numeric(lambda)) || (!is.numeric(x)))
stop("non-numeric argument to mathematical function")
if((min(alpha) <= 0) || (min(lambda) <= 0) || (x <= 0))
stop("Invalid arguments")
u <- exp(lambda * x)
nume <- lambda * alpha * u * ((u - 1.0)^(alpha -1.0))
deno <- 1.0 + (u - 1.0) ^ alpha
return(nume/deno)
}
hra.logis.exp <- function(x, alpha, lambda)
{
r <- slogis.exp(x, alpha, lambda)
fra <- ((-1) * log(r))/x
return(fra)
}
crf.logis.exp <-function(x, t=0, alpha, lambda)
{
t <- t
x <- x
nume <- hlogis.exp(x+t, alpha, lambda)
deno <- hlogis.exp(x, alpha, lambda)
return(nume/deno)
}
ks.logis.exp <- function(x, alpha.est, lambda.est,
alternative = c("less", "two.sided", "greater"), plot = FALSE, ...)
{
alpha <- alpha.est
lambda <- lambda.est
res <- ks.test(x, plogis.exp, alpha, lambda, alternative = alternative)
if(plot){
plot(ecdf(x), do.points = FALSE, main = 'Empirical and Theoretical cdfs',
xlab = 'x', ylab = 'Fn(x)', ...)
mini <- min(x)
maxi <- max(x)
t <- seq(mini, maxi, by = 0.01)
y <- plogis.exp(t, alpha, lambda)
lines(t, y, lwd = 2, col = 2)
}
return(res)
}
qq.logis.exp <- function(x, alpha.est, lambda.est, main = ' ', line.qt = FALSE, ...)
{
xlab <- 'Empirical quantiles'
ylab <- 'Theoretical quantiles'
alpha <- alpha.est
lambda <- lambda.est
n <- length(x)
k <- seq(1, n, by = 1)
P <- (k-0.5)/n
limx <- c(min(x), max(x))
Finv <- qlogis.exp(P, alpha, lambda)
quantiles <- sort(x)
plot(quantiles, Finv, xlab = xlab, ylab = ylab, xlim = limx,
ylim = limx, main = main, col = 4, lwd = 2, ...)
lines(c(0,limx), c(0,limx), col = 2, lwd = 2)
if(line.qt){
quant <- quantile(x)
x1 <- quant[2]
x2 <- quant[4]
y1 <- qlogis.exp(0.25, alpha, lambda)
y2 <- qlogis.exp(0.75, alpha, lambda)
m <- ((y2 - y1) / (x2 - x1))
inter <- y1 - (m * x1)
abline(inter, m, col = 2, lwd = 2)
}
invisible(list(x = quantiles, y = Finv))
}
pp.logis.exp <- function(x, alpha.est, lambda.est, main=' ', line = FALSE, ...)
{
xlab <- 'Empirical distribution function'
ylab <- 'Theoretical distribution function'
alpha <- alpha.est
lambda <- lambda.est
F <- plogis.exp(x, alpha, lambda)
Pemp <- sort(F)
n <- length(x)
k <- seq(1, n, by = 1)
Pteo <- (k - 0.5) / n
plot(Pemp, Pteo, xlab = xlab, ylab = ylab, col = 4,
xlim = c(0, 1), ylim = c(0, 1), main = main, lwd = 2, ...)
if(line)
lines(c(0, 1), c(0, 1), col = 2, lwd = 2)
Cor.Coeff <- cor(Pemp, Pteo)
Determination.Coeff <- (Cor.Coeff^2) * 100
return(list(Cor.Coeff = Cor.Coeff, Determination.Coeff = Determination.Coeff))
}
abic.logis.exp<-function(x, alpha.est, lambda.est)
{
alpha <- alpha.est
lambda <- lambda.est
n <- length(x)
p <- 2
f <- dlogis.exp(x, alpha, lambda)
l <- log(f)
LogLik <- sum(l)
AIC <- - 2 * LogLik + 2 * p
BIC <- - 2 * LogLik + p * log(n)
return(list(LogLik = LogLik, AIC = AIC, BIC = BIC))
} |
boda <- function(sts, control=list(range=NULL, X=NULL, trend=FALSE, season=FALSE,
prior=c('iid','rw1','rw2'), alpha=0.05, mc.munu=100,
mc.y=10, verbose=FALSE,multicore=TRUE,
samplingMethod=c('joint','marginals'),
quantileMethod=c("MC","MM"))) {
if (!requireNamespace("INLA", quietly = TRUE)) {
stop("The boda function requires the INLA package to be installed.\n",
" The package is not available on CRAN, but can be easily obtained\n",
" from <https://www.r-inla.org/download-install>.")
}
if (is.null(control[["multicore",exact=TRUE]])) { control$multicore <- TRUE }
if (control$multicore) {
INLA::inla.setOption("num.threads", parallel::detectCores(logical = TRUE))
}
if (ncol(sts)>1) {
stop("boda currently only handles univariate sts objects.")
}
if(is.null(control[["quantileMethod",exact=TRUE]])){
control$quantileMethod <- "MC" }
else {
control$quantileMethod <- match.arg(control$quantileMethod,
c("MC","MM"))
}
observed <- as.vector(observed(sts))
state <- as.vector(sts@state)
time <- 1:length(observed)
if(is.null(control[["range",exact=TRUE]])){
warning('No range given. Range is defined as time from second period until end of time series.')
control$range <- (sts@freq+1):length(observed)
}
if(!all(control$range %in% time)){
stop("Evaluation period 'range' has to be vector of time series indices.")
}
control$range <- sort(control$range)
if(is.null(control[["verbose",exact=TRUE]])) {
control$verbose <- FALSE
}
if(is.null(control[["trend",exact=TRUE]])){ control$trend <- FALSE }
if(is.null(control[["season",exact=TRUE]])){ control$season <- FALSE }
if(!is.logical(control$trend)||!is.logical(control$season)){
stop('trend and season are logical parameters.')
}
prior <- match.arg(control$prior, c('iid','rw1','rw2'))
if(is.vector(control$X)){
control$X <- as.matrix(control$X,ncol=1)
}
samplingMethod <- match.arg(control$samplingMethod, c('joint','marginals'))
if(is.null(control[["alpha",exact=TRUE]])){ control$alpha <- 0.05 }
if(control$alpha <= 0 | control$alpha >= 1){
stop("The significance level 'alpha' has to be a probability, and thus has to be between 0 and 1.")
}
if(is.null(control[["mc.munu",exact=TRUE]])){ control$mc.munu <- 100 }
if(is.null(control[["mc.y",exact=TRUE]])){ control$mc.y <- 10 }
if(!control$mc.munu>0 || control$mc.munu!=round(control$mc.munu,0) || !control$mc.y>0 || control$mc.y!=round(control$mc.y,0)){
stop('Number of Monte Carlo trials has to be an integer larger than zero')
}
modelformula <- paste("observed ~ f(time, model='",prior,"', cyclic=FALSE)", sep="")
dat <- data.frame(observed=observed, time=time)
if(sum(state)>0){
modelformula <- paste(modelformula, "+ f(state, model='linear')", sep="")
dat <- data.frame(dat, state=state)
}
if(control$trend){
modelformula <- paste(modelformula, "+ f(timeT, model='linear')", sep="")
dat <- data.frame(dat, timeT=time)
}
if(control$season){
modelformula <- paste(modelformula, "+ f(timeS, model='seasonal', season.length=",sts@freq,")", sep="")
dat <- data.frame(dat, timeS=time)
}
X.formula <- NULL
if(!is.null(control$X)){
if(nrow(control$X)!=length(observed)){
stop("Argument for covariates 'X' has to have the same length like the time series")
}
for(i in 1:ncol(control$X)){
X.formula <- (paste(X.formula ,'+', colnames(control$X)[i]))
}
modelformula <- paste(modelformula, X.formula, sep="")
dat <- data.frame(dat, control$X)
}
modelformula <- as.formula(modelformula)
useProgressBar <- length(control$range)>1
if (useProgressBar) {
pb <- txtProgressBar(min=min(control$range), max=max(control$range), initial=0,style=3)
}
xi <- rep(NA,length(observed))
for(i in control$range){
dati <- dat[1:i,]
dati$observed[i] <- NA
dati$state[i] <- 0
xi[i] <- bodaFit(dat=dati, samplingMethod=samplingMethod,
modelformula=modelformula, prior=prior,
alpha=control$alpha, mc.munu=control$mc.munu,
mc.y=control$mc.y,
quantileMethod=control$quantileMethod)
if (useProgressBar) setTxtProgressBar(pb, i)
}
if (useProgressBar) close(pb)
sts@alarm[,1] <- observed > xi
sts@upperbound[,1] <- xi
control$name <- paste('boda(prior=',prior,')',sep='')
sts@control <- control
return(sts[control$range,])
}
bodaFit <- function(dat=dat, modelformula=modelformula,prior=prior,alpha=alpha, mc.munu=mc.munu, mc.y=mc.y,
samplingMethod=samplingMethod,quantileMethod=quantileMethod,...) {
T1 <- nrow(dat)
link <- 1
E <- mean(dat$observed, na.rm=TRUE)
model <- INLA::inla(modelformula,
data=dat,
family='nbinomial',E=E,
control.predictor=list(compute=TRUE,link=link),
control.compute=list(cpo=FALSE,config=TRUE),
control.inla = list(int.strategy = "grid",dz=1,diff.logdens = 10))
if(is.null(model)){
return(qi=NA)
}
if(samplingMethod=='marginals'){
marg <- try(INLA::inla.tmarginal(function(x) x,model$marginals.fitted.values[[T1]]), silent=TRUE)
if(inherits(marg,'try-error')){
return(qi=NA)
}
mT1 <- try(INLA::inla.rmarginal(n=mc.munu,marg), silent=TRUE)
if(inherits(mT1,'try-error')){
return(qi=NA)
}
mtheta <- model$internal.marginals.hyperpar[[1]]
theta <- exp(INLA::inla.rmarginal(n=mc.munu,mtheta))
if(inherits(theta,'try-error')){
return(qi=NA)
}
}
if (samplingMethod=='joint'){
jointSample <- INLA::inla.posterior.sample(mc.munu,model, intern = TRUE)
theta <- exp(t(sapply(jointSample, function(x) x$hyperpar[[1]])))
mT1 <- exp(t(sapply(jointSample, function(x) x$latent[[T1]])))
yT1 <- rnbinom(n=mc.y*mc.munu,size=theta,mu=E*mT1)
}
if(quantileMethod=="MC"){
yT1 <- numeric(mc.munu*mc.y)
idx <- seq(mc.y)
for(j in seq(mc.munu)) {
idx <- idx + mc.y
yT1[idx] <- rnbinom(n=mc.y,size=theta[j],mu=E*mT1[j])
}
qi <- quantile(yT1, probs=(1-alpha), type=3, na.rm=TRUE)
}
if(quantileMethod=="MM"){
mT1 <- mT1[mT1>=0&theta>0]
theta <- theta[mT1>=0&theta>0]
minBracket <- qnbinom(p=(1-alpha),
mu=E*min(mT1),
size=max(theta))
maxBracket <- qnbinom(p=(1-alpha),
mu=E*max(mT1),
size=min(theta))
qi <- qmix(p=(1-alpha), mu=E*mT1, size=theta,
bracket=c(minBracket, maxBracket))
}
return(qi)
} |
searchResultsSummaryTable <-
function(aSearchResults) {
K <- length(aSearchResults)
seedGenes <- aSearchResults[[1]]$signatureName
for(k in 2:K)
seedGenes <- c(seedGenes, aSearchResults[[k]]$signatureName)
tableOfSignatures <- matrix("", ncol = 5, nrow = K)
rownames(tableOfSignatures) <- seedGenes
colnames(tableOfSignatures) <- c("length", "tValue", "log(pValue)", "tValue improvement", "signature")
for (k in 1:K)
tableOfSignatures[k, ] <- c(length(aSearchResults[[k]]$signature),
round(aSearchResults[[k]]$tValue, 3),
round(log(aSearchResults[[k]]$pValue)/log(10), 3),
round((1 - aSearchResults[[k]]$startingTValue/aSearchResults[[k]]$tValue) * 100, 2),
paste(aSearchResults[[k]]$signature, collapse = ", "))
tableOfSignatures <- as.data.frame(tableOfSignatures)
return(tableOfSignatures)
} |
PathwiseCoordinateOptimization <- function(y, X, beta=NULL, lambda=0.1, tol=0.000001, maxiter=1000, show=FALSE){
n = dim(X)[1]
p = dim(X)[2]
if (is.null(beta)) beta=as.matrix(ginv(t(X) %*% X) %*% t(X) %*% y)
error=sum(beta^2)
iter=0
while ((error>tol) & (iter<maxiter)){
iter=iter+1
betaold=beta
for (j in 1:p){
r = y - X[,-j] %*% beta[-j,]
b= sum(r * X[,j])/n
beta[j,]=0
if (b >0 & lambda < abs(b)) beta[j,]=b-lambda
if (b <0 & lambda < abs(b)) beta[j,]=b+lambda
}
error=sum((beta-betaold)^2)
if (show)
print(c(iter,error))
}
return(beta)
} |
setMethod ('show' , 'Extent',
function(object) {
cat('class :' , class(object), '\n')
cat('xmin :' , xmin(object), '\n')
cat('xmax :' , xmax(object), '\n')
cat('ymin :' , ymin(object), '\n')
cat('ymax :' , ymax(object), '\n')
}
)
setMethod ('show' , 'BasicRaster',
function(object) {
cat('class :' , class(object), '\n')
cat('dimensions : ', nrow(object), ', ', ncol(object), ', ', ncell(object),' (nrow, ncol, ncell)\n', sep="" )
cat('resolution : ' , xres(object), ', ', yres(object), ' (x, y)\n', sep="")
cat('extent : ' , object@extent@xmin, ', ', object@extent@xmax, ', ', object@extent@ymin, ', ', object@extent@ymax, ' (xmin, xmax, ymin, ymax)\n', sep="")
cat('crs :' , proj4string(object), '\n')
}
)
setMethod ('show' , 'RasterLayer',
function(object) {
cat('class :' , class(object), '\n')
if (rotated(object)) {
cat('rotated : TRUE\n')
}
if (nbands(object) > 1) {
cat('band :' , bandnr(object), ' (of ', nbands(object), ' bands)\n')
}
cat('dimensions : ', nrow(object), ', ', ncol(object), ', ', ncell(object),' (nrow, ncol, ncell)\n', sep="" )
cat('resolution : ' , xres(object), ', ', yres(object), ' (x, y)\n', sep="")
cat('extent : ' , object@extent@xmin, ', ', object@extent@xmax, ', ', object@extent@ymin, ', ', object@extent@ymax, ' (xmin, xmax, ymin, ymax)\n', sep="")
cat('crs :' , proj4string(object), '\n')
if (hasValues(object)) {
fd <- object@data@fromdisk
if (fd) {
cat('source :', basename(filename(object)), '\n')
} else {
cat('source : memory\n')
}
cat('names :', names(object), '\n')
if (object@data@haveminmax) {
cat('values : ', minValue(object), ', ', maxValue(object), ' (min, max)\n', sep="")
}
}
if (is.factor(object)) {
x <- object@data@attributes[[1]]
nc <- NCOL(x)
maxnl <- 12
if (nc > maxnl) {
x <- x[, 1:maxnl]
}
if (nrow(x) > 5) {
cat('attributes :\n')
r <- x[c(1, nrow(x)), ,drop=FALSE]
for (j in 1:ncol(r)) {
r[is.numeric(r[,j]) & !is.finite(r[,j]), j] <- NA
}
r <- data.frame(x=c('from:','to :'), r)
a <- colnames(x)
colnames(r) <- c(' fields :', a)
colnames(r) <- c('', a)
rownames(r) <- NULL
if (nc > maxnl) {
r <- cbind(r, '...'=rbind('...', '...'))
}
print(r, row.names=FALSE)
} else {
cat('attributes :\n')
print(x, row.names=FALSE)
}
} else {
z <- getZ(object)
if (length(z) > 0) {
name <- names(object@z)
if (is.null(name)) name <- 'z-value'
name <- paste(sprintf("%-11s", name), ':', sep='')
cat(name, as.character(z[1]), '\n')
}
if (object@file@driver == 'netcdf') {
z <- attr(object@data, 'zvar')
if (!is.null(z)) { cat('zvar :', z, '\n') }
z <- attr(object@data, 'level')
if (!is.null(z)) {
if (z>0) {
cat('level :', z, '\n')
}
}
}
}
cat ('\n')
}
)
setMethod ('show' , 'RasterBrick',
function ( object ) {
cat ('class :' , class ( object ) , '\n')
if (rotated(object)) {
cat('rotated : TRUE\n')
}
mnr <- 15
nl <- nlayers(object)
cat ('dimensions : ', nrow(object), ', ', ncol(object), ', ', ncell(object), ', ', nl, ' (nrow, ncol, ncell, nlayers)\n', sep="" )
cat ('resolution : ' , xres(object), ', ', yres(object), ' (x, y)\n', sep="")
cat ('extent : ' , object@extent@xmin, ', ', object@extent@xmax, ', ', object@extent@ymin, ', ', object@extent@ymax, ' (xmin, xmax, ymin, ymax)\n', sep="")
cat ('crs :' , proj4string(object), '\n')
ln <- names(object)
if (nl > mnr) {
ln <- c(ln[1:mnr], '...')
}
if (hasValues(object)) {
fd <- object@data@fromdisk
if (fd) {
cat('source :', basename(filename(object)), '\n')
} else {
cat('source : memory\n')
}
if (object@data@haveminmax) {
minv <- format(minValue(object))
maxv <- format(maxValue(object))
minv <- gsub('Inf', '?', minv)
maxv <- gsub('-Inf', '?', maxv)
if (nl > mnr) {
minv <- c(minv[1:mnr], '...')
maxv <- c(maxv[1:mnr], '...')
}
n <- nchar(ln)
if (nl > 5) {
b <- n > 26
if (any(b)) {
mid <- floor(n/2)
ln[b] <- paste(substr(ln[b], 1, 9), '//', substr(ln[b], nchar(ln[b])-9, nchar(ln[b])), sep='')
}
}
w <- pmax(nchar(ln), nchar(minv), nchar(maxv))
m <- rbind(ln, minv, maxv)
for (i in 1:ncol(m)) {
m[,i] <- format(m[,i], width=w[i], justify="right")
}
cat('names :', paste(m[1,], collapse=', '), '\n')
cat('min values :', paste(m[2,], collapse=', '), '\n')
cat('max values :', paste(m[3,], collapse=', '), '\n')
} else {
cat('names :', paste(ln, collapse=', '), '\n')
}
}
z <- getZ(object)
if (length(z) > 0) {
name <- names(object@z)
if (is.null(name)) name <- 'z-value'
name <- paste(sprintf("%-11s", name), ':', sep='')
if (length(z) < mnr) {
cat(name, paste(as.character(z), collapse=', '), '\n')
} else {
cat(name, paste(as.character(range(z)), collapse=', '), '(min, max)\n')
}
}
if (object@file@driver == 'netcdf') {
z <- attr(object@data, 'zvar')
if (!is.null(z)) { cat('varname :', z, '\n') }
z <- attr(object@data, 'level')
if (!is.null(z)) {
if (z>0) {
cat('level :', z, '\n')
}
}
}
cat ('\n')
}
)
setMethod ('show' , 'RasterStack',
function ( object ) {
cat ('class :' , class ( object ) , '\n')
if (rotated(object)) {
cat('rotated : TRUE\n')
}
mnr <- 15
if (filename(object) != '') {
cat ('filename :' , filename(object), '\n')
}
nl <- nlayers(object)
if (nl == 0) {
cat ('nlayers :' , nl, '\n')
} else {
cat ('dimensions : ', nrow(object), ', ', ncol(object), ', ', ncell(object), ', ', nl, ' (nrow, ncol, ncell, nlayers)\n', sep="" )
cat ('resolution : ' , xres(object), ', ', yres(object), ' (x, y)\n', sep="")
cat ('extent : ' , object@extent@xmin, ', ', object@extent@xmax, ', ', object@extent@ymin, ', ', object@extent@ymax, ' (xmin, xmax, ymin, ymax)\n', sep="")
cat ('crs :' , proj4string(object), '\n')
ln <- names(object)
if (nl > mnr) {
ln <- c(ln[1:mnr], '...')
}
n <- nchar(ln)
if (nl > 5) {
b <- n > 26
if (any(b)) {
ln[b] <- paste(substr(ln[b], 1, 9), '//', substr(ln[b], nchar(ln[b])-9, nchar(ln[b])), sep='')
}
}
minv <- minValue(object)
if (all(is.na(minv))) {
cat('names :', paste(ln, collapse=', '), '\n')
} else {
minv <- format(minv)
maxv <- format(maxValue(object))
minv <- gsub('NA', '?', minv)
maxv <- gsub('NA', '?', maxv)
if (nl > mnr) {
minv <- c(minv[1:mnr], '...')
maxv <- c(maxv[1:mnr], '...')
}
w <- pmax(nchar(ln), nchar(minv), nchar(maxv))
m <- rbind(ln, minv, maxv)
for (i in 1:ncol(m)) {
m[,i] <- format(m[,i], width=w[i], justify="right")
}
cat('names :', paste(m[1,], collapse=', '), '\n')
cat('min values :', paste(m[2,], collapse=', '), '\n')
cat('max values :', paste(m[3,], collapse=', '), '\n')
}
}
z <- getZ(object)
if (length(z) > 0) {
name <- names(object@z)
if (is.null(name)) name <- 'z-value'
if (name == '') name <- 'z-value'
name <- paste(sprintf("%-12s", name), ':', sep='')
if (length(z) < mnr) {
cat(name, paste(as.character(z), collapse=', '), '\n')
} else {
z <- range(z)
cat(name, paste(as.character(z), collapse=' - '), '(range)\n')
}
}
cat ('\n')
}
)
setMethod ('show' , '.RasterList',
function(object) {
cat('class :' , class(object), '\n')
cat('length : ', length(object), '\n', sep="" )
}
) |
expected <- eval(parse(text="c(1, 1, 1, 2, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1)"));
test(id=0, code={
argv <- eval(parse(text="list(1, c(FALSE, FALSE, FALSE, TRUE, FALSE, TRUE, TRUE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, FALSE, FALSE))"));
do.call(`+`, argv);
}, o=expected); |
testthat::test_that("Packages are installed", {
testthat::skip_on_cran()
testthat::skip_on_ci()
testthat::skip_on_travis()
try(utils::remove.packages("knitr"))
modules::depend("knitr", "1.0.3", repos = "https://cloud.r-project.org")
testthat::expect_true(require("knitr"))
})
testthat::test_that("Throw errors", {
testthat::skip_on_cran()
testthat::skip_on_ci()
testthat::skip_on_travis()
testthat::expect_is(suppressWarnings(
tmp <- try(modules::depend(
"knitr", "999",
repos = "https://cloud.r-project.org"),
TRUE)
), "try-error")
testthat::expect_true(grepl("package installation failed", tmp))
testthat::expect_is(suppressWarnings(
tmp <- try(modules::depend(
"knitr999", "999",
repos = "https://cloud.r-project.org"),
TRUE)
), "try-error")
testthat::expect_true(grepl("package installation failed", tmp))
}) |
generatePublicMethodParagraph <- function(object_o_1, methods_s) {
beautifier <- beautify()
sig <- sapply(methods_s, function(e) {
s <- getObjectMethodSignature(object_o_1, e)
r <- regexpr('(', s, fixed = TRUE)
paste0(beautifier$bold(substr(s, 1, r[1] - 1)), beautifier$code(substring(s, r[1])))
})
paste('\\cr', generateParagraphCR(paste(documentationSymbols()$black_square, sig)))
} |
regplot.rma <- function(x, mod, pred=TRUE, ci=TRUE, pi=FALSE, shade=TRUE,
xlim, ylim, predlim, olim, xlab, ylab, at, digits=2L,
transf, atransf, targs, level=x$level,
pch=21, psize, plim=c(0.5,3), col="black", bg="darkgray",
grid=FALSE, refline, label=FALSE, offset=c(1,1), labsize=1,
lcol, lwd, lty, legend=FALSE, xvals, ...) {
mstyle <- .get.mstyle("crayon" %in% .packages())
.chkclass(class(x), must="rma", notav=c("rma.mh","rma.peto"))
if (x$int.only)
stop(mstyle$stop("Plot not applicable to intercept-only models."))
na.act <- getOption("na.action")
on.exit(options(na.action=na.act))
if (!is.element(na.act, c("na.omit", "na.exclude", "na.fail", "na.pass")))
stop(mstyle$stop("Unknown 'na.action' specified under options()."))
if (missing(transf))
transf <- FALSE
if (missing(atransf))
atransf <- FALSE
transf.char <- deparse(substitute(transf))
atransf.char <- deparse(substitute(atransf))
if (is.function(transf) && is.function(atransf))
stop(mstyle$stop("Use either 'transf' or 'atransf' to specify a transformation (not both)."))
if (missing(targs))
targs <- NULL
if (missing(ylab))
ylab <- .setlab(x$measure, transf.char, atransf.char, gentype=1, short=FALSE)
if (missing(at))
at <- NULL
if (missing(psize))
psize <- NULL
if (missing(label))
label <- NULL
if (is.logical(grid))
gridcol <- "gray"
if (is.character(grid)) {
gridcol <- grid
grid <- TRUE
}
if (is.logical(shade))
shadecol <- c("gray85", "gray95")
if (is.character(shade)) {
if (length(shade) == 1L)
shade <- c(shade, shade)
shadecol <- shade
shade <- TRUE
}
if (inherits(pred, "list.rma")) {
addpred <- TRUE
if (missing(xvals))
stop(mstyle$stop("Need to specify the 'xvals' argument."))
if (length(xvals) != length(pred$pred))
stop(mstyle$stop(paste0("Length of the 'xvals' argument (", length(xvals), ") does not correspond to the number of predicted values (", length(pred$pred), ").")))
} else {
addpred <- pred
}
if (missing(refline))
refline <- NA
if (missing(lcol)) {
lcol <- c("black", "black", "black", "gray40")
} else {
if (length(lcol) == 1L)
lcol <- rep(lcol, 4)
if (length(lcol) == 2L)
lcol <- c(lcol[c(1,2,2)], "gray40")
if (length(lcol) == 3L)
lcol <- c(lcol, "gray40")
}
if (missing(lty)) {
lty <- c("solid", "dashed", "dotted", "solid")
} else {
if (length(lty) == 1L)
lty <- rep(lty, 4)
if (length(lty) == 2L)
lty <- c(lty[c(1,2,2)], "solid")
if (length(lty) == 3L)
lty <- c(lty, "solid")
}
if (missing(lwd)) {
lwd <- c(3,1,1,2)
} else {
if (length(lwd) == 1L)
lwd <- rep(lwd, 4)
if (length(lwd) == 2L)
lwd <- c(lwd[c(1,2,2)], 2)
if (length(lwd) == 3L)
lwd <- c(lwd, 2)
}
level <- ifelse(level == 0, 1, ifelse(level >= 1, (100-level)/100, ifelse(level > .5, 1-level, level)))
if (missing(mod)) {
if (x$p == 2L && x$int.incl) {
mod <- 2
} else {
stop(mstyle$stop("Need to specify the 'mod' argument."))
}
}
if (length(mod) != 1L)
stop(mstyle$stop("Can only specify a single variable via argument 'mod'."))
if (!(is.character(mod) || is.numeric(mod)))
stop(mstyle$stop("Argument 'mod' must either be a character string or a scalar."))
if (is.character(mod)) {
mod.pos <- charmatch(mod, colnames(x$X))
if (is.na(mod.pos))
stop(mstyle$stop("Argument 'mod' must be the name of a moderator variable in the model."))
if (mod.pos == 0L)
stop(mstyle$stop("No ambiguous match found for variable name specified via 'mod' argument."))
} else {
mod.pos <- round(mod)
if (mod.pos < 1 | mod.pos > x$p)
stop(mstyle$stop("Specified position of 'mod' variable does not exist in the model."))
}
yi <- c(x$yi.f)
vi <- x$vi.f
X <- x$X.f
slab <- x$slab
ids <- x$ids
options(na.action = "na.pass")
weights <- try(weights(x), silent=TRUE)
if (inherits(weights, "try-error"))
weights <- rep(1, x$k.f)
options(na.action = na.act)
if (length(pch) == 1L)
pch <- rep(pch, x$k.all)
if (length(pch) != x$k.all)
stop(mstyle$stop(paste0("Length of the 'pch' argument (", length(pch), ") does not correspond to the size of the original dataset (", x$k.all, ").")))
if (!is.null(x$subset))
pch <- pch[x$subset]
psize.char <- FALSE
if (!is.null(psize)) {
if (is.character(psize)) {
psize <- match.arg(psize, c("seinv", "vinv"))
if (psize == "seinv") {
psize <- 1 / sqrt(vi)
} else {
psize <- 1 / vi
}
psize.char <- TRUE
} else {
if (length(psize) == 1L)
psize <- rep(psize, x$k.all)
if (length(psize) != x$k.all)
stop(mstyle$stop(paste0("Length of the 'psize' argument (", length(psize), ") does not correspond to the size of the original dataset (", x$k.all, ").")))
if (!is.null(x$subset))
psize <- psize[x$subset]
}
}
if (length(col) == 1L)
col <- rep(col, x$k.all)
if (length(col) != x$k.all)
stop(mstyle$stop(paste0("Length of the 'col' argument (", length(col), ") does not correspond to the size of the original dataset (", x$k.all, ").")))
if (!is.null(x$subset))
col <- col[x$subset]
if (length(bg) == 1L)
bg <- rep(bg, x$k.all)
if (length(bg) != x$k.all)
stop(mstyle$stop(paste0("Length of the 'bg' argument (", length(bg), ") does not correspond to the size of the original dataset (", x$k.all, ").")))
if (!is.null(x$subset))
bg <- bg[x$subset]
if (!is.null(label)) {
if (is.character(label)) {
label <- match.arg(label, c("all", "ciout", "piout"))
if (label == "all") {
label <- rep(TRUE, x$k.all)
if (!is.null(x$subset))
label <- label[x$subset]
}
} else if (is.logical(label)) {
if (!is.logical(label))
stop(mstyle$stop("Argument 'label' must be a logical vector (or a single character string)."))
if (length(label) == 1L)
label <- rep(label, x$k.all)
if (length(label) != x$k.all)
stop(mstyle$stop(paste0("Length of the 'label' argument (", length(label), ") does not correspond to the size of the original dataset (", x$k.all, ").")))
if (!is.null(x$subset))
label <- label[x$subset]
} else if (is.numeric(label)) {
label <- round(label)
label <- seq(x$k.all) %in% label
}
}
has.na <- is.na(yi) | is.na(vi) | apply(is.na(X), 1, any)
not.na <- !has.na
if (any(has.na)) {
yi <- yi[not.na]
vi <- vi[not.na]
X <- X[not.na,,drop=FALSE]
slab <- slab[not.na]
ids <- ids[not.na]
weights <- weights[not.na]
pch <- pch[not.na]
psize <- psize[not.na]
col <- col[not.na]
bg <- bg[not.na]
if (!is.character(label))
label <- label[not.na]
}
k <- length(yi)
xi <- X[,mod.pos]
if (inherits(pred, "list.rma")) {
xs <- xvals
ci.lb <- pred$ci.lb
ci.ub <- pred$ci.ub
if (is.null(pred$pi.lb) || anyNA(pred$pi.lb)) {
pi.lb <- pred$ci.lb
pi.ub <- pred$ci.ub
if (pi)
warning(mstyle$warning("Object passed to 'pred' argument does not contain prediction interval information."), call.=FALSE)
pi <- FALSE
} else {
pi.lb <- pred$pi.lb
pi.ub <- pred$pi.ub
}
pred <- pred$pred
if (!is.null(label) && is.character(label) && label %in% c("ciout", "piout")) {
warning(mstyle$stop("Cannot label points based on the confidence/prediction interval when passing an object to 'pred'."))
label <- NULL
}
yi.pred <- NULL
yi.ci.lb <- NULL
yi.ci.ub <- NULL
yi.pi.lb <- NULL
yi.pi.ub <- NULL
} else {
if (!missing(xvals)) {
xs <- xvals
len <- length(xs)
predlim <- range(xs)
} else {
len <- 1000
if (missing(predlim)) {
range.xi <- max(xi) - min(xi)
predlim <- c(min(xi) - .04*range.xi, max(xi) + .04*range.xi)
xs <- seq(predlim[1], predlim[2], length=len)
} else {
if (length(predlim) != 2L)
stop(mstyle$stop("Argument 'predlim' must be of length 2."))
xs <- seq(predlim[1], predlim[2], length=len)
}
}
Xnew <- rbind(colMeans(X))[rep(1,len),,drop=FALSE]
Xnew[,mod.pos] <- xs
if (x$int.incl)
Xnew <- Xnew[,-1,drop=FALSE]
tmp <- predict(x, newmods=Xnew, level=level)
pred <- tmp$pred
ci.lb <- tmp$ci.lb
ci.ub <- tmp$ci.ub
if (is.null(tmp$pi.lb) || anyNA(tmp$pi.lb)) {
pi.lb <- ci.lb
pi.ub <- ci.ub
if (pi)
warning(mstyle$warning("Cannot draw prediction interval for the given model."), call.=FALSE)
pi <- FALSE
} else {
pi.lb <- tmp$pi.lb
pi.ub <- tmp$pi.ub
}
Xnew <- rbind(colMeans(X))[rep(1,k),,drop=FALSE]
Xnew[,mod.pos] <- xi
if (x$int.incl)
Xnew <- Xnew[,-1,drop=FALSE]
tmp <- predict(x, newmods=Xnew, level=level)
yi.pred <- tmp$pred
yi.ci.lb <- tmp$ci.lb
yi.ci.ub <- tmp$ci.ub
if (is.null(tmp$pi.lb) || anyNA(tmp$pi.lb)) {
yi.pi.lb <- yi.ci.lb
yi.pi.ub <- yi.ci.ub
if (!is.null(label) && is.character(label) && label == "piout") {
warning(mstyle$warning("Cannot label points based on the prediction interval for the given model."), call.=FALSE)
label <- NULL
}
} else {
yi.pi.lb <- tmp$pi.lb
yi.pi.ub <- tmp$pi.ub
}
}
if (is.function(transf)) {
if (is.null(targs)) {
yi <- sapply(yi, transf)
pred <- sapply(pred, transf)
ci.lb <- sapply(ci.lb, transf)
ci.ub <- sapply(ci.ub, transf)
pi.lb <- sapply(pi.lb, transf)
pi.ub <- sapply(pi.ub, transf)
yi.pred <- sapply(yi.pred, transf)
yi.ci.lb <- sapply(yi.ci.lb, transf)
yi.ci.ub <- sapply(yi.ci.ub, transf)
yi.pi.lb <- sapply(yi.pi.lb, transf)
yi.pi.ub <- sapply(yi.pi.ub, transf)
} else {
yi <- sapply(yi, transf, targs)
pred <- sapply(pred, transf, targs)
ci.lb <- sapply(ci.lb, transf, targs)
ci.ub <- sapply(ci.ub, transf, targs)
pi.lb <- sapply(pi.lb, transf, targs)
pi.ub <- sapply(pi.ub, transf, targs)
yi.pred <- sapply(yi.pred, transf, targs)
yi.ci.lb <- sapply(yi.ci.lb, transf, targs)
yi.ci.ub <- sapply(yi.ci.ub, transf, targs)
yi.pi.lb <- sapply(yi.pi.lb, transf, targs)
yi.pi.ub <- sapply(yi.pi.ub, transf, targs)
}
}
tmp <- .psort(ci.lb, ci.ub)
ci.lb <- tmp[,1]
ci.ub <- tmp[,2]
tmp <- .psort(pi.lb, pi.ub)
pi.lb <- tmp[,1]
pi.ub <- tmp[,2]
if (!missing(olim)) {
if (length(olim) != 2L)
stop(mstyle$stop("Argument 'olim' must be of length 2."))
olim <- sort(olim)
yi[yi < olim[1]] <- olim[1]
yi[yi > olim[2]] <- olim[2]
pred[pred < olim[1]] <- olim[1]
pred[pred > olim[2]] <- olim[2]
ci.lb[ci.lb < olim[1]] <- olim[1]
ci.ub[ci.ub > olim[2]] <- olim[2]
pi.lb[pi.lb < olim[1]] <- olim[1]
pi.ub[pi.ub > olim[2]] <- olim[2]
}
if (is.null(psize) || psize.char) {
if (length(plim) < 2L)
stop(mstyle$stop("Argument 'plim' must be of length 2 or 3."))
if (psize.char) {
wi <- psize
} else {
wi <- sqrt(weights)
}
if (!is.na(plim[1]) && !is.na(plim[2])) {
rng <- max(wi, na.rm=TRUE) - min(wi, na.rm=TRUE)
if (rng <= .Machine$double.eps^0.5) {
psize <- rep(1, k)
} else {
psize <- (wi - min(wi, na.rm=TRUE)) / rng
psize <- (psize * (plim[2] - plim[1])) + plim[1]
}
}
if (is.na(plim[1]) && !is.na(plim[2])) {
psize <- wi / max(wi, na.rm=TRUE) * plim[2]
if (length(plim) == 3L)
psize[psize <= plim[3]] <- plim[3]
}
if (!is.na(plim[1]) && is.na(plim[2])) {
psize <- wi / min(wi, na.rm=TRUE) * plim[1]
if (length(plim) == 3L)
psize[psize >= plim[3]] <- plim[3]
}
if (all(is.na(psize)))
psize <- rep(1, k)
}
if (missing(xlab))
xlab <- colnames(X)[mod.pos]
if (!is.expression(xlab) && xlab == "")
xlab <- "Moderator"
if (missing(xlim)) {
xlim <- range(xi)
} else {
if (length(xlim) != 2L)
stop(mstyle$stop("Argument 'xlim' must be of length 2."))
}
if (missing(ylim)) {
if (pi) {
ylim <- range(c(yi, pi.lb, pi.ub))
} else if (ci) {
ylim <- range(c(yi, ci.lb, ci.ub))
} else {
ylim <- range(yi)
}
} else {
if (length(ylim) != 2L)
stop(mstyle$stop("Argument 'ylim' must be of length 2."))
}
if (!is.null(at)) {
ylim[1] <- min(c(ylim[1], at), na.rm=TRUE)
ylim[2] <- max(c(ylim[2], at), na.rm=TRUE)
}
plot(NA, xlab=xlab, ylab=ylab, xlim=xlim, ylim=ylim, yaxt="n", ...)
if (is.null(at)) {
at <- axTicks(side=2)
} else {
at <- at[at > par("usr")[3]]
at <- at[at < par("usr")[4]]
}
at.lab <- at
if (is.function(atransf)) {
if (is.null(targs)) {
at.lab <- formatC(sapply(at.lab, atransf), digits=digits[[1]], format="f", drop0trailing=is.integer(digits[[1]]))
} else {
at.lab <- formatC(sapply(at.lab, atransf, targs), digits=digits[[1]], format="f", drop0trailing=is.integer(digits[[1]]))
}
} else {
at.lab <- formatC(at.lab, digits=digits[[1]], format="f", drop0trailing=is.integer(digits[[1]]))
}
axis(side=2, at=at, labels=at.lab, ...)
if (shade) {
if (pi)
polygon(c(xs, rev(xs)), c(pi.lb, rev(pi.ub)), border=NA, col=shadecol[2], ...)
if (ci)
polygon(c(xs, rev(xs)), c(ci.lb, rev(ci.ub)), border=NA, col=shadecol[1], ...)
}
if (ci) {
lines(xs, ci.lb, col=lcol[2], lty=lty[2], lwd=lwd[2], ...)
lines(xs, ci.ub, col=lcol[2], lty=lty[2], lwd=lwd[2], ...)
}
if (pi) {
lines(xs, pi.lb, col=lcol[3], lty=lty[3], lwd=lwd[3], ...)
lines(xs, pi.ub, col=lcol[3], lty=lty[3], lwd=lwd[3], ...)
}
if (.isTRUE(grid))
grid(col=gridcol)
abline(h=refline, col=lcol[4], lty=lty[4], lwd=lwd[4], ...)
if (addpred)
lines(xs, pred, col=lcol[1], lty=lty[1], lwd=lwd[1], ...)
box(...)
order.vec <- order(psize, decreasing=TRUE)
xi.o <- xi[order.vec]
yi.o <- yi[order.vec]
pch.o <- pch[order.vec]
psize.o <- psize[order.vec]
col.o <- col[order.vec]
bg.o <- bg[order.vec]
points(x=xi.o, y=yi.o, pch=pch.o, col=col.o, bg=bg.o, cex=psize.o, ...)
if (!is.null(label)) {
if (!is.null(label) && is.character(label) && label %in% c("ciout", "piout")) {
if (label == "ciout") {
label <- yi < yi.ci.lb | yi > yi.ci.ub
label[xi < predlim[1] | xi > predlim[2]] <- FALSE
} else {
label <- yi < yi.pi.lb | yi > yi.pi.ub
label[xi < predlim[1] | xi > predlim[2]] <- FALSE
}
}
yrange <- ylim[2] - ylim[1]
if (length(offset) == 2L)
offset <- c(offset[1]/100 * yrange, offset[2]/100 * yrange, 1)
if (length(offset) == 1L)
offset <- c(0, offset/100 * yrange, 1)
for (i in which(label)) {
if (isTRUE(yi[i] > yi.pred[i])) {
text(xi[i], yi[i] + offset[1] + offset[2]*psize[i]^offset[3], slab[i], cex=labsize, ...)
} else {
text(xi[i], yi[i] - offset[1] - offset[2]*psize[i]^offset[3], slab[i], cex=labsize, ...)
}
}
} else {
label <- rep(FALSE, k)
}
if (is.logical(legend) && isTRUE(legend))
lpos <- "topright"
if (is.character(legend)) {
lpos <- legend
legend <- TRUE
}
if (legend) {
pch.l <- NULL
col.l <- NULL
bg.l <- NULL
lty.l <- NULL
lwd.l <- NULL
tcol.l <- NULL
ltxt <- NULL
if (length(unique(pch)) == 1L && length(unique(col)) == 1L && length(unique(bg)) == 1L) {
pch.l <- NA
col.l <- NA
bg.l <- NA
lty.l <- "blank"
lwd.l <- NA
tcol.l <- "white"
ltxt <- "Studies"
}
if (addpred) {
pch.l <- c(pch.l, NA)
col.l <- c(col.l, NA)
bg.l <- c(bg.l, NA)
lty.l <- c(lty.l, NA)
lwd.l <- c(lwd.l, NA)
tcol.l <- c(tcol.l, "white")
ltxt <- c(ltxt, "Regression Line")
}
if (ci) {
pch.l <- c(pch.l, 22)
col.l <- c(col.l, lcol[2])
bg.l <- c(bg.l, shadecol[1])
lty.l <- c(lty.l, NA)
lwd.l <- c(lwd.l, 1)
tcol.l <- c(tcol.l, "white")
ltxt <- c(ltxt, paste0(round(100*(1-level), digits[[1]]), "% Confidence Interval"))
}
if (pi) {
pch.l <- c(pch.l, 22)
col.l <- c(col.l, lcol[3])
bg.l <- c(bg.l, shadecol[2])
lty.l <- c(lty.l, NA)
lwd.l <- c(lwd.l, 1)
tcol.l <- c(tcol.l, "white")
ltxt <- c(ltxt, paste0(round(100*(1-level), digits[[1]]), "% Prediction Interval"))
}
if (length(ltxt) >= 1L)
legend(lpos, inset=.01, bg="white", pch=pch.l, col=col.l, pt.bg=bg.l, lty=lty.l, lwd=lwd.l, text.col=tcol.l, pt.cex=1.5, seg.len=3, legend=ltxt)
pch.l <- NULL
col.l <- NULL
bg.l <- NULL
lty.l <- NULL
lwd.l <- NULL
tcol.l <- NULL
ltxt <- NULL
if (length(unique(pch)) == 1L && length(unique(col)) == 1L && length(unique(bg)) == 1L) {
pch.l <- pch[1]
col.l <- col[1]
bg.l <- bg[1]
lty.l <- "blank"
lwd.l <- 1
tcol.l <- "black"
ltxt <- "Studies"
}
if (addpred) {
pch.l <- c(pch.l, NA)
col.l <- c(col.l, lcol[1])
bg.l <- c(bg.l, NA)
lty.l <- c(lty.l, lty[1])
lwd.l <- c(lwd.l, lwd[1])
tcol.l <- c(tcol.l, "black")
ltxt <- c(ltxt, "Regression Line")
}
if (ci) {
pch.l <- c(pch.l, NA)
col.l <- c(col.l, lcol[2])
bg.l <- c(bg.l, NA)
lty.l <- c(lty.l, lty[2])
lwd.l <- c(lwd.l, lwd[2])
tcol.l <- c(tcol.l, "black")
ltxt <- c(ltxt, paste0(round(100*(1-level), digits[[1]]), "% Confidence Interval"))
}
if (pi) {
pch.l <- c(pch.l, NA)
col.l <- c(col.l, lcol[3])
bg.l <- c(bg.l, NA)
lty.l <- c(lty.l, lty[3])
lwd.l <- c(lwd.l, lwd[3])
tcol.l <- c(tcol.l, "black")
ltxt <- c(ltxt, paste0(round(100*(1-level), digits[[1]]), "% Prediction Interval"))
}
if (length(ltxt) >= 1L)
legend(lpos, inset=.01, bg=NA, pch=pch.l, col=col.l, pt.bg=bg.l, lty=lty.l, lwd=lwd.l, text.col=tcol.l, pt.cex=1.5, seg.len=3, legend=ltxt)
}
sav <- data.frame(slab, ids, xi, yi, pch, psize, col, bg, label, order=order.vec)
class(sav) <- "regplot"
invisible(sav)
} |
`ddst.uniform.Nk` <-
function(x, base = ddst.base.legendre, Dmax = 10) {
n = length(x)
maxN = max(min(Dmax, n-2, 20),1)
coord = numeric(maxN)
for (j in 1:maxN)
coord[j] = ddst.phi(x, j, base)
coord= cumsum(coord^2*n)
} |
cma.mix <-
function(dat,model.type=c("single","multilevel"),method=c("HL","TS","HL-TS"),delta=NULL,sens.plot=FALSE,
interval=c(-0.90,0.90),tol=10e-4,max.itr=50,conf.level=0.95,optimizer=c("bobyqa","Nelder_Mead","optimx"),
mix.pkg=c("lme4","nlme"),random.indep=TRUE,random.var.equal=TRUE,u.int=FALSE,Sigma.update=FALSE,
var.constraint=FALSE,random.var.update=TRUE,logLik.type=c("logLik","HL"),
legend.pos="topright",xlab=expression(delta),ylab=expression(hat(AB)),
cex.lab=1,cex.axis=1,lgd.cex=1,lgd.pt.cex=1,plot.delta0=TRUE,...)
{
if(model.type[1]=="single")
{
if(is.null(delta))
{
delta<-0
}
re<-cma.uni.delta(dat,delta=delta,conf.level=conf.level)
if(sens.plot)
{
re.sens<-cma.uni.sens(dat,conf.level=conf.level)
cma.uni.plot(re.sens,re,delta=NULL,legend.pos=legend.pos,xlab=xlab,ylab=ylab,
cex.lab=cex.lab,cex.axis=cex.axis,lgd.cex=lgd.cex,lgd.pt.cex=1,plot.delta0=plot.delta0,...)
}
}else
if(model.type[1]=="multilevel")
{
if(is.null(delta))
{
if(method[1]=="TS")
{
system.time(re1<-optimize(cma.uni.mix.dhl,interval=interval,dat=dat,tol=tol,max.itr=0,optimizer=optimizer,
mix.pkg=mix.pkg,random.indep=random.indep,random.var.equal=random.var.equal,
u.int=u.int,Sigma.update=Sigma.update,logLik.type=logLik.type,maximum=TRUE))
re<-cma.uni.mix(dat,delta=re1$maximum,conf.level=conf.level,optimizer=optimizer,mix.pkg=mix.pkg,
random.indep=random.indep,random.var.equal=random.var.equal,u.int=u.int)
}else
{
system.time(re1<-optimize(cma.uni.mix.dhl,interval=interval,dat=dat,tol=tol,max.itr=max.itr,optimizer=optimizer,
mix.pkg=mix.pkg,random.indep=random.indep,random.var.equal=random.var.equal,
u.int=u.int,Sigma.update=Sigma.update,var.constraint=var.constraint,
random.var.update=random.var.update,logLik.type=logLik.type,maximum=TRUE))
if(method[1]=="HL-TS")
{
re<-cma.uni.mix(dat,delta=re1$maximum,conf.level=conf.level,optimizer=optimizer,mix.pkg=mix.pkg,
random.indep=random.indep,random.var.equal=random.var.equal,u.int=u.int)
}
if(method[1]=="HL")
{
re<-cma.uni.mix.hl(dat,delta=re1$maximum,tol=tol,max.itr=max.itr,alpha=1-conf.level,random.indep=random.indep,
optimizer=optimizer,mix.pkg=mix.pkg,random.var.equal=random.var.equal,u.int=u.int,
Sigma.update=Sigma.update,var.constraint=var.constraint,random.var.update=random.var.update)
}
}
}else
{
if(method[1]=="TS")
{
re<-cma.uni.mix(dat,delta=delta,conf.level=conf.level,optimizer=optimizer,mix.pkg=mix.pkg,
random.indep=random.indep,random.var.equal=random.var.equal,u.int=u.int)
}
if(method[1]=="HL")
{
re<-cma.uni.mix.hl(dat,delta=delta,tol=tol,max.itr=max.itr,alpha=1-conf.level,random.indep=random.indep,
optimizer=optimizer,mix.pkg=mix.pkg,random.var.equal=random.var.equal,u.int=u.int,
Sigma.update=Sigma.update,var.constraint=var.constraint,random.var.update=random.var.update)
}
}
}
return(re)
if(as.numeric(re$Var.comp[1])<1e-5)
{
warning("The variance of A's random effect is less than 1e-5.")
}
return(re)
if(as.numeric(re$Var.comp[2])<1e-5)
{
warning("The variance of C's random effect is less than 1e-5.")
}
return(re)
if(as.numeric(re$Var.comp[3])<1e-5)
{
warning("The variance of B's random effect is less than 1e-5.")
}
} |
DK_to_SWC <- function(DK,
FUN = c('topp', 'jacobsen', 'jacobsen_soil_prop', 'pepin_5cm', 'pepin', 'roth_org',
'malicki_bd', 'malicki_ths', 'myllys', 'myllys_sphagnum', 'myllys_carex',
'kellner', 'kellner_h2', 'kellner_h3', 'kellner_h4', 'beckwith','yoshikawa_deadmoss',
'yoshikawa_livemoss', 'nagare', 'oleszczuk', 'gs3'),
bd, ths, clay, SOM) {
FUN <- tolower(FUN)
obj <- list()
if(any(FUN == 'topp')) {
swc <- (-5.3*10^-2) + (2.92*10^-2*DK) - (5.5*10^-4 * DK^2) + (4.3*10^-6*DK^3)
obj$Topp <- data.table(DK = DK, SWC = swc, FUN = 'topp')
}
if(any(FUN == 'jacobsen')) {
swc <- (-7.01*10^-2) + (3.47*10^-2*DK) - (11.6*10^-4*DK^2) + (18*10^-6*DK^3)
obj$jacobsen <- data.table(DK = DK, SWC = swc, FUN = 'jacobsen')
}
if(any(FUN == 'jacobsen_soil_prop')) {
if(missing(bd)|missing(clay)|missing(SOM)){
warning('bd, clay are SOM is needed for FUN == "jacobson_soil_prop"!')
}
if(!missing(bd)& !missing(clay) & !missing(SOM)){
swc <- (-3.41* 10^-2) + (3.45*10^-2*DK) - (11.4*10^-4*DK^2) + (17.1*10^-6 * DK^3) -
(3.7*10^-2 * bd) + (7.36*10^-4 * clay) + (47.7*10^-4* SOM)
obj$jacobsen_soil_prop <- data.table(DK = DK, SWC = swc, FUN = 'jacobsen_soil_prop')
}
}
if(any(FUN =='pepin_5cm')) {
swc <- (0.03) + (0.0248*DK) - (-1.48*10^-4*DK^2)
obj$pepin_5cm <- data.table(DK = DK, SWC = swc, FUN = 'pepin_5cm')
}
if(any(FUN =='pepin')) {
swc <- (0.085) + (0.0192*DK) - (-0.95*10^-4*DK^2)
obj$pepin <- data.table(DK = DK, SWC = swc, FUN = 'pepin')
}
if(any(FUN =='roth_org')){
swc <- (-0.0233) + (0.0285*DK ) + (-4.31*10^-4*DK^2) + (3.04*10^-6*DK^3)
obj$roth_org <- data.table(DK = DK, SWC = swc, FUN = 'roth_org')
}
if(any(FUN =='malicki_bd')){
if(missing(bd)){
warning('bd is needed for FUN == "malicki_bd"!')
}
if(!missing(bd)){
swc <- ((sqrt(DK)-0.819-0.168*bd - 0.159*bd^2)/ (7.17+1.18*bd))
obj$malicki_bd <- data.table(DK = DK, SWC = swc, FUN = 'malicki_bd')
}
}
if(any(FUN =='malicki_ths')){
if(missing(ths)){
warning('ths is needed for FUN == "malicki_ths"!')
}
if(!missing(ths)){
swc <- ((sqrt(DK)- 3.47 + (6.22*ths) - (3.82*ths^2))/
(7.01 + 6.89*ths - 7.83*ths^2))
obj$malicki_ths <- data.table(DK = DK, SWC = swc, FUN = 'malicki_ths')
}
}
if(any(FUN =='myllys')){
swc <- (-0.0733) + (0.0417*DK ) + (-8.01*10^-4*DK^2) + (5.56*10^-6*DK^3)
obj$myllys <- data.table(DK = DK, SWC = swc, FUN = 'myllys')
}
if(any(FUN =='myllys_sphagnum')){
swc <- (-0.0830) + (0.0432*DK ) + (-8.53*10^-4*DK^2) + (5.99*10^-6*DK^3)
obj$myllys_sphagnum <- data.table(DK = DK, SWC = swc, FUN = 'myllys_sphagnum')
}
if(any(FUN =='myllys_carex')){
swc <- (-0.0986) + (0.0428*DK ) + (-8.08*10^-4*DK^2) + (5.52*10^-6*DK^3)
obj$myllys_carex <- data.table(DK = DK, SWC = swc, FUN = 'myllys_carex')
}
if(any(FUN == 'kellner')) {
swc <- (3.90*10^-2) + (3.17*10^-2*DK) - (4.50*10^-4*DK^2) + (2.60*10^-6*DK^3)
obj$kellner <- data.table(DK = DK, SWC = swc, FUN = 'kellner')
}
if(any(FUN =='kellner_h2')){
swc <- (-0.061) + (0.029*DK ) + (-4.5*10^-4*DK^2) + (3.0*10^-6*DK^3)
obj$kellner_h2 <- data.table(DK = DK, SWC = swc, FUN = 'kellner_h2')
}
if(any(FUN =='kellner_h3')){
swc <- (0.059) + (0.028*DK ) + (-3.2*10^-4*DK^2) + (1.4*10^-6*DK^3)
obj$kellner_h3 <- data.table(DK = DK, SWC = swc, FUN = 'kellner_h3')
}
if(any(FUN =='kellner_h4')){
swc <- (-0.044) + (0.034*DK ) + (-5.1*10^-4*DK^2) + (3.0*10^-6*DK^3)
obj$kellner_h4 <- data.table(DK = DK, SWC = swc, FUN = 'kellner_h4')
}
if(any(FUN =='beckwith')){
if (any(DK < 29) | any(DK > 75)) {
warning('FUN == "beckwith": DK values out of calibration range!')
}
swc <- (-0.40289) + (0.064591*DK ) + (-12.06*10^-4*DK^2) + (7.92*10^-6*DK^3)
obj$beckwith <- data.table(DK = DK, SWC = swc, FUN = 'beckwith')
}
if(any(FUN =='yoshikawa_deadmoss')){
swc <- (-0.6286) + (0.4337*DK) + (-5.49*10^-2*DK^2) + (0.33*10^-2*DK^3)
obj$yoshikawa_deadmoss <- data.table(DK = DK, SWC = swc, FUN = 'yoshikawa_deadmoss')
}
if(any(FUN == 'yoshikawa_livemoss')){
swc <- (-0.16625) + (0.1108*DK) + (-0.21*10^-2*DK^2) + (4.33*10^-4*DK^3)
obj$yoshikawa_livemoss <- data.table(DK = DK, SWC = swc, FUN = 'yoshikawa_livemoss')
}
if(any(FUN == 'nagare')) {
swc <- (-1.89*10^-2) + (3.20*10^-2*DK) - (4.59*10^-4*DK^2) + (2.70*10^-6*DK^3)
obj$nagare <- data.table(DK = DK, SWC = swc, FUN = 'nagare')
}
if(any(FUN =='oleszczuk')){
swc <- (-0.0276) + (0.2477*DK ) + (-3.15*10^-4*DK^2) + (2.00*10^-6*DK^3)
obj$oleszczuk <- data.table(DK = DK, SWC = swc, FUN = 'oleszczuk')
}
if(any(FUN =='gs3')){
swc <- 0.118*sqrt(DK) -0.117
obj$gs3 <- data.table(DK = DK, SWC = swc, FUN = 'gs3')
}
obj <- rbindlist(obj)
} |
search_tracks <- function(track_name, output = c("tidy", "raw", "id"), limit = 20, offset = 0, token = my_token){
output <- match.arg(output)
response = content(GET("https://api.spotify.com/v1/search/", query = list(q = track_name, type = "track", limit = limit, offset = offset), add_headers(Authorization = token)))
items = response$tracks$items
tidy <- data.frame(
artist = map(items, "artists") %>% modify_depth(2, "name") %>% map_chr(paste, collapse = " ft. "),
artist_id = map(items, "artists") %>% modify_depth(2, "id") %>% map_chr(paste, collapse = ","),
track = map_chr(items, "name"),
track_id = map_chr(items, "id"),
type = map_chr(items, "type")
)
id <- tidy$track_id
out <- switch(output,
tidy = tidy,
raw = response,
id = id)
out
} |
group_split <- function(.tbl, ..., .keep = TRUE) {
lifecycle::signal_stage("experimental", "group_split()")
UseMethod("group_split")
}
group_split.data.frame <- function(.tbl, ..., .keep = TRUE, keep = deprecated()) {
if (!missing(keep)) {
lifecycle::deprecate_warn("1.0.0", "group_split(keep = )", "group_split(.keep = )")
.keep <- keep
}
data <- group_by(.tbl, ...)
group_split_impl(data, .keep = .keep)
}
group_split.rowwise_df <- function(.tbl, ..., .keep = TRUE, keep = deprecated()) {
if (dots_n(...)) {
warn("... is ignored in group_split(<rowwise_df>), please use as_tibble() %>% group_split(...)")
}
if (!missing(keep)) {
lifecycle::deprecate_warn("1.0.0", "group_split(keep = )", "group_split(.keep = )")
.keep <- keep
}
if (!missing(.keep)) {
warn(".keep is ignored in group_split(<rowwise_df>)")
}
group_split_impl(.tbl, .keep = TRUE)
}
group_split.grouped_df <- function(.tbl, ..., .keep = TRUE, keep = deprecated()) {
if (!missing(keep)) {
lifecycle::deprecate_warn("1.0.0", "group_split(keep = )", "group_split(.keep = )")
.keep <- keep
}
if (dots_n(...)) {
warn("... is ignored in group_split(<grouped_df>), please use group_by(..., .add = TRUE) %>% group_split()")
}
group_split_impl(.tbl, .keep = .keep)
}
group_split_impl <- function(data, .keep) {
out <- ungroup(data)
indices <- group_rows(data)
if (!isTRUE(.keep)) {
remove <- group_vars(data)
.keep <- names(out)
.keep <- setdiff(.keep, remove)
out <- out[.keep]
}
dplyr_chop(out, indices)
}
dplyr_chop <- function(data, indices) {
out <- map(indices, dplyr_row_slice, data = data)
out <- new_list_of(out, ptype = vec_ptype(data))
out
} |
get_final_values <- function(model = NULL)
{
if (is.null(model))
{
return(NULL)
}else if (model$parallel){
to_return <- vector("list", length(model$model))
for (i in 1:length(model$model))
{
to_return[[i]] <- eval(parse(text = (paste0("as.list(model$model$cluster",
i,
"$state()[[1]])"))))
}
return(to_return)
}else{
return(as.list(model$model$state()))
}
} |
fanova.tests = function(x = NULL, group.label, test = "ALL", params = NULL,
parallel = FALSE, nslaves = NULL){
if(any(is.na(group.label))){ stop("argument group.label can not contain NA values") }
if(test[1] == "ALL"){
test = c("FP", "CH", "CS", "L2N", "L2B", "L2b", "FN", "FB", "Fb", "GPF", "Fmaxb", "TRP")
}else{
for(i in 1:length(test)){
if(!(test[i] %in% c("FP", "CH", "CS", "L2N", "L2B", "L2b", "FN", "FB", "Fb", "GPF", "Fmaxb", "TRP"))){
stop("argument test must be the subvector of c('FP', 'CH', 'CS', 'L2N', 'L2B', 'L2b', 'FN', 'FB', 'Fb', 'GPF', 'Fmaxb', 'TRP')")
}
}
}
group.label0 = unique(group.label)
l = length(group.label0)
n.i = numeric(l)
for(i in 1:l) n.i[i] = sum(group.label == group.label0[i])
anova.statistic.quick = function(x, group.label){
n = length(c(x))
a = length(unique(group.label))
y = data.frame(cbind(x, group.label))
colnames(y) = c("data", "group.label")
means = (doBy::summaryBy(data ~ group.label, data = y))[,2]
mean.g = mean(x)
SSA = sum(table(group.label) * ((means - mean.g)^2))
SST = sum((x - mean.g)^2)
SSE = SST - SSA
return((n-a)*SSA/SSE/(a-1))
}
ATS.simple = function(x, group.label){
N = length(x); n = table(group.label); ng = length(as.vector(n))
means = matrix(tapply(x, group.label, mean), ncol = 1)
MM = diag(1, ng) - matrix(1, ncol = ng, nrow = ng)/ng
DM = diag(diag(MM))
SN = N * diag(as.vector((tapply(x, group.label, var) * (n - 1)/n^2)))
Delta = diag(as.vector(1/(n - 1)))
test.stat = N * t(means) %*% MM %*% means/sum(diag(MM %*% SN))
f1 = sum(diag(MM %*% SN))^2/sum(diag(MM %*% SN %*% MM %*% SN))
f0 = sum(diag(MM %*% SN))^2/sum(diag(DM %*% DM %*% SN %*% SN %*% Delta))
return(c(test.stat, 1 - pf(test.stat, f1, f0)))
}
WTPSp = function(x, group.label, group.label0, n, n.i, l, perm.WTPS, nrTRP){
means = matrix(0, nrow = l, ncol = 1); variances = numeric(l)
for(i in 1:l){
means[i,] = mean(x[group.label == group.label0[i]])
variances[i] = var(x[group.label == group.label0[i]])
}
V.N = n*diag(variances/n.i)
TT = diag(rep(1, l)) - (1/l)*matrix(1, ncol = l, nrow = l)
Q.N.T = n * t(means) %*% TT %*% MASS::ginv(TT %*% V.N %*% TT) %*% TT %*% means
A = t(rep(1/n.i[1], n.i[1]))
A1 = t(rep(1, n.i[1]))
for(i in 2:l){
A = magic::adiag(A, t(rep(1/n.i[i], n.i[i])))
A1 = magic::adiag(A1, t(rep(1, n.i[i])))
}
xperm = matrix(x[perm.WTPS], ncol = nrTRP)
meansP = A %*% xperm
varsP = (A1 %*% (xperm^2) - n.i * meansP^2)/(n.i * (n.i - 1))
statistics.p = sapply(1:nrTRP, function(arg){
TP = TT %*% MASS::ginv(TT %*% (n * diag(varsP[, arg])) %*% TT) %*% TT
statistics.p = diag(n * t(meansP[, arg]) %*% TP %*% meansP[, arg])
})
return(mean(statistics.p >= c(Q.N.T)))
}
if(any(c("FP", "CH", "CS", "L2b", "Fb", "Fmaxb", "TRP") %in% test)){
if(!parallel){
parallel.method = "parallel.method0"
}else{
if(!("doParallel" %in% rownames(installed.packages()))){
stop("Please install package 'doParallel'")
}
requireNamespace("foreach", quietly = TRUE)
nlp = parallel::detectCores()
if(is.null(nslaves)){
if(nlp >= 2){
nslaves = nlp
parallel.method = "parallel.method1"
}else{
parallel.method = "parallel.method0"
}
}else{
if(nlp >= 2){
if(nslaves >= 2){
nslaves = nslaves
}else{
nslaves = nlp
}
parallel.method = "parallel.method1"
}else{
parallel.method = "parallel.method0"
}
}
if(parallel.method == "parallel.method1"){
cl = parallel::makePSOCKcluster(nslaves)
doParallel::registerDoParallel(cl)
}
}
}
if("FP" %in% test){
if(is.null(params$paramFP$basis)){ basis = "Fourier" }else{ basis = params$paramFP$basis }
if(!(basis %in% c("Fourier", "b-spline", "own"))){ stop("argument params$paramFP$basis must be one of the following: 'Fourier', 'b-spline', 'own'") }
if(is.null(params$paramFP$B.FP)){ nrFP = 1000 }else{ nrFP = params$paramFP$B.FP }
if(nrFP < 1){ stop("invalid number of permutations (params$paramFP$B.FP)") }
if(basis == "Fourier"){
if(!("fda" %in% rownames(installed.packages()))){
stop("Please install package 'fda'")
}
x = as.matrix(x); n = ncol(x); p = nrow(x)
if(is.null(params$paramFP$minK)){ minK = 3 }else{ minK = params$paramFP$minK }
if(minK < 1){ stop("invalid argument params$paramFP$minK") }
if(is.null(params$paramFP$maxK)){ if(p %% 2 == 1){ maxK = p - 2 }else{ maxK = p - 1 }
}else{ maxK = params$paramFP$maxK }
if(maxK < 1){ stop("invalid argument params$paramFP$maxK") }
if(p <= maxK){ if(p %% 2 == 1){ maxK = p - 2 }else{ maxK = p - 1 } }
if((maxK %% 2) == 0){ stop("the maximum number of basis functions (params$paramFP$maxK) is even") }
if(n != length(group.label)){
stop("number of observations (number of columns in x) and number of elements
in vector of group labels (group.label) must be the same")
}
if(is.null(params$paramFP$criterion)){ criterion = "BIC" }else{ criterion = params$paramFP$criterion }
if(!(criterion %in% c("BIC", "eBIC", "AIC", "AICc", "NO"))){ stop("argument params$paramFP$criterion must be one of the following: 'BIC', 'eBIC', 'AIC', 'AICc', 'NO'") }
if(criterion == "eBIC"){
if(is.null(params$paramFP$gamma.eBIC)){ gamma.eBIC = 0.5 }else{ gamma.eBIC = params$paramFP$gamma.eBIC }
if((gamma.eBIC < 0)|(gamma.eBIC > 1)){
stop("argument params$paramFP$gamma.eBIC must belong to [0,1]")
}
}
if(criterion != "NO"){
if(is.null(params$paramFP$commonK)){ commonK = "mode" }else{ commonK = params$paramFP$commonK }
if(!(commonK %in% c("mode", "min", "max", "mean"))){ stop("argument params$paramFP$commonK must be one of the following: 'mode', 'min', 'max', 'mean'") }
if((minK %% 2) == 0){ stop("the minimum number of basis functions (params$paramFP$minK) is even") }
if(is.null(params$paramFP$int)){
if(parallel.method == "parallel.method0"){
v = matrix(0, nrow = n, ncol = length(seq(minK, maxK, 2)))
for(i in seq(minK, maxK, 2)){
fbasis = fda::create.fourier.basis(c(0, p), i)
fdata = fda::smooth.basisPar(1:p, x, fbasis)
v[, (i+2-minK)/2] = switch(criterion, "BIC" = p*log(p*(1-fdata$df/p)^2*fdata$gcv/p) + i*log(p),
"eBIC" = p*log(p*(1-fdata$df/p)^2*fdata$gcv/p) + i*(log(p) + 2*gamma.eBIC*log(maxK)),
"AIC" = p*log(p*(1-fdata$df/p)^2*fdata$gcv/p) + 2*i,
"AICc" = p*log(p*(1-fdata$df/p)^2*fdata$gcv/p) + 2*i + (2 * i * (i + 1))/(n - i - 1))
}
}
if(parallel.method == "parallel.method1"){
v = foreach(i = seq(minK, maxK, 2), .combine = cbind) %dopar%
{
fbasis = fda::create.fourier.basis(c(0, p), i)
fdata = fda::smooth.basisPar(1:p, x, fbasis)
switch(criterion, "BIC" = p*log(p*(1-fdata$df/p)^2*fdata$gcv/p) + i*log(p),
"eBIC" = p*log(p*(1-fdata$df/p)^2*fdata$gcv/p) + i*(log(p) + 2*gamma.eBIC*log(maxK)),
"AIC" = p*log(p*(1-fdata$df/p)^2*fdata$gcv/p) + 2*i,
"AICc" = p*log(p*(1-fdata$df/p)^2*fdata$gcv/p) + 2*i + (2 * i * (i + 1))/(n - i - 1))
}
}
KK = numeric(n)
for(j in 1:n) KK[j] = 2*which(v[j,] == min(v[j,])) + minK - 2
if(commonK == "mode"){
temp = table(as.vector(KK))
K = min(as.numeric(names(temp)[temp == max(temp)]))
}
if(commonK == "min"){ K = min(KK) }
if(commonK == "max"){ K = max(KK) }
if(commonK == "mean"){ if(floor(mean(KK)) %% 2 == 1){ K = floor(mean(KK)) }else{ K = floor(mean(KK))-1 } }
}else{
if(length(params$paramFP$int) != 2){ stop("argument params$paramFP$int must be of length two") }
if(parallel.method == "parallel.method0"){
v = matrix(0, nrow = n, ncol = length(seq(minK, maxK, 2)))
for(i in seq(minK, maxK, 2)){
fbasis = fda::create.fourier.basis(rangeval = c(params$paramFP$int[1], params$paramFP$int[2]), nbasis = i)
fdata = fda::smooth.basisPar(seq(params$paramFP$int[1], params$paramFP$int[2], length = p), x, fbasis)
v[, (i+2-minK)/2] = switch(criterion, "BIC" = p*log(p*(1-fdata$df/p)^2*fdata$gcv/p) + i*log(p),
"eBIC" = p*log(p*(1-fdata$df/p)^2*fdata$gcv/p) + i*(log(p) + 2*gamma.eBIC*log(maxK)),
"AIC" = p*log(p*(1-fdata$df/p)^2*fdata$gcv/p) + 2*i,
"AICc" = p*log(p*(1-fdata$df/p)^2*fdata$gcv/p) + 2*i + (2 * i * (i + 1))/(n - i - 1))
}
}
if(parallel.method == "parallel.method1"){
v = foreach(i = seq(minK, maxK, 2), .combine = cbind) %dopar%
{
fbasis = fda::create.fourier.basis(rangeval = c(params$paramFP$int[1], params$paramFP$int[2]), nbasis = i)
fdata = fda::smooth.basisPar(seq(params$paramFP$int[1], params$paramFP$int[2], length = p), x, fbasis)
switch(criterion, "BIC" = p*log(p*(1-fdata$df/p)^2*fdata$gcv/p) + i*log(p),
"eBIC" = p*log(p*(1-fdata$df/p)^2*fdata$gcv/p) + i*(log(p) + 2*gamma.eBIC*log(maxK)),
"AIC" = p*log(p*(1-fdata$df/p)^2*fdata$gcv/p) + 2*i,
"AICc" = p*log(p*(1-fdata$df/p)^2*fdata$gcv/p) + 2*i + (2 * i * (i + 1))/(n - i - 1))
}
}
KK = numeric(n)
for(j in 1:n) KK[j] = 2*which(v[j,] == min(v[j,])) + minK - 2
if(commonK == "mode"){
temp = table(as.vector(KK))
K = min(as.numeric(names(temp)[temp == max(temp)]))
}
if(commonK == "min"){ K = min(KK) }
if(commonK == "max"){ K = max(KK) }
if(commonK == "mean"){ if(floor(mean(KK)) %% 2 == 1){ K = floor(mean(KK)) }else{ K = floor(mean(KK))-1 } }
}
}else{ K = maxK }
if(is.null(params$paramFP$int)){
fbasis = fda::create.fourier.basis(c(0, p), K)
lfdata = vector("list", l)
mfdata = matrix(0, nrow = K, ncol = n)
for(i in 1:l){
lfdata[[i]] = fda::Data2fd(1:p, x[, group.label == group.label0[i]], fbasis)$coefs
mfdata[, group.label == group.label0[i]] = lfdata[[i]]
}
}else{
if(length(params$paramFP$int) != 2){ stop("argument params$paramFP$int must be of length two") }
fbasis = fda::create.fourier.basis(c(params$paramFP$int[1], params$paramFP$int[2]), K)
lfdata = vector("list", l)
mfdata = matrix(0, nrow = K, ncol = n)
for(i in 1:l){
lfdata[[i]] = fda::Data2fd(seq(params$paramFP$int[1], params$paramFP$int[2], length = p), x[, group.label == group.label0[i]], fbasis)$coefs
mfdata[, group.label == group.label0[i]] = lfdata[[i]]
}
}
a = 0; b = 0; c = 0
for(i in 1:l){
a = a + sum(t(lfdata[[i]]) %*% lfdata[[i]])/n.i[i]
for(j in 1:l) b = b + sum(t(lfdata[[i]]) %*% (lfdata[[j]]))
c = c + sum((lfdata[[i]])^2)
}
b = b/n; statFP0 = (a-b)/(c-a); statFP = statFP0*(n-l)/(l-1)
if(parallel.method == "parallel.method0"){
FP.p = numeric(nrFP)
for(ii in 1:nrFP){
a = numeric(l)
Perm = sample(1:n)
for(j in 1:l){
if(j == 1){ l1 = Perm[1:n.i[1]] }else{ l1 = Perm[(sum(n.i[1:(j-1)])+1):sum(n.i[1:j])] }
a[j] = sum(t(mfdata[, l1]) %*% mfdata[, l1])/n.i[j]
}
FP.p[ii] = (sum(a)-b)/(c-sum(a))
}
}
if(parallel.method == "parallel.method1"){
FP.p = foreach(ii = 1:nrFP, .combine = "c") %dopar%
{
a = numeric(l)
Perm = sample(1:n)
for(j in 1:l){
if(j == 1){ l1 = Perm[1:n.i[1]] }else{ l1 = Perm[(sum(n.i[1:(j-1)])+1):sum(n.i[1:j])] }
a[j] = sum(t(mfdata[, l1]) %*% mfdata[, l1])/n.i[j]
}
(sum(a)-b)/(c-sum(a))
}
}
pvalueFP = mean(FP.p >= statFP0)
}
if(basis == "b-spline"){
if(!("fda" %in% rownames(installed.packages()))){
stop("Please install package 'fda'")
}
x = as.matrix(x); n = ncol(x); p = nrow(x)
if(is.null(params$paramFP$norder)){ norder = 4 }else{ norder = params$paramFP$norder }
if(norder < 1){ stop("invalid argument params$paramFP$norder") }
if(is.null(params$paramFP$minK)){ minK = norder }else{ minK = params$paramFP$minK }
if(minK < 1){ stop("invalid argument params$paramFP$minK") }
if(minK < norder){ minK = norder }
if(is.null(params$paramFP$maxK)){ maxK = p }else{ maxK = params$paramFP$maxK }
if(maxK < 1){ stop("invalid argument params$paramFP$maxK") }
if(p <= maxK){ maxK = p }
if(n != length(group.label)){
stop("number of observations (number of columns in x) and number of elements
in vector of group labels (group.label) must be the same")
}
if(is.null(params$paramFP$criterion)){ criterion = "BIC" }else{ criterion = params$paramFP$criterion }
if(!(criterion %in% c("BIC", "eBIC", "AIC", "AICc", "NO"))){ stop("argument params$paramFP$criterion must be one of the following: 'BIC', 'eBIC', 'AIC', 'AICc', 'NO'") }
if(criterion == "eBIC"){
if(is.null(params$paramFP$gamma.eBIC)){ gamma.eBIC = 0.5 }else{ gamma.eBIC = params$paramFP$gamma.eBIC }
if((gamma.eBIC < 0)|(gamma.eBIC > 1)){
stop("argument params$paramFP$gamma.eBIC must belong to [0,1]")
}
}
if(criterion != "NO"){
if(is.null(params$paramFP$commonK)){ commonK = "mode" }else{ commonK = params$paramFP$commonK }
if(!(commonK %in% c("mode", "min", "max", "mean"))){ stop("argument params$paramFP$commonK must be one of the following: 'mode', 'min', 'max', 'mean'") }
mmm = minK:maxK
if(is.null(params$paramFP$int)){
if(parallel.method == "parallel.method0"){
v = matrix(0, nrow = n, ncol = length(mmm))
for(i in 1:length(mmm)){
fbasis = fda::create.bspline.basis(c(0, p), mmm[i], norder = norder)
fdata = fda::smooth.basisPar(1:p, x, fbasis)
v[, i] = switch(criterion, "BIC" = p*log(p*(1-fdata$df/p)^2*fdata$gcv/p) + mmm[i]*log(p),
"eBIC" = p*log(p*(1-fdata$df/p)^2*fdata$gcv/p) + mmm[i]*(log(p) + 2*gamma.eBIC*log(maxK)),
"AIC" = p*log(p*(1-fdata$df/p)^2*fdata$gcv/p) + 2*mmm[i],
"AICc" = p*log(p*(1-fdata$df/p)^2*fdata$gcv/p) + 2*mmm[i] + (2 * mmm[i] * (mmm[i] + 1))/(n - mmm[i] - 1))
}
}
if(parallel.method == "parallel.method1"){
v = foreach(i = 1:length(mmm), .combine = cbind) %dopar%
{
fbasis = fda::create.bspline.basis(c(0, p), mmm[i], norder = norder)
fdata = fda::smooth.basisPar(1:p, x, fbasis)
switch(criterion, "BIC" = p*log(p*(1-fdata$df/p)^2*fdata$gcv/p) + mmm[i]*log(p),
"eBIC" = p*log(p*(1-fdata$df/p)^2*fdata$gcv/p) + mmm[i]*(log(p) + 2*gamma.eBIC*log(maxK)),
"AIC" = p*log(p*(1-fdata$df/p)^2*fdata$gcv/p) + 2*mmm[i],
"AICc" = p*log(p*(1-fdata$df/p)^2*fdata$gcv/p) + 2*mmm[i] + (2 * mmm[i] * (mmm[i] + 1))/(n - mmm[i] - 1))
}
}
KK = numeric(n)
for(j in 1:n) KK[j] = mmm[which(v[j,] == min(v[j,]))]
if(commonK == "mode"){
temp = table(as.vector(KK))
K = min(as.numeric(names(temp)[temp == max(temp)]))
}
if(commonK == "min"){ K = min(KK) }
if(commonK == "max"){ K = max(KK) }
if(commonK == "mean"){ K = floor(mean(KK)) }
}else{
if(length(params$paramFP$int) != 2){ stop("argument params$paramFP$int must be of length two") }
if(parallel.method == "parallel.method0"){
v = matrix(0, nrow = n, ncol = length(mmm))
for(i in 1:length(mmm)){
fbasis = fda::create.bspline.basis(rangeval = c(params$paramFP$int[1], params$paramFP$int[2]), nbasis = mmm[i], norder = norder)
fdata = fda::smooth.basisPar(seq(params$paramFP$int[1], params$paramFP$int[2], length = p), x, fbasis)
v[, i] = switch(criterion, "BIC" = p*log(p*(1-fdata$df/p)^2*fdata$gcv/p) + mmm[i]*log(p),
"eBIC" = p*log(p*(1-fdata$df/p)^2*fdata$gcv/p) + mmm[i]*(log(p) + 2*gamma.eBIC*log(maxK)),
"AIC" = p*log(p*(1-fdata$df/p)^2*fdata$gcv/p) + 2*mmm[i],
"AICc" = p*log(p*(1-fdata$df/p)^2*fdata$gcv/p) + 2*mmm[i] + (2 * mmm[i] * (mmm[i] + 1))/(n - mmm[i] - 1))
}
}
if(parallel.method == "parallel.method1"){
v = foreach(i = 1:length(mmm), .combine = cbind) %dopar%
{
fbasis = fda::create.bspline.basis(rangeval = c(params$paramFP$int[1], params$paramFP$int[2]), nbasis = mmm[i], norder = norder)
fdata = fda::smooth.basisPar(seq(params$paramFP$int[1], params$paramFP$int[2], length = p), x, fbasis)
switch(criterion, "BIC" = p*log(p*(1-fdata$df/p)^2*fdata$gcv/p) + mmm[i]*log(p),
"eBIC" = p*log(p*(1-fdata$df/p)^2*fdata$gcv/p) + mmm[i]*(log(p) + 2*gamma.eBIC*log(maxK)),
"AIC" = p*log(p*(1-fdata$df/p)^2*fdata$gcv/p) + 2*mmm[i],
"AICc" = p*log(p*(1-fdata$df/p)^2*fdata$gcv/p) + 2*mmm[i] + (2 * mmm[i] * (mmm[i] + 1))/(n - mmm[i] - 1))
}
}
KK = numeric(n)
for(j in 1:n) KK[j] = mmm[which(v[j,] == min(v[j,]))]
if(commonK == "mode"){
temp = table(as.vector(KK))
K = min(as.numeric(names(temp)[temp == max(temp)]))
}
if(commonK == "min"){ K = min(KK) }
if(commonK == "max"){ K = max(KK) }
if(commonK == "mean"){ K = floor(mean(KK)) }
}
}else{ K = maxK }
if(is.null(params$paramFP$int)){
fbasis = fda::create.bspline.basis(c(0, p), K, norder = norder)
lfdata = vector("list", l)
mfdata = matrix(0, nrow = K, ncol = n)
for(i in 1:l){
lfdata[[i]] = fda::Data2fd(1:p, x[, group.label == group.label0[i]], fbasis)$coefs
mfdata[, group.label == group.label0[i]] = lfdata[[i]]
}
}else{
if(length(params$paramFP$int) != 2){ stop("argument params$paramFP$int must be of length two") }
fbasis = fda::create.bspline.basis(c(params$paramFP$int[1], params$paramFP$int[2]), K, norder = norder)
lfdata = vector("list", l)
mfdata = matrix(0, nrow = K, ncol = n)
for(i in 1:l){
lfdata[[i]] = fda::Data2fd(seq(params$paramFP$int[1], params$paramFP$int[2], length = p), x[, group.label == group.label0[i]], fbasis)$coefs
mfdata[, group.label == group.label0[i]] = lfdata[[i]]
}
}
bspline.cross.prod.matrix = fda::inprod(fbasis, fbasis)
a = 0; b = 0; c = 0
for(i in 1:l){
a = a + sum(t(lfdata[[i]]) %*% bspline.cross.prod.matrix %*% lfdata[[i]])/n.i[i]
for(j in 1:l) b = b + sum(t(lfdata[[i]]) %*% bspline.cross.prod.matrix %*% (lfdata[[j]]))
c = c + sum(diag(t(lfdata[[i]]) %*% bspline.cross.prod.matrix %*% lfdata[[i]]))
}
b = b/n; statFP0 = (a-b)/(c-a); statFP = statFP0*(n-l)/(l-1)
if(parallel.method == "parallel.method0"){
FP.p = numeric(nrFP)
for(ii in 1:nrFP){
a = numeric(l)
Perm = sample(1:n)
for(j in 1:l){
if(j == 1){ l1 = Perm[1:n.i[1]] }else{ l1 = Perm[(sum(n.i[1:(j-1)])+1):sum(n.i[1:j])] }
a[j] = sum(t(mfdata[, l1]) %*% bspline.cross.prod.matrix %*% mfdata[, l1])/n.i[j]
}
FP.p[ii] = (sum(a)-b)/(c-sum(a))
}
}
if(parallel.method == "parallel.method1"){
FP.p = foreach(ii = 1:nrFP, .combine = "c") %dopar%
{
a = numeric(l)
Perm = sample(1:n)
for(j in 1:l){
if(j == 1){ l1 = Perm[1:n.i[1]] }else{ l1 = Perm[(sum(n.i[1:(j-1)])+1):sum(n.i[1:j])] }
a[j] = sum(t(mfdata[, l1]) %*% bspline.cross.prod.matrix %*% mfdata[, l1])/n.i[j]
}
(sum(a)-b)/(c-sum(a))
}
}
pvalueFP = mean(FP.p >= statFP0)
}
if(basis == "own"){
own.basis = params$paramFP$own.basis
mfdata = own.basis
n = ncol(mfdata); K = nrow(mfdata)
if(n != length(group.label)){ stop("the number of observations is not equal to the number of elements in vector of labels") }
lfdata = vector("list", l)
for(i in 1:l){ lfdata[[i]] = mfdata[, group.label == group.label0[i]] }
own.cross.prod.mat = params$paramFP$own.cross.prod.mat
if(K != nrow(own.cross.prod.mat)){ stop("invalid argument params$paramFP$own.cross.prod.mat") }
if(K != ncol(own.cross.prod.mat)){ stop("invalid argument params$paramFP$own.cross.prod.mat") }
a = 0; b = 0; c = 0
for(i in 1:l){
a = a + sum(t(lfdata[[i]]) %*% own.cross.prod.mat %*% lfdata[[i]])/n.i[i]
for(j in 1:l) b = b + sum(t(lfdata[[i]]) %*% own.cross.prod.mat %*% (lfdata[[j]]))
c = c + sum(diag(t(lfdata[[i]]) %*% own.cross.prod.mat %*% lfdata[[i]]))
}
b = b/n; statFP0 = (a-b)/(c-a); statFP = statFP0*(n-l)/(l-1)
if(parallel.method == "parallel.method0"){
FP.p = numeric(nrFP)
for(ii in 1:nrFP){
a = numeric(l)
Perm = sample(1:n)
for(j in 1:l){
if(j == 1){ l1 = Perm[1:n.i[1]] }else{ l1 = Perm[(sum(n.i[1:(j-1)])+1):sum(n.i[1:j])] }
a[j] = sum(t(mfdata[, l1]) %*% own.cross.prod.mat %*% mfdata[, l1])/n.i[j]
}
FP.p[ii] = (sum(a)-b)/(c-sum(a))
}
}
if(parallel.method == "parallel.method1"){
FP.p = foreach(ii = 1:nrFP, .combine = "c") %dopar%
{
a = numeric(l)
Perm = sample(1:n)
for(j in 1:l){
if(j == 1){ l1 = Perm[1:n.i[1]] }else{ l1 = Perm[(sum(n.i[1:(j-1)])+1):sum(n.i[1:j])] }
a[j] = sum(t(mfdata[, l1]) %*% own.cross.prod.mat %*% mfdata[, l1])/n.i[j]
}
(sum(a)-b)/(c-sum(a))
}
}
pvalueFP = mean(FP.p >= statFP0)
}
if(basis == "own"){
resultFP = list(statFP = statFP, pvalueFP = pvalueFP, B.FP = nrFP, basis = basis, own.basis = own.basis, own.cross.prod.mat = own.cross.prod.mat)
}else{
if(criterion == "NO"){
if(is.null(params$paramFP$int)){
if(basis == "Fourier"){
resultFP = list(statFP = statFP, pvalueFP = pvalueFP, B.FP = nrFP, basis = basis, criterion = criterion, K = K, maxK = maxK)
}
if(basis == "b-spline"){
resultFP = list(statFP = statFP, pvalueFP = pvalueFP, B.FP = nrFP, basis = basis, criterion = criterion, K = K, maxK = maxK, norder = norder)
}
}else{
if(basis == "Fourier"){
resultFP = list(statFP = statFP, pvalueFP = pvalueFP, int = params$paramFP$int, B.FP = nrFP, basis = basis, criterion = criterion, K = K, maxK = maxK)
}
if(basis == "b-spline"){
resultFP = list(statFP = statFP, pvalueFP = pvalueFP, int = params$paramFP$int, B.FP = nrFP, basis = basis, criterion = criterion, K = K, maxK = maxK, norder = norder)
}
}
}else{
if(is.null(params$paramFP$int)){
if(criterion == "eBIC"){
if(basis == "Fourier"){
resultFP = list(statFP = statFP, pvalueFP = pvalueFP, B.FP = nrFP, basis = basis, criterion = criterion, commonK = commonK, K = K, minK = minK, maxK = maxK, gamma.eBIC = gamma.eBIC)
}
if(basis == "b-spline"){
resultFP = list(statFP = statFP, pvalueFP = pvalueFP, B.FP = nrFP, basis = basis, criterion = criterion, commonK = commonK, K = K, minK = minK, maxK = maxK, norder = norder, gamma.eBIC = gamma.eBIC)
}
}else{
if(basis == "Fourier"){
resultFP = list(statFP = statFP, pvalueFP = pvalueFP, B.FP = nrFP, basis = basis, criterion = criterion, commonK = commonK, K = K, minK = minK, maxK = maxK)
}
if(basis == "b-spline"){
resultFP = list(statFP = statFP, pvalueFP = pvalueFP, B.FP = nrFP, basis = basis, criterion = criterion, commonK = commonK, K = K, minK = minK, maxK = maxK, norder = norder)
}
}
}else{
if(criterion == "eBIC"){
if(basis == "Fourier"){
resultFP = list(statFP = statFP, pvalueFP = pvalueFP, int = params$paramFP$int, B.FP = nrFP, basis = basis, criterion = criterion, commonK = commonK, K = K, minK = minK, maxK = maxK, gamma.eBIC = gamma.eBIC)
}
if(basis == "b-spline"){
resultFP = list(statFP = statFP, pvalueFP = pvalueFP, int = params$paramFP$int, B.FP = nrFP, basis = basis, criterion = criterion, commonK = commonK, K = K, minK = minK, maxK = maxK, norder = norder, gamma.eBIC = gamma.eBIC)
}
}else{
if(basis == "Fourier"){
resultFP = list(statFP = statFP, pvalueFP = pvalueFP, int = params$paramFP$int, B.FP = nrFP, basis = basis, criterion = criterion, commonK = commonK, K = K, minK = minK, maxK = maxK)
}
if(basis == "b-spline"){
resultFP = list(statFP = statFP, pvalueFP = pvalueFP, int = params$paramFP$int, B.FP = nrFP, basis = basis, criterion = criterion, commonK = commonK, K = K, minK = minK, maxK = maxK, norder = norder)
}
}
}
}
}
}
if(any(c("CH", "CS") %in% test)){
if(!("MASS" %in% rownames(installed.packages()))){
stop("Please install package 'MASS'")
}
x = as.matrix(x); n = ncol(x)
if(n != length(group.label)){
stop("number of observations (number of columns in x) and number of elements
in vector of group labels (group.label) must be the same")
}
statCHCS = 0
for(i in 1:(l-1)){
for(j in (i+1):l){
statCHCS = statCHCS + n.i[i]*sum((rowMeans(x[, group.label == group.label0[i]]) -
rowMeans(x[, group.label == group.label0[j]]))^2)
}
}
if("CH" %in% test){
if(is.null(params$paramCH)){ nrCH = 10000 }else{ nrCH = params$paramCH }
if(nrCH < 1){ stop("invalid number of discretized artificial trajectories for each process Z_i(t) (params$paramCH)") }
cov.fun = ((n-1)/(n-l))*var(t(x)); Z = vector("list", l)
for(i in 1:l) Z[[i]] = MASS::mvrnorm(nrCH, numeric(nrow(cov.fun)), cov.fun)
if(parallel.method == "parallel.method0"){
V = numeric(nrCH)
for(m in 1:nrCH){
for(i in 1:(l-1)){
for(j in (i+1):l){
V[m] = V[m] + sum((Z[[i]][m,]-sqrt(n.i[i]/n.i[j])*Z[[j]][m,])^2)
}
}
}
}
if(parallel.method == "parallel.method1"){
V = foreach(m = 1:nrCH, .combine = "c") %dopar%
{
V = 0
for(i in 1:(l-1)){
for(j in (i+1):l){
V = V + sum((Z[[i]][m,]-sqrt(n.i[i]/n.i[j])*Z[[j]][m,])^2)
}
}
V
}
}
resultCH = list(statCH = statCHCS, pvalueCH = mean(V > statCHCS), paramCH = nrCH)
}
if("CS" %in% test){
if(is.null(params$paramCS)){ nrCS = 10000 }else{ nrCS = params$paramCS }
if(nrCS < 1){ stop("invalid number of discretized artificial trajectories for each process Z_i(t) (params$paramCS)") }
Z = vector("list", l)
for(i in 1:l){
cov.fun = var(t(x[, group.label == group.label0[i]]))
Z[[i]] = MASS::mvrnorm(nrCS, numeric(nrow(cov.fun)), cov.fun)
}
if(parallel.method == "parallel.method0"){
V = numeric(nrCS)
for(m in 1:nrCS){
for(i in 1:(l-1)){
for(j in (i+1):l){
V[m] = V[m] + sum((Z[[i]][m,]-sqrt(n.i[i]/n.i[j])*Z[[j]][m,])^2)
}
}
}
}
if(parallel.method == "parallel.method1"){
V = foreach(m = 1:nrCS, .combine = "c") %dopar%
{
V = 0
for(i in 1:(l-1)){
for(j in (i+1):l){
V = V + sum((Z[[i]][m,]-sqrt(n.i[i]/n.i[j])*Z[[j]][m,])^2)
}
}
V
}
}
resultCS = list(statCS = statCHCS, pvalueCS = mean(V > statCHCS), paramCS = nrCS)
}
}
if(any(c("L2N", "L2B", "L2b", "FN", "FB", "Fb", "GPF", "Fmaxb") %in% test)){
x = as.matrix(x); n = ncol(x); p = nrow(x)
if(n != length(group.label)){
stop("number of observations (number of columns in x) and number of elements
in vector of group labels (group.label) must be the same")
}
mu0 = rowMeans(x)
vmu = matrix(0, nrow = l, ncol = p)
z = matrix(0, nrow = n, ncol = p)
SSR = 0; SSE = 0
for(i in 1:l){
xi = x[, group.label == group.label0[i]]
mui = rowMeans(xi); vmu[i,] = mui
zi = t(xi) - as.matrix(rep(1, n.i[i])) %*% mui
if(i==1){ z[1:n.i[i],] = zi }else{ z[(cumsum(n.i)[i-1]+1):cumsum(n.i)[i],] = zi }
SSR = SSR + n.i[i]*(mui - mu0)^2
SSE = SSE + colSums(zi^2)
}
if(n > p){ gamma.z = t(z) %*% z/(n-l) }else{ gamma.z = z %*% t(z)/(n-l) }
A = sum(diag(gamma.z)); B = sum(diag(gamma.z %*% gamma.z))
A2N = A^2; B2N = B
A2B = (n-l)*(n-l+1)/(n-l-1)/(n-l+2)*(A^2-2*B/(n-l+1))
B2B = (n-l)^2/(n-l-1)/(n-l+2)*(B-A^2/(n-l))
if(any(c("L2N", "L2B", "L2b") %in% test)){
statL2 = sum(SSR)
if("L2N" %in% test){
betaL2N = B2N/A; kappaL2N = A2N/B2N
pvalueL2N = 1-pchisq(statL2/betaL2N, (l-1)*kappaL2N)
resultL2N = list(statL2 = statL2, pvalueL2N = pvalueL2N, betaL2N = betaL2N, dL2N = (l-1)*kappaL2N)
}
if("L2B" %in% test){
betaL2B = B2B/A; kappaL2B = A2B/B2B
pvalueL2B = 1-pchisq(statL2/betaL2B, (l-1)*kappaL2B)
resultL2B = list(statL2 = statL2, pvalueL2B = pvalueL2B, betaL2B = betaL2B, dL2B = (l-1)*kappaL2B)
}
if("L2b" %in% test){
if(is.null(params$paramL2b)){ nrL2b = 10000 }else{ nrL2b = params$paramL2b }
if(nrL2b < 1){ stop("invalid number of bootstrap replicates (params$paramL2b)") }
if(parallel.method == "parallel.method0"){
statL2boot = numeric(nrL2b)
for(ii in 1:nrL2b){
vmuboot = matrix(0, nrow = l, ncol = p)
for(i in 1:l){
xi = x[, group.label == group.label0[i]]
xiboot = xi[, floor(runif(n.i[i])*(n.i[i]-1)) + 1]
vmuboot[i,] = rowMeans(xiboot)-vmu[i,]
}
mu0boot = n.i %*% vmuboot/n
SSRboot = 0
for(i in 1:l) SSRboot = SSRboot + n.i[i]*(vmuboot[i,]-mu0boot)^2
statL2boot[ii] = sum(SSRboot)
}
}
if(parallel.method == "parallel.method1"){
statL2boot = foreach(ii = 1:nrL2b, .combine = "c") %dopar%
{
vmuboot = matrix(0, nrow = l, ncol = p)
for(i in 1:l){
xi = x[, group.label == group.label0[i]]
xiboot = xi[, floor(runif(n.i[i])*(n.i[i]-1)) + 1]
vmuboot[i,] = rowMeans(xiboot)-vmu[i,]
}
mu0boot = n.i %*% vmuboot/n
SSRboot = 0
for(i in 1:l) SSRboot = SSRboot + n.i[i]*(vmuboot[i,]-mu0boot)^2
sum(SSRboot)
}
}
pvalueL2b = mean(statL2boot >= statL2)
resultL2b = list(statL2 = statL2, pvalueL2b = pvalueL2b, paramL2b = nrL2b)
}
}
if(any(c("FN", "FB", "Fb") %in% test)){
statF = sum(SSR)/sum(SSE)*(n-l)/(l-1)
if("FN" %in% test){
kappaFN = A2N/B2N
pvalueFN = 1-pf(statF, (l-1)*kappaFN, (n-l)*kappaFN)
resultFN = list(statF = statF, pvalueFN = pvalueFN, d1FN = (l-1)*kappaFN, d2FN = (n-l)*kappaFN)
}
if("FB" %in% test){
kappaFB = A2B/B2B
pvalueFB = 1-pf(statF, (l-1)*kappaFB, (n-l)*kappaFB)
resultFB = list(statF = statF, pvalueFB = pvalueFB, d1FB = (l-1)*kappaFB, d2FB = (n-l)*kappaFB)
}
if("Fb" %in% test){
if(is.null(params$paramFb)){ nrFb = 10000 }else{ nrFb = params$paramFb }
if(nrFb < 1){ stop("invalid number of bootstrap replicates (params$paramFb)") }
if(parallel.method == "parallel.method0"){
statFboot = numeric(nrFb)
for(ii in 1:nrFb){
vmuboot = matrix(0, nrow = l, ncol = p)
zboot = matrix(0, nrow = n, ncol = p)
for(i in 1:l){
xi = x[, group.label == group.label0[i]]
xiboot = xi[, floor(runif(n.i[i])*(n.i[i]-1)) + 1]
muiboot = rowMeans(xiboot)
ziboot = t(xiboot) - as.matrix(rep(1, n.i[i])) %*% muiboot
if(i==1){ zboot[1:n.i[i],] = ziboot }else{ zboot[(cumsum(n.i)[i-1]+1):cumsum(n.i)[i],] = ziboot }
vmuboot[i,] = rowMeans(xiboot)-vmu[i,]
}
mu0boot = n.i %*% vmuboot/n
SSRboot = 0
for(i in 1:l) SSRboot = SSRboot + n.i[i]*(vmuboot[i,]-mu0boot)^2
if(n > p){ gammaboot = t(zboot) %*% zboot/(n-l) }else{ gammaboot = zboot %*% t(zboot)/(n-l) }
statFboot[ii] = sum(SSRboot)/sum(diag(gammaboot))/(l-1)
}
}
if(parallel.method == "parallel.method1"){
statFboot = foreach(ii = 1:nrFb, .combine = "c") %dopar%
{
vmuboot = matrix(0, nrow = l, ncol = p)
zboot = matrix(0, nrow = n, ncol = p)
for(i in 1:l){
xi = x[, group.label == group.label0[i]]
xiboot = xi[, floor(runif(n.i[i])*(n.i[i]-1)) + 1]
muiboot = rowMeans(xiboot)
ziboot = t(xiboot) - as.matrix(rep(1, n.i[i])) %*% muiboot
if(i==1){ zboot[1:n.i[i],] = ziboot }else{ zboot[(cumsum(n.i)[i-1]+1):cumsum(n.i)[i],] = ziboot }
vmuboot[i,] = rowMeans(xiboot)-vmu[i,]
}
mu0boot = n.i %*% vmuboot/n
SSRboot = 0
for(i in 1:l) SSRboot = SSRboot + n.i[i]*(vmuboot[i,]-mu0boot)^2
if(n > p){ gammaboot = t(zboot) %*% zboot/(n-l) }else{ gammaboot = zboot %*% t(zboot)/(n-l) }
sum(SSRboot)/sum(diag(gammaboot))/(l-1)
}
}
pvalueFb = mean(statFboot >= statF)
resultFb = list(statF = statF, pvalueFb = pvalueFb, paramFb = nrFb)
}
}
if("GPF" %in% test){
statGPF = mean(SSR/SSE*(n-l)/(l-1))
z = z/(as.matrix(rep(1, n)) %*% sqrt(colSums(z^2)))
if(n >= p){ z = t(z) %*% z }else{ z = z %*% t(z) }
betaGPF = (sum(diag(z %*% z))/p^2/(l-1))/((n-l)/(n-l-2))
dGPF = ((n-l)/(n-l-2))^2/(sum(diag(z %*% z))/p^2/(l-1))
pvalueGPF = 1-pchisq(statGPF/betaGPF,dGPF)
resultGPF = list(statGPF = statGPF, pvalueGPF = pvalueGPF, betaGPF = betaGPF, dGPF = dGPF)
}
if("Fmaxb" %in% test){
if(is.null(params$paramFmaxb)){ nrFmaxb = 10000 }else{ nrFmaxb = params$paramFmaxb }
if(nrFmaxb < 1){ stop("invalid number of bootstrap replicates (params$paramFmaxb)") }
statFmax = max(SSR/SSE*(n-l)/(l-1))
xs = matrix(0, nrow = n, ncol = p)
for(i in 1:l){ xs[group.label == group.label0[i],] = t(x[, group.label == group.label0[i]]) - as.matrix(rep(1, n.i[i])) %*% vmu[i,] }
if(parallel.method == "parallel.method0"){
statFmaxboot = numeric(nrFmaxb)
for(ii in 1:nrFmaxb){
vmuboot = matrix(0, nrow = l, ncol = p)
zboot = matrix(0, nrow = n, ncol = p)
xboot = xs[sample(1:n, replace = TRUE),]
mu0boot = colMeans(xboot)
SSRboot = 0
for(i in 1:l){
xiboot = xboot[group.label == group.label0[i],]
muiboot = colMeans(xiboot)
vmuboot[i,] = muiboot
ziboot = xiboot - as.matrix(rep(1, n.i[i])) %*% muiboot
if(i==1){ zboot[1:n.i[i],] = ziboot }else{ zboot[(cumsum(n.i)[i-1]+1):cumsum(n.i)[i],] = ziboot }
SSRboot = SSRboot + n.i[i]*(muiboot - mu0boot)^2
}
SSEboot = diag(t(zboot) %*% zboot)
statFmaxboot[ii] = max(SSRboot/SSEboot*(n-l)/(l-1))
}
}
if(parallel.method == "parallel.method1"){
statFmaxboot = foreach(ii = 1:nrFmaxb, .combine = "c") %dopar%
{
vmuboot = matrix(0, nrow = l, ncol = p)
zboot = matrix(0, nrow = n, ncol = p)
xboot = xs[sample(1:n, replace = TRUE),]
mu0boot = colMeans(xboot)
SSRboot = 0
for(i in 1:l){
xiboot = xboot[group.label == group.label0[i],]
muiboot = colMeans(xiboot)
vmuboot[i,] = muiboot
ziboot = xiboot - as.matrix(rep(1, n.i[i])) %*% muiboot
if(i==1){ zboot[1:n.i[i],] = ziboot }else{ zboot[(cumsum(n.i)[i-1]+1):cumsum(n.i)[i],] = ziboot }
SSRboot = SSRboot + n.i[i]*(muiboot - mu0boot)^2
}
SSEboot = diag(t(zboot) %*% zboot)
max(SSRboot/SSEboot*(n-l)/(l-1))
}
}
pvalueFmaxb = mean(statFmaxboot >= statFmax)
resultFmaxb = list(statFmax = statFmax, pvalueFmaxb = pvalueFmaxb, paramFmaxb = nrFmaxb)
}
}
if ("TRP" %in% test) {
if (!("doBy" %in% rownames(installed.packages()))) {
stop("Please install package 'doBY'")
}
if (!("MASS" %in% rownames(installed.packages()))) {
stop("Please install package 'MASS'")
}
if (!("magic" %in% rownames(installed.packages()))) {
stop("Please install package 'magic'")
}
x <- as.matrix(x); n <- ncol(x); p <- nrow(x)
if (n != length(group.label)) {
stop("number of observations (number of columns in x) and number of elements
in vector of group labels (group.label) must be the same")
}
if (is.null(params$paramTRP$projection)) {
projection <- "GAUSS"
}else{
projection <- params$paramTRP$projection
}
if (!(projection %in% c("GAUSS", "BM"))) {
stop("argument params$paramTRP$projection must be one of the following: 'GAUSS', 'BM'")
}
if (is.null(params$paramTRP$permutation)) {
permutationTRP <- FALSE
}else{
permutationTRP <- params$paramTRP$permutation
}
if (! is.logical(permutationTRP)) {
stop("argument permutation is not logical (params$paramTRP$permutation)")
}
if (is.null(params$paramTRP$independent.projection.tests)) {
independent.projection.tests <- TRUE
}else{
independent.projection.tests <- params$paramTRP$independent.projection.tests
}
if (! is.logical(independent.projection.tests)) {
stop("argument independent.projection.tests is not logical
(params$paramTRP$independent.projection.tests)")
}
if (is.null(params$paramTRP$B.TRP)) {
nrTRP <- 10000
}else{
nrTRP <- params$paramTRP$B.TRP
}
if (nrTRP < 1) {
stop("invalid number of permutations (params$paramTRP$B.TRP)")
}
if (is.null(params$paramTRP$k)) {
k <- 30
}else{
k <- params$paramTRP$k
}
if (any(k < 1)) {
stop("invalid number of projections (k)")
}
pvalues.anova <- numeric(length(k))
pvalues.ATS.simple <- numeric(length(k))
pvalues.WTPS <- numeric(length(k))
modulo <- function(z){ sqrt(sum(z^2)) }
if (independent.projection.tests) {
all.data.proj <- list()
iik <- 0
for(ik in k){
ik.data.proj <- matrix(0, nrow = n, ncol = ik)
if(projection == "GAUSS"){
z <- matrix(rnorm(p * ik), nrow = ik, ncol = p)
modu <- apply(z, 1, modulo)
z <- z/modu
if(parallel.method == "parallel.method0"){
anova.p <- numeric(ik)
ATS.simple.p <- numeric(ik)
WTPS.p <- numeric(ik)
for(j in 1:ik){
ik.data.proj[, j] <- t(x) %*% z[j,]
data.proj <- ik.data.proj[, j]
perm.WTPS <- matrix(0, nrow = n, ncol = nrTRP)
for(i.perm in 1:nrTRP){
perm.WTPS[, i.perm] <- sample(1:n)
}
WTPS.p[j] <- WTPSp(data.proj, group.label, group.label0, n, n.i, l, perm.WTPS = perm.WTPS, nrTRP)
if(permutationTRP == FALSE){
anova.p[j] <- 1-pf(anova.statistic.quick(data.proj, group.label), l-1, n-l)
ATS.simple.p[j] <- ATS.simple(data.proj, group.label)[2]
}else{
anova.s <- anova.statistic.quick(data.proj, group.label)
ATS.simple.s <- ATS.simple(data.proj, group.label)[1]
anova.perm <- numeric(nrTRP)
ATS.simple.perm <- numeric(nrTRP)
for(i.perm in 1:nrTRP){
anova.perm[i.perm] <- anova.statistic.quick(data.proj, sample(group.label))
ATS.simple.perm[i.perm] <- ATS.simple(data.proj, sample(group.label))[1]
}
anova.p[j] <- mean(anova.perm >= anova.s)
ATS.simple.p[j] <- mean(ATS.simple.perm >= ATS.simple.s)
}
}
iik <- iik + 1
all.data.proj[[iik]] <- ik.data.proj
pvalues.anova[iik] <- min(ik*anova.p[order(anova.p)]/1:ik)
pvalues.ATS.simple[iik] <- min(ik*ATS.simple.p[order(ATS.simple.p)]/1:ik)
pvalues.WTPS[iik] <- min(ik*WTPS.p[order(WTPS.p)]/1:ik)
}
if(parallel.method == "parallel.method1"){
rs <- foreach(j = 1:ik, .combine = rbind) %dopar%
{
ik.data.proj[, j] <- t(x) %*% z[j,]
data.proj <- ik.data.proj[, j]
perm.WTPS <- matrix(0, nrow = n, ncol = nrTRP)
for(i.perm in 1:nrTRP){
perm.WTPS[, i.perm] <- sample(1:n)
}
WTPS.p <- WTPSp(data.proj, group.label, group.label0, n, n.i, l, perm.WTPS = perm.WTPS, nrTRP)
if(permutationTRP == FALSE){
c(1-pf(anova.statistic.quick(data.proj, group.label), l-1, n-l),
ATS.simple(data.proj, group.label)[2], WTPS.p, data.proj)
}else{
anova.s <- anova.statistic.quick(data.proj, group.label)
ATS.simple.s <- ATS.simple(data.proj, group.label)[1]
anova.perm <- numeric(nrTRP)
ATS.simple.perm <- numeric(nrTRP)
for(i.perm in 1:nrTRP){
anova.perm[i.perm] <- anova.statistic.quick(data.proj, sample(group.label))
ATS.simple.perm[i.perm] <- ATS.simple(data.proj, sample(group.label))[1]
}
c(mean(anova.perm >= anova.s),
mean(ATS.simple.perm >= ATS.simple.s), WTPS.p, data.proj)
}
}
if(ik == 1) rs <- matrix(rs, nrow = 1, ncol = n+3)
iik <- iik + 1
if(ik == 1){
all.data.proj[[iik]] <- matrix(rs[, 4:(n+3)], ncol = 1)
}else{
all.data.proj[[iik]] <- t(rs[, 4:(n+3)])
}
pvalues.anova[iik] <- min(ik*(rs[, 1])[order(rs[, 1])]/1:ik)
pvalues.ATS.simple[iik] <- min(ik*(rs[, 2])[order(rs[, 2])]/1:ik)
pvalues.WTPS[iik] <- min(ik*(rs[, 3])[order(rs[, 3])]/1:ik)
}
}else{
if(parallel.method == "parallel.method0"){
anova.p <- numeric(ik)
ATS.simple.p <- numeric(ik)
WTPS.p <- numeric(ik)
for(j in 1:ik){
bm.p <- cumsum(rnorm(p, mean = 0, sd = 1))/sqrt(p)
bm.p <- bm.p/modulo(bm.p)
ik.data.proj[, j] <- t(x) %*% as.matrix(bm.p)
data.proj <- ik.data.proj[, j]
perm.WTPS <- matrix(0, nrow = n, ncol = nrTRP)
for(i.perm in 1:nrTRP){
perm.WTPS[, i.perm] <- sample(1:n)
}
WTPS.p[j] <- WTPSp(data.proj, group.label, group.label0, n, n.i, l, perm.WTPS = perm.WTPS, nrTRP)
if(permutationTRP == FALSE){
anova.p[j] <- 1-pf(anova.statistic.quick(data.proj, group.label), l-1, n-l)
ATS.simple.p[j] <- ATS.simple(data.proj, group.label)[2]
}else{
anova.s <- anova.statistic.quick(data.proj, group.label)
ATS.simple.s <- ATS.simple(data.proj, group.label)[1]
anova.perm <- numeric(nrTRP)
ATS.simple.perm <- numeric(nrTRP)
for(i.perm in 1:nrTRP){
anova.perm[i.perm] <- anova.statistic.quick(data.proj, sample(group.label))
ATS.simple.perm[i.perm] <- ATS.simple(data.proj, sample(group.label))[1]
}
anova.p[j] <- mean(anova.perm >= anova.s)
ATS.simple.p[j] <- mean(ATS.simple.perm >= ATS.simple.s)
}
}
iik <- iik + 1
all.data.proj[[iik]] <- ik.data.proj
pvalues.anova[iik] <- min(ik*anova.p[order(anova.p)]/1:ik)
pvalues.ATS.simple[iik] <- min(ik*ATS.simple.p[order(ATS.simple.p)]/1:ik)
pvalues.WTPS[iik] <- min(ik*WTPS.p[order(WTPS.p)]/1:ik)
}
if(parallel.method == "parallel.method1"){
rs <- foreach(j = 1:ik, .combine = rbind) %dopar%
{
bm.p <- cumsum(rnorm(p, mean = 0, sd = 1))/sqrt(p)
bm.p <- bm.p/modulo(bm.p)
ik.data.proj[, j] <- t(x) %*% as.matrix(bm.p)
data.proj <- ik.data.proj[, j]
perm.WTPS <- matrix(0, nrow = n, ncol = nrTRP)
for(i.perm in 1:nrTRP){
perm.WTPS[, i.perm] <- sample(1:n)
}
WTPS.p <- WTPSp(data.proj, group.label, group.label0, n, n.i, l, perm.WTPS = perm.WTPS, nrTRP)
if(permutationTRP == FALSE){
c(1-pf(anova.statistic.quick(data.proj, group.label), l-1, n-l),
ATS.simple(data.proj, group.label)[2], WTPS.p, data.proj)
}else{
anova.s <- anova.statistic.quick(data.proj, group.label)
ATS.simple.s <- ATS.simple(data.proj, group.label)[1]
anova.perm <- numeric(nrTRP)
ATS.simple.perm <- numeric(nrTRP)
for(i.perm in 1:nrTRP){
anova.perm[i.perm] <- anova.statistic.quick(data.proj, sample(group.label))
ATS.simple.perm[i.perm] <- ATS.simple(data.proj, sample(group.label))[1]
}
c(mean(anova.perm >= anova.s),
mean(ATS.simple.perm >= ATS.simple.s), WTPS.p, data.proj)
}
}
if(ik == 1) rs <- matrix(rs, nrow = 1, ncol = n+3)
iik <- iik + 1
if(ik == 1){
all.data.proj[[iik]] <- matrix(rs[, 4:(n+3)], ncol = 1)
}else{
all.data.proj[[iik]] <- t(rs[, 4:(n+3)])
}
pvalues.anova[iik] <- min(ik*(rs[, 1])[order(rs[, 1])]/1:ik)
pvalues.ATS.simple[iik] <- min(ik*(rs[, 2])[order(rs[, 2])]/1:ik)
pvalues.WTPS[iik] <- min(ik*(rs[, 3])[order(rs[, 3])]/1:ik)
}
}
}
}else{
ik <- max(k)
ik.data.proj <- matrix(0, nrow = n, ncol = ik)
if (projection == "GAUSS") {
z <- matrix(rnorm(p * ik), nrow = ik, ncol = p)
modu <- apply(z, 1, modulo)
z <- z/modu
if(parallel.method == "parallel.method0"){
anova.p <- numeric(ik)
ATS.simple.p <- numeric(ik)
WTPS.p <- numeric(ik)
for(j in 1:ik){
ik.data.proj[, j] <- t(x) %*% z[j,]
data.proj <- ik.data.proj[, j]
perm.WTPS <- matrix(0, nrow = n, ncol = nrTRP)
for(i.perm in 1:nrTRP){
perm.WTPS[, i.perm] <- sample(1:n)
}
WTPS.p[j] <- WTPSp(data.proj, group.label, group.label0, n, n.i, l, perm.WTPS = perm.WTPS, nrTRP)
if(permutationTRP == FALSE){
anova.p[j] <- 1-pf(anova.statistic.quick(data.proj, group.label), l-1, n-l)
ATS.simple.p[j] <- ATS.simple(data.proj, group.label)[2]
}else{
anova.s <- anova.statistic.quick(data.proj, group.label)
ATS.simple.s <- ATS.simple(data.proj, group.label)[1]
anova.perm <- numeric(nrTRP)
ATS.simple.perm <- numeric(nrTRP)
for(i.perm in 1:nrTRP){
anova.perm[i.perm] <- anova.statistic.quick(data.proj, sample(group.label))
ATS.simple.perm[i.perm] <- ATS.simple(data.proj, sample(group.label))[1]
}
anova.p[j] <- mean(anova.perm >= anova.s)
ATS.simple.p[j] <- mean(ATS.simple.perm >= ATS.simple.s)
}
}
all.data.proj <- ik.data.proj
iik <- 0
for (ik in k) {
iik <- iik + 1
pvalues.anova[iik] <- min(ik * anova.p[1:ik][order(anova.p[1:ik])] / 1:ik)
pvalues.ATS.simple[iik] <- min(ik * ATS.simple.p[1:ik][order(ATS.simple.p[1:ik])] / 1:ik)
pvalues.WTPS[iik] <- min(ik * WTPS.p[1:ik][order(WTPS.p[1:ik])] / 1:ik)
}
}
if(parallel.method == "parallel.method1"){
rs <- foreach(j = 1:ik, .combine = rbind) %dopar%
{
ik.data.proj[, j] <- t(x) %*% z[j,]
data.proj <- ik.data.proj[, j]
perm.WTPS <- matrix(0, nrow = n, ncol = nrTRP)
for(i.perm in 1:nrTRP){
perm.WTPS[, i.perm] <- sample(1:n)
}
WTPS.p <- WTPSp(data.proj, group.label, group.label0, n, n.i, l, perm.WTPS = perm.WTPS, nrTRP)
if(permutationTRP == FALSE){
c(1-pf(anova.statistic.quick(data.proj, group.label), l-1, n-l),
ATS.simple(data.proj, group.label)[2], WTPS.p, data.proj)
}else{
anova.s <- anova.statistic.quick(data.proj, group.label)
ATS.simple.s <- ATS.simple(data.proj, group.label)[1]
anova.perm <- numeric(nrTRP)
ATS.simple.perm <- numeric(nrTRP)
for(i.perm in 1:nrTRP){
anova.perm[i.perm] <- anova.statistic.quick(data.proj, sample(group.label))
ATS.simple.perm[i.perm] <- ATS.simple(data.proj, sample(group.label))[1]
}
c(mean(anova.perm >= anova.s),
mean(ATS.simple.perm >= ATS.simple.s), WTPS.p, data.proj)
}
}
if (ik == 1) rs <- matrix(rs, nrow = 1, ncol = n+3)
if (ik == 1) {
all.data.proj <- matrix(rs[, 4:(n+3)], ncol = 1)
} else {
all.data.proj <- t(rs[, 4:(n+3)])
}
iik <- 0
for (ik in k) {
iik <- iik + 1
pvalues.anova[iik] <- min(ik * (rs[1:ik, 1])[order(rs[1:ik, 1])] / 1:ik)
pvalues.ATS.simple[iik] <- min(ik * (rs[1:ik, 2])[order(rs[1:ik, 2])] / 1:ik)
pvalues.WTPS[iik] <- min(ik * (rs[1:ik, 3])[order(rs[1:ik, 3])] / 1:ik)
}
}
} else {
if(parallel.method == "parallel.method0"){
anova.p <- numeric(ik)
ATS.simple.p <- numeric(ik)
WTPS.p <- numeric(ik)
for(j in 1:ik){
bm.p <- cumsum(rnorm(p, mean = 0, sd = 1))/sqrt(p)
bm.p <- bm.p/modulo(bm.p)
ik.data.proj[, j] <- t(x) %*% as.matrix(bm.p)
data.proj <- ik.data.proj[, j]
perm.WTPS <- matrix(0, nrow = n, ncol = nrTRP)
for(i.perm in 1:nrTRP){
perm.WTPS[, i.perm] <- sample(1:n)
}
WTPS.p[j] <- WTPSp(data.proj, group.label, group.label0, n, n.i, l, perm.WTPS = perm.WTPS, nrTRP)
if(permutationTRP == FALSE){
anova.p[j] <- 1-pf(anova.statistic.quick(data.proj, group.label), l-1, n-l)
ATS.simple.p[j] <- ATS.simple(data.proj, group.label)[2]
}else{
anova.s <- anova.statistic.quick(data.proj, group.label)
ATS.simple.s <- ATS.simple(data.proj, group.label)[1]
anova.perm <- numeric(nrTRP)
ATS.simple.perm <- numeric(nrTRP)
for(i.perm in 1:nrTRP){
anova.perm[i.perm] <- anova.statistic.quick(data.proj, sample(group.label))
ATS.simple.perm[i.perm] <- ATS.simple(data.proj, sample(group.label))[1]
}
anova.p[j] <- mean(anova.perm >= anova.s)
ATS.simple.p[j] <- mean(ATS.simple.perm >= ATS.simple.s)
}
}
all.data.proj <- ik.data.proj
iik <- 0
for (ik in k) {
iik <- iik + 1
pvalues.anova[iik] <- min(ik * anova.p[1:ik][order(anova.p[1:ik])] / 1:ik)
pvalues.ATS.simple[iik] <- min(ik * ATS.simple.p[1:ik][order(ATS.simple.p[1:ik])] / 1:ik)
pvalues.WTPS[iik] <- min(ik * WTPS.p[1:ik][order(WTPS.p[1:ik])] / 1:ik)
}
}
if(parallel.method == "parallel.method1"){
rs <- foreach(j = 1:ik, .combine = rbind) %dopar%
{
bm.p <- cumsum(rnorm(p, mean = 0, sd = 1))/sqrt(p)
bm.p <- bm.p/modulo(bm.p)
ik.data.proj[, j] <- t(x) %*% as.matrix(bm.p)
data.proj <- ik.data.proj[, j]
perm.WTPS <- matrix(0, nrow = n, ncol = nrTRP)
for(i.perm in 1:nrTRP){
perm.WTPS[, i.perm] <- sample(1:n)
}
WTPS.p <- WTPSp(data.proj, group.label, group.label0, n, n.i, l, perm.WTPS = perm.WTPS, nrTRP)
if(permutationTRP == FALSE){
c(1-pf(anova.statistic.quick(data.proj, group.label), l-1, n-l),
ATS.simple(data.proj, group.label)[2], WTPS.p, data.proj)
}else{
anova.s <- anova.statistic.quick(data.proj, group.label)
ATS.simple.s <- ATS.simple(data.proj, group.label)[1]
anova.perm <- numeric(nrTRP)
ATS.simple.perm <- numeric(nrTRP)
for(i.perm in 1:nrTRP){
anova.perm[i.perm] <- anova.statistic.quick(data.proj, sample(group.label))
ATS.simple.perm[i.perm] <- ATS.simple(data.proj, sample(group.label))[1]
}
c(mean(anova.perm >= anova.s),
mean(ATS.simple.perm >= ATS.simple.s), WTPS.p, data.proj)
}
}
if (ik == 1) rs <- matrix(rs, nrow = 1, ncol = n+3)
if (ik == 1) {
all.data.proj <- matrix(rs[, 4:(n+3)], ncol = 1)
} else {
all.data.proj <- t(rs[, 4:(n+3)])
}
iik <- 0
for (ik in k) {
iik <- iik + 1
pvalues.anova[iik] <- min(ik * (rs[1:ik, 1])[order(rs[1:ik, 1])] / 1:ik)
pvalues.ATS.simple[iik] <- min(ik * (rs[1:ik, 2])[order(rs[1:ik, 2])] / 1:ik)
pvalues.WTPS[iik] <- min(ik * (rs[1:ik, 3])[order(rs[1:ik, 3])] / 1:ik)
}
}
}
}
resultTRP <- list(pvalues.anova = pvalues.anova, pvalues.ATS = pvalues.ATS.simple,
pvalues.WTPS = pvalues.WTPS, data.projections = all.data.proj,
k = k, projection = projection,
permutation = permutationTRP, B.TRP = nrTRP,
independent.projection.tests = independent.projection.tests)
}
if(any(c("FP", "CH", "CS", "L2b", "Fb", "Fmaxb", "TRP") %in% test)){
if(parallel.method == "parallel.method1"){
parallel::stopCluster(cl)
}
}
list.results = list()
for(ii in test){
if(ii == "FP"){
list.results[[which(test == ii)]] = resultFP
names(list.results)[which(test == ii)] = "FP"
}
if(ii == "CH"){
list.results[[which(test == ii)]] = resultCH
names(list.results)[which(test == ii)] = "CH"
}
if(ii == "CS"){
list.results[[which(test == ii)]] = resultCS
names(list.results)[which(test == ii)] = "CS"
}
if(ii == "L2N"){
list.results[[which(test == ii)]] = resultL2N
names(list.results)[which(test == ii)] = "L2N"
}
if(ii == "L2B"){
list.results[[which(test == ii)]] = resultL2B
names(list.results)[which(test == ii)] = "L2B"
}
if(ii == "L2b"){
list.results[[which(test == ii)]] = resultL2b
names(list.results)[which(test == ii)] = "L2b"
}
if(ii == "FN"){
list.results[[which(test == ii)]] = resultFN
names(list.results)[which(test == ii)] = "FN"
}
if(ii == "FB"){
list.results[[which(test == ii)]] = resultFB
names(list.results)[which(test == ii)] = "FB"
}
if(ii == "Fb"){
list.results[[which(test == ii)]] = resultFb
names(list.results)[which(test == ii)] = "Fb"
}
if(ii == "GPF"){
list.results[[which(test == ii)]] = resultGPF
names(list.results)[which(test == ii)] = "GPF"
}
if(ii == "Fmaxb"){
list.results[[which(test == ii)]] = resultFmaxb
names(list.results)[which(test == ii)] = "Fmaxb"
}
if(ii == "TRP"){
list.results[[which(test == ii)]] = resultTRP
names(list.results)[which(test == ii)] = "TRP"
}
}
list.results$data = x
list.results$group.label = group.label
list.results$parallel = parallel
list.results$nslaves = nslaves
class(list.results) = "fanovatests"
return(list.results)
} |
linearCase <- function(x,
y,
trt,
propen,
wgt,
intercept) {
p <- 1L:{ncol(x)+1L}
n <- length(y)
trtOpts <- sort(unique(trt))
trtOpts <- trtOpts[-1L]
k <- length(trtOpts)
x1 <- cbind(1.0,x) * wgt
y <- y * wgt
xpro <- NULL
for( i in 1L:k ) {
xpro <- cbind(xpro, x1 * {{trt == trtOpts[i]} - propen[,i+1L]})
}
if( intercept ) {
fit <- stats::lm(y ~ x + xpro, data = data.frame(x,xpro,y))$coef
gamma <- fit[p]
beta <- fit[-p]
} else {
fit <- stats::lm(y ~ -1 + x + xpro, data = data.frame(x,xpro,y))$coef
gamma <- 0.0
beta <- fit
}
if( any(is.na(fit)) ) {
stop("NAs encountered in fit of baseline mean function.",
call. = FALSE)
}
AL <- adaptiveLasso(x = x,
y = y,
gamma = gamma,
beta = beta,
propen = propen,
trt = trt,
wgt = wgt)
return(AL)
} |
.tuneLearnFullFits <- function(lsig, form, fam, qu, err, ctrl, data, argGam, gausFit, varHat, initM){
n <- nrow(data)
nt <- length(lsig)
mainObj <- do.call("gam", c(list("formula" = form,
"family" = quote(elf(qu = qu, co = NA, theta = NA, link = ctrl$link)),
"data" = quote(data), "fit" = FALSE),
argGam))
argGam <- argGam[ names(argGam) != "sp" ]
repar <- if( is.list(form) ){
Sl.setup( mainObj )
} else {
.prepBootObj(obj = mainObj, eps = NULL, control = argGam$control)[ c("UrS", "Mp", "U1") ]
}
tmp <- pen.edf( gausFit )
if( length(tmp) ) {
edfStore <- list( )
} else {
edfStore <- NULL
}
store <- vector("list", nt)
for( ii in 1:nt )
{
mainObj$family$putCo( err * sqrt(2*pi*varHat) / (2*log(2)) )
mainObj$family$putTheta( lsig[ii] )
convProb <- FALSE
withCallingHandlers({
fit <- do.call("gam", c(list("G" = quote(mainObj), "in.out" = initM[["in.out"]], "start" = initM[["start"]]), argGam))
}, warning = function(w) {
if (length(grep("Fitting terminated with step failure", conditionMessage(w))) ||
length(grep("Iteration limit reached without full convergence", conditionMessage(w))))
{
message( paste("log(sigma) = ", round(lsig[ii], 3), " : outer Newton did not converge fully.", sep = "") )
convProb <<- TRUE
invokeRestart("muffleWarning")
}
})
if( !is.null(edfStore) ) {
edfStore[[ii]] <- c(lsig[ii], pen.edf(fit))
}
if( ii == 1 ){
pMat <- pMatFull <- predict.gam(fit, type = "lpmatrix")
lpi <- attr(pMat, "lpi")
if( !is.null(lpi) ){
pMat <- pMat[ , lpi[[1]]]
attr(pMat, "lpi") <- lpi
}
}
sdev <- NULL
if(ctrl$loss %in% c("cal", "calFast") && ctrl$vtype == "m"){
Vp <- fit$Vp
if( !is.null(lpi) ){ Vp <- fit$Vp[lpi[[1]], lpi[[1]]] }
sdev <- sqrt(rowSums((pMat %*% Vp) * pMat))
}
initM <- list("start" = coef(fit), "in.out" = list("sp" = fit$sp, "scale" = 1))
if( ctrl$loss == "calFast" ){
if( ii == 1 ){
EXXT <- crossprod(pMatFull, pMatFull) / n
EXEXT <- tcrossprod( colMeans(pMatFull), colMeans(pMatFull) )
}
Vbias <- .biasedCov(fit = fit, X = pMatFull, EXXT = EXXT, EXEXT = EXEXT, lpi = lpi)
store[[ii]] <- list("loss" = .sandwichLoss(mFit = fit, X = pMat, XFull = pMatFull, sdev = sdev, repar = repar,
alpha = Vbias$alpha, VSim = Vbias$V),
"convProb" = convProb)
} else {
store[[ii]] <- list("sp" = fit$sp, "fit" = fit$fitted, "co" = fit$family$getCo(),
"init" = initM$start, "sdev" = sdev, "weights" = fit$working.weights,
"res" = fit$residuals, "convProb" = convProb)
}
}
if( !is.null(edfStore) ){
edfStore <- do.call("rbind", edfStore)
colnames(edfStore) <- c("lsig", names( pen.edf(fit) ))
}
return( list("store" = store,
"edfStore" = edfStore,
"pMat" = if(ctrl$loss != "calFast") { pMat } else { NULL } ) )
} |
daysum <- function(var, infile, outfile, nc34 = 4, overwrite = FALSE, verbose = FALSE, nc = NULL) {
dayx_wrapper(4, var, infile, outfile, nc34, overwrite, verbose = verbose, nc = nc)
} |
timestamp <- Sys.time()
library(caret)
library(plyr)
library(recipes)
library(dplyr)
model <- "leapSeq"
library(caret)
library(plyr)
library(recipes)
library(dplyr)
set.seed(1)
training <- SLC14_1(30)
testing <- SLC14_1(100)
trainX <- training[, -ncol(training)]
trainY <- training$y
rec_reg <- recipe(y ~ ., data = training) %>%
step_center(all_predictors()) %>%
step_scale(all_predictors())
testX <- trainX[, -ncol(training)]
testY <- trainX$y
rctrl1 <- trainControl(method = "cv", number = 3, returnResamp = "all")
rctrl2 <- trainControl(method = "LOOCV")
rctrl3 <- trainControl(method = "none")
rctrlR <- trainControl(method = "cv", number = 3, returnResamp = "all", search = "random")
set.seed(849)
test_reg_cv_model <- train(trainX, trainY, method = "leapSeq", trControl = rctrl1,
preProc = c("center", "scale"))
test_reg_pred <- predict(test_reg_cv_model, testX)
set.seed(849)
test_reg_cv_form <- train(y ~ ., data = training,
method = "leapSeq", trControl = rctrl1,
preProc = c("center", "scale"))
test_reg_pred_form <- predict(test_reg_cv_form, testX)
set.seed(849)
test_reg_rand <- train(trainX, trainY,
method = "leapSeq",
trControl = rctrlR,
tuneLength = 4)
set.seed(849)
test_reg_loo_model <- train(trainX, trainY, method = "leapSeq", trControl = rctrl2,
preProc = c("center", "scale"))
set.seed(849)
test_reg_none_model <- train(trainX, trainY,
method = "leapSeq",
trControl = rctrl3,
tuneLength = 1,
preProc = c("center", "scale"))
test_reg_none_pred <- predict(test_reg_none_model, testX)
set.seed(849)
test_reg_rec <- train(x = rec_reg,
data = training,
method = "leapSeq",
trControl = rctrl1)
if(
!isTRUE(
all.equal(test_reg_cv_model$results,
test_reg_rec$results))
)
stop("CV weights not giving the same results")
test_reg_imp_rec <- varImp(test_reg_rec)
test_reg_pred_rec <- predict(test_reg_rec, testing[, -ncol(testing)])
tests <- grep("test_", ls(), fixed = TRUE, value = TRUE)
sInfo <- sessionInfo()
timestamp_end <- Sys.time()
save(list = c(tests, "sInfo", "timestamp", "timestamp_end"),
file = file.path(getwd(), paste(model, ".RData", sep = "")))
if(!interactive())
q("no") |
get_global_graph_attr_info <- function(graph) {
fcn_name <- get_calling_fcn()
if (graph_object_valid(graph) == FALSE) {
emit_error(
fcn_name = fcn_name,
reasons = "The graph object is not valid"
)
}
if (nrow(graph$global_attrs) == 0) {
global_graph_attrs_tbl <-
dplyr::tibble(
attr = character(0),
value = character(0),
attr_type = character(0)
)
} else if (nrow(graph$global_attrs) > 0) {
global_graph_attrs_tbl <- dplyr::as_tibble(graph$global_attrs)
}
global_graph_attrs_tbl
} |
find_outliers <- function(.data = NULL,
var = NULL,
by = NULL,
plots = FALSE,
coef = 1.5,
verbose = TRUE,
plot_theme = theme_metan()) {
if (!missing(by)){
if(length(as.list(substitute(by))[-1L]) != 0){
stop("Only one grouping variable can be used in the argument 'by'.\nUse 'group_by()' to pass '.data' grouped by more than one variable.", call. = FALSE)
}
.data <- group_by(.data, {{by}})
}
if(is_grouped_df(.data)){
results <- .data %>%
doo(find_outliers,
var = {{var}},
plots = plots,
coef = coef,
verbose = verbose,
plot_theme = plot_theme) %>%
as.data.frame()
names(results)[[which(names(results) == "data")]] <- "outliers"
return(results)
}
if(has_class(.data, c("numeric", "integer"))){
var_name <- as.numeric(.data)
dd <- data.frame(.data)
} else {
var_name <- .data %>% dplyr::select({{var}}) %>% unlist() %>% as.numeric()
dd <- data.frame(.data %>% select({{var}}))
}
tot <- sum(!is.na(var_name))
na1 <- sum(is.na(var_name))
m1 <- mean(var_name, na.rm = TRUE)
m11 <- (sd(var_name, na.rm = TRUE)/m1) * 100
outlier <- boxplot.stats(var_name, coef = coef)$out
names_out <- paste(which(dd[, 1] %in% outlier), sep = " ")
if (length(outlier) >= 1) {
mo <- mean(outlier)
maxo <- max(outlier)
mino <- min(outlier)
names_out_max <- paste(which(dd[, 1] == maxo))
names_out_min <- paste(which(dd[, 1] == mino))
}
var_name2 <- ifelse(var_name %in% outlier, NA, var_name)
names <- rownames(var_name2)
na2 <- sum(is.na(var_name2))
if ((na2 - na1) > 0) {
if(verbose == TRUE){
cat("Trait:", colnames(dd), "\n")
cat("Number of possible outliers:", na2 - na1, "\n")
cat("Line(s):", names_out, "\n")
cat("Proportion: ", round((na2 - na1)/sum(!is.na(var_name2)) *
100, 1), "%\n", sep = "")
cat("Mean of the outliers:", round(mo, 3), "\n")
cat("Maximum of the outliers:", round(maxo, 3), " | Line",
names_out_max, "\n")
cat("Minimum of the outliers:", round(mino, 3), " | Line",
names_out_min, "\n")
m2 <- mean(var_name2, na.rm = TRUE)
m22 <- (sd(var_name2, na.rm = TRUE)/m2) * 100
cat("With outliers: mean = ", round(m1, 3), " | CV = ",
round(m11, 3), "%", sep = "", "\n")
cat("Without outliers: mean = ", round(m2, 3), " | CV = ",
round(m22, 3), "%", sep = "", "\n\n")
}
}
if (any(plots == TRUE)) {
df_out <- data.frame(with = var_name,
without = var_name2)
nbins <- round(1 + 3.322 * log(nrow(df_out)), 0)
with_box <-
ggplot(df_out, aes(x = "Outlier", y = with)) +
stat_boxplot(geom = "errorbar",
width=0.2,
size = 0.2,
na.rm = TRUE)+
geom_boxplot(outlier.color = "black",
outlier.shape = 21,
outlier.size = 2.5,
outlier.fill = "red",
color = "black",
width = .5,
size = 0.2,
na.rm = TRUE)+
plot_theme %+replace%
theme(axis.text.x = element_text(color = "white"),
panel.grid.major.x = element_blank(),
axis.ticks.x = element_blank())+
labs(y = "Observed value", x = "")
without_box <-
ggplot(df_out, aes(x = "Outlier", y = without)) +
stat_boxplot(geom = "errorbar",
width=0.2,
size = 0.2,
na.rm = TRUE)+
geom_boxplot(outlier.color = "black",
outlier.shape = 21,
outlier.size = 2.5,
outlier.fill = "red",
color = "black",
width = .5,
size = 0.2,
na.rm = TRUE)+
plot_theme %+replace%
theme(axis.text.x = element_text(color = "white"),
panel.grid.major.x = element_blank(),
axis.ticks.x = element_blank())+
labs(y = "Observed value", x = "")
with_hist <-
ggplot(df_out, aes(x = with))+
geom_histogram(position="identity",
color = "black",
fill = "gray",
na.rm = TRUE,
size = 0.2,
bins = nbins)+
scale_y_continuous(expand = expansion(mult = c(0, .1)))+
plot_theme +
labs(x = "Observed value",
y = "Count")
without_hist <-
ggplot(df_out, aes(x = without))+
geom_histogram(position="identity",
color = "black",
fill = "gray",
na.rm = TRUE,
size = 0.2,
bins = nbins)+
scale_y_continuous(expand = expansion(mult = c(0, .1)))+
plot_theme +
labs(x = "Observed value",
y = "Count")
p1 <- wrap_plots(with_box + labs(title = "With outliers"),
with_hist,
nrow = 1)
p2 <- wrap_plots(without_box + labs(title = "Without outliers"),
without_hist,
nrow = 1)
plot(p1 / p2)
}
if ((na2 - na1) == 0) {
if(verbose == TRUE){
cat("No possible outlier identified. \n\n")
}
}
outlier <- ifelse(((na2 - na1) == 0), 0, na2 - na1)
invisible(outlier)
} |
classVariable_Generic <- R6Class(
classname = "variable_Generic",
public = list(
allDrawnVariables = NA,
allLikelihoodVars = NA,
allObserved = NA,
attributeProfile = NA,
constraintMatrix = NA,
completeCases = NA,
covMat = NA,
defaultSimulatedParameters = list(),
distributionSpecs = list(),
formula = NA,
formulaRHS = NA,
hyperparameters = list(),
imputeList = NA,
incompleteCases = NA,
initializeAlpha = NA,
initialParameterValues = list(),
isLatent = NA,
isLatentJoint = NA,
isPredictor = NA,
likelihoodPTR = NA,
meanIdentification = NA,
missing = NA,
nCategories = NA,
nConstraints = NA,
nImpute = NA,
nMissing = NA,
nObserved = NA,
nParam = NA,
nSubVariables = NA,
modeledN = NA,
modeledObs = NA,
observed = NA,
paramNames = NA,
parameters = list(),
predictedBy = NA,
predicts = NA,
predNames = NA,
predTypes = NA,
priorAlpha = NA,
routines = list(),
subVariableNames = NA,
variableName = NA,
variableNumber = NA,
varianceIdentification = NA,
underlyingVariables = NA,
initialize = function(){
},
initializeParameters = function(){
},
initializeUnits = function(){
},
KLI = function(){
},
likelihood = function(){
},
loadPointers = function(){
self$likelihoodPTR = bernoulliLikelihoodPtr(self$distributionSpecs$distribution)
},
predictedValues = function(){
},
prepareData = function(){
},
provideParameterTypesAndLocations = function(){
},
provideParameterValues = function(){
},
random = function(){
},
sampleParameters = function(){
},
sampleUnits = function(){
},
setParameterValues = function(){
},
simulateParameters = function(){
},
simulateUnits = function(){
}
)
) |
cano2M <- function(nVar, dMax, poly) {
pMax <- length(poly)
if (pMax != d2pMax(nVar, dMax))
stop('Polynomial function size incompatible with formulation poLabs(nVar, dMax).')
Kmod <- matrix(0, ncol = nVar, nrow = pMax)
Kmod[, nVar] <- poly
for (i in 1:(nVar - 1)) {
ireg <- d2pMax(nVar - i - 1, dMax) + 1
Kmod[ireg, i] <- 1
}
Kmod
} |
gdina_proc_check_admissible_rules <- function(rule)
{
admiss.rules <- c("GDINA", "ACDM", "DINA", "DINO",
"GDINA1", "GDINA2", "RRUM", "SISM" )
i1 <- which( ! ( rule %in% admiss.rules ) )
if ( length(i1) > 0 ){
cat("The following rules are not implemented in gdina: ")
cat( paste( unique( rule[i1] ), collapse=" " ), "\n" )
stop("Change your argument 'rule'")
}
} |
k9_get_events <- function(event_id = NULL,
start = NULL,
end = NULL,
priority = NULL,
sources = NULL,
tags = NULL,
.split_request = TRUE) {
if(!is.null(event_id)) {
if(is.numeric(event_id)) {
warning('Consider specifying event_id by character, as they might be too big for integer')
}
result <- k9_request(verb = "GET",
path = sprintf("/api/v1/events/%s", event_id))
} else {
period <- to_epochperiod(start, end)
if(!is.null(priority) && !priority %in% c('low', 'normal')) {
stop("priority can be eighter NULL, 'low', or 'normal'.")
}
if(!is.null(sources)) {
sources <- paste(sources, collapse = ",")
}
if(!is.null(tags) && is.list(tags)) {
tags <- paste(names(tags), tags, sep = ":", collapse = ",")
}
result <- purrr::map2_df(
.x = dplyr::lag(period)[-1],
.y = period[-1],
.f = k9_get_events_one,
sources = sources,
tags = tags
)
}
result
}
k9_get_events_one <- function(start, end,
priority = NULL,
sources = NULL,
tags = NULL) {
result <- k9_request(verb = "GET",
path = "/api/v1/events",
query = list(
start = start,
end = end,
priority = priority,
sources = sources,
tags = tags
))
result
} |
NULL
ecrpublic_batch_check_layer_availability <- function(registryId = NULL, repositoryName, layerDigests) {
op <- new_operation(
name = "BatchCheckLayerAvailability",
http_method = "POST",
http_path = "/",
paginator = list()
)
input <- .ecrpublic$batch_check_layer_availability_input(registryId = registryId, repositoryName = repositoryName, layerDigests = layerDigests)
output <- .ecrpublic$batch_check_layer_availability_output()
config <- get_config()
svc <- .ecrpublic$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.ecrpublic$operations$batch_check_layer_availability <- ecrpublic_batch_check_layer_availability
ecrpublic_batch_delete_image <- function(registryId = NULL, repositoryName, imageIds) {
op <- new_operation(
name = "BatchDeleteImage",
http_method = "POST",
http_path = "/",
paginator = list()
)
input <- .ecrpublic$batch_delete_image_input(registryId = registryId, repositoryName = repositoryName, imageIds = imageIds)
output <- .ecrpublic$batch_delete_image_output()
config <- get_config()
svc <- .ecrpublic$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.ecrpublic$operations$batch_delete_image <- ecrpublic_batch_delete_image
ecrpublic_complete_layer_upload <- function(registryId = NULL, repositoryName, uploadId, layerDigests) {
op <- new_operation(
name = "CompleteLayerUpload",
http_method = "POST",
http_path = "/",
paginator = list()
)
input <- .ecrpublic$complete_layer_upload_input(registryId = registryId, repositoryName = repositoryName, uploadId = uploadId, layerDigests = layerDigests)
output <- .ecrpublic$complete_layer_upload_output()
config <- get_config()
svc <- .ecrpublic$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.ecrpublic$operations$complete_layer_upload <- ecrpublic_complete_layer_upload
ecrpublic_create_repository <- function(repositoryName, catalogData = NULL) {
op <- new_operation(
name = "CreateRepository",
http_method = "POST",
http_path = "/",
paginator = list()
)
input <- .ecrpublic$create_repository_input(repositoryName = repositoryName, catalogData = catalogData)
output <- .ecrpublic$create_repository_output()
config <- get_config()
svc <- .ecrpublic$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.ecrpublic$operations$create_repository <- ecrpublic_create_repository
ecrpublic_delete_repository <- function(registryId = NULL, repositoryName, force = NULL) {
op <- new_operation(
name = "DeleteRepository",
http_method = "POST",
http_path = "/",
paginator = list()
)
input <- .ecrpublic$delete_repository_input(registryId = registryId, repositoryName = repositoryName, force = force)
output <- .ecrpublic$delete_repository_output()
config <- get_config()
svc <- .ecrpublic$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.ecrpublic$operations$delete_repository <- ecrpublic_delete_repository
ecrpublic_delete_repository_policy <- function(registryId = NULL, repositoryName) {
op <- new_operation(
name = "DeleteRepositoryPolicy",
http_method = "POST",
http_path = "/",
paginator = list()
)
input <- .ecrpublic$delete_repository_policy_input(registryId = registryId, repositoryName = repositoryName)
output <- .ecrpublic$delete_repository_policy_output()
config <- get_config()
svc <- .ecrpublic$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.ecrpublic$operations$delete_repository_policy <- ecrpublic_delete_repository_policy
ecrpublic_describe_image_tags <- function(registryId = NULL, repositoryName, nextToken = NULL, maxResults = NULL) {
op <- new_operation(
name = "DescribeImageTags",
http_method = "POST",
http_path = "/",
paginator = list()
)
input <- .ecrpublic$describe_image_tags_input(registryId = registryId, repositoryName = repositoryName, nextToken = nextToken, maxResults = maxResults)
output <- .ecrpublic$describe_image_tags_output()
config <- get_config()
svc <- .ecrpublic$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.ecrpublic$operations$describe_image_tags <- ecrpublic_describe_image_tags
ecrpublic_describe_images <- function(registryId = NULL, repositoryName, imageIds = NULL, nextToken = NULL, maxResults = NULL) {
op <- new_operation(
name = "DescribeImages",
http_method = "POST",
http_path = "/",
paginator = list()
)
input <- .ecrpublic$describe_images_input(registryId = registryId, repositoryName = repositoryName, imageIds = imageIds, nextToken = nextToken, maxResults = maxResults)
output <- .ecrpublic$describe_images_output()
config <- get_config()
svc <- .ecrpublic$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.ecrpublic$operations$describe_images <- ecrpublic_describe_images
ecrpublic_describe_registries <- function(nextToken = NULL, maxResults = NULL) {
op <- new_operation(
name = "DescribeRegistries",
http_method = "POST",
http_path = "/",
paginator = list()
)
input <- .ecrpublic$describe_registries_input(nextToken = nextToken, maxResults = maxResults)
output <- .ecrpublic$describe_registries_output()
config <- get_config()
svc <- .ecrpublic$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.ecrpublic$operations$describe_registries <- ecrpublic_describe_registries
ecrpublic_describe_repositories <- function(registryId = NULL, repositoryNames = NULL, nextToken = NULL, maxResults = NULL) {
op <- new_operation(
name = "DescribeRepositories",
http_method = "POST",
http_path = "/",
paginator = list()
)
input <- .ecrpublic$describe_repositories_input(registryId = registryId, repositoryNames = repositoryNames, nextToken = nextToken, maxResults = maxResults)
output <- .ecrpublic$describe_repositories_output()
config <- get_config()
svc <- .ecrpublic$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.ecrpublic$operations$describe_repositories <- ecrpublic_describe_repositories
ecrpublic_get_authorization_token <- function() {
op <- new_operation(
name = "GetAuthorizationToken",
http_method = "POST",
http_path = "/",
paginator = list()
)
input <- .ecrpublic$get_authorization_token_input()
output <- .ecrpublic$get_authorization_token_output()
config <- get_config()
svc <- .ecrpublic$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.ecrpublic$operations$get_authorization_token <- ecrpublic_get_authorization_token
ecrpublic_get_registry_catalog_data <- function() {
op <- new_operation(
name = "GetRegistryCatalogData",
http_method = "POST",
http_path = "/",
paginator = list()
)
input <- .ecrpublic$get_registry_catalog_data_input()
output <- .ecrpublic$get_registry_catalog_data_output()
config <- get_config()
svc <- .ecrpublic$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.ecrpublic$operations$get_registry_catalog_data <- ecrpublic_get_registry_catalog_data
ecrpublic_get_repository_catalog_data <- function(registryId = NULL, repositoryName) {
op <- new_operation(
name = "GetRepositoryCatalogData",
http_method = "POST",
http_path = "/",
paginator = list()
)
input <- .ecrpublic$get_repository_catalog_data_input(registryId = registryId, repositoryName = repositoryName)
output <- .ecrpublic$get_repository_catalog_data_output()
config <- get_config()
svc <- .ecrpublic$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.ecrpublic$operations$get_repository_catalog_data <- ecrpublic_get_repository_catalog_data
ecrpublic_get_repository_policy <- function(registryId = NULL, repositoryName) {
op <- new_operation(
name = "GetRepositoryPolicy",
http_method = "POST",
http_path = "/",
paginator = list()
)
input <- .ecrpublic$get_repository_policy_input(registryId = registryId, repositoryName = repositoryName)
output <- .ecrpublic$get_repository_policy_output()
config <- get_config()
svc <- .ecrpublic$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.ecrpublic$operations$get_repository_policy <- ecrpublic_get_repository_policy
ecrpublic_initiate_layer_upload <- function(registryId = NULL, repositoryName) {
op <- new_operation(
name = "InitiateLayerUpload",
http_method = "POST",
http_path = "/",
paginator = list()
)
input <- .ecrpublic$initiate_layer_upload_input(registryId = registryId, repositoryName = repositoryName)
output <- .ecrpublic$initiate_layer_upload_output()
config <- get_config()
svc <- .ecrpublic$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.ecrpublic$operations$initiate_layer_upload <- ecrpublic_initiate_layer_upload
ecrpublic_put_image <- function(registryId = NULL, repositoryName, imageManifest, imageManifestMediaType = NULL, imageTag = NULL, imageDigest = NULL) {
op <- new_operation(
name = "PutImage",
http_method = "POST",
http_path = "/",
paginator = list()
)
input <- .ecrpublic$put_image_input(registryId = registryId, repositoryName = repositoryName, imageManifest = imageManifest, imageManifestMediaType = imageManifestMediaType, imageTag = imageTag, imageDigest = imageDigest)
output <- .ecrpublic$put_image_output()
config <- get_config()
svc <- .ecrpublic$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.ecrpublic$operations$put_image <- ecrpublic_put_image
ecrpublic_put_registry_catalog_data <- function(displayName = NULL) {
op <- new_operation(
name = "PutRegistryCatalogData",
http_method = "POST",
http_path = "/",
paginator = list()
)
input <- .ecrpublic$put_registry_catalog_data_input(displayName = displayName)
output <- .ecrpublic$put_registry_catalog_data_output()
config <- get_config()
svc <- .ecrpublic$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.ecrpublic$operations$put_registry_catalog_data <- ecrpublic_put_registry_catalog_data
ecrpublic_put_repository_catalog_data <- function(registryId = NULL, repositoryName, catalogData) {
op <- new_operation(
name = "PutRepositoryCatalogData",
http_method = "POST",
http_path = "/",
paginator = list()
)
input <- .ecrpublic$put_repository_catalog_data_input(registryId = registryId, repositoryName = repositoryName, catalogData = catalogData)
output <- .ecrpublic$put_repository_catalog_data_output()
config <- get_config()
svc <- .ecrpublic$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.ecrpublic$operations$put_repository_catalog_data <- ecrpublic_put_repository_catalog_data
ecrpublic_set_repository_policy <- function(registryId = NULL, repositoryName, policyText, force = NULL) {
op <- new_operation(
name = "SetRepositoryPolicy",
http_method = "POST",
http_path = "/",
paginator = list()
)
input <- .ecrpublic$set_repository_policy_input(registryId = registryId, repositoryName = repositoryName, policyText = policyText, force = force)
output <- .ecrpublic$set_repository_policy_output()
config <- get_config()
svc <- .ecrpublic$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.ecrpublic$operations$set_repository_policy <- ecrpublic_set_repository_policy
ecrpublic_upload_layer_part <- function(registryId = NULL, repositoryName, uploadId, partFirstByte, partLastByte, layerPartBlob) {
op <- new_operation(
name = "UploadLayerPart",
http_method = "POST",
http_path = "/",
paginator = list()
)
input <- .ecrpublic$upload_layer_part_input(registryId = registryId, repositoryName = repositoryName, uploadId = uploadId, partFirstByte = partFirstByte, partLastByte = partLastByte, layerPartBlob = layerPartBlob)
output <- .ecrpublic$upload_layer_part_output()
config <- get_config()
svc <- .ecrpublic$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.ecrpublic$operations$upload_layer_part <- ecrpublic_upload_layer_part |
NULL
sql_translation.Snowflake <- function(con) {
sql_variant(
sql_translator(
.parent = base_odbc_scalar,
log10 = function(x) sql_expr(log(10, !!x))
),
base_agg,
base_win
)
}
simulate_snowflake <- function() simulate_dbi("Snowflake")
sql_table_analyze.Snowflake <- function(con, table, ...) {} |
library(mpe)
Sigma <- matrix(c(1, 0.8, 0.8, 1), nrow = 2)
power.known.var(K = 2, delta = c(0.25, 0.4), Sigma = Sigma, sig.level = 0.025, power = 0.8)
power.known.var(K = 2, delta = c(0.25, 0.4), SD = c(1,1), rho = 0.8, sig.level = 0.025,
power = 0.8)
power.known.var(K = 2, n = 252, delta = c(0.25,0.4), Sigma=Sigma, sig.level = 0.025)
power.known.var(K = 2, n = 252, delta = c(0.25, 0.4), SD = c(1,1), rho = 0.8,
sig.level = 0.025)
delta <- c(0.25, 0.5)
Sigma <- matrix(c(1, 0.75, 0.75, 1), ncol = 2)
n <- 50
X <- rmvnorm(n=n, mean = delta, sigma = Sigma)
Y <- rmvnorm(n=n, mean = rep(0, length(delta)), sigma = Sigma)
mpe.z.test(X = X, Y = Y, Sigma = Sigma)
Sigma <- matrix(c(1, 0.5, 0.5, 1), nrow = 2)
power.known.var(K = 2, delta = c(0.5, 0.4), Sigma = Sigma, sig.level = 0.025, power = 0.8)
Sigma <- matrix(c(1, 0.5, 0.5, 1), nrow = 2)
power.unknown.var(K = 2, delta = c(0.5, 0.4), Sigma = Sigma, sig.level = 0.025, power = 0.8,
min.n = 105, max.n = 120)
Sigma <- matrix(c(1, 0.5, 0.5, 1), nrow = 2)
power.unknown.var(K = 2, delta = c(0.5, 0.4), rho = 0.5, SD = c(1,1), sig.level = 0.025,
power = 0.8, min.n = 105, max.n = 120)
power.unknown.var(K = 2, n = 107, delta = c(0.5,0.4), Sigma = matrix(c(1, 0.5,0.5, 1), nrow=2),
sig.level = 0.025)
delta <- c(0.5, 0.4)
Sigma <- matrix(c(1, 0.5, 0.5, 1), ncol = 2)
n <- 106
X <- rmvnorm(n=n, mean = delta, sigma = Sigma)
Y <- rmvnorm(n=n, mean = rep(0, length(delta)), sigma = Sigma)
mpe.t.test(X = X, Y = Y)
atleast.one.endpoint(K = 2, delta = c(0.20,0.30), Sigma = matrix(c(1, 0.3, 0.3, 1), nrow = 2),
power = 0.8, sig.level = 0.025)
atleast.one.endpoint(K = 2, delta = c(0.20, 0.30), SD = c(1,1), rho = 0.3, power = 0.8)
atleast.one.endpoint(K = 2, n = 147, delta = c(0.20,0.30),
Sigma = matrix(c(1, 0.3, 0.3, 1), nrow = 2))
power.known.var(K = 2,delta = c(0.47, 0.48), Sigma = matrix(c(1, 0.0, 0.0, 1), nrow = 2),
sig.level = 0.025, power = 0.8)
power.known.var(K= 2,delta = c(0.47, 0.48), Sigma = matrix(c(1, 0.3, 0.3, 1), nrow = 2),
sig.level = 0.025, power = 0.8)
power.known.var(K = 2,delta = c(0.47, 0.48), Sigma = matrix(c(1, 0.5, 0.5, 1), nrow = 2),
sig.level = 0.025, power = 0.8)
power.known.var(K = 2, delta = c(0.47, 0.48), Sigma = matrix(c(1, 0.8, 0.8, 1), nrow = 2),
sig.level = 0.025, power = 0.8)
power.known.var(K = 3, delta = c(0.36, 0.30, 0.26),
Sigma = matrix(c(1, 0.3, 0.3, 0.3, 1, 0.3, 0.3, 0.3, 1), nrow = 3),
sig.level = 0.025, power = 0.8)
power.unknown.var(K = 3, delta = c(0.36, 0.30, 0.26),
Sigma = matrix(c(1, 0.3, 0.3, 0.3, 1, 0.3, 0.3, 0.3, 1), nrow = 3),
sig.level = 0.025, power = 0.8, min.n = 268, max.n = 300)
atleast.one.endpoint(K= 2, delta = c(0.47, 0.48), Sigma = matrix(c(1, 0.0, 0.0, 1), nrow = 2),
power = 0.8)
atleast.one.endpoint(K= 2, delta = c(0.47, 0.48), Sigma = matrix(c(1, 0.3, 0.3, 1), nrow = 2),
power = 0.8)
atleast.one.endpoint(K= 2, delta = c(0.47, 0.48), Sigma = matrix(c(1, 0.5, 0.5, 1), nrow = 2),
power = 0.8)
atleast.one.endpoint(K= 2, delta = c(0.47, 0.48), Sigma = matrix(c(1, 0.8, 0.8, 1), nrow = 2),
power = 0.8) |
sysreqs_collect <- function(prj = NULL) {
prj <- safe_get_prj(prj)
stopifnot(!is.null(prj))
params <- prj$load_params()
pkg_loginfo("Detecting repositories (for R %s)...", params$r_ver)
repo_infos <- get_all_repo_infos(params)
log_repo_infos(repo_infos)
avail_vers <- resolve_prj_deps(repo_infos, params)
pkg_loginfo("Detected %s dependencies. Processing...", length(vers.get_names(avail_vers)))
tmp_dir <- tempfile()
dir.create(tmp_dir, recursive = TRUE)
on.exit({
unlink(tmp_dir, recursive = TRUE, force = TRUE)
},
add = TRUE)
result <- list()
dloaded <- pkg_download(avail_vers$avails, dest_dir = tmp_dir)
for (r in seq_len(nrow(dloaded))) {
dl <- dloaded[r, ]
dcf <- get_pkg_desc(dl$Package, dl$Path)
if (!is.null(dcf$SystemRequirements)) {
result[[dl$Package]] <- gsub("\n", " ", dcf$SystemRequirements)
}
}
prj_packages <- build_project_pkgslist(params$pkgs_path)
if (length(prj_packages) > 0) {
pkg_loginfo("Processing project packages...")
for (pkg in names(prj_packages)) {
dcf <- get_pkg_desc(pkg, file.path(params$pkgs_path, prj_packages[[pkg]]))
if (!is.null(dcf$SystemRequirements)) {
result[[pkg]] <- gsub("\n", " ", dcf$SystemRequirements)
}
}
}
pkg_loginfo("Done.")
return(result)
}
sysreqs_check <- function(prj = NULL) {
sysreqs <- sysreqs_collect(prj)
if (length(sysreqs) == 0) {
pkg_loginfo("No system requirements detected to check.")
return(invisible())
}
recipe <- build_sysreqs_check_recipe()
recipe <- sysreqs_recipe_collect_all(recipe, sysreqs)
result <- perform(recipe)
assert(length(result$notools) + length(result$nolibs) == 0,
sprintf("Some system requirements are not satisfied: %s",
paste(c(result$notools, result$nolibs), collapse = ", ")))
pkg_loginfo("All system requirements satisfied.")
}
sysreqs_install <- function(prj = NULL) {
sysreqs <- sysreqs_collect(prj)
if (length(sysreqs) == 0) {
pkg_loginfo("No system requirements detected to install.")
return(invisible())
}
params <- safe_get_prj(prj)$load_params()
recipe <- build_sysreqs_install_recipe(params$prj_path)
recipe <- sysreqs_recipe_collect_all(recipe, sysreqs)
perform(recipe)
}
sysreqs_script <- function(prj = NULL) {
sysreqs <- sysreqs_collect(prj)
if (length(sysreqs) == 0) {
pkg_loginfo("No system requirements detected to install.")
return(invisible())
}
params <- safe_get_prj(prj)$load_params()
recipe <- build_sysreqs_script_recipe(params$prj_path)
recipe <- sysreqs_recipe_collect_all(recipe, sysreqs)
script <- perform(recipe)
pkg_loginfo("Building script created at %s.", script)
return(invisible(script))
} |
which.column<-function(a,b){
if (!is.matrix(b)){
b=matrix(b,1,2)
}
id1=is.element(b[,1],a[1])
id2=is.element(b[,2],a[2])
id=which(id1*id2==1)
return(id)
} |
validate_bundleDBI <- function(emuDBhandle,
session,
bundle){
DBconfig = load_DBconfig(emuDBhandle)
dbLevelDefs = list_levelDefinitions(emuDBhandle)
levelNames <- DBI::dbGetQuery(emuDBhandle$connection,
paste0("SELECT DISTINCT level ",
"FROM items ",
"WHERE db_uuid = '", emuDBhandle$UUID, "' ",
" AND session = '", session, "' ",
" AND bundle ='", bundle, "'"))$level
levelDefNames = sapply(DBconfig$levelDefinitions, function(l) l$name)
delta1 = setdiff(levelNames, levelDefNames)
delta2 = setdiff(levelDefNames, levelNames)
if(length(delta1) != 0 || length(delta2) != 0){
if(length(delta1) != 0){
return(list(type = 'ERROR',
message = paste('Following levels where found that do not ",
"match any levelDefinition:', paste(delta1), ';',
'in bundle:', bundle)))
}else{
warning("No items for levelDefinition where found for level:'",
paste(delta2), "';", "in bundle:'", bundle , "'")
}
}
bundleLevels <- DBI::dbGetQuery(emuDBhandle$connection, paste0("SELECT DISTINCT ",
" level AS name, ",
" type ",
"FROM items ",
"WHERE db_uuid = '", emuDBhandle$UUID, "' ",
" AND session = '", session, "' ",
" AND bundle ='", bundle, "' "))
joinedLevelDefs = bundleLevels %>%
dplyr::left_join(dbLevelDefs, by = "name") %>%
dplyr::select(.data$name,
DBconfigType = .data$type.x,
bundleType = .data$type.y)
if(!all(joinedLevelDefs$DBconfigType == joinedLevelDefs$bundleType)){
return(list(type = 'ERROR',
message = paste0('There are level types that differ from those defined:\n',
paste(utils::capture.output(print(joinedLevelDefs)),
collapse = "\n"))))
}
tmp <- DBI::dbGetQuery(emuDBhandle$connection, paste0("SELECT DISTINCT * ",
"FROM items ",
"WHERE session = '", session,"' ",
" AND bundle ='", bundle, "' ",
" AND type = 'SEGMENT'"))
return(list(type = 'SUCCESS',
message = ''))
} |
drop_na_columns <-
function(data) {
data %>%
select(which(colMeans(is.na(.)) < 1)) %>%
suppressMessages() %>%
suppressWarnings()
}
get_class_df <-
function(data) {
class_data <-
data %>%
future_map(class)
class_df <-
seq_along(class_data) %>%
future_map_dfr(function(x) {
tibble(nameColumn = names(data)[[x]],
typeColumn = class_data[[x]] %>% .[length(.)])
})
return(class_df)
}
tidy_column_formats <-
function(data, drop_na_columns = TRUE) {
data <-
data %>%
mutate_if(is_character,
funs(ifelse(. == "N/A", NA, .))) %>%
mutate_if(is_character,
funs(ifelse(. == "", NA, .)))
data <-
data %>%
mutate_at(data %>% select(dplyr::matches("^idCRD")) %>% names(),
funs(. %>% as.numeric())) %>%
mutate_at(data %>% select(
dplyr::matches(
"^name[A-Z]|^details[A-Z]|^description[A-Z]|^city[A-Z]|^state[A-Z]|^country[A-Z]|^count[A-Z]|^street[A-Z]|^address[A-Z]"
)
) %>% select(-dplyr::matches("nameElement")) %>% names(),
funs(. %>% str_to_upper())) %>%
mutate_at(
data %>% select(dplyr::matches("^amount")) %>% names(),
funs(. %>% as.numeric() %>% formattable::currency(digits = 0))
) %>%
mutate_at(data %>% select(dplyr::matches("^is|^has")) %>% names(),
funs(. %>% as.logical())) %>%
mutate_at(
data %>% select(dplyr::matches("latitude|longitude")) %>% names(),
funs(. %>% as.numeric() %>% formattable::digits(digits = 5))
) %>%
mutate_at(
data %>% select(dplyr::matches("^price[A-Z]|pershare")) %>% select(-dplyr::matches("priceNotation")) %>% names(),
funs(. %>% formattable::currency(digits = 3))
) %>%
mutate_at(
data %>% select(dplyr::matches(
"^count[A-Z]|^number[A-Z]|^year[A-Z]"
)) %>% select(-dplyr::matches("country|county")) %>% names(),
funs(. %>% formattable::comma(digits = 0))
) %>%
mutate_at(
data %>% select(dplyr::matches(
"codeInterestAccrualMethod|codeOriginalInterestRateType|codeLienPositionSecuritization|codePaymentType|codePaymentFrequency|codeServicingAdvanceMethod|codePropertyStatus"
)) %>% names(),
funs(. %>% as.integer())
) %>%
mutate_at(data %>% select(dplyr::matches("^ratio|^multiple|^priceNotation|^value")) %>% names(),
funs(. %>% formattable::comma(digits = 3))) %>%
mutate_at(data %>% select(dplyr::matches("^pct|^percent")) %>% names(),
funs(. %>% formattable::percent(digits = 3))) %>%
mutate_at(
data %>% select(dplyr::matches("^amountFact")) %>% names(),
funs(. %>% as.numeric() %>% formattable::currency(digits = 3))
) %>%
suppressWarnings()
has_dates <-
data %>% select(dplyr::matches("^date")) %>% ncol() > 0
if (has_dates) {
data %>% select(dplyr::matches("^date")) %>% future_map(class)
}
if (drop_na_columns ) {
data <-
data %>%
drop_na_columns()
}
return(data)
}
tidy_column_relations <-
function(data,
column_keys = c('idCIK', 'nameEntity'),
bind_to_original_df = FALSE,
clean_column_formats = TRUE) {
class_df <-
data %>%
get_class_df()
df_lists <-
class_df %>%
filter(typeColumn %in% c('list', 'date.frame'))
has_lists <-
df_lists %>% nrow() > 0
columns_matching <-
names(data)[!names(data) %>% substr(nchar(.), nchar(.)) %>% readr::parse_number() %>% is.na() %>% suppressWarnings()] %>%
suppressWarnings() %>%
suppressMessages() %>%
suppressWarnings()
if ('dataAllFilings' %in% names(data)) {
data <-
data %>%
unnest() %>%
tidy_column_formats()
return(data)
}
if ('dataAssetXBRL' %in% names(data)) {
data <-
data %>%
unnest() %>%
tidy_column_formats()
return(data)
}
if (has_lists == F & columns_matching %>% length() == 0) {
return(data)
}
data <-
data %>%
mutate(idRow = 1:n()) %>%
select(idRow, everything())
df <-
tibble()
if (columns_matching %>% length() > 0) {
match <-
columns_matching %>% str_replace_all('[0-9]', '') %>% unique() %>% paste0(collapse = '|')
df_match <-
data %>%
select(idRow, one_of(column_keys), dplyr::matches(match))
has_dates <-
names(df_match) %>% str_count("date") %>% sum() > 0
if (has_dates) {
df_match <-
df_match %>%
mutate_at(df_match %>% select(dplyr::matches("^date")) %>% names(),
funs(. %>% as.character()))
}
key_cols <-
df_match %>%
select(c(idRow, one_of(column_keys))) %>%
names()
valuecol <-
'value'
gathercols <-
df_match %>%
select(-c(idRow, one_of(column_keys))) %>%
names()
df_match <-
df_match %>%
gather_('item', 'value', gathercols, na.rm = T) %>%
mutate(
countItem = item %>% readr::parse_number(),
countItem = ifelse(countItem %>% is.na(), 0, countItem) + 1,
item = item %>% str_replace_all('[0-9]', '')
) %>%
suppressWarnings() %>%
suppressMessages()
df <-
df %>%
bind_rows(df_match)
}
if (has_lists) {
df_list <-
1:nrow(df_lists) %>%
future_map_dfr(function(x) {
column <-
df_lists$nameColumn[x]
if (column == 'dataInsiderCompaniesOwned') {
is_insider <-
TRUE
} else {
is_insider <-
FALSE
}
df <-
data %>%
select(idRow, one_of(c(column_keys, column)))
col_length_df <-
1:nrow(df) %>%
future_map_dfr(function(x) {
value <-
df[[column]][[x]]
if (value %>% purrr::is_null()) {
return(tibble(idRow = x))
}
columns_matching <-
names(value)[!names(value) %>% substr(nchar(.), nchar(.)) %>% readr::parse_number() %>% is.na() %>% suppressWarnings()] %>%
suppressWarnings() %>%
suppressMessages() %>%
suppressWarnings()
if (column == "dataAllFilings") {
return(tibble(idRow = x, countCols = value %>% ncol()))
}
if (columns_matching %>% length() == 0) {
return(tibble(idRow = x))
}
tibble(idRow = x, countCols = value %>% ncol())
})
if (col_length_df %>% ncol() == 1) {
return(tibble())
}
df <-
df %>%
left_join(col_length_df) %>%
filter(!countCols %>% is.na()) %>%
select(-countCols) %>%
suppressWarnings() %>%
suppressMessages()
df <-
df %>%
unnest()
has_dates <-
names(df) %>% str_count("date") %>% sum() > 0
if (has_dates) {
df <-
df %>%
mutate_at(df %>% select(dplyr::matches("^date")) %>% names(),
funs(. %>% as.character()))
}
gathercols <-
df %>%
select(-c(idRow, one_of(column_keys))) %>%
names()
df <-
df %>%
gather_('item', 'value', gathercols, na.rm = T) %>%
mutate(
countItem = item %>% readr::parse_number(),
countItem = ifelse(countItem %>% is.na(), 0, countItem) + 1,
item = item %>% str_replace_all('[0-9]', ''),
value = value %>% as.character()
) %>%
suppressWarnings() %>%
suppressMessages()
if (is_insider) {
df <-
df %>%
mutate(item = item %>% paste0('Insider'))
}
return(df)
}) %>%
arrange(idRow) %>%
distinct()
df <-
df %>%
bind_rows(df_list)
}
has_data <-
df %>% nrow() > 0
if (!has_data) {
return(data %>% select(-dplyr::matches("idRow")))
}
if (has_data) {
df <-
df %>%
arrange(idRow) %>%
distinct()
col_order <-
c(df %>% select(-c(item, value)) %>% names(), df$item)
df <-
df %>%
spread(item, value) %>%
select(one_of(col_order)) %>%
suppressWarnings()
has_dates <-
data %>% select(dplyr::matches("^date")) %>% ncol() > 0
if (has_dates) {
df <-
df %>%
mutate_at(df %>% select(dplyr::matches("^date[A-Z]")) %>% names(),
funs(. %>% lubridate::ymd())) %>%
mutate_at(df %>% select(dplyr::matches("^datetime[A-Z]")) %>% names(),
funs(. %>% lubridate::ymd_hm()))
}
if (clean_column_formats) {
df <-
df %>%
tidy_column_formats()
}
if ('nameFormType' %in% names(df)) {
df <-
df %>%
filter(!nameFormType %>% is.na())
}
if (bind_to_original_df) {
if (has_lists) {
if (columns_matching %>% length() > 0) {
ignore_cols <-
c(columns_matching, df_lists$nameColumn) %>%
paste0(collapse = '|')
} else {
ignore_cols <-
c(df_lists$nameColumn) %>%
paste0(collapse = '|')
}
}
if (!has_lists) {
ignore_cols <-
columns_matching %>% paste0(collapse = '|')
}
data <-
data %>%
select(-dplyr::matches(ignore_cols)) %>%
left_join(df %>%
nest(-idRow, .key = dataResolved)) %>%
suppressMessages()
return(data)
}
if (!bind_to_original_df) {
return(df)
}
}
} |
asymcp<-function(d,p_1,i,z_i){
if(!(methods::is(d,"asymdesign")|methods::is(d,"asymprob")))
stop("asymcp must be called with class of either asymdesign or asymprob.")
p_0=d$p_0
i=round(i)
if((min(p_1)<=p_0)|(max(p_1)>=1))
stop('Please input p_1 that lies between p_0 and 1 (not including p_0 and 1).')
if((i>=K)|(i<1))
stop('i is less than 1 or more than K-1.')
if(abs(z_i)>=100)
stop('invalid interim statistic: too large or too small.')
K=d$K-i
n.I=(d$n.I)[i:(i+K)]
lowerbounds=(d$lowerbounds)[(i+1):(i+K)]
cp=matrix(0,1+length(p_1),1)
infor=n.I/p_0/(1-p_0)
lowerbounds1=lowerbounds*sqrt(infor[-1])-z_i*sqrt(infor[1])
sigma=matrix(0,K,K)
for(j1 in 1:K){
for(j2 in 1:K){
sigma[j1,j2]=infor[(min(j1,j2)+1)]
}
}
sigma=sigma-infor[1]
cp[1,]=mvtnorm::pmvnorm(lower=lowerbounds1,upper=rep(Inf,K),mean=rep(0,K),sigma=sigma)[1]
for(s in 1:length(p_1)){
p1=p_1[s]
infor=n.I/p1/(1-p1)
lowerbounds1=lowerbounds*sqrt(infor[-1])-z_i*sqrt(infor[1])
sigma=matrix(0,K,K)
for(j1 in 1:K){
for(j2 in 1:K){
sigma[j1,j2]=infor[(min(j1,j2)+1)]
}
}
sigma=sigma-infor[1]
mean1=(p1-p_0)*(infor[-1]-infor[1])
cp[(s+1),]=mvtnorm::pmvnorm(lower=lowerbounds1,upper=rep(Inf,K),mean=mean1,sigma=sigma)[1]
}
cp=cbind(c(p_0,p_1),cp)
colnames(cp)=c('p','cp')
return(list(K=d$K,n.I=d$n.I,u_K=d$u_K,lowerbounds=d$lowerbounds,i=i,z_i=z_i,cp=cp,p_1=p_1,p_0=p_0))
} |
panel.cor <- function(x, y, digits = 2, cex.cor)
{
usr <- par("usr"); on.exit(par(usr))
par(usr = c(0, 1, 0, 1))
r <- cor(x, y,use="na.or.complete")
txt <- format(c(r, 0.123456789), digits = digits)[1]
if(missing(cex.cor)) cex.cor <- 0.8/strwidth(txt)
text(0.5, 0.5, txt, cex = cex.cor * abs(r))
} |
test_that("mutation models are validated", {
alleles = 1:3
afr = c(.2,.3,.5)
rate = 0.1
M = mutationModel("prop", alleles=alleles, afreq=afr, rate=rate)
expect_silent(validateMutationModel(M))
})
test_that("male and female models are equal by default", {
alleles = 1:3
afr = c(.2,.3,.5)
rate = 0.1
m = mutationMatrix("prop", alleles=alleles, afreq=afr, rate=rate)
M = mutationModel("prop", alleles=alleles, afreq=afr, rate=rate)
expect_identical(M$female, m)
expect_identical(M$male, m)
})
test_that("stepwise mutation model splits correctly in male/female", {
alleles = c(1, 1.5, 2,3)
M = mutationModel("step", alleles = alleles,
rate = list(male=0, female=0.1),
rate2 = list(male=0.2, female=0),
range = list(male=2, female=3))
matM = mutationMatrix("step", alleles = alleles,
rate = 0, rate2 = 0.2, range = 2)
matF = mutationMatrix("step", alleles = alleles,
rate = 0.1, rate2 = 0, range = 3)
expect_identical(M, mutationModel(list(male=matM, female=matF)))
}) |
proposePoints = function(opt.state) {
opt.problem = getOptStateOptProblem(opt.state)
control = getOptProblemControl(opt.problem)
if (control$n.objectives == 1L) {
if (is.null(control$multipoint.method)) {
res = proposePointsByInfillOptimization(opt.state)
} else {
res = switch(control$multipoint.method,
"cb" = proposePointsParallelCB(opt.state),
"cl" = proposePointsConstantLiar(opt.state),
"moimbo" = proposePointsMOIMBO(opt.state)
)
}
} else {
res = switch(control$multiobj.method,
"parego" = proposePointsParEGO(opt.state),
"mspot" = proposePointsMSPOT(opt.state),
"dib" = proposePointsDIB(opt.state)
)
}
if (control$interleave.random.points > 0L)
res = joinProposedPoints(list(res, proposePointsRandom(opt.state)))
if (!is.matrix(res$crit.vals))
res$crit.vals = matrix(res$crit.vals, ncol = 1L)
if (control$filter.proposed.points)
res = filterProposedPoints(res, opt.state)
res
} |
r.med.sub <-
function(x.sub, x, weight.sub, weight, k){
n <- length(x)
if(is.null(weight)){
weight <- rep(1, n)
weight.sub <- rep(1, length(x.sub))
}
rhow <- k*weighted.median(x, weight)
gap <- sum(sapply(1:length(x.sub), function(i){
max(x.sub[i] - rhow, 0)*weight.sub[i]}))/sum(weight.sub)
return(gap)
} |
InferenceA <-
function(listA,niter,burnin){
Amean=matrix(0,nrow=4,ncol=4)
for(i in burnin:niter){
temp=listA[[i]]
Amean=Amean+temp
}
Amean=Amean/(niter-burnin)
return(Amean)
} |
.charpolynom.matrix <- function(x)
{
if (ncol(x) != nrow(x)) {
stop("Square matrix is expected")
}
if (ncol(x) == 1) {
return(x[1, 1] + polynom::polynomial(c(0, -1)))
}
s <- nrow(x)
d <- polyMatrix(cbind(matrix(0, s, s), diag(-1, s, s)), s, s, 1)
return(det(x + d))
}
.char.inc.degree <- function (cp) {
return(cbind(0, cp))
}
.char.add <- function(f, s) {
if (ncol(f) > ncol(s)) {
return(.char.add(s, f))
}
s[,seq_len(ncol(f))] <- s[,seq_len(ncol(f))] + f
return(s)
}
.char.step <- function (x, l) {
if(is.matrix(l) && nrow(l) == 1) {
l <- l[1, 1]
}
if(!is.matrix(l)) {
x <- polyMatrix(x, 1, 1)
if (l == 0) {
return(x)
} else {
xx <- polyMatrix(matrix(c(0, -1), 1, 2), 1, 2)
return(.char.add(x, xx))
}
}
stopifnot(nrow(x) == ncol(x) && nrow(l) == ncol(l) && nrow(x) == nrow(l))
stopifnot(nrow(x) != 1)
res <- polyMatrix(0, 1, 1)
for(c in seq_len(ncol(x))) {
xx <- x[-1, -c]
ll <- l[-1, -c]
rr <- .char.step(xx, ll)
if (c %% 2 == 0 ) {
rr <- -rr
}
res <- .char.add(res, rr * x[1, c])
if (l[1, c] == 1) {
res <- .char.add(res, -.char.inc.degree(rr))
}
}
return(res)
}
.charpolynom.polyMatrix <- function (x) {
if (ncol(x) != nrow(x)) {
stop("Square matrix is expected")
}
return(polyMatrixCharClass(coef=.char.step(x, diag(1, nrow(x), ncol(x)))))
}
setGeneric("charpolynom", function(x) {
stop("Matrix object is expected")
})
setMethod("charpolynom", signature(x="matrix"), .charpolynom.matrix)
setMethod("charpolynom", signature(x=P), function (x) {
return(charpolynom(polyMatrix(x)))
})
setMethod("charpolynom", signature(x=PM), .charpolynom.polyMatrix) |
context("sprinkle_round")
x <- dust(head(mtcars))
test_that(
"Correctly reassigns the appropriate elements of round
columns in the table part",
{
expect_equal(
sprinkle_round(x, cols = 2, round = 3)[["body"]][["round"]],
rep(c("", 3, ""), times = c(6, 6, 6*9))
)
}
)
test_that(
"Succeeds when called on a dust_list object",
{
expect_silent(
dplyr::group_by(mtcars, am, vs) %>%
dust(ungroup = FALSE) %>%
sprinkle_round(round = 2)
)
}
)
test_that(
"Cast an error if x is not a dust object",
{
expect_error(sprinkle_round(mtcars))
}
)
test_that(
"Cast an error if round is not a numeric(1)",
{
expect_error(sprinkle_round(x, round = "3"))
}
)
test_that(
"Cast an error if round is not a numeric(1)",
{
expect_error(sprinkle_round(x, round = c(2, 3)))
}
)
test_that(
"Casts an error if part is not one of body, head, foot, or interfoot",
{
expect_error(
sprinkle_round(x, round = 20, part = "not a part")
)
}
)
test_that(
"Casts an error if fixed is not logical(1)",
{
expect_error(sprinkle_round(x, round = 20, fixed = "FALSE"))
}
)
test_that(
"Casts an error if fixed is not logical(1)",
{
expect_error(sprinkle_round(x, round = 20, fixed = c(TRUE, FALSE)))
}
)
test_that(
"Casts an error if recycle is not one of none, rows, or cols",
{
expect_error(sprinkle_round(x, recycle = "not an option"))
}
)
test_that(
"Casts an error if recycle = 'none' and round does not have length 1.",
{
expect_error(sprinkle_round(x, round = 1:2, recycle = "none"))
}
)
test_that(
"Passes when recycle != 'none' and round does has length > 1.",
{
expect_silent(sprinkle_round(x, round = 1:3, recycle = "rows"))
}
) |
lpc.control <- function (iter =100, cross=TRUE, boundary = 0.005, convergence.at =0.00001, mult=NULL, ms.h=NULL, ms.sub=30, pruning.thresh=0.0, rho0=0.4)
{
if (boundary!=0 && boundary < convergence.at) {
warning("The boundary correction will not have any effect if its threshold is set to a smaller value than the convergence criterion.")
}
if (iter <= 9) {
warning("Please choose iter=10 at least. The default value iter=100 has been used instead.")
iter <- 100
}
if (pruning.thresh<0) {
warning("This should be a non-negative number. The default 0 has been used instead.")
pruning.thresh<-0
}
if (rho0<0) {
warning("This should be a non-negative number. The default 0.4 has been used instead.")
rho0<-0.4
}
if (!is.logical(cross)){
warning("cross needs to be a Boolean. The default FALSE has been used instead.")
}
if (!is.null(mult)){
if (mult<1){
mult <-1
warning("mult needs to be a positive integer. The value mult=1 has been used instead.")
}
cat("Number of starting points manually enforced to be", mult, ".", "\n")
}
if ((ms.sub<0) || (ms.sub >100)){
ms.sub<- 30
warning("ms.sub needs to be a percentage between 0 and 100. The default choice 30 has been used instead.")
}
list(iter = iter, cross=cross,
boundary = boundary, convergence.at = convergence.at,
mult=mult, ms.h=ms.h, ms.sub=ms.sub,
pruning.thresh=pruning.thresh, rho0=rho0)
} |
EBImoran <- function (z, listw, nn, S0, zero.policy = NULL, subtract_mean_in_numerator=TRUE)
{
if (is.null(zero.policy))
zero.policy <- get("zeroPolicy", envir = .spdepOptions)
stopifnot(is.logical(zero.policy))
stopifnot(is.vector(z))
zm <- mean(z)
zz <- sum((z - zm)^2)
if (subtract_mean_in_numerator) z <- z - zm
lz <- lag.listw(listw, z, zero.policy = zero.policy)
EBI <- (nn/S0) * (sum(z * lz)/zz)
res <- EBI
res
}
EBImoran.mc <- function (n, x, listw, nsim, zero.policy = NULL,
alternative = "greater", spChk = NULL, return_boot=FALSE, subtract_mean_in_numerator=TRUE)
{
message("The default for subtract_mean_in_numerator set TRUE from February 2016")
if (is.null(zero.policy))
zero.policy <- get("zeroPolicy", envir = .spdepOptions)
stopifnot(is.logical(zero.policy))
alternative <- match.arg(alternative, c("greater", "less"))
if (!inherits(listw, "listw"))
stop(paste(deparse(substitute(listw)), "is not a listw object"))
if (missing(nsim))
stop("nsim must be given")
m <- length(listw$neighbours)
if (m != length(x))
stop("objects of different length")
if (m != length(n))
stop("objects of different length")
if (is.null(spChk))
spChk <- get.spChkOption()
if (spChk && !chkIDs(x, listw))
stop("Check of data and weights ID integrity failed")
if (spChk && !chkIDs(n, listw))
stop("Check of data and weights ID integrity failed")
gamres <- suppressWarnings(nsim > gamma(m + 1))
if (gamres) stop("nsim too large for this number of observations")
if (nsim < 1) stop ("nsim too small")
S0 <- Szero(listw)
EB <- EBest(n, x)
p <- EB$raw
b <- attr(EB, "parameters")$b
a <- attr(EB, "parameters")$a
v <- a + (b/x)
v[v < 0] <- b/x
z <- (p - b)/sqrt(v)
if (return_boot) {
EBI_boot <- function(var, i, ...) {
var <- var[i]
return(EBImoran(z=var, ...))
}
cores <- get.coresOption()
if (is.null(cores)) {
parallel <- "no"
} else {
parallel <- ifelse (get.mcOption(), "multicore", "snow")
}
ncpus <- ifelse(is.null(cores), 1L, cores)
cl <- NULL
if (parallel == "snow") {
cl <- get.ClusterOption()
if (is.null(cl)) {
parallel <- "no"
warning("no cluster in ClusterOption, parallel set to no")
}
}
res <- boot(z, statistic=EBI_boot, R=nsim,
sim="permutation", listw=listw, nn=m, S0=S0,
zero.policy=zero.policy,
subtract_mean_in_numerator=subtract_mean_in_numerator,
parallel=parallel, ncpus=ncpus, cl=cl)
return(res)
}
res <- numeric(length = nsim + 1)
for (i in 1:nsim) res[i] <- EBImoran(sample(z), listw, m,
S0, zero.policy, subtract_mean_in_numerator=subtract_mean_in_numerator)
res[nsim + 1] <- EBImoran(z, listw, m, S0, zero.policy,
subtract_mean_in_numerator=subtract_mean_in_numerator)
rankres <- rank(res)
zrank <- rankres[length(res)]
diff <- nsim - zrank
diff <- ifelse(diff > 0, diff, 0)
if (alternative == "less")
pval <- punif((diff + 1)/(nsim + 1), lower.tail=FALSE)
else if (alternative == "greater")
pval <- punif((diff + 1)/(nsim + 1))
if (!is.finite(pval) || pval < 0 || pval > 1)
warning("Out-of-range p-value: reconsider test arguments")
statistic <- res[nsim + 1]
names(statistic) <- "statistic"
parameter <- zrank
names(parameter) <- "observed rank"
method <- "Monte-Carlo simulation of Empirical Bayes Index"
if (subtract_mean_in_numerator) method <- paste(method, "(mean subtracted)")
data.name <- paste("cases: ", deparse(substitute(n)),
", risk population: ", deparse(substitute(x)), "\nweights: ",
deparse(substitute(listw)), "\nnumber of simulations + 1: ",
nsim + 1, "\n", sep = "")
lres <- list(statistic = statistic, parameter = parameter,
p.value = pval, alternative = alternative, method = method,
data.name = data.name, res = res, z = z)
class(lres) <- c("htest", "mc.sim")
lres
}
probmap <- function(n, x, row.names=NULL, alternative="less") {
alternative <- match.arg(alternative, c("greater", "less"))
if (!is.numeric(x))
stop(paste(deparse(substitute(x)), "is not a numeric vector"))
if (!is.numeric(n))
stop(paste(deparse(substitute(n)), "is not a numeric vector"))
if (any(is.na(x)))
stop("NA in at risk population")
if (any(is.na(n)))
stop("NA in cases")
if (any(x < 0))
stop("negative risk population")
if (any(n < 0))
stop("negative number of cases")
p <- n/x
nsum <- sum(n)
xsum <- sum(x)
b <- nsum/xsum
expCount <- x*b
relRisk <- 100*(n/expCount)
if (alternative == "less") {
pmap <- ppois(n, expCount)
} else {
pmap <- 1 - ppois(n-1, expCount)
}
if (is.null(row.names))
res <- data.frame(raw=p, expCount=expCount, relRisk=relRisk,
pmap=pmap)
else
res <- data.frame(raw=p, expCount=expCount, relRisk=relRisk,
pmap=pmap, row.names=row.names)
res
}
EBest <- function(n, x, family="poisson") {
if (!is.numeric(x))
stop(paste(deparse(substitute(x)), "is not a numeric vector"))
if (!is.numeric(n))
stop(paste(deparse(substitute(n)), "is not a numeric vector"))
if (any(is.na(x)))
stop("NA in at risk population")
if (any(is.na(n)))
stop("NA in cases")
if (any(x < .Machine$double.eps))
stop("non-positive risk population")
if (any(n < 0))
stop("negative number of cases")
if (length(x) != length(n)) stop("vectors of different length")
m <- length(n)
p <- n/x
nsum <- sum(n)
xsum <- sum(x)
b <- nsum/xsum
s2 <- sum(x * (((p - b)^2)/xsum))
if (family == "poisson") {
a <- s2 - (b/(xsum/m))
if (a < 0) a <- 0
est <- b + (a*(p - b)) / (a + (b/x))
res <- data.frame(raw=p, estmm=est)
attr(res, "family") <- family
attr(res, "parameters") <- list(a=a, b=b)
} else if (family == "binomial") {
rho <- (x*s2 - (x/mean(x))*(b*(1-b))) /
((x-1)*s2 + ((mean(x)-x) /mean(x))*(b*(1-b)))
est <- rho*p + (1-rho)*b
res <- data.frame(raw = p, estmm = est)
attr(res, "family") <- family
attr(res, "parameters") <- list(a=s2, b=b)
} else stop("family unknown")
res
}
EBlocal <- function(ri, ni, nb, zero.policy = NULL,
spChk = NULL, geoda = FALSE) {
if (is.null(zero.policy))
zero.policy <- get("zeroPolicy", envir = .spdepOptions)
stopifnot(is.logical(zero.policy))
if (!inherits(nb, "nb"))
stop(paste(deparse(substitute(nb)), "is not an nb object"))
lnb <- length(nb)
if (lnb < 1) stop("zero length neighbour list")
if (lnb != length(ri))
stop("objects of different length")
if (lnb != length(ni))
stop("objects of different length")
if (is.null(spChk))
spChk <- get.spChkOption()
if (spChk && !chkIDs(ni, nb))
stop("Check of data and neighbour ID integrity failed")
if (spChk && !chkIDs(ri, nb))
stop("Check of data and neighbour ID integrity failed")
if (!is.numeric(ni))
stop(paste(deparse(substitute(ni)), "is not a numeric vector"))
if (!is.numeric(ri))
stop(paste(deparse(substitute(ri)), "is not a numeric vector"))
if (any(is.na(ni)))
stop("NA in at risk population")
if (any(ni == 0))
stop("zero in at risk population")
if (any(is.na(ri)))
stop("NA in cases")
if (any(ni < 0))
stop("negative risk population")
if (any(ri < 0))
stop("negative number of cases")
lw <- nb2listw(include.self(nb), style="B", zero.policy=zero.policy)
xi <- ri/ni
r.i <- lag.listw(lw, ri, zero.policy = zero.policy)
n.i <- lag.listw(lw, ni, zero.policy = zero.policy)
nbar.i <- lag.listw(nb2listw(include.self(nb), style="W",
zero.policy=zero.policy), ni, zero.policy = zero.policy)
m.i <- r.i/n.i
if (geoda) {
work <- vector(mode="list", length=lnb)
cnb <- card(lw$neighbours)
for (i in 1:lnb) {
work[[i]] <- rep(m.i[i], cnb[i])
work[[i]] <- xi[lw$neighbours[[i]]] - work[[i]]
work[[i]] <- work[[i]]^2
work[[i]] <- ni[lw$neighbours[[i]]] * work[[i]]
}
C.i <- sapply(work, sum)
} else {
C.i <- lag.listw(lw, (ni * (xi - m.i)^2), zero.policy = zero.policy)
}
a.i <- (C.i/n.i) - (m.i/nbar.i)
a.i[a.i < 0] <- 0
est <- m.i + (xi - m.i) * (a.i / (a.i + (m.i/ni)))
res <- data.frame(raw=xi, est=est)
attr(res, "parameters") <- list(a=a.i, m=m.i)
res
} |
test_that("Validate GetElements using legacy credentials", {
skip_on_cran()
SCAuth(Sys.getenv("USER", ""), Sys.getenv("SECRET", ""))
elem <- GetElements("zwitchdev", report.type='warehouse')
expect_is(elem, "data.frame")
}) |
library(testthat)
`%is%` <- expect_equal
`%throws%` <- expect_error
context("caller examples")
test_that("Example 1", {
where <- "0"
x <- y <- z <- NULL
e <- function() {
where <- "e"
x <<- environment()
f <- function() {
where <- "f"
y <<- environment()
g <- function() {
where <- "g"
z <<- environment()
caller()$where %is% "f"
}
g()
}
f()
}
e()
})
test_that("foo", {
where <- "0"
x <- y <- z <- NULL
e <- function() {
where <- "e"
x <<- environment()
f <- function() {
where <- "f"
y <<- environment()
g <- function() {
where <- "g"
z <<- environment()
}
g()
}
f()
}
e()
h <- function() {
eval(quote(caller()), y)$where %throws% "e"
}
h()
})
test_that("caller from a lazy argument in a closed environment", {
where <- "0"
e <- function() {
where <- "e"
f <- function() {
where <- "f"
g <- function(g) {
where <- "g"
function(f) g
}
g(caller())
}
f()
}
e()()$where %throws% "e"
}) |
make.tree.musse <- function(pars, max.taxa=Inf, max.t=Inf, x0,
single.lineage=TRUE) {
k <- (sqrt(1 + 4*length(pars))-1)/2
if ( !isTRUE(all.equal(k, as.integer(k))) )
stop("Invalid parameter length: must be k(k+1) long")
check.pars.musse(pars, k)
if ( x0 < 1 || x0 > k )
stop("x0 must be an integer in [1,k]")
pars <- cbind(matrix(pars[seq_len(2*k)], k, 2),
matrix(pars[(2*k+1):(k*(k+1))], k, k-1, TRUE))
to <- matrix(unlist(lapply(1:k, function(i) (1:k)[-i])),
k, k-1, TRUE)
r.i <- rowSums(pars)
extinct <- FALSE
split <- FALSE
parent <- 0
n.i <- rep(0, k)
len <- 0
t <- 0
hist <- list()
if ( single.lineage ) {
states <- x0
n.taxa <- lineages <- n.i[x0] <- 1
start <- 0
} else {
stop("Nope.")
}
while ( n.taxa <= max.taxa && n.taxa > 0 ) {
r.n <- r.i * n.i
r.tot <- sum(r.n)
dt <- rexp(1, r.tot)
t <- t + dt
if ( t > max.t ) {
dt <- dt - (t - max.t)
len[lineages] <- len[lineages] + dt
t <- max.t
break
}
len[lineages] <- len[lineages] + dt
state <- sample(k, 1, FALSE, r.n/r.tot)
j <- sample(n.i[state], 1)
lineage <- lineages[states[lineages] == state][j]
type <- sample(k+1, 1, FALSE, pars[state,])
if ( type == 1 ) {
if ( n.taxa == max.taxa )
break
new.i <- length(extinct) + 1:2
split[lineage] <- TRUE
extinct[new.i] <- split[new.i] <- FALSE
states[new.i] <- state
parent[new.i] <- lineage
start[new.i] <- t
len[new.i] <- 0
n.i[state] <- n.i[state] + 1
n.taxa <- n.taxa + 1
lineages <- which(!split & !extinct)
} else if ( type == 2 ) {
extinct[lineage] <- TRUE
lineages <- which(!split & !extinct)
n.i[state] <- n.i[state] - 1
n.taxa <- n.taxa - 1
} else {
states[lineage] <- state.new <- to[state,type - 2]
n.i[c(state.new, state)] <- n.i[c(state.new, state)] + c(1,-1)
hist[[length(hist)+1]] <- c(lineage, t, state, state.new)
}
}
info <- data.frame(idx=seq_along(extinct), len=len, parent=parent,
start=start, state=states, extinct=extinct,
split=split)
hist <- as.data.frame(do.call(rbind, hist))
if ( nrow(hist) == 0 )
hist <- as.data.frame(matrix(NA, 0, 4))
names(hist) <- c("idx", "t", "from", "to")
hist$x0 <- info$start[match(hist$idx, info$idx)]
hist$tc <- hist$t - hist$x0
attr(info, "t") <- t
attr(info, "hist") <- hist
info
}
tree.musse <- function(pars, max.taxa=Inf, max.t=Inf,
include.extinct=FALSE, x0=NA) {
k <- (sqrt(1 + 4*length(pars))-1)/2
if ( !isTRUE(all.equal(k, as.integer(k))) )
stop("Invalid parameter length: must be k(k+1) long")
if ( length(x0) != 1 || is.na(x0) || x0 < 1 || x0 > k )
stop("Invalid root state")
info <- make.tree.musse(pars, max.taxa, max.t, x0)
phy <- me.to.ape.bisse(info[-1,], info$state[1])
if ( include.extinct || is.null(phy) )
phy
else
prune(phy)
}
tree.musse.multitrait <- function(pars, n.trait, depth, max.taxa=Inf,
max.t=Inf, include.extinct=FALSE,
x0=NA) {
tr <- musse.multitrait.translate(n.trait, depth)
np <- ncol(tr)
if ( !(all(is.finite(x0)) && length(x0) == n.trait) )
stop(sprintf("x0 must be a vector of length %d"), n.trait)
if ( !all(x0 %in% c(0, 1)) )
stop("All x0 must be in [0,1]")
if ( length(pars) != ncol(tr) )
stop(sprintf("Expected %d parameters:\n\t%s",
ncol(tr), paste(colnames(tr), collapse=", ")))
pars2 <- drop(tr %*% pars)
code <- paste(x0, collapse="")
types <- do.call(expand.grid, rep(list(0:1), n.trait))
key <- apply(types, 1, paste, collapse="")
x02 <- match(code, key)
tree <- tree.musse(pars2, max.taxa, max.t, include.extinct, x02)
tree$tip.state <- types[tree$tip.state,,drop=FALSE]
rownames(tree$tip.state) <- tree$tip.label
colnames(tree$tip.state) <- LETTERS[seq_len(n.trait)]
tree
} |
two.stage.model.outputs<-function (B1,catchability,obs,g)
{
ai<-data.frame(c(obs$year), c(rep(0,length(obs$year))),c(rep(0,length(obs$year))),c(rep(0,length(obs$year))),c(rep(0,length(obs$year))))
colnames(ai)<-c("year","bts","cgfs","uk","fr")
for (i in 1:length(obs[,1]))
{
ai$bts[i]<-exp(catchability[1])*B1[i]
ai$cgfs[i]<-exp(catchability[2])*B1[i]*exp(-g/4)
ai$uk[i]<-0.5*exp(catchability[3])*(B1[i]*exp(-g/4)+(B1[i]*exp(-g/2)-obs$L.Q341[i])*exp(-g/4))
ai$fr[i]<-0.5*exp(catchability[4])*(B1[i] + (B1[i]*exp(-g/2) - obs$L.Q3412[i])*exp(-g/2))
}
sigma.bts<-sqrt(mean(log(obs$bts/ai$bts)^2))
sigma.cgfs<-sqrt(mean(log(obs$cgfs/ai$cgfs)^2))
sigma.lpue.uk<-sqrt(mean(log(obs$lpue.uk/ai$uk)^2))
sigma.lpue.fr<-sqrt(mean(log(obs$lpue.fr/ai$fr)^2))
residus.mlh<-data.frame(
c(obs$year[1]:obs$year[length(obs$year)]),
(length(obs$bts)*log(sigma.bts)+1/(2*sigma.bts^2)*sum(log(obs$bts/ai$bts)^2)),
(length(obs$cgfs)*log(sigma.cgfs)+1/(2*sigma.cgfs^2)*sum(log(obs$cgfs/ai$cgfs)^2)),
(length(obs$lpue.uk)*log(sigma.lpue.uk)+1/(2*sigma.lpue.uk^2)*sum(log(obs$lpue.uk/ai$uk)^2)),
(length(obs$lpue.fr)*log(sigma.lpue.fr)+1/(2*sigma.lpue.fr^2)*sum(log(obs$lpue.fr/ai$fr)^2))
)
colnames(residus.mlh)<-c("year","res.bts","res.cgfs","lpue.uk","lpue.fr")
residus.ssr<-data.frame(
c(obs$year[1]:obs$year[length(obs$year)]),
(log(obs$bts/ai$bts))^2,
(log(obs$cgfs/ai$cgfs))^2,
(log(obs$lpue.uk/ai$uk))^2,
(log(obs$lpue.fr/ai$fr))^2
)
colnames(residus.ssr)<-c("year","res.bts","res.cgfs","lpue.uk","lpue.fr")
residus.raw<-data.frame(
c(obs$year[1]:obs$year[length(obs$year)]),
(obs$bts-ai$bts),
(obs$cgfs-ai$cgfs),
(obs$lpue.uk-ai$uk),
(obs$lpue.fr-ai$fr)
)
colnames(residus.raw)<-c("year","bts","cgfs","uk","fr")
residuals.st<-data.frame(
c(obs$year[1]:obs$year[length(obs$year)]),
(residus.raw$bts-mean(residus.raw$bts))/sd(residus.raw$bts),
(residus.raw$cgfs-mean(residus.raw$cgfs))/sd(residus.raw$cgfs),
(residus.raw$uk-mean(residus.raw$uk))/sd(residus.raw$uk),
(residus.raw$fr-mean(residus.raw$fr))/sd(residus.raw$fr))
colnames(residuals.st)<-c("year","bts","cgfs","lpue.uk","lpue.fr")
sum.residus<-sum(residus.ssr[,2:5])
biomass<-data.frame(
c(obs$year[1]:obs$year[length(obs$year)]),
B1,
B1*exp(-g/2),
obs$L.Q3412,
(obs$L.Q3412)/(B1*exp(-g/2)),
(B1*exp(-g/2)-obs$L.Q3412)*exp(-g/2)
)
colnames(biomass)<-c("year","B1","B.jan","landings","exp.rate","B2")
resultat<-list(
obs,
sum.residus,
residus.ssr,
residus.mlh,
residus.raw,
residuals.st,
ai,
biomass
)
names(resultat)<-c("observed", "sum.residuals", "residuals.ssr", "residuals.mlh", "residuals.raw", "residuals.st", "predicted.ai", "biomass")
return(resultat)
}
two.stage.model.fit<-function(to.fit, obs.fit, g.fit)
{
resultat.fit<-two.stage.model.outputs(B1=to.fit[1:length(obs.fit$year)], catchability=to.fit[(length(obs.fit$year)+1):(length(obs.fit$year)+4)] ,obs=obs.fit, g=g.fit)
return(resultat.fit$sum.residuals)
}
delta.glm<-function(input.data)
{
input.data$year<-as.factor(input.data$year)
input.data$fishing.season<-as.factor(input.data$fishing.season)
input.data$rectangle<-as.factor(input.data$rectangle)
input.data$power.class<-as.factor(input.data$power.class)
input.data$factor.month<-"00"
input.data[input.data$month==1,]$factor.month<-"01"
input.data[input.data$month==2,]$factor.month<-"02"
input.data[input.data$month==3,]$factor.month<-"03"
input.data[input.data$month==4,]$factor.month<-"04"
input.data[input.data$month==5,]$factor.month<-"05"
input.data[input.data$month==6,]$factor.month<-"06"
input.data[input.data$month==7,]$factor.month<-"07"
input.data[input.data$month==8,]$factor.month<-"08"
input.data[input.data$month==9,]$factor.month<-"09"
input.data[input.data$month==10,]$factor.month<-"10"
input.data[input.data$month==11,]$factor.month<-"11"
input.data[input.data$month==12,]$factor.month<-"12"
input.data<-data.frame(input.data$year, input.data$fishing.season, input.data$factor.month, input.data$rectangle, input.data$power.class, input.data$lpue)
colnames(input.data)<-c("year", "fishing.season", "month", "rectangle", "power.class", "lpue")
input.data$presence<-1
input.data[input.data$lpue==0,]$presence<-0
binomial.glm<-glm(presence ~ fishing.season + month + rectangle + power.class, family="binomial", data=input.data)
binomial.summary<-summary(binomial.glm)
binomial.residuals<-residuals(binomial.glm)
binomial.fit<-fitted(binomial.glm)
positive.input.data<-input.data[input.data$lpue>0,]
gaussian.glm<-glm(log(lpue) ~ fishing.season + month + rectangle + power.class, family="gaussian", data=positive.input.data)
gaussian.summary<-summary(gaussian.glm)
gaussian.residuals<-residuals(gaussian.glm)
gaussian.fit<-fitted(gaussian.glm)
positive.input.data<-input.data[input.data$lpue>0,]
positive.input.data$year<-as.factor(as.character(positive.input.data$year))
positive.input.data$fishing.season<-as.factor(as.character(positive.input.data$fishing.season))
positive.input.data$month<-as.factor(as.character(positive.input.data$month))
positive.input.data$rectangle<-as.factor(as.character(positive.input.data$rectangle))
positive.input.data$power.class<-as.factor(as.character(positive.input.data$power.class))
l.fishing.season<-length(levels(as.factor(positive.input.data$fishing.season)))
l.month<-length(levels(as.factor(positive.input.data$month)))
l.rectangle<-length(levels(as.factor(positive.input.data$rectangle)))
l.power.class<-length(levels(as.factor(positive.input.data$power.class)))
l.total<-l.fishing.season*l.month*l.rectangle*l.power.class
predicted.lpue <- matrix(NA,nrow=l.total,ncol=4)
predicted.lpue[,4] <- rep(levels(positive.input.data$power.class),(l.total/l.power.class))
for(k in 1:l.fishing.season){
for(j in 1:l.rectangle){
for(m in 1:l.month){
start.fishing.season <- k*l.rectangle*l.month*l.power.class - l.rectangle*l.month*l.power.class
end.fishing.season <- k*l.rectangle*l.month*l.power.class
start.rectangle <- start.fishing.season + j*l.month*l.power.class - l.month*l.power.class
end.rectangle <- start.fishing.season + j*l.month*l.power.class
start.month <- start.rectangle + m*l.power.class - l.power.class+1
end.month <- start.rectangle + m*l.power.class
predicted.lpue[start.month:end.month,3] <- rep(levels(positive.input.data$month)[m], l.power.class)
}
predicted.lpue[(start.rectangle+1):end.rectangle,2] <- rep(levels(positive.input.data$rectangle)[j], l.month*l.power.class)
}
predicted.lpue[(start.fishing.season+1):end.fishing.season,1] <- rep(levels(positive.input.data$fishing.season)[k], l.rectangle * l.month* l.power.class)
}
predicted.lpue<-as.data.frame(predicted.lpue)
colnames(predicted.lpue)<-c("fishing.season", "rectangle", "month", "power.class")
binomial.glm.prediction <- predict.glm(binomial.glm, predicted.lpue[,1:4], type="r", se.fit=T)
gaussian.glm.prediction <- predict.glm(gaussian.glm, predicted.lpue[,1:4], type="r", se.fit=T)
binomial.glm.prediction.fit<-binomial.glm.prediction$fit
gaussian.glm.prediction.fit<-gaussian.glm.prediction$fit
gaussian.glm.prediction.var<-(gaussian.glm.prediction$se.fit)^2
gaussian.prediction<-exp(gaussian.glm.prediction.fit+gaussian.glm.prediction.var/2)
predicted.lpue$st.lpue<-binomial.glm.prediction.fit*gaussian.prediction
delta.outputs<-list(
binomial.glm,
binomial.summary,
binomial.residuals,
binomial.fit,
gaussian.glm,
gaussian.summary,
gaussian.residuals,
gaussian.fit,
predicted.lpue
)
names(delta.outputs)<-c("binomial.glm",
"binomial.summary",
"binomial.residuals",
"binomial.fit",
"gaussian.glm",
"gaussian.summary",
"gaussian.residuals",
"gaussian.fit",
"predicted.lpue"
)
return(delta.outputs)
} |
prey.cluster <- function(prey.fa,
method="complete",
dist.meas=2) {
mult.rep <- function(x.vec) {
no.zero <- sum(x.vec == 0)
x.vec[x.vec == 0] <- 1e-05
x.vec[x.vec > 0] <- (1 - no.zero * 1e-05) * x.vec[x.vec > 0]
return(x.vec)
}
prey.fa[,-1] <- prey.fa[,-1]/apply(prey.fa[,-1],1,sum)
sort.preytype <- order(prey.fa[,1])
prey.fa <- prey.fa[sort.preytype,]
prey.fa[,-1] <- t(apply(prey.fa[,-1],1,mult.rep))
prey.means <- MEANmeth(prey.fa)
I <- nrow(prey.means)
dist.mat <- matrix(rep(NA,I*I),nrow=I)
if (dist.meas==1) {
my.ylab <- "KL Distance"
for (i in 2:I) {
for (j in 1:(i-1)) {
dist.mat[i,j] <- KL.dist(as.vector(prey.means[i,]),as.vector(prey.means[j,]))
}
}
} else if (dist.meas==2) {
my.ylab <- "Aitchison Distance"
for (i in 2:I) {
for (j in 1:(i-1)) {
dist.mat[i,j] <- AIT.dist(as.vector(prey.means[i,]),as.vector(prey.means[j,]))
}
}
} else {
my.ylab <- "CS Distance"
for (i in 2:I) {
for (j in 1:(i-1)) {
dist.mat[i,j] <- chisq.dist(as.vector(prey.means[i,]),as.vector(prey.means[j,]),1)
}
}
}
plot(stats::hclust(stats::as.dist(dist.mat),method=method),labels=rownames(prey.means),xlab="", ylab=my.ylab, sub=NA)
} |
plotts.dwt.wge=function (x,n.levels=4,type='S8')
{
n=length(x)
dwtd=rep(0,n.levels)
if (n/2^n.levels != trunc(n/2^n.levels))
stop("Sample size is not divisible by 2^n.levels")
if (2^n.levels > n)
stop("wavelet transform exceeds sample size in dwt")
numrows <- n.levels+2
numcols <- 1
timelab <- 'Lag'
valuelab <- ''
fig.width <- 5
fig.height <- 4
cex.labs <- c(1,1,1)
par(mfrow=c(numrows,numcols),mar=c(3.5,2.5,.5,1))
dj=c('d1','d2','d3','d4','d5','d6','d7','d8','d9','d10','d11','d12','d13','d14')
sj=c('s1','s2','s3','s4','s5','s6','s7','s8','s9','s10','s11','s12','s13','s14')
tt=1:n
if(n < 200) {plot(tt,x,type='o',xaxt='n',yaxt='n',cex=1,pch=16,cex.lab=.75,cex.axis=.75,lwd=.75,xlab='',ylab='',axes=F,xlim=c(0,n))}
if(n >= 200) {plot(tt,x,type='l',xaxt='n',yaxt='n',cex=1,pch=16,cex.lab=.75,cex.axis=.75,lwd=.75,xlab='',ylab='',axes=F,xlim=c(0,n))}
mtext(side=c(2),text='Data',cex=c(1))
if(type=='haar'){typewf='haar'}
if(type=='S8'){typewf='la8'}
if(type=='D4'){typewf='d4'}
if(type=='D6'){typewf='d6'}
if(type=='D8'){typewf='d8'}
x.dwt <- waveslim::dwt(x, n.levels, wf = typewf, boundary = "periodic")
x<-c(0,n)
y<-c(0,0)
ymin=0
ymax=0
nlp1=n.levels+1
for (j in 1:nlp1){
ymin=min(ymin,x.dwt[[j]])
ymax=max(ymax,x.dwt[[j]])
}
for (j in 1:n.levels)
{nj<-tt/2^j
end=n/2^j
k<-1:end
td<-k*2^j-.5*2^j+.5
plot(td,x.dwt[[j]],type='h',yaxt='n',cex=0.6,pch=15,cex.lab=2,cex.axis=2,lwd=1,xlab='',ylab='',axes=F,ylim=c(ymin,ymax),xlim=c(0,n))
lines(x,y)
mtext(side=c(2),text=dj[j],cex=c(1.))
}
plot(td,x.dwt[[n.levels+1]],type='h',yaxt='n',cex=0.6,pch=15,cex.lab=2,cex.axis=2,lwd=1,xlab='',ylab='',axes=F,ylim=c(ymin,ymax),xlim=c(0,n))
lines(x,y)
axis(side=1,cex.axis=1.5,mgp=c(3,1,0),tcl=-.3);mtext(side=c(2),text=sj[n.levels],cex=c(1.))
mtext(side=1,text='Time', cex=1.1,line=2)
if(attr(x.dwt,'wavelet') =='la8'){attr(x.dwt,'wavelet')='S8'}
if(attr(x.dwt,'wavelet') =='d4'){attr(x.dwt,'wavelet')='D4'}
if(attr(x.dwt,'wavelet') =='d6'){attr(x.dwt,'wavelet')='D6'}
if(attr(x.dwt,'wavelet') =='d8'){attr(x.dwt,'wavelet')='D8'}
return(x.dwt)
} |
test_that("R6 pyclasses respect convert=FALSE", {
d <- py_eval("{}", FALSE)
r_cls <- R6Class(
"r_class",
public = list(
a_method = function(x = NULL) {
expect_same_pyobj(x, d)
x$update(list("foo" = NULL))
}
))
py_cls <- r_to_py(r_cls, convert = FALSE)
py_inst <- py_cls()
py_inst$a_method(d)
expect_identical(py_to_r(d), list("foo" = NULL))
})
test_that("R6 pyclasses respect convert=TRUE", {
d <- py_eval("{}", FALSE)
r_cls <- R6Class(
"r_class",
public = list(
a_method = function(x = NULL) {
expect_type(x, "list")
x[["foo"]] <- "bar"
x
}
))
py_cls <- r_to_py(r_cls, convert = TRUE)
py_inst <- py_cls()
ret <- py_inst$a_method(d)
expect_identical(ret, list(foo = "bar"))
expect_identical(py_to_r(d), py_eval("{}"))
})
test_that("%py_class% can be lazy about initing python", {
res <- callr::r(function() {
library(keras)
options("topLevelEnvironment" = environment())
MyClass %py_class% {
initialize <- function(x) {
print("Hi from MyClass$initialize()!")
self$x <- x
}
my_method <- function() {
self$x
}
}
if (reticulate:::is_python_initialized())
stop()
MyClass2(MyClass) %py_class% {
"This will be a __doc__ string for MyClass2"
initialize <- function(...) {
"This will be the __doc__ string for the MyClass2.__init__() method"
print("Hi from MyClass2$initialize()!")
super$initialize(...)
}
}
if (reticulate:::is_python_initialized())
stop()
my_class_instance2 <- MyClass2(42)
my_class_instance2$my_method()
})
expect_equal(res, 42)
})
test_that("%py_class% initialize", {
NaiveSequential %py_class% {
initialize <- function(layers)
self$layers <- layers
}
x <- NaiveSequential(list(1, "2", 3))
expect_identical(x$layers, list(1, "2", 3))
}) |
bucher_moduleUI <- function(id) {
ns <- NS(id)
tabPanel("Bucher method",
h4("Adjusted Indirect Comparisons (Bucher method)"),
fluidRow(
column(6,
fluidRow(
column(4, numericInput(ns("buch_AC_est"), "A vs C", NA)),
column(4, numericInput(ns("buch_AC_lo"), "95%CI LL", NA)),
column(4, numericInput(ns("buch_AC_hi"), "95%CI UL", NA))
),
fluidRow(
column(4, numericInput(ns("buch_BC_est"), "B vs C", NA)),
column(4, numericInput(ns("buch_BC_lo"), "95%CI LL", NA)),
column(4, numericInput(ns("buch_BC_hi"), "95%CI UL", NA))
),
radioButtons(ns("buch_type"), "What kind of effect measure is this?",
choices = list(
"Relative Risk / Odds Ratio / Other exponentiated measure" = "exp",
"logRR / logOR / Other absolute measure" = "abs"
), width="100%")
),
column(6, verbatimTextOutput(ns("buch_output")))
)
)
}
bucher_module <- function(input, output, session) {
output$buch_output <- renderPrint({
eff <- as.numeric(c(input$buch_AC_est, input$buch_AC_lo, input$buch_AC_hi,
input$buch_BC_est, input$buch_BC_lo, input$buch_BC_hi))
if (sum(is.na(eff))==0) {
if (input$buch_type=="exp" & sum(eff<0, na.rm=TRUE)>0) return(cat(" "))
if (input$buch_type=="exp") eff <- log(eff)
eff <- matrix(eff, nrow=2, byrow=TRUE)
colnames(eff) <- c("est", "lo", "hi"); rownames(eff) <- c("AC", "BC")
pool.eff <- diff(eff[c("BC","AC"), "est"])
pool.sd <- sqrt(
(abs(diff(eff["AC", c("lo","hi")]))/(2*qnorm(0.975)))^2 +
(abs(diff(eff["BC", c("lo","hi")]))/(2*qnorm(0.975)))^2)
symm.ac <- abs(abs(diff(eff["AC", c("est","hi")]))/abs(diff(eff["AC", c("lo","est")]))-1)<0.05
symm.bc <- abs(abs(diff(eff["BC", c("est","hi")]))/abs(diff(eff["BC", c("lo","est")]))-1)<0.05
output <- c(
if (input$buch_type=="exp") "Exponentiated measure - converting to log:\n" else "",
sprintf("Point estimate, A vs C: %.3f", eff["AC", "est"]),
sprintf("Standard error, A vs C: %.3f",
abs(diff(eff["AC", c("lo","hi")]))/(2*qnorm(0.975))),
sprintf("\nPoint estimate, B vs C: %.3f", eff["BC", "est"]),
sprintf("Standard error, B vs C: %.3f",
abs(diff(eff["BC", c("lo","hi")]))/(2*qnorm(0.975))),
sprintf("\nPoint estimate, A vs B: %.3f", pool.eff),
sprintf("Standard error, A vs B: %.3f", pool.sd),
sprintf("95%% Confidence Interval, A vs B: %.3f \u2014 %.3f",
pool.eff-qnorm(0.975)*pool.sd, pool.eff+qnorm(0.975)*pool.sd),
(if (input$buch_type=="exp") paste(
"\nExponentiating:",
sprintf("Point estimate, A vs B: %.2f", exp(pool.eff)),
sprintf("95%% Confidence Interval, A vs B: %.2f \u2014 %.2f",
exp(pool.eff-qnorm(0.975)*pool.sd), exp(pool.eff+qnorm(0.975)*pool.sd)
), sep="\n") else ""), "")
if (!symm.ac) output <- c(output,
"WARNING: The 95% CI for A vs C does not look symmetric.",
" Are the values you entered correct?")
if (!symm.bc) output <- c(output,
"WARNING: The 95% CI for B vs C does not look symmetric.",
" Are the values you entered correct?")
return(cat(paste(output, collapse="\n")))
} else return(cat("No (appropriate) input data provided."))
})
} |
context("canvasXpress Web Charts - Contour")
test_that("cXcontour1", {
check_ui_test(cXcontour1())
})
test_that("cXcontour2", {
check_ui_test(cXcontour2())
})
test_that("cXcontour3", {
check_ui_test(cXcontour3())
})
test_that("cXcontour4", {
check_ui_test(cXcontour4())
})
test_that("cXcontour5", {
check_ui_test(cXcontour5())
})
test_that("cXcontour6", {
check_ui_test(cXcontour6())
}) |
knitr::opts_chunk$set(echo = TRUE, fig.height=4, fig.width=4)
library("ivreg")
data("Kmenta", package = "ivreg")
Kmenta
deq <- ivreg(Q ~ P + D | D + F + A, data=Kmenta)
summary(deq)
seq <- ivreg(Q ~ P + F + A | D + F + A, data=Kmenta)
summary(seq)
par(mfrow=c(2, 2))
plot(deq)
library("car")
qqPlot(deq)
influencePlot(deq)
Kmenta1 <- Kmenta
Kmenta1[20, "Q"] <- 95
deq1 <- update(deq, data=Kmenta1)
compareCoefs(deq, deq1)
qqPlot(deq1)
outlierTest(deq1)
influencePlot(deq1)
avPlots(deq1)
deq1.20 <- update(deq1, subset = -20)
compareCoefs(deq, deq1, deq1.20)
H <- cbind(hatvalues(deq1), hatvalues(deq1, type="both"),
hatvalues(deq1, type="maximum"))
colnames(H) <- c("stage2", "geom.mean", "maximum")
head(H)
scatterplotMatrix(H, smooth=FALSE)
cbind(dfbeta(deq1)[20, ], coef(deq1) - coef(deq1.20))
c(influence(deq1)$sigma[20], sigma(deq1.20))
crPlots(deq, smooth=list(span=1))
ceresPlots(deq, smooth=list(span=1))
library("effects")
plot(predictorEffects(deq, residuals=TRUE),
partial.residuals=list(span=1))
deq2 <- update(deq, . ~ I((P - 85)^4/10^5) + D)
crPlots(deq2, smooth=list(span=1))
plot(predictorEffects(deq2, residuals=TRUE),
partial.residuals=list(span=1))
plot(fitted(deq), rstudent(deq))
abline(h=0)
spreadLevelPlot(deq, smooth=list(span=1))
with(Kmenta, plot(Q, Q^-2.5))
abline(lm(Q^-2.5 ~ Q, data=Kmenta))
ncvTest(deq)
ncvTest(deq, var = ~ P + D)
summary(deq, vcov=sandwich::sandwich)
SEs <- round(cbind(sqrt(diag(sandwich::sandwich(deq))),
sqrt(diag(vcov(deq)))),
4)
colnames(SEs) <- c("sandwich", "conventional")
SEs
Kmenta2 <- Kmenta[, c("D", "F", "A")]
set.seed(492365)
Kmenta2 <- within(Kmenta2, {
EQ <- 75.25 + 0.1125*D + 0.1250*F + 0.225*A
EP <- 85.00 + 0.7500*D - 0.5000*F - 0.900*A
d1 <- rnorm(20)
d2 <- rnorm(20)
v1 <- 2*d1
v2 <- -0.5*v1 + d2
w <- 3*(EQ - min(EQ) + 0.1)/(max(EQ) - min(EQ))
v1 <- v1*w
Q <- EQ + v1
P <- EP + v2
})
with(Kmenta2, plot(EQ, v1))
deq2 <- update(deq, data=Kmenta2)
summary(deq2)
spreadLevelPlot(deq2)
ncvTest(deq2)
SEs2 <- round(cbind(sqrt(diag(sandwich::sandwich(deq2))),
sqrt(diag(vcov(deq2)))),
4)
colnames(SEs2) <- c("sandwich", "conventional")
SEs2
set.seed <- 869255
b.deq2 <- Boot(deq2)
summary(deq2, vcov.=vcov(b.deq2))
confint(b.deq2)
deqw <- update(deq, data=Kmenta2, weights=1/w)
summary(deqw)
ncvTest(deqw)
plot(fitted(deqw), rstudent(deqw))
outlierTest(deqw)
sqrt(vif(deq))
mcPlots(deq)
deq.mm <- update(deq1, method = "MM")
summary(deq.mm)
compareCoefs(deq, deq1, deq1.20, deq.mm)
weights(deq.mm, type = "robustness")
influencePlot(deq.mm) |
test_that <- function(desc, code) {
if (exists(".testthat_db", envir=.GlobalEnv)) {
db <- get(".testthat_db", envir=.GlobalEnv)
dbxDelete(db, "events")
}
testthat::test_that(desc, code)
} |
pfco <- function(xdata, cont, test, log2.opt=0, trim.opt=0.25) {
n <- nrow(xdata);
idnames <- rownames(xdata);
xcol <- colnames(xdata);
n.xcol <- length(xcol);
idx1 <- xcol %in% cont;
m1 <- sum(idx1);
idx2 <- xcol %in% test;
m2 <- sum(idx2);
rankmat <- calcSRmat(xdata, cont, test, log2.opt, trim.opt);
rmat.sr <- rankmat$rmat.sr;
FC <- rankmat$FC;
FC2 <- rankmat$FC2;
moyV <- rankmat$moyV;
stdV <- rankmat$stdV;
m2c <- rankmat$m2c;
smat <- (t(rmat.sr) %*% rmat.sr)/n;
smat.eig <- eigen(smat);
v <- smat.eig$vectors[,1:2];
if (v[1,1] < 0) v <- -v;
u1 <- mean(v[,1])*rmat.sr %*% v[,1];
u2 <- mean(v[,2])*rmat.sr %*% v[,2];
u1b <- u1 + u2;
moy <- mean(u1b)
std <- sqrt((n-1)/n)*sd(u1b)
f.value <- pnorm(u1b, mean = moy, sd = std)
em <- 0.5;
p.value <- tprobaCalc(moyV, stdV, n, m2c-1, em);
comp <- sqrt(smat.eig$values);
comp.w <- comp / sum(comp);
comp.wcum <- cumsum(comp.w);
list(idnames=idnames, FC=FC, FC2=FC2, ri=u1b, f.value=f.value,
p.value=p.value, comp=comp, comp.w=comp.w, comp.wcum=comp.wcum);
} |
if (interactive()) savehistory();
library("aroma.affymetrix");
log <- Verbose(threshold=-10, timestamp=TRUE);
naVersion <- "31";
user <- "HB";
datestamp <- "20101007";
chipType <- "Mapping250K_Nsp";
footer <- list(
createdOn = format(Sys.time(), "%Y%m%d %H:%M:%S", usetz=TRUE),
createdBy = list(
fullname = "Henrik Bengtsson",
email = sprintf("%s@%s", "henrik.bengtsson", "aroma-project.org")
),
srcFiles = list()
);
if (!exists("cdf")) {
cdf <- AffymetrixCdfFile$byChipType(chipType);
rm(csv);
}
print(cdf);
if (!exists("csv")) {
tags <- sprintf(".na%s", naVersion);
pathname <- AffymetrixNetAffxCsvFile$findByChipType(chipType, tags=tags);
if (isFile(pathname)) {
csv <- AffymetrixNetAffxCsvFile(pathname);
}
rm(tags);
}
print(csv);
tags <- sprintf("na%s,%s%s", naVersion, user, datestamp);
ugp <- NULL;
tryCatch({
ugp <- AromaUgpFile$byChipType(getChipType(cdf), tags=tags);
}, error = function(ex) {})
if (is.null(ugp)) {
ugp <- AromaUgpFile$allocateFromCdf(cdf, tags=tags);
}
print(ugp);
units <- importFrom(ugp, csv, verbose=log);
str(units);
if (!exists("srcFileTags", mode="list")) {
srcFileTags <- list();
srcFiles <- list(cdf, csv);
for (kk in seq_along(srcFiles)) {
srcFile <- srcFiles[[kk]];
tags <- list(
filename=getFilename(srcFile),
filesize=getFileSize(srcFile),
checksum=getChecksum(srcFile)
);
srcFileTags[[kk]] <- tags;
}
print(srcFileTags);
}
footer <- readFooter(ugp);
footer$createdOn <- format(Sys.time(), "%Y%m%d %H:%M:%S", usetz=TRUE);
footer$createdBy = list(
fullname = "Henrik Bengtsson",
email = sprintf("%s@%s", "henrik.bengtsson", "aroma-project.org")
);
names(srcFileTags) <- sprintf("srcFile%d", seq_along(srcFileTags));
footer$srcFiles <- srcFileTags;
writeFooter(ugp, footer);
print(ugp);
print(summary(ugp));
print(table(ugp[,1])) |
crsra_membershares <- function(
all_tables,
groupby = c("roles", "country", "language", "gender",
"empstatus", "education", "stustatus"),
remove_missing = TRUE) {
partner_user_id = attributes(all_tables)$partner_user_id
all_tables = crsra_import_as_course(all_tables)
groupby = match.arg(groupby)
coursenames = names(all_tables)
varname = switch(groupby,
"roles" = "course_membership_role",
"country" = "country_cd",
"language" = "profile_language_cd",
"gender" = "reported_or_inferred_gender",
"empstatus" = "employment_status",
"education" = "educational_attainment",
"stustatus" = "student_status")
y = Total = NULL
rm(list = c("y", "Total"))
membershares <- function(x, z) {
temp <- z %>%
dplyr::left_join(x, by = partner_user_id, `copy`=TRUE)
temp$y = temp[[varname]]
if (remove_missing) {
temp = temp %>% dplyr::filter(!is.na(y))
}
temp = temp %>%
dplyr::group_by(y) %>%
dplyr::summarise(Total = n()) %>%
dplyr::mutate(Share = round(Total/sum(Total), 2)) %>%
dplyr::arrange(desc(Total))
temp
}
mems = lapply(all_tables, function(x) x$course_memberships)
users = lapply(all_tables, function(x) x$users)
membertable <- purrr::map2(
mems, users, membershares)
names(membertable) <- coursenames
return(membertable)
} |
flux.odae <-
function(dat, var.par, min.allowed = 3, max.nrmse = 0.1, rl = NULL){
if(is.null(rl) & !exists("rl", dat)){
rl <- 0
warning("No range limit defined. Has been set to 0.")
}
if(!is.numeric(rl)){ rl <- dat[,rl]}
if(exists("rl", dat)){rl <- dat$rl}
vp <- function(dat, sel){
if(is.character(sel)){out <- dat[,sel]}
else{out <- rep(sel, nrow(dat))}
return(out)
}
dat <- lapply(var.par, function(x) vp(dat, x))
stv <- match(c("ghg", "time", "gc.qual", "area", "volume"), names(dat))
handthrough <- names(which(sapply(var.par[-stv], is.character)))
hdt.fac.sel <- sapply(dat[handthrough], is.numeric)
fac.out <- c(CH4 = "methane",CO22 = "carbon dioxide")
fac.out <- c(fac.out, sapply(dat[handthrough][!hdt.fac.sel], function(x) as.character(x[1])))
hdt <- c(dat[c("area", "volume")], dat[handthrough][hdt.fac.sel])
dat.out <- round(sapply(hdt, mean), 3)
dat <- sapply(dat[c("ghg", "time", "gc.qual", "area", "volume", "t.air", "p.air")], function(x) x[])
dat <- data.frame(dat)
dat <- dat[order(dat$time),]
vers <- unlist(lapply(c(min.allowed:nrow(dat)), function(x) combn(c(1:nrow(dat)), x, simplify=FALSE)), recursive=FALSE)
vers <- lapply(vers, "sort")
sel <- unlist(lapply(vers, function(x) length(unique(dat[x,2]))))
vers <- vers[sel >= min.allowed]
vers.n <- sapply(vers, "length")
vers.lm <- lapply(vers, function(x) lm(ghg ~ time, data=dat[x,]))
nrmse <- unlist(lapply(vers.lm, function(x) sqrt(sum(residuals(x)^2)/summary(x)$df[2])/diff(range(x$model[1], na.rm=TRUE))))
ranks <- order(vers.n, 1-nrmse, decreasing=TRUE)
m2t <- ranks[nrmse[ranks] <= max.nrmse][1]
if(is.na(m2t)){
m2t <- order(nrmse)[1]
}
lm4flux <- vers.lm[[m2t]]
row.select <- vers[[m2t]]
names(dat)[1] <- var.par$ghg
dat$rl <- rl
res <- list(lm4flux = lm4flux, row.select = row.select, orig.dat = dat, dat.out = dat.out, fac.out = fac.out)
return(res)
} |
"irt.fa" <-
function(x,nfactors=1,correct=TRUE,plot=TRUE,n.obs=NULL,rotate="oblimin",fm="minres",sort=FALSE,...) {
cl <- match.call()
if (is.matrix(x) | is.data.frame(x)) {
if(is.null(n.obs)) n.obs <- dim(x)[1]
nvar <- ncol(x)
vname <- colnames(x)
x <- as.matrix(x)
if(!is.numeric(x)) {message("Converted non-numeric matrix input to numeric. \n Are you sure you wanted to do this?\n Please check your data")
x <- matrix(as.numeric(x),ncol=nvar)}
colnames(x) <- vname
tx <- table(as.matrix(x))
if(dim(tx)[1] ==2) {tet <- tetrachoric(x,correct=correct)
typ = "tet"} else {tet <- polychoric(x)
typ = "poly"}
r <- tet$rho
tau <- tet$tau} else {if (!is.null(x$rho)) { r <- x$rho
tau <- x$tau
if(is.null(n.obs)) {n.obs <- x$n.obs}
typ <- class(x)[2]
if (typ == "irt.fa") typ <- "tet"
} else {stop("x must be a data.frame or matrix or the result from tetra or polychoric")}
}
t <- fa(r,nfactors=nfactors,n.obs=n.obs,rotate=rotate,fm=fm,...)
if(sort) {t <- fa.sort(t)
if(typ !="tet" ) {tau <- tau[t$order,] } else {tau <- tau[t$order] }
}
nf <- dim(t$loadings)[2]
diffi <- list()
for (i in 1:nf) {diffi[[i]] <- tau/sqrt(1-t$loadings[,i]^2)
}
discrim <- t$loadings/sqrt(1-t$loadings^2)
if(any(is.nan(discrim))) {
for (i in 1:nf) {
bad <- which(is.nan(discrim[,i]))
if(length( bad) > 0) { warning("A discrimination with a NaN value was replaced with the maximum discrimination for factor ", i, " and item(s) ",bad, "\nexamine the factor analysis object (fa) to identify the Heywood case. \nThe item informations are probably suspect as well for this factor. \nYou might try a different factor extraction technique. ")
discrim[is.nan(discrim[,i]),i] <- max(discrim[,i],na.rm=TRUE)
diffi[[i]][bad,] <- tau[bad,]
}
}}
class(diffi) <- NULL
class(discrim) <- NULL
tl <- t$loadings
class(tl) <- NULL
irt <- list(difficulty=diffi,discrimination=discrim)
nlevels <- dim(diffi[[1]])[2]
result <- list(irt=irt,fa = t,rho=r,tau=tau,n.obs=n.obs,Call=cl)
switch(typ,
tet = { class(result) <- c("psych","irt.fa")},
tetra ={class(result) <- c("psych","irt.fa")},
poly = {class(result) <- c("psych","irt.poly")},
irt.poly = {class(result) <- c("psych","irt.poly")})
if(plot) {pr <- plot(result)
result$plot <- pr}
return(result)
}
"fa2irt" <- function(f,rho,plot=TRUE,n.obs=NULL) {
cl <- match.call()
tau <- rho$tau
if(!is.null(f$order)) {if (!is.null(ncol(tau))) { tau <- tau[f$order,] } else {tau <- tau[f$order] }}
r <- rho$rho
nf <- ncol(f$loadings)
diffi <- list()
for (i in 1:nf) {diffi[[i]] <- tau/sqrt(1-f$loadings[,i]^2)
}
discrim <- f$loadings/sqrt(1-f$loadings^2)
if(any(is.nan(discrim))) {bad <- which(is.nan(discrim),arr.ind=TRUE)
if(length(bad) > 0) { warning("An discrimination with a NaN value was replaced with the maximum discrimination for item(s) ",bad, "\nexamine the factor analysis object (fa) to identify the problem") }
for (i in 1:nf) {
discrimin[is.nan(discrim[,i])] <- max(discrimin[,i],na.rm=TRUE)
}}
irt <- list(difficulty=diffi,discrimination=discrim)
result <- list(irt=irt,fa = f,rho=r,tau=tau,n.obs=n.obs,Call=cl)
if(inherits(rho[2],"poly" )) {class(result) <- c("psych","irt.poly") } else {class(result) <- c("psych","irt.fa")}
if(plot) {pr <- plot(result)
result$plot <- pr}
return(result)
} |
library(ggplot2)
library(knitr)
opts_chunk$set(comment=NA, fig.width=7.2)
library(ggseas)
ap_df <- tsdf(AirPassengers)
head(ap_df)
ggplot(ap_df, aes(x = x, y = y)) +
geom_line(colour = "grey75")
ggplot(ap_df, aes(x = x, y = y)) +
stat_index(index.ref = 1:10)
ggplot(ap_df, aes(x = x, y = y)) +
stat_index(index.ref = 120, index.basis = 1000)
ggplot(ap_df, aes(x = x, y = y)) +
geom_line(colour = "grey75") +
stat_rollapplyr(width = 12, align = "center") +
labs(x = "", y = "Number of US Air Passengers\n(rolling average and original)")
ggplot(ap_df, aes(x = x, y = y)) +
geom_line(colour = "grey75") +
stat_rollapplyr(width = 12, align = "center", geom = "point",
size = 0.5, colour = "steelblue") +
labs(x = "", y = "Number of US Air Passengers\n(rolling average and original)")
ggplot(ap_df, aes(x = x, y = y)) +
geom_line(colour = "grey50") +
stat_seas(colour = "blue") +
stat_stl(s.window = 7, colour = "red")
ggplot(ldeaths_df, aes(x = YearMon, y = deaths, colour = sex)) +
geom_point() +
facet_wrap(~sex) +
stat_seas() +
ggtitle("Seasonally adjusted lung deaths in the UK")
ggsdc(ap_df, aes(x = x, y = y), method = "seas") + geom_line()
serv <- subset(nzbop, Account == "Current account" &
Category %in% c("Services; Exports total", "Services; Imports total"))
ggsdc(serv, aes(x = TimePeriod, y = Value, colour = Category),
method = "stl", s.window = 7, frequency = 4,
facet.titles = c("The original series", "The underlying trend",
"Regular seasonal patterns", "All the randomness left")) +
geom_line() |
fabia.overlap <- function(resFAB,ind.ref,type="loadings",thresZ=0.5,thresL=NULL){
bicResult <- extractBic(resFAB,thresZ=thresZ,thresL=thresL)
ind.bc.load <- bicResult$numn[,1]
ind.bc.factor <- bicResult$numn[,2]
overlap.BC <- c(1:length(ind.bc.load))
n.overlap.ref <- c(1:length(ind.bc.load))
n.overlap.query <- c(1:length(ind.bc.load))
if(type=="loadings"){
ind.total <- c(1:dim(resFAB@L)[1])
ind.query <- ind.total[-ind.ref]
for(i.bc in 1:length(ind.bc.load)){
ind.bc.load.i <- ind.bc.load[[i.bc]]
nref.temp <- length(intersect(ind.ref,ind.bc.load.i))
nquery.temp <- length(intersect(ind.query,ind.bc.load.i))
if((length(intersect(ind.ref,ind.bc.load.i))>=1) & (length(intersect(ind.query,ind.bc.load.i))>=1)){
overlap.BC[i.bc] <- i.bc
n.overlap.ref[i.bc] <- nref.temp
n.overlap.query[i.bc] <- nquery.temp
}
}
}
if(type=="factors"){
ind.total <- c(1:dim(resFAB@Z)[2])
ind.query <- ind.total[-ind.ref]
for(i.bc in 1:length(ind.bc.factor)){
ind.bc.factor.i <- ind.bc.factor[[i.bc]]
nref.temp <- length(intersect(ind.ref,ind.bc.factor.i))
nquery.temp <- length(intersect(ind.query,ind.bc.factor.i))
if((length(intersect(ind.ref,ind.bc.factor.i))>=1) & (length(intersect(ind.query,ind.bc.factor.i))>=1)){
overlap.BC[i.bc] <- i.bc
n.overlap.ref[i.bc] <- nref.temp
n.overlap.query[i.bc] <- nquery.temp
}
}
}
out <- data.frame(Bicluster=overlap.BC,Number.Ref=n.overlap.ref,Number.Query=n.overlap.query)
return(out)
}
getWeightedDat <- function(Mat1,Mat2,scale.unit=TRUE){
if(scale.unit){
Mat1 <- stdize(Mat1,center=TRUE,scale=TRUE)
Mat2 <- stdize(Mat2,center=TRUE,scale=TRUE)
resPCA1 <- PCA(Mat1,graph=FALSE)
resPCA2 <- PCA(Mat2,graph=FALSE)
}
else{
resPCA1 <- PCA(Mat1,scale.unit=FALSE,graph=FALSE)
resPCA2 <- PCA(Mat2,scale.unit=FALSE,graph=FALSE)
}
getWeight1 <- resPCA1$eig[1,1]
getWeight2 <- resPCA2$eig[1,1]
Mat1.w <- Mat1*(1/sqrt(getWeight1))
Mat2.w <- Mat2*(1/sqrt(getWeight2))
dat <- list()
dat[[1]] <- data.matrix(cbind(Mat1.w, Mat2.w))
dat[[2]] <- 1/sqrt(getWeight1)
dat[[3]] <- 1/sqrt(getWeight2)
dat[[4]] <- resPCA1
dat[[5]] <- resPCA2
names(dat) <- c("weightedData", "weight1","weight2", "resPCA1", "resPCA2")
return(dat)
} |
pep2prot = function(pep.Expr.Data, rollup.map){
protIDs = unique(rollup.map)
prot.Expr.Data = matrix(,nrow = length(protIDs),ncol = dim(pep.Expr.Data)[2])
for (i in 1:length(protIDs)){
temp = protIDs[i]
pepSet = pep.Expr.Data[which(rollup.map==temp),]
if (length(which(rollup.map==temp))==1){
prot.Expr.Data[i,] = pepSet
}
else{
prot.Expr.Data[i,] = apply(pepSet,2,median,na.rm = T)
}
}
return(prot.Expr.Data)
} |
claim_notification <- function(
frequency_vector, claim_size_list, rfun, paramfun, ...) {
if (!missing(rfun) & missing(paramfun)) {
paramfun <- function(claim_size, occurrence_period, ...) {
c(claim_size = claim_size, occurrence_period = occurrence_period, ...)
}
paramfun_filled <- TRUE
} else {
paramfun_filled <- FALSE
}
if (missing(rfun)) {
rfun <- stats::rweibull
if (missing(paramfun)) {
paramfun <- function(claim_size, occurrence_period, ...) {
mean <- min(3, max(1, 2-(log(claim_size/(0.50 * .pkgenv$ref_claim)))/3))/4 / .pkgenv$time_unit
cv <- 0.70
shape <- get_Weibull_parameters(mean, cv)[1, ]
scale <- get_Weibull_parameters(mean, cv)[2, ]
c(shape = shape, scale = scale)
}
}
}
I <- length(frequency_vector)
no_claims <- sum(frequency_vector)
params <- mapply(paramfun,
claim_size = unlist(claim_size_list, use.names = FALSE),
occurrence_period = rep(1:I, times = frequency_vector),
...)
if (!is.null(names(params))) {
params_split <- split(unname(params), names(params))
} else if (length(params)) {
params_split <- asplit(params, 1)
} else {
params_split <- params
}
args <- as.list(params_split)
keep_names <- c(intersect(names(args), names(formals(rfun))))
keep_formals <- c(list(n = no_claims), args[keep_names])
if (paramfun_filled) {
tt <- try(notidel_vect <- do.call(rfun, keep_formals), TRUE)
if (methods::is(tt, "try-error")) {
stop("need to specify 'paramfun' for the sampling distribution")
}
} else {
notidel_vect <- do.call(rfun, keep_formals)
}
notidel <- to_SynthETIC(notidel_vect, frequency_vector)
notidel
} |
expInstantiate <- function(e, parameters = NULL, removeUnary=TRUE) {
if (!is.experiment(e))
stop(.callErrorMessage("wrongParameterError",
"e",
"experiment"))
if (!is.null(parameters) & !is.character(parameters))
stop(.callErrorMessage("wrongParameterError",
"parameters",
"character or character array"))
if(is.null(parameters))
parameters = e$parameters
else{
for (var in parameters) {
if (!(var %in% e$parameters))
stop(.callErrorMessage("variableNotPresentError", var))
}
}
e1 <- e
e1$parameters <- e1$parameters[!(e1$parameters %in% parameters)]
auxParameters <- parameters
if (removeUnary) {
for (var in auxParameters) {
col <- e1$data[[var]]
if (length(unique(col)) == 1) {
e1$data <- e1$data[,-which(colnames(e1$data)==var)]
parameters <- parameters[-which(parameters==var)]
}
}
}
e1$data[[e1$method]] <- interaction(e1$data[,c(e1$method,parameters),drop=FALSE],
sep = ",",
drop=TRUE)
e1$data <- e1$data[,!(colnames(e1$data) %in% parameters),drop=FALSE]
e1$historic <- c(e1$historic,
list(paste("Methods has been instanciated with the parameters: ",
toString(auxParameters), sep="")))
config = c()
for (p in auxParameters)
config <- c(config, paste0(p, ' [', paste0(levels(e$data[[p]]), collapse = ","), '] (instantiated)'))
e1$configuration = config
e1
} |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.